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Preface

This textbook of heat and mass transfer has been written to meet the
need that exists in the opinion of the author among the undergrad-
uate students of Mechanical, Automobile and Production Engi-
neering, graduate students of Thermal Engineering, and students
appearing in various competitive examinations. The heat transfer
part of the book will also be useful for students of Chemical
Engineering.

A classical treatment of the fundamentals of heat transfer has
been presented in this book. The basic approach of separate dis-
cussions of conduction, convection and radiation has been used. The
book contains 16 chapters and 3 appendices. Each chapter contains
sufficient number of solved problems. Step-wise answers are given
to all unsolved problems.

In Chap. 1, an overview of different modes of heat transfer has
been presented.

Chapters 2–4 present the conventional treatment of
one-dimensional heat conduction through plane wall, cylindrical and
spherical systems, fins, and simple systems with volumetric heat
generation.

In Chap. 5, analytical treatment of some cases of two-dimensional
steady-state heat conduction has been presented followed by a dis-
cussion of finite-difference numerical methods which are often used
in practice for solving complex problems.

Chapter 6 is devoted to the transient heat conduction where
lumped heat capacity analysis and solution of problems based on
Heisler charts have been given. Numerical method of solving tran-
sient conduction problems has been presented with a number of
illustrative examples.

Analytical solutions of some simple convection heat transfer
problems, especially the convection with laminar flow, have been
presented in Chap. 7. Empirical relations for forced convection and
natural or free convection heat transfer have been presented in
Chaps. 8 and 9, respectively.

Chapters 10 and 11 deal with the fundamentals of radiation heat
transfer and the exchange of thermal radiation between surfaces
separated by transparent medium, respectively. The method of
radiation network has been used extensively in the analysis of
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radiation problems. Gaseous radiation problems have been dealt
with using the conventional Hottel charts in Chap. 12.

Chapter 13 has been divided into two parts. In the first part, the
basic modes of condensation have been presented followed by the
presentation of the analytical solution due to Nusselt for laminar film
condensation on a vertical surface. The second part discusses the
phenomenon of pool boiling followed by discussion on forced
boiling in vertical and horizontal pipes.

The conventional thermal analysis of heat exchangers (the
log-mean-temperature difference and effectiveness approaches) is
presented in Chap. 14 followed by introduction to design method-
ology of heat exchangers considering the design of double-pipe heat
exchanger.

Chapter 15 presents a brief introduction to mass diffusion in a
quiescent medium and convective mass transfer. Analogies between
heat, mass and momentum transfer have been presented.

In Chap. 16, thermal analysis and discussion of conventional and
enhanced performance solar air heaters are presented along with the
mathematical model of the solar air heater.

The first edition of the book received an excellent response. In
this edition, some minor modifications and corrections have been
made, and at the end of each chapter, summary of the chapter has
been incorporated. Many new solved and unsolved problems have
been added to provide problems of varying complexity.

The students are advised to refer to the reference books, hand-
books and journals, some of which are also listed at the end of book,
for details beyond the coverage of this textbook and also for the new
developments in the field of heat transfer. Computers have made
possible the numerical solution of quite complex problems. Readers
are advised to refer to advanced references for the computer-aided
solution of heat transfer problems.

The author sincerely expresses deep sense of gratitude and
indebtedness to the authors and publishers of various advanced
books, handbooks, journals and other references which have been
consulted and whose material has been used in the preparation of
this book.

In spite of the care taken in preparing the manuscript of this book
and reading the proofs, there is always a scope for improvement and
some errors might have crept in. I will be grateful to the readers if
they can suggest ways to improve the contents and bring the errors
to my attention, if any, noticed by them.

Jodhpur, India Dr. Rajendra Karwa
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cfx Local skin friction coefficient = swx/(1/2qU∞

2 );
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2 );
C Heat capacity = mc, J/K;
C Mass concentration, kg/m3;
C Molar concentration, kmol/m3;
d, D Characteristic dimension, m;
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E Electric potential;
E Energy, J;
Ebk Monochromatic hemispherical emissive power of black

body, W/(m.m2);
f Fanning friction factor = sw/(1/2qU
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fapp Apparent Fanning friction factor in the hydrodynamic

entrance region;
FD Drag force, N;
Fij View factor;
g Gravitational acceleration, m/s2;
G Mass velocity, kg/(s m2);
G Irradiation, W/m2;
h Heat transfer coefficient, W/(m2 K);

1(at most of the places, small t has been used when temperature is in °C)
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hm Mass transfer coefficient, m/s;
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hw Wind heat transfer coefficient, W/(m2 K), W/(m2 °C);
H Height, m;
I Solar radiation intensity (insolation), W/m2;
Ik Monochromatic intensity of radiation;
J Radiosity, W/m2;
k Thermal conductivity, W/(m K), W/(m °C);
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L Fundamental dimension of length;
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Lth Thermal entrance length, m;
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m A fin parameter, 1/m;
M Molecular weight;
M Fundamental dimension of mass;
n Number of radiation shields;
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q Heat transfer rate, W;
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qg Volumetric heat generation rate, W/m3;
r Radius (usually variable), m;
R Radius, m;
R Gas constant, J/(kg K);
R Temperature group (T1–T2)/(t2–t1);
Rk Thermal resistance to heat conduction, K/W;
S Temperature group (t2–t1)/(T1–t1);
S Conduction shape factor;
Ta Ambient temperature, °C, K;
Tb,Tfm Bulk mean air temperature = (To + Ti)/2, °C;
Ti Inlet temperature, °C;
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Ts Surface temperature, °C, K;
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Tw Wall temperature, °C, K;
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T∞ Free-stream temperature, °C;
u, v, w Velocity, m/s;
U Overall heat transfer coefficient, W/(m2 K), W/(m2 °C);
U Velocity, m/s;
U∞ Free-stream velocity, m/s;
v Specific volume, m3/kg;
V Volume, m3;
W Weight, N;
W Width of the duct, m;
W/H Duct aspect ratio;
x, y, z Variable distances in space;
xi Mole fraction;

Dimensionless Numbers

Bi Biot number = hL/ksolid;
e+ Roughness Reynolds number, Eq. (8.63);
Ec Eckert number = u2/cpDt;
Fo Fourier number = as/L2;
g Heat transfer function, Eq. (8.69);
Gr Grashof number = gbL3Dt/m2;
Gz Graetz number = Re Pr (D/L);
Le Lewis numbera = Sc/Pr = a/D;
p/e Relative roughness pitch;
Nu Nusselt number = hL/kfluid;
Pe Peclet number = Re Pr;
Pr Prandtl number = lcp/k;
Prt Turbulent Prandtl number = eM/eH;
R Roughness function, Eq. (8.67);
Ra Rayleigh number = Gr Pr = gbH3Dt/am;
Ra* Rayleigh number (based on heat flux) = gbq”H4/amk;
Re Reynolds number = qUd/l = GL/l;
Rex Reynolds number based on longitudinal length = U∞x/m;
Recr Critical Reynolds number;
Sc Schmidt numbera = m/D =l/qD = Le Pr;
Sh Sherwood numbera = hmL/D;
Stm Mass transfer Stanton number = hm/U;
St Stanton number = h/(Gcp);
Stx Local Stanton number = hx/(Gcp);
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Greek Symbols

a, b, c, /, w Angle (degree or rad);
a Thermal diffusivity = k/qc, m2/s;
a Absorptivity (radiation);
b Coefficient of volumetric expansion, 1/K;
b Temperature coefficient of thermal conductivity,

1/K;
b Collector slope (degree);
d Velocity boundary layer thickness, m;
d Thickness, m;
dmd Momentum displacement thickness, m;
dvd Velocity displacement thickness, m;
dp, Dp Pressure drop in the duct, Pa;
dt Thermal boundary layer thickness;
Dt, DT Temperature difference, °C, K;
e Fin effectiveness;
e Heat exchanger effectiveness;
e Emissivity;
eH Thermal eddy diffusivity, m2/s;
eM Momentum eddy diffusivity or viscosity, m2/s;
/ Relative humidity;
η Thermal efficiency;
ηf Efficiency of fin;
k Darcy friction factor (= 4f)
k Wavelength, m;
kmax Wavelength at maximum value of Ebk;
l Dynamic viscosity, Pa s, N s/m2, kg/(m s);
m Kinematic viscosity = l/q, m2/s;
p Dimensionless group;
h Temperature excess, K;
h Time, s;
q Density of fluid, kg/m3;
q Reflectivity;
r Stefan–Boltzmann constant;
r Surface tension, N/m;
s Time, s;
s Shear stress between fluid layers, Pa;
(sa) Transmittance–absorptance product;
x Solid angle, sr;
x Specific humidity;
w Stream function;
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Superscript and Subscript

a Ambient
b Bulk, blackbody
cr Critical state
f Fluid
f Film
fd Fully developed
g Gas
hy Hydrodynamic
i, 1 Inlet or initial
i Based on the inside surface of a pipe
l Laminar or liquid
m Mass transfer quantity
m Mean
max Maximum
min Minimum
o, 2 Outlet
o Based on the outside surface of a pipe
o Stagnation
s Smooth surface
s Surface
th Thermal
v Vapour
w Wall
x Based on variable length
∞ Free-stream condition
¯ (overbar) Mean or molar

Space Coordinates

r, h, z Cylindrical, m, rad, m;
r, h, / Spherical, m, rad, rad;
x, y, z Cartesian, m, m, m.

a Diffusion D is mass diffusivity, m2/s.
Note: The symbol L in the dimensionless groups stands for a generic
length and is defined according to the particular geometry under
consideration; it may be diameter, hydraulic diameter, plate length,
etc.
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1Introduction

1.1 Introduction

Thermodynamically, heat is a form of energy that is transferred between two systems (or a
system and its surroundings) by virtue of a temperature difference.

Classical thermodynamics treats the processes as though only the end states exist, pre-
suming that the system exists in a state of thermodynamic equilibrium. It provides no
information about the rates of irreversible flows. The heat flow with temperature difference is
one example of irreversible flow. In studies of processes that involve flow of heat or mass,
the rate of flow is an important parameter.

Heat can be transferred in three different ways: by conduction, convection and radiation.
In most of the engineering applications, it is a combination of the two or three modes. Pure
conduction is found only in solids, and convection is possible only in fluids. A detailed study
of these modes will be given in this book. Here, a brief description of each mode is presented
to familiarize the reader with them.

1.2 Heat Transfer by Conduction

Thermal conduction is a process by which heat is transmitted by the direct contact between
particles of a body without any motion of the material as a whole. The phenomenon of
conduction heat transfer can be experienced by a simple experiment. Heat one end of a metal
rod. The other end of the rod will become hotter and hotter with the passage of time. Heat
reaches from the heated end of the rod to the other end by conduction through the material of
the rod.

Conduction occurs in all media—solids, liquids, and gases when a temperature gradient
exists. In opaque solids, it is the only mechanism by which the heat can flow. In the fluids,
the molecules have freedom of motion and energy is also transferred by movement of the
fluid. However, if the fluid is at rest, the heat is transferred by conduction.

Heat transfer by conduction requires that the temperature distribution in a medium is non-
uniform, that is, a temperature gradient exists in the body. Fourier noted in 1811 that the heat
flow in a homogenous solid is directly proportional to the temperature gradient. Consider a
plane wall of thickness dx, whose area perpendicular to the direction x is A as shown in
Fig. 1.1. If the thickness of the wall is very small as compared to its height and width, it is a
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case of one-dimensional (in direction x only) heat flow. Let one of the faces of the wall is at a
temperature t1 and the other at temperature t2. For the elemental thickness dx, the temperature
difference is dt. Then, the conduction heat flux q/A (the heat flux is the heat flow rate per unit
area of the surface), according to Fourier, is

q

A
/ dt

dx
ð1:1Þ

When the constant of the proportionality is inserted in Eq. (1.1), we get

q

A
¼ �k

dt

dx
ð1:2Þ

The constant of proportionality k is known as thermal conductivity of the material. It is a
physical property of a substance and characterizes the ability of a material to conduct heat.
The negative sign in the equation indicates that the heat flow is in the direction of falling
temperature.

From Eq. (1.2), we get

k ¼ � q

A

� � dx

dt
W=ðmKÞ ð1:3Þ

Thus thermal conductivity determines the quantity of heat flowing per unit time through
the unit area with a temperature drop of 1°C (K) per unit length.

1.3 Heat Transfer by Convection

The term is applied to transport of heat as a volume of liquid or gas moves from a region of
one temperature to that of another temperature. Thus, the transport of heat is linked with the
movement of the medium itself. The convection can be observed in liquids if we carry out a
simple experiment. Consider a pot with water which is placed over a burner. The water at the
bottom of the pot is heated and becomes less dense than before due to its thermal expansion.
Thus, the water at the bottom, which is less dense than the cold water in the upper portion,
rises upwards. It transfers its heat by mixing as it rises. The movement of the water, referred

x

dx

dt

q

t1

t2

Fig. 1.1 Conduction heat flow through a solid
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to as the convection currents, can be observed by putting a few crystals of potassium
permanganate in the bottom of the pot. Density differences and the gravitational force of the
earth act to produce a force known as buoyancy force, which drives the flow. When the flow
is due to the density differences only, it is called natural or free convection. Density dif-
ferences may also be caused by the composition gradients. For example, water vapour rises
mainly due to the lower density of water vapour present in the moist air.

Convection is termed as forced if the fluid is forced to flow over a surface or in a duct by
external means such as a fan, pump or blower, that is, the forced convection implies
mechanically induced flow.

Heat transfer processes involving change of phase of a fluid (boiling of liquids or con-
densation of vapours) are also considered to be convection because of the motion of fluid that
is set up due to the rising vapour bubbles during boiling or the falling liquid droplets during
the condensation.

The heat transfer by convection is always accompanied by conduction. The combined
process of heat transfer by convection and conduction is referred to as convective heat
transfer. The heat transfer, between a solid surface and a fluid, is expressed by Newton’s law
of cooling as

q ¼ hADt ð1:4Þ

where Δt is the temperature difference between the fluid and the surface, A is the area of the
surface transferring heat and h is known as heat transfer coefficient or film coefficient.

In general, the value of the heat transfer coefficient h depends on the fluid-flow conditions,
the thermophysical properties of the fluid and the type of flow passage. Order of magnitude
of convective heat transfer coefficients is given in Table A6, Appendix.

Consider a heated plate at temperature tw as shown in Fig. 1.2, which is exposed to a fluid
flowing parallel to the plate surface at velocity U∞ and is at a temperature t∞. The velocity of
the fluid at the plate surface will be zero because of the viscous effect. Since the velocity of
the fluid at the wall is zero, we can imagine that there exists a thin film of the fluid quite close
to the wall, which is practically stationary. In most of the cases, the temperature gradient is
confined to this thin layer where at a greater distance from the wall, only a small temperature
difference exists because of the mixing of the fluid. The heat is, thus, transferred across the
film by conduction. This heat is then carried away by fluid motion.

Assuming that the temperature variation in the fluid film is linear, the flow of heat across
the film can be expressed by Fourier’s law as

q ¼ kf A
ðtw � t1Þ

df
ð1:5Þ

where df is the thickness of the fluid film and kf is the thermal conductivity of the fluid.

U∞, t∞

tw
Plate

Fluid film

Fig. 1.2 Cooling of a hot plate by flowing fluid

1.3 Heat Transfer by Convection 3

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Comparison of Eq. (1.5) with Newton’s equation, which is widely used, gives h = kf/df.
This equation relates the convection heat transfer to the conduction. It shows that the value of
the heat transfer coefficient is directly proportional to the thermal conductivity of the fluid. It
is to be kept in mind that there are other factors also which govern the magnitude of the heat
transfer coefficient as mentioned earlier. From the order of magnitude of the heat transfer
coefficient in Table A6, it can be seen that the gases provide a lower value of heat transfer
coefficient in comparison to the liquids. This can be attributed to their lower thermal con-
ductivity as compared to the liquids.

In most of the heat exchangers, heat is transferred between hot and cold fluid streams
across a solid wall. In such cases, it is convenient to combine the two film coefficients (i.e. of
the hot and cold fluid streams) to give a single coefficient known as overall heat transfer
coefficient U, which is defined as

U ¼ q

ADt
ð1:6Þ

Here Δt is the temperature difference between the two fluids.

1.4 Heat Transfer by Radiation

The thermal radiation is the process of heat propagation by means of electromagnetic waves
produced by virtue of the temperature of the body. It depends on both the temperature and an
optical property known as emissivity e of the body. In contrast to the conduction and
convection heat transfers, radiation can take place through a perfect vacuum. Solids, liquids
and gases may radiate energy. For example, water vapour and carbon dioxide are the
principal sources of the gaseous radiation in furnaces.

Boltzmann established that the rate at which a body gives out the heat by radiation is
proportional to the fourth power of the absolute temperature of the body, that is,

q / AT4 ð1:7Þ

When the constant of the proportionality is inserted,

q ¼ rAT4 ð1:8Þ

where the constant of proportionality r is known as Stefan–Boltzmann constant, and A is the
surface area of the body.

A body may absorb, transmit or reflect radiant energy. A blackbody absorbs the entire
radiation incident on it. Thus, it is a perfect absorber. Technically, the blackbody is a
hypothetical body. It does not necessarily refer to the colour of the body, though bodies black
in colour usually absorb most. A blackbody is also a perfect or ideal radiator, for which the
emissivity e = 1. For real bodies, e is less than 1 and they do not emit as much energy as a
blackbody.

The net heat radiated between two black bodies 1 and 2 at temperatures T1 and T2 that see
each other completely (i.e. they exchange heat by radiation between themselves only); the net
energy exchange is proportional to the difference in T4

1 and T4
2 . Thus
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q1�2 ¼ rAðT4
1 � T4

2 Þ ð1:9Þ

The radiation exchange between bodies which are not black is quite complex and will be
dealt with in detail later.

1.5 Simultaneous Heat Transfer

Heat can be transferred in three different modes: by conduction, convection and radiation. In
most of the engineering applications, it is a combination of the two or three modes. Pure
conduction is found only in opaque solids but in the case of semitransparent solids radiation
heat transfer is also involved. Convection is possible only in fluids. In vacuum, heat transfer
is possible only by radiation. In case of a solid surface exposed to a fluid (gas or liquid),
convection heat transfer is always involved. If the gas to which the solid surface is exposed is
transparent to radiation, heat transfer also takes place by radiation. It is to note that liquids
and some gases (presented in Chap. 12) are absorbers of radiation.

Figure 1.3 presents a case where all the three modes of heat transfer are present. Heat
transfers by conduction through the wall from left face to the right face and then is rejected
from the right face by convection to the surrounding air and by radiation to the surroundings.
The energy balance would give

qcond ¼ qconv þ qrad ð1:10Þ

1.6 Summary

In this chapter, the basic modes of heat transfer have been presented, which will be discussed
in greater detail in coming chapters to apply them to various problems of heat transfer.

Newton’slaw of cooling presented for convection heat transfer looks quite simple but it is
to be noted that the heat transfer coefficient h is a function which depends on the fluid-flow
conditions, the thermophysical properties of the fluid and the geometric configuration of the
heated surface or duct, and for its estimate mathematical or experimental approach is used.

A simple case of radiation exchange between two black bodies that see each other
completely (i.e. they exchange heat by radiation between themselves only) has been con-
sidered in Eq. (1.9). In general, the radiation heat exchange between bodies, which are not
black, involves complex interaction because of surface emissive properties and when a
system of radiation heat exchange between a number of bodies is involved.

t1

t2

qconv

●t∞
qrad

k

qcond

δ

Electrical 
heater

Insulation
Plane wall

Fig. 1.3 Combination of modes of heat transfer
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Review Questions

1:1. State and explain in brief the different modes of heat transfer.
1:2. Write Fourier’s equation for one-dimensional steady-state conduction heat transfer.
1:3. Define thermal conductivity and heat transfer coefficient.
1:4. Discuss the mechanism of convective heat transfer.
1:5. State Boltzmann’s law for the radiation heat transfer. What is the net heat exchange

between two blackbodies, which exchange heat by radiation between themselves only?
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2One-Dimensional Steady-State
Heat Conduction

2.1 Introduction

We presented Fourier’s law of heat conduction in Chap. 1. In this chapter, we shall use the
law to calculate the heat flow in systems where one-dimensional heat flow occurs. A plane
wall made of isotropic material, whose thickness is much smaller compared to its length and
width, is the simplest case of such one-dimensional conduction heat flow. The heat flow will
also be one-dimensional in cylindrical and spherical solid when the temperature gradient is
only in the radial direction. Some two- or three-dimensional systems can also be approxi-
mated as one-dimensional if the temperature variation, represented by the temperature gra-
dient, in one direction is significantly greater than the other directions.

Before attempting the analysis of one-dimensional heat conduction problems, we shall
discuss some important terms relating to the conductors and establish the general heat
conduction equations in the rectangular, cylindrical and spherical coordinates.

2.2 Temperature Field and Temperature Gradient

Heat flows by conduction when different points in a body are at different temperatures. In
general, the temperature may vary both in space (x, y and z) and time (s). The analytical
investigation of the heat conduction is basically a study of the space-time variation of the
temperature and determination of the equation:

t ¼ tðx; y; z; sÞ ð2:1Þ

which is the mathematical expression of the temperature field. Equation (2.1) represents a set
of temperatures at all points of the space at any given time.

The temperature field expressed by Eq. (2.1) is referred to as transient or non-steady
temperature field. If the temperature in the space does not change with time, the temperature
field is a function of the space coordinates only and it is referred to as a steady state.
Mathematically, it is expressed as

t ¼ tðx; y; z; Þ

© Springer Nature Singapore Pte Ltd. 2020
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and

@t

@s
¼ 0 ð2:2Þ

The temperature fields represented by Eqs. (2.1) and (2.2) are three-dimensional fields
since they are function of three coordinates.

A temperature field, which is a function of two coordinates say x and y, is termed as two-
dimensional and is described by the following equation:

t ¼ tðx; yÞ

and

@t

@z
¼ 0 ð2:3Þ

Similarly for a one-dimensional case, the equation of temperature field is

t ¼ tðxÞ

and

@t

@y
¼ @t

@z
¼ 0 ð2:4Þ

If different points of the body having the same temperature are joined, we obtain an
isothermal surface. Intersection of such isothermal surfaces by a plane gives a family of
isotherms on this plane as shown in Fig. 2.1. The figure shows isotherms which differ by
temperature ±dt.

The temperature gradient is a vector normal to the isothermal surface. Mathematically, it
is the derivative in this direction:

grad tð Þ ¼ n
* @t

@n
ð2:5Þ

where n
* is the unit vector normal to the isothermal surface and @t

@n is the temperature
derivative along the normal. Projections of the vector grad t can be made on the coordinate

Isotherms

y

z

n

x

t
t + δt

t - δt

Fig. 2.1 Temperature vectors
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axes ox, oy and oz. Accordingly, the components of the normal heat flow vector ~q are
(Fig. 2.2)

qx ¼ �k
@t

@x

qy ¼ �k
@t

@y

qz ¼ �k
@t

@z

ð2:6Þ

where the negative sign indicates that the heat flow is in the direction of negative temperature
gradient.

The vector representing the rate of heat flow is

~q ¼ iqx þ jqy þ kqz ð2:7Þ

The vector q at a point is along a path normal to the isothermal surface at that point.

2.3 Thermal Conductivity

As already mentioned, the thermal conductivity is a physical property of a substance. In
general, it depends on temperature, pressure and nature of the substance. Mostly, it is
determined experimentally. Typical values of the thermal conductivity of several common
engineering materials are given in a tabulated form in Appendix A. The thermal conductivity
of the materials of interest differs by many thousand times. The highest values are for the
metals, followed by dense ceramics, organic solids and liquids, while the lowest values are
for the gases. Super-insulations have been developed for cryogenic applications with thermal
conductivity as low as 0.3 mW/(m °C).

2.3.1 Thermal Conductivity of Solids

Heat is transmitted through the solids by the elastic vibrations of the atoms and molecules
(crystal lattice vibrations) and by free electrons (electronic thermal conduction). The transfer
of heat by free electrons is very effective. The mechanism of electronic thermal conduction is
similar to the electric conduction. When the temperature at one end of a rod is raised, the

qx

y

z

x

qy

qz

q

Fig. 2.2 Vector representation of Fourier’s law

2.2 Temperature Field and Temperature Gradient 9

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


electrons in that region receive a somewhat higher energy and acquire an increased velocity.
As these electrons move through the solid, they collide with other particles and transfer their
energy to these particles. Thus the heat is transferred from one end to the other. As the
electrons can be accelerated to a very high velocity, the electronic thermal conduction is
more effective than the molecular conduction.

2.3.2 Thermal Conductivity of Metals and Alloys

Metals have large number of free electrons (referred to as electron gas) and they contribute
most to the heat transfer. Hence, the metals have high thermal conductivity. Since the
electrons are the carriers of the heat and electricity in metals, the thermal conductivity of a
metal is proportional to the electric conductivity. In general, good electrical conductors are
almost always good heat conductors. Examples are silver, copper and aluminium. Since the
scattering of the electrons intensifies with rising temperature, the thermal and electrical
conductivities decline with the increase in the temperature. The thermal conductivity of the
metals drops sharply in the presence of impurities. The phenomenon can also be explained by
an increase in structure heterogeneity, which causes electron scattering. In contrast to the
pure metals, the thermal conductivity of the alloys increases with rise in the temperature.

Electrical insulators are usually bad heat conductors.

2.3.3 Thermal Conductivity of Construction and Heat-Insulating
Materials

Insulators and non-metals have lower conductivities because the heat is transferred by the
vibrations of the atoms only. Thermal conductivity of the non-metals (solid dielectrics)
depends on their density, structure, porosity and moisture content. Their thermal conductivity
usually increases with temperature.

Many construction and heat-insulating materials (bricks, concrete, asbestos, etc.) have a
porous structure, and it is not possible to consider them continuous. Their thermal con-
ductivity is taken as the thermal conductivity of a solid of the same shape and size, through
which the same amount of heat is transmitted under the given temperature and boundary
conditions.

The thermal conductivity of porous solids and powders depends on their volumetric
density. For example, the thermal conductivity of asbestos powder increases from about 0.1
to 0.25 W/(m K) with the increase in the density from 400 to 800 kg/m3 because the thermal
conductivity of the air filling the pores is much less than that of the solid constituents of the
porous material.

The thermal conductivity of the damp porous material is higher than the dry material. The
thermal conductivity of a damp material is significantly greater than the thermal conduc-
tivities of the dry material and water taken separately. This can be attributed to the capillary
movement of water within the material. The thermal conductivity of the construction and
building materials range from about 0.03 to 3.0 W/(m K). Materials having thermal con-
ductivity below 0.25 W/(m K) are used for heat insulation.
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2.3.3.1 R-Values of Insulating Materials
An insulating material’s resistance to conductive heat flow is measured in terms of R-value,
which is calculated from R ¼ d=k where d is the thickness of the material in m and k is the
thermal conductivity in W/(m K). Thus, the R-value is measured in m2 K/W in SI units.
In FPS system of units (used in the United States), R-values are measured in ft2.°F. hr/Btu,
which are 5.67 times larger than R-values in SI units. The R-value should not be confused
with thermal resistivity. It can be interpreted as the thermal resistance of a 1 m2 cross-section
of the material. The higher the R-value of an insulating material, the greater is the thermal
resistance the material offers to conduction heat flow.

For calculating the R-value of a multi-layered insulation system, the R-values of the
individual layers are added.

It is to note that the R-values take only conduction into account. It does not include
convection and radiation.

2.3.4 Thermal Conductivity of Gases

The heat conduction in gases at ordinary pressure and temperature occurs through the
transport of the kinetic energy of the molecules because of their random motion and colli-
sion. The molecules in the high-temperature region have higher kinetic energy than those in
the lower temperature region. When the molecules from the high-temperature region move to
the low-temperature region, they give up a part of their kinetic energy through collision with
the low-temperature molecules. From the kinetic theory of gases, the thermal conductivity of
a gas is given by

k ¼ ð1=3Þvmlqcv ð2:8Þ

where l is the mean free path and vm is the mean velocity of the molecules.
With the increase in the pressure, the gas density increases but the product (lq) remains

constant. Therefore, the thermal conductivity does not depend on pressure with the exception
of very high (of the order of critical pressure or more) or very low pressures. Since the mean
travel velocity of the gas molecules depends on the temperature, and the specific heat of
diatomic and polyatomic gases increase with the temperature, their thermal conductivity
increase with the temperature. The thermal conductivity of helium and hydrogen is five to ten
times greater than that of other gases. Due to the small mass of their molecules, the mean
velocity is high. This explains the reason for their high thermal conductivity. The thermal
conductivity of steam and other imperfect gases depend on pressure. The thermal conduc-
tivity of a mixture of the gases cannot be determined from the additive law and is found
experimentally.

2.3.5 Thermal Conductivity of Liquids

The mechanism of heat conduction in liquids is qualitatively the same as in the gases.
However, due to the closely spaced molecules, the molecular force exerts a strong influence
on the energy transfer by the collision.

Since the density of liquids decreases with the increase in the temperature, their thermal
conductivity decreases with the increase in the temperature. However, water and glycerin are
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important exceptions. In case of water, it increases with temperature in one temperature range
and decreases in another. With rising pressure, the thermal conductivity of the liquids
increases.

In brief, the gases transfer heat by direct collisions between molecules and their thermal
conductivity is low compared to most solids because they are dilute media. Non-metallic
solids transfer heat by lattice vibrations so that there is no net motion of the media as the
energy propagates through them. Such heat transfer is often described in terms of ‘phonons’,
quanta of lattice vibrations. Metals are much better thermal conductors than non-metals
because the mobile electrons which participate in electrical conduction also cause the transfer
of heat. The metals which are good electrical conductors are also good heat conductors.

At a given temperature, the thermal and electrical conductivities of metals are propor-
tional. This behaviour is quantified by the Wiedemann–Franz Law (Fraas Arthur 1989). The
law (Holman 1992) states that the ratio of the thermal conductivity k to the electrical
conductivity r of a metal is proportional to the temperature T, i.e.

k

r
¼ LT ð2:9Þ

where L is a constant of proportionality known as the Lorenz number. Its value is
2.44 � 10−8 WXK−2. However, the experiments have shown that the value of Lorenz
number is not exactly the same for all materials. Its value, as reported in the literature, ranges
from 2.23 � 10−8 WXK−2 for copper to 3.08 � 10−8 WXK−2 for tungsten at 0°C.

Qualitatively, the relationship of the thermal and electrical conductivities is based on the
fact that the both heat and electrical transports involve the transport of free electrons in the
metals. Interested readers may refer to https://www.doitpoms.ac.uk/tlplib/thermal_electrical/
printall.php for greater details.

2.4 General Heat Conduction Equations

In general, the temperature gradient may exist in all three directions of a solid. There may be
internal heat generation. The temperature can also vary with the time (unsteady state). Hence,
it is necessary to develop a general heat conduction equation, which can be used to evaluate
the heat transfer in any direction under steady or unsteady state and with or without heat
generation. First, we consider a rectangular parallelepiped and then a cylinder and spherical
system of coordinates.

2.4.1 General Heat Conduction Equation in Cartesian Coordinates

Consider an elementary parallelepiped of a solid as shown in Fig. 2.3. The volume of the
element is dV = dx � dy � dz.

Let dQx is the quantity of the heat entering the solid through the face area (dy � dz) in time
ds as shown in the figure. Using Fourier’s heat conduction equation for the unidirectional
conduction heat flow, we have
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dQx ¼ �k dydzð Þ @t
@x

ds ðiÞ

where the temperature gradient in the x-direction has been taken as partial derivative because
the temperature is function of x, y, z and time s.

The quantity of heat leaving the element can be obtained by Taylor’s expansion of dQx:

dQxþ dx ¼ dQx þ @

@x
dQxð Þdxþ higher order terms ðiiÞ

The net heat inflow into the element due to the difference of heat entering and leaving is
(leaving the higher order terms)

dQx � dQxþ dx ¼ � @

@x
�kx dydzð Þ @t

@x
� ds

� �
dx

¼ @

@x
kx

@t

@x

� �� �
dxdydz � ds

¼ @

@x
kx

@t

@x

� �� �
dVds ðiiiÞ

Similarly in the y- and z-directions,

dQy � dQyþ dy ¼ @

@y
ky

@t

@y

� �� �
dVds ðivÞ

dQz � dQzþ dz ¼ @

@z
kz
@t

@z

� �� �
dVds ðvÞ

The net amount of heat stored in the element due to difference in conduction heat flow in
and out of the element is the sum of Eqs. (iii), (iv) and (v), i.e.

dQ ¼ @

@x
kx

@t

@x

� �
þ @

@y
ky

@t

@y

� �
þ @

@z
kz
@t

@z

� �� �
dVds ðviÞ

δQz+δz

δQx+δx

y

z

x

δQy+δy

δz
δx

δy
δQx

δQz

δQy

Fig. 2.3 Heat conduction in rectangular parallelepiped system
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If there is heat generation in the element at a rate of qg per unit volume per unit time, then
the heat generated in the element in time ds is

dQg ¼ qgdVds ðviiÞ

The heat stored in the element due to the difference of conduction heat flow and heat
generated within the element increases the internal energy of the element, i.e.

dE ¼ dQþ dQg ðviiiÞ

The change in the internal energy is also given by

dE ¼ mcdT ¼ qdVc
@t

@s
ds ðixÞ

where m is the mass of the element and c is the specific heat of the material. Hence,

dQþ dQg ¼ qdVc
@t

@s
ds ðxÞ

Substitution of the values of dQ and dQg gives

@

@x
kx

@t

@x

� �
þ @

@y
ky

@t

@y

� �
þ @

@z
kz
@t

@z

� �� �
dVdsþ qgdVds ¼ qdVc

@t

@s
ds

or

@

@x
kx

@t

@x

� �
þ @

@y
ky

@t

@y

� �
þ @

@z
kz
@t

@z

� �
þ qg ¼ qc

@t

@s
ð2:10Þ

which is the general heat conduction equation in Cartesian coordinates.

Case (A) Homogeneous materials (kx = ky = kz = k)
If the thermal conductivity is constant, i.e. kx = ky = kz = k, which is true for homogeneous
materials, then the general heat conduction equation can be written as

@2t

@x2
þ @2t

@y2
þ @2t

@z2
þ qg

k
¼ qc

k

@t

@s
ð2:11Þ

The term (k/qc) is called the thermal diffusivity and is denoted by a, which has been
discussed later on. Hence, the above equation can be written as

@2t

@x2
þ @2t

@y2
þ @2t

@z2
þ qg

k
¼ 1

a
@t

@s
ð2:12Þ
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Case (B) No Heat generation
When there is no heat generation qg = 0 and we have

@2t

@x2
þ @2t

@y2
þ @2t

@z2
¼ 1

a
@t

@s
ð2:13aÞ

or

D2t ¼ 1
a
@t

@s
ð2:13bÞ

The above equation is known as Fourier’s equation.

Case (C) Steady-state heat conduction
For steady-state heat conduction, the derivative of the temperature with time is zero and the
general heat conduction equation yields

@2t

@x2
þ @2t

@y2
þ @2t

@z2
þ qg

k
¼ 0 ð2:13cÞ

This equation is known as Poisson’s equation.

Case (D) Steady-state heat conduction with no heat generation
For this condition, general heat conduction equation yields

@2t

@x2
þ @2t

@y2
þ @2t

@z2
¼ 0 ð2:13dÞ

or

D2t ¼ 0 ð2:13eÞ

This equation is known as the Laplace equation.

Case (E) Two- and one-dimensional steady-state heat conduction without heat
generation
For two- and one-dimensional steady-state heat conduction without heat generation, the
Laplace equation yields the following equations.

For two-dimensional case,

@2t

@x2
þ @2t

@y2
¼ 0 ð2:14Þ

For one-dimensional case,

@2t

@x2
¼ 0 ð2:15Þ
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2.4.1.1 Thermal Diffusivity
In steady state, the thermal conductivity is the only property of the substance that determines
the temperature distribution across the substance. But in the unsteady state, the temperature
distribution is influenced by the thermal conduction as well as the thermal capacity (qc) of
the material. Thus, the thermal diffusivity, which is a combination of these thermophysical
properties of the material, controls the temperature distribution in the unsteady state. Thermal
diffusivity is a property of a material (being a combination of three physical properties q,
c and k). The higher the thermal diffusivity of a material, the higher the rate of temperature
propagation, i.e. the equalization of the temperature at all points of the space will proceed at a
higher rate. It can also be termed as a measure of the thermal inertia of a substance.

In general, the metals have high thermal conductivity, which impart them high thermal
diffusivities. The non-metals and insulators have lower heat capacities than the metals but
their thermal conductivities are much lower, and this leads to low values of thermal diffu-
sivity of these solids compared to the metals. Typical values of q, c, k and a of some
substances are given in Table 2.1. More details can be seen in Appendix A.

Temperature gradients by local heating cause localized stress in a material, which may be
of great significance in some applications. Local heating is observed in welded joins, parts of
internal combustion engines, at furnace inner surfaces, and in massive concrete structures
during hydration of the cement. When heat is applied locally to a small area on the surface of
a solid, the solid absorbs heat locally at a rate depending on its heat capacity. The heat is
conducted away from the heated location at a rate depending on its conductivity. Thus, a high
heat capacity means higher temperature gradients, while a high thermal conductivity causes

Table 2.1 Thermophysical properties of some materials

Material Density
q, kg/m3

Specific heat c,
kJ/(kg K) at 20°C

Thermal
conductivity k,
W/(m K)

Thermal diffusivity
a, (m2/s) � 106

Metals (at 20°C)

Aluminium 2710 0.895 204 84.1

Brass (70% Cu, 30% Zn) 8520 0.380 110 34

Copper 8950 0.380 386 113.5

Silver (99.9%) 10,520 0.234 419 170.2

Steel (C = 0.5%) 7830 0.465 55 15.1

18–8 Stainless steel 7820 0.460 16.3 4.53

Mercury(at 0°C) 13,630 0.14 8.2 4.3

Non-metals

Brick 1600 0.84 0.69 0.51

Concrete 1900 0.88 1.37 0.82

Liquids and gases

Water (at �25°C) 997.4 4.179 0.604 0.145

Air (at 300 K) 1.177 1.006 0.0262 22.1
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high rate of carrying away of heat to other parts of the solid that tends to reduce the
temperature gradients. These two opposing effects are combined in the thermal diffusivity.
A high thermal diffusivity reduces the temperature gradients caused by the local heating and,
thus, reduces the local stresses.

2.4.2 General Heat Conduction Equation in Cylindrical Coordinates

The equation in cylindrical coordinates is useful in dealing with the conduction heat transfer
in systems with cylindrical geometry such as pipes, wires, rods, etc.

Figure 2.4 shows the primary element with dimensions dr in direction r, rdh in direction h
and dz in direction z (along the axis of the cylinder). The volume of the element is
(dr � rdh � dz).

Let dQr is the quantity of heat entering the element through the face whose area is rdh � dz
in time ds. Using Fourier’s equation for unidirectional heat flow, we have

dQr ¼ �k rdhdzð Þ @t
@r

ds ðiÞ

where the temperature gradient in direction r is the partial derivative in radial direction.
The quantity of heat leaving the element can be obtained by Taylor’s expansion of dQr:

dQrþ dr ¼ dQr þ @

@r
dQrð Þdrþ higher order terms ðiiÞ

The net flow into the element due to the difference of the heat entering and leaving the
element in r-direction (neglecting higher order terms) is

Element

δQz+δz
δQθ+δθ

δθ

δr

r

δz

δQr+δr

Element enlarged

Projections 

δr
rδθ

δz

δr

δQz δQθδQr

Fig. 2.4 Heat conduction in a cylindrical system
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dQr � dQrþ dr ¼ � @

@r
�k rdh � dzð Þ @t

@r
ds

� �
dr

¼ k
@

@r
r
@t

@r

� �
dr � rdh � dzð Þ

r
� ds

¼ k
1
r

@

@r
r
@t

@r

� �
dV � ds

¼ k
1
r

@t

@r
þ r

@2t

@r2

� �
dV � ds

¼ k
1
r

@t

@r
þ @2t

@r2

� �
dVds ðiiiÞ

The area of the face perpendicular to the h-direction of the heat flow is (dr � dz), and the
net heat flow into the element is

dQh � dQhþ dh ¼ � @

r@h
�k dr � dzð Þ @t

r@h
ds

� �
rdh

¼ k
1
r

@

@h
@t

r@h

� �
dr � rdh � dzð Þds

¼ k
1
r2

@2t

@h2
dVds

ðivÞ

Similarly, the area of the face perpendicular to the z-direction of the heat flow is (dr � rdh)
and the net heat flow into the element is

dQz � dQzþ dz ¼ � @

@z
�k dr � rdhð Þ @t

@z
ds

� �
dz

¼ k
@2t

@z2
dr � rdh � dz � ds

¼ k
@2t

@z2
dVds

ðvÞ

The net amount of heat stored in the element of Fig. 2.4 is the sum of the net heat flow
into the element in r-, h- and z-directions, i.e. the sum of the right-hand side terms of Eqs.
(iii), (iv) and (v), and is

dQ ¼ k
1
r

@t

@r
þ @2t

@r2
þ 1

r2
@2t

@h2
þ @2t

@z2

� �
dVds ðviÞ

If there is internal heat generation at the rate of qg per unit volume per unit time, then the
heat generated in the element in time ds is

dQg ¼ qgdVds ðviiÞ
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The net heat dQ stored in the element due to the difference of in- and outflows, and the
heat generation dQg within the element increase the internal energy of the element hence

dE ¼ dQþ dQg ðviiiÞ

Substitution of the values of dQ and dQg gives

dE ¼ k
1
r

@t

@r
þ @2t

@r2
þ 1

r2
@2t

@h2
þ @2t

@z2

� �
dVdsþ qgdVds ðixÞ

The change in the internal energy is also given by

dE ¼ qdVc
@t

@s
ds ðxÞ

Substitution gives

qdVc
@t

@s
ds ¼ k

1
r

@t

@r
þ @2t

@r2
þ 1

r2
@2t

@h2
þ @2t

@z2

� �
dV � dsþ qgdV � ds

or

1
r

@t

@r
þ @2t

@r2
þ 1

r2
@2t

@h2
þ @2t

@z2

� �
þ qg

k
¼ qc

k

@t

@s

or

1
r

@t

@r
þ @2t

@r2
þ 1

r2
@2t

@h2
þ @2t

@z2

� �
þ qg

k
¼ 1

a
@t

@s
ð2:16Þ

which is the general heat conduction equation in cylindrical coordinates, where the thermal
conductivity has been assumed to be constant. The equation can be arrived at by the
transformation of Eq. (2.12) to cylindrical coordinates, see Example 2.1.

For variable thermal conductivity, the equation in general form can be written as

1
qc

1
r

@

@r
krr

@t

@r

� �
þ 1

r2
@

@h
kh

@t

@h

� �
þ @

@z
kz
@t

@z

� �� �
þ qg

qc
¼ @t

@s
ð2:17aÞ

If there is no internal heat generation and the thermal conductivity is constant, then qg = 0
and kr = kh = kz = k. Equation (2.16) reduces to

1
r

@t

@r
þ @2t

@r2
þ 1

r2
@2t

@h2
þ @2t

@z2
¼ 1

a
@t

@s
ð2:17bÞ

For the steady-state heat conduction with no heat generation and constant value of the
thermal conductivity k, Eq. (2.16) reduces to
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1
r

@t

@r
þ @2t

@r2
þ 1

r2
@2t

@h2
þ @2t

@z2

� �
¼ 0 ð2:17cÞ

In the case of steady-state and one-dimensional heat conduction (in the radial direction
only) without heat generation, the above equation reduces to

1
r

dt

dr
þ d2t

dr2
¼ 0 ð2:17dÞ

The temperature distribution in this case is a function of radius r only; hence, the partial
derivative has been changed to the full derivative.

Example 2.1 Beginning with the three-dimensional heat conduction equation in Cartesian
coordinates, obtain the equation in cylindrical coordinates.

Solution

The rectangular and cylindrical coordinates are inter-related by the following relations, refer
to Fig. 2.5:

x ¼ r cos h

y ¼ r sin h

and

z ¼ z ðaÞ

The general heat conduction equation in rectangular coordinates is

@2t

@x2
þ @2t

@y2
þ @2t

@z2
þ qg

k
¼ 1

a
@t

@s
ð2:12Þ

which is transformed into cylindrical coordinates using Eq. (a), knowing that x and y are
functions of r and h while z is independent of r and h.

P(r, θ, z)

y = r sinθ
x = r cosθ

z

rθ
y

x

z

Fig. 2.5 Example 2.1
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@t

@r

� �
¼ @t

@x

@x

@r
þ @t

@y

@y

@r
¼ @t

@x
cos hþ @t

@y
sin h ðiÞ

and

@t

@h

� �
¼ @t

@x

@x

@h
þ @t

@y

@y

@h
¼ � @t

@x
r sin hþ @t

@y
r cos h ðiiÞ

Solution of Eqs. (i) and (ii) gives

@t

@x

� �
¼ cos h

@t

@r
� sin h

r

� �
@t

@h

and

@t

@y

� �
¼ sin h

@t

@r
þ cos h

r

� �
@t

@h

Second derivatives of t with x and y are

@

@x

@t

@x

� �
¼ cos h

@

@r

@t

@x

� �
� sin h

r

� �
@

@h
@t

@x

� �

or

@

@x

@t

@x

� �
¼ cos h

@

@r
cos h

@t

@r
� sin h

r

� �
@t

@h

� �
� sin h

r

� �
@

@h
cos h

@t

@r
� sin h

r

� �
@t

@h

� �

or

@2t

@x2
¼ cos2 h

@2t

@r2
þ sin h cos h

r2
@t

@h
þ sin2 h

r

� �
@t

@r
þ sin2 h

r2

� �
@2t

@h2
þ sin h cos h

r2

� �
@t

@h

Similarly,

@

@y

@t

@y

� �
¼ sin h

@

@r

@t

@y

� �
þ cos h

r

� �
@

@h
@t

@y

� �

or

@

@y

@t

@y

� �
¼ sin h

@t

@r
sin h

@t

@r
þ cos h

r

� �
@t

@h

� �
þ cos h

r

� �
@

@h
sin h

@t

@r
þ cos h

r

� �
@t

@h

� �

or

@2t

@y2
¼ sin2 h

@2t

@r2
� sin h cos h

r2

� �
@t

@h
þ cos2 h

r

@t

@r

� �
þ cos2 h

r2
@2t

@h2
� sin h cos h

r2

� �
@t

@h
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Hence,

@2t

@x2
þ @2t

@y2
¼ cos2 hþ sin2 h

� � @2t

@r2
þ 1

r

@t

@r

� �
þ 1

r2
@2t

@h2

� �

or

@2t

@x2
þ @2t

@y2
¼ @2t

@r2
þ 1

r

@t

@r

� �
þ 1

r2
@2t

@h2

Substitution in Eq. (2.12) gives the desired equation as

1
r

@t

@r
þ @2t

@r2
þ 1

r2
@2t

@h2
þ @2t

@z2

� �
þ qg

k
¼ 1

a
@t

@s
ð2:16Þ

2.4.3 General Heat Conduction Equation in Spherical Coordinates

Figure 2.6a shows the elemental area on the surface of a sphere of radius r. For the strip
ABCD in the figure, the radius is rsinh. Also refer to the section of the sphere in projections
in Fig. 2.6c. Thus, the sides of the elemental area are rdh and rsinh � d/. The elemental
volume can be made by moving a distance dr in the direction r as shown in Fig. 2.6b. Thus,
the sides of the element in Fig. 2.6b are dr, rdh and rsinh � d/ in the directions r, h and /,
respectively. The volume of the element is

dV ¼ dr � rdh � r sin h � d/ ðiÞ

The heat dQr in r-direction enters the element through face of area (rdh � rsinh � d/),
which is perpendicular to r-direction. The heat inflow in time ds is

dQr ¼ �k rdh � r sin h � d/ð Þ @t
@r

ds ðiiÞ

The outflow is

dQrþ dr ¼ dQr þ @

@r
dQrð Þdr ðiiiÞ

The net heat inflow into the element is

dQr � dQrþ dr ¼ dQr � dQr þ @

@r
dQrð Þdr

� �
¼ � @

@r
dQrð Þdr

¼ k dr � dh � sin h � d/ð Þ @

@r
r2

@t

@r

� �
ds

¼ kdV
1
r2

@

@r
r2

@t

@r

� �
ds ðivÞ
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Flow area perpendicular to the h direction is (dr � rsinh � d/), and the elemental distance
in h direction is rdh. The net heat inflow into the element in this direction is

dQh � dQhþ dh ¼ dQh � dQh þ @

r@h
dQhð Þrdh

� �
¼ � @

r@h
dQhð Þrdh

¼ � @

r@h
�k dr � r sin h � d/ð Þ @t

r@h
� ds

� �
rdh

¼ k dr � d/ð Þdh @

@h
sin h

@t

@h

� �
ds

¼ k dr � rdh � r sin h � d/ð Þ 1
r2 sin h

@

@h
sin h

@t

@h

� �
ds

¼ kdV
1

r2 sin h
@

@h
sin h

@t

@h

� �
ds ðvÞ

Fig. 2.6 Heat conduction in a spherical system
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In the similar way, the flow area perpendicular to the / direction is (dr � rdh) and the
elemental distance in / direction is rsinh � d/. The net heat inflow into the element in this
direction is

dQ/ � dQ/þ d/ ¼ dQ/ � dQ/ þ @

r sin h@/
dQ/

� �
r sin d/

� �
¼ � @

r sin h@/
dQ/

� �
r sin hd/

¼ � @

r sin h@/
�k dr � rdhð Þ @t

r sin h@/
� ds

� �
r sin hd/

¼ k dr � rdh � r sin h � d/ð Þ 1

r2 sin2 h

@2t

@/2

� �
ds

¼ kdV
1

r2 sin2 h

@2t

@/2

� �
ds ðviÞ

The total of the net inflows into the element is the summation of the net of the conduction
heat inflow and outflow in all three directions of the heat flow, and is

dQ ¼ kdV
1
r2

@

@r
r2

@t

@r

� �
dsþ kdV

1
r2 sin h

@

@h
sin h

@t

@h

� �
ds

þ kdV
1

r2 sin2 h

@2t

@/2

� �
ds

¼ kdV
1
r2

@

@r
r2

@t

@r

� �
þ 1

r2 sin h
@

@h
sin h

@t

@h

� �
þ 1

r2 sin2 h

@2t

@/2

� �� �
ds ðviiÞ

Heat generated in the element in time ds is

dQg ¼ qgdVds ðviiiÞ

Change in the internal energy of the element in time ds is

dE ¼ qdVc
@t

@s

� �
ds ðixÞ

Energy balance for the element gives

dE ¼ dQþ dQg ðxÞ

Substitution of the values of dE, dQ and dQg gives

qdV � c � @t

@s

� �
ds

¼ kdV
1
r2

@

@r
r2

@t

@r

� �
þ 1

r2 sin h
@

@h
sin h

@t

@h

� �
þ 1

r2 sin2 h

@2t

@/2

� �� �
ds

þ qgdVds

or
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qc
k

@t

@s

� �
¼ 1

r2
@

@r
r2

@t

@r

� �
þ 1

r2 sin h
@

@h
sin h

@t

@h

� �
þ 1

r2 sin2 h

@2t

@/2

� �� �
þ qg

k

or

1
r2

@

@r
r2

@t

@r

� �
þ 1

r2 sin h
@

@h
sin h

@t

@h

� �
þ 1

r2 sin2 h

@2t

@/2

� �
þ qg

k
¼ 1

a
@t

@s

� �
ð2:18Þ

which is the desired equation assuming thermal conductivity as constant.

2.5 One-Dimensional Steady-State Heat Conduction

For the one-dimensional steady-state heat conduction without heat generation,

@2t

@x2
¼ 0 ð2:15Þ

Integrating the above equation, we obtain

@t

@x
¼ C1 ðiÞ

and

t ¼ C1xþC2 ðiiÞ

The boundary conditions in Fig. 2.7 are

at x ¼ x1; t ¼ t1

and

at x ¼ x2; t ¼ t2

x1

t1

x2

t2q

x = 0

Thickness of the wall
= x2 x1 = δ—

Fig. 2.7 One-dimensional steady-state heat conduction through a plane wall
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Substitution in Eq. (ii) gives

t1 ¼ C1x1 þC2

t2 ¼ C1x2 þC2

Solution of these equations gives

C1 ¼ t1 � t2
x1 � x2

¼ � t1 � t2
x2 � x1

C2 ¼ t1 þ t1 � t2
x2 � x1

x1

Substitution of values of constants C1 and C2 in Eq. (ii) gives

t ¼ � t1 � t2
x2 � x1

xþ t1 � t2
x2 � x1

x1 þ t1

or

t � t1
t1 � t2

¼ x1 � x

x2 � x1

which indicates a linear distribution of the temperature, refer to Fig. 2.7.
From Eq. (i),

@t

@x
¼ C1 ¼ � t1 � t2

x2 � x1

Hence, the rate of heat transfer is

q ¼ �kA
@t

@x
¼ kA

t1 � t2
x2 � x1

¼ kA
t1 � t2

d

¼ t1 � t2
d=kA

¼ Dt
Rk

ð2:19Þ

where A is wall area perpendicular to the direction of heat flow and Rk = d/kA.
We compare the above equation with Ohm’s law for an electric conductor, which is

I ¼ E

R
¼ V1 � V2

R

The electric current I corresponds to the heat flow q, the electrical potential E corresponds
to the thermal potential and the electrical resistance corresponds to resistance Rk to the heat
conduction. Thus, Fourier’s equation of heat conduction is exactly analogous to Ohm’s law
for an electrical conductor. We shall use this electrical analogy frequently as it is quite useful
in solving the complex heat conduction problems.

We represent Eq. (2.19) as in Fig. 2.8, where the temperature difference Δt is the driving
force for the flow of heat and Rk = R (= d/kA) is the thermal resistance, which the wall offers
to the flow of heat by conduction. The reciprocal of the thermal resistance is known as
thermal conductance of the wall.
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2.5.1 Composite Plane Wall

Walls made of several layers of different materials are called composite walls, refer to
Fig. 2.9. Walls of houses, furnaces, boilers, pipes with layer of insulating materials, etc. are
some of the examples of composite walls.

The composite wall in Fig. 2.9 consists of three layers of thicknesses d1, d2 and d3. The
thermal conductivities of these layers are k1, k2 and k3, respectively. The temperature of the
outer layers of the wall is t1 and t4 as shown in the figure, with interface temperatures as t2
and t3. It is being assumed that different layers are having perfect contact between them, and
hence the adjacent surfaces are at the same temperature.

In the steady-state condition, the heat flow q is the same for all the layers and is constant.
The equations of heat transfer through these layers are

q ¼ k1A
t1 � t2
d1

for the first layer ðiÞ

q ¼ k2A
t2 � t3
d2

for the second layer ðiiÞ

q ¼ k3A
t3 � t4
d3

for the third layer ðiiiÞ

The temperature differences across the layers, from above equations, are

t1 � t2 ¼ q
d1
k1A

� �
ðivÞ

t1

t2

δ1

q

t3
T4

δ2 δ3

R1

t2t1 q

k1

R2

t3

R3

t4

k3k2

R1 = δ1/k1A 1

R2 = δ2/k2A 1

R3 = δ3/k3A 1

Fig. 2.9 A composite wall

R = δ/kA t2t1

q

Δt

Fig. 2.8 Thermal network
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t2 � t3 ¼ q
d2
k2A

� �
ðvÞ

t3 � t4 ¼ q
d3
k3A

� �
ðviÞ

Adding the above equations, we get

t1 � t4 ¼ q
d1
k1A

þ d2
k2A

þ d3
k3A

� �
ðviiÞ

or

q ¼ t1 � t4
d1
k1A

þ d2
k2A

þ d3
k3A

or

q ¼ t1 � t4
R1 þR2 þR3

ðviiiÞ

where R1, R2 and R3 are resistances of the layers to the conduction heat flow. For n layers, the
equation can be written as

q ¼ t1 � tnþ 1Pn
i¼1 Ri

¼ t1 � tnþ 1

1
A

Pn
i¼1

di
ki

ð2:20Þ

2.5.2 One-Dimensional Steady-State Heat Conduction Through a Plane
Homogeneous Wall Considering Film Coefficients

In Fig. 2.10, the two faces of the wall are exposed to fluids at temperatures ti and to. The heat
is transferred to and from the wall by convection. In the convection heat transfer process, a
thin fluid film is formed on the surface, which offers resistance to the flow of heat (refer to
Chap. 7 for details).

• 
t1 •

hi •

q
ti•

• to

• ho

δ

Fluid film 

to1/(ho A)(δ/kA)1/(hi A)
ti

t1 t2

Fig. 2.10 One-dimensional steady-state heat conduction through a plane wall considering film coefficients
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Newton’s equation for convection heat transfer gives

q ¼ hADt ð1:4Þ

where

h is known as convective heat transfer or film coefficient,
A is the area of the surface transferring heat by convection and
Δt is temperature difference between the wall (surface) and the fluid in contact.

Hence, in the present case, at the left face,

q ¼ hiAðti � t1Þ
¼ ti � t1

1=hiA
¼ ti � t1

Ri
ðiÞ

where Ri = 1/hiA is known as film resistance.
Similarly at the right face

q ¼ hoAðt2 � toÞ
¼ t2 � to

1=hoA
¼ t2 � to

Ro
ðiiÞ

From Eqs. (i) and (ii),

ti � t1 ¼ qRi

t2 � to ¼ qRo

For the wall,

t1 � t2 ¼ q
d
kA

� �
ðiiiÞ

Combing the temperature equations, we get

ti � t1ð Þþ t1 � t2ð Þþ t2 � toð Þ ¼ q
1
hiA

þ d
kA

þ 1
hoA

� �

q ¼ ti � to
1
hiA

þ d
kA þ 1

hoA

ð2:21Þ

which is the desired equation for the present case.

2.5.2.1 Conduction Heat Transfer Through a Composite Plane Wall
Considering Film Coefficients

Introducing film coefficients in Eq. (2.20), the heat transfer equation takes the form as

q ¼ ti � to
1
hiA

þ 1
A

Pn
i¼1

di
ki
þ 1

hoA

ð2:22Þ
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For example, for a wall with three layers (n = 3), the equation yields

q ¼ ti � to
1
hiA

þ d1
k1A

þ d2
k2A

þ d3
k3A

þ 1
hoA

2.5.3 One-Dimensional Steady-State Conduction Heat Transfer Through
a Plane Homogeneous Wall Considering Heat Transfer
by Convection and Radiation from the Wall Surface

In general, the wall surface will transfer heat both by convection and radiation to its sur-
roundings. The expression for the heat flow to the wall can be written in the following form:

q ¼ ðhri þ hciÞ:A:ðti � t1Þ ¼ ðti � t1Þ
1=½ðhri þ hciÞA� ðiÞ

where hr is termed as the radiation heat transfer coefficient. Similarly, heat flow from the
wall is

q ¼ ðhro þ hcoÞ:A:ðt2 � toÞ ¼ ðt2 � toÞ
1=½ðhro þ hcoÞA� ðiiÞ

Considering the electrical analogy, the overall resistance to heat flow is

1
ðhri þ hciÞA þ d

kA
þ 1

ðhro þ hcoÞA ðiiiÞ

Here 1/hr and 1/hc are two resistances Rr and Rc, respectively, in parallel, refer to
Fig. 2.11. The heat transfer equation takes the form

q ¼ ti � to
1

ðhri þ hciÞA þ d
kA þ 1

ðhro þ hcoÞA
ð2:23Þ

Example 2.2 The heating surface of a boiler is in contact with flue gas (at 1200°C) on one
side and boiling water (at 200°C) on the other side. The metal wall thickness is 10 mm, and
its thermal conductivity is 45 W/(m K). The local or surface coefficient of heat transfer from
the flue gas to the wall is 50 W/(m2 K) and from wall to the boiling water is 4000 W/(m2 K).
Calculate the rate of heat flow from the flue gas to the water and the surface temperatures.

What will be the effect on heat flow rate if heat transfer coefficients for one or both sides
are doubled?
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Solution

(i) The resistance to the heat flow is (refer to Fig. 2.12)

Rk ¼ Ri þRwall þRo

¼ 1
Ahi

þ d
kA

þ 1
Aho

¼ 1
1� 50

þ 10
1000� 1� 45

þ 1
1� 4000

¼ 0:02047:

The rate of heat transfer per unit area,

q ¼ ti � to
Rk

¼ 1000
0:02047

¼ 48;852W:

Considering heat flow through the flue gas film at the wall,

• t2
t1•

hi•

•hoq
ti•

• to

Fig. 2.12 Example 2.2

• t2
t1•

(hr + hc)i •

q
ti •

• to

• (hr + hc)o

δ1

δ/kA t2t1

q

ti to

1/hco A1/hci A

1/hro A1/hri A

a

b

Fig. 2.11 One-dimensional steady-state heat conduction through a plane wall considering heat transfer by
convection and radiation from wall surface
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q ¼ hiA ti � t1ð Þ

or

48;852 ¼ 50� 1� 1200� t1ð Þ

or

t1 ¼ 223�C

Similarly at the other face,

t2 ¼ q

hoA
þ to ¼ 48;852

4000
þ 200 ¼ 212:2�C

It is to note that the resistance of the wall material (Rwall) and that of the film on the
waterside (Ro) are negligible compared to the resistance of the film (Ri) on the gas side.
Thus, the resistance Ri is the controlling resistance and its change has a greater effect on
the heat transfer. By following the above procedure, it can be shown that heat transfer
increases to 95,493 W if hi is doubled as compared to q = 49,147 W when ho is doubled.

Example 2.3 A furnace wall consists of 200 mm of refractory fireclay brick, 100 mm of
kaolin brick and 6 mm of steel plate. The fireside of the refractory is at 1150°C, and the
outside of the steel is at 30°C. An accurate heat balance over the furnace shows the heat loss
from the wall to be 300 W/m2. It is known that there may be thin layers of air between the
layers of brick and steel. To how many millimetres of kaolin are these air layers equivalent?
The thermal conductivities are as follows:

Refractory fireclay bricks, kf = 1.7 W/(m K)
kaolin brick, ki = 0.17 W/(m K)
steel, ks = 17 W/(m K)

Solution

q ¼ A t1 � t4ð Þ
df
kf
þ di

ki
þ ds

ks

Substitution gives

300 ¼ 1� 1150� 30ð Þ
0:2
1:7 þ di

0:17 þ 0:006
17

which gives effective thickness of kaolin, di = 0.6146 m = 614.6 mm. Thus, the air layers
are equivalent to (614.6 – 100) = 514.6 mm of kaolin.

Example 2.4 The thermal conductivity of a cylindrical specimen 150 mm in diameter was
determined using an instrument consisting of two flat plates between which the cylindrical
specimen sides were placed. When heat transfer rate was 100 W, the hot and cold end plate
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temperatures were recorded to be 170°C and 20°C, respectively. The cylindrical specimen is
15 mm in length.

It was found that due to improper matching air clearances of thickness of about 0.15 mm
were formed between the cold and hot surfaces of the instrument and the specimen ends.
Determine the thermal conductivity of the specimen.

Conductivity of the air can be taken as 2.7 � 10−2 and 3.8 � 10−2 W/(m °C) at the cold
and hot surfaces, respectively.

Solution

The resistance to the heat transfer, considering the air resistances, is

R ¼ d
k

� �
air;cold

þ d
k

� �
specimen

þ d
k

� �
air;hot

¼ 0:15
1000� 2:7� 10�2

� �
þ 15

1000� k

� �
þ 0:15

1000� 3:8� 10�2

� �

¼ 9:503� 10�3 þ 0:015
k

� �

The heat transfer from Fourier’s equation is

q ¼ A t1 � t4ð ÞP
d
k

Substitution gives

100 ¼ p
4

0:15ð Þ2� 170� 20ð Þ � 9:503� 10�3 þ 0:015
k

� ��1

Solution of above equation gives k = 0.882 W/(m K), which is the thermal conductivity
of the specimen.

Example 2.5 The walls of a paint drying chamber are built-up of a layer of brick [thickness
d = 250 mm and k = 0.7 W/(m K)]. The temperature in the chamber is estimated to be 115°
C. The heat flow from 1 m2 of the chamber wall is not to exceed 100 W when ambient
temperature is 25°C for which a layer of felt [k = 0.045 W/(m K)] is to be applied outside the
brick layer. Calculate the thickness of the felt if the surface heat transfer coefficients at inner
and outer walls are 30 W/(m2 °C) and 20 W/(m2 °C), respectively.

Solution

Total resistance to heat flow

R ¼ 1
A

1
hi

þ db
kb

þ df
kf

þ 1
ho

� �
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where subscripts b and f refer to brick and felt, respectively.

R ¼ 1
1:0

1
30

þ 0:25
0:7

þ df
0:045

þ 1
20

� �

or

¼ 0:4405þ 22:22df ðiÞ

From heat transfer equation,

q ¼ ti � to
R

� 	

or

100 ¼ 115� 25
R

� �

or

Rk ¼ 0:9

Substitution of this value of Rk in Eq. (i) gives

df ¼ 0:0207m ¼ 20:7mm; say 21 mm

Example 2.6 The walls of a house have a composite construction of bricks [thick-
ness = 330 mm, k = 0.8 W/(m K)] and 20-mm-thick plaster [k = 1.2 W/(m K)] on both
sides. The inner and outer surface heat transfer coefficients are 15 and 30 W/(m2 K).
Determine the heat loss per m2 of the wall surface if the temperature inside the room is 22°C
and outside temperature is –5°C.

When the wind blows fast, the outside film coefficient increases to 200 W/(m2 °C).
Determine the increase in the heat loss.

Identify the controlling resistance that determines the heat flow rate.

Solution

The values of various resistances, for the unit area of the wall, are

Convective ðinner);Ri ¼ 1
hi

¼ 1
15

¼ 0:067m2 K=W

Inner plaster;Rpi ¼ d
k
¼ 20

1000� 1:2
¼ 0:0167m2 K=W

Bricks;Rb ¼ d
k
¼ 330

1000� 0:8
¼ 0:4125m2 K=W

Plaster ðouter);Rpo ¼ d
k
¼ 20

1000� 1:2
¼ 0:0167m2 K=W

Convective ðouterÞ;Ro ¼ 1
ho

¼ 1
30

¼ 0:033m2 K=W
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The total resistance,

X
R ¼ Ri þRpi þRb þRpo þRo ¼ 0:5459

The heat flow rate,

q ¼ Ti � ToP
R

¼ 22� ð�5Þ
0:5459

¼ 49:46 W=m2

When the wind blows, the outer convective resistance Ro changes to 1/200 = 0.005 and
the total resistance,

X
R ¼ Ri þRpi þRb þRpo þRo ¼ 0:5179

The new heat flow rate,

q0 ¼ 22� ð�5Þ
0:5179

¼ 52:13W=m2

Percentage change in heat flow ¼ 52:13� 49:46
49:46

� 100 ¼ 5:4%

which is small because the controlling resistance is the resistance of the bricks and is almost
75–80% of the total resistance to the heat flow.

Example 2.7 A house has a multi-layer composite wall constructed as shown in Fig. 2.13.
The temperature of the air inside the room is 22°C, and the surface heat transfer coefficient
between the room air and the wall is 6 W/(m2 K). The outer surface heat transfer coefficient
is 20 W/(m2 K). The different wall thicknesses (d) in mm and the thermal conductivities

q

ti
to

(δ/k A)a

1/hi A
(δ/k A)b

(δ/k A)c 1/ho A(δ/k A)d

5010
200

c

ka = 0.05
kb = 0.04
kc = 0.25
kd = 0.3
Thickness in mm, height 
in m, and thermal 
conductivity in W/(m K).

d

1.8

1.2

a

b

Fig. 2.13 Example 2.7
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(k) in W/(m K) are indicted in the figure. Calculate the heat transfer rate across the wall
section per m length of the wall. Outside air temperature is 5°C.

Solution

The resistance to heat transfer, refer to the thermal network in Fig. 2.13,

P
R ¼ 1

hiA
þ 1

da
kaAa

� 	�1
þ db

kbAb

� 	�1 þ dc
kcA

� �
þ dd

kdA

� �
þ 1

hoA

¼ 1
6� 3

þ 1
0:01

0:05�1:2

� ��1 þ 0:01
0:04�1:8

� ��1 þ 0:2
0:25� 3

� �
þ 0:05

0:3� 3

� �
þ 1

20� 3
¼ 0:47

Hence, the heat transfer rate is

q ¼ DtP
R
¼ 22� 5

0:47
¼ 36:17W

Example 2.8 Find the heat flow through a wall, per m2 of wall face area, shown in
Fig. 2.14. The thermal conductivities of brick material and steel are 1.0 W/(m K) and 40 W/
(m K), respectively.

Calculate the percentage reduction in the heat flow if the bolts are not used.
What will be the temperature at the outer surface of the wall neglecting the effect of bolts?

Solution

Part (i)

Figure 2.15 shows the analogous electrical circuit for various thermal resistances. It is to be
noted that the bolts provide a parallel path to the flow of heat. The effect of bolt heads and
nuts has been neglected.

55
100

b

Steel bolts 10 nos. per 
m2 of the wall for 
fastening steel plates.

Steel
plate

Steel
plate

Furnace side
900 K

Air side
T∞ = 300K

Bolt 20 mm 
dia.

ho = 60 
W/(m2 K)

Thickness in mm.

Fig. 2.14 Wall cross-section
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The heat flow areas and length of heat paths for different layers and bolts are

Abolts ¼ 10� p
4 dboltð Þ2¼ 10� p

4 ð0:02Þ
2 ¼ 3:1416� 10�3 m2

Asteel ¼ Abricks ¼ A� Abolts ¼ 1:0� 3:1416� 10�3 ¼ 0:99686m2

dsteel ¼ 0:005m; dbrick ¼ 0:1m; dbolt ¼ 0:110m

The values of various resistances are

Rsteel ¼ d
kA

� �
steel

¼ 0:005
40� 0:99686

¼ 1:254� 10�4

Rbrick ¼ d
kA

� �
brick

¼ 0:1
1� 0:99686

¼ 0:1003

Rbolt ¼ d
kA

� �
bolt

¼ 0:110
40� 3:1416� 10�3

¼ 0:87535

Ro ¼ 1
hoA

¼ 1
60� 1

¼ 0:0167:

The total resistance to heat transfer is

X
R ¼ 1

Rsteel þRbrick þRsteel
þ 1

Rbolt

� ��1

þRo ¼ 0:1069

The heat transfer,

q ¼ t1 � t1P
R

¼ 900� 300
0:1069

¼ 5612:7W

Part (ii) Heat transfer without bolts:
The values of various resistances are

Rsteel ¼ d
kA

� �
steel

¼ 0:005
40� 1:0

¼ 1:25� 10�4

Rbrick ¼ d
kA

� �
brick

¼ 0:1
1� 1:0

¼ 0:1

Ro ¼ 1
hoA

¼ 1
60� 1

¼ 0:0167

t∞
(δ/k A)steel 1/ho A(δ/k A)steel(δ/k A)bricks

t1

(δ/k A)bolts

Fig. 2.15 Thermal network with bolts
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The total resistance to heat transfer is (refer to network in Fig. 2.16)

X
R ¼ Rsteel þRbrick þRsteel þRo ¼ 0:11695

The heat transfer

q ¼ t1 � t1P
R

¼ 900� 300
0:11695

¼ 5130:4W

Percentage reduction in heat loss is

Dq ¼ 5612:7� 5130:4
5612:7

� 100 ¼ 8:6%:

Part (iii) Temperature at the outer surface of the wall:

The temperature T2 can be found from the heat transfer equation (neglecting the effects of the
bolts):

q ¼ t2 � t1
Ro

or

5130:3 ¼ T2 � 300
0:0167

or

t2 ¼ 385:7 K

Example 2.9 A masonry wall consists of 100 mm brick outer face with 10 mm mortar
joint, a 200 mm concrete wall and a 10 mm insulating board on the inside as shown in
Fig. 2.17a. The outside and inside bulk air temperatures are 40 and 25°C, respectively.
Determine the heat flux if the outside heat transfer coefficient is 15 W/(m2 K) and the inside
film coefficient is 5 W/(m2 K). Thermal conductivities given are bricks, kb = 1.2; mortar,
km = 0.6; concrete, kc = 0.8; board, kb = 0.15 W/(m K).

t∞
(δ/k A)steel 1/ho A(δ/k A)steel(δ/k A)bricks

t1

Fig. 2.16 Thermal network without bolts
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Solution

Resistances for unit height and width of the wall:

(i) Convective (outer)

Ro ¼ 1
hoAo

¼ 1
15� 1

¼ 0:0666

(ii) Brick

Rb ¼ db
kbAb

¼ 0:1
1:2� 75=85

¼ 0:0944

(iii) Mortar

Rm ¼ dm
kmAm

¼ 0:1
0:6� 10=85

¼ 1:4166

(iv) Concrete

Rc ¼ dc
kcAc

¼ 0:2
0:8� 1

¼ 0:25

(v) Insulating board

Rib ¼ dib
kibAib

¼ 0:01
0:15� 1

¼ 0:0666

10
100 200

Concrete

Thickness in mm.

Insulating
board

75

Bricks

Mortar

10

a Cross-section of wall.

q
to ti

Ro

Rib

Ri

Rc

Rm

Rb

b Thermal network.

Fig. 2.17 Example 2.9
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(vi) Convective (inner)

Ri ¼ 1
hiAi

¼ 1
5� 1

¼ 0:2

All resistances are in K/W. The total resistance to heat flow is (refer to the network in
Fig. 2.17b)

X
R ¼ R0 þ 1

Rb
þ 1

Rm

� ��1

þRc þRib þRi ¼ 0:6717K=W

Heat flux,

q00 ¼ To � TiP
R

¼ 40� 25
0:6717

¼ 22:33W=m2

which is from the outside to inside.

Example 2.10 Rods of copper, brass and steel are welded together to form a Y-shaped
figure as shown in Fig. 2.18. The cross-sectional area of each rod is 400 mm2. The end of the
copper rod is maintained at 120°C and the ends of the brass and steel rods at 20°C. The
lengths of the rods are copper 768 mm, brass 172 mm and steel 45 mm.

(a) What is the temperature of the junction point?
(b) What is the heat flowing in the copper rod?

The thermal conductivities of copper, brass and steel are 384, 86 and 45 W/(m K),
respectively. The rods are insulated from outside.

Solution

Heat balance at the junction gives

Heat inflow at the junction through copper rod; qc
¼ heat out flow at the junction through brass and steel rods; ðqb þ qsÞ

Copper

Steel

Brass

qc

qb
qs

Fig. 2.18 Example 2.10
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where, from Fourier’s equation,

qc ¼ kA
Dt
L

¼ 384� 400

1000ð Þ2 �
120� t

0:768
¼ 0:2� 120� tð Þ

qb ¼ kA
Dt
L

¼ 86� 400

1000ð Þ2 �
t � 20
0:172

¼ 0:2� t � 20ð Þ

qs ¼ kA
Dt
L

¼ 45� 400

1000ð Þ2 �
t � 20
0:045

¼ 0:4� t � 20ð Þ

Substitution in heat balance equation gives

0:2� ð120� tÞ ¼ 0:2� ðt � 20Þþ 0:4� t � 20ð Þ

or

t ¼ 45�C

This gives

qc ¼ 0:2ð120� 45Þ ¼ 15W

Example 2.11 The walls of a cold storage are proposed to be made of three layers as shown
in Fig. 2.19a. The temperature of the inside wall of the storage is likely to be –10°C. The
outside surface of the wall is likely to be exposed to surrounding air at 20°C (dew
point = 15°C) with film coefficient ho = 20 W/(m2 K). Determine the position in the wall

2525
150

-10oC •

Wood
[k = 0.2 W/(m K)]

a

Expanded
Polystyrene
[k = 0.035 
W/(m K)]

• t∞ = 20oC

Cork
[k = 0.04 W/(m K)]

ho = 20 
W/(m2 K)

Thickness in mm.

b

R3R1-10oC R2 20oC1/ho

T3T2T1

Fig. 2.19 a Cross-section of cold storage wall, b thermal network
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where (i) condensation of the moisture of the air, and (ii) freezing of the condensed moisture
may take place if the air diffuses into the wood and cork. Also determine the heat flow rate
across the wall.

Solution

Figure 2.19b shows the thermal network for A = 1 m2. The magnitudes of the resistances are

(i) Polystyrene R1 ¼ d
k ¼ 0:025

0:035 ¼ 0:7143

(ii) Cork R2 ¼ d
k ¼ 0:15

0:04 ¼ 3:75

(iii) Wood R3 ¼ d
k ¼ 0:025

0:2 ¼ 0:125

(iv) Convective Ro ¼ 1
ho
¼ 1

20 ¼ 0:05

The heat flow equation for various layers can be written as

q ¼ t1 � ð�10Þ
0:7143

ðiÞ

q ¼ t2 � t1
3:75

ðiiÞ

q ¼ t3 � t2
0:125

ðiiiÞ

q ¼ 20� t3
0:05

ðivÞ

and heat flow across the wall is

q ¼ 20� ð�10Þ
0:7143þ 3:75þ 0:125þ 0:05

¼ 6:47W/m2

Substituting the value of q in Eqs. (i)–(iv) gives t1 = –5.4°C, t2 = 18.86°C and
t3 = 19.67°C.

The analysis shows that the temperatures of the two sides of the cork layer are –5.4°C
(inside) and 18.86°C (outside). Hence, the condensation of the moisture of the diffusing air
and freezing of the condensate will take place in the cork layer.

Let the planes with 0°C and 15°C lie at distances d1 and d2 from the inner side of the cork
as shown in Fig. 2.20. We can write

q ¼ 0� ð�5:4Þ
d1=0:04

and

q ¼ 15� 0
d2=0:04

Putting q = 6.47 W/m2, we get d1 = 33.4 mm (for 0°C) and d2 = 92.7 mm (for 15°C).
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2.6 One-Dimensional Steady-State Heat Conduction Through
a Cylindrical Shell

For steady-state conduction, @t
@s ¼ 0: In case of one-dimensional radial heat flow, the

derivatives with respect to h and z are zero. If there is no heat generation qg = 0 and
Eq. (2.17b) reduces to

d2t

dr2
þ 1

r

dt

dr
¼ 0

or

r
d2t

dr2
þ dt

dr
¼ 0

or

d

dr
r
dt

dr

� �
¼ 0

or

r
dt

dr
¼ C1

or

dt

dr
¼ C1

r
ðiÞ

or

t ¼ C1 ln rþC2 ðiiÞ

δ1

•18.86 oC
-5.4oC • 

δ2

•0oC

•15oC

q = 6.47 W/m2

Cork

Fig. 2.20 Heat flow across cork layer
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The boundary conditions are

at r ¼ r1; t ¼ t1 ðiiiÞ

and

at r ¼ r2; t ¼ t2 ðivÞ

This gives

t1 ¼ C1 ln r1 þC2 ðvÞ
t2 ¼ C1 ln r2 þC2 ðviÞ

Solution of Eqs. (v) and (vi) gives

C1 ¼ � t1 � t2
lnðr2=r1Þ

C2 ¼ t1 þ t1 � t2
lnðr2=r1Þ ln r1

Substitution of values of the constants in Eq. (ii) gives the equation of temperature
distribution as

t ¼ � t1 � t2
lnðr2=r1Þ ln rþ t1 þ t1 � t2

lnðr2=r1Þ ln r1

Rearrangement of the terms gives

t � t1
t2 � t1

¼ ln r � ln r1
lnðr2=r1Þ ¼ lnðr=r1Þ

lnðr2=r1Þ ð2:24Þ

This is equation of variation of the temperature in non-dimensional form, which is an
equation of logarithmic curve. It is to be kept in mind that the wall material has been assumed
to be homogeneous and the thermal conductivity is constant.

The conduction heat transfer from Fourier’s equation is

q ¼ �kA
dt

dr

or

q ¼ �k 2pr2Lð Þ dt

dr

� �
r¼r2

where 2pr2L is the heat transfer area at r = r2 and dt
dr

� �
r¼r2

¼ C1
r2
; refer to Eq. (i). Substitution

of the value of C1 gives derivative as
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dt

dr

� �
r¼r2

¼ � 1
r2

t1 � t2
lnðr2=r1Þ

Hence,

q ¼ �k 2pr2Lð Þ � 1
r2

t1 � t2
lnðr2=r1Þ

� �

or

q ¼ 2pkLð Þ t1 � t2
lnðr2=r1Þ

� �

or

q ¼ t1 � t2
1

2pkL lnðr2=r1Þ
¼ t1 � t2

R
ð2:25Þ

where

R ¼ 1
2pkL

lnðr2=r1Þ ð2:26Þ

is the resistance to the heat conduction through a cylindrical wall.

Alternative Method
Alternatively, Eq. (2.25) can be derived by considering an elemental cylindrical shell of
thickness dr at radius r, refer to Fig. 2.21.

The heat flow, from Fourier’s equation, is

q ¼ �kA
dt

dr

or

q ¼ �k 2prLð Þ dt

dr

� �

dr Cylinder length = L
r

r2

r1

Fig. 2.21 Heat flow across wall of a cylindrical shell
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where dt/dr is the temperature gradient. The surface area at radius r is 2prL. Rearranging

q
dr

r
¼ � 2pkLð Þdt

Integration between the limits r = r1, t = t1 and r = r2, t = t2 gives

q

Zr2
r1

dr

r
¼ � 2pkLð Þ

Zt2
t1

dt

or

q lnðr2=r1Þ ¼ 2pkLðt1 � t2Þ

or

q ¼ t1 � t2
1

2pkL lnðr2=r1Þ
¼ t1 � t2

R
ð2:25Þ

The thermal network in this case can be presented as in Fig. 2.22, where the temperature

difference Δt is the driving force for the heat flow and R ¼ 1
2pkL

lnðr2=r1Þ is the thermal

resistance, which the wall offers to the flow of the heat by conduction.

Logarithmic mean radius
Equation (2.25) can be rewritten as

q ¼ k
2pLðr2 � r1Þ
lnðr2=r1Þ

� � ðt1 � t2Þ
ðr2 � r1Þ ðiÞ

If the heat transfer equation is written in a simple plane wall format, then

q ¼ kA0
m

ðt1 � t2Þ
ðr2 � r1Þ ðiiÞ

Comparing Eqs. (i) and (ii), we obtain

A0
m ¼ 2pLðr2 � r1Þ

lnðr2=r1Þ ¼ ð2pr2L� 2pr1LÞ
lnð2pr2L=2pr1LÞ ¼

ðA2 � A1Þ
lnðA2=A1Þ

R = (1/2πkL) ln(r2/r1)
t2t1

q

Δt

Fig. 2.22 Thermal network for a cylindrical shell
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where A1 and A2 are the inner and outer surface areas of the cylindrical shell. Area A0
m can be

termed as logarithmic mean area. Putting A0
m ¼ 2pr0mL; we have

2pr0mL ¼ 2pLðr2 � r1Þ
lnðr2=r1Þ

or

r0m ¼ r2 � r1
lnðr2=r1Þ ð2:26Þ

where r0m can be termed as logarithmic mean radius. The arithmetic mean radius is

rm ¼ r1 þ r2
2

and

rm � r0m
rm

¼ 1� r2 � r1
lnðr2=r1Þ

� �
� 2
r1 þ r2

¼ 1� ðr2=r1 � 1Þ
lnðr2=r1Þ � 2

1þ r2=r1

For r2/r1 = 2, rm�r0m
rm

¼ 0:0382; i.e. for r2/r1 < 2, the arithmetic mean radius rm deviates

from the logarithmic mean radius by less than 3.8% and can be used without significant error
for the calculation of the heat transfer through a cylindrical shell.

2.6.1 One-Dimensional Steady-State Heat Conduction Through
a Cylindrical Shell Considering Film Coefficients

When the process of heat conduction is accompanied with convection heat transfer at the
inner and outer surfaces of the cylinder (refer to Fig. 2.23), Eq. (2.25) is modified to include
the film resistances and is written in terms of inner and outer fluid temperatures ti and to,
respectively.

The convection heat transfer at the inner surface gives

q ¼ hiAiðti � t1Þ ¼ hið2pr1LÞðti � t1Þ

or

q ¼ ti � t1
1=ðhiAiÞ ¼

ti � t1
1=½hið2pr1LÞ� ¼

ti � t1
Ri

ðiÞ

where Ri = 1/hiAi is the film resistance at the inner surface of the cylinder.
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Similarly, the convection heat transfer at the outer surface gives

q ¼ hoAoðt2 � toÞ ¼ hoð2pr2LÞðt2 � toÞ

or

q ¼ t2 � to
1=ðhoAoÞ ¼

t2 � to
1=½hoð2pr2LÞ� ¼

t2 � to
Ro

ðiiÞ

where Ro = 1/hoAo is the film resistance at the outer surface of the cylinder.
The conduction heat transfer through the wall is

q ¼ t1 � t2
½1=ð2pkLÞ� lnðr2=r1Þ ¼

t1 � t2
Rk

ðiiiÞ

From Eqs. (i), (ii) and (iii), we get

ti � t1 ¼ qRi

t1 � t2 ¼ qRk

t2 � to ¼ qRo

ðivÞ

Combining the above equations, we obtain

ti � to ¼ qðRi þRk þRoÞ

or

q ¼ ti � to
Ri þRk þRo

¼ ti � toP
R

dr Cylinder length = L

Fluid films

r

r2

r1

Rk

t2t1
ti to

RoRi

q

Fig. 2.23 One-dimensional steady-state heat conduction through a cylindrical shell considering film
coefficients

48 2 One-Dimensional Steady-State Heat Conduction

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


or

q ¼ ti � to
1

hiAi
þ 1

2pkL ln
r2
r1
þ 1

hoAo

ð2:27Þ

i.e. the three resistances are in series. The thermal network is shown in Fig. 2.23.

2.6.1.1 Overall Heat Transfer Coefficient
In heat exchangers, the equation of heat exchange between the fluids flowing in and outside
the tube is written as

q ¼ UAðti � toÞ ð2:28Þ

where U is termed as overall heat transfer coefficient.
Since the heat flow area (surface area) for a cylinder is different at the inner and outer

surfaces, the equation of heat exchange must be written as

q ¼ UiAiðti � toÞ ðiÞ

or

q ¼ UoAoðti � toÞ ðiiÞ

We derived the heat exchange equation as

q ¼ ti � to
1

hiAi
þ 1

2pkL ln
r2
r1
þ 1

hoAo

ð2:27Þ

Comparison with Eq. (i) gives

Ui ¼ 1
Ai

1
hiAi

þ 1
2pkL

ln
r2
r1

þ 1
hoAo

� ��1

¼ 1
hi

þ Ai

2pkL
ln
r2
r1

þ Ai

hoAo

� ��1
ð2:29aÞ

Since Ai = 2pr1L and Ao = 2pr2L, the alternative form of the equation of the overall heat
transfer coefficient is

Ui ¼ 1
hi

þ Ai

2pkL
ln
Ao

Ai
þ Ai

hoAo

� ��1

ð2:29bÞ

Similarly, we can write

Uo ¼ Ao

hiAi
þ Ao

2pkL
ln
Ao

Ai
þ 1

ho

� ��1

ð2:30aÞ

where the overall heat transfer coefficient has been referred to the outer surface area.
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Defining hio = hiAi/Ao, which is the film coefficient at the inner surface referred to the
outer surface, we obtain

Uo ¼ 1
hio

þ Ao

2pkL
ln
Ao

Ai
þ 1

ho

� ��1

ð2:30bÞ

Most of the heat exchangers employ metallic tubes and the tube wall resistance is neg-
ligible compared to the two film resistances and is neglected. Then the equation of the overall
heat transfer coefficient takes the following form:

Uo ¼ 1
hio

þ 1
ho

� ��1

¼ hioho
hio þ ho

ð2:31Þ

2.6.2 Composite Cylindrical Wall

Pipes and tubes carrying high- or low-temperature fluids are generally insulated with one or
more layers of insulating materials (termed as lagging of the pipes) to reduce heat loss or gain
by the fluid while passing through the tube. The heat transfer in such cases can be determined
as follows.

Consider a composite cylinder wall comprising three layers as shown in Fig. 2.24. The
radii and thermal conductivities of these layers are mentioned in the figure. In the steady-state
condition, the quantity of heat passing through each layer is the same. The adjacent surfaces
are assumed to be in perfect contact and hence are at the same temperature. The heat flow
equation for the layers can be written as

q ¼ 2pk1Lðt1 � t2Þ
lnðr2=r1Þ

q ¼ 2pk2Lðt2 � t3Þ
lnðr3=r2Þ

q ¼ 2pk3Lðt3 � t4Þ
lnðr4=r3Þ

ðiÞ

k1 k3k2

t1

t4

t3

t2

r1

r3 r2r4

Fig. 2.24 Composite cylindrical wall
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From the above equations,

ðt1 � t2Þ ¼ q
lnðr2=r1Þ
2pk1L

� �

ðt2 � t3Þ ¼ q
lnðr3=r2Þ
2pk2L

� �

ðt3 � t4Þ ¼ q
lnðr4=r3Þ
2pk3L

� � ðiiÞ

Adding the equations, we obtain

ðt1 � t4Þ ¼ q
lnðr2=r1Þ
2pk1L

þ lnðr3=r2Þ
2pk2L

þ lnðr4=r3Þ
2pk3L

� �

or

q ¼ ðt1 � t4Þ
lnðr2=r1Þ
2pk1L

þ lnðr3=r2Þ
2pk2L

þ lnðr4=r3Þ
2pk3L

h i ¼ ðt1 � t4Þ
R1 þR2 þR3

ð2:32Þ

The denominator is the sum of the resistances of the different layers. For n layers, the
equation can be written as

q ¼ ðt1 � tnþ 1Þ
1

2pL

Pn
j¼1

lnðrjþ 1=rjÞ
kj

¼ ðt1 � tnþ 1ÞPn
j¼1 Rj

ð2:33Þ

Introducing the film resistances, above equations give

q ¼ ðti � toÞ
1

hiAi
þ lnðr2=r1Þ

2pk1L
þ lnðr3=r2Þ

2pk2L
þ lnðr4=r3Þ

2pk3L
þ 1

hoAo

h i
¼ ðti � toÞ

Ri þR1 þR2 þR3 þRo

and

q ¼ ðti � toÞ
1

hiAi
þ 1

2pL

Pn
j¼1

lnðrjþ 1=rjÞ
kj

þ 1
hoAo

ð2:34Þ

Example 2.12 Determine steady-state heat transfer rate through the wall of a 5-m-long
cylinder having inside and outside radius of 2.7 and 3 m, respectively. The inside and outside
wall temperatures are 100°C and 30°C, respectively. The thermal conductivity of the wall
material is 45 W/(m K). Also determine the error in estimate when the cylindrical wall is
treated as a flat plate.
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Solution

Heat flow through a cylindrical wall is given by

q ¼ 2pkLðt1 � t2Þ
lnðr2=r1Þ

or

q ¼ 2p� 45� 5� ð100� 30Þ
lnð3=2:7Þ ¼ 939;253W

Treating the cylindrical shell as a flat plate,

A ¼ 2prmL ¼ 2p
r1 þ r2

2

� 	
L

¼ 2p
2:7þ 3

2

� �
� 5 ¼ 89:53m2

and

q0 ¼ kA
t1 � to
r2 � r1

¼ 45� 89:53� 100� 30
3� 2:7

¼ 940;065W

The error in heat transfer estimate is

q0 � q

q
¼ 0:086%

which is very small.

Comments: Large radii thin cylinders can be treated as flat plates. If the above problem refers
to a cylinder with r1 = 10 mm and r2 = 20 mm, then q = 142,769 W and q′ = 148,440 W. The
error, in this case, is 4%. The flat plate equation gives a higher value of the heat transfer rate.

Example 2.13 A 15-mm-diameter copper rod loses heat to the surrounding air with a
surface heat transfer coefficient of 10 W/(m2 K). If the rod is to be uniformly coated with a
material of thermal conductivity 0.2 W/(m K) and the coated surface has a heat transfer
coefficient of 15 W/(m2 K), find the thickness of the coating which will keep the state of heat
loss unchanged.

Solution

For the rod without insulation, the heat is transferred by convection from its surface and is
given by

q1 ¼ tw � ta
1

2pr1h1

� 	 per m length of the rod

where tw is the temperature of the surface of the rod and ta is the surrounding air temperature.
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For the rod with insulation, the heat flows from the wire surface through the insulation
layer and is then transferred by convection from its surface. It is given by

q2 ¼ tw � ta
1

2pki
ln r2

r1
þ 1

2pr2h2

� 	 per m length of the rod

where ki is the thermal conductivity of the insulating material.
Equating the above equations for an equal rate of heat transfer in both conditions, we have

tw � ta
1

2pr1h1

� 	 ¼ tw � ta
1

2pki
ln r2

r1
þ 1

2pr2h2

� 	

or

1
r1h1

¼ 1
ki
ln
r2
r1

þ 1
r2h2

Substituting the values of various terms, we get

1
0:0075� 10

¼ 1
0:2

ln
r2

0:0075
þ 1

r2 � 15

or

�2:2262 ¼ ln r2 þ 0:0133
r2

Solution by trial and error gives r2 = 0.094 m = 94 mm.

Example 2.14 Calculate the overall heat transfer coefficient based on the inner diameter for
a steel pipe covered with fibre glass insulation. The following data are given:

ID of pipe, di = 20 mm
Thickness of pipe, ds = 2 mm
Thickness of insulation, di = 20 mm
Heat transfer coefficient (inside), hi = 10 W/(m2 K)
Heat transfer coefficient (outside), ho = 5 W/(m2 K)
Conductivity of insulation, ki = 0.05 W/(m K)
Conductivity of steel, ks = 46 W/(m K)
Inside fluid temperature, ti = 200°C
Ambient temperature, to = 30°C
Also, find the heat loss from the pipe per m of its length.
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Solution

Extending Eq. (2.29b) for the present case, the overall heat transfer coefficient in this case is

Ui ¼ 1
hi

þ Ai

2pksL
ln
r2
r1

þ Ai

2pkiL
ln
r3
r2

þ Ai

hoAo

� ��1

¼ 1
hi

þ r1
ks
ln

r2
r1

� �
þ r1

ki
ln

r3
r2

� �
þ r1

r3

� �
1
ho

� ��1

¼ 1
10

þ 10
1000� 46

ln
12
10

� �
þ 10

1000� 0:05
ln

32
12

� �
þ 10

32

� �
� 1
5

� ��1

¼ 2:79 W=ðm2 �C)

The heat transfer rate is

q ¼ UiAiðti � toÞ
¼ Uið2pr1LÞ � ðti � toÞ
¼ 2:79� ð2pÞ � ð10=1000Þ � 1� ð200� 30Þ
¼ 29:80W per m length of the pipe

Alternatively, Eq. (2.34) may be used to determine the heat transfer rate:

q ¼ ðti � toÞ
1

hiAi
þ lnðr2=r1Þ

2pksL
þ lnðr3=r2Þ

2pkiL
þ 1

hoAo

h i

where Ai = 2pr1L and Ao = 2pr3L.

Example 2.15 Air at 100°C flows through a thin-walled steel tube with inside diameter of
25 mm. The wall thickness is 0.5 mm. Thermal conductivity of the steel is 40 W/(m K). The
tube is exposed to an environment at 20°C with heat transfer coefficient of 10 W/(m2 K). The
film coefficient at the inner surface is 50 W/(m2 K). Calculate

(i) Overall heat transfer coefficient, Ui,
(ii) Heat loss per m length,
(iii) What thickness of insulation having thermal conductivity of 0.035 W/(m K) must be

applied to reduce the heat loss by 50%?

Solution

(i) From Eqs. (2.29a), (2.29b), the overall heat transfer coefficient based on the inner
surface of pipe can be written as

Ui ¼ 1
hi

þ r1
ks
ln

r2
r1

� �
þ r1

r2

� �
1
ho

� ��1
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Substituting r1 = 12.5 � 10−3 m, r2 = 13 � 10−3 m, ks = 40 W/(m K), hi = 50
W/(m2 K), ho = 10 W/(m2 K), we get

Ui ¼ 1
50

þ 12:5
1000� 40

ln
13
12:5

� �
þ 12:5

13

� �
� 1
10

� ��1

¼ 8:608W= m2K
� �

(ii) Heat loss per m length,

q ¼ UiAiðti � toÞ
¼ Uið2pr1LÞ � ðti � toÞ
¼ 8:608� ð2pÞ � ð12:5=1000Þ � 1� ð100� 20Þ
¼ 54:1W per m length of the pipe

(iii) The heat loss after insulation is reduced to the half, i.e. q′ = 54.1/2 = 27.05 W.
The required insulation thickness can be determined from Eq. (2.34):

q0 ¼ ðti � toÞ
1

hiAi
þ lnðr2=r1Þ

2pksL
þ lnðr3=r2Þ

2pkiL
þ 1

hoAo

� �

or

27:05 ¼ ð100� 20Þ
1

50� 2p� 12:5� 10�3
þ lnð0:013=0:0125Þ

2p� 40
þ lnðr3=0:013Þ

2p� 0:035
þ 1

10� 2p� r3

� �

By trial and error, r3 � 18 mm.

Example 2.16 A steam pipe having an outside diameter of 20 mm is to be covered with two
layers of insulation, each of thickness 10 mm. The average thermal conductivity of one
material is 5 times that of the other. Assuming that the inner and outer surface temperatures
of the composite insulation are fixed, by how much will be the heat transfer be reduced when
the better insulating material is placed next to the pipe surface than when it is placed away
from the pipe?

Solution

From the given data,
R1 = 10 mm, R2 = 20 mm, R3 = 30 mm and let k2 = 5k1.
Heat transfer q1 with better insulating material next to the pipe from Eq. (2.33) is

q1 ¼ 2pLðt1 � t3Þ
lnðr2=r1Þ

k1
þ lnðr3=r2Þ

k2

h i ¼ 2pLðt1 � t3Þ
lnð20=10Þ

k1
þ lnð30=20Þ

5k1

h i ¼ 1:2916� ½2pk1Lðt1 � t3Þ�
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Heat transfer q2 with better insulating material placed as outer layer is

q2 ¼ 2pLðt1 � t3Þ
lnðr2=r1Þ

k1
þ lnðr3=r2Þ

k2

h i ¼ 2pLðt1 � t3Þ
lnð20=10Þ

5k1
þ lnð30=20Þ

k1

h i ¼ 1:8379� ½2pk1Lðt1 � t3Þ�

Hence,

q2
q1

¼ 1:8379� ½2pk1Lðt1 � t3Þ�
1:2916� ½2pk1Lðt1 � t3Þ� ¼ 1:423

The analysis shows that for the given surface temperatures, the better insulating material
must be placed next to the pipe.

Example 2.17 A conical cylinder is insulated along its tapered surface. The cylinder is of
length L with one end of radius R1 and the other of radius R2. The surface with radius R1 is
maintained at temperature T1 and the other at temperature T2. Find the expression of the heat
flow along the length of the cylinder. Consider one-dimensional heat flow along the axis of
the cylinder only.

Solution

The heat flow through section xx at distance x is, refer to Fig. 2.25,

q ¼ �kAx
dT

dx
ðiÞ

The radius at distance x is

R ¼ R1 þ R2 � R1ð Þx
L

¼ R1 þCx

where C ¼ R2�R1ð Þ
L :

The area of the cross-section xx is

Ax ¼ p R1 þCxð Þ2

R2
R1

x

Insulation

T1

T2•

•
dx

q
R

x

x

L

B
A

Fig. 2.25 Heat conduction in axial direction of a conical cylinder
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Substitution of the value of Ax in Eq. (i) gives

q ¼ �kp R1 þCxð Þ2dT
dx

ðiiÞ

Integration of Eq. (ii) gives

q

ZL
0

dx

R1 þCxð Þ2 ¼ �kp
ZT2
T1

dT ðiiiÞ

Let (R1 + Cx) = a, then Cdx = da. The new boundary conditions are

x ¼ 0; a ¼ R1

x ¼ L; a ¼ R1 þCL ¼ R1 þ R2�R1ð Þ=L½ �L ¼ R2

Equation (iii) transforms to

ZR2

R1

qda

Ca2
¼ �kp

ZT2
T1

dT

or

q

C

�1
a

� �R2

R1

¼ kp T1 � T2ð Þ

or

q

C

1
R1

� 1
R2

� �
¼ kp T1 � T2ð Þ

or

q
L

R2 � R1

� �
R2 � R1

R2R1

� �
¼ kp T1 � T2ð Þ

or

q ¼ kp
T1 � T2ð ÞR1R2

L
:
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2.7 One-Dimensional Steady-State Heat Conduction Through
a Spherical Shell

Three-dimensional general heat conduction equation in spherical coordinates is

1
r2

@

@r
r2

@t

@r

� �
þ 1

r2 sin h
@

@h
sin h

@t

@h

� �
þ 1

r2 sin2 h

@2t

@/2

� �
þ qg

k
¼ 1

a
@t

@s

� �
ð2:18Þ

For steady-state condition,
@t

@s

� �
¼ 0 and, for one-dimensional radial heat flow, the

derivatives
@

@h
and

@2

@/2 are also zero. Further if heat generation is not present, the equation

reduces to

1
r2

d

dr
r2

dt

dr

� �
¼ 0

or

r2
dt

dr
¼ C1

or

dt

dr
¼ C1

r2
ðiÞ

or

t ¼ �C1

r
þC2 ðiiÞ

The boundary conditions are

t ¼ t1 at r ¼ r1

and

t ¼ t2 at r ¼ r2

Applying these boundary conditions, we get

t1 ¼ �C1

r1
þC2 ðiiiÞ

and

t2 ¼ �C1

r2
þC2 ðivÞ
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From Eqs. (iii) and (iv), we have

C1 ¼ t1 � t2
1=r2 � 1=r1

and

C2 ¼ t1 þ t1 � t2
r1

1
1=r2 � 1=r1

Substitution of the values of constants C1 and C2 in Eq. (ii) gives

t � t1
t2 � t1

¼ r1r2
r2 � r1

1
r1

� 1
r

� �

which is the temperature distribution equation in non-dimensional form. It is an equation of
hyperbola. Therefore, the temperature distribution across the wall of a spherical shell is hyperbolic.

The heat transfer by conduction through the wall of the shell can be determined by
substituting value of dt/dr from Eq. (i) in Fourier’s equation. Hence,

q ¼ �kA
dt

dr
¼ �kA

C1

r2

Substituting value of C1 and A = 4pr2 for the spherical surface, we obtain

q ¼ �kð4pr2Þ t1 � t2
1=r2 � 1=r1

� 1
r2

� �

or

q ¼ 4pk
t1 � t2

1=r1 � 1=r2

� �

or

q ¼ 4pk
r1r2ðt1 � t2Þ

r2 � r1
ð2:35aÞ

or

q ¼ ðt1 � t2Þ
ðr2�r1Þ
4pkr1r2

¼ ðt1 � t2Þ
R

ð2:35bÞ

where

R ¼ ðr2 � r1Þ
4pkr1r2

ð2:35cÞ

is the resistance of the wall to the conduction heat transfer. The thermal network is shown in
Fig. 2.26.
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Alternative method
Equations (2.35a)–(2.35c), (2.35a) and (2.35b) can be obtained by considering an elementary
shell of thickness dr at radius r, refer to Fig. 2.26. The surface area of the elemental shell is
4pr2. Hence, from Fourier’s equation,

q ¼ �kA
dt

dr
¼ �kð4pr2Þ dt

dr

or

q
dr

r2
¼ �4pkdt

Integration between the limits, r = r1, t = t1, and r = r2, t = t2, gives

q

Zr2
r1

dr

r2
¼ �4pk

Zt2
t1

dt

or

q
1
r1

� 1
r2

� �
¼ �4pkðt2 � t1Þ

or

q ¼ �4pk
ðt2 � t1Þ
1
r1
� 1

r2

� 	

Fig. 2.26 One-dimensional steady-state heat conduction through a spherical shell
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or

q ¼ 4pkðt1 � t2Þ r1r2
ðr2 � r1Þ ð2:35aÞ

or

q ¼ ðt1 � t2Þ
ðr2�r1Þ
4pkr1r2

¼ ðt1 � t2Þ
R

ð2:35bÞ

which is the desired equation.

Effective mean radius
Equation (2.35a) can be rewritten as

q ¼ k 4pr1r2ð Þ ðt1 � t2Þ
ðr2 � r1Þ

If the heat transfer equation is written in a simple plane wall format, then

q ¼ kA0
m

ðt1 � t2Þ
ðr2 � r1Þ

Comparing the equations, we obtain

A0
m ¼ 4pr1r2 ¼

ffiffiffiffiffiffiffiffiffiffi
A1A2

p
ð2:36aÞ

where A1 and A2 are the inner and outer surface areas of the shell. Putting A0
m ¼ 4pr2m, we have

A0
m ¼ 4pr2m ¼ 4pr1r2

or

rm ¼ ffiffiffiffiffiffiffiffi
r1r2

p ð2:36bÞ

Thus the mean effective radius is the geometric mean of the radii r1 and r2.

2.7.1 One-Dimensional Steady-State Heat Conduction Through
a Spherical Shell Considering the Film Coefficients

Following the procedure adopted for the cylindrical shell, we have

q ¼ hiAiðti � t1Þ ¼ hið4pr21Þðti � t1Þ
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or

q ¼ ti � t1
1=ðhiAiÞ ¼

ti � t1
1=½hið4pr21Þ�

¼ ti � t1
Ri

ðiÞ

where Ri = 1/hiAi is the film resistance at the inner surface of the shell.
Similarly, the convection heat transfer at the outer surface gives

q ¼ hoAoðt2 � toÞ ¼ hoð4pr22Þðt2 � toÞ

or

q ¼ t2 � to
1=ðhoAoÞ ¼

t2 � to
1=½hoð4pr22Þ�

¼ t2 � to
Ro

ðiiÞ

where Ro = 1/hoAo is the film resistance at the inner surface of the shell.
The conduction heat transfer through the wall is

q ¼ ðt1 � t2Þ
ðr2�r1Þ
4pkr1r2

¼ ðt1 � t2Þ
Rk

ðiiiÞ

From Eqs. (i), (ii) and (iii), we get

ti � t1 ¼ qRi

t1 � t2 ¼ qRk

t2 � to ¼ qRo

ðivÞ

Combining the above equations, we obtain

ti � to ¼ qðRi þRk þRoÞ

or

q ¼ ti � to
Ri þRk þRo

¼ ti � toP
R

or

q ¼ ti � to
1

hiAi
þ ðr2�r1Þ

4pkr1r2
þ 1

hoAo

ð2:37Þ

i.e. the three resistances are in series. The thermal network is shown in Fig. 2.27.

2.7.2 Composite Spherical Shell

Spherical shells containing high- or low-temperature fluids are generally insulated with one
or more layers of insulating materials to reduce heat loss or gain by the fluid. The heat
transfer in such cases can be determined as follows.
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Consider a spherical shell with the wall comprising three layers as shown in Fig. 2.28a.
The radii and thermal conductivities of these layers are mentioned in the figure. In the steady-
state condition, the quantity of heat passing through each layer is the same. The adjacent
surfaces are assumed to be in perfect contact and hence are at the same temperature. The heat
flow equation for the layers can be written as

q ¼ 4pk1r1r2ðt1 � t2Þ
r2 � r1

q ¼ 4pk2r2r3ðt2 � t3Þ
r3 � r2

q ¼ 4pk3r3r4ðt3 � t4Þ
r4 � r3

dr

Fluid films

r

r2

r1

Rk

t2t1
ti to

RoRi

q

Fig. 2.27 One-dimensional steady-state heat conduction through a spherical shell considering the film
coefficients

b

a

k1

k3

k2

t4
t3

t1
t2

r1

r4
r2r3

R3R1ti R2 toRo

t4

Ri

t3t2t1

Temperature
distribution

Fig. 2.28 a A composite shell, b thermal network
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From the above equations,

ðt1 � t2Þ ¼ q
r2 � r1
4pk1r1r2

ðt2 � t3Þ ¼ q
r3 � r2
4pk2r2r3

ðt3 � t4Þ ¼ q
r4 � r3
4pk3r3r4

Adding the equations, we obtain

ðt1 � t4Þ ¼ q
r2 � r1
4pk1r1r2

þ r3 � r2
4pk2r2r3

þ r4 � r3
4pk3r3r4

� �

or

q ¼ ðt1 � t4Þ
r2�r1

4pk1r1r2
þ r3�r2

4pk2r2r3
þ r4�r3

4pk3r3r4

ð2:38aÞ

or

q ¼ ðt1 � t4Þ
R1 þR2 þR3

The denominator is the sum of the resistances of the different layers. For n layers, the
equation can be written as

q ¼ ðt1 � tnþ 1Þ
1
4p

Pn
j¼1

rjþ 1�rj
kjrjrjþ 1

¼ ðt1 � tnþ 1ÞPn
j¼1 Rj

ð2:39Þ

Introducing the film resistances,

q ¼ ðti � toÞ
1

hiAi
þ r2�r1

4pk1r1r2
þ r3�r2

4pk2r2r3
þ r4�r3

4pk3r3r4
þ 1

hoAo

h i ð2:40aÞ

¼ ðti � toÞ
Ri þR1 þR2 þR3 þRo

The thermal network is shown in Fig. 2.28b. The equation can be written in a general
form as

q ¼ ðti � toÞ
1

hiAi
þ 1

4p

Pn
j¼1

rjþ 1�rj
kjrjrjþ 1

þ 1
hoAo

ð2:40bÞ

Example 2.18 A hemispherical electric heated oven of 1.0 m internal diameter is made of
225 mm thick layer of fire bricks. On the outer surface, a magnesia 85 layer of 100 mm
thickness is applied for insulation. The temperature at the inner surface of the oven is 800°C.
If the ambient temperature is 20°C, and outside convection film coefficient is 10 W/(m2 K),
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calculate the heat loss from the oven through the hemispherical shell with and without
insulation. Also find out the temperature of the outer surface of the fire bricks. The thermal
conductivities of fire bricks and magnesia 85 are 0.3 W/(m K) and 0.05 W/(m K),
respectively.

Solution

(i) Heat loss
Heat loss through a spherical shell with composite wall is given by

q ¼ ðt1 � toÞ
r2�r1

4pk1r1r2
þ r3�r2

4pk2r2r3
þ 1

4pr23ho

¼ ðt1 � toÞ
R1 þR2 þRo

Here r1 = 500 mm, r2 = 500 + 225 = 725 mm, r3 = 725 + 100 = 825 mm, t1 = 800°C,
to = 20°C, k1 = 0.3 W/(m K), k2 = 0.05 W/(m K) and ho = 10 W/(m2 K).
Substitution of the values of various parameters gives

R1 ¼ r2 � r1
4pk1r1r2

¼ ð725� 500Þ � 1000
4p� 0:3� 500� 725

¼ 0:1646

R2 ¼ r3 � r2
4pk2r2r3

¼ ð825� 725Þ � 1000
4p� 0:05� 725� 825

¼ 0:266

Ro ¼ 1

4pr33ho
¼ ð1000Þ2

4p� ð825Þ2 � 10
¼ 0:0117

The heat loss from the hemispherical shell will be half of the spherical shell, i.e.

q ¼ 1
2

t1 � to
R1 þR2 þRo

� �
¼ 1

2
800� 20

0:1646þ 0:266þ 0:0117

� �
¼ 881:75W

Heat loss without magnesia-85 layer will be

q ¼ 1
2

t1 � to
R1 þRo

� �
¼ 1

2
800� 20

0:1646þ 0:0117

� �
¼ 2212:1W

(ii) Temperature of the outer surface of the firebrick layer
Heat flow through the brick layer equals the heat loss. Hence,

(i) with magenia-85 layer:

881:75� 2 ¼ t1 � tb
R1

� �
¼ 800� tb

0:1646

� �

or

tb ¼ 509:73�C
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(ii) without magenia-85 layer:

2212:1� 2 ¼ t1 � tb
R1

� �
¼ 800� tb

0:1646

� �

or

tb ¼ 71:78 �C:

2.8 Measurement of Thermal Conductivity

2.8.1 Thermal Conductivity Measurement of Solids

Experimental determination of thermal conductivity of a material, based on Eq. (1.3),
involves measurement of heat flow rate through the material and the temperature difference
across the material specimen under steady-state condition. Various methods used are known
as the plate, tube and sphere methods.

The plate method is based on one-dimensional heat conduction through a plane wall.
Figure 2.29 shows the schematic layout of a guarded hot plate apparatus for measurement of
thermal conductivity of solids. The material, whose thermal conductivity is to be determined,
is in the form of a circular disc of area A and thickness d. Heat is supplied to the lower side of
the disc by a flat electric heater M. Heat is removed from the top of the disc by arranging a
cooler above the disc. Compensation or guard heater G surrounds the main heater and is
installed to prevent escape of heat of the main heater from the edge. Additional compensation
heater C1 is provided below the back insulation, under the main heater M, to compensate the
loss of heat in the downward direction. The installation of guard heater G and compensation
heater C1 ensures one-dimensional heat flow through the disc, i.e. from the lower heated face
to upper cooled face when there is no temperature difference across the side and back
insulations (e.g. t3 = t4). The whole assembly is further adequately insulated to prevent loss
of heat to the surrounding.

When steady state is reached, the electric power input (q) to the main heater and tem-
peratures of the hot and cold faces of the disc t1 and t2, respectively, are measured with the
help of thermocouples installed there. These measurements must be made only when there is
no temperature difference across the side and back insulations (e.g. t3 = t4), as explained
earlier. In this situation, all the heat input to the main heater passes through the specimen

G

Specimen disct2

t1
G

M

Insulation

C1

t3t4

Cooled surface

t3 = t4

Side insulation

Fig. 2.29 Schematic layout of experimental setup to determine thermal conductivity by plate method
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disc. Knowing q, t1 and t2, the thermal conductivity is determined from the following
relation:

k ¼ qd
Aðt1 � t2Þ ¼

qd
pr2ðt1 � t2Þ ð2:41Þ

The equipment, described above, is widely used to determine the thermal conductivity of
non-metals, i.e. solid of low thermal conductivity. In the case of high thermal conductivity
such as metals, the temperature difference (t1 – t2) is small and their precise measurement will
be required.

Figure 2.30 shows a simple instrument which has been used to measure the thermal
conductivity of metals. Here, the rod 1 whose thermal conductivity is to be measured is
joined axially with another metal rod 2 whose thermal conductivity is known. Thermo-
couples are affixed axially to both the rods. The rods are properly insulated from outside to
minimize heat loss and ensure one-dimensional heat flow in the axial direction only.
Knowing the temperature gradients through the two rods, the thermal conductivity of the rod
1 can be determined using the following relation:

q ¼ k1A
Dt
Dx

� �
1

¼ k2A
Dt
Dx

� �
2

or

k2 ¼ k1
Dt
Dx

� �
1

=
Dt
Dx

� �
2

ð2:42Þ

The tube method of determining thermal conductivity of insulating materials is based on
law of heat conduction through a cylindrical wall, i.e.

k ¼ q lnðr2=r1Þ
2pLðt1 � t2Þ ð2:43Þ

The instrument, shown schematically in Fig. 2.31a, consists of a central electric heater
which is surrounded by a copper tube of external diameter d1. The material whose thermal

Heat sink

Heat source

Rod 1q

Rod 2
q Thermocouple

Insulation

Fig. 2.30 Schematic layout of experimental setup to determine thermal conductivity by rod method
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conductivity is to be determined envelops the copper tube. The temperatures t1 and t2 of the
outer surface of the copper tube and that of the outer surface of the material, respectively, are
measured by affixing thermocouples as shown in the figure. Temperatures t1 and t2 used in
Eq. (2.43) are the average temperatures of these surfaces. Knowing the heat input (i.e. the
power supplied to the electric heater), dimensions r1, r2, and length L of the tube, the thermal
conductivity is calculated from the relation given above.

In the case of materials in powder form, another copper tube of inside radius r2 is used. The
powder is filled in the space between these tubes, see Fig. 2.31b. Temperature t2, in this case, is
the temperature of the inner surface of the outer copper tube. However, the thermal conductivity
of the powder insulatingmaterial is strong function of the density of thematerial packed into the
space between tubes. Loosely filled material shows a lower thermal conductivity.

In the tube-type instruments described above, the length of the tube must be large (say
2–3 m) so that the end loss is negligible and heat flows only in radial direction as desired.

In the sphere method, the instrument consists of two spheres of diameter d1 and d2, where
d2 > d1, refer to Fig. 2.32. The test material fills the space between the spheres. The inner
sphere houses an electric heater. Measuring the heat input (power to the heater), temperatures
t1 and t2 in the steady-state condition and knowing the sphere diameters, the thermal con-
ductivity of the filled material is determined from the following relation:

k ¼ q

4pðt1 � t2Þ
1
r1

� 1
r2

� �
ð2:44Þ

Heater

Side insulation

Copper tubes

Heater Thermocouple
b

a

Fig. 2.31 Schematic layout of experimental setup to determine thermal conductivity by tube method

Electric 
heater

Sphere 
dia. d2

t1
t2Sphere 

dia. d1

Test material

Fig. 2.32 Schematic layout of experimental setup to determine thermal conductivity by sphere method
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2.8.2 Thermal Conductivity Measurements of Liquids and Gases

To determine thermal conductivity of liquids and gases, it is an essential requirement that the
convection currents are suppressed.

Figure 2.33a depicts one of the methods, wherein the heat from the heated plate flows
downwards through a very thin layer of liquid d (of the order of 0.5 mm) to the cold plate at
the bottom. The liquid layer is very thin and is heated from above; hence, the convection
currents are not setup.

An alternative method of concentric cylinders (Fig. 2.33b) may be used wherein the heat
flows in radial direction through a very thin layer of liquid between two concentric cylinders.
This arrangement has also been used for gases. The thermal conductivity is calculated from
Eq. (2.43).

Example 2.19 In an instrument used to determine the thermal conductivity, the specimen to
be tested is placed between the hot and cold surfaces. The specimen is a circular disc of
150 mm diameter and 15 mm thickness. The temperatures of the hot and cold surfaces of the
instrument are recorded to be 170°C and 20°C, respectively. Under steady-state condition,
the heat flow through the specimen is 105 W. Calculate the thermal conductivity of the
material of the specimen if due to the presence of the guard heaters there is no heat flow in
the radial direction.

Solution

k ¼ qd
Aðt1 � t2Þ ¼

qd
pr2ðt1 � t2Þ

¼ 105� 0:015

p� ð0:075Þ2 � ð170� 20Þ ¼ 0:594W=ðmKÞ:

Example 2.20 A hollow aluminium sphere, with an electric heater at its centre, is used to
determine the thermal conductivity of an insulating material. The inner and outer radii of the
sphere are 0.1 and 0.125 m, respectively. In a particular test, a spherical shell of an insulating
material of 100 mm thickness was cast on the outer surface of the sphere. In the steady state,

Heater

Thermocouples

Cylinders

Fluid space

Insulation

Hot plate

Cold plate

Fluid layer

a
b

Fig. 2.33 Schematic layout of experimental setups to determine thermal conductivity of liquid or gases
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the temperature at the outer surface of the aluminium wall was recorded as 200°C. The
system is exposed to room air at 30°C, and the convective heat transfer coefficient is esti-
mated to be 20 W/(m2 K). If the energy supplied to the electric heater is at the rate of 100 W,
what is the thermal conductivity of the insulation? Neglect heat loss by radiation.

Solution

From the convective heat transfer equation,

q ¼ hAðt2 � taÞ

where t2 is the temperature at the outer surface of the shell and ta is the temperature of the
surrounding air.

The above equation gives

100 ¼ 20� 4p� ð0:225Þ2ðt2 � 30Þ

The solution gives

t2 ¼ 37:86�C

The heat flow rate by conduction through the wall of the spherical shell is

q ¼ 4pkr1r2ðt1 � t2Þ
r2 � r1

Substitution of values of various terms gives

100 ¼ 4p� k � 0:125� 0:225� ð200� 37:86Þ
0:225� 0:125

Solution gives k = 0.1745 W/(m K).

2.9 Effect of Variable Thermal Conductivity

Thermal conductivity of a dry solid substance depends on temperature and when the tem-
perature difference across the wall of such substance is large, proper account of the variation
of thermal conductivity with the temperature must be taken. For most of the materials, this
dependence is linear if the difference between boundary temperatures of the substance is not
large. Mathematically, it can be expressed as

k ¼ koð1þ btÞ ð2:45Þ

where ko is the thermal conductivity at 0°C, and b is a constant which is negative for metals
and positive for insulating materials. The constant b is usually determined experimentally.

When variation of thermal conductivity with temperature is considered linear, the heat
flow and temperature distribution through the plane, cylindrical and spherical walls can be
determined as under.
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2.9.1 Plane Wall

Fourier’s equation for conductive heat transfer is

q ¼ �kA
dt

dx

Introducing value of k from Eq. (2.45),

q ¼ �koð1þ btÞA dt

dx

or

qdx ¼ �koAð1þ btÞdt ðiÞ

Integrating between the limits of boundary conditions of the plane wall, refer to Fig. 2.34,
we get

q

Zd

0

dx ¼ �Ako

Zt2
t1

ð1þ btÞ dt

or

qd ¼ �Ako tþ b
t2

2

� �t2

t1

or

q ¼ �Ako
d

t2 � t1ð Þþ b
2

t22 � t21
� �� �

ðiiÞ

or

q ¼ �Ako
d

t2 � t1ð Þ 1þ b
2

t2 þ t1ð Þ
� �

• t2

t1 •
q

δ

x
x = 0

t

β = 0

β (-ve)

β (+ve)

Fig. 2.34 Temperature distribution across a plane wall with temperature-dependent thermal conductivity
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Hence, heat flow rate is

q ¼ �Ako
t2 � t1ð Þ

d
1þ b

t2 þ t1ð Þ
2

� �

¼ �Akoð1þ btmÞ t2 � t1ð Þ
d

¼ Akm
t1 � t2ð Þ

d
ð2:46Þ

where km is the thermal conductivity at mean temperature tm ¼ t1 þ t2ð Þ
2 of the wall.

The equation establishes that in the case of linear variation of thermal conductivity with
temperature, a constant value of the thermal conductivity km corresponding to the mean
temperature may be used. However, the variation of the thermal conductivity with temper-
ature is not linear in all cases and in such cases the above simplification is not applicable (see
Example 2.25).

For the expression of the temperature distribution, integrate Eq. (i) between the limits 0 to
x and t1 to t, which gives

q

Zx

0

dx ¼ �koA

Z t

t1

ð1þ btÞdt

or

qx ¼ �Ako tþ b
t2

2

� �t

t1

or

q ¼ �Ako
x

t � t1ð Þþ b
2

t2 � t21
� �� �

Substitution of value of q from Eq. (ii) gives

�Ako
d

t2 � t1ð Þþ b
2

t22 � t21
� �� �

¼ �Ako
x

t � t1ð Þþ b
2

t2 � t21
� �� �

Simplifying and rearranging the terms, we get

t ¼ 1
b

ð1þ bt1Þ2 � ð1þ bt1Þ2 � ð1þ bt2Þ2
h i x

d

n o1=2
� 1
b

ð2:47Þ

The equation gives the temperature distribution through the wall. In general, for the
positive values of b, the curve is convex and the curve is concave for the negative values of
b, see Fig. 2.34. For b = 0, i.e. when k is independent of the temperature, the distribution is
linear.
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2.9.2 Cylindrical Shell

Fourier’s equation for conductive heat transfer, in this case, is

q ¼ �kA
dt

dr
¼ �kð2prLÞ dt

dr

Introducing value of k from Eq. (2.45),

q ¼ �koð1þ btÞð2prLÞ dt
dr

or

q
dr

r
¼ �2pLkoð1þ btÞdt ðiÞ

Integrating between the limits of boundary conditions of the cylindrical wall, we get

q

Zr2
r1

dr

r
¼ �2pLko

Zt2
t1

ð1þ btÞdt

or

q ln r2=r1ð Þ ¼ �2pLko tþ b
t2

2

� �t2

t1

or

q ln r2=r1ð Þ ¼ �2pLko t2 � t1ð Þþ b
2

t22 � t21
� �� �

ðiiÞ

or

q ¼ �2pLko 1þ b
2

t2 þ t1ð Þ
� �

t2 � t1ð Þ
ln r2=r1ð Þ

or

q ¼ �2pLko 1þ btm½ � t2 � t1ð Þ
ln r2=r1ð Þ

or

q ¼ �2pLkm
t2 � t1ð Þ

ln r2=r1ð Þ ð2:48Þ
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where km is the thermal conductivity at mean temperature tm ¼ t1 þ t2ð Þ
2

of the wall, i.e. for

the linear variation of thermal conductivity with temperature, a constant value of the thermal
conductivity km corresponding to the mean temperature may be used.

2.9.3 Spherical Shell

Fourier’s equation for conductive heat transfer, in this case, is

q ¼ �kA
dt

dr
¼ �kð4pr2Þ dt

dr

Introducing value of k from Eq. (2.45),

q ¼ �koð1þ btÞð4pr2Þ dt
dr

or

q
dr

r2
¼ �4pkoð1þ btÞdt ðiÞ

Integrating between the limits of boundary conditions of the spherical wall, we get

q

Zr2
r1

dr

r2
¼ �4pko

Zt2
t1

ð1þ btÞdt

or

q � 1
r

� �r2

r1

¼ �4pko tþ b
t2

2

� �t2

t1

or

q
1
r1

� 1
r2

� �
¼ �4pko t2 � t1ð Þþ b

2
t22 � t21
� �� �

ðiiÞ

or

q
r2 � r1
r1r2

� �
¼ �4pko 1þ b

2
t2 þ t1ð Þ

� �
t2 � t1ð Þ

or

q ¼ �4pko 1þ btm½ � r1r2 t2 � t1ð Þ
r2 � r1
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or

q ¼ 4pkm
r1r2 t1 � t2ð Þ

r2 � r1
; ð2:49Þ

where km is the thermal conductivity at mean temperature tm ¼ t1 þ t2ð Þ
2

of the wall. In this

case also, for the linear variation of thermal conductivity with temperature, a constant value
of the thermal conductivity km corresponding to the mean temperature may be used.

Example 2.21 Derive the equation of temperature distribution through the wall of a
cylindrical shell if the thermal conductivity of the wall material is a linear function of
temperature.

Solution

Fourier’s equation for conductive heat transfer, in this case, is

q ¼ �kA
dt

dr
¼ �koð1þ btÞð2prLÞ dt

dr

or

q
dr

r
¼ �2pLkoð1þ btÞdt

Integrating between the limits of boundary conditions of the cylindrical wall, we get

q ln r2=r1ð Þ ¼ �2pLko t2 � t1ð Þþ b
2

t22 � t21
� �� �

ðiÞ

Integrating between the limits of t1 at r1 and t at r

q ln r=r1ð Þ ¼ �2pLko t � t1ð Þþ b
2

t2 � t21
� �� �

ðiiÞ

From Eqs. (i) and (ii),

ln r2=r1ð Þ
ln r=r1ð Þ ¼ t2 � t1ð Þþ b

2 t22 � t21
� �

t � t1ð Þþ b
2 t2 � t21
� �

or

t � t1ð Þþ b
2

t2 � t21
� �� ln r=r1ð Þ

ln r2=r1ð Þ t2 � t1ð Þþ b
2

t22 � t21
� �� �

¼ 0

Putting ln r=r1ð Þ
ln r2=r1ð Þ t2 � t1ð Þþ b

2 t22 � t21
� �h in o

¼ C in the above equation, we get
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t � t1ð Þþ b
2

t2 � t21
� �� C ¼ 0

or

t2 þ 2
b
t � t21 �

2
b
t1 � 2

b
C ¼ 0

or

t2 þ 2
b
t � C1 ¼ 0 ðiiiÞ

where C1 ¼ t21 þ 2
b t1 þ 2

bC:

Solution of Eq. (iii) gives

t ¼ 1
2

� 2
b
� 2

b

� �2

þ 4C1

" #1=2
8<
:

9=
;

or

t ¼ � 1
b
� 1

b

� �2

þC1

" #1=2

Substituting value of C1, we have

t ¼ � 1
b
� 1

b

� �2

þ t21 þ
2
b
t1 þ 2

b
C

" #1=2

The equation of C may be rearranged as follows:

C ¼ ln r=r1ð Þ
ln r2=r1ð Þ t2 � t1ð Þþ b

2
t22 � t21
� �� �� �

or

C ¼ � ln r=r1ð Þ
ln r2=r1ð Þ

1þ bt1ð Þ2� 1þ bt2ð Þ2
2b

" #

Substituting value of C, we get

t ¼ � 1
b
� 1

b

� �2

þ t21 þ
2
b
t1 � 2

b
ln r=r1ð Þ
ln r2=r1ð Þ

1þ bt1ð Þ2� 1þ bt2ð Þ2
2b

" #" #1=2
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or

t ¼ � 1
b
� 1
b

1þ b2t21 þ 2bt1 � ln r=r1ð Þ
ln r2=r1ð Þ 1þ bt1ð Þ2� 1þ bt2ð Þ2

h i� �1=2

or

t ¼ � 1
b
� 1
b

1þ bt1ð Þ2� ln r=r1ð Þ
ln r2=r1ð Þ 1þ bt1ð Þ2� 1þ bt2ð Þ2

h i� �1=2

At r = r2, t = t2. The condition is satisfied when positive sign of square root is used. This
gives the required temperature distribution equation as

t ¼ � 1
b
þ 1

b
1þ bt1ð Þ2� ln r=r1ð Þ

ln r2=r1ð Þ 1þ bt1ð Þ2� 1þ bt2ð Þ2
h i� �1=2

Example 2.22 Following the procedure of the preceding example, derive the equation of
temperature distribution through the wall of a spherical shell if the thermal conductivity of
the wall material is a linear function of temperature.

Solution

Fourier’s equation for conductive heat transfer, in this case, is

q ¼ �kA
dt

dr
¼ �kð4pr2Þ dt

dr

Introducing value of k from Eq. (2.45),

q ¼ �koð1þ btÞð4pr2Þ dt
dr

or

q
dr

r2
¼ �4pkoð1þ btÞdt

Integrating between the limits of boundary of t1 at r1 and t2 at r2, we get

q

Zr2
r1

dr

r2
¼ �4pko

Zt2
t1

ð1þ btÞdt

or

q � 1
r

� �r2

r1

¼ �4pko tþ b
t2

2

� �t2

t1
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or

q
1
r1

� 1
r2

� �
¼ �4pko t2 � t1ð Þþ b

2
t22 � t21
� �� �

or

q
r2 � r1
r1r2

� �
¼ �4pko 1þ b

2
t2 þ t1ð Þ

� �
t2 � t1ð Þ ðiÞ

Similarly integrating between the limits of boundary of t1 at r1 and t at r, we get

q
r � r1
r1r

� �
¼ �4pko 1þ b

2
tþ t1ð Þ

� �
t � t1ð Þ ðiiÞ

From Eqs. (i) and (ii),

r � r1
r1r

� �
r1r2

r2 � r1

� �
¼

�4pko 1þ b
2 tþ t1ð Þ

h i
t � t1ð Þ

�4pko 1þ b
2 t2 þ t1ð Þ

h i
t2 � t1ð Þ

r � r1
r2 � r1

� �
r2
r

� 	
¼

t � t1ð Þþ b
2 t2 � t21
� �h i

t2 � t1ð Þþ b
2 t22 � t21
� �h i

or

t � t1ð Þþ b
2

t2 � t21
� �� �

� r2
r

� 	 r � r1
r2 � r1

� �
t2 � t1ð Þþ b

2
t22 � t21
� �� �

¼ 0

or

t2 þ 2
b
t � t21 �

2
b
t1 � 2

b
r2
r

� 	 r � r1
r2 � r1

� �
t2 � t1ð Þþ b

2
t22 � t21
� �� �

¼ 0

or

t2 þ 2
b
t � t21 �

2
b
t1 þ r2

r

� 	 r � r1
r2 � r1

� �
1þ bt1ð Þ2� 1þ bt2ð Þ2

b2
¼ 0

or

t2 þ 2
b
tþC ¼ 0 ðiiiÞ

where �t21 � 2
b t1 þ r2

r

� �
r�r1
r2�r1

� 	
1þ bt1ð Þ2� 1þ bt2ð Þ2

b2
¼ C in the above equation.
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Solution of Eq. (iii) gives

t ¼ 1
2

� 2
b
� 2

b

� �2

�4C

" #1=2
8<
:

9=
;

or

t ¼ � 1
b
� 1

b

� �2

�C

" #1=2

Substituting value of C, we have

t ¼ � 1
b
� 1

b

� �2

þ t21 þ
2
b
t1 � r2

r

� 	 r � r1
r2 � r1

� �
1þ bt1ð Þ2� 1þ bt2ð Þ2

b2

" #1=2

or

t ¼ � 1
b
� 1
b

1þ b2t21 þ 2bt1 � r2
r

� 	 r � r1
r2 � r1

� �
1þ bt1ð Þ2� 1þ bt2ð Þ2

h i� �1=2

or

t ¼ � 1
b
� 1
b

1þ bt1ð Þ2� r2
r

� 	 r � r1
r2 � r1

� �
1þ bt1ð Þ2� 1þ bt2ð Þ2

h i� �1=2

At r = r2, t = t2. The condition is satisfied when positive sign of square root is used. This
gives the required temperature distribution equation as

t ¼ � 1
b
þ 1

b
1þ bt1ð Þ2� r2

r

� 	 r � r1
r2 � r1

� �
1þ bt1ð Þ2� 1þ bt2ð Þ2

h i� �1=2

Example 2.23 The thermal conductivity of the material of a plane wall varies linearly with
temperature as k = ko(1 + bt). Verify that for b > 0, the temperature profile is concave
downwards as shown in Fig. 2.34.

Solution

Fourier’s equation for a plane wall is

q ¼ �koð1þ btÞA dt

dx
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or

q

koA
¼ �ð1þ btÞ dt

dx

or

� q

koA
¼ dt

dx
þ bt

dt

dx

Differentiating with respect to x,

0 ¼ d2t

dx2
þ b

dt

dx

� �2

þ t
d2t

dx2

" #

or

d2t

dx2
¼ � b

1þ bt
dt

dx

� �2

\0

The second derivative is negative; hence, the temperature profile is concave downwards.

Example 2.24 The surface temperatures of a 200-mm-thick fireclay wall are 1000°C and
200°C. The thermal conductivity of the fireclay is a linear function of the temperature given
by the following equation:

k ¼ 0:8ð1þ 0:0007tÞ W=ðm�CÞ

where t is in °C.
Calculate the rate of heat flow, in W/m2, through the wall and determine the temperature

distribution in the wall.

Solution

(i) For linear variation of the thermal conductivity, the mean value of the thermal con-
ductivity may be used, which is

km ¼ 0:8ð1þ 0:0007tmÞ ¼ 0:8 1þ 0:0007
t1 þ t2
2

� 	h i
¼ 1:136 W=ðm�CÞ

Heat transfer

q ¼ kmA
t1 � t2

d
¼ 1:136� 1� 1000� 200

0:2
¼ 4544W
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(ii) Temperature distribution

t ¼ 1
b

ð1þ bt1Þ2 � ð1þ bt1Þ2 � ð1þ bt2Þ2
h i x

d

n o1=2
� 1
b

Here b = 0.0007. Hence,

ð1þ bt1Þ2 ¼ ð1þ 0:0007� 1000Þ2 ¼ 2:89

ð1þ bt2Þ2 ¼ ð1þ 0:0007� 200Þ2 ¼ 1:2996

Hence,

t ¼ 1428:6� ð2:89� 7:952xÞ1=2 � 1428:6

Figure 2.35 shows the temperature distribution.

Example 2.25 The thermal conductivity of a plane wall varies as

k ¼ koð1þBtþCt2Þ

where ko is the thermal conductivity at temperature t = 0 and B and C are constants.
If the wall thickness is d and the surface temperatures are t1 and t2, show that the steady

heat flux q″ through the wall is given by

q00 ¼ �ko
t2 � t1ð Þ

d
1þ B

2
t2 þ t1ð Þþ C

3
ðt22 þ t1t2 þ t21Þ

� �

0
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Fig. 2.35 Temperature distribution across the wall of Example 2.24
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Solution

From Fourier’s equation, the heat flow is given by

q

Zd

0

dx ¼ �A

Zt2
t1

kdt

or

qd ¼ �A

Zt2
t1

koð1þBtþCt2Þ dt

or

¼ �Ako tþB
t2

2
þC

t3

3

� �t2

t1

or

¼ �Ako t2 � t1ð Þþ B

2
t22 � t21
� �þ C

3
t32 � t31
� �� �

or

qd ¼ �Ako t2 � t1ð Þ 1þ B

2
t2 þ t1ð Þþ C

3
ðt22 þ t1t2 þ t21Þ

� �

Hence, heat flux is

q00 ¼ q

A
¼ �ko

t2 � t1ð Þ
d

1þ B

2
t2 þ t1ð Þþ C

3
ðt22 þ t1t2 þ t21Þ

� �

Example 2.26 For ko = 50, B = –0.0005 and C = –1 � 10−6, show that for small tem-
peratures t1 = 200°C and t2 = 100°C, the mean value of thermal conductivity can be used.

Solution

(i) The effective thermal conductivity, from the previous example, is

k ¼ ko 1þ B

2
t2 þ t1ð Þþ C

3
ðt22 þ t1t2 þ t21Þ

� �

Substitution gives k = 45.08 W/(m K).
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(ii) From equation, k = ko(1 + Bt + Ct2) = 47.0 W/(m K) at t1 = 100°C

¼ 43:0W=ðmKÞ at t1 ¼ 200�C

Hence, mean value km = (k1 + k2)/2 = 45.0 W/(m K).
(iii) The mean temperature, tm = (t1 + t2)/2 = 150°C

At 150�C; k ¼ 50� ð1� 0:0005� 150� 1� 106 � 1502Þ ¼ 45:12

The analysis shows that if the effect of the temperature is not significant and tem-
perature difference is not large, value of k corresponding to the mean temperature can
be used.

Example 2.27 Show that in case of a spherical shell, the heat conducted with variable
thermal conductivity k = ko(1 + bT) is higher by 50b(T1 + T2) per cent over the shell with
constant value of thermal conductivity ko, and T1 and T2 are wall temperatures.

Solution

With the constant value of the thermal conductivity,

q ¼ 4pkor1r2 T1 � T2ð Þ
r2 � r1

The heat conducted with the variable thermal conductivity is

q0 ¼ 4pko 1þ b T1 þ T2
2

� �
r1r2 T1 � T2ð Þ

r2 � r1

Hence, the percentage increase in the heat transfer is

Dq ¼ q0 � q

q
� 100

Substitution of the values of q and q′ gives

Dq ¼ 50b T1 þ T2ð Þ percent

It can be shown, using appropriate equations, that the above result is also valid for a plane
wall and tube.

Since the value of b is positive for insulating materials and negative for metals, the effect
of the rise in temperature is to increase the heat loss through the insulation and decrease the
conduction heat transmission through the metal walls.

Example 2.28 A spherical shell is made of a material with thermal conductivity k = koT
2.

Derive the expression for the conduction heat transfer rate, if the inner and outer walls are
held at temperatures T1 and T2, respectively.
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Solution

Substituting k = koT
2 and A = 4pr2 in Fourier’s equation, we get

q ¼ �koT
2 4pr2
� � dT

dr

Separating the variables and integrating,

q

ZRo

Ri

dr

r2
¼ �4pko

ZT2
T1

T2dT

or

q

4pko

1
Ri

� 1
Ro

� �
¼ � 1

3
T3
2 � T3

1

� �

or

q ¼ 4
3
pko

RoRi

Ro � Ri

� �
T3
1 � T3

2

� �

Example 2.29 The wall of a steam boiler furnace is made of layer of firebricks of thickness
125 mm (kb = 0.28 + 0.002T) and insulation bricks layer of 250 mm thickness (ki = 0.7 W/
(m K)). The inside surface temperature of the firebrick wall is 1000°C, and outside insulation
brick temperature is 60°C.

(i) Calculate the amount of heat lost per m2 of the furnace wall and the temperature at the
interface of the two layers.

(ii) If the layer of the insulation brick wall is reduced to half of its original thickness and an
insulating material with km = 0.113(1 + 0.002T) is to be filled between the fire brick
and insulation brick layers, what must be the thickness of this insulating material so that
the heat loss remains the same. Assume that the inside and outside wall temperatures
remain as before.

Temperature T in thermal conductivity equations is the mean temperature in K.

Solution

(i) Given data are kb = 0.28 + 0.002T, ki = 0.7 W/(m K), Ab = Ai = A = 1 m2.
Let temperature at the interface of fire and insulation bricks is T2.
The heat transfer, refer to Fig. 2.36a,

q ¼ kbAb
1273� T2

db
¼ kiAi

T2 � 333
di
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or

0:28þ 0:002� 1273þ T2
2

� �� �
� 1� 1273� T2

125
¼ 0:7� 1� T2 � 333

250

or

T2 ¼ 1165:6K

And the heat loss is

q ¼ kiA
T2 � 333

di
¼ 0:7� 1� 1165:6� 333

0:25
¼ 2331:3W

(ii) With three layers, the heat flow equation for the reduced thickness di′ of the insulation
bricks and the same heat loss rate,

q ¼ kiA
T3 � 333

d0i

or

2331:3 ¼ 0:7� 1� T3 � 333
0:125

or

T3 ¼ 749:3K

Heat flow equation for the firebrick layer is

q ¼ kbAb
1273� T2

db
¼ 2331:3W

As there is no change as far as first layer is concerned, hence, T2 is the same as in Part
(i), i.e. T2 = 1165.6 K.

Insulation bricks
[ki = 0.7 W/(m K)]

Ti = 1273 K•

• T3 = 333 K

•T2

δiδb

a

Fire bricks
      (kb)

Insulation bricks
[ki = 0.7 W/(m K)]

Ti = 1273 K •

• T3 = 333 K

•T2

δi’δb

b

Fire bricks
      (kb)

δm

Fig. 2.36 Example 2.29
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For the second layer of the insulating material filled between layers of fire bricks and
insulation bricks,

2331:3 ¼ kmAm
T2 � T3

dm

where

Am ¼ Ab ¼ Ai ¼ 1m2;

km ¼ 0:113� ½1þ 0:002� ðT2 þ T3Þ=2�
¼ 0:113� ½1þ 0:002� ð1165:6þ 749:3Þ=2� ¼ 0:3294W=ðmKÞ

Substitution gives

2331:3 ¼ 0:3294� 1� 1165:6� 749:3
dm

Solution gives dm = 0.0588 m = 59 mm.

Example 2.30 The wall of a furnace is built-up of a 250 mm thick layer of fireclay bricks
whose thermal conductivity is given by

k ¼ 0:83� ð1þ 0:0007tmÞW=ðm�CÞ

Calculate the rate of heat loss per m2 of the wall if the temperature of the gas in the
furnace is 1200°C and the ambient temperature is 20°C. The film coefficients from the inner
and outer wall surfaces are 30 W/(m2 K) and 20 W/(m2 K), respectively.

Solution

The total heat resistance to the heat transfer per m2 of the wall is

R ¼ 1
hi

þ d
k
þ 1

h0

¼ 1
30

þ 0:25
k

þ 1
20

As the thermal conductivity of the wall material is function of its temperature, the problem
will be solved by following an iterative method.

We assume mean wall temperature tm as 600°C for the first trial. This gives

k ¼ 0:83ð1þ 0:0007� 600Þ ¼ 1:1786W=ðm�CÞ

and

R ¼ 0:296
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Knowing the total wall resistance, the heat transfer rate is

q

A
¼ ti � to

R
¼ 1200� 20

0:296
¼ 3986:5W=m2

Let the wall surface temperatures are t1 and t2, refer to Fig. 2.37, then

q

A
¼ ti � t1

1=hi
¼ t1 � t2

d=k
¼ t2 � to

1=ho
¼ 3986:5W=m2

This gives

t1 ¼ ti � q

A
� 1
hi

¼ 1200� 3986:5� 1
30

¼ 1067:1�C

t2 ¼ t0 þ q

A
� 1
ho

¼ 20þ 3986:5� 1
20

¼ 219:3�C

This gives first estimate of the mean temperature as

tm ¼ t1 þ t2
2

¼ 643:2�C

The second trial with the estimated values of tm gives

k ¼ 0:83ð1þ 0:0007� 643:2Þ ¼ 1:2037W=ðm �CÞ

For k = 1.2037 W/(m °C),

R ¼ 0:291

and

q

A
¼ 4055W=m2

Third trial is not needed as the value of q/A from the second trial is not in much difference
from that obtained from the first trial.

• t2
t1 •

hi •

q
ti•

• to

• ho

δ

Fluid film 

to1/(ho A)(δ/kA)1/(hi A)
t i

t1 t2

Fig. 2.37 System of Example 2.30 and thermal network
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Example 2.31 A 50-mm-thick magnesia insulation has its faces at 25°C and 45°C, and the
heat loss is found to be 25 W/m2. When the face temperatures are changed to 240°C and
300°C, respectively, the heat loss becomes 100 W/m2. Find the thermal conductivity–tem-
perature relation of the material assuming it to be linear.

Solution

The heat loss for a plane wall is given by

q ¼ kA
t1 � t2

d
ðiÞ

Let

k ko(1 + at), i.e. a linear relation as specified
t mean temperature = (t1 + t2)/2 = (25 + 45)/2 = 35°C in the first

case= (240 + 300)/2 = 270°C in the second case
a a constant
ko thermal conductivity at 0°C
d thickness of the wall = 0.05 m
A heat flow area = 1 m2

Case (i) q = 25 W/m2 and from Eq. (i),

25 ¼ koð1þ 35aÞ � 1� 45� 25
0:05

or

koð1þ 35aÞ ¼ 0:0625 ðiiÞ

Case (ii) q = 100 W/m2 and from Eq. (i),

100 ¼ koð1þ 270aÞ � 1� 300� 240
0:05

or

koð1þ 270aÞ ¼ 0:0833 ðiiiÞ

Solution of Eqs. (ii) and (iii) gives ko = 0.0594 and a = 1.491 � 10−3.
Hence, the thermal conductivity–temperature relation is

k ¼ 0:0594ð1þ 1:491� 10�3tÞ

where t is the mean temperature of the material in °C.
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2.10 Critical Thickness of Insulation

2.10.1 Critical Thickness of Insulation for Cylinders

The thermal resistance to heat transfer for a hollow cylinder with a layer of insulating
material applied to the cylindrical surface is given by, refer to Fig. 2.38a,

Rt ¼ 1
2prilhi

þ
ln r1

ri

� 	
2pkml

þ
ln r2

r1

� 	
2pkl

þ 1
2pr2lho

¼ Ri þRw þRk þRo

The first term Ri in the equation of Rt is the resistance due to the inner film, second term
Rw is the metal wall resistance, the third term Rk represents the resistance of the insulation
material and the last term Ro is the outer film resistance. The first two terms are constant,
while Rk and Ro vary with the change in the thickness of the insulation. Neglecting the first
two terms, we have

R0
t ¼

ln r2
r1

� 	
2pkl

þ 1
2pr2lho

ðiÞ

As we increase the thickness of the insulation, i.e. the radius r2, keeping inside radius of
insulation r1 constant, the resistance Rk to conduction heat flow through the layer of insu-
lation increases while the resistance Ro to the heat transfer by convection from the surface of
insulation decreases, see Fig. 2.38. The sum of the resistances, Rt′ = Rk + Rc, first decreases
to a certain minimum at r = rc and then again increases. It means that as the radius r2
increases, the heat flow q first increases to a certain maximum value at r2 = rc and then
decreases. The value of r2 at the maximum of heat flow q (or the minimum of the resistance
R) is called the critical radius of insulation.

The critical radius of the insulation can be determined as under.
The heat transfer rate through the wall and insulation of thickness (r2 – r1) with film

coefficients hi and ho at the inner and outer surfaces, respectively, is given by

q ¼ ti � toð Þ
Rt

r10 rc

Rk

q

Ro

R

r

R, qInsulation

r2
r1

ho

ri

Tube wall

•

• hi

ba

Fig. 2.38 Critical radius of insulation

2.10 Critical Thickness of Insulation 89

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


where

Rt ¼ 1
2prilhi

þ
ln r1

ri

� 	
2pkml

þ
ln r2

r1

� 	
2pkl

þ 1
2pr2lho

The condition for the maximum or minimum heat transfer is obtained by differentiating
the equation of the total resistance Rt with respect to r2 and equating to zero, i.e.

@Rt

@r2
¼ 0 ¼ @

@r2

1
2prilhi

þ
ln r1

ri

� 	
2pkml

þ
ln r2

r1

� 	
2pkl

þ 1
2pr2lho

2
4

3
5

or

@Rt

@r2
¼ 1

2pl
1
k

r1
r2

� �
1
r1

� 1

hor22

� �
¼ 0

or

r2 ¼ rc ¼ k

ho
ð2:50Þ

This is the equation of the critical radius of insulation for a cylinder, which is independent
of the tube radius r1. It can be shown that the value of the second derivative of the resistance
Rt at r2 = rc refers to the minimum value of the resistance, i.e.

@2Rt

@r22
¼ 1

2pl
@

@r2

1
k
� 1
r2

� 1

r22
� 1
ho

� �

or

¼ 1
2pl

1
k
��1

r22
þ 2

r32
� 1
ho

� �

Putting r2 = rc = k/ho,

@2Rt

@r22
¼ 1

2pl
� h2o
k3

þ 2h2o
k3

� �

or

@2Rt

@r22
¼ h2o

2plk3

which is a positive quantity.
Thus, the condition r2 = rc refers to the minimum resistance to the heat transfer or to the

maximum heat transfer.
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We can conclude that, for the heat insulation of a pipe of radius r1, the insulating material
must be selected such that the critical radius rc is less than r1 under the given conditions
while in the case of the electric current carrying cables, the insulation radius r2 must be equal
to rc to dissipate maximum heat. Hence, the insulating material for the cables must be
selected such that the critical radius rc is greater than the bare cable radius r1.

2.10.2 Critical Thickness of Insulation for Spherical Vessel

The critical radius of the insulation for this can be determined as under.
The heat transfer rate through the wall of the sphere and insulation of thickness (r2 – r1)

with film coefficients hi and ho at the inner and outer surfaces, respectively, is given by

q ¼ ti � toð Þ
Rt

:

where

Rt ¼ 1
4pr2i hi

þ 1
4pkm

1
ri
� 1
r1

� �
þ 1

4pk
1
r1

� 1
r2

� �
þ 1

4pr22ho

Again the condition for the maximum or minimum heat transfer is obtained by differ-
entiating the equation of the total resistance Rt with respect to r2 and equating to zero, i.e.

@Rt

@r2
¼ 0 ¼ 1

4p
@

@r2

1

r2i hi
þ 1

km

1
ri
� 1
r1

� �
þ 1

k

1
r1

� 1
r2

� �
þ 1

r22ho

� �

or

1
4p

1
k

��1

r22

� �
þ �2

r32ho

� �
¼ 0

or

r2 ¼ rc ¼ 2k
ho

ð2:51Þ

This is the equation of the critical radius of insulation for a sphere, which is independent
of the sphere radius r1. Again it can be shown that the value of the second derivative of the
resistance Rt at r2 = rc refers to the minimum value of the resistance.

1
4p

@

@r2

1
k

��1

r22

� �
þ �2

r32ho

� �

¼ 1
4p

��1
k

� ð�2Þ
r32

� �
þ �2� ð�3Þ

r42ho

� �
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Putting r2 = rc = 2 k/ho,

@2Rt

@r22
¼ 1

4p
h3o
8k4

� �

which is a positive quantity.
Thus, the condition r2 = rc refers to the minimum resistance to the heat transfer or to the

maximum heat transfer. The discussion presented for cylindrical cell regarding the selection
of the insulation material also applies here.

Example 2.32 An electric current carrying cable of radius r1 is covered with a layer of
insulation of thickness r2 – r1. If the resistance heating rate is q per m length of the cable,
show that in the steady-state condition, the cable surface temperature is given by

q

2p
1
k
ln
r2
r1

þ 1
r2h

� �
þ t1

where k is the thermal conductivity of the insulation material, h is the outside film coefficient
and t∞ is the surrounding temperature.

Hence, show that r2 = k/h gives the minimum cable surface temperature.

Solution

The rate of heat transfer per unit length of the insulated cable at surface temperature ts is
given by

q ¼ ts � t1
1

2pk ln
r2
r1
þ 1

2pr2h

h i

or

ts ¼ q

2p
1
k
ln
r2
r1

þ 1
r2h

� �
þ t1

For the cable surface temperature to be minimum or maximum, the condition is

@ts
@r2

¼ 0

or

@

@r2

q

2p
1
k
ln
r2
r1

þ 1
r2h

� �
þ t1

� �
¼ 0
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or

q

2p
1
k
� r1
r2

� 1
r1

þ �1
r22h

� �� �
¼ 0

or

q

2p
1
k
� 1
r2

� 1
r22h

� �� �
¼ 0

or

r2 ¼ k

h

The second derivative is

@

@r2

q

2p
1
k
� 1
r2

� 1
r22h

� �� �

¼ q

2p
1
k
��1

r22
� �2

r32h

� �

Substituting r2 = k/h, the second derivate
@2ts
@r22

¼ q

2p
h2

k3

� �
which is a positive quantity.

Hence, the condition r2 = k/h refers to the minimum temperature of the cable surface.

Example 2.33 For the cable of the previous example, show that the condition for keeping
the insulated cable at the same temperature as if it were not insulated is

ln
r2
r1

¼ k

h

1
r1

� 1
r2

� �

Solution

The cable surface temperature with insulation of thickness (r2 – r1) from the previous
example is

ts ¼ q

2p
1
k
ln
r2
r1

þ 1
r2h

� �
þ t1

When insulation is not present, the cable surface temperature t0s can be obtained from the
above equation by excluding the insulation resistance and putting r2 = r1. This gives

t0s ¼
q

2p
1
r1h

� �
þ t1
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Equating the two temperature equations for the given condition, we have

q

2p
1
k
ln
r2
r1

þ 1
r2h

� �
þ t1 ¼ q

2p
1
r1h

� �
þ t1

Simplification gives

ln
r2
r1

¼ k

h

1
r1

� 1
r2

� �

Example 2.34 An electric current cable is 5 mm in radius. It is to be covered by a uniform
sheathing of plastic (k = 0.2 W/(m K)). The convective film coefficient between the surface
of the plastic sheathing and surrounding air is 15 W/(m2 K). Calculate

(i) thickness of insulation which will not alter the temperature of the wire surface, and
(ii) the insulation thickness for minimum wire temperature.

Comment on the result.

Solution

(i) The condition for keeping the insulated cable at the same temperature as if it were not
insulated has been obtained in previous example, which is

ln
r2
r1

¼ k

h

1
r1

� 1
r2

� �

From the given data, r1 = 5 mm, k = 0.2 W/(m K) and h = 15 W/(m2 K). Substitution
gives, by trial and error, r2 = 0.057 m = 57 mm.

(ii) For the minimum wire temperature, the condition is

r2 ¼ rc ¼ k

ho
¼ 0:2

15
� 1000 ¼ 13:33mm

Since r2 calculated in Part (i) of the example is greater than rc, any insulation thickness
which is less than r2 calculated in Part (i) will cause decrease in the wire surface
temperature for the same heat generation rate in the wire due to Joule heating.
The wire surface temperature is minimum when r2 = rc. The wire surface temperature
for r2 = r1 = 5 mm (i.e. the bare wire) and r2 = 57 mm is the same.

Example 2.35 Show that heat dissipation from an electric cable provided with critical
insulation thickness is given by

q ¼ 2pkL ts � t1ð Þ
1þ ln k

hor1

where the notations have the usual meaning.
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Solution

The heat dissipation from an electric cable of radius r1 with insulation thickness (ro – r1) is
given by

q ¼ ts � t1
1

2pkL ln
ro
r1
þ 1

2proLho

¼ 2pkL ts � t1ð Þ
ln ro

r1
þ k

roho

For the critical insulation thickness, substitute ro by k/ho, which gives the desired result.

Example 2.36 An electric wire of 3 mm radius is to be provided with plastic sheathing
[k = 0.15 W/(m K)]. The convective film coefficient on the surface of the bare cable as well as
insulated cable can be assumed to be 10 W/(m2 K). For a particular value of current flow I1, the
wire surface temperature is found to be 60°Cwhen the surrounding temperature was 20°C. Find

(i) The insulation thickness so that the wire surface temperature will be minimum when
current flow is unchanged. What will be wire surface temperature in this case? Assume
that the wire resistance does not change with change in its temperature.

(ii) The maximum possible increase in the current carrying capacity if the wire surface
temperature is to be limited to the same value after the insulation of critical thickness.

Solution

(i) To keep the wire as cool as possible, the thickness of the insulation must be equal to the
critical thickness, which is

rc ¼ k

ho
¼ 0:15

10
¼ 0:015m

i.e. the thickness of the insulation is 15 – 3 = 12 mm.
For the bare wire, the heat dissipation rate is

q ¼ hoð2pr1LÞ � ðt1 � t1Þ
¼ 10� ð2p� 0:003� 1Þ � ð60� 20Þ
¼ 7:54W per m length of the cable

Heat dissipation rate from the insulated cable is given by, refer to Example 2.35,

q0 ¼ 2pkL t1 � t1ð Þ
1þ ln k

hor1

� 	
¼ 2p� 0:15� 1� T 0

1 � 20
� �

1þ ln 0:15
10�0:003

� �
¼ 0:3612ðT 0

1 � 20Þ
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When the current flow is unchanged, the heat generation rate will remain the same, i.e.
q′ = q. Hence,

7:54 ¼ 0:3612ðt01 � 20Þ

or

t01 ¼ 40:87�C

(ii) The heat dissipation rate and hence the current carrying capacity of the cable will be
maximum when the critical thickness of the insulation is provided. For t1 ¼ t01 ¼ 60 �C;
the heat dissipation rate for ro = rc will be, from Part (i),

q ¼ 0:3612ð60� 20Þ ¼ 14:45W

For the given wire resistance,

q ðwithout insulationÞ ¼ I21R ¼ 7:54W

q0 ðwith insulationÞ ¼ I22R ¼ 14:45W

Thus,

I2
I1

¼
ffiffiffiffiffiffiffiffiffiffiffi
14:45
7:54

r
¼ 1:384

i.e. the current can be increased by 38.4%.

Example 2.37 A vertical non-insulated steam pipe of 4 m length and 80 mm diameter has
surface temperature tw = 160°C. The surrounding air is at 20°C. Find the loss of the heat
from the pipe by convection if the surface heat transfer coefficient is 9 W/(m2 K).

What will be the heat loss from the pipe length if an asbestos-based insulation
[k = 0.16 W/(m K)] of 30 mm thickness is applied? Give your comments.

Solution

Heat loss without insulation

q ¼ hðpDLÞðtw � t1Þ ¼ 9� p� 0:08� 4� ð160� 20Þ ¼ 1266:7W

Heat loss when insulation is provided (r1 = 40 mm, r2 = 70 mm)

q0 ¼ tw � t1
1

2pkL ln
r2
r1
þ 1

2pr2Lho

¼ 160� 20
1

2p�0:16�4 ln
70
40 þ 1

2p�0:07�4�9

¼ 691:97W
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Comments: The critical radius of insulation, from the given data, is

rc ¼ k

ho
¼ 0:16

9
¼ 0:0178m ¼ 17:8mm

As the critical radius is less than the tube radius, the given insulation will be effective
whatever may be thickness of the insulation applied. The loss will decrease with the increase
in the thickness of insulation.

Note: In the above analysis, it has been assumed that the surface temperature of the tube
and the convective heat transfer coefficient remains the same even after the layer of the
insulation is applied.

Example 2.38 If the pipe in Example 2.37 is covered with insulation having thermal
conductivity of 0.5 W/(m K), discuss the effect of variation in insulation thickness.

Solution

Heat loss without insulation

q ¼ hðpDLÞðtw � t1Þ ¼ 9� p� 0:08� 4� ð160� 20Þ ¼ 1266:7W

Heat loss with insulation provided for r1 = 40 mm

q0 ¼ tw � t1
1

2pkL ln
r2
r1
þ 1

2pr2Lho

¼ 160� 20
1

2p�0:5�4 ln
r2
40 þ 1

2p�r2�4�9

The critical thickness of insulation

rc ¼ k

ho
¼ 0:5

9
¼ 0:0555m

The variation of the heat loss with r2 is shown in table below and depicted in Fig. 2.39.

r2 (mm) Heat loss, Q (W)

r2 = r1 = 40
45
50
rc = 55.5
60
70
80
90

1266.70
1300.96
1318.68
1324.36
1321.44
1300.0
1267.92
1231.8

Example 2.39 An electric wire is 6 mm in diameter. The wire is to be covered by at least 4
mm rubber insulation [k = 0.1 W/(m K)] from electric consideration. How the cooling
conditions will be changed? The heat transfer coefficient from the surface is 10 W/(m2 K).
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Solution

The critical radius of insulation is

rc ¼ k

ho
¼ 0:1

10
¼ 0:01m ¼ 10mm

As rc > rwire and rwire < r2 < rc, the insulated wire will be cooled better than the bare
wire. At insulation thickness of 7 mm, the cooling effect will be at maximum. The following
calculations can be carried out for clear understanding:

Bare wire:

q ¼ hoðpDLÞðtwire � t1Þ

or

twire � t1 ¼ q

hopDL
¼ q� 1000

10� p� 6� 1
¼ 5:305q for 1 m length

Insulated wire:

q ¼ twire � t1
1

2pkL ln
r2
r1
þ 1

2pr2Lho

Fig. 2.39 Heat loss versus insulation radius
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or

twire � t1 ¼ q
1

2p� 0:1� 1
ln
7
3
þ 1

2p� 0:007� 1� 10

� �
¼ 3:622q

Similarly, for the insulation thickness of 7 mm,

twire � t1 ¼ 3:508q

and for the insulation thickness of 10 mm,

twire � t1 ¼ 3:557q:

From the above calculations, it can be seen that the wire temperature, over the sur-
rounding temperature, (twire – t∞) decreases with the increase in the insulation thickness up to
r2 = rc and then increases with the further increase in the thickness. Again the wire tem-
perature is minimum at r2 = rc.

Example 2.40 A cylindrical pipe of 20 mm outer diameter is to be insulated so that the heat
loss from the pipe surface is not more than 65 W per m length. The pipe surface is 280°C,
and it can be assumed that the surface temperature remains the same after application of the
insulation layer. The surrounding temperature is 30°C. The heat transfer coefficient from the
surface is 10 W/(m2 K). Available for the service is asbestos [k = 0.14 W/(m K)] or slag
wool [k = 0.08 W/(m K)]. Determine the thicknesses of these insulating materials and
comment on the result.

Solution

The critical radius of insulation,

rc ¼ k

ho
¼ 0:14

10
¼ 0:014m ¼ 14mm for asbestos

and

rc ¼ k

ho
¼ 0:08

10
¼ 0:008m ¼ 8mm for slag wool

Thus the critical radius of insulation rc is less than the pipe radius r1 for the slag wool.
Therefore, the use of the slag wool as insulation is recommended. If asbestos is used as
insulation, the thickness of it should be such that r2 is well beyond rc, refer to Fig. 2.40. For
slag wool, the curve below r = r1 is shown dashed because it is hypothetical only.

Heat loss from the bare pipe:

q ¼ hðpDLÞðtw � t1Þ ¼ 10� p� 0:02� 1� ð280� 30Þ ¼ 157:1W

Heat loss with insulation:
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q ¼ tw � t1
1

2pkL ln
r2
r1
þ 1

2pr2Lho

For asbestos r2 = rc = 14 mm (r1 = 10 mm). Heat loss from the above equation is

qa ¼ 280� 30
1

2p�0:14�1 ln
14
10 þ 1

2p�0:014�1�10

¼ 164:54W:

Asbestos insulation thickness for heat loss of 65 W per m length:

65 ¼ 280� 30
1

2p�0:14�1 ln
r2
10 þ 1

2p�r2�1�10

Solution gives r2 = 280 mm, by trial and error.
Similarly for the slag wool (rc = 8 mm),

65 ¼ 280� 30
1

2p�0:08�1 ln
r2
10 þ 1

2p�r2�1�10

which gives r2 = 61 mm by trial and error.

Example 2.41 Show that for a small diameter tube, when critical radius is greater than the
tube radius r1, the heat loss can be reduced by applying an insulating layer of thickness (r2 –
r1) such that

1
k
ln
r2
r1

þ 1
hor2

[
1

hor1

Solution

Resistance to heat flow when insulation layer is applied,

R0 ¼ 1
2plk

ln
r2
r1

� �
þ 1

2pr2lho

q

rr1rc1 rc2

2
1

2- Asbestos
1- Slag wool 

Fig. 2.40 Heat loss versus radius for alternative insulations of Example 2.40
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Resistance to heat flow from a bare tube,

R ¼ 1
2pr1lho

For reduction in the heat loss R′ must be greater than R, i.e.

1
2plk

ln
r2
r1

� �
þ 1

2pr2lho
[

1
2pr1lho

Simplification of the above equation gives the desired result. For the cooling of the
electric cables, the condition will be R′ < R.

2.11 Thermal Contact Resistance

In many engineering applications, solid surfaces are not having metallurgical bond. At the
interface of such surfaces, a resistance to the heat flow has been observed. This resistance is
called thermal contact resistance. It can be the dominant resistance when high conductivity
metals are involved. A drop in temperature at the interface of the two materials due to the
resistance of the interface can be seen in Fig. 2.41.

Real surfaces are not perfectly smooth. Hence, when such surfaces are pressed against
each other, contact between them occurs only at a limited number of spots as shown in
Fig. 2.41b, which has been exaggerated for a better understanding. The voids are filled with
the surrounding fluid.

The heat transfer across the interface takes place through two parallel paths:
1. The conduction at the high spots, which are in direct contact
2. The conduction through the fluid entrapped in the voids.

Since the fluid layer is very thin, there is no convection. At high temperatures, radiation
across the gap may also contribute to the heat transfer.

δg

Rs1       Rs2

Rv

b

c

Drop in the 
temperature

T1

T2

1 2

Ti1

Ti2

a Interface

Fig. 2.41 a Effect of the thermal contact resistance on temperature profile, b contact surfaces (enlarged),
c the thermal network at the interface
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The heat flow equation can be written as

q ¼ Ti1 � Ti2

1
Rs

þ 1
Rv

� 	�1 ðiÞ

where

Rs resistance of the spots in direct contact,
Rv resistance of the fluid layer,
(Ti1 – Ti2) temperature drop across the interface.

The resistance Rs consists of two resistances Rs1 and Rs2 in series; the resistances Rs and
Rv are in parallel as shown in Fig. 2.41c.

If it is assumed that the void thickness dg, refer to Fig. 2.41b, is equally divided between
the solid surfaces 1 and 2, then the resistance Rs can be expressed as

Rs ¼ dg=2
k1As

þ dg=2
k2As

ðiiÞ

The fluid resistance can be expressed as

Rv ¼ dg
kf Av

ðiiiÞ

where

k1 thermal conductivity of solid 1,
k2 thermal conductivity of solid 2,
As area of the spots of solid-to-solid contact,
Av void area and
kf thermal conductivity of the entrapped fluid.

Substitution in Eq. (i) gives

q ¼ ðTi1 � Ti2Þ dg
2k1As

þ dg
2k2As

� ��1

þ dg
kf Av

� ��1
" #

ðivÞ

The interface or the contact conductance is defined as

q ¼ hAðTi1 � Ti2Þ ðvÞ

where A is the total contact area of the surfaces.
Comparison of Eqs. (iv) and (v) gives the expression of the contact conductance as

h ¼ 1
dg

As

A

� �
2k1k2
k1 þ k2

þ Av

A

� �
kf

� �
ð2:52Þ
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It is not easy to use this equation because of the difficulty in determination of the values of
As, Av and dg. However, the equation shows that h is a function of void thickness dg, thermal
conductivity kf of the entrapped fluid, and area As.

The void thickness dg depends on the roughness of the surfaces in contact. Thus, the
roughness of the surfaces plays an important role in determining the contact resistance. The
resistance increases with the increase in the roughness.

Increase in the joint pressure for the surfaces in contact decreases the resistance. With the
increase in the joint pressure, the high spots are deformed (crushed). This increases the
contact area As and reduces dg. Experimental studies have shown that the conductance varies
almost directly with the joint pressure.

At very low gas pressures, when the free path of the molecules is large compared to the
dimension of the void space, the effective thermal conductivity of the entrapped gas
decreases. This leads to an increase in the contact resistance.

Studies have shown that the contact conductance ranges from 3120 to 71,000 W/(m2 K)
for steel, brass and aluminium surfaces ground to various degrees of roughness for pressures
from 1.31 to 55.1 bar with air, oil or glycol between the surfaces (Frass 1989).

Thin foils made of materials of good thermal conductivity when inserted between the
surfaces reduce the resistance if the foil is softer than the materials of the surfaces in contact.

The resistance is reported to reduce by as much as 75% when thermal grease like Dow
3401 is used (Holman 1992). The values of the contact resistance of some surfaces are also
tabulated in Holman (1992) and Mills (1995). However, the data is scarce and not reliable
(Mills 1995).

Example 2.42 The composite wall (A = 2 m2) shown in Fig. 2.42 consists of layers of
bricks (k1 = 0.6 W/(m K), d1 = 0.1 m) and mineral wool (k2 = 0.045 W/(m K),
d2 = 0.05 m). The contact resistance is estimated to be 0.25 m2 K/W. Determine (a) the rate
of heat transfer through the wall and (b) the temperature distribution.

To

1/(hoA)(δ1/k1A)1/(hiA)
Ti

T1 T4q

Rc/A

T2 T3

(δ2/k2A)

• 
hi = 20
W/(m2 K)

q

•

• To = 30oC

ho = 10 
W/(m2 K)

δ1

T4

Ti = 150oC

δ2

T1

T3

T2

a

b

Fig. 2.42 Example 2.42

1A grease like silicone fluid thickened with metal oxide filler [k = 0.4 W/(m K)].
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Solution

(a) The electric network is shown in Fig. 2.42b. The total resistance to heat transfer is

Rt ¼ 1
hiA

þ d1
k1A

þ Rc

A
þ d2

k2A
þ 1

hoA

¼ 1
20� 2

þ 0:1
0:6� 2

þ 0:25
2

þ 0:05
0:045� 2

þ 1
10� 2

¼ 0:839K=W

Heat transfer rate,

q ¼ Ti � To
Rt

¼ 150� 30
0:839

¼ 143:03W

(b) We can write

q ¼ Ti � T1
1=hiA

which gives

T1 ¼ Ti � q

hiA

¼ 150� 143:03
20� 2

¼ 146:42�C

Similarly,

T2 ¼ T1 � qd1
k1A

¼ 146:42� 143:03� 0:1
0:6� 2

¼ 134:5 oC,

T3 ¼ T2 � qRc

A

¼ 134:5� 143:03� 0:25
2

¼ 116:62 oC,

T4 ¼ T3 � qd2
k2A

¼ 116:62� 143:03� 0:05
0:045� 2

¼ 37:15 oC

and

T0 ¼ T4 � q

hoA

¼ 37:15� 143:03
10� 2

¼ 30�C

The temperature distribution is shown in the figure.
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2.12 Summary

In this chapter, basically Fourier’s law of heat conduction has been applied to systems where
one-dimensional heat flow occurs.

Mechanism of heat conduction in metals and alloys, construction and heat-insulating
materials, and liquid and gases has been discussed. In general, the thermal conductivity
depends on temperature, pressure and nature of the substance. It differs by many thousand
times for the materials of interest. The highest values are for the metals, followed by dense
ceramics, organic solids and liquids, while the lowest values are for the gases. Super-
insulation materials have been developed for cryogenic applications. Typical values of the
thermal conductivity of several common engineering materials are given in a tabulated form
in Appendix A.

In general, the temperature gradient may exist in all three directions of a solid. There may
be internal heat generation. The temperature can also vary with the time (unsteady state).
Hence, a general heat conduction equation must be developed, which can be used to evaluate
the heat transfer in any direction under steady or unsteady state and with or without heat
generation. The general heat conduction equations in the rectangular, cylindrical and
spherical coordinates have been developed.

In the unsteady state, a material property termed as thermal diffusivity, which is ratio of
thermal conductivity (k) and thermal capacity (qc) of the material, controls the temperature
distribution. The higher the thermal diffusivity of a material, the higher the rate of temper-
ature propagation, i.e. the equalization of the temperature at all points of the space will
proceed at a higher rate.

Fourier’s equation of heat conduction is exactly analogous to Ohm’s law for an electrical
conductor. We use this electrical analogy frequently as it is quite useful in solving the
complex heat conduction problems. The temperature difference Δt is the driving force for the
flow of heat and d/kA is the thermal resistance in case of a plane wall.

Where the wall face is exposed to a fluid, the heat is transferred to and from the wall by
convection. In such cases, film resistance 1/hA is considered along with conduction resis-
tance of the wall. If heat also transfers by radiation from the surface of the solid, the
resistance is 1/[(hr + hc)A], where hr is termed as the radiation heat transfer coefficient, which
has been discussed in Chap. 11.

In case of one-dimensional steady-state heat conduction through a cylindrical shell, the
wall resistance is lnðr2=r1Þ=ð2pkLÞ and film resistances at the inner and outer surface of the
shell are 1/hiAi and 1/hoAo, respectively. In heat exchangers, the equation of heat exchange
between the fluids flowing in and outside the tube is written as q ¼ UAðti � toÞ where U is
termed as overall heat transfer coefficient, refer to Eqs. (2.29a), (2.29b), (2.30a) and (2.30a).

In case of one-dimensional steady-state heat conduction through a spherical shell, ðr2 �
r1Þ=ð4pkr1r2Þ is the resistance of the wall to the conduction heat transfer and film resistances
are 1/hiAi and 1/hoAo.

In Sect. 2.8, experimental schemes of measurement of thermal conductivity of solids,
liquids and gases have been presented.

Thermal conductivity of a dry solid substance depends on temperature and when the
temperature difference across the wall of such substance is large, the effect of the variation of
thermal conductivity with the temperature must be considered. This has been considered in
Sect. 2.9.
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In case of a hollow cylinder or sphere, with the increase in the thickness of the insulating
material, the conduction resistance Rk of the insulation increases while the film resistance Ro

decreases. Mathematical analysis shows that the sum of the resistances (Rk + Ro) first
decreases to a certain minimum value at radius r = rc and then again increases. It means that
as the insulation radius r2 increases, the heat flow q first increases to a certain maximum
value at r2 = rc and then decreases. The value of r2 at the maximum of heat flow q (or the
minimum of the resistance) is called the critical radius of insulation. The knowledge of the
concept of critical radius of insulation helps in the selection of type of insulation material.
For the heat insulation of a pipe of radius r1, the insulating material must be selected such
that the critical radius rc is less than r1 while in the case of the electric current carrying
cables, the insulation radius r2 must be equal to rc to dissipate maximum heat. Hence, the
insulating material for the cables must be selected such that the critical radius rc is greater
than the bare cable radius r1. Mathematical expressions for the critical radius of insulation
have been deduced.

In many engineering applications, solid surfaces are not having metallurgical bond. At the
interface of such surfaces, a resistance to the heat flow has been observed, which is termed as
thermal contact resistance. It can be a dominant resistance when high conductivity metals are
involved. A basic mathematical treatment for estimate of the thermal contact resistance has
been given.

A significant number of illustrative examples have been included in this chapter on one-
dimensional steady-state heat conduction.

Review Questions

2:1. Define one- and two-dimensional heat transfer when applied to conduction problems.
2:2. Discuss the mechanism of heat conduction in metals and non-metals. What is the

effect of alloying on thermal conductivity of metals?
2:3. Write a short note on insulating materials.
2:4. Discuss the factors that affect thermal conductivity of metals, insulating materials,

liquids and gases.
2:5. (i) Derive three-dimensional general heat conduction equation in

(a) Cartesian coordinates
(b) Cylindrical coordinates
(c) Spherical coordinates

for transient condition considering uniform volumetric heat generation.

(ii) Deduce one-dimensional steady-state conduction equations from the equations
derived in Part (i) if there is no heat generation. The thermal conductivity of the
material can be assumed to be constant.

2:6. Define thermal diffusivity and explain its physical significance giving suitable
example.

2:7. What do you mean by critical radius of insulation? Show that it is given by
(i) (k/ho) for a cylindrical configuration and (ii) (2 k/ ho) for a spherical vessel, where
k is the thermal conductivity of the insulating material and ho is the convection
coefficient of the heat loss to the surrounding.
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2:8. What is the significance of critical radius of insulation with reference to (a) insulation
of pipes to reduce the heat flow, and (b) insulation of the electric cables?

2:9. Define overall heat transfer coefficient and develop its expression for heat transfer in
the tube flow.

2:10. How would you measure the thermal conductivity of an insulating material in the form
of powder? Draw a neat-labelled sketch of the equipment suggested.

2:11. Present a scheme for experimental measurement of thermal conductivity of material of
a flat plate.

2:12. What is thermal contact resistance? Discuss its mechanism and the parameters on
which it depends. What are the engineering applications where it is relevant?

2:13. Show that the geometric mean radius Rm of a spherical shell of outside radius R2 and
inside radius R1 is given by

Rm ¼ R1R2ð Þ0:5

2:14. Show that the temperature distribution across the wall of a hollow sphere operating
with steady and uniform surface temperature T1 on the inner surface radius R1 and T2
on the outer surface radius R2 is given by

T � T1
T2 � T1

¼ 1=R1 � 1=r
1=R1 � 1=R2

� �

where R1 < r < R2.
2:15. The thermal conductivity of a certain material varies with temperature as

k ¼ ko 1þ aT þ bT2
� �

where a and b are constants.
Derive from the first principles an expression for the heat flow rate for a hollow sphere
of the inner and outer radii R1 and R2, respectively. The temperatures of the inner and
outer surfaces are T1 and T2, respectively.
[Ans. Following the method of Sect. 2.9.3, q ¼ �ko 1þ aT þ bT2ð Þ4pr2 dt

dr; Integra-
tion gives

q
RR2

R1

dr
r2 ¼ �4pko

RT2
T1

1þ aT þ bT2ð Þdt;

q R2�R1
R1R2

� 	
¼ �4pko T2 � T1ð Þþ a

2 T2
2 � T2

1

� �þ b
3 T3

2 � T3
1

� � �
or

q ¼ �4pko
R1R2

R2 � R1

� �
T2 � T1ð Þ 1þ a

2
T2 þ T1ð Þþ b

3
T2
2 þ T1T2 þ T2

1

� �� �
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Problems

2:1 Draw the thermal network (electrical analog) and determine the heat flow rate through
the wall shown in Fig. 2.43a. Assume one-dimensional heat flow and uniform tem-
perature at the interface of different layers.
[Ans. The thermal network is shown in Fig. 2.43b; Ra = 0.0375; Rb = 0.25; Rc =
0.25; Rd = 0.2; Re = 2.86; Rf = 2.5; Rg = 2.143; Resistances Rb, Rc and Rd are in
parallel, and Re and Rf are also in parallel; The total resistance is 3.59 and
q = 125.35 W/m2.]

2:2 The wall of a house may be approximated by 225 mm layer of ordinary bricks
[k = 0.5 W/(m K)] with both sides of it plastered with 20-mm-thick layer of cement
plaster [k = 1.2 W/(m K)]. What thickness of plywood sheet [k = 0.15 W/(m K)] be
added to the inside of the wall to reduce the heat loss (or gain) through the wall by 20
percent? Neglect the contact resistance.
If there is an air space of average 0.25 mm thickness [k = 0.0257 W/(m K)] between
the wall and the plywood, determine the effect on the heat flow rate. Assume only
conduction heat flow across the air layer.
[Ans.

P
R = 0.483 without plywood sheet; Since q / 1=

P
R , after application of

plywood desired
P

R′ = 0.483/0.8 = (0.483 + dply/0.15); This gives dply = 18.1 mm.
With the air layer

P
Ra′ = 0.483/0.8 + 0.25/(1000 � 0.0257) = 0.6135. Reduction in

heat flow = (1/
P

R – 1/
P

R′)/(1/
P

R) = 21.3%.]
2:3 A vessel with flat bottom, refer to Fig. 2.44, is made of 2-mm-thick nickel sheet

[k = 60 W/(m K)]. The outside of its bottom has a plating of 0.5-mm-thick copper
[k = 350 W/(m K)]. Calculate the reduction in the heat transfer rate due to the
deposition of scale on the lower side of the bottom. Rscale = 0.001 K/W. The film

Re

RgRa

Rd
Rf

Rb

500oC 50oC

ka = 2.0 W/(m K), δa = 75 mm
kb = 0.8 W/(m K), δb = 50 mm
kc = 0.4 W/(m K), δc = 50 mm
kd = 1.0 W/(m K), δd = 50 mm
ke = 0.07 W/(m K), δe = 100 mm
kf = 0.08 W/(m K), δf = 100 mm
kg = 0.035 W/(m K), δg = 75 mm

Depth = 1 m.

Wall side temperatures are 
500oC and 50oC.

1 m g
e 

f

b

0.5

0.25 m

0.25 m 

δ = 50 mm

a

c

d

a Wall cross-section.

b Thermal network.

Rc

Fig. 2.43 Problem 2.1
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coefficients on the two sides of the bottom are 1000 W/(m2 K) and 500 W/(m2 K),
respectively.
[Ans. Without scale,

P
R = 3.035 � 10−3; q / 1=

P
R ¼ 329:5; With the scale,P

R = 4.035 � 10−3; q / 1=
P

R ¼ 247:8; Reduction in the heat transfer rate due to
the deposition of scale = (329.5 – 247.8)/329.5 = 24.8%.]

2:4 Two layers of glass (each 4 mm thick) in a window panel are 3 mm apart. The air
[k = 0.025 W/(m K)] in between these layers can be assumed to be dry and stagnant.
Find the heat loss through the panel for a temperature difference across the panel of
20°C. If the two layers of glass are replaced by a single glass of 10 mm thickness, how
the loss will change? [kglass = 0.8 W/(m K)].
[Ans. q1/A = 153.85 W/m2; q2/A = 1600 W/m2.]

2:5 Derive an expression for the heat transfer rate from a cylindrical tank of length L with
hemispherical covers. The wall thickness throughout is (R2 - R1). The temperatures at
the inner and outer surfaces are T1 and T2, respectively (T1> T2). Assume one-
dimensional heat flow.

[Ans. q ¼ 2pkL T1�T2ð Þ
ln R2

R1

� 	 þ 2� 2pk ðT1�T2Þ
1
R1
� 1

R2

� 	�
2:6 An aluminium pipe carries steam at 110°C. The pipe [k = 185 W/(m K)] has an inside

diameter of 100 mm and outside diameter of 120 mm. The pipe is located in a room
where the ambient air temperature is 30°C and convective heat transfer coefficient
between the pipe and air is 15 W/(m2 K). Determine the heat transfer rate per unit
length of the pipe.
To reduce the heat loss from the pipe, it is covered with a 50-mm-thick layer of
insulation [k = 0.20 W/(m K)]. Determine the heat transfer rate per unit length from
the insulated pipe. Assume that the convective resistance of the steam is negligible.
[Ans. Here R1 = 50 mm; R2 = 60 mm; R3 = 110 mm; kal = 185 W/(m K); ki = 0.2
W/(m K); ho = 15 W/(m2 K); This gives

(i) q ¼ 2p� 1� ð110�30Þ
1
kal

ln R2
R1

� 	
þ 1

hoR2

¼ 451:98W

(ii) q ¼ 2p� 1� ð110�30Þ
1
kal

ln R2
R1

� 	
þ 1

ki
ln R3

R2

� 	
þ 1

hoR3

¼ 138:18W�

2:7 A steel pipe carrying a hot fluid has inside diameter of 120 mm and an outside
diameter of 160 mm. It is insulated at the outside with asbestos. The fluid temperature
is 150°C, and the surrounding air temperature is 20°C, h (fluid side) = 100 W/(m2 K),
h (air side) = 8 W/(m2 K), kasbestos = 0.18 W/(m K) and ksteel = 42 W/(m K). How
thick should the asbestos layer be provided in order to limit the heat loss to 150 W per
metre length of the pipe?

ho = 500

hi = 1000

Fig. 2.44 Problem 2.3
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[Ans. 150 ¼ 2p� 1� ð150�20Þ
1

hiR1
þ 1

ksteel
ln R2

R1

� 	
þ 1

kasbestos
ln

R3
R2

� 	
þ 1

hoR3

This gives R3 = 182.7 mm

and thickness of insulation = R3 – 80 = 102.7 mm.]
2:8 Determine overall heat transfer coefficient (based on the inner diameter) for the data of

Problem 2.7 and calculate the heat transfer rate.
[Ans. Ui = 3.0606 W/(m2 K); q = UAi(Ti – To) = 150 W.]

2:9 Determine the heat flow rate for the data of Problems 2.6 and 2.7 neglecting the pipe
wall resistance and comment on the result.
[Ans. Neglect (1/k) ln(R2/R1) term. The heat transfer rates are 138.22 W and
150.18 W as against 138.18 W and 150 W, respectively. The effect of the wall
resistance in both cases is negligible because the resistances offered by the insulation
are much larger in magnitude.]

2:10 A steel pipe d1/d2 = 100/110 mm is covered with 80 mm thick layer of an insulating
material. The thermal conductivity of the insulation material depends on temperature
and is given by k ¼ 0:06 ð1þ 0:4� 10�2TÞW=ðm �CÞ: Determine the heat loss per m
length of the pipe, if the temperature of the outer surface of the pipe is 200°C and the
temperature of the outer surface of the insulation is 40°C.

[Ans. For insulation, R1 = 110/2 = 55 mm, R2 = 55 + 80 = 135 mm; k ¼ 0:06�
1þ 0:4� 10�2 � T1 þT2ð Þ

2

h i
¼ 0:0888; q

L ¼ 2pk T1�T2ð Þ
ln R2

R1

� 	 ¼ 99:4W�

2:11 A steam pipeline of d1/d2 = 100/110 mm is covered with two layers of insulation of
equal thickness d1 = d2 = 50 mm. The average thermal conductivity of the first layer
of insulation material is 0.05 W/(m K) and that of the second layer is 0.1 W/(m K).
If the layer of greater thermal conductivity is placed next to the pipe, what will be the
effect on the heat loss? Neglect thermal resistance of the pipe material.

[Ans. Rt ¼ 1
2pk1

ln R2
R1

� 	
þ 1

2pk2
ln R3

R2

� 	
; R1 = 55 mm, R2 = 105 mm, R3 = 155 mm. For

the first part of the problem, k1 = 0.05, k2 = 0.1 W/(m K) and L = 1 m, which gives
Rt = 2.678 K/W. In the second part, k1 = 0.1 and k2 = 0.05. W/(m K). This gives
Rt = 2.2688 K/W. Thus the resistance decreases by 18%. Hence, the heat loss will
increase by 18%. The results show that the better insulation must be put next to the
pipe.]

2:12 An electronic instrument for a probe is contained in a spherical shell made of
30 mm thick layer of mild steel (inside radius of 150 mm) and a 10 mm thick outside
layer of stainless steel. The two layers can be assumed to be in perfect thermal contact.
The instrument inside the shell generates heat at a rate of 6 kW. Estimate the inside
surface temperature, if the outer surface is estimated to be at 5°C [kms = 40 W/(m K)
and kss = 15 W/(m K)].
[Ans. T1 = 27.57°C.]

2:13 The energy loss from a 16 mm outer diameter pipe, which carries a hot fluid, is to be
reduced. Available for the service are magnesia 85 [k = 0.071 W/(m K)] and glass
wool [k = 0.038 W/(m K)]. Would you help in making the correct selection if heat
transfer coefficient h is likely to be 5 W/(m2 K)?
[Ans. The critical radius, (rc)mag = 14.2 mm, (rc)glass = 7.6 mm; (rc)mag is greater than
outer radius of the pipe; hence, it should not be used. For the glass wool, any thickness
will reduce the heat loss.]
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2:14 A thin-walled-long cylindrical vessel of 0.8 m outer diameter contains a chemical
undergoing exothermic reaction. The outer surface temperature of the vessel is 180°C
when the surrounding air is at 30°C. Determine the thickness of polyurethane foam
(rigid) insulation required so that the outer surface temperature of the insulation is not
more than 40°C. The convection heat transfer coefficient on outer surface is estimated
to be 20 W/(m2 K). Neglect radiation heat loss.
[Ans. Heat flow by conduction through the insulation of thickness (r2 - r1) equals the

convective heat transfer from the outer surface, i.e. q ¼ 2pkil T1�T2ð Þ
ln r2

r1

� 	 ¼ h� 2pr2l�

T2 � T1ð Þ: Substituting T1 = 180°C, T2 = 40°C, T∞ = 30°C, r1 = 0.4 m, h = 20 W/
(m2 K) and ki = 0.025 W/(m K) from Table A3.2 of Appendix A, we get
r2 = 0.417 m; Insulation thickness (r2 - r1) = 0.017 m = 17 mm.]

2:15 A hollow aluminum sphere [ka = 204 W/(m K)] with a 100 W electric heater at its
centre is used to determine the thermal conductivity of an insulating material. The
inner and outer radii of the sphere are 0.1 and 0.125 m, respectively. In a particular
test, a spherical shell of an insulating material of 75 mm thickness was applied on the
outer surface of the sphere. In the steady state, the temperature at the inner surface of
the aluminum wall was recorded as 200°C. The system is exposed to room air at 30°C
and the convective heat transfer coefficient is estimated to be 20 W/(m2 K). What is
the thermal conductivity of the insulation? Neglect heat loss by radiation and contact
resistance.
[Ans. r1 = 0.1 m, r2 = 0.125 m, r3 = 0.2 m, T1 = 200°C, T∞ = 30°C, ka = 204 W/

(m K), h = 20 W/(m2 K), q = 100 W; Heat flow rate, q ¼ T1�T1ð Þ
1
4p

1
ka

1
r1
� 1

r2

� 	
þ 1

ki
1
r2
� 1

r3

� 	
þ 1

hr2
3

� � ;
solution after substitution of various known values gives ki = 0.15 W/(m K).]

2:16 A fluid is stored in a thin metallic spherical shell (outside diameter of 2 m) with
200 mm thick insulation [ki = 0.05 W/(m K)]. The shell outer surface temperature is
–20°C. Determine the thickness of the insulation which experiences tempera-
ture 	 0°C when the surrounding air temperature is 30°C and convective heat
transfer coefficient is 10 W/(m2 K).
[Ans. r1 = 1 m, r2 = 1.2 m, T1 = −20°C, T∞ = 30°C, ki = 0.05 W/(m K), h = 10 W/

(m2 K); Heat flow rate, q ¼ T1�T1ð Þ
1
4p

1
ki

1
r1
� 1

r2

� 	
þ 1

hr2
2

h i :Substitution gives q = 184.65 W; Using

heat flow equation between shell radius r1 and radius r0 where the temperature is 0°C,

184:65 ¼ 0�T1ð Þ
1

4pki
1
r1
� 1

r0

� 	 ; which gives r0 = 1.073 m, i.e. the thickness of the insulation

which experiences temperature 	 0°C is 73 mm.]
2:17 A cylinder is covered with three different insulation materials A, B and C as shown in

Fig. 2.45. Determine the heat flow rate per unit length of the cylinder. Assume radial
heat flow only.
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[Ans. Heat flows through three paths comprising the insulation materials A, B and
C (see the thermal network).

q

L
¼ qA

L
þ qB

L
þ qC

L
¼ 1

3
t1 � t1ð Þ

1
2p

1
kA
ln r2

r1

� 	
þ 1

hr2

h i þ t1 � t1ð Þ
1
2p

1
kB
ln r2

r1

� 	
þ 1

hr2

h i þ t1 � t1ð Þ
1
2p

1
kC
ln r2

r1

� 	
þ 1

hr2

h i
8<
:

9=
;

¼ 49:53W=m

Note: The insulations will have different temperatures but circumferential heat flow
has not been considered.]

2:18 Cross-sectional area of a rod varies with x as Ax = A0e
bx where A0 and b are constants.

Determine temperature distribution equation for one-dimensional steady-state axial
conduction heat flow in the rod. The thermal conductivity of the material is constant,
and lateral surface of the rod is insulated.
[Ans. qx = constant gives �kAx

dT
dx ¼ C: Hence, dT ¼ �C

kAx
dx ¼ �C

kA0
e�bxdx: Integration

gives T ¼ C
kA0b

e�bx þC2 ¼ C1e�bx þC2 where C1 ¼ C
kA0b

; Constants C1 and C2 can be

determined from temperature boundary conditions.]
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W/(m K)
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Fig. 2.45 Problem 2.16
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3Extended Surfaces (Fins)

3.1 Introduction

The heat flow from or to a surface in contact with a fluid is given by

q ¼ hADt ð3:1Þ

The heat transfer rate q in this case can be increased by increasing the surface area. This
can be achieved by attaching metal pieces to the heat-transferring surface. These extended
surfaces are known as fins. Fins are widely used in various engineering equipments. They are
provided on the cylinders of air-cooled internal combustion engines. Small diameter metal
rods attached vertically to the condenser tubes at the back of a domestic refrigerator also
work as fins. Electrical appliances such as transformers and motors are provided with the fins
for efficient dissipation of heat generated in these electrical equipments.

Fins of various shapes and in different arrangements have been employed. Some of them
are shown in Fig. 3.1. The longitudinal fins are long metal strips attached to the surface as
shown in Fig. 3.1a. These fins are commonly employed with tubes where the fluid moves
along the axis of the tube. Transverse fins, Fig. 3.1b, are employed in cross-flow (flow
perpendicular to the axis of the tube). Disc-type transverse fins are either welded to the tube
surface or shrunk on to the tube. These fins may be attached to the tube in the form of helix
(such as welding a metal strip to the tube continuously in the form of a helix). Discontinuous
and star fins are other types of transverse fins. A majority of fins are of rectangular cross-
section, Fig. 3.1d. Thick fins and fins made by casting are generally of the trapezoidal cross-
section with rounded edges. Spine- or stud-type fins are basically metal cones, cylinders or
pipes which extend from the pipe or tube surface. They are employed both in case of
longitudinal and cross-flows. These fins are mechanically rugged and hence have longer life
in corrosive atmosphere than thin plate fins.

Let us consider fins attached to the outer surface of a cylinder, as shown in Fig. 3.1, to
increase the heat transfer rate from the cylinder surface to the surrounding. For the heat to be
conducted to the fin, the fin temperature tf must be lower than the cylinder surface tem-
perature ts. Hence, the difference between the fin and surrounding temperatures (tf – t∞) is
less than the difference between the cylinder surface and surrounding temperatures (ts – t∞).
Further, the temperature of the fin continuously decreases from the fin base (i.e. the cylinder
wall) to the fin tip. Thus, each unit area of the fin surface is less effective in heat transfer (heat
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transfer is proportional to the area � temperature difference) than the area of the cylinder
surface to which the fins have been attached. However, the effectiveness with which fins
transfer heat also depends on the fin profile (shape), its length and the number of fins
provided per m2 of the surface.

In the end, it may be noted that the final choice of the type of fin and their arrangement
depends not only on the heat transfer performance but also on the resistance offered to the
flow of the surrounding fluid, cost and the ease of fabrication.

3.2 Heat Transfer from a Fin of Uniform Cross-Section

Figure 3.2 shows a fin of uniform cross-section projecting from a wall, which is to be cooled.
Let the fin is of uniform cross-section Ac throughout its length and the wall is at temperature
ts. The heat, which is conducted to the fin, is rejected by convection from the fin surface to
the surrounding fluid at temperature t∞.

d Rectangular fins 
e Trapezoidal fins 

        a Longitudinal fins      b Transverse fins    c Helical fins 

Fin Tube

     f Spine or stud fins g Star fins 

   A cylinder with fins. 

Fig. 3.1 Fin shapes and arrangements
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An exact analytical solution of the heat propagation through a fin involves considerable
difficulties. However, an approximate solution can be made using the following assumptions:

(i) Temperature at any cross-section of the fin is uniform. The assumption is valid for fins
of small cross-section and made of high thermal conductivity material. This
assumption reduces the problem to that of one-dimensional heat conduction along the
axis of the fin only.

(ii) Steady-state condition.
(iii) Thermal conductivity of the fin material is constant, and
(iv) The heat transfer coefficient h from the fin surface to the surrounding is constant for

the entire fin surface.

Most of the fins used in practice are plate type, Fig. 3.1a, with small thickness of the plate
and the error due to the first approximation is less than 1%. The greatest uncertainty is in the
value of the heat transfer coefficient, which is seldom uniform over the entire fin surface. In
the case of severe non-uniformity of the heat transfer coefficient and two- or three-
dimensional conduction heat flow, numerical techniques are used to solve the problem.

Consider a very small elemental length dx of the fin at a distance x from the wall surface,
Fig. 3.2. The rate of heat flow into the element by conduction is

qx ¼ �kAc
dt

dx
ðiÞ

The rate of heat flow out of the element by conduction is

qxþ dx ¼ qx þ d

dx
qxð Þdx

Heat transfer to the surrounding fluid by convection from the surface area (perime-
ter � dx) of the element from Newton’s law is

qc ¼ hA t � t1ð Þ ¼ hðPdxÞ t � t1ð Þ

where t is the temperature of the element and P is the perimeter of the fin.
In the steady state, heat inflow by conduction must equal the heat outflow by conduction

and convection, i.e.

     t

x

 x
dx 

Wall • t∞

  qx qx+dx

 L

t 

qc

Fin temperature 

ts • 
Cross-section 

Cross-sectional 
area Ac, perimeter P 

    ts

Fig. 3.2 Heat balance on a fin of uniform cross-section
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qx ¼ qxþ dx þ qc

or

qx ¼ qx þ d

dx
qxð Þdxþ hðPdxÞ t � t1ð Þ

or

d

dx
qxð Þdxþ hðPdxÞ t � t1ð Þ ¼ 0

Substitution of the value of qx from Eq. (i) gives

d

dx
�kAc

dt

dx

� �
dxþ hðPdxÞ t � t1ð Þ ¼ 0

or

d2t

dx2
¼ hP

kAc
t � t1ð Þ ðiiÞ

Let (t − t∞) = h, then

d2t

dx2
¼ d2h

dx2

Substitution in Eq. (ii) gives

d2h
dx2

¼ hP

kAc
h

Putting hP
kAc

¼ m2, the equation is transformed into

d2h
dx2

¼ m2h

which is a second-order differential equation. Its general solution is

h ¼ C1e
mx þC2e

�mx ð3:2Þ

The constants C1 and C2 are to be determined from the boundary conditions of the
problem. For this purpose, we shall discuss three different cases.

3.2.1 A Very Long Fin

If the fin is very long compared to its cross-section dimensions, then the fin end approaches
the surrounding fluid temperature. The boundary conditions for this case are
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(i) at x = 0, t = ts and
(ii) as x ! ∞, t! t∞

The first condition gives

ts � t1 ¼ C1 þC2 ðiÞ

and the second condition gives

t1 � t1 ¼ 0 ¼ C1e
m1 þC2e

�m1

or

0 ¼ C1e
m1

This gives C1 ¼ 0.
Hence, from Eq. (i),

C2 ¼ ts � t1

Substitution in Eq. (3.2) gives

h ¼ ðt � t1Þ ¼ ðts � t1Þe�mx

or

ðt � t1Þ
ðts � t1Þ ¼ e�mx ð3:3Þ

The equation reveals that the temperature along the fin length varies exponentially as
depicted in Fig. 3.2.

Heat rejection rate from the entire surface area of the fin qfin equals the heat flow by
conduction at the fin base, i.e.

qfin ¼ �kAc
dt

dx

� �
x¼o

Using Eq. (3.3), we have

qfin ¼ �kAc
d

dx
ts � t1ð Þe�mx þ t1½ �

� �
x¼o

qfin ¼ mkAc ts � t1ð Þ ¼
ffiffiffiffiffiffiffi
hP

kAc

r
� kAc ts � t1ð Þ

or

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ ð3:4Þ
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3.2.1.1 Comments on Parameter M
From the equation of m = √(hP/kAc), it follows that m is proportional to √h, inversely pro-
portional to √k and is a function of fin geometry presented by √(P/Ac). Figure 3.3 shows the
dependence of the temperature distribution in the fin along its length for different values of
parameter m. For a fin made of high thermal conductivity material, which will give a low
value of m for a given fin and heat transfer coefficient h, a large excess temperature (t – t∞) is
obtained along the length of the fin. Similar effect will be seen for low values of the heat
transfer coefficient and ratio of fin perimeter to its area of cross-section.

3.2.2 Negligible Heat Transfer from the Fin End as Compared to the Heat
Transferred from the Fin Surface (Ac � PL)

This situation can occur when the area of the fin end is very small in comparison to the
surface area of the entire fin (Ac � PL) as in the case of a thin long fin. Mathematically, this
can be stated by equating the heat reaching the fin end by conduction to zero, which is
equivalent to an insulated tip fin. Hence,

qend ¼ �kAc
dt

dx

� �
x¼L

¼ 0

or

dt

dx

� �
x¼L

¼ 0

The differentiation of Eq. (3.2) with respect to x gives

dt

dx
¼ C1me

mx þC2 �mð Þe�mx

Hence,

dt

dx

� �
x¼L

¼ 0 ¼ C1me
mL � mC2e

�mL

x

m3

m1

m2

m1 > m2 > m3
t = ts

t∞

Fig. 3.3 Effect of fin parameter m on temperature distribution along the fin
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or

C1e
mL � C2e

�mL ¼ 0 ðiÞ

At the fin base (x = 0), the temperature is ts, i.e.

ts � t1 ¼ C1 þC2 ðiiÞ

From Eqs. (i) and (ii),

C1 ¼ ts � t1
1þ e2mL

C2 ¼ ts � t1
1þ e�2mL

Substitution of the values of constant C1 and C2 in Eq. (3.2) gives

h ¼ ts � t1
1þ e2mL

emx þ ts � t1
1þ e�2mL

e�mx

or

t � t1
ts � t1

¼ emx

1þ e2mL
þ e�mx

1þ e�2mL

Using the relation coshmL ¼ emL þ e�mL

2 , the above equation can be transformed into

t � t1
ts � t1

¼ coshmðL� xÞ
coshmL

ð3:5Þ

The rate of heat transfer from the fin equals the heat conducted into the fin base, i.e.

qfin ¼ �kAc
dt

dx

� �
x¼o

Using Eq. (3.5), we have

qfin ¼ �kAc
d

dx
ts � t1ð Þ coshmðL� xÞ

coshmL
þ t1

� �� �
x¼o

or

qfin ¼ �kAcðts � t1Þ 1
coshmL

d

dx
coshmðL� xÞ½ �

� �
x¼o

or

qfin ¼ �kAcðts � t1Þ 1
coshmL

�m sinhmðL� xÞ½ �x¼o
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or

qfin ¼ kAcmðts � t1Þ sinhmL
coshmL

Substituting the value of m, we obtain the heat transfer equation as

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ tanhmL ð3:6Þ

The values of exponential and hyperbolic functions are tabulated in Table 3.1 and Fig. 3.4
shows variation of tanh(mL) withmL. It can be seen that formL = 5.0, tanh(mL) = 0.9999 � 1

Table 3.1 Exponential and hyperbolic functions

mL emL e−mL sinh(mL) cosh(mL) tanh(mL)

0.0 1.00 1.00 0.00 1.00 0.00

0.1 1.105 0.905 0.10 1.005 0.0997

0.2 1.221 0.819 0.20 1.020 0.1973

0.3 1.350 0.741 0.305 1.045 0.2913

0.4 1.492 0.670 0.411 1.0311 0.380

0.5 1.649 0.607 0.521 1.128 0.462

0.6 1.822 0.549 0.637 1.186 0.537

0.7 2.014 0.497 0.759 1.255 0.6044

0.8 2.226 0.449 0.888 1.337 0.664

0.9 2.460 0.407 1.027 1.433 0.7163

1.0 2.718 0.368 1.175 1.543 0.7616

1.1 3.004 0.333 1.336 1.669 0.8005

1.2 3.320 0.301 1.509 1.811 0.8337

1.3 3.670 0.272 1.698 1.971 0.862

1.4 4.055 0.247 1.904 2.151 0.8854

1.5 4.482 0.223 2.129 2.352 0.905

1.6 4.953 0.202 2.376 2.577 0.922

1.7 5.474 0.1827 2.646 2.828 0.9354

1.8 6.050 0.1653 2.942 3.107 0.947

1.9 6.686 0.150 3.268 3.418 0.956

2.0 7.389 0.1353 3.627 3.762 0.964

2.1 8.166 0.1224 4.022 4.144 0.9705

2.2 9.025 0.111 4.457 4.568 0.976

2.3 9.974 0.100 4.937 5.037 0.980

2.4 11.02 0.0907 5.466 5.557 0.984

2.5 12.18 0.0821 6.05 6.132 0.987

2.6 13.46 0.074 6.695 6.770 0.989

2.7 14.88 0.067 7.406 7.473 0.991

2.8 16.445 0.061 8.192 8.253 0.9926

2.9 18.174 0.055 9.060 9.115 0.994

3.0 20.09 0.050 10.018 10.068 0.995

4.0 54.60 0.0183 27.29 27.31 0.9993

5.0 148.4 6.74 � 10−3 74.20 74.21 0.9999
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and Eqs. (3.4) and (3.6) give the same values of rate of heat transfer. Since the advantage gained
by using a fin length greater than given by mL = 2 is negligible (tanhmL = 0.964 for mL = 2),
this must be considered the maximum useful limit of the fin length.

3.2.3 Short Fins (Fin with Heat Loss from the Fin End)

In the case of short fins, the heat loss from the fin end cannot be neglected. The heat loss
from the fin end equals the heat reaching the end by conduction, i.e.

hLAcðtL � t1Þ ¼ �kAc
dt

dx

� �
x¼L

ðiÞ

where hL is the heat transfer coefficient at the fin end.
Equation (3.2) can be written as

h ¼ C1ðsinhmxþ coshmxÞþC2ðcoshmx� sinhmxÞ

or

ðt � t1Þ ¼ ðC1 � C2Þ sinhmxþðC1 þC2Þ coshmx

or

ðt � t1Þ ¼ C3 sinhmxþC4 coshmx

At x = 0, t = ts. This gives

ðts � t1Þ ¼ C4

Hence,

ðt � t1Þ ¼ C3 sinhmxþðts � t1Þ coshmx ðiiÞ

0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0
mL

ta
nh

m
L

Fig. 3.4 Variation of tanhmL with mL
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Using this temperature relation in Eq. (i), we get

�kAc
d

dx
C3 sinhmxþðts � t1Þ coshmxþ t1½ �

� �
x¼L

¼ hLAc C3 sinhmLþðts � t1Þ coshmL½ �

or

�k C3m coshmLþmðts � t1Þ sinhmL½ � ¼ hL C3 sinhmLþðts � t1Þ coshmL½ �

Simplification gives

C3 ¼ �ðts � t1Þ hL coshmLþmk sinhmL
hL sinhmLþmk coshmL

Substitution of the value of C3 in Eq. (ii) gives

ðt � t1Þ ¼ ðts � t1Þ coshmx� ðts � t1Þ hL coshmLþmk sinhmL
hL sinhmLþmk coshmL

sinhmx

Simplification gives

t � t1
ts � t1

¼ coshmðL� xÞþ ðhL=mkÞ sinhmðL� xÞ
ðhL=mkÞ sinhmLþ coshmL

ð3:7Þ

which is the temperature distribution equation.
The rate of heat transfer from the fin equals the heat conducted into the fin base, i.e.

qfin ¼ �kAc
dt

dx

� �
x¼o

Using Eq. (3.7), we have

qfin ¼ �kAc
d

dx
ts � t1ð Þ coshmðL� xÞþ ðhL=mkÞ sinhmðL� xÞ

ðhL=mkÞ sinhmLþ coshmL
þ t1

� �� �
x¼o

or

qfin ¼ �kAc ts � t1ð Þm � sinhmðL� xÞ � ðhL=mkÞ coshmðL� xÞ
ðhL=mkÞ sinhmLþ coshmL

� �
x¼o

or

qfin ¼ mkAc ts � t1ð Þ sinhmðL� xÞþ ðhL=mkÞ coshmðL� xÞ
ðhL=mkÞ sinhmLþ coshmL

� �
x¼o

or

qfin ¼ mkAc ts � t1ð Þ sinhmLþðhL=mkÞ coshmL
ðhL=mkÞ sinhmLþ coshmL

� �
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or

qfin ¼ kmAc ts � t1ð Þ ðhL=mkÞþ tanhmL
ðhL=mkÞ tanhmLþ 1

Substituting the value of m, we get the heat transfer equation as

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ ðhL=mkÞþ tanhmL

ðhL=mkÞ tanhmLþ 1
ð3:8Þ

Equations (3.7) and (3.8) reduce to Eqs. (3.5) and (3.6) when hL = 0, i.e. when there is no
heat rejection from the fin end. Further value of factor mL > 5 reduces Eq. (3.8) to Eq. (3.4)
of the very long fin.

The heat transfer equation of the short fin can be expressed in the same form as that of fin
of Sect. 3.2.2 if a corrected length Lc, as defined below, is used in all equations of this case.

The heat lost, in case of a short fin, from the fin end is

hLAcðtL � t1Þ ðiiiÞ

We extend the fin length L by ΔL, see Fig. 3.5, such that the heat lost by the lateral surface
of the extended fin length equals the heat loss from the fin end given by Eq. (iii). The heat
transfer from the lateral surface of the extended length is

hLðPDLÞðtL � t1Þ ðivÞ

assuming that the fin end temperature does not change when extended by length ΔL.
Equating Eqs. (iii) and (iv), we get

hLðPDLÞðtL � t1Þ ¼ hLAcðtL � t1Þ

or

DL ¼ Ac

P

and the corrected length is

Lc ¼ LþDL

For a circular cross-section fin,

DL ¼ Ac

P
¼ ðp=4Þd2

pd
¼ d

4

 L 
ΔL 

Fig. 3.5 Corrected fin length
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For a rectangular cross-section fin,

DL ¼ Ac

P
� Wd

2W
¼ d

2

Replacing L by Lc in Eqs. (3.5) and (3.6), we get the equations for the short fin as

t � t1
ts � t1

¼ coshmðLc � xÞ
coshmLc

ð3:9Þ

and

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ tanhmLc ð3:10Þ

The error which results from this approximation is very small if (hd/2 k)1/2� 0.5.

3.3 Hollow Fins

It is important to note that the equations developed here can be applied to hollow fins. For
such fins, the perimeter will be the sum of the inside and outside if the heat transfer takes
place from the inside surface also. The cross-sectional area is the solid area. The equations
will not apply to these conditions unless the heat transfer coefficient at the inside and outside
surfaces is equal. This is evident from the examination of the derivation.

3.4 Composite Fins

Such fins usually have a core of high thermal conductivity metal such as copper and a
sheathing of steel. They are used in high-temperature applications where the core metal may
get oxidized. The sheathing protects the core metal. Figure 3.6 shows the cross-section of
such a fin.

The resistance to heat flow from the core caused by the sheath is usually very small
compared with the external convection coefficient, and hence the fin cross-section at any
axial position can be assumed to be at a uniform temperature. With this approximation, the
conduction heat transfer equation at any section is

q ¼ �ðk1A1 þ k2A2 þ . . .Þ � dt

dx

� �
x

ð3:11Þ

and

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hP

ðk1A1 þ k2A2 þ . . .Þ

s
ð3:12Þ

where P is the perimeter of the composite fin, i.e. the fin taken as a whole.

Sheathing 

Core 

Fig. 3.6 A composite fin
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Example 3.1 Heat generated in a bearing by friction causes the temperature at the shaft end
to increase to 60°C above the ambient temperature. How is the temperature distributed along
the shaft as we move away from the bearing? Calculate the amount of heat transferred
through the shaft if the convective heat transfer coefficient for the shaft surface is 7 W/(m2 K)
and the thermal conductivity of the shaft material is 60 W/(m K). The shaft diameter is
60 mm and may be assumed a rod of infinite length.

Solution

The temperature distribution is given by

ðt � t1Þ
ðts � t1Þ ¼ e�mx ð3:3Þ

Here,

m ¼
ffiffiffiffiffiffiffi
hP

kAc

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hpd

kðp=4Þd2
s

¼
ffiffiffiffiffi
4h
kd

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 7

60� 0:06

r
¼ 2:79

and

ðts � t1Þ ¼ 60oC

Hence,

ðt � t1Þ ¼ 60e�2:79x

Heat rejection rate from the entire surface area of the shaft is

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ ð3:4Þ

or

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7� p� 0:06� 60� ðp=4Þ � 0:06ð Þ2

q
� 60 ¼ 28:39W

Example 3.2 A 600-mm-long pump shaft of stainless steel [k = 20 W/(m K)] is 30 mm in
diameter. The heat transfer coefficient for the outside surface of the shaft to the cooling air at
30°C is 30 W/(m2 K). The impeller end of the shaft is immersed in a hot fluid which may
raise the temperature of the shaft end to 250°C. At what distance the bearing must be placed
so that the maximum temperature at the bearing is not greater than 80°C?

If the shaft is hollow with di = 20 mm, what will be the temperature at the bearing
location determined above? The shaft is not cooled from the inner surface.
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Solution

(i) Solid Shaft
Here

m ¼
ffiffiffiffiffiffiffi
hP

kAc

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hpd

kðp=4Þd2
s

¼
ffiffiffiffiffi
4h
kd

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 30

20� 0:03

r
¼ 14:14 m�1

and

mL ¼ 8:485[ 5

The temperature distribution for this case is

ðt � t1Þ
ðts � t1Þ ¼ e�mx ð3:3Þ

Substitution gives

80� 30
250� 30

¼ e�14:14x

or

x ¼ 0:1048 m

(ii) Hollow Shaft

Ac ¼ ðp=4Þðd2o � d2i Þ ¼ ðp=4Þð0:032 � 0:022Þ;
P ¼ pdo ¼ p� 0:03;

m ¼
ffiffiffiffiffi
hP
kAc

q
¼ 18:97 m�1

and the product mL is again greater than 5.
The temperature distribution for this case is also given by

ðt � t1Þ
ðts � t1Þ ¼ e�mx ð3:3Þ

or

t ¼ ðts � t1Þe�mx þ t1

At x = 0.1048 m it is

t ¼ ð250� 30Þe�18:97�0:1048 þ 30 ¼ 60:12oC

The temperature is lower due to the reduced area for conduction heat transfer along the
shaft.
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Example 3.3 Three solid rods, made of silver [ks = 420 W/(m K)], aluminium [ka = 205
W/(m K)] and iron [ki = 70 W/(m K)], are coated with a uniform layer of wax all around.
The rods are placed vertically in boiling water bath with 250 mm length of each rod pro-
jecting outside. If all rods are 5 mm in diameter, 300 mm in length and have the same
surface heat transfer coefficient of 40 W/(m2 K), work out the ratio of lengths up to which the
coated material will melt on each rod if the melting temperature of the wax is 40°C. The
surrounding temperature is 20°C.

Solution

The rods work as fins of length 250 mm each. The corrected length for each rod is

Lc ¼ Lþ d=4 ¼ 250þ 5=4 ¼ 251:25mm:

The value of parameter m is

m ¼
ffiffiffiffiffiffiffi
hP

kAc

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hpd

kðp=4Þd2

s
¼

ffiffiffiffiffi
4h
kd

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 40

k � 0:005

r
¼ 178:9ffiffiffi

k
p

Hence, parameters m and mLc for the three rods are

ms ¼ 178:9ffiffiffiffi
ks

p ¼ 178:9ffiffiffiffiffiffiffiffi
420

p ¼ 8:73 andmsLc ¼ 8:73� 0:25125 ¼ 2:19

ma ¼ 178:9ffiffiffiffiffi
ka

p ¼ 178:9ffiffiffiffiffiffiffiffi
205

p ¼ 12:5 andmaLc ¼ 12:5� 0:25125 ¼ 3:14

mi ¼ 178:9ffiffiffiffi
ki

p ¼ 178:9ffiffiffiffiffi
70

p ¼ 21:38 andmiLc ¼ 21:38� 0:25125 ¼ 5:37

Let the lengths up to which wax will melt are L1, L2 and L3 on the first, second and third
rods, respectively. It means that at lengths L1, L2 and L3, the three rods are having the same
temperature, i.e. t = 40°C.

The equation of temperature distribution for a short fin is

t � t1
ts � t1

¼ coshmðLc � xÞ
coshmLc

ð3:9Þ

or

0:25 ¼ coshmðLc � xÞ
coshmLc

or

x ¼ Lc � cosh�1ð0:25 coshmLcÞ
m

ðiÞ
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For silver rod, let the length x = L1 at which t = 40°C, then from Eq. (i),

L1 ¼ 0:25125� cosh�1½0:25 coshð2:19Þ�
8:73

¼ 0:193m

Similarly for the aluminium and steel rods, the lengths L2 and L3, respectively, are

L2 ¼ 0:25125� cosh�1½0:25 coshð3:14Þ�
12:5

¼ 0:113m

and

L3 ¼ 0:25125� cosh�1½0:25 coshð5:37Þ�
21:38

¼ 0:065m

Hence,

L1 : L2 : L3 :: 2:97 : 1:74 : 1

If we assume the fins to be very long, then the temperature distribution is given by

ðt � t1Þ
ðts � t1Þ ¼ e�mx ð3:3Þ

and the calculated lengths using this equation are

L1 ¼ 0:159m; L2 ¼ 0:111 m; L3 ¼ 0:065 m

Recalling that the product mL for these cases is 2.18, 3.13 and 5.36, respectively, based on
the length L. The assumption of a very long fin (mL � 5) for the above-calculated values
leads to the greatest error for the first case (mL = 2.18), a small error for the second case
(mL = 3.13) and no error for the third case (mL = 5.36). Thus, it can be concluded that the
assumption of a very long fin can lead to a significant error in the results if product mL is
not � 3.

Example 3.4 An aluminium fin [k = 200 W/(m K)] is 3.0 mm in thickness and 100 mm in
width. It protrudes 75 mm from a wall at temperature of 200°C. The surrounding temperature
is 20°C. Calculate heat loss from the fin if the surface heat transfer coefficient is 10 W/(m2 K).

Solution

m ¼
ffiffiffiffiffi
hP
kAc

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð2W þ 2dÞ

kWd

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�206�1000
200�100�3

q
¼ 5:86

mL ¼ 5:86� 0:075 ¼ 0:4395
h=mk ¼ 10=ð5:86� 200Þ ¼ 8:532� 10�3:
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(a) From Eq. (3.8) of the short fin,

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ ðhL=mkÞþ tanhmL

ðhL=mkÞ tanhmLþ 1

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 206� 10�3 � 200� 100� 3� 10�6

p	 

� 200� 20ð Þ 8:532�10�3 þ tanhð0:4395Þ

8:532�10�3�tanhð0:4395Þþ 1

¼ 26:6W:

(b) Using corrected length Lc in Eq. (3.6), we have

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ tanhmLc

where Lc = L + d/2 = 0.075 + 0.0015 = 0.0765 m. This gives

mLc ¼ 5:86� 0:0765 ¼ 0:44829

and

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 206� 10�3 � 200� 100� 3� 10�6

p	 

� 200� 20ð Þ tanhð0:44829Þ

¼ 26:61W:

The analysis clearly shows that even for mL = 0.44, the equation with corrected length
can be used.

Example 3.5 A 20-mm-diameter and 500-mm-long steel rod [k = 50 W/(m K)] is projecting
through a furnace wall as shown in Fig. 3.7. The rod portion in wall may be assumed insulated.
Determine the temperature of the rod just outside the furnace wall. Comment on the result.

L1 = 225 mm

L =  275 mm

t∞ = 20oC 
h = 10 W/(m2 K) t1 = 250oC 

t2

Fig. 3.7 Example 3.5
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Solution

Rod projecting outside the wall acts as a fin of length L = 275 mm with base temperature t2.
Fin parameter,

m ¼
ffiffiffiffiffiffiffi
hP

kAc

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10� p� 0:02
50� ðp=4Þ � 0:022

s
¼ 6:324

mL ¼ 6:324� 0:275 ¼ 1:739\3:

Since product mL is less than 3, the heat transfer from fin will be calculated from the
following equation:

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ðt2 � t1Þ tanhðmLcÞ

where Lc is the corrected length = L + d/4 for circular cross-section fin. Hence,

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h� p� d � k � ðp=4Þ � d2

p
ðt2 � t1Þ tanh½mðLþ d=4Þ�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� p� 0:02� 50� ðp=4Þ � 0:022

p
ðt2 � 20Þ tanh½6:324� ð0:275þ 0:02=4Þ�

¼ 0:09375� ðt2 � 20Þ

The heat flow by conduction through the rod length L1 equals the heat rejected by the fin.
Hence,

kAc
t1 � t2
L1

¼ 0:09375� ðt2 � 20Þ

or

50� ðp=4Þ � 0:022 � 250� t2
0:225

¼ 0:09375� ðt2 � 20Þ

or

t2 ¼ 118:17 oC:

Example 3.6 Obtain an expression for the optimum thickness of a straight rectangular fin.
Use the equation of heat transfer for the fin of Sect. 3.2.2.

Solution

The weight of the fin shown in Fig. 3.8 is

W ¼ qbLd

where q is the density of the fin material and b is the fin width.
Optimization here is to find a combination of d and L for a given fin width b and fin area

A1 = Ld.
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The heat flow through the fin in consideration is given by

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ tanhmL ð3:6Þ

Putting L = A1/d, parameter P � 2b (for d � b) and m = √(hP/kAc) = √(2 hb/kbd) =
√(2 h/kd), the heat flow is

qfin ¼ b
ffiffiffiffiffiffiffiffiffiffi
2hkd

p
� tanh

ffiffiffiffiffi
2h
kd

r
� A1

d

 !
ts � t1ð Þ

The heat flow will be maximum for dqfin/dd = 0. Differentiating the equation of qfin with
respect to d and equating to zero, we get

dqfin
dd ¼ 0

¼
b
ffiffiffiffiffiffiffiffi
2hk

p
� d�1=2

2
� tanh

ffiffiffiffiffi
2h
kd

r
� A1

d

 !
þ

b
ffiffiffiffiffiffiffiffiffiffi
2hkd

p
� 1

cosh2
ffiffiffiffi
2h
kd

q
� A1

d

	 

ffiffiffiffiffi
2h
k

r
� A1 � � 3

2
d�5=2

� �
2
666664

3
777775 ts � t1ð Þ

Simplification gives

tanh

ffiffiffiffiffi
2h
kd

r
� A1

d

 !
¼

3
ffiffiffiffi
2h
kd

q
� A1

d

	 

cosh2

ffiffiffiffi
2h
kd

q
� A1

d

	 

2
64

3
75

Let
ffiffiffiffi
2h
kd

q
� A1

d ¼ a, then

tanh að Þ ¼ 3a

cosh2 að Þ

Solution gives a = 1.4192. This gives

L

d
¼ 0:71

ffiffiffiffiffi
2k
hd

r
ð3:13Þ

δ

 b 

 L 

Fig. 3.8 Example 3.6

3.4 Composite Fins 131

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Example 3.7 Show that for a long fin of finite length L the heat transfer from the fin surface
to the surrounding is given by

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ cothmL

if at the fin end t � t∞.

Solution

From Eq. (3.2),

h ¼ C1e
mx þC2e

�mx ð3:2Þ

The constants C1 and C2 are to be determined from the boundary conditions of the
problem. The boundary conditions for this case are

(a) at x = 0, t = ts, and
(b) at x = L, t = t∞.

The first condition gives

ts � t1 ¼ C1 þC2 ðiÞ

and the second condition gives

t1 � t1 ¼ 0 ¼ C1e
mL þC2e

�mL

or

C1e
mL þC2e

�mL ¼ 0 ðiiÞ

Solution of Eqs. (i) and (ii) gives

C1 ¼ � e�mL

emL � e�mL
ðts � t1Þ

C2 ¼ emL

emL � e�mL
ðts � t1Þ

Substitution of values of C1 and C2 in Eq. (3.2) gives

ðt � t1Þ
ðts � t1Þ ¼

emðL�xÞ � e�mðL�xÞ

emL � e�mL
¼ sinh½mðL� xÞ�

sinhðmLÞ ð3:14Þ

Heat rejection rate from the entire surface area of the fin qfin equals the heat flow by
conduction at the fin base, i.e.

qfin ¼ �kAc
dt

dx

� �
x¼o
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Using Eq. (3.3), we have

qfin ¼ �kAc
d

dx
ts � t1ð Þ sinh½mðL� xÞ�

sinhðmLÞ þ t1

� �� �
x¼o

or

qfin ¼ �kAc
1

sinhðmLÞ cosh½mðL� xÞ�f gx¼oð�mÞ ts � t1ð Þ

or

qfin ¼ kAcm
coshðmLÞ
sinhðmLÞ ts � t1ð Þ

or

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ cothmL ð3:15Þ

Equation (3.4) can be obtained by putting L = ∞.

Example 3.8 Show that for a fin of finite length L the heat transfer from the fin surface to
the surrounding is given by

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ coshðmLÞ �

tL�t1
ts�t1

sinhðmLÞ

if at the fin end temperature is tL. Other terms have usual meaning.

Solution

From Eq. (3.2),

ts � t1 ¼ h ¼ C1e
mx þC2e

�mx

The constants C1 and C2 are to be determined from the boundary conditions of the
problem. The boundary conditions for this case are

(c) at x = 0, t = ts, and
(d) at x = L, t = tL.

The first condition gives
ts � t1 ¼ C1 þC2

or
hs ¼ C1 þC2 ðiÞ

and the second condition gives

tL � t1 ¼ C1e
mL þC2e

�mL
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or

hL ¼ C1e
mL þC2e

�mL ðiiÞ

Solution of Eqs. (i) and (ii) gives

C1 ¼ hs
hL=hs � e�mL

emL � e�mL

C2 ¼ hs 1� hL=hs � e�mL

emL � e�mL

� �

Substitution of values of C1 and C2 in Eq. (3.2) gives

h
hs

¼ hL=hs � e�mL

emL � e�mL

� �
emx þ 1� hL=hs � e�mL

emL � e�mL

� �
e�mx

¼ ðhL=hsÞðemx � e�mxÞþ ½emðL�xÞ � e�mðL�xÞ�
emL � e�mL

or

t � t1
ts � t1

¼
tL�t1
ts�t1

sinhmxþ sinhmðL� xÞ
sinhmL

ð3:1Þ

Heat rejection rate from the entire surface area of the fin qfin equals the heat flow by
conduction at the fin base, i.e.

qfin ¼ �kAc
dt

dx

� �
x¼o

Using Eq. (3.1), we have

qfin ¼ �kAc
d

dx
ts � t1ð Þ

tL�t1
ts�t1

sinhmxþ sinhmðL� xÞ
sinhmL

þ t1

" #( )
x¼o

or

qfin ¼ �kAc
1

sinhðmLÞ
tL � t1
ts � t1

coshmx� cosh½mðL� xÞ�
� �

x¼o

ðmÞ ts � t1ð Þ

or

qfin ¼ kAcm
coshðmLÞ � tL�t1

ts�t1

sinhðmLÞ ts � t1ð Þ

or

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ coshðmLÞ �

tL�t1
ts�t1

sinhðmLÞ ð3:2Þ
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Check: If tL = t∞, Eq. (3.2) gives

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ cothmL

which is Eq. (3.15).

3.5 Effectiveness and Efficiency of Fins

To study the performance of a fin in transferring the heat, a term called fin effectiveness efin is
used. It is a ratio of heat transfer with the fin to the heat that would be transferred without fin.
Effectiveness of a fin must be always greater than 1. Mathematically, it can be expressed as

efin ¼ qfin
hAcðts � t1Þ ð3:16Þ

Thus for a very long fin (Sect. 3.2.1), it is

efin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p ðts � t1Þ
hAcðts � t1Þ ¼

ffiffiffiffiffiffiffiffi
Pk

hAc

r
ð3:17Þ

From the above result, it can be concluded that the fin effectiveness is high when

(i) the fin is made of high thermal conductivity material,
(ii) the fin has high ratio of parameter to the base area (P/Ac) and
(iii) the convective heat transfer coefficient is low.

The third conclusion indicates that the fins are very effective in transferring heat from
surfaces with low heat transfer coefficient.

Another term that is used to assess the performance of a fin in transferring heat is fin
efficiency ηfin, which is defined as

gfin ¼
qfin
qideal

ðiÞ

where qideal is the heat that would be transferred if the entire fin surface were at the fin base
temperature. That is,

gfin ¼
qfin

hAf ðts � t1Þ ðiiÞ

where Af (=PL) is the fin surface area.
Considering the fin of Sect. 3.2.2 (a fin with negligible heat transfer from its end as

compared to its surface), the fin efficiency is
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gfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p ðts � t1Þ tanhmL
hPLðts � t1Þ

¼
ffiffiffiffiffiffiffi
kAc

hP

r
tanhmL

L

¼ tanhmL
mL

Mathematically, for small values of mL,

tanhmL
mL

¼ 1� ðmLÞ2
3

ðiiiÞ

while for large values of mL,

tanhmL
mL

� 1
mL

ðivÞ

From Eq. (iii), it can be seen that as mL tends to zero,
tanhmL
mL

tends to the limiting value of

unity. From Eq. (iv), and also from the variation of tanh(mL) withmL presented in Table 3.1, it

can be seen that the fin efficiency gfin ¼ tanhmL
mL

� �
decreases rapidly as mL increases. Typi-

cally at mL = 1.0, ηfin = 71.63%; for mL = 2.0, it is 48.2% and it reduces to 25% at mL = 4.0.
For the trivial case of mL = 0, when L = 0 (i.e. no fin at all), the fin efficiency reaches its

maximum value of unity. This situation is meaningless. Thus, it may be concluded that the
fin efficiency cannot be maximized with respect to its length. Generally, the fin performance
is maximized with respect to its mass, volume or cost. This maximization process has
economic meaning also.

As regards the parameter m, a small value of this parameter leads to a high fin efficiency,
which is achieved when

(i) fin is made of high thermal conductivity material,
(ii) fin has low P/Ac ratio, i.e. a thick rectangular, square or circular cross-section fin, and
(iii) the convection heat transfer coefficient is low.

The first and third conclusions are the same for both fin effectiveness and efficiency. It means
that for high effectiveness and efficiency, the fins must be made of high thermal conductivity
materials and must be provided on surfaces with low value of heat transfer coefficient. It will be
shown by taking an illustrative example that the fins may reduce the heat transfer rate in
applications where very high values of heat transfer coefficient are encountered.

The second conclusion for high fin efficiency, regarding the ratio of fin parameter to cross-
sectional area, is opposite to that for high effectiveness.

Since the basic purpose of the installation offins on a surface is to enhance the heat transfer
rate, thefin effectiveness is amoremeaningful parameter for assessing the usefulness of thefins.

The fin effectiveness can be related to the fin efficiency. From Eq. (ii),

qfin ¼ gfinhAf ðts � t1Þ

Substitution in Eq. (3.16) gives
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efin ¼
gfinhAf ðts � t1Þ
hAcðts � t1Þ

or

efin ¼ gfin
Af

Ac

� �
ð3:18Þ

It means that the fin effectiveness equals the fin efficiency multiplied by the ratio of fin
surface and cross-sectional areas.

The analysis given above applies only to a single fin. Usually, a surface with a number of
fins consists of bare portion between the fins, refer to Fig. 3.9. In such cases, the total heat
transfer from the surface is calculated by combining the heat flow from the bare portion of
the surface with the heat flow from the fins. Accordingly, the efficiency of the finned surface
can be defined as the ratio of the total heat transfer rate of the combined area of the bare
surface Ao and that of the fin Af to the heat which would be transferred if this total area were
maintained at the fin base temperature ts.

The total heat flow can be expressed for a surface with multiple fins as

qtotal ¼ qfin þ qo
¼ hAf ðts � t1Þgfin þ hAoðts � t1Þ
¼ hðgfinAf þAoÞðts � t1Þ

ð3:19aÞ

The total heat flow can also be found in terms of the effectiveness. In this case

qtotal ¼ qfin þ qo
¼ efinhAbðts � t1Þþ hAoðts � t1Þ
¼ hðefinAb þAoÞðts � t1Þ

ð3:19bÞ

where Ab is the sum of the base area of fins = number of fins � Ac.

Af 

Ao 

Fin surface 

 Bare surface

Fig. 3.9 Surface with multiple fins
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The overall efficiency of the finned surface can be expressed as

gtotal ¼
hAf ðts � t1Þgfin þ hAoðts � t1Þ

hðAf þAoÞðts � t1Þ

or

gtotal ¼
Af gfin þAo

ðAf þAoÞ ¼ Af gfin þAo

Afw

where Afw = total surface area of the finned wall = Af + Ao. Putting Ao = Afw − Af, we get

gtotal ¼
Af gfin þAfw � Af

Afw

or

gtotal ¼
Afw � ð1� gfinÞAf

Afw

or

gtotal ¼ 1� Af

Afw
ð1� gfinÞ ð3:19cÞ

In Eq. (3.19a, 3.19b, 3.19c), the values of the heat transfer coefficient from the fins and
bare portion of the wall have been assumed to be equal. In fact they differ. Let the values of
these coefficients are hw and hf for the base portion and the fins, respectively. Then the heat
flow rate from the wall is

qtotal ¼ qfin þ qo

¼ hf Af ðts � t1Þgfin þ hwAoðts � t1Þ ðiÞ

Let

qtotal ¼ hredAfWðts � t1Þ ðiiÞ

where Afw = Af +Ao is the total area of the surface transferring the heat.
Comparing Eqs. (i) and (ii), we get

hred ¼ hf gfin
Af

Afw
þ hw

Ao

Afw
ð3:20Þ

The coefficient of heat transfer hred is called the reduced heat transfer coefficient and is a
mean or effective heat transfer coefficient for a finned wall, which accounts for the heat
removal from the bare portion of the wall between the fins, fin surface and fin efficiency.
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3.6 Heat Transfer from a Finned Wall

The heat flow through a finned wall, with plane side at temperature tw1 and the finned side at
temperature tw2, can be described by the following set of equations (Fig. 3.10):

q ¼ h1A1ðtf1 � tw1Þ
q ¼ k

d
A1ðtw1 � tw2Þ

q ¼ hredAfwðtw2 � tf2Þ

Reducing the equation to

q

A1
¼ ðtf1 � tf2Þ

1
h1
þ d

k þ 1
hred

A1
Afw

	 

¼ Uðtf1 � tf2Þ

ð3:21Þ

where U is the overall heat transfer coefficient for heat flow through a finned wall and is
defined as

U ¼ 1
1
h1
þ d

k þ 1
hred

A1
Afw

	 
 ð3:22Þ

The ratio of the area of the fins’ surface Afw to the base surface area A1 is called as finning
factor.

3.7 Intensification of Heat Transfer by Finning

Use of fin on a heat transfer surface is an effective method of heat transfer enhancement when
the heat transfer coefficient for this wall is much smaller compared to the other side. This is
illustrated by a numerical problem given below.

For heat transfer through any wall, the film resistance is 1/hA. Thus, the film resistance
depends not only on the heat transfer coefficients but also on the size of the surfaces
represented by area A. Hence, the film resistance can be decreased by increasing the surface
area by finning.

 h1, tw1

tf1
tf2

h2, tw2

q

Fig. 3.10 A finned wall
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Example 3.9 For a wall, h1 = 1000 W/(m2 K) and h2 = 10 W/(m2 K). Determine the en-
hancement of heat transfer by providing fins on the wall with the lower heat transfer coef-
ficient. The finning factor is 3 and hred= h2.

Solution

The overall heat transfer coefficient for the surface without fins is (neglecting wall resistance)

U ¼ 1
1

1000 þ 1
10

¼ 9:90W= m2K
� �

When surface is finned,

U ¼ 1
1

1000 þ 1
10

1
3

� � ¼ 29:13W= m2K
� �

Example 3.10 The following data refer to a heat exchanger, which transfers heat from a
heated liquid to air:

Liquid-side surface area, A1 = 2 m2

Air-side finned surface area, Af = 7 m2

Air-side total area, Afw = 10 m2

Fins:
Length = 15 mm
Thickness = 0.5 mm
Material: steel [k = 45 W/(m K)]
Heat transfer coefficients:
Liquid side, hl = 250 W/(m2 K)
Air side, ha = 50 W/(m2 K).

Determine the overall heat transfer coefficient U based on the liquid-side area. Neglect the
wall resistance to conduction heat flow. Compare the value with surface without fins.

Solution

The overall heat transfer coefficient for a finned wall is given by (Eq. 3.22)

U ¼ 1
1
h1
þ d

k þ 1
hred

A1
Afw

	 


Neglecting wall resistance, we have

U ¼ 1
1
h1
þ 1

hred
A1
Afw

	 
 ðiÞ

where

hred ¼ hf gfin
Af

Afw
þ hw

Ao

Afw
ðiiÞ
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Here hf = hw = 50, Af = 7 m2, Afw = 10 m2, Ao = Afw − Af = 10 – 7 = 3 m2 and let

gfin ¼
tanhmL
mL

ð3:18Þ

Putting m = √(2h/kd) = √(2 � 50 � 1000/45 � 0.5) = 66.67, we have

gfin ¼
tanhð66:67� 0:015Þ

66:67� 0:015
¼ 0:7616

Substituting the values of various terms in Eq. (ii) gives

hred ¼ 50� 0:7616� 7
10

þ 50� 3
10

¼ 41:65W= m2K
� �

And this gives

U ¼ 1
1
250 þ 1

41:65
2
10

� � ¼ 113:61W= m2K
� �

For the wall without fins, the overall heat transfer coefficient is

U ¼ 1
hl

þ 1
ha

� ��1

¼ 1
250

þ 1
50

� ��1

¼ 41:67W= m2K
� �

Example 3.11 A finned tube of heat exchanger, shown in Fig. 3.11, carries hot water which
is cooled by blowing air over the fins. Determine the overall heat transfer coefficient.

Solution

From Eqs. (3.22) and (2.29a), overall heat transfer coefficient for the present case is

Ui ¼ 1
1
hi
þ Ai

2pkL ln
R0
Ri

	 

þ 1

hred
Ai
Afw

	 


where hred is reduced heat transfer coefficient given by

ro Lf

δ

ri 

Di = 20 mm 
Do = 25 mm 
δ = 2 mm 
Lf = 20 mm 
k = 40 W/(m K) 
hi = 5000 W/(m2 K)
ho = 100 W/(m2 K) 
N = 12 

Fig. 3.11 A tube with longitudinal fins
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hred ¼ hf gfin
Af

Afw
þ hw

Ao

Afw
ð3:20Þ

For the given thin rectangular section fins (P � 2b),

m ¼
ffiffiffiffiffiffiffi
hP

kAc

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h� 2b
kbd

r
¼

ffiffiffiffiffi
2h
kd

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 100

40� 2=1000

s
¼ 50

mLf ¼ 50� 20
1000

¼ 1:0:

Fin efficiency, neglecting heat transfer from fin end,

gfin ¼
tanhmLf
mLf

¼ tanh 1:0
1:0

¼ 0:762

Fin surface area for unit length of tube,

Af ¼ Nð2Lf þ dÞ ¼ 12� ð2� 20þ 2Þ=1000 ¼ 0:504m2

Total outside heat transfer area for unit length of tube,

Afw ¼ Af þðpDo � NdÞ ¼ 0:504þðp� 25� 12� 2Þ=1000 ¼ 0:5585m2

Hence, for hf = hw = ho = 100 W/(m2 K), the reduced heat transfer coefficient

hred ¼ 100� 0:762� 0:504
0:5585

þ 100� 0:5585� 0:504
0:5585

¼ 78:52

Substitution gives the overall heat transfer coefficient as

Ui ¼ 1
1

5000 þ p�ð20=1000Þ�1
2�p�40�1 ln 25

20

� �þ 1
78:52

p�20=1000�1
0:5585

	 
 ¼ 592:2W= m2K
� �

If fins are not provided,

Ui ¼ 1
1
hi
þ Ai

2pkL ln
R0
Ri

	 

þ 1

ho
Ai
Ao

	 

¼ 1

1
5000 þ p�ð20=1000Þ�1

2�p�40�1 ln 25
20

� �þ 1
100

20
25

� �
¼ 121:13W= m2K

� �
The effect of fins on heat transfer intensification can be seen.

Example 3.12 One end of a very long aluminium rod [k = 205 W/(m2 K)] is in contact
with a heated wall. Its surface is in contact with a cold fluid. Neglect the contact resistance
between the rod and the wall.
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(i) By what percentage the rate of heat removal will increase if the rod diameter is
doubled?

(ii) If the rod is made of stainless steel [k = 15 W/(m2 K)], by what percentage the heat
transfer rate will change?

Solution

Using the condition of infinite length fin,

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p ðts � t1Þ
/ P1=2k1=2A1=2

c / d1=2k1=2ðd2Þ1=2 ¼ d3=2k1=2

(i) When the diameter of the rod is doubled,

q0fin / ð2dÞ3=2k1=2

Increase in the heat transfer rate is

Dq0fin ¼
q0fin � qfin

qfin
¼ ð2dÞ3=2 � d3=2

d3=2
� 100 ¼ 182:8%

(ii) When the material of the rod is changed to stainless steel,

q0fin / d3=2k1=21

Change in the heat transfer rate is

Dq0fin ¼
q0fin � qfin

qfin
¼ ðk1Þ1=2 � k1=2

k1=2
� 100 ¼ ð15Þ1=2 � ð205Þ1=2

ð205Þ1=2
� 100 ¼ �72:95%

Example 3.13 Two long 10-mm-diameter copper rods [k = 360 W/(m K)] are to be soldered
together end to end. The melting point of the solder is 650°C. If the heat transfer coefficient
between the copper rod surface and air is 5 W/(m2 K), and the surrounding air temperature is
25°C, determine the minimum heat input rate to keep the soldered surfaces at 650°C.

Solution

Treating the junction of the two rods as x = 0 plane (refer to Fig. 3.12), the problem is that of a
very longfinwith Ts = 650°C. The required heat input rate will be twice the heat transfer rate by
conduction into the fin, i.e.

q ¼ 2qfin ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ðts � t1Þ

¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� p� 0:01� 360� ðp=4Þ � 0:012

p
� ð650� 25Þ

¼ 83:3W
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Example 3.14 Two long rods of the same diameter, one made of brass [k = 85 W/(m K)]
and the other of copper [k = 375 W/(m K)], have one of their ends inserted into a furnace,
refer to Fig. 3.13. Both rods are exposed to the same environment. At a plane 105 mm away
from the furnace wall, the temperature of the brass rod is 120°C. At what distance from the
furnace end, the same temperature would be reached in the copper rod?

Solution

For a long fin, the equation of temperature distribution is

t ¼ ðts � t1Þe�mx þ t1 ðiÞ

For the brass rod, t = 120°C at x = 0.105 m, i.e.

120 ¼ ðts � t1Þe�0:105m1 þ t1 ðiiÞ

For the copper rod, Eq. (i) yields

120 ¼ ðts � t1Þe�m2a þ t1 ðiiiÞ

Equating Eqs. (ii) and (iii), we get

ðts � t1Þe�0:105m1 þ t1 ¼ ðts � t1Þe�m2a þ t1

or
0:105m1 ¼ am2

or

a ¼ 0:105
m1

m2
¼ 0:105

ffiffiffiffiffiffiffi
hP

kAc

r� �
1

ffiffiffiffiffiffiffi
kAc

hP

r !
2

θ = 0 qfin

650oC

x
x = 0

qfin

Fig. 3.12 Example 3.13

Furnace

Copper rod 

Brass rod 

0.105 m

t =120oC
ts

• t∞

a

•

Fig. 3.13 Example 3.14
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or

a ¼ 0:105

ffiffiffiffiffiffiffi
hP

kAc

r� �
1

ffiffiffiffiffiffiffi
kAc

hP

r !
2

Since (hP/Ac)1 = (hP/Ac)2,

a ¼ 0:105

ffiffiffiffiffi
k2
k1

r
¼ 0:105

ffiffiffiffiffiffiffiffi
375
85

r
¼ 0:2205m

The desired answer is 220.5 mm.

Example 3.15 Heat dissipation from a surface is to be enhanced by providing wide rect-
angular section fins. Total of 200 fins are to be provided in 1 m height. Each fin is 1 mm
thick and 50 mm long. The convection heat transfer coefficient for the surface without fins is
h = 20 W/(m2 K), which drops to hf = 15 W/(m2 K) when fins are installed on the surface.
Calculate the enhancement in heat transfer if the thermal conductivity of the fin material is
210 W/(m K).

Solution

Heat dissipation from the wall without fins,

qo ¼ hoAcðts � t1Þ ¼ 20� 1� b� ðts � t1Þ ¼ 20ðbhsÞW

where hs = ts − t∞ and b = width of the fin.

Heat dissipation from finned wall:
Surface area without fins (bare surface area), Ab = 1 � b – b � 1/1000 � 200 = 0.8b m2.

Contribution of the bare surface,

qb ¼ hbAbhs ¼ 15� 0:8b� hs ¼ 12ðbhsÞW

From the given data for the fin,

m ¼
ffiffiffiffiffiffiffi
hP

kAc

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
hð2bÞ
kðbdÞ

s
¼

ffiffiffiffiffi
2h
kd

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 15� 1000

210� 1

r
¼ 11:95

Assuming parameter P � 2b for rectangular section fins,

mL ¼ 11:95� 0:05 ¼ 0:5975

Using corrected length Lc in Eq. (3.6), we have

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ tanhmLc
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where Lc = L + d/2 = 0.05 + 0.001/2 = 0.0505 m. This gives

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15� 2b� 210� b� 1� 10�3

p	 

� hs tanhð11:95� 0:0505Þ ¼ 1:354ðbhsÞW

Total heat transfer qtotal from the fined wall is

qtotal ¼ N � qfin þ qb ¼ 200� 1:354ðbhsÞþ 12ðbhsÞ ¼ 282:8ðbhsÞW

Heat transfer enhancement,

qtotal � qo
qo

� 100 ¼ 282:8ðbhsÞ � 20ðbhsÞ
20ðbhsÞ � 100 ¼ 1314%

Example 3.16 In order to enhance heat transfer from a heat exchanger surface at 90°C,
40 mm long fins are to be installed. There are two alternative schemes from equal weight
consideration (Fig. 3.14):

(i) 1-mm-thick plate fins at 8 mm pitch, or
(ii) 2-mm-thick plate fins at 16 mm pitch.

The fins are to be made of aluminium [k = 205 W/(m K)]. Assuming surface heat transfer
coefficient h = 10 W/(m2 K) and t∞ = 20°C, select the better arrangement based on the heat
transfer consideration.

Solution

Heat transfer from a fin of finite length is given by

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ðts � t1Þ tanhmLc

For both the arrangements,

h ¼ 10W= m2K
� �

;P � 2b; k ¼ 205W= m2K
� �

;Ac ¼ b� d; and ts � t1ð Þ ¼ 70
	
C

Wall
2

L

16 

Wall 1

L

8

Fig. 3.14 Example 3.16
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Substituting the above values, heat transfer equation for unit width becomes

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 2� 1� 205� 1� d

p
� ð70Þ � tanhmLc

or
qfin ¼ 4482�

ffiffiffi
d

p
� tanhmLc ðiÞ

Case (i)

m ¼
ffiffiffiffiffi
hP
kAc

q
¼

ffiffiffiffiffiffiffiffi
hð2bÞ
kðdbÞ

q
¼

ffiffiffiffi
2h
kd

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�10�1000

205�1

q
¼ 9:877

Lc ¼ Lþ d=2 ¼ 40þ 0:5 ¼ 40:5mm
mLc ¼ 9:877� 40:5=1000 ¼ 0:4

Substitution in Eq. (i) gives

qfin ¼ 4482�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=1000

p
� tanhð0:4Þ ¼ 53:86Wpermwidth:

Case (ii)

m ¼
ffiffiffiffiffi
hP
kAc

q
¼

ffiffiffiffiffiffiffiffi
hð2bÞ
kðdbÞ

q
¼

ffiffiffiffi
2h
kd

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�10�1000

205�2

q
¼ 6:984

Lc ¼ Lþ d=2 ¼ 40þ 1 ¼ 41mm
mLc ¼ 6:984� 41=1000 ¼ 0:2864:

Substitution in Eq. (i) gives

qfin ¼ 4482�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=1000

p
� tanhð0:2864Þ ¼ 55:9Wpermwidth:

Since two 1 mm thick fins can be installed in one pitch space for 2 mm thick fins, the first
arrangement of 1 mm fins will be better.

Example 3.17 In the previous example, what is the overall effectiveness of the first
arrangement?

Solution

In 1.0 m height of the surface, there will be 1000/8 = 125 fins. The bare surface in between
the fins will be 125 � 7/1000 = 0.875 m in height. The total heat transfer from the surface
would be

qtotal ¼ qfin þ qo
¼ 125� 53:86þ hAoðts � t1Þ
¼ 6732:5þ 10� 0:875� 70 ¼ 7345W/m2

The overall effectiveness of the finned surface is the ratio of the heat transfer from the
surface with fins to the heat transfer from the surface without fins, i.e.

e ¼ qtotal
hAðts � t1Þ ¼

7345
10� 1� 70

¼ 10:5
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Example 3.18 A 12.5-mm-diameter aluminium rod [k = 200 W/(m K)] is exposed to an
environment at 30°C, while the base temperature is 100°C. The heat transfer coefficient
h = 10 W/(m2 K) for the surface as well as end of the fin. Determine the total heat transfer
rate from the fin if its length is 25, 50, 100, 150 or 200 mm. Also determine the effectiveness
of the fin for all these lengths and comment on the result.

Solution

The value of parameter m is

m ¼
ffiffiffiffiffiffiffi
hP

kAc

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hpd

kðp=4Þd2

s
¼

ffiffiffiffiffi
4h
kd

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 10

200� 0:0125

r
¼ 4:0 m�1

The maximum value of product mL = 0.8, which is less than 3.0. Hence, the heat transfer
rate will be calculated considering it to be a short fin, i.e.

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ hL=mkþ tanhmL

hL=mk tanhmLþ 1

Here,

hL
mk

¼ 10
4� 200

¼ 0:0125

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
� ðts � t1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� p� 0:0125� 200� ðp=4Þ � 0:01252

p
� 70 ¼ 6:871

Substitution gives

qfin ¼ 6:871� 0:0125þ tanhð4LÞ
0:0125 tanhð4LÞþ 1

ðiÞ

and

e ¼ qfin
hAcðts � t1Þ ¼

qfin
h� p=4� d2 � ðts � t1Þ

¼ qfin
10� p=4� 0:01252 � 70

¼ 11:64qfin
ðiiÞ

Length of fin, L (m) mL tanhmL qfin
(W)

e

0.025 0.1 0.0997 0.77 8.96

0.05 0.2 0.1974 1.438 16.74

0.1 0.4 0.38 2.684 31.24

0.15 0.6 0.537 3.75 43.65

0.2 0.8 0.664 4.61 53.66

The values of heat transfer rate and effectiveness of the fin as calculated from Eqs. (i) and
(ii) for different fin lengths are tabulated.
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The effectiveness increases with the length of the fin. It is to be noted that while the length
of the fin and hence its weight for the given cross-section of the fin increases in the present
example by 8 times, the effectiveness increases by 6 times only. Thus the shorter fins are
more economical.

Note: For an infinitely long fin,

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ

Substitution of values of various terms gives

qfin ¼ 6:87W

For mL = 3, we get

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ tanhmL ¼ 6:84W

The heat transfer rate for a fin with mL = 3 is only 0.5% lower than for a fin of infinite
length and 8.9 times of the fin with 25 mm length. For mL = 3, L is 3/m = ¾ = 0.75 m, i.e.
the length is 30 times of the minimum length of 25 mm in this example while the effec-
tiveness is only 8.9 times. Thus, it can be seen that the short fins are economical.

3.8 Error in Temperature Measurement with Thermometer Well

The arrangement shown in Fig. 3.15 is used to measure the temperature of fluid flowing
through a pipe or duct. The thermometer well is a thin hollow metallic or ceramic cylinder.
The metallic cylinder may be welded to the pipe wall. Thermometer to measure the tem-
perature is dipped into the oil filled in the well and thus reads the temperature at the end of
the well. It will be shown by the fin analysis that the thermometer does not indicate the actual
temperature of the fluid flowing through the duct.

The thermometer well can be regarded as a hollow fin with the end at temperature tL and
the base at temperature ts. The actual temperature of the fluid in the duct is t∞. Assuming
negligible heat transfer from the fin end as compared to the heat transferred from the fin
surface, we have (refer to Sect. 3.2.2)

t � t1
ts � t1

¼ coshmðL� xÞ
coshmL

ð3:5Þ

do

δ

Thermometer well 

Fluid at t∞ 

ts

tLx

L

Fig. 3.15 A thermometer well
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Putting t = tL at x = L, we get

tL � t1 ¼ ts � t1ð Þ 1
coshmL

ð3:23Þ

For a hollow fin,

m ¼
ffiffiffiffiffiffiffi
hP

kAc

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
hpdo
kpdod

r
¼

ffiffiffiffiffi
h

kd

r
ð3:24Þ

For the error (t∞ − tL) to be minimum, cosh(mL), i.e. m and L must be large. This can be
achieved by the following measures:

(i) The well must be made of low thermal conductivity material, such as ceramic;
(ii) The well should be as thin as possible. However, it must have sufficient structural

strength and must be able to withstand the fluid pressure and corrosion during the
service.

(iii) The well should be as large as possible in length. In a given pipe diameter, the length
can be increased by installing the well in an inclined position.

(iv) The heat transfer rate from the fluid to the well can be effectively increased by
providing fins on the outer surface of the well, refer to Fig. 3.16.

The thermometer indicates a temperature lower than the gas temperature firstly because of
the temperature drop in the film formed at the well surface and secondly due to the con-
duction of the heat through the wall of the well towards the pipe surface which is at a lower
temperature. The resistance to the heat flow from the fluid to the well can be reduced by
providing fins or increasing the heat transfer coefficient. The heat flow by conduction to the
pipe wall can be reduced by increasing the conduction resistance, i.e. by increasing the length
of the heat flow path, reducing the heat flow area and using a low thermal conductivity
material for the well. The conduction heat flow can also be reduced by reducing the tem-
perature difference between the well end and the pipe surface. This can be achieved by
insulating the pipe from the outside, which will increase the pipe surface temperature.

Note: In the above-presented analysis, we have not considered radiation heat exchange
between the surface of the well and the pipe wall.

Well with fins

Fluid 

Fig. 3.16 A thermometer well with fins
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Example 3.19 Temperature of air flowing through a pipe is measured with a mercury-in-
glass thermometer placed in a steel well filled with oil. How great is the error in the
measurement if the thermometer indicated a temperature of 100°C? The temperature of the
base of the well is 60°C. The well is 120 mm long, and the thickness of the wall of the well is
1.0 mm. The thermal conductivity of the well material is 45 W/(m K), and air to the well
surface heat transfer coefficient is 30 W/(m2 K).

Solution

From Eq. (3.23),

tL � t1 ¼ ts � t1ð Þ 1
coshmL

Here,

m ¼
ffiffiffiffiffi
h

kd

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30

45� 1=1000

s
¼ 25:82

L = 0.12 m
tL = 100°C
ts = 60°C.

Substitution in the equation gives

100� t1 ¼ 60� t1ð Þ 1
coshð25:82� 0:12Þ

or

t1 ¼ 103:96 oC

Thus the error in measurement of the temperature is (t∞ − tL) = 3.96°C.
Note: Radiation heat exchange between the well surface and the pipe inner surface may

introduce additional error.

3.9 When Fins Are to Be Used?

The installation of fins on a heat-transferring surface does not necessarily increase the heat
transfer rate. In fact, there are certain conditions when the fins on a surface may cause a
reduction in the heat transfer. Here, we shall discuss the conditions when the fins are useful.

In Sect. 3.5, fin effectiveness has been defined. The equation of effectiveness can be
written for a very long fin (Sect. 3.2.1) as

efin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p ðts � t1Þ
hAcðts � t1Þ ¼

ffiffiffiffiffiffiffiffi
Pk

hAc

r
¼

ffiffiffiffiffiffiffi
hP

kAc

r
� k

h
¼ mk

h
¼ 1

ðh=mkÞ ðiÞ

When the effectiveness is unity, the heat transfer rate with or without fins is the same.
From the above equation, we can see that the combined term (h/mk) is unity in this case. It is
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to note that this conclusion is also applicable to the short fin of Sect. 3.2.3. The combined
term (h/mk) has special significance for the fins. We can write

h

mk
¼ h

k
�

ffiffiffiffiffiffiffi
kAc

hP

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

k

Ac

P

� �s
¼

ffiffiffiffiffiffi
hd0

k

r
ðiiÞ

where d′ = Ac/P = is a linear dimension. It equals D/4 for a circular cross-section fin and d/2
for a thin rectangular cross-section fin.

The combined term (hd′/k) is a non-dimensional term and is known as Biot number (Bi).
That is,

Bi ¼ hd0

k
ð3:25Þ

The Biot number compares the relative magnitudes of internal resistance to conduction
heat flow and the external (surface) resistance to convection heat transfer. A low value of the
Biot number means that the internal resistance to conduction heat transfer is small in
comparison to the external one to the convection heat transfer.

In terms of the Biot number, the heat transfer rate from Eq. (3.8) for the short fin is

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ

ffiffiffiffiffi
Bi

p þ tanhmLffiffiffiffiffi
Bi

p
tanhmLþ 1

ð3:26Þ

and, from Eq. (3.4) of Sect. 3.2.1,

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ

¼ hAc ts � t1ð Þ= h=mkð Þ
¼ hAc ts � t1ð Þ=

ffiffiffiffiffi
Bi

p ð3:27Þ

Now we discuss the effect of the Biot number on the heat transfer rate.

(a) When Bi = 1,

qfin ¼ hAc ts � t1ð Þ

which means the heat transfer with fins qfin is the same as heat transfer without fins. It means
that when Bi = 1 the fins do not contribute to heat transfer from the surface, and hence there
is no advantage of fins.

(b) When Bi > 1,

qfin\hAc ts � t1ð Þ

which means that finned surface heat transfer qfin is less than the heat transfer without fins,
i.e. the fins will act as insulator and heat transfer rate is reduced when the fins are installed.
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(c) When Bi < 1,

qfin [ hAc ts � t1ð Þ

In this case, heat transfer rate increases when the fins are provided on the surface.

From the above discussion of desirability of Bi < 1, the following can be concluded:

(i) For a given value of the heat transfer coefficient h, the fin should be made of high
conductivity material.

(ii) For the given value of the heat transfer coefficient and thermal conductivity of fin
material k, the fin geometrical dimensions must be selected to give a high value of
(P/Ac). One example of such a fin is a thin and wide fin.

(iii) For the given value of thermal conductivity of fin material k and fin shape, as the value
of heat transfer coefficient h increases the fin effectiveness or utility decreases and
when hAc/P equals k, the fin does not enhance the heat transfer rate. If h is so high that
the Biot number is greater than unity, the fins act as heat insulator and reduce the heat
transfer rate.

For surfaces in contact with condensing vapours or boiling liquids and liquid metals, the
magnitude of heat transfer coefficient h is very high and the fins are not useful.

In general, the heat transfer coefficient is quite low for surfaces in contact with a gas at
low velocities or in the condition of natural convection heat transfer. The fins are very
effective for such surfaces to enhance the heat transfer rate.

The magnitude of the heat transfer coefficient for the surfaces in contact with liquids is
moderate to high and due attention must be given to the selection of material and shape of the
fin so that the Biot number is sufficiently less than unity. In the case of short and thick fins,
the assumption of one-dimensional heat flow made for the analysis presented in the previous
sections is not valid. The heat flow in such fins becomes two-dimensional as shown in
Fig. 3.17 (note that the heat flow lines are not parallel to the axis of the fin). This will have
effect on the conclusion regarding the minimum value of the Biot number. To be sure, that
the use of fin in such cases is advantageous, it is advised to fulfil the following condition
(Eckert and Drake 1972):

Bi� 0:2 ð3:28Þ

The effectiveness and efficiency defined in Sect. 3.5 can be related to the Biot number as
shown below.

Heat flow lines

Fig. 3.17 Temperature distribution and heat flow paths in a short rectangular fin
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For a very long fin, the effectiveness of the fin, from Eq. (3.17), can be expressed as

e ¼
ffiffiffiffiffiffiffiffi
kP

hAc

r
¼

ffiffiffiffiffiffi
k

hd0

r
¼

ffiffiffiffiffi
1
Bi

r
ð3:29Þ

Thus the effectiveness increases as the Biot number decreases.
Similarly, Eq. (3.18) of efficiency for the fin of Sect. 3.2.2 (a fin with negligible heat

transfer from its end as compared to its surface) in the terms of the Biot number is

gfin ¼
tanhmL
mL

¼ tanh L
ffiffiffiffiffi
Bi

p
=d0

� �
L
ffiffiffiffiffi
Bi

p
=d0

� � ð3:30Þ

The efficiency of the fin in this case tends to its maximum value of unity as the Biot
number tends to zero.

Example 3.20 Three rods, one made of glass, one of pure aluminium and the third of steel,
each having diameter of 10 mm and a length of 250 mm, are used as fins. When the base
temperature is 180°C for each fin and ambient temperature 30°C, find the distributions of
temperature in the rods and their heat dissipations. The convective heat transfer coefficient is
25 W/(m2 K). Determine the effectiveness and efficiency of these fins. The thermal con-
ductivities of the three materials are 0.8, 200 and 50 W/(m K), respectively.

Solution

The three rods projecting from the surface work as fins. The value of the parameter m for the
circular section rod is

m ¼
ffiffiffiffiffiffiffi
hP

kAc

r
¼

ffiffiffiffiffi
4h
kd

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 25
k � 0:01

r
¼ 100ffiffiffi

k
p

Therefore, the value of parameter m for the glass fin mg, aluminium fin ma and steel fin ms

is 111.8, 7.07 and 14.14, respectively. The product mL for these fins is 27.95, 1.768 and
3.535, respectively.

For the glass and steel fins, mL � 3; hence, equation of Case (A) may be used. For the
aluminium fin, equations of Case (B) with end correction may be used.

The equations of temperature distribution are
Glass fin:

t � t1
ts � t1

¼ e�mx

h
ho

¼ e�111:8x

Aluminium fin:
h
ho

¼ coshmðLc � xÞ
coshmðLcÞ
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Here Lc = L + d/4 = 0.2525 m, cosh(mLc) = 3.064. This gives

h
ho

¼ 0:3263 coshð1:785� 7:07xÞ

Steel fin:
h
ho

¼ e�14:14x

Heat dissipation:
Glass fin:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� ðp� 0:01Þ � 0:8� ðp=4Þ � ð0:01Þ2

q
180� 30ð Þ

¼ 1:054 W:

Aluminium fin:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ tanhðmLcÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� ðp� 0:01Þ � 200� ðp=4Þ � ð0:01Þ2

q
� 180� 30ð Þ � tanhð7:07� 0:2525Þ

¼ 15:75W

Steel fin:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� ðp� 0:01Þ � 50� ðp=4Þ � ð0:01Þ2

q
180� 30ð Þ

¼ 8:33W

Heat dissipation without fin,

q ¼ hA ts � t1ð Þ ¼ 25� ðp=4Þ � ð0:01Þ2 � ð180� 30Þ ¼ 0:2945W

Effectiveness
Glass fin:

e ¼ 1:054
0:2945

¼ 3:58

Aluminium fin:

e ¼ 15:75
0:2945

¼ 53:48
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Steel fin:

e ¼ 8:33
0:2945

¼ 28:28

Efficiency
The heat dissipation, if whole fin surface is at the base temperature,

q ¼ hAf ts � t1ð Þ ¼ 25� ½p� 0:01� 0:25þðp=4Þ � ð0:01Þ2� � ð180� 30Þ ¼ 29:75W

This gives efficiency of the three fins as

gg ¼
1:054
29:75

� 100 ¼ 3:54%

gAl ¼
15:75
29:75

� 100 ¼ 52:94%

gs ¼
8:33
29:75

¼ 28%

Despite the same length, cross-section and the base temperature, it can be seen that the
effectiveness and efficiency of the aluminum fin (a high thermal conductivity material) is
very high.

Example 3.21 Typical heat transfer coefficient data is given in column 2 of Table 3.2. We
have to investigate the utility of fins for surfaces in contact with fluids given in column 1 of
the table. Fins are to be made either of copper [k = 385 W/(m K)] or steel [k = 70
W/(m K)]. Fin geometric data is as follows: thickness d = 2 mm, width W = 100 mm and
length L = 60 mm.

Table 3.2 Example 3.21

h, W/(m2 K) Copper fins, k = 385 W/(m K) Steel fins, k = 70 W/(m K)

e Bi = hd’/k e Bi = hd’/k

1. Free Convection

Gases
Liquids

5–20
50–500

60.1–57.4
52.7– 27.1

(1.3–5.2) � 10−5

(1.3–13) � 10−4
55.2–45.8
34.68–11.8

(7.14–28.5) � 10−5

(7.14–71.4) � 10−4

2. Forced Convection

Gases
Liquids

5–100
50–10000

60.1-47.14
52.7–6.2

(1.3 − 26) � 10−5

1.3 � 10−4 - 0.026
55.2–26.2
34.68–2.64

7.14 � 10−5-1.4 � 10−3

7.14 � 10−4- 0.143

3. Condensation

Gases
Liquids

5000–15000
5 � 104 –
15 � 104

8.77–5.06
2.77–1.6

0.013–0.039
0.13–0.39

3.75–2.16
1.19–0.68

0.071–0.214
0.71–2.14

4. Boiling 500–50000 27.73–2.77 1.3 � 10−3 - 0.13 11.9–1.19 7.1 � 10−3 - 0.715
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Solution

The fin effectiveness e is given by
Case (A): A very long fin:

e ¼ 1ffiffiffiffiffi
Bi

p

Case (B): A fin with negligible heat rejection from its end:

e ¼ tanhmLffiffiffiffiffi
Bi

p � 1ffiffiffiffiffi
Bi

p if mL[ 3

Case (C): A short fin:

e ¼ 1þ tanhmLð Þ= ffiffiffiffiffi
Bi

p

1þ ffiffiffiffiffi
Bi

p
tanhmLð Þ

From the given data, fin cross-sectional area A = Wd = 200 mm2 and fin surface area
Af = PL = 2(W + d)L = 12240 mm2. Thus A < < PL, i.e. the conditions of Case (A) and
(B) may be applied.

Further, the product mL for a rectangular section duct and given data is
Copper fin:

mL ¼ L

ffiffiffiffiffi
2h
kd

r
¼ 0:0967

ffiffiffi
h

p

Steel fin:

mL ¼ 0:2268
ffiffiffi
h

p

From the above values of product mL, we can see that when h � 960 for the copper fin
and h � 175 for the steel fin, the value of product mL � 3 and the effectiveness equation of
Case (A) can be used.

Calculated values of effectiveness e and the Biot number for the different conditions are
given along with the corresponding values of h in Table 3.2. It can be readily seen that the
effectiveness decreased with the increase in h. For the given geometric dimensions of the fin
in the present example, the effectiveness e = 82.4 for h = 5 W/(m2 K) and is only 1.6 for the
copper fin when dropwise condensation occurs (h = 15 � 104) and even less than unity for
the steel fin in contact with the condensing vapour.

The Biot number is a quite useful parameter to decide the utility of a fin. It must be kept in
mind that the Biot number depends on the thermal conductivity of the fin material, heat
transfer coefficient and the fin geometry represented by d’.
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3.10 Heat Transfer from a Bar Connected to Two Heat Sources
at Different Temperatures

In Fig. 3.18, thermal reservoirs 1 and 2 are connected with a solid bar of uniform cross-
section A and parameter P. The length of the bar is L. For the small element of length dx,
shown in the figure as shaded, heat qx entering the element by conduction is

qx ¼ �kAc
dt

dx

Heat leaving the element by conduction is

qxþ dx ¼ qx þ d

dx
qxð Þdx

Heat transferred by convection is

qc ¼ hPdxðt � t1Þ

Heat balance for the element gives

qx � qxþ dx � qc ¼ 0

or

� d

dx
qxð Þdx� qc ¼ 0

or

d

dx
�kAc

dt

dx

� �
dxþ hPdxðt � t1Þ ¼ 0

or

d2t

dx2
� hP

kAc
ðt � t1Þ ¼ 0

The above equation is the same as Eq. (ii) of Sect. 3.2. Its solution is

ðt � t1Þ ¼ C1e
mx þC2e

�mx

t1 t2qx+dxqx

x
dx

qc

Fig. 3.18 Heat transfer from a bar connected to two heat sources
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where

m ¼
ffiffiffiffiffiffiffi
hP

kAc

r

The boundary conditions for the present problem are

At x ¼ 0; t ¼ t1
At x ¼ L; t ¼ t2

Applying the boundary conditions,

t1 � t1 ¼ C1 þC2

ðt2 � t1Þ ¼ C1e
mL þC2e

�mL

Solving the above equations, we get

C1 ¼ h2 � h1e�mL

emL � e�mL

C2 ¼ h1emL � h2
emL � e�mL

where h1 = t1 − t∞ and h2 = t2 − t∞
Substitution of the values of C1 and C2 in Eq. (i) gives

t � t1 ¼ h2 � h1e�mL

emL � e�mL
emx þ h1emL � h2

emL � e�mL
e�mx

which can be transformed into the following form:

t � t1 ¼ h1 sinhmðL� xÞ
sinhmL

þ h2 sinhmx
sinhmL

¼ h1 sinhmðL� xÞþ h2 sinhmx
sinhmL

ð3:31Þ

The rate of heat loss from the bar can be found from the relation

qcð Þtotal ¼
ZL
0

hPdxðt � t1Þ

¼ hP

ZL
0

ðt � t1Þdx

¼ hP

ZL
0

h1 sinhmðL� xÞþ h2 sinhmx
sinhmL

dx

¼ hP

sinhmL

ZL
0

h1 sinhmðL� xÞþ h2 sinhmx½ �dx

¼ hP

sinhmL
�h1ð1� coshmLÞþ h2ðcoshmL� 1Þ

m

� �
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or

qc ¼ hP

m sinhmL
h1 þ h2ð ÞðcoshmL� 1Þ ð3:32Þ

The position of maximum temperature in the bar can be determined by differentiating
Eq. (3.31) with respect to x and equating to zero. Thus

d

dx
ðt � t1Þ ¼ 1

sinhmL
d

dx
h1 sinhmðL� xÞþ h2 sinhmx½ �

� �
¼ 0

This gives

�h1m coshmðL� xÞþmh2 coshmx ¼ 0

Thus

h1
h2

¼ coshmx
coshmðL� xÞ ð3:33Þ

When both the reservoirs are at the same temperature, i.e. h1 = h2, then the above
equation gives

coshmx ¼ coshmðL� xÞ

or

x ¼ L=2

i.e. the maximum temperature is at midplane of the rod, which is a logical result.

Example 3.22 Can we obtain the temperature distribution equation of the bar connected to
two heat sources at different temperatures from the equation of the fin?

Solution

From Example 3.7, the temperature distribution equation for a bar with one end at tem-
perature ts and the other at temperature t∞ is

t � t1
ts � t1

¼ sinhmðL� xÞ
sinhmL

ð3:14Þ

Consider the sub-problem (a) and (b) shown in Fig. 3.19. Their temperature distribution
equations will be

t � t1 ¼ t1 � t1ð Þ sinhmðL� xÞ
sinhmL

and

t � t1 ¼ t2 � t1ð Þ sinhmx
sinhmL
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Superposition of sub-problems (a) and (b) gives the original problem. So the temperature
distribution for the bar with ends at temperature excess h1 and h2 is

t � t1 ¼ h1
sinhmðL� xÞ

sinhmL
þ h2

sinhmx
sinhmL

which is the desired result.

Example 3.23 One end of a long rod is inserted into a furnace while the other end projects
into outside air. Under steady state, the temperature of the rod is measured at two points
75 mm apart and found to be 125°C and 88.5°C when the ambient temperature is 20°C. The
rod diameter is 250 mm, and the convective heat transfer coefficient is 6 W/(m2 K). Find the
thermal conductivity of the rod material.

Solution

Given data is h = 6 W/(m2 K), P = pD = p � 0.25 m and Ac = (p/4) D2 = (p/4) � (0.25)2

m2, and k is unknown.
For a very long fin,

t � t1
ts � t1

¼ e�mx

m ¼
ffiffiffiffiffiffiffi
hP

kAc

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� p� 0:25� 4

p� ð0:25Þ2k

s
¼ 9:8ffiffiffi

k
p

Let given temperatures are at x = L1 (t1 = 125°C) and x = L1 + 0.075 (t2 = 88.5°C), then

125� 20
ts � 20

¼ e
� 9:8L1ffiffi

k
p

	 


and

88:5� 20
ts � 20

¼ e
� 9:8ðL1 þ 0:075Þffiffi

k
p

h i

Dividing the first equation by the second, we get

a

b

θ = θ2

θ = 0θ = θ1

θ = 0

Fig. 3.19 Examples 3.22
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125� 20
88:5� 20

¼ e
9:8ffiffi
k

p �0:075

	 


Simplification gives k = 2.96 W/(m K).
Alternatively, x1 may be considered to be zero, then t1 = ts = 125°C and the substitution

gives

88:5� 20
125� 20

¼ e
� 9:8ffiffi

k
p �0:075

	 


which gives the same result.

Example 3.24 An iron rod 10 mm in diameter and 500 mm long is giving up heat to its
surrounding at an average rate of 10 W/(m2 K) by combined radiation and conduction. The
ends of the rod are firmly connected to two heat sources at 120°C. The thermal conductivity
of the iron is 40 W/(m K). The temperature of the surrounding is 20°C.

(i) What is the temperature at the middle of the rod?
(ii) How much heat is flowing out of each source?
(iii) How much heat is flowing at the middle of the rod?

Solution

The parameter m is, from the given data,

m ¼
ffiffiffiffiffiffiffi
hP

kAc

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� p� 0:01� 4

p� ð0:01Þ2 � 40

s
¼ 10

Product mL = 10 � 0.5 = 5, emL = 148.41, e−mL = 6.74 � 10−3 and emL/2 = 12.182.
The temperature excess at each end, h1 = h2 = 120–20 = 100°C.

(i) From Eq. (3.31), we have

t � t1 ¼ h1 sinhmðL� xÞþ h2 sinhmx
sinhmL

Temperature at the middle of the bar

tL=2 � t1 ¼ 2h1
sinhðmL=2Þ
sinhmL

or

tL=2 � t1 ¼ 2h1
emL=2 � e�mL=2

emL � e�mL
¼ 2h1

emL � 1
e2mL � 1

� �
emL=2 ¼ 2h1

emL=2

emL þ 1

� �
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or

tL=2 ¼2h1
emL=2

emL þ 1
þ t1

¼ 2� 100� 12:182
148:41þ 1

þ 20 ¼ 36:3oC

(ii) The heat transfer rate

q ¼ hP

m sinhmL
h1 þ h2ð ÞðcoshmL� 1Þ ð3:32Þ

where

sinhmL ¼ emL � e�mL

2
¼ 74:2

coshmL ¼ emL þ e�mL

2
¼ 74:208

Hence,

q ¼ 10� ðp� 0:01Þ
10� 74:2

100þ 100ð Þ � ð74:208� 1Þ ¼ 6:2W

(iii) The maximum of the temperature occurs at the middle of the rod when h1 = h2, and
hence at this plane dh/dx = 0. Thus, the heat does not flow at the middle of the rod.

Example 3.25 The ends of a 30-mm-diameter and 1-m-long rod are maintained at a con-
stant temperature of 100°C. The rod transfers heat to the surrounding air at 25°C. The heat
transfer coefficient is estimated to be 32 kW/(m2 °C). If the centre of the rod is maintained at
50°C, find the thermal conductivity of the rod material.

Solution

Temperature at the middle of the bar (refer to Example 3.24)

tL=2 ¼ 2h1
emL=2

emL þ 1
þ t1

Substituting h1 = 100–25 = 75°C, and tL/2 − t∞ = 50–25 = 25°C, the equation transforms
to

emL þ 1 ¼ 6emL=2

Let emL/2 = x, then

x2 � 6xþ 1 ¼ 0
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The equation gives x = emL/2 = 5.8284 and 0.1716. The first value gives m = 3.5254 for
L = 1 m. Using the equation of parameter m, we get

m ¼
ffiffiffiffiffiffiffi
hP

kAc

r

or

3:5284 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32� p� 0:03� 4

k � p� ð0:03Þ2
s

or

k ¼ 343:3 W/(m K)

The second value of x gives negative value of k, and hence is not applicable.

Example 3.26 Derive an expression for the temperature distribution along a uniform cross-
section fin with internal heat generation at the rate of qg W/m3 along its length. The fin end is
insulated. The base temperature of the fin is ts while the surrounding air is at temperature t∞.
Can the heat flow from the base towards the fin be equal to zero? Find out the condition.

Solution

We make an energy balance on an element of the fin of thickness dx as shown in Fig. 3.20. In
the steady state, heat generated in the element and heat inflow by conduction must equal to
the heat outflow by conduction and convection, i.e.

Energy inflow into left faceþ heat generated in the element
¼ energy outflow from the right faceþ energy lost by Convection

or

qx þ qg ¼ qxþ dx þ qc

or

�kAc
dt

dx
þ qgðAcdxÞ ¼ �kAc

dt

dx
þ d

dx
�kAc

dt

dx

� �
dxþ hðPdxÞ t � t1ð Þ

x
dx

qx qx+dxts

qc

Fig. 3.20 Example 3.26
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where t is the temperature of the element and P is the perimeter. Simplification gives

d2t

dx2
� hP

kAc
t � t1ð Þþ qg

k
¼ 0

Let (t − t∞) = h, then d2t
dx2 ¼ d2h

dx2 . Putting
hP
kAc

¼ m2, the equation is transformed to

d2h
dx2

� m2hþ qg
k
¼ 0

The above equation can be further transformed by using h0 ¼ h� qg
km2 to give

d2h0

dx2
� m2h0 ¼ 0

which is a second-order differential equation. Its general solution is

h0 ¼ C1e
mx þC2e

�mx ðiÞ

The constants C1 and C2 are to be determined from the boundary conditions of the
problem.

(i) at x = 0, h0 ¼ h01 ¼ ts � t1 � qg
km2 and

(ii) at x = L, dh
dx ¼ dh0

dx ¼ 0

The first condition gives

C1 þC2 ¼ ts � t1 � qg
km2

ðiiÞ

and the second condition gives

dh0

dx
¼ 0 ¼ mC1e

mL � mC2e
�mL

or

C1e
mL � C2e

�mL ¼ 0 ðiiiÞ

Solving Eqs. (ii) and (iii) for the constants C1 and C2, we get

C1 ¼
ts � t1 � qg

km2

1þ e2mL

C2 ¼
ts � t1 � qg

km2

1þ e�2mL

Substitution in Eq. (i) gives

h0 ¼ ts � t1 � qg
km2

1þ e2mL
emx þ ts � t1 � qg

km2

1þ e�2mL
e�mx
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or

t � t1 � qg
km2

	 

¼ ts � t1 � qg

km2

	 
 emx

1þ e2mL
þ e�mx

1þ e�2mL

� �

or

t � t1 � qg
km2

ts � t1 � qg
km2

¼ emx

1þ e2mL
þ e�mx

1þ e�2mL

or

t � t1 � qg
km2

ts � t1 � qg
km2

¼ coshmðL� xÞ
coshmL

ð3:34Þ

The condition of zero heat flow at the base is

qfin ¼ �kAc
dt

dx

� �
x¼o

¼ 0

or

dt

dx

� �
x¼o

¼ 0

From Eq. (3.34), we have

dt

dx

� �
x¼0

¼ ts � t1 � qg
km2

	 
 1
coshmL

d

dx
coshmðL� xÞ½ �

� �
x¼0

¼ ts � t1 � qg
km2

	 
 1
coshmL

�m sinhmLð Þ

From the above equation, it can be seen that the heat flow at the base of the fin is zero
when ts � t1 ¼ qg

km2.

Example 3.27 A composite fin consists of a cylindrical rod 3 mm diameter and 100 mm
long of one material. It is uniformly covered with another material forming outside diameter
of 10 mm and length of 100 mm. Thermal conductivity of inner material is 15 W/(m K) and
that of outer is 45 W/(m K). Convective heat transfer coefficient is 12 W/(m2 K). Determine
(i) the effectiveness of the composite fin neglecting heat rejection from the fin end, and
(ii) the efficiency of the fin.

Solution

We make the energy balance on an element of the composite fin of thickness dx as shown in
Fig. 3.21.
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Energy inflow into left face ¼ Energy outflow from the right faceþ energy lost by convection

or
qx ¼ qxþ dx þ qc

or

qx ¼ qx þ d

dx
qxð Þdxþ hðPdxÞ t � t1ð Þ

or
d

dx
qxð Þdxþ hðPdxÞ t � t1ð Þ ¼ 0 ðiÞ

where qx ¼ �kiAi
dt

dx

� �
þ �koAo

dt

dx

� �
for the composite fin.

The above equation is based on the assumption that there is no temperature gradient in
radial direction of the composite fin, i.e. the temperature at any plane parallel to the wall is
uniform throughout the cross-section.

Substituting the value of qx, we get

d

dx
�kiAi

dt

dx

� �
þ �koAo

dt

dx

� �� �
dxþ hðPdxÞ t � t1ð Þ ¼ 0

or

ðkiAi þ koAoÞ d
2t

dx2
� hP t � t1ð Þ ¼ 0

or

d2t

dx2
� hP

ðkiAi þ koAoÞ t � t1ð Þ ¼ 0

Let (t − t∞) = h, then
d2t

dx2
¼ d2h

dx2
. Putting

hP

ðkiAi þ koAoÞ ¼ m2, the equation is transformed

to

d2h
dx2

� m2h ¼ 0

  x

dx 
do

di

Fig. 3.21 A composite fin
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Heat transfer from the fin is

qfin ¼ �kiAi
dt

dx

� �
x¼0

� �
þ �koAo

dt

dx

� �
x¼0

� �

Following the procedure used earlier

qfin ¼ kiAi þ koAoð Þmðts � t1Þ tanhmL ð3:35Þ

where

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hP

ðkiAi þ koAoÞ

s
ð3:36Þ

Heat transfer rate from the surface when there is no fin,

q ¼ h Ai þAoð Þðts � t1Þ

Thus the effectiveness of the fin is

e ¼ qfin
q

¼ kiAi þ koAoð Þ
h Ai þAoð Þ m tanhmL

where

ki = 15 W/(m K)
ko = 45 W/(m K)
Ai = (p/4) (3/1000)2 m2

Ao = (p/4) � [(10/1000)2−(3/1000)2] m2

h = 12 W/(m2 K)
P = pdo = p � (10/1000) m

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hP
ðkiAi þ koAoÞ

q
= 10.652

L = 0.1 m.

Substitution gives e = 29.85.
Fin efficiency for case B gives

gfin ¼
tanhmL
mL

¼ 0:74

Example 3.28 Heat dissipation from a surface (1 m � 1 m) is to be increased by 50% by
providing rectangular section fins. The fins are to be 5 mm thick, and 20 fins are to be
provided. The surface temperature is 100°C. It is expected that the surface temperature will
drop to 90°C when the fins will be installed but the convection heat transfer coefficient can be
assumed to remain unchanged at 20 W/(m2 K). Calculate the length of fins if the thermal
conductivity of the fin material is 200 W/(m K) and the surrounding temperature is 20°C.
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Solution

Heat dissipation without fins,

q ¼ hAcðts � t1Þ ¼ 20� 1� ð100� 20Þ ¼ 1600W

Desired heat dissipation rate, q′ = 1.5 � 1600 = 2400 W.
The surface area without fins (bare surface area) = 1 � 1 – 1 � 5/1000 � 20 = 0.9 m2.
Contribution of the bare surface, qb = 20 � 0.9 � (90 − 20) = 1260 W.
Heat to be dissipated by the fins, qf′ = 2400 – 1260 = 1140 W.
Heat to be dissipated by one fin, qf = qf′ /(number of fins) = 1140/20 = 57 W.
The fin is quite thin. Hence, we take account of the heat rejection by the fin end by using
corrected fin length. Thus,

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
PhkAc

p
ðts � t1Þ tanhmLc ðiÞ

where P = 2 � (1000 + 5)/1000 = 2.01 m, Ac = 1000 � 5/10002 = 5 � 10−3. Value of the
parameter m from the given data is

m ¼
ffiffiffiffiffiffiffi
hP

kAc

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20� 2:01

200� 5� 10�3

r
¼ 6:34

Substitution of the values of various terms in Eq. (i) gives

57 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:01� 20� 200� 5� 10�3

p
� ð90� 20Þ tanhmLc

Simplification gives

tanhmLc ¼ 0:12843

or

mLc ¼ 0:12915

or

Lc ¼ 0:12915
m

¼ 0:12915
6:34

¼ 0:02037m

¼ 20:4mm:

Hence, the fin length,

L ¼ Lc � d
2
¼ 20:4� 2:5 ¼ 17:9mm

Check: Considering the heat loss from fin end, the heat dissipation equation is

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
PhkAc

p
ðts � t1Þ h=mkþ tanhmL

ðh=mkÞ tanhmLþ 1
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Substituting mL = (6.34 � 0.0179) = 0.11349 and values of other parameters, we obtain

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:01� 20� 200� 0:005

p
� ð90� 20Þ � 20=ð6:34� 200Þþ tanhð0:11349Þ

½20=ð6:34� 200Þ� � tanhð0:11349Þþ 1
¼ 57:13W

Example 3.29 Rectangular section (800 � 3 mm2) aluminium fins of 30 mm length, as
shown in Fig. 3.22, are provided on a flat wall. The heat transfer coefficient from the fin
surface is 10 W/(m2 K). The thermal conductivity of the fin material is 200 W/(m K). The
temperature at the base of the fin is 300°C, and the temperature of the surrounding air is 20°
C. Calculate the temperature at the end of the fin.

Solution

From Eq. (3.7), we have

t � t1
ts � t1

¼ coshmðL� xÞþ ðhL=mkÞ sinhmðL� xÞ
ðhL=mkÞ sinhmLþ coshmL

Let the temperature at the fin end (x = L) is tL, then

tL � t1
ts � t1

¼ 1
ðhL=mkÞ sinhmLþ coshmL

or

tL ¼ ts � t1ð Þ 1
ðhL=mkÞ sinhmLþ coshmL

þ t1

From the given data,

m ¼
ffiffiffiffiffiffiffi
hP

kAc

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 2� ð800þ 3Þ � 1000

200� 800� 3

r
¼ 5:784

This gives

mL ¼ 5:784� ð30=1000Þ ¼ 0:17353

Fig. 3.22 A rectangular section fin
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Hence,

tL ¼ 300� 20ð Þ 1
10=ð5:784� 200Þ½ � � sinhð0:17353Þþ coshð0:17353Þ þ 20 ¼ 295:35oC

Note: The area of the fin end is 800 � 3 = 2400 mm2, while the total surface area is
50580 mm2. Thus the fin end area is only 4.75%. If we neglect the heat rejection from the fin
end, then we have (Eq. 3.23)

tL � t1
ts � t1

¼ 1
coshmL

which gives tL = 295.84°C, which is only marginally different from the earlier calculated
value.

Example 3.30 A tube consists of integral longitudinal fins as shown in Fig. 3.23. The
outside diameter of the tube is 100 mm. Length of the tube is 1 m. Each fin is 5 mm in
thickness and 50 mm in height. There are 20 such fins. The temperature at the base of the fins
is 100°C, and the surrounding temperature is 20°C. The heat transfer coefficient from the fin
surface and also from the surface between the fins can be assumed to be 10 W/(m2 K). The
thermal conductivity of the fin and tube material is 50 W/(m K). Calculate the amount of
heat transferred from the finned wall to the surrounding. Also calculate the amount of heat
that would be transferred from the tube wall without fins under the same conditions.

Solution

From Eq. (3.8), the heat transfer from a fin is

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ ðhL=mkÞþ tanhmL

ðhL=mkÞ tanhmLþ 1

Here h = 10 W/(m2 K), P = 2(b + d) = 2(1000 + 5) � 1/1000 m, Ac = 1 � 5/1000 m2,
k = 50 W/(m K), ts = 100°C, t∞ = 20°C and L = 50 mm.

The values of various parameters give

m ¼
ffiffiffiffiffiffiffi
hP

kAc

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 2� ð1000þ 5Þ � 1=1000

50� 1� 5=1000

s
¼ 8:97

ro L

δ

Fig. 3.23 A tube with longitudinal fins
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This gives

mL ¼ 8:97� 50=1000 ¼ 0:4483

h

mk
¼ 10

8:97� 50
¼ 0:0223ffiffiffiffiffiffiffiffiffiffiffiffiffi

hPkAc

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� ð2� 1005=1000Þ � 50� 1� 5=1000

p
¼ 2:2417

Hence,

qfin ¼ 2:2417� ð100� 20Þ 0:0223þ tanh 0:4483
0:0223� tanh 0:4483þ 1

¼ 78:67W

Total heat transfer from 20 fins = 20 � 78.67 = 1573.4 W.
The bare surface of the tube = (pdo − 20 � fin thickness d) � length of the tube

¼ ðp� 100� 20� 5Þ
1000

� 1 ¼ 0:2142m2

Heat transfer from the tube surface

¼ hAðts � t1Þ ¼ 10� 0:2142� ð100� 20Þ ¼ 171:3W

Total heat transfer from the tube = 1573.4 + 171.3 = 1744.7 W.
Heat transfer from the tube without fins,

¼ hðpdoLÞ � ðts � t1Þ
¼ 10� ðp� 100� 1Þ=1000� ð120� 20Þ ¼ 251:33W

Hence, effectiveness = 1744.7/251.33 = 6.94.

3.11 Generalized Equation of Fin

We have studied the performance of uniform cross-section fins protruding from a flat wall. In
practical applications, the profile or cross-section of the fin may vary along its length as
shown in Fig. 3.24 and may be attached to circular surfaces.

The calculation for fins with variable cross-section is more complicated than that for the
straight fins of uniform cross-section.

Let the shape of the fin is such that

AðxÞ ¼ f ðxÞ

and

PðxÞ ¼ uðxÞ
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Taking infinitesimal element of thickness dx of the fin at a distance x from the wall, refer
to Fig. 3.24, the heat balance equation can be written as

�kAx
dt

dx
¼ �kAx

dt

dx
þ d

dx
�kAx

dt

dx

� �
dxþ hPxdx t � t1ð Þ

or

d

dx
Ax

dt

dx

� �
¼ h

k
Px t � t1ð Þ

or

Ax
d2t

dx2
þ dAx

dx
� dt

dx
� h

k
Px t � t1ð Þ ¼ 0

or

d2t

dx2
þ dAx=dx

Ax
� dt

dx
� h

k
� Px

Ax
t � t1ð Þ ¼ 0 ð3:37Þ

This is the generalized equation applicable to fins of any profile or cross-section where the
cross-section is some function of x.

Equation (3.37) is a modified Bessel’s equation, and its solution is obtained with the help
of Bessel’s function.

Note: For a fin of uniform cross-section, Ax and Px are not functions of x but are constants.
Hence, their derivatives are zero and the above equation reduces to

d2t

dx2
� hP

kA
t � t1ð Þ ¼ 0

which is the equation for the uniform cross-section fin.

3.12 Fin of Minimum Weight (Isachenko et al.1977)

The design of fin for maximum heat transfer at minimum weight is of special significance in
some applications. This can be achieved if the specific rate of heat flow (heat flow through
the unit area of cross-section of the fin) remains constant over the entire length of the fin.

x 

y 

Fig. 3.24 A fin of variable cross-section
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Under such condition, the lines of heat flow will be parallel to the axis of the fin and the
temperature distribution along the fin length will be linear, Fig. 3.25. Therefore, we may
write for any cross-section of the fin:

t � t1 ¼ x

L
ts � t1ð Þ ðiÞ

where x is the distance measured from the tip and L is the total length of the fin.
Consider an elementary surface of the fin at distance x. If the rate of heat flow along the fin

axis is q, the heat flow through the elemental surface will be q sin/, where / is angle of the
elemental surface with the axis of the fin. The heat balance at the elemental surface gives

q sin/ ¼ h t � t1ð Þ

or

q sin/ ¼ hx

L
ts � t1ð Þ

This gives

sin/ ¼ hx

Lq
ts � t1ð Þ ¼ x

Lq=½h ts � t1ð Þ� ð3:38Þ

The contour of this fin is a circular arc of radius r, since sin/ = x/r. From Eq. (3.38),
r = Lq/[h(ts − t∞). This fin possesses the least weight. However, it is difficult to manufacture
such fins. A triangular fin differs only slightly from the circular arc fin and can be manu-
factured with ease. Such fins are commonly used in applications where the minimum weight
is the design consideration.

 x

 L

ts 

 t∞

 r

ts
 t 

 

 

Fig. 3.25 Fin of minimum weight
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3.13 Straight Fin of Triangular Section

The area normal to the heat flow is a function of the distance along the fin. With origin at the
vertex of the triangle, the area of cross-section at distance x is

Ax ¼ d
x

L

	 

b ðiÞ

Following the procedure outlined for uniform cross-section fins, the heat balance for the
infinitesimal element of thickness dx gives, refer to Fig. 3.26,

d

dx
�kAx

dt

dx

� �
þ hPx t � t1ð Þ ¼ 0

When b > > dx, Px = 2(b + dx) � 2b and is constant. Assuming constant thermal con-
ductivity and substituting the value of Ax from Eq. (i), the above equation transforms to

�k
db
L

d

dx
x
dt

dx

� �
þ hð2bÞ t � t1ð Þ ¼ 0

or
d

dx
x
dt

dx

� �
� 2hL

kd
t � t1ð Þ ¼ 0

or

x
d2t

dx2
þ dt

dx
� b t � t1ð Þ ¼ 0

where b ¼ 2hL
kd

.

Let h = t − t∞, then
dt

dx
¼ dh

dx
, and

d2t

dx2
¼ d2h

dx2
. Hence, we obtain

d2h
dx2

þ 1
x

dh
dx

� b
x
h ¼ 0 ð3:39Þ

Equation (3.39) is a modified Bessel equation and its solution is

h ¼ C1I0ð2
ffiffiffiffiffi
bx

p
ÞþC2K0ð2

ffiffiffiffiffi
bx

p
Þ ð3:40Þ

 x
dx

δx

 L

δ θs

 t∞ b
x

Fig. 3.26 Atriangular fin
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where I0 is modified Bessel function of I kind, and K0 is modified Bessel function of II kind.
The values of functions I0(a) and K0(a) are tabulated in Table 3.3 as function of a. In the

present case, a = 2√(bx).
At x = 0, a = 2√(bx) = 0. For a = 0, Ko(a) = ∞ from the table. It means that at the fin tip

(x = 0), the temperature excess h is infinity from Eq. (3.40), which is physically not possible.
Hence, the constant C2 must be zero. This gives

h ¼ C1I0ð2
ffiffiffiffiffi
bx

p
Þ

The other boundary condition is
h = hs (the temperature at the base of the fin) at x = L.

Table 3.3 Modified Bessel functions of first and second kinds

a I0(a) I1(a) K0(a) K1(a)

0.0
0.2
0.4
0.6
0.8
1.0

1.0000
1.0100
1.0404
1.0921
1.1665
1.2661

0.0000
0.1005
0.2040
0.3137
0.4329
0.5652

∞
1.753
1.114
0.777
0.565
0.421

∞
4.775
2.185
1.303
0.862
0.602

1.2
1.4
1.6
1.8
2.0

1.394
1.553
1.750
1.990
2.280

0.715
0.886
1.085
1.371
1.591

0.319
0.244
0.188
0.146
0.114

0.435
0.321
0.241
0.183
0.140

2.2
2.4
2.6
2.8
3.0

2.629
3.049
3.553
4.157
4.881

1.914
2.298
2.755
3.301
3.953

0.0893
0.0702
0.0554
0.0438
0.0347

0.1079
0.0837
0.0653
0.0511
0.0402

3.2
3.4
3.6
3.8
4.0

5.747
6.785
8.028
9.517
11.302

4.734
5.670
6.793
8.140
9.760

0.02760
0.02196
0.01750
0.01397
0.0112

0.0316
0.0250
0.0198
0.0157
0.0125

4.2
4.4
4.6
4.8
5.0

13.442
16.010
19.023
22.794
27.240

11.706
14.046
16.863
20.253
24.336

0.00893
0.00715
0.00573
0.00460
0.00369

0.00994
0.00792
0.00633
0.00505
0.00404

5.2
5.4
5.6
5.8
6.0

32.584
39.009
46.738
56.038
67.234

29.254
35.182
42.328
50.946
61.342

0.00297
0.00238
0.00192
0.00154
0.00125

0.00324
0.00260
0.00208
0.00167
0.00134

6.2
6.4
6.6
6.8
7.0

80.72
96.98
116.54
140.14
168.6

73.89
89.03
107.30
129.38
156.04

0.001005
0.00081
0.00065
0.000526
0.000425

0.00108
0.00087
0.00067
0.000563
0.000454
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This gives

hs ¼ C1I0ð2
ffiffiffiffiffiffi
bL

p
Þ

or

C1 ¼ hs
I0ð2

ffiffiffiffiffiffi
bL

p Þ

and hence the temperature distribution equation applicable to the present case is

h ¼ hs
I0ð2

ffiffiffiffiffi
bx

p Þ
I0ð2

ffiffiffiffiffiffi
bL

p Þ ð3:41Þ

The temperature ho of the fin end is obtained by putting x = 0 in the above equation

ho ¼ hs
1

I0ð2
ffiffiffiffiffiffi
bL

p Þ ð3:42Þ

The heat flow rate qfin equals the heat flow by conduction at the fin base, i.e.

qfin ¼ kA
dt

dx

� �
x¼L

¼ k bdð Þ d

dx
hs

I0ð2
ffiffiffiffiffi
bx

p Þ
I0ð2

ffiffiffiffiffiffi
bL

p Þ
� �� �

x¼L

¼ k bdð Þhs 1

I0ð2
ffiffiffiffiffiffi
bL

p Þ
d

dx
I0ð2

ffiffiffiffiffi
bx

p
Þ

h i� �
x¼L

Since
d

dx
InðaÞ½ �

� �
x¼L

¼ Inþ 1ðaÞ d

dx
ðaÞ, we get

qfin ¼ k bdð Þhs 1

I0ð2
ffiffiffiffiffiffi
bL

p Þ I1ð2
ffiffiffiffiffi
bx

p
Þ � 2

ffiffiffi
b

p 1
2
ffiffiffi
x

p
� �

x¼L

¼ k bdð Þhs I1ð2
ffiffiffiffiffiffi
bL

p Þ
I0ð2

ffiffiffiffiffiffi
bL

p Þ �
ffiffiffi
b

pffiffiffi
L

p

Substituting b ¼ 2hL
kd

and simplifying, we get

qfin ¼
ffiffiffiffiffiffiffiffiffiffi
2hkd

p
� bhs

I1ð2
ffiffiffiffiffiffi
bL

p Þ
I0ð2

ffiffiffiffiffiffi
bL

p Þ ð3:43Þ

Example 3.31 The heat dissipation from an air-cooled flat surface is to be enhanced by
installing either triangular or rectangular fins. Either fin is to be 25 mm thick, 100 mm long
and made from aluminium [k = 230 W/(m K)]. The wall temperature is 630°C, and the heat
transfer coefficient between the surface and the ambient air at 30°C is 72 W/(m2 K).
Compare the effectiveness of the two fins based on the heat flow per unit weight.
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Solution

(i) Triangular fin:
From Eq. (3.43),

qfin ¼
ffiffiffiffiffiffiffiffiffiffi
2hkd

p
� bhs

I1ð2
ffiffiffiffiffiffi
bL

p Þ
I0ð2

ffiffiffiffiffiffi
bL

p Þ ðiÞ

Here h = 72 W/(m2 K), k = 230 W/(m K), d = 0.025 m, b = 1 m (assumed), hs = ts −
t∞ = 630 – 30 = 600°C and L = 0.1 m.

The factor b = 2 hL/kd = 2 � 72 � 0.1/(230 � 0.025) = 2.504 and 2√(bL) =
2√(2.504 � 0.1) = 1.

From Table 3.3, I1(1) = 0.565 and I0(1) = 1.266.
Substitution of values of various parameters in Eq. (i) gives

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 72� 230� 0:025

p
� 0:565
1:266

� 1� 600

¼ 7705Wpermwidth of the fin

(ii) Rectangular fin:

From the given data,

P ¼ 2ð1þ 0:025Þ ¼ 2:05m2

Ac ¼ bd ¼ 0:025m2

m ¼
ffiffiffiffiffi
hP
kAc

q
¼ 5:07

h
mk ¼ 0:062

Hence, from Eq. (3.8),

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
PhkAc

p
ðts � t1Þ h=mkþ tanhmL

ðh=mkÞ tanhmLþ 1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:05� 72� 230� 0:025

p
� 600� 0:062þ tanhð0:507Þ

0:062� tanhð0:507Þþ 1

¼ 8990Wpermwidth

The weight of the rectangular section fin per unit width is twice that of the triangular fin,
while the heat transfer capacity is only 16.7 percent higher. Thus, the triangular fin is more
effective per unit weight.

178 3 Extended Surfaces (Fins)

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


3.14 Straight Fin of Trapezoidal Section

Consider a fin of trapezoidal cross-section as shown in Fig. 3.27. The fin operates in con-
ditions specified for the forgoing case. The dimensions and notations are given in the figure.
The general solution given in Eq. (3.40) is

h ¼ C1I0ð2
ffiffiffiffiffi
bx

p
ÞþC2K0ð2

ffiffiffiffiffi
bx

p
Þ ðiÞ

where I0 is modified Bessel function of I kind, and K0 is modified Bessel function of II
kind. Here b ¼ 2hL1

kd1
.

One of the boundary conditions is
h = hs (the temperature at the base of the fin) at x = L1.
This gives

hs ¼ C1I0ð2
ffiffiffiffiffiffiffiffi
bL1

p
ÞþC2K0ð2

ffiffiffiffiffiffiffiffi
bL1

p
Þ ðiiÞ

For simplification, we assume that heat transfer from the fin end is negligible, i.e.

dh
dx

� �
x¼L2

¼ 0 at x ¼ L2

This gives

0 ¼ C1I1ð2
ffiffiffiffiffiffiffiffi
bL2

p Þ2 ffiffiffi
b

p
1

2
ffiffiffiffi
L2

p � C2K1ð2
ffiffiffiffiffiffiffiffi
bL2

p Þ2 ffiffiffi
b

p
1

2
ffiffiffiffi
L2

p

0 ¼ C1I1ð2
ffiffiffiffiffiffiffiffi
bL2

p Þ � C2K1ð2
ffiffiffiffiffiffiffiffi
bL2

p Þ ðiiiÞ

where

d

dx
KnðaÞ½ �

� �
x¼L

¼ �Knþ 1ðaÞ d

dx
ðaÞ

Solving Eqs. (ii) and (iii), we get values of constants C1 and C2. Finally substitution of
their values in Eq. (i) gives

h
hs

¼ Ioð2
ffiffiffiffiffi
bx

p ÞK1ð2
ffiffiffiffiffiffiffiffi
bL2

p Þþ I1ð2
ffiffiffiffiffiffiffiffi
bL2

p ÞKoð2
ffiffiffiffiffi
bx

p Þ
Ioð2

ffiffiffiffiffiffiffiffi
bL1

p ÞK1ð2
ffiffiffiffiffiffiffiffi
bL2

p Þþ I1ð2
ffiffiffiffiffiffiffiffi
bL2

p ÞKoð2
ffiffiffiffiffiffiffiffi
bL1

p Þ ð3:44Þ

The temperature of the fin end h2 can be found from the above equation by putting x = L2.

 x
dx

δx

L1

δ1 θs

 t∞
L

(δ2, θ2) 

L2

Fig. 3.27 A trapezoidal fin
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The heat flow rate qfin equals the heat flow by conduction at the fin base, i.e.

qfin ¼ kAbase
dt

dx

� �
x¼L1

¼ I1ð2
ffiffiffiffiffiffiffiffi
bL1

p ÞK1ð2
ffiffiffiffiffiffiffiffi
bL2

p Þ � I1ð2
ffiffiffiffiffiffiffiffi
bL2

p ÞK1ð2
ffiffiffiffiffiffiffiffi
bL1

p Þ
I0ð2

ffiffiffiffiffiffiffiffi
bL1

p ÞK1ð2
ffiffiffiffiffiffiffiffi
bL2

p Þþ I1ð2
ffiffiffiffiffiffiffiffi
bL2

p ÞK0ð2
ffiffiffiffiffiffiffiffi
bL1

p Þ
� �

kd1b
ffiffiffi
b

pffiffiffiffiffi
L1

p hs

Substituting b ¼ 2hL1
kd1

and simplifying, we get

qfin ¼ I1ð2
ffiffiffiffiffiffiffiffi
bL1

p ÞK1ð2
ffiffiffiffiffiffiffiffi
bL2

p Þ � I1ð2
ffiffiffiffiffiffiffiffi
bL2

p ÞK1ð2
ffiffiffiffiffiffiffiffi
bL1

p Þ
I0ð2

ffiffiffiffiffiffiffiffi
bL1

p ÞK1ð2
ffiffiffiffiffiffiffiffi
bL2

p Þþ I1ð2
ffiffiffiffiffiffiffiffi
bL2

p ÞK0ð2
ffiffiffiffiffiffiffiffi
bL1

p Þ
� � ffiffiffiffiffiffiffiffiffiffiffiffi

2hkd1
p

� bhs ð3:45Þ

The heat transfer from the tip of the fin can be approximately accounted for by an increase
in the fin length L by half of its thickness.

3.15 Annular Fin

Figure 3.28 shows an annular fin. Consider an elemental ring of width dr at radius r. The
surface area of the ring rejecting heat to the surrounding is 2(2prdr) and the cross-sectional
area is (2prd). Heat entering the elemental ring by conduction is

qr ¼ �kAc
dt

dr

� �
¼ �kð2prdÞ � dt

dr

� �

Heat leaving the element is

qrþ dr ¼ qr þ dqr
dr

� �
dr

Heat rejected by convection to the surrounding from the elemental surface area is

qc ¼ hAðt � tsÞ
¼ h 2ð2prdrÞ½ �ðt � t1Þ

r
dr

r1

qr qr+dr

r2

qc

r

δ

r2

r1

dr

Pipe 

Fig. 3.28 An annular fin
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In equilibrium, the heat entering the element equals the heat leaving the element, i.e.

qr ¼ qrþ dr þ qc

¼ qr þ dqr
dr

� �
drþ qc

or

� dqr
dr

� �
dr ¼ qc

or

� d

dr
�kð2prdÞ � dt

dr

� �
dr ¼ 4prdr � h� ðt � t1Þ

or

kð2pdÞ d
dr

r
dt

dr

� �
¼ 4pr � h� ðt � t1Þ

or

d

dr
r
dt

dr

� �
¼ 2h

kd

� �
� r � ðt � t1Þ

Putting h = t – t∞,

d

dr
r
dh
dr

� �
¼ 2h

kd

� �
� rh

or

dh
dr

þ r
d2h
dr2

� 2h
kd

� �
� rh ¼ 0

or

d2h
dr2

þ 1
r

dh
dr

� 2hh
kd

¼ 0 ðiÞ

This is a form of Bessel’s equation of zero order, and its solution is

h ¼ C1I0ðbrÞþC2K0ðbrÞ ðiiÞ

where b = √(2 h/kd) and I0 and K0 are as defined earlier. Constants C1 and C2 are to be
determined from the boundary conditions.

One of the boundary conditions is
h = hs, the temperature at the base of the fin, i.e. at r = r1.
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This gives

hs ¼ C1I0ðbr1ÞþC2K0ðbr1Þ ðiiiÞ

For simplification, we assume that heat transfer from the fin end is negligible. This is true
when d < < (r2 – r1). This gives

dh
dx

� �
r¼r2

¼ 0

Hence,

0 ¼ C1I1ðbr2Þb� C2K1ðbr2Þb ðivÞ

Solving Eqs. (iii) and (iv), we get values of constants C1 and C2 as

C1 ¼ hs
K1ðbr2Þ

I0ðbr1ÞK1ðbr2Þþ I1ðbr2ÞK0ðbr1Þ
C2 ¼ hs

I1ðbr2Þ
I0ðbr1ÞK1ðbr2Þþ I1ðbr2ÞK0ðbr1Þ

Substitution of their values in Eq. (ii) gives

h
hs

¼ I0ðbrÞK1ðbr2Þþ I1ðbr2ÞK0ðbrÞ
I0ðbr1ÞK1ðbr2Þþ I1ðbr2ÞK0ðbr1Þ ð3:46Þ

The temperature of the fin end h2 can be found from the above equation by putting r = r2.
The heat flow rate qfin equals the heat flow by conduction at the fin base, i.e.

qfin ¼ �kAbase
dt

dr

� �
r¼r1

¼ 2pkdbr1
I1ðbr2ÞK1ðbr1Þ � I1ðbr1ÞK1ðbr2Þ
I0ðbr1ÞK1ðbr2Þþ I1ðbr2ÞK0ðbr1Þ
� �

hs

ð3:47Þ

The heat transfer from the tip of the fin can be approximately accounted for by increasing
r2 by half of the fin thickness d.

Example 3.32 An annular aluminium alloy fin [k = 160 W/(m K)] is installed on a 25 mm
OD tube. The fin has uniform thickness of 0.4 mm and has outer radius of 37.5 mm. If the
tube wall temperature is 150°C, the surrounding air temperature is 20°C and the average
convective heat transfer coefficient is 30 W/(m2 K), calculate the heat loss from the fin.

Solution
Neglecting the heat loss from the fin end,

qfin ¼ 2pkdbr1
I1ðbr2ÞK1ðbr1Þ � I1ðbr1ÞK1ðbr2Þ
I0ðbr1ÞK1ðbr2Þþ I1ðbr2ÞK0ðbr1Þ
� �

hs ð3:47Þ
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Here k = 160 W/(m K), d = 0.4/1000 m, hs = (150–20) = 130°C, h = 30 W/(m2 K).
Hence,

br1 ¼
ffiffiffiffi
2h
kd

q
r1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�30�1000
160�0:4

q
� 12:5

1000 ¼ 0:3827;

br2 ¼ br1
r2
r1
¼ 1:1482

This gives

qfin ¼ 2p� 160� 0:0004� 0:3827� I1ð1:1482ÞK1ð0:3827Þ � I1ð0:3827ÞK1ð1:1482Þ
I0ð0:3827ÞK1ð1:1482Þþ I1ð1:1482ÞK0ð0:3827Þ
� �

� 130

Substitution of the values of Bessel’s function from Table 3.3 gives

qfin ¼ 23:1 W

3.16 Fin Efficiency Plots

The equations derived in previous sections for rectangular, triangular and circumferential fins
are very inconvenient for calculations. The heat flow rate can be determined approximately
for most of the engineering applications using the following equation:

qfin ¼ gf hAshs ð3:48Þ

where ηf is the fin efficiency, which can be read from Fig. 3.29 for rectangular, triangular and
circumferential fins of rectangular cross-section, and As is surface area of the fin. The
abscissa parameter in Fig. 3.29 is Lc

3/2(h/kAm)
1/2 where Lc (the corrected length) and Am are

defined in the figure. For other fin shapes, the readers can refer to Gardner (1945) and
advanced texts on the subject.

Example 3.33 Repeat Example 3.31 using the efficiency approach.

Solution

(i) Triangular fin:

Lc ¼ L ¼ 0:1;Am ¼ ðt=2ÞL ¼ ð0:025=2Þ � 0:1 ¼ 0:00125

Parameter L3=2c

ffiffiffiffiffiffiffiffi
h

kAm

r
¼ 0:13=2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72

230� 0:00125

r
¼ 0:5
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From Fig. 3.29a, the fin efficiency, ηf = 0.88 for the calculated value of the above
parameter. Hence,

qfin ¼ hAshsgf ¼ h� ð2bÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þðt=2Þ2

q� �
hsgf

¼ 72 ð2� 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:12 þð0:025=2Þ2

q� �
� ð630� 30Þ � 0:88

¼ 7662W=mwidth of the fin

a

b

r2c/r1

   Lc
3/2(h/kAm)1/2
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Fig. 3.29 a Efficiencies of rectangular and triangular fins, b Efficiency of circumferential or annular fins of
rectangular section. Holman JP, adapted for SI units by White PRS, Heat Transfer, McGraw-Hill Book Co,
New York, Copyright 1992. The material is reproduced with permission of McGraw-Hill Education (Asia)
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(ii) Rectangular fin:

Lc ¼ Lþ t=2 ¼ 0:1125; t ¼ 0:025;Am ¼ tLc ¼ 0:025� 0:1125 ¼ 0:0028125

Parameter L3=2c

ffiffiffiffiffiffiffiffi
h

kAm

r
¼ 0:11253=2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72

230� 0:0028125

r
� 0:4

From Fig. 3.29a, the fin efficiency ηf � 0.91 for the calculated value of above parameter.
Hence,

qfin ¼ hAshsgf ¼ h� ð2bLcÞ � hsgf
¼ 72� ð2� 1� 0:1125Þ � ð630� 30Þ � 0:91
¼ 8845W/mwidth of the fin

The results are quite close to the solution in Example 3.31.

Example 3.34 Repeat above example for the triangular fin with L = 0.2 m and 0.05 m
keeping fin base thickness fixed at 0.025 m.

Solution

(i) L = 0.2 m:

Lc ¼ L ¼ 0:2;Am ¼ ðt=2ÞL ¼ ð0:025=2Þ � 0:2 ¼ 0:0025

Parameter L3=2c

ffiffiffiffiffiffiffiffi
h

kAm

r
¼ 0:2ð Þ3=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72

230� 0:0025

r
¼ 1:0

From Fig. 3.29, the fin efficiency, ηf = 0.7 and

qfin ¼ hAshsgf ¼ h ð2bÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þðt=2Þ2

q� �
hsgf

¼ 72 ð2� 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:22 þð0:025=2Þ2

q� �
� ð630� 30Þ � 0:7

¼ 12120W/mwidth of the fin

i.e. 1.55 times of that for fin of length 0.1 m while the weight of the fin increased to 2 times.

(ii) L = 0.05 m:

Lc ¼ L ¼ 0:05;Am ¼ ðt=2ÞL ¼ ð0:025=2Þ � 0:05 ¼ 0:000625

ParameterL3=2c

ffiffiffiffiffiffiffiffi
h

kAm

r
¼ 0:05ð Þ3=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72

230� 0:000625

r
¼ 0:25

From Fig. 3.29, the fin efficiency, ηf = 0.95 and
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qfin ¼ hAshsgf ¼ h ð2bÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þðt=2Þ2

q� �
hsgf

¼ 72� ð2� 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:052 þð0:025=2Þ2

q� �
� ð630� 30Þ � 0:95

¼ 4229W/mwidth of the fin

i.e. 0.55 times of that for fin of length 0.1 m while the weight of the fin is reduced to half. We
can conclude that the heat transfer per unit weight is greater for fins of smaller heights.

Example 3.35 Repeat Example 3.32 using the fin efficiency approach with no correction for
the fin end loss (as fin thickness is very small).

Solution

For Lc = L = 0.025, Am = tL = 0.0004 � 0.025 = 0.00001, h = 30 W/(m2 K) and
k = 160 W/(m K),

Parameter L3=2c

ffiffiffiffiffiffiffiffi
h

kAm

r
¼ 0:025ð Þ3=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30

160� 0:00001

r
¼ 0:54

and

r2c
r1

¼ 3

From Fig. 3.29b, fin efficiency ηf � 0.73. Hence,

qfin ¼ gf hAshs
¼ 0:73� 30� ½2pð0:03752 � 0:01252Þ� � ð150� 20Þ
¼ 22:36W

which is quite close to the solution given in Example 3.32.

Example 3.36 A steel pipe carries hot gas at 800°C. In order to increase heat transfer rate
from the pipe, a finned aluminum cylinder is slipped over the steel pipe as shown in
Fig. 3.30a. The contact resistance to heat transfer at the pipe and cylinder interface is
estimated to be 10−4 m2 K/W. For the data given in the figure, determine heat transfer rate
per unit length of pipe.

Solution

The thermal network for the system is shown in Fig. 3.30b. The heat transfer rate is

q ¼ tgas � t1
Rtotal

where Rtotal = Ri + Rwall + Rc + R2 + Req. The various resistances for unit length of pipe are
calculated below.
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Inner surface film resistance:

Ri ¼ 1
hiAi

¼ 1
hið2priLÞ ¼

1
100� 2� p� 0:08� 1

¼ 0:0199

Pipe wall resistance:

Rwall ¼ 1
2pksL

ln
r1
ri

� �
¼ 1

2� p� 40� 1
ln

90
80

� �
¼ 0:468� 10�3

Contact resistance:

Rc ¼ 10�4

2pr1L
¼ 10�4

2� p� 0:09� 1
¼ 0:176� 10�3

Aluminium wall resistance:

R2 ¼ 1
2pkaL

ln
r2
r1

� �
¼ 1

2� p� 210� 1
ln

105
90

� �
¼ 0:117� 10�3

Film resistance of surface of aluminium cylinder without fins:

Rbare ¼ 1
hoAbare

¼ 1
hoð2pr2 � LbareÞ ¼

1
50� 2� p� 0:105� 0:6

¼ 0:0505

Fin resistance using Eq. (3.48):

Rfin ¼ ts � t1
qfin

¼ 1
gfinhoAfin

b Thermal network  

 R2

q
tgas

t∞

 Rfin 

 Rbare 

 Rwall 

 Ri

 Rc 

a  ri = 80 mm, r1 = 90 mm, r2 = 105 mm and ro = 130 mm.  

Steel pipe,  
ks = 40 W/(m K) 

Aluminium pipe, 
ka = 210 W/(m K)

hi = 100 W/(m2 K),
tgas = 650oC 

ho = 50 W/(m2 K),
t∞ = 30oC 

ri

r1
r2
ro

3 mm 
2 mm 

Fig. 3.30 Example 3.36
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Efficiency of the fin (refer to Fig. 3.29b):

Lc ¼ Lþ t=2 ¼ 25þ 2=2 ¼ 26mm
r2c ¼ r1 þ Lc ¼ 105þ 26 ¼ 131mm
Am ¼ tLc ¼ 2� 26 ¼ 52mm2

r2c / r1 ¼ 131=105 ¼ 1:248

L3=2c ðh=kAmÞ1=2 ¼ 0:0263=2 50= 210� 52� 10�6
� � �1=2¼ 0:284

From Fig. 3.29b, ηfin = 0.91.
Fin surface area per unit length of pipe:

Afin ¼ no: of fins� pðr22c � r22Þ � 2 ¼ 200� p� ð0:1312 � 0:1052Þ � 2 ¼ 7:71m2

Hence,

Rfin ¼ 1
gfinhoAfin

¼ 1
0:91�50�7:71 ¼ 2:85� 10�3

Req ¼ 1
Rbare

þ 1
Rfin

h i�1
¼ 1

0:0505 þ 1
2:85�10�3

 ��1¼ 2:69� 10�3

Total resistance,

Rtotal ¼ Ri þRwall þRc þR2 þReq

¼ 0:0199þ 0:468� 10�3 þ 0:176� 10�3 þ 0:117� 10�3 þ 2:69� 10�3 ¼ 0:02335

Heat transfer rate,

q ¼ 650� 30
0:02335

¼ 26552W=m length

3.17 Summary

The heat transfer rate from or to a surface in contact with a fluid can be enhanced by
providing fins, which basically increase the surface area for heat transfer. Fins are widely
used in various engineering equipments. Fins of various shapes and in different arrangements
have been employed. A majority of fins are of rectangular cross section. Thick fins and fins
made by casting are generally of the trapezoidal cross-section with rounded edges. Spine- or
stud-type fins are mechanically rugged, and hence have longer life in corrosive atmosphere
than thin plate fins. It may be noted that the final choice of the type of fin and their
arrangement depends not only on the heat transfer performance but also on the resistance
offered to the flow of the surrounding fluid, cost and the ease of fabrication.

In this chapter, mathematical treatments of various types of uniform cross-section, tri-
angular, trapezoidal and annular fins have been presented to determine the temperature
variation along the fin length and heat transfer rate from the fin surface assuming one-
dimensional steady-state heat flow condition.

It is to note that an exact analytical solution of the heat propagation through a fin involves
considerable difficulties. Mathematical solutions presented here are approximate because of
the following major simplifying assumptions.
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(i) Temperature at any cross-section of the fin is uniform. The assumption is valid for fins
of small cross-section and made of high thermal conductivity material. This assumption
reduces the problem to that of one-dimensional heat conduction along the axis of the fin
only.

(ii) The heat transfer coefficient h from the fin surface to the surrounding is constant for the
entire fin surface.

The greatest uncertainty is in the value of the heat transfer coefficient, which is seldom
uniform over the entire fin surface. In the case of severe non-uniformity of the heat transfer
coefficient and two- or three-dimensional conduction heat flow, numerical techniques are
used to solve the problem. A discussion on the same has been presented in Chap. 5.

In order to do mathematical analysis of the uniform cross-section fins, the fins have been
divided into three classes: (i) a very longfin (mathematically afinof infinite length), (ii) afinwith
negligible heat transfer from the fin end as compared to the heat transferred from the fin surface
(treated as a fin with insulated end) and (iii) a short fin (fin with heat loss from the fin end).

The heat transfer equation of the short fin can be expressed in the same form as that of fin
with insulated end if a corrected length Lc, defined as Lc = L + ΔL where ΔL = Ac/P, is used.
In fact, we can use heat transfer equation as qfin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ tanhmLc for all cases

because in case of a very long fin product mL will be greater than 5 and tanh(mL) can be
taken as unity, refer to Table 3.1.

To study the performance of a fin in transferring the heat, a term called fin effectiveness
has been used, which is a ratio of heat transfer with the fin to the heat that would be
transferred without fin. Effectiveness of a fin must be always greater than 1 and as high as
possible. In general, the fin effectiveness is high when (i) the fin is made of high thermal
conductivity material, (ii) it has high ratio of parameter to the base area (P/Ac) and (iii) the
convective heat transfer coefficient is low. Condition for enhancement of heat transfer from a
fin has been deduced in terms of a non-dimensional number termed as Biot number Bi.

Since the basic purpose of the installation of fins on a surface is to enhance the heat
transfer rate, the fin effectiveness is a meaningful parameter for assessing the usefulness of
the fins. However, another term that has been used to assess the performance of a fin in
transferring heat is fin efficiency ηfin, which is defined as ratio of the heat transfer with the fin
to the heat that would be transferred if the entire fin surface were at the fin base temperature.
Since most of the heat-transferring surfaces consist of a number of fins with bare portion of
the surface between the fins, the total heat transfer from the surface is obtained by combining
the heat flow from the fins qfin with the heat flow from the bare portion of the surface qo.
Using the fin efficiency, the heat flow rate from the wall can be readily expressed as
qtotal ¼ qfin þ qo ¼ hf Af ðts � t1Þgfin þ hwAoðts � t1Þ, where hw and hf are heat transfer
coefficients for the bare portion and the fins, respectively.

In Sect. 3.12, design of fin for maximum heat transfer at minimum weight has been
developed. The contour of this fin is a circular arc. However, it is difficult to manufacture
such fins. A triangular fin differs only slightly from the circular arc fin and can be manu-
factured with ease. Such fins are commonly used in applications where minimum weight is
design consideration. A modification of the triangular fin is the fin of trapezoidal cross-
section. Mathematical equations for temperature distribution and heat transfer from triangular
and trapezoidal fins have been derived in Sects. 3.13 and 3.14, respectively. Analysis of
annular or circumferential fins for cylindrical surfaces is given in Sect. 3.15. The equations
derived for triangular, trapezoidal and circumferential fins are very inconvenient for
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calculations. The heat flow rate can be determined approximately for most of the engineering
applications from Eq. (3.48) knowing the fin efficiency from efficiency plots in Fig. 3.29 for
rectangular, triangular and circumferential fins of rectangular cross-section, surface area of
the fin and the temperature difference between the wall and the ambient air.

A significant number of illustrative examples have been included in the chapter.

Review Questions

3:1 Write a short note on heat transfer enhancement from a surface.
3:2 Why fins are used? Discuss various types of fins used in engineering applications.
3:3 Derive the expression for temperature distribution and total heat flow rate under

steady-state conditions for a fin of uniform cross-section which is so long that the
temperature of the end of the fin can be assumed to be equal to the surrounding
temperature.

3:4 Derive the expression for temperature distribution and total heat flow rate under
steady-state conditions for a uniform cross-section fin of length L. The heat transfer
from the free end of the fin may be neglected. Explain the different parameters that
form a basis for assessing the utility of a fin.

3:5 Derive the equation for heat dissipation by a fin of uniform cross-section if the area of
the fin end is a very small proportion of the total fin surface area and its contribution
to the heat dissipation can be neglected.

3:6 Show that the temperature distribution for a fin of finite length, when the heat loss
from the fin end by convection is taken into account, is given by

t � t1
ts � t1

¼ coshmðL� xÞþ ðhL=mkÞ sinhmðL� xÞ
ðhL=mkÞ sinhmLþ coshmL

Hence, show that the heat transfer from this fin is given by

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ ðhL=mkÞþ tanhmL

ðhL=mkÞ tanhmLþ 1

where hL is the heat transfer coefficient from the fin end.
3:7 How would you introduce correction in the fin length to take account of the heat

transfer from the fin end? What will be the form of equation of the heat transfer from
the fin?

3:8 Define the efficiency and effectiveness of a fin. Discuss the parameters that affect the
fin efficiency and effectiveness.

3:9 Show that the total efficiency of a finned wall is given by

gtotal ¼ 1� Af

Afw
ð1� gfinÞ
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where

Af = surface area of all fins attached to the wall
Afw = total surface area of the finned wall rejecting heat
ηfin = fin efficiency.

3:10 Discuss the design of thermometer well to minimize the error in the measurement of
the temperature of fluids flowing through a duct.

3:11 ‘Fins are more effective for surfaces with low value of surface heat transfer coeffi-
cient’. Justify the statement.

3:12 Show that fins provided on a surface will increase the heat transfer rate from the
surface only if the Biot number is less than 1.

3:13 A thin rod of length L has its ends connected to two walls, which are maintained at
temperatures T1 and T2, respectively. The rod loses heat to the surrounding fluid at
T∞ by convection. Derive the equations of temperature distribution in the rod and
total heat rejection rate from the entire surface of the rod.

3:14 Present a scheme of experimental setup to measure heat transfer coefficient from a fin
surface.

3:15 Show that for the triangular profile fin shown in Fig. 3.26, the temperature variation
equation is

h ¼ hs
I0 2

ffiffiffiffiffi
bx

p� �
I0 2

ffiffiffiffiffiffi
bL

p� �
where Io(a) is Bessel’s function, b = (2hL/kd), hs = temperature excess at the fin base
and d is thickness of the fin at the base.
Determine the total heat rejected by the fin.

3:16 Figure 3.31 shows a fin of trapezoidal profile. Derive the equation for the temperature
distribution. Neglect the heat transfer from the tip of the fin. h1 and h2 are the
temperature excesses above the ambient. The width of the fin (perpendicular to the
plane of the paper) is very large compared to the height L of the fin. Fin thicknesses at
the base and tip are d1 and d2, respectively.

2
1

L

Fig. 3.31 Q. 3.16
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Problems

3:1 A part of a very long 25-mm-diameter copper rod [k = 370 W/(m K)] is inserted into
a furnace. Temperatures at two points 100 mm apart along its length are measured to
be 150°C and 120°C when the steady state was achieved. If the ambient air is at 30°
C, estimate the effective heat transfer coefficient from the rod surface.
[Hint: Apply the fin equation for temperature distribution, i.e.

t1 � t1
t2 � t1

¼ exp½mðx2 � x1Þ�

[Ans. m = 2.88 m−1; h = 19.2 W/(m2 K)]
3:2 One end of a long rod is inserted into a furnace, while the other end projects into

outside air. Under steady state, the temperature of the rod is measured at two points
75 mm apart and found to be 125°C and 88.5°C when the ambient temperature is 20°
C. The rod diameter is 250 mm, and the thermal conductivity of the rod material is
3.0 W/(m K). Find the convective heat transfer coefficient.
[Ans. Given k = 3.0 W/(m K), P = pD = p � 0.25 m, Ac = (p/4) D2 = (p/

4) � (0.25)2 m2 and h is unknown. For a very long fin,
t � t1
ts � t1

¼ e�mx, where

m ¼
ffiffiffiffiffi
hP
kAc

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�p�0:25�4
p�ð0:25Þ2�3

q
¼ 2:31

ffiffiffi
h

p
; Distance x1 may be considered to be zero

(refer to Example 3.23), then ts = 125°C and t = 88.5°C at x = 0.075 m. Substitution

gives 88:5�20
125�20 ¼ e� 2:31

ffiffi
h

p �0:075ð Þ or h = 6.08 W/(m2 K).]
3:3 One end of a long rod is inserted into a furnace, while the other end projects into

outside air. Under steady-state condition, the temperatures of the rod at 50 mm and
125 mm from the furnace wall measured with the help of thermocouples indicate
125°C and 88.5°C when the ambient temperature is 20°C. Find the temperature of the
rod at the furnace wall.
[Ans. For a very long fin, we have t�t1

ts�t1
¼ e�mx; for the given temperatures of t1 = 125°

C at x1 = 0.05 m and t2 = 88.5°C at x2 = 0.125 m, we have
125� 20
ts � 20

¼ e�0:05m and

88:5� 20
ts � 20

¼ e�0:125m, solution givesm =5.695 m−1. With this value ofm,
125� 20
ts � 20

¼
e�0:05m gives ts = 159.6°C.]

3:4 Heat generated in a bearing causes the temperature of the end of a shaft to rise to 50°
C above the ambient. The shaft is 50 mm in diameter and 800 mm long. Determine
the equation of temperature distribution along the shaft if the heat transfer coefficient
for the shaft surface is 10 W/(m2 K) and the thermal conductivity of the shaft
material is 45 W/(m K). What is the shaft temperature 100 mm away from the heated
end?
[Ans. m = 4.216 m−1, mL = 3.373 > 3, hence, the equation of a very long fin can be
used, which gives h =50e−4.216x. Temperature at 100 mm from the heated end, that
is, at x = 100 mm is 32.8°C above the ambient.]

3:5 The head of a solid steel valve is at 600°C. The stem of the valve has a diameter of
10 mm and is cooled by water at 60°C. The heat transfer coefficient is 60 W/(m2 K).
The length of the stem is 200 mm. Determine temperature of the stem 50 mm from
the heated end. k = 40 W/(m K).
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[Ans. m = 24.495, mL = 4.9 > 3. The temperature distribution equation of a very
long fin gives T = 218.67°C. Equation (3.9) with end correction gives 218.75°C.]

3:6 Heat dissipation by convection from a metal tank containing cooling oil is to be
increased by 50 per cent by addition of fins to the wall. The fins will be 10 mm thick
and spaced 100 mm apart between the centres. The surface temperature of the tank is
100°C, and the surrounding air temperature is 20°C. Determine the height of each fin
on the assumption that the convective heat transfer coefficient remains unchanged
and the surface temperature of the tank is expected to drop to 95°C when fins are
fitted. The thermal conductivity of the fins and tank material is 200 W/(m K). Take
for simplicity 1 m � 1 m surface area of the tank. h = 20 W/(m2 K).
[Ans. Heat dissipation without fins, q = hAc(ts − t∞) = 1600 W/m2. Desired heat
dissipation rate = 1.5 � 1600 = 2400 W. Fin width = width of the tank = 1 m;
number of fins, n = (height of tank/fin pitch) = 1000/100 = 10; fin thickness,
d = 10 mm. Surface area not containing fins = 1 � 1 – 10 � 10/1000 = 0.9 m2;
heat dissipation by this surface area = 20 � 0.9 � (95 – 20) = 1350 W; Heat to be
dissipated by the fins = 2400–1350 = 1050 W; Heat to be dissipated by one fin =
1050/10 = 105 W; Fin perimeter, P = 2(W + d) � 2.0 m; Ac = 1 � 10/1000 = 1
10−2; m = 4.47. Considering fin end correction, qfin = √(hPkAc) � (ts − t∞) tanh
(mLc) gives tanh(mLc) = 0.1565 and mLc= 0.1578; Lc = 0.1578/4.47 = 35.3 mm;
Required length of fin = Lc – DL = 35.3 − d/2 = 30.3, say 31 mm.]

3:7 A steel well of 12 mm ID is placed in a duct of 75 mm ID for a thermometer. The
fluid temperature in the duct is 300°C. Determine the length of the well so that the
error in the temperature measurement is less than 1.5°C. The heat transfer coefficient
is 100 W/(m2 K). Wall thickness of the well is 1 mm. The temperature at the well
base = 270°C. k = 50 W/(m K).
[Ans. m = 44.72; (tL − t∞)/(ts − t∞) = 1/coshmL gives L = 82.5 mm for tL −
t∞ = 1.5°C and ts − t∞ = 30°C. As the length of the well is greater than the diameter
of the duct, the well is to be located inclined.]

3:8 For a rectangular section fin, the thickness and length are 5 mm and 100 mm,
respectively. The width of the fin is 300 mm. The thermal conductivity of the fin
material is 20 W/(m K). How will the effectiveness of the fin change as the heat
transfer coefficient changes from 10 to 100 W/(m2 K)?
[Ans. First case, h = 10 W/(m2 K): mL = 1.426, Bi = 1.25 � 10−3, and e = tanhmLc/
√Bi = 25.4; Second case, h = 100 W/(m2 K): mL = 4.509 > 3, Bi = 0.0125 and
e = 1/√Bi = 8.94; Fins are more effective when the heat transfer coefficient is low.]

3:9 20-mm-diameter steel rods [k = 50 W/(m K)] are to be used as fins on one side of a
wall. The heat transfer coefficients for the two sides of the wall are 900 W/(m2 K) and
25 W/(m2 K), respectively. The length of the fins is to be restricted to 100 mm. On
which side of the wall, would you install the fins? Also determine the heat transfer
enhancement or the overall effectiveness if one fin is installed per 2000 mm2 of the
wall area.
[Ans. For the high h side, Biot number Bi1 = h1D/4k = 900 � (0.02/4)/50 = 0.09;
for the other side, Bi2 = 0.0025, as Bi2 < Bi1, the fins must be installed on the low
heat transfer coefficient side. m = √(hP/kAc) = 10 and Lc = L + D/4 = 105 mm.
mLc = 1.05, qfin = √(hPkAc) (ts − t∞) tanhmLc. Heat transfer from finned sur-
face = h � (2000 � 10−6 – p/4 D2) (ts − t∞) + √(hPkAc) (ts − t∞) tanhmLc =
0.16495(ts − t∞). Heat transfer from 2000 mm2 area without fins is
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h (2000 � 10−6) � (ts − t∞) = 0.05(ts − t∞). The ratio of these heat transfer
rates = 3.3, which is the enhancement.]

3:10 The following data refer to a uniform section fin.
Thickness = 6 mm; length = 60 mm; width = 1 m; temperature excess at the
base = 100°C; h = 10 W/(m2 K); thermal conductivity of the fin material = 60
W/(m K).
Determine the temperature at the fin end and the efficiency of the fin.
[Ans. m = 7.45 m−1; mLc = 0.47; qfin = √(hPkAc) (ts − t∞) tanhmLc = 117.93 W;
h2/hs = 1/coshmLc gives h2 = 89.89°C; Fin efficiency = 117.93/[hPLc(ts − t∞)] =
93.04%.]

3:11 Determine the end temperature and heat flow from a straight trapezoidal fin of length
L = 75 mm, width = 1 m, d1 = 2 mm, d2 = 0.5 mm, h = 250 W/(m2 K), k = 400
W/(m K) and h1= 100°C.
[Ans. L1 = 0.1 m, L2 = 0.025 m, b = 2hL1/(kd1) = 62.5, 2√(bL2) = 2.5, 2√(bL1) = 5,
I0[2√(bL1)] = 27.24, I0[2√(bL2)] = 3.301, I1[2√(bL1)] = 24.336, I1[2√(bL2)] =
2.5265, K0[2√(bL1)] = 0.00369, K0[2√(bL2)] = 0.0628, K1[2√(bL1)] = 0.00404,
K1[2√(bL2)] = 0.0745; From Eq. (3.44) for L2 = 0.025 m, h2= 19.85°C; From
Eq. (3.45), q = 1768.6 W.]

3:12 In order to increase the heat transfer rate from a cylindrical pipe (OD = 100 mm),
circumferential fins of 4 mm thickness and 50 mm height are added at a pitch of
10 mm. If the heat transfer coefficient h = 40 W/(m2 K) and the thermal conductivity
of the fin and pipe material is 50 W/(m K), determine the heat transfer enhancement.
[Ans. Without fins, q = 12.566 (ts − t∞); For the circumferential fins, effi-
ciency � 69% from Fig. 3.29b for Lc

3/2(h/kAm)
1/2 � 0.73 and r2c/r1 � 2; Fin surface

area = 2p(r2
2 − r1

2), qfin = fin efficiency � fin surface area � h � (ts − t∞) = 1.3, 4.0
(ts − t∞); From Eq. (3.47), qfin = 1.3(ts − t∞) for b = √(2 h/kd) = 20 (where d = t),
br1 = 1, br2 = 2, Io(br1) = 1.2661, I1(br1) = 0.5652, I1(br2) = 1.591, Ko(br1) =
0.421, K1(br1) = 0.602, K1(br2) = 0.14. Number of fins/m = 100; Heat transfer
from bare surface = 0.6 � 12.566(ts − t∞); Heat rejection from the finned
tube = number of fins � 1.3 (ts − t∞) + 0.6 � 12.566(ts − t∞) = 137.54(ts − t∞);
Enhancement = 137.54/12.566 = 10.95.]
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4Conduction with Heat
Generation

4.1 Plane Wall with Uniform Heat Generation

Figure 4.1 shows a plane wall of thickness d. Heat is generated within the wall at uniform
rate qg per unit volume and is liberated over the entire volume. The generated heat is
transferred to the wall surfaces by conduction and is rejected to the surrounding from one or
both faces of the wall. In equilibrium, when the heat generated equals the heat rejected, the
wall surface temperatures are T1 and T2.

For the analysis, the following assumptions are being made:
1. steady-state conditions,
2. one-dimensional heat flow,
3. constant thermal conductivity of the wall material (homogeneous material).

Consider an elemental strip of thickness dx at distance x from the left face of the wall.
From the Fourier’s conduction equation, the heat entering the left face of the elemental strip
is

qx ¼ �kA
dt

dx
ð1:2Þ

The heat leaving the face at distance x + dx is

qxþ dx ¼ qx þ d

dx
qxð Þdx

Net heat leaving the elemental strip is

qxþ dx � qx ¼ d

dx
qxð Þdx

¼ d

dx
�kA

dt

dx

� �
dx

¼ �kA
d2t

dx2

� �
dx
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The heat generated in the elemental strip is

q0g ¼ ðAdxÞqg

where Adx is the volume of the elemental strip and qg is the rate of heat generation per unit
volume.

In the equilibrium, the total heat generated in the elemental strip must equal the net heat
leaving the strip, i.e.

�kA
d2t

dx2

� �
dx ¼ ðAdxÞqg

or

d2t

dx2
þ qg

k
¼ 0 ð4:1Þ

Equation (4.1) can also be obtained from the general heat conduction equation by
assuming one-dimensional steady-state heat conduction with constant thermal conductivity.

Integrating Eq. (4.1), we get

dt

dx
¼ � qg

k
xþC1

and

t ¼ � qg
2k

x2 þC1xþC2 ð4:2Þ

The constants of the integration in Eq. (4.2) are determined from the boundary conditions.
We consider two different cases.

4.1.1 Case (A) Surfaces at Different Temperatures

Heat is rejected from both the surfaces and the surfaces are at different temperatures t1 and t2.
This may happen when the heat rejection rates from the two faces are not the same due to the
different surface heat transfer coefficients at the two faces. This gives the following boundary
conditions:

x

t

Temperature 
profile 

t2 

t1

qx qx+dx

x dx

δ

Fig. 4.1 Conduction with heat generation in a plane wall
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at x ¼ 0; t ¼ t1
and; at x ¼ d; t ¼ t2

Applying the boundary conditions to Eq. (4.2), we get

at x ¼ 0; t1 ¼ C2

and; at x ¼ d;

t2 ¼ � qg
2k

d2 þC1dþC2 ¼ � qg
2k

d2 þC1dþ t1

This gives

C1 ¼ t2 � t1
d

þ qg
2k

d

Inserting the value of C1 and C2 in Eq. (4.2), we get

t ¼ � qg
2k

x2 þ t2 � t1
d

þ qg
2k

d
� �

xþ t1 ¼ qg
2k

d� xð Þxþ t2 � t1
d

� �
xþ t1 ð4:3Þ

Equation (4.3) is the equation of temperature distribution through the wall. For a given
value of heat generation rate qg, the temperature distribution is a function of the distance
x only and the equation can be written as

tðxÞ ¼ qg
2k

d� xð Þxþ t2 � t1
d

� �
xþ t1 ð4:4Þ

Equation (4.4) can be transformed into non-dimensional form as follows:

tðxÞ � t2 ¼ qg
2k

d� xð Þxþ t2 � t1
d

� �
xþ t1 � t2

or

tðxÞ � t2
t1 � t2

¼ qg
2k

� � d� xð Þx
t1 � t2

� x

d
þ 1

¼ qgd
2

2kðt1 � t2Þ
� �

1� x

d

� � x

d
þ 1� x

d

� �
¼ B 1� x

d

� � x

d
þ 1� x

d

� �
¼ 1� x

d

� � Bx

d
þ 1

� �

or

tðxÞ � t2
t1 � t2

¼ 1� x

d

� � Bx

d
þ 1

� �
ð4:5Þ

where
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B ¼ qgd
2

2kðt1 � t2Þ
� �

: ð4:6Þ

Parameter B is a dimensionless term.

4.1.1.1 The Maximum Temperature and Its Location Within the Wall
It can be determined by differentiating Eq. (4.5) with respect to the dimensionless distance
(x/d) and setting the derivative to zero.

d

dðx=dÞ
tðxÞ � t2
t1 � t2

� �
¼ 0 ¼ � Bx

d
þ 1

� �
þB 1� x

d

� �

¼ �Bx

d
� 1þB� x

d
B

¼ B 1� 2x
d

� �
� 1

This gives the condition as

x

d
¼ B� 1

2B
ð4:7Þ

Equation (4.7) gives the value of dimensionless distance x/d, where the maximum value
of the temperature occurs. By substituting this value in Eq. (4.5), we get the value of
maximum temperature as

tmax � t2
t1 � t2

� �
¼ Bþ 1ð Þ2

4B
ð4:8Þ

Effect of factor B on the temperature distribution:
The factor B has been defined as

B ¼ qgd
2

2kðt1 � t2Þ
� �

ð4:6Þ

(i) When there is no heat generation, i.e. qg = 0, factor B is zero and Eq. (4.5) reduces to

tðxÞ � t2
t1 � t2

¼ 1� x

d

� �
; ð4:9aÞ

which gives the temperature distribution as

tðxÞ ¼ t1 þ x

d
t2 � t1ð Þ ð4:9bÞ

The temperature distribution is linear in this case as shown in Fig. 4.2.
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For the case of heat generation, the positive value of qg, factor B is positive. For B = 1,
Eq. (4.7) gives (x/d) = 0, i.e. the maximum value of the temperature occurs at x = 0. With the
increase in the value of B, the value of (x/d) given by (4.7) increases and in the limit
approaches 0.5 when B has a very high value, refer Fig. 4.2. In general with heat generation,
the maximum temperature is located within the wall (x/d = 0–0.5). When the wall absorbs
heat, qg is negative and factor B will have a negative value.

The rate of heat transfer from any face of the wall is

q ¼ �kA
dt

dx

The value of the derivative (dt/dx) from Eq. (4.4) is

dt

dx
¼ qg

2k
d� qg

k
xþ t2 � t1

d

� �
¼ qg

2k
ðd� 2xÞþ t2 � t1

d

� �

Substituting the value of dt/dx, we get

q ¼ kA
t1 � t2

d

� �
� qg
2k

ðd� 2xÞ
h i

ð4:10Þ

When there is no heat generation,

q ¼ kA
t1 � t2

d

� �

With the heat generation, the heat transfer from the left face, qL, can be obtained by
putting x = 0 in Eq. (4.10) to give

qL ¼ kA
t1 � t2

d

� �
� qg
2k

d
h i

¼ kA
t1 � t2

d

� �
1� Bð Þ

Similarly, the heat transfer from the right face, qR, can be obtained by putting x = d in
Eq. (4.10) to give

2)(
21 tt
txt

−
−

δ
x10

1 B

0
2
3

1
-1

Fig. 4.2 Dimensionless temperature distribution as a function of factor B
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qR ¼ kA
t1 � t2

d

� �
þ qg

2k
d

h i
¼ kA

t1 � t2
d

� �
1þBð Þ

The total heat loss from the wall is

qt ¼ �qL þ qR ð4:11Þ

where the negative sign with qL indicates heat flow from the left face is in the negative
x-direction.

Substitution of values of qL and qR in Eq. (4.10) gives

qt ¼ Adqg

i.e. the heat from the wall equals the heat generated in the wall.
It can be seen that when B = 1, i.e. tmax at x = 0, qL = 0, which means that there is no heat

loss from the left-hand face and the total heat is rejected from the right-hand face.

Example 4.1 Two steel plates are separated by a steel rod of 25 mm diameter and 300 mm
long. The rod is welded to each plate. The space between the plates is filled with insulation
material as shown in Fig. 4.3. Voltage difference between the two plates causes the current to
flow through the steel rod. Due to the flow of current, heat is generated in the rod at a rate of
15 W. Under steady-state condition, the temperatures at the ends are 100°C and 70°C. Find
the maximum temperature in the rod. Also, calculate the heat flow from each end. The
thermal conductivity of the steel rod is 40 W/(m K).

Solution

Heat generated per unit volume

qg ¼ 15

ðp=4Þ � ð0:025Þ2 � 0:3
¼ 101:86� 103

B ¼ qgd
2

2kðt1 � t2Þ
� �

¼ 101:86� 103 � 0:32

2� 40� ð100� 70Þ
� �

¼ 3:82

tmax � t2
t1 � t2

¼ 3:82þ 1ð Þ2
4� 3:82

¼ 1:52

........................................................................................................................................................................

..........................................

t1 t2 

300

Plates

Rod
Insulation

Fig. 4.3 Example 4.1
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or

tmax ¼ 1:52ðt1 � t2Þþ t2
¼ 1:52ð100� 70Þþ 70 ¼ 115:6

Heat transfer from the left face is

qL ¼ �kA
t1 � t2

d

� �
� qg
2k

d
h i

¼ �40� ðp=4Þ � ð0:025Þ2 100� 70
0:3

� �
� 101:86� 103

2� 40
� 0:3

� �
¼ 5:535W:

Heat transfer from the right face is

qR ¼ kA
t1 � t2

d

� �
þ qg

2k
d

h i
¼ 40� ðp=4Þ � ð0:025Þ2 100� 70

0:3

� �
þ 101:86� 103

2� 40
� 0:3

� �
¼ 9:461W:

Total heat flow from the rod ends qL and qR equals the heat generation.

Example 4.2 Heat is generated at an interface between two slabs. One is steel
[k = 35 W/(m K)] of 50 mm thickness and the other is brass [k = 70 W/(m K)] of 50 mm
thickness. The temperatures of the outer surfaces of the steel and brass slabs are maintained
at 100°C and 60°C, respectively. The heat generation rate at the contact surface of the slabs is
1.5 � 105 W/m2. Determine the heat flow through the steel slab.

Solution

Let the temperature at the interface of the slabs is ti. From Fourier’s heat conduction
equation, the heat flow through the left slab is (refer Fig. 4.4)

qL ¼ k1A
ti � t1
d1

� �

¼ 35� 1� ti � 100
0:05

� �
¼ 700� ðti � 100Þ:

● ti ● t2

t1 ● 

k1 k2

Steel Brass

δ2δ1

Fig. 4.4 Example 4.2
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and through the right slab is

qR ¼ k2A
ti � t2
d2

� �

¼ 70� 1� ti � 60
0:05

� �
¼ 1400� ðti � 60Þ:

The total heat flow must equal the heat generated. Thus

qL þ qR ¼ qg

or

700� ðti � 100Þþ 1400� ðti � 60Þ ¼ 1:5� 105

or
ti ¼ 144:76�C:

Knowing the interface temperature ti, the values of qL and qR through the steel and brass,
respectively, are

qL ¼ 3:13� 104 W

qR ¼ 1:18� 105 W:

4.1.2 Case (B) Surfaces at the Same Temperature

This gives the following boundary conditions:

at x ¼ 0; t ¼ t1
and; at x ¼ d; t ¼ t1

Applying the boundary conditions to Eq. (4.2), we get

at x ¼ 0; t1 ¼ C2

and at x ¼ d;

t1 ¼ � qg
2k

d2 þC1dþC2 ¼ � qg
2k

d2 þC1dþ t1

This gives

C1 ¼ qg
2k

d

Inserting the value of C1 and C2 in Eq. (4.2) we get

t ¼ � qg
2k

x2 þ qg
2k

d
� �

xþ t1 ¼ qg
2k

d� xð Þxþ t1 ð4:12Þ
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Equation (4.12) is the equation of temperature distribution through the wall. For a given
value of heat generation rate qg, the temperature distribution is a function of the distance
x only and the equation can be written as

tðxÞ ¼ qg
2k

d� xð Þxþ t1 ð4:13Þ

The above equation can also be obtained by putting t2 = t1 in Eq. (4.4).
It is obvious that in the present case, the maximum temperature must be at x = d/2 and

tmax ¼ qg
2k

d� d
2

� �
d
2
þ t1

¼ qg
8k

d2 þ t1

ð4:14Þ

The heat flow from the right face is

qR ¼ �kA
dt

dx

� �
x¼d

or

qR ¼ kA
qg
2k

� �
d ¼ 1

2
ðAdÞ � qg

From the symmetry, the total heat transfer rate qt is

qt ¼ 2qR ¼ ðAdÞ � qg

The heat conducted to the face qR is rejected to the surrounding by convection. If the
surrounding fluid is at temperature t∞ and h is the heat transfer coefficient at the wall, then

ðAdÞ � qg
2

¼ hAðt1 � t1Þ

or

t1 ¼ qg
2h

dþ t1

Substituting the value of t1 in Eq. (4.13), we get

t ¼ qg
2k

ðd� xÞxþ qg
2h

dþ t1: ð4:15Þ

The maximum temperature is at the midpláne of the wall, and its value can be obtained by
putting x = d/2.

Example 4.3 An electric current I = 10A flows through a metal strip of rectangular cross-
sections (8 mm � 1 mm) and 1 m long. The voltage difference between the strip ends is
230 V. Find the temperature in the mid of strip thickness if the temperature of the surface of
the strip is 200°C. The thermal conductivity of the strip material is 25 W/(m K).
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Solution

Heat generated per unit volume,

qg ¼ V � I

ðcross-sectionÞ � length
¼ 230� 10

8� 1� 10�6
¼ 2:875� 108 W/m3:

Temperature at the midplane of the strip is

tmax ¼ qg
8k

d2 þ ts

¼ 2:875� 108

8� 25
� 0:0012 þ 200 ¼ 201:44�C:

Example 4.4 A 100 mm thick plane wall generates heat at the rate of 1 � 105 W/m3. One
side of the wall is exposed to the ambient air at 30°C while the other side of the wall is
insulated. The convective heat transfer coefficient on the airside is 400 W/(m2 K). Proceeding
from the basic principles, determine the location and value of the maximum temperature to
which the wall is subjected. The thermal conductivity of the wall material is 2 W/(m K).

Solution

The one-dimensional steady-state conduction equation with heat generation is

d2t

dx2
þ qg

k
¼ 0 ð4:1Þ

Integrating the above equation, we get

dt

dx
¼ � qg

k
xþC1 ðiÞ

and

t ¼ � qg
2k

x2 þC1xþC2 ðiiÞ

The constants C1 and C2 are to be found from the boundary conditions of the problem. At
x = 0, the wall is insulated and hence

dt

dx
¼ 0;

which gives C1 = 0.
At x = d, the heat reaching the wall by conduction is rejected to the surrounding by

convection (refer Fig. 4.5). Thus

�kA
dt

dx

� �
x¼d

¼ hA tðdÞ � t1½ �
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or

� dt

dx

� �
x¼d

¼ h

k
tðdÞ � t1½ � ðiiiÞ

From Eq. (i), with C1 = 0, dt/dx at x = d is

dt

dx

� �
x¼d

¼ � qg
k
d

and from Eq. (ii), t(d) is

tðdÞ ¼ � qg
2k

d2 þC2 ðivÞ

Substitution of the values of dt/dx and t(d) in Eq. (iii), we have

qg
k
d ¼ h

k
� qg
2k

d2 þC2 � t1
h i

which gives

C2 ¼ qg
h
dþ qg

2k
d2 þ t1

Putting the value of C2 in Eq. (ii), we get the equation of the temperature distribution
through the wall as

t ¼ � qg
2k

x2 þ qg
h
dþ qg

2k
d2 þ t1

At the insulated wall side, dt/dx = 0, hence the temperature is maximum. Putting x = 0, we
get the maximum temperature

tmax ¼ qg
h
dþ qg

2k
d2 þ t1

¼ 1� 105

400
� 0:1þ 1� 105

2� 2
� 0:12 þ 30 ¼ 305�C

x = 0 x = δ

● t∞ = 30oC

h = 400 W/(m2 K)

100

Fig. 4.5 Example 4.4
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4.2 Cylinder with Uniform Heat Generation

Consider an elemental cylinder of thickness dr at distance r from the central axis in Fig. 4.6.
From the Fourier’s conduction equation, the heat entering the shell surface at radius r is

qr ¼ �k2prL
dt

dr
ðiÞ

The heat leaving the face at distance r + dr is

qrþ dr ¼ qr þ d

dr
qrð Þdr ðiiÞ

Net heat leaving the elemental cylinder is

qrþ dr � qr ¼ d

dr
qrð Þdr

¼ d

dr
�k2prL

dt

dr

� �
dr

¼ �k2pL
d

dr
r
dt

dr

� �
dr

ðiiiÞ

The heat generated in the elemental cylindrical cell is

q0g ¼ ð2prLdrÞqg ðivÞ

where 2rLdr is the volume of the elemental cylinder and qg is the rate of heat generation per
unit volume.

In the equilibrium, the total heat generated in the elemental cylinder must equal the net
heat leaving the elemental cylinder, i.e.

�k2pL
d

dr
r
dt

dr

� �
dr ¼ ð2prLdrÞqg

or

d

dr
r
dt

dr

� �
þ qg

k
r ¼ 0 ð4:16Þ

qr 
qr+dr 

r 

dr 

Fig. 4.6 Conduction with heat generation in a cylinder
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Equation (4.16) can also be obtained from the general heat conduction equation by
assuming one-dimensional steady state heat conduction with constant thermal conductivity.

Integrating Eq. (4.16), we get

r
dt

dr
þ qg

k

r2

2
þC1 ¼ 0

or
dt

dr
þ qg

2k
rþ C1

r
¼ 0 ðvÞ

Further integration gives

tþ qg
4k

r2 þC1 ln rþC2 ¼ 0 ðviÞ

The constants of the integration in Eq. (vi) are determined from the boundary conditions,
which are

at r ¼ 0; dt=dr ¼ 0

and at r ¼ R; i:e:at the surface t ¼ t1

Applying the first boundary condition to Eq. (v), we get C1 ¼ 0
Inserting C1 = 0 and applying the second boundary condition to Eq. (vi) gives

t1 þ qg
4k

R2 þ 0þC2 ¼ 0

or

C2 ¼ � qg
4k

R2 þ t1
� �

Inserting the value of C2 in Eq. (vi) we get

tþ qg
4k

r2 � qg
4k

R2 þ t1
� �

¼ 0

or

t ¼ qg
4k

ðR2 � r2Þþ t1 ð4:17Þ

which is the equation of temperature distribution through the cylindrical wall.
The heat conducted to the surface of the cylinder is transferred by convection to the

surrounding fluid, hence

q ¼ hAðt1 � t1Þ

or � kA
dt

dr

� �
r¼R

¼ hAðt1 � t1Þ

or � k � qg
2k

R
� �

¼ hðt1 � t1Þ
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or

t1 ¼ t1 þ qg
2h

R

Substituting the value of t1 in Eq. (4.17), we get

t ¼ qg
4k

ðR2 � r2Þþ qg
2h

Rþ t1 ð4:18Þ

The maximum temperature is at the centre r = 0 where dt/dr = 0 and is

tmax ¼ qg
4k

R2 þ qg
2h

Rþ t1 ð4:19Þ

Example 4.5 A current of 100 A flows through a stainless steel wire of 5 mm diameter and
1 m long. The wire is submerged in a liquid bath maintained at 10°C. The heat transfer
coefficient for the wire surface is 500 W/(m2 K). If the thermal conductivity of the wire
material is 20 W/(m K) and resistivity is 70 � 10−6 X-cm, calculate the centreline tem-
perature of the wire.

Solution

Resistance of the wire

Re ¼ qL
A

¼ 70� 10�6 � 100

p� ð0:25Þ2 ¼ 0:03565X::

Heat generated due to ohmic heating of wire

I2Re ¼ 1002 � 0:03565 ¼ 356:5W:

Heat generation rate per unit volume

qg ¼ 356:5

p� ð2:5=1000Þ2 � 1
¼ 1:8156� 107 W/m3:

Maximum temperature from Eq. (4.19) is

tmax ¼ qg
4k

R2 þ qg
2h

Rþ t1

¼ 1:8156� 107

4� 20
2:5
1000

� �2

þ 1:8156� 107

2� 500
2:5
1000

� �
þ 10

¼ 56:81�C:
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Example 4.6 A plate with uniformly distributed inner heat source with a volumetric heat
generation rate of qg is exposed on both sides to a flowing fluid. The local coefficients of heat
transfer from the surfaces of the plate to the surrounding fluid and the bulk fluid temperature
on the two sides of the plate are h1 and h2 and tf1 and tf2, respectively. The thickness of the
plate is d and thermal conductivity is k.

(a) Show that when the maximum temperature is at the middle of the plate

tf2 � tf1 ¼ qgd
1
h1

� 1
h2

� �
1
2

(b) Show that when tf1 = tf2 and h2 = 2h1, location of the maximum temperature is given by

xo
d
¼ h1dþ k

2h1dþ 3k

Solution

(a) For the maximum temperature, with uniform volumetric heat generation rate, to occur at
the middle

t1 ¼ t2

The heat lost from the left face is given by, refer Fig. 4.7,

qL ¼ kA � t1 � t2
d

þ qg
2k

d
� �

ðiÞ

Hence, for t1= t2,

qL ¼ Ad
qg
2

ðiiÞ

The heat lost from the left face is also given by
qL ¼ h1Aðt1 � tf1Þ ðiiiÞ

Equating Eqs. (ii) and (iii),

ðt1 � tf1Þ ¼ qg
2h1

d ðivÞ

t2●  ●    

tf1 ●  

 

δ/2 δ/2 ● tf2 

t1 

Fig. 4.7 Example 4.6
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Similarly for the right-hand face,

ðt2 � tf2Þ ¼ qg
2h2

d ðvÞ

From Eqs. (iv) and (v) for t1 = t2,

ðtf2 � tf1Þ ¼ qgd
2

1
h1

� 1
h2

� �
:

(b) From Eqs. (i) and (iii),

kA � t1 � t2
d

þ qg
2k

d
� �

¼ h1Aðt1 � tf1Þ

or

� t1 � t2
d

þ qg
2k

d
� �

¼ h1
k
ðt1 � tf1Þ ðviÞ

Similarly at the right face,

t1 � t2
d

þ qg
2k

d
� �

¼ h2
k
ðt2 � tf2Þ ðviiÞ

Putting h2 = 2h1 and tf2 = tf1 in the above equation, we obtain

t1 � t2
d

þ qg
2k

d
� �

¼ 2h1
k

ðt2 � tf1Þ ðviiiÞ

Multiplying both sides of Eq. (vi) by 2, we get

�2
t1 � t2

d
þ qg

k
d ¼ 2h1

k
ðt1 � tf1Þ ðixÞ

Subtracting Eq. (viii) from Eq. (ix), we get

� 3
t1 � t2

d
þ qg

2k
d ¼ 2h1

k
ðt1 � tf1 � t2 þ tf1Þ

¼ 2h1
k

ðt1 � t2Þ

or

�3þ qg
2kðt1 � t2Þ d

2 ¼ 2h1
k

d

Putting qgd
2

2kðt1�t2Þ ¼ B
� �

we get

�3þB ¼ 2h1
k

d
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The simplification gives the value of parameter B as

B ¼ 2h1
k

dþ 3

The position of maximum temperature from Eq. (4.7),

x

d
¼ B� 1

2B

Substituting the value of B, we get

x

d
¼

2h1
k dþ 3� 1

2 2h1
k dþ 3

� 	
or

xo
d
¼ h1dþ k

2h1dþ 3k
:

Example 4.7 A 5 mm thick plate with uniformly distributed internal heat source having a
volumetric rate of heat libration qg = 3.0 � 108 W/m3, is exposed on both sides to cooling
fluids. The local coefficients of heat transfer from the two sides of the plate to the fluid to
which it is exposed are 3000 W/(m2 K) and 1800 W/(m2 K) and the temperatures of the fluid
are 140°C and 150°C, respectively. If the thermal conductivity of the plate material is 30 W/
(m K), determine position and magnitude of the maximum temperature in the plate and
temperature of both sides of the plate.

Solution

From Example 4.6,

� t1 � t2
d

þ qg
2k

d ¼ h1
k
ðt1 � tf1Þ

or

� t1 � t2
0:005

þ 3:0� 108

2� 30
� 0:005 ¼ 3000

30
ðt1 � 140Þ

or

�1:5t1 þ t2 ¼ �195 ðiÞ

Similarly for the right-hand face
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t1 � t2
d

þ qg
2k

d ¼ h2
k
ðt2 � tf1Þ

or

t1 � t2
0:005

þ 3:0� 108

2� 30
� 0:005 ¼ 1800

30
ðt2 � 150Þ

or

t1 � 1:3t2 ¼ �170 ðiiÞ

Solving Eqs. (i) and (ii) for t1 and t2, we get

t1 ¼ 445:8 �C
t2 ¼ 473:7 �C:

Value of parameter B is

B ¼ qgd
2

2kðt1 � t2Þ ¼
3:0� 108 � 0:0052

2� 30� ð445:8� 473:7Þ ¼ �4:48

The position of maximum temperature from Eq. (4.7),

x

d
¼ B� 1

2B
¼ �4:48� 1

2� ð�4:48Þ ¼ 0:6116

or

x ¼ 3:06mm:

Maximum temperature from Eq. (4.8) is

tmax � t2
t1 � t2

� �
¼ Bþ 1ð Þ2

4B

or

tmax ¼ Bþ 1ð Þ2
4B

t1 � t2ð Þþ t2 ¼ �4:48þ 1ð Þ2
4� ð�4:48Þ ð445:8� 473:7Þþ 473:7 ¼ 492:55�C:

Example 4.8 A plate, with a uniform rate of volumetric heat generation qg, is exposed on
both sides to flowing fluids. The thickness of the plate is d and the thermal conductivity of
the material is k. The temperature of the fluid on one side of the plate is tf1 with heat transfer
coefficient h1. Determine the temperature of the fluid on the opposite side of the plate so that
the rate of heat flow from this surface is equal to zero.
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Solution

The temperature of the opposite surface of the plate must be equal to the fluid temperature as
there is no heat transfer from this surface, i.e. t2 = tf2 since q = h2 A (t2 − tf2) = 0.

The total heat generated in the plate,

q ¼ qgAd

The heat is rejected from only one face, i.e.

h1A t1 � tf1
� 	 ¼ qgAd

or

t1 ¼ qgAd
h1A

þ tf1

The conduction heat flow to this face is

kA � t1 � t2
d

þ qg
2k

d
� �

¼ qgAd

or

�ðt1 � t2Þ ¼ qg
2k

d2

Substitution of the values of t2 and t1, we get

� qgd
h1

� tf1 þ tf2 ¼ qgd
2

2k

or

tf2 ¼ tf1 þ qgd
d
2k

þ 1
h1

� �
:

Example 4.9 A hollow cylindrical copper bar, having inner and outer diameters of 13 mm
and 50 mm, respectively, carries a current density of 5000 A/cm2. When the outer surface
temperature is maintained at 40°C and no heat is removed through the inner surface, find the
position and value of the maximum temperature. For copper, assume electrical resistivity
q = 2 � 10−6 Ω-cm and thermal conductivity k = 381 W/(m K).

Solution

Heat generation rate per unit volume,

qg ¼ I2R

AL
¼ 5000� 104 � Að Þ2

AL
� qL

A
¼ ð5000� 104Þ2 � 2� 10�8 ¼ 50� 106 W/m3:
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The differential equation for one-dimensional heat flow with heat generation in cylindrical
coordinates is

d

dr
r
dt

dr

� �
þ qg

k
r ¼ 0 ð4:16Þ

Integration of Eq. (4.16) gives

r
dt

dr
þ qg

k

r2

2
þC1 ¼ 0

or
dt

dr
þ qg

2k
rþ C1

r
¼ 0

Further integration gives the temperature distribution equation as

tþ qg
4k

r2 þC1 ln rþC2 ¼ 0 ðiÞ

The constants of the integration in Eq. (i) are determined from the boundary conditions,
which are

at r ¼ r1; dt=dr ¼ 0 as no heat is removed from the inner surface;

and at r ¼ r2; t ¼ t2

The first boundary condition gives

0þ qg
2k

r1 þ C1

r1
¼ 0

or

C1 ¼ � qg
2k

r21

Inserting value of constant C1 in the temperature distribution equation, we get

tþ qg
4k

r2 � qg
2k

r21 ln rþC2 ¼ 0

The second boundary condition gives

t2 þ qg
4k

r22 �
qg
2k

r21 ln r2 þC2 ¼ 0

or

C2 ¼ qg
2k

r21 ln r2 �
qg
4k

r22 � t2
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Using the numerical values given in the problem,

C1 ¼ � qg
2k

r21 ¼ � 50� 106

2� 381
� 13

2000

� �2

¼ �2:772

C2 ¼ 50� 106

2� 381
� 13

2000

� �2

ln
50

2000

� �
� 50� 106

4� 381
� 50

2000

� �2

�40 ¼ �70:82

Substitution of the values of the constants and other parameters in Eq. (i) gives

tþ qg
4k

r2 þC1 ln r þ C2 ¼ 0

or

tþ 50� 106

4� 381
r2 � 2:772 ln r � 70:82 ¼ 0

The maximum temperature is at the inner surface (r = 13/2000 m) and is

t ¼ � 50� 106

4� 381
13

2000

� �2

þ 2:772� ln
13

2000

� �
þ 70:82 ¼ 55:47�C:

The heat transfer at the outer surface of the bar is

q ¼ �kA
dt

dr

� �
r¼r2

where

dt

dr

� �
r¼r2

¼ � qg
2k

r2 � C1

r2

¼ � 50� 106

2� 381
� 50
2000

��2:772� 2000
50

¼ �1529:6

Hence,

q ¼ �381� 2p� 50
2000

� 1� ð�1529:6Þ ¼ 91542W:

Check: The heat transfer must equal the heat generation rate, which is

q ¼ qg � p
4
ðr2 � r1Þ2 � L ¼ 50� 106 � p� 50

2000

� �2

� 13
2000

� �2
" #

� 1:0 ¼ 91539W:
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Example 4.10 A fuel element is made in the form of a long hollow cylinder having an inner
diameter (2r1) of 20 mm and outer diameter (2r2) = 30 mm. The element is made of uranium
with a thermal conductivity k1 = 30 W/(m K). The inner and outer surfaces of the fuel
element carry tightly fitting stainless steel cladding of 1 mm thickness. The thermal con-
ductivity of steel k2 is 20 W/(m K). The volumetric rate of heat generation is 6 � 107 W/m3

and is assumed to be uniform over the cross-section.
The fuel element is being cooled with carbon dioxide flowing along an outer channel. The

bulk temperature of the coolant in the outer channel is 200°C. The local coefficient of heat
transfer from the outer cladding to the coolant is 500 W/(m2 K). Determine the maximum
temperature for the fuel element.

Solution

The heat generated in unit length of the fuel element is

q ¼ qgV ¼ qg � p� ðr22 � r21Þ � 1

¼ 6� 107 � p� ð152 � 102Þ � 10�6 � 1 ¼ 23561:94W/m length:

If the temperature of the outer surface of the fuel element is t2, then

q ¼ t2 � tf2
1

2pk2L
ln r3

r2
þ 1

2pr3L
� 1

h2

Substituting L = 1 m, k2 = 20 W/(m K), r3 = (r2 + 1) = 0.016 m, r3/r2 = 16/15,
h2 = 500 W/(m2 K) and tf2 = 200°C, we get

23561:94 ¼ t2 � 200
1

2p � 20 � 1 ln
16
15 þ 1

2p � 0:016 � 1 � 1
500

or

t2 ¼ 680:85�C:

From Eq. (4.16), by integration, we have

dt

dr
þ qg

2k
rþ C1

r
¼ 0 ðiÞ

Further integration gives

tþ qg
4k

r2 þC1 ln rþC2 ¼ 0 ðiiÞ

The boundary conditions are

at r ¼ r1 ¼ 10mm; dt=dr ¼ 0 as no heat is removed from the inner surface;

and at r ¼ r2 ¼ 15mm; t ¼ t2 ¼ 680:85�C:
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Applying the boundary conditions to Eqs. (i) and (ii), we have, for the given data of the
problem,

C1 ¼ � qg
2k

r21 ¼ � 6� 107

2� 30
� 0:01ð Þ2¼ �100

and

680:85þ 6� 107

4� 30
� 0:015ð Þ2�100 ln ð0:015ÞþC2 ¼ 0

or
C2 ¼ �1213:32

Substitution of the values of C1 and C2 in Eq. (ii) we get the temperature distribution
equation as

tþ qg
4k

r2 � 100 ln r � 1213:32 ¼ 0

The maximum temperature t = tmax will occur at the inner surface where dt/dr = 0. Hence,
from the above equation,

tmax ¼ � qg
4k

r21 þ 100 ln r1 þ 1213:32

¼ � 6� 107

4� 30
ð0:01Þ2 þ 100 lnð0:01Þþ 1213:32 ¼ 702:8 �C:

Example 4.11 A stainless steel tube with an inner diameter of 9.5 mm and an outer
diameter of 10 mm is heated by passing an electric current. The tube carries a current of 300
A. The specific resistance and the thermal conductivity of the steel are 0.8 X.mm2/m and
18.0 W/(m K), respectively. Calculate the volumetric rate of heat liberation from the tube
and the temperature drop across the wall of the tube if all the heat generated in the wall of the
tube is transferred from its inner surface. Consider one-meter length of the tube.

Solution

Electric resistance of the tube,

R ¼ qL
A

¼ 0:8� 1
ðp=4Þ � ð102 � 9:52Þ ¼ 0:1044X=m:

The rate of heat generation per m length of the tube,

q ¼ I2R ¼ 3002 � 0:1044 ¼ 9396W=m:

Volumetric rate of heat generation,

qg ¼ I2R

AL
¼ 9396� 106

ðp=4Þ � ð102 � 9:52Þ � 1
¼ 1:227� 109 W/m3:
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Following the procedure of the previous example, we have

dt

dr
þ qg

2k
rþ C1

r
¼ 0

and

tþ qg
4k

r2 þC1 ln rþC2 ¼ 0

The boundary conditions are

at r ¼ r1; t ¼ t1;

and at r ¼ r2; dt=dr ¼ 0 as no heat is removed from the outer surface

Applying the second boundary condition, we have

C1 ¼ � qg
2k

r22

This gives the temperature distribution equation as

tþ qg
4k

r2 � qg
2k

r22 ln rþC2 ¼ 0

The condition t = t1 at r = r1 gives

C2 ¼ �t1 � qg
4k

r21 þ
qg
2k

r22 ln r1

Substituting the value of constant C2 gives the temperature distribution equation as

tþ qg
4k

r2 � qg
2k

r22 ln r � t1 � qg
4k

r21 þ
qg
2k

r22 ln r1 ¼ 0

The temperature drop across the wall (t2 − t1), where t2 is the temperature at radius r2,

t2 � t1 ¼ qg
2k

� r22
2
þ r22 ln r2 � r22 ln r1 þ

r21
2

� �

¼ 1:227� 109

2� 18
� 52

2
þ 52 ln 5� 52 ln

9:5
2

� �
þ 9:5

2

� �2

� 1
2

" #
� 10�6

¼ 2:25
�
C:

Example 4.12 Show that the temperature distribution relation for a long cylinder with
uniform heat generation can be expressed in non-dimensional form as

t � tw
tmax � tw

¼ 1� r

R

� �2

where tw is the temperature at the outer surface of the cylinder.
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Solution

From Eq. (4.17), we have

t ¼ qg
4k

ðR2 � r2Þþ tw

or

t � tw ¼ qg
4k

ðR2 � r2Þ ðiÞ

The maximum temperature is at r = 0, thus

tmax � tw ¼ qg
4k

R2 ðiiÞ

From Eqs. (i) and (ii), we get
t � tw

tmax � tw
¼ 1� r

R

� �2
ð4:20Þ

Example 4.13 Show that for an electric current carrying wire, the maximum temperature at
the axis of the wire is given by

tmax ¼ tw þ i2

4kke
R2

where k and ke are the thermal and electric conductivities of the wire material, respectively,
and i is current density (electrical conductivity ke is reciprocal of the electrical resistivity q).

Solution

From Example 4.12, we have

tmax ¼ tw þ qg
4k

R2

For an electric current carrying wire, qg = I2Re/AL) = I2 (qL/A)/(AL)= (I/A)2/ke = i2/ke,
where Re is the electrical resistance (the electrical conductivity ke is reciprocal of the
resistivity). Hence,

tmax ¼ tw þ i2

4kke
R2

4.3 Solid Sphere with Uniform Heat Generation

Consider an elemental spherical shell of thickness dr at distance r from the centre, see Fig. 4.8.
From the Fourier’s conduction equation, the heat entering the shell surface at radius r is

qr ¼ �kA
dt

dr
¼ �kð4pr2Þ dt

dr
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The heat leaving the face at distance (r + dr) is

qrþ dr ¼ qr þ d

dr
qrð Þdr

Net heat leaving the elemental shell is

qrþ dr � qr ¼ d

dr
qrð Þdr

¼ d

dr
�4kpr2

dt

dr

� �
dr

¼ �4kp
d

dr
r2

dt

dr

� �
dr

The heat generated in the elemental shell is

q0g ¼ ð4pr2drÞqg

where 4pr2dr is the volume of the elemental cell and qg is the rate of heat generation per unit
volume.

In the equilibrium, the total heat generated in the elemental spherical cell must equal the
net heat leaving the elemental sphere, i.e.

�4kp
d

dr
r2

dt

dr

� �
dr ¼ ð4pr2drÞqg

or

d

dr
r2

dt

dr

� �
þ qg

k
r2 ¼ 0 ð4:21Þ

Equation (4.21) can also be obtained from the general heat conduction equation by
assuming one-dimensional steady-state heat conduction with constant thermal conductivity.

Integrating Eq. (4.21), we get

r2
dt

dr
¼ � qg

k

r3

3
þC1 ðiÞ

qr qr+dr

r
dr

Fig. 4.8 Conduction with heat generation in a sphere
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At r = 0, dt/dr = 0 for a solid sphere. Applying this boundary condition, we get

C1 ¼ 0

Hence,
dt

dr
¼ � r

3
qg
k

Its integration gives

t ¼ � qg
3k

r2

2
þC2 ðiiÞ

The constant of the integration C2 can be determined from the following boundary
condition.

At r ¼ R; t ¼ t2.
Applying the second boundary condition, we get

t2 ¼ � qg
6k

R2 þC2

This gives

C2 ¼ qg
6k

R2 þ t2

Inserting the value of C2 in Eq. (ii), we get

t ¼ � qg
6k

r2 þ qg
6k

R2 þ t2

or

t ¼ qg
6k

ðR2 � r2Þþ t2 ð4:22Þ

which is the equation of temperature distribution through the spherical wall.
The maximum temperature is at the centre (r = 0), where dt/dr = 0. Hence,

tmax ¼ qg
6k

R2 þ t2 ð4:23Þ

The heat conducted to the surface of the sphere is transferred by convection to the
surrounding fluid, hence

q ¼ hAðt2 � t1Þ

or

�kA
dt

dr

� �
r¼R

¼ hAðt2 � t1Þ
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or

�k � qg
3k

R
� �

¼ hðt2 � t1Þ

or

t2 ¼ t1 þ qg
3h

R

Substituting the value of t2 in Eq. (4.22), we get the temperature distribution equation in
terms of the surrounding temperature t∞ as

t ¼ qg
6k

ðR2 � r2Þþ qg
3h

Rþ t1 ð4:24Þ

Example 4.14 A 90 mm diameter orange generates 5.25 � 103 W/m3 heat while it
undergoes the ripening process. If the external surface of the orange is at 5°C, determine the
temperature at the centre of the orange. Also, determine the heat flow from the outer surface
of the orange. The orange may be treated as a spherical body. The average thermal con-
ductivity may be taken as 0.25 W/(m K) for the orange material.

Solution

The temperature at the centre of the orange from Eq. (4.23) is

tmax ¼ qg
6k

R2 þ t2

¼ 5:25� 103

6� 0:25
0:09
2

� �2

þ 5 ¼ 12:1 �C:

The heat flow from the outer surface of the orange equals the heat generated in the orange
and is

¼ 4
3
pR3qg ¼ 4

3
p

0:09
2

� �3

�5:25� 103 ¼ 2:0W:

4.4 Heat Transfer Through Piston Crown

In internal combustion engines, the piston head (crown) is subjected to a very high gas
temperature during the combustion. The heat flowing to the piston crown from the hot gases
is transferred by conduction through the crown to its edge and then to the cylinder wall. The
centre of the crown is at the farthest point from the cylinder wall and is at the highest
temperature. A very high temperature at the crown centre may cause piston failure and may
also lead to combustion problems in the case of petrol engines. An approximate analysis is
presented below to estimate this temperature.

Piston head is a thin disc of thickness b which is subjected to uniform heat flux qgas due to
convection and radiation from the gases, refer Fig. 4.9. It is assumed in the presented
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analysis that the heat transfer from the lower part of the head to the surrounding air is
negligible. Thus, there is only radial heat transfer through the piston crown by conduction.

Consider an elemental ring of radial thickness dr at distance r from the centre. From the
Fourier’s conduction equation, the heat entering the ring at radius r is

qr ¼ �kA
dt

dr
¼ �kð2prbÞ dt

dr

The heat leaving the face at distance (r + dr) is

qrþ dr ¼ qr þ d

dr
qrð Þdr

Net heat leaving the elemental ring is

qrþ dr � qr ¼ d

dr
qrð Þdr

¼ d

dr
�k2prb

dt

dr

� �
dr

¼ �2pbk
d

dr
r
dt

dr

� �
dr

ðiÞ

The heat incident at the surface of the elemental ring is

q0g ¼ ð2prdrÞqgas ðiiÞ

where 2prdr is the surface area of the elemental ring and qgas is the heat flux due to the gas.
In the equilibrium, the heat incident must equal the net heat leaving the elemental ring, i.e.

�2pbk
d

dr
r
dt

dr

� �
dr ¼ ð2prdrÞqgas

qr qr+dr

r
dr

b

to 

Piston
Cylinder

Heat of gas

Fig. 4.9 Heat transfer through piston crown
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or
d

dr
r
dt

dr

� �
þ qgas

bk
r ¼ 0 ð4:25Þ

Integrating the above equation, we get

r
dt

dr
þ qgas

bk

r2

2
¼ C1

At r = 0, dt/dr = 0 for a solid circular plate. Applying this boundary condition, we get

C1 ¼ 0

Hence,
dt

dr
þ r

2
qgas
bk

¼ 0

Further integration gives

tþ qgas
2bk

r2

2
¼ C2 ðiiiÞ

The constant of the integration C2 can be determined from the following boundary
condition.

At r ¼ R; t ¼ to.
Applying the second boundary condition, we get

to þ qgas
4bk

R2 ¼ C2

Inserting the value of C2 in Eq. (iii), we get the equation of temperature distribution as

t ¼ qgas
4bk

ðR2 � r2Þþ t0 ð4:26Þ

The maximum temperature will occur at the centre (r = 0) and is

tmax ¼ qgas
4bk

R2 þ t0 ð4:27Þ

The total heat transferred to the piston crown is

qtotal ¼ pR2qgas

Example 4.15 The base of an electric iron is made of aluminium. The weight of the base is
1.5 kg. The surface area of the base is 0.04 m2. An electric heater of 1000 W capacity is
placed over the base. When heating is turned on, the base is placed in a vertical position.
How long the iron will take to reach a temperature of 120°C if at the start of the heating the
base is at the room temperature? The room temperature is 20°C and the heat transfer
coefficient from the surface of the base to the surrounding is 20 W/(m2 K). Take following
data for aluminium q = 2700 kg/m3, c = 900 J/(kg °C), and k = 200 W/(m K).

224 4 Conduction with Heat Generation

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Solution

The energy balance gives

qheater ¼ increase in heat content of the baseþ heat lost to the surroundings

or

qheater ¼ mc
dh
ds

þ hAh ðiÞ

where

h tbase − tambient
dh
ds

rate of increase of the temperature of the base,

m mass of the base,
c specific heat of the base material,
A area of base transferring heat by convection.

Rearranging Eq. (i), we have

mc

hA

dh
ds

¼ qheater
hA

� h ðiiÞ

Let mc/hA = a and qheater/hA = b, then

a
dh
ds

¼ b� h

or

dh
b� h

¼ 1
a
ds

Integration between h = 0 at s = 0 to h = h1 at s = s1 gives

� lnðb� hÞ½ �h10 ¼
1
a
s1

or

ln
b

b� h1

� �
¼ 1

a
s1

or

s1 ¼ a ln
b

b� h1

� �
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From the given data

a ¼ mc

hA
¼ 1:5� 900

20� 0:04
¼ 1687:5

b ¼ qheater
hA

¼ 1000
20� 0:04

¼ 1250

Substitution gives

s1 ¼ 1687:5� ln
1250

1250� 100

� �
¼ 140:7 s:

Example 4.16 Prove that the temperature distribution in a plane wall shown in Fig. 4.10
with uniform heat generation qg is given by

t ¼ � 1
b
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tc þ 1

b

� �2

� qg
bko

x2

s

where the thermal conductivity is given by k = ko(1 + bt).

Solution

Heat balance for the elemental strip gives

qxþ dx � qx ¼ ðAdxÞqg

or

qx þ d

dx
qxð Þdx� qx ¼ Adxqg

or

d

dx
qxð Þ ¼ Aqg

or

d

dx
�kA

dt

dx

� �
¼ Aqg

t1 t1 

x

qx qx+dx

tc 

dx
δ

Fig. 4.10 Example 4.16
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or

d

dx
�k

dt

dx

� �
¼ qg

Integration gives

k
dt

dx
þ qgx ¼ C1 ðiÞ

At x = 0, dt/dx = 0, hence C1 = 0. Putting k = ko(1 + bt), we have

koð1þ btÞ dt
dx

þ qgx ¼ 0

or

dt

dx
þ bt

dt

dx
þ qg

ko
x ¼ 0

Further integration gives

tþ bt2

2
þ qg

ko
� x2

2
¼ C2 ðiiÞ

At x = 0, t = tc, hence

C2 ¼ tc þ bt2c
2

Substitution of the value of C2 in Eq. (ii) gives

tþ bt2

2
þ qg

ko
� x2

2
� tc � bt2c

2
¼ 0

Solution of this quadratic equation is

t ¼
� 2

b þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
b

� �2
�4 qg

bko
x2 � 2 tc

b � t2c

� �r
2

¼ � 1
b
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tc þ 1

b

� �2

� qg
bko

x2

s
;

which is the desired result.
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Example 4.17 Derive the expression of the distribution of temperature in a cylindrical
object with uniform heat generation. The material thermal conductivity is given by ko(1 + bt).

Solution

The differential equation for a cylinder is

d

dr
�kr

dt

dr

� �
¼ qgr

Integration gives

kr
dt

dr
þ qg

r2

2
¼ C1 ðiÞ

At the centre (r = 0), dt/dr = 0, hence C1 = 0. Putting k = ko(1 + bt), we have

koð1þ btÞr dt
dr

þ qg
r2

2
¼ 0

or

dt

dr
þ bt

dt

dr
þ qg

2ko
r ¼ 0

Further integration gives

tþ bt2

2
þ qg

2ko
� r2

2
¼ C2 ðiiÞ

At r = 0, t = tc hence

C2 ¼ tc þ 1
2
bt2c

Substitution of the value of C2 in Eq. (ii) gives

tþ bt2

2
þ qg

4ko
r2 � tc � 1

2
bt2c ¼ 0

Solution of this quadratic equation is

t ¼
� 2

b þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
b

� �2
�4 qg

2bko
r2 � 2 tc

b � t2c

� �r
2

¼ � 1
b
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tc þ 1

b

� �2

� qg
2bko

r2

s
;

which is the desired result.
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Example 4.18 The left face of a plane wall of thickness L and thermal conductivity k is
exposed to a microwave radiation which causes volumetric heat generation in the wall, refer
Fig. 4.11. The heat generation varies as

qg ¼ qo 1� x

L

� �

where qo (W/m3) is a constant.
The other side of the wall is insulated. If the exposed surface of the wall is at a constant

temperature Ts, obtain an expression of temperature distribution.

Solution

The differential equation for the elemental strip in the wall is

k
d2t

dx2
þ qg ¼ 0

Substituting the given equation of heat generation, we get

k
d2t

dx2
þ q0 1� x

L

� �
¼ 0

Integrating once,

dt

dx
þ q0

k
x� q0

kL

x2

2
¼ C1 ðiÞ

At x = L, dt/dx = 0 since there is no heat transfer at this face. This gives

C1 ¼ qo
k

L� L2

2L

� �
¼ qoL

2k

Equation (i) takes the form

dt

dx
þ qo

k
x� qo

k

x2

2L

� �
� qoL

2k
¼ 0

Integrating again, we get

tþ qo
k

x2

2
� qo

k

x3

6L

� �
� qoL

2k
x ¼ C2

Radiation

x = 0
L

Insulated 
side 

Fig. 4.11 Example 4.18
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Applying the second boundary condition of t = ts at x = 0, we get the value of constant
C2 = ts. Substitution gives the expression of the temperature distribution as

t ¼ ts þ qo
6kL

x3 � 3x2Lþ 3L2x
� 	

At x = L, the temperature is maximum. Its value is obtained by putting x = L in the above
equation as

tmax ¼ ts þ qoL2

6k

Example 4.19 The outer surfaces of the composite wall shown in Fig. 4.12 are exposed to a
fluid at 20°C. The convective heat transfer coefficients are 500 W/(m2 K) and 1000 W/(m2

K) on the left and right faces, respectively. The middle wall B experiences uniform volu-
metric heat generation rate qg, while there is no heat generation in walls A and C. The
temperature at the interfaces are T1 = 220°C and T2 = 200°C. Assuming one-dimensional
heat flow and negligible contact resistance at the two interfaces, determine

(i) The heat generation rate, qg (W/m3),
(ii) The thermal conductivity kb, and
(iii) If the coolant flow on the left side of the wall fails causing practically no loss of heat

from this face (h1 = 0), determine the temperatures T1, T2 and Tmax of both wall sides.

Solution

(i) Heat generation rate, qg
Heat loss from the left face (A = 1 m2),

qL ¼ t1 � t1
La
ka
þ 1

h1

¼ 220� 20
60

1000�30 þ 1
500

¼ 5� 104 W:

Similarly, heat loss from the right face,

qR ¼ t2 � t1
Lc
kc
þ 1

h2

¼ 200� 20
30

1000�30 þ 1
1000

¼ 9� 104 W:

La = 60 mm, 
Lb = 50 mm, 
Lc = 30 mm, 
ka = 30 W/(m K), 
kb = ?, 
kc = 30 W/(m K), 
t1 = 220oC, 
t2 = 200oC, 
t∞ = 20oC.A B C

T1 T2 h1 = 500 h2 = 1000

qg qR qL 

La Lb Lc 

Fig. 4.12 Example 4.19
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Heat generated in the walls equals the sum of qL and qR. Hence, the heat generation
rate is

qg ¼ qL þ qR
ALb

¼ 5� 104 þ 9� 104

1� 0:05
¼ 2:8� 106 W/m3:

(ii) For the middle wall with uniform heat generation rate and surface temperatures T1 and
T2, the heat flow qR from Eq. (4.10) by putting x = Lb is

qR ¼ kb
t1 � t2
Lb

� �
þ qgLb

2

or

9� 104 ¼ kb
220� 200

0:05

� �
þ 2:8� 106 � 0:05

2

This gives kb = 50 W/(m K).

(iii) Temperature distribution through the middle wall is given by Eq. (4.4):

t ¼ qg
2kb

Lb � xð Þxþ t2 � t1
Lb

� �
xþ t1

¼ 2:8� 106

2� 50
0:05� xð Þxþ 200� 220

0:05

� �
xþ 220

or

t ¼ 1000x� 2:8� 104x2 þ 220

Position of Tmax from Eq. (4.7) is

x

Lb
¼ B� 1

2B

where

B ¼ qgL2b
2kb t1 � t2ð Þ ¼

2:8� 106 � ð0:05Þ2
2� 50� 220� 200ð Þ ¼ 3:5

Substitution gives

x ¼ 3:5� 1
2� 3:5

� 0:05 ¼ 0:0179 m from left side of the middle wall;

and

tmax ¼ 1000� 0:0179� 2:8� 104 � 0:01792 þ 220 ¼ 228:9�C:

Alternatively, Eq. (4.8) may be used.
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The temperatures of sides of the wall can be found from the convection heat transfer
equations as follows.

qL ¼ h1A t01 � t1
� 	

t01 ¼
qL
h1A

þ t1 ¼ 5� 104

500� 1
þ 20 ¼ 120�C

Similarly,

t02 ¼
qR
h2A

þ t1 ¼ 9� 104

1000� 1
þ 20 ¼ 110�C:

The temperature distribution through the composite wall is shown in Fig. 4.13a.

(iv) When h1 = 0,
t01 ¼ t1

and
qR ¼ ð9þ 5Þ � 104 W:

Therefore,

t02 ¼
qR
h2A

þ t1 ¼ 14� 104

1000� 1
þ 20 ¼ 160�C:

From conduction heat transfer equation,

qR ¼ kc
t2 � t02
Lc

or

t2 ¼ qRLc
kc

þ t02 ¼
14� 104 � 0:03

30
þ 160 ¼ 300�C:

370oC
300oC

160oC

A B C

ba

•220oC 200oC

120oC 110oC
qg

A B C

17.9 mm

Fig. 4.13 Example 4.19
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The maximum temperature (at the left interface),

tmax ¼ t2 þ qg
2kb

L2b ¼ 300þ 2:8� 106

2� 50
� 0:05ð Þ2¼ 370�C:

The temperature distribution is shown in Fig. 4.13b.

Example 4.20 Heat is uniformly generated in the wall of a very long hollow cylindrical
shell of thickness (R2 − R1). The heat is removed through the inner surface. The thermal
conductivity of the wall material varies with temperature as k = ko(1 + bt). Show that the
temperature distribution in the wall is given by

t ¼ � 1
b
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1

b

� �2

� qgR2
2

2kob
r

R2

� �2

�2 ln
r

R2

� �
� 1

" #vuut

where t2 is the temperature of the outer surface of the shell.

Solution

The differential equation for one-dimensional heat flow in cylindrical coordinates is

d

dr
kr

dt

dr

� �
þ qgr ¼ 0

Integration of the above equation gives

kr
dt

dr
þ qg

r2

2
¼ C1 ðiÞ

At r = R2, dt/dr = 0 since no heat is removed from the outer surface. This boundary
condition gives

C1 ¼ qgR2
2

2

Equation (i) takes the form

kr
dt

dr
þ qg

r2

2
� qgR2

2

2
¼ 0

or

koð1þ btÞ dt
dr

þ qg
r

2
� qgR2

2

2r
¼ 0

or

dt

dr
þ bt

dt

dr
þ qg

2ko
r � qgR2

2

2ko

1
r
¼ 0
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Integration of the above equation gives

tþ bt2

2
þ qg

2ko
:
r2

2
� qgR2

2

2ko
ln r ¼ C2 ðiiÞ

The second boundary condition is t = t2 at r = R2. This gives

C2 ¼ t2 þ bT2
2

2
þ qg

2ko
:
R2
2

2
� qgR2

2

2ko
lnR2

Substitution of the value of C2 in Eq. (ii) gives

tþ bt2

2
þ qgR2

2

4ko

r

R2

� �2

�1

" #
� qgR2

2

2ko
ln

r

R2

� �
� t2 � bt22

2
¼ 0 ðiiiÞ

or

t2 þ 2t
b

þ qgR2
2

2bko

r

R2

� �2

�1

" #
� qgR2

2

bko
ln

r

R2

� �
� 2t2

b
� t22 ¼ 0

This is a quadratic equation whose solution is

t ¼ � 1
b
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1

b

� �2

� qgR2
2

2kob
r

R2

� �2

�2 ln
r

R2

� �
� 1

" #vuut ðivÞ

If thermal conductivity is constant b = 0 and putting ko by k in Eq. (iii), we get

tþ qgR2
2

4k
r

R2

� �2

�1

" #
� qgR2

2

2k
ln

r

R2

� �
� t2 ¼ 0

or

t ¼ t2 � qgR2
2

4k
r

R2

� �2

�2 ln
r

R2

� �
� 1

" #

Example 4.21 How the above-derived expression will change if the shell is cooled from the
outer surface instead of the inner one?

Solution

We can get the desired result by replacing R2 by R1 and t2 by t1. This gives

t ¼ � 1
b
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t1 þ 1

b

� �2

� qgR2
1

2kob
r

R1

� �2

�2 ln
r

R1

� �
� 1

" #vuut

234 4 Conduction with Heat Generation

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


and

t ¼ t1 � qgR2
1

4k
r

R1

� �2

�2 ln
r

R1

� �
� 1

" #

when k is constant.
The expression can be derived by following the procedure of the above example.

Example 4.22 Inner and outer surfaces of a cylindrical shell are maintained at uniform
temperatures T1 and T2, respectively. If there is a uniform rate of heat generation qg within
the shell, obtain the following expressions for the steady state, one-dimensional radial
distribution of temperature, heat flux and heat rate.

TðrÞ ¼ T2 þ qgR2
2

4k
: 1� r

R2

� �2
" #

� qgR2
2

4k
1� R1

R2

� �2
" #

þ T2 � T1ð Þ
( )

ln r � lnR2

lnR1 � lnR2

� �

Heat rate,

qðrÞ ¼ pLqgr
2 � 2pLk

ln R2=R1ð Þ
qgR2

2

4k
1� R2

1

R2
2

� �
þ T2 � T1ð Þ

� �

Heat flux,

q00ðrÞ ¼ qgr

2
� k

r

qgR2
2

4k
1� R2

1

R2
2

� �
þ T2 � T1ð Þ

� �
1

ln R2=R1ð Þ

Solution

(i) Temperature distribution
From Eq. (vi), Sect. 4.2,

tþ qg
4k

:r2 þC1 ln rþC2 ¼ 0 ðiÞ

The boundary conditions are

t ¼ T1 at r ¼ R1

and t ¼ T2 at r ¼ R2:

Applying the boundary conditions,

T1 þ qg
4k

R2
1 þC1 lnR1 þC2 ¼ 0

and

T2 þ qg
4k

R2
2 þC1 lnR2 þC2 ¼ 0
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Solving for C1 and C2, we get

C1 ¼ qg
4k

R2
2 � R2

1

� 	þ T2 � T1ð Þ
h i 1

lnR1 � lnR2

� �

C2 ¼ �T2 � qgR2
2

4k
� qg

4k
R2
2 � R2

1

� 	þ T2 � T1ð Þ
h i lnR2

lnR1 � lnR2

� �

Substitution of values of C1 and C2 in Eq. (i) gives

TðrÞ ¼ T2 þ qgR2
2

4k
: 1� r

R2

� �2
" #

� qgR2
2

4k
1� R1

R2

� �2
" #

þ T2 � T1ð Þ
( )

ln r � lnR2

lnR1 � lnR2

� �
ðiiÞ

(ii) Heat rate

qðrÞ ¼ �k 2prLð Þ dT
dr

ðiiiÞ

Differentiating Eq. (ii),

dT

dr
¼ � qgr

2k
� qgR2

2

4k
1� R1

R2

� �2
" #

þ T2 � T1ð Þ
( )

1=r
lnR1 � lnR2

� �

Substitution in Eq. (iii) gives

qðrÞ ¼ pLqgr
2 � 2pLk

ln R2=R1ð Þ
qgR2

2

4k
1� R2

1

R2
2

� �
þ T2 � T1ð Þ

� �

(iii) Heat flux

q00ðrÞ ¼ qðrÞ
AðrÞ ¼

qðrÞ
2prL

¼ qgr

2
� k

r

qgR2
2

4k
1� R2

1

R2
2

� �
þ T2 � T1ð Þ

� �
1

ln R2=R1ð Þ

Example 4.23 Show that the heat generation rate in the cylinder of Fig. 4.14 for a linear
radial temperature distribution varies inversely with radius.

Solution

For steady-state radial heat conduction with heat generation for a cylinder, Eq. (2.16) gives

k
1
r

@t

@r

� �
þ qg ¼ 0: ðiÞ
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For linear temperature distribution with radius, @t@r = constant, say C. Integration of relation
@t
@r ¼ C gives C ¼ t2�t1

r2�r1
. Substitution in Eq. (i) gives

qg ¼ t1 � t2
r2 � r1

� �
k

r
/ 1

r
;

i.e. the heat generation rate qg varies inversely with radius r.

Example 4.24 Heat flows axially through a rod of variable cross-sectional area given by
Ax(x) = Aoe

bx where Ao and b are constants. Considering volumetric heat generation rate
qg = qoe

−bx, obtain the expression for qx when the left face and lateral surface are insulated.
Thermal conductivity of the rod material is constant.

Solution

For the control volume, refer Fig. 4.15,

qx þðAxdxÞqg ¼ qxþ dx ðiÞ

Substituting qxþ dx ¼ qx þ d
dx ðqxÞdx, we have, from Eq. (i),

Axdxqg ¼ d

dx
ðqxÞdx

or
d

dx
ðqxÞ ¼ Axqg

¼ A0e
bxq0e

�bx

¼ A0q0

t1
t2

r2r1

r1r2

t1

t2

Fig. 4.14 Hollow cylinder with heat generation
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or
qx ¼ A0q0xþC1 ðiiÞ

Left face is insulated, i.e. at x = 0, qx = 0. This condition gives C1 = 0. Hence, Eq. (ii)
reduces to

qx ¼ A0q0x:

Example 4.25 Heat generation in a cylindrical container of radioactive waste varies as

qo 1� r

ro

� �2
" #

If the heat is rejected from the surface by convection to fluid at temperature t∞, determine
the surface temperature of the container.

Solution

The rate of heat generation in the cylinder is

Qg ¼
Zro
0

qgð2prLdrÞ

¼
Zro
0

qo 1� r

ro

� �2
" #

ð2prLdrÞ

¼ 2pLqo

Zro
0

1� r

ro

� �2
" #

rdr

¼ 2pLqo
r2

2
� r4

r2o

� �ro
0

¼ pLqor2o
2

:

ðiÞ

The rate of heat rejection by convection is
Qc ¼ hð2proLÞðts � t1Þ ðiiÞ

x

dx
Ax

qx qx+dx

Fig. 4.15 Example 4.24
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In equilibrium, Qg = Qc, which gives

pLqor2o
2

¼ hð2proLÞðts � t1Þ

or

ts ¼ t1 þ qoro
4h

:

Example 4.26 For the heat generation rate given in Example 4.25, determine the equation
of radial temperature distribution.

Solution

From the general heat conduction equation in cylindrical coordinates, we have for
one-dimensional heat conduction

1
r

d

dr
r
dt

dr

� �
¼ � qg

k

¼ � qo
k

1� r

ro

� �2
" #

or

d

dr
r
dt

dr

� �
¼ � qo

k
r � r3

r2o

� �

Integration of the above equation gives

r
dt

dr
¼ � qo

k

r2

2
� r4

4r2o

� �
þC1

At r = 0, dt/dr = 0, which gives C1 = 0. Hence,

r
dt

dr
¼ � qo

k

r2

2
� r4

4r2o

� �

or

dt

dr
¼ � qo

k

r

2
� r3

4r2o

� �
ðiÞ

Further integration gives

t ¼ � qo
k

r2

4
� r4

16r2o

� �
þC2 ðiiÞ
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Hence, the surface temperature is

tðroÞ ¼ � qo
k

r2o
4
� r4o
16r2o

� �
þC2

or

tðroÞ ¼ � 3qor2o
16k

þC2 ðiiiÞ

At the surface of the cylinder, heat reaching by conduction equals the heat rejected by
convection hence

�k
dt

dr
¼ h tðroÞ � t1½ �

Substitution from Eqs. (i) to (iii) in the above equation gives

�k � qo
k

r

2
� r3

4r2o

� �� �
r¼ro

¼ h � 3qor2o
16k

þC2 � t1

� �

or

qoro
4h

¼ � 3qor2o
16k

þC2 � t1

C2 ¼ qoro
4h

þ 3qor2o
16k

þ t1:

Substitution of the value of C2 in Eq. (ii) gives

t ¼ � qo
k

r2

4
� r4

16r2o

� �
þ qoro

4h
þ 3qor2o

16k
þ t1

or

t ¼ qoro
4h

þ qor2o
k

3
16

� 1
4

r

ro

� �2

þ 1
16

r

ro

� �4
" #

þ t1;

which is the desired radial temperature distribution equation.

Check: At r = ro, the temperature from the above equation is

tðroÞ ¼ qoro
4h

þ t1;

which is the same as determined in the previous example.
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Example 4.27 The composite wall shown in Fig. 4.16a consists of two layers (k1 = 50 W/
(m K), d1 = 0.05 m and k2 = 210 W/(m K), d2 = 0.025 m). There is a uniform generation of heat
at the rate of 1� 106 W/m3 in layer 1. The contact resistance between the layers is estimated to
be 0.001 m2 K/W. Left face of layer 1 is insulated. The open face of layer 2 is subjected to
convection environment. Determine the temperature distribution through the wall.

Solution

Starting from the fundamental equation of conduction heat transfer through a plane wall, we
have

d2t

dx2
þ qg

k
¼ 0

Integration gives

dt

dx
þ qg

k
x� C1 ¼ 0 ðiÞ

At x = 0, dt/dx = 0 as the wall is insulated. This give C1 = 0. Equation (i) reduces to

dt

dx
þ qg

k
x ¼ 0

Further integration gives

t ¼ � qgx2

2k
þC2 ðiiÞ

At x = d1, t = t2 hence

t2 ¼ � qgd
2
1

2k
þC2

a

• 

q

• to = 30oC

ho = 500
W/(m2 K)

δ1

t4

δ2

t1

t3

t2

x

to
1/ho

t4q

Rc

t2
t3

δ2/k2

b

Fig. 4.16 Example 4.27
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or

C2 ¼ qgd
2
1

2k
þ t2

Substitution of the value of C2 in Eq. (ii) gives

t ¼ qg
2k

ðd21 � x2Þþ t2 ðiiiÞ

Equation (iii) gives temperature distribution in layer 1 with heat generation, which is
parabolic. Temperature distribution through layer 2 is a straight line because there is no heat
generation in layer 2 and the thermal conductivity is constant.

The temperature t1–t4 can be determined as under.
Heat flow rate through layer 2 equals the heat generated in the wall, i.e. qgd1 for unit face

area of the wall. Heat flow rate equation gives

q ¼ qgd1 ¼ t2 � to
Rt

; ðivÞ

where refer Fig. 4.16b,

Rt ¼ Rc þ d2
k2

þ 1
ho

¼ 0:001þ 0:025
210

þ 1
500

¼ 0:00312:

Equation (iv) gives

t2 ¼ qgd1Rt þ to

¼ 1� 106 � 0:05� 0:00312þ 30 ¼ 186�C:

From Eq. (iii), at x = 0

t1 ¼ qg
2k

d21 þ t2

¼ 1� 106

2� 50
� ð0:05Þ2 þ 186 ¼ 211�C:

We can write

q ¼ t2 � t3
Rc

which gives

t3 ¼ t2 � qRc

¼ 186� ð1� 106 � 0:05Þ � 0:001 ¼ 136�C:

Similarly,

t4 ¼ t3 � qd2
k2

¼ 136� ð1� 106 � 0:05Þ � 0:025
210

¼ 130:05�C:
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and

t0 ¼ t4 � q

ho

¼ 130:05� ð1� 106 � 0:05Þ
500

¼ 30:05�C;

which is approximately equal to the given value.

Example 4.28 Heat generation in a spherical container of radioactive waste varies as

qo 1� r

ro

� �2
" #

:

If the heat is rejected from the surface by convection to fluid at temperature t∞, determine
the equation of radial temperature distribution.

Solution

From the general heat conduction equation in spherical coordinates, we have for
one-dimensional heat conduction

1
r2

@

@r
r2

@t

@r

� �
¼ � qg

k

¼ � qo
k

1� r

ro

� �2
" #

or

@

@r
r2

@t

@r

� �
¼ � qo

k
r2 � r4

r2o

� �

Integration of the above equation gives

r2
dt

dr
¼ � qo

k

r3

3
� r5

5r2o

� �
þC1

At r = 0, dt/dr = 0, which gives C1 = 0. Hence,

r2
dt

dr
¼ � qo

k

r3

3
� r5

5r2o

� �

or

dt

dr
¼ � qo

k

r

3
� r3

5r2o

� �
ðiÞ
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Further integration gives

t ¼ � qo
k

r2

6
� r4

20r2o

� �
þC2 ðiiÞ

Hence, the surface temperature is

tðroÞ ¼ � qo
k

r2o
6
� r4o
20r2o

� �
þC2

or

tðroÞ ¼ � 7qor2o
60k

þC2 ðiiiÞ

At the surface of the sphere, heat reaching by conduction equals the heat rejected by
convection hence

�k
dt

dr
¼ h tðroÞ � t1½ �

Substitution from Eqs. (i) and (iii) in the above equation gives

�k � qo
k

r

3
� r3

5r2o

� �� �
r¼ro

¼ h � 7qor2o
60k

þC2 � t1

� �

or

2qoro
15h

¼ � 7qor2o
60k

þC2 � t1

C2 ¼ 2qoro
15h

þ 7qor2o
60k

þ t1:

Substitution of the value of C2 in Eq. (ii) gives

t ¼ � qo
k

r2

6
� r4

20r2o

� �
þ 2qoro

15h
þ 7qor2o

60k
þ t1

or

t ¼ 2qoro
15h

þ qor2o
k

7
60

� 1
6

r

ro

� �2

þ 1
20

r

ro

� �4
" #

þ t1;

which is the desired radial temperature distribution equation.
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Example 4.29 A cylindrical reactor fuel element with uniform heat generation rate qg has
steel cladding as shown in Fig. 4.17. Heat is rejected from the outer surface by convection to
a coolant at temperature t∞. Determine the expressions for temperature distributions in fuel
element and cladding.

Solution

For the cylindrical fuel element,

1
r

d

dr
r
dtf
dr

� �
¼ � qg

kf
;

or

d

dr
r
dtf
dr

� �
¼ � qgr

kf

Integration gives

r
dtf
dr

¼ � qgr2

2kf
þC1

At r = 0, dtf/dr = 0, therefore C1 = 0. Hence, the equation is

r
dtf
dr

¼ � qgr2

2kf

or

dtf
dr

¼ � qgr

2kf

Further integration gives

tf ¼ � qgr2

4kf
þC2 ðiÞ

r1
r2

h, t∞

Fuel element Steel cladding

Fig. 4.17 Example 4.29
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For the cylindrical cladding,

1
r

d

dr
r
dtc
dr

� �
¼ 0;

or

d

dr
r
dtc
dr

� �
¼ 0

Integration gives

r
dtc
dr

¼ C3

or

dtc
dr

¼ C3

r

Further integration gives

tc ¼ C3 ln rþC4 ðiiÞ

The constants C2, C3 and C4 can be found from the following boundary conditions.

At radius r1,

tf ðr1Þ ¼ tcðr1Þ ðiiiÞ

Conduction heat flow at r1 gives

�kf
dtf
dr

� �
r¼r1

¼ �kc
dtc
dr

� �
r¼r1

ðivÞ

At the cladding surface, heat is rejected by convection, hence

�kc
dtc
dr

� �
r¼r2

¼ h½tcðr2Þ � t1� ðvÞ

From Eq. (iii),

� qgr21
4kf

þC2 ¼ C3 ln r1 þC4 ðviÞ
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From Eq. (iv),

�kf
dtf
dr

� �
r¼r1

¼ �kc
dtc
dr

� �
r¼r1

or

�kf � qgr1
2kf

� �
¼ �kc

C3

r1

or

C3 ¼ � qgr21
2kc

From Eq. (v),

�kc
C3

r2
¼ h½C3 ln r2 þC4 � t1�

or

qgr21
2r2h

¼ � qgr21
2kc

ln r2 þC4 � t1

or

C4 ¼ qgr21
2r2h

þ qgr21
2kc

ln r2 þ t1

Substituting values of C3 and C4 in Eq. (vi), we obtain

C2 ¼ � qgr21
2kc

ln r1 þ qgr21
4kf

þ qgr21
2r2h

þ qgr21
2kc

ln r2 þ t1

or

C2 ¼ qgr21
2kc

ln
r2
r1

� �
þ qgr21

4kf
þ qgr21

2r2h
þ t1

Substituting values of constants C2–C4 in Eqs. (i) and (ii), we obtain the expressions for
temperature distributions in fuel element and cladding as

tf ¼ � qgr2

4kf
þ qgr21

2kc
ln

r2
r1

� �
þ qgr21

4kf
þ qgr21

2r2h
þ t1

or

tf ¼ qg
4kf

ðr21 � r2Þþ qgr21
2kc

ln
r2
r1

� �
þ qgr21

2r2h
þ t1 ð1Þ
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and

tc ¼ � qgr21
2kc

ln rþ qgr21
2r2h

þ qgr21
2kc

ln r2 þ t1

or

tc ¼ qgr21
2kc

ln
r2
r

� �
þ qgr21

2r2h
þ t1 ð2Þ

4.5 Summary

This chapter is devoted to the heat conduction processes when there is heat generation in the
solid itself. Firstly the treatment has been presented for plane wall, cylindrical and spherical
solids with a uniform rate of heat generation per unit volume with constant thermal con-
ductivity of the solid material, and for the steady-state one-dimensional heat conduction. The
following basic differential equations for these cases have been developed in Sects. 4.1–4.3.

Plane wall with uniform heat generation,

d2t

dx2
þ qg

k
¼ 0 ð4:1Þ

Cylinder with uniform heat generation,

d

dr
r
dt

dr

� �
þ qg

k
r ¼ 0 ð4:16Þ

Solid sphere with uniform heat generation,

d

dr
r2

dt

dr

� �
þ qg

k
r2 ¼ 0 ð4:21Þ

The students are advised to start from these basic differential equations for solution to
problems. Integration of the above equations and the determination of the constants of the
integration from the given boundary conditions will provide the applicable equation of
temperature distribution for different cases of interest, which can be utilized for calculation of
the rate of heat transfer using the Fourier’s equation or to locate the position and magnitude
of maximum temperature in the solid.

For cases with variable thermal conductivity, the students may start from equations
obtained from the general heat conduction equations in Chap. 1; for example, from equation
d
dx �k dt

dx

� 	 ¼ qg for a plane wall (refer Example 4.16), or from equation d
dr kr dt

dr

� 	þ qgr ¼ 0
for a cylindrical element (refer Examples 4.17 and 4.20). Alternatively, one may start from
fundamentals.

For the problems involving the heat generation, which is variable as in Example 4.18, it is
advised to start from fundamentals only.

An approximate treatment of the heat transfer through piston crown has been presented in
Sect. 4.4 to determine temperature distribution and maximum temperature in the crown.
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A number of solved examples have been included to illustrate the application of the
above-discussed approaches for a variety of problems.

Review Questions

4:1 Show that for a plane wall of thickness 2 l with a uniformly distributed heat generation
qg per unit volume, the temperature to at the midplane is given by

to ¼ qgl2

2k
þ tw

where tw is the temperature on either side of the wall and k is the thermal conductivity of
the wall material.

4:2 Develop an expression of temperature distribution in a sphere of radius Ro made of a
homogeneous material in which energy is released at a uniform rate per unit volume. The
surface temperature of the sphere is To and the thermal conductivity of the sphere
material may be assumed to be constant. Also, give the expression of maximum tem-
perature in the sphere.

4:3 Inner and outer surfaces of a spherical shell are maintained at uniform temperatures t1
and t2, respectively. If there is a uniform rate of heat generation qg within the shell,
obtain the following expressions for the steady-state, one-dimensional radial distribution
of temperature, heat flux and heat rate.

tðrÞ ¼ t2 þ qgR2
2

6k
: 1� r

R2

� �2
" #

� qgR2
2

6k
1� R1

R2

� �2
" #

þ t2 � t1ð Þ
( )

1=r � 1=R2

1=R1 � 1=R2

� �

Heat rate,

qðrÞ ¼ 4pqgr3

3
� 4pk

qgR2
2

6k
1� R2

1

R2
2

� �
þ t2 � t1ð Þ

� �
1

1=R1 � 1=R2

� �

Heat flux,

q00ðrÞ ¼ qgr

3
� k

r2
qgR2

2

6k
1� R2

1

R2
2

� �
þ t2 � t1ð Þ

� �
1

1=R1 � 1=R2

� �

[Hint: Follow the procedure of Example 4.22]
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Problems

4:1 Heat is generated at the interface between two slabs each 50 mm thick. One of the slabs
is of steel [k = 35 W/(m K)] and other is of brass [k = 75 W/(m K)]. The temperature at
the outside of the steel slab is 95°C, while at the outside of the brass is 47°C. Calculate
the heat flow rate at the outer surfaces and the interface temperature when the rate of heat
generation is 175 kW/m2 of the contact area.

[Ans. qL ¼ k1A
ti�t1
d1

� �
¼ 700� ðti � 95Þ; qR ¼ k2A

ti�t2
d2

� �
¼ 1500� ðti � 47Þ;

qL þ qR ¼ qg; ti ¼ 141:82�C; qL ¼ 32:77 kW/m2; qR ¼ 142:23 kW/m2�:
4:2 A long cylindrical rod of 100 mm radius experiences uniform heat generation rate of 2 �

104 W/m3. It carries a tightly fitting sleeve having an outer radius of 150 mm and a
thermal conductivity of 5 W/(m K). The surface of the sleeve is exposed to cross-flow of
air at 30°C. If the thermal conductivity of the rod material is 0.5 W/(m K) and the
convective heat transfer coefficient is 40 W/(m2 K), determine

(i) Temperature at the interface of the rod and the sleeve, and
(ii) The maximum temperature and its location.

[Ans. qL ¼ t1�t1
1

2pk2
ln R2

R1

� �
þ 1

2pR2h

, where q/L equals the heat generated per unit length of the rod,

i.e. q/L = qg � pR1
2 � 1. This gives interface temperature, t1 = 54.77°C.

tmax ¼ qg
4k1

R2
1 þ t1 ¼ 154:77�C:]

4:3 A large concrete platform 1.0 m high is to be constructed by pouring concrete on a brick
base. The top surface of the concrete is exposed to the atmosphere at 300 K and the unit
surface conductance is estimated to be 10 W/(m2 K). The concrete sets by an exothermal
chemical reaction, which produces heat at the rate of 60 W/m3. Assuming one-
dimensional steady-state conduction with a uniform rate of heat generation per unit
volume, find the maximum temperature within the concrete. Take thermal conductivity
of the concrete as 1.0 W/(m K) and neglect the heat loss from the base. (Hint: The
bottom surface is insulated, hence at the bottom dt/dx is zero and the temperature is the

maximum. Use the following equation: Tmax ¼ qgd
h þ qgd

2

2k þ T1)
[Ans. tmax = 63°C]

4:4 The outer freshly plastered wall surface is held at 35°C during curing, when the rate of
generation of heat due to the setting is 5 � 104 W/m3. The plaster is 15 mm thick.
Determine the temperature at inner surface of the plaster. The inner surface can be
assumed to be insulated. The thermal conductivity of the plaster material is 1 W/(m K).
[Ans. The temperature at the wall is maximum, hence the boundary conditions are: x = 0,
dt/dx = 0; at x = d = 0.015 m, t = 35°C, refer Fig. 4.18. Integrate Eq. (4.1) and applying
boundary condition to obtain temperature distribution equation t ¼ qg

2k ðd2 � x2Þþ t1;
Putting x = 0 in the temperature distribution equation, we get tmax = 40.6°C.]

4:5 A proposed nuclear fuel element 60 mm in diameter is to be clad in a 5 mm thick
aluminium sheathing. The fuel element generates heat at a rate of 4 � 105 kW/m3. The
outside surface of the aluminium cover is likely to be at 80°C because of the contact with
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a cooling fluid. Estimate the maximum temperature of the aluminium cladding if its
thermal conductivity can be expressed as k = 210(1 - t/1000), where t is in °C.

[Ans. qgðpR2LÞ ¼ 2pLko½1� bðto þ tiÞ=2� ðti�toÞ
lnðRo=RiÞ, where b = 1/1000; ti = 237°C.]

4:6 A current of 80 A is passed through a 2 mm diameter 500 mm long stainless steel wire
[k = 20 W/(m K) and electrical resistivity q = 76 lΩ-cm]. If the wire is dipped in a liquid
bath at 80°C and h = 1500 W/(m2 K), calculate the maximum temperature of the wire.
[Ans. Resistance of wire R = qL/A = 0.121Ω, heat generated, H = I2R = 774.4 W, heat
generation rate, qg = H/Volume of wire = 493 � 106 W/m3. Convective heat transfer
equation hA(ts − t∞) = H gives ts = 244.33°C. Maximum temperature at the centre,

tmax ¼ qgR2
o

4k þ ts ¼ 250:5�C:]
4:7 The plane wall shown in Fig. 4.19 is subjected to a radiation which causes volumetric

heat generation in the wall. The heat generation varies as

qg ¼ q0
x

L

� �

Derive the equation of distribution and determine the maximum temperature in the wall
if the temperature at the wall surface (at x = L) is ts.
[Ans. t ¼ ts þ qo

6kL ðL3 � x3Þ; tmax ¼ ðtÞx¼0 ¼ ts þ qo
6k L

2:]

Plaster 
15 mm 
thick

x = 0

35oC
Insulated 
side

Wall

Fig. 4.18 Problem 4.4

Radiation

x = 0
L

Insulated 
side

Fig. 4.19 Problem 4.7
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5Steady-State Two-Dimensional
Heat Conduction

5.1 Introduction

In the preceding chapters, the cases of one-dimensional steady-state conduction heat flow
were analysed. We consider now two-dimensional steady-state conduction heat flow through
solids without heat sources.

The Laplace equation that governs the temperature distribution for two dimensional heat
conduction system is

@2t

@x2
þ @2t

@y2
¼ 0 ð5:1Þ

Equation (5.1) is based on the assumption of constant and equal thermal conductivities in
both x and y space coordinates. Solution of this equation gives the temperature in the body as
a function of coordinates x and y.

Knowing the temperature distribution in the body, the heat flow in the x- and y-directions
at a point can be determined from

qx ¼ �kAx
@t

@x
ð5:2aÞ

qy ¼ �kAy
@t

@y
ð5:2bÞ

The rate of heat flow at the point is the resultant of the components qx and qy, i.e.

q ¼ iqx þ jqy ð5:3Þ

It follows that in order to determine the heat flow, the temperature field must be known.
Thus, the problem reduces to the solution of Eq. (5.1). The common techniques available for
the solution of Eq. (5.1) are

(i) Mathematical analysis (analytical solution),
(ii) Graphical analysis,
(iii) Method of analogy,
(iv) Numerical solutions using either a finite-difference or finite-element method.

© Springer Nature Singapore Pte Ltd. 2020
R. Karwa, Heat and Mass Transfer,
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5.2 Analytical Solution of Two-Dimensional Heat Conduction
Problems

Consider a rectangular section bar, as shown in Fig. 5.1, which is very long in z-direction.
Three lateral sides of the bar are maintained at a constant temperature To. For the fourth side
we consider different conditions, case (i)–(iii), as outlined below.

Case (i)
The fourth side (y = H) has a sinusoidal temperature distribution, T = Tm sin(px/W), imposed
on it.

Using h = T – To, the Laplace equation, Eq. (5.1), is transformed to

@2h
@x2

þ @2h
@y2

¼ 0 ð5:4Þ

The boundary conditions are

ðiÞ h ¼ 0 at y ¼ 0 ðiiÞh ¼ 0 at x ¼ 0;
ðiiiÞ h ¼ 0 at x ¼ W ; ðivÞ h ¼ hm sinðpx=WÞ at y ¼ H

ð5:5Þ

where hm = Tm – To is amplitude of the sine function. T = Tm sin(px/W) is transformed to
h = hm sin(px/W).

The solution of Eq. (5.4), using the separation of variable technique (based on the
assumption that the solution to the differential equation takes a product form), is

hðx; yÞ ¼ XY ð5:6Þ

where X = X (x) and Y = Y (y).
Substitution in Eq. (5.4) gives

� 1
X

� �
d2X
dx2

¼ 1
Y

� �
d2Y
dy2

ð5:7Þ

Each side of Eq. (5.7) is independent of the other, since x and y are independent variables.
Hence, the left side of Eq. (5.7) can equal the right side only if both the sides have a constant
value, greater than zero, say k2. That is,

W

H

To

ToTo

T

x

y

Fig. 5.1 A rectangular section bar with given thermal boundary conditions
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� 1
X

� �
d2X
dx2

¼ 1
Y

� �
d2Y
dy2

¼ k2 ð5:8Þ

Thus, we get two ordinary differential equations as

d2X
dx2

þ k2X ¼ 0 ð5:9Þ

and

d2Y
dy2

� k2Y ¼ 0 ð5:10Þ

The value of the constant k2 is to be determined from the given boundary conditions.
The general solution of Eq. (5.9) is

X ¼ C1 cos kxþC2 sin kx

and that of Eq. (5.10) is

Y ¼ C3 expð�kyÞþC4 expðkyÞ

Substitution in Eq. (5.6) gives

hðx; yÞ ¼ XY ¼ ðC1 cos kxþC2 sin kxÞ½C3 expð�kyÞþC4 expðkyÞ� ð5:11Þ

Applying the boundary conditions, we have

0 ¼ ðC1 cos kxþC2 sin kxÞðC3 þC4Þ ðiÞ
0 ¼ C1½C3 expð�kyÞþC4 expðkyÞ� ðiiÞ

0 ¼ ðC1 cos kW þC2 sin kWÞ½C3 expð�kyÞþC4 expðkyÞ� ðiiiÞ
hm sinðpx=WÞ ¼ ðC1 cos kxþC2 sin kxÞ½C3 expð�kHÞþC4 expðkHÞ� ðivÞ

Equations (i) and (ii) give

C3 ¼ �C4

and

C1 ¼ 0:

Substitution in Eq. (iii) gives

0 ¼ C4C2 sinðkWÞ½expðkyÞ � expð�kyÞ� ð5:12Þ

Equation (5.12) requires that
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sinðkWÞ ¼ 0

or

k ¼ np=W ð5:13Þ

where n is a positive integer.
By substituting values of constants C1 to C4 and k in Eq. (5.11), we get

h x; yð Þ ¼ T � To ¼
X1
n¼1

Cn sin
npx
W

� �
sinh

npy
W

� �
ð5:14Þ

where the term sinh(nky/W) replaces the exponential term and constants C2 and C4 have been
combined. The solution of the differential equation is a sum of the solutions for each value of
n, up to infinity.

Using the fourth boundary condition of h = hm sin(px/W) at y = H, we get

hm sin
px
W

� �
¼
X1
n¼1

Cn sin
npx
W

� �
sinh

npH
W

� �
ð5:15Þ

This holds only for Cn = 0 when n > 1. For n = 1, we get

hm sin
px
W

� �
¼ C1 sin

px
W

� �
sinh

pH
W

� �
;

which gives

C1 ¼ hm
sinh pH

W

� � :
The final solution of the differential equation is

h x; yð Þ ¼ T � To ¼ hm
sin px

W

� �
sinh py

W

� �
sinh pH

W

� �
" #

ð5:16Þ

Case (ii)
If the temperature along y = H side is given by an arbitrary function f(x), the boundary
condition (iv) in Eq. (5.5) changes. The remaining conditions (i) to (iii) remain valid and the
solution is as determined above, refer Eq. (5.14), i.e.

h x; yð Þ ¼ T � To ¼
X1
n¼1

Cn sin
npx
W

� �
sinh

npy
W

� �
ð5:14Þ

The fourth boundary condition gives
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f xð Þ ¼
X1
n¼1

Cn sin
npx
W

� �
sinh

npH
W

� �
ð5:17Þ

The quantities Cn sinh(npH/W) must be the coefficients of the Fourier sine series for f(x) in
the interval (0 < x < L), i.e.

Cn sinh
npH
W

� �
¼ 2

W

ZW
0

f xð Þ sin npx
W

� �
dx ð5:18Þ

and thus,

h x; yð Þ ¼ T � To ¼ 2
W

X1
n¼1

1

sinh npH
W

� � ZW
0

f xð Þ sin npx
W

� �
dx

2
4

3
5 sin

npx
W

� �
sinh

npy
W

� �
ð5:19Þ

The temperature field is shown in Fig. 5.2. The heat flow lines (dashed lines) are drawn
perpendicular to the isotherms (firm lines).

Case (iii)
The three sides of the bar are held at temperatures To, while the fourth side (y = H) is at a
constant temperature Tb. The fourth boundary condition (h = Tb – To = hb at y = H) gives

hb ¼
X1
n¼1

Cn sin
npx
W

� �
sinh

npH
W

� �
ð5:20Þ

The value of Cn is determined by expanding the constant temperature difference hb in a
Fourier series over the interval (0 < x < W), which is

hb ¼ hb
2
p

X1
n¼1

ð�1Þnþ 1 þ 1
n

sin
npx
W

� �
ð5:21Þ

Comparison of Eqs. (5.20) and (5.21) gives

1
f(x)

10

Fig. 5.2 Isotherms and heat flow lines in a rectangular plate
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Cn ¼ hb
2
p

� � ð�1Þnþ 1 þ 1

n sinh npH
W

� � ð5:22Þ

The final solution is

h
hb

¼ T � To
Tb � To

¼ 2
p

X1
n¼1

ð�1Þnþ 1 þ 1

n sinh npH
W

� � � sin
npx
W

� �
� sinh

npy
W

� �
ð5:23Þ

¼ 4
p

X1
j¼1

1

2j� 1ð Þ sinh 2j�1ð ÞpH
W

h i� sin
2j� 1ð Þpx

W

� 	
� sinh

2j� 1ð Þpy
W

� 	
ð5:23bÞ

In Eq. (5.23b), only the odd-order terms appear. The even-order terms vanish because of
the bracketed term [(−1)n+1 + 1].

5.3 Conduction Through a Flat Semi-infinite Homogeneous Plate

Consider the flat plate shown in Fig. 5.3, whose length in y-direction is infinite. It is assumed
that the plate is relatively thin in z-direction and xoy surfaces are insulated so that there is no
temperature gradient in z-direction and the temperature field is two dimensional.

The general solution, Eq. (5.11), is

h x; yð Þ ¼ XY ¼ C1 cos kxþC2 sin kxð Þ C3 exp �kyð ÞþC4 exp kyð Þ½ � ð5:11Þ

The boundary conditions are

ði) h ¼ 0 at x ¼ 0; ðii) h ¼ 0 at y ! 1 ;

ðiii) h ¼ 0 at x ¼ W ; ðiv) h ¼ FðxÞ at y ¼ 0where h ¼ T � To and f ðxÞ � To ¼ FðxÞ:

o

To

T = f(x)

To

To

y

x

∞

W

Fig. 5.3 A semi-infinite flat plate with given thermal boundary conditions
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(i) X ¼ /ðxÞ ¼ ðC1 cos kxþC2 sin kxÞ will give /(x) = 0 at x = 0 when C1 = 0
(ii) Y ¼ wðyÞ ¼ C3 expð�kyÞþC4 expðkyÞ satisfies the condition h = 0 as y ! ∞.

Function w(y) = 0 at y ! ∞ and this is possible when C4 = 0.
Using C1 = 0 and C4 = 0, we obtain from Eq. (5.11)

hðx; yÞ ¼ C2 sinðkxÞ½C3 expð�kyÞ�
¼ C sinðkxÞ½expð�kyÞ� ð5:24Þ

(iii) To satisfy the third boundary condition of h = 0 at x = W,

sinðkxÞ ¼ 0

or
k ¼ np=W

where n = 1, 2, 3, …….
The general solution is, therefore, a sum of solutions for the each value of n up to infinity,

i.e.

h x; yð Þ ¼ T � To ¼
X1
n¼1

Cn sin
npx
W

� �
exp

�npy
W

� �
ð5:25Þ

The integral constant Cn is determined from the fourth boundary condition, h = F(x) at
y = 0. Thus

F xð Þ ¼
X1
n¼1

Cn sin
npx
W

� �
ð5:26Þ

The expression is sine expansion of function F(x) into Fourier series. Hence,

Cn ¼ 2
W

ZW
0

F xð Þ sin npx
W

� �
dx ð5:27Þ

and the final expression of temperature distribution is

h x; yð Þ ¼ 2
W

X1
n¼1

sin
npx
W

� �
exp

�npy
W

� �ZW
0

F xð Þ sin npx
W

� �
dx ð5:28Þ

For the special case of T = T1 = constant at y = 0, function f(x) = T1 and F(x) = T1 –

To = h1. The integral of Eq. (5.27) is
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ZW
0

F xð Þ sin npx
W

� �
dx ¼ � W

np

� �
h1 � cos

npx
W

� �h i
 �W

0

¼ 2W
np

� �
h1

Substitution in Eq. (5.28) gives

h
h1

¼ 4
p

X1
n¼1

1
n
exp

�npy
W

� �
sin

npx
W

� �
ð5:29aÞ

¼ 4
p

X1
j¼1

1
2j� 1ð Þ exp

� 2j� 1ð Þpy
W

� 	
sin

2j� 1ð Þpx
W

� 	
ð5:29bÞ

In Eq. (5.29b), only odd-order terms appear.

Example 5.1 Consider the bar shown in Fig. 5.1 withW = H. The boundary conditions are:
h = 100°C for the y = H surface while for the remaining three sides of the bar, h = 0°C.
Determine the temperature along the centreline of the bar.

Solution

Substituting H = W, x = W/2 and y = H/2 = W/2 in the right-hand side of Eq. (5.23), we
obtain

hc
hb

¼ 2
p

X1
n¼1

ð�1Þnþ 1 þ 1
n sinh npð Þ � sin

np
2

� �
� sinh

np
2

� �

Retaining the first three odd-order terms (even-order terms are zero), we obtain

hc
hb

¼ 2
p

2
sinh pð Þ � sin

p
2

� �
� sinh

p
2

� �
þ 2

3 sinh 3pð Þ � sin
3p
2

� �
� sinh

3p
2

� ��

þ 2
5 sinh 5pð Þ � sin

5p
2

� �
� sinh

5p
2

� �	
¼ ð2=pÞ½0:3985� 0:00599þ 0:000155� ¼ 0:24998�

or
hc ¼ 24:998�C:

*The series will converge to 0.25.

Example 5.2 If in the above example H/W = 2, determine the centreline temperature.

Solution

Substituting H = 2 W, x = W/2 and y = H/2 = W in the right-hand side of Eq. (5.23), we
obtain

hc
hb

¼ 2
p

X1
n¼1

ð�1Þnþ 1 þ 1
n sinh 2npð Þ � sin

np
2

� �
� sinh npð Þ

Retaining the first two odd-order terms (even order terms are zero), we obtain
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hc
hb

¼ 2
p

2
sinh 2pð Þ � sin

p
2

� �
� sinh pð Þþ 2

3 sinh 6pð Þ � sin
3p
2

� �
� sinh 3pð Þ

� 	

¼ 0:054919 � 0:000034 ¼ 0:054885�

or
hc ¼ 5:49�C:

*The series will converge to 0.0549.

Note: From the results of the above two examples, it can be seen that (i) hc/hb is a strong
function of ratio H/W, and (ii) the convergence of the series improves as H/W increases.
When H/W � 2, the first term practically equals the sum of the series.

Example 5.3 The material of the long square cross-section bar, shown in Fig. 5.4a, has
homogeneous composition. The top side of the bar is held at t1 = 200°C and the temperature
of the remaining three sides is 100°C. Determine the temperature along the centreline of the
bar.

Solution
The problem can be solved by the method of superposition explained below.

Consider the problem on the left in Fig. 5.5, which has uniform temperature on all sides.
Its centreline temperature will be 100°C. The centreline temperature of all the sub-problems
on the right will be the same by symmetry. The sub-problems on the right can be super-
imposed to yield the problem on the left.

Let hc is the temperature at the centreline of the sub-problems on the right. Then
superposition will give

4hc ¼ 100�C

or
hc ¼ 25�C

t1 = 200oC

t2 = 100oC

t3 = 100oC

a

θ = T 1000C

b

θ4 = 0oC

θ1 = 100oC

θ3 = 0oC

θ2 = 0oC

Fig. 5.4 Example 5.3
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which is the desired centreline temperature of the original problem and hence
tc = hc + 100 = 125°C.

Example 5.4 Using the method of superposition, determine the temperature at point (1, 1)
in Fig. 5.6.

Solution

This problem has more than one non-homogeneous boundary condition. It can be reduced
into a set of simpler problems with the geometry of the original problem and each having a
non-homogeneous boundary condition. Then the solution of these simpler problems can be
superimposed at the point (1, 1) to give the solution of the original problem as explained
through Fig. 5.7.

Refer Example (5.3),
hc1 = 75°C and hc2 = 25°C. The superposition gives
hc = 75°C + 25°C = 100°C.

100o

100o

100o

100o =
100o

0o

100o

0o

0o + 0o

0o

0o

100o + 0o

0o

100o

0o 100o

0o

0o

0o+
θc θc θc θc

Fig. 5.5 Problem of Fig. 5.4 and its sub-problems

θ4 = 100oC

θ1 = 300oC

θ3 = 0oC

θ2 = 0oC

2

2
(1, 1).

Fig. 5.6 Example 5.4

100oC

300oC

0oC

0oC = 0oC

300oC

0oC

0oC
θc θc1

100oC

0oC

0oC

0oC+
θc2

Fig. 5.7 Problem of Fig. 5.6 and its sub-problems
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5.4 Mean Value Theorem

The results of the previous two examples can be extended to a homogeneous bar having a
regular n-sided polygon, where side i is at temperature Ti (i = 1, 2, 3, …n). Its centreline
temperature will be the arithmetic mean of the temperatures around its perimeter, i.e.

Tc ¼ ð1=nÞðT1 þ T2 þ � � � TnÞ ð5:30aÞ

When n tends to infinity, the polygon becomes a circle and

Tc ¼ 1
2p

Z2p
0

Tð/Þd/ ð5:30bÞ

where T(/) is the equation of angular distribution of temperature around the circumference of
the circle. This result is termed the mean value theorem.

Example 5.5 Using the method of superposition, obtain the equation of temperature dis-
tribution for the long bar in Fig. 5.8.

Solution

As explained earlier, this problem has more than one non-homogeneous boundary condition.
It can be reduced into a set of simpler problems with the geometry of the original problem
and each having non-homogeneous boundary condition as shown in Fig. 5.9. Then the
equations of the temperature distribution of these simpler problems can be superimposed to
give the solution of the original problem as explained below.

H

W x

y

x, y
θ4

θ1

θ3

θ2

Fig. 5.8 A long bar with non-homogeneous thermal boundary conditions

Origin

(iii)

0o

θ1

0o

0o +
0o

0o

0o

θ2 + 0o

0o

θ3

0o θ4

0o

0o

0o+

(i) (ii) (iv)

(W x)

y
x

H - y

(W x)

H - y

Fig. 5.9 A set of sub-problems for the problem in Fig. 5.8
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Part (i) Referring Fig. 5.1, the temperature distribution equation is given by Eq. (5.23b) as

hðx; yÞ
h1

¼ 4
p

X1
j¼1

sinh 2j�1ð Þpy
W

h i
2j� 1ð Þ sinh 2j�1ð ÞpH

W

h i� sin
2j� 1ð Þpx

W

� 	
ðiÞ

We can denote this function as t(x, y/h1, W, H). Then the functions for the parts (ii) to (iv)
of Fig. 5.9 and the relevant temperature distribution equations can be written as below.

Part (ii) The function of this case is t(y, W - x/h2, H, W), see the new position of the origin in
the Fig. 5.9b for the measurement of distances instead of distances x and y of Case (i), and

hðx; yÞ
h2

¼ 4
p

X1
j¼1

sinh 2j�1ð ÞpðW�xÞ
H

h i
2j� 1ð Þ sinh 2j�1ð ÞpW

H

h i� sin
2j� 1ð Þpy

H

� 	
ðiiÞ

Part (iii) The function of this case is t(W–x, H–y/h3, W, H) and

hðx; yÞ
h3

¼ 4
p

X1
j¼1

sinh 2j�1ð Þp H�yð Þ
W

h i
2j� 1ð Þ sinh 2j�1ð ÞpH

W

h i� sin
2j� 1ð Þp W � xð Þ

W

� 	
ðiiiÞ

Part (iv) The function of this case is t(H–y, x/h4, H, W) and

hðx; yÞ
h4

¼ 4
p

X1
j¼1

sinh 2j�1ð Þpx
H

h i
2j� 1ð Þ sinh 2j�1ð ÞpW

H

h i� sin
2j� 1ð Þp H � yð Þ

H

� 	
ðivÞ

Superposition, i.e., the summation of Eqs. (i)–(iv), gives the desired result.

Example 5.6 Does the result of Example 5.5 confirm the mean value theorem for the
square?

Solution

Substitution of W = H and x = y = H/2 in the result gives

h
H

2
;
H

2

� �
¼ h1þ h2þ h3 þ h4ð Þ � 4

p

X1
J¼1

sinh 2j�1ð Þp
2

h i
2j� 1ð Þ sinh 2j� 1ð Þp� sin

2j� 1ð Þp
2

� 	

¼ h1þ h2þ h3 þ h4ð Þ 4
p

sinh p
2

� �
sinh pð Þ � sin

p
2

� �
þ sinh 3p

2

� �
3 sinh 3pð Þ � sin

3p
2

� ��
þ sinh 5p

2

� �
5 sinh 5pð Þ � sin

5p
2

� �
þ � � �

	
¼ h1þ h2þ h3 þ h4ð Þ � ð4=pÞ � ð0:19926� 0:002994þ 0:00007764Þ
¼ 0:24999� h1 þ h2 þ h3þ h4ð Þ; for first three terms

¼ h1þ h2þ h3 þ h4ð Þ=4:001;

which confirms the mean value theorem for a square.
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Example 5.7 Solve Example 5.4 using the equations developed in Example 5.5.

Solution

The applicable equation is, refer Example 5.5,

hðx; yÞ ¼ h1 � 4
p
�
X1
j¼1

sinh 2j�1ð Þpy
W

h i
2j� 1ð Þ sinh 2j�1ð ÞpH

W

h i� sin
2j� 1ð Þpx

W

� 	

þ h4
4
p

X1
J¼1

sinh 2j�1ð Þpx
H

h i
2j� 1ð Þ sinh 2j�1ð ÞpW

H

h i� sin
2j� 1ð Þp H � yð Þ

H

� 	 ððiÞÞ

Here W = H = 2 and x = y = 1. This gives

hð1; 1Þ ¼ h1 þ h4ð Þ � 4
p
�
X1
j¼1

sinh 2j�1ð Þp
2

h i
2j� 1ð Þ sinh 2j� 1ð Þp½ � � sin

2j� 1ð Þp
2

� 	

For the first three terms,

hð1; 1Þ ¼ 300þ 100ð Þ � 4
p
� sinh p

2

� �
sinh pð Þ � sin

p
2

� �
þ sinh 3p

2

� �
3 sinh 3pð Þ � sin

3p
2

� ��
þ sinh 5p

2

� �
5 sinh 5pð Þ � sin

5p
2

� �	
¼ 1600� 0:19927� 0:002994þ 7:764� 10�5

� �
=p ¼ 100�C:

and hence

tc ¼ 100þ 100 ¼ 200�C:

Example 5.8 Determine temperature at point (3/2, ½) for the configuration of Example 5.4.

Solution

Eq. (i) of Example 5.7 applies. We get (refer Fig. 5.10)

θ = T 100oC

(3/2, ½) 100oC

300oC

0oC

0oC

Fig. 5.10 Example 5.8
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h
3
2
;
1
2

� �
¼ h1 � 4

p
�
X1
j¼1

sinh 2j�1ð Þp
4

h i
2j� 1ð Þ sinh 2j� 1ð Þp½ � � sin

2j� 1ð Þ3p
4

� 	

þ h4
4
p

X1
j¼1

sinh 2j�1ð Þ3p
4

h i
2j� 1ð Þ sinh 2j� 1ð Þp½ � � sin

2j� 1ð Þ3p
4

� 	

For the first three terms, we have

h
3
2
;
1
2

� �
¼ 300� 4

p
� sin 3p

4

� �
sinh p

4

� �
sinh p

þ sin 9p
4

� �
sinh 3p

4

� �
3 sinh 3p

þ sin 15p
4

� �
sinh 5p

4

� �
5 sinh 5p

� 	

þ 100� 4
p
� sin 3p

4

� �
sinh 3p

4

� �
sinh p

þ sin 9p
4

� �
sinh 9p

4

� �
3 sinh 3p

þ sin 15p
4

� �
sinh 15p

4

� �
5 sinh 5p

� 	
¼ 63:64�C:

and

t
3
2
;
1
2

� �
¼ 63:64þ 100 ¼ 163:64�C:

Alternative Method

The problem can be reduced into a set of simple sub-problems as shown in Fig. 5.11 and
then equations of Example 5.5 can be applied.

Example 5.9 Determine temperature at point (3/2, ½) for the long rectangular section bar in
Fig. 5.12.

(i) (ii) (iii) (iv)

Origin

0oC

400o

0o

0o + 0o

0o

0o

100o + 0oC

0o

100o

0oC 200o

0o

0o

0oC+ x

Fig. 5.11 A set of sub-problems of Fig. 5.10

(3/2, ½)

2

2
100oC

100oC400oC

100oC x

y

Fig. 5.12 Example 5.9
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Solution

The temperature from Eq. (5.23b) is

h x; yð Þ ¼ h� 4
p
�
X1
j¼1

1

2j� 1ð Þ sinh 2j�1ð ÞpH
W

h i� sin
2j� 1ð Þpx

W

� 	
� sinh

2j� 1ð Þpy
W

� 	
ðiÞ

The given problem can be transformed into the problem shown in Fig. 5.13 for which
h = 300°C, x = 3/2, y = ½, W = H = 2.

The calculated values of various terms in the above equation for j = 1–3 have been listed
in the Table 5.1.

Substitution in Eq. (i) gives

h x; yð Þ ¼ ð4=pÞ � 300� ½0:8687� 0:707=11:5488þ 5:227� 0:707=ð6195:8� 3Þ
þ 25:367� ð�0:707Þ=ð5� 3317812Þ ¼ 20:4�C:

Hence,

t
3
2
;
1
2

� �
¼ 20:4þ 100 ¼ 120:4�C:

Example 5.10 A rectangular section bar (W�H) is very long in the z-direction. Its three sides
are held at temperatures To while the fourth side (y = H) is held at a constant temperature Tb as
shown in Fig. 5.14 Determine the equation of heat flow rate from the face y = 0.

2

2
0oC

0oC300oC

0oC

(3/2, ½)

Fig. 5.13 Equivalent system of Fig. 5.12

Table 5.1 Example 5.9

sinh[(2j – 1) py/W] sin[(2j – 1) px/W] sinh[(2j–1) pH/W]

j = 1 0.8687 0.707 11.5488

j = 2 5.227 0.707 6195.82

j = 3 25.367 –0.707 3317812
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Solution

For the given bar, the heat flow from the face y = 0 for unit length in z-direction is

qy¼0 ¼ �
Zx¼W

x¼0

dqyðx; 0Þdx ¼ �
Zx¼W

x¼0

�k
@T

@y

����
y¼0

 !
dx ¼

Zx¼W

x¼0

k
@h
@y

����
y¼0

dx ðiÞ

where h = T–To.
From Eq. (5.23), we have

h ¼ ðTb � ToÞ 2p
X1
n¼1

ð�1Þnþ 1 þ 1

n sinh npH
W

� � � sin
npx
W

� �
� sinh

npy
W

� �

Hence,

@h
@y

����
y¼0

¼ ðTb � ToÞ 2p
X1
n¼1

ð�1Þnþ 1 þ 1

n sinh npH
W

� � � sin
npx
W

� �
� @

@y
sinh

npy
W

� �h i
 �
y¼o

¼ ðTb � ToÞ 2p
X1
n¼1

ð�1Þnþ 1 þ 1

n sinh npH
W

� � � sin
npx
W

� �
� np

W
cosh

npy
W

� �n o
y¼o

¼ ðTb � ToÞ 2p
X1
n¼1

ð�1Þnþ 1 þ 1

n sinh npH
W

� � � sin
npx
W

� �
� np

W

� �

Substitution in Eq. (i) gives

qy¼0 ¼ kðTb � ToÞ
Zx¼W

x¼0

2
p

X1
n¼1

ð�1Þnþ 1 þ 1

n sinh npH
W

� � � sin
npx
W

� �
� np

W

� �
dx

¼ kðTb � ToÞ 2p
X1
n¼1

ð�1Þnþ 1 þ 1

n sinh npH
W

� � � np
W

� � Zx¼W

x¼0

sin
npx
W

� �
dx

¼ kðTb � ToÞ 2p
X1
n¼1

ð�1Þnþ 1 þ 1

n sinh npH
W

� � � � cos
npx
W

� �h ix¼W

x¼0

W

H

To

ToTo

Tb

x

y

(q)y=0

0, 0

Fig. 5.14 Example 5.10

268 5 Steady-State Two-Dimensional Heat Conduction

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


or

qy¼0 ¼ kðTb � ToÞ 2p
X1
n¼1

ð�1Þnþ 1 þ 1

n sinh npH
W

� � � 1� cosðnpÞ½ �

5.5 Graphical Analysis of Two Dimensional Steady-State Conduction:
Thermal Flux Plotting and Shape Factor

Consider a quarter, Fig. 5.15b, of a chimney cross-section, Fig. 5.15a, where the inner
surface is at some uniform temperature T1 and the outer surface is at uniform temperature T2.
It is a two-dimensional system. Isotherms (constant temperature) and heat flow lines (adia-
bats) have been sketched therein following the rule that the heat flow lines cut the isotherms
at right angles.

To determine the heat flow, let us consider an elemental curvilinear square1 a-b-c-d in a
heat flow channel. The heat flow through this channel is

Dq ¼ �kðDx� 1ÞDT
Dy

where the depth of the element (perpendicular to the plane of the paper) has been taken as
unity.

If the curvilinear squares are drawn such that Dx = Dy for all such elements, then

Dq ¼ �kDT :

Let there be N number of temperature increments (uniformly spaced isotherms) between
inner and outer surfaces, then the drop in temperature across any two adjacent isotherms is

�DT ¼ ðT1 � T2Þ=N:

and

Dq ¼ kðT1 � T2Þ=N:

If there areM number of heat flow channels, the total heat flow through the quarter section
will be the sum of heat flow through all channels, i.e.

q ¼ MDq ¼ k � M=Nð Þ T1 � T2ð Þ ¼ kS T1 � T2ð Þ ð5:31Þ

where S = M/N is termed as conduction shape factor.
Shape factors for some common geometrical systems and thermal conditions of practical

utility have been worked out by various researchers. They are summarized in Table 5.2.
From the above analysis, it can be seen that to determine the total heat flow through a

given configuration, it is required to draw curvilinear square elements and count the number

1Curvilinear squares closely approximate the true squares only in the limit when their number approaches
infinity. In finite form, they must be drawn such that average lengths of the opposite sides of the curvilinear
squares are nearly equal and keeping internal angles close to 90o.

5.4 Mean Value Theorem 269

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


a b

b

c

T2

T1a

d

Typical heat 
flow lines

Isotherms

Fig. 5.15 a Chimney cross-section b Flux plotting in one quarter

Table 5.2 Conduction shape factors

S. No. Physical system Schematic Shape factor Restrictions

1 Plane wall of thickness d A/d One-dimensional
heat flow

2 Hollow cylinder, length
L (radial heat flow)

2pL

ln R2
R1

� � L >> R

3 Hollow sphere 4pR1R2

R2 � R1

-

4 Isothermal sphere of
radius R buried in semi-
infinite medium having an
isothermal surface

4pR

1� R
2Z

z > D/2

(continued)
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Table 5.2 (continued)

S. No. Physical system Schematic Shape factor Restrictions

5 Isothermal sphere of
radius R buried in an
infinite medium

4pR
(This value can be
obtained by putting
R2 = ∞ in equation
of Case 3, or by
putting z = ∞ in that
of Case 4).

-

6 Isothermal sphere of
radius R buried in semi-
infinite medium with an
insulated surface

4pR

1þ R
2Z

-

7 Two isothermal spheres
buried in infinite medium

4pD

R2
R1

1� C4
1

1�C2
2

� �
�2C2

where C1 = R1/D,
C2 = R2/D (R2 refers
to smaller sphere)

D > 5Rmax

8 Isothermal horizontal
cylinder of radius R buried
in semi-infinite medium
having isothermal surface

2pL

cosh�1 Z
R

� � L >> R

2pL

ln 2Z
R

� � L >> R
Z > 3R

2pL

ln L
R

� � lnðL=2DÞ
1�lnðL=RÞ
h i Z >> R

L >> z

9 Two isothermal cylinders
buried in infinite medium

2pL

cosh�1 D2�R2
1�R2

2
2R1R2

� � L >> R1, R2

L >> D

10 Eccentric cylinders of
equal lengths

2pL

cosh�1 R2
1 þR2

2�e2

2R1R2

� � L >> 2R2

R2 > R1

(continued)
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Table 5.2 (continued)

S. No. Physical system Schematic Shape factor Restrictions

11 Cylinder of length
L centred in a square duct
of equal length

2pL

ln 0:54W
R

� � L >> W
W > 2R

12 Isothermal cylinder of
radius R placed vertically
in semi-infinite medium
having isothermal surface

2pL

ln 2L
R

� � L >> 2R

13 Thin plate buried in semi-
infinite medium

pW

ln 4W
L

� � z = 0
W > L

2pW

ln 4W
L

� � z >> W
W > L

14 An edge formed by the
intersection of two plane
walls; temperatures of
inner and outer walls are
T1 and T2, respectively

0.54L W > d /5
H > d /5

15 Corner at the intersection
of three plane walls, each
of thickness d;
temperatures of inner and
outer walls are T1 and T2,
respectively

0.15d Inside
dimension >
d/5

16 Isothermal rectangular
parallelepiped buried in
semi-infinite medium
having isothermal surface

1:685L

log 1þ Z
W

� � ��0:59�
Z
H

� ��0:078

L >> W, H, z
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of heat flow channels and the temperature increments. However, the thermal flux plotting
depends on the skill of the person plotting the lines. Electrical analogy, discussed in
Sect. 5.6, may be used to sketch the isotherms and heat flow lines.

It is to note that this technique is now not much used but a rough sketching can sometimes
help in making a fairly good estimate of the temperatures and the basic concepts of the plots
can help in a quick check of the result from other methods. Hence, it must not be totally
overlooked.

Example 5.11 Determine the heat transfer rate per unit length by flux plotting through the
300 mm thick insulation on a 200 mm outer diameter pipe. The temperature of the inner
surface of the insulation is 150°C and outer surface is at 50°C. The thermal conductivity of
the insulating material is 0.06 W/(m K). Check the result against the analytical solution.

Solution

Concentric circles of 200 and 800 mm are drawn accurately. The network of the curvilinear
squares can be constructed by freehand plotting in a quarter only, refer Fig. 5.16. There are
approximately 5.25 squares in each heat flow lane, and there are a total of 24 flow lanes (6 in
each quarter), i.e. N 	 5.25 and M = 24. This gives

S 	 24
5:25

¼ 4:57

and

q

L
¼ kSðT1 � T2Þ ¼ 4:57� 0:06� ð150� 50Þ ¼ 27:42 W/m:

From the analytical solution,

q

L
¼ 2pk

T1 � T2

ln R2
R1

� � ¼ 2p� 0:06� 150� 50

ln 400
100

� � ¼ 27:19 W/m:

The result of the freehand plotting is in a reasonable agreement with the analytical
solution (about 0.8% higher than that of the analytical solution).

Fig. 5.16 Flux plotting Example 5.11
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Example 5.12 A 25 mm OD pipe carries a hot fluid (pipe inner surface temperature = 80°
C). It is placed centrally in a thin-walled square duct (85 � 85 mm2). The space between the
pipe and the duct is completely filled with glass wool insulation [k = 0.055 W/(m K)].
Calculate the heat loss for one meter length of the pipe if T2 = 20°C.

Solution

From the flux plotting, refer Fig. 5.17,

Nav 	 ð6:3þ 6:4þ 6:8þ 7:3Þ=4 ¼ 6:7:

For the 4 flow lanes in one-eighth region of the configuration as shown in the figure, the
shape factor

S

L
	 ð8� 4Þ=6:7 ¼ 4:78

and the heat loss per meter length of the pipe is

q

L
¼ k

S

L
ðT1 � T2Þ ¼ 0:055� 4:78� 60 ¼ 15:77 W/m:

From Case 11, Table 5.2,
S
L ¼ 2p

ln 0:54W
Rð Þ ¼ 4:83, which is very close to that found from flux plotting.

Example 5.13 Determine the shape factor for the configuration shown in Fig. 5.18. If the
configuration refers to a square-section duct (a � a) covered with fireclay of thickness
1.5a to give an outer shape of 4a � 4a square, determine the heat loss for a = 20 mm,
T1 = 100°C and T2 = 10°C. Thermal conductivity of fireclay is 1.05 W/(m K).

Fig. 5.17 Flux plotting Example 5.12
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Solution

Flux plot on one-eight region of the configuration has been shown in Fig. 5.18. Freehand
plotting for this region gives

Nav 	 ð8:1þ 8:15þ 8:25þ 8:4þ 8:7Þ=5 ¼ 8:32:

The shape factor,

S

L
¼ M

Nav
¼ ð8� 5Þ=8:32 ¼ 4:81:

Heat loss through the insulation, per meter length of the duct, is

q

L
¼ k

S

L

� �
ðT1 � T2Þ ¼ 1:05� 4:81� ð100� 10Þ ¼ 454:54 W/m:

Example 5.14 Determine the shape factor for the following systems.

(i) a plane wall,
(ii) a hollow cylinder of length L (L > > r),
(iii) a hollow sphere,
(iv) an isothermal sphere of radius R buried in an infinite medium.

Solution

(i) A plane wall (thickness d)

q ¼ kAðT1 � T2Þ=d ¼ kðA=dÞ:ðT1 � T2Þ

Hence, S = (A/d).

Very long in direction z.

Fig. 5.18 Flux plotting Example 5.13
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(ii) A hollow cylinder

q ¼ 2pkL
T1 � T2
ln R2=R1ð Þ ¼ k

2pL
ln R2=R1ð Þ
� 	

T1 � T2ð Þ

Hence,

S ¼ 2pL
ln R2=R1ð Þ :

(iii) A hollow sphere

q ¼ 4pkR2R1
T1 � T2
R2 � R1ð Þ ¼ k

4pR2R1

R2 � R1ð Þ
� 	

T1 � T2ð Þ

Hence,

S ¼ 4pR2R1

R2 � R1ð Þ ¼ 4p
1
R1

� 1
R2

� 	�1

:

(iv) An isothermal sphere of radius r buried in infinite medium
For the infinite medium, put R2 = ∞ and R1 = R in shape factor equation of case (iii). This
gives

S ¼ 4pR:

Example 5.15 A 1 m diameter sphere of radioactive material generates heat at the rate of
5 kW. It is buried 1 m in the earth [k = 1 W/(m K)], which has surface temperature of 30°C.
What is the surface temperature of the sphere?

Solution

The shape factor from Table 5.2 (Case 4)

S ¼ 4pR
1�R

2zð Þ ¼
4p�0:5
1� 0:5

2�1ð Þ ¼ 8:378

q ¼ kSðT1 � T2Þ

or

5000 ¼ 1� 8:378� ðTs � 30Þ

or

Ts ¼ 626:8� C:
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Example 5.16 A 50 mm one-dimensional thin-walled pipe carries a cold fluid at 5°C. It is
enclosed by a 200 mm pipe, whose surface is at 40°C. The space between the two pipes is
filled with dry sawdust [k = 0.06 W/(m K)]. What is the heat transfer rate per m length of the
pipe?

If the inner pipe is placed eccentric with 25 mm eccentricity, what will be the heat transfer
rate?

Solution

(i) Concentric cylinders

q

L
¼ kSðT1 � T2Þ

¼ k
2p

ln R1
R2

� � ðT1 � T2Þ

¼ 0:06� 2p

ln 100
25

� �� ð40� 5Þ ¼ 9:52 W/m:

(ii) Eccentric cylinders

S

L
¼ 2p

cosh�1 R2
1 þR2

2�e2

2R1R2

� � ¼ 2p

cosh�1 252 þ 1002�252
2�25�100

� � ¼ 4:77

q

L
¼ k

S

L
ðT1 � T2Þ ¼ 0:06� 4:77� ð40� 5Þ ¼ 10:02 W/m:

Example 5.17 A 500 mm OD pipeline transports crude oil at 100°C. In order to reduce the
heat loss from the pipeline, two schemes have been proposed: (i) one of the schemes is to
bury it 3.0 m below the earth’s surface [ke = 1.0 W/(m K)], (ii) the second scheme is to
cover it with 50 mm thick glass wool insulation [kg = 0.05 W/(m K)]. If the earth’s surface
temperature is 0°C and the temperature of the outer surface of the insulation is also estimated
to be 0°C, compare the schemes.

Solution

(i) Heat loss per unit length of the pipeline buried in the earth, Case 8, Table 5.2

S

L
¼ 2p

ln 2Z
R

� � ¼ 2p

ln 2�3
0:25

� � ¼ 1:977

q

L
¼ ke

S

L
ðT1 � T2Þ ¼ 1:0� 1:977� ð100� 0Þ ¼ 197:7 W/m:
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(ii) Insulation covering:

q

L
¼ kg

S

L
ðT1 � T2Þ

¼ kg � 2p

ln R2
R1

� ðT1 � T2Þ

¼ 0:05� 2p

ln 300
250

� �� ð100� 0Þ ¼ 172:3 W/m:

Scheme 2 is better. However, the final choice of the scheme is based on economics.

Example 5.18 A small cubical furnace is of 0.75 m sides on the inside. It is made of
150 mm thick fireclay bricks [k = 1.3 W/(m K)]. If the inside and outside surfaces are at
500°C and 100°C, respectively, determine the rate of heat loss from the furnace through its
walls.

Solution

(i) Walls: There are six 0.75 � 0.75 m2 surface areas, which can be treated as one-
dimensional conduction cases. Thus, the heat loss through these walls is

qw ¼ 6 kAðT1 � T2Þ½ �=d ¼ 6� 1:3� ð0:75� 0:75Þ � ð500� 100Þ=0:15½ �=1000
¼ 11:70 kW:

(ii) Edges: There are 12 edges, each 0.75 m long. These are two-dimensional problems
for which the total shape factor from Table 5.2 is

Se ¼ 12� ð0:54LÞ ¼ 12� 0:54� 0:75 ¼ 4:86:

(iii) Corners: The 8 three-dimensional corners have the total shape factor, refer Table 5.2,

Sc ¼ 8� ð0:15dÞ ¼ 8� 0:15� 0:15 ¼ 0:18:

The heat loss through the edges and corners is

qe þ qc ¼ kðSe þ ScÞðT1 � T2Þ ¼ 1:3� ð4:86þ 0:18Þ � 400 =1000 ¼ 2:62 kW:

Total heat loss = 11.70 + 2.62 = 14.32 kW approx.

Example 5.19 Combustion products at an average temperature of 800°C flow through a
20 m high chimney whose cross-section is shown in Fig. 5.19. The ambient temperature is
30°C. Determine the heat loss from the chimney if the inside and outside film coefficients are
100 and 10 W/(m2 K), respectively.
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Solution

From Table 5.2, Case 11, conduction shape factor,

S ¼ 2pL

ln 0:54W
R

� � ¼ 2p� 20

ln 0:54�0:32
0:125

� � ¼ 388:06:

The thermal resistances are:
Inside convective,

Ri ¼ 1
2pR1Lhi

¼ 1
2p� 0:125� 20� 100

¼ 6:366� 10�4:

Conductive,

Rk ¼ 1
kS

¼ 1
1:3� 388:06

¼ 1:982� 10�3:

Outside convective,

Ri ¼ 1
4WLho

¼ 1
4� 0:32� 20� 10

¼ 3:906� 10�3:

The heat loss,

q ¼ T1 � T2ð Þ
Ri þRk þRo

¼ 800� 30ð Þ
6:366� 10�4 þ 1:982� 10�3 þ 3:906� 10�3

¼ 118kW:

Example 5.20 Repeat the above example for the 250 � 250 mm2 flue passage, Fig. 5.20.
Comment on the result.

320 Sq

250

k = 1.3

Fig. 5.19 Example 5.19
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Solution

From Table 5.2,

Swalls ¼ 4ðA=dÞ ¼ 4� ð0:25� 20Þ=0:035 ¼ 571:43:

Shape factor for edges:

Se ¼ 4� ð0:54LÞ ¼ 4� 0:54� 20 ¼ 43:2:

Hence,

Stotal ¼ 571:43þ 43:2 ¼ 614:63:

q ¼ T1 � T2ð Þ
1

hiAi
þ 1

kS
þ 1

hoAo

¼ 800� 30ð Þ
1

100� 1� 20
þ 1

1:3� 614:63
þ 1

10� 1:28� 20

¼ 136:1 kW:

The heat flow in this case is more because the mass of the wall resisting conduction heat
flow is less.

Example 5.21 A radioactive brick (50 mm � 100 mm � 200 mm) at 800°C is buried
750 mm deep in the earth [k = 0.5 W/(m K)]. Determine the heat transfer rate when the
surface temperature of the earth is 30°C.

Solution

From Table 5.2, Case 16,

S ¼ 1:685L log 1þ z

W

� �h i�0:59 z

H

� ��0:078

¼ 1:685� 0:2� log 1þ 0:75
0:1

� �� 	�0:59 0:75
0:05

� ��0:078

¼ 0:2849

320 Sq

250 Sq

Fig. 5.20 Example 5.20
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Heat transfer rate,

q ¼ kSDT ¼ 0:5� 0:2849� ð800� 30Þ ¼ 109:7 W:

Example 5.22 A furnace is 1.2 m by 0.9 m by 0.8 m. It is made of a brick wall of 150 mm
thickness [for bricks, k = 1.3 W/(m K)]. Inside and outside temperatures are 500°C and 50°C,
respectively. Determine the heat loss through the walls.

Solution

Inside dimensions are 0.9 � 0.6 � 0.5 m3.

Plane walls: 2 nos. of 0.9 � 0.6 m2, 2 nos. of 0.9 � 0.5 m2 and 2 nos. of 0.6 � 0.5 m2. The
total area is

Awall ¼ 2ð0:9� 0:6þ 0:9� 0:5þ 0:6� 0:5Þ ¼ 2:58 m2:

Heat transfer through the walls,

qwall ¼ kADT=d ¼ 1:3� 2:58� ð500� 50Þ=0:15 ¼ 10:06 kW:

Shape factors
Edges: Four edges of 0.9 m, four of 0.6 m and four of 0.5 m.
Total shape factor for the edges,

Se ¼ 4� 0:54� ð0:9þ 0:6þ 0:5Þ ¼ 4:32 :

Corners: There are 8 similar corners.
Total shape factor for these corners,

Sc ¼ 8� 0:15� 0:15 ¼ 0:18:

Heat loss through the edges and corners is

qe þ qc ¼ kSDT ¼ 1:3� ð4:32þ 0:18Þ � ð500� 50Þ ¼ 2:63 kW:

Total heat loss, q = 10.06 + 2.63 = 12.69 kW.

Example 5.23 In order to recover oil, steam is supplied through a 250 mm diameter and
250 m long pipe laid down into the earth [k = 1.0 W/(m K)]. Determine the heat loss from
the pipe if the steam is at 150°C and the earth is at 20°C.

Solution

From Case 12 of Table 5.2, the shape factor,

S ¼ 2pL

ln 2L
R

� � ¼ 2p� 250

ln 2�250
0:125

� � ¼ 189:4
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The heat loss,

q ¼ kSDT ¼ 1:0� 189:4� ð150� 20Þ ¼ 24:62 kW:

Example 5.24 Determine the equation of shape factor for Case 8 of Table 5.2 from that of
Case 9.

Solution

For Case 9,

S

L
¼ 2p

cosh�1 D2�R2
1�R2

2
2R1R2

� �

Putting D = z + R1, the denominator becomes

cosh�1 z2 þ 2R1z� R2
2

2R1R2

� �
¼ cosh�1 z2

2R1R2
þ z

R2
� R2

2R1

� �

When R1 tends to infinity, the cylinder coverts into plane isothermal surface, i.e. to Case
8, and

cosh�1 z2

2R1R2
þ z

R2
� R2

2R1

� �
¼ cosh�1 z

R

� �

where R = R2.
Thus

S

L
¼ 2p

cosh�1 z
R

� � ;
which is the desired result.

b

a

RinsRi

ti
q

Rsoil

t2

t2 = 5oC

hi = 200 
W/(m2 K)

Oil at 
100oC

z = 1.2 m

Insulation 
ki = 0.27 
W/(m K)

Fig. 5.21 Example 5.25
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Example 5.25 A 500 mm diameter long pipe carrying oil at 100°C is covered with 250 mm
thick insulation. It is buried in soil [ksoil = 0.27 W/(m K)] at a depth of 1.2 m as shown in
Fig. 5.21a. Determine the rate of heat transfer from the oil if the convection heat transfer
coefficient from oil to pipe surface is 500 W/(m2 K). Soil surface temperature is 5°C. Neglect
pipe wall resistance.

Solution

The electric network is shown in Fig, 5.21b. The total resistance to heat transfer is

Rt ¼ Ri þRins þRsoil

For unit length of pipe,

Ri ¼ 1
hiAi

¼ 1
hi � pdiL

¼ 1
200� p� 0:5� 1

¼ 0:00318:

Resistance of insulation,

Ri ¼ 1
2pkiL

ln
r1
ri

� �

¼ 1
2p� 0:06� 1

ln
0:5
0:25

� �
¼ 1:84:

From Table 5.2, Case 8,

Rsoil ¼ 1
Sksoil

¼ cosh�1ðz=RÞ
2pL

� 	
� 1
ksoil

¼ cosh�1ð1:2=0:5Þ
2p� 1

� 1
0:27

¼ 0:897:

Hence, Rt ¼ Ri þRins þRsoil ¼ 0:00318þ 1:84þ 0:897 ¼ 2:74:
Heat transfer rate,

q ¼ ti � t2
Rt

¼ 100� 5
2:74

¼ 34:67W=m length:

5.6 Experimental Investigation of Conduction Process by Method
of Analogy: Electro-Thermal Analogy

The electro-thermal analogy has been employed to sketch the curvilinear squares experi-
mentally. It is based on the similarity of the mathematical equations of the steady-state heat
conduction and electric conduction presented by the Laplace equations given below.
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@2t

@x2
þ @2t

@y2
¼ 0 ð5:1Þ

@2E

@x2
þ @2E

@y2
¼ 0 ð5:32Þ

where E is the electrical potential.
Thus, the thermal phenomenon can be investigated by the study of the electrical one. The

experimental investigation of the later is simpler than the thermal process. The method
involves the construction of an electric analog and experimentally drawing the isothermal
(equipotential) and heat flow (current flow) lines. An experimental setup based on this
analogy is discussed below.

The setup, shown in Fig. 5.22a, uses two similar hollow boxes ‘1’ and ‘2’ made with two
parallel sides of copper plates and the other two of an insulating material (say perspex sheet).
The bottom of the boxes is also made of the insulating material. The boxes represent a scaled
model of the chimney cross-section discussed earlier.

A metallic tracer at ‘A’ in Fig. 5.22b can trace the whole area of the box at a certain depth.
The tracer is connected to the moving point ‘B’ of a rheostat ‘R’ through a galvanometer ‘G’.
Some electrical potential difference (say 12 V) is applied to the two ends of the rheostat and
the same is applied across the two parallel copper plates of the hollow box. The box water,
made conductive by adding some salt, is filled to such a level that the point of the metallic

R

+ -

G

B

B

A

DC G

Perspex 
sheet

Copper
plate

C D
A

(c)

(b)

Water + salt

Perspex
sheet

Copper plates

Perspex 
sheets

Perspex
sheets

Copper 
plate

Copper 
plate

Copper
plates

Perspex
sheet

(a)

Fig. 5.22 Experimental setup for flux plotting
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tracer touches the water surface. Thus the rheostat and the box form a Wheatstone bridge, see
Fig. 5.22c. Tracer ‘A’ is moved, touching the water surface, such that the galvanometer ‘G’
always shows zero deflection. The path of the tracer is thus a uniform potential line and this
path can be plotted on a paper with the help of a traversing mechanism. Setting the movable
point of the rheostat at different positions, constant potential lines can be plotted for the
whole of the section. Repeating the above experiment with the second box, similar lines can
be plotted which will be found to be nearly perpendicular to the lines drawn with the first
box.

The method leads to a better plot of the curvilinear squares than by freehand plotting and,
thus, gives a better estimate of the value of the shape factor.

5.7 Numerical Solution Methods

The direct integration of the differential equations has been used to solve simple problems of
two-dimensional, three-dimensional and transient heat conduction problems but success in
solving complex problems, involving non-linear boundary conditions and temperature- or
position-depending thermal properties, is limited. Such problems have been solved using
numerical methods. Commonly used numerical methods are: finite-difference and finite-
element methods.

The finite-difference method has been used extensively in solving heat conduction
problems because of its simplicity in implementation. The finite-element method is being
widely used to solve problems in structural mechanics. It requires much greater mathematical
efforts and has been used for solving heat conduction problems involving complicated
geometries.

Here only the basic principles of the finite-difference method are presented. The appli-
cation of the method has been illustrated with some examples.

5.7.1 Finite-Difference Method

The first step in the finite-difference method is to discretize the spatial and time coordinates to
form a mesh of nodes. Then by applying the energy balance to the volume elements sur-
rounding the nodes, a set of linear algebraic equations is obtained. These equations, con-
sisting of as many unknowns as the number of nodes in the mesh, are solved by metric
inversion or by iteration. The accuracy of the finite-difference approximation increases with
number of nodes hence computers are used to obtain finite-difference solutions. Standard
computer programs are available for this purpose. A coarse mesh with few nodes has been
used in this section (suitable for calculation by hand) to clarify the basic principles of the
method.

Figure 5.23 shows section of a body which has been divided into a number of small
volumes by using equal divisions in x- and y-directions. The nodal points (nodes) of these
volumes are designated for a two-dimensional system as (m + 1, n), (m, n), (m–1, n), etc.,
where m and n indicate the x and y increments, respectively. The thermal properties of each
volume are assumed to be concentrated at the nodal points. In order to establish temperatures
at the nodal points, we use finite differences to approximate the differentials in the Laplace
equation, Eq. (5.1). We shall consider the case of constant thermal conductivity of the
material.
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The temperature gradients can be written as follows with reference to Fig. 5.23.

@t

@x

� �
mþ 1=2;n

	 Tmþ 1;n � Tm;n
Dx

@t

@x

� �
m�1=2;n

	 Tm;n � Tm�1;n

Dx
@t

@y

� �
m;nþ 1=2

	 Tm;nþ 1 � Tm;n
Dy

@t

@y

� �
m;n�1=2

	 Tm;n � Tm;n�1

Dy

@2t

@x2

� �
m;n

	

@t

@x

� �
mþ 1=2;n

� @t

@x

� �
m�1=2;n

Dx
¼ Tðmþ 1;nÞ þ Tðm�1;nÞ � 2Tðm;nÞ

Dxð Þ2

@2t

@y2

� �
m;n

	

@t

@y

� �
m;nþ 1=2

� @t

@y

� �
m;n�1=2

Dy
¼ Tðm;nþ 1Þ þ Tðm;n�1Þ � 2Tðm;nÞ

Dyð Þ2

Substitution in Eq. (5.1) yields

Tðmþ 1;nÞ þ Tðm�1;nÞ � 2Tðm;nÞ
Dxð Þ2 þ Tðm;nþ 1Þ þ Tðm;n�1Þ � 2Tðm;nÞ

Dyð Þ2 ¼ 0

node

Dashed lines indicate the 
element [the node (m, n)]
with volume ( . y.1); 
unit depth.

(m, n)

(m+1, n)

(m+2, n)

(m-1, n)

(m, n+1)

(m, n+2)

(m, n-1)

(m, n-2)

(m-2, n) Δy

Δy

y

y

x x

y

x

Fig. 5.23 Nomenclature for two-dimensional numerical analysis
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If Dx = Dy, then

Tðmþ 1;nÞ þ Tðm�1;nÞ þ Tðm;nþ 1Þ þ Tðm;n�1Þ � 4Tðm;nÞ ¼ 0 ð5:33Þ

This is known as nodal or temperature equation.
Equation (5.33) can also be obtained making use of the method of heat balances. Con-

sider node (m, n) in Fig. 5.23. The rates of heat conduction from the nodes (m–1, n), (m +1,
n), (m, n–1) and (m, n +1) to node (m, n) are given by the following equations.

k Dy:1ð Þ Tm�1;n � Tm;n
Dx

k Dy:1ð Þ Tmþ 1;n � Tm;n
Dx

k Dx:1ð Þ Tm;n�1 � Tm;n
Dy

k Dx:1ð Þ Tm;nþ 1 � Tm;n
Dy

In the steady state, the net heat transfer to the node (m, n) is zero. For Dx = Dy, it gives
Eq. (5.33). The use of the method of heat balance is illustrated in the examples to follow.

Example 5.26 Write down the nodal equation for the node situated at the corner as shown
in Fig. 5.24 with one side insulated and the adjacent side subjected to convective heat
transfer.

Solution

The rate of heat conducted between 2 and 1, and 3 and 1, respectively, is

k
bDy
2

� �
T2 � T1ð Þ

Dx

and

k
bDx
2

� �
T3 � T1ð Þ

Dy

where b is the depth perpendicular to the plane of the paper.

12
Insulated

3

h, T

Fig. 5.24 Example 5.26
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The rate of heat convected into node 1 is

hbDx
2

� �
T1 � T1ð Þ ¼ 0

In the steady state, the summation of energy transfer rate into node 1 is zero. Thus

k
bDy
2

� �
T2 � T1ð Þ

Dx
þ k

bDx
2

� �
T3 � T1ð Þ

Dy
þ hbDx

2

� �
T1 � T1ð Þ ¼ 0

Assuming a square grid (Dx = Dy), the equation simplifies to

T2 þ T3 þ hDx
k

� �
T1 � hDx

k
þ 2

� 	
T1 ¼ 0

which is the desired result.

Example 5.27 Considering one-dimensional heat conduction through a thin fin, show that
the nodal equation for the node shown in Fig. 5.25 can be expressed as

hP Dxð Þ2
kA

þ 2

" #
Tm � hP Dxð Þ2

kA

" #
T1 � Tmþ 1 þ Tm�1ð Þ ¼ 0

Solution

The rate of heat conducted between nodes (m–1) and (m), and between nodes (m + 1) and
(m) are, respectively,

kA
Tm�1 � Tmð Þ

Dx

and

kA
Tmþ 1 � Tmð Þ

Dx

The rate at which the heat is convected from the fin surface is

hPDx T1 � Tmð Þ

(m + 1)(m 1) (m)

Fig. 5.25 Example 5.27
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For the steady state, the summation of the heat transfer rates into the node (m) must be
zero, and thus

kA
Tm�1 � Tmð Þ

Dx
þ kA

Tmþ 1 � Tmð Þ
Dx

þ hPDx T1 � Tmð Þ ¼ 0

which on simplification gives

hP Dxð Þ2
kA

þ 2

" #
Tm � hP Dxð Þ2

kA

" #
T1 � Tmþ 1 þ Tm�1ð Þ ¼ 0

Example 5.28 Write down nodal (temperature) equations for the cases shown in
Fig. 5.26a–h referring to the numerical solution of two-dimensional steady-state conduction
problems. Consider the dimension perpendicular to the plane of paper as b.

Fig. 5.26 Example 5.28
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Solution

The solid cross-sections in Fig. 5.26a–h have been divided into arbitrary lengths and widths
of Dx and Dy, respectively. Let Dx = Dy = d as depicted in Fig. 5.26a.

Case (a): The nodal point ‘1’ lies on an isothermal surface, i.e. T1 = T2 = T3. Hence, there is
no heat flow between nodal points 1 and 2 and between 1 and 3. Hence, the nodal equation is

qb bdð Þþ k bdð Þ T4 � T1ð Þ
d

¼ 0

or

qb
d
k
þ T4 � T1ð Þ ¼ 0:

Case (b): The nodal point ‘1’ lies on an insulated surface (as T1 = T5). Hence q5-1 = 0. The
nodal equation can be written as

q2�1 þ q3�1 þ q4�1 ¼ 0

or

k
bd
2

� �
T2 � T1ð Þ

d
þ k bdð Þ T3 � T1ð Þ

d
þ k

bd
2

� �
T4 � T1ð Þ

d
¼ 0

or

T2 þ T4 þ 2T3 � 4T1 ¼ 0

It is to be noted that area of the heat flow between 2-1 and 4-1 is half of that between 3-1.

Case (c): The surface is in contact with a fluid at bulk temperature T∞. The film coefficient is
h at the surface. The nodal equation is

q5�1 þ q4�1 þ q3�1 þ q2�1 ¼ 0

or

h bdð Þ T1 � T1ð Þþ k
bd
2

� �
T4 � T1ð Þ

d
þ k

bd
2

� �
T3 � T1ð Þ

d
þ k bdð Þ T2 � T1ð Þ

d
¼ 0

or

hd
k

� �
T1 � T1ð Þþ T4 � T1ð Þ

2
þ T3 � T1ð Þ

2
þ T2 � T1ð Þ ¼ 0
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or

T3 þ T4ð Þ
2

þ T2 þ hd
k

� �
T1 � T1 2þ hd

k

� �
¼ 0

Case (d): The nodal point ‘1’ lies at the corner of two insulated surfaces. Hence, heat flows
only between nodal points 2-1 and 3-1. The nodal equation for this case is

q2�1 þ q3�1 ¼ 0

or

k
bd
2

� �
T2 � T1ð Þ

d
þ k

bd
2

� �
T3 � T1ð Þ

d
¼ 0

or
T2 þ T3 � 2T1 ¼ 0

Case (e): The nodal point ‘1’ lies at the corner of two isothermal surfaces. Hence, there is no
heat flow to the nodal point 1 and there is no nodal equation for this case.

Case (f): The nodal point ‘1’ lies in a corner where the surfaces are in contact with a fluid at
bulk temperature T∞. Hence, the nodal equation is

h bdð Þ T1 � T1ð Þþ k
bd
2

� �
T2 � T1ð Þ

d
þ k

bd
2

� �
T3 � T1ð Þ

d
þ k bdð Þ T4 � T1ð Þ

d
þ k bdð Þ T5 � T1ð Þ

d
¼ 0

or

hd
k

� �
T1 � T1ð Þþ 1

2
T2 � T1ð Þþ 1

2
T3 � T1ð Þþ T4 � T1ð Þþ T5 � T1ð Þ ¼ 0

or

T2 þ T3 þ 2T4 þ 2T5 þ 2hd
k

� �
T1 � T1 6þ 2hd

k

� �
¼ 0

Case (g): Following the procedure applied to the above cases, the nodal equation can be
written as

q1�1 þ q2�1 þ q3�1 ¼ 0

or

h bdð Þ T1 � T1ð Þþ k
bd
2

� �
T2 � T1ð Þ

d
þ k

bd
2

� �
T3 � T1ð Þ

d
¼ 0
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or

2
hd
k

� �
T1 � T1ð Þþ T2 � T1ð Þþ T3 � T1ð Þ ¼ 0

or

T2 þ T3 þ 2
hd
k

� �
T1 � 2T1 1þ hd

k

� �
¼ 0

Case (h): For this case,

q2�1 þ q3�1 þ q4�1 þ q5�1 ¼ 0

or

k
bd
2

� �
T2 � T1ð Þ

d
þ k

bd
2

� �
T3 � T1ð Þ

d
þ k bdð Þ T4 � T1ð Þ

d
þ k bdð Þ T5 � T1ð Þ

d
¼ 0

or

T2 þ T3 þ 2T4 þ 2T5 � 6T1 ¼ 0

Example 5.29 Write the nodal equation for the interior node near a curved boundary as
shown in Fig. 5.27.

Solution

The rate of heat conduction from 1, 2, (m, n–1) and (m–1, n) to the node (m, n) are

k
aDxþDx

2

� �
T1 � Tm;n

bDy

k
bDyþDy

2

� �
T2 � Tm;n

aDx

k
aDxþDx

2

� �
Tm;n�1 � Tm;n

Dy

1
2 h, T∞

(m -1, n) (m, n)

(m, n -1)

a.   x

x

y

Fig. 5.27 Example 5.29
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and

k
bDyþDy

2

� �
Tm�1;n � Tm;n

Dy
:

In the steady state, the summation of the conducted heat into the node (m, n) is zero. For
Dx = Dy, this gives

k
aþ 1
b

� �
T1 � Tm;n
� �þ k

bþ 1
a

� �
T2 � Tm;n
� �þ k aþ 1ð Þ Tm;n�1 � Tm;n

� �þ k bþ 1ð Þ Tm�1;n � Tm;n
� � ¼ 0

or

aþ 1ð ÞT1
b

þ bþ 1ð ÞT2
a

þ aþ 1ð ÞTm;n�1 þ bþ 1ð ÞTm�1;n

� aþ 1ð Þ
b

þ bþ 1ð Þ
a

þ aþ 1ð Þþ bþ 1ð Þ
� 	

Tm;n

¼ 0

Dividing by (a + 1) (b + 1), we have

T1
b bþ 1ð Þ þ

T2
a aþ 1ð Þ þ

Tm;n�1

bþ 1ð Þ þ
Tm�1;n

aþ 1ð Þ
� 1

b bþ 1ð Þ þ
1

a aþ 1ð Þ þ
1

bþ 1ð Þ þ
1

aþ 1ð Þ
� 	

Tm;n

¼ 0

Simplification gives the final equation as

T1
b bþ 1ð Þ þ

T2
a aþ 1ð Þ þ

Tm;n�1

bþ 1ð Þ þ
Tm�1;n

aþ 1ð Þ �
1
a
þ 1

b

� �
Tm;n ¼ 0;

which is the desired result.
Nodal equations for some configurations of interest are given in Table 5.3.

Example 5.30 Write down the nodal equation for a nodal point on the boundary between
two materials as shown in Fig. 5.28.

Solution

The heat balance equation is, refer Fig. 5.28,

ðq2�1ÞA þðq2�1ÞB þðq3�1ÞA þðq3�1ÞB þ q4�1 þ q5�1 ¼ 0

Using Fourier’s law for conduction heat transfer, we obtain for unit depth

kA
Dx
2
:1

� �
T2 � T1

Dy
þ kB

Dx
2
:1

� �
T2 � T1

Dy
þ kA

Dx
2
:1

� �
T3 � T1

Dy
þ kB

Dx
2
:1

� �
T3 � T1

Dy

þ kA Dy:1ð Þ T4 � T1
Dx

þ kB Dy:1ð Þ T5 � T1
Dx

¼ 0
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Table 5.3 Nodal equation for different configurations

Configuration Nodal equation

Internal node

Tðm�1;nÞ þ Tðmþ 1;nÞ þ Tðm;n�1Þ þ
Tðm;nþ 1Þ � 4Tðm;nÞ ¼ 0

Node on an insulated surface

Tðm;n�1Þ þ Tðm;nþ 1Þ þ 2Tðm�1;nÞ � 4Tðm;nÞ ¼ 0

Node on a surface in contact with fluid

ð1=2Þ½Tðm;n�1Þ þ Tðm;nþ 1Þ þ 2Tðm�1;nÞ� þ
hðDx=kÞT1�½2þ hðDx=kÞ�Tðm;nÞ ¼ 0

(continued)
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Table 5.3 (continued)

Configuration Nodal equation

Insulated external corner

Tðm;n�1Þ þ Tðm�1;nÞ � 2Tðm;nÞ ¼ 0

External corner on isothermal surfaces

The node lies on the corner of two isothermal
surfaces hence there is no nodal equation

External corner in contact with a fluid

Tðm;n�1Þ þ Tðm�1;nÞ þ 2hðDx=kÞT1
�½2þ 2hðDx=kÞ�Tðm;nÞ ¼ 0

Interior corner in contact with a fluid

Tðm;nþ 1Þ þ Tðmþ 1;nÞ þ 2ðTðm�1;nÞ þ Tðm;n�1ÞÞ þ
2hðDx=kÞT1�½6þ 2hðDx=kÞ�Tðm;nÞ ¼ 0

(continued)
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For Δx = Δy, we have

kA
2 ðT2 � T1Þþ kB

2 ðT2 � T1Þþ kA
2 ðT3 � T1Þþ kB

2 ðT3 � T1Þþ kAðT4 � T1Þþ kBðT5 � T1Þ ¼ 0: Hence,
ðkA þ kBÞT2 þðkA þ kBÞT3 þ 2kAT4 þ 2kBT5 � 4ðkA þ kBÞT1 ¼ 0

If kA = kB, we get

T2 þ T3 þ T4 þ T5 � 4T1 ¼ 0;

which is the same as Eq. (5.33).

Table 5.3 (continued)

Configuration Nodal equation

Interior corner with insulated sides

Tðm;nþ 1Þ þ Tðmþ 1;nÞ þ 2ðTðm�1;nÞ þ
Tðm;n�1ÞÞ � 6Tðm;nÞ ¼ 0

Δx

Δy1

2

5

3

4

Material A Material B

(q2-1)A
(q2-1)B

(q3-1)A (q3-1)B

Fig. 5.28 Example 5.30
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Fig. 5.29 Example 5.31

Example 5.31 For the cylindrical segment shown in Fig. 5.29, write down nodal equations
for node 1 to 3. The radial and angular spacings of nodes are shown in the figure.

Solution

Node 1
The heat balance equation for the two-dimensional conduction system gives

q2�1 þ q3�1 þ q4�1 þ q5�1 ¼ 0

kðDr:1Þ T2 � T1
ðrþDrÞD/ þ kðDr:1Þ T3 � T1

ðrþDrÞD/ þ k rþ Dr
2

� �
D/:1

� 	
T4 � T1

Dr

þ k rþ 3Dr
2

� �
D/:1

� 	
T5 � T1

Dr
¼ 0

Simplification gives the nodal equation as

Dr
D/

� �2 1
ðrþDrÞ ðT2 þ T3Þþ rþ Dr

2

� �
T4 þ rþ 3Dr

2

� �
T5

� 2
Dr
D/

� �2 1
ðrþDrÞ þ rþDrð Þ

" #
T1

¼ 0

Node 2
The heat balance equation for this two-dimensional system gives

kðDr:1Þ T1 � T2
ðrþDrÞD/ þ k

1
2

rþ Dr
2

� �
D/:1

� 	
T6 � T2

Dr
þ k

1
2

rþ 3Dr
2

� �
D/:1

� 	
T7 � T2

Dr
þ hðDr:1ÞðT1 � T2Þ ¼ 0

Simplification gives the nodal equation as

2
Dr
D/

� �2 1
ðrþDrÞ T1 þ rþ Dr

2

� �
T6 þ rþ 3Dr

2

� �
T7 þ 2h

ðDrÞ2
kD/

T1

� 2
Dr
D/

� �2 1
ðrþDrÞ þ rþDrð Þþ 2h

ðDrÞ2
kD/

" #
T2

¼ 0
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Node 3
The heat balance equation for this two-dimensional system gives

kðDr:1Þ T1 � T3
ðrþDrÞD/ þ k

1
2

rþ Dr
2

� �
D/:1

� 	
T8 � T3

Dr
þ k

1
2

rþ 3Dr
2

� �
D/:1

� 	
T9 � T3

Dr
¼ 0

Simplification gives the nodal equation as

2
Dr
D/

� �2 1
ðrþDrÞ T1 þ rþ Dr

2

� �
T8 þ rþ 3Dr

2

� �
T9 � 2

Dr
D/

� �2 1
ðrþDrÞ þ rþDrð Þ

" #
T3

¼ 0

The above equation can also be obtained by putting h = 0 in the nodal equation of node 2.

5.7.2 Solution of Nodal Equations

The use of the numerical method involves writing nodal equations for each node within the
body. The resulting set of equations is solved to determine the temperature at each node. It
must be noted that smaller the elemental volumes, greater are the number of nodes and more
closely the true temperature is approximated. If the number of nodes is very large, the
simultaneous solution of the resulting equations might not be possible if carried out by hand.
For a small number of nodes, the hand calculation can be carried out. The techniques, which
have been used, are being explained in the sections to follow.

5.7.2.1 Relaxation Method
This method can be used to determine the steady-state temperatures at nodal points. The
process in this method of solution is explained below with the help of an example.

Let the nodal equations are

Node 1 : 300þ 400þ T2 þ T4 � 4T1 ¼ 0 ðaÞ
Node 2 : 400þ 100þ T1 þ T3 � 4T2 ¼ 0 ðbÞ
Node 3 : 100þ 200þ T2 þ T4 � 4T3 ¼ 0 ðcÞ
Node 4 : 200þ 300þ T1 þ T3 � 4T4 ¼ 0: ðdÞ

The relaxation method proceeds as follows.
1. It starts with an initial guess of unknown temperatures. Since the initially assumed values

will usually be in error, the right-hand side of the above nodal equations will differ from
zero. So replace the zeros in Eqs. (a)–(d) with R1, R2, R3 and R4, respectively, where R1,
R2, etc. are known as residuals.

700þ T2 þ T4 � 4T1 ¼ R1 ðeÞ
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500þ T1 þ T3 � 4T2 ¼ R2 ðfÞ
300þ T2 þ T4 � 4T3 ¼ R3 ðgÞ
500þ T1 þ T3 � 4T4 ¼ R4: ðhÞ

2. Next set up a table known as unit change table. This table shows the effect of 1o change
of temperatures at a node on the residuals. Also, enter the effect on all residuals of block
(overall) unit change (see Table 5.4).

3. Set up the relaxation table. Calculate the initial residuals from the initial gauss of the
temperatures T1 through T4 using the residual equations (e)–(h) as illustrated in Table 5.5.

The initially guessed temperature values are now changed such that the residuals are
reduced to zero. This procedure should begin with relaxing the largest initial residual. If all
residuals are of the same sign, make a block change. Note that a good initial guess of
temperatures helps to minimize the effort required. In the left-hand column of the table are
entered the change in temperatures from the initially assumed values.

In the present example, the initial residuals are of the same sign, hence a block change has
been made. Next relax the largest residuals, which are R1 and R2 taking the help of unit change
table. First, choose any one, say R1 and over-relax it but not too much. The change in T1 has
increased R2. Now, relax R2. Change in DT2 in the table has relaxed all the residuals. Check the
result, so obtained, by substituting the temperature values so obtained in Eqs. (e)–(h).

Example 5.32 Derive an expression for the residual of the node at the end of a fin (refer
Fig. 5.30). Assume one-dimensional heat conduction.

Table 5.4 Unit change

DR1 DR2 DR3 DR4

DT1 = + 1 –4 +1 0 +1

DT2 = + 1 +1 –4 +1 0

DT3 = + 1 0 +1 –4 +1

DT4 = + 1 +1 0 +1 –4

Block change = + 1 –2 –2 –2 –2

Table 5.5 Relaxation table

T1 R1 T2 R2 T3 R3 T4 R4

Initial guess 250 125 200 125 175 25 225 25

Block change = + 25 275 75 225 75 200 –25 250 –25

DT1 = + 25 300 –25 225 100 200 –25 250 0

DT2 = + 25 300 0 250 0 200 0 250 0

Check 0 0 0 0

Solution 300 250 200 250
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Solution

The rate of the heat conducted between nodes (m–1) and m is

kAc
Tm�1 � Tmð Þ

Dx
ðiÞ

The rate of heat convected is the sum of the heat convected from the end and the lateral
surface of the volume:

hAc T1 � Tmð Þþ h
PDx
2

� �
T1 � Tmð Þ ðiiÞ

In the steady state, summation of Eqs. (i) and (ii) must be zero, i.e.

kAc
Tm�1 � Tmð Þ

Dx
þ hAc T1 � Tmð Þþ h

PDx
2

� �
T1 � Tmð Þ

Rearranging the terms, we get the nodal equation as

Tm 1þ h
Dx
k

� �
þ hP Dxð Þ2

2kAc

" #
� T1

hDx
k

þ hP Dxð Þ2
2kAc

" #
� Tm�1 ¼ 0

The residual equation can be written as

Tm 1þ h
Dx
k

� �
þ hP Dxð Þ2

2kAc

" #
� T1

hDx
k

þ hP Dxð Þ2
2kAc

" #
� Tm�1 ¼ Rm

Example 5.33 Write down the residual equation for the insulated corner section shown in
Fig. 5.31.

(m, n)

(m, n - 1)

(m - 1, n)

Fig. 5.31 Example 5.33

mm - 1

h, T∞

x

Fig. 5.30 Example 5.32
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Solution

The heat flow rates from the nodes (m, n–1) and (m–1, n) to the node (m, n) are

k
Dx:1
2

� �
Tm;n�1 � Tm;n
� �

Dy
ð1Þ

k
Dy:1
2

� �
Tm�1;n � Tm;n
� �

Dx
ð2Þ

The nodal equation is the summation of the above equations and for Dx = Dy, the sim-
plification gives

Tm;n�1 þ Tm�1;n � 2Tm;n ¼ 0

Hence, the residual equation is

Tm;n�1 þ Tm�1;n � 2Tm;n ¼ Rm;n

Example 5.34 A square-section fin (5 � 5 mm2), see Fig. 5.32, is attached to a wall at 200°
C. The surface of the fin is exposed to air at 20°C. The convective heat transfer coefficient is
100 W/(m2 K). The fin is made of stainless steel with thermal conductivity of 20 W/(m K).
Set up the residual equations in terms of temperature excess h = T – T∞ and determine the
heat transfer rate. Length of the fin is 25 mm.

Solution

Node 1 (at the base):

qb ¼ kAc
h1 � h2ð Þ
Dx

þ h
PDx
2

� �
h1

where Ac = 25 � 10–6 m2, Dx = 5 � 10–3 m, P = 20 � 10–3 m, and h1 = 180°C. Hence,

qb ¼ 20� 25� 10�6
� � 180� h2ð Þ

5� 10�3
þ 100� 20� 10�3 � 5� 10�3

2

� �
� 180

¼ 18:9� 0:1h2

ð1Þ

The residual equation is

R1 ¼ qb þ 0:1h2 � 18:9

2

5

51 43 5 6qb

θ = T - T∞

Fig. 5.32 Example 5.34
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Node 2:

kAc
h1 � h2ð Þ
Dx

þ kAc
h3 � h2ð Þ
Dx

� h PDxð Þh2 ¼ 0

The substitution of various values gives the residual equation as

R2 ¼ 180þ h3 � 2:1h2

Similarly, the residual equations for the nodes 3 to 5 can be written as

R3 ¼ h2 þ h4 � 2:1h3
R4 ¼ h3 þ h5 � 2:1h4
R5 ¼ h4 þ h6 � 2:1h5

Node 6:

kAc
h5 � h6ð Þ
Dx

� h
PDx
2

þAc

� �
h6 ¼ 0

Substitution gives

R6 ¼ h5 � 1:075h6

The set of residual equations is

R1 ¼ qb þ 0:1h2 � 18:9

R2 ¼ 180þ h3 � 2:1h2
R3 ¼ h2 þ h4 � 2:1h3
R4 ¼ h3 þ h5 � 2:1h4
R5 ¼ h4 þ h6 � 2:1h5
R6 ¼ h5 � 1:075h6

The unit change table and relaxation tables are given as Tables 5.6 and 5.7, respectively.
Since the residuals are reasonably low after step 8, the process can be terminated.

Table 5.6 Unit change

DR2 DR3 DR4 DR5 DR6

Dh2 = + 1 –2.1 +1 0 0 0

Dh3 = + 1 +1 –2.1 +1 0 0

Dh4 = + 1 0 +1 –2.1 +1 0

Dh5 = + 1 0 0 +1 –2.1 +1

Dh6 = + 1 0 0 0 +1 –1.075

Block change = + 1 –1.1 –0.1 –0.1 –0.1 –0.075
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Now from Eq. (1),

qb ¼ 18:9� 0:1� 135 ¼ 5:4 W:

Check:
From the equation of the fin,

qb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
Ts � T1ð Þ tanhðmLcÞ

where m ¼
ffiffiffiffiffi
hP
kAc

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100�ð20�10�3Þ
20�ð25�10�6Þ

q
¼ 63:25

Lc ¼ Lþ Ac

P
¼ 25� 10�3 þ 25� 10�6

20� 10�3
¼ 0:02625 m

tanhmLc ¼ tanhð63:25� 0:02625Þ ¼ 0:9298

Hence,

qb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100� ð20� 10�3Þ � 20� ð25� 10�6Þ

q
� 180� 0:9298 ¼ 5:29 W:

Thus the solution is in reasonable agreement.

Example 5.35 Figure 5.33 shows a rectangular section fin extending from the wall of a
furnace. It is exposed to a convection environment (h = 400 W/(m2 K) and T∞ = 25°C). The
fin is very wide in the z-direction. Calculate the steady-state temperatures of the nodes shown
in the figure. The thermal conductivity of the material is 4 W/(m K).

Table 5.7 Relaxation table

h2 R2 h 3 R3 h4 R4 h5 R5 h6 R6

Initial guess 130 7 100 –5 75 7.5 65 –

1.5
60 0.5

Dh2 = + 5 135 –

3.5
100 0 75 7.5 65 –

1.5
60 0.5

Dh3 = + 3.5 135 0 103.5 –

7.35
75 7.5 65 –

1.5
60 0.5

Dh4 = + 7 135 0 103.5 –

0.35
82 -

3.7
65 5.5 60 0.5

Dh5 = + 3 135 0 103.5 –

0.35
82 -

0.7
68 –

0.8
60 3.5

Dh6 = + 3 135 0 103.5 –

0.35
82 -

0.7
68 2.2 63 0.275

Dh5 = + 1 135 0 103.5 –

0.35
82 0.3 69 0.1 63 1.275

Dh6 = + 0.5 135 0 103.5 –

0.35
82 0.3 69 0.6 63.5 0.7375

Approximate
solution

135 103.5 82 69 63.5
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Solution

Due to the symmetry about the horizontal centreline, there are only 8 different nodal con-
ditions. It is to note that Dx 6¼ Dy in this problem.

Interior nodes (1, 3 and 5):
At node 1, the heat balance gives

kAy
Ts � T1ð Þ
Dx

þ kAy
T3 � T1ð Þ

Dx
þ 2kAx

T2 � T1ð Þ
Dy

¼ 0

where

Ax ¼ ð20� 1Þ � 10�3m2 for depth ¼ 1m

Ay ¼ ð10� 1Þ � 10�3m2

Dx ¼ 20� 10�3m

Dy ¼ 10� 10�3m

Substitution of various values gives

k � 10� Ts � T1ð Þ
20

þ k � 10� T3 � T1ð Þ
20

þ 2k � 20� T2 � T1ð Þ
10

¼ 0

or

Ts � T1ð Þ
2

þ T3 � T1ð Þ
2

þ 4 T2 � T1ð Þ ¼ 0

or

10T1 � 8T2 � T3 � Ts ¼ 0

So the nodal equation is

10T1 � 8T2 � T3 � 200 ¼ 0 ðiÞ

10 mm

10 mm

80 mm

20 mm

Ts =
200 oC

= 20,
= 10

1 3 5 7

642 8
T∞ = 25 oC

Fig. 5.33 Example 5.35
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Similarly the equation for the nodes 3 and 5 can be written as

10T3 � 8T4 � T5 � T1 ¼ 0 ðiiÞ
10T5 � 8T6 � T7 � T3 ¼ 0 ðiiiÞ

Nodes 2, 4, and 6:
These nodes are on the convective boundary. At node 2, the heat balance equation is

kAx
T1 � T2ð Þ

Dy
þ k

Ay

2
T4 � T2ð Þ

Dx
þ k

Ay

2
Ts � T2ð Þ
Dx

þ h Dx:1ð Þ T1 � T2ð Þ ¼ 0

Putting vales of Dx, Dy, Ax, Ay, k and h, we obtain

4� 20� 10�3 � T1 � T2ð Þ
10� 10�3

þ 4� 10� 10�3 � T4 � T2ð Þ
2� 20� 10�3

þ 4� 10� 10�3 Ts � T2ð Þ
2� 20� 10�3

þ 400� 20� 10�3 T1 � T2ð Þ ¼ 0

or

8 T1 � T2ð Þþ T4 � T2ð Þþ Ts � T2ð Þþ 8 T1 � T2ð Þ ¼ 0

or

18T2 � 8T1 � T4 � Ts � 8T1 ¼ 0

Substituting values of Ts and T∞, the nodal equation is

18T2 � 8T1 � T4 � 400 ¼ 0

Similarly, at node 4, we have

18T4 � 8T3 � T6 � T2 � 200 ¼ 0

And at node 6,

18T6 � 8T5 � T8 � T4 � 200 ¼ 0

Node 8 (the corner node):

k
Ay

2
T6 � T8ð Þ

Dx
þ k

Ax

2
T7 � T8ð Þ

Dy
þ h

DxþDyð Þ:1
2

T1 � T8ð Þ ¼ 0

or

4� 10� 10�3 � T6 � T8ð Þ
2� 20� 10�3

þ 4� 20� 10�3 T7 � T8ð Þ
2� 10� 10�3

þ 400

� 20þ 10ð Þ � 10�3

2
T1 � T8ð Þ

¼ 0
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or

T6 � T8ð Þþ 4 T7 � T8ð Þþ 6 T1 � T8ð Þ ¼ 0

or

11T8 � 4T7 � T6 � 150 ¼ 0

Node 7 at the fin end:

kAy
T5 � T7ð Þ

Dx
þ 2k

Ax

2
T8 � T7ð Þ

Dy
þ h Dy:1ð Þ T1 � T7ð Þ ¼ 0

Substitution of various values gives

7T7 � 4T8 � T5 � 50 ¼ 0

The complete set of nodal equations is

Node 1 : 10T1 � 8T2 � T3 � 200 ¼ 0 ðiÞ
Node 2 : 18T2 � 8T1 � T4 � 400 ¼ 0 ðiiÞ
Node 3 : 10T3 � 8T4 � T5 � T1 ¼ 0 ðiiiÞ
Node 4 : 18T4 � 8T3 � T6 � T2 � 200 ¼ 0 ðivÞ
Node 5 : 10T5 � 8T6 � T7 � T3 ¼ 0 ðvÞ
Node 6 : 18T6 � 8T5 � T8 � T4 � 200 ¼ 0 ðviÞ
Node 7 : 7T7 � 4T8 � T5 � 50 ¼ 0 ðviiÞ
Node 8 : 11T8 � 4T7 � T6 � 150 ¼ 0 ðviiiÞ

The above set of equations can be solved by Gaussian elimination or relaxation method.
The relaxation method yields

T1 = 65.91°C, T2 = T9 = 53.2°C, T3 = 33.69°C, T4 = T10 = 30.5°C, T5 = 26.77°C,
T6 = T11 = 26.1°C, T7 = 25.36°C, T8 = T12 = 25.22°C
with the residuals as

R1 ¼ �0:19;R2 ¼ �0:18;R3 ¼ 0:22;R4 ¼ 0:18;R5 ¼ �0:15;R6 ¼ �0:08;R7 ¼ �0:13;R8

¼ �0:12:

Example 5.36 From the temperatures determined in Example 5.35, determine the heat flow
rate from the fin base.

Solution

From Example 5.35, h = 400 W/(m2 K), k = 4 W/(m K), T∞ = 25°C, Ts = 200°C,
T1 = 65.91°C, T2 = T9 = 53.2°C. The heat flow rate from the fin base, refer Fig. 5.34, is
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qfin ¼ qc þ q1 þ q2 þ q9 þ qc0 ;

where

qc ¼ qc0 ¼ h
Dx
2
:1

� �
ðTs � T1Þ ¼ 400� 20

2000
� 1� ð200� 25Þ ¼ 700W=m

q1 ¼ k Dy:1ð Þ ðTs � T1Þ
Dx

¼ 4� 10
1000

� 1� ð200� 65:91Þ � 1000
20

¼ 268:18W=m

q2 ¼ k
Dy
2
:1

� � ðTs � T2Þ
Dx

¼ 4� 10
2000

� 1� ð200� 53:2Þ � 1000
20

¼ 146:8W=m

q9 ¼ k
Dy
2
:1

� � ðTs � T9Þ
Dx

¼ 4� 10
2000

� 1� ð200� 53:2Þ � 1000
20

¼ 146:8W=m:

Hence,

qfin ¼ 700þ 268:18þ 146:8þ 146:8þ 700 ¼ 1961:78W=m:

Example 5.37 Display the nodal equations of Example 5.35 in matrix form.

Solution

The matrix is as given below.

10 �8 �1
�8 18 �1
�1 10 �8 �1

�1 �8 18 �1
�1 10 �8 �1

�1 �8 18 �1
�1 7 �4

�1 �4 11

����������������

����������������

T1
T2
T3
T4
T5
T6
T7
T8

����������������

����������������

¼

200
400
0

200
0

200
50
150

����������������

����������������

Δy

Δy

Δx

Ts

= 20 mm
= 10 mm.

1

2

h, T∞

9

q2

q9

q1

qc

qc’

Fig. 5.34 Example 5.36
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5.7.2.2 Gaussian Elimination
The relaxation method involves trial and error, hence it cannot be applied to the solution of a
set of a large number of equations. Such a set of nodal equations can be solved by Gaussian
elimination method. This method is systematic, hence easy to understand and apply. It is
being explained below with the help of an example.

Now the computers have made it possible to solve practical problems, which were earlier
believed to be not solvable due to a large number of nodal equations involved in such problems.

Example 5.38 Write the nodal equations at the four interior nodal points of the square grid
of the section ABCD of a bar shown in Fig. 5.35. The temperature at the boundaries AB, BC,
CD and DA are indicated in the figure.

Solution

The nodal equations obtained are

Node 1 : 200þ 300þ T2 þ T4 � 4T1 ¼ 0 ðaÞ
Node 2 : 200þ 100þ T3 þ T1 � 4T2 ¼ 0 ðbÞ
Node 3 : 100þ 400þ T4 þ T2 � 4T3 ¼ 0 ðcÞ
Node 4 : 300þ 400þ T1 þ T3 � 4T4 ¼ 0 ðdÞ

Example 5.39 Explain and use the Gaussian elimination method to solve the nodal
equations of the previous example.

Solution

The nodal equations are

500þ T2 þ T4 � 4T1 ¼ 0 ðaÞ
300þ T3 þ T1 � 4T2 ¼ 0 ðbÞ

T = 100oC

T = 300oC

T = 200oC

T = 400oC

1

4

2

3

A B

CD

Fig. 5.35 Example 5.38
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500þ T4 þ T2 � 4T3 ¼ 0 ðcÞ
700þ T1 þ T3 � 4T4 ¼ 0 ðdÞ

The equations may be rewritten as

(i) The Gaussian elimination is to first triangularize the given set of equations. This is
accomplished by some basic operations as explained below.
Eliminate T1 from Eqs. (f) and (h) by multiplying these equations by 4 and adding Eq. (e)

to them. This operation gives

Next, eliminate T2 from Eqs. (k) and (l) by multiplying them by 15 and adding Eq. (j) to
them. The result of this operation is

Rewriting the equations in simplified form, we obtain
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Now eliminate T3 from Eq. (p’) by adding to it 2/7 times of Eq. (o’), to obtain

This is the triangularized set of equations.

(ii) From Eq. (p”), T4 = 300°C.
Now back substitute beginning with the bottom equation and working upwards. The

process gives

T3 ¼ 250�C; T2 ¼ 200�C; and T1 ¼ 250�C:

Note: When the number of equations in a set is large, the hand calculation may be a time-
consuming process. For this purpose, a standard computer program is available.

The given set of equations can be put in a matrix form as given below.

þ 4 �1 0 �1
�1 þ 4 �1 0
0 �1 þ 4 �1
�1 0 �1 þ 4

��������

��������
T1
T2
T3
T4

��������

��������
¼

500
300
500
700

��������

��������
In general, the matrix is

A(1,1) A(1,2) ... A(1,N)
A(2,1) A(2,2) ... A(2,N)

... ... ... ...
A(N,1) A(N,2) ... A(N,N)

��������

��������
Tð1Þ
Tð2Þ
. . .
TðNÞ

��������

��������
¼

B(1)
B(2)
...

B(N)

��������

��������
2. The addition of the nodal equations of this example yields

T1 þ T2 þ T3 þ T4 ¼ 1000:

This equals the sum of the four boundary temperatures. This result is exact for any four
points that are symmetrically placed about the centre of a square.

Example 5.40 Combustion products flow through a chimney whose cross-section is shown
in Fig. 5.36. If at any location, the inside surface temperature is 600°C and outside surface
temperature is 100°C, determine the heat loss rate from the chimney for its unit length.

Solution

Refer Fig. 5.36b.

Node 1
The heat balance equation for the two-dimensional conduction system gives
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k
Dx
2
:1

� �
100� T1

Dy
þ k

Dx
2
:1

� �
600� T1

Dy
þ k Dy:1ð Þ T2 � T1

Dx
¼ 0:

Simplification gives the nodal equation for Δx = Δy as

2T2 þ 700� 4T1 ¼ 0: ðiÞ

Node 2
The heat balance equation for the two-dimensional conduction system gives

k Dx:1ð Þ 100� T2
Dy

þ k Dx:1ð Þ 600� T2
Dy

þ k Dy:1ð Þ T1 � T2
Dx

þ k Dy:1ð Þ T3 � T2
Dx

¼ 0:

Simplification gives the nodal equation as

T1 þ T3 þ 700� 4T2 ¼ 0: ðiiÞ

Node 3
The equation is similar to node 2 and is

T2 þ T4 þ 700� 4T3 ¼ 0: ðiiiÞ

Node 4
The heat balance equation for the two-dimensional conduction system gives

k Dx:1ð Þ 100� T4
Dy

þ k Dy:1ð Þ T3 � T4
Dx

¼ 0:

Simplification gives the nodal equation as

T3 þ 100� 2T4 ¼ 0: ðivÞ

a
400 Sq 

200 Sq

k = 1.3
W/(m K)

b One eight 
section (enlarged)

Chimney cross-section

Δx = Δy =
100 mm

Δx

Δy

600

100

3 4o1 o o2 o

oo o o

oo o

o
100 100 100 100

600 600

Fig. 5.36 Example 5.40
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Rewriting the nodal equations as

The equation can be solved by the Gaussian elimination method.
We eliminate T1 from Eq. (b) by multiplying this equation by –4 and adding Eq. (a) to it.

This operation gives

Next eliminate T2 from Eq. (g) by multiplying this equation by –14 and adding Eq. (f) to
it. The result of this operation is

Rewriting the equations in simplified form, we obtain

Now eliminate T3 from Eq. (p) by multiplying this equation by - 26 and adding Eq. (o) to
it. This gives
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This is the triangularized set of equations. From Eq. (t), T4 = 205.55°C.
Now back substitute beginning with Eq. (s) and working upwards. The process gives

T3 ¼ 311:11�C; T2 ¼ 338:88�C; and T1 ¼ 344:44�C:

The heat leaving the outer surface of this chimney section is

q1=8 ¼ k
Dx
2
:1

� �
T1 � 100

Dy
þ k Dx:1ð Þ T2 � 100

Dy
þ k Dx:1ð Þ T3 � 100

Dy
þ k Dx:1ð Þ T4 � 100

Dy

¼ kð0:5T1 þ T2 þ T3 þ T4 � 350Þ
¼ 1:3� ð0:5� 344:44þ 338:88þ 311:11þ 205:55� 350Þ ¼ 881:1W/m length:

The heat flow rate can also be calculated from the heat entering the chimney section, which is

q1=8 ¼ k
Dx
2
:1

� �
600� T1

Dy
þ k Dx:1ð Þ 600� T2

Dy
þ k Dx:1ð Þ 600� T3

Dy

¼ kð1500� 0:5T1 � T2 � T3Þ
¼ 1:3� ð1500� 0:5� 344:44� 338:88� 311:11Þ ¼ 881:1W=m length:

Since the considered chimney section is 1/8 of the total cross-section, the heat loss from the
chimney is

q ¼ 881:1� 8 ¼ 7048:8W=m length:

Example 5.41 If in the above problem inner and outer surfaces of the chimney are sub-
jected to convective conditions write the nodal equations.

Solution Refer Fig. 5.37b.

Node 1
The heat balance equation for the two-dimensional conduction system gives

k
Dx
2
:1

� �
T5 � T1

Dy
þ k

Dx
2
:1

� �
T8 � T1

Dy
þ k Dy:1ð Þ T2 � T1

Dx
¼ 0:

Simplification gives the nodal equation for Δx = Δy as

2T2 þ T5 þ T8 � 4T1 ¼ 0 ðiÞ

Node 2
The heat balance equation for the two-dimensional conduction system gives
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k Dx:1ð Þ T6 � T2
Dy

þ k Dx:1ð Þ T9 � T2
Dy

þ k Dy:1ð Þ T1 � T2
Dx

þ k Dy:1ð Þ T3 � T2
Dx

¼ 0:

Simplification gives the nodal equation as

T1 þ T3 þ T6 þ T9 � 4T2 ¼ 0: ðiiÞ

Node 3
The equation is similar to node 2 and is

T2 þ T4 þ T7 þ T10 � 4T3 ¼ 0: ðiiiÞ

Node 4
The heat balance equation for the two-dimensional conduction system gives

k Dx:1ð Þ T11 � T4
Dy

þ k Dy:1ð Þ T3 � T4
Dx

¼ 0:

Simplification gives the nodal equation as

T3 þ T11 � 2T4 ¼ 0: ðivÞ

Node 5
The heat balance equation for the two-dimensional conduction system gives

k
Dx
2
:1

� �
T1 � T5

Dy
þ k

Dy
2
:1

� �
T6 � T5

Dx
þ hi

Dx
2
:1

� �
ðT1i � T5Þ ¼ 0:

Simplification gives the nodal equation for Δx = Δy as

T1 þ T6 þ hiDx
k

T1i � 2þ hiDx
k

� �
T5 ¼ 0: ðvÞ

400 Sq 

200 Sq

k = 1.3
W/(m K)

b One eight section (enlarged)a Chimney cross-section

Δx = ΔyΔx

Δy

5

8

3 4o1 o o2 o

oo o o

oo o

o
9 10 11 12

6 7
hi, T∞i

ho, T∞o

Fig. 5.37 Example 5.41
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Node 6
The heat balance equation for the two-dimensional conduction system gives

k Dx:1ð Þ T2 � T6
Dy

þ k
Dy
2
:1

� �
T5 � T6

Dx
þ k

Dy
2
:1

� �
T7 � T6

Dx
þ hi Dx:1ð ÞðT1i � T6Þ ¼ 0:

Simplification gives the nodal equation for Δx = Δy as

2T2 þ T5 þ T7 þ 2hiDx
k

T1i � 2
hiDx
k

þ 2

� �
T6 ¼ 0: ðviÞ

Node 7
The heat balance equation for the two-dimensional conduction system gives

k Dx:1ð Þ T3 � T7
Dy

þ k
Dy
2
:1

� �
T6 � T7

Dx
þ hi

Dx
2
:1

� �
ðT1i � T7Þ ¼ 0:

Simplification gives the nodal equation for Δx = Δy as

2T3 þ T6 þ hiDx
k

T1i � 3þ hiDx
k

� �
T7 ¼ 0: ðviiÞ

Node 8
The heat balance equation for the two-dimensional conduction system gives

k
Dx
2
:1

� �
T1 � T8

Dy
þ k

Dy
2
:1

� �
T9 � T8

Dx
þ h0

Dx
2
:1

� �
ðT1o � T8Þ ¼ 0:

Simplification gives the nodal equation for Δx = Δy as

T1 þ T9 þ hoDx
k

T1o � 2þ hoDx
k

� �
T8 ¼ 0: ðviiiÞ

Node 9
The heat balance equation for the two-dimensional conduction system gives

k Dx:1ð Þ T2 � T9
Dy

þ k
Dy
2
:1

� �
T8 � T9

Dx
þ k

Dy
2
:1

� �
T10 � T9

Dx
þ ho Dx:1ð ÞðT1o � T9Þ ¼ 0:

Simplification gives the nodal equation for Δx = Δy as

2T2 þ T8 þ T10 þ 2hoDx
k

T1o � 2
hoDx
k

þ 2

� �
T9 ¼ 0: ðixÞ
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Node 10
The heat balance equation for the two-dimensional conduction system gives

k Dx:1ð Þ T3 � T10
Dy

þ k
Dy
2
:1

� �
T9 � T10

Dx
þ k

Dy
2
:1

� �
T11 � T10

Dx
þ ho Dx:1ð ÞðT1o � T10Þ ¼ 0:

Simplification gives the nodal equation for Δx = Δy as

2T3 þ T9 þ T11 þ 2hoDx
k

T1o � 2
hoDx
k

þ 2

� �
T10 ¼ 0: ðxÞ

Node 11
The heat balance equation for the two-dimensional conduction system gives

k Dx:1ð Þ T4 � T11
Dy

þ k
Dy
2
:1

� �
T10 � T11

Dx
þ k

Dy
2
:1

� �
T12 � T11

Dx
þ ho Dx:1ð ÞðT1o � T11Þ

¼ 0:

Simplification gives the nodal equation for Δx = Δy as

2T4 þ T10 þ T12 þ 2hoDx
k

T1o � 2
hoDx
k

þ 2

� �
T11 ¼ 0: ðxiÞ

Node 12
The heat balance equation for the two-dimensional conduction system gives

k
Dy
2
:1

� �
T11 � T12

Dx
þ ho

Dx
2
:1

� �
ðT1o � T12Þ ¼ 0:

Simplification gives the nodal equation for Δx = Δy as

T11 þ hoDx
k

T1o � hoDx
k

þ 1

� �
T12 ¼ 0: ðxiiÞ

5.7.2.3 The Gauss–Seidel Iteration Method
The iterative method may yield quicker results when the number of nodal equations is large.
One of such methods, the Gauss–Seidel method, is being explained below using the nodal
equations of Example 5.35.

Step 1: Rearrange the nodal equations so that the unknown temperature of the node for
which the nodal equation was written is on the left as follows.

316 5 Steady-State Two-Dimensional Heat Conduction

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


T1 ¼ ð1=10Þð8T2 þ T3 þ 200Þ
T2 ¼ ð1=18Þð8T1 þ T4 þ 400Þ
T 3 ¼ ð1=10Þð8T4 þ T5 þ T1Þ
T 4 ¼ ð1=18Þð8T3 þ T6 þ T2 þ 200Þ
T 5 ¼ ð1=10Þð8T6 þ T7 þ T3Þ
T 6 ¼ ð1=18Þð8T5 þ T8 þ T4 þ 200Þ
T 7 ¼ ð1=7Þð4T8 þ T5 þ 50Þ
T 8 ¼ ð1=11Þð4T7 þ T6 þ 150Þ

Step 2: Assume an initial set of values for the temperatures T1 to T8 as shown in Table 5.8.
Using each of the equations of T1 to T8, calculate new values of the temperatures. For
example, the first equation gives a new value of temperature T1 = 93°C. Now using the new
value of T1 and still not updated value of T4 (= 55°C), obtain the new value of T2 (= 65.6°C).
In this manner, sweep through the set of eight equations. This gives a new set of revised or
updated estimates of T1 to T8 (refer row 3 of the table). This completes one cycle of iteration.
In essence, it is the calculation of new values of nodal temperatures using the most recent
values of the temperatures.
Step 3: The process explained in Step 2 is repeated until the calculated nodal temperatures
converge. This is assumed to be achieved when successive temperatures differ by very small
values, i.e. when

Tið Þnþ 1� Tið Þn 
 d for all Ti

where (Ti)n +1 is the calculated value of the temperature Ti after (n +1) iterations and (Ti)n is
the temperature Ti after nth iteration. Value of d depends on the desired accuracy of the
result.

Table 5.8 The Gauss–Seidel iteration table

na T1 T2 T3 T4 T5 T6 T7 T8

Initial
guess

130 80 90 55 50 40 35 30

1 93 65.6 58.3 42.9 41.33 33.53 30.19 27.68

2 78.31 59.41 46.28 35.84 34.47 29.96 27.88 26.50

3 72.16 56.28 39.33 33.38 30.69 28.08 26.67 25.89

4 68.96 54.73 36.67 32.01 28.80 27.13 26.06 25.58

5 67.45 53.98 35.23 31.28 27.83 26.64 25.74 25.42

6 66.71 53.61 34.48 30.89 27.33 26.39 25.57 25.33

7 66.34 53.42 34.08 30.69 27.08 26.26 25.49 25.29

8 66.14 53.32 33.87 30.59 26.94 26.19 25.44 25.27

9 66.04 53.27 33.77 30.53 26.87 26.15 25.42 25.26

10 65.99 53.25 33.71 30.5 26.83 26.13 25.41 25.25
an indicates the number of iterations
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It is to note that with the increase in the number of iterations, both the accuracy and the
cost (time) of the computation increase. The decision regarding the number of the iterations
is the tradeoff between the two.

After 10th iteration,

Tið Þ10� Tið Þ9 
 �0:06�Cð Þ for all Ti

Comparison of the results of last iteration with those obtained with the relaxation method
shows that they differ by a very small amount.

Example 5.42 Solve Example 5.9 using the finite-difference method.

Solution

A grid with Dx = Dy = 0.5 is being used, see Fig. 5.38. The temperature distribution will be
symmetrical about the horizontal axis.

The nodal equations are

Node 1 : �4T 1 þ 2T2 þ T3 þ 400 ¼ 0 ðiÞ
Node 2 : �4T2 þ T1 þ T4 þ 500 ¼ 0 ðiiÞ
Node 3 : �4T 3 þ 2T4 þ T1 þ T5 ¼ 0 ðiiiÞ
Node 4 : �4T4 þ T3 þ T2 þ T6 þ 100 ¼ 0 ðivÞ
Node 5 : �4T5 þ T3 þ 2T6 þ 100 ¼ 0 ðvÞ
Node 6 : �4T6 þ T5 þ T4 þ 200 ¼ 0: ðviÞ

The solution of the equations gives T1 = 258.03°C, T2 = 228.57°C, T3 = 175°C,
T4 = 156.25°C, T5 = 129.47°C and T6 = 121.43°C.
Note: 1. A finer grid will give a better approximation.

2. From the mean value theorem, T3 = [(400 + 100 + 100 + 100)/4] = 175°C.

T = 100oC

T = 400oC

T = 100oC

T = 100oC

1

2

53

2

20

4 6 x = y = 0.5

x

y

Fig. 5.38 Example 5.42
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5.8 Two-Dimensional Steady-State Heat Conduction with Heat
Generation

(a) Internal node, refer Fig. 5.39a,

In the steady state, the summation of heat flow to the node (m, n) from the surrounding
nodes is zero.

k Dy:1ð Þ Tm�1;n � Tm;n
� �

Dx
þ k Dy:1ð Þ Tmþ 1;n � Tm;n

� �
Dx

þ k Dx:1ð Þ Tm;n�1 � Tm;n
� �

Dy

þ k Dx:1ð Þ Tm;nþ 1 � Tm;n
� �

Dy
þ qg Dx:Dy:1ð Þ ¼ 0

for Dz = 1.
Putting Dx = Dy, and on simplification, we obtain

Tm;n ¼ 1
4

Tm�1;n þ Tmþ 1;n þ Tm;n�1 þ Tm;nþ 1
 �þ qg

Dxð Þ2
4k

Δx

Δy
(m, n) 

(m -1, n)

(m, n +1)

(m, n -1)

(m +1, n)

a

h, T∞

Δx

Δy

(m, n) 
(m -1, n)

(m, n +1)

(m, n -1)

b

h, T∞

Δx

Δy
(m, n) 

(m -1, n)

(m, n +1)

c

Fig. 5.39 Two-dimensional steady-state heat conduction with heat generation
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(b) Surface node, refer Fig. 5.39(b),

Summation of the heat conduction and convection into the node gives

k Dy:1ð Þ Tm�1;n � Tm;n
� �

Dx
þ k

Dx:1
2

� �
Tm;n�1 � Tm;n
� �

Dy
þ k

Dx:1
2

� �
Tm;nþ 1 � Tm;n
� �

Dy

þ h Dy:1ð Þ T1 � Tm;n
� �þ qg

Dx:Dy:1ð Þ
2

¼ 0

Simplification gives

Tm;n�1 þ Tm;nþ 1 þ 2Tm�1;n � 2 2þ h
Dx
k

� �� 	
Tm;n þ 2h

Dx
k

� �
T1 þ qg

Dxð Þ2
k

¼ 0

for Dx = Dy.

(c) External corner node

Heat balance equation in this case is

k
Dy:1ð Þ
2

Tm�1;n � Tm;n
� �

Dx
þ k

Dx:1ð Þ
2

Tm;nþ 1 � Tm;n
� �

Dy
þ h

DxþDyð Þ:1
2

T1 � Tm;n
� �

þ qg
Dx
2
:
Dy
2
:1

� �
¼ 0

For Dx = Dy, simplification gives

Tm�1;n þ Tm;nþ 1 � 2 1þ h
Dx
k

� �� 	
Tm;n þ 2h

Dx
k

� �
T1 þ qg

Dxð Þ2
2k

¼ 0

Example 5.43 Write down nodal equations for an interior node and a surface node with
convection in a cylindrical system for one-dimensional radial heat conduction.

Solution

In Fig. 5.40, the nodes are spaced at equal radial distance Dr with node m = 0 at the centre.
Node m, situated at a radial distance mDr, corresponds to annular ring of radial width Dr and
radius mDr. Similarly we can define the area corresponding to other nodal points. Node n is
surface node.

The heat balance equation for node m can be written for unit length of cylinder as

k 2p mDr � Dr
2

� �
:1

� 	
Tm�1 � Tm

Dr
þ 2p mDrþ Dr

2

� �
:1

� 	
Tmþ 1 � Tm

Dr
¼ 0
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or

k 2pDr m� 1
2

� �
:1

� 	
Tm�1 � Tm

Dr
þ 2pDr mþ 1

2

� �
:1

� 	
Tmþ 1 � Tm

Dr
¼ 0

Simplification gives

m� 1
2

� �
Tm�1 þ mþ 1

2

� �
Tmþ 1 � 2mTm ¼ 0

The heat balance equation for node n for unit length of cylinder is

k 2p nDr � Dr
2

� �
:1

� 	
Tn�1 � Tn

Dr
þ hð2pnDr:1Þ T1 � Tnð Þ ¼ 0

or

k n� 1
2

� �
ðTn�1 � TnÞþ hnDrðT1 � TnÞ ¼ 0

or

n� 1
2

� �
Tn�1 þ hnDr

k
T1 � n� 1

2
þ hnDr

k

� �
Tn ¼ 0

Fig. 5.40 Example 5.43
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Example 5.44 If the radial heat conduction in Example 5.43 is accompanied with uniform
volumetric heat generation, write the nodal equations for node m and n.

Solution
The heat balance equation is considering the heat generation

k 2p mDr � Dr
2

� �
:1

� 	
Tm�1 � Tm

Dr
þ 2p mDrþ Dr

2

� �
:1

� 	
Tmþ 1 � Tm

Dr
þ qgDV ¼ 0

where DV = 2pmDr. Dr .1. Substitution gives

k 2p mDr � Dr
2

� �
:1

� 	
Tm�1 � Tm

Dr
þ 2p mDrþ Dr

2

� �
:1

� 	
Tmþ 1 � Tm

Dr
þ qgð2pmDr:Dr:1Þ

¼ 0

or

m� 1
2

� �
:ðTm�1 � TmÞþ mþ 1

2

� �
:ðTmþ 1 � TmÞþ qgmðDrÞ2

k
¼ 0

or

m� 1
2

� �
Tm�1 þ mþ 1

2

� �
Tmþ 1 � 2mTm þ þ qgmðDrÞ2

k
¼ 0

The heat balance equation for node n for unit length of cylinder considering heat gen-
eration is

k 2p nDr � Dr
2

� �
:1

� 	
Tn�1 � Tn

Dr
þ hð2pnDr:1Þ T1 � Tnð Þþ qgDV ¼ 0

where DV = 2pnDr.(Dr/2) .1 for surface node. Substitution gives

k 2p nDr � Dr
2

� �
:1

� 	
Tn�1 � Tn

Dr
þ hð2pnDr:1Þ T1 � Tnð Þþ qg½2pnDr:ðDr=2Þ:1� ¼ 0

or

k n� 1
2

� �
ðTn�1 � TnÞþ hnDr

k
T1 � Tnð Þþ qgnðDrÞ2

2k
¼ 0

or

n� 1
2

� �
Tn�1 þ hnDr

k
T1 � n� 1

2
þ hnDr

k

� �
Tn þ qgnðDrÞ2

2k
¼ 0
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5.9 Summary

In this chapter, analytical solution, graphical analysis, method of analogy and numerical
solutions have been presented for the study of problems of two-dimensional steady-state
conduction heat flow through solids without heat sources.

The Laplace equation that governs the temperature distribution for two-dimensional heat
conduction system is ∂2t/∂x2 + ∂2t/∂y2 = 0. Since to determine the conduction heat flow, the
temperature field must be known, the problem reduces to the solution of the Laplace
equation. The common techniques used for the solution are: (i) analytical, (ii) graphical,
(iii) method of analogy, and (iv) numerical methods.

In Sect. 5.2, the analytical solution for a rectangular section bar (W � H), which is very
long in the z-direction, has been presented whose three lateral sides (x = 0 and W, and y = 0)
are maintained at a constant temperature To and for the fourth side we considered three
different boundary conditions: (i) the fourth side (y = H) has a sinusoidal temperature dis-
tribution, T = Tm sin(px/W), imposed on it, (ii) temperature along the fourth side is given by
an arbitrary function f(x), and (iii) the fourth side is at a constant temperature Tb.

In Sect. 5.3, mathematical treatment of the problem of conduction through a flat semi-
infinite homogeneous plate has been presented, whose length in y-direction is infinite, it is
relatively thin in the z-direction and xoy surfaces are insulated so that there is no temperature
gradient in the z-direction and the temperature field is two dimensional.

In Sect. 5.5, the basic concept of the graphical method of thermal flux plotting has been
explained and conduction shape factor has been defined. The shape factor presented in
Table 5.2 can be readily used for the solution of various physical systems of interest as
illustrated by solved problems. However, the graphical method involves drawing of curvi-
linear square elements and count of the number of heat flow channels and the temperature
increments, which depends on the skill of the person plotting the lines. Electrical analogy,
discussed in Sect. 5.6, may be used to sketch the isotherms and heat flow lines. It is to note
that this technique is now not much used but rough sketching and the concept of the plots can
help in a quick check of the result from other methods. Hence, it must not be totally
overlooked.

The direct integration of the differential equations has been used to solve simple problems
of two-dimensional, three-dimensional and transient heat conduction problems but success in
solving complex problems, involving non-linear boundary conditions and temperature- or
position-depending thermal properties, is limited. Such problems have been solved using
numerical methods. Commonly used numerical methods are: finite difference and finite
element methods.

The finite-difference method has been used extensively in solving heat conduction
problems because of its simplicity in implementation. The finite element method is being
widely used to solve problems in structural mechanics. It requires much greater mathematical
efforts and has been used for solving heat conduction problems involving complicated
geometries. Here only the basic principles and application of the finite-difference method
have been presented. The first step in the finite-difference method is to discretize the spatial
and time coordinates to form a mesh of nodes. Then by applying the energy balance to the
volume elements surrounding the nodes, a set of linear algebraic equations (termed as nodal
equations) is obtained. Various techniques, namely the relaxation method, Gaussian elimi-
nation, and the Gauss–Seidel iteration methods for the solution of nodal equations developed
by the finite-difference method have been presented.
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It is to note that the accuracy of the finite-difference approximation increases with the
number of nodes hence computers are used to obtain finite-difference solutions. Standard
computer programs are available for this purpose.

Review Questions

5:1 What are the various methods of solving two-dimensional heat conduction problems?
Discuss their basics and limitations.

5:2 What are curvilinear squares?
5:3 Define conduction shape factor. Support your answer by considering a configuration

where two-dimensional heat conduction is encountered.
5:4 Explain the basic principle of electrothermal analogy?
5:5 Explain the basic method of finite difference. What are the various methods available to

obtain a solution after writing the finite-difference equations?
5:6 Compare relaxation and Gaussian elimination methods.

Problems

5:1 Using the equations of temperature distribution obtained in the analytical method for
the two-dimensional heat conduction, determine the temperature at (3/4, ¼) of the
long square-section rod shown in Fig. 5.41.
[Ans. Using the equations presented in Example 5.5, t(x, y) = 127.2°C.]

5:2 A cubical furnace (0.6 m side) is covered with 0.1 m thick layer of insulation
[k = 0.035 W/(m K)]. If the temperature difference across the insulation is 80°C,
calculate the heat loss through the layer.
[Ans. Shape factors: Splane wall = 3.6, Sedge = 0.324, Scorner = 0.015, Total shape
factor, S = 25.61 m; q = 71.71 W]

5:3 Combustion gases at an average temperature of 1200°C flow through a 3 m long,
100 mm zero-dimensional circular section duct. In order to reduce the heat loss, the
duct is covered with insulation [k = 0.05 W/(m2 K)]. The insulated duct measures
250 mm � 250 mm (square in shape). Determine the heat loss for the duct if the heat
transfer coefficients are hi = 150 W/(m2 K) and h0 = 5 W/(m2 K) for the duct inner
and outer surfaces, respectively. T∞ = 30°C.
[Ans. From Case (11), Table 5.2, S = 18.98; Resistances are: Ri = 1/(2pRLhi) =
7.074 � 10–3, Rk = 1/kS = 1.054; and Ro = 1/(4WLho) = 0.0666, q = Dt/

P
R = 1037.5 W.]

(3/4, 1/4)

1

1

100oC

100 oC400oC

200oC

Fig. 5.41 Problem 5.1
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5:4 A 75 mm diameter hot fluid pipeline (surface temperature = 80°C) and a cold water
pipeline 50 mm in diameter (surface temperature = 20°C) are 200 mm apart on
centres in a large duct packed with glass wool insulation [k = 0.038 W/(m K)].
Calculate the heat transfer to the cold fluid for 5 m length of the pipes.
[Ans. From Case (9), Table 5.2, S = 8.49, q = k S (80–20) = 19.36 W].

5:5 For a plate fin of uniform cross-section Ac along its length, show that the temperature
for the tip node shown in Fig. 5.42 is given by

h
Dx
k

� �
þ 1þ 1

2
mDxð Þ2

� 	
Tm ¼ h

Dx
k

� �
þ 1

2
mDxð Þ2

� 	
T1 þ Tm�1

where m2 = hP/kAc.
[Hint: hAc T1 � Tmð Þþ kAc

Tm�1�Tm
Dx

� �þP Dx
2 hðT1 � TmÞ ¼ 0. On simplification and

putting hP
kAc

¼ m2, the result is obtained.]

5:6 If the end of the plate fin of Problem 5.5 is insulated, show that the temperature for
the tip node is given by

Tm�1 þ m2:
ðDxÞ2
2

" #
T1 � 1þm2:

ðDxÞ2
2

" #
Tm ¼ 0

where m2 = hP/kAc.
[Hint: Refer Fig. 5.43. Heat balance equation is kAc

Tm�1�Tm
Dx

� �þ hP Dx
2

ðT1 � TmÞ ¼ 0. On simplification and putting hP
kAc

¼ m2, the result is obtained.]

5:7 The node (m, n) in Fig. 5.44 is situated on a boundary along which uniform heat flux
q00 is specified. Show that in the steady-state, the node temperature is given by

Tm;n ¼ ð1=4ÞðTm;nþ 1 þ Tm;n�1 þ 2Tm�1;nÞþ ðq00=2kÞDx

Verify that the adiabatic boundary limit result deduced from the equation agrees with
the corresponding result in Table 5.3.

h, T∞

Δx

Fig. 5.42 Problem 5.5

h, T∞

Δx

m

m - 1

Fig. 5.43 Problem 5.6
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[Ans. The heat balance equation is

k
Dx
2

� �
Tm;nþ 1 � Tm;n
� �

Dy
þ k

Dx
2

� �
Tm;n�1 � Tm;n
� �

Dy
þ k Dyð Þ Tm�1;n � Tm;n

� �
Dx

þ q00Dy

¼ 0

Substitution of Dx = Dy gives the desired result. For adiabatic boundary, q00 ¼ 0]
5:8 Write down the nodal equation for internal corner of a two-dimensional system with

horizontal boundary insulated and vertical boundary subjected to convection heat
transfer as shown in Fig. 5.45a.
Verify that the adiabatic boundary limit result deduced from the equation agrees with
the corresponding result in Table 5.3.
[Ans. The heat balance equation for node 1 gives for unit depth, refer Fig. 5.45b,

h
1:Dy
2

� �
T1 � T1ð Þþ k

1:Dy
2

� �
T2 � T1ð Þ

Dx
þ k

1:Dx
2

� �
T3 � T1ð Þ

Dy
þ k 1:Dyð Þ T4 � T1ð Þ

Dx

þ k 1:Dxð Þ T5 � T1ð Þ
Dy

¼ 0

Putting Dx = Dy, we have T2 þ T3 þ 2T4 þ 2T5 þ hDy
k

� �
T1 � 6þ hDy

k

� �
T1 ¼ 0:

When vertical boundary is also adiabatic, put h = 0 and the result is
T2 þ T3 þ 2T4 þ 2T5 � 6T1 ¼ 0, which is the same as for case (h) Example 5.28.]

q”

Δx

Δy

(m, n) 
(m -1, n)

(m, n -1)

(m, n +1)

Fig. 5.44 Problem 5.7

h,
T∞

a

Insulated

b

1

5

4

3

2

h,
T∞

Insulated

∆y

∆x

Fig. 5.45 Problem 5.8

326 5 Steady-State Two-Dimensional Heat Conduction

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


5:9 Write down nodal equation for the two-dimensional steady-state conduction problem of
Case (g) shown in Fig. 5.26 of Example 5.28 when the vertical boundary is insulated.
Consider the dimension perpendicular to the plane of paper as b.
[Ans. Referring to the heat balance equation of Case (g) of Example 5.28, the convective
heat transfer will reduce to half and the heat balance equation for node 1 will be

h bd
2

� �
T1 � T1ð Þþ k bd

2

� � T2�T1ð Þ
d þ k bd

2

� � T3�T1ð Þ
d ¼ 0. Simplification gives

T2 þ T3 þ hd
k

� �
T1 � 2þ hd

k

� �
T1 ¼ 0. When horizontal boundary is also insulated we get

result of Case (d) by putting h = 0, i.e. T2 þ T3 � 2T1 ¼ 0:]

5:10 Write nodal equation for the nodal point 1 on an inclined surface of a system shown in
Fig. 5.46. The inclined surface is subjected to a convective heat transfer.
[Ans. The heat balance equation for unit depth is

kðDy:1Þ T2�T1
Dx

� �þ kðDx:1Þ T3�T1
Dy

� �
þ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þDy2

p
:1

� �
ðT1 � T1Þ ¼ 0: For

Δx = Δy equation transforms to nodal equation as
T2 þ T3 þ

ffiffiffi
2

p
hDx
k T1 � 2þ ffiffiffi

2
p

hDx
k

� �
T1 ¼ 0:]

5:11 Write nodal equation for the nodal point 1 on tip of the system shown in Fig. 5.47 The
inclined surface is subjected to a convective heat transfer while the horizontal surface is
insulated.
[Ans. The heat balance equation for unit depth is

h, T∞
Δy

Δx

1 2

3

45o

Fig. 5.46 Problem 5.10

h, T∞

ΔyΔx1 2

45o

Fig. 5.47 Problem 5.11
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k Dy
2 :1

� �
T2�T1
Dx

� �þ h 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þDy2

p
:1

� �
ðT1 � T1Þ ¼ 0: For Δx = Δy equation trans-

forms to nodal equation as T2 þ
ffiffiffi
2

p
hDx
k T1 � 1þ ffiffiffi

2
p

hDx
k

� �
T1 ¼ 0:]

5:12 Use the relaxation method to solve the following set of equations.

500þ T2 þ T4 � 4T1 ¼ R1 ðaÞ
300þ T3 þ T1 � 4T2 ¼ R2 ðbÞ
500þ T4 þ T2 � 4T3 ¼ R3 ðcÞ
700þ T1 þ T3 � 4T4 ¼ R4 ðdÞ

[Ans. T1 = 250°C, T2 = 200°C, T3 = 250°C, T4 = 300°C.]
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6Unsteady or Transient Heat
Conduction

6.1 Introduction

When a solid body is suddenly exposed to an environment at different temperatures, the
equilibrium temperature condition in the body is established only after some time. The
equilibrium condition is referred to as the steady state. We discussed the temperature dis-
tribution and heat transfer in the steady state in Chaps. 2–5.

This chapter is devoted to the transient state of conduction, i.e. the heating or cooling of
the bodies which takes place in the period before the equilibrium is established. In the
transient or unsteady-state heat conduction, the temperature of the solid body varies with
time as well as in the space. Such problems are of interest because they are encountered in
many industrial processes. The practical problems of the transient heat conduction can be
divided into two groups: (i) when the body tends to thermal equilibrium, and (ii) when the
temperature of the body is subjected to periodic variation.

6.2 Lumped Heat Capacity Analysis

Consider a body which may be regarded as having uniform temperature throughout at any
instant. The assumption of uniform temperature throughout is approximately valid for bodies
with a very high thermal conductivity combined with a low value of the convective heat
transfer coefficient. Smaller bodies with lower values of the thermal conductivity may also
satisfy this condition. Mathematically, we shall assume that the thermal conductivity of the
body is infinite. This analysis is called lumped heat capacity method.

From the heat balance for the small body shown in Fig. 6.1, which is in interaction with
the environment at temperature T∞, the convection heat loss from the surface of the body at
any instant will equal the rate of change of the internal energy of the body. Thus

© Springer Nature Singapore Pte Ltd. 2020
R. Karwa, Heat and Mass Transfer,
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q ¼ hAs t � t1ð Þ ¼ �c qVð Þ dt
ds

ð6:1Þ

where

h is the convection heat transfer coefficient,
As is the surface area of the body,
t is the temperature of the body at any instant,
t∞ is the temperature of the surrounding fluid,
c is the specific heat of the body,
q is the density of the material of the body,
(qV) is the mass of the body of volume V,
dt/ds is the rate of change of temperature of the body.

If the body is initially (i.e. at time s = 0) at a uniform temperature ti, the temperature of
the body after time s can be determined by integrating Eq. (6.1).

Z
dt

t � t1
¼ � hAs

cqV

� �Z
ds

or

ln t � t1ð Þ ¼ � hAs

cqV

� �
sþC1

The constant of integration C1 can be found from the condition that t = ti at s = 0. This
gives

ln ti � t1ð Þ ¼ C1

Hence, we obtain

ln t � t1ð Þ ¼ � hAs

cqV

� �
sþ ln ti � t1ð Þ

or

ln
t � t1
ti � t1

¼ � hAs

cqV

� �
s

t � t1
ti � t1

¼ exp � hAs

cqV

� �
s

� � ð6:2Þ

T(τ ) 

qBody

Fig. 6.1 Cooling of a lump
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From Eq. (6.2), it is evident that the temperature of the body falls or rises exponentially
with time s as shown in Fig. 6.2.

The exponent of Eq. (6.2) can be transformed into a product of two dimensionless
parameters:

hAs

cqV
s ¼ hV

kAs

� �
A2
s k

cqV2

� �
s

¼ hL

k

� �
k

cqL2

� �
s

¼ hL

k

� �
as
L2

� �
ð6:3Þ

where L (= V/As) is referred to as a characteristic dimension of the solid, and a (= k/cq) is the
thermal diffusivity of the solid.

The values of the characteristic dimension L, in Eq. (6.3), for some simple geometric
shapes are given in Table 6.1.

The first dimensionless term (hL/k), in Eq. (6.3), is called the Biot number Bi. The second
dimensionless term is dimensionless time and is referred as Fourier number Fo. That is,

Bi ¼ hL

k
ð6:4Þ

Fo ¼ as
L2

ð6:5Þ

Equation (6.2), thus, becomes
t � t1
ti � t1

¼ expð�BiFoÞ ð6:6Þ

The Biot number compares the relative magnitudes of the internal resistance to conduction
heat transfer and surface resistance to convection heat transfer. A low value of the Biot
number means that the internal resistance is small in comparison to the surface resistance and
due to the low internal resistance the temperature throughout the body will be uniform. In

−
−t       t

t       ti

Time, τ

Cooling of a body

Fig. 6.2 Cooling curve of a lumped heat capacity system
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this situation, the transient behaviour of the body is controlled by the convection heat transfer
coefficient.

Using the dimensionless numbers Bi and Fo, the temperature–time curves for the bodies
covered by the lumped capacity analysis can be reduced to a single universal plot for any
value of the heat transfer coefficient h as shown in Fig. 6.3.

An electric capacitor discharges in a circuit with a pure resistance according to the
relation:

E

Ei
¼ exp½�s=ðRCÞe� ð6:7Þ

where

R electrical resistance,
C capacitance,
Ei potential at s = 0,
E potential at s > 0, that is, E = E(s).

The product (RC)e has the units of time and is known as the time constant.

Table 6.1 Characteristic dimension L

Type of solid Volume,
V

Surface area,
As

Characteristic dimension,
L = V/As

Cylinder (diameter D and length L;
D << L))

(p/4)D2L pDL D/4

Sphere (diameter D) (p/6)D3 pD2 D/6

Cube (side L) L3 6L2 L/6

Plate (width W, length L, and thickness d;
d << L)

WLd 2WL d/2

0 2 4 6 8 10 12 14 16 18 20
Fo

⎥
⎦

⎤
⎢ −

−
tt
tt

i

ln

Bi = 0.01

Bi = 0.1

Fig. 6.3 Temperature–time curves
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For a thermal system, the thermal capacitance is C = mc = (qV)c and the thermal resis-
tance is 1/hAs. Using these, Eq. (6.2) can be written as

t � t1
ti � t1

¼ h
hi

¼ exp½�s=ðRCÞth� ð6:8Þ

This equation is analogous to Eq. (6.7). In a thermal system, heat is stored while in an
electric system, the electric charge is stored and the flow of heat from the thermal system is
equivalent to the flow of electric current. This analogy can be used for the analysis of the
lumped heat capacity systems by designing an electric system which satisfies the following
condition:

ðRCÞe ¼ ðRCÞth ¼
cqV
hAs

ð6:9Þ

Figure 6.4 shows the thermal network for a single-lump heat capacity system. In this
network, the thermal capacitor is charged initially to potential (temperature) ti when the
switch K is closed. The stored energy is dissipated through the resistance R = 1/hA when the
switch is opened.

The thermal time constant is the time required for the temperature difference (t–t∞)
between the body and the surrounding to reach 0.368 of its initial value (ti–t∞), i.e.

t � t1
ti � t1

¼ 0:368 ð6:10Þ

Corresponding to the temperature ratio (t–t∞)/(ti–t∞) = 0.368, the value of hAss/(cqV) in
the exponent in Eq. (6.2) is unity, i.e.

s ¼ ðRCÞth ¼
cqV
hAs

¼ cqL
h

If a thermometer is used to measure an unsteady temperature, it is important to understand
the speed with which it follows the change. Generally, a term known as half-value time is
used to measure this characteristic of the thermometer. It is the time within which the initial
difference between the true temperature and the indicated temperature of the thermometer is
reduced to half after a sudden change of the true temperature. Corresponding to the tem-
perature ratio (t–t∞)/(ti–t∞) = 0.5, the value of the exponent in Eq. (6.2) is 0.693. Thus, the
half-value time sH is given by

K

C R
ti

t∞

t∞

Fig. 6.4 The thermal network for a single-lump heat capacity system
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sH
h

cqL
¼ 0:693 ð6:11Þ

6.2.1 Instantaneous and Total Heat Flow

The instantaneous heat flow from the surface of the lump by convection is

q ¼ hAsðt � t1Þ

Substitution of the value of (t–t∞) from Eq. (6.2) gives

q ¼ hAsðti � t1Þ exp � hAs

cqV

� �
s

� �
ð6:12Þ

The total heat flow qt in time s can be determined by integrating Eq. (6.12):

qt ¼
Zs
0

hAsðti � t1Þ exp � hAs

cqV

� �
s

� �
ds

¼ hAsðti � t1Þ exp � hAs

cqV

� �
s

� �
� 1

� hAs
cqV

� �
8<
:

9=
;

s

0

¼ �cqVðti � t1Þ exp � hAs

cqV

� �
s

� �
� 1

� 	
¼ �cqVðti � t1Þ exp �Bi Foð Þ � 1½ �

ð6:13Þ

Using Eq. (6.6),

q ¼ �cqVðti � t1Þ t � t1
ti � t1

� 1

� �

or

q ¼ cqVðti � tÞ ð6:14Þ

6.2.2 Applicability of the Lumped Heat Capacity Analysis

The temperature variation in a body is a function of the Biot number. Let us consider three
cases applied to a plate of thickness 2L.

(1) Bi ! ∞ (practically Bi > 100)
From the equation of Bi = hL/k, it follows that when h ! ∞ at the given physical
parameters and size of the body, Bi ! ∞, i.e. when heat is removed at a very high rate
from the surface of the body. Under these conditions, the cooling of the body is governed
by the physical properties and the dimensions of the body. The temperature distribution,
for this case, is shown in Fig. 6.5 for a plane wall.
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(2) 100 > Bi > 0.1
The rate of cooling in this case depends both on the internal and external resistances. The
temperature distribution curve at any moment of time will appear as shown in Fig. 6.6.

(3) Very small Biot number (practically Bi < 0.1)
The Biot number will be small for a thin plate with a large value of thermal conductivity
and small heat transfer coefficient. At the small values of the Biot number, the surface
temperature differs little from the temperature at the axis of the plate, that is, the tem-
perature distribution across the plate can be assumed to be uniform at any moment of
time, Fig. 6.7. Thus, the lumped heat capacity analysis is applicable to the condition
when Bi � 0.1. In this case, the rate of cooling depends on the value of the heat transfer
coefficient only.

−
−

tt
tt

i

x-x

Fo1

Fo2 

Fo3

0

Fig. 6.5 Temperature distribution in a plane wall cooled at Bi ! ∞; Fo1 < Fo2 < Fo3

−
−

t
tt

ti

x-x

Fo1

Fo2 

Fo3

0

Fig. 6.6 Temperature distribution in a plane wall cooled at 100 > Bi > 0.1; Fo1 < Fo2 < Fo3

x-x

Fo1

Fo2 

Fo3

−
−

tt
tt

i

0

Fig. 6.7 Temperature distribution in a plane wall cooled at Bi < 0.1; Fo1 < Fo2 < Fo3
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Example 6.1 In a lumped heat capacity system, if there is internal heat generation at a
constant volumetric rate qg W/m3, determine the relationship between time and temperature.

Solution

Following the procedure outlined in Sect. 6.1, the heat balance for the body, which is in
interaction with the environment at temperature t∞, the convection heat loss from the surface
of the body at any instant will equal the rate of change of the internal energy of the body and
the internal heat generation. Thus

q ¼ hAs t � t1ð Þ ¼ �c qVð Þ dt
ds

þ qgV

or
dt
ds

þ hAs

qcV
t ¼ qgV þ hAst1

qcV

Its solution is the general solution of the homogeneous equation and the particular integral
t = t∞ + qgV/hAs. Hence,

t ¼ C1 exp � hAs

qcV
s

� �
þ t1 þ qgV

hAs

� �

or

t � t1 ¼ C1 exp � hAs

qcV
s

� �
þ qgV

hAs
ðiÞ

Applying the initial condition of ti at time s = 0, we obtain

ti � t1 ¼ C1 þ qgV

hAs

or

C1 ¼ ti � t1ð Þ � qgV

hAs
:

Substitution of the value of C1 in Eq. (i) gives

t � t1 ¼ ti � t1ð Þ � qgV

hAs

� �
exp � hAs

qcV
s

� �
þ qgV

hAs
:

Rearranging the terms and introducing hAss/qcV = Bi Fo, we obtain

t � t1 ¼ ti � t1ð Þ exp �Bi Foð Þþ qgV

hAs
1� exp �Bi Foð Þ½ �;

which is the desired relation.
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or

t � t1 � qgV
hAs

ti � t1 � qgV
hAs

¼ exp �Bi Foð Þ;

Example 6.2 A 0.8 mm diameter Nichrome wire (q = 8400 kg/m3, c = 420 J/(kg K),
k = 12 W/(m K) and electric resistivity qe = 1.2 � 10–6 Xm) is dipped in oil at bulk tem-
perature of 25°C. When 10 A current is passed through the wire, determine the time for the
wire to come within 1°C of its steady-state temperature. The convection heat transfer
coefficient is 500 W/(m2 K).

Solution

The Biot number for a cylindrical configuration,

Bi ¼ hðd=4Þ
k

¼ 500� ð0:8=4000Þ
12

¼ 0:0083:

Since Biot number is less than 0.1, lumped heat capacity analysis can be applied. For a
lumped heat capacity system with internal heat generation at a constant volumetric rate qg
W/m3, temperature–time relationship is given by, refer Example 6.1,

t � t1 � qgV
hAs

ti � t1 � qgV
hAs

¼ exp �Bi Foð Þ

or

t � t1 � qgd
4h

ti � t1 � qgd
4h

¼ exp �Bi Foð Þ ðiÞ

as

V

As
¼ ðp=4Þd2L

pdL
¼ d

4
:

Here qg ¼ I2Re= p=4ð Þd2L½ �, where electric resistance,

Re ¼ qeL
Ac

¼ qeL
ðp=4Þd2 ¼

1:2� 10�6 � 1

ðp=4Þ � ð0:8=1000Þ2 ¼ 2:39X:

Hence,

qg ¼ 102 � 2:39
p
4 � 0:8

1000


 �2�1:0
¼ 4:75� 108 W=m3:
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Fo ¼ as
L2

¼ k

qc

� �
s
L2

¼ k

qc

� �
s

ðd=4Þ2

¼ 12
8400� 420

� �
� s

ð0:8=4000Þ2 ¼ 85:03 s:

In steady state, the heat generation rate equals the heat transfer rate from the wire surface,
hence

qgV ¼ hAsðtw � t1Þ

or

tw ¼ t1 þ qgV

hAs
¼ t1 þ qgd

4h
¼ 25þ 4:75� 108 � ð0:8=1000Þ

4� 500
¼ 215 �C;

where tw is the wire temperature in steady-state condition. Hence, t = 215–1 = 214°C.
Substitution of the values of various terms in Eq. (i) gives

214� 25� 4:75�108�ð0:8=1000Þ
4� 500

25� 25� 4:75�108�ð0:8=1000Þ
4�500

¼ exp �0:0083� 85:03sð Þ

Solution gives s = 7.4 s.

Example 6.3 A 72 mm diameter orange is subjected to a cold environment. The heat
transfer coefficient h is estimated to be 10 W/(m2 K). Could a lumped thermal capacity
analysis be applied? Thermal conductivity of apple is 0.6 W/(m K) at 20°C.

Solution

Assuming apple to be spherical, the characteristic dimension, L = D/6 = 72/6 = 12 mm
Biot number,

Bi ¼ hL

k
¼ 10� 0:012

0:6
¼ 0:2;

which is greater than 0.1, hence the lumped heat capacity analysis must not be used.

Example 6.4 A right circular cone has a base diameter of 50 mm and a height of 75 mm. The
thermal conductivity of the cone material is 15 W/(m K). The heat transfer coefficient is 50 W/
(m2 K). Can we apply the lumped capacity analysis? Neglect the heat transfer from the base.

Solution

The characteristic dimension is

L ¼ V

As
¼

1
3 pR

2H

pRðR2 þH2Þ1=2
¼ RH

3ðR2 þH2Þ1=2
;
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where

R radius of the base = 25 mm,
H height of the cone = 75 mm.

Substitution gives

L ¼ 25� 75

3ð252 þ 752Þ1=2
� 8mm:

Biot number,

Bi ¼ hL

k
¼ 50� 0:008

15
¼ 0:0267\0:1:

Lumped capacity analysis can be applied.

Example 6.5 What can be the maximum diameter of a steel ball [k = 40 W/(m K)] sub-
jected to a convective heat transfer coefficient h = 25 W/(m2 K) for the applicability of the
lumped capacity analysis?

Solution

The characteristic dimension is

L ¼ V

As
¼ D

6

For the lump capacity analysis to be applicable, Bi must be less than 0.1.

Bi ¼ 0:1 ¼ hLmax

k
¼ 25� Dmax=6

40

or

Dmax ¼ 0:96m;

which is the desired result.

Example 6.6 Steel balls 10 mm in diameter are annealed by heating to 880°C and then
slowly cooling to 100°C in an air environment at 25°C. The convection heat transfer
coefficient is 15 W/(m2 K). Estimate the time required for this cooling process. For steel take
k = 40 W/(m K), c = 450 J/(kg K) and q = 7900 kg/m3.

Solution

For a sphere, characteristic length L = R/3 = 0.005/3 = 1/600 m.
Biot number = hL/k = 15/(40 � 600) = 6.25 � 10–4 < 0.1, hence the lumped heat

capacity solution is applicable. For this condition
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t � t1
ti � t1

¼ exp½�Bi Fo�

where

Fo ¼ as
L2

¼ k

qc
s
L2

¼ 40

7900� 450� ð1=600Þ2 s ¼ 4:051s:

This gives
100� 25
880� 25

¼ exp½�6:25� 10�4 � 4:051s�

or

s ¼ 962 s:

Example 6.7 A 1 mm diameter copper wire initially at a temperature of 140°C is suddenly
placed in the atmosphere at 40°C. The convective heat transfer coefficient is 12 W/(m2 K).
Calculate the time required for the wire to reach a temperature of 90°C. For copper,
q = 8954 kg/m3, c = 0.3831 kJ/(kg K), and k = 386 W/(m K).

Solution

For a cylindrical body, characteristic length L = V/As = r/2 = 0.25 mm.
Biot number = hL/K = 12 � 0.25/(386 � 1000) = 7.77 � 10–6 < 0.1, hence the lumped

heat capacity analysis is applicable.
For the given data,

t � t1
ti � t1

¼ 90� 40
140� 40

¼ 0:5

Fo ¼ as
L2

¼ k

qc
s
L2

¼ 386

8954� 383:1� ð0:25=1000Þ2 s ¼ 1800:4s

From Eq. (6.6),

�Bi Fo ¼ ln
t � t1
ti � t1

� �

Substitution of the values of various terms gives

�7:77� 10�6 � 1800:4s ¼ ln 0:5ð Þ

or

s ¼ 49:55 s:
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Example 6.8 How much heat has been removed from the steel balls of Example 6.6 in
962 s?

Solution

From Eq. (6.13),
q ¼ cqVðti � t1Þ exp �Bi Foð Þ � 1½ �

¼ 450� 7900� 4
3
� p� 5

1000

� �3

�ð880� 25Þ

� 0:08772� 1ð Þ
¼ �1452W:

Alternatively using Eq. (6.14)

q ¼ cqVðti � t1Þ

¼ 450� 7900� 4
3
� p� 5

1000

� �3

� ð880� 100Þ
¼ 1452W:

Example 6.9 Acubical piece of aluminium 10 mmon a side is to be heated from 50°C to 300°
C directly by flame. How long should the piece remain in the flame, if the flame temperature is
800°C and the heat transfer coefficient between the flame and the aluminium piece is 190 W/
(m2 K)? For aluminium, q = 2719 kg/m3, c = 0.871 kJ/(kg K) and k = 215 W/(m K).

Solution

The characteristic dimension for a cube with side L is

L ¼ V

As
¼ L3

6L2
¼ L

6

From Eq. (6.4),

Bi ¼ hL

k
¼ 190� 1� 10�2

6� 215
¼ 1:473� 10�3\0:1:

As the Biot number is less than 0.1, the lumped heat capacity analysis can be used, which
gives

t � t1
ti � t1

¼ exp � hAs

cqV

� �
s

� �
ð6:2Þ

Inserting the given data, we have

300� 800
50� 800

¼ exp � 190� 6� 102 � 1000
0:871� 1000� 2719� 103

� �
s

� �
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Solution of the above equation gives
s ¼ 8:41 s:

Example 6.10 A chromel–alumel thermocouple (diameter = 0.7 mm) is used to measure
the temperature of a gas stream for which the heat transfer coefficient is 600 W/(m2 K).
Estimate the time constant of the thermocouple. Given: q = 8500 kg/m3; c = 400 J/(kg K).

Solution

The thermocouple bead is very small in diameter, hence the lumped heat capacity analysis
can be applied.

t � t1
ti � t1

¼ 0:368 ¼ exp � hAs

cqV

� �
s

� �

or
hAs

cqV

� �
s ¼ 1

Substitution of the values of various parameters gives

600� pð0:7Þ2 � 1000

400� 8500� ðp=6Þ � ð0:7Þ3
" #

s ¼ 1

or

s ¼ 0:66 s:

Example 6.11 The bead of a copper constant thermocouple is 0.5 mm in diameter. If its
initial temperature is 30°C and the surrounding air temperature is 80°C, how long will it take
the thermocouple bead to attain (i) 79°C (ii) 79.5°C and (iii) 79.9°C? Given: k = 23 W/
(m K), c = 410 J/(kg K), q = 8900 kg/m3, and h = 50 W/(m2 K).

Solution

From Eq. (6.2),

s ¼ � cqV
hAs

� �
ln

t � t1
ti � t1

� �

Substituting values of various terms and V/As = D/6 for a spherical body, we get

s ¼ �6:08 ln
t � 80
�50

� �

For t = 79.0°C, s = 23.8 s, for t = 79.5°C, s = 28.0 s and for t = 79.9°C, s = 37.8 s.
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Note: If the bead diameter is doubled, the above-calculated values will be doubled as time
s is proportional to L = D/6. It is evident that the measurement of the temperature of an
unsteady thermal system, the diameter of the bead of the thermocouple should be as small as
possible.

Example 6.12 Consider a mercury thermometer (k = 10 W/(m K), c = 140 J/(kg K),
q = 13.6 g/cm3) for the measurement of the temperature of the air stream in Example 6.11.
The mercury bulb can be assumed to be cylindrical in shape (D = 5 mm). The thermal
resistance of the thin glass wall may be neglected. How long will it take the bulb to attain
79°C? Given h = 50 W/(m2 K).

Solution

Here,

s ¼ � cq
h
� V

As

� �
� ln

t � t1
ti � t1

� �
¼ � 140� 13600

50
� 0:005

4

� �
ln

�1
�50

� �
¼ 186:2 s:

Comparison of the result with that of Example 6.11 clearly shows the disadvantage of the
mercury thermometer for recording unsteady temperatures.

Example 6.13 If a steel spherical ball of 100 mm diameter is coated with a 1 mm thick
layer of dielectric material of thermal conductivity 0.05 W/(m K), estimate the time required
to cool it from 500°C to 100°C in an oil bath at 25°C. The convection heat transfer coefficient
is 500 W/(m2 K). For steel, k = 40 W/(m K), c = 450 J/(kg K) and q = 7900 kg/m3.

Solution

The total resistance to heat transfer is

Rt ¼ r2 � r1
4pkir1r2

þ 1
hð4pr22Þ

¼ 1=1000
4p� 0:05� 0:05� 0:051

þ 1
500� ð4p� 0:0512Þ

¼ 0:6853K=W

The overall heat transfer coefficient,

U ¼ 1
RtA2

¼ 1

Rt4pr22
¼ 1

0:6853� 4p� 0:0512
¼ 44:64W= m2 K


 �
:

Note: Since the difference in r2 and r1 is very small, the overall heat transfer coefficient

can also be approximated from U ¼ R0
t


 ��1¼ r2 � r1
k

þ 1
h

� ��1

¼ 1=1000
0:05

þ 1
500

� ��1

¼ 45:45W= m2 Kð Þ.
For a sphere, characteristic length L = D/6 = 0.102/6 = 0.017 m.
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Biot number

Bi ¼ UL

k
¼ 44:64� 0:017

40
¼ 0:019\0:1

hence the lumped heat capacity method can be used.
From Eq. (6.2),

UAs

cqV

� �
s ¼ � ln

t � t1
ti � t1

� �

or

s ¼ � ln
t � t1
ti � t1

� �
� cqV

UAs

� �
¼ � ln

t � t1
ti � t1

� �
� cqD

6U

� �

where V
As
¼ pD3=6

pD2 ¼ D
6 . Hence, time for cooling on substitution of values of various terms

s ¼ � ln
100� 25
500� 25

� �
� 450� 7900� 0:102

6� 44:64

� �
¼ 2499 s ¼ 0:694 h:

Example 6.14 A rectangular plate of thickness d = 50 mm (width W, length L; d � L and
d � W), which is initially at a uniform temperature of 400°C, is exposed to a fluid at 25°C.
The convective heat transfer coefficient is 50 W/(m2 K). Determine the time required to lose
50% of its stored heat and temperature of the plate at that time. Neglect radiation heat
exchange. For the plate material, k = 210 W/(m K), c = 900 J/(kg K) and q = 2710 kg/m3.

Solution

Characteristic dimension L of a plate from Table 6.1 is d/2 = 0.025 m.
Biot number,

Bi ¼ hL

k
¼ 50� 0:025

210
¼ 0:00595\0:1:

Hence, lumped heat capacity method can be applied.
From Eq. (6.13), the heat flow qt in time s is

qt ¼ �cqVðti � t1Þ exp � hAs

cqV

� �
s

� �
� 1

� 	
ð6:13Þ

Maximum possible total heat flow is (when body acquires surrounding temperature)

qmax ¼ cqVðti � t1Þ

Hence, 50% of the maximum possible heat flow in time s is
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qt ¼ 0:5cqVðti � t1Þ

Substitution in Eq. (6.13) gives

0:5cqVðti � t1Þ ¼ �cqVðti � t1Þ exp � hAs

cqV

� �
s

� �
� 1

� 	

or

0:5 ¼ � exp � hAs

cqV

� �
s

� �
� 1

� 	

or

0:5 ¼ exp � hAs

cqV

� �
s

� �

or

� hAs

cqV

� �
s ¼ ln 0:5

or

s ¼ � ln 0:5� cqV
hAs

� �

From Table 6.1, V/As = d/2 for a plate. Hence,

s ¼ � ln 0:5� cqd
2h

� �
¼ � ln 0:5� 900� 2710� 0:05

2� 50

� �
¼ 845 s:

From Eq. (6.2), temperature after time s is

t ¼ t1 þ ðti � t1Þ exp � hAs

cqV

� �
s

� �

or

¼ t1 þ ðti � t1Þ exp � 2h
cqd

� �
s

� �

or

¼ 25þð400� 25Þ exp � 2� 50
900� 2710� 0:05

� �
� 845

� �
¼ 212:5 �C:

Alternatively, simply use
qt
qmax

¼ cqVðt � t1Þ
cqVðti � t1Þ ¼ 0:5 to calculate t.
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Note: When radiation heat exchange is present, radiation heat transfer coefficient is cal-
culated from

hr ¼ er T2 þ T2
sur


 �
T þ Tsurð Þ

when the body at temperature T is in a large space having surface temperature Tsur, for details
about radiation heat transfer coefficient refer Chap. 11. It is to note that hr varies as the body
temperature changes. The radiation heat transfer coefficient hr has its maximum value when
body temperature T is maximum, which is at the start of cooling when the body is cooled or
is the temperature attained after heating if the body is heated. If the Biot number based on the
sum of convection heat transfer coefficient and the maximum radiation heat transfer coeffi-
cient is less than 0.1, lumped heat capacity analysis may be applied.

When both convection and radiation are present, the heat balance for the body gives

�c qVð Þ dT
ds

¼ hAs T � T1ð Þþ eAsr T4 � T4
sur


 �
Thus the variation of the body temperature is given by

ZT
Ti

dT ¼ TðsÞ � Ti ¼ � As

qcV

Zs
0

hðT � T1Þþ er T4 � T4
sur


 �� 
ds;

which is solved numerically.
If only radiation is present (body in an enclosure with vacuum), the heat balance equation

is

�c qVð Þ dT
ds

¼ eAsr T4 � T4
sur


 �
Separating variables and integrating from initial condition to time s, we have

Zs
0

ds ¼ � qcV
eAsr

ZT
Ti

dT
T4 � T4

sur
;

which gives

s ¼ qcV
4eAsrT3

sur
ln

Tsur þ T

Tsur � T

� �
� ln

Tsur þ Ti
Tsur � Ti

� �� �
þ 2 tan�1 T

Tsur

� �
� tan�1 Ti

Tsur

� �� �� 	
:
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6.3 Lumped Capacitance, Varying Fluid Temperature

Consider the body of Fig. 6.1, which is in contact with a fluid whose temperature increases
with time, i.e.

t1 ¼ as ðiÞ

where a is a constant.
From Eq. (6.1), we write

q ¼ hAs t � t1ð Þ ¼ �c qVð Þ dt
ds

dt
ds

þ hAs

qcV
t � hAs

qcV
t1 ¼ 0

or

dt
ds

þ hAs

qcV
t ¼ hAs

qcV
as

It is a differential equation whose solution is

t ¼ b exp � hAs

qcV
s

� �
þ a s� qcV

hAs

� �
ðiiÞ

Initially, the body and the surrounding fluid are in thermal equilibrium, hence from Eq. (i),
t = 0 at s = 0. Applying the condition in the above equation, we get

b ¼ a
qcV
hAs

and the solution, Eq. (ii), becomes

t ¼ as� a
qcV
hAs

1� exp � hAs

qcV
s

� �� �

The variation of the temperature of the body given by this equation is shown in Fig. 6.8.
The temperature of the body lags behind the fluid temperature. After the initial transition
period, this time lag becomes constant and the temperature of the body varies linearly with
time according to the equation

t ¼ a s� qcV
hAs

� �
ð6:15Þ

where
qcV
hAs

is the time lag by which the linear temperature variation of the body is delayed

with respect to the fluid temperature.
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Example 6.15 The thermometer of Example 6.12 is to be used to measure the temperature
of an electric oven. Calculate the temperature lag of the thermometer if the oven is heated at
the rate of 200°C/h. The convective heat transfer coefficient may be taken as 10 W/(m2 K).

Solution

From Eq. (6.15), the temperature recorded by the thermometer at any moment after the
transition period is

t ¼ a s� qcV
hAs

� �

Hence, the temperature lag is

Dt ¼ as� t ¼ a
qcV
hAs

¼ 200
3600

� 13600� 140� 0:005
10� 4

¼ 13:2�C:

6.4 Multiple-Lumped Capacity Systems

Such systems can also be analysed by following the procedure given for a single-lump heat-
capacity system.

Let us consider a two-lump system consisting of electrically heated liquid in a container,
Fig. 6.9. There is a convective heat transfer from the liquid to the container and from the
container to the surrounding fluid at t∞. The energy balance at any moment on the two lumps
(liquid 1 and container 2) gives

h1A1 t1 � t2ð Þ ¼ �c1 q1V1ð Þ dt1
ds

ðiÞ

shA
cVρ

τ

t

t∞ = aτ

t(τ)

Fig. 6.8 Temperature-time history: linearly varying fluid temperature
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h1A1 t2 � t1ð Þþ h2A2 t2 � t1ð Þ ¼ �c2 q2V2ð Þ dt2
ds

ðiiÞ

for the lumps liquid 1 and container 2, respectively
These are simultaneous linear differential equations for t1(s) and t2(s).
Differentiating Eq. (i) with respect to time s1, we get

h1A1
dt1
ds

� dt2
ds

� �
¼ �c1 q1V1ð Þ d

2t1
ds2

Substitution of the value of dt2/ds from Eq. (ii) and elimination of t2 from the resulting
equation gives

d2t1
ds2

þC0
1
dt1
ds

þC0
2t1 ¼ C0

2t1 ðiiiÞ

where

C0
1 ¼

h1A1

q1c1V1
þ h1A1

q2c2V2
þ h2A2

q2c2V2

C0
2 ¼

h1A1

q1c1V1

� �
h2A2

q2c2V2

� �

The solution of Eq. (iii) is

t1 ¼ Aem1s þBem2s þ t1 ðivÞ

where

m1 ¼
�C0

1 � C0
1


 �2�4 C0
2


 �h i1=2
2

m2 ¼
�C0

1 þ C0
1


 �2�4 C0
2


 �h i1=2
2

The constants A and B can be determined from the initial boundary conditions, which are
(i) At the beginning (s = 0), the two lumps are at the same temperature ti, i.e.

t1t2
Liquid

Container

Insulated 
cover

h2, A2h1, A1

1

2

Fig. 6.9 Two-lump system
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t1ð0Þ ¼ t2ð0Þ ¼ ti:

(ii) This condition of t1(0) = t2(0) = ti gives, from Eq. (i),

dt1
ds

¼ 0:

These conditions give

ti ¼ AþBþ t1 ðvÞ

and

dt1
ds

� �
s¼0

¼ Am1 þBm2 þ t1 ¼ 0 ðviÞ

From Eqs. (v) and (vi),

A ¼ m2

m2 � m1
ðti � t1Þ

B ¼ � m1

m2 � m1
ðti � t1Þ

Substituting values of A and B in Eq. (iv) gives

t1 � t1
ti � t1

¼ m2

m2 � m1
em1s � m1

m2 � m1
em2s ð6:16Þ

The temperature of the container t2(s) can be obtained by substituting the value of t1(s)
from Eq. (6.16) and its derivative dt1/ds into Eq. (i).

It is evident that there will be three simultaneous differential equations for a three-lump
system, four equations for a four-lump system and so on.

To draw the thermal network, the thermal capacitance of each lump of the system can be
determined from the known values of their volume, density and specific heats. The thermal
resistance connecting the lump must also be determined.

The thermal network of the two-lump system shown in Fig. 6.9 is presented in Fig. 6.10.
Here the connecting resistance is due to convection between the container and liquid.
Temperatures t1 and t2 reach ti when the container is insulated from outside an electric heater
is run (this is equivalent to opening of switch K2 and closing of switch K1, and charging the
capacitors to potential ti). Thereafter, switch K1 is opened and K2 is closed, which causes the
dissipation of stored energy in the capacitors through the resistances.

We take another example of a two-lump-system as shown in Fig. 6.11. The system
consists of two solids (lumps) in perfect thermal contact (negligible contact resistance).
Block 2 is exposed to a fluid at temperature t∞. Initially, both the lumps are at the same
temperature, i.e. t1(0) = t2(0) = ti at s = 0.
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The heat transfer from lump 1 to 2 is

q

A
¼ k1

t1 � tc
d1=2

� �
¼ k2

tc � t2
d2=2

� �

where tc is the temperature at the interface. From the two equations,

tc ¼ k1d2t1 þ k2d1t2
k2d1 þ k1d2

Using the first equation, we get

q

A
¼ q1

A1
¼ 2k1

d1
t1 � k1d2t1 þ k2d1t2

k2d1 þ k1d2

� �

Rearranging the equation, we get

q1 ¼ A1k
0ðt1 � t2Þ

where

k0 ¼ 2k1k2
k2d1 þ k1d2

By replacing h1 of the two-lump system of Fig. 6.9 by k’, temperature t1(s) can be
determined from Eq. (6.16). The application of the results obtained here is illustrated in the
example that follows.

C1 = ρ1c1V1, R1 = 1/h1A1, C2 = ρ2c2V2, R2 = 1/h2A2 

K1

C1 

R1 ti

t∞

C2 

R2 

●

K2

t1 t2 

t∞

●

Fig. 6.10 The thermal network of two-lump system

Insulated
container

t1 > t2 > t∞

h2, A2

t2, 2

t1, 1

δ2

δ1

●tc
A1 = A2

● t∞

Fig. 6.11 Example 6.16
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Example 6.16 For the system shown in Fig. 6.11, the following data is given:
For solid 1: c1 = 385 J/(kg K), k1 = 390 W/(m K) and d1 = 60 mm, q1 = 8950 kg/m3;

solid 2: c2 = 900 J/(kg K), k2 = 210 W/(m K) and d2 = 50 mm, q2 = 2700 kg/m3;
ti = 200°C, t∞ = 40°C and h2 = 20 W/(m2 K).

Determine the expression for the temperature of solid 1, assuming applicability of the
lumped analysis.

Solution

k0 ¼ 2k1k2
k2d1 þ k1d2

¼ 2� 390� 210
ð210� 60þ 390� 50Þ=1000 ¼ 5103

C0
1 ¼

k0A1

q1c1V1
þ k0A1

q2c2V2
þ h2A2

q2c2V2

¼ k0

q1c1d1
þ k0

q2c2d2
þ h2

q2c2d2

¼ 5103� 1000
8950� 385� 60

þ 5103� 1000
2700� 900� 50

þ 20� 1000
2700� 900� 50

¼ 0:06685

C0
2 ¼

k0A1

q1c1V1

� �
h2A2

q2c2V2

� �

¼ 5103� 1000
8950� 385� 60

� �
20� 1000

2700� 900� 50

� �
¼ 4:06� 10�6

m1 ¼
�C0

1 � C0
1


 �2�4 C0
2


 �h i1=2
2

¼
�0:06685� 0:06685ð Þ2�4 4:06� 10�6


 �h i1=2
2

¼ �0:06678

m2 ¼
�C0

1 þ C0
1


 �2�4 C0
2


 �h i1=2
2

¼
�0:06685þ 0:06685ð Þ2�4 4:06� 10�6


 �h i1=2
2

¼ �0:6� 10�4

Then
t1 � t1
ti � t1

¼ m2

m2 � m1
em1s � m1

m2 � m1
em2s

or

t1 � 40
200� 40

¼ �0:6� 10�4

�0:6� 10�4 � ð�0:06678Þ e
�0:06678s

� ð�0:06678Þ
�0:6� 10�4 � ð�0:06678Þ e

�0:6�10�4s
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or

t1 ¼ 40� 0:144e�0:06678sþ 160:14e�0:6�10�4s

6.5 Transient Heat Flow in Semi-infinite Solids

A semi-infinite slab is shown in Fig. 6.12, which is bounded by plane x = 0 and extends to
infinity in the positive x-direction. The solid also extends to infinity in y- and z-directions.
Examples of such bodies are a thick or large block of steel, the earth, etc. When such a body
is heated or cooled for a relatively short period, the temperature will change only for a short
distance from the surface.

Case A: Surface Temperature of Semi-infinite Body Suddenly Lowered and Maintained
at Constant Temperature
First, we consider the case when the surface temperature of the semi-infinite body is suddenly
lowered and maintained at temperature ts.

For a one-dimensional conduction system without heat generation, temperature distri-
bution equation can be deduced from Eq. (2.13a) as

@2t

@x2
¼ 1

a
@t

@s

The boundary conditions are

(i) The body is initially at a uniform temperature,

t x; 0ð Þ ¼ ti at s ¼ 0

(ii) At the surface, the temperature is suddenly changed and then maintained at ts, hence

t 0; sð Þ ¼ ts at s[ 0

(iii) At distance sufficiently away from the surface, the temperature in the body does not
change, hence

t 1; sð Þ ¼ ti at s[ 0

q0 = -kA∂t/∂x

x
x = 0

ts

ti

●

● 

Fig. 6.12 A semi-infinite solid
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The differential equation of this problem is solved by the Laplace-transform technique.
The solution for temperature distribution, i.e. the temperature of a parallel plane at distance
x at any time s, is

tðx; sÞ � ts
ti � ts

¼ erf
x

2
ffiffiffiffiffi
as

p
� �

ð6:17Þ

where erf
x

2
ffiffiffiffiffi
as

p
� �

is the Gauss error function. It is defined as

erf
x

2
ffiffiffiffiffi
as

p
� �

¼ 2ffiffiffi
p

p
Z x
2
ffiffiffi
as

p

0

e�g2dg ð6:18Þ

where η is a dummy variable and the integral is a function of the upper limit. We can express
the non-dimensional temperature distribution as

tðx; sÞ � ts
ti � ts

¼ 2ffiffiffi
p

p
Z x
2
ffiffiffi
as

p

0

e�g2dg ð6:19Þ

The temperature distribution given by Eq. (6.19) is plotted in Fig. 6.13. The values of the
error function are tabulated in Table 6.2.

The heat flow at any plane at distance x from the surface is

qx ¼ �kA
@t

@x

The differentiation of Eq. (6.19) gives

@t

@x
¼ ti � tsð Þ 2ffiffiffi

p
p � e�

x2
4as � @

@x

x

2
ffiffiffiffiffi
as

p
� �

¼ ti � tsð Þffiffiffiffiffiffiffiffi
pas

p � e�
x2
4as


 �

0, 0 2.0

1.0 0.9953

ατ2
x

si

s

tt

txt

−

−),( τ

Fig. 6.13 Temperature distribution given by Eq. (6.19)
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Hence,

qx ¼ �kA
ti � tsð Þffiffiffiffiffiffiffiffi
pas

p � e�
x2
4as


 �
ð6:20aÞ

The heat flow at the surface is obtained by putting x = 0,

qx¼0 ¼ �kA
ti � tsð Þffiffiffiffiffiffiffiffi
pas

p ð6:20bÞ

Table 6.2(b) Inverted table

erf x
2
ffiffiffiffi
as

p x
2
ffiffiffiffi
as

p

0.0 0

0.2 0.1791

0.25 0.2253

0.3 0.2725

0.4 0.3708

0.5 0.4769

0.6 0.5951

0.7 0.7329

0.75 0.8134

0.8 0.9062

0.9 1.1631

1.0 3.6000

Table 6.2(a) Error function

x
2
ffiffiffiffi
as

p erf x
2
ffiffiffiffi
as

p x
2
ffiffiffiffi
as

p erf x
2
ffiffiffiffi
as

p x
2
ffiffiffiffi
as

p erf x
2
ffiffiffiffi
as

p x
2
ffiffiffiffi
as

p erf x
2
ffiffiffiffi
as

p

0.00 0.0000 0.65 0.6420 1.30 0.9340 1.95 0.9942

0.05 0.05636 0.70 0.6778 1.35 0.9435 2.00 0.9953

0.10 0.1125 0.75 0.7111 1.40 0.9523 2.10 0.9970

0.15 0.1680 0.80 0.7421 1.45 0.9593 2.20 0.9981

0.20 0.2227 0.85 0.7706 1.50 0.9661 2.30 0.9989

0.25 0.2764 0.90 0.7969 1.55 0.9713 2.40 0.9993

0.30 0.3286 0.95 0.8208 1.60 0.9764 2.50 0.9996

0.35 0.3794 1.00 0.8427 1.65 0.9802 2.60 0.9998

0.40 0.4284 1.05 0.8625 1.70 0.9838 2.80 0.99993

0.45 0.4755 1.10 0.8802 1.75 0.9865 3.0 0.99998

0.50 0.5205 1.15 0.8962 1.80 0.9891 3.2 0.999994

0.55 0.5633 1.20 0.9103 1.85 0.9910 3.4 0.999998

0.60 0.6039 1.25 0.9229 1.90 0.9928 3.6 1.000000

6.5 Transient Heat Flow in Semi-infinite Solids 355

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


The heat flux at the surface is a function of (1/√s), hence it diminishes with an increase in
time.

The total heat flow in time s can be obtained by integrating Eq. (6.20b) over the time
interval 0 to s, i.e.

Q0 ¼ � kAffiffiffiffiffiffi
pa

p ti � tsð Þ
Zs
0

1ffiffiffi
s

p ds

¼ � kAffiffiffiffiffiffi
pa

p ti � tsð Þ 2
ffiffiffi
s

p
 �
¼ �1:128kA ti � tsð Þ

ffiffiffi
s
a

r
ð6:21Þ

Case B: Constant Heat Flux on Semi-infinite Solid
The surface of the body is suddenly exposed to uniform heat flux. The body is initially at a
uniform temperature, i.e.

t x; 0ð Þ ¼ ti at s ¼ 0;

and, for s > 0,

qo
A

¼ �k
@t

@x

� �
x¼0

The temperature distribution, in this case, is expressed as

t � ti ¼ 2q0
ffiffiffiffiffiffiffiffiffiffi
as=p

p
kA

� e�
x2
4as


 �
� q0x

kA
1� erf

x

2
ffiffiffiffiffi
as

p
� �� �

ð6:22Þ

Case C: Convective Boundary Condition
In most of the cases of interest, the heat is transferred to or from the surface of the solid by
convection. Hence, at x = 0,

hAðt1 � tÞx¼0 ¼ �kA
@t

@x

� �
x¼0

where t∞ is the temperature of the fluid to which the surface of the solid is exposed.
The temperature distribution, in this case, is given by

t � ti
t1 � ti

¼ 1� erf
x

2
ffiffiffiffiffi
as

p
� �

� exp
hx

k
þ h2as

k2

� �
� 1� erf

x

2
ffiffiffiffiffi
as

p þ h
ffiffiffiffiffi
as

p
k

� �� �
ð6:23Þ

The above equation can be written as

t � t1
ti � t1

¼ erf
x

2
ffiffiffiffiffi
as

p
� �

þ exp
hx

k
þ h2as

k2

� �
� 1� erf

x

2
ffiffiffiffiffi
as

p þ h
ffiffiffiffiffi
as

p
k

� �� �
ð6:24Þ
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If h tends to ∞, the surface temperature of the body approaches the temperature of the
fluid to which the surface is exposed. For this case, Eq. (6.24) transforms to

t � t1
ti � t1

¼ erf
x

2
ffiffiffiffiffi
as

p
� �

which is the result presented by Eq. (6.17). The solution given by Eq. (6.23) or (6.24) is also
available in graphical form in Fig. 6.14.

Example 6.17 A large block of steel, which is initially at a uniform temperature of 30°C, is
suddenly changed to and held at 200°C. Calculate the temperature at a depth of 20 mm after
60 s. For steel k = 45 W/(m K) and a = 1.2 � 10–5 m2/s.

Solution

For transient heat conduction in infinite thick solids, Eq. (6.17) applies

tðx; sÞ � ts
ti � ts

¼ erf
x

2
ffiffiffiffiffi
as

p
� �

i

i

tt
tt
−
−

0 0.5 1.0 1.5
0.01

0.02

0.03
0.04
0.05
0.06

0.08
0.1

0.2

0.4

0.8

0.6

1.0

ατ2
x

0.05
0.1

0.3
0.6

1.0
3 ∞h√(ατ)/k

Fig. 6.14 Temperature distribution in semi-infinite solid with convection boundary condition. Holman JP,
adapted for SI units by White PRS, Heat Transfer, McGraw-Hill Book Co, New York, Copyright 1992. The
material is reproduced with permission of McGraw-Hill Education (Asia)
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The given data is: ts = 200°C, ti = 30°C, x = 0.02, a = 1.2 � 10–5 m2/s and s = 60 s.
Hence,

tðx; sÞ � 200 ¼ 30� 200ð Þ � erf
0:02

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:2� 10�5 � 60

p
� �

or

tð0:02; 60Þ ¼ �170� erf 0:3727ð Þþ 200

or

tð0:02; 60Þ ¼ �170� 0:406þ 200 ¼ 130:98�C:

Example 6.18 If the surface of the steel block of the previous example is subjected to a
uniform heat flux of 200 kW/m2, calculate the temperature at the same depth after 60 s.

Solution

Equation (6.22) applies, which gives

t � ti ¼ 2q0
ffiffiffiffiffiffiffiffiffiffi
as=p

p
kA

� e�
x2
4as


 �
� q0x

kA
1� erf

x

2
ffiffiffiffiffi
as

p
� �� �

ð6:22Þ

From given data:

x2

4as
¼ 0:022

4� 1:2� 10�5 � 60
¼ 0:1389

erf
x

2
ffiffiffiffiffi
as

p
� �

¼ 0:406

q0 ¼ 200� 103 W/m2

A ¼ 1m2

k ¼ 45W= mKð Þffiffiffiffiffiffiffiffiffiffi
as=p

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:2� 10�5 � 60=p

p
¼ 0:01514

Inserting the values of various parameters, we obtain

t ¼ 2� 200� 103 � 0:01514
45� 1

� e� 0:1389ð Þ � 200� 103 � 0:02
45� 1

1� 0:406½ � þ 30 ¼ 94:3�C

Example 6.19 A water pipe is to be buried underground in wet soil (a = 1.8 � 10−3 m2/h).
The night temperature can fall to –5°C, which can remain at this value for 9 h. Calculate the
minimum depth at which the pipe is to be laid down so that the surrounding soil temperature
does not reach 5°C. The soil temperature at the onset of the night is estimated to be 10°C.
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Solution

Let at a depth of L, the temperature t just approaches 5°C in 9 h. Assuming the soil as semi-
infinite solid, Eq. (6.17) applies. Hence,

tðx; sÞ � ts
ti � ts

¼ erf
x

2
ffiffiffiffiffi
as

p
� �

or
5� ð�5Þ
10� ð�5Þ ¼ erf

L

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:8� 10�3 � 9

p
� �

or

0:667 ¼ erf
L

0:2546

� �

or
L

0:2546
¼ 0:6494

or

L ¼ 0:165m;

i.e. the pipe must be laid down at a depth greater than 0.165 m.

Example 6.20 A semi-infinite aluminium slab is initially at a uniform temperature of 400°C.
Its surface is suddenly changed to 50°C. How much heat will be removed per unit area of the
slab if the temperature at a depth of 100 mm from the surface drops to 100°C? Given
k = 225 W/(m K), a = 8.6 � 10–5 m2/s.

Solution

For the given data,

tðx; sÞ � ts
ti � ts

¼ 100� 50
400� 50

¼ 0:1429

Thus, from Eq. (6.17),

erf
x

2
ffiffiffiffiffi
as

p
� �

¼ 0:1429

From Table 6.2,
x

2
ffiffiffiffiffi
as

p
� �

� 0:126
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or

s ¼ 0:1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:6� 10�5

p
� 0:126

� �2

¼ 1831 s:

Heat transfer at the surface, Eq. (6.21),

q

A
¼ 1:128k ts � tið Þ

ffiffiffi
s
a

r

¼ 1:128� 225� 50� 400ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1831
8:6� 10�5

r
¼ �41� 107 J=m2:

The negative sign indicates heat loss from the slab.

Example 6.21 If the ground in Example 6.19 is suddenly exposed to a cold wave at –10°C
with h = 50 W/(m2 K), will the water in the pipe remain above 4°C in the period of 9 h? The
thermal conductivity of the wet soil is 2 W/(m K).

Solution

For the given condition, Fig. 6.14 applies. The required parameters are

h
ffiffiffiffiffi
as

p
k

¼ 50�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:8� 10�3 � 9

p

2:0
¼ 3:18

x

2
ffiffiffiffiffi
as

p ¼ 0:165

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:8� 10�3 � 9

p ¼ 0:648

For these values of the parameters, the figure gives

tðx; sÞ � ti
t1 � ti

� 0:3

Substitution of known temperature data gives

tðx; sÞ � 10
�10� 10

� 0:3

or
t ¼ 4�C:

6.6 Transient Heat Conduction in Infinite Plate

Figure 6.15 shows an infinite plate of thickness 2L. Physically the plate is so large in length
and width that end effects may be ignored. This is a case of one-dimensional transient heat
conduction. Initially, the plate is at a uniform temperature ti. At the time zero, both sides of
the plate are suddenly reduced to temperature t1. The differential equation of one-dimensional
heat conduction for the unsteady state is
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@2t

@x2
¼ 1

a
@t

@s

� �

Introducing h = t–t1, the equation becomes

@2h
@x2

¼ 1
a

@h
@s

� �

The initial boundary conditions are

h ¼ ti�t1 ¼ hi at s ¼ 0; 0� x� 2L ðaÞ
h ¼ 0 at x ¼ 0; s[ 0 ðbÞ
h ¼ 0 at x ¼ 2L; s[ 0 ðcÞ

Using the technique of separation-of-variables, similar to the one used for the two-
dimensional steady-state problem, the solution is of the form

hðx; sÞ ¼ XðxÞHðsÞ

It produces two ordinary differential equations

@2X

@x2
þ k2X ¼ 0

1
a
@H

@s
þ k2H ¼ 0

where k2 is the separation constant.
The form of solution is

hðx; sÞ ¼ C1 cos kxþC2 sin kxð Þe�k2as ðiÞ

x
x = 0

t ●

t(x,τ)

2L

1

Fig. 6.15 Infinite plate
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In order to satisfy the boundary conditions, k2 must be > 0. From the boundary condition
(b),

C1 ¼ 0:

Using boundary condition (c), we obtain

0 ¼ ðC2 sin 2kLÞe�k2as

Since C1 = 0, C2 cannot be zero. Hence, sin(2kL) = 0 gives

sinð2kLÞ ¼ sinðnpÞ

or

k ¼ np
2L

where n = 1, 2, 3 …..
Substitution in Eq. (i) gives

h ¼
X1
n¼1

Cne
� np

2Lð Þ2as sin npx
2L

� �
ð6:25Þ

The initial condition (h = hi at s = 0), when applied to Eq. (6.25), gives

hi ¼
X1
n¼1

Cn sin
npx
2L

� �
ð6:26Þ

Equation (6.26) is simply a Fourier series expansion of the initial temperature, so that

Cn ¼ 1
L

Z2L
0

hi sin
npx
2L

� �
dx

¼ 4
np

hi

The final solution is

h
hi

¼ t � t1
ti � t1

¼ 4
p

X1
n¼1

1
n
e�

np
2Lð Þ2as sin npx

2L

� �
ð6:27Þ

where n = 1, 3, 5 …..
Equation (6.27) involves the dimensionless number as/L2, which is the Fourier number

based on the half-width L of the plate.
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The heat flow, using the Fourier equation, can be obtained as

q ¼ �kA
dt
dx

¼ � 4kA
2L

ðDtÞmax

X1
n¼1

e�
np
2ð Þ2Fo cos npx

2L

� � ð6:28Þ

where Dtmax is the difference between the initial and the new face temperature.

6.7 Heisler and Grober Charts

We considered one geometry of unsteady heat conduction in the above section. Solutions
have been presented by the researchers for other geometries. The analytical solutions are not
useful for rapid calculation, hence the solutions are presented in the graphical form by
Heisler. Temperatures as a function of time and spatial position are given in Figs. 6.17, 6.18,
6.19, 6.20, 6.21 and 6.22 for

(i) plates whose thickness is small compared to the other dimensions,
(ii) cylinders whose diameter is small compared to its length,
(iii) Spheres.

All parameters in these figures are dimensionless. The nomenclature used is shown in
Fig. 6.16 Temperature used in charts are defined as

h ¼ t x; sð Þ�t1
hi ¼ ti�t1
ho ¼ to�t1

where

t∞ surrounding fluid temperature,
to centreline or centre temperature.

x

L L

(a) Infinite plate (b) Infinite cylinder (c) Sphere

r0

r

r0

r

Fig. 6.16 Nomenclature for the Heisler charts
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The centreline temperature h0 is obtained using Figs. 6.17, 6.18 and 6.19 while the off-
centre temperatures are obtained using Figs. 6.20, 6.21 and 6.22 as illustrated through
worked examples.

The heat loss can be determined using Figs. 6.23, 6.24 and 6.25, where

Qo initial internal energy of the solid, with reference to the temperature t∞, = qVc (ti–t∞),
Q heat lost in time s.

Note: Inspection of Figs. 6.17, 6.18, 6.19, 6.20, 6.21, 6.22, 6.23, 6.24 and 6.25 shows
that the dimensionless temperature distribution and heat flows have been expressed in terms
of dimensionless parameters Bi and Fo defined as

Fo = ατ/L2

iθ
θ0
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Fig. 6.17 Midplane temperature of an infinite plate of thickness 2L. Heisler (1947) Temperature charts for
induction and constant temperature heating. Trans ASME 69: 227–236. With permission of ASME
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Fig. 6.18 Axis temperature of an infinite cylinder of radius ro. Heisler (1947) Temperature charts for
induction and constant temperature heating. Trans ASME 69: 227–236. With permission of ASME
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θo/θi

Fo = ατ/ro2
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Fig. 6.19 Centre temperature for a sphere of radius ro. Heisler (1947) Temperature charts for induction and
constant temperature heating. Trans ASME 69: 227–236. With permission of ASME
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Fig. 6.20 Temperature as a function of centre temperature in an infinite plate of thickness 2L. Heisler (1947)
Temperature charts for induction and constant temperature heating. Trans ASME 69: 227–236. With
permission of ASME
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Fig. 6.21 Temperature as a function of axis temperature in an infinite cylinder of radius ro. Heisler (1947)
Temperature charts for induction and constant temperature heating. Trans ASME 69: 227–236. With
permission of ASME
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Fig. 6.22 Temperature as a function of centre temperature in a sphere of radius ro. Heisler (1947)
Temperature charts for induction and constant temperature heating. Trans ASME 69: 227–236. With
permission of ASME
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Bi ¼ hL

k
ð6:4Þ

Fo ¼ as
L2

ð6:5Þ

where L is a characteristic dimension of the body. For a plate, it is the half-thickness L, and
for the cylinder and sphere it is the radius ro, refer Fig. 6.16.

Note that the Heisler charts are applicable for values of Fourier number greater than 0.2.
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Fig. 6.23 Dimensionless heat loss Q/Qo with time for a plane wall of thickness 2L (Grober et al. 1961)
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Fig. 6.24 Dimensionless heat loss Q/Qo with time for an infinite cylinder of radius ro (Grober et al. 1961)
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Example 6.22 A large slab of aluminium 100 mm thick is originally at a temperature of
500°C. It is suddenly immersed in a liquid bath at 100°C resulting in a heat transfer coef-
ficient of 1200 W/(m2 K). Determine the temperature at the centre line and the surface 1 min
after the immersion. Also, calculate the total heat removed per unit area of the slab during
this period. The properties of the aluminium at the given conditions may be taken as
q = 2700 kg/m3, c = 0.9 kJ/(kg K) and k = 215 W/(m K).

Solution

The characteristic length for a plate with thickness d is

L ¼ d
2
¼ 100

2
¼ 50mm:

The Biot number from Eq. (6.4),

Bi ¼ hL

k
¼ 1200� 50� 10�3

215
¼ 0:279[ 0:1:

Since the Biot number is greater than 0.1, the lumped heat capacity analysis is not
applicable. The problem may be solved using Heisler charts.

The Fourier number,

Fo ¼ as
L2

¼ k

qc
� s
L2

¼ 215
2700� 900

� 60
0:052

¼ 2:12:
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Fig. 6.25 Dimensionless heat loss Q/Qo with time for a sphere of radius ro (Grober et al. 1961)
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(i) Centreline temperature, to
From the Heisler chart (Fig. 6.17) at Fo = 2.1 and 1/Bi = 3.6, for the temperature
variation at the centre of the plate, we have

t0 � t1
ti � t1

� 0:6:

Hence, the temperature at the centre of the plate,

t0 ¼ 0:6 ti � t1ð Þþ t1
¼ 0:6 500� 100ð Þþ 100 ¼ 340�C:

(ii) Plate surface temperature, ts
The correction factor from Fig. 6.20 for 1/Bi = 3.6 and x/L = 1.0 (where x is the
distance from the midplane) is 0.86. Hence, the plate surface temperature ts is given by

t � t1
ti � t1

¼ t0 � t1
ti � t1

� t � t1
t0 � t1

¼ 0:6� 0:86 ¼ 0:516:

Simplification gives the surface temperature as

t ¼ 0:516� ti � t1ð Þþ t1
¼ 0:516� 500� 100ð Þþ 100 ¼ 306:4�C:

(iii) Total heat removal
The heat transferred from the slab in time s can be calculated using Fig. 6.23.
From the given data,

FoBi2 ¼ 2:12� ð0:279Þ2 ¼ 0:165;

and

hL

k
¼ Bi ¼ 0:279:

From Fig. 6.23,

Q

Q0
� 0:4

where Q0 is the initial internal energy content of the slab in reference to the surrounding
temperature. Thus, for the unit surface area of the plate,

Qo ¼ qVð Þcðti � t1Þ ¼ ½2700� ð100=1000Þ � 1� � 0:9� ð500� 100Þ ¼ 97200 kJ=m2:
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Hence, the heat lost per unit area of the slab in one minute is

Q ¼ 0:4� 97200 ¼ 38880 kJ=m2:

Example 6.23 For the slab of the previous example, how long it will take for the midplane
temperature to drop to 300°C? What will be the temperature at a depth of 20 mm from one of
the faces when the midplane temperature will be 300°C?

Solution

From the previous example,
k

hL
� 3:6:

For a midplane temperature of 300°C,

t0 � t1
ti � t1

¼ 300� 100
500� 100

¼ 0:5:

Corresponding to this value of temperature ratio, Fo = 2.7. This gives

Fo ¼ as
L2

¼ k

qc
� s
L2

¼ 215
2700� 900

� s
0:052

¼ 2:7

or

s ¼ 76:3 s for midplane temperature to drop to 300�C:

Since distance x is measured from the midplane, x/L for the plane 20 mm from one of the
face is

x

L
¼ 0:05� 0:02

0:05
¼ 0:6

Correction factor for x/L = 0.6 and 1/Bi = 3.6,

t � t1
t0 � t1

¼ 0:95:

Hence,

t � t1
ti � t1

¼ t0 � t1
ti � t1

� t � t1
t0 � t1

¼ 0:5� 0:95 ¼ 0:475
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which gives

t ¼ 0:475� ti � t1ð Þþ t1
¼ 0:475� 500� 100ð Þþ 100 ¼ 290�C

where t is the temperature after 76.3 s at a depth of 20 mm from the surface of the slab when
the midplane temperature is 300°C.

Example 6.24 A water pipeline is laid along the centreline of a 300 mm thick, very long
and wide, brick masonry wall (k = 0.66 W/(m K), a = 0.0046 cm2/s). The water is initially
at a temperature of 10°C. The wall is suddenly exposed to a cold wave [average heat transfer
coefficient, hav = 20 W/(m2 K)] at –2°C. How long will it take for the water to reach a
temperature of 4°C.

Solution

Given data: Midplane temperature t0 = 4°C, surrounding fluid temperature t∞ = –2°C,
ti = 10°C and L = 0.15 m. Hence,

t0 � t1
ti � t1

¼ 4� ð�2Þ
10� ð�2Þ ¼ 0:5

1
Bi

¼ k

hL
¼ 0:66

20� 0:15
¼ 0:22:

From Fig. 6.17, Fo � 0.6. This gives

s ¼ Fo� L2

a
¼ 0:6� 0:152

0:0046� 10�4
¼ 29347 s ¼ 8 h 9min:

Example 6.25 A long copper cylinder 100 mm in diameter and initially at 20°C is suddenly
exposed to a fluid at 80°C. The average value of the heat transfer coefficient is 500 W/(m2 K).
Calculate the temperature at a radius of 20 mm and the heat gained per m length of the cylinder
in 60 s. For the cylinder material k = 380 W/(m K), q = 8950 kg/m3 and c = 380 J/(kg K).

Solution

Thermal diffusivity, a ¼ k
qc ¼ 380

8950�380 ¼ 11:2� 10�5m2=s.

Fourier number, Fo ¼ as
r20
¼ 11:2�10�5�60

0:052 ¼ 2:688

Biot number, Bi ¼ hr0
k ¼ 500�0:05

380 ¼ 0:0658

Radius ratio, r
r0
¼ 0:02

0:05 ¼ 0:4.

From Figs. 6.18 and 6.21,
ho
hi

� 0:7

h
h0

� 0:98:
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Hence,

h ¼ t � t1 ¼ h
h0

� h0
hi

� hi ¼ 0:98� 0:7� ð20� 80Þ ¼ �41:16�C

and
t ¼ hþ t1 ¼ �41:16þ 80 ¼ 38:84�C:

Heat gained

FoBi2 ¼ h2as
k2

¼ 0:0116

hr0
k

¼ 500� 0:05
380

¼ 0:0658:

From Fig. 6.24,
Q

Q0
� 0:3:

The internal energy at time s = 0 is

Q0

L
¼ qcðpr2oÞhi
¼ 8950� 380� p� 0:052 � 60 ¼ 1:603� 106 J=m:

Hence, heat gained,

Q ¼ 0:3Q0 ¼ 0:3� 1:603� 106 ¼ 4:808� 105 J=m:

Example 6.26 For the orange of Example 6.3, estimate the time required for the centre of
the orange to reach 10°C if the initial temperature of the orange is 30°C. The temperature of
the cold environment is 5°C. The thermal diffusivity of the orange is nearly equal to that of
water since it mainly consists of water.

Solution

At the average temperature of ½ (30 + 10) = 20°C, a = 1.4 � 10−7 m2/s and k = 0.6 for
water.

1
Bi

¼ k

hr0
¼ 0:6

10� 36=1000
¼ 1:67

and
h0
hi

¼ t0 � t1
ti � t1

¼ 10� 5
30� 5

¼ 0:2:

From Fig. 6.19, Fo �1.2.
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s ¼ Fo
r20
a
¼ 1:2� 0:0362

1:4� 10�7
¼ 11108 s ¼ 3 h 5min:

Example 6.27 A long 50 mm diameter aluminium cylinder initially at 300°C is suddenly
exposed to a convective environment at 100°C. The average value of the heat transfer
coefficient is 200 W/(m2 K). Determine the heat lost per m length of the cylinder in 30 s.
Given:

k ¼ 215 W= mKð Þ; c ¼ 0:9� 103 J= kgKð Þ; q ¼ 2700 kg=m3; a ¼ 8:85� 10�5m2=s:

Solution

Fourier number, Fo ¼ as
r20
¼ 8:85�10�5�30

0:0252 ¼ 4:248

Biot number, Bi ¼ hr0
k ¼ 200�0:025

215 ¼ 0:02326:

FoBi2 ¼ 0:0023:
From Fig. 6.24,

Q

Qi
� 0:18:

Hence,

Q ¼ 0:18Qi ¼ 0:18� qcðpr2o � 1Þðti � t1Þ
¼ 0:18� 2700� 0:9� 103 � p� 0:0252 � 1� ð300� 100Þ
¼ 171:8 � 103 J=m:

Lumped-capacity analysis

Fourier number, Fo ¼ as
ðr0=2Þ2 ¼

8:85�10�5�30
0:025=2ð Þ2 ¼ 16:99

Biot number, Bi ¼ hr0=2
k ¼ 200�0:025=2

215 ¼ 0:01163.
From Eq. (6.13),

Q

Qi
¼ 1� expð�Bi� FoÞ
¼ 0:1793;

which is in reasonable agreement with the above result.

Example 6.28 It was assumed that when Bi � 0.1, the body is having uniform temper-
ature and the lumped heat capacity analysis is applicable. Based on the Heisler charts,
determine the error in this approximation.

Solution

(i) Plate
From Fig. 6.20,
The temperature ratio h

h0
¼ 0:95, for 1

Bi ¼ 10 and x
L ¼ 1:0.

This means that the surface temperature hx = L differs by about 5% from the centreline
temperature ho.
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(ii) Cylinder

For the Heisler chart, the Biot number is defined as Bi ¼ hr0
k

while, for the lumped

heat capacity analysis, it is defined as Bi ¼ hr0=2
k

.

Hence, Bi = 0.1 refers to Bi = 0.2 for the Heisler chart.
From Fig. 6.21,
h
h0
� 0:91 for 1/Bi = 5 and r/ro = 1.0. Thus, the error can be 9%.

(iii) Sphere
Following the explanation given for the cylinder,

Bið ÞHeisler¼ Bið ÞLumped�
r

r=3
¼ 0:3:

From Fig. 6.22,
h
h0

� 0:85 for 1/Bi = 3.33 and r/ro = 1.0. Thus, the error can be 15%.

It can be seen that with the increase in 1/Bi or decrease in the value of the Biot number,
the above-approximated errors will reduce. When the value of the Biot number will approach
0.01 (or 1/Bi approaches 100), the error will approach zero. Hence, the above-approximated
error of 5–15%, with respect to the Heisler chart, can be regarded as the maximum for the
lumped heat capacity analysis. However, it must be noted that the Heisler charts too are
approximate.

Example 6.29 A rectangular-shaped sandstone block of thickness d = 150 mm (width
W 	 d and length L 	 d), which is initially at a uniform temperature of 30°C, is exposed
on both sides to hot gases at 500°C. The convective heat transfer coefficient is 80 W/(m2 K).
Determine the time required by the block to gain 50% of its maximum storage capacity of
heat, and minimum and maximum temperatures of the stone at that time. Neglect radiation
heat exchange. For the masonry, k = 2.9 W/(m K), c = 750 J/(kg K) and q = 2200 kg/m3.

Solution

For the given system, characteristic dimension L from Table 6.1 is d/2 = 0.075 m.
Biot number,

Bi ¼ hL

k
¼ 80� 0:075

2:9
¼ 2:07[ 0:1:

Hence, the lumped heat capacity method is not applicable. Grober and Heisler charts may
be used to solve the problem.

Time required by the block to gain 50% of its maximum storage capacity of heat
From Grober chart (Fig. 6.23), Bi2Fo � 2.9 for Q/Qo = 0.5 and Bi = 2.07.

Fourier number,

Fo ¼ as
L2

¼ k

qc

� �
s
L2

¼ 2:9
2200� 750

� �
s

0:0752
¼ 3:12� 10�4s:
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Hence,

2:9 ¼ Bi2Fo ¼ Bi2
as
L2

¼ Bi2
k

qc

� �
s
L2

¼ ð2:07Þ2 � 2:9
2200� 750

� �
s

0:0752
¼ 13:37� 10�4s

or s ¼ 2169 s.
For s = 2169 s,

Fo ¼ 3:12� 10�4 � 2169 ¼ 0:676:

Minimum and maximum temperatures
The minimum temperature is at x = 0, i.e. at midplane and the maximum is at the surface
(x = L). From Heisler chart (Fig. 6.17), with Fo = 0.676 and 1/Bi = 1/2.07 = 0.48,
ho/hi� 0.47. This gives the minimum temperature,

tx¼0 ¼ t1 þ ðho=hiÞ � ðti � t1Þ ¼ 500þ 0:47� ð�470Þ ¼ 279:1�C:

From Heisler chart (Fig. 6.20), with 1/Bi = 1/2.07 = 0.48 and x/L = 1, h/ho� 0.46. This
gives the maximum temperature,

tx¼L ¼ t1 þ ðh=hiÞ � ðto � t1Þ ¼ 500þ 0:46� ð�220:9Þ ¼ 398:4�C:

Example 6.30 The wall of a furnace is 150 mm thick and is adequately insulated from
outside. It is initially at a uniform temperature of 20°C. The wall is exposed to hot gases at
900°C. The convective heat transfer coefficient is 80 W/(m2 K). Determine the time required
for the outer surface to reach a temperature of 725°C. Neglect radiation heat exchange. For
the furnace wall, k = 1.2 W/(m K), c = 900 J/(kg K) and q = 2500 kg/m3.

Solution

The wall is equivalent to one-half of a wall of thickness d (= 2L) with symmetric convection
conditions as shown in Fig. 6.26b. Hence, characteristic dimension L from Table 6.1 is
d/2 = 0.3/2 = 0.15 m.

For the wall in Fig. 6.26b, Biot number,

b

0.15

h, t∞

a

δ = 2L

h, t∞ h, t∞

Fig. 6.26 Example 6.30
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Bi ¼ hL

k
¼ 80� 0:15

1:2
¼ 10[ 0:1:

Hence, the lumped heat capacity method is not applicable. Heisler graphs will be used.

1
Bi

¼ 0:1

ho
hi

¼ to � t1
ti � t1

¼ 725� 900
20� 900

¼ 0:2:

For 1/Bi = 0.1 and ho/hi = 0.2, Fo � 0.85 from Fig. 6.17. Equation Fo ¼ as
L2 ¼ k

qc

� �
s
L2

gives

s ¼ Fo
qcL2

k

� �
¼ 0:85� 2500� 900� 0:152

1:2

� �
¼ 35859 s ¼ 9:96 h:

Example 6.31 A 2.5 mm thick plastic sheet (k = 0.2 W/(m K), a = 1 � 10–7 m2/s), ini-
tially at 180°C, lies on an insulated surface and is cooled by airflow at 20°C. If the con-
vection heat transfer coefficient is 100 W/(m2 K), determine the time required for the surface
of the sheet to reach 40°C.

Solution

The sheet is equivalent to one-half of a sheet of thickness d (= 2L) with symmetric con-
vection conditions. Hence, the characteristic length L = 0.0025 m.

The Biot number,

Bi ¼ hL

k
¼ 100� 0:0025

0:2
¼ 1:25:

Figure 6.20 gives hL/ho = 0.6 for x/L = 1 and 1/Bi = 0.8.
From given data,

hL
hi

¼ tL � t1
ti � t1

¼ 40� 20
180� 20

¼ 0:125;

ho
hi

¼ hL
hi

� ho
hL

¼ 0:125� 1
0:6

¼ 0:208:

For ho/hi = 0.208 and 1/Bi = 0.8, Fo � 1.9 from Fig. 6.17. Knowing that Fo ¼ as
L2, we get

s ¼ FoL2

a
¼ 1:9� 0:00252

1� 10�7
¼ 118:75 s:

Example 6.32 A long glass rod of 40 mm diameter (k = 0.78 W/(m K), c = 840 J/(kg K)
and q = 2700 kg/m3), initially at 80°C, is cooled in air [t∞ = 30°C, h = 20 W/(m2 K)].
Determine the time for which the rod should be cooled so that when removed and isolated
from the surroundings it attains an equilibrium temperature of 45°C.
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Solution

Heat removed, Q, in cooling to the equilibrium temperature of tf = 45°C is the difference of
the initial heat content and heat content at 45°C with reference to temperature t∞ of air, i.e.

Q ¼ Qo � Qf

or
Q

Qo
¼ 1� Qf

Qo
¼ 1� mcðtf � t1Þ

mcðti � t1Þ ¼ 1� tf � t1
ti � t1

or
Q

Qo
¼ 1� 45� 30

80� 30
¼ 0:7:

The Biot number,

Bi ¼ hro
k

¼ 20� 0:02
0:78

¼ 0:51;

where L = ro = 0.02 m.
For Q/Qo = 0.7 and Bi = 0.51, Bi2Fo = 0.48 from Fig. 6.24, which gives

Fo ¼ ðBi2Fo)
Bi2

¼ 0:48
0:512

¼ 1:845:

Equation Fo ¼ as
r2o

¼ k

qc

� �
s
r2o

gives

s ¼ Fo
qcr2o
k

� �
¼ 1:845� 2700� 840� 0:022

0:78

� �
¼ 2146 s:

Example 6.33 A 50 mm diameter long rod (c = 1000 J/(kg K) and q = 1200 kg/m3),
initially at 110°C, is cooled in air [t∞ = 30°C, h = 60 W/(m2 K)]. If the axis temperature
reaches 50°C after cooling for 10 min, determine the thermal conductivity of the rod
material.

Solution

From given data,
ho
hi

¼ tr¼0 � t1
ti � t1

¼ 50� 30
110� 30

¼ 0:25;

1
Bi

¼ k

hro
¼ k

60� 0:025
¼ 0:667k;

Fo ¼ as
r2o

¼ k

qc

� �
s
r2o

¼ k � 10� 60
1200� 1000� 0:0252

¼ 0:8k:

We have to determine that value of k, which will give ho/hi = 0.25 in Fig. 6.18 at values of
Fo and 1/Bi from the above equations. By trial-and-error procedure, we find k = 1.0 W/(m K).
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The Biot number Bi = 1.5 for k = 1.0 W/(m K), hence lumped heat capacity analysis is
not applicable.

Example 6.34 A 10 mm diameter steel ball, initially at a temperature of 30°C, is to be
heated by immersing in a salt bath at 1000°C and then quenched for hardening. Hardening
occurs at locations where the temperature is greater than 800°C. The heat transfer coefficient
is 4000 W/(m2 K). (a) Determine the time required for heating to harden up to a depth of
1 mm and (b) heat flux when t(4 mm, s) = 800°C,. Given for ball material q = 7860 kg/m3,
c = 460 J/(kg K) and k = 40 W/(m K).

Solution

(a) Time required for heating
The temperature up to the depth of 1 mm, i.e. from surface to r = 4 mm must be 
 800°C.
From the given data,

r

ro
¼ 4

5
¼ 0:8;

1
Bi

¼ k

hro
¼ 40

4000� 0:005
¼ 2:

For applicability of lumped heat capacity analysis, Biot number Bi = hro/
(3 k) = 0.166 > 0.1. Hence, the lumped heat capacity analysis is not applicable.

From Fig. 6.22, h/ho � 0.84 for 1/Bi = 2 and r/ro = 0.8. Hence,

ho ¼ h
0:84

¼ 800� 1000
0:84

¼ �238:1 oC:

This gives
ho
hi

¼ ho
ti � t1

¼ �238:1
30� 1000

¼ 0:245:

From Fig. 6.19, Fo � 1.13 for ho/hi = 0.245 and 1/Bi = 2. Equation Fo ¼ as
r2o
¼ k

qc

� �
s
r2o

gives

s ¼ Fo
qcr2o
k

� �
¼ 1:13� 7860� 460� 0:0052

40

� �
¼ 2:55 s:

(b) Heat flux
From Fig. 6.22, h/ho � 0.77 for 1/Bi = 2 and r/ro = 1.0. Hence,

h ¼ 0:77ho ¼ 0:77� ð�238:1Þ ¼ �183:3 oC

or
tðr ¼ roÞ ¼ 1000� 183:3 ¼ 816:7 oC:

Heat flux ¼ h t roð Þ � t1½ � ¼ 4000� 183:3 ¼ 733:2 kW=m2:
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6.8 Two- and Three-Dimensional Transient Heat Conduction Systems

The Heisler charts presented in the previous sections are applicable to infinite plates of
2L thickness, a long cylinder or a sphere. When the length and width of the plate are not large
compared to its thickness, or the length of the cylinder is not large compared to its diameter,
the above charts are not applicable. The temperature distribution in such cases is a function
of additional space coordinates.

6.8.1 Two-Dimensional Systems

The differential equation for the semi-infinite bar in Fig. 6.27 is

@2t

@x2
þ @2t

@y2
¼ 1

a
@t

@s
ð6:29Þ

The solution, based on the separation of the variables technique, is of the form

tðx; y; sÞ ¼ Xðx; sÞYðy; sÞ ð6:30Þ

It will be shown1 that the bar in Fig. 6.27 can be formed from two infinite plates of
thickness 2L1 and 2L2, respectively, and the temperature distribution may be expressed as a
product of the solution for these plates.

1For two infinite plates, the differential equations are

@2t1
@x2

¼ 1
a
@t1
@s

ðiÞ

@2t2
@y2

¼ 1
a
@t2
@s

ðiiÞ

and their temperature distributions are

t1 ¼ t1ðx; sÞ ðiiiÞ
t2 ¼ t2ðy; sÞ ðivÞ

Let the solution to Eq. (6.29) is a simple product solution of above functions, i.e.

t ¼ t1ðx; sÞt2ðy; sÞ ðvÞ
Then the derivations are

@2t

@x2
¼ t2

@2t1
@x2

ðviÞ

@2t

@y2
¼ t1

@2t2
@y2

ðviiÞ

@t

@s
¼ t2

@t1
@s

þ t1
@t2
@s

ðviiiÞ

Using Eqs. (i) and (ii), Eq. (viii) transforms to

@t

@s
¼ at2

@2t1
@x2

þ at1
@2t2
@y2

Substitution of the value of ∂t/∂s satisfies Eq. (6.29):

t2
@2t1
@x2

þ t1
@2t2
@y2

¼ 1
a

at2
@2t1
@x2

þ at1
@2t2
@y2

� �

Therefore, the assumed product solution, Eq. (v), is correct and the dimensionless temperature distribution for
the rectangular bar can be given by Eq. (6.31).
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h
hi

¼ tðx; y; sÞ � t1
ti � t1

¼ tðx; sÞ � t1
ti � t1

� �
2L1Plate

tðy; sÞ � t1
ti � t1

� �
2L2Plate

ð6:31Þ

where ti and t∞ are defined as earlier.
Similarly, the temperature distribution in semi-infinite plates and cylinders can be

expressed.

6.8.2 Three-Dimensional Systems

The results of two-dimensional systems can be extended to a three-dimensional block
(2L1 � 2L2 � 2L3) to give

h
hi

¼ tðx; y; z; sÞ � t1
ti � t1

¼ tðx; sÞ � t1
ti � t1

� �
2L1Plate

tðy; sÞ � t1
ti � t1

� �
2L2Plate

tðz; sÞ � t1
ti � t1

� �
2L3Plate

ð6:32Þ

The product solutions for the temperature distributions in two- or three-dimensional
systems are presented in Table 6.3

Example 6.35 A long rectangular section steel bar (50 mm � 80 mm) is initially at a
uniform temperature of 800 °C. It is heat treated by quenching in an oil tank at 80°C. The
average heat transfer coefficient is 400 W/(m2 K). What is the temperature at the centreline
after 120 s of quenching? a = 1.4 � 10−5 m2/s and k = 50 W/(m K).

Solution

The problem is a combination of two infinite plates of thicknesses 2L1 and 2L2, respectively.
Hence, equation of Case (2) of Table 6.3 applies

2L1- Plate (2L1 = 50 mm)

1
Bi

¼ k

hL1
¼ 50

400� 0:025
¼ 5

Fo ¼ as
L21

¼ 1:4� 10�5 � 120
0:0252

¼ 2:69:

2L1

2L2

x

y

z

Fig. 6.27 Two-dimensional system
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From Fig. 6.17, for 1
Bi ¼ 5 and Fo ¼ 2:69,

h0
hi

� �
2L1plate

� 0:63:

Table 6.3 Product solutions for transient heat conduction in two- and three-dimensional systems

System Solution

1. Semi-infinite plate

x
y

x
2L1

● y

h
hi

¼ tðy; sÞ � t1
ti � t1

¼ tðy; sÞ � t1
ti � t1

� �
2L1Plate

tðx; sÞ � t1
ti � t1

� �
semi�infinite

slab

2. Infinite rectangular bar

2L1 

2L2 

x
y

z

h
hi

¼ tðx; y; sÞ � t1
ti � t1

¼ tðx; sÞ � t1
ti � t1

� �
2L1Plate

tðy; sÞ � t1
ti � t1

� �
2L2Plate

3. Semi-infinite cylinder

x
ro 

●r

h
hi

¼ tðr; x; sÞ � t1
ti � t1

¼ tðr; sÞ � t1
ti � t1

� �
Infinite
Cylinder

tðx; sÞ � t1
ti � t1

� �
Semi�infinite

slab

4. A short cylinder

2L1

x
ro 

●r

h
hi

¼ tðr; x; sÞ � t1
ti � t1

¼ tðr; sÞ � t1
ti � t1

� �
Infinite
Cylinder

tðx; sÞ � t1
ti � t1

� �
2L1�Plate

5. Semi-infinite rectangular bar

2L1 

2L2 

x
y

z

h
hi

¼ tðx; y; z; sÞ � t1
ti � t1

¼ tðx; sÞ � t1
ti � t1

� �
2L1Plate

tðy; sÞ � t1
ti � t1

� �
2L2Plate

tðz; sÞ � t1
ti � t1

� �
Semi�infinite

solid

6. Rectangular parallelepiped

2L1 

2L2 

x
y

z

2L3 

h
hi

¼ tðx; y; z; sÞ � t1
ti � t1

¼ tðx; sÞ � t1
ti � t1

� �
2L1Plate

tðy; sÞ � t1
ti � t1

� �
2L2Plate

tðz; sÞ � t1
ti � t1

� �
2L3Plate
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2L2- Plate (2L2 = 80 mm)

1
Bi

¼ k

hL2
¼ 50

400� 0:04
¼ 3:125

Fo ¼ as
L22

¼ 1:4� 10�5 � 120
0:042

¼ 1:05:

From Fig. 6.17,

h0
hi

� �
2L2plate

� 0:8:

For the given bar, the solution is

h0
hi

� �
¼ h0

hi

� �
2L1plate

h0
hi

� �
2L2plate

� 0:63� 0:8 ¼ 0:504

t0 � t1 ¼ 0:504� ðti � t1Þ ¼ 0:504� ð800� 80Þ ¼ 362:9 oC:

Centreline temperature after 120 s,

t0 ¼ ðt0 � t1Þþ t1 ¼ 362:9þ 80 ¼ 442:9 oC:

Example 6.36 A semi-infinite steel cylinder [a = 1.4 � 10–5 m2/s and k = 45 W/(m K)] is
50 mm in diameter. It is initially at a uniform temperature of 30°C. Calculate the temperature
at the axis of the cylinder 40 mm away from its one end after 100 s if it is exposed to an
environment of 200°C with heat transfer coefficient of 350 W/(m2 K).

Solution

The problem is a combination of infinite cylinder and semi-infinite slab as given in
Table 6.3, Case 3. The solution for the centreline temperature is

h0
hi

� �
¼ h0

hi

� �
infinite
cylinder

h
hi

� �
semi�infinite

slab

ðiÞ

The required temperature ratios in Eq. (i) are calculated below.

Infinite Cylinder (ro = 0.025 m)

1
Bi

¼ k

hr0
¼ 45

350� 0:025
¼ 5:143

Fo ¼ as
r2o

¼ 1:4� 10�5 � 100
0:0252

¼ 2:24:

From Fig. 6.18,
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h0
hi

� �
infinite
cylinder

� 0:45:

Semi-infinite Slab (x = 0.04 m)
The required parameters for this case are

h
ffiffiffiffiffi
as

p
k

¼ 350�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4� 10�5 � 100

p

45
¼ 0:291

x

2
ffiffiffiffiffi
as

p ¼ 0:04

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4� 10�5 � 100

p ¼ 0:534:

From Fig. 6.14,

1� h
hi

� �
� 0:085

or

h
hi

� 1� 0:085 ¼ 0:915:

The required solution from Eq. (i) is

h0
hi

� �
¼ h0

hi

� �
infinite
cylinder

h
hi

� �
semi�infinite

slab

¼ 0:45� 0:915 ¼ 0:412

or

t0 ¼ 0:412� ðti � t1Þþ t1 ¼ 0:412� ð30� 200Þþ 200 ¼ 129:96 oC:

Example 6.37 A steel cylinder 50 mm in diameter and 80 mm long is initially at a uniform
temperature of 650°C. It is dipped in a cooling medium at 100°C. If the heat transfer
coefficient is 1000 W/(m2 K), determine the temperature at 20 mm away from one of its flat
faces and at radius 10 mm after 150 s. Given: a = 1.2 � 10–5 m2/s and k = 40 W/(m K).

Solution

The problem is a combination of an infinite cylinder and a 2L plate, refer Case 4, Table 6.3.

Infinite Cylinder (ro = 0.025 m)

1
Bi

¼ k

hr0
¼ 40

1000� 0:025
¼ 1:6

Fo ¼ as
r2o

¼ 1:2� 10�5 � 150
0:0252

¼ 2:88:
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From Fig. 6.18,
h0
hi

� �
� 0:05.

From Fig. 6.21, at r/ro = 10/25 = 0.4, h
ho

� �
� 0:95.

Hence,

h
hi

� �
infinite
cylinder

¼ h0
hi

� �
� h

h0

� �
¼ 0:05� 0:95 ¼ 0:0475:

2L- Plate (2L = 0.08 m)
The required parameters for this case are

1
Bi

¼ k

hL
¼ 40

1000� 0:04
¼ 1:0

Fo ¼ as
L2

¼ 1:2� 10�5 � 150
0:042

¼ 1:125:

From Fig. 6.17,
h0
hi

� �
� 0:5.

From Fig. 6.20, at x/L = (40 – 20)/40 = 0.5, h
ho

� �
� 0:9.

Hence,
h
hi

� �
2L�plate

¼ h0
hi

� �
� h

h0

� �
¼ 0:5� 0:9 ¼ 0:45:

The solution for the given short cylinder is

h
hi

� �
¼ t � t1

ti � t1

� �
¼ h

hi

� �
infinite

cylinder

h
hi

� �
2L�plate

¼ 0:0475� 0:45 ¼ 0:02138

t ¼ 0:02138� ðti � t1Þþ t1 ¼ 0:02138� ð650� 100Þþ 100 ¼ 111:76oC:

6.9 Numerical Method of Solving Transient Conduction Problems

In the previous sections, the results of mathematical analysis for regular-shaped solids under
transient conduction have been presented in the form of charts. However, in many problems
of practical interest, the geometrical shapes do not conform to these regular shapes, and in
some cases, the boundary conditions may also vary with time. It is not possible to provide a
mathematical solution to such problems. The finite-difference method (a numerical technique,
which was presented in Chap. 5 to solve two-dimensional steady-state conduction problems),
can also be used to solve transient conduction problems.

The differential equation which governs the heat flow equation within a solid under two-
dimensional transient conduction is

@2t

@x2
þ @2t

@y2
¼ 1

a
@t

@s
ðiÞ
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Following the procedure presented in Chap. 5, the derivatives in Eq. (i) may be expressed
as (refer Fig. 6.28 for the nomenclature of the nodes):

@2t

@x2

� �
m;n

� Tp
mþ 1;n þ Tp

m�1;n � 2Tp
m;n

Dxð Þ2 ðiiÞ

@2t

@y2

� �
m;n

� Tp
m;nþ 1 þ Tp

m;n�1 � 2Tp
m;n

Dyð Þ2 ðiiiÞ

@t

@s
� Tpþ 1

m;n � Tp
m;n

Ds
ðivÞ

where the superscripts designate the time increments. Using the above finite-difference
relations in Eq. (i), we obtain

Tp
mþ 1;n þ Tp

m�1;n � 2Tp
m;n

Dxð Þ2 þ Tp
m;nþ 1 þ Tp

m;n�1 � 2Tp
m;n

Dyð Þ2 ¼ 1
a

Tpþ 1
m;n � Tp

m;n

Ds
ðvÞ

For Dx = Dy, the equation of Tpþ 1
m;n by simplification of Eq. (v) is

Tpþ 1
m;n ¼ aDs

Dxð Þ2 Tp
mþ 1;n þ Tp

m�1;n þ Tp
m;nþ 1 þ Tp

m;n�1

� �
þ 1� 4aDs

Dxð Þ2
 !

Tp
m;n

Introducing aDs
Dxð Þ2 = Fo, the Fourier number, we get

Tpþ 1
m;n ¼ Fo Tp

mþ 1;n þ Tp
m�1;n þ Tp

m;nþ 1 þ Tp
m;n�1

� �
þ 1� 4Foð ÞTp

m;n ð6:33Þ

Thus, the temperature Tpþ 1
m;n of the node (m, n) after a time increment of Ds may be

determined if the temperatures of the surrounding nodes at any particular time are known.
Such equations are written for each node leading to a set of equations.

nodes

Dashed lines indicate the 
element [the node (m, n)] 
with volume (  . .1); 
unit depth.

y

x(m, n)

(m+1, n)(m-1, n)

(m, n+1)

(m, n-1)

Fig. 6.28 Nomenclature for finite-difference approximation (two-dimensional transient conduction)
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If the distance and time increments in Eq. (6.33) are chosen such that

aDs

Dxð Þ2 ¼ Fo ¼ 1
4

ð6:34Þ

Then, the temperature of node (m, n) after a time increment Ds is

Tpþ 1
m;n ¼ Tp

mþ 1;n þ Tp
m�1;n þ Tp

m;nþ 1 þ Tp
m;n�1

4
ð6:35Þ

which is simply the arithmetic mean of the temperature of the four surrounding nodes at the
beginning of the time increment.

For a one-dimensional system, Eq. (6.33) becomes

Tpþ 1
m ¼ Fo Tp

mþ 1 þ Tp
m�1


 �þ 1� 2Foð ÞTp
m ð6:36Þ

and for

aDs

Dxð Þ2 ¼ Fo ¼ 1
2
; ð6:37Þ

Tpþ 1
m ¼ Tp

mþ 1 þ Tp
m�1

2
ð6:38Þ

Equation (6.33) can also be obtained by following the method of heat balances. Consider
node (m, n) in Fig. 6.28. The rates of heat conduction from the neighbouring nodes are

kðDy � 1Þ T
p
mþ 1;n � Tp

m;n

Dx

kðDy � 1Þ T
p
m�1;n � Tp

m;n

Dx

kðDx � 1Þ T
p
m;nþ 1 � Tp

m;n

Dy

kðDx � 1Þ T
p
m;n�1 � Tp

m;n

Dy

The change in the internal energy of the elemental volume due to the conduction heat flow
into the node (m, n) is

qcðDx:Dy:1Þ T
pþ 1
m;n � Tp

m;n

Ds

Heat balance at the node (m, n) gives

kðDy:1Þ T
p
mþ 1;n � Tp

m;n

Dx
þ kðDy:1Þ T

p
m�1;n � Tp

m;n

Dx
þ kðDx:1Þ T

p
m;nþ 1 � Tp

m;n

Dy

þ kðDx:1Þ T
p
m;n�1 � Tp

m;n

Dy
¼ qcðDx:Dy:1Þ T

pþ 1
m;n � Tp

m;n

Ds
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For Dx = Dy, we get

Tp
mþ 1;n þ Tp

m�1;n þ Tp
m;nþ 1 þ Tp

m;n�1 � 4Tp
m;n ¼

qc
kDs

ðDxÞ2 Tpþ 1
m;n � Tp

m;n

� �

Introducing kDs
qcðDxÞ2 ¼ Fo and solving for Tpþ 1

m;n , we get

Tpþ 1
m;n ¼ Fo Tp

mþ 1;n þ Tp
m�1;n þ Tp

m;nþ 1 þ Tp
m;n�1

� �
þ 1� 4Foð ÞTp

m;n ð6:33Þ

The calculation of the temperature Tpþ 1
m;n using the above equations requires the selection

of certain values of the Fourier number. This choice is limited by the following conditions,
known as stability criteria.

For a two-dimensional system; Fo� 1=4 ð6:34Þ

and

for a one-dimensional system; Fo� 1=2 ð6:37Þ

For a three-dimensional system, the stability criterion can be shown to be Fo � 1/6.
By simple analysis, we can show that the rejection of these conditions will lead to

unrealistic results. Let us consider a one-dimensional system, with the adjoining nodes of
node (m, n) at equal temperatures, say 30°C. Let the temperature of node (m, n) be 40°C. If
we select Fo = 1, ignoring the condition of Eq. (6.37), then after the time increment Ds,
Tpþ 1
m would be 20°C, which is lower than the temperature of the adjoining nodes and, hence

it is an unrealistic result. This conclusion can be shown to be valid for all values of Fo > 1/2
for the one-dimensional case.

Let us select some value of Fo � ½, say 1/3. Then from Eq. (6.36), we have

Tpþ 1
m ¼ Tp

mþ 1 þ Tp
m�1 þ Tp

m

3
ðiÞ

and for Fo = ¼, we get

Tpþ 1
m ¼ Tp

mþ 1 þ Tp
m�1 þ 2Tp

m

4
ðiiÞ

A comparison of Eqs. (i), (ii) and (6.38) shows that a choice of Fo = ½ in case of one-
dimensional system gives a simple equation.

The above conclusions can be extended to the two- and three-dimensional systems also.
In general, smaller the value of increments Dx and Ds, greater is the accuracy of the result

but slower will be the convergence to the solution. One may think that a small value of Dx
with a large value of Ds might give a solution with greater accuracy with speed, but the
values of the increments cannot be selected arbitrarily. Once the value of Fourier number Fo
and the distance increment Dx are selected, the upper limit of the time increment Ds is fixed
from the stability criteria.

We developed the finite-difference equations for a node lying within a solid. Following
the method outlined above, we can develop the equations for other physical situations as
illustrated in Example 6.38.
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Example 6.38 Write the finite difference expression for the temperature of a node on a
convective boundary in one-dimensional heat flow.

Solution

Figure 6.29 shows the node (m) on the convective boundary.
The rate of heat conduction from node (m – 1) to node (m) under consideration

kðDy:1Þ T
p
m�1 � Tp

m

Dx

Heat convected into the node (m) is

hðDy:1ÞðTp
1 � Tp

mÞ

The change in the internal energy of node (m) due to conduction and convection heat flow
is

qc
Dx
2
:Dy:1

� �
Tpþ 1
m � Tp

m

Ds

Heat balance at the node (m) gives

qc
Dx
2
:Dy:1

� �
Tpþ 1
m � Tp

m

Ds
¼ kðDy:1Þ T

p
m�1 � Tp

m

Dx
þ hðDy:1ÞðTp

1 � Tp
mÞ

Using Dx = Dy and rearranging the terms, we get

Tpþ 1
m � Tp

m ¼ 2kDs

qc Dxð Þ2 ðT
p
m�1 � Tp

mÞþ
hDx
k

2kDs

qc Dxð Þ2 Tp
1 � Tp

m


 �
:

Putting kDs
qc Dxð Þ2 = Fo and hDx

k ¼ Bi and solving for Tpþ 1
m , we obtain

Tpþ 1
m ¼ 2FoðTp

m�1 þBi� Tp
1Þþ 1� 2Fo� 2Bi� Foð Þ½ �Tp

m;

which is the desired result.

h

m ●

= 

m - 1

●t∞
● 

Fig. 6.29 Example 6.38
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6.9.1 The Explicit and Implicit Formulations

We developed equations in the previous section following the technique of forward-difference,
wherein the temperature of a node after the time interval Ds, that is, Tpþ 1

m;n or Tpþ 1
m is expressed

in terms of the temperatures of the surrounding nodes at the beginning of the time interval.
Using this technique, we calculate the temperature Tpþ 1

m;n in terms of previous nodal temper-
atures. Such formulation is termed as explicit formulation because the new temperature at the
node under consideration appears explicitly on the left hand of the equation. The solution of the
problem, thus, proceeds from one time increment to the next till we obtain the desired state. As
already discussed, the stability of the solution in this method is governed by the selection of the
values of distance and time increments Dx and Ds according to the stability criteria.

Alternatively, thefinite difference equationmay bewritten by using the backward-difference
in which the time derivativemoves backward (into the past) as explained below. For the interior
node (m, n) of Fig. 6.28, we shall write the equations of the rate of conduction heat flow as

kðDy:1Þ T
pþ 1
mþ 1;n � Tpþ 1

m;n

Dx

kðDy:1Þ T
pþ 1
m�1;n � Tpþ 1

m;n

Dx

kðDx:1Þ T
pþ 1
m;nþ 1 � Tpþ 1

m;n

Dy

kðDx:1Þ T
pþ 1
m;n�1 � Tpþ 1

m;n

Dy

The change in the internal energy of the elemental volume represented by the node (m,
n) is expressed as earlier, that is, by

qcðDx:Dy:1Þ T
pþ 1
m;n � Tp

m;n

Ds

Heat balance equation is

kðDy:1Þ T
pþ 1
mþ 1;n � Tpþ 1

m;n

Dx
þ kðDy:1Þ T

pþ 1
m�1;n � Tpþ 1

m;n

Dx
þ kðDx:1Þ T

pþ 1
m;nþ 1 � Tpþ 1

m;n

Dy

þ kðDx:1Þ T
pþ 1
m;n�1 � Tpþ 1

m;n

Dy
¼ qcðDx:Dy:1Þ T

pþ 1
m;n � Tp

m;n

Ds

For Dx = Dy, we get

Tpþ 1
mþ 1;n þ Tpþ 1

m�1;n þ Tpþ 1
m;nþ 1 þ Tpþ 1

m;n�1 � 4Tpþ 1
m;n ¼ qc

kDs
ðDxÞ2 Tpþ 1

m;n � Tp
m;n

� �

Introducing kDs
qcðDxÞ2 ¼ Fo and solving for Tp

m;n, we get

Tp
m;n ¼ 1þ 4Foð ÞTpþ 1

m;n � Fo Tpþ 1
mþ 1;n þ Tpþ 1

m�1;n þ Tpþ 1
m;nþ 1 þ Tpþ 1

m;n�1

� �
ð6:38Þ
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This equation is called implicit formulation. This formulation expresses temperature Tp
m;n

in terms of Tpþ 1
m;n . We get a set of equations when all the nodes are considered, which are to

be solved simultaneously by using the method discussed in Chap. 5. The greatest advantage
of this formulation is that no restriction is imposed on selection of time and distance
increments. Thus much larger time increments can be used for the rapid solution of the
problem. This actual selection of Ds and Dx is now based on the trade-off between the
accuracy and the cost of computation.

Example 6.39 Write down the nodal equations using explicit and implicit formulations for
the cases shown in Fig. 6.30a–c.

Solution

Following the procedure outlined in the previous sections, the nodal equations can be easily
written as illustrated below.

A. Explicit Formulation

(a) Interior node with convection

The summation of heat flow equations by conduction is

k
Dy
2
:1

� �
Tp
mþ 1;n � Tp

m;n

Dx
þ kðDy:1Þ T

p
m�1;n � Tp

m;n

Dx

þ kðDx:1Þ T
p
m;nþ 1 � Tp

m;n

Dy
þ k

Dx
2
:1

� �
Tp
m;n�1 � Tp

m;n

Dy

Heat flow by convection is

h
DxþDy

2

� �
:1

� �
ðT1 � Tp

m;nÞ

(h, t∞)

m, n●m-1, n

m, n -1

m n +1

b a 

c

m, nm-1, n

m, n -1

●

(h, t∞)

m, n
m-1, n

m, n -1
m + 1, n

m, , n +1

(h, t∞)

Fig. 6.30 Example 6.39
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The summation of the conduction and convection terms given above will be equal to the
increase in the internal energy of the elemental volume. That is,

k
Dy
2
:1

� �
Tp
mþ 1;n � Tp

m;n

Dx
þ kðDy:1Þ T

p
m�1;n � Tp

m;n

Dx

þ kðDx:1Þ T
p
m;nþ 1 � Tp

m;n

Dy
þ k

Dx
2
:1

� �
Tp
m;n�1 � Tp

m;n

Dy

þ h
DxþDy

2

� �
:1

� �
ðT1 � Tp

m;nÞ ¼ qc Dx:Dy� Dx:Dy
4

� �
:1

� �
Tpþ 1
m;n � Tp

m;n

Ds

For Dx = Dy, we get

1
2
Tp
mþ 1;n þ Tp

m�1;n þ Tp
m;nþ 1 þ

1
2
Tp
m;n�1 � 3Tp

m;n þ
hDx
k

ðT1 � Tp
m;nÞ

¼ 3
4
qc
kDs

ðDxÞ2 Tpþ 1
m;n � Tp

m;n

� �

Introducing the Fourier number and Biot number, and solving for Tpþ 1
m;n , we get

Tpþ 1
m;n ¼ 2

3
FoðTp

mþ 1;n þ 2Tp
m�1;n þ 2Tp

m;nþ 1 þ Tp
m;n�1Þ

þ 4
3
Fo� BiT1 þ ð1� 4Fo� 4

3
Fo� BiÞTp

m;n

The stability condition is

1� 4Fo� 4
3
Fo� Bi
 0

or

Foð3þBiÞ� 3
4

(b) Node at plain surface with convection

The heat balance gives Conduction heat inflow + convection heat inflow = increase in
internal energy

or

k
Dx
2
:1

� �
Tp
m;nþ 1 � Tp

m;n

Dy
þ kðDy:1Þ T

p
m�1;n � Tp

m;n

Dx
þ k

Dx
2
:1

� �
Tp
m;n�1 � Tp

m;n

Dy

þ h Dy:1ð ÞðT1 � Tp
m;nÞ ¼ qc

Dx:Dy
2

� �
:1

� �
Tpþ 1
m;n � Tp

m;n

Ds

For Dx = Dy, and introducing Fo and Bi, we get

Tpþ 1
m;n ¼ Foð2Tp

m�1;n þ Tp
m;nþ 1 þ Tp

m;n�1 þ 2Bi� T1Þþ ð1� 4Fo� 2Fo� BiÞTp
m;n
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The stability condition is

Foð2þBiÞ� 1
2
:

(c) Node at the exterior corner with convection

The heat balance equation in this case is
Conduction heat inflow + convection heat inflow = increase in internal energy
or

k
Dy
2
:1

� �
Tp
m�1;n � Tp

m;n

Dx
þ k

Dx
2
:1

� �
Tp
m;n�1 � Tp

m;n

Dy
þ h

DxþDy
2

:1

� �
ðT1 � Tp

m;nÞ

¼ qc
Dx:Dy

4

� �
:1

� �
Tpþ 1
m;n � Tp

m;n

Ds

Using Dx = Dy, and introducing Fo and Bi and simplifying, we get

Tpþ 1
m;n ¼ 2FoðTp

m�1;n þ Tp
m;n�1 þ 2Bi� T1Þþ ð1� 4Fo� 4Fo� BiÞTp

m;n

The stability condition is

ð1� 4Fo� 4Fo� BiÞ
 0

or

Foð1þBiÞ� 1
4
:

B. Implicit Formulations

(a) Interior node with convection

The summation of conduction heat flow terms gives

k
Dy
2
:1

� �
Tpþ 1
mþ 1;n � Tpþ 1

m;n

Dx
þ kðDy:1Þ T

pþ 1
m�1;n � Tpþ 1

m;n

Dx

þ kðDx:1Þ T
pþ 1
m;nþ 1 � Tpþ 1

m;n

Dy
þ k

Dx
2
:1

� �
Tpþ 1
m;n�1 � Tpþ 1

m;n

Dy

Heat flow by convection is

h
DxþDy

2

� �
:1

� �
ðT1 � Tpþ 1

m;n Þ

The summation of the conduction and convection terms given above will be equal to the
increase in the internal energy of the elemental volume. That is,
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k
Dy
2
:1

� �
Tpþ 1
mþ 1;n � Tpþ 1

m;n

Dx
þ kðDy:1Þ T

pþ 1
m�1;n � Tpþ 1

m;n

Dx

þ kðDx:1Þ T
pþ 1
m;nþ 1 � Tpþ 1

m;n

Dy
þ k

Dx
2
:1

� �
Tpþ 1
m;n�1 � Tpþ 1

m;n

Dy

þ h
DxþDy

2

� �
:1

� �
ðT1 � Tpþ 1

m;n Þ ¼ qc Dx:Dy� Dx:Dy
4

� �
:1

� �
Tpþ 1
m;n � Tp

m;n

Ds

For Dx = Dy, and introducing the Fourier and Biot numbers, we get the equation of
present temperature Tp

m;n of the node (m, n) as

Tp
m;n ¼

4
3
Fo� Biþ 4Foþ 1

� �
Tpþ 1
m;n � 2

3
FoðTpþ 1

mþ 1;n

þ 2Tpþ 1
m�1;n þ 2Tpþ 1

m;nþ 1 þ Tpþ 1
m;n�1Þ �

4
3
Fo� Bi� T1

(b) Node at plain surface with convection

The heat balance gives
Conduction heat inflow + convection heat inflow = increase in internal energy
or

kðDy:1Þ T
pþ 1
m�1;n � Tpþ 1

m;n

Dx
þ kðDx

2
:1Þ T

pþ 1
m;nþ 1 � Tpþ 1

m;n

Dy
þ k

Dx
2
:1

� �
Tpþ 1
m;n�1 � Tpþ 1

m;n

Dy

þ h Dy:1ð ÞðT1 � Tpþ 1
m;n Þ ¼ qc

Dx:Dy
2

� �
:1

� �
Tpþ 1
m;n � Tp

m;n

Ds

Using Dx = Dy,
kDs

qcðDxÞ2 ¼ Fo,
hDx
k

¼ Bi and simplifying, we get

Tp
m;n ¼ ð2Fo� Biþ 4Foþ 1ÞTpþ 1

m;n � Foð2Tpþ 1
m�1;n

þ Tpþ 1
m;nþ 1 þ Tpþ 1

m;n�1Þ � 2Fo� Bi� T1;

which is the desired result.

(c) Node at the exterior corner with convection

The heat balance equation in this case is

k
Dy
2
:1

� �
Tpþ 1
m�1;n � Tpþ 1

m;n

Dx
þ k

Dx
2
:1

� �
Tpþ 1
m;n�1 � Tpþ 1

m;n

Dy
þ h

DxþDy
2

:1

� �
ðT1 � Tpþ 1

m;n Þ

¼ qc
Dx:Dy

4

� �
:1

� �
Tpþ 1
m;n � Tp

m;n

Ds

For Dx = Dy, kDs
qcðDxÞ2 ¼ Fo, hDx

k ¼ Bi, the equation gives
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Tp
m;n ¼ ð1þ 4Foþ 4Fo� BiÞTpþ 1

m;n � 2FoðTpþ 1
m�1;n þ Tpþ 1

m;n�1Þ � 4Fo� Bi� T1;

which is the desired equation.
Summary of transient, two-dimensional finite-difference equations is given in Table 6.4.

Example 6.40 Figure 6.31 shows a plain wall with convection heat transfer on both sides.
Write nodal equations for nodes on both sides exposed to convection and for a node lying in
the wall following the method of backward differences.

Solution

It is a one-dimensional unsteady-state conduction problem. The wall has been divided by
equal distance increments of Dx. The nodes under consideration are (1), (n) and (i) as shown
in the figure.

The nodal equation can be written by following the procedure discussed in Sect. 6.9 and
Example 6.39.

(i) Interior surface node (n)

The heat balance equation is

kA
Tpþ 1
n�1 � Tpþ 1

n

Dx
þ hiAðTpþ 1

i � Tpþ 1
n Þ ¼ qc

ADx
2

� �
Tpþ 1
n � Tp

n

Ds

Simplification of the equation gives

Tp
n þ 2Fo� Bi� Tpþ 1

i ¼ ð2Fo� Biþ 2Foþ 1ÞTpþ 1
n � 2Fo� Tpþ 1

n�1 ðiÞ

(ii) Node (i) inside the wall

Differential equation of one-dimensional heat conduction is

@T

@s
¼ k

qc

� �
@2T

@x2
;

● ● ●●n n-1 i + 1 i - 1

i
1 2 

Te Ti 

External 
side 

Interior 
side 

h

Wall

●● ● ● ●

Fig. 6.31 Example 6.40

6.9 Numerical Method of Solving Transient Conduction Problems 395

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


which gives

Tpþ 1
i � Tp

i

Ds
¼ a

Tpþ 1
iþ 1 þ Tpþ 1

i�1 � 2Tpþ 1
i

Dxð Þ2
 !

:

Alternatively, following the method of the heat balance, we have

kA
Tpþ 1
iþ 1 � Tpþ 1

i

Dx
þ kA

Tpþ 1
i�1 � Tpþ 1

i

Dx
¼ qc ADxð Þ T

pþ 1
i � Tp

i

Ds

or

Tpþ 1
i � Tp

i

Ds
¼ k

qc Dxð Þ2 Tpþ 1
iþ 1 þ Tpþ 1

i�1 � 2Tpþ 1
i

� �

The required equation is

Tp
i ¼ ð2Foþ 1ÞTpþ 1

i � Fo Tpþ 1
iþ 1 þ Tpþ 1

i�1

� �
ðiiÞ

(iii) Exterior surface node (1) with convection

kA
Tpþ 1
2 � Tpþ 1

1

Dx
þ hoAðTpþ 1

e � Tpþ 1
1 Þ ¼ qc

ADx
2

� �
Tpþ 1
1 � Tp

1

Ds

Simplification gives

Tp
1 þ 2Fo� Bi� Tpþ 1

e ¼ ð2Fo� Biþ 2Foþ 1ÞTpþ 1
1 � 2FoTpþ 1

2 ðiiiÞ

For the solution of this problem, the set of implication equations will consist of Eqs. (i),
(iii) and equations similar to Eq. (ii) for each node inside the wall.

Example 6.41 Write the finite difference expression for the temperature of a node on a
convective boundary of a one-dimensional wall which is suddenly subjected to uniform
volumetricheating.

Solution

Figure 6.32 shows the node (m) on the convective boundary.
The rate of heat conduction from node (m – 1) to node (m) under consideration

h, t∞ m ●

= 

m - 1

● 

Fig. 6.32 Example 6.41
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kðDy:1Þ T
p
m�1 � Tp

m

Dx

Heat convected from the node (m) is

hðDy:1ÞðT1 � Tp
mÞ

Heat generation in the control volume

qg
Dx
2
:Dy:1

� �

The change in the internal energy of node (m) is

qc
Dx
2
:Dy:1

� �
Tpþ 1
m � Tp

m

Ds

Heat balance at the node (m) gives

qc
Dx
2
:Dy:1

� �
Tpþ 1
m � Tp

m

Ds
¼ kðDy:1Þ T

p
m�1 � Tp

m

Dx
þ hðDy:1ÞðT1 � Tp

mÞþ qg
Dx
2
:Dy:1

� �
:

Using Dx = Dy and rearranging the terms, we get

Tpþ 1
m � Tp

m ¼ 2kDs

qc Dxð Þ2 ðT
p
m�1 � Tp

mÞþ
hDx
k

2kDs

qc Dxð Þ2 T1 � Tp
m


 �þ Ds
qc

qg

or

Tpþ 1
m � Tp

m ¼ 2kDs

qc Dxð Þ2 ðT
p
m�1 � Tp

mÞþ
hDx
k

2kDs

qc Dxð Þ2 T1 � Tp
m


 �þ kDs

qc Dxð Þ2
Dxð Þ2
k

qg

Putting
kDs

qc Dxð Þ2 ¼ Fo and
hDx
k

¼ Bi and solving for Tpþ 1
m , we obtain

Tpþ 1
m ¼ 2Fo Tp

m�1 þBiT1 þ Dxð Þ2qg
2k

 !
þð1� 2Fo� 2Bi:Fo)Tp

m;

which is the desired result.
For stability, the coefficient of Tp

m must be positive, hence

ð1� 2Fo� 2Bi:Fo)
 0

or

Fo� 1
2ð1þBiÞ :
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Example 6.42 Write the finite difference expression for the temperature of node 0
(Fig. 6.33) of a thin rod of the area of cross-section Ac and electrical resistivity qe, which is
suddenly subjected to heating due to passing of current I. The rod having surface emissivity e
is located in a large enclosure with vacuum. The enclosure surface temperature is Tsur.

Solution

Figure 6.33 shows the node (0) along with nodes 1 and 2.
The rate of heat conduction from node (1) to node (0) is

kAc
Tp
1 � Tp

0

Dx
:

Similarly the rate of heat conduction from node (2) to node (0) is

kAc
Tp
2 � Tp

0

Dx

Heat loss by radiation to the surface of the large space is

erðPDxÞðT4
sur � T4;p

0 Þ

Heat generated in the control volume due to the flow of current is

I2
qeDx
Ac

� �

The change in the internal energy of node (0) is

qcðAcDxÞ T
pþ 1
0 � Tp

0

Ds

Heat balance at the node (0) gives

qcðAcDxÞ T
pþ 1
0 � Tp

0

Ds
¼ kAc

Tp
1 � Tp

0

Dx
þ kAc

Tp
2 � Tp

0

Dx
þ erPDxðT4

sur � T4;p
0 Þþ I2

qeDx
Ac

� �
:

Rearranging the terms, we get

2 ●

Emissivity ε

1● ● 
0

Fig. 6.33 Example 6.42
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Tpþ 1
0 ¼ Dsk

qcðDxÞ2 ðT
p
1 þ Tp

2 Þ � 2
Dsk

qcðDxÞ2 � 1

" #
Tp
0 þ

DserP
qcAc

ðT4
sur � T4;p

0 Þþ I2qeDs
qcA2

c

� �

Tpþ 1
0 ¼ Dsk

qcðDxÞ2 ðT
p
1 þ Tp

2 Þ � 2
Dsk

qcðDxÞ2 � 1

" #
Tp
0 þ

kDs

qcðDxÞ2 :
erPðDxÞ2

kAc
ðT4

sur � T4;p
0 Þ

þ kDs

qcðDxÞ2 :
I2qeðDxÞ2

kA2
c

Putting
kDs

qc Dxð Þ2 ¼ Fo, we obtain

Tpþ 1
0 ¼ FoðTp

1 þ Tp
2 Þþ ð1� 2FoÞTp

0 þ Fo:
erPðDxÞ2

kAc
ðT4

sur � T4;p
0 Þþ Fo:

I2qeðDxÞ2
kA2

c

;

which is the desired result.
For stability, the coefficient of Tp

0 must be positive, hence

Fo� 1
2
:

6.10 The Schmidt Graphical Method for One-Dimensional Problems

In lieu of the numerical calculations, we can employ the Schmidt graphical technique to
solve the one-dimensional transient problems. Differential equation governing this case is

@T

@s
¼ a

@2T

@x2
ðiÞ

The corresponding finite difference equation is

Tpþ 1
m � Tp

m ¼ aDs

Dxð Þ2 Tp
mþ 1 þ Tp

m�1 � 2Tp
m


 � ðiiÞ

If we choose the increments to give

aDs

Dxð Þ2 ¼
1
2

ð6:39Þ

then,

Tpþ 1
m ¼ 1

2
Tp
mþ 1 þ Tp

m�1


 � ð6:40Þ

From the above equation, it is clear that the temperature at node m after the time increment
Ds is the arithmetic mean of the temperatures of the adjacent nodes (m + 1) and (m – 1) at the
beginning of the time increment. This arithmetic mean can be done graphically as shown in
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Fig. 6.34, wherein the value of Tpþ 1
m has been obtained by drawing a line joining the points

Tp
mþ 1 and Tp

m�1.
By continued application of the above procedure, the development of the temperature

field with time can be determined from a known initial temperature distribution. Thus to find
the temperature distribution after some specified time, the solid is divided into equal distance

increment Dx. Then using equation Ds ¼ Dxð Þ2=2a from Eq. (6.39), we can find the number
of time increments necessary by dividing the total time by Ds.

It is to be noted that to use this graphical solution the temperature distribution in the solid
must be known at some time and the chosen value of the time increment Ds must satisfy
Eq. (6.39). The following example illustrates the application of the method when the
boundary (surface) temperatures are maintained at constant values.

Example 6.43 A very long 60 mm thick metal plate (a = 2 � 10–4 m2/min) initially at 50°
C is immersed in a fluid ð�h ¼ 1Þ of temperature 400°C. By the graphical method, determine
the temperature distribution in the plate after 1.5 min. Confirm the result by numerical
method.

Solution

Let Dx = 10 mm. The corresponding nodes are marked in Fig. 6.35. The time increment is

Ds ¼ 1
2a

Dxð Þ2¼ 1
2� 2� 10�4

10=1000ð Þ2¼ 0:25min:

Hence, the number of necessary time increments = 1.5/0.25 = 6.
Figure 6.36 presents the graphical solution. It is to note that due to �h ¼ 1, the boundary

temperatures (at nodes 0 and 6) are maintained at constant values of 400°C throughout the
heating process. Start the process by connecting point 0 with 2, 1 with 3, etc. by straight
lines. Thus, a new temperature distribution is obtained. Repeat the process. It is to note that
the temperature distribution is symmetrical about node 3.

● ● ●● ● ●
1 2 4 63 5

●0

Fig. 6.35 Example 6.43

1+p
mT

x

T

p
mT 1+

p
mT 1−

Fig. 6.34 Temperature at node m after the time increment Ds
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The numerical solution can be obtained by using Eq. (6.40). Thus, the equations are

Tpþ 1
1 ¼ 1

2
Tp
0 þ Tp

2


 �
Tpþ 1
2 ¼ 1

2
Tp
1 þ Tp

3


 �
Tpþ 1
3 ¼ 1

2
Tp
2 þ Tp

4


 �
The solution steps are given in Table 6.5.

Example 6.44 A semi-infinite solid (k = 30 W/(m K), a = 3 �10−6 m2/s), initially at a
uniform temperature of 300°C, is suddenly exposed to a convection environment
(h = 200 W/(m2 K), T∞ = 30°C). Determine the temperature at the surface and at 30 mm
depth after 150 s.

Fig. 6.36 Graphical solution, Schmidt plot

Table 6.5 Numerical solution

Time (min) Nodes

0 1 2 3 4 5 6

0 400 50 50 50 50 50 400

0.25 400 225 50 50 50 225 400

0.5 400 225 137.5 50 137.5 225 400

0.75 400 268.75 137.5 137.5 137.5 268.75 400

1.0 400 268.75 203.125 137.5 203.125 268.75 400

1.25 400 301.563 203.125 203.125 203.125 301.563 400

1.5 400 301.563 252.343 203.125 252.343 301.563 400
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Solution

(i) Node 0 on the convective boundary
The rate of heat conduction from node (1) to node (0), refer Fig. 6.37,

kðDy:1Þ T
p
1 � Tp

0

Dx

Heat convected to the node 0 is

hðDy:1ÞðT1 � Tp
0 Þ

The change in internal energy of node 0 is

qc
Dx
2
:Dy:1

� �
Tpþ 1
0 � Tp

0

Ds

Heat balance at the node 0 gives

qc
Dx
2
:Dy:1

� �
Tpþ 1
0 � Tp

0

Ds
¼ kðDy:1Þ T

p
1 � Tp

0

Dx
þ hðDy:1ÞðT1 � Tp

0 Þ:

Using Dx = Dy and rearranging the terms, we get

Tpþ 1
0 � Tp

0 ¼ 2kDs

qc Dxð Þ2 ðT
p
1 � Tp

0 Þþ hDx
2Ds

qc Dxð Þ2 T1 � Tp
0


 �

or

Tpþ 1
0 ¼ 2kDs

qc Dxð Þ2 ðT
p
1 � Tp

0 Þþ
hDx
k

2kDs

qc Dxð Þ2 T1 � Tp
0


 �þ Tp
0

Putting
kDs

qc Dxð Þ2 ¼ Fo and
hDx
k

¼ Bi and rearranging the terms, we obtain

Tpþ 1
0 ¼ 2Fo Tp

1 þBiT1

 �þð1� 2Fo� 2Bi:Fo)Tp

0 ; ð1Þ

which is the desired equation.

h, t∞ 0 ●

= 

1

● ● ● 

2 3

Fig. 6.37 Example 6.44
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For stability, the coefficient of Tp
0 must be positive, hence

ð1� 2Fo� 2Bi:Fo)
 0

or

Fo� 1
2ð1þBiÞ :

(ii) Interior nodes (m = 1, 2, 3….)

The rate of heat conduction from node 0 to node 1 is

kðDy:1Þ T
p
0 � Tp

1

Dx

The rate of heat conduction from node 2 to node 1

kðDy:1Þ T
p
2 � Tp

1

Dx

The change in the internal energy of node 1 is

qc Dx:Dy:1ð Þ T
pþ 1
1 � Tp

1

Ds

Heat balance at the node 1 gives

qc Dx:Dy:1ð Þ T
pþ 1
1 � Tp

1

Ds
¼ kðDy:1Þ T

p
0 � Tp

1

Dx
þ kðDy:1Þ T

p
2 � Tp

1

Dx
:

Using Dx = Dy and rearranging the terms, we get

Tpþ 1
1 ¼ kDs

qc Dxð Þ2 ðT
p
0 � Tp

1 Þþ
kDs

qc Dxð Þ2 ðT
p
2 � Tp

1 Þþ Tp
1

Putting
kDs

qc Dxð Þ2 ¼ Fo and rearranging we obtain

Tpþ 1
1 ¼ Fo Tp

0 þ Tp
2


 �þð1� 2Fo)Tp
1 ; ð2Þ

Similarly, equations for node 2 to 4 can be written.
For stability, the coefficient of Tp

1 must be positive, hence

ð1� 2Fo)
 0
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or

Fo� 1
2
:

Assuming Δx = 15 mm, Biot number is

Bi ¼ hDx
k

¼ 200� 0:015
30

¼ 0:1:

From stability condition for equation of node 0,

Fo� 1
2ð1þBiÞ
� 1

2ð1þ 0:1Þ
� 0:45:

Let s = 30 s, then

Fo ¼ as

ðDxÞ2 ¼
3� 10�6 � 30

0:0152
¼ 0:4\0:45:

Condition is satisfied. Fo = 0.4 also satisfies the stability condition for equations of node
1 to 4.

For Bi = 0.1, Fo = 0.4 and T∞ = 30, Eq. (1) reduces to

Tpþ 1
0 ¼ 0:8� Tp

1 þ 3

 �þ 0:12Tp

0 ð3Þ

Equation (2) reduces to

Tpþ 1
1 ¼ 0:4� Tp

0 þ Tp
2


 �þ 0:2Tp
1 ð4Þ

Similarly, for nodes 2, 3 and 4, we have

Tpþ 1
2 ¼ 0:4� Tp

1 þ Tp
3


 �þ 0:2Tp
2 ð5Þ

Tpþ 1
3 ¼ 0:4� Tp

2 þ Tp
4


 �þ 0:2Tp
3 ð6Þ

Tpþ 1
4 ¼ 0:4� Tp

3 þ Tp
5


 �þ 0:2Tp
4 ð7Þ

For 5 time steps, each of 30 s giving total time 150 s, i.e. p = 0 to 5, solution of Eqs. (3)–
(7) is presented in the table below. (Table 6.6)

From the table, the surface temperature T0 is 261.3°C and the temperature at a depth of
30 mm T2 is 291.9°C after 150 s. The accuracy of the results from the numerical analysis
will increase with a decrease in Δs and Δx.
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The problem can also be solved using Fig. 6.14. The required parameters are

x

2
ffiffiffiffiffi
as

p ¼ 0:00

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:0� 10�6 � 150

p ¼ 0

and
x

2
ffiffiffiffiffi
as

p ¼ 0:03

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:0� 10�6 � 150

p ¼ 0:71;

h
ffiffiffiffiffi
as

p
k

¼ 200�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:0� 10�6 � 150

p

30
¼ 0:14:

From Fig. 6.14, TðxÞ�Ti
T1�Ti

� 0:135 for x = 0 and � 0.026 for x = 0.03, which gives T

(x = 0) = 263.5°C and T(x = 0.3) = 293.0°C for T∞ = 30°C and Ti = 300°C, which are in
reasonable agreement.

Example 6.45 The distribution of temperature t across a large concrete wall 500 mm thick,
which is heated from one side, is measured by thermocouples inserted in holes in the wall. It
has been found that at a certain instant s the temperature can be represented approximately by
the equation

t ¼ 90� 80xþ 16x2 þ 32x3 � 25:6x4

where x is in meter and temperature in°C. Assuming that the area of the wall is 2.5 m2,
estimate

(i) Heat entering and leaving the wall in unit time,
(ii) Heat energy stored in the wall in unit time,
(iii) Temperature change per unit time at surface (x = 0).

Take c = 0.84 kJ/(kg K), q = 2175 kg/m3, and k = 2.7 kJ/(m h K) for the concrete.

Solution

Temperature distribution across the wall is given as

t ¼ 90� 80xþ 16x2 þ 32x3 � 25:6x4

Table 6.6 Numerical solution

p Time (s) T0 T1 T2 T3 T4 T5

0 0 300 300 300 300 300 300

1 30 278.4 300 300 300 300 300

2 60 275.8 291.4 300 300 300 300

3 90 268.6 288.6 296.6 300 300

4 120 265.5 283.8 294.8 298.6

5 150 261.3 280.9 291.9
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Its derivative is

dt
dx

¼ �80þ 32xþ 96x2 � 102:4x3

The second derivative is

d2t
dx2

¼ 32þ 192x� 307:2x2

(i) The heat entering the wall at x = 0,

qin ¼ �kA
dt
dx

� �
x¼0

¼ �2:7� 2:5� ð�80Þ ¼ 540 kJ=h:

The heat leaving the wall at x = 0.5 m,

qout ¼ �kA
dt
dx

� �
x¼0:5

¼ �2:7� 2:5� ð�80þ 32� 0:5þ 96� 0:52 � 102:4� 0:53Þ
¼ 356:4 kJ=hr:

(ii) Heat energy stored in the wall = qin–qout = 540–356.4 = 183.6 kJ/h.
(iii) Rate of change of temperature for one-dimensional heat flow, is given by

dt
ds

¼ a
d2t
dx2

� �

where a = k/qc = 2.7/(2175 � 0.84) = 1.48 � 10−3. Substituting the value of d2t=dx2, we
have

dt
ds

¼ 1:48� 10�3 32þ 192x� 307:2x2

 �

At x = 0,

dt
ds

¼ 1:48� 10�3 � 32 ¼ 0:04736 oC=h

and at x = 0.5,

dt
ds

¼ 1:48� 10�3 32þ 192� 0:5� 307:2� 0:52

 � ¼ 0:0758 oC=hr
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6.11 Summary

This chapter has been devoted to the problems of transient state of heat conduction, i.e. the
heating or cooling where the temperature of the solid body varies with time as well as in the
space. Such problems are of interest because they are encountered in many industrial
processes.

For bodies with a very high thermal conductivity combined with a low value of the
convective heat transfer coefficient, uniform temperature throughout the body at any instant
can be assumed. Smaller bodies with lower values of the thermal conductivity may also
satisfy this condition. The method of lumped heat capacity analysis has been presented for
such cases. The analysis shows that the temperature of the body falls or rises exponentially
with time and can be presented in terms of two non-dimensional numbers Biot number Bi
and Fourier number Fo as (t–t∞)/(ti–t∞) = exp(-BiFo). The condition for the applicability of
the lumped heat capacity analysis is Bi � 0.1.

In Sect. 6.5, the transient behaviour of semi-infinite solids (which is bounded by plane
x = 0 and extends to infinity in the positive x-direction and also in y- and z-directions) such
as a thick or large block of steel, the earth, etc. has been considered when the solid is heated
or cooled for a relatively short period. The temperature of such solids changes only for a
short distance from the surface. Treatments for three different cases, namely (a) surface
temperature of the body is suddenly lowered and maintained at constant temperature,
(b) constant heat flux at the surface and (c) the convective boundary condition, have been
presented.

For determination of temperature variation with time and spatial position in plates (whose
thickness is small compared to the other dimensions), cylinders (whose diameter is small
compared to its length), and spheres, solution based on Heisler and Grober charts has been
given in Sect. 6.7.

In Sect. 6.8, product solutions for the temperature distributions in two- or three-
dimensional transient heat conduction systems are presented.

In many problems of practical interest, the geometrical shapes do not conform to regular
shapes discussed above. It is not possible to provide a mathematical solution to such
problems. The finite-difference method (the numerical technique) can be used to solve all
types of transient conduction problems. The method has been presented in Sect. 6.9 followed
by a number of illustrative examples.

Using the finite-difference equation, Schmidt gave a graphical method for the solution of
one-dimensional problems, which is presented in Sect. 6.10.

Review Questions

6:1 What is the main assumption in the lumped heat capacitance analysis?
6:2. Prove that for a body, whose internal resistance is negligible, the time required for

cooling or heating can be obtained from the relation

t � t1
ti � t1

¼ expð�BiFoÞ

where Bi and Fo are the Biot and Fourier numbers, respectively, Ti is initial
temperature of the body and T∞ is the surrounding fluid temperature.
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6:3 Define Biot and Fourier numbers.
6:4 Draw temperature profile for different values of Biot number in a plane wall sym-

metrically cooled by convection.
6:5 Write nodal equations for a node at the surface of a plane wall and the node lying

inside the wall if the wall is suddenly exposed to a convective atmosphere (h, T∞).
6:6 Explain explicit and implicit formulations for transient heat conduction problems.
6:7 What is the Schmidt graphical technique to solve the one-dimensional transient

problems?

Problems

6:1 Calculate the Biot number for the following.

(a) A triangular fin is 25 mm thick at the base and 100 mm long. It is 75 mm wide
and is made of aluminium. The average heat transfer coefficient is 50 W/(m2 K)
along the sides.

(b) A steel sheet [k = 42 W/(m K)], which is in the form of a rectangular paral-
lelepiped (500 mm � 100 mm � 3 m), is at a uniform temperature of 800°C. It
is cooled to a centreline temperature of 200°C. The heat transfer coefficient is
50 W/(m2 K).

Can lump capacity analysis be applied?
[Ans. (a) V = ½(25 � 100) � 75 = 93750 mm3; As = 2[√(1002 + 12.52) � 75] =
15116.7 mm2; L = V/As = 6.20 mm; Bi = hL/k = 50 � 6.2/(210 � 1000) = 0.00148.
(b) tav = ½ (800 + 200) = 500°C; k = 42 W/(m K); V = 0.5 � 0.1 � 3 = 0.15 m3;
As = 2(0.1 � 0.5 + 0.1 � 3 + 3 � 0.5) = 3.70 m2; L = V/As = 0.0405 m; Bi = hL/
k = 50 � 0.0405 /42 = 0.0483. Since both values of Bi are less than 0.1, the lumped
heat capacity analysis is applicable.]

6:2 A solid copper ball of mass 50 g is quenched in a water bath at 20°C. It cools from an
initial temperature of 520°C to 320°C in 10 s. What will be the temperature of the ball
after 20 s?

[Ans. Lumped heat capacity analysis is applicable. Hence, equation
t � t1
t0 � t1

¼ e �hAs
qcVsð Þ

gives
320� 20
520� 20

¼ e �hAs
qcV�10ð Þ

� �
s¼10

and
t � 20

520� 20
¼ e �hAs

qcV�20ð Þ
� �

s¼20

. Solution of the

equations gives t = 200°C.]
6:3 A small copper ball of 5 mm diameter at 550 K is dropped into an oil bath whose

temperature is 250 K. The thermal conductivity k of the copper is 375 W/(m K),
density is 9000 kg/m3 and specific heat is 400 J/(kg K). If the heat transfer coefficient
is 200 W/(m2 K), determine the rate of cooling at the beginning of the cooling.

[Ans. Differentiation of equation
t � t1
ti � t1

¼ e �hAs
qcVsð Þ gives dtds ¼ � hAs

qcV

� �
e

�
hAs

qcV
s

� �

ti � t1ð Þ. At the beginning of the cooling (s = 0),
dt
ds

� �
s¼0

¼ � hAs

qcV

� �
ti � t1ð Þ,

where As ¼ pd2 and V ¼ pd3=6. Substitution gives dt
ds

� �
s¼0

¼ 20K=s.]
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6:4 Steel balls 10 mm in diameter are annealed by heating to 880°C and then slowly
cooling to 100°C in an air environment at 25°C. If the time required for this cooling
process is 16 min, estimate the heat transfer coefficient. For steel, k = 40 W/(m K),
c = 450 J/(kg K) and q = 7900 kg/m3.
[Ans. We assume that the lumped heat capacity analysis is applicable. Then from

Eq. (6.2)
hAs

cqV

� �
s ¼ � ln

t � t1
ti � t1

� �
, or h ¼ � ln

t � t1
ti � t1

� �
� cqV

Ass

� �
;

V
As
¼ pD3=6

pD2
¼ D

6
; Hence, h ¼ � ln

t � t1
ti � t1

� �
� cqD

6s


 �
; On substitution, h ¼

� ln
100� 25
880� 25

� �
� 450� 7900� 0:01

6� 16� 60

� �
¼ 15:0W= m2Kð Þ; For a sphere, char-

acteristic length L = D/6 = 0.01/6 = 1/600 m, Biot number = hL/k = 15/
(40 � 600) = 6.25 � 10–4 < 0.1, hence the lumped heat capacity analysis is
applicable.]

6:5 A very thick concrete wall is initially at a uniform temperature of 20°C. The surface of
the wall is suddenly exposed to uniform heat flux of 150 W/m2. Calculate the tem-
perature of the wall at a depth of 110 mm after 24 h. Take a = 2.4 � 10–3 m2/hr and
k = 1.2 W/(m K).

[Ans. Equation (6.22) applies; From given data:
x2

4as
¼ 0:112

4� 2:4� 10�3 � 24
¼

0:0525, q0 ¼ 150W=m2, erf
x

2
ffiffiffiffiffi
as

p
� �

¼ erf
0:11

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:4� 10�3 � 24

p
� �

¼ 0:254,

ffiffiffiffiffiffiffiffiffiffi
as=p

p ¼ 0:1354, A = 1 m2, k = 1.2 W/(m K), Using Eq. (6.22), t ¼
2� 150� 0:1354

1:2� 1
� e� 0:0525ð Þ � 150� 0:11

1:2� 1
1� 0:254½ � þ 20 ¼ 41:85�C ]

6:6 A water pipeline is to be placed in the soil. The initial temperature of the soil is 15°C
and the surface temperature at the night drops rapidly causing the earth’s surface
temperature to fall to –20°C. At what depth the pipeline must be located so that the
temperature of the water does not drop below 5°C for 10 h period? The thermal
diffusivity of the soil is 1.8 � 10–3 m2/h.

[Ans.
t � ts
ti � ts

¼ 0:7143 ¼ erf
x

2
ffiffiffiffiffi
as

p
� �

gives x = 0.203 m.]

6:7 A large block of steel initially at a uniform temperature of 150°C suddenly has its
surface temperature lowered to 50°C. What is the amount of heat removed per unit
area of the block when the temperature at a depth of 50 mm has dropped to 100°C?
Given: a = 1.2 � 10–5 m2/s, k = 40 W/(m K).

[Ans. For erf
x

2
ffiffiffiffiffi
as

p
� �

¼ t�ts
ti�ts

¼ 0:5,
x

2
ffiffiffiffiffi
as

p � 0:48, s = 226 s for x = 0.05 m; Heat

removed,
Q0

A
¼ 1:128kðts � tiÞ

ffiffiffi
s
a

r
¼ 19:58� 106 J=m2.]

6:8 If the slab of Problem 6.7 is suddenly exposed to a fluid at 50°C with heat transfer
coefficient of 500 W/(m2 K), calculate the time required for the temperature to reach
100°C at the depth of 50 mm.
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[Ans. Assume a trial value of time s and calculate
h
ffiffiffiffiffi
as

p
k

and
x

2
ffiffiffiffiffi
as

p . Read temperature

ratio (t – ti)/(t∞ – ti) from Fig. 6.14. Vary value of s till the desired temperature ratio of
(100–150)/(50–150) = 0.5 is achieved. The time s = 1650 s corresponding to the
temperature ratio of 0.5.]

6:9 Two large blocks of cast-iron (k = 52 W/(m K), c = 420 J/(kg K) and q = 7260
kg/m3) and copper (k = 360 W/(m K), c = 380 J/(kg K) and q = 8950 kg/m3), ini-
tially at the same uniform temperature, are subjected to a sudden change in surface
temperature. Compare the heat fluxes for the two blocks.
[Ans. Blocks can be treated as semi-infinite solids. From Eq. (6.20b), heat flux q00 is
qx¼0

A
¼ �k

ti � tsð Þffiffiffiffiffiffiffiffi
pas

p ; Hence, for a given time and temperature difference, q00 / kffiffiffi
a

p ¼
ffiffiffiffiffiffiffiffi
kqc

p
since a = k/qc; This gives

ðq00ÞCu
ðq00ÞCI

¼ ð ffiffiffiffiffiffiffiffi
kqc

p ÞCu
ð ffiffiffiffiffiffiffiffi

kqc
p ÞCI

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
360� 8950� 380

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52� 7260� 420

p ¼ 2:78.

The heat flux for the copper block is 2.78 times larger than the heat flux for the cast-
iron block.]

6:10 A large block of steel initially at a uniform temperature of 150°C is suddenly exposed
to a fluid at 50°C with heat transfer coefficient of 500 W/(m2 K), calculate temperature
at a depth of 50 mm after 1650 s. Given: a = 1.2 � 10–5 m2/s, k = 40 W/(m K).

[Ans.
h2ðasÞ
k2

¼ 5002 � ð1:2� 10�5 � 1650Þ
402

¼ 3:0937;
h
ffiffiffiffiffiffiffiffiffiðasÞp
k

¼ 1:76;

hx

k
¼ 500� 0:05

40
¼ 0:625;

x

2
ffiffiffiffiffi
as

p ¼ 0:05

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:2� 10�5 � 1650

p ¼ 0:1777; From

Eq. (6.23),
t � ti
t1 � ti

¼ 1� erf
x

2
ffiffiffiffiffi
as

p
� �

� exp
hx

k
þ h2as

k2

� �
� 1� erf

x

2
ffiffiffiffiffi
as

p þ h
ffiffiffiffiffi
as

p
k

� �� �
; Sub-

stitution gives
t � 150
50� 150

¼ 1� erf 0:1777ð Þ� exp 3:7187ð Þ � 1� erf 1:9377ð Þ½ �;
t ¼ 95:18 oC. Alternatively Fig. 6.14 may be used for approximate solution.]

6:11 A large block of metal initially at a uniform temperature of 150°C is suddenly has its
surface temperature lowered to 50°C. In 225 s, the temperature at a depth of 50 mm
has recorded to be 100°C. Determine thermal conductivity of the slab material. Given:
q = 7800 kg/m3 and c = 470 J/(kg K).

[Ans. For erf
x

2
ffiffiffiffiffi
as

p
� �

¼ t � ts
ti � ts

¼ 0:5,
x

2
ffiffiffiffiffi
as

p � 0:48, The gives a = 1.2 � 10–5 m2/s

for x = 0.05 m and s = 225 s; k = aqc = 1.2 � 10–5 � 7800 � 470 = 44 W/(m K).]
6:12 A large plate of stainless steel 40 mm thick and initially at a uniform temperature of

100°C is suddenly exposed to a cooling fluid at 30°C with h = 160 W/(m2 K). Cal-
culate the temperature at a depth of 10 mm from one of the faces 225 s after the
exposure. How much heat is removed per unit area of the plate? Given k = 16 W/
(m K), q = 7800 kg/m3 and c = 460 J/(kg K).
[Ans. Bi = hL/k = 0.2 > 0.1, Heisler charts may be used. Fo = 2.509, 1/Bi = 5, x/
L = 0.5, ho/hi � 0.7, h/ho = 0.975; t = 77.78°C, Bi2Fo = 0.10036, Q/Qo � 0.38, Qo/
A = qc(2L)hi = 10.046 � 106 J/m2 and Q/A = 3.82 � 106 J/m2.]

6:13 A large slab of aluminium 100 mm thick is originally at a temperature of 500°C. It is
suddenly immersed in a liquid bath at 100°C resulting in a heat transfer coefficient of
1200 W/(m2 K). Determine the time elapsed after the immersion when the surface
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temperature will be 300°C. The properties of the aluminium at the given conditions
may be taken as q = 2700 kg/m3, c = 900 J/(kg K) and k = 215 W/(m K).
[Ans. L ¼ d=2 ¼ 50mm; Bi = hL/k = 1200 � 50 � 10–3/215 = 0.279 > 0.1; Heisler
charts may be used; Correction factor from Fig. 6.20 for 1/Bi = 3.6 and x/L = 1.0 is

0.86. Hence,
t � t1
to � t1

¼ 0:86 gives to ¼ 300� 100
0:86

þ 100 ¼ 332:6 oC;
ho
hi

¼ to � t1
ti � t1

¼ 332:6� 100
500� 100

¼ 0:58; For ho/hi = 0.58 and 1/Bi = 3.6, Fo � 2.1 from Fig. 6.17;

We have Fo ¼ as
L2

¼ k

qc
� s
L2
, which gives 2:1 ¼ 215

2700� 900
� s
0:052

or s ¼ 59:3 s.]

6:14 The wall of a furnace is 150 mm thick and is adequately insulated from outside. It is
initially at a uniform temperature of 20°C. The wall is exposed to hot gases at 900°C.
Determine the convective heat transfer coefficient if the outer surface reaches a tem-
perature of 725°C in 10 h. Neglect radiation heat exchange. For the furnace wall,
k = 1.2 W/(m K), c = 900 J/(kg K) and q = 2500 kg/m3.

[Ans. L = 0.15 m as one side is insulated;
ho
hi

¼ to � t1
ti � t1

¼ 725� 900
20� 900

¼ 0:2,

Fo ¼ as
L2

=
k

qc

� �
s
L2 ¼

1:2
2500� 900

� �
10� 3600

0:152
¼ 0:85; For Fo = 0.85 and ho/hi =

0.2, 1/Bi = 0.1 from Fig. 6.17; h ¼ Bik
L

¼ 10� 1:2
0:15

¼ 80W= m2 K

 �

.]

6:15 A long glass rod of 40 mm diameter (k = 0.78 W/(m K), c = 840 J/(kg K) and
q = 2700 kg/m3), initially at 80°C, is cooled in air [t∞ = 30°C, h = 20 W/(m2 K)] for
2145 s. Then it is removed and isolated from the surroundings. Determine the equi-
librium temperature it attains.

[Ans. The Biot number, Bi ¼ hL

k
¼ 20� 0:02

0:78
¼ 0:51; Fourier number, Fo ¼ as

L2
¼

k

qc

� �
s
L2 =

0:78
2700� 840� 0:022

� �
� 2145 ¼ 1:844; Bi2Fo ¼ 1:844� 0:512 ¼ 0:48;

For Bi = 0.51 and Bi2Fo = 0.48, Q/Qo = 0.7 from Fig. 6.24; Q
Qo

¼ 1� tf � t1
ti � t1

gives

equilibrium temperature tf = 45°C for t∞ = 30°C and ti = 80°C.]
6:16 A 2.5 mm thick heated plastic sheet (k = 0.2 W/(m K), a = 1 � 10–7 m2/s) lies on an

insulated surface and is cooled by air flow at 20°C. The convection heat transfer
coefficient is 100 W/(m2 K). If the surface of the sheet is found to be 40°C after 2 min,
determine the initial temperature of the sheet.

Convective 
Boundary

Fig. 6.38 Problem 6.18

6.11 Summary 411

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


[Ans. The sheet is equivalent to one-half of a sheet of thickness d (= 2L) with sym-
metric convection conditions. The characteristic length L = 0.0025 m; Biot number

Bi ¼ hL

k
¼ 100� 0:0025

0:2
¼ 1:25; Fourier number Fo ¼ as

L2
¼ 1� 10�7 � 120

0:00252
¼

1:92; For 1/Bi = 0.8, and Fo = 1.92, ho/hi � 0.205 from Fig. 6.17; hL/ho � 0.6 for x/

L = 1 and 1/Bi = 0.8 from Fig. 6.20; hi ¼ hi
h0

� h0
hL

� hL ¼ hi
h0

� h0
hL

� ðtL � t1Þ ¼
ð40� 20Þ
0:205� 0:6

¼ 162:6; ti ¼ hi þ t1 ¼ 162:6þ 20 ¼ 182:6 �C.]

6:17 A long square section steel bar (50 mm � 50 mm) is initially at a uniform temper-
ature of 800°C. It is heat treated by quenching in an oil tank at 80°C. The average heat
transfer coefficient is 400 W/(m2 K). If the temperature at the centreline is to be 300°
C, determine the time of quenching. a = 1.4 � 10–5 m2/s and k = 50 W/(m K).
[Ans. The problem is a combination of two infinite plates of equal thicknesses. Hence,

h0
hi

� �
¼ h0

hi

� �
2Lplate

" #2
; From the given data,

h0
hi

¼ t0 � t1
ti � t1

¼ 300� 80
800� 80

¼ 0:306;

Hence,
h0
hi

� �
2Lplate

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
h0
hi

� �s
¼ 0:55;

1
Bi

¼ k

hL
¼ 50

400� 0:025
¼ 5; From Fig. 6.17,

Fo � 3.3, which gives s ¼ L2Fo
a

¼ 0:0252 � 3:3
1:4� 10�5

¼ 147:3 s.]

6:18 Formulate the finite-difference equation for the node at an interior corner with con-
vection, as shown in Fig. 6.38, using the explicit and implicit methods. Obtain the
stability criterion for the explicit method. Assume equal grid sizes in both x- and y-
directions.
[Hint: Refer Example 6.39.]

6:19 A 250 mm thick concrete wall (a = 0.0066 cm2/s) is split into 5 layers. Determine the
time interval Ds for explicit formulation. Assume one-dimensional heat flow.
[Ans. Dx = 250/5 = 50 mm, Fo = ½ = aDs/(Dx)2 gives Ds = 1894 s = 31.6 min.]
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7Convective Heat Transfer

7.1 Introduction

Heat conduction is a process in which the heat is transferred through solids and stagnant
layers of fluids (liquids and gases) due to the vibration at the molecular level and electronic
effect when a temperature gradient exists. In the case of fluids, the molecules have freedom of
motion and heat can also be transferred by the movement of the fluid. This complex process
of heat transfer is termed as convection. In convection, there is an observable bulk motion of
the fluid and hence can occur only in the case of liquids, gases and multiphase mixtures.

The convective heat transfer can be classified into two categories: (i) natural or free
convection and (ii) forced convection.

7.1.1 Natural Convective Heat Transfer

In this mode of convection, the fluid motion is entirely because of the density differences in
the fluid caused due to the local heating in the gravity field. The fluid surrounding the heat
source becomes less dense due to the heating and hence moves upwards (known as buoyancy
effect). The surrounding colder fluid moves to replace it. This colder fluid is then heated and
the process continues, forming the convection currents (the movement of the fluid). Thus, the
heat transfers from the bottom of the convection cell to the top. Heating of water in a pot over
a stove causing movement of water from the bottom to the top is a typical example of the
natural convection. In the nature, convection currents are set up in the air as the solar
radiation heats land or water.

7.1.2 Forced Convection Heat Transfer

If the motion of the fluid is caused by some external means such as a fan, blower, pump or
wind, the mode of heat transfer is termed as the forced convection. Cooling water through a
heat exchanger, air propelled through a solar air heater duct and wind blowing over a heated
surface are a few examples where forced convective heat transfer takes place.

© Springer Nature Singapore Pte Ltd. 2020
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However, in any forced convection situation, some amount of natural convection is
always present. When the natural convection is not negligible, such flows are typically
known as mixed convection.

The convection is a combined problem of heat and fluid flow. Hence, the rate of heat
transfer is affected by the fluid properties such as viscosity, specific heat, density, thermal
conductivity, coefficient of thermal expansion, etc. The analytical solution of a convection
problem involves application of the equation of motion, energy and continuity, and the
Fourier’s law of heat conduction. The resulting differential equations that govern the con-
vection are complicated and their exact solution can be given only in a few simple problems
of steady flow.

There are three basic methods of determining the rate of heat transfer between fluid and a
solid by convection. It will be shown in the sections to follow that the fluid is at rest in the
immediate vicinity of the solid surface due to the viscous effect. Therefore, the heat flow at
the wall is by conduction and not by convection. The first method makes use of this
observation and the heat transfer rate can be calculated from the Fourier’s law

q ¼ �kA
dt

dy

� �
y¼0

ð7:1Þ

where (dt/dy)y = 0 is temperature gradient in the fluid at the wall, refer Fig. 7.1, and k is the
thermal conductivity of the fluid.

The second method is based on analogy between the mechanisms of transfer of fluid
momentum to the wall and the transfer of heat by convection. Using the analogy, the rate of
heat transfer by convection can be predicted from the measurement of shear stress between
the fluid and the wall.

The third method is to experimentally determine the heat transfer coefficient, defined by
the Newton’s equation, because the determination of the temperature gradient at the wall and
its variation over the entire heat-transferring surface is very difficult. The Newton’s equation
for the convective heat transfer coefficient is

q ¼ hA tw � tf
� � ð7:2Þ

According to this equation, the heat transfer is proportional to the area of the surface A and
the temperature difference between the wall and the fluid. The factor of proportionality h in
the equation is called the convection heat transfer coefficient. It is the quantity of heat
transferred in unit time from unit surface area for a unit temperature difference between the
wall and the fluid. Studies have shown that the heat transfer coefficient is a function of many
parameters.

(dt/dy)y = 0

tw

t∞

y
Temperature
profile

Wall

Fig. 7.1 Heat flow at wall
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The method of dimensional analysis, based on the dynamic similarity, is used to express
the experimental results in the form of a correlation of dimensionless numbers (refer Chap. 8).

In this chapter, analytical treatment of simple cases of forced and natural convection will
be presented followed by the discussion of analogy between fluid friction and heat transfer.

7.2 Flow of Fluid Past a Flat Plate

Consider a simple case of steady-state flow of fluid with free-stream velocity U∞ past a plate
of sufficient length as shown in Fig. 7.2. The plate is aligned with the flow so that the x-axis
coincides with the flow direction. When the fluid meets the leading edge of the plate, the
viscous effect causes it to adhere to the surface. Assuming that there is no slip between the
fluid and the surface, the fluid velocity is zero at the plate surface. The fluid velocity
increases in the y-direction and approaches the free-stream velocity U∞ in a layer of
thickness d. This layer is termed as hydrodynamic boundary layer. The reason for the drop of
velocity through the boundary layer is the viscosity of the fluid. The fluid flow region may be
divided into two regions: the boundary layer (region adjacent to the wall), which exhibits the
effect of the viscosity and the main flow or free-stream region where the viscosity effect can
be neglected.

The thickness of the boundary layer increases in x-direction as more and more fluid is
included in the boundary layer and is retarded by the friction. In order to accommodate the
included fluid, the streamlines must diverge away from the plate so that the flow area is
increased. Due to the divergence of the streamlines, the velocity vector is no longer parallel
to the plate and a small velocity component v perpendicular to the plate will exist. Thus, the
flow in the boundary layer is two-dimensional.

U∞, t∞

Transition
region

Turbulent 
region

Laminar 
region

Laminar
sublayer

U∞

U∞

Parabolic profile

δ

0

h

Eddies

x

Fig. 7.2 Hydrodynamic boundary layer over a flat plate (the boundary layer thickness is exaggerated for
clarity)
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The flow along the plate surface (x-direction) is divided into laminar (streamline flow—
the fluid flows in distinct fluid layers nearly parallel to the surface) and eddying or turbulent
flow (random motion of the fluid in all directions). Initially, the boundary layer development
is laminar and the boundary layer thickness increases continuously with the increase in
distance x along the plate surface starting from zero at the leading edge of the plate. At some
critical distance xc from the leading edge, transition from laminar to turbulent layer with a
thin laminar sublayer takes place. Experiments with fluid at different velocities have revealed
that the transition occurs at

U1x

m
[ 5� 105 ð7:3Þ

The group (U∞x/t) is a dimensionless number and is called the Reynolds number. The
Reynolds number corresponding to the critical distance xc is known as the critical Reynolds
number (Rec = U∞xc/t). The value of the critical Reynolds number is affected by the level of
the disturbances present in the free stream approaching the plate and also the plate surface
roughness (Rec = 3 � 105− 5 � 105 depending on the roughness of the plate surface). For
strong disturbances, the critical Reynolds number Rec has been reported to be as low as
8 � 104. With exceptionally free of disturbances, the flow may remain laminar up to Rec
106 or higher (Schlichting 1979).
If the plate is heated or cooled to a uniform temperature Tw, starting at a distance xo from

the leading edge of the plate, a thermal boundary layer will also develop as shown in
Fig. 7.3. It is the region where temperature gradient is present. The temperature of the fluid
varies from T = Tw at the plate surface to T = T∞ at the edge of the thermal boundary layer.
The thickness of the thermal boundary layer is designated as dt. The concept of the thermal
boundary layer is analogous to that of the velocity or hydrodynamic boundary layer. The
relationship between the two boundary layers will be discussed later.

7.3 Flow in Tubes

Consider the fluid flow through a tube. The velocity distribution is uniform at the inlet cross-
section if the tube inlet is rounded and the fluid comes from a large space, Fig. 7.4. Because
of the friction, the velocity diminishes at the wall and increases at the centre of the tube. The
flow does not become fully developed at once but at a certain distance from the tube inlet.
Thus, the boundary layer gradually builds up until it reaches the centre of the tube. The
velocity distribution curve, now, acquires a stable form and does not vary down the tube. The

x0 

δ δ t 

Temperature 
profile 

U∞

Tw

U∞, T∞

Edge of velocity 
boundary layer Edge of thermal 

boundary layerT∞

Fig. 7.3 Hydrodynamic (velocity) and thermal boundary layers over a flat plate
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flow is said to be fully developed. The distance for the velocity profile to be fully developed
is termed as hydrodynamic development length or entrance length.

The development of the thermal boundary layer in a fluid which is heated or cooled in a
duct is qualitatively similar to that of the hydrodynamic boundary layer. As the fluid flows
along the duct, the heated or the cooled layer increases in the thickness until the heat is
transferred to or from the fluid in the centre of the duct. The temperature profile now acquires
the fully developed form (known as thermally fully developed) if the velocity profile is fully
developed. The shapes of the velocity and temperature profiles depend on whether the flow is
laminar or turbulent.

The hydrodynamic development length for the laminar flow in a circular pipe with a
uniform velocity profile at the inlet is approximately given by (Kays and Crawford 1980)

L

D
� 0:05Re ð7:4Þ

where Re is the Reynolds number defined as

Re ¼ qUmD

l
ð7:5Þ

i.e. it is calculated on the basis of the mean velocity Um and the tube diameter D. The mean
velocity is calculated by dividing the volumetric flow rate of the fluid by the cross-sectional
area of the tube. Thus

Um ¼ V

A
¼ 1

A

ZA
0

udA

For turbulent flow in tubes, the hydrodynamic development length is short (entrance
region is typically less than 10–15 tube diameters) and it depends on the geometric character
of the entrance (Kays and Crawford 1980).

Variation of 
heat transfer 
coefficient

h

x

Parabolic velocity 
profile Boundary layer

u

Development 
length

Uniform
inlet flow
velocity

Fully developed 
flow

D

Fig. 7.4 Laminar flow in a tube (Re < 2300)
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The thermal entry length for the laminar flow in a tube may be approximated from the
following relation (Kays and Crawford 1980):

L

D
� 0:05Re Pr ð7:6Þ

where Pr is the Prandtl number of the fluid, which is a fluid property and equals lcp/k. Thus,
the thermal entry length is also dependent on the Prandtl number. For example, for air
(Pr = 0.7) flowing with Re = 1000, the development length is 35 tube diameters while for oil
(Pr = 100), the same will be 2500 even when flowing with Re = 500. Thus, in an oil
exchanger, the fully developed temperature profile is rarely attained.

7.3.1 Laminar Flow Through a Tube

When the flow through a straight tube is laminar, the fluid particles move along the path
parallel to the tube axis with no rotation of the particles. The velocity profile of the fully
developed laminar flow is of parabolic form as shown in Fig. 7.4.

In the laminar flow, the velocity profile is given by

u

Umax
¼ 2

y

R

� �
� y

R

� �2
ð7:7Þ

where u is the velocity at a distance y from the wall and Umax is the velocity at the axis of the
tube.

Volume flow through annulus of radial width dy at radius (R – y) from the centreline, refer
Fig. 7.5, is

dV ¼ ½2pðR� yÞdy�u

Hence, the volume flow rate is

V ¼
Z

dV ¼
ZR
0

2puðR� yÞdy

¼
ZR
0

2p 2
y

R

� �
� y

R

� �2� 	
Umax R� yð Þdy

¼
ZR
0

2pUmax 2y� 3
y2

R
þ y3

R2

� �
dy

¼ 1
2
pR2Umax:

+

R y

R - y

dy

Fig. 7.5 Coordinate system for Eq. (7.7)
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The mean velocity is defined as

Um ¼ V

A
¼ V

pR2
¼ 1

2
pR2 Umax

pR2

� �

or

Um

Umax

� �
¼ 0:5 ð7:8Þ

i.e. in the case of laminar flow through a tube, the ratio of the mean velocity to the maximum
velocity at the centreline is 0.5.

7.3.2 Turbulent Flow Through a Tube

If the flow Reynolds number exceeds a certain critical value (Rec � 23001), the flow
becomes turbulent. The fully developed velocity profile in this case is shown in Fig. 7.6. In
the case of turbulent flow, three distinct regions in the flow have been found. These regions
are a laminar sublayer in the immediate vicinity of the wall, a buffer layer (not shown in the
figure) and a prominent turbulent core. The velocity changes abruptly near the wall and takes
a somewhat blunter profile in the middle of the tube. The velocity profile becomes nearly flat
and the velocity distribution becomes more uniform at very high Reynolds number.

The turbulent flows are of great importance because of greater heat transfer rates in this
region.

The ratio of the mean and the maximum velocities is a function of the Reynolds number,
i.e.

Um

Umax

� �
turbulent

¼ f ðReÞ ð7:9Þ

When the fluid is in a turbulent state inside the tube, there is always a layer of fluid at the
wall in which the flow is laminar. This layer is known as laminar sublayer. The thickness of
this layer increases along the development length from d = 0 at the inlet to its maximum
value d. The thickness of the laminar sublayer is very small and can be visualized from the
relation of Schlichting (1979), deduced in terms of Reynolds number using Blasius corre-
lation of friction factor for fully developed turbulent flow in smooth circular duct, as

d
D
¼ 25

Re7=8
ð7:10Þ

1It is to note that the laminar-to-turbulent transition is not sudden but occurs over a range of Reynolds
number. The numerical value of the critical Reynolds number Rec depends on the duct inlet conditions as well
as on the surface roughness of the duct. Disturbances such as vibrations on the exterior of the duct wall and
flow pulsation also influence the value of the critical Reynolds number. In a circular duct, the lower limit for
the critical Reynolds number is accepted to be 2000 below which the flow remains laminar even in the
presence of strong disturbances (Potter et al. 2012). The upper limit of Rec is undefined (Bhatti and Shah
1987), for most practical purposes it is taken as 104. The flow in the range 2300 � Re < 104 is termed as
transition flow. The velocity profile in the transition regime is neither parabolic nor the usual turbulent profile.
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From the relation, it can also be seen that the thickness of the laminar sublayer decreases
with the increase in the Reynolds number.

7.4 Equation of Continuity

The equation of continuity is based on the law of conservation of mass. Figure 7.7 shows
elemental control volume with dimensions dx, dy and dz in the fluid flow field, where the
mass can flow in or out of the element. Let us consider the mass balance for this element.

The mass of the fluid entering the element through the face ABCD, which is perpendicular
to the velocity vector u in the x-direction, in time ds is

mx ¼ quðdy:dzÞds

Mass leaving the element through face EFGH at distance dx in x-direction is

mxþ dx ¼ mx þ @mx

@x
dx

The net mass leaving the element in x-direction is

dmx ¼ mxþ dx � mx ¼ @

@x
ðquÞ

� 	
ðdx:dy:dzÞds

Laminar sublayer

Turbulent core

Fig. 7.6 Turbulent flow in a tube

x

z

y

dx
dz

dyB
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C

D

G

H

E

F

Fig. 7.7 Elemental control volume for deriving equation of continuity
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or

dmx ¼ @

@x
ðquÞ

� 	
dv0ds ðiÞ

where dv0 = dx.dy.dz is the volume of the element.
Similarly, the net fluid amounts leaving in y- and z-directions with velocity vectors v and

w, respectively, are

dmy ¼ @

@y
ðqvÞ

� 	
dv0ds ðiiÞ

dmz ¼ @

@z
ðqwÞ

� 	
dv0ds ðiiiÞ

The total quantity of excess fluid mass leaving the element is the sum of expressions (i),
(ii) and (iii), i.e.

dm ¼ @

@x
ðquÞþ @

@y
ðqvÞþ @

@z
ðqwÞ

� 	
dv0ds ðivÞ

The net outflow from the element is due to the decrease in the density of the fluid within
the element and is

dm ¼ @q
@s

dv0ds ðvÞ

From Eqs. (iv) and (v), we get

@
@x ðquÞþ @

@y ðqvÞþ @
@z ðqwÞ

h i
dv0dsþ @q

@s dv
0ds ¼ 0

@
@x ðquÞþ @

@y ðqvÞþ @
@z ðqwÞþ @q

@s ¼ 0;
ð7:11Þ

which is the differential equation of continuity in general form.
For an incompressible fluid (liquids), q is constant hence

@u

@x
þ @v

@y
þ @w

@z
¼ 0: ð7:12aÞ

For the two-dimensional incompressible fluid flow, the equation is

@u

@x
þ @v

@y
¼ 0: ð7:12bÞ

7.4.1 The Displacement and Momentum Thickness

The hydrodynamic or momentum boundary layer is the region in which the fluid velocity
changes from zero at the plate surface to its free-stream velocity. In fact, there is no precise
thickness of boundary layer if this definition is used because, mathematically, the boundary
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layer extends indefinitely in the y-direction. However, the boundary layer thickness is taken
to be the distance from the plate surface in which most of the velocity change (from zero to
99 per cent of the free-stream velocity) takes place. To avoid the ambiguity in defining the
boundary layer thickness, two boundary layer thickness parameters are defined. These
parameters are known as velocity displacement thickness dvd and momentum displacement
thickness dmd. The displacement thickness is a measure of the displacement of the free stream
due to the formation of the boundary layer over the plate while the momentum thickness is a
measure of the momentum flux displacement caused by the boundary layer.

The velocity displacement thickness dvd can be obtained as follows.
The mass flow rate though the boundary layer (for the unit width of the plate) is

Z1
0

q:uðdy:1Þ ¼
Z1
0

q:udy

where u is the velocity of the fluid at distance y from the plate surface and q is the density of
the fluid.

For a frictionless (non-viscous) fluid, the velocity of the fluid will be U∞ and the mass
flow rate will be

Z1
0

qU1dy

Thus, the loss in the fluid flow rate due to the formation of the boundary layer is

Z1
0

q U1 � uð Þdy

If we represent this loss in the fluid flow rate by the flow at U∞ passing through a
thickness dvd, then

dvd:1ð ÞU1q ¼ R1
0
q U1 � uð Þdy

dvd ¼
R1
0

1� u
U1

� �
dy

ð7:13Þ

A geometrical interpretation of the velocity displacement is shown in Fig. 7.8. An infinite
boundary layer (d ! ∞) has been substituted by a finite layer of thickness dvd so that the
area under the curve would equal the area of rectangle of height dvd and width U∞.

The velocity displacement thickness is a measure of the displacement of the main stream
resulting from the presence of the flat plate and its boundary (Kays and Crawford 1980).

Similarly, the momentum displacement thickness dmd may be determined as follows.
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The mass flux through the boundary layer strip of height dy (for the unit width of the
plate) is

¼ qudy

Momentum of this mass is

¼ qudy:u

The momentum of the same mass before entering the boundary layer is

¼ ðqudyÞU1

Thus, the loss of momentum of this fluid is

¼ qudy:ðU1 � uÞ

Total loss of the momentum in the complete boundary layer

¼
Z1
0

qu U1 � uð Þdy

If we represent this momentum loss of fluid by the momentum of the fluid passing through
a thickness dmd, then

dmd:qU
2
1 ¼

Z1
0

qu U1 � uð Þdy

dmd ¼ 1
qU21

Z1
0

qu U1 � uð Þdy

dmd ¼
Z1
0

u

U1
1� u

U1

� �
dy ð7:14Þ

U∞

δvd y

dy
u
(U∞ - u)

y

Plate surface

Fig. 7.8 Graphical interpretation of the velocity displacement thickness
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The momentum displacement thickness is a measure of the momentum flux decrement
caused by the boundary layer, which is proportional to the drag of the plate according to the
momentum theorem (Kays and Crawford 1980).

We can define energy thickness dke as ‘the thickness of flow moving at the free-stream
velocity and having energy (the kinetic energy) equal to the deficiency of energy in the
boundary layer’.

Kinetic energy of the mass of the fluid passing through the elemental strip of area (dy.1) is

qu: dy:1ð Þ½ � � 1
2
u2

� �
¼ 1

2
qu3

� �
dy;

If the fluid is non-viscous, the fluid mass (dy.u.q) will have free-stream velocity U∞. The
total energy of the mass passing through the boundary layer will be

Z
1
2
qu

� �
U2

1dy

Thus, the loss of kinetic energy due to the boundary layer is

1
2

Z1
0

qu U2
1 � u2

� �
dy

If we represent this energy loss by the energy loss of fluid passing through a thickness dke
at the free-stream velocity. Then

1
2
qU3

1dke ¼ 1
2

Z1
0

qu U2
1 � u2

� �
dy

dke ¼
Z1
0

u

U1
1� u

U1

� �2
" #

dy ð7:15Þ

Example 7.1 Determine velocity displacement thickness and momentum thickness if the
velocity distribution is linear (u/U∞ = y/d, where u = U∞ at y = d).

Solution

(i) The velocity displacement thickness, when the limit ∞ is replaced by d, is given by

dvd ¼
Zd
0

1� u

U1

� �
dy

Now substituting the equation of the velocity profile, we have
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dvd ¼
Zd
0

1� y

d

� �
dy ¼

Zd
0

dy�
Zd
0

ydy

d

¼ d=2

(ii) The momentum displacement thickness is given by

dmd ¼
Zd
0

u

U1
1� u

U1

� �
dy

¼
Zd
0

y

d
1� y

d

� �
dy ¼ d

6
:

7.4.2 The Enthalpy and Conduction Thickness

For a thermal boundary layer, we can define integral thickness parameter in an unambiguous
way. These parameters are enthalpy thickness and conduction thickness.

The enthalpy thickness is defined by the relation

de ¼
R1
0 quedy

q1U1ew

where the enthalpy e = c (T – T∞) and ew= cw (Tw – T∞); c is specific heat.
Substituting the values of e and ew, the thickness de can be expressed in terms of tem-

perature for constant property fluids (q = q∞ and c = cw) as follows:

de ¼
R1
0 uðT � T1Þdy
U1ðTw � T1Þ ð7:16Þ

The conduction thickness is defined as

dk ¼ kðTw � T1Þ
qw

ðiÞ

The convection heat transfer coefficient is given by

h ¼ qw
ðTw � T1Þ ðiiÞ

Combining Eqs. (i) and (ii), we get

dk ¼ k

h
ð7:17Þ

Both the thicknesses have been shown in Fig. 7.9.
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7.5 Momentum Equation of Laminar Boundary Layer Over a Flat Plate

The momentum equation of the laminar boundary layer over a flat plate can be derived by
making a force-and-momentum balance on the elemental control volume located in the
boundary layer as shown in Fig. 7.10.

The following assumptions are being made to simplify the analysis:

1. The fluid is incompressible and the flow is steady.
2. There are no pressure variations in the direction perpendicular to the flow, i.e. in the y-

direction.
3. The viscosity of the fluid is constant.
4. Viscous shear forces in y-direction are negligible and hence neglected.
5. The effect of gravitational forces is negligible and hence it is neglected.

Momentum balance in x-direction for the control volume of Fig. 7.10 gives

Viscous-shear forceþ pressure force

¼ rate of momentum transfer in x-direction ð7:18Þ

δk

0 T∞ Tw 

y

T

y

u (T - T∞)

dy
U∞ (Tw - T∞)

δe 

Fig. 7.9 Graphical illustrations of the enthalpy and conduction thicknesses of the boundary layer

y

x

U∞

ρu2Δy +[∂(ρu2Δy)/∂x]Δxρu(Δy.1)u

p (Δy.1) [p + (∂p/∂x)Δx](Δy.1)Δy

Δx

ρv(Δx.1)u

ρvu Δx +[∂(ρvu Δx)/∂y]Δy                  

μ(∂u/∂y)(Δx.1)

μ{∂u/∂y +[∂(∂u/∂y)/∂y]Δy}(Δx.1)

Unit depth in z-direction
Elemental control volume

Hydrodynamic boundary layer

Fig. 7.10 Elemental control volume for force balance on laminar boundary layer
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The rate of momentum transfer in x-direction is the product of mass flow rate through a
side of the control volume and the x-component of velocity at that point.

The mass entering the left face of the element for unit depth in z-direction

mx ¼ quðDy:1Þ

Hence, the momentum entering this face per unit time is

¼ quðDy:1Þu

The momentum leaving the right face is

¼ qu2Dyþ @

@x
qu2Dy
� �

Dx

¼ qu2Dyþ 2qu
@u

@x
Dx:Dy

Similarly, the mass entering the bottom face is

¼ qvðDx:1Þ

Hence, the momentum entering the bottom face is

¼ qvðDx:1Þu

The momentum leaving the top face is

¼ qvu:Dxþ @

@y
qvu:Dxð Þ

� 	
Dy

¼ qvu:Dxþ @

@y
qvuð Þ

� 	
:Dx:Dy

The pressure force on the left face is

¼ p Dy:1ð Þ

The pressure force on the right face is

¼ pþ @p

@x
Dx

� 	
Dy:1ð Þ

Net pressure force in x-direction is

¼ p Dy:1ð Þ � pþ @p

@x
Dx

� 	
Dy:1ð Þ

¼ � @p

@x
Dx:Dyð Þ
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The viscous shear force on the bottom face is

¼ �l
@u

@y
Dx:1ð Þ

and the viscous shear force on the top face is

¼ l
@u

@y
þ @

@y

@u

@y

� �
Dy

� 	
Dx:1ð Þ

The net viscous shear force in x-direction is

l
@

@y

@u

@y

� �
Dy: Dx:1ð Þ ¼ l

@2u

@y2
Dx:Dyð Þ

Substitution of various terms in Eq. (7.18) gives

l
@2u

@y2
Dx:Dyð Þ � @p

@x
Dx:Dyð Þ ¼

qu2Dyþ 2qu
@u

@x
Dx:Dy� qu2Dyþ qvu:Dxþ @

@y
qvuð Þ

� 	
:Dx:Dy� qvu:Dx

or

l
@2u

@y2
� @p

@x
¼ 2qu

@u

@x
þ @

@y
qvuð Þ

� 	

¼ 2qu
@u

@x
þ qu

@v

@y
þ qv

@u

@y

¼ qu
@u

@x
þ @v

@y

� �
þ qu

@u

@x
þ qv

@u

@y

From the continuity equation,

@u

@x
þ @v

@y
¼ 0 ð7:12Þ

Hence,

l
@2u

@y2
� @p

@x
¼ qu

@u

@x
þ qv

@u

@y

or

q u
@u

@x
þ v

@u

@y

� �
¼ l

@2u

@y2
� @p

@x
ð7:19Þ

This is the momentum equation of the laminar boundary layer over a flat plate.
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In the absence of any pressure forces, ∂p/∂x = 0 and the equation becomes

q u
@u

@x
þ v

@u

@y

� �
¼ l

@2u

@y2
ð7:20Þ

7.5.1 Solution of Momentum Equation (Blasius Solution)

The momentum and the continuity equations for the laminar flow over a flat plate have been
developed as

u
@u

@x
þ v

@u

@y
¼ m

@2u

@y2
ð7:20Þ

and

@u

@x
þ @v

@y
¼ 0; ð7:12Þ

respectively.
We introduce a parameter w defined as under, called the stream function, which can

replace the components u and v of the velocity by a single function and satisfies the con-
tinuity equation:

u ¼ ð@w=@yÞ and v ¼ �ð@w=@xÞ

The boundary conditions of the flow are

u ¼ 0 at y ¼ 0

v ¼ 0 at y ¼ 0

u ¼ U1 at x ¼ 0

u ! U1 as y ! 1
and @u=@yð Þ ! 0 as y ! 1:

It is assumed that the shape of the velocity profiles (Fig. 7.11) is geometrically similar at
various x-positions starting from the leading edge of the plate. These velocity profiles differ
in the y-direction and hence the significant variable is the distance variable (y/d), in the non-
dimensional form. Thus, the velocity profile at any x-location can be expressed as function of
(y/d), i.e.

u

U1
¼ gðy=dÞ; ð7:21Þ

where d is the thickness of the boundary layer.
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Except very close to the wall, the velocity u is of the order of the free-stream velocity U∞

and the distance y from the wall is of the order of boundary layer thickness d, i.e.

u�U1 and y� d

Using the above order-of-magnitude terms, the continuity equation can be written in an
approximate form as

U1
x

þ v

d
� 0

or

v�U1d=x

Using the order of magnitude for u, v and y in the momentum equation,

u
@u

@x
þ v

@u

@y
¼ m

@2u

@y2
; ð7:20Þ

we get

U1
U1
x

þ U1d
x

� �
� U1

d

� �
� m

U1
d2

� �

Simplification gives

d�
ffiffiffiffiffiffiffiffi
m:x
U1

r

It can be expressed in the non-dimensional form as

d
x
�

ffiffiffiffiffiffiffiffiffiffi
m

U1x

r
¼ 1ffiffiffiffiffiffiffiffi

Rex
p ð7:22Þ

where Rex = (U∞x/t) is the local Reynolds number, which is a non-dimensional number.
The equation indicates the variation of the boundary layer thickness with the free-stream
velocity, the viscosity of the fluid and distance x along the plate in the fluid flow direction or
with the Reynolds number.

U∞
U∞

δ

U∞

U∞

y

x

Fig. 7.11 Development of laminar boundary layer over a flat plate
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Using order-of-magnitude estimate of d, Eq. (7.21) can be expressed as

u

U1
¼ g

y

d

� �
¼ g

yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx=U1

p
" #

¼ gðgÞ ð7:23Þ

where

g ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx=U1

p
" #

¼ y

ffiffiffiffiffiffiffiffi
U1
mx

r
: ð7:24Þ

The variable η is called the similarity variable and g(η) is the function we require as a
solution.

The stream function w, defined earlier, can be expressed in terms of η as

w ¼
Z

udy ¼
Z

U1gðgÞdy ¼
Z

U1gðgÞ dy
dg

dg

¼
Z

U1gðgÞ
ffiffiffiffiffiffiffiffi
mx
U1

r
dg

¼ ffiffiffiffiffiffiffiffiffiffiffiffi
U1mx

p Z
gðgÞdg

¼ ffiffiffiffiffiffiffiffiffiffiffiffi
U1mx

p
f

ð7:25Þ

where f = Rg(η) dη.
The velocity components u and v can be expressed in terms of η and f as

u ¼ @w
@y

¼ @w
@g

@g
@y

¼ @

@g

ffiffiffiffiffiffiffiffiffiffiffiffi
U1mx

p� �
f

� �� @

@y
y

ffiffiffiffiffiffiffiffi
U1
mx

r !

¼ ffiffiffiffiffiffiffiffiffiffiffiffi
U1mx

p� � @f
@g

�
ffiffiffiffiffiffiffiffi
U1
mx

r

¼ U1
@f

@g

Thus,

u ¼ U1f 0 ð7:26Þ

where (∂f/∂η) = f ′
Similarly,
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v ¼ � @w
@x

¼ � @

@x

ffiffiffiffiffiffiffiffiffiffiffiffi
U1mx

p� �
f

� �
¼ � ffiffiffiffiffiffiffiffiffiffi

U1m
p @

@x

ffiffiffi
x

p� �
f

� �
¼ � ffiffiffiffiffiffiffiffiffiffi

U1m
p ffiffiffi

x
p @f

@x
þ f

@

@x

ffiffiffi
x

p� �� 	

¼ � ffiffiffiffiffiffiffiffiffiffi
U1m

p ffiffiffi
x

p @f

@g
@g
@x

þ f

2
ffiffiffi
x

p
� 	

¼ � ffiffiffiffiffiffiffiffiffiffi
U1m

p ffiffiffi
x

p
f 0

@

@x
y

ffiffiffiffiffiffiffiffi
U1
mx

r !
þ f

2
ffiffiffi
x

p
" #

¼ � ffiffiffiffiffiffiffiffiffiffi
U1m

p ffiffiffi
x

p
f 0 y

ffiffiffiffiffiffiffiffi
U1
m

r !
@

@x

1ffiffiffi
x

p
� �

þ f

2
ffiffiffi
x

p
" #

¼ � ffiffiffiffiffiffiffiffiffiffi
U1m

p ffiffiffi
x

p
f 0 y

ffiffiffiffiffiffiffiffi
U1
m

r !
� � 1

2
x�3=2

� �
þ f

2
ffiffiffi
x

p
" #

¼ 1
2

ffiffiffiffiffiffiffiffiffiffi
U1m
x

r
f 0g� fð Þ ð7:27Þ

Now the derivatives ∂u/∂x, ∂v/∂x and ∂2u/∂y2 can be determined as follows:

@u

@x
¼ @

@x
U1f 0ð Þ

¼ U1
@f 0

@x
¼ U1

@f 0

@g
@g
@x

¼ U1f 00
@

@x
y

ffiffiffiffiffiffiffiffi
U1
mx

r !

¼ U1f 00 y

ffiffiffiffiffiffiffiffi
U1
m

r !
� � 1

2
x�3=2

� �

¼ �U1
2x

y

ffiffiffiffiffiffiffiffi
U1
mx

r !
f 00

¼ �U1
2x

g:f 00 ð7:28Þ

where (∂f ′/∂η) = f′′.
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@u

@y
¼ @

@y
U1f 0ð Þ

¼ U1
@f 0

@y
¼ U1

@f 0

@g
@g
@y

¼ U1f 00
@

@y
y

ffiffiffiffiffiffiffiffi
U1
mx

r !

¼ U1f 00
ffiffiffiffiffiffiffiffi
U1
mx

r !
ð7:29Þ

@2u

@y2
¼ @

@y

@u

@y

� �

¼ @

@y
U1f 00

ffiffiffiffiffiffiffiffi
U1
mx

r !" #

¼ U1

ffiffiffiffiffiffiffiffi
U1
mx

r !
@f 00

@y

¼ U1

ffiffiffiffiffiffiffiffi
U1
mx

r !
@f 00

@g
@g
@y

¼ U1

ffiffiffiffiffiffiffiffi
U1
mx

r !
f 000

@

@y
y

ffiffiffiffiffiffiffiffi
U1
mx

r !

¼ U1

ffiffiffiffiffiffiffiffi
U1
mx

r !
f 000

ffiffiffiffiffiffiffiffi
U1
mx

r !

¼ U1
U1
mx

� �
f 000 ð7:30Þ

where (∂f ′′/∂η) = f ′′′.
Substitution of various terms in the momentum equation, Eq. (7.20), gives

U1f 0 �U1
2x

g:f 00
� �

þ 1
2

ffiffiffiffiffiffiffiffiffiffi
U1m
x

r
f 0g� fð Þ

" #
� U1f 00

ffiffiffiffiffiffiffiffi
U1
mx

r !" #
¼ m U1

U1
mx

� �
f 000

� 	

Simplification of the above equation gives

� 1
2
f 0f 00gþ 1

2
f 00 f 0g� fð Þ ¼ f 000

or

2f 000 þ ff 00 ¼ 0: ð7:31Þ
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where

f ¼ f ðgÞ ¼
Z

gðgÞdg; g ¼ y
p

U1=ðmxÞ½ �; f 0 ¼ ð@f=@gÞ ¼ u=U1; f 00

¼ @f 0=@gð Þ and f 000 ¼ @f 00=@gð Þ:

This is an ordinary but non-linear differential equation of third order for which the
boundary conditions are given in Table 7.1.

Equation (7.31) has been solved numerically for the function f (η). The first solution was
obtained by Blasius (1908) in the form of convergent series for small values of η and the
asymptotic approximation for the larger values of η. The solution is of the form

f ðgÞ ¼ ag2

2!
� 1
2
a2g5

5!
þ 11

4
a3g8

8!
� 375

8
a4g11

11!
þ . . .. . .. . .:: ð7:32Þ

where a = 0.33206.
Differentiation of the equation gives

f 0 ¼ @f

@g
¼ ag� . . .. . .. . .:

f 00 ¼ @f 0

@g
¼ a� . . .. . .. . .:

f 00ð Þg¼0¼ a ¼ 0:33206

ð7:33Þ

The results (values of f, f′ and f′′ as function of η) are presented in Table 7.2. The
distribution of the axial velocity u in the y-direction and that of the transverse velocity
v along y-axis is presented in Fig. 7.12.

From the table and the plots, it is evident that at η = 5, the velocity u is practically equal to
the free-stream velocity U∞ (f ′ = u/U∞ = 0.99).

If we assume that the thickness of the boundary layer d corresponds to u/U∞ = 0.99, then
at y = d, η = 5.0 and we have

g ¼ y

ffiffiffiffiffiffiffiffi
U1
mx

r !
y¼d

¼ d

ffiffiffiffiffiffiffiffi
U1
mx

r
¼ 5:0

Table 7.1 Physical and similarity coordinates

Physical coordinates Similarity coordinates

u = 0 at y = 0 f ′ = 0 at η = 0

v = 0 at y = 0 f = 0 at η = 0

u ! U∞ as y ! ∞ f ′ = 1 at η ! ∞

(∂u/∂y) ! 0 as y ! ∞ f ′′ = 0 at η ! ∞
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or

d ¼ 5:0

ffiffiffiffiffiffiffiffi
mx
U1

r
ð7:34Þ

or

d
x
¼ 5:0

ffiffiffiffiffiffiffiffiffiffi
m

U1x

r

Table 7.2 Values of functions f(η), etc. for a flat plate

η = y[U∞/(mx)]1/2 f(η) f ′ = u/U∞ f ′′ ½ (η f ′ − f)

0 0 0 0.33206 0

0.2 0.00664 0.06641 0.33199 0.00332

0.4 0.02656 0.13277 0.33147 0.01327

0.6 0.05974 0.19894 0.33008 0.02981

0.8 0.10611 0.26471 0.32739 0.05283

1.0 0.16557 0.32979 0.32301 0.08211

1.2 0.23795 0.39378 0.31659 0.11729

1.6 0.42032 0.51676 0.29667 0.20325

2.0 0.65003 0.62977 0.26675 0.30476

2.4 0.92230 0.72899 0.22800 0.41364

2.8 1.23099 0.81152 0.18401 0.52063

3.2 1.56911 0.87609 0.13913 0.61719

3.6 1.92954 0.92333 0.09809 0.69722

4.0 2.30576 0.95552 0.06424 0.75816

4.4 2.69238 0.97587 0.03897 0.80072

4.8 3.08534 0.98779 0.02187 0.82803

5.0 3.28329 0.99155 0.01591 0.83723

5.2 3.48189 0.99425 0.01134 0.84410

5.6 3.88031 0.99748 0.00543 0.85279

6.0 4.27964 0.99898 0.00240 0.85712

6.4 4.67938 0.99961 0.00098 0.85906

6.8 5.07928 0.99987 0.00037 0.85992

7.2 5.47025 0.99996 0.00013 0.86013

7.6 5.87924 0.99999 0.00004 0.86034

8.0 6.27923 1.00000 0.00001 0.86038

8.4 6.67923 1.00000 0.00000 0.86038

8.8 7.07923 1.00000 0.00000 0.86038
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or

d
x
¼ 5:0ffiffiffiffiffiffiffiffi

Rex
p ð7:35Þ

The skin friction coefficient is defined as

Cfx ¼ sw
1
2 qU

21

The shear stress s at the wall is

sw ¼ l
@u

@y

� �
y¼0

where

@u

@y

� �
y¼0

¼ @

@y

u

U1

� �� 	
y¼0

U1

¼ @f 0

@g

� �
g¼0

@g
@y

� �
:U1

¼ f 00ð Þg¼0

ffiffiffiffiffiffiffiffi
U1
mx

r !
:U1

¼ a

ffiffiffiffiffiffiffiffi
U1
mx

r !
:U1

¼ 0:33206

ffiffiffiffiffiffiffiffi
U1
mx

r !
:U1

xU
v

Re

= ½ (η f ′- f )

=′
U
u

f

η

0.8604

Fig. 7.12 Velocity profiles in laminar boundary layer
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Hence,

sw ¼ l 0:33206

ffiffiffiffiffiffiffiffi
U1
mx

r !
:U1

" #
ð7:36Þ

Thus,

Cfx ¼ l 0:33206

ffiffiffiffiffiffiffiffi
U1
mx

r !
:U1

" #
� 1

1
2 qU

21
¼ 0:6641ffiffiffiffiffiffiffi

U1x
m

q

or

Cfx ¼ 0:6641ffiffiffiffiffiffiffiffi
Rex

p ð7:37Þ

The average value of the skin friction coefficient for the plate length L can be determined
by integrating the local value of the coefficient from x = 0 to x = L, and then dividing by the
plate length L, i.e.

Cf ¼ 1
L

ZL
0

Cfxdx

¼ 1
L

ZL
0

0:6641ffiffiffiffiffiffiffiffi
Rex

p dx

¼ 1
L

ZL
0

0:6641

ffiffiffiffiffiffiffiffiffiffi
m

U1x

r� �
dx

¼ 1
L
0:6641

ffiffiffiffiffiffiffiffi
m

U1

r� �ZL
0

1ffiffiffi
x

p dx

¼ 1:3282
L

ffiffiffiffiffiffiffiffi
m

U1

r
:
ffiffiffi
L

p
¼ 1:3282ffiffiffiffiffiffiffi

U1L
m

q

or

Cf ¼ 1:3282ffiffiffiffiffiffiffiffi
ReL

p ð7:38Þ

where ReL is based on the total length L of the plate in direction of flow.
Equations (7.35)–(7.38), valid for the laminar region, indicate that
(i) the boundary layer thickness d increases as square root of the distance x from the

leading edge and inversely as square root of the free-stream velocity U∞,
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(ii) the wall shear stress sw is inversely proportional to the square root of the distance
x and directly proportional to 3/2 power of the free-stream velocity U∞,

(iii) the local and average skin friction coefficient Cfx and Cf , respectively, vary inversely
as square root of both distance and free-stream velocity.

Example 7.2 A fluid (kinematic viscosity m = 2.8 � 10−3 m2/s) flows over a flat plate at
15 m/s. Determine the velocity components u and v at a point located at x = 2 m, y = 40 mm
from the leading edge.

Solution

Flow Reynolds number,

Rex ¼ U1x

m
¼ 15� 2

2:8� 10�3
¼ 10714

Boundary layer thickness at x = 2 m,

d ¼ 5xffiffiffiffiffiffi
Re

p
x

¼ 5� 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
10714

p ¼ 0:0966[ y

i.e. the point lies within the boundary layer.
Stretching factor,

g ¼ y

ffiffiffiffiffiffiffiffi
U1
mx

r
¼¼ 0:04�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15

2:8� 10�3 � 2

r
¼ 2:07

From Table 7.2, we have (corresponding to η = 2.07)

f 0 ¼ u

U1
¼ 0:63

or

u ¼ 0:63� U1 ¼ 0:63� 15 ¼ 9:45 m=s;

and

1
2

gf 0 � fð Þ ¼ 0:305

which gives

v ¼ 1
2

ffiffiffiffiffiffiffiffiffiffi
U1m
x

r
� gf 0 � fð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15� 2:8� 10�3

2

r
� 0:305 ¼ 0:044 m=s:

Note: It can be seen that v � u.
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7.6 Integral Momentum Equation of Laminar Boundary Layer Over
a Flat Plate: von Karman Solution

Figure 7.13 shows the boundary layer flow system. The free-stream velocity outside the
boundary layer is U∞. The thickness of the boundary layer is d. Consider a control volume at
distance x from the leading edge. The control volume is infinitesimal in the x-direction while
its height H is such that it is enclosing the boundary layer, i.e. H > d.

The mass entering the control volume through plane AA’ for the unit width of the plate is

m ¼
ZH
0

qudy

The mass leaving the control volume through plane BB’ is

mþ @m

@x
dx ¼

ZH
0

qudyþ @

@x

ZH
0

qudy

0
@

1
Adx

As no mass can enter the control volume through the solid wall (plane AB), the mass
enters the control volume through face A’B’ with the free-stream velocity U∞.

The momentum (mass � velocity) of the mass entering the control volume through the
plane AA’ is

ZH
0

qudy:u ¼
ZH
0

qdy:u2

Similarly, the momentum of the mass leaving the control volume through the planes BB’
and A’B’ is

ZH
0

qu2dyþ @

@x

ZH
0

qu2dy

0
@

1
Adx

U∞

δ

A

A B

B

H

dx

dy

u

Plate

y

x

Control 
volume

U∞

Fig. 7.13 Control volume for integral momentum analysis of laminar boundary layer over a flat plate
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and

@

@x

ZH
0

qudy

0
@

1
Adx

2
4

3
5U1;

respectively.
If we neglect gravity forces, the shear or drag force at the plate surface (for constant

pressure condition) must equal the net momentum change for the control volume. Thus

swdx ¼
ZH
0

qu2dy�
ZH
0

qu2dyþ @

@x

ZH
0

qu2dy

0
@

1
Adx� @

@x

ZH
0

qudy

0
@

1
Adx

2
4

3
5U1

8<
:

9=
;

or

sw ¼ U1
@

@x

ZH
0

qudy

2
4

3
5� @

@x

ZH
0

qu2dy

2
4

3
5:

Since velocity of flow is constant for y > d, i.e. from d to H, the integrand will be zero for
y = d to H. Hence, the upper limit of the integrand can be changed to d, which yields

sw ¼ U1
@

@x

Zd
0

qudy

2
4

3
5� @

@x

Zd
0

qu2dy

2
4

3
5

or

sw ¼ @

@x

Zd
0

q U1 � uð Þudy
2
4

3
5

or

sw ¼ qU2
1

@

@x

Zd
0

1� u

U1

� �
u

U1
dy

2
4

3
5

As the velocity component normal to the plate v is neglected, the equation can be written
as

sw ¼ qU2
1

d

dx

Zd
0

1� u

U1

� �
u

U1
dy

2
4

3
5 ð7:39Þ
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The above equation is known as von Karman momentum integral equation for the hy-
drodynamic boundary layer. It can be used to obtain the expression for the boundary layer
thickness if the velocity profile is known.

One can represent the unknown velocity profile equation as a polynomial,

u

U1
¼ C1 þC2

y

d

� �
þC3

y

d

� �2
þC4

y

d

� �3
þC5

y

d

� �4
þ . . .. . .. . .: ð7:40Þ

The selection of the number of terms depends on the degree of accuracy desired. The
constants are determined by application of the conditions at the wall (y = 0) and at the outer
limit of the boundary layer (y = d).

At the plate surface (y = 0), u = 0. The first derivative of u with respect to y at y = 0
determines the viscous shear stress at the wall. The momentum equation of the boundary
layer for the zero pressure gradient is

u
@u

@x
þ v

@u

@y
¼ m

@2u

@y2
ð7:20Þ

Thus, at the plate surface, where u = v = 0,

@2u

@y2

� �
y¼0

¼ 0

Differentiation of the equation of motion and its evaluation at the plate surface (y = 0) will
show that all the higher derivatives of u are also zero at the plate surface.

At the outer limit of the boundary layer (y = d), u = U∞. For a smooth transition from the
boundary layer to the potential region, all the derivatives of u with respect to y will vanish.

These conditions at y = 0 and y = d are summarized below:

u/U∞ = 1 at y = δ
u/U∞ = 0 at y = 0
∂u/∂y = 0 at y = δ
∂2u/∂y2 = 0 at y = 0
∂2u/∂y2 = 0 at y = δ
∂3u/∂y3 = 0 at y = 0 
∂3u/∂y3 = 0 at y = δ

First degree Second degree
Third degree

(Note: The first derivative of u with respect to y at y = 0 determines the viscous shear
stress there. Hence, ∂u/∂y at y = 0 may not be specified.)

The number of boundary conditions is selected depending on the requirement of the
degree of polynomials. The use of the polynomial as an approximation of the velocity profile
means that all the boundary conditions cannot be satisfied. Appropriate way is to satisfy as
many conditions at the plate surface as at the outer limit of the boundary layer alternating
between one and the other as we use higher degrees of polynomial (Chapman 1960).

Consider as an example, a third degree polynomial

u

U1
¼ C1 þC2

y

d

� �
þC3

y

d

� �2
þC4

y

d

� �3
ð7:41Þ
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The four constants C1 to C4 can be determined from the four boundary conditions which
the velocity function must satisfy. These conditions are

u=U1 ¼ 1 at y ¼ d

u=U1 ¼ 0 at y ¼ 0

@u=@y ¼ 0 at y ¼ d

@2u=@y2 ¼ 0 at y ¼ 0 for constant pressure condition:

Applying the boundary conditions, we get

C1 ¼ 0

C2 þ C3 þ C4 ¼ 1

C2 þ 2C3 þ 3C4 ¼ 0

2C3 ¼ 0

The values of the constants from the above equations are

C1 ¼ 0;C2 ¼ 3=2;C3 ¼ 0; and C4 ¼ �1=2

This gives the equation of the velocity profile as

u

U1
¼ 3

2
y

d

� �
� 1
2

y

d

� �3
ð7:42Þ

Substitution in Eq. (7.39) gives

sw ¼ qU2
1

d

dx

Zd
0

1� 3
2

y

d

� �
þ 1

2
y

d

� �3� 	
� 3

2
y

d

� �
� 1
2

y

d

� �3� 	
dy

8<
:

9=
;

or

sw ¼ qU2
1

d

dx

Zd
0

3
2

y

d

� �
� 9
4

y

d

� �2
� 1
2

y

d

� �3
þ 3

2
y

d

� �4
� 1
4

y

d

� �6� 	
d

8<
: y

9=
;

¼ qU2
1

d

dx

39
280

d

� �

¼ 39
280

qU2
1
dd
dx

ðiÞ

The shear stress at the wall is also given by
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sw ¼ l
@u

@y

� �
y¼0

¼ l
@

@y

3
2

y

d

� �
� 1
2

y

d

� �3� 	
U1

�
y¼0

¼ lU1
3
2d

� 3
2
y2

d3

� 	
y¼0

¼ 3
2
lU1
d

ðiiÞ

Equating Eqs. (i) and (ii), we get

39
280

qU2
1
dd
dx

¼ 3
2
lU1
d

or

d
dd
dx

¼ 140
13

l
qU1

or

d2

2
¼ 140

13
l

qU1
xþC

The thickness of the boundary layer at the leading edge of the plate is zero, i.e. at x = 0,
d = 0. This gives C = 0. Hence,

d2 ¼ 280
13

l
qU1

x ð7:43aÞ

or

d ¼ 4:64
ffiffiffiffiffiffiffiffiffiffi
lx

qU1

r

or

d
x
¼ 4:64

ffiffiffiffiffiffiffiffiffiffiffiffi
l

qU1x

r

or

d
x
¼ 4:64ffiffiffiffiffiffiffiffi

Rex
p ð7:43bÞ

Substituting the value of d in Eq. (ii) of the wall shear stress, we get
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sw ¼ 3
2
lU1
d

¼ 3
2
lU1

ffiffiffiffiffiffiffiffi
Rex

p
4:64x

¼ 3
2
� 1
4:64

qU2
1

ffiffiffiffiffiffiffiffiffiffiffiffi
qU1x

l

s
l

qU1x

� �

¼ 1
2
qU2

1
0:6466ffiffiffiffiffiffiffiffiffi

qU1x
l

q
¼ 1

2
qU2

1
0:6466ffiffiffiffiffiffiffiffi

Rex
p ð7:44Þ

The local skin friction coefficient is

Cfx ¼ sw
1
2 qU

21

or

Cfx ¼ 0:6466ffiffiffiffiffiffiffiffi
Rex

p ð7:45Þ

The average value of the skin friction coefficient, following the procedure presented in
earlier section, is

Cf ¼ 1:2932ffiffiffiffiffiffiffiffi
ReL

p ð7:46Þ

where ReL is the Reynolds number based on the total length L of the plate in the direction of
flow.

Example 7.3

(a) Derive the von Karman momentum equation for flow past a flat plate in the form

sw ¼ qU2
1

d

dx

Zd
0

1� u

U1

� �
u

U1
dy

2
4

3
5

(b) Using the above equation and assuming the velocity distribution given by equation

u

U1
¼ 2

y

d
� y

d

� �2
;

determine the boundary layer thickness, wall shear stress and the skin friction coefficient for
the laminar flow over a flat plate.
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Solution

(a) Refer Sect. 7.5.
(b) Substitution in Eq. (7.39) gives

sw ¼ qU2
1

d

dx

Zd
0

1� 2
y

d
þ y

d

� �2� 	
2
y

d
� y

d

� �2� 	
dy

8<
:

9=
;

¼ qU2
1

d

dx

Zd
0

2
y

d
� y

d

� �2
�4

y

d

� �2
� y

d

� �4
þ 4

y

d

� �3� 	
dy

8<
:

9=
;

¼ qU2
1

d

dx

y2

d
� 5
3
y3

d2
þ y4

d3
� 1
5
y5

d4

� 	d
0

¼ qU2
1
dd
dx

1� 5
3
þ 1� 1

5

� 	
¼ 0:1333qU2

1
dd
dx

ðiÞ

At the wall,

sw ¼ l
@u

@y

� �
y¼o

¼ l
@

@y
U1

2y
d
� U1

y

d

� �2� 	
y¼0

¼ lU1
2
d
� 2

y

d2

� �� 	
y¼0

¼ 2lU1
d

ðiiÞ

Equating the above two values from Eqs. (i) and (ii),

0:1333qU2
1
dd
dx

¼ 2lU1
d

or

d
dd
dx

¼ 15l
qU1

or

d2

2
¼ 15l

qU1
xþC:

For the flow past a flat plate, the thickness of the boundary layer at the leading edge is
zero, i.e. d = 0 at x = 0. This gives C = 0. Therefore,
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d2

2
¼ 15l

qU1
x

or

d
x
¼ 5:477

ffiffiffiffiffiffiffiffiffiffiffiffi
l

qU1x

r

or

d
x
¼ 5:477ffiffiffiffiffiffiffiffi

Rex
p

where Rex is the Reynolds number based on the distance x form the leading edge of the plate.
From Eq. (ii) of the example,

sw ¼ 2lU1
d

¼ 2lU1

ffiffiffiffiffiffiffiffi
Rex

p
5:477x

¼ 2qU2
1

5:477
�

ffiffiffiffiffiffiffiffiffiffiffiffi
xqU1
l

s
� l
qU1

� 1
x

¼ 1
2
qU2

1 � 0:7303ffiffiffiffiffiffiffiffi
Rex

p :

The local skin friction coefficient

Cfx ¼ sw
1
2 qU

21
¼ 0:7303ffiffiffiffiffiffiffiffi

Rex
p

Average value of the skin friction coefficient is

Cf ¼ 1
L

ZL
0

Cfxdx

¼ 1
L

ZL
0

0:7303
ffiffiffiffiffiffiffiffiffiffiffiffi
l

qU1x

r
� dx

� 	

or

Cf ¼ 1:4606ffiffiffiffiffiffiffiffi
ReL

p

where ReL is the Reynolds number based on the plate length L from the leading edge of the
plate.

446 7 Convective Heat Transfer

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Example 7.4 Assuming a fourth-degree polynomial for the velocity profile of a laminar
boundary layer of a fluid flowing along a flat plate, show that the equation is

u

U1
¼ 2

y

d
� 2

y

d

� �3
þ y

d

� �4

Using the momentum integral equation, also determine the boundary layer thickness, wall
shear stress and skin friction coefficient. Also determine the relationship between boundary
layer thickness and the displacement thickness.

Solution

The fourth-degree polynomial equation is

u

U1
¼ C1 þC2

y

d

� �
þC3

y

d

� �2
þC4

y

d

� �3
þC5

y

d

� �4

The constants C1 to C5 can be determined from the following boundary conditions which
the velocity function must satisfy:

u=U1 ¼ 0 at y ¼ 0

u=U1 ¼ 1 at y ¼ d

@2u=@y2 ¼ 0 at y ¼ 0

@u=@y ¼ 0 at y ¼ d

@2u=@y2 ¼ 0 at y ¼ d

Applying the boundary conditions, we get

C1 ¼ 0

C1 þC2 þ C3 þ C4 þ C5 ¼ 1

C2 þ 2C3 þ 3C4 þ 4C5 ¼ 0

2C3 þ 6C4 þ 12C5 ¼ 0

C3 ¼ 0

The values of the constants from the above equations are

C1 ¼ 0;C2 ¼ 2;C3 ¼ 0;C4 ¼ �2; andC5 ¼ 1

This gives the equation of the velocity profile as

u

U1
¼ 2

y

d
� 2

y

d

� �3
þ y

d

� �4

Substitution in Eq. (7.39) gives
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sw ¼ qU2
1

d

dx

Zd
0

1� 2
y

d
þ 2

y

d

� �3
� y

d

� �4� 	
2
y

d
� 2

y

d

� �3
þ y

d

� �4� 	
dy

8<
:

9=
;

or

sw ¼ qU2
1

d

dx

Zd
0

2
y

d

� �
� 4

y

d

� �2
�2

y

d

� �3
þ 9

y

d

� �4
�4

y

d

� �5
�4

y

d

� �6
þ 4

y

d

� �7
� y

d

� �8� 	
dy

8<
:

9=
;

or

sw ¼ qU2
1

d

dx

y

d

� �2
� 4
3

y

d

� �3
� 1
2

y

d

� �4
þ 9

5
y

d

� �5
� 2
3

y

d

� �6
� 4
7

y

d

� �7
þ 1

2
y

d

� �8
� 1
9

y

d

� �9� 	
y¼d

d

( )

¼ qU2
1

d

dx
0:11746dð Þ

¼ 0:11746qU2
1
dd
dx

:

ðiÞ

The shear stress at the wall is also given by

sw ¼ l
@u

@y

� �
y¼0

¼ l
@

@y
2
y

d
� 2

y

d

� �3
þ y

d

� �4� 	
U1

 �
y¼0

¼ 2
lU1
d

: ðiiÞ

Equating Eqs. (i) and (ii), we get

0:11746qU2
1
dd
dx

¼ 2
lU1
d

or

d
dd
dx

¼ 17:03
l

qU1

or

d2

2
¼ 17:03

l
qU1

xþC:

The thickness of the boundary layer at the leading edge of the plate is zero, i.e. at x = 0,
d = 0. This gives C = 0. Hence,
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d2 ¼ 34:06
l

qU1
x

or

d ¼ 5:84
ffiffiffiffiffiffiffiffiffiffi
lx

qU1

r

or

d
x
¼ 5:84

ffiffiffiffiffiffiffiffiffiffiffiffi
l

qU1x

r
¼ 5:84ffiffiffiffiffiffiffiffi

Rex
p :

Substituting the value of d in Eq. (ii) of the wall shear stress, we get

sw ¼ 2
lU1
d

¼ 2lU1

ffiffiffiffiffiffiffiffi
Rex

p
5:84x

¼ 2� 1
5:84

qU2
1

ffiffiffiffiffiffiffiffiffiffiffiffi
qU1x

l

s
l

qU1x

� �

¼ 1
2
qU2

1
0:685ffiffiffiffiffiffiffiffiffi

qU1x
l

q ¼ 1
2
qU2

1
0:685ffiffiffiffiffiffiffiffi
Rex

p

The local skin friction coefficient is

Cfx ¼ sw
1
2 qU

21

or

Cfx ¼ 0:685ffiffiffiffiffiffiffiffi
Rex

p :

The average value of the skin friction coefficient, following the procedure presented in
earlier section, is

Cf ¼ 1:37ffiffiffiffiffiffiffiffi
ReL

p

where ReL is the Reynolds number based on the total length L of the plate in the direction of
flow.

Velocity displacement thickness,
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dvd ¼
Z1
0

1� u

U1

� �
dy

¼
Zd
0

1� 2
y

d
þ 2

y

d

� �3
� y

d

� �4� �
dy

¼ y� y2

d
þ 1

2
y4

d3
� 1
5
y5

d4

� 	d
0

¼ 3
10

d

or

dvd
x

¼ 3
10

� 5:84ffiffiffiffiffiffiffiffi
Rex

p ¼ 1:752ffiffiffiffiffiffiffiffi
Rex

p :

Example 7.5 If a six degree polynomial is assumed for the velocity profile of a laminar
boundary layer of a fluid flowing along a flat plate, show that the equation is

u

U1
¼ 2

y

d
� 5

y

d

� �4
þ 6

y

d

� �5
�2

y

d

� �6
:

Also determine the boundary layer thickness, wall shear stress and skin friction
coefficient.

Solution

The six degree polynomial equation is

u

U1
¼ C1 þC2

y

d

� �
þC3

y

d

� �2
þC4

y

d

� �3
þC5

y

d

� �4
þC6

y

d

� �5
þC7

y

d

� �6

The constants C1 to C7 can be determined from the following boundary conditions which
the velocity function must satisfy.

At the wall (y = 0), u = 0 and v = 0. Hence,

u=U1 ¼ 0 at y ¼ 0 ðiÞ
u=U1 ¼ 1 at y ¼ d ðiiÞ

At y = d, all the derivatives of u with respect to y must vanish, i.e.

@u=@y ¼ 0 at y ¼ d ðiiiÞ
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@2u=@y2 ¼ 0 at y ¼ d ðivÞ
@3u=@y3 ¼ 0 at y ¼ d ðvÞ

From the momentum equation, at the wall (y = 0, u = 0 and v = 0),

@2u=@y2 ¼ 0 at y ¼ 0 ðviÞ

At the wall, all the higher derivatives are also zero, i.e.

@3u=@y3 ¼ 0 at y ¼ 0 ðviiÞ

Applying the boundary conditions, we get

C1 ¼ 0

C1 þ C2 þ C3 þ C4 þ C5 þ C6 þ C7 ¼ 1

C2 þ 2C3 þ 3C4 þ 4C5 þ 5C6 þ 6C7 ¼ 0

2C3 þ 6C4 þ 12C5 þ 20C6 þ 30C7 ¼ 0

6C4 þ 24C5 þ 60C6 þ 120C7 ¼ 0

C3 ¼ 0

C4 ¼ 0

The values of the constants from the above equations are

C1 ¼ 0;C2 ¼ 2;C3 ¼ 0;C4 ¼ 0;C5 ¼ �5;C6 ¼ 6;C7 ¼ �2

This gives the equation of the velocity profile as

u

U1
¼ 2

y

d
� 5

y

d

� �4
þ 6

y

d

� �5
�2

y

d

� �6

Substitution in Eq. (7.39) gives

sw ¼ qU2
1

d

dx

Zd
0

1� 2
y

d
þ 5

y

d

� �4
�6

y

d

� �5
þ 2

y

d

� �6� 	
2
y

d
� 5

y

d

� �4
þ 6

y

d

� �5
�2

y

d

� �6� 	
dy

8<
:

9=
;

which gives

sw ¼ qU2
1

d

dx
0:109335dð Þ

¼ 0:109335qU2
1
dd
dx

ðviiiÞ
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The shear stress at the wall is also given by

sw ¼ l
@u

@y

� �
y¼0

¼ l
@

@y
2
y

d
� 5

y

d

� �4
þ 6

y

d

� �5
�2

y

d

� �6� 	
U1

 �
y¼0

¼ 2
lU1
d

: ðixÞ

Equating Eqs. (viii) and (ix), we get

0:109335qU2
1
dd
dx

¼ 2
lU1
d

or

d
dd
dx

¼ 18:2924
l

qU1

or

d2

2
¼ 18:2924

l
qU1

xþC

The thickness of the boundary layer at the leading edge of the plate is zero, i.e. at x = 0,
d = 0. This gives C = 0. Hence,

d2 ¼ 36:58
l

qU1
x

or

d
x
¼ 6:05

ffiffiffiffiffiffiffiffiffiffiffiffi
l

qU1x

r
¼ 6:05ffiffiffiffiffiffiffiffi

Rex
p :

Substituting the value of d in equation of the wall shear stress, we get

sw ¼ 2
lU1
d

¼ 2lU1

ffiffiffiffiffiffiffiffi
Rex

p
6:05x

¼ 2� 1
6:05

qU2
1

ffiffiffiffiffiffiffiffiffiffiffiffi
qU1x

l

s
l

qU1x

� �

¼ 1
2
qU2

1
0:6612ffiffiffiffiffiffiffiffiffi

qU1x
l

q ¼ 1
2
qU2

1
0:6612ffiffiffiffiffiffiffiffi

Rex
p
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The local skin friction coefficient is

Cfx ¼ sw
1
2 qU

21

or

Cfx ¼ 0:6612ffiffiffiffiffiffiffiffi
Rex

p :

The average value of the skin friction coefficient, following the procedure presented in
earlier sections, is

Cf ¼ 1:322ffiffiffiffiffiffiffiffi
ReL

p

where ReL is the Reynolds number based on the total length L of the plate in the direction of
flow.

Example 7.6 The velocity distribution in the boundary layer over a flat plate is given by

u

U1
¼ sin

py
2d

� �

Using the momentum integral equation, determine the boundary layer thickness, wall
shear stress and skin friction coefficient.

Solution

Substitution in Eq. (7.39) gives

sw ¼ qU2
1

d

dx

Zd
0

1� sin
py
2d

� �h i
sin

py
2d

� �h i
dy

8<
:

9=
;

or

sw ¼ qU2
1

d

dx

Zd
0

sin
py
2d

� �
dy�

Zd
0

sin2
py
2d

� �
dy

8<
:

9=
;

¼ qU2
1

d

dx

Zd
0

sin
py
2d

� �
dy� 1

2

Zd
0

1� cos
py
d

� �h i
dy

8<
:

9=
;

¼ qU2
1

d

dx
� 2d

p
cos

py
2d

� �� 	d
0

� 1
2

y� d
p
sin

py
d

� �� 	d
0

( )

¼ qU2
1

d

dx

2d
p
� d
2

� 	
¼ 0:1366qU2

1
dd
dx

ðiÞ
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The shear stress at the wall is also given by

sw ¼ l
@u

@y

� �
y¼0

¼ l
@

@y
sin

py
2d

� �
U1

h i
y¼0

¼ lU1
p
2d

cos
py
2d

� �h i
y¼0

¼ 1:571
lU1
d

ðiiÞ

Equating Eqs. (i) and (ii), we get

0:1366qU2
1
dd
dx

¼ 1:571
lU1
d

or

d
dd
dx

¼ 11:5
l

qU1

or

d2

2
¼ 11:5

l
qU1

xþC

The thickness of the boundary layer at the leading edge of the plate is zero, i.e. at x = 0,
d = 0. This gives C = 0 and we have

d
x
¼ 4:796

ffiffiffiffiffiffiffiffiffiffiffiffi
l

qU1x

r
¼ 4:796ffiffiffiffiffiffiffiffi

Rex
p :

Substituting the value of d in Eq. (ii) of the wall shear stress, we get

sw ¼ 1:571
lU1
d

¼ 1:571lU1

ffiffiffiffiffiffiffiffi
Rex

p
4:796x

¼ 1:571� 1
4:796

qU2
1

ffiffiffiffiffiffiffiffiffiffiffiffi
qU1x

l

s
l

qU1x

� �

¼ 1
2
qU2

1
0:655ffiffiffiffiffiffiffiffiffi

qU1x
l

q ¼ 1
2
qU2

1
0:655ffiffiffiffiffiffiffiffi
Rex

p

The local skin friction coefficient is

Cfx ¼ sw
1
2 qU

21
¼ 0:655ffiffiffiffiffiffiffiffi

Rex
p :
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The average value of the skin friction coefficient, following the procedure presented in
earlier sections, is

Cf ¼ 1:31ffiffiffiffiffiffiffiffi
ReL

p

where ReL is the Reynolds number based on the total length L of the plate in the direction of
flow.

Example 7.7 If the velocity distribution through the laminar boundary layer over a flat plate
is assumed to be a straight line, determine the boundary layer thickness, wall shear stress and
skin friction coefficient using the momentum integral equation.

Solution

The equation of the velocity profile is given as

u

U1
¼ y

d

(i) The wall shear stress,

sw ¼ qU2
1

d

dx

Zd
0

1� u

U1

� �
u

U1
dy

2
4

3
5

¼ qU2
1

d

dx

Zd
0

1� y

d

� � y
d
dy

2
4

3
5

¼ qU2
1

d

dx

y2

2d
� y3

3d2

� 	d
0

¼ 0:167qU2
1
dd
dx

ðiÞ

The shear stress at the wall is also given by

sw ¼ l
@u

@y

� �
y¼0

¼ l
@

@y

y

d

� �
U1

h i
y¼0

¼ lU1
d

ðiiÞ

Equating Eqs. (i) and (ii), we get

0:167qU2
1
dd
dx

¼ lU1
d
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or

d
dd
dx

¼ 1
0:167

l
qU1

or

d2

2
¼ 5:99

l
qU1

xþC

The thickness of the boundary layer at the leading edge of the plate is zero, i.e. at x = 0,
d = 0. This gives C = 0 and we get

d
x
¼ 3:46

ffiffiffiffiffiffiffiffiffiffiffiffi
l

qU1x

r
¼ 3:46ffiffiffiffiffiffiffiffi

Rex
p

Substituting the value of d in Eq. (ii) of the wall shear stress, we get

sw ¼ lU1
d

¼ lU1

ffiffiffiffiffiffiffiffi
Rex

p
3:46x

¼ 1
2
qU2

1
0:578ffiffiffiffiffiffiffiffiffi

qU1x
l

q ¼ 1
2
qU2

1
0:578ffiffiffiffiffiffiffiffi
Rex

p

The local skin friction coefficient is

Cfx ¼ sw
1
2 qU

21
¼ 0:578ffiffiffiffiffiffiffiffi

Rex
p

The average value of the skin friction coefficient, following the procedure presented in
earlier sections, is

Cf ¼ 1:156ffiffiffiffiffiffiffiffi
ReL

p

where ReL is the Reynolds number based on the total length L of the plate.
The results for different velocity distributions are tabulated in Table 7.3.

Example 7.8 For the velocity profile equations at S. No. 1-4 and 6 of Table 7.3, determine
the velocity displacement thickness relations.
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Solution

The velocity displacement thickness, when the limit ∞ is replaced by d, is given by

dvd ¼
Zd
0

1� u

U1

� �
dy

(i) Substituting the equation u
U1

¼ y
d of the velocity profile, we have

dvd ¼
Zd
0

1� y

d

� �
dy ¼ y� y2

2d

� �d

0

¼ d
2
:

Substitution of value of d in terms of Rex gives

dvd
x

¼ 1
2

3:46ffiffiffiffiffiffiffiffi
Rex

p
� �

¼ 1:73ffiffiffiffiffiffiffiffi
Rex

p :

(ii) Substituting the equation u
U1

¼ 2 y
d � y

d

� �2
of the velocity profile, we have

dvd ¼
Zd
0

1� 2
y

d

� �
þ y

d

� �2� 	
dy ¼ y� y2

d
þ y3

3d2

� �d

0

¼ d
3
:

Table 7.3 Effect of the velocity profile in the boundary layer on the boundary layer thickness and friction
factor

Velocity profile Boundary conditions (d/x)√Rex dvd√Rex Cf√Rex

y = 0 y = d
u

U1
¼ y

d u = 0 u = U∞ 3.46 1.73 1.156

u
U1

¼ 2 y
d � y

d

� �2 u = 0 u = U∞ 5.477 1.826 1.4606

u
U1

¼ 3
2
y
d � 1

2
y
d

� �3 u = 0
∂2u/∂y2 = 0

u= U∞

∂u/∂y = 0
4.64 1.74 1.293

u
U1

¼ sin py
2d

� �
4.796 1.743 1.31

u
U1

¼ 2 y
d � 2 y

d

� �3 þ y
d

� �4 u = 0
∂2u/∂y2 = 0

u = U∞

∂u/∂y = 0
∂2u/∂y2 = 0

5.84 1.752 1.370

u
U1

¼ 2 y
d � 5 y

d

� �4 þ 6 y
d

� �5�2 y
d

� �6 u = 0
∂2u/∂y2 = 0
∂3u/∂y3 = 0

u = U∞

∂u/∂y = 0
∂2u/∂y2 = 0
∂3u/∂y3 = 0

6.05 1.729 1.322

Blasius solution u = 0 u = 0.99 U∞ 5.0 1.729 1.3282
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Substitution of value of d in terms of Rex gives

dvd
x

¼ 1
3

5:477ffiffiffiffiffiffiffiffi
Rex

p
� �

¼ 1:826ffiffiffiffiffiffiffiffi
Rex

p :

(iii) Substituting the equation u
U1

¼ 3
2
y
d � 1

2
y
d

� �3 of the velocity profile, we have

dvd ¼
Zd
0

1� 3
2

y

d

� �
þ 1

2
y

d

� �3� 	
dy ¼ y� 3y2

4d
þ y4

8d3

� �d

0

¼ 3d
8
:

Substitution of value of d in terms of Rex gives

dvd
x

¼ 3
8

4:64ffiffiffiffiffiffiffiffi
Rex

p
� �

¼ 1:74ffiffiffiffiffiffiffiffi
Rex

p :

(iv) Substituting the equation u
U1

¼ sin py
2d

� �
of the velocity profile, we have

dvd ¼
Zd
0

1� sin
py
2d

� �h i
dy ¼ yþ cos

py
2d

� � 2d
p

� 	d
0

¼ 0:3634d:

Substitution of value of d in terms of Rex gives

dvd
x

¼ 0:3634
4:796ffiffiffiffiffiffiffiffi
Rex

p
� �

¼ 1:743ffiffiffiffiffiffiffiffi
Rex

p :

(v) Substituting the equation u
U1

¼ 2 y
d � 5 y

d

� �4 þ 6 y
d

� �5�2 y
d

� �6 of the velocity profile, we

have

dvd ¼
Zd
0

1� 2
y

d
þ 5

y

d

� �4
�6

y

d

� �5
þ 2

y

d

� �6� 	
dy

¼ y� y2

d
þ y5

d4
� y6

d5
þ 2y7

7d6

� �d

0

¼ 2d
7
:

Substitution of value of d in terms of Rex gives

dvd
x

¼ 2
7

6:05ffiffiffiffiffiffiffiffi
Rex

p
� �

¼ 1:729ffiffiffiffiffiffiffiffi
Rex

p :
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7.7 Energy Equation of Laminar Boundary Layer Over a Flat Plate

The energy equation for the laminar boundary layer system can be developed by making
energy balance for the elemental control volume shown in Fig. 7.14 The following
assumptions are being made.

1. The fluid is incompressible and flow is steady.
2. The viscosity, thermal conductivity and specific heat are constant.
3. There is negligible heat conduction in the direction of flow, i.e. in the x-direction.

(a) Rate of heat flow by conduction:
(i) Heat inflow by conduction through the bottom face

¼ �k Dx:1ð Þ @T
@y

(ii) Heat outflow by conduction through the top face

¼ �kDx
@T

@y
� kDx

@

@y

@T

@y

� �
:Dy

So the net heat flow by conduction into the element

y

x

U∞, T∞

Thermal boundary layer

ρu Δy(h + u2/2) + 
[∂(ρu Δy (h + u2/2))/∂x]Δx         

ρu (Δy.1).
(h + u2/2)

Δy 

Δx 

- k(∂T/∂y)(Δx.1) + 
ρv(Δx.1)(h + u2/2)

- k(∂T/∂y)Δx - kΔx[∂(∂T/∂y)/∂y]Δy +
ρvΔx(h + u2/2) + [∂[ρvΔx (h + u2/2)]/∂y]Δy

Unit depth in z-direction

Elemental control volume

μ (∂u/∂y)(Δx.1)u

{μ (∂u/∂y) + μ[∂(∂u/∂y)/∂y]Δy}.Δx.
[u + (∂u/∂y) Δy] 

Fig. 7.14 Energy balance for an elemental control volume
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¼ �kDx
@T

@y
� �kDx

@T

@y
� kDx

@

@y

@T

@y

� �
:Dy

� 	

¼ kDx
@

@y

@T

@y

� �
:Dy

� 	

¼ k
@2T

@y2
Dx:Dy

� 	

(b) Rate of energy flow with the mass, i.e. the energy convected:

Energy convected into the control volume through the bottom face

¼ ðmass flow rateÞ � ðenthalpyþ kinetic energy of the fluidÞ

¼ qv Dx:1ð Þ hþ u2

2

� �

where the fluid velocity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2ð Þp � u; since v � u.

Similarly, the energy convected into the control volume through the left face

¼ qu Dy:1ð Þ hþ u2

2

� �

Hence, total inflow of energy by convection

¼ qv Dx:1ð Þ hþ u2

2

� �
þ qu Dy:1ð Þ hþ u2

2

� �

Total rate of outflow of energy by convection

¼ qv Dx:1ð Þ hþ u2

2

� �
þ @

@y
qv Dx:1ð Þ hþ u2

2

� �� 	
Dyþ qu Dy:1ð Þ hþ u2

2

� �

þ @

@x
qu Dy:1ð Þ hþ u2

2

� �� 	
Dx

Net inflow of energy due to convection, the difference of the in- and outflow, is

¼ � @

@y
qv Dx:1ð Þ hþ u2

2

� �� 	
Dy� @

@x
qu Dy:1ð Þ hþ u2

2

� �� 	
Dx

¼ � @

@y
v hþ u2

2

� �� 	
þ @

@x
u hþ u2

2

� �� 	 �
qDxDy

¼ � @v

@y
hþ u2

2

� �
þ v

@

@y
hþ u2

2

� �
þ @u

@x
hþ u2

2

� �
þ u

@

@x
hþ u2

2

� � �
qDxDy

¼ � hþ u2

2

� �
@u

@x
þ @v

@y

� �
þ u

@

@x
hþ u2

2

� �
þ v

@

@y
hþ u2

2

� � �
qDxDy
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From the continuity equation, (∂u/∂x +∂v/∂y) = 0. Knowing that enthalpy h = cpT, the
above equation transforms to

� u
@

@x
cpT þ u2

2

� �
þ v

@

@y
cpT þ u2

2

� �� 	
qDxDy

¼ � qucp
@T

@x
þ qu:u

@u

@x
þ qvcp

@T

@y
þ qv:u

@u

@y

� 	
DxDy

¼ � qucp
@T

@x
þ qvcp

@T

@y
þ u qu

@u

@x
þ qv

@u

@y

� �� 	
DxDy

Using Eq. (7.20) of the hydrodynamic boundary layer, the above equation transforms to

¼ � qucp
@T

@x
þ qvcp

@T

@y
þ u l

@2u

@y2

� �� 	
DxDy

(c) The viscous work quantities:

These quantities are indicated in Fig. 7.14. The viscous work is a product of viscous
shear force and the distance this force moves in unit time, i.e. the velocity.
Viscous work at the lower face is

¼ s Dx:1ð Þ:u ¼ l
@u

@y
Dx:u

Viscous work at the upper face is

¼ l
@u

@y
þ l

@

@y

@u

@y

� �
Dy

� 	 �
� Dx� uþ @u

@y

� �
Dy

� 	

Net energy delivered to the element is

¼ l
@u

@y
þ l

@

@y

@u

@y

� �
Dy

� 	 �
� Dx� uþ @u

@y

� �
Dy

� 	
� l

@u

@y
Dx:u

Neglecting the second-order differential, the simplification of the above equation gives

l
@2u

@y2
uþ l

@u

@y

� �2
" #

DxDy

The energy balance on the element gives

k
@2T

@y2
� qucp

@T

@x
þ qvcp

@T

@y
þ u l

@2u

@y2

� �� 	
þ l

@2u

@y2
uþ l

@u

@y

� �2
" #)(

DxDy ¼ 0

7.7 Energy Equation of Laminar Boundary Layer Over a Flat Plate 461

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


or

k
@2T

@y2
� qucp

@T

@x
þ qvcp

@T

@y

� �
þ l

@u

@y

� �2

¼ 0

or

u
@T

@x
þ v

@T

@y

� �
¼ k

qcp

@2T

@y2
þ l

qcp

@u

@y

� �2

or

u
@T

@x
þ v

@T

@y

� �
¼ a

@2T

@y2
þ l

qcp

@u

@y

� �2

ð7:47Þ

This is the energy equation of the laminar boundary layer over a flat plate. The terms on
the left-hand side of the equation represent net transport of the energy into the control
volume. The first term on the right-hand side of the equation is the net heat conducted out of
the control volume and the second term is the viscous work done on the element.

For the low-velocity incompressible flow, the magnitude of the viscous energy term is
small and can be neglected.2 This gives

2Applying order of magnitude analysis (u  U∞, y  d) to the two terms on the right-hand side of Eq. (7.47), we
get

a
@2T

@y2
¼ a

T

d2

and

l
qcp

@u

@y

� �2

¼ l
qcp

U1
d

� �2

The ratio of these quantities is

l
aqcp

U2
1
T

Introducing Prandtl number Pr ¼ lcp
k (a non-dimensional group of fluid properties) and a ¼ k

qcp
, the above

ratio term transforms to

Pr
U2

1
cpT

which can be shown to be a very small term. For example, consider flow of air at U∞ = 100 m/s at
T = 300 K and putting cp = 1005 J/(kg K) and Pr = 0.7, we have

Pr
U2

1
cpT

¼ 0:0232 � 1:

Thus l
qcp

@u
@y

� �2
� a @2T

@y2 and can be neglected.
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u
@T

@x
þ v

@T

@y
¼ a

@2T

@y2
ð7:48Þ

which is similar to the momentum equation derived earlier. The solutions of the energy and
momentum equations have the same form when a = t. The ratio of a and t is the Prandtl
number Pr. The value of the Prandtl number has an important influence on the convective
heat transfer since it decides the relative magnitude of the thickness of the hydraulic and
thermal boundary layers3:

when Pr = 1, d = dt
when Pr > 1, d > dt
and when Pr < 1, d < dt.

7.7.1 Pohlhausen’s Solution

The procedure is identical to that used for the momentum equation as the two equations are
similar mathematically.

Let us assume that a dimensionless temperature can be defined as

Tw � T

Tw � T1
¼ hðgÞ

where g ¼ y
ffiffiffiffiffiffi
U1
mx

q
:

The velocity components u and v, and the stream function w have been evaluated earlier
as

u ¼ U1f 0;

m ¼ 1
2

ffiffiffiffiffiffiffiffiffiffi
mU1
x

r
f 0g� fð Þ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffi
mU1
x

r
f 0:y

ffiffiffiffiffiffiffiffi
U1
mx

r
� f

 !

¼ 1
2
U1y

x
f 0 � 1

2

ffiffiffiffiffiffiffiffiffiffi
mU1
x

r
f ;

w ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
mU1x

p
f

where f = Rg(η) dη and (∂f/∂η) = f ′.

3Multiplying numerator and denominator of the Prandtl number equation by density q, we get

Pr ¼ qcp
k

:
l
q
¼ m

a
¼ kinematic viscosity

thermal diffusivity
ð7:49Þ

Kinematic viscosity is diffusivity for momentum or velocity and thermal diffusivity refers to the diffusivity of
heat or temperature. If Pr = 1, the hydrodynamic and thermal boundary layers develop together at the same
rate. For high Prandtl number fluids, the hydrodynamic boundary layer develops rapidly and for a fluid with
Pr < 1, the opposite holds true.
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Now the derivatives ∂T/∂x, ∂T/∂y and ∂2T/∂y2 of the energy equation can be determined
as shown below:

@T

@x
¼ � Tw � T1ð Þ @h

@x

¼ � Tw � T1ð Þ @h
@g

@g
@x

¼ � Tw � T1ð Þ @h
@g

@

@x
y

ffiffiffiffiffiffiffiffi
U1
mx

r !

¼ � Tw � T1ð Þ � � y

2x

ffiffiffiffiffiffiffiffi
U1
mx

r !
h0

where (∂h/∂η) = h′.

@T

@y
¼ � Tw � T1ð Þ @h

@y

¼ � Tw � T1ð Þ @h
@g

@g
@y

¼ � Tw � T1ð Þh0
ffiffiffiffiffiffiffiffi
U1
mx

r

@2T

@y2
¼ @

@y

@T

@y

� �

¼ � Tw � T1ð Þ @

@y
h0

ffiffiffiffiffiffiffiffi
U1
mx

r !

¼ � Tw � T1ð Þ @

@g
h0

ffiffiffiffiffiffiffiffi
U1
mx

r !
� @g

@y

¼ � Tw � T1ð Þ
ffiffiffiffiffiffiffiffi
U1
mx

r
@

@g
@h
@g

� �
�

ffiffiffiffiffiffiffiffi
U1
mx

r

¼ � Tw � T1ð Þ U1
mx

� �
@2h
@g2

� �

¼ � Tw � T1ð Þ U1
mx

� �
h00

where (∂2h/∂η2) = h′′.
Substitution of various terms in the energy equation

u
@T

@x
þ v

@T

@y
¼ a

@2T

@y2
;
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we get

U1f 0 � Tw � T1ð Þ � � y
2x

ffiffiffiffiffiffi
U1
mx

q� �
h0

h i
þ 1

2
U1y
x f 0 � 1

2

ffiffiffiffiffiffiffi
mU1
x

q
f

h i
� � Tw � T1ð Þh0

ffiffiffiffiffiffi
U1
mx

q� �
¼ �a Tw � T1ð Þ U1

mx

� �
h00

By simplification,

h00 þ 1
2
ðt=aÞfh0 ¼ 0 ð7:50aÞ

h00 þ 1
2
Pr fh0 ¼ 0 ð7:50bÞ

The boundary conditions are

T ¼ Tw at y ¼ 0 hðgÞ ¼ 0 at g ¼ 0
T ¼ T1 at y ! 1 hðgÞ ¼ 1 at g ! 1

Equation (7.50b) can be written as

dh0

h0
þ 1

2
Pr fh0 ¼ 0

which is an ordinary differential equation and the Pohlhausen solution is

h0 ¼ C1 exp � 1
2
Pr
Zg
0

fdg

0
@

1
A ð7:51aÞ

and

hðgÞ ¼ C1

Zg
0

exp � 1
2
Pr
Zg
0

fdg

0
@

1
A

2
4

3
5dgþC2 ð7:51bÞ

The boundary condition h(η) = 0 at η = 0 gives C2 = 0. For the boundary condition
h(η) = 1 at η ! ∞, we get

C1 ¼ 1R1
0 exp � 1

2 Pr
R g
0 fdg

� �� �
dg

Therefore,

hðgÞ ¼
R g
0 exp � 1

2 Pr
R g
0 fdg

� �� �
dgR1

0 exp � 1
2 Pr

R g
0 fdg

� �� �
dg

ð7:52Þ

Since the function f has already been evaluated in the solution of the momentum equation,
the above equation can be solved for known values of the Prandtl number.
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The dimensionless temperature distribution for different values of Prandtl number is
presented in Fig. 7.15 as function of η (Pohlhausen 1921).

The dimensionless slope of the temperature distribution at the wall (where η = 0), from
Eq. (7.51a), is

ðh0Þg¼0 ¼
dh
dg

� �
g¼0

¼ C1: ð7:53Þ

Pohlhausen showed that for the moderate values of the Prandtl number (0.6 < Pr < 15),

ðh0Þg¼0 ¼
dh
dg

� �
g¼0

¼ 0:332Pr1=3: ð7:54Þ

Knowing the dimensionless temperature distribution at the wall, the local heat transfer
coefficient hx at the wall can be evaluated from

hx ¼ qw
Tw � T1

where the heat transfer at the wall qw, from the Fourier’s law, is

qw ¼ �k
@T

@y

� �
y¼0

Hence,

hx ¼
�k @T

@y

� �
y¼0

Tw � T1
ð7:55Þ

−
−
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w 3

15

300
1000

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

0.2

0.4

0.6

0.8

1.0

0
0

0.6
1.0

η

Fig. 7.15 Effect of Prandtl number on temperature distribution
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For Tw�T
Tw�T1

¼ hðgÞ,

@T

@y

� �
y¼0

¼ � Tw � T1ð Þ
ffiffiffiffiffiffiffiffi
U1
mx

r
h0ð Þg¼0

¼ � Tw � T1ð Þ
ffiffiffiffiffiffiffiffi
U1
mx

r !
0:332Pr1=3:

Substitution of the value of (∂T/∂y)y = 0 in the equation of hx gives

hx ¼
�k � Tw � T1ð Þ

ffiffiffiffiffiffi
U1
mx

q� �
0:332Pr1=3

h i
Tw � T1

¼ 0:332Pr1=3
k

x

ffiffiffiffiffiffiffiffiffiffi
U1x

m

r !

or

hxx

k
¼ 0:332Pr1=3

ffiffiffiffiffiffiffiffiffiffi
U1x

m

r !
ð7:56aÞ

The group of the terms (hxx/k) on the left-hand side of the equation is dimensionless and is
known as the local Nusselt number Nux. Thus

Nux ¼ 0:332Pr1=3Re1=2x ð7:56bÞ

The average heat transfer coefficient over the plate length L can be evaluated as

h ¼ 1
L

ZL
0

hxdx

¼ 0:332Pr1=3
1
L

ZL
0

k

x

ffiffiffiffiffiffiffiffiffiffi
U1x

m

r !
dx

¼ 0:332Pr1=3
1
L
k

ffiffiffiffiffiffiffiffi
U1
m

r ZL
0

1ffiffiffi
x

p dx

¼ 0:332Pr1=3
1
L
k

ffiffiffiffiffiffiffiffi
U1
m

r
2L1=2

¼ 0:664Pr1=3
1
L
k

ffiffiffiffiffiffiffiffiffiffi
U1L

m

r
¼ 2 hxð Þx¼L

The equation of h can also be put in the non-dimensional form as
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hL

k
¼ 0:664Pr1=3

ffiffiffiffiffiffiffiffiffiffi
U1L

m

r

This gives the equation of the average Nusselt number over the plate length L as

Nu ¼ 0:664Pr1=3Re1=2L ð7:57Þ

Equation (7.75b) can be written as

Nux
Rex Pr

¼ 0:332Pr�2=3Re�1=2
x

The group [Nux/(Rex Pr)] is also a non-dimensional and is termed as Stanton number Stx.
Hence,

Stx ¼ 0:332Pr�2=3Re�1=2
x

or

StxPr2=3 ¼ 1
2

0:664ffiffiffiffiffiffiffiffi
Rex

p
� �

: ð7:58Þ

Using Eq. (7.37), we have

StxPr2=3 ¼ Cfx

2
: ð7:59Þ

This establishes a relation between the Stanton number and the friction factor.
The Stanton number is used sometimes as an alternative for Nusselt number when pre-

senting heat transfer data. Substitution of Nu = hL/k, Pr = lcp/k and Re = qUL/l gives

St ¼ h

cpqU
ð7:60Þ

7.7.2 von Karman Integral Technique (Integral Analysis of Energy
Equation for the Laminar Boundary Layer)

Figure 7.16 shows the hydrodynamic and thermal boundary layers developed over a flat
plate placed parallel to the fluid stream at free-stream velocity U∞ and temperature T∞. The
wall temperature is Tw.

As in the case of the hydrodynamic boundary layer, let the profile of the temperature
distribution through the thermal boundary layer is represented by a cubic parabola, i.e.

T ¼ Tw þAyþBy2 þCy3:
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In terms of the temperature difference between the fluid and wall, h = T − Tw, the
expression of temperature distribution becomes

h ¼ AyþBy2 þCy3: ð7:61Þ

The constants A, B and C of the equation are found by applying the boundary conditions
as follows.

If the thickness of the boundary layer is dt, then the following boundary conditions must
be satisfied:

h ¼ h1 at y ¼ dt ðiÞ
@h=@y ¼ 0 at y ¼ dt ðiiÞ

At the wall (y = 0),

T ¼ Tw; i:e: h ¼ 0 ðiiiÞ

Again at the wall, u and v are zero. Inserting this condition in the energy equation, we get

@2T=@y2
� � ¼ 0 ¼ @2h=@y2

� � ðivÞ

Applying the boundary conditions (i) to (iv) to Eq. (7.61), we obtain

B ¼ 0;A ¼ 3h1= 2dtð Þ and C ¼ �h1= 2d3t
� �

Substitution of the values of the constants in Eq. (7.61) gives

x0

y

x

U∞, T∞
Hydrodynamic b.l.

Thermal b.l.

U∞

A

A B

H

dx

dyu

Plate

y

x

Control 
volume

U∞, T∞

T∞

δt T
δ

Hydrodynamic 
boundary layer

Thermal 
boundary layer

Tw Unit depth

B

Fig. 7.16 Elemental control volume for integral energy analysis of laminar boundary layer
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h
h1

¼ T � Tw
T1 � Tw

¼ 3
2
y

dt
� 1
2

y

dt

� �3

ð7:62Þ

At the wall, i.e. at y = 0, the fluid is at rest and hence is not having any velocity
component perpendicular to the wall. Thus, the heat transfer at the wall is due to the
conduction only.

Knowing the dimensionless temperature distribution at the wall, the local heat transfer
coefficient hx at the wall can be evaluated from

hx ¼ qw
Tw � T1

:

where the heat transfer at the wall qw, from the Fourier’s law, is

qw ¼ �k
@T

@y

� �
y¼0

Hence,

hx ¼
�k @T

@y

� �
y¼0

Tw � T1

where

@T

@y

� �
y¼0

¼ @h
@y

� �
y¼o

¼ h1
@

@y

3
2
y

dt
� 1
2

y

dt

� �3
" #)

y¼0

8<
: ¼ 3

2dt
h1 ð7:63Þ

This gives

hx ¼ � 3
2

kh1
Tw � T1ð Þdt

¼ � 3
2
k T1 � Twð Þ
Tw � T1ð Þdt

or

hx ¼ 3
2

k

dt

� �
ð7:64Þ

Thus, the heat transfer coefficient at the wall can be determined by finding the thickness dt
of the thermal boundary layer, which can be obtained by the integral analysis of the thermal
boundary layer presented below.

Let us consider the control volume in Fig. 7.16 bounded by the planes AA’, AB, BB’ and
A’B’ whose length in direction x is dx. Its height H is greater than dt and d.

470 7 Convective Heat Transfer

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Energy balance for the control volume gives

Heat transfer at the wall by conductionþEnergy convected into the control volume
þNet viscouswork ¼ Energy convected out

ðaÞ

Heat transfer at the wall by conduction over the plate length dx is

dqw ¼ �kðdx:1Þ @T

@y

� �
y¼0

The energy convected into the control volume through plane AA’ for the unit width of
plate

¼ mass low rate� ðenthalpyþ kinetic energyÞ

¼
ZH
0

quðdy:1ÞcpT

¼ qcp

ZH
0

uTdy

where the kinetic energy term has been assumed to be negligible compared to the enthalpy of
the fluid and the thermophysical properties of the fluid have been assumed to be constant.

The energy convected out of the control volume through plane BB’

¼ qcp

ZH
0

uTdyþ d

dx
qcp

ZH
0

uTdy

0
@

1
Adx

The mass flow rate through plane A’B’ is difference of the mass flow through planes BB’
and AA’, i.e.

¼ q
ZH
0

udyþ d

dx
q
ZH
0

udy

0
@

1
Adx� q

ZH
0

udy ¼ d

dx
q
ZH
0

udy

0
@

1
Adx

This mass is at temperature T∞, since H > dt, and carries with it an energy equal to

qcpT1
d

dx

ZH
0

udy

0
@

1
Adx

The viscous shear force is the product of the shear stress and the area (dx.1), i.e.

s dx:1ð Þ ¼ l
@u

@y
dx
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and the distance through which this force acts per unit time in respect to the elemental strip of
thickness dy is

@u

@y

� �
dy

So the net viscous energy delivered to the control volume is

¼
ZH
0

l
du

dy
dx

� �
� du

dy
dy

¼ l
ZH
0

du

dy

� �2

dxdy

Substituting various terms in Eq. (a) gives

�kðdx:1Þ @T

@y

� �
y¼0

þ qcp

ZH
0

uTdyþ qcpT1
d

dx

ZH
0

udy

0
@

1
Adxþ l

ZH
0

du

dy

� �2

dxdy

¼ qcp

ZH
0

uTdyþ d

dx
qcp

ZH
0

uTdy

0
@

1
Adx

or

d

dx

ZH
0

T1 � Tð Þudy
0
@

1
Aþ l

qcp

ZH
0

du

dy

� �2

dy

2
4

3
5 ¼ k

qcp

@T

@y

� �
y¼0

or

d

dx

ZH
0

T1 � Tð Þudy
0
@

1
Aþ l

qcp

ZH
0

du

dy

� �2

dy

2
4

3
5 ¼ a

@T

@y

� �
y¼0

ð7:65Þ

This is the integral energy equation of the boundary layer. For low velocity flow, the
viscous work term can be neglected and the integral energy equation reduces to

d

dx

ZH
0

T1 � Tð Þudy ¼ a
@T

@y

� �
y¼o

ð7:66Þ

Left-hand side of the equation can be rewritten as

472 7 Convective Heat Transfer

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


d

dx

ZH
0

T1 � Tð Þudy ¼ d

dx

ZH
0

h1 � hð Þudy

¼ h1U1
d

dx

ZH
0

1� h
h1

� �
u

U1
dy

2
4

3
5

Substituting values of h/h∞ and u/U∞ from temperature and velocity distribution equa-
tions, i.e. from Eqs. (7.62) and (7.42), we get

d
dx

RH
0

T1 � Tð Þudy ¼ h1U1 d
dx

RH
0

1� 3
2
y
dt
þ 1

2
y
dt

� �3� 	
� 3

2
y
d � 1

2
y
d

� �3h i
dy

¼ h1U1 d
dx

RH
0

3
2
y
d � 9

4
y
d

� � y
dt

� �
þ 3

4
y
d

� � y
dt

� �3
� 1

2
y
d

� �3 þ 3
4

y
dt

� �
y
d

� �3� 1
4

y
d

� �3 y
dt

� �3� 	
dy

For most of the fluids, dt < d. Hence, integration is to be carried out up to y = dt (since for
y > dt the integrand will be zero). Thus

d

dx

Zdt
0

T1 � Tð Þudy ¼ h1U1
d

dx

3
2
y2

2d
� 9
4

y3

3ddt

� �
þ 3

4
y5

5dd3t

 !
� 1
2

y4

4d3

� �
þ 3

4
y5

5d3dt

� �
� 1
4

y7

7d3d3t

 !3
2
4

3
5
y¼dt

¼ h1U1
d

dx

3
20

d2t
d

� �
� 3
280

d4t
d3

� �� 	

Representing the thickness ratio of the thermal and hydrodynamic layers dt/d by n,

d

dx

Zdt
0

T1 � Tð Þudy ¼ h1U1
d

dx

3
20

dn2 � 3
280

dn4
� 	

ð7:67aÞ

For the assumption dt < d, i.e. n < 1, (3/280)dn 4 � (3/20)dn2, hence may be neglected
and the above equation transforms to

d

dx

Zdt
0

T1 � Tð Þudy ¼ 3
20

h1U1
d

dx
dn2
� �

¼ 3
20

h1U1 2dn
dn
dx

þ n2
dd
dx

� �
ð7:67bÞ

From Eq. (7.63),

a
@T

@y

� �
y¼0

¼ 3a
h1
2dt
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Using (7.67b) and above equation, Eq. (7.66) becomes

3
20

h1U1 2dn
dn
dx

þ n2
dd
dx

� �
¼ 3a

h1
2dt

Using dt = n d and rearranging the terms,

a ¼ 1
10

U1 2d2n2
dn
dx

þ dn3
dd
dx

� �

From Eq. (7.43a) of hydrodynamic boundary layer,

d2 ¼ 280
13

mx
U1

and

d
dd
dx

¼ 140
13

m
U1

Hence,

a ¼ 1
10

U1 2n2
280
13

mx
U1

� �
dn
dx

þ n3
140
13

m
U1

� �

or

a ¼ 14
13

m 4n2x
dn
dx

þ n3
� �

or

n3 þ 4xn2
dn
dx

¼ 13
14

a
m

or

n3 þ 4x
3
dn3

dx
¼ 13

14
a
m

ð7:68Þ

The above equation is a linear differential equation of first order in n 3. Its solution is

n3 ¼ Cx�3=4 þ 13
14

a
m

The constant of integration can be determined from the condition that at x = x0 (heating of
the plate has been assumed to start at x = x0), the thickness of the thermal boundary layer
dt = 0, i.e. dt/d = n = 0. This gives
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C ¼ � 13
14

a
m

x0ð Þ3=4

Hence,

n3 ¼ � 13
14

a
m

x0ð Þ3=4x�3=4 þ 13
14

a
m

or

n ¼ 13
14

a
m

1� x0
x

� �3=4� 	 �1=3

or

n ¼ 1
1:025

Pr�1=3 1� x0
x

� �3=4� 	1=3
ð7:69aÞ

where the ratio (a/t) is the Prandtl number Pr.
If the entire length of the plate is heated then x0 = 0 and Eq. (7.69a) gives

n ¼ 1
1:025

Pr�1=3 ð7:69bÞ

In the above analysis, the thermal boundary layer has been assumed to be thinner than the
hydrodynamic boundary layer. This assumption is true provided the Prandtl number is equal
to or greater than 1. Most of the liquids except molten metals have Pr > 1. The Prandtl
number for most of the gases and vapours lies between 0.65 and 1. Returning to Eq. (7.67a)
where based on the assumption n < 1, we dropped a term involving n 4, a brief consideration
will show that error introduced is small even if n is slightly greater than unity. In fact, the
thicknesses of the velocity and thermal boundary layers for gases are practically equal.

Knowing the value of the boundary layer thickness, we can obtain the value of the
convective heat transfer coefficient as follows.

From Eq. (7.64), we have

hx ¼ 3
2

k

dt

� �

Substituting the value of the thermal boundary layer thickness dt, we get

hx ¼ 3
2
k
1
d

1:025� Pr1=3 1� x0
x

� �3=4� 	�1=3
( )

Substitution of the value of hydrodynamic boundary layer thickness d from Eq. (7.43a)
gives
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hx ¼ 3
2
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13
280

� U1
mx

r
1:025� Pr1=3 1� x0

x

� �3=4� 	�1=3
( )

or

hx ¼ 0:331kPr1=3
ffiffiffiffiffiffiffiffi
U1
mx

r
� 1� x0

x

� �3=4� 	�1=3

ð7:70Þ

or

hxx

k
¼ 0:331Pr1=3

ffiffiffiffiffiffiffiffiffiffi
U1x

m

r
� 1� x0

x

� �3=4� 	�1=3

or

Nux ¼ 0:331Pr1=3Re1=2x � 1� x0
x

� �3=4� 	�1=3

ð7:71aÞ

Note that the exact solution to this problem yields an answer with numerical constant of
0.332.

For the plate heated for entire length,

hx ¼ 0:331kPr1=3
ffiffiffiffiffiffiffiffi
U1
mx

r

and

Nux ¼ 0:331Pr1=3Re1=2x ð7:71bÞ

Following the procedure outlined earlier, the average values of the heat transfer coefficient
and the Nusselt number for plate length L are

�h ¼ 0:662kPr1=3
ffiffiffiffiffiffiffiffi
U1
mL

r

Nu ¼ hL

k
¼ 0:662Pr1=3Re1=2L ð7:72Þ

The above analysis is based on the constant physical properties of the fluid. In fact, the
temperature varies from Tw at the wall to the free-stream temperature T∞. Therefore, it is
necessary that the physical properties be evaluated at the arithmetic mean temperature Tf
[= (Tw + T∞)/2], defined as mean or film temperature, when temperature differences are not
large.

Example 7.9 Air at atmospheric pressure and a temperature of 50°C flows at 1.5 m/s over
an isothermal plate (ts = 100°C) 1 m long with a 0.5 m long unheated starting length.
Determine the local heat transfer coefficient (a) at the trailing edge with unheated starting
length and (b) at the trailing edge without unheated starting length.
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Solution

Thermophysical properties of air at film temperature of 75°C from Table A5 are

q ¼ 1:0052 kg=m3; l ¼ 2:0658� 10�5 kg=ðmsÞ; k ¼ 0:02990W=ðmKÞ and Pr ¼ 0:697:

(a) At the trailing edge with unheated starting length
The Reynolds number at x = 1.5 m is

Rex ¼ qU1x

l
¼ 1:0052� 1:5� 1:5

2:0658� 10�5
¼ 1:09� 105:

The flow is laminar over the entire plate. From Eq. (7.71a),

Nux ¼ hxx

k
¼ 0:331Pr1=3Re1=2x � 1� x0

x

� �3=4� 	�1=3

Hence, the local heat transfer coefficient at x = 1.5 m with unheated starting length
xo = 0.5 m is

hx ¼ k

x
� 0:331Pr1=3Re1=2x � 1� x0

x

� �3=4� 	�1=3

¼ 0:02990
1:5

� 0:331� 0:6971=3 � ð1:09� 105Þ1=2 � 1� 0:5
1:5

� �3=4
" #�1=3

¼ 2:34W= m2 K
� �

:

(b) At the trailing edge without unheated starting length
The Reynolds number at x = 1.0 m is

Rex ¼ qU1x

l
¼ 1:0052� 1:5� 1:0

2:0658� 10�5
¼ 72989:

The flow is laminar over the entire plate. Nusselt number relation for this case (xo = 0) is

Nux ¼ hxx

k
¼ 0:331Pr1=3Re1=2x

Hence, the local heat transfer coefficient at x = 1.0 m is

hx ¼ k

x
� 0:331Pr1=3Re1=2x

¼ 0:02990
1:0

� 0:331� 0:6971=3 � ð72989Þ1=2

¼ 2:37W= m2 K
� �

:
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Example 7.10 Air at 30°C and at a pressure of 1 atm is flowing over a flat plate at a
velocity of 2.0 m/s. If the plate is 1 m wide and is at a temperature of 90°C, estimate the
following:

(i) The critical length, xcr;
(ii) The hydrodynamic and thermal boundary layer thicknesses at x = xcr;
(iii) The local and average heat transfer coefficients at x = xcr;
(iv) The rate of heat transfer by convection form the plate to the air for the plate length of

x = xcr

Solution

The properties of air at the mean film temperature tfm = (30 + 90)/ 2 = 60°C are

q ¼ 1:059 kg=m3; k ¼ 0:0287W=ðmKÞ; l ¼ 2:0� 10�5 kg=ðmsÞ; Pr ¼ 0:701; cp
¼ 1008 J=ðkgKÞ:

(i) Critical length corresponding to Recr = 5 � 105,

xcr ¼ Recrl
qU

¼ 5� 105 � 2� 10�5

1:059� 2:0
¼ 4:72m:

(ii) Hydrodynamic boundary layer thickness at x = xcr,

d ¼ 5ffiffiffiffiffiffiffiffiffi
Recr

p xcr ¼ 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 105

p � 4:72 ¼ 0:0334m:

Ratio of thermal and hydrodynamic boundary layer thicknesses,

dt
d
¼ Pr�1=3

1:025
;

which gives,

dt ¼ Pr�1=3

1:025
d ¼ ð0:701Þ�1=3

1:025
� 0:0334 ¼ 0:0366m:

(iii) The local Nusselt number equation at x is

Nux ¼ hxx

k
¼ 0:332Re1=2x Pr1=3
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Hence, local heat transfer coefficient is

hx ¼ ð0:332Re1=2x Pr1=3Þ k
x
¼ ½0:332� ð5� 105Þ1=2 � ð0:701Þ1=3� � 0:0287

4:72
¼ 1:269W=ðm2 KÞ:

Average heat transfer coefficient,

�h ¼ 2hx ¼ 2� 1:269 ¼ 2:538W=ðm2 KÞ:

(iv) Rate of heat transfer q from one side of the plate for length xcr,

q ¼ �hAðtw � t1Þ ¼ 2:538� ð4:72� 1Þ � ð90� 30Þ ¼ 718:76W:

Example 7.11 Calculate the mass flow rate through the boundary layer from x = 0 to
x = xcr for the flow of above example.

Solution

At any x-position, the mass flow in the boundary layer is given by

Zd
0

q:u:dy

0
@

1
A for unit width of the plate:

Assuming u ¼ U1 3
2
y
d � 1

2
y
d

� �3h i
, we get

Zd
0

q:u:dy ¼
Zd
0

q:U1
3
2
y

d
� 1
2

y

d

� �3� 	
dy ¼ 5

8
q:U1d

Thus, the mass flow rate through the boundary layer,

m ¼ 5
8
q:U1d ¼ 5

8
� 1:059� 2:0� 0:0334 ¼ 0:0442 kg=s:

Example 7.12 Air at 20°C and at a pressure of 1 atm is flowing over a flat plate at a
velocity of 1.5 m/s. The plate length is 0.3 m and is 1 m wide. If the plate is maintained at
80°C, determine the drag force on the plate.
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Solution

At the mean temperature of 50°C, air properties are

q ¼ 1:095 kg=m3; k ¼ 0:02799W=ðmKÞ; l ¼ 1:95� 10�5kg=ðmsÞ; Pr ¼ 0:703; cp
¼ 1:0072 J=ðkgKÞ:

Flow Reynolds number is

ReL ¼ qU1L

l
¼ 25269

Flow is laminar. The skin friction coefficient,

Cfx ¼ 0:6641ffiffiffiffiffiffiffiffi
Rex

p ¼ 0:6641ffiffiffiffiffiffiffiffiffiffiffiffiffi
25269

p ¼ 0:00417

Average skin friction coefficient,

Cf ¼ 2� 0:00417 ¼ 0:00835

Shear stress,

sw ¼ Cf
qU2

1
2

� �
¼ 0:00835� 1:095� 1:52

2

� �
¼ 0:0103 N=m2:

Drag,

D ¼ swA ¼ 0:0103� ð0:3� 1Þ ¼ 3:1� 10�3 N

Alternatively, the skin friction coefficient can be determined using the Reynolds–Colburn
analogy.

StxPr2=3 ¼ Cfx

2
ð7:59Þ

or

Cfx ¼ 2StxPr2=3 ¼ 2
Nux
Rex Pr

Pr2=3 ¼ 2� 0:332Re1=2x Pr1=3

Rex Pr
Pr2=3

¼ 0:664ffiffiffiffiffiffiffiffi
Rex

p ;

which is the same equation as used above.

Example 7.13 If the velocity and temperature distributions through the laminar boundary
layer of a flat plate are linear, show that
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d
dt

¼ ðPrÞ�1=3

and

Nux ¼ 0:288 Rexð Þ1=2Pr1=3

The plate is maintained at a uniform temperature.

Solution

The velocity and temperature profile equations are

u

U1
¼ y

d

and

T � Tw
T1 � Tw

¼ h
h1

¼ y

dt
ðiÞ

For the linear velocity profile, we have found that

d
dd
dx

¼ 1
0:167

l
qU1

¼ 6m
U1

ðiiÞ

and

d
x
¼ 3:46ffiffiffiffiffiffiffiffi

Rex
p ¼

ffiffiffiffiffiffiffiffi
12
Rex

r
¼

ffiffiffiffiffiffiffiffiffiffi
12m
U1x

r
ðiiiÞ

We proceed from the von Karman energy equation, which is

U1h1
d

dx

Zdt
0

1� h
h1

� �
u

U1
dy ¼ a

@T

@y

� �
y¼0

ðivÞ

Substitution of the values of h/h∞ and u/U∞ from Eq. (i) gives

U1h1
d

dx

Zdt
0

1� y

dt

� �
y

d
dy ¼ a

@

@y
h1

y

dt
þ Tw

� �� 	
y¼0

or

U1h1
d

dx

y2

2d
� y3

3ddt

� �dt

0

¼ a
h1
dt
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or

U1
d

dx

d2t
2d

� d2t
3d

� �
¼ a

dt

or

U1
d

dx

d2t
6d

� �
¼ a

dt

or

U1
d

dx

d
6

dt
d

� �2
" #

¼ a
dt

or

U1
6

d

dx
dn2
� � ¼ a

dt

or

U1
6

n2
dd
dx

þ 2dn
dn
dx

� 	
¼ a

dt

or

dt n2
dd
dx

þ 2dn
dn
dx

� 	
¼ 6a

U1

or

dn n2
dd
dx

þ 2dn
dn
dx

� 	
¼ 6a

U1

or

n3 d
dd
dx

� �
þ 2d2n2

dn
dx

¼ 6a
U1

Putting the value of d(dd/dx) from Eq. (ii), we get

n3
6m
U1

� �
þ 2d2n2

dn
dx

¼ 6a
U1
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Putting value of d from Eq. (iii),

n3
6m
U1

� �
þ 2

12m
U1x

x2
� �

n2
dn
dx

¼ 6a
U1

or

n3 þ 4n2x
dn
dx

¼ a
m
¼ 1

Pr

which is a linear differential equation of first order in n2. Its general solution is

n3 ¼ Cx�3=4 þ 1
Pr

The constant C is determined from the boundary condition of n = (dt/d) = 0 at x = 0
(assuming the heating of the plate from the leading edge of the plate). This gives C = 0.
Hence,

n3 ¼ 1
Pr

or

n ¼ dt
d
¼ Pr�1=3

The local heat transfer coefficient hx at the wall is given by

hx ¼ qw
Tw � T1

where the conduction heat transfer at the wall qw, from the Fourier’s law, is

qw ¼ �k
dT

dy

� �
y¼0

Hence,

hx ¼
�k dT

dy

� �
y¼0

Tw � T1

The dimensionless temperature distribution at the wall is given as

T � Tw
T1 � Tw

¼ h
h1

¼ y

dt
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This gives the temperature gradient as

dT

dy

� �
y¼0

¼ d

dy

T � Tw
T1 � Tw

� �
y¼0

� T1 � Twð Þ ¼ d

dy

h
h1

� �
y¼0

�h1 ¼ d

dy

y

dt

� �� 	
y¼0

�h1

¼ h1
dt

Hence,

hx ¼
�k h1

dt

� �
Tw � T1

¼ k

dt

or

hx ¼ k

dt
¼ k

dPr�1=3
¼ kPr1=3

1
d

� �

Substituting the value of hydrodynamic layer thickness d,

hx ¼ kPr1=3
ffiffiffiffiffiffiffiffiffiffi
U1x

12m

r !
� 1

x

or

hxx

k
¼ 1ffiffiffiffiffi

12
p Pr1=3 Rexð Þ1=2

or

Nux ¼ 0:288Pr1=3 Rexð Þ1=2

Hence, average value of the Nusselt number is

Nu ¼ 0:576Pr1=3 ReLð Þ1=2

7.8 Turbulent Boundary Layer Over a Flat Surface

In Sect. 7.2, we discussed the transition of the flow from laminar to turbulent. The turbulent
boundary layer over a flat plate basically consists of a laminar sublayer, a buffer zone and a
turbulent layer, Fig. 7.17a. In the laminar sublayer, the molecular diffusion processes are
dominant and the turbulent fluctuations are negligible with the result that the turbulent shear
stress is much less than the laminar shear stress, in the buffer zone the molecular diffusion
and eddy transport effects are of the same order, and in the turbulent region, the eddy
transport effects are dominant and the turbulent shear stress dominates the laminar shear
stress. The entire velocity field cannot be represented by a single equation.
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Figure 7.17b is a semilogarithmic diagram of experimental data of the velocity profile in
the neighbourhood of the wall using non-dimensional parameters defined as dimensionless
velocity and distance from the plate surface, respectively. Mathematically, they are defined as

uþ ¼ �uffiffiffiffiffiffiffiffiffiffi
sw=q

p ð7:73Þ

yþ ¼
ffiffiffiffiffiffiffiffiffiffi
sw=q

p
m

y ð7:74Þ

The term √(sw/q) frequently appears in turbulent flow analysis and has the dimensions of
velocity. It is called the friction velocity and symbol used is u*. The non-dimensional
parameters u+ and y+ arise from dimensional analysis.

von Karman proposed the following set of equations termed as universal velocity profile,
which matches well with the experimental data.

(i) Laminar sublayer: Adjacent to the wall, the velocity profile is linear.

uþ ¼ yþ for 0\yþ\5 ð7:75aÞ

Turbulent

Buffer layer
Laminar sublayer

u

U∞

a

b

Viscous
sublayer

Buffer
layer

Turbulent
layer 

Eq. (7.75c)

y+ = yu*/ν

u+

500020001000500200100502010521

10

20

30

Eq. (7.75a)

0

Experimental data 

Fig. 7.17 a Turbulent boundary layer over a flat plate, b turbulent boundary layer velocity profiles in wall
coordinates
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(ii) Transition or buffer region:

uþ ¼ 5 lnðyþ Þ � 3:05 for 5\yþ\30 ð7:75bÞ

(iii) Turbulent core: In the turbulent layer (y+ > 30), the following logarithmic equation fit
the experimental data:

uþ ¼ 2:5 lnðyþ Þþ 5:5 for 30\yþ\500 ð7:75cÞ

The logarithmic equation is generally known as law of wall (Kays and Crawford 1980).
A number of other equations have been proposed. They are presented in a tabular form in
Bejan (1995).

The equations of the universal profile are too complex mathematically to use with the
momentum integral equation. A suitable velocity profile for turbulent boundary layers over
smooth plates is the empirical power law profile of the form (u/U∞) = (y/d)1/n. Experimental
investigations have shown that an exponent of 1/7 can be used for 5 � 105 < Re < 107.
Thus

u

U1
¼ y

d

� �1=7
for 5� 105\Re\107 ð7:76Þ

This is known as (1/7)th power law.
The differentiation of the above relation with respect to y yields

@u

@y
¼ 1

7
1
d

� �1=7 1
y

� �6=7

U1

This leads to infinite value of the wall shear stress when y ! 0 knowing that sw = l (∂u/
∂y)y = 0, which is not an acceptable value. In fact, the turbulent boundary layer is basically
composed of two distinct regions. There is a thin layer next to the wall in which the flow is
laminar. This layer is known as laminar sublayer. In the laminar sublayer, a linear velocity
distribution is assumed. This is a reasonable assumption because the laminar sublayer is very
thin. Beyond the laminar sublayer, the fully turbulent region exists in which the 1/7th power
law is applicable. Since the laminar sublayer is very thin, the integral momentum analysis
can be carried out using Eq. (7.76) for the velocity distribution. To evaluate the wall shear
stress, an experimentally determined relation is required. One such relation is due to Blasius
for the turbulent flow on flat plates:

Cfx ¼ sw
1
2 qU

21
¼ 0:0456

m
U1d

� �1=4

for 5� 105\Re\107 ð7:77Þ

or

sw ¼ 0:0228
m

U1d

� �1=4

qU2
1 ð7:78Þ
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where U∞ is the free-stream velocity and d is the thickness of the turbulent boundary layer.
The term on the right (m/U∞d) is known as the thickness Reynolds number.

The substitution of the values of u/U∞ and sw from Eqs. (7.76) and (7.78), respectively,
in the von Karman momentum integral equation, Eq. (7.39), yields

qU2
1

d
dx

Rd
0

1� y
d

� �1=7h i
y
d

� �1=7
dy

 �
¼ 0:0228 m

U1d

� �1=4
qU2

1

d
dx

Rd
0

1� y
d

� �1=7h i
y
d

� �1=7
dy

 �
¼ 0:0228 m

U1d

� �1=4

Integration gives

d

dx

7
72

d

� �
¼ 0:0228

m
U1d

� �1=4

or

d1=4
dd
dx

¼ 72
7
� 0:0228

m
U1

� �1=4

or

d5=4 ¼ 0:293
m

U1

� �1=4

xþC ð7:79Þ

The constant of integration is found from the assumed boundary conditions as presented
below.

Case A
The boundary layer is fully turbulent from the leading edge of the plate, i.e. d = 0 at x = 0.
This gives C = 0 and

d5=4 ¼ 0:293
m

U1

� �1=4

x ð7:80aÞ

or

d
x
¼ 0:375

m
U1x

� �1=5

or

d
x
¼ 0:375 Rexð Þ�1=5 ð7:80bÞ
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The comparison of the above equation with Eq. (7.35) for the laminar boundary layer
shows that the turbulent boundary layer grows at a faster rate (d/x4/5) than a laminar
boundary layer (d/x1/2).

Substitution of the value of d from Eq. (7.80b) in Eq. (7.77) gives

Cfx ¼ 0:0456
m

U1

� �1=4 U1x

m

� �1=5 1
x

� �" #1=4
1

0:375

� �1=4

¼ 0:0583

Re1=5x

ð7:81Þ

The average value of the skin friction coefficient,

Cf ¼ 1
L

ZL
0

Cfxdx

¼ 1
L

ZL
0

0:0583
m

U1

� �1=5

x�1=5dx;

which gives

Cf ¼ 0:0729
U1L
m

� �1=5
or

Cf ¼ 0:0729

Re1=5L

ð7:82Þ

The result has been found to be in a good agreement with the experimental results in the
range 5 � 105 < Re < 107.

Case B
The above analysis is based on the assumption that the boundary layer is fully turbulent from
the leading edge of the plate. This is not true. The boundary layer is laminar up to a certain
distance from the leading edge and the transition, as discussed earlier, to turbulent takes place
at x = xcr corresponding to Rec = 5 � 105. Thus

d ¼ dlam at xcr ¼ 5� 105 m=U1ð Þ

From the exact solution of the Blasius, Eq. (7.35),
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dlam ¼ 5:0
xcr

Re1=2c

 !

¼ 5:0
5� 105 m

U1

� �
5� 105ð Þ1=2

2
4

3
5 ¼ 3535

m
U1

� �
;

ð7:83Þ

which must equal the boundary layer thickness at the start of the turbulent regime. Using
Eqs. (7.83) and (7.79) and substituting value of xcr, we have

3535
m

U1

� �5=4

¼ 0:293
m

U1

� �1=4

5� 105
m

U1

� �� 	
þC

Simplification gives

C ¼ �119242
m

U1

� �5=4

Substituting value of constant C in Eq. (7.79), we get

d5=4 ¼ 0:293
m

U1

� �1=4

x� 119242
m

U1

� �5=4

or

d ¼ 0:375
m

U1

� �1=5

x4=5 � 11511
m

U1

� �

or

d
x
¼ 0:375

m
U1x

� �1=5

�11511
m

U1x

� �

or

d
x
¼ 0:375

Re1=5x

� 11511
Rex

ð7:84Þ

This equation is valid for 5 � 105 < Re < 107.
Experiment results indicate that between 107 < Re < 109, the velocity distribution devi-

ates from the 1/7th power law. Schlichting presented the following semi-empirical relation
for this range.

Cf ¼ 0:455

log10 ReLð Þ2:58 for 107\Re\109 ð7:85aÞ
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Equation (7.85a) was derived assuming the flow to be turbulent over its entire length. In
fact, starting from the leading edge the flow is laminar for some distance. Considering this
fact, the following relation has been suggested for 107 < Re < 109:

Cf ¼ 0:455

log10 ReLð Þ2:58 �
A

ReL
ð7:85bÞ

where the value of A depends on the value of the critical Reynolds number at which the
transition to turbulent flow takes place. For Rec = 5 � 105, A � 1700.

It is to note that the above-presented correlations are valid for a smooth flat plate.

Example 7.14 Determine the relationship between the boundary layer thickness and dis-
placement thickness for a boundary layer which is (i) laminar throughout, (ii) turbulent
throughout. Assume that in the laminar boundary layer, the flow obeys the law s = l du/dy,
which leads to the velocity profile (U∞ – u) = C (d − y)2 where U∞ is the free-stream
velocity and u is the velocity at distance y from the plate and C is a constant. The velocity
distribution in the turbulent flow is given by (u/U∞) = (y/d)1/7.

Solution

(i) Laminar flow
The equation given for the velocity profile is

U1 � uð Þ ¼ Cðd� yÞ2; ðiÞ

which can be written as

1� u

U1
¼ Cðd� yÞ2

U1
ðiiÞ

Velocity displacement thickness

dvd ¼
Z1
0

1� u

U1

� �
dy

Using Eq. (ii),

dvd ¼
Zd
0

C

U1

� �
d� yð Þ2dy

the limit has been changed to dð Þ
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or

dvd ¼ C

U1

� �
� d� yð Þ3

3

" #d
0

¼ Cd3

3U1

� �

At the plate surface, the flow velocity is zero, i.e. u = 0 at y = 0. Hence, from Eq. (i),

U1 ¼ Cd2

or

C ¼ U1
d2

dvd ¼ U1d3

3U1d2

� �
¼ d

3 :

(ii) Turbulent flow

The velocity distribution is given as (u/U∞) = (y/d)1/7. Substitution in the equation of
velocity displacement equation gives

dvd ¼
Zd
0

1� u

U1

� �
dy

the limit has been changed to dð Þ

dvd ¼
Zd
0

1� y

d

� �1=7� 	
dy

¼ y� 7y8=7

8d1=7

� �� 	d
0

¼ d
8
:

7.9 Laminar Flow in Tubes

Fluid flow in tubes has been discussed earlier. The velocity distribution in terms of the tube
radius R and the velocity at the centre can be derived as follows.

Consider the fluid element shown in Fig. 7.18. The pressure forces acting on the ele-
mental area are balanced by the viscous shear forces.

Pressure force on the left face of the element ¼ pr2p
Pressure force on the right face of the element ¼ pr2pþ d

dx pr2pð Þdx
Viscous shear force on the element is
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sA ¼ sð2prdxÞ

Force balance equation is

pr2p� pr2pþ d

dx
pr2p
� �

dx

� 	
¼ 2prdxð Þs

or

dp

dx
¼ � 2s

r

Putting s = –l du/dr, where the negative sign indicates decrease in the velocity with the
increase in r.

dp

dx
¼ 2l

r

du

dr

or

du

dr
¼ 1

2l
dp

dx
r

or

u ¼ 1
4l

dp

dx

� �
r2 þC ð7:86Þ

The fluid velocity is zero at the wall, i.e.

u ¼ 0 at r ¼ R

This boundary condition gives

C ¼ � 1
4l

dp

dx

� �
R2

Hence, from Eq. (7.86),

(2πrdx)τ

πr2p πr2 (p + dp)

dx

r

y = (R r)
R

Fig. 7.18 Pressure and viscous shear forces on fluid element
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u ¼ 1
4l

dp

dx

� �
r2 � 1

4l
dp

dx

� �
R2

¼ 1
4l

dp

dx

� �
r2 � R2
� � ð7:87Þ

The velocity at the centreline of the tube is maximum and is obtained from the above
equation by putting r = 0,

Umax ¼ ðuÞr¼0 ¼
1
4l

dp

dx

� �
�R2
� � ð7:88Þ

Dividing Eq. (7.87) by Eq. (7.88), we get

u

Umax
¼ 1� r2

R2

� �
ð7:89Þ

Thus, the velocity profile of the fully developed laminar flow is of parabolic form.
The mean velocity of the flow is calculated by dividing the volumetric flow rate of the

fluid by the cross-sectional area of the tube,

Um ¼ V

A
¼ 1

A

ZA
0

u:dA ðiÞ

The volume flow through the annulus of radial width dr at radius r from centreline
(Fig. 7.19) is

dV ¼ ð2prdrÞu

Hence, the volume flow rate,

V ¼
Z

dV ¼
ZR
0

2pur:dr ðiiÞ

Using Eq. (7.89),

drR

r

Fig. 7.19 Coordinate system for Eq. (7.89)
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V ¼
ZR
0

2p 1� r2

R2

� �
Umaxr:dr

¼ 1
2
pR2Umax ¼ 0:5AUmax ðiiiÞ

This gives

Um ¼ V

A
¼ 0:5Umax

or

Um

Umax

� �
laminar

¼ 0:5 ð7:90Þ

i.e. for the fully developed laminar flow through a tube, the ratio of the mean velocity and
maximum velocity at the centreline of the tube is 0.5.

Substitution of the value of Umax from Eq. (7.88) in Eq. (iii) gives

V ¼ pR2 R2

8l
� dp

dx

� �� 	

If pressure drop in pipe length L is (p1 − p2), the equation yields

V ¼ pR4

8l
p1 � p2

L

� �
; ð7:91Þ

which is known as Hagen–Poiseuille equation.
The local pipe flow friction factor (the Fanning friction factor) f is defined in the terms of

the mean velocity Um as

� dp

dx
¼ 4f

D

qU2
m

2

� �

The value of the friction factor f for the fully developed steady laminar flow can be
determined by substituting value of dp/dx from above equation in Eq. (7.88). This substi-
tution gives

Umax ¼ R2

4l
4f
D

qU2
m

2

� �� 	

Further substituting Umax = 2 Um, we obtain

f ¼ 16
qUmD=l
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or

f ¼ 16
Re

; ð7:92Þ

which is equation of Fanning friction factor for the fully developed constant property
laminar flow in smooth circular cross-section tube. The local friction factor in the entrance
length of circular tube with laminar flow will be discussed in Chap. 8.

The temperature distribution may be obtained by making an energy balance of the energy
conducted and convected for the annular element in Fig. 7.20.

The following is assumed:

(i) A constant heat flux at the tube wall, i.e.

dqw
dx

¼ 0

This condition can be approached if the tube is heated by passing electric current
through it.
(ii) The conduction in the axial direction is negligible.
(iii) The energy transport in the axial direction is entirely by convection.

Radial heat flow by conduction into the annular element is

dqr ¼ �k 2prdxð Þ: @T
@r

and heat outflow by conduction from the annular element

dqrþ dr ¼ dqr þ @

@r
dqrð Þdr

Net heat conducted is

dr

ρ(2πrdr)ucpT

dx
dqr+dr

dqr

r

Fig. 7.20 Energy conduction and convection for the annular element
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dqr � dqrþ dr ¼ dqr � dqr þ @

@r
dqrð Þdr

� 	

¼ � @

@r
dqrð Þdr

¼ � @

@r
�k 2prdxð Þ: @T

@r

� �
dr

¼ 2pkdxdr
@

@r
r:
@T

@r

� �

Heat convected into the annular element in axial direction is

dqc ¼ mass flow rate� cpT

¼ qu 2prdrð Þ:cpT

Heat convected out of the annular element in axial direction is

dqc þ @

@x
dqcð Þdx

Net heat convected out of the element is

dqc þ @

@x
dqcð Þdx� dqc ¼ @

@x
dqcð Þdx

¼ @

@x
qu 2prdrð Þ:cpT
� �

dx

¼ qu 2prdrð Þ:cp @T
@x

dx

The energy balance over the element gives

2pkdxdr
@

@r
r:
@T

@r

� �
¼ qu 2prdrð Þ:cp @T

@x
dx

or

@

@r
r:
@T

@r

� �
¼ 1

a
@T

@x
ur ð7:93Þ

where qcp/k = (1/a).
For the assumed condition of constant heat flux, the average fluid temperature will rise

linearly in the axial direction, i.e. T / x and

@T

@x
¼ constant: ðiÞ

The temperature profile is such that the minimum temperature of the fluid for heating of
the fluid and the maximum temperature of the fluid for cooling of the fluid must be at the axis
of the tube for uniform heat flux at the wall, i.e.
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@T

@r
¼ 0 at r ¼ 0: ðiiÞ

Inserting the value of u from the velocity distribution given by Eq. (7.89) into Eq. (7.93),
we get

@

@r
r:
@T

@r

� �
¼ 1

a
@T

@x

� �
rUmax 1� r

R

� �2� 	

Integrating with respect to r (keeping ∂T/∂x = constant),

r:
@T

@r
¼ 1

a
@T

@x

� �
Umax

r2

2
� r4

4R2

� 	
þC1

The boundary condition, Eq. (ii), gives C1 = 0. Hence,

@T

@r
¼ 1

a
@T

@x

� �
Umax

r

2
� r3

4R2

� 	
ð7:94Þ

Again integrating it, we get

T ¼ 1
a

@T

@x

� �
Umax

r2

4
� r4

16R2

� 	
þC2

Let the temperature at the centre of the tube, i.e. at r = 0, is Tc. This condition gives
C2 = Tc and the equation of the temperature distribution may finally be written as

T � Tc ¼ 1
a

@T

@x

� �
Umax

R2

4

� �
r

R

� �2
� 1
4

r

R

� �4� 	
ð7:95Þ

Convection heat transfer coefficient
For the tube flow, the convection heat transfer coefficient is defined by

h ¼ qw
Tw � Tb

ðiÞ

where Tb is known as the bulk temperature of the fluid. The bulk temperature is basically the
temperature of the fluid that the fluid would assume if it is thoroughly mixed. It is calculated
from

Tb ¼ Total energy flow through the tube
ðmass flow� specific heatÞ

¼
R R
0 qu 2prdrð Þ:cpTR R
0 qu 2prdrð Þ:cp

¼
R R
0 rdrð ÞuTR R
0 u rdrð Þ
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Substitution of the values of u and T from Eqs. (7.89) and (7.95), respectively, gives

Tb ¼
R R
0 rdrð ÞUmax 1� r2

R2

� �
1
a

@T
@x

� �
Umax

R2

4

� �
r
R

� �2� 1
4

r
R

� �4h io
þ Tc

nn o
R R
0 rdrð ÞUmax 1� r2

R2

� �
or

Tb ¼
1
a

@T
@x

� �
Umax

R2

4

� � RR
0
r 1� r2

R2

� �
r
R

� �2� 1
4

r
R

� �4h i
dr

R R
0 1� r2

R2

� �
rdr

þ Tc

or

Tb ¼ 7
96

@T

@x

� �
UmaxR2

a

� �
þ Tc

Putting r = R in Eq. (7.95), we get

Tw ¼ 3
16

@T

@x

� �
UmaxR2

a

� �
þ Tc

Substituting values of Tw and Tb in Eq. (i) and knowing that qw is also given by k(∂T/
∂r)r = R, we get

h ¼ k @T
@r

� �
r¼R

11
96

@T
@x

� �
UmaxR2

a

h i

From Eq. (7.94),

@T

@r
¼ 1

a
@T

@x

� �
Umax

r

2
� r3

4R2

� 	

Hence, (∂T/∂r)r = R = (∂T/∂x)UmaxR/4a. This gives

h ¼ k @T
@x

� �
UmaxR
4a

11
96

@T
@x

� �
UmaxR2

a

h i
¼ 24

11
k

R
¼ 48

11
k

d

or

hd

k
¼ 4:364
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or

Nu ¼ 4:364 ð7:96Þ

for the uniform heat flux condition.
Boundary layer condition of constant wall temperature is also of interest. This condition is

encountered in tubes heated on the outside by a condensing vapour. It has been reported that
for the constant wall temperature condition,

Nu ¼ 3:658: ð7:97Þ

Approximate analysis
In the laminar flow, the velocity profile is given by, for the coordinate system defined in
Fig. 7.21,

u

Umax
¼ 2

y

R

� �
� y

R

� �2
ðiÞ

where u is the velocity at a distance y from the wall and Umax is the velocity at the axis of the
tube.

Let the temperature profile be approximated by a cubic parabola

T ¼ Tw þ ayþ by2 þ cy3

Let T − Tw = h, then

h ¼ ayþ by2 þ cy3 ðiiÞ

The radial heat conduction at any radius (R – y) is

q ¼ �k 2p R� yð Þdx½ � dh
dy

Differentiating with respect to y, we get

dq

dy
¼ �2pkdx � dh

dy
þ R� yð Þ d

2h
dy2

� 	
ðiiiÞ

+

R

y

R - y

dy

Fig. 7.21 Coordinate system for Eq. (i)
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In the vicinity of the wall, the fluid velocity is zero and, therefore, there is negligible
convection in the axial direction. The heat flow at the wall is due to conduction only and is
independent of y, i.e.

at y ¼ 0;
dq

dy
¼ 0

Applying this condition to Eq. (iii), we get

d2h
dy2

� �
y¼0

¼ 1
R

dh
dy

� �
y¼0

ðivÞ

From the assumed temperature profile, Eq. (ii),

dh
dy

� �
y¼0

¼ a ðvÞ

and

d2h
dy2

� �
y¼0

¼ 2b: ðviÞ

Substitution of these values in Eq. (iv) gives

a ¼ 2Rb: ðviiÞ

At the axis of the tube (y = R),

h ¼ hc

and

dh
dy

� �
y¼R

¼ 0:

Applying these conditions to the assumed temperature profile, we get

hc ¼ aRþ bR2 þ cR3; ðviiiÞ
dh
dy

� �
y¼R

¼ 0 ¼ aþ 2bRþ 3cR2: ðixÞ

Solution of Eqs. (vii) to (ix) gives

a ¼ 6hc
5R

; b ¼ 3hc
5R2

; c ¼ � 4hc
5R3

:

Substitution in Eq. (ii) gives
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T � Tw
hc

¼ h
hc

¼ 6
5

y

R

� �
þ 3

5
y

R

� �2
� 4
5

y

R

� �3
: ðxÞ

Differentiating the above equation with respect to y at y = 0, we get

@h
@y

� �
y¼0

¼ 6hc
5R

and the rate of heat flow at the wall

qw ¼ �k
@T

@r

� �
y¼0

¼ �k
@h
@y

� �
y¼0

¼ �k
6hc
5R

:

Hence, the convection heat transfer coefficient is

h ¼ qw
Tw � Tb

¼ �k
6hc
5R

1
Tw � Tb

The bulk temperature, refer Fig. 7.20,

Tb ¼ Total energy flow through the tube
mass flow � specific heat

¼
R R
0 q2pðR� yÞdy:u:cpTR R
0 q2pðR� yÞdy:ucp

¼
R R
0 ðR� yÞdy:u:TR R
0 ðR� yÞdy:u

Substituting value of u from Eq. (i) and value of T from Eq. (x), we have

Tb ¼
R R
0 ðR� yÞdy:Umax 2 y

R

� �� y
R

� �2h i
6
5

y
R

� �þ 3
5

y
R

� �2� 4
5

y
R

� �3h i
hc þ Tw

on
R R
0 ðR� yÞdy:Umax 2 y

R

� �� y
R

� �2h i

Simplification gives

Tb ¼ 102
175

hc þ Tw

or

Tb � Tw ¼ 102
175

hc:

Thus, the heat transfer coefficient is

h ¼ 6khc
5R

� �
= 102hc

175

� � ¼ 4:12k
D

hD
k ¼ 4:12:
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Thus, the heat transfer correlation is

Nu ¼ 4:12;

which is in reasonable agreement with the value of the exact solution.
The above-calculated values of the Nusselt number for the laminar flow in the tubes are

valid for fully developed flow. The estimate of the heat transfer coefficient in the entrance
region of the tube, where the flow is developing, is complicated and the following must be
noted:
1. The temperature gradient at the wall is infinite at the beginning of the heated section and

Nu = ∞ (Rogers and Mayhew 1967). In the development region, starting from the
beginning, the value of the heat transfer coefficient (and hence the Nusselt number)
decreases and approaches the value for the fully developed flow, refer Fig. 7.4.

2. The value of the Nusselt number in the entrance region also depends on the boundary
conditions along the tube wall, i.e. whether at the beginning of the heated section the
velocity profile is fully developed or developing simultaneously with the temperature
profile.

3. The temperature profile may be distorted due to the natural convection currents at low
Reynolds numbers especially in large diameter tubes.

Further, it is to note that the viscosity of the fluid depends on temperature and hence the
velocity profile is not parabolic as discussed in Sect. 8.6. Since the temperature profile is a
function of the velocity profile, the temperature profile will also change. Thus, the above-
calculated values of the Nusselt number are valid for isothermal flow only, i.e. for the
limiting case of heat transfer by convection as temperature difference (Tw – Tb) approaches
zero (Rogers and Mayhew 1967).

For the details and treatment for the above-stated conditions, the readers may refer Kays
and Crawford (1980), and Kays and Perkins (1985).

Example 7.15 A fluid flows at a steady mass flow rate m inside a tube of uniform section.
Express the local axial rate of change of bulk temperature of the fluid, dTb/dx, in terms of the
mass flow rate m, tube perimeter P, the specific heat of the fluid cp and the local surface heat
flux qx.

Solution

Considering the infinitesimal control volume, refer Fig. 7.22, the heat flow from the first law
of thermodynamics is

L

qxInlet, i Outlet, o

x

m
Tb• •Tb + dTb

Tw •

dx

Fig. 7.22 Example 7.15
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dq ¼ mcpdTb

where dq ¼ qxðPdxÞ: This gives

qxðPdxÞ ¼ mcpdTb

or

dTb
dx

¼ qxP

mcp

From the heat transfer consideration,

qx ¼ hxðTw � TbÞ

This gives

dTb
dx

¼ P

mcp

� �
hxðTw � TbÞ

Example 7.16 Using the differential equation of the previous example, obtain an expression
for change of the bulk temperature with distance x for the cases of (i) constant surface heat
flux, qx = qs, (ii) uniform tube surface temperature, Tw = constant.

Solution

(i) Uniform heat Flux
The first differential equation is

dTb
dx

¼ qxP

mcp

Integrating for the fixed qx = qs, P, m and cp,

ZTb
Tbi

dTb ¼ qsP

mcp

Zx
0

dx

or

Tb ¼ Tbi þ qsP

mcp
x

This implies that the bulk temperature increases linearly with x as depicted in Fig. 7.23a,
where the flow has been assumed to be thermally developed.
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It is to be noted that, in the entrance region, (Tw – Tb) is not a constant as shown in
Fig. 7.23b.

(ii) Uniform Surface Temperature
The second differential equation is

dTb
dx

¼ P

mcp

� �
hxðTw � TbÞ:

which gives

ZTb
Tbi

dTb
Tw � Tb

¼ P

mcp

Zx
0

hxdx:

From the definition of the average heat transfer coefficient,

T

Tw Tb

Tb(x)
Tbi

L

Ts(x)
Tbo

Thermally 
developed flow

0
a

Entrance
lengthT

Tbi

Two

Twi

L

Tw(x)

Tbo

0

Developed

b

Fig. 7.23 Temperature variation for constant heat rate: a thermally developed flow, b effect of entrance
length
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�h 0; xð Þ ¼ 1
x

Zx
0

hxdx

This gives

ln
Tw � Tb
Tw � Tbi

� �
¼ � P

mcp
x�h 0; xð Þ

or

Tb ¼ Tw � Tw � Tbið Þ exp � P

mcp
x�h 0; xð Þ

� �

The function is plotted in Fig. 7.24.

Example 7.17 Determine the total heat transfer for the tube length L for the cases con-
sidered in the previous example.

Solution

(i) Uniform Heat Flux
Heat transfer rate,

q ¼ heat flux� area

¼ qsPL

When (Tw – Tb) is constant,

qs ¼ hðTw � TbÞ

Tw Tb

Tb(x)

Tbi

x

Tw = Constant
T

Fig. 7.24 Temperature variation of a fluid flowing through a tube with uniform wall temperature
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Thus,

q ¼ hPLðTw � TbÞ;

which is the desired equation.

(ii) Uniform Surface Temperature
From the previous example, Case (ii), we have

ln
Tw � Tbo
Tw � Tbi

� �
¼ � P

mcp
L�h ðiÞ

for x = L, where Tb = Tbo. �h ¼ �h 0; Lð Þ is the average heat transfer coefficient over the
entire length L of the heat exchanger.
From the first law of thermodynamics, heat transfer rate q equals the heat transferred to
the fluid, i.e.

q ¼ mcpðTbo � TbiÞ

or

mcp ¼ q

ðTbo � TbiÞ

Substitution in Eq. (i) gives

q ¼ ��hPL� Tbo � Tbið Þ
ln Tw�Tbo

Tw�Tbi

� �

or

q ¼ �hPL� Tw � Tboð Þ � Tw � Tbið Þ
ln Tw�Tbo

Tw�Tbi

� �

or

q ¼ �hPLðLMTDÞ

where LMTD ¼ Tw�Tboð Þ� Tw�Tbið Þ
ln

Tw�Tbo
Tw�Tbi

� � is termed as log mean temperature difference (also refer

Chap. 14 for the LMTD).
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7.10 Turbulent Flow in Tubes

The fully developed velocity profile in the case of turbulent flow in tubes is shown in
Fig. 7.6. The velocity curve changes abruptly near the wall and takes a somewhat blunter
profile in the middle of the tube.

In the laminar sublayer, viscous forces dominate and the fluid moves in streamline pattern
parallel to the wall of the tube. In the turbulent core, chunks of fluid move in a totally chaotic
pattern (termed as eddying motion, shown as curved arrows in the turbulent flow region).
This causes intense mixing of the fluid. The fluid in the buffer layer shows behaviour that is
intermediate between that of the fluid in the laminar sublayer and turbulent core. The fluid
flow pattern in turbulent flow is determined by the inertial than by the viscous forces.

The equations of the universal velocity profile presented for the turbulent flow over a flat
plate also apply to the fully developed turbulent flow through a smooth tube when u+ and y+

are defined as

uþ ¼ �uffiffiffiffiffiffiffiffiffiffi
sw=q

p ð7:98aÞ

yþ ¼
ffiffiffiffiffiffiffiffiffiffi
sw=q

p
m

:y ð7:98bÞ

where y is the distance from the wall (y = R − r, R is the tube radius) and �u is the mean
component of the velocity.

Prandtl developed the following form of velocity distribution, known as universal velocity
defect law, applicable only in the turbulent core away from the wall.

Umax � uð Þ
u	 ¼ 2:5 ln

R

y

� �
ð7:99Þ

The defect law shows that the velocity defect (and hence the slope of the velocity profile)
is a function of the distance R/y only and does not depend on the viscosity of the fluid.

As explained earlier for the turbulent flow over a flat plate, a power law instead of the
universal velocity distribution equation is used for the turbulent flow in tubes. Using the
Blasius empirical formula for the friction factor, Prandtl developed the following power law
of the velocity distribution.

u

Umax
¼ y

R

� �1=n
¼ 1� r

R

� �1=n
ð7:100Þ

According to the measurements by Nikuradse, the value of exponent n increases from 6 at
Re = 4000 to 10 at Re = 3.2 � 106. It can be estimated from the following relation:

n ¼ �1:7þ 1:8 log10 Re for Re[ 2� 104

However, the exponent is often taken as 7 and hence the velocity profile is termed as ‘a
one-seventh power profile’.
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From Eq. (7.100), it can be shown that the ratio of the mean and maximum velocities Um

and Umax, respectively, is (see Example 7.18)

Um

Umax
¼ 2n2

nþ 1ð Þ 2nþ 1ð Þ ð7:101Þ

Since n varies with Re, the ratio um/Umax is a function of the Reynolds number and with
the increase in the Reynolds number, the velocity profile becomes flatter over most of the
duct cross-section.

It is to note that the power law profile is not applicable close to the wall (y/R < 0.04).
Since the velocity is quite low in the region near the wall, the error in the estimate of integral
quantities such as mass, momentum and energy flux is relatively small. The law gives infinite
velocity gradient at the wall and, hence, it cannot be used for the calculation of wall shear
stress. Though the law fits the experimental data well near the centreline of the tube, it fails to
give zero slope of the velocity profile there. Despite these shortcomings, the power law gives
reasonably good results in many calculations.

Example 7.18 The power law equation of velocity distribution in a smooth pipe under
turbulent flow condition is

u

Umax
¼ y

R

� �1=n
¼ 1� r

R

� �1=n

where u is the local time-averaged velocity, Umax is the time-averaged velocity at the cen-
treline, R is the radius of the pipe and y = R – r is the distance measured from the pipe wall.

Determine the ratio of the mean to the maximum velocity. Calculate the value of the ratio
for n = 7.

Solution

From the definition of the mean velocity,

Um ¼ 1
pR2

� �ZR
0

Umax 1� r

R

� �1=n
2prdr

¼ 2Umax

R2

� �ZR
0

1� r

R

� �1=n
rdr

¼ 2Umax

R2

� �
R2

1=nþ 2
1� r

R

� �1=nþ 2
� R2

1=nþ 1
1� r

R

� �1=nþ 1
� 	R

0

¼ �2Umax
n

1þ 2n
� n

1þ n

� 	

or

Um

Umax
¼ 2n2

nþ 1ð Þ 2nþ 1ð Þ
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For n = 7,

Um

Umax
� 0:8

Note: For laminar flow, Um
Umax

¼ 0:5. Thus, the velocity profile in the turbulent flow is much

flatter over most of the duct cross-section.

7.11 Momentum and Heat Exchange in Turbulent Flow (Eddy
Viscosity and Eddy Thermal Diffusivity)

In the laminar flow, the fluid particles follow well-defined streamlines. Heat and momentum
are transferred by molecular diffusion (microscopic scale). There is no macroscopic mixing.
In the turbulent flow, in addition to the heat and momentum transfer by molecular diffusion,
there is momentum and heat exchange on the macroscopic scale due to eddy mixing. The
momentum transfer takes place due to the faster moving fluid mass moving into the slow
moving fluid and vice versa. Similarly, the high-temperature fluid mass mixes with the lower
temperature fluid and vice versa due to the eddying motion causing transport of heat.

Since the momentum and heat exchange takes place both due to the microscopic and
macroscopic means, their rates would be considerably greater than the laminar flow. This is
the reason for greater rate of heat transfer in turbulent flow than the laminar flow.

Consider an arbitrary plane 1-1 parallel to the plate surface as shown in Fig. 7.25. There is
exchange of mass across the surface 1-1 due to the eddying motion. The molecular transport
of momentum and heat is like the laminar flow. So let us consider the macroscopic transfer of
momentum and heat.

If the turbulent flow velocities at any point are averaged over a period h longer than the
period of fluctuation, then we can define mean velocities in the x- and y-directions as

�u ¼ 1
h

Zh
0

uds ðiÞ

Plate

y

x

U∞

Laminar sub-layer

1 1

Turbulent region
(eddying motion)

Buffer zone

Eddies

Fig. 7.25 Boundary layer over a flat plate with turbulent flow
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�v ¼ 1
h

Zh
0

vds ðiiÞ

where u and v denote the instantaneous velocities in x- and y-directions and are function of
time.

The instantaneous velocities can be expressed as the sum of the mean and fluctuating
components (refer Fig. 7.26)

u ¼ �uþ u0

v ¼ �vþ v0
ðiiiÞ

where u0 and v0 are the fluctuating components.
For study flow, the mean components are constants. The mean values of u0 and v0 must be

zero over the time h, i.e.

�u0 ¼ 1
h

Zh
0

u0ds ¼ 0 ðivÞ

�v0 ¼ 1
h

Zh
0

v0ds ¼ 0 ðvÞ

Due to the eddy motion, let the upward flow of mass through the unit area of plane 1-1
during time dh is qvdh. The momentum in the x-direction carried with this mass is (qvdh)
u. The shear stress acting along 1-1 due to the eddy motion only must equal the average rate
of momentum transfer through the unit area of the plane 1-1.

st ¼ 1
h

Zh
0

qðuvÞdh ðviÞ

Substitution of the values of u and v gives

Time

u

u

u

Fig. 7.26 Turbulent fluctuations with time
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st ¼ q
h

Zh
0

�uþ u0ð Þ �vþ v0ð Þdh ¼ q
h

Zh
0

�u�vþ �uv0 þ u0�vþ u0v0ð Þdh ðviiÞ

Time constants of the fluctuating components are zero, hence

q
h

Zh
0

�uv0dh ¼ q
h
�u

Zh
0

v0dh ¼ 0 ðviiiÞ

q
h

Zh
0

�vu0dh ¼ q
h
�v

Zh
0

u0dh ¼ 0 ðixÞ

Therefore,

st ¼ q
h

Zh
0

�u�vþ u0v0ð Þdh ðxÞ

In the case of one-dimensional flow over a plate, the thickness of the boundary layer
increases very slowly, hence �v is negligible. For the fully developed flow through a tube, �v is
exactly zero. Introducing �v ¼ 0 in Eq. (x), we obtain

st ¼ q
h

Zh
0

u0v0ð Þdh ¼ q u0v0
� � ðxiÞ

where u0v0
� �

is the time average of product u0v0. The term q u0v0
� �

is referred to as Reynolds
stress. The time averages of u0 and v0 are zero but the time average of their products is not
zero. Let us ascertain the sign of the product u0v0.

Consider an instantaneous upward flow through plane 1-1, for which v0 is positive. Since
the average axial velocity of mass below plane 1-1 is lower than the average axial velocity of
the mass above plane 1-1, this fluid mass arriving at 1-1 produces negative u0 at 1-1. Hence,
the product u0v0 will be negative. Similarly, it can be shown that for a fluid mass moving
downwards through the plane 1-1, v0 is negative and u0 will be positive hence the product u0v0

will be again negative (a negative v0 is accompanied with a positive u0 and vice versa). Thus,
on the whole the product u0v0 is negative, which means there is a net flow of the momentum
towards the wall resulting in a shear stress. If we define this shear stress as

st ¼ qeM
d�u

dy
ð7:102Þ

where eM is called eddy diffusivity or eddy viscosity. From Eqs. (xi) and (7.102), we get
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st ¼ �q u0v0
� � ¼ qeM

d�u

dy
ð7:103Þ

The negative sign has been introduced to give a positive value of eM like the kinematic
viscosity m because d�u

dy is always positive.

The total shear stress in a turbulent flow is the sum of the viscous shear stress sl and eddy
or turbulent shear stress st, i.e.

s ¼ qm
d�u

dy
þ qeM

d�u

dy
¼ q mþ eMð Þ d�u

dy
ð7:104Þ

It must be noted that the laminar shear stress sl is true shear stress, whereas the apparent
turbulent shear stress st is simply a concept introduced to take into account the momentum
transfer by turbulent fluctuations.

The eddy viscosity is a function of the turbulence and it changes its magnitude with the
distance from the wall. The eddy viscosity eM is analogous to the kinematic viscosity m but
unlike m it is not a property of the fluid.

The turbulent boundary layer is basically composed of two distinct regions:

(i) The laminar sublayer: It is a layer just adjacent to the wall, wherein the flow is laminar.
In this layer, eM is zero and Eq. (7.104) reduces to the familiar equation of viscous
shear.

(ii) The fully turbulent region: where eM is much larger than m and the viscous shear stress
may be neglected.

In the buffer zone (a zone between the laminar and fully turbulent zones), the eddy and
kinematic viscosities are of the same order of magnitude.

Let us now consider the heat exchange. The rate of heat exchange across plane 1-1 due to
the molecular transport is

q ¼ �k
d�t

dy
¼ �qcpa

d�t

dy
ðxiiÞ

where a is the thermal diffusivity of the fluid and �t is the average temperature.
The instantaneous temperature t at 1-1 fluctuates due to the arrival of hot eddies from

below and cold eddies from above when the wall temperature is higher than the free-stream
temperature. Hence,

t ¼ �tþ t0 ðxiiiÞ

The mass flow rate per unit area across surface 1-1 during time interval dh is qvdh and
transport of heat with this mass is (qvdh)cpt. Hence, the heat transport in time interval h is

q ¼ 1
h

Zh
0

qvcpt:dh ðxivÞ
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Substitution of the values of v and t gives

q ¼ qcp
h

Zh
0

�vþ v0ð Þ �tþ t0ð Þdh ¼ qcp
h

Zh
0

�v�tþ�vt0 þ�tv0 þ v0t0ð Þdh ðxvÞ

For steady flow,

1
h

Zh
0

�vt0dh ¼ 1
h
�v

Zh
0

t0dh ¼ 0

1
h

Zh
0

�tv0dh ¼ 1
h
�t

Zh
0

v0dh ¼ 0

Further, as explained earlier, �v is negligible for flow over a flat plate and �v is exactly zero
for fully developed flow through a tube. Hence, we are left with

q ¼ qcp
h

Zh
0

v0t0ð Þdh ¼ qcp v0t0
� � ðxviÞ

Turbulent heat transfer is analogous to the turbulent momentum transfer. In analogy to
Eq. (7.102), we introduce eddy thermal diffusivity or eddy heat diffusivity defined by

qt ¼ �qcpeH
d�t

dy
ð7:105Þ

Combining with Eq. (xvi), we get

qt ¼ qcp v0t0
� � ¼ �qcpeH

d�t

dy
ð7:106Þ

The negative sign has been introduced to give a positive value of eH.
To ascertain the signs of v0t0

� �
and d�t

dy, consider an instantaneous upward flow through plane

1-1, for which v0 is positive. For wall temperature higher than the free-stream temperature, t’ is
positive because it arrives from the region below plane 1-1. Hence, the product v0t0 is positive.
Similarly, it can be shown that for a fluid mass moving downwards through the plane 1-1, v0 is
negative and t0 will be negative hence the product v0t0 will be again positive (a positive v0 is
accompanied with a positive t0 and vice versa). Thus, on the whole the product v0t0

� �
is

positive. For the assumed condition of the plate hotter than the fluid, d�t
dy must be negative.

Hence, for a positive value of eH, introduction of the negative sign in Eq. (7.105) is justified.
The total heat flow in a turbulent flow is the sum of the molecular and eddy or transport,

i.e.
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q ¼ �qcpa
d�t

dy
� qcpeH

d�t

dy
¼ �qcp aþ eHð Þ d�t

dy
ð7:107Þ

The eddy thermal diffusivity is also a function of the turbulence and it changes its
magnitude with the distance from the wall.

The turbulent diffusivity is zero in the laminar sublayer. It is of the same order of
magnitude as the molecular diffusivity in the buffer zone and is much greater than the
molecular diffusivity in the turbulent core. However, this is true only for fluids having
Pr 
 1, but not for the liquid metals (Pr � 0.01).

The ratio of eM and eH is referred to as the turbulent Prandtl number Prt analogous to the
laminar or molecule Prandtl number, i.e.

Prt ¼ eM
eH

ð7:108Þ

The ratio eM/eH is required for the prediction of the heat transfer coefficient from the
measurement of the velocity field. However, the turbulent Prandtl number is difficult to
measure accurately. Some investigators report value of eM/eH from 0.6 to 1.7 for flow of air
in tubes. They found it high near the wall, decreasing and becoming nearly a constant away
from the wall. For liquid metals, Prt lies in the range of 1.0 to 2.0 throughout the boundary
layer (Kays and Crawford 1980). At very high molecular Prandtl number, say Pr � 1,
indirect evidence suggests that the value of Prt is not very different from 1.00.

The values of eM and eH depend on the speed of adaptability of an eddy (Rogers and
Mayhew 1967). A mass moving across a plane in turbulent region tends to acquire the
momentum and temperature of the new layer into which it moves, but on immediate return of
the mass to its original layer it may not be able to assume the momentum and temperature of
the new layer completely. This behaviour may not be the same for the momentum and
temperature. Reichardt (in Rogers and Mayhew 1967) concluded from his investigations that
eM and eH are not necessarily equal, although they are nearly equal for the turbulent flow
through tubes and past flat plates.

Reynolds suggested that there exists a complete similarity between forced convection
fluid friction and heat transfer because the same mechanism of turbulent exchange causes the
transfer of momentum and heat. This is known as Reynolds analogy and is presented in the
next section. However, the analogy is a considerable simplification of a very complex
process, but a reasonable approximation for fluids having the molecular Prandtl number
value of nearly one.

7.12 Reynolds Analogy for Flow Past a Flat Surface

When a fluid flows past a solid surface, a thin layer of fluid is formed on the surface in which
the viscous effects dominate. This film is called a laminar sublayer. The heat flow through
this layer is only by conduction. In the turbulent region beyond the laminar sublayer,
molecular conduction and shear effects are small compared to the turbulent exchange of heat
and momentum.
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The molecular shear stress and the heat flow per unit area in the laminar sublayer are
given by

sl ¼ l
du

dy
ðiÞ

ql ¼ �k
dt

dy
ðiiÞ

Combining Eqs. (i) and (ii), we get

ql
sl
¼ � k

l
dt

du
ðiiiÞ

The relationship is also valid at the wall, hence

ql
sl
¼ qw

sw
¼ � k

l
dt

du
ðivÞ

In the turbulent flow, beyond the laminar sublayer, let us consider a plane A-A parallel to
the wall. Due to the effect of turbulence, a mass qv0 from the lower plane 1-1 is transferred to
the upper plane 2-2 across the plane A-A, refer Fig. 7.27. In the steady-state condition, the
same amount of the fluid must flow from upper to the lower plane. The interaction causes
momentum and heat transfer.

The rate of momentum transfer across the plane A-A is

¼ qv0ðu1 � u2Þ ðvÞ

The rate of change of momentum is the shear stress. In the turbulent region, it is called
turbulent shear stress st. Thus

st ¼ qv0ðu1 � u2Þ ðviÞ

It is to be noted that qv0 is the mass flow rate per unit area. The heat flow with the mass
transport is

Plate

y

 x

U∞

Laminar sub-layer1

2
A

1

2
A

Turbulent region

ρv
ρv

Fig. 7.27 Exchange of mass in turbulent region due to the eddying motion
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qt ¼ �qv0cpðt2 � t1Þ ðviiÞ

From Eqs. (vi) and (vii),

qt
st

¼ �cp
t2 � t1ð Þ
u1 � u2ð Þ ¼ �cp

Dt
Du

ðviiiÞ

In the differential form, we can write

qt
st

¼ �cp
dt

du
ðixÞ

For Pr = lcp/k = 1, k/l in Eq. (iv) can be replaced by cp. This gives

ql
sl
¼ qw

sw
¼ qt

st
for Pr ¼ 1: ð7:109Þ

This is known as Reynolds analogy. The analogy establishes, ‘for the ratio of heat flow to
the shear stress, the law holds in laminar as well as turbulent flow’.

Since Eq. (7.109) is applicable for both the laminar and turbulent regions, the integration
of this equation carried out over the limits (u = 0, t = tw) at the wall and (u = U∞, t = t∞) at
the outer surface of the boundary layer, we obtain

qw
cpsw

ZU1

0

du ¼ �
Zt1
tw

dt

or

qw
cpsw

U1 ¼ tw � t1

or

qw
tw � t1ð Þ ¼ sw

cp
U1

ðxÞ

By definition, q/Δt is the heat transfer coefficient, h, hence

h ¼ sw
cp
U1

ðxiÞ

For the flow over a flat plate, the wall shear stress is given by

sw ¼ 1
2
qU2

1Cfx ðxiiÞ

where Cfx is the local skin friction coefficient.
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Inserting the value of sw in Eq. (xi),

hx ¼ 1
2
qU2

1Cfx
cp
U1

or

hx
qcpU1

¼ 1
2
Cfx ðxiiiÞ

The dimensionless group on the left-hand side is the Stanton number St. Equation (xiii) is,
thus

Stx ¼ 1
2
Cfx ð7:110Þ

The Stanton number can also be written as

St ¼ h

qcpU1
¼ hl

k
� l
qU1l

� k

lcp
¼ Nu

Re Pr
ð7:111Þ

Hence,

Stx ¼ Nux
Rex Pr

¼ Cfx

2
ð7:112Þ

The above equation has been derived from the Reynolds analogy and hence it is valid
only for the fluids having Pr = 1. It establishes the similarity of nature of heat and
momentum transfers. Thus, the heat transfer coefficient can be determined by measurements
of the friction factor under the conditions when no heat transfer is involved.

7.12.1 Reynolds–Colburn Analogy

For the laminar boundary layer over a flat plate, we obtained

Nux ¼ 0:332ðRexÞ1=2Pr1=3 ð7:56bÞ

and

Cfx ¼ 0:6641ffiffiffiffiffiffiffiffi
Rex

p ð7:37Þ

Dividing Eq. (7.56b) by Eq. (7.37), we get

Nux
Cfx

¼ 1
2
RexPr1=3

or
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Nux
Rex Pr

Pr2=3 ¼ Cfx

2

or

StxPr2=3 ¼ Cfx

2
ð7:113Þ

The relation has been proposed by Colburn and is known as Reynolds–Colburn analogy.
This analogy has been found to be quite accurate in the range 0.5 < Pr < 50 provided the
drag forces are wholly viscous in nature (i.e. when form or pressure drag is absent). It is to be
noted that for Pr = 1, the Reynolds and Reynolds–Colburn analogies are the same.

Note: some references define a factor j as

j ¼ StPr2=3 ð7:114aÞ

Therefore, we can also write Eq. (7.113) as

jx ¼ Cfx

2
ð7:114bÞ

Example 7.19 Air at atmospheric pressure and 20°C is flowing parallel to a flat plate at a
velocity of 30 m/s on one side of the plate. The plate is 0.375 m long and is kept at a constant
temperature of 180°C. For the unit width of the plate, the drag force on the plate is found to
be 0.3 N. Determine heat transfer rate from the one side of the plate.

Solution

The properties of air at the mean film temperature tfm = (20 + 180)/2 = 100°C are

q ¼ 0:9452 kg=m3; k ¼ 0:0317W=ðmKÞ; l ¼ 2:172� 10�5 kg=ðmsÞ; Pr ¼ 0:693; cp
¼ 1011:3 J=ðkgKÞ:

Skin friction coefficient,

Cf ¼ FD

A 1
2 qU

21
� � ¼ 0:3

0:375� 1� 1
2 � 0:9452� 302
� � ¼ 0:00188:

Colburn’s analogy gives

St ¼
�h

qU1cp
¼ Pr�2=3 Cf

2
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or

�h ¼ qU1cpPr�2=3
�Cf

2

¼ 0:9452� 30� 1011:3� 0:693�2=3 � 0:00188
2

¼ 34:42 W/(m2 K):

Rate of heat transfer q from one side of the plate

q ¼ �hAðtw � t1Þ ¼ 34:42� ð0:375� 1Þ � ð180� 20Þ ¼ 2065:2W:

7.12.2 Application of Colburn Analogy to Turbulent Heat Transfer
from a Flat Plate

The analogy has also been applied to predict the turbulent boundary layer heat transfer and
has yielded results which are in good agreement with the experimental values.

A friction factor correlation, derived from experimental data for turbulent flow over flat
plate, is

Cfx ¼ 0:0592ðRexÞ�1=5 for 5� 105\Re\107 ð7:115Þ

Applying the Colburn’s analogy

StxPr2=3 ¼ Cfx

2
ðiÞ

or

Nux
Rex Pr

Pr2=3 ¼ 0:0296Re�1=5
x

or

Nux ¼ 0:0296Re4=5x Pr1=3 for 5� 105\Re\107 ð7:116Þ

The average heat transfer coefficient over the plate length L,

h ¼ 1
L

ZL
0

hxdx;
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which yields

h ¼ 0:037Pr1=3
1
L
k

U1L

m

� �0:8

ðiiÞ

This gives the equation of the average Nusselt number over the plate length L as

Nu ¼ hL

k
¼ 0:037Re0:8L Pr1=3 for 5� 105\Re\107 ð7:117Þ

To determine the average heat transfer coefficient over the entire laminar turbulent
boundary layer, the following equation is used:

�h ¼ 1
L

Zxc
0

hxdxþ
ZL
xc

hxdx

0
@

1
A ðiiiÞ

Using Eqs. (7.56b) and (7.116) for the laminar and turbulent boundary layers, respec-
tively, we get

�h ¼ 1
L

Zxc
0

0:332
k

x
Re1=2x Pr1=3dxþ

ZL
xc

0:0296
k

x

� �
Re4=5x Pr1=3dx

2
4

3
5

Taking xc corresponding to Rec = 5 � 105, the integral yields (refer Example 7.20)

Nu ¼
�hL

k
¼ 0:037Re0:8L � 871
� �

Pr1=3 ð7:118Þ

Example 7.20 For fluid flow over a flat plate, develop the equations of the average heat
transfer coefficient if the local heat transfer coefficient is given by

Nux ¼ hxx

k
¼ 0:332 Rexð Þ1=2Pr1=3 for Re� 5� 105

Nux ¼ hxx

k
¼ 0:0296Re0:8x Pr1=3 for 5� 105\Re� 107

Solution

(a) Laminar Region
Refer Sect. 7.7.1.

(b) Turbulent region
The average heat transfer coefficient over the plate length L can be evaluated as
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�h ¼ 1
L

ZL
0

hxdx

¼ 1
L

ZL
0

0:0296Pr1=3
k

x

U1x

m

� �0:8

dx

¼ 0:0296Pr1=3
1
L
k

U1
m

� �0:8ZL
0

x�0:2dx

¼ 0:0296Pr1=3
1
L
k

U1
m

� �0:8L0:8

0:8

¼ 0:037
k

L

U1L

m

� �0:8

Pr1=3

The equation can be put in the non-dimensional form as

�hL

k
¼ 0:037

U1L

m

� �0:8

Pr1=3

Nu ¼ 0:037Re0:8L Pr1=3

(c) Average heat transfer coefficient over the entire laminar turbulent boundary layer

�h ¼ 1
L

Zxc
0

hxdxþ
ZL
xc

hxdx

0
@

1
A

Using given equations for the laminar and turbulent boundary layers, respectively, we
get

�h ¼ 1
L

Zxc
0

0:332
k

x
Re1=2x Pr1=3dxþ

ZL
xc

0:0296
k

x
Re4=5x Pr1=3dx

2
4

3
5

¼ 1
L
kPr1=3 0:332

Zxc
0

1
x

U1x

m

� �1=2

dxþ 0:0296
ZL
xc

1
x

U1x

m

� �0:8

dx

2
4

3
5

¼ 1
L
kPr1=3 0:332

U1
m

� �1=2Zxc
0

x�1=2dxþ 0:0296
U1
m

� �0:8ZL
xc

x�0:2dx

2
4

3
5

¼ 1
L
kPr1=3 0:664

U1xc
m

� �1=2

þ 0:037
U1L

m

� �0:8

� U1xc
m

� �0:8
" #( )

¼ 1
L
kPr1=3 0:664 Recð Þ1=2 þ 0:037 ReLð Þ0:8� Recð Þ0:8

h in o
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Putting Rec = 5 � 105 and simplifying, we get

�h ¼ k

L
Pr1=3 0:037Re0:8L � 871

� �
or

Nu ¼
�hL

k
¼ 0:037Re0:8L � 871
� �

Pr1=3

Example 7.21 Air, at mean bulk temperature of 20°C and 1 atm pressure, flows over a 0.5-
m-long and 1-m-wide flat plate parallel to its surface at a velocity of 5 m/s. The plate is at a
uniform temperature of 80°C. All other parameters remaining the same, how will the heat
transfer rate change if the air pressure is increased to 10 atm?

Solution

The properties of air at the mean film temperature tfm = (20 + 80)/2 = 50°C are

q ¼ 1:0949 kg=m3; k ¼ 0:02799W=ðmKÞ; l ¼ 1:9512� 10�5 kg=ðmsÞ; Pr ¼ 0:703:

(a) p = 1 atm

Flow Reynolds number is

ReL ¼ qU1L

l
¼ 1:0949� 5� 0:5

1:9512� 10�5
¼ 1:4� 105\5� 105:

The flow is laminar. The average heat transfer coefficient is

�h ¼ k

L
� 0:664Re1=2L Pr1=3 ¼ 0:02799

0:5
� 0:664� ð1:4� 105Þ1=20:7031=3

¼ 12:37 W=ðm2 KÞ:

Heat transfer rate,

q ¼ �h� Aðts � t1Þ ¼ 12:37� 0:5� 1� ð80� 20Þ ¼ 371:1 W:

(b) p = 10 atm

The air density will be 10 times when pressure will increase to 10 atm from 1 atm. Now,
the flow Reynolds number is

ReL ¼ qU1L

l
¼ 10:949� 5� 0:5

1:9512� 10�5
¼ 1:4� 106:
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Now the mixed boundary condition exists over the plate. The average heat transfer
coefficient is

�h ¼ k

L
� ð0:037Re4=5L � 871ÞPr1=3

¼ 0:02799
0:5

� ½0:037� ð1:4� 106Þ4=5 � 871� � 0:7031=3

¼ 108:74 W=ðm2 KÞ:

Heat transfer rate,

q ¼ �h� Aðts � t1Þ ¼ 108:74� 0:5� 1� ð80� 20Þ ¼ 3262:2 W:

Example 7.22 Air at 20°C flows at a velocity of 20 m/s past a flat plate 1.5 m long and
0.8 m wide. The surface of the plate is maintained at 280°C. Determine the heat transferred
from both sides of the plate. The following thermophysical properties of the air at 150°C may
be used:

q ¼ 0:835 kg=m3; l ¼ 24� 10�6 kg=ðmsÞ; cp ¼ 1:015 kJ=ðkgKÞ; k
¼ 3:56� 10�2W=ðmKÞ; Pr ¼ 0:7:

Solution

For the given data,

ReL ¼ qU1L

l
¼ 0:835� 20� 1:5

24� 10�6
¼ 1:044� 106 [ 5� 105

Plate length corresponding to Rec = 5 � 105 is

xc ¼ Recl
qU1

¼ 5� 105 � 24� 10�6

0:835� 20
¼ 0:7186m:

The flow is laminar up to 0.7186 m, i.e. up to Re = 5 � 105. The Nusselt number for this
part is

Nu ¼ 0:664Re0:5c Pr0:33

¼ 0:664ð5� 105Þ0:5ð0:7Þ0:33 ¼ 417:4

and the average heat transfer coefficient is

�h ¼ Nu� k

xcr
¼ 417:4� 3:56� 10�2

0:7186
¼ 20:68W=ðm2 KÞ:
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Heat transfer from the laminar region, for the both sides of the plate,

qlaminar ¼ �hAlaminarðtw � t1Þ
¼ 20:68� 2� 0:7186� 0:8� ð280� 20Þ ¼ 6182W:

Heat transfer from the turbulent region (xc to L)

qturbulent ¼ �hAturbulentðtw � t1Þ

where

�h ¼ 0:037ðRe0:8L � Re0:8c ÞPr0:33 k

L� xc

� �

¼ 0:037� ½ð1:044� 106Þ0:8 � ð5� 105Þ0:8� � ð0:7Þ0:33 � 3:56� 10�2

1:5� 0:7186

� �
¼ 43:56W=ðm2 KÞ:

Hence,

qturbulent ¼ 43:56� 2� ð1:5� 0:7186Þ � 0:8� ð280� 20Þ ¼ 14159W:

The total heat transferred is

q ¼ qlaminar þ qturbulent ¼ 6182þ 14159 ¼ 20341W:

Alternative solution
Use Eq. (7.118) to calculate the average heat transfer coefficient for the entire length.

�h ¼ k

L

� �
ð0:037Re0:8L � 871ÞPr0:33

¼ 3:56� 10�2

1:5

� �
½0:037ð1:044� 106Þ0:8 � 871� � ð0:7Þ0:33 ¼ 32:6

and

q ¼ �hAðtw � t1Þ ¼ 32:6� 2� 1:5� 0:8� ð280� 20Þ ¼ 20342W:

Note: The heat transferred for the turbulent part can also be calculated by first considering
the flow to be turbulent throughout the plate length and then subtracting the heat transfer
from x = 0 to x = xc.

Example 7.23 Air at 30°C flows over a flat plate 1.5 m long and 1 m wide. The plate
surface is maintained at 70°C. If the desired rate of heat dissipation from the plate is 3 kW,
determine the flow velocity of the air.
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Solution

At the mean temperature of (70 + 30)/2 = 50°C, the properties of air are

q ¼ 1:095 kg=m3; k ¼ 0:02799W=ðmKÞ; l ¼ 1:95� 10�5 kg=ðmsÞ; Pr ¼ 0:703; cp
¼ 1007:2 J=ðkgKÞ:

From heat transfer consideration,

q ¼ �hAðtw � t1Þ

Thus, for q = 3000 W, desired heat transfer coefficient,

�h ¼ q

Aðtw � t1Þ ¼
3000

1:5� 1� ð70� 30Þ ¼ 50W=ðm2 KÞ:

Assuming flow to be laminar, the average heat transfer coefficient is

�h ¼ Nu
k

L

¼ 0:664Re1=2L Pr1=3
k

L

or

50 ¼ 0:664� ðReLÞ1=2 � ð0:703Þ1=3 � 0:02799
1:5

:

Simplification gives

ReL ¼ 20:59� 106 [ 5� 105:

The flow is combination of the laminar and turbulent flows.
For the combination of the laminar and turbulent flows, the average heat transfer

coefficient,

�h ¼ Nu
k

L
¼ 0:037Re0:8L � 871
� �

Pr1=3
k

L

or

50 ¼ 0:037� ðReÞ0:8 � 871
h i

� ð0:703Þ1=3 � 0:02799
1:5

or

Re ¼ 1:89� 106
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U1 ¼ ReLl
qL

¼ 1:89� 106 � 1:95� 10�5

1:095� 1:5
¼ 22:43m=s:

7.13 Prandtl–Taylor Modification of Reynolds Analogy for Turbulent
Flow Over Flat Plates

Simple Reynolds analogy presented is applicable to fluids having Pr = 1, i.e. for k/l = cp. In
the region with high turbulence, eM � t and eH � a except for the liquid metals hence
(t + eM) = (a + eH) even if t 6¼ a. The flow is laminar in the sublayer adjacent to the wall
hence eM and eH are zero. Therefore, when Pr 6¼ 1, the integration cannot be carried out in
one step from the wall to the free stream as done in the derivation in Sect. 7.12.

Prandtl and Taylor divided the flow region into two parts: the sublayer in which the flow
is laminar and turbulent diffusivities are zero, and the region outside the sublayer in which eM
and eH are large enough for the assumption of (t + eM) = (a + eH) to be valid even if Pr 6¼ 1.

Using Eqs. (7.104) and (7.107) of shear and heat flow, we have

s ¼ qðmþ eMÞ dudy

q ¼ �qcpðaþ eHÞ dtdy

In the turbulent region, we can write

qt ¼ �qcpeH
dt

dy
ðiÞ

st ¼ qeM
du

dy
ðiiÞ

As explained earlier eM � eH hence in the turbulent region

qt
stcp

¼ � dt

du
ðiiiÞ

This is valid at y = db also, hence

qt
stcp

¼ qb
sbcp

¼ � dt

du
ðivÞ

where the subscript ‘b’ refers to the interface of the laminar sublayer and turbulent region.
We rewrite the above equation as

dt ¼ � qb
sbcp

du ðvÞ
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Integrating this equation from y = db to y = H, where H is greater than both db and dt, we
get

Tb � T1 ¼ qb
sbcp

U1 � ubð Þ ðviÞ

The velocity and temperature distributions in the laminar sublayer are assumed to be
linear because this layer is so thin that even a third degree polynomial will give an almost
straight line. For this assumption,

qw
sw

¼ qb
sb

ðviiÞ

Using this relation, we get

Tb � T1 ¼ qw
swcp

U1 � ubð Þ ðviiiÞ

Since the velocity distribution in the laminar sublayer is linear, we have

sw ¼ l
du

dy
¼ l

ub
db

ðixÞ

Heat flow through the laminar sublayer is by conduction only. Since the sublayer is very
thin, we can write

qw ¼ �k
dt

dy
¼ k

Tw � Tb
db

ðxÞ

From Eqs. (ix) and (x), we obtain

qw
sw

¼ k

l
Tw � Tb

ub

or

Tb ¼ � qw
sw

l
k
ub þ Tw ðxiÞ

Substitution of the value of Tb in Eq. (viii) gives

Tw � qw
sw

l
k
ub � T1 ¼ qw

swcp
U1 � ubð Þ ðxiiÞ

Rearranging the terms, we obtain
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Tw � T1 ¼ qw
sw

l
k
ub þ qw

swcp
U1 � ubð Þ

¼ qw
swcp

lcp
k

ub þ U1 � ubð Þ
h i

¼ qw
swcp

U1 Pr�1ð Þ ub
U1

þ 1

� 	 ðxiiiÞ

This gives

qw
Tw � T1

¼ swcp
U1

1þ Pr�1ð Þ ub
U1

� 	�1

ð7:119Þ

Introducing the heat transfer coefficient for qw
Tw�Tb

and sw = (1/2)qU∞
2 Cfx, we get

h ¼ Cfx

2
cpqU1 1þ Pr�1ð Þ ub

U1

� 	�1

or

hx

k
¼ Cfx

2
lcp
k

� � qU1x

l

� �
1þ Pr�1ð Þ ub

U1

� 	�1

or

Nux ¼ Cfx

2
Rex Pr

1þ ub
U1

Pr�1ð Þ

" #
ð7:120Þ

Deduction of the velocity ratio (ub/U∞)
From skin friction correlation of Blasius,

sw ¼ 0:0228qU2
1

m
U1d

� �1=4

Substitution in Eq. (ix) gives

db
d
¼ 1

0:0228
ub
U1

l
qU1d

U1d
m

� �1=4

ðxivÞ

At the junction of the laminar sublayer and turbulent region, 1/7th power law applies.
Therefore,

db
d
¼ ub

U1

� �7

ðxvÞ
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Equating these equations, we get

ub
U1

� �6

¼ 1
0:0228

m
U1d

� �3=4

ðxviÞ

From Eq. (7.80b),

d
x
¼ 0:375

Re1=5x

¼ 0:375
U1x
m

� �1=5
Hence,

ub
U1

� �
¼ 1

0:0228

� �1=6 m
U1

� �1=8
1

0:375

� �1=8 U1
m

� �1=40 1
ðxÞ1=10

¼ 2:12 m
U1x

� �0:1
¼ 2:12 Rexð Þ�0:1

ð7:121Þ

Introducing the value of ub/U∞, we obtain a relation known as Prandtl–Taylor relation,
which is applicable for turbulent flow over flat plate:

Nux ¼ Cfx

2
Rex Pr

1þ 2:12Re�0:1
x Pr�1ð Þ

� 	
ð7:122Þ

For Pr = 1, this equation reduces to simple Reynolds analogy Stx = Cfx/2.

7.13.1 von Karman Analogy for Flat Plates

von Karman developed the following expression of local Nusselt number for turbulent flow
over flat plate using the law of wall.

Stx ¼ Nux
Rex Pr

¼
Cfx

2

1þ 5 Cfx

2

� �1=2
Pr�1þ ln 5 Pr þ 1

6

� �� � ð7:123Þ

For Pr = 1, this equation also reduces to the simple Reynolds analogy. Substituting
Cfx = 0.0592Rex

−0.2 from Eq. (7.115) and rearranging the terms, we obtain

Nux ¼ 0:0296Re0:8x Pr
1þ 0:86Re�0:1

x Pr�1þ ln 5 Pr þ 1
6

� �� � for 5� 105\Re\107 ð7:124Þ

From the equation, it can be seen that the local Nusselt number decreases from the leading
edge, but much less rapidly than for the laminar boundary layer. The average value of the
Nusselt number can be determined by the numerical integration of the above equation.
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7.14 Reynolds Analogy for Turbulent Flow in Tubes

The following equations for the heat flow and shear stress were developed earlier:

q ¼ �qcpðaþ eHÞ dtdy ð7:107Þ

s ¼ qðmþ eMÞ dudy ð7:104Þ

According to the Reynolds analogy, as given earlier, the heat and momentum are trans-
ferred by analogous processes. It means that both q and s vary with distance from the wall in
the same manner. For the turbulent flow in the tubes, the local shear stress decreases linearly
in the radial direction. Hence, referring to Fig. 7.21, we can write

s
sw

¼ r

R
¼ 1� y

R
ðiÞ

and for the heat transfer,

q

qw
¼ r

R
¼ 1� y

R
ðiiÞ

Using these equations, Eqs. (7.107) and (7.104) yield

qw 1� y

R

� �
¼ �qcpðaþ eHÞ dtdy ðiiiÞ

sw 1� y

R

� �
¼ qðmþ eMÞ dudy ðivÞ

For eM = eH and Pr = 1 (i.e. a = m), (a + eH) = (m + eM). Dividing Eq. (iii) by Eq. (iv), we
obtain

qw
swcp

¼ � dt

du
ðvÞ

Integrating the equation between the tube inner surface (T = Tw, u = 0) and the bulk
values of fluid (Tb, Um), we get

qw
swcp

Um ¼ Tw � Tmð Þ; ðviÞ

which can be rewritten as

qw
Tw � Tmð Þ ¼

swcp
Um

: ðviiÞ
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Knowing that left-hand side is the heat transfer coefficient h and sw = (½ qUm
2 )f, we can

transform the above equation to

h ¼ f

2
qcpUm

� �

or

h

qcpUm
¼ f

2

� �

or

St ¼ f

2

� �
for eM ¼ eH and Pr ¼ 1: ð7:125Þ

The analogy agrees well with experimental data for the gases whose Prandtl number is
nearly unity. For fluids not having Pr = 1, the Prandtl number dependence is taken into
account by introducing factor Pr2/3 to give

StPr2=3 ¼ f

2

� �
: ð7:126Þ

However, the above equation is not valid for very high or low values of Pr.
The friction factor in Eq. (7.126) can be calculated from any appropriate equation. If

Blasius relation f = 0.0791 Re−0.25 is used

Nu
Re Pr

Pr2=3 ¼ 0:0791Re�0:25

2

� �

or

Nu ¼ 0:0396Re0:75Pr1=3: ð7:127Þ

Example 7.24 It was found during a test in which water flowed with a velocity of 2.5 m/s
through a tube of 25 mm inside diameter and 6.0 m long that the head lost due to the friction
was 1.53 m of water. Estimate the surface heat transfer coefficient based on the Reynolds
analogy. For water q = 998 kg/m3, cp = 4.187 kJ/(kg K), l = 1.0 � 10−3 kg/(m s) and
Pr = 7.02.

Solution

The pressure loss in m of water head is given by

hf ¼ 4fLU2
m

2Dg
ðiÞ
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Given: hf = 1.53 m, L = 6m, D = 0.025m and Um = 2.5 m/s. Substitution in Eq. (i) gives

f ¼ 5� 10�3:

For water, the Prandtl number is 7.02 (given) hence the Colburn’s analogy is to be
applied. This gives

St ¼ f

2

� �
� 1

Pr2=3

or

h

qUmcp
¼ f

2

� �
� 1

Pr2=3

or

h ¼ qUmcp
f

2

� �
� 1

Pr2=3
¼ 998� 2:5� 4187� 5� 10�3

2� 7:022=3
¼ 7124 W=ðm2 KÞ:

Example 7.25 From the data given in above example, calculate the heat transfer coefficient
using the following tube correlation:

Nu ¼ 0:0396Re0:75Pr1=3

Thermal conductivity k = 60 � 10−2 W/(m K).

Solution

Reynolds number,

Re ¼ qUmD

l
¼ 998� 2:5� 0:025

1:0� 10�3
¼ 62375:

Hence,

Nu ¼ 0:0396� ð62375Þ0:75 � ð7:02Þ1=3 ¼ 299:3;

and heat transfer coefficient,

h ¼ Nu
k

D

� �
¼ 299:3� 60� 10�2

0:025
¼ 7183:2 W=ðm2 KÞ:
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Example 7.26 Derive an expression for the ratio of heat transfer to power required to
maintain the flow in terms of the mean fluid velocity Um and the mean temperature difference
hm for fully developed flow through a tube. Assume that the simple Reynolds analogy is
applicable. What deductions you can make from this expression?

Solution

For a tubular heat exchanger, the heat transfer rate is

q ¼ hðpDLÞðtw � tbÞ ¼ hðpDLÞhm

The pumping power required is

P ¼ shear force�mean velocity

¼ ðsw � wetted area)� Um

¼ sw � ðpDLÞ � Um

Hence, the ratio of the heat transfer and pumping power is

q

P
¼ hhm

swUm

Putting sw = fqUm
2 /2 and h = (f /2)qUmcp from the relation St = h/(qUmcp) = (f /2), we

get

q

P
¼ cphm

U2
m

:

From this relation, it can be deduced that for the given rate of heat transfer q, the pumping
power can be reduced by reducing the mean velocity of the flow. However, the reduction in
the velocity will cause a reduction in the heat transfer coefficient leading to an increased
requirement of the surface area. Hence, in the design of the tubular heat exchanger, a
compromise is made between the two.

7.14.1 Prandtl–Taylor Modification of Reynolds Analogy for Turbulent
Flow in Tubes

It is similar to that presented for flow over a flat plate. For the limits between the laminar
sublayer and centreline of the tube, i.e. y = db (where u = ub, and h = Tw – Tb) and
y = R (where u = Umax and h = hc), we obtain

qw
hc

¼ swcp
Umax

1þ Pr�1ð Þ ub
Umax

� 	�1

or
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qw
swcp

¼ hc
Umax

1þ Pr�1ð Þ ub
Umax

� 	�1

ð7:128Þ

where hb/ub = hc/Umax. Since hc/Umax � hm/Um, we get

qw
swcp

¼ hm
Um

1þ Pr�1ð Þ ub
Umax

� 	�1

ð7:129Þ

Transformation to non-dimensional form, as carried out earlier, gives

Nu ¼ f

2
Re Pr

1þ ub
Umax

Pr�1ð Þ
h i ð7:130Þ

where the Nusselt number and Reynolds number are based on the tube diameter.
For the fully developed turbulent flow, ub/Umax = 1.99/Re1/8. Hence, the equation

transforms to

Nud ¼ f

2

� �
Re Pr

1þ 1:99Re�1=8 Pr�1ð Þ

or

Nud ¼ 0:0396Re0:75 Pr

1þ 1:99Re�1=8 Pr�1ð Þ ð7:131Þ

It can also be written as

Nud
Re Pr

¼ f=2

1þ 1:99Re�1=8 Pr�1ð Þ

or

St ¼ f =2

1þ 1:99Re�1=8 Pr�1ð Þ ð7:132Þ

This form is preferred because St, which also equals h/(cpqUm), can be transformed
directly from tube dimensions and temperature measurements.4

4From energy balance on a heated or cooled fluid in a tube of length L, we can write

h pdLð Þ Tw � Tmð Þ ¼ qUm
p
4
d2

� �
cp To � Tið Þ

This gives

h

qUmcp
¼ St ¼ d

4L
To � Tið Þ
Tw � Tmð Þ
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von Karman also considered the buffer zone and the result of this analogy is

St ¼ f =2

1þ 5
ffiffi
f
2

q
Pr�1þ ln 1þ 5

6 Pr�1ð Þ� �� � ð7:133Þ

The von Karman result differs from observed behaviour at very low and very high Prandtl
numbers. For Pr = 1, both the Prandtl–Taylor and von Karman analogies transform to simple
Reynolds analogy.

Introducing f = 0.0791 Re−0.25 in von Karman relation, we obtain

Nu ¼ 0:0396Re0:75 Pr

1þRe�1=8 Pr�1þ ln 1þ 5
6 Pr�1ð Þ� �� � ð7:134Þ

The empirical relations for the tubes are presented in the next chapter.

7.14.2 Friction Drag: Flow Over a Flat Plate Parallel to the Flow

The total force on a body in the direction of the flow is termed as drag. The total drag on a
non-lifting body is termed as profile drag, which is the sum of the skin friction drag and
pressure drag.

For the flow over a flat plate oriented parallel to the flow direction (zero angle of attack),
the pressure drag is zero hence the total drag FD is equal to the skin friction drag. Thus

FD ¼
Z
A

swdA ð7:135Þ

where A is the plate surface area in contact with the fluid.
The drag coefficient is defined as

CD ¼ FD
1
2 qU

21A
¼
R
A swdA

1
2 qU

21A
ð7:136Þ

7.14.2.1 Laminar Flow
For the laminar flow over a flat plate, the skin friction coefficient is given by

Cfx ¼ sw
1
2 qU

21
¼ 0:664ffiffiffiffiffiffiffiffi

Rex
p ð7:37Þ

For a flat plate of length L and width W, the drag force is

FD ¼
Z
A

swdA ¼
Z
A

1
2
qU2

1CfxdA ¼
ZL
0

1
2
qU2

1CfxWdx

¼ 1
2
qU2

1W

ZL
0

Cfxdx ðiÞ
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Substituting the value of Cfx from Eq. (7.37) and putting Rex = U∞x/t, we have

FD ¼ 1
2
qU2

1W

ZL
0

0:664
U1x

m

� ��1=2

dx ðiiÞ

Average value of CD for length 0 to L is

CD ¼ FD
1
2qU

21A
¼

1
2 qU

2
1W

R L
0 0:664 U1x

m

� ��1=2
dx

1
2 qU

21WL

¼ 1
L

ZL
0

0:664
U1x

m

� ��1=2

dx ¼ 1:328
U1L
m

� �1=2
¼ 1:328

Re1=2L

ð7:137Þ

which equals the mean value of the skin friction coefficient. This is expected because here the
drag is due to the skin friction only.

7.14.2.2 Turbulent Flow
(a) Assuming the flow to be turbulent from the leading edge of the plate, the skin friction

coefficient from Eq. (7.81) is

Cfx ¼ sw
1
2 qU

21
¼ 0:0583

Re1=5x

ð7:81Þ

Average value of CD for length 0 to L, following the procedure of the previous section, is

CD ¼ FD
1
2qU

21A
¼

1
2 qU

2
1W

R L
0 0:0583 U1x

m

� ��1=5
dx

1
2 qU

21WL

or

CD ¼ 0:0729

Re1=5L

; ð7:138Þ

which is valid for 5 � 105 < Re < 107.
The empirical relation given by Schlichting for 5 � 105 < Re < 109 is

CD ¼ 0:455

log10 ReLð Þ2:58 ; ð7:139Þ

which agrees well with the experimental results.
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(b) For the boundary layer which is initially laminar, the drag coefficient must take account
of the laminar flow over the initial length. The drag coefficient for length L comprising
laminar flow up to length xc can be determined by subtracting drag coefficient value for 0
to xc from (CD)turbulent from 0 to L and then adding (CD) laminar for length 0 to xc. Thus

CD ¼ 0:0729

Re1=5L

� 0:0729

Re1=5c

� xc
L

þ 1:328

Re1=2c

� xc
L

Substituting xc = Rec(m/U∞), Rec = 5 � 105 and rearranging, we obtain

CD ¼ 0:0729

Re1=5L

� 1703
ReL

for 5� 105\Re\107: ð7:140Þ

Following the same procedure, we can obtain from Eq. (7.139),

CD ¼ 0:455

log10 ReLð Þ2:58 �
1614
ReL

for 5� 105\Re\109: ð7:141Þ

Example 7.27 Air at atmospheric pressure and 20°C is flowing parallel to a flat plate at a
velocity of 30 m/s. The plate is 1 m long and is kept at a constant temperature of 180°C. For
the unit width of the plate, determine

(a) The drag force on the plate for the laminar portion of the flow.
(b) Heat transfer rate from the one side of the plate for the laminar portion of the flow.
(c) The drag force on the plate.
(d) The heat transfer rate from one side of the complete length of the plate.

What would be the heat transfer rate if the flow is turbulent from the leading edge of the
plate?

Solution

The properties of air at the mean film temperature tfm = (20 + 180)/2 = 100°C are

q ¼ 0:9452 kg=m3; k ¼ 0:0317W=ðmKÞ; l ¼ 2:172� 10�5 kg=ðmsÞ; Pr ¼ 0:693; cp
¼ 1011:3 J=ðkgKÞ:

Laminar regime
Critical length, xc:

xc ¼ Recl
qU1

¼ 5� 105 � 2:172� 10�5

0:9452� 30
¼ 0:384m:
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(a) Drag

Skin friction coefficient,

Cf ¼ 1:328ffiffiffiffiffiffiffiffiffi
Recr

p ¼ 1:328ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 105

p ¼ 0:00188

Drag force,

FD ¼ CfA
1
2
qU2

1

� �
¼ 0:00188 � ð0:384� 1Þ � 1

2
� 0:9452� 302

� �
¼ 0:31 N:

(b) Heat transfer rate

The average heat transfer coefficients,

�h ¼ Nu k
xc
¼ 0:664Re1=2cr Pr1=3 k

xc

¼ 0:664� ð5� 105Þ1=2 � ð0:693Þ1=3 � 0:0317
0:384 ¼ 34:3 W=ðm2 KÞ:

Rate of heat transfer q from one side of the plate for length xc,

q ¼ �hAðtw � t1Þ ¼ 34:3� ð0:384� 1Þ � ð180� 20Þ ¼ 2107:6 W:

Laminar and turbulent regime
Flow Reynolds number

ReL ¼ qU1L

l
¼ 0:9452� 30� 1

2:172� 10�5
¼ 1:305� 106:

(c) Drag

Skin friction coefficient,

Cf ¼ 0:0729

Re1=5L

� 1703
ReL

¼ 0:0729

ð1:305� 106Þ1=5
� 1703
1:305� 106

¼ 0:00306: ð7:140Þ

Drag force,

FD ¼ CfA
1
2
qU2

1

� �
¼ 0:00306� ð1� 1Þ � 1

2
� 0:9452� 302

� �
¼ 1:3 N:
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(d) Heat transfer rate

The average heat transfer coefficient,

�h ¼ Nu
k

xcr
¼ 0:037Re0:8L � 871
� �

Pr1=3
k

L

Substitution of the values of various parameters gives

�h ¼ 0:037� ð1:305� 106Þ0:8 � 871
h i

� ð0:693Þ1=3 � 0:0317
1:0

¼ 56:6 W=ðm2 KÞ:

Rate of heat transfer q from one side of the plate for length L = 1 m,

q ¼ �hAðtw � t1Þ ¼ 56:6� ð1� 1Þ � ð180� 20Þ ¼ 9056 W:

Turbulent flow from the leading edge of the plate

Nu ¼ 0:037Re0:8L � Pr1=3

or

�h ¼ Nu
k

L
¼ 0:037� ð1:305� 106Þ0:8 � ð0:693Þ1=3 � 0:0317

1:0
¼ 81:03 W=ðm2 KÞ:

Rate of heat transfer q from one side of the plate for length L = 1 m,

q ¼ �hAðtw � t1Þ ¼ 81:03� ð1� 1Þ � ð180� 20Þ ¼ 12964:8 W:

7.15 Natural or Free Convection

Natural convection occurs whenever a heated or cooled surface is placed in a volume of fluid
which is stagnant before heat is added or removed.

Consider a heated vertical plate at constant temperature Tw shown in Fig. 7.28. The
density of the fluid in contact with the wall (the surface of the heated plate) decreases due to
the rise in the temperature. This causes the fluid near the wall to move upwards and create
free convection flow. Thus, the heat is transferred away from the wall. As the heated fluid
rises, cold fluid moves near the wall and a current is set in motion. The gravity field of the
earth is the pump in the considered example.

Free convection under the influence of the gravitational force is frequently encountered in
engineering applications and has been extensively studied.

Flows can be caused by other body forces such as centrifugal, coriolis forces, etc. Electric
or magnetic forces may arise at supersonic speeds and influence the flow. Here, only the flow
under the influence of gravitational force will be considered.

A boundary layer is formed in free convection also as the fluid moves due to the buoyancy
effect. Fluid relatively far from the surface will enter the layer and is heated. Thus, the

7.14 Reynolds Analogy for Turbulent Flow in Tubes 539

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


boundary layer, which has zero thickness at the lower edge, increases in the upward direction
as shown in Fig. 7.28. Over the lower section of the wall, the flow is laminar, and eddying or
turbulent along the upper section in the figure. The condition of the motion is mainly
governed by the difference in the temperature of the wall and the fluid, the shape of the body,
the dimension (known as the characteristic dimension) and the thermophysical properties of
the fluid. In the initial section, the flow is always laminar. The heat transfer rate depends
significantly on the type of flow.

It must be noted that because of the low flow velocities encountered in the free con-
vection, the boundary layers are thicker than those in the forced convection.

Analysis is being presented for a heated vertical plate, which is simple to deal with.
Experimental measurements are relied upon to obtain relations for other configurations.
Some of such relations are presented in Chap. 9.

7.16 Integral Momentum and Energy Equation of Free Convection
on a Vertical Plate

The integrated boundary layer equations for momentum and heat transfer can be used to
calculate the heat transfer in free convection.

Since the free convection is produced by the buoyancy effect, the Archimedes’ principle
applies to a volume of fluid within the heated layer, refer Fig. 7.29. The buoyancy force is
(Vq∞g – Vqg) where q is the density of the heated fluid element.

The coefficient of thermal expansion is defined as

b ¼ q1 � q
q DTð Þ ð7:142Þ

Using this, the buoyancy force becomes Vqbg(ΔT), i.e. it is a function of bg and ΔT.
Let us place the origin of the coordinates at the lower edge of the plate; distances along

and perpendicular to the plate are x and y, respectively. We assume that the plate is very wide
in z-direction.

Boundary
layer

 Tw 

Heated
plate

h

T ∞

Laminar

Turbulent

Fig. 7.28 Boundary layer over a heated vertical plate and variation of heat transfer coefficient
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To simplify the analysis, the following assumptions are being made:

1. Steady-state process.
2. Plate temperature, designated as hw (= Tw – T∞), is constant along its length.
3. The forces of inertia are negligible compared to those of gravity and viscosity.
4. Transfer of heat by convection and conduction along the direction of the moving fluid

(i.e. in the x-direction) are ignored.
5. The pressure gradient is zero.

The temperature of the fluid, designated as h (= T – T∞), decreases from the value of plate
surface temperature hw to the temperature h = 0 of the fluid outside the boundary layer. The
velocity, which is zero at the plate surface due to the no-slip condition, increases to some
maximum value at some distance from the plate surface and then again reduces to zero at the
edge of the boundary layer.

The equation of the temperature distribution is approximated by a parabola

h ¼ hw 1� y

d

� �2
ð7:143Þ

The equation satisfies the boundary conditions of h = hw at y = 0, h = 0 at y = d and
@h
@y= 0 at y = d.

The equation of the velocity profile is expressed as (refer Example 7.28)

u ¼ u	
y

d
1� y

d

� �2
ð7:144Þ

where u* is an arbitrary function with dimensions of velocity and it is function of x. This
equation gives Umax = (4/27) u* at y = d/3. The velocity and temperature distribution are
plotted in Figs. 7.30 and 7.31.

The integral momentum equation for the free convection system can be written as follows
(refer Fig. 7.32).

The mass flow through plane AA’ for unit width of the plate is, considering an elemental
vertical strip of thickness dy (not shown in the figure),

ZH
0

qudy ðiÞ

The momentum flow through this plane is

Vρ∞g

Vρg

ρ∞
ρ

Vρ∞g

Vρg

ρ∞
ρ

Fig. 7.29 Forces on a fluid element under free convection
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y

AA

BB

H

x

dx

Fig. 7.32 Integral momentum equation control volume

Temperature 
Profile

T∞ 

Tw

u

Heated 
plate

Laminar 
Boundary 
layer

y

x

Fig. 7.30 Laminar natural convection boundary layer over a vertical wall: coordinate system, and expected
velocity and temperature profiles

0

0.03

0.06

0.09

0.12

0.15

0 0.2 0.4 0.6 0.8 1

y/δ

u/
u*

Fig. 7.31 Free convection velocity profile given by Eq. (7.144)
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ZH
0

qu2dy ðiiÞ

The momentum flow through plane BB’ is

ZH
0

qu2dyþ d

dx

ZH
0

qu2dy

0
@

1
Adx ðiiiÞ

The net momentum flow out of the control volume is difference of the above two
equations and is, therefore,

d

dx

ZH
0

qu2dy

0
@

1
Adx ðivÞ

The shear force at the wall is

�sw:dx ¼ �l
@u

@y

� �
y¼0

dx ðvÞ

The buoyancy force is

dx�
ZH
0

qgb T � T1ð Þdy ¼
ZH
0

qgbhdy

0
@

1
Adx ðviÞ

Combining the balancing forces given by the above equations, the integral momentum
equation is obtained

d

dx

Zd
0

qu2dy

0
@

1
A ¼ �l

@u

@y

� �
y¼0

þ
Zd
0

qgbhdy ðviiÞ

where the upper limit of the integral has been changed to d (which is the boundary layer
thickness) because the integrand is zero for y > d (the boundary thickness has been assumed
to be same for the temperature and velocity to simplify the computational work).

The energy equation remains unchanged, Eq. (7.66),

d

dx

Zd
0

uhdy ¼ �a
dh
dy

� �
y¼0

ðviiiÞ

Equations (vii) and (viii) can be solved by introducing the temperature and velocity profile
equations given by Eqs. (7.143) and (7.144), respectively,
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Zd
0

u2dy ¼ u	ð Þ2d
105

ðixÞ

Zd
0

hdy ¼ hwd
3

ðxÞ

Zd
0

hudy ¼ u	hwd
30

ðxiÞ

The boundary layer equations now become

1
105

d

dx
u	ð Þ2d

h i
¼ 1

3
gbhwd� m

u	

d
ðxiiÞ

1
30

hw
d

dx
u	d½ � ¼ 2a

hw
d

ðxiiiÞ

Let u* and d are power function of x, then

u	 ¼ C1x
a ðxivÞ

d ¼ C2x
b ðxvÞ

Introducing these expressions in Eqs. (xii) and (xiii), we get

2aþ b

105
C2
1C2x

2aþ b�1 ¼ gbhw
C2

3
xb � C1

C2
mxa�b ðxviÞ

aþ b

30
C1C2x

aþ b�1 ¼ 2a
C2

x�b ðxviiÞ

For these equations to be dimensionally homogeneous, the exponents of x must have the
same value in each term. Therefore,

2aþ b� 1 ¼ b ¼ a� b
aþ b� 1 ¼ �b

Solution of these equations gives

a ¼ 1
2
; b ¼ 1

4
:

Introducing the values of a and b in Eqs. (xvi) and (xvii), we get

5C2
1C2

420
¼ gbhw

C2

3
� C1

C2
m
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and

C1C2

40
¼ 2

a
C2

Solving these equations for C1 and C2, we get

C1 ¼ 5:17m
20
21

þ m
a

� ��1=2 gbhw
m2

� �1=2

ðxviiiÞ

C2 ¼ 3:93
20
21

þ m
a

� �1=4 gbhw
m2

� ��1=4 m
a

� ��1=2
ðxixÞ

The maximum velocity is

Umax ¼ 4
27

u	 ¼ 0:766m 0:952þ m
a

� ��1=2 gbhw
m2

� �1=2

x1=2 ðxxÞ

and boundary layer thickness from Eq. (xv) is

d ¼ 3:93
20
21

þ m
a

� �1=4 gbhw
m2

� ��1=4 m
a

� ��1=2
x1=4

¼ 3:93 0:952þ Prð Þ1=4 gbhwx3

m2

� ��1=4

Pr�1=2x

or

d
x
¼ 3:93Gr�1=4

x Pr�1=2 0:952þ Prð Þ1=4 ð7:145Þ

where Grx =
gbhwx3

m2

� �
is a dimensionless number known as Grashof number.

Heat flow by convection at the plate surface is given by

q ¼ �k
dh
dy

� �
y¼0

Using Eq. (7.143),

q ¼ 2k
hw
d

� �
ðxxiÞ

The heat flow by convection is given by

q ¼ hhw
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Equating the two, the local heat transfer coefficient can be written as

hx ¼ 2
k

d

or

Nux ¼ hxx

k
¼ 2

x

d
ðxxiiÞ

Substituting the value of x/d from Eq. (7.145), we obtain the relation of local heat transfer
coefficient as

Nux ¼ 0:508Gr1=4x Pr1=2 0:952þ Prð Þ�1=4 ð7:146Þ

Since the local heat transfer coefficient varies as x−1/4, the average heat transfer coefficient
is

�h ¼ 1
L

ZL
0

hxdx ¼ 4
3
hL ð7:147Þ

i.e. the average value of the heat transfer coefficient is 4/3 times the local value at x = L. For
air, Pr � 0.7 and

Nux ¼ 0:375Gr1=4x : ð7:148Þ

The numerical value of 0.375 in the equation is in good agreement with the value of 0.36
obtained in an exact solution of Pohlhusen.

In this analysis, a new dimensionless number Gr has been introduced. This number plays
an important role in all free convection problems similar to that played by the Reynolds
number in forced convection. The product of Grashof and Prandtl number (Gr Pr) provides a
criterion for transition from laminar to turbulent boundary layer flow in free convection. For
air, the critical Grashof number is about 4 � 108 for a vertical plate. For different config-
urations, the critical Grashof number ranges from 108 to 109.

The Grashof number Gr can be interpreted physically as a dimensionless number repre-
senting the ratio of the buoyancy to viscous forces in free convection, i.e.

Gr ¼ gbhwx3

m2

� �
¼ Buoyancy force

Viscous force
ð7:149Þ

The analysis has been presented here for the free convection heat transfer from a vertical
isothermal plate because it is the simplest case that can be treated mathematically. For the
majority of the configurations, the correlations have been developed from the results of the
experimental studies. The experimental approach is preferred because, in most of the cases, it
is difficult to predict temperature and velocity profiles analytically. Analytical solutions for
free convection turbulent flow are practically impossible. Hence, empirical data (experi-
mental results) are presented using the method of dimensional analysis in the form of
correlation
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Nux ¼ CðGrxPrxÞn ð7:150Þ

where the constant C and the exponent n are experimentally determined. Correlations pre-
sented by different researchers are listed in Chap. 9.

Example 7.28 (i) Derive the differential equation of motion for the free convection
boundary layer on a vertical flat plate. (ii) Show that the equation of the velocity profile in a
free convection flow over a vertical plate can be expressed as

u

u	
¼ y

d
1� y

d

� �2
where u* is a fictitious velocity, which is a function of the distance measured along the height
of the plate.

Solution

(i) Following the method presented for the differential equation for the forced flow laminar
boundary layer on a flat plate, we proceed as follows.
Momentum of mass entering the bottom face of the control volume for unit depth is, refer

Fig. 7.33,

qudy:u ¼ qu2dy:

Momentum leaving the top face is

qu2dyþ @

@x
qu2dy
� �

dx:

Momentum in x-direction of the mass qv(Dx.1), which enters the left face with velocity
u in x-direction, is

qvdx:u:

Momentum in x-direction of this mass leaving the right face is

quvdxþ @

@y
quvdxð Þdy:

( )u yd xd
x

u yd 22 ρρ +

u yd2ρ

( )xduv yd
y

vudx .ρρ +vudxρ

( )ydxd gρ

( )ydxd gρ

dx

dy

yd xd
y
u

yy
u

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟⎠

⎞
⎜⎜⎝

⎛+μ

dx
y
u

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ

Fig. 7.33 Example 7.28
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Viscous shear force on the left face, for unit width of the plate, is

�l
@u

@y
dx

and the shear on the right face is

l
@u

@y
þ @

@y

@u

@y

� �
dy

� 	
dx

The buoyancy force acting in the upward direction is

q1 � qð Þdx:dy:g:

The density difference (q∞ – q) may be expressed in the terms of the volumetric coef-
ficient of expansion. This transforms the term representing the buoyancy force to

gqb T � T1ð Þðdx:dyÞ

Equating the sum of the shear and buoyancy forces to the net momentum in the x-
direction, we get

l
@2u

@y2
dx:dyþ gqb T � T1ð Þðdx:dyÞ ¼ @

@x
qu2dy
� �

dxþ @

@y
quvdxð Þdy

¼ 2qu
@u

@x
dxdyþ qu

@v

@y
dxdyþ qv

@u

@y
dxdy

¼ q u
@u

@x
þ v

@u

@y

� �
dxdyþ q

@u

@x
þ @v

@y

� �
u:dxdy

From the continuity equation, @u
@x þ @v

@y

� �
¼ 0. Using this relation and simplifying, we get

q u
@u

@x
þ v

@u

@y

� �
¼ gqb T � T1ð Þþ l

@2u

@y2
; ð1Þ

which is the desired differential equation.
(ii) The boundary conditions for the velocity profile are

u ¼ 0 at y ¼ 0; ðiÞ
u ¼ 0 at y ¼ d; ðiiÞ
@u

@y
¼ 0 at y ¼ d ðiiiÞ

and from Eq. (1), at y = 0
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@2u

@y2
¼ �gb

Tw � T1ð Þ
m

ðivÞ

Let the equation of the velocity profile is a cubic-polynomial function of y to satisfy the
four conditions. Thus

u

u	
¼ aþ byþ cy2 þ dy3

where u* is a fictitious velocity, which is function of x. This is based on the assumption
that the velocity profile is having geometrically similar shapes at various x locations
along the plate.
Applying the four boundary conditions, we obtain

u

u	
¼ gbd2 Tw � T1ð Þ

4u	m

� 	
:
y

d
: 1� y

d

� �2

The term in the first bracket on the right-hand side of the equation can be incorporated in
u*. Then the resulting expression for the velocity profile is

u

u	
¼ y

d
1� y

d

� �2

Example 7.29 Show that the coefficient of cubical expansion can be expressed as

b ¼ q1 � q
qdT

where q and q∞ are the densities of the heated fluid mass element and surrounding fluid,
respectively. The heated fluid is at a temperature dT above the surrounding fluid.

Also show that b = 1/T for an ideal gas having equation of state pV = RT.

Solution

(i) Consider a small element of fluid mass m and volume V. The mass of the unheated fluid
can be expressed as

m ¼ q1V ðiÞ

Heating of the elemental mass increases the volume of the element to V + dV and
decreases the density to q. Hence,

m ¼ qðV þ dVÞ ðiiÞ
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Equating the above two equations, we get

q1V ¼ qðV þ dVÞ ðiiiÞ

The coefficient of cubical expansion b is defined as the change in the volume per unit
temperature rise at constant pressure, i.e.

b ¼ dV

V
:
1
dT

ðivÞ

Substituting the value of dV in terms of b in Eq. (iii), we get

q1V ¼ qðV þ bVdTÞ
q1 ¼ qð1þ bdTÞ:

Hence,

b ¼ q1 � q
qdT

(ii) From the prefect gas equation, for p = constant,

pdV ¼ RdT

Dividing both sides by V,

dV

V
¼ R

pV
dT

Using R
pV ¼ 1

T from the prefect gas equation, we obtain

dV

V
¼ dT

T

Substitution of the values in Eq. (iv) gives

b ¼ dT

T
:
1
dT

¼ 1
T

Example 7.30 For a flow through a circular pipe, the velocity profile is parabolic and is
given by u(r) = Umax (1 – r2/R2) and the non-dimensional temperature profile is given by (t –
tw)/(to – tw) = (1 – r2/R2), when Umax is the maximum velocity, R is the radius, tw is the wall
temperature and to is a constant (independent of x and r). Show that the Nusselt number of
the flow is 6.
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Solution

For the tube flow, the convection heat transfer coefficient is defined by

h ¼ qw
tb � tw

ðiÞ

where Tb is the bulk mean temperature of the fluid and qw ¼ �k @t
@r

� �
r¼R

. The bulk temper-
ature equation is

tb ¼
R R
0 r:dr:u:TR R
0 r:dr:u:

From the given equations of temperature and velocity profiles,

qw ¼ �k
@

@r
t0 � twð Þ 1� r2

R2

� �� 	 �
r¼R

¼ k t0 � twð Þ 2
R

and

tb ¼
R R
0 r:dr:Umax 1� r2

R2

� �
t0 � twð Þ 1� r2

R2

� �
þ tw

h i
RR
0
r:drUmax 1� r2

R2

� �

¼
R R
0 r:dr 1� r2

R2

� �
t0 � twð Þ 1� r2

R2

� �h i
RR
0
r:dr 1� r2

R2

� � þ tw

¼
R R
0 rþ r5

R4 � 2 r3

R2

� �h i
dr

RR
0

r � r3
R2

� �
:dr

t0 � twð Þþ tw

Integration gives

tb � tw ¼ 2
3

t0 � twð Þ

Substitution in Eq. (i) gives

h ¼ 2k
R

to � twð Þ 3
2 to � twð Þ
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or

hð2RÞ
k

¼ 6

i.e. Nu ¼ 6:

7.17 Liquid Metal Heat Transfer for Laminar Flow Over a Flat Plate

Liquid metals5 have been employed because of their capability of removing large energy
quantities, which is due to their high thermal conductivity. They remain in liquid state at
higher temperatures than water. However, the liquid metal requires careful handling since
they are corrosive and show a violent reaction when come into contact with water.

Let us consider flow of liquid metal over a flat plate. Since the Prandtl number of the
liquid metal is quite low, ranging from 0.005 to 0.03, the thermal boundary layer thickness is
substantially larger than the velocity boundary layer thickness as shown in Fig. 7.34.

We can assume the velocity to be uniform over the whole of the thermal boundary layer
because the velocity profile is having very blunt shape as shown in Fig. 7.34, i.e.

u ¼ U1 ðiÞ

It is an idealized flow often referred as slug flow.
Since the boundary conditions for the temperature profile are the same as those in

Sect. 7.7.2, we have

h
h1

¼ T � Tw
T1 � Tw

¼ 3
2
y

dt
� 1
2

y

dt

� �3

ð7:62Þ

For low velocity flow, the integral energy equation [refer Eq. (7.66)] is

d

dx

Zdt
0

h1 � hð Þudy ¼ a
@h
@y

� �
y¼0

Using Eqs. (i) and (7.62), we obtain

T∞ - Tw 

T - Tw 

Tw

 T∞

U∞

δt

δ

U T∞∞

Fig. 7.34 Boundary layer regimes for flow of liquid metal over a flat plate

5Bismuth (Bi), lead (Pb), lithium (Li), mercury (Hg), potassium (K), sodium (Na), 22% Na + 78% K, 56%
Na + 44% K, 44.5% Pb + 55.5% Bi, etc.
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U1h1
d

dx

Zdt
0

1� 3
2
y

dt
þ 1

2
y

dt

� �3
" #

dy ¼ 3ah1
2dt

The integral yields

2dtddt ¼ 8a
U1

dx

The solution of this differential equation is

dt ¼
ffiffiffiffiffiffiffiffi
8ax
U1

r
ð7:151Þ

The local heat transfer coefficient,

hx ¼
�k @T

@y

� �
y¼0

Tw � T1

¼ k
@

@y

3
2
y

dt
� 1
2

y

dt

� �3
" #( )

y¼0

¼ 3k
2dt

:

Substitution of the value of dt from Eq. (7.151) gives

hx ¼ 3k
2

ffiffiffiffiffiffiffiffi
U1
8ax

r
¼ 0:53

k

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qU1x

l
� lcp

k

s

or

hxx

k
¼ 0:53

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qU1x

l
� lcp

k

s

or

Nux ¼ 0:53 Rex Prð Þ1=2¼ 0:53Pe1=2 ð7:152Þ

The product (Rex Pr) is a non-dimensional number called the Peclet number Pe. It is an
important parameter in liquid metal convection. Therefore, the empirical relations are usually
expressed in terms of this number.

Equation (7.151) can be transformed as follows.

dt
x
¼ 8

Rex Pr

� �1=2
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The expression for the boundary layer thickness is

d
x
¼ 4:64

Re1=2x

ð7:154Þ

The ratio of the thermal and hydrodynamic boundary layers is

dt
d
¼ n ¼ 0:609

Pr1=2
ð7:155Þ

For Pr = 0.01, the ratio dt
d ¼ 6. Thus, the approximation of the slug flow appears to be

reasonable.
Notes:

1. The solution presented here is also based on the assumptions mentioned earlier, but, for
the liquid metals, the heat flow by conduction in the axial direction (direction of flow)
may not always be negligible and the solution must be modified. If Pe < 100, the axial
conduction may cause a reduction in the effective heat transfer coefficient (Kays and
Crawford 1980).
An exact solution for flow over a plate with uniform temperature gives (Rogers and
Mayhew 1967)

Nux ¼ 0:487 Pe1=2 when Pr ¼ 0:03
Nux ¼ 0:516 Pe1=2 when Pr ¼ 0:01
Nux ¼ 0:526 Pe1=2 when Pr ¼ 0:006

2. The approximate solution presented above is also valid in the turbulent flow region where
the 1/7th power velocity profile is closer to the slug flow model. This is due to fact that
the heat transfer is mainly governed by the thermal conductivity of the liquid metal and
the effect of eddy mixing is small.

7.18 Summary

In convection, there is an observable bulk motion of the fluid and hence can occur only in the
case of liquids, gases and multiphase mixtures. The convective heat transfer can be classified
into two categories: (i) natural or free convection and (ii) forced convection.

In natural convection, the fluid motion is entirely because of the density differences in the
fluid caused due to the local heating in the gravity field. The fluid surrounding the heat source
becomes less dense due to the heating and hence moves upwards (known as buoyancy
effect). The surrounding colder fluid moves to replace it. This colder fluid is then heated and
the process continues, forming the convection currents. If the motion of the fluid is caused by
some external means such as a fan, blower, pump or wind, the mode of heat transfer is
termed as the forced convection.

The convection is a combined problem of heat and fluid flow. The analytical solution of a
convection problem involves application of the equation of motion, energy and continuity,
and the Fourier’s law of heat conduction. The resulting differential equations that govern the
convection are complicated and their exact solution can be given only in a few simple
problems of steady flow.
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There are three basic methods of determining the rate of heat transfer between fluid and a
solid by convection. The fluid is at rest in the immediate vicinity of the solid surface due to
the viscous effect. Therefore, the heat flow at the wall is by conduction. The first method
makes use of this observation and the heat transfer rate can be calculated from the Fourier’s
law.

The second method is based on analogy between the mechanisms of transfer of fluid
momentum to the wall and the transfer of heat by convection. Using the analogy, the rate of
heat transfer can be predicted from the measurement of shear stress between the fluid and the
wall.

The third method is to experimentally determine the heat transfer coefficient, defined by
the Newton’s equation.

In this chapter, analytical treatment of some simple cases of forced and natural convection
has been presented followed by the discussion of analogy between fluid friction and heat
transfer.

When fluid with free-stream velocity U∞ and temperature T∞ flows past a heated plate of
sufficient length, hydrodynamic and thermal boundary layers develop. Initially, the boundary
layer development is laminar and the boundary layer thickness increases continuously with
the increase in distance x along the plate surface starting from zero at the leading edge of the
plate. At some critical distance xc from the leading edge, transition from laminar to turbulent
layer with a thin laminar sublayer takes place at critical Reynolds number Rec = 5 � 105.

In case of fluid flow through a tube, the velocity distribution is uniform at the inlet cross-
section if the tube inlet is rounded and the fluid comes from a large space. Because of the
friction, the velocity diminishes at the wall and increases at the centre of the tube. The flow
does not become fully developed at once but at a certain distance from the tube inlet. Thus,
the boundary layer gradually builds up until it reaches the centre of the tube. The velocity
distribution curve, now, acquires a stable form and does not vary down the tube and the flow
is said to be fully developed. The distance for the velocity profile to be fully developed is
termed as hydrodynamic development length or entrance length. The development of the
thermal boundary layer in a fluid which is heated or cooled in a duct is qualitatively similar to
that of the hydrodynamic boundary layer.

When the flow through a straight tube is laminar, the velocity profile of the fully
developed laminar flow is of parabolic form. If the flow Reynolds number exceeds a certain
critical value (Rec � 2300), the flow becomes turbulent. In turbulent flow, there are three
distinct regions in the flow: a laminar sublayer in the immediate vicinity of the wall, a buffer
layer and a prominent turbulent core. In the laminar sublayer, viscous forces dominate and
the fluid moves in streamline pattern parallel to the wall of the tube. In the turbulent core,
chunks of fluid move in a totally chaotic pattern (termed as eddying motion). This causes
intense mixing of the fluid. The fluid in the buffer layer shows behaviour that is intermediate
between that of the fluid in the laminar sublayer and turbulent core. The velocity changes
abruptly near the wall and takes a somewhat blunter profile in the middle of the tube. With
the increase in the Reynolds number, the velocity profile becomes flatter over most of the
duct cross-section. Using the Blasius empirical formula for the friction factor, Prandtl
developed the power law of the velocity distribution in the turbulent flow which is not
applicable close to the wall (y/R < 0.04).

Boundary layer thickness parameters velocity displacement thickness dvd and momentum
displacement thickness dmd have been defined in Sect. 7.4.1 and their equations have been
developed. The displacement thickness is a measure of the displacement of the free stream
due to the formation of the boundary layer over the plate while the momentum thickness is a
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measure of the momentum flux displacement caused by the boundary layer. For the thermal
boundary layer, enthalpy thickness and conduction thickness have been defined in
Sect. 7.4.2.

In Sect. 7.5, the momentum equation of the laminar boundary layer over a flat plate has
been derived by making a force-and-momentum balance on an elemental control volume
located in the boundary layer. Numerical solution of the momentum equation by Blasius
provided the equations of the thickness of the boundary layer and skin friction coefficient as
function of the Reynolds number.

von Karman presented integral momentum equation of laminar boundary layer over a flat
plate by equating the shear force at the plate surface (for constant pressure condition) to the
net momentum change over a control volume infinitesimal in the x-direction and enclosing
the boundary layer in y-direction. This integral equation for the hydrodynamic boundary
layer has been used to obtain the expression for the boundary layer thickness and friction
factor by assuming unknown velocity profile equation as a polynomial or other forms.

In Sect. 7.7, energy equation of the laminar boundary layer over a flat plate has been
developed by making energy balance of the net transport of the energy into the elemental
control volume, the net heat conducted out of the control volume and the viscous work done
on the element for the control volume. For the low-velocity incompressible flow, the mag-
nitude of the viscous energy term is small and can be neglected. This gives energy equation,
which is similar to the momentum equation. Pohlhausen presented solution of the energy
equation adopting a procedure identical to that used for the solution of momentum equation
by Blasius. Solution provided the result in the form of Nusselt number relation for deter-
mination of heat transfer coefficient. Using the skin friction coefficient relation from the
solution of momentum equation, a relation between the Stanton number and friction factor
has been established.

von Karman carried out integral analysis of energy equation for the laminar boundary
layer over the flat plate as presented in Sect. 7.7.2 to determine heat transfer coefficient and
arrived at the Nusselt number correlation, which is quite close to the relation obtained by
Pohlhausen.

The turbulent boundary layer over a flat plate consists of a laminar sublayer, a buffer zone
and a turbulent layer. In the laminar sublayer, the molecular diffusion processes are dominant
and the turbulent fluctuations are negligible with the result that the turbulent shear stress is
much less than the laminar shear stress, in the buffer zone, the molecular diffusion and eddy
transport effects are of the same order, and in the turbulent region, the eddy transport effects
are dominant and the turbulent shear stress dominates the laminar shear stress. The entire
velocity field cannot be represented by a single equation. von Karman proposed a set of
equations termed as universal velocity profile, which matches well with the experimental
data. The equations of the universal profile are too complex mathematically to use with the
momentum integral equation. A suitable velocity profile for turbulent boundary layers over
smooth plates is the empirical power law profile (u/U∞) = (y/d)1/7 for 5 � 105 < Re < 107.
This is known as 1/7th power law. In the laminar sublayer, a linear velocity distribution is
assumed. To evaluate the wall shear stress sw, an experimentally determined relation due to
Blasius for the turbulent flow on flat plates has been used. The substitution of the values of u/
U∞ and sw in the von Karman momentum integral equation yields the skin friction
coefficient.

For laminar flow in tubes, the balancing of pressure forces acting on a fluid element in the
flow by the viscous shear forces yields the equation of Fanning friction factor for the fully
developed constant property laminar flow in smooth circular cross-section tube. The
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temperature distribution has been obtained by making an energy balance of the energy
conducted and convected for an annular element, which has been utilized to determine the
value of the Nusselt number for uniform heat flux condition valid for fully developed laminar
flow.

In Sect. 7.11, for the momentum and heat exchange in turbulent flow, eddy viscosity and
eddy thermal diffusivity have been defined. The eddy viscosity eM is a function of the
turbulence and it changes its magnitude with the distance from the wall. It is analogous to the
kinematic viscosity m but unlike m it is not a property of the fluid. In the fully turbulent region,
eM is much larger than m and the viscous shear stress may be neglected. Turbulent heat
transfer is analogous to the turbulent momentum transfer. In analogy to eddy viscosity, eddy
thermal diffusivity eH has been introduced. The eddy thermal diffusivity is also a function of
the turbulence and it also changes its magnitude with the distance from the wall. The
turbulent diffusivity is zero in the laminar sublayer. It is of the same order of magnitude as
the molecular diffusivity in the buffer zone and is much greater than the molecular diffusivity
in the turbulent core. However, this is true only for fluids having Pr 
 1, but not for the
liquid metals (Pr � 0.01). The ratio of eM and eH is referred to as the turbulent Prandtl
number Prt analogous to the laminar or molecule Prandtl number.

Reynolds suggested that there exists a similarity between forced convection fluid friction
and heat transfer because the same mechanism of turbulent exchange causes the transfer of
momentum and heat. This is known as Reynolds analogy and is presented as Stx = Cfx/2 for
flow past a flat plate in Sect. 7.12. However, the analogy is a considerable simplification of a
very complex process, but is a reasonable approximation for fluids having the molecular
Prandtl number value of nearly one. Using the analogy, heat transfer coefficient can be
determined by measurements of the friction factor under the conditions when no heat transfer
is involved. Reynolds–Colburn analogy (StxPr

2/3 = Cfx/2) has been presented, which is
found to be quite accurate in the range 0.5 < Pr < 50 provided the drag forces are wholly
viscous in nature (i.e. when form or pressure drag is absent).

Colburn analogy has been applied to predict the turbulent boundary layer heat transfer
from a flat plate and has yielded results which are in good agreement with the experimental
values, refer Sect. 7.12.2.

In Sect. 7.13, Prandtl–Taylor modification of Reynolds analogy and von Karman analogy
is also presented for flow over flat plates when Pr 6¼ 1.

Reynolds and Reynolds–Colburn analogies for turbulent flow in tubes are similar to that
for flat plate, i.e. St = f/2 for Pr = 1 and St Pr2/3 = f/2 for fluids not having Pr = 1,
respectively.

Analytical solution of natural or free convection laminar flow on a heated vertical plate is
presented in Sect. 7.15. Relation of Nusselt number has been presented considering the
integral momentum and energy equations. In this analysis, a new dimensionless number Gr
(termed as Grashof number) has been introduced. This number plays an important role in all
free convection problems similar to that played by the Reynolds number in forced con-
vection. The product of Grashof and Prandtl number (GrPr) provides a criterion for transition
from laminar to turbulent boundary layer flow in free convection. Experimental measure-
ments are relied upon to obtain relations for other configurations. Some of such relations are
presented in Chap. 9.

Liquid metals have been employed because of their high thermal conductivity. However,
the liquid metals require careful handling since they are corrosive and show a violent reaction
when come into contact with water. Analytical treatment for liquid metal heat transfer has
been presented for laminar flow over a flat plate in Sect. 7.17 and Nusselt number correlation
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has been presented as function of a non-dimensional number Pe (called the Peclet number),
which is an important parameter in liquid metal convection.

Review Questions

7:1 Discuss development of hydrodynamic and thermal boundary layers for flow of fluid
(U∞, T∞) over a thin flat plate held parallel to flow and in tubes. Further discuss the
effect of boundary layer development on the heat transfer coefficient. Support the
discussion with appropriate figures.

7:2 Write a short note on various methods of determining convection heat transfer
coefficient.

7:3 Derive the equation of continuity.
7:4 Define (i) boundary layer thickness, (ii) velocity and momentum displacement

thicknesses and (iii) enthalpy and conduction thicknesses.
7:5 Starting from the fundamentals, develop the momentum equation of laminar boundary

layer over a flat plate. State the assumptions made.
7:6 Develop the integral momentum equation of laminar boundary layer over a flat plate.
7:7 Prove that the Blasius solution of laminar boundary layer flow over a flat plate gives

the following relation of local skin friction coefficient

Cfx ¼ 0:6641

Re1=2x

:

Using the above derived relation, show that the average skin friction coefficient is
given by

Cf ¼ 1:3282

Re1=2L

:

7:8 Starting from fundamentals, develop the integral momentum equation. Following the
von Karman integral technique prove that

Cf ¼ 1:2932

Re1=2L

when a third degree polynomial is considered for the velocity distribution equation.
7:9 Show that, for laminar flow over a flat plate, the velocity (hydrodynamic) boundary

layer thickness at a distance x from the leading edge is given by

d
x
¼ 4:64ffiffiffiffiffiffiffiffi

Rex
p

when the equation of the velocity profile is

u

U1
¼ 3

2
y

d

� �
� 1
2

y

d

� �3
:
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7:10 Develop the energy equation of laminar boundary layer over a flat plate. Show that for
the low-velocity incompressible fluids, the energy equation reduces to

u
@t

@x
þ v

@t

@y
¼ a

@2t

@y2
:

7:11 Develop integral energy equation of the boundary layer for low-velocity laminar flow
over a flat plate placed parallel to the fluid stream.

7:12 Show that the Pohlhausen solution of the energy equation of the laminar boundary
layer over a flat plate gives the following relation of the local Nusselt number.

Nux ¼ 0:332Re1=2x Pr1=3

Deduce the equation of average Nusselt number over plate length L. Also deduce the
following relation.

StxPr2=3 ¼ Cfx

2
:

Comment on the result.
7:13 Assuming a linear velocity distribution (u/U∞ = y/d), for the laminar boundary layer

of a fluid flowing past a flat plate, it can be shown that the boundary layer thickness is
given by

d
x
¼ 12

Rex

� �0:5

:

Using this result and the assumption that the temperature distribution is also linear
across the boundary layer thickness, show that for a plate of uniform temperature the
ratio of the thickness of the thermal and hydrodynamic boundary layers dt and d,
respectively, is given by

dt
d
¼ Prð Þ�1=3:

Also show that the local Nusselt number at a distance x along the plate from the
leading edge of the plate is given by

Nux ¼ 12�0:5Re1=2x Pr1=3

7:14 Using von Karman integral technique derive the following average Nusselt number
relation for laminar flow over a flat plate.

Nuav ¼ 0:662Re1=2L Pr1=3

when third degree polynomial equations are considered for both the velocity and
temperature distributions.
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7:15 Define bulk temperature of a fluid flowing in a tube.
7:16 Show that for the laminar flow through a smooth tube, the Fanning friction factor is

given by

f ¼ 16
Re

:

7:17 Prove that for the laminar flow in smooth tubes, the Nusselt number under uniform
heat flux condition is 4.364.

7:18 State the Reynolds analogy. Prove the following relation for the turbulent flow regime
over a flat plate for a fluid with Pr = 1.

ql
sl
¼ qw

sw
¼ qt

st

where subscripts l, w and t refer to laminar, wall and turbulent.
7:19 Derive the equation of Reynolds–Colburn analogy.
7:20 Draw a schematic diagram of a free convection boundary layer development over a

vertical plate for the cases:
(i) Plate temperature higher than the surrounding fluid temperature
(ii) Plate temperature lower than the surrounding fluid temperature

Also show the velocity and temperature distributions.

7:21 Using the integral momentum and energy equation of free convection on a vertical
heated plate show that the local heat transfer coefficient is given by

Nux ¼ 0:508Pr1=2ð0:952þ PrÞ�1=4ðGrxÞ1=4:

Problems

7:1 Water at 20°C flows over a flat plate with a velocity of 0.1 m/s. The plate is heated to a
surface temperature of 40°C. At a particular location in the thermal boundary layer, the
temperature profile is represented by

t � tw
t1 � tw

¼ 3
2

y

dt

� �
� 1
2

y

dt

� �3

Determine the heat flux and heat transfer coefficient if the thickness of the thermal
boundary layer is 10 mm at the location.

[Ans. q
A ¼ �k @t

@y

� �
y¼o

¼ �kðt1 � twÞ @
@y

3
2

y
dt

� �
� 1

2
y
dt

� �3� 	 �
y¼o

¼ 3
2 k

ðtw�t1Þ
dt

;

k = 0.617 W/(m K) for water at film temperature of 30°C; substitution gives q
A ¼

1851 W=m2; heat transfer coefficient h ¼ q=A
tw�t1

¼ 92:55 W=ðm2 KÞ:]
7:2 Air flows over a flat plate parallel to its surface. All other parameters remaining the

same, how will the heat transfer coefficient change if the velocity and air pressure are
doubled? The flow is in the laminar regime.
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[Ans. The air density will also be doubled when pressure is doubled; in the laminar

regime, h = [0.664 (Re)0.5(Pr)0.33]k/L = [0.664(qU∞L/l)0.5(Pr)0.33]k/L, i.e. h /
ðqU1Þ0:5; hence, the new heat transfer coefficient / ð2� 2Þ0:5 ¼ 2 times.]

7:3 Air at 30°C flows at a velocity of 10 m/s past a flat plate 3 m long and 1 m wide. The
plate surface can be assumed to be at a uniform temperature of 170°C. Determine the
heat transfer rate from one side of the plate.
What would be the heat transfer rate if the air blows perpendicular to the length of the
plate?
[Ans. Thermophysical properties of air at the film temperature of 100°C are
q = 0.9452 kg/m3, l = 2.172 � 10−5 kg/(m s), k = 0.0317 W/(m K), Pr = 0.693.
(i) ReL ¼ U1Lq

l ¼ 1:305� 106 [ 5� 105; h = (k/L) [0.037 ReL
0.8

– 871] Pr0.33 =

18.87 W/(m2 K); q = hA(tw − t∞) = 18.87 � 3 � 1 � (170–30) = 7925 W;
(ii) ReL ¼ U1Wq

l ¼ 4:35� 105\5� 105; h = (k/W) 0.664 ReL
0.5 Pr0.33 = 12.28 W/(m2

K); q = hA(tw − t∞) = 12.28 � 3 � 1 � (170–30) = 5157.6 W. In the first case, the
flow becomes turbulent after xc (= Rec � l/qU∞) = 1.149 m and hence the heat
transfer rate is high.]

7:4 Air at 20°C flows parallel to a plate at 2 m/s. Plate length is 1 m. If the plate surface is
maintained at 80°C, determine the heat loss from the trailing 0.5 m length of the plate.
[Ans. Thermophysical properties of air at the film temperature of 50°C are
q = 1.095 kg/m3, k = 0.02799 W/(m K), l = 1.95 � 10−5 kg/(m s), Pr = 0.703,

cp = 1.0072 kJ/(kg K); for first 0.5 m: ReL ¼ qU1L
l ¼ 56154; flow is laminar; �h ¼

0:664Re1=2L Pr1=3 k
L ¼ 7:83 W=ðm2 KÞ; q ¼ �hAðtw � t1Þ ¼ 234:9W=mwidth: For

1.0 m length of plate: ReL ¼ qU1L
l ¼ 112308; flow is laminar;

�h ¼ 0:664Re1=2L Pr1=3 k
L ¼ 5:54W=ðm2 KÞ;q ¼ �hAðtw � t1Þ ¼ 332:3W=mwidth:

Thus, heat transfer rate from trailing 0.5 m length of the plate = 332.3 –

234.9 = 97.4 W/m width.]
7:5 Air at atmospheric pressure and 200°C flows over a flat plate with a velocity of 5 m/s.

The plate is 15 mm wide and is maintained at 120°C. Calculate the thickness of
velocity and thermal boundary layers and local heat transfer coefficient at a distance of
0.5 m from the leading edge. Assuming that the flow is on one side of the plate,
calculate the heat transfer rate. Given: q = 0.815 kg/m3, k = 0.0364 W/(m K),
l = 2.45 � 10−5 kg/(m s) and Pr = 0.7.

[Ans. Rex ¼ qU1x
l ¼ 83163\Recr;d ¼ 5ffiffiffiffiffiffiffi

Rex

p x ¼ 0:0087 m; dt ¼ Pr�1=3

1:025 d gives

dt ¼ 0:0096 m; hx ¼ 0:332Re1=2x Pr1=3 k
x¼ 6:19W=ðm2 KÞ; �h ¼ 2hx;q ¼ �hAðtw � t1Þ

¼ 7:42W:]
7:6 Assuming the boundary layer to be turbulent throughout, determine the ratio of drag

on the front and rear half of the plate over which a fluid is flowing parallel to its
surface.
[Ans. Drag force, FD ¼ swA ¼ Cf

1
2 qU

2
1

� �
A; where Cf ¼ 0:0729

Re1=5
L

, and A = WL, i.e.

FD ¼ 0:0729

Re1=5
L

1
2qU

2
1

� �
WL / L

L1=5
¼ CL0:8, where C is constant. For first half-length L/2,

FD1 / C L=2ð Þ0:8¼0:574CL0:8; for second half-length, FD2 = (1 − 0.574) CL0.8 =

0.426 CL0.8; FD1
FD2

¼ 0:574CL0:8
0:426CL0:8 ¼ 1:347:�
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7:7 Air at 20°C and at a pressure of 1 atm is flowing over a flat plate at a velocity of
1.5 m/s. Determine the boundary layer thickness at a distance of 0.3 m from the
leading edge of the plate.
Calculate the mass which enters the boundary layer between distance of 0.3 m and
0.5 m from the leading edge of the plate. Assume plate width to be unity.
[Ans. The properties of air at 20°C are q = 1.21 kg/m3, l = 1.81 � 10−5 kg/(m s);
Rex¼0:3 ¼ qU1x

l ¼ 30083;dx¼0:3 ¼ 5:0ffiffiffiffiffiffiffi
Rex

p x ¼ 0:00865m; Similarly, Rex¼0:5 ¼ 50138; dx¼0:5 ¼

0:01116m; for u ¼ U1 3
2
y
d � 1

2
y
d

� �3h i
,
R d
0 q:u:dy ¼ R d0 q:U1 3

2
y
d � 1

2
y
d

� �3h i
dy ¼

5
8 q:U1d; mass flow rate, Dm ¼ 5

8q:U1ðdx¼0:5 � dx¼0:3Þ ¼ 0:00285 kg=s:]
7:8 For the data of Q. 7.7, calculate heat transfer for the 0.3 m length of the plate if the

plate is maintained at 80°C.
[Ans. At mean temperature of 50°C, air properties: q = 1.095 kg/m3, k = 0.02799 W/
(m K), l = 1.95 � 10−5 kg/(m s), Pr = 0.703, cp = 1.0072 kJ/(kg K); ReL ¼ qU1L

l ¼
25269; flow is laminar; �h ¼ 0:664Re1=2L Pr1=3 k

L ¼ 8:76 W/(m2 K); q ¼ �hA
ðtw � t1Þ ¼ 157:7W:�

7:9 Air at 10°C and 100 m/s flows parallel to a flat square plate (1 m � 1 m). The flow is
turbulent from the leading edge. Determine (a) thickness of hydrodynamic boundary
layer at the trailing end of the plate, (b) heat flow rate. The plate is maintained at 40°C.
[Ans. At mean temperature of 25°C, air properties are q = 1.1868 kg/m3,
k = 0.02608 W/(m K), l = 1.8363 � 10−5 kg/(m s), Pr = 0.709, cp = 1005.7 J/(kg
K); ReL ¼ qU1L

l ¼ 6:46� 106; flow is turbulent; d ¼ 0:375

Re1=5
L

L ¼ 0:0163m; �h ¼
0:037Re0:8L Pr1=3 k

L ¼ 241:5 W/(m2 K); q ¼ �hAðtw � t1Þ ¼ 7245W:]
7:10 A square plate (1 m � 1 m) is placed parallel to an air stream with flow velocity of

2 m/s. The air is at 20°C and the plate is maintained at 80°C. Using the Colburn’s
analogy, determine the heat transfer coefficient.
[Ans. At mean temperature of (80 + 20)/2 = 50°C, air properties are q = 1.095
kg/m3, k = 0.02799 W/(m K), l = 1.95 � 10−5 kg/(m s), Pr = 0.703, cp = 1.0072
kJ/(kg K); ReL ¼ qU1L

l ¼ 1:12� 105\5� 105; for laminar flow, Cf ¼ 1:328ffiffiffiffiffiffiffi
ReL

p ¼

0:00397; Colburn’s analogy: Stx ¼ h
qU1cp

¼ Pr�2=3 Cf

2 gives h ¼ qU1cpPr�2=3 Cf

2 ¼
5:53 W/(m2 K).]

7:11 Air at 20°C and at a pressure of 1 atm is flowing over a flat plate at a velocity of
30 m/s. If the plate is 0.8 m in length and 1 m wide, and is at a temperature of 80°C,
estimate the heat transfer rate.
[Ans. At mean temperature of (80 + 20)/2 = 50°C, air properties are q = 1.095
kg/m3, k = 0.02799 W/(m K), l = 1.95 � 10−5 kg/(m s), Pr = 0.703, cp = 1.0072
kJ/(kg K); ReL ¼ qU1L

l ¼ 1:35� 106 [ 5� 105; the flow is turbulent, hence
�h ¼ Nu k

L ¼ ð0:037Re0:8L � 871ÞPr1=3 k
L = 65:2 W/(m2 K); q ¼ �hAðtw � t1Þ ¼

3129:6W:]
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7:12 A thin plate 1.5 m long is placed parallel to the flow of air at 15°C. The plate is
maintained at 35°C. The air flows at a velocity of 25 m/s. Determine (a) the local heat
transfer coefficient at the middle of the plate and (b) the average heat transfer
coefficient.
[Ans. At mean temperature of 25°C, air properties: q = 1.1868 kg/m3,
k = 0.02608 W/(m K), l = 1.8363 � 10−5 kg/(m s), Pr = 0.709, cp = 1005.7 J/(kg
K). (a) x = 0.75 m: Rex ¼ qU1x

l ¼ 1:21� 106 [ 5� 105; flow is turbulent; hx ¼
Nux k

x ¼ 0:0296Re0:8x Pr1=3 k
x ¼ 67:45 W/(m2 K); (b) x = L = 1.5 m: ReL ¼ qU1L

l ¼
2:42� 106;�h ¼ ð0:037Re0:8L � 871ÞPr1=3 k

L= 59.9 W/(m2 K).]
7:13 The surface of a heated solid [k = 15 W/(m K)] is at a uniform temperature of 50°C

when it is being cooled by water [k = 0.62 W/(m K)] at 30°C, refer Fig. 7.35. If the
temperature gradient (∂t/∂y) in the water at the solid–water interface is 2 � 104 K/m,
determine the temperature gradient in the solid at the solid–water interface and the
heat transfer coefficient.
[Ans. At the interface, the heat balance gives [k (∂t/∂y)]water = [k (∂t/∂y)]solid; sub-
stitution gives (∂t/∂y)solid = 826.7 K/m. Heat transfer coefficient, h = [k(∂t/∂y)]water/
(tsurface – twater) = 620 W/(m2 K).]
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8Empirical Relations for Forced
Convection Heat Transfer

8.1 Introduction

Analytical solutions, using the boundary layer equations, of some simple convection heat
transfer problems, especially the convection with laminar flow, have been presented in
Chap. 7. However, there are a large number of convection problems for which the analytical
solutions have not met the success especially the problems involving turbulent flow or flows
where detachment occurs, for example around cylinders, spheres or other curved bodies, the
heat transfer coefficient is very difficult to calculate. Thus the direct measurement of the heat
transfer coefficient (experimental study) is still the main approach for the solution of the most
of the heat transfer problems. The experimental results are presented in the form of gener-
alized correlations using the method of dimensional analysis. Such correlations are termed as
empirical relations because they rely on the observations and experiments not on theory.
Some of such correlations have been presented here, which are frequently used. The cor-
responding friction factor correlations are also presented.

8.2 Dimensional Analysis1

The dimensional analysis deals only with the dimensions of the variables to produce a
relationship. Such relation consists of one or more dimensionless groups, which combine the
variables involved in the physical phenomenon under study, and some unknown constants
and exponents. These constants and exponents are determined experimentally. Thus the
dimensional analysis combined with the experiments provides the empirical or semi-
empirical relations.

It is to note that the dimensional analysis cannot produce any numerical results nor it can
give any explanation of the physical nature of the process. Furthermore, the variables
affecting the phenomenon must be known to apply the technique of the dimensional analysis.

The basic principle of the dimensional analysis is that the form of an equation is deter-
mined only by its dimensions as illustrated by an example that follows.

Consider the equation of mass flow rate of a fluid through a duct. The flow rate is given by

1For greater details of the technique of the dimensional analysis, the readers can refer texts on fluid
mechanics.
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_m ¼ qAUm ð8:1Þ

where

_m mass flow rate
q density of the fluid
A area of cross-section of the duct
Um mean fluid velocity.

Writing the fundamental dimensions2 of all the variable in Eq. (8.1), we have

M

T
¼ M

L3
� L2 � L

T

¼ M

T

The resulting dimensions of the quantities on the right side of the equation equal to those
on the left, that is, dimensional homogeneity exists. The three independent variables q, A and
Um give answer in M/T only when their relationship is in a particular way, i.e. qAUm.

In order to establish the relationship between the variables, either Rayleigh method or the
Buckingham pi theorem can be used.

According to the Buckingham pi theorem, the equation of a phenomenon is expressed as

/ðp1; p2; p3; . . .pm�nÞ ¼ 0 ð8:2Þ

where p1, p2, etc. indicate dimensionless groups. The number of the p-terms or dimen-
sionless groups equals the number of variables m minus the number of fundamental
dimensions n.

The dimensions of the physical quantities of interest are listed in Table 8.1 in two dif-
ferent systems of units.

8.3 Dimensional Analysis Applied to Forced Convection

In forced convection, the fluid is forced by some external agency to flow past the heated or
cold solid surface. The velocity of the fluid influences the heat transfer rate. In addition to
this, it has been found from the experience that the heat transfer also depends on the
viscosity, thermal conductivity and density of the fluid, temperature difference and the
characteristic dimension. Hence, we may write

h ¼ f ðl; q; k; cp;DT; d;UÞ ð8:3Þ

where U is the velocity and d is a characteristic dimension.

2The fundamental dimensions are quantities such as length L, mass M, time T and temperature h, which are
directly measured. The derived dimensions are those which are measured in the terms of the fundamental
dimensions. For example, area is a derived quantity with dimensions L2. In heat transfer, heat Q is also
sometimes considered as fundamental dimension.
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8.3.1 Rayleigh’s Method

h ¼ ClaqbkccdpDT
ed fUg$ ð8:4Þ

Substituting the dimensions of the different variables in Eq. (8.4), we have

Q

L2Th
¼ C

M

LT

� �a M

L3

� �b Q

LTh

� �c Q

Mh

� �d

hð Þe Lð Þ f L

T

� �g

Equating the indices of the fundamental dimensions on both sides, we obtain

M: 0 = a + b – d
L:−2 = −a – 3b – c + f + g
T: –1 = −a – c – g
h: –1 = −c – d + e
Q: 1 = c + d

There are seven unknowns and five equations. Therefore the values of five of them, say a,
b, c, e, and f may be determined in terms of the other two unknowns d and g. The solution
gives

a ¼ d � g; b ¼ g; c ¼ 1� d; e ¼ 0; and f ¼ g� 1:

By substitution of these values in Eq. (8.4), we get

h ¼ Cld�gqgk1�dcdpDT
0ðdÞg�1Ug

¼ C
k

d

� �
qUd
l

� �g lcp
k

� �d

Table 8.1 Dimensions of different physical quantities

Variable Symbol
(units)

Dimensionsa

M-L-T-h-Q system M-L-T-h system

Viscosity of fluid l, kg/(m s) ML–1T–1 ML–1T–1

Density of fluid q, kg/m3 ML–3 ML–3

Thermal conductivity of fluid k, W/(m K) QL–1T–1h–1 MLT–3h–1

Specific heat cp, J/(kg K) QM–1h–1 L2T–2h–1

Temperature difference DT, K h h

Characteristic dimension l, m L L

Velocity U, m/s LT–1 LT–1

Convection heat transfer coefficient h, W/(m2 K) QL–2T–1h–1 MT–3h–1

aT is time and h is temperature. Q can also be considered as fundamental unit
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or

hd

k
¼ C

qUd
l

� �g lcp
k

� �d

The dimensionless group hd
k is the Nusselt number Nu, qUd

l

� �
is the Reynolds number Re

and lcp
k

� �
is the Prandtl number Pr hence

Nu ¼ f Re; Prð Þ

and the generalized correlation can be written as

Nu ¼ w ReÞ/ðPrð Þ ð8:5Þ

The form of functions w(Re) and /(Pr) may be specified for different conditions of heat
transfer by convection on the basis of theoretical analysis or experimental investigations.

8.3.2 Buckingham’s Pi-Method

f ðl; q; k; cp;DT; d;U; hÞ ¼ 0

There are eight variables and five fundamental units hence we expect (8–5), i.e., 3 p-
terms. Taking l, k, c, DT and d as repeated variables, the p-terms can be established as
follows.

p1 ¼ lakbUcDTddeh ðiÞ

or

1 ¼ M

LT

� �a Q

LTh

� �b L

T

� �c

hð Þd Lð Þe Q

L2Th

Equating the indices of the fundamental dimensions on both sides, we obtain

M: 0 = a
L: 0 = –a – b + c + e – 2
T: 0 = –a – b – c – 1
h: 0 = –b + d– 1
Q: 0 = b + 1

Solution gives

a ¼ 0; b ¼ �1; c ¼ 0; d ¼ 0; and e ¼ 1:

Substitution in Eq. (i) gives
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p1 ¼ k�1dh ¼ hd

k
¼ Nu ðiiÞ

Following the above approach, we have

p2 ¼ lakbUcDTddeq ðiiiÞ

or

1 ¼ M

LT

� �a Q

LTh

� �b L

T

� �c

hð Þd Lð ÞeM
L3

Equating the indices,

M: 0 = a + 1
L: 0 = –a – b + c + e – 3
T: 0 = –a – b –c
h: 0 = –b + d
Q: 0 = b

Solution of above equations gives

a ¼ �1; b ¼ 0; c ¼ 1; d ¼ 0; and e ¼ 1:

This gives from Eq. (iii),

p2 ¼ l�1Udq ¼ qUd
l

¼ Re ðivÞ

Similarly,

p3 ¼ lakbUcDTddecp ðvÞ

or

1 ¼ M

LT

� �a Q

LTh

� �b L

T

� �c

hð Þd Lð Þe Q

Mh

� �

Equating the indices, we have

M: 0 = a – 1
L: 0 = –a – b + c + e
T: 0 = –a – b – c
h: 0 = –b + d – 1
Q: 0 = b + 1

8.3 Dimensional Analysis Applied to Forced Convection 569

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Solution of the above equations gives

a ¼ 1; b ¼ �1; c ¼ 0; d ¼ 0; and e ¼ 0:

Substitution in Eq. (v) gives

p3 ¼ lk�1cp ¼ lcp
k

¼ Pr ðviÞ

Thus the functional relation is

f Nu;Re; Prð Þ ¼ 0

The generalized correlation can be written as

Nu ¼ w ReÞ/ðPrð Þ; ð8:5Þ

which is the same as obtained by the Rayleigh’s method.
It is to note that different dimensionless groups can often be derived for a given problem.

No one set is more correct than any other. However, the dimensionless groups derived here
are universally accepted as the most convenient for analysis of a forced convection problem.

Note: The above functional relation has been obtained using M-L-T-h-Q method, i.e. the
heat has been considered as the fundamental unit. However, the friction in the forced flow
causes conversion of the kinetic energy into heat and heat cannot be treated as the funda-
mental unit. Heat Q is expressed in the terms of fundamental units M, L, T and h as ML2/T2.
For the dimensional analysis with M, L, T and h as fundamental units, refer Example 8.1.

The above analysis shows that an experimental study now needs only to investigate the
variation of three dimensionless groups rather than eight variables originally specified.

Example 8.1 Using M, L, T and h system of fundamental units, develop the functional
relation for forced convection heat transfer.

Solution

From the dimensional analysis presented above, we have seen that DT does not appear in the
final functional relation for forced convection hence we can write

f ðl; q; k; cp; d;U; hÞ ¼ 0

There are seven variables and four fundamental units hence we expect (7–4), i.e., 3 p-
terms. Taking l, q, k and d as repeated variables, the p-terms can be established as follows.

p1 ¼ laqbkcddh

or

1 ¼ M

LT

� �a M

L3

� �b ML

hT3

� �c

Lð Þd M

hT3
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Equating the indices of the fundamental dimensions on both sides, we obtain

M: 0 = a + b + c + 1
L: 0 = –a – 3b + c + d
T: 0 = –a – 3c – 3
h: 0 = –c – 1

Solution gives

a ¼ 0; b ¼ 0; c ¼ �1 and d ¼ 1:

Substitution gives

p1 ¼ k�1dh ¼ hd

k
¼ Nu

Following the above approach, we have

p2 ¼ laqbkcddcp

or

1 ¼ M

LT

� �a M

L3

� �b ML

hT3

� �c

Lð Þd L
2

hT2

Equating the indices,

M: 0 = a + b + c
L: 0 = –a – 3b + c + d + 2
T: 0 = –a – 3c – 2
h: 0 = –c – 1

Solution of above equations gives

a ¼ 1; b ¼ 0; c ¼ �1 and d ¼ 0

This gives

p2 ¼ lk�1cp ¼ lcp
k

¼ Pr

Similarly,

p3 ¼ laqbkcdeU

or

1 ¼ M

LT

� �a M

L3

� �b ML

hT3

� �c

Lð Þd L

T

� �
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Equating the indices, we have

M: 0 = a + b + c
L: 0 = –a – 3b + c + d + 1
T: 0 = –a – 3c – 1
h: 0 = –c

Solution of the above equations gives

a ¼ �1; b ¼ 1; c ¼ 0; and d ¼ 1:

This gives

p3 ¼ l�1qdU ¼ qUd
l

¼ Re

Thus the functional relation is

f Nu;Re; Prð Þ ¼ 0

The generalized correlation can be written as

Nu ¼ w ReÞ/ðPrð Þ;

which is the same as obtained earlier.

Note: At low flow velocities, the free convection effect may be present. In this case
(bgDT) group of terms is to be considered, refer Sects. 9.2 and 9.3. With this consideration,
we obtain fourth dimensionless group as

p4 ¼ laqbkcddðbgDTÞ

or

1 ¼ M

LT

� �a M

L3

� �b ML

hT3

� �c

Lð Þd L

T2

� �

Equating the indices, we have

M: 0 = a + b + c
L: 0 = –a – 3b + c + d +1
T: 0 = –a – 3c – 2
h: 0 = –c

Solution of the above equations gives
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a ¼ �2; b ¼ 2; c ¼ 0 and d ¼ 3:

This gives

p4 ¼ q2d3ðbgDTÞ
l2

¼ Gr

The functional relation is now

f Nu;Re;Gr; Prð Þ ¼ 0

or

Nu ¼ w Re;Gr; Prð Þ ð8:6Þ

Rayleigh’s Method

h ¼ Claqbkccdpd
eU f ðiÞ

Substituting the dimensions of the different variables in Eq. (i), we have

M

T3h
¼ C

M

LT

� �a M

L3

� �b ML

hT3

� �c L2

hT2

� �d

Lð Þe L

T

� � f

Equating the indices of the fundamental dimensions on both sides, we obtain

M: 1 = a + b + c
L: 0 = −a – 3b + c + 2d + e + f
T: −3 = −a – 3c – 2d – f
h: −1 = −c – d

There are four equations but six unknowns. Therefore, the values of four of them, say a, c,
e, and f may be determined in terms of the other two unknown b and d. The solution gives

a ¼ d � b; c ¼ 1� d; e ¼ b� 1; and f ¼ b:

Substitution of these values in Eq. (i) gives

h ¼ Cld�bqbk1�dcdpd
b�1Ub

¼ C
k

d

� �
qUd
l

� �b lcp
k

� �d

or

hd

k
¼ C

qUd
l

� �b lcp
k

� �d
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Nu ¼ f Re; Prð Þ

and the generalized correlation can be written as

Nu ¼ w ReÞ/ðPrð Þ;

which is the desired relation.
Note: If DT is considered, a fourth dimensionless group will be obtained. In this case

p4 ¼ laqbkcddDT

or

1 ¼ M

LT

� �a M

L3

� �b ML

hT3

� �c

Lð Þd hð Þ

Equating the indices, we have

M: 0 = a + b + c
L: 0 = –a – 3b + c + d
T: 0 = –a – 3c
h: 0 = –c + 1

Solution of the above equations gives

a ¼ �3; b ¼ 2; c ¼ 1; and d ¼ 2:

This gives

p4 ¼ q2kd2DT
l3

Using dimensionless group p2, p3 and p4, we can obtain a dimensionless group as

p23
p2p4

¼ q2U2d2

l2
� k

lcp
� l3

q2kd2DT
¼ U2

cpDT

The dimensionless group U2

cpDT
is known as Eckert number.

Note 2: In the case of developing flow in ducts, the heat transfer coefficient has been
found to be function of the duct length also. A fourth dimensionless group will be obtained in
this case.

p4 ¼ laqbkcddL
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or

1 ¼ M

LT

� �a M

L3

� �b ML

hT3

� �c

Lð Þd Lð Þ

Equating the indices, we have

M: 0 = a + b + c
L: 0 = – a – 3b + c + d + 1
T: 0 = – a – 3c
h: 0 = – c

Solution of the above equations gives

a ¼ 0; b ¼ 0; c ¼ 0; and d ¼ �1:

This gives

p4 ¼ L

d

Thus the functional relation is

f Nu;Re; Pr;
L

D

� �
¼ 0

Example 8.2 Using M, L, and T system of fundamental units, develop the functional
relation for Darcy friction factor for rough pipes.

Solution

It has been found from the experience that the Darcy friction factor for rough tubes depends
on the average velocity of the flow Um, pipe diameter D, fluid density q, fluid viscosity l and
pipe wall roughness height e. Hence, we may write

f ¼ f ðUm;D; q;l; eÞ ðiÞ

We can express Eq. (i) in the following form:

f ¼ CUa
mD

bqcldee ðiiÞ

Substituting the dimensions of the different variables in Eq. (ii), we have

M0L0T0 ¼ C
L

T

� �a

Lð Þb M

L3

� �c M

LT

� �d

Lð Þe
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Equating the indices of the fundamental dimensions on both sides, we obtain

M: 0 = c + d
L: 0 = a + b – 3c – d + e
T: 0 = – a – d.

There are five unknowns and three equations. Therefore the values of three of them, say a,
b and c may be determined in terms of the other two unknowns d and e. The solution gives

a ¼ �d; b ¼ �d � e; c ¼ �d:

By substitution of these values in Eq. (ii), we get

f ¼ CU�d
m D�d�eq�dldee

¼ C
UmDq
l

� ��d e

D

� �e

The dimensionless group UmDq
l is the Reynolds number Re and e

D is termed as relative

roughness height. Hence,

f ¼ f Re;
e

D

� �

and the generalized correlation can be written as

f ¼ wðReÞ/ e

D

� �
ðiiiÞ

The form of functions w(Re) and /(e/D) may be specified on the basis of theoretical
analysis or experimental investigations.

For smooth pipes or tubes e = 0 and we can readily write that

f ¼ f ðReÞ ðivÞ

that is, the friction factor is function of the Reynolds number only.

8.3.3 Physical Significance of Dimensionless Numbers

There is advantage of presenting the experimental data in the terms of the nondimensional
numbers (Rogers and Mayhew 1967). This method of presentation allows empirical data to
be applied to a wide range of physical conditions by the application of the principle of
dynamic similarity (refer Rogers and Mayhew 1967 for details), and requires few experi-
ments only to cover a wide range of fluid properties. Considerable saving is achieved by the
experimentation on a small-scale setup. The results presented in nondimensional form can be
used in any consistent system of units (metric or British).

The Reynolds number is a measure of the relative strength of the inertial and viscous
forces. A high value of the Reynolds number indicates that the inertial forces dominant and
hence at such Reynolds number values the flow may become turbulent. Thus by calculating
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the Reynolds number, we can find whether the flow is laminar or turbulent in forced con-
vection. The critical Reynolds number Rec at which the flow becomes turbulent depends on
the geometric configuration. For example, for flow in tubes the critical Reynolds number is
about 2300, and for flow over a flat plate the same is 5 � 105.

The Nusselt number can be expressed as

Nu ¼ hd

k
¼ Convective heat transfer

Conduction heat transfer
ð8:7Þ

Thus the Nusselt number is a ratio of the convective to conductive heat transfer across the
fluid boundary and is a measure of the rate of heat transfer by convection. A large value of
Nu means a very efficient convection. A Nusselt number of the order of unity would indicate
that the convection and conduction are of the same magnitude.

The Stanton Number is a ratio of heat transferred to a fluid to the thermal capacity of the
fluid:

St ¼ Nu
Re Pr

¼ h

cqU
ð8:8Þ

It expresses the ratio of the heat extracted from a fluid to the heat passing with it. It is used
some times as an alternative for Nusselt number when presenting heat transfer data. The
Reynolds analogy relates Stanton number to the friction factor. Thus the heat transfer
coefficient can be determined by measurements of the friction factor under the conditions
when no heat transfer is involved.

Prandtl Number Pr (lcp/k = m/a) involves three properties of a fluid and thus itself is a
property of the fluid. It can be expressed as a ratio of the kinematic viscosity and thermal
diffusivity of the fluid:

Pr ¼ lcp
k

¼ l
q

� �
qcp
k

� �
¼ m

a
ð8:9Þ

Thus it expresses the relative magnitude of diffusion of the momentum and heat in the
fluid.

The product (Re � Pr) is another dimensionless group called the Peclet number Pe. It is
an important parameter for convection heat transfer in liquid metals.

For a gas, dividing the Eckert number U2

cpDT
by (c – 1), we get U2

cRT, which is square of the

Mach number of a perfect gas. At high-speed flows, the Mach number has considerable effect
on the heat transfer. At such speeds, a large amount of kinetic energy of the gas is dissipated
due to the viscous effect in the boundary layer. At low velocities, the dissipation of the
kinetic energy is not significant and hence the influence of the Eckert number is small.
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8.4 Experimental Determination of Forced Convection Heat Transfer
Coefficient

8.4.1 Uniform Temperature Condition

The first version of the experimental setup is shown in Fig. 8.1a. The fluid flows inside a
tube, which is heated by steam condensing outside the tube. The wall temperature remains
constant along the tube length due to the condensing steam on the outer surface of the tube.
The heat transferred to the fluid is calculated from the measured fluid inlet and outlet
temperatures ti and to, respectively, using the following relation.

q ¼ mcp to � tið Þ ð8:10Þ

where m is the mass flow rate of the fluid flowing through the tube and is measured with the
help of suitable flow measuring device. The outlet temperature of the fluid is to be measured
after proper mixing. Hence, a mixing section is provided.

8.4.2 Uniform Heat Flux Condition

In this scheme, Fig. 8.1b, the fluid flows in an electrically heated tube. Alternatively, the
fluid may flow in the annulus while the inner tube is heated by an electric heater placed
centrally in the tube. The tube or annular duct is properly insulated. In the steady state, the
power input to the electric heater should equal to the heat transferred to the fluid.

The heat transfer coefficient is calculated from,

h ¼ q

Aðtw � tmÞ ð8:11Þ

Copper tube 

a 

b 

Electric heater 

ti  to 

Insulation 

Steam in 

Condensate out 

 to ti 

Fig. 8.1 Schematic of experimental setup
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where

tw mean wall temperature
tm mean fluid temperature = (ti + to)/2
A area of the heat transferring surface

= pDiL for tube flow
= pDoL for annular flow

The results of the experiment are presented in the terms of dimensionless parameters,
Nusselt number Nu as function of the Reynolds and Prandtl numbers.

Example 8.3 An experimental test facility was fabricated to investigate the heat transfer
characteristics for flow of air in an annular duct. The test section is 5 m long and the outer
diameter of the inner tube is 50 mm, which is electrically heated. The inner diameter of the
outer tube is 100 mm. For a particular test run, the following observations were made.

Air flow rate, m = 0.05 kg/s
Air inlet temperature, ti = 30°C
Air outlet temperature, to = 50°C
Mean inner tube surface temperature, ts = 80°C (outer tube surface is insulated)

Calculate the Nusselt number and the flow Reynolds number for the test run.

Solution

At tm = 40°C, k = 0.0273 W/(m K), cp = 1006 J/(kg K) and l = 1.905 � 10−5 kg/(m s).
The heat flow rate,

q ¼ mcp to � tið Þ
¼ 0:05� 1006� 50� 30ð Þ ¼ 1006 W:

The heat transfer coefficient,

h ¼ q

Aðts � tmÞ ¼
q

pdoL½ts � ðt0 þ tiÞ=2�
¼ 1006

p� 0:05� 5� ½80� ð50þ 30Þ=2� ¼ 32:02 W=ðm2 KÞ:

The Nusselt number,

Nu ¼ hDh

k
¼ hðDi � doÞ

k
¼ 32:02� ð0:1� 0:05Þ

0:02723
¼ 58:8:

where Dh (= 4Ac/P) is termed as hydraulic diameter (refer Sect. 8.7).
The Reynolds number,

Re ¼ GDh

l
¼ m

p=4ðD2
i � d2oÞ

� 	
� Dh

l

¼ 4� 0:05
pð0:12 � 0:052Þ

� 	
� ð0:1� 0:05Þ
1:905� 10�5

¼ 22279:
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8.5 Friction Factor and Heat Transfer Coefficient Correlations
for Circular Ducts

Fluid flow and heat transfer characteristics of a circular cross-section duct has been inves-
tigated in a greater detail as this geometry is having a wide spread application.

8.5.1 Laminar Flow in Circular Tubes

8.5.1.1 Friction Factor Correlations

(a) Hydrodynamically Fully Developed Laminar Flow
The fully developed laminar flow of a constant property fluid in a smooth circular tube has
been studied analytically in Chap. 7.

For laminar fully developed, constant property flow in a circular tube, the Fanning friction
factor f is given by, Eq. (7.92),

f ¼ 16
Re

ð8:12Þ

where the Reynolds number Re is based on the mean velocity of the flow Um:

Re ¼ qUmD

l

It can be seen from Eq. (8.12) that the friction factor is inversely proportional to the
Reynolds number and thus decreases with the increase in the Reynolds number.

(b) Hydrodynamically Developing Laminar Flow
The development length Lhy in laminar flow, the distance required for the friction factor to
decrease to within 5% of its fully developed value, is approximately given by Kays and
Crawford (1980) and Mills (1995)

Lhy
D

� 0:05Re ð7:4Þ

At Re = 20, Lhy = D only. At Re = 2300, the equation gives Lhy= 115D. However, the
entrance effects are seen to be appreciable for a length of about 50 diameters from the
entrance.

Friction factor in the hydrodynamic entrance region is higher than that for the fully
developed case. In the entrance region, the pressure drop is a combined effect of surface
shear and increase in the total fluid momentum flux associated with the development of the
velocity profile. These effects are incorporated in the friction coefficient defined as apparent
mean friction factor �fapp, refer Fig. 8.2. The apparent mean friction factor decreases with
increase in x and asymptotically approaches the fully developed value of 16/Re as Re/(x/
D) ! 0. Knowing �fapp, the pressure drop is evaluated from:
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Dp ¼ 4�fappqU2
mL

2D
ð8:13Þ

8.5.1.2 Heat Transfer Coefficient Correlations

(a) Hydrodynamically and Thermally Fully Developed Laminar Flow
For the laminar flow with fully developed velocity and temperature profiles, the Nusselt
number is a function of the type of heating boundary condition. The analytical results
presented in Chap. 7 for different conditions are:

(i) Constant Heat Rate (Uniform Heat Flux)

Nu ¼ 4:364 ð7:96Þ

(ii) Constant Surface Temperature

Nu ¼ 3:658 ð7:97Þ

It is to be noted that the above results have been obtained neglecting the frictional heating
and buoyancy effects.

(b) Thermal Entry Length (Temperature Profile Developing), Fully Developed Velocity
Profile

The thermal) entrance length Lth in laminar flow, the distance required for the Nusselt
number to decrease to within 5% of its fully developed value, is (Mills 1995)

80 

60 
50 

40 

20 

10 

6 8 10 20 50 60 80100 200 500
Re/(x/D)

Reappf 30 

Fig. 8.2 Friction coefficients in the hydrodynamic entry length of a circular tube with laminar flow. (from
Langhaar 1942)
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Lth
D

� 0:05Re Pr ð8:14Þ

For the constant surface temperature (known as Graetz problem), the local Nusselt
number Nux and the mean Nusselt number Num in the terms of non-dimensional tube length
x+ = (x/R)/(RePr) are given in Fig. 8.3. Dimensionless group RePr(D/x) is known as Graetz
number Gz.

For the constant heat rate (uniform heat flux), the values of the local Nusselt number are
given in Fig. 8.4. For tabulated data referring to Figs. 8.3 and 8.4, readers can refer Kays and
Perkins (1973).

Hausen (1943 in Holman 1992) has presented the following empirical relation of average
Nusselt number over the entire length of the tube for fully developed laminar flow in tubes at
constant wall temperature:

Nu ¼ 3:66þ 0:0668 d
L � Re Pr
� �

1þ 0:04 d
L � Re Pr
� �2=3 ð8:15Þ

It is to note that the Nusselt number approaches a constant value of 3.66 when the tube is
sufficiently long and then the temperature profile is fully developed.

(c) Thermally and Hydrodynamically Developing Flow
If the velocity and temperature (thermal) profiles develop simultaneously, the resulting
Nusselt numbers in the entry region are always higher than the preceding case. This case is
having greater importance from the application point of view. Constant surface temperature
and constant heat rate results are presented in Fig. 8.5a, b, respectively, in the form of mean
Nusselt number Num or local Nusselt number Nux as a function of x+.

Fig. 8.3 Constant temperature thermal entry length Nusselt numbers
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For constant surface temperature condition, Sieder and Tate (1936) equation may be used
for both liquids and gases in the laminar region where the thermal and velocity profiles are
developing simultaneously (Bejan and Kraus 2003):

Nu ¼ 1:86
d

L
� Re Pr

� �1=3 lb
lw

� �0:14

ð8:16Þ

for
d

L
� Re Pr [ 10; 0:0044� lb

lw

� �
� 9:75; 0:48� Pr � 16700:

where lb is the viscosity at the mean bulk temperature and lw is the viscosity at the wall

temperature. Factor lb
lw

� �
is termed as viscosity correction factor which has been discussed in

Sect. 8.6. The equation must be used only for entrance region; it cannot be used for extre-
mely long tubes because, for such tubes, it will yield a zero heat transfer coefficient.

Example 8.4 Water at 10°C enters a 10 mm inside diameter and 1.2 m long tube. Water
outlet temperature is 40°C. If the tube surface temperature is maintained at 100°C by con-
densing steam, determine the water flow rate and heat transfer rate.

Solution

Water properties at the mean bulk temperature tm [= (ti + to)/2 = 25°C] from Table A4:

q ¼ 997 kg=m3; c ¼ 4181 J=ðkg KÞ; l ¼ 890� 10�6 N s=m2; k
¼ 0:609W=ðm KÞ and Pr ¼ 6:13:

At Tw = 100°C, l w = 282 � 10–6 N s/m2.

Fig. 8.4 Constant heat rate thermal entry length Nusselt numbers
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For isothermal case, heat transfer consideration gives, refer Example 7.17,

q ¼ �hPL� tw � toð Þ � tw � tið Þ
ln tw�to

tw�ti

� � : ðiÞ

0 
2 
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N
u x

 

x+ = (x/R)/(RePr)

Pr = 0.01

0.7

10

0

10 

20 

30 

1.0N
u m

 

x+ = (x/R)/(RePr)

0.002 0.004 0.006 0.01 0.02 0.04 0.06 0.1 0.2 

40 

Pr = 0
Uniform velocity (slug - flow)

Parabolic velocity, Pr = ∞

Pr = 0.5

0.7

3.66

5.0
2.0

a

b

Fig. 8.5 a Variation of mean Nusselt number in combined thermal and hydrodynamic region of a tube with
constant surface temperature (Pr = 0.5−5.0) (adapted from Kays WM, Perkins HC, Forced convection,
internal flow in ducts. In: Rohsenow WM, Hartnett JP (eds) Handbook of heat transfer, Chap. 7. McGraw-
Hill, New York. Copyright 1973. The material is reproduced with permission of McGraw-Hill Education.)
b Variation of local Nusselt number in combined thermal and hydrodynamic region of a tube with constant
heat rate per unit of length (Kays WM, Perkins HC, Forced convection, internal flow in ducts. In:
Rohsenow WM, Hartnett JP (eds) Handbook of heat transfer, Chap. 7. McGraw-Hill, New York. Copyright
1973. The material is reproduced with permission of McGraw-Hill Education.)
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From first law,

q ¼ mcðto � tiÞ:

Equating above equations,

mcðto � tiÞ ¼ �hPL� tw � toð Þ � tw � tið Þ
ln tw�to

tw�ti

� � :

Simplification gives

tw � to
tw � ti

¼ exp � P

mc
L�h

� �
;

which is the same as derived in Example 7.16. The equation can be rewritten as

ln
tw � ti
tw � to

� �
¼ P

mc
L�h

or

ln
tw � ti
tw � to

� �
¼ pd

mc
Lh ðiiÞ

where heat transfer coefficient,

�h ¼ k

d
Nu

or

�h ¼ k

d
1:86

d

L
� Re Pr

� �1=3 l
lw

� �0:14

using Sieder and Tate equation for the thermal and velocity profiles developing simultane-
ously and assuming laminar flow.

The Reynolds number based on mass velocity of water through the tube:

Re ¼ md

ðp=4Þd2l ¼ 4m
pdl

Hence,

�h ¼ k

d
� 1:86� d

L
� 4m
pdl

� Pr
� �1=3 l

lw

� �0:14

¼ k

d
� 1:86� 4m

plL
� Pr

� �1=3 l
lw

� �0:14
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Substitution in Eq. (ii) gives

ln
tw � ti
tw � to

� �
¼ pd

mc
� L� k

d
1:86� 4m

plL
� Pr

� �1=3 l
lw

� �0:14

or

m2=3 ¼ 1

ln tw�ti
tw�to

� � pkL
c

� 1:86� 4 Pr
plL

� �1=3 l
lw

� �0:14

Substituting values of various terms, we have

m2=3 ¼ 1

ln 100�10
100�40

� �� p� 0:609� 1:2
4181

� 1:86� 4� 6:13
p� 890� 10�6 � 1:2

� �1=3 890
282

� �0:14

¼ 0:0574

or m ¼ 0:0138 kg=s:
This gives:

Re ¼ 4m
pdl

¼ 4� 0:0138
p� 10=1000� 890� 10�6

¼ 1974:

Flow is laminar.
Hydrodynamic development length Lhy,

Lhy ¼ 0:05Red ¼ 0:05� 1974� 0:01 ¼ 0:987m:

Thermal development length Lth,

Lth ¼ 0:05Re Pr d ¼ 0:05� 1974� 6:13� 0:01 ¼ 6:05m:

Thus the thermal and velocity profiles are developing simultaneously.
The rate of heat transfer is

q ¼ mcðto � tiÞ ¼ 0:0138� 4181� ð40� 10Þ ¼ 1730:9W:

Example 8.5 One kg/s of water at 35°C flows through a 25 mm diameter 3 m long tube
whose surface is maintained at uniform temperature of 100°C. Determine the outlet tem-
perature of the water.

Solution

Water properties at the mean bulk temperature tm [= (ti + to)/2] of 50°C (assumed) from
Table A4:

q ¼ 988:1 kg=m3; c ¼ 4182 J= kg Kð Þ; l ¼ 544� 10�6 N s=m2; k
¼ 0:644 W= m Kð Þ and Pr ¼ 3:55:
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From equation derived in Example 7.16,

tw � to
tw � ti

¼ exp � P

mc
L�h

� �
ðiÞ

The Reynolds number based on mass velocity of water through the tube:

Re ¼ md

ðp=4Þd2l ¼ 4m
pdl

¼ 4� 1
p� 0:025� 544� 10�6

¼ 93620:

Flow is turbulent. Dittus and Boelter equation may be used for calculation of heat transfer
coefficient.

h ¼ k

d
� 0:024Re0:8 Pr0:4

¼ 0:644
0:025

� 0:024� 936200:8 � 3:550:4 ¼ 9735 W=ðm2 KÞ:

Substitution of values of various parameters in Eq. (i) gives

100� to
100� 35

¼ exp � p� 0:025
1� 4282

� 3� 9735

� �

or

to ¼ 62oC:

Mean bulk temperature of water is tm [= (ti + to)/2] = 48.5°C, which is nearly equal to the
assumed value of 50°C.

Example 8.6 The wall of a tube 1.6 m long and 20 mm diameter is held at constant
temperature by condensing steam outside the tube. Water enters the tube at 30°C and leaves
at 50°C at the rate of 1 kg/min. Determine the average heat transfer coefficient and the wall
temperature.

Solution

The thermophysical properties of water at the mean bulk temperature tfm = (30 + 50)/
2 = 40°C are:

q ¼ 992:2 kg=m3; k ¼ 0:631W=ðmKÞ; l ¼ 6:5� 10�4 kg=ðmsÞ; Pr ¼ 4:3; cp
¼ 4179 J=ðkgKÞ:

Reynolds number,

Re ¼ qUmd

l
¼ md

ðp=4Þd2l ¼ 4m
pdl

¼ 4� ð1=60Þ
p� 0:02� 6:5� 10�4

¼ 1632

Flow is laminar.
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Hydrodynamic development length Lhy,

Lhy ¼ 0:05Red ¼ 0:05� 1632� 0:02 ¼ 1:632m[ 1:6m:

Thermal development length Lth,

Lth ¼ 0:05Re Pr d ¼ 0:05� 1632� 4:3� 0:02 ¼ 7:02m[ 1:6 m:

The flow is simultaneously developing. Hence, the average Nusselt number can be read
from Fig. 8.5a.

xþ ¼ L

R
� 1
Re Pr

¼ 1:6
0:01

� 1
1632� 4:3

¼ 0:0228:

Corresponding to x+ = 0.0228, Nu = 7.5. Thus the heat transfer coefficient is

h ¼ Nu� k

d
¼ 7:5� 0:631

0:02
¼ 236:6W/(m2 K):

We have

tw � to
tw � ti

¼ exp � P

mc
L�h

� �
ðiÞ

or

tw � 50
tw � 30

¼ exp � p� 0:02� 1:6
ð1=60Þ � 4179

� 236:6

� �

Solution of above equation gives tw = 99.14°C.
Viscosity of water at wall temperature of 99.14°C, lw � 2.85 � 10−4 kg/(m s). Thus

there is significant difference between viscosity values of the fluid at mean bulk and wall
temperatures and the viscosity correction factor must be used, refer Eq. (8.16). The revised
heat transfer coefficient is

h ¼ Nu� k

d

lb
lw

� �0:14

¼ 7:5� 0:631
0:02

� 6:5
2:85

� �0:14

¼ 265:5W/(m2 K):

With this value of heat transfer coefficient, revised tw from Eq. (i) is obtained as

tw � 50
tw � 30

¼ exp � p� 0; 02� 1:6
ð1=60Þ � 4179

� 265:5

� �

which gives tw = 92.83°C. Further iteration is not required.
Alternatively, Sieder-Tate relation, Eq. (8.16) may be used, which is applicable for

d
L � Re Pr [ 10:
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d

L
� Re Pr ¼ 0:02

1:6
� 1632� 4:3 ¼ 87:7[ 10:

Nusselt number, using the viscosity correction factor,

Nu ¼ 1:86
d

L
� Re Pr

� �0:33 lb
lw

� �0:14

¼ 1:86� 87:7ð Þ0:33 6:5
2:85

� �0:14

¼ 9:14:

Heat transfer coefficient,

h ¼ Nu� k

d
¼ 9:14� 0:631

0:02
¼ 288:4W/(m2K)

which is about 8.5% higher.

Example 8.7 If 1.8 m long unheated entrance section is provided before the heated tube of
the previous example, determine the average Nusselt number.

Solution

From previous example, the hydrodynamic development length Lhy was 1.632 m. With an
unheated entrance section of 1.8 m length, the flow is hydrodynamically developed when it
enters the heated section. Flow condition is now that of thermally developing and hydro-
dynamically fully developed with constant wall temperature. Hausen’s equation applies:

Nu ¼ 3:66þ 0:0668 d
L � Re Pr
� �

1þ 0:04 d
L � Re Pr
� �2=3

¼ 3:66þ 0:0668� 87:7

1þ 0:04� 87:7ð Þ2=3
¼ 6:94

ð8:15Þ

as compared to Nu = 9.09 in the previous example. It can be seen that a simultaneously
developing flow provides a greater heat transfer coefficient.

8.5.2 Turbulent Flow in Circular Tubes

The turbulent duct flows can also be divided into four categories: fully developed, hydro-
dynamically developing, hydrodynamically developed but thermally developing, and both
hydrodynamically and thermally developing (i.e., simultaneously developing).

It is to be noted that for the turbulent duct flow, the hydrodynamic and thermal entrance
lengths are much shorter than the corresponding lengths in the laminar duct flow. Hence, the
results of fully developed turbulent flow friction factor and heat transfer are frequently used
in design calculations neglecting the effect of the entrance regions. However, for low Prandtl
number fluids, and for the heat exchangers short in length, the entrance region effects must be
considered.
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8.5.2.1 Friction Factor Correlations

(a) Fully Developed Turbulent Flow in Smooth Ducts

Several experimental friction factor correlations have been developed for fully developed
turbulent flow in smooth ducts. Bhatti and Shah (1987) have compiled these correlations.
Some of these correlations are presented here in Table 8.2.

The Prandtl-Karman-Nikuradse (PKN) correlation is regarded as the most accurate. This
correlation is based on the universal velocity distribution law with the coefficients slightly
modified to fit the highly accurate experimental data of Nikuradse. The drawback of the PKN
correlation is that the friction factor f appears on both sides of the correlation.

There have been some attempts to develop a single correlation covering laminar, transi-
tion and turbulent flow regimes. Bhatti and Shah (1987) have developed the following
correlation covering the three regimes:

f ¼ Aþ B

Re1=m
ð8:17Þ

where

A ¼ 0;B ¼ 16;m ¼ 1 for Re� 2100
A ¼ 0:0054;B ¼ 2:3� 10�8;m ¼ �2=3 for 2100\Re� 4000
A ¼ 1:28� 10�3;B ¼ 0:1143;m ¼ 3:2154 for Re[ 4000:

(b) Turbulent Entry length

The average friction coefficient (termed as apparent Fanning friction factor) fapp based on the
static pressure drop in the entrance of a circular tube with turbulent flow is presented in
Fig. 8.6. The total pressure drop can be calculated from:

Dp ¼ �fapp
x

D

� �
ð2qU2Þ ð8:18Þ

Table 8.2 Fully developed turbulent flow friction factor correlations for smooth circular ducta

Investigators Correlation Reynolds
number range

Remarks

Blasius f ¼ 0:0791Re�0:25 4 � 103 −105 Within +2.6% and −1.3% of PKN

Bhatti and
Shah

f ¼ 0:00128þ 0:1143Re�0:311 4 � 103− 107 Within +1.2% and −2% of PKN

f ¼ 0:0366Re�0:1818 4 � 104− 107 Within +2.4% and −3% of PKN

Prandtl,
Karman and
Nikuradse
(PKN)

1 ffiffi
f

p ¼ 1:7372 ln Re
ffiffiffi
f

pð Þ � 0:3946 4 � 103− 107 Its predictions agree with the highly
accurate experimental data within
±2%.

Colebrook 1 ffiffi
f

p ¼ 1:5635 ln Re
7

� �
4 � 103 −107 Mathematical approximation of PKN

yielding numerical values within
±1% of PKN.

Techo et al. 1 ffiffi
f

p ¼ 1:7372 ln Re
1:964 lnRe�3:8215

104−107 Explicit form of PKN agrees within
±0.1%

aBhatti MS, Shah RK, Turbulent and transition flow convective heat transfer. In: Kakac S, Shah RK, Aung W
(eds) Handbook of single-phase convective heat transfer, Chap. 4, Wiley, New York, Copyright 1987.
Reproduced (abridged) with the permission of John Wiley and Sons Ltd
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Bhatti and Shah (1987) recommend the following equation for the hydrodynamic entrance
length in case of turbulent flow:

L

D
¼ 1:359Re0:25 ð8:19Þ

Comparison of Eq. (8.19) with the equation for the laminar flow shows that the hydro-
dynamic entrance length is much shorter for the turbulent flow and its dependence on the
Reynolds number is weaker. For example, the laminar flow entrance length at Re = 2100 is
115D, whereas it is only 13.6D for turbulent flow at Re = 104. In many pipe flow of practical
interest, the entrance effects are not significant beyond a pipe length of 10 diameters. When
the pipe length is several times of the length of entrance region, the flow is assumed to be
fully developed for the entire length of the pipe. This simplified approach gives reasonable
results for long pipes. For short pipes, the simplified approach underpredicts the friction
factor.

It is to note that the hydrodynamic and thermal entry lengths are almost similar in
turbulent flow and are independent of the Prandtl number.

8.5.2.2 Heat Transfer Coefficient Correlations

(a) Fully Developed Velocity and Temperature Profiles

Two boundary conditions of interest are uniform heat flux or constant heat rate along tube
length (UHF) termed as H boundary condition and a uniform wall temperature
(UWT) termed as T boundary condition. The constant heat rate Nusselt number NUH is
always greater than the constant surface temperature Nusselt number NuT, but with exception
of very low Prandtl number fluids, the difference in NH and NuT is much smaller than for the
laminar flow, refer Fig. 8.7. At Pr = 0.7, it is only a few percent. The difference becomes
quite negligible for Pr > 1.0. The reasons for the significant effect at low values of Pr lie in
the effect of Pr on the distribution of the thermal resistance. At very low Prandtl numbers

 x/D
0 8 16 24 

0.000 

0.005 

0.010 

0.015 

0.020 

f ap
p Re = 104

3 ×104

105

Fig. 8.6 Turbulent flow apparent friction factor fapp in hydrodynamic entrance region of a smooth circular
duct (Bhatti MS, Shah RK, Turbulent and transition flow convective heat transfer. In: Kakac S, Shah RK,
Aung W (eds) Handbook of single-phase convective heat transfer, Chap. 4, Wiley, New York, Copyright
1987. Reproduced (partially) with the permission of John Wiley and Sons Ltd.)
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where the heat transfer mechanism is mainly molecular diffusion, the thermal resistance
extends over the entire cross-section of flow and different boundary conditions yield different
temperature profiles (Kays and Crawford 1980). At high Pr values, the resistance is primarily
very close to the wall yielding a quite square temperature profile regardless of the boundary
condition. And hence the high Prandtl number fluid is relatively insensitive to a variation of
surface temperature and heat flux in the direction of flow.

The correlations presented in this section are the constant heat rate NuH correlations and
can be used to obtain NuT by applying the correction factor, NuH/NuT from Fig. 8.7.

A large number of correlations, both theoretical and empirical (based on experimental
data), have been developed for fully developed turbulent flow in smooth tubes. An
exhaustive collection of these correlations is given in a tabular form in Bhatti and Shah
(1987). In Table 8.3 are presented some of these correlations for gases and liquids (Pr > 0.5)
along with their comments.

Churchill (1977) presented the following correlation covering laminar, transition, and
turbulent flow regimes:

Nuð Þ10¼ ðNulÞ10 þ exp½ð2200� ReÞ=365�
Nulð Þ2 þ 1

Nuo þ 0:079 f=2ð Þ1=2Re Pr
ð1þ Pr4=5Þ5=6

0
B@

1
CA

22
64

3
75
�5

ð8:20Þ

valid for 0\ Pr � 106and 10\Re� 106

where

Nuo 6.3 for UHF and 4.8 for UWT,
Nul 4.364 for UHF and 3.657 for UWT.

For Re � 2100, the equation yields laminar flow values of 3.657 and 4.364 corre-
sponding to the T and H boundary conditions (UWT and UHF), respectively. For
2100 � Re � 104, predictions are within +17.1% and –11.9% of Gnielinski correlation for
UWT and +13.7% and –10.5% of Gnielinski for UHF (Bhatti and Shah 1987).

Note: Correlations of Gnielinski and Churchill cover transitional region.

1.4 

1.3 

1.2 

1.1 

1.0 
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N
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Fig. 8.7 Ratio NuH/NuT for fully developed turbulent flow (from Sleicher 1955)
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(b) Turbulent Entry Length

When the velocity and temperature profiles develop simultaneously, the entry length is
strongly affected by the shape at the inlet. Bhatti and Shah (1987) provide the following
correlation for average Nu with L/D > 3 for Pr � 0.7.

Table 8.3 Fully developed turbulent flow Nusselt number in a smooth circular duct for Pr > 0.5a

Investigators Correlations Remarks

Dittus and
Boelter
(Winterton
1998)

Nu = 0.024 Re0.8 Pr0.4 for heating of fluid
Nu = 0.026 Re0.8 Pr0.3 for cooling of fluid

Compared to the Gnielinski
correlation, prediction of heating
correlations are
(i) 13.5% to 17% higher for air
(ii) 15% lower to 7% higher for water
(iii) 10% lower to 21% higher for oil
and prediction of cooling correlations
are
(i) 29% to 33% higher for air
(ii) 26% lower to 3% higher for water
(iii) 39% to 18% lower for oil

Petukhov,
Kirillov and
Popov

Nu ¼ Re Prðf=2Þ
Cþ 12:7

ffiffiffiffiffiffiffiffi
ðf=2Þ

p
: Pr2=3 �1ð Þ

where C = 1.07 + 900/Re – [0.63/(1 + 10Pr)]

Nu ¼ RePrðf=2Þ
1:07þ 12:7

ffiffiffiffiffiffiffiffi
ðf=2Þ

p
: Pr2=3 �1ð Þ

0.5 � Pr � 106 and 4000 � Re � 5 � 106

The first correlation agrees with the
most reliable experimental data on
heat and mass transfer to ±5%
accuracy.
The second correlation is a simplified
version of the first.

Gnielinskib Nu ¼ ðf=2ÞðRe�1000Þ Pr
1þ 12:7

ffiffiffiffiffiffiffiffi
ðf=2Þ

p
: Pr2=3 �1ð Þ

for 0.5 � Pr � 2000 and 2300 � Re � 5 �
106

Nu ¼ 0:0214 Re0:8 � 100
� �

Pr0:4

for 0:5� Pr � 1:5 and 104 �Re� 5� 106

Nu ¼ 0:012 Re0:87 � 280
� �

Pr0:4

for 1:5� Pr� 500 and 3� 103 �Re� 106

The first correlation is a modification
of the second Petukhov et al.
correlation extending it to 2300 �
Re � 5 � 106 range. For 0.5 � Pr
� 2000 and 2300 � Re � 5 � 106,
it is in an overall best accord with the
experimental data.
The second correlation agrees with
the first within +4% and −6%.
The third correlation agrees with the
first within −10%.

aBhatti MS, Shah RK, Turbulent and transition flow convective heat transfer. In: Kakac S, Shah RK, Aung W
(eds) Handbook of single-phase convective heat transfer, Chapter 4, Wiley, New York, Copyright 1987.
Reproduced (abridged) with the permission of John Wiley & Sons Ltd.
The friction factor f needed in some of the formulas of the Table 8.3 may be calculated from the PKN,
Colebrook or Techo et al. correlations given in Table 8.2
b1. The Gnielinski’s correlation agrees with the Petukhov et al. correlation within −2% and +7.8%. Hence, it
has been selected as the common basis for comparison of all the correlations by Bhatti and Shah (1987) as
presented in this table
c For developing region, Gnielinski modified the relation by introducing the correction factor [1 + (D/x)2/3],
which takes care of the entrance effect, and factor (Prb/Prw)

0.11 to consider the effect of temperature dependent
fluid properties. In case of liquids, the thermal conductivity and specific heat are relatively independent of the
temperature and the Prandtl number ratio can be approximated by (lb/lw)

0.11 and the Gnielinski’s correlation
for developing liquid flow takes the form (Tam and Ghajar 2006)

Nu ¼ ðf=2ÞðRe�1000ÞPr
1þ 12:7

ffiffiffiffiffiffiffiffi
ðf=2Þ

p
: Pr2=3 �1ð Þ 1þ D

L

� �2=3h i
lb
lw

� �0:11

for 0:6� Pr � 105and 2300�Re� 106

where f = (1.58 ln Re – 3.28)−2
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Nuav
Nu1

¼ 1þ C

ðL=DÞn ð8:21Þ

where Nu∞ is the fully developed value of the Nusselt number NuH or NuT, and C and n
depend on the inlet configuration as given in Table 8.4.

If L/D > 60, entry region correction is not required.

Example 8.8 Air flows through an 80 mm diameter tube at a rate of 1 kg/min. Measure-
ments indicate that the average wall temperature of the test section of 1 m length is 400 K
and the mean temperature of the air is 300 K. Estimate the heat transfer rate from the tube
wall to the air. What will be the rise in the temperature of the air through the test section?

Solution

The flow Reynolds number,

Re ¼ qUd
l

¼ _m

Ac

� �
d

l

where

Ac = flow area = (p/4)d2 = (p/4)(0.08)2 = 5.026 � 10–3 m2

_m = mass flow rate = 1/60 kg/s
l = viscosity of the air at the mean temperature of 300 K

= 1.84 � 10−5 kg/(m s)

Substitution gives

Re ¼ 1
60

� �
1

5:026� 10�3

� �
0:08

1:84� 10�5
¼ 14418:

For Re = 14418, the Nusselt number can be calculated from the Dittus Boelter
correlation.

Nu ¼ 0:024Re0:8 Pr0:4

¼ 0:024� ð14418Þ0:8ð0:708Þ0:4 ¼ 44:4:

Hence, the convective heat transfer coefficient is

Table 8.4 Constants for the gas flow simultaneous entry length correlation for different inlet configurations

Inlet configuration C n

Long straight adiabatic pipe as calming section 0.9756 0.760

Square edged inlet 2.4254 0.676

180° circular bend 0.9759 0.700

90° circular bend 1.0517 0.629

90° sharp bend 2.0152 0.614
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h ¼ Nuk
d

¼ 44:4� 0:0263
0:08

¼ 14:6 W/(m2 K),

where the thermal conductivity of air is 0.0263 W/(m K) at 300 K.
Heat flow rate is

q ¼ hADT

where

A = heat transfer area = pdL = p � 0.08 � 1 = 0.251 m2

DT = Twall – Tair = 400–300 = 100 K.

This gives

q ¼ 14:6� 0:251� 100 ¼ 366:5 W:

Rise in the temperature of the air through the test section,

ðDTÞair ¼
q

mcp
¼ 366:5

ð1=60Þ � 1005:7
¼ 21:86oC

where the specific heat of the air at 300 K is about 1005.7 J/(kg K).
Use of Gnielinski simplified correlation gives (for 0.5 � Pr � 1.5 and

104 � Re � 5 � 106)

Nu ¼ 0:0214ðRe0:8 � 100Þ Pr0:4 ¼ 0:0214� ½ð14418Þ0:8 � 100� � ð0:708Þ0:4 ¼ 37:72

which is lower by about 18% than given by Dittus Boelter correlation.

Example 8.9 Air flows through a 1 m long 80 mm diameter tube at a rate of 1 kg/min.
Measurements indicate that the average wall temperature is 150°C. The air enters the tube at
40°C. Estimate the heat transfer rate from the tube wall to the air and the rise in the
temperature of the air. Assume fully developed flow.

Solution
The thermophysical properties are to be taken at mean fluid temperature, but the outlet
temperature of the air is not known. For trial, we assume mean bulk temperature as 50°C.
The thermophysical properties of air (refer Table A5, Appendix) at 50°C are:

q = 1.095 kg/m3, k = 0.02799 W/(m K), l = 1.95 � 10–5 kg/(m s), Pr = 0.703, cp =
1007.2 J/(kg K).
The flow Reynolds number,

Re ¼ qUd
l

¼ _m

Ac

� �
d

l
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where

Ac flow area = (p/4)d2 = (p/4)(0.08)2 = 5.026 � 10−3 m2

_m mass flow rate = 1/60 kg/s.

This gives

Re ¼ 1
60

� �
1

5:026� 10�3

� �
0:08

1:95� 10�5
¼ 13604[ 10000:

Flow is turbulent. The Nusselt number can be calculated from the Dittus-Boelter
correlation:

Nu ¼ 0:024Re0:8 Pr0:4 ¼ 0:024� ð13604Þ0:8 � ð0:703Þ0:4 ¼ 42:3:

Hence, the convective heat transfer coefficient is

h ¼ Nuk
d

¼ 42:3� 0:02799
0:08

¼ 14:8W= m2 K
� �

:

Heat flow rate is

q ¼ hADT

where

A = heat transfer area = pdL = p � 0.08 � 1 = 0.251 m2

DT = twall – tm= 150–50 = 100°C.

Substitution gives

q ¼ hADT ¼ 14:8� 0:251� 100 ¼ 371:5 W:

Rise in the temperature of the air,

ðDTÞair ¼
q

mcp
¼ 371:5

ð1=60Þ � 1007:2
¼ 22:13oC:

This gives the mean bulk temperature,

tm ¼ ti þDT=2 ¼ 40þ 22:13=2 ¼ 51:07oC:

The calculated mean temperature of 51.07°C is nearly equal to the trial value of 50°C,
which will have only marginal effect on the values of the thermophysical properties of the air.
Hence, further iteration is not required.

Example 8.10 Air at mean bulk temperature of 25°C and 2 atm flows through a 2 m long
tube of 25 mm diameter with an average velocity of 4 m/s. The tube wall is held at 75°C.
Determine the heat transfer rate per unit area.
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Solution

The thermophysical properties of air (refer Table A5, Appendix) at 25°C are:
At 1 atm, q = 1.1868 kg/m3, k = 0.02608 W/(m K), l = 1.8363 � 10−5 kg/(m s), Pr =

0.709, cp = 1005.7 J/(kg K). At 2 atm, q = 2 � 1.1868 = 2.3736 kg/m3.
The flow Reynolds number,

Re ¼ qUd
l

¼ 2:3736� 4� 0:025
1:8363� 10�5

¼ 12926:

The velocity or thermal entry length,

L

D
¼ 1:359Re0:25 ð8:19Þ

or

L ¼ ð1:359Re0:25ÞD ¼ 1:359� ð12926Þ0:25 � 0:025 ¼ 0:36 m,

which is very small as compared to the length of the tube (L/D = 80 > 60). Hence, the flow
can be regarded as fully developed. Dittus-Boelter relation can be used to determine average
Nusselt number.

Nu ¼ 0:024Re0:8 Pr0:4 ¼ 0:024� ð12926Þ0:8 � ð0:709Þ0:4 ¼ 40:7:

Heat transfer coefficient,

h ¼ Nuk
d

¼ 40:7� 0:02608
0:025

¼ 42:46 W/(m2 K):

Heat transfer rate,

q ¼ hAðtw � tbÞ ¼ 42:46� 1� ð75� 25Þ ¼ 2123 W/m2:

Example 8.11 Repeat the above problem if tube diameter D is 50 mm and the fluid is
entering the tube through a square edged inlet.

Solution
The thermophysical properties of air (refer Table A5, Appendix) at 25°C are:

At 1 atm, q = 1.1868 kg/m3, k = 0.02608 W/(m K), l = 1.8363 � 10−5 kg/(m s), Pr =
0.709, cp = 1005.7 J/(kg K). At 2 atm, q = 2 � 1.1868 = 2.3736 kg/m3.
The flow Reynolds number,

Re ¼ qUd
l

¼ 2:3736� 4� 0:05
1:8363� 10�5

¼ 25852:
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The tube length to diameter ratio,

L

D
¼ 2000

50
¼ 40:

Since L/D < 60, entry region correction is required.
For fully developed flow,

Nu ¼ 0:024Re0:8 Pr0:4 ¼ 0:024� ð25852Þ0:8 � ð0:709Þ0:4 ¼ 70:9:

The correlation for average Nu considering entrance region effect is (for L/D > 3 and
Pr = 0.7)

Nuav
Nu1

¼ 1þ C

ðL=DÞn ð8:21Þ

where Nu∞ is the fully developed value of the Nusselt number, and C and n are 2.4254 and
0.676, respectively, from Table 8.4.

Thus,

Nuav ¼ 1þ 2:4254

ð40Þ0:676
" #

� 70:9 ¼ 85:1

Heat transfer coefficient,

h ¼ Nuk
d

¼ 85:1� 0:02608
0:05

¼ 44:39 W/(m2 K):

Heat transfer rate,

q ¼ hAðtw � tbÞ ¼ 44:39� 1� ð75� 25Þ ¼ 2219:5 W/m2:

8.6 Effects of Temperature Varying Properties

The friction factor and heat transfer correlations given in the previous sections apply strictly
to isothermal flows, where the fluid temperature is the same at all points of the stream. When
the heat transfer takes place, the temperature of the fluid varies both over the cross-section
and along the tube length. Since the transport properties of most fluids vary with temperature
and hence will vary over the cross-section of the tube.

For the gases, the specific heat varies only slightly with the temperature, but the viscosity
and thermal conductivity increase as about 0.8 power of the absolute temperature (in the
moderate temperature range).The density of the gases varies inversely with the absolute
temperature. However, the Prandtl number (Pr = µcp/k) does not vary significantly with
temperature.
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For the liquids, the viscosity decreases markedly with the increase in temperature, while
the specific heat, density and thermal conductivity are practically independent of the tem-
perature. The Prandtl number of the liquids varies with temperature approximately the same
way as the viscosity. Thus for the liquids only the temperature dependence of the viscosity is
of major importance.

Figure 8.8 shows the distortion of the laminar velocity profile due to the heating or
cooling of fluids. The viscosity of liquids ordinarily drops with the increasing temperature
while the viscosity of the gases ordinarily drops with the decreasing temperature. Hence, if a
liquid is heated or a gas is cooled, the viscosity at the wall is lower than the core. Therefore,
the flow velocity is higher at the wall and lower in the core than in the isothermal conditions,
see curve 2. In the case of cooling of liquids and heating of gases, the flow velocity is lower
at the wall and higher in the core, curve 3.

Heat transfer from a surface to a fluid under the laminar flow condition takes place by
conduction only, and thus it depends on the temperature gradient near the wall. The tem-
perature distribution depends on (i) the velocity distribution, (ii) the thermal conductivity of
the fluid, and (iii) the extent to which the fluid has been heated or cooled in traversing the
passage. It has been found that the heat transfer coefficient increase when a liquid is heated or
a gas is cooled and vice versa.

In the case of the turbulent flow, the effect of the variation of viscosity at the wall is
mainly confined to the laminar sub-layer. The laminar sub-layer tends to be thinner for a
decrease in the viscosity at the wall due to the heating of liquids or cooling of gases. The
reverse is true when the liquid is being cooled or the gas is being heated.

Correction of Constant Property Results

One of the methods to take account of the effects of the variation of the fluid properties with
the temperature is known as the property ratio method (Keys and Perkins 1973). In this
method, all the properties are evaluated at the bulk temperature, and then the variable
properties effects are lumped into a function of a ratio of the bulk to wall temperatures or
viscosities as outlined below.

For liquids, viscosity correction is responsible for most of the effects, and hence the
following equation is suggested.

1- Isothermal 
2- Heating of liquids or cooling of gases 
3- Cooling of liquids or heating of gases 

1 

3 

2

Fig. 8.8 Distortion of the velocity profile in laminar flow through a tube due to the heating or cooling of a
fluid
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Nu ¼ ðNuÞc:p:
lw
lb

� �n

ð8:22Þ

f ¼ ðf Þc:p:
lw
lb

� �m

ð8:23Þ

The subscript c.p. refers to the appropriate constant property solution or small temperature
difference experimental results. The viscosity µw is the viscosity at the wall temperature,
while µb is the viscosity at the bulk temperature of the fluid. The exponents m and n are
functions of the geometry and type of flow.

For gases, the viscosity, thermal conductivity and density are all functions of the absolute
temperature of the gas, and hence the equation suggested is

Nu ¼ ðNuÞc:p:
Tw
Tb

� �n

ð8:24Þ

f ¼ ðf Þc:p:
Tw
Tb

� �m

ð8:25Þ

For the laminar flow of liquids in tubes,

n ¼ �0:11 to � 0:14
m ¼ þ 0:5 for lw=lb [ 1:0; i:e: cooling
m ¼ þ 0:58 for lw=lb\1:0; i:e: heating

(the choice of the value of exponent n depends on the viscosity-temperature relation of the
particular fluid. However, the difference is small).

For the turbulent flow of liquids in tubes, the suggested values of the exponents m and
n are given in Table 8.5.

The recommended values for laminar flow of a gas in a circular tube are

n ¼ 0:0 and m ¼ 1:00 1\Tw=Tb\3 for heatingð Þ

Table 8.5 Viscosity ratio exponents for fully developed turbulent flow of liquids in a circular tubea

Pr µw/µb > 1.0, i.e. cooling µw/µb < 1.0, i.e. heating

m n m n

1 0.12 −0.19 0.092 −0.20

3 0.087 −0.21 0.063 −0.27

10 0.052 −0.22 0.028 −0.36

30 0.029 −0.21 0.000 −0.39

100 0.007 −0.20 −0.04 −0.42

1000 −0.018 −0.20 −0.12 −0.46
aKays WM, Perkins HC, Forced convection, internal flow in ducts. In: Rohsenow WM, Hartnett JP
(eds) Handbook of heat transfer, Chap. 7. McGraw-Hill, New York. Copyright 1973. The material is
reproduced with permission of McGraw-Hill Education
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and

n ¼ 0:0 and m ¼ 0:81 0:5\Tw=Tb\1 for coolingð Þ

The values for the turbulent flow of a gas are

Tw=Tb [ 1:0 n ¼ �0:55; m ¼ 0:1
Tw=Tb\1:0 n ¼ 0:0; m ¼ �0:1

Information on the flow through noncircular tubes with variable properties is not complete
and hence it is recommended that the circular tube results be used.

8.7 Heat Transfer and Friction in Concentric Circular Tube Annuli
and Parallel Plate Duct

Hydraulic or Equivalent Diameter Concept

It has been found that nearly the same turbulence intensity and the friction factor prevail in
circular and other duct geometries (such as annular, rectangular, square, triangular and
irregular passages) if the ratio of flow-passage area to the wetted parameter is kept constant.
This ratio is called the hydraulic radius Rh. For a circular passage, this becomes

Rh ¼ ðp=4ÞD2

pD
¼ D

4

It is often convenient to use the term equivalent diameter Dh to signify the diameter of a
circular passage, which would have the same hydraulic radius as the passage geometry. Thus

Dh ¼ 4A
P

where A is the flow passage area and P is the wetted parameter. The hydraulic diameter for a
circular passage is equal to D. This definition has been used throughout this book.

It must be noted that the use of hydraulic diameter for ducts with sharp corners (e.g.,
triangular ducts) may lead to error of the order of 35% in turbulent flow friction and heat
transfer coefficients determined from the circular duct correlations (Bhatti and Shah 1987).

8.7.1 Laminar Flow

Lundgren et al. (1964) determined the pressure drop due to flow development in the entrance
region of ducts of arbitrary cross-section. Some data of fully developed Fanning friction
factor for laminar flow in concentric annular duct from their results are presented in
Table 8.6 along with that for a circular tube. Natarajan and Lakshmanan (in Ebadian and
Dong 1998) have presented a simple equation for fRe [fRe = 24(r*)0.035 for 0 < r* � 1],
which agrees well with the data of Table 8.6.

For the friction coefficient in the hydrodynamic entry length for the concentric tube annuli
including parallel plate duct, refer Heaton et al. (1964).
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In the laminar flow, the fully developed Nusselt number is independent of the Reynolds
number and Prandtl number. For the concentric tube flow, there are two Nusselt numbers of
interest, one for inner surface (Nuii when inner surface alone is heated) and other for the outer
surface (Nuoo when outer surface alone is heated). Their values for constant heat rate con-
dition are given in Table 8.7.

For the case of constant heat rate, it is possible to determine Nui and Nuo (the Nusselt
number on the inner and outer surfaces, respectively) for any heat flux ratio ðq00o=q00i Þ on the
two surfaces, in terms of Nuii and Nuoo, and a pair of influence coefficients h�i and h�o(refer
Table 8.7) using the following equations (Kays and Perkins 1973).

Nui ¼ Nuii
1� ðq00o=q00i Þh�i

ð8:26aÞ

Nuo ¼ Nuoo
1� ðq00i =q00oÞh�o

ð8:26bÞ

Table 8.6 Fully developed friction factors for laminar flow in circular tube annuli

r* = ri/ro fRe

0.0 (circular tube) 16

0.01 20.03

0.05 21.57

0.10 22.34

0.20 23.09

0.40 23.68

0.60 23.90

0.80 23.98

1.00 (parallel plate duct) 24.00

Table 8.7 Fully developed Nusselt numbers for laminar flow in circular tube annuli; constant heat ratea

r* = ri/ro Nuii Nuoo h�i h�o
0.0 ∞ 4.364 ∞ 0

0.05 17.81 4.792 2.18 0.0294

0.10 11.91 4.834 1.383 0.0562

0.20 8.499 4.883 0.905 0.1041

0.40 6.583 4.979 0.603 0.1823

0.60 5.912 5.099 0.473 0.2455

0.80 5.58 5.24 0.401 0.299

1.00 5.385 5.385 0.346 0.346
aKays WM, Perkins HC, Forced convection, internal flow in ducts. In: Rohsenow WM, Hartnett JP
(eds) Handbook of heat transfer, Chap. 7. McGraw-Hill, New York. Copyright 1973. The material is
reproduced with permission of McGraw-Hill Education
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where

Nui ¼ hidh
k

Nuo ¼ hodh
k

q00i ¼ hiðti � tbÞ
q00o ¼ hoðto � tbÞ

For the thermal entry length data of Nusselt number, readers can refer Kays and Crawford
(1980).

For the case of constant surface temperature on one surface (with the other surface
insulated), the Nusselt number has also been computed by Lundberg et al. (in Kays and
Perkins, 1973). The data are presented in Table 8.8.

In the case of parallel plates (r* = 1.0), Nu = 7.541 when both surfaces are at the same
constant temperature, while it is 8.235 for identical heat rates on the two surfaces of the duct.

For the thermal entry length local Nusselt number data for constant and equal wall
temperatures and heat rate refer Kays and Perkins (1973). Edwards et al. (in Mills 1995)
presented the average Nusselt number relation for the thermal entrance region flow between
isothermal plates as

Nu ¼ 7:54þ 0:03ðDh=LÞRe Pr
1þ 0:016½ðDh=LÞRe Pr�2=3

for Re\2800
ð8:27Þ

where the hydraulic diameter is twice the spacing of the plates. Critical Reynolds number of
2800 for transition is appropriate for flow between parallel plates (Mills 1995).

For combined thermal and hydrodynamic entry length Nusselt number data relating to the
circular tube annulus family (including parallel plates duct) with constant heat rate, refer
Kays and Crawford (1980).

Example 8.12 Water at a mean bulk temperature of 20°C flows through the annular region
formed by two concentric circular tubes. The outer tube has inner diameter of 25 mm, while
the inner tube has outer diameter of 12.5 mm. The mass flow rate is 0.015 kg/s. The outer

Table 8.8 Fully developed Nusselt numbers for laminar flow in circular tube annuli; constant surface
temperature on one surface, the other insulateda

r* = ri/ro Nui Nuo

0.0 ∞ 3.66

0.05 17.46 4.06

0.10 11.56 4.11

0.25 7.37 4.23

0.50 5.74 4.43

1.00 4.86 4.86
aKays WM, Perkins HC, Forced convection , internal flow in ducts. In: Rohsenow WM, Hartnett JP
(eds) Handbook of heat transfer, Chap. 7. McGraw-Hill, New York. Copyright 1973. The material is
reproduced with permission of McGraw-Hill Education
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surface is insulated and the inner surface is kept at a constant temperature of 50°C. Determine
the friction factor and average heat transfer coefficient from the outer surface of the inner
tube for the fully developed temperature and velocity profiles.

Solution

At mean bulk temperature of 20°C, the water properties are:
q = 998.2 kg/m3, k = 0.601 W/(m K), l = 10.02 � 10−4 kg/(m s), Pr = 7.0, cp = 4183

J/(kg K).
Hydraulic diameter,

Dh ¼ 4A
P

¼ 4ðp=4ÞðD2
i � d2oÞ

pðDi þ doÞ ¼ ðDi � doÞ ¼ 25� 12:5 ¼ 12:5 mm:

Flow Reynolds number,

Re ¼ qUDh

l
¼ m

ðp=4ÞðD2
i � d2oÞ

� ðDi � doÞ
l

¼ 4m
pðDi þ doÞ �

1
l
¼ 4� 0:015� 1000

p� ð25þ 12:5Þ � 1
10:02� 10�4

¼ 508:

The flow is laminar. Nusselt number Nuii for (Di/do) = 0.5, from Table 8.8 is 5.74.
Thus the heat transfer coefficient is

hi ¼ Nuk
Dh

¼ 5:74� 0:601
12:5=1000

¼ 276W/(m2 K):

Friction factor, from Table 8.6, is

f ¼ 23:78
Re

¼ 23:78
508

¼ 0:0468:

Example 8.13 Water at a mean bulk temperature of 20°C and 0.015 kg/s enters the annular
region formed by two concentric circular tubes and is heated to 60°C. The outer tube has
inner diameter of 25 mm, while the inner tube has outer diameter of 12.5 mm. The mass flow
rate is 0.015 kg/s. The outer surface is insulated and the inner surface is subjected to uniform
heat rate of 1000 W/m. Determine the tube length required to achieve desired outlet tem-
perature and inner tube surface temperature at outlet.

Solution

(a) Tube length required to achieve desired outlet temperature
At mean bulk temperature of (20 + 60)/2 = 40°C, the water properties are:

q ¼ 992:2 kg=m3; c ¼ 4179 J=ðkgKÞ
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The heat rate for length L is

q ¼ q0L ¼ 1000L W

where q’ is heat rate per m.
From first law equation,

q ¼ mcðto � tiÞ ¼ 0:015� 4179� ð60� 20Þ

Equating the above equations, we have

L ¼ 0:015� 4179� ð60� 20Þ
1000

¼ 2:5m:

(b) Surface temperature at the outlet,
At 60°C, the water properties are: k = 0.654 W/(m K), l = 463 � 10−6 kg/(m s), Pr = 3.

Hydraulic diameter,

Dh ¼ 4A
P

¼ 4ðp=4ÞðD2
i � d2oÞ

pðDi þ doÞ ¼ ðDi � doÞ ¼ 25� 12:5 ¼ 12:5 mm:

Flow Reynolds number,

Re ¼ qUDh

l
¼ m

ðp=4ÞðD2
i � d2oÞ

� ðDi � doÞ
l

¼ 4m
pðDi þ doÞ �

1
l
¼ 4� 0:015� 1000

p� ð25þ 12:5Þ � 1
463� 10�6

¼ 1100:

Hence, the flow is laminar, and for (Di/do) = 0.5, it follows from Table 8.7 that the fully
developed Nusselt number Nui = Nuii = 6.25 for outer tube insulated, refer Eq. (8.26a).

Thus the heat transfer coefficient is

hi ¼ Nuk
Dh

¼ 6:25� 0:654
12:5=1000

¼ 327 W/(m2K):

At the outlet,

q

L
¼ q0 ¼ hiðpdoÞðtso � toÞ

or

tso ¼ to þ q0

hiðpdoÞ ¼ 60þ 1000
327� p� 12:5=1000

¼ 137:9oC:
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Since tube surface temperature at the outlet tso > 100°C, local boiling at the tube surface
will occur if water is not pressurized, which will increase the local heat transfer coefficient
and hence reduce the wall temperature.

The length to hydraulic diameter ratio is 2.5/0.0125 = 200. Hydrodynamic development
length is (using tube equation)

Lhy
Dh

� 0:05Re ¼ 0:05� 1100 ¼ 55;

and the thermal entry length is

Lth
D

� 0:05Re Pr ¼ 0:05� 1100� 3 ¼ 165:

At the outlet, the flow is fully developed.

Example 8.14 Air at 25°C and a pressure of 1 atm flows through a parallel plate duct with
an average velocity of 0.3 m/s. The duct depth is 5 mm. For fully developed velocity and
temperature profiles, what is heat transfer coefficient?

(a) If both the plates are held at a constant temperature,
(b) If identical heat rates are imposed on the two surfaces of the duct.

Solution

The air properties at 25°C are:

q ¼ 1:1868 kg=m3; k ¼ 0:02608 W= m Kð Þand l ¼ 1:8363� 10�5 kg= m sð Þ:

The hydraulic diameter of the parallel plate duct is

Dh ¼ 2H ¼ 0:01m:

Flow Reynolds number,

Re ¼ qUDh

l
¼ 1:1868� 0:3� 0:01

1:8363� 10�5
¼ 194:

Flow is laminar. In the case of parallel plates, Nu = 7.541 when both surfaces are at the
same constant temperature, while it is 8.235 for identical heat rates on the two surfaces of the
duct.

(a) Heat transfer coefficient (both sides at uniform constant temperature),

h ¼ Nuk
D

¼ 7:541� 0:02608
0:01

¼ 19:67:
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(b) Heat transfer coefficient (identical heat rates on the two surfaces of the duct),

h ¼ Nuk
D

¼ 8:241� 0:02608
0:01

¼ 21:49:

Example 8.15 Air at 15°C and a pressure of 1 atm flows through a 200 mm long parallel
plate duct whose one side is insulated and the other side is maintained at a constant tem-
perature of 70°C. The duct depth is 5 mm. The pressure drop is recorded to be 1 N/m2.
Determine the outlet temperature of the air.

Solution

The air properties at 25°C (assumed mean bulk temperature) and 1 atm are:

q ¼ 1:1868 kg=m3; c ¼ 1005:7 J= kg Kð Þ; l ¼ 1:8363� 10�5 kg= m sð Þ and k
¼ 0:02608 W= m Kð Þ:

The hydraulic diameter of the parallel plate duct is

Dh ¼ 2H ¼ 0:01 m:

Flow Reynolds number,

Re ¼ qUmDh

l
¼ 1:1868� 0:01

1:8363� 10�5
� Um ¼ 646:3Um:

Assuming flow to be laminar, the friction factor is given by (Table 8.10)

f ¼ 24
Re

¼ 24
646:3Um

¼ 0:0371
Um

Pressure drop is given by

Dp ¼ 4fLqU2
m

2Dh

or

1 ¼ 4� 0:0371� 0:2� 1:1868� U2
m

Um � 2� 0:01

or

Um ¼ 0:57 m=s:
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Hence,

Re ¼ 646:3� 0:57 ¼ 368:

The flow is laminar. From Table 8.10, the Nusselt number for given boundary conditions
is 4.861.

The heat transfer coefficient is

h ¼ Nuk
Dh

¼ 4:861� 0:02608
0:01

¼ 12:68 W= m2 K
� �

:

For isothermal surface, the air outlet temperature is given by

tw � to
tw � ti

¼ exp � P

mc
Lh

� �

or

to ¼ tw � ðtw � tiÞ exp � P

mc
Lh

� �

The mass flow rate is

m ¼ qAcUm ¼ qðwaÞUm ¼ 1:1868� w� 0:005� 0:57 ¼ 0:00338w

where a is the depth and w (>> a) is width of the duct.
Substitution gives

to ¼ 70� ð70� 15Þ exp � w

0:00338w� 1005:7
� 0:2� 12:68

� �
¼ 43:9�C

where P = w.
Mean bulk temperature of air is (15 + 43.9)/2 = 29.45°C against assumed temperature of

25°C for the estimate of thermophysical properties. For greater accuracy, retrial may be done.

8.7.2 Turbulent Flow

Brighton and Jones (in Kays and Perkins 1973), from their data (0.0625 < r* < 0.562),
suggest that the friction factor in circular tube annuli is independent of the radius ratio r*. The
friction factors, as determined with water, were found by them to be 6−8% higher than the
generally accepted values of smooth circular tube for 4000 < Re < 17000. The same for air
flow were found to be about 1–10% higher than circular tube flow values.

Kays and Perkins (1973) recommend the following approximate relation, which gives the
friction factor in circular annuli about 10% higher than pipe flow values and having little
dependence on the radius ratio:

f ¼ 0:085Re�0:25:

for 6000\Re\300; 000:
ð8:28Þ
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However, Bhatti and Shah (1987) recommend the following correlation, which considers
the dependence of the friction factor on the radius ratio r* (= ri/ro),

f ¼ ð1þ 0:0925r�Þfc ð8:29Þ

where fc is the friction factor for a circular duct using hydraulic diameter of the annular duct.
They report that the predicted friction factors from Eq. (8.29) are within ± 5% of the
experimental results.

The smooth circular duct friction factor values in Eq. (8.29) may be calculated from the
following correlation (Bhatti and Shah 1987):

fc ¼ 0:00128þ 0:1143Re�0:311:

for 4000�Re� 107:
ð8:30Þ

Dalle Donne and Meerwald (1973) suggest the following relation for the fully developed
isothermal friction factor:

f ¼ 0:0014þ 0:125Re�0:32:

for 8000\Re\2� 105
ð8:31Þ

`
For fully developed flow in parallel plate duct, Beavers et al. (in Ebadian and Dong 1998)

obtained following friction factor result from very accurate experimental data:

f ¼ 0:1268Re�0:3:

for 5000\Re\1:2� 106
ð8:32Þ

Dean (in Ebadian and Dong 1998) developed the following equation based on compre-
hensive survey of the available data:

f ¼ 0:0868Re�0:25:

for 1:2� 104\Re\1:2� 106
ð8:33Þ

In the range of 5000 < Re < 1.2 � 104, Bhatti and Shah (in Ebadian and Dong 1998)
recommend Eq. (8.32); otherwise use of Eq. (8.33) is recommended to obtain the friction
factor for the fully developed turbulent flow in parallel plate duct using hydraulic diameter as
twice the spacing between two plates.

Hart and Lawther (in Kays and Perkins 1973) suggest that annular flow develops more
quickly than pipe flow. Olson and Sparrow’s data appear to show that 30 diameter is
sufficient for a close approach to fully developed flow (Kays and Perkins 1973). However,
Lee (1968) typically gives the thermal development length of only 20 diameters for annular
duct of r* = 0.67 at Re = 104 and the development length has been shown to increase with
the increase in the Reynolds number.

Kays and Leung (1963) presented results of their solution of turbulent flow energy
equation of fully developed constant heat rate condition over a wide range of annulus radius
ratio, Reynolds number and Prandtl numbers. The solutions are presented for one surface
heated and other insulated. Typical results for Pr = 0.7 are given in Table 8.9. For detailed
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results, refer Kays and Leung. However, Bhatti and Shah, and Sparrow and Lin (in Ebadian
and Dong 1998) concluded that the Nusselt number for parallel ducts can be determined
using the circular duct correlations with hydraulic diameter in Nusselt number and Reynolds
number as twice the spacing between the plates. Mills (1995) has extended the reasoning for
the same. In the turbulent flow, the viscous sublayer around the perimeter of the duct is very
thin, and the velocity and temperature are nearly uniform across the core. Since the viscous
sublayer is the major resistance to momentum and heat transfer, the precise shape of the core
fluid is not critical.

Recently, Gnielinski (2015) has suggested the following correlation:

Nu ¼ ðfann=2ÞðRe� 1000Þ Pr
1þ 12:7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðfann=2Þ
p ðPr2=3 �1Þ 1þ Dh

L

� �2=3
" #

FannK

for 0:1� Pr � 1000; Dh=Lð Þ� 1; and Re[ 4000

ð8:34Þ

where the hydraulic diameter Dh of the annulus is do–di.
The length of the annular tube is L, do is the inner diameter of the outer tube and di is the

outer diameter of the inner tube.
The friction factor in Eq. (8.34) depends on the diameter or radius ratio r*(= di/do).

Gnielinski suggests

4fann ¼ ð1:8 log10 Re� � 1:5Þ�2 ð8:35Þ

where

Re� ¼ Re
½1þðr�Þ2� ln r� þ ½1� ðr�Þ2�

½1� r��2 ln r� ð8:36Þ

A factor Fann allows for the different ways of heating or cooling the flow in the two
passages of the annulus. By a comparison of large volume of experimental data, the value has
been given by Gnielinski (2015) as

Fann ¼ 0:75ðr�Þ�0:17 ð8:37aÞ

Table 8.9 Fully developed constant heat rate turbulent flow Nusselt number (Pr = 0.7)

Re = 104 Re = 3�104 Re = 105 Re = 106

r* Nuii Nuoo Nuii Nuoo Nuii Nuoo Nuii Nuoo

0.1 48.5 29.8 98 66 235 167 1510 1100

0.2 38.6 29.4 79.8 64.3 196 165 1270 1070

0.5 30.9 28.3 66.0 62.0 166 158 1080 1040

0.8 28.5 28 62.3 61 157 156 1050 1020

Parallel plates duct

1.0 27.8 61.2 155 1030
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for the boundary condition of “hear transfer at the inner wall with the outer wall insulated”,
and

Fann ¼ 0:9� 0:15ðr�Þ0:6 ð8:37bÞ

for the boundary condition of “heat transfer at the outer wall with the inner wall insulated,”
but no experimental data have been found for heat transfer from both the walls in the annular
flow (Gnielinski 2015).

The variation of fluid properties with temperature is taken into account by a factor K. As
no special studies of annular ducts are known hence correction factors for circular tubes may
be adopted (Gnielinski 2015).

For gases, K is given as (Gnielinski 2015)

K ¼ Tb
Tw

� �n

ð8:38aÞ

where Tb is the bulk temperature of the gas and Tw is the wall temperature in kelvin. n = 0.45
in the temperature range of 0.5 < (Tb/Tw) < 1.0. For carbon dioxide and steam n = 0.15 in
the temperature range.

For liquids (Gnielinski 2015),

K ¼ Prb
Prw

� �0:11

ð8:38bÞ

where Prb is the Prandtl number at absolute bulk temperature and Prw is at the absolute wall
temperature. For hydrodynamically developing flow, hydrodynamically developed and
thermally developing flow, and simultaneously developing flow in parallel plate ducts, refer
Ebadian and Dong (1998).

8.8 Heat Transfer and Friction in Rectangular Duct

8.8.1 Laminar Flow

Friction Factor Correlation
The empirical equation suggested by Shah and London (in Ebadian and Dong 1998) is

fRe ¼ 24ð1� 1:3553a� þ 1:9467a�2 � 1:7012a�3 þ 0:9564a�4 � 0:2537a�5Þ ð8:39Þ

where a* is aspect ratio (ratio of duct height to width).

Heat Transfer Coefficient Correlations
The fully developed Nusselt numbers NuT for the case of uniform temperature at four walls
are approximated by the following equation (Shah and London in Ebadian and Dong 1998):

NuT ¼ 7:541ð1� 2:610a� þ 4:970a�2 � 5:119a�3 þ 2:702a�4 þ 0:548a�5Þ ð8:40Þ
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For rectangular ducts with a uniform heat flux at four walls constant along the length of
the duct, but uniform temperature around the periphery NuH can be calculated from the
following equation (Shah and London in Ebadian and Dong 1998):

NuH ¼ 8:235ð1� 2:0421a� þ 3:0853a�2 � 2:4765a�3 þ 1:0578a�4 � 0:1861a�5Þ ð8:41Þ

Some typical results for the friction factor and constant heat rate and surface temperature
Nusselt numbers are listed in Table 8.10 along with circular and parallel plate ducts for
comparison.

For Nusselt number with uniform temperature or heat rate at one or more walls, and for
the hydrodynamically developing flow, thermally developing flow and simultaneously flow,
refer Ebadian and Dong (1998).

8.8.2 Turbulent Flow

The entrance configuration (abrupt or smooth) exerts a marked influence on the value of
critical Reynolds number Rec for flow in smooth rectangular duct. Results of some experi-
mental measurements are presented in Bhatti and Shah (1987), which shows that Rec varies
from 3400 (a* = 0, parallel plate duct) to 4300 (a* = 1.0, square duct) with smooth entrance
while these values are 3100 and 2200, respectively, for the abrupt entrance.

A unique feature of the fully developed turbulent flow in rectangular ducts is the presence
of secondary flow (flow normal to the axis of the duct). Though the secondary flow is small
in magnitude (1% of the axial mean velocity), it exerts a significant effect on the turbulence

Table 8.10 Fully developed Nusselt number and friction factor for laminar flow in ducts of different cross-
sections

Cross-section shape
(L/Dh > 100)

Boundary conditionsa fRe = Cf Re/4

NuT NuH

3.657 4.354 16.0

α*= 2b/2a = 1 
α* = 0.5 
α* = 0.25 
α* = 0.125 

2b 

2a 

2.976 3.608 14.227

3.391 4.123 15.548

4.439 5.331 18.233

5.597 6.490 20.585

α*= 0 

7.541 8.235 24.0

α*= 0 
Insulated 

4.861 5.385 24.0

aNuT: Tw = constant irrespective of x, y, z
NuH: Heat rate qw = constant along the length of a tube, but uniform temperature around the periphery)
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fluid flow characteristics of these ducts and increases the friction factor by approximately
10% (Bhatti and Shah 1987).

For fluids with Prandtl number greater than 0.5, the resistance to heat transfer is basically
confined to the laminar sublayer and the temperature distribution over most of the turbulent
core region is relatively flat. Under these circumstances, the heat transfer from the surface is
reasonably independent of the duct shape if the surface temperature around the duct
periphery is uniform (Kays and Crawford 1980). Hence, the friction factor and Nusselt
number for the fully developed flow in rectangular ducts can be estimated from the circular
duct correlations. If laminar equivalent diameter Dl is used in the place of Dh, circular duct
correlations provide values within ± 5% of the experimental results (Bhatti and Shah 1987).
The laminar equivalent diameter Dl is defined (Bhatti and Shah 1987) as

Dl

Dh
¼ 2

3
þ 11

24
a�ð2� a�Þ ð8:42Þ

where

Dh ¼ 4A
P

¼ 4ab
ðaþ bÞ ð8:43Þ

and a� ¼ ð2b=2aÞ.
Bhatti and Shah (1987) have presented the following friction factor correlation for flow in

rectangular cross-section smooth duct (0 � a* � 1) in the range 5000 � Re � 107:

f ¼ ð1:0875� 0:1125a�Þfo ð8:44Þ

where

fo ¼ friction factor for the circular duct using Dh

¼ 0:0054þ 2:3� 10�8Re1:5 for 2300�Re� 3550

and ¼ 1:28� 10�3 þ 0:1143Re�0:311 for 3550Re� 107:

The prediction of Eq. (8.44) are at par with those determined by substituting Dh by Dl

(Bhatti and Shah 1987), i.e. an uncertainty of ± 5% in the predicted friction factors from the
above correlation may be considered.

For hydrodynamically developing, thermally developing and simultaneously developing
flows in rectangular ducts, refer Ebadian and Dong (1998) and Bhatti and Shah (1987).

With uniform heating at four walls of a rectangular duct, circular duct Nusselt number
correlations provide results with ± 9% accuracy for 0.5 � Pr � 10 and 104 � Re � 106

while for the duct with equal heating at two long walls, circular duct correlations provide
result with accuracy of ± 10% for 0.5 � Pr � 10 and 104 � Re � 105 (Bhatti and Shah
1987). In the case of heating at one long wall only (asymmetrical heating), the circular duct
correlations provide values which may be up to 20% higher than the actual experimental
values for 0.7 � Pr � 2.5 and 104 � Re � 106 and this is true in all probability for 0 �
a*� 1 (Bhatti and Shah 1987). This conclusion is in line with the results of the studies of
Sparrow et al. (1966) for Pr = 0.7. Asymmetric heating condition is encountered in solar air
heaters. The Nusselt number correlations appropriate for solar air heater ducts have been
presented in Chap. 16.
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8.9 Correlations for External Forced Flow Over a Flat Plate

8.9.1 Laminar Flow

Skin Friction Coefficient
The skin friction coefficient,

Cfx ¼ 0:6641ffiffiffiffiffiffiffiffi
Rex

p ð7:37Þ

The average value of the skin friction coefficient for the plate length L is

Cf ¼ 1:3282ffiffiffiffiffiffiffiffi
ReL

p ð7:38Þ

where ReL is based on the total length L of the plate in direction of flow.

Heat Transfer Coefficient Correlations
The local Nusselt number equation is

Nux ¼ 0:332 Pr 1=3ðRexÞ1=2
Rex\5� 105

0:6\ Pr\50

ð7:56bÞ

The average Nusselt number over the plate length L is

Nuav ¼ 0:664 Pr 1=3ðReLÞ1=2 ð7:57Þ

The Stanton number St ¼ h
cpqU

is used some times as an alternative for Nusselt number

when presenting heat transfer data. The above relations can be written in terms of the Stanton
number as

Stx Pr 2=3 ¼ 0:332ffiffiffiffiffiffiffiffi
Rex

p : ð7:58Þ

Using Eq. (7.37), we have

jH ¼ Stx Pr 2=3 ¼ Cfx

2
: ð7:59Þ

Equation (7.59) is known as Reynolds-Colburn analogy. Factor jH is known as Colburn
j factor for heat transfer.
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8.9.2 Turbulent Flow

Skin Friction Coefficient
Case A. Boundary Layer Fully Turbulent from the Leading Edge of the Plate:
The local value of the skin friction coefficient,

Cfx ¼ 0:0583

Re1=5x

ð7:81Þ

The average value of the skin friction coefficient,

Cf ¼ 0:0729

Re1=5L

ð7:82Þ

The above result has been found to be in a good agreement with the experimental results
in the range 5 � 105 < Re < 107.

Case B. The boundary layer is laminar up to a certain distance from the leading edge and
the transition, as discussed earlier, to turbulent flow takes place at x = xc corresponding to
critical Reynolds number Rec = 5 � 105.

Mixed average value of the skin friction coefficient, for Re < 107,

Cf ¼ 0:074

Re1=5L

� 1742
ReL

ð8:45Þ

Another relation suggested for 107 < Re < 109 is

Cf ¼ 0:455

log10 ReLð Þ2:58 �
A

ReL
ð7:85bÞ

where the value of A depends on the value of the critical Reynolds number at which the
transition to turbulent flow takes place. For Rec = 5 � 105, A = 1700.

Heat transfer coefficient correlations
The local value of the Nusselt number

Nux ¼ 0:0296Re4=5x Pr 1=3

for 5� 105\Re\107
ð7:116Þ

Average Nusselt number equation over the plate length L (turbulent flow from the leading
edge (x = 0)

Nu ¼ hL

k
¼ 0:037Re0:8L Pr1=3 ð7:117Þ

Mixed average Nusselt number over the entire laminar-turbulent boundary layer when the
boundary layer is laminar up to a certain distance from the leading edge and the transition at
x = xc corresponds to Rec = 5 � 105,
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Nu ¼ hL

k
¼ 0:037Re0:8L � 871

� �
Pr 1=3 ð7:118Þ

Example 8.16 Air at a temperature of 300°C flows with a velocity of 3 m/s over a flat
plate 0.5 m long. Estimate the cooling rate per unit width of the plate needed to maintain it at
a surface temperature of 20°C. The local film coefficient may be calculated from the fol-
lowing correlation.

Nux ¼ 0:332 Rexð Þ0:5 Prð Þ0:33 for Re� 5� 105

Nux ¼ 0:0296 Rexð Þ0:8 Prð Þ0:33for Re[ 5� 105

Solution

The mean film temperature is

tfm ¼ 300þ 20
2

¼ 160�C:

At 160°C, the thermo-physical properties of the air are:

q ¼ 0:817 kg=m3; k ¼ 3:59� 10�2 W=ðmKÞ; l ¼ 2:42� 10�5 kg=ðm sÞ and Pr ¼ 0:6848:

The flow Reynolds number at L = 0.5 m is

ReL ¼ qU1L

l
¼ 0:817� 3� 0:5

2:42� 10�5
¼ 50640:

Since the Reynolds number at the end of the plate is less than 5 � 105, the flow is laminar
throughout. The applicable Nusselt number correlation is

Nux ¼ 0:332 Rexð Þ0:5 Prð Þ0:33

From which,

hx ¼ k

x
� 0:332� qxU1

l

� �0:5

Prð Þ0:33

or

hx ¼ 3:59� 10�2

x
� 0:332� 0:817� x� 3

2:42� 10�5

� �0:5

0:6848ð Þ0:33¼ 3:348x�0:5
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Hence, the average convective heat transfer coefficient is

hav ¼ 1
L

ZL

0

hxdx

¼ 1
L

ZL

0

3:348� x�0:5dx

¼ 3:348
0:5

� x0:5

0:5

� 	0:5
0

¼ 9:47 W/(m2 K):

Heat flow rate is

q ¼ hADT

where

A heat transfer area = 0.5 � 1 = 0. 5 m2

DT tw – tair = 300–20 = 280°C.

This gives

q ¼ hADT ¼ 9:47� 0:5� 280 ¼ 1325:8 W:

Example 8.17 Air at atmospheric pressure and 15 m/s flows over a 4 mm � 4 mm chip
located 100 mm from leading edge on a flat electronic circuit board and removes 20 mW of
heat. Determine temperature of the chip surface if the free stream air temperature is 25°C.

If flow is turbulent throughout, determine temperature of the chip surface.

Solution

Thermophysical properties of air at film temperature tfm = 50°C (assumed) from Table A5
are:

q ¼ 1:0949 kg=m3; l ¼ 1:9512� 10�5 kg=ðm sÞ; k ¼ 0:02799 W=ðm KÞ and Pr ¼ 0:703:

Local flow Reynolds number,

Rex ¼ qU1x

l
¼ 1:0949� 15� 0:1

1:9512� 10�5
¼ 84171:

The flow is in the laminar regime. Hence, the local value of the Nusselt number is
given by

Nux ¼ 0:332Re1=2x Pr 1=3;
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which gives

hx ¼ k

x
Nux ¼ k

x
� 0:332Re1=2x Pr 1=3

¼ 0:02799
0:1

� 0:332� ð84171Þ1=2ð0:703Þ1=3

¼ 23:97W= m2 K
� �

:

Since the chip is very small, hav� hx and Newton’s equation q ¼ hxAchipðts � t1Þ gives

ts ¼ t1 þ q

hxAchip
¼ 25þ 20� 10�3

23:97� 4� 4� 10�6
¼ 77:15�C:

i.e., the chip surface temperature is 77.15°C. The film temperature tfm = (ts + t∞)/2 = 51.1°
C, which is nearly equal to the assumed film temperature hence retrial is not required.

If flow is turbulent,

hx ¼ k

x
Nux ¼ k

x
� 0:0296Re4=5x Pr 1=3

¼ 0:02799
0:1

� 0:0296� ð84171Þ4=5ð0:703Þ1=3

¼ 64:18W= m2 K
� �

:

Since the chip is very small, hav� hx and Newton’s equation q ¼ hxAchipðts � t1Þ gives

ts ¼ t1 þ q

hxAchip
¼ 25þ 20� 10�3

64:18� 4� 4� 10�6
¼ 44:48oC

i.e., the chip surface temperature is 44.48°C. The film temperature tfm = (ts + t∞)/
2 = 34.74C° against assumed temperature of 50°C. Retrial is required.

Thermophysical properties of air at film temperature tfm � 35 °C from Table A5 are:

q ¼ 1:15 kg=m3; l ¼ 1:8823� 10�5 kg=ðm sÞ; k ¼ 0:02684 W=ðm KÞ and Pr ¼ 0:7066:

Local flow Reynolds number,

Rex ¼ qU1x

l
¼ 1:15� 15� 0:1

1:8823� 10�5
¼ 91643:

Local heat transfer coefficient is

hx ¼ k

x
Nux ¼ k

x
� 0:0296Re4=5x Pr 1=3

¼ 0:02684
0:1

� 0:0296� ð91643Þ4=5ð0:7066Þ1=3

¼ 66:0W= m2 K
� �

:
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Since the chip is very small, hav� hx and Newton’s equation q ¼ hxAchipðts � t1Þ gives

ts ¼ t1 þ q

hxAchip
¼ 25þ 20� 10�3

66:0� 4� 4� 10�6
¼ 43:94�C:

Further retrial is not required.

Example 8.18 Air at atmospheric pressure and a temperature of 25°C is flowing parallel to
a 0.8 m long flat plate at a velocity of 10 m/s. If the plate is subjected to uniform heat flux of
1500 W/m2 and flow is turbulent throughout, determine (a) plate surface temperature at
x = L and (b) average temperature of the plate surface.

Solution

The convection heat transfer equation gives

q00 ¼ hx½tsðxÞ � t1�

or

tsðxÞ � t1 ¼ q00

hx

(a) Plate surface temperature at x = L is

tsðLÞ � t1 ¼ q00

hL

For turbulent flow,

Nux ¼ 0:0296ðRexÞ0:8 Pr 1=3

Hence,

hL ¼ k

L
� 0:0296

U1L

m

� �0:8

Pr 1=3

For air at 50°C and atmospheric pressure,

m ¼ 17:82� 10�6m2=s; k ¼ 0:02799 W=ðmKÞ and Pr ¼ 0:703:

This gives

hL ¼ 0:02799
0:8

� 0:0296� 10� 0:8
17:82� 10�6

� �0:8

�0:7031=3 ¼ 30:62 W= m2 K
� �

:
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and

tsðLÞ ¼ q00

hL
þ t1 ¼ 1500

30:62
þ 25 ¼ 74�C:

The mean film temperature tm = (74 + 25)/2 = 49.5°C, nearly equal to the assumed
temperature.

(b) Mean plate surface temperature

�ts � t1 ¼ 1
L

ZL

0

½tsðxÞ � t1�dx

¼ 1
L

ZL

0

q00

hx
dx

¼ q00

L

ZL
0

x

kNux
dx:

Substituting Nux ¼ 0:0296ðRexÞ0:8 Pr1=3 ¼ 0:0296ðU1x=mÞ0:8 Pr1=3, we have

�ts � t1 ¼ q00

L

ZL

o

x

k � 0:0296ðU1x=mÞ0:8 Pr1=3 dx

¼ q00

L
� 1

k � 0:0296ðU1=mÞ0:8 Pr1=3
ZL

o

x0:2dx

¼ q00

L
� 1

k � 0:0296ðU1=mÞ0:8 Pr1=3 �
L1:2

1:2

¼ 1500
0:8

� 1

0:02799� 0:0296� ð10=17:82� 10�6Þ0:8 � 0:7031=3
� 0:81:2

1:2

¼ 40:83�C:

Mean plate surface temperature

�ts ¼ 40:83þ t1 ¼ 40:83þ 25 ¼ 65:83�C:

8.10 Forced Convection Laminar and Turbulent Flows Around
Submerged Bodies

We shall discuss in this section the convection under forced flow condition from a solid body
immersed in a stream of fluid. Though the submerged bodies may be of various shapes, we
shall consider the flow around cylinder and sphere in cross flow.
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8.10.1 Cylinder in Cross Flow

A cylinder in cross flow has been studied extensively from fluid mechanics point of view.
Here a brief account of the same is being presented. Readers can refer Schlichting (1960) for
the details. Figure 8.9 shows a cylinder in cross flow. Starting from the stagnation point
S (/ = 0o), a boundary layer builds up on the front portion of the surface of the cylinder and
its thickness increases with angle /. If the body is heated, thermal boundary layers also
develops in a similar way.

For an ideal or non-viscous flow (known as potential flow) the pressure decreases and the
velocity increases from the stagnation point and reaches its maximum at / = 90o. On the
back side of the cylinder, the pressure increases again and at / = 180o attains the same value
as the forward stagnation point. Figure for this case has been included here. In this case the
separation of the flow from the cylinder surface does not take place and the drag (the force
resisting the flow) on the cylinder is zero.

In a fluid with friction, the flow separates on both sides of the surface of the cylinder at
about 80o−100o and on the back side of the cylinder a dead fluid mass is filled with vortices
on the downstream side. The fluid particles outside the boundary layer are able to move
against the pressure increase on the back side of the cylinder by changing their kinetic energy
into pressure energy. But the fluid particles in the boundary layer do not possess so much
kinetic energy. They can therefore move only a small distance into the region of increasing
pressure before their kinetic energy is consumed. Then they reverse their flow direction. In
this way the flow separates from the surface. At the separation point, the velocity gradient at
the surface becomes zero [(∂u/∂y)y = 0 = 0].

Because of this separation, the pressure distribution along the back side of the cylinder is
changed also. The extent of the penetration in the region of increasing pressure depends on
the kinetic energy of the fluid particles, which is greater in the case of turbulent flow
boundary layer than in laminar one. As a consequence, the turbulent boundary layer (at Re
greater than critical Reynolds number Rec) separates at about / = 110o and the laminar at
/ = 82o. The pressure on the rear side of the cylinder is lower than on the front side. This
causes a resisting force in the flow direction, which is known as form resistance. To it is

U∞,
T∞

Rec = 2 × 105

Re > Rec

Re < Rec

Wake
S

Fig. 8.9 Cylinder in cross flow
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added the frictional resistance caused by the skin friction or viscous shear acting tangential
on the cylinder surface. Both parts are included in a dimensionless quantity known as the
drag coefficient,3 which is defined as

CD ¼ FD=A
1
2 qU

21
ð8:46Þ

where

FD drag
A frontal area (area normal to the flow) = LD for a cylinder

It is to note that the total drag on a body is the sum of two components: the pressure or
form drag (drag force due to pressure) and the skin friction or viscous drag (drag force due to
viscous stresses).

The drag coefficient CD is plotted in Fig. 8.10 against the Reynolds number where the
Reynolds number is based on the free stream velocity and diameter of the cylinder. In
general, the drag depends on the properties of the fluid, its free stream velocity and the shape
of the body. At very low values of the Reynolds number (� 1), no separation occurs and the
drag is caused only by the shear stresses (viscous friction). From Re > 1, a dead zone of fluid
builds up behind the cylinder, which increases with the Reynolds number. With further
increase in the Reynolds number from 100, vortices shed alternatively from upper and lower
sides from the cylinder surface (known as von Karman vortex street). These vortices are
carried away by the flow in a regular pattern. At Re = 4 � 105, a sudden drop in the drag
coefficient is observed due to the fact that the boundary layer becomes turbulent before it
separates. At Re > 4 � 105, no vortex wake forms but only irregular vortices exist in the
dead fluid.

10-1 1 10 102 103 104 105 106 

0.1

1

10

100
Sphere

CylinderCD 

ReD

Fig. 8.10 Drag coefficient CD versus Reynolds number for cylinder and sphere in cross flow. Schlichting H
and Gersten K, Boundary layer theory, 8th Edition, Chap. 1, Figs. 1.12 and 1.19, Copyright 2000. With
permission of Springer

3If the fluid is flowing in the horizontal direction, the sum of the horizontal components of these forces
constitutes the drag, and the sum of their vertical components constitutes the lift. In the study of heat transfer,
we are interested only in the drag, which is the resistance to the flow to be overcome in pumping of the fluid.
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At small velocities, the drag is mostly due to the frictional resistance. At Re = 10, friction
and form drag are of the same order. For Re > 1000 the form resistance predominates. Each
of these flow regimes influences the heat transfer coefficient in a distinct way.

The heat transfer on the back side occurs in the wake. At low Re, the heat transfer
coefficient on the front side is much greater than that on the back. With the increase in the
Reynolds number, the heat flow from the back side increases at a greater rate than on the
front side and at Re = 5 � 104, it is as high as on the front side. The reason for this
behaviour is that the vortices, while separating alternately from the upper and lower sides of
the cylinder sweep the surface of the rear half of the cylinder with an intensity that increases
with the Reynolds number. When the Reynolds number is > 4 � 105, the boundary layer
becomes turbulent and the distribution of the heat transfer coefficient along the surface
changes. The heat transfer coefficient is reported to be very high at an angle of / = 100o,
which indicates the transition in the flow within the boundary layer.

Hilpert (1933) for air, and Knudsen and Katz (1958) for other fluids extended the fol-
lowing relation for heat transfer from cylinders:

Nu ¼ hD

k
¼ CRen Pr1=3 ð8:47Þ

where Re = U∞D/t.
The values of the constant C and exponent n are given in Table 8.11. All the fluid

properties are to be taken at film temperature.
Douglas and Churchill (1956) presented the following correlation for heat transfer from a

single cylinder for air:

Nu ¼ 0:46Re0:5 þ 0:00128Re

for 500\Re\106
ð8:48aÞ

For liquid, they recommended the following equation:

Nu ¼ ð0:506Re0:5 þ 0:000141ReÞPr1=3 ð8:48bÞ

For Re < 500, Hsu (1963) suggested the following equation for gases.

Nu ¼ 0:43þ 0:48Re1=2 ð8:49Þ

Table 8.11 Constant C and n in Eq. (8.47)a

Re C n

0.4−4 0.989 0.330

4−40 0.911 0.385

40−4000 0.683 0.466

4000−40000 0.193 0.618

40000−400000 0.027 0.805
aHolman JP, adapted for SI units by White PRS, Heat Transfer, McGraw-Hill Book Co, New York,
Copyright 1992. The material is reproduced with permission of McGraw-Hill Education (Asia)
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where the fluid properties are to be taken at the film temperature and Re is defined as in
Eq. (8.47).

Isachenko et al. (1977) presented following correlations based on the extensive studies on
circumferential mean rate of heat transfer from the surface of a cylinder for flow of air, water
and transformer oil by Zukauskas and co-researchers (1959–1972):

Nu ¼ 0:5Re0:5 Pr0:38ðPr = PrwÞ0:25 for 5\Re\103 ð8:50aÞ
Nu ¼ 0:25Re0:6 Pr0:38ðPr = PrwÞ0:25 for 103\Re\2� 105 ð8:50bÞ

Nu ¼ 0:023Re0:8 Pr0:37ðPr = PrwÞ0:25 for 2� 105\Re\2� 106 ð8:50cÞ

where the fluid properties are to be taken at the film temperature. If the flow approaching the
cylinder is artificially turbulized, the heat transfer coefficient will be larger than given by
above correlation.

However, the correlations presented in Mikheyev (1964) based on the studies of
Zukauskas are:

Nu ¼ 0:59Re0:47 Pr0:38ðPr = PrwÞ0:25 for 10\Re\103 ð8:51aÞ
Nu ¼ 0:21Re0:62 Pr0:38ðPr = PrwÞ0:25 for 103\Re\2� 105 ð8:51bÞ

Churchill and Bernstein (1977) have presented the following correlation for isothermal
cylinder based on the data of various researchers:

Nu ¼ 0:3þ 0:62Re1=2
D Pr1=3

1þ 0:4
Prð Þ2=3

� �1=4 1þ ReD
282000

� �5=8
� 	4=5

for ReD Pr [ 0:2 ð8:52Þ

All properties in the equation are to be evaluated at the film temperature tfm. For the
Reynolds number range of 7 � 104−4 � 105, the equation predicts Nusselt number values
that may be significantly lower than those from the direct measurement. The equation can be
used for uniform heat flux condition if the perimeter-average of the temperature difference
between the surface and the free stream is used.

8.10.2 Flow Around a Sphere

The flow regimes around a sphere are similar to those encountered in the case of a cylinder in
cross flow and the heat transfer coefficient is governed by these regimes. Starting from
/ = 0o, a boundary layer develops on the front portion of the surface of the sphere. At very
low Reynolds number (� 1), a laminar flow exists around the sphere and the flow is nearly
symmetric. At large Reynolds numbers, the boundary layer separates from the sides of the
sphere creating a stagnant region filled with vortices in the back. On the sides of the sphere
the boundary layer may become turbulent at large Reynolds numbers. This influences the
position of the separation.

The drag coefficient for a sphere versus the Reynolds number is shown in Fig. 8.10. The
curve can be divided in four regions. In the first region (Re � 1), the Stoke’s law is
applicable and the drag is
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FD ¼ 3pDlU1 ð8:53Þ

and

CD ¼ FD

½ðp=4ÞD2� � 1
2 qU

21
ð8:54Þ

In the second region (Re = 1–1000), the boundary layer separation begins. The coefficient
of drag continues to decrease in this region. In the third region (Re = 103 –2 � 105), the drag
coefficient almost remains constant. The boundary layer is entirely laminar before separation.
The fourth region is characterized by sudden drop in CD to almost half at Re = 2.5 � 105.
This is due to the change in the flow pattern in the boundary layer from laminar to turbulent
just before the separation point. The Reynolds number where the drop in CD occurs is termed
as the critical Reynolds number. Actually the transition occurs within a range of Re = 105 –
106 because it also depends on the free stream turbulence. After the transition, the coefficient
of drag increases slightly.

Whitaker (1972) proposed the following correlation for the average Nusselt number
between an isothermal spherical surface at Tw and free stream fluid (U∞, T∞):

Nu ¼ 2þð0:4Re0:5D þ 0:06Re2=3D Þ Pr0:4ðl1=lwÞ0:25
for 3:5\ReD\7:6� 104;

0:71\ Pr\380;

and 1\l1=lw\3:2

ð8:55Þ

where all properties except lw are to be evaluated at the free stream temperature t∞. The
viscosity lw refers to the wall temperature tw. No-flow limit for this equation is Nu = 2,
which agrees with pure radial conduction between sphere surface and the motionless infinite
medium that surrounds it (see Example 8.13).

Moving liquid drops, such as atomized fuel drops in internal combustion engines, liquid
drops in spray drying chambers, or water droplets falling in the cooling tower are also
examples of spheres in motion in a fluid experiencing convection in currents. In such cases,
of course, mass transfer also takes place simultaneously with the heat transfer.

For the falling drops, Ranz and Marshall (1952) proposed the following equation for the
convective heat transfer for a system of water drops:

Nu ¼ 2þ 0:6Re0:5 Pr1=3½25ðD=xÞ0:7� ð8:56Þ

where x is the distance measured from start of fall of the droplet. Properties are to be
evaluated at the free stream temperature. The free fall velocity is given by

U2
1 ¼ 2gx ð8:57Þ

When x is unknown, average value during the fall can be estimated by omitting the
bracketed factor in Eq. (8.56), which accounts for the droplet oscillation.
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8.10.3 Flow Across Tube Banks

The flow across tube banks, the tube array or bundle is frequently encountered in heat
exchangers. The arrangements of the tubes frequently used are shown in Fig. 8.11. The
arrangement is characterized by the relative longitudinal and transverse pitches, p/D and
pt/D of two consecutive tubes, respectively.

For both the arrangements, the flow across the first transverse row, row 1 in the figure, of
the tubes is practically the same as that for a single tube. The nature of the flow across the
tubes of remaining rows depends on the way the tubes are arranged. However, in most
applications, the flow is turbulent after a few rows.

In the case of in-line arrangement, all the tubes in the second and subsequent rows are in
the vortex region of the upstream row. Thus, a dead zone with relatively weak circulation of
flow is formed in the spaces between the tubes because the fluid flows mainly through the
longitudinal passages between the tubes. The points of maximum heat transfer coefficient on
the tube circumference are located at the spots where the impact of the main stream occurs.
The front part of the tubes is not directly exposed to the flow; therefore the heat transfer
coefficient is low here.

In the staggered arrangement of the tubes, the flow past the tubes deep inside the array
differs little from the nature of flow across the first row of tubes. The maximum intensity of
the heat flux is at the front portion of the tubes in all rows.

In general, the flow turbulence increases as the fluid passes through a few initial rows of
the tubes. After a sufficient number of rows, the flow assumes a stable character.

a Inline tubes 

b Staggered tubes 

p = pitch 
pt = transverse pitch 
D = outer diameter of tubes 

U∞

T∞1

pt 

T∞2

U∞

T∞1

 p 

pt 

D

Row 1 

T∞2

Umax

Fig. 8.11 Flow across tube banks
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For the selection of the arrangement of tubes in a bank, the pressure loss (the resistance to
the flow) and the rate of clogging is also considered.

Zukauskas (1987) reviewed the works published on cross-flow through tube bundles and
he recommends the following correlations for the average Nusselt number for number of
rows n 	 16.

In-line Tube Bundles

Nu ¼ 0:9Re0:4D Pr0:36ðPr = PrwÞ0:25 for 1�Re� 100 ð8:58aÞ

Nu ¼ 0:52Re0:5D Pr0:36ðPr = PrwÞ0:25 for 100\Re� 1000 ð8:58bÞ

Nu ¼ 0:27Re0:63D Pr0:36ðPr = PrwÞ0:25 for 103\Re� 2� 105 ð8:58cÞ

Nu ¼ 0:033Re0:8D Pr0:4ðPr = PrwÞ0:25 for 2� 105\Re� 2� 106 ð8:58dÞ

Staggered Arrangement

Nu ¼ 1:04Re0:4D Pr0:36ðPr = PrwÞ0:25 for 1�Re� 500 ð8:59aÞ

Nu ¼ 0:71Re0:5D Pr0:36ðPr = PrwÞ0:25 for 500\Re� 103 ð8:59bÞ

Nu ¼ 0:35Re0:6D Pr0:36ðPr = PrwÞ0:25ðpt=pÞ0:2 for 103\Re� 2� 105 ð8:59cÞ

Nu ¼ 0:031Re0:8D Pr0:4ðPr = PrwÞ0:25ðpt=pÞ0:2 for 2� 105\Re� 2� 106 ð8:59dÞ

In Eqs. (8.58a), (8.58b), (8.58c), (8.58d) and (8.59a), (8.59b), (8.59c), (8.59d), the
thermo-physical properties except Prw are evaluated at the mean bulk temperature tm
[= (t∞1 + t∞2)/2] of the fluid flowing around the tubes in the bundle.

The Reynolds number is based on the average velocity of the fluid through the narrowest
cross-section of the flow area:

ReD ¼ qUmaxD

l
ð8:60Þ

where Umax = U∞pt/(pt – D), refer Fig. 8.11.
The factor (pt/p)

0.2 takes account of the effect of the change in the longitudinal and
transverse pitches. However, this effect is not so evident in the case of the in-line arrange-
ment and in staggered arrangement when Re < 103.

In general, with the increase in the number of rows, the turbulence and hence the heat
transfer coefficient increases. However, this effect of the number of rows is negligible for
n > 16. For n < 16, the heat transfer coefficient is lower due to the lower level of turbulence.
For n < 16, the Nusselt number values from Eqs. (8.58a), (8.58b), (8.58c), (8.58d) and
(8.59a), (8.59b), (8.59c), (8.59d) must be multiplied by a factor Cn (Fig. 8.12), which is a
correction factor to take account of the effect of the number of rows n less than 16.

The uncertainty in the predicted values from the above correlations is reported to be
within ± 15%.

Example 8.19 Compare the predicted values of the Nusselt number from different corre-
lations for flow of fluid (Pr = 1) across a cylinder (L >> D) at Re = 1 � 102, 1 � 103,
1 � 104 and 2 � 105. Neglect the viscosity correction factor (Prf/Prw).
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Solution

The results are presented in Table 8.12.

Example 8.20 An electrical heater is embedded in a long 30 mm diameter cylinder. Either
water at a velocity of 1 m/s or air at atmospheric pressure and a velocity of 10 m/s flowing
across the cylinder is to be used to maintain the cylinder surface temperature at 75°C. Both
fluids are available at 25°C. Calculate the power of the heater required. Comment on the
result.

Solution

Power required per unit length of the cylinder,

q

L
¼ hðpdÞðts � t1Þ

Cn

Number of rows, n

In-line

Staggered 100 < Re < 1000

Staggered Re > 1000

Fig. 8.12 Correction factor Cn as function of number of rows n

Table 8.12 Example 8.19

Re Hilpert Douglas and
Churchill

Mikheyev Isachenko et al. Churchill and
Bernstein

1�102 5.84 4.73 5.14 5.0 5.89

1�103 17.08 15.83 15.17 15.21 15.81 15.77 18.3

1�104 57.22 58.8 63.42 62.8 61.37

2�105 499.7 461.7 406.3 378.9 399.6
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For a cylinder in crossflow,

h ¼ k

d
Nu ¼ k

d
CRen Pr1=3 ð8:47Þ

Water as coolant
Thermophysical properties of water at film temperature tfm [= (75 + 25)/2 = 50°C] from
Table A4 are:

q ¼ 988:1 kg=m3; l ¼ 544� 10�6 kg=ðm sÞ; k ¼ 0:644 W=ðm KÞ and Pr ¼ 3:55:

Flow Reynolds number,

Re ¼ qUd
l

¼ 988:1� 1:0� 0:03
544� 10�6

¼ 54491:

From Table 8.11, C = 0.027 and n = 0.805. Hence, heat transfer coefficient,

h ¼ k

d
CRen Pr1=3 ¼ 0:644

0:03
� 0:027� 544910:805 � 3:551=3

¼ 5745W= m2 K
� �

;

and power required per unit length of the cylinder,

q

L
¼ hðpdÞðTs � T1Þ ¼ 5745� ðp� 0:03Þ � ð75� 25Þ ¼ 27073W=m:

Air as coolant
Thermophysical properties of air at film temperature tfm [= (75 + 25)/2 = 50°C] from
Table A5 are:

q ¼ 1:0949 kg=m3; l ¼ 1:9512� 10�5 kg=ðm sÞ; k ¼ 0:02799 W=ðm KÞ and Pr ¼ 0:703:

Flow Reynolds number,

Re ¼ qUd
l

¼ 1:0949� 10� 0:03
1:9512� 10�5

¼ 16834:

From Table 8.11, C = 0.193 and n = 0.618. Hence, heat transfer coefficient,

h ¼ k

d
CRen Pr1=3 ¼ 0:02799

0:03
� 0:193� 168340:618 � 0:7031=3 ¼ 65:5W= m2 K

� �
:
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and power required per unit length of the cylinder,

q

L
¼ hðpdÞðts � t1Þ ¼ 65:5� ðp� 0:03Þ � ð75� 25Þ ¼ 308:7 W=m:

Note that despite 10 times velocity of air, hwater = 87.7 hair. Thus water is much more
effective heat transfer fluid than air.

Note: In general, Nu = C RemPrn gives

h ¼ k

L
CRemPrn ¼ C

k

L

UL

m

� �m

Prn ¼ C
Um

L1�m

k Prn

mm

� �
/ k Prn

mm
;

i.e., for given fluid velocity U and characteristic dimension L, the heat transfer coefficient is
high for fluids of large k and Pr, and small m.

Example 8.21 A long cylindrical fin [k = 40 W/(m K)] of 10 mm diameter is installed on a
surface (30 mm � 30 mm), refer Fig. 8.13. The surface temperature (fin base temperature)
is 100°C. If air at 25°C and 5 m/s flows across the fin, determine the heat transfer rate from
the fin and the surface.

Solution

Thermophysical properties of air at film temperature (100 + 25)/2 = 62.5°C from Table A5
are:

q ¼ 1:05 kg=m3; l ¼ 2:0085� 10�5 kg=ðm sÞ; k ¼ 0:02895 W=ðm KÞ and Pr ¼ 0:7:

(a) Heat transfer rate from the fin

Reynolds number,

ReD ¼ qU1D

l
¼ 1:05� 5� 0:01

2:0085� 10�5
¼ 2614:

Nusselt number relation is

Nu ¼ CRenD Pr1=3

U∞ = 5 m/s
t∞ = 25oC 

10 
Plate 
30 SQ 

tb = 100oC 

Fig. 8.13 Example 8.21
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where C = 0.683 and n = 0.466 for Re = 2614 from Table 8.11. This gives

h ¼ k

D
Nu ¼ k

D
� 0:683Re0:466D Pr1=3

¼ 0:02895
0:01

� 0:683� ð2614Þ0:466ð0:7Þ1=3

¼ 68:7 W= m2 K
� �

:

Heat rejection from the fin is given by

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ðtb � t1Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðpDÞkðp=4ÞD2

p
ðtb � t1Þ

Substitution of values of various terms gives

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
68:7� p� 0:01� 40� ðp=4Þ � 0:012

p
� ð100� 25Þ

¼ 6:18 W:

(b) Heat transfer rate from surface
Flow is parallel to the surface.

Flow Reynolds number,

ReL ¼ qU1L

l
¼ 1:05� 5� 0:03

2:0085� 10�5
¼ 7842:

The flow is laminar (assuming no appreciable effect of the fin on the flow structure).
Relevant correlation of average Nusselt number is

Nu ¼ 0:664Re0:5L Pr1=3

This gives

hav ¼ k

D
Nu ¼ k

D
� 0:664Re0:5L Pr1=3

¼ 0:02895
0:03

� 0:664� ð7842Þ0:5ð0:7Þ1=3

¼ 50:4W= m2 K
� �

:

Heat rejection from the surface is

qs ¼ havAsðts � t1Þ ¼ hav½W �W � ðp=4ÞD2�ðts � t1Þ
¼ 50:4� ½0:03� 0:03� ðp=4Þ � 0:012� � ð100� 25Þ
¼ 3:11 W:
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Total heat transfer rate from surface and fin,

q ¼ 6:18þ 3:11 ¼ 9:29W:

Heat transfer rate without fin is

qs ¼ havAsðts � t1Þ ¼ havðW �WÞðts � t1Þ
¼ 50:4� ð0:03� 0:03Þ � ð100� 25Þ ¼ 3:4 W:

Example 8.22 50 W/m of heat is to be dissipated from a 1 mm diameter electric wire using
air flowing across the wire at atmospheric pressure and 20°C so as to maintain surface
temperature of the wire below 80°C. Determine velocity to accomplish the task. Neglect
radiation heat exchange.

Solution

For air at film temperature (80 + 20)/2 = 50°C and atmospheric pressure,

m ¼ l=q ¼ 17:82� 10�6m2=s; k ¼ 0:02799 W=ðm KÞ and Pr ¼ 0:703:

From convective heat transfer equation,

q=L ¼ hpDðts � t1Þ

where the heat transfer coefficient from Eq. (8.47) is

h ¼ k

D
Nu ¼ k

D
CRenD Pr1=3 ¼ k

D
C

U1D

m

� �n

Pr1=3

Assuming ReD lies in the range 40–4000, Table 8.11 gives C = 0.683 and n = 0.466.
Substitution gives

h ¼ 0:683
k

D

U1D

m

� �0:466

Pr1=3

and

q=L ¼ 0:683
k

D

U1D

m

� �0:466

Pr1=3
" #

pDðts � t1Þ

¼ 0:683k
U1D

m

� �0:466

Pr1=3
" #

pðts � t1Þ
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Substitution of the values of various parameters gives

50 ¼ 0:683� 0:02799� U1 � 0:001
17:82� 10�6

� �0:466

�0:7031=3
" #

� p� ð80� 20Þ:

Simplification gives U∞ = 6.48 m/s.
Reynolds number for this value of U∞ is

ReD ¼ U1D

m
¼ 6:48� 0:001

17:82� 10�6
¼ 364:

ReD lies in the range 40−4000. Hence, the assumption of the Re range was correct.

Example 8.23 A long 40 mm diameter 18–8 steel rod, initially at a uniform temperature of
ti = 30°C, is suddenly exposed to cross-flow of air at t∞ = 300°C and U∞ = 50 m/s. Find
time for the surface of the rod to reach 170°C.

Solution

For 18–8 steel, q = 7820 kg/m3, c = 460 J/(kg K) and k = 21 W/(m K).
For air at film temperature [(30 +170)/2 + 300]/2 = 200°C,

q ¼ 0:7474 kg=m3; l ¼ 2:57� 10�5 kg=ðm sÞ; k ¼ 0:03859 W=ðm KÞ and Pr ¼ 0:681:

Biot number,

Bi ¼ hD=4
k

¼ h� 0:04=4
21

ðiÞ

Reynolds number,

ReD ¼ qU1D

l
¼ 0:7474� 50� 0:04

2:57� 10�5
¼ 58163:

The heat transfer coefficient in Eq. (i) can be calculated from Eq. (8.47)

h ¼ k

D
Nu ¼ k

D
CRen Pr1=3

where C = 0.027 and n = 0.805 for Re = 40000 to 400000 from Table 8.11.
Substitution gives

h ¼ 0:03859
0:04

� 0:027� 581630:805 � 0:6811=3 ¼ 156:9 W= m2 K
� �

:
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This gives

Bi ¼ 156:9� 0:04=4
21

¼ 0:0747\0:1:

Lumped capacity analysis is applicable. For this condition,

t � t1
ti � t1

¼ expð�BiFo)

where

Fo ¼ as
L2

¼ k

qc
s
L2

¼ 21

7820� 460� ð0:01Þ2 s ¼ 0:0584s

(for a cylinder, characteristic length L = D/4 = 0.04/4 = 0.01 m)
This gives

170� 300
30� 300

¼ expð�0:0747� 0:0584sÞ

or

s ¼ 167:5 s:

Example 8.24 A thin walled steel pipe, 500 mm outside diameter, carries wet steam at 160°
C. Pipe is insulated from outside with 50 mm thick insulation [ki = 0.04 W/(m K)]. If air at
5 m/s and 20°C flows across the pipe, determine the heat loss per m length of the pipe.

Solution

For the insulated pipe, the heat loss is given by

q

L
¼ ts � t1

1
2pki

ln D2
D1

þ 1
pD2h

ðiÞ

per m length of the pipe assuming pipe wall surface temperature is equal to the wet steam
temperature because the condensing steam heat transfer coefficient is very high.

Heat transfer coefficient at the outer surface can be determined as under.
For air at film temperature of 25°C (assumed),

q ¼ 1:1868 kg=m3; l ¼ 1:8363� 10�5 kg=ðmsÞ; k ¼ 0:02608 W=ðm KÞ and Pr ¼ 0:709:

Reynolds number,

ReD ¼ qU1D

l
¼ 1:1868� 5� 0:6

1:8363� 10�5
¼ 1:94� 105:
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ReD lies in the range 40000−400000 for which C = 0.027 and n = 0.805 in Hilpert
correlation. Hence, the heat transfer coefficient is

h ¼ k

D
Nu ¼ k

D
� 0:027Re0:805 Pr1=3

¼ 0:02608
0:6

� 0:027� ð1:94� 105Þ0:805 � 0:7091=3

¼ 18:9W= m2 K
� �

:

Equation (i) gives

q

L
¼ 160� 20

1
2p�0:04 ln

0:6
0:5 þ 1

p�0:6�18:9

¼ 185:8W=m:

Insulation surface temperature,

to ¼ q=L

p� D2 � h
þ t1

¼ 185:8
p� 0:6� 18:9

þ 20 ¼ 25:2�C:

Film temperature is (20 + 25.2)/2 = 22.6°C, which is nearly equal to the assumed film
temperature of 25°C.

Example 8.25 Show that for pure radial heat conduction between surface of a sphere and
motionless infinite fluid medium surrounding the sphere, the Nusselt number Nu = 2.

Solution

For an isothermal sphere of radius r in infinite medium, the shape factor from Table 5.1 is

S ¼ 4pR

and

q ¼ kSðts � t1Þ ¼ k 4pRð Þðts � t1Þ ðiÞ

From the heat transfer consideration,

q ¼ hAðts � t1Þ ¼ h 4pR2
� �ðts � t1Þ ðiiÞ

Equating Eqs. (i) and (ii), we get

h 4pR2
� �ðts � t1Þ ¼ k 4pRð Þðts � t1Þ

8.10 Forced Convection Laminar and Turbulent Flows Around Submerged Bodies 635

www.konkur.in

Telegram: @uni_k

http://dx.doi.org/10.1007/978-981-15-3988-6_5
https://t.me/uni_k


or

hR

k
¼ 1

or

hD

k
¼ Nu ¼ 2

Example 8.26 A 60 W bulb (ts = 135°C,) is situated in an air stream flowing at 0.5 m/s.
Determine the heat loss from the bulb if air temperature is 15°C. The bulb can be approx-
imated to be a sphere of 50 mm diameter.

Solution

At t∞ = 15°C, air properties are

q1 ¼ 1:2323 kg=m3; k1 ¼ 0:0253 W=ðm KÞ; l1 ¼ 1:787� 10�5 Ns=m2 and Pr1
¼ 0:7114:

At ts = 135°C, lw = 2.317 � 10−5 N s/m2.
The Reynolds number,

Re ¼ qU1D

l1
¼ 1:2323� 0:5� 50� 10�3

1:787� 10�5
¼ 1724:

Correlation for the average Nusselt number between an isothermal spherical surface at Tw
and free stream fluid (U∞, t∞):

Nu ¼ 2þð0:4Re0:5D þ 0:06Re2=3D Þ Pr0:4ðl1=lwÞ0:25 ð8:55Þ

Substitution gives,

Nu ¼ 2þ ½0:4ð1724Þ0:5 þ 0:06ð1724Þ2=3�ð0:7114Þ0:4ð1:787=2:317Þ0:25 ¼ 22:64:

Heat transfer coefficient,

h ¼ Nu
k

D
¼ 22:64� 0:0253

50� 10�3
¼ 11:46 W/(m2K):

The heat transfer rate,

q ¼ hAðts � t1Þ
¼ 11:46� 4� p� 0:0252 � ð135� 15Þ ¼ 10:8 W:

Comments: Heat will also be rejected by free convection and radiation.
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Example 8.27 A 10 mm diameter metal sphere [q = 8500 kg/m3, c = 300 J/(kg K),
k = 60 W/(m K)], initially at 500°C, is exposed to 25°C air stream flowing at 5 m/s.
Determine time for the sphere to cool to 100°C if radiation is neglected.

Solution

Assuming lumped-heat-capacity analysis is applicable. From Eq. (6.2),

ln
t � t1
ti � t1

� �
¼ � hAs

cqV

� �
s;

which gives cooling time,

s ¼ cqV
hAs

� �
ln

ti � t1
t � t1

� �

For sphere, V/As = D/6. Hence,

s ¼ cqD
6h

� �
ln

ti � t1
t � t1

� �
ðiÞ

The heat transfer coefficient can be estimated from Eq. (8.55):

Nu ¼ 2þð0:4Re0:5D þ 0:06Re2=3D Þ Pr0:4ðl1=lwÞ0:25

where ReD ¼ qU1D
l .

For air at 25°C,

q ¼ 1:1868 kg=m3; l ¼ 1:8363� 10�5 kg=ðm sÞ; k ¼ 0:02608 W=ðm KÞ and Pr ¼ 0:709:

and at 500°C, lw = 3.564 � 10−5 kg/(m s). This gives

ReD ¼ qU1D

l
¼ 1:1868� 5� 0:01

1:8363� 10�5
¼ 3231

and

Nu ¼ 2þð0:4� 32310:5 þ 0:06� 32312=3Þ0:7090:4ð1:8363=3:564Þ0:25 ¼ 28:5:

Hence,

h ¼ k

D
Nu ¼ 0:02608

0:01
� 28:5 ¼ 74:3

and from Eq. (i),
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s ¼ cqD
6h

� �
ln

ti � t1
t � t1

� �

¼ 300� 8500� 0:01
6� 74:3

� �
� ln

500� 25
100� 25

� �
¼ 105:6 s:

Biot number,

Bi ¼ hðD=6Þ
k

¼ 74:3� ð0:01=6Þ
60

¼ 0:002\0:1:

Lumped heat capacity analysis is applicable.

Example 8.28 20 mm diameter brass ball at 100°C is dropped in a water bath at 25°C.
Determine the time for the ball surface temperature to reduce to 50°C. Given for brass
qb = 8520 kg/m3, cb = 380 J/(kg K), kb= 125 W/(m K).

Solution

After some time ball will acquire constant speed termed as terminal velocity when the
resistance of the water through which it is falling prevents further acceleration. At this
instance, the force balance gives

CDA
1
2
qwU

2 ¼ ðqb � qwÞVg

or

CD
p
4
D2

� � 1
2
qwU

2 ¼ ðqb � qwÞ
p
6
D3

� �
g

or

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðqb � qwÞDg

3CDqw

s

At t∞ = 25°C, qw = 997.0 kg/m3, lw = 890 � 10−6 kg/(m s), kw = 0.609 W/(m K), and
Pr = 6.13. At ts � 75°C, ls = 374 � 10−6 kg/(m s).

Substitution gives

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� ð8520� 997Þ � 0:02� 9:81

3� CD � 997

s
¼ 1:4ffiffiffiffiffiffi

CD
p

where CD is function of Reynolds number (Fig. 8.10)

ReD ¼ qwUD
lw

¼ 997� U � 0:02
890� 10�6

¼ 22404U:
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Iterative solution gives U � 2 m/s. Hence,

ReD ¼ 22404� 2 ¼ 44808:

Correlation for the average Nusselt number between an isothermal spherical surface at ts
and free stream fluid (U, t∞):

Nu ¼ 2þð0:4Re0:5D þ 0:06Re2=3D Þ Pr0:4ðlw=lsÞ0:25 ð8:55Þ

Substitution gives,

Nu ¼ 2þ ½0:4ð44808Þ0:5 þ 0:06ð44808Þ2=3�ð6:13Þ0:4ð890=374Þ0:25 ¼ 413:3:

Heat transfer coefficient,

h ¼ Nu
kw
D

¼ 413:3� 0:609
0:02

¼ 12585 W/(m2K):

Biot number,

Bi ¼ hðD=6Þ
k

¼ 12585� 0:02=6
125

¼ 0:34[ 0:1:

Lumped heat capacity analysis is not applicable. Heisler charts will be used for which

Bi ¼ hro
k

¼ 12585� 0:01
125

¼ 1:

From Fig. 6.22, for 1/Bi = 1 and r/ro = 1, h/ho = 0.62.

ho
hi

¼ h
hi
:
ho
h
¼ 50� 25

100� 25
� 1
0:62

¼ 0:54:

For 1/Bi = 1 and ho/hi = 0.54, Fo � 0.28 from Fig. 6.22, From Fo = as/ro
2, time

s ¼ For2o
ab

¼ For2oqbcb
kb

¼ 0:28� 0:012 � 8520� 380
125

¼ 0:73 s:

It is to note that the terminal velocity is not reached immediately. Reduced velocity during
this period implies reduced Re and h, and hence increased time s.

Example 8.29 Air at 30°C and atmospheric pressure flows across the tubes of an in-line
tube bundle consisting of 8 rows of 25 mm OD tubes in the direction of flow and 10 tubes in
each row normal to the flow. The tube spacing is 37.5 mm in both parallel and normal to the
flow. Calculate the heat transfer from the bundle per m of length when the tube surface
temperature is 90°C. The maximum velocity of flow is 10 m/s.
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Solution

Mean bulk temperature,

tm ¼ t11 þ t12

2
¼ 30þ t12

2

where t∞2 is the bulk temperature of the air at the outlet of the bundle. t∞2 is not known.
Therefore we assume that the mean temperature is 40°C.

At tm = 40°C, q = 1.1317 kg/m3, k = 0.0272 W/(m K), l = 1.905 � 10−5 kg/(m s),
cp = 1.0066 kJ/(kg K) and Pr∞ = 0.71. At tw = 90°C, Prw = 0.695.

The Reynolds number,

Re ¼ qUmaxD

l
¼ 1:1317� 10� 0:025

1:905� 10�5
¼ 14852

Substitution gives,

Nu ¼ 0:27CnRe
0:63
D Pr0:36ðPr =PrwÞ0:25 for 103\ReD � 2� 105

¼ 0:27� 0:97� ð14852Þ0:63ð0:71Þ0:36ð0:71=0:695Þ0:25 ¼ 98:9
ð8:58cÞ

where Cn � 0.97 for n = 8 from Fig. 8.12.
The heat transfer coefficient,

�h ¼ Nu
k

D
¼ 98:9� 0:0272

0:025
¼ 107:6 W/(m2 K):

The heat transfer rate,

q

L
¼ hAðts � t1Þ ¼ 107:6� ð8� 10� p� 0:025Þ 90� 30þ t12

2

� �
¼ 676:1� ð75� 0:5t12Þ:

ðiÞ

From the first law of thermodynamics,

q

L
¼ mcpðt12 � t11Þ

where

m ¼ qUmax ðpt � DÞ � 10½ � ¼ 1:1317� 10� ð0:0375� 0:025Þ � 10 ¼ 1:415 kg/s:

Hence,

q

L
¼ 1:415� 1006:6� ðt12 � 30Þ
¼ 1424:3� ðt12 � 30Þ

ðiiÞ
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Equating Eqs. (i) and (ii), we get

676:1� ð75� 0:5t12Þ ¼ 1424:3� ðt12 � 30Þ

or

t12 ¼ 53:02�C:

Revised mean temperature,

tm ¼ t11 þ t12

2
¼ 30þ 53:02

2
¼ 41:51�C,

which is nearly equal to the assumed value, hence retrial is not required.

Note: The effect of factor (Pr/Prw)
0.25 is very small in this example. This is practically true

for low Prandtl number fluids just like gases when wall and bulk fluid temperatures do not
differ too much.

Example 8.30 Air at 1 atm and 25°C flows at 7.5 m/s over inline tube bundle with p =
pt = 25 mm. The bundle contains 20 rows and 10 tubes per row, refer Fig. 8.11a. The tube
diameter is 12.5 mm. If tube surface temperature is 400°C, determine the heat transfer rate
per m length.

Solution

Air properties at the mean bulk temperature tm [= (t∞i + t∞o)/2] of the fluid flowing around
the tubes in the bundle (assumed to be 125°C):

q =0.8872 kg/m3, c = 1013.8 J/(kg K), l = 2.2776 � 10−5 N s/m2, k = 0.0335 W/
(m K) and Pr = 0.689.

At tw = 400°C, Prw = 0.683.
The rate of heat transfer per unit length of the tubes is, refer Example 7.17,

q

L
¼ hP� tw � t1oð Þ � tw � t1ið Þ

ln tw�t1o
tw�t1i

� � ðiÞ

where P is perimeter = pDN.
The Reynolds number is based on the velocity of the fluid through the narrowest cross-

section of the flow area:

ReD ¼ qUmaxD

l

where

Umax ¼ U1 � pt
pt � D

¼ 7:5� 25
25� 12:5

¼ 15 m=s:
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Hence,

ReD ¼ 0:8872� 15� 0:0125
2:2776� 10�5

¼ 7304:

From Eq. (8.58c), Nusselt number is

Nu ¼ 0:27Re0:63D Pr0:36ðPr =PrwÞ0:25 for 103\Re� 2� 105

¼ 0:27� ð7304Þ0:63 � 0:6890:36 � ð0:689=0:683Þ0:25 ¼ 64:3:

Heat transfer coefficient,

�h ¼ k

D
Nu ¼ 0:0335

0:0125
� 64:3 ¼ 172:3 W= m2 K

� �
:

From equation derived in Example 7.16,

t1o ¼ tw � tw � t1ið Þ exp � P

mcp
Lh

� �

or

¼ tw � tw � t1ið Þ exp � pDN
qU1Ntptcp

Lh

� �

¼ 400� 400� 25ð Þ exp � p� 0:0125� 200
0:8872� 7:5� 10� 0:025� 1013:8

� 1� 172:3

� �
¼ 231:9�C:

Thus the heat transfer rate from Eq. (i) is

q

L
¼ 172:3� p� 0:0125� 200� 400� 231:9ð Þ � 400� 25ð Þ

ln 400�231:9
400�25

� � ¼ 348:95 kW=m:

The mean bulk temperature tm = (t∞1 + t∞2)/2 = (25 + 231.9)/2 = 128.45°C, which is
nearly equal to the assumed value.

Note: The approach used in the previous example is approximate for uniform surface
temperature, which can be used when temperature differences between hot and cold streams
at inlet and exit [i.e., (tw – ti) and (tw – to)] are not significantly different. In the present
problem the temperature differences are significantly different. It is to note that the approach
used in this example may be used in all problems when isothermal heating or cooling surface
is specified.

Example 8.31 Determine the value of heat transfer coefficient from the surface of water
droplets falling in a cooling tower at a section where the velocity of the droplets relative to
the air is 1 m/s and temperature is 80°C. The air temperature at the section is 30°C. The
average diameter of droplets is 1.25 mm.
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Solution

For the falling drops, the average value of Nusselt number is given by:

Nu ¼ 2þ 0:6Re0:5 Pr1=3½25ðD=xÞ0:7� ð8:56Þ

At t∞= 30°C, air properties are

q ¼ 1:1684 kg=m3; l ¼ 1:859� 10�6 kg=ðm sÞ; k ¼ 0:02646 W=ðm KÞ and Pr ¼ 0:708:

The Reynolds number,

Re ¼ qU1D

l
¼ 1:1684� 1� 1:25� 10�3

1:859� 10�5
¼ 78:6

The distance x from Eq. (8.57) is

x ¼ U2
1
2g

¼ 1
2� 9:81

¼ 0:051 m

Substitution gives,

Nu ¼ 2þ 0:6ð78:6Þ0:5ð0:708Þ1=3½25� ð1:25� 10�3=0:051Þ0:7� ¼ 10:84:

Heat transfer coefficient,

h ¼ Nu
k

D
¼ 10:84� 0:02646

1:25� 10�3
¼ 229:5 W/(m2K):

8.11 Heat Transfer in Liquid Metals

Figure 8.14 shows a typical variation of the Nusselt number with the Peclet number Pe
(= RePr) number for flow of liquid metal through a tube with uniform heat flux (Eckert and
Drake 1972). The Nusselt number is having a value of 4.36, as found in Chap. 7, for the
laminar flow in tubes. The transition from the laminar to the turbulent flow can be seen to
occur at Pe � 40 (the critical value). At the start of the turbulent flow regime, the Nusselt
number rises sharply to a value of about 7. At moderate value of the Peclet number beyond
the critical value, the heat transfer by the turbulent mixing is small compared with the
conductive transport. When the Peclet number exceeds a value of about 100, the heat
exchange by turbulent mixing becomes appreciable and cannot be neglected.

Various empirical correlations for the Nusselt number are available in the literature.
However, due to the difficulties in assessing the effect of free convection and longitudinal
conduction, the experimental results of various investigators deviate from each other in the
laminar and near-turbulent regions. NuT and NuH results differ significantly and separate
equations are presented. Some of the correlations are given in Table 8.13.
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Although the Nusselt number tends to be low for the liquid metal, like the laminar flow,
the heat transfer coefficient is very high because of the high thermal conductivity of the liquid
metals.

1
1

2

4

6
8

10 

2

4

6
8

102 

102 103 104 

Nu 

Pe
2 4 6 8 2 4 6 8 2 4 6 8

Fig. 8.14 Uniform heat flux Nusselt number for flow of liquid metal through a tube (Eckert and Drake 1972)

Table 8.13 Nusselt number for fully developed turbulent flow of liquid metals

Investigators Correlation Boundary condition

Tubes
1.Lyons (in Eckert and
Drake 1972) (referred to as
Lyons – Martinelli
equation)

Nud ¼ 7þ 0:025Pe0:8

for Pe [ 50

Constant heat flux

2.Sleicher and Rouse (1975) Nud ¼ 6:3þ 0:0167Re0:85Pr0:93 Constant heat flux

3.Skupinshi et al. (1965) Nud ¼ 4:82þ 0:0185Pe0:827 Constant heat flux

4.Sleicher and Rouse (1975) Nud ¼ 4:8þ 0:0156Re0:85Pr0:93 Constant wall temperature

5.Seban and Shimazaki
(1951)

Nud ¼ 5:0þ 0:025Pe0:8 Constant wall temperature

Single Cylinder
Grosh and Cess (in Eckert
and Drake 1972)

Nud ¼ 1:015Pe0:25

for Pe \500

Heat transfer by vortex motion is
assumed to be very small compared
to the conduction effect in the back of
the cylinder

Sphere
Witte (1968)

Nud = 2 + 0.386 Pe0.5

for 3.56�104 < Re <
1.525�105
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Example 8.32 Liquid mercury at 20°C enters a metal tube of 20 mm internal diameter at
the rate of 1 kg/s and is heated to 30°C. The tube wall subjected to uniform heat flux is at an
average temperature of 40°C. Determine the length of the tube. Given for the mercury:
q = 13560 kg/m3, k = 8.7 W/(m K), l = 1.5 � 10−3 kg/(m s), Pr = 0.025, cp = 139 J/
(kg K).

Solution

The heat duty is

qt ¼ mcpDt ¼ mcpðto � tiÞ ¼ 1� 139� ð30� 20Þ ¼ 1390 W:

Flow Reynolds number,

Re ¼ qUmd

l
¼ 4m

pdl
¼ 4� 1

p� 0:02� 1:5� 10�3
¼ 42441:

Pe ¼ Re Pr ¼ 42441� 0:025 ¼ 1061[ 50:

Heat transfer coefficient from Lyons–Martinelli equation,

h ¼ Nu
k

d
¼ ð7þ 0:025Pe0:8Þ k

d

¼ ½7þ 0:025� ð1061Þ0:8� � 8:7
0:02

¼ 5909 W/m2 K:

Heat transfer rate per unit length,

q

L
¼ hðpdÞðtw � tmÞ ¼ 5909� ðp� 0:02Þ � ð40� 25Þ ¼ 5569 W/m:

Required length of the tube,

L ¼ qt
q=L

¼ 1390
5569

¼ 0:25 m:

8.12 Influence of Duct Wall Roughness in Turbulent Flow

(a) Friction Factor and Nusselt Number Correlations
Nikuradse (1950) carried out experiments to study the relationship of friction factor to the
Reynolds number for pipes of various roughnesses. Six different degrees of relative
roughness e/r (0.002 < e/r < 0.0679 where e = average height of roughness element and r is
pipe radius) were used. Figure 8.15 shows to a logarithmic scale the relation of the friction
factor and the Reynolds number for the reciprocal values r/e of the six relative roughnesses
and for a smooth pipe. For a given relative roughness, three regions can be seen. At low
Reynolds number (within the first region termed as hydraulically smooth regime), the
roughness has no effect on the resistance and for all values of r/e, the curve coincides with
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the curve for the smooth pipe and resistance factor is expressed by relation k = 64/Re (i.e.,
f = 16/Re) for the laminar flow condition. For turbulent flow, up to about Re = 105, the
Blasius resistance law (k = 0.361Re−0.25) holds for smooth pipes. The critical Reynolds
number for all degrees of relative roughness occurs between 2160 and 2500.

Within the second range, termed as transitional range, the influence of the roughness
becomes noticeable in an increasing degree; the resistance factor increases with an increasing
Reynolds number. The resistance factor depends both on the Reynolds number and the
relative roughness. In the third region, termed as fully rough regime, the resistance factor is
independent of the Reynolds number and the curve k = f(Re) becomes parallel to the x-axis.
The dependency of the friction factor on the relative roughness height in the fully rough
regime has been expressed by Nikuradse as

1ffiffiffi
f

p ¼ 3:48� 1:737 ln
2e
D

� �
ð8:61Þ

An empirical formula correlating the entire transition regime has been given by Colebrook
and White (in Bhatti and Shah 1987):

1ffiffiffi
f

p ¼ 3:48� 1:7372 ln
2e
D

þ 9:35

Re
ffiffiffi
f

p
� �

ð8:62Þ

For e = 0, i.e. the smooth pipes, Eq. (8.62) transforms to PKN correlation and for very
high values of the Reynolds number, it transforms to Nikuradse’s equation for fully rough
flow regime.

The sand grain roughness used by Nikuradse in his experiment is not similar to the
roughness encountered in commercial pipes. Hence, Schlichting introduced the concept of
equivalent sand-grain roughness as a means of characterizing other types of roughness
elements by referring to the equivalent net effect produced by Nikuradse’s experiments (Kays
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Fig. 8.15 Relation between log (100k) and log Re; r/e is ratio of radius r to average projection e and k is
Darcy friction factor (= 4f) (Nikuradse 1950)
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and Crawford 1980). Moody (1944) determined the equivalent sand-grain roughness for
different types of commercial pipe surfaces (refer Moody 1944).

The duct wall roughness has no effect in the case of the laminar flow. If the surface
roughness height e is of the order of the magnitude of the laminar sublayer thickness dl, it
tends to break up the laminar sublayer. This increases the wall shear stress. The ratio of the
surface roughness height e and laminar sublayer thickness dl determine the effect of the
roughness. The laminar sublayer thickness dl is proportional to m/u*, where u* is the friction
velocity (= √(so/q); so is shear stress fqUm

2 /2). Thus the ratio e/dl is proportional to eu*/m,
which is termed as roughness Reynolds number e+:

eþ ¼ eu�

m
¼ e

m

� �
Um

ffiffiffi
f

2

r
¼ e

D

� � UmD

m

� � ffiffiffi
f

2

r

¼
ffiffiffi
f

2

r
Re

e

D

� � ð8:63Þ

where D is the tube diameter, Um mean velocity and e/D (or e/Dh for noncircular ducts) is
termed as relative roughness height.

The roughness Reynolds number has been used to define the flow regimes identified by
Nikuradse for flow in roughened ducts and the physical interpretation of the observed
behaviour in these regimes is as follows.

1. Hydraulically smooth (0 � e+ � 5): The roughness has no effect on the friction factor
because the roughness height e is so small that the roughness elements lie entirely within
the laminar sublayer.

2. Transition regime (5 < e+ � 70): The heights of the roughness elements in this range
are of the same order of magnitude as the thickness of the laminar sublayer. Individual
projections may extend through the laminar sublayer and vortices produce an additional
loss of energy. As the Reynolds number increases, an increasing number of projections
pass through the laminar sublayer because of the reduction in its thickness. The additional
loss, then, becomes greater as the Reynolds number increases and the friction factor
depends both on relative roughness height e/D and the Reynolds number Re.

3. Fully rough regime (e+ > 70): Finally, with the increase in the Reynolds number, the
thickness of the laminar sublayer becomes so small that all projections extend through it.
The energy loss due to the vortices now attains a constant value and the friction factor is
independent of the Reynolds number. In this regime, the friction factor depends only
upon the relative roughness height.

Moody (1944) also presented friction factor plot as shown in Fig. 8.16. The horizontal
portions of the curves right to the dashed line are represented by Nikuradse’s equation for
fully rough regime. The dashed line corresponds to e+ = 70. The downward sloping line for
the laminar flow is represented by k = 4f = 64/Re. The lowermost curve for the smooth pipes
with turbulent flow is represented by the PKN correlation.

It is to note that the artificial roughness creates turbulence close to the wall, which leads to
the enhancement in the heat transfer coefficient also. However, the increase in the heat
transfer coefficient is accompanied by a proportionately greater increase in the friction factor
(Bhatti and Shah 1987).

In the case of fluids with high Prandtl number, the resistance to the heat transfer is mainly
concentrated in the laminar sublayer, which is thin compared to the hydrodynamic boundary
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layer. For the low Prandtl number fluids, the thermal resistance is distributed over a larger
portion of the duct cross-section because the thermal boundary layer is thicker than the
hydrodynamic boundary layer. Since the roughness at the wall creates turbulence near the
wall, the heat transfer enhancement is greater for the fluids with high Prandtl numbers.

As pointed out above, the heat transfer coefficient is not affected as strongly as the friction
coefficient. The physical explanation for this is given by Bhatti and Shah (1987) as follows.

The friction coefficient is markedly augmented by the profile drag developed by the
roughness elements. As regards the heat transfer, there is no mechanism comparable to the
profile drag to generate additional heat flux. Consequently, the heat transfer is affected less
markedly than the friction coefficient.

Several studies on heat transfer coefficient and friction factor behaviour for different
roughness types have been carried out by researchers and correlations have been proposed,
refer Bhatti and Shah (1987). Some of them are presented in Table 8.14.

(b) Roughness and Heat Transfer Functions

The experimental results of heat transfer and fluid flow characteristics in roughened ducts
have been presented either in the form of direct dependence of friction factor and Nusselt
number on the system and operating parameters as presented above or in the form of
interrelated roughness and heat transfer functions. This latter method makes it possible to
present results in a most general form taking into account the various parameters involved
including the roughness parameters.

The friction correlation has been based on the law of wall similarity employed by
Nikuradse (1950) for sand grain roughness in pipes.
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Fig. 8.16 Darcy friction factor (k = 4f) plot for smooth and rough tubes. Moody LF (1944) Friction factors
for pipe flow. Trans ASME 66: 671–684. With permission of ASME
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The general expression for friction factor f proposed by Nikuradse is

f ¼ 2

½AþB lnðeþ Þ � 2:456 lnð2e=DÞ�2 ð8:64Þ

where B = 2.5 is a constant for both smooth and rough tubes and A is a non-dimensional
parameter, which is discussed below.

Nikurdse proposed a law of wall by correlating the measured velocity distribution data for
these sand grain roughened tubes by a non-dimensional equation of the form

uþ ¼ u=u� ¼ B lnðy=eÞþA ð8:65Þ

Nikuradse found that the plot of parameter A as a function of log(e+) is similar to the curve
for the resistance law obtained by plotting 1=ð2 ffiffiffi

f
p Þ � 2 log10 r=eð Þb c against e+. From this

similarity, he deduced the value of A as

A ¼
ffiffiffi
2
f

s
þ 2:5 ln

2e
D

þ 3:75 ð8:66Þ

Thus

A ¼ uþ � 2:5 lnðy=eÞ ¼
ffiffiffi
2
f

s
þ 2:5 ln

2e
D

þ 3:75

The non-dimensional parameter A is called by different investigators as the roughness
parameter or momentum transfer roughness function or roughness function and has been
denoted by R(e+) because Nikuradse found roughness function to be function of e+ only. The
usual relation for this function is

Table 8.14 Nusselt number for fully developed turbulent flow in the fully rough flow regime of a circular
ducta

Investigators Correlationsb Remarks

Dippery and
Sabersky
(1963)

Nu ¼ Re Prðf=2Þ
1þ

ffiffiffiffiffiffiffiffi
ðf=2Þ

p
½5:19ðeþ Þ0:2 Pr0:44 �8:48�

This correlation is valid for 0.0024 < e/Dh �
0.049, 1.2 � Pr � 5.94, 1.4 � 104 � Re �
5�105

Gowen and
Smith
(1968)

Nu ¼ Re Pr
ffiffiffiffiffiffiffiffi
ðf=2Þ

p
4:5þ ½0:155ðRe

ffiffiffiffiffi
f=2

p
Þ0:54 þ

ffiffiffiffiffiffiffiffi
ð2=f Þ

p
� ffiffiffiffi

Pr
p This correlation is valid for 0.021 < e/Dh �

0.095, 0.7 � Pr � 14.3, 104 � Re � 5�104

Bhatti and
Shah (1987)

Nu ¼ Re Prðf=2Þ
1þ

ffiffiffiffiffiffiffiffi
ðf=2Þ

p
½4:5ðeþ Þ0:2 Pr0:5 �8:48�

This correlation is valid for 0.002 < e/Dh <
0.05, 0.5 < Pr < 10, Re > 104. Its predictions are
within ±5% of the available measurements.

aBhatti MS, Shah RK, Turbulent and transition flow convective heat transfer. In: Kakac S, Shah RK, Aung W
(eds) Handbook of single-phase convective heat transfer, Chap. 4, Wiley, New York, Copyright 1987.
Reproduced (abridged) with the permission of John Wiley and Sons Ltd
bThe friction factor f in these correlations may be calculated from the Nikuradse’s correlation, Eq. (8.61)
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Rðeþ Þ ¼
ffiffiffi
2
f

s
þ 2:5 ln

2e
D

þE ð8:67Þ

The constant E is termed as geometric parameter and is dependent on the configuration of
the duct. Nikuradse reported a value of this parameter as 3.75 for pipes and the same value
has been used by Dippery and Sabersky (1963) in their investigation. However, there is no
general agreement on the value of constant E.

The plot of the roughness function, A or R(e+) against the roughness Reynolds number e+

obtained by Nikuradse is shown in Fig. 8.17. The variation of the roughness function in the
different flow regimes as found by Nikuradse is as follows.

(i) In the hydraulically smooth regime (0 < e+ � 5), the measured pressure loss data were
correlated by Nikuradse in the form:

Rðeþ Þ ¼ 5:5þ 2:5 ln eþ ð8:68Þ

(ii) In the transition regime (5 < e+ � 70), the roughness function is observed at first to
increase with e+ and then to attain a constant value and finally the function drops.

(iii) In the fully rough regime (e+ > 70), the roughness function can be seen to be inde-
pendent of the roughness Reynolds number and attains a constant value.

(iv) For the sand grain roughness, Nikuradse reported a constant value of 8.48 of the
roughness function R(e+) for the fully rough region. However, a number of investigators
while investigating the behaviour of wire and rib roughness in tubes and ducts (both
square and rectangular) have reported different values of the roughness function for the
fully rough flow. Further the investigators have shown that the criterion of hydraulically
smooth or fully rough or transitional flow regimes and the values of the roughness
function depend not only on the roughness Reynolds number but also on the geometric
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Fig. 8.17 Momentum transfer roughness function versus the roughness Reynolds number (Nikuradse 1950)

650 8 Empirical Relations for Forced Convection Heat Transfer

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


parameters of the roughness, shape of the roughness element and channel aspect ratio
(ratio of width to height) in the case of flow in rectangular channels. Since the roughness
function depends on e+, roughness parameters and channel aspect ratio, it is written as
R instead of R(e+).

(v) Dippery and Sabersky (1963) hypothesized that the law of wall similarity, which has
been shown by Nikuradse to be valid for velocity profile in roughened tubes, also
applies to the temperature profile. They developed a heat transfer similarity law for the
flow in sand grain roughened tubes. They correlated turbulent data for fluids of various
Prandtl numbers and tubes of three different sand grain roughness types using a heat
transfer function g termed as g-function by them, which is function of e+ and the
function has also been found to have different values for different fluids. Mathemati-
cally, the g-function is defined by Dippery and Sabersky (1963) as

gðeþ Þ ¼ f

2St
� 1

� 	 ffiffiffi
2
f

s
þRðeþ Þ ð8:69Þ

For the fully rough flow (e+ > 70), Dippery and Sabersky found that the heat transfer
function is a function of only roughness Reynolds number and Prandtl number. Researchers
found g-function to depend also on the geometrical parameters of roughness and hence have
written as g instead of g(e+).

Webb et al. (1971) used the law of wall similarity employed by Nikuradse and heat
transfer-momentum analogy extended by Dippery and Sabersky to correlate data for tubes
with transverse repeated rib roughness. This general strategy has been successfully used to
correlate friction and heat transfer results for different types of roughness elements by a large
number of researchers. For typical correlations developed using this strategy for v-discrete
rib roughness elements, refer Karwa et al. (2005).

Example 8.33 A 20 mm diameter smooth surfaced tube is maintained at a constant wall
temperature of 100°C. Water enters the tube at 30°C and leaves at 50°C with a velocity of
2 m/s. Determine the length of the tube necessary for the desired heating of the water. If the
tube has relative roughness of 0.001, what will be the required length?

Solution

At mean bulk fluid temperature tm = (ti + to)/2 = (30 + 50)/2 = 40°C, the thermo-physical
properties of air are

q ¼ 992:2 kg=m3; k ¼ 0:631 W=ðm KÞ; l ¼ 6:51� 10�4 kg=ðm sÞ; Pr ¼ 4:30 and cp
¼ 4179 J=ðkg KÞ:

The heat duty is

qt ¼ mcpDt ¼ ½ðp=4Þd2Umq�cpðto � tiÞ
¼ ðp=4Þ � ð0:02Þ2 � 2� 992:2� 4179� ð50� 30Þ ¼ 52105 W:
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Flow Reynolds number,

Re ¼ qUmd

l
¼ 992:2� 2� 0:02

6:51� 10�4
¼ 60965[ 10000:

Flow is turbulent.

Smooth tube
Heat transfer coefficient from Dittus Boelter relation,

h ¼ Nu
k

d
¼ 0:024Re0:8 Pr0:4

k

d

¼ 0:024� ð60965Þ0:8 � ð4:3Þ0:4 � 0:631
0:02

¼ 9134 W/(m2K):

Since the change in the temperature of the water is not large, a simple arithmetic mean of
the end temperature differences may be used in heat transfer equation instead of the log mean
temperature difference when wall temperature is constant. Hence, heat transfer rate per unit
length,

q

L
¼ hðpdÞðDtÞ ¼ 9134� ðp� 0:02Þ � ð70þ 50Þ=2 ¼ 34434 W/m:

Here the log mean temperature difference comes out to be 59.44oC. Required length of
the tube,

L ¼ qt
q=L

¼ 52105
34434

¼ 1:513 m:

Roughened tube
From Colebrook and White relation,

1ffiffiffi
f

p ¼ 3:48� 1:7372 ln
2e
d

þ 9:35

Re
ffiffiffi
f

p
� �

Staring with a trial value of f ¼ 0:0791Re�0:25 ¼ 0:005, the solution of the above
equation gives f = 0.00585. Alternatively, the Moody Diagram may be used to determine
friction factor.

Roughness Reynolds number,

eþ ¼
ffiffiffi
f

2

r
Re

e

d
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00585

2

r
� 60965� 0:001 ¼ 3:3:

Gnielinski’s correlation from Table 8.3 with viscosity correction factor may be used, refer
Eq. (8.20), which gives

Nu ¼ ðf=2ÞðRe� 1000Þ Pr
1þ 12:7

ffiffiffiffiffiffiffiffiffiffiffiðf=2Þp
: Pr2=3 �1
� �� lw

l

� ��0:11
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Substitution gives

Nu ¼ ð0:00585=2Þð60965� 1000Þ � 4:3

1þ 12:7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið0:00585=2Þp

: 4:32=3 � 1ð Þ �
2:86
6:51

� ��0:11

¼ 388

for lw = 2.86 at 100°C.
Heat transfer coefficient,

h ¼ Nu
k

d
¼ 388� 0:631

0:02
¼ 12241 W/(m2K):

Required length of the tube,

L ¼ 1:513� 9134
12241

¼ 1:129 m:

It is to note the heat transfer enhancement in roughened tube is accompanied with increase
in pumping power requirement because of the increased friction.

Example 8.34 Calculate the required length if the tube relative roughness is 0.02 for the
flow conditions of the previous example.

Solution
From the Moody’s diagram, f = 0.05/4 = 0.0125 and the flow is in the fully rough region.

Alternatively, Nikuradse’s correlation can be used to determine friction factor, which is

1ffiffiffi
f

p ¼ 3:48� 1:737 ln
2e
D

� �
ð8:61Þ

1ffiffiffi
f

p ¼ 3:48� 1:737 ln 2� 0:02ð Þ

which gives f = 0.01215.
Roughness Reynolds number,

eþ ¼
ffiffiffi
f

2

r
Re

e

d
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01215

2

r
� 60965� 0:02 ¼ 95:

Using Dippery and Sabersky’s correlation with viscosity correction factor, Table 8.14,

Nu ¼ Re Prðf=2Þ
1þ ffiffiffiffiffiffiffiffiffiffiffiðf=2Þp

:½5:19ðeþ Þ0:2 Pr0:44 �8:48� �
lw
l

� ��0:11

or

Nu ¼ 60965� 4:3� ð0:01215=2Þ
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið0:01215=2Þp � ½5:19� ð95Þ0:2 � ð4:3Þ0:44 � 8:48� �

2:86
6:51

� ��0:11

¼ 774:7:
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Required pipe length is

L ¼ 1:129� 388
774:7

¼ 0:565 m:

Miscellaneous Exercises

Example 8.35 A fluid at an average bulk temperature of 40°C flows inside a 50 mm ID and
1.5 m long tube with bell mouth inlet. Because of constant heat flux condition, the tube wall
is 5°C below the fluid bulk temperature. If the average bulk velocity of the fluid is 2.5 m/s,
calculate the heat transfer rate from the fluid. The thermophysical properties of the fluid are
given as

m ¼ 6:0� 10�7m2=s; k ¼ 0:15 W=ðm KÞ and Pr ¼ 5:

For the entrance effect, if any, following equation may be considered.

hent ¼ h 1þ 1:4
L=D

� 	
:

Solution

The flow Reynolds number

ReL ¼ U1d

m
¼ 2:5� 0:05

6� 10�7
¼ 2:08� 105:

The flow is turbulent. Though the Prandtl number is quite high, the temperature of the
wall is only 5°C above the fluid bulk mean temperature, viscosity correction is not required.

Using the Dittus-Boelter equation4 for cooling of fluid,

h ¼ Nu
k

d
¼ 0:026Re0:8 Pr0:3

k

d

¼ 0:026� ð2:08� 105Þ0:8 � ð5Þ0:3 � 0:15
0:05

¼ 2271 W/(m2K):

L/D = 1.5/0.05 = 30 < 60 hence the corrected value of the heat transfer coefficient con-
sidering the entrance effect is

hent ¼ h 1þ 1:4
L=D

� 	

¼ 2271� 1þ 1:4
30

� 	
¼ 2377 W/(m2K):

4The Dittus-Boelter equation is widely used because of its simplicity. For greater accuracy, Gnielinski or
Petukhov et al. correlation (refer Table 8.3) may be considered.
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Heat transfer rate,

qt ¼ hADT ¼ 2377� ðp� 0:05� 1:5Þ � 5 ¼ 2800:3 W:

Example 8.36 Air at 20°C and a pressure of 5.5 bar flows through a circular cross-section
tube (ID = 25 mm and L = 1.6 m) with a mean velocity of 1.5 m/s. The tube is subjected to
electric heating with heat flux q” of 1.5 kW/m2. Determine the temperature rise of air and the
local heat transfer coefficient at L = 1.0 m.

Solution

Assuming mean bulk temperature of 40°C, the air properties at atmospheric pressure are

q ¼ 1:132 kg=m3; cp ¼ 1006:6 J=ðkg KÞ:

At 5.5 bar,

q ¼ 1:132� 5:5 ¼ 6:226 kg/m3:

From heat balance,

p
4
D2qUcpDT ¼ pDL� q00

or

DT ¼ 4Lq00

qUDcp
¼ 4� 1:6� 1500

6:226� 1:5� 0:025� 1006:6
¼ 40:85�C:

Outlet temperature, to = 20 + 40.85 = 60.85°C.
Mean bulk temperature, tm = (60.85 + 20)/2 = 40.43°C, which is nearly the same as

assumed. Further iteration is not required.
Other thermophysical properties are

l ¼ 1:9� 10�5 kg=ðm sÞ;Pr ¼ 0:705 and k ¼ 0:0273 W=ðm KÞ:

The flow Reynolds number

ReL ¼ qUmd

l
¼ 6:226� 1:5� 0:025

1:9� 10�5
¼ 12288[ 104:

Development length from Eq. (8.19),

L

D
¼ 1:359Re0:25 ¼ 1:359� ð12288Þ0:25 ¼ 14:31:
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At x = 1 m, x/D = 1/0.025 = 40, which is much larger than the development length for
turbulent flow. Hence, the local heat transfer coefficient at x = 1 m equals the heat transfer
coefficient for the fully developed flow. Using Dittus-Boelter equation,

h ¼ Nu
k

d
¼ 0:024Re0:8 Pr0:4

k

d

¼ 0:024� ð12288Þ0:8 � ð0:705Þ0:4 � 0:0273
0:025

¼ 42:6 W/(m2K):

Example 8.37 Water at an average bulk temperature of 90°C is flowing through a 25 mm
ID circular tube with a mean velocity of 1.5 m/s. The pipe wall temperature is 50°C along the
whole length below the local value of the bulk temperature of the water because of the
uniform heat flux condition. If pipe is 5 m long, determine the cooling rate. The following
turbulent flow equation due to Sieder-Tate with viscosity correction factor may be
considered.

Nu ¼ 0:027Re0:8 Pr1=3
lb
lw

� �0:14

Solution

Thermophysical properties of water at the average bulk temperature of 90°C are

q ¼ 965:3 kg=m3; Pr ¼ 1:97; k ¼ 0:675 W=ðmKÞ; lb ¼ 311� 10�6 kg=ðm sÞ:

At wall temperature of tw = 40°C, lw = 651 � 10−6 kg/(m s).
Due to a significant difference in lw and lb, viscosity correction must be considered.
Flow Reynolds number,

ReL ¼ qUmd

lb
¼ 965:3� 1:5� 0:025

311� 10�6
¼ 1:16� 105:

Flow is turbulent. Using the given equation,

h ¼ Nu
k

d
¼ 0:027Re0:8 Pr1=3

lb
lw

� �0:14k

d

¼ 0:027� ð1:16� 105Þ0:8 � ð1:97Þ1=3 � 311
651

� �0:14

� 0:675
0:025

¼ 9280 W/(m2K):

Cooling rate,

qt ¼ hADt ¼ hðpdLÞðDtÞ ¼ 9280� ðp� 0:025� 5Þ � 50 ¼ 182:2 kW:
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Example 8.38 Water flows through a rectangular duct of width W = 10 mm, height
H = 5 mm and 3 m long. The velocity of the water is 0.25 m/s. The mean water temperature
in the duct is 60°C and the duct wall temperature is 20°C. Calculate the mean heat transfer
coefficient and the heat transfer rate. The following correlation may be used

Nu ¼ 0:17Re0:33 Pr0:43 Gr0:1
Pr
Prw

� �0:25

where the subscript w refers to the wall condition.

Solution

Thermophysical properties of water at the mean temperature of 60°C are (Table A4,
Appendix)

q ¼ 983:3 kg=m3; Pr ¼ 3:0; k ¼ 0:654 W=ðm KÞ; l ¼ 463� 10�6 kg=ðm sÞ; b
¼ 0:521� 10�3:

At t = 20°C, Prw = 7.
Hydraulic diameter of the duct,

Dh ¼ 4WH

2ðW þHÞ ¼
4� 10� 5
2ð10þ 5Þ ¼ 6:66 mm:

Reynolds number,

Re ¼ qUDh

l
¼ 983:3� 0:25� ð6:66� 10�3Þ

463 x 10�6 ¼ 3536:

Grashof number,

Gr ¼ q2bgDTD3
h

l2
¼ 983:32 � 0:521� 10�3 � 9:81� ð60� 20Þ � 0:006663

ð463� 10�6Þ2 ¼ 2:72� 105:

Heat transfer coefficient from the given Nusselt number correlation:

h ¼ Nu
k

Dh
¼ k

Dh
� 0:17Re0:33 Pr0:43 Gr0:1

Pr
Prw

� �0:25

¼ 0:654
0:00666

� 0:17� ð3536Þ0:33 � 30:43 � ð2:72� 105Þ0:1 � 3:0
7:0

� �0:25

¼ 1122:5 W/(m2K):

Heat transfer rate,

qt ¼ hADt ¼ hðPLÞðDtÞ ¼ 1122:5� ð30=1000Þ � 3� ð60� 20Þ ¼ 4041 W:
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Example 8.39 The heat transfer coefficient for a gas flowing over a thin flat plate 3 m long
and 0.3 m wide varies with the distance from the leading edge according to

hx ¼ 10x�1=4W/m2 K:

Calculate the (a) average heat transfer coefficient, (b) the rate of heat transfer between the
plate and the gas if the plate is at a temperature of 170°C and the gas is at 30°C, and (c) the
local heat flux at 2 m from the leading edge.

Solution

hav ¼ 1
L

ZL
0

hxdx

¼ 1
3

Z3

0

10x�1=4dx

¼ 10
3

x�1=4þ 1

�1=4þ 1

� 	3
0

¼ 10:13 W/(m2K):

The rate of heat transfer between the plate and the gas,

q ¼ havADT

¼ 10:13� ð3� 0:3Þ � ð170� 30Þ ¼ 1276:4 W:

The local heat flux at x = 2 m is

q00x¼2 ¼
qx¼2

A
¼ hx¼2DT

¼ 10� ð2Þ�1=4 � ð170� 30Þ ¼ 1177:3 W/m2:

Example 8.40 What is pressure drop in a 20 m long smooth 20 mm ID tubing when water
at 100°C flows through it? A Pitot tube measurement shows centerline velocity of 0.02 m/s.

Solution
Assuming fully developed laminar flow,

Um ¼ Umax

2
¼ 0:01 m/s:

The Reynolds number is

Re ¼ qUmD

l
¼ 958:3� 0:01� 0:02

2:82� 10�4
¼ 679

where q = 958.3 kg/m3 and l = 2.82 � 10−4 Pa s for water at 100°C.
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The flow is laminar. The hydrodynamic development length,

Lhy ¼ 0:05ReD ¼ 0:68 m,

which is very small compared to the length of the pipe. Thus the assumption of fully
developed laminar flow will introduce only a small error in calculation of the friction factor.

From Eq. (8.12), the friction factor is

f ¼ 16
Re

¼ 16
679

¼ 0:0235:

The pressure drop is

Dp ¼ 4fLqU2
m

2D
¼ 4� 0:0235� 20� 958:3� 0:01ð Þ2

2� 0:02
¼ 4:5 Pa:

Example 8.41 What pressure head would be if the tube diameter in the above example is
halved maintaining the same volume flow?

Solution

Effect of the halving of the tube diameter on Um, Re and f are

Um ¼ 4Q
pD2

/ 1
D2

;

i.e. the mean velocity Um is four times,

Re ¼ qUmD

l
/ UmD / 1

D2
� D / 1

D
;

i.e., Re is two times (still laminar),

f ¼ 16
Re

/ 1
UmD

/ D;

i.e., f is half of the previous value.
In terms of the variables of this problem,

Dp / 1
D

� �
Dð Þ 1

D2

� �2

¼ 1
D4

;

which means a 16-fold increase.

Example 8.42 Air at atmospheric pressure and 25°C enters a circular tube of 30 mm
diameter at mass flow rate of 0.0025 kg/s. The heat transfer coefficient is estimated to be
50 W/(m2 K). The surface heat flux at the tube wall is function of distance and specified as
ax, where a = 700 W/m2. Determine for 2 m length of the tube, the outlet temperature of air
and tube surface temperature at x = 0 and x = L.
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Solution

Specific heat cp of air at the mean bulk temperature tm [= (tbi + tbo)/2] (assumed to be 50°C)
is 1007.2 J/(kg K).

From energy balance at the control volume, Fig. 8.18b, we have

dqconv ¼ mcpdtb

where dqconv ¼ q00Pdx ¼ 700xðpDÞdx: Substitution gives

700xðpDÞdx ¼ mcpdtb

or

dtb ¼ 700ðpDÞ
mcp

xdx

Integration from x = 0 to x = L gives:

tbo � tbi ¼ 700ðpDÞ
mcp

ZL

0

xdx

or

tbo ¼ tbi þ 700ðpDÞ
mcp

x2

2

� 	L
o

¼ tbi þ 700ðpDÞ
mcp

L2

2

� �

Substitution of the values of various terms gives:

tbo ¼ 25þ 700� ðp� 0:03Þ
0:0025� 1007:2

� 22

2

� �
¼ 77:4�C:

This gives mean bulk temperature tm [= (tbi + tbo)/2] = 51.2°C, which is nearly equal to
the assumed temperature hence retrial is not required.

At x = 0, q’’ = 0, hence tsi= tbi.
At x = L = 2 m, q’’ = 700 L = 1400 W/m. Hence, from q ¼ hAðtso � tboÞ;

x L = 2 m

tbi tbo

q’’ = 700 x

dx 

mcp(tb+dtb)

dqconv

a b

Fig. 8.18 Example 8.42
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tso ¼ tbo þ q

hA
¼ tbo þ 700L� pD

hðpD� 1Þ ¼ 77:4þ 700� 2
50

¼ 105:4�C:

Example 8.43 Water at mean temperature of 60°C flows at mean velocity of 0.8 m/s
through a 65 ID and 75 OD steel pipe [k = 40 W/(m K)]. Air at atmospheric pressure and 0°
C flows across the pipe at a velocity of 5 m/s. Determine the heat loss from water per unit
length of pipe.

Solution

Heat loss per unit length of the cylinder,

q

L
¼ twater � tair

1
hipdi

þ 1
2pks

ln do
di

� �
þ 1

hopdo

Thermophysical properties of water at 60°C from Table A4 are:

q ¼ 983:3 kg=m3; l ¼ 463� 10�6 kg=ðm sÞ; k ¼ 0:654W=ðm KÞ and Pr ¼ 3:0:

The Reynolds number of water flowing through the pipe,

Re ¼ qUmdi
lw

¼ 983:3� 0:8� 0:065
463� 10�6

¼ 110435:

Flow is turbulent. The heat transfer coefficient can be determined from Dittus and Boelter
equation (for cooling of fluid, Table 8.3):

hi ¼ k

di
� 0:026Re0:8 Pr0:3

¼ 0:654
0:065

� 0:026� 1104350:8 � 30:3 ¼ 3938 W= m2 K
� �

:

Thermophysical properties of air at film temperature tfm [= (ts + 0)/2] assumed to be =
25°C from Table A5 are:

q ¼ 1:1868 kg=m3; l ¼ 1:8363� 10�5 kg=ðm sÞ; k ¼ 0:02608 W=ðm KÞ and Pr ¼ 0:709:

The Reynolds number of air flowing across the pipe,

Re ¼ qU1do
lair

¼ 1:1868� 5� 0:075
1:8363� 10�5

¼ 24236:
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For a cylinder in crossflow,

h ¼ k

d
Nu ¼ k

d
CRen Pr1=3 ð8:47Þ

From Table 8.11, C = 0.193 and n = 0.618. Hence, heat transfer coefficient,

ho ¼ k

d
CRen Pr1=3

¼ 0:02608
0:075

� 0:193� 242360:618 � 0:7091=3 ¼ 30:66 W= m2 K
� �

:

Hence, the heat loss per unit length of the cylinder,

q

L
¼ 60� 0

1
3938�p�0:065 þ 1

2�p�40 ln
75
65

� �þ 1
30:66�p�0:075

¼ 427:84 W:

Pipe outer surface temperature,

ts ¼ t1 þ q=L

pdoh
¼ 0þ 427:84

p� 0:075� 30:66
¼ 59:22�C:

Film temperature t-fm = (59.22 + 0)/2 = 29.6°C, which is slightly higher than the
assumed values of 25°C. Retrial may be carried out for greater accuracy. However, here it
will change the result marginally only.

Example 8.44 Air at 1 atm and 30°C enters a 4 m long 40 mm inside diameter smooth
tube. The mass flow rate of the air is 0.05 kg/s. The tube surface temperature is maintained at
120°C by condensing steam surrounding the tube. Determine the outlet temperature of the air
and pressure drop.

Solution

Air properties at the mean bulk temperature tm [= (ti + to)/2] of 50°C (assumed) from
Table A5:

q ¼ 1:0949 kg=m3; c ¼ 1007:2 J=ðkgKÞ; l ¼ 1:9512� 10�5Ns=m2; k
¼ 0:02799 W=ðm KÞ and Pr ¼ 0:703:

For isothermal tube surface, the air outlet temperature is given by

tw � to
tw � ti

¼ exp � P

mc
Lh

� �
ðiÞ

The Reynolds number based on mass velocity of air through the tube:

Re ¼ md

ðp=4Þd2l ¼ 4m
pdl

¼ 4� 0:05
p� 0:04� 1:9512� 10�5

¼ 81568:
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Flow is turbulent. L/D = 4/0.04 = 100. Hence, the flow can be regarded as fully devel-
oped. Dittus and Boelter equation may be used for calculation of heat transfer coefficient.

h ¼ k

d
� 0:024Re0:8 Pr0:4

¼ 0:02799
0:04

� 0:024� 815680:8 � 0:7030:4 ¼ 123:9 W= m2 K
� �

:

Substitution of values of various parameters in Eq. (i) gives

120� to
120� 30

¼ exp � p� 0:04
0:05� 1007:2

� 4� 123:9

� �

or

to ¼ 93:8�C:

Mean bulk temperature of water is tm [= (ti + to)/2] = 61.9°C. Retrial with changed air
properties is required.

Air properties at the mean bulk temperature tm of 62.5°C (assumed) from Table A5:

q ¼ 1:05005 kg=m3; c ¼ 1008 J=ðkgKÞ; l ¼ 2:0085� 10�5 Ns=m2; k
¼ 0:02895 W=ðm KÞ and Pr ¼ 0:7:

Revised Reynolds number through the tube:

Re ¼ 4m
pdl

¼ 4� 0:05
p� 0:04� 2:0085� 10�5

¼ 79241:

Revised heat transfer coefficient.

h ¼ k

d
� 0:024Re0:8 Pr0:4

¼ 0:02895
0:04

� 0:024� 792410:8 � 0:70:4 ¼ 125 W= m2 K
� �

:

Substitution of values of various parameters in Eq. (i) gives

120� to
120� 30

¼ exp � p� 0:04
0:05� 1008

� 4� 125

� �

or

to ¼ 94:1�C:

Mean bulk temperature of water is tm [= (ti + to)/2] = 62.05°C. Retrial is not required.
From Blausius equation, friction factor is
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f ¼ 0:0791Re�0:25 ¼ 0:0791� 79241�0:25 ¼ 0:0047:

Pressure drop,

Dp ¼ 4fLqU2

2d
¼ 4fLq

2d
� m

qAc

� �2

Dp ¼ 4� 0:0047� 4� 1:05005
2� 0:04

� 0:05
1:05005� ðp=4Þ � 0:042

� 	2
¼ 1417N=m2 ¼ 0:014 atm:

Example 8.45 Cold fluid is passing through a thin-walled tube 10 mm in diameter 1 m long
which is exposed to crossflow of hot fluid at 100°C. Cold fluid flows at a rate of 0.0025 kg/s
and its inlet and outlet temperatures are 30 and 60°C, respectively. Determine the outlet
temperature of the cold fluid if its flow rate is increased by 50% with all other conditions
remaining the same. Given that dynamic viscosity of the fluid is 0.004 N s/m2. Flow may be
assumed to be fully developed.

Solution

The fluid outlet temperature is given by

t1 � to
t1 � ti

¼ exp � P

mc
LU

� �
;

which gives

U

c
¼ m

PL
� ln

t1 � ti
t1 � to

� �

Substitution of values of various parameters gives the ratio of the overall heat transfer
coefficient U and specific heat c as:

U

c
¼ 0:0025

p� 0:01� 1
� ln

100� 30
100� 60

� �
¼ 0:0445;

where U ¼ 1
hi
þ 1

ho

� ��1
:

Flow Reynolds number is

Re ¼ 4m
pdl

¼ 4� 0:0025
p� 0:01� 0:004

¼ 79:5:

The flow is laminar. For increase in mass flow rate by 50%, the Reynolds number will be
79.5 � 1.5 = 119. For fully developed laminar flow, the Nusselt number and hence the heat
transfer coefficient hi is independent of the Reynolds number. Since the hot fluid condition is
unchanged, the overall heat transfer coefficient U will not change.
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The fluid outlet temperature for increased mass flow rate is

to ¼ t1 � ðt1 � tiÞ exp � P

mc
LU

� �

¼ 100� ð100� 30Þ exp � p� 0:01
1:5� 0:0025

� 1� 0:0445

� �
¼ 51:8�C:

In the above analysis, it has been assumed that fluid properties c and l are independent of
temperature.

Example 8.46 Helium at 1 atm is to be heated from 400 K to 800 K while flowing at
0.005 kg/s through a tube of 20 mm diameter and 1 m length. Determine the uniform tube
wall temperature required to heat the helium. Thermophysical properties of helium at the
mean bulk temperature of 600 K and 1 atm are: q = 0.0818 kg/m3, c = 5190 J/(kg K),
l = 32.2 � 10−6 N s/m2, k = 0.251 W/(m K) and Pr = 0.67.

Determine outlet temperature and required mass flow rate to achieve the same heat
transfer rate and wall temperature if the air at 1 atm is used in place of helium.

Solution

(a) Heating of helium
Tube surface temperature can be determined from

Ts � To
Ts � Ti

¼ exp � P

mc
L�h

� �
ðiÞ

Flow Reynolds number is

Re ¼ 4m
pdl

¼ 4� 0:005
p� 0:02� 32:2� 10�6

¼ 9885:

Flow is turbulent. Assuming fully developed flow, the heat transfer coefficient from Dittus
Boelter equation is

h ¼ k

d
� 0:024Re0:8 Pr0:4

¼ 0:251
0:02

� 0:024� 98850:8 � 0:670:4 ¼ 403 W= m2 K
� �

:

Substituting values of various parameters in Eq. (i) gives

Ts � 800
Ts � 400

¼ exp � p� 0:02
0:005� 5190

� 1� 403

� �
¼ 0:377

8.12 Influence of Duct Wall Roughness in Turbulent Flow 665

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


or

Ts ¼ 1042 K:

Heat transfer rate,

q ¼ mcpðTo � TiÞ ¼ 0:005� 5190� ð800� 400Þ ¼ 10:38 kW:

(b) Heating of air
Air properties at the mean bulk temperature of 600 K (327°C) and 1 atm, from Table A5:

q ¼ 0:5901 kg=m3; c ¼ 1054:5 J=ðkg KÞ; l ¼ 3:011� 10�5 N s=m2; k
¼ 0:04647 W=ðm KÞ and Pr ¼ 0:68:

From first law equation,

q ¼ mcpðTo � TiÞ

or

To ¼ q

mcp
þ Ti ¼ 10380

m� 1054:5
þ 400 ¼ 9:84

m
þ 400

Air outlet temperature can be determined from Eq. (i)
Flow Reynolds number is

Re ¼ 4m
pdl

¼ 4� m

p� 0:02� 3:011� 10�5
¼ 2:11� 106m:

Assuming the flow to be turbulent and fully developed, the heat transfer coefficient from
Dittus Boelter equation is

h ¼ k

d
� 0:024Re0:8 Pr0:4

¼ 0:04647
0:02

� 0:024� ð2:11� 106mÞ0:8 � 0:680:4 ¼ 5480m0:8

Substituting values of various parameters in Eq. (i) gives

1042� ð9:84=mþ 400Þ
1042� 400

¼ exp � p� 0:02
m� 1054:5

� 1� 5480m0:8

� �

1� 0:0153
m

¼ exp � 0:3265
m0:2

� �

Trial and error solution gives m = 0.032 kg/s. Hence,
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Re ¼ 2:11� 106m ¼ 2:11� 106 � 0:032 ¼ 67520:

To ¼ 9:84
m

þ 400 ¼ 9:84
0:032

þ 400 ¼ 707:5 K:

For the same heat transfer rate, air mass flow rate is 6.4 times of that of helium.

Example 8.47 0.5 kg/s of air at 25°C is to be heated to 75°C. Available for the service are
40 mm diameter 3 m long tubes. The surface temperature of the tubes will be maintained at
100°C by condensing steam. Determine the number of tubes required for the service.

Solution

Air properties at the mean bulk temperature tm [= (ti + to)/2] of 50°C from Table A5 are:

q ¼ 1:0949 kg=m3; c ¼ 1007:2 J=ðkgKÞ; l ¼ 1:9512� 105 Ns=m2; k
¼ 0:02799 W=ðm KÞ and Pr ¼ 0:703:

For isothermal tube surface, the air outlet temperature is given by

tw � to
tw � ti

¼ exp � P

mc
Lh

� �

The equation can be rewritten as

ln
tw � ti
tw � to

� �
¼ P

mc
Lh

or

ln
tw � ti
tw � to

� �
¼ pd

mc
Lh ðiÞ

where heat transfer coefficient,

�h ¼ k

d
Nu

or

�h ¼ k

d
� 0:024Re0:8 Pr0:4

using Dittus Boelter equation for fully developed turbulent flow (assumption).
The Reynolds number based on mass velocity of air through the tube:

Re ¼ md

ðp=4Þd2l ¼ 4m
pdl
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Hence,

�h ¼ k

d
� 0:024� 4m

pdl

� �0:8

Pr0:4

Substitution in Eq. (i) gives

ln
tw � ti
tw � to

� �
¼ pd

mc
� L� k

d
� 0:024� 4m

pdl

� �0:8

Pr0:4

or

m0:2 ¼ 1

ln tw�ti
tw�to

� � pkL
c

� 0:024� 4
pdl

� �0:8

Pr0:4

Substituting values of various terms, we have

m0:2 ¼ 1

ln 100�25
100�75

� �� p� 0:02799� 3
1007:2

� 0:024� 4
p� 0:04� 1:9512� 10�5

� �0:8

� 0:703ð Þ0:4

¼ 0:4638

or

m ¼ 0:0215 kg=s:

Reynolds number

Re ¼ 4m
pdl

¼ 4� 0:0215
p� 0:04� 1:9512� 10�5

¼ 35074:

Length to diameter ratio L/d = 3/0.04 = 75. Hence, assumption of fully developed tur-
bulent flow is correct.

For total mass flow rate of 0.5 kg/s, the required number of tubes is

n ¼ Total flow
Flow per tube

¼ 0:5
0:0215

¼ 23:25:

Hence, 24 tubes will be used.

Example 8.48 Water, while flowing at 15 ml/s through a rectangular cross-Section (20 mm
� 5 mm) tube, is to be heated from 20°C to 50°C. Tube surface is maintained at 60°C.
Determine the length of tubing.
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Solution

Water properties at the mean bulk temperature tm [= (ti + to)/2] of 35°C from Table A4 are:

q ¼ 994 kg=m3; c ¼ 4178 J=ðkg KÞ; l ¼ 718� 10�6 N s=m2; k
¼ 0:624 W=ðm KÞ and Pr ¼ 4:81:

For isothermal tube surface, the air outlet temperature is given by

tw � to
tw � ti

¼ exp � P

mc
Lh

� �

The equation can be rewritten as

L ¼ ln
tw � ti
tw � to

� �
mc

Ph
ðiÞ

Mass flow rate,

m ¼ 15� 10�6 � 994 ¼ 0:0149 kg=s:

For rectangular cross-section tubing, hydraulic diameter is

dh ¼ 4WH

2ðW þHÞ ¼
4� 20� 5
2� ð20þ 5Þ �

1
1000

¼ 0:008 m:

Reynolds number of flow,

Re ¼ mdh
ðW � HÞl ¼ 0:0149� 0:008

ð20� 5Þ � 10�6 � 718� 10�6
¼ 1660:

Flow is laminar. Assuming flow to be fully developed, the fully developed Nusselt
number NuT for the case of uniform temperature at four walls of a rectangular duct is
approximated by the following equation:

NuT ¼ 7:541ð1� 2:610a� þ 4:970a�2 � 5:119a�3 þ 2:702a�4 þ 0:548a�5Þ ð8:40Þ

where a* is aspect ratio (ratio of duct height to width).
Hence, for a* = 5/20 = 0.25,

NuT ¼ 7:541ð1� 2:610� 0:25þ 4:970� 0:252 � 5:119� 0:253 þ 2:702� 0:254 þ 0:548� 0:255Þ
¼ 4:44:

Heat transfer coefficient,

h ¼ k

dh
� NuT ¼ 0:624

0:008
� 4:44 ¼ 346:3 W= m2 K

� �
:
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Substitution in Eq. (i) gives

L ¼ ln
60� 20
60� 50

� �
� 0:0149� 4178
½2ð20þ 5Þ=1000� � 346:3

¼ 4:984 m:

Length to hydraulic diameter ratio, L/Dh = 4.984/0.008 = 623. Hence, the assumption of
fully developed flow is valid.

Example 8.49 A 0.4 m diameter 100 m long thin walled pipeline transports hot water.
Water enters the pipe at 80°C. Water flow rate is 5 kg/s. In order to reduce the heat loss from
the pipeline, it is covered with 50 mm thick insulation [ki = 0.05 W/(m K)] and is buried
2.0 m below the Earth’s surface [ke = 1.0 W/(m K)]. If the earth’s surface temperature is 0°
C, determine the outlet temperature of the water and heat loss.

Solution

For a differential control volume in the water, refer Fig. 8.19b,

dq ¼ mcdtm ¼ ðts � tmÞ=Rt

or

dtm
ðts � tmÞ ¼

1
mcRt

where total resistance to heat flow

Rt ¼ 1
pDidxhi

þ 1
2pkidx

ln
Do

Di

� �
þ 1

keS

where S is shape factor. From Case 8, Table 5.2 (L >> R, Z > 3Ro),

S ¼ 2pdx

ln 2Z
Ro

� � ¼ 2p

ln 2�2
0:25

� � dx ¼ 2:27dx

a b

x L

tmi tmo 

dx

mc(tm+dtm)

dq

ts 

mctm

Z 

DoDi 

Fig. 8.19 Example 8.49
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We can write

Rt ¼ 1
pDihi

þ 1
2pki

ln
Do

Di

� �
þ 1

ke � 2:27

� 	
=dx ¼ R0

t

dx

Hence,

dtm
ðtm � tsÞ ¼ � dx

mcR0
t

Integration for length L gives

ln
ts � tmo
ts � tmi

� �
¼ � L

mcR0
t

or

tmo ¼ ts � ðts � tmiÞ exp � L

mcR0
t

� �
ðiÞ

The thermophysical properties of water at 80°C are:

q ¼ 971:8 kg=m3; c ¼ 4198 J=ðkg KÞ; l ¼ 351� 10�6 kg=ðm sÞ;
k ¼ 0:670 W=ðm KÞ and Pr ¼ 2:23:

The Reynolds number of flow in the pipe,

Re ¼ qUmDi

l
¼ m

ðp=4ÞD2
i

Di

l
¼ 4m

pDil
¼ 4� 5

p� 0:4� 351� 10�6
¼ 45343:

Flow is turbulent. Length to diameter ratio of the pipe is 50/0.4 = 125. Flow can be
assumed to be fully developed. From Dittus-Boelter relation, heat transfer coefficient is

hi ¼ Nuk
Di

¼ k

Di
� 0:024Re0:8 Pr0:4 ¼ 0:67

0:4
� 0:024� 453430:8 � 2:230:4

¼ 294:3 W= m2 K
� �

:

Hence,

R0
t ¼

1
pDihi

þ 1
2pki

ln
Do

Di

� �
þ 1

ke � 2:27

¼ 1
p� 0:4� 294:3

þ 1
2p� 0:05

ln
0:5
0:4

� �
þ 1

1:0� 2:27

¼ 1:154 K m=W:

Substitution in Eq. (i) gives
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tmo ¼ ts � ðts � tmiÞ exp � L

mcR0
t

� �

¼ 0� ð0� 80Þ exp � 100
5� 4198� 1:154

� �
¼ 79:67�C:

Heat loss,

q ¼ mcðtmi � tmoÞ ¼ 5� 4198� ð80� 79:67Þ ¼ 6927 W:

8.13 Summary

There are a large number of convection problems for which the analytical solutions for
determination of heat transfer coefficient have not met the success especially the problems
involving turbulent flow or flows where detachment occurs, for example around cylinders,
spheres or other curved bodies. Thus the direct measurement of the heat transfer coefficient
(experimental study) has been the main approach for the solution of the most of the heat
transfer problems. The experimental results are presented in the form of generalized corre-
lations using the method of dimensional analysis termed as empirical relations because they
rely on the observations and experiments not on theory. Based on the dimensional analysis,
the generalized correlation for forced convection is written as Nu = w(Re) /(Pr). The form
of functions w(Re) and /(Pr) are specified for different conditions of heat transfer by con-
vection on the basis of theoretical analysis or experimental investigations. Physical signifi-
cance of the dimensionless numbers has also been explained in Sect. 8.3.3. Experimental
scheme for the determination of forced convection heat transfer coefficient for uniform
temperature and uniform heat flux conditions has been discussed in Sect. 8.4.

Correlations of friction factor and heat transfer have been presented for tubes, annuli,
rectangular and parallel plate ducts, flat plates, submerged bodies and tube banks for different
boundary conditions.

Fluid flow and heat transfer characteristics of circular cross-section smooth ducts (tubes)
have been investigated in a greater detail as this geometry is having wide applications. Both
laminar and turbulent flows in circular tubes have been divided into four categories: fully
developed, hydrodynamically developing, hydrodynamically developed but thermally
developing, and both hydrodynamically and thermally developing (i.e., simultaneously
developing).

The fully developed laminar flow of a constant property fluid in a smooth circular tube has
been studied analytically as presented in Chap. 7. The Fanning friction factor correlation is
f = 16/Re. The hydrodynamic development length Lhy in laminar flow, the distance required
for the friction factor to decrease to within 5% of its fully developed value, is given by Lhy/
D � 0.05Re. Friction factor in the hydrodynamic entrance region is higher than that for the
fully developed case and is defined as apparent mean friction factor �fapp, refer Fig. 8.2.

For the laminar flow with fully developed velocity and temperature profiles i.e., hydro-
dynamically and thermally fully developed flow, the Nusselt number is a function of the type
of heating boundary condition. From the analytical results as given in Chap. 7, Nu = 4.364
for constant heat rate (uniform heat flux) and 3.658 for constant surface temperature
condition.
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The thermal entrance length (temperature profile developing and fully developed velocity
profile) Lth in laminar flow required for the Nusselt number to decrease to within 5% of its
fully developed value is given by Lhy/D � 0.05RePr. For the constant surface temperature
(known as Graetz problem), the local Nusselt number Nux and the mean Nusselt number
Num in the terms of non-dimensional tube length x+ = (x/R)/(RePr) are given in Fig. 8.3.
Dimensionless group RePr(D/x) is known as Graetz number Gz. For the constant heat rate
(uniform heat flux), the values of the local Nusselt number are given in Fig. 8.4. Empirical
relation of average Nusselt number over the entire length of the tube for fully developed
laminar flow in tubes at constant wall temperature is given in Eq. (8.15).

If the velocity and temperature (thermal) profiles develop simultaneously, the resulting
Nusselt numbers in the entry region are always higher than the preceding case. Constant
surface temperature and constant heat rate results are presented in Fig. 8.5a, b, respectively,
in the form of mean Nusselt number Num or local Nusselt number Nux as a function of x+.

For constant surface temperature condition, Sieder and Tate equation may be used for
both liquids and gases in the laminar region where the thermal and velocity profiles are
developing simultaneously. The equation must be used only for entrance region.

It is to be noted that for the turbulent duct flow, the hydrodynamic and thermal entrance
lengths are much shorter than the corresponding lengths in the laminar flow. Hence, the
results of fully developed turbulent flow friction factor and heat transfer are frequently used
in design calculations neglecting the effect of the entrance regions. However, for low Prandtl
number fluids, and for the heat exchangers short in length, the entrance region effects must be
considered.

Several experimental friction factor correlations have been developed for fully developed
turbulent flow in smooth ducts. Some of these correlations are presented in Table 8.2, which
must be critically studied for application. In comparison to the laminar flow, the hydraulic
entrance length is much shorter for turbulent flow and its dependence on the Reynolds
number is weaker. In many pipe flow of practical interest, the entrance effects are not
significant beyond a pipe length of 10 diameters.

For fully developed velocity and temperature profiles, two boundary conditions of interest
are uniform heat flux or constant heat rate along tube length (UHF) termed as H boundary
condition and a uniform wall temperature (UWT) termed as T boundary condition. The
constant heat rate Nusselt number NUH is always greater than the constant surface tem-
perature Nusselt number NuT, but with exception of very low Prandtl number fluids, the
difference in NH and NuT is much smaller than for the laminar flow. At Pr = 0.7, it is only a
few percent.

A large number of Nusselt number correlations, both theoretical and empirical (based on
experimental data), have been developed for fully developed turbulent flow in smooth tubes.
Some of them are presented in Table 8.3. Remarks in third column of the table are worth
consideration before selecting a correlation for use. Researchers have also presented corre-
lations covering laminar, transition and turbulent flow regimes, which are, in general, difficult
to use.

When the velocity and temperature profiles develop simultaneously in turbulent flow,
entry region correction is required, which is strongly affected by the shape at the inlet. If
L/D > 60, entry region correction is not required.

Effects of temperature varying properties on heat transfer and friction factor values have
been discussed and the empirical relations have been presented in Sect. 8.6. When the heat
transfer takes place, the temperature of the fluid varies both over the cross-section and along
the tube length. Since the transport properties of most fluids vary with temperature and hence
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will vary over the cross-section of the tube. This causes distortion of the laminar velocity
profile due to the heating or cooling of fluids. In the case of the turbulent flow, the effect of
the variation of viscosity at the wall is mainly confined to the laminar sub-layer. The laminar
sub-layer tends to be thinner for a decrease in the viscosity at the wall due to the heating of
liquids or cooling of gases. The reverse is true when the liquid is being cooled or the gas is
being heated.

The method to take account of the effects of the variation of the fluid properties with the
temperature is to evaluate all the properties at the bulk temperature, and then the variable
properties effects on Nusselt number and friction factor are lumped into functions of ratio of
the wall to bulk temperatures (Tw/Tb)

n and (Tw/Tb)
m, respectively, for gases or viscosities

(lw/lb)
n and (lw/lb)

m, respectively, for liquids. The exponents m and n are functions of the
geometry and type of flow. It is to note that information on the flow through noncircular
tubes with variable properties is not complete and hence it is recommended that the circular
tube results be used.

It has been found that nearly the same turbulence intensity and the friction factor prevail
in circular and other duct geometries (such as annular, rectangular, square, triangular and
irregular passages) if the ratio of flow-passage area to the wetted parameter is kept constant.
This ratio is called the hydraulic radius Rh = A/P. However, it has been found convenient to
use the term equivalent or hydraulic diameter Dh = 4A/P. It has been reported that the use of
hydraulic diameter for ducts with sharp corners (e.g., triangular ducts) may lead to the error
of the order of 35% in turbulent flow friction and heat transfer coefficients determined from
circular duct correlations.

Fully developed Fanning friction factor for laminar flow in concentric annular duct results
are presented in Table 8.6 as function of radius ratio.

Fully developed laminar flow Nusselt number in concentric annular duct is independent of
the Reynolds number and Prandtl number. There are two Nusselt numbers of interest, one for
inner surface (when inner surface alone is heated) and other for the outer surface (when outer
surface alone is heated). Their values for constant heat rate condition are given in Table 8.7.
For the case of constant surface temperature on one surface (with the other surface insulated),
the Nusselt number data are presented in Table 8.8.

In the case of parallel plates, Nu = 7.541 when both surfaces are at the same constant
temperature, while it is 8.235 for identical heat rates on the two surfaces of the duct for
laminar flow. Average Nusselt number relation for the thermal entrance region flow between
isothermal parallel plates for Re < 2800 has been presented as Eq. (8.27). For parallel plates
hydraulic diameter is taken as twice the spacing between the plates.

Discussion of various correlations and data of friction factor and Nusselt number for
turbulent flow in circular tube annuli are presented in Sect. 8.7.2. The friction factors, as
determined with water, were found to be 6−8% higher than the generally accepted values of
smooth circular tube for 4000 < Re < 17000. The same for air flow were found to be about
1–10% higher than circular tube flow values. Approximate correlation of Kays and Perkins,
f = 0.085 Re−0.25 for 6000 < Re < 300,000, which gives the friction factor in circular annuli
about 10% higher than pipe flow values and having little dependence on the radius ratio may
be used. It is reported that the annular flow develops more quickly than pipe flow. The
development length is reported to be 20–30 diameters for a close approach to the fully
developed flow.

Equation (8.32), f = 0.1268 Re−0.3 for 5000 < Re < 1.2 106, and Eq. (8.33), f = 0.0868
Re−0.25 for 1.2 � 104 < Re < 1.2 � 106, are recommended to obtain the friction factor for
the fully developed turbulent flow in the parallel plate duct.
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Fully developed constant heat rate turbulent flow Nusselt number results for Pr = 0.7 as
function of radius ratio of the annular duct are presented in Table 8.9 The solutions are
presented for one surface heated and other insulated.

It is recommended that the Nusselt number for turbulent flow between parallel plates can
be determined using the circular duct correlations with hydraulic diameter in Nusselt number
and Reynolds number as twice the spacing between the plates.

Correlations for laminar flow friction factor and fully developed Nusselt numbers NuT for
the case of uniform temperature at four walls and uniform heat flux at four walls constant
along the length of the duct, but uniform temperature around the periphery NuH as function
of duct aspect ratio (ratio of duct height to width) of rectangular duct have been presented in
Sect. 8.8. Some typical results for the friction factor, and constant heat rate and surface
temperature Nusselt numbers are listed in Table 8.10 along with circular and parallel plate
ducts for comparison.

The entrance configuration (abrupt or smooth) exerts a marked influence on the value of
critical Reynolds number Rec for flow in smooth rectangular duct. Another unique feature of
the fully developed turbulent flow in rectangular ducts is the presence of secondary flow
(flow normal to the axis of the duct), which exerts a significant effect on the turbulence fluid
flow characteristics of these ducts and increases the friction factor by approximately 10%.

With uniform heating at four walls of a rectangular duct, circular duct Nusselt number
correlations provide results with ± 9% accuracy while for the duct with equal heating at two
long walls, circular duct correlations provide result with accuracy of ± 10% for 0.5 �
Pr � 10 and 104 � Re � 105. In the case of heating at one long wall only (asymmetrical
heating), the circular duct correlations provide values which may be up to 20% higher than
the actual experimental values for 0.7 � Pr � 2.5 and 104 � Re � 106.

Friction factor and Nusselt number correlations for laminar and turbulent external forced
flow over a flat plate have been developed in Chap. 7 and are also presented in this chapter in
Sect. 8.9.

Forced laminar and turbulent flows across cylinders and spheres have been discussed in
Sect. 8.10. Plots of drag coefficient CD versus the Reynolds number for cylinder and sphere
in cross flow have been presented in Fig. 8.10. Nusselt number correlations for heat transfer
from cylinders have been presented in Eqs. (8.47)–(8.52). Correlation for the average
Nusselt number between an isothermal spherical surface and free stream fluid is presented in
Eq. (8.55).

The flow across tube banks, the tube array or bundle is frequently encountered in heat
exchangers. The in-line and staggered arrangements of the tubes are frequently used. For
both the arrangements, the flow across the first transverse row of the tubes is practically the
same as that for a single tube. The nature of the flow across the tubes of remaining rows
depends on the way the tubes are arranged. However, in most applications, the flow is
turbulent after a few rows. Correlations for the average Nusselt number for number of rows
n 	 16 are presented in Eqs. ((8.58a), (8.58b), (8.58c), (8.58d) and (8.59a), (8.59b),
(8.59c), (8.59d) for in-line and staggered arrangements, respectively. For n < 16, the heat
transfer coefficient is lower due to the lower level of turbulence and the Nusselt number
values from Eqs. (8.58a), (8.58b), (8.58c), (8.58d) and (8.59a), (8.59b), (8.59c), (8.59d) is
multiplied by a correction factor.

8.13 Summary 675

www.konkur.in

Telegram: @uni_k

http://dx.doi.org/10.1007/978-981-15-3988-6_7
https://t.me/uni_k


Typical variation of the Nusselt number with the Peclet number Pe (= RePr) for flow of
liquid metal through a tube with uniform heat flux is presented in Fig. 8.14. The Nusselt
number is having a value of 4.36 for the laminar flow in tubes. The transition from the
laminar to the turbulent flow occurs at critical value of Pe � 40. At moderate value of the
Peclet number beyond the critical value, the heat transfer by the turbulent mixing is small
compared with the conductive transport. When the Peclet number is greater than 100, the
heat exchange by turbulent mixing becomes appreciable and cannot be neglected. Some of
the Nusselt number correlations for fully developed turbulent flow of liquid metals are given
in Table 8.13. Although the Nusselt number tends to be low for the liquid metal , the heat
transfer coefficient is very high because of the high thermal conductivity of the liquid metals.

Roughness is encountered in commercial pipes and artificial roughness, which creates
turbulence close to the wall, has been used to enhance heat transfer. Nikuradse carried out
experiments to study the relationship of friction factor to the Reynolds number for pipes of
various roughnesses. At low Reynolds number (within the first region termed as
hydraulically smooth regime), the roughness has no effect on the resistance. Nikuradse
noticed that the critical Reynolds number for all degrees of relative roughness occurs
between 2160 and 2500. With an increasing Reynolds number, if the surface roughness
height e is of the order of the magnitude of the laminar sublayer thickness dl, it tends to break
up the laminar sublayer. This increases the wall shear stress and the ratio of the surface
roughness height e and laminar sublayer thickness dl determines the effect of the roughness.
The roughness Reynolds number e+ = √(f/2)Re(e/D) has been used to define three flow
regimes in roughened ducts, namely (i) hydraulically smooth (0 � e+ � 5), (ii) transition
regime (5 < e+ � 70) and (iii) fully rough regime (e+ > 70). Moody determined the
equivalent sand-grain roughness for different types of commercial pipe surfaces and also
presented plot of friction factor versus the Reynolds number as function of relative pipe
roughness e/D. Moody’s plot may be used to determine friction factor for flow in tubes.

Several studies on heat transfer coefficient behaviour for different roughness types have
been carried out by researchers and correlations have been proposed. Some of them are
presented in Table 8.14 for fully developed turbulent flow in the fully rough flow regime of a
circular duct.

It is to note that in the case of fluids with high Prandtl number, the resistance of the heat
transfer is mainly concentrated in the laminar sublayer, which is thin compared to the
hydrodynamic boundary layer. For the low Prandtl number fluids, the thermal resistance is
distributed over a larger portion of the duct cross-section because the thermal boundary layer
is thicker than the hydrodynamic boundary layer. Since the roughness at the wall creates
turbulence near the wall, the heat transfer enhancement due to artificial roughness is greater
for the fluids with high Prandtl numbers.

The experimental results of heat transfer and fluid flow characteristics in roughened ducts
have been presented either in the form of direct dependence of frition factor and Nusselt
number on the system and operating parameters or in the form of interrelated roughness and
heat transfer functions. This method makes it possible to present results in a most general
form taking into account the various parameters involved including the roughness
parameters.
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Looking to the importance of this chapter in the design of heat exchangers, a significant
number of numerical problems have been included in the chapter to illustrate application of
various correlations presented in the chapter.

Review Questions

8:1 Explain the principle of the dimensional analysis. What are the limitations of the
dimensional analysis?

8:2 What are fundamental and derived dimensions?
8:3 Express the variables in Table 8.1 in terms of M-L-T-h and M-L-T-h-Q systems of

fundamental dimensions.
8:4 List the variables that affect the forced convection heat transfer coefficient.
8:5 Using the technique of dimensional analysis establish the following relation for forced

convection heat transfer.

Nu ¼ wðReÞ/ðPrÞ:

8:5 With the help of Buckingham pi theorem, show that for the forced convection

Nu ¼ f ðRe; PrÞ:

8:6 At low flow velocities, the free convection effect may be present in forced convection
heat transfer case. Using dimensional analysis, show that the following form of cor-
relation is obtained.

f ðNu;Re; Pr;GrÞ ¼ 0:

8:7 Derive the relationship (for forced convection)

Nu ¼ f ðRe; Pr;EcÞ:

8:8 What is the physical interpretation of the following non-dimensional numbers?

Re; Pr;Nu; Pe;St;Ec:

8:9 Define hydraulic diameter.
8:10 Discuss the effect of the heating or cooling of a fluid on velocity distribution under

laminar flow condition in a tube. How does this affect the heat transfer and friction
factor and how this effect is taken into account?

8:11 Enlist various heat transfer-coefficient and friction-factor correlations developed for
laminar and turbulent flows in circular tubes. Discuss them.

8:12 What are the effects of thermal and hydrodynamic entry lengths on the heat transfer
coefficient and friction factor in both laminar and turbulent tube flows? How is this
effect taken into account?
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8:13 Obtain a relation between the convective heat transfer coefficient and the friction
factor when Pr = 1.

Problems

8:1 What is the effect of the following on the average value of the heat transfer coefficient
in the case of fully developed turbulent flow in tubes?
(a) Two fold increase in the fluid mass flow rate; all other parameters remaining the

same.
(b) Two fold increase in the tube diameter; all other parameters including the flow

velocity are the same.
[Ans. For fully developed turbulent flow in tubes, Dittus Boelter relation may be

used, which gives Nu / Re0:8 ¼ qUmd
l

� �0:8
; h ¼ Nu k

d / U0:8
m d�0:2; Two fold

increase in velocity will increase h h / U0:8
m

� �
by 20.8 = 1.741 times. A two fold

increase in the diameter will reduce h h / 1
d0:2

� �
by 20.2 i.e., 14.86%.]

8:2 Water flows through a long electrically heated smooth tube of 30 mm diameter. If
velocity and temperature profiles are fully developed at a location x = a, determine the
heat transfer coefficient and heat flux at the location. The mass flow rate of water is
0.5 kg/s. At x = a, water temperature is 30°C and wall temperature is 40°C.
[Ans. Thermo-hydraulic properties of water at bulk temperature 30°C are: q = 995.6
kg/m3, k = 0.617 W/(m K), l = 7.97 � 10−4 N s/m2, Pr = 5.4; Re ¼ qUmd

l ¼ 4m
pdl ¼

26625; Turbulent flow; h ¼ Nu k
d ¼ 0:024Re0:8 Pr0:4 k

d ¼ 3362 W/(m2K);
q
A ¼ hðtw � tbÞ ¼ 33:62 kW/m2:]

8:3 One kg/s of water at 35°C flows through a 25 mm diameter tube whose surface is
maintained at a uniform temperature of 100°C. Determine the required length of the
tube for 65°C water outlet temperature.
[Ans. Water properties at the mean bulk temperature tm = (ti + to)/2 = 50°C from
Table A4:
q =988.1 kg/m3, c = 4182 J/(kg K), l = 544 � 10−6 N s/m2, k = 0.644 W/(m K) and
Pr = 3.55. Re ¼ md

ðp=4Þd2l ¼ 4m
pdl ¼ 4�1

p�0:025�544�10�6 ¼ 93620; From Dittus and Boelter

equation, h ¼ k
d � 0:024Re0:8 Pr0:4 ¼ 0:644

0:025 � 0:024� 936200:8 � 3:550:4¼ 9735 W/(m2

K); From tw�to
tw�ti

¼ exp � P
mc Lh

� �
, L ¼ � mc

Ph
ln tw�to

tw�ti

� �
¼� 1�4282

p�0:025�9735 ln
100�65
100�35

� � ¼
3:46m.]

8:4 Cold fluid is passing through a thin-walled tube 10 mm in diameter 2 m long whose
surface is maintained at 100°C. The cold fluid flows at a rate of 0.05 kg/s and its inlet
and outlet temperatures are 30 and 60°C, respectively. Determine the outlet temperature
of the cold fluid if its flow rate is increased by 50% with all other conditions remaining
the same. Given that dynamic viscosity of the fluid is 0.0004 N s/m2. Flow may be
assumed to be fully developed.

[Ans. tw�to
tw�ti

¼ exp � P
mc L

�h
� �

gives �h
c ¼ m

PL � ln tw�ti
tw�to

� �
¼ 0:05

p�0:01�2�ln 100�30
100�60

� � ¼ 0:445;

Reynolds number Re ¼ 4m
pdl ¼ 4�0:05

p�0:01�0:0004 ¼ 15915: The flow is turbulent. For increase

in mass flow rate by 50%, the Reynolds number will increase by 50%. Since h / Re0:8
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from Dittus-Boelter relation for fully developed turbulent flow, new
�h=c � 0:445� 1:50:8 ¼ 0:616. The fluid outlet temperature for increased mass flow rate

to ¼ tw � ðtw � tiÞ exp � PL
m

�h
c

� �h i
� 100� ð100� 30Þ exp � p�0:01�2

1:5�0:05 � 0:616
� � ¼ 58:2�C:]

8:5 Air at 1 atmospheric pressure and 40°C is heated while it passes at a velocity of 8 m/s
through a tube 1 m long and 40 mm in diameter whose surface is maintained at 120°C.
Determine the outlet temperature of the air.
[Ans. Mean bulk temperature, tm ¼ ti þ to

2 ¼ 40þ to
2 ; Assuming a trial value of tm = 50°C,

the thermophysical properties of the air are: q = 1.0949 kg/m3, k = 0.02799 W/(m K),
l = 1.9512 � 10−5 kg/(m s), cp = 1007.2 J/(kg K) and Pr = 0.703; Re ¼ qUmD

l ¼
17957; Flow is turbulent. Dittus-Boelter equation gives Nu = 0.024Re0.8Pr0.4 = 52.77;
�h ¼ Nu k

D ¼ 36:93 W/(m2K); m ¼ q p
4D

2Um ¼ 0:011 kg/s; outlet temperature to ¼ tw �
ðtw � tiÞ exp � PL

m
�h
c

� �h i
¼ 120� ð120� 40Þ exp � p�0:04�1

0:011 � 36:93
1007:2

� � ¼ 67:38�C;

Revised mean temperature tm = 53.69°C, retrial with this estimate of tm may be carried
out.]

8:6 Air at atmospheric pressure and 25°C mean bulk temperature flows through a rectan-
gular duct (height H = 400 mm and width W = 800 mm) with a mean velocity of
5 m/s. The duct is at an average temperature of 40°C. Determine the heat loss per unit
length of the duct.
[Ans. At 25°C bulk temperature, thermophysical properties of the air are:
q = 1.1868 kg/m3, k = 0.02608 W/(m K), l = 1.8363 � 10−5 N s/m2, Pr = 0.709;
Dh ¼ 4WH

2ðW þHÞ ¼ 0:53 m; Re ¼ qUmDh

l ¼ 1:71� 105;Nu ¼ 0:024Re0:8 Pr0:4 ¼ 321:3;

h ¼ Nu k
Dh

¼ 15:81 W/(m2 K); q
L ¼ h½2ðW þHÞ�ðtw � tbÞ ¼ 569:2 W/m:]

8:7 Air at atmospheric pressure and 100°C is flowing through a 20 mm diameter tube at a
velocity of 20 m/s. The wall temperature is 30°C above the air temperature all along the
tube length. Calculate the heat transfer rate per unit length of the tube. Assume fully
developed flow condition.
[Ans. At 100°C bulk temperature, thermophysical properties of the air are:
q = 0.9452 kg/m3, k = 0.0317 W/(m K), l = 2.172 � 10−5 N s/m2, Pr = 0.693, cp =
1.0113 kJ/(kg K); Re ¼ qUmd

l ¼ 17407; Flow is turbulent; h ¼ Nu k
d ¼

0:024Re0:8 Pr0:4 k
d ¼ 81:11 W/(m2 K); q

L ¼ hðpdÞðtw � tbÞ ¼ 152:85 W/m:]
8:8 For flow of 0.04 m3/s of oil at 20°C bulk temperature through a 1.5 m long tube

125 mm in diameter kept at 30°C, determine the average heat transfer coefficient. The
property values are: k = 0.14 W/(m K), lb = 1.2 kg/(m s), lw = 0.6 kg/(m s), Pr =
20000, cp = 2000 J/(kg K), q = 890 kg/m3.
[Ans. ReL ¼ qUmd

l ¼ qVd
ðp=4d2Þl ¼ 4qV

pdl ¼ 302; Flow is laminar;

Lhy ¼ 0:05Red ¼ 1:89m > 1.5 m; Lth ¼ 0:05Re Pr d ¼ 37:75 km [ 1:5 m; Flow is
simultaneously developing; Sieder-Tate relation may be used;

Nu ¼ 1:86 d
L � Re Pr
� �0:33 lb

lw

� �0:14
¼ 156;h ¼ Nu� k

d ¼ 174:7 W/(m2K):]

8.13 Summary 679

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


8:9 Air at atmospheric pressure and 20°C flows across a long cylinder of 50 mm diameter at
a velocity of 40 m/s. The cylinder surface temperature is maintained at 100°C. Cal-
culate the heat transfer rate per unit length of the cylinder.
[Ans. At mean temperature tm = 60°C, air properties: q = 1.059 kg/m3,
k = 0.02875 W/(m K), l = 1.997 � 10−5 kg/(m s), Pr = 0.701, cp = 1008 J/(kg K);
Rex ¼ qU1d

l ¼ 106059; From Table 8.11, C = 0.027, n = 0.805; h ¼ Nu k
d ¼

0:027Re0:805 Pr1=3 k
d ¼ 153:1 W/(m2K); q

L ¼ hðpdÞðtw � tbÞ ¼ 1923:9 W=m.]
8:10 Air at 25°C flows at 10 m/s parallel to the surface of a highly polished aluminium plate

flat plate maintained at a uniform temperature of ts = 75°C by a series of segmented
heaters. Determine the heat removed from the section between x1 = 0.3 m and
x2 = 0.4 m. The plate width is 0.3 m. The flow is turbulent throughout.
[Ans. For air at film temperature of 50°C from Table A5, q = 1.0949 kg/m3,
l = 1.9512 � 10−5 kg/(m s), k = 0.02799 W/(m K) and Pr = 0.703;

hx ¼ k
xNux ¼ k

x � 0:0296Re0:8x Pr1=3 ¼k
x � 0:0296 qU1x

l

� �0:8
Pr1=3; Hence, hx1 ¼ 0:02799

0:3 �
0:0296� 1:0949�10�0:3

1:9512�10�5

� �0:8�0:7031=3 ¼ 37:25 W/(m2 K), Similarly h�2 = 35.17 W/(m2

K); The average heat transfer coefficient h�1-�2 for distance x1 = 0.3 m and x2 = 0.4 m
is (37.25 + 35.17)/2 = 36.21; Heat transfer rate q = hx1-�2 � (x2 – x1) W � (ts -
t∞) = 54.3 W.]

8:11 Air at 1 atm, 25°C and 5 m/s is in cross flow over a long cylinder of 30 mm diameter.
Determine the drag force per unit length of the cylinder.
[Ans. For air at 25°C from Table A5, q = 1.1868 kg/m3, l = 1.8363 � 10−5 kg/(m s);
ReD ¼ qU1D

l ¼ 1:1868�5�0:03
1:8363�10�5 ¼ 9694; From Fig. 8.10, CD � 1; From Eq. (8.46), FD ¼

CDA 1
2 qU

2
1

� �
; where A = LD; Substitution gives FD ¼ 1� ð1� 0:03Þ�

1
2 � 1:1868� 52
� � ¼ 0:445 N=m.]

8:12 Water at 25°C and 10 m/s flows over a sphere of 10 mm diameter. Surface temperature
of the sphere is 75°C. Determine the drag force. What will be the drag force if fluid is
air?
[Ans. For water at film temperature of 50°C from Table A4, q = 988.1 kg/m3,
l = 544 � 10−6 kg/(m s); ReD ¼ qU1D

l ¼¼ 988:1�10�0:01
544�10�6 ¼ 1:8� 105; From Fig. 8.10,

CD � 0.4; From Eq. (8.46), FD ¼ CDA 1
2 qU

2
1

� �
; where A = frontal area = (p/4)D2;

Substitution gives FD ¼ 0:4� p
4 � 0:012 � 1

2 � 988:1� 102
� � ¼ 1:55N. For air at film

temperature of 50°C from Table A5, q = 1.0949 kg/m3, l = 19.512 � 10−6 kg/(m s);
ReD ¼ qU1D

l ¼1:0949�10�0:01
19:512�10�6 ¼ 5:6� 103; From Fig. 8.10, CD � 0.4; From Eq. (8.46),

FD ¼ CDA 1
2 qU

2
1

� �
; where A = frontal area = (p/4)D2; Substitution gives

FD ¼ 0:4� p
4 � 0:012 � 1

2 � 1:0949� 102
� � ¼ 0:0017N. Comment: In the present

case, drag force associated with water is significantly higher than for air because of
higher density of water.]

8:13 Air at 1 atm and 25°C flows at 7.5 m/s over inline tube bundle with p = pt = 25 mm.
The bundle contains 10 tubes per row. The tube diameter is 12.5 mm. If air outlet
temperature is 225°C and tube surface temperature is 400°C, determine the number of
rows of the tubes per m length.
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[Ans. Air properties at the mean bulk temperature tm [= (t∞i + t∞o)/2 = 125°C] are:
q = 0.8872 kg/m3, c = 1013.8 J/(kg K), l = 2.2776 � 10−5 kg/(m s), k = 0.0335 W/
(m K) and Pr = 0.689. At tw = 400°C, Prw = 0.683; Umax ¼ U1 � pt

pt�D ¼ 15 m=s;

ReD ¼ qUmaxD
l ¼ 7304; Assuming N > 16, from Eq. (8.58

c),Nu ¼ 0:27Re0:63D Pr0:36ðPr = PrwÞ0:25 ¼ 64:3; �h ¼ k
DNu ¼ 172:3 W= m2 Kð Þ; From 7.

16, t1o ¼ tw � tw � t1ið Þ exp � P
mcp

Lh
� �

, or ln tw�t1o
tw�t1i

� �
¼ � pDN

qU1Ntptcp
Lh, which gives

N ¼ ln tw�t1i
tw�t1o

� �
qU1Ntptcp

pDLh
¼ 190 for L = 1 m; No. of rows = N/Nt = 190/10 = 19 > 16.]

8:14 Liquid mercury at 20°C enters a metal tube of 20 mm internal diameter at the rate of
1 kg/s and is to be heated to 30°C. The tube wall is at a constant temperature of 40°C.
Determine the length of the tube. Given for the mercury: q = 13560 kg/m3, k = 8.7 W/
(m K), l = 1.5 � 10−3 kg/(m s), Pr = 0.025, cp = 139 J/(kg K).
[Ans. Reynolds number, Re ¼ qUmd

l ¼ 4m
pdl ¼ 4�1

p�0:02�1:5�10�3 ¼ 42441;

Pe ¼ Re Pr¼ 42441� 0:025 ¼ 1061; For constant wall temperature, Seban and Shi-
mazaki equation, Table 8.13, gives

h ¼ Nu k
d ¼ ð5:0þ 0:025Pe0:8Þ k

d¼ ½5:0þ 0:025� ð1061Þ0:8� � 8:7
0:02¼ 5039 W/(m2 K);

For isothermal case, ln tw�to
tw�ti

� �
¼ � PL

mcp
h, which gives L ¼ ln tw�ti

tw�to

� �
mcp
Ph

¼ ln 40�20
40�30

� �� 1:0�139
p�0:02�5039 ¼ 0:304m.]
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9Empirical Relations for Natural
or Free Convection

9.1 Introduction

The development of boundary layer along a flat vertical plate under natural or free con-
vection condition has been presented in Chap. 7. Figure 9.1 illustrates the nature of flow in
free-convection near heated horizontal plates and tubes of different dimensions. In case of a
large horizontal plate with heated surface facing upwards, the central portion of the plate is
practically isolated due to the flow established at the edges of the plate. The central portion
receives the cold fluid by flow of fluid from above. If the heated surface of the plate is facing
downward, the fluid coming in contact with the heated surface cannot move directly in the
upwards direction but only along the edges of the plate. Therefore, only a diminished level of
convection flow is possible in this case.

The flow structure near the horizontal cylinders differs significantly from the flow along a
flat vertical wall. For thin wires (d < 0.2–1.0 mm), the laminar flow is preserved throughout.
At very small temperature differences, almost a stationary film of heated fluid may form
around the wire.

9.2 Buoyancy Force in Natural Convection

In the free convection, the motion of the fluid is caused by the buoyancy force arising from
the change in the density of the fluid due to the rise in the temperature.

Consider any fluid element, see Fig. 9.2, which is at a temperature DT above the sur-
rounding fluid. If qo is the density of the surrounding fluid and q is the density of the fluid
element, then

qo ¼ qð1þ bDTÞ ðiÞ

where b is the coefficient of cubical expansion.
The buoyancy force acting upwards is

qoVg ðiiÞ
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Plate

Heated side

Heated side

Fig. 9.1 Free convection flow

Hot fluid 
element

mg = ρVg

ρoVg

ρ
ρo

Surrounding 
fluid 

Fig. 9.2 Forces on a fluid element under free convection

The gravitational force qVg acts downwards. The net force F acting on the fluid element is

F ¼ qoVg� qVg

¼ Vgðqo � qÞ ðiiiÞ

Using Eq. (i), we obtain

F ¼ qVgbðDTÞ ð9:1Þ

Thus the net force acting upwards per unit mass is bgDT. This force causes the upwards
motion of the fluid element.

9.3 Dimensional Analysis Applied to Natural Convection

From the experience, it has been found that the heat transfer coefficient in natural convection
depends on the viscosity l, thermal conductivity k, density q, temperature difference DT and
the characteristic dimension d. Since the net buoyancy force per unit mass is gbDT, the
product gb is also included as a variable. Hence we may write
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h ¼ f ðl; q; k; cp;DT; bg; dÞ ð9:2aÞ

or

h ¼ ClaqbkccdpDT
ebg f dg ð9:2bÞ

where C is a constant of proportionality and a, b, c, etc. are arbitrary indices.

9.3.1 Rayleigh’s Method

The dimensions of different physical quantities have been listed in Table 8.1. The dimen-
sions of quantities b and g are given in Table 9.1.

Substituting the dimensions of different variables in Eq. (9.1), we have

Q

L2Th
¼ C

M

LT

� �a M

L3

� �b Q

LTh

� �c Q

Mh

� �d

hð Þe L

hT2

� � f

Lð Þg

Equating the indices of the fundamental dimensions on both sides,

M 0 ¼ aþ b� d
L �2 ¼ �a� 3b� cþ f þ g
T �1 ¼ �a� c� 2f
h �1 ¼ �c� dþ e� f
Q 1 ¼ cþ d

There are seven unknowns and five equations. Therefore the values of five of them, say a,
b, c, e, and g may be determined in terms of the other two unknowns d and f, which gives

a ¼ d � 2f ; b ¼ 2f ; c ¼ 1� d; e ¼ f ; and g ¼ �1þ 3f

Substituting the values in Eq. (9.2b), we get

h ¼ Cld�2fq2f k1�dcdpDT
f ðbgÞ f d�1þ 3f

¼ C
k

d

� �
q2bgDTd3

l2

� � f
lcp
k

� �d

Table 9.1 Dimensions of different physical quantities

Variable Symbol
(units)

Dimensions

M�L -T-h -Q system M-L-T-h system

Coefficient of cubical expansion
Acceleration due to gravity

b (1/K)
g (m/s2)

h −1

LT−2
h −1

LT−2
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or

hd

k
¼ f

q2bgDTd3

l2

� � f
lcp
k

� �d" #

The dimensionless group q2bgDTd3

l2

� �
is termed as the Grashof number Gr. Hence

Nu ¼ f Gr; Prð Þ

The generalized correlation can be written as

Nu ¼ w GrÞ/ðPrð Þ ð9:3Þ

The form of functions w(Gr) and /(Pr) may be specified for different conditions of heat
transfer by convection on the basis of theoretical analysis or experimental investigations.

9.3.2 Buckingham’s Pi Method

f ðl; q; k; cp;DT ; bg; d; hÞ ¼ 0

There are eight variables and five fundamental units hence we expect (8 – 5), i.e., 3 p-
terms. Taking l, k, bg, DT and d as repeated variables, the p-terms can be established as
follows.

p1 ¼ lakb bgð ÞcDTddeh ðiÞ

or

1 ¼ M

LT

� �a Q

LTh

� �b L

hT2

� �c

hð Þd Lð Þe Q

L2Th

Equating the indices of the fundamental dimensions on both sides, we obtain

M: 0 ¼ a
L : 0 ¼ �a� bþ cþ e� 2
T : 0 ¼ �a� b� 2c� 1
h : 0 ¼ �b� cþ d � 1
Q: 0 ¼ bþ 1

Solution gives

a ¼ 0; b ¼ �1; c ¼ 0; d ¼ 0; and e ¼ 1:

Substitution in Eq. (i) gives
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p1 ¼ k�1dh ¼ hd

k
¼ Nu ðiiÞ

Following the above procedure,

p2 ¼ lakb bgð ÞcDTddeq ðiiiÞ

or

1 ¼ M

LT

� �a Q

LTh

� �b L

hT2

� �c

hð Þd Lð Þe M
L3

Equating the indices,

M: 0 = a + 1
L : 0 = −a − b + c + e - 3
T : 0 = −a − b – 2c
h : 0 = −b − c + d
Q: 0 = b

Solution gives

a ¼ �1; b ¼ 0; c ¼ 1=2; d ¼ 1=2; and e ¼ 3=2:

This gives

p2 ¼ l�1 bgð Þ1=2DT1=2d3=2q ¼ q2bgDTd3

l2

� �1=2

ðivÞ

Similarly,

p3 ¼ lakb bgð ÞcDTddecp ðvÞ

or

1 ¼ M

LT

� �a Q

LTh

� �b L

hT2

� �c

hð Þd Lð Þe Q

Mh

� �

Equating the indices,

M: 0 = a − 1
L : 0 = −a − b + c + e
T : 0 = −a − b – 2c
h : 0 = −b − c + d − 1
Q: 0 = b + 1
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Solution of the above equations gives

a ¼ 1; b ¼ �1; c ¼ 0; d ¼ 0; and e ¼ 0:

This gives

p3 ¼ lk�1cp ¼ lcp
k

¼ Pr ðviÞ

Thus the functional relation is

f Nu;Gr; Prð Þ ¼ 0

The generalized correlation can be written as Eq. (9.3):

Nu ¼ w GrÞ/ðPrð Þ ð9:3Þ

Example 9.1 Using M, L, T and h system of fundamental units, develop the functional
relation for free convection heat transfer.

Solution

Buckingham’s pi method

Analysis in previous section has shown that (bg) and (ΔT) terms appear together in the final
functional relation for free convection hence we write

f ðl; q; k; cp; bgDT; d; hÞ ¼ 0 ðiÞ

There are seven variables and four fundamental units hence we expect (7 – 4), i.e., 3 p-
terms. Taking l, q, k, and d as repeated variables, the p-terms can be established as follows.

p1 ¼ laqbkcddðbgDTÞ ðiiÞ

or

1 ¼ M

LT

� �a M

L3

� �b ML

hT3

� �c

Lð Þd 1
h
� L

T2
� h

� �

Equating the indices of the fundamental dimensions on both sides, we obtain

M 0 = a + b + c
L 0 = −a − 3b + c + d + 1
T 0 = −a − 3c − 2
h 0 = −c
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Solution gives

a ¼ �2; b ¼ 2; c ¼ 0 and d ¼ 3:

Substitution gives

p1 ¼ l�2q2d3bgDT ¼ q2ðbgDTÞd3
l2

¼ Gr ðiiiÞ

Following the above procedure,

p2 ¼ laqbkcddcp ðivÞ

or

1 ¼ M

LT

� �a M

L3

� �b ML

hT3

� �c

Lð Þd L2

hT2

� �
;

which gives

p2 ¼ lcp
k

¼ Pr ðvÞ

Similarly,

p3 ¼ laqbkcddh; ðviÞ

which gives

p3 ¼ hd

k
¼ Nu ðviiÞ

Thus the functional relation is

f Nu;Gr; Prð Þ ¼ 0

The generalized correlation can be written as Eq. (9.3)

Nu ¼ w GrÞ/ðPrð Þ ð9:3Þ

Rayleigh’s Method

h ¼ ClaqbkccdpðbgDTÞed f ðviiiÞ

or

M

hT3

� �
¼ C

M

LT

� �a M

L3

� �b ML

hT3

� �c L2

hT2

� �d
1
h
� L

T2
� h

� �e

Lð Þ f
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Equating the indices of the fundamental dimensions on both sides, we obtain

M 1 = a + b + c
L 0 = - a - 3b + c + 2d + e + f
T -3 = - a - 3c - 2d -2e
h -1 = - c - d

We have four equations but six unknowns, so we shall determine the values of a, c, e and
f in the terms of b and d. Thus

a ¼ d � b; c ¼ 1� d; e ¼ b=2 and f ¼ ð3=2Þb� 1:

Substitution gives

h ¼ Cld�bqbk1�dcdpðbgDTÞb=2d3=2b�1

¼ C
k

d

q2ðbgDTÞd3
l2

� �b=2
lcp
k

� �d

or

hd

k
¼ C

q2ðbgDTÞd3
l2

� �b=2
lcp
k

� �d

Thus the functional relation is

Nu ¼ w GrÞ/ðPrð Þ ð9:3Þ

9.3.3 Physical Interpretation of Grashof Number

As mentioned in Chap. 7, the Grashof number Gr can be interpreted physically as a
dimensionless number representing the ratio of the buoyancy to viscous forces in free
convection, i.e.

Gr ¼ q2gbDTd3

l2

� �
¼ Buoyancy force

Viscous force

The relation Nu = f (Gr, Pr) suggest that the Grashof number plays a part in the free
convection analogous to the part played by the Reynolds number in forced convection. The
product (Gr � Pr), called the Rayleigh number Ra, serves as a criterion of turbulence in free
convection. However, the value of the product for the onset of turbulence depends on the
geometric configuration.

In the case of low velocity flows, the free convection may play a significant role in the
forced convection hence the functional relation is presented as (refer Chap. 8)

Nu ¼ w Re;Gr; Prð Þ ð8:6Þ
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9.4 Experimental Determination of Natural Convection Heat Transfer
Coefficient

A simple experimental setup for the experimental investigation of natural convection heat
transfer from a long horizontal tube is shown in Fig. 9.3a. The heat of the electric heater
flows in radial direction to the surface of the tube. The heat loss from the tube surface occurs
both by convection (qc) and radiation (qr) to the surroundings. The total heat loss rate from
the tube is

q ¼ qc þ qr ðiÞ

The convection heat transfer is given by

qc ¼ hAðTw � T1Þ ðiiÞ

and the radiation heat transfer is

Thermocouples

Heater

Side insulationCopper tube

Variac

Supply

V

A

a

b

Heater

Edge
insulation

Plate

Plate

Insulation
c

Fig. 9.3 Experimental setup for determination of natural convection heat transfer coefficient
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qr ¼ erAðT4
w � T4

s Þ ðiiiÞ

where

q electric power input
h heat transfer coefficient
A surface area of the tube = pDoL
Do tube outer diameter
L length of the tube
Tw tube wall temperature
T∞ surrounding air temperature
Ts surrounding surface temperature for radiation heat exchange
e emissivity of the tube surface

Substitution in Eq. (i) from Eqs. (ii) and (iii) gives

q ¼ hAðTw � T1Þþ erAðT4
w � T4

s Þ: ð9:4Þ

Equation (9.4) is solved for the heat transfer coefficient.
In the above analysis, the heat loss from the ends of the tube has not been considered

assuming it to be negligible. This condition can be fulfilled when the tube is sufficiently long
(say 2–3 m) and the ends are properly insulated. In the case of short tubes, guard heaters are
installed at the ends of the tubes. The wall temperature Tw is average of the readings of
sufficient number of thermocouples affixed axially and circumferentially on the tube wall
surface. All readings are taken when the steady state condition is achieved. The experiments
are conducted at different heating rates resulting in different values of wall temperature. The
result is presented in the form of relation Nu = f(Gr Pr).

The experimental scheme presented above can be extended for determination of heat
transfer coefficient from vertical and horizontal plates, refer Fig. 9.3b, c.

Example 9.2 An electrically heated 300 mm � 300 mm square metal plate is used for an
experimental determination of natural convection heat transfer coefficient. The plate is placed
in vertical position and is exposed to room temperature at 25°C. The plate is heated to a
uniform temperature of 60°C. The electric power input is measured as 40 W. The emissivity
of the surface has been estimated as 0.1. Determine the heat transfer coefficient.

Solution

In the equilibrium, the heat lost from one side of the plate is 20 W. Hence,

q ¼ hAðTw � T1Þþ eArðT4
w � T4

1Þ

or

20 ¼ h� 0:3� 0:3� ð333� 298Þþ 0:1� 0:3� 0:3� 5:67� 10�8 � ð3334 � 2984Þ;

assuming surrounding surface temperature for radiation heat exchange to be equal to the
surrounding air temperature.
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Solution of the equation gives

h ¼ 5:635 W/m2K:

9.5 Empirical Relations for Free or Natural Convection

9.5.1 Vertical Plate and Cylinders

(i) Uniform Temperature Condition (Isothermal Surface):

A vertical cylinder can also be treated as a vertical plate under laminar flow conditions if the
boundary layer thickness is much less than the diameter of the cylinder. This condition is
satisfied when

D

L
� C

Gr1=4L

ð9:5Þ

where D is the diameter of the cylinder, and C = 35 for fluids of Pr � 0.72 and C � 25 for
fluids of Pr � 6 [Cebeci (1974) in Popiel (2008)]. However, some references (Holman
1992; Cengel 2007. Incropera et al. 2006) use a single value of C = 35. The plate results are
accurate to within 5%. The reason for deviation is the curvature effect. When the thermal
boundary layer thickness in much thinner than the radius of the cylinder, the curvature can be
neglected and plate relation may be used.

The vertical plane relation for laminar flow with length L as characteristic dimension
(McAdams, 1954) is

Num ¼ 0:59Ra1=4

for 104 �Ra� 109
ð9:6Þ

Various terms in the above relation are defined as

Num ¼ hmL

k
ð9:7Þ

Ra ¼ GrPr ¼ bg Tw � T1ð ÞL3
m2

Pr ð9:8Þ

where hm is average heat transfer coefficient, Tw is surface or wall temperature and T∞ is free
stream temperature. b and thermophysical properties of the fluid are taken at film temper-
ature. The subscript ‘m’ refers to the mean or average value.

For turbulent flow (Ra � 109), the correlation suggested (Bailey in Kays and Crawford
1980) is

Num ¼ 0:1Ra1=3

for 109 �Ra� 1013
ð9:9aÞ
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For turbulent flow over a slender vertical cylinder (Ra � 4 � 109), the mean Nusselt
number for air can be approximated from the following correlation of McAdams (1954) as
suggested by Popiel (2008) for L/D from about 70 to 136.

Num ¼ 0:13Ra1=3 ð9:9bÞ

Churchill and Chu (1975b) gave the following relations of mean Nusselt number for a
wide range of Ra, which is a complex relation but more accurate.

Num ¼ 0:825þ 0:387Ra1=6

1þ 0:492= Prð Þ9=16
h i8=27

8><
>:

9>=
>;

2

for 10�1 �Ra� 1012

ð9:10Þ

Equation (9.10) is also valid for constant heat flux when factor 0.492 is replaced by 0.437
(Baehr and Stephan 2011).

In the laminar region, the following relation gives better accuracy.

Num ¼ 0:68þ 0:670Ra1=4

1þ 0:492= Prð Þ9=16
h i4=9
for Ra� 109

ð9:11Þ

(ii) Uniform Heat Flux (qw = Constant)

The suggested equation of local Nusselt number is (Baehr and Stephan 2011)

Nux ¼ 0:616Ra1=5x
Pr

0:8þ Pr

� �1=5

for Pr� 0:1;Rax � 109
ð9:12Þ

where Nux = hxx/k; Rax = GrxPr = [bgqwx
4/(m2k)].Pr.

Alternative equation for local Nusselt number in laminar region (Holman 1992) is

Nuxð Þf ¼ hx

kf
¼ 0:60 Gr�xPrf

� 	1=5
for 105 �Gr�xPrf � 1011

ð9:13Þ

where Gr�x ¼ GrxNux ¼ gbqwx4

km2 .
The transition begins between Gr�xPr = 3 � 1012 − 4 � 1013 and ends between

2 � 1013− 4 � 1014. Fully developed turbulent flow is present beyond Gr�xPr = 1014

(Holman 1992). For the turbulent region, the recommended relation is
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Nuxð Þf ¼ 0:17 Gr�xPrf
� 	1=4

for 2� 1013 �Gr�xPr� 1016
ð9:14Þ

Subscript f in Eqs. (9.13) and (9.14) indicates that the fluid properties are to be evaluated
at the local film temperature Tf [= (Tw + T∞)/2].

The average or mean heat transfer coefficient is

hm¼ 1
L

Z L

0
hxdx

Thus, for the laminar flow, Eqs. (9.12) and (9.13) yield

hm¼ 5
4
hx¼L ð9:15Þ

It can be shown that in the case of turbulent flow condition, the local heat transfer
coefficient is constant with x.

9.5.2 Inclined Plate

When a plate is inclined, the buoyancy force parallel to the surface is reduced and there is
reduction in the fluid velocity along the plate causing reduction in the convection heat
transfer. For 0 � h � 60° correlation of Churchill and Chu (1975b), Eq. (9.10), is valid for
the inclined plate when the acceleration due to gravity g is replaced by its component parallel
to the wall g cosh, where h is the angle of inclination with the vertical. This approach is
satisfactory only for the top and bottom surfaces of cooled and heated plates, respectively
(Incropera et al. 2012). For opposite surfaces, refer Holman (1992).

9.5.3 Horizontal Plate

For a horizontal plate, the characteristic length L is defined as

L ¼ A

P
ð9:16Þ

where A the heat transfer area and P is the perimeter of the plate.
When the upper side of the plate is heated or lower side is cooled, refer Fig. 9.1,

Num ¼ 0:54Ra1=4L

for 104 �Ra� 107
ð9:17Þ

Num ¼ 0:15Ra1=3L

for 107 �Ra� 1011
ð9:18Þ
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The equation of mean Nusselt number, when upper side of the plate is cooled or lower
side is heated is

Num ¼ 0:27Ra1=4L

for 105 �Ra� 1011
ð9:19Þ

(i) Uniform Heat Flux Condition (qw = Constant) (Fujii and Imura 1972 in Holman
1992)

For the heated surface facing upwards,

Num ¼ 0:13Ra1=3L

for Ra� 2� 108
ð9:20Þ

Num ¼ 0:16Ra1=3L for 2� 108 �Ra� 1011 ð9:21Þ

For the heated surface facing downwards,

Num ¼ 0:58Ra1=5L

for 106 �Ra� 1011
ð9:22Þ

All properties except b, are evaluated at reference temperature Te = Tw – 0.25(Tw – T∞).
Tw is the wall temperature related to the heat flux by hm = qw/(Tw - T∞).

9.5.4 Horizontal Cylinder of Diameter D and Length L > > d

The mean Nusselt number equation for this case is given by

Num ¼ 0:53Ra1=4d

for 104 �Ra� 109
ð9:23Þ

Num ¼ 0:13Ra1=3d

for 109 �Ra� 1012
ð9:24Þ

Churchill and Chu (1975a) presented the following correlation of average or mean Nusselt
number for the laminar flow (Rad � 109)

Num ¼ 0:36þ 0:518Ra1=4d

1þ 0:559= Prð Þ9=16
h i4=9 ð9:25Þ

where characteristic dimension for the Nusselt number and Rayleigh number is the diameter
of the cylinder.

696 9 Empirical Relations for Natural or Free Convection

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


For turbulent flow (Rad � 109), the following correlation may be used.

Num ¼ 0:60þ 0:387Ra1=6d

1þ 0:559= Prð Þ9=16
h i8=27

8><
>:

9>=
>;

2

ð9:26Þ

However, Churchill and Chu (1975a,b) recommend use of Eq. (9.26) for all Pr and Ra
values.

9.5.5 Sphere of Diameter d

The characteristic dimension in the equations of the mean Nusselt number and Rayleigh
number is the diameter of the sphere and the suggested equation for the average Nusselt
number for Pr � 0.7 is (Churchill 1990)

Num ¼ 2þ 0:589Ra1=4d

1þ 0:469= Prð Þ9=16
h i4=9

for Rad � 1011

ð9:27Þ

Example 9.3 For a vertical wall at 50°C exposed to still air at 20°C, what is the maximum
height for laminar free convection?

Solution

At tm = (50 + 20)/2 = 35°C, the air properties are

m ¼ l=q ¼ 16:36� 10�6 m2=s; Pr ¼ 0:7066 and b ¼ 1=ð35þ 298ÞK�1:

Grx Pr ¼ gbðtw � t1Þx3
m2

: Pr

or

x ¼ Raxm2

gbðtw � t1Þ Pr
� �1=3

ðiÞ

The limit for laminar flow is Rax � 109. Substitution of the values of various terms in
Eq. (i) gives

x ¼ 109 � ð16:36� 10�6Þ2
9:81� ð1=303Þ � ð50� 20Þ � 0:7066

" #1=3
¼ 0:731 m:
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Example 9.4 Determine the coefficient of heat transfer from a vertical plate of 2 m height to
the surrounding still air, which at a distance from the plate is at 20°C. The mean surface
temperature of the plate is measured to be 120°C.

Solution

At the mean fluid temperature tm = (120 + 20)/2 = 70°C, the physical properties of air are:

k ¼ 0:0295W=ðm KÞ; m ¼ l=q ¼ 2� 10�5 m2=s; Pr ¼ 0:698 and b ¼ 1=T ¼ 1=343K�1:

Hence,

Gr Pr ¼ bgDTL3

m2
� Pr ¼ 1=343� 9:81� ð120� 20Þ � 23

ð2� 10�5Þ2 � 0:698 ¼ 3:99� 1010 � 109:

Equation (9.9a) applies, which gives

Nu ¼ 0:1� ð3:99� 1010Þ1=3 ¼ 341:4

and heat transfer coefficient,

h ¼ Nu� k

L
¼ 341:4� 2:95� 10�2

2
¼ 5:04 W/(m2 K):

Example 9.5 A vertical plate is rejecting heat by free convection from one of its face which
is at an average temperature of 90°C. The surrounding air is at 30°C. The height of the plate
is 200 mm. Calculate the heat rejected from the plate if the width of the plate is 600 mm. The
following correlation for the local Nusselt number may be used.

Nu x ¼ 0:52
Pr

0:95þ Pr

� �0:25

Gr Prð Þ0:25:

Solution

From the given data,

tm ¼ tw þ t1
2

¼ 90þ 30
2

� �
¼ 60oC:

The thermo-physical properties of air are:

q ¼ 1:059 kg=m3; k ¼ 0:02875W=ðmKÞ; l ¼ 2� 10�5 N s=m2; Pr ¼ 0:7:
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b ¼ 1
Tm

¼ 1
ð60þ 273Þ ¼ 3:003� 10�3 ð1=KÞ:

From the given correlation,

hx ¼ k

x
� 0:52� Pr

0:95þ Pr

� �0:25

� q2bgDTx3

l2
� Pr

� �0:25
" #

:

Substitution of values of various terms gives

hx ¼ 0:02875
x

� 0:52� 0:7
0:95þ 0:7

� �0:25

� 1:0592 � 3:003� 10�3 � 9:81� 60� x3

ð2� 10�5Þ2 � 0:7

 !0:25

¼ 2:928x�0:25:

The mean heat transfer coefficient

h ¼ 1
L

Z L

0
hxdx ¼ 1

0:2
2:928� x0:75

0:75

� �0:2

0

¼ 5:84 W/(m2 K):

Heat transfer rate

q ¼ hADT ¼ 5:84� 0:2� 0:6� 60 ¼ 42:05W:

Example 9.6 A vertical rectangular plate 1 m � 0.6 m has one of its surface insulted and
the other face is maintained at a uniform temperature of 50°C. It is exposed to quiescent air at
20°C. Calculate the heat transfer coefficient if

(i) 1 m side of the plate is in vertical direction
(ii) 0.6 m side of the plate is in vertical direction.

Solution

For the range 104 < Ra < 109,

Nu ¼ 0:59Ra0:25

and for the range 109 � Ra < 1013,

Nu ¼ 0:1Ra1=3

The thermophysical properties of the air at the mean film temperature of 35°C from
Table A5 are:
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q = 1.15 kg/m3, cp = 1006 J/(kg K), k = 2.68 � 10−2 W/(m K), µ = 1.883 � 10−5 kg/(m s),
Pr = 0.7066 and the coefficient of cubical expansion, b = 1/T = 1/(35 + 273) = 1/308 K−1.

Hence, the Rayleigh number is

Ra ¼ Gr Pr ¼ q2bgDTL3

l2
� Pr ¼ q2bgðtw � t1ÞL3

l2
� Pr

¼ 1:152 � 1=308� 9:81� ð50� 20Þ � L3

ð1:883� 10�5Þ2 � 0:7066 ¼ ð2:52� 109ÞL3:

(i) 1 m side is vertical

Characteristic dimensions, L = 1 m.
Rayleigh number,

Ra ¼ 2:52� 109 � L3 ¼ 2:52� 109 � 1:03 ¼ 2:52� 109 [ 109

Nusselt number,

Nu ¼ 0:1Ra1=3 ¼ 0:1� ð2:52� 109Þ1=3 ¼ 136:

Heat transfer coefficient,

h ¼ Nuk
L

¼ 136� 0:0268
1:0

¼ 3:645W/(m2 K):

(ii) 0.6 m side is vertical

Characteristic dimensions, L = 0.6 m
Rayleigh number,

Ra ¼ 2:52� 109 � L3 ¼ 2:52� 109 � 0:63 ¼ 5:4� 108\109:

Nusselt number,

Nu ¼ 0:59Ra0:25 ¼ 0:59� ð5:4� 108Þ0:25 ¼ 89:94

Heat transfer coefficient,

h ¼ Nuk
L

¼ 89:94� 0:0268
0:6

¼ 4:02W/(m2 K):

700 9 Empirical Relations for Natural or Free Convection

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Example 9.7 A horizontal plate (1.0 m � 1.0 m) is maintained at 140°C by electric
heating. Estimate the convective heat transfer rate to the surrounding still air at 20°C. The
lower surface of the plate is insulated.

Solution

At mean film temperature of (140 + 20)/2 = 80°C, the air properties are

v ¼ l=q ¼ 20:87� 10�6m2=s; k ¼ 0:0303W=ðmKÞ; Pr ¼ 0:696; and b ¼ 1=ð50þ 273ÞK�1:

For a horizontal plate,

L ¼ A

P
¼ 1:0� 1:0

4
¼ 0:25m:

The Rayleigh number,

RaL ¼ GrL Pr ¼ gbðtw � t1ÞL3
m2

: Pr

¼ 9:81� ð1=353Þ � ð140� 20Þ � 0:253

ð20:87� 10�6Þ2 � 0:696 ¼ 8:33� 107:

Equation (9.17) applies, which gives

NuL ¼ 0:15ðRaLÞ1=3 ¼ 0:15� ð8:33� 107Þ1=3 ¼ 65:5:

Heat transfer coefficient,

h ¼ Nu k

L
¼ 65:5� 0:0303

0:25
¼ 7:94 W/(m2 K):

Heat transfer rate,

q ¼ hADT ¼ 7:94� ð1:0� 1:0Þ � ð140� 20Þ ¼ 952:8 W:

Example 9.8 If the heated surface of the plate of Example 9.7 is facing downwards,
estimate the convective heat transfer rate.

Solution
For a horizontal plate with heated surface facing downwards, Eq. (9.19) applies, which gives

NuL ¼ 0:27ðRaLÞ1=4 ¼ 0:27� ð8:33� 107Þ1=4 ¼ 25:8
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Heat transfer coefficient,

h ¼ Nu k

L
¼ 25:8� 0:0303

0:25
¼ 3:13 W/(m2 K):

Heat transfer rate,

q ¼ hADT ¼ 3:13� ð1:0� 1:0Þ � ð140� 20Þ ¼ 375:6 W:

Comments: The heat rejection rate is significantly reduced, which is expected because of
the difference in the flow structure of the two cases as presented in Fig. 9.1.

Example 9.9 A 400 mm square plate is inclined from vertical at an angle of 30°. The
surface temperature of the plate is 330 K. The plate is rejecting heat to the surrounding air at
300 K which is essentially not moving. Determine the convective heat transfer rate from the
plate.

Solution
At mean film temperature of (330 + 300)/2 = 315 K = 42°C, the air properties are

q ¼ 1:124 kg=m3; l ¼ 1:91� 10�5 kg=ðm sÞ; k ¼ 0:0274W=ðm KÞ; Pr ¼ 0:705 and

b ¼ 1=315 K�1

For an inclined plate,

RaL ¼ GrL Pr ¼ ðg cos hÞbðTw � T1ÞL3
m2

: Pr

¼ ð9:81� cos 30Þ � ð1=315Þ � ð330� 300Þ � 0:43

ð1:91� 10�5=1:124Þ2 � 0:705

¼ 1:26� 108\109:

The flow is laminar. Equation (9.6) applies:

NuL ¼ 0:59 ðRaLÞ1=4 ¼ 0:59� ð1:26� 108Þ1=4 ¼ 62:5:

Heat transfer coefficient,

h ¼ Nuk
L

¼ 62:5� 0:0274
0:4

¼ 4:28 W/(m2 K):

Heat transfer rate,

q ¼ hADT ¼ 4:28� ð0:4� 0:4Þ � ð330� 300Þ ¼ 20:54 W:
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Example 9.10 Determine the hourly loss of heat from a bare horizontal steam pipe whose
diameter is 100 mm and the length is 5 m. The pipe wall temperature is 450 K and the
temperature of the surrounding air is 300 K. Assume that the radiation heat loss is negligible.

Solution

The mean film temperature,

Tm ¼ Tw þ T1
2

¼ 450þ 300
2

¼ 375 K:

From Table A5 of “Thermophysical Properties of Air”, we have

q ¼ 0:941 kg=m3; Pr ¼ 0:693; k ¼ 0:032W=ðm KÞ; l ¼ 2:18� 10�5 kg=ðm sÞ:

Grashof number,

Gr ¼ bgDTd3

m2
¼ ½1=ð375Þ	 � 9:81� ð450� 300Þ � 0:13

ð2:18� 10�5=0:941Þ2 ¼ 7:31� 106:

From Eq. (9.23), Nusselt number

Nu ¼ 0:53ðGrPrÞ0:25 ¼ 0:53� ð7:31� 106 � 0:693Þ0:25 ¼ 25:1:

The heat transfer coefficient at the outer surface,

h ¼ Nuk
d

¼ 25:1� 0:032
0:1

¼ 8:0 W/(m2 K):

The hourly heat loss,

q ¼ hADT ¼ hðpdLÞðTw � T1Þ ¼ 8:0� ðp� 0:1� 5Þ � ð450� 300Þ � 3600
¼ 6785:8 kJ:

Example 9.11 If the pipe of Example 9.10 is vertical, determine the hourly loss.

Solution

Grashof number,

Gr ¼ bgDTL3

m2
¼ ½1=ð375Þ	 � 9:81� ð450� 300Þ � 53

ð2:18� 10�5=0:941Þ2 ¼ 9:14� 1011:

Since Gr > 4 � 109, the flow is turbulent and L/D = 50, Eq. (9.9b) may be used, which
gives
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Num ¼ 0:13ðRaÞ1=3 ¼ 0:13� ð9:14� 1011 � 0:693Þ1=3 ¼ 1116:

The heat transfer coefficient at the outer surface of the cylinder is

hm ¼ Numk
L

¼ 1116� 0:032
5

¼ 7:14 W/(m2 K):

The hourly heat loss,

q ¼ hmAðDTÞ ¼ hmðpdLÞðTw � T1Þ ¼ 7:14� ðp� 0:1� 5Þ � ð450� 300Þ � 3600
¼ 6056 kJ:

Example 9.12 A thin walled vertical cylindrical tank, 0.3 m in diameter and 0.8 m in
height, contains water at 70°C. The tank is placed in a larger tank with water at 10°C.
Determine heat transfer rate across the tank wall.

Solution

Assuming wall temperature as mean of the water temperatures, i.e. 40°C, the temperature of
the film on the inner side is (70 + 40)/2 = 55°C.

Thermophysical properties of water at the film temperature of 55°C from Table A4 are

q ¼ 985:2 kg=m3; l ¼ 501� 10�6 N s=m2; k ¼ 0:648W=ðm KÞ; Pr ¼ 3:24 and

b ¼ 0:484� 10�3 1=K:

The Grashof number based on cylinder height,

Gr ¼ q2gbDTL3

l2

¼ 985:22 � 9:81� 0:484� 10�3 � ð70� 40Þ � 0:83

ð501� 10�6Þ2 ¼ 2:82� 1011:

D/L = 0.375 and 35/Gr0.25 = 0.048. Hence, condition D
L � 35

Gr1=4L

is satisfied and the

cylinder can be treated as a vertical plate.
The Rayleigh number is

Ra ¼ GrPr ¼ 2:82� 1011 � 3:24 ¼ 9:14� 1011:

From Eq. (9.10),
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Num ¼ 0:825þ 0:387Ra1=6

1þ 0:492= Prð Þ9=16
h i8=27

8><
>:

9>=
>;

2

for 10�1 �Ra� 1012

¼ 0:825þ 0:387� ð9:14� 1011Þ1=6

1þ 0:492=3:24ð Þ9=16
h i8=27

8><
>:

9>=
>;

2

¼ 1276:9:

Heat transfer coefficient (inner side),

hi ¼ k

L
Num ¼ 0:648

0:8
� 1276:9 ¼ 1034:3W=ðm2KÞ:

The film temperature on the outer side is (40 + 10)/2 = 25°C. Properties of water at 25°C
from Table A4 are:

q ¼ 997 kg=m3; l ¼ 890� 10�6 N s=m2; k ¼ 0:609W=ðm KÞ; Pr ¼ 6:13 and

b ¼ 0:253� 10�3 1=K:

The Grashof number based on cylinder height,

Gr ¼ q2gbDTL3

l2

¼ 9972 � 9:81� 0:253� 10�3 � ð40� 10Þ � 0:83

ð890� 10�6Þ2 ¼ 4:78� 1010:

D/L = 0.375 and 35/Gr0.25 = 0.0748. Hence, condition D
L � 35

Gr1=4L

is satisfied and the

cylinder can be treated as a vertical plate.
The Rayleigh number is

Ra ¼ GrPr ¼ 4:78� 1010 � 6:13 ¼ 2:93� 1011:

From Eq. (9.10),

Num ¼ 0:825þ 0:387Ra1=6

1þ 0:492= Prð Þ9=16
h i8=27

8><
>:

9>=
>;

2

for 10�1 �Ra� 1012

¼ 0:825þ 0:387� ð2:93� 1011Þ1=6

1þ 0:492=6:13ð Þ9=16
h i8=27

8><
>:

9>=
>;

2

¼ 924:3:

Heat transfer coefficient,
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ho ¼ k

L
Num ¼ 0:609

0:8
� 924:3 ¼ 703:6W=ðm2KÞ:

Overall heat transfer coefficient,

U ¼ 1
hi

þ 1
ho

� ��1

¼ 1
1034:3

þ 1
703:6

� ��1

¼ 418:7W=ðm2 KÞ:

Heat transfer rate,

q ¼ UADT ¼ UpDLðtw � taÞ ¼ 418:7� p� 0:3� 0:8� ð70� 10Þ ¼ 18941:5W:

Wall temperature:

q ¼ hopDLðts � toÞ

or

ts ¼ q

h0pDL
þ to ¼ 18941:5

703:6� p� 0:3� 0:8
þ 10 ¼ 45:7oC,

as against the assumed value of 40°C. Retrial with ts = 45°C may be carried out.

Example 9.13 A horizontal steel pipeline, having inside diameter of 50 mm and outside
diameter of 60 mm, carries water flowing with a velocity of 0.2 m/s. The mean water
temperature is 80°C. The pipeline is lagged with asbestos. The outside diameter of the
lagging is 90 mm.

Determine the loss of heat from 1 m length of the pipeline if the temperature of the still air
surrounding the pipeline is 20°C. Neglect the radiation heat loss from the outer surface of the
lagging.

Also determine the surface temperature of the pipeline and the lagging. For steel, ks =
46 W/(m K) and for asbestos ka = 0.11 W/(m K).

Solution

Thermophysical properties of water at 80°C (the mean temperature of water) are

q ¼ 971:8 kg=m3; Pr ¼ 2:21; k ¼ 0:67W=ðm KÞ and l ¼ 351� 10�6 kg=ðm sÞ:

(i) The coefficient of heat transfer from water to the inner surface of the pipe:

Re ¼ qUd
l

¼ 971:8� 0:2� 0:05
351� 10�6

¼ 2:77� 104:

The flow is in the turbulent regime and the heat transfer coefficient can be determined
from the following correlation applicable to Re > 10000.
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Nu ¼ 0:024Re0:8Pr0:4

¼ 0:024� ð2:77� 104Þ0:8ð2:21Þ0:4 ¼ 118:0:

This gives the heat transfer coefficient:

hi ¼ Nuk
d

¼ 118:0� 0:67
0:05

¼ 1581 W/(m2 K):

(ii) The coefficient of heat transfer from water to the inside surface of the tube is very
high. Further the pipe is lagged and the heat transfer coefficient from the outer surface
of the lagging is likely to be low because of natural convection condition at the surface
of the lagging. Hence, the pipe inside surface temperature will be nearly equal to the
temperature of the water, i.e. tw1 � ti.

(iii) Since the free convection heat transfer rate is a function of temperature difference DT,
we assume the temperature of the outer surface of the lagging tw3 as 50°C for first
trial. Refer Fig. 9.4.

With this assumption, the Grashof number is

Gr ¼ bgDTL3

m2
¼ 1=308� 9:81� ð50� 20Þ � 0:093

ð1:88� 10�5=1:15Þ2 ¼ 2:6� 106

where

tm (to + tw3)/2 = (20 + 50)/2 = 35°C
b 1/Tm = 1/(35 + 273) = 1/308 K−1

d outer diameter of the lagging = 0.09 m
DT 50–20 = 30°C
l 1.88 � 10−5 kg/(m s) for the air at 35°C
q 1.15 kg/m3 for air at 35°C

This gives

Ra ¼ GrPr ¼ 2:6� 106 � 0:707 ¼ 1:84� 106

•

60 9050

tw1

tw2

tw3

°

°

• to

ti

Fig. 9.4 Example 9.13
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where Pr= 0.707 for the air.
For 104 � Ra � 109, Eq. (9.23) applies, which gives

Nu ¼ 0:53� ðRaÞ0:25 ¼ 0:53� ð1:84� 106Þ0:25 ¼ 19:5:

The heat transfer coefficient at the outer surface,

ho ¼ Nuk
d

¼ 19:5� 0:02684
0:09

¼ 5:82W/(m2 K):

The heat transfer rate for the unit length of the pipeline is

q ¼ ti � to
1

2prihi
þ 1

2pks
ln r2

r1

� �
þ 1

2pka
ln r3

r2

� �
þ 1

2proho

or

q ¼ 80� 20
1

2p�0:025�1581 þ 1
2p�46 ln

0:03
0:025

� 	þ 1
2p�0:11 ln

0:045
0:03

� 	þ 1
2p�0:045�5:82

¼ 50:04 W:

This gives

tw3 ¼ to þ q

2proho
¼ 20þ 50:04

2p� 0:045� 5:82
¼ 50:4
C:

Since the calculated temperature is nearly the same as the assumed one, further trial is not
needed.

The inside pipe-surface temperature is

tw1 ¼ ti � q

2prihi
¼ 80� 50:04

2p� 0:025� 1588
¼ 79:8
C;

which is nearly equal to the water temperature assumed earlier.
The temperature of the outside surface of the pipe,

tw2 ¼ tw1 � q

2pks
ln

r2
r1

� �
¼ 79:8� 50:04

2p� 46
ln

0:03
0:025

� �
¼ 79:77oC,

which indicates that the temperature drop across the wall of the pipe is negligible. This is
because of the fact that the resistance offered by the metal wall to the heat flow is very small.
The main resistances here are that of the insulation and outer film.
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Example 9.14 If wind blows at a speed of 2 m/s across the pipe of Example 9.13, deter-
mine the increase in the heat loss.

Solution

The Reynolds number,

Red ¼ qU1d

lf
¼ 1:15� 2� 0:09

1:88� 10�5
¼ 11010:

From Table 8.11, for Re = 4000–40000, C = 0.193 and n = 0.618.
The average heat transfer coefficient,

�h ¼ k

d
� C � ðRedÞnPr1=3

¼ 0:02684
0:09

� 0:193� ð11010Þ0:618ð0:707Þ1=3 ¼ 16:1 W/(m2 K):

Heat flow rate

q ¼ ti � to
1

2prihi
þ 1

2pks
ln r2

r1

� �
þ 1

2pka
ln r3

r2

� �
þ 1

2proho

or

q ¼ 80� 20
1

2p�0:025�1581 þ 1
2p�46 ln

0:03
0:025

� 	þ 1
2p�0:11 ln

0:045
0:03

� 	þ 1
2p�0:045�16:1

¼ 74:0 W:

Alternatively using Eq. (8.52), we have

Nu ¼ 0:3þ 0:62Re1=2 Pr1=3

1þ 0:4
Pr

� 	2=3h i1=4 1þ Re
282000

� �5=8
" #4=5

¼ 0:3þ 0:62� 11010ð Þ1=2ð0:707Þ1=3

1þ 0:4
0:707

� 	2=3h i1=4 1þ 11010
282000

� �5=8
" #4=5

¼ 56:46:

Hence,

�h ¼ k

d
Nu ¼ 0:02684

0:09
� 56:46 ¼ 16:84 W/(m2 K)
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This gives

q ¼ ti � to
1

2prihi
þ 1

2pks
ln r2

r1

� �
þ 1

2pka
ln r3

r2

� �
þ 1

2proho

Substitution gives

q ¼ 80� 20
1

2p�0:025�1581 þ 1
2p�46 ln

0:03
0:025

� 	þ 1
2p�0:11 ln

0:045
0:03

� 	þ 1
2p�0:045�16:74

¼ 74:8 W:

The heat loss due to the wind increases by about 50%.

9.6 Free Convection in Parallel Plate Channels

Array of circuit boards or fin arrays employed to enhance free convection heat transfer may
be regarded as parallel vertical plates forming a channel that is open to the ambient at its ends
as shown in Fig. 9.5. The heated fluid rises and exits from the top of the channel.

Boundary layers develop beginning at x = 0 on each wall (if both the walls of the channel
are heated) and increase in thickness with height. If the ratio of the spacing S and height L is
small, the boundary layers eventually merge and the flow, thereafter, is fully developed.
When the ratio S/L is large (i.e. the plates are far apart), they behave like isolated vertical
plates in infinite, quiescent fluid. Because of the effect of the ratio of spacing to height S/L on
the flow structure, this ratio appears in the heat transfer correlations presented by researchers.

Surface thermal conditions have been classified as isothermal or isoflux and symmetrical
(Tw1 = Tw2; q00w1 = q00w2) or asymmetrical (Tw1 6¼ Tw2; q00w1 6¼ q00w2), where q00w is heat flux.

S
x = L

x

Tw2

or 
"
2wq

Tw1

or 
"
1wq

●T∞

Fig. 9.5 Free convection flow between heated parallel plates
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9.6.1 Vertical Channels

Bar-Cohen and Rohsenow (1984) presented correlations for symmetric and asymmetric
isothermal and isoflux (uniform heat flux) conditions of vertical parallel plate channels. They
have also presented relations for optimum spacing, which is the spacing to provide maximum
heat transfer from an array in a given volume, i.e. spacing for the maximum volumetric heat
dissipation. It is to note that as the number of plates in a given space is increased, the heat
transfer coefficient h decreases with decreasing spacing and the reduction in the fluid flow
rate because of the increase in the viscous force. But the increased total area A of the larger
number of plates yields a maximum of the product hA. Spacing needed to maximize the heat
transfer from each plate in the array has also been defined and relations with respect to the
spacing for the maximum volumetric heat dissipation are given. This spacing for maximum
heat transfer from each plate in the array precludes the overlap of the adjoining boundary
layers and is found to be larger than the spacing for the maximum volumetric heat
dissipation.

9.6.2 Inclined Channels

Experimental data for inclined channels formed by symmetric isothermal plates and
isothermal-insulated plates in water (inclination 0 to 45o with vertical) for isolated plate limit
of [RaS(S/L) > 200] have been correlated within ± 10% by Azevedo and Sparrow (1985) as

ðNuSÞm ¼ 0:645½RaSðS=LÞ	1=4 ð9:28Þ

where the Rayleigh number is based on the spacing S and the fluid properties are evaluated at
average temperature Tm = (Tw + T∞)/2.

9.7 Empirical Correlations for Enclosed Spaces

In some engineering applications, heat transfer takes place between two surfaces that are at
different temperatures and a fluid is present in the space enclosed by these surfaces. Typical
examples of such enclosures are double pane windows, cavities in the walls of the buildings,
solar collectors, etc.

a b

Boundary 
layer
T2

T1

S

L

Fig. 9.6 Cellular flow in a vertical enclosure
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Here the correlations are being presented only for the rectangular enclosures.

(i) Vertical Enclosure

Consider the rectangular enclosure shown in Fig. 9.6. The left wall is at a higher tem-
perature than the right wall. Top and bottom surfaces of the enclosure are insulated. The heat
transfers by the free convection currents in the enclosed fluid. The Rayleigh number for this
case is defined as

RaS ¼ gbðT1 � T2ÞS3
m2

Pr ð9:29Þ

where S is the spacing between the heat transferring surfaces.
If the Rayleigh number is less than about 103, viscous forces dominate over the buoyancy

forces and the fluid motion does not occur. This can happen when the spacing S is small and
the viscosity is very large. In such a situation, the heat transfer takes place by conduction
only through the stagnant fluid and Nu = 1.

At Ra � 104, the flow changes to a boundary layer type (Mills 1995). The fluid at the hot
surface moves upwards along the wall and after giving heat to the cold face of the enclosure
moves downwards along the wall if the spacing S is sufficiently large. A cellular flow
establishes, Fig. 9.6(a), which is encountered in the thin boundary layers adjoining the
vertical surfaces. The core is nearly stagnant. With small spacing, the flows affect each other
which may result in internal circulation as if partitions are present, Fig. 9.6(b). At Ra � 106,
the flow in the core becomes turbulent (Mills 1995).

Proposed empirical correlations for average Nusselt number are (MacGregor and Emery
1969)

NuS ¼ 0:42ðRaSÞ1=4Pr0:012 L

S

� ��0:3

10�L=S� 40

104 �RaS � 107

1� Pr� 2� 104

ð9:30Þ

NuS ¼ 0:046ðRaSÞ1=3
1�L=S� 40

106 �RaS � 109

1� Pr� 20

ð9:31Þ

where the Nusselt number is defined as

S

L

T1

T2

Fig. 9.7 Bernard cells
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NuS ¼ hS

k
ð9:32Þ

and the heat transfer rate is given by

q ¼ hAðT1 � T2Þ ð9:33Þ

(ii) Horizontal Enclosure

Consider the horizontal enclosure with the lower wall heated and upper wall cold. Side

walls are insulated. For Rayleigh number RaS ¼ gbðT1�T2ÞS3
am

h i
less than a critical value of

1708, the viscous forces are very strong than the buoyancy forces and there is no movement
of the fluid. The heat transfer takes place by conduction only and Nu = 1.

For 1708 < RaS � 5 � 104, the fluid motion consists of regularly spaced rotating cells
(called as Bernard cells) as shown in Fig. 9.7. At higher Rayleigh numbers, the cells break
down and turbulent motion occurs.

The correlation proposed by Globe and Dropkin (1959) for average Nusselt number is

NuSð Þm ¼ hmS

k
¼ 0:069Ra1=3S Pr0:074

for 3� 105 �RaS � 7� 109
ð9:34Þ

where all fluid properties are to be evaluated at the mean temperature Tm= (T1 + T2)/2.
If the upper wall is heated, then the heat transfer takes place by conduction only (Nu = 1)

irrespective of the value of the Rayleigh number.
It is to note that radiation heat exchange between the hot and cold surfaces is always

present when a gas is filled in the cavity.

(iii) Tilted Enclosure (Fig. 9.8)

S

L

θ

T1

T2

Fig. 9.8 Tilted enclosure

Table 9.2 Critical tilt angle*

L/S 1 3 6 12 >12

h* 25o 53o 60o 67o 70o

*Incropera Frank P, DeWitt David P, Bergman Theodore L, Lavine Adrienne S, Fundamentals of heat and
mass transfer, 6th edn, John Wiley & Sons, New York, Copyright 2006. Reproduced with the permission of
John Wiley & Sons Ltd
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Some applications involve tilted enclosures. Typical example is that of a flat plate solar
collector where the heat flows from the heated absorber plate to the glass cover placed at a
distance. The tilt angle may vary from 0o (horizontal) to about 70o at high latitude
applications.

In inclined enclosures, the fluid motion consists of a combination of the rolling structure
of horizontal cavities and cellular structure of vertical cavities. Typically transition between
the two types of motions occurs at a critical tilt angle h* given in Table 9.2.

For large aspect ratio duct of solar collectors (L/S > 12) and the tilt angle less than the
critical value h°, the following correlation of the average Nusselt number has been proposed
by Hollands et al. (1976).

Numð ÞS¼ 1þ 1:44 1� 1708
RaScosh

� �þ
1� 1708ðsin1.8hÞ1:6

RaScosh

" #
þ RaScosh

5830

� �1=3

�1

" #þ

for 0� h� 60
 and 0\Ra� 105:

ð9:35Þ

Either of the terms in + bracket goes to zero when negative. This implies that if the
Rayleigh number is less than a critical value of 1708/cos h, there is no flow within the cavity
(Incropera et al. 2012). This equation can be expected to give values of Nu with a maximum
error of 5%. Equation (9.35) may also be used for h up to 75° but error of up to 10 percent
may be expected (Hollands et al. 1976).

Buchberg et al. (1976) presented the following three-region correlation for the estimate of
the convective heat transfer coefficient between the absorber plate and glass cover of flat plate
solar air heaters.

Nu ¼ 1þ 1:446 1� 1708
Ra0

� �þ

for 1708�Ra0 � 5900

ð9:36aÞ

(the + bracket goes to zero when negative)

Nu ¼ 0:229 Ra0ð Þ0:252
for 5900\Ra0 � 9:23� 104

ð9:36bÞ

Nu ¼ 0:157 Ra0ð Þ0:285

for 9:23� 104\Ra0 � 106
ð9:36cÞ

where Ra′ (= Ra cosh) is Rayleigh number for the inclined air layers.

Example 9.15 A horizontal enclosure consists of two square plates (0.5 m � 0.5 m) sep-
arated by a distance of 10 mm. The lower plate is maintained at a uniform temperature of 40°
C and the upper plate is at a uniform temperature of 10°C. Water at atmospheric pressure is
filled in the enclosure. Calculate the heat loss rate from the lower plate if the side walls are
insulated. Given gbq2c/(lk) = 1.85 � 1010 m−3K−1 at the mean temperature.
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Solution

At the mean temperature of (40 + 10)/2 = 25°C, k = 0.61 W/(m K) for water.
The Rayleigh number = gbq2c/(lk) � DT � S3 = 1.85 � 1010 � (40 –

10) � 0.013 = 5.55 � 105.
For 3 � 105 � RaS � 7 � 109, Eq. (9.34) applies:

Nu ¼ 0:069 Rasð Þ1=3 Prð Þ0:074¼ 0:069� 5:55� 105
� 	1=3� 6:13ð Þ0:074¼ 6:48:

Mean heat transfer coefficient,

h ¼ Nu
k

S

� �
¼ 6:48� 0:61

0:01

� �
¼ 395:3 W/(m2 K):

Heat loss rate,

q ¼ hAðT1 � T2Þ ¼ 395:3� ð0:5� 0:5Þ � ð40� 10Þ ¼ 2964:7 W:

Example 9.16 Two horizontal surfaces of an enclosure with air between them are separated
by 10 mm. Calculate the heat flow rate per m2 of the plate surface if the upper plate is at 50°
C and lower is at 20°C. The vertical sides are insulated.

Solution

In the present case, the convection currents are suppressed and the heat transfer is by
conduction only. Hence,

q ¼ kA
T1 � T2

S
¼ 0:027� 1� 50� 20

0:01
¼ 81 W/m2;

where k = 0.027 W/(m K) at the mean temperature (50 + 20)/2 = 35°C.

Example 9.17 Absorber plate and cover plate combination of a flat plate solar collector can
be treated as a tilted enclosure (Fig. 9.8). If T1 = 70°C, T2 = 30°C, L = 1.5 m, S = 50 mm
and tilt h = 45o determine heat flux due to free convection.

Solution

For large aspect ratio duct of solar collectors (L/S > 12) and the tilt angle less than the critical
value h* given in Table 9.2, Eq. (9.35) of the average Nusselt number can be used:

Numð ÞS ¼ 1þ 1:44 1� 1708
RaScosh

� �þ
1� 1708ðsin1.8hÞ1:6

RaScosh

" #
þ RaScosh

5830

� �1=3

�1

" #þ

for 0� h� 60
 and 0\Ra� 105:

Either of the terms in + bracket goes to zero when negative.
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Thermophysical properties of air at mean temperature = (70 + 30)/2 = 50°C from
Table A5 are:

q ¼ 1:0949 kg=m3; l ¼ 1:9512� 10�5 kg=ðm sÞ; k ¼ 0:02799W=ðm KÞ;
a ¼ 0:257� 10�4 m2/s and Pr ¼ 0:703:

Rayleigh number,

RaS ¼ gbðT1 � T2ÞS3
am

¼ 9:81� 1=ð50þ 273Þ � ð75� 25Þ � 0:053

0:257� 10�4 � ð1:9512� 10�5=1:0949Þ ¼ 4:14� 105:

Hence,

Numð ÞS ¼ 1þ 1:44 1� 1708
4:14� 105 � cos45

� �þ
1� 1708� ðsin1.8� 45Þ1:6

4:14� 105 � cos45

" #

þ 4:14� 105 � cos45
5830

� �1=3

�1

" #þ

¼ 1þ 1:44� 0:994� 0:994þ 2:689 ¼ 4:79:

Heat transfer coefficient,

h ¼ k

L
ðNumÞs ¼

0:02799
0:05

� 4:79 ¼ 2:68W=ðm2KÞ:

Hence, heat flux is

q ¼ hðT1 � T2Þ ¼ 2:68� 50 ¼ 134W=m2:

Here the radiation heat transfer has not been considered.

Example 9.18 A cover plate with 50 mm air gap is installed over a horizontal surface
(0.4 m � 0.4 m in area) maintained at T1= 75°C to reduce heat transfer from the surface as
shown in Fig. 9.9. Determine the heat transfer rate to the still air at 25°C above the cover
plate. Neglect radiation heat transfer and contact resistance between the surface and cover.

Solution

In equilibrium, the heat transfer across the air gap of the cover equals the heat rejection from
the top surface of the cover, i.e.

h1ðT1 � T2Þ ¼ h2ðT2 � T1Þ ðiÞ

where T2 is not known which is required to estimate h1 and h2.

S

T1

T2

Cover

Fig. 9.9 Example 9.18
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For trial, we assume T2 = 50°C. For heat transfer through air gap of the cover, mean air
temperature is Tm1 = (T1 + T2)/2 = (75 + 50)/2 = 62.5°C. Air properties at mean tempera-
ture are:

q ¼ 1:05 kg=m3; l ¼ 2:0085� 10�5 N s=m2; k ¼ 0:02895W=ðm KÞ and Pr ¼ 0:7:

The Rayleigh number is

Ra ¼ bg T1 � T2ð ÞS3
ðl=qÞ2 Pr ¼ 1=ð62:5þ 273Þ � 9:81� 75� 50ð Þ � 0:053

ð2:0085� 10�5=1:05Þ2 � 0:7 ¼ 1:75� 105:

From Eq. (9.34),

NuSð Þ1¼
h1S

k
¼ 0:069Ra1=3S Pr0:074

or

h1 ¼ k

S
� 0:069Ra1=3S Pr0:074

¼ 0:02895
0:05

� 0:069� ð1:75� 105Þ1=3 � 0:70:074

¼ 2:18W=ðm2KÞ:

For top surface of the cover, the film temperature is Tm2 = (T2 + T∞)/2 = (50 + 25)/
2 = 37.5°C. Air properties at the film temperature are:

q ¼ 1:1409 kg=m3; l ¼ 1:8938� 10�5 N s=m2; k ¼ 0:02704W=ðm KÞ and Pr ¼ 0:706:

The Rayleigh number is

Ra ¼ bg T2 � T1ð ÞL3
ðl=qÞ2 Pr ¼ 1=ð37:5þ 273Þ � 9:81� 50� 25ð Þ � 0:13

ð1:8938� 10�5=1:1409Þ2 � 0:706

¼ 2:02� 106

where L = As/P = 0.4 � 0.4/(4 � 0.4) = 0.1 m.
When the upper side of the plate is heated Eq. (9.17) gives

ðNumÞ2 ¼ h2
L

k
¼ 0:54Ra1=4L
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or

h2 ¼ k

L
� 0:54Ra1=4L

¼ 0:02704
0:1

� 0:54� ð2:02� 106Þ1=4 ¼ 5:5W=ðm2KÞ:

Substitution in Eq. (i) gives

h1ðT1 � T2Þ ¼ h2ðT2 � T1Þ

or

2:18� ð75� T2Þ ¼ 5:5� ðT2 � 25Þ

or

T2 ¼ 39:2oC:

as against the assumed value of 50°C. We repeat the above analysis with T2 = 40°C.
For heat transfer through air gap of the cover, mean air temperature is Tm1 = (T1 + T2)/

2 = (75 + 40)/2 = 57.5°C. Air properties at mean temperature are:

q ¼ 1:068 kg=m3; l ¼ 1:986� 10�5 N s=m2; k ¼ 0:02856W=ðm KÞ and Pr ¼ 0:7012:

The Rayleigh number is

Ra ¼ bg T1 � T2ð ÞS3
ðl=qÞ2 Pr ¼ 1=ð57:5þ 273Þ � 9:81� 75� 40ð Þ � 0:053

ð1:986� 10�5=1:068Þ2 � 0:7012

¼ 2:63� 105:

From Eq. (9.34),

NuSð Þ1¼
h1S

k
¼ 0:069Ra1=3S Pr0:074

or

h1 ¼ k

S
� 0:069Ra1=3S Pr0:074

¼ 0:02856
0:05

� 0:069� ð2:63� 105Þ1=3 � 0:70120:074

¼ 2:46W=ðm2KÞ:

For top surface of the cover, the film temperature is Tm2 = (T2 + T∞)/2 = (40 + 25)/
2 = 32.5°C. Air properties at the film temperature are:

q ¼ 1:1592 kg=m3; l ¼ 1:8708� 10�5 N s=m2; k ¼ 0:02665W=ðm KÞ and Pr ¼ 0:7072:
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The Rayleigh number is

Ra ¼ bg T2 � T1ð ÞL3
ðl=qÞ2 Pr ¼ 1=ð32:5þ 273Þ � 9:81� 50� 40ð Þ � 0:13

ð1:8708� 10�5=1:1592Þ2 � 0:7072

¼ 8:72� 105:

When the upper side of the plate is heated Eq. (9.17) gives

ðNumÞ2 ¼ h2
L

k
¼ 0:54Ra1=4L

or

h2 ¼ k

L
� 0:54Ra1=4L

¼ 0:02665
0:1

� 0:54� ð8:72� 105Þ1=4 ¼ 4:4W=ðm2KÞ:

Substitution in Eq. (i) gives

h1ðT1 � T2Þ ¼ h2ðT2 � T1Þ

or

2:46� ð75� T2Þ ¼ 4:4� ðT2 � 25Þ

or

T2 ¼ 42:9oC:

as against the second trial value of 40°C. For greater accuracy, third iteration may be carried
out.

Heat transfer rate with this approximation of temperature T2 is

q ¼ h1AsðT1 � T2Þ ¼ 2:46� 0:4� 0:4� ð75� 42:9Þ ¼ 12:63W:

9.8 Combined Free and Forced Convection (Kays and Crawford 1980;
Gebhart 1961; Holman 1992; Cengel 2007)

Till now we have considered either the forced or the free convection. But in a fluid, if tem-
perature gradient is present natural convection also occurs. When the velocity of a fluid is high
(and correspondingly large value of the Reynolds number) and the Rayleigh number is small,
the forced convection dominates and the effect of the free convection can be neglected. On the
other hand, at low values of the Reynolds number and high value of the Rayleigh number, the
buoyancy forces generate a convective velocity that alters the velocity and temperature fields in
the forced convection flows. In general, the buoyancy effect is negligible in fully established
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turbulent flows and laminar flows with low Grashof number. Mixed convection basically
occurs when moderate to large Grashof number is associated with laminar and transition flows.

The parameters which influence the heat transfer are the Reynolds number, Prandtl
number, Rayleigh number, the geometry of the heat transferring surface and the orientation
of the forced flow relative to the gravitational force. For a given geometry of the surface, the
relative strength of the buoyancy and inertia forces is measured by Richardson number
Ri = Gr/Re2. In general, the effect of natural convection is negligible when Gr/Re2 < 0.1.
The forced convection is negligible when Gr/Re2 > 10. In the range 0.1 > Gr/Re2 > 10,
mixed flow condition occurs, and both natural and forced convection must be considered.

Sparrow and Gregg (1959) determined the conditions under which the buoyancy effect
would appreciably change the heat transfer rate in forced-flow laminar boundary-layer
regime over a vertical surface. The analysis considered Pr = 0.01, 1.0 and 10. They found
that the effect of the buoyancy on the heat transfer coefficient will be less than 5 per cent if

Grx
Re2x

� 0:225 ð9:37Þ

where both the Grashof and Reynolds numbers are based on the distance from the leading
edge of the plate. The above mentioned limits apply approximately for buoyancy force either
opposed to, or in the direction of the forced flow.

Lloyd and Sparrow (1970) carried out similarity analysis to study the effect of buoyancy
on forced convection over isothermal vertical surfaces. They showed that for a 5 per cent
increase in the Nusselt number

Grx
Re2x

¼ 0:24 for Pr ¼ 100

Grx
Re2x

¼ 0:13 for Pr ¼ 10

Grx
Re2x

¼ 0:08 for Pr ¼ 0:72

Grx
Re2x

¼ 0:056 for Pr ¼ 0:08:

ð9:38Þ

For flow of air on a heated horizontal plate facing upwards a 5 per cent increase in the heat
transfer coefficient is reported for aiding flow by Chen et al. (1977) when

Grx
Re2:5x

� 0:05 ð9:39Þ

For the turbulent flow of air in a vertical tube of L/D � 5, Eckert and Diaguila (1954)
found a deviation of less than 10 per cent from pure natural convection for

Grx
Re2:5x

� 0:007 ð9:40Þ

and a deviation of less than 10 per cent from the pure forced-convection was found for
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Grx
Re2:5x

� 0:0016 ð9:41Þ

where the region between these two limits is that of mixed convection.
Natural convection may assist or resist forced convection depending on the relative

directions of buoyancy-induced currents and the forced convection motion. In assisting
flows, the natural convection currents are in the direction of the forced flow. Therefore,
natural convection assists forced convection and enhances heat transfer. In opposing flows,
the natural convection currents are in the opposite direction to the forced flow and the natural
convection resists forced convection. Therefore, the heat transfer is decreased. While in
transverse flows, the natural convection currents are perpendicular to the forced flow. The
transverse flow enhances fluid mixing and hence enhances the heat transfer.

When neither natural nor forced convection are negligible, the combined Nusselt number
can be determined from the following correlation in the absence of specific relation. The
given relation is based on experimental data (Cengel 2007).

Nucombined ¼ Nunforced � Nunnatural
� 	1=n ð9:42Þ

where Nuforced and Nunatural are determined from the correlations for pure forced and pure
natural convection, respectively. The plus sign is for assisting and transverse flows and the
minus sign is for the opposing flows. The value of the exponent n varies between 3 and 4
depending on the geometry involved. The exponent n = 3 generally gives good results. For
transverse flows over horizontal surfaces n = 7/2, and for the cylinders and spheres n = 4 are
better suited (Incropera et al. 2012).

Mori and Futagami (1967) carried out analytical and experimental study of convective
heat transfer with buoyancy inside horizontal tubes for uniform heat flux condition. For air,
they found that the Nusselt number began to increase when the product (Re.Gr.Pr) exceeded
103. They attributed the increase in the Nusselt number to the secondary flow. For very large
values of (Re.Gr.Pr), the following relation for the ratio of the mixed convection Nusselt
number Nuo and pure forced-convection Nusselt number Nuo is suggested:

Nu
Nuo

¼ 0:1634ðReGr PrÞ0:2

for Pr ¼ 0:72
ð9:43Þ

where the Grashof number is defined using the tube radius while the Reynolds number has
been defined using the tube diameter.

Brown and Gauvin (1965) developed a correlation of mixed-convection in horizontal
tubes applicable to the laminar flow regime as

Nu ¼ 1:75 RePr
D

L

� �
þ 0:012 RePr

D

L
Gr1=3

� �4=3
" #1=3

lb
lw

� �0:14

ð9:44Þ
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For the turbulent flow mixed convection in horizontal tubes, the suggested correlation due
to Metais and Eckert (1964) is

Nu ¼ 4:69Re0:27Pr0:21Gr0:07
D

L

� �0:36

ð9:45Þ

Example 9.19 For a vertical isothermal plate 0.5 m high in air at 313 K, determine the
plate temperature for which the natural convection effect will be less than 5 per cent at the
upper end of the plate. The air flow is vertically upwards at a velocity of 2 m/s.

Solution

The condition for 5% effect of free convection on the forced convection is

Grx
Re2x

¼ 0:225

Assuming a mean film temperature of 350 K (77°C), the fluid properties are:

q ¼ 1:00 kg=m3; l ¼ 2:07� 10�5 kg=ðm sÞ and b ¼ 1=T ¼ ð1=350ÞK�1:

Corresponding to L = 0.5 m, the Reynolds number is

ReL ¼ qU1L

lf
¼ 1:00� 2� 0:5

2:07� 10�5
¼ 48309:

Using the given condition for 5% effect of free convection on the forced convection, we
have

Gr ¼ 0:225ðReÞ2 ¼ 0:225ð48309Þ2 ¼ 5:25� 108:

The plate surface temperature corresponding to this limiting value of the Grashof number is

DT ¼ Gr
q2bgL3=l2

¼ 5:25� 108

ð1:00Þ2 � ð1=350Þ � 9:81� 0:53 � 1=ð2:07� 10�5Þ2 ¼ 64:2 oC:

The plate temperature at its upper end will be

ts ¼ Dtþ tair ¼ 64:2þ 40 ¼ 104:2 oC:

This gives

Tm ¼ ts þ tair
2

þ 273 ¼ 345 K,
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which is approximately equal to the assumed value of the mean temperature of 350 K.
Hence, retrial is not required.

Determined plate temperature of 104.2°C is the limiting value. For a temperature less than
104.2°C, the value of the Grashof number will be less than the calculated limiting value of
5.28 � 108 and the effect of natural convection on the free convection heat transfer will be
less than 5%.

Example 9.20 Air, at 1 bar and 300 K, flows through a 20 mm diameter horizontal tube at
a velocity of 0.5 m/s. The tube wall is maintained at a uniform temperature of 400 K.
Determine the effect of natural convection on the heat transfer coefficient if the tube length is
0.5 m.

Solution

The fluid properties at the mean bulk temperature Tb = 300 K (27°C) are:

l = 1.845 � 10−5 kg/(m s)
q = 1.18 kg/m3

k = 0.0262 W/(m K)
Pr = 0.7085
b = 1/Tb = (1/300) K−1

lw = 2.285 � 10–5 kg/(m s) at the wall temperature of 400 K

For the calculation of the above values, the rise in the temperature of the air through the
tube is assumed to be small.

The various parameters required are calculated as

Red ¼ qU1d

l
¼ 1:18� 0:5� 0:02

1:845� 10�5
¼ 639

Gr ¼ q2bgDTL3

l2
¼ ð1:18Þ2 � ð1=300Þ � 9:81� ð400� 300Þ � 0:023

ð1:845� 10�5Þ2 ¼ 10:7� 104:

The flow is in the laminar regime hence the equation of Brown and Gauvin for horizontal
tubes applies. The Nusselt number is

Nu ¼ 1:75 RePr
D

L

� �
þ 0:012 RePr

D

L
Gr1=3

� �4=3
" #1=3

lb
lw

� �0:14

ð9:44Þ

RePr
D

L
¼ 639� 0:7085� 0:02

0:5
¼ 18:1:

This gives
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Nu ¼ 1:75 18:1þ 0:012 18:1� ð10:7� 104Þ1=3
h i4=3
 �1=3 1:845

2:285

� �0:14

¼ 8:26:

The development length Lhy in laminar flow from Eq. (7.4) is

Lhy ¼ ð0:05ReÞ � D ¼ ð0:05� 639Þ � 0:02 ¼ 0:639 m:

Flow is developing hence its effect on the mean value of the Nusselt number must be
considered.

The non-dimensional tube length,

xþ ¼ x

R

� � 1
Re Pr

¼ 0:5
0:01

� �
� 1
639� 0:7085

¼ 0:11:

From Fig. 8.3, for x+ = 0.11,

Num � 4:6:

The effect of the natural convection on the laminar forced flow Nusselt number is [(8.26 –

4.6)/4.6] � 100 = 79.6%, which is significant.

Example 9.21 A heated vertical plate, 600 mm wide and 400 mm high, at 350 K is cooled
by blowing air of 300 K at 0.8 m/s. Estimate the heat rejection rate if the air is blown
upwards along the plate surface.

Solution
Let us first check whether it is a case of mixed convection.

Air properties at the mean film temperature Tm = 325 K (52°C) are
b ¼ 1

Tm
¼ 1

325 K−1, k = 0.028 W/(m K), q = 1.088 kg/m3, l = 1.96 � 10−5kg/(m s) and

Pr � 0.7025.
For forced flow,

ReL ¼ qUL
l

¼ 1:088� 0:8� 0:4
1:96� 10�5

¼ 1:77� 104:

For the flow parallel to a plate, it is laminar.
For free or natural convection,

GrL ¼ q2bgDTL3

l2
¼ 1:0882 � ð1=325Þ � 9:81� ð350� 300Þ � 0:43

ð1:96� 10�5Þ2 ¼ 2:98� 108

RaL ¼ GrL Pr ¼ 2:98� 108 � 0:7025 ¼ 2:09� 108\109;

the free convection flow is also laminar.
Richardson number Ri (= Gr/Re2),
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GrL
Re2L

¼ 2:98� 108

ð1:77� 104Þ2 ¼ 0:95;

i.e., the number lies in the range 0.1–10 and it is a case of mixed convection.
Forced convection Nusselt number,

Nuforced ¼ 0:664Re1=2 Pr
1=3

¼ 0:664ð1:77� 104Þ1=2ð0:7025Þ1=3 ¼ 78:5:

Free convection Nusselt number from Eq. (9.6),

Nunatural ¼ 0:59Ra1:4 ¼ 0:59ð2:09� 108Þ1=4 ¼ 70:94:

Mixed convection Nusselt number for assisting flow, from Eq. (9.42) with n = 3 for
vertical plate,

Nucombined ¼ Nu3forced þNu3natural
� 	1=3¼ ð78:5Þ3 þð70:94Þ3

h i1=3
¼ 94:4:

This gives,

h ¼ Nucombined
k

L
¼ 94:4� 0:028

0:4
¼ 6:6 W/(m2 K):

q ¼ hAðTw � TairÞ ¼ 6:6� 0:6� 0:4ð350� 300Þ ¼ 79:2 W:

Example 9.22 Water flows across a 50 mm diameter long cylinder with surface tempera-
ture of 45°C. The free stream conditions are U∞ = 0.05 m/s and t∞ = 25°C. Determine the
Nusselt number.

Solution

At film temperature of 35°C, thermophysical properties of water are:

q ¼ 994 kg=m3; l ¼ 718� 10�6 N s=m2; k ¼ 0:624W=ðm KÞ; Pr ¼ 4:81 and

b ¼ 0:342� 10�3 ð1=KÞ:

The Grashof number,

GrD ¼ bg ts � t1ð ÞD3

m2
¼ 0:342� 10�3 � 9:81� 45� 25ð Þ � 0:053

ð718� 10�6=994Þ2 ¼ 16� 106:

Flow Reynolds number,
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ReD ¼ U1D

m
¼ 0:05� 0:05

718� 10�6=994
¼ 3461

GrD
Re2D

¼ 1:336:

Free convection effect will be significant.
Rayleigh number,

RaD ¼ GrD Pr ¼ 16� 106 � 4:81 ¼ 77� 106:

The mean Nusselt number for natural convection from Eq. (9.23),

Nunatural ¼ 0:53Ra1=4D ¼ 0:53� ð77� 106Þ1=4 ¼ 49:64:

From Eq. (8.47) and Table 8.11,

Nuforced ¼ 0:683Re0:466Pr1=3 ¼ 0:683ð3461Þ0:466ð4:81Þ1=3 ¼ 51:4:

The combined Nusselt number from Eq. (9.42),

Nucombined ¼ Nunforced � Nunnatural
� 	1=n

The plus sign is for assisting and transverse flows and the minus sign is for the opposing
flows. The exponent n = 3 generally gives good results. For the cylinders n = 4 is better
suited.

Hence, transverse flow combined Nusselt number is

Nucombined ¼ 51:44 þ 49:644
� 	1=4¼ 60:1;

assisting flow combined Nusselt number is

Nucombined ¼ 51:43 þ 49:643
� 	1=3¼ 63:67

and opposing flow combined Nusselt number is

Nucombined ¼ 51:43 � 49:643
� 	1=3¼ 23:8:

9.9 Summary

In the natural or free convection, the motion of the fluid is caused by the buoyancy force
arising from the change in the density of the fluid due to the rise in its temperature. Flow
structure and development of boundary layer for vertical plate or cylinder, horizontal plates
(with heated surface facing upwards and downwards), horizontal cylinders, sphere, parallel
plate channels and enclosed spaces have been discussed.
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The technique of dimensional analysis has been applied to develop functional relationship
for natural convection heat transfer in terms of dimensionless numbers Gr and Pr as Nu =
(Gr)/(Pr). The form of functions w(Gr) and /(Pr) are specified for different conditions of
heat transfer by convection on the basis of theoretical analysis or experimental investigations.
Physical interpretation of the Grashof number Gr has also been presented.

Experimental scheme for determination of the natural convection heat transfer coefficient
from a long horizontal tube has been presented in Sect. 9.4, which has been extended for
determination of heat transfer coefficient from vertical and horizontal plates.

In Sect. 9.5.1, empirical relations of heat transfer coefficient applicable to vertical plate for
both laminar flow (Ra < 109) and turbulent flow (Ra � 109) pertaining to uniform tem-
perature and uniform heat flux conditions are presented. Condition for treating a vertical
cylinder as a vertical plate is specified in Eq. (9.5).

For inclined plates (0 � h � 60°), correlation presented in Eq. (9.10) due to Churchill
and Chu is valid when the acceleration due to gravity g is replaced by its component parallel
to the wall g cosh, where h is the angle of inclination with the vertical. This approach is
satisfactory only for the top and bottom surfaces of cooled and heated plates, respectively.

Horizontal plate correlations for both uniform temperature and uniform heat flux condi-
tions are presented in Sect. 9.5.3, with characteristic length L defined as ratio of the heat
transfer area A and perimeter P of the plate. The relations cover both the conditions of the
upper side of the plate heated or lower side cooled and upper side of the plate cooled or lower
side heated.

Sections 9.5.4 and 9.5.5 present heat transfer correlations for horizontal cylinder and
sphere, respectively.

Array of circuit boards or fin arrays employed to enhance free convection heat transfer
may be regarded as parallel vertical plates forming a channel that is open to the ambient at its
ends. The heated fluid rises and exits from the top of the channel. Researchers have presented
correlations for both vertical and inclined channels in terms of Rayleigh number Ra. Because
of the effect of the ratio of spacing to height S/L on the flow structure, this ratio appears in the
heat transfer correlations.

In some engineering applications, heat transfer takes place between two surfaces that are
at different temperatures and a fluid is present in the space enclosed by these surfaces.
Typical examples of such enclosures are double pane windows and cavities in the walls of
the buildings (forming vertical enclosures), and solar collectors (forming horizontal or
inclined enclosures), etc. Flow structures in both vertical and horizontal enclosures have been
discussed and correlations for vertical, inclined and horizontal rectangular enclosure are
presented in Sect. 9.7. It is to note that if the upper wall is heated in case of horizontal
enclosure, then the heat transfer takes place by conduction only (Nu = 1) irrespective of the
value of the Rayleigh number. The radiation heat exchange between the hot and cold surfaces
is always present when a gas is filled in the cavity.

In many applications, forced and free convections may coexist. When the velocity of a
fluid is high (and correspondingly large value of inertia forces and hence the Reynolds
number) and the Rayleigh number is small, the forced convection dominates and the effect of
the free convection can be neglected. On the other hand, at low values of the Reynolds
number and high value of the Rayleigh number, the buoyancy forces generate a convective
velocity that alters the velocity and temperature fields in the forced convection flows. The
relative strength of the buoyancy and inertia forces is measured by Richardson number
Ri = Gr/Re2. In general, the effect of natural convection is negligible when Gr/Re2 < 0.1.
The forced convection is negligible when Gr/Re2 > 10. In the range 0.1 > Gr/Re2 > 10,
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mixed flow condition occurs, and both natural and forced convection must be considered.
Some specific relations to determine combined Nusselt number for horizontal tubes are
presented, refer Eqs. (9.43)–(9.45). In the absence of specific relation, Eq. (9.42) may be used
to determine combined Nusselt number.

Review Questions

9:1 List the variables that affect the free convection heat transfer coefficient.
9:2 Using dimensional analysis, show that the heat transfer by natural convection can be

given by a relationship of the form

Nu ¼ f ðGr,Pr)

where Nu is the Nusselt number, Pr is Prandtl number and Gr is the Grashof number.
9:3 With the help of Buckingham pi theorem, show that for the free convection

Nu ¼ f ðGr,Pr)

9:4 At low flow velocities, the free convection effect may be present in the forced con-
vection heat transfer case. Using dimensional analysis, show that the following form
of correlation is obtained

f ðNu,Re, Pr,Gr) ¼ 0

9:5 What is physical interpretation of the Grashof number?
9:6 What is the Rayleigh number?
9:7 Explain the physical reason for the optimum spacing for vertical channel and an array

of vertical plates.
9:8 Discuss flow structures in (i) a vertical enclosure, (ii) horizontal enclosure and (iii) an

inclined enclosure.
9:9 Discuss heat transfer in a horizontal enclosure when upper surface is hot.

9:10 What do you mean by mixed convection? What is the condition for the consideration
of the mixed convection in the heat transfer analysis?

9:11 How do the assisting, opposing and transverse flows affect the heat transfer in mixed
convection?

Problems

9:1. A 3.5 m high and 5 m wide vertical plate, maintained at 50°C, is exposed to sur-
rounding air at 10°C. Calculate the heat transfer rate.
[Ans. Air properties at mean film temperature ½ (50 + 10) = 30°C:b ¼ 1

Tm
¼ 1

303 K
−1,

k = 0.0265 W/(m K), q = 1.1684 kg/m3. l = 1.86 � 10−5kg/(m s) and Pr = 0.708;
Ra = (q2gbDTL3)/l2.Pr= 1.55 � 1011; Using Eq. (9.10), Nu = 604.8; hm = Nuk/
L = 4.58 W/(m2 K); q = hmA (tw � t∞) = 3206 W; Alternatively from Eq. (9.9),
Nu = 0.1(Ra)1/3 = 536.7, which is about 11% lower.]
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9:2. A 20 mm diameter horizontal heated cylinder at a uniform temperature of 40°C is
cooled by the surrounding air at 20°C. Calculate the heat loss rate per unit length of the
cylinder.
[Ans. Air properties at mean film temperature ½ (40 + 20) = 30°C:b ¼ 1

Tm
¼ 1

303 K
−1,

k = 0.0265 W/(m K), q = 1.1684 kg/m3. l = 1.86 � 10−5kg/(m s) and Pr = 0.708;
Ra = [(gbDTd3)/m2]Pr = 1.45 � 104; From Eq. (9.23), Num = 0.53(Ra)1/4 = 5.82;
hm = Nuk/d = 7.71 W/(m2 K); q/L = hm(pd) (tw � t∞) = 9.69 W/m.]

9:3. If the cylinder in the above problem is dipped in still water at 20°C, what will be the
cooling rate? Given gbq2c/(lk) = 2.4 � 1010 m−3K−1.
[Ans. Ra = GrPr = gbq2c/(lk)� DTd3 = 3.84 � 106; From Eq. (9.23), Nu = 0.53
(Ra)1/4 = 23.46; hm = Nuk/d = 727.3 W/(m2 K) for k = 0.62 W/(m K) at tm = 30°C;
q/L = hm (pd) (tw � t∞) = 913.9 W/m. Comments: Water cooling is very effective as
compared to the air cooling.]

9:4. A vertical surface 4 m high and 1.8 m wide is subjected to uniform heat flux of
1000 W/m2. The surface is insulated from the other side. All of the incident heat is
rejected by free convection to the surrounding air at 20°C. What average temperature
will the plate attain?
[Ans. With a trial value of h = 5 W/(m2 K), DT = qw/h = 200°C; tw = (20 + 200) =
220°C; tm = ½ (20 + 220) = 120°C for air properties; b ¼ 1

Tm
¼ 1

393 K−1,

k = 0.0331 W/(m K), q = 0.8988 kg/m3. l = 2.2565 � 10−5 kg/(m s) and Pr = 0.69;
Grx

* = Grx Nux = (q2gbqwx
4)/(kl2) = 3.02 � 1014; From Eq. (9.14), hx = L = k/x (0.17)

(Grx
*Pr)1/4 = 5.34 W/(m2 K); For turbulent heat transfer hx = hm. Since the calculated

value is approximately equal to the trial value, there is no need of retrial; Revised
tw =Dt + tair = qw/h + tair � 210°C for hm � 5.3.]

9:5. Estimate the convective heat transfer rate to a cylinder of diameter 200 mm and height
1.0 m if it is placed vertically in essentially still air at a temperature of 60°C. The
surface of the cylinder is maintained at 10°C.
[Ans. Mean film temperature = 35°C; Air properties: m = l/q = 16.35 � 10−6 m2/s,

k = 0.0268 W/(m K), Pr = 0.7066, and b = 1/308 K−1;GrL ¼ gbðtw�t1ÞL3
t2 ¼ 5:95� 109;

(35/Gr1/4) = 0.126; D/L = 0.2; D/L > 35/Gr1/4, vertical plate equation applies; RaL ¼
4:2� 109; From Eq. (9.9), NuL = 0.1(RaL)

1/3 = 161.3; h ¼ 4:32W/(m2 K);
q ¼ hADT ¼ 135:7 W:]

9:6. A vertical cylindrical surface, 0.4 m in diameter and 1.0 m in height, at 40°C is exposed
to either water or air at 10°C. Determine relative magnitude of heat loss from two fluids
by natural convection.
[Ans. Water as coolant: Properties of water at the mean film temperature tm = (ti + ts)/
2 = 25°C from Table A4: q =997 kg/m3, l = 890 � 10−6 N s/m2, k = 0.609 W/(m K),

Pr = 6.13 and b = 0.253 � 10−3 1/K; Gr ¼ q2gbDTL3

l2 ¼ 9972�9:81�0:253�10�3�ð40�10Þ�13

ð890�10�6Þ2 ¼
9:34� 1010; D/L = 0.4; 35/Gr0.25 = 0.0633. Hence, condition D

L � 35

Gr1=4L

is satisfied and

the cylinder can be treated as a vertical plate;
Ra ¼ GrPr ¼ 9:34� 1010 � 6:13 ¼ 5:7� 1011; From Eq. (9.10),

Num ¼ 0:825þ 0:387Ra1=6

1þ 0:492= Prð Þ9=16½ 	8=27

 �2

¼ 0:825þ 0:387�ð5:7�1011Þ1=6

1þ 0:492=6:13ð Þ9=16½ 	8=27

 �2

¼1147:3;

hwater ¼ k
LNum ¼ 0:609

1:0 � 1147:3 ¼ 698:7 W/(m2 K).
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Air as coolant: Air properties at the mean film temperature tm = (ti + ts)/2 = 25°C
from Table A5: q =1.1868 kg/m3, l = 1.8363 � 10−5 N s/m2, k = 0.02608 W/(m K)

and Pr = 0.709; Gr ¼ q2gbDTL3

l2 ¼ 1:18682�9:81�ð1=298Þ�ð40�10Þ�13

ð1:8363�10�5Þ2 ¼ 4:13� 109; D/L = 0.4;

35/Gr0.25 = 0.138. Hence, condition D
L � 35

Gr1=4L

is satisfied; Ra ¼ GrPr ¼ 2:93� 109;

Num ¼ 0:825þ 0:387Ra1=6

1þ 0:492= Prð Þ9=16½ 	8=27

 �2

¼ 0:825þ 0:387�ð2:93�109Þ1=6

1þ 0:492=0:709ð Þ9=16½ 	8=27

 �2

¼171:5;

hair ¼ k
LNum ¼ 0:02608

1:0 � 171:5 ¼ 4:47 W/(m2 K); Relative magnitude of heat loss, qwaterqair

¼ hwaterpDLDT
hairpDLDT

¼ 698:7
4:47 ¼ 156:3; Water is much more effective heat transfer fluid than air.]

9:7. Air at atmospheric pressure is contained in an enclosure with sides made of 0.6 m
0.6 m vertical plates. The plates are separated by a distance of 20 mm. The lower and
upper sides are closed by adiabatic plates. The temperatures of the left and right vertical
plates are 100°C and 50°C, respectively. Calculate the free convection heat transfer rate
between the plates.
[Ans. Fluid properties at mean temperature (T1 + T2)/2 = 75°C; q = 1.0052 kg/m3,
l = 2.066 � 10−5 kg/(m s), k = 0.0299 W/(m K), Pr = 0.697, and b = 1/348 K−1;
RaS = GrSPr = [(q2gbDTS3)/l2]Pr = 1.86 � 104; For 10 � L/S � 40 and Ra = 104 –
107, Eq. (9.30) applies, which gives Nu = 1.76; h = Nuk/L = 2.63 W/(m2 K); q = hA
(T1 – T2) = 47.34 W.]

9:8. A vertical enclosure consists of two square plates (0.3 m � 0.3 m) separated by a
distance of 10 mm. One of the vertical plates is maintained at a uniform temperature of
40°C while the other is at a uniform temperature of 10°C. Water at atmospheric pressure
is filled in the enclosure. Calculate the heat transfer rate if the horizontal and side walls
are insulated. Given gbq2c/(lk) = 1.85 � 1010 m−3K−1 at the mean temperature.
[Ans. At the mean temperature of (40 + 10)/2 = 25°C, k = 0.61 W/(m K) and Pr =
6.13 for water from Table A4. The Rayleigh number = gbq2c/(lk) � DT � S3 =
1.85 � 1010 � (40–10) � 0.013 = 5.55 � 105; For 10 � L/S � 40, 104 � RaS
107 and 1 � Pr � 2 � 104, Eq. (9.30) applies.NuS ¼ 0:42ðRaSÞ1=4 Pr0:012 L

S

� 	�0:3¼
0:42 � 5:55� 105

� 	1=4� 6:13ð Þ0:012 0:3
0:01

� 	�0:3¼ 4:22; Mean heat transfer coefficient, h ¼
Nu k

S

� 	 ¼ 4:22� 0:61
0:01

� 	 ¼ 257:42 W/(m2 K); Heat transfer rate,
q ¼ hAðT1 � T2Þ ¼ 257:42� ð0:3� 0:3Þ � ð40� 10Þ ¼ 695 W:]

9:9. For a vertical isothermal plate 300 mm high in air at 10°C and atmospheric pressure,
determine what free stream velocity of the air will result in the forced convection effect
for a plate temperature of 40°C if the flow is in vertical direction?
[Ans. At Tm = 25°C = 298 K, b = 1/298 K−1, q = 1.1868 kg/m3, l = 1.8363
10−5 kg/(m s); Gr = (q2gbDTL3)/l2 = 11.1 � 107. The forced convection is negligi-
ble when Gr/Re2 > 10; Re < 3300; U∞ = Rem/L < 0.17 m/s.]
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10Laws of Thermal Radiation

10.1 Introduction

All bodies emit radiation to their surroundings through electromagnetic waves due to the
conversion of the internal energy of the body into radiation. Thermal radiation or heat
radiation is also a form of electromagnetic emission. Since electromagnetic waves can also
travel through a vacuum hence, in contrast to the conduction and convection heat transfer, it
can take place through a perfect vacuum. Thus, when no medium is present, radiation
becomes the only mode of heat transfer. Common examples are the solar radiation reaching
the earth and the heat dissipation from the filament of an incandescent lamp. Thus, heat is
transferred between two bodies over a great distance.

In general, the radiation means propagation of the electromagnetic waves of all wave-
lengths. The emitted energy can range from radio waves, which have wavelengths of
kilometers, to cosmic rays with wavelengths of less than 10−10 cm. Figure 10.1 and
Table 10.1 depicts the electromagnetic spectrum that extends from very small to very large
wavelengths (k = 0 – ∞).

The most commonly used unit for the measurement of the wavelength of the electro-
magnetic waves is Angstrom (Å = 10−10 m) or micron (lm = 10−6 m).

At small wavelength end (k < 0.01 µm) are gamma rays and x-rays, which are not
thermally stimulated. The same is true for the radar, television and radio waves
(k > 103 µm). The thermal radiation ranges from around 0.1 µm to 1000 µm, which
includes the visible light region between violet (0.38 µm) and red (0.78 µm). The radiation
from violet to red is termed visible because the human eye can see in this wavelength range
only while radiation from 0.78 µm to 1000 µm is the infrared (IR) radiation. Ultraviolet
(UV) radiation occupies the region of 0.01 µm to 0.38 µm. Thermal effects are associated
with thermal radiation.

We are interested in rays that are absorbed by the substances and the energy of which
transforms into heat on absorption. Visible light and infrared rays possess such properties in
the greatest measure. However, in most of the engineering applications, the heat emitted in
the range 400–1000 lm is very small. The thermal radiation also propagates at the velocity of
light (299.8 � 106 m/s in vacuum) and obeys the laws of propagation, reflection and
refraction of light rays.

The radiation of thermal energy is a property of all substances, and they continuously emit
energy by virtue of the molecular and atomic agitation associated with their internal energy.
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Solids, as well as liquids and gases, are capable of radiating thermal energy and absorbing
such energy. Water vapour and carbon dioxide are the main sources of the gaseous radiation
in furnaces.

The true nature of electromagnetic energy is not well understood. However, the under-
standing of the true nature, i.e. quanta or waves, is generally not important to the engineers.
In this chapter, the laws of thermal radiation are being presented.

The wavelength k of the wave emitted in vacuum is related to the wave frequency m by the
relation

km ¼ co ð10:1Þ

where m is expressed in cycles/s and co is the velocity of light in vacuum.
The theory of radiant energy propagation has been considered from two viewpoints:

(a) Electromagnetic Wave Theory.
(b) Quantum Theory: The spectral distribution of the energy emitted from a body and the

radiative properties of the gases can be explained and derived on the basis of quantum
effects in which the energy is assumed to be carried by discrete particles (photons).

10.2 Reflection, Absorption and Transmission of Radiation

Radiation exchange depends on the nature of the substance, its temperature, wavelength, and
the state of the emitting surface. Only thin surface layers of the solids and liquids participate
in the process of radiation heat transfer; for non-conductors of heat, layer thickness is about

Table 10.1 Spectrum of electromagnetic radiation

Type of rays Wavelength k (lm)

Cosmic rays up to 4 � 10−7

Gamma rays 4 � 10−7 to 1 � 10−4

X-rays 1 � 10−5 to 2 � 10−2

Ultraviolet rays 1 � 10−2 to 0.38

Visible (light) 0.38–0.78

Infrared rays

Near 0.78–25

Far 25–1000

Thermal radiation 0.1–1000

Radar, television and radio 1 � 103 to 2 � 1010

Cosmic       γ- rays X-rays  

λ

VisibleUltra-
violet

Infrared Radar, television, 
radio waves

Fig. 10.1 Spectrum of electromagnetic radiation
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1 mm, for the conductors of heat the thickness participating in the radiation is only about 1 l.
Thus, for the solids, it is a surface phenomenon. However, it also depends on the thickness of
the layer and pressure in case of semi-transparent bodies (such as molten quartz, glass, etc.,
and gases and vapours). Therefore, emission and absorption of radiation in gases are volu-
metric effects.

When radiation falls on a body, a part of it may be absorbed, a part may be reflected and
the remaining may pass through the body. The fraction of the incident radiation absorbed by
the body is transformed into heat. If Q is the incident radiant energy, out of which QA is
absorbed, QR is reflected, and QT is transmitted through the body, then, refer Fig. 10.2,

Q ¼ QA þQR þQT

Dividing both sides of the equation by Q, we get

QA

Q
þ QR

Q
þ QT

Q
¼ 1

The first fraction in the equation is known as absorptivity a, second is reflectivity q and the
third fraction is transmissivity s. Hence,

aþ qþ s ¼ 1 ð10:2Þ

Practically, most solids used in engineering applications are nontransparent or opaque
(also termed as athermanous) to the thermal radiation, i.e. the transmissivity s = 0. However,
there are some solids which are transparent to waves of a certain wavelength. For example,
the ordinary glass transmits radiation very readily at wavelengths below about 2 lm but is
essentially opaque to long-wavelength radiation above 3 or 4 lm. From Eq. (10.2), for the
opaque solids

aþ q ¼ 1 ð10:3Þ

or

a ¼ 1� q

This means that a body with good reflectivity possesses poor absorptivity, and vice versa.
If the transmissivity s of a body is equal to one, the absorptivity and reflectivity are equal

to zero and the whole of the incident radiation would pass through the body. Such a body is
termed as absolutely transparent or diathermanous. The only substance found to be per-
fectly diathermanous is crystalline pieces of rock-salt. Air has nearly zero absorptivity and

Q QR

QT

QA

Fig. 10.2 Absorption, reflection and transmission of incident radiation from a body
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reflectivity. However, polyatomic gases, such as carbon dioxide, methane and water vapour
are capable of absorbing heat radiation.

A body with reflectivity of unity will reflect the whole of the incident radiation and is
termed a white body. When the reflection from a body obeys the laws of geometrical optics
(angle of the reflected beam with normal equals the angle of the incident beam with the
normal) the body is called smooth or specular. Reflections from a mirror or highly polished
surface approaches the specular characteristics. However, due to the surface irregularities or
roughness, the reflected radiation may be dispersed in all directions. Such a surface is known
as a diffuse surface. If the roughness dimension (e.g., mean pit depth) for a real surface is
considerably smaller than the wavelength of the incident radiation, the surface behaves as a
specular reflector; if the roughness dimension is larger with respect to the wavelength, the
surface behaves as diffuse one. Figure 10.3 shows the reflections from the specular and
diffuse surfaces.

If the entire incident radiation is absorbed by the body, the absorptivity a = 1. Such a
body is termed as a blackbody. Only a few surfaces, such as carbon black, platinum black
and gold black, approach the absorption capability of a blackbody. It is to be noted that the
blackbody derives its name from the observation that surface appearing black to the eye is
normally a good absorber of incident visible light. However, except for the visible region,
this observation is not a good indicator of the absorbing capability of the surface. If a surface
absorbs all incident rays, except the light rays, it does not appear black although it has a very
high absorptivity. For example, white paint absorbs invisible heat rays just, as well as the
black paint, although it is a poor absorber for the visible light. Similarly, the white looking
ice and snow have absorptivity of 0.9 – 0.97 for longwave radiation. The absorption or
reflection of heat rays depends on the state of the surface. The reflectivity of a smooth and
polished surface is many times greater than that of a rough surface irrespective of the colour.
Thus, the absorptivity of a surface can be increased by coating a rough surface with dark
paint.

10.3 Emissivity and a Perfect Blackbody

A blackbody does not exist in nature. But the concept of a blackbody is of great importance.
The ideal behaviour of the blackbody serves as a standard with which the performance of real
bodies can be compared.

The radiation from a body depends on its temperature and optical property, known as
emissivity e. The emissivity of a given substance is a measure of its ability to emit radiation
in comparison with a blackbody at the same temperature. A blackbody is an ideal radiator
and its emissivity is assumed to be equal to one (e = 1). Real bodies do not emit as much

A diffuse surfaceA specular surface

Fig. 10.3 Specular and diffuse surfaces
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energy as a blackbody and hence their emissivity is less than one. Emissivity has been further
discussed in Sect. 10.8.

A model that is very close to the theoretical blackbody, known as Ferry’s blackbody, is a
hollow enclosure having the same temperature at any point on its inner surface and is having
a very small hole as shown in Fig. 10.4. A ray entering the enclosure through the hole
undergoes several reflections from the inner surface. At each incidence on the surface, a
fraction of the radiation energy is absorbed. Thus, practically all the radiant energy entering
the hole is absorbed inside the enclosure. The absorptivity for the model may be taken equal
to unity and thus, it acts as a blackbody.

In 1879, Stefan discovered that the total emissive power of a blackbody (i.e. the heat
emitted) is proportional to the fourth power of the absolute temperature of the body.
Boltzmann in 1884 gave a theoretical proof of Stefan’s empirical relation for blackbodies and
that is why the law is known as Stefan–Boltzmann law. It is expressed as

q ¼ rAT4 ð10:4Þ

where r is the proportionality constant known as Stefan–Boltzmann constant and A is the
surface area of the body.

The net heat radiated between two bodies 1 and 2 at temperatures T1 and T2 that see each
other completely (heat exchange between them only) is proportional to the difference in T4

1

and T4
2 . Thus

q1�2 ¼ rAðT4
1 � T4

2 Þ ð10:5Þ

The radiation exchange between bodies that are not black is quite complex and has been
dealt with in the next chapter.

It is to be noted that the conduction and convection heat transfers are proportional to the
temperature difference, while the transfer of heat by thermal radiation is proportional to
ðT4

1 � T4
2 Þ. Hence, the radiation heat transfer is the main mode of heat transfer at high-

temperature levels such as in furnaces and combustion chambers. The radiation can be of
importance in some applications where the temperature levels are not high and other modes
of heat transfer are present such as in solar collectors.

Fig. 10.4 A blackbody
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10.4 Planck’s Spectral Distribution of Emissive Power

The radiation emitted from a surface consists of electromagnetic waves of various wave-
lengths and the energy distribution varies in intensity with the wavelength. This distribution
also varies with the temperature of the emitter. Thus, a change in the temperature of the body
causes changes in the magnitude of the radiant energy and spectrum as well. Hence, it is
important to know the law of the emissive power distribution with the wavelength at different
temperatures. The energy emitted by a surface in all directions at a given wavelength is called
spectral or monochromatic emissive power of the body.

Max Planck in 1900, using the quantum theory, deduced theoretically the law governing
the change in emissive power of a blackbody per unit area as a function of temperature and
wavelength. Mathematically, the law gives the spectral distribution of the monochromatic
emissive power Ebk with the wavelength as

Ebk ¼ c1k
�5

expðc2=kTÞ � 1
ð10:6Þ

where

k wavelength, m
T temperature of the body, K
c1 2pc20h ¼ 3:743� 10�16ðJ=sÞm2

co velocity of light in vacuum = 2.998 � 108 m/s
h Planck’s constant = 6.6236 � 10−34 J s
c2 c0h=k ¼ 1:4387� 10�2mK
k Boltzmann constant = 1.38066 � 10−23 J/K.

Figure 10.5 shows the spectral distribution of Ebk for a blackbody at some different values
of absolute temperature. It can be seen that the monochromatic emissive power is zero at
k = 0. It first increases with an increase in the wavelength and reaches its maximum at a
certain value of wavelength kmax, then it decreases again with the increase in the wavelength
and becomes zero at k = ∞.

From the figure, it can be seen that at temperatures commonly encountered in engineering
applications, a major part of the radiation is within a narrow range. Further, the energy of
visible radiation is negligible compared with the infrared radiation (k = 0.74 – 40 lm). For
example, a body at 1000°C emits most of the radiation between 1 and 20 lm). On the other
hand, the Sun whose surface temperature is nearly 5800 K emits 98% of its radiation
between 0.1 and 3 lm.

We observe that when a body is heated from room temperature it becomes dark red,
orange and finally white. This can be explained as below.

The red light becomes visible first as the temperature is raised. Higher temperatures make
visible additional wavelengths of the visible light range, and at a sufficiently high-
temperature, the light emitted becomes white, representing radiation composed of a mixture
of all the visible wavelengths.

Equation (10.6) must be modified by including index of refraction multiplying factors for
radiation into a medium where the speed of light is not close to co. However, for most
engineering applications, the radiant emission is into the air or other gases with an index of
refraction close to unity and Eq. (10.6) is applicable.
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Note: Rayleigh and Jeans (1900)1 made an attempt to predict theoretically the
monochromatic emissive power. The law for blackbody radiation can also be derived from
Planck’s law (Eq. 10.6) for the limiting case of large values of kT. With this condition, we
can retain only two terms of the exponential function in Planck’s equation

e
C2
kT ¼ 1þ 1

1!
C2

kT

� �
þ 1

2!
C2

kT

� �2

þ � � �

Then Eq. (10.6) becomes

Ebk ¼ c1T

c2k
4 ð10:7Þ

which is the Rayleigh–Jean’s law. At large wavelengths, this law describes the actual
monochromatic black radiation quite well. According to this law, the radiation will increase
indefinitely when the wavelength goes towards zero, which is in contradiction with the
experimental observations.

λmaxT = C

E
bλ

, W
/(m

2 -
μm

)
2000K

5800K

1000K

101

100

0 2 4 6 8 10 12 14 16
λ, μm

500K102

103

104

105

106

107

108

Fig. 10.5 Monochromatic emissive power of a blackbody versus wavelength at various temperatures as per
the Planck’s law

1Readers can refer Eckert and Drake (1959) for the basic derivation of the law.
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10.5 Wein’s Displacement Law

With the increase in the temperature, the peak of the curve in Fig. 10.5 shifts towards the
shorter wavelengths. The points corresponding to the maximum of the curves are related by
the Wein’s displacement law. The law states that the wavelength corresponding to the
maximum value of the monochromatic emissive power is inversely proportional to the
absolute temperature T, i.e.

kmax / 1
T

or

kmaxT ¼ constant = 2897:6 lmK: ð10:8Þ

Although the Wein’s displacement law (1893) was revealed before Planck (1990), Planck
made use of the quantum theory to derive his equation. Equation (10.8) can be proved or
arrived at by differentiating Planck’s equation and equating it to zero.

d
dk

ðEbkÞ ¼ d
dk

c1k
�5

expðc2=kTÞ � 1

� �
¼ 0

or

½expðc2=kTÞ � 1�c1ð�5Þk�6 � c1k
�5 expðc2=kTÞðc2=TÞð�1Þk�2

expðc2=kTÞ � 1½ �2 ¼ 0

The denominator of the above equation is not zero, hence

�5c1½expðc2=kTÞ � 1�k�6 þðc1c2=TÞ expðc2=kTÞk�7 ¼ 0

or

� expðc2=kTÞþ ðc2=5kTÞ expðc2=kTÞþ 1 ¼ 0

By trial and error,

c2=kT ¼ 4:965

or

kmaxT ¼ c2=4:965 ¼ 1:4387� 10�2

4:965

or

kmaxT ¼ 0:0028976 mK = 2897:6 lmK:

where kmax denotes the wavelength at which the monochromatic emissive power (Eb)k is
maximum.
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Substituting kT = 0.002897, we can obtain the value of the maximum spectral
monochromatic emissive power as

Ebkð Þmax¼ c1k
�5

expðc2=kTÞ�1 ¼ 3:743�10�16�ð0:002897=TÞ�5

expð4:965Þ�1
or

Ebkð Þmax¼ 1:289� 10�5T5 W/m2permeter wave length:

ð10:9Þ

10.6 Total Emissive Power: Stefan–Boltzmann Law

The Stefan–Boltzmann law states that the total amount of energy emitted per square meter by
a blackbody, known as emissive power of the body, is proportional to the fourth power of the
absolute temperature of the body, i.e.

Eb / T4

or

Eb ¼ rT4 ð10:10Þ

The value of Stefan–Boltzmann constant r is 5.67 � 10−8 W/(m2 K4).
The total emissive power Eb of a blackbody is the total radiant energy emitted by the

blackbody in all directions over the entire wavelength range (k = 0 to ∞) per unit area per
unit time.

From the definition of the value of the emissive power, it follows that at any temperature it
is the area under the curve of Ebk pertaining to that temperature. Hence, refer Fig. 10.6,

Eb ¼
Z1

0

Ebkdk

Substituting the value of (Eb-)k from Eq. (10.6), we have

Eb ¼
Z1

0

c1k
�5

expðc2=kTÞ � 1

� �
dk

λ

Ebλ

dλ

dEbλ

Fig. 10.6 Determination of total emissive power calculation
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Let ðc2=kTÞ ¼ x, then

k ¼ c2
xT

and

dk ¼ � c2
x2T

dx

Substitution gives

Eb ¼ �c1

Z1

0

x5T5

c52½expðxÞ � 1� �
c2
x2T

dx

¼ c1T4

c42

Z1

0

x3

expðxÞ � 1

� �
dx

Now

x3½expðxÞ � 1��1 ¼ x3½ex � 1��1 ¼ x3½e�x þ e�2x þ e�3x þ � � ��

Hence,

Eb ¼ c1T4

c42

Z1

0

x3½e�x þ e�2x þ e�3x þ � � ��dx

But

Z1

0

x3e�nxdx ¼ 3!
n3þ 1

¼ 3!
n4

Hence,

Eb ¼ c1T4

c42

3!
14

þ 3!
24

þ � � �
� �

¼ c1T4

c42

6p4

90

� �

¼ p4

15
� 3:743� 10�16

1:4387� 10�2ð Þ4 T
4

¼ 5:67� 10�8T4

¼ rT4:

ð10:10Þ

It must be noted that the equation applies strictly to a blackbody.
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10.7 Blackbody Radiation in a Wave Length Interval

The Stefan–Boltzmann law gives the hemispherical total emissive power of a blackbody
(from k = 0 to ∞). It is often desirable in calculations of radiation exchange to determine the
fraction of the emission in a given wavelength band as shown in Fig. 10.7a. This fraction is
designated by Fk1�k2 and is given by

Fk1�k2 ¼
R k2
k1

Ebð ÞkdkR1
0 Ebð Þkdk

¼
R k2
k1

Ebð Þkdk
rT4

The integral can be expressed by the difference of two integrals each beginning at k = 0 as
shown below

Fk1�k2 ¼
1

rT4

Zk2
0

Ebð Þkdk�
Zk1
0

Ebð Þkdk
2
4

3
5 ¼ F0�k2 � F0�k1 ðiÞ

The fractions F0�k2 and F0�k1 equal the hatched area divided by the total area under the
curve in Figs. 10.7b, c, respectively. The fraction of the emissive power in the wavelength
interval ðF0�k2 � F0�k1Þ can be found by subtracting the value of fraction F0�k1 from that of
fraction F0�k2 .

Since Ebk depends on absolute temperature T, the fraction F0�k is required to be tabulated
for each value of T. It is possible to arrange the function in terms of single variable kT. This
universal form can be found by rewriting Eq. (i) as

λ

Ebλ

λ1 λ2

λ

Ebλ

λ2 λ

Ebλ

λ1

=

-

a

b c

Fig. 10.7 Determination of radiation in a wavelength interval
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Fk1�k2 ¼ Fk1T�k2T ¼ 1
r

Zk2T

0

Ebð Þk
T5

dðkTÞ �
Zk1T

0

Ebð Þk
T5

dðkTÞ
2
4

3
5

¼ F0�k2T � F0�k1T

ð10:11Þ

It can be shown that Ebð Þk
T5 is only a function of (kT). Thus, the integrands in the above

equation are only dependent on the variable (kT). Some typical values of Fo–kT are given in
Table 10.2. It is interesting to note that exactly one fourth of the total emissive power lies in
the wavelength range below the peak of the Planck’s spectral distribution at any temperature.
More detailed values of Fo–kT are given in Table 10.3.

Example 10.1 The surface of the Sun has an effective blackbody temperature of 5800 K.
Determine the fraction of the radiant energy of the Sun lying in the following ranges.

(i) visible range (0.35 � k � 0.75 lm)
(ii) ultraviolet (0.01 � k � 0.35 lm)
(iii) 0 � k � 3 lm

At what wavelength and frequency is the maximum energy emitted? What is the maxi-
mum value of the hemispherical spectral emissive power?

Solution

(i) Visible range (0.35 � k � 0.75 lm)

k1T ¼ 0:35� 5800 ¼ 2030 lmK

k2T ¼ 0:75� 5800 ¼ 4350 lmK:

Fractional emissive power, from Table 10.3,

F0�k1T ¼ 0:07185

F0�k2T ¼ 0:54055:

So, in the range 0.35 � k � 0.75 lm, the fraction of radiant energy is

F0�k2T � F0�k1T ¼ 0:54055� 0:07185 ¼ 0:4687:

Table 10.2 Fraction of blackbody radiation

kT (lm K) Fo–kT

1448 0.01

2898 0.25

4108 0.5

11,069 0.75

41,800 0.99
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(ii) Ultraviolet (0.01 � k � 0.35 lm)

k1T ¼ 0:01� 5800 ¼ 58 lmK

k2T ¼ 0:35� 5800 ¼ 2030 lmK:

Table 10.3 Fraction of blackbody radiation F0-kT as function of kT

kT (lm K) Fo–kT kT (lm K) Fo–kT

500 0.13 � 10−7 5200 0.65792

600 0.112 � 10−6

700 0.22 � 10−5 5400 0.68031

800 0.184 � 10−4

900 0.912 � 10−4 5600 0.70100

1000 0.321 � 10−3 5800 0.72009

1100 0.926 � 10−3

1200 0.00216 6000 0.73777

1300 0.00436 6200 0.75408

1400 0.00783 6400 0.76917

1500 0.01285 6600 0.78315

1600 0.01977 6800 0.79607

1700 0.02860 7000 0.80806

1800 0.03941 7500 0.83435

1900 0.05215 8000 0.85624

2000 0.06672 8500 0.87455

2200 0.10093 9000 0.88997

2400 0.14027 9500 0.90303

2600 0.18312 10,000 0.91414

2800 0.22788 11,000 0.93183

3000 0.27322 12,000 0.94504

3200 0.31807 13,000 0.95508

3400 0.36170 14,000 0.96284

3600 0.40357 15,000 0.96892

3800 0.44334 16,000 0.97375

4000 0.48085 18,000 0.98080

4200 0.51596 20,000 0.98554

4400 0.54875 30,000 0.99528

4600 0.57923 40,000 0.99791

4800 0.60751 50,000 0.99889

5000 0.63371 ∞ 1.00000
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Fractional emissive power,

F0�k1T � 0

F0�k2T ¼ 0:07185:

So, the fraction of radiant energy in the ultraviolet range (0.01 � k � 0.35 lm) is

F0�k2T � F0�k1T ¼ 0:07185� 0 ¼ 0:07185:

(iii) 0 � k � 3 lm

k1T ¼ 0� 5800 ¼ 0 lmK

k2T ¼ 3:0� 5800 ¼ 17; 400 lmK:

Fractional emissive power,

F0�k1T ¼ 0

F0�k2T � 0:98:

So, in the wavelength range 0 � k � 3.0 lm, the fraction of radiant energy is

F0�k2T � F0�k1T ¼ 0:98� 0 ¼ 0:98; i:e:; 98%:

(iv) kmax

From Wein’s displacement law,

kmaxT ¼ 2897:6

or

kmax ¼ 2897:6
T

¼ 2897:6
5800

¼ 0:5 lm:

The corresponding frequency is

co
k
¼ 2:998� 108

0:5� 10�6
¼ 6:0� 1014 Hz:

ðvÞ Ebkð Þmax¼ 1:289� 10�5T5 ¼ 1:289� 10�5 � ð5800Þ5 ¼ 8:46� 1013 W/m2:

It is interesting to note that at the temperature of the Sun’s surface kmax is in the visible
range and about 40% of the energy is emitted in the visible range of the spectrum. The
Sun emits about 98% of its radiation in wavelength band 0 � k � 3 lm.

Example 10.2 Figure 10.8 shows a greenhouse where plants are grown in cold regions by
trapping solar energy inside the greenhouse. The sheet of silica glass on the top of the
greenhouse transmits 90% of the incident radiation in the wavelength band 0.35–2.7 lm and

746 10 Laws of Thermal Radiation

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


is essentially opaque to the radiation at longer and shorter wavelengths. Estimate the percent
solar radiation which the glass will transmit. Consider the Sun as a blackbody at about
6000 K.

If the garden in the greenhouse behaves like a black surface and is at 40°C, what percent
of this radiation will be transmitted through the glass roof?

Solution

(i) From the given data
k1T = 0.35 � 6000 = 2100 for which F0–2100 = 0.08315
and k2T = 2.7 � 6000 = 16200 for which F0–16200 = 0.97460.
Thus,

F2100�16200 ¼ 0:97460� 0:08315 ¼ 0:89145:

Thus, the solar radiation in 0.35 � k � 2.7 is 89.15% of the total solar radiation
incident and the radiation transmitted is

¼ s� 0:89145 ¼ 0:9� 0:89145 ¼ 80:23%:

(ii) Radiation from the garden:
k1T = 0.35 � 313 = 109.6 for which F0–109.6 � 0
and k2T = 2.7 � 313 = 845 for which F0–845 = 0.5116 � 10−4

Thus

F109:6�845 ¼ 0:5116� 10�4:

Thus the radiation in 0.35 � k � 2.7 is 0.005116%. The radiation transmitted through
the glass is

¼ s� 0:5116� 10�4 ¼ 0:9� 0:5116� 10�4 ¼ 0:0046%:

Example 10.3 Determine an equivalent blackbody temperature for the solar radiation if the
maximum in the spectrum wavelength occurs at about 0.5 lm.

Solar radiation

Glass

Fig. 10.8 A greenhouse
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Solution

According to the Wein’s displacement law,

kmaxT ¼ 2897:6 lmK:

Hence,

T ¼ 2897:6
kmax

¼ 0:0028976� 10�6

0:5
¼ 5795K:

Example 10.4 The average temperature of the tungsten filament of an incandescent lamp is
about 2800 K. Determine the amount of energy emitted by the lamp in the visible range.
Comment on the result.

Solution

The visible range of radiation extends from about 0.35 to 0.75 lm. Hence,
k1T = 0.35 � 2800 = 980 for which F0–980 = 2.75 � 10−4

and k2T = 0.75 � 2800 = 2100 for which F0–2100 = 0.083825.
Thus,

F980�2100 ¼ 0:08355:

Thus, the radiation in 0.35 � k � 0.75 is about 8.36%.

Comments: The example shows that only about 8.36% of the energy is emitted in the
visible range. Thus, the incandescent lamp is more efficient as a heat source than as a light
source.

10.8 Real and Gray Bodies

The emissive power of a blackbody is the maximum and the emissive power of a real body is
always less than that of a blackbody. The ratio of the emissive power Ek of a real body at a
particular wavelength and temperature to that of a blackbody Ebk at the same wavelength and
temperature is called the monochromatic emissivity ek of the body.

ek ¼ Ek

Ebk
ð10:12aÞ

The monochromatic emissivity of a blackbody is taken as unity and that of a white body
as zero. A body whose radiation spectrum is continuous and similar to that of a blackbody is
shown in Fig. 10.9. Its monochromatic emissivity ek is constant for all wavelengths, as well
as temperatures. Such a body is known as gray body. The value of monochromatic emissivity
of a gray body is 0 < ek < 1. For such bodies, the above equation is written as
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e ¼ E

Eb
ð10:12bÞ

Slate, tar-board and dark linoleum are some examples of surfaces that are good
approximations of gray surfaces (Eckert and Drake 1959). These materials absorb from 85%
to 92% of the incident radiation in the range of wavelengths between 0.5 and 9 lm.
Unfortunately, there are not many surfaces that can be termed as gray. The monochromatic
emissivity of the real bodies varies with temperature, as well as wavelength. For most of the
practical bodies encountered in engineering applications an integrated average value of
emissivity, as defined below, is used.

e ¼ 1
rT4

Z1

0

Ekdk ð10:12cÞ

where
R1
0 Ekdk is the total emissive power, which is the rate of emission of radiant heat per

unit area for all wavelengths and in all directions and rT4 is the emissive power of a
blackbody at the same temperature. The emissivity e in Eq. (10.12c) is the total hemi-
spherical emissivity or the total emissivity of a substance at a given temperature and is the
ratio of the total emissive power of the substance to that of a blackbody at the same
temperature.

The directional dependence of the emissive power has been discussed in the Sect. 10.10.
For the time being, we define the normal total emissive power of a substance, which refers to
the component of the total emissive power normal to the surface.

Most of the data available in the literature on emissivity of real bodies are either of normal
total emissivity or total hemispherical emissivity. For engineering calculations, the infor-
mation on the total emissivity of a surface is more useful. Data for some metals and non-
metals are listed in the appendix.

The emissivity of polished metallic surfaces is low and it increases with the increase in the
thickness of the layer of oxide on the surface. The emissivity of the non-metallic surfaces is
usually very high (0.8–0.97). In the case of metals, the emissivity rises with rising tem-
perature, but in the case of non-metallic substances, this may not be true. The average value
of the ratio of the hemispherical total emissivity e and normal emissivity en of bright metal

Wavelength, 

Eb

Blackbody

Gray Body

Real Body

Fig. 10.9 Emissive power of a real surface versus ideal blackbody and gray body
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surfaces is 1.2; for other substances with smooth surfaces e/en = 0.95 and for rough surfaces
e/en = 0.98.

Monochromatic absorptivity ak is defined as the ratio of the monochromatic absorbed
radiation to the incident monochromatic irradiation Gk. Knowing the monochromatic
absorptivity, the total absorptivity can be determined from

a ¼
R1
0 akðTsÞGkdkR1

0 Gkdk
ð10:13aÞ

where
R1
0 Gkdk is the total impinging irradiation G.

If the incident radiation is coming from a blackbody at temperature Ti, whose emissive
power is Eb(Ti), then the total absorptivity is

a ¼
R1
0 akðTsÞEbkðTiÞdk

EbðTiÞ ¼ f ðTs; TiÞ ð10:13bÞ

Thus, the total absorptivity depends on the nature and temperature Ts of the absorbing
surface, as well as on the temperature Ti of the incident blackbody radiation.

It is to note that the monochromatic absorptivity of real solids, liquid and gaseous bodies
is different at various regions of the spectrum and hence emissivity of such substances also
varies. These bodies are known as selective emitters or absorbers. Gases show the highest
selectivity.

To understand the behaviour of the selective absorbers or emitters, consider a substance
which is sensitive only to the electromagnetic waves of say 5–10 lm. If the surrounding
bodies emit radiation in the range 1–15 lm, this substance will absorb the radiation in the
range 5–10 lm only. If the surrounding bodies emit outside the range of the sensitivity of the
substance say between 20 and 100 lm, the substance will not absorb any of the incident
radiation from these bodies.

For infrared radiation, the absorptivity of the non-conductors is greater than that of
conductors. Absorptivity of all electric conductors, with a few exceptions, increases with
increasing temperature, while that of the non-conductors decreases.

The discussion presented above for the absorptivity also applies to reflectivity of a surface
since the reflectivity q is related to the absorptivity for the opaque solids by the relation
qk = 1 – ak.

10.9 Kirchhoff’s Law

The law states that at any temperature the ratio of emissive power E to the absorptivity a is a
constant for all bodies and equals the emissive power of a blackbody at the same temper-
ature, i.e.

E1

a1
¼ E2

a2
¼ E3

a3
¼ � � � ¼ Eb ¼ f ðTÞ ð10:14aÞ

Since the ratio of the emissive power of a gray body to that of a blackbody at the same
temperature is defined as emissivity, hence
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E1

Eb
¼ a1 ¼ e1;

E2

Eb
¼ a2 ¼ e2 ð10:14bÞ

For monochromatic radiation, the law states that the ratio of the emissive power at a
certain wavelength to the absorptivity at the same wavelength is the same for all bodies and is
a function of wavelength and temperature, i.e.

ðEkÞ1
ðakÞ1

¼ ðEkÞ2
ðakÞ2

¼ ðEkÞ2
ðakÞ2

¼ � � � ¼ Eb ¼ f ðk; TÞ ð10:14cÞ

Proof Consider two parallel plates as shown in Fig. 10.10. One of the plates is gray and the
other is black. The gray surface emits radiation energy E, which is fully absorbed by the
black surface on impingement upon it. The gray surface absorbs a portion aEb of the
radiation Eb emitted by the blackbody. The remaining radiation energy (1 – a) Eb, reflected
back by the gray surface, is absorbed by the blackbody. Thus, the net energy exchange from
the gray surface is

q ¼ E � aEb

The energy exchange also takes place when the temperatures of the two surfaces are
equal, i.e. T = Tb. In this case, the net exchange is zero, i.e. q = 0. This gives

E

a
¼ Eb

This proves the law.
Note: For real surfaces, emissivity basically depends on direction (h, /), wavelength k

and surface temperature Ts and may be termed as spectral-directional emittance and denoted
as e(h, /, k, Ts) (Mills 1995). The fundamental statement of the Kirchhoff’s law gives

eðh;/; k; TsÞ ¼ aðh;/; k; TsÞ
A hemispherical emittance is a value directionally averaged over the 2p steradian

hemisphere of solid angle above the surface. A total property is a value, which is averaged
over the all wavelengths (from zero to infinity) and is defined as e(Ts) to indicate the

Gray
(T)

Black
(Tb)

αEb

Eb

E

E

(1 - αEb)

Fig. 10.10 Radiation exchange between gray and black surfaces
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dependence on surface temperature only. However, engineers use a simpler diffuse gray
surface idealization of emissivity of a surface, which is independent of temperature also; i.e.
has a constant value for a given surface.

Example 10.5 The hemispherical spectral emissivity ek(k, T) of a surface at temperature
T = 1000 K can be approximated as shown in Fig. 10.11. What are the hemispherical total
emissivity and the hemispherical total emissive power of the surface?

Solution

From the given figure, we have

e1 = 0.1 for k = 0 to 2
e2 = 0.4 for k = 2 to 7
e3 = 0.2 for k = 7 to ∞

and it is given that T = 1000 K hence

k1T ¼ 2� 1000 ¼ 2000 for whichF0�2000 ¼ 0:06672

and k2T ¼ 7� 1000 ¼ 7000 for whichF0�7000 ¼ 0:80806:
Thus,

F2000�7000 ¼ 0:80806� 0:06672 ¼ 0:74134:

F7000�1 ¼ 1� 0:80806 ¼ 0:19194:

Hemispherical total emissivity is given by

e ¼ e1ðF0�2000Þþ e2ðF2000�7000Þþ e3ðF7000�1Þ
¼ 0:1� 0:06672þ 0:4� 0:74134þ 0:2� 0:19194 ¼ 0:3416:

and the total emissive power is

E ¼ erbT
4

¼ 0:3416� 5:67� 10�8 � 10004

¼ 19368:7W/m2:

λ, μm
∞

ε3 = 0.2
ε2 = 0.4

ε1 = 0.1

ελ(λ, T)

2 70

Fig. 10.11 Example 10.5

752 10 Laws of Thermal Radiation

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Example 10.6 A small opaque diffuse surface 1 at 1000 K with given spectral absorptivity
distribution ak is located in a large enclosure 2 whose surface (treated as black) is at 2000 K,
refer Fig. 10.12. Determine (a) total hemispherical absorptivity of the surface and (b) the
total hemispherical emissivity.

Solution

(a) Since the irradiation is from the enclosure at 2000 K, the hemispherical total absorptivity
of the surface, from the given spectral absorptivity of the surface, is

a ¼ a1ðF0�4000Þþ a2ðF4000�1Þ
¼ 0:1� 0:48085þ 0:7� ð1:0� 0:48085Þ ¼ 0:4115;

where k1T ¼ 2� 2000 ¼ 4000 for which F0�4000 ¼ 0:48085 from Table 10.3.

(b) The total hemispherical emissivity corresponds to the temperature of the surface and
knowing that ek = ak it is

e ¼ a1ðF0�2000Þþ a2ðF2000�1Þ
¼ 0:1� 0:06672þ 0:7� ð1:0� 0:06672Þ ¼ 0:66;

where k1T ¼ 2� 1000 ¼ 2000 for which F0�2000 ¼ 0:06672 from Table 10.3.

Example 10.7 The maximum spectral intensity of radiation from a gray surface at 1000 K
is found to be 0.8 � 1010 W/m2 per m of wavelength. Determine (i) the wavelength at which
the maximum spectral intensity of radiation occurs, and (ii) the emissivity of the surface.

Solution

(i) At the point of maximum spectral emissive power,

kmaxT ¼ 0:002897 mK:

Hence,

kmax ¼ 0:002897=T ¼ 0:002897=1000 ¼ 2:897� 10�6 m:

λ, μm
∞

α2 = 0.7

α1 = 0.1

αλ

20

1 (αλ)
2

Fig. 10.12 Example 10.6
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(ii) The maximum spectral intensity of a blackbody is given by

Ebkð Þmax¼ 1:289� 10�5T5

At 1000 K,

Ebkð Þmax¼ 1:289� 10�5 � ð1000Þ5 ¼ 1:289� 1010 W/m2:

Emissivity of the gray surface,

e ¼ Ek

Ebk
¼ 0:8� 1010

1:289� 1010
¼ 0:6206

Example 10.8 A body at 1100°C in black surrounding at 550°C has an emissivity of 0.4 at
1100°C and an emissivity of 0.7 at 550°C. Calculate the rate of heat flow by radiation per
unit surface area.

If the body is assumed to be gray with e = 0.4, what will be the heat loss?

Solution

(i) The body is not gray
The rate of energy emission from the body at 1100°C is

¼ ðeÞat1100oCrT4

¼ 0:4� 5:67� 10�8 � ð1100þ 273Þ4 Wper unit area:

The rate of energy emission from the black enclosure at 550°C is

¼ rT4
2

¼ 5:67� 10�8 � ð550þ 273Þ4 Wper unit area:

The absorptivity of the body for the radiation from the enclosure will be equal to the
emissivity value at the enclosure temperature, i.e. a = 0.7. Hence,
Rate of energy absorption,

¼ arT4
2

¼ 0:7� 5:67� 10�8 � ð550þ 273Þ4Wper unit area:

The rate of heat loss is

Rate of heat loss ¼ rate of emission� rate of absorption

¼ 5:67� 10�8 � ½0:4� ð1100þ 273Þ4�0:7� ð550þ 273Þ4�
¼ 62389W/m2:
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(ii) When the body is gray

e ¼ a ¼ 0:4:

The rate of heat loss,

¼ 0:4� 5:67� 10�8 � ½ð1100þ 273Þ4�ð550þ 273Þ4�
¼ 70; 193W/m2:

Example 10.9 A small body at 300 K is placed in a large furnace whose walls are main-
tained at 1000 K. The total absorptivity of the body varies with the temperature of the
incident radiation as follows.

Temperature: 300K 500K 1000K
Absorptivity: 0:75 0:6 0:5

Determine the rate of absorption and emission of the radiation by the body.

Solution

(i) Rate of absorption
The rate of emission of energy by the furnace walls is

E ¼ rT4

¼ 5:67� 10�8 � ð1000Þ4 ¼ 56; 700W/m2:

The absorptivity of a body depends on the temperature of the surface from which the
radiation is coming. Here the furnace wall is at 1000 K at which a = 0.5. Hence, the rate
of absorption

¼ 0:5� 56; 700 ¼ 28; 350W/m2:

(ii) Rate of emission
The emissivity of the body at a temperature of 300 K is 0.75. Hence, the rate of
emission,

erT4 ¼ 0:75� 5:67� 10�8 � ð300Þ4 ¼ 344:5W/m2:

10.10 Intensity of Radiation and Lambert’s Cosine Law

The intensity of normal radiation In is defined as the rate of emission of energy from the unit
surface area of a body in normal direction through unit solid angle.

Thus, from the definition of the intensity of normal radiation, the rate of emission of
energy through area dAn, refer Fig. 10.13, is
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ðdqbÞn ¼ IndxndA1 ð10:15Þ

where dxn is the solid angle subtended by the area dAn situated at a distance r on the normal
to the small area dA1 on the surface of the body emitting the radiation, see Fig. 10.13. The
subscript b refers to the black surface.

Lambert’s cosine law for diffuse-black surfaces states that the intensity of radiation in any
direction / with the normal I/ is

I/ ¼ In cos/ ð10:16Þ

Thus, the law gives the spatial distribution of intensity of radiation.
Hence, the rate of emission through area dA/ at an angle / with the normal and at a

distance r from the emitting surface is, see Fig. 10.13,

ðdqbÞ/ ¼ I/dx/dA1 ¼ In cos/dx/dA1 ðiÞ

Solid angle: A solid angle is defined as a portion of the space inside a sphere enclosed by a
conical surface with the vertex of the cone at the centre of the sphere. Mathematically, it is
expressed as a ratio of the area of the spherical surface enclosed by the cone to the square of
the radius of the sphere, refer Fig. 10.14,

dx ¼ dA

r2
ð10:17Þ

Its unit is steradian. For a hemisphere,

xhemisphere ¼ surface area
r2

¼ 2pr2

r2
¼ 2p sr:

Substitution of the value of dx/ = dA//r
2 gives

ðdqbÞ/ ¼ ðIn cos/Þ dA/

r2

� �
dA1

The Stefan–Boltzmann law determines the energy emitted by a body in all directions. We
can also calculate the total energy emitted by a body in terms of the intensity of normal
radiation.

Let the elemental diffuse-black surface area dA1 emitting radiation is located at the centre
of a hemisphere of radius r. An elemental area dA/ on the surface of the hemisphere at an

In

Iϕ

dA1

dAn

dAϕ

ϕ

Fig. 10.13 Lambert’s law
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angle / to the normal on the surface dA1, subtends angles d/ and dh at dA1 as shown in
Fig. 10.15.

The area of the element in terms of radius r and angles / and h is

dA/ ¼ ðrd/Þðr sin/Þdh ¼ r2 sin/d/dh

Solid angle subtended by this elemental area at the centre of the hemisphere is

dx ¼ dA/

r2
¼ sin/d/dh

Thus, the radiation passing through the area dA/ is

ðdqbÞ/ ¼ ðIn cos/Þðsin/d/dhÞdA1

The total radiation through the hemisphere can be obtained by integrating between the
limits / = p/2 and h = 2p

qb ¼ IndA1

Z2p

0

dh
Zp=2

0

sin/ cos/d/

¼ 2pIndA1

Zp=2

0

sin/ cos/d/

¼ pIndA1

ð10:18Þ

r
dω

dA

Fig. 10.14 Definition of the solid angle

dA1

dϕ
ϕ

dθ

Fig. 10.15 Spherical coordinate system used in the derivation of Eq. (10.18) and elemental area
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Equating qb to the emissive power given by Stefan–Boltzmann law (qb = rT4dA1), we
obtain

In ¼ rT4

p
ð10:19Þ

This means that the emissive power in the normal direction is p times smaller than the
total emissive power of the body.

It must be borne in mind that the Lambert’s law is valid for diffuse radiating black
surfaces only. Real surfaces are not perfectly diffuse and the experiments have shown that the
law holds for such surfaces only for / = 0 – 60°. The most noticeable deviations are non-
metals and metals with non-diffuse surfaces. In Fig. 10.16, the dependence of the total
directional emissivity e/ on angle / is shown for some of such surfaces. The directional
emissivity is defined as

e/ ¼ I/
Ib/

ð10:20Þ

where I/ refers to a real surface and Ib/ to that of a black surface.
The outside semicircle in the figure represents the total directional emissivity of a diffuse-

black surface for which the total emissivity remains constant for all values of /. For the
electric insulators, the curve of the polar emissivity is almost circular up to / = 60o. Beyond
/ = 60o, the total emissivity gradually decreases to zero at / = 90o, refer Fig. 10.16a. For
the metals, the emissivity first increases with /, and thereafter decreases. At / � 80o, the
radiation from the metal is almost twice its value at / = 0o.

The analysis of the radiation exchange involving real surfaces is quite complicated hence
the practical surfaces are assumed to be gray with a constant value of the directional
emissivity like that of a black surface.

Some references present the Lambert’s law in the following form.
“The law states that the total emissive power E/ of a flat emitting diffuse-black surface

decreases as the angle / with the normal to the surface increases”.
Mathematically, we can put this as

ðEbÞ/ ¼ ðEbÞn cos/ ð10:21Þ

where (Eb)n is the total emissive power of the radiating surface in a direction normal to the
surface. Eq. (i) can be rewritten in the following form

a Nonmetals.

εϕεϕ

0o

60
o

Blackbody

ϕϕ
Nonmetal

bMetals.

εϕεϕ

Metal

0o

80o

ϕϕ

Fig. 10.16 Variation of directional emissivity with angle
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ðdqbÞ/ ¼ Indx/ðdA1 cos/Þ ð10:22Þ

where (dA1cos/) is the area of the emitting surface normal to the line of view to the receiving
surface dA/. The equation is interpreted to state that for a flat diffuse-black surface, the
intensity of the radiation is the same in all directions based on the projected area dA1cos/ of
the surface dA1.

Example 10.10 A blackbody at 1100 K is radiating to space.

(a) What is spectral intensity in a direction normal to the surface at k = 5 lm?
(b) What is directional spectral emissive power at / = 40o away from the normal to the

surface at k = 5 lm?
(c) What is the ratio of the spectral intensity of the blackbody at k = 1 lm to the spectral

intensity of the blackbody at k = 5 lm?
(d) How much energy is emitted by the blackbody in the range 1 � k � 5 lm?
(e) Calculate the wavelength such that emission from 0 to k is equal to the emission from k

to ∞.

Solution

(a) Monochromatic emissive power at k = 5 lm,

Ebk ¼ c1k
�5

expðc2=kTÞ � 1

¼ 3:743� 10�16 � ð5� 10�6Þ�5

exp½1:4387� 10�2=ð5� 10�6 � 1100Þ� � 1

¼ 9:447� 109 W=ðm2-mÞ:

ð10:6Þ

Spectral intensity in the normal direction,

Inð Þk¼5 lm¼
Ebk

p
¼ 3:01� 109 Wðm2-mÞ:

(b) Directional spectral emissive power at / = 40o away from the normal to the surface at
k = 5 lm,

¼ ðEbÞk cos/ ¼ 9:447� 109 � cos 40� ¼ 7:236� 109 Wðm2-mÞ:

(c) Ratio of spectral intensities,

Ebð Þk1
Ebð Þk2

¼ k1
k2

� ��5

� expðc2=k2TÞ � 1
expðc2=k1TÞ � 1

¼ 1
5

� ��5

� exp½1:4387� 10�2=ð5� 10�6 � 1100Þ� � 1
exp½1:4387� 10�2=ð1� 10�6 � 1100Þ� � 1

¼ 0:08275:
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(d) Energy emitted by the blackbody in the range 1 � k � 5 lm,

k1T ¼ 1:0� 1100 ¼ 1100 for whichF0�1100 ¼ 0:926� 10�3

and

k2T ¼ 5:0� 1100 ¼ 5500 for whichF0�5500 ¼ 0:69065:

Thus,

F1100�5500 ¼ 0:69065� 0:926� 10�3 � 0:69:

Energy emitted by the blackbody in this range,

¼ F1100�5500 � rT4

¼ 0:69� ð5:67� 10�8Þ � ð1100Þ4 ¼ 57;280W/m2:

For F0–k = 0.5, the value of kT � 4109 (lm)K from Table 10.2. Hence,

k ¼ 4109=T ¼ 4109=1100 ¼ 3:735 lm:

Example 10.11 For a black surface at a temperature of 1200 K, calculate

(i) Monochromatic emissive power at k = 1 lm
(ii) kmax

(iii) Monochromatic emissive power at kmax

(iv) The total rate of energy emission
(v) The intensity of radiation at an angle of 40o with the normal to the surface.

Solution

(i) From Planck’s distribution law, the monochromatic emissive power is

Ebk ¼ c1k
�5

expðc2=kTÞ � 1

¼ 3:743� 10�16 � ð1� 10�6Þ�5

exp½1:4387� 10�2=ð1� 10�6 � 1200Þ� � 1

¼ 2:325� 109 Wðm2-mÞ:

ð10:6Þ

(ii) From the Wein’s displacement law,

kmaxT ¼ 2897:6

or kmax ¼ 2897:6=T ¼ 2897:6=1200 ¼ 2:415 lm:
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ðiiiÞ Ebkð Þmax¼ 1:289� 10�5T5 ¼ 1:289� 10�5 � ð1200Þ5 ¼ 3:2� 1010 W/m2:

(iv) Total rate of radiation energy emission, from the Stefan Boltzmann law,

Eb ¼ rT4 ¼ 5:67� 10�8 � ð1200Þ4 ¼ 117; 573W/m2:

(v) Intensity of radiation at an angle of 40o with the normal to the surface,

I/ ¼ In cos/ ¼ Eb

p

� �
cos/ ¼ 117; 573

p

� �
� cos40o ¼ 28; 669W=ðm2 - srÞ:

Example 10.12 Spectral directional emissivity of a diffuse surface at 1500 K is given in
Fig. 10.11. Determine the fraction of emissive power over the spectral range 1.0 to 3 lm and
for directions 0 � / � p/6.

Solution

From the given spectral directional emissivity of the diffuse surface from Table 10.3:

k1T ¼ 1� 1500 ¼ 1500 for whichF0�1500 ¼ 0:01285

k2T ¼ 2� 1500 ¼ 3000 for whichF0�3000 ¼ 0:27322

and

k3T ¼ 3� 1500 ¼ 4500 forwhichF0�4500 ¼ 0:56399:

Hemispherical total emissivity is

e ¼ e1ðF1500�3000Þþ e2ðF3000�4500Þ
¼ 0:1� ð0:27322� 0:01285Þþ 0:4� ð0:56399� 0:27322Þ
¼ 0:142345

and the hemispherical total emissive power of the surface is

E ¼ erbT
4

¼ 0:142345� 5:67� 10�8 � 15004

¼ 40; 859W=m2:

For a diffuse surface,
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Eð0 ! p=6Þ
E

¼ In
R 2p
0 dh

R p=6
0 sin/ cos/d/
pIn

¼ 1
p

2p
Zp=6

0

sin/ cos/d/

2
64

3
75

¼
Zp=6

0

2 sin/ cos/d/

¼ sin2 /
� �p=6

0

¼ sin2
p
6
� sin2 0

� 	
¼ 0:25:

Hence,

Eð0 ! p=6Þ ¼ 0:25E ¼ 0:25� 40; 859 ¼ 10; 215W=m2:

10.11 Summary

In general, the radiation means propagation of the electromagnetic waves of all wavelengths,
ranging from radio waves to cosmic rays. Thermal radiation or heat radiation is also a form of
electromagnetic emission. Its wavelength ranges from around 0.1 µm to 1000 µm, which
includes the visible light region between violet (0.38 µm) and red (0.78 µm). Radiation from
0.78 µm to 1000 µm is termed as infrared (IR) radiation. Thermal effects are associated with
thermal radiation. The thermal radiation also propagates at the velocity of light
(299.8 � 106 m/s in vacuum) and obeys the laws of propagation, reflection and refraction of
light rays. Solids, as well as liquids and gases, are capable of radiating thermal energy and
absorbing such energy. For example, water vapour and carbon dioxide are the main sources
of the gaseous radiation in furnaces. Radiation exchange depends on the nature of the
substance, its temperature, wavelength and the state of the emitting surface.

When radiation falls on a body, a part of it may be absorbed, a part of it may be reflected
and the remaining may pass through the body. The first fraction is known as absorptivity a,
second is reflectivity q and the third fraction is transmissivity s.

A body with reflectivity of unity will reflect the whole of the incident radiation and is
termed a white body. When the reflection from a body obeys the laws of geometrical optics
(angle of the reflected beam with normal equals the angle of the incident beam with the
normal) the body is called smooth or specular. Due to the surface irregularities or roughness,
the reflected radiation may be dispersed in all directions. Such a surface is known as a diffuse
surface.

If the entire incident radiation is absorbed by the body, the absorptivity a = 1. Such a
body is termed as a blackbody. A blackbody does not exist in nature. But the concept of a
blackbody is of great importance. The ideal behaviour of the blackbody serves as a standard
with which the performance of real bodies can be compared.
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The hemispherical total emissive power of a blackbody, from Stefan–Boltzmann law is
proportional to the fourth power of the absolute temperature of the body.

Planck law, Eq. (10.6), gives the spectral distribution of the monochromatic emissive
power of a blackbody as a function of temperature, which has also been used to determine
Stefan–Boltzmann’s equation of total emissive power of a blackbody. Monochromatic
emissive power is zero at k = 0. It first increases with an increase in the wavelength and
reaches its maximum at a certain value of wavelength kmax, then it decreases again with the
increase in the wavelength and becomes zero at k = ∞. kmax is given by the Wein’s dis-
placement law, Eq. (10.8).

The fraction of the emissive power in a wavelength interval Fk1�k2 can be determined
from the tabulated values of Fo–kT as function of kT in Table 10.3. The fraction calculation
has been explained by some illustrative examples.

For a real body, whose radiation spectrum is not continuous, monochromatic emissivity ek
has been defined, which is the ratio of the emissive power Ek of a real body at a particular
wavelength and temperature to that of a blackbody Ebk at the same wavelength and
temperature.

A body whose radiation spectrum is continuous and similar to that of a blackbody is
known as a gray body. Its monochromatic emissivity ek is constant for all wavelengths, as
well as temperatures and its value is 0 < ek < 1. Unfortunately, there are not many surfaces
that can be termed as gray but this idealization has been widely used in most of the engi-
neering calculations, refer Chap. 11.

Kirchhoff’s Law has been stated and proved. The law states that at any temperature the
ratio of emissive power E to the absorptivity a is a constant for all bodies and equals the
emissive power of a blackbody at the same temperature. The law establishes the equality of
emissivity and absorptivity.

Concept of intensity of normal radiation In and Lambert’s cosine law have been presented.
The value of intensity of radiation in terms of total emissive power of a blackbody Eb has
been determined, which along with the concept of intensity of normal radiation and Lam-
bert’s cosine law will be utilized in the next chapter to provide the base for determination of
radiation exchange between two bodies.

Review Questions

10:1 What is difference between thermal radiation and other types of electromagnetic
radiation?

10:2 Define absorptivity, transmissivity and reflectivity of a surface.
10:3 The Planck’s law governing the change in emissive power of a blackbody with the

wavelength is given by

Ebk ¼ c1k
�5

expðc2=kTÞ � 1

Using the above equation show that the total emissive power is given by

Eb ¼ rT4:

where r is the Stefan Boltzmann constant.
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10:4 Distinguish between black, real and gray bodies giving suitable examples.
10:5 What is the Wein’s displacement law?
10:6 State and prove the Kirchhoff’s law of thermal radiation.
10:7 State the Lambert’s cosine law.
10:8 Define intensity of radiation and prove that for a diffuse-blackbody, the intensity of

normal radiation is 1/p times of the total emissive power of the body.
10:9 Distinguish between specular and diffuse surfaces.

Problems

10:1 A photon has an energy of 0.3 � 10−12 J. Calculate its frequency and wavelength in
vacuum.
[Ans. m = E/h = 0.3 � 10−12/6.6236 � 10−34 = 4.53 � 1020 Hz; k = co/m = 2.998
� 108/(4.53 � 1020) = 6.62 � 10−13 m.]

10:2 Radiant energy with an intensity of 1000 W/m2 is incident normal to a flat surface
whose absorptivity is 2.5 times the transmissivity and 2 times of the reflectivity.
Determine the energy transmitted, absorbed and reflected.
[Ans. a + q + s = 1, substitution gives a + a/2.5 + a/2 = 1, hence, a = 1/1.9; QA =
1000/1.9 = 526.32 W/m2; QT = QA/2.5 = 210.53 W/m2; QR = QA/2 = 263.16 W/m2.]

10:3 The temperature of a black surface of 0.5 m2 area is 727°C. Calculate: (a) the total
amount of energy emission, (b) the intensity of normal radiation, (c) the intensity of
radiation at an angle of 60o and (d) the wavelength of maximum monochromatic
emissive power.
[Ans. Eb = ArT4 = 0.5 � 5.669 � 10−8 (727 + 273)4 = 28345 W. In = Eb/p = rT4/
p = 18045 W/(m2 sr); I/ = In cos60

o = 9022.5 W/(m2 sr); kmax = 2897.6/1000 = 2.9
lm.]

10:4 Figure 10.17 shows the variation of reflectivity with k for an opaque surface. The
irradiation G (radiation impinging) on the surface from a source is approximated as
given below. Determine the energy absorbed.

0� k\0:4 G ¼ 20 W=m2 0:4� k\1:0 G ¼ 150 W=m2

1:0� k\2:0 G ¼ 100 W=m2 2:0� k\3:0 G ¼ 20 W=m2

3:0� k\1 G ¼ 30 W=m2

[Ans. Using the relation absorptivity = (1 – q), we have Gabsorbed = (1 – 0) � 20 + (1
– 0.5) � 150 + (1 – 0.8) � 100 + (1 – 0.9) � 20 + (1 – 0) � 30 = 147 W/m2.]

0    0.4   1.0     2.0     3.0 λ

ρλ
0.5

0.9
0.8

Fig. 10.17 Problem 10.4
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10:5 For a spectrally selective, diffuse surface the spectral distribution of absorptivity and
reflectivity are shown in Fig. 10.18. Determine spectral transmissivity, sk.
[Ans. sk ¼ 1� ak � qk: Hence, for 0� k� 2 lm, sk ¼ 1� 0:1� 0:05 ¼ 0:85 and for
k[ 2 lm, sk ¼ 1� 1� 0 ¼ 0; i.e. the surface is opaque for radiation of k > 2 lm.]

10:6 A window glass transmits 90% of the radiation between wavelengths 0.3–3 lm. It is
practically opaque to all other wavelengths. Determine the percentage of radiant heat
flux transmitted when it is coming from a blackbody source at 2000 K.
[Ans. k1T = 0.3 � 2000 = 600 lm K, k2T = 3 � 2000 = 6000 lm K; F0�k1T ¼
0.112 � 10−6, F0�k2T ¼ 0.73777 from Table 10.3, Fk2T�k1T � 0.73777; Flux
transmitted = 0.90 � 0.73777 � 100 = 66.4%.]

10:7 If the incident solar radiation on the Earth is 1390 W/m2 for a mean distance rse =
1.5 � 1011 m, determine the radiation on planet Mercury if its orbital radius is
5.8 � 1010 m.
[Ans. The radiation incident on a surface is inversely proportional to the distance

squared (the inverse square law). Hence, GMurcury ¼ GEarth � rse=rsmð Þ2¼ 1390�
1:5� 1011=5:8� 1010ð Þ2¼ 9297W=m2.]

10:8 Radiation flux Go enters into a cavity through a small opening. The absorptivity of the
cavity surface is less than 1. Determine the flux after n reflections.
[Ans. On first reflection Go reduces to G1 = (1 – a) Go; Similarly, on the second
reflection, G2 = (1 – a)2 Go, …, after n reflection, Gn ¼ ð1� aÞnGo; As n increases,
1� ð1� aÞn ! 1, i.e. the radiation will be completely absorbed.]

10:9 A large plate (e1 = 0.8) emits 300 W/m2. Another plate (e2 = 0.4) of the same surface
area emits 150 W/m2. If these plates are brought very close and parallel to each other,
determine the net heat exchange per unit area of the plates.
[Ans. For a gray surface E = eEb. Hence, E1 ¼ e1Eb1 ¼ e1rT4

1 , and
E2 ¼ e2Eb2 ¼ e2rT4

2 ; Ratio E1/E2 gives T1 = T2 hence q12 = 0.]
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11Exchange of Thermal Radiation
Between Surfaces Separated
by Transparent Medium

11.1 Introduction

In the previous chapter, we discussed the laws of radiation, absorption, reflection, emissivity
and the dependence of the emitted radiation from a diffuse surface on direction. With this
background, it is possible to calculate the radiation exchange between opaque solids.
Radiation exchange between solids is a complex process. It depends on the shape and size of
the bodies, relative position, distance between them and their emissivity. The calculation
becomes more complicated when there is an absorbing or reradiating medium between the
surfaces. In this chapter, we shall consider the radiation exchange without an absorbing
medium.

11.2 Radiation Heat Exchange Between Two Black Surfaces
and the Shape Factor

Consider two black diffuse surfaces 1 and 2 of areas A1 and A2 at temperatures T1 and T2,
respectively, as shown in Fig. 11.1. The surfaces are separated by a non-absorbing medium
such as air. To determine the radiant heat exchange between these surfaces, let us first
evaluate the exchange between elemental areas DA1 and DA2 on these surfaces at distance
s apart. The normal to the elemental areas makes angles /1 and /2 with the line AB.

Projection of the area DA2 normal to the line AB is (DA2cos /2). Solid angle subtended by
the area DA2cos /2 at the center of DA1 is

Dx2 ¼ DA2 cos/2

s2
ð11:1Þ

Hence, the fraction of the total heat energy emitted by DA1 which is intercepted by DA2,
from Eq. (10.15), is

Dq12 ¼ In1 cos/1 DA1ð ÞDA2 cos/2

s2

¼ In1
DA1DA2 cos/1 cos/2

s2

ð11:2Þ
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Similarly the rate at which the radiation emitted by DA2 and intercepted by DA1 is given
by

Dq21 ¼ In2 cos/2 DA2ð ÞDA1 cos/1

s2

¼ In2
DA1DA2 cos/1 cos/2

s2

ð11:3Þ

Substituting In1 = Eb1/p and In2 = Eb2/p, we get

Dq12 ¼ Eb1

p

� �
DA1DA2 cos/1 cos/2

s2

¼ rT4
1

p

� �
DA1DA2 cos/1 cos/2

s2

ð11:4Þ

and

Dq21 ¼ Eb2

p

� �
DA1DA2 cos/1 cos/2

s2

¼ rT4
2

p

� �
DA1DA2 cos/1 cos/2

s2

ð11:5Þ

For the infinitesimally small areas, Eqs. (11.4) and (11.5) transform to

dq12 ¼ rT4
1

p

� �
dA1dA2 cos/1 cos/2

s2
ð11:6Þ

and

dq21 ¼ rT4
2

p

� �
dA1dA2 cos/1 cos/2

s2
ð11:7Þ

A1

A2

A2

A1

1

2

N1

N2

s

A

B

Fig. 11.1 Radiation exchange between two black surfaces
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Integration over the entire surface areas gives radiation from surface 1 incident on surface
2 as

q12 ¼ rT4
1

p

� � Z
A1

Z
A2

dA1dA2 cos/1 cos/2

s2
ð11:8Þ

Similarly,

q21 ¼ rT4
2

p

� � Z
A1

Z
A2

dA1dA2 cos/1 cos/2

s2
ð11:9Þ

We rewrite these equations as

q12 ¼ A1F12rT
4
1 ð11:10Þ

q21 ¼ A2F21rT
4
2 ð11:11Þ

where

F12 ¼ Radiation from surface 1 incident upon surface 2
Total radiation from surface 1

¼ q12
A1rT4

1

¼ 1
A1

� � Z
A1

Z
A2

dA1dA2 cos/1 cos/2

ps2

ð11:12Þ

Similarly,

F21 ¼ Radiation from surface 2 incident upon surface 1
Total radiation from surface 2

¼ q21
A2rT4

2

¼ 1
A2

� � Z
A1

Z
A2

dA1dA2 cos/1 cos/2

ps2

ð11:13Þ

The factor F12 is known as radiation shape factor (configuration factor, geometrical
factor, angle factor, or view factor) of surface 1 with respect to the surface 2 and it represents
the fraction of the total radiation emitted by surface 1 which has been intercepted by surface
2. Similarly factor F21 can be interpreted. The shape factor is merely a function of the
geometry or the orientation of the two surfaces.

From Eqs. (11.12) and (11.13), we see that

A1F12 ¼
Z
A1

Z
A2

dA1dA2 cos/1 cos/2

ps2

A2F21 ¼
Z
A1

Z
A2

dA1dA2 cos/1 cos/2

ps2
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Hence,

A1F12 ¼ A2F21 ð11:14Þ

The result is known as reciprocity relation. It indicates that the net heat transfer by
radiation can be determined by using the shape factor either ways (surface 1 to 2 or surface 2
to 1).

In the case of blackbodies, the radiation q12 and q21 incident on the surfaces 2 and 1,
respectively, will be absorbed by these surfaces and the net radiation heat exchange between
these surfaces from Eqs. (11.10) to (11.11) will be

ðq12Þnet ¼ q12 � q21 ¼ A1F12rT
4
1 � A2F21rT

4
2 ð11:15Þ

Using the reciprocity relation, we can write

ðq12Þnet ¼ A1F12rðT4
1 � T4

2 Þ ð11:16aÞ
¼ A2F21rðT4

1 � T4
2 Þ ð11:16bÞ

Note: It is to be noted that Eqs. (11.15) and (11.16) of the net heat transfer applies only to
the blackbodies. In case of the gray bodies, a part of the impinging radiation is reflected and
the whole analysis becomes complicated. This has been discussed later in this chapter. The
shape factor, which is a function of the geometry, is applicable in all cases.

11.3 Evaluation of the Shape Factor

The mathematical expression of the shape or configuration factor from Eq. (11.12) is

F12 ¼ 1
A1

Z
A1

Z
A2

dA1dA2 cos/1 cos/2

ps2
ð11:12Þ

As an illustration for the evaluation, consider two diffuse-black flat discs oriented parallel
to each other as shown in Fig. 11.2. One of the discs is having a very small surface area dA1.
The elemental area dA2 on the other disc is a circular ring of radius r and width dr. Thus

dA2 ¼ 2prdr

H s

R

r

dr

β

dA1

Fig. 11.2 Two diffuse-black flat discs parallel to each other
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The angles subtended by the normal to the areas dA1 and dA2 with the line joining these
areas are equal (/1 = /2 = /). Substitution in Eq. (11.12) gives

F12 ¼ 1
dA1

Z
A

dA1ð2prdrÞ cos2 /
ps2

From the geometry of the figure,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ r2ð Þ

p
and

cos/ ¼ H

s
¼ Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ r2ð Þp
Hence,

F12 ¼ 2H2
ZR
0

rdr

H2 þ r2ð Þ2

¼ �H2 1

H2 þ r2ð ÞR0
¼ �H2 1

H2 þR2ð Þ �
1
H2

� �

¼ R2

H2 þR2ð Þ ¼ sin2 b

ð11:17Þ

Let us consider one more example of radiation exchange between an elemental surface
area (dA1) and a rectangular surface 2 parallel to it at distance L with one corner of the
surface 2 in normal line to dA1 as shown in Fig. 11.3.

L1N1

N2

z

y
dA2

L

xdA1

L2

A2

s

1

2

Fig. 11.3 A rectangular surface parallel to an elemental surface area
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From the geometry of the figure,

cos/1 ¼ cos/2 ¼
L

s

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2 þ L2ð Þ

p
and

F12 ¼ 1
dA1

Z
A1

Z
A2

dA1dA2 cos/1 cos/2

ps2

¼
Z
A2

dA2 cos/1 cos/2

ps2
¼
Z
A2

L

s

� �2 dA2

p x2 þ z2 þ L2ð Þ

Putting dA2 = dxdz

F12 ¼
ZL1
0

Z L2

0

L

s

� �2 dxdz

p x2 þ z2 þ L2ð Þ

Evaluation of the integrals gives

F12 ¼ 1
2p

L1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L21 þ L2
� �q sin�1 L2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L21 þ L22 þ L2
� �q þ L2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L22 þ L2
� �q sin�1 L1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L21 þ L22 þ L2
� �q

2
64

3
75

ð11:18Þ

Now the readers can realize that the evaluation of the integration is not an easy affair in all
cases. The researchers have evaluated shape factors for some commonly encountered con-
figurations. They are available in the form of charts; refer Fig. 11.4a–e, or equations
(Table 11.1). For more information, refer Siegel and Howell (2002) and Howell (1982).

For flat surfaces, which are small in area compared with the distance between them and
are uniform in temperature, an approximate solution of Eq. (11.12) can be obtained by
substituting areas A1 and A2 together with the approximate values of /1 and /2. For the cases
where such simplification is not possible, the properties of the shape factor being discussed in
the next section can be useful.>

11.3.1 Salient Features of the Radiation Shape Factor

1. It the radiation coming out of a flat or convex surface 1 is intercepted by an enclosure 2,
see Fig. 11.5a and b, the shape factor F12 is unity. In this case, the reciprocity relation
gives that the shape factor F21 is simply the ratio of the two areas, i.e. F21 = A1/A2.

The above result can also be obtained mathematically. Referring to Fig. 11.5c, /2 = 0
and dA2 = 2pr sin /1 rd/1. The angle /1 varies from 0 to p/2. Hence, the shape factor
equation transforms to
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Fig. 11.4 a Radiation shape factor for radiation between parallel discs. b Radiation shape factor for radiation
between two parallel concentric discs. c Radiation shape factor for radiation between perpendicular rectangles
with a common edge. d Radiation shape factor for two concentric cylinders of finite length, outer cylinder to
itself. e Radiation shape factor for radiation between parallel rectangles
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F12 ¼
Zp=2
0

ðrd/1Þð2pr sin/1Þ cos/1 cos 0
pr2

¼ 1 ð11:19Þ

2. Subdivision of the Emitting Surface

In Fig. 11.6, the radiating surface A1 has been divided into two areas A3 and A4. Then

A1F12 ¼ A3F32 þA4F42

In general, the above equation can be written as

AiFij ¼
Xn
n¼1

AinFinj ð11:20Þ

where area Ai has been divided into areas Ai1, Ai2, … Ain.

3. Subdivision of the Receiving Surface

In Fig. 11.7, the receiving surface has been divided into areas A2(1) and A2(2). Then

A1F12 ¼ A1F12ð1Þ þA1F12ð2Þ

r
1

2
a

(

dA1

d 1

1

2

dA2

r

1 (A1)r

1

2

b

c

sin 1

Fig. 11.5 Radiation from a flat or convex surface intercepted by an enclosure

A2

A4

A3

A1= A3+ A4

Fig. 11.6 Subdivision of emitting surface
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or

F12 ¼ F12ð1Þ þF12ð2Þ

In general,

F12 ¼
Xn
i¼1

F12ðiÞ ð11:21Þ

where area A2 has been divided into areas A2(1), A2(2), … A2(n). Equation expresses the
additive property of the shape factor.

Enclosure

If a flat or convex surface 1 is completely enclosed by surface areas A2, A3, …. An, refer
Fig. 11.8a, then

F12 þF13 þ . . .þF1n ¼ 1 ð11:22Þ

In case of a concave surface, a fraction of the radiant energy emitted by one part of the
concave surface will be intercepted by another part of the concave surface, refer Fig. 11.8b.
Thus a concave surface has shape factor with respect to itself, which can be termed as F11. It
follows that in this case

F11 þF12 þF13 þ . . .þF1n ¼ 1 ð11:23aÞ

2

3

4
5

n

1
2

3

4
5

n
1

a b

Fig. 11.8 Enclosures

A2 = A2(1) + A2(2)

A2(1)

A2(2)

A1

Fig. 11.7 Subdivision of the receiving surface
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or

Xn
n¼1

F1n ¼ 1 ð11:23bÞ

This is known as summation rule and is simply based on the principle of conservation of
energy. For the convex or a flat surface F11 is zero and Eq. (11.22) results.

11.4 Reciprocity Relation

The reciprocity relation, as presented earlier, is

A1F12 ¼ A2F21 ð11:14Þ

It indicates that the radiation heat transfer can be determined by using the shape factor
either ways. If the two surfaces have the same area (A1 = A2), the shape factor will have the
same value when the surfaces 1 and 2 are interchanged.

Example 11.1 Determine the shape factors for

(a) A blackbody inside a black enclosure, Fig. 11.9a.
(b) A black sphere in a cubical box, Fig. 11.9b.
(c) A black hemisphere surface closed by a plane surface, Fig. 11.9c.
(d) A cylindrical cavity closed by a plane surface, Fig. 11.9d.

Solution The surface 1 in all cases given here is either convex or flat hence

F11 ¼ 0:

The surface 2 intercepts whole of the radiation emitted by the surface 1 hence

F12 ¼ 1:

c

1
2

d

2

1

ba

1
2

d

d

l

1 (A1)

2
(A2)

Fig. 11.9 Example 11.1
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From the []reciprocity relation,

A1F12 ¼ A2F21

or

F21 ¼ A1

A2
F12 ¼ A1

A2

From the summation rule,

F21 þF22 ¼ 1

or

F22 ¼ 1� F21

The results for different cases are given in Table 11.2.

Example 11.2 Calculate the shape factor for the ducts, whose cross-sections are shown in
Fig. 11.10. Length of the duct in all cases is very large and hence the radiation loss from the
ends of the ducts may be neglected. Whole the surface enclosing the surface 1 is to be
considered surface 2.

Solution

For all the four cases shown in the figure, no part of the radiation leaving the surface 1 falls
on the surface itself. Hence,

F11 ¼ 0:

Surface 2 intercepts whole of the radiation emitted by the surface 1 hence

F12 ¼ 1:

From the reciprocity relation,

A1F12 ¼ A2F21

Table 11.2 Example 11.1

Case F11 F12 F21 ¼ A1=A2 F22 = 1 – F21

a 0 1 A1=A2 1� A1=A2

b 0 1 pd2
6d2 ¼ p

6 ¼ 0:5236 1 – 0.5236 = 0.4764

c 0 1 ðp=4Þd2
ðp=2Þd2 ¼ 0:5 1 – 0.5 = 0.5

d 0 1 ðp=4Þd2
pdlþðp=4Þd2 ¼ d

dþ 4l
1� d

dþ 4l ¼ 4l
dþ 4l
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or

F21 ¼ A1

A2
F12 ¼ A1

A2

From the summation rule,

F21 þF22 ¼ 1

or

F22 ¼ 1� F21

The results for different cases are given in Table 11.3.

Example 11.3 Determine shape factors F12, F23, F31, etc. for the triangular cross-section
enclosure formed by infinitely long plates of different widths as shown in Fig. 11.11.

Solution

Representing the sides of the enclosure by the respective areas A1, A2 and A3, we can write
the following:

A1F12 þA1F13 ¼ A1 ðiÞ

ba

1

W

1
2H 2

11 (A1)

2 (A2)

c d

1
2

r1
2

B

H

Fig. 11.10 Example 11.2

Table 11.3 Example 11.2

Case F11 F12 F21 ¼ A1=A2 F22 = 1 – F21

a 0 1 A1=A2 1� A1=A2

b 0 1 W
W þ 2H 1� W

W þ 2H ¼ 2H
W þ 2H

c 0 1 B

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ B=2ð Þ2

p 1� B

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ B=2ð Þ2

p

d 0 1 2r
pr ¼ 2

p 1� 2
p
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Similarly, we can write

A2F21 þA2F23 ¼ A2

A3F31 þA3F32 ¼ A3

Using the reciprocity relations, we can write these equations as

A2F23 þA1F12 ¼ A2 ðiiÞ
A1F13 þA2F23 ¼ A3 ðiiiÞ

Summation of Eqs. (i)–(iii) gives

A1F12 þA1F13 þA2F23 ¼ 1=2ðA1 þA2 þA3Þ ðivÞ

Subtraction of Eq. (i) from Eq. (iv) gives

F23 ¼ A2 þA3 � A1

2A2

In terms of the widths of the plates of the enclosure, we can rewrite the above equation as

F23 ¼ L2 þ L3 � L1
2L2

Proceeding in the same manner, we can deduce the following:

F12 ¼ L1 þ L2 � L3
2L1

; F21 ¼ L2 þ L1 � L3
2L2

F13 ¼ L1 þ L3 � L2
2L1

; F31 ¼ L3 þ L1 � L2
2L3

F23 ¼ L2 þ L3 � L1
2L2

;F32 ¼ L3 þ L2 � L1
2L3

The result is listed in Table 11.1. The results can be used for the approximate estimate of
triangular enclosure with flat or convex surfaces of area A1, A2 and A3, where length of the
duct is very large compared to the widths of the sides.

A2

A1

A3L2, A2

L1, A1

L3, A3

Fig. 11.11 Example 11.3
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Example 11.4 Calculate the shape factor for the following:

(a) a very long duct of cross-section as shown in Fig. 11.12a
(b) a very long duct with cross-section of equilateral triangle, Fig. 11.12b
(c) A conical cavity closed by a plane surface, Fig. 11.12c.

Solution

(a) For surface 1, F11 = 0. Hence, from the summation rule,

F12 þF13 ¼ 1:

Since A2 = A3, we have

F12 ¼ F13 ¼ 0:5:

Similarly, F22 = 0 and, from the summation rule,

F23 þF21 ¼ 1: ðaÞ

From the reciprocity relation,

A2F21 ¼ A1F12:

or

F21 ¼ A1

A2
F12 ¼

ffiffiffi
2

p
a

a
� 0:5 ¼ 0:707:

From Eq. (a),

F23 ¼ 1� F21 ¼ 0:293:

By symmetry,
F33 ¼ 0;F31 ¼ 0:707; andF32 ¼ 0:293:

a

2

3

1 a

a

2 3

1

a

1

2

d

H

a b c

Fig. 11.12 Example 11.4
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(b) F11 = 0 hence, from the summation rule,

F12 þF13 ¼ 1:

As A2 = A3, F12 and F13 will be equal. This gives

F12 ¼ F13 ¼ 0:5:

By symmetry,

F22 ¼ 0;F23 ¼ F21 ¼ 0:5

and

F33 ¼ 0;F31 ¼ F32 ¼ 0:5:

(c) F11 ¼ 0:
Area of the cone surface,

A2 ¼ pd
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ d2

4

r
:

Area of the plane surface,

A1 ¼ pd2

4
:

From the reciprocity relation,

A1F12 ¼ A2F21:

Here F12 = 1. Hence,

F21 ¼ A1

A2
¼ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4H2 þ d2
p

and

F22 ¼ 1� F21 ¼ 1� dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H2 þ d2

p
:

The result for part (a) and (b) can also be obtained using the equation presented in
Table 11.1 for Case 3.
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Example 11.5 Determine the shape factor F12 for the configuration shown in Fig. 11.13.

Solution

We have

A13Fð1;3Þ�ð2;4Þ ¼ A1F1�ð2;4Þ þA3F3�ð2;4Þ

where A13 = 16 m2, A1 = 12 m2, A3 = 4 m2.

This gives

4Fð1;3Þ�ð2;4Þ ¼ 3F1�ð2;4Þ þF3�ð2;4Þ:

From symmetry,

F12 ¼ F14:

Hence,

F1�ð2;4Þ ¼ 2F12

4Fð1;3Þ�ð2;4Þ ¼ 6F12 þF3�ð2;4Þ: ðiÞ

From Fig. 11.4c for Z/X = 0.75 and Y/X = 1,

Fð1;3Þ�ð2;4Þ ¼ 0:18

and for Z/X = 0.75 and Y/X = 0.25,

F3�ð2;4Þ ¼ 0:35

Substitution in Eq. (i) gives

F12 ¼ ð1=6Þð4� 0:18� 0:35Þ ¼ 0:0616:

Example 11.6 The ends of concentric cylinders of finite length shown in Fig. 11.14 are
covered with flat annular surfaces designated as 3 and 3′. Derive the expression for F31, F32,
F33, and F13 in terms of F11, F12 and areas A1, A2 and A3.

3.0 m 1 m

4 m
300 K, ε = 0.8 

350 K, ε = 0.7 

3 m

4
2

3
1

Fig. 11.13 Example 11.5
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Solution

Surface 1
From the summation rule,

F11 þF12 þF13 þF130 ¼ 1:

By symmetry,

F13 ¼ F130

Hence,

F13 ¼ 1=2ð1� F11 � F12Þ: ðiÞ

Surface 2

F22 ¼ 0:

Hence, from the summation rule,

F21 þF23 þF230 ¼ 1:

By symmetry,

F23 ¼ F230 :

Hence,

F23 ¼ 1=2ð1� F21Þ: ðiiÞ

Surface 3

F33 ¼ 0:

Hence, from the summation rule,

F31 þF32 þF330 ¼ 1:

L

1

2
3’ 3

Annular area 3 or 3’

Fig. 11.14 Concentric cylinders of finite length with end covers
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or

F330 ¼ 1� F31 � F32: ðiiiÞ

Using reciprocity relation and Eq. (i), we get

A3F31 ¼ A1F13

or

F31 ¼ A1

A3
F13 ¼ A1

2A3
ð1� F11 � F12Þ: ðivÞ

Again from the reciprocity relations,

F21 ¼ A1

A2
F12

F32 ¼ A2

A3
F23

Using these relations and Eq. (ii), we get

F32 ¼ A2

2A3
ð1� F21Þ ¼ A2

2A3
ð1� A1

A2
F12Þ ðvÞ

Substituting the values of F31 and F32 from Eqs. (iv) and (v), respectively, in Eq. (iii) and
rearranging, we obtain

F330 ¼ 1� A1 þA2

2A3
þ :

A1

2A3
ð2F12 þF11Þ:

Example 11.7 Derive the equation of radiant energy exchange through the openings of the
cavities (with black surface) shown in Fig. 11.15. Comment on the result.

Solution

Let T1 be the temperature of the surface of the cavities and T2 that of the space above the
opening of the cavities. The space acts as a blackbody hence a black plane surface A2 can
replace the cavity opening.

ba c

2
1

D 2

1

D

H
α

2

1

D

H

Fig. 11.15 Example 11.7
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For the surface 1,

F11 þF12 ¼ 1

or

F11 ¼ 1� F12

Using the reciprocity relation, A1F12 = A2F21, we get

F11 ¼ 1� F12 ¼ 1� A2

A1
F21: ðiÞ

For the surface 2,

F21 þF22 ¼ 1

or

F21 ¼ 1� F22

Surface 2 is a flat surface hence F22 = 0. Hence,

F21 ¼ 1:

Substitution in Eq. (i) gives

F11 ¼ 1� A2

A1
:

This is valid for all the cavities shown in Fig. 11.15.

Case (a) A Cylindrical Cavity

F11 ¼ 1� ðp=4ÞD2

pDHþðp=4ÞD2
¼ 1� D

Dþ 4H
;

and

F12 ¼ 1� F11 ¼ D

Dþ 4H
:

The net heat exchange (from the cavity to the space) is

q12 ¼ A1F12rðT4
1 � T4

2 Þ

¼ pDHþðp=4ÞD2
	 
� D

Dþ 4H

� �
� rðT4

1 � T4
2 Þ

¼ ðp=4ÞD2rðT4
1 � T4

2 Þ ¼ A2rðT4
1 � T4

2 Þ;

which is independent of the surface area of the cavity.
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Case (b) A Hemispherical Bowl

F11 ¼ 1� ðp=4ÞD2

ðp=2ÞD2
¼ 0:5;

and

F12 ¼ 1� F11 ¼ 0:5:

The net heat exchange (from the cavity to the space) is

q12 ¼ A1F12rðT4
1 � T4

2 Þ
¼ ðp=2ÞD2 � 0:5� rðT4

1 � T4
2 Þ

¼ ðp=4ÞD2rðT4
1 � T4

2 Þ ¼ A2rðT4
1 � T4

2 Þ:

The result is the same as for the case (a).

Case (c) A Conical Cavity

F11 ¼ 1� ðp=4ÞD2

ðpD=2ÞðH2 þD2=4Þ1=2
¼ 1� D

2ðH2 þD2=4Þ1=2
;

and

F12 ¼ 1� F11 ¼ D

2ðH2 þD2=4Þ1=2
:

The net heat exchange (from the cavity to the space) is

q12 ¼ A1F12rðT4
1 � T4

2 Þ
¼ ðpD=2ÞðH2 þD2=4Þ1=2 D

2ðH2 þD2=4Þ1=2
� rðT4

1 � T4
2 Þ

¼ ðp=4ÞD2rðT4
1 � T4

2 Þ ¼ A2rðT4
1 � T4

2 Þ:

From the analysis of the results of the above cases, we can conclude the following:

(i) In the case of a cavity (i.e. a concave surface), since the parts of the cavity surface can
see each other, the radiation escaping the cavity is less than A1rT1

4.
(ii) For a cavity with black surface, the escaping radiation is A2rT1

4, where A2 is area of a
plane surface (a surface with minimum area) covering the cavity. Thus in such cases,
area of the plane surface covering the cavity can be used instead of the surface area of
the cavity. This is to be noted that the conclusion is for a cavity with black surface.

Example 11.8 A small sphere of 50 mm diameter is located at the center of a hollow sphere
of 200 mm inside diameter. The surface temperatures of the spheres are 600 K and 300 K,
respectively. Calculate the net exchange of radiation between two spheres. Assume that the
surfaces of both spheres behave as blackbody. Also determine the amount of energy radiated
from the surface of the outer sphere incident on the surface of the inner sphere.
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Solution

(Refer Fig. 11.16)
The configuration factor F12 is unity because whole of the radiation emitted by the inner

sphere is falling upon the surface of the outer sphere.
By reciprocity relation

A1F12 ¼ A2F21

or

F21 ¼ A1

A2
F12 ¼ A1

A2
¼ p� 502

p� 2002
¼ 0:0625

i.e. only 6.25% of the radiation emitted by surface of sphere 2 is intercepted by surface of
sphere 1. The remaining 93.75% of the radiation falls upon itself.

The net interchange of the heat between the two spheres is

q13 ¼ A1F12rðT4
1 � T4

2 Þ
¼ p� ð0:05Þ2 � 1� 5:67� 10�8 � ð6004 � 3004Þ ¼ 54:1W:

Example 11.9 The Sun can be regarded as nearly a spherical radiation source emitting as a
blackbody. Its diameter is approximately 1.4 � 109 m and is at a distance of 1.5 � 1011

from the Earth. On a clear day the radiation incident on the Earth’s surface was measured to
be 1200 W/m2. If 250 W/m2 of the solar radiation is estimated to be absorbed by the Earth’s
atmosphere, estimate the surface temperature of the Sun.

Solution

(Refer Fig. 11.17)
The radiation from the Sun impinging on the Earth is

q12 ¼ 1200þ 250 ¼ 1450 W/m2:

From Eqs. (11.12) and (11.16), the net radiation heat exchange is given by

1

600

300
2

Fig. 11.16 Example 11.8
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q12 ¼ rðT4
s � T4

e Þ
cos hs cos hedAsdAe

ps2
ðiÞ

where subscript s pertains to the Sun and e to the Earth.
The distance between the Sun and the Earth is very large as compared to the diameter of

the Sun hence

(i) coshs = coshe � cos0o = 1, refer Fig. 11.17.
(ii) The surface of the Sun emitting radiation can be regarded as a disk of area dAs = (p/4)

Ds
2.

(iii) The radiation measurement refers to the unit area of the Earth’s surface hence
dAe = 1 m2.

(iv) The temperature of the Earth’s surface Te is a very small term compared to Ts and
hence can be neglected.

The above conditions transform Eq. (i) to

q12 ¼ rT4
s

p=4ð ÞD2
s

ps2
¼ rT4

s

D2
s

4s2

or

1450 ¼ 5:67� 10�8 � T4
s �

ð1:4� 109Þ2
4� ð1:5� 1011Þ2

This gives

Ts ¼ 5853:9 K:

Alternative method (refer Fig. 11.18)
Total energy emitted by the Sun,

qs ¼ erAsT
4
s ¼ rðpD2

s ÞT4
s

as e = 1 and surface area of the Sun is = pDs
2.

Te

Sun

Earth

dAe

Ts

D

Not to scale.

1

Fig. 11.17 Example 11.9
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The distance of the Earth from the Sun is very large compared to the diameter of the Sun
hence the Sun may be regarded as a point source.

The energy received by unit area of a sphere of radius s from this point source at its center
is thus

q ¼ qs
4ps2

¼ pD2
s

� �
rT4

s

4ps2
¼ rT4

s

D2
s

4s2

� �

which equals the energy received by the unit area at the Earth’s surface. Substitution gives
the above result.

Example 11.10 Obtain the configuration factor between a sphere of radius R1 and a coaxial
disc of radius R2. What is the shape factor from the sphere to a sector of the disc as shown in
Fig. 11.19a?

Solution

(i) First we consider a spherical envelope of radius a as shown in Fig. 11.19b where

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 þ L2

q

The spherical segment ABC envelops the disc.
The radiation from the sphere 1 falls uniformly on the surface of the spherical envelope
of radius a. Thus, the fraction falling on the spherical segment ABC is

Earth

Sun,
Ds = 1.4 × 109

s = 1.5 × 1011m

Not to scale.

Spherical surface

Fig. 11.18 Example 11.9 (alternative method)
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a

b

c

R2

R1

Disc

Sphere 1

Sector

ψ

R2

R1

A

Disc

‘S’

Sector

R1

B

C

La

a sin

A

Disc

B

C

L ad

Elemental ring

θ

R1

R2

Fig. 11.19 Example 11.10
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F12 ¼ Surface area of ABC
Surface area of envelope

ðiÞ

The surface area of ABC is

¼
Zh
0

2pða sin/Þad/ ¼ 2pa2ð1� cos hÞ

where [2p (a sin/)ad/] is the area of the elemental strip shown in Fig. 11.19c.
Substitution in Eq. (i) gives

F12 ¼ 2pa2ð1� cos hÞ
4pa2

¼ ð1� cos hÞ
2

¼ 1
2

1� L

a

� �

¼ 1
2

1� Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 þ L2

p
 !

Since the disc 2 intercepts the same fraction of radiation as the spherical segment, the
above equation is the desired configuration factor.

(i) If we consider the sector marked in Fig. 11.19a, then the area of this sector is w/2p part
of the area of the disc and the configuration factor is

F ¼ w
2p

F12 ¼ w
4p

1� Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 þ L2

p
 !

Example 11.11 What is the configuration factor from a sphere to a portion of a ring of
infinitesimal width dR2 shown in Fig. 11.20a?

dR2

A
R2

B
C

La
θ

θ

ba

O

R2

2

R2

Sphere

Width dR2

1

L

ψ

R1

R2

Fig. 11.20 Example 11.11
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Solution

Area of the surface 2, the portion of the ring,

dA2 ¼ ðwR2ÞdR2

Projection of this area normal to OA is dA2cosh which lies on the surface of the spherical
segment ABC in Fig. 11.20b. Thus the fraction falling on the surface 2 is

F12 ¼ dA2 cos h
Surface area of spherical envelope of radius a

¼ ðR2wÞdR2 cos h
4pa2

¼ ðR2wÞdR2
1

4pðR2
2 þ L2Þ

� �
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
2 þ L2

p
 !

¼ w
4p

R2L

ðR2
2 þ L2Þ3=2

" #
dR2:

Example 11.12 Determine the shape factor between a small area A1 and a circular segment
of a sphere of radius R. The area A1 is located at the center of the sphere perpendicular to the
circular segment. The segment subtends an angle 2b at the area A1.

Solution

(Refer Fig. 11.21)
The radiation shape factor is given by

F12 ¼ 1
A1

Z
A1

Z
A2

cos/1 cos/2dA1dA2

ps2

¼ 1
A1

Z
A1

dA1

Z
A2

cos/1 cos/2dA2

ps2

0
B@

1
CA

¼
Z
A2

cos/1 cos/2dA2

ps2
:

R sin

C

Circular 
segment; A2

C

R

2β

A1

Fig. 11.21 Example 11.12
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Taking an elemental area on the disc,

dA2 ¼ 2pR sin/Rd/

Also /1 = /, /2 = 0, and s = R. Hence,

F12 ¼
Zb
0

cos/ cos 0
pR2

� 2pR2 sin/d/

¼
Zb
0

2 sin/ cos/d/ ¼
Zb
0

sin 2/d/ ¼ � cos 2/
2

� �b
0

¼ � cos 2b
2

þ 1
2

� �

¼ 1
2
� 1� 2 sin2 b

2

� �
¼ sin2 b;

which is the same as Eq. (11.17). Thus the shape factor can be determined by considering the
projected area of the circular segment (refer plane CC in Fig. 11.21).

Example 11.13 A black 25 mm diameter sphere 1 at a temperature of 1000 K is suspended
in the center of a thin 50 mm diameter partial sphere 3 having a black interior surface. The
exterior surface of the sphere 3 has a hemispherical total emissivity of 0.5. The surroundings
are at 300 K. A 40 mm diameter hole is cut in the outer sphere. What is the temperature of
the outer sphere? What is the heat transferred from the inner sphere?

Solution

Refer Fig. 11.22.

F12 ¼ 1
2

1� Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ L2

p
� �

¼ 1
2

1� 15
25

� �
¼ 0:2;

L
R

B
CA

To = 300 K

T2 = 300 K

2

13

Q32

Q13

Q12

Q3O

a

Fig. 11.22 Example 11.13
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(Refer Example 11.10)

F12 þF13 ¼ 1 asF11 ¼ 0;

or

F13 ¼ 1� F12 ¼ 1� 0:2 ¼ 0:8;

F21 þF23 ¼ 1 asF22 ¼ 0;

or

F23 ¼ 1� F21

¼ 1� A1

A2
F12

where

A1 ¼ 4pR2
1 ¼ 4� p� 12:52 ¼ 1963:5mm2

A2 ¼ pR2 ¼ p� 202 ¼ 1256:6mm2:

Substitution gives

F23 ¼ 1� 1963:5
1256:6

� 0:2 ¼ 0:6875;

F32 ¼ A2

A3
F23

where

A3 ¼ 4pR2
3 � surface area of segment ABS

¼ 4� p� 252 � 4� p� 252
� �

F12;

because

F12 ¼ Surface area of segment
Surface area of the sphere of radius r3

:

Thus,

A3 ¼ 4� p� 252 1� F12ð Þ ¼ 4� p� 252 1� 0:2ð Þ ¼ 6283:2mm2:

This gives

F32 ¼ 1256:6
6283:2

� 0:6875 ¼ 0:1375:
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Energy balance of surface 3 gives

q13 ¼ q30 þ q32

or

A1F13rðT4
1 � T4

3 Þ ¼ A3erðT4
3 � T4

0 ÞþA3F32rðT4
3 � T4

2 Þ

or

A1F13ðT4
1 � T4

3 Þ ¼ A3eðT4
3 � T4

0 ÞþA3F32ðT4
3 � T4

2 Þ ðiÞ

The radiation going out through the opening (hole) is lost into the surrounding at tem-
perature 300 K. Hence, the hole can be regarded as black disc of diameter 40 mm at tem-
perature T2 = 300 K. Substitution of values of various parameters in Eq. (i) gives

1963:5� 0:8� ð10004 � T4
3 Þ ¼ 6283:2� 0:5� ðT4

3 � 3004Þþ 6283:2� 0:1375� ðT4
3

� 3004Þ

Simplification gives

T3 ¼ 732:3 K

Heat transfer from the inner sphere

q1 ¼ q13 þ q12 ¼ A1F13rðT4
1 � T4

3 ÞþA1F12rðT4
1 � T4

2 Þ
¼ 1963:5� 10�6 � 5:67� 10�8

� 0:8� ð10004 � 732:34Þþ 0:2� ð10004 � 3004Þ	 

¼ 85:53 W:

Example 11.14 A hollow cylindrical heating element 150 mm long and 150 mm inside
diameter with a black interior surface is to be maintained at 1000 K. The outside of the
cylinder is insulated and the surroundings are in vacuum at 750 K. If both ends of the
cylinder are open, estimate the energy to be supplied to the heating element.

Solution

The heat is lost by radiation through the open ends hence

q3 ¼ q31 þ q32 ¼ 2q31

by symmetry, refer Fig. 11.23.

We have

F12 þF13 ¼ 1
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or

F13 ¼ 1� F12

Further,

F31 ¼ A1

A3
F13 ¼ pr2

2prL
ð1� F12Þ ¼ r

2L
ð1� F12Þ ðiiÞ

Configuration factor (Table 11.1),

F12 ¼ 1þ L2

2r2
1� 1þ 4r2

L2

� �1=2
" #

¼ 1þ 1502

2� 752
1� 1þ 4� 752

1502

� �1=2
" #

¼ 0:17157:

Hence, from Eq. (ii),

F31 ¼ 75
2� 150

ð1� 0:17157Þ ¼ 0:2071

and

q3 ¼ 2q31 ¼ 2 A3F31rðT4
3 � T4

1 Þ
	 


¼ 2� 2� p� 75� 150� 10�6 � 0:2071� 5:67� 10�8

� ð10004 � 7504Þ ¼ 1134:85 W:

Example 11.15 A circular cylindrical enclosure, as shown in Fig. 11.24, has black interior
surfaces each maintained at uniform temperature (T1 = 1500 K, T2 = 500 K and
T3 = 1000 K). The outside of the entire cylinder is insulated such that the outside surface
does not radiate to the surroundings. How much heat is supplied to each surface as a result of
the internal radiation exchange?

1

3

2r

L

2
Q32

Q31

Fig. 11.23 Example 11.14
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Solution

Heat transfer from various surfaces are given by (refer Fig. 11.24)

q1 ¼ q12 þ q13 ¼ A1F12rðT4
1 � T4

2 Þ
	 
þ A1F13rðT4

1 � T4
3 Þ

	 
 ðiÞ
q2 ¼ q21 þ q23 ¼ A2F21rðT4

2 � T4
1 Þ

	 
þ A2F23rðT4
2 � T4

3 Þ
	 
 ðiiÞ

q3 ¼ q31 þ q32 ¼ A3F31rðT4
3 � T4

1 Þ
	 
þ A3F32rðT4

3 � T4
2 Þ

	 
 ðiiiÞ

where

A1 ¼ A2 ¼ p
4

150ð Þ2¼ 17671:5mm2;

A3 ¼ p� 150� 300 ¼ 141372mm2;

T1 = 1500 K, T2 = 500 K, T3 = 1000 K,

F12 ¼ 1þ L2

2r2
1� 1þ 4r2

L2

� �1=2
" #

¼ F21

¼ 1þ 3002

2� 752
1� 1þ 4� 752

3002

� �1=2
" #

(Table 11.1)
or

F12 ¼ F21 ¼ 0:05573:

Since F12 þF13 ¼ 1;

F13 ¼ 1� F12 ¼ 1� 0:05573 ¼ 0:94427 ¼ F23

F31 ¼ A1

A3
F13 ¼ 0:11803 ¼ F32:

1

3

2r = 150 mm

L = 300 mm

2
Q32

Q31

Fig. 11.24 Example 11.15
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Knowing the values of various parameters in Eqs. (i)–(iii), the heat transfer rates from the
surfaces are

q1 ¼ A1F12rðT4
1 � T4

2 Þ
	 
þ A1F13rðT4

1 � T4
3 Þ

	 

¼ 17671:5� 10�6 � 5:67� 10�8

� 0:05573� ð15004 � 5004Þþ 0:94427� ð15004 � 10004Þ	 

¼ 4123 W:

q2 ¼ A2F21rðT4
2 � T4

1 Þ
	 
þ A2F23rðT4

2 � T4
3 Þ

	 

¼ 17671:5� 10�6 � 5:67� 10�8

� 0:05573� ð5004 � 15004Þþ 0:94427� ð5004 � 10004Þ	 

¼ �1166:2 W:

q3 ¼ A3F31rðT4
3 � T4

1 Þ
	 
þ A3F32rðT4

3 � T4
2 Þ

	 

¼ 141372� 10�6 � 5:67� 10�8

� 0:11803� ð10004 � 15004Þþ 0:11803� ð10004 � 5004Þ	 

¼ �2956:6 W:

(Check: heat lost by surface 1 equals the heat gained by surfaces 2 and 3).

Example 11.16 A bead shaped thermocouple is located at the central plane along the axis
of a circular pipe of radius R and length 2L. Determine the shape or geometrical factor
between the bead and the inside surface of the pipe.

Solution

We know that the shape factor equals the ratio of the radiation energy intercepted by the area
receiving the radiation to the total radiation emitted from the body. Alternatively, for a
spherical body, it is area of the receiving body (in the form of a segment of a sphere) at distance
‘a’ to the surface area of a sphere of radius a. In Fig. 11.25, we have covered the open ends of
the pipe by spherical segments. The spherical thermocouple bead of surface area A1 emits
radiation in all directions. The radiation intercepted by the two spherical segments is, thus

F13 ¼ Surface area of segments
Surface area of the sphere of radius a

¼ 2� Surface area of one segment
Surface area of the sphere of radius a

ðiÞ

Surface area of one segment can be found out as under by considering an elemental strip,
see Fig. 11.25.

A3 ¼
Zb
0

2pa sin a� a� ðdaÞ ¼
Zb
0

2pa2 sin a� da ¼ 2pa2
Zb
0

sin a� da

¼ 2pa2 � cos a½ �b0¼ 2pa2 1� cos bð Þ ¼ 2pa2 1� L

a

� �
:
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Hence,

F13 ¼ 2� 2pa2 1� L=að Þ
4pa2

¼ 1� L

a

� �
:

Knowing that F11 + F12 + F13 = 1 and F11 = 0 for a spherical body, we get

F12 ¼ 1� F13 ¼ L

a
¼ Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ L2
p :

Example 11.17 Given that the configuration or view factor between two coaxial parallel
discs of radius R distance L apart is (Table 11.1)

1þ L2

2R2
1� 1þ 4R2

L2

� �1=2
" #

Show that the self view factor of the inner surface of a hollow cylinder of radius R and
length L is

¼ 1þ L

2R
1� 1þ 4R2

L2

� �1=2
" #

A1

Pipe

L

a

α

dα

β
2R

2

a sinα

Spherical 
segment, A3

Fig. 11.25 Example 11.16
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Solution

For the hollow cylinder shown in Fig. 11.26, the application of the summation rule and
reciprocity relation gives for surface 1:

F12 þF13 ¼ 1 asF11 ¼ 0;

F31 ¼ A1

A3
F13 ¼ pR2

2pRL
ð1� F12Þ ¼ R

2L
ð1� F12Þ: ðiiÞ

Surface 2
Geometrically surface 2 is similar to the surface 1 hence

F21 ¼ F12;

F32 ¼ R

2L
ð1� F12Þ ¼ F31:

Surface 3
The self view factor of the inner surface of the cylinder,

F33 ¼ 1� F31 � F32 ¼ 1� 2F31

¼ 1� 2
R

2L
ð1� F12Þ

� �
¼ 1� R

L
ð1� F12Þ:

Substituting the value of F12, we get

F33 ¼ 1� R

L
1� 1� L2

2R2
1� 1þ 4R2

L2

� �1=2
" #( )

F33 ¼ 1þ L

2R
1� 1þ 4R2

L2

� �1=2
" #

:

Example 11.18 Blackbody radiation is leaving a small opening in a furnace at 1100°C.
What fraction of this radiation is intercepted by the annular disc shown in Fig. 11.27? What
fraction passes through the hole in the disc?

1

3

2R

L

2

Fig. 11.26 Example 11.17
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Solution

Radiation shape factor or fraction of the radiation leaving the surface 1 which reaches surface
2 is (Table 11.1 case 6)

FdA1�A2 ¼
D2

4H2 þD2

where area dA1 refers to the area of the small hole in the furnace wall and A2 is the area of the
surface intercepting the radiation leaving the small hole.

Fraction of the radiation passing through the hole in the disc,

F1 ¼ d2

4H2 þ d2
¼ 502

4� 1002 þ 502
¼ 0:0588

Fraction of the radiation falling on the disc of area (p/4)D2 is

F1 ¼ D2

4H2 þD2
¼ 1502

4� 1002 þ 1502
¼ 0:36

Hence, fraction of the radiation intercepted by the annular disc is

FdA1�Disc ¼ 0:36� 0:0588 ¼ 0:3012:

Note: The fraction F, i.e. the shape or configuration factor, does not depend on the
temperatures or emissivities of the bodies.

Example 11.19 Determine the shape factor for radiation exchange between a planar point
source and an infinite parallel plane.















 
























































  






















  






















 














  













H = 100 mm Hole in 
furnace wall

Disc,
D = 150 mm

Hole,
d = 50 mm

Fig. 11.27 Example 11.18
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Solution

From Eq. (11.17),

F12 ¼ R2

H2 þR2
¼ 1

H=Rð Þ2 þ 1
:

For an infinite parallel plane, R ! ∞. Hence, F12 ! 1for all finite values of H.

Example 11.20 Figure 11.28 shows a box whose inner surface can be assumed to be black.
The bottom surface 1 of the box is at a temperature of 600 K, the top surface 2 is at 500 K
and all vertical surfaces (marked as 3, 3`, 4 and 4`) are at 550 K. Calculate the net heat
transfer from the bottom to the top surface and also from the bottom to the vertical walls.

Solution

(a) Shape Factors
Surface 1 to surface 2:
From Fig. 11.4, with X/L = 200/200 = 1 and Y/L = 400/200 = 2.0, F12 = 0.28.
Applying the summation rule,

F11 þF12 þF1v ¼ 1

where subscript v refers to all vertical surfaces.
Since surface 1 is a flat surface, F11 = 0. This gives

F1v ¼ 1� F12 ¼ 1� 0:28 ¼ 0:72:

(b) Net Heat Exchange

q12 ¼ A1F12rðT4
1 � T4

2 Þ
¼ 0:2� 0:4� 0:28� 5:67� 10�8 � ð6004 � 5004Þ ¼ 85:2W:

q1vð Þnet ¼ A1F1vrðT4
1 � T4

v Þ
¼ 0:2� 0:4� 0:72� 5:67� 10�8 � ð6004 � 5504Þ ¼ 124:4W:

200

200

400

4`
3`

1

2

3

All dimensions 
in mm.

4

Fig. 11.28 Example 11.20
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Note: F1v- can also be found as follows:

F1v ¼ F13 þF130 þF14 þF140 :

From Fig. 11.4, for Z/X = 200/400 = 0.5 and Y/X = 200/400 = 0.5, F13 = F13` = 0.245,
and for Z/X = 200/200 = 1 and Y/X = 400/200 = 2, F14 = F14` = 0.115.

Hence,

F1v ¼ 2ð0:245þ 0:115Þ ¼ 0:72:

11.5 Radiation Exchange Between Infinite Parallel Planes

In the case of two infinite parallel diffuse gray planes, Fig. 11.29, areas A1 and A2 are equal
and whole of the radiation leaving one surface reaches the other. Thus the shape factor is
unity. The net radiant energy exchange can be determined using ray tracing method as under.

Let the gray surface 1 emits

E1 ¼ e1rT
4
1A

The surface 2 absorbs

X1 ¼ a2E1 ¼ e1e2rT
4
1A

(since a2= e2).
The amount reflected by surface 2 is

q2E1 ¼ q2ðe1rT4
1AÞ

The radiation reflected by surface 2 falls upon the surface 1 and the surface 1 absorbs
a1q2E1 and reflects back q1(q2E1). Thus the amount of second incidence on surface 2 is
q1q2E1. The surface 2, now, absorbs

X2 ¼ a2ðq1q2E1Þ ¼ q1q2ðe1e2rT4
1AÞ

Similarly it can be shown that the radiation absorbed by surface 2 on third incidence will be

X3 ¼ ðq1q2Þ2ðe1e2rT4
1AÞ
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and so on.
Thus the total energy absorbed by surface 2 out of the radiation of surface 1 is

q2 ¼ e1e2rT
4
1A½1þ q1q2 þðq1q2Þ2 þ . . .�

Similarly the amount absorbed by surface 1 out of e2rT2
4A radiated by surface 2 is

q1 ¼ e1e2rT
4
2A½1þ q1q2 þðq1q2Þ2 þ . . .�

The net radiation energy exchange is

ðq12Þnet ¼ q2 � q1 ¼ e1e2rðT4
1 � T4

2 ÞA½1þ q1q2 þðq1q2Þ2 þ . . .�

As (q1q2) < 1, the sum of the terms in the bracket is 1/(1 −q1q2) and

ðqÞ12 ¼
e1e2rðT4

1 � T4
2 ÞA

1� q1q2

But q1 = 1 – e1 and q2 = 1 – e2 hence

ðqÞ12 ¼
e1e2

1� ð1� e1Þð1� e2Þ rðT4
1 � T4

2 ÞA
	 


¼ e1e2
e1 þ e2 � e1e2

rðT4
1 � T4

2 ÞA
	 


¼ 1
1
e1
þ 1

e2
� 1

rðT4
1 � T4

2 ÞA
	 


¼ f12rðT4
1 � T4

2 ÞA;

ð11:15Þ

where f12 = 1
e1
þ 1

e2
� 1

� ��1
is known as interchange or transfer factor.

For black parallel surfaces e1 = e2 = 1 and the interchange factor is unity.

11.6 Radiation Exchange Between Infinite Long Concentric Cylinders

Consider two infinitely long concentric cylinders of surface areas A1 and A2, emissivities e1
and e2 and their surfaces are maintained at temperatures T1 and T2, respectively, as shown in
Fig. 11.30.

From the reciprocity relation A1 F12 = A2 F21. Since, the inner cylinder is completely
enclosed by the outer one, entire radiation from the surface of the inner cylinder will be
intercepted by the outer cylinder. Hence, F12 = 1. Therefore,

F21 ¼ A1

A2
:

Let the surface 1 emits radiant energy E1. This radiation falls upon the surface 2. The
radiation absorbed by the surface 2 is a2E1 and equals e2E1 (as from Kirchhoff’s law a = e).

The surface 2 reflects back E1 – e2E1. A part of the reflected radiation from surface 2 is
absorbed by the surface 1 and is (E1 – e2E1)F12 a1 = (E1 – e2E1) (A1/A2)e1. Remaining
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radiation, i.e. (E1 – e2E1) – (E1 – e2E1) (A1/A2)e1 = {(1 – e2)[1 – (A1/A2)e1]E1} is received
back by the surface 2.

It can be shown that on the second reflection, the surface 1 will absorb

E1ð1� e2Þ2e1 A1

A2
1� A1

A2
e1

� �

Continuation of this process will show that the total radiant energy lost by the inner
cylinder per unit area is

¼ E1 � E1ð1� e2Þe1 A1

A2
� E1ð1� e2Þ2e1 A1

A2
1� A1

A2
e1

� �
� . . .

¼ E1 1� A1

A2
e1ð1� e2Þ � ð1� e2Þ2e1 A1

A2
1� A1

A2
e1

� �
� . . .

� �

¼ E1 1� A1

A2
e1ð1� e2Þ 1þð1� e2Þ 1� A1

A2
e1

� �
:þ . . .

� � �

¼ E1 1� A1

A2
e1ð1� e2Þ 1� ð1� e2Þ 1� A1

A2
e1

� �� ��1
( )

¼ E1 1�
A1
A2
e1ð1� e2Þ

1� ð1� e2Þ 1� A1
A2
e1

� �
2
4

3
5

¼ e2E1
A1
A2
e1 þ e2 � A1

A2
e1e2

:

Similarly the heat lost by the outer cylinder is

¼ e1E2
A1
A2

A1
A2
e1 þ e2 � A1

A2
e1e2

The net heat transfer between the cylinders is

E1

1             (T1)
2    (T2)

α2E1

Fig. 11.30 Radiation exchange between infinite long concentric cylinders
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q12 ¼ A1
e2E1

A1
A2
e1 þ e2 � A1

A2
e1e2

 !
� A2

e1E2
A1
A2

A1
A2
e1 þ e2 � A1

A2
e1e2

 !

¼ e2A1E1 � e1A1E2
A1
A2
e1 þ e2 � A1

A2
e1e2

 !

From Stefan–Boltzmann law for gray bodies,

E1 ¼ e1rT
4
1

and

E2 ¼ e2rT
4
2 :

This gives

q12 ¼ e1e2A1rT4
1 � e1e2A1rT4

2
A1
A2
e1 þ e2 � A1

A2
e1e2

 !

¼ A1rðT4
1 � T4

2 Þ
1
e1
þ A1

A2

1
e2
� 1

� �
¼f12A1rðT4

1 � T4
2 Þ

where

f12 ¼ 1
e1

þ A1

A2

1
e2

� 1

� �� ��1

ð11:16Þ

If A2 >> A1, i.e. a small body in a large enclosure,

f12 ¼ e1

and

q12 ¼ A1e1rðT4
1 � T4

2 Þ

Some useful interchange factors are listed in Table 11.4.

11.7 Radiation from a Gray Cavity

Let the gray surface of the cavity emits, refer Fig. 11.31a,

E1 ¼ A1e1rT
4
1 :

As the surface 1 sees itself hence
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F11 6¼ 0:

Hence, a fraction F11E1 of the radiant energy E1 falls upon the surface 1 itself. If a1 is the
absorptivity of the surface, it absorbs

E0
1 ¼ a1F11E1 ¼ a1F11A1e1rT

4
1 :

As a1 = e1, we have

E0
1 ¼ F11A1e

2
1rT

4
1 :

Table 11.4 Useful interchange or transfer factorsa

S.
No.

Configuration Interchange factor

1 1 
2

Infinite parallel planes:
f12 = f21 = [1/ e1 + 1/ e2 − 1]−1

2
1 

2 2

Completely enclosed flat or convex body, very small
compared to the enclosing body (A1 � A2):
f12 = e1

3 1 Completely enclosed body A1 � A2:
f12 � [1/e1 + 1/e2 − 1]−1; F12 = 1
(f12 is approximately equal to that of infinite parallel
planes)

4
1

Concentric spheres or infinite cylinders:
f12 = [1/e1 + (A1/ A2) (1/e2 − 1)]−1

aFor use in equation q12 ¼ A1f12rðT4
1 � T4

2 Þ:

2 (A2)

1 (A1, ε1)

2 (A2)

1 (A1, ε1)E2

q1 q2

q3

a

b

Fig. 11.31 a A gray cavity. b Radiation from surface 2
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Remaining (F11E1 – E0
1) is reflected back. A fraction F11 of the reflected energy, i.e. [F11

(F11E1 – E0
1)] falls back on surface 1. Out of this a1 times is absorbed. This absorbed quantity is

E00
1 ¼ a1½F11ðF11E1 � E0

1Þ�
¼ e1½F11ðF11E1 � E0

1Þ�
¼ e1F

2
11E1 � e1F11E

0
1

¼ e1F
2
11ðA1e1rT

4
1 Þ � e1F11ðF11A1e

2
1rT

4
1 Þ

¼ A1F
2
11e

2
1rT

4
1 ð1� e1Þ:

This process of absorption and reflection continues indefinitely. The net amount of energy
leaving surface 1 is

ðq1Þnet ¼ E1 � ðE0
1 þE00

1 þ . . .Þ
¼ A1e1rT

4
1 � ½F11A1e

2
1rT

4
1 þA1F

2
11e

2
1rT

4
1 ð1� e1Þþ . . .�

¼ A1e1rT
4
1f1� ½e1F11 þ e1ð1� e1ÞF2

11 þ . . .�g
¼ A1e1rT

4
1f1� e1F11½1þð1� e1ÞF11 þð1� e1Þ2F2

11. . .�g:

As (1 – e1) F11 is less than 1, summation of the series gives

ðq1Þnet ¼ A1e1rT
4
1 1� e1F11

1� ð1� e1ÞF11

� �
¼ A1e1rT

4
1

1� F11

1� ð1� e1ÞF11

� �
:

We have

F11 þF12 ¼ 1

or

F11 ¼ 1� F12:

Substitution gives

ðq1Þnet ¼ A1e1rT
4
1

F12

1� ð1� e1Þð1� F12Þ
� �

¼ A1rT
4
1

e1F12

1� ð1� e1Þð1� F12Þ
� �

¼ A1rT
4
1

1
1
F12

þ 1�e1
e1

Let the black surface 2 of the cover emits radiation, refer Fig. 11.31(b),
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E2 ¼ A2rT
4
2 :

If a1 is absorptivity of the surface 1, it absorbs

q01 ¼ a1E2

on the first incidence of the radiation from surface 2.
A fraction F11q1E2 of the radiant energy E2 falls upon the surface 1 out of the radiation

q1E2 reflected from surface 1 and the surface 1 absorbs

q02 ¼ a1F11q1E2

and the remaining is reflected.
On the next incidence, the surface 1 can be shown to absorb

q03 ¼ a1F11q1ðF11q1E2Þ

This process of absorption and reflection continues indefinitely.
The total radiation received by surface 1 out of the radiation E2 is

q0 ¼ q01 þ q02 þ q03 þ . . . ¼ a1E2 þ a1F11q1E2 þ a1F11q1ðF11q1E2Þþ . . .

¼ e1E2 þ e1F11ð1� e1ÞE2 þ e1ð1� e1Þ2F2
11E2 þ . . .

¼ e1E2½1þF11ð1� e1Þþ ð1� e1Þ2F2
11 þ . . .�

Since F11(1 – e1) < 1, summation of the series gives

q0 ¼ e1E2
1

1� ð1� e1ÞF11

� �
¼ e1A2rT

4
2

1
1� ð1� e1ÞF11

� �
:

From reciprocity relation,

A2F21 ¼ A1F12

or

A2 ¼ A1F12 sinceF21 ¼ 1;

and

F11 ¼ 1� F12:

Substitution gives

q0 ¼ e1A1F12rT
4
2

1
1� ð1� e1Þð1� F12Þ
� �

:
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Simplification gives

q0 ¼ A1rT4
2

1
F12

þ ð1�e1Þ
e1

Net radiation lost by surface 1 is

q12 ¼ ðq1Þnet � q0

¼ A1rðT4
1 � T4

2 Þ
1
F12

þ 1�e1
e1

ð11:24Þ

11.8 Small Gray Bodies

The bodies in Fig. 11.32 are very small compared to the distance between them. The radiant
energy from body 1 falling upon body 2 will be partly absorbed by the body 2. The
unabsorbed (i.e. the reflected) radiation from body 2 is lost in the surroundings and it is being
assumed that it is not reflected back to the surface 1.

Energy emitted by body 1 is A1e1rT4
1 :

Energy incident upon body 2 F12A1e1rT4
1 :

Energy absorbed body 2 is a2F12A1e1rT4
1 ; which equals e1e2F12A1rT4

1 as a2 = e2.
Thus the radiant energy transfer from body 1 to body 2 is

q1 ¼ e1e2A1F12rT
4
1

Similarly the radiant energy transfer from body 2 to body 1 is

q2 ¼ e1e2A2F21rT
4
2 :

The net radiation energy exchange between the bodies is

q12 ¼ q1 � q2 ¼ e1e2A1F12rT
4
1 � e1e2A2F21rT

4
2

Applying the reciprocity relation A1F12 ¼ A2F21, we have

q12 ¼ e1e2A1F12rðT4
1 � T4

2 Þ

A1, ε1, T1

A2, ε2, T2

Fig. 11.32 Small gray bodies exchanging radiation
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Example 11.21 A thermocouple is installed in a gas pipe as shown in Fig. 11.33 to measure
temperature of the gas flowing through the pipe. The equilibrium temperature of the pipe
surface is 500 K. The thermocouple indicates a temperature of 600 K. Calculate the true
temperature of the gas if the emissivity of the thermocouple surface is 0.85 and the effect of
the conduction along the thermocouple wires is negligible. The convection heat transfer
coefficient from the gas to the thermocouple is 40 W/(m2 K).

Solution

The thermocouple is heated due to convection from the gas. But cooling of the thermocouple
takes place due to the rejection of heat by radiation to the pipe wall which is at a temperature
lower than the temperature of the thermocouple. Hence, it indicates a temperature lower than
the gas temperature.

Let the gas temperature is Tg and the temperature indicated by the thermocouple is T1.
Then the convective heat transfer qc from the gas to the thermocouple is

qc ¼ hA1ðTg � T1Þ ¼ 40� A1ðTg � 600Þ

where A1 is the surface area of the thermocouple bead.
For a small body in a large enclosure (bead area < < pipe wall area), the radiation heat

transfer is

qr ¼ e1A1rðT4
1 � T4

2 Þ ¼ 0:85� A1 � 5:67� 10�8 � ð6004 � 5004Þ

In equilibrium, qc = qr. This gives

40� A1ðTg � 600Þ ¼ 0:85� A1 � 5:67� 10�8 � ð6004 � 5004Þ

or

Tg ¼ 680:85K:

Thus the error is

DT ¼ 680:85� 600 ¼ 80:85 K:

The error can be reduced by reducing the radiation heat exchange with the pipe surface.
This can be achieved by insulating the pipe from the outside, which will increase the pipe
surface temperature. Use of a radiation shield around the thermocouple bead will also reduce
the heat exchange with the pipe surface and thus the error will reduce.

Thermocouple

Pipe

Fig. 11.33 Example 11.21
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Example 11.22 A mercury-in-glass thermometer suspended from the roof of a room reads
20°C. The roof and wall of the room are found to be at 10°C. If the average convective heat
transfer coefficient for the thermometer is estimated to be 7 W/(m2 K), what is the true air
temperature? The emissivity of the glass may be assumed as 0.8.

Solution
The thermometer is a small gray body (e = 0.8) in a large enclosure (the room) which
exchanges heat with the walls and roof of the room by radiation. The room air transfers heat
to the thermometer by convection. The energy balance gives

qc þ qr ¼ 0

or

hAðT � TairÞþ eArðT4 � T4
wÞ ¼ 0

where A is the surface area of the thermometer bulb, T is temperature indicated by the
thermometer and Tw is room walls and roof temperature.

Substitution of values of various parameters gives

7:0� Að293� TairÞþ 0:8� A� 5:67� 10�8 � ð2934 � 2834Þ ¼ 0

or

Tair ¼ 299:19 K = 260:19oC:

Comments: If room walls and roofs are at a higher temperature than the air temperature,
the thermometer will indicate temperature higher than the room air temperature.

Example 11.23 Two parallel infinite planes are facing each other. One of the planes has an
emissivity of 0.8 and is maintained at 400 K while the other has emissivity of 0.7 and is at
500 K. Calculate the radiation heat exchange between the planes. If the planes are black,
what will be the heat exchange? Also calculate the interchange factor. What will be the heat
transfer and interchange factor if the temperatures or emissivities of the planes are
interchanged.

Solution
For infinite parallel gray planes,

q12 ¼ ArðT4
1 � T4

2 Þ
1
e1
þ 1

e2
� 1

¼ 1� 5:67� 10�8 � ð5004 � 4004Þ
1
0:8 þ 1

0:7 � 1
¼ 1246:4W/m2:

If the surfaces are black,
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q12 ¼ ArðT4
1 � T4

2 Þ
¼ 1� 5:67� 10�8 � ð5004 � 4004Þ ¼ 2092:2W/m2:

The interchange factor, f12 ¼ 1
e1
þ 1

e2
� 1

h i�1
¼ 0:596; which is also the ratio of heat

exchange values calculated above.
From the equations of heat exchange and interchange factor, we can readily see that the

heat exchange or interchange factor for parallel plane configuration will not be affected if the
temperatures or emissivities of the planes are interchanged. This conclusion is not applicable
when A1 6¼ A2 as in the case of cylindrical or spherical configurations.

Example 11.24 A metal pipe of 50 mm diameter, painted with aluminium paint (e = 0.3),
carries a hot fluid. The surface temperature of the pipe is measured to be 400 K. In order to
reduce radiation heat loss from the pipe a thin aluminium sheet (e = 0.1) is placed around the
pipe at a distance of 10 mm from the pipe wall. Estimate the percentage reduction in the
radiation heat transfer from the pipe if there is no change in pipe surface temperature. The
pipe is located in a large space with surrounding temperature of 300 K.

Solution

(i) Radiation heat loss from the pipe wall per meter length without covering,

q12 ¼ A1erðT4
1 � T4

1Þ

where

e emissivity of the pipe surface = 0.3
A1 pipe surface area = pDL = p � 0.05 � 1 m2

T1 pipe surface temperature = 400 K
T∞ surrounding temperature = 300 K

Substitution gives

q12 ¼ p� 0:05� 1� 0:3� 5:67� 10�8 � ð4004 � 3004Þ ¼ 46:76W=m length:

(ii) Radiation heat loss from the pipe wall per meter length when covered with alu-
minium sheet (e = 0.1) of surface area A2 (= p � 0.07 � 1 m2),

q12 ¼ A1rðT4
1 � T4

2 Þ
1
e1
þ A1

A2

1
e2
� 1

� � ðiÞ

where T2 is aluminium sheet temperature in steady state.
The radiation heat loss from the outer surface of the aluminium sheet is
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qrð Þ2¼ A2e2rðT4
2 � T4

1Þ

It is to note that the sheet is thin and is made of high thermal conductivity material hence
it’s outer and inner surface temperatures can be assumed to be equal.
In steady state, q12 = (qr)2, i.e.

A1rðT4
1 � T4

2 Þ
1
e1
þ A1

A2

1
e2
� 1

� � ¼ A2e2rðT4
2 � T4

1Þ

or

p� 0:05� 1� ð4004 � T4
2 Þ

1
0:3 þ 0:05

0:07
1
0:1 � 1
� � ¼ p� 0:07� 1� 0:1� ðT4

2 � 3004Þ;

which gives T2 = 352.8 K.
Radiation heat loss,

qrð Þ2¼ A2e2rðT4
2 � T4

1Þ ¼ p� 0:07� 1� 0:1� 5:67� 10�8 � ðT4
2 � 3004Þ

¼ 9:22W=m2:

Percentage reduction in the loss is

46:76� 9:22
46:76

� 100 ¼ 80:3%:

Example 11.25 A hemispherical cavity of radius 0.1 m has an emissivity of 0.5 and is at a
temperature of 400 K. If the surrounding environment is at a temperature of 300 K, deter-
mine the net heat flux leaving the surface of the cavity. Assume the cavity to be a gray diffuse
surface. If the cavity is cylindrical (D = 0.2 m and H = 0.1 m) what will be net heat flow?
Compare the result with that of a black surfaced cavity.

Solution

(i) The opening of the cavity can be assumed to be a flat black surface at the surrounding
temperature (refer Fig. 11.34).
From the previous section, we have

q12 ¼ rðT4
1 � T4

2 Þ
1

A1F12
þ 1�e1

A1e1

2

D = 0.2 mε2 = 1

1, ε1 = 0.5

Fig. 11.34 Example 11.25

11.8 Small Gray Bodies 817

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Substituting T1 = 400 K, T2 = 300 K, e1 = 0.5, A1 = pD2/2 = p � 0.22/2 = 0.02 p m2,
A2 = pD2/4 = p � 0.22/4 = 0.01 p m2 and F12 ¼ A2

A1
¼ 0:1p

0:2p ¼ 0:5; we get

q12 ¼ 5:67� 10�8 � ð4004 � 3004Þ
1

0:02p�0:5 þ 1�0:5
0:02p�0:5

¼ 20:78 W:

(ii) Cylindrical cavity
From Example 11.7, we have

F12 ¼ D

4HþD
¼ 0:2

4� 0:1þ 0:2
¼ 0:333;

and

A1 ¼ pDHþ pD2
�
4 ¼ p� 0:2� 0:1þ p� 0:22

�
4 ¼ 0:09425m2:

This gives

q12 ¼ 5:67� 10�8 � ð4004 � 3004Þ
1

0:09425�0:333 þ 1�0:5
0:09425�0:5

¼ 23:37W:

(iii) Black Surfaced Cavity (e1 = 1)
The shape of a black surfaced cavity does not affect the heat flow. It depends on A2.

q12ð Þblack¼ A2rðT4
1 � T4

2 Þ

or

q12 ¼ p
4
� 0:22

� �
� 5:67� 10�8 � ð4004 � 3004Þ ¼ 31:17 W:

Example 11.26 A brick wall (e = 0.85), 6 m � 4 m in area, faces an opening in a furnace
of 0.2 m � 0.2 m in area. The wall is at a distance of 5 m from the opening as shown in
Fig. 11.35. The centerline of the opening is 1 m right and 1 m below than the center point of
the opening. Consider the opening as a blackbody at 1100°C and average wall temperature as
40°C. Determine the net heat transfer by radiation between the opening and wall.

Solution
Divide the wall area into four parts such that the furnace opening area (area dA) is located
opposite the corner of the areas A, B, C and D. Case 10 of Table 11.1, i.e. Equation (11.18) is
now applicable to each of these areas. For these areas:

A: L1 = 3 m, L2 = 4 m, L = 5 m;
B: L1 = 3 m, L2 = 2 m, L = 5 m;
C: L1 = 1 m, L2 = 2 m, L = 5 m;
D: L1 = 1 m, L2 = 4 m, L = 5 m.
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The shape factor is determined for each area from Eq. (11.18) as

F1A ¼ 0:0928;F1B ¼ 0:057;F1C ¼ 0:0225;F1D ¼ 0:036:

The total net rate of heat transfer from surface 1 is

q ¼ qA þ qB þ qC þ qD

¼ erðdAÞ � ðF1A þF1B þF1C þF1DÞ � ðT4
1 � T4

wallÞ
¼ 0:85� 5:67� 10�8 � 0:04� ð0:0928þ 0:057

þ 0:0225þ 0:036Þ � ð13734 � 3134Þ
¼ 1423:2 W:

11.9 Electric Network Method for Solving Radiation Problems

The problems of radiation heat exchange between blackbodies are relatively easy to handle
because all of the incident radiation on a blackbody is absorbed. The main problem in such
cases is the estimate of the radiation shape factor. In the case of gray bodies, a part of the
incident radiation is reflected back to the other gray body. From where, again a part of the
radiation is reflected back to the first body. This process of reflection and absorption basically
goes on. Clearly due to this process of multiple reflection and absorption, the calculation of
the radiation exchange is a difficult task. Such problems can be readily solved by reducing
the actual system to an equivalent electric network as explained below.

We introduce two new terms:

(i) Irradiation G: It is defined as the total radiation energy incident per unit time and unit
area of a surface.

5 m

4 m

6 m

B

1

C

A

D

1 m

1 m

Fig. 11.35 Example 11.26
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(ii) Radiosity J: It is the total energy which leaves a surface per unit area per unit time. It is
the sum of the energy emitted and reflected when no energy is transmitted, refer
Fig. 11.36. Thus radiosity is

J ¼ eEb þ qG ðiÞ

where

e emissivity of the surface
Eb blackbody emissive power and
q reflectivity = (1 – a) (when s = 0) = (1 – e). (as a = e)

Substitution in Eq. (i)gives

J ¼ eEb þð1� eÞG

or

G ¼ J � eEb

ð1� eÞ ðiiÞ

For a black surface, q = 0 and e = 1 hence J = Eb.

qnet ¼ AðJ � GÞ

¼ A J � J � eEb

ð1� eÞ
� �

¼ Ae
ð1� eÞ Eb � Jð Þ

or

qnet ¼ Eb � J

ð1� eÞ=Ae ð11:25Þ

The equation states that the net rate at which the radiation energy leaves a gray surface of
area A is equivalent to current flow in a circuit with potential difference of (Eb – J) and
resistance (1 – e)/Ae as shown in Fig. 11.37a. This resistance is considered as surface
resistance to the radiation energy transfer.

G ρG εEb

J

Fig. 11.36 A diffuse gray surface
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Now consider the radiant heat exchange between two gray surfaces. Of the total radiation J1
leaving the surface 1, a fraction J1A1F12 is received by the surface 2. Similarly of the total
radiation J2 leaving the surface 2, a fraction J2A2F21 reaches surface 1. Thus the net exchange is

q12 ¼ J1A1F12 � J2A2F21

¼ A1F12ðJ1 � J2Þ
ðasA1F12 ¼ A2F21Þ

or

q12 ¼ J1 � J2
1=A1F12

ð11:26Þ

The equivalent electrical network is shown in Fig. 11.37(b). The term 1/A1F12 is defined
as space resistance.

Equations (11.25) and (11.26) provide the basis for the electric network method of
solving radiation heat exchange problems. The effect of the emissivity of a diffuse and
opaque gray surface is taken account by connecting potential Eb to potential J through the
surface resistance (1 – e)/Ae. While the shape factor effect between two radiosity potentials is
accounted by the space resistance 1/A1F12.

11.9.1 Electric Network for a System Consisting of Two Gray Surfaces

Figure 11.38 shows the network for the given system. The total resistance,

Rt ¼ 1� e1
A1e1

þ 1
A1F12

þ 1� e2
A2e2

Radiation heat exchange,

q12 ¼
r T4

1 � T4
2

� �
Rt

¼ r T4
1 � T4

2

� �
1�e1
A1e1

þ 1
A1F12

þ 1�e2
A2e2

¼ A1r T4
1 � T4

2

� �
1�e1
e1

þ 1
F12

þ A1
A2

1�e2
e2

� �

a
(1 - )/A

Eb J
qnet 1/A1F12

J2J1

b

Fig. 11.37 a Surface resistance b space resistance
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Let,

q12 ¼ A1rf12 T4
1 � T4

2

� �
where f12 is interchange factor.

Comparing the above equations of q12, we get

f12 ¼ 1� e1
e1

þ 1
F12

þ A1

A2

1� e2
e2

� �� ��1

: ð11:27Þ

In the case of infinite parallel planes of equal area, A1 = A2 and F12 = 1. Hence,

q12 ¼
A1r T4

1 � T4
2

� �
1
e1
þ 1

e1
� 1

¼ A1 Eb1 � Eb2ð Þ
1
e1
þ 1

e1
� 1

;

as found earlier.

11.9.2 System Consisting of Two Black Surfaces

For a black surface, J = Eb. The equivalent network for this case is shown in Fig. 11.39, and
the net radiation energy transfer is

ðq12Þnet ¼
ðEb1 � Eb2Þ
1=A1F12

¼ A1F12ðEb1 � Eb2Þ

(1 - 2)/A2 21/A1F12

J2J1

(1 - 1)/A1 1

Eb Eb

(Q12)net

Rt

Eb2Eb1

(Q12)net

Fig. 11.38 Electric network for a system consisting of two gray surfaces

1/A1F12

Eb2 = J2

(q12)net

Eb1 = J1

Fig. 11.39 Network for two black surfaces
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11.9.3 Closed System of N-Black Surfaces

For a closed systems of n-black surfaces, we can write a general expression of net heat
transfer from surface i as (refer Fig. 11.40)

q12 ¼ AiFi1rðT4
i � T4

1 ÞþAiFi2rðT4
i � T4

2 Þþ . . .þAiFinrðT4
i � T4

n Þ
¼ Air

Xn

j¼1
FijðT4

i � T4
j Þ

ð11:28Þ

where Fi-i = 0

11.9.4 Systems Consisting of Two Black Surfaces Connected by a Single
Refractory Surface

A refractory surface is also called reradiating surface. This surface does not experience a net
heat gain or loss because whatever heat is absorbed by this surface, the same is reradiated to
other surfaces exchanging heat.

The net radiation heat transfer from surface 1 is (Fig. 11.41)

q1 ¼ q12 þ q13 ¼ A1F12r T4
1 � T4

2

� �þA1F13r T4
1 � T4

3

� � ðiÞ

Ebi

1/AiFi1

1/AiFi2

Eb1

1/AiFi3

1/AiFin

Eb2

Eb3Ebn

Fig. 11.40 Network for a closed system of n-black surfaces

q32

q31
2, T2

1, T1

Refractory
Surface, 3 (T3)

Fig. 11.41 Two black surfaces connected by a single refractory surface
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Similarly,

q2 ¼ q21 þ q23 ¼ A2F21r T4
2 � T4

1

� �þA2F23r T4
2 � T4

3

� � ðiiÞ

and

q3 ¼ q31 þ q32 ¼ A3F31r T4
3 � T4

1

� �þA3F32r T4
3 � T4

2

� � ðiiiÞ

Since there is no heat loss from the refractory surface, q3 = 0, and from Eq. (iii)

0 ¼ A3F31r T4
3 � T4

1

� �þA3F32r T4
3 � T4

2

� �
or

T4
3 ¼ F31T4

1 þF32T4
2

F31 þF32
ðivÞ

Substitution of the value of T3
4 in Eq. (i) gives

q1 ¼ A1F12r T4
1 � T4

2

� �þA1F13r T4
1 �

F31T4
1 þF32T4

2

F31 þF32

� �

¼ A1F12r T4
1 � T4

2

� �þA1F13r
F32T4

1 � F32T4
2

F31 þF32

� �

¼ r T4
1 � T4

2

� �� A1F12 þ A1F13F32

F31 þF32

� � ðvÞ

From the reciprocity theorem,

A3F31 ¼ A1F13;

and

A3F32 ¼ A2F23;

which gives

F32 ¼ A2

A3
F23

Using the above relations Eq. (v) transforms to

q1 ¼ r T4
1 � T4

2

� �
A1F12 þ 1

1=A1F13 þ 1=A2F23

� �
ð11:29aÞ
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The electric network for the system is shown in Fig. 11.42 where the subscript 3 has been
replaced by R. It is to be noted that unlike gray surface, the refractory surface is not
connected to any potential because the net radiation energy transfer from the surface is zero.
The total resistance between Eb1 and Eb2 is

Rt ¼ A1F12 þ 1
1=A1F13 þ 1=A2F23

� ��1

ð11:29bÞ

If A1 = A2, F1R = F2R as F12 = F21. This gives

F32 ¼ FR2 ¼ A2

A3
F2R

F31 ¼ FR1 ¼ A1

A3
F1R ¼ A2

A3
F2R ¼ F32:

Substitution in Eq. (iv) gives

T4
3 ¼ T4

1 þ T4
2

2

or

T3 ¼ TR ¼
ffiffiffi
4

p T4
1 þ T4

2

2
ð11:30Þ

Example 11.27 Show that the factor f12 for two parallel black surfaces of equal area
connected by reradiating walls at constant temperature is given by

f12 ¼ 1þF12

2

Solution

The given arrangement of black surfaces is shown in Fig. 11.41 and the network is shown in
Fig. 11.42. The total resistance from the network is given by

Rt ¼ A1F12 þ 1
1=A1F1R þ 1=A2F2R

� ��1

R

1/A1F12
Eb1

1/A1F1R 1/A2F2R

Eb2

Fig. 11.42 Network for the system in Fig. 11.41
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For A1 = A2 = A,

Rt ¼ 1
A

F12 þ 1
1=F1R þ 1=F2R

� ��1

ðiÞ

From the summation rule,

F1R þF12 ¼ 1 asF11 ¼ 0

and

F2R þF21 ¼ 1 asF22 ¼ 0:

From the above equations,

F1R ¼ 1� F12

and

F2R ¼ 1� F21:

From the reciprocity relation,

A1F12 ¼ A2F21;

which gives

F12 ¼ F21

as A1 = A2. Thus

F2R ¼ 1� F12:

Substitution of the values of F1R and F2R in Eq. (i) gives

Rt ¼ 1
A

1þF12

2

� ��1

:

The radiation heat transfer,

q12 ¼ Eb1 � Eb2

Rt
¼ A

1þF12

2

� �
ðEb1 � Eb2Þ:

The equation of the radiation heat transfer can be written as

q12 ¼ Af12ðEb1 � Eb2Þ:
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Comparison gives

f12 ¼ 1þF12

2
:

Example 11.28 Show that the factor f12 for two parallel black surfaces of unequal area
connected by reradiating surface is given by

f12 ¼ A2=A1 � F2
12

1� 2F12 þA2=A1

Solution

The network of Fig. 11.42 applies. The total resistance from the network is

Rt ¼ A1F12 þ 1
1=A1F1R þ 1=A2F2R

� ��1

ðiÞ

We have

F1R þF12 ¼ 1 asF11 ¼ 0

or

F1R ¼ 1� F12: ðiiÞ

Similarly,

F2R ¼ 1� F21:

From the reciprocity relation,

F21 ¼ A1

A2
F12

Hence,

F2R ¼ 1� A1

A2
F12 ðiiiÞ

Substitution of the values of F1R and F2R from Eqs. (ii) and (iii) in Eq. (i) gives

Rt ¼ 1� 2F12 þA2=A1

A1 A2=A1 � F2
12

� �
The heat flow by radiation is given by

q12 ¼ Eb1 � Eb2

Rt
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Also,

q12 ¼ A1f12 Eb1 � Eb2ð Þ

Comparison of these relations gives

f12 ¼ 1
RtA1

¼ A2=A1 � F2
12

1� 2F12 þA2=A1
;

which is the desired result. If A1 = A2, the result of previous example is obtained.

11.9.5 System Consisting of Two Gray Surfaces Connected by a Single
Refractory Surface

Refer Fig. 11.43.

Rt ¼ 1� e1
A1e1

þ 1� e2
A2e2

þ 1

A1F12 þ 1
1=A1F1R þ 1=A2F2R

¼ 1� e1
A1e1

þ 1� e2
A2e2

þ 1
A1�F12

:

The heat flow by radiation is given by

q12 ¼ Eb1 � Eb2

Rt

¼ Eb1 � Eb2
1�e1
A1e1

þ 1�e2
A2e2

þ 1
A1�F12

¼ Eb1 � Eb2ð Þ A1

1�e1
e1

þ 1
�F12

þ A1
A2

1�e2
e2

� �
¼ A1ðFgÞ12 Eb1 � Eb2ð Þ

1/A1F12
Eb1

1/A1F1R 1/A2F2R

J2J1 Eb2

R

(1 – 2)/A2 2(1 - 1)/A1 1

121

1
FA

Eb1
J2J1 Eb2

(1 – 2)/A2 2(1 - 1)/A1 1

Fig. 11.43 Network for system consisting of two gray surfaces connected by a single refractory surface
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where

ðFgÞ12 ¼
1

1�e1
e1

þ 1
�F12

þ A1
A2

1�e2
e2

� � ð11:31aÞ

and

�F12 ¼ A2=A1 � F2
12

1� 2F12 þA2=A1
; ð11:31bÞ

from Example 11.28.

11.9.6 System Consisting of Four Gray Surfaces Which See Each Other
and Nothing Else

The radiation network is shown in Fig. 11.44.
To calculate the net rate of heat flow from the each of the surfaces, we must determine the

radiosities J1, J2, J3 and J4. The network can be solved by setting the sum of heat currents
entering each node to zero, i.e.

Node J1:
Eb1 � J1

ð1� e1Þ=A1e1
þ ðJ2 � J1Þ

1=A1F12
þ ðJ3 � J1Þ

1=A1F13
þ ðJ4 � J1Þ

1=A1F14
¼ 0

Node J2:
Eb2 � J2

ð1� e2Þ=A2e2
þ ðJ1 � J2Þ

1=A1F12
þ ðJ3 � J2Þ

1=A2F23
þ ðJ4 � J2Þ

1=A2F24
¼ 0

Node J3:
Eb3 � J3

ð1� e3Þ=A3e3
þ ðJ1 � J3Þ

1=A1F13
þ ðJ2 � J3Þ

1=A2F23
þ ðJ4 � J3Þ

1=A3F34
¼ 0

Node J4:
Eb4 � J4

ð1� e4Þ=A4e4
þ ðJ1 � J4Þ

1=A1F14
þ ðJ2 � J4Þ

1=A2F24
þ ðJ3 � J4Þ

1=A3F34
¼ 0

The four unknowns J1, J2, J3 and J4 are determined by the solution of the above four
equations. Knowing the radiosities J1, J2, J3 and J4, the net rate of heat transfer from surfaces
1 to 4 are determined from:

J3Eb1
J1

Eb3

(1 – 3)/A3 3(1 - 1)/A1 1

J4

Eb4

(1 – 4)/A4 4(1 - 2)/A2 2

Eb2

J2

1/A1F13

1/A3F34

1/A2F24

1/A1F12

1/A1F14

1/A2F23

Fig. 11.44 Network for system consisting of four gray surfaces which see each other and nothing else
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q1 ¼ Eb1 � J1
ð1� e1Þ=A1e1

; q2 ¼ Eb2 � J2
ð1� e2Þ=A2e2

; q3 ¼ Eb3 � J3
ð1� e3Þ=A3e3

and q4 ¼ Eb4 � J4
ð1� e4Þ=A4e4

:

Example 11.29 Determine loss of heat by radiation from a steel tube (e = 0.8) of 70 mm
diameter and 4 m long at a temperature of 500 K if the tube is located:

(i) In a large brick room (e = 0.9) with wall temperature of 300 K.
(ii) In a brick conduit (0.25 m � 0.25 m, e = 0.9) at 300 K, neglect loss of the heat from

ends.

Solution

(i) Radiation exchange with large brick room
The room surface area is very large compared to the pipe surface area, i.e. A2 > > A1.
The network is shown in Fig. 11.45.
Total resistance,

Rt ¼ 1� e1
A1e1

þ 1
A1F12

þ 1� e2
A2e2

¼ 1
A1

1� e1
e1

þ 1
F12

þ A1

A2

1� e2
e2

� �� �

Since F12 = 1 and A1
A2

1�e2
e2

� �
� 0 for A2 > > A1, we obtain

Rt ¼ 1
A1e1

Radiation heat exchange,

q12 ¼
r T4

1 � T4
2

� �
Rt

¼ A1e1r T4
1 � T4

2

� �
¼ ðp� 0:07� 4Þ � 0:8� 5:67� 10�8 � 5004 � 3004

� � ¼ 2170:6 W:

(ii) Radiation exchange with brick conduit (Fig. 11.46)
Total resistance,

Rt ¼ 1
A1

1� e1
e1

þ 1
F12

þ A1

A2

1� e2
e2

� �� �

Since F12 = 1, we obtain

Rt ¼ 1
A1

1
e1

þ A1

A2

1� e2
e2

� �� �

121

1
Eb1

J2J1 Eb2

(1 – 2)/A2 2(1 - 1)/A1 1 FA

Fig. 11.45 Network Example 11.29 Part (i)
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Here

A1 ¼ pDL ¼ p� 0:07� 4 ¼ 0:8796 m2;

A2 ¼ ð0:25� 4Þ � 4 ¼ 4:0 m2:

Radiation heat exchange,

q12 ¼
r T4

1 � T4
2

� �
Rt

¼ A1r T4
1 � T4

2

� �
1
e1
þ A1

A2

1�e2
e2

� �h i
¼ 0:8796� 5:67� 10�8 � 5004 � 3004ð Þ

1
0:8 þ 0:8796

4:0
1�0:9
0:9

� �	 
 ¼ 2128:9W:

11.10 Radiation Shields

Radiation heat transfer between two surfaces can be reduced by placing a thin opaque
partition between the surfaces. This partition is known as radiation shield. The radiation
shield introduces an additional resistance in the radiation path. From the analysis, which
follows, it will be shown that the shields must be made of very low absorptivity and high
reflectivity materials, such as thin sheets of aluminium, copper, etc.

Consider two parallel infinite black plates as shown in Fig. 11.47a. The net heat exchange
between these plates is

q12 ¼ Ar T4
1 � T4

2

� �
Suppose a thin metal sheet 3, black on both sides, is introduced between these planes as

shown in Fig. 11.47b. When the steady state is reached, the radiative heat transfer between
the surfaces 1 and 3 equals the transfer between 3 and 2, i.e.

q13 ¼ q32

1

500 K

300 K

2Pipe,
D = 70 mm

Brick conduit
(0.25 m × 0.25 m)

Fig. 11.46 Example 11.29 Part (ii)
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or

Ar T4
1 � T4

3

� � ¼ Ar T4
3 � T4

2

� �
or

T4
3 ¼ 1

2
T4
1 þ T4

2

� � ð11:32Þ

Thus the heat transfer rate when the black surfaced radiation shield is introduced is

q13 ¼ Ar T4
1 � T4

3

� �
¼ Ar T4

1 �
1
2

T4
1 þ T4

2

� �� �

¼ 1
2
Ar T4

1 � T4
2

� �
¼ 1

2
q12:

The analysis shows that by inserting one shield, the radiation energy transfer is reduced to
one-half of the original value. The analysis can be extended to show that with n shields the
net energy exchange is

ðqÞwith n� shields ¼
1

nþ 1
ðq12Þwithoutshields: ð11:33Þ

c

1/A1F12

Eb1 Eb2

d

1/A1F13

Eb1

1/A2F23

Eb2

a b

A1 = A2 = A

1
(T1)

2
(T2)

3
(T3)

A1 = A2 = A

1         
(T1)

2
(T2)

Fig. 11.47 Radiation shield and network
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If the surfaces 1 and 2 are not black but having emissivities e1 and e2, respectively, and the
shield 3 has emissivity e3, the radiation energy transfer equations can be written by referring
the network in Fig. 11.48.

Without shield,

q12 ¼
Ar T4

1 � T4
2

� �
1
e1
þ 1

e2
� 1

: ðiÞ

With the shield,

q13 ¼
Ar T4

1 � T4
3

� �
1
e1
þ 1

e3
� 1

; ðiiÞ

and

q32 ¼
Ar T4

3 � T4
2

� �
1
e3
þ 1

e2
� 1

: ðiiiÞ

Equating Eqs. (ii) and (iii), we get value of T3
4 in the terms of T1

4 and T2
4. Substitution of the

value of T3
4 in Eq. (ii) and simplification gives

q13 ¼
Ar T4

1 � T4
2

� �
1
e1
þ 1

e3
� 1

� �
þ 1

e3
þ 1

e2
� 1

� � : ð11:34Þ

The ratio of energy exchange with and without shield in this case is

q13
q12

¼
1
e1
þ 1

e2
� 1

� �
1
e1
þ 1

e3
� 1

� �
þ 1

e3
þ 1

e2
� 1

� � :

For radiation shield with emissivity e3 less than 1, the ratio is less than ½ when surfaces 1
and 2 are black surfaces. Lower is the value of the emissivity of the shield greater is its

a

(1 - 2)/A2 21/A1F12

J2J1

(1 - 1)/A1 1

Eb1 Eb2

b

1/A1F13

J3J1

(1 - 1)/A1 1

Eb1 Eb3

(1 - 3)/A3 3 1/A2F23

J2J3

(1 - 3)/A3 3

Eb2

(1 - 2)/A2 2

Fig. 11.48 Network for gray parallel plates a without shield, b with shield
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effectiveness. For example, with e1 = e2 = 1 and e3 = 0.1, the radiation transfer can be shown
to reduce to 1/20th.

Example 11.30 Two parallel square plates, each of 4 m2, are separated by a distance of
3 mm. One of the plates is at a temperature of 500 K and its surface emissivity is 0.7, while
the other plate surface is at a temperature of 300 K and has a surface emissivity of 0.6. Find
the net energy exchange by radiation between the plates.

If a thin polished metal sheet of surface emissivity of 0.1 on both sides is now located
centrally as radiation shield between the two plates, find out the altered net heat transfer. The
convection and edge effects, if any, may be neglected. What would be the heat exchange
when the emissivity of the surface of the shield is 0.9?

Solution

Case (a) Refer Fig. 11.48a.
Total resistance,

Rt ¼ 1� e1
A1e1

þ 1
A1F12

þ 1� e2
A2e2

¼ 1
A

1� e1
e1

þ 1
F12

þ 1� e2
e2

� �
asA1 ¼ A2

For parallel plates of large area, F12 = 1. Hence,

Rt ¼ 1
4

1� 0:7
0:7

þ 1
1
þ 1� 0:6

0:6

� �
¼ 0:5238:

Radiation heat exchange,

q12 ¼
r T4

1 � T4
2

� �
Rt

¼ 5:67� 10�8 � 5004 � 3004ð Þ
0:5238

¼ 5888W:

Case (b) Refer Fig. 11.48b.

(i) Total resistance,

Rt ¼ 1
A

1� e1
e1

þ 1
F13

þ 1� e3
e3

þ 1� e3
e3

þ 1
F32

þ 1� e2
e2

� �

For F13 = F32 = 1,

Rt ¼ 1
4

1� 0:7
0:7

þ 1
1
þ 1� 0:1

0:1
þ 1� 0:1

0:1
þ 1

1
þ 1� 0:6

0:6

� �
¼ 5:2738:

Radiation heat exchange,

q12 ¼
r T4

1 � T4
2

� �
Rt

¼ 5:67� 10�8 � 5004 � 3004ð Þ
5:2738

¼ 584:8W:
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(ii) Total resistance,

Rt ¼ 1
4

1� 0:7
0:7

þ 1
1
þ 1� 0:9

0:9
þ 1� 0:9

0:9
þ 1

1
þ 1� 0:6

0:6

� �
¼ 0:8294:

Radiation heat exchange,

q12 ¼
r T4

1 � T4
2

� �
Rt

¼ 5:67� 10�8 � 5004 � 3004ð Þ
0:8294

¼ 3718:9 W:

From comparison of the results, it can be seen that a radiation shield with low emissivity
(a polished surface) is very effective in reducing the heat loss.

Example 11.31 Three screens (having emissivity e = 0.05) have been placed between two
parallel black surfaces (F12 = F21 = 1) at temperatures T1 and T2. What is the percentage
reduction in radiation heat exchange due to screens? Assume that the temperatures of the
black surfaces remain the same with or without screens.

Solution

Let us consider a single screen of emissivity e between two parallel black surfaces.
As F13 = F32, the total resistance is

Rt ¼ 1
A

1þ 2
1� e
e

� �
þ 1

� �
¼ 1

A
2

1� e
e

� �
þ 2

� �

Extending the analysis to the system with three screens, the total resistance will be

Rt ¼ 1
A

3� 2
1� e
e

� �� �
þð3þ 1Þ

 �

For e = 0.05,

Rt ¼ 118
A

Radiation heat exchange,

qwithshield ¼ Eb1 � Eb2ð Þ
Rt

¼ A Eb1 � Eb2ð Þ
118

¼ qwithoutshield
118

¼ 0:0085qwithoutshield:

Thus the heat exchange is reduced by 99.15%.
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Example 11.32

(a) Prove that the net radiation heat exchange between two parallel planes 1 and 2 with n
radiation shields (es) inserted between them is given by

q12 ¼
r T4

1 � T4
2

� �
1
e1
þ 1

e2
þ 2

Pn
i¼1

1
es
� ðnþ 1Þ

(b) Determine the minimum number of screens required to reduce the radiation heat transfer
at least by a factor of 60 between two surfaces of emissivities 0.7 and 0.8, if the
emissivity of the screens is 0.05.

Solution

(a) For a single screen, we have

ðq12Þoneshield ¼
r T4

1 � T4
2

� �
1
e1
þ 1

e2
þ 2

es
� 2

;

which can be readily extended to n screens to give the desired result.

(b) Putting e1 = 0.7, e2 = 0.8, es1 = es2 = …… = 0.05, we get

ðq12Þn�shield ¼
r T4

1 � T4
2

� �
2:678þ 40n� ðnþ 1Þ ðaÞ

The heat transfer without the shield is

ðq12Þn¼0 ¼
r T4

1 � T4
2

� �
1
0:7 þ 1

0:8 � 1
¼ r T4

1 � T4
2

� �
1:678

ðbÞ

From Eqs. (a) and (b), we get

ðq12Þn¼0

ðq12Þn� shield
¼ 2:678þ 40n� ðnþ 1Þ

1:678
¼ 60 ðgivenÞ

Solving for n, we get n = 2.538. Thus three screens are required.

Example 11.33 Two coaxial cylinders 1 (r1 = 100 mm, e1 = 0.3) and 2 (r2 = 200 mm,
e2 = 0.7) are maintained at temperatures of 700°C and 100°C, respectively. Determine the
radiative heat transfer rate between the cylinders per m length.
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Solution

Heat transfer between cylinders 1 and 2 for unit length is

q12 ¼ A1rðT4
1 � T4

2 Þ
1
e1
þ A1

A2

1
e2
� 1

� �

Substitution gives

q12 ¼
2p� 0:1� 1� 5:67� 10�8 � ð700þ 273Þ4 � ð100þ 273Þ4

h i
1
0:3 þ 0:1

0:2
1
0:7 � 1
� �

¼ 8806:3W/per unit length:

Example 11.34 If a thin cylinder (e1 = 0.1) of 150 mm radius is introduced between the
cylinders of above example. How much reduction in radiative heat transfer rate will result?

Solution

The total resistance to heat transfer between cylinders 1 and 2 for unit length is

Rt ¼ 1� e1
A1e1

� �
þ 1

A1
þ 1� e2

A2e2

� �
þ 1� e2

A2e2

� �
þ 1

A2
þ 1� e3

A3e3

� �

¼ 1
A1

1� e1
e1

� �
þ 1þ A1

A2

1� e2
e2

� �
þ A1

A2

1� e2
e2

� �
þ A1

A2
þ A1

A3

1� e3
e3

� �� �

Substitution gives

Rt ¼ 1
2p� 0:1� 1

1� 0:3
0:3

� �
þ 1þ 2� 0:1

0:15
� 1� 0:1

0:1

� �
þ 0:1

0:15
þ 0:1

0:2
� 1� 0:7

0:7

� �� �
¼ 25:8:

The heat transfer is given by

q12 ¼ rðT4
1 � T4

2 Þ
Rt

Substitution gives

q12 ¼
5:67� 10�8 � ð700þ 273Þ4 � ð100þ 273Þ4

h i
25:8

¼ 1927W per unit length:

Percentage reduction in heat transfer

¼ 8806:3� 1927
8806:3

¼ 78:12%:
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Example 11.35 Three very long thin walled hollow cylinders of 50 mm, 100 mm and
150 mm in diameters are arranged coaxially. The temperatures of the surface of 50 mm and
150 mm diameter cylinders are maintained at 1200 K and 400 K, respectively. Assuming a
vacuum between the annular spaces, find the steady state temperature attained by the surface
of 100 mm cylinder. Also calculate the radiation heat transfer between the inner and outer
most cylinders. Take e1 = e2 = e3 = 0.05.

Solution

Heat transfer between cylinders 1 and 2 for unit length is (refer Fig. 11.49)

q12 ¼ A1rðT4
1 � T4

2 Þ
1
e1
þ A1

A2

1
e2
� 1

� �

Substitution gives

q12 ¼ p� 0:05� 1� 5:67� 10�8 � ð12004 � T4
2 Þ

1
0:05 þ 0:05

0:1
1

0:05 � 1
� �

¼ 3:019� 10�10ð12004 � T4
2 ÞW per unit length:

Similarly the heat transfer between cylinders 2 and 3 for unit length is

q23 ¼ A2rðT4
2 � T4

3 Þ
1
e2
þ A2

A3

1
e3
� 1

� �

Substitution gives

F12 = 1 = F23,
A1 = πD1L, A2 = πD2L, A3 = πD3L,
D1 = 0.05 m, ε1 = 0.05, T1 = 1200 K,
D2 = 0.1 m, ε2 = 0.05, T2 = ?, 
D3 = 0.15 m, ε3 = 0.05, T3 = 400 K.

1/A1F12

J2J1

(1 - 1)/A1 1

Eb1 Eb2

(1 - 2)/A2 2 1/A2F23

J3J2

(1 - 2)/A2 2

Eb3

(1 - 3)/A3 3

3

2

1•

• •

Fig. 11.49 Example 11.35
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q23 ¼ p� 0:1� 1� 5:67� 10�8 � ðT4
2 � 4004Þ

1
0:05 þ 0:1

0:15
1

0:05 � 1
� �

¼ 5:453� 10�10ðT4
2 � 4004ÞW per unit length:

In equilibrium, q12 = q23. This gives

3:019� 10�10ð12004 � T4
2 Þ ¼ 5:453� 10�10ðT4

2 � 4004Þ

or

T2 ¼ 932:3 K

and

q12 ¼ q23 ¼ 3:019� 10�10ð12004 � 932:34Þ ¼ 397:96 W:

Alternatively, the heat transfer can be found as under.
The total resistance,

Rt ¼ 1� e1
A1e1

þ 1
A1

þ 1� e2
A2e2

þ 1� e2
A2e2

þ 1
A2

þ 1� e3
A3e3

Substitution of values of various parameters gives

Rt ¼ 291:78

and

q13 ¼ rðT4
1 � T4

2 Þ
Rt

Substitution of values of various parameters gives

q13 ¼ 5:67� 10�8 � ð12004 � 4004Þ
291:78

¼ 397:98W per unit length:

Example 11.36 For the perpendicular plane surfaces shown in Fig. 11.50, calculate the
heat transfer between the surfaces. Neglect radiation or reflection from the surrounding
surfaces.

3.2 m 5 m

4 m
300 K, = 0.8 

350 K, = 0.7 

1

2

Fig. 11.50 Example 11.36
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Solution

Assuming the horizontal surface to be surface 1, we have
Z = 3.2 m, X = 4 m, Y = 5 m, T1 = 300 K, e1 = 0.8, T2 = 350 K, e2 = 0.7, A1 = 5 � 4

m2 and A2 = 3.2 � 4 m2.
For Z/X = 3.2/4 = 0.8; Y/X = 5/4 = 1.25, F12 � 0.155 from Fig. 11.4c.
The total resistance, see Fig. 11.51,

Rt ¼ 1� e1
A1e1

þ 1
A1F12

þ 1� e2
A2e2

Rt ¼ 1
A1

1
e1

� 1

� �
þ 1

F12
þ A1

A2

� �
1
e2

� 1

� �� �

Heat exchange,

q12 ¼ r
T4
1 � T4

2

� �
Rt

¼ A1r
T4
1 � T4

2

� �
1
e1
� 1

� �
þ 1

F12
þ A1

A2

� �
1
e2
� 1

� �h i

Substitution gives

q12 ¼ 20� 5:67� 10�8 � 3004 � 3504ð Þ
1
0:8 � 1
� �þ 1

0:155 þ 20
12:8

� �
1
0:7 � 1
� �	 
 ¼ �1062:5W:

If the surfaces are black, e1 = e2 = 1, hence,

Rt ¼ 1
A1F12

q12 ¼ r
T4
1 � T4

2

� �
Rt

¼ A1F12r T4
1 � T4

2

� �
or

q12 ¼ 20� 0:155� 5:67� 10�8 � 3004 � 3504
� � ¼ �1213:9 W:

(1 - 1)/A1 1

1/A1F12

(300 K) (350 K)
2

(1 — 2)/A2 2

1

Fig. 11.51 Network for system in Fig. 11.50
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Example 11.37 For the perpendicular plane surfaces shown in Fig. 11.52, calculate the
heat transfer between the surfaces. Neglect radiation or reflection from the surrounding
surfaces.

Solution

The given problem can be divided into the sub-problems (a) and (b) as shown in Fig. 11.53.
The subtraction of value of the shape factor of the sub-problem (b) from that of (a) will give
the desired shape factor, that is,

F12 ¼ F14 � F13

where

F14 = 0.155 for Z/X = 3.2/4 = 0.8 and Y/X = 5/4 = 1.25
F13 = 0.085 for Z/X = 1.2/4 = 0.3 and Y/X = 5/4 = 1.25

Hence,

F12 ¼ 0:155� 0:085 ¼ 0:07

Total resistance is

Rt ¼ 1
A1

1
e1

� 1

� �
þ 1

F12
þ A1

A2

� �
1
e2

� 1

� �� �

2 m 5 m

4 m
300 K, ε = 0.8 

350 K, ε = 0.7 

1

2

1.2 m

Fig. 11.52 Example 11.37

1.2 m

3.2m 5 m

a

4 m300 K, ε = 0.8 

350 K, ε = 0.7 

1

4

5 m

b

4 m300 K, ε = 0.8 

(350 K, ε = 0.7) 

1

3

Fig. 11.53 Sub-problems of system in Fig. 11.52
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¼ 1
20

1
0:8

� 1

� �
þ 1

0:07
þ 20

8

� �
1
0:7

� 1

� �� �
¼ 0:7803

This gives the heat exchange

q12 ¼ r
T4
1 � T4

2

� �
Rt

¼ 5:67� 10�8 � 3004 � 3504ð Þ
0:7803

¼ �501:8W:

Example 11.38 For the perpendicular plane surfaces shown in Fig. 11.54, calculate various
shape factors.

Solution

Consider the configurations shown in Fig. 11.55a–c.
For the configuration of Fig. 11.55a, we have

A1F1�ð2;4Þ ¼ A1F12 þA1F14

where F1-(2,4) means the shape factor considering the surface 1 and the combined area of
surfaces 2 and 4. This gives

A1F12 ¼ A1F1�ð2;4Þ � A1F14 ðiÞ

From Fig. 11.55b, we have

A1F1�ð2;4Þ þA3F3�ð2;4Þ ¼ Að3;1ÞFð3;1Þ�ð2;4Þ

From Example 11.36,

Fð3;1Þ�ð2;4Þ ¼ 0:155

and from Fig. 11.4c, F3-(2,4) = 0.275 for Z/X = 3.2/4 = 0.8 and Y/X = 2/4 = 0.5.

2 m
3 m

4 m
300 K, ε = 0.8 

350 K, ε = 0.7 

1

2

1.2 m

2 m

Fig. 11.54 Example 11.38
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Substitution gives

A1F1�ð2;4Þ ¼ 20� 0:155� 8� 0:275 ¼ 0:9:

For the configuration of Fig. 11.55c, we have

A1F14 þA3F34 ¼ Að3;1ÞFð3;1Þ�4

or

A1F14 ¼ Að3;1ÞFð3;1Þ�4 � A3F34

Again from Fig. 11.4c, F34 = 0.19 for Z/X = 1.2/4 = 0.3 and Y/X = 2/4 = 0.5
From Example 11.37, F(3,1)-4 = 0.085. Hence,

A1F14 ¼ 20� 0:085� 8� 0:19 ¼ 0:18:

3.2 m 5 m

b

4 m

1

2

3

4

350 K, ε = 0.7 

2 m
3 m

4 m
300 K, ε = 0.8 

1

2

1.2 m

2 m
4

3

a

1.2 m
5 m

c

4 m

1

4

3

Fig. 11.55 Configurations for the solution of Example 11.38
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Substitution of values of A1F1-(2,4) and A1F14 in Eq. (i) gives

A1F12 ¼ A1F1�ð2;4Þ � A1F14 ¼ 0:9� 0:18 ¼ 0:72:

or

F12 ¼ 0:72=A1 ¼ 0:72=ð4� 3Þ ¼ 0:06:

Note: If A1 = A3,

F12 ¼ 2Fð3;1Þ�ð2;4Þ � 2Fð3;1Þ�4 � F3�ð2;4Þ þF34:

Example 11.39 An enclosure consists of a rectangular parallelepiped 1 m � 2 m � 2 m.
One of the 1 m � 2 m surfaces is at 475 K and the other is at 350 K. Both of these surfaces
may be regarded as black. The remaining four surfaces of the enclosure act as reradiating
surfaces Estimate the net heat transfer between the active surfaces of the enclosure and also
estimate the equilibrium temperature of the reradiating surface.

Solution

For the given arrangement of the surfaces, the network is shown in Fig. 11.56.
From Fig. 11.4, F12 = F21 � 0.1 for X/L = 1/2 = 0.5 and Y/L = 2/2 = 1.0.
From the given data, A1 = A2 = 1 � 2 = 2 m2. Hence,

1
A1F12

¼ 1
2� 0:1

¼ 5;

1
A1F1R

¼ 1
A1ð1� F12Þ ¼

1
2ð1� 0:1Þ ¼ 0:555 asF12 þF1R ¼ 1;

R

1/A1F12
Eb1

1/A1F1R 1/A2F2R

Eb2

R

5.0
Eb1

0.555 0.555

Eb2

Rt = 0.909
Eb1 Eb2

Fig. 11.56 Network for the system of Example 11.39
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1
A2F2R

¼ 1
A2ð1� F21Þ ¼

1
2ð1� 0:1Þ ¼ 0:555 asF21 þF2R ¼ 1:

Total resistance, refer Fig. 11.56,

Rt ¼ 1
1
5 þ 1

2�0:555

¼ 0:909:

This gives the heat exchange

q12 ¼ r
T4
1 � T4

2

� �
Rt

¼ 5:67� 10�8 � 4754 � 3504ð Þ
0:909

¼ 2239W

Here, A1 = A2, hence

T4
R ¼ T4

1 þ T4
2

2
;

which gives TR = 426.1 K.

Example 11.40 Two circular discs of 0.8 m and 1.0 m radius, respectively, are placed
parallel to each other (Fig. 11.57). The first disc is maintained at 700 K and the other at
1000 K. The emissivities of the surfaces of the discs are 0.2 and 0.5, respectively. The discs
are located in a very large room. The walls of the room are maintained at 300 K. The discs
are exchanging heat with each other and with the room but only the disc surfaces facing each
other are to be considered in the present analysis as the other sides are insulated. Find the net
heat transfer to each disc and the room by radiation.

Solution

The radiation network for this three-body problem (two discs and the room) is shown in
Fig. 11.58.

For the given bodies, L/r1 = 1/1 = 1 and r2/L = 0.8/1 = 0.8. From Fig. 11.4, the shape
factor F12 = 0.28.

The other shape factors are

r2
L = 1

2 ε2,
700 K

ε1,
1000 K

1

r1

3 Room
300 K

Fig. 11.57 Example 11.40
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F13 ¼ 1� F12 ¼ 1� 0:28 ¼ 0:72;

F21 ¼ A1

A2
F12 ¼ p� 12

p� 0:82
� 0:28 ¼ 0:4375;

F23 ¼ 1� F21 ¼ 1� 0:4375 ¼ 0:5625:

The surface resistances of the network are

1� e1
A1e1

¼ 1� 0:5
p� 12 � 0:5

¼ 0:3183

1� e2
A2e2

¼ 1� 0:2
p� 0:82 � 0:2

¼ 2:0:

and

1� e3
A3e3

� 0

because the room area A3 is very large.
The space resistances are

1
A1F12

¼ 1:1368;
1

A1F13
¼ 0:442;

1
A2F23

¼ 0:8842:

Introducing above values of resistances, the network obtained is shown in Fig. 11.58.
The network is solved by setting the sum of currents at nodes J1 and J2 to zero.

Node J1:
Eb1 � J1
0:3183

þ ðJ2 � J1Þ
1:1368

þ ðEb3 � J1Þ
0:442

¼ 0

2.0

0.442 0.884
2

Eb2

Eb3 = J3

0.3183
Eb1

1.1368

0

2

(1 2)/A2 2

1/A1F13 1/A2F23

Eb2
(700 K)

Eb3
(300 K)

(1 - 1)/A1 1

Eb1
(1000 K)

1/A1F12J1 J2

J3

(1 3)/A3 3

Fig. 11.58 Radiation network
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Node J2:
Eb2 � J2

2:0
þ ðJ1 � J2Þ

1:1368
þ ðEb3 � J2Þ

0:8842
¼ 0

where

Eb1 = rT1
4 = 56700 W/m2,

Eb2 = rT2
4 = 13614 W/m2,

Eb3 = rT3
4 = 459.3 W/m2.

Solution of the above simultaneous equations gives

J1 ¼ 30415 and J2 ¼ 13575:

The net heat lost by the disc 1,

q1 ¼ Eb1 � J1
0:3183

¼ 82579W;

and by disc 2,

q2 ¼ Eb2 � J2
2:0

¼ 19:5W:

Heat received by the room,

q3 ¼ J1 � Eb3

0:442
þ J2 � Eb3

0:8842
¼ 67773þ 14828 ¼ 82601W:

The heat received by the room equals the heat lost by the discs.

Example 11.41 Two concentric parallel discs of 500 mm and 300 mm diameter are 0.5 m
apart. A reradiating surface in the form of a right frustum of a cone encloses them as shown

T1 = 500 K

T2 = 300 K

r1 = 0.25 m

r2 = 0.15 m

L = 0.5 m

x1 = r1/L = 0.5
x2 = r2/L = 0.3

Fig. 11.59 Example 11.41
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in Fig. 11.59. The larger disc is at 500 K and the smaller disc at 300 K. Determine the rate of
heat transfer by radiation between the discs. The emissivity of both the discs is 0.8.

Solution

The shape factor from Table 11.1 is

F12 ¼ 1
2

X � X2 � 4
x2
x1

� �2
" #1=28<

:
9=
;

where x1 = r1/L = 0.5, x2 = r2/L = 0.3 and X ¼ 1þ 1þ x22
x21

� �
¼ 1þ 1þ 0:32

0:52

� �
¼ 5:36:

Hence,

F12 ¼ 1
2

5:36� 5:362 � 4
0:3
0:5

� �2
" #1=28<

:
9=
; ¼ 0:068:

Alternatively, from Fig. 11.4, F12 � 0.07 for L/r1 = 2 and r2/ L = 0.3.
From Eq. (11.31),

q12 ¼ A1rðT4
1 � T4

2 Þ
1
e1
� 1

� �
þ 1

�F12
þ A1

A2

1
e2
� 1

� �

where �F12 ¼ A2=A1�F2
12

1�2F12 þA2=A1
:

From the given data,

e1 ¼ e2 ¼ 0:8;A1 ¼ ðp=4Þð0:5Þ2 ¼ 0:19635m2;A2 ¼ ðp=4Þð0:3Þ2 ¼ 0:07069m2

Substitution gives

�F12 ¼ 0:29034:

and

q12 ¼ 0:19635� 5:67� 10�8ð5004 � 3004Þ
1
0:8 � 1
� �þ 1

0:29034 þ 0:19635
0:07069 � 1

0:8 � 1
� � ¼ 138 W:

Alternatively, the network (Fig. 11.60) can be used to solve the problem.
We have

F1R ¼ 1� F12 ¼ 1� 0:068 ¼ 0:932

F21 ¼ A1

A2
F12 ¼ 0:52

0:32
� 0:068 ¼ 0:1888;
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F2R ¼ 1� F21 ¼ 0:8111

The various resistances of the network are

1� e1
A1e1

¼ 0:2
0:19635� 0:8

¼ 1:273;
1� e2
A2e2

¼ 0:2
0:07069� 0:8

¼ 3:536;

1
A1F12

¼ 1
0:19635� 0:068

¼ 74:9;
1

A1F1R
¼ 1

0:19635� 0:932
¼ 5:464;

1
A2F2R

¼ 1
0:07069� 0:8111

¼ 17:44:

The network with the values of these resistances is shown in Fig. 11.60b.
The total resistance comes out to be

Rt ¼ 22:35:

q12 ¼ rðT4
1 � T4

2 Þ
Rt

¼ 5:67� 10�8 � ð5004 � 3004Þ
22:35

¼ 138W:

Example 11.42 Two parallel square plates 1 m � 1 m are spaced 0.5 m apart. One of the
plates is at 1000 K and the other is at 500 K. The emissivities of the plates are 0.4 and 0.5,
respectively. The plates are located in a large space, which can be assumed to be at an
effective temperature of 300 K. If the surfaces of plates not facing each other are insulated,
determine the net heat transfer to each plate and to the space.

1.273 74.9
Eb1

3.536

5.464 17.44

J2J1
Eb2

R

b

a

(1 - 1)/A1 1

1/A1F12

Eb1

(1 — 2)/A2 2

1/A1F1R 1/A2F2R

J2J1
Eb2

R

Fig. 11.60 Radiation network for the system of Fig. 11.59
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Solution

The electric network is shown in Fig. 11.61.

Since area of space A3 is very large, the resistance 1�e3
A3e3

may be taken as zero and Eb3 = J3.

From Fig. 11.4,

F12 = 0.43 = F21 for X/L = Y/L = 2,
F13 = 1 – F12 = 0.57 = F23.

Various resistances in the network are

1� e1
A1e1

¼ 1� 0:4
1� 0:4

¼ 1:5;
1� e2
A2e2

¼ 1� 0:5
1� 0:5

¼ 1:0;

1
A1F12

¼ 1
1� 0:43

¼ 2:325;
1

A1F13
¼ 1

A2F23
¼ 1

1� 0:57
¼ 1:7544:

Radiosities J1 and J2 can be determined by setting the sum of currents at nodes J1 and J2
to zero.

Node J1:
Eb1 � J1

1:5
þ ðJ2 � J1Þ

2:325
þ ðEb3 � J1Þ

1:7544
¼ 0

Node J2:
Eb2 � J2

1:0
þ ðJ1 � J2Þ

2:325
þ ðEb3 � J2Þ

1:7544
¼ 0

where Eb1 = rT1
4 = 56700 W/m2, Eb2 = rT2

4 = 3543.75 W/m2, Eb3 = rT3
4 = 459.27 W/m2.

Substitution gives

�1:666J1 þ 0:43J2 þ 38061:78 ¼ 0

0:43J1 � 2:0J2 þ 3805:53 ¼ 0

Solution of the above simultaneous equations gives J1 = 24699 and J2 = 7213.
The net heat lost by the plate 1,

q1 ¼ Eb1 � J1
1�e1
A1e1

¼ 56700� 24699
1:5

¼ 21334 W,

and by plate 2,

Eb3 = J3

(1 - 1)/A1 1

1/A1F12
Eb1

(1 — 2)/A2 2

1/A1F13 1/A2F23

J2J1
Eb2

Fig. 11.61 Example 11.42
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q2 ¼ Eb2 � J2
1�e2
A2e2

¼ 3543:75� 7213
1:0

¼ �3669:25 W:

Heat received by the room,

q3 ¼ J1 � Eb3
1

A1F13

þ J2 � Eb3
1

A2F23

¼ 24699� 459:27
1:7544

þ 7213� 459:27
1:7544

¼ 17666W,

which equals q1 + q2.
The heat received by plate 2 from plate 1 is

q12 ¼ J1 � J2
1

A1F12

¼ 24699� 7213
2:325

¼ 7520:86W:

The heat rejected by plate 2 to the surrounding space (room) is

q23 ¼ J2 � Eb3
1

A2F23

¼ 7213� 459:27
1:7544

¼ 3849:6W:

Example 11.43 In a muffle furnace, the floor (4.5 m by 4.5) m is constructed of refractory
material (emissivity = 0.7). Two rows of oxidized tubes are placed 3 m above and parallel to
the floor. But for the purpose of the analysis, these tubes can be replaced by a 4.5 m by 4.5 m
plane surface having an effective emissivity of 0.9 (refer Fig. 11.62a). The average tem-
peratures for the floor and tubes are 900°C and 270°C, respectively. Taking the geometric
factor for radiation from floor to the tubes as 0.32, calculate:

(i) The net heat transfer to the tubes,
(ii) The mean temperature of the refractory walls of the furnace, assuming that these walls

are insulated.

Solution

The shape factors are

F12 = 0.32 = F21 (given)
F13 = 1 - F12 = 0.68
F23 = 1 – F21 = 0.68.

The surface resistances are

1� e1
A1e1

¼ 1� 0:7
ð4:5� 4:5Þ � 0:7

¼ 0:021

1� e2
A2e2

¼ 1� 0:9
ð4:5� 4:5Þ � 0:9

¼ 5:48� 10�3:

The space resistances are
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1
A1F12

¼ 1
ð4:5� 4:5Þ � 0:32

¼ 0:1543

1
A1F13

¼ 1
A2F23

¼ 1
ð4:5� 4:5Þ � 0:68

¼ 0:0726:

The network is shown in Fig. 11.62b, c. It consists of series and parallel combination of
various resistances. Remember that J3 floats in the network. The total resistance is

a

3 m

4.5

4.5
Walls, 3

Tubes, 2

Floor, 1

(1 - 1)/A1 1

1/A1F12

Eb1

(1 — 2)/A2 2

1/A1F13 1/A2F23

J2J1
Eb2

J3

b

c

0.021

0.1543
Eb1

5.48 × 10-3

0.0726 0.0726

J2J1
Eb2

0.021

0.0748
Eb1

5.48 × 10-3

J2J1
Eb2

0.1013
Eb1 Eb2

Fig. 11.62 Example 11.43
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Rt ¼ 0:1013;

q12 ¼ rðT4
1 � T4

2 Þ
Rt

¼ 5:67� 10�8 � ð11734 � 5434Þ
0:1013

¼ 1011 kW:

Refractory wall temperature
The heat transfer q12 is also given by

q12 ¼ Eb1 � J1
ð1� e1Þ=A1e1

or

1011� 1000 ¼ 5:67� 10�8 � 11734 � J1
0:021

:

or

J1 ¼ 86112

Similarly, refer Fig. 11.62,

q12 ¼ J1 � J2
0:0748

or

1011� 1000 ¼ 86112� J2
0:0748

or

J2 ¼ 10489:

The value of J3 is determined from

J1 � J3
0:0726

¼ J3 � J2
0:0726

or

J3 ¼ J1 þ J2
2

¼ 48300;

and

Eb3 ¼ J3 ¼ rT4
3 :
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This gives

T3 ¼
r

4
48300

5:67� 10�8
¼ 961 K:

Example 11.44 The inner sphere of a flask is of 300 mm diameter and outer sphere is of
360 mm diameter. Both the spheres are plated for which the emissivity is 0.05. The space
between them is evacuated. Determine the rate at which the liquid oxygen will evaporate at -
183°C when the outer sphere temperature is 20°C. The latent heat of evaporation of the
liquid oxygen is 214.2 kJ/kg.

Solution

From the given data,

A1 = 4pR1
2 = 4p �1502 � 10−6 = 0.2827 m2 (where subscript 1 refers to inner sphere).

A2 = 4pR2
2 = 4p �1802 � 10−6 = 0.4072 m2

e1 = e2 = 0.05
F12 = 1
T1 = –183 + 273 = 90 K
T2 = 20 + 273 = 293 K.

Total resistance,

Rt ¼ 1� e1
A1e1

þ 1
A1F12

þ 1� e2
A2e2

¼ 1� 0:05
0:2827� 0:05

þ 1
0:2827

þ 1� 0:05
0:4072� 0:05

¼ 117:41:

Hence,

q12 ¼ Eb1 � Eb2

Rt
¼ rðT4

1 � T4
2 Þ

Rt

¼ 5:67� 10�8 � ð904 � 2934Þ
117:41

¼ 3:528 W:

Rate of evaporation of liquid oxygen,

_m ¼ q12
Latent heat

¼ 3:528
2140:2� 1000

¼ 1:647� 10�5 kg=s ¼ 59:3 g=hr:

Example 11.45 The Sun may be regarded as a blackbody with a surface temperature of
6000 K. The diameter of the Sun is 1.39 � 109 m and the distance between the Earth and the
Sun is 1.48 � 1011 m. Calculate

(i) The solar constant
(ii) The rate of energy received by the Earth. The mean diameter of Earth is

12.8 � 106 m.
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(iii) The rate of energy reaching the Earth if the transmittance of the Earth’s atmosphere is
0.85.

(iv) The rate of energy received by a 1.5 � 1.5 m2 solar collector whose perpendicular is
inclined at 35o to the direction of the Sun. Assume diffuse radiation to be 15% of the
direct radiation.

Solution

The solar constant is the amount of solar energy received by unit area of the Earth’s surface
placed normal to the rays of the Sun. Hence, from Example 11.9,

Solar constant ¼ rT4
s ðp=4ÞD2

s

pr2

¼ 5:67� 10�8 � 60004 � ðp=4Þ � ð1:39� 109Þ2
pð1:48� 1011Þ2

¼ 1620W=m2:

Energy received by the Earth is

¼ Solar constant� ðp=4ÞD2
e

¼ 1620� ðp=4Þ � ð12:8� 106Þ2 ¼ 2:085� 1017 W:

Rate of energy reaching the Earth’s surface,

¼ s� 1620 ¼ 0:85� 1620 ¼ 1377 W/m2:

Area of the collector ¼ 1:5� 1:5� cos 35o ¼ 1:843m2 resolved perpendicular to the Sun
rays.

Direct (beam) radiation falling on the collector ¼ 1:843� 1377 ¼ 2539W:

Diffuse radiation falling on the collector ¼ 0:15� 2539 ¼ 380:85W:

Total radiation falling on the collector ¼ 2539þ 380:85 ¼ 2919:85W.

11.11 Radiation from a Gray Cavity (Alternative Method)

Refer to the electric network in Fig. 11.63.
Total resistance is

Rt ¼ 1� e1
A1e1

þ 1
A1F12

:

Hence,

q12 ¼ A1rðT4
1 � T4

2 Þ
1
F12

þ 1�e1
e1

;

which is the same as Eq. (11.24) found in Sect. 11.6.
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11.12 Newton’s Law of Cooling and Overall Heat Transfer Coefficient

In year 1701 A.D., Newton proposed the law of cooling of bodies. The law states, ‘The rate
of loss of heat of a body by cooling is proportional to the excess of temperature of the body
above its surrounding’. This law is valid when the temperature difference is small.

Mathematically, the law can be written as
Rate of cooling,

q / ðT � T1Þ
¼ hoAðT � T1Þ ðiÞ

where ho is known as heat transfer coefficient and A is the surface area of the body rejecting
heat.

The heat transfer coefficient ho accounts for both convection and radiation. Hence, we
write

ho ¼ hc þ hr

where hc is convection heat transfer coefficient,
hr is radiation heat transfer coefficient.
If temperature of a body falls by ΔT in time interval Δh, then from the energy consid-

eration (rate of cooling equals the change in internal energy),

q ¼ mc
DT
Dh

� �

Substitution in Eq. (i) gives

mc
DT
Dh

� �
¼ �hoA T � T1ð Þ:

or

dT

T � T1
¼ � hoA

mc

� �
dh

(1 - 1)/A1 1 1/A1F12

Eb1
J1 Eb2

2 (A2)

1 (A1, ε1)

Fig. 11.63 A gray cavity
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Integration of the equation gives

ln
T � T1
To � T1

� �
¼ � hoA

mc

� �
s

where To is the temperature at time h = 0, and T is the temperature at time h = s. The above
equation can be rewritten as

T � T1
To � T1

¼ e�
hoA
mcð Þs ¼ e�Ks ð11:35Þ

It can be seen from the above equation that the temperature of the body falls exponentially
as shown in Fig. 11.64.

The value of the radiation heat transfer coefficient can be obtained from the Stefan–
Boltzmann law.

Radiation heat transfer from a blackbody at temperature T is

qr ¼ ArðT4 � T4
1Þ

¼ ArðT � T1ÞðT3 þ T2T1 þ TT2
1 þ T3

1Þ

Let us denote (T + T∞)/2 = Tm. Then, if 0.9 � (T/T∞) � 1.1, it may be assumed that

ðT3 þ T2T1 þ TT2
1 þ T3

1Þ ¼ 4T3
m

and hence

qr ¼ 4rT3
m

� �
AðT � T1Þ: ðiiÞ

Above assumption introduces less than 1% error (Mikheyev 1968).
Hence, the radiation heat transfer coefficient,

hr ¼ 4rT3
m ð11:36Þ

If a wall is exposed to liquid, then hr = 0 and ho = hc.

Time, θdθ

dT

T

Fig. 11.64 Cooling of a body
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11.12.1 Determination of Specific Heat Using Newton’s Law of Cooling

For a blackbody we have seen that the overall heat transfer coefficient ho is

ho ¼ hc þ hr

or

ho ¼ hc þ 4rT3
m

We consider simultaneous cooling of two blackbodies at temperature Tm, of the same
shape and size, then the value of the overall heat transfer coefficient for the two bodies will
be equal and the rate of cooling will also be equal, i.e. q1 = q2 when Tm1 = Tm2.

Rate of cooling equals the change in internal energy hence

m1c1
T1 � T2

h1

� �
¼ m2c2

T1 � T2
h2

� �

where h1 and h2 are the time intervals for cooling from temperature T1 to T2, of bodies 1 and
2, respectively, (Fig. 11.65).

From above equation,

c2 ¼ m1c1
h2
h1

� �
� 1

m2

� �
ð11:37aÞ

Specific heat of body 2 can be determined from the above equation if the specific heat of
body 1 is known.

For the determination of specific heat of liquids, Eq. (11.37a) is modified to take account
of the effect of calorimeter. The equation becomes

ðm1c1 þmcccÞ T1 � T2
h1

� �
¼ ðm2c2 þmcccÞ T1 � T2

h2

� �

or

Timeθ1

T2

T

θ2

T1

Body 1
Body 2

Fig. 11.65 Simultaneous cooling of two blackbodies
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ðm2c2 þmcccÞ ¼ ðm1c1 þmcccÞ h2
h1

� �

or

c2 ¼ ðm1c1 þmcccÞ h2
h1

� �
� mccc

� �
1
m2

; ð11:37bÞ

where mc and cc refer to the calorimeter.

11.13 Radiation Heat Transfer Coefficient

The convection heat transfer from a body at temperature T1 to the surrounding fluid at
temperature T∞ is

qc ¼ hcA1ðT1 � T1Þ: ðiÞ

Radiation heat transfer exchange by a body at temperature T1 with another body at
temperature T2 is

qr ¼ A1f12rðT4
1 � T4

2 Þ ðiiÞ

where f12 is interchange factor as discussed earlier.
Equation (ii) can be written as

qr ¼ A1 f12rðT2
1 þ T2

2 ÞðT1 þ T2Þ
	 
ðT1 � T2Þ:

We can put the convection and radiation processes of heat transfer on a common basis by
introducing radiation heat transfer coefficient hr defined by

hr ¼ f12rðT2
1 þ T2

2 ÞðT1 þ T2Þ ð11:38Þ

If the second radiation exchanging body is an enclosure which is at the fluid temperature
T∞, i.e. T2 = T∞, we have

q ¼ qr þ qc

¼ ðhc þ hrÞA1ðT1 � T1Þ:

where hr ¼ rðT2
1 þT2

2 ÞðT1 þ T2Þ
1
e1
þ A1

A2
1
e2
�1

� � for body 1 of emissivity2 of emissivity e2 and area A2 e1 and area

A1 completely enclosed by body a large enclosure.
For a small body in a large enclosure,

hr ¼ e1rðT2
1 þ T2

2 ÞðT1 þ T2Þ
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and if 0.9 � (T1/ T2) � 1.1, we assume that T1 and T2 can be replaced by Tm = (T1 + T2)/2
and then

hr ¼ 4e1rT
3
m

as explained earlier.
It should be noted that unlike convective heat transfer coefficient, the radiation heat

transfer coefficient is a strong function of temperatures T1 and T2.

Example 11.46 A horizontal steel pipe, 3 m long and 50 mm in diameter, is located in a
large room. The pipe wall is at an average temperature of 110°C. The surrounding air and
walls of the room are at a temperature of 30°C. The surface emissivity of the steel pipe may
be taken as 0.85. Calculate the total heat lost by the pipe. The convection heat transfer
coefficient may be taken as 10 W/(m2 K).

Solution

It is a problem of multimode heat transfer. The heat is lost by radiation as well as convection.
The convection heat loss,

qc ¼ hAðTs � T1Þ ¼ 10� ðp� 0:05� 3Þ � ð110� 30Þ ¼ 377 W:

The pipe (emissivity = 0.85) is a body in a large enclosure (room). Hence, the radiation
heat loss is

qr ¼ eArðT4
s � T4

1Þ

or

qr ¼ 0:85� ðp� 0:05� 3Þ � 5:67� 10�8 � ð3834 � 3034Þ ¼ 297 W:

The total heat loss,

q ¼ qr þ qc ¼ 674 W:

It is to be noted that in the present case, the two modes of heat transfer are equally
significant. Both modes must be considered when dealing with such problems. However,
with the rise in the temperature difference, the contribution of the radiative mode in the total
heat transfer will increase.

Example 11.47 An electric heater 25 mm diameter and 300 mm long is used to heat a
room. Calculate the electrical input to the heater when the bulk of the air in the room is at 20°
C, the walls are at 15°C and the surface of the heater is at 540°C. For the convective heat
transfer from the heater assume that

Nu ¼ 0:4ðGrÞ0:25:
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where all properties are at the mean film temperature and b = 1/T, and T (in K) is the bulk
temperature of the air. Take the emissivity of the heater surface as 0.55 and assume that the
surroundings are black.

Solution

The film temperature is

tf ¼ 540þ 20
2

¼ 280�C:

Properties of air at the film temperature are
q = 0.64 kg/m3, k = 0.0436 W/(m K), l = 2.86 � 10−5 kg/(m s) and
b = 1/(20 + 273) = 3.41 � 10−3 K−1 (as given).
Then, Grashof number,

Gr ¼ q2gbðDTÞd3
l2

¼ 0:642 � 9:81� 3:41� 10�3 � ð540� 20Þ � 0:0253

ð2:86� 10�5Þ2 ¼ 1:36� 105:

Hence, from the given relation,

Nu ¼ 0:4ð1:36� 105Þ0:25 ¼ 7:68

and the heat transfer coefficient is

h ¼ k

d
� Nu ¼ 0:0436

0:025
� 7:68 ¼ 13:4W/m2K:

Heat transfer by convection,

qc ¼ hAðDTÞ ¼ 13:4� p� 0:025� 0:3� ð540� 20Þ ¼ 164:2W:

Heat lost by radiation,

qr ¼ eArðT4
s � T4

1Þ

Substitution gives

qr ¼ 0:55� ðp� 0:025� 0:3Þ � 5:67� 10�8 � ð8134 � 2884Þ ¼ 316 W:

Electrical input to the heater, q ¼ qr þ qc ¼ 480:2 W:

Example 11.48 Air flows between two concentric cylindrical gray surfaces. The geomet-
rical and thermodynamic parameters are given in Table 11.5.

At a given point, the temperature of the air is 700 K. Compare the rate of heat transfer by
radiation to the lower temperature surface with the heat transfer by convection to this point.
The convective heat transfer coefficient is 30 W/(m2 K).
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Solution

Heat transfer by radiation,

q12 ¼ A1rðT4
1 � T4

2 Þ
1
e1
þ A1

A2

1
e2
� 1

� �

Substitution of values of various parameters gives

q12 ¼ p� 0:04� 1� 5:67� 10�8 � ð8004 � 4004Þ
1

0:75 þ 40
100

1
0:8 � 1
� � ¼ 1908:8W per unit length:

Heat transfer by convection,

qconv ¼ hA1ðTg � T1Þ ¼ 30� p� 0:04� 1� ð700� 400Þ ¼ 1130:97W per unit length:

(Figure 11.66)
The ratio of heat transfers is

q12
qconv

¼ 1:688:

Example 11.49 A furnace wall is 200 mm thick built up of refractory bricks having
k = 0.9 W/(m K). The internal surface temperature is 1000°C and the surrounding temper-
ature is 25°C. Calculate the heat loss per m2 of the wall area if

Table 11.5 Example 11.48

Inner Outer

Diameters 40 mm 100 mm

Absorptivity 0.75 0.8

Temperature 400 K 800 K

1273 K

To = ?

qc

T∞ = 298 K
qr

k = 0.9 
W/(m K)

q

δ = 200 mm 
δ

Fig. 11.66 Example 11.49
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(i) the free convection heat transfer coefficient from the outer surface of the wall is 0.27
(ΔT)1/3 and

(ii) the radiation heat transfer coefficient hr for the outer surface is

hr ¼ eðT2 þ T1ÞðT2
2 þ T2

1 Þ

with e = 0.8.

Solution

Heat flow through the furnace wall by conduction,

q ¼ kA
ðTi � ToÞ

d
¼ 0:9� 1� ð1273� ToÞ

200� 10�3
¼ 4:5� ð1273� ToÞ

(the outer surface temperature To is not known)
Heat reaching the outer surface of the furnace wall is rejected by convection qc and

radiation qr, i.e.

q ¼ qr þ qc; ðiÞ

where

qc ¼ hcAðDTÞ
¼ 0:27ðTo � 298Þ1=3 � 1� ðTo � 298Þ
¼ 0:27ðTo � 298Þ4=3;

and

qr ¼ hrAðTo � T1Þ
¼ ½erðTo þ T1ÞðT2

o þ T2
1Þ�A� ðTo � T1Þ

¼ erAðT4
o � T4

1Þ
¼ 0:8� 5:67� 10�8 � 1� ðT4

o � 2984Þ:

Substitution in Eq. (i) gives

4:5� ð1273� ToÞ ¼ 0:27ðTo � 298Þ4=3 þ 0:8� 5:67� 10�8 � 1� ðT4
o � 2984Þ:

By trial and error, To = 522 K.
Heat transfer per m2 of the wall surface,

q ¼ 4:5� ð1273� ToÞ ¼ 4:5� ð1273� 522Þ ¼ 3379:5 W:
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Example 11.50 A hot water radiator of overall dimensions 2 m in height, 1.5 m long and
0.25 m wide is used to heat a room. The surface temperature of the radiator is 340 K and the
room temperature is 290 K.

Calculate the heat transfer from the radiator if the convection heat transfer coefficient is
1.3(ΔT)1/3. The actual surface area of the radiator is 3 times the area of its envelope. The
surface of the radiator can be assumed to be nearly black.

Solution

(i) Heat Transfer by Radiation
As the surface of the radiator is black, the area of the radiation heat exchange is assumed

to be the area of the envelope, i.e.

Aenvelope ¼ 2ðLW þWHþHLÞ ¼ 2ð2� 0:25þ 0:25� 1:5þ 1:5� 2Þ ¼ 7:75m2:

where L, H, W are the length, height and width of the radiator, respectively.
Radiant heat loss,

qr ¼ AenveloperðT4
raditor � T4

roomÞ
¼ 7:75� 5:67� 10�8 � ð3404 � 2904Þ ¼ 2764:2W:

(i) Heat Flow by Convection

qc ¼ hcAðDTÞ
¼ 1:3ðDTÞ1=3AðDTÞ
¼ 1:3ðDTÞ4=3A
¼ 1:3� ð340� 290Þ4=3 � ð3� 7:75Þ ¼ 5567:5W:

Total heat flow from the radiator,

q ¼ qr þ qc ¼ 8331:7W:

Example 11.51 Figure 11.67 shows cross-section of a solar collector with one glass cover.
If s is the transmissivity of the cover, a is the absorptance of the absorber plate and qd is the
reflectivity of the cover system for the diffuse radiation incident from the bottom side,
evaluate the transmittance-absorptance product.

Insulation

Glass cover
Solar radiation

Absorber plate

Fig. 11.67 Example 11.51
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Solution

Of the unit incident solar radiation, refer Fig. 11.68, a part s passes through the cover and
strikes the absorber plate. a times of this radiation, i.e. sa is absorbed by the plate on the first
incidence and (1 – a)s is reflected back to the cover. The radiation reflected back from the
cover is qd(1 – a)s and again strikes the absorber plate and out of this reflected radiation
a[qd(1 – a)s] is absorbed by the absorber plate. Similarly on the third incidence, sa[(qd-)

2(1 –
a)2] will be absorbed by the plate. This reflection and absorption process continues.

The energy ultimately absorbed by the absorber plate is

ðsaÞe ¼ saþ sa½qdð1� aÞ� þ sa½ðqdÞ2ð1� aÞ2� þ . . .

¼ sa½1þ qdð1� aÞ� þ ðqdÞ2ð1� aÞ2 þ . . .�
ðiÞ

where (sa)e is the effective value of transmittance-absorptance product.
As the product [qd (1 – a)] in Eq. (i) is less than 1, the summation of the terms on the right

hand side gives

ðsaÞe ¼ sa
1

1� ð1� aÞqd

� �
:

Example 11.52 The following data were obtained for a single glass cover flat plate solar air
heater.

Mean plate temperature = 70°C
Ambient temperature = sky temperature1 = 10°C
Back insulation thickness = 50 mm
Insulation thermal conductivity = 0.05 W/(m K)
Coefficient of heat transfer by convection from plate to cover, hc = 5 W/(m2 K)
Equivalent coefficient of heat transfer by radiation from plate to cover,
hr1

= 6 W/(m2 K)

Coefficient of heat transfer by convection from cover to ambient air, hw = 20 W/(m2 K)
Equivalent coefficient for radiant heat transfer from cover to sky, hr2 = 5 W/(m2 K)

Compute the total heat loss per m2 of the collector area.

τ

ταAbsorber plate

Glass    

τα [(ρd) 2(1 — α)2]α [ρd (1 — α)τ]

τ (1 — α) ρd (1 — α)τ 
ρd τ(1 — α)2

ρd
2 τ (1 — α)2

Fig. 11.68 Successive absorption and reflection of solar rays

1The sky temperature is a function of many parameters and is generally significantly lower than the ambient
temperature.
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Solution

Top Loss:
Considering convection and radiation heat flow from absorber plate to the cover,

qt ¼ ðhc þ hr1ÞAcðtp � tcÞ ¼ ð5þ 6Þ � 1� ð70� tcÞ ðiÞ

where tc is the cover temperature which is not known and Ac is absorber plate area (= cover
area).

Similarly, from cover to ambient, heat loss is given by

qt ¼ ðhw þ hr2ÞAcðtc � taÞ ¼ ð20þ 5Þ � 1� ðtc � 10Þ ðiiÞ

Equating Eqs. (i) and (ii), we get

tc ¼ 28:33oC:

Figure 11.69(a) shows schematic of the solar air heater.
Hence, from Eq. (i),

qt ¼ ð5þ 6Þ � 1� ð70� 28:33Þ ¼ 458:4 W:

a Cross-section of a solar air heater

t a = 10oC

tp

tc

Insulation

Absorber plate

Glass cover

Air duct

qt

qb

tb

b Network for heat loss

tb

tc

ta

ta

1/(hw + hr2)

1/(hc + hr1)

1/(δ/kA + 1/hwA)

tp

Fig. 11.69 Example 11.52
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Back Loss (by conduction through the back insulation and by convection from the
back):

qb ¼ Dt
d
kA þ 1

hwA

 !
¼ tb � ta

d
kA þ 1

hwA

 !
¼ 40� 10

0:05
0:05�1 þ 1

20�1

 !
¼ 28:6 W,

assuming that the back temperature tb equals the mean of plate temperature and ambient
temperature.

Total loss; qt þ qb ¼ 458:4þ 28:6 ¼ 487W:

Example 11.53 Figure 11.70 shows a solar water heater. The glass cover 2 is placed over a
blackened absorber plate 1. The side walls and back are adequately insulated. The glass is
assumed to have emissivity of 0.88 for thermal radiation. The emissivity for the absorber
plate is 0.9 for all radiations. The environment is at 20°C and the convection heat transfer
coefficient from the outer surface of the glass is 25 W/(m2 K). The solar radiation I incident
on the solar collector is 980 W/m2. The effective value of transmittance-absorptance product
(sa)e is 0.72. The convection heat transfer coefficient between the plate and glass is 7 W/(m2

K). Estimate the glass and plate temperatures under stagnation condition.

Solution

The energy absorbed by the absorber plate is (sa)e times the incident radiation I.
In stagnation condition when equilibrium is reached, the heat lost by convection and

radiation to the glass cover equals the solar energy absorbed, i.e.

IðsaÞe ¼
rðT4

p � T4
g Þ

1
ep
þ 1

eg
� 1

þ hcðTp � TgÞ ðiÞ

where hc is convection heat transfer coefficient.
Substitution of given values of I = 980, (sa)e= 0.72, eg = 0.88, ep = 0.9 and hc = 7)

transforms Eqs. (i) to

980� 0:72 ¼ 5:67� 10�8ðT4
p � T4

g Þ
1
0:9 þ 1

0:88 � 1
þ 7:0� ðTp � TgÞ

Ta = 20oC

Tp

Tg

Insulation

80 mm1

2

1.0 m

I

Fig. 11.70 A solar water heater
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or

705:6 ¼ 4:545� 10�8ðT4
p � T4

g Þþ 7:0� ðTp � TgÞ ðiiÞ

The heat reaching the glass cover from the absorber plate is lost from outside surface of
the collector by radiation to the sky and by convection to the surrounding air. Thus

IðsaÞe ¼ egrðT4
g � T4

skyÞþ hwðTg � TaÞ ðiiiÞ

Tsky is sky temperature and can be estimated from Swinbank’s correlation,

Tsky ¼ 0:0552T1:5
a ¼ 276:85K

Substituting values of I, (sa)e, eg = 0.88, hw = 25 W/(m2 K), Ta = 293 K and Tsky =
276.85 K in Eq. (iii), we get

705:6 ¼ 0:88� 5:67� 10�8 � ðT4
g � 276:854Þþ 25� ðTg � 293Þ

or

705:6 ¼ 4:99� 10�8 � ðT4
g � 276:854Þþ 25� ðTg � 293Þ ðivÞ

By trial and error, Eq. (iv) gives

Tg ¼ 313:6K:

Substitution of the value of Tg in Eq. (ii) gives the plate temperature:

Tp ¼ 363:7K:

Note: The resistance of the glass to the conduction heat transfer has been neglected here.

Example 11.54 A 20 mm diameter horizontal pipe is laid in a large open space and
carrying a hot fluid. It has a surface temperature of 250°C. Emissivity of pipe surface is 0.6.
Air at a velocity of 5 m/s and 40°C is blowing across the pipe. Determine the heat loss from
the pipe surface per unit length of the pipe. The effective temperature of the surface of the
open space may be taken equal to the air temperature.

Solution

The heat is transferred from the pipe surface by both radiation and convection.

Radiation heat loss
The radiation heat loss from the pipe surface in large space is given by

qr ¼ erAðT4
s � T4

a Þ ¼ 0:6� 5:67� 10�8 � ðp� 0:02� 1Þ � ð5234 � 3134Þ
¼ 139:4W=m:
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Convection heat loss
At film temperature tfm = 145°C, q = 0.84 kg/m3, k = 0.035 W/(m K), l = 2.35 � 10−5

kg/(m s) and Pr = 0.686.
Flow Reynolds number,

ReL ¼ qU1d

l
¼ 0:84� 5� 0:02

2:35� 10�5
¼ 3574:

From Table 8.11, C = 0.683, n = 0.466

h ¼ Nu
k

d
¼ 0:683Re0:466 Pr

1=3 k

d

¼ 0:683� ð3574Þ0:466 � ð0:686Þ1=3 � 0:035
0:02

¼ 47:72W=m2K:

Heat loss due to convection,

qc ¼ hðpdLÞðtw � taÞ ¼ 47:72� ðp� 0:02� 1:0Þ � ð250� 40Þ ¼ 629:6W=m:

Total heat loss rate,

q ¼ qr þ qc ¼ 139:4þ 629:6 ¼ 769W=m:

Example 11.55 A 50 mm internal diameter steel pipe [wall thickness 5 mm, ks = 40 W/
(m K)] is laid in a large space. Condensing steam at 200°C is flowing through the pipe giving
convection heat transfer coefficient of 600 W/(m2 K) at the pipe inner surface. Pipe is
covered with 20 mm thick insulation [ki = 0.05 W/(m K)]. Surrounding air temperature is
20°C and the convection heat transfer coefficient is estimated to be 20 W/(m2 K). Insulation
surface emissivity is 0.75. Determine the heat loss from the pipe surface per unit length of the
pipe. The effective temperature of the surface of the space may be taken equal to the air
temperature.

Solution

Heat flows to the outer surface of the insulation by convection and conduction and is rejected
from there by both convection and radiation, refer Fig. 11.71.

ks

ho

ki
T3

r1

r2r3

Fig. 11.71 Example 11.55
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Heat flow from the steam to the outer surface of the insulation for unit length of pipe is

q

L
¼ Ti � T3ð Þ

1
2p

1
hir1

þ 1
ks
ln r2

r1

� �
þ 1

ki
ln r3

r2

� �h i ðiÞ

Heat loss from outer surface of insulation due to convection,

qc ¼ hoð2pr3LÞðT3 � T1Þ:

The radiation heat loss from the insulation surface in a large space is given by

qr ¼ erð2pr3LÞ � ðT4
3 � T4

spaceÞ:

Total heat loss rate from outer surface per unit length,

q

L
¼ qc

L
þ qr

L
¼ hoð2pr3ÞðT3 � T1Þþ erð2pr3Þ � ðT4

3 � T4
spaceÞ:

ðiiÞ

Equating Eqs. (i) and (ii),

Ti � T3ð Þ
1
2p

1
hir1

þ 1
ks
ln r2

r1

� �
þ 1

ki
ln r3

r2

� �h i ¼ hoð2pr3ÞðT3 � T1Þþ erð2pr3Þ � ðT4
3 � T4

spaceÞ

Substituting r1 = 0.025 m, r2 = 0.03 m, r3 = 0.05 m, Ti = 473 K, T∞ = 303 K,
Tspace = 303 K, ks = 40 W/(m K), ki = 0.05 W/(m K), hi = 600 W/(m2 K), ho = 20 W/(m2

K) and e = 0.75, we get

473� T3ð Þ
1
2p

1
600�0:025 þ 1

40 ln
0:03
0:025

� �þ 1
0:05 ln

0:05
0:03

� �	 

¼ 20� ð2p� 0:05ÞðT3 � 303Þþ 0:75� 5:67� 10�8 � ð2p� 0:05Þ � ðT4

3 � 3034Þ

Solution by trial and error gives T3 = 315.25 K. Hence,

q

L
¼ 473� 315:25ð Þ

1
2p

1
600�0:025 þ 1

40 ln
0:03
0:025

� �þ 1
0:05 ln

0:05
0:03

� �	 
 ¼ 96:35W=m:

Example 11.56 A long copper bus bar of rectangular cross-section (150 � 500 mm2) is
located in a large space whose surface may be assumed at the surrounding air temperature of
25°C. The electrical resistivity q of copper as a function of temperature is 1.72 � 10−8

[1 + 0.00393(t – 20)] Xm, where t is temperature in °C. For current of 75000 A in the bus
bar, determine the minimum convection heat transfer coefficient to maintain a safe operating
temperature below 100°C. The emissivity of bus bar surface is 0.7.
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Solution

Under steady state condition, energy balance on the bus bar for a unit length gives

E ¼ qc þ qr

where

E is electric energy dissipated = I2qL/Ac, W/m
qc is the convection heat transfer rate = hAs(Ts – T∞), W/m,
qr is the radiation heat transfer rate = erAs(Ts

4
– Tsur

4 ), W/m.
Ac area of cross-section of bus bar, m2

As surface area of bus bar, m2 and
Ts surface temperature of the bus bar, K

Substitution gives

750002 � 1:72� 10�8½1þ 0:00393ðTs � 293�� �� 1=ð0:15� 0:5Þ
¼ h� ½2ð0:15þ 0:5Þ � 1� � ðTs � 298Þþ 0:7� 5:67� 10�8

� ½2ð0:15þ 0:5Þ � 1� � ðT4
s � 2984Þ

(assuming that the bus bar is at a uniform temperature of Ts)
Solution of the above equation gives h = 11.32 W/(m2 K) for Ts = 373 K. Hence, the

required heat transfer coefficient must be 	 11.32 W/(m2 K).

Example 11.57 The wall of an oven shown in Fig. 11.72a is made of an insulation material
[k = 0.045 W/(m K)]. It’s inner surface is subjected to radiation heat flux qr of 125 W/m2

and it is exposed to convection environment on both sides as shown in the figure. Determine
the wall thickness for outer surface temperature T2 � 30°C.

a

b

To

1/(ho)(δ/k)1/(hi)
Ti

T1 T2
qr

qc

A B

hi = 25
W/(m2 K)

q•

• To = 20oC

ho = 15
W/(m2 K)

δ

T2 ≤ 30oC
qr

Ti = 400oC
T1

Fig. 11.72 Example 11.57
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Solution

The thermal network for unit surface area is shown in Fig. 11.72b.
For nodes A and B, the energy balance equations are

Ti � T1
1=hi

þ qr þ T2 � T1
d=k

¼ 0

T1 � T2
d=k

þ To � T2
1=ho

¼ 0

Substituting various values, we have for T2 = 30°C,

400� T1
1=25

þ 125þ 30� T1
d=0:045

¼ 0 ðiÞ

T1 � 30
d=0:045

þ 20� 30
1=15

¼ 0 ðiiÞ

Solution of Eqs. (i) and (ii) gives d = 0.1107 m. Hence, the wall thickness must be greater
than 0.1107 m for T2 < 30°C.

Example 11.58 A 2 mm bead diameter thermocouple is installed in a 600 mm diameter
duct carrying hot flue gas (may be treated as air for analysis) at about 1 atm as shown in
Fig. 11.33 to measure temperature of the gas flowing through the duct. Mass flow rate of the
gas is measured to be 0.5 kg/s. Emissivity of the duct outer surface is 0.8 and duct is located
in a large space at surface temperature of 300 K. Temperature of the air surrounding the duct
is also 300 K. The convection heat transfer coefficient ho at the outer surface of the duct is
estimated to be 20 W/(m2 K). The thermocouple indicates a temperature of 550 K. Calculate
the true temperature of the gas if the emissivity of the thermocouple surface is 0.8 and the
effect of the conduction along the thermocouple wires is negligible.

Solution

The thermocouple is heated due to convection from the hot gas. But cooling of the ther-
mocouple takes place due to the rejection of heat by radiation to the duct wall which is at a
temperature lower than the temperature of the thermocouple. Hence, it indicates a temper-
ature lower than the gas temperature.

Let the gas temperature is Tg and the temperature indicated by the thermocouple is Tt
(= 550 K given). Then the convective heat transfer qc from the air to the thermocouple is

qc ¼ htAtðTg � TtÞ ¼ ht � AtðTg � 550Þ

where At is the surface area of the thermocouple bead.
For a small body in a large enclosure (bead area < < duct wall area), the radiation heat

transfer is

qr ¼ etAtrðT4
t � T4

s Þ ¼ 0:8� At � 5:67� 10�8 � ð5504 � T4
s Þ
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In equilibrium, qc = qr. This gives

ht � ðTg � 550Þ ¼ 0:8� 5:67� 10�8 � ð5504 � T4
s Þ ðiÞ

Heat transfer coefficient at the spherical thermocouple bead surface ht can be estimated
from Eq. (8.55):

Nu ¼ 2þð0:4Re0:5D þ 0:06Re2=3D ÞPr0:4ðla=lwÞ0:25

Thermophysical properties of gas (to be treated as air) at assumed temperature of 573 K
(= 300°C) from Table A5 are

lg = 2.926 � 10−5 kg/(m s), kg = 0.04497 W/(m K) and Pr = 0.680. lw = 2.841 � 10−5

kg/(m s) at thermocouple bead temperature of 550 K (� 275°C).

Reynolds number,

ReD ¼ qUgd

lg
¼ d

lg

 !
mg

ðp=4ÞD2
¼ 0:002

2:926� 10�5

� �
� 0:5
ðp=4Þ � 0:62

¼ 121

Hence,

Nu ¼ 2þð0:4Re0:5D þ 0:06Re2=3D ÞPr0:4ðlg=lwÞ0:25

¼ 2þð0:4� 1210:5 þ 0:06� 1212=3Þ � 0:6800:4ð2:926=2:841Þ0:25
¼ 7:1:

Heat transfer coefficient,

ht ¼ kg
d
Nu ¼ 0:04497

0:002
� 7:1 ¼ 159:6W=ðm2KÞ:

Substitution in Eq. (i) gives

159:6� ðTg � 550Þ ¼ 0:8� 5:67� 10�8 � ð5504 � T4
s Þ

or

Tg ¼ 576� 0:0284� 10�8 � T4
s ð1Þ

At the duct wall, heat input at the inner surface by convection is balanced by heat rejection
at the outer surface by convection and radiation. Hence,

hi � AðTg � TsÞ ¼ ho � AðTs � TaoÞþ eA� 5:67� 10�8 � ðT4
s � T4

surÞ
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or

hiðTg � TsÞ ¼ 20� ðTs � 300Þþ 0:8� 5:67� 10�8 � ðT4
s � 3004ÞðiiÞ

where Tao is outside air temperature.
Reynolds number of the flow in the duct,

Re ¼ qUgD

lg
¼ D

lg

 !
mg

ðp=4ÞD2
¼ 0:6

2:926� 10�5

� �
0:5

ðp=4Þ � 0:62
¼ 36262:

Heat transfer coefficient at duct wall,

hi ¼ kg
D

� 0:026� Re0:8Pr0:3 ¼ 0:04497
0:6

� 0:026� 362620:8 � 0:6800:3 ¼ 7:7

Substitution in Eq. (ii) gives

7:7� ðTg � TsÞ ¼ 20� ðTs � 300Þþ 0:8� 5:67� 10�8 � ðT4
s � 3004Þ

or

Tg ¼ Ts þ 20
7:7

� ðTs � 300Þþ 0:8� 5:67� 10�8

7:7
� ðT4

s � 3004Þ

or

Tg ¼ 3:597Ts � 826:94þ 0:589� 10�8T4
s ð2Þ

Equations (1) and (2) are to be solved by trial and error, which gives Ts = 360.9 K and
Tg = 571.15 K.

Thus the error in reading of air temperature is DT ¼ Tg � Tt ¼ 571:15� 550 ¼ 21:15 K:
Calculated value of gas temperature Tg is nearly equal to the assumed one for thermophysical
properties of the gas.

Example 11.59 A vertical copper plate [q = 8950 kg/m3, c = 380 J/(kg K), k = 375 W/
(m K)] at an initial uniform temperature of 300°C is suspended in a room where the ambient
air and surroundings are at 25°C. Plate measures 0.25 m � 0.25 m in area and is 0.02 m in
thickness. Determine the rate of cooling (K/s) when plate temperature is 275°C. Plate surface
emissivity is 0.2.

Solution

At mean film temperature of ½(275 + 25) = 150°C, the thermophysical properties of air
from Table A5 are

q = 0.8370 kg/m3, c = 1017.1 J/(kg K), l = 2.3769 � 10−5 N s/m2, k = 0.03522 W/(m K)
and Pr = 0.686.
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The plate will reject heat both by natural convection and radiation. At any instant, the
energy balance gives

�qðAsdÞc dTds ¼ hð2AsÞðTs � T1Þþ eð2AsÞrðT4
s � T4

surÞ

or

dT

ds
¼ �2

qdc
hðTs � T1Þþ erðT4

s � T4
surÞ

	 
 ðiÞ

where As is surface area and d is thickness of the plate, and Ts is surface temperature of the
plate.

The Rayleigh number,

Ra ¼ GrPr ¼ bg Tw � T1ð ÞL3
m2

Pr ¼ ð1=TmÞg Ts � T1ð ÞL3
ðl=qÞ2 Pr

¼ ð1=423Þ � 9:81� 275� 25ð Þ � 0:253

ð2:3769� 10�5=0:8370Þ2 � 0:686 ¼ 1:12� 108:

Flow is laminar. Assuming a uniform plate temperature looking to the high conductivity
of plate material and small thickness, Eq. (9.11) gives

Num ¼ 0:68þ 0:670Ra1=4

1þ 0:492= Prð Þ9=16
h i4=9

¼ 0:68þ 0:670� ð1:12� 108Þ1=4

1þ 0:492=0:686ð Þ9=16
h i4=9 ¼ 53:4:

Alternatively Eq. (9.6) may be used for Nusselt number. However, Eq. (9.11) gives better
accuracy.

Heat transfer coefficient,

h ¼ k

L
Num ¼ 0:03522

0:25
� 53:4 ¼ 7:52W=ðm2KÞ:

Equation (i) gives

dT

ds
¼ �2

qdc
hðTs � T1Þþ erðT4

s � T4
surÞ

	 

¼ �2

8950� 0:02� 380
7:52� ð548� 298Þþ 0:2� 5:67� 10�8 � ð5484 � 2984Þ	 


¼ �0:083K=s:

Negative sign indicates cooling of the plate.
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Radiation heat transfer coefficient,

hr ¼ erðTs þ TsurÞðT2
s þ T2

surÞ
¼ 0:2� 5:67� 10�8 � ð548þ 298Þ � ð5482 þ 2982Þ ¼ 3:73W=ðm2KÞ:

Biot number,

Bi ¼ ðhþ hrÞL
k

¼ ð7:52þ 3:73Þ � ð0:02=2Þ
375

¼ 3� 10�4

Biot number Bi < < 0.1 hence assumption of uniform temperature of the plate is valid.

Example 11.60 A thin vertical plate (height H = 0.5 m and width W = 1 m) rejects 325 W
heat by convection and radiation. The surrounding air temperature is 20°C. The plate is
suspended in a large space with wall temperature of 20°C. If the plate surface emissivity is
0.1, determine the plate surface temperature.

Solution

Heat balance gives

325 ¼ qc þ qr ¼ 2AshðTs � T1Þþ 2AserðT4
s � T4

surÞ
¼ 2� ð0:5� 1:0Þ½hðTs � 293Þþ 0:1� 5:67� 10�8 � ðT4

s � 2934Þ� ðiÞ

where the heat transfer coefficient for laminar flow (assumed) is calculated from Eq. (9.6):

Num ¼ 0:59Ra1=4 ¼ 0:59� bg Ts � T1ð ÞH3

m2
Pr

� �1=4

or

h ¼ k

H
� 0:59� bg Ts � T1ð ÞH3

m2
Pr

� �1=4
ðiiÞ

Assuming, for trial, film temperature to be 50°C, the air properties are

q = 1.0949 kg/m3, l = 1.9512 � 10−5 N s/m2, k = 0.0.02799 W/(m K) and Pr = 0.703.

Substitution of values of various parameters in Eq. (ii) gives

h ¼ 0:02799
0:5

� 0:59� 1=ð50þ 273Þ � 9:81� Ts � 293ð Þ � 0:53

ð1:9512� 10�5=1:0949Þ2 � 0:703

" #1=4
:

¼ 1:778 Ts � 293ð Þ1=4

Substitution in Eq. (i) gives

325 ¼ 2� ð0:5� 1:0Þ½1:778� Ts � 293ð Þ1=4�ðTs � 293Þþ 0:1� 5:67� 10�8 � ðT4
s � 2934Þ�
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Solution by trial and error gives Ts = 350.5 K = 77.5°C. This gives film temperature
Tfm = (20 + 77.5)/2 = 48.75°C, which is very close to the assumed temperature of 50°C.
There is no need of retrial.

The Rayleigh number is

Ra ¼ bg Ts � T1ð ÞH3

m2
Pr ¼ 1=ð48:75þ 273Þ � 9:81� 350:5� 293ð Þ � 0:53

ð1:9512� 10�5=1:0949Þ2 � 0:703

¼ 4:85� 108\109:

The flow is laminar as assumed.
The problem can also be solved by assuming a trial value of the heat transfer coefficient to

estimate the surface temperature. For this method, refer next example.

Example 11.61 The door of a cold chamber (height H = 1.0 m and width W = 0.6 m) is
provided with 25 mm thick insulation [ki = 0.05 W/(m K)]. Temperature of the inside sur-
face of the door is 5°C and surrounding outside air is at 27°C. The emissivity of the outside
surface of the door is 0.8 and is having radiation heat exchange with the large room surface at
27°C. Determine the heat gain rate.

Solution

Heat balance for the door gives, refer Fig. 11.73,

qconduction ¼ qc þ qr

or

kiAs
ðTso � TsiÞ

d
¼ AshðT1 � TsoÞþAserðT4

sur � T4
soÞ

Due to small temperature difference, which is the driving force in natural convection, the
heat transfer coefficient is likely to have a low value. Assuming a trial value of h = 3 W/(m2

K), we get, on substitution of values of various parameters,

0:05� ðTso � 278Þ
0:025

¼ 3� ð300� TsoÞþ 0:8� 5:67� 10�8ð3004 � T4
soÞ:

Tsi = 278 K
Tso

ki = 0.05 
W/(m K)

δ = 25 mm

T∞ = 300 K

Fig. 11.73 Example 11.61

11.13 Radiation Heat Transfer Coefficient 877

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Solution of above equation by trial and error gives Tso = 295.5 K = 22.5°C.
For the estimate of the heat transfer coefficient, let film temperature [= (Tso + T∞)/2] is

25°C. Air properties at the film temperature are

q ¼ 1:1868 kg=m3; l ¼ 1:8363� 10�5 N s=m2; k ¼ 0:02608W=ðm KÞ and Pr ¼ 0:709:

Using estimated value of outside surface temperature Tso = 295.5 K and above air
properties, the Rayleigh number is

Ra ¼ bg T1 � Tsoð ÞH3

m2
Pr ¼ 1=ð25þ 273Þ � 9:81� 300� 295:5ð Þ � 13

ð1:8363� 10�5=1:1868Þ2 � 0:709

¼ 4:39� 108\109:

Flow is laminar. Equation (9.6) gives

Num ¼ 0:59Ra1=4 ¼ 0:59� ð4:39� 108Þ1=4 ¼ 85:4

and

h ¼ k

H
� Num ¼ 0:02608

1:0
� 85:4 ¼ 2:23W=ðm2 KÞ:

With this value of the heat transfer coefficient, we have

0:05� ðTso � 278Þ
0:025

¼ 2:23� ð300� TsoÞþ 0:8� 5:67� 10�8ð3004 � T4
soÞ;

which gives, by trial and error, Tso = 295.1 K = 22.1°C. The film temperature is
(22.1 + 27)/2 = 24.55°C. Retrial is not required.

The heat gain is

q ¼ kiAs
ðTso � TsiÞ

d
¼ 0:05� ð0:6� 1:0Þ � ð295:1� 278Þ

0:025
¼ 20:52W:

This problem can also be solved by the method presented in the previous example.
However, the method presented in this example is quite useful when Nusselt number cor-
relation is not of simple form.

Example 11.62 Figure 11.74 shows an experimental setup to determine emissivity of the
surface of a given specimen. Specimen is 300 mm in diameter. Surface temperature ts is
measured to be 150°C. Rate of heat dissipation (= the electric power) is 150 W. The sur-
rounding air is at 25°C. The setup is installed in a large space whose surface temperature may
be assumed to be 25°C. Determine the emissivity of the surface of the specimen.

Solution

The heat is rejected from the upper surface of the specimen by convection and radiation,
which equals the electric power. Hence,
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150 ¼ Ashðts � t1ÞþAserðT4
s � T4

surÞ

or

e ¼ 150� Ashðts � t1Þ
AsrðT4

s � T4
surÞ

¼ 150� ðp=4ÞD2 � h� ðts � t1Þ
ðp=4ÞD2rðT4

s � T4
surÞ

ðiÞ

The characteristic dimension L for the horizontal plate from Eq. (9.16) is

L ¼ As

P
¼ ðp=4ÞD2

pD
¼ D

4
¼ 0:3

4
¼ 0:075m:

Air properties at the film temperature [= (ts + t∞)/2] = 87.5°C are

q ¼ 0:9752 kg=m3; l ¼ 2:1189� 10�5 N s=m2; k ¼ 0:03080W=ðm KÞ; and Pr ¼ 0:695:

The Rayleigh number is

Ra ¼ bg ts � t1ð ÞL3
m2

Pr ¼ 1=ð87:5þ 273Þ � 9:81� 150� 25ð Þ � 0:0753

ð2:1189� 10�5=0:9752Þ2 � 0:695

¼ 2:11� 106:

When the upper side of the plate is heated,

Num ¼ 0:54Ra1=4L

for 104 �Ra� 107
ð9:17Þ

or

h ¼ k

L
Num ¼ k

L
� 0:54Ra1=4L

¼ 0:03080
0:075

� 0:54� ð2:11� 106Þ1=4 ¼ 8:45W=ðm2 KÞ:

Specimen disc
ts

Electric heater Back insulation

Cooled surface






 

  


  

  


  

  


  

  


  

  


  

  


  

  


  

  


  

  




 























































Side insulation

t∞ = 25oC

Fig. 11.74 Example 11.62
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Substitution of value of heat transfer coefficient and other parameters in Eq. (i) gives

e ¼ 150� ðp=4ÞD2 � h� ðts � t1Þ
ðp=4ÞD2rðT4

s � T4
surÞ

¼ 150� ðp=4Þ � 0:32 � 8:45� ð150� 25Þ
ðp=4Þ0:32 � 5:67� 10�8 � ð4234 � 2984Þ ¼

75:34
96:7

¼ 0:78:

Example 11.63 A 250 � 250 � 5 mm borosilicate glass sheet [q =2230 kg/m3,
c = 750 J/(kg K), k = 1.1 W/(m K) and e = 0.88] initially at a uniform temperature ti =
150°C is placed on an insulated horizontal surface with surrounding air temperature of 25°
C. The sheet is placed in a large space at 25°C. Determine the time required for the sheet
surface to reduce to 50°C.

Solution

For a thin plate, lumped heat capacity analysis must be applicable. Hence,

t � t1
ti � t1

¼ exp � hAs

cqV

� �
s

� �
ð6:2Þ

or

s ¼ � ln
t � t1
ti � t1

� �
cqV
hAs

� �
ðiÞ

Since the plate is rejecting heat by natural convection to the surrounding air at 25°C and
by radiation to the large space at 25°C, the combined coefficient h for convection and
radiation is

h ¼ hc þ hr

The linearized approximation of radiation coefficient based upon the average surface
temperature Tsm = (150 + 50)/2 = 100°C = 373 K is

hr ¼ erðTsm þ TsurÞðT2
sm þ T2

surÞ

or

¼ 0:88� 5:67� 10�8 � ð373þ 298Þ � ð3732 þ 2982Þ ¼ 7:63W=ðm2KÞ:

The free convection coefficient hc can be estimated from the correlation for the horizontal
flat plate. The characteristic dimension L for horizontal plate from Eq. (9.16) is

L ¼ As

P
¼ W2

4W
¼ W

4
¼ 250

4000
¼ 0:0625m:

Air properties at the mean film temperature [= (tsm + t∞)/2] = 62.5°C are
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q ¼ 1:05 kg=m3; l ¼ 2:0085� 10�5 N s=m2; k ¼ 0:028945W=ðm KÞ and Pr ¼ 0:7:

The Rayleigh number corresponding to the mean surface temperature is

Ra ¼ bg tsm � t1ð ÞL3
m2

Pr ¼ 1=ð62:5þ 273Þ � 9:81� 100� 25ð Þ � 0:06253

ð2:0085� 10�5=1:05Þ2 � 0:7

¼ 1:46� 106:

When the upper side of the plate is heated,

Num ¼ 0:54Ra1=4L

for 104 �Ra� 107
ð9:17Þ

or

h ¼ k

L
Num ¼ k

L
� 0:54Ra1=4L

¼ 0:028945
0:0625

� 0:54� ð1:46� 106Þ1=4 ¼ 8:69W=ðm2KÞ:

Substitution of the value of heat transfer coefficient and other parameters in Eq. (i) gives

s ¼ � ln
50� 25
150� 25

� �
� 750� 2230� ð0:25� 0:25� 0:005Þ

ð7:63þ 8:69Þ � ð0:25� 0:25Þ ¼ 825 s:

Biot number,

Bi ¼ hL

k
¼ hV

kAs
¼ ð7:63þ 8:69Þ � 0:005

1:1
¼ 0:074\0:1:

Hence, the assumption of applicability of lumped heat capacity analysis is valid.

Example 11.64 A 50 mm long horizontal metal fin [k = 15 W/(m K)] of uniform cross-
section (diameter 5 mm) is rejecting heat to the surrounding air at 25°C by convection and to
the surrounding surface at 25°C by radiation. The area of the fin surface is very small as
compared to the surrounding surface. Determine the rate of heat transfer if the fin base
temperature is 125°C. The heat transfer from the fin end may be neglected. The fin surface
emissivity is 0.6.

Solution

For a fin with insulated tip, from Eq. (3.5),

tL ¼ t1 þ ðts � t1Þ 1
coshmL

where m ¼
ffiffiffiffiffi
hP
kAc

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hpD

kðp=4ÞD2

q
¼

ffiffiffiffi
4h
kD

q
.
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Assuming, for trial, h = hr + hc = 20 W/(m2 K), we have

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 20

15� 0:005

r
¼ 32:66

and

tL ¼ t1 þ ðts � t1Þ 1
coshmL

¼ 25þð125� 25Þ 1
coshð32:66� 0:05Þ ¼ 62:6�C:

We assume a linear variation of temperature of the fin from base to the end to estimate the
heat transfer coefficient. For the linear variation of temperature of the fin, the average
temperature of the fin is

Tsm ¼ ts þ tL
2

¼ 125þ 62:6
2

¼ 93:8�C ¼ 366:8K; say 367K

Film temperature, Tfm = (tsm + t∞)/2 = (367 + 298)/2 = 332.5 K = 59.5°C. Air proper-
ties at film temperature are:

q ¼ 1:059 kg=m3; l ¼ 1:997� 10�5 N s=m2; k ¼ 0:02875W=ðm KÞ and Pr ¼ 0:7006:

The Rayleigh number is

Ra ¼ bg tsm � t1ð ÞD3

m2
Pr ¼ 1=332:5� 9:81� 367� 298ð Þ � 0:0053

ð1:997� 10�5=1:059Þ2 � 0:7006 ¼ 716

From Eq. (9.25),

Num ¼ 0:36þ 0:518Ra1=4d

1þ 0:559= Prð Þ9=16
h i4=9

¼ 0:36þ 0:518ð716Þ1=4

1þ 0:559=0:7006ð Þ9=16
h i4=9 ¼ 2:38

Convection heat transfer coefficient,

hc ¼ k

D
Num ¼ 0:02875

0:005
� 2:38 ¼ 13:68W=ðm2 KÞ:

The linearized approximation of radiation coefficient based upon the average surface
temperature is

hr ¼ erðTsm þ TsurÞðT2
sm þ T2

surÞ
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or

¼ 0:6� 5:67� 10�8 � ð367þ 298Þ � ð3672 þ 2982Þ ¼ 5:06W=ðm2 KÞ:

Hence, h = hr + hc = 13.68 + 5.06 = 18.74 W/(m2 K), which is not much different from
the assumed value of 20 W/(m2 K). Retrial with h = 19 W/(m2 K) may be carried out for
better approximation.

Revised parameter,

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 18:74
15� 0:005

r
¼ 31:6

Heat transfer rate from the fin, from Eq. (3.6),

qfin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hPkAc

p
ts � t1ð Þ tanhmL

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18:74� p� 0:005� 15� p=4� 0:0052

p
� 125� 25ð Þ

� tanhð31:6� 0:05Þ
¼ 0:855W:

Note: For a better estimate, numerical method of solution may be applied.

Example 11.65 An opaque, diffuse surface with spectral reflectivity as shown in Fig. 11.75
(a) is at a temperature of 1000 K. It is subjected to a spectral irradiation, Gl given in
Fig. 11.75(b). Determine net radiative heat flux to the surface.

Solution

Net radiative flux to the surface,

q00 ¼ aG� eEbðTsÞ
¼ Gabsorbed � erT4

s

ðiÞ

We calculate e and Gabsorbed.

λ, μm
∞

Gλ

40

800

400

62
λ, μm

∞

0.4

ρ λ

40

0.2

a b

Fig. 11.75 Example 11.65
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For an opaque surface, ek = 1 – qk = ak. From the given spectral reflectivity of the diffuse
surface, hemispherical total emissivity is

e ¼ e1F0�4000 þ e2F4000�1
¼ ð1� q1ÞF0�4000 þð1� q2Þð1� F0�4000Þ
¼ ð1� 0:4Þ � ð0:48085Þþ ð1� 0:2Þ � ð1� 0:48085Þ
¼ 0:70383:

where F0�4000 ¼ 0:48085 for k1T ¼ 4� 1000 ¼ 4000 :
Absorbed irradiation,

Gabsorbed ¼ ak1 � ½Gk1 � ðk1 � 0Þ=2� þ ak1 � ½Gk1 � ðk2 � k1Þ�þ ak2 � ½Gk2 � ðk3 � k2Þ�

or

Gabsorbed ¼ ð1� 0:4Þ � ½800� ð2� 0Þ=2� þ ð1� 0:4Þ � ½800� ð4� 2Þ� þ ð1� 0:2Þ � ½400� ð6� 4Þ�
¼ 2080W=m2:

Hence, from equation (i),

q00 ¼ Gabsorbed � erT4
s ¼ 2080� 0:70383� 5:67� 10�8 � 10004 ¼ �37827W=m2:

Negative sign indicates that the net radiative flux is away from the surface.

Example 11.66 What will be the temperature indicated by a thermocouple when thermo-
couple sheath (diameter 4 mm) is located horizontal in a large room whose wall temperature
is 30°C? Surrounding quiescent air is at 22°C. Emissivity of thermocouple sheet is 0.5.

Solution

Energy balance on the thermocouple gives

qc ¼ qr

or

hA1ðT1 � TaÞ ¼ e1A1rðT4
w � T4

1 Þ ðiÞ

where A1 is the surface area of the thermocouple sheath. Thermocouple sheath is a small
body in a large enclosure (room).

We determine heat transfer coefficient h for the horizontal cylindrical sheath of thermo-
couple in quiescent air from Eq. (9.25).
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Assuming thermocouple temperature as 26°C, the film temperature is (26 + 22)/2 = 24°C,
air properties at 24°C are

q ¼ 1:1913 kg=m3; l ¼ 1:8314� 10�5 N s=m2; k ¼ 0:026W=ðm KÞ and Pr ¼ 0:7092:

Rayleigh number,

Rad ¼ bg t1 � tað Þd3
m2

Pr

¼ 1=ð25þ 273Þ � 9:81� 26� 22ð Þ � 0:0043

ð1:8314� 10�5=1:1913Þ2 � 0:7092

¼ 25:

Nusselt number,

Num ¼ 0:36þ 0:518Ra1=4d

1þ 0:559= Prð Þ9=16
h i4=9

¼ 0:36þ 0:518� 251=4

1þ 0:559=0:7092ð Þ9=16
h i4=9 ¼ 1:24

Heat transfer coefficient,

h ¼ k

d
Num ¼ 0:026

0:004
� 10:24 ¼ 8:06W=ðm2 KÞ:

Substitution in Eq. (i) gives

8:06� ðT1 � 295Þ ¼ 0:5� 5:67� 10�8 � ð3034 � T4
1 Þ

Solution by trial and error gives T1 = 297.2 K = 24.2°C. Retrial with T1 = 24.2°C may
be made.

The thermocouple error is because of the radiation exchange with the room wall. It will
reduce with decrease in the emissivity of the sheath.

Example 11.67 A shallow pan of water is exposed to quiescent ambient air [t∞ = 15°C and
h = 7 W/(m2 K)] and sky (Tsky = 235 K) at night. Determine water surface temperature.
Assume water surface as diffuse gray with e = 0.95.

Solution

Energy balance on the water surface gives

eArT4
s � aAG4

sky ¼ hAðT1 � TsÞ
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where

Ts = water surface temperature, K
Gsky = irradiation from sky = rTsky

4

a = absorptivity of water surface = e for gray surface

Substitution gives

eArT4
s � eArT4

sky ¼ hAðT1 � TsÞ

or

erðT4
s � T4

skyÞ ¼ hðT1 � TsÞ

Substitution of the values of various parameters gives

0:95� 5:67� 10�8 � ðT4
s � 2354Þ ¼ 7� ½ð273þ 15Þ � Ts�

By trial and error, we get water surface temperature Ts = 270.36 K. Since water surface
temperature is less than 273 K, the water surface will freeze.

Example 11.68 A vertical plate of height L = 1.8 m is suspended in still air at 300 K. One
of the surfaces of the plate with diffuse coating of given spectral absorptivity distribution is
exposed and subjected to an irradiation of 1000 W/m2 from a source at 5500 K while the
other side of the plate is insulated, refer Fig. 11.76. Determine the plate steady state
temperature.

Solution

Heat balance for the plate surface gives
Radiation absorbed by the plate = heat radiated by the plate + heat rejected by convection
or

AaG ¼ AerT4
s þ hAðTs � T1Þ

L, Ts, αλ

T∞ = 300 K

λ, μm
∞

0.8

α2 = 0.1

αλ

10

Irradiation, G =
1000 W/m2

.

Fig. 11.76 Example 11.68
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or

aG ¼ erT4
s þ hðTs � T1Þ ðiÞ

Since the irradiation is from a source at 5500 K, the hemispherical total absorptivity of the
surface, from the given spectral absorptivity distribution for the surface, is

a ¼ a1ðF0�5500Þþ a2ðF5500�1Þ
¼ 0:8� 0:6906þ 0:1� ð1:0� 0:6906Þ
¼ 0:5834

where k1T ¼ 1� 5500 ¼ 5500 for which F0�5500 ¼ 0:6906 from Table 10.3.
Since emission from the plate is likely to at wavelength greater than 1 lm, we assume

plate emissivity e = 0.1. For natural convection condition, heat transfer coefficient h may be
assumed to be 5 W/(m2 K). Hence, Eq. (i) gives

0:5834� 1000 ¼ 0:1� 5:67� 10�8 � T4
s þ 5� ðTs � 300Þ:

By trial and error, Ts = 390 K from above equation. Using this estimate of the plate
surface temperature, we can estimate the value of plate emissivity and heat transfer
coefficient.

For Ts = 390 K, the total hemispherical emissivity corresponding to the temperature of
the surface, knowing that ek = ak, is

e ¼ a1ðF0�390Þþ a2ðF390�1Þ
¼ 0:8� 0:0þ 0:1� ð1:0� 0:0Þ ¼ 0:1:

where k1T ¼ 1� 390 ¼ 390 for which F0�390 � 00:0 from Table 10.3. This estimate val-
ues of the emissivity is the same as assumed

Mean film temperature Tm = (Ts + T∞)/2 = (390 + 300)/2 = 345 K = 72°C. Considering
air thermophysical properties at 75°C from Table A.5 for trial, we have

l ¼ 2:0658� 10�5 kg=ðm sÞ; q ¼ 1:0052 kg=m3; Pr ¼ 0:697; k ¼ 0:0299W=ðm KÞ and b
¼ 1=345K�1

The Rayleigh number,

Ra ¼ q2bg Ts � T1ð ÞL3
l2

Pr

¼ ð1:0052Þ2 � 1=345� 9:81� 390� 300ð Þ � 1:83

ð2:0658� 10�5Þ2 � 0:697

¼ 2:46� 1010:
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Using relation given by Eq. (9.10),

Num ¼ 0:825þ 0:387Ra1=6

1þ 0:492= Prð Þ9=16
h i8=27

8><
>:

9>=
>;

2

for 10�1 �Ra� 1012

¼ 0:825þ 0:387ð2:46� 1010Þ1=6

1þ 0:492=0:697ð Þ9=16
h i8=27

8><
>:

9>=
>;

2

¼ 334:76:

Hence, heat transfer coefficient,

h ¼ Numk
L

¼ 334:76� 0:0299
1:8

¼ 5:56W=ðm2 KÞ:

Substitution in Eq. (i) gives

0:5834� 1000 ¼ 0:1� 5:67� 10�8 � T4
s þ 5:56� ðTs � 300Þ:

By trial and error, Ts = 383 K. The new estimate of the plate surface temperature Ts will
have only marginal effect on the heat transfer coefficient hence further retrial is not required.

Example 11.69 An opaque diffuse surface cylinder 1 (30 mm in diameter and 200 mm
long) with given spectral absorptivity distribution is located in a large enclosure 2 whose
surface is at 1000 K, refer Fig. 11.77. Determine the equilibrium temperature of the cylinder
if it is subjected to cross-flow of air (air is at T∞ = 300 K and velocity U = 3 m/s).

Solution

Heat balance for the cylinder surface gives

Radiation absorbed by the cylinder surface
= heat radiated by the cylinder + heat rejected by convection

or

AaG ¼ AerT4
s þ hAðTs � T1Þ

λ, μm
∞

α2 = 0.6

α1 = 0.1

αλ

2.50

1 (αλ)
2

Fig. 11.77 Example 11.69
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or

aG ¼ erT4
s þ hðTs � T1Þ ðiÞ

Since the irradiation is from the enclosure surface at 1000 K, the hemispherical total
absorptivity of the surface, from the given spectral absorptivity of the surface, is

a ¼ a1ðF0�4000Þþ a2ðF4000�1Þ
¼ 0:1� 0:1617þ 0:6� ð1:0� 0:1617Þ ¼ 0:51915;

where k1T ¼ 2:5� 1000 ¼ 2500 for which F0�2500 ¼ 0:1617 from Table 10.3.
Since majority of the emission from the cylinder surface is likely to at wavelength greater

than 2.5 lm, we assume cylinder surface emissivity e = 0.6 for first trial. For forced con-
vection condition heat transfer coefficient h may be assumed to be 30 W/(m2 K). Hence,
Eq. (i) gives

0:51915� 5:67� 10�8 � 10004 ¼ 0:6� 5:67� 10�8 � T4
s þ 30� ðTs � 300Þ:

By trial and error, Ts = 805 K from above equation. Using this estimate of the cylinder
surface temperature, we can estimate the value of cylinder surface emissivity and heat
transfer coefficient.

For Ts = 805 K, the total hemispherical emissivity corresponding to the temperature of
the surface, knowing that ek = ak, is

e ¼ a1ðF0�2000Þþ a2ðF2000�1Þ
¼ 0:1� 0:06886þ 0:6� ð1:0� 0:06886Þ ¼ 0:566;

where k1T ¼ 2:5� 805 ¼ 2012:5 for which F0�2012:5 ¼ 0:06886 from Table 10.3.
Mean film temperature Tm = (Ts + T∞)/2 = (300 + 805)/2 = 552.5 K = 279.5°C. Con-

sidering air thermophysical properties at 275°C from Table A.5 for trial, we have

l ¼ 2:841� 10�5 kg=ðm sÞ; q ¼ 0:6448 kg=m3; Pr ¼ 0:68 and k ¼ 0:04347W=ðmKÞ

The Reynolds number,

Re ¼ qUd
l

¼ 0:6448� 3� 0:03
2:841� 10�5

¼ 2043:

Using relation given by Eq. (8.47) with values of C and n from Table 8.11,
or

h ¼ 0:683Re0:466Pr1=3
k

D

¼ 0:683� 20430:466 � 0:681=3 � 0:04347
0:03

¼ 30:35:
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Using estimated emissivity and heat transfer coefficient values, the cylinder surface
temperature from Eq. (i) is estimated again:

0:51915� 5:67� 10�8 � 10004 ¼ 0:566� 5:67� 10�8 � T4
s þ 30:35� ðTs � 300Þ

By trial and error Ts = 812 K, which is very close to the earlier estimate and hence further
iteration is not required.

Example 11.70 For basically a horizontal flat roof surface (insulated from the back side),
two surface coatings are available. The spectral distribution of absorptivity ak for the coating
A is shown in Fig. 11.78a. The absorptivity of gray coating B is independent of the
wavelength and is 0.6. The roof is exposed to solar irradiation during daytime. Assuming
negligible irradiation to the roof surface by sky emission and negligible convection effect,
suggest suitable coating for minimum temperature of the roof surface.

Solution

Energy balance on the roof surface gives

erT4
s ¼ aGsun

or

Ts ¼
ffiffiffi
4

p aGsun

er
/

ffiffiffi
4

p a
e
; ðiÞ

where a is the absorptivity of the roof surface for solar radiation and e is the emissivity of the
surface for infrared radiation. Ts is the equilibrium roof surface temperature.

Coating A:
The Sun, whose surface temperature is nearly 5800 K, emits 99% of its radiation below
k = 4 lm hence absorptivity for sun irradiation in Eq. (i) is 0.5. The radiation from the
heated surface is likely to be at k > 4 hence e = 0.1. This gives a/e = 0.5/0.1 = 5.

a b
λ, μm

∞

αλ

40

Coating A

λ, μm
∞

0.5

αλ

40

0.1

Coating A

0.6
Coating B

Fig. 11.78 Example 11.70
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Coating B:
For coating B, a = e = 0.6, Hence, a/e = 1.

Because of lower a/e value, the coating B is likely to give a lower roof surface
temperature.

Note: The ideal surface coating for low temperature of the roof surface must have a very
low absorptivity for sun radiation and high emissivity for infrared radiation, refer
Fig. 11.78b.

Example 11.71 Figure 11.79 shows a very long tunnel whose upper wall is at 300 K and
lower wall is insulated. The insulated wall is exposed to a row of regularly spaced cylindrical
heating elements with surface temperature of 800 K. The lower surface is also exposed to
forced air current at 400 K which flows parallel to the wall giving a heat transfer coefficient
of 100 W/(m2 K). Determine the temperature of the lower wall under steady state condition.
Assume all surfaces to be black.

Solution

Heat balance on the lower wall gives
Radiation from the heating elements
= Radiation heat loss to the upper wall + convection heat loss to the flowing air
or

A1F12rðT4
2 � T4

1 Þ ¼ A1F13rðT4
1 � T4

3 Þþ hA1ðT1 � T1Þ

or

F12rðT4
2 � T4

1 Þ ¼ F13rðT4
1 � T4

3 Þþ hðT1 � T1Þ ðiÞ

View factor for row of infinite cylinders parallel to an infinite plate from Table 11.1 is

F12 ¼ 1� 1� x2
� �1=2 þ x tan�1 1� x2

� �
=x2

	 
1=2
where p = pitch and x = D/p. Here x = 15/30 = 0.5. Hence,

F12 ¼ 1� ð1� 0:52Þ1=2 þ 0:5 tan�1½ð1� 0:52Þ=0:52�1=2 ¼ 0:6576:

This gives

F13 ¼ 1� F12 ¼ 1� 0:6576 ¼ 0:3424:

p
D

1

2 3 Dia D = 15 mm
Pitch p = 30 mm

h, T∞

Fig. 11.79 Example 11.71
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Substitution of the values of various terms in Eq. (i) gives

0:6576� 5:67� 10�8 � ð8004 � T4
1 Þ

¼ 0:3424� 5:67� 10�8 � ðT4
1 � 3004Þþ 100� ðT1 � 400Þ

By trial and error, T1 ¼ 514:5 K.

Example 11.72 A vertical parallel plate enclosure consists of two square plates (1.0 m
1.0 m) separated by a distance of 30 mm. One of the plates is maintained at a uniform
temperature of 40°C (e = 0.8) and while the other is at a uniform temperature of 10°C
(e = 0.6). Air at atmospheric pressure is filled in the enclosure. Calculate the heat transfer
across the space. The sides are insulated.

Solution

With the air space between plates, heat is transferred by radiation and free convection.
The radiation heat transfer between parallel plates is

qr12 ¼
Eb1 � Eb2
1
e1
þ 1

e2
� 1

¼ rAðT4
1 � T4

2 Þ
1
e1
þ 1

e2
� 1

¼ 5:67� 10�8 � ð1� 1Þ � ½ð40þ 273Þ4 � ð10þ 273Þ4�
1
0:8 þ 1

0:6 � 1

¼ 94:18W:

Air properties at mean temperature (40 + 10)/2 = 25°C are
q ¼ 1:1868 kg=m3; l ¼ 1:8363� j10�5 Ns=m2; k ¼ 0:02608W=ðmKÞ and Pr ¼ 0:709:

Rayleigh number,

RaS ¼ bg t1 � t2ð ÞS3
m2

Pr

¼ 1=ð25þ 273Þ � 9:81� 40� 10ð Þ � 0:033

ð1:8363� 10�5=1:1868Þ2 � 0:709

¼ 111380:

From Eq. (9.30),

NuS ¼ hS

k
¼ 0:42ðRaSÞ1=4Pr0:012 L

S

� ��0:3

¼ 0:42� ð111380Þ1=4 � 0:7090:012 � 1
0:03

� ��0:3

¼ 2:67
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or

h ¼ 2:67� k

S
¼ 2:67� 0:02608

0:03
¼ 2:32W=ðm2 KÞ:

The convection heat transfer rate is given by

qc12 ¼ hAðt1 � t2Þ
¼ 2:32� 1� 1� ð40� 10Þ ¼ 69:6W:

Total heat transfer rate,

q12 ¼ qr12 þ qc12 ¼ 94:18þ 69:6 ¼ 163:78W:

11.14 Summary

Considering radiation exchange between two black surfaces, the following basic integral
equation of the shape factor have been derived which represent the fraction of the total
radiation emitted by a surface intercepted by other surface.

F12 ¼ 1
A1

� � Z
A1

Z
A2

dA1dA2 cos/1 cos/2

ps2
ð11:12Þ

and

F21 ¼ 1
A2

� � Z
A1

Z
A2

dA1dA2 cos/1 cos/2

ps2
ð11:13Þ

It is to note that the shape factor is merely a function of the geometry or the orientation of
the two surfaces. A number of illustrative examples on calculation of the shape factor from
their basic integral equation have been given. From which, the readers must have realized
that the evaluation of the integration is not an easy affair in all cases. Researchers have
evaluated shape factors for some commonly encountered configurations in actual practice.
They are available in the form of charts (Fig. 11.4a–e or equations (Table 11.1). Salient
features of the shape factor have also been presented in Sect. 11.3.1, which may help in
evaluation of the shape factor in some cases.

Radiation exchange between gray bodies is a complex process due to the process of
multiple reflection and absorption. To illustrate the same, some comparatively simple cases
have been discussed in Sects. 11.5 to 11.8, which clearly demonstrates that the determination
of the radiation exchange between gray bodies is a difficult task.

All radiation exchange problems, between black or gray bodies, can be readily solved by
electrical analogy-based method wherein the actual system is reduced to an equivalent
electric network. We introduced two new terms irradiation G and radiosity J, and then
defined surface resistance (1 – e)/Ae and space resistance 1/A1F12, which provide the basis for
the electric network method of solving radiation heat exchange problems. The effect of the
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emissivity of a diffuse and opaque gray surface is taken account by connecting potential Eb to
potential J through the surface resistance (1 – e)/Ae, while the shape factor effect between two
radiosity potentials J1 and J2 is accounted by the space resistance 1/A1F12.

Application of the electric network method has been explained taking various illustrative
examples. It is to note that the solution of the network problems basically requires knowledge
of electrical engineering.

Radiation heat transfer between two surfaces can be reduced by placing a thin opaque
partition between the surfaces known as radiation shield. The radiation shield introduces an
additional resistance in the radiation path. From the analysis, it has been shown that the
shields must be made of very low absorptivity and high reflectivity materials, such as thin
sheets of aluminium and copper.

Finally, Newton’s law of cooling and overall heat transfer coefficient which accounts for
both convection and radiation have been presented and discussed.

Review Questions

11:1 Define shape or geometrical or view factor in reference to the radiation heat
exchange. Derive a general relation of the factor for radiation energy exchange
between two blackbodies.

11:2 Prove the following relation for two surfaces 1 and 2 exchanging radiation energy

A1F12 ¼ A2F21;

where A and F are area and shape factors, respectively.
11:3 Discuss salient features of the radiation shape factor.
11:4 Define irradiation and radiosity. Find the net rate at which the radiation energy leaves

a gray surface in terms of radiosity and emissivity.
11:5 Using the definition of radiosity and irradiation develop an expression for the radiant

energy exchange between two gray bodies.
11:6 Prove that the radiation heat exchange between two long concentric cylinders is

given by

q12 ¼ A1r T4
1�T4

2

� �
=½1=e1 þ A1=A2ð Þð1=e2� 1Þ�;

where e1 and e2 are the emissivities of the inner and the outer cylinders, respectively.
Assume that there is no radiation heat loss from the cylinder ends.

11:7 For a system consisting of two diffuse gray surfaces 1 and 2 at different temperatures
T1 and T2, respectively, connected by a single refractory surface, draw the radiation
network (electrical analog) and write the equation of q12.

11:8 A system consists of three diffuse gray surfaces which see each other and nothing
else. Draw the radiation network (electrical analog). Show all the resistances on the
network. Also write the nodal equations and discuss how will you proceed to find
heat transfer from each surface?

11:9 Show that a thin black screen (radiation shield) introduced between two black sur-
faces reduces the radiation heat transfer by half. Develop general relation of reduction
in heat transfer for n shields.
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11:10 Discuss various methods of reducing the temperature measurement error from ther-
mometer and thermocouples.

11:11 State Newton’s law of cooling and show that the temperature of a body falls expo-
nentially when the body is rejecting heat by convection and radiation with a small
temperature difference.

11:12 Define radiation heat transfer coefficient.
11:13 How would you determine specific heat of a solid using Newton’s law of cooling?

Problems
11:1. Hot flat plate of small area ΔA1 moves a distance d from location A directly below

sensor S of small area ΔA2 at a vertical distance H = 0.8 m as shown in Fig. 11.80.
Determine the distance d at which the sensor signal will be 50% of that directly
below the sensor.
[Ans. The sensor signal is proportional to the radiation leaving plate (area ΔA1) and
intercepted by the sensor of area ΔA2. Hence, at location A, qA ¼ In1

DA1DA2 cos 0 cos 0
H2 ¼

In1
DA1DA2

H2 and at location B, qB ¼ In1
DA1DA2 cos h cos h

s2 ¼ In1
DA1DA2 cos2 h

s2 . Ratio of the qB

and qA is qB
qA
¼ cos2 h

s2 � H2 ¼ H2=s2

s2 � H2 ¼ H4

s4 ¼ H4

ðH2 þ d2Þ2. Substituting
qB
qA
¼ 0:5 and

H = 0.8, we get d = 0.514 m.]
11:2. Determine sh6ape or configuration factor F12 for a hemispherical shell and a flat

surface forming an enclosure, Fig. 11.81.
[Ans. From reciprocity relation, F12 = (A2/A1)F21; F21 + F22 = 1, but F22 = 0, so
F21 = 1 hence F12 = (A2/A1) = pr2/(2pr2) = 0.5]

11:3. Two diffuse-black surfaces, a small flat disc 1 of area dA1 and a large disc 2 of radius
R are parallel to each other and directly opposed. A line joining their centers is
normal to both the surfaces. The larger disc is located at a height H from the smaller
one. Determine the shape factor F12.
[Ans. F12 = R2/(R2 + H2)]

11:4. A rolled steel sheet (e1 = 0.4) at 600 K is lying in a large space, which can be
regarded at an average temperature of 300 K. Estimate the heat loss per m2 of the
plate area from one side of the plate by radiation only.

ΔA1

ΔA2

θ

sH

B

θ

x
d

S

A

Fig. 11.80 Problem 11.1
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[Ans. A1 � A2, f12 = e1 and q12 = A1e1r (T1
4
– T2

4) = 2755.6 W/m2.]
11:5. The Sun can be regarded as nearly a spherical radiation source of diameter Ds of

approximately 1.4 � 109 m and is at a distance s = 1.5 � 1011 m from the Earth. If
the solar flux outside the Earth’s atmosphere, i.e. the solar constant is 1350 W/m2,
determine the emissive power of the Sun and its surface temperature.

[Ans. From Example 11.9, q12 ¼ rT4
s

D2
s

4s2 or E ¼ rT4
s ¼ q12 � 4s2

D2
s
¼1350�

4�ð1:5�1011Þ2
ð1:4�109Þ2 ¼ 6:2� 107 W/m2; surface temperature of the Sun,

Ts ¼ E
r

� �1=4¼ 6:2�107
5:67�10�8

� �1=4
¼ 5750 K.]

11:6. Prove that the interchange factor for two concentric spheres is

1
e1

þ R1

R2

� �2 1
e2

� 1

� �" #�1

where e1 and e2 are the total emissivities of the two spheres. The outside radius of the
inner sphere is R1 and inside radius of the outer sphere is R2.
[Ans. We have proved that f12 = [1/e1 + (A1/A2)(1/e2 – 1)]−1 for concentric spheres.
Substitution of A1/A2 = (R1/R2)

2 gives the result.
11:7. Two concentric spheres, 210 mm and 300 mm in diameter, with the space between

them evacuated are to be used to store liquid air at –153°C in a room at 27°C. The
surfaces of the spheres are flushed with aluminium (e = 0.03). Find the rate of
evaporation of liquid air if its latent heat of vaporization L is 200 kJ/kg. Assume that
the outer sphere temperature is equal to the room temperature.
[Ans. q12 = A1 � r (T1

4
– T2

4)/[1/e1 + A1/A2(1/e2 – 1)] = p � 0.212 � 5.67 � 10−8

(1204 – 3004)/[1/0.03 + (0.21/0.3)2 � (1/0.03 – 1)] = –1.26 W; Rate of evapora-
tion = (q12/L) = 22.7 g/h.]

11:8. Two parallel discs of 600 mm diameter each are spaced 300 mm apart. The tem-
peratures of the discs are maintained at 800 K and 500 K with emissivities of 0.2 and
0.4, respectively. The discs are located in a very large space whose walls are
maintained at 310 K. Determine the rate of heat loss by radiation from the inside
surface of each disc.
[Ans. L = R = 0.3 m. From Table 11.1, F12 = 1 + (L2/2R2)[1 – (1 + 4R2/
L2)1/2] = 0.382. Eb1 = rT1

4 = 23224, Eb2 = rT2
4 = 3543.75, Eb3 = rT3

4 = 523.63. The
network is shown in Fig. 11.82.
A1 = A2 = 0.2828 m2, (1 – e1)/A1e1 = 14.147, (1 – e2)/A2e2 = 5.305, F13 = F23 = 1 –

F12 = 0.618, 1/A1F12 = 9.258, 1/A1F13 = 1/A2F23 = 5.723.

r
2

1

Fig. 11.81 Problem 11.2
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The nodal equations are (Eb1 – J1)/14.147 + (Eb3 – J1)/5.723 + (J2 – J1)/9.258 = 0,
(Eb2 – J2)/5.305 + (Eb3 – J2)/5.723 + (J1 – J2)/9.258 = 0; The equations give
J1 = 5802.76, J2 = 2941.66. Hence, q1 = (Eb1 – J1)/14.147 = 1231.44 W, q2 = (Eb2

– J2)/5.305 = 113.49 W, q3 = [(J1 – Eb3) + (J2 – Eb3)]/
5.723 = 1344.95 W = q1 + q2.]

11:9. Following the procedure used for the estimate of F12 in Example 11.36, determine the
heat exchange from surface 2 to 1.
[Ans. Changing the nomenclature of the surfaces, we have A1 = 3.2 � 4 m2,
A2 = 5 � 4 m2, e1 = 0.7, e2 = 0.8, T1 = 350 K, T2 = 300 K. For Z/X = 5/4 = 1.25,
Y/X = 3.2/4 = 0.8, F12 � 0.24; Rt = [(1 – e1)/A1e1 + 1/A1F12 + (1 – e2)/
A2e2] = 0.3715; q12 = r (T1

4
– T2

4)/Rt = 1054.1 W, which is nearly the same as found
earlier.]

11:10. Two parallel rectangular plates 1 and 2, 3 m � 2 m in size and 2 m apart, are joined
on their long edge by a third plate 3 as shown in Fig. 11.83. Determine shape factors
F12 and F13.

[Ans.. Surface 1 to 2: X = 3 m, Y = 2 m and L = 2 m, for X/L = 1.5 and Y/L = 1.0,
F12 = 0.255; Surface 1 to 3: F13 = 0.225 for Z/X = 0.66 and Y/X = 0.66.]

11:11. Determine the radiation energy impinging upon a 2 m � 2 m wall 1.5 m away from
a 50 mm diameter spherical body at 1000 K as shown in Fig. 11.84. Assume the wall
to be a blackbody.
[Ans. The sphere is very small compared to the wall; hence, it can be treated as an
infinitesimal disc of area p/4 � 502 = 1963.5 mm2. Considering 1/4th of the wall a,
F12a = 0.09 from Eq. (11.18) for L1 = L2 = 1 m and L = 1.5. For the total wall area,
F12 = 0.09 � 4 = 0.36; q12 = A1F12r (T1)

4 = 40.08 W.]
11:12. Two parallel square plates, each 5 m2, are separated by 3 mm distance. One of the

plates has a temperature of 2000 K and surface emissivity of 0.7, while the other

(1 - 1)/A1 1

1/A1F12
Eb1

(800 K)
2

(1 – 2)/A2 2

1/A1F13 1/A2F23

J2J1 Eb2
(500 K)

Eb3
(310 K)

Fig. 11.82 Problem 11.8

2 m

1
3

2

3 m

2 m

Fig. 11.83 Problem 11.10
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plate surface has a temperature of 1000 K and a surface emissivity of 0.8. Find the
net energy exchange by radiation between the plates.
If a thin polished metal sheet of surface emissivity of 0.15 on both sides is now
located centrally between the two plates, find out the altered net heat transfer. The
convection and edge effects may be neglected.
[Ans. The gap is very small; hence, equation of infinite parallel planes can be used.
q12 = f12 A1r(T1

4
– T2

4), where f12 = [1/e1 + 1/e2 – 1]−1 without shield. f12 = [(1/
e1 + 1/e3 – 1) + (1/e2 + 1/e3 – 1)]−1 with shield. Substitution of the values gives
(q12)without shield = 2.533 � 106 W, (q12)with shield = 303.5 � 103 W.]

11:13. Which curve of Fig. 11.85 represents correctly the variation of the radiation shape
factor for parallel black planes of finite size?
[Ans. Curve A; As the gap between the plates increases the fraction of the radiation
leaving the edge of the plate increases and F12 reduces. When the gap is very small,
the configuration can be regarded as representing the infinite parallel plates and
F12 = 1]

11:14. A thermocouple probe of emissivity 0.85 gives the temperature reading of 600 K of a
gas flowing through a 0.9 m diameter duct having wall temperature of 500 K. Find
out the error in the temperature measurement. The convection coefficient between the
gas and thermocouple is 125 kJ/(m2 h °C).
[Ans. The thermocouple bead area is very small compared to the pipe surface area,
hence f12 = e1. The heat balance equation gives [hA1(Tg – Tc) = A1e1r (Tc

4
– Ts

4)],

1.5 m
2 m

2 m

a

2

1

Fig. 11.84 Problem 11.11

F12

C

0

1

A

B

D

Gap between the plates 

Fig. 11.85 Problem 11.13
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where Tc is the thermocouple reading, Tg the true gas temperature, and Ts the pipe
wall temperature. Substitution of the values gives, error = (Tg – Tc) = 93.14°C.]

11:15. A mercury-in-glass thermometer, hanged in a room, indicates a temperature of 25°C.
The walls of the room are at a temperature of 40°C. Calculate the true temperature of
the room air if the thermometer bulb emissivity is 0.9 and the heat transfer coefficient
from the room air to the thermometer bulb is 8 W/(m2 K).
[Ans. Use hA1(Ta – Tb) = A1e1r(Tw

4
– Tb

4). Error = 10.92°C and hence the actual
room air temperature = 25 – 10.92 = 14.18°C.]

11:16. Air at atmospheric pressure flows over a thermocouple bead with a velocity U of
2.5 m/s. The temperature of the pipe wall is 650 K and the thermocouple indicates a
temperature of 850 K. The diameter of the thermocouple bead d is 1.0 mm and
emissivity e is 0.3. Determine the true temperature of the air.
[Ans. Thermophysical properties of air at 850 K (for trial): k = 0.0603 W/(m K),
l = 3.756 � 10−5 kg/(m s), q = 0.4149 kg/m3, Pr = 0.692; Re = qUd/l = 27.55;
Nu = 4.28 from Eq. (8.55) neglecting (l∞/lw); h = Nuk/d = 258 W/(m2 K); For
Tbead = 850 K and Twall = 650 K, equation h(Ta – Tbead) = er(Tbead

4
– Twall

4 ) gives
Ta = 872.6 K; Iteration may be carried out using thermophysical properties at mean
air temperature Tm = (872.6 + 850)/2 � 861 K.]

11:17. Figure 11.86 shows a cylindrical cavity whose surface can be assumed to be gray
(e = 0.6). Find the rate of emission from the cavity to the surrounding at 293 K if the
cavity surface temperature is 900°C.
[Ans. Assume cavity to be covered with a black surface 2 at 293 K as shown in the
figure. e1 = 0.6, T1 = 1173 K, R = 0.1 m; H = 0.1 m; A1 = pDH + (p/4)
D2 = 0.09425 m2; A2 = p R2 = 0.031416 m2; F12 = A2/A1 = 0.3333; Rt = (1 – e1)/
(A1e1) + 1/(A1F12) = 38.9; q12 = r (T1

4
– T2

4)/Rt = 2748.72 W; Note (1 – e2)/
(A2e2) = 0]

11:18. Determine view factor F12 for the following configurations:
(i) A sphere lying on an infinite horizontal plane, Fig. 11.87a
(ii) Long inclined planes where plate end edge indicated by B in Fig. 11.87b is

100 mm above the longitudinal axis of plane 1 passing through center C in the
figure.

[Ans. (i) Put a parallel infinite plane 3 as shown in figure. Then F11 + F12 + F13 = 1;
for spherical surface F11 = 0. Since F12 = F13 (by symmetry), F12 = F13 = 0.5. From
reciprocity relation F21 = (A1/A2) F12. Since A2 = ∞, F21 = 0.
(iii) F11 + F12 + F13 = 1. Since F12 = F13 (by symmetry), F12 = F13 = 0.5. From
reciprocity relation F21 = (A1/A2) F12. Since A2 = LW√2, A1 = 2WL, F21 = (2WL/
LW√2) � 0.5 = 0.707.]

H = 0.1 m

R = 0.1 m

2
=
0
.
1
m

Fig. 11.86 A cylindrical cavity (Problem 11.17)
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11:19. Two infinite parallel plates, one is black (1) and other (2) is gray with emissivity 0.8,
are at temperatures 1000 K and 600 K, respectively. Determine the irradiation on
plate 1.
[Ans. Eb = rT1

4, radiosity of surface 2 = irradiation for surface 1 = E2 + q2Eb =
e2T2

4 + q2rT1
4 = re2T2

4 +(1 – e2) rT1
4 = r[e2T2

4 +(1 – e2) T1
4] = 5.67 � 10−8 � [0.8

6004 + (1 – 0.8) � 10004] = 17218 W/m2.]
11:20. A small object at 500 K and spectral emissivity as given in Fig. 10.11 is suspended

in a large furnace (wall temperature 1300 K and total emissivity 0.8). Determine
(a) hemispherical total surface emissivity and absorptivity of the object, (b) net
radiative flux to the surface.
[Ans. (a) (i) Hemispherical total emissivity: k1T = 2 � 500 = 1000 for which F0-

1000= 0.321 � 10−3; k2T = 7 � 500 = 3500 for which F0-3500= 0.382635;
Thus, F1000-3500= 0.382635 – 0.321 � 10−3 = 0.382314; F3500-∞= 1- 0.382635 =
0.617365; e ¼ e1ðF0�1000Þþ e2ðF1000�3500Þþ e3ðF3500�1Þ = 0.1 � 0.321 � 10−3 +
0.4 � 0.382314 + 0.2 � 0.617365 = 0.27643; (ii) Absorptivity of the object for the
radiation from furnace wall at 1300 K: k1T = 2 � 1300 = 2600 for which F0–

2600= 0.18312; k2T = 7 � 1300 = 9100 for which F0–9100= 0.892582; Thus, F2600-

9100= 0.892582 – 0.18312 = 0.709462; F9100–∞= 1 – 0.892582 = 0.107418; Hemi-
spherical total absorptivity, a ¼ a1ðF0�2600Þþ a2ðF2600�9100Þþ a3ðF9100�1Þ = 0.1
0.18312 + 0.4 � 0.709462 + 0.2 � 0.107418 = 0.32358; (b) Net radiative flux to
the surface, q00 = G – J = G – qG – eEb(500) = (1 – q)G – eEb(500) = aEb(1300) –
eEb(500) = 0.32358 � 5.67 � 10−8 � 13004 – 0.27643 � 5.67 � 10−8 � 5004 =
51421 W/m2.]

11:21. A vertical copper plate [q = 8950 kg/m3, c = 380 J/(kg K), k = 375 W/(m K)] at an
initial uniform temperature of 300°C is suspended in a room where the ambient air
and surroundings are at 25°C. Plate measures 0.25 m � 0.25 m in area and is 0.02 m
in thickness. The rate of cooling is found to be 0.08 K/s when plate temperature was
275°C. Plate surface emissivity is 0.2. Determine the convection heat transfer
coefficient.
[Ans. For air at mean film temperature of ½(275 + 25) = 150°C, from Table A5,
q = 0.8370 kg/m3, c = 1017.1 J/(kg K), l = 2.3769 � 10−5 N s/m2 and
k = 0.03522 W/(m K). The plate rejects sensible heat both by convection and radi-
ation. At any instant, the energy balance gives
�qðAsdÞc dT

ds ¼ hð2AsÞðTs � T1Þþ eð2AsÞrðT4
s � T4

surÞ, where d is thickness and As

is area of plate. Equation gives h ¼ 1
ðTs�T1Þ � dT

ds
qdc
2 � erðT4

s � T4
surÞ

h i
; For dT/ds = -

Sphere 1

Plane, 2

a

Plane, 3

2W

C

W

B

2
1

b

3

Fig. 11.87 Problem 11.18
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0.08 K/s, h ¼ 1
ð548�298Þ

0:08�8950�0:02�380
2 � 0:2� 5:67� 10�8 � ð5484 � 2984Þ	 
 ¼

7:15 W/(m2 K).]
11:22. Determine the heat loss from an electric bulb (Ts = 125°C) in a room if the sur-

rounding air temperature is 25°C. The bulb can be approximated to be a sphere of
50 mm diameter. Bulb surface emissivity is 0.88 and the room surface temperature is
27°C.
[Ans. At film temperature tfm = (125 + 25)/2 = 75°C, air properties are
q = 1.0052 kg/m3, k = 0.0299 W/(m K), l = 2.0658 � 10−5 N s/m2 and Pr =
0.697; Heat loss from the bulb is by convection and radiation;
q ¼ qc þ qr ¼ hcAsðTs � T1Þþ eAsrðT4

s � T4
surÞ;

Ra ¼ bg Ts�T1ð ÞD3

m2 Pr¼ 1=ð75þ 273Þ�9:81� 125�25ð Þ�0:053

ð2:0658�10�5=1:0052Þ2 � 00:697 ¼ 5:8� 105; From Eq. (9.27),

Num ¼ 2þ 0:589Ra1=4
d

1þ 0:469= Prð Þ9=16½ �4=9¼ 2þ 0:589�ð50:8�105Þ1=4

1þ 0:469=0:697ð Þ9=16½ �4=9 ¼ 14:52; hc ¼ Num k
D ¼ 14:52�

0:0299
50�10�3 ¼ 8:68 W/(m2 K); Hence, q ¼ 8:68� p� 0:052 � ð125� 25Þþ 0:88� p�
0:052 � 5:67� 10�8 � ð3984 � 3004Þ¼ 13:48 W; Some heat is lost by conduction to
the base.]

11:23. Determine net radiative exchange between the plates of Problem 11.19 per unit area
of the plates.
[Ans. Radiosity of surface 2, J2 = E2 + q2Eb1 = re2T2

4 + q2rT1
4 = re2T2

4 +(1 – e2)
rT1

4 = r[e2T2
4 +(1 – e2) T1

4] = 5.67 � 10−8 � [0.8 � 6004 + (1 –

0.8) � 10004] = 17218 W/m2; Radiosity of surface 1, which is black, J1 = Eb1 =
T1
4 = 5.67 � 10−8 � 10004 = 56700 W/m2, q12 = J1 – J2 = 39482 W/m2; alterna-

tively q12 = (Eb1 − Eb2)/(1/e1 − 1/e2 − 1) = e2(Eb1 − Eb2) = 0.8 � 5.67 � 10−8

(10004 − 6004) = 39481.3 W/m2]
11:24. Determine the shape factor F12 for the configuration shown in Fig. 11.88.

[Ans. Að13ÞFð1;3Þ�ð2;4Þ ¼ A1F12 þA1F14 þA3F32 þA3F34; From symmetry,
A1F12 ¼ A4F43; From reciprocity relation,A4F43 ¼ A3F34; Hence, A3F34 ¼ A1F12;
This gives Að13ÞFð1;3Þ�ð2;4Þ ¼ 2A1F12 þA1F14 þA3F32; or

F12 ¼ 1
2A1

Að13ÞFð1;3Þ�ð2;4Þ � A1F14 � A3F32
	 


; A13 = 9 m2, A1 = 3 m2, A3 = 6 m2;

F12 ¼ 1
2�3 9Fð1;3Þ�ð2;4Þ � 3F14 � 6F32

	 

; From Fig. 11.4c for Z/X = 1.0 and Y/X = 1,

Fð1;3Þ�ð2;4Þ ¼ 0:2; for Z/X = 3.0 and Y/X = 3.0, F14 ¼ 0:125 and for Z/X = 0.75 and
Y/X = 0.25, F32 ¼ 0:17; substitution gives F12 ¼ ð1=6Þð9� 0:2� 3� 0:125�
6� 0:17Þ ¼ 0:0675:�

3.0 m

2 m
1 m

3 m
4

2

3
1

Fig. 11.88 Problem 11.24
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11:25. Long, inclined black surfaces 1 and 2 in Fig. 11.89 are maintained at 1000 K and
600 K, respectively. Determine temperature of the black insulated surface 3.
[Ans. Since surface 3 is insulated, q3 = 0, i.e. q13 = q32; or
A1F13rðT4

1 � T4
3 Þ ¼ A3F32rðT4

3 � T4
2 Þ; By symmetry, A1 ¼ A3 and F13 ¼ F32;

Hence T4
1 � T4

3 ¼ T4
3 � T4

2 ; or T3 ¼ 1
2 ðT4

1 þ T4
2 Þ

	 
1=4¼ 1
2 ð10004 þ 6004Þ	 
1=4¼

866:91K:]
11:26. A 25 mm diameter pipe is laid horizontal in a room for heating. Condensing steam is

flowing through the pipe. If the temperature of the outer surface of the pipe is 105°C
and temperature in the room is 20°C, find the required length of the pipe for a heating
rate of 1.0 kW. Pipe surface emissivity = 0.8.
[Ans. At tfm = (105 + 20)/2 = 62.5°C, air properties are: q = 1.05 kg/m3,
l = 2.0 � 10−5, and k = 0.029 W/(m K), b = 1/Tm = 1/(62.5 + 273), Pr = 0.7; Gr

¼ gbq2d3DT
l2 ¼ 1:07� 105; h ¼ 0:53ðGrf Prf Þ0:25k=d¼ 100:17 W/(m2 K); Convection

heat transfer, qc = hAΔT = 67.92 W/m, radiation heat transfer qr = eAr (Tpipe
4

–

Troom
4 ) = 46.48 W/m. Required length L = q/(qc + qr) = 8.74 m.]
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12Heat Transfer in Absorbing
and Emitting Media (Gaseous
Radiation)

12.1 Introduction

Monatomic and diatomic gases such as argon, helium, oxygen, nitrogen and hydrogen are
transparent (diathermic) to the thermal radiation and their capacity to radiate or absorb the
thermal radiation is insignificant except at extremely high temperatures. Molecules such as
carbon dioxide, carbon monoxide, sulfur dioxide, water vapour and hydrocarbon gases are
capable of emitting and absorbing the heat radiation. Carbon dioxide and water vapour are
formed when the combustion of hydrocarbon fuels takes place and the study of these gases is
of practical importance. Methane and carbon dioxide are regarded as greenhouse gases and
are the cause of global warming.

The radiation exchange between a gas and a solid surface is considerably more complex
than exchanges between solid surfaces. The specific features of the gaseous radiation are
being discussed in this chapter. However, the discussion is basically confined to the behavior
of carbon dioxide, water vapour and their mixtures.

12.2 Specific Features of Gaseous Radiation

12.2.1 Selective Emitters

Most of the solids possess continuous radiation spectra, i.e. they emit and absorb rays of
wavelength zero to infinity. But the gases emit and absorb radiation in certain narrow
wavelength regions called bands, Fig. 12.1. Outside these bands, these gases are practically
transparent and their emissive power is zero. Thus, the gases are selective absorbers and
emitters. These bands, their width and number are different for different gases. Typically for
carbon dioxide, these bands are

Dk1 ¼ 2.36–3.02 lm; Dk2 ¼ 4.01–4.80 lm; Dk3 ¼ 12.5–16.5 lm

and for the water vapour, these bands are

Dk1 ¼ 1.7–2.0 lm; Dk2 ¼ 2.24–3.27 lm; Dk3 ¼ 4.8–8.5 lm; Dk4 ¼ 12.0–30.0 lm
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12.2.2 Beer’s Law

In opaque solids, the emission and absorption of the heat radiation occur only in thin surface
layers but in gases, the emission and absorption occur over their volume. As the radiation
passes through a gas, a reduction in its intensity takes place. This reduction depends on the
number of molecules encountered, i.e. the thickness of the gas volume and the partial
pressure of the gas.

The absorption of the radiation in the gas layers has been expressed in a mathematical
form. Let a monochromatic beam of radiation intensity (Ik)0 impinges on the gas volume and
passes through it, refer Fig. 12.2. Then the decrease in the intensity due to the absorption in
the gas layer at any plane xx has been found to be proportional to the thickness dx of the layer
and the intensity of radiation (Ik)x at that plane.

dðIkÞx / ðIkÞxdx ¼ �akðIkÞxdx ð12:1Þ

E

Blackbody

Radiation 
bands for a gas

Fig. 12.1 Emissive power of a gas versus a blackbody

(Iλ)0

dx

x
0

δ

(Iλ)δ(Iλ)x

(Iλ)x - d(Iλ)x 

Fig. 12.2 Beer’s law
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where ak is called monochromatic absorption coefficient. The coefficient −ak depends on the
gas temperature Tg and product (pL), where L is a characteristic dimension of the system
called the mean equivalent beam length and p is the gas pressure, i.e.

ak ¼ f ðTg; pLÞ ð12:2Þ

Integrating Eq. (12.1), we get

ZIkx
Ik0

dIkx
Ikx

¼
Zx

0

�akdx

or

Ikx
Ik0

¼ e�akx ð12:3Þ

Equation (12.3) represents exponential decay of the radiation intensity with distance as
the radiation travels through the gas volume. It is known as Beer’s law.

12.2.3 Transmissivity, Emissivity and Absorptivity

The ratio (Ik)x/(Ik)0, refer Fig. 12.2, is termed as monochromatic transmissivity of the gas for
thickness x, i.e.

sk ¼ Ikx
Ik0

¼ e�akx ð12:4Þ

In general, the reflectivity of the gases is zero, therefore

ak þ sk ¼ 1

We can write

ak ¼ 1� sk ¼ 1� e�akx ð12:5Þ

and, from the Kirchhoff’s law, the equation for the monochromatic emissivity can be written
as

ek ¼ ak ¼ 1� e�akx ð12:6Þ

From Eqs. (12.5) and (12.6), it can be seen that as the thickness of the gas increases, the
absorptivity and emissivity increase. In the limit when gas thickness d is very large ak and ek
approach unity and the gas volume acts as a blackbody.

The total transmissivity s (for k = 0 − ∞) is obtained from
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s ¼
R1
0 IkddkR1
0 Ik0dk

ð12:7Þ

12.2.4 Total Emissive Power

As mentioned earlier, gases emit and absorb radiation within certain bands. The radiant
energy in a band is

EDk ¼
Zk2
k1

Ekdk ð12:8Þ

and the total emissive power of the gas equals the sum of radiation of all bands,
Note: A gas may be termed as gray gas for which the monochromatic coefficients sk, ak

and ek are independent of the wavelength k. In this case, the gas emissivity is equal to the gas
absorptivity regardless of the source of the incident radiation. That is, for a gray gas,
ag ¼ ak, eg ¼ ek and ag ¼ eg.

12.3 Heat Exchange

The procedure for the calculation of net heat exchange was presented by Hottel (1954). In
this section, a simplified case of total radiation exchange between a black enclosure and
isothermal (uniform temperature) gas volume is being considered.

12.3.1 Radiation Emitted by a Gas

The geometry of most of the configurations involves a complicated analysis for the deter-
mination of the radiation heat exchange between the gas volume and the surface. Hence,
Hottel considered a hemispherical volume of gas at a uniform temperature Tg exchanging
radiation heat with a small black surface As located at its centre, as shown in Fig. 12.3, for
which the analysis can be easily carried out. The radius of the hemisphere is L.

Let the gas mixture contains CO2 (a participating gas) and N2 and O2 (the non-
participating gases). The total pressure of the gas mixture is p. CO2 is at a partial pressure of
pc in the mixture.

As, Ts

L

Tg

Gas volume

Fig. 12.3 Hemispherical gas volume
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The radiation heat emitted by the gas and arriving at the surface As is

qgs ¼ egAsrT
4
g ð12:9Þ

Since the surface is black, it absorbs the radiation qgs completely. As the gas contains only
one participating gas CO2, hence eg = ec, i.e. the emissivity of CO2. ec is a function of the gas
mixture temperature Tg, the partial pressure of CO2 in the gas volume times the characteristic
dimension (pcL), and the total pressure of the mixture, that is

ec ¼ f ðTg; pcL; pÞ ð12:10Þ

The emissivity is determined from Fig. 12.4. When the total pressure of the gas is 1 atm,
the value of emissivity obtained from the figure is the value of the emissivity ec. When the
total pressure of the gas mixture is different from 1 atm, the emissivity value read from the
figure is to be multiplied by a pressure correction factor Cc from Fig. 12.5. Thus, in general,

ec ¼ ðecÞp¼1atmðCcÞp 6¼1atm ð12:11Þ

where (ec)p = 1 atm is the emissivity value from Fig. 12.4. Note that (Cc)p = 1 atm = 1.

0.001

pl, atm-ft

0.003 
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0.008 
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0.02 
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0.04
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0.08 
0.1
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0.3
0.4
0.6
0.8
1

1.5
2
3
5

0.002

Gas temperature, K
1000500 1500 2000 2500

εc

0.3

0.2

0.1

0.08

0.06
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0.01

0.008 

0.006

0.004

0.003

Fig. 12.4 Emissivity of CO2 (p = 1 atm). Hottel HC in McAdams WH, Heat Transmission, 3rd edition,
McGraw-Hill, NY, copyright 1954. Material is reproduced with permission of McGraw-Hill Education
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12.3.2 Radiation Heat from Surface (Wall)

The surface (area As, temperature Ts) gives out As r T4
s . The fraction absorbed by the gas is

qsg ¼ agðAsrT
4
s Þ ð12:12Þ

The gas absorptivity ag equals eg when Ts is nearly equal to Tg. If Ts differs significantly
from Tg, the estimate of ag is done according to the following empirical rule.

Let the participating medium is CO2 only, ag = ac. The absorptivity ac is related to the ec
by the following relation.

ac ¼ ec½Ts; pcLðTs=TgÞ; p�
� �� ðTg=TsÞ0:65 ð12:13Þ

where ec is the emissivity of CO2 at surface or wall temperature Ts, and the parameter pcL is
replaced by pcL(Ts/Tg). The correction factor Cc is to be considered when p 6¼ 1 atm.

A similar procedure is to be followed if water vapour is the only participating medium,
Eqs. (12.10) and (12.13) presented for CO2 have been suggested in a similar way for water
vapour as

ew ¼ f ðTg; pwL; pÞ ð12:14Þ
aw ¼ ew½Ts; pwLðTs=TgÞ; p�

� �� ðTg=TsÞ0:45 ð12:15Þ

The relevant charts are given as Figs. 12.6 and 12.7. Correction factor Cw is to be used
when p 6¼ 1 atm. Note that when p = 1 atm, Cw is to be taken as unity. However, as per
Fig. 12.7, Cw = 1 only when (p + pw)/2 = 0.5. It seems that a very low concentration of
water vapour has been considered in the preparation of the emissivity chart of water vapour
so that p + pw � 1.

0 - 0.02
0.05 
0.12

0.5
1.0
2.5

0.25

0.3 

0.4

0.5

0.6

0.8

1.0

1.5

2.0

pcl, atm-ft

0-0.02

2.5Cc

Total pressure, p
53210.80.50.30.20.1 0.080.05

Fig. 12.5 Pressure correction factor for CO2. Hottel HC in McAdams WH, Heat Transmission, 3rd edition,
McGraw-Hill, NY, copyright 1954. Material is reproduced with permission of McGraw-Hill Education
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Fig. 12.6 Emissivity of water vapour. Hottel HC in McAdams WH, Heat Transmission, 3rd edition,
McGraw-Hill, NY, copyright 1954. Material is reproduced with permission of McGraw-Hill Education
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Fig. 12.7 Pressure correction factor for water vapour. Hottel HC in McAdams WH, Heat Transmission, 3rd
edition, McGraw-Hill, NY, copyright 1954. Material is reproduced with permission of McGraw-Hill
Education
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12.3.3 Net Rate of Heat Transfer

The net rate of heat transfer from the gas to the black surface (area As) located at the centre of
the base of the hemispheric gas volume, refer Fig. 12.3, is the difference of qgs and qsg

ðqgsÞnet ¼ Energy emitted by the gas� Energy emitted by surface absorbed by the gas

¼ qgs � qsg:

ð12:16Þ

Since a small area surface has been considered here, the radiation from the surface travels
equal distance L through the gas in all directions. If we consider other gas volumes and
radiating surfaces of other shapes, the radiant energy from the surface will travel different
distances in different directions. In such a situation, the above presented charts and equations
developed for hemispherical gas volume are applicable if a mean or equivalent beam length
L as given in Table 12.1 is used; the mean beam length represents the radius of an equivalent
hemisphere. The table gives the value of equivalent length for several gas volume shapes
frequently encountered in engineering applications. For an arbitrary volume V, surrounded
by the surface of area As, the approximate relation suggested is

L ¼ 3:6
V

As
ð12:17Þ

The net heat exchange between a gas volume and isothermal black surface can be written
as, in a way similar to Eq. (12.16),

Table 12.1 Mean or equivalent beam length L for gas radiation

Shape of the gas volume Characteristic
dimension

Equivalent or mean
beam length, L

Hemisphere, radiation to element on centre of the base Radius R R

Sphere, radiation to internal surface Diameter D 0.65 D

Infinite cylinders, radiation to entire internal surface Diameter D 0.95 D

Circular cylinder with height D, radiation to entire surface Diameter D 0.6 D

Circular cylinder with height D, radiation to a spot on the
centre of the base

Diameter D 0.77 D

Semi-infinite cylinder, radiation to entire base Diameter D 0.65 D

Semi-infinite cylinder, radiation to a spot on the centre of
the base

Diameter D 0.9 D

Infinite parallel planes Spacing S 1.8S

Cube, radiation to one base Side a 0.66a

Space between two tubes in an infinite bank of tubes with
tube diameter = clearance between tubes, radiation to a
single tube:

Tube centres on equilateral triangles
Tube centres on squares

Tube diameter D

3.0 D
3.5 D
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ðqgsÞnet ¼ Energy emitted by the gas� Energy from the enclosure absorbed by the gas

¼ egAsrT
4
g � agAsrT

4
s

ð12:18Þ

12.3.4 Mixture of CO2 and H2O Vapour

We discussed the case when only one participating component (either carbon dioxide or
water vapour) was present in the gas mixture. When the mixture contains both CO2 and water
vapour, both of them emit radiation. The total radiation is slightly less than the sum of the
radiations emitted by carbon dioxide and water vapour alone because a part of the radiation
of one of the gases is absorbed by the other (emission bands of these radiating gases overlap
each other) before it is emitted. The combined emissivity is estimated by determining the
individual emissivity values of the two separately and then applying an emissivity correction
factor De, i.e.

eg ¼ ec þ ew � De ð12:19Þ

The correction factor De is plotted in Fig. 12.8. It is a function of temperature Tg, L
(pc + pw), and proportions of carbon dioxide and water vapour expressed by pw/(pc + pw).
The value of De is the maximum when the percentages of carbon dioxide and water vapour
are comparable.

Similarly, the estimate of the combined absorptivity is made

ag ¼ ac þ aw � Da ð12:20Þ

where Da = De and is read from Fig. 12.8 at the surface temperature Ts.
After eg and ag are determined, the mixture can be treated as a single radiating gas and the

net heat transfer is determined from Eq. (12.18).
The gas emissivity charts presented here (Figs. 12.4, 12.5, 12.6, 12.7 and 12.8) were

developed by Hottel (1954) from experimental data. Additional charts for CO, SO2, CH4, etc.
can be found in Hottel and Sarofim (1967).

12.3.5 Gray Enclosure

When the enclosure is not black, the net rate of heat transfer must be determined by the
estimate of successive absorption and reflection between the gas and the enclosure. This
analysis is cumbersome. In such cases, an appropriate estimate of the effective emissivity e′,
as defined below, is used and the heat exchange is

ðqgsÞgray ¼ e0ðqgsÞblack
¼ e0ðegAsrT

4
g � agAsrT

4
s Þ

ð12:21Þ

where e0 ¼ 1þ esð Þ=2 when surface emissivity es > 0.8.
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Example 12.1 A cylinder, 200 mm in diameter and 1 m in length has closed ends. It
contains a mixture of dry air and carbon dioxide. The total pressure and temperature of the
mixture are 1 bar and 1000°C, respectively. The partial pressure of the carbon dioxide is
0.1 bar. Find the emissivity of the mixture of the gases in the cylinder (1 m = 3.2808 ft).

Solution

The mean beam length,

L ¼ 3:6
V

As

¼ 3:6�
p
4D

2L

pDLþ 2� p
4D

2

¼ 3:6�
p
4 � 0:22 � 1

p� 0:2� 1þ 2� p
4 � 0:22

¼ 0:1636 m. ð12:17Þ

Hence, for the carbon dioxide product, pcL � 0.1 � 0.1636 = 0.01636 atm-m.
From Fig. 12.4, ec � 0.055 at Tg = 1273 K and pcL = 0.01636 atm-m.

Tc ≥ 1700oF = 1200 K
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Fig. 12.8 Correction factor Δe. Hottel HC in McAdams WH, Heat Transmission, 3rd edition, McGraw-Hill,
NY, copyright 1954. Material is reproduced with permission of McGraw-Hill Education
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Example 12.2 A 2 m side cubic chamber is filled with a gas mixture at a total pressure of
3 atm and at a temperature of 1200 K. The partial pressure of carbon dioxide in the mixture
is 0.3 atm. What is the emissivity of the gas volume if the other gases in the mixture are
transparent and non-condensing? (1 m = 3.2808 ft).

Solution

The emissivity of the gas equals the emissivity of carbon dioxide in the mixture, i.e. eg = ec.
The mean beam length, from Table 12.1, for the cubic volume, L = 0.66

a = 0.66 � 2 = 1.32 m.
Partial pressure of CO2, pc = 0.3 atm.
Therefore, the product pcL = 0.3 � 1.32 = 0.396 atm-m.
From Fig. 12.4, corresponding to Tg = 1200 K and pcL = 0.396 atm-m (1.3 atm-ft),

ðecÞp¼1 atm � 0:16:

From Fig. 12.5, corresponding to p = 3 atm and pcL = 0.396 atm-m (1.3 atm-ft),

Cc ¼ 1:1:

Hence,

ec ¼ ðecÞp¼1 atm � ðCcÞp 6¼1 atm ð12:11Þ
¼ 0:16� 1:1 ¼ 0:176:

Example 12.3 Calculate the net rate of heat transfer from the gas to the chamber
of Example 12.2. The chamber wall is at a temperature of 800 K and the surface is black.

Solution

From Eq. (12.18), the net rate of heat transfer is

q ¼ rA½ecðTgÞT4
g � acðTsÞT4

s �: ðiÞ

From Example 12.2, ec(Tg) = 0.176.
To find ac(Ts), we read ec at Ts = 800 K from Fig. 12.4 at pcL(Ts/Tg) = 0.396

(800/1200) = 0.264 atm-m, which gives

ecðTsÞ ¼ 0:15

and

acðTsÞ ¼ ecðTsÞ � ðTg=TsÞ0:65 ¼ 0:15� ð1200=800Þ0:65 ¼ 0:195 at 1 atm:

The correction factor Cc = 1.12 from Fig. 12.5 at pcL(Ts/Tg) = 0.264 atm-m and p = 3
atm. This gives
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½acðTsÞ�p¼3atm ¼ 1:12� 0:195 ¼ 0:218:

(Note: Some authors evaluate the pressure correction factors Cc and Cw for ac and aw
using pcL and pwL, as in emissivity calculations, i.e. they presume that Cc and Cw do not
change with surface temperature.)

Hence, Eq. (i) gives

q ¼ rA½ecðTgÞT4
g � acðTsÞT4

s �

or

q ¼ 5:67� 10�8 � ð6� 22Þ � ½0:176� 12004 � 0:218� 8004�=1000 ¼ 375:12 kW:

Example 12.4 Flue gases from a coal burning boiler furnace pass through a cylindrical pipe
of 0.8 m diameter. The gases consist of 10% CO2 by volume and rest N2 and O2. The
temperature of the flue gases is 1000 K while that of the pipe surface is 600 K. Determine the
heat exchange between the gas and pipe surface for a unit length of the pipe. The gas
pressure is 1 atm and the pipe surface can be treated as black.

Solution

q

A
¼ r½ecðTgÞT4

g � acðTsÞT4
s � ðiÞ

where

rT4
g ¼ 5:67� 10�8 � 10004 ¼ 56700W/m2

and

rT4
s ¼ 5:67� 10�8 � 6004 ¼ 7348:3W/m2:

The equivalent beam length, from Table 12.1, for an infinite cylinder, is

L ¼ 0:95D ¼ 0:95� 0:8 ¼ 0:76m:

For the partial pressure of 0.1 atm of CO2, product pcL = 0.1 � 0.76 = 0.076 atm-m.
From Fig. 12.4, corresponding to Tg = 1000 K and pcL = 0.076 atm-m,

ecðTgÞ � 0:11:

For ac(Ts), the required parameters are

Ts ¼ 600K; pcLðTs=TgÞ ¼ 0:076� ð600=1000Þ ¼ 0:0456 atm-m:

From Fig. 12.4,
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ecðTsÞ � 0:08:

The absorptivity from Eq. (12.13) is

acðTsÞ ¼ ecðTsÞ � ðTg=TsÞ0:65 ¼ 0:08� ð1000=600Þ0:65 ¼ 0:1115:

Substituting values of different terms in Eq. (i) gives

q

A
¼ r½ecðTgÞT4

g � acðTsÞT4
s �

¼ 0:11� 56700� 0:1115� 7348:3 ¼ 5417:7W/m2:

For unit length of the pipe,

q

L
¼ q

A
ðpDÞ ¼ 5417:7� ðp� 0:8Þ ¼ 13616W/m:

Example 12.5 If in the previous example, the total gas pressure is 0.8 atm, what will be the
magnitude of heat exchange?

Solution

For the gas pressure of 0.8 atm, the partial pressure of CO2 is 0.8 � 1.0 = 0.08 atm and the
product pcL = 0.08 � 0.76 = 0.061 atm-m.

From Fig. 12.4, corresponding to Tg = 1000 K and pcL = 0.061 atm-m,

ecðTgÞ � 0:1:

The correction factor for total pressure other than 1.0 atm, from Fig. 12.5, is

Cc � 0:95:

Considering this correction factor,

ecðTgÞp¼0:8atm ¼ 0:95� 0:1 ¼ 0:095:

For ac(Ts), the required parameters are

Ts ¼ 600K; pcLðTs=TgÞ ¼ 0:061� ð600=1000Þ ¼ 0:0366 atm-m:

From Fig. 12.4,

ecðTsÞ � 0:075:

The absorptivity from Eq. (12.13), considering the correction factor Cc � 0.95 from
Fig. 12.5, is

acðTsÞ ¼ Cc½ecðTsÞ � ðTg=TsÞ0:65� ¼ 0:95� 0:075� ð1000=600Þ0:65 ¼ 0:0993:
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Substituting values of different terms in Eq. (i) of the previous example gives

q

A
¼ r½ecðTgÞT4

g � acðTsÞT4
s �

¼ 0:095� 56700� 0:0993� 7348:3 ¼ 4656:8W/m2:

For unit length of the pipe,

q

L
¼ q

A
ðpDÞ ¼ 4656:8� ðp� 0:8Þ ¼ 11704W/m:

Example 12.6 In Example 12.4, if the emissivity of the pipe surface is 0.9, what will be the
heat exchange?

Solution

Using Eq. (12.21), we have

qgray
qblack

¼ es þ 1
2

for es [ 0:8

¼ 0:9þ 1
2

¼ 0:95

Hence, qgray = 0.95 � qblack gives

q

L

� �
gray

¼ 0:95� 13616 ¼ 12935:2W/m length of the pipe:

Example 12.7 The flue gas of Example 12.4 is from the burning of a hydrocarbon fuel and
consists of 10% CO2 and 8% H2O by volume (rest of N2 and O2). Determine the heat
exchange if the temperatures involved are the same as in Example 12.4. The gas pressure is
1 atm.

Solution

For a mixture of CO2 and water vapour, the empirical relations for eg and ag are

eg ¼ ec þ ew � De ðiÞ
ag ¼ ac þ aw � Da ðiiÞ

Since the partial pressure of CO2 is the same as in Example 12.4, the values of ec(Tg) and
ac(Ts) will remain the same, i.e. ec(Tg) � 0.11 and ac(Ts) = 0.1115.

We now determine ew and aw and correction factors De and Da.
The equivalent beam length is

L ¼ 0:95D ¼ 0:95� 0:8 ¼ 0:76m:
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For the partial pressure of 0.08 atm of water vapour, product pwL = 0.08 � 0.76 =
0.0608 atm-m. From Fig. 12.6, corresponding to Tg = 1000 K and pwL = 0.0608 atm-m,

ewðTgÞ � 0:095

For aw(Ts), the values of the required parameters are

Ts ¼ 600K; pwLðTs=TgÞ ¼ 0:0608� ð600=1000Þ ¼ 0:0365 atm-m:

From Fig. 12.6,

ewðTsÞ ¼ 0:1:

Hence,

awðTsÞ ¼ ewðTsÞ � ðTg=TsÞ0:45 ¼ 0:1� ð1000=600Þ0:45 ¼ 0:1258:

For the correction factors De and Da, the values of the required parameters in Fig. 12.8 are

ðpc þ pwÞL ¼ ð0:1þ 0:08Þ � 0:76 ¼ 0:1368 atm-m:

and

pw
pc þ pw

¼ 0:08
0:1þ 0:08

¼ 0:444:

From Fig. 12.8,

De ¼ 0:012 at 1000K 727�Cð Þ:

At 327°C and (pcL + pwL)(Ts/Tg) = 0.0456 + 0.0365 = 0.0821 atm-m, Da = De = 0.002.
From Eqs. (i) and (ii),

eg ¼ ec þ ew � De ¼ 0:11þ 0:095� 0:012 ¼ 0:193 ðiÞ
ag ¼ ac þ aw � Da ¼ 0:1115þ 0:1258� 0:002 ¼ 0:2353 ðiiÞ

Substituting values of different terms in the heat transfer equation gives

q

A
¼ r½egðTgÞT4

g � agðTsÞT4
s �

¼ 0:193� 56700� 0:2353� 7348:3 ¼ 9214W/m2:

For unit length of the pipe,

q

L
¼ q

A
ðpDÞ ¼ 9214� ðp� 0:8Þ ¼ 23157W/m:

In general, the emissivity (ec and ew) increases with the increase in the value of product
pcL and pwL because with the increase in the partial pressure of the participating gas and the
gas volume (i.e. increase of L), the number of molecules of the participating gas increases.
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The emissivity can also be seen to increase in Figs. 12.5 and 12.7 with the increase in the
total pressure of the mixture.

Example 12.8 Flue gases from the burning of a hydrocarbon fuel consisting of 15% CO2

and 15% water vapour by volume (rest of N2 and O2) pass through a space between two large
parallel black plates. The gap between plates is 0.8 m. The temperature of the flue gases Tg is
1200 K while that of the surfaces of both plates Ts is 600 K. Determine the net radiation flux
to the plates. The gas pressure is 2 atm.

Solution

The equivalent beam length, from Table 12.1, is

L ¼ 1:8S ¼ 1:8� 0:8 ¼ 1:44 m:

For a mixture of CO2 and water vapour, the empirical relations for eg and ag are

eg ¼ ec þ ew � De ðiÞ
ag ¼ ac þ aw � Da ðiiÞ

For the partial pressure of 0.15 � 2 = 0.3 atm of CO2, product pcL = 0.3 � 1.44 =
0.432 atm-m. From Fig. 12.4, corresponding to Tg = 1200 K and pcL = 0.432 atm-
m = 1.42 atm-ft, ec � 0.175 for total pressure p = 1 atm. Applying pressure correction
factor Cc � 1.05 from Fig. 12.5, we have

ecðTgÞ ¼ CcðecÞp¼1 � 0:175� 1:05 ¼ 0:1838:

Similarly for the partial pressure 0.15 � 2 = 0.3 atm of water vapour, product pwL =
0.3 � 1.44 = 0.432 atm-m. From Fig. 12.6, corresponding to Tg = 1200 K and pwL =
0.432 atm-m = 1.42 atm-ft, ew � 0.23. Applying correction factor Cw = 1.42 for (p + pw)/
2 = (2 + 0.3)/2 = 1.15 atm from Fig. 12.5, we have

ewðTgÞ ¼ CwðewÞp¼1 � 1:42� 0:23 ¼ 0:3266:

For ac(Ts), the values of the required parameters are

Ts ¼ 600K; pcLðTs=TgÞ ¼ 0:432� ð600=1200Þ ¼ 0:216 atm-m ¼ 0:709 atm-ft:

From Fig. 12.4, ec(Ts) � 0.13. Pressure correction factor Cc � 1.08 from Fig. 12.5 for
pcL(Ts/Tg) = 0.709 atm-ft. Hence,

acðTsÞ ¼ CcecðTsÞ � ðTg=TsÞ0:65 ¼ 1:08� 0:13� ð1200=600Þ0:65 ¼ 0:2203:

For aw(Ts), the values of the required parameters are

Ts ¼ 600K; pwLðTs=TgÞ ¼ 0:432� ð600=1200Þ ¼ 0:216 atm-m ¼ 0:709 atm-ft:
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From Fig. 12.6, ewðTsÞ � 0:25. Pressure correction factor Cw � 1.46 from Fig. 12.7 for
pwL(Ts/Tg) = 0.709 atm-ft and (p + pw)/2 = (3 + 0.3)/2 = 1.15 atm. Hence,

awðTsÞ ¼ CwewðTsÞ � ðTg=TsÞ0:45 ¼ 1:46� 0:25� ð1200=600Þ0:45 ¼ 0:4986:

For the correction factor De, the values of the required parameters in Fig. 12.8 are

ðpc þ pwÞL ¼ ð0:3þ 0:3Þ � 1:44 ¼ 0:864 atm-m ¼ 2:84 atm-ft

and

pw
pc þ pw

¼ 0:3
0:3þ 0:3

¼ 0:5:

From Fig. 12.8, De = 0.05 at 1200 K.
Read correction factor Da, at 600 K for pw/(pc + pw) = 0.5 and (pc + pw)L(Ts/Tg) =

0.432 atm-m = 1.42 atm-ft. Since there is no chart for 600 K, we read De values at 400 K
and 810 K, and take their average. This gives Da = De � 0.017.

From Eqs. (i) and (ii),

eg ¼ ec þ ew � De ¼ 0:1838þ 0:3266� 0:05 ¼ 0:4604 ðiÞ
ag ¼ ac þ aw � Da ¼ 0:2203þ 0:4986� 0:017 ¼ 0:7019: ðiiÞ

Irradiation on plate 1 is the sum of the radiation from the gas and radiation from plate 2
reaching surface of plate 1 after transmission through the gas layer, i.e.

G1 ¼ egEg þ sgðT2ÞEb2

¼ egEg þ ½1� agðT2Þ�Eb2

¼ egrT
4
g þ ½1� agðT2Þ�rT4

s :

Substitution gives

G1 ¼ 0:4604� 5:67� 10�8 � 12004 þð1� 0:7019Þ � 5:67� 10�8 � 6004

¼ 56321:2W/m2:

Heat gained by plate 1 is the difference of irradiation G1on the plate and the energy
emitted by the plate, i.e.

q1
A

¼ G1 � Eb1

¼ 56321:2� 7348:3 ¼ 48972:9 W=m2:

Since plate 2 is also at the same temperature, the heat gained by plate 2 is also
48972.9 W/m2.
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Example 12.9 Two infinite parallel black plates 1 and 2 are separated by a distance of
0.422 m. The gas mixture between the plates consists of 10% CO2 and 8% H2O by volume.
The gas temperature is 1000 K while the plates are maintained at 600 K and 800 K,
respectively. Calculate the heat gain by each plate. The gas pressure is 1 atm.

Solution

From the given data

Eg ¼ rT4
g ¼ 5:67� 10�8 � 10004 ¼ 56700 W/m2

Eb1 ¼ rT4
1 ¼ 5:67� 10�8 � 6004 ¼ 7348:3 W/m2

Eb2 ¼ rT4
2 ¼ 5:67� 10�8 � 8004 ¼ 23224 W/m2:

The equivalent beam length, from Table 12.1, is

L ¼ 1:8S ¼ 1:8� 0:422 ¼ 0:76 m:

Since product pcL and pwL are the same as Example 12.7, we have

eg ¼ 0:193
agðT1Þ ¼ 0:2353:

At T2 = 800 K,

pcLðT2=TgÞ ¼ 0:1� 0:76� ð800=1000Þ ¼ 0:0608 atm-m
pwLðT2=TgÞ ¼ 0:08� 0:76� ð800=1000Þ ¼ 0:0486 atm-m:

From the charts,

ecðT2Þ � 0:095
ewðT2Þ ¼ 0:1:

For the correction factor Da for ag(Ts), the required parameters in Fig. 12.8 are (see
Example 12.7)

pw
pc þ pw

¼ 0:08
0:1þ 0:08

¼ 0:444:

From Fig. 12.8, Da = De � 0.005.
From these values

acðT2Þ ¼ ecðT2Þ � ðTg=T2Þ0:65 ¼ 0:095� ð1000=800Þ0:65 ¼ 0:1098
awðT2Þ ¼ ewðT2Þ � ðTg=T2Þ0:45 ¼ 0:1� ð1000=800Þ0:45 ¼ 0:1156

agðT2Þ ¼ acðT2Þþ awðT2Þ � DaðT2Þ ¼ 0:1098þ 0:1156� 0:005 ¼ 0:2204:

Irradiation on plate 1 is the sum of the radiation from the gas and radiation from plate 2
reaching the surface of plate 1 after transmission through the gas layer, refer Fig. 12.9, i.e.
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G1 ¼ egEg þ sgðT2ÞEb2 ¼ egEg þ ½1� agðT2Þ�Eb2

¼ 0:193� 56700þð1� 0:2204Þ � 23224 ¼ 29048:5 W/m2:

Similarly

G2 ¼ egEg þ ½1� agðT1Þ�Eb1

¼ 0:193� 56700þð1� 0:2353Þ � 7348:3 ¼ 16562:3 W/m2:

Heat gained by plate 1,

q1
A

¼ irradiation� energy emitted by the plate 1

¼ G1 � Eb1 ¼ 29048:5� 7348:3 ¼ 21700:2 W/m2:

Similarly

q2
A

¼ irradiation� energy emitted by the plate 2

¼ G2 � Eb2 ¼ 16562:3� 23224 ¼ �6661:7 W/m2:

Heat lost by the gas

qg
A

¼ q1
A

þ q2
A

¼ 21700:2� 6661:7 ¼ 15038:5 W/m2:

12.4 Gray Gas Surrounded by Diffuse Gray Surfaces at Different
Temperatures

The basic aim of the analysis presented in this section is to give the readers an idea of the
technique to deal with the problems involving transmitting and absorbing medium.

Consider the system shown in Fig. 12.10 consisting of diffuse gray surfaces 1 and 2 at
different but isothermal temperatures T1 and T2, respectively. The surfaces are separated by a
transmitting and absorbing medium. The main simplifying assumptions are

1

T2T1

Tg

2

Eb1 τgEb1 + εgEg = G2

εgEg + τgEb2 = G1 Eb2

Fig. 12.9 Example 12.9
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1. The medium is gas and behaves as a gray substance so that ag = eg
2. The gas is at a uniform temperature Tg.
3. The medium is non-reflecting, which is valid for gases. This may not be valid for other

transmitting and absorbing media. For example, glass has reflectivity of the order of 0.1
4. Each surface is diffuse gray and isothermal.

We are interested in the calculation of the radiation exchange between the surface in the
presence of the transmitting and absorbing gas.

The radiation leaving surface 1 is J1A1.
The radiation reaching surface 2 is J1A1F12sg, where sg is the transmissivity of the gas = 1

− ag = 1 − eg for the gray gas.
Similarly, the radiation leaving surface 2 is J2A2 and reaching surface 1 is J2A2F21sg.
The net exchange between surfaces 1 and 2 is

J1A1F12sg � J2A2F21sg

Using reciprocity relation A1F12 = A2F21, we obtain

A1F12sgðJ1 � J2Þ

So the resistance between J1 and J2 is

R12 ¼ 1
A1F12sg

Now we consider the exchange process between surface 1 and the gas.
Radiation leaving the gas is

egðrT4
g Þ

and reaching surface 1 is

A1F1g½egðrT4
g Þ�

11
T2

T1

Tg 
Area A1 

2

Area A1 

T2

T1

Tg 
Area A1 

2

Area A1 

Fig. 12.10 Gray gas surrounded by diffuse gray surfaces at different temperatures
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The energy leaving surface 1 and absorbed by the gas is

J1A1F1gag ¼ J1A1F1geg

The difference between the two is

J1A1F1geg � A1F1g½egðrT4
g Þ� ¼ A1F1geg½J1 � ðrT4

g Þ�

So, the resistance is

R1g ¼ 1
A1F1geg

Following the same procedure, it can be shown that

R2g ¼ 1
A2F2geg

Figure 12.11 shows the network.
If there is no net heat change for the gas, rTg

4 is like a reradiating body.
In the case of infinite parallel planes, F12, F1g and F2g will be unity.
It is to note that the estimates of transmissivity and emissivity of a gas is very difficult

because these properties vary both with the thickness of the gas layer and the temperature. If
more than two surfaces are involved, the transmissivity can be different between different
surfaces. The temperature of the gas may also vary and, in such a situation, the transmissivity
and absorptivity also vary with the location. Such problems are solved by dividing the gas
volume into layers.

Example 12.10 Two large parallel plates (e1 = 0.8 and e1 = 0.6) are separated by a small
distance and are maintained at a temperature of T1 = 1000 K and T2 = 400 K, respectively.
Space between the plates is filled with a gray gas (eg = 0.15) and rest is N2 at a total pressure
of 2 atm. Calculate the radiation heat exchange between the plates. Also, determine the
equilibrium gas temperature.

Solution

Since the plates are large and separated by a small distance, F12 = F21 = 1, F1g = F2g = 1
and A1 = A2. The network is shown in Fig. 12.12.

(1 - ε1)/A1ε1

1/A1F12τg Eb1
1 2

(1 ε2)/A2ε2

1/A1F1gεg 1/A2F2gεg

J2J1 Eb2

σTg
4

Fig. 12.11 Radiation network
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The gas, in this problem, is behaving like a reradiating body, the resistance between J1
and J2 is

Re ¼ 1
R12

þ 1
R1g þR2g

� ��1

¼ sg þ eg
2

� ��1

¼ 1� eg þ eg
2

� ��1
¼ 1� 0:15þ 0:15

2

� ��1

¼ 1:081:

Surface resistances are

Rs1 ¼ 1� e1
e1

¼ 1� 0:8
0:8

¼ 0:25

Rs2 ¼ 1� e2
e2

¼ 1� 0:6
0:6

¼ 0:667:

Hence, the resistance between Eb1 and Eb2, refer Fig. 12.12, is

Rt ¼ Rs1 þRe þRs2 ¼ 0:25þ 1:081þ 0:667 ¼ 1:998:

Heat transfer rate between plates

q12 ¼ Eb1 � Eb2

Rt
¼ 5:67� 10�8ð10004 � 4004Þ

1:998
¼ 27652 W/m2:

Note: If transparent gas, such as air, is present between the plates, then

q12 ¼ Eb1 � Eb2
1
e1
þ 1

e2
� 1

¼ 28825 W/m2:

Rs1= (1 - ε1)/ε1

Eb1
1 2

Rs2 = (1 ε2)/ε2

R1g = 1/εg R2g = 1/εg

J2J1 Eb2

Eg

R12= 1/τg

Rs1 R12

Eb1 Eb2

2Rs21

R1g Eg R2g

J1 J2

Rs1 Re

Eb1 Eb2

2Rs21 J1 J2

q

Fig. 12.12 Radiation network for the system of Example 12.10
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Introduction of a gas having s < 1, reduces the radiation heat transfer between the sur-
faces. Lower the transmissivity s of the gas, greater will be the reduction in the radiation heat
transfer between the surfaces.

Since R1g = R2g, Eg is mean of J1 and J2, i.e.

Eg ¼ J1 þ J2
2

¼ rT4
g ðiÞ

where

J1 ¼ Eb1 � q12Rs1 ¼ 5:67� 10�8 � 10004 � 27652� 0:25 ¼ 49787

J2 ¼ Eb2 þ q12Rs2 ¼ 5:67� 10�8 � 4004 þ 27652� 0:667 ¼ 19895:

This gives equilibrium gas temperature, from Eq. (i)

Tg ¼ 1
r

J1 þ J2
2

� �� 	1=4
¼ 1

5:67� 10�8

49787þ 19895
2

� �� 	1=4
¼ 885 K:

12.5 Flames

Anthracite, coke and some gaseous fuels (hydrogen, blast furnace gas, generator gas, liq-
uefied petroleum gas, etc.) have non-luminous flames. The faint bluish colour of these flames
is not connected with an energy flux of any importance.

Bituminous fuels, e.g., wood, lignite and the younger coals, burn with a luminous flame of
yellow glow. Oil fuels can be fired to provide a varying degree of luminosity depending on
the design of the burner, extent of atomization and the percentage of excess air. Pulverized
coal burners produce a flame containing incandescent solid particles and a greater degree of
luminosity than the minimum obtainable with the oil burners. Stoker firing gives an
incandescent fuel bed. The carbon particles (mostly soot) and flying ash are formed from the
breakdown of the hydrocarbons in the flames. The soot, which is the most important product
formed when burning hydrocarbons, emits in a continuous spectrum in the visible and
infrared regions, and imparts the yellowish colour to the flame. Radiation of such flames may
be two- to four-fold greater than that from the gases with the presence of CO2 and H2O
molecules.

12.5.1 Luminous Flames

There are several factors that complicate the radiative heat transfer from the burning flames.
There is a temperature variation within the flame due to the simultaneous production and loss
of heat. The emission from the luminous flames depends on the number and distribution of
the soot, which varies greatly with the amount of air, and temperature of the air and gas, as
well as their mixing. The soot particles may be present in the form of spherical particles
(varying in size from 500 to 3000 angstrom in diameter), agglomerated masses, or sometimes
in long filaments.
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Due to the uncertainties, as discussed above, the radiation properties of the soot are only
known to a first approximation. The flame is considered as a blackbody and the heat transfer
expression is multiplied by an empirical factor p, which takes account of the fact that the
flame is not really black. Eckert and Drake (1972) suggested the following expression for the
radiative heat transfer.

q ¼ p½ewrAðT4
f � T4

wÞ� ð12:22Þ

where Tf is flame temperature, Tw is wall temperature, ew is emissivity of furnace wall and
A is the area of the wall.

The factor p mainly depends on the type of the fuel and size of the furnace. For large
furnaces, p is nearly unity. For furnaces of the usual size, it lies from 0.6 to 1.0. Furnaces are
of different designs. Whole or part of the furnace refractory walls may be covered with tubes
forming the water wall or convection tubes. The problem in the furnace design also consists
in determining the absorptivity of the walls, as well as the actual surface area of the wall.
However, in furnaces, the walls are usually rough and soot covered so they act practically as
black surfaces. If the net radiative heat flow to a cooling surface consists of a row of tubes
before a refractory wall, area A is determined by multiplying the area of the furnace wall
before which the tubes are arranged by a factor (see Kern 1950).

Mikheyev (1968) has given the following approximate equation.

q ¼ ef ewrAðT4
f � T4

wÞ ð12:23Þ

where

ef flame emissivity (see Table 12.2)
Tf effective flame temperature = (T1T2)

0.5

T1 theoretical temperature of combustion
T2 temperature of combustion products at the outlet of the furnace.

12.5.2 Non-luminous Flames

The phenomenon of the radiation from these flames has been studied well. If the products of
combustion from the fuel consist of carbon dioxide and water vapour, the method given in
Sect. 12.3 can be used to compute the radiative heat transfer from the flame.

Table 12.2 Flame emissivity ef for an infinitely thick layer (Mikheyev 1968)

Kind of flame ef

Non-luminous gas flame or flame of anthracite 0.4

Luminous flame of pulverized anthracite 0.45

Luminous flame of lean coal 0.6

Luminous flame of coal with large volatile content, brown coal, etc., burned in a layer or
pulverized form

0.7
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12.6 Summary

Gases such as carbon dioxide, carbon monoxide and sulfur dioxide, and water vapour are
capable of emitting and absorbing the heat radiation. Carbon dioxide and water vapour are
formed when combustion of hydrocarbon fuels takes place and the study of these gases is of
practical importance hence the discussion in this chapter has been basically confined to the
behavior of carbon dioxide, water vapour and their mixtures.

The radiation exchange between an absorbing and emitting gas and a solid surface is
considerably more complex than exchanges between solid surfaces through a transparent
medium. The specific features of the gaseous radiation are

(i) Gases emit and absorb radiation in certain narrow wavelength regions called bands.
Outside these bands, these gases are practically transparent and their emissive power is
zero. Thus, the gases are selective absorbers and emitters. These bands, their width
and number are different for different gases.

(ii) In gases, the emission and absorption occur over their volume. As the radiation passes
through a gas, reduction in its intensity takes place. There is an exponential decay of
the radiation intensity with distance as the radiation travels through the gas volume,
which is known as Beer’s law, Eq. (12.3). This reduction depends on the thickness of
the gas volume and the partial pressure of the gas.

(iii) As the thickness of the gas increases, the absorptivity and emissivity increase.
(iv) In general, the reflectivity of the gases is zero, therefore, ak + sk = 1 where sk is

defined by Eq. (12.4).
(v) The total emissive power of a gas equals the sum of radiation of all bands.

The procedure for the calculation of net heat exchange was presented by Hottel. A sim-
plified case of total radiation heat exchange between a black enclosure and isothermal
(uniform temperature) gas volume consisting of CO2 and/or water vapour is given in
Sect. 12.3.

The emissivity ec of CO2 is a function of the gas mixture temperature Tg, the partial
pressure of CO2 in the gas volume times the characteristic dimension (pcL), and the total
pressure of the mixture p as presented in Eq. (12.10). Characteristic dimension or equivalent
beam length L as given in Table 12.1 is used. The emissivity ec is determined from Hottel’s
chart for CO2, refer Fig. 12.4, when the total pressure of the gas mixture is 1 atm. When the
total pressure of the gas mixture is different from 1 atm, the emissivity value read from
Fig. 12.4 is multiplied by a pressure correction factor Cc from Fig. 12.5.

The absorptivity ac is defined by Eq. (12.13) where the value of ec from Fig. 12.4 is read
at surface or wall temperature Ts and the parameter pcL is replaced by pcL(Ts/Tg). The
correction factor Cc is to be considered when p 6¼ 1 atm.

A similar procedure is to be followed if the water vapour is the only participating medium.
Similar to equations for CO2, Eqs. (12.14) and (12.15) for water vapour have been presented.
The relevant charts are Figs. 12.6 and 12.7. The correction factor Cw from Fig. 12.7 is to be
used when p 6¼ 1 atm.

The net rate of heat transfer from the gas to the black surface (area As) is calculated as net
of the energy emitted by the gas and energy emitted by the surface which is absorbed by the
gas, refer Eq. (12.16). When the gas mixture contains both CO2 and water vapour, the total
radiation is slightly less than the sum of the radiations emitted by carbon dioxide and water
vapour. The combined emissivity/absorptivity is estimated by determining the individual
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emissivity/absorptivity values of the two separately and then applying an emissivity/ab-
sorptivity correction factor De given in Fig. 12.8.

When the enclosure is not black, the net rate of heat transfer is determined by using
effective emissivity e′ defined as e0 ¼ 1þ esð Þ=2, and the heat exchange is (qgs)gray = e′
(qgs)black.

In Sect. 12.4, an analysis is presented for a case when space between diffuse gray surfaces
at different temperatures is filled with a gray gas that behaves as a transmitting and absorbing
medium.

In the end of the chapter, a brief introduction to radiative heat transfer from flames has
been presented.

Review Questions

12:1 Write a short note on radiation from gases, vapours and flames.
12:2 What is Beer’s law? How would you calculate the monochromatic transmissivity and

absorptivity of a gas from this law?
12:3 Define mean beam length.
12:4 Explain the reasons for the use of factors Cc, Cw and De.
12:5 What do you mean by a gray gas?

Problems

12:1 Determine mean beam length for a rectangular furnace of dimensions 1 � 1 � 4 m3.
[Ans. L = 3.6(V/A) = 0.8 m.]

12:2 Determine the emissivity of water vapour at 1200 K contained in a cubical container
of 1 m side. The partial pressure of water vapour is 0.1 atm and the total pressure is
1.2 atm.
[Ans. L = 0.66 a = 0.66 m, pwL = 0.1 � 0.66 = 0.066 atm-m, ½ (p + pw) = ½
(1.2 + 0.1) = 0.65 atm. From Figs. 12.6 and 12.7, Cw = 1.2 and (ew)1 atm = 0.081,
respectively. This gives (ew)1.2 atm = 0.081 � 1.2 = 0.097.]

12:3 Products of combustion in a 1.5 m side cubical furnace consist of CO2 at 0.1 atm and
water vapour at 0.12 atm. The total pressure is nearly atmospheric. Estimate the
effective gas emissivity. The mixture temperature is 800 K.
[Ans. L = 0.66 � 1.5 = 0.99 m, pcL = 0.1 � 0.99 � 0.1 atm-m, ec = 0.11 from
Fig. 12.4; pwL = 0.12 � 0.99 = 0.1188 atm-m, ew = 0.17 from Fig. 12.6; De = 0.012
from Fig. 12.8 at pw/(pc + pw) = 0.545, L(pc + pw) = 0.2178 atm-m and 800 K. This
gives eg = ec + ew − De = 0.11 + 0.17 − 0.012 = 0.268.]

12:4 Flue gases from a boiler furnace pass through a cylindrical pipe of 1 m diameter. The
gas consists of 12% CO2 by volume and rest N2 and O2. The temperature of the flue
gases is 800 K while that of the pipe surface is 400 K. Determine the gas emissivity
and absorptivity. The gas pressure is 1 atm and the pipe surface can be treated as
black. What is the heat transfer rate?
[Ans. L = 0.95 D = 0.95 m; pc = 0.12 atm, pcL = 0.114 atm-m; ec = 0.115
from Fig. 12.4; (pcL) � (Ts/Tg) = 0.114 � (400/800) = 0.0576 atm-m, ec(Ts) = 0.09;
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ac = ec(Ts) � (Tg/Ts)
0.65 = 0.09 � (800/400)0.65 = 0.1412, qgs = r As(ecTg

4 − ac
Ts
4) = 7.75 kW/m length of the pipe.]

12:5 The combustion products of a hydrocarbon fuel are CO2 = 15%, H2O (vapour) = 7%
and rest N2 and O2. The products are in a cylindrical region 1.5 m long and 0.7 m in
diameter and assumed to be uniformly mixed at a flame (non-luminous) temperature of
1400 K. The total pressure is 1 atm. Compute the radiation heat leaving the gas.
[Ans. L = 3.6 (V/As) = 0.51 m, pc = 0.15 atm, pcL = 0.0767 atm-m, ec = 0.085 from
Fig. 12.4; pw = 0.07 atm, pwL = 0.0358 atm-m, ew = 0.043 from Fig. 12.6; De
0.007 from Fig. 12.8 at pw/(pc + pw) = 0.32, (pc + pw)L = 0.1125 atm-m and Tg >
1200 K. This gives eg = ec + ew − De =0.121; q = r eg ATg

4 = 107.2 kW.]
12:6 Flue gas at near atmospheric pressure and 600°C flows through a rectangular section

duct (600 � 600 mm2). The gas contains CO2 = 12%, H2O (vapour) = 5% and rest
N2 and O2. The duct surface emissivity is 0.9. What is the rate of heat flow to the duct
surface per m length if the duct surface temperature is 400°C?
[Ans. L = 3.6 (V/As) = 0.54 m, pc = 0.12 atm, pcL = 0.0648 atm-m, ec = 0.1 from
Fig. 12.4 at 873 K; pw = 0.05 atm, pwL = 0.027 atm-m, ew = 0.065 from Fig. 12.6;
De = 0.004 from Fig. 12.8 at pw/(pc + pw) = 0.294, (pc + pw)L = 0.0918 atm-m and
Tg = 873 K; This gives eg = ec + ew − De = 0.161; pcL(Ts/Tg) = 0.05 atm-m, pwL(Ts/
Tg) = 0.021 atm-m, ec(673) = 0.085, ew(673) = 0.068, ac = ec(673) � (Tg/Ts)

0.65 =
0.1, aw = ew(673) � (Tg/Ts)

0.45 = 0.0764, Da = De(673) � 0.002, ag = ac + aw −
a = 0.1744, e0w = (1 + es)/2 = 0.95, q = A e0w r(eg Tg

4 − agTw
4 ) = 7464 W/m.]
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13Heat Transfer in Condensing
Vapours and Boiling Liquids

13.1 Part A: Heat Transfer in Condensing Vapours

13.1.1 Introduction

The phenomenon of the heat transfer in condensing vapours is quite different from the
convective heat transfer in single-phase fluids because it is accompanied by change of phase
of the vapour.

If saturated vapour comes in contact with a surface at a temperature lower than the
saturation temperature of the vapour, condensation of the vapour on the surface takes place.
There are basically two ways in which the vapour condensation may take place. We shall
discuss these ways by considering an example of a vertical surface.

13.1.1.1 Different Types of Condensation

Dropwise Condensation
In the dropwise condensation, the condensate forms a large number of individual droplets of
varying diameters on the condensing surface instead of a continuous liquid film. This hap-
pens when the condensate does not wet the cooling surface. Such type of condensation can
be achieved artificially by applying a thin layer of oil, kerosene or some fatty acids upon the
surface or by adding these substances to the vapour. Besides this, the surface must be
properly polished. The dropwise condensation provides very high heat transfer coefficient as
compared to the filmwise condensation being discussed below; the heat transfer coefficients
can be more than 10 times larger than film condensation.

Filmwise Condensation
In this mode, the condensate forms a continuous film on the surface. The condensation of
pure vapour of wetting liquids results in the formation of a continuous film of the condensate,
which moves down the vertical surface due to the gravitational force.

In an industrial apparatus, dropwise condensation may occur in one section of the
apparatus, while other section may experience filmwise condensation. Since the filmwise
condensation is more frequent, it will be discussed in the following sections.
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13.1.2 Nusselt’s Film Condensation Theory

When filmwise condensation takes place on a vertical surface, the film flows downwards due
to the gravitational effect. If the liquid film is thin and its velocity is low, a laminar flow of
the condensate happens. Nusselt presented a simple theory for the calculation of heat transfer
in the case of laminar film condensation on vertical or inclined surfaces.

The following assumptions have been made for Nusselt’s analysis.

(i) Steady state condition
(ii) The vapour rejects the latent heat only and there is no subcooling of the condensate
(iii) The heat is transferred across the laminar film by conduction only. Convection in the

condensate film is negligible because of the laminar flow.
(iv) There is good thermal contact between the surface and the condensate.
(v) Velocity gradient at the liquid–vapour interface is zero. No viscous effect at the liquid

film–vapour interface
(vi) Inertia forces are negligible because the velocity of the condensate is negligible.
(vii) Effect of surface tension has not been considered
(viii) Change in kinetic and potential energies are negligible.
(ix) There are no impurities in the vapour or condensate.

13.1.2.1 Laminar Film Condensation on a Vertical Surface
As mentioned earlier when the vapour at saturation temperature ts comes in contact with a
vertical surface held at temperature tw, where tw is less than ts, condensation takes place. As
the condensate flows down the vertical plate, its thickness increases as shown in Fig. 13.1
because of the condensation of the vapour at the liquid–vapour interface.

At distance x from the top (leading) edge, let the thickness of the condensate film is dx.
Heat transfer from the liquid–vapour interface to the surface takes place by conduction
through the condensate film. Hence,

qx ¼ kðdxdzÞ ts � tw
dx

ðiÞ

where dz is the dimension perpendicular to the plane of the paper.
On the other hand, the quantity of heat transferred may be written as

qx ¼ hxðdxdzÞðts � twÞ ðiiÞ

where hx is the local heat transfer coefficient.
From Eqs. (i) and (ii), we get

hx ¼ k

dx
ð13:1Þ

Hence, to determine the heat transfer coefficient, we should determine the thickness dx of the
condensate film. The thickness of the film can be found from the Nusselt theory presented here.

The element (dx � dy � dz), refer Fig. 13.1, is under equilibrium of two forces:

(i) The force of viscous friction = ds (dx � dz), and
(ii) The net of the weight and buoyancy force due to the displaced vapour,
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¼ ðq� qvÞðdVÞg
¼ ðq� qvÞðdx � dy � dzÞg:

where q is the density of liquid and qv is the density of vapour.
Since qv � q, (q − qv) � q, the net of the weight and buoyancy force

¼ qðdx � dy � dzÞg:

Thus, the equilibrium of the forces gives

dsðdx � dzÞþ qðdx � dy � dzÞg ¼ 0

or

ds ¼ �qdyg ðiiiÞ

According to Newton’s law

s ¼ l
dvx
dy

or

ds
dy

¼ l
d2vx
dy2

ðivÞ

Plate
Condensate 
film 

Vapour
(ts) 

dx

x

qx

dy

δx

0

∞ ts 

τ - dτ/2

∞ tw 

τ + dτ/2

Velocity 
profile 

Fig. 13.1 Laminar film condensation on a vertical plate
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From Eqs. (iii) and (iv),

d2vx
dy2

¼ � qg
l

ðvÞ

Integrating Eq. (v), we get

vx ¼ � qg
2l

y2 þC1yþC2 ðviÞ

The boundary conditions are

at y ¼ 0; vx ¼ 0 ðaÞ

at y ¼ dx;
dvx
dy

¼ 0 ðbÞ

From the first boundary condition,

C2 ¼ 0:

Secondary boundary condition gives

dvx
dy

� �
y¼dx

¼ 0 ¼ � qg
2l

2yþC1

� �
y¼dx

¼ � qg
l
dxþC1

or

C1 ¼ qg
l
dx

Substitution of the values of the constants in Eq. (vi) gives

vx ¼ qg
l
dx

� �
y� qg

2l
y2 ðviiÞ

The above equation is equation of velocity of the condensate. The mean velocity of the
condensate through the film is

vx ¼ 1
dx

Zdx
0

qg
l
dx

� �
y� qg

2l
y2

� �
dy

¼ qg
3l

ðdxÞ2
ðviiiÞ

The quantity of the condensate Gx flowing per hour through cross-section (dxdz) is

Gx ¼ qðdxdzÞvx ¼ q2gðdxÞ3
3l

� dz ðixÞ
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As we move distance dx down the plate, the condensate flow thickness increases from dx
to (dx + ddx) because of the condensation dGx in distance dx. Hence,

dGx

ddx
¼ q2gðdxÞ2

l
� dz

or

dGx ¼ q2gðdxÞ2
l

ddx � dz ðxÞ

The addition dGx in the condensate is due to the condensation. It can also be estimated
from the heat transfer consideration, which gives

dGx ¼ kðdxdzÞ ts � tw
dx

� � 1
hfg

ðxiÞ

where hfg is the latent heat of condensation.
Equating Eqs. (x) and (xi), we obtain

k

dx
ts � tw
hfg

� �
dx ¼ q2gðdxÞ2

l
ddx

or

dx ¼ q2ghfg
lk ts � twð Þ ðdxÞ

3:ddx

Integrating the above equation,

x ¼ q2ghfg
lk ts � twð Þ

ðdxÞ4
4

þC

Since film thickness is zero at the upper edge of the plate, i.e. dx = 0 at x = 0, we get
C = 0. Thus

x ¼ q2ghfg
lk ts � twð Þ

ðdxÞ4
4

and

dx ¼ 4lk ts � twð Þx
q2ghfg

� �1=4
ð13:2Þ

which is the equation of variation of the film thickness dx along the plate height x.
Substitution of the value of dx in Eq. (13.1) gives
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hx ¼ q2ghfgk3

4l ts � twð Þx
� �1=4

ð13:3Þ

Both the film thickness dx and heat transfer coefficient hx vary with distance x, refer
Eqs. (13.2) and (13.3). At x = 0, the film thickness is zero and the heat transfer coefficient hx
is maximum. With the increase in the thickness of the condensate film along the plate, the
heat transfer coefficient decreases. Figure 13.2 shows the variations of dx and hx with x. The
film thickness along the plate increases as a fourth root of distance down the surface (dx /
x1/4), while the heat transfer coefficient decreases with the increase in distance (hx / x−1/4).
The increase in the thickness of the film is rapid at the beginning then the increase is rather
slow as shown in the figure. The figure also depicts the variation of the film coefficient.

The mean heat transfer coefficient for a vertical plate of height H is

h ¼ 1
H

ZH
0

hxdx

¼ 4
3
� q2ghfgk3

4l ts � twð ÞH
� �1=4 ðxiiÞ

or

h ¼ 0:943
q2ghfgk3

l ts � twð ÞH
� �1=4

ð13:4Þ

Then the Nusselt number is

Nu ¼ hH

k
¼ 0:943

q2ghfgH3

l ts � twð Þk
� �1=4

ð13:5Þ

The heat transfer coefficient predicted by Nusselt’s solution has been found to be about
20% lower than the experimentally observed values. The reasons extended for this are
(i) Effect of surface tension has not been considered in the analysis.
(ii) Even for Reynolds numbers as low as 30–40, ripples appear in the film. These ripples

cause mixing action and the heat transfer coefficient is increased.

Looking to the above facts, the following correlation, arrived at by multiplying Eq. (13.5)
by 1.2, is recommended by some references for a vertical plate, i.e.

Nu ¼ hH

k
¼ 1:13

q2ghfgH3

l ts � twð Þk
� �1=4

ð13:6Þ

For an inclined plane, at an angle h with horizontal, the term g in Eq. (13.6) is replaced by
gsinh, which gives
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Nu ¼ hH

k
¼ 1:13

q2ðg sin hÞhfgH3

l ts � twð Þk
� �1=4

ð13:7Þ

i.e.

h
� 	

inclined¼ h
� 	

vertical

ffiffiffi
4

p
sin h ð13:8Þ

This approximation gives satisfactory results for h � 60°.
The equations derived above for a vertical plate are also applicable to condensation on the

outer surface of a vertical tube provided the tube diameter is sufficiently large compared to
the film thickness.

Nusselt obtained the following equation for a single horizontal tube of outer diameter Do.

h ¼ 0:725
q2k3ghfg

l ts � twð ÞDo

� �1=4
ð13:9Þ

Nu ¼ 0:725
q2ghfgD3

o

l ts � twð Þk
� �1=4

ð13:10Þ

All the fluid properties in the heat transfer and Nusselt number correlations, except the
latent heat hfg, are to be taken at the mean film temperature (ts + tw)/2. The latent heat hfg is
taken at the saturation temperature of the condensate.

The above-presented relations are based on the assumption that the heat transfer is due to
the phase change only. However, the temperature of the liquid film varies from saturation
temperature ts at the vapour–liquid interface to wall temperature tw at the surface of the plate.
This cooling of the liquid below the saturation temperature is accounted for by modification
in the energy balance to include additional energy to cool the film below the saturation
temperature. Use of corrected or modified latent heat of vaporization h�fg instead of hfg is
suggested which is defined as

x
0

h δx

Fig. 13.2 Variation of film thickness and heat transfer coefficient along the plate
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h�fg ¼ hfg þ 0:68c1ðts � twÞ: ð13:11Þ

where cl is the specific heat of the liquid and the second term on the right takes account of the
cooling of the liquid below the saturation temperature.

Comparison of Horizontal and Vertical Orientation of Tubes
A comparison of the heat transfer coefficient relations for a horizontal tube of diameter D and
a vertical tube of height H yields, from Eqs. (13.9) to (13.4),

hhorizontal
htvertical

¼ 0:7688
H

Do

� �1=4

¼ H

2:86Do

� �1=4

ð13:12Þ

Setting hhorizontal= hvertical, we get H = 2.86Do. This implies that for a tube of length
2.86Do, the heat transfer coefficient for laminar film condensation will be the same whether
the tube is horizontal or vertical. For H > 2.86Do, film coefficient on a horizontal tube is
greater than for condensation over a vertical plate or tube. In most of the vertical condensers,
the length of tube H is much greater than its outer diameter Do (H/Do is of the order of 50–
100) and this is the reason for the preference of horizontal arrangement of tubes in con-
densers. However, in a condenser, there are a large number of tubes.

Figure 13.3 shows a bank of n horizontal tubes arranged in a vertical tier. For the inline
arrangement the condensate trickling from the upper rows of the tubes will envelop the tubes
of the lower rows. Hence, the thickness of film on these rows will increase causing a lower
rate of heat transfer from these rows. The effect of thickening of the condensate film on the
tubes of lower rows is less significant in the case of staggered arrangement where splashing
of the condensate may occur.

In the absence of empirical relations which account for the splashing and thickening of the
film, an estimate of the heat transfer can be made, by replacing Do in Eq. (13.9) by nD0 (Pitts
and Sissom 1991). Thus, if the vapour is condensing on a bank of tubes, say n in vertical
column and m in each horizontal row, the average heat transfer coefficient for the bank is
given by

�h
�h1

¼ n�1=4 ð13:13aÞ

where n is the total number of rows and �h1 is the heat transfer coefficient for the single tube
Kern (1958) proposed the following correction for the average heat transfer coefficient for

n-tubes in a vertical column.

a In-line arrangement b Staggered arrangement 

Fig. 13.3 Arrangement of tubes in a tube bundle arrangement
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�h
�h1

¼ n�1=6 ð13:13bÞ

Example 13.1 A vertical tube, 1.2 m long and having 50 mm outer diameter is exposed to
steam at 1.2 bar. If the tube surface is maintained at 85°C by flowing cooling water through
it, determine the rate of heat transfer to the cooling water and the rate of condensation of
steam. Assume flow to be laminar.

If the tube is held in horizontal position, estimate the condensation rate.

Solution

From steam tables, hfg = 2244.2 kJ/kg, ts = 104.8°C at p = 1.2 bar.
At the mean film temperature, (ts + tw)/2 = (85 + 104.8)/2 = 94.9°C, the fluid properties

are

q ¼ 961:5 kg=m3; l ¼ 2:94� 10�4 kg=ðm sÞ; k ¼ 0:677W=ðm KÞ and c
¼ 4213 J=ðkg KÞ

h�fg ¼ hfg þ 0:68cðts � twÞ
¼ 2244:2� 103 þ 0:68� 4213� ð104:8� 85Þ
¼ 2300:9� 103 J=kg:

(i) Condensation on the vertical tube surface
The average heat transfer coefficient is given by

h ¼ 0:943
q2gh�fgk

3

l ts � twð ÞH

" #1=4

¼ 0:943
ð961:5Þ2 � 9:81� 2300:9� 103 � ð0:677Þ3

2:94� 10�4 � 104:8� 85ð Þ � 1:2

" #1=4

¼ 5203:2 W/m2K:

ð13:4Þ

The heat flow rate,

q ¼ hAðts � twÞ ¼ 5203:2� ðp� 0:05� 1:2Þ � ð104:8� 85Þ ¼ 19419W:

The steam condensation rate is

_m ¼ q

hfg
¼ 19419

2300:9� 103
¼ 8:44� 10�3 kg/s:
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(ii) Condensation on the horizontal tube surface
The average heat transfer coefficient is given by

h ¼ 0:725
q2gh�fgk

3

l ts � twð ÞDo

" #1=4

¼ 0:725� ð961:5Þ2 � 9:81� 2300:9� 103 � ð0:677Þ3
2:94� 10�4 � 104:8� 85ð Þ � 0:05

" #1=4

¼ 8854:2W/m2K:

ð13:9Þ

The heat flow rate,

q ¼ hAðts � twÞ ¼ 8854:2� ðp� 0:05� 1:2Þ � ð104:8� 85Þ ¼ 33045:8W:

and the steam condensation rate is

_m ¼ q

h�fg
¼ 33045:8

2300:9� 103
¼ 14:36� 10�3 kg/s:

The example clearly shows the advantage of the horizontal arrangement of a single tube in
the condensation process. Further, it is to note that the condensing heat transfer coefficient is
much greater than the heat transfer coefficient encountered in free or forced single-phase
flows.

Example 13.2 Repeat Example 13.1 if the steam is condensing on a bundle of horizontal
tubes, 8 in vertical column and 10 in each horizontal row.

Solution

From Example 13.1, for the condensation on the single horizontal tube, the average heat
transfer coefficient h ¼ 8854:2W= m2Kð Þ.

The average heat transfer coefficient for the bank from Eq. (13.13b) is

�h ¼ n�1=6 � �h1 ¼ 8�1=6 � 8854:2 ¼ 6260:9W= m2K
� 	

: ð13:13bÞ

where n is number of tubes in a vertical column and �h1 is the heat transfer coefficient for the
single tube

The heat flow rate,

q ¼ hAðts � twÞ ¼ 6260:9� ð80� p� 0:05� 1:2Þ � ð104:8� 85Þ ¼ 1869:4 kW:

The steam condensation rate is

_m ¼ q

h�fg
¼ 1869:4

2300:9
¼ 0:812 kg/s:
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13.1.2.2 Turbulent Film Flow
Nusselt’s analysis is applicable to the laminar film flow. In the case of a vertical plate, the
thickness of the condensate film increases downstream. For a tall vertical surface, at certain
critical distance xcr, the film becomes thick enough to cause a transition to the turbulent flow
and heat is transferred not only by conduction but also by eddy diffusion, a characteristic of
turbulence. Hence, the heat transfer rate is higher in the turbulent regime than in the laminar
regime.

In order to define the point of transition from laminar to turbulent, it is necessary to define
first the Reynolds number of the flow of the condensate. From the definition of the Reynolds
number

Rex ¼ qvmdh
l

ð13:14Þ

at distance x from the leading (top) edge. In the equation,
vm = mean velocity of the condensate = _m=qAc

_m = mass flow rate through the particular section of the condensate film
q = density of the condensate
Ac = area of flow
dh = hydraulic diameter = 4Ac/P
P = wetted parameter
= width W of the plate for a vertical plate
= circumference pDo for a vertical tube.
Substitution of values of vm and dh in Eq. (13.14) gives

Rex ¼ _m

qAc
� q
l
� 4Ac

P
¼ 4 _m

lP
ð13:15Þ

The Reynolds number at any section can be expressed in terms of the heat transfer
coefficient as given below.

From the heat transfer equation,

q ¼ hADt

where h is the average heat transfer coefficient, A is the surface area for heat transfer and Dt is
the temperature difference = ts − tw.

This equals the total latent heat of the condensate, i.e.

_mhfg ¼ hADt

or

_m ¼ hADt
hfg
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Substitution of the value of _m in Eq. (13.15) gives

Rex ¼ 4hADt
hfglP

¼ 4h Wxð ÞDt
hfglP

(for a plate, area = Wx for height x, where W is width)
or

Rex ¼ 4h Wxð ÞDt
hfglW

¼ 4hxDt
hfgl

(for a plate, perimeter P = W)
Hence for a vertical plate of height H, the Reynolds number at the lower end of the plate

(x = H) is

ReH ¼ 4hHðts � twÞ
hfgl

ð13:16Þ

The following empirical correlation for the turbulent flow has been suggested by Kirk-
bride (1934).

h ¼ 0:0077
q2gk3

l2

� �1=3
ReHð Þ0:4

for Re� 1800

ð13:17Þ

or

Nu ¼ hH

k
¼ 0:0077

q2gH3

l2

� �1=3
ReHð Þ0:4 ð13:18Þ

It is to be noted that the above correlation is applicable when the Reynolds number is
greater than the critical value of 1800. This Reynolds number of 1800 is termed as the critical
Reynolds number. In the case of single horizontal tube, the condensate is only (pDo/2) in
height and hence turbulence does not occur.

Example 13.3 Saturated steam at 0.7 bar is condensing on a vertical plate 2 m in height.
The plate is maintained at 85°C. Find the average value of the heat transfer coefficient and
the heat flow rate.

Solution

At 0.7 bar, hfg = 2283.2 kJ/kg, ts = 90°C from the steam tables.
Mean film temperature = (ts + tw)/2 = (85 + 90)/2 = 87.5°C.
The fluid properties at the mean film temperature are

q ¼ 967:2 kg=m3; l ¼ 3:205� 10�4 kg=ðm sÞ and k ¼ 0:674W=ðm KÞ:
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For the trial, we assume the flow to be laminar. The average heat transfer coefficient will be

h ¼ 0:943
q2ghfgk3

l ts � twð ÞH
� �1=4

¼ 0:943
ð967:2Þ2 � 9:81� 2283:2� 103 � ð0:674Þ3

3:205� 10�4 � 90� 85ð Þ � 2

" #1=4

¼ 6307:6W/(m2K):

ð13:4Þ

From this estimate of the heat transfer coefficient,

ReH ¼ 4hHðts � twÞ
hfgl

¼ 4� 6307:6� 2� ð90� 85Þ
2283:2� 103 � 3:205� 10�4

¼ 344:8 ð13:16Þ

Since 30 < ReH < 1800, flow is laminar-wavy and ripples appear in the film. Considering
the ripples effect, the heat transfer coefficient is (1.13/0.943) � 6307.6 = 7558.4 W/(m2 K)
and the heat flow rate,

q ¼ hAðts � twÞ ¼ 7558:4� ð2� 1Þ � ð90� 85Þ ¼ 75584 W/unit width of the plate:

The steam condensation rate is

_m ¼ q

hfg
¼ 75584

2283:2� 103
¼ 0:0331 kgs:

Example 13.4 If the plate in Example 13.3 is held at 50°C and plate height is doubled, find
the average value of the heat transfer coefficient and the condensate flow rate.

Solution

At 0.7 bar, hfg = 2283.2 kJ/kg, ts = 90°C from the steam tables.
Mean film temperature = (ts + tw)/2 = (90 + 50)/2 = 70°C.
The fluid properties at the mean film temperature are

c ¼ 4:191 kJ=ðkg KÞ; q ¼ 977:5 kg=m3; l ¼ 4:0� 10�4 kg=ðm sÞ and k
¼ 0:663W=ðm KÞ:

Assuming the flow to be laminar, the average heat transfer coefficient will be

h ¼ 0:943
q2ghfgk3

l ts � twð ÞH
� �1=4

¼ 0:943
ð977:5Þ2 � 9:81� 2283:2� 103 � ð0:663Þ3

4:0� 10�4 � 90� 50ð Þ � 4

" #1=4

¼ 2962:8W/(m2 K):
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From this estimate of the heat transfer coefficient,

ReH ¼ 4hHðts � twÞ
hfgl

¼ 4� 2962:8� 4� ð90� 50Þ
2283:2� 103 � 4:0� 10�4

¼ 2076[ 1800:

The flow is turbulent. We should recalculate the Reynolds number and heat transfer
coefficient considering the flow to be turbulent. For the turbulent flow,

h ¼ 0:0077
q2gk3

l2

� �1=3
ReHð Þ0:4 ð13:18Þ

Substituting the value of h in equation of ReH, we get

ReH ¼ 0:0077
q2gk3

l2

� �1=3

� 4Hðts � twÞ
hfgl

" #1=0:6

or

ReH ¼ 0:0077
ð977:5Þ2 � 9:81� ð0:663Þ3

ð4:0� 10�4Þ2
" #1=3

� 4� 4� ð90� 50Þ
2283:2� 103 � 4:0� 10�4

8<
:

9=
;

1=0:6

¼ 3727:

Heat transfer coefficient,

h ¼ 0:0077
q2gk3

l2

� �1=3
ReHð Þ0:4

¼ 0:0077
ð977:5Þ2 � 9:81� ð0:663Þ3

ð4:0� 10�4Þ2
" #1=3

�ð3727Þ0:4

¼ 5318:6W/m2 K:

The heat flow rate,

q ¼ hAðts � twÞ ¼ 5318:6� ð4� 1Þ � ð90� 50Þ ¼ 850:98 kW=unit width of the plate:

The steam condensation rate is

_m ¼ q

hfg
¼ 850:98� 103

2283:2� 103
¼ 0:373 kg/s:

Since the difference in the plate surface temperature and the saturation temperature is
large, we should use the modified latent heat of vaporization h�fg instead of hfg to take account
of subcooling of the liquid. h�fg is defined as
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h�fg ¼ hfg þ 0:68cðts � twÞ ð13:11Þ

or

h�fg ¼ 2283:2� 103 þ 0:68� 4191� ð90� 50Þ ¼ 2397� 103 J/kg:

The modification gives

ReH ¼ 0:0077
q2gk3

l2

� �1=3

� 4Hðts � twÞ
h�fgl

" #1=0:6

or

ReH ¼ 0:0077
ð977:5Þ2 � 9:81� ð0:663Þ3

ð4:0� 10�4Þ2
" #1=3

� 4� 4� ð90� 50Þ
2397� 103 � 4:0� 10�4

8<
:

9=
;

1=0:6

¼ 3437:

Heat transfer coefficient,

h ¼ 0:0077
q2gk3

l2

� �1=3
ReHð Þ0:4

¼ 0:0077
ð977:5Þ2 � 9:81� ð0:663Þ3

ð4:0� 10�4Þ2
" #1=3

�ð3437Þ0:4

¼ 5149W/m2 K,

which is about 3% lower. Now it can be understood that when (ts − tw) is small, the
modification will have a negligible effect on the estimate of h. In such cases, the estimate can
be made using hfg.

The heat flow rate,

q ¼ hAðts � twÞ ¼ 5149� ð4� 1Þ � ð90� 50Þ ¼ 823:8 kW=unit width of the plate:

The steam condensation rate is

_m ¼ q

h�fg
¼ 823:8� 103

2397� 103
¼ 0:344 kg/s:

Example 13.5 A horizontal tube 1 m long and 115 mm outer diameter is to be used to
condense steam at the outer surface of the tube. Determine the required surface temperature
of the tube for a condensation rate of 1.75 kg/min at 1 atm.
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Solution

From the heat transfer rate equation

_m ¼ q

h�fg
¼ hAðts � twÞ

h�fg

where h�fg ¼ hfg þ 0:68cðts � twÞ, and h ¼ 0:725
q2gh�fgk

3

l ts�twð ÞDo

h i1=4
.

Substitution gives

_m ¼ 0:725
q2g½hfg þ 0:68cðts � twÞ	k3

l ts � twð ÞDo

� �1=4
Aðts � twÞ

hfg þ 0:68cðts � twÞ ðiÞ

At 1 atm (=1.01325 bar), hfg = 2256.4 kJ/kg, ts = 100°C from the steam tables.
Assuming mean film temperature of 85°C, the fluid properties are (Table A4)

c ¼ 4203 J=ðkg KÞ; q ¼ 969 kg=m3; l ¼ 3:3� 10�4 kg=ðm sÞ and k ¼ 0:673W=ðm KÞ:

Substitution of the values of various parameters in Eq. (i) gives

1:75
60

¼ 0:725� 9692 � 9:81� ½2256:4� 103 þ 0:68� 4203� ð100� twÞ	 � 0:6733

3:3� 10�4 � 100� twð Þ � 0:115

� �1=4

� p� 0:115� ð100� twÞ
½2256:4� 103 þ 0:68� 4203� ð100� twÞ	

The solution of the above equation by trial and error gives (100 − tw) � 30°C. Hence, the
required surface temperature of the tube, tw = 70°C. Mean film temperature is (70 + 100)/
2 = 85°C as assumed.

Example 13.6 A horizontal pipe (25 mm outer diameter) is in contact with 40°C, 76%
relative humidity air. Determine water condensation rate per unit length of the pipe if the tube
surface temperature is 5°C.

Solution
Saturation pressure of water corresponding to 40°C is 0.073814 bar. Hence, water vapour
pressure is 0.073814 � RH = 0.073814 � 0.76 = 0.0561 bar. The corresponding saturation
temperature is about 35°C and hfg = 2417.8 kJ/kg.

Water (liquid) film temperature is (35 + 5)/2 = 20°C. At 20°C, water properties are
(Table A4)

c ¼ 4183 J=ðkg KÞ; q ¼ 998:2 kg=m3; l ¼ 1002� 10�6 kg=ðm sÞ and k
¼ 0:601W=ðm KÞ:

The condensation rate per unit length is
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_m ¼ q

h�fg
¼ hpDðts � twÞ

h�fg

where
h�fg ¼ hfg þ 0:68cðts � twÞ ¼ 2417:8� 103 þ 0:68� 4183� ð35� 5Þ ¼ 2503:1� 103 J=kg:

Heat transfer coefficient,

h ¼ 0:725
q2gh�fgk

3

l ts � twð ÞDo

" #1=4

¼ 0:725� 998:22 � 9:81� 2503:1� 103 � 0:6013

1002� 10�6 � 35� 5ð Þ � 0:025

� �1=4
¼ 6647:48W= m2 K

� 	
:

Hence, the condensation rate is

_m ¼ 6647:48� p� 0:025� ð35� 5Þ
2473:9� 103

¼ 6:33� 10�3 kg=s per m length:

Example 13.7 Saturated steam at 1 atm condenses on the outer surface of a vertical tube
1 m long and having 100 mm outside diameter and 95 mm inside diameter. If the tube
surface is maintained at 95°C by flowing cooling water through it, determine the rate of heat
transfer to the cooling water and the rate of condensation of steam.

If water flow within the tube experiences 3°C temperature rise, determine the mean
temperature of the water in the tube. Neglect pipe wall resistance.

Solution
At 1 atm (=1.01325 bar), hfg = 2256.4 kJ/kg, ts = 100°C from steam tables. At film tem-
perature of (95 + 100)/2 = 97.5°C, the thermophysical properties of water are (Table A4)

c ¼ 4212 J=ðkg KÞ; q ¼ 959:9 kg=m3; l ¼ 2:88� 10�4 kg=ðm sÞ and k
¼ 0:6795W=ðm KÞ:

Though temperature difference is small, we may consider correction in hfg. Corrected or
modified latent heat of vaporization is

h�fg ¼ hfg þ 0:68cðts � twÞ
¼ 2256:4� 103 þ 0:68� 4212� ð100� 95Þ
¼ 2270:7� 103 J=kg:

The average heat transfer coefficient for the vertical tube is given by (using vertical plate
equation)
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h ¼ 0:943
q2gh�fgk

3

l ts � twð ÞH

" #1=4

¼ 0:943
ð959:9Þ2 � 9:81� 2270:7� 103 � ð0:6795Þ3

2:88� 10�4 � 100� 95ð Þ � 1:0

" #1=4

¼ 7711:4W/(m2K):

ð13:4Þ

The heat flow rate,

q ¼ hAðts � twÞ ¼ 7711:4� ðp� 0:1� 1:0Þ � ð100� 95Þ ¼ 12113W:

The steam condensation rate is

_m ¼ q

h�fg
¼ 12113

2270:7� 103
¼ 5:33� 10�3 kg/s:

From Eq. (13.15), the Reynolds number of flowing condensate is

Re ¼ 4 _m
lP

¼ 4 _m
lpD

¼ 4� 5:33� 10�3

2:88� 10�4 � p� 0:1
¼ 236:

Since 30 < ReH < 1800, flow is laminar-wavy and ripples appear in the film. Considering
the ripples effect, the heat transfer coefficient is (1.13/0.943) 7711.4 = 9240.6 W/(m2 K) and
the heat flow rate is

q ¼ hAðts � twÞ ¼ 9240:6� ðp� 0:1� 1:0Þ � ð100� 95Þ ¼ 14515W:

Assuming mean water temperature in the tube as 20°C, the thermophysical properties are

c ¼ 4183 J=ðkg KÞ; q ¼ 998:2 kg=m3; l ¼ 10:02� 10�4 kg=ðm sÞ; k
¼ 0:601W=ðm KÞ andPr ¼ 7:

From the energy balance, the flow rate of water is

mw ¼ q

cDt
¼ 14515

4183� 3
¼ 1:157 kg=s:

The Reynolds number of flowing water in the tube is

Re ¼ qUDi

l
¼ mw

ðp=4ÞD2
i q

� qDi

l
¼ 4mw

lpDi
¼ 4� 1:157

10:02� 10�4 � p� 0:095
¼ 15476:

The heat transfer coefficient at the tube inner surface,
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hi ¼ Nuk

Di
¼ k

Di
0:024Re0:8Pr0:4 ¼ 0:601

0:095
� 0:024� 154760:8 � 70:4 ¼ 743:24W= m2K

� 	
:

Overall heat transfer coefficient from Eq. (2.30a) neglecting wall resistance,

Uo ¼ Ao

hiAi
þ 1

ho

� ��1

¼ D

hiDi
þ 1

ho

� ��1

¼ 100
743:24� 95

þ 1
9240:6

� ��1

¼ 655:96W= m2K
� 	

:

Heat transfer equation gives

ts � tm ¼ q

UoA
¼ q

UopDL
¼ 14515

655:96� p� 0:1� 1:0
¼ 70:44 oC:

Hence, the mean temperature of the water is

tm ¼ ts � 74:5 ¼ 100� 70:44 ¼ 29:56oC:

Iteration may be carried out with thermophysical properties of water at the mean water
temperature of 30°C.

Example 13.8 Saturated steam at 1 atm condenses on the outer surface of a horizontal tube
1 m long and having 100 mm outside diameter and 95 mm inside diameter. Determine the
tube surface temperature if water flowing within the tube at the rate of 1.2 kg/s is at a mean
temperature of 20°C. Neglect pipe wall resistance.

Solution

At 1 atm (= 1.01325 bar), hfg = 2256.4 kJ/kg, ts = 100°C from steam tables. The problem
will require an iterative solution. For trial, let the surface temperature is 90°C. Hence, the film
temperature is (90 + 100)/2 = 95°C. The thermophysical properties of water at film tem-
perature are (Table A4):

c ¼ 4208 J=ðkg KÞ; q ¼ 965:3 kg=m3; l ¼ 3:11� 10�4 kg=ðm sÞ; k ¼ 0:675W=ðm KÞ:

Though temperature difference is small, we may consider correction in hfg. Corrected or
modified latent heat of vaporization is

h�fg ¼ hfg þ 0:68cðts � twÞ
¼ 2256:4� 103 þ 0:68� 4208� ð100� 90Þ
¼ 2285� 103 J=kg:

The average heat transfer coefficient is
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h ¼ 0:725
q2k3ghfg

l ts � twð ÞDo

� �1=4

¼ 0:725
ð965:3Þ2 � 9:81� 2285� 103 � ð0:675Þ3

3:11� 10�4 � 100� 90ð Þ � 0:1

" #1=4

¼ 8691:5W/(m2K):

At the mean water temperature of 20°C in the tube, the thermophysical properties are

c ¼ 4183 J=ðkg KÞ; q ¼ 998:2 kg=m3; l ¼ 10:02� 10�4 kg=ðm sÞ; k
¼ 0:601W=ðm KÞ and Pr ¼ 7:

The Reynolds number of flowing water in the tube is

Re ¼ qUDi

l
¼ mw

ðp=4ÞD2
i q

� qDi

l
¼ 4mw

lpDi
¼ 4� 1:2

10:02� 10�4 � p� 0:095
¼ 16051:

The heat transfer coefficient at the tube inner surface,

hi ¼ Nuk

Di
¼ k

Di
0:024Re0:8Pr0:4 ¼ 0:601

0:095
� 0:024� 160510:8 � 70:4 ¼ 765:25W= m2 K

� 	
:

Overall heat transfer coefficient, Eq. (2.30a) neglecting wall resistance,

Uo ¼ Ao

hiAi
þ 1

ho

� ��1

¼ D

hiDi
þ 1

�h

� ��1

¼ 100
765:25� 95

þ 1
8691:5

� ��1

¼ 670:9 W= m2 K
� 	

:

The heat transfer rate,

q ¼ UoAoðtw � tmÞ ¼ 670:9� p� 0:1� 1:0� ð100� 20Þ ¼ 16862W:

Heat transfer equation at the inner surface of the tube gives wall temperature

tw ¼ q

hiAi
þ tm ¼ 16862

765:25� p� 0:095� 1:0
þ 20 ¼ 93:8 oC:

For the second trial, we assume a surface temperature of 95°C. The revised film tem-
perature is (95 + 100)/2 = 97.5°C. The thermophysical properties of water at film temper-
ature are (Table A4)

c ¼ 4212 J=ðkg KÞ; q ¼ 959:9 kg=m3; l ¼ 2:88� 10�4kg=ðm sÞ and k ¼ 0:6795W=ðm KÞ:

The corrected or modified latent heat of vaporization is
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h�fg ¼ hfg þ 0:68cðts � twÞ
¼ 2256:4� 103 þ 0:68� 4212� ð100� 95Þ
¼ 2270:7� 103 J=kg:

The average heat transfer coefficient is

h ¼ 0:725
q2k3ghfg

l ts � twð ÞDo

� �1=4

¼ 0:725
ð959:9Þ2 � ð0:6795Þ3 � 9:81� 2270:7� 103

2:88� 10�4 � 100� 95ð Þ � 0:1

" #1=4

¼ 10543W/(m2 K):

Revised overall heat transfer coefficient is

Uo ¼ Ao

hiAi
þ 1

ho

� ��1

¼ D

hiDi
þ 1

�h

� ��1

¼ 100
765:25� 95

þ 1
10543

� ��1

¼ 680:1W= m2K
� 	

:

The heat transfer rate,

q ¼ UoAoðts � tmÞ ¼ 680:1� p� 0:1� 1:0� ð100� 20Þ ¼ 17093W:

At the inner surface, the heat transfer equation gives wall temperature:

tw ¼ q

hiAi
þ tm ¼ 17093

765:25� p� 0:095� 1:0
þ 20 ¼ 94:84oC:

which is nearly equal to the assumed temperature hence further trial is not required.

13.1.3 Factors Affecting Film Condensation

(i) Velocity and direction of the vapour flow: If the vapour flows downward, it
increases the velocity of the liquid and decreases the thickness of the condensate film.
This decreases the thermal resistance of the film and thus the heat transfer coefficient
increases. Upward flow of the vapour increases the thickness of the condensate film
and the heat transfer coefficient decreases.

(ii) State of the surface: If the surface is rough, the thickness of the film increases due to
the greater resistance offered to the flow and the heat transfer coefficient decreases.

(iii) Layout of the surface: A discussed earlier, in the case of a single tube, the horizontal
position is preferred. In the tube banks, the condensate flows from the upper to the
lower tubes causing the condensate film to become thick on the lower tubes in the
bank and heat transfer coefficient is reduced.
In the case of the vertical tubes, the heat transfer coefficient diminishes in the
downward direction as the condensate film grows in thickness. The heat transfer
coefficient in this case can be increased by installing condensate tapping caps as
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shown in Fig. 13.4 (Mikheyev 1968). The caps remove the condensate and thus the
boundary layer redevelops after the cap. The effective thickness of the boundary layer
over the tube length is reduced resulting in the increased heat transfer coefficient.

(i) Influence of non-condensing gases: The rate of heat transfer drops when the vapour
contains non-condensable gases because the vapour has to diffuse through the insulating
gas layer to vapour–liquid phase interface. It has been found that even 1% of air in the
vapour reduces the heat transfer coefficient by 60% due to a larger percentage of air near
the wall.
The inert gas accumulates near the liquid–vapour interface as the vapour condenses. And
its pressure rises towards the phase interface. Since the total pressure of the gas and
vapour is constant, the partial pressure of the vapour near the condensate film is lower
than the pressure of the vapour away from the condensate film causing a reduction in the
saturation temperature of the condensate below the saturation temperature which would
occur if no inert gas is present. Thus the temperature difference between the phase
interface and the wall is lower because of the presence of the gas causing a reduction in
the heat transfer rate.

13.2 Part B: Heat Transfer in Boiling Liquids

13.2.1 Introduction

The heat transfer in boiling liquids is also quite different from the convective heat transfer in
single-phase fluids. Analysis of the heat transfer to boiling liquids is rather difficult and here
we shall concentrate on the qualitative discussion of the process and the factors that govern
the rate of heat transfer.

Tapping 
cap 

a b

Boundary 
layer 

Fig. 13.4 a Development of boundary layer on a vertical tube, b boundary layer on a vertical tube with
tapping caps
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Boiling heat transfer is encountered in many industrial equipments, such as boilers for
vapour power cycles, evaporator for refrigeration and air-conditioning systems hence an in-
depth study of this phenomenon is useful.

13.2.2 Boiling Heat Transfer1

13.2.2.1 Pool Boiling
When a liquid comes in contact with a heated surface (maintained at a temperature higher
than the saturation temperature of the liquid), boiling occurs and vapour is formed. Boiling of
a large volume of liquid by a submerged heated surface is known as pool boiling. In pool
boiling, the fluid motion is caused by the free convection currents. Process of boiling may
occur in limited space (for example, in a tube), or in a tube with forced flow of boiling liquid.
In the case of forced-flow boiling, the nature of boiling is similar to the pool boiling, though
some new factors appear. We shall first discuss the pool boiling.

The process of boiling takes place at a constant pressure. At a given pressure, the tem-
perature of the bulk of the fluid tf is somewhat higher than the saturation temperature ts at that
pressure. Typically for water boiling at atmospheric condition, tf − ts = 0.4 − 0.8°C. The
difference is a function of the physical properties of the liquid and the intensity of the
formation of vapour. The temperature of the liquid in contact with the heating surface equals
the temperature of the heating surface. A sharp decrease in the temperature of the liquid takes
place in a thin layer at the heating surface, see Fig. 13.5. Thereafter the temperature of the
liquid is practically constant. The temperature excess Dt = tw − ts rises with an increase in
the heat flux q.

Figure 13.6 shows the typical plot of the heat flux q versus the temperature excess
Dt referred to as Nukiyama boiling curve.

In region AB of low values of temperature excess, the motion of the fluid near the heating
surface is due to the free-convection currents only. Both heat transfer rate and the heat
transfer coefficient are low. The heat transfer coefficient can be calculated using the free-
convection relations presented for single-phase liquids in Chap. 9.

At point B, nucleate boiling starts. The bubbles form on the heating surface. They grow in
size, separate from the surface and move upwards through the liquid. The convection cur-
rents are intensified by the agitation of the rising vapour bubbles. The heat transfer coefficient
rises rapidly in this region. If liquid superheat is not sufficient (region BC), the bubbles are
dissipated in the liquid as they move upwards.

As the temperature excess is further increased, the bubbles form rapidly and rise to the
surface of the liquid. The bubbles continue to grow in size as they move upwards depending
on the degree of the liquid superheat. In the region indicated in the figure by CD, nucleate
boiling is fully developed. Both the heat flux and heat transfer coefficient rise rapidly in this
region with the increase in the temperature excess Dt. With the increase in the temperature
excess along CD, the number of points where the bubbles originate increases and the bubbles
also increase in size.

1Vaporization is changing of liquid into vapour. There are two types of vaporization: evaporation and boiling.
Evaporation occurs at the surface of the liquid and takes place at temperatures lower than the boiling point
at a given pressure. Boiling takes place at boiling point and is a bulk phenomenon because the bubbles are
formed in the liquid.
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Beyond point D, the bubbles at the heating surface merge to form a vapour blanket or film
covering the surface. The heat is now transferred by conduction through this film. The high
thermal resistance of the vapour film causes a sharp drop in the heat flux and heat transfer
coefficient. The region beyond D is defined as region of film boiling. The values of q, h, and
Dt at the point D are called critical or peak values. CHF is critical heat flux. The values of

Heating surface

 q 

tw t 

in boundary layer

Liquid temperature 

Temperature change 
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(slightly higher than ts) 

Saturation temperature ts 
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Fig. 13.5 Pool boiling
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these parameters are different for different liquids. For a given liquid, the critical temperature
difference diminishes with the rising pressure.

The vapour film is unstable in region DE and the film breaks up frequently and separates
from the heating surface in the form of large bubbles. And a new film is then formed on the
surface. This process continues until point E. The point E is termed as the Leidenfrost point.
The Leidenfrost point is the lowest temperature at which a hot body sub-
merged in a pool of boiling water is completely blanketed from the liquid by a vapour film.
This phenomenon of vapour blanketing is known as the Leidenfrost effect. There is a
decrease of heat transfer and a minimum of the heat flux curve occurs at this point.

At still larger values of Dt, beyond the unstable region DE, a stable film boiling is
encountered. The temperature excess Dt required for maintaining the stable film boiling is
very high and thus the surface temperature tw is also very high. The heat is transferred from
the heating surface to the boiling liquid through the vapour film by conduction and radiation.
The contribution of radiation heat exchange increases with increasing Dt.

It is to be noted that there is a danger of the heating surface failing or melting in the film
boiling region. For example, with water boiling at atmospheric pressure Dt = 25°C at D, the
temperature at point F may be of the order of 1000°C and burnout may occur. It may be
noted that though Dt is only 25°C at D, the heat flux q has a very high value and hence one
should try to operate as close as possible to D.

The other important observations relating to the boiling heat transfer are

(i) The vapour bubbles form on the heating surface at some individual points called
starting points. Gases dissolved in the liquid and vapour trapped in the surface
roughness cavities provide the starting points. The number of starting points Z de-
pends on the degree of superheat at the heating surface, i.e. on the temperature excess
Dt. With the rise in the degree of superheat, Z increases and boiling intensifies.

(ii) There is certain periodicity in the process of bubble formation, growth and separation
from the starting point. The frequency f of this process depends on the separation
diameter do of the bubble. It has been found that smaller the diameter, higher the
frequency. At a given pressure, the product fdo is approximately constant and the value
of the product decreases with an increase in the pressure.
The growth, separation and the subsequent movement of the bubbles cause intense
agitation of the liquid at the heating surface resulting in a sharp increase in the rate of
heat transfer from the heating surface to the boiling liquid. Hence, higher the fre-
quency the higher the heat transfer rate is.

(iii) The pressure pv of the vapour inside a bubble is higher than the pressure pl of the
surrounding liquid due to the surface tension. For a spherical bubble, refer Fig. 13.7.

pressure force ¼ pr2ðpv � plÞ

and

surface tension ¼ 2prr

where r = radius of the bubble
r = surface tension.
Balance of the forces gives
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pr2ðpv � plÞ ¼ 2prr

or

pv � pl ¼ 2r
r
: ð13:19Þ

For a bubble in pressure equilibrium, the temperature of the vapour inside the bubble
(saturation temperature of the vapour at pv) will be higher than the surrounding liquid
temperature if the liquid is not superheated (saturation temperature at pl). In this
condition, the heat will flow from the vapour to the liquid and due to the condensation
of the vapour, the bubble collapses as it moves upwards through the liquid. If the
liquid is superheated to such an extent that the liquid temperature is higher than the
vapour temperature, the heat transfer from the liquid to the vapour takes place and the
bubble grows in size as it moves through the liquid.
The conditions required for the bubble to exist and grow can be found by applying the
Clapeyron equation, which gives

hfg
Tsvfg

¼ dp

dTs
� pv � pl

Tv � Tsat
ð13:20Þ

where Ts is the saturation temperature at liquid pressure pl. Using Eq. (13.19), we get

Tv � Ts ¼ 2rTsvfg
hfg

1
r

ð13:21Þ

In the case of thermal equilibrium, Tv = Tl and the above equation can predict the
equilibrium radius of the bubble. If Tl is greater than Tv, the bubble will grow in size
due to the heat transfer to the vapour from the superheated liquid. The bubble will
collapse if Tv is greater than Tl because the heat will flow from the vapour to the liquid
causing condensation of the vapour.

(iv) Surface conditions, roughness and material play an important role in bubble formation
and growth. As far as geometry is concerned, the bubble formation and agitation
depend on the surface area and not on the surface shape. The height of the liquid

pl

pv 

r
σ

Fig. 13.7 Forces on a vapour bubble
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above the heating surface has also no effect on the rate of heat transfer. Vertical and
horizontal planes and wire above a certain diameter give similar results.

(v) The boiling process and the corresponding discussion given above are true only for
wetting liquids. Figure 13.8 shows the shapes of bubbles formed on a heated surface
for wetting and non-wetting liquids. The bubble generated in the case of a wetting
liquid can easily separate from the surface.

(vi) In the case of non-wetting liquids, the bubble spreads over the surface and forms a
continuous film of the vapour. The heat transfer rate in this case is considerably lower
than for the wetting fluids due to the high thermal resistance of this vapour film.

13.2.2.2 Forced-Flow Boiling
Consider the process of forced boiling occurring in limited space-say a tube. All the con-
ditions described for pool boiling are valid but new factors appear. The arrangement of the
tubes (vertical or horizontal), volume ratio of vapour to the liquid and the velocity of flow are
the new important factors.

Flow Pattern in a Vertical Heated Tube with Upward Flow
First, we consider force flow of the boiling liquid through a vertical once-through tube as
shown in Fig. 13.9, which is subjected to uniform heat flux q″. The liquid at the lower end of
the tube (Sect. A) is at the saturation point and it goes out from the upper end of the tube in
the form of superheated vapour. The mixture of liquid and vapour moves as a homogeneous
emulsion with vapour as dispersed bubbles in the liquid (termed as bubbly flow) in section B
when the quantity of the liquid is large compared to the vapour. The mode of boiling in this
section is nucleate. With the increase in the vapour content, the vapour may flow as large
slugs (Section C), which changes to annular flow in section D (liquid in the form of thin film
on the wall and vapour in the centre of the tube). With further increase in the vapour content,
the liquid film disappears and the liquid flows as suspended mist, refer section E. The vapour
is wet at the end of the section D because of the suspended mist. The disappearance of the
liquid film from the wall causes dry-out and the heat transfer coefficient reduces drastically.
This causes a rise in the temperature of the tube surface and can cause tube failure. Eva-
poration of the mist continues during the section E as the vapour moves up and dry saturated
vapour enters section F. The superheating of the vapour takes place in the section F.

Flow Pattern in Horizontal Evaporator Tube
The flow is not symmetrical in a horizontal tube. The mixture can flow as shown in
Fig. 13.10a, b depending on the content of the vapour. In the lower figure, it flows in two
independent streams of liquid and vapour.

a Wetting fluid b Non-wetting fluid

θ θ

θ = contact angleHeated surface

Fig. 13.8 Shape of bubbles
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Fig. 13.9 Forced flow boiling in a vertical pipe
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Fig. 13.10 Forced flow boiling in horizontal tubes
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13.3 Relations for Boiling Heat Transfer in Pool Boiling

13.3.1 Nucleate Boiling

Experimental data for nucleate boiling on a horizontal surface facing upward has been
correlated by Rohsenow (1952) as

cplðtw � tsÞ
hfg

¼ Cnb
q=A

hfgll

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

ðql � qvÞg
r� �1=3

Prml ð13:22aÞ

where subscript l refers to liquid and all properties are to be evaluated at the saturation
temperature. For water exponent m = 1 and is 1.7 for other fluids. Constant Cnb depends on
the surface material and condition. For polished copper and stainless steel surface, Cnb =
0.013. For copper scored, Cnb = 0.0068. For other liquids and surfaces, refer Mills (1995).
Using q/A = h(tw − ts), and

llcpl
kl

¼ Prl, the above equation gives the heat transfer coeffi-

cient equation for water as

h ¼ cplðtw � tsÞ
 �2
C3
nbh

2
fg Pr

2
l

ðql � qvÞg
r

� �1=2
kl ð13:22bÞ

The heat transfer rate is given by

q

A
¼ hðtw � tsÞ ð13:23Þ

It can be seen from the equation of heat transfer coefficient and heat flux that the heat flux
is proportional to ΔT3. The strong dependence of the heat flux on the temperature difference
is due to the rapid increase in active nucleation sites with the increase in the superheat (Mills
1995). Equations (13.22a, 13.22b) is not very accurate and errors of 100% in q and 25% in
ΔT are typical (Mills 1995).

13.3.1.1 The Peak Heat Flux
The peak heat flux relation due to Kutateladze (1948 in Mills 1995) and Zuber (1959 in Mills
1995) is

qmax ¼ Cmaxhfg rq2vðql � qvÞg
 �1=4 ð13:24Þ

where Cmax = 0.15 for large flat heaters.

13.3.2 Simplified Relations for Boiling Heat Transfer with Water

Jakob and Hawkins (1957) have presented the following simplified correlations of heat
transfer coefficient for water boiling on outside of submerged surfaces at standard atmo-
spheric pressure.
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For the horizontal orientation of the surface, the correlations are

h ¼ 1042 Dtxð Þ1=3
for q=A\16 kW=m2

Dtx\7:76

ð13:25aÞ

h ¼ 5:56 Dtxð Þ3
for 16\q=A\240 kW=m2

7:32\Dtx\14:4

ð13:25bÞ

where tTx = temperature excess = tw − ts. For the vertical orientation of the surface, the
correlations are

h ¼ 537 Dtxð Þ1=7
for q=A\3 kW=m2

Dtx\4:51

ð13:26aÞ

h ¼ 7:96 Dtxð Þ3
for 3\q=A\63 kW=m2:

4:41\Dtx\9:43

ð13:26bÞ

To take account of the influence of the pressure, the following empirical relation is
suggested

hp ¼ h
p

pa

� �0:4

where hp is the heat transfer coefficient at pressure p and h is the heat transfer coefficient at
standard atmospheric pressure pa from Eqs. (13.25a, 13.25b) to (13.26a, 13.26b).

For the forced-flow local boiling inside vertical tubes, the following relation is recom-
mended (Jakob 1957).

h ¼ 2:54ðDtxÞ3ep=1:551

for 5
 p
 170 bar:

ð13:27Þ

where p is the pressure in MPa.

Example 13.9 Estimate heat flux for boiling of water at atmospheric pressure on a polished
surface of stainless steel at 390 K. At 373 K, the properties of water are

hfg ¼ 2:27� 106 J=kg; kl ¼ 0:682W=ðm KÞ; cpl ¼ 4211 J=ðkg KÞ;
r ¼ 58:9� 10�3 N=m; ql ¼ 958:3 kg=m3; Prl ¼ 1:76:
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Solution

From Eq. (13.22b),

h ¼ cpl � ðTw � TsÞ
 �2

C3
nbh

2
fg Pr

2
l

ðql � qvÞg
r

� �1=2
kl

Cnb = 0.013 for stainless steel surface. Substituting the values of various terms and
neglecting qv (qv � ql), we get

h ¼ 4211� ð390� 373Þ½ 	2
0:0133 � 2:27� 106ð Þ2�1:762

� 958:3� 9:81
58:9� 10�3

� �1=2
�0:682 ¼ 39815W/(m2 K):

Heat flux,

q

A
¼ hðTw � TsÞ ¼ 39815� ð390� 373Þ ¼ 676:855 kW=m2:

Example 13.10 Estimate peak heat flux of boiling water on a large flat heater at Ts =
373 K. At 373 K, the properties of water are given as hfg = 2.27 � 106 J/kg,
r = 58.9 � 10−3 N/m, ql = 958.3 kg/m3, and for vapour, qv = 0.6 kg/m3.

Solution

From Eq. (13.24) for a large flat heater,

qmax ¼ 0:15hfg rq2vðql � qvÞg
 �1=4

¼ 0:15� 2:27� 106 � 58:9� 10�3 � 0:62 � ð958:3� 0:6Þ � 9:81
 �1=4

¼ 1:279� 106 W/m2:

Example 13.11 An electrically heated flat stainless steel plate 150 mm2 in area is operating
at power levels corresponding to 40% of the critical heat flux for boiling water at 1 atm.
Determine the power supplied to the electric heater and temperature of the plate surface. At
boiling point 373 K (corresponding to 1 atm), the properties of water are hfg = 2.27
106 J/kg, kl = 0.682 W/(m K), cpl = 4211 J/(kg K), r = 58.9 � 10−3 N/m, ql = 958.3
kg/m3 and Prl = 1.76, and for vapour, qv = 0.6 kg/m3.

Solution

From Eq. (13.24) for a flat heater, the critical heat flux is

qmax ¼ 0:15hfg rq2vðql � qvÞg
 �1=4

¼ 0:15� 2:27� 106 � 58:9� 10�3 � 0:62 � ð958:3� 0:6Þ � 9:81
 �1=4

¼ 1:279� 106 W/m2:
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Hence, the heat flux is 0.4 � 1279 kW/m2 = 511.6 kW/m2 and the power supplied to the
electric heater is

Pe ¼ 150� 10�6 � 511:6� 103 ¼ 76:74W:

The heat transfer coefficient is

h ¼ Pe

ADT
¼ 76:74

150� 10�6 � DT
¼ 511:6� 103

DT
W/(m2 K)

where DT ¼ Tw � Ts.
From Eq. (13.22b) for boiling of water,

h ¼ cpl � DT
� 	2
C3
nbh

2
fg Pr

2
l

ðql � qvÞg
r

� �1=2
kl

Cnb = 0.013 for stainless steel surface. Substituting the values of various terms, we get

511:6� 103

DT
¼ 4211� DTð Þ2

0:0133 � 2:27� 106ð Þ2�1:762
� ð958:3� 0:6Þ � 9:81

58:9� 10�3

� �1=2
�0:682;

which gives DT ¼ 15:49K. Hence, plate surface temperature

Tw ¼ Ts þDT ¼ 373þ 15:49 ¼ 388:49K:

Example 13.12 Estimate the heat transfer per unit area from a horizontal flat surface
submerged in water at atmospheric pressure if the surface temperature is 105°C.

Solution

Dt ¼ 105� 100 ¼ 5oC:

Let q/A < 16 kW/m2, then the heat transfer coefficient,

h ¼ 1042ðDtÞ1=3 ¼¼ 1042ð5Þ1=3 ¼ 1782W= m2K
� 	

:

Heat flux,

q

A
¼ hDt ¼ 1782� 5 ¼ 8910W/m2\16 kW/m2:

Example 13.13 Figure 13.11 shows an experimental setup to study pool boiling in water.
Heat flows by conduction through the copper bar [k = 350 W/(m K)]. The temperature
measured at x1 = 10 mm is 130 and 145°C at x2 = 20 mm. Determine the constant Cnb in the
Rohsenow correlation.
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Solution

The temperature distribution in the bar is linear hence temperature at x = 0, i.e. at the boiling
surface is

tw ¼ t1 � Dt
Dx

x1 ¼ t1 � t2 � t1
x2 � x1

x1 ¼ 130� 145� 130
10

� 10 ¼ 115 oC:

Applying Fourier’s conduction law between x1 and x2, we have heat flux

q

A
¼ k

Dt
Dx

¼ k
t2 � t1
x2 � x1

¼ 350� 145� 130
10=1000

¼ 5:25� 105 W=m2:

At boiling point 100°C (corresponding to 1 atm), the properties of water are hfg = 2.27
106 J/kg, ll = 282 � 10−6 N s/m2, cpl = 4211 J/(kg K), r = 58.9 � 10−3 N/m, ql =
958.3 kg/m3 and Prl = 1.76, and for vapour, qv = 0.6 kg/m3.
From Eq. (13.22a), for water, we have

Cnb ¼ cplðtw � tsÞ
hfg

q=A

hfgll

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

ðql � qvÞg
r� ��1=3

Prl
�1

Substitution gives

Cnb ¼ 4211� ð115� 100Þ
2:27� 106

5:25� 105

2:27� 106 � 282� 10�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
58:9� 10�3

ð958:3� 0:6Þ � 9:81

s( )�1=3

�1:76�1

¼ 0:0124:

Example 13.14 For forced-convection local boiling inside a 75 mm diameter vertical tube,
estimate the boiling heat transfer rate per unit length of the tube when Δtx = 15°C and water
pressure is 3 bar.

x
x1 = 10 mmt1●

t2● x2 = 20 mm

Heat 

Copper bar

Tw

Insulation

Fig. 13.11 Example 13.13
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Solution

For the forced-flow local boiling inside vertical tubes, Eq. (13.27) applies which gives

h ¼ 2:54ðDtÞ3ep=1:551

where p is the pressure in MPa.
Substituting the given data, we have

h ¼ 2:54� ð15Þ3 � e0:3=1:551 ¼ 10402W= m2 K
� 	

and heat rate is

q ¼ hADt ¼ 10402� p� 0:075� 1� 15 ¼ 36764W=m length:

Review Questions

13:1 Differentiate between filmwise and dropwise condensations.
13:2 Stating the assumptions made, deduce an expression of film thickness and heat transfer

coefficient at a distance x from the top edge of a vertical plate for laminar film
condensation.

13:3 What is the effect of direction of vapour flow, layout of the surface and non-
condensing gases in vapours on the film coefficient?

13:4 Discuss various regimes in pool boiling. Also, explain the significance of critical heat
flux.

13:5 Discuss forced-flow boiling in a vertical tube. Support the answer with a suitable
sketch.

13:6 Discuss forced-flow boiling in a horizontal tube.

Problems

13:1 Saturated steam condenses on the outside of a 50 mm diameter vertical tube 0.5 m in
height. If the saturation temperature of the steam is 302 K and the tube outer surface is
maintained at 299 K, calculate (i) the average heat transfer coefficient, (ii) the con-
densation rate and (iii) film thickness at the lower end of the tube. Given hfg = 2.44
106 J/kg, kf = 0.615 W/(m K), qf = 995.6 kg/m3, mf = 0.854 � 10−6 m2/s, cf =
4.178 kJ/(kg K).

[Ans. Assuming laminar flow, h ¼ 0:943 q2ghfgk3

l ts�twð ÞH
h i0:25

¼ 7648W= m2 Kð Þ;

_m ¼ Q
hfg

¼ hAðDtÞ
hfg

¼ 7:38� 10�4 kg=s; d ¼ 4lk ts�twð ÞH
q2ghfg

h i1=4
¼ 0:107mm;

ReH ¼ 4 _m
lP ¼ 4 _m

lðpDÞ ¼ 22:1, which confirms that flow is laminar.]

13:2 If the tube of Q. 13.1 is held in a horizontal position, estimate the condensation rate.
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[Ans. h ¼ 0:725 q2ghfgk3

l ts�twð ÞD
h i1=4

¼ 10456W= m2 Kð Þ;
_m ¼ Q

hfg
¼ hAðDtÞ

hfg
¼ 10:1� 10�4 kg=s. Note: For a single horizontal tube, flow is

always laminar.]
13:3 If the steam in Q.13.2 is condensing on a bundle of horizontal tubes, the number of

tubes is 10 in a vertical column and 12 in each horizontal row. Estimate the average
heat transfer coefficient.
[Ans. �h ¼ n�1=6 � �h1 ¼ 10�1=6 � 10456 ¼ 7123:]
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14Heat Exchangers

14.1 Part A: Heat Exchangers Fundamentals

14.1.1 Introduction

In general, a heat exchanger is an equipment to accomplish the task of transfer of heat
between two or more entities at different temperatures. In the present chapter, the heat
exchanging entities are two fluid streams. Many types of heat exchangers are employed,
which vary both in application and design.

The heat exchangers may be classified on the basis of the configuration of the fluid flow
paths through the heat exchanger. The common flow path configurations are illustrated
diagrammatically in Fig. 14.1.

In the parallel flow or co-current heat exchangers, Fig. 14.1a, the two fluid streams enter
together at one end and leave together at the other end, whereas in the counterflow or
countercurrent exchangers, the two fluid streams move in opposite directions as shown in
Fig. 14.1b.

In single-pass cross-flow exchangers, Fig. 14.1c, the fluids flow through the heat
exchanger matrix at right angles to each other. An example of such type of exchanger is the
automobile radiator where the air is forced across the radiator tubes carrying water to be
cooled. In multi-pass cross-flow exchanger, one of the fluids shuttles back and forth across
the flow path of the other fluid as shown in Fig. 14.1d.

Based on the principle of operation, the heat exchangers are known as recuperator,
regenerator and direct-contact type. In a recuperator, the cold and hot streams flow simul-
taneously through the heat exchanger and the heat is transferred across a surface separating
the fluids. Steam boilers, surface condensers and air pre-heaters are some examples of
recuperator.

In a regenerator, one and the same heating surface is alternatively exposed to the hot and
cold fluids. The heat of the hot fluid is taken away and accumulated in the walls or matrix of
the exchanger which is then transferred to the cold fluid. Thus, there is a continuous flow in
the recuperator, but a periodic in the regenerator.

Recuperates and regenerators are also classified as surface heat exchangers because the
fluids are separated by a solid surface.

© Springer Nature Singapore Pte Ltd. 2020
R. Karwa, Heat and Mass Transfer,
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In a direct-contact type exchanger, the heat is transferred through the direct contact and
mixing of the hot and cold fluid streams. Thus, the heat transfer is also accompanied by the
mass transfer.

The heat exchangers are employed in varied installations such as power plants, chemical
industries, air conditioning and refrigeration systems, and automotive power plants. Hence,
they are frequently known by their applications, e.g. boiler, condenser, economizer, evap-
orator, air pre-heater, cooling tower, radiator and cooler.

Double pipe heat exchanger, refer to Fig. 14.1a, b, consists of concentric pipes with one
fluid in the inner pipe and other in the annular space surrounding the inner pipe. It is a heat
exchanger which is well suited to some applications. Due to its construction, it can carry
high-pressure fluids which would have required a large wall thickness in case of a shell-and-
tube heat exchanger.

c Single-pass cross-flow 

Fluid 2 in

b Counterflow

Fluid 1 
in 

d Multi-pass cross-flow 

Fluid 1 
in 

a Parallel flow

Fluid 2 in

Fig. 14.1 Flow path configurations
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The shell-and-tube heat exchangers consist of a large number of tubes mounted in
cylindrical shells with their axes parallel to that of the shell. Many variations of this type of
exchanger are in use. In Fig. 14.2, one of the designs known as 1–2 shell-and-tube heat
exchanger is shown where the shell fluid passes once while the tube side fluid passes twice
along the length of the exchanger. For other designs of the shell-and-tube heat exchangers,
refer to Kern (1950).

While dealing with fluids, which provide a low heat transfer coefficient, such as air or
gases, finned tubes are frequently employed in the exchangers.

14.1.2 Heat Transfer Equation for Double Pipe (Concentric Tube) Heat
Exchanger

In a double pipe heat exchanger, the fluids may have either parallel or counterflow
arrangement. The temperatures of both the fluids change as they pass through the exchanger.
Figure 14.3a, b shows the temperature profiles of the hot and cold fluids versus the heat
transfer area of the exchanger for the parallel and counterflow arrangements, respectively.
Since the temperature difference between the two fluids varies from the inlet to the outlet, the
heat transfer equation is based on an effective or mean temperature difference for the whole
length (or heat transfer area) of the exchanger (known as log mean temperature difference)
and is written as

q ¼ UiAiDtm ¼ UoAoDtm ð14:1Þ

where

U overall heat transfer coefficient,
A area transferring heat,
Δtm log mean temperature difference.

The subscripts ‘i’ and ‘o’ stand for the inner and outer surface area of the pipe,
respectively.

Tubes

Shell Baffles
Shell side
fluid in 

Shell side
fluid out

Tube side
fluid in

Tube side
fluid out

Fig. 14.2 Schematic of 1–2 shell-and-tube heat exchanger
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The equations of overall heat transfer coefficients were developed in Chap. 2 and are
reproduced here for a ready reference.

Ui ¼ 1
hi

þ Ai

2pkL
ln

Ro

Ri

� �
þ 1

ho

Ai

Ao

� �� ��1

ð14:2Þ

Uo ¼ 1
hi

Ao

Ai

� �
þ Ao

2pkL
ln

Ro

Ri

� �
þ 1

ho

� ��1

ð14:3Þ

where Ai = pdiL and Ao = pdoL as applied to a double pipe heat exchanger. di and do are
inner and outer diameters of the inner pipe. Expressions of log mean temperature difference
for parallel and counterflow arrangements are derived in the next section.

14.1.3 Log Mean Temperature Difference (LMTD)

14.1.3.1 Parallel Flow Arrangement
Refer to Fig. 14.4. For the heat exchanger elemental area dA, the heat transfer rate is

dQ ¼ UdAðT 0
1 � t01Þ ðiÞ

Due to the heat transfer, the temperature of the hot fluid 1 decreases by dt1 and the
temperature of the cold fluid 2 increases by dt2. Hence,

dQ ¼ �m1cp1dt1 ¼ m2cp2dt2 ðiiÞ

From which,

dt1 ¼ � dQ
m1cp1

dt2 ¼ dQ
m2cp2

Area A
A0

b Counterflow

Thi

Tco

Tho

Tci

Area A
0 A

a Parallel flow

Tho

Tco

Thi

Tci

Fig. 14.3 Fluid temperature variations
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The difference between dt1 and dt2 is

dt1 � dt2 ¼ � 1
m1cp1

þ 1
m2cp2

� �
dQ ¼ �CdQ

where

C ¼ 1
m1cp1

þ 1
m2cp2

� �
ð14:4Þ

Substituting the value of dQ from Eq. (i) gives

dt1 � dt2 ¼ �CUðT 0
1 � t01ÞdA

In the limit,

dðT 0
1 � t01Þ ¼ �CUðT 0

1 � t01ÞdA

or

dðDtÞ ¼ �CUðDtÞdA

T1 

t1 

T2 

t2 

T1

t1

T1 

t1 

T2 

t2 

x
dx

Ax 
δA

δQ

δt2 

δt1 

tt1 t2

x

x

Fig. 14.4 Parallel flow heat exchanger
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or

dðDtÞ
Dt

¼ �CUdA ðiiiÞ

If C and U are constants, the integration of the above equation for the limits between the
inlet to section xx (refer to Fig. 14.4) gives

ZDtx
Dt1

dðDtÞ
Dt

¼ �
ZAx

0

CUdA

or

ln
Dtx
Dt1

� �
¼ �CUAx

or

Dtx ¼ Dt1e
�CUAx ð14:5Þ

Similarly, the integration of Eq. (iii) for the limits at inlet to outlet (refer to Fig. 14.4)
gives

ZDt2
Dt1

dðDtÞ
Dt

¼ �
ZA
0

CUdA

or

Dt2
Dt1

¼ e�CUA ð14:6Þ

Equation (14.6) can be written as

�CUA ¼ ln
Dt2
Dt1

� �
ð14:7Þ

From the above equations, it can be seen that the temperature difference Dt between hot
and cold fluids varies in accordance with the exponential law along the heating surface of the
exchanger.

The mean temperature difference for the whole surface can be defined as

Dtm ¼ 1
A

ZA
o

DtxdAx
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Using Eq. (14.5), we have

Dtm ¼ 1
A

ZA
o

Dt1e
�CUAxdAx ¼ Dt1

�CUA
e�CUA � 1
� �

Substitution of values of terms e−UCA and CUA from Eqs. (14.6) and (14.7) gives

Dtm ¼ Dt1
1

ln Dt2
Dt1

� 	 Dt2
Dt1

� 1

� �

or

Dtm ¼ Dt2 � Dt1

ln Dt2
Dt1

� 	 ¼ T1 � t1ð Þ � T2 � t2ð Þ
ln T1�t1

T2�t2

� 	 ð14:8Þ

This is known as log mean temperature difference (LMTD) because of the logarithmic
term in the expression. The subscripts 1 and 2 in the equation can be interchanged without
any effect on the value of LMTD Dtm.

14.1.3.2 Counterflow Arrangement
For the elemental area dA, the heat transfer rate is

dQ ¼ UdAðT 0
1 � t01Þ ðiÞ

In the axial direction, the temperatures of the hot fluid 1 and cold fluid 2 change by dt1 and
dt2, respectively, refer to Fig. 14.5. Hence,

dQ ¼ �m1cp1dt1 ¼ �m2cp2dt2

From which,

dt1 ¼ � dQ
m1cp1

dt2 ¼ � dQ
m2cp2

The difference between dt1 and dt2 is

dt1 � dt2 ¼ � 1
m1cp1

� 1
m2cp2

� �
dQ ¼ �CdQ ðiiÞ

where

C ¼ 1
m1cp1

� 1
m2cp2

� �
ð14:9Þ
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Equation (ii) is the same as that for the parallel flow heat exchanger hence the remaining
mathematical treatment will also be the same and we obtain

Dtm ¼ Dt2 � Dt1

ln Dt2
Dt1

� 	 ð14:10Þ

where the temperature differences in this case are defined as, refer to Fig. 14.5,

Dt1 ¼ ðT1 � t2Þ

and

Dt2 ¼ ðT2 � t1Þ

Hence,

Dtm ¼ Dt2 � Dt1

ln Dt2
Dt1

� 	 ¼ T1 � t2ð Þ � T2 � t1ð Þ
ln T1�t2

T2�t1

� 	 ð14:11Þ

If the heat capacity mcp of the two streams in a counterflow heat exchanger are equal, then
C = 0, and from Eq. (14.5) we get

T1

t2 T2

t1

T1
’

t1’

T1

t2

T2

t1

x
dx

Ax

A

Q
t2

t1
t 

t1

t2

x

x

Fig. 14.5 Counterflow heat exchanger
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Dtx ¼ Dt1e
�0 ¼ Dt1 ð14:12Þ

i.e. the temperature difference is constant over the entire surface.
If the temperature differences between the two fluids are denoted by Dt1 and Dt2 as

temperature differences at the two ends of the exchanger as depicted in Fig. 14.6, then the
LMTD equations for the parallel- and counterflow arrangements, Eqs. (14.8) and (14.11),
acquire the same form:

Dtm ¼ Dt2 � Dt1

ln Dt2
Dt1

� 	

Note: Arithmetic mean temperature difference is given by

Dtam ¼ Dt1 þDt2
2

The ratio of the arithmetic and log mean temperature differences is

Area A A0

b

T1

t2

T2

t1

t1 = T1 t2 t2 = T2 t1

Area A
0 A

a

T2

t2

T1

t1

t1 = T1 t1 t2 = T2 t2

Fig. 14.6 a Parallel flow, b Counterflow
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Dtam
Dtm

¼ 1
2

Dt1 þDt2
Dt1 � Dt2

� �
ln

Dt1
Dt2

� �

¼ 1
2

Dt1=Dt2 þ 1
Dt1=Dt2 � 1

� �
ln

Dt1
Dt2

� �

The values of the ratio of the two mean temperatures are tabulated in Table 14.1 against
the ratio Dt1/Dt2. It can be seen that the arithmetic mean is always greater than the log mean.
The difference between the two increases with the increase in the value of the ratio Dt1/Dt2.

In cases where the temperatures of the hot and cold streams change slightly along the heat
transferring surface, the mean temperature may be taken as the arithmetic mean.

Example 14.1 For what value of ratio Dt1/Dt2 is the arithmetic mean temperature difference
Dtam 5% larger than the log mean temperature difference Dtm?

Solution

The ratio of the two mean temperature differences is given by

Dtam
Dtm

¼ 1
2

Dt1=Dt2 þ 1
Dt1=Dt2 � 1

� �
ln

Dt1
Dt2

� �

olving by trial and error for Dtam/Dtm = 1.05, we obtain

Dt1=Dt2 ¼ 2:2

It means that the arithmetic temperature difference gives results to within 5% of log mean
temperature difference when the ratio of the end temperature differences Dt1/Dt2 is less than
2.2.

Example 14.2 A cold fluid is heated from 40°C to 120°C by condensing steam at 180°C.
Calculate the LMTD.

Solution

Refer to Fig. 14.7.

Table 14.1 Dtam/Dtm as function of Dt1/Dt2

Dt1/Dt2 Dtam/Dtm

1.0 1.0

1.5 1.014

2.0 1.040

2.5 1.069

3.0 1.099

3.5 1.127

4.0 1.155
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(i) Parallel flow

Dtm ¼ Dt1 � Dt2
ln Dt1

Dt2

¼ 140� 60

ln 140
60

¼ 94:42

(ii) Counterflow

Dtm ¼ Dt1 � Dt2
ln Dt1

Dt2

¼ 60� 140

ln 60
140

¼ 94:42

The results are identical. When one of the fluids passes through a heat exchanger
isothermally (condensing vapour or boiling liquid), the flow arrangement does not affect
the value of LMTD.

Example 14.3 In order to recover heat from a waste stream at 400°C, it is proposed to use a
counterflow heat exchanger, wherein it will be cooled to 120°C while heating a cold stream
from 30°C to 200°C.

Another proposal is to cool waste stream to 50°C while heating the cold stream to the
same temperature by increasing the flow rate of the cold stream.

If the overall heat transfer coefficient is the same in both the cases, comment on the
proposed schemes.

Solution
I case:

Dtm ¼ Dt1 � Dt2
ln Dt1

Dt2

¼ 200� 90

ln 200
90

¼ 137:76oC

II case:

Dtm ¼ Dt1 � Dt2
ln Dt1

Dt2

¼ 200� 20

ln 200
20

¼ 78:17oC

The log mean temperature difference of the second scheme is lower by 43.3%, which will
require 43.3% greater area while the heat recovery is increased only by 25%. It can be shown

180o

120o
120o

40o

t2 = 60oCt1 = 140oC

40o

t2 = 140oCt1 = 60oC
Parallel flow:
Counterflow

Fig. 14.7 Example 14.2

14.1 Part A: Heat Exchangers Fundamentals 977

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


that a further 3.6% enhancement in the heat recovery (cooling the heat stream to 40°C) will
increase the heat transfer area requirement by 54%.

The log mean temperature difference reduces rapidly if the temperature of one of the
streams approaches the temperature of the other stream.

Example 14.4 In a counterflow heat exchanger, hot water inlet and outlet temperatures are
90°C and 40°C, respectively. Cold water inlet and outlet temperatures are 10°C and 60°C,
respectively. Mass flow rate of hot water is 10 kg/min. Calculate the LMTD and heat transfer
rate.

Solution

Log mean temperature difference is (Fig. 14.8)

Dtm ¼ Dt1 � Dt2
ln Dt1

Dt2

Dtm ¼
@

@Dt1
Dt1 � Dt2ð Þ

@
@Dt1

ln Dt1
Dt2

� 	 ¼ 1
1
Dt1
Dt2

� 1
Dt2

¼ Dt2
Dt2

� Dt1 ¼ Dt1

From the first law of thermodynamics, heat flow rate is

q ¼ mcpDt ¼ ð10=60Þ � 4:1868� ð90� 40Þ ¼ 34:9 kW

Alternatively
The heat balance equation gives

mcpDt
� �

hot¼ mcpDt
� �

cold

Since the temperature changes for both hot and cold streams are the same, we get

mcp
� �

hot¼ mcp
� �

cold

Area A
A0

Counterflow

90oC

60oC

40oC

10oC

t1 = 30oC t2 =30oC

Fig. 14.8 Example 14.4
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Hence,

C ¼ 1

mcp
� �

hot

� 1

mcp
� �

cold

¼ 0

This gives

Dtx ¼ Dt1e
�CUA ¼ Dt1e

�0 ¼ Dt1 ¼ 30�C

Example 14.5 Exhaust gases [cp = 1.12 kJ/(kg K)] are to be cooled from 700 K to 400 K.
The cooling is to be affected by water [cp = 4.18 kJ/(kg K)] available at 30°C. The flow rates
for the exhaust gases and water are 1000 kg/hr and 1500 kg/hr, respectively. If the overall
heat transfer coefficient is estimated to be 400 kJ/(m2 hr K), calculate the heat transfer area
required for (i) counterflow arrangement (ii) parallel flow arrangement in the exchanger.

Solution

Heat given by exhaust gases is

q ¼ mecpeðT1 � T2Þ
¼ 1000� 1:12� ð700� 400Þ ¼ 336� 1000 kWh

The unknown exit temperature of the water can be determined from the heat balance, i.e.
by equating the heat gain by the water to the heat lost by the exhaust gases. Hence,

mwcpwðt2 � t1Þ ¼ 1500� 4:18� ðt2 � 30Þ ¼ 336� 1000

or

t2 ¼ 83:6oC

(i) Counterflow arrangement (Fig. 14.9)
Log mean temperature difference

Area A
A0

427oC

83.6 oC

127oC

30oC

t1 = 343.4oC t2 = 97oC

Fig. 14.9 Example 14.5, counterflow
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Dtm ¼ Dt2 � Dt1

ln Dt2
Dt1

� 	 ¼ 343:4� 97

ln 343:4
97

� � ¼ 194:9oC

The heat exchange equation gives the heat transfer area as

A ¼ q

UDt
¼ 336� 1000

400� 194:9
¼ 4:31 m2

(ii) Parallel flow heat exchanger
Log mean temperature difference, refer to Fig. 14.10, is

Dtm ¼ Dt2 � Dt1

ln Dt2
Dt1

� 	 ¼ 397� 43:4

ln 397
43:4

� � ¼ 159:75oC

The heat exchange equation gives the heat transfer area as

A ¼ q

UDt
¼ 336� 1000

400� 159:75
¼ 5:26 m2

From the above analysis, it can be seen that the LMTD is higher for the counterflow
arrangement and hence a smaller heat transfer area is required for the same heat transfer
rate. Hence, if the conditions allow, a counterflow design is always preferred.

Example 14.6 A heat exchanger is to cool liquid metal from 800°C to 500°C. The air used
for the cooling enters the exchanger at 300°C. The flow rate of air is 10 kg/s and that of the
liquid metal is 15 kg/s. Overall heat transfer coefficient is estimated to be 300 W/(m2 K).
Determine the surface area required for both counter- and parallel-flow arrangements.
Average specific heat cp of the air is 1008 J/(kg K) and is 950 J/(kg K) for the liquid metal.

Area A
0 A

127oC

83.6oC

427oC

30oC

t1 = 397oC t2 = 43.4oC

Fig. 14.10 Example 14.5, parallel flow
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Solution

Heat balance gives

q ¼ mcp
� �

lmðT1 � T2Þ ¼ mcp
� �

airðt1 � t2Þ
¼ 15� 950� ð800� 500Þ ¼ 10� 1008� ðt2 � 300Þ

or

t2 ¼ 724:1oC

Counterflow
Log mean temperature difference (refer to Fig. 14.11) is

Dtm ¼ Dt2 � Dt1

ln Dt2
Dt1

� 	 ¼ 200� 75:9

ln 200
75:9

� � ¼ 128:08oC

The heat exchange area required is

A ¼ q

UDt
¼ mcp

� �
lmðT1 � T2Þ
UDt

¼ 15� 950� ð800� 500Þ
300� 128:08

¼ 111:26 m2

Parallel flow
Since t2 cannot be greater than T2, parallel flow arrangement is not possible, refer to
Fig. 14.12.

Note: When LMTD approach is used, it is advisable to sketch the temperature-area
diagram to avoid error in calculation of Dt1 and Dt2.

Area A
A0

800oC

724.1oC

500oC

300oC

t1 = 75.9oC t2 = 200oC

Fig. 14.11 Example 14.6
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14.1.4 LMTD for Other Flow Arrangements

Besides the counterflow and parallel flow arrangements, there are many possible flow
arrangements. Figure 14.13 shows the variation of temperatures of the hot and cold fluids at
the outlet of cross-flow heat exchangers with both fluids unmixed (in part a) and both fluids
mixed (in part b). In shell-and-tube heat exchangers with baffles (refer to Fig. 14.2), the shell
fluid crosses the tubes many times (multi-pass). For these arrangements, the effective tem-
perature difference between the fluids is a much more complicated function of the temper-
atures than the LMTD equations presented for the counter- and parallel-flow arrangements.
For simplicity, the same format of the heat exchange equation is retained by introducing a
correction factor FT, i.e.

q ¼ UADtmFT ð14:13Þ

The temperature difference Dtm in Eq. (14.13) is the LMTD for the counterflow
arrangement. The correction factor FT, which is a function of two dimensionless parameters
P and R, can be read from Fig. 14.14a–d, refer to Standards of Tubular Exchanger Manu-
facturers Association for details. The parameters P and R are defined as

P ¼ t2 � t1
T1 � t1

ð14:14aÞ

R ¼ T1 � T2
t2 � t1

ð14:14bÞ

A study of the correction factor charts shows that the factor FT approaches 1 when either
P or R approaches zero. Physically the limit P ! 0 corresponds to a heat exchanger in which
the fluid represented by temperature t1 and t2 undergoes a phase change (boiling or con-
densation) so that t1 = t2. Similarly, R ! 0 corresponds to the phase change of the fluid
stream represented by temperatures T1 and T2. When FT = 1, the heat exchanger performance
equals to that of a counterflow exchanger. It means that for the condensing vapour or boiling
liquids, all flow arrangements will have the same heat transfer performance and equal to that
of counterflow exchanger.

Area A
0 A

714.1oC

500oC

800oC

300oC

Fig. 14.12 Parallel flow arrangement with temperature cross
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Using the heat balance equation, it can be shown that the parameter R is a ratio of the heat
capacities Ct and CT:

R ¼ T1 � T2
t2 � t1

¼ mcp
� �

t

mcp
� �

T

¼ Ct

CT
ð14:15Þ

Example 14.7 Hot lubricating oil (cp = 2.09 kJ/(kg K), flow rate of 0.1 kg/s) enters a
cross-flow heat exchanger with both fluids unmixed at 100°C. It is to be cooled to 70°C. The
cooling water enters the exchanger at 50°C. The water flow rate is 0.05 kg/s. What area of
the exchanger will be required if the overall heat transfer coefficient is 250 W/(m2 K)?

Hot fluid 
in

Thi

Tci

Hot fluid outlet 
temperature 
profile

Cold fluid outlet 
temperature 
profile

Cold fluid in

Hot fluid inThi

Tci

Hot fluid outlet 
temperature profile

Cold fluid outlet 
temperature profile

Cold fluid in

a

b

Fig. 14.13 a The variations of fluid temperatures across a cross-flow heat exchanger with both fluids
unmixed, b The variation of fluid temperatures across a cross-flow heat exchanger with both fluids mixed
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Fig. 14.14 a LMTD correction factor for cross-flow heat exchanger, one fluid mixed other unmixed,
b LMTD correction factor for cross-flow heat exchanger, both fluids unmixed, c LMTD correction factor for
heat exchanger, with one shell pass and even number of tube passes, d LMTD correction factor for heat
exchanger, with two shell passes and 4 or multiple of 4 tube passes
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Solution

(i) From the heat balance,
_mwcpwðtwo � twiÞ ¼ _mecpeðtei � teoÞ

where subscripts ‘w’ and ‘e’ refer to water and oil, respectively. The above equation
gives

two ¼ twi þ _mecpe
_mwcpw

ðtei � teoÞ ¼ 50þ 0:1� 2:09
0:05� 4:18

ð100� 70Þ ¼ 80oC

(ii) Using the nomenclature of Fig. 14.14,
T1 ¼ tei ¼ 100�C; T2 ¼ teo ¼ 70�C; t1 ¼ twi ¼ 50�C; t2 ¼ two ¼ 80�C

Values of parameters P and R are

P ¼ t2 � t1
T1 � t1

¼ 80� 50
100� 50

¼ 0:6

R ¼ T1 � T2
t2 � t1

¼ 100� 70
80� 50

¼ 1:0

For these values of parameters P and R, the correction factor FT � 0.83 from
Fig. 14.14b.
Since Dt1 = Dt2, the log mean temperature difference for counterflow arrangement is

Dtm ¼ Dt1 ¼ 20�C

Hence, the required heat transfer area is

A ¼ q

UDtmFT
¼ 6:27� 1000

250� 20� 0:83
¼ 1:51 m2

where q ¼ _mwcpwðtwo � twiÞ ¼ 0:05� 4:18� ð80� 50Þ ¼ 6:27 kJ=s.
For the same heat duty, the area required for a counterflow heat exchanger is

A ¼ q

UDtm
¼ 6:27� 1000

250� 20
¼ 1:254 m2

Example 14.8 In a heat exchanger, oil is to be cooled from 90°C to 40°C. Water [cp =
4.1868 kJ/(kg K)] is available at 10°C, which can be heated to 50°C. If the flow rate of the
water is 20 kg/min and an overall heat transfer coefficient is 200 W/(m2 K), determine the
heat exchange area. The following three alternatives are to be looked into:

(i) A double pipe counterflow heat exchanger,
(ii) a shell-and-tube heat exchanger with water making one shell pass and oil making two

tube passes, and
(iii) a shell and tube heat exchanger with two shell passes and four tube passes.
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90o

50o

40o

10o

t2 = 30oCt1 = 40oC

Fig. 14.15 Example 14.8

Solution

Heat transfer rate is

q ¼ _mwcpwðtwo � twiÞ ¼ 20=60ð Þ � 4:1868� ð50� 10Þ ¼ 55:82 kW

The log mean temperature difference (counterflow) is (Fig. 14.15)

Dtm ¼ Dt1 � Dt2
ln Dt1

Dt2

¼ 40� 30

ln 40
30

¼ 34:76�C

(i) Counterflow heat exchanger:
The required heat transfer area is

A ¼ q

UDtm
¼ 55:82� 1000

200� 34:76
¼ 8:03 m2

(ii) Shell-and-tube heat exchanger with one shell pass and two tube passes, Fig. 14.14c,
Correction factor FT:
Values of parameters P and R are

P ¼ t2 � t1
T1 � t1

¼ 40� 90
10� 90

¼ 0:625

R ¼ T1 � T2
t2 � t1

¼ 10� 50
40� 90

¼ 0:8

For these values of P and R, FT = 0.6.
The required heat transfer area is

A ¼ q

UDtmFT
¼ 55:82� 1000

200� 34:76� 0:6
¼ 13:38 m2

(iii) Shell-and-tube heat exchanger with two shell pass and four tube passes
The correction factor for this case from Fig. 14.14d is
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FT ¼ 0:93

The required heat transfer area is

A ¼ q

UDtmFT
¼ 55:82� 1000

200� 34:76� 0:93
¼ 8:63 m2

Comments: Arrangement for the shell-and-tube heat exchanger must be selected to give a
high value of the correction factor FT and the design point must lie on the flat part of the FT

curve so that the correction factor FT is least affected by the variations in values of P and
R due to any variations in the fluid temperatures. In general, the shell-and-tube heat
exchanger is less effective than the concentric double pipe counterflow heat exchanger.

Example 14.9 A hot fluid [mh = 1 kg/s, cp = 2 kJ/(kg K)] enters a counterflow heat
exchanger at 150°C. The cooling water [cp = 4.18 kJ/(kg K)] enters the exchanger at 20°C.
If the flow rate of the water is 2 kg/s, area of the heat transferring surface is 20 m2, and
overall heat transfer coefficient is 250 W/(m2 K), determine the outlet temperature of the hot
fluid.

Solution

The heat balance gives

_mhcphðthi � thoÞ ¼ _mccpcðtco � tciÞ

or

1� 2000� ð150� thoÞ ¼ 2� 4180� ðtco � 20Þ

or

tco ¼ 55:89� tho=4:18 ðiÞ

The heat transfer equation gives

q ¼ UADtm ¼ UA
Dt1 � Dt2

ln Dt1
Dt2

¼ 250� 20� ð150� tcoÞ � ðtho � 20Þ
ln 150�tco

tho�20

� 	 ðiiÞ

where q ¼ _mhcphðthi � thoÞ ¼ 1� 2000� ð150� thoÞ. Substituting value of q in Eq. (ii), we
have

1� 2000� ð150� thoÞ ¼ 250� 20� ð150� tcoÞ � ðtho � 20Þ
ln 150�tco

tho�20

� 	 ðiiiÞ

We have written the applicable expressions. The problem can be solved only by following
an iterative method because of the involvement of the logarithmic term in Eq. (iii). Thus,
when U, A, Cc and Ch, and inlet temperatures are specified, the calculation of q, tho and tco
from the LMTD approach requires a trial and error procedure. This procedure will be more
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tedious for the cross-flow and shell-and-tube exchangers. A direct approach to the solution of
such problems is being discussed in the next section.

14.1.5 Effectiveness-NTU Method

14.1.5.1 Effectiveness-NTU Method for Counterflow Heat Exchanger
In Example 14.9, we have seen the difficulty in the use of the LMTD method when all the
four temperatures (T1, T2, t1 and t2) are not specified or cannot be easily determined from the
simple heat balance. In such cases, the analysis can be easily carried out using the method
presented in this section. The method, known as effectiveness-NTU method, is based on the
effectiveness of a heat exchanger in transferring the heat. The effectiveness e of a heat
exchanger is defined as the ratio of the actual heat transfer q to the maximum possible qmax.
Hence,

e ¼ q

qmax
ð14:16Þ

The actual exchange is the heat lost by the hot stream or gained by the cold stream, i.e.

q ¼ mcp
� �

hotðT1 � T2Þ ¼ mcp
� �

coldðt2 � t1Þ ðiÞ

The maximum possible heat exchange qmax is attained when the fluid with minimum
value of heat capacity (mcp)min undergoes the maximum temperature change T1 – t1
(Fig. 14.16). Thus

qmax ¼ mcp
� �

min
ðT1 � t1Þ ¼ CminðT1 � t1Þ ðiiÞ

It is to note that the fluid with C-max cannot undergo the maximum temperature change. If
the fluid with Cmax undergoes the maximum temperature change, then the fluid with Cmin

will be required to undergo a temperature change greater than T1 – t1 to satisfy the heat
balance equation and this is impossible.

Hot stream

Cold stream

Area A
A0

T1

t2

T2

t1

t1 = T1 t2 t2 = T2 t1

tmax
= T1 t1

Fig. 14.16 Temperature variations in counterflow exchanger
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Using Eqs. (i) and (ii) in Eq. (14.16), we have

e ¼ mcp
� �

hotðT1 � T2Þ
CminðT1 � t1Þ ¼ mcp

� �
coldðt2 � t1Þ

CminðT1 � t1Þ

or

e ¼ ChotðT1 � T2Þ
CminðT1 � t1Þ ¼

Ccoldðt2 � t1Þ
CminðT1 � t1Þ ð14:17Þ

where mcp = C.
Let Chot be Cmin and Ccold be Cmax, then

e ¼ T1 � T2
T1 � t1

¼ Cmaxðt2 � t1Þ
CminðT1 � t1Þ ð14:18Þ

Solving for T2 and t2, we get

T2 ¼ T1 � e T1 � t1ð Þ ð14:19aÞ

t2 ¼ Cmin

Cmax
ðT1 � t1Þeþ t1 ð14:19bÞ

For the counterflow heat exchanger, from Eq. (14.6),

Dt2
Dt1

¼ T2 � t1
T1 � t2

¼ e
�UA 1

C1
� 1

C2

� 	
¼ e

� UA
Cmin

1�Cmin
Cmaxð Þ

h i
ð14:20Þ

where C1 = (mcp)hot, C2 = (mcp)cold and U is the overall heat transfer coefficient.
Substitution of the values of T2 and t2 from Eqs. (14.19a, 14.19b) in Eq. (14.20) gives

T1 � e T1 � t1ð Þ � t1
T1 � Cmin

Cmax
ðT1 � t1Þe� t1

¼ e�
UA
Cmin

1�Cmin
Cmaxð Þ

or

T1 � t1ð Þ 1� eð Þ
T1 � t1ð Þ 1� Cmin

Cmax
e

� 	 ¼ e�
UA
Cmin

1�Cmin
Cmaxð Þ

Simplification gives

e ¼ 1� e
� UA

Cmin
1�Cmin

Cmaxð Þ
h i

1� Cmin
Cmax

e
� UA

Cmin
1�Cmin

Cmaxð Þ
h i ð14:21Þ

The group of terms UA/Cmin is called number of transfer units NTU and is indicative of
the size of the heat exchanger. It is a non-dimensional group.
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Introducing UA/Cmin = NTU and capacity ratio Cmin/Cmax = C* in Eq. (14.21), we obtain

e ¼ 1� e�NTU 1�C�ð Þ

1� C�e�NTU 1�C�ð Þ ð14:22Þ

The expression can be rewritten for NTU as

NTU ¼ 1
1� C� ln

1� eC�

1� e

� �
ð14:23Þ

Case (A): In the case of boilers and condensers, one of the fluids undergoes only a phase
change. The fluid undergoing the phase change remains at constant temperature as shown in
Fig. 14.17 hence Dt = 0 for this fluid.

Equation q = mcp Dt gives

mcp ¼ q

Dt
¼ 1

or

Cmax ¼ 1

Hence,

C� ¼ Cmin

Cmax
¼ 0

Then Eq. (14.22) gives

e ¼ 1� e�NTU ð14:24Þ

Case B: If the hot and cold streams in a heat exchanger have approximately equal thermal
capacity Ch = Cc, the heat exchanger is said to have balanced flow. A typical example is
regenerator of a gas turbine regenerative cycle, wherein the heat of the turbine exhaust is
utilized to preheat the combustion air. Though the mass flow rate and the specific heat values
of the incoming air are slightly less than that of the exhaust, an assumption of balanced flow
is reasonable. Hence, for balanced flow

t

Condensing 
vapourt

A

Fig. 14.17 Temperature variation in a condenser
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Cmin

Cmax
� 1

For this case, the value of effectiveness e from Eq. (14.22) becomes non-determinant so
its value is found by expanding the exponential terms as below

e ¼ 1� e�NTU 1�C�ð Þ

1� C�e�NTU 1�C�ð Þ

Let -NTU = x, then

e ¼ 1� ex 1�C�ð Þ

1� C�ex 1�C�ð Þ

¼ ex 1�C�ð Þ � 1

C�ex 1�C�ð Þ � 1

¼ 1þ x 1� C�ð Þ þ x2 1� C�ð Þ2=2þ . . .:� 1

C� 1þ x 1� C�ð Þþ x2 1� C�ð Þ2=2þ . . .:
h i

� 1

¼ x 1� C�ð Þ þ x2 1� C�ð Þ2=2þ . . .:

�ð1� C�ÞþC�x 1� C�ð ÞþC�x2 1� C�ð Þ2=2þ . . .:

¼ 1� C�ð Þ xþ x2 1� C�ð Þ=2þ . . .:½ �
ð1� C�Þ �1þC�xþC�x2 1� C�ð Þ=2þ . . .. . .. . .½ �

¼ xþ x2 1� C�ð Þ=2þ . . .:

�1þC�xþC�x2 1� C�ð Þ=2þ . . .. . .

In the limit C* = 1, hence

e ¼ x

�1þ x
¼ �NTU

�1� NTU

or

e ¼ NTU

1þNTU
ð14:25Þ

Example 14.10 Solve Example 14.9 using the effectiveness-NTU method.

Solution

From the given data,

Ch ¼ mhch ¼ 1� 2000 ¼ 2000

Cc ¼ mccc ¼ 2� 4180 ¼ 8360

Thus, Cmin ¼ Ch ¼ 2000 and Cmax ¼ Cc ¼ 8360
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C� ¼ Cmin

Cmax
¼ 2000

8360
¼ 0:2392

NTU ¼ UA

Cmin
¼ 250� 20

2000
¼ 2:5

The effectiveness

e ¼ 1� e�NTU 1�C�ð Þ

1� C�e�NTU 1�C�ð Þ ¼
1� e�2:5 1�0:2392ð Þ

1� 0:2392� e�2:5 1�0:2392ð Þ ¼ 0:8822

Considering the hot steam,

e ¼ T1 � T2
T1 � t1

or

0:8822 ¼ 150� T2
150� 20

or

T2 ¼ 35:31�C

Now the readers can understand the usefulness of the e-NTU method over the LMTD
method when all temperatures (T1, T2, t1 and t2) are not known or cannot be determined using
the heat balance equation.

Example 14.11 In Sect. 14.1.5.1, it was stated that the fluid with C = Cmax cannot undergo
the maximum temperature change T1 – t1. Verify the statement using the data of the above
example.

Solution

From the data of the previous example,

Cmin ¼ Ch ¼ 2000

Hence,

qmax ¼ CminðT1 � t1Þ ¼ 2000� ð150� 20Þ ¼ 260� 103 W

Now let us see if the fluid with Cmax ¼ Cc ¼ 8360 undergoes the maximum temperature
change, then

q0max ¼ CmaxðT1 � t1Þ ¼ 8360� ð150� 20Þ ¼ 1086:8� 103 W
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From the first law consideration,

q0max ¼ CminðT1 � T2Þ

or

1086:8� 103 ¼ 2000� ðT1 � T2Þ

or

ðT1 � T2Þ ¼ 1086:8� 103

2000
¼ 543:4�C

which is greater than (T1 – t1) and hence is impossible.

14.1.5.2 Effectiveness-NTU Method for Parallel Flow Heat Exchanger
Following the method presented in Sect. 14.1.5.1, we can develop the equation of effec-
tiveness for the parallel flow heat exchanger.

The definition of effectiveness is the same, i.e.

e ¼ mcp
� �

hotðT1 � T2Þ
CminðT1 � t1Þ ¼ mcp

� �
coldðt2 � t1Þ

CminðT1 � t1Þ
¼ ChotðT1 � T2Þ

CminðT1 � t1Þ ¼
Ccoldðt2 � t1Þ
CminðT1 � t1Þ

where mcp = C.
Let Chot be Cmin and Ccold be Cmax, then

e ¼ T1 � T2
T1 � t1

¼ Cmaxðt2 � t1Þ
CminðT1 � t1Þ

Solving for T2 and t2, we get

T2 ¼ T1 � e T1 � t1ð Þ ðiÞ

t2 ¼ Cmin

Cmax
ðT1 � t1Þeþ t1 ðiiÞ

For the parallel flow heat exchanger from Eqs. (14.4) and (14.6), we have (refer to
Fig. 14.18)

Dt2
Dt1

¼ T2 � t2
T1 � t1

¼ e
�UA 1

C1
þ 1

C2

� 	
¼ e

� UA
Cmin

1þ Cmin
Cmaxð Þ

h i
ðiiiÞ

where C1 = (mcp)hot, C2 = (mcp)cold and U is the overall heat transfer coefficient.
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Substitution of the values of T2 and t2 from Eqs. (i) and (ii) in Eq. (iii), and UA/
Cmin = NTU and Cmin/Cmax = C* gives

T1 � e T1 � t1ð Þ½ � � C�ðT1 � t1Þeþ t1½ �
T1 � t1

¼ e�NTU 1þC�ð Þ

or

T1 � t1ð Þ � eðT1 � t1Þð1þC�Þ
T1 � t1

¼ e�NTU 1þC�ð Þ

or

1� eð1þC�Þ ¼ e�NTU 1þC�ð Þ

Simplification gives

e ¼ 1� e� NTU 1þC�ð Þ½ �

1þC� ð14:26Þ

The expression can be rewritten for NTU as

NTU ¼ � 1
1þC� ln 1� eð1þC�Þ½ � ð14:27Þ

Equations (14.26) and (14.27) have been derived by assuming that the hot stream has a
smaller capacity rate, i.e. Ch = Cmin and Cc = Cmax. The equations are valid irrespective of
whether the hot stream or the cold stream has a smaller capacity rate.

Case (A): As explained earlier, in the case of boilers and condensers,

Cmin

Cmax
! 0

Hot stream

Cold stream

Area A A0

T1

t1

T2

t2

t1 = T1 t1 t2 = T2 t2

Fig. 14.18 Parallel flow
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and Eq. (14.26) gives, as in the case of the counterflow,

e ¼ 1� e�NTU ð14:28Þ

Case B: For the ‘balanced flow’, as in the case of the gas turbine generators,

Cmin

Cmax
� 1

For this case, effectiveness e from Eq. (14.26) is

e ¼ 1
2

1� e�2NTU
� � ð14:29Þ

It can be seen from the above equation that the maximum value of the effectiveness is
50% in the case of parallel flow arrangement when Cmin/Cmax � 1. There is no such limi-
tation in the case of counterflow arrangement. This is the main reason for the use of
counterflow arrangement whenever Cmin/Cmax is not having a very low value. Figure 14.19a,
b shows the variation of the effectiveness with NTU for the counter- and parallel-flow
arrangements, respectively.

We have seen that the effectiveness equations for the boiler or condenser are the same
both for the counterflow and parallel flow arrangements. This is expected because the
temperature of the boiling fluid or condensing vapour does not vary along the heat exchanger
surface hence the direction of the flow has no significance.

14.1.6 Effectiveness-NTU Relations for Other Flow Arrangements

Kays and London (1964) have given results for effectiveness-NTU analysis for various
arrangements. Figure 14.20a–c shows the e-NTU curves for cross-flow and shell-and-tube
heat exchangers. The analytical expressions for these arrangements are somewhat tedious to
use (see Table 14.2) and hence are used only when accurate analysis is required. The fol-
lowing observations can be made from the study of e-NTU curves and from the equations in
Table 14.2.
1. For a given C*, the effectiveness increases with increase in the value of NTU.
2. For the given value of NTU, the effectiveness increases with decrease in the value of C*.
3. For C* = 0 (boilers and condensers), the value of the effectiveness is the same for all

arrangements.
4. At very low values of NTU, the effectiveness of different arrangements does not differ

significantly for all values of C*.
5. Counterflow heat exchanger gives the highest value of the effectiveness (i.e. the heat

transfer performance) for any specified value of NTU.
6. At high values of the NTU, a large increase in the heat transfer area is required for a small

gain in the effectiveness.

It is to note that the effectiveness-NTU method offers us a tool to select the best possible
exchanger for the specified conditions. Higher the effectiveness of an exchanger, better is its
performance.
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Example 14.12 Air-to-flue gas heat exchanger of a gas turbine has counterflow arrange-
ment. The hot flue gas inlet temperature is 600 K and cold air inlet temperature is 400 K.
Mass flow rates and specific heats of the two streams can be assumed to be nearly equal. If
the overall heat transfer coefficient is 50 W/(m2 K), determine the outlet temperatures of the
two streams and the heat transferred per m2 of the heat exchanger surface for 1 kg/s of the air
flow rate. Given cp = 1005 J/(kg K).

Solution

The capacity rate ratio, C* = Cmin/Cmax = 1 hence

e ¼ NTU

1þNTU

a Parallel flow
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b Counterflow

ε, %

0 1 2 3 4 5

100

20

40

60

80

0
NTU

C*= 0

C*= 1

Fig. 14.19 Effectiveness-NTU curves
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Fig. 14.20 a e-NTU curve for cross-flow exchanger with both fluids unmixed, b e-NTU curve for cross-flow
exchanger with one fluid unmixed other mixed, c e-NTU curve for one shell pass and 2, 4, 6, etc., tube passes
(1–2 parallel counterflow) heat exchanger, d e-NTU curve for two shell passes and 4, 8, etc., tube passes (2–4
parallel counterflow) heat exchanger

14.1 Part A: Heat Exchangers Fundamentals 997

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


where NTU = UA/Cmin = 50 � 1/1005 = 0.04975. This gives

e ¼ 0:04975
1þ 0:04975

¼ 0:0474

Heat balance equation is

q ¼ ChðT1 � T2Þ ¼ Ccðt2 � t1Þ ðiÞ

It is given that the mass flow rates and specific heats of the air and flue gas are equal.
Hence,

Ch ¼ Cc ðiiÞ

Using this condition, Eq. (i) yields

ðT1 � T2Þ ¼ ðt2 � t1Þ

or

T2 þ t2 ¼ 600þ 400 ¼ 1000K ðiiiÞ

Table 14.2 Effectiveness and NTU expressions

Flow
Arrangement

e(NTU, C*) NTU (e, C*)

Counterflow
e ¼ 1� e�NTU 1�C�ð Þ

1� C�e�NTU 1�C�ð Þ forC�\1

e ¼ NTU

1þNTU
forC� ¼ 1

NTU ¼ 1
C��1 ln

e�1
eC��1

� �
forC�\1

NTU ¼ e
1�e forC� ¼ 1

Parallel flow
e ¼ 1� e� NTU 1þC�ð Þ½ �

1þC�
NTU ¼ � 1

1þC� ln 1� eð1þC�Þ½ �

Cross-flow: both
fluids unmixed e ¼ 1� exp

exp �NTU0:78C�ð Þ � 1
NTU�0:22C�

� �
–

Cross-flow: both
fluids mixed e ¼ 1

1� e �NTUð Þ þ
C�

1� e �NTUC�ð Þ �
1

NTU

� ��1 –

Cross-flow, Cmax

mixed, Cmin

unmixed

e ¼ 1� exp �C� 1� exp �NTUð Þ½ �f g
C�

NTU ¼ � ln 1þ 1
C� lnð1� eC�Þ
 �

Cross-flow, Cmin

mixed, Cmax

unmixed

e ¼ 1� exp � 1� exp �C�NTUð Þ
C�

� �
NTU ¼ � 1

C� ln 1þC� lnð1� eÞ½ �

One shell pass,
2,4,6 tube passes e ¼ 2 1þC� þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þC�2p 1þ exp �NTU
ffiffiffiffiffiffiffiffiffiffiffi
1þC�2pð Þ

1�exp �NTU
ffiffiffiffiffiffiffiffiffiffiffi
1þC�2pð Þ

� ��1
NTU ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þC�2p

� ln
2� e 1þC� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þC�2p� �
2� e 1þC� þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þC�2p� �
" #

All exchangers
with C* = 0

e ¼ 1� exp �NTUð Þ NTU ¼ � lnð1� eÞ

* UA/Cmin = NTU and capacity ratio Cmin/Cmax = C*
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From the equation of effectiveness,

e ¼ ChðT1 � T2Þ
CminðT1 � t1Þ ¼

Ccðt2 � t1Þ
CminðT1 � t1Þ

Using Eq. (ii),

e ¼ ðT1 � T2Þ
ðT1 � t1Þ ¼ ðt2 � t1Þ

ðT1 � t1Þ

Substituting values of e, T1 and t1, we get

0:0474 ¼ 600� T2
600� 400

or

T2 ¼ 590:52K

and

0:0474 ¼ t2 � 400
600� 400

or

t2 ¼ 409:48K

The values of T2 and t2 satisfy Eq. (iii).
The heat transfer rate is

q ¼ mhChðT1 � T2Þ ¼ 1� 1005� 9:48 ¼ 9527:4W

Example 14.13 An oil cooler consists of a straight tube 20 mm ID and 2.5 mm thick,
which is enclosed within a pipe and concentric with it. The external pipe is well insulated.
Oil flows through the tube at the rate of 180 kg/hr [cp = 2 kJ/(kg K)] and cooling water
flows in the annulus in the opposite direction at a rate of 340 kg/hr [cp = 4.2 kJ/(kg K)]. The
oil enters the cooler at 170°C and leaves at 70°C while the cooling water enters at 20°C.
Calculate the length of the tube required if the convection heat transfer coefficient from the
oil to the tube surface is 2 kW/(m2 K) and from the outer surface of the tube to the water is
4 kW/(m2 K). Neglect resistance of the tube wall and the effect of fouling. Also calculate the
effectiveness of the heat transfer.
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Solution

(i) Heat Balance
Oil:

q ¼ mcpðthi � thoÞ ¼ 180
3600

� 2� ð170� 70Þ ¼ 10 kW

Water:

q ¼ mcpðtco � tciÞ ¼ 340
3600

� 4:2� ðtco � 20Þ

or

10 ¼ 340
3600

� 4:2� ðtco � 20Þ

or

tco ¼ 45:2�C

(ii) LMTD

Dtm ¼ ðthi � tcoÞ � ðtho � tciÞ
ln ðthi�tcoÞ

ðtho�tciÞ
¼ ð170� 45:2Þ � ð70� 20Þ

ln ð170�45:2Þ
ð70�20Þ

¼ 81:78oC

(iii) Overall heat transfer coefficient referred to the outer surface of the tube

U ¼ 1
Ro
Rihi

þ 1
ho

¼ 1
1

0:8�2 þ 1
4

¼ 1:143 kW/m2 K

neglecting pipe wall resistance.

(iv) Heat transfer area required

A ¼ q

UðDtmÞ ¼
10

1:143� 81:78
¼ 0:107 m2

Required tube length,

L ¼ A

pdo
¼ 0:107� 1000

p� 25
¼ 1:36m

(v) Effectiveness

e ¼ thi � tho
thi � tci

¼ 170� 70
170� 20

¼ 0:666
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Example 14.14 Solve Example 14.13 Using the effectiveness-NTU approach.

Solution

Continuing from steps (i), (iii) and (iv) of Example 14.13,

Cmin ¼ 180
3600

� 2 ¼ 0:1

Cmax ¼ 340
3600

� 4:2 ¼ 0:3966

C� ¼ Cmin

Cmax
¼ 0:1

0:3966
¼ 0:2521

Effectiveness

e ¼ 1� e�NTU 1�C�ð Þ

1� C�e�NTU 1�C�ð Þ

Let e�NTU 1�C�ð Þ ¼ z, then

e ¼ 1� z

1� C�z

Substitution gives

0:666 ¼ 1� z

1� 0:2521z

or

z ¼ 0:4014

This gives

e�NTU 1�C�ð Þ ¼ 0:4014

or

e�NTU 1�0:2521ð Þ ¼ 0:4014

or

NTU ¼ 1:2205

or

UA

Cmin
¼ 1:2205
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or

A ¼ 1:2205� Cmin

U
¼ 1:2205� 0:1

1:143
¼ 0:107 m2

Alternatively, equation of NTU from Table 14.2 can be used, which is

NTU ¼ � 1
1� C� ln

1� eC�

1� e

� �

¼ � 1
1� 0:2521

ln
1� 0:666� 0:2521

1� 0:666

� �
¼ 1:2205

This gives

A ¼ NTU � Cmin

U
¼ 1:2205� 0:1

1:143
¼ 0:107m2

Example 14.15 A heat exchanger (surface area = 100 m2) has overall heat transfer coef-
ficient of 420 W/(m2 K). Find the outlet temperature of hot and cold fluids for both counter
and parallel flow arrangements when the inlet temperatures of the hot and cold fluids are
700°C and 100°C, respectively. The mass flow rates and specific heat of the hot and cold
fluids are 1000 kg/min and 3.6 kJ/(kg K), and 1200 kg/min and 4.2 kJ/(kg K), respectively.

Solution

We have

Ch ¼ ðmcpÞh ¼ ð3:6� 1000Þ � ð1000=60Þ ¼ 60000

Cc ¼ ðmcpÞc ¼ ð4:2� 1000Þ � ð1200=60Þ ¼ 84000

Hence,
Ch ¼ Cmin ¼ 60000, Cc ¼ Cmax ¼ 84000 and Cmin=Cmax ¼ 0:7143

NTU ¼ UA=Cmin ¼ 420� 100=60000 ¼ 0:7

(i) Counterflow arrangement:
The effective-NTU relation gives

e ¼ 1� e�NTU 1�C�ð Þ

1� C�e�NTU 1�C�ð Þ ¼
1� e�0:7 1�0:7143ð Þ

1� 0:7143� e�0:7 1�0:7143ð Þ ¼ 0:4366

We have

e ¼ thi � tho
thi � tci
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which gives

tho ¼ thi � eðthi � tciÞ ¼ 700� 0:4366� ð700� 100Þ ¼ 438:04oC

Also

e ¼ Cc tco � tcið Þ
Cminðthi � tciÞ ¼

Cmax tco � tcið Þ
Cminðthi � tciÞ ¼ tco � tcið Þ

C�ðthi � tciÞ

which gives

tco ¼ tci þC�eðthi � tciÞ ¼ 100þ 0:7143� 0:4366� ð700� 100Þ ¼ 287:11oC

Heat transfer rate,

q ¼ ðmcpÞhðthi � thoÞ ¼ 60000 � ð700� 438:04Þ ¼ 1:572� 107 W

Check

Dtm ¼ ðthi � tcoÞ � ðtho � tciÞ
ln thi�tco

tho�tci

� 	 ¼ ð700� 287:11Þ � ð438:04� 100Þ
ln 700�287:11

438:04�100

� � ¼ 374:22oC

q ¼ UADtm ¼ 420� 100� 374:22 ¼ 1:572� 107 W

(ii) Parallel flow arrangement:
The effective-NTU relation gives

e ¼ 1� e�NTU 1þC�ð Þ

1þC� ¼ 1� e�0:7 1þ 0:7143ð Þ

1þ 0:7143
¼ 0:40764

We have

e ¼ thi � tho
thi � tci

which gives

tho ¼ thi � eðthi � tciÞ ¼ 700� 0:40764� ð700� 100Þ ¼ 455:42oC

Also

e ¼ Cc tco � tcið Þ
Cminðthi � tciÞ ¼

Cmax tco � tcið Þ
Cminðthi � tciÞ ¼ tco � tcið Þ

C�ðthi � tciÞ

which gives

tco ¼ tci þC�eðthi � tciÞ ¼ 100þ 0:7143� 0:40764� ð700� 100Þ ¼ 274:71oC
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Heat transfer rate,

q ¼ ðmcpÞhðthi � thoÞ ¼ 60000� ð700� 455:42Þ ¼ 1:4675� 107 W

Check

Dtm ¼ ðthi � tciÞ � ðtho � tcoÞ
ln thi�tci

tho�tco

� 	 ¼ ð700� 100Þ � ð455:42� 274:7Þ
ln 700�100

455:42�274:7

� � ¼ 349:41oC

And

q ¼ UADtm ¼ 420� 100� 349:41 ¼ 1:4675� 107 W

Example 14.16 A double pipe heat exchanger has an effectiveness of 0.5 when the flow is
countercurrent and the thermal capacity of one of the fluids is twice that of the other.
Calculate the effectiveness of the heat exchanger if the direction of the flow of one of the
fluids is reversed with the same mass flow rates as before.

Solution

The effectiveness-NTU relation for a counterflow heat exchanger is

e ¼ 1� e�NTU 1�C�ð Þ

1� C�e�NTU 1�C�ð Þ

where C* = Cmin/Cmax = ½ = 0.5 (given). Hence

0:5 ¼ 1� e�NTU 1�0:5ð Þ

1� 0:5e�NTU 1�0:5ð Þ

On simplification, we get

NTU ¼ 0:8109

The effectiveness relation for parallel flow heat exchanger is

e ¼ 1� e�NTU 1þC�ð Þ

1þC�

Substituting the values of C* and NTU from above, we obtain

e ¼ 1� e�0;8109 1þ 0:5ð Þ

1þ 0:5
¼ 0:469

Example 14.17 Water [c = 4.18 kJ/(kg K)] at the rate of 60 kg/min is to be heated from
35°C by oil having a specific heat of 2.0 kJ/(kg K). The oil enters the double pipe heat
exchanger at 110°C. The heat transfer surface area is 15.0 m2. The overall heat transfer
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coefficient is 300 W/(m2 K). If the oil flow rate is 150 kg/min, calculate the exit temperature
of the fluids.

If a parallel flow arrangement is used, calculate Q, tho and tco.

Solution

The fluid capacity rates are

Ch ¼ ðmcpÞh ¼ ð150=60Þ � 2000 ¼ 5000 ¼ Cmax

Cc ¼ ðmcpÞc ¼ ð60=60Þ � 4180 ¼ 4180 ¼ Cmin

Hence,

Cmin=Cmax ¼ 4180=5000 ¼ 0:836

and

NTU ¼ UA=Cmin ¼ 300� 15=4180 ¼ 1:077

Counterflow:
The effective-NTU relation for counterflow arrangement gives

e ¼ 1� e�NTU 1�C�ð Þ

1� C�e�NTU 1�C�ð Þ ¼
1� e�1:077 1�0:836ð Þ

1� 0:836� e�1:077 1�0:836ð Þ ¼ 0:541

From the definition of effectiveness:

e ¼ Cc tco � tcið Þ
Cmin thi � tcið Þ ¼

tco � tcið Þ
thi � tcið Þ ; asCc ¼ Cmin

This gives

tco ¼ tci þ eðthi � tciÞ ¼ 35þ 0:541� ð110� 35Þ ¼ 75:55oC

Heat duty is

q ¼ ðmcpÞcðtco � tciÞ ¼ 4180� ð75:55� 35Þ ¼ 169:5 kW

The exit temperature of the hot fluid can be found from the heat balance or effectiveness
equation. Using the former, we have

q ¼ ðmcpÞhðthi � thoÞ

or

169:5� 1000 ¼ 5000� ð110� thoÞ
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or

tho ¼ 76:1oC:

Parallel flow:
The effectiveness relation for the parallel flow arrangement is given by

e ¼ 1� e�NTU 1þC�ð Þ

1þC�

Substituting the values of C* = 0.836 and NTU = 1.077, we obtain

e ¼ 1� e�1:077 1þ 0:836ð Þ

1þ 0:836
¼ 0:4692

From the definition of effectiveness:

e ¼ Cc tco � tcið Þ
Cmin thi � tcið Þ ¼

tco � tcið Þ
thi � tcið Þ

which gives

tco ¼ tci þ eðthi � tciÞ ¼ 35þ 0:4692� ð110� 35Þ ¼ 70:2oC

From the heat balance,

ðmcpÞcðtco � tciÞ ¼ ðmcpÞhðthi � thoÞ

or

4180� ð70:2� 35Þ ¼ 5000� ð110� thoÞ

or

tho ¼ 80:6oC:

The results can be checked from the LMTD approach.

Comments: Comparison of the results for the counter- and parallel-flow arrangements
shows the superiority of the former arrangement. The advantage of the counterflow
arrangement increases with the increase in the value of Cmin/Cmax.

Example 14.18 Hot water at the rate of 4 kg/min and 80°C enters an automobile radiator.
Air at 25°C and 60 kg/min enters the radiator and flows across the tubes of the radiator. If the
overall heat transfer coefficient is 200 W/(m2 K), determine the heat transfer area required to
achieve water outlet temperature of 50°C.

1006 14 Heat Exchangers

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Solution

At mean water temperature of (80 + 50)/2 = 65°C, specific heat of water is 4188 J/(kg K)
from Table A4.

Heat balance equation gives

mhchðthi � thoÞ ¼ mcccðtco � tciÞ

from which

tco ¼ mhchðthi � thoÞ
mccc

þ tci ¼ 4� 4188� ð80� 50Þ
60� 1006

þ 25 ¼ 33:33oC

for trial value of cc = 1006 J/(kg K). Mean temperature of air is (25 + 33.33)/2 = 29.2°C
and c � 1006 from Table A5. This gives

Cc ¼ mccc ¼ ð60=60Þ � 1006 ¼ 1006

Ch ¼ mhch ¼ ð4=60Þ � 4188 ¼ 279:2 ¼ Cmin

C� ¼ Cmin

Cmax
¼ 279:2

1006
¼ 0:278

e ¼ q

qmax
¼ mhchðthi � thoÞ

mhchðthi � tciÞ ¼ thi � tho
thi � tci

¼ 80� 50
80� 25

¼ 0:545

Automobile radiator is a cross-flow heat exchanger with both fluids unmixed. From
Fig. 14.20a, NTU � 0.85 for C* = 0.278 and e = 0.545. Hence, the required heat transfer
surface area

A ¼ NTUCmin

U
¼ 0:85� 279:2

200
¼ 1:187m2

Example 14.19 A fluid 1 [cp = 2.0 kJ/(kg K)], entering a cross-flow heat exchanger at
200°C, is used to heat fluid 2 [cp = 4.0 kJ/(kg K)] from 15°C to 55°C. The flow rate of fluid
2 is 20 kg/min. For an exchanger surface area of 7 m2, what flow rate of fluid 1 is required
and what is its outlet temperature? The overall heat transfer coefficient is expected to be
200 W/(m2 K). The fluid 1 is unmixed and fluid 2 is mixed.

Solution

From the given data, it is not possible to determine the fluid having smaller mcp. Assume that
the fluid 2 is having minimum mcp. Then

Cmin ¼ ðmcpÞ2 ¼ ð20=60Þ � 4000 ¼ 1333:3

e ¼ t2 � t1ð Þ2
T1 � t1ð Þ ¼

55� 15
200� 15

¼ 0:216
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and
NTU ¼ UA=Cmin ¼ 200� 7=1333:3 ¼ 1:05

But for the above calculated values of NTU and e, it can be seen from Fig. 14.20b that the
ratio Cmixed/Cunmixed does not exist. Therefore, the fluid with Cmin is fluid 1. This selection
will require trial and error as outlined below.

Let Cmin =(mcp)1 = 1000, then

Cmixed

Cunmixed
¼ C2

C1
¼ 1333:3

1000
¼ 1:333

NTU ¼ UA=Cmin ¼ UA=C1 ¼ 200� 7=1000 ¼ 1:4

From Fig. 14.20b, e = 0.58.
Energy balance gives

ðDtÞ1
ðDtÞ2

¼ C2

C1

or

ðDtÞ1 ¼
1333:3� ð55� 15Þ

1000
¼ 53:33oC

and

e ¼ ðDtÞ1
T1 � t1ð Þ ¼

53:33
200� 15

¼ 0:288

The calculated value of effectiveness is significantly different from the value of 0.58 from
the figure. Hence, the assumed value of C1 must be revised. The trial with the new value of
C1 is to be continued till the two values of e are equal. The process is shown in Table 14.3.
The closing value of C1 gives m1 = 9.75 kg/min and outlet temperature of fluid 1 = 35.9°C.

Example 14.20 Exhaust gas (0.1 kg/s) at 800 K from a gas turbine is to be used to preheat
the air at 400 K before going to the combustor. It is desired to cool the exhaust to 500 K. If
an overall heat transfer coefficient of 20 W/(m2 K) can be achieved, determine the area
required for a counterflow arrangement. Assume that the specific heat of the exhaust gases is
the same as that of the air and is 1.005 kJ/(kg K).

What would be the outlet temperature of the exhaust gas and air if the flow arrangement is
changed to parallel in the above exchanger?

Table 14.3 Example 14.19

Trial no. C1 = Cunmixed Cmixed/Cunmixed NTU Dt1,
oC

Effectiveness

From Fig. 14.20b Calculated

1 1000 1.333 1.4 53.33 0.58 0.288

2 500 2.666 2.8 106.66 0.78 0.576

3 400 3.333 3.5 133.33 0.82 0.72

4 350 3.808 4.0 152.38 0.86 0.8236

5 325 4.100 4.31 164.1 0.89 0.887

1008 14 Heat Exchangers

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Solution

We assume a balanced flow Ch = Cc. Actually, the exchanger is not exactly balanced
because the mass flow rate of the exhaust is higher than that of the air by the amount of the
fuel added in the combustor. Further, the average temperatures of the exhaust and air are
different leading to a slight difference in the value of the specific heat of the two streams.

Counterflow arrangement:

e ¼ NTU

1þNTU
¼ T1 � T2

T1 � t1
¼ 800� 500

800� 400
¼ 0:75

or

NTU ¼ 3

Hence, the required area

A ¼ NTU � Ch

U
¼ 3� 0:1� 1005

20
¼ 15:1m2

Parallel flow arrangement:

e ¼ 1
2
1� expð�2NTUÞ½ � ¼ 1

2
1� expð�2� 3Þ½ � ¼ 0:4987

Hence,

e ¼ T1 � T2
T1 � t1

¼ 0:4987

or T2 ¼ T1 � 0:4987� ðT1 � t1Þ ¼ 800� 0:4987� ð800� 400Þ ¼ 600:5 K.

Note: The limiting value of the effectiveness of a parallel flow heat exchanger with the
balanced flow is 0.5 and thus the exhaust in the present case cannot be cooled below 600 K
when parallel flow arrangement is used.

Example 14.21 Steam is condensed in the shell of a shell-and-tube (one shell, two tube
passes) heat exchanger, which consists of 160 tubes of 25 mm diameter and 2 m length. Steam
pressure is 1 atm and heat transfer coefficient on the condensation side is 8000 W/(m2K). If the
water flow rate is 12 kg/s and inlet temperature is 20°C, determine water outlet temperature.

Solution

Assuming 40°C water mean temperature [= (tci + tco)/2], thermophysical properties of water
are (Table A4)

c ¼ 4179 J=ðkgKÞ; k ¼ 0:631W=ðmKÞ; l ¼ 651� 10�6 N s=m2 and Pr ¼ 4:3
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Water flow rate per tube is (flow rate/no. of tubes in single pass) = 12/80 = 0.15 kg/s
(refer to Fig. 14.2). Reynolds number of the flow in the tube is

Re ¼ mdi
ðp=4Þd2i l

¼ 4m
pdil

¼ 4� 0:15
p� 0:025� 651� 10�6

¼ 11735

Flow is turbulent. Dittus–Boelter equation gives

hi ¼ k

di
� 0:024Re0:8Pr0:4

¼ 0:631
0:025

� 0:024� 117350:8 � 4:30:4 ¼ 1955:6W=ðm2 KÞ

Overall heat transfer coefficient,

U ¼ hiho
hi þ ho

¼ 1955:6� 8000
1955:6þ 8000

¼ 1571:5W=ðm2 KÞ

Heat transfer surface area, A ¼ NpDL ¼ 160� p� 0:025� 2 ¼ 25:13m2.
Minimum capacity rate, Cmin ¼ mccc ¼ 12� 4179 ¼ 50148 W=K.
Hence,

NTU ¼ UA

Cmin
¼ 1571:5� 25:13

50148
¼ 0:79

For a condensing fluid, Cmax = ∞. Hence, C� ¼ Cmin
Cmax

¼ 0 The applicable e-NTU relation

is

e ¼ 1� exp �NTUð Þ
¼ 1� exp �0:79ð Þ ¼ 0:546

From the definition of effectiveness,

e ¼ q

qmax
¼ mcccðtco � tciÞ

mcccðthi � tciÞ ¼
tco � tci
thi � tci

or

0:546 ¼ tco � 20
100� 20

or

tco ¼ 63:68oC:

Mean water temperature is (20 + 63.68)/2 = 41.84°C against the assumed mean tem-
perature of 40°C. Retrial is not required.
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14.2 Part B: Design of Heat Exchangers

14.2.1 Introduction

The basic considerations in the design or selection of heat exchanger as an off-the-shelf item
are

1. Thermohydraulic design: It involves
a. Thermal design: The heat exchanger must fulfil the heat duty requirements.
b. Pressure drop characteristic (hydraulic consideration): Calculation of pressure drops

for both hot and cold streams, which should not exceed the allowable values.

2. Size and weight
3. Cost.

The basic steps in the thermal design of the exchanger are

(i) Choose the configuration of the exchanger. In the case of shell-and-tube exchanger,
the selected configuration should provide correction factor FT greater than 0.75.

(ii) Heat balance equation is used to determine unknown temperature or the flow rate of
one of the streams.

(iii) Knowing all the temperatures, LMTD is calculated.
(iv) Compute the heat transfer coefficients ho and hio from appropriate heat transfer cor-

relations and obtain clean overall heat transfer coefficient.
(v) Allowing fouling factors (resistances), a value of design overall heat transfer coeffi-

cient is calculated from which the surface area is found for the given heat duty of the
exchanger.

In the sections to follow, some basic fundamentals relating to the heat exchanger design
have been discussed followed by some design examples with the aim of exposing the readers
to the subject of heat exchanger design. A detailed discussion on heat exchanger design is
beyond the scope of this book, the interested readers may refer to the listed references on heat
exchanger design, for example Kern (1950). Further, it is to note that the examples given
here consider only the conduction and convection modes of heat transfer. The radiation is an
important mode of heat transfer in exchangers operating at high temperatures especially those
dealing with high-temperature gases.

14.2.2 Double Pipe Exchangers

A double pipe exchanger is shown in Fig. 14.21. It is a concentric-pipe heat transfer
apparatus, which consists of two legs and hence is also known as hairpin. The exchanger
shown in the figure consists of two sets of concentric pipes, two connecting tees, a return
head, a return bend and packing glands. The inner pipe is supported within the outer pipe by
the packing glands. One of the fluids enters the inner pipe through the threaded connection
and flows through two legs, which are connected by the return bend. The tees have nozzles or
connections to permit the entry and exit of the annulus fluid, which passes from one leg of
the exchanger to the other through the return head. The return bend does not contribute to the
heat exchange.
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Table 14.4 shows some combination for the double pipe exchangers. These exchangers
are usually assembled in not more than 20 ft effective leg lengths. The effective length is the
distance in each leg over which the heat transfer occurs. It does not include the return bend
and lengths protruding beyond the exchanger section.

The double pipe exchangers are of the greatest use where the total required heat transfer
surface area is small, up to about 200 ft2. When an industrial process requires a large amount
of heat transfer surface area, a large number of hairpins are required because of the small
surface area associated with a single hairpin. A single hairpin has 14 points where the
leakage might occur (Kern 1950). This also makes difficult the periodic dismantling for
cleaning. If the hairpins are employed in excess of 20 ft length in each leg, the inner pipe
tends to sag and may touch the outer pipe causing a poor flow distribution in the annulus.

14.2.3 Clean and Design Overall Heat Transfer Coefficients

In the case of two concentric pipes, the resistances encountered to the heat transfer from one
fluid to the other are the pipe fluid film resistances (at the inner and outer surfaces of the pipe)
and the pipe wall conduction resistance. The total resistance to the heat exchange is, refer to
Fig. 14.22a,

RR ¼ 1
hiAi

þ 1
2pkL

ln
Ro

Ri

� �
þ 1

hoAo
¼ Ri þRk þRo ð14:30Þ

Usually metal pipes are used and the pipe wall is very thin hence the pipe wall resistance
is negligible. This reduces the above equation to

Table 14.4 Double pipe exchanger fittings

Inner pipe, in Outer pipe, in

1¼ 2

1¼ 2½

2 3

3 4

Return 
bend

Tee

Return 
head

Leg 1

Leg 2 Gland

Fig. 14.21 A double pipe heat exchanger (hairpin)
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RR ¼ 1
hiAi

þ 1
hoAo

ð14:31Þ

An overall heat transfer coefficient Uc is defined such that

Uc ¼ 1
RRAo

ð14:32Þ

where the subscript c has been used to indicate that the coefficient pertains to the clean
surfaces.

Then the heat exchange is

q ¼ Dt
RR

¼ UcAoDt ð14:33Þ

When heat exchange equipment is in service for some time, deposition of dirt and salts,
and scaling due to the corrosive effects of the fluids on the inside and outside surfaces of the
pipe takes place. These deposits on the surfaces offer additional resistances to the heat

a

Films

ho

hi

RoRi

Ti
To

q

Rk
Ti To

RoRi

b

Fouling ho

hi

RoRi

Ti
To

q

Rk
Ti To

RfoRfi RoRi

Fig. 14.22 Clean and design overall heat transfer coefficient: network
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transfer. The value of the overall heat transfer coefficient considering these resistances can be
written as, refer to Fig. 14.22b,

R0
R ¼ 1

Ao

Ao

hiAi
þ 1

ho
þRfi

Ao

Ai
þRfo

� �
ð14:34Þ

where Rfi and Rfo are the additional resistances in series with the film resistances at the inner
and outer surfaces, respectively (the pipe wall resistance has been neglected). The resistances
Rfi and Rfo are called dirt, scale or fouling factors.

We define design overall heat transfer coefficient as

Ud ¼ 1
R0
RAo

ð14:35Þ

and then the heat transfer rate is

q ¼ Dt
R0
R

¼ UdAoDt ð14:36Þ

The total fouling resistance or the total fouling factor is defined as

Rft ¼ 1
Ud

� 1
Uc

ð14:37Þ

The total fouling factor can be expressed as

Rft ¼ Rfi
Ao

Ai
þRfo ð14:38Þ

Rfi may not be referred to the outside diameter. This gives Rft � Rfi + Rfo (simple sum-
mation of the two fouling factors). The error introduced is negligible (Kern 1950).

Fouling refers to an undesirable accumulation of deposits on a heat transfer surface. It
leads to a reduction in the thermal performance and an increase in the pressure drop in a heat
exchanger. The influence of the fouling on the overall heat transfer coefficient depends on the
clean overall heat transfer coefficient. For example, if Uc is low, say 10 W/(m2 K) as in an air
to air heat exchanger, a total fouling resistance of 0.0004 gives a design overall heat transfer
coefficient Ud = 9.96 W/(m2 K). Thus, the additional surface area required is very small.
However, for a heat exchanger with a high value of Uc, say 1000 W/(m2 K), Rft = 0.0004
leads to Ud = 714 W/(m2 K) and hence a 28.6% increase in the heat transfer surface area.

Recommended values of some of the fouling factors are listed in Table A7 (Appendix).
Although the fouling is time dependent, only a fixed value of the factor is specified for the
design. It means that the performance of the exchanger deteriorates with time and when the
additional resistance due to the fouling of the heat transfer surface attains the value of the
fouling factor, the exchanger is withdrawn from the service for cleaning. Thus, the cleaning
schedule of an exchanger depends on the value of the design fouling factor.

Example 14.22 For water flowing inside and in cross-flow over the tubes in a shell-and-
tube heat exchanger, hi = 2500 W/(m2 K) and ho = 2000 W/(m2 K). The tubes, with ID and
OD of 25 mm and 30 mm, respectively, are made of mild steel [k = 45 W/(m K)].
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Calculate the overall heat transfer coefficient. Determine the error in the estimate of the
overall heat transfer coefficient due to the neglect of the pipe wall conduction resistance.

Solution

Considering the wall resistance, the overall heat transfer coefficient from Eqs. (14.30) and
(14.32) is

Uo;c ¼ Ro

Rihi
þ Ro

k
ln

Ro

Ri

� �
þ 1

ho

� ��1

¼ 15
12:5� 2500

þ 15� 10�3

45
ln

15
12:5

� �
þ 1

2000

� ��1

¼ 960:8 W=ðm2 KÞ

Neglecting wall resistance,

U0
o;c ¼

Ro

Rihi
þ 1

ho

� ��1

¼ 15
12:5� 2500

þ 1
2000

� ��1

¼ 1020:4 W=ðm2 KÞ

Percent error

¼ 960:8� 1020:4
960:8

� 100 ¼ �6:2%

Example 14.23 Repeat Example 14.22 for water flowing inside the tubes and lubricating
oil in the shell (cross-flow over the tubes); hi = 2500 W/(m2 K) and ho = 250 W/(m2 K).

Solution

Considering the wall resistance, the overall heat transfer coefficient is

Uo;c ¼ Ro

Rihi
þ Ro

k
ln

Ro

Ri

� �
þ 1

ho

� ��1

¼ 15
12:5� 2500

þ 15� 10�3

45
ln

15
12:5

� �
þ 1

250

� ��1

¼ 220:2 W=m2 K

Neglecting wall resistance,

U0
o;c ¼

Ro

Rihi
þ 1

ho

� ��1

¼ 15
12:5� 2500

þ 1
250

� ��1

¼ 223:2 W=m2 K
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Percent error

¼ 220:2� 223:2
220:2

� 100 ¼ �1:37%

Comments: Comparison of the results of the previous two examples shows that the error
in the estimate of the overall heat transfer coefficient due to the neglect of pipe wall resistance
is significantly reduced when even one of the film resistances (proportional to the inverse of
heat transfer coefficient) increases. In most of the heat exchangers, the pipe wall resistance
can be neglected even when the film resistances are low because the fouling resistances are
significantly higher than the wall resistance.

Example 14.24 For the data of Example 14.23, neglecting wall resistance, calculate the
overall heat transfer coefficient when

(i) hi = 3500 W/(m2 K) and ho = 250 W/(m2 K),
(ii) hi = 2500 W/(m2 K) and ho = 350 W/(m2 K).

Comment on the result.

Solution

(i) U0
o;c ¼

Ro

Rihi
þ 1

ho

� ��1

¼ 15
12:5� 3500

þ 1
250

� ��1

¼ 230:3 W=ðm2 KÞ

(ii) U0
o;c ¼

Ro

Rihi
þ 1

ho

� ��1

¼ 15
12:5� 2500

þ 1
350

� ��1

¼ 299:65 W=ðm2 KÞ

Comment: Comparison of the results of this example with that of the previous example
shows that a 40% increase in the higher heat transfer coefficient has resulted in only 3.2%
increase in the overall heat transfer coefficient while a similar increase in the lower heat
transfer coefficient has increased the overall heat transfer coefficient by 34.3%. From the
results of Examples 14.23 and 14.24, it can be seen that the overall heat transfer coefficient is
controlled by the value of the lower of the two heat transfer coefficients hence the lower of
the two heat transfer coefficients is termed as controlling film coefficient.

Example 14.25 Consider Example 14.23 with fouling factors Rfi = 0.0002°C m2/W and
Rfo = 0.0001°C m2/W.

Solution

Considering the fouling factor, the overall heat transfer coefficient is given by

Uo;d ¼ Ro

Rihi
þRfi

Ro

Ri
þ Ro

k
ln

Ro

Ri

� �
þRfo þ 1

ho

� ��1

1016 14 Heat Exchangers

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Substitution gives

Uo;d ¼ 15
12:5� 2500

þ 0:0002� 15
12:5

þ 15� 10�3

45
ln

15
12:5

� �
þ 0:0001þ 1

2000

� ��1

¼ 724:2 W=ðm2 KÞ

Neglecting wall resistance,

U0
o;d ¼

Ro

Rihi
þRfi

Ro

Ri
þRfo þ 1

ho

� ��1

Substitution gives

U0
o;d ¼

15
12:5� 2500

þ 0:0002� 15
12:5

þ 0:0001þ 1
2000

� ��1

¼ 757:6 W=ðm2 KÞ

Percent error

¼ 724:2� 757:6
724:2

� 100 ¼ �4:6%

Example 14.26 When a heat exchanger was new, it transferred 5% more heat than it is
transferring after 3 months service. Determine the overall fouling factor in terms of its clean
overall heat transfer coefficient. Assume all other operating data to be the same.

Solution

The heat transfers in clean and fouled conditions of the exchanger are

qclean ¼ UcADtm

qfouled ¼ UdADtm

The given ratio of the above two heat transfer rates is 1.05. This gives

qclean
qfouled

¼ 1:05 ¼ Uc

Ud

By definition,

Rft ¼ 1
Ud

� 1
Uc

Substituting the value of Ud = Uc/1.05, we get

Rft ¼ 0:05
Uc
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Example 14.27 At clean condition, oil enters a double pipe heat exchanger at 100°C and is
cooled to 50°C while the cooling water is heated from 20°C to 80°C. Overall heat transfer
coefficient is 400 W/(m2 K) and the desired heat rate q = 2000 W. After operation of the
exchanger for 2 years, the water outlet temperature drops to 70°C due to fouling. Determine
the fouling factor after 2 years of operation. Comment on the result.

Solution

Clean condition
Log mean temperature difference is

LMTD ¼ ð100� 80Þ � ð50� 20Þ
ln ð100�80Þ

ð50�20Þ
¼ 24:66oC

Heat transfer area is

A ¼ q

U � LMTD
¼ 2000

400� 24:66
¼ 0:203 m2

Fouled condition
From the design heat rate in clean condition, q = Cw (two – twi) = 2000, we have Cw = 2000/
(80–20) = 33.33. Similarly, Co = 2000/(100–50) = 40.

After fouling, the heat rate is

q0 ¼ Cwðt0wo � twiÞ ¼ 33:33� ð70� 20Þ ¼ 1666:5W

Oil outlet temperature for two = 70°C is

too ¼ toi � q0

C0
¼ 100� 1666:5

40
¼ 58:34oC

Log mean temperature difference is

LMTD ¼ ð100� 70Þ � ð58:34� 20Þ
ln ð100�70Þ

ð58:34�20Þ
¼ 34oC

The new overall heat transfer coefficient is

U0 ¼ q0

A� LMTD
¼ 1666:5

0:203� 34
¼ 241:45W=ðm2 KÞ

The fouling factor is

Rft ¼ 1
U0 �

1
U

¼ 1
241:45

� 1
400

¼ 0:00164m2 K=W

which is quite high as compared to the recommended values of fouling factors for oil and
water (refer to Table A7). Hence, cleaning of the heat exchanger in the discussion must be
undertaken earlier than 2 years of operation.
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Example 14.28 In a heat exchanger, 200 kg/min water flows through a tube of 50 mm in
diameter and is heated from 40°C to 60°C. The tube wall temperature is maintained at 100°C
by condensing steam. What is the length of the tube? The following equation may be used to
estimate the heat transfer coefficient for tube flow.

Nu ¼ 0:024Re0:8Pr0:4

Solution

At 50°C thermophysical properties of water are
q = 988.1 kg/m3, c = 4.182 kJ/(kg K), k = 0.644 W/(m K), l = 544 � 10−6 kg/(m s)

and Pr = 3.55.
Flow velocity,

u ¼ _m

qA
¼ 200

60
� 1
988:1

� 1

ðp=4Þ � ð0:05Þ2 ¼ 1:718m/s

Reynolds number,

Re ¼ quD
l

¼ 988:1� 1:718� 0:05
544� 10�6

¼ 1:56� 105

Nusselt number, from the given correlation, is

Nu ¼ 0:024Re0:8Pr0:4 ¼ 0:024� ð1:56� 105Þ0:8 � ð3:55Þ0:4 ¼ 568:6:

Heat transfer coefficient,

h ¼ Nuk
D

¼ 568:6� 0:644
0:05

¼ 7323 W/m2 K

Log mean temperature difference,

Dt ¼ Dt1 � Dt2
ln Dt1

Dt2

¼ ðT1 � t2Þ � ðT2 � t1Þ
ln ðT1�t2Þ

ðT2�t1Þ
¼ ð100� 60Þ � ð100� 40Þ

ln ð100�60Þ
ð100�40Þ

¼ 49:32oC

Heat transfer, from the heat transfer equation, is

q ¼ hADt ¼ 7323� ðpDLÞ � 49:32 ðiÞ

From the first law of thermodynamics,

q ¼ mcpðt2 � t1Þ ¼ 200
60

� 4:182� ð60� 40Þ ¼ 278:8 kW ðiiÞ

Equating Eqs. (i) and (ii), we get
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7323� ðpDLÞ � 49:32 ¼ 278:8� 1000

or L ¼ 278:8� 1000
7323� pD� 49:32

¼ 278:8� 1000
7323� p� 0:05� 49:32

¼ 4:91m.

Example 14.29 A single-pass steam condenser is to handle 20,000 kg/hr of dry saturated
steam at 0.07 bar. Available for the service are 22.5/25 mm tubes. The thermal conductivity
of the tube material is 70 W/(m K). The average water velocity in each tube is limited to
1 m/s. The cooling water is available at 15°C and the outlet water temperature can be
assumed to be 25°C. Steam side film coefficient is 6000 W/(m2 K). Determine the number of
tubes and length of the tube for the service.

Solution

Thermophysical properties of water at the mean temperature of 20°C are (Table A4,
Appendix)

q = 998.2 kg/m3, cp = 4.183 kJ/(kg K), k = 0.601 W/(m K), µ = 10.02 � 10−4 kg/(m s)
and Pr = 7.

For the steam at 0.07 bar, ts = 39.0°C, i.e. T1 = T2 = 39°C and latent heat hfg = 2409.1
kJ/kg from steam table.

(i) Water-side film Coefficient
Reynolds number,

Re ¼ quDi

l
¼ 998:2� 1� 22:5� 10�3

10:02� 10�4
¼ 22415

Nusselt number from the Dittus–Boelter correlation,

Nu ¼ 0:024Re0:8Pr0:4 ¼ 0:024� ð22415Þ0:8 � ð7Þ0:4 ¼ 158

Heat transfer coefficient,

h ¼ Nuk
D

¼ 158� 0:601
22:5� 10�3

¼ 4220W=m2K

(ii) Overall heat transfer coefficient

Uo;c ¼ Ro

Rihi
þ Ro

k
ln

Ro

Ri

� �
þ 1

ho

� ��1

¼ 25
22:5� 4220

þ 25� 10�3

2� 70
ln

25
22:5

� �
þ 1

6000

� ��1

¼ 2228:3 W=m2K
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Log mean temperature difference,

Dt ¼ Dt1 � Dt2
ln Dt1

Dt2

¼ ðT1 � t2Þ � ðT2 � t1Þ
ln ðT1�t2Þ

ðT2�t1Þ
¼ ð39� 15Þ � ð39� 25Þ

ln 39�15
39�25

� � ¼ 18:55 oC

Heat transfer from unit length of the pipe is

q0 ¼ UADt ¼ 2228:3� ðpDLÞ � 18:55

¼ 2228:3� ðp� 25� 10�3 � 1:0Þ � 18:55 ¼ 3246:4 W=m

Heat to be transmitted,

q ¼ steam condensation rate � hfg ¼ ð20000=3600Þ � 2409:1 ¼ 13383 kW

Required water flow rate from the heat balance,

mw ¼ q

cpðto � tiÞ ¼
13383

4:183� ð25� 15Þ ¼ 319:9 kg=s

Required number of tubes arranged in parallel to accommodate the water flow rate,

n ¼ mw

m0
w

¼ 319:9

u� ðp=4Þ � D2
i � q

¼ 319:9
1� ðp=4Þ � 0:02252 � 998:2

¼ 806 � 810

where mw′ is the flow rate through one tube.
Knowing the total heat duty, heat transfer rate from the unit length of the tube and
number of tubes, the length of the tubes can be determined as

L ¼ q

nq0
¼ 13383� 1000

810� 3246:4
� 5:1 m

Example 14.30 Calculate the number and length of tubes required for a single-pass steam
condenser to handle 25,000 kg of dry saturated steam per hour at 60°C. The cooling water
enters the tubes at 20°C and leaves at 30°C. The tubes are of 25 mm outside and 22.5 inside
diameter. The thermal conductivity of the tube material is 100 W/(m K). The average water
velocity is 1.5 m/s. Assume that the steam side film coefficient is 4500 W/(m2 K). Use the
following correlation for the calculation of water-side heat transfer coefficient:

Nu ¼ 0:024Re0:8Pr0:4

Thermophysical properties of water at the mean temperature of 25°C are (Table A4)

q ¼ 997 kg=m3; cp ¼ 4:181 kJ=ðkgKÞ; k ¼ 0:609W=ðmKÞ; l ¼ 890� 10�6 kg=ðmsÞ; Pr
¼ 6:13:

Latent heat hfg of the steam at 60°C (saturation temperature) is 2358.5 kJ/kg.
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Solution

(i) Water-side film Coefficient
Flow Reynolds number,

Re ¼ quDi

l
¼ 997� 1:5� 22:5� 10�3

890� 10�6
¼ 37807

Nusselt number from the Dittus–Boelter correlation,

Nu ¼ 0:024Re0:8Pr0:4 ¼ 0:024� ð37807Þ0:8 � ð6:13Þ0:4 ¼ 227:6

Water side heat transfer coefficient,

h ¼ Nuk
D

¼ 227:6� 0:609
22:5� 10�3

¼ 6160 W=ðm2 KÞ

(ii) Overall heat transfer coefficient

Uo;c ¼ Ro

Rihi
þ Ro

k
ln

Ro

Ri

� �
þ 1

ho

� ��1

¼ 12:5
11:25� 6160

þ 12:5� 10�3

100
ln

12:5
11:25

� �
þ 1

4500

� ��1

¼ 2405 W/(m2 K)

Log mean temperature difference,

Dt ¼ Dt1 � Dt2
ln Dt1

Dt2

¼ ðT1 � t2Þ � ðT2 � t1Þ
ln ðT1�t2Þ

ðT2�t1Þ
¼ ð60� 20Þ � ð60� 30Þ

ln 60�20
60�30

� � ¼ 34:76oC

Heat transfer from unit length of the pipe is

q0 ¼ UADt ¼ 2405� ðpD0LÞ � 34:76 ¼ 2405� ðp� 25� 10�3 � 1:0Þ � 34:76
¼ 6565:7 W=m

Heat to be transferred,

q ¼ steam condensation rate � hfg ¼ ð25000=3600Þ � 2358:5 ¼ 16378 kW

Required water flow rate from the heat balance,

mw ¼ q

cpðto � tiÞ ¼
16378

4:181� ð30� 20Þ ¼ 391:7 kg=s
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Required number of tubes arranged in parallel to accommodate the water flow rate,

n ¼ mw

m0
w

¼ 391:7

u� ðp=4Þ � D2
i � q

¼ 391:7
1:5� ðp=4Þ � 0:02252 � 996:95

¼ 658:8 � 660

where m0
w is the flow rate through one tube.

Knowing the total heat duty, heat transfer rate from the unit length of the tube and
number of tubes, the length of the tubes can be determined as

L ¼ q

nq0
¼ 16378� 1000

660� 6565:7
¼ 3:78 � 3:8m

Example 14.31 Find the length of a counterflow heat exchanger to cool 1000 kg/hr of hot
water from 60°C to 30°C using cold water at 20°C. The cold water flows at a rate of
1500 kg/hr. The hot water flows through a steel pipe of 18 mm ID and 22 mm OD while the
cold water flows through the annular space between the inner pipe and a 30 mm ID pipe.
Neglect the pipe wall resistance.

The following correlations may be used for the estimates of the heat transfer coefficient
and friction factor.

Tube flow:

Nu ¼ 0:026Re0:8Pr0:3

f ¼ 0:0791Re�0:25

Annular duct:

Nu ¼ 0:02Re0:8Pr0:4

f ¼ 0:085Re�0:25

The thermophysical properties of water at the mean bulk temperature may be taken from
Table 14.5.

Table 14.5 Example 14.31

t, °C q, kg/m3 c, kJ/(kg K) k � 102, W/(m K) m � 106, m2/s Pr

30 995.7 4.174 61.8 0.805 5.42

40 992.2 4.174 63.5 0.659 4.31

50 988.1 4.176 64.8 0.556 3.54
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Solution

1. Heat balance
Heat lost by the hot water

q ¼ mhchðthi � thoÞ ¼ 1000� ch � ð60� 30Þ ðiÞ

Heat gained by the cold (raw) water

q ¼ mcccðtco � tciÞ ¼ 1500� cc � ðtco � 20Þ ðiiÞ

We obtain the outlet temperature of the cold water, by equating Eqs. (i) and (ii) and
assuming ch � cc. This gives

tco ¼ 40oC

2. Log mean temperature difference (refer to Fig. 14.23)

Dt ¼ Dt1 � Dt2
ln Dt1

Dt2

¼ 20� 10

ln 20
10

¼ 14:43�C

3. Flow area and equivalent diameters in double pipe exchangers
Tube: Flow area,

at ¼ ðp=4Þd2i ¼ ðp=4Þ � 182 � 10�6 ¼ 2:544� 10�4 m2

Annulus: Flow area,

aa ¼ ðp=4ÞðD2
i � d2oÞ ¼ ðp=4Þ � ð302 � 222Þ � 10�6 ¼ 3:267� 10�4 m2

Since the flow area of the annulus is greater than that of the inner pipe, we place the
larger fluid stream in the annulus.

60o

40o

30o

20o

t2 = 10oCt1 = 20oC

Fig. 14.23 Example 14.31
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Hot water, tube Cold water, annulus

4) Flow area, at = 2.544 � 10−4 m2

d = 18/1000 = 0.018 m
4’) Flow area, aa = 3.267 � 10−4 m2

Hydraulic diameter,
De= 4 � flow area/perimeter
where perimeter = p (Di + do). Hence,
De = 4 � 3.267 � 10−4/[p � (30 + 20) � 10−3]
¼ 0.008 m

5) Mass velocity,
Gt = W/at
¼ 1000/[3600 � 2.544 � 10−4]
¼ 1092.8 kg/(m2 s)

5’) Mass velocity,
Ga = W/aa
¼ 1500/[3600 � 3.267 � 10−4]
¼ 1275 kg/(m2 s)

6) tav = (60 + 30)/2 = 45°C
The temperature range and difference are moderate,
the fluid properties may be evaluated at the mean
temperature and the correction factor (µ/µw)

0.14

may be taken as unity.
Properties at the mean temperature are
q = (992.2 + 988.1)/2 = 990.15 kg/m3

cp = (4.174 + 4.178)/2 = 4.176 kJ/(kg K)
k = (0.635 + 0.648)/2 = 0.6415 W/(m K)
m = (0.659 + 0.556) � 10−6/2
¼ 0.6075 � 10−6 m2/s
Pr = (4.31 + 3.54)/2 = 3.925

6’) tav = (20 + 40)/2 = 30°C
The temperature range and difference are moderate,
the fluid properties may be evaluated at the mean
temperature and the correction factor (µ/µw)

0.14

may be taken as unity.
Properties at the mean temperature of the annulus
fluid are
q = 995.7 kg/m3

cp = 4.174 kJ/(kg K)
k = 0.618 W/(m K)
m = 0.805 � 10−6 m2/s
Pr = 5.42

7) Reynolds number:
Re = Gd/µ
¼ 1092.8 � 0.018/(990.15 � 0.6075 � 10−6)
¼ 32701

7’) Reynolds number
Re = GDe/µ
¼ 1275 � 0.008/(995.7 � 0.805 � 10−6)
¼ 12726

8) Heat transfer coefficient
Nu ¼ 0:026Re0:8 Pr0:3

or h ¼ 0:026Re0:8 Pr0:3
� �

k
d

hi ¼ 0:026� ð32701Þ0:8 � ð3:925Þ0:3
h i

0:6415
0:018

hi = 5711
hio = hi (ID/OD) = 5711 � (18/22)
¼ 4673 W/(m2 °C)

8’) Heat transfer coefficient
Nu ¼ 0:02Re0:8 Pr0:4

or h ¼ 0:02Re0:8 Pr0:4
� �

k
De

ho ¼ 0:02� ð12726Þ0:8 � ð5:42Þ0:4
h i

0:618
0:008

ho = 5840 W/(m2 °C)

Clean overall heat transfer coefficient,

Uc ¼ h0 � hi0
h0 þ hi0

¼ 5840� 4673
5840þ 4673

¼ 2596 W=ðm2 K)

Heat duty,

q ¼ mcpðthi � thoÞ ¼ ð1000=3600Þ � 4176� ð60� 30Þ ¼ 34800 W

Required heat transfer area,

A ¼ q

UcðLMTDÞ ¼
34800

2596� 14:43
¼ 0:93 m2

14.2 Part B: Design of Heat Exchangers 1025

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Required tube length,

L ¼ A

pdo
¼ 0:93

p� 0:022
¼ 13:46 m

Example 14.32 In the previous example, calculate the required length if an overall dirt
factor of 0.0003°C m2/W is to be considered. Also calculate the pressure drop for both the
streams.

Solution

Design heat transfer coefficient for combined fouling factor of 0.0003:

1
Ud

¼ 1
Uc

þRd ¼ 1
2596

þ 0:0003

or

Ud ¼ 1459 W/(m2 K)

Required tube length,

L ¼ 13:46� 2596
1459

¼ 23:95 m

This can be fulfilled by connecting two 6.1 m long hairpins in series giving a total length
of 24.4 m.

Pressure Drop

Tube side Annulus side

f ¼ 0:0791Re�0:25

¼ 0:0791� ð32701Þ�0:25 ¼ 0:00588

ðDpÞa ¼
4fG2

t L

2gq2d

¼ 4� 0:00588� 1092:82 � 24:4
2� 9:81� 990:152 � 0:018

¼ 1:98 mof water column

f ¼ 0:085Re�0:25 ¼ 0:085� ð12726Þ�0:25

¼ 0:00802

ðDpÞt ¼
4fG2

aL

2gq2d

¼ 4� 0:00802� 12752 � 24:4
2� 9:81� 995:72 � 0:008

¼ 8:18mof water column
Entrance and exit losses are taken as one velocity
head/hairpin (Kern 1950), i.e.
V ¼ Ga

q ¼ 1:28 m/s

Ft ¼ 2 V2

2g

� 	
¼ 2� 1:282

2�9:81

� 	
¼ 0:17m

So total head loss is
ðDpÞa ¼ 8:18þ 0:17 ¼ 8:35 m of water head

Example 14.33 A copper tube (20 mm ID and 25 mm OD) is used in a cross-flow heat
exchanger. Water at a mean temperature of 80°C flows through the tube at a mean velocity of
0.8 m/s. The fouling factors are Rfi =0.0004 and Rfo = 0.0002 m2 K/W. Air at 15°C flows
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across the tube with velocity of 15 m/s. Thermal conductivity of copper is 350 W/(m K).
Determine the overall heat transfer coefficient based upon the outer surface.

Solution

At 80°C, thermophysical properties of water are (Table A4)

q ¼ 971:8 kg=m3; k ¼ 0:67W=ðmKÞ; l ¼ 351� 10�6 kg=ðmsÞ and Pr ¼ 2:23

Reynolds number of the flow in the tube is

Re ¼ qUdi
l

¼ 971:8� 0:8� 0:02
351� 10�6

¼ 44299

Flow is turbulent. For cooling of fluid, the heat transfer coefficient is (Table 8.3)

hi ¼ k

di
� 0:026Re0:8Pr0:3

¼ 0:67
0:02

� 0:026� 442990:8 � 2:230:3 ¼ 5776

Assuming outer surface temperature two = 60°C, the film temperature is (60 + 15)/
2 = 37.5°C. Thermophysical properties of air at 27.5°C are (Table A5)

q ¼ 1:141 kg=m3; k ¼ 0:027W=ðmKÞ; l ¼ 1:894� 10�5kg=ðmsÞ and Pr ¼ 0:706

For flow of air across the tube, the Reynolds number is

Re ¼ qUdo
l

¼ 1:141� 15� 0:025
1:894� 10�5

¼ 22591

From Eq. (8.47) and Table 8.11,

ho ¼ k

do
� 0:193� Re0:618 � Pr1=3

¼ 0:027
0:025

� 0:193� 225910:618 � 0:7061=3 ¼ 91:1W=ðm2 KÞ

The overall heat transfer coefficient is given by

Uo ¼ Ro

Rihi
þRfi

Ro

Ri
þ Ro

k
ln

Ro

Ri

� �
þRfo þ 1

ho

� ��1

¼ 25
20� 5776

þ 0:0004� 25
20

þ 0:025=2
350

ln
25
20

� �
þ 0:0002þ 1

91:1

� ��1

¼ 0:000216þ 0:0005þ 0:00000797þ 0:0002þ 0:01098½ ��1¼ 84:0W=ðm2 CÞ
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Heat transfer equation gives

q ¼ UoAoðtw � taÞ ¼ hoAoðtwo � taÞ

or

two ¼ Uo

ho
ðtw � taÞþ ta ¼ 84

91:1
ð80� 15Þþ 15 ¼ 74:93�C

Outer surface temperature two is 74.93°C against the assumed temperature of 60°C. Retrial
with two = 75°C may be carried out.

It is to note that the significant resistance is that of the air convection and the wall
resistance is negligibly small.

Example 14.34 Steam is condensed at the rate of 1 kg/s at 1 atm in the shell of a shell-and-
tube (one shell pass and two tube passes) heat exchanger, which consists of 25 mm diameter
tubes. Heat transfer coefficient on the condensation side is 8000 W/(m2 K). If the mean flow
velocity of water in the tube is 0.35 m/s and inlet and outlet temperature are 20°C and 60°C,
respectively, determine length and number of tubes per pass.

Solution

At 1 atm, hfg = 2256.4 kJ/kg and th = 100°C from the steam tables.
The required heat rate is

q ¼ mshfg ¼ 1� 2256:4� 103 ¼ 2256:4� 103 W

At 40°C mean water temperature [= (tci + tco)/2], thermophysical properties of water are
(Table A4)

q ¼ 992:2 kg=m3: c ¼ 4179 J=ðkgKÞ; k ¼ 0:631W=ðmKÞ; l ¼ 651� 10�6N s=m2 and Pr
¼ 4:3

Required water flow rate, from heat balance, is

mc ¼ q

ccðtco � tciÞ ¼
2256:4� 103

4179� ð60� 20Þ ¼ 13:5 kg=s

Water flow rate per tube from given mean velocity Um = 0.35 m/s is

m ¼ qUmðp=4ÞD2 ¼ 992:2� 0:35� ðp=4Þ � 0:0252 ¼ 0:17 kg=s

Number of tubes per pass to accommodate 13.5 kg/s of water flow rate is

N ¼ mc

m
¼ 13:5

0:17
¼ 79:4 say 80 per pass
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Reynolds number of the flow in the tube is

Re ¼ mdi
ðp=4Þd2i l

¼ 4m
pdil

¼ 4� 0:17
p� 0:025� 651� 10�6

¼ 13300

Flow is turbulent. Dittus–Boelter equation gives

hi ¼ k

di
� 0:024Re0:8Pr0:4

¼ 0:631
0:025

� 0:024� 133000:8 � 4:30:4 ¼ 2161:6W=ðm2 KÞ

Overall heat transfer coefficient,

U ¼ hiho
hi þ ho

¼ 2161:6� 8000
2161:6þ 8000

¼ 1701:8W=ðm2 KÞ

Effectiveness,

e ¼ q

qmax
¼ mcccðtco � tciÞ

mcccðthi � tciÞ ¼
tco � tci
thi � tci

¼ 60� 20
100� 20

¼ 0:5

Hence, refer to Table 14.2,

NTU ¼ � lnð1� eÞ ¼ � lnð1� 0:5Þ ¼ 0:693

Minimum capacity rate, Cmin ¼ mccc ¼ 13:5� 4179 ¼ 56417W=K
Heat transfer surface area,

A ¼ NTU � Cmin

U
¼ 0:693� 56147

1701:8
¼ 22:86m2

From A ¼ 2NpDL, the tube length is

L ¼ A

2NpD
¼ 22:86

160� p� 0:025
¼ 1:82m

Example 14.35 Steam is condensed at the rate of 1 kg/s at 1 atm in the shell of a shell-and-
tube (one shell pass and two tube passes) heat exchanger, which consists of 25 mm diameter
and 1.82 m long tubes. Heat transfer coefficient on the condensation side is 8000 W/(m2 K).
If the mean flow velocity of water in the tube is 0.35 m/s and inlet temperature is 20°C,
determine the number of tubes per pass.
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Solution

At 1 atm, hfg = 2256.4 kJ/kg and th = 100°C from the steam tables.
The required heat rate is

q ¼ mshfg ¼ 1� 2256:4� 103 ¼ 2256:4� 103 W

At assumed mean water temperature [= (tci + tco)/2] of 40°C, thermophysical properties
of water are (Table A4)

q ¼ 992:2 kg=m3: c ¼ 4179 J=ðkgKÞ; k ¼ 0:631W=ðmKÞ; l ¼ 651� 10�6 N s=m2 and Pr
¼ 4:3

Water flow rate per tube from given mean velocity Um = 0.35 m/s is

m ¼ qUmðp=4ÞD2 ¼ 992:2� 0:35� ðp=4Þ � 0:0252 ¼ 0:17 kg=s

Reynolds number of the flow in the tube is

Re ¼ mdi
ðp=4Þd2i l

¼ 4m
pdil

¼ 4� 0:17
p� 0:025� 651� 10�6

¼ 13300

Flow is turbulent. Dittus–Boelter equation gives

hi ¼ k

di
� 0:024Re0:8Pr0:4

¼ 0:631
0:025

� 0:024� 133000:8 � 4:30:4 ¼ 2161:6 W=ðm2 KÞ

Overall heat transfer coefficient,

U ¼ hiho
hi þ ho

¼ 2161:6� 8000
2161:6þ 8000

¼ 1701:8W=ðm2 KÞ

Heat rate for N tubes per pass,

q ¼ eqmax ¼ emcccðthi � tciÞ ¼ eðmNÞccðthi � tciÞ

or

2256:4� 103 ¼ eð0:17� NÞ � 4179� ð100� 20Þ

or

eN ¼ 39:7
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Number of transfer units,

NTU ¼ UA

Cmin
¼ Uð2NpDLÞ

Nmcc

¼ 1701:8� 2N � p� 0:025� 1:82
0:17N � 4179

¼ 0:685

Hence, refer to Table 14.2,

e ¼ 1� exp �NTUð Þ

or

39:7
N

¼ 1� exp �0:685ð Þ ¼ 0:496

or

N ¼ 39:7
0:496

¼ 80 per pass

This gives mc ¼ mN ¼ 80� 0:17 ¼ 13:6 kg/s. From heat rate equation,
q ¼ mcccðtco � tciÞ, we get

tco ¼ q

mccc
þ tci ¼ 2256:4� 103

13:6� 4179
þ 20 ¼ 59:7oC

Mean water temperature is (20 + 59.7)/2 = 39.85°C. Assumed mean temperature was 40°
C. Retrial is not required.

Example 14.36 2 kg/s of hot exhaust gases from a furnace, at nearly atmospheric pressure,
flow across a tube bank of an economizer (Fig. 14.24) consisting of inline array of 16 � 16.
Steel tubes have 22 mm internal and 25 mm external diameter, and are 3 m long. Upstream
of the tube bank, the gas temperature is 500°C. The maximum velocity of the gas in the tube
bank is 4 m/s. 10 kg/s of water to be heated enters the tubes at 30°C. Determine water and
gas outlet temperatures. Treat the exhaust gas as air for thermophysical properties.

Water in tubes
10 kg/s at 30oC

Hot gas 2 kg/s
thi = 500oC

do

tho

Umax

Fig. 14.24 Tube bank of the economizer (representative)
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Solution

At assumed mean water temperature [= (tci + tco)/2] of 50°C, thermophysical properties of
water are (Table A4)

q ¼ 988:1 kg=m3: c ¼ 4182 J=ðkgKÞ; k ¼ 0:644W=ðmKÞ; l ¼ 544� 10�6 N s=m2 and Pr
¼ 3:55

Reynolds number of flow of water in the tubes,

Re ¼ mdi
ðp=4Þd2i l

¼ 4m
pdil

¼ 4� ½10=ð16� 16Þ�
p� 0:022� 544� 10�6

¼ 4156

Assuming fully developed flow, we may use Gnielinski correlation for 1.5 � Pr � 500
and 3 � 103 � Re � 106 (Table 8.3), which gives

hi ¼ k

di
� 0:012ðRe0:87 � 280ÞPr0:4

¼ 0:644
0:022

� 0:012� ð41560:87 � 280Þ � 3:550:4

¼ 657W/ðm2 KÞ

When referred to the outside diameter, hio ¼ hi
di
do
¼ 657� 22

25 ¼ 578:2

Treating exhaust gases as air and assuming a mean gas temperature of 350°C in the
exchanger, the air properties are (Table A5)

q ¼ 0:5674 kg=m3: c ¼ 1058:9 J=ðkgKÞ; k ¼ 0:04794W=ðmKÞ; l
¼ 3:9091� 10�5 N s=m2 and Pr ¼ 0:681

Reynolds number for flow of gas over the tube bank,

ReD ¼ qUmaxdo
l

¼ 0:5674� 4� 0:025
3:9091� 10�5

¼ 1451

ð8:60Þ

Using Eq. (8.58c) for 103 < Re � 2 � 105, we have

ho ¼ k

do
0:27Re0:63d Pr0:36ðPr =PrwÞ0:25

Neglecting factor (Pr/Prw) for air, we have

ho ¼ 0:04794
0:025

� 0:27� 14510:63 � 0:6810:36 ¼ 44:25W=ðm2 KÞ
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Overall heat transfer coefficient (neglecting tube wall resistance),

U ¼ hioho
hio þ ho

¼ 578:2� 44:25
578:2þ 44:25

¼ 41:1W=ðm2 KÞ

Minimum heat capacity rate, Cmin ¼ 2� 1058:9 ¼ 2117:8
and maximum heat capacity rate, Cmax ¼ 10� 4162 ¼ 41620.
Number of transfer units,

NTU ¼ UA

Cmin
¼ UðNpdoLÞ

Cmin

¼ 41:1� 256� p� 0:025� 3
2117:8

¼ 1:17

and

C� ¼ Cmin

Cmax
¼ 2117:8

41620
¼ 0:05

From Fig. 14.20a, e � 0.68. Hence, from the effectiveness equation,

e ¼ q

qmax
¼ mhchðthi � thoÞ

mhchðthi � tciÞ ¼ thi � tho
thi � tci

or

0:68 ¼ 500� tho
500� 30

or

tho ¼ 500� 0:68� ð500� 30Þ ¼ 180:4oC

From heat rate equation, q ¼ mcccðtco � tciÞ, which gives

tco ¼ q

mccc
þ tci ¼ mhchðthi � thoÞ

mccc
þ tci ¼ 2117:8� ð500� 180:4Þ

10� 4182
þ 30 ¼ 46:2oC

Mean water temperature = (30 + 46.2)/2 = 38.1°C against the assumed temperature of
50°C. Mean gas temperature = (500 + 180.4)/2 = 340.2°C against the assumed temperature
of 350°C. Retrial by taking thermophysical properties of water and gas at these estimated
mean temperatures may be carried out.

14.3 Summary

This chapter has been presented in two parts. Part A deals with heat exchanger fundamentals
while Part B deals with design of heat exchangers.

Heat exchangers have been classified on the basis of the configuration of the fluid flow
paths through the heat exchanger, based on the principle of operation and by their
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applications. While dealing with fluids, which provide a low heat transfer coefficient, such as
air or gases, finned tubes are frequently employed in the exchangers. Double pipe and shell-
and-tube heat exchangers are widely used. However, all heat exchanger types, especially the
compact heat exchangers, have not been presented and discussed in the present chapter.
Readers should refer to specific books on heat exchangers and their design.

Heat transfer equation for double pipe (concentric tube) heat exchanger has been pre-
sented in Eq. (14.1) in terms of overall heat transfer coefficient, heat transfer area and an
effective or mean temperature difference Δtm for the whole heat transfer area of the exchanger
(termed as log mean temperature difference LMTD).

For a double pipe heat exchanger, where the fluids may have either parallel or counterflow
arrangement, expressions of log mean temperature difference Δtm have been derived. The
following important observations relating to LMTD must be kept in mind.

(i) If the temperature difference between two fluids is denoted by Δt1 and Δt2 at the two
ends of the heat exchanger, then the LMTD equations for the parallel- and counter-
flow arrangements have the same form as

Dtm ¼ Dt2 � Dt1

ln Dt2
Dt1

� 	

(ii) The arithmetic mean temperature difference is always greater than the log mean and
the difference between the two increases with the increase in the value of ratio Δt1/Δt2.

(iii) When one of the fluids passes through a heat exchanger isothermally (condensing
vapour or boiling liquid), the flow arrangement does not affect the value of LMTD. It
has been shown later on that this is true for all flow arrangements.

(iv) The log mean temperature difference reduces rapidly if the temperature of one of the
fluid streams approaches the temperature of the other stream.

(v) In counterflow arrangement, if Dt1 = Dt2, LMTD equals Dt1.
(vi) LMTD for the counterflow arrangement is always higher and hence such exchangers

will require smaller heat transfer area for the same heat duty. If the conditions permit,
a counterflow design is always preferred.

(vii) In parallel flow heat exchanger, the outlet temperature of the cold fluid can never
exceed or equal the outlet temperature of the hot fluid.

Log mean temperature difference for other flow arrangements is obtained by applying a
correction factor FT to the LMTD of counterflow arrangement. In Sect. 14.1.4, graphs of
correction factor FT for other flow arrangements in terms of parameters P and R have been
presented. Arrangement for the shell-and-tube heat exchanger must be selected to give a high
value of the correction factor FT and the design point must lie on the flat part of the FT curve
so that the correction factor is least affected by the variations in values of parameters P and
R due to any variations in the fluid temperatures.

When all the four temperatures (T1, T2, t1 and t2) required for calculation of LMTD are not
specified or cannot be easily determined from the heat balance equation, there is great
difficulty in the use of the LMTD method. In such cases, the analysis can be easily carried out
using the method of effectiveness-NTU. The effectiveness e of a heat exchanger is defined as
the ratio of the actual heat transfer to the maximum possible, which is attained when the fluid
with minimum value of heat capacity (mcp)min undergoes the maximum temperature change
T1 – t1.
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Basic treatment of effectiveness-NTU method for counterflow and parallel flow heat
exchangers is given in Sect. 14.1.5. Effectiveness-NTU curves for cross-flow and shell-and-
tube heat exchangers are presented in Fig. 14.20a–c. The analytical expressions for these
arrangements are somewhat tedious to use (refer to Table 14.2) and hence are used only
when accurate analysis is required.

The following observations have been made from the e-NTU curves:

7. For a given C� ¼ Cmin=Cmaxð Þ, the effectiveness increases with increase in the value of
NTU.

8. For the given value of NTU, the effectiveness increases with decrease in the value of C*.
9. For C* = 0 (boilers and condensers), the value of the effectiveness is the same for all

arrangements.
10. In case of balanced flow as in the case of the gas turbine regenerators, Cmin/Cmax = 1.

The maximum value of the effectiveness is 50% for the parallel flow arrangement.
There is no such limitation for the counterflow arrangement. This is the main reason for
the use of counterflow arrangement, especially when Cmin/Cmax is not having a very low
value.

11. At very low values of NTU, the effectiveness of different arrangements does not differ
significantly for all values of C*.

12. Counterflow heat exchanger gives the highest value of the effectiveness (i.e. the heat
transfer performance) for any specified value of NTU. The advantage of the counterflow
arrangement increases with the increase in the value of Cmin/Cmax.

13. At high values of NTU, a large increase in the heat transfer area is required for a small
gain in the effectiveness for given overall heat transfer coefficient.

It is to note that the effectiveness-NTU method offers us a tool to select the best possible
exchanger for the specified conditions. Higher the effectiveness of an exchanger, better is its
performance.

As mentioned earlier, in Part B of the chapter, some basic considerations and funda-
mentals relating to the heat exchanger design have been discussed followed by some design
examples with the aim of exposing the readers to the subject of heat exchanger design. It is to
note that a detailed discussion on heat exchanger design is beyond the scope of this book, the
interested readers may refer to the listed references on heat exchanger design.

The basic consideration in the design or selection of heat exchanger is the thermohy-
draulic design, which involves (a) thermal design to fulfil the heat duty requirements and
(b) pressure drop characteristic (hydraulic consideration), i.e. calculation of pressure drops
for both hot and cold streams, which should not exceed the allowable values. Other con-
siderations, not discussed here, are size, weight and cost of the exchanger.

Overall heat transfer coefficient has been presented, vide Eq. (14.32), which considers the
film resistances and wall resistance. This coefficient is termed as clean overall heat transfer
coefficient because when a heat exchange equipment is in service for some time, deposition
of dirt and salts, and scaling due to the corrosive effects of the fluids on the inside and outside
surfaces of the pipe take place. These deposits on the surfaces offer additional resistances to
the heat transfer which are termed as dirt, scale or fouling factors. Considering the fouling
factor, design overall heat transfer coefficient has been defined vide Eq. (14.35).

14.3 Summary 1035

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


The basic steps in thermal design of the exchanger have been outlined as

(vi) Choose the configuration of the exchanger. In the case of shell-and-tube exchanger,
the selected configuration should provide LMTD correction factor FT greater than
0.75.

(vii) Heat balance equation is used to determine unknown temperature or the flow rate of
one of the streams.

(viii) Knowing all the temperatures, calculate LMTD.
(ix) Compute the heat transfer coefficients ho and hio from appropriate heat transfer

correlations and obtain clean overall heat transfer coefficient, Eq. (14.32).
(x) Allowing fouling factors (resistances), the value of design overall heat transfer

coefficient is calculated from which the surface area is found for the given heat duty
of the exchanger, refer to Eq. (14.35).

Review Questions

14:1 Classify heat exchangers and draw diagrams to show the temperature distributions
along their length or at the outlet.

14:2 Describe with the help of figures the double pipe, and shell-and-tube heat exchangers.
Discuss the effect of baffles on the flow pattern in the shell-and-tube heat exchanger.

14:3 Derive the equation of overall heat transfer coefficient for tube flow. State the con-
dition when you can neglect the pipe wall resistance to heat transfer.

14:4 Establish the expressions of LMTD for parallel flow and counterflow heat
exchangers. State clearly the simplifying assumptions made in the derivation of the
LMTD equation. What is the effect of these assumptions on the estimate of LMTD?

14:5 Define the correction factor for the LMTD and compare the performance of the
counterflow, parallel flow and cross-flow arrangements.

14:6 Compare arithmetic mean and log mean temperature differences.
14:7 What is fouling factor? Explain with proper comments.
14:8 Define clean and design overall heat transfer coefficients.
14:9 What do you mean by controlling film coefficient? Explain giving a suitable example.

14:10 Define clearly the effectiveness of heat exchangers and develop an expression for
effectiveness in terms of NTU and heat capacity ratio for a counterflow heat
exchanger.

14:11 What advantage does the effectiveness-NTU method has over the LMTD method?
14:12 Using the effectiveness—NTU charts, compare the performance of parallel and

counterflow heat exchangers.
14:13 Describe with suitable sketch the constructional features of a double pipe heat

exchanger. What are its merits and demerits?
14:14 For a boiler or condenser, show that

e ¼ 1� expð�NTUÞ
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14:15 For a gas turbine heat exchanger (Cmin/Cmax � 1), show that
(i) for the parallel flow arrangement,

e ¼ ð1=2Þ½1� expð�2NTUÞ�

(ii) for the counterflow arrangement,

e ¼ NTU=ð1þNTUÞ:

Which arrangement will you prefer?

Problems

14:1 Water [cp = 4.1868 kJ/(kg K)] flowing at the rate of 2.0 kg/min is heated from 15°C
to 45°C in a concentric, double pipe, parallel flow heat exchanger. The hot fluid is oil
[cp = 1.9 kJ/(kg K)], flowing at 2.5 kg/min, which enters the exchanger at 200°C.
Determine the heat exchanger surface area required for an overall heat transfer
coefficient U = 250 W/(m2 K). Also calculate the effectiveness and NTU of the
exchanger.
[Ans. (To)oil = 147.11°C from heat balance; LMTD= 139.47°C; A = 0.12 m2;
e = 0.286; NTU= 0.38.]

14:2 A counterflow double pipe heat exchanger is to be used to cool hot oil [cp = 2.0 kJ/
(kg K)] from 200°C to 65°C. The cold stream oil [cp = 1.8 kJ/(kg K)] at 50°C enters
at a flow rate of 1.0 kg/s. If the flow rate of the hot oil is 0.7 kg/s, determine the
required heat exchanger surface area [U = 300 W/(m2 K)].
[Ans. to = 155°C from heat balance equation; LMTD = 27.31°C; A = q/
(LMTD � U) = 23.07 m2.]

14:3 Determine the surface area required in a cross-flow heat exchanger with both streams
unmixed to cool 300 m3 of air per min from 50°C to 30°C. Water is available at 15°C
for cooling of the air. The flow rate of water is 300 kg/min and the overall heat
transfer coefficient is 150 W/(m2 K). Given: qair = 1.1 kg/m3, cp of air = 1.006 kJ/
(kg K), c of water = 4.1868 kJ/(kg K).
[Ans. q = 110.66 kW; (to)w = 20.3°C; LMTD = 21.52°C; P = 0.1514; R = 3.77; FT

0.97; A = q/(UFT Δtm) = 35.34 m2.]
14:4 Air at 100°C [cp = 1.006 kJ/(kg K)] flows into a cross-flow heat exchanger (both

fluids unmixed) at a flow rate of 10 kg/s. Water [cp = 4.1868 kJ/(kg K)] enters the
exchanger at 15°C and at a flow rate of 5 kg/s. If the heat exchanger surface area is
100 m2 and the overall heat transfer coefficient is 200 W/(m2 K), determine the exit
temperature of the air.
[Ans. NTU = UA/Cmin = 1.99; C* = Cmin/Cmax = 0.4806; effectiveness � 0.74
(Fig. 14.20a); (To)air = 37.1°C; (To)w = 45.2°C from heat balance; Check:
(LMTD)counter = 36.0°C; P = 0.355; R = 2.08; FT = 0.88; q = UAFT(LMTD)counter =
633600 W � mcpΔt.]
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14:5 Hot water [cp = 4.1868 kJ/(kg K)] at 90°C is used to heat liquid ammonia [cp = 4.8
kJ/(kg K)] from 40°C in a 1-shell pass and 2-tube passes (water in the tube). The water
outlet temperature is 60°C and flow rate is 12 kg/min. If U = 100 W/(m2 K) and
A = 9.8 m2, determine the outlet temperature of the ammonia.
[Ans. Assuming Ch = Cmin, NTU= UA/Cmin = 1.17; e = (90 – 60)/(90–40) = 0.6;
from Fig. 14.20c, C* = Cmin/Cmax � 0.25; mAmmonia = Cmax/cAmmonia = 41.87
kg/min; (to)Ammonia = 47.5°C from heat balance.]

14:6 Check the result of Example 14.19 using the LMTD approach.
[Ans. P = 0.887; R = 0.2437; Ft = 0.6; LMTD = 64.07°C; q = 53819 W �
mcpΔt = Cmax Δt = 4.1 � 325 � (55 −15).]

14:7 Check the result of Example 14.6 using e-NTU approach.
[Ans. Ch = 14250, Cc = 10080, C*= Cmin/Cmax = 0.7074, e = (724.1–300)/(800–
300) = 0.8482, using relevant equation from Table 14.2 gives NTU = 3.311 and
A = (NTU � Cmin)/U = 111.25 m2.]

14:8 Saturated steam at 100°C is condensing in a shell-and-tube heat exchanger with a UA
value of 3650 W/K. Cooling water enters the tubes at 30°C. Determine cooling water
flow rate required to maintain a heat rate of 200 kW.
[Ans. For the condensing fluid, Cmax = ∞. Hence, C* = Cmin/Cmax = 0 and effec-
tiveness relation is

e ¼ 1� exp �NTUð Þ, or q
qmax

¼ 1� exp � UA
Cmin

� 	
, or 200�1000

mcccð100�30Þ ¼ 1� exp � 3650
mccc

� 	
;

assuming mean temperature of water as 40°C, cc = 4179 J/(kg K). Substitution gives
200�1000

mc�4179�ð100�30Þ ¼ 1� exp� 3650
mc�4179

� 	
. Solution by trial and error gives mc = 1.7

kg/s. From I law equation, q ¼ mc � cc � ðtco � tciÞ or
200� 1000 ¼ 1:7� 4179� ðtco � 30Þ, which gives tco =58.15°C. So tcm = (30 +
58.15)/2 = 44.07°C. Retrial is not required as cc will change only marginally.]

14:9 Steam is condensed in the shell of a shell-and-tube (one shell, two tube passes) heat
exchanger, which consists of 160 tubes of 25 mm diameter. Steam pressure is 1 atm
and heat transfer coefficient on the condensation side is 8000 W/(m2 K). If water flow
rate is 12 kg/s and it is heated from 20°C to 60°C, determine the tube length.
[Ans. Thermophysical properties of water at mean temperature [= (tci + tco)/2] = 40°
C are (Table A4) c = 4179 J/(kg K), k = 0.631 W/(m K), l = 651 � 10−6 N s/m2

and Pr = 4.3; water flow rate per tube is (flow rate/no. of tubes in single pass) =
12/80 = 0.15 kg/s (refer to Fig. 14.2); Reynolds number of the flow in the tube,
Re ¼ mdi

ðp=4Þd2i l
¼ 4m

pdil
¼ 4�0:15

p�0:025�651�10�6 ¼ 11735; flow is turbulent. Dittus–Boelter

equation gives hi ¼ k
di
� 0:024Re0:8 Pr0:4¼ 0:631

0:025 � 0:024� 117350:8 � 4:30:4¼ 1955:6

W/(m2 K); U ¼ hiho
hi þ ho

¼ 1955:6�8000
1955:6þ 8000 ¼1571:5 W/(m2 K);e ¼ q

qmax
¼ mcccðtco�tciÞ

mcccðthi�tciÞ ¼
tco�tci
thi�tci

¼ 60�20
100�20 ¼ 0:5; for the condensing fluid,Cmax ¼ 1. Hence, C� ¼ Cmin

Cmax
¼ 0 and

the applicable NTU-e relation gives NTU ¼ � lnð1� eÞ ¼ � lnð1� 0:5Þ ¼ 0:693;
Cmin ¼ mccc ¼12� 4179 ¼ 50148 W/K; hence, NTU ¼ UA

Cmin
gives A ¼ NTU�Cmin

U ¼
0:693�50148

1571:5 ¼ 22:11 m2; from A ¼ NpDL; L ¼ A
NpD ¼ 22:11

160�p�0:025 ¼ 1:76 m.]
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15Mass Transfer

15.1 Introduction

Mass transfer can take place by molecular diffusion and convection. The molecular diffusion
is mass transfer at microscopic level due to a concentration difference, i.e., from the region of
high concentration to the region of low concentration. The diffusion may also take place due
to pressure differences (pressure diffusion) or temperature differences (thermal diffusion).
However, these forms of diffusion will not be discussed here. The molecular diffusion is
analogous to heat conduction, while the mass transfer in a flowing fluid, termed as con-
vective mass transfer, is analogous to convective heat transfer.

We can understand the diffusion process by considering some simple examples frequently
encountered in our daily life. Air freshener/deodorant, perfume, flower fragrance, cigarette
smoke, etc. distribute over a room by diffusion. Consider a sugar cube put in a glass of water
that is not stirred. As time passes, the sugar dissolves slowly and will distribute over the
water even in the absence of the convection currents. This has happened by the diffusion of
sugar molecules in water from lower to the upper part of the water, i.e. from the region of
high concentration to the region of low concentration.

The terms mass convection or convective mass transfer describes the process of mass
transfer between a surface and a moving fluid. Just like heat convection, mass convection can
be free or forced, laminar or turbulent and internal or external.

Consider the system, shown in Fig. 15.1, where two gases B and C, at the same tem-
perature and pressure, are initially separated by a thin partition. When the partition is
removed, the two gases diffuse through each other. During diffusion, the molecules of gas
B move from the zone of high concentration of component B to the zone of lower con-
centration of the component, i.e. from left to right across the plane where the partition was
present. A higher concentration means more molecules per unit volume. Similarly the
molecules of the gas C move from right to left. Figure 15.1 also shows the concentration
profile of constituent B at a certain instant shortly after the removal of the partition. In this
example, the concentration gradient is the cause of the diffusion. It is to note that the
diffusion basically happens because of the random motion of the molecules.

© Springer Nature Singapore Pte Ltd. 2020
R. Karwa, Heat and Mass Transfer,
https://doi.org/10.1007/978-981-15-3988-6_15
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15.2 Fick’s Law of Diffusion

The rate of mass diffusion _mB of component B in direction x is proportional to the con-
centration gradient of the component B in that direction, i.e.

_mB ¼ �DBCA
dCB

dx
ð15:1Þ

where

A area through which mass is diffusing
CB mass concentration of component B per unit volume
dCB
dx

concentration gradient in direction x.

The proportionality factor DBC is termed as diffusion coefficient or diffusivity (units
m2/s1) for the mixture of components B and C.

The negative sign in the equation has been introduced because the mass diffusion is in the
direction of decreasing concentration.

Similarly, diffusion of constituent C is given by

_mC ¼ �DCBA
dCC

dx

CB

x 

B C

Fig. 15.1 Diffusion of gases

1The units of mass diffusion coefficient can be determined from Eq. (15.1):

D ¼ _mB

A
:
dx

dCB

¼ kg

s
:
1
m2

:
m

kg=m3ð Þ ¼
m2

s
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Physically, the diffusion coefficient implies the mass of the substance diffusing through a
unit surface area in a unit time at a concentration gradient of unity. Diffusion coefficients are
commonly determined experimentally. In gases, the diffusion coefficient is high because the
molecules can move easily while it is lowest for the solids; the diffusion in liquids and solids
is with a greater difficulty because of the influence of the molecular force fields and increased
number of collisions that lead to the less freedom of movement of the molecules.

The law expressed by Eq. (15.1) is based on experimental investigation. It was first
extended by A. Fick and hence is known as Fick’s law. The law states that the rate of
diffusion of a constituent per unit area at a location is proportional to the concentration
gradient of that constituent at that location.

The Fick’s law, which describes the transport of mass due to concentration gradient, is
analogous to the Fourier’s law of heat conduction, which gives transport of heat due to the
temperature gradient,

Q

A
¼ �k

dt

dx

and to the Newton’s law of viscosity for the transport of momentum across fluid layers due to
the velocity gradient,

s ¼ l
du

dy

We know that the Prandtl number (= lcp/k) is the connecting link between the velocity
and temperature fields and when Pr = 1, the velocity and temperature distributions are
similar. There is a similarity of the above equations of Fourier and Newton with Eq. (15.1).
Hence, we can conclude that the velocity and concentration profiles will be similar when
m = D or m/D = 1. Similarly, when a = D or a/D = 1, the temperature and concentration
distributions will have the same profile.

The dimensionless ratio m/D is known as Schmidt number Sc, and the ratio a/D is called
the Lewis number Le.

15.2.1 Fick’s Law for Gases in Terms of Partial Pressures

For gases, the Fick’s law can be expressed in terms of the partial pressures. Applying the
characteristic gas equation for the gas B, we get

pB ¼ qBRBT ¼ qB
Ro

MB

� �
T

or

qB ¼ pBMB

RoT
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Knowing that qB = CB, Eq. (15.1) transforms to

mB

A
¼ �DBC

d

dx

pBMB

RoT

� �

For isothermal diffusion, the above equation can be written as

mB

A
¼ �DBC

MB

RoT

� �
dpB
dx

: ð15:2Þ

The gases B and C diffuse through each other at the same time. Hence, it is expected that
the diffusion coefficient for the diffusion of B into C, DBC, must equal the diffusion coeffi-
cient DCB for the diffusion of C into B. This can be proved.

The Fick’s law for the isothermal diffusion can be written for the gases B and C as

NB ¼ mB

MB
¼ �DBC

A

RoT

� �
dpB
dx

ðiÞ

NC ¼ mC

MC
¼ �DCB

A

RoT

� �
dpC
dx

ðiiÞ

where N is the number of moles.
When the total pressure of the system is constant,

p ¼ pB þ pC

or

0 ¼ dpB
dx

þ dpC
dx

or

dpB
dx

¼ � dpC
dx

ðiiiÞ

In equimolar counter-diffusion condition, the steady state molar diffusion rates of com-
ponents B and C are equal, i.e. each molecule of component B is replaced by a molecule of
component C and vice versa. Hence,

NB ¼ �NC

Substitution from Eqs. (i) and (ii) gives

DBC
A

RoT

dpB
dx

¼ DCB
A

RoT

dpC
dx

1044 15 Mass Transfer

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Using Eq. (iii), we get

DBC ¼ DCB ¼ D ð15:3Þ

Thus, the diffusion coefficient for the diffusion of B into C, DBC, equals the diffusion
coefficient DCB for the diffusion of C into B.

Equation (15.2) can be integrated to obtain mass flux of component B

mB

A
¼ �D

MB

RoT

� �
pB2 � pB1

Dx
ð15:4Þ

15.2.2 Fick’s Law on Mass Basis and Mole Basis

We can express the concentration of a species in two ways:
(a) Mass Basis

For volume V, the densities qi and q of a species i and of the mixture, respectively, are
given by

qi ¼
mi

V
ðiÞ

and

q ¼ m

V
¼

Xmi

V
¼
X

qi ðiiÞ

Mass concentration can be expressed in dimensionless form by using mass fraction w as
Mass fraction of species i,

wi ¼ mi

m
¼ mi=V

m=V
¼ qi

q
ðiiiÞ

and

X
wi ¼ 1 ðivÞ

(b) Mole Basis
On a mole basis, the concentration is expressed in the terms of molar concentration.
Again considering volume V of species i and the mixture, we have the molar
concentration

Ci ¼ Ni

V
ðvÞ

and
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C ¼ N

V
¼

XNi

V
¼
X

Ci ðviÞ

Molar concentration can be expressed in dimensionless form by using mole fraction y as
Mole fraction of species i,

yi ¼ Ni

N
¼ Ni=V

N=V
¼ Ci

C
ðviiÞ

and

X
yi ¼ 1 ðviiiÞ

It is to note that mole number N = m/M and density q = CM, where M is molecular
weight. The mass and mole fractions are related to each other:

wi ¼ qi
q
¼ CiMi

CM
¼ yi

Mi

M
ðixÞ

Fick’s law on mass basis is expressed as

_mB

A
¼ �qDBC

dðqB=qÞ
dx

¼ �qDBC
dwB

dx
kg=s m2
� � ð15:5Þ

On the mole basis, the law is expressed as

_NB

A
¼ �CDBC

dðCB=CÞ
dx

¼ �CDBC
dyB
dx

mol=s m2
� � ð15:6Þ

For constant mixture density q and constant molar concentration C, the above relations
simplify to

_mB

A
¼ �DBC

dqB
dx

kg=s m2
� � ð15:7Þ

and

_NB

A
¼ �DBC

dCB

dx
mol=s m2
� �

: ð15:8Þ

15.3 Diffusion Coefficient

Diffusion coefficient is a transport property, which depends on temperature T, pressure p and
nature of the component in the system. Typical values of the diffusion coefficient (binary
diffusion) are given in Table 15.1.
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Assuming ideal gas behaviour, kinetic theory of gases has been used to show that the
pressure and temperature dependence of the diffusion coefficient for a binary mixture of
gases may be estimated from the relation

DAB / p�1T3=2: ð15:9aÞ

or

DAB;1

DAB;2
¼ p2

p1

T1
T2

� �3=2

: ð15:9bÞ

15.4 Diffusion of Vapour Through a Stationary Gas: Stefan Law

Consider isothermal evaporation of water contained in a vessel as shown in Fig. 15.2. Since
the free surface of the water is exposed to the air at plane 1-1, the water evaporates from its
surface and diffuses through the stagnant layer of air above the water surface. To analyze the
phenomenon, some simplifying assumptions are made.

1. The system is isothermal
2. The system is in steady state condition
3. There is slight air movement over the vessel to remove the water diffusing across the

plane 22.
4. Air movement over the vessel does not cause turbulence or affect the air concentration

profile in the vessel.
5. Both air and water vapour behave as perfect gases.

In the steady state condition, the upward diffusion of the vapour is balanced by a
downward diffusion of air so that the concentration profile remains undisturbed. Since at the
surface of the water (plane 1-1), there cannot be downward movement of air, there must be a
bulk mass movement upwards to balance the downward diffusion of the air. Thus, this bulk
mass movement produces an additional mass flux of water vapour.

Table 15.1 Inter-diffusion (or binary diffusion) coefficient DAB at 293 K, 101 kPa

Diffusing substance A Medium B DAB, m
2/s

H2O (vapour)
CO2

CO
CH4

H2

O2

CO2

Air
H2

NH3

Carbon

Air
Air
Air
Air
Air
Air
Water
Water
Water
Water
Iron

0.24 � 10−4

0.16 � 10−4

0.21 � 10−4

0.10 � 10−4

0.63 � 10−4

0.20 � 10−4

1.92 � 10−9

2.50 � 10−9

5.50 � 10−9

1.80 � 10−9

30 � 10−12 at 1000 K
150 � 10−12 at 1180 K
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The downward diffusion of the air is

_ma ¼ �DA
Ma

RoT

� �
dpa
dx

ðiÞ

where A is the area of cross-section of the vessel and subscript, a, refers to the air. This
diffusion must be balanced by the bulk-mass movement upwards, which is

�qaAv ¼ � paMa

RoT

� �
Av ðiiÞ

where qa ¼
paMa

RoT
is the density from the characteristic gas equation and v is the bulk-mass

velocity in the upward direction.
From Eqs. (i) and (ii),

v ¼ D

pa

dpa
dx

ðiiiÞ

The mass diffusion of water vapour upwards is

_mw ¼ �DA
Mw

RoT

� �
dpw
dx

ðivÞ

and the bulk transport of water vapour is

qwAv ¼
pwMw

RoT

� �
Av ¼ pwMw

RoT

� �
A

D

pa

dpa
dx

� �
ðvÞ

Thus, the total transport of the water vapour, from Eqs. (iv) and (v), is

ð _mwÞtotal ¼ �DA
Mw

RoT

� �
dpw
dx

þ pwMw

RoT

� �
A

D

pa

dpa
dx

� �
ðviÞ

p

pw pa

x

Air 

2

11

2

Fig. 15.2 Diffusion of vapour through a stationary gas
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From the Dalton’s law,

pa þ pw ¼ p ðviiÞ

Since p = constant, differentiation gives

dpa
dx

¼ � dpw
dx

ðviiiÞ

Using Eqs. (vii) and (viii), we get the total mass flow rate of water from Eq. (vi) as

ð _mwÞtotal ¼ �DA
Mw

RoT

� �
p

p� pw

dpw
dx

ð15:10Þ

This relation is called as Stefan’s law. Equation (15.10) can be integrated to give

ð _mwÞtotal ¼ DA
pMw

RoTðx2 � x1Þ
� �

ln
p� pw2
p� pw1

� �
¼ DApMw

RoTðx2 � x1Þ
� �

ln
pa2
pa1

� �
ð15:11Þ

The Stefan law can be utilized to experimentally determine the diffusion coefficient, refer
Q. 15.1.

Example 15.1 A 20 mm diameter tube is partially filled with water at 20°C. The distance of
the water surface from the open end of the tube is 300 mm. Dry air at 20°C and 100 kPa is
blowing over the open end of the tube so that water vapour diffusing to the open end of the
tube is removed immediately. Determine the amount of water that will evaporate in 30 days.

Solution
From Eq. (15.11),

ð _mwÞtotal ¼ DA
pMw

RoTðx2 � x1Þ
� �

ln
p� pw2
p� pw1

� �

where

D = 0.24 � 10−4 m2/s, Table 15.1,
A = p/4 D2 = p/4 � (0.02)2 = 3.1416 � 10−4 m2,
Ro = 8.314 kPa m3/(kmol K),
p = 100 kPa,
T = 293 K,
p

RoT ¼ 100
8:314�293 ¼ 0:04105 kmol=m3;

Mw = 18 kg/kmol,
x2 – x1 = 0.3 m,
pw2 = 0 (dry air),
pw1 = saturation pressure at 20°C = 2.339 kPa (from steam table)
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Substitution gives,

ð _mwÞtotal ¼ 0:24� 10�4 � 3:1416� 10�4 � 0:04105� 18
0:3

� �
ln

100� 0
100� 2:339

� �
¼ 4:395� 10�10 kg/s

¼ 4:395� 10�10 � 30� 24� 3600� 1000 ¼ 1:139 g in 30 days:

15.5 Convective Mass Transfer

The convective mass transfer is defined by the following equation.

_mB ¼ hmADCB; ð15:12Þ

where hm is the mass transfer coefficient. The equation is similar to the convective heat
transfer equation defined earlier.

As in the case of convection heat transfer, when the fluid is forced to flow, it is termed as
mass transfer in forced convection and when the mass transfer takes place only because of
difference in the density due to pressure or temperature variations, it is termed as mass
transfer in free convection. The value of the mass transfer coefficient depends on the type of
flow (laminar or turbulent), the physical properties of the materials involved, geometry of the
system and the concentration difference ΔCB.

In the laminar flow, the fluid elements move in parallel paths while in the case of turbulent
flow, the mass transfer takes place due to the random motion of the flowing fluid and is termed
as turbulent diffusion. Even in turbulent flows, a thin layer develops close to the surface where
the convective mass transfer is very low and the molecular diffusion dominates.

The mass transfer coefficient can be correlated to the diffusion coefficient. For one-
dimensional steady state diffusion across this thin layer of thickness Δx, we can write, from
the Fick’s law,

_mB

A
¼ D

DCB

Dx
ðiÞ

From Eqs. (15.12) and (i), we have

hm ¼ D

x2 � x1
ð15:13Þ

15.5.1 Convective Mass Transfer Equation in Terms of Partial Pressure
Difference

We have

mB ¼ hmADCB ¼ hmAðCB1 � CB2Þ
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Since CB = qB = pB/RT, the mass transfer equation becomes

mB ¼ hmA
pB1
RT1

� pB2
RT2

� �

For an isothermal process, T1 = T2 = T (say), then the mass transfer equation in the terms
of partial pressures is

mB ¼ hmA
1
RT

pB1 � pB2ð Þ ¼ hmpA pB1 � pB2ð Þ ð15:14Þ

where hmp ¼ hm � 1
RT

.

15.6 Dimensional Analysis Applied to Convective Mass Transfer

15.6.1 Forced

The convective mass transfer coefficient is function of diffusion coefficient D, density q,
characteristic dimension l, viscosity l and velocity U, i.e.

hm ¼ f ðD; q; l; l;UÞ

or

f ðD; q; hm; l; l;UÞ ¼ 0 ð15:15Þ

There are six variables and three fundamental units hence we expect (6–3), i.e. 3 p-terms.
Taking D, q and l as repeated variables, the p-terms can be established as follows.

p1 ¼ Daqblchm ðiÞ

or

M0L0T0 ¼ L2

T

� �a
M

L3

� �b

Lð ÞcL
T

ðiiÞ

Equating the indices of the fundamental dimensions on both sides, we obtain

M: 0 = b
L: 0 = 2a−3b + c + 1
T: 0 = −a−1

Solution gives

a ¼ �1; b ¼ 0; c ¼ 1:
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Substitution gives

p1 ¼ hml

D
ðiiiÞ

The non-dimensional group hml/D is termed as Sherwood number Sh.
Following the above approach, we have

p2 ¼ Daqblcl ðivÞ

or

M0L0T0 ¼ L2

T

� �a
M

L3

� �b

Lð Þc M
LT

Equating the indices,

M: 0 = b + 1
L: 0 = 2a−3b + c−1
T: 0 = −a−1

Solution of above equations gives

a ¼ �1; b ¼ �1; c ¼ 0:

This gives

p2 ¼ l
qD

¼ m
D
¼ Sc ðvÞ

The non-dimensional number m/D, which is the dimensionless combination of the diffu-
sivity and viscosity, is the Schmidt number Sc.

Similarly,

p3 ¼ DaqblcU ðviÞ

or

M0L0T0 ¼ L2

T

� �a
M

L3

� �b

Lð ÞcL
T

Equating the indices, we have

M: 0 = b
L: 0 = 2a−3b + c + 1
T: 0 = −a−1
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Solution of the above equations gives

b ¼ 0; a ¼ �1; c ¼ 1:

This gives

p3 ¼ Ul

D
ðviiÞ

From p2 and p3 terms, we get

p4 ¼ p3
p2

¼ Ul

D
� D

m
¼ Ul

m
¼ Re ðviiiÞ

Thus, the functional relation is

hml

D
¼ f

Ul

m
;
l
qD

� �

The generalized correlation can be written as

Sh ¼ wðReÞ/ðScÞ ð15:16Þ

Sherwood number is similar to the Nusselt number in convection heat transfer. The
Schmidt number Sc is important in the problems where both mass transfer and convection are
present. This number plays a role similar to the role of the Prandtl number in convection heat
transfer.

15.6.2 Free

In this case, the convective mass transfer coefficient

hm ¼ f ðD; q; l; l; gDqÞ

or

f ðD; q; hm; l; l; gDqÞ ¼ 0 ð15:17Þ

There are six variables and three fundamental units hence we expect (6–3), i.e. 3 p-terms.
Taking D, q and l as repeated variables, the p-terms can be established as follows.

p1 ¼ Daqblchm ðixÞ

or

M0L0T0 ¼ L2

T

� �a
M

L3

� �b

Lð ÞcL
T
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Equating the indices of the fundamental dimensions on both sides, we obtain

M: 0 = b
L: 0 = 2a−3b + c + 1
T: 0 = −a−1

Solution gives

a ¼ �1; b ¼ 0; c ¼ 1:

Substitution gives

p1 ¼ hml

D
¼ Sh ðxÞ

Following the above approach, we have

p2 ¼ Daqblcl ðxiÞ

or

M0L0T0 ¼ L2

T

� �a
M

L3

� �b

Lð Þc M
LT

Equating the indices,

M: 0 = b + 1
L: 0 = 2a−3b + c−1
T: 0 = −a−1

Solution of the above equations gives

a ¼ �1; b ¼ �1; c ¼ 0:

This gives

p2 ¼ l
qD

¼ m
D
¼ Sc ðxiiÞ

Similarly,

p3 ¼ DaqblcgDq ðxiiiÞ

or

M0L0T0 ¼ L2

T

� �a
M

L3

� �b

Lð Þc M

L2T2
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Equating the indices, we have

M: 0 = b + 1
L: 0 = 2a−3b + c−2
T: 0 = −a−2

Solution of the above equations gives

a ¼ �2; b ¼ �1; c ¼ 3:

This gives

p3 ¼ l3ðgDqÞ
D2q

ðxivÞ

From p2 and p3 terms, we get

p4 ¼ p3
ðp2Þ2

¼ l3ðgDqÞ
D2q

� D

m

� �2

¼ l3ðgDqÞ
D2q

� D

l=q

� �2

¼ ql3gðDqÞ
l2

¼ Grm

ðxvÞ

Thus, the functional relation is

hml

D
¼ f

ql3gðDqÞ
l2

;
l
qD

� �

The dimensionless group
ql3gðDqÞ

l2
is called mass Grashof number and is analogous to the

Grashof number in free convection heat transfer and the generalized correlation can be
written as

Sh ¼ w GrmÞ/ðScð Þ ð15:18Þ

15.7 Mass Transfer Correlations

In Chaps. 8 and 9, single phase forced and free convection heat transfer correlations in the
form Nu = f(Re, Pr) and Nu = f(Gr, Pr), respectively, have been presented. These correla-
tions are also valid for mass transfer when the Nusselt number, Prandtl number and Grashof
number are replaced by Sherwood number, Schmidt number and mass Grashof number,
respectively. Typical results for the forced convection are presented below.

The convective mass transfer equations for local mass transfer coefficient in case of flow
past a flat plate are

Laminar : Shx ¼ hmx

D
¼ 0:332ðRexÞ0:5ðScÞ0:33 ð15:19aÞ
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Turbulent : Shx ¼ hmx

D
¼ 0:0296ðRexÞ0:8ðScÞ0:33 ð15:19bÞ

For averaged values, the equations are

Laminar : Sh ¼
�hmL

D
¼ 0:664ðReLÞ0:5ðScÞ0:33 ð15:20aÞ

Turbulent : Sh ¼
�hmL

D
¼ 0:037ðReLÞ0:8ðScÞ0:33 ð15:20bÞ

For vaporization of liquid into the air inside the smooth tube where the liquid wets the
surface and the air is forced through the tube, the mass transfer coefficient equations (for the
fully developed region) are

Laminar : Sh ¼ 3:66
for constant wall concentration:

ð15:21Þ

Turbulent : Sh ¼ 0:023Re0:83Sc0:44:
for 2000\Re\35000
for 0:6\Sc\2:5

ð15:22Þ

15.8 Reynolds and Colburn (or Chilton-Colburn) Analogies

These analogies for convection heat transfer have been extended to the mass transfer
problems. The Reynolds analogy is written as

Sh
ReSc

¼ Cf

2
for Sc ¼ 1

¼ f

2
: for pipe flowð Þ

ð15:23Þ

The group of non-dimensional terms on the left is known as Stanton number Stm, which is
equal to (hm/U). Thus

Stm ¼ Cf

2
¼ f

2
: ð15:24Þ

The Reynolds-Colburn analogy for heat transfer, refer Chap. 7, for flow over the smooth
plate is

jH ¼ St Pr2=3 ¼ Cf

2
:

The Chilton-Colburn analogy gives
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jm ¼ Stm � Sc2=3 ¼ Cf

2
for 0:5\Sc\3000

ð15:25Þ

where jm is known as Colburn “j-factor” for mass transfer.

Example 15.2 Air at a velocity of 2.5 m/s is flowing along a horizontal water surface. The
temperature of the air (relative humidity RH = 20%) is 40°C and the temperature of the
water on the surface is 20°C. Length of the tray along the flow direction is 400 mm and it is
500 mm wide. Calculate the amount of water evaporated per hour. Atmospheric pres-
sure = 101.326 kPa and diffusion coefficient of water vapour in air = 0.26 � 10−4 m2/s.

Solution

In this example of mass transfer, immediately above the water surface, there is a large content
of water vapour in the air, while further away from the surface there is much less. As a result
of this, a concentration difference (partial pressure difference for the vapour, refer Fig. 15.3)
is established near the water surface and there is macroscopic relative movement between
water vapour and air.

It is to note that, when the air flows with a significantly high velocity above the surface of
the water, the amount of water vapour transferred to the air will be far greater than that
transferred in the same time interval in quiescent air. The mass transfer is basically by
molecular diffusion only in case of quiescent air.

From the steam table, partial pressure of water vapour at 40°C, ps1 = 7.384 kPa. Since the
air away from the water surface is unsaturated, the partial pressure of the water vapour is

pw1 ¼ ps1 � RH ¼ 7:384� RH ¼ 7:384� 0:2 ¼ 1:4768 kPa

and the partial pressure of water vapour at 20°C, pw2 = 2.339 kPa because the air near the
water surface is saturated.

From air properties (Table A5, Appendix), viscosity of air at 30°C is:

m ¼ l=q � 1:6� 10�5m2=s:

Flow Reynolds number is

ReL ¼ Ul

m
¼ 2:5� 0:4

1:6� 10�5
¼ 62500:

Flow is laminar.

Water surface 

400 mm 

2 
•

•1 
40oC 

p
pw2 = ps2 

pw1 

z

Fig. 15.3 Example 15.2
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The Schmidt number

Sc ¼ m
D
¼ 1:6� 10�5

0:26� 10�4
¼ 0:6154:

From the equation of convective mass transfer equation for laminar flow, we have

Sh ¼ hmL

D
¼ 0:664ðReLÞ0:5ðScÞ0:33

¼ 0:664ð62500Þ0:5ð0:6154Þ0:33 ¼ 141:2:

Mass transfer coefficient,

hm ¼ Sh� D

L
¼ 141:2� 0:26� 10�4

0:4
¼ 9:178� 10�3m/s:

mB ¼ hmA
pw1
RT1

� pw2
RT2

� �

¼ 9:178� 10�3 � ð0:4� 0:5Þ 2:339� 103

461� 293
� 1:4768� 103

461� 313

� �

¼ 1:3� 10�5kg=s:

Example 15.3 A gas flows with uniform velocity um through a tube of cross-section Ac with
evaporation or sublimation at the tube surface. Determine the longitudinal distribution of
mean vapour density.

Solution

Considering the infinitesimal control volume, refer Fig. 15.4, the conservation of species
gives

qAmumAc þ dmA ¼ qAm þ dqAm
dx

� �
dx

� �
umAc

or

dqAm
dx

� �
dxumAc ¼ dmA

L

dmAInlet, i Outlet, o 

x

ρAm • ρAm + (dρAm/dx)dx

dx

Fig. 15.4 Example 15.3

1058 15 Mass Transfer

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Substituting dmA ¼ hmxPdxðqAs � qAmÞ and umAc = m/q we have

dqAm
dx

� �
dx

� �
m

q
¼ hmxPdxðqAs � qAmÞ

or

dqAm
qAs � qAm

¼ hmxqP
m

dx

We carry out integration from inlet to outlet

ZqAmx

qAmi

dqAm
qAs � qAm

¼ qP
m

Zx

o

hmxdx

or

ln
qAs � qAmx

qAs � qAmi

� �
¼ � qP

m
�hmx

or

qAs � qAmx

qAs � qAmi
¼ exp � qP

m
�hmx

� �

where �hm is average value of the mass transfer coefficient for length x.

Example 15.4 0.002 kg/s of dry air at 25°C and 1 atm is forced through a 15 mm diameter
circular tube. Inner surface of the tube is wetted. Flow is fully developed. Determine the tube
length required to reach 99% of saturation. Diffusion coefficient of water vapour in air
DAB = 0.26 � 10−4 m2/s.

Solution

Thermophysical properties of air at mean film temperature = (30 + 20)/2 = 25°C from
Table A5 are q = 1.1868 kg/m3 and l = 1.8363 � 10−5 kg/(m s). For water vapour (com-
ponent A) at 25°C, qA = 1/vg = 0.0231.

The Schmidt number,

Sc ¼ m
D

¼ l
qD

¼ 1:8363� 10�5

1:1868� 0:26� 10�4
¼ 0:595:

From Example 15.3, for length L

ln
qAs � qAmo

qAs � qAmi

� �
¼ � qP

m
hmL
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where hm is average value of mass transfer coefficient. We can rewrite the above equation as

L ¼ � m

Pqhm
ln

qAs � qAmo

qAs � qAmi

� �
ðiÞ

Here qAmi = 0 for dry air and qAmo = 0.99 qAs.
Reynolds number,

Re ¼ qUd
l

¼ md

ðp=4Þd2l ¼ 4m
pdl

¼ 4� 0:002
p� 0:015� 1:8363� 10�5

¼ 9245:

For fully developed turbulent flow, Eq. (15.22) may be used, i.e.

Sh ¼ hmd

DAB
¼ 0:023Re0:83Sc0:44

or

hm ¼ DAB

d
� 0:023Re0:83Sc0:44

¼ 0:26� 10�4

0:015
� 0:023� 92450:83 � 0:5950:44 ¼ 0:0621 m=s

From Eq. (i),

L ¼ � m

Pqhm
ln

qAs � qAmo

qAs � qAmi

� �
ðiÞ

or

L ¼ � 0:002
p� 0:015� 1:1868� 0:0621

� ln
qAs � 0:99qAs

qAs � 0

� �

¼ � 0:002
p� 0:015� 1:1868� 0:0621

� ln 0:01ð Þ ¼ 2:65 m:

Example 15.5 Dry air at t∞ = 30°C and U∞ = 5 m/s is flowing across a 25 mm tube with a
water-saturated fibrous coating. The tube is maintained approximately at uniform surface
temperature ts of 20°C. Determine the heat rate from the external surface of the tube con-
sidering heat and mass transfer processes. Diffusion coefficient of water vapour in the air is
0.26 � 10−4 m2/s.

Solution

Heat rate,

q ¼ qconv þ qevap
¼ hAsðts � t1Þþ ½hmAsðqws � qw1Þ�hfg
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or

q ¼ hðts � t1Þþ hmðqws � qw1Þhfg
� 	

As ðiÞ

Thermophysical properties of air at mean film temperature = (30 + 20)/2 = 25°C from
Table A5 are:

q ¼ 1:1868 kg=m3; l ¼ 1:8363� 10�5 kg=ðm sÞ; k ¼ 0:02608 W=ðmKÞ and Pr ¼ 0:709:

Water density at tube surface (at 20°C saturation temperature), qws = 1/vg = 0.0173
kg/m3 and hfg = 2453.5 kJ/kg from steam table. For dry air, qw∞ = 0.

Reynolds number,

Re ¼ qU1d

l
¼ 1:1868� 5� 0:025

1:8363� 10�5
¼ 8079:

From Eq. (8.47) and Table 8.11 for cross flow over a cylinder, we have

Nu ¼ hd

k
¼ 0:193Re0:618Pr1=3

or

h ¼ k

d
0:193Re0:618Pr1=3

¼ 0:02608
0:025

� 0:193� 80790:618 � 0:7091=3 ¼ 46:65 W= m2 K
� �

:

The Schmidt number,

Sc ¼ m
D

¼ l
qD

¼ 1:8363� 10�5

1:1868� 0:26� 10�4
¼ 0:595:

From heat mass transfer analogy,

Sh ¼ hmd

D
¼ 0:193Re0:618Sc1=3

or

hm ¼ D

d
0:193Re0:618Sc1=3

¼ 0:26� 10�4

0:025
� 0:193� 80790:618 � 0:5951=3 ¼ 0:04387 W= m2 K

� �
:

Substitution in Eq. (i) gives
or
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q ¼ 46:65� ð20� 30Þþ 0:04387ð0:0173� 0Þ � 2453:5� 103
� 	� p� 0:025� 1:0

or

q ¼ �36:64þ 146:22 ¼ 109:58 W per unit length:

Example 15.6 A wet cloth 1.2 m high and 1 m wide at 30°C is hanging in a factory shade
with still dry air at 45°C and atmospheric pressure (refer Fig. 15.5). Determine the drying
rate. Diffusion coefficient of water vapour in air is 0.26 � 10−4 m2/s.

Solution

From the steam table, partial pressure of water vapour at 30°C = 4.25 kPa = pw1 because the
water vapour near the clothe surface is saturated. Partial pressure of air near the surface of the
clothe pa1 = p−pw1 =101.325 – 4.25 = 97.075 kPa, where 1 atm = 101.325 kPa. We
assume perfect gas behaviour of vapour and air.

Hence, the density of air

qa1 ¼
pa1
RT1

¼ 97:075� 1000
287� 303

¼ 1:1163 kg=m3

and

qa2 ¼
pa2
RT2

¼ 101:325� 1000
287� 318

¼ 1:1102 kg=m3

Similarly the density of water

qw1 ¼
pw1
RT1

¼ 4:25� 1000
461� 303

¼ 0:03043 kg=m3

and qw2 = 0 since air is dry.

Wet surface 

1.2 m
2 •

• 1 

t∞ = 45oC
ts = 30oC 

Wet surface

Fig. 15.5 Example 15.6
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Density of air-water vapour mixture at clothe surface is

q1 ¼ qw1 þ qa1 ¼ 0:03043þ 1:1163 ¼ 1:14673 kg=m3

and

q2 ¼ qw2 þ qa2 ¼ 0þ 1:1102 ¼ 1:1102 kg=m3

Density in the film, q = (1.14673 + 1.1102)/2 = 1.128465 kg/m3. Viscosity of air at
(45 + 30)/2 = 37.5°C is 1.89375 � 10−5 N s/m2.

Grm ¼ qH3gðDqÞ
l2

¼ 1:128465� 1:23 � 9:81� ð1:14673� 1:1102Þ
ð1:89375� 10�5Þ2 ¼ 1:948� 109:

The Schmidt number for m = l/q = 1.66 � 10−5 from Table A5,

Sc ¼ m
D
¼ 1:66� 10�5

0:26� 10�4
¼ 0:638:

Analogy between heat and mass transfer applies. Hence, Eq. (9.6) can be written as

Shm ¼ 0:59ðGrmSc)1=4

or

hm ¼ D

H
Shm ¼ 0:26� 10�4

1:2
� 0:59� ð1:948� 109 � 0:638Þ1=4 ¼ 0:0024 m=s:

The drying rate from both sides of the cloth is

mw ¼ hmAsðqw1 � qw2Þ ¼ 0:0024� 2� 1:2� 1� ð0:03043� 0Þ ¼ 17:53� 10�5kg=s
¼ 0:631 kg=hr:

Example 15.7 If the cloth in the previous example is having 1 m side as vertical, determine
the drying rate.

Solution

Mass Grashof number for H = 1 m is

Grm ¼ qH3gðDqÞ
l2

¼ 1:128465� 13 � 9:81� ð1:14673� 1:1102Þ
ð1:89375� 10�5Þ2 ¼ 1:127� 109:

Mass transfer coefficient is

hm ¼ D

H
Shm ¼ 0:26� 10�4

1:0
� 0:59� ð1:127� 109 � 0:638Þ1=4 ¼ 0:0025 m=s:
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The drying rate from both sides of the cloth is

mw ¼ hmAsðqw1 � qw2Þ ¼ 0:0025� 2� 1� 1:2� ð0:03043� 0Þ ¼ 18:26� 10�5kg=s
¼ 0:6574 kg=hr:

This position of cloth is better because of the reduced average thickness of the boundary
layer.

Example 15.8 If the cloth of Example 15.6 is lying horizontal, determine the drying rate.

Solution

We extend the analysis of the vertical surface of the previous example to the horizontal
surface. The density data will be the same.

The characteristic length for the horizontal surface is

L ¼ As

P
¼ 1:2� 1

4:4
¼ 0:273:

Grm ¼ qL3gðDqÞ
l2

¼ 1:128465� 0:2733 � 9:81� ð1:14673� 1:1102Þ
ð1:89375� 10�5Þ2 ¼ 2:294� 107:

The Schmidt number Sc = 0.638 from the previous example.
Using the analogy between heat and mass transfer, Eq. (9.18) can be written as

Shm ¼ 0:15ðGrmSc)1=3

or

hm ¼ D

L
Shm ¼ 0:26� 10�4

0:273
� 0:15� ð2:294� 107 � 0:638Þ1=3 ¼ 0:00349 m=s

The drying rate is

mw ¼ hmAsðqw1 � qw2Þ ¼ 0:00349� 1:2� 1� ð0:03043� 0Þ ¼ 12:74� 10�5 kg=s
¼ 0:459 kg=hr:

15.9 Summary

An introduction and elementary treatment of mass transfer have been presented in this
chapter. Mass transfer takes place by molecular diffusion and convection. The molecular
diffusion is mass transfer at microscopic level due to a concentration difference, which is
analogous to heat conduction, while the mass transfer in a flowing fluid, termed as con-
vective mass transfer, is analogous to convective heat transfer.

Fick’s law, which is based on experimental investigation, has been presented which states
that the rate of diffusion of a constituent per unit area is proportional to the concentration
gradient of that constituent. Diffusion coefficient has been defined, which is basically a
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transport property that depends on temperature T, pressure p and nature of the component in
the system. Typical values of the diffusion coefficient (binary diffusion) are given in
Table 15.1.

Fick’s law is analogous to the Fourier’s law of heat conduction and Newton’s law of
viscosity. The conditions for the similarity of concentration and velocity profiles, and tem-
perature and concentration profiles have been discussed and the relevant dimensionless
numbers Schmidt number Sc and Lewis number Le are presented.

For gases, the Fick’s law has been expressed in terms of the partial pressures and also
been expressed on the mass and mole basis.

Stefan law for diffusion of vapour through a stationary gas has been presented in
Sect. 15.4, which can be utilized for experimental determination of the diffusion coefficient.

The convective mass transfer is defined as ṁB = hmAΔCB, where hm is the mass transfer
coefficient, which is similar to the convective heat transfer equation. Dimensional analysis
has been used to determine functional relations for free and forced flow conditions, which is
followed by the presentation of mass transfer correlations in Sect. 15.7. In Sect. 15.8,
analogies for convection heat transfer have been extended to the mass transfer problems,
which are termed as Reynolds and Colburn (or Chilton-Colburn) analogies. Applicable
correlations in terms of non-dimensional terms for mass transfer Stanton number Stm and
Colburn “j-factor” jm have been presented.

Review Questions

15:1 State the Fick’s law of diffusion.
15:2 Express the Fick’s law for gases in terms of partial pressures for the diffusion of

components B and C and vice versa.
15:3 What are the conditions for the similarity of concentration and velocity profiles, and

temperature and concentration profiles?
15:4 Define and explain the physical significance of Schmidt, Sherwood and Lewis

numbers.
15:5 Define mass transfer coefficient.
15:6 What is Reynolds analogy for mass transfer?

Problems

15:1 A 20 mm diameter Stefan tube is used to measure diffusion coefficient. It is partially
filled with water at 20°C. The distance of the water surface from the open end of the
tube is 300 mm. Dry air at 20°C and 100 kPa is blowing over the open end of the tube
so that water vapour diffusing to the open end of the tube is removed immediately. If
the amount of water evaporated in 30 days is 1.139 g, determine the diffusion
coefficient.
[Ans. Refer Example 15.1, D = 0.24 � 10−4 m2/s.]

15:2 Air at 25°C and 2 kg/hr is flowing through a 25 mm diameter tube having a thin water
film on its inside surface. Determine the convection mass transfer coefficient. Diffu-
sion coefficient of water vapour in air D = 0.26 � 10−4 m2/s.
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[Ans. Analogy between heat and mass transfer applies. For air at 25°C,

l = 1.8363 � 10−5 from Table A5; Re ¼ qUd
l

¼ md

ðp=4Þd2l ¼ 4m
pdl

¼
4� 2=3600

p� 0:025� 1:8363� 10�5
¼ 1541; Flow is laminar. Assuming a fully developed

flow, for constant wall concentration, Eq. (15.21) gives Sh ¼ 3:66;

hm ¼ D
d Sh ¼ 0:26� 10�4

0:025
� 3:66 ¼ 0:0038 m=s:]
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16Special Topic: Performance
of Solar Air Heater

Nomenclature

A Absorber plate area = WL, m2;
B/S Relative roughness length of discrete ribs;
Dh Hydraulic diameter of duct = 4WH/[2(W + H)], m;
e Rib height, m;
e+ Roughness Reynolds number
e/Dh Relative roughness height;
f Fanning friction factor
g Heat transfer function;
G Mass flow rate per unit area of plate = m/A, kg/(s m2);
h Heat transfer coefficient, W/(m2 K);
H Air flow duct height (depth), m;
hw Wind heat transfer coefficient, W/(m2 K);
I Solar radiation on the collector plane, W/m;
k Thermal conductivity of air, W/(m K);
L Length of collector, m;
m Mass flow rate = WLG, kg/s;
_m Mass velocity = m/(WH), kg/(s m2);
Nu Nusselt number;
p Rib pitch, m;
P Pumping power, W;
Pr Prandtl number = lcp/k;
p/e Relative roughness pitch;
Q Useful heat gain, W;
Qb Back loss, W;
Qe Edge loss, W;
QL Heat loss, W;
Qt Top loss, W;
R Roughness function;
Re Reynolds number = [m/(WH)]Dh/l;
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s/l Relative roughness length of expanded metal mesh;
St Stanton number = Nu/RePr;
Ta Ambient temperature, °C, K;
Tfm, Tm Mean air temperature = (To + Ti)/2, °C, K;
Ti Inlet air temperature, °C, K;
Tmpg Mean of the plate and glass temperatures = (Tp + Tgi)/2, °C, K;
To Outlet air temperature, °C, K;
Tp Mean plate temperature, °C, K;
Tsky Sky temperature, K;
UL Overall loss coefficient, W/(m2 K);
w Width of rib, m;
W Width of the duct, m.

Greek Symbols

a Absorptivity
a Rib angle with flow, deg
b Collector slope, deg
dpg Gap between the absorber plate and glass cover, m
DT Air temperature rise = To – Ti, °C, K
Dη Change in thermal efficiency
Dηe Change in effective efficiency
e Emissivity
η Thermal efficiency = Q/IA
ηe Effective efficiency
/ Chamfer angle, deg
l Dynamic viscosity, Pa s
mmpg Kinematic viscosity of air at temperature Tmpg, m

2/s
sa Transmittance-absorptance product

Subscripts

b Duct bottom surface
g Glass
m Mean
p Plate

16.1 Introduction

Flat plate collector is the heart of a solar heat collection system designed for the delivery of
heated fluid in the low to medium temperature range (5°–70°C above ambient temperature)
for applications, such as water heating, space heating, drying and similar industrial appli-
cations. The flat plate collectors absorb both beam and diffuse radiation. The absorbed
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radiation is converted into heat which is transferred to water or air flowing through the
collector tubes or duct, respectively. Such collectors do not require tracking of the sun and
little maintenance is required.

The conventional flat plate solar air heater, shown in Fig. 16.1, consists of a flat blackened
absorber plate, a transparent cover (such as a glass cover) at the top and insulation at the
bottom and on the sides. The air to be heated flows through the rectangular duct below the
absorber plate. The glass cover transmits a major part of the solar radiation incident upon it to
the absorber plate where it is converted into heat. The glass is, however, opaque to long-
wavelength radiation and thus it does not allow the infrared radiation from the heated
absorber plate to escape.

Karwa et al. (2002) have presented the following deductions of heat collection rate and
pumping power equations for the flat plate solar air heater.

The Reynolds Number ( _mDh=l) for a solar air heater duct can be expressed in a simple
form as presented below considering the fact that for a rectangular duct of high aspect ratio
(typically duct width W is of the order of 1 m and height H = 5–20 mm) the hydraulic
diameter Dh � 2H.

Re ¼ _mDh

l
¼ 1

l

� �
AG

WH

� �
2H ¼ 1

l

� �
WLG

WH

� �
2H ¼ 2GL

l
ð16:1Þ

where A (=WL) is the absorber plate area, G is the mass flow rate of air per unit area of the
plate and _m½¼ WLG=ðWHÞ� is the mass velocity.

b

a

Solar radiation, I 

Air in 

L

Heated  
air out 

Glass cover

Absorber 
plate

Width, W

H 

Insulation 
 (Back side) 

Air in 

Top loss, Qt

Back loss, Qb

Glass cover  Absorber 
 plate 
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I( )  Tp
Tg
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δpg

Edge loss, Qe
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Fig. 16.1 a Schematic diagram of a solar air heater, b heat balance
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Using the Dittus and Boelter correlation (Nu = 0.024 Re0.8 Pr0.4) for the Nusselt number,

h ¼ Nuk
Dh

¼ ð0:024Re0:8 Pr0:4Þk
2H

/ GL

l

� �0:8 1
H

� �
ð16:2Þ

The useful heat gain Q can be expressed in the following form.

Q ¼ hADT / Gð Þ0:8 L

H

� �
1
L

� �0:2

WL ð16:3Þ

Pressure loss dp and pumping power P equations for flow in the rectangular cross-section
duct of a solar air heater can be written as

dp ¼ 4fL
2qDh

� �
_m2 ¼ 4fL

4qH

� �
WLG

WH

� �2

¼ fG2

q

� �
L

H

� �3

ð16:4Þ

and

P ¼ m

q

� �
dp ¼ WLG

q

� �
fG2

q

� �
L

H

� �3

¼ fWL

q2

� �
G3 L

H

� �3

ð16:5Þ

where m (=WLG) is the mass flow rate.
Using Eq. (16.1) and Blasius equation for friction factor (f = 0.0791 Re−0.25), the

pumping power equation can be transformed to give

P / G2:75 L

H

� �3

WLð Þ 1
L

� �0:25

ð16:6Þ

From Eqs. (16.3) and (16.6), it can be seen that the heat collection rate and pumping
power are strong functions of the duct geometrical parameters (L, W, H) and air flow rate per
unit area of the plate G. Thus, an appropriate way to evaluate the performance is to take both
heat collection rate and pumping power requirement into account, i.e. to carry out a ther-
mohydraulic performance evaluation.

16.2 Mathematical Model for Thermohydraulic Performance
Prediction (Karwa et al. 2007; Karwa and Chauhan 2010)

The effect of the design and operating parameters on the performance of the solar air heater
can be evaluated using a mathematical model presented here. This model calculates the
useful heat gain from the iterative solution of basic heat transfer equations of top loss and
equates the same with the convective heat transfer rate from the absorber plate to the air
using proper heat transfer correlations for the duct of the air heaters. The model estimates the
collector back loss from the iterative solution of the heat balance equation for the back
surface. The edge loss can be calculated from the equation suggested by Klein (1975).

Figure 16.1b shows the longitudinal section of the air heater. The heat balance on the
solar air heater gives the distribution of incident solar radiation I into useful heat gain Q and
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various heat losses. The useful heat gain or heat collection rate for a collector can be
expressed as

Q ¼ AI sað Þ � QL ¼ A½I sað Þ � ULðTp � TaÞ� ð16:7Þ

where (sa) is the transmittance-absorptance product of the glass cover–absorber plate
combination and QL is heat loss from the collector. From the known values of mean absorber
plate temperature Tp and the ambient temperature Ta, overall loss coefficient UL is calculated
from

UL ¼ QL

AðTp � TaÞ ð16:8Þ

The collected heat is transferred to the air flowing through the air heater duct. Thus

Q ¼ mcpðTo � TiÞ ¼ GAcpðTo � TiÞ ð16:9Þ

For open-loop operation Ti = Ta.
Estimating the Nusselt number from an appropriate correlation for the collector duct, heat

transfer coefficient h between the absorber plate and air is determined.
From heat transfer consideration, the heat gain is

Q ¼ hAðTp � TfmÞ ð16:10Þ

or

Tp ¼ Q

hA
þ Tfm ð16:11Þ

where Tfm is the mean temperature of air in the solar air heater duct.
The heat loss QL from the collector is a sum of the losses from top Qt, back Qb and edge

Qe of the collector as shown in Fig. 16.1b.

16.2.1 Top Loss

The top loss Qt from the collector can be calculated from the iterative solution of basic heat
transfer equations given below.

Heat transfer Qtpg from absorber plate at mean temperature Tp to the inner surface of the
glass cover at temperature Tgi takes place by radiation and convection hence

Qtpg ¼
rAðT4

p � T4
giÞ

1
ep
þ 1

eg
� 1

þ hpgAðTp � TgiÞ ð16:12aÞ

The conduction heat transfer through the glass cover of thickness dg is given by

Qtg ¼ kgA
Tgi � Tgo

dg
ð16:12bÞ
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where kg is the thermal conductivity of the glass and Tgo is the temperature of the outer
surface of the glass cover.

From the outer surface of the glass, the heat is rejected by radiation to the sky at tem-
perature Tsky and by convection to the ambient hence

Qtgo ¼ rAegðT4
go � T4

skyÞþ hwAðTgo � TaÞ ð16:12cÞ

where hw is termed as wind heat transfer coefficient. It is a function of the wind velocity at
the outer surface of the glass cover. In equilibrium,

Qtpg ¼ Qtg ¼ Qtgo ¼ Qt ð16:13Þ

16.2.2 Wind Heat Transfer Coefficient

Various correlations for the estimate of the wind heat transfer coefficient hw from the wind
velocity data are available in the literature. Karwa and Chitoshiya (2013) have compiled
some of these correlations and have presented a discussion on the same.

(i) McAdams (1954) proposed the following correlation:

hw ¼ 5:6214þ 3:912Vw for Vw � 4:88m=s ð16:14aÞ
¼ 7:172ðVwÞ0:78 for Vw [ 4:88m=s ð16:14bÞ

This correlation has been widely used in modelling, simulation and relevant calcula-
tions in spite of its shortcomings (Palyvos 2008).

(ii) Watmuff et al. (1977) expressed the opinion that the wind heat transfer coefficient,
derived from McAdams correlation, includes radiation effect. They presented the fol-
lowing relation to exclude radiation and free convection contribution:

hw ¼ 2:8þ 3:0Vw for 0\Vw\7m=s ð16:15Þ

(iii) Kumar et al. (1997), based on indoor laboratory measurement on box-type solar cooker,
proposed the following correlation for the wind heat transfer coefficient.

hw ¼ 10:03þ 4:68Vw ð16:16Þ

(iv) Test et al. (1981) observed that, in the outdoor environment, the convection heat
transfer coefficient is greater than the values reported from wind tunnel tests and gave
the following correlation for rectangular plate exposed to varying wind directions.

hw ¼ ð8:355� 0:86Þþ ð2:56� 0:32ÞVw ð16:17Þ

(v) Kumar and Mullick (2007) experimentally determined the wind heat transfer coefficient
at low wind velocities (Vw < 0.37 m/s) from a metal plate exposed to solar radiation.
Their correlation is
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hw ¼ 0:8046ðTp � TaÞ0:69 ð16:18Þ

The predicted values of the wind heat transfer coefficient from the different correlations
presented above were found by Karwa and Chitoshiya (2013) to vary significantly as shown
in Table 16.1.

Palyvos (2008) expressed the opinion that the obvious lack of generality of the existing
wind convection coefficient correlations presents a challenge for future research. Field rather
than laboratory measurements, as well as some sort of standardization in the choice of height
above the ground and/or distance from the façade wall or roof with a suitable amendment of
the velocity value on the basis of surface orientation and wind direction relative to the
surface, are required.

It is to note that the uncertainty in the estimate of the wind heat transfer coefficient will
have an impact on the accuracy of predicted thermal performance of a solar air heater using
any mathematical model.

16.2.3 Sky Temperature

The sky is considered as a blackbody at some fictitious temperature known as sky temper-
ature Tsky at which it is exchanging heat by radiation. The sky temperature is a function of
many parameters. Some studies assume the sky temperature to be equal to the ambient
temperature because it is difficult to make a correct estimate of it, while others estimate it
using different correlations. One widely used equation due to Swinbank (1963) for clear sky
is

Tsky ¼ 0:0552ðTaÞ1:5 ð16:19Þ

where temperatures Tsky and Ta are in Kelvin.
Another approximate empirical relation is (Garg and Prakash 2000)

Tsky ¼ Ta � 6 ð16:20Þ

The above relations give significantly different values of the sky temperature. Nowak
(1989) comments that, in the case of large city areas, the sky temperature may be about 10°C
higher than the one calculated from Swinbank’s formula because of the atmospheric

Table 16.1 Estimate of the wind heat transfer coefficient hw [W/(m2 K)] (Karwa and Chitoshiya 2013)

Vw (m/s) Equation
(16.14)

Equation
(16.15)

Equation
(16.16)

Equation
(16.17)

Kumar and Mullick
(2007)

Range*

0 5.7 2.8 10.03 7.5–9.2 hw = 6 W/(m2 K) at
Vw = 0 m/s;

5.7–10.03

0.5 7.6 4.3 12.4 8.6–10.7 7.6–12.4

1.0 9.5 5.8 14.7 9.7–12.1 9.5–14.7

1.5 11.5 7.3 17.0 10.9–13.5 10.9–17.0

2.0 13.5 8.8 19.4 12.0–15.0 12.0–19.4

* Neglecting the values estimated from Eq. (16.15).
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pollution. The sky temperature also changes with the change in the atmospheric humidity.
Thus, there can be significant uncertainty in the estimate of the sky temperature, which may
affect the predicted thermal performance from any mathematical model using any of the
above equations.

16.2.4 Convective Heat Transfer Coefficient Between the Absorber Plate
and Glass Cover

For the estimate of the convective heat transfer coefficient between the absorber plate and
glass cover hpg, the three-region correlation of Buchberg et al. (1976) can be used, which is

Nu ¼ 1þ 1:446ð1� 1708=Ra0Þþ for 1708�Ra0 � 5900

ðtheþ bracket goes to zero when negativeÞ ð16:21aÞ

Nu ¼ 0:229ðRa0Þ0:252 for 5900\Ra0 � 9:23� 104 ð16:21bÞ
Nu ¼ 0:157ðRa0Þ0:285 for 9:23� 104 \Ra0 � 106 ð16:21cÞ

where Ra0 (=Ra cosb) is Rayleigh number for the inclined air layers. The Rayleigh number
for the internal natural convection flow between parallel plates is given by

Ra ¼ Gr Pr ¼ gðTp � TgiÞd3pg
Tmpgm2mpg

" #
Pr ð16:22Þ

where d pg = gap between the absorber plate and glass cover.

16.2.5 Back and Edge Losses

The back loss from the collector, refer Fig. 16.1b, can be calculated from the following
equation:

Qb ¼ AðTb � TaÞ
di
ki
þ 1

hw

ð16:23aÞ

where di is the insulation thickness and ki is the thermal conductivity of the insulating
material.

Heat transfer by radiation from the heated absorber plate to the duct bottom surface Qpb is
given by

Qpb ¼
rAðT4

p � T4
b Þ

1
epi

þ 1
eb
� 1

ð16:23bÞ

The heat flows from the heated bottom surface at temperature Tb to the surroundings
through the back insulation and to the air flowing through the duct at mean temperature
Tfm, i.e.
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Qba ¼ AðTb � TaÞ
di
ki
þ 1

hw

þ hAðTb � TfmÞ ð16:23cÞ

The heat balance for the surface gives Qpb = Qba. The temperature of the duct bottom
surface Tb can be estimated from the iterative solution of this heat balance equation.

For the edge loss estimate, the empirical equation suggested by Klein (1975) is

Qe ¼ 0:5AeðTp � TaÞ ð16:24Þ

where Ae is the area of the edge of the air heater rejecting heat to the surroundings.
The outlet air temperature is estimated from

To ¼ Ti þ Q

mcp
ð16:25Þ

The thermal efficiency η of the solar air heater is the ratio of the useful heat gain Q and the
incident solar radiation I on the solar air heater plane, i.e.

g ¼ Q

IA
ð16:26Þ

Niles et al. (1978) have used the following equations to calculate the outlet air and mean
plate temperatures when the solar air heater operates in open-loop mode (i.e. Ti = Ta):

To ¼ Ta þ IðsaÞn
UL

ð16:27Þ

Tp ¼ Ti þ IðsaÞ
UL

� �
1� Gncp

UL

� �
ð16:28Þ

where n = 1 – exp[-UL/(Gcp)(1 + UL/h)
−1] = (FRUL/Gcp). Parameter FR is termed as heat

removal factor and is given by (Duffie and Beckman 1980)

FR ¼ Gcp
UL

� �
1� exp

�F0UL

Gcp

� �� �
ð16:29Þ

where F0 is termed as efficiency factor. It is given by

F0 ¼ 1þ UL

h

� ��1

ð16:30Þ

Equations (16.27) and (16.28) may be used for the cross-check of the values of To and Tp
calculated from Eqs. (16.25) and (16.11), respectively.

The mean air temperature equation in terms of FR and F0 (Duffie and Beckman 1980) is

Tfm ¼ Ti þ Q=Að Þ
ULFR

1� FR

F0

� �
ð16:31Þ
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16.2.6 Heat Transfer and Friction Factor Correlations

The results of the simulation strongly depend on the use of appropriate heat transfer and
friction factor correlations for the solar air heater ducts. These correlations must take into
account the effects of the asymmetric heating encountered in the solar air heaters, duct aspect
ratio and developing length, and must be applicable to the laminar to early turbulent flow
regimes. The geometry of interest is the parallel plate duct (a rectangular duct of high aspect
ratio) since the width of the collector duct is of the order of 1 m and height of the order of 5–
10 mm (Karwa et al. 2002; Holland and Shewen 1981), with one wall at constant heat rate
and the other insulated. An intensive survey of the literature has been carried out by Karwa
et al. (2007) for the correlations to fulfil these requirements.

For hydrodynamically developing laminar flow in parallel plate ducts, Chen (in Ebadian
and Dong 1998) has obtained the following equations for the hydrodynamic length Lhy and
apparent friction factor fapp, respectively:

Lhy
Dh

¼ 0:011Reþ 0:315
1þ 0:0175Re

ð16:32Þ

fapp ¼ 24
Re

þ 0:64þ 38
Re

� �
Dh

4L

� �
ð16:33Þ

From Eq. (16.32), Lhy/Dh is less than 30 for Re � 2550, while L/Dh ranges from 100 to
200 in the case of solar air heaters. Equation (16.33) takes account of the increased friction in
the entrance region and the change of the momentum flux.

The thermal entrance length Lth/Dh for the laminar flow in a flat parallel plate passage,
when one wall is insulated and other subjected to uniform heat flux, is of the order of 0.1(Re
Pr) (Heaton et al. 1964) for the approach of Nusselt number value within about 1% of the
fully developed Nusselt number value. The appropriate Nusselt number-Reynolds number
relation for the thermally developing laminar flow in a parallel plate duct has been presented
by Hollands and Shewen (1981), which has been deduced from (Kays and Perkins 1973) and
agrees well with the data of Heaton et al. (1964):

Nu ¼ 5:385þ 0:148Re
H

L

� �
for Re\2550

ð16:34Þ

The second term containing H/L takes the entrance length effect into account.
The friction factor correlation of Bhatti and Shah (1987) for the transition to turbulent

flow regime in rectangular cross-section smooth duct (0 � H/W � 1) is

f ¼ 1:0875� 0:1125
H

W

� �
fo ð16:35Þ

where fo ¼ 0:0054þ 2:3� 10�8Re1:5 for 2100�Re� 3550
and fo ¼ 1:28� 10�3 þ 0:1143Re�0:311 for 3550\Re� 107

They report an uncertainty of ±5% in the predicted friction factors from the above
correlation.
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The study of the apparent friction factor plots for the entrance region of flat parallel plate
duct in the turbulent flow regime presented along with those for a circular tube in Bhatti and
Shah (1987) shows that the trend of variation in the friction factor in the entrance region for
the parallel plates is not significantly different from that for a circular tube. Hence, the
following circular tube relation (Bhatti and Shah 1987) can be used:

fapp ¼ f þ 0:0175
Dh

L

� �
ð16:36Þ

The thermal entrance length Lth/Dh for the turbulent flow of air, based on the local Nusselt
number approaching the fully developed value, ranges from 20 to 30 for the Reynolds
number range of 8000–30000 (Lee 1968; Barrow and Lee 1964). Kays and Leung (1963)
solved the fully developed turbulent-flow energy equations with constant heat rate for par-
allel plate duct with one side insulated. Their results are reported to be in excellent agreement
with the experimental data for air (Kays and Crawford 1980). The following Nusselt number
correlations, deduced by Hollands and Shewen (1981) from the data of Kays and Leung
(1963) and Tan and Charters (1970) for collectors with L/H > 125, may be used.

Nu ¼ 4:4� 10�4Re1:2 þ 9:37Re0:471
H

L
for 2550�Re� 104 ðtransition flowÞ

ð16:37aÞ

and

Nu ¼ 0:03Re0:74 þ 0:788Re0:74
H

L
for 104\Re� 105 ðearly turbulent flowÞ

ð16:37bÞ

where the terms containing H/L take the entrance length effect into account.
The Nusselt number data from the correlation of Holland and Shewen for fully developed

turbulent flow are in close agreement with the data of Hatton et al. (1964). They are about
10% lower than the data from the tube correlation of Petukhov et al. in (Bhatti and Shah
1987) for Re � 8000 and about 15–20% lower than that of Nu = 0.023 Re0.8 Pr0.4 for Re �
10000. This is in agreement with the observation of Sparrow et al. (1966) in an experimental
study under ideal laboratory conditions for duct with W/H = 5 and
Re ¼ 1:8� 104 � 1:42� 105, and Tan and Charters (1970) for the asymmetrically heated
duct of a solar air heater (W/H = 3; Re = 9500–22000). From the close agreement of the
Nusselt number data from Eq. (16.37b) with the carefully conducted experimental results, it
has been inferred by Karwa et al. (2007) that the uncertainty in the predicted Nusselt number
values must be of the order of 5–6%. However, the information on the transition flow in a flat
or rectangular duct is extremely sparse and a higher uncertainty in the Nusselt number values
determined from Eq. (16.37a) may be possible. Holland and Shewen (1981), based on the
information available in (Kays and Perkins 1973), concluded that the flow is laminar for
Re < 2550 and turbulent for Re > 104. By analogy with the results for rectangular ducts with
W/H = 8 (Kays and London 1964), they concluded that power law fits extending from the
laminar result to the turbulent result would be satisfactory for the transition regime. However,
the lower limit of the critical Reynolds number for a parallel plate duct is reported by
Ebadian and Dong (1998) to be 2200–3400 depending on the entrance configurations and
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disturbance sources. For a high aspect ratio rectangular duct with abrupt entrance, the same is
reported to be 2920–3100. Hence, the laminar flow regime may be assumed up to Re = 2800,
which also limits the inconsistency of the predicted Nusselt number and friction factor
values from the different correlations used here to about 5% at the laminar–transition
interface.

Figure 16.2 shows the plots of the Nusselt number and friction factor from the above-
presented correlations. The changes in the plots correspond to the laminar-transient and
transient-turbulent regimes.

The pressure loss, from the known value of friction factor f (=fapp for smooth duct), and
pumping power are calculated from

dp ¼ 4fL
2qDh

� �
m

WH

� �2
ð16:38Þ

P ¼ m

q

� �
dp ð16:39Þ

Cortes and Piacentini (1990) used effective thermal efficiency ηe for the collector ther-
mohydraulic performance evaluation, which is based on the net thermal energy collection
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Fig. 16.2 a Nusselt number versus the Reynolds number, b Friction factor versus the Reynolds number
(Karwa et al. 2007)
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rate of a collector considering the pumping power required to overcome the friction of the
solar air heater duct. Since the power lost in overcoming frictional resistance is converted
into heat, the effective efficiency equation may be defined as (Karwa and Chauhan 2010)

ge ¼
ðQþPÞ � P

C

IA
ð16:40Þ

where C is a conversion factor used for calculating equivalent thermal energy for obtaining
the pumping power. It is a product of the efficiencies of the fan, electric motor, transmission
and thermoelectric conversion. For example, based on the assumption of 60% efficiency of
the blower–motor combination and 33% efficiency of thermoelectric conversion process
referred to the consumer point, factor C will be 0.2. Since the operating cost of a collector
depends on the pumping power spent, the effective efficiency based on the net energy gain is
a logical criterion for the performance evaluation of the solar air heaters.

The thermophysical properties of the air are taken at the corresponding mean temperature
Tm = Tfm or Tmpg. The following relations of thermophysical properties, obtained by cor-
relating data from NBS (US) (Holman 1990), can be used:

cp ¼ 1006
Tm
293

� �0:0155

ð16:41aÞ

k ¼ 0:0257
Tm
293

� �0:86

ð16:41bÞ

l ¼ 1:81� 10�5 Tm
293

� �0:735

ð16:41cÞ

q ¼ 1:204
293
Tm

� �
ð16:41dÞ

Pr ¼ lcp
k

ð16:41eÞ

Equations (16.7) to (16.41a) constitute a non-linear model for the solar air heater for the
computation of the useful heat gain Q, thermal efficiency η, pressure loss dp, pumping power
P and effective efficiency ηe. The model has been solved by Karwa and Baghel (2014)
following an iterative process depicted in Fig. 16.3. Karwa and Chauhan (2010) also used
the model for roughened duct solar air heater with relevant heat transfer and friction factor
correlations in place of smooth duct relations. For the estimate of heat collection rate, Karwa
and Chauhan (2010) and Karwa and Baghel (2014) terminated the iteration when the suc-
cessive values of the plate and mean air temperatures differed by less than 0.05 K. The
iteration for the estimate of top loss by them has been continued till the heat loss estimates
from the absorber plate to the glass cover and glass cover to the ambient, i.e. Qtpg and Qtgo

from Eqs. (16.12a) and (16.12c), respectively, differed by less than 0.2%.
The mathematical model presented here has been validated by Karwa et al. (2007) against

the data from the experimental study of a smooth duct solar air heater of Karwa et al. (2001)
with reported uncertainties of ±4.65% in Nusselt number and ±4.56% in friction factor. The
standard deviations of the predicted values of thermal efficiency and pumping power from
the experimental values of these parameters from (Karwa et al. 2001) have been reported by
Karwa et al. (2007) to be ±4.9% and ±6.2%, respectively.
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 COMPUTE FR, F , Tfm (termed as Tmc)

Tm = Tmc
ABS (Tm – Tmc)

Accuracy
No Yes

COMPUTE Re, Nu, h, Q, f, Tp

(termed as Tpm)

Yes ABS (Tpm – Tp)
 Accuracy 

No
Tp = Tpm

INITIALIZE Tm = Ta + 1.0 

   Read Ta, I, hw, G, p, g, , , pg, g, , ki, kg, W, H, L 

Start

COMPUTE AIR PROPERTIES AT Tm

 COMPUTE Qe

INITIALIZE Tgi = Ta + 1.0 

 COMPUTE Qtpg, Qtgo

ABS (Qtpg- Qtgo)
 Accuracy

Tgi = Tgi + 0.05
No

Yes

INITIALIZE Tp = Ta + 10.0

INITIALIZE Tb = (Tp + Ta)/2 

 COMPUTE Qb, QL, Q, UL

COMPUTE Qpb, Qba

ABS (Qpb- Qba)
Accuracy
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Qpb > Qba
No

Tb = Tb – 0.005 

Tb = Tb + 0.005

COMPUTE To, Ut, T/I,
, p, P, e

Stop
Print G, m, I, Ta, hw, , p, H, W, L, Re, 

Nu, Q, To, Tp, UL, T/I, , e, P

No
Yes

Fig. 16.3 Flow chart for iterative solution of mathematical model (Karwa and Baghel 2014)
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16.3 Enhanced Performance Solar Air Heaters

16.3.1 Introduction

As compared to a solar water heater, the thermal efficiency of a smooth duct solar air heater is
low because of a low value of heat transfer coefficient between the absorber plate and the
flowing air through the collector duct leading to a high temperature of the absorber plate and
greater heat loss. Hence, the researchers have directed their studies towards various per-
formance improvement techniques. They are (i) the increase in the absorption of solar
radiation using corrugated absorber, (ii) use of fins and corrugations to increase the area of
heat transfer from the absorber, (iii) use of selective coating on the sun-facing side of the
absorber plate, (iv) use of more than one glass cover over the absorber plate and (v) use of
artificial roughness on the air flow side of the absorber plate to enhance heat transfer.

The main resistance to heat transfer in a solid–fluid interaction is due to the formation of
the laminar sublayer on the heat transferring surface and hence the efforts for enhancing the
heat transfer have been directed towards artificially destroying or disturbing this sublayer. In
general, this can be achieved by active, passive or a combination of the active and passive
methods.

The use of the artificial roughness elements in the form of projections is one of the most
effective passive techniques of heat transfer enhancement and has been extensively used in
nuclear reactors, heat exchangers, gas turbine blade cooling channels and solar collectors.

Enhancement of the heat transfer coefficient between the absorber plate surface of the
solar air heater and air leads to the reduction in the absorber plate temperature which leads to
the reduction in the heat loss from the collector and improvement in the thermal efficiency.
Hence, the artificial roughness in the form of ribs on the air flow side of the absorber plate
has been shown to be one of the most promising methods for enhancement of heat transfer
coefficient and thermal performance of the solar air heater with forced flow of air. In general,
any attempt to increase turbulence in the flow also increases the pumping power requirement.
Since the artificial roughness on the heat-transferring surface creates turbulence near the wall
and breaks the laminar sublayer at the wall, it enhances the heat transfer coefficient with a
minimum pumping power penalty.

Extensive experimental studies carried out by researchers have shown that the geometry
of the roughness (roughness shape, pitch, height, etc.) and the arrangement of the rib ele-
ments (orientation with respect to the flow direction) have a marked influence on the heat
transfer and friction characteristics of the roughened surfaces.

Karwa et al. (2010) and Chitoshiya and Karwa (2015) have presented a parametric review
of the studies carried out for the heat transfer enhancement in asymmetrically heated high
aspect ratio rectangular ducts with special emphasis on the effect of the rib shapes, their
arrangement with respect to flow and discretization of the ribs on the heat transfer and
friction characteristic of such enhanced ducts, and on the performance of the solar air heater
provided with roughness on the absorber plate. The studies referred in their review have been
basically carried out for rectangular section ducts with one of the broad walls roughened and
subjected to uniform heat flux while the remaining walls were insulated. These boundary
conditions correspond closely to those found in flat plate solar air heaters.
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16.3.2 Artificial Roughness for Heat Transfer Enhancement

16.3.2.1 Effect of Rib Shape and Pitch
The researchers have used various rib shapes: circular cross-section wires (Gupta et al. 1993
and 1997; Saini and Saini 1997; Momin et al. 2002; Muluwork et al. 1998) wedge-shaped
integral ribs (Bhagoriya et al. 2002), chamfered integral rib-roughness (Karwa et al. 1999 and
2001), rib-grooved roughness (Jaurker et al. 2006), chamfered rib-grooved roughness (Layek
et al. 2007) and dimple-shaped projections (Saini and Verma 2008) as shown in Fig. 16.4.

The flow detaches as it encounters the rib and reattaches at about 6–7 rib heights in the
case of the square, circular and rectangular cross-section ribs, refer Fig. 16.4c–i. A typical
detailed flow pattern for chamfered ribs is shown in Fig. 16.5. The laminar sublayer is
completely destroyed in the reattachment region. The boundary layer redevelops after the
reattachment region and hence its thickness is small. A recirculating region with frequent
shading of vortices establishes in the wake of the ribs and is basically a region of low heat
transfer coefficient. This region is reported to be smaller in the case of chamfered ribs. The
near wall turbulence developed in the process enhances the heat transfer coefficient with a
minimum pumping power penalty. Optimum relative roughness pitch (p/e) for circular and
rectangular section ribs is reported to be 10 by most of the researchers. The same has been
reported to be about 6–8 for the chamfered, wedge and chamfered rib-grooved surfaces
(Karwa et al. 1999 and 2001; Bhagoriya et al. 2002; Jaurker et al. 2006; Layek et al. 2007).

The performance of chamfered or rib-grooved surface is reported to be superior to that of
circular, square or rectangular section ribs (Karwa et al. 1999; Jaurker et al. 2006; Layek

Roughened  
absorber plate 

Air out  Air in 

Glass coverSolar insolation, I

L H 

c

L = length, H = depth of duct 
a

 p

 e Ribs

p = pitch, e = rib height    

b

(vi) Dimple-shaped projections (Saini 
and Verma 2008) 

(iii) Integral chamfered ribs (Karwa et al. 
1999 and 2001) 

(i) Circular cross-section wire ribs and flow 
pattern (Gupta et al. 1993 and1997; Saini and 
Saini 1997; Momin et al. 2002; Muluwork et 
al. 1998)

(v) Chamfered rib-groove (Layek et al. 2007) 

(iv) Rib-groove (Jaurker et al. 2006) 

Groove

(ii) Wedge shaped roughness (Bhagoriya 
et al. 2002) 

Chamfer angle 

Fig. 16.4 a Solar air heater with roughened absorber plate, b Rib geometry, c rib shapes
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et al. 2007). Positively chamfered ribs with 15° chamfer angle (Karwa et al. 1999), and 18°
chamfer angle in case of chamfered and grooved (Layek et al. 2007), have been shown to
provide optimum performance while the optimum angle for the wedge-shaped ribs is 10°
(Bhagoriya et al. 2002). Negatively chamfered ribs are poor in performance (Karwa et al.
1999). Chamfered and wedge-shaped ribs provide better performance mainly because of the
reduced recirculation zone behind the ribs (Karwa et al. 1999; Bhagoriya et al. 2002) and, in
case of chamfered ribs, the vortex shedding has been shown to be vigorous. Integral ribs
provide additional heat transfer enhancement due to the fin effect.

For the positively chamfered closely spaced ribs (p/e � 5), vigorous vortex shedding has
been reported compared to the square or negatively chamfered ribs (Karwa et al. 2008).
Unlike square ribs, reattachment effect is reported for 15° chamfered ribs even at a relative
roughness pitch of 5. The recirculating region is found to reduce with increase in the rib head
chamfer angle from 0° (rectangular or square section ribs) to 15° along with an increased
vortex activity in the wake of the ribs for the 15° chamfered ribs at p/e � 7.5 as found from
flow structure study by Karwa et al.

As compared to a smooth surface, the presence of artificial roughness has been shown to
increase the Nusselt number up to 3.24 times in the transitional to early turbulent flow
regime, while the friction factor increases up to 5.3 times by these researchers depending
upon the relative roughness height (ratio of rib height to hydraulic diameter), shape and
arrangement of the rib elements. The thermohydraulic performance (based on equal pumping
power) of the roughened surface with angled discrete rib roughness has been found to
improve by about 30–70% over the smooth-surfaced duct (Karwa et al. 2005).

Gupta et al. (1993), Singh et al. (2011) and Karwa et al. (2001, 2010) and Karwa and
Chitoshiya (2013) carried out studies on solar air heaters with a transverse wire as roughness,
chamfered or discrete rib roughness, respectively, and have shown thermal efficiency
enhancement of the order of 10–40% over the smooth duct solar air heaters.

16.3.2.2 Effect of Rib Arrangement
Researchers have tried rib elements in various arrangements: inclined continuous ribs (Gupta
et al. 1993 and 1997), expanded metal wire mesh (Saini and Saini 1997), inclined continuous
ribs with a gap (Aharwal et al. 2008), circular cross-section wires arranged in v-shape
(Momin et al. 2002), discrete ribs in v-pattern (Muluwork et al. 1998; Karwa 2003; Karwa
and Chouhan 2010; Singh et al. 2011; Karwa and Chitoshiya 2013), ribs in a staggered
pattern (Karmare and Tikekar 2007) and ribs in w-pattern (Lanjewar et al. 2011) as shown in
Fig. 16.6.

The optimum inclination angle for v-continuous or discrete rib pattern is reported to be
60° (Momin et al. 2002; Karwa 2003). In the case of the expanded metal wire mess of Saini
and Saini (1997) also, the optimum performance is found to occur for 60° inclination of the

 Recirculation zone 

Rib

 Reattachment region 

 Flow

Fig. 16.5 Flow pattern for 15° chamfered ribs (Karwa et al. 2008)
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elements of the mess to the flow direction though the distance between the crossing wires of
the mess in this case is variable.

Karwa (2003) has presented the following flow structure in the case of inclined or
v-discrete rib pattern of ribs.

The additional heat transfer enhancement observed for the inclined or the v-pattern ribs
over the transverse ribs can be attributed to the secondary flow of the air induced by the rib
inclination, refer Fig. 16.6; the secondary flow is depicted in the figure by inclined arrows.
The heated air adjacent to the wall (the secondary flow) moves along the plate surface to the
side wall in the case of the inclined ribs and towards both of the side walls in the case of v-up
pattern of ribs. This exposes the absorber plate to a relatively lower temperature air of the
axial or primary flow over the ribs. In the case of the v-down pattern, there are two con-
tradictory effects. The secondary flow is towards the central axis where it interacts with the
axial flow creating additional turbulence leading to the increase in the heat transfer rate while
the rise in the temperature of the axial flow, just above the ribs in the central region, reduces

(vi) Ribs in staggered pattern (Karmare 
and Tikekar 2007) 

(vi) W-shaped ribs (Lanjewar et al. 2011) 

(iii) Expanded metal wire mesh (Saini 
and Saini 1997) 

s

l

(ii) Circular cross-section wire inclined 
to flow (Gupta et al. 1993 and 1997)

W 

(i) Transverse ribs (Gupta et al. 1997) 

Flow

(iv) Circular cross-section wire in v-
pattern (Momin et al. 2002) 

W 

  (vi) Inclined continuous ribs with a gap 
(Aharwal et al 2008) 

 = rib angle with flow, S/B = relative roughness length,        primary flow 

(v) V-discrete rib roughness (Karwa 2003; 
Karwa et al. 2005; Karwa and Chouhan 
2010; Karwa and Chitoshiya 2013) 

B

S60o

Fig. 16.6 Rib arrangements and the effect of rib orientation on the flow
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the heat transfer rate. A similar effect of the secondary flow can be understood for w-shaped
and inclined ribs with a gap.

In the case of discrete ribs, the heated air at the plate surface moving as secondary flow
mixes with the primary air after only a short distance movement leading to better mixing of
the heated air near the plate with the colder primary air flowing between the ribs. The
uniformity of heat transfer improves with the increase in the discretization of the ribs due to
the vigorous mixing of the secondary and primary flows (Karwa et al. 2005). This hypothesis
has been confirmed (Karwa 2003) by the recording of the temperature variation of the heated
outlet air in the span-wise (transverse to the flow) direction. Because of the secondary flow
effect, the centerline temperature of the heated air has been reported to be higher in the case
of the v-down arrangement of the ribs.

60° v-down discrete ribs and inclined ribs with a gap are shown to be the best of all the rib
arrangements discussed here (Karwa 2003; Karwa et al. 2005; Aharwal et al. 2008).

16.4 Heat Transfer and Friction Factor Correlations for Roughened
Rectangular Ducts

The results of above-presented studies on asymmetrically heated rectangular ducts are
available in the form of heat transfer and friction factor correlations, which can be used for
the design of solar air heaters because the boundary conditions of the ducts in these studies
confirm to those encountered in solar air heaters. Some of the correlations for asymmetrically
heated rectangular ducts with roughness are given in Table 16.2. These correlations have
been reduced to the optimal conditions by Karwa et al. (2010) as defined by the investigators
for the roughness geometries studied by them. The friction correlations of Karwa et al. (1999
and 2005) are in the terms of the roughness function R and roughness Reynolds number e+

defined by Nikuradse (1950) as

R ¼
ffiffiffi
2
f

s
þ 2:5 ln

2e
Dh

� �
þ 3:75 ð16:42Þ

eþ ¼
ffiffiffi
f

2

r
Re

e

Dh

� �
ð16:43Þ

The heat transfer function in their heat transfer correlations is defined as (Dippery and
Sabersky 1963)

g ¼ f

2St
� 1

� � ffiffiffi
2
f

s
þR ð16:44Þ

The mathematical model presented for the smooth duct solar air heater in Sect. 16.2 can
also be utilized for the performance study of solar air heaters having artificially roughened
absorber plate using heat transfer and friction factor correlations of the roughness under
consideration in place of correlations for smooth duct air heater in the mathematical model.
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Table 16.2 Heat transfer and friction factor correlations for roughened ducts (Karwa et al. 2010)

Investigator Roughness
type

Range of
investigation

Preferred
geometrical
parameters

Heat transfer and friction factor correlations
corresponding to preferred geometrical
parameters

Gupta et al.
(1993 and
1997)

Inclined
circular cross-
section wire

e/Dh = 0.018 –

0.052
W/H = 6.8 –

11.5
p/e = 10
Re = 3�103 –
18�103

At W/
H = 10,
a = 60o

For e+ < 35
Nu = 2.15�10−3 (e/Dh)

0.001 (Re)1.084

For e+ � 35
Nu = 6.65�10−3 (e/Dh)

−0.24 (Re)0.88

f = 1.54�10 −1 (e/Dh)
0.196 (Re)−0.165

Saini and
Saini
(1997)

Wire mesh
(crossed)

e/Dh = 0.012–
0.039
l/e = 25–71.9
s/e = 15.6–
46.9
W/H = 11
Re = 1.9�103

−13�103

l/e = 46.9
s/e = 25.0

Nu = 1.82523�10−2 Re1.22 (e/Dh)
0.625

f = 1.9058 Re−0.361 (10e/Dh)
0.591

The average absolute percentage deviations
of the predicted values are 7.98% and 4.37%
for Nu and f, respectively

Karwa
et al.
(1999)

Integral
chamfered ribs

e/Dh = 0.014 –

0.032
/ = (−15o)−18o

Re = 3�103 –
20�103

e+ = 5–60

p/e = 6
/ = 15o

R ¼ 15:995 eþð Þ�0:075

for 5\eþ\20

R ¼ 5:7

for 20\eþ\60

g ¼ 32:255 eþð Þ�0:31

for 7\eþ\20

g ¼ 10:0 eþð Þ0:08
for 20\eþ\60

Bhagoria
et al.
(2002)

Wedge-shaped
ribs

e/Dh = 0.015 –

0.033
/ = 8o − 15o

[(60.17
/−1.0264) <
p/e < 12.12]
Re = 3�103 –
18�103

p/e = 7.57
/ = 10o

Nu = 3.874�10−3 Re1.21 (e/Dh)
0.426

f = 4.89 Re−0.18 (e/Dh)
0.99

These correlations predict Nusselt number
and friction factor values within the error
limits of ± 15% and ± 12%, respectively

Momin
et al.
(2002)

Circular cross-
section wire in
v-pattern

e/Dh = 0.02–
0.034
p/e = 10
a = 300 − 900

W/H = 10.15
Re = 2.5�103 –
18�103

p/e = 10
a = 600

Nu = 0.067�(Re)0.888�(e/Dh)
0.424

f = 6.266�(Re)−0.425�(e/Dh)
0.565

Average absolute deviation for Nusselt
number correlation is 3.20%, and the same is
3.50% for friction factor correlation

Karwa
et al.
(2005)

60º v-down
discrete,
B/S = 6

e/Dh = 0.047
W/H = 7.75
Re = 2.85�103

– 15.5�103

p/e = 10.6
B/S = 6

R ¼ 6:06 eþð Þ0:045
for 15� eþ � 75:

g ¼ 15:69 eþð Þ�0:2

for 15� eþ\25

g ¼ 4:10 eþð Þ0:217
for 25� eþ � 75:

The maximum deviations of the predicted
values of R and g from the correlations are
1.48% and 1.86%, respectively, from the
experimental data
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Karwa and Chauhan (2010) considered 60° v-down discrete rib roughness suggested by
Karwa et al. (2005), depicted in Fig. 16.6v, for the absorber plate of the roughened duct solar
air heater and carried out a detailed investigation using the mathematical model presented
above to study the effect of ambient, operating and design parameters on the thermal and
effective efficiencies. They presented the result in the form of performance plots (thermal and
effective efficiencies versus the air temperature rise parameter ΔT/I) as shown in Fig. 16.7. It
can be seen from the performance plots that, at the low flow rates of air per unit area of the
absorber plate G, the ribs with greater relative roughness height e/Dh are beneficial; lower is
the flow rate, greater is the advantage of the use of the artificial roughness on the absorber
plate. At G > 0.045 kg/(s m2), the smooth duct air heater is preferred from thermohydraulic
consideration. The air mass flow rate per unit area of the plate, ambient temperature, solar
insolation, wind heat transfer coefficient, etc. have been systematically varied by them to
study their effect for a range of these parameters. Effects of change in collector length, duct
height and plate emissivity on thermal and thermohydraulic performances represented by a
change in thermal and effective efficiencies have also been studied by them. The results of the
study are given in Table 16.3.
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Fig. 16.7 Performance plots of solar air heaters with 60° v-down discrete rectangular rib roughness
(L = 2 m, H = 10 mm, p/e = 10, w/e = 2, ep = 0.95, b = 45o, Ta = 283 K, hw = 5 W/(m2 K) and
I = 800 W/m2) (Karwa and Chauhan 2010)
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Table 16.3 Effect of change of different parameters on thermal and effective efficiencies; one parameter has
been varied at a time from L = 2 m, H = 10 mm, ep = 0.95, b = 45o, Ta = 283 K, hw = 5 W/(m2 K) and
I = 800 W/m2 (Karwa and Chauhan 2010)

G, kg/
(s m2)

e/Dh A. Duct height, H B. Duct length, L (L/H = 200)

H,
mm

Δη/η
(%)

Δηe/ηe (%) L,
m

H, mm Δη/η
(%)

Δηe/ηe
(%)

0.02 0.03 20
5

−11.45
6.48

−10.89
1.25

4
1

20
5

0.923
−1.04

0.95
−1.08

0.06 0.03 20
5

−4.26
2.19

10.70
−122.8

4
1

20
5

−0.59
0.2

−0.135
−0.42

0.01 0.07 20
5

−12.88
7.40

−12.74
6.18

4
1

20
5

−0.54
−1.42

−0.52
−1.43

0.06 0.07 20
5

−3.57
1.83

20.09
−194.0

4
1

20
5

−0.6
0.51

0.382
−0.69

G, kg/
(s m2)

e/Dh C. Collector slope, b D. Wind heat transfer coefficient, hw

b, deg Δη/η
(%)

Δηe/ηe (%) hw, W/(m2 K) Δη/η
(%)

Δηe/ηe
(%)

0.02 0.03 0° −0.40 −0.42 20 −3.84 −3.87

0.06 0.03 0° −0.20 −0.25 20 0.07 0.08

0.01 0.07 0° −0.64 −0.62 20 −6.88 −6.87

0.06 0.07 0° −0.20 −0.26 20 0.17 0.20

G, kg/
(s m2)

e/Dh E. Solar insolation, I F. Ambient temperature, Ta

I,
W/m2

Δη/η
(%)

Δηe/ηe (%) Ta (K) Δη/η
(%)

Δηe/ηe
(%)

0.02 0.03 1000
500

0.50
−2.3

0.64
−2.74

273
303

0.84
−0.91

0.90
−1.03

0.06 0.03 1000
500

0.97
−3.01

4.62
−13.98

273
303

0.16
+0.33

1.43
−2.02

0.01 0.07 1000
500

−0.01
−1.66

0.019
−1.74

273
303

1.23
−1.96

1.25
−1.99

0.06 0.07 1000
500

0.98
−3.03

6.69
−20.24

273
303

0.13
0.40

2.13
−3.42

G, kg/
(s m2)

e/Dh G. Emissivity of plate, ep H. Combined effect of emissivity, ep and
wind heat transfer coefficient, hw

ep Δη/η (%) Δηe/ηe
(%)

ep hw, kg/
(s m2)

Δη/η
(%)

Δηe/ηe
(%)

0.02 0.03 0.1 11.0 10.74 0.1 20 10.21 10.27

0.06 0.03 0.1 5.40 6.34 0.1 20 6.58 7.73

0.01 0.07 0.1 15.35 15.38 0.1 20 12.75 12.79

0.06 0.07 0.1 5.13 6.53 0.1 20 6.40 8.13
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16.5 Summary

Flat plate solar collectors have been designed for applications requiring delivery of heated
fluid in the low to medium temperature range (5°–70°C above ambient temperature). These
collectors absorb both beam and diffuse radiation. The absorbed radiation is converted into
heat which is transferred to water or air flowing through the collector tubes or duct,
respectively.

Heat collection rate and pumping power requirement of a solar air heater are strong
functions of the duct geometrical parameters (L, W, H) and air flow rate per unit area of the
absorber plate G. Thus, an appropriate way to evaluate the performance is to take both heat
collection rate and pumping power requirement into account, i.e. to carry out a thermohy-
draulic performance evaluation.

Thermohydraulic performance evaluation and the effect of the variation of ambient,
operating and design parameters on the performance of the solar air heater have been
evaluated using a mathematical model presented in this chapter. The presented model is
validated against the data from an experimental study.

The model calculates the useful heat gain from the iterative solution of basic heat transfer
equations of top loss and equates the same with the convective heat transfer rate from the
absorber plate to the air using proper heat transfer correlations for the solar air heater duct.
The model estimates the collector back loss from the iterative solution of the heat balance
equation for the back surface. The edge loss has been calculated from an empirical relation.

The presented equations of the mathematical model constitute a non-linear model for the
computation of the useful heat gain Q, thermal efficiency η, pressure loss dp, pumping power
P and effective efficiency ηe. The model presented for smooth duct solar air heater has also
been utilized by researchers for performance study of roughened duct solar air heater with
relevant heat transfer and friction factor correlations in place of smooth duct relations.

Uncertainties in the estimate of wind heat transfer coefficient and sky temperature affect
the accuracy of predicted thermal performance of a solar air heater using any mathematical
model.

Various correlations for the estimate of the wind heat transfer coefficient from the wind
velocity data are available in the literature. The predicted values of the wind heat transfer
coefficient from these correlations have been found to vary significantly. The obvious lack of
generality of the existing wind convection coefficient correlations presents a challenge for
future research. Field rather than laboratory measurements, as well as some sort of stan-
dardization in the choice of height above the ground and/or distance from the façade wall or
roof with a suitable amendment of the velocity value on the basis of surface orientation and
wind direction relative to the surface, are required.

The sky is considered as a blackbody at some fictitious temperature known as sky tem-
perature at which it is exchanging heat by radiation. The sky temperature is a function of
many parameters. Some studies assume the sky temperature to be equal to the ambient
temperature because it is difficult to make a correct estimate of it, while others estimate it
using different correlations. The presented relations give significantly different values of the
sky temperature. There can be significant uncertainty in the estimate of the sky temperature
because of atmospheric pollution and changes in atmospheric humidity.

The artificial roughness in the form of ribs on the air flow side of the absorber plate has
been shown to be one of the most promising methods for enhancement of heat transfer
coefficient and hence the thermal performance of the solar air heater with the forced flow of
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air. In general, any attempt to increase turbulence in the flow also increases the pumping
power requirement. Since the artificial roughness on the heat-transferring surface creates
turbulence near the wall and breaks the laminar sublayer at the wall, it enhances the heat
transfer coefficient with a minimum pumping power penalty.

Extensive experimental studies carried out by researchers have shown that the geometry
of the roughness (roughness shape, pitch, height, etc.) and the arrangement of the rib ele-
ments (orientation with respect to the flow direction) have a marked influence on the heat
transfer and friction characteristics of the roughened surfaces. The mechanism of heat
transfer enhancement in the case of inclined or v-discrete pattern of ribs has been explained
by discussing the flow structure.

Heat transfer and friction factor correlations for some roughness geometries have been
presented followed by typical results of a performance study of solar air heaters with 60° v-
down discrete rectangular cross-section repeated rib roughness on the air flow side of the
absorber plate. The result of performance study is presented in the form of performance plots
(thermal and effective efficiencies versus the air temperature rise parameter ΔT/I), which
shows that at the low flow rates of air per unit area of the absorber plate G, the ribs with
greater relative roughness height e/Dh are beneficial; lower is the flow rate, greater is the
advantage of the use of the artificial roughness on the absorber plate. At G > 0.045 kg/sm2,
the smooth duct air heater is preferred from thermohydraulic consideration.

Results of variation of the air mass flow rate per unit area of the plate, ambient tem-
perature, solar insolation, wind heat transfer coefficient, etc. have been presented for a range
of these parameters. Effects of change in collector length, duct height and plate emissivity on
thermal and thermohydraulic performances represented by change in thermal and effective
efficiencies have also been presented.
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Appendix A

Conversion Factors

Acceleration 1 m/s2 = 4.252 � 107 ft/h2

Area 1 m2 = 10.764 ft2

1 ft2 = 0.092903 m2

Density 1 kg/m3 = 0.062428 lbm/ft
3

Energy 1 kJ = 0.9478 Btu

1 kcal = 4.1868 kJ

Force 1 N = 0.22481 lbf
1 lbf = 4.44822 N

Heat flux 1 W/m2 = 0.3171 Btu/(h ft2) = 0.8598 kcal/(h m2)

Heat transfer coefficient 1 W/(m2 °C) = 0.1761 Btu/(h ft2 °F)

1 Btu/(h ft2 °F) = 5.6786 W/(m2 K)

Latent heat 1 kJ/kg = 0.4299 Btu/lbm
Length 1 m = 3.2808 ft

1 ft = 0.3048 m

Mass 1 kg = 2.2046 lbm
1 lbm = 0.4536 kg

1 tonne = 1000 kg

1 short ton = 2000 lbm = 907.1847 kg

Mass transfer coefficient 1 m/s = 1.181 � 104 ft/h

Power 1 hp = 745.7 W

1 hpe = 746 W

1 kW = 737.56 lbf ft/s

Pressure 1 Pa = 1 N/m2 = 1.4504 � 10-4 psia

1 psia = 6894.8 N/m2

1 atm = 14.69 psia

Specific heat 1 kJ/(kg °C) = 0.23885 Btu/(lbm R)

Temperature T(K) = t(°C) + 273.15

T(R) =t(°F) + 459.67

Thermal conductivity 1 W/(m K) = 0.57782 Btu/(h ft °F) = 2.39 � 10−3 cal/(cm s °C)
(continued)

© Springer Nature Singapore Pte Ltd. 2020
R. Karwa, Heat and Mass Transfer,
https://doi.org/10.1007/978-981-15-3988-6

1093

www.konkur.in

Telegram: @uni_k

https://doi.org/10.1007/978-981-15-3988-6
https://t.me/uni_k


Thermal resistance 1 K/W = 0.5275 °F/(h Btu)

Viscosity 1 N/(s m2) = 1 kg/(s m) = 2419.1 lbm/(ft h)

1 poise = 1 g/(s cm)

Volume 1 m3 = 1000 L

1 US gallon = 3.7854 L

1 m3 = 264.17 US gallon

1 gal (imperial) = 4.546 L

Volumetric heat generation 1 W/m3 = 0.09665 Btu/(h ft3)

See Table A1, A2, A3.1, Table A3.2, A4, A5, A6, A7.

Table A1 SI prefixes

Multiplier Prefix Symbol

1018 exa E

1015 peta P

1012 tera T

109 giga G

106 mega M

103 kilo k

102 hecto h

10 deka da

10−1 deci d

10−2 centi c

10−3 milli m

10−6 micro l

10−9 nano n

10−12 pico p

10−15 femto f

10−18 atto a

Table A2 Physical constants

Avogadro's number (NA) 6.0222 � 1026 molecules/(kg mole)

Boltzmann's constant (k) (1.38032 ± 0.00011) � 10−23 J/(mol K)

8.6171 � 10−5 ev/K

Planck's constant (h) (6.6237 ± 0.0011) � 10-34 J/s

Stefan-Boltzmann constant (r) 5.66961 � 10-8 W/(m2 K4)

Speed of light in vacuum (c) 2.9979 � 108 m/s

Speed of sound in dry air at 0°C (1 atm) 331.36 m/s

Universal gas constant (Ro) (8.31436 ± 0.00038) J/(mol K)

Standard gravitational acceleration (g) 980.665 cm/s2

(continued)
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Table A2 (continued)

Standard atmospheric pressure (1 atm) 1.013246 � 105 N/m2

1.01325 bar

760 mm Hg (0°C)

10.3323 m H20 (4°C)

1.03323 kgf/cm
2

14.696 psi

1 cm Hg 1333 N/m2

1 mm Hg 1 torr

1 atm 760 torr

1 bar 1 � 10-5 N/m2

1 Newton (N) 1 kg m/s2

1 dyne 1 g cm/s2 = 10-5 N

1 joule (J) 1 kg m2/s2 = 107 erg

1 kcal 4186 J

1 ev 1.602 � 10-19 J

1 liter 1000.028 cm3

1 Angstrom (A) 10−10 m

lnx 2.30258 log10x

e 2.71828

1° 0.01745 radians

p 3.14159

Ice point (at 1 atm) 273.15 K

Note At standard conditions 1 kg-mole occupies 22.4146 ± 0.0006 m3 volume

Table A3.1 Thermophysical properties of metals

Material Temperature
range (°C)

Density q
(kg/m3) �
10−3

Specific heat c at
20 °C [kJ/(kg K)]

Thermal
conductivity
k [W/(m K)]

Aluminium 0–400 2.71 0.895 202–250

Duralumin 0–200 2.79 0.883 159–194

Brass (70%Cu, 30% Zn)
Bronze (75% Cu, 25% Sn)

100–300 8.52 0.380 104–147

0–100 8.67 0.340 26

Copper
Cast Iron

1–600 8.95 0.380 385–350

20 7.26 0.420 52

Wrought iron 0–1000 7.85 0.46 59–33

Lead 1–300 11.35 0.130 35–31

Mercury 0–300 13.6 0.14 8–14

Nickel 0–400 8.9 0.445 93–59

Silver (99.9%) 0–400 10.52 0.234 410–360

Steel (C = 0.5%) 0–1000 7.83 0.465 55–29

Steel (C = 1%) 0–1000 7.80 0.470 43–28

Cr-Steel (Cr = 1%) 0–1000 7.86 0.460 62–33

18–8 Stainless steel 0–600 7.82 0.460 16–26

Tin 1–200 7.3 0.220 66–57

Tungsten 0–800 19.3 0.133 166–76

Zinc 0–400 7.14 0.385 117–98
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Table A3.2 Thermophysical properties of non-metals

Material Temperature
(°C)

Density q
(kg/m3)

Specific heat c [kJ/
(kg K)]

Thermal conductivity
k [W/(m K)]

Non-metals

Asbestos (loose) 0–100 400–900 0.82 0.15–0.22

Brick 25 1600–1900 0.84 0.4–0.7

Calcium silicate 40 190 0.055

Clay 0–100 1460 0.88 1.3 at 20 °C

Concrete 25 1900–2300 0.88 0.81–1.40

Coal (anthracite) 25 1350 1.25 0.25

Cork 25 45–130 1.8 0.4

Cotton 25 80 1.3 0.06

Glass, window 25 2700 0.84 0.78

Glass wool 25 24–160 0.7–0.8 0.04

Granite 25 2630 0.78 2.8

Gypsum
plaster/board

25 600–800 0.6-1.1 0.17–0.3

Ice 0 920 2.04 1.88

Lime stone 25 2300–2500 0.8-0.9 1.25–2.2

Magnesia 85% 40 185–270 0.05–0.07

Marble 25 2500–2700 0.8-0.85 2.0–2.8

Mica (across
layers)

0.71

Mineral wool 25 160–190 1.03 0.045

Paper 25 930 1.34 0.18

Paraffin 25 900 2.9 0.24

Plaster, cement
sand

25 1850 0.72

Plywood, bonded 25 545 1.21 0.12

Porcelain 25 2400 5.0

Polystyrene
(expanded)

25 35–55 1.5 0.027–0.04

Polyurethane
foam (rigid)

25 30–45 1.4-1.5 0.025

Rubber, hard 25 1200 2.01 0.15

Sand 25 1510 0.8 0.27

Sand stone 25 2150–2300 0.75 2.9

Sawdust 25 0.059

Wood (oak) 25 550–800 2.4 0.17–0.35

Wood (balsa) 25 140 0.055
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Table A4 Thermophysical properties of water at atmospheric pressure

t (°
C)

Density
(kg/m3)

Specific
heat [kJ/
(kg K)]

Thermal
conductivity
[W/(m K)]

Dynamic viscosity
� 106 [N s/m2 or
kg/(m s)]

Prandtl
number
Pr

Volume
expansion
coefficient b �
103 (1/K)

5 999.9 4.204 0.572 1501 11.1 0.016

10 999.7 4.193 0.585 1300 9.44 0.081

15 999.0 4.186 0.591 1136 8.08 0.144

20 998.2 4.183 0.601 1002 7.00 0.201

25 997.0 4.181 0.609 890 6.13 0.253

30 995.6 4.179 0.617 797 5.40 0.304

35 994.0 4.178 0.624 718 4.81 0.342

40 992.2 4.179 0.631 651 4.30 0.385

45 990.2 4.181 0.637 594 3.90 0.422

50 988.1 4.182 0.644 544 3.55 0.459

55 985.2 4.183 0.648 501 3.24 0.484

60 983.3 4.185 0.654 463 3.00 0.521

65 980.4 4.188 0.658 430 2.76 0.553

70 977.5 4.191 0.663 400 2.56 0.586

75 974.7 4.194 0.667 374 2.39 0.614

80 971.8 4.198 0.670 351 2.23 0.652

85 969.0 4.203 0.673 330 2.09 0.675

90 965.3 4.208 0.675 311 1.97 0.700

95 961.5 4.213 0.677 294 1.86 0.721

100 958.3 4.211 0.682 282 1.76

Table A5 Thermophysical properties of air at atmospheric pressure

t,
(oC)

Density
(kg/m3)

Specific
heat, cp [kJ/
(kg K)]

Dynamic viscosity �
105 [N s/m2 or kg/(m
s)]

Thermal
conductivity
[W/(m K)]

Thermal
diffusivity
� 104

(m2/s)

Pr

0 1.3005 1.0055 1.7127 0.02412 0.1860 0.715

25 1.1868 1.0057 1.8363 0.02608 0.2190 0.709

50 1.0949 1.0072 1.9512 0.02799 0.2570 0.703

75 1.0052 1.0089 2.0658 0.02990 0.2952 0.697

100 0.9452 1.0113 2.1720 0.03170 0.3340 0.693

125 0.8872 1.0138 2.2776 0.03350 0.3729 0.689

150 0.8370 1.0171 2.3769 0.03522 0.3969 0.686

175 0.7873 1.0204 2.4761 0.03693 0.4203 0.683

200 0.7474 1.0248 2.570 0.03859 0.4846 0.681

225 0.7079 1.0291 2.664 0.04025 0.5510 0.680

250 0.6762 1.0339 2.752 0.04186 0.6005 0.680

275 0.6448 1.0388 2.841 0.04347 0.6493 0.680

300 0.6174 1.0466 2.926 0.04497 0.6983 0.680

325 0.5901 1.0545 3.011 0.04647 0.7473 0.680
(continued)
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The following relations for thermophysical properties of the air may be used:

cp ¼ 1006
Tm
293

� �0:0155

ðaÞ

k ¼ 0:0257
Tm
293

� �0:86

ðbÞ

l ¼ 1:81� 10�5 Tm
293

� �0:735

ðcÞ

q ¼ 1:204
293
Tm

� �
ðdÞ

Pr ¼ lcp
k

ðeÞ

where temperatures are in K.

Table A6 Order of magnitude of convective heat transfer coefficients

Mode Heat transfer coefficient, h [W/(m2 K)]

Natural or free convection, gases 5–25

Forced convection, air (1 atm) 10–250

Forced convection, air (200 atm) 200–1000

Forced convection, organic liquids 100–1000

Forced convection, water 500–104

Boiling, organic liquids 500–2.5 � 104

Boiling, water 2500–5 � 104

Condensation, organic vapours 500–104

Condensation, water vapour 2000–5 � 104

Table A5 (continued)

t,
(oC)

Density
(kg/m3)

Specific
heat, cp [kJ/
(kg K)]

Dynamic viscosity �
105 [N s/m2 or kg/(m
s)]

Thermal
conductivity
[W/(m K)]

Thermal
diffusivity
� 104

(m2/s)

Pr

350 0.5674 1.0589 3.091 0.04794 0.8004 0.681

375 0.5448 1.0632 3.171 0.04941 0.8535 0.682

400 0.5247 1.0690 3.248 0.05080 0.9082 0.683

425 0.5046 1.0747 3.325 0.05219 0.9628 0.684

450 0.4883 1.0799 3.400 0.05358 1.0179 0.685

475 0.4722 1.0852 3.475 0.05498 1.0730 0.686

500 0.4570 1.0913 3.564 0.05633 1.1317 0.687
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See Table A8.

Table A7 Fouling factors*, m2 K/W

Temperature of heating
medium

Up to 115 °C 115°C – 200 °C

Temperature of water 50 °C or less >50 °C

Velocity <0.9 m/s > 0.9m/s <0.9 m/s >0.9 m/s

Type of water

Seawater 0.0002 0.0002 0.0002 0.0002

Hard water 0.0005 0.0005 0.001 0.001

River water 0.00035–
0.0005

0.0002–
0.00035

0.0005–
0.0007

0.00035–
0.0005

Distilled water 0.0001 0.0001 0.0001 0.0001

Treated boiler feed water 0.0002 0.0001 0.0002 0.0002

Muddy water 0.0005 0.0005 0.001 0.001

Other Fluids
Fuel oil 0.00035–0.0009

Engine lubricating oil 0.0002

Transformer oil 0.0002

Refrigerant (liquid), including ammonia 0.0002

Brine 0.0002–0.0005

Methanol, ethanol, ethylene glycol solutions 0.00035

Steam 0.0001

Air 0.0002–0.0004

Diesel engine exhaust 0.002

Refrigerant vapour, including ammonia 0.0002

*For details, refer to Standards of Tubular Exchanger Manufacturers Association (1999), 8th edn., New York

Table A8 Total hemispherical emissivity of surfaces*

Surface Temperature (°C) Emissivity (e)

Metals

1. Aluminum

Highly polished (98 % pure) 225–575 0.039–0.057

Polished 20 0.05–0.06

Commercial sheet 25 0.06–0.09

Oxidized at 600 °C 200–600 0.02–0.03

2. Brass (70% Cu, 30% Zn)

Highly polished 250–375 0.033–0.07

Rolled natural surface 22 0.06

Dull plate 50–350 0.2–0.25

Oxidized (heated to 600 °C) 200–600600 0.45–0.6

Surface Temperature (°C) Emissivity (e)

3. Bronze 100–300

Polished 0.03–0.07

Commercial 0.2–0.25
(continued)
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Table A8 (continued)

Surface Temperature (°C) Emissivity (e)

4. Cast iron

Polished 200 0.15–0.25

Newly turned 20 0.44

Rough 20 0.55–0.65

Rough and oxidized 40–250 0.6–0.9

5. Copper

High polish 20 0.02

Commercial polish 80 0.03

Commercial 0.1–0.2

Heated for a long time, coated with oxide layer 25 0.78

6. Chromium 40–500 0.08–0.3

7. Gold, polished 200–600 0.018–0.035

8. Monel metal 200–600 0.4–0.45

9. Nichrome wire, oxidized 50–500 0.95–0.98

10. Nickel

Polished 100 0.05–0.07

Oxidized 650–1250 0.35–0.8

11. Platinum: polished, pure 200–600 0.05–0.1

12. Silver, polished 30–500 0.02–0.032

13. Stainless steel (18%Cr, 8%Ni), polished 0–1000 0.07–0.17

14. Steel

Polished 100 0.06–0.35

Oxidized at 600 °C 200–600 0.64–0.78

Oxidized and rough 40–300 0.9–0.95

Molten 1500–1550 0.42–0.53

15. Tin, polished 0–200 0.04–0.06

16. Tungsten filament 3300 0.39

17. Zinc, polished 0–400 0.02–0.03

Oxidized 0.1–0.11

Galvanized 0.2–0.3

Building and construction materials

Asbestos 25–350 0.93–0.95

Brick

Red and rough 20 0.9–0.95

Magnesite refractory 1000 0.38

Fireclay 1000 0.75

Lime stone 100–400 0.95–0.8

Surface Temperature (°C) Emissivity (e)

Sand stone 0–300 0.83–0.90

Concrete 0–200 0.94

Marble 0–100 0.93–0.95

Plaster, rough lime 10–90 0.91

Porcelain, glazed 25 0.92

Glass, window (smooth) 0–600 0.88

Wood (oak) 0–100 0.9
(continued)
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Table A8 (continued)

Surface Temperature (°C) Emissivity (e)

Rubber, glossy plate 25 0.94

Paper 90 0.89

Paints

Aluminium paint, varying age 20–100 0.27–0.67

Black shiny lacquer on iron 25 0.87

Enamel, white fused on iron 20 0.9

Flat black paint (lacquers) 35–100 0.96–0.98

Lampblack, 0.075 mm layer and thicker (rough deposit) 40–350 0.95–0.9

Others

Water 0–100 0.95–0.96

Ice 0 0.97–0.99

*The emissivity values may vary significantly with the condition of the surface
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Short Questions

Useful short questions for competitive examinations (including GATE and IES)
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1. For metals, the ratio of thermal conductivity and electrical conductivity equals to

(a) Prandtl number (b) Schmidt number
(c) Lewis number (d) Lorenz number

[Ans. (d).]

2. In the case of one-dimensional heat conduction through a plain wall without heat generation and with 
constant properties, (∂t/∂τ) is proportional to

(a) t/x (b) ∂t/∂x
(c) ∂2t/∂x2 (d) ∂2t/∂x∂τ

[Ans. (c).]

3. A composite slab has two layers of different materials with thermal conductivity k1 and k2. If each layer 
has the same thickness, the equivalent thermal conductivity of the slab would be

(a) k1 k2 (b) k1 + k2

(c) (k1 + k2)/ k1k2 (d) 2k1k2/(k1 + k2)

[Hint:

AkAk

tt

kA

tt

21

2121

2 δδδ +

−
=

−
; solve for k]

[Ans. (d).]

4. For steady flow of heat and no heat generation, the temperature distribution in a plane wall of constant 
value of thermal conductivity is

(a) linear (b) Parabolic
(c) Logarithmic (d) Cubic

[Ans. (a).] 

5. In a composite plain wall shown in figure, the interface temperature is average of the end face 
temperatures. For steady state one-dimensional heat conduction the ratio of thermal conductivities is 
given by

(a) k1/k2 = ½

2δ δ

k1 k2

t1

t2(b) k1/k2 = 3/2
(c) k1/k2 = 2
(d) k1/k2 = 1
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[Hint:
δδ

2
2

1
1 2

tt
Ak

tt
Ak mm −

=
−

, where
2

21 tttm
+

= ; solve for k1/k2]

[Ans. (c).]

6. The wall of a furnace is made of bricks (thickness 0.45 m and thermal conductivity 0.7 W/(m K). For 
the same heat loss and temperature drop, the brick wall can be replaced by a layer of insulation of 
conductivity 0.35 W/(m K) and of thickness

(a) 0.9 m    (b) 0.45 m,   
(c) 0.225 m (d) 0.15 m.

[Hint:
AkAk 2

2

1

1 δδ
= , solve for δ2]

[Ans. (c).]

7. For the furnace wall shown in figure, the interface temperature will be

(a) 510oC
(b) 870oC
(c) 1020oC
(d) 600oC

[Hint: ;

2

2

2

2

2

1

1

21

k

TT

kk

TT m

δδδ
−

=
+

−
solve for Tm.]

[Ans. (b)]

8. Consider steady state heat conduction across the thickness in a plane composite wall (as shown in the 
figure) exposed to convection conditions on both sides. Given: hi = 20 W/(m2 K), ho = 50 W/(m2 K), Ti

= 20oC, To = -2oC, k1 = 20 W/(m K), k2 = 50 W/(m K), δ 1 = 0.3 m, δ 2 = 0.15 m. Assuming negligible 
contact resistance between the wall surfaces, the temperature at the interface of the two walls will be

(a) -0.50
(b) 2.75
(c) 3.75
(d) 4.50

TI, hi To, ho
1 2

δ1 δ 2

950oC

k = 5 
W/(m K)

k = 0.5 
W/(m K)

70oC

0.5 m 0.5 m
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[Hint: ;
111

2

2

2

2

1

1

o

om

oi

oi

hk

TT

hkkh

TT

+

−
=

+++

−
δδδ solve for Tm.]

[Ans. (c)]

9. A steam pipe is covered with two layers of insulating material with better insulating material next to 
the pipe. If the layers of the insulating materials are interchanged, the conduction heat transfer will

(a) will decrease (b) will increase
(c)  will not change (d) may increase of decrease

[Ans. (b).]

10. In a large plate, the steady temperature distribution is as shown in Fig. 1. If no heat is generated in the 
plates, the thermal conductivity k varies as (t is temperature in oC, ko is thermal conductivity at 0oC and 
β is a constant)

(a) ko(1 + βt)
(b) ko(1 - βt)
(c) ko - βt
(d) ko + βt

[Ans. (b); refer Fig. 2.34]

11. If the thermal conductivity of a material of plane wall varies with temperature as k0(1 + βt), then the 
temperature at the central plane of the wall as compared to that in the case of constant thermal 
conductivity will be

(a) less (b) more
(c )   the same (d) depends on other factors

[Ans. (b); refer Fig. 2.34]

12. The temperature drop through layers 1 and 2 of a furnace wall is shown in figure. For δ1 = δ2 and T1 >
T2, which one of the following statements is correct?

(a) k1 = k2

(b) k1< k2

(c) k1 > k2

(d) none of the above

[Hint: Higher is the thermal conductivity, lower is the temperature drop]

T1

T2

k2k1

δ 2δ 1
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[Ans. (c)]

13. Three plane walls of the same cross sectional area and thickness are having thermal conductivities in 
the ratio 1:2:3. The temperature drops in these walls will be in the ratio

(a) 1: 1: 1 (b) 1: 2:3
(c)   1/3 : 1/2 : 1 (d) 1: 1/2 : 1/3

[Hint: Higher is the thermal conductivity, lower is the temperature drop]

[Ans. (d)]

14. For a composite wall of layer thicknesses δ1, δ 2 and δ 3 and thermal conductivities k1, k2 and k3,
respectively, the overall heat transfer coefficient U is given by

(a) 
1

3

3

2

2

1

1

−

⎟⎟⎠

⎞
⎜⎜⎝

⎛
++=

δδδ
kkkU (b) 

3

3

2

2

1

1

δδδ
kkkU ++=

(c)   
1

3

3

2

2

1

1

−

⎟⎟⎠

⎞
⎜⎜⎝

⎛
++=

kkk
U

δδδ
(d)

3

3

2

2

1

1

kkk
U

δδδ
++=

[Ans. (c)]

15. What will be the geometric radius of heat transfer for a hollow sphere of inner and outer radii r1 and 
r2 for the same rate of heat transfer?

(a) √( r1 r2) (b) r1r2

(c)  (r1 + r2)/2 (d) r1r2/2

[Hint:
12

21

12

21
21 )4(

rr
ttkA

rr
ttrrk m −

−
=

−
−π

12

212 )](4[
rr
ttrk m −

−= π ; solve for rm]

[Ans. (a)]

16. If k is thermal conductivity of an insulating material and ho is the heat transfer coefficient from the 
surface to air, the critical thickness of insulation for the cylinder is equal to

(a) k/ho (b) 2k/ho    
(c) ho/k     (d) 2ho/k

[Ans. (a)]
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17. With an increase in the insulation thickness around a circular cross-section pipe, the heat loss to the 
surroundings due to

(a) convection and conduction decreases
(b) convection and conduction increases
(c) convection decreases and conduction increases
(d) convection increases and conduction decreases

[Ans. (d)]

18. Up to critical thickness of the insulation

a) Added insulation will decrease heat transfer
b) Added insulation will increase heat transfer
c) convection decreases and conduction increases
d) None of the above

[Ans. (b)]

19. For air, if values of thermal conductivity k and specific heat at constant pressure cp are independent of 
pressure, determine the dependence of thermal diffusivity on pressure.

[Ans. Thermal diffusivity
pc

k
ρ

α = and from perfect gas equation .p
RT
p ∝=ρ Hence,

p
1∝α ,

i.e. thermal diffusivity α varies inversely with pressure p.] 

20. Figure shows a two-dimensional body [k = 5 W/(m K)] and two isothermal surfaces A (at 50oC) and B 
(at 80oC). The heat enters the body at A with temperature gradient of 20 K/m. Determine temperature 
gradients xt ∂∂ / and yt ∂∂ / at surface B where the heat is leaving. 

[Ans. Heat flux vector is always normal to an isothermal surface. Since surface B is an isothermal 

vertical surface, .0/ =∂∂ yt From heat conservation, qA = qB, i.e.
BA x

tAk
y
tAk ⎟

⎠
⎞⎜

⎝
⎛

∂
∂−=⎟⎟⎠

⎞
⎜⎜⎝

⎛
∂
∂− ; For 

unit depth (in direction z),
Bx

t
⎟
⎠
⎞⎜

⎝
⎛

∂
∂××=×× )0.10.1(20)15.1( , i.e. 30=⎟

⎠
⎞⎜

⎝
⎛

∂
∂

Bx
t

K/m.]

A 

B  t(x, y) 

qA 

qB 

Insulation 

1.5 m 

1.0 m 
y  

x  
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21. For one dimensional axial heat flow in the conical cylinder shown in figure (with T1 > T2 and k = ko –
βT, where β is positive), the variation of heat flow rate qx, heat flux qx’’ and temperature gradient 
dT/dx with increasing x is: 

(i) qx: increases/decreases/remains constant
(ii) qx’’: increases/decreases/remains constant
(iii) dT/dx: increases/decreases/remains constant

[Ans. (i) Sides are insulated hence qx remains constant, (ii) since 
x

x
x A

q
q ='' and Ax increases with 

increasing x hence qx’’ decreases with increasing x (iii) since ,
''

k
q

dx
dT x−=⎟

⎠
⎞⎜

⎝
⎛ and k increases with 

increasing x because of decrease in temperature with increase in x, dT/dx decreases with increasing 
x.] 

22. Temperature distribution in a solid cylinder of diameter 0.2 m is given by T(r) = a + br2, where a = 50 
and b = -1000. The thermal conductivity of cylinder material is 40 W/(m K). If the convection 
coefficient at cylinder surface is 500 W/(m2 K), find the fluid temperature. 

[Ans. At the cylinder surface, 

[ ]∞
=

−==⎟
⎠
⎞⎜

⎝
⎛− TrrTLrh

dr
dTLrk oo

rr
o

o

)()2()2( ππ , or [ ]∞
=

−+=⎥⎦
⎤

⎢⎣
⎡ +− Tbrahbra
dr
dk o

rr o

)()( 22 ;

simplification and substitution of values of k, a, b and h gives fluid temperature T∞ = 24oC.] 

23. A fin of length L protrudes from a surface at temperature To, which is higher than the ambient 
temperature Ta. The heat dissipation from the free end of the fin is negligibly small. What is the 
temperature gradient (dt/dx) at the tip of the fin?

(a) (To – TL)/L
(b) TL/L
(c) (TL – Ta)/L
(d) Zero

[Ans. (d)]

x 

Insulation 

 T1 

T2 ï

ï

qx 

x 

x 

Appendix B 1109

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


24. A fin becomes effective if the Biot number Bi is
(a) less than one (b) more than one
(c)  equal to one (d) does not depend on Bi

[Ans. (a)]

25. For a fin to be effective, which one of the following is true?
(a) √(hAc/kP) = 1 (b) √(hAc/kP) > 1
(c)    √(hAc/kP) < 1 (d) 1 < √(hAc/kP) < 2

[Ans. (c)] 

26. Effectiveness of a fin will be the maximum in an environment with
(a) forced convection
(b) free convection
(c) boiling liquid
(d) condensing vapour

[Ans. (b)]

27. A plane wall of thickness L has a uniform volumetric heat generation source qg. It is exposed to local 
ambient temperature Ta at both faces. The surface temperature Ts of the wall under steady state 
condition is given by

(a) 
h
Lq

TT g
as 2

+= (b) 
k
Lq

TT g
as 2

+=

(c) 
h
Lq

TT g
as += (d) 

k
Lq

TT g
as +=

[Hint: Heat generated in the wall = heat rejected by convection from both faces, i.e. ALqg = 2 × hA(Ts

– Ta)]

[Ans. (a)] 

28. Consider steady one-dimensional heat flow in a plate of 20 mm thickness with a uniform heat 
generation rate of 80 MW/m3. The left and right faces are kept at constant temperature of 160oC and 
120oC, respectively. The plate has a constant thermal conductivity of 200 W/(m K). The location and 
magnitude of the maximum temperature within the plate from its left face.

[Hint and answer: ,02

2

=+
k

q
dx

td g and1Cx
k

q
dx
dt g +−= .

2 21
2 CxCx

k
q

t g ++−=

Obtain C1 and C2 from condition x = 0, T = 160oC and x = 0.02 m, T = 120oC. For the location of 
maximum temperature, dt/dx = 0 gives, x = C1k/qg = 5 mm and temperature distribution equation 
gives tx = 5mm = 165oC. ]
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29. Temperature distribution in a one-dimensional wall of thickness 0.25 m is given as T(x) = 100 -
1000x2. Thermal conductivity of the wall material is 40 W/(m K). Determine the heat generation rate
in the wall.

[Ans. From Eq. 2.13(c), ( )2
2

2

2

2

1000100 x
x

k
x
Tkqg −

∂
∂−=

∂
∂−= = 80000 W/m3; Alternatively 

calculate from difference of heat flow rates at two faces of the wall divided by volume of the wall, 

i.e. ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛

∂
∂−−⎟

⎠
⎞⎜

⎝
⎛

∂
∂−=

== 0

1

xLx
g x

TkA
x
TkA

AL
q .]

30. In transient heat conduction, the two significant dimensionless parameters are

(a) Reynolds number and Prandtl number
(b) Reynolds number and Biot number
(c) Biot number and Fourier number
(d) Fourier number and Reynolds number 

[Ans. (c)] 

31. Biot number may be expressed as 

(a) ratio of buoyancy to viscous forces
(b) ratio of internal thermal resistance of a solid to the boundary layer thermal resistance
(c) ratio of gravitational and surface tension forces
(d) ratio of heat conductance rate to the rate of thermal energy storage in a solid

[Ans. (b)]

32. The curve for the unsteady state cooling or heating of bodies is

(a) Parabolic curve asymptotic to the time axis
(b) exponential curve asymptotic to the time axis
(c) exponential curve asymptotic both to the time and temperature axes
(d) hyperbolic curve asymptotic to the time axis

[Ans. (b); refer Fig 6.2]

33. A spherical thermocouple junction of diameter 0.706 mm is to be used for the measurement of 
temperature of a gas stream. The convective heat transfer coefficient on the bead surface is 400 W/(m2

K). The thermophysical properties of the thermocouple material are k = 20 W/(m K), c = 400 J/(kg K)
and ρ = 8500 kg/m3. If the thermocouple initially at 30oC is placed in a hot stream of 300oC, the time 
taken by the bead to reach 298oC is

(a) 29.4 s (b) 2.35 s
(c) 14.7 s (d) 4.9 s
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[Hint: Bi = hL/k = 0.0023 < 0.1, lumped heat capacity analysis applies. ),/exp( VchA
TT
TT

i

ρτ−=
−
−

∞

∞

where A = 4πr2 and V = (4/3) πr3, solution gives τ = 4.9 s]

[Ans. (d)] 

34. A 10 mm diameter heated metal spherical ball is cooled in air. If the thermal conductivity of ball 
material is 20 W/(m K) and heat transfer coefficient is 10 W/(m2 K), do you expect radial gradients to 
be appreciable?

[Ans. ;1033.8
20

)6000/10(10)6/(Bi 4−×=×==
k

dh
Since Bi << 0.1, radial temperature gradients 

will not be appreciable. The sphere is behaving as span-wise isothermal object.]

35. A small copper ball of 5 mm diameter at 500 K is dropped into an oil bath whose temperature is 300 
K. The thermal conductivity of the copper is 400 W/(m K), its density 9000 kg/m3 and its specific 
heat 385 J/(kg K). If the heat transfer coefficient is 250 W/(m2 K) and lumped heat capacity analysis 
is assumed to be valid, the rate of the fall of the temperature of the ball at the beginning of the 
cooling will be, in K/s, 

(a) 8.7 (b) 13.9
(c)   17.3 (d) 27.7

[Hint: ),/exp( VchA
TT
TT

i

ρτ−=
−
−

∞

∞ ),)(/(
0

∞
=

−−=⎟
⎠
⎞⎜

⎝
⎛ TTVchA

d
dT

iρ
τ τ

solution gives 
0=

⎟
⎠
⎞⎜

⎝
⎛

ττd
dT

=

17.3 K/s]

[Ans. (c)]

36. The water pipe line in cold countries is laid at a certain depth from the earth surface in order to 

(a) supply warm water
(b) reduce friction losses
(c) prevent water from freezing
(d) none of the above

[Ans. (c)]

37. It is desired to increase the heat dissipation rate from the surface of an electronic device of spherical 
shape of 5 mm radius exposed to air [h = 5 W/(m2 K)] by encasing it in a spherical sheath of 
conductivity 0.04 W/ (m K). Determine the radius of the sheath for maximum heat flow. 

[Ans. rc = rseath = 2k/ho = (2 × 0.04/5) × 1000 = 16 mm.]
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38. A fin is 5 mm in diameter and 100 mm long. Determine the heat flow rate from the fin. Given: 
thermal conductivity of the fin material k = 400 W/(m K), fin base temperature ts = 130oC, 
surrounding air temperature ta = 30oC and the convective heat transfer coefficient h = 40 W/(m2 K).

[Hint: Ac<< PL; ( ) mLtthPkAq scfin tanh∞−= , where 
ckA

hPm = .]

[Ans. 5 W.] 

39. A thermocouple in a thermometer well measures the temperature of a gas flowing through a pipe. For 
low error of measurement of temperature, the thermometer well should be made of which material of 
the following?

(a) copper (b) brass (c) aluminium (d) steel

[Ans. (d)]

40. A large concrete slab has one dimensional temperature distribution

T = 4 – 10 x + 20 x2 + 10 x3

where T is temperature and x is distance from one face towards other face of the slab. If slab material 
has thermal diffusivity of 2 × 10-3 m2/h, what is the rate of change of temperature at x = 1 m? 

[Ans. 2304010 xx
x
T ++−=

∂
∂

, x
x
T 60402

2

+=
∂
∂

. For one-dimensional transient heat conduction,

⎟
⎠
⎞⎜

⎝
⎛

∂
∂=

∂
∂

τα
T

x
T 1
2

2

. Hence, ( )x
x
TT 6040102 3
2

2

+××=
∂
∂=

∂
∂ −α

τ
;

1=
⎟
⎠
⎞⎜

⎝
⎛

∂
∂

x

T
τ

C/h.2.0 o= ]

41. Using thermal-electrical analogy in heat transfer, match list I (electrical quantities) with List II 
(thermal quantities) and select the correct answer using the codes given below the lists.

List I
A. Voltage B. Current
C. Resistance D. Capacitance

List II
1. Thermal resistance
2. Thermal capacity
3. Heat flow
4. Temperature

Codes
A B C D

(a)   2 3 1 4
(b)   4 1 3 2
(c)   2 1 3 4
(d)   4 3 1 2
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[Ans. (d)]

42. Match list I (governing equations of heat transfer) with list II (specific cases of heat transfer) and 
select the correct answer using the code given below the lists.

List I

A. 02
2

2

=⎟
⎠
⎞⎜

⎝
⎛+

dr
dT

rdr
Td

B. ⎟
⎠
⎞⎜

⎝
⎛

∂
∂=

∂
∂

τα
T

x
T 1
2

2

C. 01
2

2

=⎟
⎠
⎞⎜

⎝
⎛+

dr
dT

rdr
Td

D. 02
2

2

=− θθ m
dx
d

List II
1. Pin fin 1-D case
2. 1-D conduction in cylinder
3. 1-D conduction in sphere
4. Plane slab

Codes
A B C D

(a)   2 4 3 1
(b)   3 1 2 4
(c)   2 1 3 4
(d)   3 4 2 1

[Ans. (d)]

Fill in the blanks:

43. Thermal diffusivity controls the temperature distribution in the ………. state. (unsteady/steady)

[Ans. Unsteady.]

44. For steady state and constant value of thermal conductivity, the temperature distribution associated 
with radial conduction through a cylinder has a …………. curve.

[Ans. Logarithmic.]

45. For steady state and constant value of thermal conductivity, the temperature distribution associated 
with radial conduction through a spherical shell has a …………. curve.

[Ans. Hyperbolic.]

46. In the case of steady state and one dimensional heat conduction (in the radial direction only) without 
heat generation, the equation of heat conduction for the cylinder is …………….
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[Ans. 01
2

2

=⎟⎟⎠

⎞
⎜⎜⎝

⎛
+

dr
td

dr
dt

r
]

47.The heat flow equation through a cylindrical vessel (inner radius r1, outer radius r2 and length L) is 
desired in the same form as that for a plane wall. The equivalent area is given by .................

[Ans. 
⎟⎠
⎞⎜⎝

⎛
−

1

2

12

ln A
A

AA
]

48. One dimensional (radial), unsteady state conduction heat transfer equation for a sphere with heat 
generation at the rate qg is ……….

[Ans. ⎟
⎠
⎞⎜

⎝
⎛

∂
∂=+⎟

⎠
⎞⎜

⎝
⎛

∂
∂

∂
∂

τα
t

k
q

r
tr

rr
g 11 2

2
]

49. If k is thermal conductivity of an insulating material and ho is the heat transfer coefficient from the 
surface to air, the critical thickness of insulation for the sphere is equal to ............ 

[Ans. 2k/ho]

50. Fins should be used on the side where the heat transfer coefficient is …………. (low/high)

[Ans. Low.]

51. Fins should have …… …….. perimeter to area of cross-section ratio.         (small/ Large)

[Ans. Large.]

52. Thermal conductivity of the fin material should be ……………. (low/high)

[Ans. High.]

53. The insulated tip temperature of a rectangular longitudinal fin having an excess (over ambient) root 
temperature of θo is ……………..

[Ans.
mL

xLm

o cosh
)(cosh −=

θ
θ

; for the tip x = L hence 
mL

o
L cosh

θθ = .]

54. The overall heat transfer coefficient U for a composite plane wall of n layers is given by (the thickness 
of the ith layer is δi, thermal conductivity of the ith layer is ki, convective heat transfer coefficients are 
hi and ho) ..............................

[Ans.
1

1

11
−

=
⎟⎟⎠

⎞
⎜⎜⎝

⎛
++ ∑

o

n

i i

i

i hkh
δ

]
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55. Answer the following questions:

(i) What is equivalent diameter for an annulus of a double pipe heat exchanger for the 
calculation of heat transfer coefficient?

(ii) What is equivalent diameter for a rectangular duct of width W and height H for the 
calculation of heat transfer coefficient?

(iii) What is LMTD and when is it used?
(iv) Write the equation relating overall heat transfer coefficient and individual heat transfer 

coefficients

56. Prandtl number is given by

(a) μcp/k   (b) hL/k     
(c) k/μcp      (d) hk/L

[Ans. (a)] 

57. Stanton number is the ratio of

(a) Reynolds number to Prandtl number
(b) Prandtl number to Nusselt number
(c) Nusselt number to Peclet number
(d) Peclet number to Reynolds number

[Ans. (c)] 

58. In a heat exchanger where one of the fluids undergoes phase change,

(a) the two fluids should flow opposite to each other
(b) the two fluids should flow parallel to each other
(c) the two fluids should flow normal to each other
(d) the direction of flow of the fluids is of no significance

[Ans. (d)] 

59. For natural convection heat transfer, Nusselt number is a function of

(a) Prandtl number Grashof number
(b) Reynolds number and Grashof number
(c) Reynolds number and Prandtl number
(d) Stanton number and Peclet number

[Ans. (a)] 

60. For forced convection heat transfer, Nusselt number is a function of
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(a)  Prandtl number Grashof number
(b) Reynolds number and Grashof number
(c) Reynolds number Prandtl number
(d) Stanton number and Peclet number

[Ans. (c)] 

61. Reynolds number is given by the ratio of two physical quantities. Name these quantities.
62. A cold fluid is stored in spherical vessel in order to

(a) reduce rate of heat transfer
(b) increase rate of heat transfer
(c) prevent the liquid from freezing
(d) none of the above

[Ans. (a)] 

63. In a heat exchanger, for a given heat flow rate and also the same inlet and outlet temperatures, the heat 
transfer area will be minimum for 

(a) counter flow arrangement
(b) parallel flow arrangement
(c) cross-flow arrangement
(d) none of the above

[Ans. (a)] 

64. Consider the following conditions for heat transfer (thickness of thermal boundary layer is δt, velocity 
boundary layer is δ and Prandtl number is Pr)

(1) δ = δt, when Pr = 1
(2) δ > δt, when Pr > 1
(3) δ < δt, when Pr < 1

Which of the above conditions apply for the convective heat transfer?

(a)  1 and 2 (b) 2 and 3 (c) 1 and 3 (d) 1, 2 and 3

[Ans. (d)]

65. The thickness of the thermal boundary layer is equal to the hydrodynamic boundary layer when the 
Prandtl number is equal to

(a) 0.0 (b) 0.1 (c) 0.5 (d) 1.0
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[Ans. (d)] 

66. For flow of a fluid over a heated plate, the following fluid properties are known: μ = 0.001 Pa s, cp = 1 
kJ/(kg K) and k = 1 W/(m K). The hydrodynamic boundary layer thickness at a location is 1 mm. The 
thermal boundary layer thickness at the same location is

(a) 0.001 mm (b) 0.01 mm
(c) 1 mm (d) 1000 mm.

[Hint: Pr = μcp/k = 1 hence δt = δ.]

[Ans. (c)] 

67. The velocity profile of a fluid flowing through a tube depends on

(a) the velocity of the fluid
(b) the diameter of the tube
(c) the viscosity of the fluid
(d) the Reynolds number

[Ans. (d)] 

68. The velocity and temperature distribution in a pipe flow are given by U(r) and T(r), respectively. If um
is the mean velocity at any section of the pipe, the bulk mean temperature at that section is 
.......................

[Ans.
( )

m

R

uR

rTrUrdr
2

0
)()(2

π

π∫ ]

69. For laminar flow over a flat plate, the local heat transfer coefficient hx varies as (x)-1/2, where x is the 
distance from the leading edge of the plate. The ratio of the average heat transfer coefficient between 
the leading edge and location at L on the plate to the local heat transfer coefficient hx = L at L is

(a) 8 (b) 4 (c) 2 (d) 1

[Ans. (c)]

70. Nusselt number for fully developed turbulent flow in a pipe is given by Nu = C Rea Prb. The values of 
a and b are

(a) a = 0.5 and b = 0.33 for heating and cooling both
(b) a = 0.5 and b = 0.4 for heating and b = 0.3 for cooling
(c) a = 0.8 and b = 0.4 for heating and b = 0.3 for cooling
(d) a = 0.8 and b = 0.3 for heating and b = 0.4 for cooling

[Ans. (c)]
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71. In the case of free convection over a vertical flat plate, the Nusselt number Nu varies with Grashof 
number Gr as

(a) Gr1/4 and Gr1/3 for laminar and turbulent flows, respectively
(b) Gr1/3 and Gr1/4 for laminar and turbulent flows, respectively
(c) Gr1/3 and Gr1/2 for laminar and turbulent flows, respectively
(d) Gr1/2 and Gr1/3 for laminar and turbulent flows, respectively

[Ans. (a)]

72. A fluid of thermal conductivity 1.0 W/(m K) flows as fully developed flow with Reynolds number of 
1500 through a pipe of diameter 0.1 m. The heat transfer coefficient in W/(m2 K) for uniform heat 
flux and uniform wall temperature conditions are, respectively

(a) 36.58 and 43.64 
(b) 43.64 and 36.58
(c) 43.64 for both the cases
(d) 36.58 for both the cases

[Hint: Uniform heat flux, Nu = 4.364 and constant surface temperature, Nu = 3.658]

[Ans. (b)]

73. If MLTθ system (T being time and θ is temperature), what is the dimension of thermal conductivity? 

(a) ML-1T-1θ-3 (b) MLT-3θ-1

(c) MLT-2θ-1 (d) MLT-1θ-1

[Ans. (b)]

74. In the case of flow across a horizontal cylinder of diameter d, free convective heat transfer coefficient 
for 109 ≤ Ra ≤ 1012 will

(a) vary as d0.75 (b) vary as d0.2 5

(c) vary as d0.33 (d) independent of d

[Ans. (d)]

75. A heated plate maintained at constant temperature 90oC is cooled by a coolant at 30oC. The 
temperature distribution in the boundary layer is given by (20 + 50 e-y), where temperature is in oC and 
distance y is in m. If the thermal conductivity of the coolant is 0.6 W/(m K), determine the heat transfer 
coefficient. 

[Ans. h = -k (∂T/∂y)y = 0/(Twater – Tsurface); (∂T/∂y)y = 0 = [50 × (-1) × e-y] y = 0 = -50. Hence, h = - 0.6 × (-
50)/(90 – 30) = 0.5 W/(m2 K).] 
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76. A duct of rectangular cross-section 1 m × 0.5 m, carrying air at 20oC with a velocity of 10 m/s, is 
exposed to an ambient of 30oC. For air in the range of 20-30oC, k = 0.025 W/(m K), viscosity = 18 ×
10-6 Pa s, density = 1.2 kg/m3. Determine the Reynolds number for the flow.

[Hint: Dh = 4WH/[2(W + H)] = 2/3; Re = ρUDh/μ]

[Ans. 4.44 × 105]

77. The average heat transfer for the surface of a thin hot vertical plate suspended in still air can be 
determined from the observations of the change in the plate temperature with time as it cools. Assume 
the plate temperature to be uniform at any instant of time and radiation heat exchange with the 
surroundings is negligible. The ambient temperature is 25oC, the plate has total surface area of 0.1 m2

and a mass of 4 kg. The specific heat of the plate material is 2.5 kJ/(kg K). The convective heat transfer 
coefficient in W/(m2 K), at the instant when the plate temperature is 225oC and the change in plate 
temperature with time dT/dτ = -0.02 K/s, is

(a) 200 (b) 20 (c) 15 (d) 10.

[Hint: hA (T – Ta ) = - mcp (dT /dτ)]

[Ans. (d)] 

78. The average Nusselt number in laminar natural convection from a vertical wall at 180oC with still air 
at 20oC is found to be 48. If the wall temperature becomes 30oC, all other parameters including the 
thermophysical properties remaining the same, the average Nusselt number will be

(a) 8 (b) 16 (c) 24 (d) 32.

[Hint: Nu ∝ (Gr)1/4 ∝ (∆T )1/4]

[Ans. (c)]

79. Determine the ratio of length to diameter for minimum surface area of a hot water container to reduce 
convection heat transfer.

[Ans. Volume of the container, V = (π/4)D2L. Surface area, As = 2 × (π/4)D2 + πDL. Putting L =
4V/πD2, As = 2× (π/4)D2 + 4V/D; dAs/dD = πD – 4V/D2, Equating dAs/dD to 0 for minimum or 
maximum value of As and putting V = (π/4)D2L, we get the necessary condition as L/D = 1; d2As/dD2

= π + 8V/D3, which is a positive quantity hence the condition L/D = 1 refers to the minimum surface 
area of the container.] 

80. Variation of local heat transfer coefficient hx with distance x for laminar flow over a flat plate is given 
as hx = Cx-0.5, where C is a constant. Determine ratio of average heat transfer coefficient to the local 
heat transfer coefficient at distance x.

1120 Appendix B

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


[Ans. .22
5.0

1 5.0

0

5.0

0

5.0

0 x

x
xx

xav hCxx
x
Cdxx

x
Cdxh

x
h ==⎥

⎦

⎤
⎢
⎣

⎡
=== −−∫∫ Hence, hav/hx = 2.] 

81. Variation of local heat transfer coefficient hx with distance x for free convection from a vertical heated 
plate is given as hx = Cx-0.25, where C is a constant. Determine ratio of average heat transfer 
coefficient to the local heat transfer coefficient at distance x.

[Ans. .
3
4

3
4

75.0
1 25.0

0

75.0

0

25.0

0 x

x
xx

xav hCxx
x
Cdxx

x
Cdxh

x
h ==⎥

⎦

⎤
⎢
⎣

⎡
=== −−∫∫ Hence, hav/hx = 4/3.] 

82. Local heat transfer coefficient hx for a flat surface (L = 3 m) varies with distance x as hx = 1 + 20x –
5x2. Determine maximum value of the local heat transfer coefficient. 

[Ans. 0)5201()( 2 =−+= xx
dx
dh

dx
d

x gives x = 2 m; .010)5201()( 2
2

2

2

2

<−=−+= xx
dx
dh

dx
d

x

Hence, at x = 2 m maximum of hx occurs and its value is 21W/(m2 K).] 

83. For one dimensional heat flow in the wall [ks = 40 W/(m K)], determine the convection heat transfer 
coefficient and temperature gradient in the fluid [kf = 0.5 W/(m K)] at the wall surface.

[Ans. qconduction = qconvection gives  );( 2
21

∞−=
− tthAttAks δ

Substitution of values of various terms 

gives h = 2933 W/(m2 K). Also ),( 2 ∞
=

−=⎟
⎠
⎞⎜

⎝
⎛− tthA
dx
dtAk

x
f

δ

which gives 

87990)( 2 −=−−=⎟
⎠
⎞⎜

⎝
⎛

∞
=

tt
k
h

dx
dt

fx δ

oC/m.] 

84. For fully developed Couette flow between two parallel plates at a gap of 5 mm, determine shear stress. 
One of the plates is moving at 100 m/s while the other is stationary. Fluid viscosity is 2×10-5 Ns/m2.

[Ans. For fully developed Couette flow, the velocity profile is linear. Hence, shear 

stress ⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

dy
duμτ 4.0

005.0
100102 5 =⎟

⎠
⎞⎜

⎝
⎛××=⎟

⎠
⎞⎜

⎝
⎛= −

L
Uμ N/m2.] 

90oC

35oC

h,
t∞ = 20oC

50 mm
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85. Local Nusselt number correlation for turbulent flow over a flat plate is given as Nux = 0.0296 Rex
0.8

Pr1/3. Find the ratio of average heat transfer coefficient to local coefficient. Assume flow to be 
turbulent from leading edge of the plate.

[Ans. From the given correlation, ,Pr0296.0Nu 2.03/1
8.0

−=⎟
⎠
⎞⎜

⎝
⎛== CxUx

x
k

x
kh xx ν

where

;Pr0296.0 3/1
8.0

⎟
⎠
⎞⎜

⎝
⎛=

ν
UkC .25.1

8.0
1

8.0
1 2.0

0

8.0

0

2.0
x

xx

av hCxx
x
CdxxC

x
h ==⎥

⎦

⎤
⎢
⎣

⎡
== −−∫

Hence, .25.1=
x

av

h
h

]

86. Air at 10 m/s and 25oC (υ = 0.22×10-4 m2/s) flows between infinite parallel plates, which are 
separated by a distance of 5 mm.   Determine the distance at which the boundary layers will merge.

[Ans. Boundary layer develops on both plates as shown in figure and they merge at distance x. At x,
the thickness of the boundary layer for one plate is 5/2 = 2.5 mm. Assuming the flow to be laminar, 

we have ,
Re

0.5

xx
=δ

or ,
/

0.5
/

0.5 2/1

νν
δ

∞∞

==
U

x
xU
x or 114.0

1022.025
100025.0

25 4

22

=
××
×== −

∞

ν
δ Ux m; 

ν
xU

x
∞=Re ,10551818

1022.0
114.010 5

4 ×<=
×

×= − i.e. the laminar flow assumption is correct.] 

87. Air at atmospheric pressure and a temperature of 50°C flows at 1.5 m/s over an isothermal plate (ts =
100oC) 1 m long with 0.5 m long unheated starting length. Determine the local heat transfer 
coefficient at the leading edge with or without unheated starting length.

[Ans. With or without unheated starting length, the local heat transfer coefficient at the leading edge 
is ∞.] 

88. Air flowing through a tube at prescribed inlet temperature and mean velocity is heated by condensing 
steam on outer surface of the tube. What will be effect on heat transfer coefficient and pressure drop 
if the pressure of the air is doubled? Assume fully developed turbulent flow.

[Ans. For given mean velocity, the Reynolds number (= ρUmd/μ) will be doubled because the density 
(ρ∝ p) will be doubled. For fully developed turbulent flow, heat transfer coefficient, h = 0.024 (k/d)
Re0.8 Pr0.8. Since k and Pr are independent of pressure, we consider h∝ Re0.8. Hence, the heat transfer 

5 mm

x
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coefficient will increase by a factor of 20.8 = 1.74. The pressure loss is given by
d
UfL

p m

2
4 2ρ

=Δ .

Here f = 0.791 Re-0.25. Hence, ρρρ 25.0
2

Re
2

4 −∝∝=Δ f
D
UfL

p m gives that the pressure drop will 

increase by factor 2-0.25 ×2 = 20.75 = 1.68.]

89. A vertical heated plate is experiencing free convection with quiescent air. Establish the dependence of 
average heat transfer coefficient on the plate height L if turbulent condition exists.

[Ans. For turbulent flow, 
( ) 3/13

3/1
L 1.0Ra1.0Nu ⎥

⎦

⎤
⎢
⎣

⎡ −
××=×== ∞

να
β LTTg

L
k

L
k

L
kh w

mm

( ) .
3/1

⎥⎦
⎤

⎢⎣
⎡ −×∝ ∞

να
β TTgk w Turbulent flow heat transfer coefficient does not depend on plate height.]

90. Water flows across a 50 mm diameter long cylinder with surface temperature of 45oC. The free stream 
conditions are U∞ = 0.05 m/s and t∞ = 25oC. At 35oC, thermophysical properties of water are: ρ = 994 
kg/m3, μ = 718 × 10-6 N s/m2, k = 0.624 W/(m K) and β = 0.342 × 10-3 (1/K). Check whether free 
convection effect will be significant?

[Ans. 
( ) ( ) 6

26

33

2

3

D 1016
)994/10718(

05.0254581.910342.0Gr ×=
×

×−×××=
−

= −

−
∞

ν
β DTTg s ;

ν
DU∞=DRe

3461
994/10718

05.005.0
6 =

×
×= − ; 336.1

Re
Gr

2
D

D = , Free convection effect will be significant.]

91. The logarithmic mean temperature difference (LMTD) of a counterflow heat exchanger is 20 oC. The 
cold fluid enters at 20oC and the hot fluid enters at 100oC. Mass flow rate of the cold fluid is twice that 
of the hot fluid. Specific heat at constant pressure of the hot fluid is twice that of the cold fluid. The 
exit temperature of the cold fluid is

(a) 40oC (b) 60oC
(c) 80oC (d) cannot be determined.

[Hint: mhch = mccc gives Thi - Tho = Tco – Tci, i.e., Thi – Tco = Tho – Tci. LMTD = [(Thi – Tco) – (Tho –
Tci)]/ln[(Thi – Tco)/(Tho – Tci)] = 20oC. Since Thi – Tco = Tho – Tci hence LMTD equation gives Thi – Tco =
20oC]

[Ans. (c)] 

92. In a counter flow heat exchanger, hot fluid enters at 60oC and cold fluid leaves at 30oC. Mass flow rate 
of the hot fluid is 1 kg/s and that of the cold fluid is 2 kg/s, Specific heat of the hot fluid is 10 kJ/(kg K)
and that of the cold fluid is 5 kJ/(kg K). LMTD for the heat exchanger in oC is

(a) 15 (b) 30 
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(c) 35 (d) 45

[Hint: Here mhch = mccc hence Thi - Tho = Tco – Tci, i.e., Thi – Tco = Tho – Tci and LMTD in this case = Thi –
Tco = 30oC.]

[Ans. (b)] 

93. In a parallel flow heat exchanger operating under steady state, the heat capacity rates of the cold and 
hot fluids are equal. The hot fluid [cp = 4.2 kJ/(kg K)] enters at 90oC while the cold fluid enters at 20oC. 
The flow rate of the hot fluid is 1 kg/s. If the overall heat transfer coefficient has been estimated as 2 
kW/(m2 K) and the surface area of the exchanger is 2.5 m2, determine the exit temperature of the cold 
fluid. 

[Ans. NTU = UA/Cmin = 1.19; ε = [1 – exp (-2NTU)]/2 = 0.4537. From ε = (tco - tci)/(thi - tci), tco =
51.76oC.] 

94. In a balanced counter flow heat exchanger, the NTU is equal to 1. What is the effectiveness of the heat 
exchanger?

(a)  1.5 (b) 0.5 (c) 0.33 (d) 0.2

[Hint: For a balanced flow, Ch = Cc; refer Eq. (14.25) ]

[Ans. (b)]

95. For a heat exchanger clean overall heat transfer coefficient is 250 W/(m2 K). After one year operation 
the fouling factors at the tube inner and outer surfaces are 0.002 and 0.001 m2 K/W. What will be the 
design overall heat transfer coefficient after one year operation?

[Ans. From Eq. (14.37), ,007.0001.0002.0
250
111 =++=+= ft

cd

R
UU

i.e., Ud = 142.9 W/(m2

K).]

96. Match list I (type of heat transfer) with list II (governing dimensionless parameter) and select the 
correct answer using the code given below the lists.

List I
A. Forced convection
B. Natural convection
C. Combined free and forced convection
D. Unsteady conduction with convection at the surface

List II
1. Re, Gr and Pr
2. Re and Pr
3. Fo and Bi
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4. Pr and Gr

Codes
A B C D

(a)   2 1 4 3
(b) 3 4 1 2
(c)   2 4 1 3
(d)   3 1 4 2

[Ans. (c)]

97. Match List I (heat exchanger process) with List II (temperature area diagram) and select the correct 
answer using the codes given below the lists.

List I
A. Counter flow sensible heating B. Parallel flow sensible heating
C. Evaporating D. Condensing

List II

Codes:
A B C D

(a)  3 4 1 2
(b)  3 2 4 1
(c)  4 3 2 1
(d)  2 4 1 3

[Ans. (a)]

98. Match List I with List II and select the correct answer using the codes given below the lists.

List I List II
A. Fin 1. UA/Cmin

T

A

T

A

T

A

1. 2.

4.3.

T

A
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B. Heisler chart 2. x/2√(ατ)
C. Transient conduction 3. √(hp/kAc)
D. Heat exchanger 4. hL/k

Codes:
A B C D

(a)  3 1 2 4
(b)  2 1 3 4
(c)  3 4 2 1
(d)  2 4 3 1

[Ans. (c)]

99. Saturated steam is allowed to condense over a vertical flat surface and the condensate flows down the 
surface. The local heat transfer coefficient for the condensation

(a) remains constant at all locations of the surface
(b) decreases with increasing distance from top of the surface
(c) increases with increasing thickness of the condensate film
(d) None of the above

[Ans. (b)]

Fill in the blanks: 
100. Prandtl number is a ………. of a fluid. [Ans. Property]
101. For flow through a pipe, the value of the critical Reynolds number is ……….[Ans. about 2300]
102. For flow past a flat plate, the value of the critical Reynolds number is ……… [Ans. 5×105]
103. According to the Reynolds analogy for Pr = 1, Stanton number is equal to ……. 

[Ans. One half of the friction factor]

104. When there is flow of fluid over a flat plate of length L and hx is local heat transfer coefficient, the 
average heat transfer coefficient is given by .................

[Ans. ∫
L

o xdxh
L
1

]

105. Two vertical plate arrangements maintained at 10 °C below the saturation temperature of steam at 1 
atm are available. One is a single vertical plate of height H and width W. Other arrangement 
consists of two vertical plates each H/2 in height and W in width. Which arrangement will provide 
the larger condensation rate? Flow is laminar.
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[Ans. Heat transfer rate, TAhq Δ= , i.e. hq ∝ for given area and temperature difference. Since for 

laminar flow 4/1−∝ Hh , 4/1−∝ Hq , which gives 84.02
2/

4/1
4/1

2

1 ==⎟
⎠
⎞⎜

⎝
⎛= −

−

H
H

q
q

. Thus the 

two plates arrangement is 16% better.] 

106. The mean condensation heat transfer coefficient for a vertical plate of height H is 5200 W/(m2 K).
What will be heat transfer coefficient if the plate is at inclination of 60o with horizontal?

[Ans. For an inclined plane at an angle θ with horizontal, ( ) ( ) 4 sinθverticalinclined hh = from Eq. 

(13.8). Hence, ( ) 3.501660sin5200 4 =×=inclinedh W/(m2 K).]

107. What will be the critical heat flux for boiling water at 1 atm pressure on Moon with respect to Earth? 
The gravitational field strength on the Moon is 1/6th that on the Earth.

[Ans. From Eq. (13.24), 4/1
max gq ∝ . Hence, critical heat flux at Moon is (1/6)1/4 = 0.64 times of 

that on the Earth.] 

108. A good absorber of thermal radiation is also a good emitter. It is called

(a) Planck’s law 
(b) Wien’s law   
(c) Stefan-Boltzmann’s law
(d) Kirchoff’s law  

[Ans. (d)]

109. The Sun’s surface at 5800 K emits maximum radiation at a wavelength of 0.5μm. A body at 580 K
will emit maximum radiation at a wavelength of nearly

(a) 0.005 μm
(b) 0.05 μm
(c) 5 μm
(d) at the same wavelength

[Hint: λmaxT = constant]

[Ans. (c)]

110. The total average emissivity of a body at a given temperature is given by the relation………..

[Ans.
λ

λε

λ

λλ

dE

dE

b

b

∫
∫

∞

∞

0

0 .] 
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111. Emission of radiation heat from a surface

(a) takes place at all temperatures
(b) takes place only above 273 K
(c) takes place only above room temperature
(d) depends on the surrounding temperature

[Ans. (a)]

112. Radiation heat transfer occurs at a speed of  

(a) light  
(b) sound
(c) 60000 km/hr    
(d) none of the above

[Ans. (a)]

113. In case of a blackbody 

(a) transmissivity is one 
(b) reflectivity is one
(c) absorptivity is one
(d) none of the above

[Ans. (c)]

114. Planck’s law is true for

(a) real bodies      
(b) blackbodies only
(c) gray bodies 
(d) white bodies only   

[Ans. (b)]

115. The following figure was generated from experimental data relating spectral blackbody emissive 
power to wavelength at three temperatures T1, T2 and T3 where T1 > T2 > T3.

Ebλ

λ

T1
T2

T3
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(a) Correct because the maxima in Ebλ show the correct trend
(b) Correct because the Planck’s law is satisfied
(c) wrong because the Stefan-Boltzmann law is not satisfied
(d) wrong because the Wein’s displacement law is not satisfied

[Ans. (d)]

116. A gray body is that whose absorptivity    

(a) changes with temperature
(b) changes with the wavelength of the incident ray
(c) changes with temperature and wavelength of the incident ray
(d) does not change with temperature and wavelength of the incident ray

[Ans. (d)]

117. Bodies which reflect more thermal radiation are

(a) white      (b) black   
(c) gray (d) rough

[Ans. (a)] 

118. Intensity of radiation at a surface in normal direction is equal to

(a) Product of emissivity of the surface and 1/π
(b) Product of emissivity of the surface and π
(c) Product of emissivity power of the surface and 1/π
(d) Product of emissivity power of the surface and π

[Ans. (c)]

119. A …… gas does not emit thermal radiation.

[Ans. Monatomic or diatomic]

120. The value of shape factor for infinitely large parallel plates separated by a small distance is .....

[Ans. 1]

121. The equation correlating absorptivity α, reflectivity ρ, and transmissivity τ is given by 
α + ρ + τ = N. What is the value of N?
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[Ans. 1]

122. Match the following.

(a) Planck’s law 1. Convection
(b) Stanton number 2. Heat exchanger
(c) NTU 3. Radiation heat transfer

[Ans. a-3, b-1, c-2.]

123. Spectral distribution of Eλ for a diffuse surface is shown in figure. Find the total emissive power E.

[Ans.

λλλλλ dddddE ∫∫∫∫∫
∞

++++=
5.7

5.7

6

6

4

4

2

2

0

)0()100()200()50()0(

)65.7(100)46(200)24(50 −×+−×+−×= 650= W/m2.]

124. The Sun can be regarded as nearly a spherical radiation source of diameter Ds = 1.4 × 109 m and is at 
a distance s = 1.5 × 1011 from the Earth. Determine the solid angle subtended by the Sun about a 
point on the surface of a plate oriented such that its normal passes through the centre of the Sun.

[Ans. From Eq. (10.17), 5
211

29

2

2

2 1084.6
)105.1(4
)104.1()4/( −×=

××
××=== ππω

s
D

r
dAd s sr.]

125. Determine fraction of emissive power leaving a surface in directions π/3 ≤ ϕ  ≤  π/2.

[Ans. For a diffuse surface, 

⎥⎦
⎤

⎢⎣
⎡==→

∫∫ ∫ 2/

3/

2

0

2/

3/ cossin21cossin)2/3/( π

π

π π

π φφφπ
ππ

φφφθππ d
I

ddI

E
E

n

n

[ ] .25.0
3

sin
2

sinsincossin2 222/
3/

22/

3/
=⎟

⎠
⎞⎜

⎝
⎛ −=== ∫

ππφφφφ π
π

π

π
d ]

126. Diffuse flat black surface 1 of area A1 = 2 × 10-4 m2 emits diffusely with total emissive power E = 4
× 104 W/m2.

λ, μm 
 ∞ 

100 
200  

50 

        Eλ, 
W/(m2 μm) 

  2   6   0   4 7.5 
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Determine the rate at which this emission is intercepted by the surface 2 of area A2 = 3 × 10-4 m2

located as shown in figure. What is irradiation on the surface 2?

[Ans. Areas 1 and 2 are very small hence Eq. (11.2) gives 

2
21211

12
coscos

s
AAE

q b φφ
π

×= 3
2

444

1041.1
6.0

20cos45cos103102104 −
−−

×=×××××××=
oo

π

W; Irradiation 4

3

2

12
2 103

1041.1
−

−

×
×==

A
qG 82.2= W/m2.]

127. An enclosure of surface area 50 m2 and emissivity 0.2 has uniform surface temperature of 600 K. 
How much radiation is escaping a small opening of 0.001 m2 in the enclosure?

[Ans. Since the area of the aperture is very small, the radiant power emerging through it will 

correspond to blackbody conditions. Hence, 35.7600001.01067.5 484 =×××== −
soTAE σ W.]

128. What will be the effect on the shape factor, if the configuration in Fig. a changes to that in b?

[Ans. No change]

129. What is equivalent emissivity for radiation heat exchange between a small body of emissivity 0.6 in a 
large enclosure of emissivity = 0.7)?

(a)  0.7 (b) 0.6 (c) 0.65 (d) 0.5

[Ans. (b)]

a b

A1 

A2 

45o 

20o 

N1 

N2 

0.6 m 
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130. A solid cylinder (surface 2) is located at the center of a hollow sphere (surface 1). The diameter of the 
sphere is 1 m, while the cylinder has a diameter and length of 0.5 m each. The radiation configuration 
factor F11 is

(a) 0.375 (b) 0.625
(c)  0.75 (d) 1

[Hint: Relations F21 = 1, F11 = 1 – F12, A1F12 = A2F21 give F11 = 1 – A2/A1]

[Ans. (b)]

131. The shape factor of a hemispherical body 1 placed on a flat surface 2 with respect to itself is
(a) Zero      (b) 0.25 (c) 0.5 (d) 1.0

[Hint: Relations F21 = 1, F11 = 1 – F12, A1F12 = A2F21 give F11 = 1 – A2/A1; A1 = 2πr2, A2 = πr2]

[Ans. (c)]

132.  A plate having 10 cm2 area each side is hanging in the middle of a room of 100 m2 total surface area. 
The plate temperature and emissivity are 800 K and 0.6, respectively. The temperature and emissivity 
values for the surfaces of the room are 300 K and 0.3, respectively. The total heat loss from the two 
sides of the plate by radiation is

(a) 8.2 W (b) 13.66 W 
(c) 27.32 W (d) 45.53 W

[Hint: A1 << A2. Hence, q = 2A1ε1σ (T1
4 - T2

4)]

[Ans. (c)]

133. Radiation heat transfer is intended between inner surfaces of two very large isothermal parallel metal 
plates. While the upper plate (plate 1) is a black surface and is warmer one and being maintained at 
727oC, the lower plate (plate 2) is a diffuse gray surface with an emissivity of 0.7 and is kept at 
227oC. Assume that the surfaces are sufficiently large to form a two-surface enclosure and steady 
state conditions to exist. Irradiation (in kW/m2) for the plate 1 is

(a) 2.5 (b) 3.6 
(c) 17.0 (d) 19.5

[Hint: Irradiation = ε2σ T2
4 + ρ2 σ T1

4, where ρ2 = 1 - ε2)

[Ans. (d)]

134. If plate 1 in above example is also diffuse and gray surface with an emissivity of 0.8, the net radiation 
heat exchange (in kW/m2) between plates 1 and 2 is
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(a) 17.0 (b) 19.5 
(c) 13.0 (d) 31.7

[Hint: q12 = σ (T1
4 - T2

4)/(1/ε1+ 1/ε2 - 1)]

[Ans. (d)]

135. Two long parallel plates of the same emissivity of 0.5 are maintained at different temperatures and 
have radiation heat exchange between them. If a radiation shield of emissivity 0.25 is placed in the 
middle, the radiation heat exchange will reduce to

(a) 1/2 (b) 1/4 (c) 3/10 (d) 3/5

[Hint: qold = σ (T1
4 - T2

4)/(1/ε1+ 1/ε2 - 1), qnew = σ (T1
4 - T2

4)/(1/ε1+ 1/ε2 + 2/εs - 2)]

[Ans. (c)]

136. The Earth receives at its surface radiation from the Sun at the rate of 1400 W/m2. The distance of the 
center of the Sun from the surface of the Earth is 1.5 × 1011 m and the radius of the Sun is 7.0 × 108

m. What is approximately the surface temperature of the Sun treating the Sun as a black body?

[Hint: Refer Example 11.9]

[Ans. 5800 K]

137.  A semi-transparent plate (α = 0.3) is subjected to irradiation G on both sides as shown in figure. 
The radiosity for one side J = 4000 W/m2. Air at 25oC flows parallel to the plate surface giving 
convection heat transfer coefficient of 20 W/(m2 K). If plate surface temperature is at 80oC, find 
if the plate is behaving as a gray surface.

[Ans. Energy balance on the plate gives, )(2222 ∞−+=+= tthAJqJG sc

10200)2580(120240002 =−×××+×= W/m2. In the present case, 

EGGJ ++= τρ ,)1( 4
sTG εσα +−= or

81067.55100)3.01(4000 −××+×−= ε .)27380( 4+× Solution gives ε = 0.49. 
Since ,αε ≠ surface is not gray.] 

J 

h, t∞ 

G 

ts = 80oC 

J  G 

h, t∞ 
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17. With an increase in the insulation thickness around a circular cross-section pipe, the heat loss to the 
surroundings due to

(a) convection and conduction decreases
(b) convection and conduction increases
(c) convection decreases and conduction increases
(d) convection increases and conduction decreases

[Ans. (d)]

18. Up to critical thickness of the insulation

a) Added insulation will decrease heat transfer
b) Added insulation will increase heat transfer
c) convection decreases and conduction increases
d) None of the above

[Ans. (b)]

19. For air, if values of thermal conductivity k and specific heat at constant pressure cp are independent of 
pressure, determine the dependence of thermal diffusivity on pressure.

[Ans. Thermal diffusivity
pc

k
ρ

α = and from perfect gas equation .p
RT
p ∝=ρ Hence,

p
1∝α ,

i.e. thermal diffusivity α varies inversely with pressure p.] 

20. Figure shows a two-dimensional body [k = 5 W/(m K)] and two isothermal surfaces A (at 50oC) and B 
(at 80oC). The heat enters the body at A with temperature gradient of 20 K/m. Determine temperature 
gradients xt ∂∂ / and yt ∂∂ / at surface B where the heat is leaving. 

[Ans. Heat flux vector is always normal to an isothermal surface. Since surface B is an isothermal 

vertical surface, .0/ =∂∂ yt From heat conservation, qA = qB, i.e.
BA x

tAk
y
tAk ⎟

⎠
⎞⎜

⎝
⎛

∂
∂−=⎟⎟⎠

⎞
⎜⎜⎝

⎛
∂
∂− ; For 

unit depth (in direction z),
Bx

t
⎟
⎠
⎞⎜

⎝
⎛

∂
∂××=×× )0.10.1(20)15.1( , i.e. 30=⎟

⎠
⎞⎜

⎝
⎛

∂
∂

Bx
t

K/m.]

A 

B  t(x, y) 

qA 

qB 

Insulation 

1.5 m 

1.0 m 
y  

x  

1134 Appendix B

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


140. Match List I with List II and select the correct answer using the codes given below the lists. 

List I
A. Infinite parallel plates
B. Body 1 completely enclosed by body 2 but body 1 is very small
C. Radiation exchange between two small gray bodies 
D. Two concentric cylinders with large lengths

List II
1. ε1

2.
1

21

111
−

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−+

εε

3.
1

22

1

1

111
−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟⎠

⎞
⎜⎜⎝

⎛
−+

εε A
A

4. ε1ε2

Codes
A B C D

(a)   3 1 4 2
(b)   2 4 1 3
(c)   2 1 4 3
(d)   3 4 1 2

[Ans. (c)]

141. Match List I with List II and select the correct answer using the codes given below the lists.

List I List II
A. Momentum transfer 1. Thermal diffusivity
B. Mass transfer 2. Kinematic viscosity
C. Heat transfer 3. Diffusion coefficient

Codes:
A B C

(a)  1 3 2
(b)  2 3 1
(c)  3 2 1
(d)  1 2 3

[Ans. (b)]
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142. Match List I with List II and select the correct answer using the codes given below the lists. 

List I
A. Schmidt number
B. Thermal diffusivity
C. Lewis number 
D. Sherwood number

List II

1.
Dc

k

pρ

2.
D

Lhm

3.
D
ν

4.
c

k
ρ

Codes
A B C D

(a)   4 3 2 1
(b)   4 3 1 2
(c)   3 4 2 1
(d)   3 4 1 2

[Ans. (d)]

143. Fill in the blanks:

(i) The velocity and temperature distributions are similar when ………. (Pr = 1)
(ii) The velocity and concentration profiles will be similar when …… (Sc = 1)
(iii) The temperature and concentration distributions will have the same profile when …….. (Le = 1)
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Index

A
Absorptivity, 733, 735–737, 750, 751–755,

762–765, 810, 812, 831, 862, 886–891,
894, 905, 906, 908, 911, 915, 923,
926–928, 1068

Air, properties at atmospheric pressure, 655
Analogy

Chilton-Colburn, 1056, 1065
electrical, 26, 30, 105, 273, 323, 767, 893
Prandtl–Tayler modification, 526, 533, 557
Reynolds, 413, 514, 516–518, 526, 529–531,

533, 535, 557, 577, 1056, 1065
van Karman, for flat plate, 413, 439, 444, 529

Angle factor, 769
Annular fins, 113, 180, 188
Annuli, circular tube, 601–603, 608, 674

B
Backward-difference formulation, 389, 395
Baffles, 982, 1036
Balanced flow, 990, 995, 1009, 1035
Beam length (mean), 910, 912, 913, 928
Beer’s law, 904, 905, 927
Bernard cells, 713
Bessel equation (modified), 173, 175
Bessel functions modified of first and second kinds,

176, 179
Binary diffusion coefficients, 1046, 1047, 1065
Biot number, 152–154, 157, 189, 193, 331, 334,

335, 337–341, 344, 346, 368, 371,
373–378, 391, 393, 404, 407–409, 411,
412, 633, 638, 639, 876, 881

Blackbody emissive power
Planck spectrum, 738, 744

Blasius solution, 413, 429, 434, 488, 556
Boiling

curve, 953, 954
film, 954, 955
flow, 953
forced convection, 3, 963
nucleate, 953, 954, 959
nucleate boiling heat transfer, 953, 959

coefficients, 953
peak heat flux, 961
pool, 953, 954, 957, 959, 962, 964
transition, 954

Boiling heat transfer, 953, 955, 959, 963
Boiling water, convection heat-transfer coefficients,

30, 127

Boltzmann’s constant, 738
Boundary layer

integral analysis, 413, 468, 470, 556
laminar, 413, 426, 428, 439, 447, 450, 455, 459,

462, 468, 480, 488, 490, 517, 529, 547,
556

separation, 625
turbulent, 484, 486–488, 512, 520, 521, 546,

556, 557, 615, 621
Boundary layer thickness, 416, 422, 430, 437, 438,

441, 444, 447, 450, 453, 455, 457, 475,
478, 489, 490, 543, 545, 552, 554–556,
562, 693

Bubbly flow, 957
Buckingham’s pi theorem, 568, 686, 688
Buffer layer, 419, 507, 555
Bulk temperature, 216, 290, 291, 337, 497,

501–503, 522, 551, 583, 586, 587, 595,
596, 599, 600, 603, 604, 607, 608, 611,
627, 640, 642, 654–656, 660, 662, 663,
665–667, 669, 674, 678, 679, 681, 723,
861, 1023

Buoyancy
forces, 3, 540, 543, 548, 683, 684, 695, 712,

713, 719, 720, 726, 727, 932, 933
Burnout, 955

C
Characteristic length, 339, 340, 343, 368, 376, 409,

412, 634, 695, 727, 1064
Chilton-Colburn analogy, 1056, 1065
Circumferential fin, 183, 189, 190, 194
Circumferential fins of rectangular section, 183, 190
Coefficient of friction, see friction factor, 413
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1140 Index

Colburn analogy, 519, 557
Combined free and forced convection, 683, 719
Concentric tube annulus, 601
Condensation

condensation heat-transfer coefficients, 1009,
1028, 1029, 1038, 1127

dropwise, 931
effect of non-condensable gas, 952
effect of vapour velocity, 3, 153, 157, 499, 931,

932, 938, 952, 957
filmwise, 931, 932
inclined surfaces, 932
laminar film, 931, 932, 938
turbulent, 941

Conduction
electrical analogy, 26, 105
Fourier’s law, 7, 105, 293, 414, 554, 1043, 1065
mechanism, 9, 11, 105, 106
shape factor, 253, 269, 270, 279, 323
thickness, 425, 556

Conduction heat transfer, 1, 6, 17, 29, 30, 44, 48, 59,
62, 83, 105, 124, 126, 152, 232, 241, 293,
331, 483, 868, 1071

Configuration factor, 769, 770, 790, 792, 794, 799,
804, 895

Contact resistance, 103, 108, 111, 142, 186, 187,
230, 241, 350, 716

Continuity equation, 428–430, 461, 548
Controlling film coefficient, 1016, 1036
Convection, 1–5, 11, 28–31, 47, 48, 52, 53, 62, 64,

69, 89, 96, 101, 105, 106, 111, 114, 115,
124, 136, 145, 152, 156, 158, 164, 168,
180, 193, 203, 204, 207, 221, 222, 225,
232, 238, 240, 241, 243–246, 283, 303,
320, 326, 329–332, 334, 336, 337, 339,
343, 346, 350, 356, 357, 375, 376, 388,
390–393, 395, 396, 401, 411–415, 425,
460, 478, 495, 497, 500–502, 514,
539–541, 545–547, 551, 553–555, 557,
558, 565, 567, 568, 570, 572, 577, 619,
620, 636, 643, 672, 677, 683, 684, 688,
690, 691, 695, 697, 707, 710, 712, 715,
719–724, 726, 727, 729, 730, 733, 737,
814, 815, 834, 856, 859–873, 875–878,
880–882, 886–888, 890–893, 895, 926,
932, 953, 963, 999, 1011, 1028, 1041,
1050, 1053, 1055, 1056, 1064, 1065,
1071–1073, 1089

Convection heat transfer
coefficient, order of magnitude, 3, 4
combined free and forced convection, 683, 719
empirical relations (forced convection), 413,

565, 570, 578, 672, 677, 1050
free convection, see natural convection systems,

413
natural, 3, 153, 691, 692, 727

Conversion factors, 1079
Corrected fin length, 123, 169

Counterflow heat exchanger, 967, 969, 974,
977–979, 981, 982, 985–989, 995, 996,
1023, 1034–1037

Critical heat flux, 954, 961
Critical radius of insulation, 7, 89–91, 97–99, 106,

107
Critical thickness of insulation, 89, 91, 95–97
Cross-flow heat exchanger, 967, 982, 983, 995,

1007, 1026, 1035, 1037
Cylinders

forced convection, 620, 889
free convection, 683, 726
Heisler charts, 329, 367, 374, 379
in cross flow, 620–622, 624, 675, 680, 1061
steady-state conduction, one dimensional, 43

Cylindrical coordinates, 17, 19, 20, 106, 214, 233,
239

Cylinder with heat generation, 206, 218, 236–238

D
Darcy friction factor, 575
Design information

heat exchangers, 967, 1011, 1035
Developing flow

laminar, 580
Diffuse surface, 736, 753, 758, 761, 762, 765, 767,

817, 883, 884, 888
Diffusion, 484, 509, 556, 577, 592, 941, 1041–1045,

1047, 1048, 1050, 1057, 1064, 1065
Diffusion coefficient, 1041–1047, 1049–1051, 1057,

1059, 1060, 1062, 1064, 1065
Dimensional analysis

Buckingham’s pi theorem, 568
Rayleigh’s method, 573

Dimensionless numbers
Biot number, 332
Fourier number, 331, 332, 362
Graetz number, 582, 673
Grashof number, 545, 546, 557, 686, 690, 1055
Lewis number, 1043, 1065
Nusselt number, 557, 568, 582, 673, 1055
Peclet number, 553, 558, 577
Prandtl number, 462, 466, 546, 557, 568, 577,

579, 690, 1055
Rayleigh number, 690
Reynolds number, 416, 430, 546, 557, 568, 576,

577
Schmidt number, 1043, 1052, 1055, 1065
Sherwood number, 1052, 1055
Stanton number, 468, 517, 1056, 1065

Displacement thickness, 422, 424, 425, 447, 449,
456, 457, 490, 555

Double pipe heat exchanger, 967–970, 1004, 1018,
1034, 1036, 1037

Drag coefficient, 535, 537, 622, 624, 625, 675
Drag force

cylinder in cross-flow, 621, 624
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on flat plate, 479, 518, 535
sphere, 624, 680

Dropwise condensation, 931
Dynamic viscosity, 664, 678, 1068

E
Eckert number, 574, 577
Eddy diffusivity or eddy viscosity, 413, 509, 511,

512, 557
Eddy thermal diffusivity, 413, 509, 513, 514, 557
Effectiveness, fin, 135–137, 147, 148, 151, 153,

154, 157, 166, 168, 177, 189, 193
Effectiveness-NTU method, 967, 988, 991–993,

995, 1035, 1036
Efficiency, fin, 135–138, 142, 154, 156, 166, 168,

183–186, 188–190
Electromagnetic spectrum, 733
Electrical analogy fortwo-dimensional conduction,

253, 273, 283
Emission band

gaseous, 911
Emissive power

monochromatic, 738–741, 759, 760, 763, 764
Emissivity, 4, 398, 692, 733, 736, 749–754, 758,

761, 763, 767, 796, 814–816, 820, 821,
833–836, 848, 859, 860, 867, 872, 877,
878, 884, 885, 887, 889–891, 894,
905–909, 911, 913, 914, 917, 923, 926,
927, 1068, 1087, 1090

Empirical relations
correction of constant property results, 599
external forced flow, 614, 675
flow across cylinders and spheres, 675
flow across tube banks, 626, 675
forced convection, 566, 570, 578, 600, 602, 603,

620, 672
liquid-metal heat transfer, 577
pipe or tube flow, 579, 591, 602, 608, 609, 648,

673, 674
Enclosed spaces, 683, 711, 726, 727
Energy equation of laminar boundary layer, 459
Energy thickness, 424
Enthalpy thickness, 425, 556
Entrance length (entry region)

hydrodynamic, laminar, 417, 555, 589, 591
thermal, laminar, 581, 589, 673, 1076, 1077
turbulent, 590, 593

Error function, 354, 355
Explicit formulation (finite-difference method), 389,

390, 412
Extended surfaces, see fins
External flow

across tube banks, 626, 675
cylinder in cross-flow, 621, 624

flat plate in parallel flow, 522, 614
over a sphere, 680

F
Fanning friction factor, 494, 495, 556, 580, 590,

601, 672, 674, 1067
Fick’s law of diffusion, 1042
Film-boiling region, 954, 955
Film condensation, 931, 932, 938, 951
Film resistance, 29, 47, 48, 50, 51, 62, 64, 89, 105,

139, 187, 1012, 1014, 1016, 1035
Film temperature, 476, 477, 560, 561, 617, 618,

623, 624, 629, 630, 632–635, 661, 662,
680, 693, 695, 704, 705, 717, 718, 725,
861, 869, 876–879, 882, 885, 946, 947,
949, 950, 1027

Fin effectiveness, 135–137, 151, 153, 157, 189
Fin efficiency, 135–138, 142, 168, 183–186, 189,

190, 194
Finite difference

Gaussian elimination, 306, 308, 309, 312, 324
Finite difference method

Gauss–Seidel iteration, 316, 317, 323
stability criteria, 387
transition conduction, 407
two-dimensional steady-state conduction, 15, 63

Finite-difference schemes
explicit, 389, 390, 412
implicit, 389, 390, 392, 412

Finned wall, 138–140, 145, 171
Finning factor, 139, 140
Fin of minimum weight, 173, 174, 189
Fins

circumferential (annular), 183, 184, 189, 194
composite, 124, 166, 167
effectiveness, 113, 114, 135–137, 147, 148, 151,

153–157, 166, 168, 177, 189, 193
efficiency, 135–138, 142, 154, 156, 166, 168,

183–186, 188–190, 194
efficiency plots, 183, 190
hollow, 124, 149, 150
longitudinal, 113, 141, 171
rectangular, 113, 124, 130, 136, 142, 145, 152,

153, 168, 170, 177, 178, 183–185, 188,
190, 193, 303

spine- or stud-type, 113, 188
star, 113
temperature distribution, 118, 127, 128, 144,

153, 174, 192
transverse, 113
trapezoidal, 113, 179, 188, 189, 194
triangular, 113, 174, 175, 177, 178, 183–185,

188, 189, 408
with heat generation, 164
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Flames
luminous, 925, 926
non-luminous, 925, 926, 929

Flat plate, parallel flow over, 468, 535, 560
Flat-plate solar collector, 714, 715, 1089
Flow boiling, 953, 957
Flux plots, 269, 273–275, 284, 323
Forced convection

combined free, 683, 719
cylinders, 620, 889
cylinders in cross flow, 621
dimensional analysis, 566, 672
flat plate, 577, 614, 672
rough walls, 575, 645, 647
sphere, 620, 624
tube banks, 626

Forced-convection boiling, 931, 957, 963
Form drag, 622, 623
Fouling factors (resistances), 967, 1011, 1014,

1016–1018, 1026, 1035, 1036
Fourier’s equation, 15, 17, 26, 33, 41, 44, 45, 59, 60,

71, 73–75, 77, 79, 82, 84, 105, 248
Fourier’s law, 7, 9, 105, 293, 414, 466, 470, 483,

554, 555, 1043, 1065
Fourier number, 331, 362, 367, 368, 371, 373, 374,

385, 387, 391, 407, 411, 412
Free convection, see Natural convection
Friction factor (coefficients)

Darcy, 575
Fanning, 494, 495, 556, 580, 601, 672, 674,

1067
rough wall, 645
skin, 436–438, 444, 446, 447, 449, 450,

453–456, 480, 488, 516, 518, 535, 536,
538, 556, 614

Friction factor correlations
smooth circular ducts, 580, 590

G
Gaseous radiation, 4, 734, 762, 903, 927
Gases, thermal conductivities of, 11, 69
Gaussian elimination, 306, 308, 309, 312, 323
Gaussian error function, 354
Gauss–Seidel iteration, 316, 317, 323
General heat conduction equation

Cartesian coordinates, 12, 14, 20, 106
cylindrical coordinates, 7, 17, 19, 20, 105, 106,

239
spherical coordinates, 7, 22, 58, 105, 106

Geometrical factor, 769, 801, 851
Gnielinski rrelation, 592, 593, 595, 610, 652, 1032
Graphical method (two-dimensional steady-state

heat conduction)
flux plot, construction of, 269

Grashof number, 545, 546, 557, 657, 686, 690,
703–705, 707, 719, 721–723, 725, 727,
861, 1055

Gray body, 733, 748, 750, 763, 815, 819
Grober charts, 363, 374, 407

H
Hagen–Poiseuille equation, 494
Heat exchangers

balanced flow, 990, 1009
classification, 967, 1033
concentric tube, 969, 1034
counterflow, 967, 969, 974, 977–979, 981, 982,

985–989, 995, 996, 1023, 1034–1037
cross-flow, 967, 982, 983, 995, 1007, 1026,

1035, 1037
design considerations, 1011
effectiveness, 967, 988, 993, 995, 1004, 1009,

1034–1037
effectiveness-NTU method for analysis of, 967,

988, 991, 993, 995, 1004, 1034–1037
effectiveness relations, 1038
fouling factors (resistance), 967, 1018
log mean temperature difference (LMTD), 967,

969, 970, 973, 980, 982, 988, 1034, 1036
mixed/unmixed fluid, 982, 984, 997, 1007
multi-pass, 967, 982
overall heat transfer coefficient, 4, 49, 141, 967,

970, 985, 987, 996, 1002, 1005, 1011,
1012, 1014–1016, 1034–1037

parallel flow, 967, 969, 970, 974, 979, 980, 982,
993, 995, 1004, 1009, 1034–1037

shell and tube, 967, 969, 982, 985–987, 995,
1011, 1014, 1034–1036, 1038

types, 967, 1034
Heat flow lines, 153, 257, 269, 273, 323
Heat transfer coefficient

overall, 4, 7, 49, 50, 53, 54, 105, 107, 110,
139–142, 343, 664, 706, 856, 858, 894,
949–951, 969, 977, 979, 980, 983, 985,
987, 989, 993, 996, 1000, 1002, 1004,
1006–1008, 1010–1018, 1020, 1022,
1025, 1027, 1029, 1030, 1033–1037

radiation, 30, 105, 346, 856, 857, 859, 860, 863,
876

Heat transfer coefficient correlations
annular duct, 674, 1023
cylinders (forced), 413, 414, 415
enclosures (natural), 727, 730
entrance (entry) regions, 502, 583, 674
flat plate (forced), 556, 557, 565, 658, 672, 683
inclined plates (natural), 727
mixed convection, 719
parallel plate duct, 565, 612, 672
rough surfaces, 736, 750
smooth circular ducts, 593
spheres (forced), 565, 624, 672
tubes, 502, 532, 565, 583
vertical plate or wall (natural), 698, 936
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Heat transfer, enhancement of, 113, 140, 189, 1081,
1089

Heat-transfer-fluid-friction analogy, see Reynolds
analogy, 514

Heat transfer from isothermal
vertical plate, free convection, 413, 539, 540,

683, 698, 710, 727
Heat transfer from sphere, free convection, 683
Heat transfer in roughed ducts, 676
Heisler charts, 329, 363, 367–369, 373–375, 379,

410, 411, 639
Horizontal cylinders, free convection, 726
Horizontal plates, free convection, 683, 726
Hottel charts, 903, 906–909, 911, 912, 927
Hydraulic diameter, 579, 601, 603–607, 609, 610,

657, 669, 674, 675, 677, 941, 1025, 1067,
1069, 1083

Hydrodynamic boundary layer, 415–417, 441, 461,
463, 468, 474, 475, 478, 554–556, 562,
648, 676

Hydrodynamic development length, 417, 555, 586,
588, 589, 606, 659, 672

I
Implicit formulation, 389, 390, 392
Inclined plate (natural), 695, 702, 727
Infinite parallel plates, 806
Infinite rectangular bar, 381
In-line tube banks, 641, 680
Insulation

critical thickness, 89, 91, 95–97
materials, thermal conductivity, 2, 9–11, 14,

52–55, 66–68, 70, 83, 92, 97, 105, 106,
110, 111, 273, 865, 1074

Integral technique for boundary layer, 413, 468
Intensity of radiation, 733, 753, 755, 756, 759–761,

763, 764, 904, 905, 927
Interchange or transfer factor, 807, 810
Internal flow, circular tube

laminar, 495, 580, 600–602, 672, 677
turbulent, 419, 507, 589, 590, 593, 600, 601,

608, 656, 674, 677, 1077
Irradiation, 750, 764, 819, 883, 884, 886, 887, 889,

890, 893, 894, 919, 920
Isotherms, 8, 257, 269, 273, 323
Iterative method, Gauss–Seidel, 316, 323

K
Kirchhoff’s law, 733, 750, 751, 763, 807, 905

L
Lambert’s cosine law, 755, 756, 763
Laminar film condensation, 931, 932, 938
Laminar sublayer, 419, 420, 484–486, 507, 512,

514, 515, 526–528, 533, 555–557, 613,
647, 676

Laminar tube flow, heat transfer, 611, 644, 943
Laplace equation, 15, 253, 254, 283, 285, 323
Lattice vibration, 9, 12
Law of wall, 486, 507, 529, 648, 649, 651
Leidenfrost point, 955
Lewis number, 1043, 1065
Liquid metals, 153, 413, 514, 526, 552–554, 557,

558, 565, 643, 644, 676, 980
LMTD correction factor, 1034, 1036
Logarithmic mean radius, 46, 47
Log Mean Temperature Difference (LMTD) , 506,

967, 969, 970, 973, 975–978, 980–982,
985–988, 992, 1000, 1006, 1011, 1018,
1019, 1021, 1022, 1024, 1034,
1036–1038

Lorenz number, 12
Lumped-capacitance, 347
Lumped-capacity systems, multiple, 348
Lumped heat capacity analysis

applicability, 334, 339, 352, 378, 407, 881

M
Mass convection

dimensional analysis, 1051
Mass Grashof number, 1055, 1063
Mass transfer

by convection, 625, 1041, 1050, 1053, 1055,
1064, 1065

Fick’s law of diffusion, 1042
Lewis number, 1065
mass-transfer coefficient, 1050, 1051, 1053,

1055, 1056, 1058–1060, 1063, 1065
Schmidt number, 1053, 1058, 1059, 1061, 1063,

1064
Sherwood number, 1053, 1055
Stefan’s law, 1041, 1065

Mass-transfer coefficient, 1050, 1051, 1053, 1055,
1056, 1058–1060, 1063, 1065

Mean beam length, 910, 912, 913, 928
Mean film temperature, 478, 518, 522, 537, 616,

620, 699, 701–703, 722, 724, 728–730,
861, 874, 880, 887, 889, 937, 939, 942,
943, 946, 1059, 1061

Mean value theorem, 263, 264, 318
Metals

emissivity, 749, 758, 834
properties, 16, 557, 577
thermal conductivity, 9, 10, 12, 16, 30, 67, 70,

105, 106, 124, 193, 557, 676
Mixed convection, 414, 719, 721, 722, 724, 725
Modes of heat transfer, 1, 5, 6, 737, 860, 1011
Modified Bessel equation, 173, 175
Momentum thickness, 421, 422, 424, 555
Monochromatic absorptivity, 750
Monochromatic emissive power, 738–741, 759,

760, 763, 764
Monochromatic emissivity, 748, 749, 763, 905
Moody diagram, 565, 652, 653
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N
Natural convection systems (See also Convection)

boundary layer thickness, 478, 545
character dimension, 339, 375, 540, 566, 567,

684, 1051
combined free-forced convection, 683, 719
dimensional analysis, 415, 546, 565, 566, 570,

672, 677, 683, 684, 727, 1041, 1051,
1065

empirical relations, 413, 553, 565, 566, 578, 672,
693

enclosed spaces, 683, 726
estimates, 5, 111, 241, 343, 724, 729, 872, 880,

1074, 1089
Grashof number, 545, 546, 557, 686, 690, 719,

727, 1055
horizontal cylinders, 683, 726
horizontal plates, 683, 726, 727, 880
inclined surfaces, 932
integral momentum equation, 413, 541
Rayleigh number, 690, 712, 719, 720, 727, 882,

1074
spheres, 221, 244, 625, 726
vertical planes/cylinders, 693

Network
radiation, 845, 846, 849, 894, 923, 924
thermal, conduction, 1, 9, 10, 16

Newton’s law of cooling, 3, 5, 767, 856, 858, 894,
895

Newton’s law of viscosity, 1043, 1065
Nodal equations, for Δx = Δy, 311, 313–316, 327,

328
Nodal equations, general formulation

steady state, 253, 287, 288, 300, 325
transient, 323

Nodal points, 285, 290, 291, 293, 298, 308, 320,
327

Nodes, 285, 287–289, 292–295, 297–306, 310, 311,
313–316, 319–327, 385–393, 395–400,
402–404, 412, 829, 846, 850, 872

Non-metals, properties, 16
NTU relations for heat exchangers, 995, 1002, 1003,

1005, 1010
Nucleate boiling, 959
Nucleate boiling heat transfer coefficients, 959
Nukiyama boiling curve, 953
Number of transfer units (NTU), 967, 989–991, 994,

995, 998, 1001, 1002, 1004, 1006–1008,
1031, 1033, 1035–1038

Numerical solution method, 253, 401, 405, 556
Nusselt film condensation theory, 932
Nusselt number, 413, 467, 468, 476–478, 484, 502,

520, 529, 534, 550, 556, 557, 565, 568,
577, 579, 581, 582, 588, 589, 591, 593,
594, 596–598, 602–605, 608, 610–617,
624, 625, 627, 630, 631, 635, 636, 639,
642–644, 648, 649, 657, 664, 672–676,
694, 696–698, 700, 703, 712–715, 720,
721, 723–726, 728, 875, 878, 885, 936,

937, 1019, 1020, 1022, 1053, 1055, 1067,
1070, 1071, 1076–1079, 1083, 1086

O
1/7th power law, 486, 489, 528, 556
One-dimensional heat-conduction

composite wall, 27, 230
equation, 7, 15, 58, 196, 207, 220
fin of uniform cross-section, 114
plane wall, 1, 7, 25, 28, 31, 66, 105, 195, 248
temperature distribution in, 1, 105, 112, 118,

230, 239, 247, 353
cylinder, 47, 48, 106, 407
radial systems, 235, 236, 239, 240, 243, 244,

320, 322, 499, 635
sphere, 106, 220

Overall heat transfer coefficient, 4, 49, 141, 967,
970, 985, 987, 996, 1002, 1005, 1011,
1012, 1014–1016, 1034–1037

P
Parallel flow heat exchanger, 967, 974, 980, 993,

1004, 1009, 1034, 1035, 1037
Peclet number, 553, 558, 577, 643, 676
Planck’s constant, 738
Planck’s distribution, 760
Planck’s law, 733, 739
Plane wall with heat sources, 195, 196, 248
Pohlhausen’s solution, 413, 463, 465, 466, 556
Poisson’s equation, 15
Pool boiling, 931, 953, 957, 959, 962
Prandtl number, 418, 462, 463, 465, 466, 475, 514,

531, 532, 535, 546, 552, 557, 568, 577,
579, 589, 591–593, 598, 599, 602, 609,
611, 613, 641, 647, 648, 651, 654, 673,
674, 676, 690, 720, 1043, 1053, 1055,
1067

Prandtl–Taylor relation, 529
Pressure correction factor, 907–909, 914, 918, 919,

927
Pressure drag, 518, 535, 557
Pressure drop

heat exchangers, 1011, 1014, 1035
Properties

air, 16, 480, 562, 563, 595–597, 606, 607, 617,
618, 629, 630, 636, 641, 643, 655,
661–663, 666, 667, 679–681, 697, 699,
701–703, 716–718, 724, 728–730, 874,
876, 878–880, 882, 885, 892, 1027, 1032,
1057, 1059, 1061, 1079

metals, 16, 557, 577
non-metals, 16
radiation, 5, 734, 736, 926
water, 16, 583, 586, 587, 604, 605, 669, 678,

705, 729, 946, 948, 950, 960, 961, 963,
1019–1021, 1023

1144 Index

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


R
Radial systems, one-dimensional steady-state con-

duction in
cylindrical, 61, 235, 320
spherical shell, 58, 60, 61, 63

Radiation, blackbody, 733, 739, 743, 744, 747, 750,
751, 803, 819

Radiation heat transfer coefficient, 30, 105, 346,
856, 857, 859, 860, 863, 876

Radiation heat transfer (heat exchange)
Beer’s law, 904, 905, 927
blackbody, 857, 926
gaseous radiation, 903, 927
gray body, 748, 763, 815, 819
infinite long concentric cylinders, 807, 808
infinite parallel surfaces, 804, 806, 923
intensity, 733, 738, 753, 755, 756, 759–761,

763, 764, 904, 905, 927
interchange factor, 807, 815, 816, 859
radiation heat transfer coefficient, 30, 105, 346,

856, 857, 859, 860, 863, 876, 895
radiation network, 894
view factor, 769, 774, 802, 803, 829, 845, 891,

894
Radiation shape factor, 769, 795, 804, 819
Radiation shape factor relations, 772, 894
Radiation shape factor, salient features, 767, 772,

893, 894
Radiation shields, 767, 814, 831–836, 894
Radiosity, 820, 821, 829, 850, 893, 894
Rayleigh number, 690, 696, 697, 700, 701, 704,

705, 711–713, 715–720, 726, 727, 730,
875, 877–879, 881, 882, 885, 887, 892,
1074

Ray tracing method, 806
Real body, 4, 736, 748, 749, 762, 763
Reciprocity relation, 770, 772, 779, 780, 782, 783,

787, 788, 790, 803, 807, 812, 813, 826,
827, 922

Rectangular fin, 130, 153, 177, 178, 185
Reduced heat transfer coefficient, 138, 141, 142
Reflectivity, 733, 735, 736, 750, 762, 764, 765, 820,

831, 864, 883, 884, 894, 905, 922, 927
Refractory surface, 823–825, 828, 894
Regenerators, 967, 990, 1035
Relaxation method, 298, 306, 308, 318, 323, 328
Resistance

conduction, 105, 106, 150, 1012, 1015
contact, 103, 108, 111, 142, 186, 187, 230, 241,

350, 716
fouling, 1014, 1016
space, 821, 846, 851, 893, 894
surface, 331, 820, 821, 846, 851, 893, 894, 924

Reynolds analogy, 514, 516, 517, 526, 529–531,
533, 535, 557, 577, 1056

Reynolds-Colburn analogy, 480, 517, 518, 557, 614,
1056

Reynolds number, 416, 417, 419, 420, 430, 438,
444, 446, 449, 453, 455, 456, 477, 480,

487, 490, 502, 508, 522, 532, 534, 538,
546, 555–557, 568, 576, 577, 579, 580,
585, 587, 590, 591, 594, 595, 597,
602–607, 609, 610, 612, 615–618,
622–625, 627, 629–631, 633, 634, 636,
638, 640, 641, 643, 645–647, 650–658,
661–668, 671, 673–676, 678, 681, 690,
709, 719–722, 725, 727, 869, 873, 874,
889, 936, 941, 942, 944, 948, 950, 1010,
1019, 1020, 1022, 1025, 1027, 1029,
1030, 1032, 1038, 1057, 1060, 1061,
1067, 1069, 1076–1078, 1085

Reynolds stress, 511
Ribs, 1082–1084
Richardson number, 720, 724, 727
Rohsenow equation, 959

S
Sand grain roughness, 646, 648–651
Schmidt graphical method, 399
Schmidt number, 1043, 1052, 1053, 1055, 1058,

1059, 1061, 1063–1065
Selective emitters, 750, 903
Semi-infinite solid, transient conduction in, 353, 357
Separation of flow, 621
Separation-of-variables method, 361
Shape factor

conduction, 253, 269, 270, 279, 323
radiation, 769, 772, 773, 795, 804, 819
salient features, radiation, 767

Shell-and-tube heat exchanger, 969, 988, 1009,
1028, 1029, 1038

Sherwood number, 1052, 1053, 1055
Similarity variable, 431
Single-lump heat capacity, 333, 348
Skin-friction coefficient, 436, 438, 444, 446, 447,

449, 453–456, 480, 488, 516, 518, 528,
535, 536, 538, 556, 614, 615

Sky temperature, 868, 1067, 1068, 1073, 1089
Slug flow (boiling), 552, 554
Solar constant, 854, 855
Solid angle, 751, 755–757, 767
Space resistance for radiation, 821, 846, 851, 893,

894
Specular reflection, 736
Specular surfaces, 736
Speed of light, 738
Spheres

drag coefficient, 624
external flow, 680
forced convection, 620, 624
Heisler charts, 329, 379, 407

Spherical coordinates, 7, 22, 58, 105, 106, 243
Spine or stud fin, 113, 188
Stability criteria

finite difference method, 412
Staggered tube banks, 626, 675, 938
Stagnation point, 621
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Stanton number, 468, 517, 556, 577, 614, 1056,
1065, 1068

Steady-state heat conduction
one dimension, 7, 15, 25, 28, 31, 43, 47, 48, 58,

60, 61, 63, 105, 106, 196, 207, 220
cylindrical shell, 43
plane wall, 25

two dimensional, 15, 269, 319
cylindrical shell, 322
finite-difference method, 15, 63, 253, 285, 395,

393
fins, 153
plane wall, 281
spherical shell, 63
with internal heat generation, 337

Stefan–Boltzmann constant, 4, 737, 741
Stefan–Boltzmann law, 737, 741, 743, 756, 758,

761, 763, 809, 857
Stefan’s law, 1041, 1047, 1049, 1065
Stream function, 429, 431, 463
Summation rule, 779, 781, 783, 784, 786, 803, 805,

826
Surface resistance for radiation, 820, 893
Surfaces, reradiating, 767, 823, 827, 844, 847
Surface tension in boiling, 955
Symbols, list of, xxi–xxv

T
Tables

air, properties at atmospheric pressure, 16, 655
conversion factors, 1093–1094
diffusion coefficients, 1047, 1057, 1060, 1062
emissivity, 926
error function, 355
metals, properties, 16
modified Bessel function, 176
non-metals, properties, 16
SI, prefixes, 1094
water, properties, 16

Temperature
bulk, 216, 290, 291, 337, 497, 501–503, 522,

551, 583, 586, 587, 595, 596, 599, 600,
603, 604, 607, 608, 611, 627, 640–642,
654–656, 660, 662, 663, 665–667, 669,
674, 861, 1023

mean film, 478, 518, 522, 537, 616, 620, 699,
701–703, 722, 724, 728, 861, 874, 880,
887, 889, 937, 939, 942, 943, 946, 1059,
1061

Temperature gradient, 1, 3, 7–9, 12, 13, 16, 17, 46,
67, 105, 167, 258, 286, 323, 413, 414,
416, 484, 502, 563, 599, 719, 1043

Temperature measurement error, 149, 193, 895
Temperature profiles, laminar flow, 417, 418, 581,

592, 672, 673
Thermal boundary layer, 416, 417, 425, 463, 468,

470, 474, 475, 478, 552, 555, 556, 560,
561, 621, 648, 676, 693

Thermal conductance, 26
Thermal conductivity, 2–4, 6, 9–12, 14, 16, 19, 25,

30, 32, 33, 44, 51–55, 66–72, 74, 75, 77,
79–84, 86, 88, 92, 97, 102, 103, 105–107,
110–112, 115, 118, 124, 125, 135, 136,
145, 150, 151, 153, 156, 157, 161–163,
166, 168, 170, 171, 175, 189, 192–196,
200, 203, 204, 207–209, 211–213, 216,
217, 220, 222, 226, 228–230, 233, 234,
237, 242, 248, 273, 274, 285, 301, 303,
329, 335, 338, 343, 360, 377, 407, 408,
410, 414, 459, 532, 552, 554, 557, 566,
567, 593, 595, 598–600, 644, 676, 684,
817, 1020, 1021, 1027, 1067, 1072, 1074

Thermal conductivity measurement, 66, 69, 105,
107

Thermal contact resistance, 7, 101, 106, 107
Thermal diffusivity, 14, 16, 17, 105, 106, 331, 371,

372, 409, 463, 509, 512, 577
Thermal entry length, 418, 581, 591, 597, 603, 606
Thermal radiation, see Radiation heat transfer, 1
Thermal resistance, 11, 26, 36, 46, 105, 110, 279,

333, 343, 350, 591, 592, 648, 676, 951,
954, 957

Thermometer well, 149, 150
Thermophysical properties, 3, 5, 16, 471, 477, 540,

561, 587, 595–597, 608, 617, 618, 629,
630, 654, 655, 661, 665, 679, 693, 699,
703, 715, 716, 873, 874, 887, 889, 948,
950, 1027, 1031, 1059, 1061, 1079

Three-dimensional heat conduction equation, 20
Time constant, 332, 333, 342, 511
Transient conduction, 329, 384, 385, 407

uniform volumetric heating, 396
Transient conduction with heat generation, 407
Transient numerical method, 384, 399, 407
Transition boiling, 954
Transition, laminar-turbulent flow, 416, 419, 484,

488, 546, 555, 557, 590, 592, 593, 615,
625, 643, 649, 673, 676, 941

Transmissivity, 733, 735, 762, 764, 765, 864, 905,
922, 923, 925

Transparent or diathermanous, 735
Trapezoidal fin, 179, 189, 194
Triangular fin, 174, 175, 178, 184, 189, 408
Tube banks, 672, 951, 1031, 1032
Tubes

concentric, 602, 969, 1034
flow across banks, 626, 675, 1031
inline arrangement of, 938
laminar flow in circular, 580, 603
staggered arrangement of, 626, 675
turbulent flow in circular, 589

Turbulent flow in circular tube, 589
Turbulent heat transfer from

isothermal flat plate, 519
Turbulent heat transfer in tube, 513, 557
Turbulent Prandtl number, 514, 557
Two-dimensional steady state conduction
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analytical solution, 253, 254, 273, 323
with heat generation, 253, 323

U
Ultra violet radiation, 733
Uniform wall heat flux, internal flows, 496
Uniform wall temperature, internal flows, 591, 673
Universal velocity distribution law, 507, 590
Universal velocity profile, 485, 507, 556
Unsteady-state conduction

backward-difference technique, 389
Biot number, 331, 334, 335, 337–339, 341, 343,

344, 346, 368, 371, 373–378, 391, 393,
404, 407

convection boundary conditions, 357
explicit formulation, 389
finite-difference methods, 388, 389, 395, 396,

398, 399, 407
forward-difference technique, 389
Fourier number, 331, 367, 368, 371, 373, 374,

385, 387, 391, 407
Heisler charts, 363, 367, 368, 373–375, 379
implicit formulations, 389, 390, 392
infinite plate, 360, 361, 364, 365, 379
lumped heat capacity system, 329, 331,

333–335, 337, 344, 346, 374, 376, 378,
407

semi-infinite solid, 353, 356, 359, 407
separation-of-variables method, 361, 362
sphere, 339, 343, 363, 367, 374, 379, 407, 409
transient numerical method, 384, 399, 407
two-and three-dimensional systems, 379, 380,

387

V
Variable conductivity, 19, 83, 195, 248
Velocity profile, 417–419, 424, 429, 441, 442, 447,

450, 451, 455–458, 481, 485, 486, 490,
493, 499, 502, 507–509, 541, 543,
546–552, 554–556, 580, 581, 583, 585,
586, 599, 604, 651, 673, 674, 1041, 1065

Vertical planes/cylinders
natural convection relation, 693

View factor, 769, 774, 802, 803, 891, 894
Viscosity, kinematic, 438, 463, 512, 557, 577, 1068
Volumetric heat generation, 106, 209, 212, 229,

230, 237, 322
Von Karman momentum integral equation, 413,

441, 487, 556

W
Wall, law of the, 486, 507, 529, 648, 649, 651
Water, thermophysical properties, 587, 629, 656,

657, 661, 671, 704, 706, 725, 947, 949,
950, 1009, 1027, 1028, 1030, 1032, 1033,
1038

White body, 736, 748, 762
Wien’s displacement law, 733, 740, 746, 748, 760,

763
Wind heat transfer coefficient, 1067, 1072, 1073,

1087–1090

X
X-rays, 733, 734
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