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9

Thomas’ Calculus: Early Transcendentals, Fifteenth Edition in SI Units, continues its 
 tradition of clarity and precision in calculus with a modern update to the popular text. The 
authors have worked diligently to add exercises, revise figures and narrative for clarity, and 
update many applications to modern topics. Thomas’ Calculus remains a modern and robust 
introduction to calculus, focusing on developing conceptual understanding of the underly-
ing mathematical ideas. This text supports a calculus sequence typically taken by students 
in STEM fields over several semesters. Intuitive and precise explanations, thoughtfully 
chosen examples, superior figures, and time-tested exercise sets are the foundation of this 
text. We continue to improve this text in keeping with shifts in both the preparation and the 
goals of today’s students, and in the applications of calculus to a changing world.

As Advanced Placement Calculus continues to grow in popularity for high school 
students, many instructors have communicated mixed reviews of the benefit for today’s 
university and community college students. Some instructors report receiving students 
with an overconfidence in their computational abilities coupled with underlying gaps in 
algebra and trigonometry mastery, as well as poor conceptual understanding. In this text, 
we seek to meet the needs of the increasingly varied population in the calculus sequence. 
We have taken care to provide enough review material (in the text and appendices), 
detailed solutions, and a variety of examples and exercises, to support a complete under-
standing of calculus for students at varying levels. Additionally, the MyLab Math course 
that accompanies the text provides significant support to meet the needs of all students. 
Within the text, we present the material in a way that supports the development of mathe-
matical maturity, going beyond memorizing formulas and routine procedures, and we 
show students how to generalize key concepts once they are introduced. References are 
made throughout, tying new concepts to related ones that were studied earlier. After 
studying calculus from Thomas, students will have developed problem-solving and rea-
soning abilities that will serve them well in many important aspects of their lives. 
Mastering this beautiful and creative subject, with its many practical applications across 
so many fields, is its own reward. But the real gifts of studying calculus are acquiring the 
ability to think logically and precisely; understanding what is defined, what is assumed, 
and what is deduced; and learning how to generalize conceptually. We intend this book to 
encourage and support those goals.

Preface
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10 Preface

New to This Edition

We welcome to this edition a new coauthor, Przemyslaw Bogacki from Old Dominion 
University. Przemek joined the team for the fourth edition of University Calculus and now 
joins the Thomas’ Calculus team. Przemek brings a keen eye for details as well as sig-
nificant experience in MyLab Math. Przemek has diligently reviewed every exercise and 
solution in MyLab Math for mathematical accuracy, fidelity with text methods, and effec-
tiveness for students. He has also recommended nearly 100 new Setup & Solve exercises 
and improved the sample assignments in MyLab. Przemek has also written the new appen-
dix on Optimization covering determinants, extreme values, and gradient descent.

The most significant update to this 15th edition includes new online chapters on 
Complex Functions, Fourier Series and Wavelets, and the new appendix on Optimization. 
These chapters can provide material for students interested in more advanced topics. The 
details are outlined below in the chapter descriptions.

We have also made the following updates:

• Many updated graphics and figures to bring out clear visualization and mathematical
correctness.

• Many wording clarifications and revisions.

• Many instruction clarifications for exercises, such as suggesting where the use of a
calculator may be needed.

• Notation of inverse trig functions favoring arcsin notation over sin 1− , etc.

New to MyLab Math

Pearson has continued to improve the general functionality of MyLab Math since the pre-
vious edition. Ongoing improvements to the grading algorithms, along with the develop-
ment of MyLab Math for our differential equations courses allows for more sophisticated 
acceptance of generic constants and better parsing of mathematical expressions.

• The full suite of interactive figures has been updated for accessibility meeting WCAG
standards. These figures are designed to be used in lecture as well as by students in-
dependently. The figures are editable using the freely available GeoGebra software.
The figures were created by Marc Renault (Shippensburg University), Kevin Hopkins
(Southwest Baptist University), Steve Phelps (University of Cincinnati), and Tim
Brzezinski (Southington High School, CT).

• New! GeoGebra Exercises are gradable graphing and computational exercises that help
students demonstrate their understanding. They enable students to interact directly with
the graph in a manner that reflects how students would graph on paper.

• Nearly 100 additional Setup & Solve exercises have been created, selected by author
Przemyslaw Bogacki. These exercises are designed to focus students on the process of
problem solving by requiring them to set up their equations before moving on to the
solution.

• Integrated Review quizzes and personalized homework are now built into all MyLab
Math courses. No separate Integrated Review course is required.

• New online chapters and sections have exercises available, including exercises for the
complex numbers and functions that many users have asked for.
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Preface 11

Chapter 1

• Section 1.2. Revised Example 4 to clarify the distinction
between vertical and horizontal scaling of a graph.

• Section 1.3. Added new Figure 1.46, illustrating a geometric
proof of the angle sum identities.

Chapter 2

• Section 2.2. New Example 11, illustrating the use of the
Sandwich Theorem, with corresponding new Figure 2.14.

• Section 2.4. New subsection on “Limits at Endpoints of an
Interval” added. New Example 2 added, illustrating limits at
a boundary point of an interval.

• Section 2.6. Exercises 41–45 on limits involving trigonometric
functions moved from Chapter 3.

• Additional and Advanced Exercises. Exercises 31–40
on limits involving trigonometric functions moved from
Chapter 3.

Chapter 3

• Section 3.8. Revised Figure 3.36 illustrating the relationship
between slopes of graphs of inverse functions.

• Updated differentiation formulas involving exponential and
logarithmic functions.

• Expanded Example 5.

• Expanded Example 7 to clarify the computation of the
derivative of x .x

• Added new Exercises 11–14 involving the derivatives of
inverse functions.

• Section 3.9. Updated differentiation formulas involving
inverse trigonometric functions.

• Added new Example 3 to illustrate differentiating a compo-
sition involving the arctangent function.

• Rewrote the introduction to the subsection on the derivative
of arcsec x.

• Section 3.10. Updated and improved related rates problem
strategies, and correspondingly revised Examples 2–6.

Chapter 4

• Section 4.3. Added new Exercises 69–70.

• Section 4.4. Added new Exercises 107–108.

• Section 4.5. Improved the discussion of indeterminate forms.

• Expanded Example 1.

• Added new Exercises 19–20.

• Section 4.6. Updated and improved strategies for solving
applied optimization problems.

• Added new Exercises 33–34.

• Section 4.8. Added Table 4.3 of integration formulas.

Chapter 5

• Section 5.1. The Midpoint Rule and the associated formula
for calculating an integral numerically were given a more
central role and used to introduce a numerical method.

• Section 5.3. New basic theory Exercise 89. Integrals of func-
tions that differ at one point.

• Section 5.6. New Exercises 113–116. Compare areas using
graphics and computation.

Chapter 6

Section 6.2. Discussion of cylinders in Example 1 clarified.

Chapter 7

• Clarified derivative formulas involving x versus those involv-
ing a differentiable function u.

• Section 7.1. Rewrote material on Logarithms and Laws on
Exponents. Exercises 63–66 moved from Chapter 4. New
Exer cise 67 added.

Chapter 8

• Section 8.3. Clarified computing integrals involving powers
of sines and cosines. Exercise 42 replaced. Exercises 51 and
52 added.

• Section 8.4. Ordering of exercises was updated.

• Section 8.5. Discussion of the method of partial fractions
rewritten and clarified.

• Section 8.7. New subsection on the Midpoint Rule added.
Discussion of Error Analysis expanded to include the Mid-
point Rule. Exercises 1–10 expanded to include the Mid-
point Rule.

• Section 8.8. Discussion of infinite limits of integration clari-
fied. Material on Tests for Convergence and Divergence,
including the Direct Comparison Test and the Limit Com-
parison Test, their proofs, and associated examples, all
revised. New Exercises 69–80 added.

Chapter 9

• Section 9.2. Solution to Example 2 replaced. Solution to
Example 8 replaced.

• Section 9.3. Solution to Example 5 revised.

Content Enhancements
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12 Preface

• Section 9.5. Exercise 71 added.

• Section 9.6. Proof of Theorem 15 replaced. Discussion of
Theorem 16 revised.

• Section 9.7. Discussion of absolute convergence added to
the solution of Example 3. Figure 9.21 revised. New Exer-
cises 40–41 added. Exercise 66 entirely rewritten.

• Section 9.8. Ordering of Exercises was revised. New Exer-
cises 47 and 52 added.

• Section 9.9. Discussion of Taylor series between Examples 4
and 5 rewritten.

• Section 9.10. Exercise 9 replaced.

• Practice Exercises. New Exercises 45–46 added.

• Additional and Advanced Exercises. New Exercises 30–31
added.

Chapter 11

• Section 11.2. New subsection on Vectors in n Dimensions
added, with corresponding new Figure 11.19, and new Exer-
cises 60–65.

• Section 11.3. New subsection on The Dot Product of Two
n-Dimensional Vectors added, with new Example 9, and new
Exercises 53–56.

• Section 11.6. Discussion of cylinders revised.

Chapter 12

Section 12.5. New Exercises 1–2 and 5–6 added.

Chapter 13

• Section 13.2. Added a Composition Rule to Theorem 1 and
expanded Example 1.

• Section 13.3. Rewrote the concept of differentiability for
functions of several variables to improve clarity.

• Expanded Example 8.

• Section 13.4. Added new Exercises 62–63 on the chain rule
with multiple variables.

• Section 13.5. Added a new subsection on gradients for Func-
tions of More Than Three Variables.

• A new Example 7 illustrates a gradient of a 3-variable
function.

• New Exercises 45–52 involve gradients of functions with
several variables.

• Section 13.7. Added a definition of the Hessian matrix.

• Clarified Example 6.

• Section 13.8. Clarified the use of Lagrange Multipliers
throughout, with a more explicit discussion of how to use
them for finding maxima and minima.

Chapter 14

• Section 14.2. Added discussion of the properties of limits of
iterated double integrals.

• Rewrote Exercises 1–8. Added new Exercises 19–26.

• Section 14.5. Added discussion of the properties of limits of
iterated triple integrals. Revised and expanded Example 2.

• Section 14.7. Revised Figure 14.55 to clarify the shape of a
spherical wedge involved in triple integration.

Chapter 16

• Section 16.2. Added Figure 16.9.

• Section 16.4. Added a new application of the logistic function
showing its connection to Machine Learning and Neural Net-
works. Added New Exercises 21–22 on the Logistic Equation.

Appendices 

Rewrote Appendix A.9 to replace the prime notation with the 
subscript notation.

New Online Appendix B

B.1 Determinants
B.2  Extreme Values and Saddle Points for Functions of More 

than Two Variables
B.3 The Method of Gradient Descent

This new appendix covers many topics relevant to students 
interested in Machine Learning and Neural Networks.

New Online Chapter 18—Complex Functions 
This new online chapter gives an introduction to complex func-
tions. Section 1 is an introduction to complex numbers and their 
operations. It replaces Appendix A.9. Section 2 covers limits 
and continuity for complex functions. Section 3 introduces com-
plex derivatives and Section 4 the Cauchy-Riemann Equations. 
Section 5 develops the theory of complex series. Section 6 studies 
the standard functions such as sin z and Log z, and Section 7 ends 
the chapter by introducing the theory of conformal maps.

New Online Chapter 19—Fourier Series and Wavelets 
This new online chapter introduces Fourier series, and then 
treats wavelets as a more advanced topic.

It has sections on

19.1 Periodic Functions
19.2 Summing Sines and Cosines
19.3 Vectors and Approximation in Three and More Dimensions
19.4 Approximation of Functions
19.5 Advanced Topic: The Haar System and Wavelets
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 Preface 13

Continuing Features

Rigor The level of rigor is consistent with that of earlier editions. We continue to distin-
guish between formal and informal discussions and to point out their differences. Starting 
with a more intuitive, less formal approach helps students understand a new or difficult con-
cept so they can then appreciate its full mathematical precision and outcomes. We pay atten-
tion to defining ideas carefully and to proving theorems appropriate for calculus students, 
while mentioning deeper or subtler issues they would study in a more advanced course. Our 
organization and distinctions between informal and formal discussions give the instructor a 
degree of flexibility in the amount and depth of coverage of the various topics. For example, 
while we do not prove the Intermediate Value Theorem or the Extreme Value Theorem for 
continuous functions on a closed finite interval, we do state these theorems precisely, illus-
trate their meanings in numerous examples, and use them to prove other important results. 
Furthermore, for those instructors who desire greater depth of coverage, in Appendix A.7 we 
discuss the reliance of these theorems on the completeness of the real numbers.

Writing Exercises Writing exercises placed throughout the text ask students to explore 
and explain a variety of calculus concepts and applications. In addition, the end of each 
chapter contains a list of questions for students to review and summarize what they have 
learned. Many of these exercises make good writing assignments.

End-of-Chapter Reviews and Projects In addition to problems appearing after each 
section, each chapter culminates with review questions, practice exercises covering the 
entire chapter, and a series of Additional and Advanced Exercises with more challenging 
or synthesizing problems. Most chapters also include descriptions of several Technology 
Application Projects that can be worked by individual students or groups of students over 
a longer period of time. These projects require the use of Mathematica or Maple, along 
with pre-made files that are available for download within MyLab Math.

Writing and Applications This text continues to be easy to read, conversational, and 
mathematically rich. Each new topic is motivated by clear, easy-to-understand examples 
and is then reinforced by its application to real-world problems of immediate interest to 
students. A hallmark of this book has been the application of calculus to science and engi-
neering. These applied problems have been updated, improved, and extended continually 
over the last several editions.

Technology In a course using the text, technology can be incorporated according to the 
taste of the instructor. Each section contains exercises requiring the use of technology; 
these are marked with a T if suitable for calculator or computer use, or they are labeled 
Computer Explorations if a computer algebra system (CAS, such as Maple or Math-
ematica) is required.

MyLab Math Resources for Success

MyLab™ Math is available to accompany Pearson’s market-leading text options, includ-
ing Thomas’ Calculus: Early Transcendentals, 15th Edition in SI Units (access code 
required).

MyLab is the teaching and learning platform that empowers you to reach every  
student. MyLab Math combines trusted author content—including full eText and assess-
ment with immediate feedback—with digital tools and a flexible platform to personalize 
the learning experience and improve results for each student.

MyLab Math supports all learners, regardless of their ability and background, to provide 
an equal opportunity for success. Accessible resources support learners for a more equitable 
experience no matter their abilities. And options to personalize learning and address individ-
ual gaps help to provide each learner with the specific resources they need to achieve success.
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14 Preface

Student Resources
Pearson eText—The eText is “reflowable” to adapt to use on tablets and smartphones. 
You can insert your own highlights, notes, and bookmarks. It is also fully accessible using 
screen-readers. Download the Pearson+ app to access your eText on your smartphone or 
tablet anytime—even offline.

Study Slides—PowerPoint slides featuring key ideas and examples are available 
for students within the Video & Resource Library. These slides are compatible with 
screen readers.

Address Under-Preparedness—Each student learns at a different pace. Personalized 
learning pinpoints the precise areas where each student needs practice, giving all students 
the support they need—when and where they need it—to be successful.

New! Integrated Review can be used for just-in-time prerequisite review.

• Integrated Review at the chapter level provides a Skills Check assessment to pin-
point which prerequisite topics, if any, students need to review.

• Students who require additional review proceed to a personalized homework
assignment to remediate.

• Integrated Review videos provide additional instruction.

Instructors that prefer to review at the section level can assign the Enhanced 
Assignments instead.

Personalized Homework—With Personalized Homework, students take a quiz or test and 
receive a subsequent homework assignment that is personalized based on their performance. 
This way, students can focus on just the topics they have not yet mastered.

Motivate Your Students—Students are motivated to succeed when they’re engaged in the 
learning experience and understand the relevance and power of math.

▼ Interactive Figures bring mathematical concepts to life, helping students see the 
concepts through directed explorations and purposeful manipulation. Many of the  
instructional videos that accompany the text include Interactive Figures to teach key 
concepts. These figures are assignable in MyLab Math and encourage active learning, 
critical thinking, and conceptual understanding. The figures were created by Marc  
Renault (Shippensburg University), Steve Phelps (University of Cincinnati), Kevin Hopkins 
(Southwest Baptist University), and Tim Brzezinski (Southington High School, CT).
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Preface 15

▼ Instructional videos—Hundreds of videos are available as learning aids within  
exercises and for self-study under the Video and Resource Library.

Other student resources include:

• Student’s Solutions Manual The Student’s Solutions Manual provides detailed
worked-out solutions to the odd-numbered exercises in Thomas’ Calculus: Early Tran-
scendentals, 15th Edition in SI Units. Available in MyLab Math.

• Companion Website

The companion Website, located at www.pearsonglobaleditions.com, offers an online
appendix, three online chapters, historical biographies, and more.

Instructor Resources
Your course is unique. So, whether you’d like to build your own assignments, teach mul-
tiple sections, or set prerequisites, MyLab gives you the flexibility to easily create your 
course to fit your needs.

Pre-Built Assignments are designed to maximize students’ performance. All assignments 
are fully editable to make your course your own.

New! Video Assignments featuring short videos with corresponding MyLab Math exercises 
are available for each section of the textbook. These editable assignments are especially help-
ful for online or “flipped” classes, where some or all the learning takes place independently.

Enhanced Assignments—These section-level assignments have three unique properties:

1. They help keep skills fresh with spaced practice of previously learned concepts.

2. Learning aids are strategically turned off for some exercises to ensure students under-
stand how to work the exercises independently.

3. They contain personalized prerequisite skills exercises for gaps identified in the
chapter-level Skills Check Quiz.
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16 Preface

MyLab Math Question Library is correlated to the exercises in the text, reflecting the 
authors’ approach and learning style. They regenerate algorithmically to give students 
unlimited opportunity for practice and mastery. Below are a few exercise types available 
to assign:

▼ New! GeoGebra Exercises are gradable graphing and computational exercises that 
help students demonstrate their understanding. They enable students to interact directly 
with the graph in a manner that reflects how students would graph on paper.

• Nearly 100 More! Setup & Solve Exercises require students to first describe how they
will set up and approach the problem. This reinforces conceptual understanding of the
process applied in approaching the problem, promotes long-term retention of the skill,
and mirrors what students will be expected to do on a test. This new exercise type was
widely praised by users of the 14th edition, so more were added to the 15th edition.

• Conceptual Question Library focuses on deeper, theoretical understanding of the key
concepts in calculus. These questions were written by faculty at Cornell University under
a National Science Foundation grant and are also assignable through Learning Catalytics.

Learning Catalytics—With Learning Catalytics, you’ll hear from every student when it 
matters most. You pose a variety of questions in class (choosing from pre-loaded questions 
or your own) that help students recall ideas, apply concepts, and develop critical-thinking 
skills. Your students respond using their own smartphones, tablets, or laptops.

Performance Analytics enable instructors to see and analyze student performance across 
multiple courses. Based on their current course progress, individuals’ performance is iden-
tified above, at, or below expectations through a variety of graphs and visualizations.
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Preface 17

In Performance Analytics, instructors can email students individually or by group to pro-
vide feedback.

Accessibility—Pearson works continuously to ensure our products are as accessible as 
possible to all students. Currently, we are working toward achieving WCAG 2.0 AA for 
our existing products (2.1 AA for future products) and Section 508 standards, as expressed 
in the Pearson Guidelines for Accessible Educational Web Media (https://www.pearson 
.com/uk/accessibility.html).

Other instructor resources include:

• Instructor’s Solutions Manual—The Instructor’s Solutions Manual provides
 complete worked-out solutions for all exercises in Thomas’ Calculus: Early Tran-
scendentals, 15th Edition in SI Units. It can be downloaded from within MyLab
Math or from Pearson’s online catalog at www.pearsonglobaleditions.com.

• PowerPoint Lecture Slides feature editable lecture slides written and designed spe-
cifically for this text, including figures and examples.

• TestGen enables instructors to build, edit, print, and administer tests using a com-
puterized bank of questions developed to cover all the objectives of the text. TestGen
is algorithmically based, allowing instructors to create multiple but equivalent ver-
sions of the same questions or test with the click of a button. Instructors can also
modify test bank questions or add new questions. The software and test bank are
available for download at www.pearsonglobaleditions.com.

• Technology Manuals and Projects

Maple Manual and Projects
Mathematica Manual and Projects
TI-Graphing Calculator Manual

These manuals and projects cover Maple 2021, Mathematica 12, and TI-84 Plus and
TI-89. Each manual provides detailed guidance for integrating a specific software
package or graphing calculator throughout the course, including syntax and com-
mands. The projects include instructions and ready-made application files for Maple
and Mathematica. Available to download within MyLab Math.

Learn more at https://www.pearsonmylabandmastering.com/global/
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OVERVIEW In this chapter we review what functions are and how they are visualized as 
graphs, how they are combined and transformed, and ways they can be classified.

Functions

1 

DEFINITION A function  f  from a set D to a set Y is a rule that assigns a single 
value f x( ) in Y to each x in D.

1.1 Functions and Their Graphs

Functions are a tool for describing the real world in mathematical terms. A function can be 
represented by an equation, a graph, a numerical table, or a verbal description; we will use 
all four representations throughout this text. This section reviews these ideas.

Functions; Domain and Range

The temperature at which water boils depends on the elevation above sea level. The inter-
est paid on a cash investment depends on the length of time the investment is held. The 
area of a circle depends on the radius of the circle. The distance an object travels depends 
on the elapsed time.

In each case, the value of one variable quantity, say y, depends on the value of another 
variable quantity, which we often call x. We say that “y is a function of x” and write this 
symbolically as

y f x y f x( ) “ equals of ” .( )=

The symbol  f  represents the function, the letter x is the independent variable represent-
ing the input value to f, and y is the dependent variable or output value of  f  at x.

A rule that assigns more than one value to an input x, such as the rule that assigns to a 
positive number both the positive and negative square roots of the number, does not describe 
a function.

The set D of all possible input values is called the domain of the function. The domain of  f  
will sometimes be denoted by D f( ). The set of all output values f x( ) as x varies throughout D 
is called the range of the function. The range might not include every element in the set Y. The 
domain and range of a function can be any sets of objects, but often in calculus they are sets of 
real numbers interpreted as points of a coordinate line. (In Chapters 12–15, we will encounter 
functions for which the elements of the sets are points in the plane, or in space.)

Often a function is given by a formula that describes how to calculate the output value 
from the input variable. For instance, the equation A r 2 is a rule that calculates the 
area A of a circle from its radius r. When we define a function  f  with a formula y f x( ) 
and the domain is not stated explicitly or restricted by context, the domain is assumed to be 
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22 Chapter 1 Functions

the largest set of real x-values for which the formula gives real y-values. This is called the 
natural domain of  f. If we want to restrict the domain in some way, we must say so. The 
domain of =y x 2 is the entire set of real numbers. To restrict the domain of the function 
to, say, positive values of x, we would write “ = >y x x, 02 .”

Changing the domain to which we apply a formula usually changes the range as well. 
The range of =y x 2 is [ )∞0, . The range of = ≥y x x, 22 , is the set of all numbers 
obtained by squaring numbers greater than or equal to 2. In set notation (see Appendix A.1),  
the range is { }≥x x 22  or { }≥y y 4  or [ )∞4, .

When the range of a function is a set of real numbers, the function is said to be  
real-valued. The domains and ranges of most real-valued functions we consider are inter-
vals or combinations of intervals. Sometimes the range of a function is not easy to find.

A function  f  is like a machine that produces an output value f x( ) in its range when-
ever we feed it an input value x from its domain (Figure 1.1). The function keys on a 
calculator give an example of a function as a machine. For instance, whenever you enter 
a nonnegative number x and press the x  key, the calculator gives an output value (the 
square root of x).

A function can also be pictured as an arrow diagram (Figure 1.2). Each arrow asso-
ciates to an element of the domain D a single element in the set Y. In Figure 1.2, the 
arrows indicate that f a( ) is associated with a, f x( ) is associated with x, and so on. Notice 
that a function can have the same output value for two different input elements in  
the domain (as occurs with f a( ) in Figure 1.2), but each input element x is assigned a 
single output value f x( ).

EXAMPLE 1  Verify the natural domains and associated ranges of some simple  
functions. The domains in each case are the values of x for which the formula makes sense.

Function Domain x( ) Range y( )

y x 2= −( )∞ ∞, [ )∞0,

y x1= −( ) ( )∞ ∪ ∞, 0 0, −( ) ( )∞ ∪ ∞, 0 0,

y x= [ )∞0, [ )∞0,

y x4= − −( ]∞, 4 [ )∞0,

y x1 2= − −[ ]1,1 [ ]0,1

Solution The formula =y x 2 gives a real y-value for any real number x, so the domain is 
,−( )∞ ∞ . The range of =y x 2 is [ )∞0,  because the square of any real number is non-

negative and every nonnegative number y is the square of its own square root: ( )=y y
2
.

The formula y x1=  gives a real y-value for every x except =x 0. For consistency 
in the rules of arithmetic, we cannot divide any number by zero. The range of y x1= , the 
set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since 

( )=y y1 1 . That is, for ≠y 0 the number x y1=  is the input that is assigned to the 
output value y.

The formula y x=  gives a real y-value only if ≥x 0. The range of =y x  is 
[ )∞0,  because every nonnegative number is some number’s square root (namely, it is the 
square root of its own square).

In = −y x4 , the quantity − x4  cannot be negative. That is, − ≥x4 0,  
or ≤x 4. The formula gives nonnegative real y-values for all ≤x 4. The range of − x4  
is [ )∞0, , the set of all nonnegative numbers.

The formula y x1 2= −  gives a real y-value for every x in the closed interval from 
1−  to 1. Outside this domain, − x1 2 is negative and its square root is not a real number. 

The values of − x1 2 vary from 0 to 1 on the given domain, and the square roots of these 
values do the same. The range of − x1 2  is [ ]0,1 . 

FIGURE 1.1 A diagram showing a func-
tion as a kind of machine.

Input
(domain)

Output
(range)

x f (x)f

FIGURE 1.2 A function from a set D to  
a set Y assigns a unique element of Y to 
each element in D.

x

a f (a) f (x)

D = domain set Y = set containing
the range
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1.1  Functions and Their Graphs 23

Graphs of Functions

If  f  is a function with domain D, its graph consists of the points in the Cartesian plane 
whose coordinates are the input-output pairs for  f. In set notation, the graph is

x f x x D, ( ) .( ){ }∈

The graph of the function f x x( ) 2= +  is the set of points with coordinates ( )x y,  
for which = +y x 2. Its graph is the straight line sketched in Figure 1.3.

The graph of a function  f  is a useful picture of its behavior. If ( )x y,  is a point on the 
graph, then y f x( )=  is the height of the graph above (or below) the point x. The height 
may be positive or negative, depending on the sign of f x( ) (Figure 1.4).

FIGURE 1.3 The graph of f x x( ) 2= +  
is the set of points x y,( ) for which y has the 
value x 2+ .

x

y

- 2 0

2

y  = x + 2

FIGURE 1.4 If x y,( ) lies on the graph 
of f, then the value y f x( )=  is the height 
of the graph above the point x (or below x if 
f x( ) is negative).

y

x
0 1 2

x

f (x)

(x, y)

f (1)

f (2)

x =y x 2

−2 4

−1 1

0 0

1 1

3
2

9
4

2 4 EXAMPLE 2 Graph the function =y x 2 over the interval −[ ]2, 2 .

Solution Make a table of xy-pairs that satisfy the equation =y x 2. Plot the points ( )x y,  
whose coordinates appear in the table, and draw a smooth curve (labeled with its equation) 
through the plotted points (see Figure 1.5). 

How do we know that the graph of =y x 2 doesn’t look like one of these curves?

FIGURE 1.5 Graph of the function 
in Example 2.

0 1 2- 1- 2

1

2

3

4
(- 2, 4)

(- 1, 1) (1, 1)

(2, 4)

3
2

9
4

,

x

y

y = x2

a   b

y = x2?

x

y

y = x2?

x

y

To find out, we could plot more points. But how would we then connect them? The basic 
question still remains: How do we know for sure what the graph looks like between the 
points we plot? Calculus answers this question, as we will see in Chapter 4. Meanwhile, 
we will have to settle for plotting points and connecting them as best we can.
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24 Chapter 1 Functions

Representing a Function Numerically

A function may be represented algebraically by a formula and visually by a graph 
(Example 2). Another way to represent a function is numerically, through a table of val-
ues. From an appropriate table of values, a graph of the function can be obtained using the 
method illustrated in Example 2, possibly with the aid of a computer. The graph consisting 
of only the points in the table is called a scatterplot.

EXAMPLE 3  Musical notes are pressure waves in the air. The data associated with 
Figure 1.6 give recorded pressure displacement versus time in seconds of a musical note 
produced by a tuning fork. The table provides a representation of the pressure function 
(in micropascals) over time. If we first make a scatterplot and then draw a smooth curve 
that approximates the data points ( )t p,  from the table, we obtain the graph shown in  
the figure.

Time Pressure

0.00091 −0.080

0.00108 0.200

0.00125 0.480

0.00144 0.693

0.00162 0.816

0.00180 0.844

0.00198 0.771

0.00216 0.603

0.00234 0.368

0.00253 0.099

0.00271 −0.141

0.00289 −0.309

0.00307 −0.348

0.00325 −0.248

0.00344 −0.041

0.00362 0.217

0.00379 0.480

0.00398 0.681

0.00416 0.810

0.00435 0.827

0.00453 0.749

0.00471 0.581

0.00489 0.346

0.00507 0.077

0.00525 −0.164

0.00543 −0.320

0.00562 −0.354

0.00579 −0.248

0.00598 −0.035

FIGURE 1.6 A smooth curve approximating the  
plotted points gives a graph of the pressure function  
represented by the accompanying tabled data  
(Example 3).

The Vertical Line Test for a Function

Not every curve in the coordinate plane can be the graph of a function. A function  f  can 
have only one value f x( ) for each x in its domain, so no vertical line can intersect the graph 
of a function at more than one point. If a is in the domain of the function f, then the vertical 
line =x a will intersect the graph of  f  at the single point a f a, ( )( ).

A circle cannot be the graph of a function, since some vertical lines intersect the circle 
twice. The circle graphed in Figure 1.7a, however, contains the graphs of two functions of 
x, namely the upper semicircle defined by the function f x x( ) 1 2= −  and the lower 
semicircle defined by the function g x x( ) 1 2−= −  (Figures 1.7b and 1.7c).

FIGURE 1.7 (a) The circle is not the graph of a function; it fails the vertical line test. (b) The 
upper semicircle is the graph of the function f x x( ) 1 2= − . (c) The lower semicircle is the 
graph of the function g x x( ) 1 2−= − .

- 1 10
x

y

(a) x2 + y2 = 1

- 1 10
x

y

- 1 1

0
x

y

(b) y = "1 - x2 (c) y = - "1 - x2

−0.4
−0.2

0.2
0.4
0.6
0.8
1.0

−0.6

t (s)
0.001 0.002 0.004 0.0060.003 0.005

Data

p (pressure, mPa)
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1.1  Functions and Their Graphs 25

Piecewise-Defined Functions

Sometimes a function is described in pieces by using different formulas on different parts 
of its domain. One example is the absolute value function

=
≥

− <

⎧
⎨
⎪⎪

⎩⎪⎪
x

x x

x x

, 0

, 0

First formula

Second formula

whose graph is given in Figure 1.8. The right-hand side of the equation means that the 
function equals x if ≥x 0, and equals −x if <x 0. Piecewise-defined functions often 
arise when real-world data are modeled. Here are some other examples.

EXAMPLE 4 The function

=

− <

≤ ≤

>

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

f x

x x

x x

x

( )

, 0

, 0 1

1, 1

First formula

Second formula

Third formula

2

is defined on the entire real line but has values given by different formulas, depending on 
the position of x. The values of  f  are given by −=y x  when < =x y x0, 2 when 

≤ ≤x0 1, and =y 1 when >x 1. The function, however, is just one function whose 
domain is the entire set of real numbers (Figure 1.9). 

EXAMPLE 5  The function whose value at any number x is the greatest integer less 
than or equal to x is called the greatest integer function or the integer floor function. It 
is denoted ⎣ ⎦x . Figure 1.10 shows the graph. Observe that

− −
− − − −

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= = = =
= = = =

2.4 2, 1.9 1, 0 0, 1.2 2,
2 2, 0.2 0, 0.3 1, 2 2.

EXAMPLE 6  The function whose value at any number x is the smallest integer greater 
than or equal to x is called the least integer function or the integer ceiling function. It 
is denoted ⎡ ⎤x . Figure 1.11 shows the graph. For positive values of x, this function might 
represent, for example, the cost of parking x hours in a parking lot that charges $1 for each 
hour or part of an hour. 

Increasing and Decreasing Functions

If the graph of a function climbs or rises as you move from left to right, we say that the 
function is increasing. If the graph descends or falls as you move from left to right, the 
function is decreasing.

FIGURE 1.10 The graph of the greatest 
integer function y x⎣ ⎦=  lies on or below 
the line y x= , so it provides an integer 
floor for x (Example 5).

1

- 2

2

3

- 2 - 1 1 2 3

y = x

y = :x;

x

y

FIGURE 1.11 The graph of the least 
integer function y x⎡ ⎤=  lies on or above 
the line y x= , so it provides an integer 
ceiling for x (Example 6).

x

y

1- 1- 2 2 3

- 2

- 1

1

2

3
y = xy = <x=

FIGURE 1.8 The absolute value function 
has domain ,−( )∞ ∞  and range 0,[ )∞ .

x

y = 0 x 0

y = x
y = - x

y

- 3 - 2 - 1 0 1 2 3

1

2

3

FIGURE 1.9 To graph the function 
y f x( )=  shown here, we apply different 
formulas to different parts of its domain 
(Example 4).

- 2 - 1 0 1 2

1

2

x

y

y = - x

y = x2

y = 1

y = f (x)

DEFINITIONS Let  f  be a function defined on an interval I and let x1 and x 2 be 
two distinct points in I.

1. If >f x f x( ) ( )2 1  whenever <x x1 2, then  f  is said to be increasing on I.

2. If <f x f x( ) ( )2 1  whenever <x x1 2, then  f  is said to be decreasing on I.

It is important to realize that the definitions of increasing and decreasing functions 
must be satisfied for every pair of points x1 and x 2 in I with <x x1 2. Because we use the 
inequality < to compare the function values, instead of ≤, it is sometimes said that  f  is 
strictly increasing or decreasing on I. The interval I may be finite (also called bounded) 
or infinite (unbounded).
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26 Chapter 1 Functions

EXAMPLE 7  The function graphed in Figure 1.9 is decreasing on , 0−( )∞  and increas-
ing on ( )0,1 . The function is neither increasing nor decreasing on the interval ( )∞1,  because 
the function is constant on that interval, and hence the strict inequalities in the definition of 
increasing or decreasing are not satisfied on ( )∞1, . 

Even Functions and Odd Functions: Symmetry

The graphs of even and odd functions have special symmetry properties.

FIGURE 1.12 (a) The graph  
of y x 2=  (an even function)  
is symmetric about the y-axis.  
(b) The graph of y x 3=  (an odd 
function) is symmetric about the 
origin.

(a)

(b)

0
x

y

y = x2

(x, y)(- x, y)

0
x

y

y = x3

(x, y)

(- x, - y)

DEFINITIONS A function y f x( )=  is an

−

− =

− =

x

x

f x f x

f x f x

even function of

odd function of

if ( ) ( ),

if ( ) ( ),

for every x in the function’s domain.

The names even and odd come from powers of x. If y is an even power of x, as in 
=y x 2 or =y x 4, it is an even function of x because − =x x( )2 2 and − =x x( )4 4. If  

y is an odd power of x, as in =y x  or =y x 3, it is an odd function of x because 
−− =x x( )1  and −− =x x( )3 3.

The graph of an even function is symmetric about the y-axis. Since − =f x f x( ) ( ),  
a point ( )x y,  lies on the graph if and only if the point −( )x y,  lies on the graph (Figure 1.12a). 
A reflection across the y-axis leaves the graph unchanged.

The graph of an odd function is symmetric about the origin. Since −− =f x f x( ) ( ),  
a point ( )x y,  lies on the graph if and only if the point − −( )x y,  lies on the graph (Fig-
ure 1.12b). Equivalently, a graph is symmetric about the origin if a rotation of 180° 
about the origin leaves the graph unchanged.

Notice that each of these definitions requires that both x and −x be in the domain of  f.

EXAMPLE 8  Here are several functions illustrating the definitions.

f x x( ) 2= Even function: − =x x( )2 2 for all x; symmetry about y-axis. So 
− = =f f( 3) 9 (3). Changing the sign of x does not change the 

value of an even function. 

f x x( ) 12= +  Even function: − + = +x x( ) 1 12 2  for all x; symmetry about 
y-axis (Figure 1.13a).

(a) (b)

x

y

0

1

y = x2 + 1

y = x2

x

y

0- 1

1

y = x + 1

y = x

FIGURE 1.13 (a) When we add the constant term 1 to the function y x 2= , 
the resulting function y x 12= +  is still even and its graph is still symmetric 
about the y-axis. (b) When we add the constant term 1 to the function y x= ,  
the resulting function y x 1= +  is no longer odd, since the symmetry about 
the origin is lost. The function y x 1= +  is also not even (Example 8).
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1.1  Functions and Their Graphs 27

f x x( ) = Odd function: −− =x x( )  for all x; symmetry about the origin. So 
−− =f ( 3) 3 while f (3) 3= . Changing the sign of x changes the 

sign of the value of an odd function.

f x x( ) 1= + Not odd: −− = +f x x( ) 1, but f x x( ) 1−− = − . The two are not 
equal.

Not even: − + ≠ +x x( ) 1 1 for all ≠x 0 (Figure 1.13b).

Common Functions

A variety of important types of functions are frequently encountered in calculus.

Linear Functions A function of the form f x mx b( ) = + , where m and b are fixed 
constants, is called a linear function. Figure 1.14a shows an array of lines f x mx( ) = . 
Each of these has =b 0, so these lines pass through the origin. The function f x x( ) = , 
where =m 1 and =b 0, is called the identity function. Constant functions result when 
the slope is =m 0 (Figure 1.14b).

DEFINITION Two variables y and x are proportional (to one another) if one 
is always a constant multiple of the other—that is, if =y kx for some nonzero 
constant k.

FIGURE 1.14 (a) Lines through the origin with slope m. (b) A constant function 
with slope =m 0.

0 x

y
m = - 3 m = 2

m = 1m = - 1

y = - 3x

y = - x

y = 2x

y = x

y = x1
2

m = 1
2

(a)

x

y

0 1 2

1

2 y = 3
2

(b)

If the variable y is proportional to the reciprocal x1 , then sometimes it is said that y is 
inversely proportional to x (because x1  is the multiplicative inverse of x).

Power Functions A function f x x( ) a= , where a is a constant, is called a power 
function. There are several important cases to consider.

(a) f x x( ) a=  with =a n, a positive integer.

The graphs of f x x( ) n= , for =n 1, 2, 3, 4, 5, are displayed in Figure 1.15. These func-
tions are defined for all real values of x. Notice that as the power n gets larger, the curves 
tend to flatten toward the x-axis on the interval −( )1,1  and to rise more steeply for >x 1.  
Each curve passes through the point ( )1,1  and through the origin. The graphs of functions 
with even powers are symmetric about the y-axis; those with odd powers are symmetric about 
the origin. The even-powered functions are decreasing on the interval , 0−( ]∞  and increasing 
on [ )∞0, ; the odd-powered functions are increasing over the entire real line ,−( )∞ ∞ .
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28 Chapter 1 Functions

FIGURE 1.15 Graphs of = =f x x n( ) , 1, 2, 3, 4, 5n , defined for x−∞ < < ∞.
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- 1 0 1

- 1

1

x

y y = x4

- 1 0 1

- 1

1

x

y y = x5

FIGURE 1.16 Graphs of the power functions f x x( ) a= . 
(a) a 1−= . (b) a 2−= .

x

y

x

y

0

1

1

0

1

1

y = 1
x y = 1

x2

Domain: x Z 0
Range:   y Z 0

Domain: x Z 0
Range:   y 7 0

(a) (b)

FIGURE 1.17 Graphs of the power functions f x x( ) a=  for =a 1
2

, 1
3

, 3
2

, and 2
3

.

y

x
0

1

1

y = x3>2

Domain:
Range:

0 … x 6 q
0 … y 6 q

y

x

Domain:
Range:

- q 6 x 6 q
0 … y 6 q 

0

1

1

y = x2>3

x

y

0 1

1

Domain:
Range:

0 … x 6 q 
0 … y 6 q

y =  !x

x

y

Domain:
Range:

- q 6 x 6 q
- q 6 y 6 q

1

1

0

3
y =  !x

(b) f x x( ) a=  with a 1−=  or a 2−= .

The graphs of the functions f x x x( ) 11= =−  and f x x x( ) 12 2= =−  are shown in 
Figure 1.16. Both functions are defined for all x 0≠  (you can never divide by zero). The 
graph of =y x1  is the hyperbola =xy 1, which approaches the coordinate axes far from 
the origin. The graph of =y x1 2 also approaches the coordinate axes. The graph of the 
function f x x( ) 1=  is symmetric about the origin; this function is decreasing on the 
intervals , 0−( )∞  and ( )∞0, . The graph of the function f x x( ) 1 2=  is symmetric about 
the y-axis; this function is increasing on , 0−( )∞  and decreasing on ( )∞0, .

(c) f x x( ) a=  with =a 1
2

, 1
3

, 3
2

,  or 2
3

.

The functions f x x x( ) 1 2= =  and f x x x( ) 1 3 3= =  are the square root and 
cube root functions, respectively. The domain of the square root function is [ )∞0, , but 
the cube root function is defined for all real x. Their graphs are displayed in Figure 1.17, 
along with the graphs of =y x 3 2 and =y x .2 3  (Recall that =x x( )3 2 1 2 3 and 

=x x( ) .2 3 1 3 2 )
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 1.1  Functions and Their Graphs 29

Polynomials A function p is a polynomial if

= + + + +−
−p x a x a x a x a( ) ,n

n
n

n
1

1
1 0�

where n is a nonnegative integer and the numbers …a a a a, , , , n0 1 2  are real constants 
(called the coefficients of the polynomial). All polynomials have domain ,−( )∞ ∞ . If the 
leading coefficient ≠a 0n , then n is called the degree of the polynomial. Linear functions 
with ≠m 0 are polynomials of degree 1. Polynomials of degree 2, usually written as 

= + +p x ax bx c( ) 2 , are called quadratic functions. Likewise, cubic functions are 
polynomials = + + +p x ax bx cx d( ) 3 2  of degree 3. Figure 1.18 shows the graphs of 
three polynomials. Techniques to graph polynomials are studied in Chapter 4.

FIGURE 1.18 Graphs of three polynomial functions.

x

y

0

y =  -      -  2x + x3

3
x2

2
1
3

(a)

y

x
- 1 1 2

2

- 2
- 4
- 6
- 8

- 10

- 12

y =  8x4 - 14x3 - 9x2 + 11x - 1

(b)

- 1 0 1 2

- 16

16

x

y
y =  (x - 2)4(x + 1)3(x - 1)

(c)

- 2- 4 2 4

- 4

- 2

2

4

FIGURE 1.19 Graphs of three rational functions. The straight red lines approached by the graphs are called 
asymptotes and are not part of the graphs. We discuss asymptotes in Section 2.5.
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y

y = 11x +  2
2x3 -  1

- 5 0

1

2

- 1
5 10

- 2

x

y

Line y = 5
3

y = 5x2 +  8x -  3
3x2 +  2

Rational Functions A rational function is a quotient or ratio =f x p x q x( ) ( ) ( ), 
where p and q are polynomials. The domain of a rational function is the set of all real x for 
which ≠q x( ) 0. The graphs of three rational functions are shown in Figure 1.19.

Algebraic Functions Any function constructed from polynomials using algebraic oper-
ations (addition, subtraction, multiplication, division, and taking roots) lies within the class 
of algebraic functions. All rational functions are algebraic, but also included are more 
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30 Chapter 1 Functions

FIGURE 1.22 Graphs of exponential functions.

(a) (b)
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FIGURE 1.20 Graphs of three algebraic functions.
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FIGURE 1.21 Graphs of the sine and cosine functions.
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complicated functions (such as those satisfying an equation like − + =y xy x9 03 3 , 
studied in Section 3.7). Figure 1.20 displays the graphs of three algebraic functions.

Trigonometric Functions The six basic trigonometric functions are reviewed in  
Section 1.3. The graphs of the sine and cosine functions are shown in Figure 1.21.

Exponential Functions A function of the form f x a( ) x= , where >a 0 and ≠a 1,  
is called an exponential function (with base a). All exponential functions have domain 

,−( )∞ ∞  and range ( )∞0, , so an exponential function never assumes the value 0. We 
discuss exponential functions in Section 1.4. The graphs of some exponential functions are 
shown in Figure 1.22.
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 1.1  Functions and Their Graphs 31

Logarithmic Functions These are the functions f x x( ) loga= , where the base a 1≠  
is a positive constant. They are the inverse functions of the exponential functions, and we 
discuss these functions in Section 1.5. Figure 1.23 shows the graphs of four logarithmic 
functions with various bases. In each case the domain is ( )∞0,  and the range is ,−( )∞ ∞ .

FIGURE 1.23 Graphs of four loga-
rithmic functions.

1

- 1

1

0
x

y

y = log3x

y = log10 x

y = log2 x

y = log5x

FIGURE 1.24 Graph of a catenary or 
hanging cable. (The Latin word catena 
means “chain.”)

- 1 10

1

x

y

Transcendental Functions These are functions that are not algebraic. They include the 
trigonometric, inverse trigonometric, exponential, and logarithmic functions, and many other 
functions as well. The catenary is one example of a transcendental function. Its graph has 
the shape of a cable, like a telephone line or electric cable, strung from one support to another 
and hanging freely under its own weight (Figure 1.24). The function defining the graph is 
discussed in Section 7.3.

Functions
In Exercises 1–6, find the domain and range of each function.

 1. f x x( ) 1 2= +  2. f x x( ) 1= −

 3. = +F x x( ) 5 10  4. g x x x( ) 32= −

 5. f t
t

( ) 4
3

=
−

 6. =
−

G t
t

( ) 2
162

In Exercises 7 and 8, which of the graphs are graphs of functions of x, 
and which are not? Give reasons for your answers.

 7. 

EXERCISES 1.1

x

y

0
x

y

0

 a.  b. 

 8. 

x

y

0
x

y

0

 a.  b. 

Finding Formulas for Functions

 9. Express the area and perimeter of an equilateral triangle as a func-
tion of the triangle’s side length x.

 10. Express the side length of a square as a function of the length d of 
the square’s diagonal. Then express the area as a function of the 
diagonal length.

 11. Express the edge length of a cube as a function of the cube’s diag-
onal length d. Then express the surface area and volume of the 
cube as a function of the diagonal length.
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32 Chapter 1 Functions

 31. a. b. 

x

y

1

2

(- 2, - 1) (3, - 1)(1, - 1)

x

y

3

1
(- 1, 1) (1, 1)

- 1
x

y

3

21

2

1

- 2
- 3

- 1
(2, - 1)

12. A point P in the first quadrant lies on the graph of the function
f x x( ) = . Express the coordinates of P as functions of the
slope of the line joining P to the origin.

13. Consider the point x y,( ) lying on the graph of the line
x y2 4 5+ = . Let L be the distance from the point x y,( ) to the

origin 0, 0( ). Write L as a function of x.

14. Consider the point x y,( ) lying on the graph of y x 3= − . Let
L be the distance between the points x y,( ) and 4, 0( ). Write L as
a function of y.

Functions and Graphs
Find the natural domain and graph the functions in Exercises 15–20.

15. f x x( ) 5 2= − 16. f x x x( ) 1 2 2= − −

17. g x x( ) = 18. g x x( ) = −

19. =F t t t( ) 20. =G t t( ) 1

21. Find the domain of y x
x

3
4 92

= +
− −

.

22. Find the range of y x2 9 2= + + .

23. Graph the following equations and explain why they are not
graphs of functions of x.

a. y x= b. y x2 2=

24. Graph the following equations and explain why they are not
graphs of functions of x.

a. x y 1+ = b. + =x y 1

Piecewise-Defined Functions
Graph the functions in Exercises 25–28.

25. f x
x x

x x
( )

, 0 1

2 , 1 2
=

≤ ≤

− < ≤
⎧
⎨
⎪⎪
⎩⎪⎪

26. g x
x x

x x
( )

1 , 0 1

2 , 1 2
=

− ≤ ≤

− < ≤
⎧
⎨
⎪⎪
⎩⎪⎪

27. =
− ≤

+ >

⎧
⎨
⎪⎪
⎩⎪⎪

F x
x x

x x x
( )

4 , 1

2 , 1

2

2

28. =
<

≤
⎧
⎨
⎪⎪
⎩⎪⎪

G x
x x

x x
( )

1 , 0

, 0

Find a formula for each function graphed in Exercises 29–32.

 29. a.  b.

t

y

0

2

41 2 3
x

y

0

1

2

(1, 1)

x

y

52

2
(2, 1)

 30. a. b.

x

y

0

1

TT
2

(T, 1)

t

y

0

A

T

- A

T
2

3T
2

2T

 32. a. b.

The Greatest and Least Integer Functions

33. For what values of x is

a. x 0?⎣ ⎦ = b. x 0?⎡ ⎤ =

34. What real numbers x satisfy the equation x x⎣ ⎦ ⎡ ⎤= ?

35. Does x x− −⎡ ⎤ ⎣ ⎦=  for all real x? Give reasons for your answer.

36. Graph the function

f x
x x

x x
( )

, 0

, 0.
⎣ ⎦

⎡ ⎤
=

≥

<
⎧
⎨
⎪⎪
⎩⎪⎪

Why is f x( ) called the integer part of x?

Increasing and Decreasing Functions
Graph the functions in Exercises 37–46. What symmetries, if any, 
do the graphs have? Specify the intervals over which the function is 
increasing and the intervals where it is decreasing.

37. y x 3−= 38. y
x
1

2
−=

39. y
x
1−= 40. y

x
1=

41. y x= 42. y x= −

43. y x 83= 44. y x4−=

45. y x 3 2−= 46. = −y x( )2 3

Even and Odd Functions
In Exercises 47–62, say whether the function is even, odd, or neither. 
Give reasons for your answer.

47. f x( ) 3= 48. f x x( ) 5= −

49. f x x( ) 12= + 50. f x x x( ) 2= +

51. g x x x( ) 3= + 52. g x x x( ) 3 14 2= + −

53. g x
x

( ) 1
12

=
−

54. g x x
x

( )
12

=
−

55. =
−

h t
t

( ) 1
1

56. =h t t( ) 3

57. = +h t t( ) 2 1 58. = +h t t( ) 2 1

59. sin 2x 60. xsin 2

61. cos 3x 62. + x1 cos
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1.1  Functions and Their Graphs 33

Theory and Examples

 63. The variable s is proportional to t, and s 25 when t 75.
Determine t when s 60.

64. Kinetic energy The kinetic energy K of a mass is propor-
tional to the square of its velocity . If K 12,960 joules when
= /18 m s, what is K when 10 m s?

65. The variables r and s are inversely proportional, and r 6 when
s 4. Determine s when r 10.

66. Boyle’s law Boyle’s law says that the volume V of a gas at con-
stant temperature increases whenever the pressure P decreases, so
that V and P are inversely proportional. If = /P 14.7 N cm 2 when 
V 1000 cm 3, then what is V when = /P 23.4 N cm 2?

 67. A box with an open top is to be constructed from a rectangular
piece of cardboard with dimensions 14 cm by 22 cm by cutting out
equal squares of side x at each corner and then folding up the sides
as in the figure. Express the volume V of the box as a function of x.

 70. a. y x5 b. y 5 x c. y x 5

x

y

f

g

h

0

x

y

- 1 0 1x
A

B

P(x, ?)

x

y

f

h

g

0

In Exercises 69 and 70, match each equation with its graph. Do not use 
a graphing device, and give reasons for your answer.

 69. a. y x 4 b. y x 7 c. y x 10

 68. The accompanying figure shows a rectangle inscribed in an isos-
celes right triangle whose hypotenuse is 2 units long.

a. Express the y-coordinate of P in terms of x. (You might start
by writing an equation for the line AB.)

b. Express the area of the rectangle in terms of x.

 71. a.  Graph the functions f x x( ) 2 and g x x( ) 1 4( )= +  
together to identify the values of x for which

x
x2

1 4 .> +

b. Confirm your findings in part (a) algebraically.

 72. a.  Graph the functions f x x( ) 3 1( )= −  and g x x( ) 2 1( )= +  
together to identify the values of x for which

x x
3

1
2

1
.

−
<

+
b. Confirm your findings in part (a) algebraically.

73. For a curve to be symmetric about the x-axis, the point ( )x y,  must
lie on the curve if and only if the point ( )−x y,  lies on the curve.
Explain why a curve that is symmetric about the x-axis is not the
graph of a function, unless the function is y 0.

74. Three hundred books sell for $40 each, resulting in a revenue of
300 $40 $12,000( )( ) = . For each $5 increase in the price, 25

fewer books are sold. Write the revenue R as a function of the
number x of $5 increases.

75. A pen in the shape of an isosceles right triangle with legs of length 
x m and hypotenuse of length h m is to be built. If fencing costs
$5 m for the legs and $10 m for the hypotenuse, write the total
cost C of construction as a function of h.

 76. Industrial costs A power plant sits next to a river where the river
is 250 m wide. To lay a new cable from the plant to a location in
the city 2 km downstream on the opposite side costs $180 per meter
across the river and $100 per meter along the land.

T

T

a. Suppose that the cable goes from the plant to a point Q on the
opposite side that is x m from the point P directly opposite
the plant. Write a function C(x) that gives the cost of laying
the cable in terms of the distance x.

b. Generate a table of values to determine if the least expensive
location for point Q is less than 300 m or greater than 300 m
from point P.

x QP

Power plant

City

250 m

2 km

NOT TO SCALE

x

x

x

x

x

x

x

x

22

14
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34 Chapter 1 Functions

1.2 Combining Functions; Shifting and Scaling Graphs

In this section we look at the main ways functions are combined or transformed to form 
new functions.

Sums, Differences, Products, and Quotients

Like numbers, functions can be added, subtracted, multiplied, and divided (except where 
the denominator is zero) to produce new functions. If  f  and g are functions, then for every 
x that belongs to the domains of both  f  and g (that is, for x D f D g( ) ( )∈ ∩ ), we define 
functions + −f g f g, , and  fg by the formulas

( )

( )

+ = +

− = −

=

f g x f x g x

f g x f x g x

fg x f x g x

( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( ).

Notice that the + sign on the left-hand side of the first equation represents the operation of 
addition of functions, whereas the + on the right-hand side of the equation means addition 
of the real numbers f x( ) and g x( ).

At any point of ∩D f D g( ) ( ) at which g x( ) 0,≠  we can also define the function f g 
by the formula

( )
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = ≠f

g
x

f x
g x

g x( )
( )
( )

where ( ) 0 .

Functions can also be multiplied by constants: If c is a real number, then the function 
cf is defined for all x in the domain of  f  by

=cf x cf x( )( ) ( ).

EXAMPLE 1 The functions defined by the formulas

f x x g x x( ) and ( ) 1= = −

have domains [ )= ∞D f( ) 0,  and ( ]= −∞D g( ) , 1 . The points common to these domains 
are the points in

[ ) ( ] [ ]∞ ∩ −∞ =0, ,1 0,1 .

The following table summarizes the formulas and domains for the various algebraic com-
binations of the two functions. We also write f g⋅  for the product function fg.

Function Formula Domain

+f g ( )+ = + −f g x x x( ) 1 [ ] = ∩D f D g0,1 ( ) ( )

f g− ( )− = − −f g x x x( ) 1 [ ]0,1

g f− ( )− = − −g f x x x( ) 1 [ ]0,1

f g⋅ f g x f x g x x x( ) ( ) ( ) 1( ) ( )⋅ = = − [ ]0,1

f g = =
−

f
g

x
f x
g x

x
x

( )
( )
( ) 1

[ )( )=x0,1 1 excluded

g f = = −g
f

x
g x
f x

x
x

( )
( )
( )

1 ( ]( )=x0,1 0 excluded

The graph of the function f g+  is obtained from the graphs of  f  and g by adding the 
corresponding y-coordinates f x( ) and g x( ) at each point ∈ ∩x D f D g( ) ( ), as in 
Figure 1.25. The graphs of f g+  and f g⋅  from Example 1 are shown in Figure 1.26.
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 1.2  Combining Functions; Shifting and Scaling Graphs 35

Composing Functions

Composition is another method for combining functions. In this operation the output from 
one function becomes the input to a second function.

FIGURE 1.25 Graphical addition of two 
functions.

y = ( f + g)(x)

y = g(x)

y = f (x) f (a)
g(a)

f (a) + g(a)

a

2

0

4

6

8

y

x

FIGURE 1.26 The domain of the function f g+  
is the intersection of the domains of  f  and g, the 
interval 0,1[ ] on the x-axis where these domains 
overlap. This interval is also the domain of the  
function f g⋅  (Example 1).

5
1

5
2

5
3

5
4 10

1

x

y

2
1

g(x) = 
"

1 - x f (x) = 
"

x
y = f + g

y = f   g

FIGURE 1.27 The composition f g�  uses the 
output g x( ) of the first function g as the input for 
the second function ƒ. 

x g fg(x) f (g(x))

FIGURE 1.28 Arrow diagram for f g.�  If x lies in the 
domain of g and g x( ) lies in the domain of f, then the  
functions  f  and g can be composed to form f g x( ).�( )

x

f (g(x))

g(x)

g
f

f ∘ g

To find f g x( ),�( )  first find g x( ) and second find f g x( ( )). Figure 1.27 pictures f g�  
as a machine diagram, and Figure 1.28 shows the composition as an arrow diagram.

To evaluate the composition g f�  (when defined), we find f x( ) first and then find 
g( f x( )). The domain of g f�  is the set of numbers x in the domain of  f  such that f x( ) lies 
in the domain of g.

The functions f g�  and g f�  are usually quite different.

DEFINITION If  f  and g are functions, the function f g�  (“f composed with g”) 
is defined by

f g x f g x( ) ( ( ))�( ) =

and called the composition of  f  and g. The domain of f g�  consists of the num-
bers x in the domain of g for which g x( ) lies in the domain of  f.
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36 Chapter 1 Functions

EXAMPLE 2  If f x x( ) =  and g x x( ) 1,= +  find

 (a) f g x( )�( )  (b) g f x( )�( ) (c) f f x( )�( ) (d) g g x( ).�( )

Solution 

Composition Domain

(a) f g x f g x g x x( ) ( ( )) ( ) 1�( ) = = = + [ )− ∞1,

(b) g f x g f x f x x( ) ( ( )) ( ) 1 1�( ) = = + = + [ )∞0,

(c) f f x f f x f x x x( ) ( ( )) ( ) 1 4�( ) = = = = [ )∞0,

(d) g g x g g x g x x x( ) ( ( )) ( ) 1 1 1 2�( ) ( )= = + = + + = + ( )−∞ ∞,

To see why the domain of f g�  is [ )− ∞1, , notice that g x x( ) 1= +  is defined for all real 
x but g x( ) belongs to the domain of  f  only if x 1 0,+ ≥  that is to say, when ≥ −x 1. 

Notice that if f x x( ) 2=  and g x x( ) ,=  then f g x x x( ) .
2

� ( )( ) = =  How-
ever, the domain of f g�  is [ )∞0, , not ( )−∞ ∞, , since x  requires x 0.≥

Shifting a Graph of a Function

A common way to obtain a new function from an existing one is by adding a constant to 
each output of the existing function, or to its input variable. The graph of the new function 
is the graph of the original function shifted vertically or horizontally, as follows.

Shift Formulas

Vertical Shifts

y f x k( )= + Shifts the graph of  f  up k units if k 0>
Shifts it down k  units if k 0<

Horizontal Shifts

( )= +y f x h Shifts the graph of  f  left h units if h 0>
Shifts it right h  units if h 0<

EXAMPLE 3

 (a) Adding 1 to the right-hand side of the formula y x 2=  to get y x 12= +  shifts the 
graph up 1 unit (Figure 1.29).

 (b) Adding 2−  to the right-hand side of the formula y x 2=  to get y x 22= −  shifts the 
graph down 2 units (Figure 1.29).

 (c) Adding 3 to x in y x 2=  to get ( )= +y x 3 2 shifts the graph 3 units to the left, while 
adding 2−  shifts the graph 2 units to the right (Figure 1.30).

 (d) Adding 2−  to x in y x ,=  and then adding 1−  to the result, gives = − −y x 2 1 
and shifts the graph 2 units to the right and 1 unit down (Figure 1.31). 

Scaling and Reflecting a Graph of a Function

To scale the graph of a function y f x( )=  is to stretch or compress it, vertically or hori-
zontally. This is accomplished by multiplying the function f , or the independent variable x, 
by an appropriate constant c. Reflections across the coordinate axes are special cases 
where c 1.= −

FIGURE 1.29 To shift the graph of 
f x x( ) 2=  up (or down), we add positive 
(or negative) constants to the formula for  f  
(Examples 3a and b).

x

y

1

2

2 units

1 unit

- 2

- 1
0

y = x2 - 2

y = x2

y = x2 + 1

y = x2 + 2

"

2
"

2-
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 1.2  Combining Functions; Shifting and Scaling Graphs 37

EXAMPLE 4  Here we scale and reflect the graph of y x 1.= +

 (a) Vertical: Multiplying the right-hand side of y x 1= +  by 3 to get ( )= +y x3 1  
stretches the graph vertically by a factor of 3, whereas multiplying by 1 3 compresses 
the graph vertically by a factor of 3 (Figure 1.32).

 (b) Horizontal: The graph of = +y x3 1 is a horizontal compression of the graph of 
= +y x 1 by a factor of 3, and = +y x 3 1 is a horizontal stretching by a factor 

of 3 (Figure 1.33).

 (c) Reflection: The graph of ( )= − +y x 1  is a reflection of = +y x 1 across the 
x-axis, and = − +y x 1 is a reflection across the y-axis (Figure 1.34). 

FIGURE 1.30 To shift the graph of y x 2=  to the 
left, we add a positive constant to x (Example 3c). 
To shift the graph to the right, we add a negative 
constant to x.

x

y

0- 3 2

1

1

y = (x - 2)2y = x2y = (x + 3)2

Add a positive
constant to x.

Add a negative
constant to x.

FIGURE 1.31 The graph of y x=  
shifted 2 units to the right and 1 unit 
down (Example 3d).

- 4 - 2 2 4 6- 1

1

4

x

y

y = 0 x - 2 0  - 1 

Vertical and Horizontal Scaling and Reflecting Formulas

For >c 1, the graph is scaled:

=y cf x( ) Stretches the graph of  f  vertically by a factor of c.

y
c

f x1 ( )= Compresses the graph of  f  vertically by a factor of c.

=y f cx( ) Compresses the graph of  f  horizontally by a factor of c.

( )=y f x c Stretches the graph of  f  horizontally by a factor of c.

For = −c 1, the graph is reflected:

y f x( )= − Reflects the graph of  f  across the x-axis.

= −y f x( ) Reflects the graph of  f  across the y-axis.

FIGURE 1.33 Horizontally stretching and 
compressing the graph of y x 1= +  by a 
factor of 3 (Example 4b).

y = 
"

x + 1 

compress stretch

x

y

1 2 3 4 5

1

2

y = 
"

3x + 1 y = 
"

x/3 + 1

FIGURE 1.34 Reflections of the graph 
of y x 1= +  across the coordinate 
axes (Example 4c).

-2 -1 1 2

-1

-2

1

2

y = - (
"

x + 1)

x

y

y = 
"

-x + 1 y = 
"

x + 1 

FIGURE 1.32 Vertically stretching and 
compressing the graph of y x 1= +  
by a factor of 3 (Example 4a).

y = - (
"

x + 1)
3
1

y = 3(
"

x + 1)

y = 
"

x + 1 
stretch

compress

1 2
x

y

1

2

3

4

5

6

7
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38 Chapter 1 Functions

EXAMPLE 5  Given the function f x x x( ) 4 104 3= − +  (Figure 1.35a), find for-
mulas for the graphs resulting from

 (a) horizontal compression by a factor of 2 followed by reflection across the y-axis  
(Figure 1.35b).

 (b) vertical compression by a factor of 2 followed by reflection across the x-axis  
(Figure 1.35c).

FIGURE 1.35 (a) The original graph of  f. (b) The horizontal compression of y f x( )=  in part (a) by a factor of 2, followed 
by a reflection across the y-axis. (c) The vertical compression of y f x( )=  in part (a) by a factor of 2, followed by a reflection 
across the x-axis (Example 5).

- 1- 2 0 1 2 3 4

- 20

- 10

10

20

x

y

f (x) = x4 - 4x3 + 10

(a) (b)

y =  -   x4 + 2x3 - 51
2

(c)

- 1- 2 0 1 2 3 4

- 20

- 10

10

20

x

y

y = 16x4 + 32x3 + 10

- 1- 2 0 1 2 3 4

- 20

- 10

10

20

x

y

Solution 

 (a) We multiply x by 2 to get the horizontal compression, and by −1 to give reflection 
across the y-axis. The formula is obtained by substituting − x2  for x in the right-hand 
side of the equation for  f :

= − = − − − +

= + +

y f x x x

x x

( 2 ) ( 2 ) 4( 2 ) 10

16 32 10.

4 3

4 3

 (b) The formula is

y f x x x1
2

( ) 1
2

2 5.4 3= − = − + −

Algebraic Combinations
In Exercises 1 and 2, find the domains of f g f g, , ,+  and f g.⋅

 1. f x x g x x( ) , ( ) 1= = −

 2. f x x g x x( ) 1, ( ) 1= + = −

In Exercises 3 and 4, find the domains of f g f g, , , and g f .

 3. f x g x x( ) 2, ( ) 12= = +

 4. f x g x x( ) 1, ( ) 1= = +

Compositions of Functions

 5. If f x x( ) 5= +  and g x x( ) 3,2= −  find the following.

  a. f g( (0)) b. g f( (0))

  c. f g x( ( )) d. g f x( ( ))

  e. −f f( ( 5)) f. g g( (2))

  g. f f x( ( )) h. g g x( ( ))

 6. If f x x( ) 1= −  and g x x( ) 1 1 ,( )= +  find the following.

  a. f g 1 2( )( ) b. g f 1 2( )( )

  c. f g x( ( )) d. g f x( ( ))

  e. f f( (2)) f. g g( (2))

  g. f f x( ( )) h. g g x( ( ))

EXERCISES 1.2
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 1.2  Combining Functions; Shifting and Scaling Graphs 39

x

y

- 7 0 4

Position (a) Position (b)y = - x2

In Exercises 7–10, write a formula for f g h.� �

 7. = + = = −f x x g x x h x x( ) 1, ( ) 3 , ( ) 4

 8. = + = − =f x x g x x h x x( ) 3 4, ( ) 2 1, ( ) 2

 9. = + =
+

=f x x g x
x

h x
x

( ) 1, ( ) 1
4

, ( ) 1

 10. = +
−

=
+

= −f x x
x

g x x
x

h x x( ) 2
3

, ( )
1

, ( ) 2
2

2

Let = − = =f x x g x x h x x( ) 3, ( ) , ( ) ,3  and =j x x( ) 2 . 
Express each of the functions in Exercises 11 and 12 as a composition 
involving one or more of f, g, h, and j.

 11. a. y x 3= −  b. y x2=

 c. y x 1 4=  d. y x4=

 e. y x 3 3( )= −  f. y x2 6 3( )= −

 12. a. y x2 3= −  b. y x 3 2=

 c. y x 9=  d. y x 6= −

 e. y x2 3= −  f. y x 33= −

 13. Copy and complete the following table.

g x( ) f x( ) f g x( )�( )

a. x 7− x ?

b. x 2+ x3 ?

c. ? x 5− x 52 −

d. x
x 1−

x
x 1−

?

e. ?
x

1 1+ x

f. 
x
1 ? x

 14. Copy and complete the following table.

g x( ) f x( ) f g x( )�( )

a. 
x

1
1−

x ?

b. ? x
x

1− x
x 1+

c. ? x x

d. x ? x

 15. Evaluate each expression using the given table of values:

x 2− 1− 0 1 2

f x( ) 1 0 2− 1 2

g x( ) 2 1 0 1− 0

 a. −f g( ( 1)) b. g f( (0))

 c. −f f( ( 1)) d. g g( (2))

 e. −g f( ( 2)) f. f g( (1))

 16. Evaluate each expression using the functions

f x x g x
x x

x x
( ) 2 , ( )

, 2 0

1, 0 2.
= − =

− − ≤ <

− ≤ ≤
⎧
⎨
⎪⎪
⎩⎪⎪

 a. f g( (0)) b. g f( (3)) c. −g g( ( 1))

 d. f f( (2)) e. g f( (0)) f. f g 1 2( )( )

In Exercises 17 and 18, (a) write formulas for f g�  and g f�  and  
(b) find the domain of each.

 17. f x x g x
x

( ) 1,   ( ) 1= + =

 18. f x x g x x( ) ,   ( ) 12= = −

 19. Let f x x
x

( )
2

.=
−

 Find a function y g x( )=  so that 

f g x x( ) .�( ) =

 20. Let f x x( ) 2 4.3= −  Find a function y g x( )=  so that 
f g x x( ) 2.�( ) = +

 21. A balloon’s volume V is given by V s s2 3 cm ,2 3= + +  where 
s is the ambient temperature in C.°  The ambient temperature s 
at time t minutes is given by s t2 3 C.= − °  Write the balloon’s  
volume V as a function of time t.

 22. Use the graphs of  f  and g to sketch the graph of y f g x( ( )).=

 a.  b. 

x

y

−2

−4

0 2 4−2−4

2

4

f

g

24

2

2

2
x

y

−2

−4

0 2 4−2−4

2

4

f g

x

y
Position (a)

Position (b)

y = x2

- 5

0

3

Shifting Graphs

 23. The accompanying figure shows the graph of y x 2= −  shifted to 
two new positions. Write equations for the new graphs.

 24. The accompanying figure shows the graph of y x 2=  shifted to 
two new positions. Write equations for the new graphs.
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40 Chapter 1 Functions

 25. Match the equations listed in parts (a)–(d) to the graphs in the 
accompanying figure.

 a. y x 1 42( )= − −  b. y x 2 22( )= − +

 c. y x 2 22( )= + +  d. y x 3 22( )= + −

 39. y x 2= −  40. y x1 1= − −

 41. y x1 1= + −  42. y x1= −

 43. y x 1 2 3( )= +  44. y x 8 2 3( )= −

 45. y x1 2 3= −  46. y x4 2 3+ =

 47. y x 1 13= − −  48. y x 2 13 2( )= + +

 49. y
x

1
2

=
−

 50. y
x
1 2= −

 51. y
x
1 2= +  52. y

x
1

2
=

+

 53. y
x

1
1 2( )

=
−

 54. y
x
1 1

2
= −

 55. y
x
1 1

2
= +  56. y

x
1

1 2( )
=

+

 57. The accompanying figure shows the graph of a function f x( ) with 
domain 0, 2[ ] and range 0,1 .[ ]  Find the domains and ranges of the 
following functions, and sketch their graphs.

x

y

Position 2 Position 1

Position 4

Position 3

- 4 - 3 - 2 - 1 0 1 2 3

(- 2, 2) (2, 2)

(- 3, - 2)

(1, - 4)

1

2

3

x

y

(- 2, 3)

(- 4, - 1)

(1, 4)

(2, 0)

(b)

(c) (d)

(a)

t

y

- 3

- 2 0- 4

y = g(t)

x

y

0 2

1 y  = f(x) 26. The accompanying figure shows the graph of y x 2= −  shifted to 
four new positions. Write an equation for each new graph.

Exercises 27–36 tell how many units and in what directions the graphs 
of the given equations are to be shifted. Give an equation for the 
shifted graph. Then sketch the original and shifted graphs together, 
labeling each graph with its equation.

 27. x y 49 Down 3, left 22 2+ =

 28. x y 25 Up 3, left 42 2+ =
 29. y x Left 1, down 13=

 30. y x Right 1, down 12 3=

 31. y x Left 0.81=

 32. y x Right 3= −

 33. y x2 7 Up 7= −

 34. y x1
2

1 5 Down 5, right 1( )= + +

 35. y x1 Up 1, right 1=

 36. y x1 Left 2, down 12=

Graph the functions in Exercises 37–56.

 37. y x 4= +  38. y x9= −

 a. f x( ) 2+  b. f x( ) 1−

 c. f x2 ( ) d. f x( )−

 e. f x 2( )+  f. f x 1( )−

 g. −f x( ) h. f x 1 1( )− + +

 58. The accompanying figure shows the graph of a function g t( ) with 
domain 4, 0[ ]−  and range 3, 0 .[ ]−  Find the domains and ranges 
of the following functions, and sketch their graphs.

 a. −g t( ) b. g t( )−

 c. g t( ) 3+  d. g t1 ( )−

 e. g t 2( )− +  f. g t 2( )−

 g. g t1( )−  h. g t 4( )− −

Vertical and Horizontal Scaling
Exercises 59–68 tell in what direction and by what factor the graphs of 
the given functions are to be stretched or compressed. Give an equation 
for the stretched or compressed graph.

 59. y x 1, stretched vertically by a factor of 32= −

 60. y x 1, compressed horizontally by a factor of 22= −

 61. y
x

1 1 , compressed vertically by a factor of 2
2

= +
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 1.3  Trigonometric Functions 41

 62. y
x

1 1 , stretched horizontally by a factor of 3
2

= +

 63. y x 1, compressed horizontally by a factor of 4= +

 64. y x 1, stretched vertically by a factor of 3= +

 65. y x4 , stretched horizontally by a factor of 22= −

 66. y x4 , compressed vertically by a factor of 32= −

 67. = −y x1 , compressed horizontally by a factor of 33

 68. = −y x1 , stretched horizontally by a factor of 23

Graphing
In Exercises 69–76, graph each function not by plotting points, but by 
starting with the graph of one of the standard functions presented in 
Figures 1.14–1.17 and applying an appropriate transformation.

 69. y x2 1= − +  70. y x1
2

= −

 71. y x 1 23( )= − +  72. y x1 23( )= − +

 73. y
x

1
2

1= −  74. y
x
2 1

2
= +

 75. y x3= −  76. = −y x( 2 )2 3

 77. Graph the function y x 1 .2= −

 78. Graph the function y x .=

Combining Functions

 79. Assume that  f  is an even function, g is an odd function, and both  f  
and g are defined on the entire real line , .( )−∞ ∞  Which of the 
following (where defined) are even? odd?

 a.   f g b. f g c. g f

 d. f f f2 =  e. g gg2 =  f. f g�

 g. g f�  h. f f�   i. g g�

 80. Can a function be both even and odd? Give reasons for your 
answer.

 81. (Continuation of Example 1.) Graph the functions f x x( ) =  
and g x x( ) 1= −  together with their (a) sum, (b) product,  
(c) two differences, (d) two quotients.

 82. Let f x x( ) 7= −  and g x x( ) .2=  Graph  f  and g together with 
f g�  and g f .�

T

T

1.3 Trigonometric Functions

This section reviews radian measure and the basic trigonometric functions.

Angles

Angles are measured in degrees or radians. The number of radians in the central angle 
′ ′A CB  within a circle of radius r is defined as the number of “radius units” contained in the 

arc s subtended by that central angle. If we denote this central angle by θ when measured 
in radians, this means that θ = s r (Figure 1.36), or

If the circle is a unit circle having radius =r 1, then from Figure 1.36 and Equation (1), 
we see that the central angle θ measured in radians is just the length of the arc that the 
angle cuts from the unit circle. Since one complete revolution of the unit circle is °360  or 
2π radians, we have

 radians 180π = ° (2)

and

1 radian 180 57.3 degrees or 1 degree
180

0.017 radians.
π

π( ) ( )= ≈ = ≈

Table 1.1 shows the equivalence between degree and radian measures for some basic angles.

FIGURE 1.36 The radian mea-
sure of the central angle ′ ′A CB  is 
the number θ = s r . For a unit 
circle of radius θ=r 1,  is the 
length of arc AB that central angle 
ACB cuts from the unit circle.

B¿

B
s

A¿
C A

r

1

Circle of radius r
 

U nit circle
 

u

TABLE 1.1   Angles measured in degrees and radians

Degrees −180 −135 90− −45 0 30 45 60 90 120 135 150 180 270 360

θ ( )radians π− 3
4
π−

2
π−

4
π− 0

6
π

4
π

3
π

2
π 2

3
π 3

4
π 5

6
π π 3

2
π 2π

 s r in radians .θ θ( )=  (1)
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42 Chapter 1 Functions

An angle in the xy-plane is said to be in standard position if its vertex lies at the origin 
and its initial ray lies along the positive x-axis (Figure 1.37). Angles measured counter- 
clockwise from the positive x-axis are assigned positive measures; angles measured clock-
wise are assigned negative measures.

FIGURE 1.39 Trigonometric 
ratios of an acute angle.

hypotenuse

adjacent

opposite

u

sin =u
opp
hyp

=u
adj
hyp

cos

tan =u
opp
adj

csc =u
hyp
opp

=u
hyp
adj

sec

cot =u
adj
opp

FIGURE 1.40 The trigonometric 
functions of a general angle θ are 
defined in terms of x, y, and r.

x

y

P(x, y)
r

rO

u

y

x

FIGURE 1.37 Angles in standard position in the xy-plane.

x

y

x

y

Positive
measure

Initial ray

Terminal ray

Terminal
ray

Initial ray

Negative
measure

FIGURE 1.38 Nonzero radian measures can be positive or negative and can go beyond 2 .π

x

y

4
9p

x

y

3p

x

y

4
-3p

x

y

2
- 5p

Angles describing counterclockwise rotations can go arbitrarily far beyond π2  radians 
or 360°. Similarly, angles describing clockwise rotations can have negative measures of all 
sizes (Figure 1.38).

Angle Convention: Use Radians From now on in this text, it is assumed that all angles 
are measured in radians unless degrees or some other unit is stated explicitly. When we talk 
about the angle π 3, we mean π 3 radians (which is °60 ), not π 3 degrees. Using radians 
simplifies many of the operations and computations in calculus.

The Six Basic Trigonometric Functions

The trigonometric functions of an acute angle are given in terms of the sides of a right tri-
angle (Figure 1.39). We extend this definition to obtuse and negative angles by first placing 
the angle in standard position in a circle of radius r. We then define the trigonometric  
functions in terms of the coordinates of the point ( )P x y,  where the angle’s terminal ray 
intersects the circle (Figure 1.40).

θ θ

θ θ

θ θ

= =

= =

= =

y
r

r
y

x
r

r
x

y
x

x
y

sine: cosecant:

cosine: secant:

tangent: cotangent:

sin csc

cos sec

tan cot

These extended definitions agree with the right-triangle definitions when the angle is acute.
Notice also that whenever the quotients are defined,

θ
θ
θ

θ
θ

θ
θ

θ
θ

= =

= =

tan
sin
cos

cot 1
tan

sec 1
cos

csc 1
sin
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 1.3  Trigonometric Functions 43

As you can see, θtan  and θsec  are not defined if θ= =x cos 0. This means they are not 
defined if θ is π π± ± …2, 3 2, . Similarly, θcot  and θcsc  are not defined for values of θ 
for which =y 0, namely θ π π= ± ± …0, , 2 , .

The exact values of these trigonometric ratios for some angles can be read from the 
triangles in Figure 1.41. For instance,

π π π

π π π

π π π

= = =

= = =

= = =

sin
4

1
2

sin
6

1
2

sin
3

3
2

cos
4

1
2

cos
6

3
2

cos
3

1
2

tan
4

1 tan
6

1
3

tan
3

3

The ASTC rule (Figure 1.42) is useful for remembering when the basic trigonometric func-
tions are positive or negative. For instance, from the triangle in Figure 1.43, we see that

π π π= = − = −sin 2
3

3
2

, cos 2
3

1
2

, tan 2
3

3.

 Radian angles and side 
lengths of two common triangles.

1

1

p
2

p
4

p
4

"

2

1

p
3

p
2

p
6

2
"

3

FIGURE 1.42 The ASTC rule, remem-
bered by the statement “All Students Take 
Calculus,” tells which trigonometric func-
tions are positive in each quadrant.

y

x

S
sin pos

A
all pos

T
tan pos

C
cos pos

FIGURE 1.43 The triangle for cal-
culating the sine and cosine of 2 3π  
radians. The side lengths come from 
the geometry of right triangles.

x

y

"

3
2

2p
3

1
2

1

2p
3

2p
3

, ,
acos b bsin = 1

2
a-

2

P

"

3

Using a similar method we obtain the values of θsin , θcos , and θtan  shown in Table 1.2.
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TABLE 1.2  Values of θsin , θcos , and θtan  for selected values of θ

Degrees −180 −135 −90 −45 0 30 45 60 90 120 135 150 180 270 360

θ (radians) π− π−3
4 2

π−
4
π− 0

6
π

4
π

3
π

2
π 2

3
π 3

4
π 5

6
π π 3

2
π π2

θsin 0 2
2

− 1− 2
2

− 0 1
2

2
2

3
2

1 3
2

2
2

1
2

0 1− 0

θcos 1− − 2
2

0 2
2

1 3
2

2
2

1
2

0 −1
2

− 2
2

− 3
2

−1 0 1

θtan 0 1 1− 0 3
3

1 3 − 3 1− − 3
3

0 0

FIGURE 1.41
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44 Chapter 1 Functions

Periodicity and Graphs of the Trigonometric Functions

When an angle of measure θ and an angle of measure 2θ π+  are in standard position, 
their terminal rays coincide. The two angles therefore have the same trigonometric  
function values: θ π θ θ π θ( ) ( )+ = + =sin 2 sin , tan 2 tan , and so on. Similarly, 
θ π θ θ π θ( ) ( )− = − =cos 2 cos , sin 2 sin , and so on. We describe this repeating 

behavior by saying that the six basic trigonometric functions are periodic.

DEFINITION A function f x( ) is periodic if there is a positive number p such 
that f x p f x( )( )+ =  for every value of x. The smallest such value of p is the 
period of  f.

FIGURE 1.45 The reference triangle 
for a general angle θ.

y

x

u

1

P(cos u, sin u) x2 + y2 = 1

0 cos u 0

0 sin u 0

O

FIGURE 1.44 Graphs of the six basic trigonometric functions using radian measure. The shading for each 
trigonometric function indicates its periodicity.

(a) (b) (c)

(f)(e)(d)

xx

x

y

x

y y

x

y

x

y y

y = cos x

Domain: - q 6 x 6 q
Range:    - 1 … y … 1
Period:     2p

0- p p 2p-   p
2

p
2

3p
2

0- p p 2p-   p
2

p
2

3p
2

y = sin x

y = tan x

Domain: - q 6 x 6 q
Range:    - 1 … y … 1
Period:    2p

3p
2

-    - p-    p
2

0 p
2

p 3p
2

p
2

3p
2

Domain: x Z ;    , ;       , . . . 

Range:   - q 6 y 6 q
Period:    p

y = sec x y = csc x y = cot x

3p
2

- - p-p2
0

1

p
2

p 3p
2

0

1

- p p 2p-p
2

p
2

3p
2

0

1

- p p 2p-p
2

p
2

3p
2

Domain: x Z 0, ; p, ; 2p, . . .
Range:    y … - 1 or y Ú 1
Period:    2p

Domain: x Z 0, ; p, ; 2p, . . .
Range:    - q 6 y 6 q
Period:    p

Domain: x Z ;    , ;        , . . . 

Range:    y … - 1 or y Ú 1
Period:    2p

p
2

3p
2

Even

− =
− =

x x
x x

cos ( ) cos
sec ( ) sec

Odd

− = −
− = −
− = −
− = −

x x
x x
x x
x x

sin ( ) sin
tan ( ) tan
csc ( ) csc
cot ( ) cot

When we graph trigonometric functions in the coordinate plane, we usually denote the 
independent variable by x instead of θ. Figure 1.44 shows that the tangent and cotangent 
functions have period p ,π=  and the other four functions have period 2 .π  Also, the sym-
metries in these graphs reveal that the cosine and secant functions are even and the other 
four functions are odd (although this does not prove those results).

Trigonometric Identities

The coordinates of any point ( )P x y,  in the plane can be expressed in terms of the point’s 
distance r from the origin and the angle θ that ray OP makes with the positive x-axis  
(Figure 1.40). Since θ=x r cos  and θ=y r sin , we have

θ θ= =x r y rcos , sin .

When =r 1 we can apply the Pythagorean theorem to the reference right triangle in  
Figure 1.45 and obtain the equation

Periods of Trigonometric Functions
Period :

 
π
π

( )
( )

+ =
+ =

x x
x x

tan tan
cot cot

Period 2 : π
π
π
π

( )
( )
( )
( )

+ =
+ =
+ =
+ =

x x
x x
x x
x x

sin 2 sin
cos 2 cos
sec 2 sec
csc 2 csc

 cos sin 1.2 2θ θ+ =  (3)
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 1.3  Trigonometric Functions 45

This equation, true for all values of θ, is the most frequently used identity in trigonometry. 
Dividing this identity in turn by θcos2  and θsin 2  gives

Double-Angle Formulas

 
θ θ θ

θ θ θ

= −

=

cos 2 cos sin

sin 2 2 sin cos

2 2

 (5)

Half-Angle Formulas

 θ
θ

=
+

cos
1 cos 2

2
2  (6)

 θ
θ

=
−

sin
1 cos 2

2
2  (7)

Addition Formulas

 
( )

( )

+ = −

+ = +

A B A B A B

A B A B A B

cos cos cos sin sin

sin sin cos cos sin
 (4)

There are similar formulas for ( )−A Bcos  and ( )−A Bsin  (Exercises 35 and 36). 
All the trigonometric identities needed in this text derive from Equations (3) and (4). For 
example, substituting θ for both A and B in the addition formulas gives

Additional formulas come from combining the equations

θ θ θ θ θ+ = − =cos sin 1, cos sin cos 2 .2 2 2 2

We add the two equations to get θ θ= +2 cos 1 cos 22  and subtract the second from the 
first to get θ θ= −2 sin 1 cos 2 .2  This results in the following identities, which are useful 
in integral calculus.

The Law of Cosines

If a, b, and c are sides of a triangle ABC and if θ is the angle opposite c, then

FIGURE 1.46 In a geometric proof of 
the angle sum identities we compare the 
opposite sides of the rectangle, which are 
equal. This assumes that A, B, and A B+  
are acute, but the identities hold for all  
values of A and B.

A + B

B

A

B

sin A

cos A

1

A + B

B

A

B

sin A

cos A

1

cos A cos B 

cos (A + B) 

si
n 

(A
 +

 B
) 

sin A sin B 

cos A
 sin B

 
sin A

 cos B
 

θ θ
θ θ

+ =
+ =

1 tan sec
1 cot csc

2 2

2 2

The following formulas hold for all angles A and B (see Figure 1.46 and Exercise 58).

 θ= + −c a b ab2 cos .2 2 2  (8)

This equation is called the law of cosines.
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46 Chapter 1 Functions

To establish these inequalities, we picture θ as a nonzero angle in standard position 
(Figure 1.48). The circle in the figure is a unit circle, so θ  equals the length of the circular 
arc AP. The length of line segment AP is therefore less than θ .

Triangle APQ is a right triangle with sides of length

θ θ= = −QP AQsin , 1 cos .

From the Pythagorean theorem and the fact that θ<AP , we get

 θ θ θ( )+ − = ≤APsin 1 cos ( ) .2 2 2 2  (9)

The terms on the left-hand side of Equation (9) are both positive, so each is smaller than 
their sum and hence is less than or equal to θ :2

θ θ θ θ( )≤ − ≤sin and 1 cos .2 2 2 2

By taking square roots, this is equivalent to saying that

θ θ θ θ≤ − ≤sin and 1 cos ,

so

θ θ θ θ θ θ− ≤ ≤ − ≤ − ≤sin and 1 cos .

These inequalities will be useful in the next chapter.

Transformations of Trigonometric Graphs

The rules for shifting, stretching, compressing, and reflecting the graph of a function sum-
marized in the following diagram apply to the trigonometric functions we have discussed 
in this section.

To see why the law holds, we position the triangle in the xy-plane with the origin at C 
and the positive x-axis along one side of the triangle, as in Figure 1.47. The coordinates of 
A are ( )b, 0 ; the coordinates of B are θ θ( )a acos , sin . The square of the distance between 
A and B is therefore

� ������� �������

θ θ

θ θ θ

θ

( ) ( )

( )

= − +

= + + −

= + −

c a b a

a b ab

a b ab

cos sin

cos sin 2 cos

2 cos .

2 2 2

2 2 2

1

2

2 2

The law of cosines generalizes the Pythagorean theorem. If θ π= 2, then θ =cos 0 
and = +c a b .2 2 2

Two Special Inequalities

For any angle θ measured in radians, the sine and cosine functions satisfy

FIGURE 1.47 The square of the distance 
between A and B gives the law of cosines.

y

x
C

a
c

b

B(a cos u, a sin u)

A(b, 0)

u

FIGURE 1.48 From the geometry of 
this figure, drawn for 0,θ >  we get the 
inequality θ θ θ( )+ − ≤sin 1 cos .2 2 2

u

1

P

A(1, 0)

cos u 1 - cos u

sin u

O Q

u

x

y

θ θ θ θ θ θ− ≤ ≤ − ≤ − ≤sin and 1 cos .

( )( )= + +y af b x c d

Vertical stretch or compression; 
reflection about =y d if negative

Horizontal stretch or compression; 
reflection about = −x c if negative

Vertical shift

Horizontal shift
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 1.3  Trigonometric Functions 47

The transformation rules applied to the sine function give the general sine function or 
sinusoid formula

π( )( )= − +f x A
B

x C D( ) sin 2 ,

where A  is the amplitude, B  is the period, C is the horizontal shift, and D is the vertical 
shift. A graphical interpretation of the various terms is given below.

D

y

x

Vertical
shift (D)

Horizontal
shift (C)

D - A

D + A

Amplitude (A)

This distance is
the period ( kB k ).

This axis is the
line y =  D.

a                  by  = A sin  + D(x  - C)2p
B

0

Radians and Degrees

 1. On a circle of radius 10 m, how long is an arc that subtends a cen-
tral angle of (a) 4 5π  radians? (b) 110°?

 2. A central angle in a circle of radius 8 is subtended by an arc of 
length 10 .π  Find the angle’s radian and degree measures.

 3. You want to make an 80° angle by marking an arc on the perim-
eter of a 12-cm-diameter disk and drawing lines from the ends of 
the arc to the disk’s center. To the nearest millimeter, how long 
should the arc be?

 4. If you roll a 1-m-diameter wheel forward 30 cm over level ground, 
through what angle will the wheel turn? Answer in radians (to the 
nearest tenth) and degrees (to the nearest degree).

Evaluating Trigonometric Functions

 5. Copy and complete the following table of function values. If the 
function is undefined at a given angle, enter “UND.” Do not use a 
calculator or tables.

− 2 3− / 0 2/ 3 4/

θsin

θcos

θtan

θcot

θsec

θcsc

T

T

 6. Copy and complete the following table of function values. If the 
function is undefined at a given angle, enter “UND.” Do not use a 
calculator or tables.

3 2− / 3− / 6/− 4/ 5 6/

θsin

θcos

θtan

θcot

θsec

θcsc

In Exercises 7–12, one of sin x, cos x, and tan x is given. Find the other 
two if x lies in the specified interval.

 7. π π= ∈ ⎡
⎣⎢

⎤
⎦⎥

x xsin 3
5

,
2

,  8. π= ∈ ⎡
⎣⎢

⎤
⎦⎥

x xtan 2, 0,
2

 9. π= ∈ −⎡
⎣⎢

⎤
⎦⎥

x xcos 1
3

,
2

, 0  10. π π= − ∈ ⎡
⎣⎢

⎤
⎦⎥

x xcos 5
13

,
2

,

 11. π π= ∈ ⎡
⎣⎢

⎤
⎦⎥

x xtan 1
2

, , 3
2

 12. π π= − ∈ ⎡
⎣⎢

⎤
⎦⎥

x xsin 1
2

, , 3
2

Graphing Trigonometric Functions
Graph the functions in Exercises 13–22. What is the period of each 
function?
 13. xsin 2  14. xsin 2( )

 15. πxcos  16. πxcos
2

 17. π− xsin
3

 18. π− xcos 2

 19. xcos
2
π( )−  20. xsin

6
π( )+

EXERCISES 1.3
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48 Chapter 1 Functions

 21. xsin
4

1π( )− +  22. xcos 2
3

2π( )+ −

Graph the functions in Exercises 23–26 in the ts-plane (t-axis horizon-
tal, s-axis vertical). What is the period of each function? What sym-
metries do the graphs have?

 23. =s tcot 2  24. π= −s ttan

 25. s tsec
2
π( )=  26. s tcsc

2( )=

 27. a.  Graph =y xcos  and =y xsec  together for x3 2π− ≤
π≤ 3 2. Comment on the behavior of sec x in relation to the 

signs and values of cos x.

 b.  Graph =y xsin  and =y xcsc  together for x 2 .π π− ≤ ≤  
Comment on the behavior of csc x in relation to the signs and 
values of sin x.

 28. Graph =y xtan  and =y xcot  together for x7 7.− ≤ ≤  
Comment on the behavior of cot x in relation to the signs and val-
ues of tan x.

 29. Graph =y xsin  and = ⎢⎣ ⎥⎦y xsin  together. What are the domain 
and range of ⎢⎣ ⎥⎦xsin ?

 30. Graph =y xsin  and = ⎡⎢ ⎤⎥y xsin  together. What are the domain 
and range of ⎡⎢ ⎤⎥xsin ?

Using the Addition Formulas
Use the addition formulas to derive the identities in Exercises 31–36.

 31. π( )− =x xcos
2

sin  32. π( )+ = −x xcos
2

sin

 33. π( )+ =x xsin
2

cos  34. π( )− = −x xsin
2

cos

 35. ( )− = +A B A B A Bcos cos cos sin sin  (Exercise 57 provides 
a different derivation.)

 36. ( )− = −A B A B A Bsin sin cos cos sin

 37. What happens if you take B A=  in the trigonometric identity 
( )− = +A B A B A Bcos cos cos sin sin ? Does the result agree 

with something you already know?

 38. What happens if you take B 2π=  in the addition formulas? Do 
the results agree with something you already know?

In Exercises 39–42, express the given quantity in terms of sin x and 
cos x.

 39. xcos π( )+  40. xsin 2π( )−

 41. xsin 3
2
π( )−  42. xcos 3

2
π( )+

 43. Evaluate sin 7
12
π  as sin

4 3
.π π( )+

 44. Evaluate cos11
12
π  as cos

4
2
3

.π π( )+

 45. Evaluate cos
12

.π  46. Evaluate πsin 5
12

.

Using the Half-Angle Formulas
Find the function values in Exercises 47–50.

 47. cos
8

2 π  48. cos 5
12

2 π

 49. sin
12

2 π  50. sin 3
8

2 π

T

T

Solving Trigonometric Equations
For Exercises 51–54, solve for the angle ,θ  where 0 2 .θ π≤ ≤

 51. θ =sin 3
4

2  52. θ θ=sin cos2 2

 53. θ θ− =sin 2 cos 0 54. θ θ+ =cos 2 cos 0

Theory and Examples

 55. The tangent sum formula The standard formula for the tangent 
of the sum of two angles is

( )+ =
+

−
A B

A B
A B

tan
tan tan

1 tan tan
.

Derive the formula.

 56. (Continuation of Exercise 55.) Derive a formula for A Btan .( )−

 57. Apply the law of cosines to the triangle in the accompanying  
figure to derive the formula for A Bcos .( )−

x

y

A
B

0 1

1

1

A

B Ca

hc b

A

B Ca

hc
b

 58. a.  Apply the formula for A Bcos( )−  to the identity θ =sin

cos
2
π θ( )−  to obtain the addition formula for A Bsin .( )+

 b. Derive the formula for A Bcos( )+  by substituting B−  for B 
in the formula for A Bcos( )−  from Exercise 35.

 59. A triangle has sides a 2=  and b 3=  and angle C 60 .= °  Find 
the length of side c.

 60. A triangle has sides a 2=  and b 3=  and angle C 40 .= °  Find 
the length of side c.

 61. The law of sines The law of sines says that if a, b, and c are the 
sides opposite the angles A, B, and C in a triangle, then

= =
A

a
B

b
C

c
sin sin sin

.

  Use the accompanying figures and the identity sin π θ( )− =
θsin , if required, to derive the law.

 62. A triangle has sides a 2=  and b 3=  and angle C 60= ° (as in 
Exercise 59). Find the sine of angle B using the law of sines.
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 1.4  Exponential Functions 49

B

A C

h

b

a g

 63. A triangle has side c 2=  and angles A 4π=  and B 3.π=  
Find the length a of the side opposite A.

 64. Consider the length h of the perpendicular from point B to side b 
in the given triangle. Show that

α γ
α γ

=
+

h
b tan tan

tan tan

T  67. π( )= + −y x2 sin 1  68. π π( )= − +y x1
2

sin 1
2

 69. 
π

π
π( )= − +y t2 sin

2
1  70. 

π
π= >y L t
L

L
2

sin 2 , 0

COMPUTER EXPLORATIONS
In Exercises 71–74, you will explore graphically the general sine 
function

π( )( )= − +f x A
B

x C D( ) sin 2

as you change the values of the constants A, B, C, and D. Use a CAS or 
computer grapher to perform the steps in the exercises.

 71. The period B Set the constants A 3=  and C D 0.= =

 a. Plot f x( ) for the values B 1, 3, 2 , 5π π=  over the interval 
x4 4 .π π− ≤ ≤  Describe what happens to the graph of the 

general sine function as the period increases.

 b. What happens to the graph for negative values of B? Try it 
with B 3= −  and B 2 .π= −

 72. The horizontal shift C Set the constants A B D3, 6, 0.= = =

 a. Plot f x( ) for the values C 0,=  1, and 2 over the interval 
x4 4 .π π− ≤ ≤  Describe what happens to the graph of the 

general sine function as C increases through positive values.

 b. What happens to the graph for negative values of C?

 c. What smallest positive value should be assigned to C so the 
graph exhibits no horizontal shift? Confirm your answer with 
a plot.

 73. The vertical shift D Set the constants A B C3, 6, 0.= = =

 a. Plot f x( ) for the values D 0, 1,=  and 3 over the interval 
x4 4 .π π− ≤ ≤  Describe what happens to the graph of the 

general sine function as D increases through positive values.

 b. What happens to the graph for negative values of D?

 74. The amplitude A Set the constants B 6=  and C D 0.= =

 a. Describe what happens to the graph of the general sine func-
tion as A increases through positive values. Confirm your 
answer by plotting f x( ) for the values A 1, 5,=  and 9.

 b. What happens to the graph for negative values of A?

1.4 Exponential Functions

Exponential functions occur in a wide variety of applications, including interest rates, 
radioactive decay, population growth, the spread of a disease, consumption of natural 
resources, the earth’s atmospheric pressure, temperature change of a heated object placed 
in a cooler environment, and the dating of fossils. In this section we introduce these func-
tions informally, using an intuitive approach. We give a rigorous development of them in 
Chapter 7, based on the ideas of integral calculus.

Exponential Behavior

When a positive quantity P doubles, it increases by a factor of 2 and the quantity becomes 2P. 
If it doubles again, it becomes =P P2(2 ) 2 ,2  and a third doubling gives =P P2(2 ) 2 .2 3  
Continuing to double in this fashion leads us to consider the function f x( ) 2 .x=  We call 
this an exponential function because the variable x appears in the exponent of 2 .x  Functions 

ra

u

 65. Refer to the given figure. Write the radius r of the circle in terms 
of α and .θ

 66. The approximation sin x x≈  It is often useful to know that, 
when x is measured in radians, sin x x≈  for numerically small 
values of x. In Section 3.11, we will see why the approximation 
holds. The approximation error is less than 1 in 5000 if x 0.1.<

 a. With your grapher in radian mode, graph =y xsin  and 
y x=  together in a viewing window about the origin. What 
do you see happening as x nears the origin?

 b. With your grapher in degree mode, graph =y xsin  and 
y x=  together about the origin again. How is the picture dif-
ferent from the one obtained with radian mode?

General Sine Curves
For

π( )( )= − +f x A
B

x C D( ) sin 2 ,

identify A, B, C, and D for the sine functions in Exercises 67–70 and 
sketch their graphs.

T
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50 Chapter 1 Functions

such as g x( ) 10 x=  and ( )=h x( ) 1 2 x are other examples of exponential functions. In  
general, if a 1≠  is a positive constant, the function

f x a( ) x=

is the exponential function with base a.

EXAMPLE 1  In 2022, $100 is put into an investment account, where it grows by accru-
ing interest that is compounded annually (once a year) at an interest rate of 5.5%. Assuming 
no additional funds are deposited to the account and no money is withdrawn, give a formula 
for a function describing the amount A in the account after x years have elapsed.

Solution If =P 100, at the end of the first year the amount in the account is the original 
amount plus the interest accrued, or

( ) ( ) ( )+ = + =P P P P5.5
100

1 0.055 1.055 .

At the end of the second year the account earns interest again and grows to

( ) ( ) ( ) ( )+ ⋅ = = ⋅ =P P1 0.055 1.055 1.055 100 1.055 . P 1002 2

Continuing this process, after x years the value of the account is

( )= ⋅A 100 1.055 .x

This is a multiple of the exponential function f x( ) 1.055 x( )=  with base 1.055. Table 1.3 
shows the amounts accrued over the first four years. Notice that the amount in the account 
each year is always 1.055 times its value in the previous year.

Don’t confuse the exponential 2 x  with 
the power function x .2  In the exponen-
tial, the variable x is in the exponent, 
whereas the variable x is the base in the 
power function.

TABLE 1.3   Investment account growth

Year Amount (dollars) Yearly increase

2022 100

2023 100 1.055 105.50( ) = 5.50

2024 100 1.055 111.302( ) ≈ 5.80

2025 100 1.055 117.423( ) ≈ 6.12

2026 100 1.055 123.884( ) ≈ 6.46

In general, the amount after x years is given by ( )+P r1 ,x  where P is the starting 
amount and r is the interest rate (expressed as a decimal). 

For integer and rational exponents, the value of an exponential function f x a( ) x=  is 
obtained arithmetically by taking an appropriate number of products, quotients, or roots. If 

=x n is a positive integer, the number a n  is given by multiplying a by itself n times:

�� ������ ������a a a a.
n factors

n = ⋅ ⋅ ⋅

If =x 0, then we set =a 1,0  and if −=x n  for some positive integer n, then

( )= =−a
a a
1 1 .n

n

n

If =x n1  for some positive integer n, then

=a a,n n1

which is the positive number that when multiplied by itself n times gives a. If =x p q is 
any rational number, then

( )= =a a a .p q pq q p
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 1.4  Exponential Functions 51

When x is irrational, the meaning of a x  is not immediately apparent. The value of a x  
can be approximated by raising a to rational numbers that get closer and closer to the 
irrational number x. We will describe this informally now and will give a rigorous defi-
nition in Chapter 7.

The graphs of several exponential functions are shown in Figure 1.49. These graphs  
show the values of the exponential functions for real inputs x. We choose the value of a x  
when x is irrational so that there are no “holes” or “jumps” in the graph of a x  (these words 
are not rigorous mathematical terms, but they informally convey the underlying idea). The 
value of a x  when x is irrational is chosen so that the function f x a( ) x is continuous, a 
notion that will be carefully developed in Chapter 2. This choice ensures that the graph is 
increasing when a 1 and is decreasing when a0 1 (see Figure 1.49).

We illustrate how to define the value of an exponential function at an irrational power 
using the exponential function f x( ) 2 .x  How do we make sense of the expression 2 ?3  
Any particular irrational number, say x 3, has a decimal expansion

3 1.732050808 . 

We then consider the list of powers of 2 with more and more digits in the decimal expansion,

 2 , 2 , 2 , 2 , 2 , 2 , .1 1.7 1.73 1.732 1.7320 1.73205  (1)

We know the meaning of each number in list (1) because the successive decimal approxi-
mations to 3 given by 1, 1.7, 1.73, 1.732, and so on are all rational numbers. As these 
decimal approximations get closer and closer to 3, it seems reasonable that the list of 
numbers in (1) gets closer and closer to some fixed number, which we specify to be 2 .3

Table 1.4 illustrates how taking better approximations to 3 gives better approximations 
to the number 2 3.321997086.3  It is the completeness property of the real numbers 
(discussed in Appendix A.7) which guarantees that this procedure gives a single number we 
define to be 2 3 (although it is beyond the scope of this text to give a proof). In a similar way, 
we can identify the number 2 x (or a a, 0x ) for any irrational x. By identifying the number 
a x  for both rational and irrational x, we eliminate any “holes” or “gaps” in the graph of a .x

Exponential functions obey the rules of exponents listed below. It is easy to check 
these rules using algebra when the exponents are integers or rational numbers. We prove 
them for all real exponents in Chapter 7.

TABLE 1.4   Values of 2 3 for  
rational r closer and closer to 3

r 2 r

1.0 2.000000000

1.7 3.249009585

1.73 3.317278183

1.732 3.321880096

1.7320 3.321880096

1.73205 3.321995226

1.732050 3.321995226

1.7320508 3.321997068

1.73205080 3.321997068

1.732050808 3.321997086

FIGURE 1.49 Graphs of exponential 
functions.
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Rules for Exponents
If a 0 and b 0, the following rules hold for all real numbers x and y.

 1. ⋅ = +a a ax y x y 2. = −a
a

a
x

y
x y

 3. a a a( ) ( )x y y x xy  4. a b ab( )x x x⋅ =

 5. ( )=a
b

a
b

x

x

x

EXAMPLE 2  We use the rules for exponents to simplify some numerical expressions.

1. ⋅ = =+3 3 3 3 Rule 11.1 0.7 1.1 0.7 1.8

2. 
( ) ( ) ( )= = =

−10

10
10 10 10 Rule 2

3
3 1 2

3. ( ) = = =⋅5 5 5 25 Rule 32 2 2 2 2

4. ( )⋅ =7 8 56 Rule 4

5. ( ) = =4
9

4
9

2
3

Rule 5
1 2 1 2

1 2
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52 Chapter 1 Functions

The Natural Exponential Function e x

The most important exponential function used for modeling natural, physical, and eco-
nomic phenomena is the natural exponential function, whose base is the special number 
e. The number e is irrational, and its value to nine decimal places is 2.718281828. (In Sec-
tion 3.8 we will see a way to calculate the value of e.) It might seem strange that we would 
use this number for a base rather than a simple number like 2 or 10. The advantage in using 
e as a base is that it greatly simplifies many of the calculations in calculus.

In Figure 1.49a you can see that for x 0,≥  the graphs of the exponential functions 
y a x=  get steeper as the base a gets larger. This idea of steepness is conveyed by the slope 
of the tangent line to the graph at a point. Tangent lines to graphs of functions are defined 
precisely in the next chapter, but intuitively the tangent line to the graph at a point is the line 
that best approximates the graph at the point, like a tangent to a circle. Figure 1.50 shows the 
slope of the graph of y a x=  as it crosses the y-axis for some values of a. Notice that the 
slope is exactly equal to 1 when a equals the number e. The slope is smaller than 1 if a e,<  
and larger than 1 if a e.>  The graph of y e x=  has slope 1 when it crosses the y-axis.

FIGURE 1.51 Graphs of (a) exponential growth, k 1.5 0,= >  and (b) exponential decay, 
k 1.2 0.−= <

(b)

00 0.5

0.6

0.2

1.5

1.4

2.5- 0.5- 0.5 1

1

2 3

y = e-1.2xy = e1.5x

(a)

1.50.5 1- 1

15

10

5

20

2
x

y

x

y

FIGURE 1.50 Among the exponential functions, the graph of y e x=  has the property that 
the slope m of the tangent line to the graph is exactly 1 when it crosses the y-axis. The slope is 
smaller for a base less than e, such as 2 ,x  and larger for a base greater than e, such as 3 .x

0
x

y

m L 0.7

(a)

y = 2x

x

y

0

(c)

m L 1.1

y = 3x

x

y

0

(b)

m = 1

y = e x

1 1 1

Exponential Growth and Decay

The function =y y e ,kx
0  where k is a nonzero constant, is a model for exponential growth 

if k 0>  and a model for exponential decay if k 0.<  Here y0 is a positive constant that 
represents the value of the function when x 0.=  An example of exponential growth occurs 
when computing interest compounded continuously. This is modeled by the formula 

=y Pe ,rt  where P is the initial monetary investment, r is the interest rate as a decimal, and 
t is time in units consistent with r. An example of exponential decay is the model 

= − × −y Ae ,t1.2 10 4  which represents how the radioactive isotope carbon-14 decays over 
time. Here A is the original amount of carbon-14 and t is the time in years. Carbon-14 decay 
is used to date the remains of dead organisms such as shells, seeds, and wooden artifacts. 
Figure 1.51 shows graphs of exponential growth and exponential decay.
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 1.4  Exponential Functions 53

EXAMPLE 3  Investment companies often use the model y Pert=  in calculating the 
growth of an investment. Use this model to track the growth of $100 invested in 2022 at an 
annual interest rate of 5.5%.

Solution Let t 0=  represent 2022, t 1=  represent 2023, and so on. Then the exponen-
tial growth model is =y t Pe( ) ,rt  where P 100=  (the initial investment), r 0.055=   
(the annual interest rate expressed as a decimal), and t is time in years. To predict the 
amount in the account in 2026, after four years have elapsed, we take t 4=  and 
calculate

=
=
=

( )y e
e

(4) 100
100
124.61. Nearest cent using calculator

0.055 4

0.22

This compares with $123.88 in the account when the interest is compounded annually, as 
was done in Example 1. 

EXAMPLE 4  Laboratory experiments indicate that some atoms emit a part of their 
mass as radiation, with the remainder of the atom re-forming to make an atom of some 
new element. For example, radioactive carbon-14 decays into nitrogen; radium eventually 
decays into lead. If y0 is the number of radioactive nuclei present at time zero, the number 
still present at any later time t will be

= >−y y e r, 0.rt
0

The number r is called the decay rate of the radioactive substance. (We will see how this 
formula is obtained in Section 7.2.) For carbon-14, the decay rate has been determined 
experimentally to be about r 1.2 10 4= × −  when t is measured in years. Predict the per-
cent of carbon-14 present after 866 years have elapsed.

Solution If we start with an amount y0 of carbon-14 nuclei, after 866 years we are left 
with the amount

( )

=
≈

( )( )− × −y y e
y

(866)
0.901 . Calculator evaluation
0

1.2 10 866

0

4

That is, after 866 years, we are left with about 90% of the original amount of carbon-14, so 
about 10% of the original nuclei have decayed. 

You may wonder why we use the family of functions y e kx=  for different values of the 
constant k instead of the general exponential functions =y a .x  In the next section, we 
show that the exponential function a x  is equal to e kx  for an appropriate value of k. So the 
formula y e kx=  covers the entire range of possibilities, and it is generally easier to use.

Sketching Exponential Curves
In Exercises 1–6, sketch the given curves together in the appropriate 
coordinate plane, and label each curve with its equation.

 1. ( )= = = =−y y y y2 ,  4 ,  3 ,  1 5x x x x

 2. ( )= = = =−y y y y3 , 8 , 2 , 1 4x x x x

 3. y 2 t= −  and y 2 t−=  4. y 3 t= −  and y 3 t−=

 5. y e x=  and y e1 x=  6. y e x−=  and y e x−= −

In each of Exercises 7–10, sketch the shifted exponential curves.

 7. y 2 1x= −  and y 2 1x= −−

 8. y 3 2x= +  and y 3 2x= +−

 9. y e1 x= −  and y e1 x= − −

 10. y e1 x−= −  and y e1 x−= − −

Applying the Laws of Exponents
Use the laws of exponents to simplify the expressions in Exer cises 11–20.

 11. 16 162 1.75⋅ −  12. ⋅9 91 3 1 6

 13. 4
4

4.2

3.7
 14. 3

3

5 3

2 3

 15. 251 8 4( )  16. 13 2 2 2( )
 17. 2 73 3⋅  18. 3 12

1 2 1 2( ) ( )⋅

 19. 2
2

4

( )  20. 6
3

2⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

EXERCISES 1.4
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54 Chapter 1 Functions

Compositions Involving Exponential Functions
Find the domain and range for each of the functions in Exercises 21–24.

 21. f x
e

( ) 1
2 x

=
+

 22. g t e( ) cos t( )= −

 23. g t( ) 1 3 t= + −  24. f x
e

( ) 3
1 x2

=
−

Applications
In Exercises 25–28, use graphs to find approximate solutions.

 25. 2 5x =  26. e 4x =

 27. 3 0.5 0x − =  28. 3 2 0x− =−

In Exercises 29–36, use an exponential model and a graphing calculator 
to estimate the answer in each problem.

 29. Population growth The population of a midwestern city is 
500,000 and is increasing at the rate of 3.75% each year. Approxi-
mately when will the population reach 1 million?

 30. Population growth The population of Silver Run in the year 
1890 was 6250. Assume the population increased at a rate of 
2.75% per year.

 a. Estimate the population in 1915 and 1940.

 b. Approximately when did the population reach 50,000?

T

T

 31. Radioactive decay The half-life of phosphorus-32 is about  
14 days. There are 6.6 grams present initially.

 a. Express the amount of phosphorus-32 remaining as a function 
of time t.

 b. When will there be 1 gram remaining?

 32. If Jean invests $2300 in a retirement account with a 6% inter-
est rate compounded annually, how long will it take until Jean’s 
account has a balance of $4150?

 33. Doubling your money Determine how much time is required 
for an investment to double in value if interest is earned at the rate 
of 6.25% compounded annually.

 34. Tripling your money Determine how much time is required for 
an investment to triple in value if interest is earned at the rate of 
5.75% compounded continuously.

 35. Cholera bacteria Suppose that a colony of bacteria starts with 
1 bacterium and doubles in number every half hour. How many 
bacteria will the colony contain at the end of 24 hours?

 36. Eliminating a disease Suppose that in any given year the num-
ber of cases of a disease is reduced by 20%. If there are 10,000 
cases today, how many years will it take

 a. to reduce the number of cases to 1000?

 b. to eliminate the disease; that is, to reduce the number of cases  
to less than 1?

1.5 Inverse Functions and Logarithms

A function that undoes, or inverts, the effect of a function  f  is called the inverse of  f. Many 
common functions, though not all, are paired with an inverse. In this section we present the 
natural logarithmic function =y xln  as the inverse of the exponential function =y e x, 
and we also give examples of several inverse trigonometric functions.

One-to-One Functions

A function is a rule that assigns a value from its range to each element in its domain. 
Some functions assign the same range value to more than one element in the domain. 
The function f x x( ) 2=  assigns the same value, 1, to both of the numbers −1 and +1. 
Similarly the sines of π 3 and π2 3 are both 3 2. Other functions assume each value in 
their range no more than once. The square roots and cubes of different numbers are 
always different. A function that has distinct values at distinct elements in its domain is 
called one-to-one.

DEFINITION A function f x( ) is one-to-one on a domain D if ≠f x f x( ) ( )1 2  
whenever ≠x x1 2 in D.

EXAMPLE 1  Some functions are one-to-one on their entire natural domain. Other 
functions are not one-to-one on their entire domain, but by restricting the function to a 
smaller domain we can create a function that is one-to-one. The original and restricted 
functions are not the same functions, because they have different domains. However, the 
two functions have the same values on the smaller domain.
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 1.5  Inverse Functions and Logarithms 55

 (a) f x x( ) =  is one-to-one on any domain of nonnegative numbers because x x1 2≠  
whenever ≠x x1 2.

 (b) =g x x( ) sin  is not one-to-one on the interval π[ ]0,  because π π( ) ( )=sin 6 sin 5 6 .  
In fact, for each element x1 in the subinterval π[ )0, 2  there is a corresponding element 
x 2 in the subinterval π π( ]2,  satisfying =x xsin sin .1 2  The sine function is one-to-
one on 0, 2 ,π[ ]  however, because it is an increasing function on 0, 2π[ ] and hence 
gives distinct outputs for distinct inputs in that interval. 

The graph of a one-to-one function y f x( )=  can intersect a given horizontal line at 
most once. If the graph intersects the line more than once, then the function assumes the  
same y-value for at least two different x-values and is therefore not one-to-one (Figure 1.52).

FIGURE 1.52 (a) y x 3=  and y x=  
are one-to-one on their domains ,( )−∞ ∞  
and 0,[ )∞ . (b) y x 2=  and =y xsin  are 
not one-to-one on their domains ,( )−∞ ∞ .

0 0

(a) One-to-one: Graph meets each
      horizontal line at most once.

x

y y

y = x3 y = 
"

x

x

DEFINITION Suppose that  f  is a one-to-one function on a domain D with  
range R. The inverse function −f 1 is defined by

= =−f b a f a b( ) if ( ) .1

The domain of −f 1 is R and the range of −f 1 is D.

The symbol −f 1 for the inverse of  f  is read “ƒ inverse.” The “−1” in f 1−  is not an 
exponent; −f x( )1  does not mean f x1 ( ). Notice that the domains and ranges of  f  and f 1−  
are interchanged.

EXAMPLE 2  Suppose a one-to-one function y f x( )=  is given by a table of values

x 1 2 3 4 5 6 7 8

f x( ) 3 4.5 7 10.5 15 20.5 27 34.5

A table for the values of = −x f y( )1  can then be obtained by simply interchanging the 
values in each column of the table for  f :

y 3 4.5 7 10.5 15 20.5 27 34.5

f y( )1− 1 2 3 4 5 6 7 8

If we apply  f  to send an input x to the output f x( ) and follow by applying −f 1 to f x( ),  
we get right back to x, just where we started. Similarly, if we take some number y in the range 
of ƒ, apply −f 1 to it, and then apply  f  to the resulting value −f y( )1 , we get back the value y 
from which we began. Composing a function and its inverse has the same effect as doing 
nothing.

f f x x x f
f f y y y f f

( ) , for all in the domain of
( ) , for all in the domain of or range of

1

1 1

�
�

( )
( ) ( )

=
=

−

− −

Only a one-to-one function can have an inverse. The reason is that if =f x y( )1  and 
=f x y( )2  for two distinct inputs x1 and x 2, then there is no way to assign a value to 

−f y( )1  that satisfies both =−f f x x( ( ))1
1 1 and =−f f x x( ( ))1

2 2.

0- 1 1

0.5

(b) Not one-to-one: Graph meets one or
      more horizontal lines more than once.

1

y

y

x x

y = x2

Same y-value

Same y-value

y = sin x

p
6

5p
6

The Horizontal Line Test for One-to-One Functions
A function y f x( )=  is one-to-one if and only if its graph intersects each 
horizontal line at most once.

Inverse Functions

Since each output of a one-to-one function comes from just one input, the effect of the 
function can be inverted to send each output back to the input from which it came.

Caution

Do not confuse the inverse function f 1−  
with the reciprocal function f1 .
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56 Chapter 1 Functions

Suppose  f  is a function whose domain is an interval. If f   is increasing, then it satisfies 
the inequality >f x f x( ) ( )2 1  when x x2 1> , so it is one-to-one and has an inverse. Like-
wise, if  f  is decreasing, then it also has an inverse. Functions that are neither increasing nor 
decreasing may still be one-to-one and have an inverse, as with the function f x x( ) 1=  
for x 0≠  and f (0) 0= , defined on ,( )−∞ ∞  and passing the horizontal line test.

Finding Inverses

The graphs of a function and its inverse are closely related. To read the value of a function 
from its graph, we start at a point x on the x-axis, go vertically to the graph, and then move 
horizontally to the y-axis to read the value of y. The inverse function can be read from the 
graph by reversing this process. Start with a point y on the y-axis, go horizontally to the 
graph of y f x( )= , and then move vertically to the x-axis to read the value of = −x f y( )1  
(Figure 1.53).

FIGURE 1.53 The graph of = −y f x( )1  is obtained by reflecting the graph of y f x( )=  
about the line y x= .

x

y

0 x

y

R
A

N
G

E
 O

F 
f

DOMAIN OF f

(a) To find the value of f at x, we start at x,
go up to the curve, and then move to the y-axis.

y =  f (x)

x

y

0 x

y

D
O

M
A

IN
 O

F 
f -1

RANGE OF f -1

x =  f -1(y)

(b) The graph of  f -1 is the graph of f, but
with x and y interchanged.  To find the x that
gave y, we start at y and go over to the curve
and down to the x-axis. The domain of f -1 is the
range of f.  The range of f -1 is the domain of f.

y

x

0

(b, a)

(a, b)

y =  x

x =  f -1(y)

R
A

N
G

E
 O

F 
f -1

DOMAIN OF f -1

(c) To draw the graph of f -1 in the
more usual way, we reflect the
system across the line y =  x. 

x

y

0
DOMAIN OF f –1

R
A

N
G

E
 O

F 
f–1

y =  f –1(x)

(d) Then we interchange the letters x and y.
We now have a normal-looking graph of f -1

as a function of x.

We want to set up the graph of f 1−  so that its input values lie along the x-axis, as is usu-
ally done for functions, rather than on the y-axis. To achieve this we interchange the x- and 
y-axes by reflecting across the 45° line y x= . After this reflection, we have a new graph 
that represents f 1− . The value of −f x( )1  can now be read from the graph in the usual way,  
by starting with a point x on the x-axis, going vertically to the graph, and then horizontally to 
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 1.5  Inverse Functions and Logarithms 57

the y-axis to get the value of −f x( )1 . Figure 1.53 indicates the relationship between the 
graphs of  f  and f 1− . The graphs are interchanged by reflection through the line =y x .

The process of passing from  f  to −f 1 can be summarized as a two-step procedure.

1. Solve the equation y f x( )=  for x. This gives a formula = −x f y( )1 , where x is 
expressed as a function of y.

2. Interchange x and y, obtaining a formula = −y f x( )1 , where f 1−  is expressed in the  
conventional format with x as the independent variable and y as the dependent variable.

FIGURE 1.54 Graphing  
f x x( ) 1 2 1( )= +  and = −−f x x( ) 2 21  
together shows the graphs’ symmetry with 
respect to the line y x=  (Example 3).

x

y

- 2

1

- 2

1

y = 2x - 2
y = x

y = x + 11
2

FIGURE 1.55 The functions y x=  
and = ≥y x x, 02 , are inverses of one 
another (Example 4).

x

y

0

y = x2, x Ú 0

y = x

y = 
"

x

DEFINITION The logarithm function with base a, written =y xloga , is the 
inverse of the base a exponential function ( )= > ≠y a a a0, 1x .

EXAMPLE 3  Find the inverse of y x1
2

1= + , expressed as a function of x.

Solution 

1. Solve for x in terms of y: = +

= +
= −

y x

y x
x y

1
2

1

2 2
2 2.

The graph satisfies the horizontal line test,
so the function is one-to-one (Fig.1.59).

2. Interchange x and y: = −y x2 2.
yExpresses the function in the usual form, where

is the dependent variable.

The inverse of the function f x x( ) 1 2 1( )= +  is the function = −−f x x( ) 2 21 . (See 
Figure 1.54.) To check, we verify that both compositions give the identity function:

( )
( )

= + − = + − =

= − + = − + =

−

−

f f x x x x

f f x x x x

( ( )) 2 1
2

1 2 2 2

( ( )) 1
2

2 2 1 1 1 .

1

1

EXAMPLE 4  Find the inverse of the function = ≥y x x, 02 , expressed as a function 
of x.

Solution For x 0≥ , the graph satisfies the horizontal line test, so the function is one-to-
one and has an inverse. To find the inverse, we first solve for x in terms of y:

=

= = = = ≥

y x

y x x x x x xbecause  0

2

2

We then interchange x and y, obtaining

y x.=
The inverse of the function = ≥y x x, 02 , is the function y x=  (Figure 1.55). 

Notice that the function = ≥y x x, 02 , with domain restricted to the nonnegative 
real numbers, is one-to-one (Figure 1.55) and has an inverse. On the other hand, the func-
tion y x 2= , with no domain restrictions, is not one-to-one (Figure 1.52b) and therefore 
has no inverse.

Logarithmic Functions

If a is any positive real number other than 1, then the base a exponential function 
f x a( ) x=  is one-to-one. It therefore has an inverse. Its inverse is called the logarithm 
function with base a.
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58 Chapter 1 Functions

The domain of xloga  is 0,( )∞ , the same as the range of a x . The range of xloga  is 
( )−∞ ∞, , the same as the domain of a x .

Figure 1.56a shows the graph of y xlog2 . The graph of = >y a a, 1x , increases 
rapidly for x 0, so its inverse, y xloga , increases slowly for x 1.

Because we have no technique yet for solving the equation y a x for x in terms of y, 
we do not have an explicit formula for computing the logarithm at a given value of x. Nev-
ertheless, we can obtain the graph of y xloga  by reflecting the graph of the exponen-
tial y a x across the line y x . Figure 1.56a shows the graphs for a 2 and a e.

Logarithms with base 2 are often used when working with binary numbers, as is com-
mon in computer science. Logarithms with base e and base 10 are so important in applica-
tions that many calculators have special keys for them. They also have their own special 
notation and names:

x x
x x

log is written as ln .
log is written as log .

e

10

The function y xln  is called the natural logarithm function, and y xlog  is 
often called the common logarithm function. Since the logarithm is the inverse function 
of exponentiation, it follows that:

FIGURE 1.56 (a) The graphs of 2 x  and 
its inverse, xlog2 . (b) The graphs of e x 
and its inverse, ln x.

x

y

1
2

0 1 2

y = log2x

y = 2x

y = x

(a)

x

y

1

10 2 e 4

2

e

4

- 1- 2

5

6

7

8

(1, e)

y = ln x

y = ex

(b)

THEOREM 1—Algebraic Properties of the Natural Logarithm  
For any numbers b 0 and x 0, the natural logarithm satisfies the following 
rules:

1. Product Rule: = +bx b xln ln ln

2. Quotient Rule: = −b
x

b xln ln ln

3. Reciprocal Rule: = − =
x

xln 1 ln bRule 2 with  1

4. Power Rule: x r xln lnr

HISTORICAL BIOGRAPHY

John Napier
(1550–1617)
Scotsman John Napier went to St. Salvator’s 
College in St. Andrews, where he studied from 
mathematician John Rutherford. Today, Napier 
is best known as the inventor of logarithms.

To know more, visit the companion Website.

= ⇔ =
= ⇔ =

x y a x
x y e x

log
ln

a
y

y

In particular, because e e1 , we obtain

eln 1.

Properties of Logarithms

Logarithms, invented by John Napier, were the single most important improvement in 
arithmetic calculation before the modern electronic computer. The properties of logarithms 
reduce multiplication of positive numbers to addition of their logarithms, division of posi-
tive numbers to subtraction of their logarithms, and exponentiation of a number to multi-
plying its logarithm by the exponent.

We summarize these properties for the natural logarithm as a series of rules that we 
prove in Chapter 7.
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 1.5  Inverse Functions and Logarithms 59

EXAMPLE 5  We use the properties in Theorem 1 to rewrite three expressions.

 (a) ( )+ =x xln 4 ln sin ln 4 sin Product Rule

 (b) ( ) ( )
+
−

= + − −x
x

x xln 1
2 3

ln 1 ln 2 3 Quotient Rule

 (c) = −

= − = −

ln 1
8

ln 8

ln 2 3 ln 2

Reciprocal Rule

Power Rule3

Because a x  and xloga  are inverses, composing them in either order gives the identity 
function.

Inverse Properties for a x and xlog a

1. Base a a a0, 1 :( )> ≠
= >
=

a x x
a x

, 0
log

x

a
x

loga

2. Base e:
= >
=

e x x
e x

, 0
ln

x

x

ln

Substituting a x  for x in the equation =x e xln  enables us to rewrite a x  as a power of e:

=
=
=

=( )

( )

a e
e

e .

a x x eSubstitute   for   in  .

Power Rule for logs

Exponent rearranged

x a

x a

a x

ln

ln

ln

x x xln

Thus, the exponential function a x  is the same as e kx  with =k aln .

Every exponential function is a power of the natural exponential function.

=a ex x aln

That is, a x  is the same as e x raised to the power ln a: =a ex kx  for =k aln .

For example,
= = = =( ) ( )( )− − −e e e e2 , and 5 .x x x x x xln 2 ln 2 3 ln 5 3 3 ln 5

Returning once more to the properties of a x  and xloga , we have

( )( )
( )=

= =

x a
x a

ln ln
log ln .

a x

r x

Inverse Property for   and log

Power Rule for logarithms, with  log

x

a

loga x
a

a

Rewriting this equation as ( ) ( )=x x alog ln lna  shows that every logarithmic function is 
a constant multiple of the natural logarithm ln x. This allows us to extend the algebraic 
properties for ln x to xloga . For instance, bx b xlog log loga a a= + .

Change-of-Base Formula
Every logarithmic function is a constant multiple of the natural logarithm.

( )= > ≠x
x
a

a alog
ln
ln

0, 1a

Applications

In Section 1.4 we looked at examples of exponential growth and decay problems. Here we 
use properties of logarithms to answer more questions concerning such problems.
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60 Chapter 1 Functions

EXAMPLE 6  If $1000 is invested in an account that earns 5.25% interest com-
pounded annually, how long will it take the account to reach $2500?

Solution From Example 1, Section 1.4, with P 1000=  and =r 0.0525, the amount in 
the account at any time t in years is ( )1000 1.0525 t, so to find the time t when the account 
reaches $2500, we need to solve the equation

1000 1.0525 2500.t( ) =

Thus we have
( )

( )

=

=
=

= ≈

t

t

1.0525 2.5

ln 1.0525 ln 2.5
ln 1.0525 ln 2.5

ln 2.5
ln 1.0525

17.9

Divide by 1000.

Take logarithms of both sides.

Power Rule

Values obtained by calculator

t

t

The amount in the account will reach $2500 in 18 years, when the annual interest payment 
is deposited for that year. 

EXAMPLE 7  The half-life of a radioactive element is the time expected to pass until 
half of the radioactive nuclei present in a sample decay. The half-life is a constant that does 
not depend on the number of radioactive nuclei initially present in the sample, but only on 
the radioactive substance.

To compute the half-life, let y0 be the number of radioactive nuclei initially present in the 
sample. Then the number y present at any later time t will be = −y y e kt

0 . We seek the value 
of t at which the number of radioactive nuclei present equals half the original number:

 

=

=

− = = −

=

−

−

y e y

e

kt

t
k

1
2
1
2

ln 1
2

ln 2

ln 2
.

Reciprocal Rule for logarithms

kt

kt

0 0

 

(1)

This value of t is the half-life of the element. It depends only on the value of k; the number 
y0 does not have any effect.

The effective radioactive lifetime of polonium-210 is so short that we measure it in 
days rather than years. The number of radioactive atoms remaining after t days in a sample 
that starts with y0 radioactive atoms is

= − × −y y e .t0
5 10 3

The element’s half-life is

=

=
×

≈
−

k
Half-life

ln 2

ln 2
5 10
139 days.

k

Eq. (1)

The   from polonium-210’s decay equation
3

This means that after 139 days, 1 2 of y0 radioactive atoms remain; after another 139 
days (278 days altogether) half of those remain, or 1 4 of y0 radioactive atoms remain, and 
so on (see Figure 1.57). 

Inverse Trigonometric Functions

The six basic trigonometric functions are not one-to-one (since their values repeat periodi-
cally). However, we can restrict their domains to intervals on which they are one-to-one. 
The sine function increases from π π− = − + =x x1 at 2 to 1 at 2. By restricting its 

FIGURE 1.57 Amount of polonium-210 
present at time t, where y0 represents the 
number of radioactive atoms initially  
present (Example 7).

y = y0e-5 * 10–3t

y0

y0

y0

t (days)

Amount
present

Half-life
0 139 278

2
1

4
1
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 1.5  Inverse Functions and Logarithms 61

domain to the interval 2 , 2π π[ ]−  we make it one-to-one, so that it has an inverse which 
is called arcsin x (Figure 1.58). Similar domain restrictions can be applied to all six trigo-
nometric functions.

FIGURE 1.58 The graph of 
=y xarcsin .

Domain:
Range:

x

y

1−1

x = sin y

p
2

p
2

−

y = arcsin x 
−1 ≤ x ≤ 1

−p�2 ≤ y ≤ p�2

FIGURE 1.59 The graphs of  
(a) π π= − ≤ ≤y x xsin , 2 2, 
and (b) its inverse, =y xarcsin . The 
graph of arcsin x, obtained by reflec-
tion across the line y x= , is a portion 
of the curve =x ysin .

x

y

x

y

1

−1
0

0 1−1

(a)

(b)

p
2

p
2

p
2

−

p
2−

y = sin x, p
2

p
2

− ≤ x ≤

Domain:
Range:

[−p�2, p�2]
[−1, 1] 

x = sin y

y = arcsin x 

Domain:
Range:

[−1, 1] 
[−p�2, p�2]

Caution The −1 in the expressions for the inverse means “inverse.” It does not mean reciprocal. For 
example, the reciprocal of sin x is ( ) = =−x x xsin 1 sin csc1 . 

Since these restricted functions are now one-to-one, they have inverses, which we 
denote by

= = = =

= = = =

= = = =

− −

− −

− −

y x y x y x y x

y x y x y x y x

y x y x y x y x

sin or arcsin , cos or arccos

tan or arctan , cot or arccot

sec or arcsec , csc or arccsc

1 1

1 1

1 1

These equations are read “y equals the arcsine of x” or “y equals arcsin x” and so on.

The graphs of the six inverse trigonometric functions are obtained by reflecting the 
graphs of the restricted trigonometric functions through the line =y x . Figure 1.59b 
shows the graph of =y xarcsin , and Figure 1.60 shows the graphs of all six functions. 
We now take a closer look at two of these functions.

The Arcsine and Arccosine Functions

We define the arcsine and arccosine as functions whose values are angles (measured in 
radians) that belong to restricted domains of the sine and cosine functions.

0 p p
2

cot x

x

y

x

y

0 p
2

p
2

-
sin x

- 1

1

0

1

pp
2

sec x

x

y

- 1

0
- 1

1

p p
2

cos x

x

y

0

1

- 1
p
2-    p

2

csc x

x

y

tan x

x

y

0 p
2

p
2

-

Domain restrictions that make the trigonometric functions one-to-one

π π[ ]
[ ]

=
−

−

y xsin
Domain: 2, 2
Range: 1,1

π[ ]
[ ]

=

−

y xcos
Domain: 0,
Range: 1,1

π π( )
( )

=
−

−∞ ∞

y xtan
Domain: 2, 2
Range: ,

π( )
( )

=

−∞ ∞

y xcot
Domain: 0,
Range: ,

π π π[ ) ( ]
( ] [ )

=
∪

−∞ − ∪ ∞

y xsec
Domain: 0, 2 2,
Range: , 1 1,

π π[ ) ( ]
( ] [ )

=
− ∪

−∞ − ∪ ∞

y xcsc
Domain: 2, 0 0, 2
Range: , 1 1,
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62 Chapter 1 Functions

The graph of =y xarcsin  (Figure 1.59b) is symmetric about the origin. The arcsine is 
therefore an odd function:

 − = −x xarcsin ( ) arcsin . (2)

The graph of =y xarccos  (Figure 1.61b) has no such symmetry.

EXAMPLE 8  Evaluate (a) arcsin 3
2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ and (b) arccos 1

2( )− .

Solution 

 (a) We see that

π⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ =arcsin 3

2 3

because sin 3 3 2π( ) =  and π 3 belongs to the range 2 , 2π π[ ]−  of the arcsine 
function. See Figure 1.62a.

 (b) We have

π( )− =arccos 1
2

2
3

because cos 2 3 1 2π( ) = −  and π2 3 belongs to the range 0, π[ ] of the arccosine 
function. See Figure 1.62b. 

DEFINITION 
π π[ ]= − =y x y xarcsin  is the number in  2, 2  for which  sin .
π[ ]= =y x y xarccos  is the number in  0,  for which  cos .

FIGURE 1.60 Graphs of the six basic inverse trigonometric functions.

x

y

p
2

p
2

−

1−1

(a)

Domain:
Range:

−1 ≤ x ≤ 1
≤ y ≤p

2
−

p
2

y = arcsin x 

x

y

p

p

2

1−1

Domain:
Range:

−1 ≤ x ≤ 1
0 ≤ y ≤ p

(b)

y = arccos x 

x

y

(c)

Domain: −∞ < x < ∞
Range: < y <p

2
− p

2

1−1−2 2

p
2

p
2−

y = arctan x 

x

y

(e)

1−1−2 2

y = arcsec x 

p

p
2 x

y

Domain:
Range:

x ≤ −1 or x ≥ 1
0 ≤ y ≤ p, y ≠ p2

Domain:
Range:

x ≤ −1 or x ≥ 1
≤ y ≤ , y ≠ 0p

2
−

p
2

(f)

1−1−2 2

p
2

p
2

−

y = arccsc x 

x

y

(d)

p

p
2

1−1−2 2

y = arccot x 

Domain:
Range: 0 < y < p

−∞ < x < ∞

Arc whose sine is x

Arc whose
cosine is x

x2 +  y2 =  1

Angle whose
sine is x

Angle whose
cosine is x

x

y

0 x 1

The “Arc” in Arcsine and Arccosine
For a unit circle and radian angles, the 
arc length equation s rθ=  becomes 
s θ= , so central angles and the arcs 
they subtend have the same measure. If 

θ=x sin , then, in addition to being the 
angle whose sine is x, θ is also the length 
of arc on the unit circle that subtends an 
angle whose sine is x. So we call θ “the 
arc whose sine is x.”
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 1.5  Inverse Functions and Logarithms 63

FIGURE 1.61 The graphs of 
(a) π= ≤ ≤y x xcos , 0 , and 
(b) its inverse, =y xarccos . 
The graph of arccos x, obtained 
by reflection across the line 
y x= , is a portion of the curve 

=x ycos .

x

y

x

y

0 p p
2

y = cos x, 0 ≤ x ≤ p
Domain:
Range:

[0, p]
[−1, 1] 

y = arccos x 
Domain:
Range:

[−1, 1] 
[0, p]

1

−1

(a)

(b)

p

p

2

0−1 1

x = cos y

Using the same procedure illustrated in Example 8, we can create the following table of 
common values for the arcsine and arccosine functions.

x arcsin x arccos x

3 2 π 3 π 6

2 2 π 4 π 4

1 2 π 6 π 3

−1 2 π− 6 2 3π

− 2 2 π− 4 3 4π

− 3 2 π− 3 5 6π

FIGURE 1.62 Values of the arcsine and arccosine functions 
(Example 8).

arccos

x

y

p
3

0 1

2
"

3

p
3

sin = "

3
2

p
3

arcsin ="

3
2

(a)

a  b

0−1
x

y

"

3
2

p
3
2

3
2p

−
1
2

=

3
2pcos = –1

2
(b)

a  b

EXAMPLE 9  During a 240-km airplane flight from Zurich to Geneva, after flying  
180 km the navigator determines that the plane is 12 km off course, as shown in Figure 1.63.  
Find the angle a for a course parallel to the original correct course, the angle b, and the 
drift correction angle = +c a b.

Solution From the Pythagorean theorem and given information, we compute an approxi-
mate hypothetical flight distance of 179 km, had the plane been flying along the original 
correct course (see Figure 1.63). Knowing the flight distance from Zurich to Geneva, we next 
calculate the remaining leg of the original course to be 61 km. Applying the Pythagorean 
theorem again then gives an approximate distance of 62 km from the position of the plane to 
Geneva. Finally, from Figure 1.63, we see that = =a b180 sin 12 and 62 sin 12, so

= ≈ ≈ °

= ≈ ≈ °

= + ≈ °

a

b

c a b

arcsin 12
180

0.067 radian 3.8

arcsin 12
62

0.195 radian 11.2

15 .

Identities Involving Arcsine and Arccosine

As we can see from Figure 1.64, the arccosine of x satisfies the identity

 π+ − =x xarccos arccos( ) , (3)

or
 π− = −x xarccos( ) arccos . (4)

Also, we can see from the triangle in Figure 1.65 that for >x 0,

 π+ =x xarcsin arccos 2. (5)

FIGURE 1.63 Diagram for drift  
correction (Example 9), with distances 
rounded to the nearest kilometer 
(drawing not to scale).

Zurich

Plane position
Geneva

62
61 12

180

179

a

b

c

FIGURE 1.64 arccos x and 
−xarccos ( ) are supplementary 

angles (so their sum is π).

arccos x

x

y

0−x x−1 1

arccos(−x)
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64 Chapter 1 Functions

Equation (5) holds for the other values of x in [ ]−1,1  as well, but we cannot conclude this 
from the triangle in Figure 1.65. It is, however, a consequence of Equations (2) and (4) 
(Exercise 80).

The arctangent, arccotangent, arcsecant, and arccosecant functions are defined in  
Section 3.9. There we develop additional properties of the inverse trigonometric functions 
using the identities discussed here.

FIGURE 1.65 arcsin x and arccos x are 
complementary angles (so their sum is 2π ).

arcsin x

arccos x1
x

EXERCISES 1.5 

Identifying One-to-One Functions Graphically
Which of the functions graphed in Exercises 1–6 are one-to-one, and 
which are not?

 1.   2. 

x

y

0

y = - 3x3

x

y

0- 1 1

y = x4 - x2

y

x

y = 2 ƒx ƒ
x

y

y = :x;

 3.   4. 

x

y

y = x1>3

x

y

0

y = 1
x

 5.   6. 

In Exercises 7–10, determine from its graph whether the function is 
one-to-one.

 7. f x
x x

x
( )

3 , 0

3, 0
=

− <

≥
⎧
⎨
⎪⎪
⎩⎪⎪

 8. f x
x x

x x
( )

2 6, 3

4, 3
=

+ ≤ −

+ > −
⎧
⎨
⎪⎪
⎩⎪⎪

 9. f x

x x

x
x

x
( )

1
2

, 0

2
, 0

=
− ≤

+
>

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

 10. f x
x x

x x
( )

2 , 1

, 1

2

2
=

− ≤

>

⎧
⎨
⎪⎪
⎩⎪⎪

Graphing Inverse Functions
Each of Exercises 11–16 shows the graph of a function y f x( ).=  
Copy the graph and draw in the line y x.=  Then use reflection with 
respect to the line y x=  to add the graph of f 1−  to your sketch. (It 
is not necessary to find a formula for f .1− ) Identify the domain and 
range of f .1−

 11.   12. 

x

y

10

1
y = f (x) = 1 - , x 7 01

x

x

y

10

1

y = f (x) = , x Ú 01
x2 + 1

x

y

0 p
2

p
2-    

1

- 1

p
2

p
2

-   
y =  f (x) = sin x,

…  x … p
2

p
2-   

y =  f (x)  = tan x,

6 x 6

x

y

0 p
2

p
2

-    

 13.   14. 

x

y

0

6

3

f (x) = 6 - 2x,
0 … x … 3 x

y

0

1

- 1 3

- 2

x + 1,   - 1 … x … 0

- 2 +    x,    0 6 x 6 3
f (x) = 2

3

 15.   16. 

 17. a. Graph the function f x x x( ) 1 , 0 1.2= − ≤ ≤  What  
symmetry does the graph have?

 b. Show that  f  is its own inverse. (Remember that x x2 =  if 
x 0.≥ )

 18. a. Graph the function f x x( ) 1 .=  What symmetry does the 
graph have?

 b. Show that  f  is its own inverse.
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 1.5  Inverse Functions and Logarithms 65

Each of Exercises 25–36 gives a formula for a function y f x( ).=  In 
each case, find −f x( )1  and identify the domain and range of f .1−  As a 
check, show that = =− −f f x f f x x( ( )) ( ( )) .1 1

 25. f x x( ) 5=  26. = ≥f x x x( ) , 04

 27. f x x( ) 13= +  28. f x x( ) 1 2 7 2( )= −

 29. = >f x x x( ) 1 , 02  30. = ≠f x x x( ) 1 , 03

 31. f x x
x

( ) 3
2

= +
−

 32. f x x
x

( )
3

=
−

 33. f x x x x( ) 2 , 12= − ≤  34. f x x( ) 2 13 1 5( )= +

(Hint: Complete the square.)

 35. f x x b
x

b( )
2

, 2= +
−

> −  and constant

 36. f x x bx b( ) 2 , 02= − >  and constant, x b≤

Inverses of Lines

 37. a. Find the inverse of the function f x mx( ) ,=  where m is a con-
stant different from zero.

 b. What can you conclude about the inverse of a function 
y f x( )=  whose graph is a line through the origin with a 
nonzero slope m?

 38. Show that the graph of the inverse of f x mx b( ) ,= +  where 
m and b are constants and m 0,≠  is a line with slope m1  and 
y-intercept b m .−

 39. a. Find the inverse of f x x( ) 1.= +  Graph  f  and its inverse 
together. Add the line y x=  to your sketch, drawing it with 
dashes or dots for contrast.

 b. Find the inverse of f x x b( ) = +  (b constant). How is the 
graph of f 1−  related to the graph of ƒ?

 c. What can you conclude about the inverses of functions whose 
graphs are lines parallel to the line y x ?=

 40. a. Find the inverse of f x x( ) 1.= − +  Graph the line 
y x 1= − +  together with the line y x.=  At what angle do 
the lines intersect?

 b. Find the inverse of f x x b( ) = − +  (b constant). What angle 
does the line y x b= − +  make with the line y x ?=

 c. What can you conclude about the inverses of functions whose 
graphs are lines perpendicular to the line y x ?=

Logarithms and Exponentials

 41. Express the following logarithms in terms of ln 2 and ln 3.

 a. ln 0.75 b. ( )ln 4 9

 c. ( )ln 1 2  d. ln 93

 e. ln 3 2 f. ln 13.5

 42. Express the following logarithms in terms of ln 5 and ln 7.

 a. ( )ln 1 125  b. ln 9.8

 c. ln 7 7 d. ln 1225

 e. ln 0.056 f. ( )( ) ( )+ln 35 ln 1 7 ln 25

Use the properties of logarithms to write the expressions in Exercises 
43 and 44 as a single term.

 43. a. θ
θ( )−ln sin ln

sin
5

 b. ( )( )− +x x
x

ln 3 9 ln 1
3

2

  c. ( ) −t b1
2

ln 4 ln4

 44. a. θ θ+ln sec ln cos  b. ( )+ −x cln 8 4 2 ln

  c. ( )− − +t t3 ln 1 ln 123

Find simpler expressions for the quantities in Exercises 45–48.

 45. a. e ln 7.2 b. −e xln 2  c. −e x yln ln

 46. a. ( )+e x yln 2 2  b. −e ln 0.3 c. π −e xln ln 2

 47. a. e2 ln  b. ( )eln ln e  c. ( )− −eln x y2 2

 48. a. ( )θeln sec  b. ( )( )eln e x  c. ( )eln x2 ln

In Exercises 49–54, solve for y in terms of t or x, as appropriate.

 49. = +y tln 2 4  50. = − +y tln 5

 51. ( )− =y b tln 5  52. ( )− =c y tln 2

 53. ( )− − = +y x xln 1 ln 2 ln

 54. ( )( ) ( )− − + =y y xln 1 ln 1 ln sin2

x

y

1

10

y = f (x)

y = f -1(x)
x

y

1

10

y = f -1(x)

y = f (x)

Formulas for Inverse Functions
Each of Exercises 19–24 gives a formula for a function y f x( )=  and 
shows the graphs of  f  and f .1−  Find a formula for f 1−  in each case.

 19. f x x x( ) 1, 02= + ≥  20. f x x x( ) , 02= ≤

x

y

1

1- 1

- 1

y = f (x)

y = f -1(x)

x

y

1

10

y = f (x)

y = f -1(x)

 21. f x x( ) 13= −  22. f x x x x( ) 2 1, 12= − + ≥

x

y

0

1

- 1
1- 1

y = f (x)

y = f -1(x)

x

y

0

1

1

y = f -1(x)

y = f (x)

 23. ( )= + ≥ −f x x x( ) 1 , 12  24. f x x x( ) , 02 3= ≥
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66 Chapter 1 Functions

In Exercises 55 and 56, solve for k.

 55. a. e 4k2 =  b. e100 200k10 =  c. e ak 1000 =

 56. a. e 1
4

k5 =  b. e80 1k =  c. e 0.8kln 0.8 =( )

In Exercises 57–64, solve for t.

 57. a. e 27t0.3 =−  b. e 1
2

kt =  c. e 0.4tln 0.2 =( )

 58. a. e 1000t0.01 =−  b. e 1
10

kt =  c. =( )e 1
2

tln 2

 59. e xt 2=  60. e e ex x t2 12 =( ) ( )+

 61. e e3 0t t2 − =  62. e e6 5t t2 + =− −

 63. ( )−
=t

t
ln

1
2 64. ( )− = −t tln 2 ln 8 ln

Simplify the expressions in Exercises 65–68.

 65. a. 5log 75  b. 8log 28  c. 1.3log 751.3

  d. log 164  e. log 33  f. log 1
44 ( )

 66. a. 2log 32  b. 10 log 1 210( ) c. log 7π π

  d. log 12111  e. log 11121  f. log 1
93 ( )

 79. Find a formula for the inverse function f 1−  and verify that 
f f x f f x x( ) ( ) .1 1� �( ) ( )= =− −

 a. f x( ) 100
1 2 x

=
+ −

 b. f x( ) 50
1 1.1 x

=
+ −

 c. f x e
e

( ) 1
1

x

x
= −

+

 d. =
−

f x
x

x
( )

ln
2 ln

 80. The identity x x πarcsin arccos 2/+ =  Figure 1.65 estab-
lishes the identity for x0 1.< <  To establish it for the rest of 

1,1 ,[ ]−  verify by direct calculation that it holds for x 1, 0,=  and 
1.−  Then, for values of x in 1, 0 ,( )−  let x a a, 0,= − >  and 

apply Eqs. (3) and (5) to the sum − + −a aarcsin ( ) arccos ( ).

 81. Start with the graph of =y xln . Find an equation of the graph 
that results from

 a. shifting down 3 units.

 b. shifting right 1 unit.

 c. shifting left 1, up 3 units.

 d. shifting down 4, right 2 units.

 e. reflecting about the y-axis.

 f. reflecting about the line y x.=

 82. Start with the graph of =y xln . Find an equation of the graph 
that results from

 a. vertical stretching by a factor of 2.

 b. horizontal stretching by a factor of 3.

 c. vertical compression by a factor of 4.

 d. horizontal compression by a factor of 2.

 83. The equation x 2 x2 =  has three solutions: x x2, 4,= =  and 
one other. Estimate the third solution as accurately as you can by 
graphing.

 84. Could x ln 2 possibly be the same as 2 xln  for x 0?>  Graph the two 
functions and explain what you see.

 85. Radioactive decay The half-life of a certain radioactive sub-
stance is 12 hours. There are 8 grams present initially.

 a. Express the amount of substance remaining as a function of 
time t.

 b. When will there be 1 gram remaining?

 86. Doubling your money Determine how much time is required 
for a $500 investment to double in value if interest is earned at the 
rate of 4.75% compounded annually.

 87. Population growth The population of a town in California is 
375,000 and is increasing at the rate of 2.25% per year. Predict 
when the population will be 1 million.

 88. Radon-222 The decay equation for radon-222 gas is known to 
be = −y y e ,t0

0.18  with t in days. About how long will it take the 
radon in a sealed sample of air to fall to 90% of its original value?

T

T

T

T

T

T

 67. a. 2 xlog4  b. 9 xlog3  c. ( )( )( )elog x
2

ln 2 sin

 68. a. 25 xlog (3 )5
2  b. elog ( )e

x  c. ( )log 2e x
4

sinx

Express the ratios in Exercises 69 and 70 as ratios of natural logarithms 
and simplify.

 69. a. 
x

x

log

log
2

3

 b. 
x

x

log

log
2

8

 c. 
a

a

log

log
x

x 2

 70. a. 
x

x

log

log
9

3

 b. 
x

x

log

log
10

2

 c. 
b

a

log

log
a

b

Arcsine and Arccosine
In Exercises 71–74, find the exact value of each expression. Remember 
that − xsin 1  and arcsin x are the same function, and, similarly, − xcos 1  
and arccos x.

 71. a. sin 1
2

1 ( )−−  b. sin 1
2

1 ( )−  c. sin 3
2

1 −⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−

 72. a. cos 1
2

1 ( )−  b. cos 1
2

1 ( )−−  c. cos 3
2

1 ⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−

 73. a. −arccos ( 1) b. arccos (0)

 74. a. −arcsin ( 1) b. arcsin 1
2( )−

Theory and Examples

 75. If f x( ) is one-to-one, can anything be said about g x f x( ) ( )?= −  
Is it also one-to-one? Give reasons for your answer.

 76. If f x( ) is one-to-one and f x( ) is never zero, can anything be said 
about =h x f x( ) 1 ( )? Is it also one-to-one? Give reasons for your 
answer.

 77. Suppose that the range of g lies in the domain of  f  so that the com-
position f g�  is defined. If  f  and g are one-to-one, can anything be 
said about f g?�  Give reasons for your answer.

 78. If a composition f g�  is one-to-one, must g be one-to-one? Give 
reasons for your answer.
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 Chapter 1  Practice Exercises 67

 1. What is a function? What is its domain? Its range? What is an 
arrow diagram for a function? Give examples.

 2. What is the graph of a real-valued function of a real variable? 
What is the vertical line test?

 3. What is a piecewise-defined function? Give examples.

 4. What are the important types of functions frequently encountered 
in calculus? Give an example of each type.

 5. What is meant by an increasing function? A decreasing function? 
Give an example of each.

 6. What is an even function? An odd function? What symmetry prop-
erties do the graphs of such functions have? What advantage can  
we take of this? Give an example of a function that is neither even 
nor odd.

 7. If ƒ and g are real-valued functions, how are the domains of 
f g f g fg, , ,+ −  and f g related to the domains of ƒ and g? 
Give examples.

 8. When is it possible to compose one function with another? Give 
examples of compositions and their values at various points. Does 
the order in which functions are composed ever matter?

 9. How do you change the equation y f x( )=  to shift its graph ver-
tically up or down by k units? Horizontally to the left or right? 
Give examples.

 10. How do you change the equation y f x( )=  to compress or stretch 
the graph by a factor c 1?>  Reflect the graph across a coordi-
nate axis? Give examples.

 11. What is radian measure? How do you convert from radians to 
degrees? Degrees to radians?

 12. Graph the six basic trigonometric functions. What symmetries do 
the graphs have?

 13. What is a periodic function? Give examples. What are the periods 
of the six basic trigonometric functions?

 14. Starting with the identity sin cos 12 2θ θ+ =  and the formulas 
for A Bcos( )+  and A Bsin ,( )+  show how a variety of other 
trigonometric identities may be derived.

 15. How does the formula for the general sine function f x( ) =
A B x C D sin 2π( )( )( )− +  relate to the shifting, stretching, 
compressing, and reflection of its graph? Give examples. Graph 
the general sine curve and identify the constants A, B, C, and D.

 16. Name three issues that arise when functions are graphed using a 
calculator or computer with graphing software. Give examples.

 17. What is an exponential function? Give examples. What laws of 
exponents does it obey? How does it differ from a simple power 
function like f x x( ) n= ? What kind of real-world phenomena 
are modeled by exponential functions?

 18. What is the number e, and how is it defined? What are the domain 
and range of f x e( ) x= ? What does its graph look like? How do 
the values of e x relate to x x,2 3, and so on?

 19. What functions have inverses? How do you know if two func-
tions  f  and g are inverses of one another? Give examples of  
functions that are (are not) inverses of one another.

 20. How are the domains, ranges, and graphs of functions and their 
inverses related? Give an example.

 21. What procedure can you sometimes use to express the inverse of a 
function of x as a function of x?

 22. What is a logarithmic function? What properties does it satisfy? 
What is the natural logarithm function? What are the domain and 
range of =y xln ? What does its graph look like?

 23. How is the graph of xloga  related to the graph of ln x? What truth 
is in the statement that there is really only one exponential func-
tion and one logarithmic function?

 24. How are the inverse trigonometric functions defined? How can you  
sometimes use right triangles to find values of these functions? 
Give examples.

CHAPTER 1 Questions to Guide Your Review

Functions and Graphs

 1. Express the area and circumference of a circle as functions of the 
circle’s radius. Then express the area as a function of the circum-
ference.

 2. Express the radius of a sphere as a function of the sphere’s surface 
area. Then express the surface area as a function of the volume.

 3. A point P in the first quadrant lies on the parabola y x 2= . 
Express the coordinates of P as functions of the angle of inclina-
tion of the line joining P to the origin.

 4. A hot-air balloon rising straight up from a level field is tracked by 
a range finder located 500 m from the point of liftoff. Express the 
balloon’s height as a function of the angle the line from the range 
finder to the balloon makes with the ground.

In Exercises 5–8, determine whether the graph of the function is sym-
metric about the y-axis, the origin, or neither.

 5. y x 1 5=  6. y x 2 5=

 7. y x x2 12= − −  8. y e x 2= −

In Exercises 9–16, determine whether the function is even, odd, or 
neither.

 9. y x 12= +  10. y x x x5 3= − −

 11. = −y x1 cos  12. =y x xsec tan

 13. y x
x x

1
2

4

3
= +

−
 14. = −y x xsin

 15. = +y x xcos  16. =y x xcos

CHAPTER 1 Practice Exercises
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68 Chapter 1 Functions

In Exercises 41 and 42, (a) write formulas for f g�  and g f�  and find 
the (b) domain and (c) range of each.

 41. f x x g x x( ) 2 , ( ) 22= − = +

 42. f x x g x x( ) , ( ) 1= = −

For Exercises 43 and 44, sketch the graphs of ƒ and f f .�

 43. f x

x x

x

x x

( )

2, 4 1

1, 1 1

2, 1 2

=

− − − ≤ ≤ −

− − < ≤

− < ≤

⎧

⎨
⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

 44. f x
x x

x x
( )

1, 2 0

1, 0 2
=

+ − ≤ <

− ≤ ≤
⎧
⎨
⎪⎪
⎩⎪⎪

Composition with absolute values In Exercises 45–52, graph f1 
and f2 together. Then describe how applying the absolute value func-
tion in f2 affects the graph of f1.

f x( )1 f x( )2

 45. x x

 46. x 2 x 2

 47. x 3 x 3

 48. x x2 + x x2 +

 49. x4 2− x4 2−

 50. 
x
1

x
1

 51. x x

 52. sin x xsin

Shifting and Scaling Graphs

 53. Suppose the graph of g is given. Write equations for the graphs 
that are obtained from the graph of g by shifting, scaling, or 
reflecting, as indicated.

 a. Up 1
2

 unit, right 3

 b. Down 2 units, left 2
3

 c. Reflect about the y-axis

 d. Reflect about the x-axis

 e. Stretch vertically by a factor of 5

 f. Compress horizontally by a factor of 5

 54. Describe how each graph is obtained from the graph of y f x( ).=

 a. y f x 5( )= −  b. y f x(4 )=

 c. = −y f x( 3 ) d. y f x2 1( )= +

 e. ( )= −y f x
3

4 f. y f x3 ( ) 1
4

= − +

In Exercises 55–58, graph each function, not by plotting points, but by 
starting with the graph of one of the standard functions presented in 
Figures 1.15–1.17, and applying an appropriate transformation.

 55. y x1
2

= − +  56. y x1
3

= −

 57. y
x
1

2
1

2
= +  58. = −y x( 5 )1 3

 17. Suppose that ƒ and g are both odd functions defined on the entire 
real line. Which of the following (where defined) are even? odd?

 a. f g  b. f 3  c. ( )f xsin   d. ( )g xsec   e. g

 18. If f a x f a x ,( ) ( )− = +  show that g x f x a( ) ( )= +  is an 
even function.

In Exercises 19–32, find the (a) domain and (b) range.

 19. y x 2= −  20. y x2 1= − + −

 21. y x16 2= −  22. y 3 1x2= +−

 23. y e2 3x= −−  24. π( )= −y xtan 2

 25. π( )= + −y x2 sin 3 1 26. y x 2 5=

 27. ( )= − +y xln 3 1 28. y x1 23= − + −

 29. y x x5 2 32= − − −  30. y x
x

2 3
4

2

2
= +

+
 31. ( )=y

x
4 sin 1  32.  = +y x x3 cos 4 sin  

(Hint: A trig identity is 
required.)

 33. State whether each function is increasing, decreasing, or neither.

 a. Volume of a sphere as a function of its radius

 b. Greatest integer function

 c. Height above Earth’s sea level as a function of atmospheric 
pressure (assumed nonzero)

 d. Kinetic energy as a function of a particle’s velocity

 34. Find the largest interval on which the given function is increasing.

 a. f x x( ) 2 1= − +  b. f x x( ) 1 4( )= +

 c. g x x( ) 3 1 1 3( )= −  d. = −R x x( ) 2 1

Piecewise-Defined Functions
In Exercises 35 and 36, find the (a) domain and (b) range.

 35. =
− − ≤ ≤

< ≤

⎧
⎨
⎪⎪

⎩⎪⎪
y

x x

x x

, 4 0

, 0 4

 36. =

− − − ≤ ≤ −

− < ≤

− + < ≤

⎧

⎨
⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

y

x x

x x

x x

2, 2 1

, 1 1

2, 1 2

In Exercises 37 and 38, write a piecewise formula for the function.

 37.   38. 

x

5
(2, 5)

0 4

y

x

1

10 2

y

Composition of Functions
In Exercises 39 and 40, find

 a. f g ( 1).�( ) −  b. g f (2).�( )

 c. f f x( ).�( )  d. g g x( ).�( )

 39. f x
x

g x
x

( ) 1 , ( ) 1
2

= =
+

 40. f x x g x x( ) 2 , ( ) 13= − = +
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 Chapter 1  Additional and Advanced Exercises 69

 75. a. ( )= −h x x( ) sin
3

1  b. f x x( ) cos 11 ( )= −−

 76. a. ( )= −h x x( ) ln cos 1  b. π= − −f x x( ) sin 1

 77. If =f x x( ) ln  and g x x( ) 4 ,2= −  find the functions 
f g g f f f g g,  ,  ,  ,� � � �  and their domains.

 78. Determine whether ƒ is even, odd, or neither.

 a. f x e( ) x 2= −  b. = + −−f x x( ) 1 sin ( )1

 c. f x e( ) x=  d. = +f x e( ) xln 1

 79. Graph ln x, ln 2x, ln 4x, ln 8x, and ln 16x (as many as you can) 
together for x0 10.< ≤  What is going on? Explain.

 80. Graph y x cln 2( )= +  for c 4, 2, 0, 3,= − −  and 5. How does 
the graph change when c changes?

 81. Graph =y xln sin  in the window ≤ ≤ − ≤ ≤x y0 22, 2 0. 
Explain what you see. How could you change the formula to turn 
the arches upside down?

 82. Graph the three functions = =y x y a, ,a x  and =y xlog a   
together on the same screen for a 2, 10,=  and 20. For large values 
of x, which of these functions has the largest values and which has 
the smallest values?

Theory and Examples
In Exercises 83 and 84, find the domain and range of each compos-
ite function. Then graph the compositions on separate screens. Do the 
graphs make sense in each case? Give reasons for your answers and 
comment on any differences you see.

 83. a. ( )= −y xsin sin1  b. ( )= −y xsin sin 1

 84. a. ( )= −y xcos cos1  b. ( )= −y xcos cos 1

 85. Use a graph to decide whether ƒ is one-to-one.

 a. f x x x( )
2

3= −  b. f x x x( )
2

3= +

 86. Use a graph to find to 3 decimal places the values of x for which 
e 10,000,000.x >

 87. a. Show that f x x( ) 3=  and g x x( ) 3=  are inverses of one 
another.

 b. Graph ƒ and g over an x-interval large enough to show the 
graphs intersecting at ( )1, 1  and 1, 1 .( )− −  Be sure the picture 
shows the required symmetry in the line y x.=

 88. a. Show that =h x x( ) 43  and =k x x( ) (4 )1 3 are inverses of 
one another.

 b. Graph h and k over an x-interval large enough to show the 
graphs intersecting at ( )2, 2  and 2, 2 .( )− −  Be sure the picture 
shows the required symmetry in the line y x.=

T

T

T

T

T

T

T

Trigonometry
In Exercises 59–62, sketch the graph of the given function. What is 
the period of the function?

 59. =y xcos 2  60. y xsin
2

=

 61. π=y xsin  62. y xcos
2
π=

 63. Sketch the graph y x2 cos
3

.π( )= −

 64. Sketch the graph y x1 sin
4

.π( )= + +

In Exercises 65–68, ABC is a right triangle with the right angle at C. 
The sides opposite angles A, B, and C are a, b, and c, respectively.

 65. a. Find a and b if c B2,  3.π= =

 b. Find a and c if b B2,  3.π= =

 66. a. Express a in terms of A and c.

 b. Express a in terms of A and b.

 67. a. Express a in terms of B and b.

 b. Express c in terms of A and a.

 68. a. Express sin A in terms of a and c.

 b. Express sin A in terms of b and c.

 69. Height of a pole Two wires stretch from the top T of a vertical 
pole to points B and C on the ground, where C is 10 m closer to 
the base of the pole than is B. If wire BT makes an angle of 35° 
with the horizontal and wire CT makes an angle of 50° with the 
horizontal, how high is the pole?

 70. Height of a weather balloon Observers at positions A and B 
2 km apart simultaneously measure the angle of elevation of a 
weather balloon to be 40° and 70°, respectively. If the balloon is 
directly above a point on the line segment between A and B, find 
the height of the balloon.

 71. a. Graph the function ( )= +f x x x( ) sin cos 2 .

 b. What appears to be the period of this function?

 c. Confirm your finding in part (b) algebraically.

 72. a. Graph f x x( ) sin 1 .( )=

 b. What are the domain and range of ƒ?

 c. Is ƒ periodic? Give reasons for your answer.

Transcendental Functions
In Exercises 73–76, find the domain of each function.

 73. a. = + −f x e( ) 1 xsin  b. = +g x e x( ) lnx

 74. a. f x e( ) x1 2=  b. g x x( ) ln 4 2= −

T

T

Functions and Graphs

 1. Are there two functions ƒ and g such that f g g f ?� �=  Give 
reasons for your answer.

 2. Are there two functions ƒ and g with the following property? The 
graphs of ƒ and g are not straight lines but the graph of f g�  is a 
straight line. Give reasons for your answer.

 3. If ƒ(x) is odd, can anything be said of g x f x( ) ( ) 2?= −  What if 
ƒ is even instead? Give reasons for your answer.

 4. If g(x) is an odd function defined for all values of x, can anything 
be said about g(0)? Give reasons for your answer.

 5. Graph the equation x y x1 .+ = +
 6. Graph the equation y y x x .+ = +

CHAPTER 1 Additional and Advanced Exercises
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70 Chapter 1 Functions

Derivations and Proofs

 7. Prove the following identities.

 a. 
−

=
+

x
x

x
x

1 cos
sin

sin
1 cos

 b. 
−
+

=
x
x

x1 cos
1 cos

tan
2

2

 8. Explain the following “proof without words” of the law of cosines. 
(Source: Kung, Sidney H., “Proof Without Words: The Law of 
Cosines,” Mathematics Magazine, Vol. 63, no. 5, Dec. 1990, p. 342.)

 16. a. Find the slope of the line from the origin to the midpoint P of 
side AB in the triangle in the accompanying figure a b,  0 .( )>

a a

a

c b

a - c
2a cos u - b

u

BA

C

ab

c

 9. Show that the area of triangle ABC is given by 
( ) ( ) ( )= =ab C bc A ca B1 2 sin 1 2 sin 1 2 sin .

 10. Show that the area of triangle ABC is given by 
s s a s b s c( )( ) ( )− − −  where s a b c 2( )= + +  is the 

semiperimeter of the triangle.

 11. Show that if ƒ is both even and odd, then f x( ) 0 for every x in 
the domain of ƒ.

 12. a. Even-odd decompositions  Let ƒ be a function whose 
domain is symmetric about the origin, that is, x belongs to 
the domain whenever x does. Show that ƒ is the sum of an even 
function and an odd function:

= +f x E x O x( ) ( ) ( ),

where E is an even function and O is an odd function.  
(Hint: Let ( )= + −E x f x f x( ) ( ) ( ) 2. Show that 
− =E x E x( ) ( ), so that E is even. Then show that 
= −O x f x E x( ) ( ) ( ) is odd.)

 b. Uniqueness Show that there is only one way to write ƒ as 
the sum of an even and an odd function. (Hint: One way is 
given in part (a). If also = +f x E x O x( ) ( ) ( )1 1  where E1 is 
even and O1 is odd, show that E E O O.1 1− = −  Then use 
Exercise 11 to show that E E1 and O O .1 )

Effects of Parameters on Graphs

 13. What happens to the graph of y ax bx c2= + +  as
 a. a changes while b and c remain fixed?

 b. b changes (a and c fixed, a 0)?

 c. c changes (a and b fixed, a 0)?

 14. What happens to the graph of y a x b c3( )= + +  as
 a. a changes while b and c remain fixed?

 b. b changes (a and c fixed, a 0)?

 c. c changes (a and b fixed, a 0)?

T

T

Geometry

 15. An object’s center of mass moves at a constant velocity  along a 
straight line past the origin. The accompanying figure shows the 
coordinate system and the line of motion. The dots show positions 
that are 1 sec apart. Why are the areas A ,1  A , ,2  A5 in the figure 
all equal? As in Kepler’s equal area law (see Section 12.6), the 
line that joins the object’s center of mass to the origin sweeps out 
equal areas in equal times.

x

y

0 5 10 15

Kilometers

5

10

K
ilo

m
et

er
s

A5

A4

A3
A2

A1

t = 6

t = 5

t = 1

t = 2

y≤t

y≤t

x

y

P

B(0, b)

A(a, 0)O

 17. Consider the quarter-circle of radius 1 and right triangles ABE and 
ACD given in the accompanying figure. Use standard area formu-
las to conclude that

1
2

sin cos
2

1
2

sin
cos

.

x

y

B

E

C(0, 1)

A (1, 0)
D

1

u

 18. Let f x ax b( ) = +  and g x cx d( ) .= +  What condi-
tion must be satisfied by the constants a, b, c, d in order that 

f g x g f x( )  ( )( ) ( )=  for every value of x?

 b. When is OP perpendicular to AB?
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 Chapter 1  Technology Application Projects 71

Theory and Examples

 19. Domain and range Suppose that a b0,  1,≠ ≠  and b 0.>  
Determine the domain and range of the function.

 a. y a b dc x( )= +−

 b. ( )= − +y a x c dlog b

 20. Inverse functions Let

f x ax b
cx d

c ad bc( ) , 0, 0.= +
+

≠ − ≠

 a. Give a convincing argument that  f  is one-to-one.

 b. Find a formula for the inverse of  f.

 21. Depreciation Smith Hauling purchased an 18-wheel truck for 
$100,000. The truck depreciates at the constant rate of $10,000 
per year for 10 years.

 a. Write an expression that gives the value y after x years.

 b. When is the value of the truck $55,000?

 22. Drug absorption A drug is administered intravenously for pain. 
The function

( )= − + ≤ ≤f t t t( ) 90 52 ln 1 , 0 4

gives the number of units of the drug remaining in the body after 
t hours.

 a. What was the initial number of units of the drug administered?

 b. How much is present after 2 hours?

 c. Draw the graph of  f.

 23. Finding investment time If Juanita invests $1500 in a retire-
ment account that earns 8% compounded annually, how long will 
it take this single payment to grow to $5000?

 24. The rule of 70 If you use the approximation ≈ln 2 0.70 (in 
place of 0.69314… ), you can derive a rule of thumb that says, 
“To estimate how many years it will take an amount of money 
to double when invested at r percent compounded continuously, 
divide r into 70.” For instance, an amount of money invested 
at 5% will double in about 70 5 14=  years. If you want it to 
double in 10 years instead, you have to invest it at 70 10 7%.=  
Show how the rule of 70 is derived. (A similar “rule of 72” uses 
72 instead of 70, because 72 has more integer factors.)

 25. For what x 0>  does =x x( )x x x( )x ? Give reasons for your 
answer.

 26. a. If ( ) ( )=x xln ln 2 2, must x 2?=

 b. If ( ) = −x xln 2 ln 2, must x 1 2?=

   Give reasons for your answers.

 27. The quotient ( ) ( )x xlog log4 2  has a constant value. What value? 
Give reasons for your answer.

 28. log (2)x  vs. xlog ( )2  How does =f x( ) log (2)x  compare with 
=g x x( ) log ( )?2  Here is one way to find out.

 a. Use the equation ( ) ( )=b b alog ln lna  to express f x( ) and 
g x( ) in terms of natural logarithms.

 b. Graph  f  and g together. Comment on the behavior of  f  in 
relation to the signs and values of g.

T

T

Mathematica/Maple Projects

Projects can be found within MyLab Math.

• An Overview of Mathematica

An overview of Mathematica sufficient to complete the Mathematica modules appearing on the Web site.

• Modeling Change: Springs, Driving Safety, Radioactivity, Trees, Fish, and Mammals

Construct and interpret mathematical models, analyze and improve them, and make predictions using them.

CHAPTER 1 Technology Application Projects
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72

OVERVIEW In this chapter we develop the concept of a limit, first intuitively and then 
formally. We use limits to describe the way a function varies. Some functions vary continu-
ously; small changes in x produce only small changes in f x( ). Other functions can have 
values that jump, vary erratically, or tend to increase or decrease without bound. The notion 
of limit gives a precise way to distinguish among these behaviors.

Limits and Continuity

2 

Average Speed
When f t( ) measures the distance traveled at time t,

t t
f t f t

t t
Average speed over  , distance traveled

elapsed time
( ) ( )

.1 2
2 1

2 1

[ ] = =
−
−

EXAMPLE 1  A rock breaks loose from the top of a tall cliff. What is its average speed

 (a) during the first 2 seconds of fall?

 (b) during the 1-second interval between second 1 and second 2?

HISTORICAL BIOGRAPHY

Galileo Galilei
(1564–1642)
Galileo was an Italian mathematician 
and astronomer. He attempted to apply 
mathematics to his work in astronomy, physics 
of kinematics, and strength of materials.

To know more, visit the companion Website. 

2.1 Rates of Change and Tangent Lines to Curves

Average and Instantaneous Speed

In the late sixteenth century, Galileo discovered that a solid object dropped from rest (ini-
tially not moving) near the surface of the earth and allowed to fall freely, will fall a distance 
proportional to the square of the time it has been falling. This type of motion is called free 
fall. It assumes negligible air resistance to slow the object down, and it assumes that gravity 
is the only force acting on the falling object. If y denotes the distance fallen in meters after 
t seconds, then Galileo’s law is

y t4.9 m,2

where 4.9 is the (approximate) constant of proportionality.
More generally, suppose that a moving object has traveled distance f t( ) at time t. The 

object’s average speed during an interval of time t t,1 2[ ] is found by dividing the distance 
traveled f t f t( ) ( )2 1  by the time elapsed t t .2 1  The unit of measure is length per unit 
time: kilometers per hour, meters per second, or whatever is appropriate to the problem  
at hand.
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 2.1  Rates of Change and Tangent Lines to Curves 73

Solution The average speed of the rock during a given time interval is the change  
in distance, y, divided by the length of the time interval, t. (Increments like y and 

t are reviewed in Appendix A.4, and pronounced “delta y” and “delta t.”) Measuring 
distance in meters and time in seconds, we have the following calculations:

 (a) For the first 2 seconds: 
y
t

4.9 2 4.9 0
2 0

9.8 m s
2 2( ) ( )Δ

Δ
= −

−
= /

 (b) From second 1 to second 2: 
y
t

4.9 2 4.9 1
2 1

14.7 m s
2 2( ) ( )Δ

Δ
= −

−
= /  

We want a way to determine the speed of a falling object at a single instant t ,0  
instead of using its average speed over an interval of time. To do this, we examine what 
happens when we calculate the average speed over shorter and shorter time intervals 
starting at t .0  The next example illustrates this process. Our discussion is informal here 
but will be made precise in Chapter 3.

EXAMPLE 2  Find the speed of the falling rock in Example 1 at t 1 and t 2 s.

Solution We can calculate the average speed of the rock over a time interval t t h, ,0 0[ ]+  
having length t h,Δ =  as

y
t

t h t
h

4.9 4.9
.0

2
0
2( )Δ

Δ
=

+ −
 (1)

We cannot use this formula to calculate the “instantaneous” speed at the exact moment 
t0 by simply substituting h 0, because we cannot divide by zero. But we can use it to 
calculate average speeds over increasingly short time intervals starting at t 10  and 
t 2.0  When we do so, by taking smaller and smaller values of h, we see a pattern 
(Table 2.1).

TABLE 2.1 Average speeds over short time intervals [ t t h,0 0 ]

y
t

t h t
h

Average speed:
4.9 4.90

2
0
2( )Δ

Δ
=

+ −

Length of  
time interval  
h

Average speed over  
interval of length h 
starting at t 10

Average speed over  
interval of length h  
starting at t 20

1 14.7 24.5

0.1 10.29 20.09

0.01 9.849 19.649

0.001 9.8049 19.6049

0.0001 9.80049 19.60049

The average speed on intervals starting at t 10  seems to approach a limiting value of 
9.8 as the length of the interval decreases. This suggests that the rock is falling at a speed of 
9.8 m s at t 1 s.0  Let’s confirm this algebraically.

 is the capital Greek letter Delta.
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74 Chapter 2  Limits and Continuity

If we set t 10  and then expand the numerator in Equation (1) and simplify, we find 
that

y
t

h
h

h h
h

h h
h

h

4.9 1 4.9 1 4.9 1 2 4.9

9.8 4.9 9.8 4.9 . h hCan cancel   when  0

2 2 2

2

( )( ) ( )Δ
Δ

= + − = + + −

= + = + ≠

For values of h different from 0, the expressions on the right and left are equivalent and the 
average speed is h9.8 4.9 m sec. We can now see why the average speed has the limit-
ing value 9.8 4.9 0 9.8 m sec( )+ =  as h approaches 0.

Similarly, setting t 20  in Equation (1), for values of h different from 0 the proce-
dure yields

y
t

h19.6 4.9 .
Δ
Δ

= +

As h gets closer and closer to 0, the average speed has the limiting value 19.6 m s when 
t 2 s,0  as suggested by Table 2.1. 

DEFINITION The average rate of change of y f x( ) with respect to x over 
the interval [ ]x x,1 2  is

y
x

f x f x
x x

f x h f x
h

h
( ) ( ) ( )

, 0.2 1

2 1

1 1( )Δ
Δ

=
−
−

=
+ −

≠

FIGURE 2.1 A secant to the graph 
y f x( ). Its slope is y x , the aver-
age rate of change of  f  over the interval 
[ ]x x,1 2 .

y

x
0

Secant

P(x1, f (x1))

Q(x2, f (x2))

≤x = h

≤y

x2x1

y = f (x)

FIGURE 2.2 L is tangent to the circle at 
P if it passes through P perpendicular to 
radius OP.

P

L

O

Geometrically, the rate of change of   f   over x x,1 2[ ] is the slope of the line through the 
points P x f x,   ( )1 1( ) and Q x f x,   ( )2 2( ) (Figure 2.1). In geometry, a line joining two points 
of a curve is called a secant line. Thus, the average rate of change of  f  from x1 to x2 is 
identical to the slope of secant line PQ. As the point Q approaches the point P along the 
curve, the length h of the interval over which the change occurs approaches zero. We will 
see that this procedure leads to the definition of the slope of a curve at a point.

Defining the Slope of a Curve

We know what is meant by the slope of a straight line, which tells us the rate at which it 
rises or falls—its rate of change as a linear function. But what is meant by the slope of a 
curve at a point P on the curve? If there were a tangent line to the curve at P—a line that 
grazes the curve like the tangent line to a circle—it would be reasonable to identify the 
slope of the tangent line as the slope of the curve at P. We will see that, among all the lines 
that pass through the point P, the tangent line is the one that gives the best approximation 
to the curve at P. We need a precise way to specify the tangent line at a point on a curve.

Specifying a tangent line to a circle is straightforward. A line L is tangent to a circle at 
a point P if L passes through P and is perpendicular to the radius at P (Figure 2.2). But 
what does it mean to say that a line L is tangent to a more general curve at a point P?

The average speed of a falling object is an example of a more general idea, an average 
rate of change.

Average Rates of Change and Secant Lines

Given any function y f x( ), we calculate the average rate of change of y with respect to 
x over the interval [ ]x x,1 2  by dividing the change in the value of y y f x f x, ( ) ( ),2 1Δ = −  
by the length x x x h2 1Δ = − =  of the interval over which the change occurs. (We use 
the symbol h for x to simplify the notation here and later on.)
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 2.1  Rates of Change and Tangent Lines to Curves 75

To define tangency for general curves, we use an approach that analyzes the behavior 
of the secant lines that pass through P and nearby points Q as Q moves toward P along the 
curve (Figure 2.3). We start with what we can calculate, namely the slope of the secant line 
PQ. We then compute the limiting value of the secant line’s slope as Q approaches P along 
the curve. (We clarify the limit idea in the next section.) If the limit exists, we take it to be 
the slope of the curve at P and define the tangent line to the curve at P to be the line through 
P with this slope.

The next example illustrates the geometric idea for finding the tangent line to a curve.

HISTORICAL BIOGRAPHY

Pierre de Fermat
(1601–1665)
Fermat was born to a prosperous family in 
France. He studied the classics and mastered 
Latin, Greek, Italian, and Spanish.

To know more, visit the companion Website.  

FIGURE 2.3 The tangent line to the curve at P is the line through P whose slope is the 
limit of the secant line slopes as Q P from either side.

P

Q
Secant Lines

P

Tangent Line

Tangent Line

Q

Secant Lines

EXAMPLE 3  Find the slope of the tangent line to the parabola y x 2 at the point 
2, 4( ) by analyzing the slopes of secant lines through 2, 4( ). Write an equation for the tan-

gent line to the parabola at this point.

Solution We begin with a secant line through P 2, 4( ) and a nearby point 
Q h h2 , 2 2( )( )+ + , as shown in Figure 2.4. We then write an expression for the slope of the 
secant line PQ and investigate what happens to the slope as Q approaches P along the curve:

y
x

h
h

h h
h

h h
h

h

Secant line slope 2 2 4 4 4

4 4.

2 2 2

2

( )= Δ
Δ

= + − = + + −

= + = +

If h 0, then Q lies above and to the right of P, as in Figure 2.4. If h 0, then Q lies to 
the left of P (not shown). In either case, as Q approaches P along the curve, h approaches 
zero and the secant line slope h 4 approaches 4. We take 4 to be the parabola’s slope at P.

FIGURE 2.4 Finding the slope of the parabola y x 2 at the point P 2, 4( ) as 
the limit of secant line slopes (Example 3).

x

y

0 2

NOT TO SCALE

Tangent line slope = 4

Δy = (2 + h)2 − 4

y = x2

Q(2 + h, (2 + h)2)

Δx = h

2 + h

P(2, 4)

Secant line slope is = h + 4.(2 + h)2 − 4
h
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76 Chapter 2  Limits and Continuity

The tangent line to the parabola at P is the line through P with slope 4:

y x

y x

4 4 2

4 4.

Point-slope equation

Simplify.

( )= + −

= −  

FIGURE 2.5 Growth of a fruit fly population in a controlled 
experiment. The average rate of change over 22 days is the slope 

p tΔ Δ  of the secant line (Example 4).

t

p
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Q(45, 340)
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≤p = 190

≤t
≤p

L 8.6 flies�day
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N
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r 
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 f
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s

This average is the slope of the secant line through the points P and Q on the graph in  
Figure 2.5. 

The average rate of change from day 23 to day 45 calculated in Example 4 does not 
tell us how fast the population was changing on day 23 itself. For that we need to examine 
time intervals closer to the day in question.

EXAMPLE 5  How fast was the number of flies in the population of Example 4 grow-
ing on day 23?

Solution To answer this question, we examine the average rates of change over shorter 
and shorter time intervals starting at day 23. In geometric terms, we find these rates by 
calculating the slopes of secant lines from P to Q, for a sequence of points Q approaching 
P along the curve (Figure 2.6).

Rates of Change and Tangent Lines

The rates at which the rock in Example 2 was falling at the instants =t 1 and =t 2 are 
called instantaneous rates of change. Instantaneous rates of change and slopes of tangent 
lines are closely connected, as we see in the following examples.

EXAMPLE 4  Figure 2.5 shows how a population p of fruit flies (Drosophila) grew in 
a 50-day experiment. The flies were counted at regular intervals, the counted values plot-
ted with respect to the number of elapsed days t, and the points joined by a smooth curve 
(colored blue in Figure 2.5). Find the average growth rate from day 23 to day 45.

Solution There were 150 flies on day 23 and 340 flies on day 45. Thus the number of 
flies increased by − =340 150 190 in − =45 23 22 days. The average rate of change 
of the population from day 23 to day 45 was

p
t

340 150
45 23

190
22

8.6 flies day.
Δ
Δ

= −
−

= ≈
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 2.1  Rates of Change and Tangent Lines to Curves 77

The values in the table show that the secant line slopes rise from 8.6 to 16.4 as the 
t-coordinate of Q decreases from 45 to 30, and we would expect the slopes to rise slightly 
higher as t continued decreasing toward 23. Geometrically, the secant lines rotate counter-
clockwise about P and seem to approach the red tangent line in the figure. Since the line 
appears to pass through the points 14, 0( ) and 35, 350( ), its slope is approximately

350 0
35 14

16.7 flies day.−
−

=

On day 23 the population was increasing at a rate of about 16.7 flies day. 

The instantaneous rate of change is the value the average rate of change approaches as 
the length h of the interval over which the change occurs approaches zero. The average rate 
of change corresponds to the slope of a secant line; the instantaneous rate corresponds to 
the slope of the tangent line at a fixed value. So instantaneous rates and slopes of tangent 
lines are closely connected. We give a precise definition for these terms in the next chapter, 
but to do so we first need to develop the concept of a limit.

FIGURE 2.6 The positions and slopes of four secant lines through the point P on the fruit fly graph (Example 5).
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p
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A(14, 0)

P(23, 150)

B(35, 350)

Q(45, 340)
Q

Slope of PQ p t= Δ Δ  
flies day( )

45, 340( ) 340 150
45 23

8.6−
−

≈

40, 330( ) 330 150
40 23

10.6−
−

≈

35, 310( ) 310 150
35 23

13.3−
−

≈

30, 265( ) 265 150
30 23

16.4−
−

≈

Average Rates of Change
In Exercises 1–6, find the average rate of change of the function over 
the given interval or intervals.

 1. f x x( ) 13= +

 a. [ ]2, 3  b. [ ]−1,1

 2. g x x x( ) 22= −

 a. [ ]1, 3  b. [ ]−2, 4

 3. h t t( ) cot=

 a. π π[ ]4, 3 4  b. π π[ ]6, 2

 4. g t t( ) 2 cos= +

 a. π[ ]0,  b. π π[ ]− ,

 5. R( ) 4 1; 0, 2θ θ [ ]= +

 6. P( ) 4 5 ; 1, 23 2θ θ θ θ [ ]= − +

Slope of a Curve at a Point
In Exercises 7–18, use the method in Example 3 to find (a) the slope 
of the curve at the given point P, and (b) an equation of the tangent 
line at P.

 7. y x P5, 2, 12 ( )= − −

 8. y x P7 , 2, 32 ( )= −

 9. y x x P2 3, 2, 32 ( )= − − −

 10. y x x P4 , 1, 32 ( )= − −

 11. y x P, 2, 83 ( )=

 12. y x P2 , 1,13 ( )= −

 13. y x x P12 , 1, 113 ( )= − −

 14. y x x P3 4, 2, 03 2 ( )= − +

 15. y
x

P1 , 2, 1 2( )= − −

EXERCISES 2.1
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78 Chapter 2  Limits and Continuity

 16. y x
x

P
2

, 4, 2( )=
−

−

 17. y x P, 4, 2( )=

 18. y x P7 , 2, 3( )= − −

Instantaneous Rates of Change

 19. Speed of a car The accompanying figure shows the time-to- 
distance graph for a sports car accelerating from a standstill.

T

 b. What is the average rate of increase of the profits between 
2019 and 2021?

 c. Use your graph to estimate the rate at which the profits were 
changing in 2019.

 22. Make a table of values for the function F x x x( ) 2 2( ) ( )= + −  at 
the points x x x x1.2, 11 10, 101 100, 1001 1000,
x 10001 10000, and x 1.

 a. Find the average rate of change of F x( ) over the intervals 
x1,[ ] for each x 1 in your table.

 b. Extending the table if necessary, try to determine the rate of 
change of F x( ) at x 1.

 23. Let g x x( )  for x 0.

 a. Find the average rate of change of g x( ) with respect to x over 
the intervals 1, 2 , 1,1.5[ ] [ ] and h1,1 .[ ]+

 b. Make a table of values of the average rate of change of g with  
respect to x over the interval h1,1[ ]+  for some values of  
h approaching zero, say h 0.1, 0.01, 0.001, 0.0001, 
0.00001, and 0.000001.

 c. What does your table indicate is the rate of change of g x( ) 
with respect to x at x 1?

  24. Let f t t( ) 1  for t 0.

 a. Find the average rate of change of  f  with respect to t over 
the intervals (i) from t 2 to t 3, and (ii) from t 2 to 
t T .

 b. Make a table of values of the average rate of change of  f  with 
respect to t over the interval [ ]T2, , for some values of T 
approaching 2, say T 2.1, 2.01, 2.001, 2.0001, 2.00001, 
and 2.000001.

 c. What does your table indicate is the rate of change of  f  with 
respect to t at t 2?

 25. The accompanying graph shows the total distance s traveled by a 
bicyclist after t hours.
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 a. Estimate the slopes of secant lines PQ PQ PQ, ,1 2 3, and PQ ,4  
arranging them in order in a table like the one in Figure 2.6. 
What are the appropriate units for these slopes?

 b. Then estimate the car’s speed at time t 20 s.

 20. The accompanying figure shows the plot of distance fallen versus 
time for an object that fell from the lunar landing module a dis-
tance 80 m to the surface of the moon.

 a. Estimate the slopes of the secant lines PQ PQ PQ, , ,1 2 3  and 
PQ ,4  arranging them in a table like the one in Figure 2.6.

 b. About how fast was the object going when it hit the surface?

T

 21. The profits of a small company for each of the first five years of 
its operation are given in the following table:

Year Profit in $1000s

2017   6
2018  27
2019  62
2020 111
2021 174

 a. Plot points representing the profit as a function of year, and 
join them by as smooth a curve as you can.

T

 a. Estimate the bicyclist’s average speed over the time intervals 
[ ] [ ]0,1 , 1, 2.5 , and 2.5, 3.5[ ].

 b. Estimate the bicyclist’s instantaneous speed at the times 
t t, 21

2 , and t 3.

 c. Estimate the bicyclist’s maximum speed and the specific time 
at which it occurs.
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 2.2  Limit of a Function and Limit Laws 79

HISTORICAL ESSAY

Limits
To read this essay, visit the companion  
Website. 

In Section 2.1 we saw how limits arise when finding the instantaneous rate of change of a 
function or the tangent line to a curve. We begin this section by presenting an informal defi-
nition of the limit of a function. We then describe laws that capture the behavior of limits. 
These laws enable us to quickly compute limits for a variety of functions, including polyno-
mials and rational functions. We will present the precise definition of a limit in Section 2.3.

2.2 Limit of a Function and Limit Laws

EXAMPLE 1  How does the function

f x x
x

( ) 1
1

2
= −

−
behave near x 1?

Solution The given formula defines   f   for all real numbers x except x 1 (since we  
cannot divide by zero). For any x 1, we can simplify the formula by factoring the numer-
ator and canceling common factors:

f x x x
x

x x( ) 1 1
1

1 for 1.
( )( )= − +

−
= + ≠

The graph of  f  is the line = +y x 1 with the point 1, 2( ) removed. This removed point 
is shown as a “hole” in Figure 2.7. Even though f (1) is not defined, it is clear that we  
can make the value of f x( ) as close as we want to 2 by choosing x close enough to 1 
(Table 2.2). 

FIGURE 2.7 The graph of  f  is identical 
to the line y x 1= +  except at x 1, 
where  f  is not defined (Example 1).

x

y

0 1

2

1

x

y

0 1

2

1
y = f (x) = x2 - 1

x - 1

y = x + 1

-1

-1

 26. The accompanying graph shows the total amount of gasoline A in 
the gas tank of a motorcycle after being driven for t days.

 a. Estimate the average rate of gasoline consumption over the 
time intervals 0, 3 , 0, 5 ,[ ] [ ]  and 7,10[ ].

 b. Estimate the instantaneous rate of gasoline consumption at the 
times t t1, 4, and t 8.

 c. Estimate the maximum rate of gasoline consumption and the 
specific time at which it occurs.
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We will illustrate some other types of behavior near a point in Example 3.

An Informal Description of the Limit of a Function

We now give an informal definition of the limit of a function  f  at an interior point of the 
domain of  f. Suppose that f x( ) is defined on an open interval about c, except possibly at c 

Limits of Function Values

Frequently, when studying a function y f x( ), we find ourselves interested in the func-
tion’s behavior near a particular point c, but not at c itself. An important example occurs 
when the process of trying to evaluate a function at c leads to division by zero, which is 
undefined. We encountered this when seeking the instantaneous rate of change in y by 
considering the quotient function y h for h closer and closer to zero. In the next example 
we explore numerically how a function behaves near a particular point at which we cannot 
directly evaluate the function.
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80 Chapter 2  Limits and Continuity

itself. If f x( ) is arbitrarily close to the number L (that is, as close to L as we like) for all x 
sufficiently close to c, other than c itself, then we say that  f  approaches the limit L as x 
approaches c, and write

f x Llim ( ) .
x c

=
→

This is read “the limit of f x( ) as x approaches c is L.” In Example 1 we would say that 
f x( ) approaches the limit 2 as x approaches 1, and write

f x x
x

lim ( ) 2, or lim 1
1

2.
x x1 1

2
= −

−
=

→ →

Essentially, the definition says that the values of f x( ) are close to the number L whenever 
x is close to c. The value of the function at c itself is not considered.

Our definition here is informal, because phrases like arbitrarily close and sufficiently 
close are imprecise; their meaning depends on the context. (To a machinist manufacturing 
a piston, close may mean within a few hundredths of a millimeter. To an astronomer study-
ing distant galaxies, close may mean within a few thousand light-years.) Nevertheless, the 
definition is clear enough to enable us to recognize and evaluate limits of many specific 
functions. We will need the precise definition given in Section 2.3 when we set out to prove 
theorems about limits or study complicated functions. Here are several more examples 
exploring the idea of limits.

EXAMPLE 2  The limit of a function does not depend on how the function is defined 
at the point being approached. It does not even matter whether the function is defined at 
that point. Consider the three functions in Figure 2.8. The function  f  has limit 2 as x 1 
even though  f  is not defined at x 1. The function g has limit 2 as x 1 even though 

g2 (1). The function h is the only one of the three functions in Figure 2.8 whose limit  
as x 1 equals its value at x 1. For h, we have h x hlim ( ) (1).

x 1
=

→
 This equality of 

limit and function value has an important meaning. As illustrated by the three examples 
in Figure 2.8, equality of limit and function value captures the notion of “continuity.” We 
study this in detail in Section 2.6. 

FIGURE 2.8 The limits of f x( ), g x( ), and h x( ) all equal 2 as x approaches 1. However, only 
h x( ) has the same function value as its limit at x 1 (Example 2).
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x - 1
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0 1
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1,

,
(a)  f (x) = (b)  g(x) =x2 - 1

x - 1

   x Z 1

   x = 1

(c)  h(x) = x + 1

FIGURE 2.9 The functions in Example 3 
have limits at all points c.

(a) Identity function

(b) Constant function

0

k

x

y

x

y

y = x

c

c

c

y = k
The process of finding a limit can often be broken up into a series of steps involving 

limits of basic functions, which are combined using a sequence of simple operations that 
we will develop. We start with two basic functions.

EXAMPLE 3  We find the limits of the identity function and of a constant function as 
x approaches x c.

 (a) If  f  is the identity function f x x( ) , then for any value of c (Figure 2.9a),

f x x clim ( ) lim .
x c x c

= =
→ →

TABLE 2.2 As x gets closer to 1, 
f x( ) gets closer to 2.

x f x
x

x
( ) 1

1

2
= −

−
0.9 1.9

1.1 2.1

0.99 1.99

1.01 2.01

0.999 1.999

1.001 2.001

0.999999 1.999999

1.000001 2.000001
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 2.2  Limit of a Function and Limit Laws 81

 (b) If  f  is the constant function f x k( ) =  (function with the constant value k), then for 
any value of c (Figure 2.9b),

f x k klim ( ) lim .
x c x c

= =
→ →

For instances of each of these rules we have

xlim 3
x 3

=
→

 xLimit of identity function at  3=

and

lim 4 lim 4 4. 
x x7 2

= =
−→ →

 f x x x
Limit of constant function

( ) 4 at  7 or at  2= = − =

We prove these rules in Example 3 in Section 2.3. 

A function may not have a limit at a particular point. Some ways that limits can fail to 
exist are illustrated in Figure 2.10 and described in the next example.

FIGURE 2.10 None of these functions has a limit as x approaches 0 (Example 4).

x

y

0
x

y

0

1

x

y

0

1

-1

y = 0,   x < 0

1,   x ≥ 0

(a) Unit step function U(x) (b) g(x) (c) f (x)

y =
1
x2 ,  x Z 0

0, x = 0

y =
0,         x ≤ 0

1
xsin   ,  x > 0

EXAMPLE 4  Discuss the behavior of the following functions, explaining why they 
have no limit as →x 0.

 (a) U x
x

x
( )

0, 0

1, 0
=

<

≥

⎧
⎨
⎪⎪

⎩
⎪⎪

 (b) =
≠

=

⎧

⎨
⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

g x x
x

x
( )

1 , 0

0, 0

2

 (c) =
≤

>

⎧

⎨
⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

f x
x

x
x

( )
0, 0

sin 1 , 0

Solution 
 (a) This function jumps: The unit step function U x( ) has no limit as →x 0 because its 

values jump at =x 0. For negative values of x arbitrarily close to zero, U x( ) 0= . 
For positive values of x arbitrarily close to zero, U x( ) 1= . There is no single value L 
approached by U x( ) as →x 0 (Figure 2.10a).

 (b) This function grows too “large” to have a limit: g x( ) has no limit as →x 0 because 
the values of g grow arbitrarily large as →x 0 and therefore do not stay close to any 
fixed real number (Figure 2.10b). We say that the function g is not bounded.

The function U in Example 4 is known 
as the Heaviside function, after Oliver 
Heaviside (1850–1925).
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82 Chapter 2  Limits and Continuity

 (c) This function oscillates too much to have a limit: f x( ) has no limit as x 0 because 
the function’s values oscillate between 1 and 1 in every open interval containing 0. 
The values do not stay close to any single number as x 0 (Figure 2.10c). 

A function that oscillates may or may not have a limit. In Example 11 we will see a 
function that oscillates wildly, but nevertheless does have a limit. The problem with the 
function  f  discussed in Example 4 is not that it oscillates, but that it oscillates too much for 
a limit to exist.

The Limit Laws

A few basic rules allow us to break down complicated functions into simple ones when 
calculating limits. By using these laws, we can greatly simplify many limit computations.

THEOREM 1—Limit Laws
If L, M, c, and k are real numbers and

f x L g x Mlim ( ) and lim ( ) , then
x c x c

= =
→ →

1. Sum Rule: f x g x L Mlim ( ) ( )
x c
( )+ = +

→

2. Difference Rule: f x g x L Mlim ( ) ( )
x c
( )− = −

→

3. Constant Multiple Rule: k f x k Llim ( )
x c
( )⋅ = ⋅

→

4. Product Rule: f x g x L Mlim ( ) ( )
x c
( )⋅ = ⋅

→

5. Quotient Rule:
f x
g x

L
M

Mlim
( )
( )

,    0
x c

= ≠
→

6. Power Rule: f x Llim ( ) ,
x c

n n[ ] =
→

 n a positive integer

7. Root Rule: f x L Llim ( ) ,
x c

n n n1= =
→

 n a positive integer

(If n is even, we assume that f x( ) 0 for x in an interval containing c.)

The Sum Rule says that the limit of a sum is the sum of the limits. Similarly, the next rules 
say that the limit of a difference is the difference of the limits; the limit of a constant times 
a function is the constant times the limit of the function; the limit of a product is the product 
of the limits; the limit of a quotient is the quotient of the limits (provided that the limit of the 
denominator is not 0); the limit of a positive integer power (or root) of a function is the 
integer power (or root) of the limit (provided that the root of the limit is a real number).

There are simple intuitive arguments for why the properties in Theorem 1 are true 
(although these do not constitute proofs). If x is sufficiently close to c, then f x( ) is close to 
L and g x( ) is close to M, from our informal definition of a limit. It is then reasonable that 
f x g x( ) ( ) is close to + −L M f x g x;   ( ) ( ) is close to L M k f x;   ( ) is close to kL;  
f x( )g x( ) is close to LM; and f x g x( ) ( ) is close to L M  if M is not zero. We prove the  
Sum Rule in Section 2.3, based on a rigorous definition of the limit. Rules 2–5 are proved 
in Appendix A.6. Rule 6 is obtained by applying Rule 4 repeatedly. Rule 7 is proved in 
more advanced texts. The Sum, Difference, and Product Rules can be extended to any 
number of functions, not just two.

EXAMPLE 5  Use the observations k klim
x c

=
→

 and x clim
x c

=
→

 (Example 3) and the 

limit laws in Theorem 1 to find the following limits.

 (a) x xlim 4 3
x c

3 2( )+ −
→

 (b) x x
x

lim 1
5x c

4 2

2

+ −
+→

 (c) xlim 4 3
x 2

2 +
→
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 2.2  Limit of a Function and Limit Laws 83

Solution 

 

(a)

 

x x x x

c c

lim 4 3 lim lim 4 lim 3

4 3

Sum and Difference Rules

Power and Multiple Rules and limit
of a constant function

x c x c x c x c

3 2 3 2

3 2

( )+ − = + −

= + −

→ → → →

 

(b)

 

x x
x

x x

x

x x

x

c c
c

lim 1
5

lim 1

lim 5

lim lim lim 1

lim lim 5

1
5

x
Quotient Rule: Note that

for all  .

Sum and Difference Rules

Power Rule and limit of a constant
function

x 5 0x c

x c

x c

x c x c x c

x c x c

4 2

2

4 2

2

4 2

2

4 2

2

2

( )

( )
+ −

+
=

+ −

+

=
+ −

+

= + −
+

( )+ >→

→

→

→ → →

→ →

 

(c)

 

x x

x

lim 4 3 lim 4 3

lim 4 lim 3

4 2 3

16 3

19

nRoot Rule with  2

Difference Rule

Power and Multiple Rules and limit
of a constant function

x4 3 0
x x

x x

2

2

2

2

2

2

2

2

2

−

( )

( )

+ = +

= +

= +

= +

=

= ( )+ ≥
− −

− −

→ →

→ →

 

THEOREM 2—Limits of Polynomials
If P x a x a x a( ) ,n

n
n

n
1

1
0= + + +−

− �  then

�P x P c a c a c alim ( ) ( ) .
x c

n
n

n
n

1
1

0= = + + +
→

−
−

THEOREM 3—Limits of Rational Functions
If P x( ) and Q x( ) are polynomials and Q c( ) 0,≠  then

P x
Q x

P c
Q c

lim ( )
( )

( )
( )

.
x c

=
→

EXAMPLE 6  The following calculation illustrates Theorems 2 and 3:

x x
x

lim 4 3
5

1 4 1 3
1 5

0
6

0
x 1

3 2

2

3 2

2
− −

−
( ) ( )

( )

+ −
+

= + −
+

= =
−→

Since the denominator of this rational expression does not equal 0 when we substitute −1 
for x, we can just compute the value of the expression at −=x 1 to evaluate the limit. 

Eliminating Common Factors from Zero Denominators

Theorem 3 applies only if the denominator of the rational function is not zero at the limit 
point c. If the denominator is zero, canceling common factors in the numerator and 

Evaluating Limits of Polynomials and Rational Functions

Theorem 1 simplifies the task of calculating limits of polynomials and rational functions. 
To evaluate the limit of a polynomial function as x approaches c, just substitute c for x in 
the formula for the function. To evaluate the limit of a rational function as x approaches a 
point c at which the denominator is not zero, substitute c for x in the formula for the function. 
(See Examples 5a and 5b.) We state these results formally as theorems.
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84 Chapter 2  Limits and Continuity

denominator may reduce the fraction to one whose denominator is no longer zero at c. If 
this happens, we can find the limit by substitution in the simplified fraction.

EXAMPLE 7  Evaluate
x x

x x
lim 2.
x 1

2

2

+ −
−→

Solution We cannot substitute =x 1 because it makes the denominator zero. We test 
the numerator to see if it, too, is zero at =x 1. It is, so it has a factor of ( )−x 1  in com-
mon with the denominator. Canceling this common factor gives a simpler fraction with the 
same values as the original for ≠x 1:

( )( )

( )

+ −
−

= − +
−

= + ≠x x
x x

x x
x x

x
x

x2 1 2
1

2 , if  1.
2

2

Using the simpler fraction, we find the limit of these values as →x 1 by evaluating the 
function at =x 1, as in Theorem 3:

x x
x x

x
x

lim 2 lim 2 1 2
1

3.
x x1

2

2 1

+ −
−

= + = + =
→ →

See Figure 2.11. 

Using Calculators and Computers to Estimate Limits

We can try using a calculator or computer to guess a limit numerically. However, calcula-
tors and computers can sometimes give false values and misleading evidence about limits. 
Usually the problem is associated with rounding errors, as we now illustrate.

EXAMPLE 8  Estimate the value of x
x

lim 100 10 .
x 0

2

2

+ −
→

Solution Table 2.3 lists values of the function obtained on a calculator for several points 
approaching =x 0. As x approaches 0 through the points ± ± ±1, 0.5, 0.1, and ±0.01, the 
function seems to approach the number 0.05.

As we take even smaller values of ± ± ±x, 0.0005, 0.0001, 0.00001, and ±0.000001, 
the function appears to approach the number 0.

Is the answer 0.05 or 0, or some other value? We resolve this question in the next 
example. 

Using a computer or calculator may give ambiguous results, as in Example 8. A com-
puter cannot always keep track of enough digits to avoid rounding errors in computing the 
values of f x( ) when x is very small. We cannot substitute =x 0 in the problem, and the 

Identifying Common Factors
If Q x( ) is a polynomial and Q c( ) 0,=  then  
x c( )−  is a factor of Q x( ). Thus, if the 

numerator and denominator of a rational  
function of x are both zero at x c,=  they  
have x c( )−  as a common factor.

FIGURE 2.11 The graph of 
f x x x x x( ) 22 2( ) ( )= + − −  in  
part (a) is the same as the graph of 
g x x x( ) 2( )= +  in part (b) except at 
x 1= , where  f  is undefined. The functions 
have the same limit as x 1→  (Example 7).

x

y

1-2 0

(1, 3)

(b)

3

x

y

10-2

(1, 3)

(a)

3

y = x2 + x - 2
x2 - x

y = x + 2
x

TABLE 2.3 Computed values of f x
x

x
( ) 100 102

2
= + −  near =x 0

x f x( )

1 0.049876
0.5 0.049969
0.1 0.049999
0.01 0.050000

approaches 0.05?

±
±
±
±

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

0.0005 0.050000
0.0001 0.000000
0.00001 0.000000
0.000001 0.000000

approaches 0?

±
±
±
±

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪
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 2.2  Limit of a Function and Limit Laws 85

numerator and denominator have no obvious common factors (as they did in Example 7). 
Sometimes, however, we can create a common factor by using algebra.

EXAMPLE 9  Evaluate

x
x

lim 100 10 .
x 0

2

2

+ −
→

Solution This is the limit we considered in Example 8. We can create a common factor 
by multiplying both numerator and denominator by the conjugate radical expression 

x 100 102  (obtained by changing the sign after the square root). The preliminary 
algebra rationalizes the numerator:

( )

( )

+ − = + − ⋅ + +
+ +

= + −
+ +

=
+ +

=
+ +

≠

x
x

x
x

x
x

x
x x

x
x x

x

100 10 100 10 100 10
100 10

100 100
100 10

100 10

1
100 10

.

x

x x

Multiply and divide by
the conjugate.

Simplify.

Common factor 

Cancel   for  0.

2

2

2

2

2

2

2

2 2

2

2 2

2

2

2

Therefore,

x
x x

lim 100 10 lim 1
100 10

1
0 100 10

1
20

0.05.

Use limit laws: Sum Rule,  Power
Rule,  Root Rule,  and Quotient Rule
(denominator not 0).

x x0

2

2 0 2

2

+ − =
+ +

=
+ +

= =

→ →

This calculation provides the correct answer, resolving the ambiguous computer results in 
Example 8. 

We cannot always manipulate the terms in an expression to find the limit of a quotient 
where the denominator becomes zero. In some cases the limit might then be found with 
geometric arguments (see the proof of Theorem 6 in Section 2.4), or through methods of 
calculus (developed in Section 4.5). The next theorem shows how to evaluate difficult lim-
its by comparing them with functions having known limits.

The Sandwich Theorem

The following theorem enables us to calculate a variety of limits. It is called the Sandwich 
Theorem because it refers to a function  f  whose values are sandwiched between the values 
of two other functions g and h that have the same limit L at a point c. Being trapped 
between the values of two functions that approach L, the values of  f  must also approach L 
(Figure 2.12). A proof is given in Appendix A.6.

FIGURE 2.12 The graph of  f  is sand-
wiched between the graphs of g and h.

x

y

0

L

c

h

f

g

THEOREM 4—The Sandwich Theorem
Suppose that g x f x h x( ) ( ) ( ) for all x in some open interval containing c, 
except possibly at x c itself. Suppose also that

g x h x Llim ( ) lim ( ) .
x c x c

= =
→ →

Then f x Llim ( ) .
x c

=
→
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86 Chapter 2  Limits and Continuity

The Sandwich Theorem is also called the Squeeze Theorem or the Pinching Theorem.

EXAMPLE 10  Given a function u that satisfies

x u x x x1
4

( ) 1
2

for all  0,
2 2

− ≤ ≤ + ≠

find u xlim ( ),
x 0→

 no matter how complicated u is.

Solution Since

x xlim 1 4 1 and lim 1 2 1,
x x0

2

0

2( )( ) ( )( )− = + =
→ →

the Sandwich Theorem implies that u xlim ( ) 1
x 0

=
→

 (Figure 2.13). 

We use the Sandwich Theorem to show that it is possible for a function that oscillates 
to have a limit.

EXAMPLE 11  How does the function ( )=g x x x( ) sin 12 2  behave near =x 0?

Solution The formula defines g x( ) for all real numbers x except =x 0. The graph of g 
is shown in Figure 2.14. We can see that the graph oscillates, but we can use the Sandwich 
Theorem to find the limit of g x( ) as x approaches 0. If ≠x 0, then x1 2  is a positive real 
number. Since the range of the sine function is the interval −[ ]1,1 , it follows that 
− ( )≤ ≤x1 sin 1 12  for all ≠x 0. Even though we may not know the exact value of 
g x x x( ) sin 12 2( )= , we do know that it lies between −x 2 and x 2. Since

x xlim 0 and lim ( ) 0,
x x0

2

0

2−= =
→ →

the Sandwich Theorem implies that g xlim ( ) 0.
x 0

=
→

 

EXAMPLE 12  The Sandwich Theorem helps us establish several important limit rules:

 (a) lim sin 0
0
θ =

θ→

 (b) lim cos 1
0

θ =
θ→

 (c) For any function  f, f xlim ( ) 0
x c

=
→

 implies f xlim ( ) 0.
x c

=
→

Solution 
 (a) In Section 1.3 we established that sin− θ θ θ≤ ≤  for all θ (see Figure 2.15a). 

Since lim lim 0,
0 0
− θ θ( ) = =

θ θ→ →
 we have

lim sin 0.
0
θ =

θ→

 (b) From Section 1.3, 0 1 cos θ θ≤ − ≤  for all θ (see Figure 2.15b). Since lim 0
0
θ =

θ→
 

and lim 0 0,
0

=
θ→

 we have lim 1 cos 0
0

θ( )− =
θ→

 so

lim cos lim 1 1 cos 1 lim 1 cos 1 0 1.
0 0 0

θ θ θ( )( ) ( )= − − = − − = − =
θ θ θ→ → →

 (c) Since f x f x f x( ) ( ) ( )− ≤ ≤  and f x( )−  and f x( )  have limit 0 as →x c, it  
follows that f xlim ( ) 0

x c
=

→
. 

Example 12 shows that the sine and cosine functions are equal to their limits at θ = 0. 
We have not yet established that for any c, clim sin sin ,

c
θ =

θ→
 and clim cos cos .

c
θ =

θ→
 These 

limit formulas do hold, as will be shown in Section 2.6.

FIGURE 2.13 Any function u x( ) 
whose graph lies in the region between 
y x1 22( )= +  and y x1 42( )= −  has 
limit 1 as x 0→  (Example 10).

x

y

0 1-1

2

1

y = 1 + x2

2

y = 1 - x2

4

y = u(x)

FIGURE 2.14 The graph of the function g  
(Example 11). It is not defined at x 0= .  
Even though the function oscillates, it 
has a limit as x 0→ . The value of g x( ) 
always lies between x 2 and x 2− .

y = x2

y = -x2

x
0.4

y

0.2

0.1

-0.4 -0.2

-0.1

-0.2

g(x) = x2 sin(- )1
x2

0.2

FIGURE 2.15 The Sandwich Theorem 
confirms the limits in Example 12.

y = 0 u 0

y = - 0 u 0

y = sin u  

u

1

-1

- p p

y

(a)

y = 0 u 0

y = 1 - cos u

u

y

(b)

2

2

1

1-1-2 0

M02_HASS5901_15_GE_C02.indd   86 03/03/23   6:39 PM

www.konkur.in

Telegram: @uni_k



 2.2  Limit of a Function and Limit Laws 87

 e. f xlim ( )
x c→

 exists at every point c in (1, 3).

 f. f (1) 0=

 g. f (1) 2−=

 h. =f (2) 0

 i. =f (2) 1

Existence of Limits
In Exercises 5 and 6, explain why the limits do not exist.

 5. x
x

lim
x 0→

 6. 
x

lim 1
1x 1 −→

 7. Suppose that a function f x( ) is defined for all real values of x except 
x c.=  Can anything be said about the existence of f xlim ( )?

x c→
  

Give reasons for your answer.

 8. Suppose that a function f x( ) is defined for all x in 1,1−[ ]. Can 
anything be said about the existence of f xlim ( )

x 0→
? Give reasons  

for your answer.

 9. If f xlim ( ) 5
x 1

=
→

, must   f   be defined at x 1?=  If it is, must 

f (1) 5?=  Can we conclude anything about the values of   f   at  
x 1?=  Explain.

 10. If f (1) 5= , must f xlim ( )
x 1→

 exist? If it does, then must 

f xlim ( ) 5?
x 1

=
→

 Can we conclude anything about f xlim ( )?
x 1→

 

Explain.

Calculating Limits
Find the limits in Exercises 11–22.

 11. xlim 13
x 3

2( )−
−→

 12. x xlim 5 2
x 2

2−( )+ −
→

 13. t tlim 8 5 7
t 6

( )( )− −
→

 14. x x xlim 2 4 8
x 2

3 2( )− + +
−→

 15. x
x

lim 2 5
11x 2 3

+
−→

 16. s slim 8 3 2 1
s 2 3

( )( )− −
→

 17. x xlim 4 3 4
x 1 2

2( )+
−→

 18. 
y

y y
lim

2
5 6y 2 2

+
+ +→

 19. ylim 5
y 3

4 3( )−
−→

 20. zlim 10
z 4

2 −
→

 21. 
h

lim 3
3 1 1h 0 + +→

 22. h
h

lim 5 4 2
h 0

+ −
→

Limits of quotients Find the limits in Exercises 23–42.

 23. x
x

lim 5
25x 5 2

−
−→

 24. x
x x

lim 3
4 3x 3 2

+
+ +−→

 25. x x
x

lim 3 10
5x 5

2 + −
+−→

 26. x x
x

lim 7 10
2x 2

2 − +
−→

 27. t t
t

lim 2
1t 1

2

2

+ −
−→

 28. t t
t t

lim 3 2
2t 1

2

2

+ +
− −−→

 29. x
x x

lim 2 4
2t 2 3 2

− −
+−→

 30. 
y y

y y
lim

5 8
3 16y 0

3 2

4 2

+
−→

EXERCISES 2.2

x

y

321-1

1

-1

-2

y = f (x)

Limits from Graphs

 1. For the function g x( ) graphed here, find the following limits or 
explain why they do not exist.

 a. g xlim ( )
x 1→

 b. g xlim ( )
x 2→

 c. g xlim ( )
x 3→

 d. g xlim ( )
x 2.5→

x

y

21-1

1

-1

y = f (x)

3
x

y

2

1

1

y = g(x)

t

s

1

10

s = f (t)

-1

-1-2

 2. For the function f t( ) graphed here, find the following limits or 
explain why they do not exist.

 a. f tlim ( )
t 2−→

 b. f tlim ( )
t 1−→

 c. f tlim ( )
t 0→

 d. f tlim ( )
t 0.5−→

 3. Which of the following statements about the function y f x( )=  
graphed here are true, and which are false?

 a. f xlim ( )
x 0→

 exists.

 b. f xlim ( ) 0
x 0

=
→

 c. f xlim ( ) 1
x 0

=
→

 d. f xlim ( ) 1
x 1

=
→

 e. f xlim ( ) 0
x 1

=
→

 f. f xlim ( )
x c→

 exists at every point c in 1,1 .−( )

 g. f xlim ( )
x 1→

 does not exist.

 h. f (0) 0=

 i. f (0) 1=

 j. f (1) 0=

 k. f (1) 1−=

 4. Which of the following statements about the function y f x( )=  
graphed here are true, and which are false?

 a. f xlim ( )
x 2→

 does not exist.

 b. f xlim ( ) 2
x 2

=
→

 c. f xlim ( )
x 1→

 does not exist.

 d. f xlim ( )
x c→

 exists at every point c in −( )1,1 .
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88 Chapter 2  Limits and Continuity

 31. x
x

lim 1
1x 1

1 −
−→

−
 32. x x

x
lim

1
1

1
1

x 0

−
+

+
→

 33. u
u

lim 1
1u 1

4

3

−
−→

 34. lim 8
162

3

4

υ
υ

−
−υ→

 35. x
x

lim 3
9x 9

−
−→

 36. x x
x

lim 4
2x 4

2−
−→

 37. x
x

lim 1
3 2x 1

−
+ −→

 38. x
x

lim 8 3
1x 1

2 + −
+−→

 39. x
x

lim 12 4
2x 2

2 + −
−→

 40. x
x

lim 2
5 3x 2 2

+
+ −−→

 41. x
x

lim 2 5
3x 3

2− −
+−→

 42. x
x

lim 4
5 9x 4 2

−
− +→

Limits with trigonometric functions Find the limits in Exercises 43–50.

 43. xlim 2 sin 1
x 0

( )−
→

 44. xlim sin
x 0

2

→

 45. xlim sec
x 0→

 46. xlim tan
x 0→

 47. 
x x

x
lim

1 sin
3 cosx 0

+ +
→

 48. x xlim 1 2 cos
x 0

2 ( )( )− −
→

 49. x xlim 4 cos
x

π( )+ +
−π→

 50. xlim 7 sec
x 0

2+
→

Using Limit Rules

 51. Suppose f xlim ( ) 1
x 0

=
→

 and g xlim ( ) 5
x 0

−=
→

. Name the rules in 

Theorem 1 that are used to accomplish steps (a), (b), and (c) of the 
following calculation.

f x g x
f x

f x g x

f x
lim

2 ( ) ( )
( ) 7

lim 2 ( ) ( )

lim ( ) 7
(a)

x

x

x
0 2

0

0

2( )

( )

( )

−
+

=
−

+→

→

→

(We assume the denominator is nonzero.)

f x g x

f x

f x g x

f x

lim 2 ( ) lim ( )

lim ( ) 7
(b)

2  lim ( ) lim ( ) 

lim ( ) lim 7
(c)

2 1 5
1 7

7
64

x x

x

x x

x x

0 0

0

2

0 0

0 0

2

2

( )

( )

( )

( )( ) ( )

( )

=
−

+

=
−

+

= − −
+

=

→ →

→

→ →

→ →

 52. Let h x p xlim ( ) 5, lim ( ) 1,
x x1 1

= =
→ →

 and r xlim ( ) 2.
x 1

=
→

 Name the 

rules in Theorem 1 that are used to accomplish steps (a), (b), and (c) 
of the following calculation.

h x
p x r x

h x

p x r x
lim 5 ( )

( ) 4 ( )

lim 5 ( )

lim ( ) 4 ( )
(a)

x

x

x
1

1

1
( )( ) ( )−

=
−→

→

→

(We assume the denominator is nonzero.)

h x

p x r x

h x

p x r x

lim 5 ( )

lim ( ) lim 4 ( )
b

5lim ( )

lim ( ) lim 4 lim ( )
c

5 5
1 4 2

5
2

x

x x

x

x x x

1

1 1

1

1 1 1

( )( )

( )( )

( )
( )

( )( )

( )( )

( )

=
−

=
−

=
−

=

→

→ →

→

→ → →

 53. Suppose f xlim ( ) 5
x c

=
→

 and g xlim ( ) 2
x c

−=
→

. Find

 a. f x g xlim ( ) ( )
x c→

 b. f x g xlim 2 ( ) ( )
x c→

 c. f x g xlim ( ) 3 ( )
x c

( )+
→

 d. 
f x

f x g x
lim

( )
( ) ( )x c −→

 54. Suppose f xlim ( ) 0
x 4

=
→

 and g xlim ( ) 3
x 4

−=
→

. Find

 a. g xlim ( ) 3
x 4

( )+
→

 b. x f xlim ( )
x 4→

 c. g xlim ( )
x 4

2( )
→

 d. 
g x

f x
lim

( )
( ) 1x 4 −→

 55. Suppose f xlim ( ) 7
x b

=
→

 and g xlim ( ) 3.
x b

−=
→

 Find

 a. f x g xlim ( ) ( )
x b

( )+
→

 b. f x g xlim ( ) ( )
x b

⋅
→

 c. g xlim 4 ( )
x b→

 d. f x g xlim ( ) ( )
x b→

 56. Suppose that p x r xlim ( ) 4, lim ( ) 0,  
x x2 2

= =
− −→ →

 and 

s xlim ( ) 3.
x 2

−=
−→

 Find

 a. p x r x s xlim ( ) ( ) ( )
x 2

( )+ +
−→

 b. p x r x s xlim ( ) ( ) ( )
x 2

( )⋅ ⋅
−→

 c. p x r x s xlim 4 ( ) 5 ( ) ( )
x 2

−( )+
−→

Limits of Average Rates of Change
Because of their connection with secant lines, tangents, and instanta-
neous rates, limits of the form

f x h f x
h

lim
( )

h 0

( )+ −
→

occur frequently in calculus. In Exercises 57–62, evaluate this limit for 
the given value of x and function  f.

 57. f x x x( ) , 12= =

 58. = = −f x x x( ) , 22

 59. = − =f x x x( ) 3 4, 2

 60. = = −f x x x( ) 1 , 2

 61. = =f x x x( ) , 7

 62. = + =f x x x( ) 3 1, 0

Using the Sandwich Theorem

 63. If − ≤ ≤ −x f x x5 2 ( ) 52 2  for x1 1,− ≤ ≤  find 

→
f xlim ( ).

x 0

 64. If x g x x2 ( ) 2 cos2− ≤ ≤  for all x, find g xlim ( ).
x 0→

 65. a. It can be shown that the inequalities

x x x
x

1
6

sin
2 2 cos

1
2

− <
−

<

hold for all values of x close to zero (except for x 0= ). 
What, if anything, does this tell you about

x x
x

lim
sin

2 2 cos
?

x 0 −→

Give reasons for your answer.

 b. Graph ( )= −y x1 6 ,2  y x x xsin 2 2 cos ,( ) ( )= −  and 
y 1=  together for x2 2− ≤ ≤ . Comment on the behavior 
of the graphs as x 0.→

T
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 2.2  Limit of a Function and Limit Laws 89

 66. a. Suppose that the inequalities

x x
x

1
2 24

1 cos 1
2

2

2
− <

−
<

hold for values of x close to zero, except for x 0 itself. 
(They do, as you will see in Section 16.9.) What, if anything, 
does this tell you about

x
x

lim
1 cos

?
x 0 2

−
→

Give reasons for your answer.

 b. Graph the equations ( ) ( )= −y x1 2 24 ,2  
y x x1 cos ,2( )= −  and y 1 2 together for x2 2. 
Comment on the behavior of the graphs as x 0.

Estimating Limits
You will find a graphing calculator useful for Exercises 67–76.

 67. Let ( ) ( )= − +f x x x( ) 9 3 .2

 a. Make a table of the values of  f  at the points 
x 3.1, 3.01, 3.001,= − − −  and so on as far as your  
calculator can go. Then estimate f xlim ( )

x 3→−
.  

What estimate do you arrive at if you evaluate  f  at 
x 2.9, 2.99, 2.999,  = − − −  instead?

 b. Support your conclusions in part (a) by graphing  f  near 
c 3 and using Zoom and Trace to estimate y-values on 
the graph as x 3.

 c. Find f xlim ( )
x 3

 algebraically, as in Example 7.

 68. Let ( )( )= − −g x x x( ) 2 2 .2

 a. Make a table of the values of g at the points 
x 1.4,1.41,1.414, and so on through successive decimal 
approximations of 2. Estimate g xlim ( )

x 2
.

 b. Support your conclusion in part (a) by graphing g near 
c 2 and using Zoom and Trace to estimate y-values on 
the graph as x 2.

 c. Find g xlim ( )
x 2

 algebraically.

 69. Let G x x x x( ) 6 4 12 .2( )( )= + + −

 a. Make a table of the values of G at x 5.9, 5.99, 5.999, 
and so on. Then estimate G xlim ( ).

x 6
 What estimate do you 

arrive at if you evaluate G at x 6.1, 6.01, 6.001,  
instead?

 b. Support your conclusions in part (a) by graphing G and using 
Zoom and Trace to estimate y-values on the graph as x 6.

 c. Find G xlim ( )
x 6

 algebraically.

 70. Let h x x x x x( ) 2 3 4 3 .2 2( ) ( )= − − − +

 a. Make a table of the values of h at x 2.9, 2.99, 2.999, and 
so on. Then estimate h xlim ( ).

x 3
 What estimate do you arrive at 

if you evaluate h at x 3.1, 3.01, 3.001,  instead?

 b. Support your conclusions in part (a) by graphing h near 
c 3 and using Zoom and Trace to estimate y-values on the 
graph as x 3.

 c. Find h xlim ( )
x 3

 algebraically.

 71. Let ( ) ( )= − −f x x x( ) 1 1 .2

 a. Make tables of the values of  f  at values of x that approach 
c 1 from above and below. Then estimate f xlim ( )

x 1
.

T

T

 b. Support your conclusion in part (a) by graphing  f  near 
c 1 and using Zoom and Trace to estimate y-values on  
the graph as x 1.

 c. Find f xlim ( )
x 1

 algebraically.

 72. Let F x x x x( ) 3 2 2 .2( ) ( )= + + −

 a. Make tables of values of F at values of x that approach 
c 2 from above and below. Then estimate F xlim ( )

x 2
.

 b. Support your conclusion in part (a) by graphing F near 
c 2 and using Zoom and Trace to estimate y-values on 
the graph as x 2.

 c. Find F xlim ( )
x 2

 algebraically.

 73. Let g ( ) sin( )= .

 a. Make a table of the values of g at values of  that approach 
00  from above and below. Then estimate glim ( ).

0
 b. Support your conclusion in part (a) by graphing g near 

00 .

 74. Let G t t t( ) 1 cos 2( )= − .

 a. Make tables of values of G at values of t that approach t 00  
from above and below. Then estimate G tlim ( )

t 0
.

 b. Support your conclusion in part (a) by graphing G near 
t 0.0

 75. Let f x x( ) x1 1= ( )− .

 a. Make tables of values of  f  at values of x that approach c 1 
from above and below. Does  f  appear to have a limit as 
x 1? If so, what is it? If not, why not?

 b. Support your conclusions in part (a) by graphing  f  near 
c 1.

 76. Let f x x( ) 3 1x( )= − .

 a. Make tables of values of  f  at values of x that approach c 0 
from above and below. Does  f  appear to have a limit as 
x 0? If so, what is it? If not, why not?

 b. Support your conclusions in part (a) by graphing  f  near 
c 0.

Theory and Examples

 77. If x f x x( )4 2 for x in [ ]1,1  and x f x x( )2 4 for 
x 1 and x 1, at what points c do you automatically know 

f xlim ( )?
x c

 What can you say about the value of the limit at these 

points?

 78. Suppose that g x f x h x( ) ( ) ( ) for all x 2 and suppose that

g x h xlim ( ) lim ( ) 5.
x x2 2

= =
→ →

Can we conclude anything about the values of   f, g, and h at 
x 2? Could f (2) 0? Could f xlim ( ) 0

x 2
=

→
? Give reasons  

for your answers.

 79. If 
f x

x
lim

( ) 5
2

1,
x 4

−
−

=
→

 find f xlim ( ).
x 4

 80. If 
f x
x

lim
( )

1,
x 2 2

=
→

 find

 a. f xlim ( ),
x 2

 b. 
f x

x
lim

( )
.

x 2

 81. a. If 
f x

x
lim

( ) 5
2

3,
x 2

−
−

=
→

 find f xlim ( ).
x 2

 b. If 
f x

x
lim

( ) 5
2

4,
x 2

−
−

=
→

 find f xlim ( ).
x 2
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90 Chapter 2  Limits and Continuity

 82. If 
f x
x

lim
( )

1,
x 0 2

=
→

 find

 a. f xlim ( ),
x 0→

 b. 
f x

x
lim

( )
.

x 0→

 83. a.  Graph g x x x( ) sin 1( )=  to estimate g xlim ( ),
x 0→

 zooming in on 
the origin as necessary.

 b. Confirm your estimate in part (a) with a proof.

 84. a.  Graph h x x x( ) cos 12 3( )=  to estimate h xlim ( ),
x 0→

 zooming  
in on the origin as necessary.

 b. Confirm your estimate in part (a) with a proof.

COMPUTER EXPLORATIONS
Graphical Estimates of Limits
In Exercises 85–90, use a CAS to perform the following steps:

 a. Plot the function near the point c being approached.

 b. From your plot, guess the value of the limit.

T

T

 85. x
x

lim 16
2x 2

4 −
−→

 86. x x x
x

lim 5 3
1x 1

3 2

2( )

− − −
+−→

 87. x
x

lim 1 1
x 0

3 + −
→

 88. x
x

lim 9
7 4x 3

2

2

−
+ −→

 89. 
x

x x
lim

1 cos
sinx 0

−
→

 90. x
x

lim 2
3 3 cosx 0

2

−→

2.3 The Precise Definition of a Limit

We now turn our attention to the precise definition of a limit. The early history of calculus 
saw controversy about the validity of the basic concepts underlying the theory. Apparent con-
tradictions were argued over by both mathematicians and philosophers. These controversies 
were resolved by the precise definition, which allows us to replace vague phrases like “gets 
arbitrarily close to” in the informal definition with specific conditions that can be applied to 
any particular example. With a rigorous definition, we can avoid misunderstandings, prove 
the limit properties given in the preceding section, and establish many important limits.

To show that the limit of f x( ) as →x c equals the number L, we need to show that the 
gap between f x( ) and L can be made “as small as we choose” if x is kept “close enough” to 
c. Let us see what this requires if we specify the size of the gap between f x( ) and L.

EXAMPLE 1  Consider the function = −y x2 1 near x 4= . Intuitively it seems 
clear that y is close to 7 when x is close to 4, so xlim 2 1 7

x 4
( )− =

→
. However, how close 

to =x 4 does x have to be so that = −y x2 1 differs from 7 by, say, less than 2 units?

Solution We are asked: For what values of x is − <y 7 2? To find the answer we first 
express −y 7  in terms of x:

( )− = − − = −y x x7 2 1 7 2 8 .

The question then becomes: What values of x satisfy the inequality − <x2 8 2? To find 
out, we solve the inequality:

− <

− < − <

< <

< <

− < − < −

x

x

x

x

x

2 8 2

2 2 8 2

6 2 10

3 5

1 4 1.

x

x

Removing absolute value gives two inequalities.

Add 8 to each term.

Solve for .

Solve for 4.

Keeping x within 1 unit of =x 4 will keep y within 2 units of =y 7 (Figure 2.16). 

In the previous example we determined how close x must be to a particular value c to 
ensure that the outputs f x( ) of some function lie within a prescribed interval about a limit 
value L. To show that the limit of f x( ) as →x c actually equals L, we must be able to show 
that the gap between f x( ) and L can be made less than any prescribed error, no matter how 

FIGURE 2.16 Keeping x within 1 unit of 
x 4=  will keep y within 2 units of y 7=  
(Example 1).

x

y

0

5

3 54

7

9
To satisfy
this

Restrict
to this

Lower bound:
y = 5

Upper bound:
y = 9

y = 2x - 1
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 2.3  The Precise Definition of a Limit 91

small, by holding x close enough to c. To describe arbitrary prescribed errors, we introduce 
two constants, δ  (delta) and ε (epsilon). These Greek letters are traditionally used to repre-
sent small changes in a variable or a function.

Definition of Limit

Suppose we are watching the values of a function f x( ) as x approaches c (without taking 
on the value c itself). Certainly we want to be able to say that f x( ) stays within one-tenth 
of a unit from L as soon as x stays within some distance δ  of c (Figure 2.17). But that in 
itself is not enough, because as x continues on its course toward c, what is to prevent f x( ) 
from jumping around within the interval from ( ) ( )− +L L1 10 to 1 10  without tending 
toward L? We can be told that the error can be no more than 1 100 or 1 1000 or 1 100,000. 
Each time, we find a new δ-interval about c so that keeping x within that interval satisfies 
the new error tolerance. And each time the possibility exists that f x( ) might jump away 
from L at some later stage.

The figures on the next page illustrate the problem. You can think of this as a quarrel 
between a skeptic and a scholar. The skeptic presents ε-challenges to show there is room 
for doubt that the limit exists. The scholar counters every challenge with a δ-interval around 
c which ensures that the function takes values within ε of L.

How do we stop this seemingly endless series of challenges and responses? We can do 
so by proving that for every error tolerance ε that the challenger can produce, we can present 
a matching distance δ that keeps x “close enough” to c to keep f x( ) within that ε-tolerance 
of L (Figure 2.18). This leads us to the precise definition of a limit.

δ  is the Greek letter delta.
ε is the Greek letter epsilon.

FIGURE 2.17 How should we define 
0δ >  so that keeping x within the interval 
δ δ( )− +c c,  will keep f x( ) within the 

interval ( )− +L L1
10

, 1
10

?

c

f (x) lies
in hereL

x

f (x)

L + 1
10

L −
1
10

dd

for all x ≠ c
in here

c − d c + d
x

y

0

FIGURE 2.18 The relation of δ and ε in 
the definition of limit.

x

y

0

L

x
dd

f (x) lies
in here

for all x Z c
in here

L - e

L + e

f (x)

c - d c c + d

To visualize the definition, imagine machining a cylindrical shaft to a close tolerance. 
The diameter of the shaft is determined by turning a dial to a setting measured by a vari-
able x. We try for diameter L, but since nothing is perfect we must be satisfied with a diam-
eter f x( ) somewhere between ε−L  and ε+L . The number δ is our control tolerance for 
the dial; it tells us how close our dial setting must be to the setting =x c in order to guar-
antee that the diameter f x( ) of the shaft will be accurate to within ε of L. As the tolerance 
for error becomes stricter, we may have to adjust δ. The value of δ, how tight our control 
setting must be, depends on the value of ε, the error tolerance.

The definition of limit extends to functions on more general domains. It is only 
required that each open interval around c contain points in the domain of the function other 
than c. See Additional and Advanced Exercises 49–53 for examples of limits for functions 
with complicated domains. In the next section we will see how the definition of limit 
applies at points lying on the boundary of an interval.

Examples: Testing the Definition

The formal definition of limit does not tell how to find the limit of a function, but it does 
enable us to verify that a conjectured limit value is correct. The following examples show 
how the definition can be used to verify limit statements for specific functions. However, 
the real purpose of the definition is not to do calculations like this, but rather to prove gen-
eral theorems so that the calculation of specific limits can be simplified, such as the theo-
rems stated in the previous section.

DEFINITION Let f x( ) be defined on an open interval about c, except possibly at  
c itself. We say that the limit of f x( ) as x approaches c is the number L, and write

f x Llim ( ) ,
x c

=
→

if, for every number 0ε > , there exists a corresponding number 0δ >  such that

ε δ− < < − <f x L x c( ) whenever 0 .
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92 Chapter 2  Limits and Continuity

EXAMPLE 2  Show that

xlim 5 3 2.
x 1

( )− =
→

Solution Set c f x x1, ( ) 5 3,= = −  and =L 2 in the definition of limit. For any given 
ε > 0, we have to find a suitable δ > 0 so that if ≠x 1 and x is within distance δ of =c 1, 
then it is true that f x( ) is within distance ε of =L 2. That is, we must show that if x 
satisfies

δ< − <x0 1 ,

then f x( ) will satisfy
f x( ) 2 .ε− <

y

x

L

L + 1
10

L - 1
10

0

y = f (x)

c

The challenge:

     Make 0  f (x) - L 0  6 e = 1
10

y

x

L

L + 1
10

L - 1
10

0

y = f (x)

c
c - d1/10 c + d1/10

Response:

      0  x - c 0  6 d1/10 (a number)

y

x

L

L + 1
100

L - 1
100

0

y = f (x)

c

New challenge:

     Make 0 f (x) - L 0  6 e = 1
100

y

x

L

L + 1
100

L - 1
100

0

y = f (x)

c
c - d1/100 c + d1/100

Response:

      0 x - c 0  6 d1/100

y

x

L

L + 1
1000

L - 1
1000

0

y = f (x)

c

New challenge:

   e = 1
1000

y

x

L

L + 1
1000

L + e

L - e

L - 1
1000

0

y = f (x)

c

Response:

      0  x - c 0  6 d1/1000

y

x

L

L + 1
100,000

L - 1
100,000

0

y = f (x)

c

New challenge:
1

100,000
e =

y

x
0

y = f (x)

c

Response:

      0  x - c 0  6 d1/100,000

L

L + 1
100,000

L - 1
100,000

y

L

0

y = f (x)

c

New challenge:

       e = ...

x
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 2.3  The Precise Definition of a Limit 93

We find δ by working backward from the ε-inequality, f x( ) 2 ε− < :

x x

x

x

5 3 2 5 5

5 1

1 5.

Substitute.

Factor.

Simplify.

ε
ε
ε

( )− − = − <

− <

− <

Thus, we can take δ ε= 5 (Figure 2.19). If δ ε< − < =x0 1 5, then

ε ε( )( )− − = − = − < =x x x5 3 2 5 5 5 1 5 5 ,

which proves that xlim 5 3 2
x 1

( )− =
→

.

The value of δ ε= 5 is not the only value that will make δ< − <x0 1  imply 
ε− <x5 5 . Any smaller positive δ will do as well. The definition does not ask for the 

“best” positive δ, just one that will work. 

FIGURE 2.19 If f x x( ) 5 3,= −  then  
ε< − <x0 1 5 guarantees that 

f x( ) 2 ε− <  (Example 2).

x

y

0

2

1

2 - e

2 + e

y = 5x - 3

1 -
5
e 1 +

5
e

-3

NOT TO SCALE

FIGURE 2.20 For the function 
f x x( ) = , we find that δ< − <x c0  
will guarantee f x c( ) ε− <  whenever 
δ ε≤  (Example 3a).

c - e

c - d

c + d

c + e

c

0 c - d c + dc
x

y

y = x

FIGURE 2.21 For the function  
f x k( ) = , we find that f x k( ) ε− <  
for any positive δ (Example 3b).

k - e

k + e
k

0 c - d c + dc
x

y

y = k

EXAMPLE 3  Prove the following results, which were presented graphically in Section 2.2.

 (a) x clim
x c

=
→

 (b) k klim k constant
x c

=
→

Solution 

 (a) Let ε > 0 be given. We must find δ > 0 such that

x c x cwhenever 0 .ε δ− < < − <

The implication will hold if δ equals ε or any smaller positive number (Figure 2.20). 
This proves that x clim

x c
=

→
.

 (b) Let ε > 0 be given. We must find δ > 0 such that

k k x cwhenever 0 .ε δ− < < − <

Since − =k k 0, we will always have ε− <k k . Therefore we can use any positive 
number for δ, and the implication will hold (Figure 2.21). This proves that k klim

x c
=

→
. 

Finding Deltas Algebraically for Given Epsilons

In Examples 2 and 3, the interval of values about c for which −f x L( )  was less than ε  
was symmetric about c and we could take δ to be half the length of that interval. When the 
interval around c on which we have f x L( ) ε− <  is not symmetric about c, we can take  
δ to be the distance from c to the interval’s nearer endpoint.

EXAMPLE 4  For the limit xlim 1 2
x 5

− =
→

, find a δ > 0 that works for ε = 1. That is, 
find a δ > 0 such that

δ− − < < − <x x1 2 1 whenever 0 5

Solution We organize the search into two steps.

1. Solve the inequality x 1 2 1− − <  to find an interval containing =x 5 on which  
the inequality holds for all ≠x 5.

x

x

x

x

x

1 2 1

1 1 2 1

1 1 3

1 1 9

2 10

− − <

− < − − <

< − <

< − <

< <
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94 Chapter 2  Limits and Continuity

The inequality holds for all x in the open interval 2,10( ), so it holds for all ≠x 5 in this 
interval as well.

2. Find a value of δ > 0 to place the centered interval x5 5δ δ− < < +  (centered at 
=x 5 inside the interval 2,10( ). The distance from 5 to the nearer endpoint of 2,10( ) 

is 3 (Figure 2.22). If we take δ = 3 or any smaller positive number, then the inequality 
x0 5 δ< − <  will automatically place x between 2 and 10 and imply that 

x 1 2 1− − <  (Figure 2.23):

x x1 2 1 whenever 0 5 3.− − < < − <  

FIGURE 2.22 An open interval of radius 
3 about x 5=  will lie inside the open 
interval 2,10( ).

x
102 8

3

5

3
( )

FIGURE 2.24 An interval containing 
x 2=  so that the function in Example 5 
satisfies f x( ) 4 ε− < .

0

4

4 - e

4 + e

(2, 1)

(2, 4)

2
x

y

"

4 - e
"

4 + e

y = x2

FIGURE 2.23 The function and intervals 
in Example 4.

x

y

0 1 2 5 8 10

1

2

3

3 3

y = 
"

x - 1

NOT TO SCALE

How to Find Algebraically a  for a Given  f, L, c, and 0>

The process of finding a 0δ >  such that

f x L x c( ) whenever 0ε δ− < < − <

can be accomplished in two steps.

1. Solve the inequality f x L( ) ε− <  to find an open interval a b,( ), containing 
c on which the inequality holds for all x c≠ . Note that we do not require 
the inequality to hold at x c= . It may hold there or it may not, but the value 
of  f  at x c=  does not influence the existence of a limit.

2. Find a value of 0δ >  that places the open interval c c,δ δ( )− +  centered 
at c inside the interval a b,( ). The inequality f x L( ) ε− <  will hold for all 
x c≠  in this δ-interval.

EXAMPLE 5  Prove that f xlim ( ) 4
x 2

=
→

 if

f x
x x

x
( )

, 2

1, 2.

2

=
≠

=

⎧
⎨
⎪⎪

⎩⎪⎪

Solution Our task is to show that given ε > 0, there exists a δ > 0 such that

ε δ− < < − <f x x( ) 4 whenever 0 2 .

1. Solve the inequality f x( ) 4 ε− <  to find an open interval containing =x 2 on which 
the inequality holds for all ≠x 2.

For ≠ =x c 2, we have f x x( ) 2= , and the inequality to solve is x 42 ε− < :

x

x

x

x

x

4

4

4 4

4 4

4 4 . x

Assumes 4; see below.

An open interval about  2
that solves the inequality

2

2

2

ε

ε ε

ε ε

ε ε

ε ε

− <

− < − <

− < < +

− < < +

− < < +

ε <

=

The inequality f x( ) 4 ε− <  holds for all ≠x 2 in the open interval  
4 , 4ε ε( )− +  (Figure 2.24).

2. Find a value of δ > 0 that places the centered interval 2 , 2δ δ( )− +  inside the  
interval 4 , 4ε ε( )− + .

Take δ to be the distance from =x 2 to the nearer endpoint of 4 , 4ε ε( )− + .

In other words, take min 2 4 , 4 2δ ε ε{ }= − − + − , the minimum (the  
smaller) of the two numbers ε− −2 4  and ε+ −4 2. If δ has this or any  

M02_HASS5901_15_GE_C02.indd   94 03/03/23   6:40 PM

www.konkur.in

Telegram: @uni_k



 2.3  The Precise Definition of a Limit 95

smaller positive value, the inequality x0 2< − <  will automatically place x 
between 4  and 4  to make f x( ) 4− < . For all x,

f x x( ) 4 whenever 0 2 .ε δ− < < − <

This completes the proof for 4.

If 4, then we take  to be the distance from x 2 to the nearer endpoint of  
the interval 0, 4( )+ . In other words, take min 2, 4 2δ ε{ }= + − . (See  
Figure 2.24.) 

Using the Definition to Prove Theorems

We do not usually rely on the formal definition of limit to verify specific limits such as 
those in the preceding examples. Rather, we appeal to general theorems about limits, in 
particular the theorems of Section 2.2. The definition is used to prove these theorems 
(Appendix A.6). As an example, we prove part 1 of Theorem 1, the Sum Rule.

EXAMPLE 6  Given that f x Llim ( )
x c

=
→

 and g x Mlim ( )
x c

=
→

, prove that

f x g x L Mlim ( ) ( ) .
x c
( )+ = +

→

Solution Let 0 be given. We want to find a positive number  such that

f x g x L M x c( ) ( ) whenever 0 .ε δ( )+ − + < < − <

Regrouping terms, we get

f x g x L M f x L g x M

f x L g x M

( ) ( ) ( ) ( )

( ) ( ) .

a b a b
Triangle Inequality:( ) ( )( )+ − + = − + −

≤ − + −
+ ≤ +

Since f x Llim ( )
x c

=
→

, there exists a number 01  such that

f x L x c( ) 2 whenever 0 . f x L
Can find since
lim ( )1
x c

1ε δ− < < − <
δ
=

→

Similarly, since g x Mlim ( )
x c

=
→

, there exists a number 02  such that

ε δ− < < − <
δ
=

→

g x M x c( ) 2 whenever 0 . g x M
Can find since
lim ( )2
x c

2

Let min ,1 2{ }= , the smaller of 1 and 2. If x c0 < − <  then x c 1− < , so 
f x L( ) 2− < , and x c 2− < , so g x M( ) 2− < . Therefore,

f x g x L M( ) ( )
2 2

.( )+ − + < + =

This shows that f x g x L Mlim ( ) ( ) .
x c
( )+ = +

→
 

Centering Intervals About a Point
In Exercises 1–6, sketch the interval a b,( ), on the x-axis  
with the point c inside. Then find a value of 0 such that 
a x b whenever x c0 < − < .

 1. a b c1, 7, 5

 2. a b c1, 7, 2

 3. a b c7 2, 1 2, 3= − = − = −

 4. a b c7 2, 1 2, 3 2= − = − = −

 5. a b c4 9, 4 7, 1 2

 6. a b c2.7591, 3.2391, 3

EXERCISES 2.3
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96 Chapter 2  Limits and Continuity

Finding Deltas Graphically
In Exercises 7–14, use the graphs to find a 0δ >  such that

f x L x c( ) whenever 0 .ε δ− < < − <

Finding Deltas Algebraically
Each of Exercises 15–30 gives a function f x( ) and numbers L, c, 
and 0ε > . In each case, find the largest open interval about c on 
which the inequality f x L( ) ε− <  holds. Then give a value for 

0δ >  such that for all x satisfying x c0 δ< − < , the inequality 
f x L( ) ε− <  holds.

 15. f x x L c( ) 1, 5, 4, 0.01ε= + = = =

 16. f x x L c( ) 2 2, 6, 2, 0.02ε= − = − = − =

 17. f x x L c( ) 1, 1, 0, 0.1ε= + = = =

 18. f x x L c( ) , 1 2, 1 4 , 0.1ε= = = =

 19. f x x L c( ) 19 , 3, 10, 1ε= − = = =

 20. f x x L c( ) 7, 4, 23, 1ε= − = = =

 21. f x x L c( ) 1 , 1 4 , 4, 0.05ε= = = =

 22. f x x L c( ) , 3, 3, 0.12 ε= = = =

 23. f x x L c( ) , 4, 2, 0.52 ε= = = − =

 24. f x x L c( ) 1 , 1, 1, 0.1ε= = − = − =

 25. f x x L c( ) 5, 11, 4, 12 ε= − = = =

 26. f x x L c( ) 120 , 5, 24, 1ε= = = =

 27. f x mx m L m c( ) , 0, 2 , 2, 0.03ε= > = = =

 28. f x mx m L m c c( ) , 0, 3 , 3, 0ε= > = = = >

 29. f x mx b m L m b( ) , 0, 2 ,( )= + > = +  
c c1 2, 0ε= = >  

 30. f x mx b m L m b c( ) , 0, , 1, 0.05ε= + > = + = =

Using the Formal Definition
Each of Exercises 31–36 gives a function f x( ), a point c, and a positive 
number ε. Find L f xlim ( )

x c
=

→
. Then find a number 0δ >  such that

f x L x c( ) whenever 0 .ε δ− < < − <

 31. f x x c( ) 3 2 , 3, 0.02ε= − = =

 32. f x x c( ) 3 2, 1, 0.03ε= − − = − =

 33. f x x
x

c( ) 4
2

, 2, 0.05
2

ε= −
−

= =

x

y

0

6.2
6

5.8

5
5.14.9

y = 2x - 4

f (x) = 2x - 4

NOT TO SCALE

c = 5
L = 6
e = 0.2

 7. 

x

y

0

7.65
7.5
7.35

NOT TO SCALE

-3
-3.1 -2.9

f (x) =  -    x + 33
2

y =  -    x + 33
2

e = 0.15
L = 7.5
c = - 3

 8. 

x

y

0

1

1

f (x) = 
"

x

y = 
"

x1
4

e = 5
4

3
4

9
16

25
16

L = 1
c = 1

 9. 

f (x) = 2
"

x + 1

y = 2
"

x + 1

x

y

4.2
4

3.8

2

-1 0 2.61 3 3.41

NOT TO SCALE

e = 0.2
L = 4
c = 3

 10. 

L = 4

x

y

0

5

4

3

2

NOT TO SCALE

y = x2

f (x) = x2

c = 2

e = 1

"

3
"

5

 11. 

3.25

3

2.75

y

x

y = 4 - x2

-1

L = 3

f (x) = 4 - x2

c = -1

e = 0.25

"

5
2- "

3
2-

0

NOT TO SCALE

 12. 

2.5

2

1.5

y

x
-1

L = 2

f (x) =

c = -1

e = 0.5

16
9

- 16
25

- 0

"

-x
2

y =
"

-x
2

 13. 

0

y

x

c =
L = 2
e = 0.01

y = 1
x

f (x) = 1
x
1
22.01

2

1.99

1
21

2.01
1

1.99
NOT TO SCALE

 14. 
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 2.3  The Precise Definition of a Limit 97

V RI
+

-

 34. f x x x
x

c( ) 6 5
5

, 5, 0.05
2

ε= + +
+

= − =

 35. f x x c( ) 1 5 , 3, 0.5ε= − = − =

 36. f x x c( ) 4 , 2, 0.4ε= = =

Prove the limit statements in Exercises 37–50.

 37. xlim 9 5
x 4

( )− =
→

 38. xlim 3 7 2
x 3

( )− =
→

 39. xlim 5 2
x 9

− =
→

 40. xlim 4 2
x 0

− =
→

 41. f x f x
x x

x
lim ( ) 1 if ( )

1

2, 1x 1

2,

= =
≠

=

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

→

 42. f x f x
x x

x
lim ( ) 4 if ( )

2

1, 2x 2

2,

= =
≠ −

= −

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

→−

 43. 
x

lim 1 1
x 1

=
→

 44. 
x

lim 1 1
3x 3 2

=
→

 45. x
x

lim 9
3

6
x 3

2 −
+

= −
→−

 46. x
x

lim 1
1

2
x 1

2 −
−

=
→

 47. f x f x
x x

x x
lim ( ) 2 if ( )

4 2 , 1

6 4, 1x 1
= =

− <

− ≥

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

→

 48. f x f x
x x

x x
lim ( ) 0 if ( )

2 , 0

2, 0x 0
= =

<

≥

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

→

 49. x
x

lim sin 1 0
x 0

=
→

Theory and Examples

 51. Define what it means to say that g x klim ( )
x 0

=
→

.

 52. Prove that f x Llim ( )
x c

=
→

 if and only if f h c Llim
h 0

( )+ =
→

.

 53. A wrong statement about limits Show by example that the fol-
lowing statement is wrong.

The number L is the limit of f x( ) as x approaches c if f x( ) 
gets closer to L as x approaches c.

Explain why the function in your example does not have the given 
value of L as a limit as x c→ .

 54. Another wrong statement about limits Show by example that 
the following statement is wrong.

The number L is the limit of f x( ) as x approaches c if, given  
any 0ε > , there exists a value of x for which f x L( ) ε− < .

Explain why the function in your example does not have the given 
value of L as a limit as x c→ .

 55. Grinding engine cylinders Before contracting to grind engine 
cylinders to a cross-sectional area of 60 cm 2, you need to know how 
much deviation from the ideal cylinder diameter of c  8.7404 cm  
you can allow and still have the area come within 0.1 cm 2 of the 
required 60 cm 2. To find out, you let A x 2 2π( )=  and look for 
the interval in which you must hold x to make A 60 0.1− ≤ . 
What interval do you find?

 56. Manufacturing electrical  
resistors Ohm’s law for 
electrical circuits like the one 
shown in the accompanying 
figure states that V RI= . In 
this equation, V is a constant 
voltage, I is the current in amperes, and R is the resistance in ohms. 
Your firm has been asked to supply the resistors for a circuit in which 
V will be 120 volts and I is to be 5 0.1amp.±  In what interval does 
R have to lie for I to be within 0.1 amp of the value I 50 = ?

When Is a Number L Not the Limit of f x( ) As x c→ ?
In Exercises 57–60 we will consider what it means to not have a limit.

Showing L is not a limit We can prove that f x Llim ( )
x c

≠
→

 by pro-

viding an 0ε >  such that no possible 0δ >  satisfies the condition

f x L x c( ) whenever 0 .ε δ− < < − <

We accomplish this for our candidate ε by showing that for each 
0δ >  there exists a value of x such that

x c f x L0 and ( ) .δ ε< − < − ≥

T

y

x
0 c c + dc - d

L

L - e

L + e

y = f (x)

A value of x for which

0 6 0  x - c 0  6 d and 0  f (x) - L 0  ≥ e

 f (x)

x

y

y = x sin 1
x

1
p- 1

p

1
2p- 1

2p

x

y

1

-1

0 1-1

y = x2

y = -x2

y = x2 sin 1
x

2
p

2
p-

 50. x
x

lim sin 1 0
x 0

2 =
→
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98 Chapter 2  Limits and Continuity

 57. Let =
<

+ >

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x
x x

x x
( )

, 1

1, 1.

 60. a. For the function graphed here, show that g xlim ( ) 2
x 1

≠
→−

.

 b. Does g xlim ( )
x 1→−

 appear to exist? If so, what is the value of  

the limit? If not, why not?

x

y

0 3

3

4

4.8

y = f (x)

y

x

y = g(x)

-1 0

1

2

x

y

0 2

1

2

3

4 y = h(x)

y = x2

y = 2

x

y

y = x + 1

y = x

y = f (x)

1

1

2

 a. Let 1 2ε = . Show that no possible 0δ >  satisfies the fol-
lowing condition:

f x x( ) 2 1 2 whenever 0 1 .δ− < < − <

That is, show that for each 0δ > , there is a value of x such 
that

x f x0 1 and ( ) 2 1 2.δ< − < − ≥

This will show that f xlim ( ) 2
x 1

≠
→

.

 b. Show that f xlim ( ) 1
x 1

≠
→

.

 c. Show that f xlim ( ) 1.5
x 1

≠
→

.

 58. Let h x

x x

x

x

( )

, 2

3, 3

2, 2.

2

=

<

=

>

⎧

⎨

⎪⎪⎪⎪⎪

⎩
⎪⎪⎪⎪⎪

Show that

 a. h xlim ( ) 4
x 2

≠
→

 b. h xlim ( ) 3
x 2

≠
→

 c. h xlim ( ) 2
x 2

≠
→

 59. For the function graphed here, explain why

 a. f xlim ( ) 4
x 3

≠
→

 b. f xlim ( ) 4.8
x 3

≠
→

 c. f xlim ( ) 3
x 3

≠
→

COMPUTER EXPLORATIONS
In Exercises 61–66, you will further explore finding deltas graphically. 
Use a CAS to perform the following steps:

 a. Plot the function =y f x( ) near the point c being approached.

 b. Guess the value of the limit L and then evaluate the limit  
symbolically to see if you guessed correctly.

 c. Using the value ε = 0.2, graph the banding lines ε= −y L1  
and ε= +y L2  together with the function  f  near c.

 d. From your graph in part (c), estimate a δ > 0 such that

f x L x c( ) whenever 0 .ε δ− < < − <

Test your estimate by plotting  f, y1, and y2 over the interval  
x c0 δ< − < . For your viewing window use c 2δ− ≤ 

x c 2δ≤ +  and ε ε− ≤ ≤ +L y L2 2 . If any function 
values lie outside the interval ε ε[ ]− +L L, , your choice  
of δ was too large. Try again with a smaller estimate.

 e. Repeat parts (c) and (d) successively for 0.1, 0.05,ε =   
and 0.001.

 61. = −
−

=f x x
x

c( ) 81
3

, 3
4

 62. = +
+

=f x x x
x x

c( ) 5 9
2 3

, 0
3 2

5 2

 63. = =f x
x

x
c( )

sin 2
3

, 0 64. f x
x x

x x
c( )

1 cos
sin

, 0
( )

=
−
−

=

 65. = −
−

=f x x
x

c( ) 1
1

, 1
3

 66. 
( )= − + +

−
=f x x x x

x
c( ) 3 7 1 5

1
, 1

2
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 2.4  One-Sided Limits 99

In this section we extend the limit concept to one-sided limits, which are limits as x approaches 
the number c from the left-hand side (where x c< ) or the right-hand side (where x c> ) 
only. These allow us to describe functions that have different limits at a point, depending on 
whether we approach the point from the left or from the right. One-sided limits also allow us 
to say what it means for a function to have a limit at an endpoint of an interval.

Approaching a Limit from One Side

Suppose a function  f  is defined on an interval that extends to both sides of a number c. In order 
for  f  to have a limit L as x approaches c, the values of f x( ) must approach the value L as x 
approaches c from either side. Because of this, we sometimes say that the limit is two-sided.

If  f  fails to have a two-sided limit at c, it may still have a one-sided limit, that is, a limit if 
the approach is only from one side. If the approach is from the right, the limit is a right-hand 
limit or limit from the right. Similarly, a left-hand limit is also called a limit from the left.

The function =f x x x( )  (Figure 2.25) has limit 1 as x approaches 0 from the right, 
and limit 1−  as x approaches 0 from the left. Since these one-sided limit values are not the 
same, there is no single number that f x( ) approaches as x approaches 0. So f x( ) does not 
have a (two-sided) limit at 0.

Intuitively, if we consider only the values of f x( ) on an interval c b,( ), where c b< , 
and the values of f x( ) become arbitrarily close to L as x approaches c from within that 
interval, then  f  has right-hand limit L at c. In this case we write

=
→ +

f x Llim ( ) .
x c

The notation “x c→ +” means that we consider only values of f x( ) for x greater than c. 
We don’t consider values of f x( ) for x c≤ .

Similarly, if f x( ) is defined on an interval a c,( ), where a c< , and f x( ) approaches 
arbitrarily close to M as x approaches c from within that interval, then   f   has left-hand 
limit M at c. We write

=
→ −

f x Mlim ( ) .
x c

The symbol “x c→ −” means that we consider the values of  f  only at x-values less than c.
These informal definitions of one-sided limits are illustrated in Figure 2.26. For the 

function =f x x x( )  in Figure 2.25 we have

−= =
→ → −+

f x f xlim ( ) 1 and lim ( ) 1.
x x0 0

FIGURE 2.25 Different right-hand and 
left-hand limits at the origin.

x

y

1

0

-1

y = x
0 x 0

2.4 One-Sided Limits

FIGURE 2.26 (a) Right-hand limit as x approaches c. (b) Left-hand limit as x 
approaches c.

x

y

0
x

y

c cx x

L f (x)

0

M
f (x)

lim    f (x) = L
x
:

c+
lim    f (x) = M(b)(a)
x
:

c
_

One-sided limits have all the properties listed in Theorem 1 in Section 2.2. The right-
hand limit of the sum of two functions is the sum of their right-hand limits, and so on. The 
theorems for limits of polynomials and rational functions hold with one-sided limits, as 
does the Sandwich Theorem. One-sided limits are related to limits at interior points in the 
following way.
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100 Chapter 2  Limits and Continuity

THEOREM 5
Suppose that a function ƒ is defined on an open interval containing c, except perhaps 
at c itself. Then f x( ) has a limit as x approaches c if and only if it has both a limit 
from the left at c and a limit from the right at c, and these one-sided limits are equal:

= ⇔ = =
→ → →− +

f x L f x L f x Llim ( ) lim ( ) and lim ( ) .
x c x c x c

FIGURE 2.27 Graph of the function in 
Example 1.

x

y

321

2

1

40

y = f (x)

FIGURE 2.28 The arcsec function 
has limits at x 1= ± .

x

y

1-1-2 2

y = arcsec x

p

p
2

Theorem 5 applies at interior points of a function’s domain. At a boundary point of an 
interval in its domain, a function has a limit when it has an appropriate one-sided limit.

Limits at Endpoints of an Interval
• If  f  is defined on an open interval b c,( ) to the left of c and not defined on an open 

interval c d,( ) to the right of c, then

=
→ → −

f x f xlim ( ) lim ( ).
x c x c

• If  f  is defined on an open interval c d,( ) to the right of c and not defined on an open 
interval b c,( ) to the left of c, then

=
→ → +

f x f xlim ( ) lim ( ).
x c x c

(The definition of a limit on an arbitrary domain is discussed in Additional and Advanced 
Exercises 39–42.)

EXAMPLE 1  For the function graphed in Figure 2.27,

=

=

=

=

=

=

→

→

→

−

+

x f x

f x

f x

At 0: lim ( ) does not exist,

lim ( ) 1,

lim ( ) 1.

f x

f x

f x

is not defined to the left of  0.

has a right-hand limit at  0.

has a limit at domain endpoint  0.

x

x

x

0

0

0

= =

=

=
→

→

→

−

+

x f x

f x

f x

At 1: lim ( ) 0,

lim ( ) 1,

lim ( ) does not exist.

fEven though  (1) 1.

Right- and left-hand limits are not equal.

x

x

x

1

1

1

x f x

f x

f x

At 2: lim ( ) 1,

lim ( ) 1,

lim ( ) 1. fEven though  (2) 2.

x

x

x

2

2

2

= =

=

= =

→

→

→

−

+

x f x f x f x fAt 3: lim ( ) lim ( ) lim ( ) (3) 2.
x x x3 3 3

= = = = =
→ → →− +

x f x

f x

f x

At 4: lim ( ) 1,

lim ( ) does not exist,

lim ( ) 1.

f

f x

f x

Even though  (4) 1.

is not defined to the right of  4.

has a limit at domain endpoint  4.

x

x

x

4

4

4

= =

=

≠

=

=

→

→

→

−

+

At every other point c in [ ] f x0, 4 , ( ), has limit f c( ). 

EXAMPLE 2  The domain of the function arcsec x is a union of the intervals , 1− −( ]∞  
and 1,[ )∞ , as shown in Figure 2.28. For the boundary points of these intervals,

x x

x

x

At 1: lim arcsec ,

lim arcsec does not exist,

lim arcsec .

x x

x

x x

arcsec  has a limit from the left at  1.

arcsec  is not defined on  1,1 .

arcsec  has a limit at  1.

x

x

x

1

1

1

− π

π

= =

=

−

−

=

−

=

( )
−

−

−

→

→

→

−

+
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 2.4  One-Sided Limits 101

x x

x

x

At 1: lim arcsec does not exist,

lim arcsec 0,

lim arcsec 0.

x

x x

x x

arcsec  is not defined on 1,1 .

arcsec  has a limit from the right at  1.

arcsec  has a limit at 1.

x

x

x

1

1

1

=

=

=

−

=

=

( )
→

→

→

−

+

At every c in , 1− −( )∞  and every c in 1,( )∞ , the limit of arcsec x as x c→  is equal to 
arcsec c. However, for each c in the interval 1,1 , lim

x c
−( )

→
 arcsec x does not exist. 

FIGURE 2.29 Intervals associated with 
the definition of right-hand limit.

y

x
0

L

x
d

f (x) lies
in here

for all x Z c
in here

L - e

L + e
f (x)

c c + d

FIGURE 2.30 Intervals associated with 
the definition of left-hand limit.

y

x
0

L

x
d

f (x) lies
in here

for all x Z c
in here

L - e

L + e
f (x)

cc - d

FIGURE 2.31 =
→ +

xlim 0
x 0

 in  
Example 3.

x

y

e

f (x)

xL = 0 d = e2

 f (x) = 
"

x

DEFINITIONS (a) Assume the domain of   f   contains an interval c d,( ) to the 
right of c. We say that f x( ) has right-hand limit L at c, and write

=
→ +

f x Llim ( )
x c

if for every number 0ε >  there exists a corresponding number 0δ >  such that

f x L c x c( ) whenever .ε δ− < < < +

(b) Assume the domain of  f  contains an interval b c,( ) to the left of c. We say 
that  f  has left-hand limit L at c, and write

=
→ −

f x Llim ( )
x c

if for every number 0ε >  there exists a corresponding number 0δ >  such that

f x L c x c( ) whenever .ε δ− < − < <

EXAMPLE 3  Prove that

=
→ +

xlim 0.
x 0

Solution Let 0ε >  be given. Here c 0=  and L 0= , so we want to find a 0δ >  such 
that

x x0 whenever 0 ,ε δ− < < <

or

x xwhenever 0 . x x0 so xε δ< < < ≥ =

Squaring both sides of this last inequality gives

x xif 0 .2ε δ< < <

If we choose 2δ ε=  we have

x xwhenever 0 ,2ε δ ε< < < =

or

x x0 whenever 0 .2ε ε− < < <

According to the definition, this shows that =
→ +

xlim 0
x 0

 (Figure 2.31).

Precise Definitions of One-Sided Limits

The formal definition of the limit in Section 2.3 is readily modified for one-sided limits.

The definitions are illustrated in Figures 2.29 and 2.30.
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102 Chapter 2  Limits and Continuity

Note that since 0 is an endpoint of the domain where x  is defined, it is also true that 
=

→
xlim 0

x 0
. 

The functions examined so far have had some kind of limit at each point of interest. In 
general, that need not be the case.

FIGURE 2.32 The function y xsin 1( )=  has neither a right-
hand nor a left-hand limit as x approaches zero (Example 4). The 
graph here omits values very near the y-axis.

x

y

0

-1

1

y = sin 1
x

Solution As x approaches zero, its reciprocal, x1 , grows without bound, and the values 
of sin x1( ) cycle repeatedly from 1−  to 1. There is no single number L that the function’s 
values stay increasingly close to as x approaches zero. This is true even if we restrict x to 
positive values or to negative values. The function has neither a right-hand limit nor a left-
hand limit at x 0= . 

FIGURE 2.33 The graph of f ( ) sinθ θ θ( )=  suggests that the right-
and left-hand limits as θ approaches 0 are both 1.

y

1

NOT TO SCALE

2pp-p-2p-3p 3p

y = (radians)sin u
u

u

THEOREM 6—Limit of the Ratio sin  as 0→

lim
sin

1 ( in radians)
0

θ
θ

θ=
θ→

 (1)

EXAMPLE 4  Show that y xsin 1( )=  has no limit as x approaches zero from either 
side (Figure 2.32).

Limits Involving sin( )

A central fact about sin θ θ( )  is that in radian measure its limit as 0θ →  is 1. We can see 
this in Figure 2.33 and confirm it algebraically using the Sandwich Theorem. You will  
see the importance of this limit in Section 3.5, where instantaneous rates of change of the 
trigonometric functions are studied.
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 2.4  One-Sided Limits 103

Proof  The plan is to show that the right-hand and left-hand limits are both 1. Then we 
will know that the two-sided limit is 1 as well.

To show that the right-hand limit is 1, we begin with positive values of θ less than 2π  
(Figure 2.34). Notice that

OAP OAP OATArea area sector  area .Δ < < Δ

We can express these areas in terms of θ as follows:

OAP

OAP r

OAT

Area 1
2

base height 1
2

1 sin 1
2

sin

Area sector 1
2

1
2

1
2

Area 1
2

base height 1
2

1 tan 1
2

sin .

2 2

θ θ

θ θ θ

θ θ

( )

( )

( )

( )

( )

Δ = × = =

= = =

Δ = × = =

 (2)

Thus,

1
2

sin 1
2

1
2

tan .θ θ θ< <

This last inequality goes the same way if we divide all three terms by the number 1 2 sin θ( ) , 
which is positive, since 0 2θ π< < :

1
sin

1
cos

.θ
θ θ

< <

Taking reciprocals reverses the inequalities:

1
sin

cos .
θ
θ

θ> >

Since lim cos 1
0

θ =
θ→ +

 (Example 12b, Section 2.2), the Sandwich Theorem gives

lim
sin

1.
0

θ
θ

=
θ→ +

To consider the left-hand limit, we recall that sin θ and θ  are both odd functions  
(Section 1.1). Therefore, f ( ) sinθ θ θ( )=  is an even function, with a graph symmetric about 
the y-axis (see Figure 2.33). This symmetry implies that the left-hand limit at 0 exists and 
has the same value as the right-hand limit:

lim
sin

1 lim
sin

,
0 0

θ
θ

θ
θ

= =
θ θ→ →− +

so lim sin 1
0

θ θ( ) =
θ→

 by Theorem 5. 

EXAMPLE 5  Show that (a) 
y
y

lim
cos 1

0
y 0

−
=

→
 and (b) 

x
x

lim
sin 2

5
2
5x 0

=
→

.

Solution 
 (a) Using the half-angle formula y ycos 1 2 sin 22 ( )= − , we calculate

y
y

y
y

lim
cos 1

lim
2 sin 2

lim
sin

sin

1 0 0.

yLet 2.

Eq. (1) and Example 12a
in Secion 2.2

y y0 0

2

0

θ
θ

θ

( )

( )( )

−
= −

= −

= − =

θ =
θ

→ →

→

The use of radians to measure angles is 
essential in Equation (2): The area of 
sector OAP is 2θ  only if θ is measured 
in radians.

FIGURE 2.34 The ratio TA OA tan θ= , 
and OA 1= , so TA tan θ= .

x

y

O

1

1

Q

tan u

P

sin u 

cos u 

1

T

A(1, 0)

u
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104 Chapter 2  Limits and Continuity

 (b) Equation (1) does not apply to the original fraction. We need a 2x in the denominator, 
not a 5x. We produce it by multiplying numerator and denominator by 2 5:

x
x

x
x

x
x

lim
sin 2

5
lim

2 5 sin 2
2 5 5

2
5

lim
sin 2

2
2
5

1 2
5

.

xEq. (1) applies with  2 .

x x

x

0 0

0

( )
( )

( )

=
⋅

⋅

=

= =

θ =

→ →

→
 

EXAMPLE 6  Find 
t t

t
lim

tan sec 2
3

.
t 0→

Solution From the definition of tan t and sec 2t, we have
t t

t t
t
t t

t
t t t

lim
tan sec 2

3
lim 1

3
1 sin

cos
1

cos 2

1
3

lim
sin 1

cos
1

cos 2

1
3

1 1 1 1
3

. Eq. (1) and Example 12b
in Section 2.2

t t

t

0 0

0

( )( )( )

= ⋅ ⋅ ⋅

= ⋅ ⋅

= =

→ →

→

 

EXAMPLE 7  Show that for nonzero constants A and B.
A
B

A
B

lim
sin
sin

.
0

θ
θ

=
θ→

Solution 
A
B

A
A

A B
B B

A
A

B
B

A
B

A
B

A
B

lim
sin
sin

lim
sin

sin
1

lim
sin

sin

lim 1 1

.

A B

u

u
u A

B

Multiply and divide by   and  .

lim
sin

1,  with 

lim
sin

1,  with 

0 0

0

0

u 0

0

θ
θ

θ
θ

θ θ
θ θ

θ
θ

θ
θ

( )( )

=

=

=

=

θ θ

θ

υ

υ
υ θ

= =

= =

θ θ

θ

θ

→ →

→

→ υ

→

→

 

Finding Limits Graphically

 1. Which of the following statements about the function =y f x( ) 
graphed here are true, and which are false?

 2. Which of the following statements about the function =y f x( ) 
graphed here are true, and which are false?

EXERCISES 2.4

x

y

21-1

1

0

y = f (x)
y = f (x)

x

y

0

1

2

1 2 3−1

 a. =
−→ +

f xlim ( ) 1
x 1

 b. =
→ −

f xlim ( ) 0
x 0

 c. =
→ −

f xlim ( ) 1
x 0

 d. =
→ →− +

f x f xlim ( ) lim ( )
x x0 0

 e. 
→

f xlim ( ) exists.
x 0

 f. =
→

f xlim ( ) 0
x 0

 g. =
→

f xlim ( ) 1
x 0

 h. =
→

f xlim ( ) 1
x 1

 i. =
→

f xlim ( ) 0
x 1

 j. =
→ −

f xlim ( ) 2
x 2

 k. 
−→ −

f xlim ( )
x 1

 does not exist. l. =
→ +

f xlim ( ) 0
x 2

 a. =
→− +

f xlim ( ) 1
x 1

 b. 
→

f xlim ( ) does not exist.
x 2

 c. =
→

f xlim ( ) 2
x 2

 d. =
→ −

f xlim ( ) 2
x 1

 e. =
→ +

f xlim ( ) 1
x 1

 f. 
→

f xlim ( ) does not exist.
x 1

 g. =
→ → −+

f x f xlim ( ) lim ( )
x x0 0

 h. ( )−
→

f x clim ( ) exists at every in the open interval 1,1 .
x c

 i. ( )
→

f x clim ( ) exists at every in the open interval 1, 3 .
x c

 j. =
−→ −

f xlim ( ) 0
x 1

 k. 
→ +

f xlim ( ) does not exist.
x 3
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 2.4  One-Sided Limits 105

 3. Let =
− <

+ >

⎧

⎨
⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

f x
x x

x x
( )

3 , 2

2
1, 2.

 6. Let g x x x( ) sin 1( )= .

x

y

0

21

1

1
xsin    ,

y 5
0, x # 0

x . 0

x

y

3

20 4

y = 3 - x

y =     + 1x
2

x
0

-1

1

y

y = 
"

x

y = -
"

x

11
p

1
2p

2
p

y = 
"

x sin 1
x

x

y

y = 3 - x

0

3

2- 2

y =
2
x

 a. Find 
→ +

f xlim ( )
x 2

 and 
→ −

f xlim ( )
x 2

.

 b. Does 
→

f xlim ( )
x 2

 exist? If so, what is it? If not, why not?

 c. Find 
→ −

f xlim ( )
x 4

 and 
→ +

f xlim ( )
x 4

.

 d. Does 
→

f xlim ( )
x 4

 exist? If so, what is it? If not, why not?

 4. Let =

− <

=

>

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

f x

x x

x
x x

( )

3 , 2

2, 2

2
, 2.

 a. Find 
→ → −+

f x f xlim ( ), lim ( )
x x2 2

, and f (2).

 b. Does 
→

f xlim ( )
x 2

 exist? If so, what is it? If not, why not?

 c. Find 
− −→ →− +

f x f xlim ( ) and lim ( )
x x1 1

.

 d. Does 
−→

f xlim ( )
x 1

 exist? If so, what is it? If not, why not?

 5. Let =
≤

>

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x
x

x
x

( )
0, 0

sin 1 , 0.

 a. Does 
→ +

f xlim ( )
x 0

 exist? If so, what is it? If not, why not?

 b. Does 
→ −

f xlim ( )
x 0

 exist? If so, what is it? If not, why not?

 c. Does 
→

f xlim ( )
x 0

 exist? If so, what is it? If not, why not?

 a. Does 
→ +

g xlim ( )
x 0

 exist? If so, what is it? If not, why not?

 b. Does 
→ −

g xlim ( )
x 0

 exist? If so, what is it? If not, why not?

 c. Does 
→

g xlim ( )
x 0

 exist? If so, what is it? If not, why not?

 7. a. Graph =
≠

=

⎧
⎨
⎪⎪

⎩⎪⎪
f x

x x

x
( )

, 1

0, 1.

3

 b. Find 
→ −

f xlim ( )
x 1

 and 
→ +

f xlim ( )
x 1

.

 c. Does 
→

f xlim ( )
x 1

 exist? If so, what is it? If not, why not?

 8. a. Graph =
− ≠

=

⎧
⎨
⎪⎪

⎩⎪⎪
f x

x x

x
( )

1 , 1

2, 1.

2

 b. Find 
→ +

f xlim ( )
x 1

 and 
→ −

f xlim ( )
x 1

.

 c. Does 
→

f xlim ( )
x 1

 exist? If so, what is it? If not, why not?

Graph the functions in Exercises 9 and 10. Then answer these questions.

 a. What are the domain and range of f?

 b. At what points c, if any, does 
→

f xlim ( )
x c

 exist?

 c. At what points does the left-hand limit exist but not the  
right-hand limit?

 d. At what points does the right-hand limit exist but not the  
left-hand limit?

 9. =

− ≤ <

≤ <
=

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

f x

x x

x
x

( )

1 , 0 1

1, 1 2
2, 2

2

 10. =

− ≤ < < ≤

=
< − >

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

f x

x x x

x
x x

( )

, 1 0, or 0 1

1, 0
0, 1 or 1

Finding One-Sided Limits Algebraically
Find the limits in Exercises 11–20.

 11. +
+→− −

x
x

lim 2
1x 0.5

 12. −
+→ +

x
x

lim 1
2x 1

 13. ( )( )+
+
+→− +

x
x

x
x x

lim
1

2 5
x 2 2
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106 Chapter 2  Limits and Continuity

 14. ( )( )( )+
+ −

→ − x
x

x
xlim 1

1
6 3

7x 1

 15. + + −
→ +

h h
h

lim 4 5 5
h 0

2

 16. − + +
→ −

h h
h

lim 6 5 11 6
h 0

2

 17. a. x x
x

lim 3   2
2x 2

( )+ +
+→− +

 b. ( )+ +
+→− −

x x
x

lim 3   2
2x 2

 18. a. 
x x
x

lim
2 1

1x 1

( )−
−→ +

 b. 
x x
x

lim
2 1

1x 1

( )−
−→ −

 19. a. 
x

x
lim

sin
x 0→ +

 b. 
x

x
lim

sin
x 0→ −

 20. a. 
x

x
lim

1 cos
cos 1x 0

−
−→ +

 b. 
x
x

lim
cos 1
cos 1x 0

−
−→ −

Use the graph of the greatest integer function y x⎣ ⎦= , Figure 1.10 in 
Section 1.1, to help you find the limits in Exercises 21 and 22.

 21. a. θ
θ

⎣ ⎦
θ→ +
lim

3
 b. θ

θ
⎣ ⎦

θ→ −
lim

3

 22. a. ⎣ ⎦( )−
→ +

t tlim
t 4

 b. ⎣ ⎦( )−
→ −

t tlim
t 4

Using lim
sin

1
0

=
→

Find the limits in Exercises 23–46.

 23. lim sin 2
20

θ
θθ→

 24. 
kt

t
klim

sin
(  constant)

t 0→

 25. 
y

y
lim

sin 3
4y 0→

 26. h
h

lim
sin 3h 0→ −

 27. 
x

x
lim

tan 2
x 0→

 28. t
t

lim 2
tant 0→

 29. 
x x

x
lim

csc 2
cos 5x 0→

 30. x x xlim 6 cot csc 2
x 0

2 ( )( )
→

 31. 
x x x

x x
lim

cos
sin cosx 0

+
→

 32. 
x x x

x
lim

sin
2x 0

2 − +
→

 33. lim
1 cos

sin 20

θ
θ

−
θ→

 34. 
x x x

x
lim

cos
sin 3x 0 2

−
→

 35. 
t

t
lim

sin 1 cos
1 cost 0

( )−
−→

 36. 
h

h
lim

sin sin
sinh 0

( )
→

 37. lim
sin

sin 20

θ
θθ→

 38. 
x
x

lim
sin 5
sin 4x 0→

 39. lim cos
0
θ θ

θ→
 40. lim sin cot 2

0
θ θ

θ→

 41. 
x
x

lim
tan 3
sin 8x 0→

 42. 
y y

y y
lim

sin 3 cot 5
cot 4y 0→

 43. lim
tan
cot 30 2

θ
θ θθ→

 44. lim
cot 4

sin cot 20 2 2

θ θ
θ θθ→

 45. 
x

x
lim

1 cos 3
2x 0

−
→

 46. 
x x

x
lim

cos cos
x 0

2

2

−
→

Theory and Examples

 47. Once you know 
→ +

f xlim ( )
x a

 and 
→ −

f xlim ( )
x a

 at an interior point of  

the domain of   f, do you then know 
→

f xlim ( )
x a

? Give reasons for 
your answer.

 48. If you know that 
→

f xlim ( )
x c

 exists at an interior point of a domain 

interval of  f, can you find its value by calculating 
→ +

f xlim ( )
x c

? Give 
reasons for your answer.

 49. Suppose that   f   is an odd function of x. Does knowing that 
=

→ +
f xlim ( ) 3

x 0
 tell you anything about 

→ −
f xlim ( )

x 0
? Give reasons 

for your answer.

 50. Suppose that   f   is an even function of x. Does knowing that 
=

→ −
f xlim ( ) 7

x 2
 tell you anything about either 

−→ −
f xlim ( )

x 2
 or 

−→ +
f xlim ( )

x 2
? Give reasons for your answer.

Formal Definitions of One-Sided Limits

 51. Given 0ε > , find an interval I 5, 5 , 0δ δ( )= + > , such that 
if x lies in I, then x 5 ε− < . What limit is being verified and 
what is its value?

 52. Given 0ε > , find an interval I 4 , 4 , 0δ δ( )= − > , such that 
if x lies in I, then x4 ε− < . What limit is being verified and 
what is its value?

Use the definitions of right-hand and left-hand limits to prove the limit 
statements in Exercises 53 and 54.

 53. = −
→ −

x
x

lim 1
x 0

 54. −
−

=
→ +

x
x

lim 2
2

1
x 2

 55. Greatest integer function Find (a) ⎣ ⎦
→ +

xlim
x 400

 and (b) ⎣ ⎦
→ −

xlim
x 400

;  

then use limit definitions to verify your findings. (c) Based on 
your conclusions in parts (a) and (b), can you say anything about 

⎣ ⎦
→

xlim
x 400

? Give reasons for your answer.

 56. One-sided limits Let 
( )

=
<

>

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x
x x x

x x
( )

sin 1 , 0

, 0.

2

Find (a) 
→ +

f xlim ( )
x 0

 and (b) 
→ −

f xlim ( );
x 0

 then use limit definitions  

to verify your findings. (c) Based on your conclusions in parts (a) 
and (b), can you say anything about 

→
f xlim ( )?

x 0
 Give reasons for 

your answer.

2.5 Limits Involving Infinity; Asymptotes of Graphs

In this section we investigate the behavior of a function when the magnitude of the indepen-
dent variable x becomes increasingly large, or → ±∞x . We further extend the concept of 
limit to infinite limits. Infinite limits provide useful symbols and language for describing the 
behavior of functions whose values become arbitrarily large in magnitude. We use these 
ideas to analyze the graphs of functions having horizontal or vertical asymptotes.
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 2.5  Limits Involving Infinity; Asymptotes of Graphs 107

DEFINITIONS

1. We say that f x( ) has the limit L as x approaches infinity and write

=
→∞

f x Llim ( )
x

if, for every number ε > 0, there exists a corresponding number M such that 
for all x in the domain of f

f x L x M( ) whenever .ε− < >

2. We say that f x( ) has the limit L as x approaches negative infinity and write

=
→−∞

f x Llim ( )
x

if, for every number ε > 0, there exists a corresponding number N such that 
for all x in the domain of f

f x L x N( ) whenever .ε− < <

FIGURE 2.35 The graph of =y x1  
approaches 0 as x → ∞ or x → −∞.

y

0

1

-1
1-1 2 3 4

2

3

4

x

1
xy =

Finite Limits as → ±∞x

The symbol for infinity ( )∞  does not represent a real number. We use ∞ to describe the 
behavior of a function when the values in its domain or range outgrow all finite bounds. For 
example, the function =f x x( ) 1  is defined for all ≠x 0 (Figure 2.35). When x is positive 
and becomes increasingly large, x1  becomes increasingly small. When x is negative and its 
magnitude becomes increasingly large, x1  again becomes small. We summarize these obser-
vations by saying that =f x x( ) 1  has limit 0 as → ∞x  or → −∞x , or that 0 is a limit of 

=f x x( ) 1  at infinity and at negative infinity. Here are precise definitions for the limit of a 
function whose domain contains positive or negative numbers of unbounded magnitude.

FIGURE 2.36 The geometry behind the 
argument in Example 1.

x

y
No matter what
positive number e is,
the graph enters
this band at x =
and stays.

1
e

y = e

M = 1
e

N = - 1
e

y = -e
0

No matter what
positive number e is,
the graph enters
this band at x = -
and stays.

1
e

e

-e

y = 1
x

Intuitively, =
→∞

f x Llim ( )
x

 if, as x moves increasingly far from the origin in the positive 

direction, f x( ) gets arbitrarily close to L. Similarly, =
→−∞

f x Llim ( )
x

 if, as x moves increas-

ingly far from the origin in the negative direction, f x( ) gets arbitrarily close to L.
The strategy for calculating limits of functions as → +∞x  or as → −∞x  is similar 

to the one for finite limits in Section 2.2. There we first found the limits of the constant and 
identity functions =y k  and =y x. We then extended these results to other functions by 
applying Theorem 1 on limits of algebraic combinations. Here we do the same thing, 
except that the starting functions are =y k  and =y x1  instead of =y k  and =y x.

The basic facts to be verified by applying the formal definition are

= =
→±∞ →±∞

k k
x

lim and lim 1 0.
x x

 (1)

We prove the second result in Example 1, and leave the first to Exercises 93 and 94.

EXAMPLE 1  Show that

 (a) =
→∞ x
lim 1 0
x

 (b) =
→−∞ x
lim 1 0.

x

Solution 
 (a) Let ε > 0 be given. We must find a number M such that

ε− = < >
x x

x M1 0 1 whenever .

The implication will hold if ε=M 1  or any larger positive number (Figure 2.36). This 
proves ( ) =

→∞
xlim 1 0

x
.
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108 Chapter 2  Limits and Continuity

 (b) Let ε > 0 be given. We must find a number N such that

ε− = < <
x x

x N1 0 1 whenever .

The implication will hold if ε= −N 1  or any number less than ε−1  (Figure 2.36). 
This proves ( ) =

→−∞
xlim 1 0.

x
 

THEOREM 7

All the Limit Laws in Theorem 1 are true when we replace 
→

lim
x c

 by 
→∞
lim
x

 or 
→−∞
lim

x
. 

That is, the variable x may approach a finite number c or  .±∞

EXAMPLE 2  The properties in Theorem 7 are used to calculate limits in the same 
way as when x approaches a finite number c.

 
(a)

 x x
lim 5 1 lim 5 lim 1

5 0 5

Sum Rule

Known limits

x x x
( )+ = +

= + =
→∞ →∞ →∞

 

(b)

 

π π

π

π

= ⋅ ⋅

= ⋅ ⋅

= ⋅ ⋅ =

→−∞ →−∞

→−∞ →−∞ →−∞

x x x

x x

lim 3 lim 3 1 1

lim 3 lim 1 lim 1

3 0 0 0

Product Rule

Known limits

x x

x x x

2

 

Limits at infinity have properties similar to those of finite limits.

FIGURE 2.37 The graph of the 
function in Example 3a. The graph 
approaches the line =y 5 3 as x  
increases.

x

y

0

-1

-2

1

2

5-5 10

y = 5x2 + 8x - 3
3x2 + 2

NOT TO SCALE

Line y = 5
3

Limits at Infinity of Rational Functions

To determine the limit of a rational function as → ±∞x , we first divide the numerator 
and denominator by the highest power of x in the denominator. The result then depends on 
the degrees of the polynomials involved.

EXAMPLE 3  These examples illustrate what happens when the degree of the numera-
tor is less than or equal to the degree of the denominator.

 
(a)

 

( ) ( )
( )

+ −
+

=
+ −

+

= + −
+

=

→∞ →∞

x x
x

x x

x
lim 5 8 3

3 2
lim

5 8 3

3 2

5 0 0
3 0

5
3

x
Divide numerator and
denominator by  .

See Fig. 2.37.

x x

2

2

2

2 2

 
(b)

 

( ) ( )
( )

+
−

=
+

−

= +
−

=

→−∞ →−∞

x
x

x x

x
lim 11 2

2 1
lim

11 2

2 1

0 0
2 0

0

x
Divide numerator and
denominator by  .

See Fig. 2. 38.

x x3

2 3

3 3

 

Cases for which the degree of the numerator is greater than the degree of the denomi-
nator are illustrated in Examples 10 and 14.

Horizontal Asymptotes

If the distance between the graph of a function and some fixed line approaches zero as a 
point on the graph moves increasingly far from the origin, we say that the graph approaches 
the line asymptotically and that the line is an asymptote of the graph.
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 2.5  Limits Involving Infinity; Asymptotes of Graphs 109

FIGURE 2.38 The graph of the 
function in Example 3b. The graph 
approaches the x-axis as x  increases.

x

y

0

-2

-4

-6

-8

2-2-4 4 6

2

4

6

8
y = 11x + 2

2x3 - 1

DEFINITION A line =y b is a horizontal asymptote of the graph of a func-
tion =y f x( ) if either

= =
→∞ →−∞

f x b f x blim ( ) or lim ( ) .
x x

The graph of a function can have zero, one, or two horizontal asymptotes, depending 
on whether the function has limits as → ∞x  and as → −∞x .

The graph of the function

f x x x
x

( ) 5 8 3
3 2

2

2
= + −

+

sketched in Figure 2.37 (Example 3a) has the line =y 5 3 as a horizontal asymptote on 
both the right and the left because

= =
→∞ →−∞

f x f xlim ( ) 5
3

and lim ( ) 5
3

.
x x

Looking at =f x x( ) 1  (see Figure 2.35), we observe that the x-axis is an asymptote 
of the curve on the right because

=
→∞ x
lim 1 0
x

and on the left because

=
→−∞ x
lim 1 0.

x

We say that the x-axis is a horizontal asymptote of the graph of =f x x( ) 1 .

FIGURE 2.39 The graph of the 
function in Example 4 has two 
horizontal asymptotes.

0

-2

2

x

y

y = -1

f(x) = x3 - 2
0 x 0 3 + 1

y = 1

EXAMPLE 4  Find the horizontal asymptotes of the graph of

f x x
x

( ) 2
1

.
3

3= −
+

Solution We calculate the limits as → ±∞x .

( )
( )

( )
( )( )

> −
+

= −
+

=
−
+

=

< −
+

= −
− +

=
−

− +
= −

→∞ →∞ →∞

→−∞ →−∞ →−∞

x x
x

x
x

x
x

x x
x

x
x

x
x

For 0: lim 2
1

lim 2
1

lim
1 2
1 1

1.

For 0: lim 2
1

lim 2
1

lim
1 2
1 1

1.

x x x

x x x

3

3

3

3

3

3

3

3

3

3

3

3

The horizontal asymptotes are = −y 1 and =y 1. The graph is displayed in Figure 2.39. 
Notice that the graph crosses the horizontal asymptote = −y 1 for a positive value of x. 

EXAMPLE 5  The x-axis (the line =y 0) is a horizontal asymptote of the graph of 
=y e x because

=
→−∞

elim 0.
x

x

To see this, we use the definition of a limit as x approaches −∞. So let ε > 0 be given, but 
arbitrary. We must find a constant N such that

ε− < <e x N0 whenever .x

Now − =e e0x x, so the condition that needs to be satisfied whenever <x N  is

ε<e .x
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110 Chapter 2  Limits and Continuity

FIGURE 2.40 The graph of y e x=  
approaches the x-axis as x → −∞ 
(Example 5).

1

x

y

y = ex

N = ln e

e

FIGURE 2.41 The line y 1=  is a  
horizontal asymptote of the function 
graphed here (Example 6b).

1

-1 1
x

y

y = x sin 1
x

Let =x N  be the number where e x ε= . Since e x is an increasing function, if <x N , 
then ε<e  x . We find N by taking the natural logarithm of both sides of the equation 

ε=e N , so N ln ε=  (see Figure 2.40). With this value of N the condition is satisfied,  
and we conclude that =

→−∞
elim 0.

x

x  

EXAMPLE 6  Find (a) ( )
→∞

xlim sin 1
x

 and (b) x xlim sin 1 .
x

( )
→±∞

Solution 
 (a) We introduce the new variable =t x1 . From Example 1, we know that → +t 0  as 

→ ∞x  (see Figure 2.35). Therefore,

x
tlim sin 1 lim sin 0.

x t 0
= =

→∞ → +

 (b) We calculate the limits as → ∞x  and → −∞x :

x
x

t
t

x
x

t
t

lim sin 1 lim
sin

1 and lim sin 1 lim
sin

1.
x t x t0 0

= = = =
→∞ → →−∞ →+ −

The graph is shown in Figure 2.41, and we see that the line =y 1 is a horizontal 
asymptote. 

Similarly, we can investigate the behavior of ( )=y f x1  as →x 0 by investigating 
=y f t( ) as → ±∞t , where =t x1 .

Sometimes it is helpful to transform a limit in which x approaches ∞ to a new limit by 
setting =t x1  and seeing what happens as t approaches 0.

FIGURE 2.42 The graph of =y e x1  
for <x 0 shows =

→ −
elim 0

x

x

0

1   
(Example 7).

y = e1�x

-1-2-3 0

0.2
0.4
0.6
0.8

1

y

x

EXAMPLE 7  Find 
→ −

elim
x

x

0

1 .

Solution We let =t x1 . From Figure 2.35, we can see that → −∞t  as → −x 0 . (We 
make this idea more precise further on.) Therefore,

= =
→ →−∞−

e elim lim 0 Example 5
x

x

t

t

0

1

(Figure 2.42). 

The Sandwich Theorem also holds for limits as → ±∞x . You must be sure, though, 
that the function whose limit you are trying to find stays between the bounding functions 
for all very large x in the positive direction (if → ∞x ) or all very large x in the negative 
direction (if → −∞x ).

EXAMPLE 8  Using the Sandwich Theorem, find the horizontal asymptote of the curve

y
x

x
2

sin
.= +

Solution We are interested in the behavior as → ±∞x . Since

x
x x

0
sin 1≤ ≤
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 2.5  Limits Involving Infinity; Asymptotes of Graphs 111

FIGURE 2.43 A curve may cross one of 
its asymptotes infinitely often (Example 8).

x

y

1

0

2

2pp-p-2p-3p 3p

y = 2 + sin x
x

and =
→±∞

xlim 1 0,
x

 we have x xlim sin 0
x

( ) =
→±∞

 by the Sandwich Theorem. Hence,

x
x

lim 2
sin

2 0 2,
x

( )+ = + =
→±∞

and the line =y 2 is a horizontal asymptote of the curve on both left and right (Figure 2.43).
This example illustrates that a curve may cross one of its horizontal asymptotes many 

times. 

EXAMPLE 9  Find ( )− +
→∞

x xlim 16 .
x

2

Solution Both of the terms x and +x 162  approach infinity as → ∞x , so what hap-
pens to the difference in the limit is unclear (we cannot subtract ∞ from ∞ because the 
symbol does not represent a real number). In this situation we can multiply the numerator 
and the denominator by the conjugate radical expression to obtain an equivalent algebraic 
expression:

x x x x x x

x x

x x

x x x x

lim 16 lim 16 16

16

lim
16

16
lim 16

16
.

Multiply and
divide by the
conjugate.x x

x x

2 2
2

2

2 2

2 2

( ) ( )

( )

− + = − + + +
+ +

= − +
+ +

= −
+ +

→∞ →∞

→∞ →∞

As → ∞x , the denominator in this last expression becomes arbitrarily large, while the 
numerator remains constant, so we see that the limit is 0. We can also obtain this result by 
a direct calculation using the Limit Laws:

x x
x

x
x x

lim 16

16
lim

16

1 16

0
1 1 0

0.
x x2 2

2 2

−
+ +

=
−

+ +
=

+ +
=

→∞ →∞

 

FIGURE 2.44 The graph of the function 
in Example 10 has an oblique asymptote.

x

y

0 1 2 3 4 x-1

1

-1

-2

-3

2

3

4

5

6

x = 2 Oblique
asymptote

The vertical distance
between curve and
line goes to zero as x :{∞ 

y =     + 1x
2

y = = +  1 +x2 - 3
2x - 4

1
2x - 4

x
2

Oblique Asymptotes

If the degree of the numerator of a rational function is 1 greater than the degree of the 
denominator, the graph has an oblique or slant line asymptote. We find an equation for 
the asymptote by dividing numerator by denominator to express  f  as a linear function plus 
a remainder that goes to zero as → ±∞x .

EXAMPLE 10  Find the oblique asymptote of the graph of

f x x
x

( ) 3
2 4

2
= −

−

in Figure 2.44.

Solution We are interested in the behavior as → ±∞x . We divide ( )−x2 4  into 
( )−x 3 :2

+

− + −

−

−

−

x

x x x

x x

x

x

2
1

2 4 0 3

2

2 3

2 4

1

2

2
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112 Chapter 2  Limits and Continuity

FIGURE 2.45 One-sided infinite limits:

= ∞ = −∞
→ →+ −x x
lim 1 and lim 1 .

x x0 0

You can get as high
as you want by
taking x close enough
to 0. No matter how
high B is, the graph
goes higher.

x

y

You can get as low as
you want by taking
x close enough to 0.

No matter how
low -B is, the
graph goes lower.

x

x

B

-B

y = 1
x

0

Notice in Example 10 that if the degree of the numerator in a rational function is 
greater than the degree of the denominator, then the limit as x  becomes large is +∞ or 
−∞, depending on the signs assumed by the numerator and denominator.

Infinite Limits

Let us look again at the function =f x x( ) 1 . As → +x 0 , the values of  f  grow without 
bound, eventually reaching and surpassing every positive real number. That is, given any 
positive real number B, however large, the values of  f  become larger still (Figure 2.45).

Thus,  f  has no limit as → +x 0 . It is nevertheless convenient to describe the behavior 
of  f  by saying that f x( ) approaches ∞ as → +x 0 . We write

= = ∞
→ →+ +

f x
x

lim ( ) lim 1 .
x x0 0

In writing this equation, we are not saying that the limit exists. Nor are we saying that there 
is a real number ∞, for there is no such number. Rather, this expression is just a concise 
way of saying that ( )

→ +
xlim 1

x 0
 does not exist because x1  becomes arbitrarily large and 

positive as → +x 0 .
As → −x 0 , the values of =f x x( ) 1  become arbitrarily large and negative. Given 

any negative real number −B, the values of  f  eventually lie below −B. (See Figure 2.45.) 
We write

= = −∞
→ →− −

f x
x

lim ( ) lim 1 .
x x0 0

Again, we are not saying that the limit exists and equals the number −∞. There is no real 
number −∞. We are describing the behavior of a function whose limit as → −x 0  does not 
exist because its values become arbitrarily large and negative.

FIGURE 2.46 Near x 1,=  the function  
( )= −y x1 1  behaves the way the  

function =y x1  behaves near x 0.=  
Its graph is the graph of =y x1  shifted 1 
unit to the right (Example 11).

x

y

1

0 1 2 3-1

y =
x - 1

1

EXAMPLE 11  Find 
−→ + x

lim 1
1x 1
 and 

−→ − x
lim 1

1
.

x 1

Geometric Solution The graph of y x1 1( )= −  is the graph of =y x1  shifted 1 unit 
to the right (Figure 2.46). Therefore, ( )= −y x1 1  behaves near 1 exactly the way 

=y x1  behaves near 0:

−
= ∞

−
= −∞

→ →+ −x x
lim 1

1
and lim 1

1
.

x x1 1

Analytic Solution Think about the number −x 1 and its reciprocal. As → +x 1 , we 
have ( )− → +x 1 0  and ( )− → ∞x1 1 . As → −x 1 , we have ( )− → −x 1 0  and 

( )− → −∞x1 1 . 

This tells us that

f x x
x

x
x

( ) 3
2 4 2

1 1
2 4

glinear remainderx

2

( )
� ��� ����

( )( )= −
−

= + +
−

As → ±∞x , the remainder, whose magnitude gives the vertical distance between the 
graphs of  f  and g, goes to zero, making the slanted line

g x x( )
2

1= +

an asymptote of the graph of  f  (Figure 2.44). The line =y g x( ) is an asymptote both to 
the right and to the left. 
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 2.5  Limits Involving Infinity; Asymptotes of Graphs 113

FIGURE 2.47 The graph of f x( ) in 
Example 12 approaches infinity as x 0→ .

x

y

No matter how
high B is, the graph
goes higher.

B

0x x

f (x) = 1
x2

EXAMPLE 12  Discuss the behavior of

= →f x
x

x( ) 1 as 0.
2

Solution As x approaches zero from either side, the values of x1 2  are positive and 
become arbitrarily large (Figure 2.47). This means that

= = ∞
→ →

f x
x

lim ( ) lim 1 .
x x0 0 2

The function =y x1  shows no consistent behavior as →x 0. We have → ∞x1  if 
→ +x 0 , but → −∞x1  if → −x 0 . All we can say about ( )

→
xlim 1

x 0
 is that it does not 

exist. The function =y x1 2  is different. Its values approach infinity as x approaches zero 
from either side, so we can say that ( ) = ∞

→
xlim 1 .

x 0

2  

EXAMPLE 13  These examples illustrate that rational functions can behave in various 
ways near zeros of the denominator.

 (a) 
( ) ( )

( )( )

−
−

= −
− +

= −
+

=
→ → →

x
x

x
x x

x
x

lim 2
4

lim 2
2 2

lim 2
2

0
xCan substitute 2 for   after

algebraic manipulation
eliminates division by 0.x x x2

2

2 2

2

2

 (b) 
( )( )

−
−

= −
− +

=
+

=
→ → →

x
x

x
x x x

lim 2
4

lim 2
2 2

lim 1
2

1
4

xAgain substitute 2 for 
after algebraic manipulation
eliminates division by 0.x x x2 2 2 2

 (c) x
x

x
x x

lim 3
4

lim 3
2 2 x x

The values are negative
for  2,   near 2.x x2 2 2 ( )( )

−
−

= −
− +

= −∞ >→ →+ +

 (d) x
x

x
x x

lim 3
4

lim 3
2 2 x x

The values are positive
for  2,   near 2.x x2 2 2 ( )( )

−
−

= −
− +

= ∞ <→ →− −

 (e) 
( )( )

−
−

= −
− +→ →

x
x

x
x x

lim 3
4

lim 3
2 2

 does not exist. Limits from left and from
right differ.x x2 2 2

 (f) 
( )

( )

( ) ( )

−
−

= − −
−

= −
−

= −∞
=→ → →

x
x

x
x x

lim 2
2

lim 2
2

lim 1
2 x

Denominator is positive,
so values are negative 
near  2.x x x2 3 2 3 2 2

EXAMPLE 14  Find − +
+ −→−∞

x x
x x

lim 2 6 1
3 7

.
x

5 4

2

Solution We are asked to find the limit of a rational function as → −∞x , so we divide 
the numerator and denominator by x 2, the highest power of x in the denominator:

( )

− +
+ −

= − +
+ −

= − +
+ −

= −∞ → − → −∞

→−∞ →−∞

−

− −

→−∞

−

− −

−

x x
x x

x x x
x x

x x x
x x

lim 2 6 1
3 7

lim 2 6
3 7

lim 2 3
3 7

, x x0, 3

x x

x

5 4

2

3 2 2

1 2

2 2

1 2

n

because the numerator tends to −∞ while the denominator approaches 3 as → −∞x . 

In parts (a) and (b), the effect of the zero in the denominator at =x 2 is canceled 
because the numerator is zero there also. Thus a finite limit exists. This is not true in part 
(f), where cancellation still leaves a zero factor in the denominator. 
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114 Chapter 2  Limits and Continuity

FIGURE 2.48 For δ δ− < < +c x c , 
the graph of f x( ) lies above the line 
y B.=

y

x
0

B

y = f (x)

c - d c + d
c

FIGURE 2.49 For δ δ− < < +c x c , 
the graph of f x( ) lies below the line 

= −y B.

x

y

0

-B

y = f (x)

c - d c + d
c

DEFINITIONS
1. We say that f x( ) approaches infinity as x approaches c, and write

= ∞
→

f xlim ( ) ,
x c

if for every positive real number B there exists a corresponding δ > 0 such 
that

f x B x c( ) whenever 0 .δ> < − <

2. We say that f x( ) approaches negative infinity as x approaches c, and write

= −∞
→

f xlim ( ) ,
x c

if for every negative real number −B there exists a corresponding δ > 0  
such that

f x B x c( ) whenever 0 .δ< − < − <

Precise Definitions of Infinite Limits

Instead of requiring f x( ) to lie arbitrarily close to a finite number L for all x sufficiently close 
to c, the definitions of infinite limits require f x( ) to lie arbitrarily far from zero. Except for 
this change, the language is very similar to what we have seen before. Figures 2.48 and 2.49 
accompany these definitions.

EXAMPLE 15  Prove that  = ∞
→ x

lim 1 .
x 0 2

Solution Given >B 0, we want to find δ > 0 such that

δ> < − <
x

B x1 whenever 0 0 .
2

Now,

> <
x

B x
B

1 if and only if 1
2

2

or, equivalently,

<x
B

1 .

Thus, choosing δ = B1  (or any smaller positive number), we see that

δ
δ

< < > ≥x
x

Bif 0 then 1 1 .
2 2

Therefore, by definition,

= ∞
→ x

lim 1 .
x 0 2

 

The precise definitions of one-sided infinite limits at c are similar and are stated in the 
exercises.
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 2.5  Limits Involving Infinity; Asymptotes of Graphs 115

FIGURE 2.50 The coordinate axes are 
asymptotes of both branches of the hyper-
bola =y x1 .

x
0

1

1

y

Horizontal
asymptote,
y = 0

Horizontal
asymptote

Vertical asymptote

Vertical asymptote,
x = 0

y = 1
x

FIGURE 2.51 The lines y 1=  and 
x 2= −  are asymptotes of the curve in 
Example 16.

x

y

0
-1

-2

-3

-4

1-1-2-3-4-5

1

2 3

2

3

4

5

6

y = x + 3
x + 2

= 1 + 1
x + 2

Vertical
asymptote,
x = -2

Horizontal
asymptote,
y = 1

DEFINITION A line =x a is a vertical asymptote of the graph of a function 
=y f x( ) if either

f x f xlim ( ) or lim ( ) .
x a x a

= ±∞ = ±∞
→ →+ −

EXAMPLE 16  Find the horizontal and vertical asymptotes of the curve

y x
x

3
2

.= +
+

Solution We are interested in the behavior as → ±∞x  and the behavior as → −x 2, 
where the denominator is zero.

The asymptotes are revealed if we recast the rational function as a polynomial with a 
remainder, by dividing ( )+x 2  into ( )+x 3 :

+ +

+

x x

x

2 3
1

2

1

This result enables us to rewrite y as

y
x

1 1
2

.= +
+

We see that the curve in question is the graph of =f x x( ) 1  shifted 1 unit up and  
2 units left (Figure 2.51). The asymptotes, instead of being the coordinate axes, are now the 
lines =y 1 and = −x 2. As → ±∞x , the curve approaches the horizontal asymptote 

=y 1; as → −x 2, the curve approaches the vertical asymptote = −x 2. 

We say that the line =x 0 (the y-axis) is a vertical asymptote of the graph of =f x x( ) 1 . 
Observe that the denominator is zero at =x 0 and the function is undefined there.

EXAMPLE 17  Find the horizontal and vertical asymptotes of the graph of

f x
x

( ) 8
4

.
2

= −
−

Solution We are interested in the behavior as → ±∞x  and as → ±x 2, where the 
denominator is zero. Notice that  f  is an even function of x, so its graph is symmetric with 
respect to the y-axis.

 (a) The behavior as → ±∞x . Since =
→∞

f xlim ( ) 0,
x

 the line =y 0 is a horizontal 

asymptote of the graph to the right. By symmetry it is an asymptote to the left as well 

Vertical Asymptotes

Notice that the distance between a point on the graph of =f x x( ) 1  and the y-axis 
approaches zero as the point moves nearly vertically along the graph and away from the 
origin (Figure 2.50). The function =f x x( ) 1  is unbounded as x approaches 0 because

= ∞ = −∞
→ →+ −x x
lim 1 and lim 1 .

x x0 0
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116 Chapter 2  Limits and Continuity

FIGURE 2.54 The graphs of sec x and tan x have infinitely many vertical asymptotes 
(Example 19). 

x

y

0

1
x

y

0

1

-1

y = sec x y = tan x

p
2

p
2

p- p 3p
2

3p
2

--p
2

p
2

p-p 3p
2

3p
2

--

EXAMPLE 19  The curves

y x
x

y x
x
x

sec 1
cos

and tan
sin
cos

= = = =

both have vertical asymptotes at odd-integer multiples of π 2, which are the points where 
xcos 0=  (Figure 2.54).

(Figure 2.52). Notice that the curve approaches the x-axis from only the negative side 
(or from below). Also, =f (0) 2.

 (b) The behavior as → ±x 2. Since

f x f xlim ( ) and lim ( ) ,
x x2 2

= −∞ = ∞
→ →+ −

the line =x 2 is a vertical asymptote both from the right and from the left. By sym-
metry, the line = −x 2 is also a vertical asymptote.

There are no other asymptotes because  f  has a finite limit at all other points. 

EXAMPLE 18  The graph of the natural logarithm function has the y-axis (the line 
=x 0) as a vertical asymptote. We see this from the graph sketched in Figure 2.53 (which 

is the reflection of the graph of the natural exponential function across the line =y x) and 
the fact that the x-axis is a horizontal asymptote of =y e x (Example 5). Thus,

xlim ln .
x 0

= −∞
→ +

The same result is true for y xloga=  whenever >a 1. 

FIGURE 2.53 The vertical line x 0=   
is a vertical asymptote of the natural  
logarithm function (Example 18).

-1 1 2 3 4
-1

1

2

3

4

x

y
y = ex

y = ln x

FIGURE 2.52 Graph of the function 
in Example 17. Notice that the curve 
approaches the x-axis from only one side. 
Asymptotes do not have to be two-sided.

x

y

0 1-1

1

Vertical
asymptote, x = 2

Horizontal
asymptote, y = 02

3
4
5
6
7
8

3 42-2-3-4

Vertical
asymptote,

x = -2

y = - 8
x2 - 4

Dominant Terms

In Example 10 we saw that by using long division, we can rewrite the function

f x x
x

( ) 3
2 4

2
= −

−
as a linear function plus a remainder term:

f x x
x

( )
2

1 1
2 4

.( )( )= + +
−
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 2.5  Limits Involving Infinity; Asymptotes of Graphs 117

This tells us immediately that

x f x x

x f x
x

For large: ( )
2

1

For near 2: ( ) 1
2 4

x
1

2 4
is near 0.

This term is very large in absolute value.

≈ +

≈
−

−

If we want to know how  f   behaves, this is one possible way to find out. It behaves like 
( )= +y x 2 1 when x  is large and the contribution of ( )−x1 2 4  to the total value 

of   f   is insignificant. It behaves like ( )−x1 2 4  when x is so close to 2 that ( )−x1 2 4  
makes the dominant contribution.

We say that ( ) +x 2 1 dominates when x approaches ∞ −∞or , and we say that 
( )−x1 2 4  dominates when x approaches 2. Dominant terms like these help us predict a 

function’s behavior.

FIGURE 2.55 The graphs of  f  
and g are (a) distinct for x  small, 
and (b) nearly identical for x  large 
(Example 20).

x

y

-20 -10 10 20

-100,000

0

100,000

300,000

500,000

(b)

x

y

f (x)

-2 -1 1 2

-5

0

5

10

15

20

(a)

g(x) = 3x4

EXAMPLE 20  Let = − + − +f x x x x x( ) 3 2 3 5 64 3 2  and =g x x( ) 3 .4  Show 
that although  f  and g are quite different for numerically small values of x, they behave sim-
ilarly for very large x , in the sense that their ratios approach 1 as → ∞x  or → −∞x .

Solution The graphs of  f  and g behave quite differently near the origin (Figure 2.55a), 
but appear as virtually identical on a larger scale (Figure 2.55b).

We can test that the term x3 4 in  f, represented graphically by g, dominates the polyno-
mial   f   for numerically large values of x by examining the ratio of the two functions as 

→ ±∞x . We find that

( )

= − + − +

= − + − +

=

→±∞ →±∞

→±∞

f x
g x

x x x x
x

x x x x

lim
( )
( )

lim 3 2 3 5 6
3

lim 1 2
3

1 5
3

2

1,

x x

x

4 3 2

4

2 3 4

which means that  f  and g appear nearly identical when x  is large. 

Finding Limits

 1. For the function  f  whose graph is given, determine the following 
limits. Write ∞ or −∞ where appropriate.

 a. 
→

f xlim ( )
x 2

 b. 
→− +

f xlim ( )
x 3

 c. 
→− −

f xlim ( )
x 3

 d. 
→−

f xlim ( )
x 3

 e. 
→ +

f xlim ( )
x 0

 f. 
→ −

f xlim ( )
x 0

 g. 
→

f xlim ( )
x 0

 h. 
→∞

f xlim ( )
x

 i. 
→−∞

f xlim ( )
x

EXERCISES 2.5

y

x

-2

-1

1

2

3

-3

2 3 4 5 61-1-2-3-4-5-6

f
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118 Chapter 2  Limits and Continuity

 2. For the function  f  whose graph is given, determine the following 
limits. Write ∞ or −∞ where appropriate.

 a. 
→

f xlim ( )
x 4

 b. 
→ +

f xlim ( )
x 2

 c. 
→ −

f xlim ( )
x 2

 d. 
→

f xlim ( )
x 2

 e. 
→− +

f xlim ( )
x 3

 f. 
→− −

f xlim ( )
x 3

 g. 
→−

f xlim ( )
x 3

 h. 
→ +

f xlim ( )
x 0

 i. 
→ −

f xlim ( )
x 0

 j. 
→

f xlim ( )
x 0

 k. 
→∞

f xlim ( )
x

 l. 
→−∞

f xlim ( )
x

Divide numerator and denominator by the highest power of x in the 
denominator and proceed from there. Find the limits in Exercises 
23–36. Write ∞ or −∞ where appropriate.

 23. −
+→∞

x
x x

lim 8 3
2x

2

2
 24. ( )+ −

−→−∞

x x
x

lim 1
8 3x

2

2

1 3

 25. ( )−
+→−∞

x
x x

lim 1
7x

3

2

5

 26. −
+ −→∞

x x
x x

lim 5
2x

2

3

 27. +
−→∞

−x x
x

lim 2
3 7x

1
 28. +

−→∞

x
x

lim 2
2x

 29. −
+→−∞

x x
x x

lim
x

3 5

3 5  30. +
−→∞

− −

− −
x x
x x

lim
x

1 4

2 3

 31. − +
+ +→∞

x x
x x x

lim 2 7
3x

5 3 1 3

8 5
 32. − +

+ −→−∞

x x
x x

lim 5 3
2 4x

3

2 3

 33. +
+→∞

x
x

lim 1
1x

2
 34. +

+→−∞

x
x

lim 1
1x

2

 35. −
+→∞

x
x

lim 3
4 25x 2

 36. −
+→−∞

x
x

lim 4 3
9x

3

6

Infinite Limits
Find the limits in Exercises 37–48. Write ∞ or −∞ where appropriate.

 37. 
→ + x
lim 1

3x 0
 38. 

→ − x
lim 5

2x 0

 39. 
−→ − x

lim 3
2x 2

 40. 
−→ + x

lim 1
3x 3

 41. 
+→− +

x
x

lim 2
8x 8

 42. 
+→− −

x
x

lim 3
2 10x 5

 43. 
( )−→ x

lim 4
7x 7 2  44. 

( )

−
+→ x x

lim 1
1x 0 2

 45. a. 
→ + x
lim 2

3x 0 1 3
 b. 

→ − x
lim 2

3x 0 1 3

 46. a. 
→ + x
lim 2

x 0 1 5
 b. 

→ − x
lim 2

x 0 1 5

 47. 
→ x

lim 4
x 0 2 5

 48. 
→ x

lim 1
x 0 2 3

Find the limits in Exercises 49–52. Write ∞ or −∞ where appropriate.

 49. xlim tan
x 2π( )→ −

 50. xlim sec
x ( 2)π→ − +

 51. lim 1 csc
0

θ( )+
θ→ −

 52. lim 2 cot
0

θ( )−
θ→

Find the limits in Exercises 53–58. Write ∞ or −∞ where appropriate.

 53. 
x

lim 1
4

as
2 −

 a. → +x 2  b. → −x 2

 c. → − +x 2  d. → − −x 2

 54. x
x

lim
1

as
2 −

 a. → +x 1  b. → −x 1

 c. → − +x 1  d. → − −x 1

y

x

-2

-3

2 3 4 5 61-1-2-3-4-5-6

f
3

2

1

-1

In Exercises 3–8, find the limit of each function (a) as x → ∞ and  
(b) as x .→ −∞  (You may wish to visualize your answer with a 
graphing calculator or computer.)

 3. = −f x
x

( ) 2 3 4. π= −f x
x

( ) 2
2

 5. 
( )

=
+

g x
x

( ) 1
2 1

 6. 
( )

=
−

g x
x

( ) 1
8 5 2

 7. h x
x

x
( )

5 7
3 1 2

( )
( )

=
− +

−
 8. h x

x

x
( )

3 2

4 2 2( )
( )

=
−

+

Find the limits in Exercises 9–12.

 9. 
x

x
lim

sin 2
x→∞

 10. lim
cos

3
θ
θθ→−∞

 11. 
t t

t t
lim

2 sin
cost

− +
+→−∞

 12. 
r r

r r
lim

sin
2 7 5 sinr

+
+ −→∞

Limits of Rational Functions
In Exercises 13–22, find the limit of each rational function (a) as 
x → ∞ and (b) as x .→ −∞  Write ∞ or −∞ where appropriate.

 13. = +
+

f x x
x

( ) 2 3
5 7

 14. = +
− + +

f x x
x x x

( ) 2 7
7

3

3 2

 15. = +
+

f x x
x

( ) 1
32

 16. = +
−

f x x
x

( ) 3 7
22

 17. h x x
x x x

( ) 7
3 6

3

3 2
=

− +
 18. h x x x

x x x
( ) 9

2 5 6

4

4 2
= +

+ − +

 19. = + +g x x x
x

( ) 10 315 4

6
 20. = + −

− +
g x x x

x x
( ) 7 2

1

3 2

2

 21. = + −
− +

f x x x
x x

( ) 3 5 1
6 7 3

7 2

3
 22. h x x x

x x
( ) 5 2 9

3 4

8 3

5
= − +

+ −

Limits as → ∞x  or → −∞x

The process by which we determine limits of rational functions applies 
equally well to ratios containing noninteger or negative powers of x.  
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 55. x
x

lim
2

1 as
2( )−

 a. → +x 0  b. → −x 0

 c. →x 23  d. → −x 1

 56. x
x

lim 1
2 4

as
2 −

+

 a. → − +x 2  b. → − −x 2

 c. → +x 1  d. → −x 0

 57. x x
x x

lim 3 2
2

as
2

3 2

− +
−

 a. → +x 0  b. → +x 2

 c. → −x 2  d. →x 2

 e. What, if anything, can be said about the limit as →x 0?

 58. x x
x x

lim 3 2
4

as
2

3

− +
−

 a. → +x 2  b. → − +x 2

 c. → −x 0  d. → +x 1

 e. What, if anything, can be said about the limit as →x 0?

Find the limits in Exercises 59–62. Write ∞ or −∞ where appropriate.

 59. 
t

lim 2 3 as
1 3( )−

 a. → +t 0  b. → −t 0

 60. 
t

lim 1 7 as
3 5( )+

 a. → +t 0  b. → −t 0

 61. 
x x

lim 1 2
1

as
2 3 2 3( )( )

+
−

 a. → +x 0  b. → −x 0

 c. → +x 1  d. → −x 1

 62. 
x x

lim 1 1
1

as
1 3 4 3( )( )

−
−

 a. → +x 0  b. → −x 0

 c. → +x 1  d. → −x 1

Graphing Simple Rational Functions
Graph the rational functions in Exercises 63–68. Include the graphs 
and equations of the asymptotes and dominant terms.

 63. =
−

y
x

1
1

 64. =
+

y
x

1
1

 65. =
+

y
x

1
2 4

 66. = −
−

y
x

3
3

 67. = +
+

y x
x

3
2

 68. =
+

y x
x

2
1

Domains and Asymptotes
Determine the domain of each function in Exercises 69–74. Then use 
various limits to find the asymptotes.

 69. = +
+

y x
x

4 3
1

2

2
 70. =

−
y x

x
2

12

 71. = −
+

y e
e

8
2

x

x
 72. = +

+
y e e

e e
4 x x

x x

2

2

 73. = +y x
x

42
 74. =

−
y x

x 8

3

3

Inventing Graphs and Functions
In Exercises 75–78, sketch the graph of a function =y f x( ) that sat-
isfies the given conditions. No formulas are required—just label the 
coordinate axes and sketch an appropriate graph. (The answers are not 
unique, so your graphs may not be exactly like those in the answer 
section.)

 75. ( )= = − = − = −
→−∞

f f f f x(0) 0, (1) 2, 1 2, lim ( ) 1,
x

 and 
=

→∞
f xlim ( ) 1

x

 76. = = =
→±∞ → +

f f x f x(0) 0, lim ( ) 0, lim ( ) 2,
x x 0

 and  

= −
→ −

f xlim ( ) 2
x 0

 77. = = = = ∞
→±∞ → →−− +

f f x f x f x(0) 0, lim ( ) 0, lim ( ) lim ( ) ,
x x x1 1

 

= −∞
→ +

f xlim ( ) ,
x 1

 and = −∞
→− −

f xlim ( )
x 1

 78. ( )= − = = = ∞
→∞ → +

f f f x f x(2) 1, 1 0, lim ( ) 0, lim ( ) ,
x x 0

 

= −∞
→ −

f xlim ( ) ,
x 0

 and =
→−∞

f xlim ( ) 1
x

In Exercises 79–82, find a function that satisfies the given conditions 
and sketch its graph. (The answers here are not unique. Any function 
that satisfies the conditions is acceptable. Feel free to use formulas 
defined in pieces if that will help.)

 79. = = ∞
→±∞ → −

f x f xlim ( ) 0, lim ( ) ,
x x 2

 and = ∞
→ +

f xlim ( )
x 2

 80. = = −∞
→±∞ → −

g x g xlim ( ) 0, lim ( ) ,
x x 3

 and = ∞
→ +

g xlim ( )
x 3

 81. h x h x h xlim ( ) 1, lim ( ) 1, lim ( ) 1,
x x x 0

= − = = −
→−∞ →∞ → −

 and 

h xlim ( ) 1
x 0

=
→ +

 82. k x k xlim ( ) 1,   lim ( ) ,
x x 1

= = ∞
→±∞ → −

 and k xlim ( )
x 1

= −∞
→ +

 83. Suppose that f x( ) and g x( ) are polynomials in x and that 
( ) =

→∞
f x g xlim ( ) ( ) 2.

x
 Can you conclude anything about 

( )
→−∞

f x g xlim ( ) ( ) ?
x

 Give reasons for your answer.

 84. Suppose that f x( ) and g x( ) are polynomials in x. Can the graph of 
f x g x( ) ( ) have an asymptote if g x( ) is never zero? Give reasons 
for your answer.

 85. How many horizontal asymptotes can the graph of a given rational 
function have? Give reasons for your answer.

Finding Limits of Differences When → ±∞x

Find the limits in Exercises 86–92. (Hint: Try multiplying and dividing 
by the conjugate.)

 86. ( )+ − +
→∞

x xlim 9 4
x

 87. ( )+ − −
→∞

x xlim 25 1
x

2 2

 88. ( )+ +
→−∞

x xlim 3
x

2

 89. ( )+ + −
→−∞

x x xlim 2 4 3 2
x

2

 90. ( )− −
→∞

x x xlim 9 3
x

2
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120 Chapter 2  Limits and Continuity

 91. ( )+ − −
→∞

x x x xlim 3 2
x

2 2

 92. ( )+ − −
→∞

x x x xlim
x

2 2

Using the Formal Definitions
Use the formal definitions of limits as → ±∞x  to establish the limits 
in Exercises 93 and 94.

 93. If  f  has the constant value =f x k( ) , then =
→∞

f x klim ( ) .
x

 94. If  f  has the constant value =f x k( ) , then =
→−∞

f x klim ( ) .
x

Use formal definitions to prove the limit statements in Exercises 95–98.

 95. − = −∞
→ x

lim 1
x 0 2

 96. 
x

lim 1
x 0

= ∞
→

 97. 
( )

−
−

= −∞
→ x

lim 2
3x 3 2  98. 

+
= ∞

→− x
lim 1

( 5)x 5 2

 99. Here is the definition of infinite right-hand limit.

 102. 
−

= −∞
→ − x
lim 1

2x 2
 103. 

−
= ∞

→ + x
lim 1

2x 2

 104. 
−

= ∞
→ − x
lim 1

1x 1 2

Oblique Asymptotes
Graph the rational functions in Exercises 105–110. Include the graphs 
and equations of the asymptotes.

 105. y x
x 1

2
=

−
 106. y x

x
1

1

2
= +

−

 107. y x
x

4
1

2
= −

−
 108. y x

x
1

2 4

2
= −

+

 109. y x
x

12
= −  110. y x

x
13

2
= +

Additional Graphing Exercises
Graph the curves in Exercises 111–114. Explain the relationship 
between the curve’s formula and what you see.

 111. y x
x4 2

=
−

 112. y
x

1
4 2

= −
−

 113. = +y x
x
12 3
1 3

 114. π( )=
+

y
x

sin
12

Graph the functions in Exercises 115 and 116. Then answer the fol-
lowing questions.

 a. How does the graph behave as → +x 0 ?

 b. How does the graph behave as x ?→ ±∞

 c. How does the graph behave near x 1=  and x 1?= −

Give reasons for your answers.

 115. ( )= −y x
x

3
2

1 2 3

 116. ( )=
−

y x
x

3
2 1

2 3

T

T

Suppose that an interval ( )c d,  lies in the domain of  f. We 
say that f x( ) approaches infinity as x approaches c from the 
right, and write

= ∞
→ +

f xlim ( ) ,
x c

if, for every positive real number B, there exists a corre-
sponding number δ > 0 such that

f x B c x c( ) whenever .δ> < < +

Modify the definition to cover the following cases.

 a. = ∞
→ −

f xlim ( )
x c

 b. = −∞
→ +

f xlim ( )
x c

 c. = −∞
→ −

f xlim ( )
x c

Use the formal definitions from Exercise 99 to prove the limit state-
ments in Exercises 100–104.

 100. = ∞
→ + x
lim 1

x 0
 101. = −∞

→ − x
lim 1

x 0

2.6 Continuity

When we plot function values generated in a laboratory or collected in the field, we often 
connect the plotted points with an unbroken curve to show what the function’s values are 
likely to have been at the points we did not measure (Figure 2.56). In doing so, we are 
assuming that we are working with a continuous function, so its outputs vary regularly and 
consistently with the inputs, and do not jump abruptly from one value to another without 
taking on the values in between. Intuitively, any function =y f x( ) whose graph can be 
sketched over its domain in one unbroken motion is an example of a continuous function. 
Such functions play an important role in the study of calculus and its applications.

Continuity at a Point

To understand continuity, it helps to consider a function like that in Figure 2.57, whose 
limits we investigated in Example 1 in the last section.

FIGURE 2.56 Connecting plotted points.

t

y

0

125

5

250

Q1

Q2

Q3

Q4
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 2.6  Continuity 121

EXAMPLE 1  At which numbers does the function  f  in Figure 2.57 appear to be not 
continuous? Explain why. What occurs at other numbers in the domain?

Solution First we observe that the domain of the function is the closed interval 0, 4[ ], so 
we will be considering the numbers x within that interval. From the figure, we notice right 
away that there are breaks in the graph at the numbers x x x1, 2, and 4= = = . The 
break at x 1=  appears as a jump, which we identify later as a “jump discontinuity.” The 
break at x 2=  is called a “removable discontinuity” since by changing the function defi-
nition at that one point, we can create a new function that is continuous at x 2= . Simi-
larly, x 4=  is a removable discontinuity.

Numbers at which the graph of  f  has breaks:

At the interior point x 1= , the function fails to have a limit. It does have both a left-
hand limit, =

→ −
f xlim ( ) 0

x 1
, as well as a right-hand limit, =

→ +
f xlim ( ) 1

x 1
, but the limit val-

ues are different, resulting in a jump in the graph. The function is not continuous at x 1= . 
However, the function value =f (1) 1 is equal to the limit from the right, so the function is 
continuous from the right at x 1= .

At x 2= , the function does have a limit, =
→

f xlim ( ) 1
x 2

, but the value of the function 
is f (2) 2= . The limit and function values are not the same, so there is a break in the  
graph and  f  is not continuous at x 2= .

At x 4= , the function does have a left-hand limit at this right endpoint, =
→ −

f xlim ( ) 1
x 4

,  

but again the value of the function =f (4) 1
2 differs from the value of the limit. We see 

again a break in the graph of the function at this endpoint and the function is not continu-
ous from the left.

Numbers at which the graph of  f  has no breaks:

At x 3= , the function has a limit, =
→

f xlim ( ) 2
x 3

. Moreover, the limit is the same 

value as the function there, =f (3) 2. The function is continuous at x 3= .
At =x 0, the function has a right-hand limit at this left endpoint, =

→ +
f xlim ( ) 1

x 0
,  

and the value of the function is the same, =f (0) 1. The function is continuous from the 
right at =x 0. Because =x 0 is a left endpoint of the function’s domain, we have that 

=
→

f xlim ( ) 1
x 0

 and so  f  is continuous at =x 0.

At all other numbers =x c in the domain, the function has a limit equal to the value 
of the function, so =

→
f x f clim ( ) ( )

x c
. For example, ( )= =

→
f x flim ( ) 5 2 3 2

x 5 2
. No 

breaks appear in the graph of the function at any of these numbers and the function is con-
tinuous at each of them. 

The following definitions capture the continuity ideas we observed in Example 1.

FIGURE 2.57 The function is not  
continuous at x x x1, 2, and 4= = =  
(Example 1).

x

y

321

2

1

40

y = f (x)

DEFINITIONS Let c be a real number that is either an interior point or an end-
point of an interval in the domain of  f.

The function  f  is continuous at c if

=
→

f x f clim ( ) ( ).
x c

The function  f  is right-continuous at c (or continuous from the right) if

=
→ +

f x f clim ( ) ( ).
x c

The function  f  is left-continuous at c (or continuous from the left) if

=
→ −

f x f clim ( ) ( ).
x c
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122 Chapter 2  Limits and Continuity

The function  f  in Example 1 is continuous at every x in [0, 4] except =x 1,  2,  and 4.  
It is right-continuous but not left-continuous at =x 1, neither right- nor left-continuous at 

=x 2, and not left-continuous at =x 4.
From Theorem 5, it follows immediately that a function  f  is continuous at an interior 

point c of an interval in its domain if and only if it is both right-continuous and left-continuous 
at c (Figure 2.58). We say that a function is continuous over a closed interval a b,[ ] if  
it is right-continuous at a, left-continuous at b, and continuous at all interior points of the 
interval. This definition applies to the infinite closed intervals a,[ )∞  and b,( ]−∞  as well, 
but only one endpoint is involved. If a function is not continuous at point c of its domain, 
we say that  f  is discontinuous at c and that  f  has a discontinuity at c. Note that a function  
f  can be continuous, right-continuous, or left-continuous only at a point c for which f c( )  
is defined.

FIGURE 2.58 Continuity at points a, b, 
and c.

x
a c b

y = f (x)

Continuity
from the left

Two-sided
continuity

Continuity
from the right

FIGURE 2.59 A function that 
is continuous over its domain 
(Example 2).

x

y

0-2 2

2
y = "4 - x2

FIGURE 2.60 A function that has 
a jump discontinuity at the origin 
(Example 3).

x

y

0

1
y = U(x)

FIGURE 2.61 The greatest integer 
function is continuous at every noninte-
ger point. It is right-continuous, but not 
left-continuous, at every integer point 
(Example 4).

x

y

3

3

21-1

2

-2

1

4

4

y = :x;

Continuity Test
A function f x( ) is continuous at a point =x c if and only if it meets the following 
three conditions.
1.  f c( ) exists (c lies in the domain of  f ).

2.  f xlim ( )
x c→

 exists ( f has a limit as x c→ ).

3.  f x f clim ( ) ( )
x c

=
→

(the limit equals the function value).

For one-sided continuity, the limits in parts 2 and 3 of the test should be replaced by 
the appropriate one-sided limits.

EXAMPLE 2  The function = −f x x( ) 4 2  is continuous over its domain 2, 2[ ]−  
(Figure 2.59). It is continuous at all points of this interval, including the endpoints = −x 2 
and =x 2. 

EXAMPLE 3  The unit step function U x( ), graphed in Figure 2.60, is right-continuous 
at =x 0, but is neither left-continuous nor continuous there. It has a jump discontinuity at 

=x 0. 

At an interior point or an endpoint of an interval in its domain, a function is continuous 
at points where it passes the following test.

EXAMPLE 4  The function y x⎣ ⎦=  introduced in Section 1.1 is graphed in Figure 2.61. 
It is discontinuous at every integer n, because the left-hand and right-hand limits are not 
equal as →x n:

x n x nlim 1 and lim .
x n x n

⎣ ⎦ ⎣ ⎦= − =
→ →− +

Since n n⎣ ⎦ = , the greatest integer function is right-continuous at every integer n (but not 
left-continuous).

The greatest integer function is continuous at every real number other than the integers. 
For example,

xlim 1 1.5 .
x 1.5

⎣ ⎦⎣ ⎦ = =
→

In general, if n c n1− < < , n an integer, then

x n clim 1 .
x c

⎣ ⎦ ⎣ ⎦= − =
→

 

Figure 2.62 displays several common ways in which a function can fail to be continuous. 
The function in Figure 2.62a is continuous at =x 0. The function in Figure 2.62b does 
not contain =x 0 in its domain. It would be continuous if its domain were extended so 
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 2.6  Continuity 123

that =f (0) 1. The function in Figure 2.62c would be continuous if f (0) were 1 instead of 
2. The discontinuity in Figure 2.62c is removable. The function has a limit as →x 0, and 
we can remove the discontinuity by setting f (0) equal to this limit.

The discontinuities in Figure 2.62d through f are more serious: 
→

f xlim ( )
x 0

 does not 

exist, and there is no way to improve the situation by appropriately defining  f  at 0. The step 
function in Figure 2.62d has a jump discontinuity: The one-sided limits exist but have 
different values. The function =f x x( ) 1 2  in Figure 2.62e has an infinite discontinuity. 
The function in Figure 2.62f has an oscillating discontinuity: It oscillates so much that its 
values approach each number in [ ]−1,1  as →x 0. Since it does not approach a single 
number, it does not have a limit as x approaches 0.

FIGURE 2.62 The function in (a) is continuous at x 0;=  the functions in (b) through (f) are not.

y

(a) (b) (c)

(e)

(d)

y

x
0

1

y y

0

0

-1

x xx

x

y

000

y

x

111

2

(f)

1

-1

y = f (x) y = f (x) y = f (x)

y = f (x)

y = f (x) = 1
x2

y = sin 1
x

Continuous Functions

We now describe the continuity behavior of a function throughout its entire domain, not 
only at a single point. We define a continuous function to be one that is continuous at 
every point in its domain. This is a property of the function. A function always has a speci-
fied domain, so if we change the domain, then we change the function, and this may change 
its continuity property as well. If a function is discontinuous at one or more points of its 
domain, we say it is a discontinuous function.

FIGURE 2.63 The function =f x x( ) 1  
is continuous over its natural domain. It is 
not defined at the origin, so it is not con-
tinuous on any interval containing x 0=  
(Example 5).

0
x

y

y = 1
x

EXAMPLE 5

 (a) The function =f x x( ) 1  (Figure 2.63) is a continuous function because it is continu-
ous at every point of its domain. The point =x 0 is not in the domain of the function 
f, so  f  is not continuous on any interval containing =x 0. Moreover, there is no way 
to extend  f  to a new function that is defined and continuous at =x 0. The function  f  
does not have a removable discontinuity at =x 0.

 (b) The identity function =f x x( )  and constant functions are continuous everywhere by 
Example 3, Section 2.3. 

Algebraic combinations of continuous functions are continuous wherever they are 
defined.
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124 Chapter 2  Limits and Continuity

Most of the results in Theorem 8 follow from the limit rules in Theorem 1, Section 2.2. 
For instance, to prove the sum property we have

f g x f x g x

f x g x

f c g c

f g c

lim ( ) lim ( ) ( )

lim ( ) lim ( )

( ) ( )

( ).

f g c

Sum Rule,  Theorem 1

Continuity of  ,    at 

x c x c

x c x c

( ) ( )

( )

+ = +

= +

= +

= +

→ →

→ →

This shows that +f g is continuous.

THEOREM 8—Properties of Continuous Functions
If the functions   f   and g are continuous at =x c, then the following algebraic 
combinations are continuous at =x c.

1.  Sums: f g+
2.  Differences: f g−

3.  Constant multiples: k f⋅ , for any number k

4.  Products: f g⋅
5.  Quotients: f g, provided g c( ) 0≠

6.  Powers: f n , n a positive integer

7.  Roots: fn , provided it is defined on an interval  
containing c, where n is a positive integer

EXAMPLE 6

 (a) Every polynomial �P x a x a x a( ) n
n

n
n

1
1

0= + + +−
−  is continuous because 

P x P clim ( ) ( )
x c

=
→

 by Theorem 2, Section 2.2.

 (b) If P x( ) and Q x( ) are polynomials, then the rational function P x Q x( ) ( ) is continuous 
wherever it is defined Q c( ) 0( )≠  by Theorem 3, Section 2.2. 

EXAMPLE 7  The function =f x x( )  is continuous. If >x 0, we have f x x( ) = ,  
a polynomial. If x 0< , we have = −f x x( ) , another polynomial. Finally, at the origin, 

= =
→

xlim 0 0
x 0

. 

Inverse Functions and Continuity

When a continuous function defined on an interval has an inverse, the inverse function is 
itself a continuous function over its own domain. This result is suggested by the observa-
tion that the graph of −f 1, being the reflection of the graph of  f   across the line =y x , 
cannot have any breaks in it when the graph of  f  has no breaks. A rigorous proof that −f 1 
is continuous whenever  f  is continuous on an interval is given in more advanced texts. As 
an example, the inverse trigonometric functions are all continuous over their domains.

The functions y xsin=  and y xcos=  are continuous at =x 0 by Example 12 of 
Section 2.2. Both functions are continuous everywhere (see Exercise 76). It follows from 
Theorem 8 that all six trigonometric functions are continuous wherever they are defined. 
For example, y xtan=  is continuous on 2, 2 2, 3 2 .� �π π π π( ) ( )∪ − ∪ ∪
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FIGURE 2.64 Compositions of continuous functions are continuous.

c

f g

 g ˚ f

Continuous at c

Continuous
at f (c)

Continuous
at c

f (c)  g( f (c))

THEOREM 9—Compositions of Continuous Functions
If  f  is continuous at c, and g is continuous at f c( ), then the composition g f�  is 
continuous at c.

We defined the exponential function =y a x in Section 1.4 informally. The graph was 
obtained from the graph of =y a x for x, a rational number, by “filling in the holes” at the 
irrational points x, so as to make the function =y a x continuous over the entire real line. 
The inverse function =y xloga  is also continuous. In particular, the natural exponential 
function =y e x and the natural logarithm function y xln=  are both continuous over 
their domains. Proofs of continuity for these functions will be given in Chapter 7.

Intuitively, Theorem 9 is reasonable because if x is close to c, then f x( ) is close to  
f c( ), and since g is continuous at f c( ), it follows that g f x( ( )) is close to g f c( ( )).

The continuity of compositions holds for any finite number of compositions of func-
tions. The only requirement is that each function be continuous where it is applied. An 
outline of a proof of Theorem 9 is given in Exercise 6 in Appendix A.6.

Continuity of Compositions of Functions

Functions obtained by composing continuous functions are continuous. If f x( ) is continu-
ous at =x c and g x( ) is continuous at =x f c( ), then g f�  is also continuous at =x c 
(Figure 2.64). In this case, the limit of g f�  as →x c is g f c( ( )).

EXAMPLE 8  Show that the following functions are continuous on their natural domains.

 (a) = − −y x x2 52  (b) y x
x1

2 3

4
=

+

 (c) = −
−

y x
x

2
22

 (d) y
x x
x

sin
22

=
+

Solution 
 (a) The square root function is continuous on [ )∞0,  because it is a root of the continu-

ous identity function =f x x( )  (Part 7, Theorem 8). The given function is then the 
composition of the polynomial = − −f x x x( ) 2 52  with the square root function 

=g t t( ) , and is continuous on its natural domain.

 (b) The numerator is the cube root of the identity function squared; the denominator is an 
everywhere-positive polynomial. Therefore, the quotient is continuous.

 (c) The quotient x x2 22( )( )− −  is continuous for all ≠ ±x 2, and the function  
is the composition of this quotient with the continuous absolute value function 
(Example 7).
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126 Chapter 2  Limits and Continuity

FIGURE 2.65 The graph suggests that 
y x x xsin 22( ) ( )= +  is continuous 
(Example 8d).

x

y

0

0.1

0.2

0.3

0.4

2p-p-2p p THEOREM 10—Limits of Continuous Functions
If =

→
f x blim ( )

x c
 and g is continuous at the point b, then

=
→

g f x g blim ( ( )) ( ).
x c

We sometimes denote eu by uexp( ) 
when u is a complicated mathematical 
expression.

Proof  Let ε > 0 be given. Since g is continuous at b, there exists a number δ > 01  
such that

g y g b y b( ) ( ) whenever 0 .
g y g b g

y b

lim ( ) since is

continuous at .
1 y bε δ− < < − <

=

=

( )
→

Note that if y b 0− = , so that =y b, then the inequality ε− <g y g b( ) ( )  holds for 
any positive ε, and therefore we have

g y g b y b( ) ( ) whenever .1ε δ− < − <  (1)

Since =
→

f x blim ( )
x c

, there exists a δ > 0 such that

f x b x c( ) whenever 0 . f x bDefinition of lim ( )1
x c

δ δ− < < − < =
→

If we let =y f x( ), we then have that

y b x cwhenever 0 ,1δ δ− < < − <

which implies from Equation (1) that ε− = − <g y g b g f x g b( ) ( ) ( ( )) ( )  whenever 
x c0 δ< − < . From the definition of limit, it follows that =

→
g f x g blim ( ( )) ( )

x c
. This 

gives the proof for the case where c is an interior point of the domain of  f. The case where 
c is an endpoint of the domain is entirely similar, using an appropriate one-sided limit in 
place of a two-sided limit. 

 (d) Because the sine function is everywhere-continuous (Exercise 76), the numerator term 
x sin x is the product of continuous functions, and the denominator term +x 22  is an 
everywhere-positive polynomial. The given function is the composition of a quotient 
of continuous functions with the continuous absolute value function (Figure 2.65). 

Theorem 9 is actually a consequence of a more general result, which we now prove. It 
states that if the limit of f x( ) as x approaches c is equal to b, then the limit of the composi-
tion function g f�  as x approaches c is equal to g b( ).

EXAMPLE 9  As an application of Theorem 10, we have the following calculations.

 
(a)

 
x x x xlim cos 2 sin 3

2
cos lim 2 lim sin 3

2

cos sin 2 cos 1.

x x x2 2 2

π π

π π π

( )( )( ) ( )
( )

+ + = + +

= + = = −
π π π→ → →

 

(b)

 

x
x

x
x

x

lim sin 1
1

sin lim 1
1

sin lim 1
1

sin 1
2 6

.

x

Arcsine is contiuous.

Cancel common factor  1 .

x x

x

1

1
2

1

1 2

1

1

1 π

( )
( ) ( )−

−
= −

−

=
+

= =

−( )

→
− −

→

−
→

−

 
(c)

 
x e x x

e

lim 1 lim 1 exp lim tan

1 1.

exp is continuous.
x

x

x x0

tan

0 0

0

( )+ = + ⋅

= ⋅ =
→ → →

Intermediate Value Theorem for Continuous Functions

A function is said to have the Intermediate Value Property if whenever it takes on two 
values, it also takes on all the values in between.
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 2.6  Continuity 127

THEOREM 11—The Intermediate Value Theorem for Continuous Functions
If   f   is a continuous function on a closed interval a b,[ ], and if y0 is any value 
between f a( ) and f b( ), then y f c( )0  for some c in a b,[ ].

x

y

0 a c b

y = f (x)

f (b)

f (a)

y0

Theorem 11 says that continuous functions over finite closed intervals have the Inter-
mediate Value Property. Geometrically, the Intermediate Value Theorem says that any hori-
zontal line y y0 crossing the y-axis between the numbers f a( ) and f b( ) will cross the 
curve y f x( ) at least once over the interval [a, b].

The proof of the Intermediate Value Theorem depends on the completeness property 
of the real number system. The completeness property implies that the real numbers have 
no holes or gaps. In contrast, the rational numbers do not satisfy the completeness prop-
erty, and a function defined only on the rationals would not satisfy the Intermediate Value 
Theorem. See Appendix A.9 for a discussion and examples.

The continuity of  f  on the interval is essential to Theorem 11. If  f  fails to be continu-
ous at even one point of the interval, the theorem’s conclusion may fail, as it does for the 
function graphed in Figure 2.66 (choose y0 as any number between 2 and 3).

A Consequence for Graphing: Connectedness Theorem 11 implies that the graph of 
a function that is continuous on an interval cannot have any breaks over the interval. It will 
be connected—a single, unbroken curve. It will not have jumps such as the ones found in 
the graph of the greatest integer function (Figure 2.61), or separate branches as found in 
the graph of x1  (Figure 2.63).

A Consequence for Root Finding We call a solution of the equation f x( ) 0 a root 
of the equation or a zero of the function  f. The Intermediate Value Theorem tells us that if 
f  is continuous, then any interval on which  f  changes sign contains a zero of the function. 
Somewhere between a point where a continuous function is positive and a second point 
where it is negative, the function must be equal to zero.

In practical terms, when we see the graph of a continuous function cross the horizontal 
axis on a computer screen, we know it is not stepping across. There really is a point where 
the function’s value is zero.

FIGURE 2.66 The function 

=
− ≤ <

≤ ≤

⎧
⎨
⎪⎪

⎩⎪⎪
f x

x x

x
( )

2 2, 1 2

3, 2 4
 

does not take on all values between 
f (1) 0 and f (4) 3; it misses all the 
values between 2 and 3.

x

y

0

2

1

1 2 3 4

3

EXAMPLE 10  Show that there is a root of the equation − − =x x 1 03  between 1 
and 2.

Solution Let = − −f x x x( ) 13 . Since = − − = − <f (1) 1 1 1 1 0 and 
= − − = >f (2) 2 2 1 5 03 , we see that y 00  is a value between f (1) and f (2). 

Since  f  is a polynomial, it is continuous, and the Intermediate Value Theorem says there is 
a zero of  f  between 1 and 2. Figure 2.67 shows the result of zooming in to locate a root 
near x 1.32. 
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128 Chapter 2  Limits and Continuity

FIGURE 2.67 Zooming in on a zero of the function = − −f x x x( ) 13 . The zero is 
near x 1.3247=  (Example 10).

(a)

5

-2

2-1

(b)

1

-1

1.61

(c)

0.02

- 0.02

1.3301.320

(d)

0.003

- 0.003

1.32481.3240

FIGURE 2.68 The curves 
y x2 5= +  and y x4 2= −  have 
the same value at the number x c=  
where x x2 5 4 02+ + − =  
(Example 11).

1

0 2

4

3

2

x

y

y = 4 - x2

y = 
"

2x + 5

c

EXAMPLE 11  Use the Intermediate Value Theorem to prove that the equation

+ = −x x2 5 4 2

has a solution (Figure 2.68).

Solution We rewrite the equation as

+ + − =x x2 5 4 0,2

and set = + + −f x x x( ) 2 5 42 . Now = +g x x( ) 2 5 is continuous on the inter-
val [ )− ∞5 2,  since it is formed as the composition of two continuous functions, the 
square root function with the nonnegative linear function = +y x2 5. Then  f  is the sum 
of the function g and the quadratic function = −y x 42 , and the quadratic function is 
continuous for all values of x. It follows that = + + −f x x x( ) 2 5 42  is continuous 
on the interval [ )− ∞5 2, . By trial and error, we find the function values 

= − ≈ −f (0) 5 4 1.76 and = =f (2) 9 3. Note that  f  is continuous on the finite 
closed interval 0, 2[ ], which is a subset of the domain 5 2, .[ )− ∞  Since the value =y 00  
is between the numbers f (0) 1.76= −  and =f (2) 3, by the Intermediate Value Theorem 
there is a number c 0, 2[ ]∈  such that =f c( ) 0. We have found a number c that solves the 
original equation. 

Continuous Extension to a Point

Sometimes the formula that describes a function  f  does not make sense at a point =x c. 
It might nevertheless be possible to extend the domain of  f  to include =x c, creating a 
new function that is continuous at =x c. For example, the function y f x x x( ) sin( )= =  
is continuous at every point except =x 0, since =x 0 is not in its domain. Since 
y x xsin( )=  has a finite limit as →x 0 (Theorem 6), we can extend the function’s 
domain to include the point =x 0 in such a way that the extended function is continuous 
at =x 0. We define the new function

F x
x

x
x

x
( )

sin
, 0

1, 0.

x

x

Same as original function for  0

Value at domain point  0

=
≠

=

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

≠

=
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 2.6  Continuity 129

The new function F x( ) is continuous at =x 0 because

x
x

Flim
sin

(0),
x 0

=
→

so it meets the requirements for continuity (Figure 2.69).

FIGURE 2.69 (a) The graph of f x x x( ) sin( )=  for x2 2π π− ≤ ≤  does not include 
the point 0,1( ) because the function is not defined at x 0= . (b) We can extend the domain 
to include x 0=  by defining the new function F x( ) with F(0) 1=  and F x f x( ) ( )=  
everywhere else. Note that F f x(0) lim ( )

x 0
=

→
 and F x( ) is a continuous function at x 0= .

(0, 1)

(a)

p
2

p
2

-

-

0

f (x)

x

y

,p
2 p

2 ,p
2 p

2

(0, 1)

(b)

p
2

p
2

- 0

F(x)

x

y

a        b a      b ,p
2 p

2
a      b- ,p

2 p
2

a        b

More generally, a function (such as a rational function) may have a limit at a point 
where it is not defined. If f c( ) is not defined, but =

→
f x Llim ( )

x c
 exists, we can define a 

new function F x( ) by the rule

F x
f x x f

L x c
( )

( ), if   is in the domain of 

, if  .
=

=

⎧
⎨
⎪⎪

⎩⎪⎪

The function F is continuous at =x c. It is called the continuous extension of  f  to =x c.  
For rational functions  f, continuous extensions are often found by canceling common fac-
tors in the numerator and denominator.

FIGURE 2.70 (a) The graph 
of f x( ) and (b) the graph of 
its continuous extension F x( ) 
(Example 12).

y

x

x

y

0

1

2

-1 1 2 3 4

0

1

2

-1 1 2 3 4

(a)

(b)

y = x2 + x - 6
x2 - 4

5
4

y = x + 3
x + 2

EXAMPLE 12  Show that

f x x x
x

x( ) 6
4

, 2
2

2
= + −

−
≠

has a continuous extension to =x 2, and find that extension.

Solution Although f (2) is not defined, if ≠x 2 we have

f x x x
x

x x
x x

x
x

( ) 6
4

2 3
2 2

3
2

.
2

2

( )( )

( )( )
= + −

−
= − +

− +
= +

+

The new function

F x x
x

( ) 3
2

= +
+

is equal to f x( ) for ≠x 2, but is continuous at =x 2, having there the value of 5 4.  
Thus F is the continuous extension of  f  to =x 2, and

+ −
−

= =
→ →

x x
x

f xlim 6
4

lim ( ) 5
4

.
x x2

2

2 2

The graph of  f  is shown in Figure 2.70. The continuous extension F has the same graph 
except with no hole at 2, 5 4( ). Effectively, F is the function  f  extended across the missing 
domain point at =x 2 so as to give a continuous function over the larger domain. 
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130 Chapter 2  Limits and Continuity

 9. What value should be assigned to f (2) to make the extended func-
tion continuous at x 2= ?

 10. To what new value should f (1) be changed to remove the 
discontinuity?

Applying the Continuity Test
At which points do the functions in Exercises 11 and 12 fail to be 
continuous? At which points, if any, are the discontinuities removable? 
Not removable? Give reasons for your answers.

 11. The function defined in Exercise 1, Section 2.4

 12. The function defined in Exercise 2, Section 2.4

At what points are the functions in Exercises 13–32 continuous?

 13. y
x

x1
2

3=
−

−  14. y
x

1
( 2)

4
2

=
+

+

 15. y x
x x

1
4 32

= +
− +

 16. y x
x x

3
3 102

= +
− −

 17. y x x1 sin= − +  18. y
x

x1
1 2

2
=

+
−

 19. y
x

x
cos

=  20. y x
x
2

cos
= +

 21. y xcsc 2=  22. y xtan
2
π=

 23. y
x x
x

tan
12

=
+

 24. = +
+

y x
x
1

1 sin

4

2

 25. y x2 3= +  26. y x3 14= −

 27. = −y x(2 1)1 3 28. = −y x(2 )1 5

 29. =
− −

−
≠

=

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

g x
x x

x
x

x
( )

6
3

, 3

5, 3

2

 

30.

 

=

−
−

≠ ≠ −

=
= −

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

f x

x
x

x x

x
x

( )

8
4

, 2, 2

3, 2
4, 2

3

2

 31. =
− <

≤ ≤
+ >

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

f x

x x

e x

x x

( )

1 , 0

, 0 1

2, 1

x

2

 32. = +
−

f x x
e

( ) 3
2 x

Limits Involving Trigonometric Functions
Find the limits in Exercises 33–40. Are the functions continuous at the 
point being approached?

 33. x xlim sin sin
x

( )−
π→

 34. tlim sin
2

cos tan
t 0

π( )( )
→

 35. y y ylim sec sec tan 1
y 1

2 2( )− −
→

 36. xlim tan
4

cos sin
x 0

1 3π( )( )
→

 37. 
t

lim cos
19 3 sec 2t 0

π
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟→
 38. x xlim csc 5 3 tan

x 6

2 +
π→

EXERCISES 2.6

2

x

y

0 3

(1, 2)

21-1

(1, 1)

 

y = f (x)

y = -2x + 4

y = x2 - 1 -1

y = 2x

Continuity from Graphs
In Exercises 1–4, say whether the function graphed is continuous on 
[ ]−1, 3 . If not, where does it fail to be continuous and why?

x

y

0 1-1 3

1

2

2

y = f (x)

 1. 

x

y

0 1-1 3

1

2

2

y = g(x)

 2. 

x

y

0 1 3

2

-1 2

1

y = h(x)

 3. 

x

y

0 1-1 3

1

2

2

y = k(x)

 4. 

Exercises 5–10 refer to the function

f x

x x

x x

x

x x

x

( )

1, 1 0

2 , 0 1

1, 1

2 4, 1 2

0, 2 3

2

=

− − ≤ <

< <

=

− + < <

< <

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪

graphed in the accompanying figure.

 5. a. Does ( )−f 1  exist?

 b. Does 
→− +

f xlim ( )
x 1

 exist?

 c. Does ( )= −
→− +

f x flim ( ) 1
x 1

?

 d. Is  f  continuous at x 1= − ?

 6. a. Does f (1) exist?

 b. Does 
→

f xlim ( )
x 1

 exist?

 c. Does =
→

f x flim ( ) (1)
x 1

?

 d. Is  f  continuous at x 1= ?

 7. a. Is  f  defined at x 2= ? (Look at the definition of  f.)

 b. Is  f  continuous at x 2= ?

 8. At what values of x is  f  continuous?

M02_HASS5901_15_GE_C02.indd   130 03/03/23   6:43 PM

www.konkur.in

Telegram: @uni_k



 2.6  Continuity 131

 39. π( )
→ +

elim sin
2x

x

0
 40. xlim cos ln

x 1

1( )
→

−

 41. e
x

lim sec tan
4 sec

1
x

x

0
π π+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥→

 42. 
x

x x
lim sin

tan
tan 2 secx 0

π +
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟→

 43. 
t

t
lim tan 1

sin
t 0

( )−
→

 44. lim cos
sin0

πθ
θ

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟θ→

Continuous Extensions

 45. Define g(3) in a way that extends ( ) ( )= − −g x x x( ) 9 32  to 
be continuous at x 3= .

 46. Define h(2) in a way that extends h t t t t( ) 3 10 22( ) ( )= + − −  
to be continuous at t 2= .

 47. Define f (1) in a way that extends f s s s( ) 1 13 2( ) ( )= − −  to be 
continuous at s 1= .

 48. Define g(4) in a way that extends

( ) ( )= − − −g x x x x( ) 16 3 42 2

to be continuous at x 4= .

 49. For what value of a is

f x
x x

ax x
( )

1, 3

2 , 3

2

=
− <

≥

⎧
⎨
⎪⎪

⎩⎪⎪

continuous at every x?

 50. For what value of b is

g x
x x

bx x
( )

, 2

, 22
=

< −
≥ −

⎧
⎨
⎪⎪

⎩⎪⎪

continuous at every x?

 51. For what values of a is

f x
a x a x

x
( )

2 , 2

12, 2

2

=
− ≥

<

⎧
⎨
⎪⎪

⎩⎪⎪

continuous at every x?

 52. For what values of b is

g x
x b
b

x

x b x
( ) 1

, 0

, 02

=
−
+

≤

+ >

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

continuous at every x?

 53. For what values of a and b is

f x

x

ax b x

x

( )

2, 1

, 1 1

3, 1

=
− ≤ −

− − < <

≥

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

continuous at every x?

 54. For what values of a and b is

g x

ax b x

x a b x

x x

( )

2 , 0

3 , 0 2

3 5, 2

2=
+ ≤
+ − < ≤

− >

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

continuous at every x?

In Exercises 55–58, graph the function  f  to see whether it appears to 
have a continuous extension to x 0= . If it does, use Trace and Zoom 
to find a good candidate for the extended function’s value at x 0= . 
If the function does not appear to have a continuous extension, can it 
be extended to be continuous at x 0=  from the right or from the left? 
If so, what do you think the extended function’s value(s) should be?

 55. = −f x
x

( ) 10 1x
 56. = −f x

x
( ) 10 1x

 57. f x
x

x
( )

sin
=  58. f x x( ) (1 2 ) x1= +

Theory and Examples

 59. A continuous function =y f x( ) is known to be negative at 
x 0=  and positive at x 1= . Why does the equation =f x( ) 0 
have at least one solution between x 0=  and x 1= ? Illustrate 
with a sketch.

 60. Explain why the equation x xcos =  has at least one solution.

 61. Roots of a cubic Show that the equation x x15 1 03 − + =  
has three solutions in the interval [ ]−4, 4 .

 62. A function value Show that the function F x x a( ) 2( )= − . 
x b x2( )− +  takes on the value ( )+a b 2 for some value of x.

 63. Solving an equation If = − +f x x x( ) 8 103 , show that there 
are values c for which f c( ) equals (a) π; (b) 3− ; (c) 5,000,000.

 64. Explain why the following five statements ask for the same 
information.

 a. Find the roots of = − −f x x x( ) 3 13 .

 b. Find the x-coordinates of the points where the curve y x 3=  
crosses the line y x3 1= + .

 c. Find all the values of x for which x x3 13 − = .

 d. Find the x-coordinates of the points where the cubic curve 
y x x33= −  crosses the line y 1= .

 e. Solve the equation x x3 1 03 − − = .

 65. Removable discontinuity Give an example of a function f x( ) 
that is continuous for all values of x except x 2= , where it has a 
removable discontinuity. Explain how you know that  f  is discontin-
uous at x 2= , and how you know the discontinuity is removable.

 66. Nonremovable discontinuity Give an example of a function  
g x( ) that is continuous for all values of x except x 1= − , where 
it has a nonremovable discontinuity. Explain how you know that g 
is discontinuous there and why the discontinuity is not removable.

 67. A function discontinuous at every point

 a. Use the fact that every nonempty interval of real numbers 
contains both rational and irrational numbers to show that the 
function

f x
x

x
( )

1, if   is rational

0, if   is irrational
=

⎧
⎨
⎪⎪

⎩⎪⎪
is discontinuous at every point.

 b. Is  f  right-continuous or left-continuous at any point?

 68. If functions f x( ) and g x( ) are continuous for x0 1≤ ≤ , could 
f x g x( ) ( ) possibly be discontinuous at a point of [ ]0,1 ? Give  
reasons for your answer.

 69. If the product function h x f x g x( ) ( ) ( )= ⋅  is continuous at 
x 0= , must f x( ) and g x( ) be continuous at x 0= ? Give rea-
sons for your answer.

T
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132 Chapter 2  Limits and Continuity

 70. Discontinuous compositions of continuous functions Give 
an example of functions  f  and g, both continuous at x 0= , for 
which the composition f g�  is discontinuous at x 0= . Does 
this contradict Theorem 9? Give reasons for your answer.

 71. Never-zero continuous functions Is it true that a continuous 
function that is never zero on an interval never changes sign on 
that interval? Give reasons for your answer.

 72. Stretching a rubber band Is it true that if you stretch a rubber 
band by moving one end to the right and the other to the left, some 
point of the band will end up in its original position? That is, if x 
is a position on the rubber band before stretching and f x( ) is the 
position of that point after stretching, must there be some x such 
that =f x x( ) ? Give reasons for your answer.

 73. A fixed point theorem Suppose that a function  f  is continuous 
on the closed interval [ ]0,1  and that ≤ ≤f x0 ( ) 1 for every x in 
[ ]0,1 . Show that there must exist a number c in [ ]0,1  such that 

=f c c( )  (c is called a fixed point of  f ).

 74. The sign-preserving property of continuous functions Let  
 f   be defined on an interval a b,( ) and suppose that ≠f c( ) 0 
at some c where   f   is continuous. Show that there is an interval 

δ δ( )− +c c,  about c where  f  has the same sign as f c( ).

 75. Prove that  f  is continuous at c if and only if

( )+ =
→

f c h f clim   ( ).
h 0

 76. Use Exercise 75 together with the identities

h c h c h c

h c h c h c

sin sin cos cos sin ,

cos cos cos sin sin

( )

( )

+ = +

+ = −

to prove that both f x x( ) sin=  and g x x( ) cos=  are continuous 
at every point x c= .

Solving Equations Graphically
Use the Intermediate Value Theorem in Exercises 77–84 to prove that 
each equation has a solution. Then use a graphing calculator or com-
puter grapher to solve the equations.

 77. x x3 1 03 − − =  78. x x x2 2 2 1 03 2− − + =

 79. x x 1 1 (one root)2( )− =  80. x 2x =

 81. x x1 4+ + =

 82. x x15 1 0 (three roots)3 − + =

 83. x xcos (one root).=  Make sure you are using radian mode.

 84. x x2 sin (three roots).=  Make sure you are using radian mode.

T

 1. What is the average rate of change of the function g t( ) over the 
interval from t a=  to t b?=  How is it related to a secant line?

 2. What limit must be calculated to find the rate of change of a func-
tion g t( ) at =t t ?0

 3. Give an informal or intuitive definition of the limit

=
→

f x Llim ( ) .
x c

  Why is the definition “informal”? Give examples.

 4. Does the existence and value of the limit of a function f x( ) as x 
approaches c ever depend on what happens at x c?=  Explain 
and give examples.

 5. What function behaviors might occur for which the limit may fail 
to exist? Give examples.

 6. What theorems are available for calculating limits? Give exam-
ples of how the theorems are used.

 7. How are one-sided limits related to limits? How can this relation-
ship sometimes be used to calculate a limit or prove it does not 
exist? Give examples.

 8. What is the value of lim sin ?
0

θ θ( )( )
θ→

 Does it matter whether θ is 

measured in degrees or radians? Explain.

 9. What exactly does =
→

f x Llim ( )
x c

 mean? Give an example in 

which you find 0δ >  for a given   f, L, c, and 0ε >  in the precise 
definition of limit.

 10. Give precise definitions of the following statements.

 a. =
→ −

f xlim ( ) 5
x 2

 b. =
→ +

f xlim ( ) 5
x 2

 c. = ∞
→

f xlim ( )
x 2

 d. = −∞
→

f xlim ( )
x 2

 11. What conditions must be satisfied by a function if it is to be con-
tinuous at an interior point of its domain? At an endpoint?

 12. How can looking at the graph of a function help you tell where the 
function is continuous?

 13. What does it mean for a function to be right-continuous at a point? 
Left-continuous? How are continuity and one-sided continuity 
related?

 14. What does it mean for a function to be continuous on an interval? 
Give examples to illustrate the fact that a function that is not con-
tinuous on its entire domain may still be continuous on selected 
intervals within the domain.

 15. What are the basic types of discontinuity? Give an example of 
each. What is a removable discontinuity? Give an example.

 16. What does it mean for a function to have the Intermediate Value 
Property? What conditions guarantee that a function has this prop-
erty over an interval? What are the consequences for graphing and 
solving the equation =f x( ) 0?

 17. Under what circumstances can you extend a function f x( ) to be 
continuous at a point x c?=  Give an example.

 18. What exactly do =
→∞

f x Llim ( )
x

 and =
→−∞

f x Llim ( )
x

 mean? Give 
examples.

 19. What are 
→±∞

klim
x

 (k a constant) and ( )
→±∞

xlim 1 ?
x

 How do you 

extend these results to other functions? Give examples.

 20. How do you find the limit of a rational function as x ?→ ±∞  
Give examples.

 21. What are horizontal and vertical asymptotes? Give examples.

CHAPTER 2 Questions to Guide Your Review
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 Chapter 2  Practice Exercises 133

Limits and Continuity

 1. Graph the function

=

≤ −

− − < <

=

− < <

≥

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

f x

x

x x

x

x x

x

( )

1, 1

, 1 0

1, 0

, 0 1

1, 1.

  Then discuss, in detail, limits, one-sided limits, continuity, and 
one-sided continuity of  f  at x 1, 0,= −  and 1. Are any of the dis-
continuities removable? Explain.

 2. Repeat the instructions of Exercise 1 for

=

≤ −

< <

=

>

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

f x

x

x x

x

x

( )

0, 1

1 , 0 1

0, 1

1, 1.

 3. Suppose that f t( ) and f t( ) are defined for all t and that 
= −

→
f tlim ( ) 7

t t0

 and =
→

g tlim ( ) 0.
t t0

 Find the limit as →t t0 of the 

following functions.

 a. 3 f t( ) b. f t( ( ))2

 c. ⋅f t g t( ) ( ) d. 
−

f t
g t

( )
( ) 7

 e. g tcos( ( )) f. f t( )

 g. +f t g t( ) ( ) h. f t1 ( )

 4. Suppose the functions f x( ) and g x( ) are defined for all x and that 
=

→
f xlim ( ) 1 2

x 0
 and =

→
g xlim ( ) 2.

x 0
 Find the limits as →x 0  

of the following functions.

 a. −g x( ) b. ⋅g x f x( ) ( )

 c. +f x g x( ) ( ) d. f x1 ( )

 e. +x f x( ) f. 
f x x

x
( ) cos

1
⋅
−

In Exercises 5 and 6, find the value that 
→

g xlim ( )
x 0

 must have if the 
given limit statements hold.

 5. ( )− =
→

g x
x

lim
4 ( )

1
x 0

 6. x g xlim lim ( ) 2
x x4 0

( ) =
→− →

 7. On what intervals are the following functions continuous?

 a. =f x x( ) 1 3 b. =g x x( ) 3 4

 c. h x x( ) 2 3= −  d. k x x( ) 1 6= −

 8. On what intervals are the following functions continuous?

 a. f x x( ) tan=  b. g x x( ) csc=

 c. h x
x

x
( )

cos
π

=
−

 d. k x
x

x
( )

sin
=

Finding Limits
In Exercises 9–28, find the limit or explain why it does not exist.

 9. − +
+ −

x x
x x x

lim 4 4
5 14

2

3 2

 a. as →x 0 b. as →x 2

CHAPTER 2 Practice Exercises

 10. +
+ +
x x

x x x
lim

2

2

5 4 3

 a. as →x 0 b. as → −x 1

 11. −
−→

x
x

lim 1
1x 1

 12. −
−→

x a
x a

lim
x a

2 2

4 4

 13. ( )+ −
→

x h x
h

lim
h 0

2 2

 14. ( )+ −
→

x h x
h

lim
x 0

2 2

 15. +
−

→

x
x

lim

1
2

1
2

x 0
 16. 

( )+ −
→

x
x

lim 2 8
x 0

3

 17. −
−→

x
x

lim 1
1x 1

1 3
 18. −

−→

x
x

lim 16
8x 64

2 3

 19. 
x
x

lim
tan 2
tanx 0 π

( )

( )→
 20. xlim csc

x π→ −

 21. x xlim sin
2

sin
x

( )+
π→

 22. x xlim cos tan
x

2 ( )−
π→

 23. x
x x

lim 8
3 sinx 0 −→

 24. 
x

x
lim

cos 2 1
sinx 0

−
→

 25. tlim ln 3
t 3

( )−
→ +

 26. t tlim ln 2
t 1

2 ( )−
→

 27. elim
0

cosθ
θ

π θ( )
→ +

 28. 
+→ +

e
e

lim 2
1z

z

z0

1

1

In Exercises 29–32, find the limit of g x( ) as x approaches the indi-
cated value.

 29. =
→ +

g xlim (4 ( )) 2
x 0

1 3  30. 
+

=
→ x g x
lim 1

( )
2

x 5

 31. + = ∞
→

x
g x

lim 3 1
( )x 1

2
 32. − =

→−

x
g x

lim 5
( )

0
x 2

2

Roots
 33. Let = − −f x x x( ) 1.3

 a. Use the Intermediate Value Theorem to show that  f  has a  
zero between −1 and 2.

 b. Solve the equation =f x( ) 0 graphically with an error of 
magnitude at most 10 .8−

 c. It can be shown that the exact value of the solution in part (b) is

1
2

69
18

1
2

69
18

.
1 3 1 3

+
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ + −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

Evaluate this exact answer and compare it with the value you 
found in part (b).

 34. Let θ θ θ= − +f ( ) 2 2.3

 a. Use the Intermediate Value Theorem to show that  f  has a  
zero between 2−  and 0.

T

T
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134 Chapter 2  Limits and Continuity

 b. Solve the equation θ =f ( ) 0 graphically with an error of 
magnitude at most 10 .4−

 c. It can be shown that the exact value of the solution in part (b) is

19
27

1 19
27

1 .
1 3 1 3

−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ − +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

Evaluate this exact answer and compare it with the value you 
found in part (b).

Continuous Extension

 35. Can ( )= − −f x x x x( ) 1 12 2  be extended to be continuous  
at x 1=  or 1?−  Give reasons for your answers. (Graph the  
function—you will find the graph interesting.)

 36. Explain why the function f x x( ) sin 1( )=  has no continuous 
extension to =x 0.

In Exercises 37–40, graph the function to see whether it appears to 
have a continuous extension to the given point a. If it does, use Trace 
and Zoom to find a good candidate for the extended function’s value at 
a. If the function does not appear to have a continuous extension, can it 
be extended to be continuous from the right or left? If so, what do you 
think the extended function’s value should be?

 37. = −
−

=f x x
x x

a( ) 1 , 14

 38. g a( )
5 cos

4 2
, 2θ

θ
θ π

π=
−

=

 39. h t t a( ) 1 , 0t1( )= + =

 40. k x x a( )
1 2

, 0
x

=
−

=

Limits at Infinity
Find the limits in Exercises 41–54.

 41. +
+→∞

x
x

lim 2 3
5 7x

 42. +
+→−∞

x
x

lim 2 3
5 7x

2

2

 43. − +
→−∞

x x
x

lim 4 8
3x

2

3
 44. 

− +→∞ x x
lim 1

7 1x 2

T

 45. −
+→−∞

x x
x

lim 7
1x

2
 46. +

+→∞

x x
x

lim
12 128x

4 3

3

 47. 
x

x
lim

sin
x→∞

   (If you have a grapher, try graphing the function  
for − ≤ ≤x5 5.)

 48. lim
cos 1θ
θ

−
θ→∞

   
(If you have a grapher, try graphing 
f x x x( ) cos 1 1( )( )= −  near the origin to 
“see” the limit at infinity.)

 49. 
x x x

x x
lim

sin 2
sinx

+ +
+→∞

 50. x x
x x

lim
cosx

2 3 1

2 3 2

+
+→∞

−

 51. e
x

lim cos 1
x

x1

→∞
 52. 

t
lim ln 1 1
t

( )+
→∞

 53. xlim tan
x

1

→−∞
−  54. e

t
lim sin 1

t

t3 1( )
→−∞

−

Horizontal and Vertical Asymptotes

 55. Use limits to determine the equations for all vertical asymptotes.

 a. y x
x

4
3

2
= +

−
 b. = − −

− +
f x x x

x x
( ) 2

2 1

2

2

 c. y x x
x x

6
2 8

2

2
= + −

+ −

 56. Use limits to determine the equations for all horizontal asymptotes.

 a. y x
x
1

1

2

2
= −

+
 b. = +

+
f x x

x
( ) 4

4

 c. = +g x x
x

( ) 42
 d. y x

x
9

9 1

2

2
= +

+

 57. Determine the domain and range of y x
x

16
2

.
2

= −
−

 58. Assume that constants a and b are positive. Find equations 
for all horizontal and vertical asymptotes for the graph of 

y ax
x b

4 .
2

= +
−

 1. Assigning a value to 0 0  The rules of exponents tell us that 
a 10 =  if a is any number different from zero. They also tell us that 
0 0n =  if n is any positive number.

If we tried to extend these rules to include the case 0 ,0  we 
would get conflicting results. The first rule would say =0 1,0  
whereas the second would say =0 0.0

We are not dealing with a question of right or wrong here.  
Neither rule applies as it stands, so there is no contradiction. We 
could, in fact, define 0 0 to have any value we wanted as long as we 
could persuade others to agree.

What value would you like 0 0 to have? Here is an example 
that might help you to decide. (See Exercise 2 below for another 
example.)

a. Calculate x x  for =x 0.1, 0.01, 0.001, and so on as far as your  
calculator can go. Record the values you get. What pattern do 
you see?

b. Graph the function y x x=  for < ≤x0 1. Even though the 
function is not defined for x 0,≤  the graph will approach the 
y-axis from the right. Toward what y-value does it seem to be 
headed? Zoom in to further support your idea.

 2. A reason you might want 0 0  to be something other than 0 or 1 
As the number x increases through positive values, the numbers x1  
and x1 ln( ) both approach zero. What happens to the number

f x
x

( ) 1 x1 ln

( )=
( )

as x increases? Here are two ways to find out.

a. Evaluate  f  for =x 10,100,1000, and so on as far as your 
calculator can reasonably go. What pattern do you see?

b. Graph  f  in a variety of graphing windows, including windows 
that contain the origin. What do you see? Trace the y-values 
along the graph. What do you find?

T

T
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 Chapter 2  Additional and Advanced Exercises 135

 3. Lorentz contraction In relativity theory, the length of an object, 
say a rocket, appears to an observer to depend on the speed at which 
the object is traveling with respect to the observer. If the observer 
measures the rocket’s length as L0 at rest, then at speed υ the length 
will appear to be

υ= −L L
c

  1 .0

2

2

This equation is the Lorentz contraction formula. Here, c is the speed 
of light in a vacuum, about 3 10 m s.8×  What happens to L as υ 
increases? Find Llim .

cυ→ −
 Why was the left-hand limit needed?

 4. Controlling the flow from a draining tank Torricelli’s law says 
that if you drain a tank like the one in the figure shown, the rate y at 
which water runs out is a constant times the square root of the water’s 
depth x. The constant depends on the size and shape of the exit valve.

x
Exit rate y m3�h

Stripes
about
1 mm
wide

r = 6 cm

Liquid volume
V = 36ph

(a)

(b)

h

A 1-L measuring cup (a), modeled as a right circular cylinder (b) 
of radius =r 6 cm

Suppose that =y x 2 for a certain tank. You are trying to 
maintain a fairly constant exit rate by adding water to the tank with 
a hose from time to time. How deep must you keep the water if you 
want to maintain the exit rate

a. within 0.2 m h3  of the rate y 1 m h?0
3=

b. within 0.1 m h3  of the rate y 1 m h?0
3=

 5. Thermal expansion in precise equipment As you may know, 
most metals expand when heated and contract when cooled. The 
dimensions of a piece of laboratory equipment are sometimes so 
critical that the shop where the equipment is made must be held at 
the same temperature as the laboratory where the equipment is to be 
used. A typical aluminum bar that is 10 cm wide at 20 C will be

y t10 2 20 10 4( )= + − × −

Centimeters wide at a nearby temperature t. Suppose that you are 
using a bar like this in a gravity wave detector, where its width must 
stay within 0.0005 cm of the ideal 10 cm. How close to t 20 C0 = °  
must you maintain the temperature to ensure that this tolerance is 
not exceeded?

 6. Stripes on a measuring cup The interior of a typical 1-L mea-
suring cup is a right circular cylinder of radius 6 cm (see accompa-
nying figure). The volume of water we put in the cup is therefore a 
function of the level h to which the cup is filled, the formula being

V h h6 36 .2π π= =

How closely must we measure h to measure out 1 L of water 
( )1000 cm 3  with an error of no more than 1% ( )10 cm ?3

Precise Definition of Limit
In Exercises 7–10, use the formal definition of limit to prove that the 
function is continuous at c.

 7. = − =f x x c( ) 7, 12  8. ( )= =g x x c( ) 1 2 , 1 4

 9. h x x c( ) 2 3, 2= − =  10. F x x c( ) 9 , 5= − =

 11. Uniqueness of limits Show that a function cannot have two 
different limits at the same point. That is, if =

→
f x Llim ( )

x c
1 and 

=
→

f x Llim ( ) ,
x c

2  then =L L .1 2

 12. Prove the limit Constant Multiple Rule:

k f x k f x klim ( ) lim ( ) for any constant  .
x c x c

=
→ →

 13. One-sided limits If =
→ +

f x Alim ( )
x 0

 and =
→ −

f x Blim ( ) ,
x 0

 find

 a. ( )−
→ +

f x xlim
x 0

3  b. ( )−
→ −

f x xlim
x 0

3

 c. ( )−
→ +

f x xlim
x 0

2 4  d. ( )−
→ −

f x xlim
x 0

2 4

 14. Limits and continuity Which of the following statements are 
true, and which are false? If true, say why; if false, give a counter-
example (that is, an example confirming the falsehood).

 a. If 
→

f xlim ( )
x c

 exists but 
→

g xlim ( )
x c

 does not exist, then 

( )+
→

f x g xlim ( ) ( )
x c

 does not exist.

 b. If neither 
→

f xlim ( )
x c

 nor 
→

g xlim ( )
x c

 exists, then  

( )+
→

f x g xlim ( ) ( )
x c

 does not exist.
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136 Chapter 2  Limits and Continuity

 c. If  f  is continuous at x, then so is f .

 d. If f  is continuous at c, then so is  f.

In Exercises 15 and 16, use the formal definition of limit to prove that 
the function has a continuous extension to the given value of x.

 15. = −
+

= −f x x
x

x( ) 1
1

, 1
2

 16. = − −
−

=g x x x
x

x( ) 2 3
2 6

, 3
2

 17. A function continuous at only one point Let

f x
x x

x
( )

if   is rational

0 if   is irrational.
=

⎧
⎨
⎪⎪
⎩⎪⎪

 a. Show that  f  is continuous at x 0.=

 b. Use the fact that every nonempty open interval of real num-
bers contains both rational and irrational numbers to show that 
f  is not continuous at any nonzero value of x.

 18. The Dirichlet ruler function If x is a rational number, then 
x can be written in a unique way as a quotient of integers m n, 
where n 0>  and m and n have no common factors greater than 1. 
(We say that such a fraction is in lowest terms. For example, 6 4  
written in lowest terms is 3 2.) Let f x( ) be defined for all x in the 
interval [ ]0,1  by

f x
n x m n

x
( )

1 if   is a rational number is lowest terms

0 if   is irrational.
=

=⎧
⎨
⎪⎪
⎩⎪⎪

  For instance, ( ) ( )= = = =f f f f(0) (1) 1, 1 2 1 2, 1 3
( ) ( ) ( )= = =f f f2 3 1 3, 1 4 3 4 1 4, and so on.

 a. Show that  f  is discontinuous at every rational number in [ ]0,1 .

 b. Show that  f  is continuous at every irrational number in [ ]0,1 . 
(Hint: If   ε is a given positive number, show that there are only 
finitely many rational numbers r in [ ]0,1  such that ε≥f r( ) .)

 c. Sketch the graph of  f. Why do you think  f  is called the “ruler 
function”?

 19. Antipodal points Is there any reason to believe that there 
is always a pair of antipodal (diametrically opposite) points on 
Earth’s equator where the temperatures are the same? Explain.

 20. If ( )+ =
→

f x g xlim ( ) ( ) 3
x c

 and ( )− = −
→

f x g xlim ( ) ( ) 1,
x c

 find 

f x g xlim ( ) ( ).
x c→

 21. Roots of a quadratic equation that is almost linear The equa-
tion ax x2 1 0,2 + − =  where a is a constant, has two roots if 
a 1> −  and a 0,≠  one positive and one negative:

r a a
a

r a a
a

( ) 1 1 , ( ) 1 1 .= − + + = − − +
+ −

 a. What happens to r a( )+  as a 0?→  As a 1 ?→ − +

 b. What happens to r a( )−  as a 0?→  As a 1 ?→ − +

 c. Support your conclusions by graphing r a( )+  and r a( )−  as 
functions of a. Describe what you see.

 d. For added support, graph = + −f x ax x( ) 2 12  simultane-
ously for a 1,=  0.5, 0.2, 0.1, and 0.05.

 22. Root of an equation Show that the equation x x2 cos 0+ =  
has at least one solution.

 23. Bounded functions A real-valued function  f  is bounded from 
above on a set D if there exists a number N such that ≤f x N( )  
for all x in D. We call N, when it exists, an upper bound for  f  on 
D and say that  f  is bounded from above by N. In a similar man-
ner, we say that  f  is bounded from below on D if there exists a 
number M such that ≥f x M( )  for all x in D. We call M, when it 

exists, a lower bound for  f  on D and say that  f  is bounded from 
below by M. We say that  f  is bounded on D if it is bounded from 
both above and below.

 a. Show that  f  is bounded on D if and only if there exists a num-
ber B such that ≤f x B( )  for all x in D.

 b. Suppose that  f  is bounded from above by N. Show that if 
=

→
f x Llim ( ) ,

x c
 then L N .≤

 c. Suppose that  f  is bounded from below by M. Show that if 
=

→
f x Llim ( ) ,

x c
 then L M .≥

 24. Max a b{ , } and min a b{ , }
 a. Show that the expression

{ } = + + −a b a b a bmax ,
2 2

equals a if ≥a b and equals b if ≥b a. In other words, 
{ }a bmax ,  gives the larger of the two numbers a and b.

 b. Find a similar expression for { }a bmin , , the smaller of a  
and b.

Generalized Limits Involving 
sin

The formula lim sin 1
0

θ θ( ) =
θ→

 can be generalized. If =
→

f xlim ( ) 0
x c

 

and f x( ) is never zero in an open interval containing the point =x c, 
except possibly at c itself, then

f x
f x

lim
sin   ( )

( )
1.

x c
=

→

Here are several examples.

 a. 
x

x
lim

sin
1

x 0

2

2
=

→

 b. 
x

x
x

x
x
x

lim
sin

lim
sin

lim 1 0 0
x x x0

2

0

2

2 0

2
= = ⋅ =

→ → →

 c. 
( )− −

+→−

x x
x

lim
sin 2

1x 1

2

( )
( )

( )

( )( )

= − −
− −

⋅ − −
+

= ⋅ + −
+

= −

→− →−

→−

x x
x x

x x
x

x x
x

lim sin 2
2

lim 2
1

1 lim 1 2
1

3

x x

x

1

2

2 1

2

1

 d. 
( ) ( )−

−
=

−
−

−
−→ →

x
x

x

x
x

x
lim

sin 1
1

lim
sin 1

1
1

1x x1 1

( )( )
( )( )

=
− +

− +→

x x

x x
lim

1 1

1 1x 1

( )( )
= −

− +
= −

→

x
x x

lim 1
1 1

1
2x 1

Find the limits in Exercises 25–30.

 25. 
x

x
lim

sin 1 cos
x 0

( )−
→

 26. 
x

x
lim

sin

sinx 0→ +

 27. 
x

x
lim

sin sin
x 0

( )
→

 28. 
( )+

→

x x
x

lim
sin

x 0

2

 29. 
( )−

−→

x
x

lim
sin 4

2x 2

2

 30. 
x

x
lim

sin 3
9x 9

( )−
−→

Trigonometric Limits
Find the limits in Exercises 31–38.

 31. 
x

x x
lim

sin
2x 0 2 −→

 32. 
x x

x
lim

3 tan 7
2x 0

−
→
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 33. 
r
r

lim
sin

tan 2r 0→
 34. lim

sin sin
0

θ
θ

( )
θ→

 35. lim
4 tan tan 1

tan 52

2

2

θ θ
θ

+ +
+θ π( )→ −

 36. lim
1 2 cot

5 cot 7 cot 80

2

2

θ
θ θ
−

− −θ→ +

 37. 
x x

x
lim

sin
2 2 cosx 0 −→

 38. lim
1 cos

0 2

θ
θ

−
θ→

Show how to extend the functions in Exercises 39 and 40 to be con-
tinuous at the origin.

 39. g x
x

x
( )

tan tan
tan
( )

=  40. f x
x
x

( )
tan tan
sin sin

( )
( )

=

Oblique Asymptotes
Find all possible oblique asymptotes in Exercises 41–44.

 41. = + −
+

y x x
x

2 2 3
1

3 2
 42. y x x

x
sin 1= +

 43. = +y x 12  44. = +y x x22

Showing an Equation Is Solvable

 45. Assume that < <a b1  and + =
−

a
x

x
x b

1 . Show that this 
equation is solvable for x.

More Limits
 46. Find constants a and b so that each of the following limits is true.

 a. + − =
→

a bx
x

lim 1 2
x 0

 b. 
( )− + −

−
=

→

ax a b
x

lim
tan 2

1
3

x 1

 47. Evaluate x
x

lim 1
1

.
x 1

2 3 −
−→

 48. Evaluate + − −
→

x x
x

lim 3 4 4 .
x 0

Limits on Arbitrary Domains
The definition of the limit of a function at =x c extends to functions 
whose domains near c are more complicated than intervals.

General Definition of Limit
Suppose every open interval containing c contains a point 
other than c in the domain of  f . We say that =

→
f x Llim ( )

x c
 

if, for every number ε > 0, there exists a correspond-
ing number δ > 0 such that for all x in the domain of  f  , 

ε− <f x L( )  whenever δ< − <x c0 .

For the functions in Exercises 49–52,

 a. Find the domain.

 b. Show that at =c 0 the domain has the property described 
above.

 c. Evaluate 
→

f xlim ( ).
x 0

 49. The function  f  is defined as follows: =f x x( )  if =x n1  where 
n is a positive integer, and =f (0) 1.

 50. The function   f   is defined as follows: = −f x x( ) 1  if =x n1  
where n is a positive integer, and =f (0) 1.

 51. f x x x( ) sin 1( )=

 52. f x x( ) ln sin 1( )( )=

 53. Let g be a function with domain the rational numbers, defined by 

=
−

g x
x

( ) 2
2

 for rational x.

 a. Sketch the graph of g as well as you can, keeping in mind that 
g is defined only at rational points.

 b. Use the general definition of a limit to prove that 
= −

→
g xlim ( ) 2.

x 0

 c. Prove that g is continuous at the point =x 0 by showing that 
the limit in part (b) equals g(0).

 d. Is g continuous at other points of its domain?

Mathematica/Maple Projects

Projects can be found within MyLab Math.

• Take It to the Limit

Part I
Part II (Zero Raised to the Power Zero: What Does It Mean?)
Part III (One-Sided Limits)
Visualize and interpret the limit concept through graphical and numerical explorations.
Part IV (What a Difference a Power Makes)
See how sensitive limits can be with various powers of x.

• Going to Infinity

Part I (Exploring Function Behavior as → ∞x  or → −∞x )
This module provides four examples to explore the behavior of a function as → ∞x  or → −∞x .
Part II (Rates of Growth)
Observe graphs that appear to be continuous, yet the function is not continuous. Several issues of continuity are explored to obtain results that 
you may find surprising.

CHAPTER 2 Technology Application Projects
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138

OVERVIEW In Chapter 2 we discussed how to determine the slope of a curve at a point 
and how to measure the rate at which a function changes. Now that we have studied limits, 
we can make these notions precise and see that both are interpretations of the derivative of 
a function at a point. We then extend this concept from a single point to the derivative function, 
and we develop rules for finding this derivative function easily, without having to calculate 
limits directly. These rules are used to find derivatives of most of the common functions 
reviewed in Chapter 1, as well as combinations of them.

Derivatives

3

3.1 Tangent Lines and the Derivative at a Point

In this section we define the slope and tangent line to a curve at a point, and the derivative 
of a function at a point. The derivative gives a way to find both the slope of a graph and the 
instantaneous rate of change of a function.

FIGURE 3.1 The slope of the tangent 

line at P is 
f x h f x

h
lim

( )
.

h 0

0 0( )+ −
→

0

h

y

x

y = f (x)

Q(x0 + h,  f (x0 + h))

f (x0 + h) − f (x0)

P(x0,  f(x0))

x0 + hx0

DEFINITIONS The slope of the curve =y f x( ) at the point P x f x, ( )0 0( ) is 
the number

f x h f x
h

lim
( )

provided the limit exists .
h 0

0 0( )
( )

+ −
→

The tangent line to the curve at P is the line through P with this slope.

Finding a Tangent Line to the Graph of a Function

To find a tangent line to an arbitrary curve =y f x( ) at a point P x f x, ( ) ,0 0( )  we use the 
procedure introduced in Section 2.1. We calculate the slope of the secant line through P 
and a nearby point ( )( )+ +Q x h f x h, .0 0  We then investigate the limit of the slope as 

→h 0 (Figure 3.1). If the limit exists, we call it the slope of the curve at P and define the 
tangent line at P to be the line through P having this slope.

In Section 2.1, Example 3, we applied these definitions to find the slope of the parabola 
=f x x( ) 2 at the point ( )P 2, 4  and the tangent line to the parabola at P. Let’s look at 

another example.
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 3.1  Tangent Lines and the Derivative at a Point 139

EXAMPLE 1

(a) Find the slope of the curve =y x1  at any point = ≠x a 0. What is the slope at the 
point = −x 1?

(b) Where does the slope equal −1 4?

(c) What happens to the tangent line to the curve at the point a a,1( ) as a changes?

Solution 

(a) Here f x x( ) 1 .=  The slope at a a,1( ) is

f a h f a
h

a h a
h h

a a h
a a h

h
ha a h a a h a

lim
( )

lim

1 1

lim 1

lim lim 1 1 .

h h h

h h

0 0 0

0 0 2

( ) ( )

( )

( ) ( )

+ − = +
−

= − +
+

= −
+

= −
+

= −

→ → →

→ →

Notice how we had to keep writing 
→

“ lim”
h 0

 before each fraction until the stage at which 

we could evaluate the limit by substituting =h 0. The number a may be positive or 
negative, but not 0. When = −a 1, the slope is ( )− − = −1 1 12  (Figure 3.2).

(b) The slope of =y x1  at the point where =x a is − a1 .2  It will be −1 4, provided that

− = −
a
1 1

4
.

2

This equation is equivalent to =a 4,2  so =a 2 or = −a 2. The curve has slope  
−1 4 at the two points ( )2,1 2  and ( )− −2, 1 2  (Figure 3.3).

(c) The slope a1 2−  is always negative if ≠a 0. As → +a 0 , the slope approaches −∞ 
and the tangent line becomes increasingly steep (Figure 3.2). We see this situation again 
as → −a 0 . As a moves away from x 0=  in either direction, the slope approaches 0 
and the tangent line levels off, becoming closer and closer to a horizontal line. 

Rates of Change: Derivative at a Point

The expression

f x h f x
h

h
( )

, 00 0( )+ −
≠

is called the difference quotient of  f  at x0 with increment h. If the difference quotient 
has a limit as h approaches zero, that limit is given a special name and notation.

DEFINITION The derivative of a function  f  at a point x0, denoted f x( )0′ , is

f x
f x h f x

h
( ) lim

( )
,

h
0

0

0 0( )
′ =

+ −
→

provided this limit exists.

The derivative has more than one meaning, depending on what problem we are consid-
ering. The formula for the derivative is the same as the formula for the slope of the curve 

=y f x( ) at a point. If we interpret the difference quotient as the slope of a secant line, then 
the derivative gives the slope of the curve y f x( )=  at the point P x f x, ( ) .0 0( )  If we inter-
pret the difference quotient as an average rate of change (Section 2.1), then the derivative 

The notation f x( )0′  is read “f prime  
of x .0 ”

FIGURE 3.3 The two tangent lines to 
y x1=  having slope 1 4−  (Example 1).

a          b

x

y

2,

y = 1
x

1
2

−2, −1
2

Slope is −1
4

Slope is −1
4

a    b

FIGURE 3.2 The tangent lines are  
steep when x is close to 0, and they 
become less steep as the point of tan-
gency moves away (Example 1).

x

y

y = 1
x

Slope is − 1
a2

Slope is −1
at x = −1 

a0
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140 Chapter 3 Derivatives

gives the function’s instantaneous rate of change with respect to x at the point =x x .0  We 
study this interpretation in Section 3.4.

All of the following are interpretations for the limit of the difference quotient

f x h f x
h

lim
( )

.
h 0

0 0( )+ −
→

1. The slope of the graph of =y f x( ) at =x x0

2. The slope of the tangent line to the curve =y f x( ) at =x x0

3. The rate of change of f x( ) with respect to x at =x x0

4. The derivative f x( )0′  at =x x0

EXERCISES 3.1

Slopes and Tangent Lines
In Exercises 1–4, use the grid and a straight edge to make a rough 
estimate of the slope of the curve (in y-units per x-unit) at the points 
P1 and P .2

x

y

1

2

10

P1

P2

 1. 

x

y

0 1 2

2

1

−1

−2

P1

P2

−1−2

 2. 

x

y

1 2

2

1

0

P1
P2

 3. 
y

0 1−1

1

2

3

x

4

−2 2

P1 P2

 4. 

EXAMPLE 2  In Examples 1 and 2 in Section 2.1, we studied the speed of a rock falling 
freely from rest near the surface of the earth. We knew that the rock fell =y t4.9 2 meters dur-
ing the first t seconds, and we used a sequence of average rates over increasingly short intervals 
to estimate the rock’s speed at the instant t  1. What was the rock’s exact speed at this time?

Solution We let =f t t( ) 4.9 .2  The average speed of the rock over the interval between  
t  1 and t  1  h seconds, for h  0, was found to be

( )( ) ( )
( )

( ) ( )+ − = + − = + = +f h f
h

h
h

h h
h

h
1     1 4.9 1    4.9 1 4.9 2 4.9 2 .

2 2 2

The rock’s speed at the instant =t 1 is then

( )( ) ( )′ = + = + =
→

f h1 lim 4.9 2 4.9 0 2 9.8 m/s
h 0

.

Our original estimate of 9.8 m/s in Section 2.1 was right. 

Summary

We have been discussing slopes of curves, lines tangent to a curve, the rate of change of a 
function, and the derivative of a function at a point. All of these ideas are based on the 
same limit.

In the next sections, we allow the point x0 to vary across the domain of the function  f.
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 3.1  Tangent Lines and the Derivative at a Point 141
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0.8
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0.6

1.0

In Exercises 5–10, find an equation for the tangent line to the curve at 
the given point. Then sketch the curve and tangent line together.

 5. ( )= − −y x4 , 1, 32  6. ( )( )= − +y x 1 1, 1,12

 7. ( )=y x2 , 1, 2  8. ( )= −y
x
1 , 1,1

2

 9. ( )= − −y x , 2, 83  10. ( )= − −y
x
1 , 2, 1

83

In Exercises 11–18, find the slope of the function’s graph at the given 
point. Then find an equation for the line tangent to the graph there.

 11. ( )= +f x x( ) 1, 2, 52  12. ( )= − −f x x x( ) 2 , 1, 12

 13. ( )=
−

g x x
x

( )
2

, 3, 3  14. ( )=g x
x

( ) 8 , 2, 2
2

 15. h t t( ) , 2, 83 ( )=  16. h t t t( ) 3 , 1, 43 ( )= +

 17. ( )=f x x( ) , 4, 2  18. ( )= +f x x( ) 1, 8, 3

In Exercises 19–22, find the slope of the curve at the point indicated.

 19. = − =y x x x5 3 , 12  20. = − + = −y x x x2 7, 23

 21. =
−

=y
x

x1
1

, 3 22. = −
+

=y x
x

x1
1

, 0

Interpreting Derivative Values

 23. Growth of yeast cells In a controlled laboratory experiment, 
yeast cells are grown in an automated cell culture system that 
counts the number P of cells present at hourly intervals. The num-
ber after t hours is shown in the accompanying figure.

At what points do the graphs of the functions in Exercises 25 and 26 
have horizontal tangent lines?

 25. = + −f x x x( ) 4 12  26. = −g x x x( ) 33

 27. Find equations of all lines having slope 1 that are tangent to the 
curve ( )= −y x1 1 .

 28. Find an equation of the straight line having slope 1 4 that is tan-
gent to the curve y x.

Rates of Change

 29. Object dropped from a tower An object is dropped from the 
top of a 100-m-high tower. Its height above ground after t s is 

t100 4.9 m.2  How fast is it falling 2 s after it is dropped?

 30. Speed of a rocket At t seconds after liftoff, the height of a 
rocket is t3 m2 . How fast is the rocket climbing 10 s after liftoff?

 31. Disk’s changing area What is the rate of change of the area of 
a disk ( )=A r 2  with respect to the radius when the radius is 
r 3?

 32. Ball’s changing volume What is the rate of change of the vol-
ume of a ball ( )( )=V r4 3 3  with respect to the radius when the 
radius is r 2?

 33. Show that the line = +y mx b is its own tangent line at any 
point ( )+x mx b, .0 0

 34. Find the slope of the tangent line to the curve y x1  at the 
point where x 4.

Testing for Tangent Lines

 35. Does the graph of

f x
x x x

x
( )

sin 1 , 0

0, 0

2 ( )
=

≠

=

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

have a tangent line at the origin? Give reasons for your answer.

 36. Does the graph of

g x
x x x

x
( )

sin 1 , 0

0, 0

( )
=

≠

=

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

have a tangent line at the origin? Give reasons for your answer.

Vertical Tangent Lines
We say that a continuous curve y f x( ) has a vertical tangent line 
at the point where x x0 if the limit of the difference quotient is  or 
−∞. For example, y x1 3 has a vertical tangent line at x 0 (see 
accompanying figure):

f h f
h

h
h

h

lim
0 (0)

lim 0

lim 1 .

h h

h

0 0

1 3

0 2 3

( )+ − = −

= = ∞

→ →

→

 a. Explain what is meant by the derivative P (5). What are its 
units?

 b. Which is larger, P (2) or P (3)? Give a reason for your answer.

 c. The quadratic curve capturing the trend of the data points (see 
Appendix A.2) is given by P t t t( ) 6.10 9.28 16.43.2= − +   
Find the instantaneous rate of growth when t 5 hours.

 24. Effectiveness of a drug On a scale from 0 to 1, the effectiveness 
E of a pain-killing drug t hours after entering the bloodstream is 
displayed in the accompanying figure.

 a. At what times does the effectiveness appear to be increasing? 
What is true about the derivative at those times?

 b. At what time would you estimate that the drug reaches its 
maximum effectiveness? What is true about the derivative at 
that time? What is true about the derivative as time increases 
in the 1 hour before your estimated time?

y = f (x) = x

x

y

0

VERTICAL TANGENT LINE AT ORIGIN

 1 3
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142 Chapter 3 Derivatives

DEFINITION The derivative of the function f x( ) with respect to the variable x 
is the function f  whose value at x is

f x
f x h f x

h
( ) lim

( )
,

h 0

( )
′ = + −

→

provided the limit exists.

NO VERTICAL TANGENT LINE AT ORIGIN

y = g(x) = x2 3

x

y

0

However, y x 2 3 has no vertical tangent line at x 0 (see next 
figure):

g h g
h

h
h

h

lim
0 (0)

lim 0

lim 1
h h

h

0 0

2 3

0 1 3

( )+ − = −

=

→ →

→

does not exist, because the limit is  from the right and −∞ from the 
left.

Graph the curves in Exercises 39–48.

  a. Where do the graphs appear to have vertical tangent lines?

  b.  Confirm your findings in part (a) with limit calculations. But 
before you do, read the introduction to Exercises 37 and 38.

 39. y x 2 5 40. y x 4 5

 41. y x 1 5 42. y x 3 5

 43. = −y x x4 22 5  44. = −y x x55 3 2 3

 45. ( )= − −y x x 12 3 1 3 46. ( )= + −y x x 11 3 1 3

 47. y
x x

x x

, 0

, 0
=

− ≤

>

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

 48. y x4= −

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for the functions in Exer-
cises 49–52:

  a. Plot y f x( ) over the interval ( ) ( )− ≤ ≤ +x x x1 2 3 .0 0

  b. Holding x0 fixed, the difference quotient

q h
f x h f x

h
( )

( )0 0( )
=

+ −

at x0 becomes a function of the step size h. Enter this function 
into your CAS workspace.

  c. Find the limit of q as h 0.

  d.  Define the secant lines y f x q x x( )0 0( )= + ⋅ −  for 
h 3, 2, and 1. Graph them, together with  f  and the tangent 
line, over the interval in part (a).

 49. = + =f x x x x( ) 2 , 03
0

 50. = + =f x x
x

x( ) 5 , 10

 51. f x x x x( ) sin(2 ), 20= + =

 52. f x x x x( ) cos 4 sin(2 ), 0= + =

T

 37. Does the graph of

=

− <

=

>

⎧

⎨

⎪⎪⎪⎪⎪

⎩
⎪⎪⎪⎪⎪

f x

x

x

x

( )

1, 0

0, 0

1, 0

have a vertical tangent line at the origin? Give reasons for your 
answer.

 38. Does the graph of

U x
x

x
( )

0, 0

1, 0
=

<

≥

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

have a vertical tangent line at the point ( )0,1 ? Give reasons for 
your answer.

In the last section we defined the derivative of y f x( ) at the point x x0 to be the limit

f x
f x h f x

h
( ) lim

( )
.

h
0

0

0 0( )
′ =

+ −
→

We now investigate the derivative as a function derived from  f  by considering the limit at 
each point x in the domain of  f.

3.2 The Derivative as a Function

We use the notation f x( ) in the definition, rather than f x( )0  as before, to emphasize 
that f  is a function of the independent variable x with respect to which the derivative func-
tion f x( ) is being defined. The domain of f  is the set of points in the domain of  f  for 

HISTORICAL ESSAY

The Derivative
To read this essay, visit the companion  
Website. 
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 3.2  The Derivative as a Function 143

which the limit exists, which means that the domain may be the same as or smaller than the 
domain of  f. If ′f  exists at a particular x, we say that  f  is differentiable (has a derivative) 
at x. If ′f  exists at every point in the domain of  f, we call  f  differentiable.

If we write = +z x h, then = −h z x and h approaches 0 if and only if z approaches 
x. Therefore, an equivalent definition of the derivative is as follows (see Figure 3.4). This 
formula is sometimes more convenient to use when finding a derivative function, and it 
focuses on the point z that approaches x.

Alternative Formula for the Derivative

f x
f z f x

z x
( ) lim

( ) ( )
z x

′ = −
−→

Calculating Derivatives from the Definition

The process of calculating a derivative is called differentiation. To emphasize the idea that 
differentiation is an operation performed on a function =y f x( ), we use the notation

d
dx

f x( )

as another way to denote the derivative f x( ).′  Example 1 of Section 3.1 illustrated the dif-
ferentiation process for the function =y x1  when =x a. For x representing any point in 
the domain, we get the formula

( ) = −d
dx x x

1 1 .
2

Here are two more examples in which we allow x to be any point in the domain of  f.

EXAMPLE 1  Differentiate =
−

f x x
x

( )
1

.

Solution We use the definition of derivative, which requires us to calculate ( )+f x h  
and then subtract f x( ) to obtain the numerator in the difference quotient. We have

( )
( )

( )
=

−
+ = +

+ −
f x x

x
f x h x h

x h
( )

1
and

1
, so

f x
f x h f x

h

x h
x h

x
x

h

h
x h x x x h

x h x

h
h

x h x

x h x x

( ) lim
( )

lim 1 1

lim 1 1 1
1 1

lim 1
1 1

lim 1
1 1

1
1

.

a
b

c
d

ad cb
bd

h

Definition

Substitute.

Simplify.

Cancel 0 and evaluate.

h

h

h

h

h

0

0

0

0

0 2

( )

( ) ( )

( )

( )

( )

( )

( )

( )

( ) ( )

′ = + −

=

+
+ −

−
−

= ⋅ + − − + −
+ − −

= ⋅ −
+ − −

= −
+ − −

= −
−

= −

≠

−

→

→

→

→

→
 

EXAMPLE 2

(a) Find the derivative of =f x x( )  for >x 0.

(b) Find the tangent line to the curve =y x at =x 4.

Derivative of the Reciprocal Function

( ) = − ≠d
dx x x

x1 1 , 0
2

FIGURE 3.4 Two forms for the differ-
ence quotient.

x z = x + h

h = z − x

P(x, f (x))

Q(z, f (z))

f (z) − f (x)

y = f (x)

Slope of the
secant line is

f (z) − f (x)
z − x

Derivative of f at x is

f '(x) = lim
h:0

= lim
z:x

f (x + h) − f (x)
h

f (z) − f (x)
z − x
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144 Chapter 3 Derivatives

Solution 

(a) We use the alternative formula to calculate ′f :

f x
f z f x

z x

z x
z x

z x
z x z x

z x x

( ) lim
( ) ( )

lim

lim

lim 1 1
2

.

a b a b a b
1 1

Cancel and evaluate.

z x

z x

z x

z x

2 2( )( )

′ = −
−

= −
−

= −
− +

=
+

=

−
= − +( )( )

→

→

→

→

(b) The slope of the curve at =x 4 is

f (4) 1
2 4

1
4

.′ = =

The tangent line is the line through the point ( )4, 2  with slope 1 4 (Figure 3.5):

( )= + −

= +

y x

y x

2 1
4

4

1
4

1.  

FIGURE 3.5 The curve =y x  and its 
tangent line at ( )4, 2 . The tangent line’s 
slope is found by evaluating the derivative 
at =x 4 (Example 2).

x

y

0 4

(4, 2)

1

y = 
"

x

y =    x + 11
4

Derivative of the Square Root 
Function

= >d
dx

x
x

x1
2

, 0

FIGURE 3.6 We made the graph of 
y f x( )= ′  in (b) by plotting slopes from 
the graph of =y f x( ) in (a). The vertical  
coordinate of ′B  is the slope at B, and 
so on. The slope at E is approximately 

=8 4 2. In (b) we see that the rate of 
change of  f  is negative for x between ′A  
and ′D ; the rate of change is positive for x 
to the right of ′D .

0 10

(a)

5 15

5

10

Slope 0

A

B

C
D

E

Slope 0

105 15

1

2

3

4

−1

−2

(b)

Slope −1

4
3Slope − 

y = f (x)

≈ 8

≈ 4 x-units

A'

y = f '(x)

B′
C′

D′

E′

Vertical coordinate −1

y

x

x

Slope

Notation

There are many ways to denote the derivative of a function =y f x( ), where the indepen-
dent variable is x and the dependent variable is y. Some common alternative notations for 
the derivative are

f x y
dy
dx

df
dx

d
dx

f x D f x D f x( ) ( ) ( )( ) ( ).x′ = ′ = = = = =

The symbols d dx  and D indicate the operation of differentiation. We read dy dx  as “the 
derivative of y with respect to x,” and df dx  and ( )d dx f x( ) as “the derivative of  f  with 
respect to x.” The “prime” notations ′y  and ′f  originate with Newton. The d dx  notations 
are similar to those used by Leibniz. The symbol dy dx  should not be regarded as a ratio; 
it simply denotes a derivative.

To indicate the value of a derivative at a specified number =x a, we use the notation

f a
dy
dx

df
dx

d
dx

f x( ) ( ) .
x a x a x a

′ = = =
= = =

For instance, in Example 2,

f d
dx

x
x

(4) 1
2

1
2 4

1
4

.
x x4 4

′ = = = =
= =

Graphing the Derivative

We can often make an approximate plot of the derivative of =y f x( ) by estimating the 
slopes on the graph of  f. That is, we plot the points x f x, ( )( )′  in the xy-plane and connect 
them with a curve that represents y f x( ).= ′

EXAMPLE 3  Graph the derivative of the function =y f x( ) in Figure 3.6a.

Solution We sketch the tangent lines to the graph of  f  at frequent intervals and use their 
slopes to estimate the values of f x( )′  at these points. We plot the corresponding x f x, ( )( )′  
pairs and connect them with a curve as sketched in Figure 3.6b. 
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 3.2  The Derivative as a Function 145

What can we learn from the graph of y f x( )?= ′  At a glance we can see

1. where the rate of change of  f  is positive, negative, or zero;

2. the rough size of the growth rate at any x;

3. where the rate of change itself is increasing or decreasing.

FIGURE 3.7 Derivatives at endpoints of 
a closed interval are one-sided limits.

a ba + h
h > 0

b + h
h < 0

lim
h:0+

f (a + h) − f (a)
h

Slope =

y = f (x)

lim
h:0−

f (b + h) − f (b)
h

Slope =

x

FIGURE 3.8 The function =y x  
is not differentiable at the origin where 
the graph has a “corner” (Example 4).

x

y

0
y′ not defined at x = 0:
right-hand derivative
≠ left-hand derivative

y′ = −1 y′ = 1

y = 0 x 0

Differentiability on an Interval; One-Sided Derivatives

A function =y f x( ) is differentiable on an open interval (finite or infinite) if it has a 
derivative at each point of the interval. It is differentiable on a closed interval [ ]a b,  if it 
is differentiable on the interior ( )a b,  and if the limits

( )

( )

+ −

+ −
→

→

+

−

a

b

f a h f a
h

f b h f b
h

Right hand derivative at

Left hand derivative at

lim
( )

-      

lim
( )

-      

h

h

0

0

exist at the endpoints (Figure 3.7).
Right-hand and left-hand derivatives may or may not be defined at any point of a func-

tion’s domain. Because of Theorem 5, Section 2.4, a function has a derivative at an interior 
point if and only if it has left-hand and right-hand derivatives there, and these one-sided 
derivatives are equal.

EXAMPLE 4  Show that the function =y x  is differentiable on ( )−∞, 0  and on 
( )∞0,  but has no derivative at =x 0.

Solution The graph of the function = +y mx b is a straight line with slope m. Thus, to 
the right of the origin, when >x 0,

d
dx

x d
dx

x d
dx

x( ) 1 1. x x x
d
dx

mx bsince 0, m( )( ) = = ⋅ = > +( )= =

To the left, when <x 0,

d
dx

x d
dx

x d
dx

x( ) 1 1 x x xsince 0( )( ) = − = − ⋅ = − = − <

(Figure 3.8). The two branches of the graph come together at an angle at the origin, forming 
a non-smooth corner. There is no derivative at the origin because the one-sided derivatives 
differ there:

=
+ −

=

=

= =

=
+ −

=

= −

= − = −

= >

= − <

→ →

→

→

→ →

→

→

+ +

+

+

− −

−

−

x
h
h

h
h

h
h

x
h
h

h
h

h
h

Right-hand derivative of   at zero lim
0 0

lim

lim

lim 1 1

Left-hand derivative of   at zero lim
0 0

lim

lim

lim 1 1.

h h h

h h h

 when  0

 when  0

h h

h

h

h h

h

h

0 0

0

0

0 0

0

0
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146 Chapter 3 Derivatives

EXAMPLE 5  In Example 2 we found that for >x 0,

=d
dx

x
x

1
2

.

We apply the definition to examine whether the derivative exists at =x 0:

+ − = = ∞
→ →+ +

h
h h

lim 0 0 lim 1 .
h h0 0

Since the (right-hand) limit is not finite, there is no derivative at =x 0. Since the slopes 
of the secant lines joining the origin to the points ( )h h,  on a graph of =y x approach 
∞, the graph has a vertical tangent line at the origin. (See Figure 3.9 and Exercises 37 and 
38 in Section 3.1.) 

When Does a Function Not Have a Derivative at a Point?

A function has a derivative at a point x0 if the slopes of the secant lines through P x f x, ( )0 0( ) 
and a nearby point Q on the graph approach a finite limit as Q approaches P. Thus differentia-
bility is a “smoothness” condition on the graph of  f. A function can fail to have a derivative at 
a point for many reasons, including the existence of points where the graph has

FIGURE 3.9 The square root function 
is not differentiable at =x 0, where 
the graph of the function has a vertical 
tangent line.

x

xy =

y

0 21

2

1

3. a vertical tangent line, where 
the slope of PQ approaches ∞ 
from both sides or approaches 
−∞ from both sides (here, it 
approaches −∞)

5. wild oscillation

1. a corner, where the one-sided 
derivatives differ

P

Q− Q+

2. a cusp, where the slope 
of PQ approaches ∞ 
from one side and −∞ 
from the other

P

Q−

Q+

P

Q−

Q+

4. a discontinuity (two examples shown)

P

Q−

Q+

P

Q−

Q+

x

y
,

y = 5
1
xx sin x ≠ 0

0, x = 0
Q−

P

Q+

The last example shows a function that is continuous at =x 0, but whose graph oscil-
lates wildly up and down as it approaches =x 0. The slopes of the secant lines through 0 
oscillate between −1 and 1 as x approaches 0, and do not have a limit at =x 0.
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 3.2  The Derivative as a Function 147

Differentiable Functions Are Continuous

A function is continuous at every point where it has a derivative.

THEOREM 1—Differentiable Implies Continuous If  f  has a derivative at 
=x c, then  f  is continuous at =x c.

Proof  Given that f c( )′  exists, we must show that =
→

f x f clim ( ) ( ),
x c

 or, equivalently, 
that ( )+ =

→
f c h f clim ( ).

h 0
 If ≠h 0, then

( ) ( )( )

( )

+ = + + −

= + + − ⋅

f c h f c f c h f c

f c
f c h f c

h
h

( ) ( )

( )
( )

.

f c

h

Add and subtract  ( ).

Divide and multiply by  .

Now take limits as →h 0. By Theorem 1 of Section 2.2,

f c h f c
f c h f c

h
h

f c f c

f c

f c

lim lim ( ) lim
( )

lim

( ) ( ) 0

( ) 0

( ).

h h h h0 0 0 0
( )

( )
+ = + + − ⋅

= + ′ ⋅
= +
=

→ → → →

 

Similar arguments with one-sided limits show that if  f  has a derivative from one side 
(right or left) at =x c, then  f  is continuous from that side at =x c.

Theorem 1 says that if a function has a discontinuity at a point (for instance, a jump 
discontinuity), then it cannot be differentiable there. The greatest integer function y x⎣ ⎦=  
fails to be differentiable at every integer x n=  (Example 4, Section 2.6).

Caution The converse of Theorem 1 is false. A function need not have a derivative at a 
point where it is continuous, as we saw with the absolute value function in Example 4. 

Finding Derivative Functions and Values
Using the definition, calculate the derivatives of the functions in Exer-
cises 1–6. Then find the values of the derivatives as specified.

 1. = − ′ − ′ ′f x x f f f( ) 4 ; ( 3), (0), (1)2

 2. ( )= − + ′ − ′ ′F x x F F F( ) 1 1; ( 1), (0), (2)2

 3. ( )= ′ − ′ ′g t
t

g g g( ) 1 ; ( 1), (2), 3
2

 4. ( )= − ′ − ′ ′k z z
z

k k k( ) 1
2

; ( 1), (1), 2

 5. p p p p( ) 3 ; (1), (3), 2 3θ θ ( )= ′ ′ ′

 6. r s s r r r( ) 2 1; (0), (1), 1 2( )= + ′ ′ ′

In Exercises 7–12, find the indicated derivatives.

 7. =dy
dx

y xif 2 3 8. = − +dr
ds

r s sif 2 33 2

 9. =
+

ds
dt

s t
t

if
2 1

 10. = −dv
dt

v t
t

if 1

 11. =dp
dq

p qif 3 2 12. =
−

dz
dw

z
w

if 1
12

Slopes and Tangent Lines
In Exercises 13–16, differentiate the functions and find the slope of the 
tangent line at the given value of the independent variable.

 13. = + = −f x x
x

x( ) 9 , 3 14. k x
x

x( ) 1
2

, 2=
+

=

 15. = − = −s t t t, 13 2  16. = +
−

= −y x
x

x3
1

, 2

In Exercises 17–18, differentiate the functions. Then find an equation 
of the tangent line at the indicated point on the graph of the function.

 17. ( ) ( )= =
−

=y f x
x

x y( ) 8
2

, , 6, 4

 18. ( ) ( )= = + − =w g z z z w( ) 1 4 , , 3, 2

In Exercises 19–22, find the values of the derivatives.

 19. = −
=−

ds
dt

s tif 1 3
t 1

2 20. 
dy
dx

y
x

if 1 1
x 3

= −
=

 21. dr
d

rif 2
40θ θ

=
−θ=

 22. dw
dz

w z zif
z 4

= +
=

EXERCISES 3.2
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148 Chapter 3 Derivatives

Using the Alternative Formula for Derivatives
Use the formula

f x
f z f x

z x
( ) lim

( ) ( )
z x

′ = −
−→

to find the derivative of the functions in Exercises 23–26.

 23. =
+

f x
x

( ) 1
2

 24. = − +f x x x( ) 3 42

 25. =
−

g x x
x

( )
1

 26. = +g x x( ) 1

 31. Consider the function  f  graphed here. The domain of  f  is the 
interval [ ]−4, 6  and its graph is made of line segments joined end 
to end.

2005 2006 2007 2008 2009 2010 2011

1
0

2
3
4
5
6

7%

y′

0
x

(d)

y′

0
x

(c)

y′

0
x

(a)

y′

0
x

(b)

Graphs
Match the functions graphed in Exercises 27–30 with the derivatives 
graphed in the accompanying figures (a)–(d).

x

y

0

y = f1(x)

 27. 

x

y

0

y = f2(x)

 28. 

y

0
x

y = f3(x)

 29. y

0
x

y = f4(x)

 30. 

x

y

0 1 6

(0, 2) (6, 2)

(−4, 0)

y = f (x)

(4, −2)(1, −2)

 a. At which points of the domain interval is f ′ not defined? 
Give reasons for your answer.

 b. Graph the derivative of  f.
The graph should show a step function.

 32. Recovering a function from its derivative

 a. Use the following information to graph the function  f  over the 
closed interval [ ]−2, 5 .

i) The graph of  f  is made of closed line segments joined end 
to end.

ii) The graph starts at the point ( )−2, 3 .

iii) The derivative of  f  is the step function in the figure shown 
here.

 b. Repeat part (a), assuming that the graph starts at 2, 0( )−  
instead of 2, 3 .( )−

 33. Growth in the economy The graph in the accompanying figure  
shows the average annual percentage change =y f t( ) in the  
U.S. gross national product (GNP) for the years 2005–2011. 
Graph dy dt  (where defined).

x
0 1−2 3 5

1

y′

y′ = f ′(x)

−2

 34. Fruit flies (Continuation of Example 4, Section 2.1.) Populations 
starting out in closed environments grow slowly at first, when there 
are relatively few members, then more rapidly as the number of 
reproducing individuals increases and resources are still abundant, 
then slowly again as the population reaches the carrying capacity 
of the environment.
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 3.2  The Derivative as a Function 149

 a. Use the graphical technique of Example 3 to graph the deriva-
tive of the fruit fly population as a function of time (in days). 
The graph of the population is reproduced here.

2007 2009 2011 2013 2015
150

230

310

390

P

t

100

50
100
150
200
250
300
350

20 30 40 50

Time (days)

N
um

be
r 

of
 fl

ie
s

p

t

 b. During what days does the population seem to be increasing 
fastest? Slowest?

 35. Temperature The given graph shows the temperature T in °C 
between 6 a.m. and 6 p.m.

ii) 9 a.m. iii) 2 p.m. iv) 4 p.m.i) 7 a.m.

 b. At what time does the temperature increase most rapidly? 
Decrease most rapidly? What is the rate for each of those 
times?

 c. Use the graphical technique of Example 3 to graph the  
derivative of temperature T versus time t.

 36. Average single-family home prices P (in thousands of dollars) in 
Sacramento, California, are shown in the accompanying figure 
from the beginning of 2006 through the end of 2015.

 a. Estimate the rate of temperature change at the times

 a. During what years did home prices decrease? increase?

 b. Estimate home prices at the end of

ii) 2012 iii) 2015i) 2007

 c. Estimate the rate of change of home prices at the beginning of

ii) 2010 iii) 2014i) 2007

 d. During what year did home prices drop most rapidly and  
what is an estimate of this rate?

 e. During what year did home prices rise most rapidly and what 
is an estimate of this rate?

 f. Use the graphical technique of Example 3 to graph the  
derivative of home price P versus time t.

y

y = f (x)

y = 2x − 1

x

P(1, 1)

0

1

1

y = 
"

x

 39. 
y

y = 1
x

y = f (x)

x

P(1, 1)

y = x
1

1

 40. 

 37. 

x

y

y = f (x)y = x2

y = x

P(0, 0)

 38. 

x

y

y = f (x)

y = 2x

y = 2

1

2

0 1 2

P(1, 2)

One-Sided Derivatives
Compute the right-hand and left-hand derivatives as limits to show that 
the functions in Exercises 37–40 are not differentiable at the point P.

In Exercises 41–44, determine whether the piecewise-defined function 
is differentiable at x 0.

 41. =
− ≥

+ + <

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x
x x

x x x
( )

2 1, 0

2 7, 02

 42. =
≥

<

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

g x
x x

x x
( )

, 0

, 0

2 3

1 3

 43. =
+ ≥

<

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x
x x x

x x
( )

2 tan , 0

, 02

 44. =
− − ≥

−
+

<

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

g x
x x x

x
x

x
( )

2 1, 0

1
1

, 0

3

Differentiability and Continuity on an Interval
Each figure in Exercises 45–50 shows the graph of a function over a 
closed interval D. At what domain points does the function appear to be

  a. differentiable?

  b. continuous but not differentiable?

  c. neither continuous nor differentiable?

Give reasons for your answers.

30
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6 9 12
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150 Chapter 3 Derivatives

Theory and Examples
In Exercises 51–54,

  a. Find the derivative f x( )′  of the given function =y f x( ).

  b.  Graph =y f x( ) and y f x( )= ′  side by side using separate 
sets of coordinate axes, and answer the following questions.

  c. For what values of x, if any, is ′f  positive? Zero? Negative?

  d.  Over what intervals of x-values, if any, does the function 
=y f x( ) increase as x increases? Decrease as x increases? 

How is this related to what you found in part (c)? (We will  
say more about this relationship in Section 4.3.)

 51. = −y x 2 52. y x1= −

 53. y x 33=  54. y x 44=

 55. Tangent line to a parabola Does the parabola =y  
− +x x2 13 52  have a tangent line whose slope is −1? If so, find 

an equation for the line and the point of tangency. If not, why not?

 56. Tangent line to =y x Does any tangent line to the curve 
=y x  cross the x-axis at = −x 1? If so, find an equation for 

the line and the point of tangency. If not, why not?

 57. Derivative of − f  Does knowing that a function f x( ) is differ-
entiable at =x x0 tell you anything about the differentiability of 
the function − f  at x x ?0=  Give reasons for your answer.

 58. Derivative of multiples Does knowing that a function g t( ) is 
differentiable at =t 7 tell you anything about the differentiability 
of the function 3g at =t 7? Give reasons for your answer.

 59. Limit of a quotient Suppose that functions g t( ) and h t( ) 
are defined for all values of t and g h(0) (0) 0.= =  Can 

g t h tlim ( ) ( )
t 0→

 exist? If it does exist, must it equal zero? Give  

reasons for your answers.

 60. a.  Let f x( ) be a function satisfying ≤f x x( ) 2 for − ≤ ≤x1 1. 
Show that  f  is differentiable at =x 0 and find f (0).′

 b. Show that

f x
x

x
x

x
( )

sin 1 , 0

0, 0

2

=
≠

=

⎧

⎨
⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

is differentiable at =x 0 and find f (0).′

 61. Graph y x1 2( )=  in a window that has ≤ ≤x0 2. Then, on 
the same screen, graph

= + −y x h x
h

for h 1, 0.5, 0.1.=  Then try h 1, 0.5, 0.1.= − − −  Explain what 
is going on.

 62. Graph =y x3 2 in a window that has − ≤ ≤ ≤ ≤x y2 2, 0 3. 
Then, on the same screen, graph

( )= + −y x h x
h

3 3

for h 2,1, 0.2.=  Then try h 2, 1, 0.2.= − − −  Explain what is 
going on.

 63. Derivative of y x=  Graph the derivative of =f x x( ) . Then 
graph y x x x x0 0 .( ) ( )= − − =  What can you conclude?

 64. Weierstrass’s nowhere differentiable continuous function  
The sum of the first eight terms of the Weierstrass function 
f x x( ) 2 3 cos 9

n

n n
0∑ π( ) ( )=

=

∞
 is

g x x x x

x x

( ) cos 2 3 cos 9 2 3 cos 9

2 3 cos 9 2 3 cos 9 .

1 2 2

3 3 7 7�

π π π

π π

( ) ( )

( ) ( )

( )

( ) ( )

( )( )= + +

+ + +

Graph this sum. Zoom in several times. How wiggly and bumpy 
is this graph? Specify a viewing window in which the displayed 
portion of the graph is smooth.

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for the functions in Exer-
cises 65–70.

  a. Plot =y f x( ) to see that function’s global behavior.

  b.  Define the difference quotient q at a general point x, with  
general step size h.

  c. Take the limit as →h 0. What formula does this give?

  d.  Substitute the value =x x0 and plot the function =y f x( ) 
together with its tangent line at that point.

  e.  Substitute various values for x larger and smaller than x0 into 
the formula obtained in part (c). Do the numbers make sense 
with your picture?

  f.  Graph the formula obtained in part (c). What does it mean when 
its values are negative? Zero? Positive? Does this make sense 
with your plot from part (a)? Give reasons for your answer.

T

T

T

y = f (x)
D:  −3 ≤ x ≤ 2

x

y

−3 −2 −1 1 20

1

−1

−2

2

 45. 

y = f (x)
D:  −2 ≤ x ≤ 3

x

y

−1 0 1 2 3−2

1

−1

−2

2

 46. 

x

y

y = f (x)
D:  −3 ≤ x ≤ 3

−1 0
−1

1

−2

1 2 3−2−3

 47. 

x

y

y = f (x)
D:  −2 ≤ x ≤ 3

−2 −1 1 2 30

1

2

3

 48. 

x

y
y = f (x)
D:  −1 ≤ x ≤ 2

−1 0 1 2

1

 49. 
y = f (x)
D:  −3 ≤ x ≤ 3

x

y

−3−2−1 0

2

4

1 2 3

 50. 
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 3.3  Differentiation Rules 151

 65. = + − =f x x x x x( ) , 13 2
0

 66. = + =f x x x x( ) , 11 3 2 3
0

 67. =
+

=f x x
x

x( ) 4
1

, 2
2 0

 68. = −
+

= −f x x
x

x( ) 1
3 1

, 1
2 0

 69. f x x x( ) sin 2 , 20

 70. f x x x x( ) cos , 42
0

3.3 Differentiation Rules

This section introduces several rules that allow us to differentiate constant functions, power 
functions, polynomials, exponential functions, rational functions, and certain combina-
tions of them, simply and directly, without having to take limits each time.

Powers, Multiples, Sums, and Differences

A basic rule of differentiation is that the derivative of every constant function is zero.

Derivative of a Constant Function
If  f  has the constant value f x c( ) , then

df
dx

d
dx

c( ) 0.

Proof  We apply the definition of the derivative to f x c( ) , the function whose outputs 
have the constant value c (Figure 3.10). At every value of x, we find that

f x
f x h f x

h
c c

h
( ) lim

( )
lim lim 0 0.

h h h0 0 0

( )
′ = + − = − = =

→ → →
 

We now consider powers of x. From Section 3.1, we know that

d
dx x x

d
dx

x x1 1 , or ( ) .
2

1 2( ) = − = −− −

From Example 2 of the last section we also know that

d
dx

x
x

d
dx

x x1
2

, or 1
2

.1 2 1 2( ) ( )= = −

These two examples illustrate a general rule for differentiating a power x n. We first prove 
the rule when n is a positive integer.

Derivative of a Positive Integer Power
If n is a positive integer, then

d
dx

x nx .n n 1= −

Proof of the Positive Integer Power Rule  The formula

z x z x z z x zx x n n n n n n1 2 2 1( )( )− = − + + + +− − − −

can be verified by multiplying out the right-hand side. Then, from the alternative formula 
for the definition of the derivative,

f x
f z f x

z x
z x

z x
z z x zx x

nx

( ) lim
( ) ( )

lim

lim

.

n terms

z x z x

n n

z x

n n n n

n

1 2 2 1

1

( )

′ = −
−

= −
−

= + + + +

=

→ →

→
− − − −

−  

FIGURE 3.10 The rule d dx c( ) 0( ) =  
is another way to say that the values of 
constant functions never change and that 
the slope of a horizontal line is zero at 
every point.

x

y

0 x

c

h

y = c
(x + h, c)(x, c)

x + h

HISTORICAL BIOGRAPHY

Richard Courant
(1888–1972)
Courant obtained a PhD from Göttingen in 
1910. He founded Göttingen’s Mathematics 
Institute and was its director from 1920 
until 1933. His research work focused on 
mathematical physics.

To know more, visit the companion Website.  
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152 Chapter 3 Derivatives

The Power Rule is actually valid for all real numbers n, not just for positive integers. 
We have seen examples for a negative integer and fractional power, but n could be an irra-
tional number as well. Here we state the general version of the rule, but postpone its proof 
until Section 3.8.

Applying the Power Rule
Subtract 1 from the exponent and multi-
ply the result by the original exponent.

Power Rule (General Version)
If n is any real number, then

= −d
dx

x nx ,n n 1

for all x where the powers x n and −x n 1 are defined.

EXAMPLE 1  Differentiate the following powers of x.

(a) x 3 (b) x 2 3 (c) x 2 (d) 
x
1

4
 (e) −x 4 3 (f  ) π+x 2

Solution 

(a) d
dx

x x x( ) 3 33 3 1 2= =−

(b) ( ) = =( )− −d
dx

x x x2
3

2
3

2 3 2 3 1 1 3

(c) ( ) = −d
dx

x x22 2 1

(d) d
dx x

d
dx

x x x
x

1 ( ) 4 4 4
4

4 4 1 5
5( ) = = − = − = −− − − −

(e) ( ) = − = −( )− − − −d
dx

x x x4
3

4
3

4 3 4 3 1 7 3

(f ) π π( )( ) ( ) ( )= = + = +π π π π( ) ( )+ + + −d
dx

x d
dx

x x x1
2

1
2

22 1 2 1 2 1  

The next rule says that when a differentiable function is multiplied by a constant, its 
derivative is multiplied by the same constant.

Derivative Constant Multiple Rule
If u is a differentiable function of x, and c is a constant, then

d
dx

cu c du
dx

( ) .=

Proof

( )

( )

= + −

= + −

=

=→

→

d
dx

cu cu x h cu x
h

c u x h u x
h

c du
dx

lim ( )

lim ( )

f x cu x

u

Derivative definition
with  ( )

Constant Multiple Rule for Limits

 is differentiable.

( )h

h

0

0
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 3.3  Differentiation Rules 153

EXAMPLE 2

(a) The derivative formula

= ⋅ =d
dx

x x x(3 ) 3 2 62

says that if we rescale the graph of y x 2 by multiplying each y-coordinate by 3, then 
we multiply the slope at each point by 3 (Figure 3.11).

(b) Negative of a function

The derivative of the negative of a differentiable function u is the negative of the func-
tion’s derivative. The Constant Multiple Rule with c 1= −  gives

( )− = − ⋅ = − ⋅ = −d
dx

u d
dx

u d
dx

u du
dx

( ) 1 1 ( ) . 

Denoting Functions by u and 
The functions we are working with when 
we need a differentiation formula are 
likely to be denoted by letters like  f  and 
g. We do not want to use these same let-
ters when stating general differentiation 
rules, so instead we use letters like u and 

 that are not likely to be already in use.

FIGURE 3.11 The graphs of y x 2 
and y x3 .2  Tripling the y-coordinate 
triples the slope (Example 2).

x

y

0 1

1
(1, 1)

2

2

3 (1, 3)
 

Slope

Slope
Slope = 2x

= 2(1) = 2

y = x2

y = 3x2

Slope = 3(2x)
= 6x
= 6(1) = 6

The next rule says that the derivative of the sum of two differentiable functions is the 
sum of their derivatives.

Derivative Sum Rule
If u and  are differentiable functions of x, then their sum u  is differentiable 
at every point where u and  are both differentiable. At such points,

( )+ = +d
dx

u du
dx

d
dx

.

Proof  We apply the definition of the derivative to f x u x x( ) ( ) ( ):= +

d
dx

u x x u x h x h u x x
h

u x h u x
h

x h x
h

u x h u x
h

x h x
h

du
dx

d
dx

( ) ( ) lim ( ) ( )

lim ( ) ( )

lim ( ) lim ( ) .

h

h

h h

0

0

0 0

( ) ( )[ ]

( ) ( )

( ) ( )

[ ]
[ ]+ = + + + − +

= + − + + −⎡
⎣⎢

⎤
⎦⎥

= + − + + − = +

→

→

→ →
 

Combining the Sum Rule with the Constant Multiple Rule gives the Difference Rule, 
which says that the derivative of a difference of differentiable functions is the difference of 
their derivatives:

( )[ ] ( )( )− = + − = + − = −d
dx

u d
dx

u du
dx

d
dx

du
dx

d
dx

1 1 .

The Sum Rule also extends to finite sums of more than two functions. If u u u, , , n1 2  
are differentiable at x, then so is u u u ,n1 2  and

( )+ + + = + + +d
dx

u u u
du
dx

du
dx

du
dx

.n
n

1 2
1 2

A proof by mathematical induction for any finite number of terms is given in Appendix A.3.
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154 Chapter 3 Derivatives

EXAMPLE 3  Find the derivative of the polynomial = + − +y x x x4
3

5 1.3 2

Solution ( )= + − +

= + ⋅ − + = + −

dy
dx

d
dx

x d
dx

x d
dx

x d
dx

x x x x

4
3

(5 ) (1)

3 4
3

2 5 0 3 8
3

5

Sum and Difference Rules3 2

2 2  

FIGURE 3.12 The curve in Example 4 
and its horizontal tangent lines.

x

y

0 1−1

(1, 1)(−1, 1)
1

(0, 2)

y = x4 − 2x2 + 2

We can differentiate any polynomial term by term, the way we differentiated the poly-
nomial in Example 3. All polynomials are differentiable at all values of x.

EXAMPLE 4  Does the curve = − +y x x2 24 2  have any horizontal tangent lines? 
If so, where?

Solution The horizontal tangent lines, if any, occur where the slope dy dx  is zero. We have

( )= − + = −dy
dx

d
dx

x x x x2 2 4 4 .4 2 3

Now solve the equation 
dy
dx

x0 for  :

( )

− =

− =

= −

x x

x x

x

4 4 0

4 1 0

0,1, 1.

3

2

The curve = − +y x x2 24 2  has horizontal tangent lines at x 0,1, and 1. The cor-
responding points on the curve are ( )0, 2 , ( )1,1 , and ( )−1,1 . See Figure 3.12. 

Derivatives of Exponential Functions

We briefly reviewed exponential functions in Section 1.4. When we apply the definition of 
the derivative to f x a( ) x, we get

d
dx

a a a
h

a a a
h

a a
h

a a
h

a
h

a

( ) lim

lim

lim 1

lim 1

lim 1 .

a a a

a

a h

L

Derivative definition

Factoring out 

is constant as  0.

a fixed number

x

h

x h x

h

x h x

h

x
h

x

h

h

h

h
x

0

0

0

0

0

x h x h

x

x

� ����� �����
( )

= −

= ⋅ −

= ⋅ −

= ⋅ −

= − ⋅

= ⋅

→

→

+

→

→

→

→

+

 

(1)

Thus we see that the derivative of a x  is a constant multiple L of a x . The constant L is a limit 
we have not encountered before. Note, however, that it equals the derivative of f x a( ) x 
at x 0:

f a a
h

a
h

L(0) lim lim 1 .
h

h

h

h

0

0

0
′ = − = − =

→ →
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 3.3  Differentiation Rules 155

The limit L is therefore the slope of the graph of f x a( ) x where it crosses the y-axis. 
In Chapter 7, where we carefully develop the logarithmic and exponential functions, we 
prove that the limit L exists and has the value ln  a. For now we investigate values of L by 
graphing the function ( )= −y a h1h  and studying its behavior as h approaches 0.

Figure 3.13 shows the graphs of ( )= −y a h1h  for four different values of a. The 
limit L is approximately 0.69 if a 2, about 0.92 if a 2.5, and about 1.1 if a 3. It 
appears that the value of L is 1 at some number a chosen between 2.5 and 3. That number 
is given by = ≈a e 2.718281828. With this choice of base we obtain the natural expo-
nential function f x e( ) x as in Section 1.4, and see that it satisfies the property

f e
h

(0) lim 1 1
h

h

0
′ = − =

→
 (2)

because it is the exponential function whose graph has slope 1 when it crosses the y-axis. 
That the limit is 1 implies an important relationship between the natural exponential func-
tion e x and its derivative:

d
dx

e e
h

e

e e

( ) lim 1 ( )

1 . ( )

a eEq. 1 with 

Eq. 2

x

h

h
x

x x

0
( )= − ⋅

= ⋅ =

=
→

Therefore the natural exponential function is its own derivative.

FIGURE 3.13 The position of the curve 
( )= − >y a h a1 , 0,h  varies continu-

ously with a. The limit L of y as h 0 
changes with different values of a. The 
number for which L 1 as h 0 is the 
number e between a 2 and a 3.

h

y
a = 3 a = 2.5

a = 2

a = e

1.1

0

L = 1.0

0.92

0.69 y =             , a > 0ah − 1
h

Derivative of the Natural Exponential Function

d
dx

e e( )x x

FIGURE 3.14 The line through the 
origin is tangent to the graph of y e x 
when a 1 (Example 5).

−1 a

2

4

6

x

y

(a, ea)

y = e x

EXAMPLE 5  Find an equation for a line that is tangent to the graph of y e x and 
goes through the origin.

Solution Since the line passes through the origin, its equation is of the form y mx , 
where m is the slope. If it is tangent to the graph at the point ( )a e, a , the slope is 

( ) ( )= − −m e a0 0 .a  The slope of the natural exponential at x a is e a. Because 
these slopes are the same, we then have that e e aa a . It follows that a 1 and m e, 
so the equation of the tangent line is y ex. See Figure 3.14. 

Products and Quotients

While the derivative of the sum of two functions is the sum of their derivatives, the deriva-
tive of the product of two functions is not the product of their derivatives. For instance,

d
dx

x x d
dx

x x d
dx

x d
dx

x( ) 2 , while ( ) ( ) 1 1 1.2( )⋅ = = ⋅ = ⋅ =

The derivative of a product of two functions is the sum of two products, as we now explain.

We might ask if there are functions other than the natural exponential function that are 
their own derivatives. The answer is that the only functions that satisfy the property that 
f x f x( ) ( )′ =  are functions that are constant multiples of the natural exponential function, 

= ⋅f x c e( ) x, c any constant. We prove this fact in Section 7.2. Note from the Constant 
Multiple Rule that indeed

d
dx

c e c d
dx

e c e( ) .x x x( )⋅ = ⋅ = ⋅
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156 Chapter 3 Derivatives

The derivative of the product υu  is u times the derivative of υ plus the derivative of u 
times υ. In prime notation, υ υ υ( )′ = ′ + ′u u u . In function notation,

d
dx

f x g x f x g x f x g x fg fg f g( ) ( ) ( ) ( ) ( ) ( ), or ( ) .[ ] = ′ + ′ ′ = ′ + ′  (3)

Derivative Product Rule
If u and υ are differentiable at x, then so is their product υu , and

υ υ υ= +d
dx

u u d
dx

du
dx

( ) .

EXAMPLE 6  Find the derivative of (a) ( )= +y
x

x e1 x2 , (b) =y e .x2

Solution 

(a) We apply the Product Rule with =u x1  and υ = +x e :x2

d
dx x

x e
x

x e
x

x e

e
x

e
x

x e
x

1 1 2 1

2 1

1 1   .

d
dx

u u
d
dx

du
dx

d
dx x x

and

1 1

x x x

x x

x

2
2

2

2

2

2

( )( ) ( )( )

( )

+⎡
⎣⎢

⎤
⎦⎥

= + + − +

= + − −

= + −

υ υ υ= +

= −( )

( )

(b) d
dx

e d
dx

e e e d
dx

e d
dx

e e e e e( ) ( ) ( ) 2 2x x x x x x x x x x2 2( )= ⋅ = ⋅ + ⋅ = ⋅ =  

Proof of the Derivative Product Rule

υ υ υ( ) ( )= + + −
→

d
dx

u u x h x h u x x
h

( ) lim ( ) ( )
h 0

To change this fraction into an equivalent one that contains difference quotients for the 
derivatives of u and υ, we subtract and add u x h x( )υ( )+  in the numerator:

υ υ υ υ υ

υ υ υ

υ υ υ

( ) ( ) ( ) ( )

( )
( ) ( )

( )
( ) ( )

= + + − + + + −

= + + − + + −⎡
⎣⎢

⎤
⎦⎥

= + ⋅ + − + + − ⋅

→

→

→ → →

d
dx

u u x h x h u x h x u x h x u x x
h

u x h x h x
h

u x h u x
h

x

u x h x h x
h

u x h u x
h

x

( ) lim ( ) ( ) ( ) ( )

lim ( ) ( ) ( )

lim lim ( ) lim ( ) ( ).

h

h

h h h

0

0

0 0 0

As h approaches zero, ( )+u x h  approaches u x( ) because u, being differentiable at x, is 
continuous at x. The two fractions approach the values of υd dx at x and du dx  at x. 
Therefore,

υ υ υ= +d
dx

u u d
dx

du
dx

( ) . 

Picturing the Product Rule
Suppose u x( ) and x( )υ  are positive and 
increase when x increases, and >h 0.

0

y(x + h)

y(x)

Δy

u(x)y(x)

u(x + h) Δy

Δu y(x)

u(x + h)u(x)
Δu

Then the change in the product υu  is 
the difference in areas of the larger and 
smaller “boxes,” which is the sum of 
the areas of the upper and right-hand 
reddish-shaded rectangles. That is,

u u x h x h u x x

u x h u x

( ) ( )

( ).

υ υ υ

υ υ

( ) ( )

( )

( )Δ = + + −

= + Δ + Δ

Division by h gives
u
h

u x h
h

u
h

x( ).υ υ υ( )
( )Δ = + Δ + Δ

The limit as → +h 0  yields the Product 
Rule.
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 3.3  Differentiation Rules 157

The derivative of the quotient of two functions is given by the Quotient Rule.

Derivative Quotient Rule
If u and υ are differentiable at x and if x( ) 0,υ ≠  then the quotient υu  is differ-
entiable at x, and

υ

υ υ

υ( ) =
−

d
dx

u
du
dx

u d
dx .

2

In function notation,

d
dx

f x
g x

g x f x f x g x
g x

( )
( )

( ) ( ) ( ) ( )
( )

.
2

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

= ′ − ′

EXAMPLE 7  Find the derivative of (a) = −
+

y t
t

1
1

,
2

3
 (b) = −y e .x

Solution 

(a) We apply the Quotient Rule with = −u t 12  and υ = +t 1:3

( ) ( )
( )

( )

( )

= + ⋅ − − ⋅
+

= + − +
+

= − + +
+

υ
υ υ

υ
=( ) ( ) ( )−dy

dt
t t t t

t

t t t t
t

t t t
t

1 2 1 3
1

2 2 3 3
1

3 2
1

.

d
dt

u du dt u d dt3 2 2

3 2

4 4 2

3 2

4 2

3 2

2

(b) ( )= = ⋅ − ⋅ = − = −− −d
dx

e d
dx e

e e
e e

e( )   1 0 1
( )

1x
x

x x

x x
x

2
 

Proof of the Derivative Quotient Rule

d
dx

u
u x h

x h
u x

x
h

x u x h u x x h
h x h x

lim

( )
( )

lim
( ) ( )

( )

h

h

0

0

υ
υ υ

υ υ
υ υ

( )
( )

( )

( ) ( )

( )

=

+
+

−

=
+ − +

+

→

→

To change the last fraction into an equivalent one that contains the difference quotients for 
the derivatives of u and υ, we subtract and add x u x( ) ( )υ  in the numerator. We then get

d
dx

u x u x h x u x x u x u x x h
h x h x

x u x h u x
h

u x x h x
h

x h x

lim
( ) ( ) ( ) ( ) ( ) ( )

( )

lim
( ) ( ) ( ) ( )

( )
.

h

h

0

0

υ
υ υ υ υ

υ υ

υ υ υ

υ υ

( ) ( ) ( )

( )

( ) ( )

( )

=
+ − + − +

+

=

+ − − + −

+

→

→

Taking the limits in the numerator and denominator now gives the Quotient Rule. Exercise 76 
outlines another proof. 

The choice of which rules to use in solving a differentiation problem can make a dif-
ference in how much work you have to do. Here is an example.
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158 Chapter 3 Derivatives

EXAMPLE 8  Find the derivative of

( )( )
= − −y x x x

x
1 2 .

2

4

Solution Using the Quotient Rule here will result in a complicated expression with many 
terms. Instead, use some algebra to simplify the expression. First expand the numerator and 
divide by x :4

( )( )
= − − = − + = − +− − −y x x x

x
x x x

x
x x x1 2 3 2 3 2 .

2

4

3 2

4
1 2 3

Then use the Sum, Constant Multiple, and Power Rules:

( ) ( )= − − − + −

= − + −

− − −dy
dx

x x x

x x x

3 2 2 3

1 6 6 .

2 3 4

2 3 4
 

How to Read the Symbols for 
Derivatives

′y “y prime”

′′y “y double prime”

d y
dx

2

2
“d squared y by dx squared”

′′′y “y triple prime”

y n( ) “y super n”

d y
dx

n

n
“d to the n of y by dx to the n”

D n “d to the n”

Second- and Higher-Order Derivatives

If y f x( )=  is a differentiable function, then its derivative f x( )′  is also a function. If ′f  is 
also differentiable, then we can differentiate ′f  to get a new function of x denoted by ′′f . So 
f f( ) .′′ = ′ ′  The function ′′f  is called the second derivative of  f  because it is the deriva-
tive of the first derivative. It is written in several ways:

f x
d y
dx

d
dx

dy
dx

dy
dx

y D f x D f x( ) ( )( ) ( ).x

2

2
2 2( )′′ = = = ′ = ′′ = =

The symbol D 2 means that the operation of differentiation is performed twice.
If =y x ,6  then ′ =y x6 5 and we have

″ = ′ = =y
dy
dx

d
dx

x x(6 ) 30 .5 4

Thus D x x( ) 30 .2 6 4=
If ′′y  is differentiable, its derivative, ′′′ = ′′ =y dy dx d y dx ,3 3  is the third derivative 

of y with respect to x. The names continue as you imagine, with

y d
dx

y
d y
dx

D yn n
n

n
n( ) 1= = =( )−

denoting the nth derivative of y with respect to x for any positive integer n.
We can interpret the second derivative as the rate of change of the slope of the tangent 

line to the graph of =y f x( ) at each point. You will see in the next chapter that the second 
derivative reveals whether the graph bends upward or downward from the tangent line as 
we move off the point of tangency. In the next section, we interpret both the second and 
third derivatives in terms of motion along a straight line.

EXAMPLE 9  The first four derivatives of = − +y x x3 23 2  are

First derivative: ′ = −y x x3 62

Second derivative: ′′ = −y x6 6

Third derivative: ′′′ =y 6

Fourth derivative: y 0(4) = .

All polynomial functions have derivatives of all orders. In this example, the fifth and later 
derivatives are all zero. 

HISTORICAL BIOGRAPHY

Maria Gaetana Agnesi
(1718–1799)
Agnesi was a well-published scientist by 
age 20 and an honorary faculty member of 
the University of Bologna by age 30. Today, 
Agnesi is remembered chiefly for a bell-
shaped curve called the “Witch of Agnesi.” 

To know more, visit the companion Website.  

M03_HASS5901_15_GE_C03.indd   158 23/03/23   2:08 PM

www.konkur.in

Telegram: @uni_k



 3.3  Differentiation Rules 159

Derivative Calculations
In Exercises 1–12, find the first and second derivatives.

 1. = − +y x 32  2. = + +y x x 82

 3. = −s t t5 33 5 4. = − +w z z z3 7 217 3 2

 5. = − +y x x e4
3

2 x
3

 6. = + + −y x x e
3 2

x
3 2

 7. = −−w z
z

3 12  8. = − +−s t
t

2 41
2

 9. = − − −y x x x6 10 52 2 10. = − − −y x x4 2 3

 11. = −r
s s
1

3
5
22

 12. 
θ θ θ

= − +r 12 4 1
3 4

In Exercises 13–16, find ′y  (a) by applying the Product Rule and 
(b) by multiplying the factors to produce a sum of simpler terms to 
differentiate.

 13. ( )( )= − − +y x x x3 12 3  14. ( )( )= + −y x x x2 3 5 42

 15. ( )( )= + + +y x x
x

1 5 12  16. ( )( )= + − −y x x x1  2 3 4 3

Find the derivatives of the functions in Exercises 17–40.

 17. = +
−

y x
x

2 5
3 2

 18. = −
+

z x
x x
4 3

3 2

 19. = −
+

g x x
x

( ) 4
0.5

2
 20. = −

+ −
f t t

t t
( ) 1

2

2

2

 21. υ ( )( )= − + −t t1 1 2 1 22. ( )( )= − +−w x x2 7 51

 23. = −
+

f s s
s

( ) 1
1
 24. = +u x

x
5 1

2

 25. υ = + −x x
x

1 4  26. 
θ

θ( )= +r 2 1

 27. 
( )( )

=
− + +

y
x x x

1
1 12 2

 28. 
( )( )

( )( )
= + +

− −
y x x

x x
1 2
1 2

 29. = +−y e e2 x x3  30. = +
−

y x e
e x

3
2

x

x

2

 31. =y x e  x3  32. = −w re  r

 33. = + −y x e x9 4 2  34. π= +−y x 3 5 3 2

 35. = +s t e2 33 2 2 36. π= +w
z z
1
1.4

 37. = −y x x e27  38. = +y x e29.63 1.3

 39. =r e
s

s
 40. 

θ
θ( )= +θ π−r e 1

2
2

Find the derivatives of all orders of the functions in Exercises 41–44.

 41. = − −y x x x
2

3
2

4
2  42. =y x

120

5

 43. ( )( )( )= − + +y x x x1 2 3  44. ( )( )= + −y x x x4 3 22

Find the first and second derivatives of the functions in Exercises 
45–52.

 45. = +y x
x

73
 46. = + −s t t

t
5 12

2

 47. θ θ θ
θ

( )( )
= − + +r 1 12

3
 48. 

( )( )= + − +u x x x x
x

12 2

4

 49. ( )( )= + −w z
z

z1 3
3

3  50. 
( ) ( )

= +
− + +

p
q

q q
3

1 1

2

3 3

 51. =w z e3 z2 2  52. ( )( )= − +w e z z1 1z 2

 53. Suppose u and υ are functions of x that are differentiable at =x 0 
and that

u u(0) 5, (0) 3, (0) 1, (0) 2.υ υ= ′ = − = − ′ =

Find the values of the following derivatives at =x 0.

 a. υd
dx

u( )  b. 
υ( )d

dx
u   c. υ( )d

dx u
  d. υ( )−d

dx
u7 2

 54. Suppose u and υ are differentiable functions of x and that

u u(1) 2, (1) 0, (1) 5, (1) 1.υ υ= ′ = = ′ = −

Find the values of the following derivatives at =x 1.

 a. υd
dx

u( )  b. 
υ( )d

dx
u   c. υ( )d

dx u
  d. υ( )−d

dx
u7 2

Slopes and Tangent Lines

 55. a.  Normal line to a curve Find an equation for the line perpen-
dicular to the tangent line to the curve = − +y x x4 13  at 
the point ( )2,1 .

 b. Smallest slope What is the smallest slope on the curve? At 
what point on the curve does the curve have this slope?

 c. Tangent lines having specified slope Find equations for the 
tangent lines to the curve at the points where the slope of the 
curve is 8.

 56. a.  Horizontal tangent lines Find equations for the horizontal 
tangent lines to the curve = − −y x x3 2.3  Also find equa-
tions for the lines that are perpendicular to these tangent lines 
at the points of tangency.

 b. Smallest slope What is the smallest slope on the curve? At 
what point on the curve does the curve have this slope? Find 
an equation for the line that is perpendicular to the curve’s 
tangent line at this point.

 57. Find the tangent lines to Newton’s serpentine (graphed here) at the 
origin and the point ( )1, 2 .

EXERCISES 3.3

x

y

0

1

1 2

2
(1, 2)

3 4

y = 4x
x2 + 1

 58. Find the tangent line to the Witch of Agnesi (graphed here) at the 
point ( )2,1 .

x

y

0

1

1 2

2
(2, 1)

3

y = 8
x2 + 4
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160 Chapter 3 Derivatives

 71. Find the value of a that makes the following function differentiable 
for all x-values.

=
<

− ≥

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

g x
ax x

x x x
( )

, if  0

3 , if  02

 72. Find the values of a and b that make the following function dif-
ferentiable for all x-values.

=
+ > −

− ≤ −

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x
ax b x

bx x
( )

, 1

3, 12

 73. The general polynomial of degree n has the form

P x a x a x a x a x a( ) ,n
n

n
n

1
1

2
2

1 0�= + + + + +−
−

where ≠a 0.n  Find P x( ).′

 74. The body’s reaction to medicine The reaction of the body to a 
dose of medicine can sometimes be represented by an equation of 
the form

( )= −R M C M
2 3

,2

where C is a positive constant and M is the amount of medicine 
absorbed in the blood. If the reaction is a change in blood pres-
sure, R is measured in millimeters of mercury. If the reaction is a 
change in temperature, R is measured in degrees, and so on.

Find dR dM . This derivative, as a function of M, is called the 
sensitivity of the body to the medicine. In Section 4.6, we will see 
how to find the amount of medicine to which the body is most 
sensitive.

 75. Suppose that the function υ in the Derivative Product Rule has a 
constant value c. What does the Derivative Product Rule then say? 
What does this say about the Derivative Constant Multiple Rule?

 76. The Reciprocal Rule 

 a. The Reciprocal Rule says that at any point where the function 
x( )υ  is differentiable and different from zero,

υ υ
υ( ) = −d

dx
d
dx

1 1 .
2

Show that the Reciprocal Rule is a special case of the Deriva-
tive Quotient Rule.

 b. Show that the Reciprocal Rule and the Derivative Product 
Rule together imply the Derivative Quotient Rule.

 77. Generalizing the Product Rule The Derivative Product Rule 
gives the formula

υ υ υ= +d
dx

u u d
dx

du
dx

( )

for the derivative of the product υu  of two differentiable functions 
of x.

 a. What is the analogous formula for the derivative of the product 
υu w of three differentiable functions of x?

 b. What is the formula for the derivative of the product u u u u1 2 3 4 
of four differentiable functions of x?

 c. What is the formula for the derivative of a product �u u u un1 2 3   
of a finite number n of differentiable functions of x?

 78. Power Rule for negative integers Use the Derivative Quotient 
Rule to prove the Power Rule for negative integers, that is,

d
dx

x mx( )m m 1= −− − −

where m is a positive integer.

 59. Quadratic tangent to identity function The curve = +y ax 2  
+bx c passes through the point ( )1, 2  and is tangent to the line 

=y x  at the origin. Find a, b, and c.

 60. Quadratics having a common tangent line The curves =y  
+ +x ax b2  and = −y cx x 2 have a common tangent line at 

the point (1, 0). Find a, b, and c.

 61. Find all points ( )x y,  on the graph of = −f x x x( ) 3 42  with tan-
gent lines parallel to the line = +y x8 5.

 62. Find all points ( )x y,  on the graph of = − +g x x x( ) 11
3

3 3
2

2  
with tangent lines parallel to the line − =x y8 2 1.

 63. Find all points ( )x y,  on the graph of ( )= −y x x 2  with tangent 
lines perpendicular to the line = +y x2 3.

 64. Find all points ( )x y,  on the graph of =f x x( ) 2 with tangent lines 
passing through the point ( )3, 8 .

y

x

(3, 8)

−2

2

2 4

6

10
f (x) = x2

(x, y)

 65. Assume that functions  f  and g are differentiable with =f (1) 2, 
f g(1) 3, (1) 4,′ = − =  and g (1) 2.′ = −  Find the equation of the 
line tangent to the graph of F x f x g x( ) ( ) ( )=  at =x 1.

 66. Assume that functions  f  and g are differentiable with =f (2) 3, 
f g(2) 1, (2) 4,′ = − = −  and g (2) 1.′ =  Find an equation  
of the line perpendicular to the line tangent to the graph of 

F x
f x
x g x

( )
( ) 3

( )
= +

−
 at =x 2.

 67. a.  Find an equation for the line that is tangent to the curve =y  
−x x3  at the point ( )−1, 0 .

 b. Graph the curve and tangent line together. The tangent line 
intersects the curve at another point. Use Zoom and Trace to 
estimate the point’s coordinates.

 c. Confirm your estimates of the coordinates of the second 
intersection point by solving the equations for the curve and 
tangent line simultaneously.

 68. a.  Find an equation for the line that is tangent to the curve =y  
− +x x x6 53 2  at the origin.

 b. Graph the curve and tangent line together. The tangent line 
intersects the curve at another point. Use Zoom and Trace to 
estimate the point’s coordinates.

 c. Confirm your estimates of the coordinates of the second 
intersection point by solving the equations for the curve and 
tangent line simultaneously.

Theory and Examples
For Exercises 69 and 70, evaluate each limit by first converting each to 
a derivative at a particular x-value.

 69. −
−→

x
x

lim 1
1x 1

50
 70. −

+→−

x
x

lim 1
1x 1

2 9

T

T

T

T
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 3.4  The Derivative as a Rate of Change 161

 80. The best quantity to order One of the formulas for inventory 
management says that the average weekly cost of ordering, pay-
ing for, and holding merchandise is

A q km
q

cm
hq

( )
2

,= + +

where q is the quantity you order when things run low (shoes, 
TVs, brooms, or whatever the item might be); k is the cost of plac-
ing an order (the same, no matter how often you order); c is the 
cost of one item (a constant); m is the number of items sold each 
week (a constant); and h is the weekly holding cost per item (a 
constant that takes into account things such as space, utilities, 
insurance, and security). Find dA dq and d A dq .2 2

 79. Cylinder pressure If gas in a cylinder is maintained at a con-
stant temperature T, the pressure P is related to the volume V by a 
formula of the form

=
−

−P nRT
V nb

an
V

,
2

2

in which a, b, n, and R are constants. Find dP dV . (See accom-
panying figure.)

3.4 The Derivative as a Rate of Change

DEFINITION The instantaneous rate of change of  f  with respect to x at x0 is 
the derivative

f x
f x h f x

h
( ) lim

( )
,

h
0

0

0 0( )
′ =

+ −
→

provided the limit exists.

In this section we study applications where derivatives model the rates at which things 
change. It is natural to think of a quantity changing with respect to time, but other variables 
can be treated in the same way. For example, an economist may want to study how the cost 
of producing steel varies with the number of tons produced, or an engineer may want to 
know how the power output of a generator varies with its temperature.

Instantaneous Rates of Change

If we interpret the difference quotient ( )( )+ −f x h f x h( )  as the average rate of change 
in  f  over the interval from x to +x h, we can interpret its limit as →h 0 as the instanta-
neous rate at which  f  is changing at the point x. This gives an important interpretation of 
the derivative.

Thus, instantaneous rates are limits of average rates.
It is conventional to use the word instantaneous even when x does not represent time. 

The word is, however, frequently omitted. When we say rate of change, we mean instanta-
neous rate of change.

EXAMPLE 1  The area A of a circle is related to its diameter by the equation

π=A D
4

.2

How fast does the area change with respect to the diameter when the diameter is 10 m?
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162 Chapter 3 Derivatives

Solution The rate of change of the area with respect to the diameter is

= ⋅ =dA
dD

D D
4

2
2

.

When D 10 m, the area is changing with respect to the diameter at the rate of 
( ) = ≈2 10 5 m m 15.71 m m.2 2  

DEFINITION Velocity (instantaneous velocity) is the derivative of position 
with respect to time. If a body’s position at time t is s f t( ), then the body’s 
velocity at time t is

t ds
dt

f t t f t
t

( ) lim
( )

.
t 0

( )
= = + Δ −

ΔΔ →

FIGURE 3.16 For motion s f t( ) 
along a straight line (the vertical axis), 

ds dt  is (a) positive when s increases 
and (b) negative when s decreases.

t

s

0
s increasing:
positive slope so
moving upward

s = f (t)

ds
dt

> 0

t

s

0
s decreasing:
negative slope so
moving downward

s = f (t)

ds
dt

< 0

(a)

(b)

DEFINITION Speed is the absolute value of velocity.

t ds
dt

Speed ( )

FIGURE 3.15 The positions of a body 
moving along a coordinate line at time t 
and shortly later at time + Δt t. Here the 
coordinate line is horizontal.

s
Δs

Position at time t … and at time t + Δt

s = f (t) s + Δs = f (t + Δt)

Motion Along a Line: Displacement, Velocity, Speed,  
Acceleration, and Jerk

Suppose that an object (or body, considered as a whole mass) is moving along a coordinate 
line (an s-axis), usually horizontal or vertical, so that we know its position s on that line as 
a function of time t:

s f t( ).

The displacement of the object over the time interval from t to + Δt t  (Figure 3.15) is

( )Δ = + Δ −s f t t f t( ),

and the average velocity of the object over that time interval is

( )
= = Δ

Δ
= + Δ −

Δ
s
t

f t t f t
t

displacement
travel time

( )
.a

To find the body’s velocity at the exact instant t, we take the limit of the average veloc-
ity over the interval from t to + Δt t  as t approaches zero. This limit is the derivative 
of  f  with respect to t.

Besides telling how fast an object is moving along the horizontal line in Figure 3.15, 
its velocity tells the direction of motion. When the object is moving forward (s increasing), 
the velocity is positive; when the object is moving backward (s decreasing), the velocity is 
negative. If the coordinate line is vertical, the object moves upward for positive velocity and 
downward for negative velocity. The blue curves in Figure 3.16 represent position along the 
line over time; they do not portray the path of motion, which lies along the vertical s-axis.

If we drive to a friend’s house and back at 50 km h, say, the speedometer will show 50 
on the way over but it will not show 50 on the way back, even though our distance from 
home is decreasing. The speedometer always shows speed, which is the absolute value of 
velocity. Speed measures the rate of progress regardless of direction.

EXAMPLE 2  Figure 3.17 shows the graph of the velocity f t( )= ′  of a particle 
moving along a horizontal line as in Figure 3.15 (as opposed to the graph of a position 
function s f t( ), such as in Figure 3.16). In the graph of the velocity function, it’s not the 
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 3.4  The Derivative as a Rate of Change 163

slope of the curve that tells us whether the particle is moving forward or backward along 
the line (which is not shown in the figure), but rather the sign of the velocity. Figure 3.17  
shows that the particle moves forward for the first 3 s (when the velocity is positive), 
moves backward for the next 2 s (the velocity is negative), stands motionless for a full sec-
ond, and then moves forward again. The particle is speeding up when its positive velocity  
increases during the first second, moves at a steady speed during the next second, and 
then slows down as the velocity decreases to zero during the third second. It stops for 
an instant at t 3 s (when the velocity is zero) and reverses direction as the velocity 
starts to become negative. The particle is now moving backward and gaining in speed 
until t 4 s, at which time it achieves its greatest speed during its backward motion.  
Continuing its backward motion at time t 4, the particle starts to slow down again until 
it finally stops at time t 5 (when the velocity is once again zero). The particle now 
remains motionless for one full second, and then moves forward again at t 6 s, speeding 
up during the final second of the forward motion indicated in the velocity graph. 

FIGURE 3.17 The velocity graph of a particle moving along a horizontal line, 
discussed in Example 2.

HISTORICAL BIOGRAPHY

Bernard Bolzano 
(1781–1848)
Bolzano was born in Prague, 
Czechoslovakia. He studied at the University 
of Prague, where he took courses in 
philosophy, physics, and mathematics. 

To know more, visit the companion Website.  
DEFINITIONS Acceleration is the derivative of velocity with respect to time. 
If a body’s position at time t is s f t( ), then the body’s acceleration at time t is

a t d
dt

d s
dt

( ) .
2

2

Jerk is the derivative of acceleration with respect to time:

j t da
dt

d s
dt

( ) .
3

3

The rate at which a body’s velocity changes is the body’s acceleration. The acceleration 
measures how quickly the body picks up or loses speed. In Chapter 12 we will study motion in 
the plane and in space, where acceleration of an object may also lead to a change in direction.

A sudden change in acceleration is called a jerk. When a ride in a car or a bus is jerky, 
it is not that the accelerations involved are necessarily large but that the changes in accel-
eration are abrupt.

0 1 2 3 4 5 6 7

MOVES FORWARD

(y > 0)

MOVES BACKWARD

(y < 0)

FORWARD
AGAIN

(y > 0)

Speeds
up

Speeds
up

Speeds
up

Slows
down

Slows
down

Steady

(y = const)

Velocity y = f ′(t)

Stands
still
(y = 0)

t (s)

Greatest
speed

y
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164 Chapter 3 Derivatives

Near the surface of Earth, all bodies fall with the same constant acceleration. Galileo’s 
experiments with free fall (see Section 2.1) lead to the equation

s gt1
2

,2

where s is the distance fallen and g is the acceleration due to Earth’s gravity. This equation 
holds in a vacuum, where there is no air resistance, and closely models the fall of dense, 
heavy objects, such as rocks or steel tools, for the first few seconds of their fall, before the 
effects of air resistance are significant.

The value of g in the equation ( )=s gt1 2 2 depends on the units used to measure  
t and s. With t in seconds (the usual unit), the value of g determined by measurement at sea 
level is approximately 9.8 m s2 (meters per second squared) in metric units. (This  
gravitational constant depends on the distance from Earth’s center of mass, and is slightly 
lower on top of Mt. Everest, for example.)

The jerk associated with the constant acceleration of gravity ( )=g 9.8 m s2  is zero:

j d
dt

g( ) 0.

An object does not exhibit jerkiness during free fall.

FIGURE 3.18 A ball bearing falling 
from rest (Example 3).

0
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t = 0

t = 1

t = 2

EXAMPLE 3  Figure 3.18 shows the free fall of a heavy ball bearing released from 
rest at time t 0 s.

(a) How many meters does the ball fall in the first 3 s?

(b) What are its velocity, speed, and acceleration when t 3?

Solution 

(a) The metric free-fall equation is s t4.9 .2  During the first 3 s, the ball falls

( )= =s(3) 4.9 3 44.1 m.2

(b) At any time t, velocity is the derivative of position:

t s t d
dt

t t( ) ( ) 4.9 9.8 .2( )= ′ = =

At t 3, the velocity is

(3) 29.4 m s

in the downward (increasing s) direction. The speed at t 3 is

speed (3) 29.4 m s.

The acceleration at any time t is

= ′ = ′′ =a t t s t( ) ( ) ( ) 9.8 m s .2

At t 3, the acceleration is 9.8 m s .2  

EXAMPLE 4  A dynamite blast blows a heavy rock straight up with a launch  
velocity of 49 m s (176.4 km h) (Figure 3.19a). It reaches a height of = −s t t   49 4.9 2  m 
after t seconds.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 78.4 m above the ground on the 
way up? On the way down?

(c) What is the acceleration of the rock at any time t during its flight (after the blast)?

(d) When does the rock hit the ground again?
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Solution 

(a) In the coordinate system we have chosen, s measures height from the ground up, so the 
velocity is positive on the way up and negative on the way down. The instant the rock 
is at its highest point is the one instant during the flight when the velocity is 0. To find 
the maximum height, all we need to do is to find when υ = 0 and evaluate s at this time.

At any time t during the rock’s motion, its velocity is

υ ( )= = − = −ds
dt

d
dt

t t t49 4.9 49 9.8  m s.2

The velocity is zero when

− = =t t49 9.8 0 or 5 s.

The rock’s height at t = 5 s is

( ) ( ) ( )= = − = − =s s 5 49 5 4.9 5 245 122.5 122.5 m.max
2

See Figure 3.19b.

(b) To find the rock’s velocity at 78.4 m on the way up and again on the way down, we first 
find the two values of t for which

= − =s t t t( ) 49 4.9 78.4.2

To solve this equation, we write

− + =t t4.9 49 78.4 02

( )− + =t t4.9 10 16 02

( )( )− − =t t2 8 0
= =t s t s2 , 8 .

The rock is 78.4 m above the ground 2 s after the explosion and again 8 s after the 
explosion. The rock’s velocities at these times are

υ = − = − =(2) 49 9.8(2) 49 19.6 29.4 m s.

υ = − = − = −(8) 49 9.8(8) 49 78.4 29.4 m s.

At both instants, the rock’s speed is 29.4 m/s. Since υ(2) > 0, the rock is moving 
upward (s is increasing) at t = 2 s; it is moving downward (s is decreasing) at t = 8 
because υ(8) < 0.

(c) At any time during its flight following the explosion, the rock’s acceleration is a 
constant

= = − = −a dv
dt

d
dt

t(49 9.8 ) 9.8 m s .2

The acceleration is always downward and is the effect of gravity on the rock. As the 
rock rises, it slows down; as it falls, it speeds up.

(d) The rock hits the ground at the positive time t for which s = 0. The equation  
−t t49 4.9 2 = 0 factors to give 4.9t (10 − t) = 0, so it has solutions t = 0 and t = 10.  

At t = 0, the blast occurred and the rock was thrown upward. It returns to the  
ground 10 s later. 

FIGURE 3.19 (a) The rock in Example 4.  
(b) The graphs of s and υ as functions of 
time; s is largest when υ = =ds dt 0. 
The graph of s is not the path of the rock: 
It is a plot of height versus time. The slope 
of the plot is the rock’s velocity, graphed 
here as a straight line.

Derivatives in Economics and Biology

Economists have a specialized vocabulary for rates of change and derivatives. They call 
them marginals. In a manufacturing operation, the cost of production c x( ) is a function of 
x, the number of units produced. The marginal cost of production is the rate of change of 
cost with respect to level of production, so it is dc dx.

s

m
)

(a)

smax

s = 0

78.4 t = ?

y = 0
H

ei
gh

t (

t
0

122.5

5 10

(b)

49

−49

s, y

s = 49t − 4.9t2

y = = 49 − 9.8tds
dt
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166 Chapter 3 Derivatives

Suppose that c x( ) represents the dollars needed to produce x tons of steel in one week. 
It costs more to produce +x h tons per week, and the cost difference, divided by h, is the 
average cost of producing each additional ton:

c x h c x
h h

( ) average cost of each of the additional
 tons of steel produced.

( )+ − =

The limit of this ratio as →h 0 is the marginal cost of producing more steel per week 
when the current weekly production is x tons (Figure 3.20):

dc
dx

c x h c x
h

lim ( ) marginal cost of production.
h 0

( )= + − =
→

Sometimes the marginal cost of production is loosely defined to be the extra cost of 
producing one additional unit:

c
x

c x c x1 ( )
1

,
( )Δ

Δ
= + −

which is approximated by the value of dc dx at x. This approximation is acceptable if the 
slope of the graph of c does not change quickly near x. Then the difference quotient will  
be close to its limit dc dx, which is the rise in the tangent line if Δ =x 1 (Figure 3.21). The 
approximation often works well for large values of x.

Economists often represent a total cost function by a cubic polynomial

c x x x x( ) ,3 2α β γ δ= + + +

where δ  represents fixed costs, such as rent, heat, equipment capitalization, and manage-
ment costs. The other terms represent variable costs, such as the costs of raw materials, 
taxes, and labor. Fixed costs are independent of the number of units produced, whereas 
variable costs depend on the quantity produced. A cubic polynomial is usually adequate to 
capture the cost behavior on a realistic quantity interval.

FIGURE 3.20 Weekly steel production: 
c x( ) is the cost of producing x tons per 
week. The cost of producing an additional 
h tons is c x h c x( ).( )+ −

x
0

Production (tons/week)
x

Cost y (dollars)

y = c (x)
Slope =

marginal cost

x + h

FIGURE 3.21 The marginal cost dc dx  
is approximately the extra cost Δc of  
producing Δ =x 1 more unit.

x

y

0 x

dc
dx

x + 1

Δx = 1

Δc

y = c(x)

EXAMPLE 5  Suppose that it costs

c x x x x( ) 6 153 2= − +

dollars to produce x radiators when 8 to 30 radiators are produced and that

r x x x x( ) 3 123 2= − +

gives the dollar revenue from selling x radiators. Your shop currently produces 10 radiators 
a day. About how much extra will it cost to produce one more radiator a day, and what is 
your estimated increase in revenue and increase in profit for selling 11 radiators a day?

Solution The cost of producing one more radiator a day when 10 are produced is about 
′c (10):

( )

( ) ( )

′ = − + = − +

′ = − + =

c x d
dx

x x x x x

c

( ) 6 15 3 12 15

(10) 3 100 12 10 15 195.

3 2 2

The additional cost will be about $195. The marginal revenue is

r x d
dx

x x x x x( ) 3 12 3 6 12.3 2 2( )′ = − + = − +

The marginal revenue function estimates the increase in revenue that will result from sell-
ing one additional unit. If you currently sell 10 radiators a day, you can expect your reve-
nue to increase by about

( ) ( )′ = − + =r (10) 3 100 6 10 12 $252

if you increase sales to 11 radiators a day. The estimated increase in profit is obtained by 
subtracting the increased cost of $195 from the increased revenue, leading to an estimated 
profit increase of − =$252 $195 $57. 
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 3.4  The Derivative as a Rate of Change 167

EXAMPLE 6  Marginal rates frequently arise in discussions of tax rates. If your mar-
ginal income tax rate is 28% and your income increases by $1000, you can expect to pay 
an extra $280 in taxes. This does not mean that you pay 28% of your entire income in 
taxes. It just means that at your current income level I, the rate of increase of taxes T with 
respect to income is =dT dI 0.28. You will pay $0.28 in taxes out of every extra dollar 
you earn. As your income increases, you may land in a higher tax bracket, and your mar-
ginal rate will increase. 

Sensitivity to Change

When a small change in x produces a large change in the value of a function f x( ), we say that 
the function is sensitive to changes in x. The derivative f x( )′  is a measure of this sensitivity. The 
function is more sensitive when f x( )′  is larger (when the slope of the graph of  f  is steeper).

EXAMPLE 7  Genetic Data and Sensitivity to Change
The Austrian monk Gregor Johann Mendel (1822–1884), working with garden peas and 
other plants, provided the first scientific explanation of hybridization.

His careful records showed that if p (a number between 0 and 1) is the frequency of the 
gene for smooth skin in peas (dominant) and ( )− p1  is the frequency of the gene for wrinkled 
skin in peas, then the proportion of smooth-skin peas in the next generation will be

( )= − + = −y p p p p p2 1 2 .2 2

The graph of y versus p in Figure 3.22a suggests that the value of y is more sensitive 
to a change in p when p is small than when p is large. Indeed, this fact is borne out by the 
derivative graph in Figure 3.22b, which shows that dy dp is close to 2 when p is near 0 and 
close to 0 when p is near 1.

The implication for genetics is that introducing a few more smooth skin genes into a 
population where the frequency of wrinkled-skin peas is large will have a more dramatic 
effect on later generations than will a similar increase when the population has a large pro-
portion of smooth-skin peas. 

Motion Along a Coordinate Line
Exercises 1–6 give the positions =s f t( ) of a body moving on a coor-
dinate line, with s in meters and t in seconds.

  a.  Find the body’s displacement and average velocity for the given 
time interval.

  b.  Find the body’s speed and acceleration at the endpoints of the 
interval.

  c.  When, if ever, during the interval does the body change direction?

 1. s t t t3 2, 0 22= − + ≤ ≤

 2. s t t t6 , 0 62= − ≤ ≤

 3. s t t t t3 3 , 0 33 2= − + − ≤ ≤

 4. ( )= − + ≤ ≤s t t t t4 , 0 34 3 2

 5. s
t t

t25 5, 1 5
2

= − ≤ ≤  6. =
+

− ≤ ≤s
t

t25
5

, 4 0

 7. Particle motion At time t, the position of a body moving along 
the s-axis is = − +s t t t6 9 m.3 2

 a. Find the body’s acceleration each time the velocity is zero.

 b. Find the body’s speed each time the acceleration is zero.

 c. Find the total distance traveled by the body from t 0=  to t 2.=

 8. Particle motion At time t 0,≥  the velocity of a body moving 
along the horizontal s-axis is t t4 3.2υ = − +

 a. Find the body’s acceleration each time the velocity is zero.

 b. When is the body moving forward? Backward?

 c. When is the body’s velocity increasing? Decreasing?

Free-Fall Applications

 9. Free fall on Mars and Jupiter The equations for free fall at 
the surfaces of Mars and Jupiter (s in meters, t in seconds) are 
s t1.86 2=  on Mars and s t11.44 2=  on Jupiter. How long does 
it take a rock falling from rest to reach a velocity of 27.8 m s 
(about 100 km h) on each planet?

 10. Lunar projectile motion A rock thrown vertically upward from 
the surface of the moon at a velocity of 24 m s (about 86 km h) 
reaches a height of = −s t t24 0.8 m2  in t s.

 a. Find the rock’s velocity and acceleration at time t. (The accel-
eration in this case is the acceleration of gravity on the moon.)

 b. How long does it take the rock to reach its highest point?

 c. How high does the rock go?

 d. How long does it take the rock to reach half its maximum height?

 e. How long is the rock aloft?

EXERCISES 3.4

FIGURE 3.22 (a) The graph of 
= −y p p2 ,2  describing the proportion of 

smooth-skin peas in the next generation.  
(b) The graph of dy dp (Example 7).

p

y

0 1

1

(a)

 y = 2p − p2

dy�dp

p
0 1

2

(b)

= 2 − 2p
dy
dp
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168 Chapter 3 Derivatives

 11. Finding g on a small airless planet Explorers on a small airless 
planet used a spring gun to launch a ball bearing vertically upward 
from the surface at a launch velocity of 15 m s. Because the accel-
eration of gravity at the planet’s surface was g m s ,s

2  the explorers 
expected the ball bearing to reach a height of ( )= −s t g t15 1 2 ms

2  
t s later. The ball bearing reached its maximum height 20 s after being 
launched. What was the value of g ?s

 12. Speeding bullet A 45-caliber bullet shot straight up from the 
surface of the moon would reach a height of = −s t t250 0.8 m2  
after t seconds. On Earth, in the absence of air, its height would be 
= −s t t250 4.9 2 m after t seconds. How long will the bullet be 

aloft in each case? How high will the bullet go?

 13. Free fall from the Tower of Pisa Had Galileo dropped a  
cannonball from the Tower of Pisa, 56 m above the ground, the 
ball’s height above the ground t seconds into the fall would have 
been = −s t56 4.9 .2

 a. What would have been the ball’s velocity, speed, and accel-
eration at time t?

 b. About how long would it have taken the ball to hit the ground?

 c. What would have been the ball’s velocity at the moment of 
impact?

 14. Galileo’s free-fall formula Galileo developed a formula for a 
body’s velocity during free fall by rolling balls from rest down 
increasingly steep inclined planks and looking for a limiting for-
mula that would predict a ball’s behavior when the plank was 
vertical and the ball fell freely; see part (a) of the accompanying 
figure. He found that, for any given angle of the plank, the ball’s 
velocity t seconds into motion was a constant multiple of t. That 
is, the velocity was given by a formula of the form kt. The 
value of the constant k depended on the inclination of the plank.

In modern notation—part (b) of the figure—with distance in 
meters and time in seconds, what Galileo determined by experi-
ment was that, for any given angle , the ball’s velocity t s into the 
roll was υ θ( )= t9.8 sin m s.

(a)

?

(b)

Free-fall
position

u

 a. What is the equation for the ball’s velocity during free fall?

 b. Building on your work in part (a), what constant acceleration 
does a freely falling body experience near the surface of Earth?

Understanding Motion from Graphs

 15. The accompanying figure shows the velocity ds dt f t( ) 
( )m s  of a body moving along a coordinate line.

0

−3

2 4

3

6 8 10

y (m/s)

y = f (t)

t (s)

 a. When does the body reverse direction?

 b. When (approximately) is the body moving at a constant speed?

 c. Graph the body’s speed for t0 10.

 d. Graph the acceleration, where defined.

 16. A particle P moves on the number line shown in part (a) of the 
accompanying figure. Part (b) shows the position of P as a func-
tion of time t.

0

−2

−4

1 2

2

3 4 5 6

(b)

0

(a)

P
s (cm)

s (cm)

s = f (t)

t (s)

(6, −4)

 a. When is P moving to the left? Moving to the right? Standing 
still?

 b. Graph the particle’s velocity and speed (where defined).

 17. Launching a rocket When a model rocket is launched, the pro-
pellant burns for a few seconds, accelerating the rocket upward. 
After burnout, the rocket coasts upward for a while and then 
begins to fall. A small explosive charge pops out a parachute 
shortly after the rocket starts down. The parachute slows the 
rocket to keep it from breaking when it lands.

The figure here shows velocity data from the flight of the 
model rocket. Use the data to answer the following.

 a. How fast was the rocket climbing when the engine stopped?

 b. For how many seconds did the engine burn?

0 2 4 6 8 10 12

30

15

0

−15

−30

45

60

Time after launch (s)

V
el

oc
ity

 (
m

�s
)

 c. When did the rocket reach its highest point? What was its 
velocity then?

 d. When did the parachute pop out? How fast was the rocket  
falling then?

 e. How long did the rocket fall before the parachute opened?

 f. When was the rocket’s acceleration greatest?

 g. When was the acceleration constant? What was its value then 
(to the nearest integer)?
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 3.4  The Derivative as a Rate of Change 169

 18. The accompanying figure shows the velocity f t( ) of a particle 
moving on a horizontal coordinate line.

t (s)

y

0 1 2 3 4 5 6 7 8 9

y = f(t)

 a. When does the particle move forward? Move backward? 
Speed up? Slow down?

 b. When is the particle’s acceleration positive? Negative? Zero?

 c. When does the particle move at its greatest speed?

 d. When does the particle stand still for more than an instant?

 19. The graphs in the accompanying figure show the position s,  
velocity ds dt, and acceleration a d s dt2 2  of a body mov-
ing along a coordinate line as functions of time t. Which graph is 
which? Give reasons for your answers.

t

y

0

A B

C

 20. The graphs in the accompanying figure show the position s, the 
velocity ds dt , and the acceleration a d s dt2 2  of a body 
moving along a coordinate line as functions of time t. Which 
graph is which? Give reasons for your answers.

t

y

0

A

B

C

Economics

 21. Marginal cost Suppose that the dollar cost of producing x wash-
ing machines is c x x x( ) 2000 100 0.1 .2= + −

 a. Find the average cost per machine of producing the first 100 
washing machines.

 b. Find the marginal cost when 100 washing machines are produced.

 c. Show that the marginal cost when 100 washing machines are 
produced is approximately the cost of producing one more 
washing machine after the first 100 have been made, by calcu-
lating the latter cost directly.

 22. Marginal revenue Suppose that the revenue from selling x wash-
ing machines is

r x
x

( ) 20,000 1 1( )= −

dollars.

 a. Find the marginal revenue when 100 machines are produced.

 b. Use the function r x( ) to estimate the increase in revenue that 
will result from increasing production from 100 machines a 
week to 101 machines a week.

 c. Find the limit of r x( ) as x .→ ∞  How would you interpret 
this number?

Additional Applications

 23. Bacterium population When a bactericide was added to a nutri-
ent broth in which bacteria were growing, the bacterium popula-
tion continued to grow for a while, but then stopped growing and 
began to decline. The size of the population at time t (hours) was 
= + −b t t10 10 10 .6 4 3 2  Find the growth rates at

 a. t 0 hours.

 b. t 5 hours.

 c. t 10 hours.

 24. Body surface area A typical male’s body surface area S in 
square meters is often modeled by the formula S wh,1

60  
where h is the height in centimeters, and w the weight in kilo-
grams, of the person. Find the rate of change of body surface area 
with respect to weight for males of constant height h 180 cm. 
Does S increase more rapidly with respect to weight at lower or 
higher body weights? Explain.

 25. Draining a tank It takes 12 hours to drain a storage tank by 
opening the valve at the bottom. The depth y of fluid in the tank t 
hours after the valve is opened is given by the formula

y t6 1
12

m.
2

( )= −

 a. Find the rate dy dt  m h( ) at which the tank is draining at time t.

 b. When is the fluid level in the tank falling fastest? Slowest? 
What are the values of dy dt  at these times?

 c. Graph y and dy dt  together and discuss the behavior of y in 
relation to the signs and values of dy dt .

 26. Draining a tank The number of liters of water in a tank t min-
utes after the tank has started to drain is Q t t( ) 200 30 .2( )= −  
How fast is the water running out at the end of 10 min? What  
is the average rate at which the water flows out during the first 
10 min?

 27. Vehicular stopping distance Based on data from the U.S. Bureau 
of Public Roads, a model for the total stopping distance of a moving 
car in terms of its speed is

= +s 0.21 0.0063 ,2

where s is measured in meters and  is measured in km h. The linear 
term 0.21  models the distance the car travels during the time the 

T
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170 Chapter 3 Derivatives

driver perceives a need to stop until the brakes are applied, and the 
quadratic term 0.00636 2 models the additional braking distance 
once they are applied. Find ds d  at 50 and 100 km h, 
and interpret the meaning of the derivative.

 28. Inflating a balloon The volume ( )=V r4 3 3 of a spherical 
balloon changes with the radius.

 a. At what rate ( )m m3  does the volume change with respect to 
the radius when r 2 m?

 b. By approximately how much does the volume increase when 
the radius changes from 2 to 2.2 m?

 29. Airplane takeoff Suppose that the distance an aircraft travels along 
a runway before takeoff is given by ( )=D t10 9 ,2  where D is 
measured in meters from the starting point and t is measured in sec-
onds from the time the brakes are released. The aircraft will become 
airborne when its speed reaches 200 km h. How long will it take to 
become airborne, and what distance will it travel in that time?

 30. Volcanic lava fountains Although the November 1959 Kilauea 
Iki eruption on the island of Hawaii began with a line of fountains 
along the wall of the crater, activity was later confined to a sin-
gle vent in the crater’s floor, which at one point shot lava 580 m 
straight into the air (a Hawaiian record). What was the lava’s exit 
velocity in meters per second? In kilometers per hour? (Hint: If 0 

is the exit velocity of a particle of lava, its height t seconds later 
will be = −s t t4.9 m.0

2  Begin by finding the time at which 
ds dt 0. Neglect air resistance.)

Analyzing Motion Using Graphs
Exercises 31–34 give the position function s f t( ) of an object mov-
ing along the s-axis as a function of time t. Graph  f  together with the 
velocity function t ds dt f t( ) ( )= = ′  and the acceleration function 
a t d s dt f t( ) ( ).2 2= = ″  Comment on the object’s behavior in rela-
tion to the signs and values of y and a. Include in your commentary 
such topics as the following:

  a. When is the object momentarily at rest?

  b. When does it move to the left (down) or to the right (up)?

  c. When does it change direction?

  d. When does it speed up and slow down?

  e. When is it moving fastest (highest speed)? Slowest?

  f. When is it farthest from the axis origin?

 31. = − ≤ ≤s t t t60 4.9 , 0 12.52  (a heavy object fired straight 
up from Earth’s surface at 60 m s)

 32. s t t t3 2, 0 52= − + ≤ ≤

 33. s t t t t6 7 , 0 43 2= − + ≤ ≤

 34. s t t t t4 7 6 , 0 42 3= − + − ≤ ≤

T

Many phenomena of nature are approximately periodic (electromagnetic fields, heart rhythms, 
tides, weather). The derivatives of sines and cosines play a key role in describing periodic 
changes. This section shows how to differentiate the six basic trigonometric functions.

3.5 Derivatives of Trigonometric Functions

Derivative of the Sine Function

To calculate the derivative of f x x( ) sin , for x measured in radians, we combine the limits 
in Example 5a and Theorem 6 in Section 2.4 with the angle sum identity for the sine function 
(see Figure 1.46):

x h x h x hsin sin cos cos sin .( )+ = +

If f x x( ) sin , then

f x
f x h f x

h
x h x

h
x h x h x

h
x h x h

h

x
h
h

x
h

h

x
h
h

x
h

h

x x x

( ) lim
( )

lim
sin sin

lim
sin cos cos sin sin

lim
sin cos 1 cos sin

lim sin
cos 1

lim cos
sin

sin lim
cos 1

cos lim
sin

sin 0 cos 1 cos .

x h

Derivative definition

Identity for sin

limit 0 limit 1 Example 5a and
Theorem 6, Section 2.4

h h

h

h

h h

h h

0 0

0

0

0 0

0 0� ������ ������ � ���� ����

( ) ( )

( )

( )

( ) ( )
′ = + − =

+ −

=
+ −

=
− +

= ⋅
−

+ ⋅

= ⋅
−

+ ⋅

= ⋅ + ⋅ =

+( )

→ →

→

→

→ →

→ →

The derivative of the sine function is the cosine function:

d
dx

x xsin cos .( ) =
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EXAMPLE 1  We find derivatives of a difference, a product, and a quotient, each of 
which involves the sine function.

(a) y x xsin :2= −  
dy
dx

x d
dx

x

x x

2 sin

2 cos

( )= −

= −

 Difference Rule

(b) y e xsin :x=  
dy
dx

e d
dx

x d
dx

e x

e x e x

e x x

sin sin

cos sin

cos sin

x x

x x

x

( )( )

( )

= +

= +

= +

 Product Rule

(c) y
x

x
sin

:=  dy
dx

x d
dx

x x

x
x x x

x

sin sin 1

cos sin

2

2

( )
=

⋅ − ⋅

=
−

 Quotient Rule

 

FIGURE 3.23 The curve y xsin′ = −  as 
the graph of the slopes of the tangent lines 
to the curve y xcos .=

1

x

y

0

1

x

y′

0
−1

−1

y = cos x

y′ = −sin x

−p p

−p p

Derivative of the Cosine Function

With the help of the angle sum formula for the cosine function (see Figure 1.46),

x h x h x hcos cos cos sin sin ,( )+ = −

we can compute the limit of the difference quotient:

d
dx

x
x h x

h
x h x h x

h

x h x h
h

x
h
h

x
h

h

x
h
h

x
h

h
x x

x

cos lim
cos cos

lim
cos cos sin sin cos

lim
cos cos 1 sin sin

lim cos
cos 1

lim sin
sin

cos lim
cos 1

sin lim
sin

cos 0 sin 1

sin .

Derivative definition

Cosine angle sum
identity

Example 5a and
Theorem 6,
Section 2.4

h

h

h

h h

h h

0

0

0

0 0

0 0

( ) ( )

( )

( )

( )

( )
=

+ −

=
− −

=
− −

= ⋅
−

− ⋅

= ⋅
−

− ⋅

= ⋅ − ⋅

= −

→

→

→

→ →

→ →

The derivative of the cosine function is the negative of the sine function:

d
dx

x xcos sin .( ) = −

Figure 3.23 shows a way to visualize this result by graphing the slopes of the tangent 
lines to the curve y xcos .=

EXAMPLE 2  We find derivatives of the cosine function in combinations with other 
functions.

(a) y e x5 cos :x= +

( )= +

= −

dy
dx

d
dx

e d
dx

x

e x

(5 ) cos

5 sin

Sum Rulex

x
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172 Chapter 3 Derivatives

(b) y x xsin cos :=

( )( ) ( )

( )( ) ( )( )

= +

= − +

= −

dy
dx

x d
dx

x d
dx

x x

x x x x

x x

sin cos sin cos

sin sin cos cos

cos sin

Product Rule

2 2

(c) y
x

x
cos

1 sin
:=

−

( ) ( ) ( )

( )

( )( ) ( )( )
( )

( )

=
− − −

−

=
− − − −

−

=
−

−

=
−

+ =

dy
dx

x d
dx

x x d
dx

x

x

x x x x

x

x

x

x

1 sin   cos cos   1 sin

1 sin

1 sin sin cos 0 cos

1 sin

1 sin

1 sin

1
1 sin

x x

Quotient Rule

sin cos 1

2

2

2
2 2

 

Simple Harmonic Motion

Simple harmonic motion models the motion of an object or weight bobbing freely up and 
down on the end of a spring, with no resistance. The motion is periodic and repeats indefi-
nitely, so we represent it using trigonometric functions. The next example models motion 
with no opposing forces (such as friction).

EXAMPLE 3  A weight hanging from a spring (Figure 3.24) is stretched down 5 units 
beyond its rest position and released at time =t 0 to bob up and down. Its position at any 
later time t is

s t5 cos .=

What are its velocity and acceleration at time t?

Solution We have

Position: s t5 cos=

Velocity:
ds
dt

d
dt

t t5 cos 5 sinυ ( )= = = −

Acceleration: a d
dt

d
dt

t t5 sin 5 cos .υ ( )= = − = −

Notice how much we can learn from these equations:

1. As time passes, the weight moves down and up between = −s 5 and =s 5 on the 
s-axis. The amplitude of the motion is 5. The period of the motion is π2 , the period of 
the cosine function.

2. The velocity t5 sinυ = −  attains its greatest magnitude, 5, when tcos 0,=  as the 
graphs in Figure 3.25 show. Hence, the speed of the weight, t5 sin ,υ =  is greatest 
when tcos 0,=  that is, when =s 0 (the rest position). The speed of the weight is 
zero when tsin 0.=  This occurs when s t5 cos 5,= = ±  at the endpoints of the 
interval of motion. At these points the weight reverses direction.

3. The weight is acted on by the spring and by gravity. When the weight is below the rest 
position, the combined forces pull it up, and when it is above the rest position, they pull it 
down. The weight’s acceleration is always proportional to the negative of its displacement. 
This property of springs is called Hooke’s Law, and is studied further in Section 6.5.

FIGURE 3.24 A weight hanging from 
a vertical spring and then displaced oscil-
lates above and below its rest position 
(Example 3).

s

0

−5

5

Rest
position

Position at
t = 0

FIGURE 3.25 The graphs of the position 
and velocity of the weight in Example 3.

t
0

s, y

y = −5 sin t s = 5 cos t

p p
2

3p 2p
2

5p
2

5

−5
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The derivatives of the other trigonometric functions:

d
dx

x x d
dx

x x

d
dx

x x x d
dx

x x x

tan sec cot csc

sec sec tan csc csc cot

2 2( ) ( )

( ) ( )

= = −

= = −

4. The acceleration, a t5 cos ,= −  is zero only at the rest position, where tcos 0=  
and the force of gravity and the force from the spring balance each other. When the 
weight is anywhere else, the two forces are unequal, and acceleration is nonzero. 
The acceleration is greatest in magnitude at the points farthest from the rest position, 
where tcos 1.= ±  

EXAMPLE 4  The jerk associated with the simple harmonic motion in Example 3 is

j da
dt

d
dt

t t5 cos 5 sin .( )= = − =

It has its greatest magnitude when tsin 1,= ±  not at the extremes of the displacement 
but at the rest position, where the acceleration changes direction and sign. 

Derivatives of the Other Basic Trigonometric Functions

Because sin x and cos x are differentiable functions of x, it follows from the Quotient Rule 
that the related functions

x
x
x

x
x
x

x
x

x
x

tan
sin
cos

, cot
cos
sin

, sec 1
cos

, and csc 1
sin

= = = =

are differentiable at every value of x at which they are defined. Their derivatives are given 
by the following formulas. Notice the negative signs in the derivative formulas for the 
cofunctions.

To show a typical calculation, we find the derivative of the tangent function. The other 
derivations are left for Exercise 54.

EXAMPLE 5  Find d x dxtan .( )

Solution We use the Derivative Quotient Rule to calculate the derivative:

( )
( ) ( )

( )

=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =

−

=
− −

= +

= =

d
dx

x d
dx

x
x

x d
dx

x x d
dx

x

x

x x x x
x

x x
x

x
x

tan
sin
cos

cos sin sin cos

cos

cos cos sin sin
cos

cos sin
cos

1
cos

sec .

Quotient Rule
2

2

2 2

2

2
2  
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174 Chapter 3 Derivatives

Derivatives
In Exercises 1–18, find dy dx.

 1. y x x10 3 cos= − +  2. y
x

x3 5 sin= +

 3. y x xcos2=  4. y x xsec 3= +

 5. y x x
e

csc 4 7
x

= − +  6. y x x
x

cot 12
2

= −

 7. f x x x( ) sin tan=  8. g x
x
x

( )
cos
sin 2

=

 9. y xe xsecx= −  10. y x x xsin cos sec( )= +

 11. y
x

x
cot

1 cot
=

+
 12. y

x
x

cos
1 sin

=
+

 13. y
x x

4
cos

1
tan

= +  14. y
x

x
x

x
cos

cos
= +

 15. y x x x xsec tan sec tan( )( )= + −

 16. y x x x x xcos 2 sin 2 cos2= − −

 17. f x x x x( ) sin cos3=  18. ( )= −g x x x( ) 2 tan 2

In Exercises 19–22, find ds dt .

 19. s t etan t= − −  20. s t t esec 5 t2= − +

 21. s
t
t

1 csc
1 csc

=
+
−

 22. s
t

t
sin

1 cos
=

−

In Exercises 23–26, find θdr d .

 23. r 4 sin2θ θ= −  24. r sin cosθ θ θ= +

 25. r sec cscθ θ=  26. r 1 sec sinθ θ( )= +

In Exercises 27–32, find dp dq.

 27. p
q

5 1
cot

= +  28. p q q1 csc cos( )= +

 29. p
q q

q
sin cos

cos
=

+
 30. p

q
q

tan
1 tan

=
+

 31. p
q q
q

sin
12

=
−

 32. p
q q
q q

3 tan
sec

=
+

 33. Find ′′y  if

 a. y xcsc .=  b. y xsec .=

 34. Find y d y dx(4) 4 4=  if

 a. y x2 sin .= −  b. y x9 cos .=

Tangent Lines
In Exercises 35–38, graph the curves over the given intervals, together 
with their tangent lines at the given values of x. Label each curve and 
tangent line with its equation.

 35. y x x

x

sin , 3 2 2

, 0, 3 2

π π
π π

= − ≤ ≤

= −

 36. y x x

x

tan , 2 2

3, 0, 3

π π
π π

= − < <

= −

 37. y x x

x

sec , 2 2

3, 4

π π
π π

= − < <

= −

 38. y x x

x

1 cos , 3 2 2

3, 3 2

π π
π π

= + − ≤ ≤

= −

Do the graphs of the functions in Exercises 39–44 have any horizontal 
tangent lines in the interval π≤ ≤x0 2 ? If so, where? If not, why 
not? Visualize your findings by graphing the functions with a grapher.

 39. y x xsin= +  40. y x x2 sin= +

 41. y x xcot= −  42. y x x2 cos= +

 43. y
x

x
sec

3 sec
=

+
 44. y

x
x

cos
3 4 sin

=
−

 45. Find all points on the curve y x xtan , 2 2,π π= − < <  where 
the tangent line is parallel to the line =y x2 . Sketch the curve 
and tangent lines together, labeling each with its equation.

T

EXERCISES 3.5

EXAMPLE 6  Find y y x if sec .″ =

Solution Finding the second derivative involves a combination of trigonometric derivatives.

( )

( ) ( )

( ) ( )( )( )

=

′ =

″ =

= +

= +

= +

y x

y x x

y d
dx

x x

x d
dx

x x d
dx

x

x x x x x

x x x

sec

sec tan

sec tan

sec tan tan sec

sec sec tan sec tan

sec sec tan

Derivative rule for secant function

Derivative Product Rule

Derivative rules2

3 2  
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x

0

−10

10

Equilibrium
position
at x = 0

 46. Find all points on the curve y x xcot , 0 ,= < <  where the 
tangent line is parallel to the line = −y x. Sketch the curve and 
tangent lines together, labeling each with its equation.

In Exercises 47 and 48, find an equation for (a) the tangent line to the 
curve at P and (b) the horizontal tangent line to the curve at Q.

 47. 

x

y

0

1

1 2

2

Q

y = 4 + cot x − 2csc x

p
2

P     , 2

p
2

a     b

 48. 

x

y

0 1 2

4

3

Q

p
4

P     , 4

p
4

y = 1 + 
"

2 csc x + cot x

a     b

Theory and Examples
The equations in Exercises 49 and 50 give the position s f t( ) of a 
body moving on a coordinate line (s in meters, t in seconds). Find the 
body’s velocity, speed, acceleration, and jerk at time t 4 s.

 49. s t2 2 sin= −

 50. s t tsin cos= +

 51. Is there a value of c that will make

f x
x

x
x

c x
( )

sin 3
, 0

, 0

2

2=
≠

=

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

continuous at x 0? Give reasons for your answer.

 52. Is there a value of b that will make

g x
x b x

x x
( )

, 0

cos , 0
=

+ <

≥

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

continuous at x 0? Differentiable at x 0? Give reasons for 
your answers.

 53. By computing the first few derivatives and looking for a pattern, 
find the following derivatives.

 a. d
dx

xcos
999

999
( ) b. d

dx
x xsin 3 cos

110

110
( )−

 c. d
dx

x xsin
73

73
( )

 54. Derive the formula for the derivative with respect to x of

 a. sec x. b. csc x. c. cot x.

 55. A weight is attached to a spring and reaches its equilibrium posi-
tion ( )=x 0 . It is then set in motion resulting in a displacement of

x t10 cos ,

 a. Find the spring’s displacement when t t0, 3, and 
t 3 4.

 b. Find the spring’s velocity when t t0, 3, and 
t 3 4.

 56. Assume that a particle’s position on the x-axis is given by

x t t3 cos 4 sin ,= +

where x is measured in meters and t is measured in seconds.
 a. Find the particle’s position when t t0, 2, and 

t .

 b. Find the particle’s velocity when t t0, 2, and 
t .

 57. Graph y xcos  for − ≤ ≤x 2 . On the same screen, graph

y
x h x

h
sin sin( )

=
+ −

for h 1, 0.5, 0.3, and 0.1. Then, in a new window, try  
= − −h 1, 0.5, and 0.3. What happens as → +h 0 ? As 
→ −h 0 ? What phenomenon is being illustrated here?

 58. Graph y xsin= −  for − ≤ ≤x 2 . On the same screen, graph

y
x h x

h
cos cos( )

=
+ −

for h 1, 0.5, 0.3, and 0.1. Then, in a new window, try  
= − −h 1, 0.5, and 0.3. What happens as → +h 0 ? As 
→ −h 0 ? What phenomenon is being illustrated here?

 59. Centered difference quotients The centered difference quotient

( ) ( )+ − −f x h f x h
h2

is used to approximate f x( ) in numerical work because (1) its 
limit as h 0 equals f x( ) when f x( ) exists, and (2) it usually 
gives a better approximation of f x( ) for a given value of h than 
the difference quotient

( )+ −f x h f x
h

( )
.

T

T

T

where x is measured in centimeters and t is measured in seconds. 
See the accompanying figure.
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176 Chapter 3 Derivatives

See the accompanying figure. over the interval π π[ ]− =h, 2 for 1, 0.5, and 0.3. Compare 
the results with those obtained in Exercise 58 for the same 
values of h.

 60. A caution about centered difference quotients (Continuation 
of Exercise 59.) The quotient

( ) ( )+ − −f x h f x h
h2

may have a limit as →h 0 when  f  has no derivative at x. As a 
case in point, take =f x x( )  and calculate

+ − −
→

h h
h

lim 0 0
2

.
h 0

As you will see, the limit exists even though =f x x( )  has no 
derivative at =x 0. Moral: Before using a centered difference 
quotient, be sure the derivative exists.

 61. Slopes on the graph of the tangent function Graph y xtan=  
and its derivative together on π π( )− 2, 2 . Does the graph of the 
tangent function appear to have a smallest slope? A largest slope? 
Is the slope ever negative? Give reasons for your answers.

 62. Exploring kx xsin( )  Graph y x xsin ,( )=  y x xsin 2 ,( )=  
and y x xsin 4( )=  together over the interval − ≤ ≤x2 2. 
Where does each graph appear to cross the y-axis? Do the graphs 
really intersect the axis? What would you expect the graphs of 
y x xsin 5( )=  and ( )= −y x xsin( 3 )  to do as →x 0? Why? 
What about the graph of y kx xsin( )=  for other values of k? 
Give reasons for your answers.

x

y

0 x

A

hh

C B

x − h x + h

y = f (x)

Slope = f ′(x)

Slope =

Slope =

h
f (x + h) − f (x)

f (x + h) − f (x − h)
2h

 a. To see how rapidly the centered difference quotient for 
f x x( ) sin=  converges to f x x( ) cos ,′ =  graph y xcos=  
together with

( ) ( )= + − −y x h x h
h

sin sin
2

over the interval π π[ ]− , 2  for =h 1, 0.5, and 0.3. Compare 
the results with those obtained in Exercise 57 for the same 
values of h.

 b. To see how rapidly the centered difference quotient 
for f x x( ) cos=  converges to f x x( ) sin ,′ = −  graph 
y xsin= −  together with

( ) ( )= + − −y x h x h
h

cos cos
2

How do we differentiate F x x( ) sin 4 ?2( )= −  This function is the composition f g�  of 
two functions y f u u( ) sin= =  and = = −u g x x( ) 42  that we know how to differ-
entiate. The answer, given by the Chain Rule, says that the derivative is the product of the 
derivatives of  f  and g. We develop the rule in this section.

Derivative of a Composite Function

The function = =y x x3
2

1
2

(3 ) is the composition of the functions =y u1
2

 and =u x3 .

We have

= = =dy
dx

dy
du

du
dx

3
2

, 1
2

, and 3.

Since = ⋅3
2

1
2

3, we see in this case that

= ⋅dy
dx

dy
du

du
dx

.

FIGURE 3.26 When gear A makes 
x turns, gear B makes u turns and gear 
C makes y turns. By comparing cir-
cumferences or counting teeth, we see 
that =y u 2 (C turns one-half turn 
for each B turn) and u x3=  (B turns 
three times for A’s one), so =y x3 2. 
Thus, ( )( )= = =dy dx 3 2 1 2 3  
dy du du dx .( )( )

32

1

C: y turns B: u turns A: x turns

3.6 The Chain Rule
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 3.6  The Chain Rule 177

If we think of the derivative as a rate of change, this relationship is intuitively reasonable. 
If =y f u( ) changes half as fast as u, and =u g x( ) changes three times as fast as x, then 
we expect y to change 3 2 times as fast as x. This effect is much like that of a multiple gear 
train (Figure 3.26). Let’s look at another example.

FIGURE 3.27 Rates of change multiply: The derivative of f g�  at x is the 
derivative of  f  at g x( ) times the derivative of g at x.

x

g f

Composition f ˚ g

Rate of change at
x is f ′(g(x)) · g′(x).

Rate of change
at x is g′(x).

Rate of change
at g(x) is f ′(g(x)).

u = g(x) y = f (u) = f (g(x))

THEOREM 2—The Chain Rule If f u( ) is differentiable at the point =u g x( ) 
and g x( ) is differentiable at x, then the composite function f g x f g x( ) ( ( ))�( ) =  
is differentiable at x, and

�( )′ = ′ ⋅ ′f g x f g x g x( ) ( ( )) ( ).

In Leibniz’s notation, if =y f u( ) and =u g x( ), then

dy
dx

dy
du

du
dx

,= ⋅

where dy du is evaluated at =u g x( ).

EXAMPLE 1  The function

( )= +y x3 12 2

is obtained by composing the functions = =y f u u( ) 2 and = = +u g x x( ) 3 1.2   
Calculating derivatives, we see that

( )

⋅ = ⋅

= + ⋅

= +

dy
du

du
dx

u x

x x

x x

2 6

2 3 1 6

36 12 .

uSubstitute for  .2

3

Calculating the derivative from the expanded formula ( )+ = + +x x x3 1 9 6 12 2 4 2  
gives the same result:

( )= + + = +dy
dx

d
dx

x x x x9 6 1 36 12 .4 2 3  

The derivative of the composite function f g x( ( )) at x is the derivative of  f  at g x( ) 
times the derivative of g at x. This is known as the Chain Rule (Figure 3.27).
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178 Chapter 3 Derivatives

A Proof of One Case of the Chain Rule:  Let Δu be the change in u when x changes 
by Δx, so that

( )Δ = + Δ −u g x x g x( ).

Then the corresponding change in y is

( )Δ = + Δ −y f u u f u( ).

If Δ ≠u 0, we can write the fraction Δ Δy x as the product

Δ
Δ

= Δ
Δ

⋅ Δ
Δ

y
x

y
u

u
x

 (1)

and take the limit as Δ →x 0:

= Δ
Δ

= Δ
Δ

⋅ Δ
Δ

= Δ
Δ

⋅ Δ
Δ

= Δ
Δ

⋅ Δ
Δ

= ⋅

Δ → Δ →

Δ →

Δ →

Δ → Δ →

Δ → Δ →

dy
dx

y
x
y
u

u
x

y
u

u
x

y
u

u
x

dy
du

du
dx

lim

lim

lim lim

lim lim

.

u x
g

(Note that  0 as  0
since   is continuous.)

x

x

x x

u x

0

0

0 0

0 0

The problem with this argument is that if the function g x( ) oscillates rapidly near x, then 
Δu can be zero even when Δ ≠x 0, so the cancelation of Δu in Equation (1) would be 
invalid. A complete proof requires a different approach that avoids this problem, and we 
give one such proof in Section 3.11. 

Ways to Write the Chain Rule

�( )′ = ′ ⋅ ′

= ⋅

= ′ ⋅ ′

= ′

f g x f g x g x

dy
dx

dy
du

du
dx

dy
dx

f g x g x

d
dx

f u f u du
dx

( ) ( ( )) ( )

( ( )) ( )

( ) ( )

EXAMPLE 2  An object moves along the x-axis so that its position at any time ≥t 0 
is given by x t t( ) cos 1 .2( )= +  Find the velocity of the object as a function of t.

Solution We know that the velocity is dx dt . In this instance, x is a composition of two 
functions: x ucos( )=  and = +u t 1.2  We have

= −

=

=

= +

dx
du

u

du
dt

t

sin( )

2 .

x u

u t

cos

1

( )

2

By the Chain Rule,

( )

( )

= ⋅

= − ⋅
= − + ⋅
= − +

dx
dt

dx
du

du
dt
u t

t t

t t

sin( ) 2

sin 1 2

2 sin 1 .

2

2  

“Outside-Inside” Rule

A difficulty with the Leibniz notation is that it doesn’t state specifically where the deriva-
tives in the Chain Rule are supposed to be evaluated. So it sometimes helps to write the 
Chain Rule using functional notation. If =y f g x( ( )), then

= ′ ⋅ ′dy
dx

f g x g x( ( )) ( ).
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 3.6  The Chain Rule 179

In words, differentiate the “outside” function  f  and evaluate this derivative at the “inside” 
function g x( ) left alone; then multiply by the derivative of the “inside function.”

HISTORICAL BIOGRAPHY

Johann Bernoulli  
(1667–1748)
Johann Bernoulli was born in Switzerland 
and attended the University of Basel. His 
doctoral dissertation was in mathematics 
despite its medical title, which was used to 
hide his mathematical work from his father 
who wanted Johann to become a doctor.

To know more, visit the companion Website.  

EXAMPLE 3  Differentiate ( )+x esin x2  with respect to x.

Solution We apply the Chain Rule directly and find

( ) ( ) ( )+ = + ⋅ +d
dx

x e x e x esin cos 2 .x x x2 2
� ����� ����� � ������ ������ � ����� �����

inside inside
left alone

derivative of
the inside  

EXAMPLE 4  Differentiate y e .xcos

Solution Here the inside function is u g x x( ) cos  and the outside function is the 
exponential function f x e( ) .x  Applying the Chain Rule, we get

dy
dx

d
dx

e e d
dx

x e x e xcos sin sin .x x x xcos cos cos cos( ) ( )( )= = = − = −  

Repeated Use of the Chain Rule

We sometimes have to use the Chain Rule two or more times to find a derivative.

EXAMPLE 5  Find the derivative of g t t( ) tan 5 sin 2 .( )= −

Solution Notice here that the tangent is a function of t5 sin 2 , whereas the sine is a 
function of 2t, which is itself a function of t. Therefore, by the Chain Rule,

( )

( )

( ) ( )

( )

( ) ( )

( ) ( )

′ = −

= − ⋅ −

= − ⋅ − ⋅

= − ⋅ − ⋅

= − −

= −

−
=

g t d
dt

t

t d
dt

t

t t d
dt

t

t t

t t

( ) tan 5 sin 2

sec 5 sin 2 5 sin 2

sec 5 sin 2 0 cos 2 (2 )

sec 5 sin 2 cos 2 2

2 cos 2 sec 5 sin 2 .

u

u t

u
u t

Derivative of tan  with

5 sin 2

Derivative of sin with
2

2

2

2

2  

Generalizing Example 4, we see that the Chain Rule gives the formula

d
dx

e e du
dx

.u u

For example,

d
dx

e e d
dx

kx ke k( ) ( ) , for any constant kx kx kx= ⋅ =

and
d
dx

e e d
dx

x xe( ) 2 .x x x22 2 2( ) = ⋅ =

The Chain Rule with Powers of a Function

If n is any real number and  f  is a power function, f u u( ) ,n  the Power Rule tells us that 
f u nu( ) .n 1′ = −  If u is a differentiable function of x, then we can use the Chain Rule to 
extend this to the Power Chain Rule:

= =− −d
dx

u nu du
dx

( ) . u nu
d
du

( )n n n1 n 1
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180 Chapter 3 Derivatives

Derivative of the Absolute  
Value Function

( ) = ≠

=
>

− <

⎧
⎨
⎪⎪

⎩
⎪⎪

d
dx

x x
x

x

x

x

, 0

1, 0

1, 0

EXAMPLE 6  The Power Chain Rule simplifies computing the derivative of a power 
of an expression.

(a)
 

( ) ( ) ( )

( ) ( )

− = − −

= − −

= − =
d
dx

x x x x d
dx

x x

x x x x

5 7 5 5

7 5 15 4

u x x n
Power Chain Rule with

5 , 7
3 4 7 3 4 6 3 4

3 4 6 2 3

3 4

(b)

 

d
dx x

d
dx

x

x d
dx

x

x

x

1
3 2

3 2

1 3 2 3 2

1 3 2 3
3

3 2

u x n
Power Chain Rule with

3 2, 1

1

2

2 

2

( ) ( )

( ) ( )

( ) ( )

( )

−
= −

= − − −

= − −

= −
−

= − = −

−

−

−

In part (b) we could also find the derivative with the Quotient Rule.

(c)
 

( ) = ⋅

=

= =
≠ −( )

d
dx

x x d
dx

x

x x

sin 5 sin sin

5 sin cos

u x n
x x n

Power Chain Rule with  sin , 5,
because  sin  means  sin ,   1

5 4

4

n n

(d)

 

( )( )

( )

= ⋅ +

= ⋅ + ⋅

=
+

= + =

+ +

+ −

+

d
dx

e e d
dx

x

e x

x
e

3 1

1
2

3 1 3

3
2 3 1

u x n
Power Chain Rule with

3 1, 1 2

x x

x

x

3 1 3 1

3 1 1 2

3 1  

EXAMPLE 7  In Example 4 of Section 3.2 we saw that the absolute value function 
=y x  is not differentiable at =x 0. However, the function is differentiable at all other 

real numbers, as we now show. Since x x 2= , we can derive the following formula, 
which gives an alternative to the more direct analysis seen before.

d
dx

x d
dx

x

x
d
dx

x

x
x

x
x

x

1
2

( )

1
2

2

, 0.

u x n x

x x

Power Chain Rule with
, 1 2 , 0

2

2
2

2

2

( ) =

= ⋅

= ⋅

= ≠

= = ≠

=

 

EXAMPLE 8  Show that the slope of every line tangent to the curve ( )= −y x1 1 2 3  
is positive.

Solution We find the derivative:

dy
dx

d
dx

x

x d
dx

x

x

x

1 2

3 1 2 1 2

3 1 2 2
6

1 2
.

u x nPower Chain Rule with  1 2 , 3

3

4

4

4

( )

( )

( ) ( )

( ) ( )

( )

= −

= − − ⋅ −

= − − ⋅ −

=
−

= − = −

−

−

−

At any point x y,( ) on the curve, the denominator is nonzero, and the slope of the tangent line is

dy
dx x

6
1 2

,4( )
=

−
which is the quotient of two positive numbers. 
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 3.6  The Chain Rule 181

EXAMPLE 9  The formulas for the derivatives of both sin x and cos x were obtained 
under the assumption that x is measured in radians, not degrees. The Chain Rule gives us 
new insight into the difference between the two. Since π° =180  radians, π° =x x 180 
radians, where x° is the size of the angle measured in degrees.

By the Chain Rule,

d
dx

x d
dx

x x xsin( ) sin
180 180

cos
180 180

cos( ).π π π π( ) ( )° = = = °

See Figure 3.28. Similarly, the derivative of x xcos( ) is 180 sin( ).π( )° − °
The factor π 180 would propagate with repeated differentiation, showing an advan-

tage for the use of radian measure in computations. 

FIGURE 3.28 The function xsin( )°  oscillates only π 180 times as often as xsin  oscillates. 
Its maximum slope is π 180 at x 0=  (Example 9).

x

y

1

180
y = sin x

y = sin(x°) = sin px
180

Derivative Calculations
In Exercises 1–8, given =y f u( ) and =u g x( ), find  

= ′ ′dy dx f g x g x( ( )) ( ).

 1. ( )= − =y u u x6 9, 1 2 4 2. = = −y u u x2 , 8 13

 3. y u u xsin , 3 1= = +  4. y u u ecos , x= = −

 5. y u u x, sin= =  6. y u u x xsin , cos= = −

 7. y u u xtan , 2π= =  8. y u u
x

xsec , 1 7= − = +

In Exercises 9–22, write the function in the form =y f u( ) and 
=u g x( ). Then find dy dx as a function of x.

 9. ( )= +y x2 1 5 10. ( )= −y x4 3 9

 11. ( )= −
−

y x1
7

7

 12. = −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−

y x
2

1
10

 13. ( )= + −y x x
x8
12 4

 14. = − +y x x3 4 62

 15. y xsec tan( )=  16. π( )= −y
x

cot 1

 17. y xtan 3=  18. y x5 cos 4= −

 19. = −y e x5  20. =y e x2 3

 21. = −y e x5 7  22. = ( )+y e x x4 2

Find the derivatives of the functions in Exercises 23–50.

 23. = −p t3  24. = −q r r2 23

 25. s t t4
3

sin 3 4
5

cos 5
π π

= +  26. π π( ) ( )= +s t tsin 3
2

cos 3
2

 27. r csc cot 1θ θ( )= + −  28. r 6 sec tan 3 2θ θ( )= −

 29. y x x x xsin cos2 4 2= + −  30. y
x

x x x1 sin
3

cos5 3= −−

 31. ( )( )= − + −
−

y x
x

1
18

3 2 4 1
2

6
2

1

 32. ( )( )= − + +−y x
x

5 2 1
8

2 13
4

 33. ( ) ( )= + + −y x x4 3 14 3 34. ( )( )= − −−y x x x2 5 51 2 6

 35. = +−y xe ex x3  36. ( )= + −y x e1 2 x2

 37. ( )= − +y x x e2 2 x2 5 2 38. ( )= − +y x x e9 6 2 x2 3

 39. h x x x( ) tan 2 7( )= +  40. k x x
x

( ) sec 12 ( )=

 41. f x x x( ) 7 sec= +  42. g x
x

x
( )

tan 3
7 4( )

=
+

 43. f ( )
sin

1 cos

2

θ
θ
θ

=
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟  44. g t

t
t

( )
1 sin 3

3 2

1

( )=
+

−

−

 45. r sin( ) cos(2 )2θ θ=  46. r sec tan 1θ
θ( )=

 47. ( )=
+

q t
t

sin
1

 48. q
t

t
cot

sin( )=

 49. ( )= θ−y ecos 2  50. y e cos 53 2θ θ= θ−

In Exercises 51–70, find dy dt .

 51. π( )= −y tsin 22  52. y tsec 2 π=

 53. y t1 cos 2 4( )= + −  54. ( )( )= + −y t1 cot 2 2

 55. y t ttan 10( )=  56. y t tsin3 4 4 3( )= −

 57. = π( )−y e tcos 12  58. y e tsin 2 3( )= ( )

 59. ( )=
−

y t
t t4

2

3

3

 60. ( )= −
+

−

y t
t

3 4
5 2

5

 61. ( )( )= −y tsin cos 2 5  62. y tcos 5 sin
3( )( )=

 63. ( )( )= +y t1 tan
12

4
3

 64. ( )( )= +y t1
6

1 cos 72 3

EXERCISES 3.6
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182 Chapter 3 Derivatives

 65. ( )= +y t1 cos 2  66. y t4 sin 1( )= +

 67. y ttan sin2 3( )=  68. y tcos sec 34 2( )=

 69. ( )= −y t t3 2 52 4 70. = + + −y t t3 2 1

Second Derivatives
Find ′′y  in Exercises 71–78.

 71. ( )= +y
x

1 1 3

 72. ( )= −
−

y x1
1

 73. ( )= −y x1
9

cot 3 1  74. y x9 tan
3( )=

 75. ( )= +y x x2 1 4 76. ( )= −y x x 12 3 5

 77. = +y e x5x 2  78. ( )=y x esin x2

For each of the following functions, solve both f x( ) 0′ =  and 
f x( ) 0′′ =  for x.

 79. ( )= −f x x x( ) 4 3

 80. f x x x x( ) sec 2 tan for 0 22 π= − ≤ ≤

Finding Derivative Values
In Exercises 81–86, find the value of f g�( )′ at the given value of x.

 81. = + = = =f u u u g x x x( ) 1, ( ) , 15

 82. = − = =
−

= −f u
u

u g x
x

x( ) 1 1 , ( ) 1
1

, 1

 83. f u u u g x x x( ) cot
10

, ( ) 5 , 1π= = = =

 84. π= + = = =f u u
u

u g x x x( ) 1
cos

, ( ) , 1 4
2

 85. =
+

= = + + =f u u
u

u g x x x x( ) 2
1

, ( ) 10 1, 0
2

2

 86. f u u
u

u g x
x

x( ) 1
1

, ( ) 1 1, 1
2

2( )= −
+

= = − = −

 87. Assume that f g g(3) 1, (2) 5, (2) 3,′ = − ′ = =  and y f g x( ( )).=   
What is ′y  at =x 2?

 88. If π= =r f t fsin( ( )), (0) 3, and f (0) 4,′ =  then what is dr dt 
at =t 0?

 89. Suppose that functions  f  and g and their derivatives with respect 
to x have the following values at =x 2 and =x 3.

x f x( ) g x( ) f x( )′ g x( )′

2 8    2 1 3 3−

3 3 4− 2π    5

Find the derivatives with respect to x of the following combina-
tions at the given value of x.

 a. =f x x2 ( ), 2 b. + =f x g x x( ) ( ), 3

 c. ⋅ =f x g x x( ) ( ), 3 d. =f x g x x( ) ( ), 2

 e. =f g x x( ( )), 2 f. =f x x( ), 2

 g. g x x1 ( ), 32 =  h. f x g x x( ) ( ), 22 2+ =

 90. Suppose that the functions  f  and g and their derivatives with 
respect to x have the following values at =x 0 and =x 1.

x f x( ) g x( ) f x( )′ g x( )′

0 1    1       5    1 3

1 3 4− 1 3− 8 3−

Find the derivatives with respect to x of the following combina-
tions at the given value of x.

 a. − =f x g x x5 ( ) ( ), 1 b. f x g x x( ) ( ), 03 =

 c. 
+

=f x
g x

x
( )

( ) 1
, 1 d. =f g x x( ( )), 0

 e. =g f x x( ( )), 0 f. ( )+ =−x f x x( ) , 111 2

 g. ( )+ =f x g x x( ) , 0

 91. Find ds dt  when θ π= 3 2 if s cos θ=  and θ =d dt 5.

 92. Find dy dt  when =x 1 if = + −y x x7 52  and =dx dt 1 3.

Theory and Examples
What happens if you can write a function as a composition in different 
ways? Do you get the same derivative each time? The Chain Rule says 
you should. Try it with the functions in Exercises 93 and 94.

 93. Find dy dx if =y x  by using the Chain Rule with y as a compo-
sition of

 a. ( )= + = −y u u x5 7 and 5 35

 b. ( ) ( )= + = −y u u x1 1 and 1 1 .

 94. Find dy dx if =y x 3 2 by using the Chain Rule with y as a com-
position of

 a. = =y u u xand3

 b. = =y u u xand .3

 95. Find the tangent line to ( )( ) ( )= − +y x x1 1 2 at =x 0.

 96. Find the tangent line to = − +y x x 72  at =x 2.

 97. a. Find the tangent line to the curve y x x2 tan 4 at 1.π( )= =

 b. Slopes on a tangent curve What is the smallest value 
the slope of the curve can ever have on the interval 
− < <x2 2? Give reasons for your answer.

 98. Slopes on sine curves
 a. Find equations for the tangent lines to the curves y xsin 2=  

and ( )= −y xsin 2  at the origin. Is there anything special about 
how the tangent lines are related? Give reasons for your answer.

 b. Can anything be said about the tangent lines to the 
curves y mxsin=  and ( )= −y x msin  at the origin 
( )≠m a constant 0 ? Give reasons for your answer.

 c. For a given m, what are the largest values the slopes of the 
curves y mxsin=  and ( )= −y x msin  can ever have? Give 
reasons for your answer.

 d. The function y xsin=  completes one period on the interval 
π[ ]0, 2 , the function y xsin 2=  completes two periods, the 

function ( )=y xsin 2  completes half a period, and so on. Is 
there any relation between the number of periods y mxsin=  
completes on π[ ]0, 2  and the slope of the curve y mxsin=  at 
the origin? Give reasons for your answer.

 99. Running machinery too fast Suppose that a piston is moving 
straight up and down and that its position at time t seconds is

s A btcos 2 ,π( )=

with A and b positive. The value of A is the amplitude of the 
motion, and b is the frequency (number of times the piston moves 
up and down each second). What effect does doubling the fre-
quency have on the piston’s velocity, acceleration, and jerk? 
(Once you find out, you will know why some machinery breaks 
when you run it too fast.)
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 3.6  The Chain Rule 183

 100. Temperatures in Fairbanks, Alaska  The graph in the accom-
panying figure shows the average Celsius temperature in Fair-
banks, Alaska, during a typical 365-day year. The equation that 
approximates the temperature on day x is

( )= −⎡
⎣⎢

⎤
⎦⎥
−y x20 sin 2

365
101 4

and is graphed in the accompanying figure.

 a. On what day is the temperature increasing the fastest?

 b. About how many degrees per day is the temperature increas-
ing when it is increasing at its fastest?

Ja
n
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ar

Apr
M
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n Ju

l
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........ .. ......
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...
.

....

....
....
.......

........ ..... ................
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........................ ....
....

.
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.

T
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 (
°C

)

 101. Particle motion The position of a particle moving along a coor-
dinate line is s t1 4 ,= +  with s in meters and t in seconds. 
Find the particle’s velocity and acceleration at t 6 s.

 102. Constant acceleration Suppose that the velocity of a falling 
body is k s m s (k a constant) at the instant the body has 
fallen s meters from its starting point. Show that the body’s accel-
eration is constant.

 103. Falling meteorite The velocity of a heavy meteorite entering 
Earth’s atmosphere is inversely proportional to s  when it is s km  
from Earth’s center. Show that the meteorite’s acceleration is 
inversely proportional to s .2

 104. Particle acceleration A particle moves along the x-axis with 
velocity dx dt f x( ). Show that the particle’s acceleration is 
f x f x( ) ( ).

 105. Temperature and the period of a pendulum For oscillations 
of small amplitude (short swings), we may safely model the rela-
tionship between the period T and the length L of a simple pen-
dulum with the equation

T L
g

2 ,

where g is the constant acceleration of gravity at the pendulum’s 
location. If we measure g in centimeters per second squared, we 
measure L in centimeters and T in seconds. If the pendulum is made 
of metal, its length will vary with temperature, either increasing or 
decreasing at a rate that is roughly proportional to L. In symbols, 
with u being temperature and k the proportionality constant,

dL
du

kL.

Assuming this to be the case, show that the rate at which the 
period changes with respect to temperature is kT 2.

 106. Chain Rule Suppose that f x x( ) 2 and g x x( ) . Then the 
compositions

f g x x x g f x x x( ) and ( )2 2 2 2( ) ( )= = = =

are both differentiable at x 0 even though g itself is not differ-
entiable at x 0. Does this contradict the Chain Rule? Explain.

 107. The derivative of sin 2x Graph the function y x2 cos 2  for 
− ≤ ≤x2 3.5. Then, on the same screen, graph

y
x h x

h
sin 2 sin 2( )

=
+ −

for h 1.0, 0.5, and 0.2. Experiment with other values of 
h, including negative values. What do you see happening as 
h 0? Explain this behavior.

 108. The derivative of xcos ( )2  Graph = −y x x2 sin ( )2  for 
− ≤ ≤x2 3. Then, on the same screen, graph

y
x h x

h
cos cos( )2 2( )( )

=
+ −

for h 1.0, 0.7, and 0.3. Experiment with other values of h. 
What do you see happening as h 0? Explain this behavior.

Using the Chain Rule, show that the Power Rule ( ) = −d dx x nxn n 1 
holds for the functions x n in Exercises 109 and 110.

 109. x x1 4  110. x x x3 4

 111. Consider the function

f x
x

x
x

x
( )

sin 1 , 0

0, 0

( )=
>

≤

⎧

⎨
⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

 a. Show that  f  is continuous at x 0.

 b. Determine f  for x 0.

 c. Show that  f  is not differentiable at x 0.

 112. Consider the function

f x
x

x
x

x
( )

cos 2 , 0

0, 0

2 ( )=
≠

=

⎧

⎨
⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

 a. Show that  f  is continuous at x 0.

 b. Determine f  for x 0.

 c. Show that  f  is not differentiable at x 0.

 d. Show that f  is not continuous at x 0.

 113. Verify each of the following statements.

 a. If  f  is even, then f  is odd.

 b. If  f  is odd, then f  is even.

COMPUTER EXPLORATIONS
Trigonometric Polynomials

 114. As the accompanying figure shows, the trigonometric 
“polynomial”

s f t t t

t t

( ) 0.78540 0.63662 cos 2 0.07074 cos 6

0.02546 cos 10 0.01299 cos 14

= = − −

− −

gives a good approximation of the sawtooth function s g t( ) on 
the interval [ ]− , . How well does the derivative of  f  approxi-
mate the derivative of g at the points where dg dt is defined? To 
find out, carry out the following steps.

 a. Graph dg dt (where defined) over [ ]− , .

 b. Find df dt .

T

T
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184 Chapter 3 Derivatives

 c. Graph df dt . Where does the approximation of dg dt by 
df dt  seem to be best? Least good? Approximations by trig-
onometric polynomials are important in the theories of heat 
and oscillation, but we must not expect too much of them, as 
we see in the next exercise.

t

s

0−p p

2
p

s = g(t)

s = f(t)

 115. (Continuation of Exercise 114.) In Exercise 114, the trigonometric 
polynomial f t( ) that approximated the sawtooth function g t( ) on 
π π[ ]− ,  had a derivative that approximated the derivative of the 

sawtooth function. It is possible, however, for a trigonometric 
polynomial to approximate a function in a reasonable way without 
its derivative approximating the function’s derivative at all well. 
As a case in point, the trigonometric “polynomial”

s h t t t t

t t

( ) 1.2732 sin 2 0.4244 sin 6 0.25465 sin 10

0.18189 sin 14 0.14147 sin 18

= = + +

+ +

graphed in the accompanying figure approximates the step func-
tion s k t( )=  shown there. Yet the derivative of h is nothing like 
the derivative of k.

1

t

s

0 p
2

p−p p
2−

−1

s = k(t)

s = h(t)

 a. Graph dk dt (where defined) over π π[ ]− , .

 b. Find dh dt .

 c. Graph dh dt  to see how badly the graph fits the graph of 
dk dt. Comment on what you see.

3.7 Implicit Differentiation

Most of the functions we have dealt with so far have been described by an equation of the 
form =y f x( ) that expresses y explicitly in terms of the variable x. We have learned rules 
for differentiating functions defined in this way. A different situation occurs when we 
encounter equations like

x y xy y x x y9 0, 0, or 25 0.3 3 2 2 2+ − = − = + − =

(See Figures 3.29, 3.30, and 3.31.) Each of these equations defines an implicit relation 
between the variables x and y, meaning that a value of x may determine more than one 
value of y, even though we do not have a simple formula for the y-values. In some cases we 
may be able to solve such an equation for y as an explicit function (or even several func-
tions) of x. When we cannot put an equation ( ) =F x y, 0 in the form =y f x( ) to differ-
entiate it in the usual way, we may still be able to find dy dx  by implicit differentiation. 
This section describes the technique.

Implicitly Defined Functions

We begin with examples involving familiar equations that we can solve for y as a function 
of x and then calculate dy dx  in the usual way. Then we differentiate the equations implic-
itly, and find the derivative. We will see that the two methods give the same answer. Fol-
lowing the examples, we summarize the steps involved in the new method. In the examples 
and exercises, it is always assumed that the given equation determines y implicitly as a 
differentiable function of x so that dy dx  exists.

EXAMPLE 1  Find dy dx  if =y x.2

Solution The equation =y x2  defines two differentiable functions of x that we can 
actually find, namely =y x1  and = −y x2  (Figure 3.30). We know how to calculate 
the derivative of each of these for x 0:>

dy
dx x

dy
dx x

1
2

and 1
2

.1 2= = −

FIGURE 3.29 The curve 
x y xy9 03 3+ − =  is not the graph of 
any one function of x. The curve can,  
however, be divided into separate arcs 
that are the graphs of functions of x. This 
particular curve, called a folium, dates to 
Descartes in 1638.

x

y

0 5

5

A

x3 + y3 − 9xy = 0

y = f1(x)
(x0, y1)

y = f2(x)

y = f3(x)

(x0, y2)

(x0, y3)

x0
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 3.7  Implicit Differentiation 185

But suppose that we knew only that the equation =y x2  defined y as one or more differ-
entiable functions of x for >x 0 without knowing exactly what these functions were. Can 
we still find dy dx?

The answer is yes. To find dy dx , we simply differentiate both sides of the equation 
=y x2  with respect to x, treating =y f x( ) as a differentiable function of x:

=

=

=

= = ′ =[ ]

y x

y
dy
dx
dy
dx y

2 1

1
2

.

d
dx

y f x f x f x y
dy
dx

The Chain Rule gives  ( ) 2 ( ) 2 .
d
dx

( ) ( )

2

2 2

This one formula gives the derivatives we calculated for both explicit solutions =y x1  
and y x:2 = −

( )
= = = =

−
= −

dy
dx y x

dy
dx y x x

1
2

1
2

and 1
2

1
2

1
2

.1

1

2

2

 

FIGURE 3.30 The equation y x 0,2 − =  
or y x2 =  as it is usually written, defines 
two differentiable functions of x on the 
interval x 0.>  Example 1 shows how  
to find the derivatives of these functions 
without solving the equation y x2 =  for y.

x

y

0

y2 = x

Slope = =
2y1

1
2
"

x
1

Slope = = −2y2

1
2
"

x
1

y1 = 
"

x

y2 = −
"

x

P(x, 
"

x )

Q(x, −
"

x )

FIGURE 3.31 The circle combines 
the graphs of two functions. The graph 
of y2 is the lower semicircle and passes 
through 3, 4 .( )−

0 5−5
x

y

Slope = − =y
x

4
3

(3, −4)

y1 = "25 − x2

y2 = −"25 − x2

Implicit Differentiation

1. Differentiate both sides of the equation with respect to x, treating y as a dif-
ferentiable function of x.

2. Collect the terms with dy dx  on one side of the equation and solve for dy dx .

EXAMPLE 2  Find the slope of the circle + =x y 252 2  at the point 3, 4 .( )−

Solution The circle is not the graph of a single function of x. Rather, it is the com-
bined graphs of two differentiable functions, = −y x251

2  and = − −y x252
2  

(Figure 3.31). The point 3, 4( )−  lies on the graph of y ,2  so we can find the slope by 
calculating the derivative directly, using the Power Chain Rule:

= − −
−

= − −
−

= −

− −

( )( )

( )

− =

−
= = −

dy
dx

x
x

2
2 25

6
2 25 9

3
4

.
d
dx

x

x

25

1
2

25 x( 2 )
x x

2

3 2 3

2 1 2

2 1 2

We can solve this problem more easily by differentiating the given equation of the 
circle implicitly with respect to x:

d
dx

x d
dx

y d
dx

x y
dy
dx
dy
dx

x
y

( ) ( ) (25)

2 2 0

.

See Example 1.

2 2+ =

+ =

= −

The slope at 3, 4( )−  is x
y

3
4

3
4

.
3, 4

− = −
−

=
( )−

Notice that unlike the slope formula for dy dx,2  which applies only to points below 
the x-axis, the formula dy dx x y= −  applies everywhere the circle has a slope—that is, 
at all circle points x y,( ) where ≠y 0. Notice also that the derivative involves both vari-
ables x and y, not just the independent variable x. 

To calculate the derivatives of other implicitly defined functions, we proceed as in 
Examples 1 and 2: We treat y as a differentiable implicit function of x and apply the usual 
rules to differentiate both sides of the defining equation.
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186 Chapter 3 Derivatives

EXAMPLE 3  Find dy dx  if y x xysin2 2= +  (Figure 3.32).

Solution We differentiate the equation implicitly.

( )
( )

( )

( )

( )

( ) ( )

( )

= +

= +

= +

= + +

− = +

− = +

=
+
−

y x xy

d
dx

y d
dx

x d
dx

xy

y
dy
dx

x xy d
dx

xy

y
dy
dx

x xy y x
dy
dx

y
dy
dx

xy x
dy
dx

x xy y

y x xy
dy
dx

x y xy

dy
dx

x y xy
y x xy

sin

( ) ( ) sin

2 2 cos ( )

2 2 cos

2 cos 2 cos

2 cos 2 cos

2 cos
2 cos

x

x

xy

dy dx

dy dx

Differentiate both sides with
respect to …

… treating y as a function of
and using the Chain Rule.

Treat as a product.

Collect terms with .

Solve for .

2 2

2 2

Notice that the formula for dy dx  applies everywhere that the implicitly defined curve has 
a slope. Notice again that the derivative involves both variables x and y, not just the inde-
pendent variable x. 

FIGURE 3.32 The graph of the equa-
tion in Example 3.

y2 = x2 + sin xy

y

x

4

2

0 2 4−2−4

−2

−4

FIGURE 3.33 The profile of a lens, 
showing the bending (refraction) of a 
ray of light as it passes through the lens 
surface.

A

Normal line

Light ray
Tangent line

Point of entry
P

B

Curve of lens
surface

Derivatives of Higher Order

Implicit differentiation can also be used to find higher derivatives.

EXAMPLE 4  Find d y dx2 2 if − =x y2 3 8.3 2

Solution To start, we differentiate both sides of the equation with respect to x in order to 
find ′ =y dy dx .

( ) ( )− =

− ′ =

′ = ≠ ′

d
dx

x y d
dx

x yy

y x
y

y

2 3 8

6 6 0

, when  0

y x

y

Treat   as a function of  .

Solve for  .

3 2

2

2

We now apply the Quotient Rule to find ″y .

″ =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = − ′ = − ⋅ ′y d

dx
x
y

xy x y
y

x
y

x
y

y
2 22 2

2

2

2

Finally, we substitute ′ =y x y2  to express ′′y  in terms of x and y.

″ = −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = − ≠y x

y
x
y

x
y

x
y

x
y

y2 2 , when  0
2

2

2 4

3
 

Lenses, Tangent Lines, and Normal Lines

In the law that describes how light changes direction as it enters a lens, the important angles 
are the angles the light makes with the line perpendicular to the surface of the lens at the 
point of entry (angles A and B in Figure 3.33). This line is called the normal line to the 
surface at the point of entry. In a profile view of a lens like the one in Figure 3.33, the normal 
line is the line perpendicular (also said to be orthogonal) to the tangent line of the profile 
curve at the point of entry.
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 3.7  Implicit Differentiation 187

EXAMPLE 5  Show that the point 2, 4( ) lies on the curve + − =x y xy9 0.3 3  Then 
find the tangent line and normal line to the curve there (Figure 3.34).

Solution The point 2, 4( ) lies on the curve because its coordinates satisfy the equation 
given for the curve: ( )( )+ − = + − =2 4 9 2 4 8 64 72 0.3 3

To find the slope of the curve at 2, 4( ), we first use implicit differentiation to find a 
formula for dy dx :

x y xy

d
dx

x d
dx

y d
dx

xy d
dx

x y
dy
dx

x
dy
dx

dx
dx

y

y x
dy
dx

x y

y x
dy
dx

y x

dy
dx

y x
y x

9 0

( ) ( ) 9 (0)

3 3 9 0

3 9 3 9 0

3 3 9 3

3
3

.

x

xy
y x

Differentiate both sides
with respect to  .

Treat   as a product
and   as a function of  .

Solve for  .dy dx

3 3

3 3

2 2

2 2

2 2

2

2

( )
( )

( )

( )

+ − =

+ − =

+ − + =

− + − =

− = −

= −
−

We then evaluate the derivative at ( ) ( )=x y, 2, 4 :

( )

( )
= −

−
= −

−
= =

( ) ( )

dy
dx

y x
y x
3

3
3 4 2
4 3 2

8
10

4
5

.
2, 4

2

2
2, 4

2

2

The tangent line at 2, 4( ) is the line through 2, 4( ) with slope 4 5:

( )= + −

= +

y x

y x

4 4
5

2

4
5

12
5

.

The normal line to the curve at 2, 4( ) is the line perpendicular to the tangent line there, the 
line through 2, 4( ) with slope 5 4:

( )= − −

= − +

y x

y x

4 5
4

2

5
4

13
2

.
  

Slopes of two nonvertical
perpendicular lines are negative
reciprocals of each other
(see Appendix A.4).  

FIGURE 3.34 Example 5 shows how 
to find equations for the tangent line and 
normal line to the folium of Descartes 
at 2, 4( ).

x

y

0

 

Tan
gen

t li
ne

slo
pe m

N
orm

al line

slope −
1/m

x3 + y3 − 9xy = 0

4

2

Differentiating Implicitly
Use implicit differentiation to find dy dx in Exercises 1–16.

 1. + =x y xy 62 2  2. + =x y xy183 3

 3. + = +xy y x y2 2  4. − + =x xy y 13 3

 5. ( )− = −x x y x y2 2 2 2 6. ( )+ =xy y3 7 62

 7. = −
+

y x
x

1
1

2  8. = −
+

x
x y

x y
2

3
3

 9. x ysec  10. xy xycot ( )

 11. + =x xytan( ) 0  12. x y x ysin4 3 2+ =

 13. y
y

xysin 1 1
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟ = −  14. x x y y xcos 2 3 sin( )+ =

 15. e x ysin 3x2 ( )= +  16. = +e x y2 2x y2

Find dr d  in Exercises 17–20.

 17. r 11 2 1 2+ =  18. r 2 3
2

4
3

2 3 3 4− = +

 19. rsin( ) 1
2

 20. r ecos cot r+ =

Second Derivatives
In Exercises 21–28, use implicit differentiation to find dy dx and then 
d y dx .2 2  Write the solutions in terms of x and y only.

 21. + =x y 12 2  22. x y 12 3 2 3+ =

 23. = +y e x2x2 2  24. − = −y x y2 1 22

 25. = −y x y2  26. + =xy y 12

 27. y y x3 sin 3+ = −  28. y x ysin cos 2= −

EXERCISES 3.7
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188 Chapter 3 Derivatives

 29. If + =x y 16,3 3  find the value of d y dx2 2  at the point (2, 2).

 30. If + =xy y 1,2  find the value of d y dx2 2 at the point 0, 1 .( )−

In Exercises 31 and 32, find the slope of the curve at the given points.

 31. y x y x2 at 2,12 2 4 ( )+ = − −  and 2, 1( )− −

 32. x y x y at 1, 02 2 2 2 ( )( ) ( )+ = −  and 1, 1( )−

Slopes, Tangent Lines, and Normal Lines
In Exercises 33–42, verify that the given point is on the curve and find 
the lines that are (a) tangent and (b) normal to the curve at the given 
point.

 33. x xy y 1, 2, 32 2 ( )+ − =

 34. x y 25, 3, 42 2 ( )+ = −

 35. x y 9, 1, 32 2 ( )= −

 36. y x y2 4 1 0, 2,12 ( )− − − = −

 37. x xy y y6 3 2 17 6 0, 1, 02 2 ( )+ + + − = −

 38. x xy y3 2 5, 3, 22 2 ( )− + =

 39. xy y2 sin 2 , 1, 2π π π( )+ =

 40. x y y xsin 2 cos 2 , 4 , 2π π( )=

 41. y x y2 sin , 1, 0π ( )( )= −

 42. x y ycos sin 0, 0,2 2 π( )− =

 43. Parallel tangent lines Find the two points where the curve 
+ + =x xy y 72 2  crosses the x-axis, and show that the tangent 

lines to the curve at these points are parallel. What is the common 
slope of these tangent lines?

 44. Normal lines parallel to a line Find the normal lines to the curve 
+ − =xy x y2 0 that are parallel to the line + =x y2 0.

 45. The eight curve Find the slopes of the curve = −y y x4 2 2 at 
the two points shown here.

x

y

0

1

−1

y4 = y2 − x2

"

3
4

"

3
2

,

"

3
4

1
2

,
a           b

a               b

x

y

1

1

(1, 1)

0

y2(2 − x) = x3

 46. The cissoid of Diocles (from about 200 b.c.) Find equations 
for the tangent line and normal line to the cissoid of Diocles 

( )− =y x x22 3 at 1,1( ).

 47. The devil’s curve (Gabriel Cramer, 1750) Find the slopes of the 
devil’s curve − = −y y x x4 94 2 4 2 at the four indicated points.

x

y

0

(1, 1)

y2 = x3

2x2 + 3y2 = 5

(1, −1)

x

y

0 (a, 0)

x = y2

x

y

3−3

2

−2

(3, 2)

(3, −2)

(−3, 2)

(−3, −2)

y4 − 4y2 = x4 − 9x2

 48. The folium of Descartes (See Figure 3.29)

 a. Find the slope of the folium of Descartes 
+ − =x y xy9 03 3  at the points 4, 2( ) and 2, 4( ).

 b. At what point other than the origin does the folium have a 
horizontal tangent line?

 c. Find the coordinates of the point A in Figure 3.29 where the 
folium has a vertical tangent line.

Theory and Examples

 49. Intersecting normal line The line that is normal to the curve 
+ − =x xy y2 3 02 2  at 1,1( ) intersects the curve at what other 

point?

 50. Power rule for rational exponents Let p and q be integers with 
>q 0. If y x ,p q=  differentiate the equivalent equation =y xq p 

implicitly and show that, for ≠y 0,

d
dx

x
p
q

x .p q p q 1= ( )−

 51. Normal lines to a parabola Show that if it is possible to draw 
three normal lines from the point a, 0( ) to the parabola =x y 2 
shown in the accompanying diagram, then a must be greater than 
1 2. One of the normal lines is the x-axis. For what value of a are 
the other two normal lines perpendicular?

 52. Is there anything special about the tangent lines to the curves 
=y x2 3 and + =x y2 3 52 2  at the points 1, 1 ?( )±  Give reasons 

for your answer.
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 3.8  Derivatives of Inverse Functions and Logarithms 189

 53. Verify that the following pairs of curves meet orthogonally.

 a. + = =x y x y4, 32 2 2 2

 b. = − =x y x y1 , 1
3

2 2

 54. The graph of y x2 3 is called a semicubical parabola and is 
shown in the accompanying figure. Determine the constant b so 

that the line = − +y x b1
3

 meets this graph orthogonally.

 58. Use the formula in Exercise 57 to find dy dx if

 a. y xsin 1 2( )= −

 b. ( )= −y
x

sin 1 .1

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps in Exercises 59–66.

  a.  Plot the equation with the implicit plotter of a CAS. Check to 
see that the given point P satisfies the equation.

  b.  Using implicit differentiation, find a formula for the derivative 
dy dx and evaluate it at the given point P.

  c.  Use the slope found in part (b) to find an equation for the 
tangent line to the curve at P. Then plot the implicit curve and 
tangent line together on a single graph.

 59. x xy y P7, 2,13 3 ( )− + =

 60. x y x yx y P4, 1,15 3 2 4 ( )+ + + =

 61. y y x
x

P2
1

, 0,12 ( )+ = +
−

 62. y xy x Pcos , 1, 03 2 ( )+ =

 63. x
y
x

Ptan 2, 1,
4( ) ( )+ =

 64. ( )( )+ + =xy x y Ptan 1,
4

,  03

 65. y xy x P2 2, 1,12 1 3 2 ( )( )+ = +

 66. x y y x P1 2 , 1, 02 ( )+ + =

x

y

0

y2 = x3

y = −   x + b1
3

In Exercises 55 and 56, find both dy dx (treating y as a differentiable 
function of x) and dx dy (treating x as a differentiable function of y). 
How do dy dx and dx dy seem to be related?

 55. + =xy x y 63 2

 56. x y ysin3 2 2+ =

 57. Derivative of arcsine Assume that y xsin 1= −  is a differen-
tiable function of x. By differentiating the equation x ysin  
implicitly, show that dy dx x1 1 .2= −

3.8 Derivatives of Inverse Functions and Logarithms

In Section 1.5 we saw how the inverse of a function undoes, or inverts, the effect of that 
function. We defined there the natural logarithm function f x x( ) ln1 =−  as the inverse of 
the natural exponential function f x e( ) .x  This is one of the most important function-
inverse pairs in mathematics and science. We learned how to differentiate the exponential 
function in Section 3.3. Here we develop a rule for differentiating the inverse of a differ-
entiable function, and we apply the rule to find the derivative of the natural logarithm 
function.

Derivatives of Inverses of Differentiable Functions

We calculated the inverse of the function ( )= +f x x( ) 1 2 1 to be f x x( ) 2 21 = −−  in 
Example 3 of Section 1.5. Figure 3.35 shows the graphs of both functions. If we calculate 
their derivatives, we see that

d
dx

f x d
dx

x

d
dx

f x d
dx

x

( ) 1
2

1 1
2

( ) 2 2 2.1

( )
( )

= + =

= − =−

The derivatives are reciprocals of one another, so the slope of one line is the reciprocal of 
the slope of its inverse line. (See Figure 3.35.)

This is not a special case. Reflecting any nonhorizontal or nonvertical line across the 
line y x  always inverts the line’s slope. If the original line has slope m 0, the reflected 
line has slope m1 .

FIGURE 3.35 Graphing a line and its 
inverse together shows the graphs’ sym-
metry with respect to the line y x. The 
slopes are reciprocals of each other.

x

y

−2

1

−2

1

y = 2x − 2
y = x

y = x + 11
2
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190 Chapter 3 Derivatives

The reciprocal relationship between the slopes of  f  and f 1−  holds for other functions 
as well, but we must be careful to compare slopes at corresponding points. If the slope of 

=y f x( ) at the point a f a, ( )( ) is f a( )′  and f a( ) 0,′ ≠  then the slope of y f x( )1= −  at 
the point f a a( ),( ) is the reciprocal f a1 ( )′  (Figure 3.36). If we set =b f a( ), then

′ =
′

=
′

−
−

f b
f a f f b

( ) ( ) 1
( )

1
( ( ))

.1
1

If y f x( )=  has a horizontal tangent line at a f a( , ( )), then the inverse function f 1−  has a 
vertical tangent line at f a a( ( ), ), so the slope is undefined and f 1−  is not differentiable at 
f a( ). Theorem 3 gives the conditions under which f 1−  is differentiable in its domain 
(which is the same as the range of f ).

THEOREM 3—The Derivative Rule for Inverses
If  f  has an interval I as domain and f x( )′  exists and is never zero on I, then −f 1 
is differentiable at every point in its domain (the range of f ). The value of f( )1 ′−  
at a point b in the domain of −f 1 is the reciprocal of the value of ′f  at the point 
a f b( ):1= −

f b
f f b

( ) ( ) 1
( )

1
1( )

′ =
′

−
−

 (1)

or

df
dx df

dx

1 .
x b

x f b

1

( )1

=
−

=

= −

Theorem 3 makes two assertions. The first of these has to do with the conditions under 
which f 1−  is differentiable; the second assertion is a formula for the derivative of f 1−  

FIGURE 3.36 The graphs of inverse functions have recip-
rocal slopes at corresponding points.

y = f (x)

y = x

p

ba

q

p

q

y

x

b = f (a)

y = f –1(x)

a = f –1(b)

Slope ( f –1)′(b) = 1
f ′(a)

=
q
pp

q

=
1

Slope f ′(a) =
p
q

The slopes are reciprocals: ′ =
′

′ =
′

− −
−

f b
f a

f b
f f b

( ) ( ) 1
( )

or ( ) ( ) 1
( ( ))

1 1
1
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 3.8  Derivatives of Inverse Functions and Logarithms 191

when it exists. While we omit the proof of the first assertion, the second one is proved in 
the following way:

=

=

′ =

=
′

−

−

− −

−
−

f f x x

d
dx

f f x

f f x d
dx

f x

d
dx

f x
f f x

( ( ))

( ( )) 1

( ( )) · ( ) 1

( ) 1
( ( ))

.

Inverse function relationship

Differentiate both sides.

Chain Rule

Solve for the derivative.

1

1

1 1

1
1

EXAMPLE 1  The function = >f x x x( ) , 02  and its inverse f x x( )1 =−  have 
derivatives f x x( ) 2′ =  and f x x( ) ( ) 1 2 .1 ( )′ =−

Let’s verify that Theorem 3 gives the same formula for the derivative of f x( )1− :

( )

′ =
′

=

=

′ =

=

−
−

−
−

−

f x
f f x

f x

x

( ) ( ) 1
( ( ))

1
2( ( ))

1
2

.

f x x x f x

f x x

2  with   replaced by ( ) ( )

( )

1
1

1
1

1

Theorem 3 gives a derivative that agrees with the known derivative of the square root 
function.

Let’s examine Theorem 3 at a specific point. We pick x 2=  (the number a) and 
=f (2) 4 (the value b). Theorem 3 says that the derivative of  f  at 2, which is f (2) 4,′ =  

and the derivative of f 1−  at f (2), which is f( ) (4),1 ′−  are reciprocals. It states that

f
f f f x

( ) (4) 1
(4)

1
(2)

1
2

1
4

.
x

1
1

2( )
′ =

′
=

′
= =−

− =

See Figure 3.37. 

EXAMPLE 2  Let f x x x( ) 2, 0.3= − >  Find the value of df dx1−  at x f6 (2)= =  
without finding a formula for f x( ).1−  See Figure 3.38.

Solution We apply Theorem 3 to obtain the value of the derivative of f 1−  at x 6:=

( )

= =

= =
( )

= =

−

=

=

df
dx

x

df
dx df

dx

3 12

1 1
12

. Eq. 1

x x

x f

x

2

2

2

1

2

2  

We will use the procedure illustrated in Example 1 to calculate formulas for the deriv-
atives of many inverse functions throughout this chapter. Equation (1) sometimes enables 
us to find specific values of df dx1−  without knowing a formula for f .1−

FIGURE 3.37 The derivative of 
f x x( )1 =−  at the point (4, 2) is the 
reciprocal of the derivative of =f x x( ) 2 
at ( )2, 4  (Example 1).

x

y

Slope

1

10

1–
4

Slope 4

2 3 4

2

3

4 (2, 4)

(4, 2)

y = x2, x > 0

y = 
"

x

FIGURE 3.38 The derivative of 
= −f x x( ) 23  at =x 2 tells us the 

derivative of −f 1 at =x 6 (Example 2).

x

y

0

−2

−2 6

6 (2, 6)

Reciprocal slope:

(6, 2)

y = x3 − 2
Slope 3x2 = 3(2)2 = 12

1
12
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192 Chapter 3 Derivatives

Derivative of the Natural Logarithm Function

Since we know that the exponential function =f x e( ) x is differentiable everywhere, we 
can apply Theorem 3 to find the derivative of its inverse f x x( ) ln :1 =−

′ =
′

=

=

=

′ =

>

−
−

−

f x
f f x

e

e

x

( ) ( ) 1
( ( ))

1

1

1 .

f u e

x

Theorem 3

0

Inverse function relationship

( )
f x

x

1
1

( )

ln

u
1

Alternative Derivation Instead of applying Theorem 3 directly, we can find the derivative 
of y xln=  using implicit differentiation, as follows:

y x

e x

d
dx

e d
dx

x

e
dy
dx
dy
dx e x

ln

( ) ( )

1

1 1 .

x

e x

0

Inverse function relationship

Differentiate implicitly.

Chain Rule

y

y

y

y
y

=

=

=

=

= =

>

=

No matter which derivation we use, the derivative of y xln=  with respect to x is

EXAMPLE 3  We use Equations (2) and (3) to find derivatives.

(a) = = ⋅ = >d
dx

x
x

d
dx

x
x x

xln 2 1
2

(2 ) 1
2

2 1 , 0

(b) Equation (3) with u x 32= +  gives

d
dx

x
x

d
dx

x
x

x x
x

ln 3 1
3

· 3 1
3

· 2 2
3

.2
2

2
2 2

( ) ( )+ =
+

+ =
+

=
+

(c) Using the Chain Rule and Equation (2), we find

d
dx

x x d
dx

x x
x

x
x

xln 4 ln · ln 4 ln · 1 4 ln
, 0.4 3 3

3

( ) ( ) ( ) ( )
( )

= = = >

d
dx

x
x

xln 1 , 0.= >  (2)

The Chain Rule extends this formula to positive differentiable functions u x( ):

d
dx

u
u

du
dx

uln 1 , 0.= >  (3)
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(d) Equation (3) with u x  gives an important derivative:

d
dx

x d
du

u du
dx

u
x
x

x
x
x

x
x

x

ln ln ·

1 ·

1 ·

1 .

u x x

d

dx
x

x

x

u

, 0

(Example 7, Section 3.6)

Substitute for  .

2

( )

=

=

=

=

=

= ≠

=

So x1  is the derivative of xln  on the domain x 0, and the derivative of xln( ) on 
the domain x 0. 

Derivative of xln

= ≠d
dx

x
x

xln 1 , 0

d
dx

bx
x

bxln 1 , 0= >

FIGURE 3.39 The tangent line meets 
the curve at some point a a, ln( ), where the 
slope of the curve is a1  (Example 4).

1 2 3 4 5

1

0

2

x

y

(a, ln a)

y = ln x

Slope = a
1

EXAMPLE 4  A line with slope m passes through the origin and is tangent to the graph 
of y xln . What is the value of m?

Solution Suppose the point of tangency occurs at the unknown point x a 0.= >  Then 
we know that the point a a, ln( ) lies on the graph and that the tangent line at that point has 
slope m a1  (Figure 3.39). Since the tangent line passes through the origin, its slope is

m
a

a
a

a
ln 0

0
ln

.=
−
−

=

Setting these two formulas for m equal to each other, we have

a
a a

a

e e

a e

m
e

ln 1

ln 1

1.

aln 1

 

Notice from Example 3a that the function y xln 2  has the same derivative as the 
function y xln . This is true of y bxln  for any constant b, provided that bx 0:

d
dx

bx
bx

d
dx

bx
bx

b
x

ln 1 · ( ) 1 ( ) 1 . (4)

The Derivatives of a x and xlog a

We start with the equation a e e a, 0,x a x aln( ) lnx= = >  which was seen in Section 1.5, 
where it was used to define the function a x :

d
dx

a d
dx

e

e d
dx

x a

a a

· ln

ln .

d
dx

e e
du
dx

aln  is a constant.

x x a

x a

x

ln

ln u u( )

=

=

=

=

That is, if a 0, then a x  is differentiable and

d
dx

a a aln .x x  (5)
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194 Chapter 3 Derivatives

This equation shows why e x is the preferred exponential function in calculus. If a e, 
then aln 1 and the derivative of a x  simplifies to

d
dx

e e e eln . eln 1x x x

If a 0 and u is a differentiable function of x, then by the Chain Rule, au is a differen-
tiable function of x and

d
dx

a a a du
dx

ln .u u  (6)

EXAMPLE 5  Here are some derivatives of general exponential functions.

(a) d
dx

3 3 ln 3 ( ) a u xEq. 6  with  3,x x

(b) ( )= − = − = =− − −d
dx

d
dx

x3 3 ln 3 ( ) 3 ln 3 ( ) a u xEq. 6  with  3,x x x

(c) ( ) ( ) ( )= = =
d
dx

d
dx

x x3 3 ln 3 sin 3 ln 3 cos ( ) u xEq. 6  with  sinx x xsin sin sin

(d) ( )= = ⋅d
dx

d
dx

sin(3 ) cos(3 ) 3 cos(3 ) 3 ln 3 Chain Rule and Eq. 5x x x x x  

In Section 3.3 we looked at the derivative f (0) for the exponential functions f x a( ) x  
at various values of the base a. The number f (0) is the limit, a hlim 1

h

h

0
( )−

→
, and gives the 

slope of the graph of a x  when it crosses the y-axis at the point 0,1( ). We now see from Equa-
tion (5) that the value of this slope is

a
h

alim 1 ln .
h

h

0

− =
→

 (7)

In particular, when a e we obtain

e
h

elim 1 ln 1.
h

h

0

− = =
→

However, we have not fully justified that these limits actually exist. While all of the argu-
ments given in deriving the derivatives of the exponential and logarithmic functions are 
correct, they do assume the existence of these limits. In Chapter 7 we will give another 
development of the theory of logarithmic and exponential functions which fully justifies 
that both limits do in fact exist and have the values derived above.

To find the derivative of xloga  for an arbitrary base a a0,   1 ,( )> ≠  we use the 
change-of-base formula for logarithms (reviewed in Section 1.5) to express xloga  in terms 
of natural logarithms:

x
x
a

log
ln
ln

.a

Then we take derivatives

d
dx

x d
dx

x
a

a
d
dx

x

a x

log
ln
ln

1
ln

ln

1
ln

1 ,

a

Differentiate both sides.

ln  is a constant.

a =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

= ⋅

= ⋅
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 3.8  Derivatives of Inverse Functions and Logarithms 195

Logarithmic Differentiation

The derivatives of positive functions given by formulas that involve products, quotients, 
and powers can often be found more quickly if we take the natural logarithm of both sides 
before differentiating. This enables us to use the laws of logarithms to simplify the formu-
las before differentiating. The process, called logarithmic differentiation, is illustrated in 
the next example.

EXAMPLE 6  Find dy dx  if

y x x
x

x1 3
1

, 1.
2 1 2( )( )= + +

−
>

Solution We take the natural logarithm of both sides and simplify the result with the 
algebraic properties of logarithms from Theorem 1 in Section 1.5:

y x x
x

x x x

x x x

x x x

ln ln 1 3
1

ln 1 3 ln 1

ln 1 ln 3 ln 1

ln 1 1
2

ln 3 ln 1 .

Rule 2

Rule 1

Rule 4

2 1 2

2 1 2

2 1 2

2

( )

( )

( )

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

= + +
−

= + + − −

= + + + − −

= + + + − −

We then take derivatives of both sides with respect to x, using Equation (3):

y
dy
dx x

x
x x

1 1
1

2 1
2

1
3

1
1

.
2

=
+

⋅ + ⋅
+

−
−

Next we solve for dy dx :

( )=
+

+
+

−
−

dy
dx

y x
x x x

2
1

1
2 6

1
1

.
2

Finally, we substitute for y:

( )( )( )
= + +

− +
+

+
−

−
dy
dx

x x
x

x
x x x

1 3
1

2
1

1
2 6

1
1

.
2 1 2

2
 

Irrational Exponents and the Power Rule (General Version)

The natural logarithm and the exponential function will be defined precisely in Chapter 7. 
We can use the exponential function to define the general exponential function, which 
enables us to raise any positive number to any real power n, rational or irrational. That is, 
we can define the power function y x n for any exponent n.

The computation in Example 6 would be much longer if we used the product, quotient, and 
power rules.

which yields

d
dx

x
x a

a alog 1
ln

0, 1.a = > ≠  (8)

If u is a differentiable function of x and u 0, the Chain Rule gives a more general 
formula:

d
dx

u
u a

du
dx

a alog 1
ln

0, 1.a = > ≠  (9)
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196 Chapter 3 Derivatives

Because the logarithm and exponential functions are inverses of each other, the defini-
tion gives

x n x nln ln , for all real numbers  .n =

That is, the rule for taking the natural logarithm of a power holds for all real exponents n, 
not just for rational exponents.

The definition of the power function also enables us to establish the derivative Power 
Rule for any real power n, as stated in Section 3.3.

General Power Rule for Derivatives
For >x 0 and any real number n,

d
dx

x nx .n n 1= −

If ≤x 0, then the formula holds whenever the derivative, x ,n  and −x n 1 all exist.

DEFINITION For any >x 0 and for any real number n,

x e .n n xln=

Proof  Differentiating x n with respect to x gives

( )

=

= ⋅

= ⋅

=

>

⋅ =− −

d
dx

x d
dx

e

e d
dx

n x

x n
x

nx

ln

.

x x

e

x

x
x

x

Definition of  ,   0

Chain Rule for 

Definition and derivative of  ln

1

n n x

n x

n

n

ln

ln

1

n

u

n n 1

In short, whenever x 0,>

d
dx

x nx .n n 1= −

For x 0< , if = ′y x y,n , and x n 1−  all exist, then

y x n xln ln ln .n= =

Using implicit differentiation (which assumes the existence of the derivative y′) and  
Example 3(c), we have

′ =y
y

n
x

.

Solving for the derivative, we find that

y n
y
x

n x
x

nx . y x
n

n 1 n′ = = = =−

It can be shown directly from the definition of the derivative that the derivative equals 
0 when x 0=  and n 1>  (see Exercise 107). This completes the proof of the general ver-
sion of the Power Rule for all values of x. 
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 3.8  Derivatives of Inverse Functions and Logarithms 197

EXAMPLE 7  Differentiate f x x( ) ,x  x 0.

Solution The Power Rule tells us how to differentiate a function of the form x a , where a 
is a fixed real number. However, the exponent in x x  is not a fixed constant, so we cannot 
use the Power Rule to differentiate x x . Equation (5) tells us how to differentiate a x  when 
the base a is constant. We cannot use that equation either, because the base x in x x  is not 
constant. Instead, to find the derivative of this function, we note that f x x e( ) x x xln , 
so differentiation gives

f x d
dx

e

e d
dx

x x

e x x
x

x x

( )

ln

ln · 1

ln 1 .

e

e u x x

x

The base  is a constant.

, ln

Product Rule

0

d
dx

x x

x x

x x

x

ln

ln

ln

u

( )
( )

( )

( )′ =

=

= +

= +

=

>

We can also find the derivative of y x x using logarithmic differentiation, assuming y  
exists. 

THEOREM 4—The Number e as a Limit The number e can be calculated as 
the limit

e xlim 1 .
x

x

0

1( )= +
→

The Number e Expressed as a Limit

In Section 1.4 we defined the number e as the base value for which the exponential function 
y a x has slope 1 when it crosses the y-axis at 0,1( ). Thus e is the constant that satisfies 
the equation

e
h

elim 1 ln 1. eSlope equals ln  from Eq. 7 .
h

h

0

− = = ( )
→

We now prove that e can be calculated as a certain limit.

Proof  If f x x( ) ln , then f x x( ) 1 ,′ =  so f (1) 1.′ =  But, by the definition of 
derivative,

( ) ( )

( )
( )

( ) ( )

′ = + − = + −

=
+ −

= +

= + = +⎡
⎣⎢

⎤
⎦⎥

=
→ →

→ →

→ →

f
f h f

h
f x f

x
x
x x

x

x x

(1) lim
1 (1)

lim
1 (1)

lim
ln 1 ln 1

lim 1 ln 1

lim ln 1 ln lim 1 .

ln 1 0

ln is continuous, 
Theorem 9 in Chapter 2

h x

x x

x

x

x

x

0 0

0 0

0

1

0

1

Because f (1) 1,′ =  we have

xln lim 1 1.
x

x

0

1( )+⎡
⎣⎢

⎤
⎦⎥
=

→

Therefore, exponentiating both sides, we get

x elim 1 .
x

x

0

1( )+ =
→

See Figure 3.40. 

Approximating the limit in Theorem 4 by taking x very small gives approximations to e. Its 
value is e 2.718281828459045 to 15 decimal places.

FIGURE 3.40 The number e is the limit 
of the function graphed here as x 0.

1

0

2

3

x

y

y = (1 + x)1�x

e
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198 Chapter 3 Derivatives

Derivatives of Inverse Functions
In Exercises 1–4:

  a. Find f x( ).1−

  b. Graph  f  and −f 1 together.

  c.  Evaluate df dx at =x a and −df dx1  at =x f a( ) to show 
that df dx df dx1 .

x f a x a
1

( )
( ) ( )=−

= =

 1. = + = −f x x a( ) 2 3, 1

 2. = +
−

=f x x
x

a( ) 2
1

, 1
2

 3. = − =f x x a( ) 5 4 , 1 2

 4. = ≥ =f x x x a( ) 2 , 0, 52

 5. a.  Show that =f x x( ) 3 and =g x x( ) 3  are inverses of one 
another.

 b. Graph  f  and g over an x-interval large enough to show the 
graphs intersecting at 1,1( ) and ( )− −1, 1 . Be sure the picture 
shows the required symmetry about the line =y x.

 c. Find the slopes of the tangent lines to the graphs of  f  and g at 
1,1( ) and ( )− −1, 1  (four tangent lines in all).

 d. What lines are tangent to the curves at the origin?

 6. a.  Show that h x x( ) 43=  and =k x x( ) (4 )1 3 are inverses of one 
another.

 b. Graph h and k over an x-interval large enough to show the 
graphs intersecting at 2, 2( ) and ( )− −2, 2 . Be sure the picture 
shows the required symmetry about the line =y x.

 c. Find the slopes of the tangent lines to the graphs at h and k at 
2, 2( ) and ( )− −2, 2 .

 d. What lines are tangent to the curves at the origin?

 7. Let = − − ≥f x x x x( ) 3 1,   2.3 2  Find the value of −df dx1  at 
the point = − =x f1 (3).

 8. Let = − − >f x x x x( ) 4 5,   2.2  Find the value of −df dx1  at 
the point = =x f0 (5).

 9. Suppose that the differentiable function =y f x( ) has an inverse 
and that the graph of  f  passes through the point 2, 4( ) and has a 
slope of 1 3 there. Find the value of −df dx1  at =x 4.

 10. Suppose that the differentiable function y g x( )=  has an inverse 
and that the graph of g passes through the origin with slope 2. 
Find the slope of the graph of −g 1 at the origin.

 11. The accompanying figure shows the graph of the function  f.

Assuming the inverse function −f 1 is differentiable, find the slope 
of f x( )1−  at

 a. =x 1 b. =x 2 c. =x 3

 12. The accompanying figure shows the graph of the function g.

EXERCISES 3.8 

y = g(x)
y

1

1

(0, 7/3)
Slope = −1/6

(1, 2)
Slope = −1/2

(4, 3)
Slope = −1/3

(3, 4)
Slope = −4

(2, 1)
Slope = −3

0 2 3 4

2

3

4

x

y = f (x)
y

1

1−1

(−1, 1)
Slope = 1/2

(0, 4/3)
Slope = 1/4

(1, 2)
Slope = 3

(2, 3)
Slope = 1/3

(3, 4)
Slope = 4

0 2 3

2

3

4

x

Assuming the inverse function −g 1 is differentiable, find the slope 
of g x( )1−  at

 a. =x 1 b. =x 2 c. =x 3

 13. Suppose that the function  f  and its derivative with respect to x 
have the following values at =x 0,1, 2, 3, and 4.

x 0 1 2 3 4

f x( ) 3 6 0 1 2

f x( )′ 4 3 5 4 1 2 1 7

Assuming the inverse function −f 1 is differentiable, find the slope 
of f x( )1−  at

 a. =x 1 b. =x 2 c. =x 3

 14. Suppose that the function g and its derivative with respect to x 
have the following values at =x 0,1, 2, 3, and 4.

x 0 1 2 3 4

g x( ) 4− 1− 1 2 3

g x( )′ 3 2 5 4 2 3 1 5

Assuming the inverse function −g 1 is differentiable, find the slope 
of g x( )1−  at

 a. =x 1 b. =x 2 c. =x 3

Derivatives of Logarithms
In Exercises 15–44, find the derivative of y with respect to x, t, or θ, 
as appropriate.

 15. y x xln 3= +  16. y
x

1
ln 3

=

 17. =y tln( )2  18. y t tln 3 2( )= +

 19. y
x

ln 3=  20. y xln sin( )=

 21. y eln 1θ( )= + − θ 22. y cos ln 2 2θ θ( ) ( )= +

 23. y xln 3=  24. y xln 3( )=

 25. y t tln 2( )=  26. y t tln=
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 3.8  Derivatives of Inverse Functions and Logarithms 199

 27. y x x x
4

ln
16

4 4
= −  28. y x xln2 4( )=

 29. y
t

t
ln

=  30. y t
tln

=

 31. y
x

x
ln

1 ln
=

+
 32. y

x x
x

ln
1 ln

=
+

 33. y xln ln( )=  34. y xln ln ln( )( )=

 35. y sin ln cos lnθ θ θ( ) ( )( )= +

 36. y ln sec tanθ θ( )= +

 37. y
x x

ln 1
1

=
+

 38. y x
x

1
2

ln 1
1

= +
−

 39. y
t
t

1 ln
1 ln

=
+
−

 40. y tln=

 41. y ln sec ln θ( )( )=  42. y ln
sin cos

1 2 ln
θ θ
θ

=
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

 43. y x
x

ln 1
1

2 5( )= +
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ 44. y x

x
ln 1

2

5

20
( )

( )
= +

+

Logarithmic Differentiation
In Exercises 45–58, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

 45. ( )= +y x x 1  46. ( )( )= + −y x x1 12 2

 47. =
+

y t
t 1

 48. 
( )

=
+

y
t t

1
1

 49. y sin 3θ θ( )= +  50. y tan 2 1θ θ( )= +

 51. ( )( )= + +y t t t1 2  52. 
( )( )

=
+ +

y
t t t

1
1 2

 53. y 5
cos
θ
θ θ

= +  54. y
sin

sec

θ θ
θ

=

 55. 
( )

= +
+

y x x
x

1
1

2

2 3  56. 
( )

( )
= +

+
y x

x
1

2 1

10

5

 57. 
( )= −

+
y x x

x
2
12

3  58. 
( )

( )( )

( )
= + −

+ +
y x x x

x x
1 2

1 2 32
3

Finding Derivatives
In Exercises 59–70, find the derivative of y with respect to x, t, or θ, 
as appropriate.

 59. y ln cos 2 θ( )=  60. y eln 3θ( )= θ−

 61. y teln 3 t( )= −  62. y e tln 2 sint( )= −

 63. y e
e

ln
1( )=

+

θ

θ
 64. y ln

1
θ
θ

=
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

 65. y e t tcos ln= ( )+  66. y e tln 1tsin 2( )= +

In Exercises 67–70, find dy dx.

 67. y e xln siny=  68. xy eln x y= +

 69. =x yy x  70. y e xtan lnx= +

In Exercises 71–92, find the derivative of y with respect to the given 
independent variable.

 71. =y 2 x  72. = −y 3 x

 73. =y 5 s 74. y 2 s( )2=

 75. = πy x  76. = −y t e1

 77. y log 52 θ=  78. y log 1 ln 33 θ( )= +

 79. y x xlog log4 4
2= +  80. y e xlog logx

25 5= −

 81. y r rlog log2 4= ⋅  82. y r rlog log3 9= ⋅

 83. y x
x

log 1
13

ln 3( )( )= +
−

 84. y x
x

log 7
3 25

ln 5

( )=
+

 85. y sin log7θ θ( )=  86. y
e

log
sin cos

27

θ θ( )=
θ θ

 87. y elog x
5=  88. y x e

x
log

2 12

2 2( )=
+

 89. y 3 tlog2=  90. y t3 log log8 2( )=

 91. y tlog 82
ln 2( )=  92. y t elog t

3
sin ln 3( )= ( )( )

Powers with Variable Bases and Exponents
In Exercises 93–104, use logarithmic differentiation or the method in 
Example 7 to find the derivative of y with respect to the given inde-
pendent variable.

 93. ( )= +y x 1 x  94. = ( )+y x x 1

 95. ( )=y t
t
 96. =y t t

 97. y xsin x( )=  98. y x xsin=

 99. y x xln=  100. y xln xln( )=

 101. =y x yx 3  102. x ylnysin =

 103. =x y xy 104. e yy xln=

Theory and Applications

 105. If we write g x( ) for f x( ),1−  Equation (1) can be written as

′ =
′

′ ′ =g f a
f a

g f a f a( ( )) 1
( )

, or ( ( )) · ( ) 1.

If we then write x for a, we get

′ ′ =g f x f x( ( )) · ( ) 1.

The latter equation may remind you of the Chain Rule, and 
indeed there is a connection.

Assume that  f  and g are differentiable functions that are 
inverses of one another, so that g f x x( ) .�( ) =  Differentiate both 
sides of this equation with respect to x, using the Chain Rule to 
express g f x( )�( )′  as a product of derivatives of g and  f. What do 
you find? (This is not a proof of Theorem 3 because we assume 
here the theorem’s conclusion that = −g f 1 is differentiable.)

 106. Show that x
n

elim 1
n

n
x( )+ =

→∞
 for any >x 0.

 107. If f x x n( ) ,  1,n= >  show from the definition of the derivative 
that f (0) 0.′ =

 108. Using mathematical induction, show that for >n 1,

( )
( )= − −−d

dx
x n

x
ln 1 1 !.

n

n
n

n
1

COMPUTER EXPLORATIONS
In Exercises 109–116, you will explore some functions and their 
inverses together with their derivatives and tangent line approxima-
tions at specified points. Perform the following steps using your CAS:

  a.  Plot the function y f x( )=  together with its derivative over 
the given interval. Explain why you know that  f  is one-to-one 
over the interval.

  b.  Solve the equation y f x( )=  for x as a function of y, and 
name the resulting inverse function g.
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200 Chapter 3 Derivatives

  c.  Find an equation for the tangent line to  f  at the specified point 
x f x, ( ) .0 0( )

  d.  Find an equation for the tangent line to g at the point 
f x x( ),  0 0( ) located symmetrically across the 45  line y x  

(which is the graph of the identity function). Use Theorem 3 
to find the slope of this tangent line.

  e.  Plot the functions  f  and g, the identity, the two tangent lines, 
and the line segment joining the points x f x,   ( )0 0( ) and 

f x x( ),   .0 0( )  Discuss the symmetries you see across the main 
diagonal (the line y x).

 109. = − ≤ ≤ =y x x x3 2, 2
3

4, 30

 110. = +
−

− ≤ ≤ =y x
x

x x3 2
2 11

, 2 2, 1 20

 111. =
+

− ≤ ≤ =y x
x

x x4
1

, 1 1, 1 2
2 0

 112. =
+

− ≤ ≤ =y x
x

x x
1

, 1 1, 1 2
3

2 0

 113. = − − ≤ ≤ =y x x x x3 1, 2 5, 27
10

3 2
0

 114. = − − − ≤ ≤ =y x x x x2 , 2 2, 3
2

3
0

 115. = − ≤ ≤ =y e x x, 3 5, 1x
0

 116. y x x xsin ,
2 2

, 10= − ≤ ≤ =

In Exercises 117 and 118, repeat the steps above to solve for the func-
tions y f x( ) and x f y( )1= −  defined implicitly by the given equa-
tions over the interval.

 117. y x x x1 2 , 5 5, 3 21 3 3
0( )− = + − ≤ ≤ = −

 118. y x x xcos , 0 1, 1 21 5
0= ≤ ≤ =

We introduced the six basic inverse trigonometric functions in Section 1.5 but focused 
there on the arcsine and arccosine functions. Here we complete the study of how all six 
basic inverse trigonometric functions are defined, graphed, and evaluated, and how their 
derivatives are computed.

3.9 Inverse Trigonometric Functions

Inverses of x x xtan , cot , sec , and xcsc

The graphs of these four basic inverse trigonometric functions are shown in Figure 3.41. 
We obtain these graphs by reflecting the graphs of the restricted trigonometric functions 
(as discussed in Section 1.5) through the line y x. Let’s take a closer look at the arctan-
gent, arccotangent, arcsecant, and arccosecant functions.

FIGURE 3.41 Graphs of the arctangent, arccotangent, arcsecant, and arccosecant functions.

x

y

(a)

Domain: −∞ < x < ∞ 

Range: < y <p
2−

p
2

1−1−2 2

p
2

p
2−

y = arctan x

x

y

0 < y < p

(b)

p

p
2

1−1−2 2

y = arccot x

Domain: −∞ < x < ∞ 

Range:

x

y

(c)

Domain:
Range:

x ≤ −1 or x ≥ 1
0 ≤ y ≤ p, y ≠

1−1−2 2

y = arcsec x

p

p
2

p
2

x

y

Domain:
Range:

x ≤ −1 or x ≥ 1
≤ y ≤ , y ≠ 0p

2
−

p
2

(d)

1−1−2 2

p
2

p
2

−

y = arccsc x

The arctangent of x is a radian angle whose tangent is x. The arccotangent of x is an angle 
whose cotangent is x, and so forth. The angles belong to the restricted domains of the tan-
gent, cotangent, secant, and cosecant functions.

DEFINITIONS

arctany x is the number in ( )− 2, 2  for which y xtan .

arccoty x is the number in ( )0,  for which y xcot .

arcsecy x is the number in 0, 2 2,[ ) ( ]∪  for which y xsec .

arccscy x is the number in 2, 0 0, 2[ ) ( ]− ∪  for which y xcsc .
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 3.9  Inverse Trigonometric Functions 201

We use open or half-open intervals to avoid values for which the tangent, cotangent, secant, 
and cosecant functions are undefined. (See Figure 3.41.)

As we discussed in Section 1.5, the arcsine and arccosine functions are often written 
as xsin 1  and xcos 1  instead of xarcsin  and xarccos . Likewise, we often denote the 
other inverse trigonometric functions by x x x xtan , cot , sec , and csc1 1 1 1 .

The graph of y xarctan  is symmetric about the origin because it is a branch of the 
graph x ytan  that is symmetric about the origin (Figure 3.41a). Algebraically this 
means that

− = −x xarctan( ) arctan ;

the arctangent is an odd function. The graph of y xarccot  has no such symmetry (Fig-
ure 3.41b). Notice from Figure 3.41a that the graph of the arctangent function has two 
horizontal asymptotes: one at y 2 and the other at = −y 2.

The inverses of the restricted forms of xsec  and xcsc  are chosen to be the functions 
graphed in Figures 3.41c and 3.41d.

Caution There is no general agreement about how to define xarcsec  for negative val-
ues of x. We chose angles in the second quadrant between 2 and . This choice makes 

x xarcsec arccos 1 .( )=  It also makes xarcsec  an increasing function on each interval 
of its domain. Some tables choose xarcsec  to lie in [ )− −, 2  for x 0, and some 
texts choose it to lie in [ ), 3 2  (Figure 3.42). These choices simplify the formula for the 
derivative (our formula needs absolute value signs) but fail to satisfy the computational 
equation x xarcsec arccos 1 .( )=  From this, we can derive the identity

x
x x

arcsec arccos 1
2

arcsin 1( ) ( )= = −  (1)

by applying Equation (5) in Section 1.5. 

EXAMPLE 1  The accompanying figures show two values of xarctan .

a       b

x

y

0
x

y

0
1

2

3
"

3arctan 1

"

3
p
6

arctan  −
"

3   p
3

2
1

"

3

p
6

tan     =p
6

1

"

3
tan           = −

"

3p
3−

p
3−

= arctan = = −

−
"

3

a     b

x xarctan

3 3

1 4

3 3 6

0 0

3 3 6

1 4

3 3

The angles come from the first and fourth quadrants because the range of xarctan  is 
( )− 2, 2 . 

FIGURE 3.42 There are several 
logical choices for the left-hand branch 
of y xarcsec . With choice A, 

x xarcsec arccos 1 ,( )=  a useful identity 
employed by many calculators.

3p
2

y = arcsec x

−1 10

p
2

3p
2

p
2−

−

x

y

p

−p

Domain: 0 x 0  ≥ 1
Range: 0 ≤ y ≤ p, y ≠ p

2

B

A

C
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202 Chapter 3 Derivatives

The Derivative of y uarcsin=

We know that the function x ysin=  is differentiable in the interval π π− < <y2 2 
and that its derivative, the cosine, is positive there. Theorem 3 in Section 3.8 therefore 
assures us that the inverse function y xarcsin=  is differentiable throughout the interval 

x1 1.− < <  We cannot expect it to be differentiable at x 1=  or = −x 1 because the 
tangent lines to the graph are vertical at these points (see Figure 3.43).

We find the derivative of y xarcsin=  by applying Theorem 3 with f x x( ) sin=  and 
f x x( ) arcsin :1 =−

( )

( )

′ =
′

=

=
−

=
−

′ =

=

=( )

−

−
−

f x
f f x

x

x

x

( ) ( ) 1
( ( ))

1
cos arcsin

1
1 sin arcsin

1
1

.

f y y

y

x x

Theorem 3

cos

cos

sin arcsin

y

( )

1 sin

1
1

2

2

2
FIGURE 3.43 The graph of 
y xarcsin=  has vertical tangent 
lines at = −x 1 and =x 1.

y

1−1
x

−p2

p
2

y = arcsin x
Domain: 
Range: 

−1 ≤ x ≤ 1
−p�2 ≤ y ≤ p�2

EXAMPLE 2  Using the Chain Rule, we calculate the derivative

d
dx

x
x

d
dx

x x
x

arcsin 1
1 ( )

· ( ) 2
1

.2
2 2

2
4

( ) =
−

=
−

 

The Derivative of y uarctan=

We find the derivative of y xarctan=  by applying Theorem 3 with f x x( ) tan=  and 
f x x( ) arctan .1 =−  Theorem 3 can be applied because the derivative of xtan  is positive 
for π π− < <x2 2:

( )

( )

′ =
′

=

=
+

=
+

′ =

= +

=( )

−
−

f x
f f x

x

x

x

( ) ( ) 1
( ( ))

1
sec arctan

1
1 tan arctan

1
1

.

f u u

u u

x x

Theorem 3

sec

sec 1 tan

tan arctan

( )

1
1

2

2

2

2

2 2

The derivative is defined for all real numbers:

d
dx

x
x

arctan 1
1

.
2

( ) =
+

The derivative is defined for all real numbers. If u is a differentiable function of x, we get 
the Chain Rule form:

d
dx

u
u

du
dx

arctan 1
1

.
2

( ) =
+

The Chain Rule can also be combined with the arctangent function in other ways, as illus-
trated by the following example.

For <x 1,
d
dx

x
x

arcsin 1
1

.
2

( ) =
−

If u is a differentiable function of x with u 1,<  we apply the Chain Rule to get the 
general formula

d
dx

u
u

du
dx

uarcsin 1
1

, 1.
2

( ) =
−

<
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 3.9  Inverse Trigonometric Functions 203

The Derivative of y uarcsec=

Theorem 3 does not apply to the function xsec  directly, since its domain is not connected. 
However, we can apply Theorem 3 to each of the two intervals in its domain to see that the 
inverse of the one-to-one function xsec  is indeed differentiable. The formula for the deriv-
ative of xarcsec  on its domain >x 1 can then be found by using implicit differentiation 
and the Chain Rule as follows:

( )

( )

=
=

=

=

= π π π> ∪
≠

( ) ( )

y x

y x

d
dx

y d
dx

x

y y
dy
dx
dy
dx y y

arcsec

sec

sec

sec tan 1

1
sec tan

. x y
y y

Inverse function relationship

Differentiate both sides.

Chain Rule

Since 1,  lies in  0, 2 2,
and sec  tan 0.

To express the result in terms of x, we use the relationships

y x y y xsec and tan sec 1 12 2= = ± − = ± −
to get

= ±
−

dy
dx x x

1
1

.
2

Can we do anything about the ± sign? A glance at Figure 3.44 shows that the slope of the 
graph y xarcsec=  is always positive. Thus,

d
dx

x x x
x

x x
x

arcsec

1
1

if  1

1
1

if  1.

2

2

=
+

−
>

−
−

< −

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

With the absolute value symbol, we can write a single expression that eliminates the ±“ ” 
ambiguity:

EXAMPLE 3

d
dx x

d
dx

x

x d
dx

x

x x

1
arctan

arctan

1 arctan arctan

1
arctan

1
1

Derivative of the reciprocal
(not the inverse) of arctangent

Apply the Chain Rule.

1

2

2 2

( )

( ) ( )

( )

( )

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =

−

− ⋅
+

=

=

−

−

 

FIGURE 3.44 The slope of the curve 
y xarcsec=  is positive for both < −x 1 
and >x 1.

x

y

0

p

1−1

y = arcsec x

p
2

EXAMPLE 4  Using the Chain Rule and derivative of the arcsecant function, we find

=
−

=
−

=
−

>

d
dx

x
x x

d
dx

x

x x
x

x x

arcsec(5 ) 1
5 (5 ) 1

(5 )

1
5 25 1

(20 )

4
25 1

.

x5 1

4
4 4 2

4

4 8
3

8

4

 

d
dx

x
x x

xarcsec 1
1

, 1.
2

( ) =
−

>

If u is a differentiable function of x with >u 1, we have the formula

d
dx

u
u u

du
dx

uarcsec 1
1

, 1.
2

( ) =
−

>
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204 Chapter 3 Derivatives

Inverse Function–Inverse Cofunction Identities

x x

x x

x x

arccos 2 arcsin

arccot 2 arctan

arccsc 2 arcsec

= −

= −

= −

TABLE 3.1 Derivatives of the inverse trigonometric functions

1. d
dx

x
x

xarcsin 1
1

1
2

( ) ( )=
−

<

2. d
dx

x
x

arctan 1
1 2

( ) =
+

3. d
dx

x
x x

xarcsec 1
1

1
2

( ) ( )=
−

>

4. d
dx

x
x

xarccos 1
1

1
2

( ) ( )= −
−

<

5. d
dx

x
x

arccot 1
1 2

( ) = −
+

6. d
dx

x
x x

xarccsc 1
1

1
2

( ) ( )= −
−

>

Remember that arcsin and sin 1 represent the same function, and simi-
larly for the other trigonometric functions.

Common Values
Use reference triangles in an appropriate quadrant, as in Example 1, to 
find the angles in Exercises 1–8.

 1. a. arctan 1 b. ( )−arctan 3  c. ( )−tan 1
3

1

 2. a. ( )−arctan 1  b. tan 31  c. ( )−arctan 1
3

 3. a. ( )−arcsin 1
2

 b. ( )arcsin 1
2

 c. −⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−sin 3
2

1

 4. a. ( )−sin 1
2

1  b. ( )−arcsin 1
2

 c. 
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟arcsin 3

2

 5. a. ( )arccos 1
2

 b. ( )−−cos 1
2

1  c. arccos 3
2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

 6. a. csc 21  b. arccsc 2
3( )−  c. arccsc 2

 7. a. ( )−−sec 21  b. arcsec 2
3( ) c. arcsec 2( )−

 8. a. arccot 1( )−  b. arccot 3( ) c. ( )−−cot 1
3

1

Evaluations
Find the values in Exercises 9–12.

 9. sin cos 2
2

1⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−  10. ( )sec arccos 1
2

 11. ( )( )−tan arcsin 1
2

 12. cot sin 3
2

1 −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−

Limits
Find the limits in Exercises 13–20. (If in doubt, look at the function’s 
graph.)

 13. xlim arcsin
x 1→ −

 14. xlim cos
x 1

1

→−
−

+

 15. xlim tan
x

1

→∞
−  16. xlim arctan

x→−∞

EXERCISES 3.9 

Derivatives of the Other Three Inverse Trigonometric Functions

We could use the same techniques to find the derivatives of the other three inverse trigono-
metric functions—arccosine, arccotangent, and arccosecant—but there is an easier way, 
thanks to the following identities.

We saw the first of these identities in Equation (5) of Section 1.5. The others are 
derived in a similar way. It follows easily that the derivatives of the inverse cofunctions  
are the negatives of the derivatives of the corresponding inverse functions. For example, 
the derivative of xarccos  is calculated as follows:

d
dx

x d
dx

x

d
dx

x

x

arccos
2

arcsin

arcsin

1
1

.

Identity

Derivative of arcsine
2

( )( )

( )

= −

= −

= −
−

The derivatives of the inverse trigonometric functions are summarized in Table 3.1.
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 3.9  Inverse Trigonometric Functions 205

B
la

ck
bo

ar
d

4 m

1 m
Wall

You
a

x

 17. xlim arcsec
x→∞

 18. xlim sec
x

1

→−∞
−

 19. xlim csc
x

1

→∞
−  20. xlim arccsc

x→−∞

Finding Derivatives
In Exercises 21–48, find the derivative of y with respect to the appro-
priate variable.

 21. ( )= −y xcos 1 2  22. ( )=y xarccos 1

 23. =y tarcsin 2  24. ( )= −−y tsin 11

 25. ( )= +y sarcsec 2 1  26. y ssec 51= −

 27. ( )= + >−y x xcsc 1 , 01 2

 28. =y xarccsc
2

 29. = < <−y
t

tsec 1, 0 11  30. =y
t

arcsin 3
2

 31. =y tarccot  32. y tcot 11= −−

 33. y xln tan 1( )= −  34. y xtan ln1( )= −

 35. ( )=y earccsc t  36. ( )= −y earccos t

 37. y s s s1 cos2 1= − + −  38. y s s1 sec2 1= − − −

 39. y x x xtan 1 csc , 11 2 1= − + >− −

 40. y
x

xcot 1 tan1 1= −− −  41. y x x xarcsin 1 2= + −

 42. y x x xln 4 arctan
2

2 ( )( )= + −

 43. y xarcsin=  44. y e xarcsec=

 45. y x xcos arccos( )= −  46. y x
x1 arctan

=
+

 47. y x(arccot ( ))3 3=  48. y xlog arccsc2=

For problems 49–52 use implicit differentiation to find 
dy
dx

 at the given 
point P.

 49. x y P3 arctan arcsin
4

; 1, 1π ( )+ = −

 50. x y x y Parcsin arccos 5
6

; 0, 1
2

π ( )( ) ( )+ + − =

 51. y xy Pcos 3 2
4

; 1
2

, 21 π ( )( ) = − −−

 52. y x P16 tan 3 9 tan 2 2 ; 3
2

, 1
3

1 2 1 2 2π( ) ( )+ =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

− −

Theory and Examples

 53. You are sitting in a classroom next to the wall looking at the 
blackboard at the front of the room. The blackboard is 4 m long 
and starts 1 m from the wall you are sitting next to. Show that 
your viewing angle is

α = −x xarccot
15

arccot
3

if you are x meters from the front wall.

x

y

0

p

1 x−1−x

y = sec–1x

p
2

65°

21

50
a

b

 54. Find the angle α.

 55. Here is an informal proof that tan 1 tan 2 tan 3 .1 1 1 π+ + =− − −  
Explain what is going on.

 56. Two derivations of the identity x π xsec sec1 1( )− = −− −  

 a. (Geometric) Here is a pictorial proof that − =− xsec ( )1  
xsec .1π − −  See if you can tell what is going on.

 b. (Algebraic) Derive the identity π− = −− −x xsec ( ) sec1 1  by 
combining the following two equations from the text:

x x

x x

cos ( ) cos 4

sec cos 1 1

Eq. ( ),  Section 1.5

Eq. ( )

1 1

1 1

π

( )

− = −

=

− −

− −

Which of the expressions in Exercises 57–60 are defined, and which 
are not? Give reasons for your answers.

 57. a. arctan 2 b. cos 21−

 58. a. arccsc 1 2( ) b. csc 21−

 59. a. sec 01−  b. arcsin 2

 60. a. ( )−−cot 1 21  b. −arccos( 5)

 61. Use the identity

x xarccsc
2

arcsecπ= −

to derive the formula for the derivative of xarccsc  in Table 3.1 
from the formula for the derivative of xarcsec .

 62. Derive the formula

=
+

dy
dx x

1
1 2

for the derivative of y xarctan=  by differentiating both sides of 
the equivalent equation y xtan .=

 63. Use the Derivative Rule in Section 3.8, Theorem 3, to derive
d
dx

x
x x

xarcsec 1
1

, 1.
2

=
−

>
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206 Chapter 3 Derivatives

 64. Use the identity

x xarccot
2

arctanπ= −

to derive the formula for the derivative of xarccot  in Table 3.1 
from the formula for the derivative of xarctan .

 65. What is special about the functions

f x x
x

x g x x( ) sin 1
1

, 0, and ( ) 2 tan ?1 1= −
+

≥ =− −

Explain.

 66. What is special about the functions

f x
x

g x
x

( ) sin 1
1

and ( ) tan 1 ?1
2

1=
+

=− −

Explain.

 67. Find the values of

 a. arcsec 1.5 b. −−csc ( 1.5)1  c. arccot 2

 68. Find the values of

 a. −−sec ( 3)1  b. arccsc1.7 c. −arccot ( 2)

In Exercises 69–71, find the domain and range of each composite 
function. Then graph the composition of the two functions on separate 

T

T

T

screens. Do the graphs make sense in each case? Give reasons for your 
answers. Comment on any differences you see.

 69. a. y xarctan tan( )=  b. y xtan arctan( )=

 70. a. y xarcsin sin( )=  b. y xsin arcsin( )=

 71. a. y xarccos cos( )=  b. y xcos arccos( )=

Use your graphing utility for Exercises 72–76.

 72. Graph y x xsec sec sec cos 1 .1 1( )( )( )= =− −  Explain what you 
see.

 73. Newton’s serpentine Graph Newton’s serpentine, 
( )= +y x x4 1 .2   Then graph y x2 sin 2 tan 1( )= −  in the same 

graphing window. What do you see? Explain.

 74. Graph the rational function ( )= −y x x2 .2 2  Then graph 
y xcos 2 sec 1( )= −  in the same graphing window. What do you 
see? Explain.

 75. Graph f x x( ) arcsin=  together with its first two derivatives. 
Comment on the behavior of  f  and the shape of its graph in rela-
tion to the signs and values of ′f  and ′′f .

 76. Graph f x x( ) arctan=  together with its first two derivatives. 
Comment on the behavior of  f  and the shape of its graph in rela-
tion to the signs and values of ′f  and ′′f .

T

3.10 Related Rates

In this section we look at questions that arise when two or more related quantities are 
changing. The problem of determining how the rate of change of one of them affects the 
rates of change of the others is called a related rates problem.

Related Rates Equations

Suppose we are pumping air into a spherical balloon. Both the volume and radius of the 
balloon are increasing over time. If V is the volume and r is the radius of the balloon at an 
instant of time, then

π=V r4
3

.3

Using the Chain Rule, we differentiate both sides with respect to t to find an equation relat-
ing the rates of change of V and r,

π= =dV
dt

dV
dr

dr
dt

r dr
dt

4 .2

So if we know the radius r of the balloon and the rate dV dt at which the volume is increas-
ing at a given instant of time, then we can solve this last equation for dr dt to find how fast 
the radius is increasing at that instant. Note that it is easier to directly measure the rate of 
increase of the volume (the rate at which air is being pumped into the balloon) than it is to 
measure the increase in the radius. The related rates equation allows us to calculate dr dt 
from dV dt.

Very often the key to relating the variables in a related rates problem is drawing a picture 
that shows the geometric relations between them, as illustrated in the following example.

EXAMPLE 1  Water runs into a conical tank at the rate of 0.25 m min.3  The tank 
stands point down and has a height of 3 m and a base radius of 1.5 m. How fast is the water 
level rising when the water is 1.8 m deep?

FIGURE 3.45 The geometry of the coni-
cal tank and the rate at which water fills 
the tank determine how fast the water level 
rises (Example 1).

3 m

y

1.5 m

x
dy
dt

= ?

when y = 1.8 m

dV
dt

= 0.25 m3�min
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 3.10  Related Rates 207

Solution Figure 3.45 shows a partially filled conical tank. The variables in the problem are

=
=
=

V t

x t

y t

volume (m ) of the water in the tank at time   (min)

radius (m) of the surface of the water at time 

depth (m) of the water in the tank at time  .

3

We assume that V, x, and y are differentiable functions of t. The constants are the dimen-
sions of the tank. We are asked for dy dt  when

= =y dV
dt

1.8 m and 0.25 m min.3

The water forms a cone with volume

V x y1
3

.2π=

This equation involves x as well as V and y. Because no information is given about x and 
dx dt  at the time in question, we need to eliminate x. The similar triangles in Figure 3.45 
give us a way to express x in terms y:

= =x
y

x
y1.5

3
or

2
.

Therefore, we find

V
y

y y1
3

 
2 12

2
3π π( )= =

to give the derivative
π π= ⋅ =dV

dt
y

dy
dt

y
dy
dt12

3
4

.2 2

Finally, use =y 1.8 and =dV dt 0.25 to solve for dy dt .

π

π

=

= ≈

dy
dt

dy
dt

0.25
4

(1.8)

1
3.24

0.098

2

At the moment in question, the water level is rising at about 0.098 m min . 

Related Rates Problem Strategy

1. Let t denote time, and choose names for all of the variables that change over 
time (we will assume that those variables are differentiable functions of t ). 
Identify any quantities that remain constant (these do not need to be given 
names). In most problems it will be very helpful to draw a picture that depicts 
the setup of the problem.

2. Write an equation that relates the variables (and any constants that are present). 
You may have to combine two or more equations to get a single equation that 
relates the variable whose rate you want to the variables whose rates or values 
you know.

3. Differentiate with respect to t to obtain a related rates equation.

4. Substitute all of the numerical values provided in the problem into the related 
rates equation. You may need to use the equation(s) relating the variables 
(which you obtained in Step 2), or use other relationships (such as trigonomet-
ric identities), until you reach the point at which the only remaining unknown 
quantity is the rate of change that you are asked to find. Solve for this unknown.

EXAMPLE 2  A hot air balloon rising straight up from a level field is tracked by a range 
finder 150 m from the liftoff point. At the moment the range finder’s elevation angle is π 4 , the 
angle is increasing at the rate of 0.14 rad min. How fast is the balloon rising at that moment?

M03_HASS5901_15_GE_C03.indd   207 07/03/23   13:23

www.konkur.in

Telegram: @uni_k



208 Chapter 3 Derivatives

Solution We draw a picture (Figure 3.46) and name the variables that appear in the prob-
lem (which we assume are differentiable functions of t, where time is measured in minutes):

y

the angle in radians the range finder makes with the ground, and

the height in meters of the balloon above the ground.

θ =
=

One constant in the picture is the distance from the range finder to the liftoff point (150 m). 
There is no need to give this distance a special symbol.

Trigonometry (Section 1.3) yields
y

y
150

tan or 150 tan . Equation relating the variablesθ θ= =

By differentiating with respect to t using the Chain Rule, we obtain

θ θ( )=dy
dt

d
dt

150 sec . Related rates equation2

Substituting the known values θ =d
dt

0.14 rad min and θ π=
4

 gives

π( ) ( )( ) ( )= = = π =
dy
dt

150 sec
4

0.14 150 2 0.14 42. sec
4

22 2

Thus, at the moment in question, the balloon is rising at the rate of 42 m min. 

FIGURE 3.46 The rate of change of the 
balloon’s height is related to the rate of 
change of the angle the range finder makes 
with the ground (Example 2).

= ?
y

Range
finder

Balloon

150 m

u

= 0.14  rad�min
dt
du

when u = p�4 
dt
dywhen u = p�4 

FIGURE 3.47 The speed of the car is 
related to the speed of the police cruiser 
and the rate of change of the distance s 
between them (Example 3).

x

y

0 x

y

Situation when
x = 0.8, y = 0.6

= −60

= 20

= ?dx
dt

dy
dt

ds
dt

EXAMPLE 3  A police cruiser, approaching a right-angled intersection from the north, 
is chasing a speeding car that has turned the corner and is now moving straight east. When 
the cruiser is 0.6 km north of the intersection and the car is 0.8 km to the east, the police 
determine with radar that the distance between them and the car is increasing at 30 km h.  
If the cruiser is moving at 100 km h at the instant of measurement, what is the speed of the car?

Solution We picture the car and cruiser in the coordinate plane, using the positive x-axis 
as the eastbound highway and the positive y-axis as the southbound highway (Figure 3.47). 
We let t represent time and set

=
=
=

x t

y t

s t

position of car at time 

position of cruiser at time 

distance between car and cruiser at time 

We assume that x, y, and s are differentiable functions of t.
We want to find dx dt  when

= = = − =x y
dy
dt

ds
dt

0.8 km,   0.6 km,   100  km h,   30  km h.

Note that dy dt/  is negative because y is decreasing.
We differentiate the distance equation between the car and the cruiser,

= +s x y2 2 2

( )= +s x ywe could also use 2 2 , and obtain

= +s ds
dt

x dx
dt

y
dy
dt

2 2 2

( )= +ds
dt s

x dx
dt

y
dy
dt

1 ( )=
+

+
x y

x dx
dt

y
dy
dt

1 .
2 2

Finally, we use = = = − =x y dy dt ds dt0.8, 0.6, 100, 30, and solve for dx dt .

( )( )

( )

( )

( )

=
+

+ −

= + + =

dx
dt

dx
dt

30 1
(0.8) (0.6)

0.8 0.6 100

30 (0.8) (0.6) 0.6 100
0.8

112.5

2 2

2 2

At the moment in question, the car’s speed is 112.5  km h. 
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 3.10  Related Rates 209

EXAMPLE 4  A particle P moves clockwise at a constant rate along a circle of radius 
10 m centered at the origin. The particle’s initial position is ( )0,10  on the y-axis, and 
its final destination is the point ( )10, 0  on the x-axis. Once the particle is in motion, the 
tangent line at P intersects the x-axis at a point Q (which moves over time). If it takes the 
particle 30 s to travel from start to finish, how fast is the point Q moving along the x-axis 
when it is 20 m from the center of the circle?

Solution We picture the situation in the coordinate plane with the circle centered at the 
origin (see Figure 3.48). We let t represent time and let θ denote the angle in radians from 
the x-axis to the radial line joining the origin to P. Since the particle travels from start to 
finish in 30 s, it is traveling along the circle at a constant rate of π 2 radians in 1 2 min, or 

rad min.π  In other words, θ π= −d dt , with t being measured in minutes. The negative 
sign appears because θ is decreasing over time.

Setting x t( ) to be the distance in meters at time t from the point Q to the origin, we see 
from Figure 3.48 that

x cos 10. Equation relating the variablesθ =

Differentiation with respect to t gives

x d
dt

dx
dt

sin cos 0. Related rates equationθ θ θ( )− + =

We want to find dx dt  given that =x 20 and θ π= −d dt . The equation x cos 10θ =  
implies cos 10 20 1 2θ = = . Furthermore, for angles θ in the first quadrant, the identity 

sin cos 12 2θ θ+ =  yields sin 1 1 2 3 22θ ( )= − = . Substituting into the related 
rates equation, we obtain

π

π

( ) ( )−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ − + ⋅ =

= −

dx
dt

dx
dt

20 3
2

1
2

0

20 3 .

Note that x is decreasing because dx dt  is negative. At the moment in question, the point Q 
is moving toward the origin at the speed of π ≈20 3 109 m min. 

FIGURE 3.48 The particle P travels 
clockwise along the circle (Example 4).

x
0

10

u

y

P

Q

(x, 0)

FIGURE 3.49 Jet airliner A traveling at  
constant altitude toward radar station R  
(Example 5).

EXAMPLE 5  A jet airliner is flying at a constant altitude of 10,000 m above sea level 
as it approaches a Pacific island. The aircraft comes within the direct line of sight of a radar 
station located on the island, and the radar indicates the initial angle between sea level and its 
line of sight to the aircraft is 30°. How fast (in kilometers per hour) is the aircraft approach-
ing the island when first detected by the radar instrument if it is turning upward (counter-
clockwise) at the rate of 1 3 deg s in order to keep the aircraft within its direct line of sight?

Solution The aircraft A and radar station R are pictured in the coordinate plane, using the 
positive x-axis as the horizontal distance at sea level from R to A, and the positive y-axis as 
the vertical altitude above sea level. We let t represent time and observe that =y 10,000 
is a constant. The general situation and line-of-sight angle θ are depicted in Figure 3.49. 
We want to find dx dt  when 6 radθ π=  and d dt 1 3 deg sθ = .

From Figure 3.49, we see that

θ θ= =
x

x10,000 tan or 10,000 cot .

Using kilometers instead of meters for our distance units, the last equation translates to

θ=x 10,000
1000

cot .

Differentiation with respect to t gives

θ θ= −dx
dt

d
dt

10csc .2

R

10,000

A

u
x
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210 Chapter 3 Derivatives

When θ π θ= =6, sin 1 4,2  so θ =csc 42 . Converting θ =d dt 1 3 deg s to radians 
per hour, we find

θ π( )( )= π= =
d
dt

1
3 180

3600 rad h. 1 h 3600 s, 1 deg 180 rad

Substitution into the equation for dx dt  then gives

π( )( )( )( )( )= − ≈ −dx
dt

10 4 1
3 180

3600 838.

The negative sign appears because the distance x is decreasing, so the aircraft is approach-
ing the island at a speed of approximately 838 km h when first detected by the radar. 

FIGURE 3.50 A worker at M walks to 
the right, pulling the weight W upward 
as the rope moves through the pulley P 
(Example 6).

Note that the solution of Example 5 involved several unit conversions: from seconds to 
hours and from degrees to radians. When solving related rates problems, we should check 
that consistent units are used.

EXAMPLE 6  Figure 3.50a shows a rope running through a pulley at P and bearing 
a weight W at one end. The other end is held 1.5 m above the ground in the hand M of a 
worker. Suppose the pulley is 7.5 m above ground, the rope is 13.5 m long, and the worker 
is walking rapidly away from the vertical line PW at the rate of 1.2 m s. How fast is the 
weight being raised when the worker’s hand is 6.3 m away from PW?

Solution We let OM be the horizontal line of length x m from a point O directly below the 
pulley to the worker’s hand M at any instant of time (Figure 3.50). Let h be the height of the 
weight W above O, and let z denote the length of rope from the pulley P to the worker’s hand. 
We want to know dh/dt when x = 6.3 given that =dx dt 1.2. Note that the height of P above 
O is 6 m because O is 1.5 m above the ground. We assume the angle at O is a right angle. 

At any instant of time t, we have the following relationships (see Figure 3.50b):

− + =

+ =

h z

x z

6 13.5

6 . O

Total length of rope is 13.5 m.

Angle at   is a right angle.2 2 2

If we solve for = +z h7.5  in the first equation, and substitute into the second equation, 
we have

  + = +x h6 (7.5 ) .2 2 2  (1)

Differentiating both sides with respect to t gives

( )= +x dx
dt

h dh
dt

2 2 7.5 ,

and solving this last equation for dh/dt we find

             =
+

dh
dt

x
h

dx
dt7.5

.  (2)

Since we know dx/dt, it remains only to find 7.5 + h at the instant when x = 6.3. From 
Equation (1),

+ = + h6 6.3 (7.5 )2 2 2

so that

+ = + =h h(7.5 ) 75.69,   or  7.5 8.7.2

Equation (2) now gives

= ⋅ = ≈dh
dt

6.3
8.7

1.2 756
870

0.87  m s

as the rate at which the weight is being raised when =x 6.3 m.  

x

M

P

O

W

1.5 m

(a)

= 1.2 m�sdx
dt

x

z

h

M

P

O

W
6 m

(b)

= ?dh
dt
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 3.10  Related Rates 211

 1. Area Suppose that the radius r and area π=A r 2 of a circle are 
differentiable functions of t. Write an equation that relates dA dt 
to dr dt.

 2. Surface area Suppose that the radius r and surface area 
π=S r4 2 of a sphere are differentiable functions of t. Write an 

equation that relates dS dt to dr dt.

 3. Assume that =y x5  and =dx dt 2. Find dy dt .

 4. Assume that + =x y2 3 12 and = −dy dt 2. Find dx dt.

 5. If =y x 2 and =dx dt 3, then what is dy dt  when = −x 1?

 6. If = −x y y3  and =dy dt 5, then what is dx dt when =y 2?

 7. If + =x y 252 2  and = −dx dt 2, then what is dy dt  when 
=x 3 and = −y 4?

 8. If =x y 4 272 3  and =dy dt 1 2, then what is dx dt when =x 2?

 9. If = + = −L x y dx dt,   1,2 2  and =dy dt 3, find dL dt 
when =x 5 and =y 12.

 10. If + + = =r s v dr dt12, 4,2 3  and = −ds dt 3, find dv dt 
when r 3=  and s 1.=

 11. If the original 24 m edge length x of a cube decreases at the rate of 
5 m min, when x 3=  m at what rate does the cube’s

 a. surface area change? b. volume change?

 12. A cube’s surface area increases at the rate of 72 cm s.2  At what rate 
is the cube’s volume changing when the edge length is =x 3 cm?

 13. Volume The radius r and height h of a right circular cylinder are 
related to the cylinder’s volume V by the formula V r h.2π=

 a. How is dV dt  related to dh dt  if r is constant?

 b. How is dV dt  related to dr dt if h is constant?

 c. How is dV dt  related to dr dt and dh dt  if neither r nor h is 
constant?

 14. Volume The radius r and height h of a right circular cone are 
related to the cone’s volume V by the equation π( )=V r h1 3 .2

 a. How is dV dt  related to dh dt  if r is constant?

 b. How is dV dt  related to dr dt if h is constant?

 c. How is dV dt  related to dr dt and dh dt  if neither r nor h is 
constant?

 15. Changing voltage The voltage V (volts), current I (amperes), 
and resistance R (ohms) of an electric circuit like the one shown 
here are related by the equation =V IR. Suppose that V is 
increasing at the rate of 1 volt s while I is decreasing at the rate of 
1 3 amp s. Let t denote time in seconds.

 16. Electrical power The power P (watts) of an electric circuit is 
related to the circuit’s resistance R (ohms) and current I (amperes) 
by the equation P RI .2=

 a. How are dP dt, dR dt , and dI dt  related if none of P, R, and 
I are constant?

 b. How is dR dt  related to dI dt  if P is constant?

 17. Distance Let x and y be differentiable functions of t, and let 
= +s x y2 2  be the distance between the points ( )x, 0  and 

( )y0,  in the xy-plane.

 a. How is ds dt  related to dx dt if y is constant?

 b. How is ds dt  related to dx dt and dy dt  if neither x nor y is 
constant?

 c. How is dx dt related to dy dt  if s is constant?

 18. Diagonals If x, y, and z are lengths of the edges of a rectan-
gular box, then the common length of the box’s diagonals is 
s x y z .2 2 2= + +

 a. Assuming that x, y, and z are differentiable functions of t, how 
is ds dt  related to dx dt, dy dt , and dz dt?

 b. How is ds dt  related to dy dt  and dz dt if x is constant?

 c. How are dx dt, dy dt , and dz dt related if s is constant?

 19. Area The area A of a triangle with sides of lengths a and b 
enclosing an angle of measure θ is

A ab1
2

sin .θ=

 a. How is dA dt related to θd dt if a and b are constant?

 b. How is dA dt related to θd dt and da dt  if only b is constant?

 c. How is dA dt related to θd dt da dt, , and db dt  if none of a, 
b, and θ are constant?

 20. Heating a plate When a circular plate of metal is heated in an 
oven, its radius increases at the rate of 0.01 cm min. At what rate 
is the plate’s area increasing when the radius is 50 cm?

 21. Changing dimensions in a rectangle The length l of a rectan-
gle is decreasing at the rate of 2 cm s while the width w is increas-
ing at the rate of 2 cm s. When l 12 cm=  and w 5 cm,=  find 
the rates of change of (a) the area, (b) the perimeter, and (c) the 
lengths of the diagonals of the rectangle. Which of these quanti-
ties are decreasing, and which are increasing?

 22. Changing dimensions in a rectangular box Suppose that the 
edge lengths x, y, and z of a closed rectangular box are changing at 
the following rates:

= = − =dx
dt

dy
dt

dz
dt

1 m s, 2 m s, 1 m s.

Find the rates at which the box’s (a) volume, (b) surface area, 
and (c) diagonal length s x y z2 2 2= + +  are changing at the 
instant when x y4,   3,= =  and z 2.=

 23. A sliding ladder A 3.9-m ladder is leaning against a house 
when its base starts to slide away (see accompanying figure). By 
the time the base is 3.6 m from the house, the base is moving at 
the rate of 1.5 m s.

 a. How fast is the top of the ladder sliding down the wall then?

EXERCISES 3.10 

V

R

I

+ −

 a. What is the value of dV dt?

 b. What is the value of dI dt?

 c. What equation relates dR dt  to dV dt  and dI dt?

 d. Find the rate at which R is changing when V 12=  volts and 
I 2=  amps. Is R increasing, or decreasing?
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212 Chapter 3 Derivatives

 b. At what rate is the area of the triangle formed by the ladder, 
wall, and ground changing then?

 c. At what rate is the angle  between the ladder and the ground 
changing then?

 a. At what rate is the water level changing when the water is  
8 m deep?

 b. What is the radius r of the water’s surface when the water is  
y m deep?

 c. At what rate is the radius r changing when the water is  
8 m deep?

 30. A growing raindrop Suppose that a drop of mist is a perfect 
sphere and that, through condensation, the drop picks up moisture 
at a rate proportional to its surface area. Show that under these 
circumstances the drop’s radius increases at a constant rate.

 31. The radius of an inflating balloon A spherical balloon is 
inflated with helium at the rate of 100 m min.3  How fast is the 
balloon’s radius increasing at the instant the radius is 5 m? How 
fast is the surface area increasing?

 32. Hauling in a dinghy A dinghy is pulled toward a dock by a 
rope from the bow through a ring on the dock 2 m above the bow. 
The rope is hauled in at the rate of 0.5 m s.

 a. How fast is the boat approaching the dock when 3 m of rope 
are out?

 b. At what rate is the angle  changing at this instant (see the 
figure)?

y

x
0

y(t)

s(t)

x(t)

r

y

13

Center of sphere

Water level

 24. Commercial air traffic Two commercial airplanes are flying at 
an altitude of 12,000 m along straight-line courses that intersect 
at right angles. Plane A is approaching the intersection point at 
a speed of 442 knots (nautical miles per hour; a nautical mile is 
1852 m). Plane B is approaching the intersection at 481 knots.  
At what rate is the distance between the planes changing when A 
is 5 nautical miles from the intersection point, and B is 12 nautical 
miles from the intersection point?

 25. Flying a kite A girl flies a kite at a height of 90 m, the wind  
carrying the kite horizontally away from her at a rate of 7.5 m s. 
How fast must she let out the string when the kite is 150 m away 
from her?

 26. Boring a cylinder The mechanics at Lincoln Automotive are 
reboring a 15-cm-deep cylinder to fit a new piston. The machine 
they are using increases the cylinder’s radius one-thousandth of 
a centimeter every 3 min. How rapidly is the cylinder volume 
increasing when the bore (diameter) is 10 cm?

 27. A growing sand pile Sand falls from a conveyor belt at the rate 
of 10 m min3  onto the top of a conical pile. The height of the pile  
is always three-eighths of the base diameter. How fast are the  
(a) height and (b) radius changing when the pile is 4 m high? 
Answer in centimeters per minute.

 28. A draining conical reservoir Water is flowing at the rate of 
50 m min3  from a shallow concrete conical reservoir (vertex 
down) of base radius 45 m and height 6 m.

 a. How fast (in centimeters per minute) is the water level falling 
when the water is 5 m deep?

 b. How fast is the radius of the water’s surface changing then? 
Answer in centimeters per minute.

 29. A draining hemispherical reservoir Water is flowing at the rate 
of 6 m min3  from a reservoir shaped like a hemispherical bowl of 
radius 13 m, shown here in profile. Answer the following questions, 
given that the volume of water in a hemispherical bowl of radius R 
is ( ) ( )= −V y R y3 32  when the water is y meters deep.

 33. A balloon and a bicycle A balloon is rising vertically above 
a level, straight road at a constant rate of 0.3 m s. Just when the 
balloon is 20 m above the ground, a bicycle moving at a constant 
rate of 5 m s passes under it. How fast is the distance s t( ) between 
the bicycle and balloon increasing 3 s later?

 34. Making coffee Coffee is draining from a conical filter into a 
cylindrical coffeepot at the rate of 160 cm min.3

 a. How fast is the level in the pot rising when the coffee in the 
cone is 12 cm deep?

x
0

y

3.9-m ladder

y(t)

x(t)

u

Ring at edge
of dock

2 m

u
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 3.10  Related Rates 213

 b. How fast is the level in the cone falling then?  38. Videotaping a moving car You are videotaping a race from 
a stand 40 m from the track, following a car that is moving at 
288 km h ( )80 m s , as shown in the accompanying figure. How 
fast will your camera angle  be changing when the car is right in 
front of you? A half second later?

 35. Cardiac output In the late 1860s, Adolf Fick, a professor of 
physiology in the Faculty of Medicine in Würzberg, Germany, 
developed one of the methods we use today for measuring how 
much blood your heart pumps in a minute. Your cardiac output 
as you read this sentence is probably about 7 L min. At rest it 
is likely to be a bit under 6 L min. If you are a trained marathon 
runner running a marathon, your cardiac output can be as high as 
30 L min.

Your cardiac output can be calculated with the formula

y
Q
D

,

where Q is the number of milliliters of CO 2 you exhale in a min-
ute and D is the difference between the CO 2 concentration ( )ml L  
in the blood pumped to the lungs and the CO 2 concentration in 
the blood returning from the lungs. With Q 233 ml min and 
D 97 56 41 ml L ,= − =

y
233 ml min

41 ml L
5.68 L min,= ≈

fairly close to the 6 L min that most people have at basal (resting) 
conditions. (Data courtesy of J. Kenneth Herd, M.D., Quillan Col-
lege of Medicine, East Tennessee State University.)

Suppose that when Q 233 and D 41, we also know 
that D is decreasing at the rate of 2 units a minute but that Q 
remains unchanged. What is happening to the cardiac output?

 36. Moving along a parabola A particle moves along the parabola 
y x 2 in the first quadrant in such a way that its x-coordinate 
(measured in meters) increases at a steady 10 m s. How fast is the 
angle of inclination  of the line joining the particle to the origin 
changing when x 3 m?

 37. Motion in the plane The coordinates of a particle in the 
metric xy-plane are differentiable functions of time t with 

= − = −dx dt dy dt1 m s  and  5 m s.  How fast is the par-
ticle’s distance from the origin changing as it passes through the 
point ( )5,12 ?

 39. A moving shadow A light shines from the top of a pole 15 m 
high. A ball is dropped from the same height from a point 9 m 
away from the light. (See accompanying figure.) How fast is the 
shadow of the ball moving along the ground 1 2 s later? (Assume 
the ball falls a distance s t t4.9 m in seconds.2 )

 40. A building’s shadow On a morning of a day when the sun will 
pass directly overhead, the shadow of a 24 m building on level 
ground is 18 m long. At the moment in question, the angle  the 
sun makes with the ground is increasing at the rate of 0.27 min. 
At what rate is the shadow decreasing? (Remember to use radians. 
Express your answer in centimeters per minute, to the nearest tenth.)

15 cm

15 cm

15 cm

How fast
is this
level rising?

How fast
is this
level falling?

u

Car

Camera

40 m

x

Light

9

Shadow

0

15 m
pole

Ball at time t = 0 

1/2 s later

x(t)

24 m

u
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214 Chapter 3 Derivatives

1 km Lighthouse

x
Sh

or
el

in
e

u

 41. A melting ice layer A spherical iron ball 8 cm in diameter is 
coated with a layer of ice of uniform thickness. If the ice melts 
at the rate of 10 cm min,3  how fast is the thickness of the ice 
decreasing when it is 2 cm thick? How fast is the outer surface 
area of ice decreasing?

 42. Highway patrol A highway patrol plane flies 3 km above a level, 
straight road at a steady 120 km h. The pilot sees an oncoming 
car and with radar determines that at the instant the line-of-sight 
distance from plane to car is 5 km, the line-of-sight distance is 
decreasing at the rate of 160 km h. Find the car’s speed along the 
highway.

 43. Baseball players A baseball diamond is a square 27 m on a side.  
A player runs from first base to second at a rate of 5 m s.

 a. At what rate is the player’s distance from third base changing 
when the player is 9 m from first base?

 b. At what rates are angles 1 and 2 (see the figure) changing at 
that time?

 c. The player slides into second base at the rate of 4.5 m s. At 
what rates are angles 1 and 2 changing as the player touches 
base?

 44. Ships Two ships are steaming straight away from a point O 
along routes that make a 120° angle. Ship A moves at 14 knots  
(nautical miles per hour; a nautical mile is 1852 m). Ship B moves 
at 21 knots. How fast are the ships moving apart when OA 5 
and OB 3 nautical miles?

 45. Clock’s moving hands At what rate is the angle between 
a clock’s minute and hour hands changing at 4 o’clock in the 
afternoon?

 46. Oil spill An explosion at an oil rig located in gulf waters causes 
an elliptical oil slick to spread on the surface from the rig. The 
slick is a constant 20 cm thick. After several days, when the major 
axis of the slick is 2 km long and the minor axis is 3 4 km wide, 
it is determined that its length is increasing at the rate of 9 m h,  
and its width is increasing at the rate of 3 m h. At what rate  
(in cubic meters per hour) is oil flowing from the site of the rig 
at that time?

 47. A lighthouse beam A lighthouse sits 1 km offshore, and its beam 
of light rotates counterclockwise at the constant rate of 3 full circles 
per minute. At what rate is the image of the beam moving down the 
shoreline when the image is 1 km from the spot on the shoreline 
nearest the lighthouse?

It is often useful to approximate complicated functions with simpler ones that give the accuracy 
we want for specific applications and, at the same time, are easier to work with than the original 
functions. The approximating functions discussed in this section are called linearizations, 
and they are based on tangent lines. Other approximating functions, such as polynomials, are 
discussed in Chapter 9.

We introduce new variables dx and dy, called differentials, and define them in a 
way that makes Leibniz’s notation for the derivative dy/dx a true ratio. We use dy to 
estimate error in measurement, which then provides for a precise proof of the Chain 
Rule (Section 3.6).

Linearization

As you can see in Figure 3.51, the tangent line to the curve y x 2 lies close to the curve 
near the point of tangency. For a brief interval to either side, the y-values along the tangent 
line give good approximations to the y-values on the curve. We observe this phenomenon 

3.11 Linearization and Differentials

Second base

Player

Home

9 m First
base

Third
base

u1

u2

27 m
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 3.11  Linearization and Differentials 215

FIGURE 3.51 The more we magnify the graph of a function near a point where the 
function is differentiable, the flatter the graph becomes and the more it resembles its  
tangent line.

4

0
3−1

2

0
20

y = x2 and its tangent line y = 2x − 1 at (1, 1). Tangent line and curve very close near (1, 1).

1.2

0.8
1.20.8

1.003

0.997
1.0030.997

Tangent line and curve very close throughout
entire x-interval shown.

Tangent line and curve closer still. Computer
screen cannot distinguish tangent line from
curve on this x-interval.

y = x2

y = 2x − 1

(1, 1)

y = x2

y = 2x − 1

(1, 1)

y = x2

y = 2x − 1

(1, 1)

y = x2

y = 2x − 1

(1, 1)

FIGURE 3.52 The tangent line to  
the curve y f x x a( ) at   is the line= =  
L x f a f a x a( ) ( ) ( ) .( )= + ′ −

x

y

0 a

Slope = f ′(a)

y = f (x)

y = L(x)(a,  f (a))

DEFINITIONS If  f  is differentiable at =x a, then the approximating function

L x f a f a x a( ) ( ) ( )( )= + ′ −

is the linearization of  f  at a. The approximation

f x L x( ) ( )≈

of  f  by L is the standard linear approximation of  f  at a. The point =x a is 
the center of the approximation.

by zooming in on the two graphs at the point of tangency, or by looking at tables of values 
for the difference between f x( ) and its tangent line near the x-coordinate of the point of 
tangency. The phenomenon is true not just for parabolas; every differentiable curve behaves 
locally like its tangent line.

In general, the tangent line to y f x( )=  at a point x a,=  where  f  is differentiable  
(Figure 3.52), passes through the point ( )a f a, ( ) , so its point-slope equation is

y f a f a x a( ) ( ) .( )= + ′ −

Thus, this tangent line is the graph of the linear function

( )= + ′ −L x f a f a x a( ) ( ) ( ) .

As long as this line remains close to the graph of  f  as we move off the point of tangency, 
L x( ) gives a good approximation to f x( ).
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216 Chapter 3 Derivatives

EXAMPLE 1  Find the linearization of f x x x( ) 1 at 0= + =  (Figure 3.53).

FIGURE 3.54 Magnified view of the 
window in Figure 3.53.

1.0

0−0.1 0.1 0.2

1.1

0.9

y = 1 +

y = 
"

1 + x

2
x

FIGURE 3.53 The graph of = +y x1  and its linear-
izations at x 0 and x 3. Figure 3.54 shows a magni-
fied view of the small window about 1 on the y-axis.

x

y

0−1

2

1

1 2 3 4

y =    +
y =    +

5
4

x
41 x

2

y = 
"

1 + x

Solution Since

f x x( ) 1
2

1 ,1 2( )′ = + −

we have f (0) 1 and f (0) 1 2,′ =  giving the linearization

L x f a f a x a x x( ) ( ) ( ) 1 1
2

0 1
2

.( )( )= + ′ − = + − = +

See Figure 3.54. 

The following table shows how accurate the approximation ( )+ ≈ +x x1 1 2  
from Example 1 is for some values of x near 0. As we move away from zero, we lose accu-
racy. For example, for x 2, the linearization gives 2 as the approximation for 3, which 
is not even accurate to one decimal place.

Approximation True value True value approximation

≈ + =1.005 1 0.005
2

1.00250 1.002497 < −0.000003 10 5

≈ + =1.05 1 0.05
2

  1.025 1.024695 < −0.000305 10 3

≈ + =1.2 1 0.2
2

  1.10 1.095445 < −0.004555 10 2

Do not be misled by the preceding calculations into thinking that whatever we do 
with a linearization is better done with a calculator. In practice, we would never use a 
linearization to find a particular square root. The utility of a linearization is its ability to 
replace a complicated formula by a simpler one over an entire interval of values. If we 
have to work with x1  for x in an interval close to 0 and can tolerate the small amount 
of error involved over that interval, we can work with ( )+ x1 2  instead. Of course, we 
then need to know how much error there is. We further examine the estimation of error in 
Chapter 9.
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 3.11  Linearization and Differentials 217

A linear approximation normally loses accuracy away from its center. As Figure 3.53 
suggests, the approximation ( )+ ≈ +x x1 1 2  is too crude to be useful near x 3.=  
There, we need the linearization at x 3.=

FIGURE 3.55 The graph of f x x( ) cos=   
and its linearization at x 2.π=   
Near x x x2,  cos 2 2π π( )= ≈ +  
(Example 3).

x

y

0 p
2 y = cos x

y = −x + p
2

Approximations Near =x 0

+ ≈ +

−
≈ +

−
≈ +

x x

x
x

x
x

1 1
2

1
1

1

1
1

1
22

2

EXAMPLE 2  Find the linearization of f x x( ) 1= +  at x 3.=  (See Figure 3.53.)

Solution We evaluate the equation defining L x a( ) at  3.=  With

f f x(3) 2, (3) 1
2

1 1
4

,
x

1 2

3
( )= ′ = + =−

=

we have

L x x x( ) 2 1
4

3 5
4 4

.( )= + − = +

At x 3.2,=  the linearization in Example 2 gives

x1 1 3.2 5
4

3.2
4

1.250 0.800 2.050,+ = + ≈ + = + =

which differs from the true value 4.2 2.04939≈  by less than one one-thousandth. The 
linearization in Example 1 gives

x1 1 3.2 1 3.2
2

1 1.6 2.6,+ = + ≈ + = + =

a result that is off by more than 25%. 

EXAMPLE 3  Find the linearization of f x x( ) cos=  at x 2π=  (Figure 3.55).

Solution Since π π( ) ( )= =f 2 cos 2 0, f x x( ) sin ,′ = −  and π π( ) ( )′ = − =f 2 sin 2   
−1, we find the linearization at a 2π=  to be

L x f a f a x a

x

x

( ) ( ) ( )

0 1
2

2
.

π

π

( )( )

( )= + ′ −

= + − −

= − +  

An important linear approximation for roots and powers is

x kx x k1 1  near 0; any number k ( )( )+ ≈ +

(Exercise 15). This approximation, which is good for values of x sufficiently close to zero, 
has broad application. For example, when x is small,

( )

( )

( )

( ) ( )

+ ≈ +

−
= − ≈ + − − = +

+ = + ≈ + = +

−
= − ≈ + − − = +

=

= − −

=

= − −

−

−

x x

x
x x x

x x x x

x
x x x

1 1 1
2

1
1

1 1 1 ( ) 1

1 5 1 5 1 1
3

(5 ) 1 5
3

1
1

1 1 1
2

( ) 1 1
2

k

k x x

k x x

k x x

1 2

1; replace   by .

1 3; replace   by 5 .

1 2; replace   by .

1

43 4 1 3 4 4

2
2 1 2 2 2

4

2
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218 Chapter 3 Derivatives

FIGURE 3.56 Geometrically, the differential dy is the 
change LΔ  in the linearization of  f  when =x a changes by 
an amount dx x.= Δ

x

y

0 a

y = f (x)

Δy = f (a + dx) − f (a)

ΔL = f ′(a)dx

dx = Δx

(a, f (a))

Tangent
line

a + dx

When dx is a small change in x,
the corresponding change in
the linearization is precisely dy.

(a + dx, f (a + dx))

DEFINITION Let y f x( )=  be a differentiable function. The differential dx is 
an independent variable. The differential dy is

dy f x dx( ) .= ′

Differentials

We sometimes use the Leibniz notation dy dx  to represent the derivative of y with respect 
to x. Contrary to its appearance, it is not a ratio. We now introduce two new variables dx 
and dy with the property that when their ratio exists, it is equal to the derivative.

Unlike the independent variable dx, the variable dy is always a dependent variable. It 
depends on both x and dx. If dx is given a specific value and x is a particular number in the 
domain of the function  f, then these values determine the numerical value of dy. Often the 
variable dx is chosen to be x,Δ  the change in x.

EXAMPLE 4

(a) Find dy if y x x37 .5= +
(b) Find the value of dy when x 1=  and dx 0.2.=

Solution 

(a) dy x dx5 374( )= +
(b) Substituting x 1=  and dx 0.2=  in the expression for dy, we have

( )= ⋅ + =dy 5 1 37  0.2 8.4.4  

The geometric meaning of differentials is shown in Figure 3.56. Let x a=  and set 
dx x.= Δ  The corresponding change in y f x( )=  is

y f a dx f a( ).( )Δ = + −

The corresponding change in the tangent line L is

L L a dx L a

f a f a a dx a f a

f a dx

( )

( ) ( ) ( )

( ) .

L a dx L a( )
� �������������� �������������� �

( )

( )[ ]

Δ = + −

= + ′ + − −

= ′
+( )
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 3.11  Linearization and Differentials 219

FIGURE 3.57 When dr is small com-
pared with a, the differential dA gives 
the estimate π( )+ = +A a dr a dA2  
(Example 6).

ΔA ≈ dA = 2pa dr

a = 10

dr = 0.1

That is, the change in the linearization of  f  is precisely the value of the differential dy 
when x a=  and dx x.= Δ  Therefore, dy represents the amount the tangent line rises or 
falls when x changes by an amount dx x.= Δ

If dx 0,≠  then the quotient of the differential dy by the differential dx is equal to the 
derivative f x( )′  because

dy dx
f x dx

dx
f x

dy
dx

( )
( ) .÷ =

′
= ′ =

We sometimes write

df f x dx( )= ′

in place of dy f x dx( ) ,= ′  calling d f the differential of  f. For instance, if f x x( ) 3 6,2= −  
then

df d x x dx3 6 6 .2( )= − =

Every differentiation formula like

d u
dx

du
dx

d
dx

d u
dx

u du
dx

or
sin

cosυ υ ( )( )+ = + =

has a corresponding differential form like

d u du d d u u duor sin cos .υ υ ( )( )+ = + =

EXAMPLE 5  We can use the Chain Rule and other differentiation rules to find dif-
ferentials of functions.

(a) ( ) = =d x x d x x dxtan 2 sec (2 ) (2 ) 2 sec 22 2

(b) d x
x

x dx x d x

x

x dx dx x dx

x
dx

x1
1 1

1 1 12 2 2( ) ( ) ( )

( ) ( ) ( )+
=

+ − +
+

=
+ −

+
=

+
 

Estimating with Differentials

Suppose we know the value of a differentiable function f x( ) at a point a and want to esti-
mate how much this value will change if we move to a nearby point a dx.+  If dx x= Δ  
is small, then we can see from Figure 3.56 that yΔ  is approximately equal to the differen-
tial dy. Since

f a dx f a y( ) , x dx( )+ = + Δ Δ =

the differential approximation gives

f a dx f a dy( )( )+ ≈ +

when dx x.= Δ  Thus the approximation y dyΔ ≈  can be used to estimate ( )+f a dx  
when f a( ) is known, dx is small, and dy f a dx( ) .= ′

EXAMPLE 6  The radius r of a circle increases from a 10 m=  to 10.1 m (Fig-
ure 3.57). Use dA to estimate the increase in the circle’s area A. Estimate the area of the 
enlarged circle and compare your estimate to the true area found by direct calculation.

Solution Since A r ,2π=  the estimated increase is

π π π= ′ = = =dA A a dr a dr( ) 2 2 (10)(0.1) 2 m .2

Thus, since A r r A r dA( ) ,( )+ Δ ≈ +  we have

π

π π π

( )+ ≈ +

= + =

A A10 0.1 (10) 2

(10) 2 102 .2

The area of a circle of radius 10.1 m is approximately 102 m .2π
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220 Chapter 3 Derivatives

The true area is
π

π

=

=

A(10.1) (10.1)

102.01 m .

2

2

The error in our estimate is 0.01 m ,2π  which is the difference A dA.Δ −  

a dx a a dxsin sin cos( )( )+ ≈ +

EXAMPLE 7  Use differentials to estimate

(a) 7.971 3 (b) sin 6 0.01 .π( )+

Solution 

(a) The differential associated with the cube root function y x1 3=  is

dy
x

dx1
3

.
2 3

=

We set =a 8, the closest number near 7.97 where we can easily compute f a( ) and 
f a( )′ . To arrange that + =a dx 7.97, we choose = −dx 0.03. Approximating with 
the differential gives

( )

( )
( )

( )

= + ≈ +

= + −

= + − =

f f a dx f a dy(7.97) ( )

8 1
3 8

0.03

2 1
12

0.03 1.9975.

1 3
2 3

This gives an approximation to the true value of 7.97 ,1 3  which is 1.997497 to 6 decimal 
places.

(b) The differential associated with y xsin=  is

dy x dxcos .=

To estimate sin 6 0.01 ,π( )+  we set a 6π=  and =dx 0.01. Then

π

π π( )
( ) ( )

( )

( )

+ = + ≈ +

= +

= + ≈

f f a dx f a dy6 0.01 ( )

sin
6

cos
6

0.01

1
2

3
2

0.01 0.5087.

For comparison, the true value of sin 6 0.01π( )+  to 6 decimal places is 0.508635. 

The method in part (b) of Example 7 can be used in computer algorithms to give val-
ues of trigonometric functions. The algorithms store a large table of sine and cosine values 
between 0 and 4.π  Values between these stored values are computed using differentials as 
in Example 7b. Values outside of π[ ]0, 4  are computed from values in this interval using 
trigonometric identities.

When using differentials to estimate functions, our goal is to choose a nearby point =x a 
where both f a( ) and the derivative f a( )′  are easy to evaluate.

Error in Differential Approximation

Let f x( ) be differentiable at =x a and suppose that dx x= Δ  is an increment of x. We 
have two ways to describe the change in  f  as x changes from a to a x:+ Δ

f f a x f a

d f f a x

The true change: ( )

The differential estimate: ( )  .

( )Δ = + Δ −

= ′ Δ

How well does d f approximate f ?Δ
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 3.11  Linearization and Differentials 221

Change in =y f x( ) near =x a

If =y f x( ) is differentiable at =x a  and x changes from a to + Δa x, the 
change Δy in  f  is given by

y f a x x( ) ,εΔ = ′ Δ + Δ  (1)

in which ε → 0 as Δ →x 0.

We measure the approximation error by subtracting d f from f :Δ

� ��������� ���������

� �������������� ��������������

ε

( )

( )

( )

= Δ −

= Δ − ′ Δ

= + Δ − − ′ Δ

= + Δ −
Δ

− ′ ⋅Δ

= ⋅Δ
ε

Δ

f d f

f f a x

f a x f a f a x

f a x f a
x

f a x

x

Approximation error

( )

( ) ( )

( )
( )

.

f

Call this part .

As Δ →x 0, the difference quotient

( )+ Δ −
Δ

f a x f a
x

( )

approaches f a( )′  (remember the definition of f a( )′ ), so the quantity in parentheses becomes 
a very small number (which is why we called it ε). In fact, ε → 0 as Δ →x 0. When Δx 
is small, the approximation error εΔx is smaller still.

εΔ = ′ Δ + Δf f a x x( )� ���� ����� �
true

change
estimated

change
error

Although we do not know the exact size of the error, it is the product ε ⋅ Δx  of two small 
quantities that both approach zero as Δ →x 0. For many common functions, whenever 
Δx is small, the error is still smaller.

In Example 6 we found that

� �π π π π π( ) ( )Δ = − = − = +A (10.1) (10) 102.01 100 2 0.01 m
dA error

2 2 2

so the approximation  error is ε πΔ − = Δ =A dA r 0.01  and ε π= Δ =r0.01  
π π=0.01 0.1 0.1 m.

Proof of the Chain Rule

Equation (1) enables us to give a complete proof of the Chain Rule. Our goal is to show 
that if f u( ) is a differentiable function of u and =u g x( ) is a differentiable function of x, 
then the composition =y f g x( ( )) is a differentiable function of x. Since a function is dif-
ferentiable if and only if it has a derivative at each point in its domain, we must show that 
whenever g is differentiable at x0 and  f  is differentiable at g x( ),0  then the composition is 
differentiable at x 0 and the derivative of the composition satisfies the equation

= ′ ⋅ ′
=

dy
dx

f g x g x( ( )) ( ).
x x

0 0
0
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222 Chapter 3 Derivatives

Let Δx be an increment in x and let Δu and Δy be the corresponding increments in u 
and y. Applying Equation (1), we have

u g x x x g x x( ) ( ) ,0 1 0 1ε ε( )Δ = ′ Δ + Δ = ′ + Δ

where ε → 01  as Δ →x 0. Similarly,

y f u u u f u u( ) ( ) ,0 2 0 2ε ε( )Δ = ′ Δ + Δ = ′ + Δ

where ε → 02  as Δ →u 0. Notice also that Δ → Δ →u x0 as 0. Combining the equa-
tions for Δu and Δy gives

y f u g x x( ) ( ) ,0 2 0 1ε ε( )( )Δ = ′ + ′ + Δ
so

ε ε ε εΔ
Δ

= ′ ′ + ′ + ′ +y
x

f u g x g x f u( ) ( ) ( ) ( ) .0 0 2 0 0 1 2 1

Since ε1 and ε2 go to zero as Δx goes to zero, the last three terms on the right vanish in the 
limit, leaving

= Δ
Δ

= ′ ′ = ′ ⋅ ′
= Δ →

dy
dx

y
x

f u g x f g x g xlim ( ) ( ) ( ( )) ( ).
x x x 0

0 0 0 0
0

 

Sensitivity to Change

The equation d f f x dx( )= ′  tells how sensitive the output of  f  is to a change in input at 
different values of x. The larger the value of ′f  at x, the greater the effect of a given change 
dx. As we move from a to a nearby point +a dx, we can describe the change in  f  in three 
ways: absolute, relative, and percentage.

True Estimated

Absolute change ( )Δ = + −f f a dx f a( ) df f a dx( )= ′

Relative change
Δ f
f a( )

d f
f a( )

Percentage change
Δ

×
f

f a( )
100 ×

d f
f a( )

100

EXAMPLE 8  You want to calculate the depth of a well from the equation =s t4.9 2 by 
timing how long it takes a heavy stone you drop to splash into the water below. How sensitive  
will your calculations be to a 0.1-s error in measuring the time?

Solution The size of ds in the equation

=ds t dt9.8

depends on how big t is. If =t 2 s, the change caused by =dt 0.1 is about

( )( )= =ds 9.8 2 0.1 1.96 m.

Three seconds later at =t 5 s, the change caused by the same dt is

( )( )= =ds 9.8 5 0.1 4.9 m.

For a fixed error in the time measurement, the error in using ds to estimate the depth is 
larger when it takes a longer time before the stone splashes into the water. That is, the  
estimate is more sensitive to the effect of the error for larger values of t. 
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 3.11  Linearization and Differentials 223

EXAMPLE 9  Newton’s second law,

υ υ
( )= = =F d

dt
m m d

dt
ma,

is stated with the assumption that mass is constant, but we know this is not strictly true 
because the mass of an object increases with velocity. In Einstein’s corrected formula, 
mass has the value

υ
=

−
m

m

c1
,0

2 2

where the “rest mass” m0 represents the mass of an object that is not moving and c is the 
speed of light, which is about 300,000 km s. Use the approximation

−
≈ +

x
x1

1
1 1

22
2 (2)

to estimate the increase Δm in mass resulting from the added velocity υ.

Solution When υ is very small compared with υc c, 2 2  is close to zero and it is safe to 
use the approximation

c c
1

1
1 1

2
( ) x

c
Eq. 2  with 

2 2

2

2υ
υ( )−

≈ + υ
=

to obtain

υ
υ υ( ) ( )=

−
≈ +⎡

⎣⎢
⎤
⎦⎥

= +m
m

c
m

c
m m

c1
1 1

2
1
2

1 ,0

2 2 0

2

2 0 0
2

2

or

υ ( )≈ +m m m
c

1
2

1 .0 0
2

2
 (3)

Equation (3) expresses the increase in mass that results from the added velocity υ. 

Converting Mass to Energy

Equation (3) derived in Example 9 has an important interpretation. In Newtonian physics, 
m1 2 0

2υ( )  is the kinetic energy (KE) of the object, and if we rewrite Equation (3) in the form

m m c m1
2

,0
2

0
2υ( )− ≈

we see that

υ υ( ) ( ) ( )− ≈ = − = Δm m c m m m1
2

1
2

1
2

0 KE ,0
2

0
2

0
2

0
2

or

( ) ( )Δ ≈ Δm c KE .2

So the change in kinetic energy ( )Δ KE  in going from velocity 0 to velocity υ is approx-
imately equal to ( )Δm c ,2  the change in mass times the square of the speed of light. 
Using ≈ ×c 3 10 m s,8  we see that a small change in mass can create a large change 
in energy.
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224 Chapter 3 Derivatives

x

y

0

dx

x0 + dx

df = f ′(x0) dx

Δf = f (x0 + dx) − f (x0)

Tangent line

(x0, f (x0))

y = f (x)

x0

Finding Linearizations
In Exercises 1–5, find the linearization L x( ) of f x( ) at =x a.

 1. = − + =f x x x a( ) 2 3, 23

 2. = + = −f x x a( ) 9, 42

 3. = + =f x x
x

a( ) 1 , 1

 4. = = −f x x a( ) , 83

 5. f x x a( ) tan , π= =

 6. Common linear approximations at x 0=  Find the lineariza-
tions of the following functions at x 0.=

 a. sin x b. cos x c. tan x d. e x e. xln 1( )+

Linearization for Approximation
In Exercises 7–14, find a linearization at a suitably chosen integer near 
a at which the given function and its derivative are easy to evaluate.

 7. = + =f x x x a( ) 2 , 0.12

 8. = =−f x x a( ) , 0.91

 9. = + − = −f x x x a( ) 2 3 3, 0.92

 10. = + =f x x a( ) 1 , 8.1

 11. = =f x x a( ) , 8.53

 12. =
+

=f x x
x

a( )
1

, 1.3

 13. = = −−f x e a( ) , 0.1x

 14. π= =−f x x a( ) sin , 121

 15. Show that the linearization of ( )= +f x x( ) 1 k  at x 0=  is 
L x kx( ) 1 .= +

 16. Use the linear approximation ( )+ ≈ +x kx1 1k  to find an 
approximation for the function f x( ) for values of x near zero.

 a. ( )= −f x x( ) 1 6 b. =
−

f x
x

( ) 2
1

 c. =
+

f x
x

( ) 1
1

 d. = +f x x( ) 2 2

 e. ( )= +f x x( ) 4 3 1 3 f. ( )= −
+

f x x
x

( ) 1
2

2
3

 17. Faster than a calculator Use the approximation  
x kx1 1k( )+ ≈ +   to estimate the following.

 a. 1.0002 50( )  b. 1.0093

 18. Find the linearization of f x x x x( ) 1 sin  at  0.= + + =  
How is it related to the individual linearizations of x 1+  and  
sin x at x 0?=

Derivatives in Differential Form
In Exercises 19–38, find dy.

 19. y x x33= −  20. y x x1 2= −

 21. y x
x

2
1 2

=
+

 22. 
( )

=
+

y x
x

2
3 1

 23. + − =y xy x2 03 2  24. − − =xy x y4 02 3 2

 25. y xsin 5( )=  26. y xcos( )2=

 27. y x4 tan 33( )=  28. y xsec 12( )= −

 29. y x3 csc 1 2( )= −  30. y
x

2 cot 1( )=

 31. y e x=  32. y xe x= −

 33. ( )= +y xln 1 2  34. ( )= +
−

y x
x

ln 1
1

 35. = −y etan ( )x1 2  36. y
x

xcot 1 cos 21
2

1( )= +− −

 37. = − −y esec ( )x1  38. = +−y e xtan 11 2

Approximation Error
In Exercises 39–44, each function f x( ) changes value when x changes 
from +x x dx to  .0 0  Find

  a. the change f f x dx f x( );0 0( )Δ = + −

  b. the value of the estimate df f x dx( ) ;0= ′  and

  c. the approximation error f df .Δ −

EXERCISES 3.11 

 39. = + = =f x x x x dx( ) 2 , 1, 0.12
0

 40. = + − = − =f x x x x dx( ) 2 4 3, 1, 0.12
0

 41. = − = =f x x x x dx( ) , 1, 0.13
0

 42. = = =f x x x dx( ) , 1, 0.14
0

 43. = = =−f x x x dx( ) , 0.5, 0.11
0

 44. = − + = =f x x x x dx( ) 2 3, 2, 0.13
0

Differential Estimates of Change
In Exercises 45–50, write a differential formula that estimates the 
given change in volume or surface area.

 45. The change in the volume π( )=V r4 3 3 of a sphere when the 
radius changes from r0 to r dr0 +

 46. The change in the volume V x 3=  of a cube when the edge lengths 
change from x0 to x dx0 +

 47. The change in the surface area S x6 2=  of a cube when the edge 
lengths change from x0 to x dx0 +

 48. The change in the lateral surface area S r r h2 2π= +  of a right 
circular cone when the radius changes from r0 to r dr0 +  and the 
height does not change

 49. The change in the volume V r h2π=  of a right circular cylinder 
when the radius changes from r0 to r dr0 +  and the height does 
not change

 50. The change in the lateral surface area S rh2π=  of a right circu-
lar cylinder when the height changes from h0 to h dh0 +  and the 
radius does not change
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 3.11  Linearization and Differentials 225

Applications

 51. The radius of a circle is increased from 2.00 to 2.02 m.

 a. Estimate the resulting change in area.

 b. Express the estimate as a percentage of the circle’s original area.

 52. The diameter of a tree was 25 cm. During the following year, the 
circumference increased 5 cm. About how much did the tree’s 
diameter increase? What is the tree’s cross-sectional area?

 53. Estimating volume Estimate the volume of material in a cylindrical  
shell with length 30 cm, radius 6 cm, and shell thickness 0.5 cm.

When P V, , , and v remain constant, W becomes a function of g, 
and the equation takes the simplified form

W a b
g

a b,  constant .( )= +

As a member of NASA’s medical team, you want to know how 
sensitive W is to apparent changes in g caused by flight maneuvers, 
and this depends on the initial value of g. As part of your investi-
gation, you decide to compare the effect on W of a given change 
dg on the moon, where g 1.6 m s ,2  with the effect the same 
change dg would have on Earth, where g 9.8 m s .2  Use the 
simplified equation above to find the ratio of dWmoon to dW .Earth

 62. Drug concentration The concentration C in milligrams per  
milliliter ( )mg ml  of a certain drug in a person’s bloodstream t 
hours after a pill is swallowed is modeled by

C t t
t

e( ) 1 4
1

.t
3

0.06= +
+

− −

Estimate the change in concentration when t changes from 20 to 
30 min.

 63. Unclogging arteries The formula V kr    ,4  discovered by 
the physiologist Jean Poiseuille (1797–1869), allows us to pre-
dict how much the radius of a partially clogged artery has to be 
expanded in order to restore normal blood flow. The formula says 
that the volume V of blood flowing through the artery in a unit 
of time at a fixed pressure is a constant k times the radius of the 
artery to the fourth power. How will a 10% increase in r affect V?

 64. Measuring acceleration of gravity When the length L of a 
clock pendulum is held constant by controlling its temperature, 
the pendulum’s period T depends on the acceleration of gravity g. 
The period will therefore vary slightly as the clock is moved from 
place to place on Earth’s surface, depending on the change in g. 
By keeping track of T , we can estimate the variation in g from 
the equation ( )=T L g2 1 2 that relates T, g, and L.

 a. With L held constant and g as the independent variable, calcu-
late dT and use it to answer parts (b) and (c).

 b. If g increases, will T increase or decrease? Will a pendulum 
clock speed up or slow down? Explain.

 c. A clock with a 100-cm pendulum is moved from a location 
where g 980 cm s 2 to a new location. This increases the 
period by dT 0.001s. Find dg and estimate the value of g 
at the new location.

 65. Quadratic approximations

 a. Let Q x b b x a b x a( ) 0 1 2
2( ) ( )= + − + −  be a quadratic 

approximation to f x( ) at x a with these properties:

 i. Q a f a( ) ( )

 ii. Q a f a( ) ( )′ = ′

 iii. Q a f a( ) ( ).′′ = ′′

Determine the coefficients b b, ,0 1  and b .2

 b. Find the quadratic approximation to ( )= −f x x( ) 1 1  at 
x 0.

 c. Graph ( )= −f x x( ) 1 1  and its quadratic approximation at 
x 0. Then zoom in on the two graphs at the point ( )0,1 . 
Comment on what you see.

 d. Find the quadratic approximation to g x x( ) 1  at x 1. 
Graph g and its quadratic approximation together. Comment 
on what you see.

T

T

T

 54. Estimating height of a building A surveyor, standing 9 m 
from the base of a building, measures the angle of elevation to 
the top of the building to be 75°. How accurately must the angle  
be measured for the percentage error in estimating the height of 
the building to be less than 4%?

 55. The radius r of a circle is measured with an error of at most 2%. 
What is the maximum corresponding percentage error in comput-
ing the circle’s

 a. circumference? b. area?

 56. The edge x of a cube is measured with an error of at most 0.5%. 
What is the maximum corresponding percentage error in comput-
ing the cube’s

 a. surface area? b. volume?

 57. Tolerance The height and radius of a right circular cylinder are 
equal, so the cylinder’s volume is V h .3  The volume is to 
be calculated with an error of no more than 1% of the true value. 
Find approximately the greatest error that can be tolerated in the 
measurement of h, expressed as a percentage of h.

 58. Tolerance

 a. About how accurately must the interior diameter of a 
10-m-high cylindrical storage tank be measured to calculate 
the tank’s volume to within 1% of its true value?

 b. About how accurately must the tank’s exterior diameter be 
measured to calculate the amount of paint it will take to paint 
the side of the tank to within 5% of the true amount?

 59. The diameter of a sphere is measured as 100 1 cm and the vol-
ume is calculated from this measurement. Estimate the percentage 
error in the volume calculation.

 60. Estimate the allowable percentage error in measuring the diam-
eter D of a sphere if the volume is to be calculated correctly to 
within 3%.

 61. The effect of flight maneuvers on the heart The amount 
of work done by the heart’s main pumping chamber, the left  
ventricle, is given by the equation

= +W PV V v
g2

,
2

where W is the work per unit time, P is the average blood  
pressure, V is the volume of blood pumped out during the unit of 
time,  (“delta”) is the weight density of the blood, v is the average 
velocity of the exiting blood, and g is the acceleration of gravity.  

T

6 cm
0.5 cm

30 cm
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226 Chapter 3 Derivatives

 1. What is the derivative of a function f  ? How is its domain related 
to the domain of f  ? Give examples.

 2. What role does the derivative play in defining slopes, tangent 
lines, and rates of change?

 3. How can you sometimes graph the derivative of a function when 
all you have is a table of the function’s values?

 4. What does it mean for a function to be differentiable on an open 
interval? On a closed interval?

 5. How are derivatives and one-sided derivatives related?

 6. Describe geometrically when a function typically does not have a 
derivative at a point.

 7. How is a function’s differentiability at a point related to its conti-
nuity there, if at all?

 8. What rules do you know for calculating derivatives? Give some 
examples.

CHAPTER 3 Questions to Guide Your Review

 9. Explain how the three formulas

 a. d
dx

x nx( )n n 1= −  b. ( ) =d
dx

cu c du
dx

 c. � �( )+ + + = + + +d
dx

u u u
du
dx

du
dx

du
dxn

n
1 2

1 2

enable us to differentiate any polynomial.

 10. What formula do we need, in addition to the three listed in Ques-
tion 9, to differentiate rational functions?

 11. What is a second derivative? A third derivative? How many deriv-
atives do the functions you know have? Give examples.

 12. What is the derivative of the exponential function e x? How does 
the domain of the derivative compare with the domain of the 
function?

 13. What is the relationship between a function’s average and instan-
taneous rates of change? Give an example.

 e. Find the quadratic approximation to h x x( ) 1= +  at 
=x 0. Graph h and its quadratic approximation together. 

Comment on what you see.

 f. What are the linearizations of  f, g, and h at the respective 
points in parts (b), (d), and (e)?

 66. The linearization is the best linear approximation Suppose 
that =y f x( ) is differentiable at =x a and that = =g x g x( ) ( )  

( )− +m x a c  is a linear function in which m and c are constants. 
If the error E x f x g x( ) ( ) ( )= −  were small enough near =x a, 
we might think of using g as a linear approximation of  f  instead 
of the linearization L x f a f a x a( ) ( ) ( ) .( )= + ′ −  Show that if 
we impose on g the conditions

1. = =E a( ) 0 x aThe approximation error is zero at  .

2. E x
x a

lim ( ) 0 x a
The error is negligible when
compared with  .x a −

= −→

then ( )= + ′ −g x f a f a x a( ) ( ) ( ) . Thus, the linearization L x( ) 
gives the only linear approximation whose error is both zero at 

=x a and negligible in comparison with −x a.

T  b. Graph the linearization and function together for 
− ≤ ≤x3 3 and − ≤ ≤x1 1.

 68. The linearization of xlog 3

 a. Find the linearization of f x x( ) log3=  at =x 3. Then round 
its coefficients to two decimal places.

 b. Graph the linearization and function together in the window 
≤ ≤x0 8 and ≤ ≤x2 4.

COMPUTER EXPLORATIONS
In Exercises 69–74, use a CAS to estimate the magnitude of the error 
in using the linearization in place of the function over a specified inter-
val I. Perform the following steps:

  a. Plot the function  f  over I.

  b. Find the linearization L of the function at the point a.

  c. Plot  f  and L together on a single graph.

  d.  Plot the absolute error f x L x I( ) ( )  over −  and find its 
maximum value.

  e.  From your graph in part (d), estimate as large a δ > 0 as you 
can that satisfies

x a f x L x( ) ( )δ ε− < ⇒ − <

for ε = 0.5, 0.1, and 0.01. Then check graphically to see 
whether your δ-estimate holds true.

 69. [ ]= + − − =f x x x x a( ) 2 , 1, 2 , 13 2

 70. = −
+

−⎡
⎣⎢

⎤
⎦⎥

=f x x
x

a( ) 1
4 1

, 3
4

,1 , 1
22

 71. [ ]( )= − − =f x x x a( ) 2 , 2, 3 , 22 3

 72. f x x x a( ) sin , 0, 2 , 2π[ ]= − =

 73. [ ]= =f x x a( ) 2 , 0, 2 , 1x

 74. f x x x a( ) sin , 0,1 , 1
2

1 [ ]= =−

T

T

x
a

y = f (x)

(a, f (a))

The linearization, L(x):
y = f (a) + f ′(a)(x − a)

Some other linear
approximation, g(x):
y = m(x − a) + c

 67. The linearization of 2 x

 a. Find the linearization of =f x( ) 2 x  at =x 0. Then round its 
coefficients to two decimal places.
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 Chapter 3  Practice Exercises 227

 14. How do derivatives arise in the study of motion? What can you 
learn about an object’s motion along a line by examining the 
derivatives of the object’s position function? Give examples.

 15. How can derivatives arise in economics?

 16. Give examples of still other applications of derivatives.

 17. What do the limits h hlim sin
h 0

( )( )
→

 and h hlim cos 1
h 0

( )( )−
→

 have 

to do with the derivatives of the sine and cosine functions? What 
are the derivatives of these functions?

 18. Once you know the derivatives of sin x and cos x, how can you 
find the derivatives of tan  x, cot  x, sec  x, and csc  x? What are the 
derivatives of these functions?

 19. What is the rule for calculating the derivative of a composition of 
two differentiable functions? How is such a derivative evaluated? 
Give examples.

 20. If u is a differentiable function of x, how do you find d dx u( )n( )  
if n is an integer? If n is a real number? Give examples.

 21. What is implicit differentiation? When do you need it? Give 
examples.

 22. What is the derivative of the natural logarithm function ln x?  
How does the domain of the derivative compare with the domain 
of the function?

 23. What is the derivative of the exponential function >a a, 0x  
and ≠a 1? What is the geometric significance of the limit of 
( )−a h1h  as →h 0? What is the limit when a is the number e?

 24. What is the derivative of xlog ?a  Are there any restrictions on a?

 25. What is logarithmic differentiation? Give an example.

 26. How can you write any real power of x as a power of e? Are there 
any restrictions on x? How does this lead to the Power Rule for 
differentiating arbitrary real powers?

 27. What is one way of expressing the special number e as a limit? 
What is an approximate numerical value of e correct to 7 decimal 
places?

 28. What are the derivatives of the inverse trigonometric functions? 
How do the domains of the derivatives compare with the domains 
of the functions?

 29. How do related rates problems arise? Give examples.

 30. Outline a strategy for solving related rates problems. Illustrate 
with an example.

 31. What is the linearization L x( ) of a function f x( ) at a point 
=x a? What is required of  f  at a for the linearization to exist? 

How are linearizations used? Give examples.

 32. If x moves from a to a nearby value +a dx, how do you estimate 
the corresponding change in the value of a differentiable function 
f x( )? How do you estimate the relative change? The percentage 
change? Give an example.

Derivatives of Functions
Find the derivatives of the functions in Exercises 1–64.

 1. = − +y x x x0.125 0.255 2  2. = − +y x x3 0.7 0.33 7

 3. π( )= − +y x x33 2 2  4. 
π

= + −
+

y x x7 1
1

7

 5. y x x x1 22 2( )( )= + +  6. ( )( )= − − −y x x2 5 4 1

 7. y sec 12 3θ θ( )= + +  8. y 1
csc

2 4

2 2θ θ( )= − − −

 9. =
+

s t
t1
 10. =

−
s

t
1

1

 11. y x x2 tan sec2 2= −  12. y
x x

1
sin

2
sin2

= −

 13. s tcos 1 24 ( )= −  14. s
t

cot 23( )=

 15. s t tsec tan 5( )= +  16. s t tcsc 1 35 2( )= − +

 17. r 2 sinθ θ=  18. r 2 cosθ θ=

 19. r sin 2θ=  20. r sin 1θ θ( )= + +

 21. y x
x

1
2

csc 22=  22. y x x2 sin=

 23. = −y x xsec(2 )1 2 2 24. y x xcsc 1 3( )= +

 25. y x5 cot 2=  26. y x xcot 52=

 27. =y x xsin (2 )2 2 2  28. y x xsin2 2 3( )= −

 29. ( )=
+

−

s t
t

4
1

2

 30. 
( )

= −
−

s
t
1

15 15 1 3

CHAPTER 3 Practice Exercises

 31. =
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟y x

x1

2

 32. =
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟y x

x
2

2 1

2

 33. = +y x x
x

2

2
 34. = +y x x x4

 35. r
sin

cos 1

2θ
θ

=
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟  36. r

1 sin
1 cos

2θ
θ

=
+
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

 37. ( )= + +y x x2 1 2 1

 38. y x x20 3 4 3 41 4 1 5( ) ( )= − − −

 39. y
x x

3
5 sin 22 3 2( )

=
+

 40. y x3 cos 33 1 3( )= + −

 41. = −y e10 x 5 42. =y e2 x2

 43. = −y xe e1
4

1
16

x x4 4  44. = −y x e x2 2

 45. y ln sin 2 θ( )=  46. y ln sec 2 θ( )=

 47. y xlog 22
2( )=  48. y xlog 3 75 ( )= −

 49. = −y 8 t 50. =y 9 t2

 51. =y x5 3.6 52. = −y x2 2

 53. ( )= + +y x 2 x 2 54. y x2 ln x 2( )=

 55. y u uarcsin 1 , 0 12= − < <

 56. 
υ

υ( )= >y arcsin 1 , 1
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228 Chapter 3 Derivatives

 57. y xln arccos=

58. y z z zarccos 1 2= − −

 59. y t t tarctan 1
2

ln= −

60. y t t1 arccot 22( )= +

 61. y z z z zarcsec 1, 12= − − >

 62. y x x2 1 arcsec= −

 63. y arccsc sec , 0 2θ θ π( )= < <

 64. y x e1 x2 arctan( )= +

Implicit Differentiation
In Exercises 65–78, find dy dx by implicit differentiation.

 65. + + =xy x y2 3 1 66. + + − =x xy y x5 22 2

 67. + − =x xy y x4 3 23 4 3  68. + =x y5 10 154 5 6 5

 69. xy 1=  70. x y 12 2 =

 71. y x
x 1

2 =
+

 72. y x
x

1
1

2 = +
−

 73. e 1x y2 =+  74. = −y e2 x2 1

 75. x yln 1( ) =  76. x y xarcsin 1 2= +

 77. ye 2xarctan =  78. x 2y =

In Exercises 79 and 80, find dp dq.

 79. p pq q4 3 23 2+ − =  80. ( )= + −q p p5 22 3 2

In Exercises 81 and 82, find dr ds.

 81. r s scos 2 sin 2 π+ =  82. rs r s s2 32− − + = −

 83. Find d y dx2 2  by implicit differentiation:

 a. x y 13 3+ =  b. y
x

1 22 = −

 84. a.  By differentiating x y 12 2− =  implicitly, show that 
=dy dx x y.

 b. Then show that = −d y dx y1 .2 2 3

Numerical Values of Derivatives

 85. Suppose that functions f x( ) and g x( ) and their first derivatives 
have the following values at x 0=  and x 1.=

x f x( ) g x( ) ′f x( ) ′g x( )

0 1 1 3− 1 2

1 3 5 1 2 4−

Find the first derivatives of the following combinations at the 
given value of x.

 a. − =f x g x x6 ( ) ( ), 1 b. =f x g x x( ) ( ), 02

 c. 
+

=f x
g x

x
( )

( ) 1
, 1 d. =f g x x( ( )), 0

 e. =g f x x( ( )), 0

 f. ( )+ =x f x x( ) , 13 2

 g. ( )+ =f x g x x( ) , 0

 86. Suppose that the function f x( ) and its first derivative have the fol-
lowing values at x 0=  and =x 1.

x f x( ) ′f x( )

0 9 2−

1 3− 1 5

Find the first derivatives of the following combinations at the 
given value of x.

 a. =x f x x  ( ), 1 b. =f x x( ), 0

 c. ( ) =f x x, 1 d. f x x1 5 tan , 0( )− =

 e. f x
x

x
( )

2 cos
, 0

+
=  f. x f x x10 sin

2
  ( ), 12π( ) =

 87. Find the value of dy dt  at t 0=  if y x3 sin 2=  and x t .2 π= +

 88. Find the value of ds du at u 2=  if = +s t t52  and 
( )= +t u u2 .2 1 3

 89. Find the value of dw ds at =s 0 if w esin r( )=  and 
r s3 sin 6 .π( )= +

 90. Find the value of dr dt at t 0=  if θ( )= +r 72 1 3 and 
θ θ+ =t 1.2

 91. If y y x2 cos ,3 + =  find the value of d y dx2 2  at the point 0,1( ).

 92. If + =x y 4,1 3 1 3  find d y dx2 2  at the point 8, 8( ).

Applying the Derivative Definition
In Exercises 93 and 94, find the derivative using the definition.

 93. =
+

f t
t

( ) 1
2 1

 94. = +g x x( ) 2 12

 95. a. Graph the function

=
− ≤ <

− ≤ ≤

⎧
⎨
⎪⎪
⎩⎪⎪

f x
x x

x x
( )

, 1 0

, 0 1.

2

2

 b. Is  f  continuous at x 0?=
 c. Is  f  differentiable at x 0?=

Give reasons for your answers.

 96. a. Graph the function

f x
x x

x x
( )

, 1 0

tan , 0 4.π
=

− ≤ <

≤ ≤
⎧
⎨
⎪⎪
⎩⎪⎪

 b. Is  f  continuous at x 0?=
 c. Is  f  differentiable at x 0?=

Give reasons for your answers.

 97. a. Graph the function

=
≤ ≤

− < ≤
⎧
⎨
⎪⎪
⎩⎪⎪

f x
x x

x x
( )

, 0 1

2 , 1 2.

 b. Is  f  continuous at x 1?=
 c. Is  f  differentiable at x 1?=

Give reasons for your answers.

M03_HASS5901_15_GE_C03.indd   228 07/03/23   13:26

www.konkur.in

Telegram: @uni_k



 Chapter 3  Practice Exercises 229

 98. For what value or values of the constant m, if any, is

f x
x x

mx x
( )

sin 2 , 0

, 0
=

≤

>
⎧
⎨
⎪⎪
⎩⎪⎪

 a. continuous at x 0?=

 b. differentiable at x 0?=
Give reasons for your answers.

Slopes, Tangent Lines, and Normal Lines

 99. Tangent lines with specified slope Are there any points on the 
curve ( ) ( )= + −y x x2 1 2 4  where the slope is −3 2? If so, 
find them.

 100. Tangent lines with specified slope Are there any points on the 
curve y x e x= − −  where the slope is 2? If so, find them.

 101. Horizontal tangent lines Find the points on the curve 
y x x x2 3 12 203 2= − − +  where the tangent line is parallel 
to the x-axis.

 102. Tangent intercepts Find the x- and y-intercepts of the line that 
is tangent to the curve =y x 3 at the point ( )− −2, 8 .

 103. Tangent lines perpendicular or parallel to lines Find the 
points on the curve y x x x2 3 12 203 2= − − +  where the 
tangent line is

 a. perpendicular to the line ( )= −y x1 24 .

 b. parallel to the line y x2 12 .= −

 104. Intersecting tangent lines Show that the tangent lines to the 
curve y x xsinπ( )=  at x π=  and π= −x  intersect at right 
angles.

 105. Normal lines parallel to a line Find the points on the curve 
y x xtan , 2 2,π π= − < <  where the normal line is parallel  
to the line = −y x 2. Sketch the curve and normal lines together, 
labeling each with its equation.

 106. Tangent lines and normal lines Find equations for the tan-
gent and normal lines to the curve y x1 cos= +  at the point 
π( )2,1 . Sketch the curve, tangent line, and normal line together, 

labeling each with its equation.

 107. Tangent parabola The parabola = +y x C2  is to be tangent 
to the line y x.=  Find C.

 108. Slope of a tangent line Show that the tangent line to the curve 
=y x 3 at any point ( )a a, 3  meets the curve again at a point 

where the slope is four times the slope at ( )a a, .3

 109. Tangent curve For what value of c is the curve ( )= +y c x 1  
tangent to the line through the points (0, 3) and ( )−5, 2 ?

 110. Normal lines to a circle Show that the normal line at any point 
of the circle x y a2 2 2+ =  passes through the origin.

In Exercises 111–116, find equations for the lines that are tangent, and 
the lines that are normal, to the curve at the given point.

 111. ( )+ =x y2 9, 1, 22 2

 112. ( )+ =e y 2, 0,1x 2

 113. ( )+ − =xy x y2 5 2, 3, 2

 114. ( )( )− = +y x x2 4, 6, 22

 115. ( )+ =x xy 6, 4,1

 116. ( )+ =x y2 17, 1, 43 2 3 2

 117. Find the slope of the curve + = +x y y x y3 3 2  at the points 
1,1( ) and ( )−1, 1 .

 118. The graph shown suggests that the curve y x xsin sin( )= −  
might have horizontal tangent lines at the x-axis. Does it? Give 
reasons for your answer.

x

y

0

−1

1
y = sin (x − sin x)

p 2p−2p −p

x

y

0 1

1

A

B

2

2

3

4

Analyzing Graphs
Each of the figures in Exercises 119 and 120 shows two graphs, the 
graph of a function =y f x( ) together with the graph of its derivative 
f x( ).′  Which graph is which? How do you know?

 119.   120. 

x

y

0 1−1

1

−1

−2

2A

B

x

y

1−1 2

1

−1
3 4 5 6

−2

y = f ′(x)

 121. Use the following information to graph the function =y f x( ) 
for − ≤ ≤x1 6.

 i) The graph of  f  is made of line segments joined end to end.

 ii) The graph starts at the point ( )−1, 2 .

 iii) The derivative of  f, where defined, agrees with the step 
function shown here.

 122. Repeat Exercise 121, supposing that the graph starts at ( )−1, 0  
instead of ( )−1, 2 .
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230 Chapter 3 Derivatives

 134. Impedance in a series circuit The impedance Z (ohms) in a 
series circuit is related to the resistance R (ohms) and reactance 
X (ohms) by the equation Z R X .2 2= +  If R is increasing 
at  3 ohms s and X is decreasing at 2 ohms s, at what rate is Z 
changing when =R 10 ohms and =X 20 ohms?

 135. Speed of moving particle The coordinates of a particle mov-
ing in the metric xy-plane are differentiable functions of time t  
with =dx dt 10 m s and =dy dt 5 m s. How fast is the  
particle moving away from the origin as it passes through the 
point ( )−3, 4 ?

 136. Motion of a particle A particle moves along the curve =y x 3 2 
in the first quadrant in such a way that its distance from the ori-
gin increases at the rate of 11 units per second. Find dx dt when 
x 3.=

 137. Draining a tank Water drains from the conical tank shown in 
the accompanying figure at the rate of 0.2 m min.3

 a. What is the relation between the variables h and r in the figure?

 b. How fast is the water level dropping when =h 2 m?

+
R

−
R2R1

 138. Rotating spool As television cable is pulled from a large spool 
to be strung from the telephone poles along a street, it unwinds 
from the spool in layers of constant radius (see accompanying 
figure). If the truck pulling the cable moves at a steady 2 m s  
(a touch over 7 km h), use the equation s r θ=  to find how fast 
(radians per second) the spool is turning when the layer of radius 
0.4 m is being unwound.

Logarithmic Differentiation
In Exercises 123–128, use logarithmic differentiation to find the deriv-
ative of y with respect to the appropriate variable.

 123. y x
x

2 1
cos 2

2( )= +  124. y x
x

3 4
2 4

10= +
−

 125. ( )( )( )

( )( )
= + −

− +
>y t t

t t
t1 1

2 3
, 2

5

 126. y
u

u

2 2

1

u

2
=

+

 127. y sin θ( )= θ

 128. y xln x1 ln( )= ( )

Related Rates

 129. Right circular cylinder The total surface area S of a right cir-
cular cylinder is related to the base radius r and height h by the 
equation S r rh2 2 .2π π= +

 a. How is dS dt related to dr dt if h is constant?

 b. How is dS dt related to dh dt  if r is constant?

 c. How is dS dt related to dr dt and dh dt  if neither r nor h is 
constant?

 d. How is dr dt related to dh dt  if S is constant?

 130. Right circular cone The lateral surface area S of a right circular 
cone is related to the base radius r and height h by the equation 
S r r h .2 2π= +

 a. How is dS dt related to dr dt if h is constant?

 b. How is dS dt related to dh dt  if r is constant?

 c. How is dS dt related to dr dt and dh dt  if neither r nor h is 
constant?

 131. Circle’s changing area The radius r of a circle is changing at 
the rate of π−2 m s. At what rate is the circle’s area changing 
when =r 10 m?

 132. Cube’s changing edges The volume of a cube is increasing at 
the rate of 1200 cm min3  at the instant its edges are 20 cm long. 
At what rate are the lengths of the edges changing at that instant?

 133. Resistors connected in parallel If two resistors of R1 and  
R2 ohms are connected in parallel in an electric circuit to make 
an R-ohm resistor, the value of R can be found from the equation

R R R
1 1 1 .

1 2

= +

If R1 is decreasing at the rate of 1 ohm s and R2 is increas-
ing at the rate of 0.5 ohm s, at what rate is R changing when 

=R 75 ohms1  and =R 50 ohms?2

r

h

Exit rate: 0.2 m3�min

3 m

1.2 m

0.4 m

M03_HASS5901_15_GE_C03.indd   230 07/03/23   13:27

www.konkur.in

Telegram: @uni_k



 Chapter 3  Additional and Advanced Exercises 231

(Lateral surface area)

h

r

1
3

V =    pr2h

S = pr"r2 + h2

1 km
A

x

u

 146. Controlling error 

 a. How accurately should you measure the edge of a cube to be 
reasonably sure of calculating the cube’s surface area with an 
error of no more than 2%?

 b. Suppose that the edge is measured with the accuracy 
required in part (a). About how accurately can the cube’s vol-
ume be calculated from the edge measurement? To find out, 
estimate the percentage error in the volume calculation that 
might result from using the edge measurement.

 147. Compounding error The circumference of the equator of a 
sphere is measured as 10 cm with a possible error of 0.4 cm. 
This measurement is used to calculate the radius. The radius is 
then used to calculate the surface area and volume of the sphere. 
Estimate the percentage errors in the calculated values of

 a. the radius. b. the surface area. c. the volume.

 148. Finding height To find the height of a lamppost (see accompa-
nying figure), you stand a 1.8 m pole 10 m from the lamp and mea-
sure the length a of its shadow, finding it to be 4.5 m, give or take 
a centimeter. Calculate the height of the lamppost using the value  
a 4.5, and estimate the possible error in the result.

 140. Points moving on coordinate axes Points A and B move along 
the x- and y-axes, respectively, in such a way that the distance r 
(meters) along the perpendicular from the origin to the line AB 
remains constant. How fast is OA changing, and is it increasing 
or decreasing, when OB r2  and B is moving toward O at the 
rate of r0.3 m s?

Linearization

 141. Find the linearizations of

 a. x xtan  at  4= −  b. x xsec  at  4.= −

Graph the curves and linearizations together.

 142. We can obtain a useful linear approximation of the function 
f x x x( ) 1 1 tan  at  0( )= + =  by combining the approximations

x
x x x1

1
1 and tan

+
≈ − ≈

to get

x
x1

1 tan
1 .

+
≈ −

Show that this result is the standard linear approximation of 
x1 1 tan( )+  at x 0.

 143. Find the linearization of f x x x( ) 1 sin 0.5= + + −  at 
x 0.

 144. Find the linearization of ( )= − + + −f x x x( ) 2 1 1 3.1 at 
x 0.

Differential Estimates of Change

 145. Surface area of a cone Write a formula that estimates the 
change that occurs in the lateral surface area of a right circu-
lar cone when the height changes from h h dh to 0 0  and the 
radius does not change.

 139. Moving searchlight beam The figure shows a boat 1 km off-
shore, sweeping the shore with a searchlight. The light turns at a 
constant rate, = −d dt 0.6 rad s.

 a. How fast is the light moving along the shore when it reaches 
point A?

 b. How many revolutions per minute is 0.6 rad s?

 1. An equation like sin cos 12 2+ =  is called an identity because 
it holds for all values of . An equation like sin 0.5 is not an 
identity because it holds only for selected values of , not all. If 
you differentiate both sides of a trigonometric identity in  with 
respect to , the resulting new equation will also be an identity.

CHAPTER 3 Additional and Advanced Exercises

Differentiate the following to show that the resulting equa-
tions hold for all .

 a. sin 2 2 sin cos

 b. cos 2 cos sin2 2= −

h

10 m
1.8 m

a
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232 Chapter 3 Derivatives

 b. Suppose that the labor force in part (a) is decreasing at the rate 
of 2% per year while the production per person is increasing 
at the rate of 3% per year. Is the total production increasing, or 
is it decreasing, and at what rate?

 8. Designing a gondola The designer of a 10 m-diameter spheri-
cal hot air balloon wants to suspend the gondola 2.5 m below  
the bottom of the balloon with cables tangent to the surface of the 
balloon, as shown. Two of the cables are shown running from the 
top edges of the gondola to their points of tangency, ( )− −4, 3  and 
( )−4, 3 . How wide should the gondola be?

 2. If the identity x a x a x asin sin cos cos sin( )+ = +  is differ-
entiated with respect to x (with a assumed to be a constant), is the 
resulting equation also an identity? Does this principle apply to 
the equation x x2 8 0?2 − − =  Explain.

 3. a. Find values for the constants a, b, and c that will make

f x x g x a bx cx( ) cos and ( ) 2= = + +

satisfy the conditions

f g f g f g(0) (0), (0) (0), and (0) (0).= ′ = ′ ′′ = ′′

 b. Find values for b and c that will make

f x x a g x b x c x( ) sin and ( ) sin cos( )= + = +

satisfy the conditions

= ′ = ′f g f g(0) (0) and (0) (0).

 c. For the determined values of a, b, and c, what happens for  
the third and fourth derivatives of  f  and g in each of parts (a) 
and (b)?

 4. Solutions to differential equations 

 a. Show that y x y xsin , cos , and y a x b xcos sin= +  
(a and b constants) all satisfy the equation

″ + =y y 0.

 b. How would you modify the functions in part (a) to satisfy the 
equation

″ + =y y4 0?

Generalize this result.

 5. An osculating circle Find the values of h, k, and a that make 
the circle ( ) ( )− + − =x h y k a2 2 2 tangent to the parabola 
= +y x 12  at the point (1, 2) and that also make the second 

derivatives d y dx2 2  have the same value on both curves there. 
Circles like this one that are tangent to a curve and have the same 
second derivative as the curve at the point of tangency are called 
osculating circles (from the Latin osculari, meaning “to kiss”). 
We will encounter them again in Chapter 12.

 6. Marginal revenue A bus will hold 60 people. The number x of 
people per trip who use the bus is related to the fare charged (p 
dollars) by the law ( )[ ]= −p x3 40 .2  Write an expression for 
the total revenue r x( ) per trip received by the bus company. What 
number of people per trip will make the marginal revenue dr/dx 
equal to zero? What is the corresponding fare? (This fare is the 
one that maximizes the revenue.)

 7. Industrial production 

 a. Economists often use the expression “rate of growth” in  
relative rather than absolute terms. For example, let u f t( ) 
be the number of people in the labor force at time t in a given 
industry. (We treat this function as though it were differen-
tiable even though it is an integer-valued step function.)

Let v g t( ) be the average production per person in 
the labor force at time t. The total production is then y uv. 
If the labor force is growing at the rate of 4% per year 
( )=du dt u0.04  and the production per worker is growing 
at the rate of 5% per year ( )=dv dt v0.05 , find the rate of 
growth of the total production, y.

 9. Pisa by parachute On August 5, 1988, Mike McCarthy of Lon-
don jumped from the top of the Tower of Pisa. He then opened his 
parachute in what he said was a world record low-level parachute 
jump of 54.6 m. Make a rough sketch to show the shape of the 
graph of his speed during the jump. (Data from: Boston Globe, 
Aug. 6, 1988.)

 10. Motion of a particle The position at time t 0 of a particle 
moving along a coordinate line is

s t10 cos 4 .( )= +

 a. What is the particle’s starting position ( )=t 0 ?

 b. What are the points farthest to the left and right of the origin 
reached by the particle?

 c. Find the particle’s velocity and acceleration at the points in 
part (b).

 d. When does the particle first reach the origin? What are its 
velocity, speed, and acceleration then?

 11. Shooting a paper clip On Earth, you can easily shoot a paper clip 
19.6 m straight up into the air with a rubber band. In t seconds after 
firing, the paper clip is = −s t t19.6 4.9 m2  above your hand.

 a. How long does it take the paper clip to reach its maximum 
height? With what velocity does it leave your hand?

 b. On the moon, the same acceleration will send the paper clip to 
a height of = −s t t19.6 0.8 m2  in t s. About how long will 
it take the paper clip to reach its maximum height, and how 
high will it go?

 12. Velocities of two particles At time t seconds, the positions of two 
particles on a coordinate line are = − + +s t t t3 12 18 5 m1

3 2  
and = − + −s t t t9 12 m.2

3 2  When do the particles have the 
same velocities?

x

y

(4, −3)(−4, −3)
5 m

2.5 m

Width

NOT TO SCALE

Suspension
cables

Gondola

x2 + y2 = 25

0
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 13. Velocity of a particle A particle of constant mass m moves 
along the x-axis. Its velocity  and position x satisfy the equation

( ) ( )− = −m k x x1
2

1
2

,2
0
2

0
2 2

where k, ,0  and x0 are constants. Show that whenever 0,

= −m d
dt

kx.

In Exercises 14 and 15, use implicit differentiation to find 
dy
dx

.

 14. y xx xln y

 15. = +y x 1e yx

 16. Average and instantaneous velocity 

 a. Show that if the position x of a moving point is given by a 
quadratic function of = + +t x At Bt C, ,2  then the average 
velocity over any time interval [ ]t t,1 2  is equal to the instanta-
neous velocity at the midpoint of the time interval.

 b. What is the geometric significance of the result in part (a)?

 17. Find all values of the constants m and b for which the function

y
x x

mx b x

sin ,

,
=

<

+ ≥
⎧
⎨
⎪⎪
⎩⎪⎪

is

 a. continuous at x .

 b. differentiable at x .

 18. Does the function

f x
x

x
x

x
( )

1 cos
, 0

0, 0
=

−
≠

=

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

have a derivative at x 0? Explain.

 19. a. For what values of a and b will

=
<

− + ≥
⎧
⎨
⎪⎪
⎩⎪⎪

f x
ax x

ax bx x
( )

, 2

3, 22

be differentiable for all values of x?

 b. Discuss the geometry of the resulting graph of  f.

 20. a. For what values of a and b will

=
+ ≤ −

+ + > −
⎧
⎨
⎪⎪
⎩⎪⎪

g x
ax b x

ax x b x
( )

, 1

2 , 13

be differentiable for all values of x?

 b. Discuss the geometry of the resulting graph of g.

 21. Odd differentiable functions Is there anything special about 
the derivative of an odd differentiable function of x? Give reasons 
for your answer.

 22. Even differentiable functions Is there anything special about 
the derivative of an even differentiable function of x? Give reasons 
for your answer.

 23. Suppose that the functions  f  and g are defined throughout an open 
interval containing the point x ,0  that  f  is differentiable at x ,0  that 
f x( ) 0,0  and that g is continuous at x .0  Show that the product 
fg is differentiable at x .0  This process shows, for example, that 
although x  is not differentiable at x 0, the product x x  is dif-
ferentiable at x 0.

 24. (Continuation of Exercise 23.) Use the result of Exercise 23 to 
show that the following functions are differentiable at x 0.

 a. x xsin

 b. x xsin2 3

 c. x x1 cos3 ( )−

 d. h x
x x x

x
( )

sin 1 , 0

0, 0

2 ( )
=

≠

=
⎧
⎨
⎪⎪
⎩⎪⎪

 25. Is the derivative of

h x
x x x

x
( )

sin 1 , 0

0, 0

2 ( )
=

≠

=
⎧
⎨
⎪⎪
⎩⎪⎪

continuous at x 0? How about the derivative of k x xh x( ) ( )? 
Give reasons for your answers.

 26. Let =
⎧
⎨
⎪⎪
⎩⎪⎪

f x
x x

x
( )

,  is rational

0,  is irrational.

2

Show that  f  is differentiable at x 0.

 27. Point B moves from point A to point C at 2 cm s in the accompa-
nying diagram. At what rate is  changing when x 4 cm?

4 cm
5 cm

3 cmA

6 cmC

B

x
u

 28. Suppose that a function  f  satisfies the following two conditions 
for all real values of x and y:

 i) ( )+ = ⋅f x y f x f y( ) ( ).

 ii) = +f x xg x( ) 1 ( ), where g xlim ( ) 1.
x 0

=
→

Show that the derivative f x( ) exists at every value of x and that 
′ =f x f x( ) ( ).

 29. The generalized product rule Use mathematical induction to 
prove that if y u u un1 2  is a finite product of differentiable 
functions, then y is differentiable on their common domain, and

= + + + −
dy
dx

du
dx

u u u
du
dx

u u u u
du
dx

.n n n
n1

2 1
2

1 2 1

 30. Leibniz’s rule for higher-order derivatives of products Leib-
niz’s rule for higher-order derivatives of products of differentiable 
functions says that

 a. 
( )

= + +d u
dx

d u
dx

du
dx

d
dx

u d
dx

2 .
2

2

2

2

2

2

 b. 
( )

= + + +d u
dx

d u
dx

d u
dx

d
dx

du
dx

d
dx

u d
dx

3 3 .
3

3

3

3

2

2

2

2

3

3
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c.

 
( )( )

( ) = + +

+
− − +

+ +

−

−

−

−

d u
dx

d u
dx

n d u
dx

d
dx

n n n k
k

d u
dx

d
dx

u d
dx

1 1
!

.

n

n

n

n

n

n

n k

n k

k

k

n

n

1

1

The equations in parts (a) and (b) are special cases of the 
equation in part (c). Derive the equation in part (c) by math-
ematical induction, using

( ) ( ) ( )

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟⎟ + +

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ = −

+
+ − −

m
k

m
k

m
k m k

m
k m k1

!
! !

!
1 ! 1 !

.

 31. The period of a clock pendulum The period T of a clock pen-
dulum (time for one full swing and back) is given by the formula 
T L g4 ,2 2  where T is measured in seconds, g 9.8 m s ,2  
and L, the length of the pendulum, is measured in meters. Find 
approximately

 a. the length of a clock pendulum whose period is T 1s.

 b. the change dT in T if the pendulum in part (a) is lengthened 
0.01 m.

 c. the amount the clock gains or loses in a day as a result of the 
period’s changing by the amount dT found in part (b).

 32. The melting ice cube Assume that an ice cube retains its cubi-
cal shape as it melts. If we call its edge length s, its volume is 
V s 3 and its surface area is s6 .2  We assume that V and s are 
differentiable functions of time t. We assume also that the cube’s 
volume decreases at a rate that is proportional to its surface area. 
(This latter assumption seems reasonable enough when we think 
that the melting takes place at the surface: Changing the amount 
of surface changes the amount of ice exposed to melt.) In math-
ematical terms,

dV
dt

k s k6 , 0.2( )= − >

The minus sign indicates that the volume is decreasing. We 
assume that the proportionality factor k is constant. (It probably 
depends on many things, such as the relative humidity of the sur-
rounding air, the air temperature, and the incidence or absence of 
sunlight, to name only a few.) Assume a particular set of condi-
tions in which the cube lost 1 4 of its volume during the first hour, 
and assume that the volume is V0 when t 0. How long will it 
take the ice cube to melt?

Mathematica/Maple Projects

Projects can be found at www.pearsonglobaleditions.com or within MyLab Math.

• Convergence of Secant Slopes to the Derivative Function

You will visualize the secant line between successive points on a curve and observe what happens as the distance between them becomes small. 
The function, sample points, and secant lines are plotted on a single graph, while a second graph compares the slopes of the secant lines with 
the derivative function.

• Derivatives, Slopes, Tangent Lines, and Making Movies

Parts I–III. You will visualize the derivative at a point, the linearization of a function, and the derivative of a function. You will learn how to 
plot the function and selected tangent lines on the same graph.
Part IV (Plotting Many Tangent Lines)
Part V (Making Movies). Parts IV and V of the module can be used to animate tangent lines as one moves along the graph of a function.

• Convergence of Secant Slopes to the Derivative Function

You will visualize right-hand and left-hand derivatives.

• Motion Along a Straight Line: Position Velocity Acceleration

Observe dramatic animated visualizations of the derivative relations among the position, velocity, and acceleration functions. Figures in the text 
can be animated.

CHAPTER 3 Technology Application Projects
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OVERVIEW One of the most important applications of the derivative is its use as a tool 
for finding the optimal (best) solutions to problems. For example, what are the height and 
diameter of the cylinder of largest volume that can be inscribed in a given sphere? What 
are the dimensions of the strongest rectangular wooden beam that can be cut from a cylin-
drical log of given diameter? How many items should a manufacturer produce to maxi-
mize profit?

In this chapter we apply derivatives to find extreme values of functions, to determine 
and analyze the shapes of graphs, and to solve equations numerically. We also investigate 
how to recover a function from its derivative. The key to many of these applications is 
the Mean Value Theorem, which connects the derivative and the average change of a 
function.

4
Applications  

of Derivatives

Maximum and minimum values are called extreme values of the function f . Absolute 
maxima or minima are also referred to as global maxima or minima.

For example, on the closed interval 2, 2π π[ ]−  the function =f x x( ) cos  takes on 
an absolute maximum value of 1 (once) and an absolute minimum value of 0 (twice). On 
the same interval, the function =g x x( ) sin  takes on a maximum value of 1 and a minimum 
value of −1 (Figure 4.1).

Functions defined by the same equation or formula can have different extrema (maxi-
mum or minimum values), depending on the domain. A function might not have a maximum 
or minimum if the domain is unbounded or fails to contain an endpoint. We see this in the 
following example.

4.1 Extreme Values of Functions on Closed Intervals

This section shows how to locate and identify extreme (maximum or minimum) values of 
a function from its derivative. Once we can do this, we can solve a variety of optimization 
problems (see Section 4.6). The domains of the functions we consider are intervals or 
unions of separate intervals.

DEFINITIONS Let f  be a function with domain D. Then f  has an absolute 
maximum value on D at a point c if

≤f x f c x D( ) ( ) for all   in 

and an absolute minimum value on D at c if

≥f x f c x D( ) ( ) for all   in  .

FIGURE 4.1 Absolute extrema 
for the sine and cosine functions on 

2, 2 .π π[ ]−  These values can depend 
on the domain of a function.

x

y

0

1
y = sin x

y = cos x

−1

p
2

−
p
2
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236 Chapter 4 Applications of Derivatives 

FIGURE 4.2 Graphs for Example 1.

x
2

(b) abs max and min

 y = x2

D = [0, 2]

y

x
2

(c) abs max only

 y = x2

D = (0, 2]

y

x
2

(d) no max or min

 y = x2

D = (0, 2)

y

x
2

(a) abs min only

 y = x2

D = (−∞, ∞)

y

THEOREM 1—The Extreme Value Theorem
If f  is continuous on a closed interval a b,[ ], then f  attains both an absolute 
maximum value M and an absolute minimum value m in a b,[ ]. That is, there are 
numbers x1 and x 2 in a b,[ ] with f x m f x M( ) , ( ) ,1 2  and m f x M( )  
for all x in a b,[ ].

EXAMPLE 1  The absolute extrema of the following functions on their domains can 
be seen in Figure 4.2. Each function has the same defining equation, y x ,2  but the 
domains vary.

Function rule Domain D Absolute extrema on D

(a) y x 2 ,( )−∞ ∞ No absolute maximum
Absolute minimum of 0 at x 0

(b) y x 2 0, 2[ ] Absolute maximum of 4 at x 2
Absolute minimum of 0 at x 0

(c) y x 2 0, 2( ] Absolute maximum of 4 at x 2
No absolute minimum

(d) y x 2 0, 2( ) No absolute extrema

Some of the functions in Example 1 do not have a maximum or a minimum value. The 
following theorem asserts that a function which is continuous over (or on) a finite closed 
interval a b,[ ] has an absolute maximum and an absolute minimum value on the interval. 
We look for these extreme values when we graph a function.

The proof of the Extreme Value Theorem requires a detailed knowledge of the real 
number system (see Appendix A.9) and we will not give it here. Figure 4.3 illustrates 
possible locations for the absolute extrema of a continuous function on a closed interval 
a b,[ ]. As we observed for the function y xcos , it is possible that an absolute minimum 

(or absolute maximum) may occur at two or more different points of the interval.
The requirements in Theorem 1 that the interval be closed and finite, and that the func-

tion be continuous, are essential. Without them, the conclusion of the theorem need not 
hold. Example 1 shows that an absolute extreme value may not exist if the interval fails to 
be both closed and finite. The exponential function ( )= −∞ ∞y e over ,x  shows that 
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 4.1  Extreme Values of Functions on Closed Intervals 237

neither extreme value need exist on an infinite interval. Figure 4.4 shows that the continu-
ity requirement cannot be omitted.

FIGURE 4.3 Some possibilities for a continuous function’s maximum and 
minimum on a closed interval a b, .[ ]

x
a x2

x2

Maximum and minimum
at interior points

b

M

x
a b

M

m

Maximum and minimum
at endpoints

x
a

Maximum at interior point,
minimum at endpoint

M

b

m
x

a

Minimum at interior point,
maximum at endpoint

M

b

m

(x2, M)

(x1, m)

x1

y = f (x)

y = f (x)

y = f (x)

y = f (x)

x1

0m 0

FIGURE 4.4 Even a single point of  
discontinuity can keep a function from 
having either a maximum or a minimum 
value on a closed interval. The function

y
x x

x

, 0 1

0, 1
=

≤ <

=
⎧
⎨
⎪⎪
⎩⎪⎪

is continuous at every point of 0,1[ ] 
except =x 1, yet its graph over 0,1[ ] does 
not have a highest point.

x

y

1
Smallest value

0

No largest value

1

y = x
0 ≤ x < 1

DEFINITIONS A function f  has a local maximum value at a point c within its 
domain D if ≤f x f c( ) ( ) for all ∈x D lying in some open interval containing c.

A function f  has a local minimum value at a point c within its domain D if 
≥f x f c( ) ( ) for all ∈x D lying in some open interval containing c.

If the domain of f  is the closed interval a b,[ ], then f  has a local maximum at the endpoint 
=x a if ≤f x f a( ) ( ) for all x in some half-open interval a a, , 0.δ δ[ )+ >  Likewise, f  

has a local maximum at an interior point =x c if ≤f x f c( ) ( ) for all x in some open interval 
c c, , 0,δ δ δ( )− + >  and a local maximum at the endpoint =x b if ≤f x f b( ) ( ) for  

all x in some half-open interval b b, , 0.δ δ( ]− >  The inequalities are reversed for local 
minimum values. In Figure 4.5, the function f  has local maxima at c and d and local  
minima at a, e, and b. Local extrema are also called relative extrema. Some functions can 
have infinitely many local extrema, even over a finite interval. One example is the function 

( )=f x x( ) sin 1  on the interval 0,1 .( ]  (We graphed this function in Figure 2.41.)
An absolute maximum is also a local maximum. Being the largest value overall, it is 

also the largest value in its immediate neighborhood. Hence, a list of all local maxima will 

Local (Relative) Extreme Values

Figure 4.5 shows a graph with five points where a function has extreme values on its 
domain a b,[ ]. The function’s absolute minimum occurs at a even though at e the function’s 
value is smaller than at any other point nearby. The curve rises as x approaches c from the 
left, then falls to the right of c, making f c( ) a maximum locally. The function attains its 
absolute maximum at d. We now define what we mean by local extrema.
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238 Chapter 4 Applications of Derivatives 

FIGURE 4.5 How to identify types of maxima and minima for a function with domain 
≤ ≤a x b.

x
ba c e d

Local minimum
No smaller value of
f  nearby.

Local minimum
No smaller value
of f  nearby.

Local maximum
No greater value of

f  nearby.

Absolute minimum
No smaller value of
f  anywhere. Also a

 local minimum.

Absolute maximum
No greater value of f anywhere.
Also a local maximum.

y = f (x)

automatically include the absolute maximum if there is one. Similarly, a list of all local 
minima will include the absolute minimum if there is one.

Finding Extrema

The next theorem explains why we usually need to investigate only a few values to find a 
function’s extrema.

THEOREM 2—The First Derivative Theorem for Local Extreme Values
If f  has a local maximum or minimum value at an interior point c of its domain, 
and if ′f  is defined at c, then

′ =f c( ) 0.

Proof  To prove that ′f c( ) is zero at a local extremum, we show first that ′f c( ) cannot 
be positive and second that ′f c( ) cannot be negative. The only number that is neither positive 
nor negative is zero, so that is what ′f c( ) must be.

To begin, suppose that f  has a local maximum value at =x c (Figure 4.6) so that 
− ≤f x f c( ) ( ) 0 for all values of x near enough to c. Since c is an interior point of f ’s 

domain, ′f c( ) is defined by the two-sided limit

−
−→

f x f c
x c

lim
( ) ( )

.
x c

This means that the right-hand and left-hand limits both exist at =x c and equal ′f c( ). 
When we examine these limits separately, we find that

 ′ = −
−

≤ − > ≤
→ +

f c
f x f c

x c
( ) lim

( ) ( )
0. x c f x f cBecause  0 and  ( ) ( )

x c
 (1)

Similarly,

 ′ = −
−

≥ − < ≤
→ −

f c
f x f c

x c
( ) lim

( ) ( )
0. x c f x f cBecause  0 and  ( ) ( )

x c
 (2)

Together, Equations (1) and (2) imply ′ =f c( ) 0.
This proves the theorem for local maximum values. To prove it for local minimum 

values, we simply use ≥f x f c( ) ( ), which reverses the inequalities in Formulas (1)  
and (2). 

FIGURE 4.6 A curve with a local 
maximum value. The slope at c, simulta-
neously the limit of nonpositive numbers 
and nonnegative numbers, is zero.

x
c x

Local maximum value

x

Secant slopes ≥ 0
(never negative)

Secant slopes ≤ 0
(never positive)

y = f (x)
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 4.1  Extreme Values of Functions on Closed Intervals 239

Theorem 2 says that a function’s first derivative is always zero at an interior point 
where the function has a local extreme value and the derivative is defined. If we recall that 
all the domains we consider are intervals or unions of separate intervals, the only places 
where a function f  can possibly have an extreme value (local or global) are

1. interior points where ′ =f 0, x c x eAt and in Fig. 4.5= =

2. interior points where ′f  is undefined, x dAt in Fig. 4.5=

3. endpoints of an interval in the domain of f . x a x bAt and in Fig. 4.5= =

The following definition helps us to summarize these results.

FIGURE 4.7 Critical points without 
extreme values. (a) ′ =y x3 2 is 0 at =x 0, 
but =y x 3 has no extremum there.  
(b) ( )′ = −y x1 3 2 3 is undefined at =x 0, 
but =y x 1 3 has no extremum there.

−1

x

y

1−1

1

0

(a)

y = x3

−1

x

y

1−1

1

0

(b)

y = x1�3

DEFINITION An interior point of the domain of a function f  where ′f  is zero or 
undefined is a critical point of f .

Thus the only domain points where a continuous function on a closed and finite interval 
can assume extreme values are critical points and endpoints. However, be careful not to 
misinterpret what is being said here. A function may have a critical point at =x c without 
having a local extreme value there. For instance, both of the functions = =y x y x and 3 1 3 
have critical points at the origin, but neither function has a local extreme value at the origin. 
Instead, each function has a point of inflection there (see Figure 4.7). We define and explore 
inflection points in Section 4.4.

If the interval is not closed or not finite (such as < <a x b or < < ∞a x ), we have 
seen that absolute extrema need not exist. However, many problems that ask for extreme 
values call for finding the absolute extrema of a continuous function on a closed and finite 
interval. Theorem 1 assures us that such values exist; Theorem 2 tells us that they are taken 
on only at critical points and endpoints. Often we can simply list these points and calculate 
the corresponding function values to find what the largest and smallest values are, and 
where they are located.

Finding the Absolute Extrema of a Continuous Function f  on a Finite  
Closed Interval

1. Find all critical points of f  on the interval.

2. Evaluate f  at all critical points and endpoints.

3. Take the largest and smallest of these values.

EXAMPLE 2  Find the absolute maximum and minimum values of =f x x( ) 2 on 
2,1 .[ ]−

Solution The function is differentiable over its entire domain, so the only critical point 
occurs where ′ = =f x x( ) 2 0, namely =x 0. We need to check the function’s values at 

=x 0 and at the endpoints = −x 2 and =x 1:

=

− =

=

f

f

f

Critical point value: (0) 0

Endpoint values: ( 2) 4

(1) 1.

The function has an absolute maximum value of 4 at = −x 2 and an absolute minimum 
value of 0 at =x 0. 

EXAMPLE    3  Find the absolute maximum and minimum values of 
( )= −f x x x( ) 10 2 ln  on the interval e1, .2[ ]
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240 Chapter 4 Applications of Derivatives 

Solution Figure 4.8 suggests that f  has its absolute maximum value near =x 3 and its 
absolute minimum value of 0 at =x e .2  Let’s verify this observation.

We evaluate the function at the critical points and endpoints and take the largest and 
smallest of the resulting values.

The first derivative is

( )( ) ( )′ = − − = −f x x x
x

x( ) 10 2 ln 10 1 10 1 ln .

The only critical point in the domain e1, 2[ ] is the point =x e, where ln =x 1. The values  
of f  at this one critical point and at the endpoints are

( )

( )

( )

= − =

= − =

= − =

f e e e e

f

f e e e

Critical point value: ( ) 10 2 ln 10

Endpoint values: (1) 10 2 ln 1 20

( ) 10 2 2 ln 0.2 2

We can see from this list that the function’s absolute maximum value is ≈e10 27.2; it 
occurs at the critical interior point =x e. The absolute minimum value is 0 and occurs at 
the right endpoint =x e .2  

EXAMPLE 4  Find the absolute maximum and minimum values of =f x x( ) 2 3 on 
the interval 2, 3 .[ ]−

Solution We evaluate the function at the critical points and endpoints and take the largest 
and smallest of the resulting values.

The first derivative,

′ = =−f x x
x

( ) 2
3

2
3

,1 3
3

has no zeros but is undefined at the interior point =x 0. The values of f  at this one critical 
point and at the endpoints are

f

f

f

Critical point value: (0) 0

Endpoint values: ( 2) 2 4

(3) 3 9.

2 3 3

2 3 3

( )

( )

=

− = − =

= =

We can see from this list that the function’s absolute maximum value is ≈9 2.08,3  and it 
occurs at the right endpoint =x 3. The absolute minimum value is 0, and it occurs at the 
interior point =x 0 where the graph has a cusp (Figure 4.9). 

Theorem 1 leads to a method for finding the absolute maxima and absolute minima 
of a differentiable function on a finite closed interval. On more general domains, such as 

0,1( ), 2, 5 , 1,[ ) [ )∞ , and ,   ,( )−∞ ∞  absolute maxima and minima may or may not exist. 
To determine if they exist, and to locate them when they do, we will develop methods to 
sketch the graph of a differentiable function. With knowledge of the asymptotes of the 
function, as well as the local maxima and minima, we can deduce the locations of the abso-
lute maxima and minima, if any. For now we can find the absolute maxima and the abso-
lute minima of a function on a finite closed interval by comparing the values of the 
function at its critical points and at the endpoints of the interval. For a differentiable 
function on a closed and finite interval a b,[ ], these are the only points where the extrema 
have the potential to occur.

FIGURE 4.9 The extreme values of 
=f x x( ) 2 3 on 2, 3[ ]−  occur at =x 0 

and =x 3 (Example 4).

x

y

10 2 3−1−2

1

2

Absolute maximum;
also a local maximumLocal

maximum

Absolute minimum;
also a local minimum

y = x2�3,  −2 ≤ x ≤ 3

FIGURE 4.8 The extreme values of 
( )= −f x x x( ) 10 2 ln  on e1, 2[ ] occur at 

=x e and =x e 2 (Example 3).
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EXERCISES 4.1

Finding Extrema from Graphs
In Exercises 1–6, determine from the graph whether the function has 
any absolute extreme values on a b,[ ]. Then explain how your answer 
is consistent with Theorem 1.

x

y

0 a c1 bc2

y = h(x)

 1.  2. 

x

y

0 a c b

y = f (x)

x

y

0 a bc

y = f (x)

 3.  4. 

x

y

0 a bc

y = h(x)

x

y

0 a c b

y = g(x)

 5.  6. 

x

y

0 a c b

y = g(x)

1−1

1

−1

y

x

 7.  8. 

2

2

−2 0

y

x

In Exercises 7–10, find the absolute extreme values and where they 
occur.

0 2

5

x

y 9.  10. 

2
(1, 2)

−3 2
−1

x

y

In Exercises 11–14, match the table with a graph.

 13. x f x( )′

a does not exist

b  0

c 2−

 14. x f x( )′

a does not exist

b does not exist

c 1.7−

 12. x f x( )′

a  0

b  0

c 5−

 11. x f x( )′

a 0

b 0

c 5

a b c a b c

a b c a b c

(a) (b)

(c) (d)

In Exercises 15–20, sketch the graph of each function and determine 
whether the function has any absolute extreme values on its domain. 
Explain how your answer is consistent with Theorem 1.

 15. = − < <f x x x( ) , 1 2

 16. = − − < <y x x2 , 1 12

 17. =
− ≤ <

− ≤ ≤

⎧
⎨
⎪⎪
⎩⎪⎪

g x
x x

x x
( )

, 0 1
1, 1 2

 18. =
− ≤ <

≤ ≤

⎧

⎨
⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

h x x
x

x x
( )

1 , 1 0

, 0 4

 19. π= < <y x x3 sin , 0 2

 20. π=
+ − ≤ <

< ≤

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x
x x

x x
( )

1, 1 0

cos , 0
2
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Absolute Extrema on Finite Closed Intervals
In Exercises 21–36, find the absolute maximum and minimum values 
of each function on the given interval. Then graph the function. Iden-
tify the points on the graph where the absolute extrema occur, and 
include their coordinates.

 21. = − − ≤ ≤f x x x( ) 2
3

5, 2 3

 22. = − − − ≤ ≤f x x x( ) 4, 4 1

 23. = − − ≤ ≤f x x x( ) 1, 1 22

 24. = − − ≤ ≤f x x x( ) 4 , 2 13

 25. = − ≤ ≤F x
x

x( ) 1 , 0.5 2
2

 26. = − − ≤ ≤ −F x
x

x( ) 1 , 2 1

 27. = − ≤ ≤h x x x( ) , 1 83

 28. = − − ≤ ≤h x x x( ) 3 , 1 12 3

 29. = − − ≤ ≤g x x x( ) 4 , 2 12

 30. = − − − ≤ ≤g x x x( ) 5 , 5 02

 31. f ( ) sin ,
2

5
6

θ θ π θ π= − ≤ ≤

 32. f ( ) tan ,
3 4

θ θ π θ π= − ≤ ≤

 33. g x x x( ) csc ,
3

2
3

π π= ≤ ≤

 34. g x x x( ) sec ,
3 6
π π= − ≤ ≤

 35. = − − ≤ ≤f t t t( ) 2 , 1 3

 36. = − ≤ ≤f t t t( ) 5 , 4 7

In Exercises 37–40:

 a. Find the absolute maximum and minimum values of each 
function on the given interval.

 b. Graph the function, identify the points on the graph where the 
absolute extrema occur, and include their coordinates.

 37. g x xe x( ) , 1 1x= − ≤ ≤−

 38. h x x x x( ) ln 1
2

, 0 3( )= + − ≤ ≤

 39. f x
x

x x( ) 1 ln , 0.5 4= + ≤ ≤

 40. g x e x( ) , 2 1x 2= − ≤ ≤−

In Exercises 41–44, find the function’s absolute maximum and mini-
mum values and say where they occur.

 41. = − ≤ ≤f x x x( ) , 1 84 3

 42. = − ≤ ≤f x x x( ) , 1 85 3

 43. θ θ θ= − ≤ ≤g( ) , 32 13 5

 44. h( ) 3 , 27 82 3θ θ θ= − ≤ ≤

Finding Critical Points
In Exercises 45–56, determine all critical points and all domain end-
points for each function.

 45. = − +y x x6 72  46. = −f x x x( ) 6 2 3

 47. ( )= −f x x x( ) 4 3  48. g x x x( ) 1 32 2( ) ( )= − −

T

 49. = +y x
x
22  50. =

−
f x x

x
( )

2

2

 51. = −y x x322  52. = −g x x x( ) 2 2

 53. ( )= + − −y x xln 1 tan 1  54. y x x2 1 arcsin2= − +

 55. = + − +y x x x3 24 73 2  56. = −y x x3 2 3

Theory and Examples
In Exercises 57 and 58, give reasons for your answers.

 57. Let ( )= −f x x( ) 2 .2 3

 a. Does ′f (2) exist?

 b. Show that the only local extreme value of f  occurs at =x 2.

 c. Does the result in part (b) contradict the Extreme Value 
Theorem?

 d. Repeat parts (a) and (b) for f x x a( ) 2 3( )= − , replacing 2 
by a.

 58. Let = −f x x x( ) 9 .3

 a. Does ′f (0) exist?

 b. Does ′f (3) exist?

 c. Does ′ −f ( 3) exist?

 d. Determine all extrema of f .

In Exercises 59–62, show that the function has neither an absolute 
minimum nor an absolute maximum on its natural domain.

 59. = + + −y x x x 511 3

 60. y x x3 tan= +

 61. = −
+

y e
e
1

1

x

x

 62. y x x2 sin 2= −

 63. A minimum with no derivative The function =f x x( )  has 
an absolute minimum value at =x 0 even though f  is not dif-
ferentiable at =x 0. Is this consistent with Theorem 2? Give  
reasons for your answer.

 64. Even functions If an even function f x( ) has a local maximum 
value at =x c, can anything be said about the value of f  at 

= −x c? Give reasons for your answer.

 65. Odd functions If an odd function g x( ) has a local minimum 
value at =x c, can anything be said about the value of g at 

= −x c? Give reasons for your answer.

 66. No critical points or endpoints exist We know how to find the 
extreme values of a continuous function f x( ) by investigating its 
values at critical points and endpoints. But what if there are no 
critical points or endpoints? What happens then? Do such func-
tions really exist? Give reasons for your answers.

 67. The function

V x x x x x( ) 10 2 16 2 , 0 5,( )( )= − − < <

models the volume of a box.

 a. Find the extreme values of V.

 b. Interpret any values found in part (a) in terms of the volume 
of the box.
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 68. Cubic functions Consider the cubic function

= + + +f x ax bx cx d( ) .3 2

 a. Show that f  can have 0, 1, or 2 critical points. Give examples 
and graphs to support your argument.

 b. How many local extreme values can f  have?

 69. Maximum height of a vertically moving body The height of a 
body moving vertically is given by

s gt t s g1
2

, 0,2
0 0υ= − + + >

with s in meters and t in seconds. Find the body’s maximum height.

 70. Peak alternating current Suppose that at any given time t (in 
seconds) the current i (in amperes) in an alternating current circuit 
is i t t2 cos 2 sin .= +  What is the peak current for this circuit 
(largest magnitude)?

Graph the functions in Exercises 71–74. Then find the extreme values 
of the function on the interval and say where they occur.

 71. f x x x x( ) 2 3 , 5 5= − + + − ≤ ≤

 72. g x x x x( ) 1 5 , 2 7= − − − − ≤ ≤

 73. h x x x x( ) 2 3 ,= + − − −∞ < < ∞

 74. k x x x x( ) 1 3 ,= + + − −∞ < < ∞

COMPUTER EXPLORATIONS
In Exercises 75–82, you will use a CAS to help find the absolute 
extrema of the given function over the specified closed interval.  
Perform the following steps.

 a. Plot the function over the interval to see its general behavior 
there.

 b. Find the interior points where ′ =f 0. (In some exercises, 
you may have to use the numerical equation solver to approxi-
mate a solution.) You may want to plot ′f  as well.

 c. Find the interior points where ′f  does not exist.

 d. Evaluate the function at all points found in parts (b) and (c) 
and at the endpoints of the interval.

 e. Find the function’s absolute extreme values on the interval 
and identify where they occur.

 75. [ ]= − + + −f x x x x( ) 8 4 2, 20 25, 64 254 2

 76. [ ]= − + − + −f x x x x( ) 4 4 1, 3 4 , 34 3

 77. f x x x( ) 3 , 2, 22 3 [ ]( )= − −
 78. [ ]= + − −f x x x( ) 2 2 3 , 1,10 32 3

 79. f x x x( ) cos , 0, 2π[ ]= +

 80. f x x x( ) sin 1
2

, 0, 23 4 π[ ]= − +

 81. f x x e( ) , 0, 5x2 3 2π [ ]= −

 82. f x x x x( ) ln 2 sin , 1,15( ) [ ]= +

4.2 The Mean Value Theorem

We know that constant functions have zero derivatives, but could there be a more compli-
cated function whose derivative is always zero? If two functions have identical derivatives 
over an interval, how are the functions related? We answer these and other questions in this 
chapter by applying the Mean Value Theorem. First we introduce a special case, known as 
Rolle’s Theorem, which is used to prove the Mean Value Theorem.

Rolle’s Theorem

As suggested by its graph, if a differentiable function crosses a horizontal line at two differ-
ent points, there is at least one point between them where the tangent to the graph is 
horizontal and the derivative is zero (Figure 4.10). We now state and prove this result.

FIGURE 4.10 Rolle’s Theorem says 
that a differentiable curve has at least one 
horizontal tangent between any two points 
where it crosses a horizontal line. It may 
have just one (a), or it may have more (b).

f ′(c3) = 0

f ′(c2) = 0
f ′(c1) = 0

f ′(c) = 0

y = f (x)

y = f (x)

0 a c b

0 bc3c2c1a

(a)

(b)

x

x

y

y

THEOREM 3—Rolle’s Theorem
Suppose that =y f x( ) is continuous over the closed interval a b,[ ] and differen-
tiable at every point of its interior (a, b). If =f a f b( ) ( ), then there is at least one 
number c in (a, b) at which f c( ) 0.′ =

Proof  Being continuous, f  assumes absolute maximum and minimum values on a b,[ ] 
by Theorem 1. These can occur only

1. at interior points where ′f  is zero,

2. at interior points where ′f  does not exist,

3. at endpoints of the interval, in this case a and b.

T
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244 Chapter 4 Applications of Derivatives 

By hypothesis, f  has a derivative at every interior point. That rules out possibility (2), leav-
ing us with interior points where ′ =f 0 and with the two endpoints a and b.

If either the maximum or the minimum occurs at a point c between a and b, then 
f c( ) 0′ =  by Theorem 2 in Section 4.1, and we have found a point for Rolle’s Theorem.

If both the absolute maximum and the absolute minimum occur at the endpoints, then 
because f a f b( ) ( ) it must be the case that f  is a constant function with 
f x f a f b( ) ( ) ( ) for every [ ]∈x a b, . Therefore, f x( ) 0′ =  and the point c can be 
taken anywhere in the interior (a, b). 

The hypotheses of Theorem 3 are essential. If they fail at even one point, the graph 
may not have a horizontal tangent (Figure 4.11).

FIGURE 4.11 There may be no horizontal tangent line if the hypotheses of Rolle’s 
Theorem do not hold.

a bx0a bx0a

(a) Discontinuous at an 
 endpoint of [a, b]

(b) Discontinuous at an 
 interior point of [a, b]

(c) Continuous on [a, b] but not
 differentiable at an interior
 point

b
x x x

y y y

y = f (x) y = f (x) y = f (x)

Rolle’s Theorem may be combined with the Intermediate Value Theorem to show 
when there is only one real solution of an equation f x( ) 0, as we illustrate in the next 
example.

EXAMPLE 1  Show that the equation

+ + =x x3 1 03

has exactly one real solution.

Solution We define the continuous function

= + +f x x x( ) 3 1.3

Since − = −f ( 1) 3 and f (0) 1, the Intermediate Value Theorem tells us that the graph 
of f  crosses the x-axis somewhere in the open interval 1, 0( )− . (See Figure 4.12.) Now, if 
there were even two points x a and x b where f x( ) was zero, Rolle’s Theorem 
would guarantee the existence of a point x c between them where f  was zero.  
However, the derivative

f x x( ) 3 32′ = +

is never zero (because it is always positive). Therefore, f  has no more than one zero. 

We will use Rolle’s Theorem to prove the Mean Value Theorem.

FIGURE 4.12 The only real zero of the 
polynomial = + +y x x3 13  is the one 
shown here where the curve crosses the 
x-axis between 1 and 0 (Example 1).

x

y

0 1

(1, 5)

1

(−1, −3)

−1

y = x3 + 3x + 1

HISTORICAL BIOGRAPHY

Michel Rolle
(1652–1719)
French mathematician Michel Rolle was 
largely self-educated in mathematics.  
He worked as an accountant and studied 
algebra and the Diophantine equations 
whenever he found time.

To know more, visit the companion Website. 
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The Mean Value Theorem

The Mean Value Theorem, which was first stated by Joseph-Louis Lagrange, is a slanted 
version of Rolle’s Theorem (Figure 4.13). The Mean Value Theorem guarantees that there 
is a point where the tangent line is parallel to the secant line that joins A and B.

FIGURE 4.14 The graph of f  and the 
secant line AB over the interval a b,[ ].

A(a, f (a))

B(b, f (b))
y = f (x)

x
ba

FIGURE 4.15 The secant line AB is the 
graph of the function g x( ). The function 
h x f x g x( ) ( ) ( )= −  gives the vertical dis-
tance between the graphs of f  and g at x.

x
ba x

B

A

h(x) = f (x) − g(x)

y = f (x)

y = g(x)

h(x)

FIGURE 4.13 Geometrically, the Mean 
Value Theorem says that somewhere 
between a and b the curve has at least one 
tangent line parallel to the secant line that 
joins A and B.

x

y

0 a

Tangent line parallel to secant line

c b

Slope

B

A

y = f (x)

Slope f ′(c)

f (b) − f (a)
b − a

THEOREM 4—The Mean Value Theorem
Suppose y f x( ) is continuous over a closed interval a b,[ ] and differentiable 
on the interval’s interior (a, b). Then there is at least one point c in (a, b) at which

 
f b f a

b a
f c

( ) ( )
( ).

−
−

= ′  (1)

Proof  We picture the graph of f  and draw a line through the points A a f a, ( )( ) and 
B b f b, ( )( ). (See Figure 4.14.) The secant line is the graph of the function

 ( )= + −
−

−g x f a
f b f a

b a
x a( ) ( )

( ) ( )
 (2)

(point-slope equation). The vertical difference between the graphs of f  and g at x is

 
h x f x g x

f x f a
f b f a

b a
x a

( ) ( ) ( )

( ) ( )
( ) ( )

.( )

= −

= − − −
−

−
 

(3)

Figure 4.15 shows the graphs of f , g, and h together.
The function h satisfies the hypotheses of Rolle’s Theorem on a b,[ ]. It is continuous 

on a b,[ ] and differentiable on (a, b) because both f  and g are. Also, h a h b( ) ( ) 0 
because the graphs of f  and g both pass through A and B. Therefore h c( ) 0′ =  at some point 

( )∈c a b, . This is the point we want for Equation (1) in the theorem.
To verify Equation (1), we differentiate both sides of Equation (3) with respect to x and 

then set x c:

h x f x
f b f a

b a

h c f c
f b f a

b a

f c
f b f a

b a

f c
f b f a

b a

( ) ( )
( ) ( )

( ) ( )
( ) ( )

0 ( )
( ) ( )

( )
( ) ( )

,

x c

h c

Derivative of Eq.  3

Evaluated at 

( ) 0

Rearranged

( )′ = ′ − −
−

′ = ′ − −
−

= ′ − −
−

′ = −
−

=

′ =

which is what we set out to prove. 

HISTORICAL BIOGRAPHY

Joseph-Louis Lagrange
(1736–1813)
Lagrange was born in Turin, Italy. He 
enjoyed studying mathematics, despite his 
father’s wish that he study law. Lagrange’s 
mathematical contributions began as early 
as 1754 with the discovery of the calculus of 
variations and continued with applications to 
mechanics in 1756.

To know more, visit the companion Website. 
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246 Chapter 4 Applications of Derivatives 

The hypotheses of the Mean Value Theorem do not require f  to be differentiable at 
either a or b. One-sided continuity at a and b is enough (Figure 4.16).

EXAMPLE 2  The function f x x( ) 2 (Figure 4.17) is continuous for x0 2 
and differentiable for x0 2. Since f (0) 0 and f (2) 4, the Mean Value Theo-
rem says that at some point c in the interval, the derivative f x x( ) 2′ =  must have the value 

4 0 2 0 2.( ) ( )− − =  In this case we can identify c by solving the equation c2 2 to 
get c 1. However, it is not always easy to find c algebraically, even though we know it 
always exists. 

A Physical Interpretation

We can think of the number f b f a b a( ) ( )( ) ( )− −  as the average change in f  over a b,[ ] 
and can view f c( ) as an instantaneous change. Then the Mean Value Theorem says that 
the instantaneous change at some interior point is equal to the average change over the 
entire interval.

EXAMPLE 3  If a car accelerating from zero takes 8 s to go 176 m, its average velocity  
for the 8-s interval is 176 8 22 m s. The Mean Value Theorem says that at some  
point during the acceleration, the speedometer must read exactly ( )79.2 km h 22 m s   
(Figure 4.18). 

Mathematical Consequences

At the beginning of the section, we asked what kind of function has a zero derivative over 
an interval. The first corollary of the Mean Value Theorem provides the answer that only 
constant functions have zero derivatives.

COROLLARY 1 If f x( ) 0′ =  at each point x of an open interval a b,( ), then 
f x C( )  for all ( )∈x a b, , where C is a constant.

COROLLARY 2 If f x g x( ) ( )′ = ′  at each point x in an open interval a b,( ), then 
there exists a constant C such that = +f x g x C( ) ( )  for all ( )∈x a b, . That is, 
f g is a constant function on a b,( ).

Proof  We want to show that f  has a constant value on the interval a b,( ). We do so by 
showing that if x1 and x 2 are any two points in a b,( ) with x x1 2, then f x f x( ) ( ).1 2  
Now f  satisfies the hypotheses of the Mean Value Theorem on x x, :1 2[ ]  It is differentiable 
at every point of x x,1 2[ ] and hence continuous at every point as well. Therefore,

f x f x
x x

f c
( ) ( )

( )2 1

2 1

−
−

= ′

at some point c between x1 and x .2  Since ′ =f 0 throughout a b,( ), this equation implies 
successively that

f x f x
x x

f x f x f x f x
( ) ( )

0, ( ) ( ) 0, and ( ) ( ).2 1

2 1
2 1 1 2

−
−

= − = =  

At the beginning of this section, we also asked about the relationship between two 
functions that have identical derivatives over an interval. The next corollary tells us that 
their values on the interval have a constant difference.

FIGURE 4.18 Distance versus elapsed 
time for the car in Example 3.

t

s

0
5

40

80 At this point,
the car’s speed
was 79.2 km/h.

Time (s)

(8, 176)

120

160

200

D
is

ta
nc

e 
(m

)

s = f (t)

FIGURE 4.16 The function 
= −f x x( ) 1 2  satisfies the hypotheses 

(and conclusion) of the Mean Value  
Theorem on 1,1[ ]−  even though f  is not 
differentiable at 1 and 1.

x

y

0 1−1

1

y = "1 − x2, −1 ≤ x ≤ 1

FIGURE 4.17 As we find in Example 1, 
c 1 is where the tangent line is parallel 
to the secant line.

x

y

1

(1, 1)

2

B(2, 4)

y = x2

A(0, 0)

1

2

3

4
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 4.2  The Mean Value Theorem 247

Proof  At each point ( )∈x a b,  the derivative of the difference function = −h f g is

h x f x g x( ) ( ) ( ) 0.′ = ′ − ′ =

Thus, =h x C( )  on a b,( ) by Corollary 1. That is, − =f x g x C( ) ( )  on a b,( ), so 
= +f x g x C( ) ( ) . 

Corollaries 1 and 2 are also true if the open interval a b,( ) fails to be finite. That is, 
they remain true if the interval is a b, , , ,  or  , .( ) ( ) ( )∞ −∞ −∞ ∞

Corollary 2 will play an important role when we discuss antiderivatives in Section 4.8. 
It tells us, for instance, that since the derivative of =f x x( ) 2 on ,( )−∞ ∞  is 2x, any other 
function with derivative 2x on ,( )−∞ ∞  must have the formula +x C2  for some value of C 
(Figure 4.19).

EXAMPLE 4  Find the function f x( ) whose derivative is sin x and whose graph passes 
through the point 0, 2( ).

Solution Since the derivative of g x x( ) cos= −  is g x x( ) sin′ = , we see that f  and g 
have the same derivative. Corollary 2 then says that f x x C( ) cos= − +  for some con-
stant C. Since the graph of f  passes through the point 0, 2( ), the value of C is determined 
from the condition that =f (0) 2:

= − + = =f C C(0) cos(0) 2, so 3.

The function is f x x( ) cos 3.= − +  

Finding Velocity and Position from Acceleration

We can use Corollary 2 to find the velocity and position functions of an object moving 
along a vertical line. Assume the object or body is falling freely from rest with acceleration 
9.8 m sec .2  We assume the position s t( ) of the body is measured positive downward from 
the rest position (so the vertical coordinate line points downward, in the direction of the 
motion, with the rest position at 0).

We know that the velocity t( )υ  is some function whose derivative is 9.8. We also know 
that the derivative of =g t t( ) 9.8  is 9.8. By Corollary 2,

t t C( ) 9.8υ = +

for some constant C. Since the body falls from rest, υ =(0) 0. Thus

( ) + = =C C9.8 0 0, and 0.

The velocity function must be t t( ) 9.8 .υ =  What about the position function s t( )?
We know that s t( ) is some function whose derivative is 9.8t. We also know that the 

derivative of =f t t( ) 4.9 2 is 9.8t. By Corollary 2,

s t t C( ) 4.9 2= +

for some constant C. Since =s(0) 0,

( ) + = =C C4.9 0 0, and 0.2

The position function is s t t( ) 4.9 2=  until the body hits the ground.
The ability to find functions from their rates of change is one of the very powerful 

tools of calculus. As we will see, it lies at the heart of the mathematical developments in 
Chapter 5.

FIGURE 4.19 From a geometric point  
of view, Corollary 2 of the Mean Value 
Theorem says that the graphs of functions 
with identical derivatives on an interval 
can differ only by a vertical shift. The 
graphs of the functions with derivative 2x 
are the parabolas = +y x C,2  shown 
here for several values of C.

x

y

0

−1

−2

1

2

y = x2 + C C = 2

C = 1

C = 0

C = −1

C = −2
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Checking the Mean Value Theorem
Find the value or values of c that satisfy the equation

f b f a
b a

f c
( ) ( )

( )
−
−

= ′

in the conclusion of the Mean Value Theorem for the functions and 
intervals in Exercises 1–8.

 1. [ ]= + −f x x x( ) 2 1, 0,12  2. f x x( ) , 0,12 3 [ ]=

 3. = + ⎡
⎣⎢

⎤
⎦⎥

f x x
x

( ) 1 , 1
2

, 2  4. [ ]= −f x x( ) 1, 1, 3

 5. f x x( ) arcsin , 1,1[ ]= −  6. [ ]( )= −f x x( ) ln 1 , 2, 4

 7. f x x x( ) , 1, 23 2 [ ]= − −

 8. g x
x x

x x
( )

, 2 0

, 0 2

3

2
=

− ≤ ≤

< ≤

⎧
⎨
⎪⎪
⎩⎪⎪

Which of the functions in Exercises 9–14 satisfy the hypotheses of the 
Mean Value Theorem on the given interval, and which do not? Give 
reasons for your answers.

 9. f x x( ) , 1, 82 3 [ ]= −

 10. f x x( ) , 0,14 5 [ ]=

 11. [ ]( )= −f x x x( ) 1 , 0,1

 12. f x
x

x
x

x
( )

sin
, 0

0, 0

π
=

− ≤ <

=

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

 13. f x
x x x

x x x
( )

, 2 1

2 3 3, 1 0

2

2
=

− − ≤ ≤ −

− − − < ≤

⎧
⎨
⎪⎪
⎩⎪⎪

 14. f x
x x

x x x
( )

2 3, 0 2

6 7, 2 32
=

− ≤ ≤

− − < ≤
⎧
⎨
⎪⎪
⎩⎪⎪

 15. The function

f x
x x

x
( )

, 0 1

0, 1
=

≤ <

=
⎧
⎨
⎪⎪
⎩⎪⎪

is zero at =x 0 and =x 1 and differentiable on 0,1( ), but 
its derivative on 0,1( ) is never zero. How can this be? Doesn’t 
Rolle’s Theorem say the derivative has to be zero somewhere in 

0,1( )? Give reasons for your answer.

 16. For what values of a, m, and b does the function

=
=

− + + < <
+ ≤ ≤

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

f x

x

x x a x

mx b x

( )

3, 0

3 , 0 1

, 1 2

2

satisfy the hypotheses of the Mean Value Theorem on the interval 
0, 2[ ]?

Roots (Zeros)

 17. a.  Plot the zeros of each polynomial on a line together with the 
zeros of its first derivative.

i) = −y x 42

ii) = + +y x x8 152

iii) ( )( )= − + = + −y x x x x3 4 1 23 2 2

iv) ( )( )= − + = − −y x x x x x x33 216 9 243 2

 b. Use Rolle’s Theorem to prove that between every two zeros  
of �x a x a x an

n
n

1
1

1 0+ + + +−
−  there lies a zero of

�nx n a x a1 .n
n

n1
1

2
1( )+ − + +−

−
−

 18. Suppose that ′′f  is continuous on a b,[ ] and that f  has three zeros 
in the interval. Show that ′′f  has at least one zero in a b,( ). Gener-
alize this result.

 19. Show that if ′′ >f 0 throughout an interval a b,[ ], then ′f  has at 
most one zero in a b,[ ]. What if ′′ <f 0 throughout a b,[ ] instead?

 20. Show that a cubic polynomial can have at most three real zeros.

Show that the functions in Exercises 21–28 have exactly one zero in 
the given interval.

 21. f x x x( ) 3 1, 2, 14 [ ]= + + − −

 22. ( )= + + −∞f x x
x

( ) 4 7, , 03
2

 23. ( )= + + − ∞g t t t( ) 1 4, 0,

 24. ( )=
−

+ + − −g t
t

t( ) 1
1

1 3.1, 1,1

 25. r( ) sin
3

8, ,2θ θ θ( ) ( )= + − −∞ ∞

 26. r( ) 2 cos 2, ,2θ θ θ ( )= − + −∞ ∞

 27. θ θ θ π( )= − −r( ) sec cos(2 ) 1, 0, 22

 28. r( ) 3 tan cot , 0, 2θ θ θ θ π( )= − −

Finding Functions from Derivatives

 29. Suppose that − =f ( 1) 3 and that f x( ) 0′ =  for all x. Must 
=f x( ) 3 for all x? Give reasons for your answer.

 30. Suppose that =f (0) 5 and that ′ =f x( ) 2 for all x. Must 
= +f x x( ) 2 5 for all x? Give reasons for your answer.

 31. Suppose that ′ =f x x( ) 2  for all x. Find f (2) if

 a. =f (0) 0  b. =f (1) 0  c. − =f ( 2) 3.

 32. What can be said about functions whose derivatives are constant? 
Give reasons for your answer.

In Exercises 33–38, find all possible functions with the given derivative.

 33. a. ′ =y x b. ′ =y x 2 c. ′ =y x 3

 34. a. ′ =y x2  b. ′ = −y x2 1 c. ′ = + −y x x3 2 12

 35. a. ′ = −y
x
1

2
 b. ′ = −y

x
1 1

2
 c. ′ = +y

x
5 1

2

 36. a. ′ =y
x

1
2

 b. ′ =y
x

1  c. ′ = −y x
x

4 1

 37. a. y tsin 2′ =  b. ′ =y tcos
2

 c. ′ = +y t tsin 2 cos
2

 38. a. y sec 2 θ′ =  b. θ′ =y  c. y sec 2θ θ′ = −

In Exercises 39–42, find the function with the given derivative whose 
graph passes through the point P.

 39. f x x P( ) 2 1, 0, 0( )′ = −

 40. g x
x

x P( ) 1 2 , 1,1
2

( )′ = + −

EXERCISES 4.2
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 41. f x e P( ) , 0, 3
2

x2 ( )′ =

 42. r t t t P( ) sec tan 1, 0, 0( )′ = −

Finding Position from Velocity or Acceleration
Exercises 43–46 give the velocity ds dt and initial position of 
an object moving along a coordinate line. Find the object’s position 
at time t.

 43. = + =t s9.8 5, (0) 10  44. = − =t s32 2, (0.5) 4

 45. υ πt ssin , (0) 0  46. t s2 cos 2 , ( ) 12υ
π π

π

Exercises 47–50 give the acceleration a d s dt ,2 2  initial velocity, 
and initial position of an object moving on a coordinate line. Find the 
object’s position at time t.

 47. a e s, (0) 20, (0) 5t

 48. = = − =a s9.8, (0) 3, (0) 0

 49. = − = = −a t s4 sin 2 , (0) 2, (0) 3

 50. 
π π

υ= = = −a t s9 cos 3 , (0) 0, (0) 1
2

Applications

 51. Temperature change It took 14 s for a mercury thermometer to 
rise from − °19 C to 100 C when it was taken from a freezer and 
placed in boiling water. Show that somewhere along the way, the 
mercury was rising at the rate of 8.5 C s.

 52. A trucker handed in a ticket at a tollbooth showing that in 2 hours 
she had covered 230 km on a toll road with speed limit 100 km h. 
The trucker was cited for speeding. Why?

 53. Classical accounts tell us that a 170-oar trireme (ancient Greek or 
Roman warship) once covered 184 sea miles in 24 hours. Explain 
why at some point during this feat the trireme’s speed exceeded 
7.5 knots (sea or nautical miles per hour).

 54. A marathoner ran the 42-km New York City Marathon in 2.2 hours. 
Show that at least twice the marathoner was running at exactly 
18 km h, assuming the initial and final speeds are zero.

 55. Show that at some instant during a 2-hour automobile trip the car’s 
speedometer reading will equal the average speed for the trip.

 56. Free fall on the moon On our moon, the acceleration of gravity 
is 1.6 m s .2  If a rock is dropped into a crevasse, how fast will it  
be going just before it hits bottom 30 s later?

Theory and Examples

 57. The geometric mean of a and b The geometric mean of two 
positive numbers a and b is the number ab. Show that the value 
of c in the conclusion of the Mean Value Theorem for f x x( ) 1  
on an interval of positive numbers a b c ab,  is  .[ ] =

 58. The arithmetic mean of a and b The arithmetic mean of two 
numbers a and b is the number a b 2.( )+  Show that the value of 
c in the conclusion of the Mean Value Theorem for f x x( ) 2 on 
any interval a b c a b,  is  2.[ ] ( )= +

 59. Graph the function

f x x x x( ) sin sin 2 sin 1 .2( ) ( )= + − +

What does the graph do? Why does the function behave this way? 
Give reasons for your answers.

 60. Rolle’s Theorem 

 a. Construct a polynomial f x( ) that has zeros at x 2, 1, 0,= − −  
1, and 2.

 b. Graph f  and its derivative f  together. How is what you see 
related to Rolle’s Theorem?

 c. Do g x x( ) sin  and its derivative g  illustrate the same phe-
nomenon as f  and f ?

 61. Unique solution Assume that f  is continuous on a b,[ ] and dif-
ferentiable on a b,( ). Also assume that f a( ) and f b( ) have opposite 
signs and that ′ ≠f 0 between a and b. Show that f x( ) 0 
exactly once between a and b.

 62. Parallel tangent line Assume that f  and g are differentiable on 
a b,[ ] and that f a g a( ) ( ) and f b g b( ) ( ). Show that there is 

at least one point between a and b where the tangent lines to the 
graphs of f  and g are parallel or the same line. Illustrate with a 
sketch.

 63. Suppose that f x( ) 1′ ≤  for x1 4. Show that 
− ≤f f(4) (1) 3.

 64. Suppose that f x0 ( ) 1 2< ′ <  for all x-values. Show that 
− < < + −f f f( 1)  (1) 2 ( 1).

 65. Show that x xcos 1− ≤  for all x-values. (Hint: Consider 
f t t( ) cos  on the closed interval with the endpoints 0 and x.)

 66. Show that for any numbers a and b, the sine inequality 
b a b asin sin− ≤ −  is true.

 67. If the graphs of two differentiable functions f x( ) and g x( ) start at 
the same point in the plane and the functions have the same rate 
of change at every point, do the graphs have to be identical? Give 
reasons for your answer.

 68. If f w f x w x( ) ( )− ≤ −  for all values w and x and f  is 
a differentiable function, show that − ≤ ′ ≤f x1 ( ) 1 for all 
x-values.

 69. Assume that f  is differentiable on a x b and that 
f b f a( ) ( ). Show that f  is negative at some point between a 
and b.

 70. Let f  be a function defined on an interval a b,[ ]. What conditions 
could you place on f  to guarantee that

f
f b f a

b a
fmin  

( ) ( )
max   ,′ ≤

−
−

≤ ′

where fmin    and fmax    refer to the minimum and maximum 
values of f  on a b,[ ]? Give reasons for your answers.

 71. Use the inequalities in Exercise 70 to estimate f (0.1) if 
f x x x( ) 1 1 cos4( )′ = +  for x0 0.1 and f (0) 1.

 72. Use the inequalities in Exercise 70 to estimate f (0.1) if 
f x x( ) 1 1 4( )′ = −  for x0 0.1 and f (0) 2.

 73. Let f  be differentiable at every value of x and suppose that 
f (1) 1, that ( )′ < −∞f 0 on  ,1 , and that ( )′ > ∞f 0 on  1, .

 a. Show that f x( ) 1 for all x.

 b. Must ′ =f (1) 0? Explain.

 74. Let = + +f x px qx r( ) 2  be a quadratic function defined on 
a closed interval a b,[ ]. Show that there is exactly one point c 
in a b,( ) at which f  satisfies the conclusion of the Mean Value 
Theorem.

T

T

T
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250 Chapter 4 Applications of Derivatives 

4.3 Monotonic Functions and the First Derivative Test

In sketching the graph of a differentiable function, it is useful to know where it increases 
(rises from left to right) and where it decreases (falls from left to right) over an interval. 
This section gives a test to determine where it increases and where it decreases. We also 
show how to test the critical points of a function to identify whether local extreme values 
are present.

Increasing Functions and Decreasing Functions

As another corollary to the Mean Value Theorem, we show that functions with positive 
derivatives are increasing functions and functions with negative derivatives are decreasing 
functions. A function that is either increasing on an interval or decreasing on an interval is 
said to be monotonic on the interval.

COROLLARY 3 Suppose that f  is continuous on a b,[ ] and differentiable on 
a b,( ).

f x x a b f a bIf  ( ) 0 at each point  , ,  then   is increasing on  , .( ) [ ]′ > ∈
f x x a b f a bIf  ( ) 0 at each point  , ,  then   is decreasing on  , .( ) [ ]′ < ∈

Proof  Let x1 and x 2 be any two points in a b,[ ] with <x x .1 2  The Mean Value Theo-
rem applied to f  on x x,1 2[ ] says that

f x f x f c x x( ) ( ) ( )2 1 2 1( )− = ′ −

for some c between x1 and x .2  The sign of the right-hand side of this equation is the same 
as the sign of f c( )′  because −x x2 1 is positive. Therefore, f x f x( ) ( )2 1>  if ′f  is positive on 

a b,( ) and f x f x( ) ( )2 1<  if ′f  is negative on a b,( ). 

Corollary 3 tells us that =f x x( )  is increasing on the interval b0,[ ] for any >b 0 
because f x x( ) 1 2( )′ =  is positive on b0, .( )  The derivative does not exist at =x 0, 
but Corollary 3 still applies. The corollary is also valid for open and for infinite intervals, 
so =f x x( )  is also increasing on 0,1( ), on 0, ,( )∞  and on 0, .[ )∞

To find the intervals where a function f  is increasing or decreasing, we first find all of 
the critical points of f . If <a b are two critical points for f , and if the derivative ′f  is 
continuous but never zero on the interval a b,( ), then by the Intermediate Value Theorem 
applied to ′f , the derivative must be everywhere positive on a b,( ), or everywhere negative 
there. One way we can determine the sign of ′f  on a b,( ) is simply by evaluating the 
derivative at a single point c in a b,( ). If f c( ) 0,′ >  then f x( ) 0′ >  for all x in a b,( ) so  
f  is increasing on a b,[ ] by Corollary 3; if f c( ) 0,′ <  then f  is decreasing on a b,[ ].  
It doesn’t matter which point c we choose in a b,( ) since the sign of f c( )′  is the same for 
all choices. Usually we pick c to be a point where it is easy to evaluate f c( ).′  The next 
example illustrates how we use this procedure.

EXAMPLE 1  Find the critical points of = − −f x x x( ) 12 53  and identify the open 
intervals on which f  is increasing and those on which f  is decreasing.

Solution The function f  is everywhere continuous and differentiable. The first derivative

f x x x

x x

( ) 3 12 3 4

3 2 2

2 2( )

( )( )

′ = − = −
= + −
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 4.3  Monotonic Functions and the First Derivative Test 251

is zero at = −x 2 and x 2. These critical points subdivide the domain of f  to create 
nonoverlapping open intervals , 2 , 2, 2 ,( ) ( )−∞ − −  and 2,( )∞  on which f  is either posi-
tive or negative. We determine the sign of f  by evaluating f  at a convenient point in each 
subinterval. We evaluate f  at = −x 3 in the first interval, x 0 in the second interval, 
and x 3 in the third since f  is relatively easy to compute at these points. The behavior 
of f  is determined by then applying Corollary 3 to each subinterval. The results are sum-
marized in the following table, and the graph of f  is given in Figure 4.20.

Interval x 2−∞ < < − − < <x2 2 < < ∞x2

f  evaluated ′ − =f ( 3) 15 ′ = −f (0) 12 ′ =f (3) 15

Sign of f

Behavior of f

−3 −2 −1 0 1 32
x

decreasing increasingincreasing

We used “strict” less-than inequalities to identify the intervals in the summary table 
for Example 1, since open intervals were specified. Corollary 3 says that we could use  
inequalities as well. That is, the function f  in the example is increasing on −∞ < ≤ −x 2, 
decreasing on − ≤ ≤x2 2, and increasing on ≤ < ∞x2 . We do not talk about whether 
a function is increasing or decreasing at a single point.

First Derivative Test for Local Extrema

In Figure 4.21, at the points where f  has a minimum value, ′ <f 0 immediately to the left 
and ′ >f 0 immediately to the right. (If the point is an endpoint, there is only one side to 
consider.) Thus, the function is decreasing on the left of the minimum value and it is 
increasing on its right. Similarly, at the points where f  has a maximum value, ′ >f 0 
immediately to the left and ′ <f 0 immediately to the right. Thus, the function is increas-
ing on the left of the maximum value and decreasing on its right. In summary, at a local 
extreme point, the sign of f x( ) changes.

FIGURE 4.20 The function 
= − −f x x x( ) 12 53  is monotonic 

on three separate intervals (Example 1).

x

(−2, 11)

(2, −21)

y

1 2 3 4−2−3−4 −1 0

−10

−20

10

20

y = x3 − 12x  −  5

FIGURE 4.21 The critical points of a function locate where it is increasing and where it is decreasing. The 
first derivative changes sign at a critical point where a local extremum occurs.

x

y = f(x)

a bc1 c2 c5c4c3

Absolute min

Absolute max
 f ′  undefined

Local min

Local max
 f ′ = 0 No extremum

 f ′ = 0

No extremum
 f ′ = 0

Local min
 f ′ = 0

 f ′ < 0
 f ′ > 0

 f ′ > 0

 f ′ > 0
 f ′ < 0

 f ′ < 0

These observations lead to a test for the presence and nature of local extreme values of 
differentiable functions.

HISTORICAL BIOGRAPHY

Edmund Halley
(1656–1742)
Halley, a British biologist, geologist, sea 
captain, astronomer, and mathematician, 
encouraged Newton to write the Principia. 
Despite all of Halley’s accomplishments,  
he is known today as the man who calculated 
the orbit of the comet of 1682.

To know more, visit the companion Website. 
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252 Chapter 4 Applications of Derivatives 

The test for local extrema at endpoints is similar, but there is only one side to consider in 
determining whether f  is increasing or decreasing, based on the sign of ′f .

Proof of the First Derivative Test  Part (1). Since the sign of ′f  changes from nega-
tive to positive at c, there are numbers a and b such that < <a c b, ′ <f 0 on a c,( ), and 

′ >f 0 on c b,( ). If ( )∈x a c, , then <f c f x( ) ( ) because ′ <f 0 implies that f  is 
decreasing on a c,[ ]. If ( )∈x c b, , then <f c f x( ) ( ) because ′ >f 0 implies that f  is 
increasing on c b,[ ]. Therefore, ≥f x f c( ) ( ) for every ( )∈x a b, . By definition, f  has a 
local minimum at c.

Parts (2) and (3) are proved similarly. 

EXAMPLE 2  Find the critical points of

( )= − = −f x x x x x( ) 4 4 .1 3 4 3 1 3

Identify the open intervals on which f  is increasing and those on which it is decreasing. 
Find the function’s local and absolute extreme values.

Solution The function f  is continuous at all x since it is the product of two continuous 
functions, x1 3 and x 4 .( )−  The first derivative,

f x d
dx

x x x x

x x x
x

( ) 4 4
3

4
3

4
3

1 4 1
3

,

4 3 1 3 1 3 2 3

2 3
2 3

( )

( )
( )

′ = − = −

= − = −

−

−

is zero at =x 1 and undefined at =x 0. There are no endpoints in the domain, so the 
critical points =x 0 and =x 1 are the only places where f  might have an extreme value.

The critical points partition the x-axis into open intervals on which ′f  is either positive 
or negative. The sign pattern of ′f  reveals the behavior of f  between and at the critical 
points, as summarized in the following table.

Interval <x 0 < <x0 1 >x 1

Sign of ′f − − +

Behavior of f
x

−1 0 1 2

decreasing decreasing increasing

Corollary 3 to the Mean Value Theorem implies that f  decreases on , 0 ,( )−∞  
decreases on 0,1( ), and increases on 1, .( )∞  The First Derivative Test for Local Extrema 
tells us that f  does not have an extreme value at =x 0  ( ′f  does not change sign) and that 
f  has a local minimum at =x 1 ( ′f  changes from negative to positive).

First Derivative Test for Local Extrema
Suppose that c is a critical point of a continuous function f , and that f  is differ-
entiable at every point in some interval containing c except possibly at c itself. 
Moving across this interval from left to right,

1. if ′f  changes from negative to positive at c, then f  has a local minimum at c;

2. if ′f  changes from positive to negative at c, then f  has a local maximum at c;

3. if ′f  does not change sign at c (that is, ′f  is positive on both sides of c or nega-
tive on both sides), then f  has no local extremum at c.
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 4.3  Monotonic Functions and the First Derivative Test 253

The value of the local minimum is ( )= − = −f (1) 1 1 4 3.1 3  This is also an abso-
lute minimum since f  is decreasing on ,1( )−∞  and increasing on 1, .( )∞  Figure 4.22 
shows this value in relation to the function’s graph.

Note that f xlim ( ) ,
x 0

′ = −∞
→

 so the graph of f  has a vertical tangent line at the origin. 

EXAMPLE 3  Find the critical points of

( )= −f x x e( ) 3 .x2

Identify the open intervals on which f  is increasing and those on which it is decreasing. 
Find the function’s local and absolute extreme values.

Solution The function f  is continuous and differentiable for all real numbers, so the 
critical points occur only at the zeros of ′f .

Using the Derivative Product Rule, we find the derivative

f x x d
dx

e d
dx

x e

x e x e

x x e

( ) 3 3

3 (2 )

2 3 .

x x

x x

x

2 2

2

2

( ) ( )

( )

( )

′ = − ⋅ + − ⋅

= − +
= + −

Since e x is never zero, the first derivative is zero if and only if

x x

x x

2 3 0

3 1 0.

2

( )( )

+ − =
+ − =

The zeros = −x 3 and =x 1 partition the x-axis into open intervals as follows.

Interval < −x 3 − < <x3 1 < x1

Sign of ′f + − +

Behavior of f
x

−3 −2 −1 0 1 32−4

decreasingincreasing increasing

We can see from the table that there is a local maximum (about 0.299) at = −x 3 and a local 
minimum (about −5.437) at =x 1. The local minimum value is also an absolute minimum 
because >f x( ) 0 for x 3> . There is no absolute maximum. The function increases 
on , 3( )−∞ −  and 1,( )∞  and decreases on 3,1( )− . Figure 4.23 shows the graph. 

FIGURE 4.22 The function 
( )= −f x x x( ) 41 3  decreases when <x 1 

and increases when >x 1 (Example 2).

x

y

0 1 2 3 4

1

−1

−2

2

4

−3

−1

y = x1�3(x − 4)

(1, −3)

FIGURE 4.23 The graph of 
( )= −f x x e( ) 3 x2  (Example 3).

−5 −4 −3 −2 −1 1 2 3

−6

−5

−4

−3

−2

−1

1

2

3

4

x

y y = (x2 − 3)ex

Analyzing Functions from Derivatives
Answer the following questions about the functions whose derivatives 
are given in Exercises 1–14:

a. What are the critical points of f ?

b. On what open intervals is f  increasing or decreasing?

c. At what points, if any, does f  assume local maximum or mini-
mum values?

 1. f x x x( ) 1( )′ = − 2. f x x x( ) 1 2( )( )′ = − +

 3. f x x x( ) 1 22( ) ( )′ = − + 4. f x x x( ) 1 22 2( ) ( )′ = − +
 5. f x x e( ) 1 x( )′ = − −

 6. f x x x x( ) 7 1 5( )( )( )′ = − + +

 7. f x x x
x

x( ) 1
2

, 2
2 ( )′ = −

+
≠ −

 8. f x x x
x x

x( ) 2 4
1 3

, 1, 3
( )( )

( )( )
′ = − +

+ −
≠ −

 9. f x
x

x( ) 1 4 , 0
2

′ = − ≠  10. f x
x

x( ) 3 6 , 0′ = − ≠

 11. f x x x( ) 21 3 ( )′ = +−  12. f x x x( ) 31 2 ( )′ = −−

 13. f x x x x( ) sin 1 2 cos 1 , 0 2π( )( )′ = − + ≤ ≤
 14. f x x x x x x( ) sin cos sin cos , 0 2π( )( )′ = + − ≤ ≤

Identifying Extrema
In Exercises 15–18:

 a. Find the open intervals on which the function is increasing 
and those on which it is decreasing.

 b. Identify the function’s local and absolute extreme values, if 
any, saying where they occur.

EXERCISES 4.3
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254 Chapter 4 Applications of Derivatives 

In Exercises 19–46:

 a. Find the open intervals on which the function is increasing 
and those on which it is decreasing.

 b. Identify the function’s local extreme values, if any, saying 
where they occur.

 19. = − − +g t t t( ) 3 32  20. = − + +g t t t( ) 3 9 52

 21. h x x x( ) 23 2= − +  22. h x x x( ) 2 183= −

 23. θ θ θ= −f ( ) 3 42 3  24. θ θ θ= −f ( ) 6 3

 25. = +f r r r( ) 3 163  26. h r r( ) 7 3( )= +

 27. = − +f x x x( ) 8 164 2  28. = − +g x x x x( ) 4 44 3 2

 29. H t t t( ) 3
2

4 6= −  30. K t t t( ) 15 3 5= −

 31. = − −f x x x( ) 6 1  32. = − +g x x x( ) 4 32

 33. = −g x x x( ) 8 2  34. = −g x x x( ) 52

 35. = −
−

≠f x x
x

x( ) 3
2

, 2
2

 36. =
+

f x x
x

( )
3 1

3

2

 37. ( )= +f x x x( ) 81 3  38. ( )= +g x x x( ) 52 3

 39. h x x x( ) 41 3 2( )= −  40. k x x x( ) 42 3 2( )= −

 41. = + −f x e e( ) x x2  42. =f x e( ) x

 43. f x x x( ) ln=  44. f x x x( ) ln2=

 45. g x x x( ) ln 2( )=  46. g x x x x( ) 2 4 ln2= − −

In Exercises 47–58:

 a. Identify the function’s local extreme values in the given 
domain, and say where they occur.

 b. Graph the function over the given domain. Which of the 
extreme values, if any, are absolute?

 47. f x x x x( ) 2 , 22= − −∞ < ≤

 48. f x x x( ) 1 , 02( )= + −∞ < ≤

 49. = − + ≤ < ∞g x x x x( ) 4 4, 12

 50. g x x x x( ) 6 9, 42= − − − − ≤ < ∞

 51. f t t t t( ) 12 , 33= − − ≤ < ∞

 52. f t t t t( ) 3 , 33 2= − −∞ < ≤

 53. h x x x x x( )
3

2 4 , 0
3

2= − + ≤ < ∞

 54. k x x x x x( ) 3 3 1, 03 2= + + + −∞ < ≤

 55. f x x x( ) 25 , 5 52= − − ≤ ≤

 56. = − − ≤ < ∞f x x x x( ) 2 3, 32

 57. = −
−

≤ <g x x
x

x( ) 2
1

, 0 1
2

 58. g x x
x

x( )
4

, 2 1
2

2
=

−
− < ≤

In Exercises 59–66:

 a. Find the local extrema of each function on the given interval, 
and say where they occur.

 b. Graph the function and its derivative together. Comment on 
the behavior of f  in relation to the signs and values of ′f .

 59. f x x x( ) sin 2 , 0 π= ≤ ≤

 60. f x x x x( ) sin cos , 0 2π= − ≤ ≤

 61. f x x x x( ) 3 cos sin , 0 2π= + ≤ ≤

 62. f x x x x( ) 2 tan ,
2 2
π π= − + − < <

 63. f x x x x( )
2

2 sin
2

, 0 2π= − ≤ ≤

 64. f x x x x( ) 2 cos cos ,2 π π= − − − ≤ ≤

 65. f x x x x( ) csc 2 cot , 02 π= − < <

 66. f x x x x( ) sec 2 tan ,
2 2

2 π π= − − < <

In Exercises 67 and 68, the graph of ′f  is given. Assume that f  is 
continuous, and determine the x-values corresponding to local minima 
and local maxima.

 67. 

 15. 

y = f (x)

y

x

−2

−1

1

2

2 31−1−2−3

 16. 

y = f (x)

y

x

−2

−1

1

2

2 31−1−2−3

 17. 

y = f (x)

−2

−1

1

2

2 31−1−2−3
x

y  18. y

x

−2

−1

1

2

2 31−1−2−3

y = f (x)

x

y

−2

−4

0 2 4−2−4

2

4

f 9

 68. 

x

y

−2

−4

0 2 4−2−4

2

4
f 9

In Exercises 69 and 70, the graph of ′f  is given. Assume that f  has 
domain 2, 2 .( )−

 a. Either use the graph to determine which intervals f  is increas-
ing on and which intervals f  is decreasing on, or explain why 
this information cannot be determined from the graph.

 b. Either use the graph to determine which intervals f  is positive 
on and which intervals f  is negative on, or explain why this 
information cannot be determined from the graph.

 69. 

y = f 9(x)

x

y

10 2-2 -1

1

2

-1

-2

 70. 

y = f 9(x)

x

y

10 2-2 -1

1

2

-1

-2

T

T
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Theory and Examples
Show that the functions in Exercises 71 and 72 have local extreme 
values at the given values of θ, and say which kind of local extreme 
the function has.

 71. h( ) 3 cos
2

, 0 2 , at  0 and  2θ θ θ π θ θ π= ≤ ≤ = =

 72. h( ) 5 sin
2

, 0 , at  0 and θ θ θ π θ θ π= ≤ ≤ = =

 73. Sketch the graph of a differentiable function =y f x( ) through 
the point 1,1( ) if ′ =f (1) 0 and

 a. f x x f x x( ) 0 for  1 and ( ) 0 for  1;′ > < ′ < >

 b. f x x f x x( ) 0 for  1 and  ( ) 0 for  1;′ < < ′ > >

 c. f x x( ) 0 for  1;′ > ≠

 d. f x x( ) 0 for  1.′ < ≠

 74. Sketch the graph of a differentiable function =y f x( ) that has

 a. a local minimum at 1,1( ) and a local maximum at 3, 3( );

 b. a local maximum at 1,1( ) and a local minimum at 3, 3( );

 c. local maxima at 1,1( ) and 3, 3( );

 d. local minima at 1,1( ) and 3, 3( ).

 75. Sketch the graph of a continuous function =y g x( ) such that

 a. = < ′ < < ′ → −g g x g x(2) 2, 0 1 for  2, ( ) 1  as → −x 2 , 
g x g x1 0 for  2, and  ( ) 1− < ′ < > ′ → − + as → +x 2 ;

 b. = ′ < < ′ → −∞g g x g x(2) 2, 0 for  2, ( )  as → −x 2 , 
′ > >g x0 for  2,  and g x x( )  as  2 .′ → ∞ → +

 76. Sketch the graph of a continuous function y h x( )=  such that

 a. = − ≤ ≤ ′ → ∞ → −h h x x h x x(0) 0, 2 ( ) 2 for all  , ( )  as  0 , 
and h x x( )  as  0 ;′ → ∞ → +

 b. = − ≤ ≤ ′ → ∞ → −h h x x h x x(0) 0, 2 ( ) 0 for all  , ( )  as  0 , 
and h x x( )  as  0 .′ → −∞ → +

 77. Discuss the extreme-value behavior of the function 
f x x x x( ) sin 1 , 0( )= ≠ . How many critical points does this 
function have? Where are they located on the x-axis? Does f  have 
an absolute minimum? An absolute maximum? (See Exercise 49 
in Section 2.3.)

 78. Find the open intervals on which the function f x ax bx c( ) ,2= + +  
a 0,≠  is increasing and those on which it is decreasing. Describe 
the reasoning behind your answer.

 79. Determine the values of constants a and b so that 
= +f x ax bx( ) 2  has an absolute maximum at the point 1, 2( ).

 80. Determine the values of constants a, b, c, and d so that 
= + + +f x ax bx cx d( ) 3 2  has a local maximum at the point 

0, 0( ) and a local minimum at the point 1, 1( )− .

 81. Locate and identify the absolute extreme values of

 a. ln (cos x) on 4 , 3 ,π π[ ]−

 b. cos (ln x) on 1 2, 2 .[ ]

 82. a. Prove that f x x x( ) ln= −  is increasing for >x 1.

 b. Using part (a), show that x xln <  if >x 1.

 83. Find the absolute maximum and the absolute minimum values of 
= −f x e x( ) 2x  on 0,1[ ].

 84. Where does the periodic function f x e( ) 2 xsin 2= ( ) take on its 
extreme values and what are these values?

x

y

0

y = 2esin (x�2)

 85. Find the absolute maximum value of f x x x( ) ln 12 ( )=  and say 
where it occurs.

 86. a. Prove that ≥ +e x1x  if ≥x 0.

 b. Use the result in part (a) to show that

≥ + +e x x1 1
2

.x 2

 87. Show that increasing functions and decreasing functions are one-
to-one. That is, show that for any x1 and x 2 in I, ≠x x2 1 implies 
f x f x( ) ( ).2 1≠

Use the results of Exercise 87 to show that the functions in  
Exercises 88–92 have inverses over their domains. Find a formula for 

−df dx1  using Theorem 3, Section 3.8.

 88. ( ) ( )= +f x x( ) 1 3 5 6  89. =f x x( ) 27 3

 90. = −f x x( ) 1 8 3  91. ( )= −f x x( ) 1 3

 92. =f x x( ) 5 3

4.4 Concavity and Curve Sketching

We have seen how the first derivative tells us where a function is increasing, where it is 
decreasing, and whether a local maximum or local minimum occurs at a critical point. In 
this section we see that the second derivative gives us information about how the graph of a 
differentiable function bends or turns. With this knowledge about the first and second deriv-
atives, coupled with our previous understanding of symmetry and asymptotic behavior stud-
ied in Sections 1.1 and 2.5, we can now draw an accurate graph of a function. By organizing 
all of these ideas into a coherent procedure, we give a method for sketching graphs and 
revealing visually the key features of functions. Identifying and knowing the locations of 
these features is of major importance in mathematics and its applications to science and 
engineering, especially in the graphical analysis and interpretation of data. When the domain 
of a function is not a finite closed interval, sketching a graph helps to determine whether 
absolute maxima or absolute minima exist and, if they do exist, where they are located.
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256 Chapter 4 Applications of Derivatives 

Concavity

As you can see in Figure 4.24, the curve =y x 3 rises as x increases, but the portions 
defined on the intervals , 0( )−∞  and 0,( )∞  turn in different ways. As we approach the 
origin from the left along the curve, the curve turns to our right and falls below its tangent 
lines. The slopes of the tangent lines are decreasing on the interval , 0 .( )−∞  As we move 
away from the origin along the curve to the right, the curve turns to our left and rises above 
its tangent lines. The slopes of the tangent lines are increasing on the interval 0, .( )∞  This 
turning or bending behavior defines the concavity of the curve.

FIGURE 4.24 The graph of =f x x( ) 3 
is concave down on , 0( )−∞  and  
concave up on 0,( )∞  (Example 1a).

x

y

0
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O

N
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VE 
DOW

N f ′ decreases

f ′ increases

y = x3

DEFINITION The graph of a differentiable function =y f x( ) is

(a)  concave up on an open interval I if ′f  is increasing on I;

(b)  concave down on an open interval I if ′f  is decreasing on I.

A function whose graph is concave up is also often called convex.
If =y f x( ) has a second derivative, we can apply Corollary 3 of the Mean Value 

Theorem to the first derivative function. We conclude that ′f  increases if ′′ >f 0 on I, and 
decreases if ′′ <f 0.

The Second Derivative Test for Concavity
Let =y f x( ) be twice-differentiable on an interval I.

1. If ′′ >f 0 on I, the graph of f  over I is concave up.

2. If ′′ <f 0 on I, the graph of f  over I is concave down.

If =y f x( ) is twice-differentiable, we will use the notations ′′f  and ′′y  interchange-
ably when denoting the second derivative.

EXAMPLE 1

 (a) The curve =y x 3 (Figure 4.24) is concave down on , 0 ,( )−∞  where ′′ = <y x6 0, 
and concave up on 0, ,( )∞  where ′′ = >y x6 0.

 (b) The curve =y x 2 (Figure 4.25) is concave up on ,( )−∞ ∞  because its second deriva-
tive ′′ =y 2 is always positive. 

EXAMPLE 2  Determine the concavity of y x3 sin  on  0, 2 .π[ ]= +

Solution The first derivative of y x3 sin= +  is y xcos ,′ =  and the second derivative is 
y xsin .′′ = −  The graph of y x3 sin= +  is concave down on 0, ,π( )  where y xsin′′ = −  
is negative. It is concave up on , 2 ,π π( )  where y xsin′′ = −  is positive (Figure 4.26). 

Points of Inflection

The curve y x3 sin= +  in Example 2 changes concavity at the point , 3 .π( )  Since the 
first derivative y xcos′ =  exists for all x, we see that the curve has a tangent line of slope 
−1 at the point , 3π( ). This point is called a point of inflection of the curve. Notice from 
Figure 4.26 that the graph crosses its tangent line at this point and that the second deriva-
tive y xsin′′ = −  has value 0 when π=x . In general, we have the following definition.

FIGURE 4.25 The graph of =f x x( ) 2 
is concave up on every interval  
(Example 1b).

C
O

N
C

A
V

E
 U

P 

C
O

N
C

A
V

E
 U

P 

−2 −1 0 1 2
x

1

2

3

4

y

y = x2

y″ > 0 y″ > 0

FIGURE 4.26 Using the sign of ′′y  to 
determine the concavity of y (Example 2).

x

y
y = 3 + sinx 

p 2p0
−1

1

2

3

4

y ″ = −sinx

(p, 3)
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 4.4  Concavity and Curve Sketching 257

We observed that the second derivative of f x x( ) 3 sin= +  is equal to zero at the 
inflection point , 3π( ). Generally, if the second derivative exists at a point of inflection 

c f c, ( )( ), then f c( ) 0.′′ =  This follows immediately from the Intermediate Value Theo-
rem whenever ′′f  is continuous over an interval containing =x c because the second 
derivative changes sign moving across this interval. Even if the continuity assumption is 
dropped, it is still true that f c( ) 0,′′ =  provided the second derivative exists (although a 
more advanced argument is required in this noncontinuous case). Since a tangent line must 
exist at the point of inflection, either the first derivative f c( )′  exists (is finite) or the graph 
has a vertical tangent line at the point. At a vertical tangent, neither the first nor second 
derivative exists. In summary, one of two things can happen at a point of inflection.

DEFINITION A point c f c, ( )( ) where the graph of a function has a tangent line 
and where the concavity changes is a point of inflection.

FIGURE 4.27 The concavity of the  
graph of f  changes from concave down  
to concave up at the inflection point  
(Example 3).

y = x3 − 3x2 + 2

x

y

−1

−2

0 2 31−1

2

1

3

Point of
inflection

Concave up

Concave down

FIGURE 4.28 The graph of =f x x( ) 5 3 
has a horizontal tangent at the origin where 
the concavity changes, although ′′f  does 
not exist at =x 0 (Example 4).
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FIGURE 4.29 The graph of =y x 4 
has no inflection point at the origin, even 
though ′′ =y 0 there (Example 5).
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y = x4
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At a point of inflection c f c, ( )( ), either f c( ) 0′′ =  or f c( )′′  fails to exist.

EXAMPLE 3  Determine the concavity and find the inflection points of the function

= − +f x x x( ) 3 2.3 2

Solution We start by computing the first and second derivatives.

f x x x f x x( ) 3 6 , ( ) 6 6.2′ = − ′′ = −

To determine concavity, we look at the sign of the second derivative f x x( ) 6 6.′′ = −  
The sign is negative when <x 1, is 0 at =x 1, and is positive when >x 1. It follows that 
the graph of f  is concave down on ,1 ,( )−∞  is concave up on 1, ,( )∞  and has an inflection 
point at the point 1, 0( ) where the concavity changes.

The graph of f  is shown in Figure 4.27. Notice that we did not need to know the shape 
of this graph ahead of time in order to determine its concavity. 

The next example illustrates that a function can have a point of inflection where the 
first derivative exists but the second derivative fails to exist.

EXAMPLE 4  The graph of =f x x( ) 5 3 has a horizontal tangent at the origin because 
f x x( ) 5 3 02 3( )′ = =  when =x 0. However, the second derivative,

f x d
dx

x x( ) 5
3

10
9

,2 3 1 3( )′′ = = −

fails to exist at =x 0. Nevertheless, f x( ) 0′′ <  for <x 0 and f x( ) 0′′ >  for >x 0, so 
the second derivative changes sign at =x 0 and there is a point of inflection at the origin. 
The graph is shown in Figure 4.28. 

The following example shows that an inflection point need not occur even though 
both derivatives exist and ′′ =f 0.

EXAMPLE 5  The curve =y x 4 has no inflection point at =x 0 (Figure 4.29). Even 
though the second derivative y x12 2″ =  is zero there, it does not change sign. The curve 
is concave up everywhere. 

In the next example, a point of inflection occurs at a vertical tangent to the curve 
where neither the first nor the second derivative exists.
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258 Chapter 4 Applications of Derivatives 

EXAMPLE 6  The graph of =y x1 3 has a point of inflection at the origin because the 
second derivative is positive for <x 0 and negative for x 0:>

( )( )′′ = = = −− −y d
dx

x d
dx

x x1
3

2
9

.
2

2
1 3 2 3 5 3

However, both ′ = −y x 32 3  and y″ fail to exist at =x 0, and there is a vertical tangent 
there. See Figure 4.30. 

FIGURE 4.30 A point of inflection 
where ′y  and y″ fail to exist (Example 6).

x

y

0

y = x1�3Point of
inflection

Caution Example 4 in Section 4.1 (Figure 4.9) shows that the function =f x x( ) 2 3 does 
not have a second derivative at =x 0 and does not have a point of inflection there (there 
is no change in concavity at =x 0). Combined with the behavior of the function in  
Example 6 above, we see that when the second derivative does not exist at =x c, an inflec-
tion point may or may not occur there. So we need to be careful about interpreting func-
tional behavior whenever first or second derivatives fail to exist at a point. At such points the 
graph can have vertical tangent lines, corners, cusps, or various discontinuities. 

To study the motion of an object moving along a line as a function of time, we often 
are interested in knowing when the object’s acceleration, given by the second derivative, is 
positive or negative. The points of inflection on the graph of the object’s position function 
reveal where the acceleration changes sign.

EXAMPLE 7  A particle is moving along a horizontal coordinate line (positive to the 
right) with position function

s t t t t t( ) 2 14 22 5, 0.3 2= − + − ≥

Find the velocity and acceleration, and describe the motion of the particle.

Solution The velocity is

t s t t t t t( ) ( ) 6 28 22 2 1 3 11 ,2υ ( )( )= ′ = − + = − −

and the acceleration is

a t t s t t t( ) ( ) ( ) 12 28 4 3 7 .υ ( )= ′ = ′′ = − = −

When the function s t( ) is increasing, the particle is moving to the right; when s t( ) is 
decreasing, the particle is moving to the left.

Notice that the first derivative sυ( )= ′  is zero at the critical points =t 1 and 
=t 11 3.

Interval t0 1< < t1 11 3< < t11 3 <

Sign of s= ′ + − +

Behavior of s increasing decreasing increasing

Particle motion right left right

The particle is moving to the right in the time intervals 0,1[ ) and 11 3, ,( )∞  and moving 
to the left in 1,11 3( ). It is momentarily stationary (at rest) at =t 1 and =t 11 3.

The acceleration a t s t t( ) ( ) 4 3 7( )= ′′ = −  is zero when =t 7 3.

Interval t0 7 3< < t7 3 <

Sign of a s= ′′ − +

Graph of s concave down concave up
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 4.4  Concavity and Curve Sketching 259

Under the influence of the leftward acceleration over the time interval 0, 7 3[ ), the particle 
starts out moving to the right while slowing down, and then at =t 1 it reverses and begins 
moving to the left while speeding up. The acceleration then changes direction at =t 7 3, 
but the particle continues moving leftward, while slowing down under the rightward accel-
eration. At =t 11 3 the particle reverses direction again: moving to the right in the same 
direction as the acceleration, so it is speeding up. 

Second Derivative Test for Local Extrema

Instead of looking for sign changes in ′f  at critical points, we can sometimes use the fol-
lowing test to determine the presence and nature of local extrema.

THEOREM 5—Second Derivative Test for Local Extrema
Suppose ′′f  is continuous on an open interval that contains =x c.

1. If f c( ) 0′ =  and f c( ) 0,′′ <  then f  has a local maximum at =x c.

2. If f c( ) 0′ =  and f c( ) 0,′′ >  then f  has a local minimum at =x c.

3. If f c( ) 0′ =  and f c( ) 0,′′ =  then the test fails. The function f  may have a 
local maximum, a local minimum, or neither.

f ′ = 0, f ″ < 0
1 local max

f ′ = 0, f ″ > 0
1 local min

Proof  Part (1). If f c( ) 0,′′ <  then f x( ) 0′′ <  on some open interval I containing the 
point c, since ′′f  is continuous. Therefore, ′f  is decreasing on I. Since f c( ) 0,′ =  the sign 
of ′f  changes from positive to negative at c, so f  has a local maximum at c by the First 
Derivative Test.

The proof of Part (2) is similar.
For Part (3), consider the three functions = = −y x y x, ,4 4  and =y x .3  For each 

function, the first and second derivatives are zero at =x 0. Yet the function =y x 4 has 
a local minimum there, = −y x 4 has a local maximum, and =y x 3 is increasing in any 
open interval containing =x 0 (having neither a maximum nor a minimum there). Thus 
the test fails. 

This test requires us to know ′′f  only at c itself and not in an interval about c. This 
makes the test easy to apply. That’s the good news. The bad news is that the test is incon-
clusive if ′′ =f 0 or if ′′f  does not exist at =x c. When this happens, use the First Deriv-
ative Test for local extreme values.

Together ′f  and ′′f  tell us the shape of the function’s graph—that is, where the critical 
points are located and what happens at a critical point, where the function is increasing and 
where it is decreasing, and how the curve is turning or bending as indicated by its concavity. 
We use this information to sketch a graph of the function that captures its key features.

EXAMPLE 8  Sketch a graph of the function

= − +f x x x( ) 4 104 3

using the following steps.

(a) Identify where the extrema of f  occur.

(b)  Find the intervals on which f  is increasing and the intervals on which f  is decreasing.

(c)  Find where the graph of f  is concave up and where it is concave down.

(d)  Sketch the general shape of the graph for f .

(e)  Plot some specific points, such as local maximum and minimum points, points of inflec-
tion, and intercepts. Then sketch the curve.
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260 Chapter 4 Applications of Derivatives 

Solution The function f  is continuous since f x x x( ) 4 123 2′ = −  exists. The domain  
of f  is , ,( )−∞ ∞  and the domain of ′f  is also , .( )−∞ ∞  Thus, the critical points of f  
occur only at the zeros of ′f . Since

f x x x x x( ) 4 12 4 3 ,3 2 2 ( )′ = − = −

the first derivative is zero at =x 0 and =x 3. We use these critical points to define inter-
vals where f  is increasing or decreasing.

Interval x 0< x0 3< < x3 <

Sign of f ′ − − +

Behavior of f decreasing decreasing increasing

(a)  Using the First Derivative Test for local extrema and the table above, we see that there 
is no extremum at =x 0 and a local minimum at =x 3.

(b)  Using the table above, we see that f  is decreasing on , 0( ]−∞  and 0, 3[ ], and increasing 
on 3, .[ )∞

(c)  f x x x x x( ) 12 24 12 22 ( )′′ = − = −  is zero at =x 0 and =x 2. We use these 
points to define intervals where the graph of f  is concave up or concave down.

Interval x 0< x0 2< < x2 <

Sign of f ′ + − +

Behavior of f concave up concave down concave up

We see that the graph of f  is concave up on the intervals , 0( )−∞  and 2, ,( )∞  and 
concave down on 0, 2( ).

(d)  Summarizing the information in the last two tables, we obtain the following.

x < 0 x0 2< < x2 3< < x3 <

decreasing decreasing decreasing increasing

concave up concave down concave up concave up

The general shape of the curve is shown in the accompanying figure.
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FIGURE 4.31 The graph of 
= − +f x x x( ) 4 104 3  (Example 8).
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(e)  Plot the curve’s intercepts (if possible) and the points where ′y  and ′′y  are zero. Indicate 
any local extreme values and inflection points. Use the general shape as a guide to sketch 
the curve. (Plot additional points as needed.) Figure 4.31 shows the graph of f . 

The steps in Example 8 give a procedure for graphing the key features of a function. 
Asymptotes were defined and discussed in Section 2.5. We can find them for many classes 
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 4.4  Concavity and Curve Sketching 261

EXAMPLE 9  Sketch the graph of 
( )= +

+
f x x

x
( ) 1

1
.

2

2

Solution 

1. The domain of f  is ,( )−∞ ∞  and there are no symmetries about either axis or the 
origin (Section 1.1).

2. Find ′f  and ′′f .

f x x
x

f x x x x x
x

x
x

f x
x x x x x

x

x x
x

( ) 1
1

( ) 1 2 1 1 2
1

2 1
1

( )
1 2 2 2 1 2 1 2

1

4 3
1

x x
y y

x x

x

-intercept at  1,
-intercept at  1

Critical points:  1, 1

After some algebra, including
canceling the common factor
1

2

2

2 2

2 2

2

2 2

2 2 2 2

2 4

2

2 3
2

( )

( )

( )

( )

( ) ( ) ( )[ ]

( )

( )

( ) ( )

( )

( ) ( )

( )

= +
+

′ = + ⋅ + − + ⋅
+

= −
+

′′ = + ⋅ − − − + ⋅
+

= −
+

= −
=

= − =

+

3. Behavior at critical points. The critical points occur only at = ±x 1 where f x( ) 0′ =  
(Step 2) since ′f  exists everywhere over the domain of f . At = −x 1, ′′ − = >f ( 1) 1 0, 
yielding a relative minimum by the Second Derivative Test. At = ′′ = − <x f1, (1) 1 0, 
yielding a relative maximum by the Second Derivative test.

4. Increasing and decreasing. We see that on the interval , 1( )−∞ −  the derivative 
f x( ) 0,′ <  and the curve is decreasing. On the interval f x1,1 , ( ) 0( )− ′ >  and the 
curve is increasing; it is decreasing on 1,( )∞  where f x( ) 0′ <  again.

5. Inflection points. Notice that the denominator of the second derivative (Step 2) is 
always positive. The second derivative ′′f  is zero when = −x 3, 0, and 3. The 
second derivative changes sign at each of these points: negative on , 3 ,( )−∞ −  posi-
tive on 3, 0 ,( )−  negative on 0, 3 ,( )  and positive again on 3, .( )∞  Thus each point 
is a point of inflection. The curve is concave down on the interval , 3 ,( )−∞ −  con-

cave up on 3, 0 ,( )−  concave down on 0, 3 ,( )  and concave up again on 3, .( )∞

Procedure for Graphing y f x( )=

1. Identify the domain of f  and any symmetries the curve may have.

2. Find the derivatives ′y  and ′′y .

3. Find the critical points of f , if any, and identify the function’s behavior at each 
one.

4. Find where the curve is increasing and where it is decreasing.

5. Find the points of inflection, if any occur, and determine the concavity of the 
curve.

6. Identify any asymptotes that may exist.

7. Plot key points, such as the intercepts and the points found in Steps 3–5, and 
sketch the curve together with any asymptotes that exist.

of functions (including rational functions), and the methods in the next section give tools 
to help find them for even more general functions.
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6. Asymptotes. Expanding the numerator of f x( ) and then dividing both numerator and 
denominator by x 2 gives

f x x
x

x x
x

x x
x

( ) 1
1

2 1
1

1 2 1
1 1

. x

Expanding numerator

Dividing by 

2

2

2

2

2

2
2

( ) ( )
( )

( )= +
+

= + +
+

=
+ +

+

We see that f x( ) 1→  as → ∞x  and that f x( ) 1→  as → −∞x . Thus, the line 
=y 1 is a horizontal asymptote. Since the function is continuous on , ,( )−∞ ∞  there 

are no vertical asymptotes.

7. The graph of f  is sketched in Figure 4.32. Notice how the graph is concave down as it 
approaches the horizontal asymptote =y 1 as → −∞x , and concave up in its 
approach to =y 1 as → ∞x . 

EXAMPLE 10  Sketch the graph of = +f x x
x

( ) 4
2

.
2

Solution 

1. The domain of f  is all nonzero real numbers. There are no intercepts because neither 
x nor f x( ) can be zero. Since f x f x( ) ( ),− = −  we note that f  is an odd function, so 
the graph of f  is symmetric about the origin.

2. We calculate the derivatives of the function, but we first rewrite it in order to simplify 
our computations:

f x x
x

x
x

f x
x

x
x

f x
x

( ) 4
2 2

2

( ) 1
2

2 4
2

( ) 4

f x

f

Function simplified for differentiation

Combine fractions to solve easily  ( ) 0.

Exists throughout the entire domain of 

2

2

2

2

3

= + = +

′ = − = −

′′ =

′ =

3. The critical points occur at = ±x 2 where f x( ) 0.′ =  Since ′′ − <f ( 2) 0 and 
′′ >f (2) 0, we see from the Second Derivative Test that a relative maximum occurs  

at = −x 2 with − = −f ( 2) 2, and a relative minimum occurs at =x 2 with  
=f (2) 2.

4. On the interval , 2( )−∞ −  the derivative ′f  is positive because − >x 4 02  so the 
graph is increasing; on the interval 2, 0( )−  the derivative is negative and the graph is 
decreasing. Similarly, the graph is decreasing on the interval 0, 2( ) and increasing  
on 2, .( )∞

5. There are no points of inflection because ′′ <f x( ) 0 whenever <x 0, ′′ >f x( ) 0 
whenever >x 0, and ′′f  exists everywhere and is never zero throughout the domain 
of f . The graph is concave down on the interval , 0( )−∞  and concave up on the interval 

0, .( )∞
6. From the rewritten formula for f x( ), we see that

x
x

x
x

lim
2

2 and lim
2

2 ,
x x0 0

( ) ( )+ = +∞ + = −∞
→ →+ −

so the y-axis is a vertical asymptote. Also, as → ∞x  or as → −∞x , the graph of 
f x( ) approaches the line =y x 2. Thus =y x 2 is an oblique asymptote.

7. The graph of f  is sketched in Figure 4.33. 
FIGURE 4.33 The graph of = +y x

x
4

2

2
 

(Example 10).

−2

42−4 −2

4

2

0
x

y

−4

y =
2
xx

x2 + 4y =
2x

(2, 2)

(−2, −2)

−1 1

1

2

x

y

(1, 2)

Point of inflection
where x = 

"

3

Point of inflection
where x = −

"

3

Horizontal
asymptote

y = 1

FIGURE 4.32 The graph of 
( )= +

+
y x

x
1

1

2

2
 (Example 9).
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 4.4  Concavity and Curve Sketching 263

EXAMPLE 11  Sketch the graph of =f x e( ) .x2

Solution The domain of f  is , 0 0,( ) ( )−∞ ∪ ∞  and there are no symmetries about 
either axis or the origin. The derivatives of f  are

f x e
x

e
x

( ) 2 2x
x

2
2

2

2( )′ = − = −

and

f x
x e x e x

x
e x

x
( )

2 2 2 (2 ) 4 1
.

x x x2 2 2 2

4

2

4

( )( ) ( )
′′ = −

− −
=

+

Both derivatives exist everywhere over the domain of f . Moreover, since e x2  and x 2 are 
both positive for all ≠x 0, we see that ′ <f 0 everywhere over the domain and the graph 
is decreasing on the intervals , 0( )−∞  and 0, .( )∞  Examining the second derivative, we 
see that f x( ) 0′′ =  at = −x 1. Since >e 0x2  and >x 04 , we have ′′ <f 0 for  

< −x 1 and ′′ >f 0 for > − ≠x x1, 0. Since ′′f  changes sign, the point e1, 2( )− −  is a 
point of inflection. The curve is concave down on the interval , 1( )−∞ −  and concave up 
over 1, 0 0, .( ) ( )− ∪ ∞

From Example 7, Section 2.5, we see that f xlim ( ) 0
x 0

=
→ −

. As x 0 ,→ +  we see that 

→ ∞x2 , so = ∞
→ +

f xlim ( )
x 0

 and the y-axis is a vertical asymptote. Also, as x → −∞

x xor  , 2 0→ ∞ →  and so = = =
→−∞ →∞

f x f x elim ( ) lim ( ) 1.
x x

0  Therefore, =y 1 is a 

horizontal asymptote. There are no absolute extrema, since f  never takes on the value 0 
and has no absolute maximum. The graph of f  is sketched in Figure 4.34. 

EXAMPLE 12  Sketch the graph of f x x x( ) cos 2
2

= −  over π≤ ≤x0 2 .

Solution The derivatives of f  are

f x x f x x( ) sin 2
2

and ( ) cos .′ = − − ′′ = −

Both derivatives exist everywhere over the interval 0, 2 .π( )  Within that open interval, the 
first derivative is zero when sin = −x 2 2, so the critical points are π=x 5 4 and 

π=x 7 4. Since π π( ) ( )′′ = − = >f 5 4 cos 5 4 2 2 0, the function has a local min-
imum value of π( ) ≈ −f 5 4 3.48 (evaluated with a calculator) by the Second Derivative 
Test. Also, π π( ) ( )′′ = − = − <f 7 4 cos 7 4 2 2 0, so the function has a local maxi-
mum value of π( ) ≈ −f 7 4 3.18.

Examining the second derivative, we find that ′′ =f 0 when π=x 2 or π=x 3 2. 
Since ′′f  changes sign at these two points, we conclude that f2, 2 2, 1.11π π π( )( ) ( )≈ −  
and f3 2, 3 2 3 2, 3.33π π π( )( ) ( )≈ −  are points of inflection.

Finally, we evaluate f  at the endpoints of the interval to find =f (0) 1 and 
π ≈ −f (2 ) 3.44. Therefore, the values =f (0) 1 and π( ) ≈ −f 5 4 3.48 are the absolute 

maximum and absolute minimum values of f  over the closed interval 0, 2 .π[ ]  The graph 
of f  is sketched in Figure 4.35. 

Graphical Behavior of Functions from Derivatives

As we saw in Examples 8–12, we can learn much about a twice-differentiable function 
=y f x( ) by examining its first derivative. We can find where the function’s graph rises and 

falls and where any local extrema are located. We can differentiate ′y  to learn how the graph 
bends as it passes over the intervals of rise and fall. Together with information about the func-
tion’s asymptotes and its value at some key points, such as intercepts, this information about 

FIGURE 4.34 The graph of =y e x2  
has a point of inflection at e1, .2( )− −  The 
line =y 1 is a horizontal asymptote and 

=x 0 is a vertical asymptote (Example 11).

−2 −1 1 2 3
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y = e2�x

0
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y

y = 1

FIGURE 4.35 The graph of the 
function in Example 12.
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264 Chapter 4 Applications of Derivatives 

the derivatives helps us determine the shape of the function’s graph. The following figure 
summarizes how the first derivative and second derivative affect the shape of a graph.

oror

or

y = f (x) y = f (x) y = f (x)

Differentiable 1
smooth, connected; graph
may rise and fall

y′ > 0 1 rises from
left to right;
may be wavy

y′ < 0 1 falls from
left to right;
may be wavy

y″ > 0 1 concave up
throughout; no waves; graph
may rise or fall or both

y″ < 0 1 concave down
throughout; no waves; graph
may rise or fall or both

y″ changes sign at an
inflection point

y′ changes sign 1 graph
has local maximum or local
minimum

y′ = 0  and  y″ < 0
at a point; graph has
local maximum

y′ = 0  and  y″ > 0
at a point; graph has
local minimum

+ −
+−

+
−

Analyzing Functions from Graphs
Identify the inflection points and local maxima and minima of the 
functions graphed in Exercises 1–8. Identify the open intervals on 
which the functions are differentiable and the graphs are concave up 
and concave down.

 1.  2. 

EXERCISES 4.4

 3. ( )= −y x3
4

12 2 3  4. 

0
x

y

y =      −      − 2x +x3

3
1
3

x2

2

0
x

y

y =      − 2x2 + 4x4

4

x

y

0

0
x

y

y =      x1�3(x2 − 7)9
14

 5.  6. 

0
x

y

−

y = x + sin 2x, −       ≤ x ≤2p
3

2p
3

2p
3

2p
3

x

y

y = tan x − 4x,  −     < x <p
2

p
2

0

x

y

y = sin 0 x 0 ,  −2p ≤ x ≤ 2p

0

NOT TO SCALE

x

y

0−p 3p
2

y = 2 cos x − 
"

2 x,  −p ≤ x ≤ 3p
2 7.  8. 

Graphing Functions
In Exercises 9–70, graph the function using appropriate methods from 
the graphing procedures presented just before Example 9, identifying 
the coordinates of any local extreme points and inflection points. Then 
find coordinates of absolute extreme points, if any.

 9. = − +y x x4 32  10. = − −y x x6 2 2

 11. = − +y x x3 33  12. y x x6 2 2( )= −

 13. = − + −y x x2 6 33 2  14. = − − −y x x x1 9 6 2 3

 15. ( )= − +y x 2 13  16. ( )= − +y x1 1 3
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 17. ( )= − = −y x x x x2 24 2 2 2

 18. ( )= − + − = − −y x x x x6 4 6 44 2 2 2

 19. ( )= − = −y x x x x4 43 4 3  20. ( )= + = +y x x x x2 24 3 3

 21. ( )= − = −y x x x x5 55 4 4  22. ( )= −y x x
2

5
4

 23. = + −
−

y x x
x

2 1
1

2

2
 24. = −

+ −
y x

x x
49

5 14

2

2

 25. = +y x
x

14

2
 26. = −y x

x
4

2

2

 27. =
−

y
x

1
12

 28. =
−

y x
x 1

2

2

 29. = − −
−

y x
x

2
1

2

2
 30. = −

−
y x

x
4
2

2

2

 31. =
+

y x
x 1

2
 32. = − −

+
y x

x
4
1

2

 33. = − +
−

y x x
x

1
1

2
 34. = − − +

−
y x x

x
1

1

2

 35. = − + −
+ −

y x x x
x x

3 3 1
2

3 2

2
 36. = + −

−
y x x

x x
23

2

 37. =
−

y x
x 12

 38. y x
x

4
4

Newton’s
serpentine2 )
(=

+

 39. y
x

8
4

Agnesi’s
witch2
(

)
=

+
 40. y x

x 12
=

+
 41. y x x xsin , 0 2π= + ≤ ≤

 42. y x x xsin , 0 2π= − ≤ ≤

 43. y x x x3 2 cos , 0 2π= − ≤ ≤

 44. y x x x4
3

tan ,
2 2
π π= − − < <

 45. y x x xsin cos , 0 π= ≤ ≤

 46. y x x xcos 3 sin , 0 2π= + ≤ ≤

 47. =y x 1 5  48. =y x 2 5

 49. = −y x x2 3 2 3  50. = −y x x5 22 5

 51. ( )= −y x x5
2

2 3  52. ( )= −y x x 52 3

 53. = −y x x8 2  54. ( )= −y x2 2 3 2

 55. = −y x16 2  56. = +y x
x
22

 57. = −
−

y x
x

3
2

2
 58. = +y x 133

 59. =
+

y x
x

8
42

 60. =
+

y
x

5
54

 61. = −y x 12  62. = −y x x22

 63. y x
x

x

x
x

,

,

0
0

= =
− <

≥

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

 64. = −y x 4

 65. =
−

y x
x9 2

 66. =
−

y x
x1

2

 67. ( )= −y xln 3 2  68. y xln 2( )=

 69. y xln cos( )=  70. =
+

=
+−

y
e

e
e

1
1 1x

x

x

Sketching the General Shape, Knowing ′y
Each of Exercises 71–92 gives the first derivative of a continuous 
function =y f x( ). Find ′′y  and then use Steps 2–4 of the graphing 
procedure described in this section to sketch the general shape of the 
graph of f .

 71. ′ = + −y x x2 2  72. ′ = − −y x x 62

 73. ( )′ = −y x x 3 2  74. ( )′ = −y x x22

 75. ( )′ = −y x x 122  76. ( ) ( )′ = − +y x x1 2 32

 77. ( )( )′ = − −y x x x8 5 42 2  78. ( )( )′ = − −y x x x2 52 2

 79. y x xsec ,
2 2

2 π π′ = − < <

 80. y x xtan ,
2 2
π π′ = − < <

 81. θ θ π′ = < <y cot
2

, 0 2  82. θ θ π′ = < <y csc
2

, 0 22

 83. θ π θ π′ = − − < <y tan 1,
2 2

2

 84. θ θ π′ = − < <y 1 cot , 02

 85. y t tcos , 0 2π′ = ≤ ≤  86. y t tsin , 0 2π′ = ≤ ≤

 87. ( )′ = + −y x 1 2 3  88. ( )′ = − −y x 2 1 3

 89. ( )′ = −−y x x 12 3  90. ( )′ = +−y x x 14 5

 91. y x
x x

x x
2

2 , 0

2 , 0
′ = =

− ≤

>
⎧
⎨
⎪⎪
⎩⎪⎪

 92. y
x x

x x

, 0

, 0

2

2
′ =

− ≤

>

⎧
⎨
⎪⎪
⎩⎪⎪

Sketching y from Graphs of ′y  and ′′y
Each of Exercises 93–96 shows the graphs of the first and second 
derivatives of a function =y f x( ). Copy the picture and add to it 
a sketch of the approximate graph of f , given that the graph passes 
through the point P.

 93.  94. 

P

x

y

y = f ′(x)

y = f ″(x)

y = f ′(x)

y = f ″(x)

P

x

y

P

0
x

y

y = f ′(x)

y = f ″(x)

 95. 

P

0
x

y

y = f ′(x)

y = f ″(x)

 96. 
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266 Chapter 4 Applications of Derivatives 

Theory and Examples

 97. The accompanying figure shows a portion of the graph of a 
twice-differentiable function =y f x( ). At each of the five labeled 
points, classify ′y  and ′′y  as positive, negative, or zero.

 107. A function f x( ) has domain 2, 2 .( )−  The graph below is a plot 
of the derivative of f , not a plot of f  itself. In other words, this 
is a graph of y f x( ).= ′  Either use this graph to determine on 
which intervals the graph of f  is concave up and on which inter-
vals the graph of f  is concave down, or explain why this infor-
mation cannot be determined from the graph.

y = f 9(x)

x

y

10 2-2 -1

1

2

-1

-2

y = f (x)
S

TR

Q
P

x

y

0

 98. Sketch a smooth connected curve =y f x( ) with

f ( 2) 8,− =  f f(2) ( 2) 0,′ = ′ − =

  f (0) 4,=  f x x( ) 0 for 2,′ < <

  f (2) 0,=  f x x( ) 0 for 0,′′ < <

f x x( ) 0 for 2,′ > >  f x x( ) 0 for 0.′′ > >

 99. Sketch the graph of a twice-differentiable function =y f x( ) 
with the following properties. Label coordinates where possible.

x y Derivatives

<x 2 ′ < ′′ >y y0, 0

2 1 ′ = ′′ >y y0, 0

< <x2 4 ′ > ′′ >y y0, 0

4 4 ′ > ′′ =y y0, 0

< <x4 6 ′ > ′′ <y y0, 0

6 7 ′ = ′′ <y y0, 0

>x 6 ′ < ′′ <y y0, 0

 100. Sketch the graph of a twice-differentiable function =y f x( ) that 
passes through the points 2, 2( )− , 1,1( )− , 0, 0( ), 1,1( ), and 2, 2( ) 
and whose first two derivatives have the following sign patterns.

′ + − + −
−

′′ − + −
−

y

y

:
2 0 2

:
1 1

 101. Sketch the graph of a twice-differentiable function =y f x( ) 
with the following properties. Label coordinates where possible.

x y Derivatives

< −x 2 ′ > ′′ <y y0, 0

−2 −1 ′ = ′′ =y y0, 0

− < < −x2 1 y y0, 0′ > ″ >

−1 0 ′ > ′′ =y y0, 0

− < <x1 0 ′ > ′′ <y y0, 0

0 3 ′ = ′′ <y y0, 0

< <x0 1 ′ < ′′ <y y0, 0

1 2 ′ < ′′ =y y0, 0

< <x1 2 >′ < ′′y y0, 0

2 0 y y0, 0′ = ″ >

>x 2 y y0, 0′ > ″ >

 102. Sketch the graph of a twice-differentiable function =y f x( ) 
that passes through the points 3, 2 ,( )− −  2, 0 ,( )−  0,1( ), 1, 2( ),  
and 2, 3( ) and whose first two derivatives have the following 
sign patterns.

xy9:
0 2

2 1 1 2

−3

xy 0:
0 1

1 2 1 2

−2

x

y

−2

−4

0 2 4−2−4

2

4

f 9

In Exercises 105 and 106, the graph of ′f  is given. Determine x-values 
corresponding to local minima, local maxima, and inflection points 
for the graph of f .

 105. 

x

y

−2

−4

0 2 4−2−4

2

4

f 9

2 4−4

 106. 

In Exercises 103 and 104, the graph of ′f  is given. Determine x-values 
corresponding to inflection points for the graph of f .

 103. 

x

y

−2

−4

0 2 4−2−4

2

4

f 9
2

 104. 

x

y

−2

−4

0 2 4−2−4

2

4
f 9

− 4

2
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C
os

t

c = f (x)

Thousands of units produced
20 40 60 80 100120

x

c

t

y

y = r(t)

50 10

 111. Marginal cost The accompanying graph shows the hypothetical 
cost =c f x( ) of manufacturing x items. At approximately what 
production level does the marginal cost change from decreasing 
to increasing?

y = f 0(x)

x

y

10 2-2 -1

1

2

-1

-2

 108. A function f x( ) has domain 2, 2 .( )−  The graph below is a plot 
of the second derivative of f , not a plot of f  itself. In other 
words, this is a graph of y f x( ).= ′′

Motion Along a Line The graphs in Exercises 109 and 110 show the 
position s f t( )=  of an object moving up and down on a coordinate line. 
(a) When is the object moving away from the origin? Toward the origin? 
At approximately what times is the (b) velocity equal to zero? (c) Accel-
eration equal to zero? (d) When is the acceleration positive? Negative?

D
is

pl
ac

em
en

t

s = f (t)

Time (s)

5 10 150
t

s 109. 

D
is

pl
ac

em
en

t

s = f (t)

Time (s)

5 10 150
t

s 110. 

 112. The accompanying graph shows the monthly revenue of the Widget 
Corporation for the past 12 years. During approximately what 
time intervals was the marginal revenue increasing? Decreasing?

 113. Suppose the derivative of the function =y f x( ) is

( ) ( )′ = − −y x x1 2 .2

At what points, if any, does the graph of f  have a local minimum, 
local maximum, or point of inflection? (Hint: Draw the sign pat-
tern for ′y .)

 114. Suppose the derivative of the function =y f x( ) is

( ) ( )( )′ = − − −y x x x1 2 4 .2

At what points, if any, does the graph of f  have a local minimum, 
local maximum, or point of inflection?

 115. For >x 0, sketch a curve =y f x( ) that has =f (1) 0 and 
f x x( ) 1 .′ =  Can anything be said about the concavity of such a 
curve? Give reasons for your answer.

 116. Can anything be said about the graph of a function =y f x( ) 
that has a continuous second derivative that is never zero? Give 
reasons for your answer.

 117. If b, c, and d are constants, for what value of b will the curve 
= + + +y x bx cx d3 2  have a point of inflection at =x 1? 

Give reasons for your answer.

 118. Parabolas 

a. Find the coordinates of the vertex of the parabola 
= + + ≠y ax bx c a, 0.2

b. When is the parabola concave up? Concave down? Give  
reasons for your answers.

 119. Quadratic curves  What can you say about the inflection points  
of a quadratic curve = + + ≠y ax bx c a, 0?2  Give reasons 
for your answer.

 120. Cubic curves What can you say about the inflection points of a  
cubic curve = + + + ≠y ax bx cx d a, 0?3 2  Give reasons 
for your answer.

 121. Suppose that the second derivative of the function =y f x( ) is

( )( )′′ = + −y x x1 2 .

For what x-values does the graph of f  have an inflection point?

 122. Suppose that the second derivative of the function =y f x( ) is

y x x x2 3 .2 3( ) ( )″ = − +

For what x-values does the graph of f  have an inflection point?

 123. Find the values of constants a, b, and c such that the graph of 
= + +y ax bx cx3 2  has a local maximum at =x 3, local 

minimum at = −x 1, and inflection point at 1,11( ).

 124. Find the values of constants a, b, and c such that the graph of 
( ) ( )= + +y x a bx c2  has a local minimum at =x 3 and a 

local maximum at 1, 2( )− − .

a. Either use the graph above to determine on which intervals the 
graph of f  is concave up and on which intervals the graph of f  
is concave down and the inflection points of f , or explain why 
this information cannot be determined from the graph.

b. Either use the graph above to determine on which intervals f  
is increasing and on which intervals f  is decreasing, or explain 
why this information cannot be determined from the graph.
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268 Chapter 4 Applications of Derivatives 

4.5 Indeterminate Forms and L’Hôpital’s Rule

Consider the four limits

= =

= = ∞

= =

= =

→ →

→ →

→ →

→ →

x
x

x

x
x x
x
x
x
x

lim lim 0,

lim lim 1 ,

lim lim 1 1,

lim
2

lim 1
2

1
2

.

x x

x x

x x

x x

0

3

0

2

0 3 0 2

0 0

0 0

In each case both the numerator and the denominator approach zero as x 0, even 
though these limits ultimately lead to completely different results: 0, ,1, and 1 2. We say 
the expression

 
f x
g x

f x g xlim
( )
( )

when lim ( ) 0 and lim ( ) 0
x a x a x a

= =
→ → →

 (1)

involves an indeterminate form 0/0. The expression “ 0 0 ” has the form of a number, but it 
is not a meaningful quantity. Stating that both the numerator and the denominator approach 
zero does not provide sufficient information to obtain the limit of the ratio. We have to 
examine the behavior of the expression in more detail by performing algebraic manipula-
tion or by applying methods that we will introduce in this section.

Other forms exhibit behavior similar to Equation (1). For instance, if both the numera-
tor and the denominator approach +∞ or −∞, then the limit of the ratio leads to an inde-
terminate form . Additional indeterminate forms we consider in this section are 
∞ ⋅ 0, ∞ − ∞, 1 , 0 0, and 0. Their purpose is to summarize the behavior of certain 
types of limits.

John (Johann) Bernoulli discovered a rule for using derivatives to calculate limits of 
fractions whose numerators and denominators both approach zero or ±∞. The rule is 
known today as l’Hôpital’s Rule, after Guillaume de l’Hôpital. He was a French noble-
man who wrote the first introductory differential calculus text, where the rule first appeared 
in print. Limits involving transcendental functions often require some use of this rule.

Indeterminate Form 0 0

It is important to understand that the notation “0 0” is not intended to imply numerically 
dividing 0 by 0. Instead, the indeterminate form 0 0 refers to a limit of a ratio of two func-
tions, each of which approaches zero. L’Hôpital’s rule can help us evaluate such limits.

THEOREM 6—L’Hôpital’s Rule Suppose that f x g xlim ( ) lim ( ) 0
x a x a

= =
→ →

, that 

f  and g are differentiable on an open interval I containing a, and that g x( ) 0′ ≠  
on I x a if  . Then

f x
g x

f x
g x

lim
( )
( )

lim
( )
( )

,
x a x a

= ′
′→ →

assuming that the limit on the right side of this equation exists.

COMPUTER EXPLORATIONS
In Exercises 125–128, find the inflection points (if any) on the graph 
of the function and the coordinates of the points on the graph where 
the function has a local maximum or local minimum value. Then graph 
the function in a region large enough to show all these points simul-
taneously. Add to your picture the graphs of the function’s first and 
second derivatives. How are the values at which these graphs intersect 
the x-axis related to the graph of the function? In what other ways are 
the graphs of the derivatives related to the graph of the function?

 125. = − −y x x5 2405 4  126. = −y x x123 2

 127. = + −y x x4
5

16 255 2

 128. = − − + +y x x x x
4 3

4 12 20
4 3

2

 129. Graph = − +f x x x( ) 2 4 14 2  and its first two derivatives  
together. Comment on the behavior of f  in relation to the signs 
and values of f  and f .

 130. Graph f x x x( ) cos  and its second derivative together for 
x0 2 . Comment on the behavior of the graph of f  in 

relation to the signs and values of f .

HISTORICAL BIOGRAPHY

Guillaume François Antoine de l’Hôpital
(1661–1704)
In the late 1600s, John Fernoulle discovered 
a rule for calculating limits of fractions 
whose numerators and denominators both 
approach zero. Today the rule is known as 
l’Hôpital’s rule.

To know more, visit the companion Website. 

Johann Bernoulli
(1667–1748)
Johann Bernoulli was born in Switzerland and 
attended the University of Basel. His doctoral 
dissertation was in mathematics despite its 
medical title, which was used to hide his 
mathematical work from his father who 
wanted Johann to become a doctor.

To know more, visit the companion Website. 
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We give a proof of Theorem 6 at the end of this section. Theorem 6 also applies if 
→ ±∞x  or when f x g x( ) ( )′ ′ → ±∞, but we will not prove this.

Using L’Hôpital’s Rule To find

f x
g x

lim
( )
( )x a→

by l’Hôpital’s Rule, we continue to differentiate f  and g, so long as we still get the 
form 0 0 as →x a. But as soon as one or the other of these derivatives no longer 
approaches zero, we stop differentiating. L’Hôpital’s Rule does not apply when 
either the numerator or the denominator has a finite nonzero limit.

EXAMPLE 1  The following limits involve 0 0 indeterminate forms, so we apply 
l’Hôpital’s Rule. In some cases, it must be applied repeatedly.

 (a) 
x x

x
x

lim
3 sin

 

         lim
3 cos

1

        
3 cos 0

1
2

The numerator and the denominator are both
approaching 0; apply l’Hôpital’s Rule.

Not  0 0

Limit is found.

x

x

0

0

−

=
−

=
−

=

→

→

 (b) x
x

xlim 1 1 lim

1
2 1

1
1
2x x0 0

+ − = + =
→ →

 (c) 
x x

x

x
x

x

lim
1 1 2

lim
1 2 1 1 2

2

lim
1 4 1

2
1
8

0

0
; apply l’Hôpital’s Rule.

Still 
0

0
; apply l’Hôpital’s Rule again.

Not 
0

0
; limit is found.

x

x

x

0 2

0

1 2

0

3 2

( )

( )

( )

( )

+ − −

=
+ −

=
− +

= −

→

→

−

→

−

 (d) 
x x

x

x
x
x

x
x

lim
sin

lim
1 cos

3

lim
sin
6

lim
cos

6
1
6

0

0
; apply l’Hôpital’s Rule.

Still 
0

0
; apply l’Hôpital’s Rule again.

Still 
0

0
; apply l’Hôpital’s Rule again.

Not 
0

0
; limit is found.

x

x

x

x

0 3

0 2

0

0

−

=
−

=

= =

→

→

→

→

 (e) 
x

x

x
x

x x

x
x

lim
ln 1 1

sin 1

         lim
1 1

1 1
1 cos 1

         lim

1
1 1
cos 1

1
1 0
cos 0

1

0

0
; apply l’Hôpital’s Rule.

Still 
0

0
; simplification is easier than applying

l’Hôpital’s Rule.

Not
0

0
; limit is found.

x

x

x

2

2

( )
( )

( )

( ) ( )

( )

+

=
−

+
−

=
+

= + =

→∞

→∞

→∞

 

Here is a summary of the procedure we followed in Example 1.

Caution

To apply l’Hôpital’s Rule to f g, divide 
the derivative of f  by the derivative of g.  
Do not make the mistake of taking the 
derivative of f g. The quotient to use is 
f g ,′ ′  not f g .( )′
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270 Chapter 4 Applications of Derivatives 

EXAMPLE 2  Be careful to apply l’Hôpital’s Rule correctly:

x
x x

x
x

lim
1 cos

lim
sin

1 2

0

0

Not
0

0

x

x

0 2

0

−
+

=
+

→

→

It is tempting to try to apply l’Hôpital’s Rule again, which would result in

x
lim

cos
2

1
2

,
x 0

=
→

but this is not the correct limit. l’Hôpital’s Rule can be applied only to limits that give 
indeterminate forms, and x xlim sin 1 2

x 0
( ) ( )+

→
 does not give an indeterminate form. 

Instead, this limit is =0 1 0, and the correct answer for the original limit is 0. 

L’Hôpital’s Rule applies to one-sided limits as well.

EXAMPLE 3  In this example the one-sided limits are different.

 (a) 
x

x
x

x

lim
sin

lim
cos

2
x

0

0

Positive for  0

x

x

0 2

0
= = ∞ >

→

→

+

+

 (b) 
x

x
x

x

lim
sin

lim
cos

2
x

0

0

Negative for  0

x

x

0 2

0
= = −∞ <

→

→

−

−
 

Indeterminate Forms 0,,∞ ∞ ∞ ∞ − ∞⋅

Sometimes when we try to evaluate a limit as →x a, we get an indeterminate form like 
∞ ∞ ∞ ⋅, 0, or ∞ − ∞, instead of 0 0. We first consider the form ∞ ∞.

More advanced treatments of calculus prove that l’Hôpital’s Rule applies to the inde-
terminate form ∞ ∞, as well as to 0 0. If f x( ) → ±∞ and g x( ) → ±∞ as →x a, then

f x
g x

f x
g x

lim
( )
( )

lim
( )
( )

,
x a x a

= ′
′→ →

provided the limit on the right exists or approaches ∞ −∞ or  . In the notation →x a a,  
may be either finite or infinite. Moreover, →x a may be replaced by the one-sided limits 

→ +x a  or → −x a .

EXAMPLE 4  Find the limits of these ∞ ∞ forms:

 (a) 
x

x
lim

sec
1 tanx 2 +π→

  (b) 
x

x
lim

ln

2x→∞
  (c) e

x
lim .
x

x

2→∞

Solution 

 (a) The numerator and denominator are discontinuous at π=x 2, so we investigate the 
one-sided limits there. To apply l’Hôpital’s Rule, we can choose I to be any open inter-
val with π=x 2 as an endpoint.

Recall that ∞ and +∞ mean the same 
thing.
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 4.5  Indeterminate Forms and L’Hôpital’s Rule 271

x
x

x x
x

x

lim
sec

1 tan

lim
sec tan

sec
lim sin 1

from left, apply l’Hôpital’s Rule
x

x x

2

2 2 2

+

= = =

∞

∞π

π π

( )

( ) ( )

→

→ →

−

− −

The right-hand limit is 1 also, with ( ) ( )−∞ −∞  as the indeterminate form. Therefore, 
the two-sided limit is equal to 1.

 (b) 
x

x

x

x x
lim

ln

2
lim

1

1
lim 1 0

x

x

x

x x

1

1

1

x x x
= = = = =

→∞ →∞ →∞

 (c) = = = ∞
→∞ →∞ →∞

e
x

e
x

elim lim
2

lim
2x

x

x

x

x

x

2
 

Next we turn our attention to the indeterminate forms ∞ ⋅ 0 and ∞ − ∞. Sometimes 
these forms can be handled by using algebra to convert them to a 0 0 or ∞ ∞ form. Here 
again, we do not mean to suggest that ∞ ⋅ 0 or ∞ − ∞ is a number. They are only nota-
tions for functional behaviors when considering limits. Here are examples of how we 
might work with these indeterminate forms.

EXAMPLE 5  Find the limits of these ∞ ⋅ 0 forms:

 (a) x
x

lim sin 1
x

( )
→∞

 (b) x xlim ln
x 0→ +

Solution 

 (a) x
x

x
x

x x
x

x

lim sin 1 lim
sin 1

1
 

lim
cos 1 1

1

lim cos 1 1

0 converted to
0

0

L’Hôpital’s Rule applied

x x

x

x

2

2

( )

( )

( )

( )( )( )

=

=
−

−

= =

∞ ⋅
→∞ →∞

→∞

→∞

(See Example 6b in Section 2.5 for an alternative method to solve this problem.)

 (b) x x
x

x

x
x

x

lim  ln lim
ln

1
 

lim
1

1 2

lim 2 0

0 converted to 

l’Hôpital’s Rule applied

x x

x

x

0 0

0 3 / 2

0
( )

( )

=

=
−

= − =

∞ ⋅ ∞ ∞
→ →

→

→

+ +

+

+

EXAMPLE 6  Find the limit of this ∞ − ∞ form:

x x
lim 1

sin
1 .

x 0
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟→

Solution If → +x 0 , then xsin 0→ + and

x x
1

sin
1 .− → ∞ − ∞

Similarly, if → −x 0 , then xsin 0→ − and

x x
1

sin
1 .( )− → −∞ − −∞ = −∞ + ∞
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272 Chapter 4 Applications of Derivatives 

Neither form reveals what happens in the limit. To find out, we first combine the 
fractions:

x x
x x

x x
1

sin
1 sin

sin
. x xCommon denominator is  sin .− =

−

Then we apply l’Hôpital’s Rule to the result:

 

x x
x x

x x

x
x x x

x
x x x

lim 1
sin

1 lim
sin

sin

lim
1 cos

sin cos

lim
sin

2 cos sin
0
2

0.

0

0

Still 
0

0

x x

x

x

0 0

0

0

−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =

−

=
−
+

=
−

= =

→ →

→

→
 

Indeterminate Powers

Limits that lead to the indeterminate forms ∞1 , 0 ,0  and ∞0 can sometimes be handled by 
first taking the logarithm of the function. We use l’Hôpital’s Rule to find the limit of the 
logarithm expression and then exponentiate the result to find the original function limit. 
This procedure is justified by the continuity of the exponential function and Theorem 9 
in Section 2.6, and it is formulated as follows. (The formula is also valid for one-sided 
limits.)

If f x Llim ln ( )
x a

=
→

, then

f x e elim ( ) lim .
x a x a

f x Lln ( )= =
→ →

Here a may be either finite or infinite.

EXAMPLE 7  Apply l’Hôpital’s Rule to show that ( )+ =
→ +

x elim 1
x

x

0

1 .

Solution The limit leads to the indeterminate form ∞1 . We let ( )= +f x x( ) 1 x1  and 
find f xlim ln ( )

x 0→ +
. Since

f x x
x

xln ( ) ln 1 1 ln 1 ,x1( ) ( )= + = +

l’Hôpital’s Rule now applies to give

f x
x

x

x

lim ln ( ) lim
ln 1

lim

1
1

1
1
1

1.

0

0

L’Hôpital’s Rule applied

x x

x

0 0

0

( )
=

+

= +

= =

→ →

→

+ +

+

Therefore, x f x e e elim 1 lim ( ) lim .
x

x

x x

f x

0

1

0 0

ln ( ) 1( )+ = = = =
→ → →+ + +

 

EXAMPLE 8  Find 
→∞

xlim
x

x1 .

Solution The limit leads to the indeterminate form ∞0. We let =f x x( ) x1  and find 
f xlim ln ( )

x→∞
. Since

f x x
x

x
ln ( ) ln

ln
,x1= =
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l’Hôpital’s Rule gives

f x
x

x
x

lim ln ( ) lim
ln

lim
1
1

0
1

0.

L’Hôpital’s Rule applied

x x

x

=

=

= =

∞

∞→∞ →∞

→∞

Therefore, = = = =
→∞ →∞ →∞

x f x e elim lim ( ) lim 1.
x

x

x x

f x1 ln ( ) 0  

Proof of L’Hôpital’s Rule

Before we prove l’Hôpital’s Rule, we consider a special case to provide some geometric 
insight for its reasonableness. Consider the two functions f x( ) and g x( ) having continuous 
derivatives and satisfying f a g a( ) ( ) 0, g a( ) 0.′ ≠  The graphs of f x( ) and g x( ), 
together with their linearizations y f a x a( )( )= ′ −  and y g a x a( )( )= ′ − , are shown in 
Figure 4.36. We know that near x a, the linearizations provide good approximations to 
the functions. In fact,

f x f a x a x a g x g a x a x a( ) ( ) and ( ) ( ) ,1 2( ) ( ) ( ) ( )= ′ − + − = ′ − + −

where 01  and 02  as x a. So, as Figure 4.36 suggests,

f x
g x

f a x a x a
g a x a x a

f a
g a

f a
g a

f x
g x

lim
( )
( )

lim
( )
( )

lim
( )
( )

( )
( )

lim
( )
( )

,

g a( ) 0

Continuous derivatives

x a x a

x a

x a

1

2

1

2

( ) ( )

( ) ( )
=

′ − + −
′ − + −

=
′ +
′ +

= ′
′

= ′
′

′ ≠

→ →

→

→

as asserted by l’Hôpital’s Rule. We now proceed to a proof of the rule based on the more 
general assumptions stated in Theorem 6, which do not require that g a( ) 0′ ≠  or that the 
two functions have continuous derivatives.

The proof of l’Hôpital’s Rule is based on Cauchy’s Mean Value Theorem, an exten-
sion of the Mean Value Theorem that involves two functions instead of one. We prove 
Cauchy’s Theorem first and then show how it leads to l’Hôpital’s Rule.

When g x x( ) , Theorem 7 is the Mean 
Value Theorem.

FIGURE 4.36 The two functions in 
l’Hôpital’s Rule, graphed with their linear 
approximations at x a.

0 a

y

y = f ′(a)(x − a)

y = g′(a)(x − a)

f (x)

g(x)
x

THEOREM 7—Cauchy’s Mean Value Theorem
Suppose functions f  and g are continuous on [ ]a b,  and differentiable throughout 
a b,( ) and also suppose g x( ) 0′ ≠  throughout ( )a b, . Then there exists a number 

c in ( )a b,  at which

f c
g c

f b f a
g b g a

( )
( )

( ) ( )
( ) ( )

.
′
′

= −
−

Proof  We apply the Mean Value Theorem of Section 4.2 twice. First we use it to show 
that g a g b( ) ( ). For if g b( ) did equal g a( ), then the Mean Value Theorem would give

g c
g b g a

b a
( )

( ) ( )
0′ = −

−
=

for some c between a and b, which cannot happen because g x( ) 0′ ≠  in ( )a b, .

HISTORICAL BIOGRAPHY

Augustin-Louis Cauchy
(1789–1857)
Cauchy was born in Paris the year the French 
revolution began. He was the first to define 
fully the ideas of convergence and absolute 
convergence of infinite series. His classic 
works Cours d’analyse (Course on Analysis, 
1821) and Résumé des leçons … sur le 
calcul infinitésimal (1823) were his greatest 
contributions to calculus.

To know more, visit the companion Website. 
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274 Chapter 4 Applications of Derivatives 

We next apply the Mean Value Theorem to the function

F x f x f a
f b f a
g b g a

g x g a( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( ) .[ ]= − − −
−

−

This function is continuous and differentiable where f  and g are, and F b F a( ) ( ) 0. 
Therefore, there is a number c between a and b for which F c( ) 0.′ =  When expressed in 
terms of f  and g, this equation becomes

F c f c
f b f a
g b g a

g c( ) ( )
( ) ( )
( ) ( )

( ) 0[ ]′ = ′ − −
−

′ =

so that

 
f c
g c

f b f a
g b g a

( )
( )

( ) ( )
( ) ( )

.
′
′

= −
−

 

Cauchy’s Mean Value Theorem has a geometric interpretation for a general winding 
curve C in the plane joining the two points A g a f a( ( ), ( )) and B g b f b( ( ), ( )). In 
Chapter 10 you will learn how to describe general curves such as C, along with their tan-
gent lines. There is at least one point P on the curve for which the tangent to the curve at P 
is parallel to the secant line joining the points A and B. The slope of that tangent line turns 
out to be the quotient f g  evaluated at the number c in the interval ( )a b, , which is the 
left-hand side of the equation in Theorem 7. Because the slope of the secant line joining A 
and B is

f b f a
g b g a

( ) ( )
( ) ( )

,

the equation in Cauchy’s Mean Value Theorem says that the slope of the tangent line equals 
the slope of the secant line. This geometric interpretation is shown in Figure 4.37. Notice 
from the figure that it is possible for more than one point on the curve C to have a tangent 
line that is parallel to the secant line joining A and B.

Proof of l’Hôpital’s Rule  Since = =
→ →

f x g xlim ( ) lim ( ) 0
x a x a

 and both f  and g are 

differentiable at a, they must also be continuous at a, hence f a g a( ) ( ) 0.
We first establish the limit equation for the case → +x a . The method needs almost 

no change to apply to → −x a , and the combination of these two cases establishes the 
result.

Suppose that x lies in the interval to the right of a. Then g x( ) 0,′ ≠  and we can apply 
Cauchy’s Mean Value Theorem to the closed interval from a to x. This step produces a 
number c between a and x such that

f c
g c

f x f a
g x g a

( )
( )

( ) ( )
( ) ( )

.
′
′

= −
−

But f a g a( ) ( ) 0, so

f c
g c

f x
g x

( )
( )

( )
( )

.
′
′

=

As x approaches a, c approaches a because it always lies between a and x. Therefore,

f x
g x

f c
g c

f x
g x

lim
( )
( )

lim
( )
( )

lim
( )
( )

,
x a c a x a

= ′
′

= ′
′→ → →+ + +

which establishes l’Hôpital’s Rule for the case where x approaches a from above. The case 
where x approaches a from below is proved by applying Cauchy’s Mean Value Theorem to 
the closed interval [ ]x a, , x a. 

FIGURE 4.37 There is at least one point 
P on the curve C for which the slope of the 
tangent line to the curve at P is the same 
as the slope of the secant line joining the 
points A g a f a( ( ), ( )) and B g b f b( ( ), ( )).

0

y

(g(a), f (a))

(g(b), f (b))
P

B

A

Slope =
f (b) − f (a)
g(b) − g(a)

x

Slope =
f ′(c)
g′(c)

M04_HASS5901_15_GE_C04.indd   274 22-03-2023   16:04:42

www.konkur.in

Telegram: @uni_k



 4.5  Indeterminate Forms and L’Hôpital’s Rule 275

Finding Limits in Two Ways
In Exercises 1–6, use l’Hôpital’s Rule to evaluate the limit. Then eval-
uate the limit using a method studied in Chapter 2.

 1. +
−→−

x
x

lim 2
4x 2 2

 2. 
x

x
lim

sin 5
x 0→

 3. −
+→∞

x x
x

lim 5 3
7 1x

2

2
 4. −

− −→

x
x x

lim 1
4 3x 1

3

3

 5. 
x

x
lim

1 cos
x 0 2

−
→

 6. +
+ +→∞

x x
x x

lim 2 3
1x

2

3

Applying l’Hôpital’s Rule
Use l’Hôpital’s rule to find the limits in Exercises 7–52.

 7. −
−→

x
x

lim 2
4x 2 2

 8. −
+→−

x
x

lim 25
5x 5

2

 9. − +
− −→−

t t
t t

lim 4 15
12t 3

3

2
 10. +

− +→−

t
t t

lim 3 3
4 3t 1

3

3

 11. −
+→∞

x x
x

lim 5 2
7 3x

3

3
 12. −

+→∞

x x
x x

lim 8
12 5x

2

2

 13. 
t

t
lim

sin
t 0

2

→
 14. 

t
t

lim
sin 5

2t 0→

 15. x
x

lim 8
cos 1x 0

2

−→
 16. 

x x
x

lim
sin

x 0 3

−
→

 17. θ π
π θ( )

−
−θ π→

lim 2
cos 22

 18. θ π
θ π( )( )

+
+θ π→−

lim 3
sin 33

 19. lim
sin 1

2

6
6

θ

θ π

−

−θ π→
 20. lim

tan 1

4
4

θ

θ π
−

−θ π→

 21. lim
1 sin

1 cos 22

θ
θ

−
+θ π→

 22. x
x x

lim 1
ln sinx 1 π

−
−→

 23. x
x

lim
ln secx 0

2

( )→
 24. 

x

x
lim

ln csc

2x 2 2π
( )

( )( )−π→

 25. 
t t

t t
lim

1 cos
sint 0

( )−
−→

 26. 
t t

t
lim

sin
1 cost 0 −→

 27. x xlim
2

sec
x 2

π( )−
π( )→ −

 28. x xlim
2

tan
x 2

π( )−
π( )→ −

 29. lim 3 1
0

sin

θ
−

θ

θ

→
 30. 

θ
( ) −

θ

θ

→
lim

1 2 1
0

 31. 
−→

xlim 2
2 1x

x

x0
 32. −

−→
lim 3 1

2 1x

x

x0

 33. 
( )+

→∞

x

x
lim

ln 1

logx 2

 34. 
( )+→∞

x

x
lim

log

log 3x

2

3

 35. 
x x

x
lim

ln 2
lnx 0

2( )+
→ +

 36. 
e

x
lim

ln 1
lnx

x

0

( )−
→ +

 37. + −
→

y
y

lim 5 25 5
y 0

 38. + − >
→

ay a a
y

alim , 0
y 0

2

 39. x xlim ln 2 ln 1
x

( )( )− +
→∞

 40. x xlim ln ln sin
x 0

( )−
→ +

 41. 
x

x
lim

ln
ln sinx 0

2( )
( )→ +

 42. x
x x

lim 3 1 1
sinx 0

+ −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟→ +

 43. 
x x

lim 1
1

1
lnx 1 −

−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟→ +
 44. x x xlim csc cot cos

x 0
( )− +

→ +

 45. 
e

lim
cos 1

10

θ
θ
−

− −θ θ→
 46. 

( )− +
→

e h
h

lim 1
h

h

0 2

 47. +
−→∞

e t
e t

lim
t

t

t

2
 48. 

→∞
−x elim

x

x2

 49. 
x x

x x
lim

sin
tanx 0

−
→

 50. e
x x

lim 1
sinx

x

0

2( )−
→

 51. lim
sin cos

tan0

θ θ θ
θ θ

−
−θ→

 52. 
x x x

x x
lim

sin 3 3
sin sin 2x 0

2− +
→

Indeterminate Powers and Products
Find the limits in Exercises 53–68.

 53. ( )

→

−
+

xlim
x

x

1

1 1  54. ( )

→

−
+

xlim
x

x

1

1 1

 55. xlim ln
x

x1( )
→∞

 56. xlim ln
x e

x e1( ) ( )

→

−
+

 57. xlim
x

x

0

1 ln

→

−
+

 58. xlim
x

x1 ln

→∞

 59. xlim 1 2
x

x1 2 ln( )+ ( )

→∞
 60. ( )+

→
e xlim

x

x x

0

1

 61. 
→ +

xlim
x

x

0
 62. ( )+

→ + x
lim 1 1

x

x

0

 63. ( )+
−→∞

x
x

lim 2
1x

x

 64. ( )+
+→∞

x
x

lim 1
2x

x2 1

 65. x xlim ln
x 0

2

→ +
 66. x xlim ln

x 0

2( )
→ +

 67. x xlim tan
2x 0

π( )−
→ +

 68. x xlim sin ln
x 0

⋅
→ +

Theory and Applications
L’Hôpital’s Rule does not help with the limits in Exercises 69–76. Try 
it—you just keep on cycling. Find the limits some other way.

 69. x
x

lim 9 1
1x

+
+→∞

 70. x
x

lim
sinx 0→ +

 71. 
x
x

lim
sec
tanx 2π( )→ −

 72. 
x
x

lim
cot
cscx 0→ +

 73. −
+→∞

lim 2 3
3 4x

x x

x x
 74. +

−→−∞
lim 2 4

5 2x

x x

x x

 75. 
→∞

e
xe

lim
x

x

x

2

 76. 
→ −+

x
e

lim
x x0 1

 77. Which one is correct, and which one is wrong? Give reasons for 
your answers.

 a. −
−

= =
→ →

x
x x

lim 3
3

lim 1
2

1
6x x3 2 3

  b. −
−

= =
→

x
x

lim 3
3

0
6

0
x 3 2

 78. Which one is correct, and which one is wrong? Give reasons for 
your answers.

 a. x x
x x

x
x x

x

lim 2
sin

lim 2 2
2 cos

lim 2
2 sin

2
2 0

1

x x

x

0

2

2 0

0

−
−

= −
−

=
+

=
+

=

→ →

→

 b. x x
x x

x
x x

lim 2
sin

lim 2 2
2 cos

2
0 1

2
x x0

2

2 0

−
−

= −
−

= −
−

=
→ →

EXERCISES 4.5

M04_HASS5901_15_GE_C04.indd   275 07/03/23   3:06 PM

www.konkur.in

Telegram: @uni_k



276 Chapter 4 Applications of Derivatives 

 79. Only one of these calculations is correct. Which one? Why are the 
others wrong? Give reasons for your answers.

 a. x xlim ln 0 0
x 0

( )= ⋅ −∞ =
→ +

 b. x xlim ln 0
x 0

( )= ⋅ −∞ = −∞
→ +

 c. x x
x
x

lim ln lim
ln
1

1
x x0 0 ( )

= = −∞
∞

= −
→ →+ +

 d. x x
x
x

x
x

x

lim ln lim
ln
1

lim
1
1

lim ( ) 0

x x

x x

0 0

0 2 0

( )

( )
( )

=

=
−

= − =

→ →

→ →

+ +

+ +

 80. Find all values of c that satisfy the conclusion of Cauchy’s Mean 
Value Theorem for the given functions and interval.

 a. ( ) ( )= = = −f x x g x x a b( ) , ( ) , , 2, 02

 b. ( )= =f x x g x x a b( ) , ( ) , ,  arbitrary2

 c. ( ) ( )= − = =f x x x g x x a b( ) 3 4 , ( ) , , 0, 33 2

 81. Continuous extension Find a value of c that makes the function

f x
x x

x
x

c x
( )

9 3 sin 3
5

, 0

, 0

3=
−

≠

=

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

continuous at =x 0. Explain why your value of c works.

 82. For what values of a and b is

x
x

a
x

bx
x

lim
tan 2 sin

0?
x 0 3 2( )+ + =

→

 83. ∞ − ∞ Form

 a. Estimate the value of

( )− +
→∞

x x xlim
x

2

by graphing = − +f x x x x( ) 2  over a suitably large 
interval of x-values.

 b. Now confirm your estimate by finding the limit with 
l’Hôpital’s Rule. As the first step, multiply f x( ) by the frac-

tion ( ) ( )+ + + +x x x x x x2 2  and simplify the new 
numerator.

 84. Find ( )+ −
→∞

x xlim 1 .
x

2

 85. 0 0 Form Estimate the value of

( )− + +
−→

x x x
x

lim 2 3 1 2
1x 1

2

by graphing. Then confirm your estimate with l’Hôpital’s Rule.

 86. This exercise explores the difference between

( )+
→∞ x
lim 1 1
x

x

2

and

( )+ =
→∞ x

elim 1 1 .
x

x

 a. Use l’Hôpital’s Rule to show that

( )+ =
→∞ x

elim 1 1 .
x

x

 b. Graph

( ) ( )= + = +f x
x

g x
x

( ) 1 1 and ( ) 1 1x x

2

together for ≥x 0. How does the behavior of f  compare 
with that of g? Estimate the value of 

→∞
f xlim ( )

x
.

 c. Confirm your estimate of 
→∞

f xlim ( )
x

 by calculating it with 
l’Hôpital’s Rule.

 87. Show that

( )+ =
→∞

r
k

elim 1 .
k

k
r

 88. Given that >x 0, find the maximum value, if any, of

 a. x x1

 b. x x1 2

 c. x x1 n  (n a positive integer)

 d. Show that =
→∞

xlim 1
x

x1 n  for every positive integer n.

 89. Use limits to find horizontal asymptotes for each function.

 a. y x
x

tan 1( )=

 b. = +
+

y x e
x e

3
2

x

x

2

3

 90. Find ′f (0) for f x
e x

x
( )

, 0

0, 0.

x1 2

=
≠

=

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

−

 91. The continuous extension of xsin x( )  to [ ]π0,  

 a. Graph f x x( ) sin x( )=  on the interval π≤ ≤x0 . What 
value would you assign to f  to make it continuous at =x 0?

 b. Verify your conclusion in part (a) by finding f xlim ( )
x 0→ +

 with 
l’Hôpital’s Rule.

 c. Returning to the graph, estimate the maximum value of f  on 
π[ ]0, . About where is max f  taken on?

 d. Sharpen your estimate in part (c) by graphing ′f  in the same 
window to see where its graph crosses the x-axis. To simplify 
your work, you might want to delete the exponential factor 
from the expression for ′f  and graph just the factor that has  
a zero.

 92. The function ( )xsin xtan  (Continuation of Exercise 91)

 a. Graph f x x( ) sin xtan( )=  on the interval − ≤ ≤x7 7. How 
do you account for the gaps in the graph? How wide are the 
gaps?

 b. Now graph f  on the interval π≤ ≤x0 . The function is not 
defined at π=x 2, but the graph has no break at this point. 
What is going on? What value does the graph appear to give 
for f  at π=x 2? (Hint: Use l’Hôpital’s Rule to find lim f  
as π( )→ −x 2  and π( )→ +x 2 .)

 c. Continuing with the graphs in part (b), find max f  and min f  
as accurately as you can and estimate the values of x at which 
they are taken on.

T

T

T

T

T
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 4.6  Applied Optimization 277

Solving Applied Optimization Problems

1. Read the problem. Read the problem until you understand it. What is given? 
What is the unknown quantity to be optimized (maximized or minimized)?

2. Introduce variables. List every relevant relation in the problem as an equation. 
In most problems it is helpful to draw a picture.

3. Write an equation for the unknown quantity. Express the quantity to be 
optimized as a function of a single variable. This may require considerable 
manipulation.

4. Test the critical points and endpoints in the domain of the function found in the 
previous step. Use what you know about the shape of the function’s graph. Use 
the first and second derivatives to identify and classify the function's critical 
points.

FIGURE 4.38 An open box made by 
cutting the corners from a square sheet of 
tin. What size corners maximize the box’s 
volume (Example 1)?

12

12

12

x

x
x

x

x

xx

(a)

(b)

12 − 2x

12 − 2x

FIGURE 4.39 The volume of the box in 
Figure 4.38 graphed as a function of x.

x

y

0

min

2 6

min

V
ol

um
e

 

Maximum

y = x(12 − 2x)2,
0 ≤ x ≤ 6

NOT TO SCALE

4.6 Applied Optimization

What are the dimensions of a rectangle with fixed perimeter having maximum area? 
What are the dimensions for the least expensive cylindrical can of a given volume? How 
many items should be produced for the most profitable production run? Each of these 
questions asks for the best, or optimal, value of a given function. In this section we use 
derivatives to solve a variety of optimization problems in mathematics, physics, econom-
ics, and business.

EXAMPLE 1  An open-top box is to be made by cutting small congruent squares from 
the corners of a 12-cm-by-12-cm sheet of tin and bending up the sides. How large should 
the squares cut from the corners be to make the box hold as much as possible?

Solution We start with a picture (Figure 4.38). In the figure, the corner squares are x cm 
on a side. The volume of the box is a function of this variable:

V x x x x x x( ) 12 2 144 48 4 . V hlw2 2 3( )= − = − + =

Since the sides of the sheet of tin are only 12 cm long, ≤x 6 and the domain of V is the 
interval ≤ ≤x0 6.

A graph of V (Figure 4.39) suggests a minimum value of 0 at x  0 and x  6 and a 
maximum near x  2. To learn more, we examine the first derivative of V with respect to x:

( ) ( )( )= − + = − + = − −dV
dx

x x x x x x144 96 12 12 12 8 12 2 6 .2 2

Of the two zeros, =x 2 and =x 6, only =x 2 lies in the interior of the function’s 
domain and makes the critical-point list. The values of V at this one critical point and two 
endpoints are

=
= =

V

V V

Critical-point value: (2) 128

Endpoint values: (0) 0, (6) 0.

The maximum volume is 128 cm .3  The cutout squares should be 2 cm on a side. 
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278 Chapter 4 Applications of Derivatives 

EXAMPLE 2  You have been asked to design a one-liter can shaped like a right circular 
cylinder (Figure 4.40). What dimensions will use the least material?

Solution Volume of can: If r and h are measured in centimeters, then the volume of the 
can in cubic centimeters is

r h

Surface area of can: A r rh

1000.

2 2

1 liter 1000 cm

circular
ends

cylindrical
wall

2

2

3π

π π

=

= +

=

��

How can we interpret the phrase “least material”? For a first approximation we can ignore 
the thickness of the material and the waste in manufacturing. Then we ask for dimensions 
r and h that make the total surface area as small as possible, while satisfying the constraint 
π =r h 1000 cm .2 3

To express the surface area as a function of one variable, we solve for one of the 
variables in π =r h 10002  and substitute that expression into the surface area formula. 
Solving for h is easier:

π
=h

r
1000 .

2

Thus,

A r rh

r r
r

r
r

2 2

2 2 1000

2 2000 .

2

2
2

2

π π

π π
π

π

( )
= +

= +

= +

Our goal is to find a value of >r 0 that minimizes the value of A.
Since A is differentiable on >r 0, an interval with no endpoints, it can have a mini-

mum value only where its first derivative is zero.

dA
dr

r
r

r
r

r

r

4 2000

0 4 2000

4 2000

500 5.42

r

r

Set  0.

Multiply by  .

Solve for  .

dA dr

2

2

3

3

2

π

π

π

π

= −

= −

=

= ≈

=

What happens at π=r 500 ?3

The second derivative

π= +d A
dr r

4 40002

2 3

is positive throughout the domain of A. The graph is therefore everywhere concave up, and 
the value of A at r 5003 π=  is an absolute minimum. See Figure 4.41.

The corresponding value of h (after a little algebra) is

h
r

r1000 2 500 2 .
2

3

π π
= = =

The one-liter can that uses the least material has height equal to twice the radius, here with 
≈r 5.42 cm and ≈h 10.84 cm. 

FIGURE 4.40 Example 2 shows that this 
one-liter can uses the least material when 

=h r2 .

h

2r

FIGURE 4.41 The graph of 
π= +A r r2 20002  is concave up.

r

A

0

min

Tall and 
thin can

Short and
wide can

2000——r

3

A = 2pr2 +           ,  r > 0

500
p

Tall and thin Short and wide
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 4.6  Applied Optimization 279

Examples from Mathematics and Physics

EXAMPLE 3  A rectangle is to be inscribed in a semicircle of radius 2. What is the 
largest area the rectangle can have, and what are its dimensions?

Solution Let ( )−x x, 4 2  be the coordinates of the upper right corner of the rectangle 
obtained by placing the circle and rectangle in the coordinate plane (Figure 4.42). The 
length, height, and area of the rectangle can then be expressed in terms of the position x of 
the lower right-hand corner:

x x x xLength: 2 ,  Height:  4 , Area: 2 4 .2 2

Notice that the values of x are to be found in the interval x0 2, where the selected 
corner of the rectangle lies.

Our goal is to find the absolute maximum value of the function

= −A x x x( ) 2 4 2

on the domain [ ]0, 2 .
The derivative

= −
−

+ −dA
dx

x
x

x2
4

2 4
2

2
2

is not defined when x 2 and is equal to zero when

x
x

x

x x

x

x

x

2
4

2 4 0

2 2 4 0

8 4 0

2

2.

2

2
2

2 2

2

2

( )

−
−

+ − =

− + − =

− =

=

= ±

Of the two zeros, x 2 and = −x 2, only x 2 lies in the interior of A’s domain 
and makes the critical-point list. The values of A at the endpoints and at this one critical 
point are

( ) = − =

= =

A

A A

Critical-point value: 2 2 2 4 2 4

Endpoint values: (0) 0, (2) 0.

The area has a maximum value of 4 when the rectangle is − =x4 2 units2  high and 
x2 2 2 units long. 

EXAMPLE 4  The speed of light depends on the medium through which it travels, and 
is generally slower in denser media.

Fermat’s principle in optics states that light travels from one point to another along a 
path for which the time of travel is a minimum. Describe the path that a ray of light will 
follow in going from a point A in a medium where the speed of light is c1 to a point B in a 
second medium where the speed of light is c .2

Solution Since light traveling from A to B follows the quickest route, we look for a path 
that will minimize the travel time. We assume that A and B lie in the xy-plane and that the 
line separating the two media is the x-axis (Figure 4.43). We place A at coordinates ( )a0,  
and B at coordinates ( )−d b,  in the xy-plane.

In a uniform medium, where the speed of light remains constant, “shortest time” 
means “shortest path,” and the ray of light will follow a straight line. Thus the path from A 

FIGURE 4.42 The rectangle inscribed in 
the semicircle in Example 3.

x

y

0 2x−2 −x

2

x2 + y2 = 4

Qx, 
"

4 − x2
R

HISTORICAL BIOGRAPHY

Willebrord Snell van Royen
(1580–1626)
Snell was born in Leiden, Holland.  
Snell developed an important result involving 
the measure of light refraction as it travels into 
different media. While he never published the 
result, Descartes did so ten years after Snell’s 
death, and today it is known as Snell’s law.

To know more, visit the companion Website. 
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280 Chapter 4 Applications of Derivatives 

to B will consist of a line segment from A to a boundary point P, followed by another line 
segment from P to B. Distance traveled equals rate times time, so

=Time distance
rate

.

From Figure 4.43, the time required for light to travel from A to P is

= = +t AP
c

a x
c

.1
1

2 2

1

From P to B, the time is

( )= = + −t PB
c

b d x
c

.2
2

2 2

2

The time from A to B is the sum of these:

( )= + = + + + −t t t a x
c

b d x
c

.1 2

2 2

1

2 2

2

This equation expresses t as a differentiable function of x whose domain is [ ]d0, . We want 
to find the absolute minimum value of t on this closed interval. We find the derivative

( )
=

+
− −

+ −

dt
dx

x
c a x

d x

c b d x1
2 2

2
2 2

and observe that it is continuous. In terms of the θangles 1 and θ2 in Figure 4.43,

θ θ
= −dt

dx c c
sin sin

.1

1

2

2

The function t has a negative derivative at =x 0 and a positive derivative at =x d. Since 
dt dx  is continuous over the interval [ ]d0, , by the Intermediate Value Theorem for continu-
ous functions (Section 2.6), there is a point [ ]∈x d0,0  where =dt dx 0 (Figure 4.44). 
There is only one such point because dt dx  is an increasing function of x (Exercise 70).  
At this unique point we then have

θ θ
=

c c
sin sin

.1

1

2

2

This equation is Snell’s Law or the Law of Refraction, and it is an important principle in 
the theory of optics. It describes the path the ray of light follows. 

Examples from Economics

Suppose that

=
=
= − =

r x x

c x x

p x r x c x x

( ) the revenue from selling   items

( ) the cost of producing the   items

( ) ( ) ( ) the profit from producing and selling   items.

Although x is usually an integer in many applications, we can learn about the behavior of 
these functions by defining them for all nonzero real numbers and by assuming they are 
differentiable functions. Economists use the terms marginal revenue, marginal cost, and 
marginal profit to name the derivatives ′ ′r x c x( ), ( ), and ′p x( ) of the revenue, cost, and 
profit functions. Let’s consider the relationship of the profit p to these derivatives.

If r x( ) and c x( ) are differentiable for x in some interval of production possibilities, and 
if = −p x r x c x( ) ( ) ( ) has a maximum value there, it occurs at a critical point of p x( ) or  
at an endpoint of the interval. If it occurs at a critical point, then ′ = ′ − ′ =p x r x c x( ) ( )  ( ) 0 
and we see that ′ = ′r x c x( ) ( ). In economic terms, this last equation means that

FIGURE 4.43 A light ray refracted 
(deflected from its path) as it passes 
from one medium to a denser medium 
(Example 4).

Angle of
incidence

Medium 1

Angle of
refractionMedium 2

x

y

0 x d
P

B

b

a

A

u1

u1

u2

d − x

FIGURE 4.44 The sign pattern of dt dx in 
Example 4.

x

0 d

x

0 d
x0

dt�dx
positive

dt�dx
zero

dt�dx
negative

− − − − − + + + + + + + + +
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 4.6  Applied Optimization 281

At a production level yielding maximum profit, marginal revenue equals marginal 
cost (Figure 4.45).

FIGURE 4.45 The graph of a typical cost function starts concave down and later turns concave 
up. It crosses the revenue curve at the break-even point B. To the left of B, the company operates 
at a loss. To the right, the company operates at a profit, with the maximum profit occurring where 
′ = ′c x r x( ) ( ). Farther to the right, cost exceeds revenue (perhaps because of a combination of 

rising labor and material costs, and market saturation) and production levels become unprofitable 
again.

x

y

0

D
ol

la
rs

Items produced

Break-even point

B

Cost c(x)

Local maximum for loss (minimum profit), c′(x) = r ′(x)

Revenue r(x)

Maximum profit, c′(x) = r ′(x)

FIGURE 4.46 The cost and revenue 
curves for Example 5.

x

y

0 2

Maximum
for profit

Local maximum for loss

c(x) = x3 − 6x2 + 15x

NOT TO SCALE

r(x) = 9x

2 − 
"

2 2 + 
"

2

EXAMPLE 5  Suppose that =r x x( ) 9  and = − +c x x x x( ) 6 153 2  are the rev-
enue and the cost functions, given in millions of dollars, where x represents millions of 
MP3 players produced. Is there a production level that maximizes profit? If so, what is it?

Solution Notice that ′ =r x( ) 9 and ′ = − +c x x x( ) 3 12 15.2

− + =

− + =

′ = ′x x

x x

3 12 15 9

3 12 6 0

c x r xSet  ( ) ( ).2

2

The two solutions of the quadratic equation are

x

x

12 72
6

2 2 0.586 and

12 72
6

2 2 3.414.

1

2

= − = − ≈

= + = + ≈

The possible production levels for maximum profit are ≈x 0.586 million MP3 players or 
≈x 3.414 million. The second derivative of = −p x r x c x( ) ( ) ( ) is ′′ = − ′′p x c x( ) ( ) 

since ′′r x( ) is everywhere zero. Thus, ( )′′ = −p x x( ) 6 2 , which is negative at 
= +x 2 2 and positive at = −x 2 2. By the Second Derivative Test, a maximum 

profit occurs at about =x 3.414 (where revenue exceeds costs) and maximum loss occurs 
at about =x 0.586. The graphs of r x( ) and c x( ) are shown in Figure 4.46. 

EXAMPLE 6  A cabinetmaker uses cherry wood to produce 5 desks each day. Each 
delivery of one container of wood is $5000, whereas the storage of that material is $10 per 
day per unit stored, where a unit is the amount of material needed by her to produce 1 desk. 
How much material should be ordered each time, and how often should the material be 
delivered, to minimize her average daily cost in the production cycle between deliveries?

Solution If she asks for a delivery every x days, then she must order 5x units to have 
enough material for that delivery cycle. The average amount in storage is approximately 
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one-half of the delivery amount, or x5 2. Thus, the cost of delivery and storage for each 
cycle is approximately

x x

Cost per cycle delivery costs storage costs

Cost per cycle 5000 5
2

10
delivery

cost average
amount stored

number of
days stored

storage cost
per day

( )
= +

= + ⋅ ⋅

We compute the average daily cost c x( ) by dividing the cost per cycle by the number of 
days x in the cycle (see Figure 4.47).

= + >c x
x

x x( ) 5000 25 , 0.

As x 0 and as → ∞x , the average daily cost becomes large. So we expect a mini-
mum to exist, but where? Our goal is to determine the number of days x between deliveries 
that provides the absolute minimum cost.

We find the critical points by determining where the derivative is equal to zero:

′ = − + =

= ± ≈ ±

c x
x

x

( ) 500 25 0

200 14.14.

2

Of the two critical points, only 200  lies in the domain of c x( ). The critical point value of 
the average daily cost is

( ) = + = ≈c 200 5000
200

25 200 500 2 $707.11.

We note that c x( ) is defined over the open interval ( )∞0,  with ′′ = >c x x( ) 10000 0.3  
Thus, an absolute minimum exists at = ≈x 200 14.14 days.

The cabinetmaker should schedule a delivery of ( ) =5 14 70 units of wood every  
14 days. 

FIGURE 4.47 The average daily cost  
c x( ) is the sum of a hyperbola and a linear 
function (Example 6).

x

y

min x value

c(x) =          + 25x

C
os

t

Cycle length

5000
x

y = 25x

y = 5000
x

Mathematical Applications
Whenever you are maximizing or minimizing a function of a single 
variable, we urge you to graph it over the domain that is appropriate 
to the problem you are solving. The graph will provide insight before 
you calculate and will furnish a visual context for understanding your 
answer.

 1. Minimizing perimeter What is the smallest perimeter possible 
for a rectangle whose area is 16 cm 2, and what are its dimensions?

 2. Show that among all rectangles with an 8-m perimeter, the one 
with largest area is a square.

 3. The figure shows a rectangle inscribed in an isosceles right tri-
angle whose hypotenuse is 2 units long.

 a. Express the y-coordinate of P in terms of x. (Hint: Write an 
equation for the line AB.)

 b. Express the area of the rectangle in terms of x.

 c. What is the largest area the rectangle can have, and what are 
its dimensions?

 4. A rectangle has its base on the x-axis and its upper two vertices on 
the parabola = −y x12 .2  What is the largest area the rectangle 
can have, and what are its dimensions?

 5. You are planning to make an open rectangular box from a 24-cm-by- 
45-cm piece of cardboard by cutting congruent squares from the 
corners and folding up the sides. What are the dimensions of the box 
of largest volume you can make this way, and what is its volume?

 6. You are planning to close off a corner of the first quadrant with a line 
segment 20 units long running from ( ) ( )a b, 0  to  0, . Show that the 
area of the triangle enclosed by the segment is largest when a b.

 7. The best fencing plan A rectangular plot of farmland will be 
bounded on one side by a river and on the other three sides by a sin-
gle-strand electric fence. With 800 m of wire at your disposal, what 
is the largest area you can enclose, and what are its dimensions?

 8. The shortest fence A 216 m 2 rectangular pea patch is to be 
enclosed by a fence and divided into two equal parts by another 
fence parallel to one of the sides. What dimensions for the outer 
rectangle will require the smallest total length of fence? How 
much fence will be needed?

EXERCISES 4.6

x

y

0 1

B

A
x−1

P(x, ?)
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 9. Designing a tank Your iron works has contracted to design and 
build a 4 m ,3  square-based, open-top, rectangular steel holding 
tank for a paper company. The tank is to be made by welding thin 
stainless steel plates together along their edges. As the production 
engineer, your job is to find dimensions for the base and height 
that will make the tank weigh as little as possible.

 a. What dimensions do you tell the shop to use?

 b. Briefly describe how you took weight into account.

 10. Catching rainwater A 20 m 3 open-top rectangular tank with  
a square base x m on a side and y m deep is to be built with its  
top flush with the ground to catch runoff water. The costs associ-
ated with the tank involve not only the material from which the 
tank is made but also an excavation charge proportional to the 
product xy.

 a. If the total cost is

( )= + +c x xy xy5 4 10 ,2

what values of x and y will minimize it?

 b. Give a possible scenario for the cost function in part (a).

 11. Designing a poster You are designing a rectangular poster to 
contain 312.5 cm 2 of printing with a 10-cm margin at the top and 
bottom and a 5-cm margin at each side. What overall dimensions 
will minimize the amount of paper used?

 12. Find the volume of the largest right circular cone that can be 
inscribed in a sphere of radius 3.

removed from the other corners so that the tabs can be folded to 
form a rectangular box with lid.

y

x

3

3

30 cm

xx

x

x x

x

45 cm

Base Lid

x x

N
O

T
  T

O
  S

C
A

L
E

 13. Two sides of a triangle have lengths a and b, and the angle between 
them is . What value of  will maximize the triangle’s area? (Hint: 

( )=A ab1 2 sin .)

 14. Designing a can What are the dimensions of the lightest 
open-top right circular cylindrical can that will hold a volume of 
1000 cm ?3  Compare the result here with the result in Example 2.

 15. Designing a can You are designing a 1000 cm 3 right circular 
cylindrical can whose manufacture will take waste into account. 
There is no waste in cutting the aluminum for the side, but the top 
and bottom of radius r will be cut from squares that measure 2r 
units on a side. The total amount of aluminum used up by the can 
will therefore be

= +A r rh8 22

rather than the = +A r rh2 22  in Example 2. In Example 2, 
the ratio of h to r for the most economical can was 2 to 1. What is 
the ratio for the most economical can now?

 16. Designing a box with a lid A piece of cardboard measures  
30 cm by 45 cm. Two equal squares are removed from the corners 
of a 30-cm side as shown in the figure. Two equal rectangles are 

 a. Write a formula V x( ) for the volume of the box.

 b. Find the domain of V for the problem situation, and graph V 
over this domain.

 c. Use a graphical method to find the maximum volume and the 
value of x that gives it.

 d. Confirm your result in part (c) analytically.

 17. Designing a suitcase A 60-cm-by-90-cm sheet of cardboard is  
folded in half to form a 60-cm-by-45-cm rectangle as shown in 
the accompanying figure. Then four congruent squares of side 
length x are cut from the corners of the folded rectangle. The sheet 
is unfolded, and the six tabs are folded up to form a box with sides 
and a lid.

 a. Write a formula V x( ) for the volume of the box.

 b. Find the domain of V for the problem situation and graph V 
over this domain.

 c. Use a graphical method to find the maximum volume and the 
value of x that gives it.

 d. Confirm your result in part (c) analytically.

 e. Find a value of x that yields a volume of 17, 500 cm .3

 f. Write a paragraph describing the issues that arise in part (b).

60 cm

90 cm

x

60 cm

x

x x

x x

x x

45 cm

60 cm

90 cm

Base

The sheet is then unfolded.

 18. A rectangle is to be inscribed under the arch of the curve 
( )=y x4 cos 0.5  from = −x  to x . What are the dimen-

sions of the rectangle with largest area, and what is the largest area?

T

T

T
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 19. Find the dimensions of a right circular cylinder of maximum vol-
ume that can be inscribed in a sphere of radius 10 cm. What is the 
maximum volume?

 20. a.  A certain Postal Service will accept a box for domestic ship-
ment only if the sum of its length and girth (distance around) 
does not exceed 276 cm. What dimensions will give a box with 
a square end the largest possible volume?

be used if the volume is fixed and the cost of construction is to be 
kept to a minimum. Neglect the thickness of the silo and waste in 
construction.

 24. The trough in the figure is to be made to the dimensions shown. 
Only the angle  can be varied. What value of  will maximize the 
trough’s volume?

uu

20′

1′

1′

1′

Square end

Girth = distance
around here

Length

 b. Graph the volume of a 276-cm box (length plus girth equals 
276 cm) as a function of its length, and compare what you see 
with your answer in part (a).

 21. (Continuation of Exercise 20)

 a. Suppose that instead of having a box with square ends, you 
have a box with square sides so that its dimensions are h by h 
by w and the girth is h w2 2 . What dimensions will give the 
box its largest volume now?

w

Girth

h

h

 b. Graph the volume as a function of h and compare what you 
see with your answer in part (a).

 22. A window is in the form of a rectangle surmounted by a semi-
circle. The rectangle is of clear glass, whereas the semicircle is of 
tinted glass that transmits only half as much light per unit area as 
clear glass does. The total perimeter is fixed. Find the proportions 
of the window that will admit the most light. Neglect the thickness 
of the frame.

 23. A silo (base not included) is to be constructed in the form of a 
cylinder surmounted by a hemisphere. The cost of construction 
per square unit of surface area is twice as great for the hemisphere 
as it is for the cylindrical sidewall. Determine the dimensions to 

 25. Paper folding A rectangular sheet of 21.6-cm-by-28-cm paper  
is placed on a flat surface. One of the corners is placed on the oppo-
site longer edge, as shown in the figure, and held there as the paper 
is smoothed flat. The problem is to make the length of the crease as  
small as possible. Call the length L. Try it with paper.

 a. Show that L x x2 2 21.6 .2 3 ( )= −

 b. What value of x minimizes L ?2

 c. What is the minimum value of L?

Crease

D C

BPA
x

x

L

R

Q (originally at A)
"

L2 − x2

 26. Constructing cylinders Compare the answers to the following 
two construction problems.

 a. A rectangular sheet of perimeter 36 cm and dimensions x cm 
by y cm is to be rolled into a cylinder as shown in part (a) of 
the figure. What values of x and y give the largest volume?

 b. The same sheet is to be revolved about one of the sides of 
length y to sweep out the cylinder as shown in part (b) of the 
figure. What values of x and y give the largest volume?

x

y

y

(a)

Circumference = x
y

x

(b)

T

T
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 27. Constructing cones A right triangle whose hypotenuse is 3 m 
long is revolved about one of its legs to generate a right circular 
cone. Find the radius, height, and volume of the cone of greatest 
volume that can be made this way.

 37. What value of a makes ( )= +f x x a x( ) 2  have

 a. a local minimum at =x 2?

 b. a point of inflection at =x 1?

 38. What values of a and b make = + +f x x ax bx( ) 3 2  have

 a. a local maximum at = −x 1 and a local minimum at =x 3?

 b. a local minimum at =x 4 and a point of inflection at 
=x 1?

 39. A right circular cone is circumscribed by a sphere of radius 1. 
Determine the height h and radius r of the cone of maximum 
volume.

 40. Determine the dimensions of the inscribed rectangle of maximum 
area.

h

r

"

3

x

y

1
y = e−x

4

3

5
w

h

 28. Find the point on the line + =x
a

y
b

1 that is closest to the origin.

 29. Find a positive number for which the sum of it and its reciprocal is 
the smallest (least) possible.

 30. Find a positive number for which the sum of its reciprocal and 
four times its square is the smallest possible.

 31. A wire b m long is cut into two pieces. One piece is bent into an 
equilateral triangle and the other is bent into a circle. If the sum of 
the areas enclosed by each part is a minimum, what is the length 
of each part?

 32. Answer Exercise 31 if one piece is bent into a square and the other 
into a circle.

 33. Suppose a weight D is to be held 5 m below a horizontal line AB 
by a wire in the shape of a Y. If the points A and B are 4 m apart, 
what is the minimum total length of wire that can be used?

BA

C

D

2 m2 m

5 m

 34. Suppose two different gauges of wire must be used to support the 
weight in Exercise 33: the vertical portion of the wire (the seg-
ment CD) costs $1 per meter, while the remaining wire (the seg-
ments AC and CB) must be sturdier and cost $2 per meter. What is 
the minimum total cost of the wire that can be used?

 35. Determine the dimensions of the rectangle of largest area that 
can be inscribed in the right triangle shown in the accompanying 
figure.

r = 3

w

h

 36. Determine the dimensions of the rectan-
gle of largest area that can be inscribed 
in a semicircle of radius 3. (See the 
accompanying figure.)

 41. Consider the accompanying graphs of = +y x2 3 and =y xln . 
Determine the

 a. minimum vertical distance;

 b. minimum horizontal distance between these graphs.

3
−

2

y = ln x

y = 2x + 3

x

y

1

3

 42. Find the point on the graph of = + − −y x x x x20 60 3 53 5 4 
with the largest slope.

 43. Among all triangles in the first quadrant formed by the x-axis, the 
y-axis, and tangent lines to the graph of = −y x x3 ,2  what is the 
smallest possible area?

y = 3x − x2

(a, 3a − a2)

x

y

0 3
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Physical Applications

 45. Vertical motion The height above ground of an object moving 
vertically is given by

s t t4.9 29.4 34.3,2= − + +

with s in meters and t in seconds. Find

 a. the object’s velocity when t 0;

 b. its maximum height and when it occurs;

 c. its velocity when s 0.

 46. Quickest route Jane is 2 km offshore in a boat and wishes to 
reach a coastal village 6 km down a straight shoreline from the 
point nearest the boat. She can row 2 km/h and can walk 5 km/h. 
Where should she land her boat to reach the village in the least 
amount of time?

 47. Shortest beam The 2-m wall shown here stands 5 m from the 
building. Find the length of the shortest straight beam that will 
reach to the side of the building from the ground outside the wall.

point of impact. If the projectile is fired with an initial velocity 0  
at an angle  with the horizontal, then in Chapter 12 we find that

R
g

sin 2 ,0
2υ

α

where g is the downward acceleration due to gravity. Find the 
angle  for which the range R is the largest possible.

 51. Strength of a beam The strength S of a rectangular wooden 
beam is proportional to its width times the square of its depth. 
(See the accompanying figure.)

 a. Find the dimensions of the strongest beam that can be cut 
from a 30-cm diameter cylindrical log.

 b. Graph S as a function of the beam’s width w, assuming the 
proportionality constant to be k 1. Reconcile what you see 
with your answer in part (a).

 c. On the same screen, graph S as a function of the beam’s  
depth d, again taking k 1. Compare the graphs with one 
another and with your answer in part (a). What would be the 
effect of changing to some other value of k? Try it.

Building

5 m

Beam

2 m wall

30 cm
d

w

0 10
s

1

11 u

 44. A cone is formed from a circular piece of material of radius 1 meter 
by removing a section of angle  and then joining the two straight 
edges. Determine the largest possible volume for the cone.

 48. Motion on a line The positions of two particles on the s-axis are 
( )= = +s t s tsin  and  sin 3 ,1 2  with s1 and s2 in meters and 

t in seconds.

 a. At what time(s) in the interval t0 2  do the particles 
meet?

 b. What is the farthest apart that the particles ever get?

 c. When in the interval t0 2  is the distance between the 
particles changing the fastest?

 49. The intensity of illumination at any point from a light source 
is proportional to the square of the reciprocal of the distance 
between the point and the light source. Two lights, one having an 
intensity eight times that of the other, are 6 m apart. How far from 
the stronger light is the total illumination least?

 50. Projectile motion The range R of a projectile fired from the 
origin over horizontal ground is the distance from the origin to the 

 52. Stiffness of a beam The stiffness S of a rectangular beam is pro-
portional to its width times the cube of its depth.

 a. Find the dimensions of the stiffest beam that can be cut from a 
30-cm-diameter cylindrical log.

 b. Graph S as a function of the beam’s width w, assuming the 
proportionality constant to be k 1. Reconcile what you see 
with your answer in part (a).

 c. On the same screen, graph S as a function of the beam’s  
depth d, again taking k 1. Compare the graphs with one 
another and with your answer in part (a). What would be the 
effect of changing to some other value of k? Try it.

 53. Frictionless cart A small frictionless cart, attached to the wall 
by a spring, is pulled 10 cm from its rest position and released at 
time t 0 to roll back and forth for 4 s. Its position at time t is 
s t10 cos .

 a. What is the cart’s maximum speed? When is the cart moving  
that fast? Where is it then? What is the magnitude of the 
acceleration then?

 b. Where is the cart when the magnitude of the acceleration is 
greatest? What is the cart’s speed then?

T

T
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 54. Two masses hanging side by side from springs have positions 
s t s t2 sin  and  sin 2 ,1 2  respectively.

 a. At what times in the interval t0  do the masses pass each 
other? (Hint: t t tsin 2 2 sin cos .)

 b. When in the interval t0 2  is the vertical distance 
between the masses the greatest? What is this distance?  
(Hint: = −t tcos 2 2 cos 1.2 )

 57. Tin pest When metallic tin is kept below 13.2 °C, it slowly 
becomes brittle and crumbles to a gray powder. Tin objects even-
tually crumble to this gray powder spontaneously if kept in a 
cold climate for years. The Europeans who saw tin organ pipes in 
their churches crumble away years ago called the change tin pest 
because it seemed to be contagious, and indeed it was, for the gray 
powder is a catalyst for its own formation.

A catalyst for a chemical reaction is a substance that controls 
the rate of reaction without undergoing any permanent change in 
itself. An autocatalytic reaction is one whose product is a cata-
lyst for its own formation. Such a reaction may proceed slowly 
at first if the amount of catalyst present is small and slowly again 
at the end, when most of the original substance is used up. But 
in between, when both the substance and its catalyst product are 
abundant, the reaction proceeds at a faster pace.

In some cases, it is reasonable to assume that the rate dx dt 
of the reaction is proportional both to the amount of the original 
substance present and to the amount of product. That is,  may be 
considered to be a function of x alone, and

( )= − = −kx a x kax kx ,2

where

x the amount of product,

a the amount of substance at the beginning, and

k a positive constant.

At what value of x does the rate  have a maximum? What is the 
maximum value of ?

 58. Airplane landing path An airplane is flying at altitude H when 
it begins its descent to an airport runway that is at horizontal 
ground distance L from the airplane, as shown in the accompa-
nying figure. Assume that the landing path of the airplane is the 
graph of a cubic polynomial function = + + +y ax bx cx d,3 2  
where − =y L H( )  and y(0) 0.

 a. What is dy dx x at  0?

 b. What is = −dy dx x L at  ?

 c. Use the values for dy dx x at  0 and = −x L together 
with y(0) 0 and − =y L H( )  to show that

( ) ( )= +⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

y x H x
L

x
L

( ) 2 3 .
3 2

s

0

m2

s1

s2

m1

B

Plane mirror

Light
source

Angle of
incidence

Light
receiver

Normal

Angle of
reflection

A
u1

u2

Landing path y

x

H = Cruising altitude
Airport

L

 55. Distance between two ships At noon, ship A was 12 nautical 
miles due north of ship B. Ship A was sailing south at 12 knots 
(nautical miles per hour; a nautical mile is 1852 m) and continued 
to do so all day. Ship B was sailing east at 8 knots and continued 
to do so all day.

 a. Start counting time with t 0 at noon and express the dis-
tance s between the ships as a function of t.

 b. How rapidly was the distance between the ships changing at 
noon? One hour later?

 c. The visibility that day was 5 nautical miles. Did the ships ever 
sight each other?

 d. Graph s and ds dt  together as functions of t for − ≤ ≤t1 3, 
using different colors if possible. Compare the graphs and rec-
oncile what you see with your answers in parts (b) and (c).

 e. The graph of ds dt  looks as if it might have a horizontal 
asymptote in the first quadrant. This in turn suggests that 
ds dt  approaches a limiting value as → ∞t . What is this 
value? What is its relation to the ships’ individual speeds?

 56. Fermat’s principle in optics Light from a source A is reflected 
by a plane mirror to a receiver at point B, as shown in the accom-
panying figure. Show that for the light to obey Fermat’s principle, 
the angle of incidence must equal the angle of reflection, both 
measured from the line normal to the reflecting surface. (This 
result can also be derived without calculus. There is a purely geo-
metric argument, which you may prefer.)

T

Business and Economics

 59. It costs you c dollars each to manufacture and distribute back-
packs. If the backpacks sell at x dollars each, the number sold is 
given by

( )=
−

+ −n a
x c

b x100 ,

where a and b are positive constants. What selling price will bring 
a maximum profit?
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 60. You operate a tour service that offers the following rates:

$200 per person if 50 people (the minimum number to book 
the tour) go on the tour.

For each additional person, up to a maximum of 80 people 
total, the rate per person is reduced by $2.

  It costs $6000 (a fixed cost) plus $32 per person to conduct the 
tour. How many people does it take to maximize your profit?

 61. Wilson lot size formula One of the formulas for inventory 
management says that the average weekly cost of ordering, pay-
ing for, and holding merchandise is

= + +A q km
q

cm
hq

( )
2

,

where q is the quantity you order when things run low (shoes, 
radios, brooms, or whatever the item might be), k is the cost of 
placing an order (the same, no matter how often you order), c is 
the cost of one item (a constant), m is the number of items sold 
each week (a constant), and h is the weekly holding cost per item 
(a constant that takes into account things such as space, utilities, 
insurance, and security).

 a. Your job, as the inventory manager for your store, is to  
find the quantity that will minimize A q( ). What is it? (The 
formula you get for the answer is called the Wilson lot size 
formula.)

 b. Shipping costs sometimes depend on order size. When they 
do, it is more realistic to replace k by +k bq, the sum of k 
and a constant multiple of q. What is the most economical 
quantity to order now?

 62. Production level Prove that the production level (if any) at 
which average cost is smallest is a level at which the average cost 
equals marginal cost.

 63. Show that if =r x x( ) 6  and = − +c x x x x( ) 6 153 2  are your 
revenue and cost functions, then the best you can do is break even 
(have revenue equal cost).

 64. Production level Suppose that c x x x x( ) 20 20,0003 2= − +  
is the cost of manufacturing x items. Find a production level that 
will minimize the average cost of making x items.

 65. You are to construct an open rectangular box with a square base 
and a volume of 6 m 3. If material for the bottom costs $60 m 2 and 
material for the sides costs $40 m 2, what dimensions will result 
in the least expensive box? What is the minimum cost?

 66. The 800-room Mega Motel chain is filled to capacity when the 
room charge is $50 per night. For each $10 increase in room 
charge, 40 fewer rooms are filled each night. What charge per 
room will result in the maximum revenue per night?

Biology

 67. Sensitivity to medicine (Continuation of Exercise 74, Section  
3.3) Find the amount of medicine to which the body is most  
sensitive by finding the value of M that maximizes the derivative 
dR dM , where

( )= −R M C M
2 3

2

and C is a constant.

 68. How we cough 

 a. When we cough, the trachea (windpipe) contracts to increase 
the velocity of the air going out. This raises the questions of 
how much it should contract to maximize the velocity and 
whether it really contracts that much when we cough.

Under reasonable assumptions about the elasticity of the tracheal 
wall and about how the air near the wall is slowed by friction, 
the average flow velocity υ can be modeled by the equation

c r r r
r

r rcm s,
2

,0
2 0

0υ ( )= − ≤ ≤

where r0 is the rest radius of the trachea in centimeters and 
c is a positive constant whose value depends in part on the 
length of the trachea.

Show that υ is greatest when ( )=r r2 3 ,0  that is, when 
the trachea is about 33% contracted. The remarkable fact is 
that X-ray photographs confirm that the trachea contracts 
about this much during a cough.

 b. Take r0 to be 0.5 and c to be 1, and graph υ over the interval 
≤ ≤r0 0.5. Compare what you see with the claim that υ is 

at a maximum when ( )=r r2 3 .0

Theory and Examples

 69. An inequality for positive integers Show that if a, b, c, and d 
are positive integers, then

( )( )( )( )+ + + + ≥a b c d
abcd

1 1 1 1
16.

2 2 2 2

 70. The derivative dt dx in Example 4 

 a. Show that

=
+

f x x
a x

( )
2 2

is an increasing function of x.

 b. Show that

( )
= −

+ −
g x d x

b d x
( )

2 2

is a decreasing function of x.

 c. Show that

( )
=

+
− −

+ −

dt
dx

x
c a x

d x

c b d x1
2 2

2
2 2

is an increasing function of x.

 71. Let f x( ) and g x( ) be the differentiable functions graphed here. 
Point c is the point where the vertical distance between the curves 
is the greatest. Is there anything special about the tangent lines to 
the two curves at c? Give reasons for your answer.

x

y

a c b

y = f (x)

y = g(x)

T
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(x, 
"

x)

0 3
2, 0

y

x

y = 
"

x

a     b

 72. You have been asked to determine whether the function 
= + +f x x x( ) 3 4 cos cos 2  is ever negative.

 a. Explain why you need to consider values of x only in the 
interval π[ ]0, 2 .

 b. Is f  ever negative? Explain.

 73. a.  The function = −y x xcot 2 csc  has an absolute maxi-
mum value on the interval π< <x0 . Find it.

 b. Graph the function and compare what you see with your 
answer in part (a).

 74. a.  The function = +y x xtan 3 cot  has an absolute minimum 
value on the interval π< <x0 2. Find it.

 b. Graph the function and compare what you see with your 
answer in part (a).

 75. a.  How close does the curve =y x  come to the point ( )3 2, 0 ?  
(Hint: If you minimize the square of the distance, you can 
avoid square roots.)

T

T

 b. Graph the distance function D x( ) and =y x  together and 
reconcile what you see with your answer in part (a).

4.7 Newton’s Method

For thousands of years, one of the main goals of mathematics has been to find solutions  
to equations. For linear equations ( )+ =ax b 0 , and for quadratic equations 
( )+ + =ax bx c 0 ,2  we can explicitly solve for a solution. However, for most equa-
tions there is no simple formula that gives the solutions.

In this section we study a numerical method called Newton’s method or the Newton–
Raphson method, which is a technique to approximate the solutions to an equation 

=f x( ) 0. Newton’s method estimates the solutions using tangent lines of the graph of 
=y f x( ) near the points where f  is zero. A value of x where f  is zero is called a root of 

the function f  and a solution of the equation =f x( ) 0. Newton’s method is both powerful 
and efficient, and it has numerous applications in engineering and other fields where solu-
tions to complicated equations are needed.

Procedure for Newton’s Method

The goal of Newton’s method for estimating a solution of an equation =f x( ) 0 is to pro-
duce a sequence of approximations that approach the solution. We pick the first number x 0 
of the sequence. Then, under favorable circumstances, the method moves step by step 
toward a point where the graph of f  crosses the x-axis (Figure 4.48). At each step the 
method approximates a zero of f  with a zero of one of its linearizations. Here is how it 
works.

The initial estimate, x ,0  may be found by graphing or just plain guessing. The method 
then uses the tangent to the curve =y f x( ) at ( )x f x, ( )0 0  to approximate the curve, call-
ing the point x1 where the tangent meets the x-axis (Figure 4.48). The number x1 is usually 
a better approximation to the solution than is x .0  The point x 2 where the tangent to the 
curve at ( )x f x, ( )1 1  crosses the x-axis is the next approximation in the sequence. We con-
tinue, using each approximation to generate the next, until we are close enough to the root 
to stop.

We can derive a formula for generating the successive approximations in the following 
way. Given the approximation x ,n  the point-slope equation for the tangent line to the curve 
at ( )x f x, ( )n n  is

( )= + ′ −y f x f x x x( ) ( ) .n n n

FIGURE 4.48 Newton’s method starts 
with an initial guess x 0 and (under favor-
able circumstances) improves the guess 
one step at a time.

x

y

0

Root
sought

x0x1x2x3

Fourth FirstSecondThird
APPROXIMATIONS

(x1, f (x1))

(x2, f (x2))

(x0, f (x0))

y = f (x)

T

 76. a.  How close does the semicircle = −y x16 2  come to the 
point ( )1, 3 ?

 b. Graph the distance function and = −y x16 2  together and 
reconcile what you see with your answer in part (a).

T
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290 Chapter 4 Applications of Derivatives 

We can find where it crosses the x-axis by setting =y 0 (Figure 4.49):

( )= + ′ −

−
′

= −

= −
′

′ ≠

f x f x x x

f x
f x

x x

x x
f x
f x

0 ( ) ( )

( )
( )

( )
( )

f xIf  ( ) 0

n n n

n

n
n

n
n

n
n

This value of x is the next approximation +x .n 1  Here is a summary of Newton’s method.

Newton’s Method

1. Guess a first approximation to a solution of the equation =f x( ) 0. A graph 
of =y f x( ) may help.

2. Use the first approximation to get a second, the second to get a third, and so 
on, using the formula

= −
′

′ ≠+x x
f x
f x

f x
( )
( )

, if  ( ) 0.n n
n

n
n1  (1)

FIGURE 4.49 The geometry of the suc-
cessive steps of Newton’s method. From 
x n we go up to the curve and follow the 
tangent line down to find +x .n 1

x

y

0

Root sought

Tangent line
(graph of
linearization
of f at xn)

y = f (x)

(xn, f (xn))

xn

Point: (xn, f (xn))
Slope: f ′(xn)
Tangent line equation:
 y − f (xn) = f ′(xn)(x − xn)

xn+1 = xn −
f (xn)
f '(xn)

Applying Newton’s Method

Applications of Newton’s method generally involve many numerical computations, mak-
ing them well suited for computers or calculators. Nevertheless, even when the calcula-
tions are done by hand (which may be very tedious), they give a powerful way to find 
solutions of equations.

In our first example, we find decimal approximations to 2 by estimating the positive 
root of the equation = − =f x x( ) 2 0.2

EXAMPLE 1  Approximate the positive root of the equation

= − =f x x( ) 2 0.2

Solution With = −f x x( ) 22  and ′ =f x x( ) 2 , Equation (1) becomes

x x
x

x

x
x

x

x
x

2
2

2
1

2
1 .

n n
n

n

n
n

n

n

n

1

2

= −
−

= − +

= +

+

The equation

= ++x
x

x2
1

n
n

n
1

enables us to go from each approximation to the next with just a few keystrokes. With the 
starting value =x 1,0  we get the results in the first column of the following table. (To five 
decimal places, or, equivalently, to six digits, =2 1.41421.)
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Error
Number of  

correct digits

x 10 0.41421 1

x 1.51 0.08579 1

x 1.416672 0.00246 3

x 1.414223 0.00001 5

Newton’s method is used by many software applications to calculate roots because it 
converges so fast (more about this later). If the arithmetic in the table in Example 1 had 
been carried to 13 decimal places instead of 5, then going one step further would have 
given 2 correctly to more than 10 decimal places.

EXAMPLE 2  Find the x-coordinate of the point where the curve = −y x x3  crosses 
the horizontal line y 1.

Solution The curve crosses the line when − =x x 13  or − − =x x 1 0.3  When does 
= − −f x x x( ) 13  equal zero? Since f  is continuous on 1, 2[ ] and = −f (1) 1 while 

f (2) 5, we know by the Intermediate Value Theorem there is a root in the interval ( )1, 2  
(Figure 4.50).

We apply Newton’s method to f  with the starting value x 1.0  The results are dis-
played in Table 4.1 and Figure 4.51.

At n 5, we come to the result x x 1.3247 17957.6 5  When =+x x ,n n1  
Equation (1) shows that f x( ) 0,n  up to the accuracy of our computation. We have  
found a solution of f x( ) 0 to nine decimals places. 

 

TABLE 4.1 The Result of Applying Newton’s Method to = − −f x x x( ) 13   
with x 10

n xn f x( )n f x( )n x x
f x

f x

( )
( )n n

n

n
1 = −

′+

0 1 1 2 1.5

1 1.5 0.875 5.75 1.3478 26087

2 1.3478 26087 0.1006 82173 4.4499 05482 1.3252 00399

3 1.3252 00399 0.0020 58362 4.2684 68292 1.3247 18174

4 1.3247 18174 0.0000 00924 4.2646 34722 1.3247 17957

5 1.3247 17957 1.8672E-13 4.2646 32999 1.3247 17957

FIGURE 4.50 The graph of 
= − −f x x x( ) 13  crosses the x-axis 

once; this is the root we want to find 
(Example 2).

x

y

0

5

1

10

−1 2 3

15

20
y = x3 − x − 1

FIGURE 4.51 The first three x-values in 
Table 4.1 (four decimal places).

x
1 1.5

1.3478

Root sought

(1.5, 0.875)

x1x2x0

y = x3 − x − 1

(1, −1)

In Figure 4.52 we have indicated that the process in Example 2 might have started at 
the point ( )B 3, 230  on the curve, with x 3.0  Point B0 is quite far from the x-axis, but the 
tangent at B0 crosses the x-axis at about (2.12, 0), so x1 is still an improvement over x .0  If 
we use Equation (1) repeatedly as before, with = − −f x x x( ) 13  and ′ = −f x x( ) 3 1,2  
we obtain the nine-place solution x x 1.3247 179577 6  in seven steps.

Convergence of the Approximations

In Chapter 9 we define precisely the idea of convergence for the approximations xn in 
Newton’s method. Intuitively, we mean that as the number n of approximations increases 
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292 Chapter 4 Applications of Derivatives 

without bound, the values xn get arbitrarily close to the desired root r. (This notion is 
similar to the idea of the limit of a function g t( ) as t approaches infinity, as defined in 
Section 2.5.)

In practice, Newton’s method usually gives convergence with impressive speed, but 
this is not guaranteed. One way to test convergence is to begin by graphing the function to 
estimate a good starting value for x .0  You can test that you are getting closer to a zero of 
the function by checking that f x( )n  is approaching zero, and you can check that the 
approximations are converging by evaluating − +x x .n n 1

Newton’s method does not always converge. For instance, if

f x
r x x r

x r x r
( )

,

, ,
=

− − <

− ≥

⎧
⎨
⎪⎪

⎩⎪⎪

the graph will be like the one in Figure 4.53. If we begin with = −x r h,0  we get 
= +x r h,1  and successive approximations go back and forth between these two values. 

No amount of iteration brings us closer to the root than our first guess.
If Newton’s method does converge, it converges to a root. Be careful, however. There 

are situations in which the method appears to converge but no root is there. Fortunately, 
such situations are rare.

When Newton’s method converges to a root, it may not be the root you have in mind. 
Figure 4.54 shows two ways this can happen.

FIGURE 4.54 If you start too far away, Newton’s method may miss the root you want.

x2

Root found

x1

Starting
point

Root
sought

x
x0

Root sought
x0

Starting
point

Root
found

x
x1

y = f (x)

y = f (x)

FIGURE 4.53 Newton’s method fails to 
converge. You go from x 0 to x1 and back 
to x ,0  never getting any closer to r.

x

y

0
r

y = f (x)

x1x0

FIGURE 4.52 Any starting value x 0 to 
the right of =x 1 3 will lead to the root 
in Example 2.

x

y

0

5

1

10

−1 2.12 3

15

20

25

Root sought

1.6

y = x3 − x − 1

B0(3, 23)

B1(2.12, 6.35)

x1x2 x0
−1�

"

3 1�
"

3

Root Finding

 1. Use Newton’s method to estimate the solutions of the equation 
+ − =x x 1 0.2  Start with = −x 10  for the left-hand solution 

and with =x 10  for the solution on the right. Then, in each case, 
find x .2

 2. Use Newton’s method to estimate the one real solution of 
+ + =x x3 1 0.3  Start with =x 00  and then find x .2

 3. Use Newton’s method to estimate the two zeros of the function 
= + −f x x x( ) 3.4  Start with = −x 10  for the left-hand zero 

and with =x 10  for the zero on the right. Then, in each case, 
find x .2

 4. Use Newton’s method to estimate the two zeros of the function 
= − +f x x x( ) 2 1.2  Start with =x 00  for the left-hand zero 

and with =x 20  for the zero on the right. Then, in each case, 
find x .2

 5. Use Newton’s method to find the positive fourth root of 2 by solv-
ing the equation − =x 2 0.4  Start with =x 10  and find x .2

 6. Use Newton’s method to find the negative fourth root of 2 by solv-
ing the equation − =x 2 0.4  Start with = −x 10  and find x .2

 7. Use Newton’s method to find an approximate solution of 
− =x x3 ln . Start with =x 20  and find x .2

 8. Use Newton’s method to find an approximate solution of 
− =x x1 arctan . Start with =x 10  and find x .2

 9. Use Newton’s method to find an approximate solution of 
=xe 1.x  Start with =x 00  and find x .2

Dependence on Initial Point

 10. Using the function shown in the figure, and, for each initial esti-
mate x ,0  determine graphically what happens to the sequence of 
Newton’s method approximations

 a. =x 00  b. =x 10

EXERCISES 4.7 

T

T

T
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1

21−1 0

3

2

x

y

y = x
1

y = x2(x + 1)

rr, 1
a    b

x

y

2

1−1 2

−4

−6

−2

−8

−10

−12

y = 8x4 − 14x3 − 9x2 + 11x − 1

 c. =x 20  d. =x 40

 e. =x 5.50

 19. a.  How many solutions does the equation = −x xsin 3 0.99 2 
have?

 b. Use Newton’s method to find them.

 20. Intersection of curves 

 a. Does cos 3x ever equal x? Give reasons for your answer.

 b. Use Newton’s method to find where.

 21. Find the four real zeros of the function = − +f x x x( ) 2 4 1.4 2

 22. Estimating pi Estimate π to as many decimal places as your 
calculator will display by using Newton’s method to solve the 
equation =xtan 0 with =x 3.0

 23. Intersection of curves At what value(s) of x does =x xcos 2 ?

 24. Intersection of curves At what value(s) of x does = −x xcos ?

 25. The graphs of ( )= +y x x 12  and =y x1  ( )>x 0  intersect at 
one point =x r. Use Newton’s method to estimate the value of r 
to four decimal places.

x

y

1 2 3 4 5 6 7 8−2−3−4 −1 0

−1

−2

1

2

3
y = f (x)

 11. Guessing a root Suppose that your first guess is lucky, in the 
sense that x 0 is a root of =f x( ) 0. Assuming that ′f x( )0  is 
defined and is not 0, what happens to x1 and later approximations?

 12. Estimating pi You plan to estimate π 2 to five decimal places 
by using Newton’s method to solve the equation =xcos 0. 
Does it matter what your starting value is? Give reasons for your 
answer.

Theory and Examples

 13. Oscillation Show that if >h 0, applying Newton’s method to

f x
x x

x x
( )

, 0

, 0
=

≥

− <

⎧
⎨
⎪⎪

⎩⎪⎪

leads to = −x h1  if =x h0  and to =x h1  if = −x h.0  Draw a 
picture that shows what is going on.

 14. Approximations that get worse and worse Apply Newton’s 
method to =f x x( ) 1 3 with =x 10  and calculate x x x, , ,1 2 3

xand  .4  Find a formula for x .n  What happens to x n  as → ∞n ? 
Draw a picture that shows what is going on.

 15. Explain why the following four statements ask for the same 
information:

 i) Find the roots of = − −f x x x( ) 3 1.3

 ii) Find the x-coordinates of the intersections of the curve 
=y x 3 with the line = +y x3 1.

 iii) Find the x-coordinates of the points where the curve 
= −y x x33  crosses the horizontal line =y 1.

 iv) Find the values of x where the derivative of 
( ) ( )= − − +g x x x x( ) 1 4 3 2 54 2  equals zero.

When solving Exercises 16–34, you may need to use appropriate tech-
nology (such as a calculator or a computer).

 16. Locating a planet To calculate a planet’s space coordinates, 
we have to solve equations like = +x x1 0.5 sin . Graphing the 
function = − −f x x x( ) 1 0.5 sin  suggests that the function has 
a root near =x 1.5. Use one application of Newton’s method to 
improve this estimate. That is, start with =x 1.50  and find x .1  
(The value of the root is 1.49870 to five decimal places.) Remem-
ber to use radians.

 17. Intersecting curves The curve =y xtan  crosses the line 
=y x2  between =x 0 and π=x 2. Use Newton’s method to 

find where.

 18. Real solutions of a quartic Use Newton’s method to find the two 
real solutions of the equation − − − + =x x x x2 2 2 0.4 3 2

 26. The graphs of =y x  and = −y x3 2 intersect at one point 
=x r. Use Newton’s method to estimate the value of r to four 

decimal places.

 27. Intersection of curves At what value(s) of x does 
= − +−e x x 1?x 22

 28. Intersection of curves At what value(s) of x does 
( )− = −x xln 1 1?2

 29. Use the Intermediate Value Theorem from Section 2.6 to show 
that = + −f x x x( ) 2 43  has a root between =x 1 and =x 2. 
Then find the root to five decimal places.

 30. Factoring a quartic Find the approximate values of r1 through 
r4 in the factorization
x x x x8 14 9 11 14 3 2− − + −

x r x r x r x r8 .1 2 3 4( )( )( ) ( )= − − − −

 31. Converging to different zeros Use Newton’s method to find 
the zeros of = −f x x x( ) 4 44 2 using the given starting values.

 a. = −x 20  and = −x 0.8,0  lying in ( )−∞ −, 2 2

 b. = −x 0.50  and =x 0.25,0  lying in ( )− 21 7, 21 7

 c. =x 0.80  and =x 2,0  lying in ( )∞2 2,

 d. = −x 21 70  and =x 21 70

T
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294 Chapter 4 Applications of Derivatives 

DEFINITION A function F  is an antiderivative of f  on an interval I if 
′ =F x f x( ) ( ) for all x in I.

4.8 Antiderivatives

Many problems require that we recover a function from its derivative, or from its rate of 
change. For instance, the laws of physics tell us the acceleration of an object falling from an 
initial height, and we can use this to compute its velocity and its height at any time. More 
generally, starting with a function f , we want to find a function F  whose derivative is f . If 
such a function F  exists, it is called an antiderivative of f . Antiderivatives are the link con-
necting the two major elements of calculus: derivatives and definite integrals. Antiderivatives 
have an important connection to the theory of integrals that is developed in Chapter 5. For 
this reason the process of taking an antiderivative is also called “integration.”

Finding Antiderivatives

The process of recovering a function F x( ) from its derivative f x( ) is called antidifferentia-
tion. We use capital letters such as F  to represent an antiderivative of a function f , G to 
represent an antiderivative of g, and so forth.

EXAMPLE 1  Find an antiderivative for each of the following functions.

 (a) =f x x( ) 2  (b) =g x x( ) cos  (c) = +h x
x

e( ) 1 2 x2

 32. The sonobuoy problem In submarine location problems, it is 
often necessary to find a submarine’s closest point of approach 
(CPA) to a sonobuoy (sound detector) in the water. Suppose that 
the submarine travels on the parabolic path =y x 2 and that the 
buoy is located at the point ( )−2, 1 2 .

 a. Show that the value of x that minimizes the distance between 
the submarine and the buoy is a solution of the equation 

( )= +x x1 1 .2

 b. Solve the equation ( )= +x x1 12  with Newton’s method.

x

y

0

2, −

1

1 2

Sonobuoy

CPA

Submarine track
in two dimensions

1
2

y = x2

a        b

u 2

r

r

s = 3

x

y

0

(2, 1)

1

1

2

Nearly flat

Slope = 40Slope = −40

y = (x − 1)40

 34. The accompanying figure shows a circle of radius r with a chord 
of length 2 and an arc s of length 3. Use Newton’s method to solve 
for r and θ (radians) to four decimal places. Assume θ π< <0 .

 33. Curves that are nearly flat at the root Some curves are so flat 
that, in practice, Newton’s method stops too far from the root to 
give a useful estimate. Try Newton’s method on ( )= −f x x( ) 1 40 

with a starting value of =x 20  to see how close your machine 
comes to the root =x 1. See the accompanying graph.
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 4.8  Antiderivatives 295

Solution We need to think backward here: What function do we know has a derivative 
equal to the given function?

 (a) =F x x( ) 2 (b) =G x x( ) sin  (c) = +H x x e( ) ln x2

Each answer can be checked by differentiating. The derivative of =F x x( ) 2 is 2x. 
The derivative of =G x x( ) sin  is xcos , and the derivative of = +H x x e( ) ln x2  is 
( ) +x e1 2 .x2  

The function =F x x( ) 2 is not the only function whose derivative is 2x. The function 
+x 12  has the same derivative. So does +x C2  for any constant C. Are there others?
Corollary 2 of the Mean Value Theorem in Section 4.2 gives the answer: Any two 

antiderivatives of a function differ by a constant. So the functions +x C,2  where C is an 
arbitrary constant, form all the antiderivatives of =f x x( ) 2 . More generally, we have 
the following result.

THEOREM 8 If F  is an antiderivative of f  on an interval I, then the most general 
antiderivative of f  on I is

+F x C( )

where C is an arbitrary constant.

FIGURE 4.55 The curves = +y x C3  
fill the coordinate plane without over-
lapping. In Example 2, we identify the 
curve = −y x 23  as the one that passes 
through the given point ( )−1, 1 .

2

1

0

−1

−2

x

y

y = x3 + C C = 1

C = 2

C = 0

C = −1

C = −2

(1, −1)

Thus the most general antiderivative of f  on I is a family of functions +F x C( )  whose 
graphs are vertical translations of one another. We can select a particular antiderivative 
from this family by assigning a specific value to C. Here is an example showing how such 
an assignment might be made.

EXAMPLE 2  Find an antiderivative of =f x x( ) 3 2 that satisfies = −F(1) 1.

Solution Since the derivative of x 3 is x3 2, the general antiderivative

= +F x x C( ) 3

gives all the antiderivatives of f x( ). The condition = −F(1) 1 determines a specific value 
for C. Substituting =x 1 into = +f x x C( ) 3  gives

( )= + = +F C C(1) 1 1 .3

Since = −F(1) 1, solving + = −C1 1 for C gives = −C 2. So

= −F x x( ) 23

is the antiderivative satisfying = −F(1) 1. Notice that this assignment for C selects the 
particular curve from the family of curves = +y x C3  that passes through the point 
( )−1, 1  in the plane (Figure 4.55). 

By working backward from assorted differentiation rules, we can derive formulas and 
rules for antiderivatives. In each case there is an arbitrary constant C in the general expres-
sion representing all antiderivatives of a given function. Table 4.2 gives antiderivative for-
mulas for a number of important functions.

The rules in Table 4.2 are easily verified by differentiating the general antiderivative 
formula to obtain the function to its left. For example, the derivative of ( ) +kx k Ctan  is 

kxsec 2 , whatever the value of the constants C or ≠k 0, and this shows that Formula 4 
gives the general antiderivative of kxsec 2 .
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296 Chapter 4 Applications of Derivatives 

EXAMPLE 3  Find the general antiderivative of each of the following functions.

 (a) =f x x( ) 5 (b) =g x
x

( ) 1  (c) =h x x( ) sin 2

 (d) =i x x( ) cos
2

 (e) = −j x e( ) x3  (f) =k x( ) 2 x

Solution In each case, we can use one of the formulas listed in Table 4.2.

 (a) = + =F x x C( )
6

nFormula 1 with  5
6

 (b) =

= + = + = −

−g x x

G x x C x C

( ) ,  so

( )
1 2

2 nFormula 1 with  1 2

1 2

1 2

 (c) =
−

+ =H x
x

C( )
cos 2

2
kFormula 2 with  2

 (d) 
( )

= + = + =I x
x

C x C( )
sin 2

1 2
2 sin

2
kFormula 3 with  1 2

 (e) = − + = −−J x e C( ) 1
3

kFormula 8 with  3x3

 (f) =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ + = =K x C( ) 1

ln 2
2 a kFormula 13 with  2, 1x  

Other derivative rules also lead to corresponding antiderivative rules. We can add and 
subtract antiderivatives and multiply them by constants.

TABLE 4.3 Antiderivative linearity rules

Function General antiderivative

1. Constant Multiple Rule: k f x( ) kF x C k( ) ,  a constant+
2. Sum or Difference Rule: ±f x g x( ) ( ) ± +F x G x C( ) ( )

TABLE 4.2 Antiderivative formulas, k a nonzero constant

Function General antiderivative Function General antiderivative

1. x n

+
+ ≠ −+

n
x C n1

1
, 1n 1  8. e kx +

k
e C1 kx

2. kxsin − +
k

kx C1 cos  9. 
x
1 + ≠x C xln , 0

3. kxcos +
k

kx C1 sin 10. 
− k x

1
1 2 2

+
k

kx C1 arcsin

4. kxsec 2 +
k

kx C1 tan 11. 
+ k x

1
1 2 2

+
k

kx C1 arctan

5. kxcsc 2 − +
k

kx C1 cot 12. 
−x k x

1
12 2

kx C kxarcsec , 1+ >

6. kx kxsec tan +
k

kx C1 sec 13. a kx

k a
a C a a1

ln
, 0, 1kx

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ + > ≠

7. kx kxcsc cot − +
k

kx C1 csc

The formulas in Table 4.3 are easily proved by differentiating the antiderivatives and 
verifying that the result agrees with the original function.

M04_HASS5901_15_GE_C04.indd   296 07/03/23   3:07 PM

www.konkur.in

Telegram: @uni_k



 4.8  Antiderivatives 297

EXAMPLE 4  Find the general antiderivative of

= +f x
x

x( ) 3 sin 2 .

Solution We have that = +f x g x h x( ) 3 ( ) ( ) for the functions g and h in Example 3. 
Since =G x x( ) 2  is an antiderivative of g x( ) from Example 3b, it follows from the Con-
stant Multiple Rule for antiderivatives that = ⋅ =G x x x3 ( ) 3 2 6  is an antiderivative 
of g x x3 ( ) 3 .=  Likewise, from Example 3c we know that ( )= −H x x( ) 1 2 cos 2  is an 
antiderivative of =h x x( ) sin 2 . From the Sum Rule for antiderivatives, we then get that

= + +

= − +

F x G x H x C

x x C

( ) 3 ( ) ( )

6 1
2

cos 2

is the general antiderivative formula for f x( ), where C is an arbitrary constant. 

Initial Value Problems and Differential Equations

Antiderivatives play several important roles in mathematics and its applications. Methods 
and techniques for finding them are a major part of calculus, and we take up that study in 
Chapter 8. Finding an antiderivative for a function f x( ) is the same problem as finding a 
function y x( ) that satisfies the equation

=dy
dx

f x( ).

This is called a differential equation, since it is an equation involving an unknown func-
tion y that is being differentiated. To solve it, we need a function y x( ) that satisfies the 
equation. This function is found by taking the antiderivative of f x( ). We can fix the arbi-
trary constant arising in the antidifferentiation process by specifying an initial condition

=y x y( ) .0 0

This condition means the function y x( ) has the value y0 when =x x .0  The combination of 
a differential equation and an initial condition is called an initial value problem. Such 
problems play important roles in all branches of science.

The most general antiderivative +F x C( )  of the function f x( ) (such as +x C3  for 
the function x3 2 in Example 2) gives the general solution = +y F x C( )  of the differen-
tial equation =dy dx f x( ). The general solution gives all the solutions of the equation 
(there are infinitely many, one for each value of C). We solve the differential equation by 
finding its general solution. We then solve the initial value problem by finding the 
particular solution that satisfies the initial condition =y x y( ) .0 0  In Example 2, the  
function = −y x 23  is the particular solution of the differential equation =dy dx x3 2 
satisfying the initial condition = −y(1) 1.

Antiderivatives and Motion

We have seen that the derivative of the position function of an object gives its velocity, and 
the derivative of its velocity function gives its acceleration. If we know an object’s accel-
eration, then by finding an antiderivative we can recover the velocity, and from an antide-
rivative of the velocity we can recover its position function. This procedure was used as an 
application of Corollary 2 in Section 4.2. Now that we have a terminology and conceptual 
framework in terms of antiderivatives, we revisit the problem from the point of view of 
differential equations.

EXAMPLE 5  A hot-air balloon ascending at the rate of 3.6 m s is at a height 24.5 m 
above the ground when a package is dropped. How long does it take the package to reach 
the ground?
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298 Chapter 4 Applications of Derivatives 

Solution Let υ t( ) denote the velocity of the package at time t, and let s t( ) denote its 
height above the ground. The acceleration of gravity near the surface of the earth is 
9.8 m s2. Assuming no other forces act on the dropped package, we have

d
dt

9.8.
s

Negative because gravity acts in the
direction of decreasing 

υ = −

This leads to the following initial value problem (Figure 4.56):

Differential equation d
dt

Initial condition

  : 9.8

    : (0) 3.6. Balloon initially rising

υ

υ

= −

=

This is our mathematical model for the package’s motion. We solve the initial value prob-
lem to obtain the velocity of the package.

1. Solve the differential equation: The general formula for an antiderivative of 9.8−  is

t C9.8 .υ = − +

Having found the general solution of the differential equation, we use the initial condi-
tion to find the particular solution that solves our problem.

2. Evaluate C:

C

C

3.6 9.8 0

3.6.

Initial condition  0 3.6( )= − +

=

υ =( )

The solution of the initial value problem is

t9.8 3.6.υ = − +
Since velocity is the derivative of height, and the height of the package is 24.5 m at time 

=t 0 when it is dropped, we now have a second initial value problem:

Differential equation ds
dt

t

Initial condition s

  : 9.8 3.6

  : (0) 24.5.

ds dtSet   in the previous equation.= − +

=

υ =

We solve this initial value problem to find the height as a function of t.

1. Solve the differential equation: Finding the general antiderivative of t9.8 3.6− +  gives

s t t C4.9 3.6 .2= − + +

2. Evaluate C:

C

C

24.5 4.9 0 3.6 0

24.5.

sInitial condition  0 24.52( ) ( )= − + +

=

=( )

The package’s height above ground at time t is

s t t4.9 3.6 24.5.2= − + +
Use the solution: To find how long it takes the package to reach the ground, we set s 

equal to 0 and solve for t:

− + + =

= − ±
−

≈ − ≈

t t

t

t t

4.9 3.6 24.5 0

3.6 493.16
9.8

1.90, 2.63.

Quadratic formula

2

The package hits the ground about 2.63 s after it is dropped from the balloon. (The nega-
tive root has no physical meaning.) 

FIGURE 4.56 A package dropped from 
a rising hot-air balloon (Example 5).

s

0 ground

s(t)

(0) = 3.6

d 
dt

 = −9.8

υ

υ
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 4.8  Antiderivatives 299

Indefinite Integrals

A special symbol is used to denote the collection of all antiderivatives of a function f .

DEFINITION The collection of all antiderivatives of f  is called the indefinite 
integral of f  with respect to x; it is denoted by

∫ f x dx( ) .

The symbol ∫  is an integral sign. The function f  is the integrand of the integral, 
and x is the variable of integration.

After the integral sign in the notation we just defined, the integrand function is always 
followed by a differential to indicate the variable of integration. We will have more to say 
about why this is important in Chapter 5. Using this notation, we restate the solutions of 
Example 1, as follows:

∫

∫

∫ ( )

= +

= +

+ = + +

x dx x C

x dx x C

x
e dx x e C

2 ,

cos sin ,

1 2 ln .x x

2

2 2

This notation is related to the main application of antiderivatives, which will be explored in 
Chapter 5. Antiderivatives play a key role in computing limits of certain infinite sums, an 
unexpected and wonderfully useful role that is described in a central result of Chapter 5, 
the Fundamental Theorem of Calculus.

EXAMPLE 6  Evaluate

x x dx2 5 .2∫ ( )− +

Solution If we recognize that x x x3 53 2( ) − +  is an antiderivative of − +x x2 5,2  
we can evaluate the integral as

	 
������ �������

�x x dx x x x C2 5
3

5 .

antiderivative

arbitrary constant

2
3

2∫ ( )− + = − + +

If we do not recognize the antiderivative right away, we can generate it term-by-term 
with the Sum, Difference, and Constant Multiple Rules:

x x dx x dx x dx dx

x dx x dx dx

x C x C x C

x C x C x C

2 5 2 5

2 5 1

3
2

2
5

3
2 5 5 .

2 2

2

3

1

2

2 3

3

1
2

2 3

∫ ∫ ∫ ∫

∫ ∫ ∫

( ) ( ) ( )

( )− + = − +

= − +

= + − + + +

= + − − + +
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300 Chapter 4 Applications of Derivatives 

This formula is more complicated than it needs to be. If we combine C C, 2 ,1 2−  and C5 3 
into a single arbitrary constant C C C C2 5 ,1 2 3= − +  the formula simplifies to

− + +x x x C
3

5
3

2

and still gives all the possible antiderivatives there are. For this reason, we recommend that 
you go right to the final form even if you elect to integrate term-by-term. Write

∫ ∫ ∫ ∫( )− + = − +

= − + +

x x dx x dx x dx dx

x x x C

2 5 2 5

3
5 .

2 2

3
2

Find the simplest antiderivative you can for each part, and add the arbitrary constant of 
integration at the end. 

We conclude this section with a list of basic antidifferentiation formulas in Table 4.4, 
using the integral sign to indicate an antiderivative.

Finding Antiderivatives
In Exercises 1–24, find an antiderivative for each function. Do as many 
as you can mentally. Check your answers by differentiation.

 1. a. 2x b. x 2 c. − +x x2 12

 2. a. 6x b. x 7 c. − +x x6 87

 3. a. − −x3 4 b. −x 4 c. + +−x x2 34

 4. a. −x2 3 b. +
−x x
2

3
2 c. − + −−x x 13

 5. a. 
x
1

2
 b. 

x
5

2
 c. −

x
2 5

2

 6. a. −
x
2

3
 b. 

x
1

2 3
 c. −x

x
13

3

 7. a. x3
2

 b. 
x

1
2

 c. +x
x

1

 8. a. x4
3

3  b. 
x

1
33  c. +x

x
13

3

 9. a. −x2
3

1 3 b. −x1
3

2 3 c. x1
3

4 3− −

 10. a. −x1
2

1 2 b. − −x1
2

3 2 c. − −x3
2

5 2

 11. a. 
x
1  b. 

x
7  c. −

x
1 5

 12. a. 
x

1
3

 b. 
x

2
5

 c. + −
x x

1 4
3

1
2

EXERCISES 4.8

TABLE 4.4 Integration formulas

1. x dx x
n

C n
1

1n
n 1

∫ ( )=
+

+ ≠ −
+

 8. ∫ = +e dx e Cx x

2. ∫ = − +x dx x Csin cos  9. ∫ ( )= + ≠dx
x

x C xln 0

3. ∫ = +x dx x Ccos sin 10. ∫ −
= +dx

x
x C

1
arcsin

2

4. ∫ = +x dx x Csec tan2 11. ∫ +
= +dx

x
x C

1
arctan

2

5. ∫ = − +x dx x Ccsc cot2 12. ∫ −
= + >dx

x x
x C x

1
arcsec ( 1)

2

6. ∫ = +x x dx x Csec tan sec 13. ∫ = + > ≠a dx a
a

C a a
ln

( 0, 1)x
x

7. ∫ = − +x x dx x Ccsc cot csc

M04_HASS5901_15_GE_C04.indd   300 07/03/23   3:08 PM

www.konkur.in

Telegram: @uni_k



 4.8  Antiderivatives 301

 13. a. π π− xsin  b. 3 sin x c. π −x xsin 3 sin 3

 14. a. π πxcos  b. π πx
2

cos
2

 c. π π+x xcos
2

cos

 15. a. xsec 2  b. x2
3

sec
3

2  c. − xsec 3
2

2

 16. a. xcsc 2  b. − x3
2

csc 3
2

2  c. − x1 8 csc 22

 17. a. csc x cot x b. − x xcsc 5 cot 5  c. x xcsc
2

cot
2

π π π−

 18. a. sec x tan x b. 4 sec 3x tan 3x c. x xsec
2

tan
2

π π

 19. a. e x3  b. e x−  c. e x 2

 20. a. −e x2  b. e x4 3 c. −e x 5

 21. a. 3 x b. −2 x  c. ( )5
3

x

 22. a. x 3 b. πx  c. −x 2 1

 23. a. 
− x
2

1 2
 b. 

( )+x
1

2 12
 c. 

+ x
1

1 4 2

 24. a. ( )−x 1
2

x

 b. +x 2 x2  c. π − −xx 1

Finding Indefinite Integrals
In Exercises 25–70, find the most general antiderivative or indefinite 
integral. You may need to try a solution and then adjust your guess. 
Check your answers by differentiation.

 25. ∫ ( )+x dx1  26. ∫ ( )− x dx5 6

 27. ∫ ( )+t t dt3
2

2  28. ∫ ( )+t t dt
2

4
2

3

 29. ∫ ( )− +x x dx2 5 73  30. ∫ ( )− −x x dx1 32 5

 31. ∫ ( )− −
x

x dx1 1
32

2  32. ∫ ( )− +
x

x dx1
5

2 2
3

 33. ∫ −x dx1 3  34. ∫ −x dx5 4

 35. ∫ ( )+x x dx3  36. ∫ +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

x
x

dx
2

2

 37. ∫ −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟y

y
dy8 2

1 4
 38. ∫ −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟y

dy1
7

1
5 4

 39. ∫ ( )− −x x dx2 1 3  40. ∫ ( )+−x x dx13

 41. ∫ +t t t
t

dt
2

 42. ∫ + t
t

dt4
3

 43. ∫ ( )− t dt2 cos  44. ∫ ( )− t dt5 sin

 45. ∫ θ θd7 sin
3

 46. ∫ θ θd3 cos 5

 47. ∫ ( )− x dx3 csc 2  48. ∫ −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

x
dx

sec

3

2

 49. ∫
θ θ

θd
csc cot

2
 50. ∫ θ θ θd2

5
sec tan

 51. ∫ ( )+ −e e dx5x x3  52. ∫ ( )− −e e dx2 3x x2

 53. ∫ ( )+−e dx4x x  54. ∫ ( ) dx1.3 x

 55. ∫ ( )−x x x dx4 sec tan 2 sec 2

 56. ∫ ( )−x x x dx1
2

csc csc cot2

 57. ∫ ( )−x x dxsin 2 csc 2  58. ∫ ( )−x x dx2 cos 2 3 sin 3

 59. ∫
+ t

dt
1 cos 4

2
 60. ∫

− t
dt

1 cos 6
2

 61. ∫ ( )−
+x x

dx1 5
12

 62. ∫ −
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟y y

dy2
1

1
2 1 4

 63. ∫ x dx3 3  64. ∫ −x dx2 1

 65. ∫ θ θ( )+ d1 tan 2  

(Hint: θ θ+ =1 tan sec2 2 )
 66. ∫ θ θ( )+ d2 tan 2

 67. ∫ x dxcot 2  

(Hint: + =x x1 cot csc2 2 )

 68. ∫ ( )− x dx1 cot 2

 69. dcos tan sec∫ θ θ θ θ( )+  70. ∫
θ

θ θ
θ

−
d

csc
csc sin

Checking Antiderivative Formulas
Verify the formulas in Exercises 71–82 by differentiation.

 71. ∫ ( )
( )− = − +x dx x C7 2 7 2

28
3

4

 72. ∫ ( )
( )+ = − + +−

−
x dx x C3 5 3 5

3
2

1

 73. ∫ ( ) ( )− = − +x dx x Csec 5 1 1
5

tan 5 12

 74. ∫ ( ) ( )− = − − +x dx x Ccsc 1
3

3 cot 1
3

2

 75. ∫ ( )+
= −

+
+

x
dx

x
C1

1
1

12

 76. ∫ ( )+
=

+
+

x
dx x

x
C1

1 12

 77. ∫ +
= + + ≠ −

x
dx x C x1

1
ln 1 , 1

 78. ∫ = − +xe dx xe e Cx x x

 79. ∫ ( )+
= +dx

a x a
x
a

C1 arctan
2 2

 80. ∫ ( )
−

= +dx
a x

x
a

Carcsin
2 2

 81. ∫ ( )= − + − +
x

x
dx x x

x
x

C
arctan

ln 1
2

ln 1
arctan

2
2

 82. ∫ ( ) ( )= − + − +x dx x x x x x Carcsin arcsin 2 2 1 arcsin2 2 2

 83. Right, or wrong? Say which for each formula and give a brief 
reason for each answer.

 a. ∫ = +x x dx x x Csin
2

sin
2

 b. ∫ = − +x x dx x x Csin cos

 c. ∫ = − + +x x dx x x x Csin cos sin

 84. Right, or wrong? Say which for each formula and give a brief 
reason for each answer.

 a. ∫ θ θ θ
θ

= +d Ctan sec
sec

3
2

3

 b. ∫ θ θ θ θ= +d Ctan sec 1
2

tan2 2

 c. ∫ θ θ θ θ= +d Ctan sec 1
2

sec2 2
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302 Chapter 4 Applications of Derivatives 

Solve the initial value problems in Exercises 91–112.

 91. = − =dy
dx

x y2 7, (2) 0

 92. = − = −dy
dx

x y10 , (0) 1

 93. = + > =dy
dx x

x x y1 , 0; (2) 1
2

 94. = − + − =dy
dx

x x y9 4 5, ( 1) 02

 95. = − = −−dy
dx

x y3 , ( 1) 52 3

 96. = =dy
dx x

y1
2

, (4) 0

 97. = + =ds
dt

t s1 cos , (0) 4

 98. π= + =ds
dt

t t scos sin , ( ) 1

 99. 
θ

π πθ= − =dr
d

rsin , (0) 0

 100. 
θ

πθ= =dr
d

rcos , (0) 1

 101. υ υ= =d
dt

t t1
2

sec tan , (0) 1

 102. υ υ π( )= + = −d
dt

t t8 csc ,
2

72

 103. υ υ=
−

> =d
dt t t

t3
1

, 1, (2) 0
2

 104. υ υ=
+

+ =d
dt t

t8
1

sec , (0) 1
2

2

 105. = − ′ = =d y
dx

x y y2 6 ; (0) 4, (0) 1
2

2

 106. = ′ = =d y
dx

y y0; (0) 2, (0) 0
2

2

 107. = = =
=

d r
dt t

dr
dt

r2 ; 1, (1) 1
t

2

2 3
1

 108. = = =
=

d s
dt

t ds
dt

s3
8

; 3, (4) 4
t

2

2
4

 109. = ′′ = − ′ = =d y
dx

y y y6; (0) 8, (0) 0, (0) 5
3

3

 110. θ θ θ θ= ′′ = − ′ = − =d
dt

0; (0) 2, (0) 1
2

, (0) 2
3

3

 111. = − +( )y t tsin cos ;4

′′′ = ′′ = ′ = − =y y y y(0) 7, (0) (0) 1, (0) 0

 112. = − +( )y x xcos 8 sin 2 ;4

′′′ = ′′ = ′ = =y y y y(0) 0, (0) (0) 1, (0) 3

 113. Find the curve =y f x( ) in the xy-plane that passes through the 
point 9, 4( ) and whose slope at each point is x3 .

 114. a. Find a curve y f x( )=  with the following properties:

 i) =d y
dx

x6
2

2

 ii)  Its graph passes through the point 0,1( ) and has a hori-
zontal tangent line there.

  b. How many curves like this are there? How do you know?

 85. Right, or wrong? Say which for each formula and give a brief 
reason for each answer.

 a. x dx x C2 1 2 1
3

2
3

∫ ( )
( )+ = + +

 b. ∫ ( ) ( )+ = + +x dx x C3 2 1 2 12 3

 c. ∫ ( ) ( )+ = + +x dx x C6 2 1 2 12 3

 86. Right, or wrong? Say which for each formula and give a brief 
reason for each answer.

 a. ∫ + = + +x dx x x C2 1 2

 b. ∫ + = + +x dx x x C2 1 2

 c. ∫ ( )+ = + +x dx x C2 1 1
3

2 1
3

 87. Right, or wrong? Give a brief reason why.

∫ ( )( )

( )

− +
−

= +
−

+x
x

dx x
x

C15 3
2

3
2

2

4

3

 88. Right, or wrong? Give a brief reason why.

∫
−

= +
x x x

x
dx

x
x

C
cos( ) sin( ) sin( )2 2

2

2

Initial Value Problems

 89. Which of the following graphs shows the solution of the initial 
value problem

= = =dy
dx

x y x2 , 4 when  1?

x

y

0 1−1

(a)

(1, 4)

x

y

0 1−1

(b)

(1, 4)

x

y

0 1−1

(c)

(1, 4)

1

2

3

4

1

2

3

4

1

2

3

4

Give reasons for your answer.

 90. Which of the following graphs shows the solution of the initial 
value problem

= − = = −dy
dx

x y x, 1 when  1?

x

y

0

(−1, 1)
(−1, 1) (−1, 1)

(a)

x

y

0

(b)

x

y

0

(c)

Give reasons for your answer.
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 4.8  Antiderivatives 303

 i)  Find the body’s displacement over the time interval from 
=t 1 to =t 3 given that =s 5 when =t 0.

 ii)  Find the body’s displacement from =t 1 to =t 3 given 
that = −s 2 when =t 0.

 iii)  Now find the body’s displacement from =t 1 to =t 3 
given that =s s0 when =t 0.

b. Suppose that the position s of a body moving along a coordi-
nate line is a differentiable function of time t. Is it true that 
once you know an antiderivative of the velocity function 
ds dt , you can find the body’s displacement from =t a to 

=t b even if you do not know the body’s exact position at 
either of those times? Give reasons for your answer.

 124. Liftoff from Earth A rocket lifts off the surface of Earth with 
a constant acceleration of 20 m s .2  How fast will the rocket be 
going 1 min later?

 125. Stopping a car in time You are driving along a highway at a 
steady 108 km/h (30 m/s) when you see an accident ahead and 
slam on the brakes. What constant deceleration is required to stop 
your car in 75 m? To find out, carry out the following steps.

1. Solve the initial value problem

( )= −

= = =

d s
dt

k k

ds
dt

s t

Differential equation:  constant

Initial conditions: 30 and  0 when  0.

Measuring time and distance
from when the brakes are applied

2

2

2. Find the value of t that makes =ds dt 0. (The answer will 
involve k.)

3. Find the value of k that makes s 75=  for the value of t you 
found in Step 2.

 126. Stopping a motorcycle The State of Illinois Cycle Rider Safety 
Program requires motorcycle riders to be able to brake from  
48 km/h (13.3 m/s) to 0 in 13.7 m. What constant deceleration 
does it take to do that?

 127. Motion along a coordinate line A particle moves on a coor-
dinate line with acceleration ( )= = −a d s dt t t15 3 ,2 2  
subject to the conditions that =ds dt 4 and =s 0 when =t 1. 
Find

  a. the velocity υ = ds dt in terms of t.

  b. the position s in terms of t.

 128. The hammer and the feather When Apollo 15 astronaut David 
Scott dropped a hammer and a feather on the moon to demonstrate 
that in a vacuum all bodies fall with the same (constant) accelera-
tion, he dropped them from about 1.2 m above the ground. The 
television footage of the event shows the hammer and the feather 
falling more slowly than on Earth, where, in a vacuum, they would 
have taken only half a second to fall the 1.2 m. How long did it 
take the hammer and feather to fall 1.2 m on the moon? To find 
out, solve the following initial value problem for s as a function of 
t. Then find the value of t that makes s equal to 0.

d s
dt
ds
dt

s t

Differential equation: 1.6 m s

Initial conditions: 0 and  1.2 when  0

2

2
2= −

= = =

 115. 

y = f 9(x)

x

y

−2

0 2 64 8

2

 116. 

y = f 9(x)

x

y

−2

0 2 64 8

2

 117. 

x

y

−2

0 2 64 8

2
y = f 9(x)

 118. 

x

y

−3

0 2 64 8

3 y = f 9(x)

Solution (Integral) Curves
Exercises 119–122 show solution curves of differential equations. In 
each exercise, find an equation for the curve through the labeled point.
 119. 

x
0

(1, 0.5)

1

1

2

−1

y = 1 −     x1�3dy
dx

4
3

 120. 

x
1

1

y

2−1

2

−1

0

 

(−1, 1)

= x − 1dy
dx

 121. 

x
0 2

1

y
= sin x − cos xdy

dx

(−p, −1)

 122. 

x
0

(1, 2)

1

2

y

2

−2

4

6

=           + psin pxdy
dx

1
2
"

x

3

Applications

 123. Finding displacement from an antiderivative of velocity 

 a. Suppose that the velocity of a body moving along the s-axis is

υ= = −ds
dt

t9.8 3.

T

In Exercises 115–118, the graph of f ′ is given. Assume that =f (0) 1 
and sketch a possible continuous graph of f .
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 131. Suppose that

( ) ( )= − = +f x d
dx

x g x d
dx

x( ) 1 and ( ) 2 .

Find:

  a. f x dx( )∫   b. g x dx( )∫
  c. f x dx( )∫ [ ]−   d. g x dx( )∫ [ ]−

  e. f x g x dx( ) ( )∫ [ ]+   f. f x g x dx( ) ( )∫ [ ]−

 132. Uniqueness of solutions If differentiable functions =y F x( ) 
and =y g x( ) both solve the initial value problem

= =dy
dx

f x y x y( ), ( ) ,0 0

on an interval I, must =F x G x( ) ( ) for every x in I? Give rea-
sons for your answer.

COMPUTER EXPLORATIONS
Use a CAS to solve the initial value problems in Exercises 133–136. 
Plot the solution curves.

 133. π′ = + =y x x ycos sin , ( ) 12

 134. ′ = + = −y
x

x y1 , (1) 1

 135. ′ =
−

=y
x

y1
4

, (0) 2
2

 136. ″ = + = ′ =y
x

x y y2 , (1) 0, (1) 0

 129. Motion with constant acceleration The standard equation for 
the position s of a body moving with a constant acceleration a 
along a coordinate line is

υ= + +s a t t s
2

,2
0 0  (1)

where υ0  and s0 are the body’s velocity and position at time 
=t 0. Derive this equation by solving the initial value problem

υ

=

= = =

d s
dt

a

ds
dt

s s t

Differential equation:

Initial conditions:  and   when  0.

2

2

0 0

 130. Free fall near the surface of a planet For free fall near the 
surface of a planet where the acceleration due to gravity has 
a constant magnitude of g length-units s ,2  Equation (1) in  
Exercise 129 takes the form

 s gt t s1
2

,2
0 0υ= − + +  (2)

where s is the body’s height above the surface. The equation 
has a minus sign because the acceleration acts downward, in the 
direction of decreasing s. The velocity υ0  is positive if the object 
is rising at time =t 0 and negative if the object is falling.

Instead of using the result of Exercise 129, you can derive 
Equation (2) directly by solving an appropriate initial value 
problem. What initial value problem? Solve it to be sure you 
have the right one, explaining the solution steps as you go along.

 1. What can be said about the extreme values of a function that is 
continuous on a closed interval?

 2. What does it mean for a function to have a local extreme value on 
its domain? An absolute extreme value? How are local and abso-
lute extreme values related, if at all? Give examples.

 3. How do you find the absolute extrema of a continuous function on 
a closed interval? Give examples.

 4. What are the hypotheses and conclusion of Rolle’s Theorem? Are 
the hypotheses really necessary? Explain.

 5. What are the hypotheses and conclusion of the Mean Value  
Theorem? What physical interpretations might the theorem have?

 6. State the Mean Value Theorem’s three corollaries.

 7. How can you sometimes identify a function f x( ) by knowing ′f  
and knowing the value of f  at a point x x 0= ? Give an example.

 8. What is the First Derivative Test for Local Extreme Values? Give 
examples of how it is applied.

 9. How do you test a twice-differentiable function to determine 
where its graph is concave up or concave down? Give examples.

 10. What is an inflection point? Give an example. What physical  
significance do inflection points sometimes have?

 11. What is the Second Derivative Test for Local Extreme Values? 
Give examples of how it is applied.

 12. What do the derivatives of a function tell you about the shape of 
its graph?

 13. List the steps you would take to graph a polynomial function. 
Illustrate with an example.

 14. What is a cusp? Give examples.

 15. List the steps you would take to graph a rational function.  
Illustrate with an example.

 16. Outline a general strategy for solving max-min problems. Give 
examples.

 17. Describe l’Hôpital’s Rule. How do you know when to use the rule 
and when to stop? Give an example.

 18. How can you sometimes handle limits that lead to indeterminate 
forms ∞ ∞ ∞ ⋅, 0, and ∞ − ∞? Give examples.

 19. How can you sometimes handle limits that lead to indeterminate 
forms ∞1 , 0 ,0  and ∞∞? Give examples.

 20. Describe Newton’s method for solving equations. Give an example.  
What is the theory behind the method? What are some of the 
things to watch out for when you use the method?

 21. Can a function have more than one antiderivative? If so, how are 
the antiderivatives related? Explain.

 22. What is an indefinite integral? How do you evaluate one? What 
general formulas do you know for finding indefinite integrals?

 23. How can you sometimes solve a differential equation of the form 
=dy dx f x( )?

 24. What is an initial value problem? How do you solve one? Give an 
example.

 25. If you know the acceleration of a body moving along a coordinate 
line as a function of time, what more do you need to know to find 
the body’s position function? Give an example.

CHAPTER 4 Questions to Guide Your Review
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 Chapter 4  Practice Exercises 305

not closed. Is this consistent with the Extreme Value Theorem for 
continuous functions? Why?

 29. A graph that is large enough to show a function’s global behav-
ior may fail to reveal important local features. The graph of 

( ) ( )= − − +f x x x x x( ) 8 2 58 6 5 3 is a case in point.

 a. Graph f  over the interval − ≤ ≤x2.5 2.5. Where does 
the graph appear to have local extreme values or points of 
inflection?

 b. Now factor f x( ) and show that f  has a local maximum at 
= ≈x 5 1.709983  and local minima at = ± ≈x 3   
1.73205.

 c. Zoom in on the graph to find a viewing window that shows 
the presence of the extreme values at x 53  and x 3.

The moral here is that without calculus, the existence of two 
of the three extreme values would probably have gone unnoticed. 
On any normal graph of the function, the values would lie close 
enough together to fall within the dimensions of a single pixel 
on the screen.

(Source: Uses of Technology in the Mathematics Curriculum, 
by Benny Evans and Jerry Johnson, Oklahoma State University, 
published in 1990 under a grant from the National Science Foun-
dation, USE-8950044.)

 30. (Continuation of Exercise 29)

 a. Graph ( ) ( ) ( )= − − − +f x x x x x( ) 8 2 5 5 5 118 5 2  over 
the interval − ≤ ≤x2 2. Where does the graph appear to 
have local extreme values or points of inflection?

 b. Show that f  has a local maximum value at 
= ≈x 5 1.25857  and a local minimum value at 
= ≈x 2 1.2599.3

 c. Zoom in to find a viewing window that shows the presence of 
the extreme values at x 57  and x 2.3

The Mean Value Theorem

31. a. Show that = −g t t t( ) sin 32  decreases on every interval in 
its domain.

 b. How many solutions does the equation − =t tsin 3 52  have? 
Give reasons for your answer.

32. a. Show that y tan  increases on every open interval in its 
domain.

 b. If the conclusion in part (a) is really correct, how do you 
explain the fact that tan 0 is less than tan 4 1?( ) =

33. a. Show that the equation + − =x x2 2 04 2  has exactly one 
solution on 0,1[ ].

 b. Find the solution to as many decimal places as you can.

34. a. Show that ( )= +f x x x( ) 1  increases on every open interval 
in its domain.

 b. Show that = +f x x x( ) 23  has no local maximum or mini-
mum values.

 35. Water in a reservoir As a result of a heavy rain, the vol-
ume of water in a reservoir increased by million cubic meters  
in 24 hours. Show that at some instant during that period,  
the reservoir’s volume was increasing at a rate in excess of 
500,000 L min.

Finding Extreme Values
In Exercises 1–16, find the extreme values (absolute and local) of the 
function over its natural domain, and where they occur.

 1. = − +y x x2 8 92  2. = − +y x x2 43

 3. = + − +y x x x8 53 2  4. ( )= −y x x 53 2

 5. = −y x 12  6. = −y x x4

 7. =
−

y
x

1
1 23

 8. = + −y x x3 2 2

 9. =
+

y x
x 12

 10. = +
+ +

y x
x x

1
2 22

 11. = + −y e ex x  12. = − −y e ex x

 13. y x xln  14. y x xln2

 15. y x arccos ( )2  16. = −y esin ( )x1

Extreme Values

 17. Does = + +f x x x x( ) 2 tan3  have any local maximum or min-
imum values? Give reasons for your answer.

 18. Does = +g x x x( ) csc 2 cot  have any local maximum values? 
Give reasons for your answer.

 19. Does f x x x( ) 7 11 3 1 3( )( )= + −  have an absolute minimum 
value? An absolute maximum? If so, find them or give reasons 
why they fail to exist. List all critical points of f .

 20. Find values of a and b such that the function

= +
−

f x ax b
x

( )
12

has a local extreme value of 1 at x 3. Is this extreme value a 
local maximum or a local minimum? Give reasons for your answer.

 21. Does = −g x e x( ) x  have an absolute minimum value? An abso-
lute maximum? If so, find them or give reasons why they fail to 
exist. List all critical points of g.

 22. Does f x e x( ) 2 1x 2( )= +  have an absolute minimum value? 
An absolute maximum? If so, find them or give reasons why they 
fail to exist. List all critical points of f .

In Exercises 23 and 24, find the absolute maximum and absolute mini-
mum values of f  over the interval.

 23. = − ≤ ≤f x x x x( ) 2 ln , 1 3

 24. ( )= + ≤ ≤f x x x x( ) 4 ln , 1 42

 25. The greatest integer function f x x( ) ,⎣ ⎦=  defined for all values 
of x, assumes a local maximum value of 0 at each point of 0,1[ ). 
Could any of these local maximum values also be local minimum 
values of f ? Give reasons for your answer.

26. a. Give an example of a differentiable function f  whose first 
derivative is zero at some point c, even though f  has neither a 
local maximum nor a local minimum at c.

 b. How is this consistent with Theorem 2 in Section 4.1? Give 
reasons for your answer.

 27. The function y x1  does not take on either a maximum or a 
minimum on the interval x0 1 even though the function 
is continuous on this interval. Does this contradict the Extreme 
Value Theorem for continuous functions? Why?

 28. What are the maximum and minimum values of the function 
y x  on the interval − ≤ <x1 1? Notice that the interval is 

CHAPTER 4 Practice Exercises

T

T

T

M04_HASS5901_15_GE_C04.indd   305 22-03-2023   16:18:01

www.konkur.in

Telegram: @uni_k



306 Chapter 4 Applications of Derivatives 

Graphs and Graphing
Graph the curves in Exercises 43–58.

 43. ( )= −y x x 62 3  44. = − +y x x3 33 2

 45. = − + − +y x x x6 9 33 2

 46. ( )( )= + − −y x x x1 8 3 9 273 2

 47. ( )= −y x x83  48. ( )= −y x x2 92 2

 49. y x x3 2 3= −  50. y x x 41 3 ( )= −

 51. = −y x x3  52. = −y x x4 2

 53. ( )= −y x e3 x2  54. = −y xe x 2

 55. ( )= − +y x xln 4 32  56. ( )=y xln sin

 57. y
x

arcsin 1( )=  58. ( )= −y
x

tan 11

Each of Exercises 59–64 gives the first derivative of a function 
=y f x( ). (a) At what points, if any, does the graph of f  have a local 

maximum, local minimum, or inflection point? (b) Sketch the general 
shape of the graph.

 59. ′ = −y x16 2  60. ′ = − −y x x 62

 61. ( )( )′ = + −y x x x6 1 2  62. ( )′ = −y x x6 42

 63. ′ = −y x x24 2  64. ′ = −y x x4 2 4

In Exercises 65–68, graph each function. Then use the function’s first 
derivative to explain what you see.

 65. y x x 12 3 1 3( )= + −  66. y x x 12 3 2 3( )= + −

 67. y x x 11 3 1 3( )= + −  68. y x x 12 3 1 3( )= − −

Sketch the graphs of the rational functions in Exercises 69–76.

 69. = +
−

y x
x

1
3

 70. =
+

y x
x

2
5

 71. = +y x
x

12
 72. = − +y x x

x
12

 73. = +y x
x

2
2

3
 74. = −y x

x
14

2

 75. = −
−

y x
x

4
3

2

2
 76. =

−
y x

x 4

2

2

Using L’Hôpital’s Rule
Use l’Hôpital’s Rule to find the limits in Exercises 77–88.

 77. x x
x

lim 3 4
1x 1

2 + −
−→

 78. x
x

lim 1
1x

a

b1

−
−→

 79. 
π→

x
x

lim
tan

x
 80. 

+→

x
x x

lim
tan

sinx 0

 81. 
→

x
x

lim
sin

tan( )x 0

2

2
 82. 

→

mx
nx

lim
sin
sinx 0

 83. 
π→ −

x xlim sec 7 cos 3
x 2

 84. 
→ +

x xlim sec
x 0

 85. ( )−
→

x xlim csc cot
x 0

 86. 
x x

lim 1 1
x 0 4 2( )−

→

 87. x x x xlim 1
x

2 2( )+ + − −
→∞

 88. x
x

x
x

lim
1 1x

3

2

3

2( )−
−

+→∞

Find the limits in Exercises 89–102.

 89. 
x

lim 10 1
x

x

0

−
→

 90. lim 3 1
0 θ

−
θ

θ

→

 91. 
e

lim 2 1
1x

x

x0

sin −
−→

 92. 
e

lim 2 1
1x

x

x0

sin −
−→

−

 93. 
−

− −→

x
e x

lim
5 5 cos

1x x0
 94. e

xe
lim 4 4
x

x

x0

−
→

 36. The formula = +F x x C( ) 3  gives a different function for each 
value of C. All of these functions, however, have the same deriva-
tive with respect to x, namely ′ =F x( ) 3. Are these the only dif-
ferentiable functions whose derivative is 3? Could there be any 
others? Give reasons for your answers.

 37. Show that

d
dx

x
x

d
dx x1

1
1( ) ( )+

= −
+

even though

+
≠ −

+
x

x x1
1

1
.

Doesn’t this contradict Corollary 2 of the Mean Value Theorem? 
Give reasons for your answer.

 38. Calculate the first derivatives of ( )= +f x x x( ) 12 2  and 
( )= − +g x x( ) 1 1 .2  What can you conclude about the graphs 

of these functions?

Analyzing Graphs
In Exercises 39 and 40, use the graph to answer the questions.

 39. Identify any global extreme values of f  and the values of x at 
which they occur.

y

x

(1, 1)
2,    1

2

0

y = f (x)

a    b

 40. Estimate the open intervals on which the function =y f x( ) is

 a. increasing.

 b. decreasing.

 c. Use the given graph of ′f  to indicate where any local extreme 
values of the function occur, and whether each extreme is a 
relative maximum or minimum.

y

x

(−3, 1)

(2, 3)

−1

−2

y = f ′(x)

Each of the graphs in Exercises 41 and 42 is the graph of the posi-
tion function s f t( )=  of an object moving on a coordinate line (t 
represents time). At approximately what times (if any) is each object’s 
(a) velocity equal to zero? (b) Acceleration equal to zero? During 
approximately what time intervals does the object move (c) forward? 
(d) Backward?

 41. 

t

s

0 3 6 9 12 14

s = f (t)

 42. 

t

s

0 2 4 6 8

s = f (t)
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 Chapter 4  Practice Exercises 307

 111. Open-top box An open-top rectangular box is constructed 
from a 25-cm-by-40-cm piece of cardboard by cutting squares of 
equal side length from the corners and folding up the sides. Find 
analytically the dimensions of the box of largest volume and the 
maximum volume. Support your answers graphically.

 112. The ladder problem What is the approximate length (in meters) of 
the longest ladder you can carry horizontally around the corner of the 
corridor shown here? Round your answer down to the nearest meter.

x

y

0

1.8

2.4

(2.4, 1.8)

Newton’s Method

 113. Let = −f x x x( ) 3 .3  Show that the equation = −f x( ) 4 has a 
solution in the interval 2, 3[ ] and use Newton’s method to find it.

 114. Let = −f x x x( ) .4 3  Show that the equation =f x( ) 75 has a 
solution in the interval 3, 4[ ] and use Newton’s method to find it.

Finding Indefinite Integrals
Find the indefinite integrals (most general antiderivatives) in Exer-
cises 115–138. You may need to try a solution and then adjust your 
guess. Check your answers by differentiation.

 115. x x dx5 73∫ ( )+ −  116. t t t dt8
2

3
2

∫ ( )− +

 117. t
t

dt3 4
2∫ ( )+  118. 

t t
dt1

2
3
4∫ ( )−

 119. ∫ ( )+
dr

r 5 2  120. 
dr

r

6

2
3∫ ( )−

 121. d3 12∫ θ θ θ+  122. d
7 2∫ θ
θ
θ

+

 123. x x dx13 4 1 4∫ ( )+ −  124. x dx2 3 5∫ ( )−

 125. s dssec
10

2∫  126. s dscsc 2∫ π

 127. dcsc 2 cot 2∫ θ θ θ  128. dsec
3

tan
3∫ θ θ θ

 129. x dxsin
4

2∫  Hint: sin
1 cos 2

2
2 θ

θ( )=
−

 130. x dxcos
2

2∫
 131. 

x
x dx3∫ ( )−  132. 

x x
dx5 2

12 2∫ ( )+
+

 133. e e dt1
2

t t∫ ( )− −  134. s ds5 s 5∫ ( )+

 135. d1∫ θ θπ−  136. dr2 r∫ π+

 137. 
x x

dx3
2 12∫ −

 138. ∫ θ
θ−

d
16 2

Initial Value Problems
Solve the initial value problems in Exercises 139–142.

 139. = + = −dy
dx

x
x

y1, (1) 1
2

2

 140. ( )= + =dy
dx

x
x

y1 , (1) 1
2

 95. 
t t

t
lim

ln 1 2
t 0 2

( )− +
→ +

 96. 
π

+ −→ −

x
e x

lim
sin ( )

3x x4

2

4

 97. e
t t

lim 1
t

t

0
( )−

→ +
 98. 

→

−
+

e ylim ln
y

y

0

1

 99. b
x

lim 1
x

kx

( )+
→∞

 100. 
x x

lim 1 2 7
x 2( )+ +

→∞

 101. 
− − −

→

x x
x

lim
cos 2 1 1 cos

sinx 0 2

 102. 
+ − +

→

x x
x

lim
1 tan 1 sin

x 0 3

Optimization

 103. The sum of two nonnegative numbers is 36. Find the numbers if

  a. the difference of their square roots is to be as large as possible.

  b. the sum of their square roots is to be as large as possible.

 104. The sum of two nonnegative numbers is 20. Find the numbers

  a.  if the product of one number and the square root of the other 
is to be as large as possible.

  b.  if one number plus the square root of the other is to be as 
large as possible.

 105. An isosceles triangle has its vertex at the origin and its base par-
allel to the x-axis with the vertices above the axis on the curve 

= −y x27 .2  Find the largest area the triangle can have.

 106. A customer has asked you to design an open-top rectangular stain-
less steel vat. It is to have a square base and a volume of 1 m 3, 
to be welded from 6-mm-thick plate, and to weigh no more than 
necessary. What dimensions do you recommend?

 107. Find the height and radius of the largest right circular cylinder that 
can be put in a sphere of radius 3.

 108. The figure here shows two right circular cones, one upside down 
inside the other. The two bases are parallel, and the vertex of the 
smaller cone lies at the center of the larger cone’s base. What values 
of r and h will give the smaller cone the largest possible volume?

r

6′
h

12′

 109. Manufacturing tires Your company can manufacture x hun-
dred grade A tires and y hundred grade B tires a day, where 

≤ ≤x0 4 and

= −
−

y x
x

40 10
5

.

Your profit on a grade A tire is twice your profit on a grade B 
tire. What is the most profitable number of each kind to make?

 110. Particle motion The positions of two particles on the s-axis are 
=s tcos1  and π( )= +s tcos 4 .2

  a. What is the farthest apart the particles ever get?

  b. When do the particles collide?

T
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308 Chapter 4 Applications of Derivatives 

In Exercises 147 and 148, find the absolute maximum and minimum 
values of each function on the given interval.

 147. = − ⎡
⎣⎢

⎤
⎦⎥

y x x x
e

eln 2 , 1
2

,
2

 148. ( ) ( ]= −y x x e10 2 ln , 0, 2

In Exercises 149 and 150, find the absolute maxima and minima of the 
functions and give the x-coordinates where they occur.

 149. f x e( ) x x 14= +

 150. = − −g x e( ) x x3 2 2

 151. Graph the following functions and use what you see to locate 
and estimate the extreme values, identify the coordinates of the 
inflection points, and identify the intervals on which the graphs 
are concave up and concave down. Then confirm your estimates 
by working with the functions’ derivatives.

  a. ( )=y x xln

  b. = −y e x 2

  c. ( )= + −y x e1 x

 152. Graph =f x x x( ) ln . Does the function appear to have an abso-
lute minimum value? Confirm your answer with calculus.

 153. Graph ( )=f x x( ) sin xsin  over 0, 3 .π[ ]  Explain what you see.

 154. A round underwater transmission cable consists of a core of cop-
per wires surrounded by nonconducting insulation. If x denotes 
the ratio of the radius of the core to the thickness of the insulation, 
it is known that the speed of the transmission signal is given by 
the equation υ ( )= x xln 1 .2  If the radius of the core is 1 cm, 
what insulation thickness h will allow the greatest transmission 
speed?

Insulation

x = r
h

h
r

Core

 141. = + ′ = =d r
dt

t
t

r r15 3 ; (1) 8, (1) 0
2

2

 142. = − ′′ = ′ = = −d r
dt

t r r rcos ; (0) (0) 0, (0) 1
3

3

Applications and Examples

 143. Can the integrations in (a) and (b) both be correct? Explain.

  a. ∫ −
= +dx

x
x C

1
arcsin

2

  b. ∫ ∫−
= − −

−
= − +dx

x
dx

x
x C

1 1
arccos

2 2

 144. Can the integrations in (a) and (b) both be correct? Explain.

  a. ∫ ∫−
= − −

−
= − +dx

x
dx

x
x C

1 1
arccos

2 2

  b. ∫ ∫

∫

−
= −

− −

= −
−

= +

= − +

= −
= −

= −

dx
x

du
u

du
u

u C

x C

1 1 ( )

1
arccos

arccos( )

x u
dx du

u x

2 2

2

 145. The rectangle shown here has one side on the positive y-axis, one 
side on the positive x-axis, and its upper right-hand vertex on the 
curve y e x 2= − . What dimensions give the rectangle its largest 
area, and what is that area?

x

y

0

1 y = e−x2

 146. The rectangle shown here has one side on the positive y-axis, one  
side on the positive x-axis, and its upper right-hand vertex on 
the curve ( )=y x xln 2 . What dimensions give the rectangle its 
largest area, and what is that area?

x

y

0

0.2 y = 

1

0.1
x2

ln x

Functions and Derivatives

 1. What can you say about a function whose maximum and minimum 
values on an interval are equal? Give reasons for your answer.

 2. Is it true that a discontinuous function cannot have both an abso-
lute maximum value and an absolute minimum value on a closed 
interval? Give reasons for your answer.

 3. Can you conclude anything about the extreme values of a continu-
ous function on an open interval? On a half-open interval? Give 
reasons for your answer.

 4. Local extrema Use the sign pattern for the derivative
df
dx

x x x x6 1 2 3 32 3 4( )( ) ( ) ( )= − − − −

to identify the points where f  has local maximum and minimum 
values.

 5. Local extrema 
 a. Suppose that the first derivative of =y f x( ) is

( )( )′ = + −y x x6 1 2 .2

At what points, if any, does the graph of f  have a local  
maximum, local minimum, or point of inflection?

 b. Suppose that the first derivative of =y f x( ) is

y x x6 1 2 .( )( )′ = + −

At what points, if any, does the graph of f  have a local  
maximum, local minimum, or point of inflection?

 6. If ′ ≤f x( ) 2 for all x, what is the most the values of f  can  
increase on 0, 6[ ]? Give reasons for your answer.

CHAPTER 4 Additional and Advanced Exercises
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 Chapter 4  Additional and Advanced Exercises 309

 7. Bounding a function Suppose that f  is continuous on a b,[ ] and 
that c is an interior point of the interval. Show that if ′ ≤f x( ) 0  
on [ )a c,  and ′ ≥f x( ) 0 on ( ]c b, , then f x( ) is never less than 
f c( ) on a b,[ ].

 8. An inequality 
 a. Show that ( )− ≤ + ≤x x1 2 1 1 22  for every value of x.

 b. Suppose that f  is a function whose derivative is 
( )′ = +f x x x( ) 1 .2  Use the result in part (a) to show that

f b f a b a( ) ( ) 1
2

− ≤ −

for any a and b.
 9. The derivative of f x x( ) 2 is zero at x 0, but f  is not a con-

stant function. Doesn’t this contradict the corollary of the Mean 
Value Theorem that says that functions with zero derivatives are 
constant? Give reasons for your answer.

 10. Extrema and inflection points Let h fg be the product of 
two differentiable functions of x.

 a. If f  and g are positive, with local maxima at x a, and if f  
and g  change sign at a, does h have a local maximum at a?

 b. If the graphs of f  and g have inflection points at x a, does 
the graph of h have an inflection point at a?

In either case, if the answer is yes, give a proof. If the answer is no, 
give a counterexample.

 11. Finding a function Use the following information to find the val-
ues of a, b, and c in the formula ( )( )= + + +f x x a bx cx( ) 2 .2

 a. The values of a, b, and c are either 0 or 1.

 b. The graph of f  passes through the point 1, 0 .( )−

 c. The line y 1 is an asymptote of the graph of f .
 12. Horizontal tangent For what value or values of the constant k 

will the curve = + + −y x kx x3 43 2  have exactly one hori-
zontal tangent?

Optimization
 13. Largest inscribed triangle Points A and B lie at the ends of a 

diameter of a unit circle and point C lies on the circumference. Is 
it true that the area of triangle ABC is largest when the triangle is 
isosceles? How do you know?

 14. Proving the second derivative test The Second Derivative Test 
for Local Maxima and Minima (Section 4.4) says:

 a. f  has a local maximum value at x c if ′ =f c( ) 0 and 
′′ <f c( ) 0;

 b. f  has a local minimum value at x c if ′ =f c( ) 0 and 
′′ >f c( ) 0.

To prove statement (a), let ( )= ′′f c1 2 ( ) . Then use the fact that

f c
f c h f c

h
f c h

h
( ) lim

( ) ( )
lim

( )
h h0 0

′′ = ′ + − ′ = ′ +
→ →

to conclude that for some 0,

δ ε< < ⇒ ′ + < ′′ + <h
f c h

h
f c0

( )
( ) 0.

Thus, f c h( )′ +  is positive for − < <h 0 and negative for 
h0 . Prove statement (b) in a similar way.

 15. Hole in a water tank You want to bore a hole in the side of the 
tank shown here at a height that will make the stream of water 
coming out hit the ground as far from the tank as possible. If you 
drill the hole near the top, where the pressure is low, the water will 
exit slowly but spend a relatively long time in the air. If you drill 
the hole near the bottom, the water will exit at a higher velocity 
but have only a short time to fall. Where is the best place, if any, 

for the hole? (Hint: How long will it take an exiting droplet of 
water to fall from height y to the ground?)

x

y

Range

Ground

h

y

0

Tank kept full,
top open

Exit velocity = 
"

64(h − y)

 16. Kicking a field goal An American football player wants to kick 
a field goal with the ball being on a right hash mark. Assume that 
the goal posts are b meters apart and that the hash mark line is a 
distance a 0 meters from the right goal post. (See the accompa-
nying figure.) Find the distance h from the goal post line that gives 
the kicker his largest angle . Assume that the football field is flat.

Goal post line

Football

h

b a

Goal posts

b u

 17. A max-min problem with a variable answer Sometimes the 
solution of a max-min problem depends on the proportions of the 
shapes involved. As a case in point, suppose that a right circular 
cylinder of radius r and height h is inscribed in a right circular 
cone of radius R and height H, as shown here. Find the value of r 
(in terms of R and H) that maximizes the total surface area of the 
cylinder (including top and bottom). As you will see, the solution 
depends on whether H R2  or H R2 .

H

R

r

h

 18. Minimizing a parameter Find the smallest value of the posi-
tive constant m that will make ( )− +mx x1 1  greater than or 
equal to zero for all positive values of x.
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310 Chapter 4 Applications of Derivatives 

 26. The family of straight lines = +y ax b  (a, b arbitrary constants) 
can be characterized by the relation y 0.′′ =  Find a similar rela-
tion satisfied by the family of all circles

( ) ( )− + − =x h y h r ,2 2 2

where h and r are arbitrary constants. (Hint: Eliminate h and r 
from the set of three equations including the given one and two 
obtained by successive differentiation.)

 27. Free fall in the fourteenth century In the middle of the four-
teenth century, Albert of Saxony (1316–1390) proposed a model 
of free fall, which assumed that the velocity of a falling body 
was proportional to the distance fallen. It seemed reasonable to 
think that a body that had fallen 6 m might be moving twice 
as fast as a body that had fallen 3 m. And besides, none of the 
instruments in use at the time were accurate enough to prove 
otherwise. Today we can see just how far off Albert of Saxony’s 
model was by solving the initial value problem implicit in his 
model. Solve the problem and compare your solution graphi-
cally with the equation s t4.9 .2  You will see that it describes 
a motion that starts too slowly and then becomes too fast to be 
realistic.

 28. Group testing During World War II it was necessary to admin-
ister blood tests to large numbers of recruits. There are two stan-
dard ways to administer a blood test to N people. In method 1, 
each person is tested separately. In method 2, the blood samples 
of x people are pooled and tested as one large sample. If the test 
is negative, this one test is enough for all x people. If the test is 
positive, then each of the x people is tested separately, requiring a 
total of x 1 tests. Using the second method and some probabil-
ity theory it can be shown that, on the average, the total number of 
tests y will be

( )= − +y N q
x

1 1 .x

With q 0.99 and N 1000, find the integer value of x that 
minimizes y. Also find the integer value of x that maximizes y. 
(This second result is not important to the real-life situation.) The 
group testing method was used in World War II with a savings of 
80% over the individual testing method, but not with the given 
value of q. Group testing has been implemented in diagnosing 
various diseases, including COVID-19.

 29. Assume that the brakes of an automobile produce a constant 
deceleration of k m s2. (a) Determine what k must be to bring an 
automobile traveling 108 km h (30 m s) to rest in a distance of  
30 m from the point where the brakes are applied. (b) With the 
same k, how far would a car traveling 54 km hr go before being 
brought to a stop?

 30. Let f x( ) and g x( ) be two continuously differentiable functions 
satisfying the relationships ′ =f x g x( ) ( ) and ′′ = −f x f x( ) ( ). 
Let = +h x f x g x( ) ( ) ( ).2 2  If h(0) 5, find h(10).

 31. Can there be a curve satisfying the following conditions? 
d y dx2 2  is everywhere equal to zero and, when x y0, 0 
and dy dx 1. Give a reason for your answer.

 32. Find the equation for the curve in the xy-plane that passes through 
the point 1, 1( )−  if its slope at x is always x3 2.2

 33. A particle moves along the x-axis. Its acceleration is = −a t .2  
At t 0, the particle is at the origin. In the course of its motion, 
it reaches the point x b, where b 0, but no point beyond b. 
Determine its velocity at t 0.

 19. Determine the dimensions of the rectangle of largest area that can 
be inscribed in the right triangle in the accompanying figure.

6

8

10

 20. A rectangular box with a square base is inscribed in a right circu-
lar cone of height 4 and base radius 3. If the base of the box sits 
on the base of the cone, what is the largest possible volume of  
the box?

Limits
 21. Evaluate the following limits.

 a. 
x

x
lim

2 sin 5
3x 0

 b. x xlim sin 5 cot 3
x 0

 c. x xlim csc 2
x 0

2  d. ( )−
→

x xlim sec tan
x 2

 e. 
−
−→

x x
x x

lim
sin
tanx 0

 f. 
x

x x
lim

sin
sinx 0

2

 g. 
−

→

x
x

lim
sec 1

x 0 2
 h. x

x
lim 8

4x 2

3

2

−
−→

 22. L’Hôpital’s Rule does not help with the following limits. Find 
them some other way.

 a. x
x

lim 5
5x

+
+→∞

 b. x
x x

lim 2
7x +→∞

Theory and Examples
 23. Suppose that it costs a company = +y a bx  dollars to pro-

duce x units per week. It can sell x units per week at a price of 
= −P c ex  dollars per unit. Each of a, b, c, and e represents a 

positive constant. (a) What production level maximizes the profit? 
(b) What is the corresponding price? (c) What is the weekly profit 
at this level of production? (d) At what price should each item be 
sold to maximize profits if the government imposes a tax of t dol-
lars per item sold? Comment on the difference between this price 
and the price before the tax.

 24. Estimating reciprocals without division You can estimate the 
value of the reciprocal of a number a without ever dividing by a 
if you apply Newton’s method to the function ( )= −f x x a( ) 1 . 
For example, if a 3, the function involved is ( )= −f x x( ) 1 3.

 a. Graph ( )= −y x1 3. Where does the graph cross the x-axis?

 b. Show that the recursion formula in this case is
( )= −+x x x2 3 ,n n n1

so there is no need for division.
 25. To find x a,

q
 we apply Newton’s method to = −f x x a( ) .q  

Here we assume that a is a positive real number and q is a positive 
integer. Show that x1 is a “weighted average” of x 0 and a x ,q

0
1  

and find the coefficients m m,0 1 such that

x m x m a
x

m m m m, 0, 0, 1.
q1 0 0 1

0
1 0 1 0 1= +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ > > + =

−

What conclusion would you reach if x 0 and a x q
0

1  were equal? 
What would be the value of x1 in that case?
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 Chapter 4  Technology Application Projects 311

In our model, we assume that =AC a and =BC b  are fixed. 
Thus we have the relations

θ θ+ = =d d a d bcos sin ,1 2 2

so that
θ=d b csc ,2

θ θ= − = −d a d a bcos cot .1 2

We can express the total loss L as a function of :θ

θ θ( )=
−

+L k
a b

R
b

r
cot csc

.
4 4

 a. Show that the critical value of θ for which θdL d  equals zero is

θ = − r
R

cos .c
1

4

4

 b. If the ratio of the pipe radii is =r R 5 6 estimate to the near-
est degree the optimal branching angle given in part (a).

 38. Consider point (a, b) on the graph of =y xln  and triangle ABC 
formed by the tangent line at (a, b), the y-axis, and the line =y b. 
Show that

ABC aarea triangle 
2

.( ) =

y = ln x

x

y

(a, b)B
C

A

 39. Consider the unit circle centered at the origin and with a vertical 
tangent line passing through point A in the accompanying figure. 
Assume that the lengths of segments AB and AC are equal, and 
let point D be the intersection of the x-axis with the line passing 
through points B and C. Find the limit of t as B approaches A.

B

D

C

A t0 1
1

x

y

 34. A particle moves with acceleration ( )= −a t t1 . Assum-
ing that the velocity υ = 4 3 and the position = −s 4 15 when 

=t 0, find
 a. the velocity υ in terms of t.

 b. the position s in terms of t.
 35. Given = + +f x ax bx c( ) 22  with >a 0. By considering 

the minimum, prove that ≥f x( ) 0 for all real x if and only if 
− ≤b ac 0.2

 36. The Cauchy–Schwarz inequality 
 a. In Exercise 35, let

�f x a x b a x b a x b( ) ,n n1 1
2

2 2
2 2( )( ) ( )= + + + + + +

and deduce The Cauchy–Schwarz inequality:

( )

( )( )

+ + +

≤ + + + + + +

a b a b a b

a a a b b b .
n n

n n

1 1 2 2
2

1
2

2
2 2

1
2

2
2 2

�

� �

 b. Show that equality holds in The Cauchy–Schwarz inequality 
only if there exists a real number x that makes a xi  equal −bi 
for every value of i from 1 to n.

 37. The best branching angles for blood vessels and pipes When 
a smaller pipe branches off from a larger one in a flow system, we 
may want it to run off at an angle that is best from some energy-
saving point of view. We might require, for instance, that energy 
loss due to friction be minimized along the section AOB shown 
in the accompanying figure. In this diagram, B is a given point 
to be reached by the smaller pipe, A is a point in the larger pipe 
upstream from B, and O is the point where the branching occurs. 
A law formulated by Poiseuille states that the loss of energy due 
to friction in nonturbulent flow is proportional to the length of the 
path and inversely proportional to the fourth power of the radius. 
Thus, the loss along AO is kd R1

4( )  and along OB is kd r ,2
4( )  

where k is a constant, d1 is the length of AO, d2 is the length of OB, 
R is the radius of the larger pipe, and r is the radius of the smaller 
pipe. The angle θ is to be chosen to minimize the sum of these two 
losses:

= +L k
d
R

k
d
r

.1
4

2
4

a

C

B

O

A

d1

d2

d2 cos u

b = d2 sin u

u

Mathematica/Maple Projects

Projects can be found within MyLab Math.

• Motion Along a Straight Line: Position Velocity Acceleration→ →
You will observe the shape of a graph through dramatic animated visualizations of the derivative relations among the position, velocity, and 
acceleration. Figures in the text can be animated.

• Newton’s Method: Estimate π to How Many Places?

Plot a function, observe a root, pick a starting point near the root, and use Newton’s Iteration Procedure to approximate the root to a desired 
accuracy. The numbers π e, , and 2  are approximated.

CHAPTER 4 Technology Application Projects
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312

OVERVIEW A great achievement of classical geometry was obtaining formulas for the 
areas and volumes of triangles, spheres, and cones. In this chapter we develop a method, 
called integration, to calculate the areas and volumes of more general shapes. The definite 
integral is the key tool in calculus for defining and calculating areas and volumes. We also 
use it to compute quantities such as the lengths of curved paths, probabilities, averages, 
energy consumption, the mass of an object, and the force against a dam’s floodgates.

Like the derivative, the definite integral is defined as a limit. The definite integral is a 
limit of increasingly fine approximations. The idea is to approximate a quantity (such as 
the area of a curvy region) by dividing it into many small pieces, each of which we can 
approximate by something simple (such as a rectangle). Summing the contributions of 
each of the simple pieces gives us an approximation to the original quantity. As we divide 
the region into more and more pieces, the approximation given by the sum of the pieces 
will generally improve, converging to the quantity we are measuring. We take a limit as the 
number of terms increases to infinity, and when the limit exists, the result is a definite integral. 
We develop this idea in Section 5.3.

We also show that the process of computing these definite integrals is closely con-
nected to finding antiderivatives. This is one of the most important relationships in calculus; 
it gives us an efficient way to compute definite integrals, providing a simple and powerful 
method that eliminates the difficulty of directly computing limits of approximations. This 
connection is captured in the Fundamental Theorem of Calculus.

Integrals

5

FIGURE 5.1 The area of the shaded 
region R cannot be found by a simple 
formula.

0.5 1

0.5

0

1

x

y

R

y = 1 − x2

5.1 Area and Estimating with Finite Sums

The basis for formulating definite integrals is the construction of approximations by finite 
sums. In this section we consider three examples of this process: finding the area under a 
graph, the distance traveled by a moving object, and the average value of a function. 
Although we have yet to define precisely what we mean by the area of a general region in 
the plane, or the average value of a function over a closed interval, we do have intuitive 
ideas of what these notions mean. We begin our approach to integration by approximating 
these quantities with simpler finite sums related to these intuitive ideas. We then consider 
what happens when we take more and more terms in the summation process. In subsequent 
sections we look at taking the limit of these sums as the number of terms goes to infinity, 
which leads to a precise definition of the definite integral.

Area

Suppose we want to find the area of the shaded region R that lies above the x-axis, below 
the graph of = −y x1 ,2  and between the vertical lines =x 0 and =x 1 (see Figure 5.1).
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 5.1  Area and Estimating with Finite Sums 313

Unfortunately, there is no simple geometric formula for calculating the areas of general 
shapes having curved boundaries like the region R. How, then, can we find the area of R?

Although we do not yet have a method for determining the exact area of R, we can 
approximate it in a simple way. Figure 5.2a shows two rectangles that together contain the 
region R. Each rectangle has width 1 2 and they have heights 1 and 3 4 (left to right). 
The height of each rectangle is the maximum value of the function f  in each subinterval. 
Because the function f  is decreasing, the height is its value at the left endpoint of the sub-
interval of [ ]0,1  that forms the base of the rectangle. The total area of the two rectangles 
approximates the area A of the region R:

≈ ⋅ + ⋅ = =A 1 1
2

3
4

1
2

7
8

0.875.

This estimate is larger than the true area A since the two rectangles contain R. We say that 
0.875 is an upper sum because it is obtained by taking the height of the rectangle corre-
sponding to the maximum (uppermost) value of f x( ) over points x lying in the base of 
each rectangle. In Figure 5.2b, we improve our estimate by using four thinner rectangles, 
each of width 1 4, which taken together contain the region R. These four rectangles give 
the approximation

≈ ⋅ + ⋅ + ⋅ + ⋅ = =A 1 1
4

15
16

1
4

3
4

1
4

7
16

1
4

25
32

0.78125,

which is still greater than A since the four rectangles contain R.
Suppose instead we use four rectangles contained inside the region R to estimate the 

area, as in Figure 5.3a. Each rectangle has width 1 4, as before, but the rectangles are 
shorter and lie entirely beneath the graph of f . The function = −f x x( ) 1 2 is decreas-
ing on 0,1[ ], so the height of each of these rectangles is given by the value of f at the 
right endpoint of the subinterval forming its base. The fourth rectangle has zero height 
and therefore contributes no area. Summing these rectangles, whose heights are the min-
imum value of f x( ) over points x in the rectangle’s base, gives a lower sum approxima-
tion to the area:

≈ ⋅ + ⋅ + ⋅ + ⋅ = =A 15
16

1
4

3
4

1
4

7
16

1
4

0 1
4

17
32

0.53125.

This estimate is smaller than the area A since the rectangles all lie inside of the region R. 
The true value of A lies somewhere between these lower and upper sums:

< <A0.53125 0.78125.

FIGURE 5.2 (a) We get an upper sum approximation of the area of R by 
using two rectangles containing R. (b) Four rectangles give a better upper sum 
approximation. Both estimates overshoot the true value for the area by the 
amount shaded in light red.

10

1

x

y

R

y = 1 − x2

(0, 1)

1
2

3
4

,

(a)

Q  R

10

1

x

y

R

y = 1 − x2(0, 1)

1
2

3
4

,

1
4

15
16

,

3
4

7
16

,

(b)

Q   R

Q   R

Q  R
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314 Chapter 5 Integrals

Considering both lower and upper sum approximations gives us estimates for the area 
and a bound on the size of the possible error in these estimates since the true value of the 
area lies somewhere between them. Here the error cannot be greater than the difference 

− =0.78125 0.53125 0.25.
Yet another estimate can be obtained by using rectangles whose heights are the values 

of f  at the midpoints of the bases of the rectangles (Figure 5.3b). This method of estima-
tion is called the midpoint rule for approximating the area. The midpoint rule gives an 
estimate that is between a lower sum and an upper sum, but it is not clear whether it over-
estimates or underestimates the true area. With four rectangles of width 1 4, as before, the 
midpoint rule estimates the area of R to be

≈ ⋅ + ⋅ + ⋅ + ⋅ = ⋅ =A 63
64

1
4

55
64

1
4

39
64

1
4

15
64

1
4

172
64

1
4

0.671875.

In each of the sums that we computed, the interval a b,[ ] over which the function f  is 
defined was subdivided into n subintervals of equal width (or length) x b a n ,( )Δ = −  
and f  was evaluated at a point in each subinterval: c1 in the first subinterval, c2 in the sec-
ond subinterval, and so on. For the upper sum we chose ck so that f c( )k  was the maximum 
value of f  in the kth subinterval, for the lower sum we chose it so that f c( )k  was the mini-
mum, and for the midpoint rule we chose ck to be the midpoint of the kth subinterval. In 
each case the finite sums have the form

�Δ + Δ + Δ + + Δf c x f c x f c x f c x( ) ( ) ( ) ( ) .n1 2 3

As we take more and more rectangles, with each rectangle thinner than before, it appears 
that these finite sums give better and better approximations to the true area of the region R.

Figure 5.4a shows a lower sum approximation for the area of R using 16 rectangles of 
equal width. The sum of their areas is 0.634765625, which appears close to the true area 
but is still somewhat smaller since the rectangles lie inside R.

Figure 5.4b shows an upper sum approximation using 16 rectangles of equal width. 
The sum of their areas is 0.697265625, which is somewhat larger than the true area because 
the rectangles taken together contain R. The midpoint rule for 16 rectangles gives a total 
area approximation of 0.6669921875, but it is not immediately clear whether this estimate 
is larger or smaller than the true area.

FIGURE 5.3 (a) Rectangles contained in R give a lower sum approximation for the area. 
This estimate undershoots the true value by the amount shaded in light blue. (b) The  
midpoint rule uses rectangles whose heights are the values of =y f x( ) at the midpoints 
of their bases. The estimate appears closer to the true value of the area because the light red 
overshoot areas roughly balance the light blue undershoot areas.
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FIGURE 5.4 (a) A lower sum using 16 
rectangles of equal width Δ =x 1 16. 
(b) An upper sum using 16 rectangles.
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 5.1  Area and Estimating with Finite Sums 315

Table 5.1 shows the values of upper and lower sum approximations to the area of R, 
using up to 1000 rectangles. The values of these approximations appear to be approaching 
2 3. In Section 5.2 we will see how to get an exact value of the area of regions such as R 
by taking a limit as the base width of each rectangle goes to zero and the number of rect-
angles goes to infinity. With the techniques developed there, we will be able to show that 
the area of R is exactly 2 3.

TABLE 5.1 Finite approximations for the area of R

Number of  
subintervals Lower sum Midpoint sum Upper sum

2 0.375 0.6875 0.875

4 0.5313 0.6719 0.7813

16 0.6348 0.6670 0.6973

50 0.6566 0.6667 0.6766

100 0.66165 0.666675 0.67165

1000 0.6661665 0.66666675 0.6671665

Distance Traveled

Suppose we know the velocity function υ t( ) of a car that moves straight down a highway 
without changing direction, and we want to know how far it traveled between times =t a 
and =t b. The position function s t( ) of the car has derivative υ t( ). If we can find an  
antiderivative F t( ) of υ t( ), then we can find the car’s position function s t( ) by setting 

= +s t F t C( ) ( ) . The distance traveled can then be found by calculating the change in 
position, − = −s b s a F b F a( ) ( ) ( ) ( ). However, if the velocity is known only by the 
readings at various times of a speedometer on the car, then we have no formula for the 
velocity from which to obtain an antiderivative that gives the position function. So what do 
we do in this situation?

If we know the velocity at a collection of times t t t, , ,n1 2 …  we can approximate the 
distance traveled by using finite sums in a way similar to the area estimates that we dis-
cussed before. We first subdivide the interval a b,[ ] into short time intervals and assume 
that the velocity on each subinterval is fairly constant. Then we approximate the distance 
traveled on each time subinterval with the usual distance formula

= ×distance velocity time

and add the results across a b,[ ].
Suppose the subdivided interval looks like

t (sec) ba

Δt Δt Δt

t1 t2 t3

with the subintervals all of equal length Δt. Pick a number t1 in the first interval. If Δt is so 
small that the velocity barely changes over a short time interval of duration Δt, then the 
distance traveled in the first time interval is about υ Δt t( ) .1  If t2 is a number in the second 
interval, the distance traveled in the second time interval is about υ Δt t( ) .2  The sum of the 
distances traveled over all the time intervals is approximated by

�υ υ υΔ + Δ + + Δt t t t t t( ) ( ) ( ) ,n1 2

where n is the total number of subintervals. This sum is only an approximation to the true 
distance D, but the approximation increases in accuracy as we take more and more 
subintervals.
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316 Chapter 5 Integrals

EXAMPLE 1  The velocity function of a projectile fired straight into the air is =f t( )
− t160 9.8 m sec. Use the summation technique just described to estimate how far the 

projectile rises during the first 3 sec. How close do the sums come to the exact value of 
435.9 m? (We will see how to compute the exact value in Section 5.4.)

Solution We explore the results for different numbers of subintervals and different choices 
of evaluation points. Notice that f t( ) is decreasing, so choosing left endpoints gives an 
upper sum estimate, and choosing right endpoints gives a lower sum estimate.

 (a) Three subintervals of length 1, with  f  evaluated at left endpoints giving an upper sum:

t 
0 1 2 3

Δt

t1 t2 t3

t 
0 1 2 3

Δt

t1 t2 t3

t 
0 1 2 3

t 
0 1 2 3

Δt Δt

t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6

With f evaluated at t 0,1,=  and 2, we have

( )[ ]( ) ( )[ ]( ) ( )[ ]( )

≈ Δ + Δ + Δ

= − + − + −

=

D f t t f t t f t t( ) ( ) ( )

160 9.8 0 1 160 9.8 1 1 160 9.8 2 1

450.6.

1 2 3

 (b) Three subintervals of length 1, with  f  evaluated at right endpoints giving a lower sum:

With f  evaluated at t 1, 2,=  and 3, we have

( )[ ]( ) ( )[ ]( ) ( )[ ]( )

≈ Δ + Δ + Δ

= − + − + −

=

D f t t f t t f t t( ) ( ) ( )

160 9.8 1 1 160 9.8 2 1 160 9.8 3 1

421.2.

1 2 3

 (c) With six subintervals of length 1 2, we get

These estimates give an upper sum using left endpoints: ≈D 443.25, and a lower 
sum using right endpoints: ≈D 428.55. These six-interval estimates are somewhat 
closer than the three-interval estimates. The results improve as the subintervals get 
shorter.

As we can see in Table 5.2, the left-endpoint upper sums approach the true value 435.9 
from above, whereas the right-endpoint lower sums approach it from below. The true value 
lies between these upper and lower sums. The magnitude of the error in the closest entry is 
0.23, a small percentage of the true value.

Error magnitude true value calculated value

435.9 435.67 0.23.

Error percentage 0.23
435.9

0.05%.

= −

= − =

= ≈

It is reasonable to conclude from the table’s last entries that the projectile rose about 436 m 
during its first 3 sec of flight. 
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 5.1  Area and Estimating with Finite Sums 317

Displacement Versus Distance Traveled

If an object with position function s t( ) moves along a coordinate line without changing 
direction, we can calculate the total distance it travels from t a to t b by summing 
the distance traveled over small intervals, as in Example 1. If the object reverses direction 
one or more times during the trip, then we need to use the object’s speed t( ) , which is 
the absolute value of its velocity function, t( ), to find the total distance traveled. Using  
the velocity itself, as in Example 1, gives instead an estimate of the object’s displacement, 
s b s a( ) ( ), the difference between its initial and final positions. To see the difference, 
think about what happens when you walk a kilometer from your home and then walk back. 
The total distance traveled is two kilometers, but your displacement is zero, because you 
end up back where you started.

To see why using the velocity function in the summation process gives an estimate of the 
displacement, partition the time interval a b,[ ] into small enough equal subintervals t so that 
the object’s velocity does not change very much from time t k 1 to t .k  Then t( )k  gives a good 
approximation of the velocity throughout the interval. Accordingly, the change in the object’s 
position coordinate, which is its displacement during the time interval, is about

t t( ) .k

The change is positive if t( )k  is positive and negative if t( )k  is negative.
In either case, the distance traveled by the object during the subinterval is about

t t( ) .k

The total distance traveled over the time interval is approximately the sum

Δ + Δ + + Δt t t t t t( ) ( ) ( ) .n1 2

We will revisit these ideas in Section 5.4.

EXAMPLE 2  In Example 4 in Section 3.4, we analyzed the motion of a heavy rock 
blown straight up by a dynamite blast. In that example, we found the velocity of the rock 
at time t was (t)  49  9.8t m/s. The rock was 78.4 m above the ground 2 s after the 
explosion, continued upward to reach a maximum height of 122.5 m at 5 s after the explo-
sion, and then fell back down a distance of 44.1 m to reach the height of 78.4 m again at  
t  8 s after the explosion. (See Figure 5.5.) The total distance traveled in these 8 seconds is  
122.5  44.1  166.6 m.

Solution If we follow a procedure like the one presented in Example 1, using the velocity  
function (t) in the summation process from t  0 to t  8, we obtain an estimate of the 
rock’s height above the ground at time t  8. Starting at time t  0, the rock traveled 
upward a total of 78.4  44.1  122.5 m, but then it peaked and traveled downward  

TABLE 5.2 Travel-distance estimates

Number of  
subintervals

Length of each  
subinterval Upper sum Lower sum

 3 1 450.6 421.2

 6 1 2 443.25 428.55

 12 1 4 439.58 432.23

 24 1 8 437.74 434.06

 48 1 16 436.82 434.98

 96 1 32 436.36 435.44

192 1 64 436.13 435.67

FIGURE 5.5 The rock in Example 2.  
The height s 78.4 m is reached  
at t 2 s and t 8 s. The rock falls 
44.1 m from its maximum height when 
t 8.

s

78.4

H
ei

gh
t (

m
)

122.5

s = 0
s(0)

s(2) s(8)

s(5)

44.1
(+) (−)

M05_HASS5901_15_GE_C05.indd   317 22-03-2023   19:35:46

www.konkur.in

Telegram: @uni_k



318 Chapter 5 Integrals

TABLE 5.3 Velocity function

t t( ) t t( )

0 49 4.5 4.9

0.5 44.1 5.0 0

1.0 39.2 5.5 −4.9

1.5 34.3 6.0 −9.8

2.0 29.4 6.5 −14.7

2.5 24.5 7.0 −19.6

3.0 19.6 7.5 −24.5

3.5 14.7 8.0 −29.4

4.0 9.8

TABLE 5.4 Travel estimates for a rock blown straight up during  
the time interval 0, 8[ ]

Number of 
subintervals

Length of each  
subinterval Displacement

Total  
distance

 16 1 2 58.8 161.7

 32 1 4 68.6 164.15

 64 1 8 73.5 165.375

128 1 16 75.95 165.9875

256 1 32 77.175 166.29375

512 1 64 77.7875 166.446875

Average Value of a Nonnegative Continuous Function

The average value of a collection of n numbers x x x, , , n1 2  is obtained by adding them 
together and dividing by n. But what is the average value of a continuous function f  on an 
interval a b,[ ]? Such a function can assume infinitely many values. For example, the tem-
perature at a certain location in a town is a continuous function that goes up and down 
each day. What does it mean to say that the average temperature in the town over the 
course of a day is 73 degrees?

44.1 m ending at a height of 78.4 m at time t  8. The velocity (t) is positive during the 
upward travel, but negative while the rock falls back down. When we compute the sum 

t t t t t t( ) ( ) ( )n1 2Δ + Δ + + Δ , part of the upward positive distance change is 
canceled by the negative downward movement, giving in the end an approximation of 
the displacement from the initial position, equal to a positive change of 78.4 m.

On the other hand, if we use the speed (t) , which is the absolute value of the veloc-
ity function, then distances traveled while moving up and distances traveled while moving 
down are both counted positively. Both the total upward motion of 122.5 m and the down-
ward motion of 44.1 m are now counted as positive distances traveled, so the sum 

t t t t t t( ) ( ) ( )n1 2Δ + Δ + + Δ  gives us an approximation of 166.6 m, the total 
distance that the rock traveled from time t  0 to time t  8.

As an illustration of our discussion, we subdivide the interval [0, 8] into 16 subintervals 
of length Δ =t 1 2 and take the right endpoint of each subinterval as the value of t k.  
Table 5.3 shows the values of the velocity function at these endpoints.

Using (t) in the summation process, we estimate the displacement at t  8:

(44.1 39.2 34.3 29.4 24.5 19.6 14.7 9.8 4.9

0 4.9 9.8 14.7 19.6 24.5 29.4) 1
2

58.8

Error magnitude 78.4 58.8 19.6

+ + + + + + + +

+ − − − − − − ⋅ =

= − =

Using (t)  in the summation process, we estimate the total distance traveled over the 
time interval [0, 8]:

44.1 39.2 34.3 29.4 24.5 19.6 14.7 9.8 4.9

0 4.9 9.8 14.7 19.6 24.5 29.4 1
2

161.7

Error magnitude 166.6 161.7 4.9

)

( + + + + + + + +

+ + + + + + + ⋅ =

= − =

If we take more and more subintervals of [0, 8] in our calculations, the estimates to the 
heights 78.4 m and 166.6 m improve, as shown in Table 5.4. 
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 5.1  Area and Estimating with Finite Sums 319

When a function is constant, this question is easy to answer. A function with constant 
value c on an interval a b,[ ] has average value c. When c is positive, its graph over a b,[ ] 
gives a rectangle of height c. The average value of the function can then be interpreted 
geometrically as the area of this rectangle divided by its width −b a (see Figure 5.6a).

What if we want to find the average value of a nonconstant function, such as the func-
tion g in Figure 5.6b? We can think of this graph as a snapshot of the height of some water 
that is sloshing around in a tank between enclosing walls at =x a and =x b. As the 
water moves, its height over each point changes, but its average height remains the same. 
To get the average height of the water, we let it settle down until it is level and its height  
is constant. The resulting height c equals the area under the graph of g divided by −b a. 
We are led to define the average value of a nonnegative function on an interval a b,[ ] to  
be the area under its graph divided by −b a. For this definition to be valid, we need a 
precise understanding of what is meant by the area under a graph. This will be obtained in 
Section 5.3, but for now we look at an example.

EXAMPLE 3  Estimate the average value of the function f x x( ) sin=  on the interval 
0, .π[ ]

Solution Looking at the graph of sin x between 0 and π in Figure 5.7, we can see that 
its average height is somewhere between 0 and 1. To find the average, we need to calcu-
late the area A under the graph and then divide this area by the length of the interval, 
π π− =0 .

We do not have a simple way to determine the area, so we approximate it with finite 
sums. To get an upper sum approximation, we add the areas of eight rectangles of equal 
width 8π  that together contain the region that is beneath the graph of y xsin=  and above 
the x-axis on 0, .π[ ]  We choose the heights of the rectangles to be the largest value of sin x 
on each subinterval. Over a particular subinterval, this largest value may occur at the left 
endpoint, at the right endpoint, or somewhere between them. We evaluate sin x at this point 
to get the height of the rectangle for an upper sum. The sum of the rectangular areas then 
gives an estimate of the total area (Figure 5.7):

FIGURE 5.6 (a) The average value of =f x c( )  on a b,[ ] is the 
area of the rectangle divided by −b a. (b) The average value of g x( ) 
on a b,[ ] is the area beneath its graph divided by −b a.
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0 a b
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y = g(x)

(a) (b)

FIGURE 5.7 Approximating the area 
under f x x( ) sin=  between 0 and π  to 
compute the average value of sin x over 
0, ,π[ ]  using eight rectangles (Example 3).
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8

6.02
8

2.364.

To estimate the average value of sin x on 0, π[ ] we divide the estimated area by the length 
π of the interval and obtain the approximation 2.364 0.753.π ≈

Since we used an upper sum to approximate the area, this estimate is greater than 
the actual average value of sin x over 0, π[ ]. If we use more and more rectangles, with 
each rectangle getting thinner and thinner, we get closer and closer to the exact average 
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320 Chapter 5 Integrals

value, as shown in Table 5.5. We will show in Section 5.3 that the true average value is 
π ≈2 0.63662.

As before, we could just as well have used rectangles lying under the graph of 
y xsin=  and calculated a lower sum approximation, or we could have used the mid-
point rule. In each case, the approximations are close to the true area if all the rectangles 
are sufficiently thin. 

Summary

The area under the graph of a positive function, the distance traveled by a moving object 
that doesn’t change direction, and the average value of a nonnegative function f  over an 
interval can all be approximated by finite sums constructed in a certain way. First we sub-
divide the interval into subintervals, treating f  as if it were constant over each subinterval. 
Then we multiply the width of each subinterval by the value of f  at some point within it  
and add these products together. If the interval a b,[ ] is subdivided into n subintervals of 
equal widths x b a n,( )Δ = −  and if f c( )k  is the value of f  at the chosen point ck in the 
kth subinterval, this process gives a finite sum of the form

�Δ + Δ + Δ + + Δf c x f c x f c x f c x( ) ( ) ( ) ( ) .n1 2 3

The choices for the ck could maximize or minimize the value of f  in the kth subinterval, or 
give some value in between. The true value lies somewhere between the approximations 
given by upper sums and lower sums. In the examples that we looked at, the finite sum 
approximations improved as we took more subintervals of smaller width.

Area
In Exercises 1–4, apply finite approximations to estimate the area under 
the graph of the function using

a. a lower sum with two rectangles of equal width.

b. a lower sum with four rectangles of equal width.

c. an upper sum with two rectangles of equal width.

d. an upper sum with four rectangles of equal width.

 1. =f x x( ) 2 between x 0=  and x 1.=

 2. =f x x( ) 3 between x 0=  and x 1.=

 3. =f x x( ) 1  between x 1=  and x 5.=

 4. = −f x x( ) 4 2 between x 2= −  and x 2.=

Using rectangles, each of whose height is given by the value of 
the function at the midpoint of the rectangle’s base (the midpoint rule), 
estimate the area under the graphs of the following functions, using 
first two and then four rectangles.

 5. =f x x( ) 2 between x 0=  and x 1.=

 6. =f x x( ) 3 between x 0=  and x 1.=

 7. =f x x( ) 1  between x 1=  and x 5.=

 8. = −f x x( ) 4 2 between x 2= −  and x 2.=

Distance
 9. Distance traveled The accompanying table shows the velocity 

of a model train engine moving along a track for 10 s. Estimate the  
distance traveled by the engine using 10 subintervals of length 1 with

 a. left-endpoint values.

 b. right-endpoint values.

Time  
(s)

Velocity  
(cm s)

Time 
(s)

Velocity  
(cm s)

0  0  6 11

1 12  7  6

2 22  8  2

3 10  9  6

4  5 10  0

5 13

 10. Distance traveled upstream You are sitting on the bank of a 
tidal river watching the incoming tide carry a bottle upstream. 
You record the velocity of the flow every 5 minutes for an hour, 
with the results shown in the accompanying table. About how far 
upstream did the bottle travel during that hour? Find an estimate 
using 12 subintervals of length 5 with

EXERCISES 5.1

TABLE 5.5 Average value of sin x  
on 0 ≤ x ≤ π

Number of 
subintervals

Upper sum  
estimate

   8 0.75342

  16 0.69707

  32 0.65212

  50 0.64657

 100 0.64161

1000 0.63712
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 5.1  Area and Estimating with Finite Sums 321

 a. left-endpoint values.

 b. right-endpoint values.

Time  
(min)

Velocity  
(m s)

Time  
(min)

Velocity 
(m s)

 0 1 35 1.2

 5 1.2 40 1.0

10 1.7 45 1.8

15 2.0 50 1.5

20 1.8 55 1.2

25 1.6 60 0

30 1.4

 11. Length of a road You and a companion are about to drive a 
twisty stretch of dirt road in a car whose speedometer works but 
whose odometer (kilometer counter) is broken. To find out how 
long this particular stretch of road is, you record the car’s velocity at  
10-second intervals, with the results shown in the accompanying 
table. Estimate the length of the road using

 a. left-endpoint values.

 b. right-endpoint values.

Time 
(s)

Velocity  
(converted to m s) 

(36 km h 10 m s)=
Time  

(s)

Velocity  
(converted to m s) 

(30 km h 10 m s)=

 0  0  70 5

10 15  80 7

20 5  90 12

30 12 100 15

40 10 110 10

50 15 120 12

60 12

 12. Distance from velocity data The accompanying table gives 
data for the velocity of a vintage sports car accelerating from 0 to 
228 km/h in 36 s (10 thousandths of an hour).

Time  
(h)

Velocity  
(km h)

Time  
(h)

Velocity  
(km h)

0.0    0 0.006 187

0.001  64 0.007 201

0.002 100 0.008 212

0.003 132 0.009 220

0.004 154 0.010 228

0.005 174

hours
0

32

0.01

64

96

128

160

192

224

256

0.0080.0060.0040.002

km�h

 a. Use rectangles to estimate how far the car traveled during the 
36 s it took to reach 228 km/h.

 b. Roughly how many seconds did it take the car to reach the 
halfway point? About how fast was the car going then?

 13. Free fall with air resistance An object is dropped straight 
down from a helicopter. The object falls faster and faster but its 
acceleration (rate of change of its velocity) decreases over time 
because of air resistance. The acceleration is measured in m s 2

and recorded every second after the drop for 5 s, as shown: 

t 0 1 2 3 4 5

a 9.8 5.944 3.605 2.187 1.326 0.805

 a. Find an upper estimate for the speed when t 5.=

 b. Find a lower estimate for the speed when t 5.=

 c. Find an upper estimate for the distance fallen when t 3.=

 14. Distance traveled by a projectile An object is shot straight 
upward from sea level with an initial velocity of 122.5 m s.

 a. Assuming that gravity is the only force acting on the  
object, give an upper estimate for its velocity after 5 s  
have elapsed. Use =g 9.8 m s 2 for the gravitational  
acceleration.

 b. Find a lower estimate for the height attained after 5 s.

Average Value of a Function
In Exercises 15–18, use a finite sum to estimate the average value of f  
on the given interval by partitioning the interval into four subintervals 
of equal length and evaluating f  at the subinterval midpoints.

 15. =f x x( ) 3 on [ ]0, 2

 16. =f x x( ) 1  on [ ]1, 9

 17. f t t( ) 1 2 sin 2 π( )= +  on [ ]0, 2

1 2

0.5

0

1

1.5

t

y
y = + sin2 pt1

2
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 18. π( )= −f t t( ) 1 cos
4

4

 on 0, 4[ ]

t

y

0 2 4

1

1 3

cos
4

y = 1 − pt
4a         b

Estimations

 19. Water pollution Oil is leaking out of a tanker damaged at sea. The 
damage to the tanker is worsening as evidenced by the increased 
leakage each hour, recorded in the following table.

Time (h) 0 1 2 3 4

Leakage (L h) 50 70 97 136 190

Time (h) 5 6 7 8

Leakage (L h) 265 369 516 720

 a. Give an upper and a lower estimate of the total quantity of oil 
that has escaped after 5 hours.

 b. Repeat part (a) for the quantity of oil that has escaped after  
8 hours.

 c. The tanker continues to leak 720 L h after the first 8 hours. If 
the tanker originally contained 25,000 L of oil, approximately 
how many more hours will elapse in the worst case before all 
the oil has spilled? In the best case?

 20. Air pollution A power plant generates electricity by burning 
oil. Pollutants produced as a result of the burning process are  
removed by scrubbers in the smokestacks. Over time, the scrubbers 
become less efficient and eventually they must be replaced when 
the amount of pollution released exceeds government standards. 
Measurements are taken at the end of each month determining the 
rate at which pollutants are released into the atmosphere, recorded 
as follows.

Month Jan Feb Mar Apr May Jun

Pollutant 
release rate 
(tons day)

0.20 0.25 0.27 0.34 0.45 0.52

T Month Jul Aug Sep Oct Nov Dec

Pollutant 
release rate 
(tons day)

0.63 0.70 0.81 0.85 0.89 0.95

 a. Assuming a 30-day month and that new scrubbers allow only 
0.05 ton day to be released, give an upper estimate of the 
total tonnage of pollutants released by the end of June. What 
is a lower estimate?

 b. In the best case, approximately when will a total of 125 tons 
of pollutants have been released into the atmosphere?

 21. Inscribe a regular n-sided polygon inside a circle of radius 1 and 
compute the area of the polygon for the following values of n:

 a. 4 (square)  b. 8 (octagon)  c. 16

 d. Compare the areas in parts (a), (b), and (c) with the area 
inside the circle.

 22. (Continuation of Exercise 21.)

 a. Inscribe a regular n-sided polygon inside a circle of radius 
1 and compute the area of one of the n congruent triangles 
formed by drawing radii to the vertices of the polygon.

 b. Compute the limit of the area of the inscribed polygon as 
n .→ ∞

 c. Repeat the computations in parts (a) and (b) for a circle of 
radius r.

COMPUTER EXPLORATIONS
In Exercises 23–26, use a CAS to perform the following steps.

  a. Plot the functions over the given interval.

  b.  Subdivide the interval into n 100,=  200, and 1000 subinter-
vals of equal length and evaluate the function at the midpoint 
of each subinterval.

  c.  Compute the average value of the function values generated  
in part (b).

  d.  Solve the equation ( )=f x( ) average value  for x using 
the average value calculated in part (c) for the n 1000=  
partitioning.

 23. f x x( ) sin=  on 0, π[ ]  24. f x x( ) sin 2=  on  π[ ]0,

 25. f x x
x

( ) sin 1=  on 
4

,π π⎡
⎣⎢

⎤
⎦⎥

 26. f x x
x

( ) sin 12=  on 
4

,π π⎡
⎣⎢

⎤
⎦⎥

T

5.2 Sigma Notation and Limits of Finite Sums

While estimating with finite sums in Section 5.1, we encountered sums that had many 
terms (up to 1000 terms in Table 5.1). In this section we introduce a notation for sums that 
have a large number of terms. After describing this notation and its properties, we consider 
what happens as the number of terms in a sum approaches infinity.

Finite Sums and Sigma Notation

Sigma notation enables us to write a sum with many terms in the compact form

a a a a a a .
k

n

k n n
1

1 2 3 1�∑ = + + + + +
=

−
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EXAMPLE 2  Express the sum + + + +1 3 5 7 9 in sigma notation.

Solution The formula generating the terms depends on what we choose the lower limit 
of summation to be, but the terms generated remain the same. It is often simplest to choose 
the starting index to be =k 0 or =k 1, but we can start with any integer.

∑

∑

∑

∑

( )

( )

( )

( )

= + + + + = +

= + + + + = −

= + + + + = −

= − + + + + = +

=

=

=

=−

Starting with k k

Starting with k k

Starting with k k

Starting with k k

    0: 1 3 5 7 9 2 1

    1: 1 3 5 7 9 2 1

    2: 1 3 5 7 9 2 3

    3: 1 3 5 7 9 2 7

k

k

k

k

0

4

1

5

2

6

3

1

 

The Greek letter ∑ (capital sigma, corresponding to our letter S), stands for “sum.” The 
index of summation k tells us where the sum begins (at the number below the ∑ symbol) 
and where it ends (at the number above ∑ ). Any letter can be used to denote the index, 
but the letters i, j, k, and n are customary.

∑ is the capital Greek letter sigma

k = 1

ak

n

The index k ends at k = n.

The index k starts at k = 1.

ak is a formula for the kth term.

The summation symbol
(Greek letter sigma)

Thus we can write the sum of the squares of the numbers 1 through 11 as

k1 2 3 4 5 6 7 8 9 10 11 ,
k

2 2 2 2 2 2 2 2 2 2 2

1

11
2∑+ + + + + + + + + + =

=

and the sum of f i( ) for integers i from 1 to 100 as

� ∑+ + + + =
=

f f f f f i(1) (2) (3) (100) ( ).
i 1

100

The starting index does not have to be 1; it can be any integer.

EXAMPLE 1

A sum in  
sigma notation

The sum written out, one  
term for each value of k

The value  
of the sum

k
k 1

5

∑
=

+ + + +1 2 3 4 5 15

k1
k

k

1

3

∑( )−
=

1 1 1 2 1 31 2 3( ) ( ) ( ) ( ) ( ) ( )− + − + − − + − = −1 2 3 2

k
k 1k 1

2

∑ += +
+

+
1

1 1
2

2 1
+ =1

2
2
3

7
6

k
k 1k 4

5 2

∑ −= −
+

−
4

4 1
5

5 1

2 2
+ =16

3
25
4

139
12
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324 Chapter 5 Integrals

When we have a sum such as

k k ,
k 1

3
2∑( )+

=

we can rearrange its terms to form two sums:

k k

k k

1 1 2 2 3 3

1 2 3 1 2 3

.

Regroup terms.

k

k k

1

3
2 2 2 2

2 2 2

1

3

1

3
2

∑

∑ ∑

( ) ( ) ( ) ( )

( )( )

+ = + + + + +

= + + + + +

= +

=

= =

This illustrates a general rule for finite sums:

a b a b .
k

n

k k
k

n

k
k

n

k
1 1 1
∑ ∑ ∑( )+ = +
= = =

This and three other rules are given below. Proofs of these rules can be obtained using 
mathematical induction (see Appendix A.3).

Algebra Rules for Finite Sums

1. Sum Rule: a b a b
k

n

k k
k

n

k
k

n

k
1 1 1
∑ ∑ ∑( )+ = +
= = =

2. Difference Rule: a b a b
k

n

k k
k

n

k
k

n

k
1 1 1
∑ ∑ ∑( )− = −
= = =

3. Constant Multiple Rule: ∑ ∑= ⋅
= =

ca c a
k

n

k
k

n

k
1 1  

c(Any number  )

4. Constant Value Rule: ∑ = ⋅
=

c n c
k

n

1  

c(Any number  )

EXAMPLE 3  We demonstrate the use of the algebra rules.

 (a) k k k k3 3
k

n

k

n

k

n

1

2

1 1

2∑ ∑ ∑( )− = −
= = =

 Difference Rule and Constant
Multiple Rule

 (b) a a a a1 1
k

n

k
k

n

k
k

n

k
k

n

k
1 1 1 1
∑ ∑ ∑ ∑( ) ( )− = − ⋅ = − ⋅ = −
= = = =

 Constant Multiple Rule

 (c) ∑ ∑ ∑( )

( ) ( )

+ = +

= + + + ⋅

= + =

= = =

k k4 4

1 2 3 3 4

6 12 18

Sum Rule

Constant Value Rule

k k k1

3

1

3

1

3

 (d) ∑ = ⋅ =
= n

n
n

1 1 1
k

n

1

 
( )n
Constant Value Rule
1 is constant

 

Over the years, people have discovered a variety of formulas for the values of finite sums. 
The most famous of these are the formula for the sum of the first n positive integers (Gauss 
is said to have discovered it at age 8) and the formulas for the sums of the squares and 
cubes of the first n positive integers.

HISTORICAL BIOGRAPHY

Carl Friedrich Gauss
(1777–1855)
Gauss was born in Brunswick, Germany.  
The list of Gauss's accomplishments in  
science and mathematics is astonishing, 
ranging from the invention of the electric 
telegraph (with Wilhelm Weber in 1833)  
to the development of a theory of planetary 
orbits and the development of an accurate 
theory of non-Euclidean geometry.

To know more, visit the companion Website. 
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EXAMPLE 4  Show that the sum of the first n positive integers is

k n n 1
2

.
k

n

1
∑ ( )= +

=

Solution The formula tells us that the sum of the first 4 positive integers is

4 5
2

10.
( )( ) =

Addition verifies this prediction:

+ + + =1 2 3 4 10.

To prove the formula in general, we write out the terms in the sum twice, once forward and 
once backward.

n
n n n
1 2 3

1 2 1( ) ( )

+ + + +
+ − + − + +

If we add the two terms in the first column we get + = +n n1 1. Similarly, if we add the 
two terms in the second column we get n n2 1 1.( )+ − = +  The two terms in any 
column sum to n 1. When we add the n columns together we get n terms, each equal to 
n 1, for a total of ( )+n n 1 . Since this is twice the desired quantity, the sum of the first 
n integers is ( )+n n 1 2. 

Formulas for the sums of the squares and cubes of the first n positive integers are 
proved using mathematical induction (see Appendix A.3). We state them here.

n k n n n

n k n n

Sum of the first   squares: 1 2 1
6

Sum of the first   cubes: 1
2

k

n

k

n

1

2

1

3
2

∑

∑ ( )

( )( )

( )

= + +

= +

=

=

Limits of Finite Sums

The finite sum approximations that we considered in Section 5.1 became more accurate as 
the number of terms increased and the subinterval widths (lengths) narrowed. The next 
example shows how to calculate a limiting value as the widths of the subintervals go to 
zero and the number of subintervals grows to infinity.

EXAMPLE 5  Find the limiting value of lower sum approximations to the area of the 
region R below the graph of = −y x1 2 and above the interval 0,1[ ] on the x-axis using 
equal-width rectangles whose widths approach zero and whose number approaches infinity. 
(See Figure 5.4a.)

Solution We compute a lower sum approximation using n rectangles of equal width x 
and then see what happens as → ∞n . We start by subdividing 0,1[ ] into n equal width 
subintervals

n n n
n

n
n
n

0, 1 , 1 , 2 , , 1, .⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

−⎡
⎣⎢

⎤
⎦⎥

Each subinterval has width x n1Δ = . The function x1 2 is decreasing on 0, 1[ ], and its 
smallest value in a subinterval occurs at the subinterval’s right endpoint. So a lower sum  
is constructed with rectangles whose height over the subinterval k n k n1 ,[ ]( )−  is 
f k n k n1 ,2( ) ( )= −  giving the sum

f
n n

f
n n

f k
n n

f n
n n

1 1 2 1 1 1 .( ) ( ) ( ) ( )⋅ + ⋅ + + ⋅ + + ⋅
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326 Chapter 5 Integrals

We write this in sigma notation and simplify,

f k
n n

k
n n

n
k
n

n
k
n

n
n n

k

n
n n n

n n n
n

1 1 1

1

1

1 1

1 1 1 2 1
6

1 2 3
6

.

n

Difference Rule

Constant Value and
Constant Multiple Rules

Sum of the first   squares

Numerator expanded

k

n

k

n

k

n

k

n

k

n

k

n

1 1

2

1

2

3

1 1

2

3

3
1

2

3

3 2

3

∑ ∑

∑

∑ ∑

∑

( )

( ) ( )

( ) ( )( )

⋅ = −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

= −

= −

= ⋅ −

= − + +

= − + +

= =

=

= =

=

We have obtained an expression for the lower sum that holds for any n. Taking the 
limit of this expression as → ∞n , we see that the lower sums converge as the number of 
subintervals increases and the subinterval widths approach zero:

n n n
n

lim 1 2 3
6

1 2
6

2
3

.
n

3 2

3( )− + + = − =
→∞

The lower sum approximations converge to 2 3. A similar calculation shows that the 
upper sum approximations also converge to 2 3. Any finite sum approximation 

∑ ( )
=

f c n( ) 1kk

n

1
 also converges to the same value, 2 3. This is because it is possible to show 

that any finite sum approximation is trapped between the lower and upper sum approxi-
mations. For this reason we are led to define the area of the region R as this limiting value. 
In Section 5.3 we study the limits of such finite approximations in a general setting. 

Riemann Sums

The theory of limits of finite approximations was made precise by the German mathemati-
cian Bernhard Riemann. We now introduce the notion of a Riemann sum, which underlies 
the theory of the definite integral that will be presented in the next section.

We begin with an arbitrary bounded function f  defined on a closed interval a b,[ ]. 
Like the function pictured in Figure 5.8, f  may have negative as well as positive values. 
We subdivide the interval a b,[ ] into subintervals, not necessarily of equal width (or 
length), and form sums in the same way as for the finite approximations in Section 5.1. 
To do so, we choose n 1 points x x x x{ , , , , }n1 2 3 1  between a and b that are in increas-
ing order, so that

< < < < <−a x x x b.n1 2 1

To make the notation consistent, we set x a0  and x bn , so that

a x x x x x b.n n0 1 2 1= < < < < < =−

The set of all of these points,

P x x x x x{ , , , , , },n n0 1 2 1= −

is called a partition of a b,[ ].
The partition P divides a b,[ ] into the n closed subintervals

x x x x x x, , , , , , .n n0 1 1 2 1[ ] [ ] [ ]−

FIGURE 5.8 A typical continuous func-
tion y f x( ) over a closed interval a b,[ ].

y

x
0 ba

y = f (x)

HISTORICAL BIOGRAPHY

Georg Friedrich Bernhard Riemann
(1826–1866)
Riemann was born in Hanover, Germany.  
His doctorate was obtained under the  
direction of Gauss in the theory of complex 
variables. He also worked with physicist 
Wilhelm Weber. He introduced the 
foundational ideas of differential geometry 
and contributed to dynamics, non-Euclidean 
geometry, and computational physics.

To know more, visit the companion Website. 
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The first of these subintervals is [ ]x x, ,0 1  the second is x x, ,1 2[ ]  and the kth subinterval 
is x x,k k1[ ]−  (where k is an integer between 1 and n).

x
. . .. . .

kth subinterval

x0 = a xn = bx1 x2 xk−1 xn−1xk

FIGURE 5.9 The rectangles approximate the region between the graph of the  
function y f x( ) and the x-axis. Figure 5.8 has been repeated and enlarged, the  
partition of [ ]a b,  and the points ck have been added, and the corresponding rectangles 
with heights f c( )k  are shown.

x

y

0

(c2,  f (c2))

(c1,  f (c1))

x0 = a x1 x2 xk−1 xk xn−1 xn = b
ck cn

c2c1

kth rectangle

(ck,  f(ck))

y = f (x)
(cn,  f (cn))

The width of the first subinterval x x,0 1[ ] is denoted x ,1  the width of the second 
x x,1 2[ ] is x ,2  and the width of the kth subinterval is x x x .k k k 1Δ = − −

x
x0 = a x1 x2 xk−1 xk xn−1 xn = b

ΔxnΔxkΔx1 Δx2

. . .. . .

If all n subintervals have equal width, then their common width, which we call x, is 
equal to b a n.( )−  Using equal width subintervals is often the simplest choice when 
doing computations.

In each subinterval we select some point. The point chosen in the kth subinterval 
x x,k k1[ ]−  is called c .k  Then on each subinterval, we stand a vertical rectangle that stretches 

from the x-axis to touch the curve at c f c( , ( )).k k  These rectangles can be above or below 
the x-axis, depending on whether f c( )k  is positive or negative, or on the x-axis if  
f c( ) 0k  (see Figure 5.9).

On each subinterval we form the product ⋅ Δf c x( ) .k k  This product is positive, nega-
tive, or zero, depending on the sign of f c( ).k  When f c( ) 0,k  the product ⋅ Δf c x( )k k is 
the area of a rectangle with height f c( )k  and width x .k  When f c( ) 0,k  the product 

⋅ Δf c x( )k k is a negative number, the negative of the area of a rectangle of width x k that 
drops from the x-axis to the negative number f c( ).k

Finally, we sum all these products to get

∑= Δ
=

S f c x( ) .P
k

n

k k
1

The sum SP  is called a Riemann sum for  f  on the interval [ ]a, b . There are many such 
sums, depending on the partition P we choose and on the choices of the points ck in the 

HISTORICAL BIOGRAPHY

Richard Dedekind 
(1831–1916)
Dedekind grew up in Germany and in 1850 
entered the University of Gottingen.There 
he studied with Bernhard Riemann and Carl 
Gauss.  Like Gauss, Dedekind preferred to 
study the theoretical aspects of number theory. 
His work on irrational numbers gave the 
subject a logical foundation.

To know more, visit the companion Website. 
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328 Chapter 5 Integrals

subintervals. For instance, we could choose n subintervals all having equal width 
x b a n( )Δ = −  to partition [ ]a b, , and then choose the point ck to be the right-hand 

endpoint of each subinterval when forming the Riemann sum (as we did in Example 5). 
This choice leads to the Riemann sum formula

∑ ( ) ( )= +
−

⋅ −

=

S f a k
b a

n
b a

n
.n

k

n

1

Similar formulas can be obtained if instead we choose ck to be the left-hand endpoint, or 
the midpoint, of each subinterval.

In the cases in which the subintervals all have equal width x b a n,( )Δ = −  we can 
make them thinner by simply increasing their number n. When a partition has subintervals 
of varying widths, we can ensure they are all thin by controlling the width of a widest  
(longest) subinterval. We define the norm of a partition P, written P , to be the largest of 
all the subinterval widths. If P   is a small number, then all of the subintervals in the 
 partition P have a small width.

EXAMPLE 6  The set { }=P 0, 0.2, 0.6,1,1.5, 2  is a partition of 0, 2[ ]. There are 
five subintervals of P: 0, 0.2 , 0.2, 0.6 , 0.6,1 , 1,1.5 ,[ ] [ ] [ ] [ ]  and [ ]1.5, 2 :

x 

Δx1 Δx2 Δx3

0 0.2 0.6 1 1.5 2

Δx4 Δx5

FIGURE 5.10 The curve of Figure 5.9 
with rectangles from finer partitions of 
a b,[ ]. Finer partitions create collections of 

rectangles with thinner bases that approxi-
mate the region between the graph of f and 
the x-axis with increasing accuracy.

(a)

(b)

x
0 ba

y

y

x
0 ba

y = f (x)

y = f (x)

Sigma Notation
Write the sums in Exercises 1–6 without sigma notation. Then evalu-
ate them.

 1. k
k

6
1k 1

2

∑ +=

 2. k
k

1

k 1

3

∑ −

=

 3. kcos
k 1

4

∑ π
=

 4. ksin
k 1

5

∑ π
=

 5. 
k

1 sin
k

k

1

3
1∑ π

( )−
=

+  6. k1 cos
k

k

1

4

∑ π( )−
=

 7. Which of the following express 1 2 4 8 16 32+ + + + +  in 
sigma notation?

 a. 2
k

k

1

6
1∑

=

−  b. 2
k

k

0

5

∑
=

 c. ∑
=−

+2
k

k

1

4
1

 8. Which of the following express 1 2 4 8 16 32− + − + −  in 
sigma notation?

 a. 2
k

k

1

6
1∑( )−

=

−  b. 1 2
k

k k

0

5

∑ ( )−
=

 c. 1 2
k

k k

2

3
1 2∑ ( )−

=−

+ +

 9. Which formula is not equivalent to the other two?

 a. 
k

1
1k

k

2

4 1

∑ ( )−
−=

−
 b. 

k
1

1k

k

0

2

∑ ( )−
+=

 c. 
k

1
2k

k

1

1

∑ ( )−
+=−

 10. Which formula is not equivalent to the other two?

 a. k 1
k 1

4
2∑( )−

=

 b. ∑ ( )+
=−

k 1
k 1

3
2  c. ∑

=−

−

k
k 3

1
2

Express the sums in Exercises 11–16 in sigma notation. The form of 
your answer will depend on your choice for the starting index.

 11. 1 2 3 4 5 6+ + + + +  12. 1 4 9 16+ + +

 13. 
1
2

1
4

1
8

1
16

+ + +  14. 2 4 6 8 10+ + + +

EXERCISES 5.2

The lengths of the subintervals are x x x x0.2, 0.4, 0.4, 0.5,1 2 3 4Δ = Δ = Δ = Δ =  
and x 0.5.5Δ =  The longest subinterval length is 0.5, so the norm of the partition is 

P 0.5.=  In this example, there are two subintervals of this length. 

Any Riemann sum associated with a partition of a closed interval [ ]a b,  defines rect-
angles that approximate the region between the graph of a continuous function f  and the 
x-axis. Partitions with norm approaching zero lead to collections of rectangles that approx-
imate this region with increasing accuracy, as suggested by Figure 5.10. We will see in the 
next section that if the function f  is continuous over the closed interval [ ]a b, , then no 
 matter how we choose the partition P and the points ck in its subintervals, the Riemann 
sums corresponding to these choices will approach a single limiting value as the subinterval 
widths (which are controlled by the norm of the partition) approach zero.
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 15. 1 1
2

1
3

1
4

1
5

− + − +  16. 1
5

2
5

3
5

4
5

5
5

− + − + −

Values of Finite Sums

 17. Suppose that a 5
k

n

k
1

∑ = −
=

 and b 6.
k

n

k
1

∑ =
=

 Find the values of

 a. a3
k

n

k
1

∑
=

 b. 
b
6k

n
k

1
∑

=

 c. a b
k

n

k k
1

∑( )+
=

 d. a b
k

n

k k
1

∑( )−
=

 e. b a2
k

n

k k
1

∑( )−
=

 18. Suppose that a 0
k

n

k
1

∑ =
=

 and b 1.
k

n

k
1

∑ =
=

 Find the values of

 a. a8
k

n

k
1

∑
=

 b. b250
k

n

k
1

∑
=

 c. a 1
k

n

k
1

∑( )+
=

 d. b 1
k

n

k
1

∑( )−
=

Evaluate the sums in Exercises 19–36.

 19. a. k
k 1

10

∑
=

 b. k
k 1

10
2∑

=

 c. k
k 1

10
3∑

=

 20. a. k
k 1

13

∑
=

 b. k
k 1

13
2∑

=

 c. k
k 1

13
3∑

=

 21. k2
k 1

7

∑( )−
=

 22. k
15k 1

5

∑ π

=

 23. k3
k 1

6
2∑( )−

=

 24. k 5
k 1

6
2∑( )−

=

 25. ∑ ( )+
=

k k3 5
k 1

5

 26. ∑ ( )+
=

k k2 1
k 1

7

 27. ∑ ∑+
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

= =

k k
225k k1

5 3

1

5 3

 28. k k
4k k1

7 2

1

7 3

∑ ∑
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ −

= =

 29. a. 3
k 1

7

∑
=

 b. 7
k 1

500

∑
=

 c. 10
k 3

264

∑
=

 30. a. k
k 9

36

∑
=

 b. k
k 3

17
2∑

=

 c. ∑ ( )−
=

k k 1
k 18

71

 31. a. 4
k

n

1
∑

=

 b. c
k

n

1
∑

=

 c. k 1
k

n

1
∑( )−

=

 32. a. 
n

n1 2
k

n

1
∑( )+

=

 b. c
nk

n

1
∑

=

 c. k
nk

n

1
2∑

=

 33. ∑[ ]( )+ −
=

k k1
k 1

50
2 2  34. k ksin 1 sin

k 2

20

∑[ ]( )− −
=

 35. ∑( )− − −
=

k k4 3
k 7

30

 36. ∑ ( )( ) ( )+ +
= −

+= k k
Hint

k k k k
1

1
:  1

1
1 1

1k 1

40

Riemann Sums
In Exercises 37–40, graph each function f x( ) over the given interval. 
Partition the interval into four subintervals of equal length. Then 
add to your sketch the rectangles associated with the Riemann sum 

f c x( ) ,k kk 1

4∑ Δ
=

 given that ck is the (a) left-hand endpoint, (b) right-
hand endpoint, (c) midpoint of the kth subinterval. (Make a separate 
sketch for each set of rectangles.)

 37. [ ]= −f x x( ) 1, 0, 22  38. [ ]= −f x x( ) , 0, 12

 39. f x x( ) sin , ,π π[ ]= −

 40. f x x( ) sin 1, ,π π[ ]= + −

 41. Find the norm of the partition { }=P 0,1.2,1.5, 2.3, 2.6, 3 .

 42. Find the norm of the partition { }= − − −P 2, 1.6, 0.5, 0, 0.8,1 .

Limits of Riemann Sums
For the functions in Exercises 43–50, find a formula for the Riemann 
sum obtained by dividing the interval a b,[ ] into n equal subintervals 
and using the right-hand endpoint for each c .k  Then take a limit of  
these sums as n → ∞ to calculate the area under the curve over a b,[ ].

 43. = −f x x( ) 1 2 over the interval 0, 1[ ].

 44. =f x x( ) 2  over the interval 0, 3[ ].

 45. = +f x x( ) 12  over the interval 0, 3[ ].

 46. =f x x( ) 3 2 over the interval 0, 1[ ].

 47. = +f x x x( ) 2 over the interval 0, 1[ ].

 48. = +f x x x( ) 3 2 2 over the interval 0, 1[ ].

 49. =f x x( ) 2 3 over the interval 0, 1[ ].

 50. = −f x x x( ) 2 3 over the interval 1, 0[ ]− .

5.3 The Definite Integral

In this section we consider the limit of general Riemann sums as the norm of the partitions 
of a closed interval a b,[ ] approaches zero. This limiting process leads us to the definition  
of the definite integral of a function over a closed interval a b,[ ].

Definition of the Definite Integral

The definition of the definite integral is based on the fact that for some functions, as the  
norm of the partitions of a b,[ ] approaches zero, the values of the corresponding Riemann 
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330 Chapter 5 Integrals

sums approach a limiting value J. In particular, this is true for continuous and piecewise-
continuous functions. We again use the symbol ε to represent a small positive number, and 
use it to specify how close to J the Riemann sum must be. The symbol δ  is used for a second 
small positive number that specifies how small the norm of a partition must be in order for 
the Riemann sum to differ from J by no more than ε. We now define this limit precisely.

DEFINITION Let f x( ) be a function defined on a closed interval a b,[ ]. We say 
that a number J is the definite integral of f  over a b,[ ] and that J is the limit of 
the Riemann sums ∑ Δ

=
f c x( )k kk

n

1
 if the following condition is satisfied:

Given any number  0ε > , there is a corresponding number 0δ >  such that 
for every partition P x x x, , , n0 1 …{ }=  of a b,[ ] with P δ<  and any choice 
of ck in x x, ,k k1[ ]−  we have

∑ εΔ − <
=

f c x J( ) .
k

n

k k
1

L

The function f (x) is the integrand.

x is the variable of integration. 

Upper limit of integration

Integral sign

Lower limit of integration
Integral of f from a to b

a

b

f (x) dx
When you find the value
of the integral, you have
evaluated the integral.

The definition involves a limiting process in which the norm of the partition goes to zero. 
When this limit exists, the function f  is said to be integrable over a b,[ ].

We have many choices for a partition P with norm going to zero, and many choices of 
points ck for each partition. The definite integral exists when we always get the same limit 
J, no matter what choices are made. When the limit exists we write

∑= Δ
→ =

J f c xlim ( ) ,
P

k

n

k k
0

1

and we say that the definite integral exists.
Leibniz introduced a notation for the definite integral that captures its construction as 

a limit of Riemann sums. He envisioned the finite sums f c x( )kk

n
k1∑ Δ

=
 becoming an infi-

nite sum of function values f x( ) multiplied by “infinitesimal” subinterval widths dx. The 
sum symbol is∑   replaced in the limit by the integral symbol ∫ , whose origin is in the letter 
“S” (for sum). The function values f c( )k  are replaced by a continuous selection of function 
values f x( ). The subinterval widths x kΔ  become the differential dx. It is as if we were 
summing all products of the form ⋅f x dx( )  as x goes from a to b. While this notation cap-
tures the underlying ideas, it is Riemann’s definition that gives a precise meaning to the 
definite integral.

If the definite integral exists, then instead of writing J, we write

∫ f x dx( ) .
a

b

We read this as “the integral from a to b of f of x dee x” or sometimes as “the integral from 
a to b of f  of x with respect to x.” The component parts in the integral symbol also have 
names:
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 5.3  The Definite Integral 331

THEOREM 1—Continuous Functions Are Integrable If a function f  is con-
tinuous over the interval a b,[ ], or if f  has at most finitely many jump discontinui-
ties there, then the definite integral ∫ f x dx( )a

b  exists and f  is integrable over a b,[ ].

The Definite Integral as a Limit of Riemann Sums with Equal-Width 
Subintervals

 
f x dx f a k b a

n
b a

n
( ) lim

a

b

n
k

n

1
∫ ∑ ( )( )= + − −

→∞ =  
(1)

When the definite integral exists, we say that the Riemann sums of f on a b,[ ] converge  
to the definite integral = ∫J f x dx( )a

b  and that f is integrable over a b,[ ].
If we choose all the subintervals in a partition to have equal width x b a n,( )Δ = −  

the Riemann sums have the form

∑ ∑ ( )= Δ = −
Δ = Δ = −( )

= =

S f c x f c b a
n

( ) ( ) , x x b a n k for all n
k

n

k k
k

n

k
1 1

k

where ck is any point in the kth subinterval. If the definite integral exists, then these Riemann 
sums converge to the definite integral of f over a b,[ ], so

∫ ∑ ( )= = −
→ → ∞→∞ =

J f x dx f c b a
n

( ) lim ( ) .
P n

For equal-width subintervals, the condition 
0 is equivalent to  .a

b

n
k

n

k
1

If we pick the point ck to be the right endpoint of the kth subinterval, so that ck =
( )+ Δ = + −a k x a k b a n , then the formula for the definite integral becomes

Equation (1) gives an explicit formula that can be used to compute definite integrals. When 
the definite integral exists, the Riemann sums coming from other choices of partitions and 
locations of points ck will have the same limit as n → ∞, provided that the norms of the 
partitions approach zero. Another choice of Riemann sums converging to the definite inte-
gral is given by the Midpoint Rule, discussed later in this section.

The value of the definite integral of a function over any particular interval depends on 
the function, not on the letter we choose to represent its independent variable. If we decide 
to use t or u instead of x, we simply write the integral as

f t dt f u du f x dx( ) or ( ) instead of ( ) .
a

b

a

b

a

b

∫ ∫ ∫
No matter how we write the integral, it is still the same number, the limit of the Riemann 
sums as the norm of the partition approaches zero. Since it does not matter what letter we 
use, the variable of integration is called a dummy variable. In the three integrals given 
above, the dummy variables are t, u, and x.

Integrable and Nonintegrable Functions

Not every function defined over a closed interval a b,[ ] is integrable even if the function is 
bounded. That is, the Riemann sums for some functions might not converge to the same 
limiting value, or to any value at all. Understanding which functions defined over a b,[ ] are 
integrable and which are not requires advanced mathematical analysis, but fortunately 
most functions that commonly occur in applications are integrable. In particular, every 
continuous function over a b,[ ] is integrable over this interval, and so is every function 
that has no more than a finite number of jump discontinuities on a b,[ ]. (See Figures 1.9 
and 1.10. Such functions are called piecewise continuous functions, and they are defined in 
Additional Exercises 11–18 at the end of this chapter.) The following theorem, which is 
proved in more advanced courses, establishes these results.
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332 Chapter 5 Integrals

The idea behind Theorem 1 for continuous functions is given in Exercises 86 and 87. 
Briefly, when f  is continuous, we can choose each ck so that f c( )k  gives the maximum value 
of f  on the subinterval x x, ,k k1[ ]−  resulting in an upper sum. Likewise, we can choose ck to 
give the minimum value of f on x x,k k1[ ]−  to obtain a lower sum. The upper and lower sums 
can be shown to converge to the same limiting value as the norm of the partition P tends to 
zero. Moreover, every Riemann sum is trapped between the values of the upper and lower 
sums, so every Riemann sum converges to the same limit as well. Therefore, the number J 
in the definition of the definite integral exists, and the continuous function f is integrable 
over a b,[ ].

For integrability to fail, a function needs to be sufficiently discontinuous that the 
region between its graph and the x-axis cannot be approximated well by increasingly thin 
rectangles. Our first example is a function that is not integrable over a closed interval.

EXAMPLE 1  The function

=
⎧
⎨
⎪⎪

⎩
⎪⎪

f x
x

x
( )

1, if   is rational,

0, if   is irrational,

has no Riemann integral over 0,1[ ]. Underlying this is the fact that between any two numbers 
there are both a rational number and an irrational number. Thus the function jumps up and 
down too erratically over 0,1[ ] to allow the region beneath its graph and above the x-axis to 
be approximated by rectangles, no matter how thin they are. In fact, we will show that upper 
sum approximations and lower sum approximations converge to different limiting values.

If we choose a partition P of 0,1[ ], then the lengths of the intervals in the partition sum 
to 1; that is, x 1kk

n

1∑ Δ =
=

. In each subinterval x x,k k1[ ]−  there is a rational point, say ck. 
Because ck is rational, =f c( ) 1k . Since 1 is the maximum value that f  can take anywhere, 
the upper sum approximation for this choice of ck’s is

U f c x x( ) 1 1.
k

n

k k
k

n

k
1 1

∑ ∑( )= Δ = Δ =
= =

As the norm of the partition approaches 0, these upper sum approximations converge to 1 
(because each approximation is equal to 1).

On the other hand, we could pick the ck’s differently and get a different result. Each 
subinterval x x,k k1[ ]−  also contains an irrational point ck, and for this choice f c( ) 0k = . 
Since 0 is the minimum value that f  can take anywhere, this choice of ck gives us the mini-
mum value of f  on the subinterval. The corresponding lower sum approximation is

∑ ∑( )= Δ = Δ =
= =

L f c x x( ) 0 0.
k

n

k k
k

n

k
1 1

These lower sum approximations converge to 0 as the norm of the partition converges to 0 
(because they each equal 0).

Thus making different choices for the points ck results in different limits for the corre-
sponding Riemann sums. We conclude that the definite integral of f  over the interval 0,1[ ] 
does not exist and that f  is not integrable over 0,1[ ]. 

Theorem 1 says nothing about how to calculate definite integrals. A method of calcu-
lation will be developed in Section 5.4, through a connection of definite integrals to antide-
rivatives. Meanwhile, finite approximations can be used to calculate an approximation for 
a definite integral.

The Midpoint Rule

When setting up a Riemann sum

∑ Δ
=

f c x( )
k

n

k k
1
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 5.3  The Definite Integral 333

we have many options on how to choose a partition and where to choose a point ck in the 
kth interval of the partition. The simplest choice for a partition with n subintervals is to take 
each subinterval to have equal length ( )Δ = −x b a n. In Equation (1) we obtained a 
formula by choosing ck at the right endpoint of the kth interval. Setting ck to be at the middle 
of the kth interval is often a better choice for approximating the integral using Riemann 
sums, as we saw in Figure 5.3. The midpoint is a good choice because on a small interval, 
the graph of a differentiable function can be approximated by a linear function, and the 
value of a linear function at an interval’s midpoint is its average value over that interval.

With these choices, [ ][ ] ( )= + − Δ + Δ−x x a k x a k x, 1 ,k k1  is the kth interval 
in the partition, its midpoint is located at c x x 2k k k1( )= +− , and its width is 

( )Δ = −x b a n. The midpoint rule for forming Riemann sums to approximate a definite 
integral takes the following form.

Midpoint Rule for Approximating a Definite Integral

f x dx f c b a
n

f c f c f c b a
n

( ) ( ) ( ) ( )     ( )
a

b

k

n

k n
1

1 2 �∫ ∑ ( ) ( )[ ]≈ − = + + + −

=

with ( )=
+

= + −−c
x x

x a k b a
n2

andk
k k

k
1 .

EXAMPLE 2  Approximate ∫ + x
dx1

10

1

2
 using the midpoint rule with five intervals 

of equal length.

Solution The five intervals of the partition are [ ] [ ] [ ] [ ]0, 0.2 , 0.2, 0.4 , 0.4, 0.6 , 0.6, 0.8 , 
and [ ]0.8,1.0 , each of length 1 5. Their midpoints are at 0.1, 0.3, 0.5, 0.7, and 0.9. Apply-
ing the midpoint rule gives

∫ ( )[ ]

( )

+
≈ + + + +

= + + + +⎡
⎣⎢

⎤
⎦⎥

≈

x
dx f f f f f1

1
(0.1) (0.3) (0.5) (0.7) (0.9) 1

5
1

1.01
1

1.09
1

1.25
1

1.49
1

1.81
0.2

0.786.

20

1

 

The midpoint rule becomes more powerful when we can combine it with an error 
bound that tells us how close the approximation it gives with n intervals is to the integral. 
In Chapter 8 we will examine error bounds in approximations of integrals.

Properties of Definite Integrals

In defining f x dx( )a
b

∫  as a limit of sums f c x( ) ,k kk

n

1∑ Δ
=

 we moved from left to right 
across the interval [ ]a b, . What would happen if we instead move right to left, starting 
with =x b0  and ending at =x an ? Each Δx k in the Riemann sum would change its sign, 
with − −x xk k 1 now negative instead of positive. With the same choices of ck in each sub-
interval, the sign of any Riemann sum would change, as would the sign of the limit, the 
integral f x dx( ) .b

a
∫  Since we have not previously given a meaning to integrating back-

ward, we are led to define

f x dx f x dx( ) ( ) . a b and   interchanged
b

a

a

b

∫ ∫= −

It is convenient to have a definition for the integral over [ ]a b,  when =a b, so that 
we are computing an integral over an interval of zero width. Since =a b gives x 0,Δ =  
whenever f a( ) exists we define

f x dx( ) 0. a is both the lower and the
upper limit of integration.a

a

∫ =
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334 Chapter 5 Integrals

TABLE 5.6    Rules satisfied by definite integrals

1. Order of Integration: f x dx f x dx( ) ( ) A definition
b

a

a

b

∫ ∫= −

2. Zero Width Interval: f x dx( ) 0
f a

A definition
when  ( ) existsa

a

∫ =

3. Constant Multiple: k f x dx k f x dx( ) ( ) kAny constant 
a

b

a

b

∫ ∫=

4. Sum and Difference: f x g x dx f x dx g x dx( ) ( ) ( ) ( )
a

b

a

b

a

b

∫ ∫ ∫( )± = ±

5. Additivity: ∫ ∫ ∫+ = ∪ =[ ] [ ] [ ]f x dx f x dx f x dx( ) ( ) ( ) a c c b a b, , ,
a

c

c

b

a

b

6. Max-Min Inequality:  If f  has maximum value max f  and minimum value  
min f  on [ ]a b, , then

f b a f x dx f b amin ( ) max .
a

b

∫( ) ( )( ) ( )⋅ − ≤ ≤ ⋅ −

7. Domination: If ≥f x g x( ) ( ) on [ ]a b, , then ∫ ∫≥f x dx g x dx( ) ( ) .
a

b

a

b

∫[ ]≥ ≥f x a b f x dxIf ( ) 0 on  , ,  then  ( ) 0. Special case of Rule 6.
a

b

Theorem 2 states some basic properties of integrals, including the two just discussed. 
These properties, listed in Table 5.6, are very useful for computing integrals. We will refer 
to them repeatedly to simplify our calculations. Rules 2 through 7 have geometric interpre-
tations, which are shown in Figure 5.11. The graphs in these figures show only positive 
functions, but the rules apply to general integrable functions, which could take both posi-
tive and negative values.

THEOREM 2 When f  and g are integrable over the interval [ ]a b, , the definite 
integral satisfies the rules listed in Table 5.6.

Rules 1 and 2 are definitions, but Rules 3 to 7 of Table 5.6 must be proved. Below we 
give a proof of Rule 6. Similar proofs can be given to verify the other properties in Table 5.6.

Proof of Rule 6  Rule 6 says that the integral of f  over [ ]a b,  is never smaller than 
the minimum value of f  times the length of the interval and never larger than the maxi-
mum value of f  times the length of the interval. The reason is that for every partition of 
[ ]a b,  and for every choice of the points c ,k

∑

∑

∑

∑

∑

∑( ) ( ) ( )

( )

( )

( )

( ) ( )

⋅ − = ⋅ Δ

= ⋅ Δ

≤ Δ

≤ ⋅ Δ

= ⋅ Δ

= ⋅ −

Δ = −

≤

≤

=

=

=

=

=

=

f b a f x

f x

f c x

f x

f x

f b a

min min

min

( )

max

max

max .

x b a

f f c

f c f

Constant Multiple Rule

min (

( max

Constant Multiple Rule

)

)

k

n

k

k

n

k

k

n

k k

k

n

k

k

n

k

1

1

1

1

1

k

n

k

k

k

1
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 5.3  The Definite Integral 335

In short, all Riemann sums for f on a b,[ ] satisfy the inequalities

∑( ) ( ) ( ) ( )⋅ − ≤ Δ ≤ ⋅ −
=

f b a f c x f b amin ( ) max .
k

n

k k
1

Hence their limit, which is the integral, satisfies the same inequalities. 

EXAMPLE 3  To illustrate some of the rules, we suppose that

∫ ∫ ∫= = − =
− −

f x dx f x dx h x dx( ) 5, ( ) 2, and ( ) 7.
1

1

1

4

1

1

Then

1. ∫ ∫= − = − − =f x dx f x dx( ) ( ) ( 2) 2 Rule 1
4

1

1

4

2. ∫ ∫ ∫[ ]

( ) ( )

+ = +

= + =
− − −

f x h x dx f x dx h x dx2 ( ) 3 ( ) 2 ( ) 3 ( )

2 5 3 7 31

Rules 3 and 4
1

1

1

1

1

1

3. ∫ ∫ ∫ ( )= + = + − =
− −

f x dx f x dx f x dx( ) ( ) ( ) 5 2 3 Rule 5
1

4

1

1

1

4

 

EXAMPLE 4  Show that the value of x dx1 cos
0

1

∫ +  is less than or equal to 2.

Solution The Max-Min Inequality for definite integrals (Rule 6) says that  

f b amin( ) ( )⋅ −  is a lower bound for the value of ∫ f x dx( )
a

b
 and that f b amax( ) ( )⋅ −  

is an upper bound. The maximum value of x1 cos+  on [ ]0,1  is + =1 1 2, so

∫ ( )+ ≤ ⋅ − =x dx1 cos 2 1 0 2.
0

1
 

FIGURE 5.11 Geometric interpretations of Rules 2–7 in Table 5.6.

(d) Additivity for Definite Integrals:

∫ ∫ ∫+ =f x dx f x dx f x dx( ) ( ) ( )
a

c

c

b

a

b

x

y

0 a bc

y = f (x)

c

a

f (x) dx
f (x) dx

b

c
L

L

(e) Max-Min Inequality:

f b a f x dx

f b a

min · ( )

max ·
a

b

∫( )

( )

( )

( )

− ≤

≤ −

x

y

0 a b

y = f (x)

max f

min f

(f) Domination:
If ≥f x g x( ) ( ) on a b,[ ], then

∫ ∫≥f x dx g x dx( ) ( ) .
a

b

a

b

x

y

0 a b

y = f (x)

y = g(x)

(b) Constant Multiple: =k( 2)

∫ ∫=k f x dx k f x dx( ) ( )
a

b

a

b

x

y

0 a b

y = f (x)

y = 2 f (x)

(c) Sum: (areas add)

f x g x dx f x dx g x dx( ) ( ) ( ) ( )
a

b

a

b

a

b

∫ ∫ ∫( )+ = +

x

y

0 a b

y = f (x)

y = f (x) + g(x)

y = g(x)

x

y

0 a

y = f (x)

(a) Zero Width Interval:

∫ =f x dx( ) 0
a

a
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336 Chapter 5 Integrals

Area Under the Graph of a Nonnegative Function

We now return to the problem that started this chapter, which is defining what we mean by 
the area of a region having a curved boundary. In Section 5.1 we approximated the area 
under the graph of a nonnegative continuous function using several types of finite sums of 
areas of rectangles that approximate the region—upper sums, lower sums, and sums using 
the midpoints of each subinterval—all of which are Riemann sums constructed in special 
ways. Theorem 1 guarantees that all of these Riemann sums converge to a single definite 
integral as the norm of the partitions approaches zero and the number of subintervals goes to 
infinity. As a result, we can now define the area under the graph of a nonnegative integrable 
function to be the value of that definite integral.

DEFINITION If =y f x( ) is nonnegative and integrable over a closed interval 
[ ]a b, , then the area under the curve =y f x( ) over [ ]a b,  is the integral of  
f from a to b,

∫=A f x dx( ) .
a

b

For the first time, we have a rigorous definition for the area of a region whose boundary 
is the graph of a continuous function. We now apply this to a simple example, the area under 
a straight line, and we verify that our new definition agrees with our previous notion of area.

EXAMPLE 5  Compute ∫ x dx
b

0
 and find the area A under =y x  over the interval 

[ ] >b b0, , 0.

Solution The region of interest is a triangle (Figure 5.12). We compute the area in two ways.

 (a) To compute the definite integral as the limit of Riemann sums, we calculate 

f c xlim ( )
P

k kk

n

0 1∑ Δ
→ =

 for partitions whose norms go to zero. Theorem 1 tells us 

that it does not matter how we choose the partitions or the points ck as long as the 
norms approach zero. All choices give the exact same limit. So we consider the 
partition P that subdivides the interval [ ]b0,  into n subintervals of equal width 

( )Δ = − =x b n b n0 , and we choose ck to be the right endpoint in each subinterval 

as in formula (1). The partition is �{ }=P b
n

b
n

b
n

nb
n

0, , 2 , 3 , ,  and =c kb
n

.k  So

∑ ∑

∑

∑

( )

( )

Δ = ⋅

=

=

= ⋅ +

= +

=
= =

=

=

f c x kb
n

b
n

kb
n

b
n

k

b
n

n n

b
n

( )

1
2

2
1 1 .

f c c

n

( )

Constant Multiple Rule

Sum of first   integers

k

n

k
k

n

k

n

k

n

1 1

1

2

2

2

2
1

2

2

2

k k

As → ∞n  and →P 0, this last expression on the right has the limit b 2.2  
Therefore,

∫ =x dx b
2

.
b

0

2

 (b) Since the area equals the definite integral for a nonnegative function, we can quickly 
derive the definite integral by using the formula for the area of a triangle having base 

FIGURE 5.12 The region in Example 5 
is a triangle.

x

y

0

b

b

b

y = x
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length b and height =y b. The area is A b b b1 2 2.2( )= ⋅ =  Again we conclude 
that ∫ =x dx b 2.b

0
2  

Example 5 can be generalized to integrate ( ) =f x x over any closed interval [ ]a b,  for 
which < <a b0 .

First write

∫ ∫ ∫= +x dx x dx x dx Rule 5
b a

a

b

0 0

Then, by rearranging this equation and applying Example 5, we obtain

∫ ∫ ∫= − = −x dx x dx x dx b a
2 2

. Example 5
a

b b a

0 0

2 2

In conclusion, we have the following rule for integrating =f x x( )  over the interval [ ]a b, :

∫ = − <x dx b a a b
2 2

,
a

b 2 2
 (2)

FIGURE 5.13 (a) The area of this  
trapezoidal region is A b a 2.2 2( )= −  
(b) The definite integral in Equation (2) 
gives the negative of the area of this  
trapezoidal region. (c) The definite integral 
in Equation (2) gives the area of the blue 
triangular region added to the negative of 
the area of the tan triangular region.

x

y

0

a

a

b

b

a

b

b − a

y = x

(a)

x

y

0

a b

y = x

(b)

x

y

0

a

b

y = x

(c)

This computation gives the area of the trapezoid in Figure 5.13a. Equation (2) remains 
valid when a and b are negative, but the interpretation of the definite integral changes. 
When < <a b 0, the definite integral value b a 22 2( )−  is a negative number, the nega-
tive of the area of a trapezoid dropping down to the line =y x  below the x-axis  
(Figure 5.13b). When <a 0 and >b 0, Equation (2) is still valid and the definite integral 
gives the difference between two areas, the area under the graph and above [ ]b0,  minus 
the area below [ ]a, 0  and over the graph (Figure 5.13c).

The following results can also be established by using a Riemann sum calculation 
similar to the one we used in Example 5 (Exercises 63 and 65).

∫ ( )= −c dx c b a c,  any constant
a

b
 (3)

∫ = − <x dx b a a b
3 3

,
a

b
2

3 3
 (4)

Average Value of a Continuous Function Revisited

In Section 5.1 we informally introduced the average value of a nonnegative continuous func-
tion f over an interval [ ]a b, , leading us to define this average as the area under the graph of 

=y f x( ) divided by −b a. In integral notation we write this as

∫=
−b a

f x dxAverage 1 ( ) .
a

b

This formula gives us a precise definition of the average value of a continuous (or inte-
grable) function, whether it is positive, negative, or both.

Alternatively, we can justify this formula through the following reasoning. We start 
with the idea from arithmetic that the average of n numbers is their sum divided by n. A 
continuous function f on [ ]a b,  may have infinitely many values, but we can still sample 
them in an orderly way. We divide [ ]a b,  into n subintervals of equal width ( )Δ = −x b a n 
and evaluate f at a point ck in each (Figure 5.14). The average of the n sampled values is

FIGURE 5.14 A sample of values of a 
function on an interval a b,[ ].

x

y

0

(ck, f (ck))

y = f (x)

xn = b
ckx0 = a

x1

� ∑

∑

∑

+ + +
=

= Δ
−

=
−

Δ

Δ =
−

= Δ
−

=

=

=

f c f c f c
n n

f c

x
b a

f c

b a
f c x

( ) ( ) ( ) 1 ( )

( )

1 ( ) .

x
b a

n n
x

b a
, so

1

Constant Multiple Rule

n
k

k

n

k
k

n

k
k

n

1 2

1

1

1
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338 Chapter 5 Integrals

The average of the samples is obtained by dividing a Riemann sum for f on [ ]a b,  by 
b a .( )−  As we increase the number of samples and let the norm of the partition approach 

zero, the average approaches b a f x dx1 ( ) .a
b

( )( )− ∫  Both points of view lead us to the 
following definition.

DEFINITION If f is integrable on [ ]a b, , then its average value on [ ]a b, , 
also called its mean, is

∫=
−

f
b a

f x dxav( ) 1 ( ) .
a

b

EXAMPLE 6  Find the average value of =f x x( )  on [ ]1, 3 .

Solution From Equation (2) we see that ∫ = − =x dx 9 2 1 2 4
1

3
.

So the average value of f on the interval [ ]1, 3  is ( )( ) =1 2 4 2. 

EXAMPLE 7  Find the average value of = −f x x( ) 4 2  on [ ]−2, 2 .

Solution We recognize = −f x x( ) 4 2  as the function whose graph is the upper semi-
circle of radius 2 centered at the origin (Figure 5.15).

Since we know the area inside a circle, we do not need to take the limit of Riemann 
sums. The area between the semicircle and the x-axis from −2 to 2 can be computed using 
the geometry formula

π π π( )= ⋅ = ⋅ =rArea 1
2

1
2

2 2 .2 2

Because f is nonnegative, the area is also the value of the integral of f from −2 to 2,

∫ π− =
−

x dx4 2 .2

2

2

Therefore, the average value of f is

∫ π π
( )

( )=
− −

− = =
−

f x dxav( ) 1
2 2

4 1
4

2
2

.
2

2
2

Notice that the average value of f over [ ]−2, 2  is the same as the height of a rectangle over 
[ ]−2, 2  whose area equals the area of the upper semicircle (see Figure 5.15). 

FIGURE 5.15 The average value of 
= −f x x( ) 4 2  on 2,2[ ]−  is π 2 

(Example 7). The area of the rectangle 
shown here is π π( )⋅ =4 2 2 , which is 
also the area of the semicircle.

−2 −1 1 2

1

2

x

y

f (x) = "4 − x2

y = p
2

Interpreting Limits of Sums as Integrals
Express the limits in Exercises 1–8 as definite integrals.

 1. ∑ Δ
→ =

c xlim ,
P

k

n

k k
0

1

2  where P is a partition of [ ]0, 2

 2. ∑ Δ
→ =

c xlim 2 ,
P

k

n

k k
0

1

3  where P is a partition of [ ]−1, 0

 3. c c xlim 3 ,
P

k

n

k k k
0

1

2∑( )− Δ
→ =

 where P is a partition of [ ]−7, 5

 4. ∑⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ Δ

→ = c
xlim 1 ,

P
k

n

k
k

0
1

 where P is a partition of [ ]1, 4

 5. ∑ −
Δ

→ = c
xlim 1

1
,

P
k

n

k
k

0
1

 where P is a partition of [ ]2, 3

 6. ∑ − Δ
→ =

c xlim 4 ,
P

k

n

k k
0

1

2  where P is a partition of [ ]0,1

 7. c xlim sec ,
P

k

n

k k
0

1
∑( ) Δ

→ =

 where P is a partition of π[ ]− 4 , 0

 8. c xlim tan ,
P

k

n

k k
0

1
∑( ) Δ

→ =

 where P is a partition of π[ ]0, 4

Using the Definite Integral Rules
 9. Suppose that f and g are integrable and that

∫ ∫ ∫= − = =f x dx f x dx g x dx( ) 4, ( ) 6, ( ) 8.
1

2

1

5

1

5

EXERCISES 5.3 
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Use the rules in Table 5.6 to find

 a. ∫ g x dx( )
2

2
 b. ∫ g x dx( )

5

1

 c. ∫ f x dx3 ( )
1

2
 d. ∫ f x dx( )

2

5

 e. f x g x dx( ) ( )
1

5

∫ [ ]−  f. ∫ [ ]−f x g x dx4 ( ) ( )
1

5

 10. Suppose that f and h are integrable and that

∫ ∫ ∫= − = =f x dx f x dx h x dx( ) 1, ( ) 5, ( ) 4.
1

9

7

9

7

9

Use the rules in Table 5.6 to find

 a. ∫ − f x dx2 ( )
1

9
 b. ∫ [ ]+f x h x dx( ) ( )

7

9

 c. ∫ [ ]−f x h x dx2 ( ) 3 ( )
7

9
 d. ∫ f x dx( )

9

1

 e. ∫ f x dx( )
1

7
 f. ∫ [ ]−h x f x dx( ) ( )

9

7

 11. Suppose that ∫ =f x dx( ) 5.1
2  Find

 a. ∫ f u du( )
1

2
 b. ∫ f z dz3 ( )

1

2

 c. ∫ f t dt( )
2

1
 d. ∫ [ ]− f x dx( )

1

2

 12. Suppose that ∫ =− g t dt( ) 2.3
0

 Find

 a. g t dt( )
0

3

∫
−

 b. ∫−
g u du( )

3

0

 c. ∫ [ ]−
−

g x dx( )
3

0
 d. ∫−

g r
dr

( )
23

0

 13. Suppose that f is integrable and that f z dz( ) 30
3∫ =  and 

f z dz( ) 7.0
4∫ =  Find

 a. ∫ f z dz( )
3

4
 b. ∫ f t dt( )

4

3

 14. Suppose that h is integrable and that ( )∫ =
−

h r dr 0
1

1  and 
( )∫ =− h r dr 6.1

3
 Find

 a. ∫ ( )h r dr
1

3
 b. ∫ ( )− h u du

3

1

Using Known Areas to Find Integrals
In Exercises 15–22, graph the integrands and use known area formulas 
to evaluate the integrals.

 15. ∫ ( )+
−

x dx
2

3
2

4
 16. ∫ ( )− +x dx2 4

1 2

3 2

 17. ∫ −
−

x dx9 2

3

3
 18. ∫ −

−
x dx16 2

4

0

 19. ∫−
x dx

2

1
 20. ∫ ( )−

−
x dx1

1

1

 21. ∫ ( )−
−

x dx2
1

1
 22. ∫ ( )+ −

−
x dx1 1 2

1

1

Use known area formulas to evaluate the integrals in Exercises 23–28.

 23. ∫ >x dx b
2

, 0
b

0
 24. ∫ >x dx b4 , 0

b

0

 25. ∫ < <s ds a b2 , 0
a

b
 26. ∫ < <t dt a b3 , 0

a

b

 27. = −f x x( ) 4 2  on a. [ ]−2, 2 , b. [ ]0, 2

 28. = + −f x x x( ) 3 1 2  on a. [ ]−1, 0 , b. [ ]−1,1

Evaluating Definite Integrals
Use the results of Equations (2) and (4) to evaluate the integrals in 
Exercises 29–40.

 29. ∫ x dx
1

2
 30. ∫ x dx

0.5

2.5
 31. ∫ θ θ

π

π
d

2

 32. ∫ r dr
2

5 2
 33. ∫ x dx2

0

73

 34. ∫ s ds2

0

0.3

 35. ∫ t dt2

0

1 2
 36. ∫ θ θ

π
d2

0

2
 37. ∫ x dx

a

a2

 38. ∫ x dx
a

3
 39. ∫ x dx

b
2

0

3

 40. ∫ x dx
b

2

0

3

Use the rules in Table 5.6 and Equations (2)–(4) to evaluate the inte-
grals in Exercises 41–50.

 41. ∫ dx7
3

1
 42. ∫ x dx5

0

2

 43. ∫ ( )−t dt2 3
0

2
 44. ∫ ( )−t dt2

0

2

 45. ∫ ( )+ z dz1
22

1
 46. ∫ ( )−z dz2 3

3

0

 47. ∫ u du3 2

1

2
 48. ∫ u du24 2

1 2

1

 49. ∫ ( )+ −x x dx3 52

0

2
 50. ∫ ( )+ −x x dx3 52

1

0

Finding Area by Definite Integrals
In Exercises 51–54, use a definite integral to find the area of the 
region between the given curve and the x-axis on the interval [ ]b0, .

 51. =y x3 2 52. π=y x 2

 53. =y x2  54. = +y x
2

1

Finding Average Value
In Exercises 55–62, graph the function and find its average value over 
the given interval.

 55. = −f x x( ) 12  on [ ]0, 3  56. = −f x x( )
2

2
 on [ ]0, 3

 57. = − −f x x( ) 3 12  on [ ]0,1  58. = −f x x( ) 3 32  on [ ]0,1

 59. ( )= −f t t( ) 1 2 on [0, 3] 60. = −f t t t( ) 2  on [ ]−2,1

 61. = −g x x( ) 1 on a. [ ]−1,1 , b. 1, 3[ ], and c. [ ]−1, 3

 62. = −h x x( )  on a. [ ]−1, 0 , b. [ ]0,1 , and c. [ ]−1,1

Definite Integrals as Limits of Sums
Use the method of Example 5a or Equation (1) to evaluate the definite 
integrals in Exercises 63–70.

 63. ∫ c dx
a

b
 64. ∫ ( )+x dx2 1

0

2

 65. ∫ <x dx a b,
a

b
2  66. x x dx2

1

0

∫ ( )−
−

 67. ∫ ( )− +
−

x x dx3 2 12

1

2
 68. ∫−

x dx3

1

1

 69. ∫ <x dx a b,
a

b
3  70. x x dx3 3

0

1

∫ ( )−
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340 Chapter 5 Integrals

Theory and Examples

 71. What values of a and b, with <a b, maximize the value of

x x dx?
a

b
2∫ ( )−

(Hint: Where is the integrand positive?)

 72. What values of a and b, with <a b, minimize the value of

x x dx2 ?
a

b
4 2∫ ( )−

 73. Use the Max-Min Inequality to find upper and lower bounds for 
the value of

∫ + x
dx1

1
.

20

1

 74. (Continuation of Exercise 73.) Use the Max-Min Inequality to 
find upper and lower bounds for

∫ ∫+ +x
dx

x
dx1

1
and 1

1
.

20

0.5

20.5

1

Add these to arrive at an improved estimate of

∫ + x
dx1

1
.

20

1

 75. Show that the value of ∫ x dxsin( )0
1 2  cannot possibly be 2.

 76. Show that the value of ∫ +x dx80
1  lies between ≈2 2 2.8  

and 3.

 77. Integrals of nonnegative functions  Use the Max-Min Inequality 
to show that if f is integrable, then

∫[ ]≥ ⇒ ≥f x a b f x dx( ) 0 on , ( ) 0.
a

b

 78. Integrals of nonpositive functions  Show that if f is integrable, 
then

∫[ ]≤ ⇒ ≤f x a b f x dx( ) 0 on , ( ) 0.
a

b

 79. Use the inequality x xsin ,≤  which holds for ≥x 0, to find an 
upper bound for the value of x dxsin .0

1∫

 80. The inequality x xsec 1 22( )≥ +  holds on π π( )− 2, 2 . Use it 
to find a lower bound for the value of x dxsec .0

1∫

 81. If fav( ) really is a typical value of the integrable function f x( ) 
on [ ]a b, , then the constant function fav( ) should have the same 
integral over [ ]a b,  as f. Does it? That is, does

∫ ∫=f dx f x dxav( ) ( ) ?
a

b

a

b

Give reasons for your answer.

 82. It would be nice if average values of integrable functions obeyed 
the following rules on an interval [ ]a b, .

 a. ( )+ = +f g f gav av( ) av( )

 b. =k f k f kav( ) av( ) (any number  )

 c. [ ]≤ ≤f g f x g x a bav( ) av( ) if ( ) ( ) on , .

Do these rules ever hold? Give reasons for your answers.

 83. Upper and lower sums for increasing functions 

 a. Suppose the graph of a continuous function f x( ) rises steadily 
as x moves from left to right across an interval [ ]a b, . Let 
P be a partition of [ ]a b,  into n subintervals of equal length 

x b a n.( )Δ = −  Show by referring to the accompanying 

figure that the difference between the upper and lower sums 
for f on this partition can be represented graphically as the area 
of a rectangle R whose dimensions are [ ]−f b f a( ) ( )  by Δx. 
(Hint: The difference −U L is the sum of areas of rectangles 
whose diagonals Q Q Q Q Q Q, , , n n0 1 1 2 1… −  lie approximately 
along the curve. There is no overlapping when these rectangles 
are shifted horizontally onto R.)

 b. Suppose that instead of being equal, the lengths Δx k of the 
subintervals of the partition of [ ]a b,  vary in size. Show that

U L f b f a x( ) ( ) ,max− ≤ − Δ

where Δx max is the norm of P, and that hence 
( )− =

→
U Llim 0

P 0
.

x

y

0 x0 = a xn = bx1

Q1

Q2

Q3

x2

y = f (x)

f (b) − f (a)

R

Δx

 84. Upper and lower sums for decreasing functions  (Continuation 
of Exercise 83.)

 a. Draw a figure like the one in Exercise 83 for a continuous 
function f x( ) whose values decrease steadily as x moves from 
left to right across the interval [ ]a b, . Let P be a partition of 
[ ]a b,  into subintervals of equal length. Find an expression for 

−U L that is analogous to the one you found for −U L in 
Exercise 83a.

 b. Suppose that instead of being equal, the lengths Δx k of the 
subintervals of P vary in size. Show that the inequality

− ≤ − ΔU L f b f a x( ) ( ) max

of Exercise 83b still holds and hence ( )− =
→

U Llim 0
P 0

.

 85. Use the formula

h h h khsin sin 2 sin 3 sin+ + + +�

( ) ( )( )( )
( )

=
− +h k h

h
cos 2 cos 1 2

2 sin 2

to find the area under the curve y xsin=  from =x 0 to π=x 2 
in two steps:

 a. Partition the interval π[ ]0, 2  into n subintervals of equal 
length and calculate the corresponding upper sum U; then

 b. Find the limit of U as → ∞n  and x b a n 0.( )Δ = − →

 86. Suppose that f is continuous and nonnegative over [ ]a b, , as in the 
accompanying figure. By inserting points

x x x x x, , , , , ,k k n1 2 1 1… …− −

as shown, divide [ ]a b,  into n subintervals of lengths 
x x a x x x x b x, , , ,n n1 1 2 2 1 1…Δ = − Δ = − Δ = − −  which 

need not be equal.
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 5.3  The Definite Integral 341

 a. If { }=m f x x kmin ( ) for in the th subinterval ,k  explain the 
connection between the lower sum

�= Δ + Δ + + ΔL m x m x m xn n1 1 2 2

and the shaded regions in the first part of the figure.

 b. If { }=M f x x kmax ( ) for in the th subinterval ,k  explain the 
connection between the upper sum

�= Δ + Δ + + ΔU M x M x M xn n1 1 2 2

and the shaded regions in the second part of the figure.

 c. Explain the connection between −U L and the shaded 
regions along the curve in the third part of the figure.

x

y

0 a bx1 x2 x3 xk−1 xn−1xk

y = f (x)

x

y

0 a bxk+1xk

x

y

0 a bxk+1xk

b − a

e

 87. We say f is uniformly continuous on [ ]a b,  if, given any ε > 0, 
there is a δ > 0 such that if x x,1 2 are in [ ]a b,  and δ− <x x ,1 2  
then ε− <f x f x( ) ( ) .1 2  It can be shown that a continuous 
function on [ ]a b,  is uniformly continuous. Use this and the  
figure for Exercise 86 to show that if f is continuous and ε > 0 
is given, it is possible to make ε− ≤ ⋅ −U L b a( ) by making  
the largest of the Δx ’sk  sufficiently small.

 88. If you average 48 km h on a 240-km trip and then return over the 
same 240 km at the rate of 80 km h, what is your average speed 
for the trip? Give reasons for your answer.

 89. Integrals of functions that are equal except at one point  
Suppose that f x( ) is a continuous function over the interval  
[ ]a b,  and that g x( ) is a function on [ ]a b,  such that =g x f x( ) ( ) 
except at a single point [ ]∈c a b, . Show that g x( ) is also inte-
grable over [ ]a b,  and that ∫ = ∫g x dx f x dx( ) ( )a

b
a
b . (Hint: For a 

given n, by how much can two different Riemann sums as given 
in Equation (1) differ?)

 90. Some integrable functions that are not continuous 

 a. The floor function ⎣ ⎦=f x x( )  gives the greatest integer 
smaller than or equal to x (Example 5 of Section 1.1). This  
function is not continuous on the interval [ ]1, 3 . Show that f  
is integrable on [ ]1, 3  and that ⎣ ⎦∫ =x dx 31

3 .

 b. The function =
− <

≤

⎧
⎨
⎪⎪
⎩⎪⎪

f x
x

x
( )

1 if 0,
2 if 0 ,

 is not continuous on 

the interval [ ]−1,1 . Show that f is integrable on [ ]−1,1  and 
that ∫ =− f x dx( ) 11

1
.

COMPUTER EXPLORATIONS
If your CAS can draw rectangles associated with Riemann sums, use 
it to draw rectangles associated with Riemann sums that converge to 
the integrals in Exercises 91–96. Use =n 4, 10, 20, and 50 subinter-
vals of equal length in each case.

 91. ∫ ( )− =x dx1 1
20

1
 92. ∫ ( )+ =x dx1 4

3
2

0

1

 93. x dxcos 0∫ =
π

π

−
 94. ∫ =

π
x dxsec 12

0

/ 4

 95. ∫ =
−

x dx 1
1

1

 96. ∫ x
dx1

1

2
  (The integral’s value is about 0.693.)

In Exercises 97–104, use a CAS to perform the following steps:

  a. Plot the functions over the given interval.

  b.  Partition the interval into =n 100, 200, and 1000 sub- 
intervals of equal length, and evaluate the function at the  
midpoint of each subinterval.

  c.  Compute the average value of the function values gener-
ated in part (b).

  d.  Solve the equation ( )=f x( ) average value  for x using 
the average value calculated in part (c) for the =n 1000 
partitioning.

 97. f x x( ) sin on 0, π[ ]=

 98. f x x( ) sin on 0,2 π[ ]=

 99. f x x
x

( ) sin 1 on
4

,π π= ⎡
⎣⎢

⎤
⎦⎥

 100. f x x
x

( ) sin 1 on
4

,2 π π= ⎡
⎣⎢

⎤
⎦⎥

 101. f x x e( ) on 0,1x [ ]= −

 102. [ ]= −f x e( ) on 0, 1x 2

 103. f x
x

x
( )

ln
on 2, 5[ ]=

 104. =
−

⎡
⎣⎢

⎤
⎦⎥

f x
x

( ) 1
1

on 0, 1
22
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342 Chapter 5 Integrals

FIGURE 5.16 The value f c( ) in the 
Mean Value Theorem is, in a sense,  
the average (or mean) height of f on  
[ ]a b, . When ≥f 0, the area of the  
rectangle is the area under the graph of  
f from a to b,

∫( )− =f c b a f x dx( ) ( ) .
a

b

y

x
a b0 c

y = f (x)

f (c), 

b − a

average
height

FIGURE 5.17 A discontinuous func-
tion need not assume its average value.

x

y

0

1

1 2

Average value 1�2
is not assumed by f

y = f (x)

1
2

THEOREM 3—The Mean Value Theorem for Definite Integrals 
If f is continuous on [ ]a b, , then at some point c in [ ]a b, ,

∫=
−

f c
b a

f x dx( ) 1 ( ) .
a

b

5.4 The Fundamental Theorem of Calculus

In this section we present the Fundamental Theorem of Calculus, which is the central 
theorem of integral calculus. It connects integration and differentiation, enabling us to 
compute integrals by using an antiderivative of the integrand function, rather than by 
taking limits of Riemann sums as we did in Section 5.3. Leibniz and Newton exploited 
this relationship and started mathematical developments that fueled the scientific revolu-
tion for the next 200 years.

Along the way, we will present an integral version of the Mean Value Theorem, which 
is another important theorem of integral calculus and is used to prove the Fundamental 
Theorem. We also find that the net change of a function over an interval is the integral of 
its rate of change, as suggested by Example 2 in Section 5.1.

Mean Value Theorem for Definite Integrals

In the previous section we defined the average value of a continuous function over a closed 
interval [ ]a b,  to be the definite integral ∫ f x dx( )a

b  divided by the length or width −b a of 
the interval. The Mean Value Theorem for Definite Integrals asserts that this average value 
is always taken on at least once by the function f in the interval.

The graph in Figure 5.16 shows a positive continuous function =y f x( ) defined over 
the interval [ ]a b, . Geometrically, the Mean Value Theorem says that there is a number c in 
[ ]a b,  such that the rectangle with height equal to the average value f c( ) of the function 
and base width −b a has exactly the same area as the region beneath the graph of f from  
a to b.

Proof  If we divide all three expressions in the Max-Min Inequality (Table 5.6, Rule 6) 
by b a ,( )−  we obtain

∫≤
−

≤f
b a

f x dx fmin 1 ( ) max .
a

b

Since f is continuous, the Intermediate Value Theorem for Continuous Functions (Section 2.6) 
says that f must assume every value between min f and max f. It must therefore assume the 
value ( )( )− ∫b a f x dx1 ( )a

b  at some point c in [ ]a b, . 

The continuity of f is important here. It is possible for a discontinuous function to 
never equal its average value (Figure 5.17).

EXAMPLE 1  Show that if f is continuous on [ ] ≠a b a b, , , and if

∫ =f x dx( ) 0,
a

b

then f x( ) 0=  at least once in [ ]a b, .

Solution The average value of f on [ ]a b,  is

∫=
−

=
−

⋅ =f
b a

f x dx
b a

av( ) 1 ( ) 1 0 0.
a

b
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interested in mechanical devices and their 
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During the 1670s and 1680s, he built 
his reputation as a scientific genius. His 
contributions included the theory of universal 
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By the Mean Value Theorem for Definite Integrals, f assumes this value at some point 
c a b, .[ ]∈  This is illustrated in Figure 5.18 for the function = − +f x x x( ) 9 16 42  on 
the interval [ ]0, 2 . 

Fundamental Theorem, Part 1

It can be very difficult to compute definite integrals by taking the limit of Riemann sums. 
We now develop a powerful new method for evaluating definite integrals, based on using 
antiderivatives. This method combines the two strands of calculus. One strand involves the 
idea of taking the limits of finite sums to obtain a definite integral, and the other strand 
contains derivatives and antiderivatives. They come together in the Fundamental Theorem 
of Calculus. We begin by considering how to differentiate a certain type of function that is 
described as an integral.

If f t( ) is an integrable function over a finite interval I, then the integral from any fixed 
number ∈a I  to another number ∈x I defines a new function F whose value at x is

∫=F x f t dt( ) ( ) .
a

x
 (1)

For example, if f is nonnegative and x lies to the right of a, then F x( ) is the area under the 
graph from a to x (Figure 5.19). The variable x is the upper limit of integration of an integral, 
but F is just like any other real-valued function of a real variable. For each value of the input 
x, there is a single numerical output, in this case the definite integral of f from a to x.

Equation (1) gives a useful way to define new functions (as we will see in  
Section 7.1), but its key importance is the connection that it makes between integrals 
and derivatives. If f is a continuous function, then the Fundamental Theorem asserts 
that F is a differentiable function of x whose derivative is f itself. That is, at each x in  
the interval [ ]a b,  we have

′ =F x f x( ) ( ).

To gain some insight into why this holds, we look at the geometry behind it.
If ≥f 0 on [ ]a b, , then to compute ′F x( ) from the definition of the derivative, we 

must take the limit as →h 0 of the difference quotient

F x h F x
h

( ) .
( )+ −

If >h 0, then F x h( )+  is the area under the graph of f from a to +x h, while F x( ) is  
the area under the graph of f from a to x. Subtracting the two gives us the area under the 
graph of f between x and +x h (see Figure 5.20). As shown in Figure 5.20, if h is small, 
the area under the graph of f from x to +x h is approximated by the area of the rectangle 
whose height is f x( ) and whose base is the interval x x h,[ ]+ . That is,

F x h F x h f x( ) ( ).( )+ − ≈

Dividing both sides by h, we see that the value of the difference quotient is very close to 
the value of f x( ):

F x h F x
h

f x( ) ( ).
( )+ − ≈

This approximation improves as h approaches 0. It is reasonable to expect that ′F x( ), 
which is the limit of this difference quotient as →h 0, equals f x( ), so that

F x F x h F x
h

f x( ) lim ( ) ( ).
h 0

( )′ = + − =
→

This equation is true even if the function f is not positive, and it forms the first part of the 
Fundamental Theorem of Calculus.

FIGURE 5.18 The function 
= − +f x x x( ) 9 16 42  satisfies 

∫ =f x dx( ) 00
2

, and there are two values 
of c in the interval [ ]0, 2  where f c( ) 0= .

x

y

0 1 2cc

2

−2

−4

4

8

6

y = f (x) = 9x2 − 16x + 4

FIGURE 5.19 The function F x( )  
defined by Equation (1) gives the area 
under the graph of f from a to x when  
f is nonnegative and >x a.

t

y

0 a x b

area = F(x)

y = f (t)

FIGURE 5.20 In Equation (1),  
F x( ) is the area to the left of x. Also,  
F x h( )+  is the area to the left of 

+x h. The difference quotient 
F x h F x h( )( )[ ]+ −  is then  

approximately equal to f x( ), the 
height of the rectangle shown here.

y = f (t)

t

y

0 a x x + h b

f (x)
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344 Chapter 5 Integrals

Before proving Theorem 4, we look at several examples to gain an understanding of 
what it says. In each of these examples, notice that the independent variable x appears in 
either the upper or the lower limit of integration (either as part of a formula or by itself). 
The independent variable on which y depends in these examples is x, while t is merely a 
dummy variable in the integral.

EXAMPLE 2  Use the Fundamental Theorem to find dy dx  if

 (a) y t dt1
a

x
3∫ ( )= +  (b) y t t dt3 sin

x

5

∫=

 (c) y t dtcos
x

1

2

∫=  (d) y
e

dt1
2 tx1 3

4

2∫=
++

Solution We calculate the derivatives with respect to the independent variable x.

 (a) ∫ ( )= + = + = +
dy
dx

d
dx

t dt x1 1 f t tEq.  2  with  ( ) 1( )
a

x
3 3 3

 (b) 
dy
dx

d
dx

t t dt d
dx

t t dt

d
dx

t t dt

x x

3 sin 3 sin

3 sin

3 sin f t t t

Table 5.6, Rule 1

Eq.  2  with  ( ) 3 sin( )

x

x

x

5

5

5

∫ ∫

∫

( )= = −

= −

= − =

 (c) The upper limit of integration is not x but x .2  This makes y a composition of the two 
functions

∫= =y t dt u xcos and .
u

1

2

We must therefore apply the Chain Rule to find dy dx :

∫( )
= ⋅

= ⋅

= ⋅

= ⋅

=

=

dy
dx

dy
du

du
dx

d
du

t dt du
dx

u du
dx

x x

x x

cos

cos

(cos ) 2

2 cos

f t tEq.   with  ( ) cos(2)

u

1

2

2

THEOREM 4—The Fundamental Theorem of Calculus, Part 1
If f is continuous on [ ]a b, , then = ∫F x f t dt( ) ( )a

x  is continuous on [ ]a b,  and 
differentiable on ( )a b, , and its derivative is f x( ):

∫′ = =F x d
dx

f t dt f x( ) ( ) ( ).
a

x
 (2)
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 5.4  The Fundamental Theorem of Calculus 345

 (d) ∫ ∫

∫
( )

+
= −

+
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎟

= −
+

= −
+

+

= −
+

+

+

+

+

+

d
dx e

dt d
dx e

dt

d
dx e

dt

e
d
dx

x

x
e

1
2

1
2

1
2

1
2

1 3

6
2

Table 5.6, Rule 1

Eq. (2) and the Chain Rule

tx t

x

t

x

x

x

1 3

4

4

1 3

4

1 3

(1 3 )
2

(1 3 )

2

2

2

2

2  

Proof of Theorem 4  We prove the Fundamental Theorem, Part 1, by applying the 
definition of the derivative directly to the function F x( ), when x and +x h are in a b,( ). 
This means writing out the difference quotient

F x h F x
h

( )( )+ −
 (3)

and showing that its limit as →h 0 is the number f x( ). Doing so, we find that

F x F x h F x
h

h
f t dt f t dt

h
f t dt

( ) lim ( )

lim 1 ( ) ( )

lim 1 ( ) . Table 5.6,  Rule 5

h

h a

x h

a

x

h x

x h

0

0

0

∫ ∫

∫

( )′ = + −

= −⎡
⎣⎢

⎤
⎦⎥

=

→

→

+

→

+

According to the Mean Value Theorem for Definite Integrals, there is some point c 
between x and +x h where f c( ) equals the average value of f on the interval [ ]+x x h, . 
That is, there is some number c in [ ]+x x h,  such that

∫ =
+

h
f t dt f c1 ( ) ( ).

x

x h
 (4)

As h x h0,→ +  approaches x, which forces c to approach x also (because c is trapped 
between x and +x h). Since f is continuous at x, f c( ) therefore approaches f x( ):

=
→

f c f xlim ( ) ( ).
h 0

 (5)

Hence we have shown that, for any x in a b,( ),

∫′ =

=

=

→

+

→

F x
h

f t dt

f c

f x

( ) lim 1 ( )

lim ( )

( ),

Eq. (4)

Eq. (5)

h x

x h

h

0

0

and therefore F is differentiable at x. Since differentiability implies continuity, this also 
shows that F is continuous on the open interval ( )a b, . To complete the proof, we just have 
to show that F is also continuous at =x a and =x b. To do this, we make a very similar 
argument, except that at =x a we need only consider the one-sided limit as → +h 0 , and 
similarly at =x b we need only consider → −h 0 . This shows that F has a one-sided 
derivative at =x a and at =x b, and therefore Theorem 1 in Section 3.2 implies that F 
is continuous at those two points. 
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346 Chapter 5 Integrals

Proof  Part 1 of the Fundamental Theorem tells us that an antiderivative of f exists, namely

∫=G x f t dt( ) ( ) .
a

x

Thus, if F is any antiderivative of f, then = +F x G x C( ) ( )  for some constant C for 
< <a x b (by Corollary 2 of the Mean Value Theorem for Derivatives, Section 4.2). 

Since both F and G are continuous on [ ]a b, , we see that the equality = +F x G x C( ) ( )  
also holds when =x a and =x b by taking one-sided limits (as → +x a  and → −x b ).

Evaluating −F b F a( ) ( ), we have

∫ ∫

∫

∫

[ ] [ ]− = + − +

= −

= −

= −

=

F b F a G b C G a C

G b G a

f t dt f t dt

f t dt

f t dt

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) 0

( ) .

a

b

a

a

a

b

a

b

 

THEOREM 4 (Continued)—The Fundamental Theorem of Calculus, Part 2 
If f is continuous over [ ]a b,  and F is any antiderivative of f on [ ]a b, , then

∫ = −f x dx F b F a( ) ( ) ( ).
a

b

Fundamental Theorem, Part 2 (The Evaluation Theorem)

We now come to the second part of the Fundamental Theorem of Calculus. This part 
describes how to evaluate definite integrals without having to calculate limits of Riemann 
sums. Instead we find and evaluate an antiderivative at the upper and lower limits of 
integration.

The Evaluation Theorem is important because it says that to calculate the definite 
integral of f over an interval [ ]a b,  we need do only two things:

1. Find an antiderivative F of f, and

2. Calculate the number −F b F a( ) ( ), which is equal to ∫ f x dx( ) .a
b

This process is much easier than computing Riemann sums and finding their limit. The 
power of the theorem follows from the realization that the definite integral, which is 
defined by a complicated process involving all of the values of the function f over [ ]a b, , 
can be found by knowing the values of any antiderivative F at only the two endpoints a and b. 
The usual notation for the difference −F b F a( ) ( ) is

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

F x F x( ) or ( ) ,
a

b

a

b

depending on whether F has one or more terms.

EXAMPLE 3  We calculate several definite integrals using the Evaluation Theorem, 
rather than by taking limits of Riemann sums.

 (a) x dx xcos sin

sin sin 0 0 0 0

d
dx x xsin cos

0 0∫ ]
π

=

= − = − =

=
π π
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 5.4  The Fundamental Theorem of Calculus 347

 (b) x x dx xsec tan sec

sec 0 sec
4

1 2

/ 4

0

4

0

∫
π( )

= ⎤
⎦
⎥⎥

= − − = −

π π− −
 d

dx
x x xsec sec tan=

 (c) ∫ ( )
( ) ( )

[ ] [ ]

− = +⎡
⎣⎢

⎤
⎦⎥

= +⎡
⎣⎢

⎤
⎦⎥

− +⎡
⎣⎢

⎤
⎦⎥

= + − =

x
x

dx x
x

3
2

4 4

4 4
4

1 4
1

8 1 5 4

21

4
3 2

1

4

3 2 3 2

 ( )+ = −d
dx

x
x

x
x

4 3
2

43 2 1 2
2

 (d) 
x

dx x1 ln

ln 2 ln 1 ln 2
1

2

1

2

∫ = ⎤
⎦⎥

= − =

   =d
dx

x
x

ln 1

 (e) dx
x

x
1

arctan

arctan 1 arctan 0
4

0
4

.

20

1

0

1

∫
π π

+
= ⎤

⎦
⎥⎥

= − = − =

 d
dx

x
x

arctan 1
12

= =
+

   

THEOREM 5—The Net Change Theorem 
The net change in a differentiable function F x( ) over an interval ≤ ≤a x b is 
the integral of its rate of change:

∫− = ′F b F a F x dx( ) ( ) ( ) .
a

b
 (6)

EXAMPLE 4  Here are several interpretations of the Net Change Theorem.

 (a) If c x( ) is the cost of producing x units of a certain commodity, then ′c x( ) is the mar-
ginal cost (Section 3.4). From Theorem 5,

∫ ′ = −c x dx c x c x( ) ( ) ( ),
x

x

2 1
1

2

which is the cost of increasing production from x1 units to x 2 units.

Exercise 82 offers another proof of the Evaluation Theorem, bringing together the ideas 
of Riemann sums, the Mean Value Theorem, and the definition of the definite integral.

The Integral of a Rate

We can interpret Part 2 of the Fundamental Theorem in another way. If F is any antideriva-
tive of f, then ′ =F f . The equation in the theorem can then be rewritten as

∫ ′ = −F x dx F b F a( ) ( ) ( ).
a

b

Now ′F x( ) represents the rate of change of the function F x( ) with respect to x, so the last 
equation asserts that the integral of ′F  is just the net change in F as x changes from a to b. 
Formally, we have the following result.
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348 Chapter 5 Integrals

 (b) If an object with position function s t( ) moves along a coordinate line, its velocity is 
t s t( ) ( ).υ = ′  Theorem 5 says that

t dt s t s t( ) ( ) ( ),
t

t

2 1
1

2

∫ υ = −

so the integral of velocity is the displacement over the time interval ≤ ≤t t t .1 2  On 
the other hand, the integral of the speed t( )υ  is the total distance traveled over the 
time interval. This is consistent with our discussion in Section 5.1. 

If we rearrange Equation (6) as

F b F a F x dx( ) ( ) ( ) ,
a

b

∫= + ′

we see that the Net Change Theorem also says that the final value of a function F x( ) over 
an interval [ ]a b,  equals its initial value F a( ) plus its net change over the interval. So if 

t( )υ  represents the velocity function of an object moving along a coordinate line, this 
means that the object’s final position s t( )2  over a time interval ≤ ≤t t t1 2 is its initial 
position s t( )1  plus its net change in position along the line (see Example 4b).

EXAMPLE 5  Consider again our analysis of a heavy rock blown straight up from  
the ground by a dynamite blast (Example 2, Section 5.1). The velocity of the rock at any 
time t during its motion was given as υ = −t t( ) 49 9.8 m s.

 (a) Find the displacement of the rock during the time period ≤ ≤t0 8.

 (b) Find the total distance traveled during this time period.

Solution 

 (a) From Example 4b, the displacement is the integral

t dt t dt t t( ) (49 9.8 ) 49 4.9

(49)(8) (4.9)(64) 78.4.
0

8

0

8

0

8
2∫ ∫ ⎡⎣ ⎤⎦υ = − = −

= − =

This means that the height of the rock is 78.4 m above the ground 8 s after the explo-
sion, which agrees with our conclusion in Example 2, Section 5.1.

 (b) As we noted in Table 5.3, the velocity function t( )υ  is positive over the time interval  
[0, 5] and negative over the interval [5, 8]. Therefore, from Example 4b, the total dis-
tance traveled is the integral

t dt t dt t dt

t dt t dt

t t t t

( ) ( ) ( )

(49 9.8 ) (49 9.8 )

49 4.9 49 4.9

(49)(5) (4.9)(25) [(49)(8) (4.9)(64) ((49)(5) (4.9)(25))]

122.5 ( 44.1) 166.6

0

8

0

5

5

8

0

5

5

8

0

5
2

5

8
2

∫ ∫ ∫

∫ ∫
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

υ υ υ

[ ]

= +

= − − −

= − − −

= − − − − −

= − − =

Again, this calculation agrees with our conclusion in Example 2, Section 5.1. That is, 
the total distance of 166.6 m traveled by the rock during the time period ≤ ≤t0 8 is 
(i) the maximum height of 122.5 m it reached over the time interval [0, 5] plus (ii) the 
additional distance of 44.1 m the rock fell over the time interval [5, 8]. 
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FIGURE 5.21 These graphs 
enclose the same amount of 
area with the x-axis, but the 
definite integrals of the two 
functions over 2, 2[ ]−  differ in 
sign (Example 6).

x

y

0 1 2−1

−1

−2

−3

−4

−2

f (x) = x2 − 4

x

y

0 1 2−1

4

3

2

1

−2

g(x) = 4 − x2

The Relationship Between Integration and Differentiation

The conclusions of the Fundamental Theorem tell us several things. Equation (2) can be 
rewritten as

∫ =d
dx

f t dt f x( ) ( ),
a

x

which says that if you first integrate the function f and then differentiate the result, you get 
the function f back again. Likewise, replacing b by x and x by t in Equation (6) gives

F t dt F x F a( ) ( ) ( ),
a

x

∫ ′ = −

so that if you first differentiate the function F and then integrate the result, you get the 
function F back (adjusted by an integration constant). In a sense, the processes of integra-
tion and differentiation are “inverses” of each other. The Fundamental Theorem also says 
that every continuous function f has an antiderivative F. It shows the importance of find-
ing antiderivatives in order to evaluate definite integrals easily. Furthermore, it says that 
the differential equation =dy dx f x( ) has a solution (namely, any of the functions 
y F x C( )= + ) when f is a continuous function.

Total Area

Area is always a nonnegative quantity. The Riemann sum approximations contain terms 
such as f c x( )k kΔ  that give the area of a rectangle when f c( )k  is positive. When f c( )k  is 
negative, then the product f c x( )k kΔ  is the negative of the rectangle’s area. When we add 
up such terms for a negative function, we get the negative of the area between the curve 
and the x-axis. If we then take the absolute value, we obtain the correct positive area.

EXAMPLE 6  Figure 5.21 shows the graph of = −f x x( ) 42  and its mirror image 
= −g x x( ) 4 2 reflected across the x-axis. For each function, compute

 (a) the definite integral over the interval [ ]−2, 2 , and

 (b) the area between the graph and the x-axis over [ ]−2, 2 .

Solution 

 (a) f x dx x x( )
3

4 8
3

8 8
3

8 32
3

,
2

2 3

2

2

∫ ( ) ( )= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − − − + = −
− −

and

∫ = −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
− −

g x dx x x( ) 4
3

32
3

.
2

2 3

2

2

 (b) In both cases, the area between the curve and the x-axis over [ ]−2, 2  is 32 3 square 
units. Although the definite integral of f x( ) is negative, the area is still positive. 

To compute the area of the region bounded by the graph of a function =y f x( ) and 
the x-axis when the function takes on both positive and negative values, we must be careful 
to break up the interval a b,[ ] into subintervals on which the function doesn’t change sign. 
Otherwise, we might get cancelation between positive and negative signed areas, leading 
to an incorrect total. The correct total area is obtained by adding the absolute value of the 
definite integral over each subinterval where f x( ) does not change sign. The term “area” 
will be taken to mean this total area.
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350 Chapter 5 Integrals

FIGURE 5.22 The total area 
between y xsin=  and the x-axis for 

π≤ ≤x0 2  is the sum of the absolute 
values of two integrals (Example 7).

−1

0

1

x

y

p 2p

y = sin x

Area = 2

Area =
0−2 0 = 2

FIGURE 5.23 The region between 
the curve = − −y x x x23 2  and the 
x-axis (Example 8).

x

y

0 2−1

y = x3 − x2 − 2x

Area = P   P

=

8
3

–

8
3

Area = 5
12

EXAMPLE 7  Figure 5.22 shows the graph of the function f x x( ) sin=  between 
=x 0 and π=x 2 . Compute

 (a) the definite integral of f x( ) over π[ ]0, 2 ,

 (b) the area between the graph of f x( ) and the x-axis over π[ ]0, 2 .

Solution 

 (a) The definite integral for f x x( ) sin=  is given by

x dx xsin cos cos 2 cos 0 1 1 0.
0

2

0

2

∫ π[ ] [ ]= − ⎤
⎦⎥

= − − = − − =
π π

The definite integral is zero because the portions of the graph above and below the 
x-axis make canceling contributions.

 (b) The area between the graph of f x( ) and the x-axis over π[ ]0, 2  is calculated by break-
ing up the domain of sin x into two pieces: the interval π[ ]0,  over which it is non-
negative and the interval π π[ ], 2  over which it is nonpositive.

x dx xsin cos cos cos 0 1 1 2
0 0

∫ π[ ] [ ]= − ⎤
⎦⎥

= − − = − − − =
π π

x dx xsin cos cos 2 cos 1 1 2
2 2

∫ π π[ ] ( )[ ]= − ⎤
⎦⎥

= − − = − − − = −
π

π

π

π

The second integral gives a negative value. The area between the graph and the axis is 
obtained by adding the absolute values,

Area 2 2 4.= + − =  

Summary:
To find the area between the graph of =y f x( ) and the x-axis over the interval [ ]a b, :

1. Subdivide [ ]a b,  at the zeros of f.

2. Integrate f over each subinterval.

3. Add the absolute values of the integrals.

EXAMPLE 8  Find the area of the region between the x-axis and the graph of 
= − − − ≤ ≤f x x x x x( ) 2 , 1 2.3 2

Solution First find the zeros of f. Since

( ) ( )( )= − − = − − = + −f x x x x x x x x x x( ) 2 2 1 2 ,3 2 2

the zeros are x 0, 1,= −  and 2 (Figure 5.23). The zeros subdivide [ ]−1, 2  into two subin-
tervals: [ ]−1, 0 , on which ≥f 0, and [ ]0, 2 , on which ≤f 0. We integrate f over each 
subinterval and add the absolute values of the calculated integrals.

x x x dx x x x

x x x dx x x x

2
4 3

0 1
4

1
3

1 5
12

2
4 3

4 8
3

4 0 8
3

3 2

1

0 4 3
2

1

0

3 2

0

2 4 3
2

0

2

∫

∫

( )

( )

− − = − −⎡
⎣⎢

⎤
⎦⎥

= − + −⎡
⎣⎢

⎤
⎦⎥

=

− − = − −⎡
⎣⎢

⎤
⎦⎥

= − −⎡
⎣⎢

⎤
⎦⎥

− = −

− −

The total enclosed area is obtained by adding the absolute values of the calculated 
integrals.

Total enclosed area 5
12

8
3

37
12

= + − =  
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 5.4  The Fundamental Theorem of Calculus 351

Evaluating Integrals
Evaluate the integrals in Exercises 1–34.

 1. ∫ ( )−x x dx3
0

2
 2. x x dx2 32

1

1

∫ ( )− +
−

 3. x dx3 2

2

2

∫ ( )+
−

 4. x dx299

1

1

∫−

 5. x x dx3
4

2
3

1

4

∫ ( )−  6. x x dx2 33

2

3

∫ ( )− +
−

 7. x x dx2

0

1

∫ ( )+  8. ∫ −x dx6 5

1

32

 9. ∫
π

x dx2 sec 2

0

3
 10. x dx1 cos

0∫ ( )+
π

 11. dcsc cot
4

3 4

∫ θ θ θ
π

π
 12. 

u
u

du4
sin

cos0

3

2∫
π

 13. 
t

dt
1 cos 2

22

0

∫
+

π
 14. t dtsin 2

3

3

∫ π

π

−

 15. x dxtan 2

0

4

∫
π

 16. x x dxsec tan 2

0

6

∫ ( )+
π

 17. x dxsin 2
0

8

∫
π

 18. t
t

dt4 sec 2
23

4

∫ π( )+
π

π

−

−

 19. r dr1 2

1

1

∫ ( )+
−

 20. t t dt1 42

3

3

∫ ( )( )+ +
−

 21. u
u

du
2

17

52

1

∫ ( )−  22. 
y y

y
dy

25

33

1

∫
−

−

−

 23. s s
s

ds
2

21

2

∫ +  24. 
x x

x
dx

1 21 3 2 3

1 31

8

∫
( )( )+ −

 25. 
x
x

dx
sin 2
2 sin6

2

∫π
π

 26. x x dxcos sec 2

0

3

∫ ( )+
π

 27. x dx
4

4

∫−
 28. x x dx1

2
cos cos

0∫ +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

π

 29. e dxx3

0

ln 2

∫  30. 
x

e dx1 x

1

2

∫ ( )− −

 31. 
x

dx4
1 20

1 2

∫ −
 32. dx

x1 4 20

1 3

∫ +

 33. x dx1

2

4

∫ π−  34. dxx 1

1

0

∫ π −
−

EXERCISES 5.4

In Exercises 35–38, guess an antiderivative for the integrand function. 
Validate your guess by differentiation, and then evaluate the given 
definite integral. (Hint: Keep the Chain Rule in mind when trying to 
guess an antiderivative. You will learn how to find such antiderivatives 
in the next section.)

 35. xe dxx

0

1
2∫  36. 

x
x

dx
ln

1

2

∫

 37. 
x dx

x1 22

5

∫ +
 38. x x dxsin cos2

0

3

∫
π

Derivatives of Integrals
Find the derivatives in Exercises 39–44.

  a. by evaluating the integral and differentiating the result.

  b. by differentiating the integral directly.

 39. d
dx

t dtcos
x

0∫  40. d
dx

t dt3
x

2

1

sin

∫

 41. d
dt

u du
t

0

4

∫  42. d
d

y dysec 2

0

tan

∫θ
θ

 43. d
dx

e dtt
x

0

3

∫ −  44. d
dt

x
x

dx3
1

t
4

20∫ ( )+
−

Find dy dx in Exercises 45–56.

 45. ∫= +y t dt1
x

2

0
 46. y

t
dt x1 , 0

x

1∫= >

 47. y t dtsin
x

0
2∫=  48. y x t dtsin

x

2

3
2

∫=

 49. y t
t

dt t
t

dt
4 4

x x2

21

2

23∫ ∫=
+

−
+−

 50. y t dt1
x

3 10

0

3

∫( )( )= +

 51. y dt
t

x
1

,
2

x

20

sin

∫ π=
−

<

 52. y dt
t1x 2tan

0

∫=
+

 53. ∫=y
t

dt1e

0

x 2

 54. ∫=y t dt3

2

1

x
 55. y t dtcos

x

0

arcsin

∫=

 56. y t dtarcsin
x

1

1

∫=
−

π
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352 Chapter 5 Integrals

Area
In Exercises 57–60, find the total area between the region and the x-axis.

 57. = − − − ≤ ≤y x x x2 , 3 22

 58. = − − ≤ ≤y x x3 3, 2 22

 59. = − + ≤ ≤y x x x x3 2 , 0 23 2

 60. = − − ≤ ≤y x x x, 1 81 3

For Exercises 71 and 72, find a function f satisfying each equation.

 71. f t dt x x( ) ln
x

2∫ =  72. ∫= +f x e f t dt( ) ( )
x

2

1

Theory and Examples
 73. Archimedes’ area formula for parabolic arches  Archimedes  

(287–212 b.c.), inventor, military engineer, physicist, and the great-
est mathematician of classical times in the Western world, dis-
covered that the area under a parabolic arch is two-thirds the base 
times the height. Sketch the parabolic arch ( )= −y h h b x4 ,2 2

− ≤ ≤b x b2 2, assuming that h and b are positive. Then use 
calculus to find the area of the region enclosed between the arch 
and the x-axis.

 74. Show that if k is a positive constant, then the area between the 
x-axis and one arch of the curve y kxsin=  is k2 .

 75. Cost from marginal cost  The marginal cost of printing a poster 
when x posters have been printed is

=dc
dx x

1
2

dollars. Find c c100 1 ,( ) ( )−  the cost of printing posters 2–100.

In Exercises 76–78, guess an antiderivative and validate your guess 
by differentiation. (Hint: Keep the Chain Rule in mind when trying to 
guess an antiderivative. You will learn how to find such antiderivatives 
in the next section.)

 76. Revenue from marginal revenue  Suppose that a company’s 
marginal revenue from the manufacture and sale of eggbeaters is

dr
dx

x2 2 1 ,2( )= − +

where r is measured in thousands of dollars and x in thousands of 
units. How much money should the company expect from a pro-
duction run of =x 3 thousand eggbeaters? To find out, integrate 
the marginal revenue from =x 0 to =x 3.

 77. The temperature °T ( C) of a room at time t minutes is given by

= − − ≤ ≤T t t30 2 25 for 0 25.

 a. Find the room’s temperature when t t0, 16,= =  and 
=t 25.

 b. Find the room’s average temperature for ≤ ≤t0 25.

 78. The height H(m) of a palm tree after growing for t years is 
given by

= − + + ≤ ≤H t t t0.3 1 1.5 for 0 8.1 3

 a. Find the tree’s height when t t0, 4,= =  and =t 8.

 b. Find the tree’s average height for ≤ ≤t0 8.

 79. Suppose that ∫ = − +f t dt x x( ) 2 1.
x

1
2  Find f x( ).

 80. Find f (4) if f t dt x x( ) cos .
x

0 π∫ =

 81. Find the linearization of

f x
t

dt( ) 2 9
1

x

2

1

∫= −
+

+

at =x 1.

 82. Find the linearization of

∫ ( )= + −g x t dt( ) 3 sec 1
x

1

2

at = −x 1.

Find the areas of the shaded regions in Exercises 61–64.

 61. 

x

y

0

2

p

y = 2

x = p

y = 1 + cos x

 62. y

x

1

p
6

5p
6

y = sin x

 63. 

u

y

−
"

2

"

2

p
4

p
4

− 0

y = sec u tan u

 64. 

t

y

p
4

− 0 1

1

2

y = sec2 t

y = 1 − t2

Initial Value Problems
Each of the following functions solves one of the initial value prob-
lems in Exercises 65–68. Which function solves which problem? Give 
brief reasons for your answers.

  a. y
t

dt1 3
x

1∫= −  b. y t dtsec 4
x

0∫= +

  c. y t dtsec 4
x

1∫= +
−

 d. y
t

dt1 3
x

∫= −
π

 65. 
dy
dx x

y1 , ( ) 3π= = −  66. y x ysec , 1 4( )′ = − =

 67. y x ysec , 0 4( )′ = =  68. y
x

y1 , 1 3( )′ = = −

Express the solutions of the initial value problems in Exercises 69 and 
70 in terms of integrals.

 69. dy
dx

x ysec , 2 3( )= =  70. 
dy
dx

x y1 , 1 22 ( )= + = −
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 5.4  The Fundamental Theorem of Calculus 353

 83. Suppose that f has a positive derivative for all values of x and that 
f (1) 0. Which of the following statements must be true of the 
function

∫=g x f t dt( ) ( ) ?
x

0

Give reasons for your answers.

 a. g is a differentiable function of x.

 b. g is a continuous function of x.

 c. The graph of g has a horizontal tangent line at x 1.

 d. g has a local maximum at x 1.

 e. g has a local minimum at x 1.

 f. The graph of g has an inflection point at x 1.

 g. The graph of dg dx  crosses the x-axis at x 1.

 84. Another proof of the Evaluation Theorem 

 a. Let = < < < =a x x x x b  n0 1 2  be any partition of 
[ ]a b, , and let F be any antiderivative of f. Show that

F b F a F x F x( ) ( ) ( ) ( ) .
i

n

i i
1

1∑[ ]− = −
=

−

 b. Apply the Mean Value Theorem to each term to show that 
F x F x f c x x( ) ( ) ( )( )i i i i i1 1− = −− −  for some ci in the inter-
val x x( , )i i1 . Then show that F b F a( ) ( ) is a Riemann sum 
for f on [ ]a b, .

 c. From part (b) and the definition of the definite integral,  
show that

F b F a f x dx( ) ( ) ( ) .
a

b

∫− =

 85. Suppose that f is the differentiable function shown in the accom-
panying graph and that the position at time t (in s) of a particle 
moving along a coordinate axis is

∫=s f x dx( )
t

0

meters. Use the graph to answer the following questions. Give 
reasons for your answers.

y

x
0 1 2 3 4 5 6 7 8 9

1
2
3
4

−1
−2

(1, 1)

(2, 2) (5, 2)

(3, 3)
y = f (x)

 a. What is the particle’s velocity at time t 5?

 b. Is the acceleration of the particle at time t 5 positive or 
negative?

 c. What is the particle’s position at time t 3?

 d. At what time during the first 9 seconds does s have its largest  
value?

 e. Approximately when is the acceleration zero?

 f. When is the particle moving toward the origin? Away from the 
origin?

 g. On which side of the origin does the particle lie at time 
t 9?

 86. Find 
x

dt
t

lim 1 .
x

x

1∫→∞

COMPUTER EXPLORATIONS

In Exercises 87–90, let F x f t dt( ) ( )a

x
= ∫  for the specified function 

f and interval [ ]a b, . Use a CAS to perform the following steps and 
answer the questions posed.

  a. Plot the functions f and F together over [ ]a b, .

  b.  Solve the equation F x( ) 0.′ =  What can you see to be true  
about the graphs of f and F at points where F x( ) 0?′ =  Is  
your observation borne out by Part 1 of the Fundamental  
Theorem coupled with information provided by the first  
derivative? Explain your answer.

  c.  Over what intervals (approximately) is the function F increas-
ing? Decreasing? What is true about f over those intervals?

  d.  Calculate the derivative f  and plot it together with F. What 
can you see to be true about the graph of F at points where 
f x( ) 0?′ =  Is your observation borne out by Part 1 of the  
Fundamental Theorem? Explain your answer.

 87. [ ]= − +f x x x x( ) 4 3 , 0, 43 2

 88. = − + − + ⎡
⎣⎢

⎤
⎦⎥

f x x x x x( ) 2 17 46 43 12, 0, 9
2

4 3 2

 89. f x x x( ) sin 2 cos
3

, 0, 2[ ]=

 90. f x x x( ) cos , 0, 2[ ]=

In Exercises 91–94, let F x f t dt( ) ( )a
u x( )= ∫  for the specified a, u, and 

f. Use a CAS to perform the following steps and answer the questions 
posed.

  a. Find the domain of F.

  b.  Calculate F x( ) and determine its zeros. For what points in its 
domain is F increasing? Decreasing?

  c.  Calculate F x( ) and determine its zero. Identify the local 
extrema and the points of inflection of F.

  d.  Using the information from parts (a)–(c), draw a rough hand-
sketch of y F x( ) over its domain. Then graph F x( ) on your 
CAS to support your sketch.

 91. a u x x f x x1, ( ) , ( ) 12 2= = = −

 92. a u x x f x x0, ( ) , ( ) 12 2= = = −

 93. a u x x f x x x0, ( ) 1 , ( ) 2 32= = − = − −

 94. a u x x f x x x0, ( ) 1 , ( ) 2 32 2= = − = − −

In Exercises 95 and 96, assume that f is continuous and u x( ) is 
twice-differentiable.

 95. Calculate d
dx

f t dt( )
a

u x( )
 and check your answer using a CAS.

 96. Calculate d
dx

f t dt( )
a

u x2

2

( )
 and check your answer using a CAS.
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354 Chapter 5 Integrals

5.5 Indefinite Integrals and the Substitution Method

The Fundamental Theorem of Calculus says that a definite integral of a continuous 
function can be computed directly if we can find an antiderivative of the function. In 
Section 4.8 we defined the indefinite integral of the function f  with respect to x as 
the set of all antiderivatives of f , symbolized by ∫ f x dx( ) . Since any two antideriva-
tives of f  differ by a constant, the indefinite integral ∫  notation means that for any 
antiderivative F of f ,

f x dx F x C( ) ( ) ,∫ = +

where C is any arbitrary constant. The connection between antiderivatives and the definite 
integral stated in the Fundamental Theorem now explains this notation:

f x dx F b F a F b C F a C

F x C f x dx

( ) ( ) ( ) ( ) ( )

( ) ( ) .

a

b

a

b

a

b

∫

∫

[ ] [ ]= − = + − +

= +⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

When finding the indefinite integral of a function f , remember that it always includes an 
arbitrary constant C.

We must keep in mind the difference between definite and indefinite integrals. A definite 
integral ∫ f x dx( )a

b
 is a number. An indefinite integral ∫ f x dx( )  is a function plus an 

arbitrary constant C.
So far, we have only been able to find antiderivatives of functions that are clearly 

recognizable as derivatives. In this section we begin to develop more general techniques 
for finding antiderivatives of functions.

Substitution: Running the Chain Rule Backwards

If u is a differentiable function of x, and n is any number different from −1, the Chain Rule 
tells us that

d
dx

u
n

u du
dx1

.
n

n
1( )+

=
+

From another point of view, this same equation says that ( )++u n 1n 1  is one of the antide-
rivatives of the function ( )u du dx .n  Therefore,

 u du
dx

dx u
n

C
1

.n
n 1

∫ =
+

+
+

 (1)

The integral in Equation (1) is equal to the simpler integral

∫ =
+

+
+

u du u
n

C
1

,n
n 1

which suggests that we can substitute the simpler expression du for ( )du dx dx when com-
puting an integral. Leibniz, one of the founders of calculus, had the insight that indeed this 
substitution could be done, leading to the substitution method for computing integrals. As 
with differentials, when computing integrals we have

=du du
dx

dx.

EXAMPLE 1  Find the integral ∫ ( ) ( )+ +x x x dx3 1 .3 5 2

Solution We set = +u x x.3  Then

( )= = +du du
dx

dx x dx3 1 ,2
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 5.5  Indefinite Integrals and the Substitution Method 355

EXAMPLE 2  Find ∫ +x dx2 1 .

Solution The integral does not fit the formula

∫ u du,n

with = +u x2 1 and =n 1 2, because

= =du du
dx

dx dx2 ,

which is not precisely dx. The constant factor 2 is missing from the integral. However, we 
can introduce this factor after the integral sign if we compensate for it by introducing a 
factor of 1 2 in front of the integral sign. So we write

THEOREM 6—The Substitution Rule
If =u g x( ) is a differentiable function whose range is an interval I, and f  is 
continuous on I, then

f g x g x dx f u du( ( )) ( ) ( ) .∫∫ ⋅ ′ =

Proof  By the Chain Rule, F g x( ( )) is an antiderivative of f g x g x( ( )) ( )⋅ ′  whenever F 
is an antiderivative of f , because

d
dx

F g x F g x g x

f g x g x

( ( )) ( ( )) ( )

( ( )) ( ). F f

Chain Rule= ′ ⋅ ′

= ⋅ ′ ′ =

x dx x dx

u du

u C

x C

2 1 1
2

2 1 2

1
2
1
2 3 2

1
3

2 1 .

u x du dx

u

x u

Let  2 1, 2 .

Integrate with respect to  .

Substitute 2 1 for  .

1 2

3 2

3 2

∫ ∫

∫

( )

+ = + ⋅

=

= +

= + +

= + =

+  

The substitutions in Examples 1 and 2 are instances of the following general rule.

� ���� ����
u

� ���� ����
du

so that by substitution we have

∫ ∫( ) ( )

( )

+ + =

= +

= + +

x x x dx u du

u C

x x C

3 1

6

6

3 5 2 5

6

3 6

( )= + = +u x x du x dxLet , 3 1 .3 2

uIntegrate with respect to  .

+x x uSubstitute   for  .3  
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356 Chapter 5 Integrals

If we make the substitution =u g x( ), then

f g x g x dx d
dx

F g x dx

F g x C

F u C

F u du

f u du

( ( )) ( ) ( ( ))

( ( ))

( )

( )

( ) .

u g x

F f

Theorem 8 in Chapter 4

( )

Theorem 8 in Chapter 4

∫ ∫

∫

∫

′ =

= +

= +

= ′

=

=

′ =  

The Substitution Method to evaluate f g x g x dx( ( ))∫ ( )′

1. Substitute =u g x( ) and du du dx dx g x dx( )( )= = ′  to obtain ∫ f u du( ) .

2. Integrate with respect to u.

3. Replace u by g x( ).

EXAMPLE 3  Find ∫ ( )+ ⋅x dxsec 5 1 5 .2

Solution We substitute = +u x5 1 and =du dx5 . Then

x dx u du

u C

x C

sec 5 1 5 sec

tan

tan 5 1 .

u x du dx

d

du
u u

x u

Let  5 1, 5 .

tan sec

Substitute 5 1 for  .

2 2

2

∫ ∫( )

( )

+ ⋅ =

= +

= + +

= + =

=

+  

The use of the variable u in the Substitution Rule is traditional (sometimes it is referred 
to as u-substitution), but any letter can be used, such as υ θt, ,  and so forth. The rule pro-
vides a method for evaluating an integral of the form f g x g x dx( ( )) ( )∫ ′ , given that the  
conditions of Theorem 6 are satisfied. The primary challenge is deciding what expression 
involving x to substitute for in the integrand. The following examples give helpful ideas.

EXAMPLE 4  Find ∫ θ θ( )+ dcos 7 3 .

Solution We let θ= +u 7 3 so that θ=du d7 . There is a factor of 7 in this formula for 
du, but there is no corresponding 7 preceding dθ in the integral. We can compensate for 
this by multiplying and dividing by 7, using the same procedure as in Example 2. Then

d d

u du

u C

C

cos 7 3 1
7

cos 7 3 7

1
7

cos

1
7

sin

1
7

sin 7 3 .

∫ ∫

∫

θ θ θ θ

θ

( ) ( )

( )

+ = + ⋅

=

= +

= + +

Place factor 1 7  in front of integral.

u du dSubstitute  7 3, 7 .θ θ= + =

Integrate.

uReplace   by 7 3.θ +
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 5.5  Indefinite Integrals and the Substitution Method 357

EXAMPLE 5  Sometimes we observe that a power of x appears in the integrand that is 
one less than the power of x appearing in the argument of a function we want to integrate. 
This observation immediately suggests we try a substitution for the higher power of x. For 
example, in the integral below we see that x 3 appears as the exponent of one factor, and 
this factor is multiplied by x 2. This suggests trying the substitution u x 3.

x e dx e x dx

e du

e du

e C

e C

1
3

1
3
1
3
1
3

x x

u

u

u

x

2 23 3

3

∫ ∫

∫

∫

= ⋅

= ⋅

=

= +

= +

( )
= =

=
u x du x dx

du x dx
Substitute , 3 ,
1 3 .

3 2

2

uIntegrate with respect to  .

u xReplace   by  .3  

It may happen that an extra factor of x appears in the integrand when we try a substitu-
tion u g x( ). In that case, it may be possible to solve the equation u g x( ) for x in 
terms of u. Replacing the extra factor of x with that expression may then result in an inte-
gral that we can evaluate. Here is an example of this situation.

There is another approach to this problem. With = +u 7 3 and du d7  as 
before, we solve for d  to obtain ( )=d du1 7 . Then the integral becomes

d u du

u C

C

cos 7 3 cos 1
7

1
7

sin

1
7

sin 7 3 .

∫ ∫( )

( )

+ = ⋅

= +

= + +

u du d
d du

Substitute  7 3, 7 ,
and  1 7 .( )

= + =
=

Integrate.

uReplace   by 7 3.

We can verify this solution by differentiating and checking that we obtain the original 
function ( )+cos 7 3 . 

EXAMPLE 6  Evaluate ∫ +x x dx2 1 .

Solution Our previous experience with the integral in Example 2 suggests the substitu-
tion = +u x2 1 with du dx2 . Then

+ =x dx u du2 1 1
2

.

However, in this example the integrand contains an extra factor of x that multiplies the fac-
tor x2 1. To adjust for this, we solve the substitution equation = +u x2 1 for x to 
obtain ( )= −x u 1 2 and find that

( )+ = − ⋅x x dx u u du2 1 1
2

1 1
2

.
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358 Chapter 5 Integrals

EXAMPLE 7  Sometimes we can use trigonometric identities to transform an integral 
we do not know how to evaluate into one that we can evaluate using the Substitution Rule.

 (a) x dx
x

dx

x dx

x
x

C x x
C

sin
1 cos 2

2
1
2

1 cos 2

1
2

1
2

sin 2
2 2

sin 2
4

xsin
x1 cos 2

2
2 2∫ ∫

∫ ( )

=
−

= −

= − + = − +

=
−

 (b) x dx
x

dx x x
Ccos

1 cos 2
2 2

sin 2
4

xcos
x1 cos 2

2
2 2∫∫ =

+
= + + =

+

 (c) x du
x
x

dx du
u

u C x C

x
C x C

tan
sin
cos

ln ln cos

ln 1
cos

ln sec

u x du x dxcos , sin

Reciprocal Rule

∫ ∫∫= = −

= − + = − +

= + = +

= = −

 

The integration now becomes

x x dx u u du u u du

u u du

u u C

x x C

2 1 1
4

1 1
4

1

1
4

( )

1
4

2
5

2
3

1
10

2 1 1
6

2 1 .

1 2

3 2 1 2

5 2 3 2

5 2 3 2

∫ ∫∫

∫

( )

( ) ( )

( ) ( )

+ = − = −

= −

= − +

= + − + +

Substitute.

uMultiply terms by  .1 2

Integrate.

u xReplace   by 2 1.+  

 (b) x dx x dx

x
x x
x x

dx

x x x
x x

dx

du
u

u C x x C

sec sec 1

sec
sec tan
sec tan

sec sec tan
sec tan

ln ln sec tan .

2

∫ ∫

∫

∫

∫

( )( )=

= ⋅
+
+

=
+

+

=

= + = + + 

EXAMPLE 8  An integrand may require some algebraic manipulation before the 
 substitution method can be applied. This example gives two integrals for which we sim-
plify by multiplying the integrand by an algebraic form equal to 1 before attempting a 
substitution.

 (a) dx
e e

e dx
e

du
u

u C

e C

1

1

arctan

arctan

x x

x

x

x

2

2

∫ ∫

∫

( )

+
=

+

=
+

= +

= +

−
e eMultiply by 1.x x( ) =

u e u e
du e dx
Substiture , ,

.

x x

x

2 2= =
=

uIntegrate with respect to .

u eReplace by .x

x x
x x

sec tan
sec tan

 is equal to 1.
+
+

u x x
du x x x dx

tan sec ,
sec sec tan2( )

= +
= +
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 5.5  Indefinite Integrals and the Substitution Method 359

The integrals of cot x and csc x are computed in a way similar to the integrals of tan x 
and sec x in Examples 7c and 8b (see Exercises 71 and 72). We summarize the results for 
these four basic trigonometric integrals here.

Integrals of the tangent, cotangent, secant, and cosecant functions

x dx x C x dx x x C

x dx x C x dx x x C

tan ln sec sec ln sec tan

cot ln sin csc ln csc cot

∫ ∫

∫ ∫

= + = + +

= + = − + +

Trying Different Substitutions

The success of the substitution method depends on finding a substitution that changes an 
integral we cannot directly evaluate into one that we can. Finding the right substitution gets 
easier with practice and experience. If your first substitution fails, try another substitution, 
possibly coupled with other algebraic or trigonometric simplifications to the integrand. 
Several more complicated types of substitutions will be studied in Chapter 8.

EXAMPLE 9  Evaluate ∫ +

z dz

z

2

1
.

23

Solution We use the substitution method of integration as an exploratory tool. First we 
substitute for the most troublesome part of the integrand and see how things work out. For 
the integral here, we might try = +u z 12 , or we might even press our luck and take u  
to be the entire cube root. In this example both substitutions turn out to be successful, but 
that is not always the case. If one substitution does not help, a different substitution may 
work instead.

Method 1: Substitute = +u z 1.2

z dz

z
du
u

u du

u C

u C

z C

2

1

2 3

3
2
3
2

1

23 1 3

1 3

2 3

2 3

2 2 3

∫ ∫

∫

( )

+
=

=

= +

= +

= + +

−

u z du z dzLet  1, 2 .2= + =

u duIn the form  n∫

Integrate.

u zReplace   by  1.2 +

Method 2: Substitute = +u z 123  instead.

z dz

z

u du
u

u du

u C

z C

2

1

3

3

3
2

3
2

1

23

2

2

2 2 3

∫ ∫

∫

( )

+
=

=

= ⋅ +

= + +

u z
u z u du z dz
Let  1,

1, 3 2 .

23

2 2 2

= +
= + =

Integrate.

u zReplace   by  1 .2 1 3+( )  
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360 Chapter 5 Integrals

Evaluating Indefinite Integrals
In Exercises 1–16, make the given substitutions to evaluate the indefi-
nite integrals.

 1. x dx u x2 2 4 , 2 45∫ ( )+ = +

 2. ∫ − = −x dx u x7 7 1 , 7 1

 3. x x dx u x2 5 , 52 4 2∫ ( )+ = +−

 4. ∫ ( )+
= +x

x
dx u x4

1
, 1

3

4 2
4

 5. ∫ ( )( )+ + = +x x x dx u x x3 2 3 4 , 3 42 4 2

 6. ∫
( )+

= +
x

x
dx u x

1
, 1

1 3

 7. x dx u xsin 3 , 3∫ =

 8. x x dx u xsin(2 ) , 22 2∫ =

 9. t t dt u tsec 2 tan 2 , 2∫ =

 10. ∫ ( )− = −t t dt u t1 cos
2

sin
2

, 1 cos
2

2

 11. ∫ −
= −

r dr

r
u r

9

1
, 1

2

3
3

 12. ∫ ( ) ( )+ + + = + +y y y y dy u y y12 4 1 2 , 4 14 2 2 3 4 2

 13. ∫ ( )− = −x x dx u xsin 1 , 12 3 2 3 2

 14. 
x x

dx u
x

1 cos 1 , 1
2

2∫ ( ) =

 15. dcsc 2 cot 22∫ θ θ θ

 a. Using u cot 2θ=  b. Using u csc 2θ=

 16. ∫ +
dx
x5 8

 a. Using = +u x5 8  b. Using = +u x5 8

Evaluate the integrals in Exercises 17–66.

 17. ∫ − s ds3 2  18. ∫ +s
ds1

5 4

 19. ∫ θ θ θ− d1 24  20. ∫ −y y dy3 7 3 2

 21. ∫ ( )+x x
dx1

1
2  22. x x dxsin cos3∫

 23. ∫ ( )+x dxsec 3 22  24. x x dxtan sec2 2∫

 25. x x dxsin
3

cos
3

5∫  26. x x dxtan
2

sec
2

7 2∫

 27. ∫ ( )−r r dr
18

12
3 5

 28. ∫ ( )−r r dr7
10

4
5 3

 29. ∫ ( )+x x dxsin 11 2 3 2

 30. dcsc
2

cot
2∫ υ π υ π υ( ) ( )− −

 31. ∫
+
+

t
t

dt
sin(2 1)

cos (2 1)2
 32. 

z z

z
dz

sec tan

sec∫

 33. ∫ ( )−
t t

dt1 cos 1 1
2

 34. ∫ +
t

t dt1 cos( 3)

 35. d1 sin 1 cos 1
2∫ θ θ θ

θ  36. d
cos

sin 2∫
θ

θ θ
θ

 37. ∫ +
x

x
dx

1
 38. ∫ −x

x
dx1

5

 39. 
x x

dx1 2 1
2∫ −  40. 

x
x

x
dx1 1

3

2

2∫ −

 41. ∫ −x
x

dx33

11
 42. ∫ −

x
x

dx
1

4

3

 43. x x dx1 10∫ ( )−  44. ∫ −x x dx4

 45. ∫ ( ) ( )+ −x x dx1 12 5  46. ∫ ( )( )+ −x x dx5 5 1 3

 47. x x dx13 2∫ +  48. x x dx3 15 3∫ +

 49. ∫ ( )−
x

x
dx

42 3  50. ∫ ( )−
x

x
dx

2 1 2 3

 51. x e dxcos xsin∫ ( )  52. e dsin 2 sin2∫ θ θ( ) θ

 53. 
x e

e dx1 sec 1
x

x2∫ ( )+
−

 54. 
x

e e e dx1 sec(1 ) tan 1x x x
2

1 1 1∫ ( )+ +

 55. ∫ dx
x xln

 56. ∫
t

t
dt

ln

 57. ∫ +
dz

e1 z  58. ∫ −
dx

x x 14

 59. ∫ + r
dr5

9 4 2
 60. ∫ θ

−θe
d1

12

EXERCISES 5.5
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 5.6  Definite Integral Substitutions and the Area Between Curves 361

 61. 
e dx

x1

xarcsin

2∫ −
 62. 

e dx

x1

xarccos

2∫ −

 63. 
x dx

x

arcsin

1

2

2∫
( )

−
 64. 

x dx
x

arctan
1 2∫ +

 65. 
dy
y yarctan 1 2∫ ( )( )+

 66. 
dy
y yarcsin 1 2∫ ( ) −

If you do not know what substitution to make, try reducing the integral 
step by step, using a trial substitution to simplify the integral a bit and 
then another to simplify it some more. You will see what we mean if 
you try the sequences of substitutions in Exercises 67 and 68.

 67. ∫ ( )+
x x

x
dx

18 tan sec

2 tan

2 2

3 2

 a. u xtan ,=  followed by υ = u ,3  then by υ= +w 2

 b. =u xtan ,3  followed by υ = + u2

 c. = +u x2 tan 3

 68. ∫ ( ) ( ) ( )+ − − −x x x dx1 sin 1 sin 1 cos 12

 a. = −u x 1, followed by usin ,υ =  then by υ= +w 1 2

 b. ( )= −u xsin 1 , followed by υ = + u1 2

 c. ( )= + −u x1 sin 12

Evaluate the integrals in Exercises 69 and 70.

 69. ∫
( ) ( )

( )

− − +

− +

r r

r
dr

2 1 cos 3 2 1 6

3 2 1 6

2

2

 70. ∫
θ

θ θ
θd

sin

cos3

 71. Find the integral of xcot  using a substitution like that in Example 7c.

 72. Find the integral of xcsc  by multiplying by an appropriate form 
equal to 1, as in Example 8b.

Initial Value Problems
Solve the initial value problems in Exercises 73–78.

 73. ( ) ( )= − =ds
dt

t t s12 3 1 , 1 32 3

 74. ( ) ( )= + =−dy
dx

x x y4 8 , 0 02 1 3

 75. π( ) ( )= + =ds
dt

t s8 sin
12

, 0 82

 76. 
θ

π θ π( ) ( )= − =dr
d

r3 cos
4

, 0
8

2

 77. π( ) ( ) ( )= − − ′ = =d s
dt

t s s4 sin 2
2

, 0 100, 0 0
2

2

 78. d y
dx

x x y y4 sec 2 tan 2 , (0) 4, (0) 1
2

2
2= ′ = = −

 79. The velocity of a particle moving back and forth on a line is 
υ = =ds dt t6 sin 2 m s for all t. If =s 0 when =t 0, find 
the value of s when π=t 2 s.

 80. The acceleration of a particle moving back and forth on a line is 
π π= =a d s dt tcos m s2 2 2 2 for all t. If =s 0 and υ = 8 m s 

when =t 0, find s when =t 1s.

5.6 Definite Integral Substitutions and the Area Between Curves

There are two methods for evaluating a definite integral by substitution. One method is to 
find an antiderivative using substitution and then to evaluate the definite integral by apply-
ing the Evaluation Theorem. The other method extends the process of substitution directly 
to definite integrals by changing the limits of integration. We will use these methods to 
compute the area between two curves.

The Substitution Formula

The following formula shows how the limits of integration change when we apply a substi-
tution to an integral.

THEOREM 7—Substitution in Definite Integrals
If ′g  is continuous on the interval a b,[ ] and f is continuous on the range of 
g x u( ) ,=  then

∫∫ ⋅ ′ =f g x g x dx f u du( ( )) ( ) ( ) .
g a

g b

a

b

( )

( )
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362 Chapter 5 Integrals

Proof  Let F denote any antiderivative of f. Then

f g x g x dx F g x

F g b F g a

F u

f u du

( ( )) ( ) ( ( ))

( ( )) ( ( ))

( )

( ) .

a

b

x a

x b

u g a

u g b

g a

g b

( )

( )

( )

( )

∫

∫

⋅ ′ = ⎤
⎦
⎥

= −

= ⎤
⎦⎥

=

=

=

=

=

d
dx

F g x F g x g x

f g x g x

( ( )) ( ( )) ( )

( ( )) ( )

= ′ ′

= ′

Fundamental Theorem, Part 2 

To use Theorem 7, we make the same u-substitution =u g x( ) and du g x dx( )= ′  
that we would use to evaluate the corresponding indefinite integral. We then integrate the 
transformed integral with respect to u from the value g a( ) (the value of u at =x a) to the 
value g b( ) (the value of u at =x b).

EXAMPLE 1  Evaluate x x dx3 1 .2 3

1

1

∫ +
−

Solution We will show how to evaluate the integral using Theorem 7, and how to evalu-
ate it using the original limits of integration.

Method 1: Transform the integral and evaluate the transformed integral with the trans-
formed limits given in Theorem 7.

x x dx u du

u

3 1

2
3

2
3

2 0 2
3

2 2 4 2
3

2 3

1

1

0

2

3 2

0

2

3 2 3 2

∫ ∫

[ ][ ]

+ =

= ⎤
⎦⎥

= − = =

−

u x du x dx
x u
x u

Let 1, 3 .
When 1, 1 1 0.
When 1, 1 1 2.

Evaluate the new definite integral.

3 2

3

3

( )

( )

= + =
= − = − + =
= = + =

Method 2: Transform the integral as an indefinite integral, integrate, change back to x, 
and use the original x-limits.

∫ ∫

∫

( ) ( )

( )

( )

( ) ( )

+ =

= +

= + +

+ = + ⎤
⎦⎥

= + − − +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥ =

= + =

+

− −

x x dx u du

u C

x C

x x dx x

3 1

2
3
2
3

1

3 1 2
3

1

2
3

1 1 1 1

2
3

2 0 2
3

2 2 4 2
3

u x du x dx

u

u x

x

Let  1, 3 .

Integrate with respect to  .

Replace   by  1.

Use the integral just found, with
limits of integration for  .

2 3

3 2

3 3 2

2 3

1

1
3 3 2

1

1

3 3 2 3 3 2

3 2 3 2

3 2

3
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EXAMPLE 2  We use the method of transforming the limits of integration.

 (a) d u du

u du

u

cot csc

2

(0)
2

(1)
2

1
2

2

4

2

1

0

1

0

2

1

0

2 2

∫ ∫

∫

θ θ θ ( )= ⋅ −

= −

= −⎡
⎣⎢

⎤
⎦⎥

= − −⎡
⎣⎢

⎤
⎦⎥

=

π

π
 

u du d
du d
u
u

Let  cot , csc ,
csc .

When 4, cot 4 1.
When 2, cot 2 0.

2

2

θ θ θ
θ θ

θ π π
θ π π

= = −
− =

= = =
= = =

( )
( )

 (b)    x dx
x
x

dx

du
u

tan
sin
cos

0

4

4

4

4

2 2

2 2

∫ ∫

∫

=

= −

=

π

π

π

π

− −
    

u x du x dx
x u
x u

Let  cos , sin .
When 4, 2 2.
When 4, 2 2.

Zero width interval

π
π

= = −
= − =
= =

 

Definite Integrals of Symmetric Functions

The Substitution Formula in Theorem 7 simplifies the calculation of definite integrals of 
even and odd functions (Section 1.1) over a symmetric interval [ ]−a a,  (Figure 5.24).

FIGURE 5.24 (a) For f an even function, the integral from −a to a is twice the 
integral from 0 to a. (b) For f an odd function, the integral from −a to a equals 0.

x

y

0 a−a

(a)

x

y

0
a−a

(b)

THEOREM 8 Let f  be continuous on the symmetric interval [ ]−a a, .

(a) If f  is even, then f x dx f x dx( ) 2 ( ) .
a

a

a

0∫∫ =
−

(b) If f  is odd, then f x dx( ) 0.
a

a

∫ =
−

Which method is better—evaluating the transformed definite integral with trans-
formed limits using Theorem 7, or transforming the integral, integrating, and transforming 
back to use the original limits of integration? In Example 1, the first method seems easier, 
but that is not always the case. Generally, it is best to know both methods and to use which-
ever one seems better at the time.
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364 Chapter 5 Integrals

FIGURE 5.25 The region between the 
curves =y f x( ) and =y g x( ) and the 
lines =x a  and =x b.

x

y

a

b

Lower curve
y = g(x)

Upper curve
y = f (x)

FIGURE 5.26 We approximate the 
region with rectangles perpendicular to the 
x-axis.

x

y

y = f (x)

y = g(x)

b = xn

xn−1a = x0
x1

x2

FIGURE 5.27 The area ΔAk of the 
kth rectangle is the product of its height, 
f c g c( ) ( ),k k−  and its width, Δx .k

x

y

a

b

(ck, f (ck))

f (ck) − g(ck)

ΔAk
ck

(ck, g(ck))
Δxk

EXAMPLE 3  Evaluate x x dx4 6 .4 2

2

2

∫ − +
−

Solution Since f x x x( ) 4 64 2= − +  satisfies ( )− =f x f x( ), it is even on the sym-
metric interval [ ]−2, 2 , so

x x dx x x dx

x x x

4 6 2 4 6

2
5

4
3

6

2 32
5

32
3

12 232
15

.

4 2

2

2
4 2

0

2

5
3

0

2

∫ ∫

( )

− + = − +

= − +⎡
⎣⎢

⎤
⎦⎥

= − + =

−

 

Areas Between Curves
Suppose we want to find the area of a region that is bounded above by the curve =y f x( ), 
below by the curve =y g x( ), and on the left and right by the lines =x a and =x b 
(Figure 5.25). The region might accidentally have a shape whose area we could find with 
geometry, but if f  and g are arbitrary continuous functions, we usually have to find the area 
by computing an integral.

To see what the integral should be, we first approximate the region with n vertical 
rectangles based on a partition P x x x, , , n0 1 …{ }=  of [ ]a b,  (Figure 5.26). The area of 
the kth rectangle (Figure 5.27) is

A f c g c xheight width ( ) ( ) .k k k k[ ]Δ = × = − Δ

We then approximate the area of the region by adding the areas of the n rectangles:

A A f c g c x( ) ( ) . Riemann sum
k

n

k
k

n

k k k
1 1

∑ ∑ [ ]≈ Δ = − Δ
= =

As P 0,→   the sums on the right approach the limit [ ]∫ −f x g x dx( ) ( )a
b

 because f  and 
g are continuous. The area of the region is defined to be the value of this integral. That is,

� �
A f c g c x f x g x dxlim ( ) ( ) ( ) ( ) .

P
k

n

k k k
a

b

0
1

∑ ∫[ ] [ ]= − Δ = −
→ =

Proof of Part (a)

f x dx f x dx f x dx

f x dx f x dx

f u du f x dx

f u du f x dx

f u du f x dx

f x dx

( ) ( ) ( )

( ) ( )

( )

( )

( ) ( )

2 ( )

a

a a

a

aa

aa

aa

aa

a

0

0

00

00

00

00

0

∫ ∫∫

∫∫

∫∫

∫∫

∫∫

∫

( )( )

( )

= +

= − +

= − − − +

= − +

= +

=

− −

−

Additivity Rule for
Definite Integrals

Order of Integration Rule

u x du dx
x u
x a u a

Let  , .
When  0, 0.
When  , .

= − = −
= =
= − =

f
f u f u
 is even, so

( ).( )− =

The proof of part (b) is similar, and you are asked to give it in Exercise 120. 
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 5.6  Definite Integral Substitutions and the Area Between Curves 365

When applying this definition it is usually helpful to graph the curves. The graph reveals 
which curve is the upper curve f  and which is the lower curve g. It also helps you find the 
limits of integration if they are not given. You may need to find where the curves intersect 
to determine the limits of integration, and this may involve solving the equation 

=f x g x( ) ( ) for values of x. Then you can integrate the function −f g for the area 
between the intersections.

EXAMPLE 4  Find the area of the region bounded above by the curve = +−y e x2 x , 
below by the curve =y e 2x , on the left by =x 0, and on the right by =x 1.

Solution Figure 5.28 displays the graphs of the curves and the region whose area we 
want to find. The area between the curves over the interval ≤ ≤x0 1 is

A e x e dx e x e

e e

e
e

2 1
2

2 1
2

1
2

2 1
2

1
2

2 0 1
2

3 2
2

0.9051.

x x x x

0

1
2

0

1

1

∫

( ) ( )

( )= + −⎡
⎣⎢

⎤
⎦⎥

= − + −⎡
⎣⎢

⎤
⎦⎥

= − + − − − + −

= − − ≈

− −

−

 

EXAMPLE 5  Find the area of the region enclosed by the parabola = −y x2 2 and 
the line = −y x.

Solution First we sketch the two curves (Figure 5.29). The limits of integration are 
found by solving = −y x2 2 and = −y x simultaneously for x.

( )( )

− = −

− − =

+ − =
= − =

x x

x x

x x
x x

2

2 0

1 2 0
1, 2.

f x g xEquate  ( ) and  ( ).

Rearrange terms.

Factor.

Solve.

2

2

The region runs from = −x 1 to =x 2. The limits of integration are a b1, 2.= − =
The area between the curves is

∫ ∫

∫

( ) ( )

( )[ ]

( )

[ ] ( )= − = − − −

= + − = + −⎡
⎣⎢

⎤
⎦⎥

= + − − − + + =

−

− −

A f x g x dx x x dx

x x dx x x x

( ) ( ) 2

2 2
2 3

4 4
2

8
3

2 1
2

1
3

9
2

.

a

b
2

1

2

2

1

2 2 3

1

2

 

If the formula for a bounding curve changes at one or more points, we subdivide the 
region into subregions that correspond to the formula changes and apply the formula for 
the area between curves to each subregion.

DEFINITION If f  and g are continuous with ≥f x g x( ) ( ) throughout [ ]a b, , then 
the area of the region between the curves =y f x( ) and =y g x( ) from a to 
b is the integral of ( )−f g  from a to b:

∫ [ ]= −A f x g x dx( ) ( ) .
a

b

FIGURE 5.28 The region in Example 4 
with a typical approximating rectangle.

x

y

0

0.5

2

1

(x, f (x))

(x, g(x))

y = 2e−x + x

y =    ex
2
1

FIGURE 5.29 The region in Example 5 
with a typical approximating rectangle 
from a Riemann sum.

x

y

0−1 1 2

(−1, 1)

(x, f (x))

y = 2 − x2

(x, g(x))

Δx

y = −x (2, −2)
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366 Chapter 5 Integrals

EXAMPLE 6  Find the area of the region in the first quadrant that is bounded above by 
=y x  and below by the x-axis and the line = −y x 2.

Solution Figure 5.30 shows that the region’s upper boundary is the graph of 
f x x( ) .=  The lower boundary changes from g x( ) 0=  for x0 2≤ ≤  to g x x( ) 2= −  
for ≤ ≤x2 4 (both formulas agree at =x 2). We subdivide the region at =x 2 into 
subregions A and B, shown in Figure 5.30.

The limits of integration for region A are =a 0 and =b 2. The left-hand limit for 
region B is =a 2. To find the right-hand limit, we solve the equations =y x  and 

= −y x 2 simultaneously for x:

( )

( )( )

= −

= − = − +

− + =

− − =
= =

x x

x x x x

x x

x x
x x

2

2 4 4

5 4 0

1 4 0
1, 4.

f x g xEquate  ( ) and  ( ).

Square both sides.

Rewrite.

Factor.

Solve.

2 2

2

Only the value =x 4 satisfies the equation = −x x 2. The value =x 1 is an extrane-
ous root introduced by squaring. The right-hand limit is =b 4.

x f x g x x x

x f x g x x x x x

For 0 2: ( ) ( ) 0

For 2 4: ( ) ( ) 2 2( )

≤ ≤ − = − =

≤ ≤ − = − − = − +

We add the areas of subregions A and B to find the total area:

x dx x x dxTotal area 2
0

2

2

4

∫ ∫ ( )= + − +

x x x x2
3

2
3 2

23 2

0

2
3 2

2

2

4

= ⎡
⎣⎢

⎤
⎦⎥

+ − +⎡
⎣⎢

⎤
⎦⎥

2
3

2 0 2
3

4 8 8 2
3

2 2 43 2 3 2 3 2( ) ( )( ) ( ) ( )= − + − + − − +

2
3

8 2 10
3

.( )= − =

x = f (y)

Δy

y y

x

x

x

y

x = g(y)

0

c

d

x = g(y)

x = f (y)

0

c

d

0

c

d

x = f (y)

x = g(y)

Δy

Δy

FIGURE 5.30 When the formula for a 
bounding curve changes, the area integral 
changes to become the sum of integrals to 
match, one integral for each of the shaded 
regions shown here for Example 6.

x

y

0

2

42

y = 
"

x

y = 0

y = x − 2

(x, f (x))

(x, f (x))

(x, g(x))

(x, g(x))

A

B
(4, 2)Area =

2

0
"

x dx

Area =

4

2
(
"

x − x + 2) dx
L

L

use the formula

A f y g y dy( ) ( ) .
c

d

∫ [ ]= −

Integration with Respect to y

If a region’s bounding curves are described by functions of y, the approximating rectangles 
are horizontal instead of vertical, and the basic formula has y in place of x.

To find the areas of regions like these:

� ���������� ����������
area of B

� ����� �����
area of A
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 5.6  Definite Integral Substitutions and the Area Between Curves 367

In this equation f  always denotes the right-hand curve and g the left-hand curve, so 
−f y g y( ) ( ) is nonnegative.

EXAMPLE 7  Find the area of the region in Example 6 by integrating with respect to y.

Solution We first sketch the region and a typical horizontal rectangle based on a parti-
tion of an interval of y-values (Figure 5.31). The region’s right-hand boundary is the line 

= +x y 2, so = +f y y( ) 2. The left-hand boundary is the curve =x y ,2  so =g y y( ) .2  
The lower limit of integration is =y 0. We find the upper limit by solving = +x y 2 
and =x y 2 simultaneously for y:

( )( )

+ =

− − =

+ − =
= − =

= + =y y

y y

y y

y y

2

2 0

1 2 0

1, 2.

f y y g y yEquate ( ) 2 and  ( ) .

Rewrite.

Factor.

Solve.

2

2

2

The upper limit of integration is =b 2. (The value = −y 1 gives a point of intersection 
below the x-axis.)

The area of the region is

∫ ∫

∫

[ ]

[ ]

[ ]= − = + −

= + −

= + −⎡
⎣⎢

⎤
⎦⎥

= + − =

A f y g y dy y y dy

y y dy

y
y y

( ) ( ) 2

2

2
2 3

4 4
2

8
3

10
3

.

c

d
2

0

2

2

0

2

2 3

0

2

This is the result of Example 6, found with less work. 

Although it was easier to find the area in Example 6 by integrating with respect to y 
rather than x (as we did in Example 7), there is an easier way yet. Looking at Figure 5.32, 
we see that the area we want is the area between the curve =y x  and the x-axis for 

≤ ≤x0 4, minus the area of an isosceles triangle of base and height equal to 2. So by 
combining calculus with some geometry, we find

∫ ( )( )

( )

= −

= ⎤
⎦⎥

−

= − − =

x dx

x

Area 1
2

2 2

2
3

2

2
3

8 0 2 10
3

.

0

4

3 2

0

4

FIGURE 5.31 It takes two integrations 
to find the area of this region if we inte-
grate with respect to x. It takes only one if 
we integrate with respect to y (Example 7).

x

y

y = 0 2 40

2
(g(y), y)

( f (y), y)
f (y) − g(y)

(4, 2)

x = y + 2

x = y2

Δy

FIGURE 5.32 The area of the blue 
region is the area under the parabola 

=y x  minus the area of the triangle.

x

y

y = 0 2

2

40

2

2

(4, 2)

y = x − 2
Area = 2

y = 
"

x

Evaluating Definite Integrals
Use the Substitution Formula in Theorem 7 to evaluate the integrals in 
Exercises 1–48.

 1. a. ∫ +y dy1
0

3
 b. y dy1

1

0

∫ +
−

 2. a. ∫ −r r dr1 2

0

1
 b. r r dr1 2

1

1

∫ −
−

 3. a. x x dxtan sec 2

0

4

∫
π

 b. x x dxtan sec 2

4

0

∫ π−

EXERCISES 5.6
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368 Chapter 5 Integrals

 4. a. x x dx3 cos sin2

0∫
π

  b. x x dx3 cos sin2

2

3

∫ π

π

 5. a. t t dt13 4 3

0

1

∫ ( )+   b. t t dt13 4 3

1

1

∫ ( )+
−

 6. a. ∫ ( )+t t dt12 1 3

0

7
  b. t t dt12 1 3

7

0

∫ ( )+
−

 7. a. r
r

dr5
4 2 21

1

∫ ( )+−
  b. r

r
dr5

4 2 20

1

∫ ( )+

 8. a. d10
1 3 2 20

1

∫ υ
υ

υ
( )+

  b. d10
1 3 2 21

4

∫ υ
υ

υ
( )+

 9. a. ∫ +
x

x
dx4

120

3
  b. ∫ +−

x
x

dx4
123

3

 10. a. ∫ +
x

x
dx

9

3

40

1
  b. ∫ +−

x
x

dx
9

3

41

0

 11. a. ∫ +t t dt4 5
0

1
  b. ∫ +t t dt4 5

1

9

 12. a. t t dt1 cos 3 sin 3
0

6

∫ ( )−
π

  b. t t dt1 cos 3 sin 3
6

3

∫ ( )−
π

π

 13. a. 
z

z
dz

cos

4 3 sin0

2

∫ +

π
  b. 

z

z
dz

cos

4 3 sin∫ +π

π

−

 14. a. ∫ ( )+
π−

t t dt2 tan
2

sec
2

2

2

0

  b. ∫ ( )+
π

π

−

t t dt2 tan
2

sec
2

2

2

2

 15. ∫ ( )+ +t t t dt2 5 25 4

0

1
 16. ∫ ( )+

dy

y y2 1
21

4

 17. dcos 2 sin 23

0

6

∫ θ θ θ
π

−  18. ∫ θ θ θ( ) ( )
π

π
dcot

6
sec

6
5 2

3 2

 19. t t dt5 5 4 cos sin1 4

0∫ ( )−
π

 20. t t dt1 sin 2 cos 23 2

0

4

∫ ( )−
π

 21. ∫ ( ) ( )− + + − +−y y y y y dy4 4 1 12 2 42 3 2 3 2

0

1

 22. ∫ ( ) ( )+ − + + −−y y y y y dy6 12 9 4 43 2 1 2 2

0

1

 23. dcos ( )2 3 2

0

23

∫ θ θ θ
π

 24. ∫ ( )+−
−

−
t

t
dtsin 1 12 2

1

1 2

 25. e d1 sectan 2

0

4

∫ θ θ( )+ θ
π

 26. e d1 csccot 2

4

2

∫ θ θ( )+ θ

π

π

 27. 
t

t
dt

sin
2 cos0∫ −

π
 28. d

4 sin
1 4 cos0

3

∫
θ
θ
θ

−

π

 29. 
x

x
dx

2 ln
1

2

∫  30. 
dx

x xln2

4

∫

 31. dx
x xln 22

4

∫ ( )
 32. dx

x x2 ln2

16

∫

 33. ∫
π x dxtan

20

2
 34. t dtcot

4

2

∫π
π

 35. dtan cos
0

3
2∫ θ θ θ

π
 36. x dx6 tan 3

0

12

∫
π

 37. 
d2 cos

1 sin 22

2

∫
θ θ
θ( )+π

π

−
 38. x dx

x

csc

1 cot

2

26

4

∫ ( )+π

π

 39. 
e dx

e1

x

x0

ln 3

2∫ +
 40. 

dt
t t

4
1 ln

e

1 2

4

∫ ( )+

π

 41. ∫ −

ds

s

4

40

1

2
 42. ∫ −

( ) ds
s9 40

3 4 2

2

 43. ∫
( )

−

− x dx

x x

sec sec

1

2 1

22

2
 44. ∫

( )

−

− x dx

x x

cos sec

1

1

22 3

2

 45. ∫ −−

− dy
y y4 11

2 2

2
 46. ∫ +

y dy

y5 10

3

 47. ∫ +

− x
x

dxtan
1

1

20

1
 48. 

x
x

dx
cos tan 3

1 9

1

23

1 3

∫
( )
+

−

−

Area
Find the total areas of the shaded regions in Exercises 49–64.

 51. 
x

y

0−1

−1

−2

−3

−2−p

y = 3(sin x)
"

1 + cos x

 52. 

x

y

0−1−p

−1

1

p
2

−

y = (cos x)(sin(p + psin x))p
2

 53. 

x

y

pp
2

y = cos2 x

0

1 y = 1

 54. 

t

y

y = sec2 t1
2

p
3

p
3

− 0

1

2

−4

y = −4sin2 t

0 2−2
x

y

y = x"4 − x2

 50. 

x

y

0 p

y = (1 − cos x) sin x

 49. 
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 5.6  Definite Integral Substitutions and the Area Between Curves 369

Find the areas of the regions enclosed by the lines and curves in 
Exercises 65–74.

 65. = − =y x y2 and 22

 66. = − = −y x x y2 and 32

 67. = =y x y xand 84

 68. = − =y x x y x2 and2

 69. = = − +y x y x xand 42 2

 70. = − = +y x y x7 2 and 42 2

 71. = − + =y x x y x4 4 and4 2 2

 72. = − > =y x a x a y, 0, and 02 2

 73. = = +y x y xand 5 6 (How many intersection points 
are there?)

 74. ( )= − = +y x y x4 and 2 42 2

Find the areas of the regions enclosed by the lines and curves in 
Exercises 75–82.

 75. = = =x y x y2 , 0, and 32

 76. = = +x y x yand 22

 77. − = − =y x x y4 4 and 4 162

 78. − = + =x y x y0 and 2 32 2

 79. + = + =x y x y0 and 3 22 2

 80. − = + =x y x y0 and 22 3 4

 81. = − = −x y x y y1 and 12 2

 82. = − =x y y x yand 23 2

Find the areas of the regions enclosed by the curves in Exercises 83–86.

 83. + = − =x y x y4 4 and 12 4

 84. − = − =x y x y0 and 3 43 2

 85. + = + = ≥x y x y x4 4 and 1, for 02 4

 86. + = + =x y x y3 and 4 02 2

Find the areas of the regions enclosed by the lines and curves in 
Exercises 87–94.

 87. y x y x x2 sin and sin 2 , 0 π= = ≤ ≤

 88. y x y x x8 cos and sec , 3 32 π π= = − ≤ ≤

 89. π( )= = −y x y xcos 2 and 1 2

 90. π( )= =y x y xsin 2 and

 91. y x y x x xsec , tan , 4 , and 42 2 π π= = = − =

 92. π π= = − − ≤ ≤x y x y ytan and tan , 4 42 2

 93. x y y x y3 sin cos and 0, 0 2π= = ≤ ≤

 94. π( )= = − ≤ ≤y x y x xsec 3 and , 1 12 1 3

 55. 

x

y

−2 −1 1 2−1

8
(−2, 8) (2, 8)

y = 2x2

y = x 4 − 2x2

NOT TO SCALE

 56. 

0 1

1

x

y

(1, 1)

x = y2

x = y3

 57. 

x

y

0

1

1

x = 12y2 − 12y3

x = 2y2 − 2y

 58. 

x

y

−1 0

−2

1

1

y = x2

y = −2x4

 59. 

x

y

0 1 2

1

y = x
y = 1

y = x2

4

 60. 

0 1 2

1

x

y

y = x2
x + y = 2

 61. 

x

y

5

−4

(−3, 5)

(1, −3)(−3, −3)

10−3

y = x2 − 4

y = −x2 − 2x

 62. 

x

y

−10

2

1−1−2 2

(−2, −10)

y = 2x3 − x2 − 5x

y = −x2 + 3x

(2, 2)

 63. 

x

y

−1 1 2 3−2

2

−5

4

(3, −5)

(−2, 4) y = 4 − x2

y = −x + 2

 64. 

a       b

x

y

30

6

−2

y =
3
x

y = − x
3
x3

(3, 6)

(3, 1)

−2, −
3
2
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370 Chapter 5 Integrals

Area Between Curves

 95. Find the area of the propeller-shaped region enclosed by the 
curve − =x y 03  and the line − =x y 0.

 96. Find the area of the propeller-shaped region enclosed by the 
curves − =x y 01 3  and − =x y 0.1 5

 97. Find the area of the region in the first quadrant bounded by  
the line =y x, the line =x 2, the curve =y x1 ,2  and the 
x-axis.

 98. Find the area of the “triangular” region in the first quadrant 
bounded on the left by the y-axis and on the right by the curves 
y xsin=  and y xcos .=

 99. Find the area between the curves y xln=  and y xln 2=  from 
=x 1 to =x 5.

 100. Find the area between the curve y xtan=  and the x-axis from 
π= −x 4 to π=x 3.

 101. Find the area of the “triangular” region in the first quadrant that 
is bounded above by the curve =y e ,x2  below by the curve 

=y e ,x  and on the right by the line x ln 3.=

 102. Find the area of the “triangular” region in the first quadrant that 
is bounded above by the curve =y e ,x 2  below by the curve 

= −y e ,x 2  and on the right by the line x 2 ln 2.=

 103. Find the area of the region between the curve ( )= +y x x2 1 2  
and the interval − ≤ ≤x2 2 of the x-axis.

 104. Find the area of the region between the curve = −y 2 x1  and the 
interval − ≤ ≤x1 1 of the x-axis.

 105. The region bounded below by the parabola =y x 2 and above by 
the line =y 4 is to be partitioned into two subsections of equal 
area by cutting across it with the horizontal line =y c.

a. Sketch the region and draw a line =y c across it that looks 
about right. In terms of c, what are the coordinates of the 
points where the line and parabola intersect? Add them to 
your figure.

b. Find c by integrating with respect to y. (This puts c in the 
limits of integration.)

c. Find c by integrating with respect to x. (This puts c into the 
integrand as well.)

 106. Find the area of the region between the curve = −y x3 2 and 
the line = −y 1 by integrating with respect to a. x, b. y.

 107. Find the area of the region in the first quadrant bounded  
on the left by the y-axis, below by the line =y x 4, above left 
by the curve = +y x1 , and above right by the curve 

=y x2 .

 108. Find the area of the region in the first quadrant bounded on 
the left by the y-axis, below by the curve =x y2 , above left 
by the curve ( )= −x y 1 ,2  and above right by the line 

= −x y3 .

 109. The figure here shows triangle AOC inscribed in the region cut 
from the parabola =y x 2 by the line =y a .2  Find the limit of 
the ratio of the area of the triangle to the area of the parabolic 
region as a approaches zero.

x

y

0

1

2

1 2

x = 2
"

y

x = 3 − y

x = (y − 1)2 

x

y

CA

O−a a

y = x2

y = a2

(a, a2)(−a, a2)

 110. Suppose the area of the region between the graph of a positive 
continuous function f  and the x-axis from =x a  to =x b  is  
4 square units. Find the area between the curves =y f x( ) and 

=y f x2 ( ) from =x a  to =x b.

 111. Which of the following integrals, if either, calculates the area of 
the shaded region shown here? Give reasons for your answer.

a. x x dx x dx2
1

1

1

1

∫ ∫( )( )− − =
− −

b. x x dx x dx2
1

1

1

1

∫ ∫( )( )− − = −
− −

x

y

−1

−1

1

1

y = −x y = x

 112. True, sometimes true, or never true? The area of the region between 
the graphs of the continuous functions =y f x( ) and =y g x( ) 
and the vertical lines =x a and ( )= <x b a b  is

∫ [ ]−f x g x dx( ) ( ) .
a

b

Give reasons for your answer.

Comparing Areas
Compute the areas of the light blue and dark blue regions in each 
of Exercises 113 to 116 and determine which is larger, or show that 
they have equal area.

 113. 

x

y

0 p

1

p
2

y = sin x + 0.6

y = sin x
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 5.6  Definite Integral Substitutions and the Area Between Curves 371

 114.  121. If f is a continuous function, find the value of the integral

∫ ( )
=

+ −
I

f x dx
f x f a x

( )
( )

a

0

by making the substitution = −u a x  and adding the resulting 
integral to I.

 122. By using a substitution, prove that for all positive numbers x and y,

∫ ∫=
t

dt
t

dt1 1 .
x

xy y

1

The Shift Property for Definite Integrals A basic property of 
definite integrals is their invariance under translation, as expressed 
by the equation

∫ ∫ ( )= +
−

−
f x dx f x c dx( )

a

b

a c

b c
 (1)

The equation holds whenever f  is integrable and defined for the 
necessary values of x. For example, in the accompanying figure, 
show that

x dx x dx2 3

2

1
3

0

1

∫ ∫( )+ =
−

−

because the areas of the shaded regions are congruent.

x

y

0 1−1−2

y = (x + 2)3 y = x3 

 123. Use a substitution to verify Equation (1).

 124. For each of the following functions, graph f x( ) over [ ]a b,  and 
( )+f x c  over [ ]− −a c b c,  to convince yourself that Equa-

tion (1) is reasonable.

a. = = = =f x x a b c( ) , 0, 1, 12

b. f x x a b c( ) sin , 0, , 2π π= = = =

c. = − = = =f x x a b c( ) 4, 4, 8, 5

COMPUTER EXPLORATIONS
In Exercises 125–128, you will find the area between curves in the 
plane when you cannot find their points of intersection using simple 
algebra. Use a CAS to perform the following steps:

  a.  Plot the curves together to see what they look like and how 
many points of intersection they have.

  b.  Use the numerical equation solver in your CAS to find all the 
points of intersection.

  c.  Integrate −f x g x( ) ( )  over consecutive pairs of intersection 
values.

  d. Sum together the integrals found in part (c).

 125. = − − + = −f x x x x g x x( )
3 2

2 1
3

, ( ) 1
3 2

 126. = − + = −f x x x g x x( )
2

3 10, ( ) 8 12
4

3

 127. ( )= + =f x x x g x x( ) sin 2 , ( ) 3

 128. f x x x g x x x( ) cos , ( )2 3= = −

x

y

0

1

p
2

p
4

y = sin x + cos x

y = sin x

 115. 

x

y

0 1

1

y = ex − 1

3
2

y = ex − 1 +    (1 − x)2

 116. 

x

y

0 1

1

2
3

y =    x2

2
3

y =    x2 + (1 − x)3

Theory and Examples

 117. Suppose that F x( ) is an antiderivative of f x x x( ) sin ,( )=  
>x 0. Express

x
x

dx
sin 2

1

3

∫

in terms of F.

 118. Show that if f  is continuous, then

∫ ∫ ( )= −f x dx f x dx( ) 1 .
0

1

0

1

 119. Suppose that

∫ =f x dx( ) 3.
0

1

Find

∫−
f x dx( )

1

0

if a.   f  is odd, b.   f  is even.

 120. a. Show that if f  is odd on [ ]−a a, , then

∫ =
−

f x dx( ) 0.
a

a

b. Test the result in part (a) with f x x( ) sin=  and π=a 2.
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372 Chapter 5 Integrals

Finite Sums and Estimates

 1. The accompanying figure shows the graph of the velocity m s( )  
of a model rocket for the first 8 s after launch. The rocket  
accelerated straight up for the first 2 s and then coasted to reach its 
maximum height at t 8 s.

CHAPTER 5 Practice Exercises

 1. How can you sometimes estimate quantities like distance traveled, 
area, and average value with finite sums? Why might you want to 
do so?

 2. What is sigma notation? What advantage does it offer? Give  
examples.

 3. What is a Riemann sum? Why might you want to consider such  
a sum?

 4. What is the norm of a partition of a closed interval?

 5. What is the definite integral of a function f  over a closed interval 
[ ]a b, ? When can you be sure it exists?

 6. What is the relation between definite integrals and area? Describe 
some other interpretations of definite integrals.

 7. What is the average value of an integrable function over a closed 
interval? Must the function assume its average value? Explain.

 8. Describe the rules for working with definite integrals (Table 5.6). 
Give examples.

 9. What is the Fundamental Theorem of Calculus? Why is it so 
important? Illustrate each part of the theorem with an example.

 10. What is the Net Change Theorem? What does it say about the 
integral of velocity? The integral of marginal cost?

 11. Discuss how the processes of integration and differentiation can 
be considered as “inverses” of each other.

 12. How does the Fundamental Theorem provide a solution to the  
initial value problem dy dx f x y x y( ), ( ) ,0 0  when f  is 
continuous?

 13. How is integration by substitution related to the Chain Rule?

 14. How can you sometimes evaluate indefinite integrals by substitution? 
Give examples.

 15. How does the method of substitution work for definite integrals? 
Give examples.

 16. How do you define and calculate the area of the region between 
the graphs of two continuous functions? Give an example.

CHAPTER 5 Questions to Guide Your Review

2 4 6 80

50

100

150

200

Time after launch (s)

V
el

oc
ity

 (
m

/s
)

 a. Assuming that the rocket was launched from ground level, 
about how high did it go? (This is the rocket in Section 3.4, 
Exercise 17, but you do not need to do Exercise 17 to do the 
exercise here.)

 b. Sketch a graph of the rocket’s height above ground as a func-
tion of time for t0 8.

 2. a.  The accompanying figure shows the velocity ( )m s  of a body 
moving along the s-axis during the time interval from t 0 
to t 10 s. About how far did the body travel during those 
10 s?

 b. Sketch a graph of s as a function of t for t0 10, assum-
ing s(0) 0.

0

1

2 4 6 8 10

2

3

4

5

Time (s)

V
el

oc
ity

 (
m

/s
)

 3. Suppose that ∑ = −
=

a 2
k

k
1

10

 and ∑ =
=

b 25.
k

k
1

10

 Find the value of

 a. ∑
=

a
4k

k

1

10

 b. ∑( )−
=

b a3
k

k k
1

10

 c. ∑( )+ −
=

a b 1
k

k k
1

10

 d. ∑( )−
=

b5
2k

k
1

10

 4. Suppose that ∑ =
=

a 0
k

k
1

20

 and ∑ =
=

b 7.
k

k
1

20

 Find the value of

 a. ∑
=

a3
k

k
1

20

 b. ∑( )+
=

a b
k

k k
1

20

 c. ∑( )−
=

b1
2

2
7k

k

1

20

 d. ∑( )−
=

a 2
k

k
1

20
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 Chapter 5  Practice Exercises 373

Definite Integrals
In Exercises 5–8, express each limit as a definite integral. Then evalu-
ate the integral to find the value of the limit. In each case, P is a par-
tition of the given interval, and the numbers ck are chosen from the 
subintervals of P.

 5. ∑( )− Δ
→ =

−c xlim 2 1 ,
P

k

n

k k
0

1

1 2

� �
 where P is a partition of 1, 5[ ]

 6. ∑ ( )− Δ
→ =

c c xlim 1 ,
P

k

n

k k k
0

1

2 1 3

� �
 where P is a partition of 1, 3[ ]

 7. ∑ ( )( ) Δ
→ =

c
xlim cos

2
,

P
k

n
k

k
0

1
� �

 where P is a partition of , 0π[ ]−

 8. c c xlim (sin )(cos ) ,
P

k

n

k k k
0

1
∑ Δ

→ =� �
 where P is a partition of 0, 2π[ ]

 9. If ∫ = ∫ =− −f x dx f x dx3 ( ) 12, ( ) 62
2

2
5

, and ∫ =− g x dx( ) 2,2
5

 
find the value of each of the following.

 a. ∫−
f x dx( )

2

2
 b. ∫ f x dx( )

2

5

 c. ∫
−

g x dx( )
5

2
 d. ∫ π−

−
g x dx( ( ))

2

5

 e. ∫ ( )+
−

f x g x
dx

( ) ( )
52

5

 10. If π∫ = ∫ =f x dx g x dx( ) , 7 ( ) 7,0
2

0
2

 and ∫ =g x dx( ) 2,0
1

 find 
the value of each of the following.

 a. ∫ g x dx( )
0

2
 b. ∫ g x dx( )

1

2

 c. ∫ f x dx( )
2

0
 d. ∫ f x2 ( ) dx

0

2

 e. g x f x dx( ) 3 ( )
0

2

∫ ( )−

Area
In Exercises 11–14, find the total area of the region between the graph 
of f  and the x-axis.

 11. = − + ≤ ≤f x x x x( ) 4 3, 0 32

 12. ( )= − − ≤ ≤f x x x( ) 1 4 , 2 32

 13. = − − ≤ ≤f x x x( ) 5 5 , 1 82 3

 14. = − ≤ ≤f x x x( ) 1 , 0 4

Find the areas of the regions enclosed by the curves and lines in  
Exercises 15–26.

 15. y x y x x, 1 , 22= = =

 16. y x y x x, 1 , 2= = =

 17. x y x y1, 0, 0+ = = =

x

y

1

0 1

"

x + 
"

y = 1

 18. x y x y x1, 0, 0, for 0 13 + = = = ≤ ≤

x

y

0 1

1
x3 + 

"

y = 1,  0 ≤ x ≤ 1

 19. x y x y2 , 0, 32= = =  20. x y x4 , 02= − =

 21. y x y x4 , 4 22 = = −

 22. y x y x4 4, 4 162 = + = −

 23. y x y x xsin , , 0 4π= = ≤ ≤

 24. y x y xsin , 1, 2 2π π= = − ≤ ≤

 25. y x y x x2 sin , sin 2 , 0 π= = ≤ ≤

 26. y x y x x8 cos , sec , 3 32 π π= = − ≤ ≤

 27. Find the area of the “triangular” region bounded on the left by 
x y 2,+ =  on the right by y x ,2=  and above by y 2.=

 28. Find the area of the “triangular” region bounded on the left by 
y x ,=  on the right by y x6 ,= −  and below by y 1.=

 29. Find the extreme values of f x x x33 2( ) = − , and find the area 
of the region enclosed by the graph of f and the x-axis.

 30. Find the area of the region cut from the first quadrant by the curve 
x y a .1 2 1 2 1 2+ =

 31. Find the total area of the region enclosed by the curve x y 2 3=  
and the lines x y=  and y 1.= −

 32. Find the total area of the region between the curves y xsin=  and 
y xcos=  for x0 3 2.π≤ ≤

 33. Find the area between the curve y x x2 ln( )=  and the x-axis 
from x 1=  to x e.=

 34. a. Show that the area between the curve y x1=  and the x-axis 
from x 10=  to x 20=  is the same as the area between the 
curve and the x-axis from x 1=  to x 2.=

  b. Show that the area between the curve y x1=  and the x-axis 
from ka to kb is the same as the area between the curve and 
the x-axis from x a=  to ( )= < < >x b a b k0 , 0 .

Initial Value Problems

 35. Show that y x
t

dt1x
2

1∫= +  solves the initial value problem

= − ′ = =d y
dx x

y y2 1 ; (1) 3, (1) 1.
2

2 2

 36. Show that y t dt1 2 sec
x

0∫ ( )= +  solves the initial value 
problem

d y
dx

x x y ysec tan ; (0) 3, (0) 0.
2

2
= ′ = =

Express the solutions of the initial value problems in Exercises 37  
and 38 in terms of integrals.

 37. dy
dx

x
x

y
sin

, (5) 3= = −

 38. 
dy
dx

x y2 sin , ( 1) 22= − − =
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374 Chapter 5 Integrals

Solve the initial value problems in Exercises 39–42.

 39. 
dy
dx x

y1
1

, (0) 0
2

=
−

=

 40. 
dy
dx x

y1
1

1, (0) 1
2

=
+

− =

 41. 
dy
dx x x

x y1
1

, 1; (2)
2

π=
−

> =

 42. 
dy
dx x x

y1
1

2
1

, (0) 2
2 2

=
+

−
−

=

For Exercises 43 and 44, find a function f that satisfies each equation.

 43. f x t f t dt( ) 1 ( )
x

1∫= +  44. f x f t dt( ) 1 ( )
x

2

0∫ ( )= +

Evaluating Indefinite Integrals
Evaluate the integrals in Exercises 45–76.

 45. x x dx2 cos sin1 2∫ ( )−  46. x x dxtan sec3 2 2∫ ( )−

 47. d2 1 2 cos 2 1∫ θ θ θ( )( )+ + +

 48. d1
2

2 sec 22∫ θ π
θ π θ( )( )

−
+ −

 49. t
t

t
t

dt2 2∫ ( )( )− +

 50. ∫ + −t
t

dt( 1) 12

4
 51. t t dtsin 2 3 2∫ ( )

 52. dsec tan 1 sec∫ θ θ θ θ( ) +

 53. e e dxsec 7x x2∫ ( )−

 54. e e e dycsc 1 cot 1y y y∫ ( ) ( )+ +

 55. x e dxsec x2 tan∫ ( )  56. x e dxcsc x2 cot∫ ( )

 57. ∫ −−

dx
x3 41

1
 58. 

x
x

dx
lne

1∫

 59. t
t

dt2
2520

4

∫ −
 60. d

tan ln
∫

υ
υ

υ
( )

 61. 
x
x

dx
ln 3

∫
( )−

 62. 
r

r dr1 csc 1 ln2∫ ( )+

 63. x dx3 x 2∫  64. x dx2 secxtan 2∫

 65. 
dr

r

3

1 4 1 2∫
( )− −

 66. 
dr

r

6

4 1 2∫
( )− +

 67. dx
x2 1 2∫ ( )+ −

 68. dx
x1 3 1 2∫ ( )+ +

 69. dx

x x(2 1) 2 1 42∫
( )− − −

 70. dx

x x3 3 252∫
( ) ( )+ + −

 71. 
e dx

x x2

xarcsin

2∫ −
 72. 

x dx

x

arcsin

1 2∫ −

 73. 
dy
y yarctan 1 2∫ ( )+

 74. x dx
x

arctan
1

2

2∫
( )

+

 75. d
sin 2 cos 2

sin 2 cos 2 3∫
θ θ
θ θ

θ
( )

−
+

 76. dcos sin sin∫ θ θ θ( )⋅

Evaluating Definite Integrals
Evaluate the integrals in Exercises 77–116.

 77. x x dx3 4 72

1

1

∫ ( )− +
−

 78. s s ds8 12 5
0

1
3 2∫ ( )− +

 79. d4
1

2

2∫ υ
υ  80. x dx4 3

1

27

∫ −

 81. dt
t t1

4

∫  82. ∫
( )+ u

u
du

1
1 2

1

4

 83. 
dx

x

36

2 10

1

3∫ ( )+
 84. dr

r7 50

1

23∫
( )−

 85. x x dx11 3

1 8

1
2 3 3 2∫ ( )−−  86. x x dx1 93 4 3 2

0

1 2

∫ ( )+ −

 87. r drsin 5
0

2∫
π

 88. t dtcos 4
40

4
2∫ π( )−

π

 89. dsec
0

3
2∫ θ θ

π
 90. x dxcsc

4

3 4
2∫π

π

 91. x dxcot
6

3
2∫π

π
 92. dtan

30

2∫ θ θ
π

 93. x x dxsec tan
3

0

∫ π−
 94. z z dzcsc cot

4

3 4

∫π
π

 95. x x dx5 sin cos
0

2 3 2∫ ( )
π

 96. x x dx15 sin 3 cos 34

2

2

∫ π

π

−

 97. 
x x

x
dx

3 sin cos

1 3 sin0

2

2∫ +

π
 98. x

x
dxsec

1 7 tan0

4 2

2 3∫ ( )+

π

 99. ∫ ( )+x
x

dx
8

1
21

4
 100. ∫ ( )−

x x
dx2

3
8

21

8

 101. e dxx 1

2

1

∫ ( )− +
−

−
 102. e dww2

ln 2

0

∫−

 103. e e dr3 1r r 3 2

0

ln 5

∫ ( )+ −  104. e e d1 1 2

0

ln 9

∫ θ( )−θ θ

 105. 
x

x dx1 1 7 ln
e 1 3

1∫ ( )+ −  106. dln 1
1

2

1

3

∫ υ
υ

υ( )( )+
+

 107. ∫
θ
θ

θd
log4

1

8
 108. d

8 ln 3 loge
3

1∫
θ

θ
θ

 109. ∫ −−

dx

x

6

9 4 23 4

3 4
 110. ∫ −−

dx

x

6

4 25 21 5

1 5

 111. ∫ +−

dt
t

3
4 3 22

2
 112. ∫ +

dt
t3 23

3

 113. ∫ −
dy

y y4 121 3

1
 114. ∫ −

dy

y y

24

1624 2

8

 115. ∫ −
dy

y y9 122 3

2 3

 116. ∫ −−

− dy
y y5 322 5

6 5

Average Values

 117. Find the average value of f x mx b( ) = +

a. over 1,1[ ]− b. over k k,[ ]−

 118. Find the average value of

a. y x3=  over 0, 3[ ] b. y ax=  over a0,[ ]
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 Chapter 5  Additional and Advanced Exercises 375

 119. Let f  be a function that is differentiable on a b,[ ]. In Chapter 2 
we defined the average rate of change of f  over a b,[ ] to be

−
−

f b f a
b a

( ) ( )

and the instantaneous rate of change of f  at x to be f x( ).′  In this 
chapter we defined the average value of a function. For the new defi-
nition of average to be consistent with the old one, we should have

f b f a
b a

f a b
( ) ( )

average value of   on  , .[ ]−
−

= ′

Is this the case? Give reasons for your answer.

 120. Is it true that the average value of an integrable function over an 
interval of length 2 is half the function’s integral over the interval? 
Give reasons for your answer.

 121. a. Verify that x dx x x x Cln ln .∫ = − +

b. Find the average value of ln x over e1,[ ].

 122. Find the average value of =f x x( ) 1  on 1, 2[ ].

 123. Compute the average value of the temperature function

f x x( ) 20 sin 2
365

( 101) 4π( )= − −

for a 365-day year. (See Exercise 98, Section 3.6.) This is one way 
to estimate the annual mean air temperature in Fairbanks, Alaska. 
The National Weather Service’s official figure, a numerical average 
of the daily normal mean air temperatures for the year, is 3.5 C− ° , 
which is slightly higher than the average value of f x( ).

 124. Specific heat of a gas  Specific heat Cυ is the amount of heat 
required to raise the temperature of one mole (gram molecule) of 
a gas with constant volume by 1 C.°  The specific heat of oxygen 
depends on its temperature T and satisfies the formula

C T T8.27 10 26 1.87 .5 2( )= + −υ
−

Find the average value of υC  for T20 C 675 C° ≤ ≤ °  and the 
temperature at which it is attained.

Differentiating Integrals
In Exercises 125–132, find dy dx.

 125. y t dt2 cos
x

3

2∫= +  126. y t dt2 cos
x

3

2

7 2

∫= +

 127. y
t

dt6
3x 4

1

∫=
+

 128. y
t

dt1
1x 2sec

2

∫=
+

 129. y e dtt

x

cos

ln

0

2∫=  130. y t dtln 1
e x

2

1∫ ( )= +

 131. y dt
t1 2

x

20

sin 1

∫=
−

−

 132. y e dtt

xtan

4

1∫=
π

−

T

T

Theory and Examples

 133. Is it true that every function y f x( )=  that is differentiable on 
a b,[ ] is itself the derivative of some function on a b,[ ]? Give  

reasons for your answer.

 134. Suppose that f x( ) is an antiderivative of f x x( ) 1 4= + .  

Express x dx10
1 4∫ +  in terms of F and give a reason for your 

answer.

 135. Find dy dx if y t dt1x
1 2= ∫ + . Explain the main steps in your  

calculation.

 136. Find dy dx if = ∫ / −y t dt(1 (1 ) )xcos
0 2 . Explain the main steps 

in your calculation.

 137. A new parking lot To meet the demand for parking, your town 
has allocated the area shown here. As the town engineer, you have 
been asked by the town council to find out if the lot can be built 
for $10,000. The cost to clear the land will be $1.00 a square  
meter, and the lot will cost $2.00 a square meter to pave. Can 
the job be done for $10,000? Use a lower sum estimate to see.  
(Answers may vary slightly, depending on the estimate used.)

0 m

12 m

18 m

17 m

16.5 m

18 m

21 m

22 m

14 m

Ignored

Vertical spacing = 5 m

 138. Skydivers A and B are in a helicopter hovering at 2000 m. Sky-
diver A jumps and descends for 4 s before opening her parachute. 
The helicopter then climbs to 2200 m and hovers there. Forty-five 
seconds after A leaves the aircraft, B jumps and descends for 13 s 
before opening his parachute. Both skydivers descend at 4.9 m s 
with parachutes open. Assume that the skydivers fall freely (no 
effective air resistance) before their parachutes open.

a. At what altitude does A’s parachute open?

b. At what altitude does B’s parachute open?

c. Which skydiver lands first?

CHAPTER 5 Additional and Advanced Exercises

Theory and Examples

 1. a. If ∫ =f x dx7 ( ) 7,
0

1
 does ∫ =f x dx( ) 1?

0

1

 b. If ∫ =f x dx( ) 4
0

1
 and ≥f x( ) 0,  does

∫ = =f x dx( ) 4 2?
0

1

Give reasons for your answers.

 2. Suppose f x dx f x dx g x dx( ) 4, ( ) 3, ( ) 2.
2

2

2

5

2

5

∫ ∫ ∫= = =
− −

 

Which, if any, of the following statements are true?

 a. ∫ = −f x dx( ) 3
5

2
 b. ∫ ( )+ =

−
f x g x dx( ) ( ) 9

2

5

 c. ≤f x g x( ) ( ) on the interval x2 5− ≤ ≤
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376 Chapter 5 Integrals

function, we integrate the individual extensions and add the results. 
The integral of

=

− − ≤ <

≤ <

− ≤ ≤

⎧

⎨

⎪⎪⎪⎪⎪

⎩
⎪⎪⎪⎪⎪

f x

x x

x x

x

( )

1 , 1 0

, 0 2

1, 2 3

2

(Figure 5.33) over 1, 3[ ]−  is

f x dx x dx x dx dx

x x x x

( ) 1 1

2 3
3
2

8
3

1 19
6

.

1

3

1

0
2

0

2

2

3

2

1

0 3

0

2

2

3

∫ ∫ ∫ ∫( ) ( )= − + + −

= −⎡
⎣⎢

⎤
⎦⎥

+ ⎡
⎣⎢

⎤
⎦⎥

+ −⎡
⎣⎢

⎤
⎦⎥

= + − =

− −

−

x

y

2

20 31−1

1

3

4

−1

y = x2

y = 1 − x

y = −1

FIGURE 5.33 Piecewise continuous  
functions like this are integrated piece by piece.

The Fundamental Theorem applies to piecewise continuous func-
tions with the restriction that ( )∫d dx f t dt( )a

x
 is expected to equal f x( ) 

only at values of x at which f  is continuous. There is a similar restriction 
on Leibniz’s Rule (see Exercises 25–32).

Graph the functions in Exercises 11–16 and integrate them over 
their domains.

 11. =
− ≤ <

− ≤ ≤

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x
x x

x
( )

, 8 0

4, 0 3

2 3

 12. =
− − ≤ <

− ≤ ≤

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x
x x

x x
( )

, 4 0

4, 0 32

 13. 
π

=
≤ <
≤ ≤

⎧
⎨
⎪⎪

⎩⎪⎪
g t

t t
t t

( )
, 0 1

sin , 1 2

 14. h z
z z

z z

1 , 0 1

(7 6) , 1 21 3
( ) =

− ≤ <
− ≤ ≤

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

−

 15. =
− ≤ < −

− − ≤ <

≤ ≤

⎧

⎨

⎪⎪⎪⎪⎪

⎩
⎪⎪⎪⎪⎪

f x

x

x x

x

( )

1, 2 1

1 , 1 1

2, 1 2

2

 16. h r

r r

r r

r

, 1 0

1 , 0 1

1, 1 2

2( ) =
− ≤ <

− ≤ <

≤ ≤

⎧

⎨

⎪⎪⎪⎪⎪

⎩
⎪⎪⎪⎪⎪

 3. Initial value problem Show that

y
a

f t a x t dt1 ( ) sin
x

0∫ ( )= −

solves the initial value problem

+ = = = =d y
dx

a y f x
dy
dx

y x( ), 0 and  0 when  0.
2

2
2

(Hint: ax at ax at ax atsin sin cos cos sin .( )− = − )

 4. Proportionality Suppose that x and y are related by the equation

x
t

dt1
1 4

.
y

0 2∫=
+

Show that d y dx2 2  is proportional to y, and find the constant of 
proportionality.

 5. Find f (4) if

 a. ∫ π=f t dt x x( ) cos
x

0

2

 b. ∫ π=t dt x xcos .
f x

2

0

( )

 6. Find f 2π( ) from the following information.
 i) f is positive and continuous.
 ii) The area under the curve =y f x( ) from x 0=  to x a=  is

a a a a
2 2

sin
2

cos .
2 π+ +

 7. The area of the region in the xy-plane enclosed by the x-axis, the 
curve = ≥y f x f x( ), ( ) 0, and the lines x 1=  and x b=  is 

equal to b 1 22 + −  for all b 1.>  Find f x( ).
 8. Prove that

∫ ∫ ∫( ) ( )= −f t dt du f u x u du( ) ( ) .
x u x

0 0 0

(Hint: Express the integral on the right-hand side as the difference 
of two integrals. Then show that both sides of the equation have 
the same derivative with respect to x.)

 9. Finding a curve Find the equation for the curve in the xy-plane 
that passes through the point 1, 1( )−  if its slope at x is always 
x3 2.2 +

 10. Shoveling dirt You sling a shovelful of dirt up from the bottom 
of a hole with an initial velocity of 9.8 m s. The dirt must rise 
5.2 m above the release point to clear the edge of the hole. Is that 
enough speed to get the dirt out, or had you better duck?

Piecewise Continuous Functions
Although we are mainly interested in continuous functions, many 
functions in applications are piecewise continuous. A function f x( ) 
is piecewise continuous on a closed interval I if f  has only finitely 
many discontinuities in I, the limits

f x f xlim ( ) and lim ( )
x c x c→ →− +

exist and are finite at every interior point of I, and the appropriate one-
sided limits exist and are finite at the endpoints of I. All piecewise con-
tinuous functions are integrable. The points of discontinuity subdivide I  
into open and half-open subintervals on which f  is continuous, and 
the limit criteria above guarantee that f  has a continuous extension to 
the closure of each subinterval. To integrate a piecewise continuous 
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 Chapter 5  Additional and Advanced Exercises 377

Leibniz’s Rule
If f  is continuous on a b,[ ] and if u x( ) and υ x( ) are differen-
tiable functions of x whose values lie in a b,[ ], then

d
dx

f t dt f x d
dx

f u x du
dx

( ) ( ( )) ( ( )) .
u x

x

( )

( )

∫ υ υ= −
υ

 17. Find the average value of the function graphed in the accompany-
ing figure.

x

y

0 1 2

1

 18. Find the average value of the function graphed in the accompany-
ing figure.

x

y

1

1 2 30

Limits
Find the limits in Exercises 19–22.

 19. ∫ −→ −

dx
x

lim
1b

b

1 0 2
 20. ∫

→∞ x
t dtlim 1 arctan

x

x

0

 21. ( )+
+

+
+ +

→∞ n n n
lim 1

1
1

2
1

2n
�

 22. ( )+ + + +( )

→∞

−

n
e e e elim 1

n

n n n n n n1 2 1�

Defining Functions Using the Fundamental Theorem
 23. A function defined by an integral The graph of a function 

f  consists of a semicircle and two line segments as shown. Let 
= ∫g x f t dt( ) ( ) .

x

1

y

1 3−3

y = f(x)

−1
−1

1

3

x

 a. Find g(1).  b. Find g(3).  c. Find g 1 .( )−

 d. Find all values of x on the open interval 3, 4( )−  at which g 
has a relative maximum.

 e. Write an equation for the line tangent to the graph of g at 
x 1.= −

 f. Find the x-coordinate of each point of inflection of the graph 
of g on the open interval 3, 4 .( )−

 g. Find the range of g.

 24. A differential equation Show that both of the following condi-
tions are satisfied by y x t dtsin cos 2 1x= + ∫ +

π
:

 i) y x xsin 2 sin 2′′ = − +

 ii) y 1=  and y 2′ = −  when x .π=

Leibniz’s Rule In applications, we sometimes encounter functions 
defined by integrals that have variable upper limits of integration and 
variable lower limits of integration at the same time. We can find the 
derivative of such an integral by a formula called Leibniz’s Rule.

To prove the rule, let F be an antiderivative of f  on a b,[ ]. Then

∫ υ= −
υ

f t dt F x F u x( ) ( ( )) ( ( )).
u x

x

( )

( )

Differentiating both sides of this equation with respect to x gives the 
equation we want:

∫ υ

υ υ

υ υ

[ ]= −

= ′ − ′

= −

υd
dx

f t dt d
dx

F x F u x

F x d
dx

F u x du
dx

f x d
dx

f u x du
dx

( ) ( ( )) ( ( ))

( ( )) ( ( ))

( ( )) ( ( )) .

Chain Rule

u x

x

( )

( )

Use Leibniz’s Rule to find the derivatives of the functions in 
Exercises 25–32.

 25. f x
t

dt( ) 1
x

x

1∫=  26. f x
t

dt( ) 1
1x

x

2cos

sin

∫=
−

 27. g y t dt( ) sin
y

y2
2∫=  28. g y e

t
dt( )

t

y

y2

∫=

 29. y t dtln
x

x

22

2

∫=  30. ∫=y t dtln
x

x3

 31. y e dtsin
x

t

0

ln

∫=  32. ∫=y t dtln
e

e

x

x

4

2

Theory and Examples
 33. Use Leibniz’s Rule to find the value of x that maximizes the value 

of the integral

t t dt5 .
x

x 3

∫ ( )−
+

 34. For what x 0>  does x x ?x x xx ( )=( )  Give reasons for your 
answer.

 35. For the two curves y x x2 log2( )=  and y x x2 log4( )= :
 a. Find the area between the first curve and the x-axis from 

x 1=  to x e= .

 b. Find the area between the second curve and the x-axis from 
x 1=  to x e= .

 c. Consider the two areas obtained in parts (a) and (b). What is 
the ratio of the larger area to the smaller?

 36. a. Find df dx if

∫=f x
t

t
dt( )

2 ln
.

e

1

x

 b. Find f (0).

 c. What can you conclude about the graph of f ? Give reasons 
for your answer.

 37. Find f (2)′  if =f x e( ) g x( ) and ∫=
+

g x t
t

dt( )
1

.
x

42
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378 Chapter 5 Integrals

For example, let’s estimate the sum of the square roots of the first 
n positive integers, n1 2 .�+ + +  The integral

∫ = ⎤
⎦⎥

=x dx x2
3

2
30

1
3 2

0

1

is the limit of the upper sums

= ⋅ + ⋅ + + ⋅

= + + +

�

�

S
n n n n

n
n n

n
n

1 1 2 1 1

1 2 .

n

3 2

x

y

0

y = 
"

x

1 1
n

2
n

n − 1
n

Therefore, when n is large, Sn  will be close to 2 3 and we will have

n S n nRoot sum 1 2 2
3

.n
3 2 3 2�= + + + = ⋅ ≈

The following table shows how good the approximation can be.

n Root sum ( )2 3 3 2n Relative error

10 22.468 21.082 1.386 22.468 6%≈
50 239.04 235.70 1.4%

100 671.46 666.67 0.7%

1000 21,097 21,082 0.07%

 41. Evaluate

n
n

lim 1 2 3
n

5 5 5 5

6

�+ + + +
→∞

by showing that the limit is

∫ x dx
0

1
5

and evaluating the integral.

 42. See Exercise 41. Evaluate

n
nlim 1 1 2 3 .

n 4
3 3 3 3�( )+ + + +

→∞

 43. Let f x( ) be a continuous function. Express

( ) ( ) ( )+ + +⎡
⎣⎢

⎤
⎦⎥→∞ n

f
n

f
n

f n
n

lim 1 1 2
n

�

as a definite integral.

 44. Use the result of Exercise 43 to evaluate

 a. 
n

nlim 1 2 4 6 2 ,
n 2

�( )+ + + +
→∞

 39. Napier’s inequality Here are two pictorial proofs that

b a
b

b a
b a a

0 1 ln ln 1 .> > ⇒ <
−
−

<

Explain what is going on in each case.
 a. 

x

y

0 a b

L1

L2

L3

y = ln x

 b. 

x

y

0 a b

y = 1
x

(Source: Roger B. Nelson, College Mathematics Journal,  
Vol. 24, No. 2, March 1993, p. 165.)

 40. Bound on an integral Let f  be a continuously differentiable 

function on a b,[ ] satisfying f x dx( ) 0a
b

∫ = .
 a. If c a b 2( )= + , show that

x f x dx x c f x dx x c f x dx( ) ( ) ( ) ( ) .
a

b

a

c

c

b

∫ ∫ ∫ ( )= − + −

 b. Let t x c= −  and b a 2. ( )= −  Show that

x f x dx t f c t f c t dt( ) .
a

b

0



∫ ∫ ( )( ) ( )= + − −

 c. Apply the Mean Value Theorem from Section 4.2 to part (b) 
to prove that

x f x dx b a M( )
12

,
a

b 3

∫
( )≤ −

where M is the absolute maximum of ′f  on a b,[ ].

Approximating Finite Sums with Integrals
In many applications of calculus, integrals are used to approximate 
finite sums—the reverse of the usual procedure of using finite sums to 
approximate integrals.

 38. Use the accompanying figure to show that

x dx x dxsin
2

arcsin .
0

2

0

1

∫ ∫π= −
π

0 1

1

p
2

p
2

y = sin x

y = arcsin x

x

y
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 Chapter 5  Technology Application Projects 379

Mathematica/Maple Projects

Projects can be found within MyLab Math.

• Using Riemann Sums to Estimate Areas, Volumes, and Lengths of Curves

Visualize and approximate areas and volumes in Part I.

• Riemann Sums, Definite Integrals, and the Fundamental Theorem of Calculus

Parts I, II, and III develop Riemann sums and definite integrals. Part IV continues the development of the Riemann sum and definite integral 
using the Fundamental Theorem to solve problems previously investigated.

• Rain Catchers, Elevators, and Rockets

Part I illustrates that the area under a curve is the same as the area of an appropriate rectangle for examples taken from the chapter. You will 
compute the amount of water accumulating in basins of different shapes as the basin is filled and drained.

• Motion Along a Straight Line, Part II

You will observe the shape of a graph through dramatic animated visualizations of the derivative relations among position, velocity, and  
acceleration. Figures in the text can be animated using this software.

• Bending of Beams

Study bent shapes of beams, determine their maximum deflections, concavity, and inflection points, and interpret the results in terms of a 
beam’s compression and tension.

CHAPTER 5 Technology Application Projects

 b. 
n

nlim 1 1 2 3 ,
n 16

15 15 15 15�( )+ + + +
→∞

 c. 
n n n n

n
n

lim 1 sin sin 2 sin 3 sin .
n

�π π π π( )+ + + +
→∞

What can be said about the following limits?

 d. 
n

nlim 1 1 2 3
n 17

15 15 15 15�( )+ + + +
→∞

 e. 
n

nlim 1 1 2 3
n 15

15 15 15 15�( )+ + + +
→∞

 45. a. Show that the area An of an n-sided regular polygon in a circle 
of radius r is

A nr
n2

sin 2 .n

2 π=

 b. Find the limit of An as n .→ ∞  Is this answer consistent with 
what you know about the area of a circle?

 46. Let

S
n n

n
n

1 2 1 .n

2

3

2

3

2

3
� ( )= + + + −

To calculate Slim ,
n

n
→∞

 show that

( ) ( ) ( )= + + + −⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

S
n n n

n
n

1 1 2 1
n

2 2 2

�

and interpret Sn  as an approximating sum of the integral

∫ x dx.
0

1
2

(Hint: Partition 0,1[ ] into n intervals of equal length and write 
out the approximating sum for inscribed rectangles.)
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380

OVERVIEW In Chapter 5 we saw that a continuous function over a closed interval has a 
definite integral, which is the limit of Riemann sum approximations for the function. We 
found a way to evaluate definite integrals using the Fundamental Theorem of Calculus. We 
saw that the area under a curve and the area between two curves could be defined and com-
puted as definite integrals. In this chapter we will see some of the many additional applica-
tions of definite integrals. We will use the definite integral to define and find volumes, 
lengths of plane curves, and areas of surfaces of revolution. We will see how integrals are 
used to solve physical problems involving the work done by a force, and how they give the 
location of an object’s center of mass. The integral arises in these and other applications in 
which we can approximate a desired quantity by Riemann sums. The limit of those Riemann 
sums, which is the quantity we seek, is given by a definite integral.

Applications of  

Definite Integrals

6

FIGURE 6.1 A cross-section S x( ) of 
the solid S formed by intersecting S with 
a plane Px perpendicular to the x-axis 
through the point x in the interval [ ]a b, .

Cross-section S(x)
with area A(x)

a

b

x

S

0

Px

x

y

FIGURE 6.2 The volume of a cylindrical solid is equal to its base 
area times its height.

 

Plane region whose
area we know

Cylindrical solid based on region
Volume = base area × height = Ah 

A = base area h = height

6.1 Volumes Using Cross-Sections

In this section we define volumes of solids by using the areas of their cross-sections. A 
cross-section of a solid S is the planar region formed by intersecting S with a plane 
(Figure 6.1). We present three different methods for obtaining the cross-sections appropri-
ate to finding the volume of a particular solid: the method of slicing, the disk method, and 
the washer method.

Suppose that we want to find the volume of a solid S like the one pictured in Figure 6.1. 
At each point x in the interval [ ]a b,  we form a cross-section S x( ) by intersecting S with a 
plane perpendicular to the x-axis through the point x, which gives a planar region whose 
area is A x( ). We will show that if A is a continuous function of x, then the volume of the 
solid S is the definite integral of A x( ). This method of computing volumes is known as 
the method of slicing.

Before showing how this method works, we need to extend the definition of a cylinder 
from the usual cylinders of classical geometry (which have circular, square, or other regu-
lar bases) to cylindrical solids that have more general bases. As shown in Figure 6.2, if the 
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 6.1  Volumes Using Cross-Sections 381

cylindrical solid has a base whose area is A and its height is h, then the volume of the 
cylindrical solid is

A hVolume area height .= × = ⋅

In the method of slicing, the base will be the cross-section of S that has area A x( ), and the 
height will correspond to the width Δx k of subintervals formed by partitioning the interval 
[ ]a b,  into finitely many subintervals [ ]−x x, .k k1

Slicing by Parallel Planes

We partition [ ]a b,  into subintervals of width (length) Δx k and slice the solid, as we 
would a loaf of bread, by planes perpendicular to the x-axis at the partition points 

�= < < < =a x x x b.n0 1  These planes slice S into thin “slabs” (like thin slices of a 
loaf of bread). A typical slab is shown in Figure 6.3. We approximate the slab between the 
plane at −xk 1 and the plane at xk by a cylindrical solid with base area A x( )k  and height 
Δ = − −x x xk k k 1 (Figure 6.4). The volume Vk of this cylindrical solid is A x x( ) ,k k⋅ Δ  
which is approximately the same volume as that of the slab:

k V A x xVolume of the  th slab ( ) .k k k≈ = Δ

The volume V of the entire solid S is therefore approximated by the sum of these cylindri-
cal volumes,

V V A x x( ) .
k

n

k
k

n

k k
1 1

∑ ∑≈ = Δ
= =

This is a Riemann sum for the function A x( ) on [ ]a b, . The approximation given by this 
Riemann sum converges to the definite integral of A x( ) as → ∞n :

A x x A x dxlim ( ) ( ) .
n

k

n

k k
a

b

1
∑ ∫Δ =

→∞ =

Therefore, we define this definite integral to be the volume of the solid S.

DEFINITION The volume of a solid of integrable cross-sectional area A x( ) 
from x a=  to x b=  is the integral of A from a to b,

V A x dx( ) .
a

b

∫=

This definition applies whenever A x( ) is integrable, and in particular when A x( ) is 
continuous. To apply this definition to calculate the volume of a solid using cross-sections 
perpendicular to the x-axis, take the following steps:

Calculating the Volume of a Solid

1. Sketch the solid and a typical cross-section.

2. Find a formula for A x( ), the area of a typical cross-section.

3. Find the limits of integration.

4. Integrate A x( ) to find the volume.

EXAMPLE 1  A pyramid 3 meters high has a square base that is 3 meters on a side. 
The cross-section of the pyramid perpendicular to the altitude x meters down from the 
vertex is a square x meters on a side. Find the volume of the pyramid.

FIGURE 6.3 A typical thin slab in the 
solid S.

a
xk−1 xk

b

0

y

x

S

FIGURE 6.4 The solid thin slab in 
Figure 6.3 is shown enlarged here. It is 
approximated by the cylindrical solid with 
base S x( )k  having area A x( )k  and height 
Δ = − −x x x .k k k 1

0

The approximating
cylinder based
on S(xk) has height
Δxk = xk − xk−1.

Plane at xk−1

Plane at xk

xk

xk−1

The cylinder’s base
is the region S(xk)
with area A(xk).

NOT TO SCALE

y

x

M06_HASS5901_15_GE_C06.indd   381 07/03/23   12:19

www.konkur.in

Telegram: @uni_k



382 Chapter 6 Applications of Definite Integrals 

FIGURE 6.5 The cross-sections of the 
pyramid in Example 1 are squares.

Typical cross-section

0

y

3

3

3
x

x

x

x (m) 

FIGURE 6.6 The wedge of Example 2,  
sliced perpendicular to the x-axis. The 
cross-sections are rectangles.

x

y

0

−3

3

x

x
45°

2"9 − x2

 x,  −"9 − x2
a           b

FIGURE 6.7 Cavalieri’s principle: 
These solids have the same volume  
(imagine each solid as a stack of coins).

a

b Same volume

Same cross-section
area at every level

Solution 

1. A sketch. We draw the pyramid with its altitude along the x-axis and its vertex at the 
origin and include a typical cross-section (Figure 6.5). Note that by positioning the 
pyramid in this way, we have vertical cross-sections that are squares, whose areas  
are easy to calculate.

2. A formula for A x( ). The cross-section at x is a square x meters on a side, so its area is

A x x( ) .2=

3. The limits of integration. The squares lie on the planes from =x 0 to =x 3.

4. Integrate to find the volume:

V A x dx x dx x( )
3

9 m .
0

3
2

0

3 3

0

3
3∫ ∫= = = ⎤

⎦⎥
=  

EXAMPLE 2  A curved wedge is cut from a circular cylinder of radius 3 by two planes. 
One plane is perpendicular to the axis of the cylinder. The second plane crosses the first 
plane at a 45° angle at the center of the cylinder. Find the volume of the wedge.

Solution We draw the wedge and sketch a typical cross-section perpendicular to the 
x-axis (Figure 6.6). The base of the wedge in the figure is the semicircle with ≥x 0 that  
is cut from the circle + =x y 92 2  by the °45  plane when it intersects the y-axis. For  
any x in the interval [ ]0, 3 , the y-values in this semicircular base vary from 

= − − = −y x y x9  to  9 .2 2  When we slice through the wedge by a plane perpen-
dicular to the x-axis, we obtain a cross-section at x, which is a rectangle of height x whose 
width extends across the semicircular base. The area of this cross-section is

A x x x

x x

( ) height width ( ) 2 9

2 9 .

2

2

( )( )( )= = −

= −

The rectangles run from =x 0 to =x 3, so we have

V A x dx x x dx

x

( ) 2 9

2
3

9

0 2
3

9

18.

a

b

0

3
2

2 3 2

0

3

3 2

∫ ∫

( )

( )

= = −

= − − ⎤
⎦⎥

= +

=  

EXAMPLE 3  Cavalieri’s principle says that solids with equal altitudes and identical  
cross-sectional areas at each height have the same volume (Figure 6.7). This follows imme-
diately from the definition of volume, because the cross-sectional area function A x( ) and 
the interval [ ]a b,  are the same for both solids. 

Solids of Revolution: The Disk Method

The solid generated by rotating (or revolving) a planar region about an axis in its plane is 
called a solid of revolution. To find the volume of a solid like the one shown in Figure 6.8, 
we first observe that the cross-sectional area A x( ) is the area of a disk of radius R x( ), 
where R x( ) is the distance from the axis of revolution to the planar region’s boundary. The 
area is then

A x R x( ) radius ( ) .2 2π π[ ]( )= =

Therefore, the definition of volume gives us the following formula.

Let u x9 2= −  and 
du x dx2 ,= −  integrate, 
and substitute back.
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Volume by Disks for Rotation About the x-Axis

V A x dx R x dx( ) ( ) .
a

b

a

b 2∫ ∫ [ ]= =

This method for calculating the volume of a solid of revolution is often called the disk 
method because a cross-section is a circular disk of radius R x( ).

EXAMPLE 4  The region between the curve = ≤ ≤y x x,  0 4, and the x-axis is 
revolved about the x-axis to generate a solid. Find its volume.

Solution We draw the region and a typical radius (Figure 6.8a) and the generated solid 
(Figure 6.8b). The volume is

V R x dx

x dx

x dx x

( )

2
4
2

8 .

a

b 2

0

4 2

0

4 2

0

4 2

∫

∫

∫

[ ]

[ ]

( )

=

=

= = ⎤
⎦⎥
= =  

EXAMPLE 5  The circle

+ =x y a2 2 2

is rotated about the x-axis to generate a sphere. Find its volume.

Radius R x x( )  for 
rotation around x-axis.

FIGURE 6.8 The region (a) and solid of 
revolution (b) in Example 4.

0

x

y

R(x) = 
"

x

x

y

y = 
"

x

y = 
"

x

0 4x

(a)

(b)

4

R(x) = 
"

x

x

Disk

xxx

FIGURE 6.9 The sphere generated by rotating the 
circle + =x y a2 2 2 about the x-axis. The radius is 
R x y a x( ) 2 2= = −  (Example 5).

x

y

−a

(x, y)

a

Δx

x

A(x) = p(a2 − x2)

x

x2 + y2 = a2

x2 + y2 = a2

Solution We imagine the sphere cut into thin slices by planes perpendicular to the x-axis 
(Figure 6.9). The cross-sectional area at a typical point x between a and a is

A x y a x( ) .2 2 2( )= = − R x a x( ) 2 2= −  for 
rotation around x-axis.

HISTORICAL BIOGRAPHY

Bonaventura Cavalieri
(1598–1647)
Cavalieri was born in Milan, Italy. At a young 
age, Cavalieri began studying geometry. Later, 
he studied from and worked with Galileo; 
the two mathematicians often corresponded 
through letters. Cavalieri learned the 
foundations of calculus and developed his 
ideas on the method of indivisibles, which was 
his major contribution to mathematics.

To know more, visit the companion Website. 
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Therefore, the volume is

V A x dx a x dx a x x a( )
3

4
3

.
a

a

a

a

a

a
2 2 2

3
3∫ ∫ π π π( )= = − = −⎡

⎣⎢
⎤
⎦⎥

=
− − −

 

The axis of revolution in the next example is not the x-axis, but the rule for calculating 
the volume is the same: Integrate π( )radius 2 between appropriate limits.

EXAMPLE 6  Find the volume of the solid generated by revolving the region bounded 
by =y x  and the lines = =y x1, 4 about the line =y 1.

Solution We draw the region and a typical radius (Figure 6.10a), and the generated solid 
(Figure 6.10b). The volume is

V R x dx

x dx

x x dx

x x x

( )

1

2 1

2
2 2

3
7
6

.

1

4 2

1

4 2

1

4

2
3 2

1

4

∫

∫

∫

π

π

π

π π

[ ]

[ ]

[ ]=

= −

= − +

= − ⋅ +⎡
⎣⎢

⎤
⎦⎥

=

Radius R x x( ) 1= −  for  
rotation around =y 1.

Expand integrand.

Integrate.

FIGURE 6.10 The region (a) and solid of revolution (b) in Example 6. 

(a)

y
y = 

"

x

y = 1

x1 40

1

R(x) = 
"

x − 1

x

(b)

(x, 1)

x

y

y =
"

x

y = 1

(x,
"

x)

x

1
0

1

4

R(x) =
"

x − 1

To find the volume of a solid generated by revolving a region between the y-axis and a 
curve x R y c y d( ),   ,= ≤ ≤  about the y-axis, we use the same method with x replaced 
by y. In this case, the area of the circular cross-section is

A y R y( ) radius ( ) ,2 2π π[ ][ ]= =

and the definition of volume gives us the following formula.

Volume by Disks for Rotation About the y-Axis

V A y dy R y dy( ) ( ) .
c

d

c

d 2∫ ∫ π[ ]= =

EXAMPLE 7  Find the volume of the solid generated by revolving the region between 
the y-axis and the curve = ≤ ≤x y y2 ,  1 4, about the y-axis.
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Solution We draw the region and a typical radius (Figure 6.11a) and the generated solid 
(Figure 6.11b). The volume is

V R y dy

y
dy

y
dy

y

( )

2

4 4 1 4 3
4

3 .

1

4 2

1

4 2

21

4

1

4

∫

∫

∫

π

π

π π π π

[ ]=

=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

= = −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ⎡
⎣⎢

⎤
⎦⎥

=  

EXAMPLE 8  Find the volume of the solid generated by revolving the region between 
the parabola = +x y 12  and the line =x 3 about the line =x 3.

Solution We draw the region and a typical radius (Figure 6.12a) and the generated solid 
(Figure 6.12b). Note that the cross-sections are perpendicular to the line =x 3 and have 
y-coordinates from = −y 2 to =y 2. The volume is

V R y dy

y dy

y y dy

y y
y

( )

2

4 4

4 4
3 5

64 2
15

.

2

2 2

2

2
2 2

2 4

2

2

3
5

2

2

∫

∫

∫

π

π

π

π

π

[ ]

[ ]

[ ]

=

= −

= − +

= − +⎡
⎣⎢

⎤
⎦⎥

=

−

−

−

−

FIGURE 6.11 The region (a) and part of 
the solid of revolution (b) in Example 7.
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2
yx =
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yR(y) =

2
yR(y) =

0

1

4

y

2

(a)

(b)

y

a   b

FIGURE 6.12 The region (a) and solid of revolution (b) in Example 8. 

x

y

y

0 1 3 5

x = y2 + 1

x = 3

R(y) = 3 − (y2 + 1)

= 2 − y2
R(y) = 2 − y2

(b)(a)

x

y

y

0 1 5

x = y2 + 1

3

(3, 
"

2)

(3, −
"

2)

"

2

−
"

2

"

2

−
"

2

Radius R y
y

( ) 2=  for 

rotation around y-axis

= ± =y x2 when  3

Radius R y y( ) 3 12( )= − +  
for rotation around axis x 3.=

Expand integrand.

Integrate.

Solids of Revolution: The Washer Method

If the region we revolve to generate a solid does not border on or cross the axis of revolu-
tion, then the solid has a hole in it (Figure 6.13). The cross-sections perpendicular to the 
axis of revolution are washers (the purplish circular surface in Figure 6.13) instead of 
disks. The dimensions of a typical washer are

R x

r x

Outer radius: ( )

Inner radius: ( )
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386 Chapter 6 Applications of Definite Integrals 

The washer’s area is the area of a circle of radius R x( ) minus the area of a circle of radius 
r x( ):

A x R x r x R x r x( ) ( ) ( ) ( ) ( ) .2 2 2 2π π π( )[ ] [ ] [ ] [ ]= − = −

Consequently, the definition of volume in this case gives us the following formula.

FIGURE 6.13 The cross-sections of the solid of revolution generated here are washers, not disks, so the integral 
A x dx( )a

b∫  leads to a slightly different formula.

y

x

0
a

x
b

y = R(x)

y = r(x)

0

x

y y

0

x

(x, R(x))

(x, r(x))

Washer

xx

Volume by Washers for Rotation About the x-Axis

V A x dx R x r x dx( ) ( ) ( ) .
a

b

a

b
2 2∫ ∫ π( )[ ] [ ]= = −

FIGURE 6.14 (a) The region in  
Example 9 spanned by a line segment 
perpendicular to the axis of revolution. 
(b) When the region is revolved about 
the x-axis, the line segment generates a 
washer.

x

y

y = −x + 3

y = x2 + 1

(−2, 5)

(1, 2)

−2 x 0 1Interval of
integration

R(x) = −x + 3

(1, 2)

(−2, 5)

(a)

(b)

x

y

r(x) = x2 + 1

x

R(x) = −x + 3

r(x) = x2 + 1

Washer cross-section
Outer radius: R(x) = −x + 3
Inner radius: r(x) = x2 + 1

This method for calculating the volume of a solid of revolution is called the washer 
method because a thin slab of the solid resembles a circular washer with outer radius R x( ) 
and inner radius r x( ).

EXAMPLE 9  The region bounded by the curve = +y x 12  and the line = − +y x 3 
is revolved about the x-axis to generate a solid. Find the volume of the solid.

Solution We draw the region and sketch a line segment across it perpendicular to the 
axis of revolution (the red segment in Figure 6.14a). We then find the outer and inner radii 
of the washer that would be swept out by the line segment if it were revolved about the 
x-axis along with the region. These radii are the distances of the ends of the line segment 
from the axis of revolution (see Figure 6.14).

R x x

r x x

Outer radius: ( ) 3

Inner radius: ( ) 12

= − +

= +

We obtain the limits of integration by finding the x-coordinates of the intersection points of 
the curve and line in Figure 6.14a.

( )( )

+ = − +

+ − =

+ − =

= − =

x x

x x

x x

x x

1 3

2 0

2 1 0

2, 1

2

2

Limits of integration
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The volume is

V R x r x dx

x x dx

x x x dx

x x x x

( ) ( )

3 1

8 6

8 3
3 5

117
5

.

a

b 2 2

2

1
2 2 2

2 4

2

1

2
3 5

2

1

∫

∫

∫

π

π

π

π π

( )

( )

[ ] [ ]

( )

( )

( )

= −

= − + − +

= − − −

= − − −⎡
⎣⎢

⎤
⎦⎥

=

−

−

−

To find the volume of a solid formed by revolving a region about the y-axis, we use 
the same procedure as in Example 9, but integrate with respect to y instead of x. In this 
situation, the line segment sweeping out a typical washer is perpendicular to the y-axis (the 
axis of revolution), and the outer and inner radii of the washer are functions of y.

EXAMPLE 10  The region bounded by the parabola =y x 2 and the line =y x2  in 
the first quadrant is revolved about the y-axis to generate a solid. Find the volume of the 
solid.

Solution First we sketch the region and draw a line segment across it perpendicular to 
the axis of revolution (the y-axis). See Figure 6.15a.

The radii of the washer swept out by the line segment are R y y r y y( ) ,   ( ) 2= =  
(Figure 6.15).

The line and parabola intersect at =y 0 and =y 4, so the limits of integration are 
=c 0 and =d 4. We integrate to find the volume:

V R y r y dy

y
y

dy

y
y

dy
y y

( ) ( )

2

4 2 12
8
3

.

c

d 2 2

0

4 2 2

2

0

4 2 3

0

4

∫

∫

∫

π

π

π π π( )

( )

[ ]

[ ] [ ]= −

= − ⎡
⎣⎢

⎤
⎦⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

= − = −⎡
⎣⎢

⎤
⎦⎥

=  

Rotation around x-axis

Substitute for radii and limits of integration.

Simplify algebraically.

Integrate. 

Rotation around y-axis

Substitute for radii and 
limits of integration.

FIGURE 6.15 (a) The region being 
rotated about the y-axis, the washer radii, 
and limits of integration in Example 10. 
(b) The washer swept out by the line  
segment in part (a).
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Volumes by Slicing
Find the volumes of the solids in Exercises 1–10.

 1. The solid lies between planes perpendicular to the x-axis at =x 0 
and =x 4. The cross-sections perpendicular to the axis on the 
interval ≤ ≤x0 4 are squares whose diagonals run from the 
parabola = −y x  to the parabola =y x.

 2. The solid lies between planes perpendicular to the x-axis at 
= −x 1 and =x 1. The cross-sections perpendicular to the 

x-axis are circular disks whose diameters run from the parabola 
=y x 2 to the parabola = −y x2 .2

y = 2 − x2

−1

1

2

y = x2

y

x

EXERCISES 6.1
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388 Chapter 6 Applications of Definite Integrals 

 3. The solid lies between planes perpendicular to the x-axis at 
= −x 1 and =x 1. The cross-sections perpendicular to the 

x-axis between these planes are squares whose bases run from the 
semicircle = − −y x1 2  to the semicircle = −y x1 .2

 4. The solid lies between planes perpendicular to the x-axis at 
= −x 1 and =x 1. The cross-sections perpendicular to the x-axis 

between these planes are squares whose diagonals run from the 
semicircle = − −y x1 2  to the semicircle = −y x1 .2

 5. The base of a solid is the region between the curve =y x2 sin  
and the interval π[ ]0,  on the x-axis. The cross-sections perpen-
dicular to the x-axis are

 a. equilateral triangles with bases running from the x-axis to the 
curve as shown in the accompanying figure.

0

p

y = 2
"

sin x

x

y

 b. squares with bases running from the x-axis to the curve.

 6. The solid lies between planes perpendicular to the x-axis at 
π= −x 3 and π=x 3. The cross-sections perpendicular to the 

x-axis are

 a. circular disks with diameters running from the curve 
y xtan=  to the curve y xsec .=

 b. squares whose bases run from the curve y xtan=  to the 
curve y xsec .=

 7. The base of a solid is the region bounded by the graphs of =y x3 , 
=y 6, and =x 0. The cross-sections perpendicular to the x-axis 

are

 a. rectangles of height 10.

 b. rectangles of perimeter 20.

 8. The base of a solid is the region bounded by the graphs of =y x  
and =y x 2. The cross-sections perpendicular to the x-axis are

 a. isosceles triangles of height 6.

 b. semicircles with diameters running across the base of the 
solid.

 9. The solid lies between planes perpendicular to the y-axis at =y 0 
and =y 2. The cross-sections perpendicular to the y-axis are cir-
cular disks with diameters running from the y-axis to the parabola 

=x y5 .2

 10. The base of the solid is the disk + ≤x y 1.2 2  The cross-sections 
by planes perpendicular to the y-axis between = −y 1 and =y 1 
are isosceles right triangles with one leg in the disk.

1
x2 + y2 = 1

0

y

x

 11. Find the volume of the given right tetrahedron. (Hint: Consider 
slices perpendicular to one of the labeled edges.)

3

4

5

y

x

 12. Find the volume of the given pyramid, which has a square base of 
area 9 and height 5.

3

5

3

y

x

 13. A twisted solid A square of side length s lies in a plane per-
pendicular to a line L. One vertex of the square lies on L. As this 
square moves a distance h along L, the square turns one revolution 
about L to generate a corkscrew-like column with square cross-
sections.

 a. Find the volume of the column.

 b. What will the volume be if the square turns twice instead of 
once? Give reasons for your answer.

 14. Cavalieri’s principle A solid lies between planes perpendicular 
to the x-axis at =x 0 and =x 12. The cross-sections by planes 
perpendicular to the x-axis are circular disks whose diameters run 
from the line =y x 2 to the line =y x  as shown in the accom-
panying figure. Explain why the solid has the same volume as a 
right circular cone with base radius 3 and height 12.

x12

y

0

y = x

y =
2
x
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 6.1  Volumes Using Cross-Sections 389

 15. Intersection of two half-cylinders Two half-cylinders of diam-
eter 2 meet at a right angle in the accompanying figure. Find the 
volume of the solid region common to both half-cylinders. (Hint: 
Consider slices parallel to the base of the solid.)

2

2

 16. Gasoline in a tank A gasoline tank is in the shape of a right 
circular cylinder (lying on its side) of length 3 m and radius 1 m.  
Set up an integral that represents the volume of the gas in the tank 
if it is filled to a depth of 1.5 m. You will learn how to compute  
this integral in Chapter 8 (or you may use geometry to find its 
value).

3 m

1.5 m

1 m

Volumes by the Disk Method
In Exercises 17–20, find the volume of the solid generated by revolv-
ing the shaded region about the given axis.

 17. About the x-axis

x

y

0 2

1

x + 2y = 2

 18. About the y-axis

x

y

0

2

3

x =
3y
2

 19. About the y-axis

Q  R

x

y

0

1

4
x = tan      yp

 20. About the x-axis

x

y

0

y = sin x cos x

2

2
1

p

Find the volumes of the solids generated by revolving the regions 
bounded by the lines and curves in Exercises 21–30 about the x-axis.

 21. = = =y x y x, 0, 22  22. = = =y x y x, 0, 23

 23. = − =y x y9 , 02  24. = − =y x x y, 02

 25. y x x y xcos , 0 2, 0, 0π= ≤ ≤ = =

 26. y x y x xsec , 0, 4 , 4π π= = = − =

 27. = = = =−y e y x x, 0, 0,   1x

 28. The region between the curve y xcot=  and the x-axis from 
π=x 6 to π=x 2

 29. The region between the curve ( )=y x1 2  and the x-axis from 
=x 1 4 to =x 4

 30. = = = =−y e y x x, 0, 1, 3x 1

In Exercises 31 and 32, find the volume of the solid generated by 
revolving the region about the given line.

 31. The region in the first quadrant bounded above by the line 
=y 2, below by the curve y x xsec tan ,=  and on the left by 

the y-axis, about the line =y 2

 32. The region in the first quadrant bounded above by the line =y 2, 
below by the curve y x x2 sin , 0 2,π= ≤ ≤  and on the left 
by the y-axis, about the line =y 2

Find the volumes of the solids generated by revolving the regions bounded 
by the lines and curves in Exercises 33–38 about the y-axis.

 33. The region enclosed by = = = − =x y x y y5 , 0, 1, 12

 34. The region enclosed by = = =x y x y, 0, 23 2

 35. The region enclosed by x y y x2 sin 2 , 0 2, 0π= ≤ ≤ =

 36. The region enclosed by π( )= − ≤ ≤x y ycos 4 , 2 0, 
=x 0

 37. = + = = =x y x y y2 1, 0, 0, 3

 38. ( )= + = =x y y x y2 1 , 0, 12

Volumes by the Washer Method
Find the volumes of the solids generated by revolving the shaded 
regions in Exercises 39 and 40 about the indicated axes.

 39. The x-axis

x

y

0−

y = 1
y = 

"

cos x

2
p

2
p

 40. The y-axis

x

y

0 1

x = tan y
4
p

Find the volumes of the solids generated by revolving the regions 
bounded by the lines and curves in Exercises 41–46 about the x-axis.

 41. = = =y x y x, 1, 0

 42. = = =y x y x2 , 2, 0

 43. = + = +y x y x1, 32

 44. = − = −y x y x4 , 22

 45. y x y xsec , 2, 4 4π π= = − ≤ ≤

 46. y x y x x xsec , tan , 0, 1= = = =
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390 Chapter 6 Applications of Definite Integrals 

In Exercises 47–50, find the volume of the solid generated by revolv-
ing each region about the y-axis.

 47. The region enclosed by the triangle with vertices (1, 0), (2, 1), 
and (1, 1)

 48. The region enclosed by the triangle with vertices (0, 1), (1, 0), 
and (1, 1)

 49. The region in the first quadrant bounded above by the parabola 
=y x ,2  below by the x-axis, and on the right by the line =x 2

 50. The region in the first quadrant bounded on the left by the circle 
+ =x y 3,2 2  on the right by the line =x 3, and above by the 

line =y 3

In Exercises 51 and 52, find the volume of the solid generated by 
revolving each region about the given axis.

 51. The region in the first quadrant bounded above by the curve 
=y x ,2  below by the x-axis, and on the right by the line =x 1, 

about the line = −x 1

 52. The region in the second quadrant bounded above by the curve 
= −y x ,3  below by the x-axis, and on the left by the line = −x 1, 

about the line = −x 2

Volumes of Solids of Revolution

 53. Find the volume of the solid generated by revolving the region 
bounded by =y x  and the lines =y 2 and =x 0 about

 a. the x-axis.  b. the y-axis.

 c. the line =y 2.  d. the line =x 4.

 54. Find the volume of the solid generated by revolving the triangular 
region bounded by the lines = =y x y2 , 0, and =x 1 about

 a. the line =x 1.  b. the line =x 2.

 55. Find the volume of the solid generated by revolving the region 
bounded by the parabola =y x 2 and the line =y 1 about

 a. the line =y 1.  b. the line =y 2.

 c. the line = −y 1.

 56. By integration, find the volume of the solid generated by revolv-
ing the triangular region with vertices (0, 0), ( ) ( )b h, 0 , 0,  about

 a. the x-axis.  b. the y-axis.

Theory and Applications

 57. The volume of a torus The disk + ≤x y a2 2 2 is revolved 
about the line ( )= >x b b a  to generate a solid shaped like a 
doughnut and called a torus. Find its volume.

(Hint: ∫ − =− a y dya

a
2 2  πa 2,2  since it is the area of a semi-

circle of radius a.)

 58. Volume of a bowl A bowl has a shape that can be generated 
by revolving the graph of =y x 22  between =y 0 and =y 5 
about the y-axis.

 a. Find the volume of the bowl.

 b. Related rates If we fill the bowl with water at a constant 
rate of 3 cubic units per second, how fast will the water level 
in the bowl be rising when the water is 4 units deep?

 59. Volume of a bowl 

 a. A hemispherical bowl of radius a contains water to a depth h. 
Find the volume of water in the bowl.

 b. Related rates Water runs into a sunken concrete hemispher-
ical bowl of radius 5 m at the rate of 0.2 m s.3  How fast is 
the water level in the bowl rising when the water is 4 m deep?

 60. Explain how you could estimate the volume of a solid of revolu-
tion by measuring the shadow cast on a table parallel to its axis of 
revolution by a light shining directly above it.

 61. Volume of a hemisphere Derive the formula π( )=V R2 3 3 
for the volume of a hemisphere of radius R by comparing its cross-
sections with the cross-sections of a solid right circular cylinder of 
radius R and height R from which a solid right circular cone of 
base radius R and height R has been removed, as suggested by the 
accompanying figure.

h

"R2 − h2

RR hh

 62. Designing a plumb bob Having been asked to design a brass 
plumb bob that will weigh in the neighborhood of 190 g, you 
decide to shape it like the solid of revolution shown here. Find the 
plumb bob’s volume. If you specify a brass that weighs 8.5g cm ,3  
how much will the plumb bob weigh (to the nearest gram)?

0
6

x (cm)

y (cm)
y = "36 − x2x

12

 63. Designing a wok You are designing a wok frying pan that will 
be shaped like a spherical bowl with handles. A bit of experimenta-
tion at home persuades you that you can get one that holds about  
3 L if you make it 9 cm deep and give the sphere a radius of 16 cm. 
To be sure, you picture the wok as a solid of revolution, as shown 
here, and calculate its volume with an integral. To the nearest cubic 
centimeter, what volume do you really get? ( )=1 L 1000 cm 3

9 cm deep

0

−7

x2 + y2 = 162 = 256

x (cm)

−16

y (cm)

 64. Max-min The arch π= ≤ ≤y x xsin ,  0 , is revolved about 
the line y c c, 0 1,= ≤ ≤  to generate the solid in the accom-
panying figure.

 a. Find the value of c that minimizes the volume of the solid. 
What is the minimum volume?

 b. What value of c in [ ]0, 1  maximizes the volume of the solid?
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 6.2  Volumes Using Cylindrical Shells 391

 c. Graph the solid’s volume as a function of c, first for 
≤ ≤c0 1 and then on a larger domain. What happens to the 

volume of the solid as c moves away from [ ]0, 1 ? Does this 
make sense physically? Give reasons for your answers.

y

0

x

y = c

p

y = sin x

T  65. Consider the region R bounded by the graphs of = >y f x( ) 0, 
= >x a 0, = >x b a, and =y 0 (see accompanying fig-

ure). If the volume of the solid formed by revolving R about the 
x-axis is π4 , and the volume of the solid formed by revolving R 
about the line = −y 1 is π8 , find the area of R.

x

y

0 b

R

a

y = f (x)

 66. Consider the region R given in Exercise 65. If the volume of the 
solid formed by revolving R around the x-axis is π6 , and the vol-
ume of the solid formed by revolving R around the line = −y 2 
is π10 , find the area of R.

6.2 Volumes Using Cylindrical Shells

In Section 6.1 we defined the volume of a solid to be the definite integral V A x dx( ) ,a
b= ∫  

where A x( ) is an integrable cross-sectional area of the solid from =x a to =x b. The 
area A x( ) was obtained by slicing through the solid with a plane perpendicular to the 
x-axis. However, this method of slicing is sometimes awkward to apply, as we will illus-
trate in our first example. To overcome this difficulty, we use the same integral definition 
for volume, but obtain the area by slicing through the solid in a different way.

Slicing with Cylinders

Suppose we slice through the solid using circular cylinders of increasing radii, like cookie 
cutters. We slice straight down through the solid so that the axis of each cylinder is parallel 
to the y-axis. The vertical axis of each cylinder is always the same line, but the radii of the 
cylinders increase with each slice. In this way the solid is sliced up into thin cylindrical 
shells of constant thickness that grow outward from their common axis, like circular tree 
rings. Unrolling a cylindrical shell shows that its volume is approximately that of a rectan-
gular slab with area A x( ) and thickness Δx. This slab interpretation allows us to apply the 
same integral definition for volume as before. The following example provides some 
insight.

EXAMPLE 1  The region enclosed by the x-axis and the parabola = = −y f x x x( ) 3 2 
is revolved about the vertical line = −x 1 to generate a solid (see Figure 6.16). Find the 
volume of the solid.

Solution Using the washer method from Section 6.1 would be awkward here because we 
would need to express the x-values of the left and right sides of the parabola in Figure 6.16a 
in terms of y. This is because these x-values, which describe the inner and outer radii of a 
typical washer, are solutions to the equation = −y x x3 2, and this gives a complicated 
formula for x. Therefore, instead of rotating a horizontal strip of thickness Δy, we rotate 
a vertical strip of thickness Δx. This rotation produces a cylindrical shell of height yk 
above a point x k within the base of the vertical strip and of thickness Δx. An example of 
a cylindrical shell is shown as the orange-shaded region in Figure 6.17. We can think of 
the cylindrical shell shown in the figure as approximating a slice of the solid obtained by 
cutting straight down through it, parallel to the axis of revolution, all the way around. We 
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392 Chapter 6 Applications of Definite Integrals 

start by cutting close to the inside hole and then cut another cylindrical slice around the 
enlarged hole, then another, and so on, obtaining n cylinders. The radii of the cylinders 
gradually increase, and the heights of the cylinders follow the contour of the parabola: 
shorter to taller, then back to shorter (Figure 6.16a). The sum of the volumes of the shells 
is a Riemann sum that approximates the volume of the entire solid.

Each shell sits over a subinterval [ ]−x x,k k1  in the x-axis. The thickness of the shell is 
Δ = − −x x x .k k k 1  Because the parabola is rotated around the line = −x 1, the outer radius 
of the shell is + x1 .k  The height of the shell is the height of the parabola at some point in the 
interval [ ]−x x, ,k k1  or approximately y f x x x( ) 3 .k k k k

2= = −  If we unroll this cylinder 
and flatten it out, it becomes (approximately) a rectangular slab with thickness Δx k (see 
Figure 6.18). The height of the rectangular slab is approximately = −y x x3 ,k k k

2  and its 
length is the circumference of the shell, which is approximately π π( )⋅ = + x2 radius 2 1 .k  
Hence the volume of the shell is approximately the volume of the rectangular slab, which is

π( ) ( )

Δ = × ×

= + ⋅ − ⋅ Δ

V

x x x x

circumference height thickness

2 1 3 .
k

k k k k
2

FIGURE 6.16 (a) The graph of the region in Example 1, before revolution. (b) The  
solid formed when the region in part (a) is revolved about the axis of revolution 

= −x 1.

y

x
3

Axis of
revolution

 x = −1

(b)

x

y = 3x − x2

y

1 2 3−2 −1 0

−1

−2

1

2

Axis of
revolution

x = −1

(a)

0

FIGURE 6.17 A cylindrical shell of 
height yk obtained by rotating a vertical  
strip of thickness Δx k about the line 

= −x 1. The outer radius of the cylinder 
occurs at x ,k  where the height of the  
parabola is = −y x x3k k k

2 (Example 1).

3−5

y

x
0 xk

yk

x = −1

FIGURE 6.18 Cutting and unrolling a cylindrical shell gives a 
nearly rectangular solid (Example 1).

Radius = 1 + xk

Outer circumference = 2p • radius = 2p(1 + xk)
Δxk

 Δxk = thickness

l = 2p(1 + xk)

h = (3xk − xk
2)

(3xk − xk
2)
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 6.2  Volumes Using Cylindrical Shells 393

Summing together the volumes ΔVk of the individual cylindrical shells over the interval 
[ ]0, 3  gives the Riemann sum

∑ ∑ π( )( )Δ = + − Δ
= =

V x x x x2 1 3 .
k

n

k
k

n

k k k k
1 1

2

Taking the limit as the thickness Δ →x 0k  and → ∞n  gives the volume integral

∑

∫

∫

∫

π

π

π

π

π π

( )( )

( )

( )

( )

( )

= + − Δ

= + −

= + − −

= + −

= + −⎡
⎣⎢

⎤
⎦⎥

=

→∞ =

V x x x x

x x x dx

x x x x dx

x x x dx

x x x

lim 2 1 3

2 1 3

2 3 3

2 2 3

2 2
3

3
2

1
4

45
2

.

n
k

n

k k k k
1

2

0

3
2

0

3
2 3 2

2 3

0

3

3 2 4

0

3

 

We now generalize this procedure to a broader class of solids.

The Shell Method

Suppose that the region bounded by the graph of a nonnegative continuous function 
=y f x( ) and the x-axis over the finite closed interval [ ]a b,  lies to the right of the verti-

cal line =x L (see Figure 6.19a). We assume ≥a L, so the vertical line may touch the 
region but cannot pass through it. We generate a solid S by rotating this region about the 
vertical line L.

Let P be a partition of the interval [ ]a b,  by the points �= < < < =a x x x b.n0 1  
As usual, we choose a point ck in each subinterval [ ]−x x, .k k1  In Example 1 we chose ck 
to be the endpoint x k, but now it will be more convenient to let ck be the midpoint of the 
subinterval [ ]−x x,k k1 . We approximate the region in Figure 6.19a with rectangles based 
on this partition of [ ]a b, . A typical approximating rectangle has height f c( )k  and width 

FIGURE 6.19 When the region shown in (a) is revolved about the vertical line 
=x L, a solid is produced which can be sliced into cylindrical shells. A typical 

shell is shown in (b).

x

b

Rectangle
height = f(ck)

ck

xk

y = f(x)

xk−1

Δxk

a

(b)

Vertical axis
of revolution

y = f (x)

x = L

a ck
xkxk−1

b

(a)

Vertical axis
of revolution

x

Δxk
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394 Chapter 6 Applications of Definite Integrals 

The volume of a cylindrical shell of 
height h with inner radius r and outer 
radius R is

π π π( ) ( )− = + −R h r h R r h R r2
2

( ) .2 2

Shell Formula for Revolution About a Vertical Line
The volume of the solid generated by revolving the region between the x-axis and 
the graph of a continuous function = ≥ ≤ ≤ ≤y f x L a x b( ) 0,   , about a 
vertical line =x L is

∫ π=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

V dx2 shell
radius

shell
height

.
a

b

FIGURE 6.20 (a) The region, shell dimensions, and interval of integration in Example 2. (b) The shell 
swept out by the vertical segment in part (a) with a width Δx.

Interval of
integration

y

x

(4, 2)

4

x

Shell radius

0

x

(b)

2

–4

x

y

0 4

2

Shell radius

Interval of integration

x

Shell
height

y = 
"

x

(a)

f(x) = 
"

x

x

y = 
"

x

"

x = Shell height

Δ = − −x x x .k k k 1  If this rectangle is rotated about the vertical line =x L, then a shell is 
swept out, as in Figure 6.19b. A formula from geometry tells us that the volume of the shell 
swept out by the rectangle is

V

c L f c x

2 average shell radius shell height thickness

2 ( ) .
k

k k k

π

π ( )

Δ = × × ×

= ⋅ − ⋅ ⋅ Δ

We approximate the volume of the solid S by summing the volumes of the shells swept out 
by the n rectangles:

∑≈ Δ
=

V V .
k

n

k
1

The limit of this Riemann sum as each Δ →x 0k  and → ∞n  gives the volume of the solid 
as a definite integral:

V V dx

x L f x dx

lim 2 shell radius shell height

2 ( ) .

n
k

n

k
a

b

a

b

1
∑ ∫

∫

π

π

( )( )

( )

= Δ =

= −

→∞ =

We refer to the variable of integration, here x, as the thickness variable. To emphasize the 
process of the shell method, we state the general formula in terms of the shell radius and 
shell height. This will allow for rotations about a horizontal line =y L as well.

= − = −−R x L r x L and k k 1

EXAMPLE 2  The region bounded by the curve =y x , the x-axis, and the line =x 4 
is revolved about the y-axis to generate a solid. Find the volume of the solid.

Solution Sketch the region and draw a line segment across it parallel to the axis of revo-
lution (Figure 6.20a). Label the segment’s height (shell height) and distance from the axis 
of revolution (shell radius). (We drew the shell in Figure 6.20b, but you need not do that.)

M06_HASS5901_15_GE_C06.indd   394 07/03/23   4:05 PM

www.konkur.in

Telegram: @uni_k



 6.2  Volumes Using Cylindrical Shells 395

The shell thickness variable is x, so the limits of integration for the shell formula are 
a 0 and b 4 (Figure 6.20). The volume is

∫

∫

∫

( )

=
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

=

= = ⎡
⎣⎢

⎤
⎦⎥
=

V dx

x x dx

x dx x

2
shell

radius

shell

height

2 ( )

2 2 2
5

128
5

.

a

b

0

4

3 2

0

4
5 2

0

4
 

So far, we have used vertical axes of revolution. For horizontal axes, we replace the 
x’s with y’s.

EXAMPLE 3  The region bounded by the curve y x , the x-axis, and the line 
x 4 is revolved about the x-axis to generate a solid. Find the volume of the solid by the 
shell method.

Solution This is the solid whose volume was found by the disk method in Example 3 of 
Section 6.1. Now we find its volume by the shell method. First, sketch the region and draw 
a line segment across it parallel to the axis of revolution (Figure 6.21a). Label the seg-
ment’s length (shell height) and distance from the axis of revolution (shell radius). (We 
drew the shell in Figure 6.21b, but you need not do that.)

In this case, the shell thickness variable is y, so the limits of integration for the shell 
formula method are a 0 and b 2 (along the y-axis in Figure 6.21). The volume of the 
solid is

∫

∫

∫

( )

( )

=
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

= −

= −

= −⎡
⎣⎢

⎤
⎦⎥
=

V dy

y y dy

y y dy

y
y

2
shell

radius

shell

height

2 ( ) 4

2 4

2 2
4

8 .

a

b

0

2
2

3

0

2

2
4

0

2

FIGURE 6.21 (a) The region, shell dimensions, and interval of integration in Example 3.  
(b) The shell swept out by the horizontal segment in part (a) with a width y. 

(b)

x

y

0 4

2

y

(4, 2)

Shell radiusIn
te

rv
al

 o
f

in
te

gr
at
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n

4 − y2

Shell height

x = y2

(a)

y

Shell height
y

y (4, 2)

2

0

4

Shell
radius

y =
"

x

x

4 − y2

y
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396 Chapter 6 Applications of Definite Integrals 

The shell method gives the same answer as the washer method when both are used to 
calculate the volume of a region. We do not prove that result here, but it is illustrated in 
Exercises 37 and 38. (Exercise 45 outlines a proof.) Both volume formulas are actually 
special cases of a general volume formula we will look at when studying double and triple 
integrals in Chapter 14. That general formula also allows for computing volumes of solids 
other than those swept out by regions of revolution.

Summary of the Shell Method
Regardless of the position of the axis of revolution (horizontal or vertical), the 
steps for implementing the shell method are these.

1. Draw the region and sketch a line segment across it parallel to the axis of 
revolution. Label the segment’s height or length (shell height) and distance 
from the axis of revolution (shell radius).

2. Find the limits of integration for the thickness variable.

3. Integrate the product 2  (shell radius) (shell height) with respect to the  
thickness variable (x or y) to find the volume.

Revolution About the Axes
In Exercises 1–6, use the shell method to find the volumes of the solids 
generated by revolving the shaded region about the indicated axis.

 1. 

x

y

0 2

1

y = 1 + x2

4

 2. 

x

y

0 2

2
y = 2 − x2

4

 3. 

x

y

0 2

x = y2

y = 
"

2
"

2

 4. 

x

y

0 3

x = 3 − y2

y = 
"

3
"

3

 5. The y-axis

x

y

0

1

2

x = 
"

3

"

3

y = 
"

x2 + 1

 6. The y-axis

x

y

0

 

3

5
"

x3 + 9

9xy = 

Revolution About the y-Axis
Use the shell method to find the volumes of the solids generated by 
revolving the regions bounded by the curves and lines in Exercises 
7–12 about the y-axis.

 7. = = − =y x y x x, 2, 2

 8. y x y x x2 , 2, 1

 9. = = − = ≥y x y x x x, 2 , 0, for  02

 10. = − = =y x y x x2 , , 02 2

 11. = − = =y x y x x2 1, , 0

 12. ( )= = = =y x y x x3 2 , 0, 1, 4

EXERCISES 6.2 
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 6.2  Volumes Using Cylindrical Shells 397

 13. Let f x
x x x

x
( )

sin , 0

1, 0.

π( )
=

< ≤

=

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

 a. Show that π= ≤ ≤x f x x x( ) sin ,  0 .

 b. Find the volume of the solid generated by revolving the 
shaded region about the y-axis in the accompanying figure.

x

y

0

1

y =
1, x = 0

,  0 < x  ≤ psin x
x

p

 14. Let g x
x x x

x
( )

tan , 0 4

0, 0.

2 π( )
=

< ≤

=

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

 a. Show that x g x x x( ) tan ,  0 4.2 π( )= ≤ ≤

 b. Find the volume of the solid generated by revolving the 
shaded region about the y-axis in the accompanying figure.

x

y

0

y =
0, x = 0

,  0 < x  ≤ 
tan2 x

x 4

4

4
p

p

p

Revolution About the x-Axis
Use the shell method to find the volumes of the solids generated by 
revolving the regions bounded by the curves and lines in Exercises 
15–22 about the x-axis.

 15. = = − =x y x y y, , 2

 16. = = − = ≥x y x y y y, , 2, 02

 17. = − =x y y x2 , 02  18. = − =x y y x y2 ,2

 19. = =y x y, 1  20. = = =y x y x y, 2 , 2

 21. = = = −y x y y x, 0, 2

 22. = = = −y x y y x, 0, 2

Revolution About Horizontal and Vertical Lines
In Exercises 23–26, use the shell method to find the volumes of the 
solids generated by revolving the regions bounded by the given curves 
about the given lines.

 23. = = =y x y x3 , 0, 2

 a. The y-axis  b. The line =x 4

 c. The line = −x 1  d. The x-axis

 e. The line =y 7  f. The line = −y 2

 24. = = =y x y x, 8, 03

 a. The y-axis  b. The line =x 3

 c. The line = −x 2  d. The x-axis

 e. The line =y 8  f. The line = −y 1

 25. = + =y x y x2, 2

 a. The line =x 2  b. The line = −x 1

 c. The x-axis  d. The line =y 4

 26. = = −y x y x, 4 34 2

 a. The line =x 1  b. The x-axis

In Exercises 27 and 28, use the shell method to find the volumes of the 
solids generated by revolving the shaded regions about the indicated 
axes.

 27. a. The x-axis  b. The line =y 1

 c. The line =y 8 5  d. The line = −y 2 5

x

y

0

1

1

x = 12(y2 − y3)

 28. a. The x-axis  b. The line =y 2

 c. The line =y 5  d. The line = −y 5 8

x

y

 

2

(2, 2)

10

2

x =
y2

2

x =       −
y4

4
y2

2

Choosing the Washer Method or the Shell Method
For some regions, both the washer and shell methods work well for the 
solid generated by revolving the region about the coordinate axes, but 
this is not always the case. When a region is revolved about the y-axis, 
for example, and washers are used, we must integrate with respect to y. 
It may not be possible, however, to express the integrand in terms of y. 
In such a case, the shell method allows us to integrate with respect to x 
instead. Exercises 29 and 30 provide some insight.

 29. Compute the volume of the solid generated by revolving the 
region bounded by =y x  and =y x 2 about each coordinate axis 
using

 a. the shell method.

 b. the washer method.
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398 Chapter 6 Applications of Definite Integrals 

 30. Compute the volume of the solid generated by revolving the tri-
angular region bounded by the lines = + =y x y x2 4,   , and 

=x 0 about

 a. the x-axis using the washer method.

 b. the y-axis using the shell method.

 c. the line =x 4 using the shell method.

 d. the line =y 8 using the washer method.

In Exercises 31–36, find the volumes of the solids generated by revolv-
ing the regions about the given axes. If you think it would be better to 
use washers in any given instance, feel free to do so.

 31. The triangle with vertices ( ) ( )1,1 ,   1, 2 , and ( )2, 2  about

 a. the x-axis  b. the y-axis

 c. the line =x 10 3  d. the line =y 1

 32. The region bounded by = = =y x y x, 2, 0 about

 a. the x-axis  b. the y-axis

 c. the line =x 4  d. the line =y 2

 33. The region in the first quadrant bounded by the curve = −x y y 3 
and the y-axis about

 a. the x-axis  b. the line =y 1

 34. The region in the first quadrant bounded by = − =x y y x,   1,3  
and =y 1 about

 a. the x-axis  b. the y-axis

 c. the line =x 1  d. the line =y 1

 35. The region bounded by =y x  and =y x 82  about

 a. the x-axis  b. the y-axis

 36. The region bounded by = −y x x2 2 and =y x  about

 a. the y-axis  b. the line =x 1

 37. The region in the first quadrant that is bounded above by the curve 
=y x1 ,1 4  on the left by the line =x 1 16, and below by the line 
=y 1 is revolved about the x-axis to generate a solid. Find the 

volume of the solid by

 a. the washer method.  b. the shell method.

 38. The region in the first quadrant that is bounded above by the curve 
=y x1 , on the left by the line =x 1 4, and below by the  

line =y 1 is revolved about the y-axis to generate a solid. Find 
the volume of the solid by

 a. the washer method.  b. the shell method.

Theory and Examples

 39. The region shown here is to be revolved about the x-axis to gener-
ate a solid. Which of the methods (disk, washer, shell) could you 
use to find the volume of the solid? How many integrals would be 
required in each case? Explain.

x

y

0 1

1
(1, 1)

−2

x = y2
x = 3y2 − 2

 40. The region shown here is to be revolved about the y-axis to 
generate a solid. Which of the methods (disk, washer, shell) 
could you use to find the volume of the solid? How many inte-
grals would be required in each case? Give reasons for your 
answers.

x

y

1

1

−1

0

y = x2

y = −x4

 41. A bead is formed from a sphere of radius 5 by drilling through a 
diameter of the sphere with a drill bit of radius 3.

 a. Find the volume of the bead.

 b. Find the volume of the removed portion of the sphere.

 42. A Bundt cake, well known for having a ringed shape, is formed 
by revolving around the y-axis the region bounded by the graph  
of ( )= −y xsin 12  and the x-axis over the interval ≤ ≤x1    

π+1 . Find the volume of the cake.

 43. Derive the formula for the volume of a right circular cone of 
height h and radius r using an appropriate solid of revolution.

 44. Derive the equation for the volume of a sphere of radius r using 
the shell method.

 45. Equivalence of the washer and shell methods for finding 
volume Let f  be differentiable and increasing on the interval 

≤ ≤a x b, with >a 0, and suppose that f  has a differentiable 
inverse, −f .1  Revolve about the y-axis the region bounded by the 
graph of f  and the lines =x a and =y f b( ) to generate a solid. 
Then the values of the integrals given by the washer and shell 
methods for the volume are identical.

f y a dy x f b f x dx( ) 2 ( ) ( ) .
f a

f b

a

b

( )

( )
1 2 2∫ ∫π π( )( ) ( )− = −−

To prove this equality, define

W t f y a dy

S t x f t f x dx

( ) ( )

( ) 2 ( ) ( ) .

f a

f t

a

t

( )

( )
1 2 2∫

∫

π

π

( )( )

( )

= −

= −

−

Then show that the functions W and S agree at a point of [ ]a b,  
and have identical derivatives on [ ]a b, . As you saw in Section 
4.8, Exercise 132, this will guarantee W t S t( ) ( )=  for all t in 
[ ]a b, . In particular, W b S b( ) ( ).=  (Source: “Disks and Shells 
Revisited” by Walter Carlip, in American Mathematical Monthly, 
Feb. 1991, vol. 98, no. 2, pp. 154–156.)

M06_HASS5901_15_GE_C06.indd   398 07/03/23   12:20

www.konkur.in

Telegram: @uni_k



 6.3  Arc Length 399

 46. The region between the curve = −y xsec 1  and the x-axis from 
=x 1 to =x 2 (shown here) is revolved about the y-axis to gen-

erate a solid. Find the volume of the solid.

y = sec−1 x

x

y

210

p
3

 47. Find the volume of the solid generated by revolving the region 
enclosed by the graphs of = = =−y e y x, 0, 0x 2 , and =x 1 
about the y-axis.

 48. Find the volume of the solid generated by revolving the region 
enclosed by the graphs of = =y e y, 1x 2 , and x ln 3=  about 
the x-axis.

 49. Consider the region R bounded by the graphs of 
= > = >y f x x a( ) 0,   0, and = >x b a. If the volume of 

the solid formed by revolving R about the y-axis is π2 , and the 
volume formed by revolving R about the line = −x 2 is π10 , find 
the area of R.

y = f (x)

x

y

0 ba

R

 50. Consider the region R given in Exercise 49. If the area of region 
R is 1, and the volume of the solid formed by revolving R about 
the line = −x 3 is π10 , find the volume of the solid formed by 
revolving R about the y-axis.

6.3 Arc Length

We know what is meant by the length of a straight-line segment, but without calculus, we 
have no precise definition of the length of a general winding curve. If the curve is the graph 
of a continuous function defined over an interval, then we can find the length of the curve 
using a procedure similar to that we used for defining the area between the curve and the 
x-axis. We divide the curve into many pieces, and we approximate each piece by a straight-
line segment. The sum of the lengths of these segments is an approximation to the total 
curve length that we seek. The total length of the curve is the limiting value of these 
approximations as the number of segments goes to infinity.

Length of a Curve =y f x( )

Suppose the curve whose length we want to find is the graph of the function =y f x( ) 
from = =x a x b to  . In order to derive an integral formula for the length of the curve, 
we assume that f  has a continuous derivative at every point of [ ]a b, . Such a function is 
called smooth, and its graph is a smooth curve because it does not have any breaks, cor-
ners, or cusps.

We partition the interval [ ]a b,  into n subintervals with

�= < < < < =a x x x x b.n0 1 2

If y f x( )k k= , then the corresponding point ( )P x y,k k k  lies on the curve. Next we connect 
successive points −Pk 1 and Pk with straight-line segments that, taken together, form a 
polygonal path whose length approximates the length of the curve (Figure 6.22). If we set 
Δ = − −x x xk k k 1 and Δ = − −y y yk k k 1, then a representative line segment in the path 
has length

L x yk k k
2 2( ) ( )= Δ + Δ

(see Figure 6.23), so the length of the curve is approximated by the sum

 L x y .
k

n

k
k

n

k k
1 1

2 2∑ ∑ ( ) ( )= Δ + Δ
= =

 (1)

We expect the approximation to improve as the partition of [ ]a b,  becomes finer. In order 
to evaluate this limit, we use the Mean Value Theorem, which tells us that there is a point 
c ,k  with < <−x c x ,k k k1  such that

y f c x( ) .k k kΔ = ′ Δ
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400 Chapter 6 Applications of Definite Integrals 

When this is substituted for Δy ,k  the sums in Equation (1) take the form

 L x f c x f c x( ) 1 ( ) .
k

n

k
k

n

k k k
k

n

k k
1 1

2 2

1

2∑ ∑ ∑( ) [ ]( )= Δ + ′ Δ = + ′ Δ
= = =

 (2)

This is a Riemann sum whose limit we can evaluate. Because f x1 ( ) 2[ ]+ ′  is continuous 
on [ ]a b, , the limit of the Riemann sum on the right-hand side of Equation (2) exists and 
has the value

L f c x f x dxlim lim 1 ( ) 1 ( ) .
n

k

n

k
n

k

n

k k
a

b

1 1

2 2∑ ∑ ∫[ ] [ ]= + ′ Δ = + ′
→∞ = →∞ =

We define the length of the curve to be this integral.

FIGURE 6.22 The length of the polygo-
nal path �P P P Pn0 1 2  approximates the 
length of the curve =y f x( ) from point A 
to point B.

x

y

y = f (x)

x0 = a b = xn

B = Pn

x1 x2 xk−1 xk

P0 = A

P1
P2

Pk−1

Pk

FIGURE 6.23 The arc −P Pk k1  of the 
curve =y f x( ) is approximated by the 
straight-line segment shown here, which 
has length L x y .k k k

2 2( ) ( )= Δ + Δ

x

y

0 xk−1

Pk−1

xk

Lk

Δxk

Δyk
Pk

y = f (x)

FIGURE 6.24 The length of the curve  
is slightly larger than the length of the  
line segment joining points A and B 
(Example 1).

x

y

0

A

B

1

−1

1

y = x3/2 − 14
"

2
3

DEFINITION If ′f  is continuous on [ ]a b, , then the length (arc length) of the 
curve =y f x( ) from the point ( )=A a f a, ( )  to the point ( )=B b f b, ( )  is the 
value of the integral

 L f x dx
dy
dx

dx1 ( ) 1 .
a

b

a

b2
2

∫ ∫ ( )[ ]= + ′ = +  (3)

EXAMPLE 1  Find the length of the curve shown in Figure 6.24, which is the graph 
of the function

= − ≤ ≤y x x4 2
3

1, 0 1.3 2

Solution We use Equation (3) with = =a b0, 1, and

( ) ( )

= −

= ⋅ =

= =

y x

dy
dx

x x

dy
dx

x x

4 2
3

1

4 2
3

3
2

2 2

2 2 8 .

3 2

1 2 1 2

2
1 2 2

The length of the curve over =x 0 to =x 1 is

∫ ∫( )
( )

= + = +

= ⋅ + ⎤
⎦⎥

= ≈

L
dy
dx

dx x dx

x

1 1 8

2
3

1
8

1 8 13
6

2.17.

2

0

1

0

1

3 2

0

1

= ≈x yIf  1,  then  0.89.

= =a bEq. (3) with  0,   1

Let = +u x1 8 , integrate, 
and replace u by + x1 8 .
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 6.3  Arc Length 401

Notice that the length of the curve is slightly larger than the length of the straight-line segment 
joining the points ( )= −A 0, 1  and ( )= −B 1, 4 2 3 1  on the curve (see Figure 6.24):

( )> + ≈2.17 1 1.89 2.14.2 2     Decimal approximations 

EXAMPLE 2  Find the length of the graph of

= + ≤ ≤f x x
x

x( )
12

1 , 1 4.
3

Solution A graph of the function is shown in Figure 6.25. To use Equation (3), we find

f x x
x

( )
4

12

2
′ = −

so

f x x
x

x
x

x
x

x
x

1 ( ) 1
4

1 1
16

1
2

1

16
1
2

1
4

1

2 2

2

2 4

4

4

4

2

2

2

( ) ( )
( )

[ ]+ ′ = + − = + − +

= + + = +

and

f x x
x

x
x

x
x

1 ( )
4

1
4

1
4

1 .2 2

2

2 2

2

2

2( )[ ]+ ′ = + = + = +     + > 0x
x4
12

2

The length of the graph over [ ]1, 4  is

L f x dx x
x

dx

x
x

1 ( )
4

1

12
1 64

12
1
4

1
12

1 72
12

6.

2

1

4 2

21

4

3

1

4

∫ ∫ ( )

( ) ( )

[ ]= + ′ = +

= −⎡
⎣⎢

⎤
⎦⎥

= − − − = =  

EXAMPLE 3  Find the length of the curve

( )= + ≤ ≤−y e e x1
2

, 0 2.x x

Solution We use Equation (3) with = =a b0, 2, and

( )

( )

( )

( )

( )

( )

( )

= +

= −

= − +

+ = + + = +⎡
⎣⎢

⎤
⎦⎥

−

−

−

− −

y e e

dy
dx

e e

dy
dx

e e

dy
dx

e e e e

1
2

1
2

1
4

2

1 1
4

2 1
2

x x

x x

x x

x x x x

2
2 2

2
2 2

2

( ) ( ) ( ) ( )+ = +⎡
⎣⎢

⎤
⎦⎥

= + = +− − −dy
dx

e e e e e e1 1
2

1
2

1
2

.x x x x x x
2 2

 ( )+ >−e e 0x x1
2

The length of the curve from =x 0 to =x 2 is

L
dy
dx

dx e e dx

e e e e

1 1
2

1
2

1
2

1 1 3.63.

x x

x x

2

0

2

0

2

0

2
2 2

∫ ∫( )
( )( )

( )

( )

= + = +

= −⎡
⎣⎢

⎤
⎦⎥

= − − − ≈

−

− −

   Eq. (3) with = =a b0,  2

FIGURE 6.25 The curve in  
Example 2, where ( )=A 1,13 12   
and ( )=B 4, 67 12 .

x

y

0

A

B

41

y = +x3

12
1
x
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402 Chapter 6 Applications of Definite Integrals 

Dealing with Discontinuities in dy dx

Even if the derivative dy dx  does not exist at some point on a curve, it is possible that 
dx dy could exist. This can happen, for example, when a curve has a vertical tangent. In 
this case, we may be able to find the curve’s length by expressing x as a function of y and 
applying the following analogue of Equation (3).

Formula for the Length of ( )g y �c y d= ≤ ≤x ,
If ′g  is continuous on [ ]c d, , the length of the curve =x g y( ) from ( )=A g c c( ),  
to ( )=B g d d( ),  is

 L dx
dy

dy g y dy1 1 ( ) .
c

d

c

d2
2∫ ∫ [ ]= +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = + ′  (4)

FIGURE 6.26 The graph of 
( )=y x 2 2 3 from =x 0 to =x 2 

is also the graph of =x y2 3 2 from 
= =y y0 to  1 (Example 4).

x

y

0

1

2

(2, 1)

1

y =
2�3x

2Q R

EXAMPLE 4  Find the length of the curve ( )=y x 2 2 3 from =x 0 to =x 2.

Solution The derivative

( )( ) ( )= =
−dy

dx
x

x
2
3 2

1
2

1
3

21 3 1 3

is not defined at =x 0, so we cannot find the curve’s length with Equation (3).
We therefore rewrite the equation to express x in terms of y:

( )=

=

=

y x

y x

x y

2

2

2 .

2 3

3 2

3 2

From this we see that the curve whose length we want is also the graph of =x y2 3 2 from 
=y 0 to =y 1 (see Figure 6.26).

The derivative

( )= =dx
dy

y y2 3
2

31 2 1 2

is continuous on [ ]0,1 . We may therefore use Equation (4) to find the curve’s length:

L dx
dy

dy y dy

y

1 1 9

1
9

2
3

1 9

2
27

10 10 1 2.27.

c

d 2

0

1

3 2

0

1

∫ ∫

( )

( )

= +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = +

= ⋅ + ⎤
⎦⎥

= − ≈  

The Differential Formula for Arc Length

If =y f x( ) and if ′f  is continuous on [ ]a b, , then by the Fundamental Theorem of 
Calculus, we can define a new function

 s x f t dt( )   1 ( ) .
a

x 2∫ [ ]= + ′  (5)

Raise both sides to the power 3 2.

Solve for x.

Eq. (4) with = =c d0,  1

Let = + =u y du dy1 9 ,   9 , 
integrate, and substitute back.
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 6.3  Arc Length 403

From Equation (3) and Figure 6.22, we see that this function s x( ) is continuous and mea-
sures the length along the curve =y f x( ) from the initial point ( )P a f a, ( )0  to the point 

( )Q x f x, ( )  for each [ ]∈x a b, . The function s is called the arc length function for 
=y f x( ). From the Fundamental Theorem, the function s is differentiable on (a, b) and

ds
dx

f x
dy
dx

1 ( ) 1 .2
2

( )[ ]= + ′ = +

Then the differential of arc length is

 ( )= +ds
dy
dx

dx1 .
2

 (6)

A useful way to remember Equation (6) is to write

 = +ds dx dy ,2 2  (7)

which can be integrated between appropriate limits to give the total length of a curve. From 
this point of view, all the arc length formulas are simply different expressions for the equa-
tion = ∫L ds. Figure 6.27a, which corresponds to Equation (7), can be thought of as a 
simplified approximation of Figure 6.27b. That is, ds is approximately equal to the exact 
arc length Δs.

EXAMPLE 5  Find the arc length function for the curve in Example 2, taking 
( )=A 1,13 12  as the starting point (see Figure 6.25).

Solution In the solution to Example 2, we found that

f x x
x

1 ( )
4

1 .2 2

2
[ ]+ ′ = +

Therefore the arc length function is given by

s x f t dt t
t

dt

t
t

x
x

( ) 1 ( )
4

1

12
1

12
1 11

12
.

x x

x

2

1

2

21

3

1

3

∫ ∫ ( )[ ]= + ′ = +

= −⎡
⎣⎢

⎤
⎦⎥

= − +

To compute the arc length along the curve from ( ) ( )= =A B1,13 12  to  4, 67 12 , for 
instance, we simply calculate

s(4) 4
12

1
4

11
12

6.
3

= − + =

This is the same result we obtained in Example 2. 

FIGURE 6.27 Diagrams 
for remembering the equation 

= +ds dx dy .2 2

y

x
0

dx

ds
dy

(a)

y

x
0

dx

(b)

Δs ≈ ds
Δy ≈ dy

Finding Lengths of Curves
Find the lengths of the curves in Exercises 1–16. If you have graphing 
software, you may want to graph these curves to see what they look 
like.

 1. ( )( )= +y x1 3 22 3 2 from =x 0 to =x 3

 2. =y x 3 2 from =x 0 to =x 4

 3. x y y3 1 (4 )3( )= +  from =y 1 to =y 3

 4. ( )= −x y y33 2 1 2 from =y 1 to =y 9

 5. ( ) ( )= +x y y4 1 84 2  from =y 1 to =y 2

 6. ( ) ( )= +x y y6 1 23  from =y 2 to =y 3

 7. ( ) ( )= − + ≤ ≤y x x x3 4 3 8 5, 1 84 3 2 3

 8. ( ) ( )= + + + + ≤ ≤y x x x x x3 1 4 4 , 0 23 2

EXERCISES 6.3
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404 Chapter 6 Applications of Definite Integrals 

 9. y x xln
8

2
= −  from =x 1 to =x 2

 10. y
x x
2

ln
4

2

= −  from =x 1 to =x 3

 11. = + ≤ ≤y x
x

x
3

1
4

, 1 3
3

 12. = + ≤ ≤y x
x

x
5

1
12

, 1
2

1
5

3

 13. = + ≤ ≤y x x3
2

1, 1
8

12 3

 14. ( )= + − ≤ ≤−y e e x1
2

, 1 1x x

 15. x t dt ysec 1 , 4 4
y

4

0∫ π π= − − ≤ ≤

 16. y t dt x3 1 , 2 1
x

4

2∫= − − ≤ ≤ −
−

Finding Integrals for Lengths of Curves

In Exercises 17–24, do the following.

 a. Set up an integral for the length of the curve.

 b. Graph the curve to see what it looks like.

 c. Use your grapher’s or computer’s integral evaluator to find the 
curve’s length numerically.

 17. = − ≤ ≤y x x, 1 22

 18. y x xtan , 3 0π= − ≤ ≤

 19. x y ysin , 0 π= ≤ ≤

 20. = − − ≤ ≤x y y1 , 1 2 1 22

 21. + = +y y x2 2 12  from ( )− −1, 1  to ( )7, 3

 22. y x x x xsin cos , 0 π= − ≤ ≤

 23. y t dt xtan , 0 6
x

0∫ π= ≤ ≤

 24. ∫ π π= − − ≤ ≤x t dt ysec 1 , 3 4
y

2

0

Theory and Examples

 25. a.  Find a curve with a positive derivative through the point ( )1,1  
whose length integral (Equation 3) is

L
x

dx1 1
4

.
1

4

∫= +

 b. How many such curves are there? Give reasons for your 
answer.

 26. a.  Find a curve with a positive derivative through the point ( )0,1  
whose length integral (Equation 4) is

L
y

dy1 1 .
41

2

∫= +

 b. How many such curves are there? Give reasons for your 
answer.

T

 27. Find the length of the curve

y t dtcos 2
x

0∫=

from =x 0 to π=x 4.

 28. The length of an astroid The graph of the equation 
+ =x y 12 3 2 3  is one of a family of curves called astroids 

(not “asteroids”) because of their starlike appearance (see 
the accompanying figure). Find the length of this particular 
astroid by finding the length of half the first-quadrant portion, 

( )= − ≤ ≤y x x1 ,   2 4 1,2 3 3 2  and multiplying by 8.

x

y

0

1

1−1

−1

x2�3 + y2�3 = 1

 29. Length of a line segment Use the arc length formula (Equation 3) 
to find the length of the line segment = − ≤ ≤y x x3 2 ,  0 2. 
Check your answer by finding the length of the segment as the 
hypotenuse of a right triangle.

 30. Circumference of a circle Set up an integral to find the circum-
ference of a circle of radius r centered at the origin. You will learn 
how to evaluate the integral in Section 8.3.

 31. If ( )= −x y y9 3 ,2 2  show that

( )
= +

ds
y

y
dy

1
4

.2
2

2

 32. If − =x y4 64,2 2  show that

( )= −ds
y

x dx4 5 16 .2
2

2 2

 33. Is there a smooth (continuously differentiable) curve =y f x( ) 
whose length over the interval ≤ ≤x a0  is always a2 ? Give 
reasons for your answer.

 34. Using tangent fins to derive the length formula for curves  
Assume that f  is smooth on [ ]a b,  and partition the interval [ ]a b,  in 
the usual way. In each subinterval [ ]−x x, ,k k1  construct the tangent 
fin at the point ( )( )− −x f x, ,k k1 1  as shown in the accompanying 
figure.

 a. Show that the length of the kth tangent fin over the interval 

[ ]−x x,k k1  equals ( )( ) ( )Δ + ′ Δ−x f x x .k k k
2

1
2

 b. Show that

k f x dxlim length of  th tangent fin 1 ( ) ,
n

k

n

a

b

1

2∑ ∫ ( )( ) = + ′
→∞ =
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 6.4  Areas of Surfaces of Revolution 405

which is the length L of the curve y f x( ) from a to b.

x

Δxk

Tangent fin
with slope 
f ′(xk−1)

xk−1 xk

(xk−1, f (xk−1))

y = f (x)

 35. Approximate the arc length of one-quarter of the unit circle 
(which is 2  by computing the length of the polygonal approxi-
mation with n 4 segments (see accompanying figure).

x

y

0 10.750.50.25

 36. Distance between two points Assume that the two points ( )x y,1 1  
and ( )x y,2 2  lie on the graph of the straight line = +y mx b. Use 
the arc length formula (Equation 3) to find the distance between the 
two points.

 37. Find the arc length function for the graph of f x x( ) 2 3 2 using 
( )0, 0  as the starting point. What is the length of the curve from 
( )0, 0  to ( )1, 2 ?

 38. Find the arc length function for the curve in Exercise 8, using  
( )0,1 4  as the starting point. What is the length of the curve from 
( )0,1 4  to ( )1, 59 24 ?

COMPUTER EXPLORATIONS
In Exercises 39–44, use a CAS to perform the following steps for the 
given graph of the function over the closed interval.

 a. Plot the curve together with the polygonal path approxima-
tions for n 2, 4, 8 partition points over the interval. (See 
Figure 6.22.)

 b. Find the corresponding approximation to the length of the 
curve by summing the lengths of the line segments.

 c. Evaluate the length of the curve using an integral. Compare 
your approximations for n 2, 4, 8 with the actual length 
given by the integral. How does the actual length compare 
with the approximations as n increases? Explain your answer.

 39. = − − ≤ ≤f x x x( ) 1 , 1 12

 40. = + ≤ ≤f x x x x( ) , 0 21 3 2 3

 41. ( )= ≤ ≤f x x x( ) sin , 0 22

 42. f x x x x( ) cos , 02= ≤ ≤

 43. = −
+

− ≤ ≤f x x
x

x( ) 1
4 1

, 1
2

1
2

 44. = − − ≤ ≤f x x x x( ) , 1 13 2

6.4 Areas of Surfaces of Revolution

When you jump rope, the rope sweeps out a surface in the space around you similar to 
what is called a surface of revolution. The surface surrounds a volume of revolution, and 
many applications require that we know the area of the surface rather than the volume it 
encloses. In this section we define areas of surfaces of revolution. More general surfaces 
are treated in Chapter 15.

Defining Surface Area

If you revolve a region in the plane that is bounded by the graph of a function over an 
interval, it sweeps out a solid of revolution, as we saw earlier in the chapter. However, if 
you revolve only the bounding curve itself, it does not sweep out any interior volume but 
rather a surface that surrounds the solid and forms part of its boundary. Just as we were 
interested in defining and finding the length of a curve in the last section, we are now 
interested in defining and finding the area of a surface generated by revolving a curve 
about an axis.

Before considering general curves, we begin by rotating horizontal and slanted line 
segments about the x-axis. If we rotate the horizontal line segment AB having length x 
about the x-axis (Figure 6.28a), we generate a cylinder with surface area y x2 . This area 
is the same as that of a rectangle with side lengths x and y2  (Figure 6.28b). The length 

y2  is the circumference of the circle of radius y generated by rotating the point (x, y) on 
the line AB about the x-axis.

Suppose the line segment AB has length L and is slanted rather than horizontal. Now 
when AB is rotated about the x-axis, it generates a frustum of a cone (Figure 6.29a). From 

FIGURE 6.28 (a) A cylindrical surface 
generated by rotating the horizontal line 
segment AB of length x  about the x-axis 
has area y x2 . (b) The cut and rolled-
out cylindrical surface as a rectangle.

y

0

A B

y

x

2py

NOT TO SCALE
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406 Chapter 6 Applications of Definite Integrals 

FIGURE 6.30 The surface generated by 
revolving the graph of a nonnegative function 

= ≤ ≤y f x a x b( ),   , about the x-axis. 
The surface is a union of bands like the one 
swept out by the arc PQ.

y )
P Q

0

a

b x
xk

xk−1

y = f(x

FIGURE 6.31 The line segment joining 
P and Q sweeps out a frustum of a cone.

xk

xk−1

P
Q

x

FIGURE 6.32 Dimensions associated 
with the arc and line segment PQ.

y = f (x)

Segment length:
L = "(Δxk)2 + (Δyk)2 

Q

P

 f (xk)
 f (xk − 1)

Δyk

Δxk

xk – 1 xk

classical geometry, the surface area of this frustum is πy L2 * , where ( )= +y y y* 21 2  is 
the average height of the slanted segment AB above the x-axis. This surface area is the 
same as that of a rectangle with side lengths L and πy2 * (Figure 6.29b).

Let’s build on these geometric principles to define the area of a surface swept out by 
revolving more general curves about the x-axis. Suppose we want to find the area of the 
surface swept out by revolving the graph of a nonnegative continuous function 

= ≤ ≤y f x a x b( ),   , about the x-axis. We partition the closed interval [ ]a b,  in the usual 
way and use the points in the partition to subdivide the graph into short arcs. Figure 6.30 
shows a typical arc PQ and the band it sweeps out as part of the graph of f .

As the arc PQ revolves about the x-axis, the line segment joining P and Q sweeps out a 
frustum of a cone whose axis lies along the x-axis (Figure 6.31). The surface area of this 
frustum approximates the surface area of the band swept out by the arc PQ. The surface area 
of the frustum of the cone shown in Figure 6.31 is πy L2 * , where y* is the average height of 
the line segment joining P and Q, and L is its length (just as before). Since ≥f 0, from 
Figure 6.32 we see that the average height of the line segment is y f x f x* ( ) 2,k k1( )( )= +−  
and the slant length is L x y .k k

2 2( ) ( )= Δ + Δ  Therefore,

f x f x
x y

f x f x x y

Frustum surface area 2
( )

2

( ) .

k k
k k

k k k k

1 2 2

1
2 2

π

π( )

( )
( ) ( )

( ) ( ) ( )

= ⋅
+

⋅ Δ + Δ

= + Δ + Δ

−

−

The area of the original surface, being the sum of the areas of the bands swept out by 
arcs like arc PQ, is approximated by the frustum area sum

 f x f x x y( ) .
k

n

k k k k
1

1
2 2∑ π( )( ) ( ) ( )+ Δ + Δ

=
−  (1)

We expect the approximation to improve as the partition of [ ]a b,  becomes finer. To find 
the limit, we first need to find an appropriate substitution for Δy .k  If the function f  is dif-
ferentiable, then by the Mean Value Theorem, there is a point c f c, ( )k k( ) on the curve 
between P and Q where the tangent is parallel to the segment PQ (Figure 6.33). At this 
point,

f c
y
x

y f c x

( ) ,

( ) .

k
k

k

k k k

′ =
Δ
Δ

Δ = ′ Δ

FIGURE 6.29 (a) The frustum of a cone generated by rotating 
the slanted line segment AB of length L about the x-axis has area 

πy L2 * . (b) The area of the rectangle for =
+

y
y y

*
2

,1 2  the average 

height of AB above the x-axis.

y

y2y1

A

B

(a)

L

2py*

NOT TO SCALE

(b)

x
y*

0

L
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 6.4  Areas of Surfaces of Revolution 407

With this substitution for Δy ,k  the sums in Equation (1) take the form

∑ π( ) ( )( )+ Δ + ′ Δ
=

−f x f x x f c x( ) ( ) ( )
k

n

k k k k k
1

1
2 2

 ∑ π( ) ( )= + + ′ Δ
=

−f x f x f c x( ) ( ) 1 ( ) .
k

n

k k k k
1

1
2  (2)

These sums are not the Riemann sums of any function because the points −x x, ,k k1  and ck 
are not the same. However, the points −x ,k 1  x ,k  and ck are very close to each other, and so 
we expect (and it can be proved) that as the norm of the partition of [ ]a b,  goes to zero, the 
sums in Equation (2) converge to the integral

f x f x dx2 ( ) 1 ( ) .
a

b 2∫ π ( )+ ′

We therefore define this integral to be the area of the surface swept out by the graph of f  
from a to b.

FIGURE 6.33 If f  is smooth, the Mean 
Value Theorem guarantees the existence of 
a point ck where the tangent is parallel to 
segment PQ.

y = f (x)

Q

P
Δyk

Δxk

xk−1 xkck

Tangent parallel
to chord

(ck, f (ck))

DEFINITION If the function ≥f x( ) 0 is continuously differentiable on [ ]a b, , 
the area of the surface generated by revolving the graph of =y f x( ) about the 
x-axis is

 S y
dy
dx

dx f x f x dx2 1 2 ( ) 1 ( ) .
a

b

a

b2
2∫ ∫π π( ) ( )= + = + ′  (3)

Note that the square root in Equation (3) is similar to the one that appears in the formula 
for the arc length of the generating curve in Equation (6) of Section 6.3.

EXAMPLE 1  Find the area of the surface generated by revolving the curve 
= ≤ ≤y x x2 ,  1 2, about the x-axis (Figure 6.34).

Solution We evaluate the formula

∫ π ( )= +S y
dy
dx

dx2 1
a

b 2

    Eq. (3)

with

= = = =a b y x
dy
dx x

1, 2, 2 , 1 .

First, we perform some algebraic manipulation on the radical in the integrand to transform 
it into an expression that is easier to integrate.

( ) ( )+ = + = + = + = +dy
dx x x

x
x

x
x

1 1 1 1 1 1 12 2

With these substitutions, we have

∫ ∫π π

π π( )( )

= ⋅ + = +

= ⋅ + ⎤
⎦⎥

= −

S x x
x

dx x dx

x

2 2 1 4 1

4 2
3

1 8
3

3 3 2 2 .

1

2

1

2

3 2

1

2

 

FIGURE 6.34 In Example 1 we  
calculate the area of this surface.

0
1

2
x

y

(1, 2)

y = 2
"

x
(2, 2

"

2)
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408 Chapter 6 Applications of Definite Integrals 

Revolution About the y-Axis

For revolution about the y-axis, we interchange x and y in Equation (3).

Surface Area for Revolution About the y-Axis
If = ≥x g y( ) 0 is continuously differentiable on [ ]c d, , the area of the surface 
generated by revolving the graph of =x g y( ) about the y-axis is

 S x dx
dy

dy g y g y dy2 1 2 ( ) 1 ( ) .
c

d

c

d2
2∫ ∫π π ( )= +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = + ′  (4)

FIGURE 6.35 Revolving line segment 
AB about the y-axis generates a cone 
whose lateral surface area we can now cal-
culate in two different ways (Example 2).

A(0, 1)

B(1, 0)

x + y = 1

0

x

y EXAMPLE 2  The line segment = − ≤ ≤x y y1 ,  0 1, is revolved about the y-axis 
to generate the cone in Figure 6.35. Find its lateral surface area (which excludes the base 
area).

Solution Here we have a calculation we can check with a formula from geometry:

π= × =Lateral surface area base circumference
2

slant height 2.

To see how Equation (4) gives the same result, we take

( )

= = = − = −

+
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = + − =

c d x y dx
dy

dx
dy

0, 1, 1 , 1,

1 1 1 2
2

2

and calculate

∫ ∫π π

π π π( )

( )= +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = −

= −⎡
⎣⎢

⎤
⎦⎥

= − =

S x dx
dy

dy y dy

y
y

2 1 2 1 2

2 2
2

2 2 1 1
2

2.

c

d 2

0

1

2

0

1

 

Finding Integrals for Surface Area
In Exercises 1–8:

 a. Set up an integral for the area of the surface generated by 
revolving the given curve about the indicated axis.

 b. Graph the curve to see what it looks like. If you can, graph the 
surface too.

 c. Use your utility’s integral evaluator to find the surface’s area 
numerically.

 1. y x x xtan , 0 4; -axisπ= ≤ ≤

 2. = ≤ ≤y x x x, 0 2; -axis2

 3. = ≤ ≤xy y y1, 1 2; -axis

 4. x y y ysin , 0 ; -axisπ= ≤ ≤

 5. + =x y 31 2 1 2  from ( )4,1   to ( )1, 4 ; x-axis

 6. + = ≤ ≤y y x y y2 , 1 2; -axis

T

T

 7. x t dt y ytan , 0 3; -axis
y

0∫ π= ≤ ≤

 8. ∫= − ≤ ≤y t dt x x1 , 1 5; -axis
x

2

1

Finding Surface Area

 9. Find the lateral (side) surface area of the cone generated by revolv-
ing the line segment = ≤ ≤y x x2,  0 4, about the x-axis. Check 
your answer with the geometry formula

= × ×Lateral surface area 1
2

base circumference slant height.

 10. Find the lateral surface area of the cone generated by revolving 
the line segment = ≤ ≤y x x2,  0 4, about the y-axis. Check 
your answer with the geometry formula given in Exercise 9.

EXERCISES 6.4
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 6.4  Areas of Surfaces of Revolution 409

 11. Find the surface area of the cone frustum generated by revolv-
ing the line segment ( ) ( )= + ≤ ≤y x x2 1 2 ,  1 3, about the 
x-axis. Check your result with the geometry formula

π( )= + ×y yFrustum surface area slant height.1 2

 12. Find the surface area of the cone frustum generated by revolving the 
line segment ( ) ( )= + ≤ ≤y x x2 1 2 ,  1 3, about the y-axis. 
Check your result with the geometry formula given in Exercise 11.

Find the areas of the surfaces generated by revolving the curves in 
Exercises 13–23 about the indicated axes. If you have a grapher, you 
may want to graph these curves to see what they look like.

 13. = ≤ ≤y x x x9, 0 2; -axis3

 14. = ≤ ≤y x x x, 3 4 15 4; -axis

 15. = − ≤ ≤y x x x x2 , 0.5 1.5; -axis2

 16. = + ≤ ≤y x x x1, 1 5; -axis

 17. = ≤ ≤x y y y3, 0 1; -axis3

 18. ( )= − ≤ ≤x y y y y1 3 , 1 3; -axis3 2 1 2

 19. = − ≤ ≤x y y y2 4 , 0 15 4; -axis

4
0

x

y

x = 2
"

4 − y

15
4

1,
15
4a      b

 20. = − ≤ ≤x y y y2 1, 5 8 1; -axis

x

y

1
2

5
8

,5
8 0

1
2 1

1 (1, 1)

x = 
"

2y − 1
a     b

 21. x e e y2, 0 ln 2;y y( )= + ≤ ≤−  y-axis

0

ln 2

1

x = ey + e−y

2

x

y

 22. ( )( )= + ≤ ≤y x x y1 3 2 , 0 2; -axis2 3 2  (Hint: Express 

= +ds dx dy2 2  in terms of dx, and evaluate the integral 

π= ∫S x ds2  with appropriate limits.)

 23. ( ) ( )= + ≤ ≤x y y y x4 1 8 , 1 2; -axis4 2  (Hint: Express 

= +ds dx dy2 2  in terms of dy, and evaluate the integral 

π= ∫S y ds2  with appropriate limits.)

 24. Write an integral for the area of the surface generated by revolv-
ing the curve y x xcos ,  2 2,π π= − ≤ ≤  about the x-axis. In 
Section 8.3 we will see how to evaluate such integrals.

 25. Testing the new definition Show that the surface area of a sphere 
of radius a is still πa4 2 by using Equation (3) to find the area of 
the surface generated by revolving the curve = −y a x ,2 2  
− ≤ ≤a x a, about the x-axis.

 26. Testing the new definition The lateral (side) surface area of a 
cone of height h and base radius r should be π +r r h ,2 2  the 
semiperimeter of the base times the slant height. Show that this 
is still the case by finding the area of the surface generated by 
revolving the line segment ( )= ≤ ≤y r h x x h,  0 , about the 
x-axis.

 27. Enameling woks Your company decided to put out a deluxe 
version of a wok you designed. The plan is to coat it inside with 
white enamel and outside with blue enamel. Each enamel will 
be sprayed on 0.5 mm thick before baking. (See accompany-
ing figure.) Your manufacturing department wants to know how 
much enamel to have on hand for a production run of 5000 woks. 
What do you tell them? (Neglect waste and unused material  
and give your answer in liters. Remember that =1 cm 1 mL,3  so 

=1 L 1000 cm .3 )

9 cm deep

0
−7

x2 + y2 = 162 = 256

x (cm)

−16

y (cm)

 28. Here is a schematic drawing of the 30-m dome used by the  
U.S. National Weather Service to house radar in Bozeman, 
Montana.

 a. How much outside surface is there to paint (not counting the 
bottom)?

 b. Express the answer to the nearest square meter.

A
xi

s

15 m

7.5 m

Center
Radius
15 m

T

T
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410 Chapter 6 Applications of Definite Integrals 

 29. The shaded band shown here is cut from a sphere of radius R by 
parallel planes h units apart. Show that the surface area of the 
band is πRh2 .

h

R

 30. Slicing bread Did you know that if you cut a spherical loaf 
of bread into slices of equal width, each slice will have the 
same amount of crust? To see why, suppose the semicircle 

= −y r x2 2  shown here is revolved about the x-axis to gener-
ate a sphere. Let AB be an arc of the semicircle that lies above an 
interval of length h on the x-axis. Show that the area swept out by 
AB does not depend on the location of the interval. (It does depend 
on the length of the interval.)

h

x

y

r

A
B

a0 a + h−r

y = 
"

r2 − x2

 31. An alternative derivation of the surface area formula  Assume 
f  is smooth on [ ]a b,  and partition [ ]a b,  in the usual way. In the kth 
subinterval [ ]−x x,k k1 , construct the tangent line to the curve at the 
midpoint ( )= +−m x x 2,k k k1  as in the accompanying figure.

 a. Show that

r f m f m
x

r f m f m
x

( ) ( )
2

and ( ) ( )
2

.k k
k

k k
k

1 2= − ′
Δ

= + ′
Δ

 b. Show that the length Lk of the tangent line segment in the kth 

subinterval is L x f m x( ) .k k k k
2 2( )( )= Δ + ′ Δ

xk−1

r1

r2

mk xk

y = f (x)

Δxk

x

 c. Show that the lateral surface area of the frustum of the cone 
swept out by the tangent line segment as it revolves about the 

x-axis is f m f m x2 ( ) 1 ( ) .k k k
2π ( )+ ′ Δ

 d. Show that the area of the surface generated by revolving 
=y f x( ) about the x-axis over [ ]a b,  is

k
f x f x dxlim

lateral surface area
of  th frustum

2 ( ) 1 ( ) .
n

k

n

a

b

1

2∑ ∫ π ( )
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ = + ′

→∞ =

 32. The surface of an astroid Find the area of the surface gen-
erated by revolving about the x-axis the portion of the astroid 

+ =x y 12 3 2 3  shown in the accompanying figure.

(Hint: Revolve the first-quadrant portion ( )= −y x1 ,2 3 3 2  
≤ ≤x0 1, about the x-axis and double your result.)

x2�3 + y2�3 = 1

x

y

−1 0

1

1

6.5 Work and Fluid Forces

In everyday life, work means an activity that requires muscular or mental effort. In science, 
the term refers specifically to a force acting on an object and the object’s subsequent dis-
placement. This section shows how to calculate work. The applications run from compre-
ssing railroad car springs and emptying subterranean tanks to forcing subatomic particles 
to collide and lifting satellites into orbit.

Work Done by a Constant Force

When an object moves a distance d along a straight line as a result of being acted on by a 
force of constant magnitude F  in the direction of motion, we define the work W done by 
the force on the object with the formula

 ( )=W Fd Constant-force formula for work . (1)

From Equation (1) we see that the unit of work in any system is the unit of force mul-
tiplied by the unit of distance. In SI units (SI stands for Système International, or 
International System), the unit of force is a newton (N), the unit of distance is a meter (m), 
and the unit of work is a newton-meter N m .( )⋅  This combination appears so often, it has 
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 6.5  Work and Fluid Forces 411

DEFINITION The work done by a variable force F x( ) in moving an object 
along the x-axis from =x a to =x b is

 W F x dx( ) .
a

b

∫=  (2)

a special name, the joule (J). Taking gravitational acceleration at sea level to be 9.8 m s ,2  to 
lift one kilogram one meter requires work of 9.8 joules. This is seen by multiplying the 
force of 9.8 newtons exerted on one kilogram by the one-meter distance moved. 

EXAMPLE 1  Suppose you jack up the side of a 1000-kg car 35 cm to change a  
tire. The jack applies a constant vertical force of about 5000 N in lifting the side of the 
car (but because of the mechanical advantage of the jack, the force you apply to the jack 
itself is only about 150 N). The total work performed by the jack on the car is 5000 ×  
0.35 = 1750 J. 

Work Done by a Variable Force Along a Line

If the force you apply varies along the way, as it will if you are stretching or compressing a 
spring, the formula =W Fd has to be replaced by an integral formula that takes the varia-
tion in F  into account.

Suppose that the force performing the work acts on an object moving along a straight 
line, which we take to be the x-axis. We assume that the magnitude of the force is a con-
tinuous function F  of the object’s position x. We want to find the work done over the inter-
val from =x a to =x b. We partition [ ]a b,  in the usual way and choose an arbitrary 
point ck in each subinterval [ ]−x x, .k k1  If the subinterval is short enough, the continuous 
function F  will not vary much from −x k 1 to x .k  The amount of work done across the inter-
val will be about F c( )k  times the distance Δx ,k  the same as it would be if F  were constant 
and we could apply Equation (1). The total work done from a to b is therefore approxi-
mated by the Riemann sum

F c xWork ( ) .
k

n

k k
1

∑≈ Δ
=

We expect the approximation to improve as the norm of the partition goes to zero, so we 
define the work done by the force from a to b to be the integral of F  from a to b:

F c x F x dxlim ( ) ( ) .
n

k

n

k k
a

b

1
∑ ∫Δ =

→∞ =

Joules
The joule, abbreviated J, is named after 
the English physicist James Prescott 
Joule (1818–1889). The defining  
equation is

( )( )=1 joule 1 newton 1 meter .

In symbols, = ⋅1 J 1 N m.

The units of the integral are joules if F  is in newtons and x is in meters. So the work done 
by a force of F x x( ) 1 2=  newtons in moving an object along the x-axis from x 1 m=  to 
x 10 m=  is

W
x

dx
x

1 1 1
10

1 0.9 J.
21

10

1

10

∫= = − ⎤
⎦⎥

= − + =

Hooke’s Law for Springs: F kx=

One calculation for work arises in finding the work required to stretch or compress a 
spring. Hooke’s Law says that the force required to hold a stretched or compressed spring 
x units from its natural (unstressed) length is proportional to x. In symbols,

 =F kx. (3)
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412 Chapter 6 Applications of Definite Integrals 

The constant k, measured in force units per unit length, is a characteristic of the spring, 
called the force constant (or spring constant) of the spring. Hooke’s Law, Equation (3), 
gives good results as long as the force doesn’t distort the metal in the spring. We assume 
that the forces in this section are too small to do that.

EXAMPLE 2  Find the work required to compress a spring from its natural length of 
30 cm to a length of 20 cm if the force constant is k  240 N m.

Solution We picture the uncompressed spring laid out along the x-axis with its movable 
end at the origin and its fixed end at x  0.3 m (Figure 6.36). This enables us to describe 
the force required to compress the spring from 0 to x with the formula F  240x. To  
compress the spring from 0 to 0.1 m, the force must increase from

F F(0) 240 0 0 N to (0.1) 240 0.1 24 N.= ⋅ = = ⋅ =

The work done by F  over this interval is

W x dx x240 120 1.2 J.
0

0.1
2

0

0.1

∫= = ⎤
⎦⎥

=  

EXAMPLE 3  A spring has a natural length of 1 m. A force of 24 N holds the spring 
stretched to a total length of 1.8 m.

 (a) Find the force constant k.

 (b) How much work will it take to stretch the spring from its natural length to a length of 3 m?

 (c) How far will a 45-N force stretch the spring?

Solution 

 (a) The force constant. We find the force constant from Equation (3). A force of 24 N 
maintains the spring at a position where it is stretched 0.8 m from its natural length, so

k

k

24 (0.8)

24 0.8 30 N m.

=
= =

   Eq. (3) with = =F x24,   0.8

 (b) The work to stretch the spring 2 m. We imagine the unstressed spring hanging along 
the x-axis with its free end at =x 0 (Figure 6.37). The force required to stretch the 
spring x meters beyond its natural length is the force required to hold the free end of 
the spring x units from the origin. Hooke’s Law with =k 30 says that this force is

F x x( ) 30 .=

The work done by F  on the spring from =x 0 m to =x 2 m is

∫= = ⎤
⎦⎥

=W x dx x30 15 60 J.
0

2
2

0

2

 (c) How far will a 45-N force stretch the spring? We substitute =F 45 in the equation 
=F x30  to find

= =x x45 30 , or 1.5 m.

A 45-N force will keep the spring stretched 1.5 m beyond its natural length. 

Lifting Objects and Pumping Liquids from Containers

The work integral is useful for calculating the work done in lifting objects whose weights 
vary with their elevation.

EXAMPLE 4  A 2-kg bucket is lifted from the ground into the air by pulling in 6 m of 
rope at a constant speed (Figure 6.38). The rope weighs 0.1 kg m. How much work was 
spent lifting the bucket and rope?

  Eq. (2) with 
a b0,   0.1,= =  
F x x( ) 240=

FIGURE 6.37 A 24-N weight stretches 
this spring 0.8 m beyond its unstressed 
length (Example 3).

24 N

x (m)

x = 0

0.8

1

FIGURE 6.38 Lifting the bucket in 
Example 4.

FIGURE 6.36 The force F needed to 
hold a spring under compression increases 
linearly as the spring is compressed 
(Example 2).

x

F

0 Uncompressed

x (m)

F

0 0.1

24

Fo
rc

e 
(N

)

0.3

Compressed

x

(a)

Amount compressed

(b)

Work done by F
from x = 0  to x = 0.1

F = 240x

6

x

0
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Solution The bucket has constant weight, so the work done lifting it alone is  

weight distance 2 9.8 6 117.6 J.× = ⋅ ⋅ =

The weight of the rope varies with the bucket’s elevation, because less of it is freely 
hanging. When the bucket is x m off the ground, the remaining proportion of the rope still 
being lifted weighs x0.1 9.8 6 N.( )( )⋅ ⋅ −  So the work in lifting the rope is 

x dx x dx

x x

Work on rope 0.98 6 5.88 0.98

5.88 0.49 35.28 17.64 17.64 J.

0

6

0

6

2

0

6

∫ ∫( ) ( )( )= − = −

= −⎡
⎣⎢

⎤
⎦⎥
= − =

The total work for the bucket and rope combined is

117.6 17.64 135.24 J.+ =  

FIGURE 6.39 The olive oil and tank in 
Example 5.

x

y

10

8
10 − y

0

5

y = 2x or x =    y1
2

1
2

y

(5, 10)

Δy

y

How much work does it take to pump all or part of the liquid from a container? 
Engineers often need to know the answer in order to design or choose the right pump, or to 
compute the cost to transport water or some other liquid from one place to another. To find 
out how much work is required to pump the liquid, we imagine lifting the liquid out one 
thin horizontal slab at a time and applying the equation W Fd to each slab. We then 
evaluate the integral that this leads to as the slabs become thinner and more numerous.

EXAMPLE 5  The conical tank in Figure 6.39 is filled to within 2 m of the top with 
olive oil weighing 0.9 g cm 3 or 8820 N m .3  How much work does it take to pump the oil 
to the rim of the tank?

Solution We imagine the oil divided into thin slabs by planes perpendicular to the y-axis 
at the points of a partition of the interval [ ]0, 8 .

The typical slab between the planes at y and + Δy y has a volume of about

y y y yradius thickness 1
2 4

m .2
2

2 3V ( )( ) ( )Δ = = Δ = Δ

The force F y( ) required to lift this slab is equal to its weight,

F y V y y( ) 8820 8820
4

N.2= Δ = Δ   ( )= ×Weight weight per unit volume volume

The distance through which F y( ) must act to lift this slab to the level of the rim of the 
cone is about y10 m,( )−  so the work done lifting the slab is about

W y y y8820
4

10 J.2( )Δ = − Δ

Assuming there are n slabs associated with the partition of [ ]0, 8 , and that y yk denotes 
the plane associated with the kth slab of thickness y ,k  we can approximate the work done 
lifting all of the slabs with the Riemann sum

W y y y8820
4

10 J.
k

n

k k k
1

2∑ ( )≈ − Δ
=

The work of pumping the oil to the rim is the limit of these sums as the norm of the parti-
tion goes to zero, and the number of slabs tends to infinity:

W y y y y y dy

y y dy

y y

lim 8820
4

10 8820
4

10

8820
4

10

8820
4

10
3 4

4,728,977 J.

n
k

n

k k k
1

2 2

0

8

2 3

0

8

3 4

0

8

∑ ∫

∫

( )

( )

( )= − Δ = −

= −

= −⎡
⎣⎢

⎤
⎦⎥
≈

→∞ =
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414 Chapter 6 Applications of Definite Integrals 

Fluid Pressure and Forces

Dams are built thicker at the bottom than at the top (Figure 6.40) because the pressure 
against them increases with depth. The pressure at any point on a dam depends only on 
how far below the surface the point is and not on how much the surface of the dam happens 
to be tilted at that point. The pressure, in newtons per square meter at a point h meters 
below the surface, is always 9800h. The number 9800 is the weight-density of freshwater 
in newtons per cubic meter. The pressure h meters below the surface of any fluid is the 
fluid’s weight-density times h.

FIGURE 6.40 To withstand the increas-
ing pressure, dams are built thicker as they 
go down.

The Pressure-Depth Equation
In a fluid that is standing still, the pressure p at depth h is the fluid’s weight-
density w times h:

 p wh. (4)

Weight-density
A fluid’s weight-density w is its weight  
per unit volume. Typical values N m 3( )  
are listed below.

Gasoline 6600
Mercury 133,000
Milk 10,100
Molasses 15,700
Olive oil 8820
Seawater 10,050
Freshwater 9800

In a container of fluid with a flat horizontal base, the total force exerted by the fluid 
against the base can be calculated by multiplying the area of the base by the pressure at the 
base. We can do this because total force equals force per unit area (pressure) times area. 
(See Figure 6.41.) If F , p, and A are the total force, pressure, and area, then

= = ×
= × =
=

F

pA

whA

total force force per unit area area

pressure area

.

 p wh from Eq. (4)

Fluid Force on a Constant-Depth Surface

 F pA whA (5)

For example, the weight-density of freshwater is 9800 N m3, so the fluid force at the bottom 
of a 3 m 6 m rectangular swimming pool 1 m deep is

F whA 9800 N m 1 m 3 6 m

176,400 N.

3 2( )( )( )= = ⋅

=

For a flat plate submerged horizontally, like the bottom of the swimming pool just 
discussed, the downward force acting on its upper face due to liquid pressure is given by 
Equation (5). If the plate is submerged vertically, however, then the pressure against it will 
be different at different depths and Equation (5) no longer is usable in that form (because h 
varies).

Suppose we want to know the force exerted by a fluid against one side of a vertical 
plate submerged in a fluid of weight-density w. To find it, we model the plate as a region 
extending from y a to y b in the xy-plane (Figure 6.42). We partition [ ]a b,  in the 
usual way and imagine the region to be cut into thin horizontal strips by planes perpen-
dicular to the y-axis at the partition points. The typical strip from y to + Δy y is y units 
wide by L y( ) units long. We assume L y( ) to be a continuous function of y.

The pressure varies across the strip from top to bottom. If the strip is narrow enough, 
however, the pressure will remain close to its bottom-edge value of ( )×w strip depth . The 
force exerted by the fluid against one side of the strip will be about

F

w L y y

pressure along bottom edge area

strip depth ( ) .

( )

( )

( )Δ = ×

= ⋅ ⋅ Δ

FIGURE 6.41 These containers are 
filled with water to the same depth and 
have the same base area. The total force is 
therefore the same on the bottom of each 
container. The containers’ shapes do not 
matter here.

h

FIGURE 6.42 The force exerted 
by a fluid against one side of a 
thin, flat horizontal strip is about 
Δ = × =F pressure area  
w L y ystrip depth ( ) .( )× × Δ

y

Surface of fluid

Strip length at level y 

Submerged vertical
plate

b

y

a

Δy

Strip
depth

L(y)
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 6.5  Work and Fluid Forces 415

Assume there are n strips associated with the partition of a y b and that yk is the bot-
tom edge of the kth strip having length L y( )k  and width y .k  The force against the entire 
plate is approximated by summing the forces against each strip, giving the Riemann sum

 F w L y ystrip depth ( ) .
k

n

k k k
1
∑ ( )≈ ⋅ ⋅ Δ
=

 (6)

The sum in Equation (6) is a Riemann sum for a continuous function on [ ]a b, , and we 
expect the approximations to improve as the norm of the partition goes to zero. The force 
against the plate is the limit of these sums:

w L y y w L y dylim strip depth ( ) strip depth ( ) .
n

k

n

k k k
a

b

1
∑ ∫( ) ( )⋅ ⋅ Δ = ⋅ ⋅

→∞ =

The Integral for Fluid Force Against a Vertical Flat Plate
Suppose that a plate submerged vertically in fluid of weight-density w runs from 
y a to y b on the y-axis. Let L y( ) be the length of the horizontal strip mea-
sured from left to right along the surface of the plate at level y. Then the force 
exerted by the fluid against one side of the plate is

 F w L y dystrip depth ( ) .
a

b

∫ ( )= ⋅ ⋅  (7)

EXAMPLE 6  A flat isosceles right-triangular plate with base 2 m and height 1 m is 
submerged vertically, base up, 0.6 m below the surface of a swimming pool. Find the force 
exerted by the water against one side of the plate.

Solution We establish a coordinate system to work in by placing the origin at the  
plate’s bottom vertex and running the y-axis upward along the plate’s axis of symmetry 
(Figure 6.43). The surface of the pool lies along the line y  1.6, and the plate’s top edge 
along the line y  1. The plate’s right-hand edge lies along the line y  x, with the  
upper-right vertex at (1, 1). The length of a thin strip at level y is

L y x y( ) 2 2 .

The depth of the strip beneath the surface is y1.6 .( )−  The force exerted by the water 
against one side of the plate is therefore

F w L y dy

y y dy

y y dy

y
y

strip

depth
( )

9800 1.6 2

19,600 1.6

19,600 0.8
3

9147 N.

a

b

0

1

2

0

1

2
3

0

1

∫

∫

∫ ( )

( )

= ⋅
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
⋅

= −

= −

= −⎡
⎣⎢

⎤
⎦⎥
=

 Eq. (7)

 

FIGURE 6.43 To find the force on one 
side of the submerged plate in Example 6,  
we can use a coordinate system like the 
one here.

For some exercises, a calculator may be helpful when expressing 
answers in decimal form.

Springs
The graphs of force functions (in newtons) are given in Exercises 1 
and 2. How much work is done by each force in moving an object 
10 m?

 1. 

x (m)
0

8

16

24

2 4 6 8 10

F (N)

EXERCISES 6.5

x (m) 
0

Pool surface at

Depth: 
1.6 − y  y (1, 1)

Δy

y = 1.6

y = 1

y = x or x = y

y (m)

(x, x) = (y, y)

x = y
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416 Chapter 6 Applications of Definite Integrals 

 2. 

0

2

4

6

2 4 6 8 10

F (N)

Quarter-circle

x (m)

 3. Spring constant It took 1800 J of work to stretch a spring from 
its natural length of 2 m to a length of 5 m. Find the spring’s force 
constant.

 4. Stretching a spring A spring has a natural length of 10 cm. An 
800-N force stretches the spring to 14 cm.

 a. Find the force constant.

 b. How much work is done in stretching the spring from 10 cm  
to 12 cm?

 c. How far beyond its natural length will a 1600-N force stretch 
the spring?

 5. Stretching a rubber band A force of 2 N will stretch a  
rubber band 2 cm (0.02 m). Assuming that Hooke’s Law applies, 
how far will a 4-N force stretch the rubber band? How much work 
does it take to stretch the rubber band this far?

 6. Stretching a spring If a force of 90 N stretches a spring 1 m 
beyond its natural length, how much work does it take to stretch 
the spring 5 m beyond its natural length?

 7. Subway car springs It takes a force of 96,000 N to compress 
a coil spring assembly on a New York City Transit Authority 
subway car from its free height of 20 cm to its fully compressed 
height of 12 cm.

 a. What is the assembly’s force constant?

 b. How much work does it take to compress the assembly the 
first centimeter? the second centimeter? Answer to the nearest 
joule.

 8. Bathroom scale A bathroom scale is compressed 1.5 mm when 
a 70-kg person stands on it. Assuming that the scale behaves 
like a spring that obeys Hooke’s Law, how much does someone 
who compresses the scale 3 mm weigh? How much work is done  
compressing the scale 3 mm?

Work Done by a Variable Force

 9. Lifting a rope A mountain climber is about to haul up a 50-m 
length of hanging rope. How much work will it take if the rope 
weighs 0.624 N m?

 10. Leaky sandbag A bag of sand originally weighing 600 N was 
lifted at a constant rate. As it rose, sand also leaked out at a con-
stant rate. The sand was half gone by the time the bag had been 
lifted to 6 m. How much work was done lifting the sand this far? 
(Neglect the weight of the bag and lifting equipment.)

 11. Lifting an elevator cable An electric elevator with a motor at 
the top has a multistrand cable weighing 60 N m. When the car 
is at the first floor, 60 m of cable are paid out, and effectively 0 m 
are out when the car is at the top floor. How much work does the 
motor do just lifting the cable when it takes the car from the first 
floor to the top?

 12. Force of attraction When a particle of mass m is at ( )x, 0 , it 
is attracted toward the origin with a force whose magnitude is 
k x .2  If the particle starts from rest at x b and is acted on by 
no other forces, find the work done on it by the time it reaches 
= < <x a a b,  0 .

 13. Leaky bucket Assume the bucket in Example 4 is leaking. 
It starts with 8 L of water (78 N) and leaks at a constant rate. 
It finishes draining just as it reaches the top. How much work 
was spent lifting the water alone? (Hint: Do not include the 
rope and bucket, and find the proportion of water left at eleva-
tion x m.)

 14. (Continuation of Exercise 11) The workers in Example 4 and 
Exercise 11 changed to a larger bucket that held 20 L (195 N) of 
water, but the new bucket had an even larger leak so that it, too, 
was empty by the time it reached the top. Assuming that the water 
leaked out at a steady rate, how much work was done lifting the 
water alone? (Do not include the rope and bucket.)

Pumping Liquids from Containers

 15. Pumping water  The rectangular tank shown here, with its top 
at ground level, is used to catch runoff water. Assume that the 
water weighs 9800 N m .3

 a. How much work does it take to empty the tank by pumping 
the water back to ground level once the tank is full?

 b. If the water is pumped to ground level with a 5-horsepower 
(hp) motor (work output 3678 W), how long will it take to 
empty the full tank (to the nearest minute)?

 c. Show that the pump in part (b) will lower the water level 10 m 
(halfway) during the first 266 min of pumping.

 d. The weight of water What are the answers to parts (a) and (b) 
in a location where water weighs 9780 N m ?  9820 N m ?3 3

y

0

10 m
12 m

Δy

20

y

Ground
level

 16. Emptying a cistern The rectangular cistern (storage tank for 
rainwater) shown has its top 3 m below ground level. The cistern,  
currently full, is to be emptied for inspection by pumping its  
contents to ground level.

 a. How much work will it take to empty the cistern?

 b. How long will it take a 1 2-hp pump, rated at 370 W, to pump 
the tank dry?

 c. How long will it take the pump in part (b) to empty the tank 
halfway? (It will be less than half the time required to empty 
the tank completely.)
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 6.5  Work and Fluid Forces 417

 d. The weight of water What are the answers to parts (a) 
through (c) in a location where water weighs 9780 N m ?3  
9820 N m ?3

Ground level

3 m

6 m 4 m

0

3

6

y

 17. Pumping oil How much work would it take to pump oil from 
the tank in Example 5 to the level of the top of the tank if the tank 
were completely full?

 18. Pumping a half-full tank Suppose that, instead of being full, 
the tank in Example 5 is only half full. How much work does it 
take to pump the remaining oil to a level 1 m above the top of 
the tank?

 19. Emptying a tank A vertical right-circular cylindrical tank mea-
sures 9 m high and 6 m in diameter. It is full of kerosene weighing 
7840 N m .3  How much work does it take to pump the kerosene 
to the level of the top of the tank?

 20. a.  Pumping milk Suppose that the conical container in 
Example 5 contains milk (weighing 10,100 N m 3) instead of 
olive oil. How much work will it take to pump the contents to 
the rim?

 b. Pumping oil How much work will it take to pump the oil in 
Example 5 to a level 1 m above the cone’s rim?

 21. The graph of y x 2 on x0 2 is revolved about the y-axis 
to form a tank that is then filled with salt water from the Dead Sea 
(weighing approximately 11, 500 N m 3). How much work does it 
take to pump all of the water to the top of the tank?

 22. A right-circular cylindrical tank of height 3 m and radius 1.5 m is 
lying horizontally and is full of diesel fuel weighing 8300 N m 3.  
How much work is required to pump all of the fuel to a point  
4.5 m above the top of the tank?

 23. Emptying a water reservoir We model pumping from spheri-
cal containers the way we do from other containers, with the 
axis of integration along the vertical axis of the sphere. Use the 
figure here to find how much work it takes to empty a full hemi-
spherical water reservoir of radius 5 m by pumping the water 
to a height of 4 m above the top of the reservoir. Water weighs 
9800 N m .3

x

y

0 5

y

Δy

4 m

0 y 0  = −y

"25 − y2

 24. You are in charge of the evacuation and repair of the storage tank 
shown here. The tank is a hemisphere of radius 3 m and is full of 
benzene weighing 8800 N m .3  A firm you contacted says it can 
empty the tank for 0.4¢ per joule of work. Find the work required 
to empty the tank by pumping the benzene to an outlet 0.6 m 
above the top of the tank. If you have $5000 budgeted for the job, 
can you afford to hire the firm?

x

z

3

y

3 0.6 m

Outlet pipe
x2 + y2 + z2 = 9

0

Work and Kinetic Energy

 25. Kinetic energy If a variable force of magnitude F x( ) moves 
an object of mass m along the x-axis from x1 to x ,2  the object’s 
velocity  can be written as dx dt (where t represents time). Use 
Newton’s second law of motion ( )=F m d dt  and the Chain 
Rule

d
dt

d
dx

dx
dt

d
dx

to show that the net work done by the force in moving the object 
from x1 to x 2 is

W F x dx m m( ) 1
2

1
2

,
x

x

2
2

1
2

1

2

∫= = −

where 1 and 2 are the object’s velocities at x1 and x .2  In physics, 
the expression ( )m1 2 2 is called the kinetic energy of an object 
of mass m moving with velocity . Therefore, the work done by 
the force equals the change in the object’s kinetic energy, and we 
can find the work by calculating this change.

In Exercises 26–30, use the result of Exercise 25.

 26. Tennis A 57 g tennis ball was served at 50 m s (180 km h). 
How much work was done on the ball to make it go this fast?

 27. Baseball How many joules of work does it take to throw a base-
ball 144 km h? A baseball’s mass is 150 g.

 28. Golf A 50 g golf ball is driven off the tee at a speed of 84 m s 
(302.4 km h). How many joules of work are done on the ball  
getting it into the air?

 29. Tennis At the 2012 Busan Open Challenger Tennis Tournament 
in Busan, South Korea, the Australian Samuel Groth hit a serve 
measured at 263 km ph. How much work was required by Groth 
to serve a 0.0567-kg tennis ball at that speed?

 30. Softball How much work has to be performed on a 200 g soft-
ball to pitch it 40 m s (144 km h)?

 31. Drinking a milkshake The truncated conical container shown  
here is full of strawberry milkshake, which has a density of  
0.8 g cm .3  As you can see, the container is 18 cm deep, 6 cm 
across at the base, and 9 cm across at the top (a standard size at 
Brigham’s in Boston). The straw sticks up 3 cm above the top. 
About how much work does it take to suck up the milkshake 
through the straw (neglecting friction)?
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418 Chapter 6 Applications of Definite Integrals 

x

y

3

0

18

y

21

21 − y

y + 36
12

Δy

(4.5, 18)

y = 12x − 36

Dimensions in centimeters

 32. Water tower Your town has decided to drill a well to increase 
its water supply. As the town engineer, you have determined that 
a water tower will be necessary to provide the pressure needed for 
distribution, and you have designed the system shown here. The 
water is to be pumped from a 90 m well through a vertical 10 cm 
pipe into the base of a cylindrical tank 6 m in diameter and 7.5 m 
high. The base of the tank will be 18 m above ground. The pump 
is a 3-hp pump, rated at 2200 W J s .( )  To the nearest hour, how 
long will it take to fill the tank the first time? (Include the time it 
takes to fill the pipe.) Assume that water weighs 9800 N m .3

Submersible pump

Water surface

Ground

NOT  TO SCALE

0.1 m

90 m

18 m

7.5 m

3 m

 33. Putting a satellite in orbit The strength of Earth’s gravitational 
field varies with the distance r from Earth’s center, and the magni-
tude of the gravitational force experienced by a satellite of mass m 
during and after launch is

F r mMG
r

( ) .
2

=

Here, = ×M 5.975 10 kg24  is Earth’s mass,

= × ⋅− −G 6.6720 10 N m kg11 2 2

is the universal gravitational constant, and r is measured in meters. 
The work it takes to lift a 1000-kg satellite from Earth’s surface to 
a circular orbit 35,780 km above Earth’s center is therefore given 
by the integral

∫= MG
r

drWork 1000 joules.
26,370,000

35,780,000

Evaluate the integral. The lower limit of integration is Earth’s 
radius in meters at the launch site. (This calculation does not take 
into account energy spent lifting the launch vehicle or energy 
spent bringing the satellite to orbit velocity.)

 34. Forcing electrons together Two electrons r meters apart repel 
each other with a force of

= × −
F

r
23 10 newtons.

29

2

 a. Suppose one electron is held fixed at the point ( )1, 0  on the 
x-axis (units in meters). How much work does it take to move 
a second electron along the x-axis from the point ( )−1, 0  to 
the origin?

 b. Suppose an electron is held fixed at each of the points ( )−1, 0  
and ( )1, 0 . How much work does it take to move a third electron 
along the x-axis from ( )5, 0  to ( )3, 0 ?

Finding Fluid Forces

 35. Triangular plate Calculate the fluid force on one side of the 
plate in Example 6 using the coordinate system shown here.

x (m) 
0 1.6

−1.6

Surface of pool

y x

y (m)

(x, y)

y = −0.6Depth 0 y 0

 36. Triangular plate Calculate the fluid force on one side of the 
plate in Example 6 using the coordinate system shown here.

x (m)
0 1

1

−1

−1

y (m)

Pool surface  at y = 0.6

 37. Rectangular plate In a pool filled with water to a depth of 3 m, 
calculate the fluid force on one side of a 0.9 m by 1.2 m rectangular  
plate if the plate rests vertically at the bottom of the pool

 a. on its 1.2-m edge.

 b. on its 0.9-m edge.

 38. Semicircular plate Calculate the fluid force on one side of a 
semicircular plate of radius 5 m that rests vertically on its diameter  
at the bottom of a pool filled with water to a depth of 6 m.

x

y

5
6Surface of water
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 39. Triangular plate The isosceles triangular plate shown here is 
submerged vertically 1 m below the surface of a freshwater lake.

 a. Find the fluid force against one face of the plate.

 b. What would be the fluid force on one side of the plate if the 
water were seawater instead of freshwater?

A

Surface level

B
4 m

4 m

1 m

 40. Rotated triangular plate The plate in Exercise 37 is revolved 
180° about line AB so that part of the plate sticks out of the lake, 
as shown here. What force does the water exert on one face of the 
plate now?

A

Surface
level

B
4 m

3 m

1 m

 41. New England Aquarium The viewing portion of the rect-
angular glass window in a typical fish tank at the New England 
Aquarium in Boston is 1.6 m wide and runs from 0.01 m below 
the water’s surface to 0.85 m below the surface. Find the fluid 
force against this portion of the window. The weight-density of 
seawater is 10, 050 N m .3  (In case you were wondering, the glass 
is 2 cm thick and the tank walls extend 10 cm above the water to 
keep the fish from jumping out.)

 42. Semicircular plate A semicircular plate 2 m in diameter sticks 
straight down into freshwater with the diameter along the surface. 
Find the force exerted by the water on one side of the plate.

 43. Tilted plate Calculate the fluid force on one side of a 1 m by 
1 m square plate if the plate is at the bottom of a pool filled with 
water to a depth of 2 m and

 a. lying flat on its 1 m by 1 m face.

 b. resting vertically on a 1 m edge.

 c. resting on a 1 m edge and tilted at 45  to the bottom of the 
pool.

 44. Tilted plate Calculate the fluid force on one side of a  
right-triangular plate with edges 3 m, 4 m, and 5 m if the plate sits 
at the bottom of a pool filled with water to a depth of 6 m on its 
3-m edge and tilted at 60  to the bottom of the pool.

 45. The cubical metal tank shown here has a parabolic gate held in 
place by bolts and designed to withstand a fluid force of 25,000 N  
without rupturing. The liquid you plan to store has a weight-density  
of  8000 N m .3

 a. What is the fluid force on the gate when the liquid is 2 m 
deep?

 b. What is the maximum height to which the container can be 
filled without exceeding the gate’s design limitation?

x (m)
10

Enlarged view of
parabolic gate

−1

Parabolic gate

(−1, 1) (1, 1)

y (m)

y = x2

4 m

4 m

4 m

 46. The end plates of the trough shown here were designed to with-
stand a fluid force of 25,000 N. How many cubic meters of water 
can the tank hold without exceeding this limitation? Round down 
to the nearest cubic meter. What is the value of h?

End view of trough

x (m)

y (m) 

0

(1, 3)(−1, 3)

Dimensional
view of trough

3 m

10 m

(0, h)
y = 3x

2 m

 47. A vertical rectangular plate a units long by b units wide is sub-
merged in a fluid of weight-density w with its long edges parallel 
to the fluid’s surface. Find the average value of the pressure along 
the vertical dimension of the plate. Explain your answer.

 48. (Continuation of Exercise 47.) Show that the force exerted by the 
fluid on one side of the plate is the average value of the pressure 
(found in Exercise 47) times the area of the plate.

 49. Water pours into the tank shown here at the rate of 0.5 m min.3  
The tank’s cross-sections are 2-m-diameter semicircles. One end 
of the tank is movable, but moving it to increase the volume com-
presses a spring. The spring constant is k 3000 N m. If the end 
of the tank moves 2.5 m against the spring, the water will drain 
out of a safety hole in the bottom at the rate of 0.6 m min.3  Will 
the movable end reach the hole before the tank overflows?

1 m

Movable end Water in

2.5 m

Side view

Movable
end

Water
in

Drain
hole

Drain
hole

y

x

2 m

x2 + y2 = 1

 50. Watering trough The vertical ends of a watering trough are 
squares 1 m on a side.

 a. Find the fluid force against the ends when the trough is full.

 b. How many centimeters do you have to lower the water level in 
the trough to reduce the fluid force by 25%?
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420 Chapter 6 Applications of Definite Integrals 

The resulting system might balance, or it might not, depending on how large the masses 
are and how they are arranged along the x-axis.

Each mass mk  exerts a downward force m gk  (the weight of mk ) equal to the magnitude 
of the mass times the acceleration due to gravity. Note that gravitational acceleration is 
downward, hence negative. Each of these forces has a tendency to turn the x-axis about the 
origin, the way a child turns a seesaw. This turning effect, called a torque, is measured by 
multiplying the force m gk  by the signed distance x k from the point of application to the 
origin. By convention, a positive torque induces a counterclockwise turn. Masses to the left 
of the origin exert positive (counterclockwise) torque. Masses to the right of the origin 
exert negative (clockwise) torque.

The sum of the torques measures the tendency of a system to rotate about the origin. 
This sum is called the system torque.

 = + +m gx m gx m gxSystem torque 1 1 2 2 3 3 (1)

The system will balance if and only if its torque is zero.
If we factor out the g in Equation (1), we see that the system torque is

g m x m x m x .

a feature of the
environment

a feature of
the system

1 1 2 2 3 3� ������������ ������������� ( )⋅ + +

Thus, the torque is the product of the gravitational acceleration g, which is a feature of 
the environment in which the system happens to reside, and the number ( +m x1 1  

)+m x m x ,2 2 3 3  which is a feature of the system itself.
The number ( )+ +m x m x m x1 1 2 2 3 3  is called the moment of the system about the 

origin. It is the sum of the moments m x m x m x, ,1 1 2 2 3 3 of the individual masses.

∑= =M m xMoment of system about origin k k0

(We shift to sigma notation here to allow for sums with more terms.)
We usually want to know where to place the fulcrum to make the system balance; 

that is, we want to know at what point x  to place the fulcrum to make the torques add 
to zero.

FIGURE 6.44 A wrench gliding on ice 
turning about its center of mass as the 
center glides in a vertical line. (Source: 
Berenice Abbott/ScienceSource)

x
m1

Fulcrum
at origin

m2 m3

x1 x2 x30

6.6 Moments and Centers of Mass

Many structures and mechanical systems behave as if their masses were concentrated at a 
single point, called the center of mass (Figure 6.44). It is important to know how to locate 
this point, and doing so is basically a mathematical enterprise. Here we consider masses 
distributed along a line or region in the plane. Masses distributed across a region or curve 
in three-dimensional space are treated in Chapters 14 and 15.

Masses Along a Line

We develop our mathematical model in stages. The first stage is to imagine masses m m,   ,1 2  
and m3 on a rigid x-axis supported by a fulcrum at the origin.

x
m1

Special location
for balance

m2 m3

x1 x2 x30 x
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 6.6  Moments and Centers of Mass 421

The torque of each mass about the fulcrum in this special location is

m x
m x

x x m gTorque of  about 
signed distance

of  from 
downward

force
.k

k
k k( )=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ = −

When we write the equation that says that the sum of these torques is zero, we get an equa-
tion we can solve for x :

∑
∑
∑

( )− =

=

x x m g

x
m x

m

0

.

k k

k k

k

This last equation tells us to find x  by dividing the system’s moment about the origin by 
the system’s total mass:

 x
m x

m
system moment about origin

system mass
.k k

k

∑
∑

= =  (2)

The point x  is called the system’s center of mass.

Thin Wires

Instead of a discrete set of masses arranged in a line, suppose that we have a straight wire or 
rod located on interval [ ]a b,  on the x-axis. Suppose further that this wire is not homoge-
neous, but rather the density varies continuously from point to point. If a short segment of a 
rod containing the point x with length Δx has mass Δm, then the density at x is given by

x m x( ) lim . 
x 0

δ = Δ Δ
Δ →

We often write this formula in one of the alternative forms δ = dm dx and dm dx.δ=
Partition the interval [ ]a b,  into finitely many subintervals [ ]−x x, .k k1  If we take n 

subintervals and replace the portion of a wire along a subinterval of length Δx k containing 
x k by a point mass located at x k with mass m x x( ) ,k k kδΔ = Δ  then we obtain a collection 
of point masses that have approximately the same total mass and same moment as the wire 
as indicated in Figure 6.45.

The mass M of the wire and the moment M0 are approximated by the Riemann sums

∑ ∑ ∑ ∑δ δ≈ Δ = Δ ≈ Δ = Δ
= = = =

M m x x M x m x x x( ) , ( ) .
k

n

k
k

n

k k
k

n

k k
k

n

k k k
1 1

0
1 1

By taking a limit of these Riemann sums as the length of the intervals in the partition 
approaches zero, we get integral formulas for the mass and the moment of the wire about 
the origin. The mass M, moment about the origin M0 , and center of mass x  are

∫ ∫
∫
∫

δ δ
δ

δ
= = = =M x dx M x x dx x

M
M

x x dx

x dx
( ) , ( ) ,

( )

( )
.

a

b

a

b
a

b

a

b0
0

EXAMPLE 1  Find the mass M and the center of mass x  of a rod lying on the x-axis 
over the interval [ ]1, 2  whose density is given by x x( ) 2 3 .2δ = +

Solution The mass of the rod is obtained by integrating the density,

∫ ( ) [ ] ( ) ( )= + = + = + − + =M x dx x x2 3 2 4 8 2 1 9,2

1

2
3

1
2

and the center of mass is

∫ ( )
= =

+
=

+⎡
⎣⎢

⎤
⎦⎥ =x

M
M

x x dx x x
2 3

9

3
4

9
19
12

.0

2

1

2
2

4

1

2

 

Solved for x

Sum of the torques equals zero.

FIGURE 6.45 A rod of varying density 
can be modeled by a finite number of 
point masses of mass m x x( )k k kδΔ = Δ  
located at points x k along the rod.

Δxk

Mass Δmk

xk

x
a b

xk−1
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422 Chapter 6 Applications of Definite Integrals 

Masses Distributed over a Plane Region

Suppose that we have a finite collection of masses located in the plane, with mass mk  at 
the point ( )x y,k k  (see Figure 6.46). The mass of the system is

M mSystem mass: .k∑=

Each mass mk  has a moment about each axis. Its moment about the x-axis is m y ,k k  and its 
moment about the y-axis is m x .k k  The moments of the entire system about the two axes are

x M m y

y M m x

Moment about  -axis: ,

Moment about  -axis:   .

x k k

y k k

∑
∑

=

=

The x-coordinate of the system’s center of mass is defined to be

 x
M

M

m x

m
.y k k

k

∑
∑

= =  (3)

With this choice of x , as in the one-dimensional case, the system balances about the line 
=x x  (Figure 6.47).

The y-coordinate of the system’s center of mass is defined to be

 ∑
∑

= =y
M
M

m y

m
.x k k

k

 (4)

With this choice of y , the system balances about the line =y y  as well. The torques 
exerted by the masses about the line =y y  cancel out. Thus, as far as balance is con-
cerned, the system behaves as if all its mass were at the single point ( )x y,   . We call this 
point the system’s center of mass (c.m.).

Thin, Flat Plates

In many applications, we need to find the center of mass of a thin, flat plate: a disk of alu-
minum, say, or a triangular sheet of steel. In such cases, we assume the distribution of mass 
to be continuous, and the formulas we use to calculate x  and y  contain integrals instead of 
finite sums. The integrals arise in the following way.

Imagine that the plate occupying a region in the xy-plane is cut into thin strips parallel 
to one of the axes (in Figure 6.48, the y-axis). The center of mass of a typical strip is ( )x y, .� �  
We treat the strip’s mass Δm as if it were concentrated at ( )x y, .� �  The moment of the strip 
about the y-axis is then Δx m.�  The moment of the strip about the x-axis is y m.�Δ  Equations 
(3) and (4) then become

x
M

M

x m

m
y

M
M

y m

m
, .y x

� �∑
∑

∑
∑

= =
Δ

Δ
= =

Δ
Δ

These sums are Riemann sums for integrals, and they approach these integrals in the limit 
as the strips become narrower and narrower. We write these integrals symbolically as

� �∫
∫

∫
∫

= =x
x dm

dm
y

y dm

dm
and .

FIGURE 6.46 Each mass mk has a 
moment about each axis.

x

y

0

xk

xk

yk

yk

mk

(xk, yk)

FIGURE 6.47 A two-dimensional array 
of masses balances on its center of mass.

x

y

0

Bala
nc

e l
ine

Balanceline

y = y

x =
 x

c.m.
y

x

FIGURE 6.48 A plate cut into thin 
strips parallel to the y-axis. The moment 
exerted by a typical strip about each axis 
is the moment its mass Δm would exert if 
concentrated at the strip’s center of mass 
( )x y, .� �

x

y

~x0

Strip
c.m.

~y
~x

~y

Strip of mass Δm

~ ~(x, y)

Moments, Mass, and Center of Mass of a Thin Plate Covering a Region  
in the xy-Plane

 

x M y dm

y M x dm

M dm

x
M

M
y

M
M

Moment about the  -axis:

Moment about the  -axis:

Mass:

Center of mass: ,

x

y

y x

�

�

∫

∫

∫

=

=

=

= =

 (5)
Density of a plate
A material’s density is its mass per unit 
area. For wires, rods, and narrow strips, 
the density is given in terms of mass per 
unit length.
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 6.6  Moments and Centers of Mass 423

Although we do not indicate the limits of integration, the integrals that appear in 
Equation (5) are definite integrals.

The differential dm in these integrals is the mass of the strip. For this section, we 
assume the density δ  of the plate is a constant or a continuous function of x or of y. Then 

δ=dm dA, which is the mass per unit area δ  times the area dA of the strip.
To evaluate the integrals in Equations (5), we picture the plate in the coordinate plane 

and sketch a strip of mass parallel to one of the coordinate axes. We then express the strip’s 
mass dm and the coordinates ( )x y,� �  of the strip’s center of mass in terms of x or y. Finally, 
we integrate y dm x dm, ,� �  and dm between limits of integration determined by the plate’s 
location in the plane.

EXAMPLE 2  The triangular plate shown in Figure 6.49 has a constant density of 
δ = 3 g cm .2

 (a) Find the plate’s moment My  about the y-axis.

 (b) Find the plate’s mass M.

 (c) Find the x-coordinate of the plate’s center of mass (c.m.).

Solution Method 1: Vertical Strips (Figure 6.50)

 (a) The moment M :y  The typical vertical strip has the following relevant data.

� �

�

x y x x

x

dx

dA x dx

dm dA x dx x dx

y x x

center of mass  c.m. : , ,

length: 2

width:

area: 2

mass: 3 2 6

distance of c.m. from  -axis:

δ

( ) ( )( ) =

=

= = ⋅ =

=

The moment of the strip about the y-axis is

= ⋅ =x dm x x dx x dx6 6 .2�

The moment of the plate about the y-axis is therefore

M x dm x dx x6 2 2 g cm.y
2

0

1
3

0

1

�∫ ∫= = = ⎤
⎦⎥

= ⋅

 (b) The plate’s mass:

∫ ∫= = = ⎤
⎦⎥

=M dm x dx x6 3 3 g.
0

1
2

0

1

 (c) The x-coordinate of the plate’s center of mass:

x
M

M
2 g cm

3 g
2
3

cm.y= =
⋅

=

By a similar computation, we could find Mx and =y M M .x

Method 2: Horizontal Strips (Figure 6.51)

 (a) The moment M :y  The y-coordinate of the center of mass of a typical horizontal strip is 
y (see the figure), so

=y y.�

The x-coordinate is the x-coordinate of the point halfway across the triangle. This makes 
it the average of y 2 (the strip’s left-hand x-value) and 1 (the strip’s right-hand x-value):

( )
=

+
= + = +

x
y y y2 1

2 4
1
2

2
4

.�

FIGURE 6.49 The plate in Example 2.

x (cm)

y (cm) 

0

2

1

(1, 2)

y = 2x

x = 1

y = 0

FIGURE 6.50 Modeling the plate in 
Example 2 with vertical strips.

x (cm)

y (cm)

0

2

1

(1, 2)

Strip c.m.
is halfway.

x 2x

dx

y = 2x

(x, 2x)

~ ~(x, y) = (x, x)

FIGURE 6.51 Modeling the plate in 
Example 2 with horizontal strips.

a      b

x (cm)

y (cm)

0

2

1

(1, 2)

Strip c.m.
is halfway.

y dy

~ ~(x, y) = 4
y + 2

, y
2
y

, y

2
2
y

1 +

2
y

x = 

(1, y)

2
y

1 −

a   b
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424 Chapter 6 Applications of Definite Integrals 

We also have

�

y y

dy

dA
y

dy

dm dA
y

dy

y x
y

length: 1
2

2
2

width:

area:
2

2

mass: 3
2

2

distance of c.m. to  -axis:
2

4
.

δ

− = −

= −

= = ⋅ −

= +

The moment of the strip about the y-axis is

( )= + ⋅ ⋅ − = −x dm
y y

dy y dy
2

4
3

2
2

3
8

4 .2�

The moment of the plate about the y-axis is

M x dm y dy y
y3

8
4 3

8
4

3
3
8

16
3

2 g cm.y
2

0

2 3

0

2

�∫ ∫ ( )( )= = − = −⎡
⎣⎢

⎤
⎦⎥

= = ⋅

 (b) The plate’s mass:

M dm y dy y
y3

2
2 3

2
2

2
3
2

4 2 3 g.
0

2 2

0

2

∫ ∫ ( ) ( )= = − = −⎡
⎣⎢

⎤
⎦⎥

= − =

 (c) The x-coordinate of the plate’s center of mass:

x
M

M
2 g cm

3 g
2
3

cm.y= =
⋅

=

By a similar computation, we could find Mx and y. 

If the distribution of mass in a thin, flat plate has an axis of symmetry, the center of 
mass will lie on this axis. If there are two axes of symmetry, the center of mass will lie at 
their intersection. These facts often help to simplify our work.

EXAMPLE 3  Find the center of mass of a thin plate covering the region bounded 
above by the parabola = −y x4 2 and below by the x-axis (Figure 6.52). Assume the 
density of the plate at the point (x, y) is δ = x2 ,2  which is twice the square of the distance 
from the point to the y-axis.

Solution The mass distribution is symmetric about the y-axis, so =x 0. We model the 
distribution of mass with vertical strips, since the density is given as a function of the vari-
able x. The typical vertical strip (see Figure 6.52) has the following relevant data.

� �

�

x y x x

x
dx

dA x dx

dm dA x dx

x y x

center of mass  c.m. : , , 4
2

length: 4
width:

area: 4

mass: 4

distance from c.m. to  -axis: 4
2

.

2

2

2

2

2

δ δ

( )( )

( )

( )

( ) = −

−

= −
= = −

= −

The moment of the strip about the x-axis is

y dm x x dx x dx4
2

4
2

4 .
2

2 2 2� δ δ( ) ( )= − ⋅ − = −

FIGURE 6.52 Modeling the plate in 
Example 3 with vertical strips.

x

y

0

4

−2 2
dx
x

Center of mass
y = 4 − x2

~ ~(x, y) = 2
4 − x2

x, 

2
y

4 − x2

a       b
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 6.6  Moments and Centers of Mass 425

The moment of the plate about the x-axis is

∫ ∫ ∫

∫

δ ( ) ( )

( )

= = − = −

= − + =

− −

−

�M y dm x dx x x dx

x x x dx

2
4 4

16 8 2048
105

.

x
2 2

2

2
2 2 2

2

2

2 4 6

2

2

The mass of the plate is

M dm x dx x x dx

x x dx

4 2 4

8 2 256
15

.

2

2

2
2 2

2

2

2 4

2

2

∫ ∫ ∫

∫

δ( ) ( )

( )

= = − = −

= − =

− −

−

Therefore,

= = ⋅ =y
M
M

2048
105

15
256

8
7

.x

The plate’s center of mass is

( )( ) =x y,   0,   8
7

. 

Plates Bounded by Two Curves

Suppose a plate covers a region that lies between two curves =y g x( ) and =y f x( ), 
where ≥f x g x( ) ( ) and ≤ ≤a x b. The typical vertical strip (see Figure 6.53) has

x y x f x g x

f x g x

dx

dA f x g x dx

dm dA f x g x dx

center of mass  c.m. : , , 1
2

( ) ( )

length: ( ) ( )

width:

area: ( ) ( )

mass: ( ) ( ) .

� �

δ δ

( )( ) [ ]

[ ]

[ ]

( ) = +

−

= −

= = −

The moment of the plate about the y-axis is

M x dm x f x g x dx( ) ( ) ,y
a

b
�∫ ∫ δ [ ]= = −

and the moment about the x-axis is

∫ ∫

∫

δ

δ

[ ] [ ]

[ ]

= = + ⋅ −

= −

�M y dm f x g x f x g x dx

f x g x dx

1
2

( ) ( ) ( ) ( )

2
( ) ( ) .

x
a

b

a

b
2 2

These moments give us the following formulas.

 x
M

x f x g x dx1 ( ) ( )
a

b

∫ δ [ ]= −  (6)

 y
M

f x g x dx1
2

( ) ( )
a

b
2 2∫ δ [ ]= −  (7)

FIGURE 6.53 Modeling the plate 
bounded by two curves with vertical 
strips. The strip c.m. is halfway, so 
y f x g x1

2
( ) ( ) .� [ ]= +

x

y

0 bdxa

y = f (x)

y = g(x)

~ ~(x, y)
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426 Chapter 6 Applications of Definite Integrals 

EXAMPLE 4  Find the center of mass for the thin plate bounded by the curves 
=g x x( ) 2 and = ≤ ≤f x x x( ) ,  0 1 (Figure 6.54), using Equations (6) and (7) with 

the density function x x( ) .2δ =

Solution We first compute the mass of the plate, using δ[ ]= −dm f x g x dx( ) ( ) :

M x x x dx x x dx x x
2 2

2
7

1
8

9
56

.2

0

1
5 2

3

0

1
7 2 4

0

1

∫ ∫ ( )( )= − = − = −⎡
⎣⎢

⎤
⎦⎥

=

Then, from Equations (6) and (7) we get

x x x x x dx

x x dx

x x

56
9 2

56
9 2

56
9

2
9

1
10

308
405

,

2

0

1

7 2
4

0

1

9 2 5

0

1

∫

∫ ( )
( )= ⋅ −

= −

= −⎡
⎣⎢

⎤
⎦⎥

=

and

y x x x dx

x x dx

x x

56
9 2 4

28
9 4
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The center of mass is shown in Figure 6.54.

Centroids

The center of mass in Example 4 is not located at the geometric center of the region. This 
is due to the region’s nonuniform density. When the density function is constant, it can-
cels out of the numerator and denominator of the formulas for x  and y . Thus, when the 
density is constant, the location of the center of mass is a feature of the geometry of the 
object and not of the material from which it is made. In such cases, engineers may call 
the center of mass the centroid of the shape, as in “Find the centroid of a triangle or a 
solid cone.” To do so, just set δ  equal to 1 and proceed to find x  and y  as before, by 
dividing moments by masses.

EXAMPLE 5  Find the center of mass (centroid) of a thin wire of constant density δ  
shaped like a semicircle of radius a.

Solution We model the wire with the semicircle = −y a x2 2  (Figure 6.55). The dis-
tribution of mass is symmetric about the y-axis, so =x 0. To find y , we imagine the wire 
divided into short subarc segments. If ( )x y,� �  is the center of mass of a subarc and θ is the 
angle between the x-axis and the radial line joining the origin to ( )x y,� � , then y a sin� θ=  is 
a function of the angle θ measured in radians (see Figure 6.55a). The length ds of the sub-
arc containing ( )x y,� �  subtends an angle of θd  radians, so ds a d .θ=  Thus a typical subarc 
segment has these relevant data for calculating y:

ds a d

dm ds a d

x y a

length:

mass:

distance of c.m. to  -axis: sin .�

θ

δ δ θ

θ

=

= =

=

FIGURE 6.54 The region in Example 4.

x

y

0 1

1

f (x) = 
"

x

g(x) =
2
x

c.m.

FIGURE 6.55 The semicircular wire  
in Example 5. (a) The dimensions and 
variables used in finding the center of 
mass. (b) The center of mass does not  
lie on the wire.

a    b

x

y

0−a a

(a)

x

y

0−a a

a

c.m.

A typical small 
segment of wire has 
dm = d ds = da du.

(a cosu, a sinu)
du

u

y = 
"

a2 − x2

(b)

0,     a2

~ ~(x, y) = 

p

Mass per unit length 
times length
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 6.6  Moments and Centers of Mass 427

Hence,

y
y dm

dm

a a d

a d

a

a
a

sin cos 2 .0

0

2
0∫

∫
∫
∫

θ δ θ

δ θ

δ θ
δ π π
[ ]

= =
⋅

=
−

=

π

π

π

The center of mass lies on the axis of symmetry at the point ( )a0, 2 , about two-thirds of 
the way up from the origin (Figure 6.55b). Notice how  cancels in the equation for y , so 
we could have set 1 everywhere and obtained the same value for y. 

In Example 5 we found the center of mass of a thin wire lying along the graph of a 
differentiable function in the xy-plane. In Chapter 15 we will learn how to find the center 
of mass of a wire lying along a more general smooth curve in the plane or in space.

Fluid Forces and Centroids

If we know the location of the centroid of a submerged flat vertical plate (Figure 6.56), we 
can take a shortcut to find the force against one side of the plate. From Equation (7) in 
Section 6.5, and the definition of the moment about the x-axis, we have

F w L y dy

w L y dy

w

w

strip depth ( )

strip depth ( )

moment about surface level line of region occupied by plate

depth of plate’s centroid area of plate .

a

b

a

b

∫

∫

( )

( )

( )

( ) ( )

= × ×

= ×

= ×
= × ×

FIGURE 6.56 The force against one side 
of the plate is w h plate area.

Surface level of fluid

h = centroid depth

Plate centroid

Fluid Forces and Centroids
The force of a fluid of weight-density w against one side of a submerged flat ver-
tical plate is the product of w, the distance h  from the plate’s centroid to the fluid 
surface, and the plate’s area:

 F whA. (8)

EXAMPLE 6  A flat isosceles triangular plate with base 2 m and height 1 m is sub-
merged vertically, base up with its vertex at the origin, so that the base is 0.6 m below the 
surface of a swimming pool. (This is Example 6, Section 6.5.) Use Equation (8) to find the 
force exerted by the water against one side of the plate.

Solution The centroid of the triangle (Figure 6.43) lies on the y-axis, one-third of the 
way from the base to the vertex, so h 2.8 3= /  (where y 2 3= / ), since the pool’s surface 
is y 1.6. The triangle’s area is

A 1
2

base height 1
2

2 1 1.( )( ) ( )( )= = =

Hence,

F whA 9800 2.8 3 1 9147 N.( )( ) ( )= = / =  

The Theorems of Pappus

In the fourth century, an Alexandrian Greek named Pappus discovered two formulas that 
relate centroids to surfaces and solids of revolution. The formulas provide shortcuts to a 
number of otherwise lengthy calculations.
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428 Chapter 6 Applications of Definite Integrals 

Proof  We draw the axis of revolution as the x-axis with the region R in the first quad-
rant (Figure 6.57). We let L y( ) denote the length of the cross-section of R perpendicular to 
the y-axis at y. We assume L y( ) to be continuous.

By the method of cylindrical shells, the volume of the solid generated by revolving the 
region about the x-axis is

 V dy y L y dy2 shell radius shell height 2 ( ) .
c

d

c

d

∫ ∫π π( )( )= =  (10)

The y-coordinate of R’s centroid is

y
y dA

A

y L y dy

A

( )
,c

d

c

d
�∫ ∫

= =    y y dA L y dy,   ( )� = =

so that

y L y dy Ay( ) .
c

d

∫ =

Substituting Ay for the last integral in Equation (10) gives π=V yA2 . With ρ equal to y , 
we have πρ=V A2 . 

EXAMPLE 7  Find the volume of the torus (doughnut) generated by revolving a circular 
disk of radius a about an axis in its plane at a distance ≥b a from its center (Figure 6.58).

Solution We apply Pappus’s Theorem for volumes. The centroid of a disk is located at 
its center, the area is π=A a ,2  and ρ = b is the distance from the centroid to the axis of 
revolution (see Figure 6.58). Substituting these values into Equation (9), we find the vol-
ume of the torus to be

π π π= =V b a ba2 ( )( ) 2 .2 2 2  

The next example shows how we can use Equation (9) in Pappus’s Theorem to find one 
of the coordinates of the centroid of a plane region of known area A when we also know the 
volume V of the solid generated by revolving the region about the other coordinate axis. That 
is, if y  is the coordinate we want to find, we revolve the region around the x-axis so that 

ρ=y  is the distance from the centroid to the axis of revolution. The idea is that the rotation 
generates a solid of revolution whose volume V is an already known quantity. Then we can 
solve Equation (9) for ρ, which is the value of the centroid’s coordinate y.

EXAMPLE 8  Locate the centroid of a semicircular region of radius a.

Solution We consider the region between the semicircle = −y a x2 2  (Figure 6.59) 
and the x-axis and imagine revolving the region about the x-axis to generate a solid sphere. 
By symmetry, the x-coordinate of the centroid is =x 0. With ρ=y  in Equation (9), we 
have

π
π

π π π
( )

( )
= = =y V

A
a

a
a

2
4 3

2 1 2
4

3
.

3

2
 

THEOREM 1—Pappus’s Theorem for Volumes
If a plane region is revolved once about a line in the plane that does not cut 
through the region’s interior, then the volume of the solid it generates is equal to 
the region’s area times the distance traveled by the region’s centroid during the 
revolution. If ρ is the distance from the axis of revolution to the centroid, then

 πρ=V A2 . (9)

FIGURE 6.57 The region R is to be 
revolved (once) about the x-axis to gener-
ate a solid. A 1700-year-old theorem says 
that the solid’s volume can be calculated 
by multiplying the region’s area by the 
distance traveled by its centroid during the 
revolution.

x

y

d

c

0

L(y)

R

Centroid

r = y

FIGURE 6.58 With Pappus’s first  
theorem, we can find the volume of a torus 
without having to integrate (Example 7).

Area: pa2

Circumference: 2pa

Distance from axis of
revolution to centroid

a
b

y

z

x

FIGURE 6.59 With Pappus’s first  
theorem, we can locate the centroid of  
a semicircular region without having to 
integrate (Example 8).

Centroid

a

−a a0

a

x

y

3p
4
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 6.6  Moments and Centers of Mass 429

THEOREM 2—Pappus’s Theorem for Surface Areas
If an arc of a smooth plane curve is revolved once about a line in the plane that does 
not cut through the arc’s interior, then the area of the surface generated by the arc 
equals the length L of the arc times the distance traveled by the arc’s centroid during 
the revolution. If ρ is the distance from the axis of revolution to the centroid, then

 πρ=S L2 . (11)

The proof we give assumes that we can model the axis of revolution as the x-axis and the 
arc as the graph of a continuously differentiable function of x.

Proof  We draw the axis of revolution as the x-axis with the arc extending from =x a 
to =x b in the first quadrant (Figure 6.60). The area of the surface generated by the arc is

 S y ds y ds2 2 .
x a

x b

x a

x b

∫ ∫π π= =
=

=

=

=
 (12)

The y-coordinate of the arc’s centroid is

y
y ds

ds

y ds

L
.x a

x b

x a

x b
x a

x b
�∫

∫
∫

= ==

=

=

=
=

=

     L ds= ∫  is the arc’s  
length and y y.� =

Hence

y ds yL.
x a

x b

∫ =
=

=

Substituting y L  for the last integral in Equation (12) gives π=S y L2 . With ρ equal to y , 
we have πρ=S L2 . 

EXAMPLE 9  Use Pappus’s area theorem to find the surface area of the torus in 
Example 7.

Solution From Figure 6.58, the surface of the torus is generated by revolving a circle of 
radius a about the z-axis, and ≥b a is the distance from the centroid to the axis of revolu-
tion. The arc length of the smooth curve generating this surface of revolution is the circum-
ference of the circle, so π=L a2 . Substituting these values into Equation (11), we find the 
surface area of the torus to be

π π π= =S b a ba2 ( )(2 ) 4 .2  

FIGURE 6.60 Figure for proving 
Pappus’s Theorem for surface area. 
The arc length differential ds is given 
by Equation (6) in Section 6.3.

0

x

y

ds

y

a

b

~

Arc

Mass of a wire
In Exercises 1–6, find the mass M and center of mass x  of the linear 
wire covering the given interval and having the given density x( ).δ

 1. x x x1 4, ( )δ≤ ≤ =

 2. x x x3 3, ( ) 1 3 2δ− ≤ ≤ = +

 3. x x
x

0 3, ( ) 1
1

δ≤ ≤ =
+

 4. x x
x

1 2, ( ) 8
3

δ≤ ≤ =

 5. x
x
x

( )
4, 0 2
5, 2 3

δ =
≤ ≤
< ≤

⎧
⎨
⎪⎪
⎩⎪⎪

 6. x
x x

x x
( )

2 , 0 1
, 1 2

δ =
− ≤ <

≤ ≤

⎧
⎨
⎪⎪
⎩⎪⎪

Thin Plates with Constant Density
In Exercises 7–20, find the center of mass of a thin plate of constant 
density δ covering the given region.

 7. The region bounded by the parabola =y x 2 and the line =y 4

EXERCISES 6.6
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430 Chapter 6 Applications of Definite Integrals 

 8. The region bounded by the parabola = −y x25 2 and the x-axis

 9. The region bounded by the parabola = −y x x 2 and the line 
= −y x

 10. The region enclosed by the parabolas = −y x 32  and = −y x2 2

 11. The region bounded by the y-axis and the curve = −x y y ,3  
≤ ≤y0 1

 12. The region bounded by the parabola = −x y y2  and the line 
=y x

 13. The region bounded by the x-axis and the curve y xcos ,=  
π π− ≤ ≤x2 2

 14. The region between the curve y xsec ,   42 π= − ≤ π≤x 4 
and the x-axis

  15. The region between the curve =y x1  and the x-axis from =x 1 
to =x 2. Give the coordinates to two decimal places.

 16. a.  The region cut from the first quadrant by the circle 
+ =x y 92 2

 b. The region bounded by the x-axis and the semicircle 
= −y x9 2

Compare your answer in part (b) with the answer in part (a).

 17. The region in the first and fourth quadrants enclosed by the curves 
( )= +y x1 1 2  and ( )= − +y x1 1 2  and by the lines =x 0 

and =x 1

 18. The region bounded by the parabolas = −y x x2 42  and 
= −y x x2 2

 19. The region between the curve y x1=  and the x-axis from =x 1 
to =x 16

 20. The region bounded above by the curve =y x1 ,3  below by the 
curve y x1 ,3= −  and on the left and right by the lines =x 1 and 

= >x a 1. Also, find 
→∞

xlim .
a

 21. Consider a region bounded by the graphs of =y x 4 and =y x .5  
Show that the center of mass lies outside the region.

 22. Consider a thin plate of constant density δ lies in the region 
bounded by the graphs of =y x  and =x y2 . Find the plate’s

 a. moment about the x-axis.

 b. moment about the y-axis.

 c. moment about the line =x 5.

 d. moment about the line = −x 1.

 e. moment about the line =y 2.

 f. moment about the line = −y 3.

 g. mass.

 h. center of mass.

Thin Plates with Varying Density

 23. Find the center of mass of a thin plate covering the region between 
the x-axis and the curve y x x2 ,  1 2,2= ≤ ≤  if the plate’s den-
sity at the point (x, y) is x x( ) .2δ =

 24. Find the center of mass of a thin plate covering the region bounded 
below by the parabola =y x 2 and above by the line =y x  if the 
plate’s density at the point (x, y) is x x( ) 12 .δ =

 25. The region bounded by the curves = ±y x4  and the lines 
=x 1 and =x 4 is revolved about the y-axis to generate a solid.

 a. Find the volume of the solid.

T

 b. Find the center of mass of a thin plate covering the region if 
the plate’s density at the point (x, y) is x x( ) 1 .δ =

 c. Sketch the plate and show the center of mass in your sketch.

 26. The region between the curve =y x2  and the x-axis from =x 1 
to =x 4 is revolved about the x-axis to generate a solid.

 a. Find the volume of the solid.

 b. Find the center of mass of a thin plate covering the region if 
the plate’s density at the point (x, y) is x x( ) .δ =

 c. Sketch the plate and show the center of mass in your sketch.

Centroids of Triangles

 27. The centroid of a triangle lies at the intersection of the tri-
angle’s medians You may recall that the point inside a triangle 
that lies one-third of the way from each side toward the opposite 
vertex is the point where the triangle’s three medians intersect. 
Show that the centroid lies at the intersection of the medians by 
showing that it too lies one-third of the way from each side toward 
the opposite vertex. To do so, take the following steps.

 i) Stand one side of the triangle on the x-axis as in part (b) of 
the accompanying figure. Express dm in terms of L and dy.

 ii) Use similar triangles to show that ( )( )= −L b h h y . 
Substitute this expression for L in your formula for dm.

 iii) Show that =y h 3.

 iv) Extend the argument to the other sides.

0

h

b

dy

L
y

(a) (b)

Centroid

h − y

x

y

Use the result in Exercise 27 to find the centroids of the triangles 
whose vertices appear in Exercises 28–32. Assume >a b, 0.

 28. 1, 0 , 1, 0 , 0, 3( ) ( ) ( )−  29. 0, 0 , 1, 0 , 0,1( ) ( ) ( )

 30. a a0, 0 , , 0 , 0,( ) ( ) ( )  31. a b0, 0 , , 0 , 0,( ) ( ) ( )

 32. a a b0, 0 , , 0 , 2,( ) ( ) ( )

Thin Wires

 33. Constant density Find the moment about the x-axis of a wire of 
constant density that lies along the curve =y x  from =x 0 to 

=x 2.

 34. Constant density Find the moment about the x-axis of a wire of 
constant density that lies along the curve =y x 3 from =x 0 to 

=x 1.

 35. Variable density Suppose that the density of the wire in 
Example 5 is k sinδ θ=  (k constant). Find the center of mass.

 36. Variable density Suppose that the density of the wire in Example 
5 is k1 cosδ θ= +  (k constant). Find the center of mass.
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 Chapter 6  Questions to Guide Your Review 431

 1. How do you define and calculate the volumes of solids by the 
method of slicing? Give an example.

 2. How are the disk and washer methods for calculating volumes 
derived from the method of slicing? Give examples of volume cal-
culations by these methods.

 3. Describe the method of cylindrical shells. Give an example.

 4. How do you find the length of the graph of a smooth function over 
a closed interval? Give an example. What about functions that do 
not have continuous first derivatives?

 5. How do you define and calculate the area of the surface swept out by 
revolving the graph of a smooth function = ≤ ≤y f x a x b( ),   , 
about the x-axis? Give an example.

CHAPTER 6 Questions to Guide Your Review

Plates Bounded by Two Curves
In Exercises 37–40, find the centroid of the thin plate bounded by the 
graphs of the given functions. Use Equations (6) and (7) with δ = 1 
and M area=  of the region covered by the plate.

 37. =g x x( ) 2 and = +f x x( ) 6

 38. ( )= + =g x x x f x( ) 1 , ( ) 2,2  and =x 0

 39. ( )= −g x x x( ) 12  and =f x x( ) 2

 40. g x f x x x( ) 0, ( ) 2 sin , 0,= = + =  and π=x 2

(Hint: x x dx x x x Csin sin cos .∫ = − + )

Theory and Examples
Verify the statements and formulas in Exercises 41 and 42.

 41. The coordinates of the centroid of a differentiable plane curve are

x
x ds

y
y ds

length
,

length
.

∫ ∫
= =

x

y

0

ds
x

y

 42. Whatever the value of >p 0 in the equation y x p(4 ),2=  the 
y-coordinate of the centroid of the parabolic segment shown here 
is ( )=y a3 5 .

x

y

0

a

y =    a3
5

y =    x2

4p

The Theorems of Pappus

 43. The square region with vertices ( ) ( ) ( )0, 2 , 2, 0 , 4, 2 , and ( )2, 4  is 
revolved about the x-axis to generate a solid. Find the volume and 
surface area of the solid.

 44. Use a theorem of Pappus to find the volume generated by revolv-
ing about the line =x 5 the triangular region bounded by the 
coordinate axes and the line + =x y2 6 (see Exercise 27).

 45. Find the volume of the torus generated by revolving the circle 
( )− + =x y2 12 2  about the y-axis.

 46. Use the theorems of Pappus to find the lateral surface area and the 
volume of a right-circular cone.

 47. Use Pappus’s Theorem for surface area and the fact that the sur-
face area of a sphere of radius a is πa4 2 to find the centroid of the 
semicircle = −y a x .2 2

 48. As found in Exercise 47, the centroid of the semicircle 
= −y a x2 2  lies at the point π( )a0, 2 . Find the area of the 

surface swept out by revolving the semicircle about the line =y a.

 49. The area of the region R enclosed by the semiellipse 
( )= −y b a a x2 2  and the x-axis is π( ) ab1 2 , and the vol-

ume of the ellipsoid generated by revolving R about the x-axis 
is π( ) ab4 3 .2  Find the centroid of R. Notice that the location is 
independent of a.

 50. As found in Example 8, the centroid of the region enclosed by 
the x-axis and the semicircle = −y a x2 2  lies at the point 

a0, 4 3 .π( )  Find the volume of the solid generated by revolving 
this region about the line = −y a.

 51. The region of Exercise 50 is revolved about the line = −y x a to 
generate a solid. Find the volume of the solid.

 52. As found in Exercise 47, the centroid of the semicircle 
= −y a x2 2  lies at the point a0, 2 .π( )  Find the area of the 

surface generated by revolving the semicircle about the line 
= −y x a.

In Exercises 53 and 54, use a theorem of Pappus to find the centroid 
of the given triangle. Use the fact that the volume of a cone of radius r 
and height h is V r h.1

3
2π=

 53. 

x

y

(0, 0)

(0, b)

(a, 0)

 54. 

x

y

(0, 0)

(a, b)

(a, c)
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Volumes
Find the volumes of the solids in Exercises 1–18.

 1. The solid lies between planes perpendicular to the x-axis at 
x 0 and x 1. The cross-sections perpendicular to the x-axis 
between these planes are circular disks whose diameters run from 
the parabola y x 2 to the parabola y x.

 2. The base of the solid is the region in the first quadrant between the 
line y x  and the parabola y x2 . The cross-sections of the 
solid perpendicular to the x-axis are equilateral triangles whose 
bases stretch from the line to the curve.

 3. The solid lies between planes perpendicular to the x-axis at 
x 4 and x 5 4. The cross-sections between these 
planes are circular disks whose diameters run from the curve 
y x2 cos  to the curve y x2 sin .

 4. The solid lies between planes perpendicular to the x-axis at 
x 0 and x 6. The cross-sections between these planes 
are squares whose bases run from the x-axis up to the curve 

+ =x y 6.1 2 1 2

x

y

6

6

x1�2 + y1�2 = 
"

6

 5. The solid lies between planes perpendicular to the x-axis at x 0 
and x 4. The cross-sections of the solid perpendicular to the 
x-axis between these planes are circular disks whose diameters 
run from the curve x y42  to the curve y x4 .2

 6. The base of the solid is the region bounded by the parabola 
y x42  and the line x 1 in the xy-plane. Each cross-section 
perpendicular to the x-axis is an equilateral triangle with one edge 
in the plane. (The triangles all lie on the same side of the plane.)

 7. Find the volume of the solid generated by revolving the region 
bounded by the x-axis, the curve y x3 ,4  and the lines x 1 
and = −x 1 about (a) the x-axis; (b) the y-axis; (c) the line 
x 1; (d) the line y 3.

 8. Find the volume of the solid generated by revolving the “triangu-
lar” region bounded by the curve y x4 3 and the lines x 1 
and y 1 2 about (a) the x-axis; (b) the y-axis; (c) the line 
x 2; (d) the line y 4.

 9. Find the volume of the solid generated by revolving the region 
bounded on the left by the parabola = +x y 12  and on the right 
by the line x 5 about (a) the x-axis; (b) the y-axis; (c) the line 
x 5.

 10. Find the volume of the solid generated by revolving the region 
bounded by the parabola y x42  and the line y x  about 
(a) the x-axis; (b) the y-axis; (c) the line x 4; (d) the line 
y 4.

 11. Find the volume of the solid generated by revolving the “trian-
gular” region bounded by the x-axis, the line x 3, and the 
curve y xtan  in the first quadrant about the x-axis.

 12. Find the volume of the solid generated by revolving the region 
bounded by the curve y xsin  and the lines x x0,   , 
and y 2 about the line y 2.

 13. Find the volume of the solid generated by revolving the region 
bounded by the curve x e y2 and the lines y x0,   0, and 
y 1 about the x-axis.

 14. Find the volume of the solid generated by revolving about the 
x-axis the region bounded by = = = −y x y x2 tan ,   0,   4 , 
and x 4. (The region lies in the first and third quadrants and 
resembles a skewed bowtie.)

 15. Volume of a solid sphere hole A round hole of radius 3 m is 
bored through the center of a solid sphere of radius 2 m. Find the 
volume of material removed from the sphere.

 16. Volume of a football A football resembles the surface of revo-
lution obtained by revolving the ellipse shown here around the 
x-axis. Find the football’s volume to the nearest cubic centimeter.

x

y

0−14

 +        = 1
x2

196
y2

75

14

 17. Set up and evaluate an integral to find the volume of the given 
circular frustum of height h and radii a and b.

a

b

h

CHAPTER 6 Practice Exercises

 6. How do you define and calculate the work done by a variable force 
directed along a portion of the x-axis? How do you calculate the 
work it takes to pump a liquid from a tank? Give examples.

 7. What is a center of mass? What is a centroid?

 8. How do you locate the center of mass of a thin flat plate of material? 
Give an example.

 9. How do you locate the center of mass of a thin plate bounded by 
two curves y f x( ) and = ≤ ≤y g x a x b( ) over  ?
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 Chapter 6  Practice Exercises 433

 18. The graph of + =x y 12 3 2 3  is called an astroid and is given 
below. Find the volume of the solid formed by revolving the 
region enclosed by the astroid about the x-axis.

x

x2/3 + y2/3 = 1

y

1−1 0

−1

1

Lengths of Curves
Find the lengths of the curves in Exercises 19–24.

 19. ( )= − ≤ ≤y x x x1 3 , 1 41 2 3 2

 20. = ≤ ≤x y y, 1 82 3

 21. ( )= − ≤ ≤y x x xln 8, 1 22

 22. ( ) ( )= + ≤ ≤x y y y12 1 , 1 23

 23. = − − ≤ ≤y x x x  arcsin 1 , 0 3
4

2

 24. = − ≤ ≤y x x2
3

1, 0 13 2

Areas of Surfaces of Revolution
In Exercises 25–28, find the areas of the surfaces generated by revolv-
ing the curves about the given axes.

 25. = + ≤ ≤y x x x2 1, 0 3; -axis

 26. = ≤ ≤y x x x3, 0 1; -axis3

 27. = − ≤ ≤x y y y y4 , 1 2; -axis2

 28. = ≤ ≤x y y y, 2 6; -axis

Work

 29. Lifting equipment A rock climber is about to haul up 100 N of 
equipment that has been hanging beneath her on 40 m of rope that 
weighs 0.8 N/m. How much work will it take? (Hint: Solve for the 
rope and equipment separately, then add.)

 30. Leaky tank truck You drove an 4000-L tank truck of water 
from the base of Mt. Washington to the summit and discovered on 
arrival that the tank was only half full. You started with a full tank, 
climbed at a steady rate, and accomplished the 1500-m elevation 
change in 50 min. Assuming that the water leaked out at a steady 
rate, how much work was spent in carrying water to the top? Do 
not count the work done in getting yourself and the truck there. 
Water weighs 9.8 N L.

 31. Earth’s attraction The force of attraction on an object below 
Earth’s surface is directly proportional to its distance from Earth’s 
center. Find the work done in moving a weight of w N located a 
km below Earth’s surface up to the surface itself. Assume Earth’s 
radius is a constant r km.

 32. Garage door spring A force of 200 N will stretch a garage door 
spring 0.8 m beyond its unstressed length. How far will a 300-N 

force stretch the spring? How much work does it take to stretch 
the spring this far from its unstressed length?

 33. Pumping a reservoir A reservoir shaped like a right-circular 
cone, point down, 20 m across the top and 8 m deep, is full of 
water. How much work does it take to pump the water to a level 
6 m above the top?

 34. Pumping a reservoir (Continuation of Exercise 33.) The reser-
voir is filled to a depth of 5 m, and the water is to be pumped to 
the same level as the top. How much work does it take?

 35. Pumping a conical tank A right-circular conical tank, point 
down, with top radius 5 m and height 10 m, is filled with a liquid 
whose weight-density is 9000 N m3. How much work does it take 
to pump the liquid to a point 2 m above the tank? If the pump is 
driven by a motor rated at 41,250 J s, how long will it take to 
empty the tank?

 36. Pumping a cylindrical tank A storage tank is a right-circular 
cylinder 6 m long and 2.5 m in diameter with its axis horizontal. 
If the tank is half full of olive oil weighing 8950 N m3, find the 
work done in emptying it through a pipe that runs from the bottom 
of the tank to an outlet that is 2 m above the top of the tank.

 37. Assume that a spring does not follow Hooke’s Law. Instead, the 
force required to stretch the spring x m from its natural length is 
F x x( ) 5 N.3 2  How much work does it take to

 a. stretch the spring 2 m from its natural length?

 b. stretch the spring from an initial 1 m past its natural length to 
3 m past its natural length?

 38. Assume that a spring does not follow Hooke’s Law. Instead, the 
force required to stretch the spring x m from its natural length is 

F x k x( ) 5  N2= + .

 a. If a 3-N force stretches the spring 2 m, find the value of k.

 b. How much work is required to stretch the spring 1 m from its 
natural length?

Centers of Mass and Centroids

 39. Find the centroid of a thin, flat plate covering the region enclosed 
by the parabolas y x2 2 and = −y x3 .2

 40. Find the centroid of a thin, flat plate covering the region enclosed 
by the x-axis, the lines x 2 and = −x 2, and the parabola 
y x .2

 41. Find the centroid of a thin, flat plate covering the “triangular” 
region in the first quadrant bounded by the y-axis, the parabola 
y x 4,2  and the line y 4.

 42. Find the centroid of a thin, flat plate covering the region enclosed 
by the parabola y x2  and the line x y2 .

 43. Find the center of mass of a thin, flat plate covering the region 
enclosed by the parabola y x2  and the line x y2  if the den-
sity function is y y( ) 1 .= +  (Use horizontal strips.)

 44. a.  Find the center of mass of a thin plate of constant density  
covering the region between the curve y x3 3 2  and the 
x-axis from x 1 to x 9.

 b. Find the plate’s center of mass if, instead of being constant, 
the density is x x( ) . (Use vertical strips.)
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434 Chapter 6 Applications of Definite Integrals 

Volume and Length
 1. A solid is generated by revolving about the x-axis the region bounded 

by the graph of the positive continuous function y f x( ), the 
x-axis, the fixed line x a, and the variable line = >x b b a,   . 
Its volume, for all b, is b ab.2  Find f x( ).

 2. A solid is generated by revolving about the x-axis the region 
bounded by the graph of the positive continuous function 
y f x( ), the x-axis, and the lines x 0 and x a. Its volume, 
for all a 0, is a a.2  Find f x( ).

 3. Suppose that the increasing function f x( ) is smooth for x 0 
and that f a(0) . Let s x( ) denote the length of the graph of 
f from (0, a) to x f x x,   ( ) ,   0.( ) >  Find f x( ) if s x Cx( )  for 
some constant C. What are the allowable values for C?

 4. a. Show that for α π< ≤0 2,

d1 cos sin .2

0

2 2∫ θ θ α α+ > +
α

 b. Generalize the result in part (a).
 5. Find the volume of the solid formed by revolving the region 

bounded by the graphs of y x  and y x 2 about the line 
y x.

 6. Consider a right-circular cylinder of diameter 1. Form a wedge by 
making one slice parallel to the base of the cylinder completely 
through the cylinder, and another slice at an angle of 45  to the 
first slice and intersecting the first slice at the opposite edge of 
the cylinder (see accompanying diagram). Find the volume of the 
wedge.

45° wedge

r = 1
2

Surface Area
 7. At points on the curve y x2 , line segments of length h y 

are drawn perpendicular to the xy-plane. (See accompanying fig-
ure.) Find the area of the surface formed by these perpendiculars 
from ( )0, 0  to ( )3, 2 3 .

x

0

3
x

y = 2
"

x

2
"

x

2
"

3

(3, 2
"

3)

y

 8. At points on a circle of radius a, line segments are drawn perpen-
dicular to the plane of the circle, the perpendicular at each point 
P being of length ks, where s is the length of the arc of the circle 
measured counterclockwise from (a, 0) to P, and k is a positive 
constant, as shown here. Find the area of the surface formed by 
the perpendiculars along the arc beginning at (a, 0) and extending 
once around the circle.

0

a
a

x

y

CHAPTER 6 Additional and Advanced Exercises

Fluid Force

 45. Trough of water The vertical triangular plate shown here is the 
end plate of a trough full of water w 9800 .( )=  What is the fluid 
force against the plate?

x

y

40

2

−4

UNITS IN METERS

y = x
2

 46. Trough of maple syrup The vertical trapezoidal plate shown 
here is the end plate of a trough full of maple syrup weighing 
11,000 N m3. What is the force exerted by the syrup against the 
end plate of the trough when the syrup is 0.5 m deep?

x

y

20

1

−2

UNITS IN METERS

y = x − 2

 47. Force on a parabolic gate A flat vertical gate in the face of 
a dam is shaped like the parabolic region between the curve 
y x4 2 and the line y 4, with measurements in meters. The 
top of the gate lies 5 m below the surface of the water. Find the 
force exerted by the water against the gate w 9800 .( )=

 48. You plan to store mercury w 133,350 N m 3( )= /  in a vertical 
rectangular tank with a 0.3 m square base side whose interior side 
wall can withstand a total fluid force of 150,000 N. About how many 
cubic meters of mercury can you store in the tank at any one time?

T
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 Chapter 6  Technology Application Projects 435

Work
 9. A particle of mass m starts from rest at time t 0 and is moved 

along the x-axis with constant acceleration a from x 0 to 
x h against a variable force of magnitude F t t( ) .2  Find the 
work done.

 10. Work and kinetic energy Suppose a 50-g golf ball is placed on 
a vertical spring with force constant k 2 N cm. The spring is 
compressed 15 cm and released. About how high does the ball go 
(measured from the spring’s rest position)?

Centers of Mass
 11. Find the centroid of the region bounded below by the x-axis and 

above by the curve = −y x1 ,n  n an even positive integer. What 
is the limiting position of the centroid as → ∞n ?

 12. If you haul a telephone pole on a two-wheeled carriage behind 
a truck, you want the wheels to be 1 m or so behind the pole’s 
center of mass to provide an adequate “tongue” weight. The 12-m 
wooden telephone poles used by Verizon have a 66-cm circumfer-
ence at the top and a 104-cm circumference at the base. About 
how far from the top is the center of mass?

 13. Suppose that a thin metal plate of area A and constant density 
 occupies a region R in the xy-plane, and let My be the plate’s 

moment about the y-axis. Show that the plate’s moment about the 
line x b is

 a. M b Ay  if the plate lies to the right of the line, and

 b. b A My  if the plate lies to the left of the line.

 14. Find the center of mass of a thin plate covering the region bounded 
by the curve y ax42  and the line x a a,    positive constant, 
if the density at (x, y) is directly proportional to (a) x, (b) y .

 15. a.  Find the centroid of the region in the first quadrant bounded by 
two concentric circles and the coordinate axes, if the circles have 
radii a and b, a b0 , and their centers are at the origin.

 b. Find the limits of the coordinates of the centroid as a b  
and discuss the meaning of the result.

 16. A triangular corner is cut from a square 40 cm on a side. The area 
of the triangle removed is 400 cm2. If the centroid of the remain-
ing region is 22 cm from one side of the original square, how far 
is it from the remaining sides?

Fluid Force
 17. A triangular plate ABC is submerged in water with its plane verti-

cal. The side AB, 4 m long, is 6 m below the surface of the water, 
while the vertex C is 2 m below the surface. Find the force exerted 
by the water on one side of the plate.

 18. A vertical rectangular plate is submerged in a fluid with its top 
edge parallel to the fluid’s surface. Show that the force exerted by 
the fluid on one side of the plate equals the average value of the 
pressure up and down the plate times the area of the plate.

Mathematica/Maple Projects

Projects can be found within MyLab Math.

• Using Riemann Sums to Estimate Areas, Volumes, and Lengths of Curves

Visualize and approximate areas and volumes in Part I and Part II: Volumes of Revolution; and Part III: Lengths of Curves.

• Modeling a Bungee Cord Jump

Collect data (or use data previously collected) to build and refine a model for the force exerted by a jumper’s bungee cord. Use the work-energy 
theorem to compute the distance fallen for a given jumper and a given length of bungee cord.

CHAPTER 6 Technology Application Projects
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436

OVERVIEW Our treatment of the logarithmic and exponential functions has been rather 
informal. In this chapter, we give a rigorous analytic approach to the definitions and prop-
erties of these functions. We also introduce the hyperbolic functions and their inverses. 
Like the trigonometric functions, these functions belong to the class of transcendental 
functions.

Integrals and 

Transcendental 

Functions

7 

DEFINITION The natural logarithm is the function given by

x
t

dt xln 1 , 0.
x

1∫= >

7.1 The Logarithm Defined as an Integral

In Chapter 1, we introduced the natural logarithm function xln  as the inverse of the expo-
nential function e x. The function e x was chosen as that function in the family of general 
exponential functions a a, 0x > , whose graph has slope 1 as it crosses the y-axis. The 
function a x  was presented intuitively, however, based on its graph at rational values of x.

In this section we recreate the theory of logarithmic and exponential functions from an 
entirely different point of view. Here we define these functions analytically and derive their 
behaviors. To begin, we use the Fundamental Theorem of Calculus to define the natural 
logarithm function xln  as an integral. We quickly develop its properties, including the 
algebraic, geometric, and analytic properties with which we are already familiar. Next we 
introduce the function e x as the inverse function of xln , and establish its properties. 
Defining xln  as an integral and e x  as its inverse is an indirect approach that gives an 
elegant and powerful way to obtain and validate the key properties of logarithmic and 
exponential functions.

Definition of the Natural Logarithm Function

The natural logarithm of a positive number x, written as ln x, is the value of an integral. The 
appropriate integral is suggested by our earlier results in Chapter 5.

From the Fundamental Theorem of Calculus, we know that ln x is a continuous function. 
Geometrically, if >x 1, then ln x is the area under the curve =y t1  from =t 1 to =t x  
(Figure 7.1). For < <x0 1, ln x gives the negative of the area under the curve from x to 1, 
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 7.1  The Logarithm Defined as an Integral 437

TABLE 7.1 Typical 2-place 
values of xln

x ln x

  0 undefined

  0.05 −3.00

  0.5 −0.69

  1 0

  2 0.69

  3 1.10

  4 1.39

10 2.30

and the function is not defined for ≤x 0. From the Zero Width Interval Rule for definite 
integrals, we also have

t
dtln 1 1 0.

1

1

∫= =

FIGURE 7.1 The graph of y xln=  and its relation to the function 
y x x1 , 0.= >  The graph of the logarithm rises above the x-axis as  
x moves from 1 to the right, and it falls below the axis as x moves from 
1 to the left.

x

y

0 x x1

1

1

1

y = ln x

y = 1
x

If x = 1, then ln x = dt = 0.1
t

gives the negative of this area.

x

1

1

x
If 0 < x < 1, then ln x = dt = −1

t dt1
t

gives this area.

x

1

dtIf x > 1, then ln x = 1
t

y = ln x

L L

L

L

Notice that we show the graph of =y x1  in Figure 7.1 but use =y t1  in the integral. 
Using x for everything would have us writing

x
x

dxln 1 ,
x

1∫=

with x meaning two different things. So we change the variable of integration to t.
By using rectangles to obtain finite approximations of the area under the graph of 

=y t1  and over the interval between =t 1 and =t x, as in Section 5.1, we can approx-
imate the values of the function xln . Several values are given in Table 7.1. There is an 
important number between =x 2 and =x 3 whose natural logarithm equals 1. This 
number, which we now define, exists because xln  is a continuous function and therefore 
satisfies the Intermediate Value Theorem on the interval 2, 3[ ].

Interpreted geometrically, the number e corresponds to the point on the x-axis for 
which the area under the graph of =y t1  and above the interval [ ]e1,  equals the area of 
the unit square. That is, the area of the region shaded blue in Figure 7.1 is 1  square unit 
when =x e. We will see further on that this is the same number ≈e 2.718281828 we 
have encountered before.

DEFINITION The number e is the number in the domain of the natural loga-
rithm that satisfies

e
t

dtln( ) 1 1.
e

1∫= =
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438 Chapter 7  Integrals and Transcendental Functions

The Derivative of y xln

By the first part of the Fundamental Theorem of Calculus (Section 5.4),

d
dx

x d
dx t

dt
x

ln 1 1 ,
x

1∫= =

so we have

d
dx

x
x

xln 1 , 0.= ≠  (3)

d
dx

x
x

xln 1 , 0.= >  (1)

FIGURE 7.2 (a) The graph of the 
natural logarithm. (b) The rectangle of 
height y 1 2 fits beneath the graph of 
y x1  for the interval x1 2.

(1, 0)
x

y

0

y = ln x

(a)

1 2

1

x

y

1
2

0

y = 1
x

(b)

Therefore, the function y xln  is a solution to the initial value problem dy dx x1 , 
x 0, with y (1) 0. Notice that the derivative is always positive.

If u is a differentiable function of x whose values are positive so that uln  is defined, 
then by applying the Chain Rule, we obtain

d
dx

u
u

du
dx

uln 1 , 0.= >  (2)

The derivative of xln  can be found just as in Example 3(c) of Section 3.8, giving

Moreover, if b is any constant with bx 0, Equation (2) gives

d
dx

bx
bx

d
dx

bx
bx

b
x

ln 1 ( ) 1 ( ) 1 .= ⋅ = =

The Graph and Range of xln

The derivative d x dx x(ln ) 1  is positive for x 0, so ln x is an increasing function of 
x. The second derivative, x1 ,2  is negative, so the graph of xln  is concave down. (See 
Figure 7.2a.)

The function xln  has the following familiar algebraic properties, which we stated in 
Section 1.5. In Section 4.2 we showed these properties are a consequence of Corollary 2 of 
the Mean Value Theorem, and those derivations still apply.

1. bx b xln ln ln= + 2. b
x

b xln ln ln= −

3. 
x

xln 1 ln= − 4. x r x rln ln ,   rationalr

We can estimate the value of ln 2  by considering the area under the graph of y x1  
and above the interval [ ]1, 2 . In Figure 7.2(b) a rectangle of height 1 2 over the interval 
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 7.1  The Logarithm Defined as an Integral 439

[ ]1, 2  fits under the graph. Therefore, the area under the graph, which is ln 2, is greater than 
the area of the rectangle, which is 1 2. So ln 2 1 2.>  Knowing this we have

n n nln 2 ln 2 1
2 2

.n ( )= > =

This result shows that ln (2 )n → ∞ as → ∞n . Since xln  is an increasing function, it 
follows that

xlim ln .
x

= ∞
→∞

    ln x is increasing and not bounded above.

We also have

x
t

tlim ln lim ln1 lim ln .
x t t0

( )= = − = −∞
→ →∞ →∞+

    =x t1

We defined xln  for >x 0, so the domain of xln  is the set of positive real numbers. 
The above discussion and the Intermediate Value Theorem show that its range is the entire 
real line, giving the familiar graph of y xln=  shown in Figure 7.2(a).

If u is a differentiable function that is never zero, then

u
du u C1 ln .∫ = +  (5)

Equation (5) applies anywhere on the domain of u1 , which is the set of points where 

≠u 0. It says that integrals that have the form du
u∫  lead to logarithms. Whenever 

=u f x( ) is a differentiable function that is never zero, we have that du f x dx( )= ′   
and

f x
f x

dx f x C
( )
( )

ln ( ) .∫
′ = +

x
dx x C1 ln .∫ = +  (4)

The Integral x dx1∫
Equation (3) leads to the following integral formula:

EXAMPLE 1  We rewrite an integral so that it has the form du
u

.∫

d
u

du

u

4 cos
3 2 sin

2

2 ln

2 ln 5 2 ln 1 2 ln 5

2

2

1

5

1

5

∫ ∫
θ
θ
θ

+
=

=
⎤

⎦
⎥
⎥

= − =

π

π

−

      

u du d
u u

3 2 sin , 2 cos ,
2 1, 2 5

θ θ θ
π π( ) ( )

= + =
− = =

Note that u 3 2 sin θ= +  is always positive on π π[ ]− 2, 2 , so Equation (5) applies. 

The Inverse of ln x and the Number e

The function xln , being an increasing function of x with domain ( )∞0,  and range 
( )−∞ ∞, , has an inverse − xln 1  with domain ( )−∞ ∞,  and range ( )∞0, . The graph of 

xln 1−  is the graph of ln x reflected across the line =y x. As you can see in Figure 7.3,

x xlim ln and lim ln 0.
x x

1 1= ∞ =
→∞

−
→−∞

−
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440 Chapter 7  Integrals and Transcendental Functions

The inverse function − xln 1  is also denoted by exp x. We have not yet established that exp x is 
an exponential function, only that exp x is the inverse of the function ln x. We will now 
show that x xln exp1 =−  is, in fact, the exponential function with base e.

The number e was defined to satisfy the equation eln( ) 1= , so e exp(1)= . We can 
raise the number e to a rational power r using algebra:

e e e e
e

e e e e, 1 , , ,2 2
2

1 2 2 3 23= ⋅ = = =−

and so on. Since e is positive, er is positive too. Therefore, er has a logarithm. When we 
take the logarithm, we find that if r is rational, then

e r e r rln ln 1 .r = = ⋅ =

Applying the function −ln 1 to both sides of the equation e rln ,r =  we find that

e r rexp for   rational. exp is ln .r 1= −  (6)

Thus exp r coincides with the exponential function er for all rational values of r. We have 
not yet found a way to give an exact meaning to e x  for x irrational, but we can use 
Equation (6) to do so. The function exp = −x xln 1  has domain ( )−∞ ∞, , so it is defined 
for every x. We have exp =r er  for r rational by Equation (6), and we now define e x to 
equal exp x for all x.

FIGURE 7.3 The graphs of y xln=  
and y x xln exp .1= =−  The number e is 
ln 1 exp 1 .1 ( )=−

x

y

1

10 2 e 4

2

e

4

−1−2

5

6

7

8

(1, e)

y = ln x

y = ln−1x
or

x = ln y

DEFINITION For every real number x, we define the natural exponential 
function to be =e xexp .x

The notations xln 1− , exp x, and e x all 
refer to the natural exponential function.

Typical values of e x

x e x (rounded)

  1− 0.37

0 1

1 2.72

2 7.39

10 22026

100 ×2.6881 10 43

For the first time we have a precise meaning for a number raised to an irrational power. 
Usually the exponential function is denoted by e x rather than exp x. Since xln  and e x are 
inverses of one another, we have the following relations.

Inverse Equations for e x and xln

e x x

e x x

(all  0)

ln( ) (all  )

x

x

ln = >

=

The Derivative and Integral of e x

The exponential function is differentiable because it is the inverse of a differentiable 
function whose derivative is never zero. We calculate its derivative by using Theorem 3 of 
Section 3.8 and our knowledge of the derivative of xln . Let

f x x y e x f x( ) ln and ln ( ).x 1 1= = = =− −

Then

dy
dx

d
dx

e d
dx

x

d
dx

f x

f f x

f e

e
e

ln

( )

1
( ( ))

1
( )

1
1

.

f x e

f z
z

z e

Theorem 3, Section 3.8

( )

( )
1

 with 

x

x
x

x

x

x

1

1

1

1

( )

= =

=

=
′

=
′

=

=

=

′ = =

−

−

−

−
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 7.1  The Logarithm Defined as an Integral 441

That is, for y e ,x  we find that dy dx e x, so the natural exponential function e x is its 
own derivative, just as we claimed in Section 3.3.

d
dx

e e .x x  (7)

We will see in the next section that the only functions that behave this way are con-
stant multiples of e .x  The Chain Rule extends the derivative result in the usual way to a 
more general form: If u is any differentiable function of x, then

d
dx

e e du
dx

.u u  (8)

Since e 0x , its derivative is also everywhere positive, so it is an increasing and 
continuous function for all x, having limits

e elim 0 and lim .
x

x

x

x= = ∞
→−∞ →∞

It follows that the x-axis ( )=y 0  is a horizontal asymptote of the graph y e x (see 
Figure 7.3).

Equation (7) also tells us the indefinite integral of e .x

∫ = +e dx e Cx x

If f x e( ) x, then we see from Equation (7) that f e(0) 10′ = = . That is, the 
exponential function e x  has slope 1 as it crosses the y-axis at x 0. This agrees with 
our assertion for the natural exponential in Section 3.3.

Logarithms and Laws of Exponents

The familiar algebraic properties of logarithms and exponential functions were stated in 
Section 1.5. We now show that these follow from the definition of the logarithm as an inte-
gral that we have used. The properties of logarithms are stated in Theorem 1.

THEOREM 1—Algebraic Properties of the Natural Logarithm
For any numbers b 0 and x 0, the natural logarithm satisfies the following 
rules:

1. Product Rule: bx b xln ln ln= +

2. Quotient Rule: b
x

b xln ln ln= −

3. Reciprocal Rule: 
x

xln 1 ln= −    bRule 2 with 1

4. Power Rule: x r xln lnr

The proof uses the Mean Value Theorem, which was established in Section 4.2.
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442 Chapter 7  Integrals and Transcendental Functions

Proof that ln ln lnbx b x= +   The argument starts by observing that bxln  and 
xln  have the same derivative:

d
dx

bx b
bx x

d
dx

xln( ) 1 ln .= = =

According to Corollary 2 of the Mean Value Theorem, the functions must differ by a con-
stant, which means that

bx x Cln ln= +

for some C.
Since this last equation holds for all positive values of x, it must hold for =x 1. Hence,

b C

b C

C b

ln 1 ln 1

ln 0

ln .

( )⋅ = +

= +

=

    ln 1 0=

By substituting, we conclude

bx b xln ln ln .= +  

Proof that ln lnx r xr =   We use the same-derivative argument again. For all posi-
tive values of x,

d
dx

x
x

d
dx

x

x
rx

r
x

d
dx

r x

ln 1 ( )

1

1 ( ln ).

r
r

r

r
r 1

=

=

= ⋅ =

−

Chain Rule

Derivative Power Rule

Since xln r  and r xln  have the same derivative,

x r x Cln lnr = +

for some constant C. Taking x to be 1 identifies C as zero, and we’re done. 

You are asked to prove the Quotient Rule for logarithms,

b
x

b xln  ln ln ,( ) = −

in Exercises 63. The Reciprocal Rule, x xln 1 ln( ) = − , is a special case of the Quotient 
Rule, obtained by taking =b 1 and noting that ln 1 0= .

We now state the algebraic properties of exponential functions.

THEOREM 2—Laws of Exponents for e x

For all numbers x and y, the natural exponential function e x obeys the following laws.

1. = +e e ex y x y 2. =−e
e
1x
x

3. = −e
e

e
x

y
x y 4. = =e e e( ) ( )x y xy y x
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 7.1  The Logarithm Defined as an Integral 443

Proof that e e ex y x y= +

e e e

e

e .

u e

e u

.

Product formula for ln

ln .

x y e e

e e

x y

ln( )

ln( ) ln( )

x y

x y

u

u

ln=
=

=

=

=

+

+  

Theorem 1 and the inverse relationship between the logarithmic and exponential 
functions also imply the other algebraic properties of the exponential function (see 
Exercise 67).

The General Exponential Function a x

Since a e aln  for any positive number a, we can express a x  as e e( ) .a x x aln ln  We 
therefore make the following definition, consistent with what we stated in Section 1.5.

DEFINITION For any numbers a 0 and x, the exponential function with base 
a is given by

a e .x x aln

The General Power Function

x r is the function er xln .

When a e, the definition gives a e e e e .x x a x e x xln ln 1= = = =⋅  Similarly, the 
power function f x x( ) r  is defined for positive x by the formula x er r xln , which holds 
for any real number r, rational or irrational.

Theorem 2 is also valid for a ,x  the exponential function with base a. For example,

a a e e
e
e
a .

x y x a y a

x a y a

x y a

x y

ln ln

ln ln

ln

⋅ = ⋅
=
=
=

( )

+

+

+

Definition of a x

Law 1

Common factor aln

Definition of a x

Starting with the definition a e a, 0x x aln= > , we get the derivative

d
dx

a d
dx

e a e a a(ln ) (ln ) ,x x a x a xln ln

so

d
dx

a a aln .x x

Alternatively, we get the same derivative rule by applying logarithmic differentiation:

y a

y x a

y
dy
dx

a

dy
dx

y a a a

ln ln

1 ln

ln ln .

x

x

Take logarithms.

Differentiate with respect to x.

With the Chain Rule, we get a more general form, as in Section 3.8: If a 0 and u is 
a differentiable function of x, then au is a differentiable function of x and

d
dx

a a a du
dx

ln .u u
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444 Chapter 7  Integrals and Transcendental Functions

The integral equivalent of this derivative rule is

a dx a
a

C
ln

x
x

∫ = +

FIGURE 7.4 The graph of 2 x  and its 
inverse, xlog .2

x

y

1
2

0 1 2

y = log2x

y = 2x

y = x

TABLE 7.2 Rules for base a  
logarithms

For any numbers x 0 and y 0,

1. Product Rule:
xy x ylog log loga a a= +

2. Quotient Rule:
x
y

x ylog log loga a a= −

3. Reciprocal Rule:

y
ylog 1 loga a= −

4. Power Rule:
x y xlog loga

y
a

Derivatives and Integrals Involving xlog a

To find derivatives or integrals involving base a logarithms, we can convert them to natural 
logarithms. In particular, differentiating xloga  gives

( )( ) =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ = = ⋅d

dx
x d

dx
x
a a

d
dx

x
a x

log
ln
ln

1
ln

ln 1
ln

1 ,a

so

( ) =d
dx

x
x a

log 1
ln

.a

Logarithms with Base a

If a is any positive number other than 1, the function a x  is one-to-one and has a nonzero 
derivative at every point. It therefore has a differentiable inverse.

DEFINITION For any positive number a 1, the logarithm of x with base a, 
denoted by xlog a , is the inverse function of a .x

The graph of y xloga  can be obtained by reflecting the graph of y a x across 
the 45  line y x  (Figure 7.4). When a e, we have xlog inversee  of e xln .x  
Since xloga  and a x  are inverses of one another, composing them in either order gives the 
identity function.

Inverse Equations for a x and xlog a

a x x

a x x

( 0)

log ( ) (all )

x

a
x

loga = >

=

y x

a x
a x

y a x

y
x
a

x
x
a

log

ln ln

ln ln

ln
ln

log
ln
ln

a

y

y

a

Defining equation for y

Equivalent equation

Natural log of both sides

Algebra Rule 4 for natural log

Solve for y.

Substitute for y.

It then follows easily that the arithmetic rules satisfied by xloga  are the same as the 
ones for ln x. These rules, given in Table 7.2, can be proved by dividing the corresponding 
rules for the natural logarithm function by aln . For example,

xy x y

xy
a

x
a

y
a

xy x y

ln ln ln

ln
ln

ln
ln

ln
ln

log log log .a a a

= +

= +

= +

Rule 1 for natural logarithms ... 

... divided by ln a ... 

... gives Rule 1 for base a logarithms.

As stated in Section 1.5, the function xloga  is just a numerical multiple of xln . We 
see this from the following derivation.
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Transcendental Numbers and  
Transcendental Functions
Numbers that are solutions of polynomial 
equations with rational coefficients are 
called algebraic: −2 is algebraic because 
it satisfies the equation + =x 2 0, and 

3 is algebraic because it satisfies the 
equation − =x 3 0.2  Numbers such as 
e and π that are not algebraic are called 
transcendental.

We call a function =y f x( ) algebraic 
if it satisfies an equation of the form

�+ + + =P y P y P 0n
n

1 0

in which the P’s are polynomials in x  
with rational coefficients. The function  

= +y x1 1 is algebraic because it  
satisfies the equation ( )+ − =x y1 1 0.2   
Here the polynomials are = +P x 1,2  

=P 0,1  and = −P 1.0  Functions that are 
not algebraic are called transcendental.

Integration
Evaluate the integrals in Exercises 1–46.

 1. dx
x3

2

∫−

−
 2. 

dx
x
3

3 21

0

∫ −−

 3. 
y dy

y
2

252∫ −
 4. 

r dr
r
8

4 52∫ −

 5. 
t

t
dt

3 sec
6 3 tan

2

∫ +
 6. 

y y
y

dy
sec tan
2 sec∫ +

 7. dx
x x2 2∫ +

 8. 
x dx

x x

sec

ln sec tan∫ ( )+

 9. e dxx

ln 2

ln 3

∫  10. e dx8 x 1∫ ( )+

 11. 
x
x

dx
(ln )

2

3

1

4

∫  12. 
x

x x
dx

ln(ln )
ln∫

 13. e dxx 2

ln 4

ln 9

∫  14. x x dxtan ln(cos )∫

 15. e
r

dr
r

∫  16. e
r

dr
r

∫
−

 17. t e dt2 t 2∫ −  18. 
x dx

x x

ln

ln 12∫ +

 19. e
x

dx
x1

2∫  20. e
x

dx
x1

3

2

∫
−

 21. e t t dtsec tantsec∫ π ππ

 22. e t t dtcsc cottcsc∫ π π( ) ( )+ +π( )+

 23. e e d2 cos
ln 6

ln 2

∫ υυ υ
π

π

( )

( )
 24. x e e dx2 cos( )x x

0

ln
2 2∫

π

 25. e
e

dr
1

r

r∫ +
 26. dx

e1 x∫ +

 27. d2
0

1

∫ θθ−  28. d5
2

0

∫ θθ−
−

 29. x dx2 x( )

1

2
2∫  30. 

x
dx2 x

1

4

∫

 31. t dt7 sintcos

0

2

∫
π

 32. t dt1
3

sec
ttan

0

4
2∫ ( )π

 33. x x dx1 lnx2

2

4

∫ ( )+  34. 
x

dx2 xln

1

2

∫

 35. x dx2 1 2

0

3

∫ ( )+  36. x dx
e

(ln 2) 1

1∫ −

 37. 
x

x
dx

log10∫  38. 
x

x
dx

log2

1

4

∫

 39. ∫
x

x
dx

ln 2 log2

1

4
 40. 

x
x

dx
2 ln 10 loge

10

1∫

 41. 
x

x
dx

log 2
2

2

0

2

∫
( )+
+

 42. ∫
x

x
dx

log (10 )10

1 10

10

 43. ∫
( )+
+

x
x

dx
2 log 1

1
10

0

9
 44. ∫

( )−
−

x
x

dx
2 log 1

1
2

2

3

EXERCISES 7.1 

Summary

In this section we used calculus to give precise definitions of the logarithmic and exponen-
tial functions. This approach is somewhat different from our earlier treatments of the poly-
nomial, rational, and trigonometric functions. There we first defined the function and then 
we studied its derivatives and integrals. Here we started with an integral from which the 
functions of interest were obtained. The motivation behind this approach was to address 
mathematical difficulties that arise when we attempt to define functions such as a x  for any 
real number x, rational or irrational. Defining xln  as the integral of the function t1  from 

=t 1 to =t x  enabled us to define all of the exponential and logarithmic functions and 
then to derive their key algebraic and analytic properties.

If u is a positive differentiable function of x, then

d
dx

u
a u

du
dx

log 1
ln

1 .a( ) = ⋅

 (b) ∫ ∫

∫

=

=

= + = + = +

x
x

dx
x

x
dx

u du

u C
x

C
x

C

log 1
ln 2

ln

1
ln 2

1
ln 2 2

1
ln 2

(ln )
2

(ln )
2 ln 2

2

2 2 2

 

x
x

log
ln
ln 22 =

u x du
x

dxln , 1= =

EXAMPLE 2  We illustrate the derivative and integral results.

 (a) 
( )

( ) ( )
( )

+ = ⋅
+

+ =
+

d
dx

x
x

d
dx

x
x

log 3 1 1
ln 10

1
3 1

3 1 3
ln 10 3 110
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446 Chapter 7  Integrals and Transcendental Functions

 45. dx
x xlog10

∫  46. dx
x x(log )8

2∫

Initial Value Problems
Solve the initial value problems in Exercises 47–52.

 47. dy
dt

e e ysin 2 , (ln 2) 0t t( )= − =

 48. dy
dt

e e ysec ( ), (ln 4) 2t t2 π π= =− −

 49. d y
dx

e y y2 , (0) 1 and (0) 0x
2

2
= = ′ =−

 50. d y
dt

e y y1 , (1) 1 and (1) 0t
2

2
2= − = − ′ =

 51. dy
dx x

y1 1 , (1) 3= + =

 52. d y
dx

x y ysec , (0) 0 and (0) 1
2

2
2= = ′ =

Theory and Applications

 53. The region between the curve =y x1 2 and the x-axis from 
=x 1 2 to =x 2 is revolved about the y-axis to generate a solid. 

Find the volume of the solid.

 54. In Section 6.2, Exercise 6, we revolved about the y-axis the region 
between the curve = +y x x9 93  and the x-axis from =x 0 
to =x 3 to generate a solid of volume π36 . What volume do 
you get if you revolve the region about the x-axis instead? (See 
Section 6.2, Exercise 6, for a graph.)

Find the lengths of the curves in Exercises 55 and 56.

 55. y x x x8 ln , 4 82( )= − ≤ ≤

 56. x y y y4 2 ln 4 , 4 122( ) ( )= − ≤ ≤

 57. The linearization of xln 1( )+  at x 0=  Instead of approxi-
mating xln  near =x 1, we approximate ( )+ xln 1  near =x 0. 
We get a simpler formula this way.

 a. Derive the linearization ( )+ ≈x xln 1  at =x 0.

 b. Estimate to five decimal places the error involved in replacing 
( )+ xln 1  by x on the interval [ ]0, 0.1 .

 c. Graph ( )+ xln 1  and x together for ≤ ≤x0 0.5. Use differ-
ent colors, if available. At what points does the approximation 
of ( )+ xln 1  seem best? Least good? By reading coordinates 
from the graphs, find as good an upper bound for the error as 
your grapher will allow.

 58. The linearization of e x at 0x =
 a. Derive the linear approximation ≈ +e x1x  at =x 0.

 b. Estimate to five decimal places the magnitude of the error 
involved in replacing e x by + x1  on the interval [ ]0, 0.2 .

 c. Graph e x and + x1  together for − ≤ ≤x2 2. Use different 
colors, if available. On what intervals does the approximation 
appear to overestimate e ?x  Underestimate e ?x

 59. Show that for any number >a 1

x dx e dy a aln ln ,
a

y
a

1 0

ln

∫ ∫+ =

T

T

T

as suggested by the accompanying figure.

x

y

10 a

ln a

y = ln x

x

2

F

C

B

E

DA

M

NOT TO SCALE

y = ex

ln a + ln b ln bln a

 60. The geometric, logarithmic, and arithmetic mean inequality 

 a. Show that the graph of e x is concave up over every interval of 
x-values.

 b. Show, by reference to the accompanying figure, that if 
a b0 ,< <  then

e b a e dx e e b aln ln
2

ln ln .a b x

a

b a b
ln ln 2

ln

ln ln ln

∫( ) ( )⋅ − < < + ⋅ −( )+

 c. Use the inequality in part (b) to conclude that

ab b a
b a

a b
ln ln 2

.< −
−

< +

This inequality says that the geometric mean of two positive 
numbers is less than their logarithmic mean, which in turn is 
less than their arithmetic mean.

 61. Use Figure 7.1 and appropriate areas to show that

� �
n

n
n

1
2

1
3

1
4

1 ln 1 1
2

1
3

1
1

.+ + + + < < + + + +
−

 62. Partition the interval 1, 2[ ] into n equal parts. Then use Figure 7.1 
and appropriate partition points and areas to show that

�

�

n n n n n n

n n

1
1

1
2

1
3

1
2

ln 2 1 1
1

1
2

1
2 1

.

+
+

+
+

+
+ + < < +

+

+
+

+ +
−

 63. Use the same-derivative argument, as was done to prove the 
Product and Power Rules for logarithms, to prove the Quotient 
Rule property.

 64. Use the same-derivative argument to prove the identities

 a. x xtan cot
2

1 1 π+ =− −  b. x xsec csc
2

1 1 π+ =− −

 65. Starting with the equation = +e e ex y x y, derived in the text, 
show that =−e e1x x  for any real number x. Then show that 

= −e e ex y x y for any numbers x  and y.

M07_HASS5901_15_GE_C07.indd   446 07/03/23   2:51 PM

www.konkur.in

Telegram: @uni_k
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[−3, 6] by [−3, 3]

 66. Show that = =e e e( ) ( )x y xy y x for any numbers x  and y.

 67. Show that properties (2), (3), and (4) of Theorem 2 follow from 
Theorem 1 and the inverse relationship between the logarithmic 
and exponential functions.

 68. Alternative proof that ( )+ =
→∞ x

elim 1 1 :
x

x

 a. Let >x 0 be given, and use Figure 7.1 to show that

x t
dt

x
1

1
1 1 .

x

x 1

∫+
< <

+

 b. Conclude from part (a) that

x x x
1

1
ln 1 1 1 .( )+

< + <

 c. Conclude from part (b) that

e
x

e1 1 .
xx

x 1 ( )< + <+

 d. Conclude from part (c) that

( )+ =
→∞ x

elim 1 1 .
x

x

Grapher Explorations
When solving Exercises 69–76, you may need to use appropriate tech-
nology (such as a graphing calculator or a computer).

 69. Graph ln x, ln 2x, ln 4x, ln 8x, and ln 16x (as many as you can) 
together for < ≤x0 10. What is going on? Explain.

 70. Graph y xln sin=  in the window x y0 22, 2 0.≤ ≤ − ≤ ≤  
Explain what you see. How could you change the formula to turn 
the arches upside down?

 71. a.  Graph y xsin=  and the curves y a xln sin( )= +  for 
=a 2, 4, 8, 20, and 50 together for ≤ ≤x0 23.

 b. Why do the curves flatten as a increases? (Hint: Find an 
a-dependent upper bound for y .′ )

 72. Does the graph of y x x xln , 0,= − >  have an inflection point? 
Try to answer the question (a) by graphing, (b) by using calculus.

 73. The equation =x 2 x2  has three solutions: = =x x2, 4, and 
one other. Estimate the third solution as accurately as you can by 
graphing.

 74. Could x ln 2 possibly be the same as 2 xln  for some >x 0? Graph 
the two functions and explain what you see.

 75. Which is bigger, e or e ? Calculators have taken some of 
the mystery out of this once-challenging question. (Go ahead and 
check; you will see that it is a surprisingly close call.) You can 
answer the question without a calculator, though.

T

 a. Find an equation for the line through the origin tangent to  
the graph of y xln .=

 b. Give an argument based on the graphs of y xln=  and the 
tangent line to explain why x x eln <  for all positive ≠x e.

 c. Show that x xln( )e <  for all positive ≠x e.

 d. Conclude that <x ee x for all positive ≠x e.

 e. So which is bigger, π e or e ?π

 76. A decimal representation of e Find e to as many decimal places 
as you can by solving the equation xln 1=  using Newton’s 
method in Section 4.7.

Calculations with Other Bases

 77. Most scientific calculators have keys for xlog10  and ln  x.  
To find logarithms to other bases, we use the equation 

x x alog (ln ) (ln ).a =

Find the following logarithms to five decimal places.

 a. log 83

 b. log 0.57

 c. log 1720

 d. log 70.5

 e. ln x, given that xlog 2.310 =

 f. ln x, given that xlog 1.42 =

 g. ln x, given that xlog 1.52 = −

 h. ln x, given that xlog 0.710 = −

 78. Conversion factors 

 a. Show that the equation for converting base 10 logarithms to 
base 2 logarithms is

x xlog
ln 10
ln 2

log .2 10=

 b. Show that the equation for converting base a logarithms to 
base b logarithms is

x
a
b

xlog
ln
ln

log .b a=

T

7.2 Exponential Change and Separable Differential Equations

Exponential functions increase or decrease very rapidly with changes in the independent 
variable. They describe growth or decay in many natural and industrial situations. The 
variety of models based on these functions partly accounts for their importance.

Exponential Change

In modeling many real-world situations, a quantity y increases or decreases at a rate pro-
portional to its size at a given time t. Examples of such quantities include the size of a 
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448 Chapter 7  Integrals and Transcendental Functions

The solution of the initial value problem

dy
dt

ky y y, (0) 0= =

is
y y e .kt

0=  (2)

population, the amount of a decaying radioactive material, and the temperature difference 
between a hot object and its surrounding medium. Such quantities are said to undergo 
exponential change.

If the amount present at time =t 0 is called y ,0  then we can find y as a function of t 
by solving the following initial value problem:

=dy
dt

kyDifferential equation:  (1a)

y y tInitial condition: when 0. 0= =  (1b)

If y is positive and increasing, then k is positive, and we use Equation (1a) to say that the 
rate of growth is proportional to what has already been accumulated. If y is positive and 
decreasing, then k is negative, and we use Equation (1a) to say that the rate of decay is 
proportional to the amount still left.

The constant function =y 0 is a solution of Equation (1a) if =y 0.0  To find the 
solutions when y0 is not zero, we divide Equation (1a) by y:

y
dy
dt

k

y
dy
dt

dt k dt

y kt C

y e

y e e

y e e

y Ae

1

1

ln

.

kt C

C kt

C kt

kt

∫ ∫

⋅ =

=

= +

=

= ⋅

= ±

=

+

≠y 0

Integrate with respect to t.

u du u C1 ln( )∫ = +

Exponentiate.

e e ea b a b= ⋅+

= = ±y r y rIf ,  then  .

A is a shorter name for ±e .C

By allowing A to take on the value 0 in addition to all possible values ±e ,C  we can include 
the solution =y 0 (which occurs when =y 00 ) in the formula.

We find the value of A for the initial value problem by solving for A when =y y0 
and =t 0:

= =⋅y Ae A.k
0

0

Quantities changing in this way are said to undergo exponential growth if >k 0 and 
exponential decay if <k 0. The number k is called the rate constant of the change. (See 
Figure 7.5.)

The derivation of Equation (2) shows also that the only functions that are their own 
derivatives ( )=k 1  are constant multiples of the exponential function.

Before presenting several examples of exponential change, let us consider the process 
we used to derive it.

Separable Differential Equations

Exponential change is modeled by a differential equation of the form =dy dx ky, where k 
is a nonzero constant. More generally, suppose we have a differential equation of the form

( )=dy
dx

f x y, , (3)

y0

t

y

k = −1.3

k = −1

k = −0.5

(b)

y = y0 ekt

FIGURE 7.5 Graphs of (a) exponential 
growth and (b) exponential decay. As k  
increases, the growth ( )>k 0  or decay 
( )<k 0  intensifies.

y0
t

y

k = 1.3

k = 1

k = 0.6

y = y0 ekt

(a)
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 7.2  Exponential Change and Separable Differential Equations 449

where f  is a function of both the independent and dependent variables. A solution of the 
equation is a differentiable function y y x( )=  defined on an interval of x-values (perhaps 
infinite) such that

d
dx

y x f x y x( ) , ( )( )=

on that interval. That is, when y x( ) and its derivative y x( )′  are substituted into the differen-
tial equation, the resulting equation is true for all x in the solution interval. The general 
solution is a solution y x( ) that contains all possible solutions, and it always contains an 
arbitrary constant.

Equation (3) is separable if f  can be expressed as a product of a function of x and a 
function of y. The differential equation then has the form

dy
dx

g x H y( ) ( ).=      
g is a function of x;  
H is a function of y.

Then collect all of the y factors so that they are together with dy, and likewise collect all of 
the x factors together with dx:

H y
dy g x dx1

( )
( ) .=

Now we integrate both sides of this equation:

H y
dy g x dx1

( )
( ) .∫ ∫=  (4)

After completing the integrations, we obtain the solution y, defined implicitly as a function 
of x.

The justification that we can integrate both sides in Equation (4) in this way is based 
on the Substitution Rule (Section 5.5):

H y
dy

H y x
dy
dx

dx

H y x
H y x g x dx

g x dx

1
( )

1
( ( ))

1
( ( ))

( ( )) ( )

( ) .

∫ ∫

∫

∫

=

=

=

    =dy
dx

H y x g x( ( )) ( )

EXAMPLE 1  Solve the differential equation

dy
dx

y e y1 , 1.x( )= + > −

Solution Since + y1  is never zero for > −y 1, we can solve the equation by separating 
the variables.

∫ ∫

( )

( )

( )

= +

= +

+
=

+
=

+ = +

dy
dx

y e

dy y e dx

dy
y

e dx

dy
y

e dx

y e C

1

1

1

1

ln 1

x

x

x

x

x

Treat dy dx  as a quotient of differentials  
and multiply both sides by dx.

Divide by ( )+ y1 .

Integrate both sides.

C represents the combined constants  
of integration.

The last equation gives y as an implicit function of x. 
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450 Chapter 7  Integrals and Transcendental Functions

FIGURE 7.6 Graph of the growth of a 
yeast population over a 10-hour period, 
based on the data in Table 7.3.
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TABLE 7.3 Population of yeast

Time (hr)
Yeast biomass  

(mg)

  0     9.6

  1   18.3

  2   29.0

  3   47.2

  4   71.1

  5 119.1

  6 174.6

  7 257.3

  8 350.7

  9 441.0

10 513.3

EXAMPLE 2  Solve the equation ( )( )+ = +y x
dy
dx

x y1 1 .2

Solution We change to differential form, separate the variables, and integrate:

y x dy x y dx

y dy
y

x dx
x

y dy
y x

dx

y x x C

1 1

1 1

1
1 1

1

1
2

ln 1 ln 1 .

2

2

2

2

∫ ∫ ( )

( )

( )

( )+ = +

+
=

+

+
= −

+

+ = − + +

≠ −x 1

+x xDivide   by  1.

The last equation gives the solution y as an implicit function of x. 

The initial value problem

dy
dt

ky y y, (0) 0= =

involves a separable differential equation, and the solution y y e kt
0=  expresses exponen-

tial change. We now present several examples of such change.

Unlimited Population Growth

Strictly speaking, the number of individuals in a population (of people, plants, animals, or 
bacteria, for example) is a discontinuous function of time because it takes on discrete values. 
However, when the number of individuals becomes large enough, the population can be 
approximated by a continuous function. Differentiability of the approximating function is 
another reasonable hypothesis in many settings, allowing for the use of calculus to model 
and predict population sizes.

If we assume that the proportion of reproducing individuals remains constant and 
assume a constant fertility, then at any instant t the birth rate is proportional to the num-
ber y t( ) of individuals present. We likewise assume that the death rate of the population 
is stable and proportional to y t( ). If, further, we neglect departures and arrivals, the 
growth rate dy dt  is the birth rate minus the death rate, which is the difference of the 
two proportionalities under our assumptions. In other words, =dy dt ky so that 

=y y e ,kt
0  where y0 is the size of the population at time =t 0. As with all kinds of 

growth, there may be limitations imposed by the surrounding environment, but we will 
not go into these here. (We treat one model imposing such limitations in Section 16.4.) 
When k is positive, the proportionality =dy dt ky models unlimited population growth. 
(See Figure 7.6.)

EXAMPLE 3  The biomass of a yeast culture in an experiment is initially 29 grams. 
After 30 minutes the mass is 37 grams. Assuming that the equation for unlimited popula-
tion growth gives a good model for the growth of the yeast when the mass is below 100 grams, 
how long will it take for the mass to double from its initial value?

Solution Let y t( ) be the yeast biomass after t minutes. We use the exponential growth 
model dy dt ky=  for unlimited population growth, with solution y y e kt

0= .
We have y y (0) 290 = = . We are also told that

y e(30) 29 37.k(30)= =
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 7.2  Exponential Change and Separable Differential Equations 451

Solving this equation for k, we find

( )

( )

=

=

= ≈

e

k

k

37
29

30 ln 37
29

1
30

ln 37
29

0.008118.

k(30)

Then the mass of the yeast in grams after t minutes is given by the equation

y e29 .t0.008118= ( )

To solve the problem, we find the time t for which y t( ) 58= , which is twice the initial 
amount.

e

t

t

29 58

0.008118 ln 58
29

ln 2
0.008118

85.38

t0.008118

( )( )

=

=

= ≈

( )

It takes about 85 minutes for the yeast population to double. 

In the next example we model the number of people within a given population who are 
infected by a disease that is being eradicated from the population. Here the constant of 
proportionality k is negative, and the model describes an exponentially decaying number of 
infected individuals.

EXAMPLE 4  One model for the way diseases die out when properly treated assumes 
that the rate dy dt  at which the number of infected people changes is proportional to the 
number y. The number of people cured is proportional to the number y that are infected 
with the disease. Suppose that in the course of any given year, the number of cases of a 
disease is reduced by 20%. If there are 10,000 cases today, how many years will it take to 
reduce the number to 1000?

Solution We use the equation y y e .kt
0=  There are three things to find: the value of y0, 

the value of k, and the time t when =y 1000.
The value of y0. We are free to count time beginning anywhere we want. If we count 

from today, then =y 10,000 when =t 0, so =y 10,000.0  Our equation is now

=y e10,000 .kt  (5)

The value of k. When =t 1 year, the number of cases will be 80% of its present 
value, or 8000. Hence,

e

e

e

k

8000 10,000

0.8

ln( ) ln 0.8

ln 0.8 0.

k

k

k

(1)=

=

=

= <

Eq. (5) with = =t y1 and  8000

Take logs of both sides

ln 0.8 0.223≈ −

At any given time t,

y e10,000 .tln 0.8= ( )  (6)
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452 Chapter 7  Integrals and Transcendental Functions

The value of t that makes y 1000. We set y equal to 1000 in Equation (6) and solve 
for t:

e

e

t

t

1000 10,000

0.1

ln 0.8 ln 0.1

ln 0.1
ln 0.8

10.32 years.

t

t

ln 0.8

ln 0.8

( )

=

=

=

= ≈

( )

( )

    
Take logs of both sides

It will take a little more than 10 years to reduce the number of cases to 1000. (See 
Figure 7.7.) FIGURE 7.7 A graph of the number 

of people infected by a disease exhibits 
exponential decay (Example 4).

t

y

1050

1,000

5,000

10,000

y = 10,000e(ln 0.8)t

Carbon-14 dating uses the half-life of 
5730 years.

For radon-222 gas, t is measured in days 
and k 0.18. For radium-226, which 
used to be painted on watch dials to 
make them glow at night (a dangerous 
practice), t is measured in years and 
k 4.3 10 .4= × −

Radioactivity

Some atoms are unstable and can spontaneously emit mass or radiation. This process is 
called radioactive decay, and an element whose atoms go spontaneously through this 
process is called radioactive. Sometimes when an atom emits some of its mass through 
this process of radioactivity, the remainder of the atom re-forms to make an atom of some 
new element. For example, radioactive carbon-14 decays into nitrogen; radium, through a 
number of intermediate radioactive steps, decays into lead.

Experiments have shown that at any given time, the rate at which a radioactive ele-
ment decays (as measured by the number of nuclei that change per unit time) is approxi-
mately proportional to the number of radioactive nuclei present. Thus, the decay of a 
radioactive element is described by the equation = − >dy dt ky k, 0. It is conventional 
to use k, with k 0, to emphasize that y is decreasing. If y0 is the number of radioactive 
nuclei present at time zero, the number still present at any later time t will be

y y e k, 0.kt
0= >−

In Section 1.5, we defined the half-life of a radioactive element to be the time required 
for half of the radioactive nuclei present in a sample to decay. It is an interesting fact that 
the half-life is a constant that does not depend on the number of radioactive nuclei initially 
present in the sample, but only on the radioactive substance. We found that the half-life is 
given by the following equation.

k
Half-life

ln 2
 (7)

For example, the half-life for radon-222 is

half-life
ln 2
0.18

3.9 days.= ≈

EXAMPLE 5  The decay of radioactive elements can sometimes be used to date events 
from Earth’s past. In a living organism, the ratio of radioactive carbon, carbon-14, to ordi-
nary carbon stays fairly constant during the lifetime of the organism, being approximately 
equal to the ratio in the organism’s atmosphere at the time. After the organism’s death, 
however, no new carbon is ingested, and the proportion of carbon-14 in the organism’s 
remains decreases as the carbon-14 decays.

Scientists who do carbon-14 dating often use a figure of 5730 years for its half-life. Find 
the age of a sample in which 10% of the radioactive nuclei originally present have decayed.

Solution We use the decay equation y y e .kt
0= −  There are two things to find: the value 

of k and the value of t when y is y0.9 0 (90% of the radioactive nuclei are still present). That 
is, find t when y e y0.9 ,kt

0 0=−  or =−e 0.9.kt
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 7.2  Exponential Change and Separable Differential Equations 453

The value of k. We use the half-life Equation (7):

k
ln 2

half-life
ln 2

5730
about 1.2 10 .4( )= = × −

The value of t that makes =−e 0.9.kt

e

e

t

t

0.9

0.9

ln 2
5730

ln 0.9

5730 ln 0.9
ln 2

871 years

kt

tln 2 5730

=

=

− =

= − ≈

( )

−

−

    Take logs of both sides

The sample is about 871 years old. 

Heat Transfer: Newton’s Law of Cooling

Hot soup left in a tin cup cools to the temperature of the surrounding air. A hot silver bar 
immersed in a large tub of water cools to the temperature of the surrounding water. In situ-
ations like these, the rate at which an object’s temperature is changing at any given time is 
roughly proportional to the difference between its temperature and the temperature of the 
surrounding medium. This observation is called Newton’s Law of Cooling, although it 
applies to warming as well.

If H is the temperature of the object at time t, and H S  is the constant surrounding tem-
perature, then the differential equation is

( )= − −dH
dt

k H H .S  (8)

If we substitute y for H H ,S( )−  then

dy
dt

d
dt

H H dH
dt

d
dt

H

dH
dt
dH
dt
k H H

ky

( )

0

.

S S

S

( )

( )

= − = −

= −

=

= − −

= −

H S  is a constant.

Eq. (8)

− =H H yS

We know that the solution of the equation = −dy dt ky is = −y y e ,kt
0  where y y(0) .0=  

Substituting ( )−H H S  for y, this says that

( )− = − −H H H H e ,S S
kt

0  (9)

where H 0 is the temperature at =t 0. This equation is the solution to Newton’s Law of 
Cooling.

EXAMPLE 6  A hard-boiled egg at °98 C is put in a sink of °18 C water. After 5 min, 
the egg’s temperature is °38 C. Assuming that the water has not warmed appreciably, how 
much longer will it take the egg to reach °20 C?

Solution We find how long it would take the egg to cool from °98 C to °20 C and sub-
tract the 5 min that have already elapsed. Using Equation (9) with =H 18S  and =H 98,0  
the egg’s temperature t min after it is put in the sink is

( )= + − = +− −H e e18 98 18 18 80 .kt kt
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454 Chapter 7  Integrals and Transcendental Functions

To find k, we use the information that =H 38 when =t 5:

e

e

k

k

38 18 80

1
4

5 ln 1
4

ln 4

1
5

ln 4 0.2 ln 4 (about 0.28).

k

k

5

5

= +

=

− = = −

= =

−

−

The egg’s temperature at time t is H e18 80 .t0.2 ln 4= + ( )−  Now find the time t when 
=H 20:

e

e

e

t

t

20 18 80

80 2

1
40

0.2 ln 4 ln 1
40

ln 40

ln 40
0.2 ln 4

13 min.

t

t

t

0.2 ln 4

0.2 ln 4

0.2 ln 4

( )

= +

=

=

− = = −

= ≈

( )

( )

( )

−

−

−

The egg’s temperature will reach °20 C about 13 min after it is put in the water to cool. 
Since it took 5 min to reach °38 C, it will take about 8 min more to reach °20 C. 

Verifying Solutions
In Exercises 1–4, show that each function =y f x( ) is a solution of 
the accompanying differential equation.

 1. ′ + = −y y e2 3 x

 a. = −y e x b. = + ( )− −y e ex x3 2

 c. = + ( )− −y e Cex x3 2

 2. ′ =y y 2

 a. = −y
x
1  b. = −

+
y

x
1

3
 c. = −

+
y

x C
1

 3. y
x

e
t

dt x y xy e1 ,
tx

x

1

2∫= ′ + =

 4. y
x

t dt y x
x

y1
1

1 , 2
1

1
x

4
4

1

3

4∫=
+

+ ′ +
+

=

Initial Value Problems
In Exercises 5–8, show that each function is a solution of the given 
initial value problem.

Differential  
equation

Initial  
equation

Solution  
candidate

 5. y y
e

2
1 4 x2

′ + =
+

y ln 2
2
π( )− = y e etan (2 )x x1= − −

 6. y e xy2x 2′ = −− y (2) 0= y x e2 x 2( )= − −

 7. xy y x
x

sin ,
0

′ + = −
>

y
2

0π( ) = y
x

x
cos

=

 8. x y xy y
x

,
1

2 2′ = −
>

y e e( ) = y x
xln

=

Separable Differential Equations
Solve the differential equation in Exercises 9–22.

 9. = >xy
dy
dx

x y2 1, , 0 10. = >dy
dx

x y y, 02

 11. = −dy
dx

e x y 12. = −dy
dx

x e3 y2

 13. dy
dx

y ycos 2=  14. =xy
dy
dx

2 1

 15. = >+x
dy
dx

e x, 0y x  16. = +x
dy
dx

e(sec ) y xsin

 17. dy
dx

x y y2 1 , 1 12= − − < <

 18. =
−

+

dy
dx

e
e

x y

x y

2

 19. = −y
dy
dx

x y x3 62 2 3 2 20. = + − −dy
dx

xy x y3 2 6

 21. = +
x

dy
dx

ye y e1 2  x x2 2  22. = + + +− −dy
dx

e e e 1x y x y

Applications and Examples
The answers to most of the following exercises are in terms of loga-
rithms and exponentials. A calculator can be helpful, enabling you to 
express the answers in decimal form.

 23. Human evolution continues The analysis of tooth shrinkage 
by C. Loring Brace and colleagues at the University of Michigan’s 

EXERCISES 7.2 
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Museum of Anthropology indicates that human tooth size is con-
tinuing to decrease and that the evolutionary process has not yet 
come to a halt. In northern Europeans, for example, tooth size 
reduction now has a rate of 1% per 1000 years.

 a. If t represents time in years and y represents tooth size, use 
the condition that =y y0.99 0 when =t 1000 to find the 
value of k in the equation y y e .kt

0=  Then use this value of k 
to answer the following questions.

 b. In about how many years will human teeth be 90% of their 
present size?

 c. What will be our descendants’ tooth size 20,000 years from 
now (as a percentage of our present tooth size)?

 24. Atmospheric pressure The earth’s atmospheric pressure p is  
often modeled by assuming that the rate dp dh at which p changes 
with the altitude h above sea level is proportional to p. Suppose 
that the pressure at sea level is 1013 hectopascals and that the 
pressure at an altitude of 20 km is 90 hectopascals.

 a. Solve the initial value problem

dp dh kp k
p p h

Differential equation: ( a constant)
Initial condition: when 00

=
= =

to express p in terms of h. Determine the values of p0 and k 
from the given altitude-pressure data.

 b. What is the atmospheric pressure at =h 50 km?

 c. At what altitude does the pressure equal 900 hectopascals?

 25. First-order chemical reactions In some chemical reactions, 
the rate at which the amount of a substance changes with time is 
proportional to the amount present. For the change of -δ glucono-
lactone into gluconic acid, for example,

= −dy
dt

y0.6

when t is measured in hours. If there are 100  grams of -δ glucono-
lactone present when =t 0, how many grams will be left after 
the first hour?

 26. The inversion of sugar The processing of raw sugar has a step 
called “inversion” that changes the sugar’s molecular structure. 
Once the process has begun, the rate of change of the amount of 
raw sugar is proportional to the amount of raw sugar remaining. If 
1000  kg of raw sugar reduces to 800  kg of raw sugar during the first 
10  hours, how much raw sugar will remain after another 14  hours?

 27. Working underwater The intensity L x( ) of light x meters 
beneath the surface of the ocean satisfies the differential equation 

= −dL
dx

kL.

As a diver, you know from experience that diving to 6 m in the 
Caribbean Sea cuts the intensity in half. You cannot work with-
out artificial light when the intensity falls below one-tenth of the 
surface value. About how deep can you expect to work without 
artificial light?

 28. Voltage in a discharging capacitor Suppose that electricity is 
draining from a capacitor at a rate that is proportional to the volt-
age V across its terminals and that, if t is measured in seconds,

= −dV
dt

V1
40

.

Solve this equation for V, using V0 to denote the value of V when 
=t 0. How long will it take the voltage to drop to 10% of its 

original value?

 29. Cholera bacteria Suppose that the bacteria in a colony can 
grow unchecked, by the law of exponential change. The col-
ony starts with 1  bacterium and doubles every half-hour. How 
many bacteria will the colony contain at the end of 24  hours? 
(Under favorable laboratory conditions, the number of cholera 
bacteria can double every 30  min. In an infected person, many 
bacteria are destroyed, but this example helps explain why a 
person who feels well in the morning may be dangerously ill 
by evening.)

 30. Growth of bacteria A colony of bacteria is grown under ideal 
conditions in a laboratory so that the population increases expo-
nentially with time. At the end of 3  hours there are 10,000  bacteria. 
At the end of 5 hours there are 40,000. How many bacteria were 
present initially?

 31. The incidence of a disease (Continuation of Example 4.) 
Suppose that in any given year the number of cases can be reduced 
by 25% instead of 20%.

 a. How long will it take to reduce the number of cases to 1000?

 b. How long will it take to eradicate the disease—that is, reduce 
the number of cases to less than 1?

 32. Drug concentration An antibiotic is administered intrave-
nously into the bloodstream at a constant rate r. As the drug flows 
through the patient’s system and acts on the infection that is pres-
ent, it is removed from the bloodstream at a rate proportional to 
the amount in the bloodstream at that time. Since the amount of 
blood in the patient is constant, this means that the concentration 
y y t( )=  of the antibiotic in the bloodstream can be modeled by 
the differential equation

dy
dt

r ky k, 0 and constant.= − >

 a. If y y(0) 0= , find the concentration y t( ) at any time t.

 b. Assume that ( )<y r k0  and find y tlim ( ).
y→∞

 Sketch the solu-
tion curve for the concentration.

 33. Endangered species Biologists consider a species of animal or 
plant to be endangered if it is expected to become extinct within 
20 years. If a certain species of wildlife is counted to have 1147 
members at the present time, and the population has been steadily 
declining exponentially at an annual rate averaging 39% over the 
past 7 years, do you think the species is endangered? Explain your 
answer.

 34. The U.S. population The U.S. Census Bureau keeps a running 
clock totaling the U.S. population. On April 19, 2021, the total 
was increasing at the rate of 1 person every 40  s. The population 
figure for 1:32 p.m. EST on that day was 330,215,841.

 a. Assuming exponential growth at a constant rate, find the rate 
constant for the population’s growth (people per 365-day 
year).

 b. At this rate, what will the U.S. population be at 1:32 p.m. EST 
on April 19, 2028?

 35. Oil depletion Suppose the amount of oil pumped from one of 
the canyon wells in Whittier, California, decreases at the continu-
ous rate of 10% per year. When will the well’s output fall to one-
fifth of its present value?
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456 Chapter 7  Integrals and Transcendental Functions

 36. Continuous price discounting To encourage buyers to place 
100-unit orders, your firm’s sales department applies a continuous 
discount that makes the unit price a function p x( ) of the number 
of units x ordered. The discount decreases the price at the rate of 
$0.01  per unit ordered. The price per unit for a 100-unit order is 
p 100 $20.09.( ) =

 a. Find p x( ) by solving the following initial value problem.

dp
dx

p

p

Differential equation: 1
100

Initial condition: (100) 20.09

= −

=

 b. Find the unit price p(10) for a 10-unit order and the unit price 
p(90) for a 90-unit order.

 c. The sales department has asked you to find out if it is dis-
counting so much that the firm’s revenue, r x x p x( ) ( ),= ⋅  
will actually be less for a 100-unit order than, say, for a 
90-unit order. Reassure them by showing that r has its maxi-
mum value at x 100.

 d. Graph the revenue function r x xp x( ) ( ) for x0 200.

 37. Plutonium-239 The half-life of the plutonium isotope is 
24,360 years. If 10  g of plutonium is released into the atmosphere 
by a nuclear accident, how many years will it take for 80% of the 
isotope to decay?

 38. Polonium-210 The half-life of polonium is 139 days, but your 
sample will not be useful to you after 95% of the radioactive 
nuclei present on the day the sample arrives has disintegrated. For 
about how many days after the sample arrives will you be able to 
use the polonium?

 39. The mean life of a radioactive nucleus Physicists using the 
radioactivity equation y y e kt

0= −  call the number k1  the mean 
life of a radioactive nucleus. The mean life of a radon nucleus is 
about 1 0.18 5.6 days. The mean life of a carbon-14 nucleus 
is more than 8000 years. Show that 95% of the radioactive nuclei 
originally present in a sample will disintegrate within three mean 
lifetimes, i.e., by time t k3 . Thus, the mean life of a nucleus 
gives a quick way to estimate how long the radioactivity of a sam-
ple will last.

 40. Californium-252 What costs $27 million per gram and can be 
used to treat brain cancer, analyze coal for its sulfur content, and 
detect explosives in luggage? The answer is californium-252, a 
radioactive isotope discovered by Glenn Seaborg in 1950. Much 
less than 1g of it is produced each year. The half-life of the isotope 
is 2.645 years—long enough for a useful service life and short 
enough to have a high radioactivity per unit mass. One microgram 
of the isotope releases 170 million neutrons per minute.

 a. What is the value of k in the decay equation for this isotope?

 b. What is the isotope’s mean life? (See Exercise 39.)

 c. How long will it take 95% of a sample’s radioactive nuclei to 
disintegrate?

 41. Cooling soup Suppose that a cup of soup cooled from 90 C to 
60 C after 10 min in a room where the temperature was 20 C. 
Use Newton’s Law of Cooling to answer the following questions.

 a. How much longer would it take the soup to cool to 35 C?

 b. Instead of being left to stand in the room, the cup of 90 C 
soup is put in a freezer where the temperature is 15 C.− °  How 
long will it take the soup to cool from 90 C to 35 C?

 42. A beam of unknown temperature An aluminum beam was 
brought from the outside cold into a machine shop where the  
temperature was held at 18 C. After 10 min, the beam warmed  
to 2 C and after another 10 min, it was 10 C. Use Newton’s Law 
of Cooling to estimate the beam’s initial temperature.

 43. Surrounding medium of unknown temperature A pan of 
warm water (46 C) was put in a refrigerator. Ten minutes later, 
the water’s temperature was 39 C; 10 min after that, it was 33 C. 
Use Newton’s Law of Cooling to estimate how cold the refrigerator  
was.

 44. Silver cooling in air The temperature of an ingot of silver is 
60 C above room temperature right now. Twenty minutes ago, it 
was 70 C above room temperature. How far above room tempera-
ture will the silver be

 a. 15 min from now?

 b. 2 hours from now?

 c. When will the silver be 10 C above room temperature?

 45. The age of Crater Lake The charcoal from a tree killed in the 
volcanic eruption that formed Crater Lake in Oregon contained 
44.5% of the carbon-14 found in living matter. About how old is 
Crater Lake?

 46. The sensitivity of carbon-14 dating to measurement To see 
the effect of a relatively small error in the estimate of the amount 
of carbon-14 in a sample being dated, consider this hypothetical 
situation:

 a. A bone fragment found in central Illinois in the year 2000 
contains 17% of its original carbon-14 content. Estimate the 
year the animal died.

 b. Repeat part (a), assuming 18% instead of 17%.

 c. Repeat part (a), assuming 16% instead of 17%.

 47. Carbon-14 The oldest known frozen human mummy, discov-
ered in the Schnalstal glacier of the Italian Alps in 1991 and called 
Otzi, was found wearing straw shoes and a leather coat with goat 
fur, and holding a copper ax and stone dagger. It was estimated 
that Otzi died 5000 years before he was discovered in the melting 
glacier. How much of the original carbon-14 remained in Otzi at 
the time of his discovery?

 48. Art forgery A painting attributed to Vermeer (1632–1675), 
which should contain no more than 96.2% of its original carbon-14, 
contains 99.5% instead. About how old is the forgery?

 49. Lascaux Cave paintings Prehistoric cave paintings of animals 
were found in the Lascaux Cave in France in 1940. Scientific 
analysis revealed that only 15% of the original carbon-14 in 
the paintings remained. What is an estimate of the age of the 
paintings?

 50. Incan mummy The frozen remains of a young Incan woman 
were discovered by archeologist Johan Reinhard on Mt. Ampato 
in Peru during an expedition in 1995.

 a. How much of the original carbon-14 was present if the esti-
mated age of the “Ice Maiden” was 500 years?

 b. If a 1% error can occur in the carbon-14 measurement, what is 
the oldest possible age for the Ice Maiden?
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7.3 Hyperbolic Functions

The hyperbolic functions are formed by taking combinations of the two exponential func-
tions e x and −e x . The hyperbolic functions simplify many mathematical expressions and 
occur frequently in mathematical and engineering applications.

Definitions and Identities

The hyperbolic sine and hyperbolic cosine functions are defined by the equations

x e e x e esinh
2

and cosh
2

.
x x x x

= − = +− −

We pronounce xsinh  as “ xcinch ,” rhyming with “ xpinch ,” and xcosh  as “ xkosh ,” rhym-
ing with “ xgosh .” From this basic pair, we define the hyperbolic tangent, cotangent, secant, 
and cosecant functions. The defining equations and graphs of these functions are shown in 
Table 7.4. We will see that the hyperbolic functions bear many similarities to the trigono-
metric functions after which they are named.

TABLE 7.4 The six basic hyperbolic functions

y

x

1

−1
1

2

3

−2

−3

2 3−2 −1−3

(a)

y = sinh xy = ex

2

y = −
e−x

2

Hyperbolic sine:

x e esinh
2

x x
= − −

y

x
1−1 2 3−2−3

(b)

y = cosh x

y = e−x

2
1

2

3

ex

2
y =

Hyperbolic cosine:

x e ecosh
2

x x
= + −

y

x

2

1−1 2−2

−2

(c)

y = coth x

y = tanh x

y = coth x

y = 1

y = −1

Hyperbolic tangent:

x
x
x

e e
e e

tanh
sinh
cosh

x x

x x
= = −

+

−

−

Hyperbolic cotangent:

x
x
x

e e
e e

coth
cosh
sinh

x x

x x
= = +

−

−

−

y

x
1−1 0 2−2

2

(d)

y = sech x

y = 1

Hyperbolic secant:

x
x e e

sech 1
cosh

2
x x

= =
+ −

x

y

1−1 2−2

2

1

−1

(e)

y = csch x

Hyperbolic cosecant:

x
x e e

csch 1
sinh

2
x x

= =
− −
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458 Chapter 7  Integrals and Transcendental Functions

TABLE 7.5 Identities for  
hyperbolic functions

x xcosh sinh 12 2− =

x x xsinh 2 2 sinh cosh=

x x xcosh 2 cosh sinh2 2= +

x
x

cosh
cosh 2 1

2
2 =

+

x
x

sinh
cosh 2 1

2
2 =

−

x xtanh 1 sech2 2= −

x xcoth 1 csch2 2= +

TABLE 7.7 Integral formulas for 
hyperbolic functions

x dx x Csinh cosh∫ = +

x dx x Ccosh sinh∫ = +

x dx x Csech tanh2∫ = +

x dx x Ccsch coth2∫ = − +

x x dx x Csech tanh sech∫ = − +

x x dx x Ccsch coth csch∫ = − +

TABLE 7.6 Derivatives of  
hyperbolic functions

d
dx

x xsinh cosh( ) =

d
dx

x xcosh sinh( ) =

d
dx

x xtanh sech 2( ) =

d
dx

x xcoth csch 2( ) = −

d
dx

x x xsech sech tanh( ) = −

d
dx

x x xcsch csch coth( ) = −

The other identities are obtained similarly, by substituting in the definitions of the 
hyperbolic functions and using algebra.

For any real number u, we know the point with coordinates u u(cos , sin ) lies on the 
unit circle + =x y 12 2 . So the trigonometric functions are sometimes called the circular 
functions. Because of the first identity

u ucosh sinh 1,2 2− =

with u substituted for x in Table 7.5, the point having coordinates u u(cosh , sinh ) lies on 
the right-hand branch of the hyperbola − =x y 12 2 . This is where the hyperbolic func-
tions get their names (see Exercise 86).

Hyperbolic functions are useful in finding integrals, which we will see in Chapter 8. 
They play an important role in science and engineering as well. The hyperbolic cosine 
describes the shape of a hanging cable or wire that is strung between two points at the same 
height and hanging freely (see Exercise 83). The shape of the St. Louis Arch is an inverted 
hyperbolic cosine. The hyperbolic tangent occurs in the formula for the velocity of an 
ocean wave moving over water having a constant depth, and the inverse hyperbolic tangent 
describes how relative velocities sum according to Einstein’s Law in the Special Theory of 
Relativity.

x x e e e e

e e

x

2 sinh cosh 2
2 2

2
sinh 2 .

x x x x

x x2 2

( )( )= − +

= −

=

− −

−
Simplify.

Definition of sinh

Hyperbolic functions satisfy the identities in Table 7.5. Except for differences in sign, 
these resemble identities we know for the trigonometric functions. The identities are 
proved directly from the definitions, as we show here for the second one:

Derivatives and Integrals of Hyperbolic Functions

The six hyperbolic functions, being rational combinations of the differentiable functions e x 
and −e ,x  have derivatives at every point at which they are defined (Table 7.6). Again, there 
are similarities to trigonometric functions.

The derivative formulas are obtained from the derivative of e :x

d
dx

x d
dx

e e

e e

x

sinh
2

2

cosh .

x x

x x

( )( ) = −

= +

=

−

−

Definition of sinh x

Derivative of e x

Definition of cosh x

This gives the first derivative formula. From the definition, we can calculate the derivative 
of the hyperbolic cosecant function, as follows:

d
dx

x d
dx x

x
x

x
x
x

x x

csch 1
sinh

cosh
sinh

1
sinh

cosh
sinh

csch coth

2

( ) =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

= −

= −

= −

 

Definition of csch x

Quotient Rule for derivatives

Rearrange factors.

Definitions of csch x and coth x

The other formulas in Table 7.6 are obtained similarly.
The derivative formulas lead to the integral formulas in Table 7.7.

M07_HASS5901_15_GE_C07.indd   458 07/03/23   2:51 PM

www.konkur.in

Telegram: @uni_k



 7.3  Hyperbolic Functions 459

Inverse Hyperbolic Functions

The inverses of the six basic hyperbolic functions are very useful in integration (see 
Chapter 8). Since d x dx xsinh cosh 0,( ) = >  the hyperbolic sine is an increasing func-
tion of x. We denote its inverse by

y xsinh .1= −

For every value of x in the interval −∞ < < ∞x , the value of y xsinh 1= −  is the num-
ber whose hyperbolic sine is x. The graphs of y xsinh=  and y xsinh 1= −  are shown in 
Figure 7.8a. Other notations used for the inverse hyperbolic sine function include xarcsinh , 

xarsinh , and xargsinh  .
The function y xcosh=  is not one-to-one because its graph in Table 7.4 does not 

pass the horizontal line test. The restricted function y x xcosh , 0,= ≥  however, is one-
to-one and therefore has an inverse, denoted by

y xcosh .1= −

FIGURE 7.8 The graphs of the inverse hyperbolic sine, cosine, and secant of x. Notice the symmetries about 
the line =y x .

x

y

1
2

2 4 6−6 −4 −2

x

y

1

0

2

1 2 3 4 5 6 7 8

3
4
5
6
7
8

x

y

1 2 3

1

0

2

3

(a)

(b) (c)

y = sinh x y = x

y = sinh−1 x
(x = sinh y)

y = cosh x,
x ≥ 0

y = sech x
x ≥ 0

y = x y = x

y = cosh−1 x
(x = cosh y, y ≥ 0)

y = sech−1 x
(x = sech y,
  y ≥ 0)

EXAMPLE 1  We illustrate the derivative and integral formulas.

 
(a)

 

d
dt

t t d
dt

t

t
t

t

tanh 1 sech 1 1

1
sech 1

2 2 2 2

2
2 2

( ) ( )+ = + ⋅ +

=
+

+

 
(b)

 

x dx
x
x

dx du
u

u C x C

coth 5
cosh 5
sinh 5

1
5

1
5

ln 1
5

ln sinh 5

∫ ∫ ∫= =

= + = +

 
u x
du x dx

sinh 5 ,
5 cosh 5

=
=

 

(c)

 

x dx
x

dx

x dx
x

x

sinh
cosh 2 1

2

1
2

cosh 2 1 1
2

sinh 2
2

sinh 2
4

1
2

0.40672

2

0

1

0

1

0

1

0

1

∫ ∫

∫ ( )

=
−

= − = −⎡
⎣
⎢

⎤
⎦
⎥

= − ≈

 Table 7.5

 Evaluate with a calculator.

 

(d)

 

∫ ∫ ∫
( )

( )

( )

= − = −

= −⎡
⎣⎢

⎤
⎦⎥

= − − −

= − − ≈

−
e x dx e e e dx e dx

e x e

4 sinh 4
2

2 2

2 2 ln 2 1 0

4 2 ln 2 1 1.6137

x x
x x

x

x

0

ln 2

0

ln 2
2

0

ln 2

2

0

ln 2
2 ln 2
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460 Chapter 7  Integrals and Transcendental Functions

For every value of x y x1, cosh 1≥ = −  is the number in the interval ≤ < ∞y0  whose 
hyperbolic cosine is x. The graphs of y x xcosh , 0,= ≥  and y xcosh 1= −  are shown in 
Figure 7.8b.

Like y xcosh ,=  the function y x xsech 1 cosh= =  fails to be one-to-one, but its 
restriction to nonnegative values of x does have an inverse, denoted by

y xsech .1= −

For every value of x in the interval y x0,1 , sech 1( ] = −  is the nonnegative number whose 
hyperbolic secant is x. The graphs of y x xsech , 0,= ≥  and y xsech 1= −  are shown in 
Figure 7.8c.

The hyperbolic tangent, cotangent, and cosecant are one-to-one on their domains and 
therefore have inverses, denoted by

y x y x y xtanh , coth , csch .1 1 1= = =− − −

These functions are graphed in Figure 7.9.

FIGURE 7.9 The graphs of the inverse hyperbolic tangent, cotangent, and cosecant of x.

x

y

0−1 1

(a)

x

y

0−1 1

(b)

x

y

0

(c)

x = tanh y
y = tanh−1 x

 x = coth y
y = coth−1 x

 x = csch y
y = csch−1 x

TABLE 7.8 Identities for 
inverse hyperbolic functions

x
x

sech cosh 11 1=− −

x
x

csch sinh 11 1=− −

x
x

coth tanh 11 1=− −

Useful Identities

We can use the identities in Table 7.8 to express x xsech , csch ,1 1− −  and xcoth 1−  in terms of 
x xcosh , sinh ,1 1− −  and xtanh .1−  These identities are direct consequences of the definitions. 

For example, if < ≤x0 1, then

x
x x

xsech cosh 1 1

cosh cosh 1
1
1 .1

1
( )( ) ( )( ) ( )

= = =−

−

We also know that sech x xsech ,1( ) =−  so because the hyperbolic secant is one-to-one on 
0,1( ], we have

x
xcosh 1 sech .1 1( ) =− −

Derivatives of Inverse Hyperbolic Functions

An important use of inverse hyperbolic functions lies in antiderivatives that reverse the 
derivative formulas in Table 7.9.

The restrictions x 1<  and x 1>  on the derivative formulas for xtanh 1−  and 
xcoth 1−  come from the natural restrictions on the values of these functions. (See Fig- 

ure 7.9a and b.) The distinction between x 1<  and x 1>  becomes important when we 
convert the derivative formulas into integral formulas.
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 7.3  Hyperbolic Functions 461

TABLE 7.9 Derivatives of inverse hyperbolic functions

d x
dx x

sinh 1
1

1

2

( ) =
+

−

d x
dx x

xcosh 1
1

, 1
1

2

( ) =
−

>
−

d x
dx x

xtanh 1
1

, 1
1

2

( ) =
−

<
−

d x
dx x

xcoth 1
1

, 1
1

2

( ) =
−

>
−

d x
dx x x

x
sech 1

1
, 0 1

1

2

( )
= −

−
< <

−

d x
dx x x

x
csch 1

1
, 0

1

2

( )
= −

+
≠

−

EXAMPLE 2  Show that if x is greater than 1, then

d
dx

x
x

cosh 1
1

.1
2

( ) =
−

−

Solution We find the derivative of y xcosh 1= −  for x 1 by applying Theorem 3 of 
Section 3.8 with f x x( ) cosh  and f x x( ) cosh .1 1=− −  Theorem 3 can be applied 
because the derivative of cosh x is positive when x 0.

f x
f f x

x

x

x

( ) ( ) 1
( ( ))

1
sinh cosh

1
cosh cosh 1

1
1

1
1

1

2 1

2

( )

( )

′ =
′

=

=
−

=
−

−
−

−

−

 

Theorem 3, Section 3.8

f x x( ) sinh′ =

x x x

x x

cosh sinh 1, 0 ,

sinh cosh 1

2 2

2

( )− = ≥
= −

x xcosh cosh 1( ) =−

With appropriate substitutions, the derivative formulas in Table 7.9 lead to the integra-
tion formulas in Table 7.10. Each of the formulas in Table 7.10 can be verified by differen-
tiating the expression on the right-hand side.

EXAMPLE 3  Evaluate

dx

x

2

3 4
.

20

1

∫ +

We illustrate how the derivatives of the inverse hyperbolic functions are found in 
Example 2, where we calculate d x dxcosh .1( )−  The other derivatives are obtained by 
similar calculations.

HISTORICAL BIOGRAPHY

Sonya Kovalevsky
(1850–1891)
Kovalevsky, a Russian mathematician, 
primarily worked on the theory of partial 
differential equations, and a central result on 
the existence of solutions still bears her name. 
She published numerous papers on partial 
differential equations, eventually gaining 
recognition as the first woman to be elected a 
member of the Russian Imperial Academy of 
Sciences in 1889.

To know more, visit the companion Website. 
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462 Chapter 7  Integrals and Transcendental Functions

Values and Identities
Each of Exercises 1–4 gives a value of sinh x or cosh x. Use the defini-
tions and the identity x xcosh sinh 12 2− =  to find the values of the 
remaining five hyperbolic functions.

 1. xsinh 3
4

= −  2. xsinh 4
3

=

 3. x xcosh 17
15

, 0= >  4. x xcosh 13
5

, 0= >

Rewrite the expressions in Exercises 5–10 in terms of exponentials 
and simplify the results as much as you can.

 5. x2 cosh(ln ) 6. xsinh(2 ln )

 7. x xcosh 5 sinh 5+  8. x xcosh 3 sinh 3−

 9. x xsinh cosh 4( )+

 10. x x x xln cosh sinh ln cosh sinh( ) ( )+ + −

 11. Prove the identities

x y x y x y

x y x y x y

sinh sinh cosh cosh sinh ,

cosh cosh cosh sinh sinh .

( )

( )

+ = +

+ = +

Then use them to show that

 a. x x xsinh 2 2 sinh cosh .=

 b. x x xcosh 2 cosh sinh .2 2= +

 12. Use the definitions of cosh x and sinh x to show that

x xcosh sinh 1.2 2− =

EXERCISES 7.3

TABLE 7.10 Integrals leading to inverse hyperbolic functions

1. dx
a x

x
a

C asinh , 0
2 2

1∫ ( )
+

= + >−

2. dx
x a

x
a

C x acosh , 0
2 2

1∫ ( )
−

= + > >−

3. dx
a x

a
x
a

C x a

a
x
a

C x a

1 tanh ,

1 coth ,
2 2

1 2 2

1 2 2
∫

( )
( )−

=
+ <

+ >

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

−

−

4. dx
x a x a

x
a

C x a1 sech , 0
2 2

1∫ ( )
−

= − + < <−

5. dx
x a x a

x
a

C x a1 csch , 0 and 0
2 2

1∫ +
= − + ≠ >−

Solution The indefinite integral is

dx

x
du

u

u C

x C

2

3 4 3

sinh
3

sinh 2
3

.

2 2

1

1

∫ ∫

( )
( )

+
=

+

= +

= +

−

−

u x du dx2 , 2= =

aFormula 1 from Table 7.10 with 32 =

Therefore,

dx

x
x2

3 4
sinh 2

3
sinh 2

3
sinh (0)

sinh 2
3

0 0.98665.

20

1
1

0

1
1 1

1

∫ ( ) ( )
( )

+
= ⎡

⎣⎢
⎤
⎦⎥

= −

= − ≈

− − −

−  
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Finding Derivatives
In Exercises 13–24, find the derivative of y with respect to the appro-
priate variable.

 13. y x6 sinh
3

=  14. ( )= +y x1
2

sinh 2 1

 15. y t t2 tanh=  16. =y t
t

tanh12

 17. y zln sinh( )=  18. y zln cosh( )=

 19. y sech 1 ln sechθ θ( )( )= −

 20. y csch 1 ln cschθ θ( )( )= −

 21. y ln cosh 1
2

tanh 2υ υ= −  22. y ln sinh 1
2

coth 2υ υ= −

 23. y x x1 sech ln2 ( )( )= +

(Hint: Before differentiating, express in terms of exponentials and 
simplify.)

 24. y x x4 1 csch ln 22 ( )( )= −

In Exercises 25–36, find the derivative of y with respect to the appro-
priate variable.

 25. = −y xsinh 1  26. = +−y xcosh 2 11

 27. y 1 tanh 1θ θ( )= − −  28. y 2 tanh 12 1θ θ θ( ) ( )= + +−

 29. y t t1 coth 1( )= − −  30. y t t1 coth2 1( )= − −

 31. y x x xcos sech1 1= −− −  32. y x x xln 1 sech2 1= + − −

 33. ( )=
θ

−y csch 1
2

1  34. = θ−y csch 21

 35. y xsinh tan1( )= −

 36. y x xcosh sec , 0 21 π( )= < <−

Integration Formulas
Verify the integration formulas in Exercises 37–40.

 37. a. x dx x Csech tan sinh1∫ ( )= +−

 b. x dx x Csech sin tanh1∫ ( )= +−

 38. x x dx x x x Csech
2

sech 1
2

11
2

1 2∫ = − − +− −

 39. x x dx x x x Ccoth 1
2

coth
2

1
2

1∫ = − + +− −

 40. x dx x x x Ctanh tanh 1
2

ln 11 1 2∫ ( )= + − +− −

Evaluating Integrals
Evaluate the integrals in Exercises 41–60.

 41. x dxsinh 2∫  42. ∫ x dxsinh
5

 43. x dx6 cosh
2

ln 3∫ ( )−  44. x dx4 cosh 3 ln 2∫ ( )−

 45. ∫ x dxtanh
7

 46. ∫ θ θdcoth
3

 47. x dxsech 1
2

2∫ ( )−  48. x dxcsch 52∫ ( )−

 49. 
t t dt

t

sech tanh
∫  50. 

t t dt
t

csch ln coth ln
∫

( ) ( )

 51. x dxcoth
ln 2

ln 4

∫  52. x dxtanh 2
0

ln 2

∫

 53. e d2 cosh
ln 4

ln 2

∫ θ θθ
−

−
 54. e d4 sinh

0

ln 2

∫ θ θθ−

 55. dcosh tan sec
4

4
2∫ θ θ θ( )

π

π

−
 56. d2 sinh sin cos

0

2

∫ θ θ θ( )
π

 57. 
t

t
dt

cosh ln
1

2

∫
( )

 58. 
x

x
dx

8 cosh
1

4

∫

 59. x dxcosh
2

2

ln 2

0

∫ ( )
−

 60. x dx4 sinh
2

2

0

ln 10

∫ ( )

Inverse Hyperbolic Functions and Integrals
Since the hyperbolic functions can be expressed in terms of exponen-
tial functions, it is possible to express the inverse hyperbolic functions 
in terms of logarithms, as shown in the following table.

x x x x

x x x x

x x
x

x

x x
x

x

x
x

x
x

x

x x
x

x

sinh ln 1 ,

cosh ln 1 , 1

tanh 1
2

ln1
1

, 1

sech ln 1 1 , 0 1

csch ln 1 1 , 0

coth 1
2

ln 1
1

, 1

1 2

1 2

1

1
2

1
2

1

( )
( )

= + + −∞ < < ∞

= + − ≥

= +
−

<

= + −⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ < ≤

= + +⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ≠

= +
−

>

−

−

−

−

−

−

Use these formulas to express the numbers in Exercises 61–66 in 
terms of natural logarithms.

 61. ( )−−sinh 5 121  62. ( )−cosh 5 31

 63. ( )−−tanh 1 21  64. ( )−coth 5 41

 65. ( )−sech 3 51  66. ( )−−csch 1 31

Evaluate the integrals in Exercises 67–74 in terms of

 a. inverse hyperbolic functions.

 b. natural logarithms.

 67. dx
x4 20

2 3

∫ +
 68. 

dx

x

6

1 9 20

1 3

∫ +

 69. dx
x1 25 4

2

∫ −
 70. dx

x1 20

1 2

∫ −

 71. dx
x x1 16 21 5

3 13

∫ −
 72. ∫ +

dx
x x4 21

2

 73. 
x dx

x

cos

1 sin 20∫ +

π
 74. dx

x x1 ln

e

21∫
( )+
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464 Chapter 7  Integrals and Transcendental Functions

Applications and Examples

 75. Show that if a function f  is defined on an interval symmetric about 
the origin (so that f  is defined at x whenever it is defined at x), then

= + − + − −
f x

f x f x f x f x
( )

( ) ( )
2

( ) ( )
2

.

Then show that + −f x f x( ( ) ( )) 2 is even and that 
f x f x( ( ) ( )) 2 is odd.

 76. Derive the formula x x xsinh ln 11 2( )= + +−  for all real x.  
Explain in your derivation why the plus sign is used with the 
square root instead of the minus sign.

 77. Skydiving If a body of mass m falling from rest under the action 
of gravity encounters an air resistance proportional to the square 
of the velocity, then the body’s velocity t s into the fall satisfies the 
differential equation

= −m d
dt

mg k ,2

where k is a constant that depends on the body’s aerodynamic prop-
erties and the density of the air. (We assume that the fall is short 
enough so that the variation in the air’s density will not affect the 
outcome significantly.)

 a. Show that
mg
k

gk
m

ttanh=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

satisfies the differential equation and the initial condition that 
0 when t 0.

 b. Find the body’s limiting velocity, lim .
t→∞

 c. For a 75-kg skydiver mg 735 N ,( )=  with time in seconds 
and distance in meters, a typical value for k is 0.235. What is 
the diver’s limiting velocity?

 78. Accelerations whose magnitudes are proportional to displace-
ment Suppose that the position of a body moving along a coor-
dinate line at time t is

 a. s a kt b ktcos sin .= +  b. s a kt b ktcosh sinh .= +

Show in both cases that the acceleration d s dt2 2  is proportional to 
s but that in the first case it is directed toward the origin, whereas 
in the second case it is directed away from the origin.

 79. Volume A region in the first quadrant is bounded above by the 
curve y xcosh , below by the curve y xsinh , and on the left 
and right by the y-axis and the line x 2, respectively. Find the vol-
ume of the solid generated by revolving the region about the x-axis.

 80. Volume The region enclosed by the curve y xsech , the 
x-axis, and the lines = ±x ln 3 is revolved about the x-axis to 
generate a solid. Find the volume of the solid.

 81. Arc length Find the length of the graph of y x1 2 cosh 2( )=  
from x 0 to x ln 5.

 82. Use the definitions of the hyperbolic functions to find each of the 
following limits.

 a.  xlim tanh
x→∞

 b. xlim tanh
x→−∞

 c.  xlim sinh
x→∞

 d. xlim sinh
x→−∞

 e.  xlim sech
x→∞

 f .  xlim coth
x→∞

 g.  xlim coth
x 0→ +

 h.  xlim coth
x 0→ −

  i. xlim csch
x→−∞

 83. Hanging cables Imagine a cable, like a telephone line or TV 
cable, strung from one support to another and hanging freely. The 
cable’s weight per unit length is a constant w, and the horizontal 
tension at its lowest point is a vector of length H. If we choose a 
coordinate system for the plane of the cable in which the x-axis is 
horizontal, the force of gravity is straight down, the positive y-axis 
points straight up, and the lowest point of the cable lies at the point 
y H w on the y-axis (see accompanying figure), then it can be 
shown that the cable lies along the graph of the hyperbolic cosine

y H
w

w
H

xcosh .

x

y

0

H

Hanging
cable

H
w

y =      cosh     xH
w

w
H

x

y

0

H

T

T cos f

f
P(x, y)

y =      cosh     xH
w

w
H

H
wA  0, Q   R

Such a curve is sometimes called a chain curve or a catenary, the 
latter deriving from the Latin catena, meaning “chain.”

 a. Let ( )P x y,  denote an arbitrary point on the cable. The next 
accompanying figure displays the tension at P as a vector of 
length (magnitude) T, as well as the tension H at the lowest 
point A. Show that the cable’s slope at P is

dy
dx

w
H

xtan sinh .

 b. Using the result from part (a) and the fact that the horizontal 
tension at P must equal H (the cable is not moving), show that 
T wy. Hence, the magnitude of the tension at ( )P x y,  is 
exactly equal to the weight of y units of cable.

 84. (Continuation of Exercise 83.) The length of arc AP in the 
Exercise 83 figure is ( )=s a ax1 sinh , where a w H . Show 
that the coordinates of P may be expressed in terms of s as

x
a

as y s
a

1 sinh , 1 .1 2
2

= = +−

 85. Area Show that the area of the region in the first quadrant 
enclosed by the curve ( )=y a ax1 cosh , the coordinate axes, and 
the line x b  is the same as the area of a rectangle of height 1/a 
and length s, where s is the length of the curve from x 0 to 
x b. Draw a figure illustrating this result.
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7.4 Relative Rates of Growth

FIGURE 7.10 The graphs of e , 2 ,x x  
and x .2
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u is twice the area
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P(cosh u, sinh u)
Asy
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te

Asymptote

Since u ucosh sinh 12 2− = , the 
point u ucosh , sinh( ) lies on the 
right-hand branch of the hyperbola 

− =x y 12 2  for every value of u.

x

y

1

10

u
:

−∞−1

u:
∞

P(cosh u, sinh u)
u = 0

x2 − y2 = 1

 86. The hyperbolic in hyperbolic functions Just as x ucos=  and 
y usin=  are identified with points ( )x y,  on the unit circle, the 
functions x ucosh=  and y usinh=  are identified with points 
( )x y,  on the right-hand branch of the unit hyperbola, − =x y 1.2 2

 b. Differentiate both sides of the equation in part (a) with respect 
to u to show that

A u( ) 1
2

.′ =

 c. Solve this last equation for A u( ). What is the value of A(0)? 
What is the value of the constant of integration C in your  
solution? With C determined, what does your solution say 
about the relationship of u to A u( )?

Another analogy between hyperbolic and circular functions 
is that the variable u in the coordinates u u(cosh , sinh ) for the 
points of the right-hand branch of the hyperbola x y 12 2− =  is 
twice the area of the sector AOP pictured in the figure following 
part (c). To see why this is so, carry out the following steps.

 a. Show that the area A u( ) of sector AOP is

A u u u x dx( ) 1
2

cosh sinh 1 .
u

2

1

cosh

∫= − − One of the analogies between hyperbolic and circular func-
tions is revealed by these two diagrams (Exercise 86).

It is often important in mathematics, computer science, and engineering to compare the 
rates at which functions of x grow as x becomes large. Exponential functions are important 
in these comparisons because of their very fast growth, and logarithmic functions because 
of their very slow growth. In this section we introduce the little-oh and big-oh notation 
used to describe the results of these comparisons. We restrict our attention to functions 
whose values eventually become and remain positive as → ∞x .

Growth Rates of Functions

You may have noticed that exponential functions like 2 x and e x seem to grow more rapidly 
as x gets large than do polynomials and rational functions. These exponentials certainly 
grow more rapidly than x itself, and you can see 2 x outgrowing x 2 as x increases in  
Figure 7.10. In fact, as → ∞x , the functions 2 x and e x grow faster than any power of x, 
even x1,000,000 (Exercise 19). In contrast, logarithmic functions like =y xlog2  and 
y xln=  grow more slowly as → ∞x  than any positive power of x (Exercise 21).

To get a feeling for how rapidly the values of =y e x grow with increasing x, think of 
graphing the function on a large blackboard, with the axes scaled in centimeters. At 
x 1 cm,=  the graph is e 3 cm1 ≈  above the x-axis. At x 6 cm,=  the graph is 
e 403 cm 4 m6 ≈ ≈  high (it is about to go through the ceiling if it hasn’t done so  
already). At x 10 cm,=  the graph is e 22,026 cm 220 m10 ≈ ≈  high, higher than most 
buildings. At x 24 cm,=  the graph is more than halfway to the moon, and at x 43 cm=  
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466 Chapter 7  Integrals and Transcendental Functions

from the origin, the graph is high enough to reach past the sun’s closest stellar neighbor, 
the red dwarf star Proxima Centauri. By contrast, with axes scaled in centimeters, you  
have to go nearly 5 light-years out on the x-axis to find a point where the graph of y xln=  
is even y 43 cm=  high. See Figure 7.11.

These important comparisons of exponential, polynomial, and logarithmic functions 
can be made precise by defining what it means for a function f x( ) to grow faster than 
another function g x( ) as → ∞x .

FIGURE 7.11 Scale drawings of the 
graphs of e x and ln x.
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DEFINITION Let f x( ) and g x( ) be positive for x sufficiently large.

1. f  grows faster than g as → ∞x  if

f x
g x

lim
( )
( )x

= ∞
→∞

or, equivalently, if

g x
f x

lim
( )
( )

0.
x

=
→∞

We also say that g grows slower than f  as → ∞x .

2. f  and g grow at the same rate as → ∞x  if

=
→∞

f x
g x

Llim
( )
( )x

where L is finite and positive.

According to these definitions, =y x2  does not grow faster than =y x. The two 
functions grow at the same rate because

x
x

lim 2 lim 2 2,
x x

= =
→∞ →∞

which is a finite, positive limit. The reason for this departure from more colloquial usage is 
that we want “ f  grows faster than g” to mean that for large x-values g is negligible when 
compared with f .

EXAMPLE 1  We compare the growth rates of several common functions.

 (a) e x grows faster than x 2 as → ∞x  because

� ��� ��� � ��� ���
e
x

e
x

elim lim
2

lim
2

.
x

x

x

x

x

x

2
= = = ∞

∞ ∞ ∞ ∞
→∞ →∞ →∞

    Using l’Hôpital’s Rule twice

 (b) 3 x grows faster than 2 x as → ∞x  because

( )= = ∞
→∞ →∞
lim 3

2
lim 3

2
.

x

x

x x

x

 (c) x 2 grows faster than xln  as → ∞x  because

x
x

x
x

xlim
ln

lim 2
1

lim 2 .
x x x

2
2= = = ∞

→∞ →∞ →∞
    l’Hôpital’s Rule
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 7.4  Relative Rates of Growth 467

EXAMPLE 2  Show that +x 52  and ( )−x2 1
2
 grow at the same rate as → ∞x .

Solution We show that the functions grow at the same rate by showing that they both 
grow at the same rate as the function =g x x( ) :

x
x x

x
x

x
x x

lim 5 lim 1 5 1,

lim
2 1

lim 2 1 lim 2 1 4.

x x

x x x

2

2

2 2 2

( )( )

+ = + =

−
= −⎛

⎝
⎜⎜

⎞
⎠
⎟⎟⎟ = − =

→∞ →∞

→∞ →∞ →∞
 

DEFINITION A function f  is of smaller order than g as → ∞x  if 

=
→∞

f x
g x

lim
( )
( )

0.
x

 We indicate this by writing f o g( )=  (“ f  is little-oh of g”).

 (d) ln x grows slower than x n1  as → ∞x  for any positive integer n because

x
x

x
n x

n
x

lim
ln

lim
1

1

lim 0.

x n x n

x n

1 1 1

1

( )
=

= =

( )→∞ →∞ −

→∞

l’Hôpital’s Rule

n is constant.

 (e) As part (b) suggests, exponential functions with different bases never grow at the same 
rate as → ∞x . If > >a b 0, then a x  grows faster than b .x  Since ( ) >a b 1,

( )= = ∞
→∞ →∞

a
b

a
b

lim lim .
x

x

x x

x

 (f ) In contrast to exponential functions, logarithmic functions with different bases >a 1 
and >b 1 always grow at the same rate as → ∞x :

x
x

x a
x b

b
a

lim
log
log

lim
ln ln
ln ln

ln
ln

.
x

a

b x
= =

→∞ →∞

The limiting ratio is always finite and never zero. 

Order and Oh-Notation

The “little-oh” and “big-oh” notation was invented by number theorists over a hundred 
years ago and is now commonplace in mathematical analysis and computer science. 
According to this definition, saying f o g( )=  as → ∞x  is another way to say that f  
grows slower than g as → ∞x .

If f  grows at the same rate as g as → ∞x , and g grows at the same rate as h as 
→ ∞x , then f  grows at the same rate as h as → ∞x . The reason is that

= =
→∞ →∞

f
g

L
g
h

Llim and lim
x x

1 2

together imply

f
h

f
g

g
h

L Llim lim .
x x

1 2= ⋅ =
→∞ →∞

If L1 and L2 are finite and nonzero, then so is L L .1 2
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468 Chapter 7  Integrals and Transcendental Functions

DEFINITION Let f x( ) and g x( ) be positive for x sufficiently large. Then f  is of 
at most the order of g as → ∞x  if there is a positive integer M for which

≤f x
g x

M
( )
( )

,

for x sufficiently large. We indicate this by writing f O g( )=  (“ f  is big-oh of g”).

EXAMPLE 3  Here we use little-oh notation.

 (a) x o xln ( )=  as → ∞x  because 
x

x
lim

ln
0

x
=

→∞

 (b) ( )= +x o x 12 3  as → ∞x  because 
+

=
→∞

x
x

lim
1

0
x

2

3
 

EXAMPLE 4  Here we use big-oh notation.

 (a) x x O xsin ( )+ =  as → ∞x  because 
x x

x
sin

2
+

≤  for x sufficiently large.

 (b) e x O e( )x x2+ =  as → ∞x  because + →e x
e

1
x

x

2
 as → ∞x .

 (c) x O e( )x=  as → ∞x  because →x
e

0
x

 as → ∞x . 

If you look at the definitions again, you will see that f o g( )=  implies f O g( )=  for 
functions that are positive for all sufficiently large x. Also, if f  and g grow at the same rate, 
then f O g( )=  and g O f( )=  (Exercise 11).

Sequential vs. Binary Search

Computer scientists often measure the efficiency of an algorithm by counting the number 
of steps a computer must take to execute the algorithm. There can be significant differences 
in how efficiently algorithms perform, even if they are designed to accomplish the same 
task. These differences are often described using big-oh notation. Here is an example.

One edition of Webster’s International Dictionary lists about 26,000 words that begin 
with the letter a. One way to look up a word, or to learn if it is not there, is to read through 
the list one word at a time until you either find the word or determine that it is not there. 
This method, called sequential search, makes no particular use of the words’ alphabetical 
arrangement in the list. You are sure to get an answer, but it might take 26,000 steps.

Another way to find the word or to learn it is not there is to go straight to the middle of 
the list (give or take a few words). If you do not find the word, then go to the middle of the 
half that contains it and forget about the half that does not. (You know which half contains 
it because you know the list is ordered alphabetically.) This method, called a binary 
search, eliminates roughly 13,000 words in a single step. If you do not find the word on the 
second try, then jump to the middle of the half that contains it. Continue this way until you 
have either found the word or divided the list in half so many times there are no words left. 
How many times do you have to divide the list to find the word or learn that it is not there? 
At most 15, because

26,000 2 1.15( ) <

That certainly beats a possible 26,000 steps.
For a list of length n, a sequential search algorithm takes on the order of n steps to find 

a word or determine that it is not in the list. A binary search, as the second algorithm is 
called, takes on the order of nlog2  steps. The reason is that if < ≤− n2 2 ,m m1  then 
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Comparisons with the Exponential e x

 1. Which of the following functions grow faster than e x as → ∞x ? 
Which grow at the same rate as e ?x  Which grow slower?

 a. −x 3 b. +x xsin3 2

 c. x  d. 4 x

 e. ( )3 2 x f. e x 2

 g. e 2x  h. xlog10

 2. Which of the following functions grow faster than e x as → ∞x ? 
Which grow at the same rate as e ?x  Which grow slower?

 a. + +x x10 30 14  b. x x xln −

 c. + x1 4  d. ( )5 2 x

 e. −e x f. xe x

 g. e xcos  h. −e x 1

Comparisons with the Power x 2

 3. Which of the following functions grow faster than x 2 as → ∞x ? 
Which grow at the same rate as x ?2  Which grow slower?

 a. +x x42  b. −x x5 2

 c. +x x4 3  d. ( )+x 3 2

 e. x ln x f. 2 x

 g. −x e x3  h. x8 2

 4. Which of the following functions grow faster than x 2 as → ∞x ? 
Which grow at the same rate as x ?2  Which grow slower?

 a. +x x2  b. x10 2

 c. −x e x2  d. xlog ( )10
2

 e. −x x3 2 f. ( )1 10 x

 g. (1.1) x  h. +x x1002

Comparisons with the Logarithm xln

 5. Which of the following functions grow faster than ln x as → ∞x ? 
Which grow at the same rate as ln x? Which grow slower?

 a. xlog3  b. ln 2x

 c. xln  d. x

 e. x f. x5 ln

 g. x1  h. e x

 6. Which of the following functions grow faster than ln x as → ∞x ? 
Which grow at the same rate as ln x? Which grow slower?

 a. xlog ( )2
2  b. xlog 1010

 c. x1  d. x1 2

 e. x x2 ln−  f. −e x

 g. xln(ln ) h. ( )+xln 2 5

Ordering Functions by Growth Rates

 7. Order the following functions from slowest growing to fastest 
growing as → ∞x .

 a. e x b. x x

 c. xln x( )  d. e x 2

 8. Order the following functions from slowest growing to fastest 
growing as → ∞x .

 a. 2 x  b. x 2

 c. ln 2 x( )  d. e x

Big-oh and Little-oh; Order

 9. True, or false? As → ∞x ,

 a. x o x( )=  b. ( )= +x o x 5

 c. ( )= +x O x 5  d. x O x(2 )=

 e. e o e( )x x2=  f. x x O xln ( )+ =

 g. x o xln (ln 2 )=  h. x O x5 ( )2 + =

 10. True, or false? As → ∞x ,

 a. ( )+
=

x
O

x
1

3
1  b. ( )+ =

x x
O

x
1 1 1

2

 c. ( )− =
x x

o
x

1 1 1
2

 d. x O2 cos (2)+ =

 e. e x O e( )x x+ =  f. x x o xln ( )2=

 g. x O xln(ln ) (ln )=  h. x o xln( ) ln 12( )( )= +

 11. Show that if positive functions f x( ) and g x( ) grow at the same 
rate as → ∞x , then f O g( )=  and g O f( ).=

 12. When is a polynomial f x( ) of smaller order than a polynomial 
g x( ) as → ∞x ? Give reasons for your answer.

 13. When is a polynomial f x( ) of at most the order of a polynomial 
g x( ) as → ∞x ? Give reasons for your answer.

 14. What do the conclusions we drew in Section 2.8 about the limits 
of rational functions tell us about the relative growth of polynomi-
als as → ∞x ?

Other Comparisons

 15. Investigate

x
x

x
x

lim ln 1
ln

and lim ln 999
ln

.
x x

( ) ( )+ +
→∞ →∞

Then use l’Hôpital’s Rule to explain what you find.

T

EXERCISES 7.4

− < ≤m n m1 log ,2  and the number of bisections required to narrow the list to one 
word will be at most m nlog ,2⎡ ⎤=  the integer ceiling of the number nlog .2

Big-oh notation provides a compact way to say all this. The number of steps in a 
sequential search of an ordered list is O n( ); the number of steps in a binary search is 

( )O nlog .2  In our example, there is a big difference between the two (26,000 versus 15), 
and the difference can only increase with n because n grows faster than nlog2  as → ∞n .
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470 Chapter 7  Integrals and Transcendental Functions

 16. (Continuation of Exercise 15.) Show that the value of

x a
x

lim ln
lnx

( )+
→∞

is the same no matter what value you assign to the constant a. 
What does this say about the relative rates at which the functions 

( )= +f x x a( ) ln  and g x x( ) ln=  grow?

 17. Show that + +x x10 1 and  1 grow at the same rate as 
→ ∞x  by showing that they both grow at the same rate as x  as 
→ ∞x .

 18. Show that + −x x x x and 4 4 3  grow at the same rate as 
→ ∞x  by showing that they both grow at the same rate as x 2 as 
→ ∞x .

 19. Show that e x grows faster as → ∞x  than x n for any positive 
integer n, even x .1,000,000  (Hint: What is the nth derivative of x ?n )

 20. The function e x outgrows any polynomial Show that e x grows 
faster as → ∞x  than any polynomial

�+ + + +−
−a x a x a x a .n

n
n

n
1

1
1 0

 21. a.  Show that ln x grows slower as → ∞x  than x n1  for any  
positive integer n, even x .1 1,000,000

 b. Although the values of x 1 1,000,000 eventually overtake the 
values of xln , you have to go way out on the x-axis before 
this happens. Find a value of x greater than 1 for which 
x xln .1 1,000,000 >  You might start by observing that when 

>x 1 the equation x xln 1 1,000,000=  is equivalent to the  
equation x xln(ln ) (ln ) 1,000,000.=

 c. Even x 1 10 takes a long time to overtake ln x. Experiment 
with a calculator to find the value of x 10>  at which the 
graphs of x 1 10 and ln x cross, or, equivalently, at which 

x xln 10 ln(ln ).=  Bracket the crossing point between 
powers of 10 and then close in by successive halving.

T

T

 d. (Continuation of part (c).) The value of x at which 
x xln 10 ln(ln )=  is too far out for some graphers and root 

finders to identify. Try it on the equipment available to you 
and see what happens.

 22. The function xln  grows slower than any polynomial Show 
that xln  grows slower as → ∞x  than any nonconstant polynomial.

Algorithms and Searches

 23. a.  Suppose you have three different algorithms for solving the 
same problem and each algorithm takes a number of steps that 
is of the order of one of the functions listed here:

n n n n nlog , , log .2
3 2

2
2( )

Which of the algorithms is the most efficient in the long run? 
Give reasons for your answer.

 b. Graph the functions in part (a) together to get a sense of how 
rapidly each one grows.

 24. Repeat Exercise 23 for the functions

n n n n, log , log .2 2
2( )

 25. Suppose you are looking for an item in an ordered list one million 
items long. How many steps might it take to find that item with a 
sequential search? A binary search?

 26. You are looking for an item in an ordered list 450,000 items long 
(the length of Webster’s Third New International Dictionary). 
How many steps might it take to find the item with a sequential 
search? A binary search?

T

T

T

T

 1. How is the natural logarithm function defined as an integral? 
What are its domain, range, and derivative? What arithmetic prop-
erties does it have? Comment on its graph.

 2. What integrals lead to logarithms? Give examples.

 3. What are the integrals of xtan  and xcot ? Of xsec  and xcsc ?

 4. How is the exponential function e x defined? What are its domain, 
range, and derivative? What laws of exponents does it obey? 
Comment on its graph.

 5. How are the functions a x  and xloga  defined? Are there any 
restrictions on a? How is the graph of xloga  related to the graph 
of xln ? What truth is there in the statement that there are really 
only one exponential function and one logarithmic function?

 6. How do you solve separable first-order differential equations?

 7. What is the law of exponential change? How can it be derived 
from an initial value problem? What are some of the applications 
of the law?

 8. What are the six basic hyperbolic functions? Comment on their 
domains, ranges, and graphs. What are some of the identities 
relating them?

CHAPTER 7 Questions to Guide Your Review

 9. What are the derivatives of the six basic hyperbolic functions? 
What are the corresponding integral formulas? What similarities 
do you see here to the six basic trigonometric functions?

 10. How are the inverse hyperbolic functions defined? Comment on 
their domains, ranges, and graphs. How can you find values of 

− −x xsech , csch ,1 1  and − xcoth 1  using a calculator’s keys for 
− −x xcosh , sinh ,1 1  and − xtanh ?1

 11. What integrals lead naturally to inverse hyperbolic functions?

 12. How do you compare the growth rates of positive functions as 
→ ∞x ?

 13. What roles do the functions e x and xln  play in growth comparisons?

 14. Describe big-oh and little-oh notation. Give examples.

 15. Which is more efficient—a sequential search or a binary search? 
Explain.
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 Chapter 7  Practice Exercises 471

Integration
Evaluate the integrals in Exercises 1–12.

 1. e e dxsin ( )x x∫  2. e e dtcos 3 2t t∫ ( )−

 3. x dxtan
30∫

π
 4. x dx2 cot

1 6

1 4

∫ π

 5. 
t

t
dt

cos
1 sin2

6

∫ −π

π

−
 6. e e dxsecx x∫

 7. x
x

dxln 5
5∫

( )−
−

 8. d
cos 1 ln

∫
υ

υ
υ

( )−

 9. 
x

dx3
1

7

∫  10. 
x

dx1
51

32

∫

 11. 
x x

dx1
lne

e2

∫  12. t t t dt1 ln ln
2

4

∫ ( )+

Solving Equations with Logarithmic or Exponential Terms
In Exercises 13–18, solve for y.

 13. = +3 2y y 1 14. =− +4 3y y 2

 15. e x x9 , 0y2 2= >  16. x3 3 lny =

 17. y x yln 1 ln( )− = +  18. y xln 10 ln ln 5( ) =

Comparing Growth Rates of Functions

 19. Does f  grow faster, slower, or at the same rate as g as → ∞x ? 
Give reasons for your answers.

 a. f x x( ) log ,2=  g x x( ) log3=

 b. =f x x( ) , = +g x x
x

( ) 1

 c. =f x x( ) 100, = −g x xe( ) x

 d. =f x x( ) , g x x( ) arctan=

 e. f x x( ) arccsc ,=  =g x x( ) 1

 f. f x x( ) sinh ,=  =g x e( ) x

 20. Does f  grow faster, slower, or at the same rate as g as → ∞x ? 
Give reasons for your answers.

 a. = −f x( ) 3 ,x  = −g x( ) 2 x

 b. f x x( ) ln 2 ,=  g x x( ) ln 2=

 c. = +f x x x( ) 10 2 ,3 2  =g x e( ) x

 d. ( )=f x x( ) arctan 1 , =g x x( ) 1

 e. ( )=f x x( ) arcsin 1 , =g x x( ) 1 2

 f. f x x( ) sech ,=  = −g x e( ) x

 21. True, or false? Give reasons for your answers.

 a. ( )+ =
x x

O
x

1 1 1
2 4 2

 b. ( )+ =
x x

O
x

1 1 1
2 4 4

 c. x o x xln( )= +  d. x o xln(ln ) (ln )=

 e. x Oarctan (1)=  f. x O ecosh ( )x=

 22. True, or false? Give reasons for your answers.

 a. ( )= +
x

O
x x

1 1 1
4 2 4

 b. ( )= +
x

o
x x

1 1 1
4 2 4

 c. x o xln 1( )= +  d. x O xln 2 (ln )=

 e. x Osec (1)1 =−  f. x O esinh ( )x=

CHAPTER 7 Practice Exercises

Theory and Applications

 23. The function = +f x e x( ) ,x  being differentiable and one-to-
one, has a differentiable inverse f x( ).1−  Find the value of −df dx1  
at the point f (ln 2).

 24. Find the inverse of the function ( )= + ≠f x x x( ) 1 1 , 0. Then 
show that f f x f f x x( ( )) ( ( ))1 1= =− −  and that

df
dx f x

1
( )

.
f x

1

( )
=

′

−

 25. A particle is traveling upward and to the right along the curve 
y xln .=  Its x-coordinate is increasing at the rate dx dt( ) = 

x m s. At what rate is the y-coordinate changing at the point 
( )e , 2 ?2

 26. A girl is sliding down a slide shaped like the curve y e3 .x 3= −  
Her y-coordinate is changing at the rate

 dy dt y1 4 3 m s.( )= − −

  At approximately what rate is her x-coordinate changing when she 
reaches the bottom of the slide at x 3 m?=

 27. The functions f x x( ) ln 5=  and g x x( ) ln 3=  differ by a constant. 
What constant? Give reasons for your answer.

 28. a. If  x xln ln 2 2,( ) ( )=  must =x 2?

 b. If  x xln 2 ln 2,( ) = −  must =x 1 2?

Give reasons for your answers.

 29. The quotient x xlog log4 2( ) ( ) has a constant value. What value? 
Give reasons for your answer.

 30.  log (2) vs. log ( )2 xx  How does f x( ) log (2)x=  compare with 
g x x( ) log ( )?2=  Here is one way to find out.

 a. Use the equation b b alog ln lna ( ) ( )=  to express f x( ) and 
g x( ) in terms of natural logarithms.

 b. Graph f  and g together. Comment on the behavior of f  in 
relation to the signs and values of g.

In Exercises 31–34, solve the differential equation.

 31. =dy
dx

y ycos 2  32. 
( )

′ = +
−

y
y x

y
3 1

1

2

 33. yy y xsec sec2 2′ =  34. y x dy x dxcos sin 02 + =

In Exercises 35–38, solve the initial value problem.

 35. dy
dx

e y, (0) 2x y 2= = −− − −  36. dy
dx

y y
x

y e
ln

1
, (0)

2
2=

+
=

 37. x dy y y dx y0, (1) 1( )− + = =

 38. y dx
dy

e
e

y
1

, (0) 1
x

x
2

2
=

+
=−

 39. What is the age of a sample of charcoal in which 90% of the  
carbon-14 originally present has decayed?

 40. Cooling a pie A deep-dish apple pie, whose internal tempera-
ture was 104 C°  when removed from the oven, was set out on a 
breezy 5 C°  porch to cool. Fifteen minutes later, the pie’s internal 
temperature was 82 C° . How long did it take the pie to cool from 
there to 21 C° ?

T
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472 Chapter 7  Integrals and Transcendental Functions

15 135 − x

60 m tall

West

105 m tall

East
x

u2 u1

 1. Let A t( ) be the area of the region in the first quadrant enclosed 
by the coordinate axes, the curve = −y e ,x  and the vertical line 
x t t, 0.= >  Let V t( ) be the volume of the solid generated by 
revolving the region about the x-axis. Find the following limits.

 a. A tlim ( )
t→∞

 b. V t A tlim ( ) ( )
t→∞

   c. V t A tlim ( ) ( )
t 0→ +

 2. Varying a logarithm’s base 

 a. Find lim log 2a  as → + − +a 0 ,1 ,1 , and .

 b. Graph y log 2a  as a function of a over the interval 
< ≤a0 4.

 3. Graph f x x x( ) tan tan 11 1( )= +− −  for − ≤ ≤x5 5. Then use 
calculus to explain what you see. How would you expect f  to 
behave beyond the interval [ ]−5, 5 ? Give reasons for your answer.

 4. Graph f x x( ) sin xsin( )=  over [ ]0, 3 . Explain what you see.

 5. Even-odd decompositions 

 a. Suppose that g is an even function of x and h is an odd 
function of x. Show that if g x h x( ) ( ) 0+ =  for all x, then 
g x( ) 0 for all x and h x( ) 0 for all x.

 b. Use the result in part (a) to show that if 
= +f x f x f x( ) ( ) ( )E O  is the sum of an even function f x( )E  

and an odd function f x( ),O  then

f x f x f x f x f x f x( ) ( ) ( ) 2 and ( ) ( ) ( ) 2.E O( ) ( )= + − = − −

 c. What is the significance of the result in part (b)?

 6. Let g be a function that is differentiable throughout an open inter-
val containing the origin. Suppose g has the following properties.

 i. ( )+ = +
−

g x y
g x g y

g x g y
( ) ( )

1 ( ) ( )
 for all real numbers x, y, and 

x y in the domain of g.

 ii. =
→

g hlim ( ) 0
h 0

 iii. =
→

g h
h

lim
( )

1
h 0

 a. Show that g(0) 0.

 b. Show that g x g x( ) 1 ( ) .2[ ]′ = +

 c. Find g x( ) by solving the differential equation in part (b).

T

T

T

CHAPTER 7 Additional and Advanced Exercises

 7. Center of mass Find the center of mass of a thin plate of con-
stant density covering the region in the first and fourth quadrants 
enclosed by the curves ( )= +y x1 1 2  and ( )= − +y x1 1 2  
and by the lines x 0 and x 1.

 8. Solid of revolution The region between the curve ( )=y x1 2  
and the x-axis from x 1 4 to x 4 is revolved about the x-axis 
to generate a solid.

 a. Find the volume of the solid.

 b. Find the centroid of the region.

 9. The Rule of 70 If you use the approximation ln 2 0.70 (in 
place of 0.69314 ... ), you can derive a rule of thumb that says, 
“To estimate how many years it will take an amount of money 
to double when invested at r percent compounded continuously, 
divide r into 70.” For instance, an amount of money invested at  
5% will double in about 70 5 14 years. If you want it to double 
in 10 years instead, you have to invest it at 70 10 7%. Show 
how the Rule of 70 is derived. (A similar “Rule of 72” uses 72 
instead of 70, because 72 has more integer factors.)

 10. Urban gardening A vegetable garden 15 m wide is to be grown 
between two buildings, which are 150 m apart along an east–west 
line. If the buildings are 60 m and 105 m tall, where should the 
garden be placed in order to receive the maximum number of 
hours of sunlight exposure? (Hint: Determine the value of x in 
the accompanying figure that maximizes sunlight exposure for the 
garden.)

T

 41. Find the length of the curve ( ) ( )= − − +y e eln 1 ln 1 ,x x  
xln 2 ln 3.

 42. In 1934, the Austrian biologist Ludwig von Bertalanffy derived 
and published the von Bertalanffy growth equation, which con-
tinues to be widely used and is especially important in fisheries 
studies. Let L t( ) denote the length of a fish at time t and assume 
L L(0) 0. The von Bertalanffy equation is

( )= −dL
dt

k A L ,

where A L tlim ( )
t

=
→∞

 is the asymptotic length of the fish and k is 

a proportionality constant.

Assume that L t( ) is the length in meters of a shark of age t years. 
In addition, assume A L3, (0) 0.5 m, and L (5) 1.75 m.

 a. Solve the von Bertalanffy differential equation.

 b. What is L(10)?

 c. When does L 2.5 m?
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473

OVERVIEW The Fundamental Theorem tells us how to evaluate a definite integral once 
we have an antiderivative for the integrand function. However, finding antiderivatives (or 
indefinite integrals) is not as straightforward as finding derivatives. In this chapter we 
study a number of important techniques that apply to finding integrals for specialized 
classes of functions such as trigonometric functions, products of certain functions, and 
rational functions. Since we cannot always find an antiderivative, we develop numerical 
methods for calculating definite integrals. We also study integrals for which the domain or 
range is infinite, called improper integrals.

Techniques of 

Integration

8

8.1 Using Basic Integration Formulas

Table 8.1 summarizes the indefinite integrals of many of the functions we have studied so 
far, and the substitution method helps us use the table to evaluate more complicated func-
tions involving these basic ones. In this section we combine the Substitution Rules (studied 
in Chapter 5) with algebraic methods and trigonometric identities to help us use Table 8.1. 
A more extensive Table of Integrals is given at the back of the chapter, and we discuss its 
use in Section 8.6.

Sometimes we have to rewrite an integral to match it to a standard form of the type 
displayed in Table 8.1. We start with an example of this procedure.

EXAMPLE 1  Evaluate the integral

x
x x

dx2 3
3 1

.
23

5

∫ −
− +

Solution We rewrite the integral and apply the Substitution Rule for Definite Integrals 
presented in Section 5.6, to find

∫ ∫

∫

( )

−
− +

=

=

=
⎤

⎦
⎥
⎥

= − ≈

−

x
x x

dx du
u

u du

u

2 3
3 1

2 2 11 1 4.63.

23

5

1

11

1 2

1

11

1

11

( )= − + = −
= = = =

u x x du x dx
u x u x

3 1,  2 3 ;
1 when  3,  11 when  5

2

Table 8.1, Formula 2 
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474 Chapter 8 Techniques of Integration

TABLE 8.1 Basic integration formulas

1. ∫ = +k dx kx C k(any number  )

2. ∫ ( )=
+

+ ≠ −
+

x dx x
n

C n
1

1n
n 1

3. ∫ = +dx
x

x Cln

4. ∫ = +e dx e Cx x

5. a dx a
a

C a a
ln

0,   1x
x

∫ ( )= + > ≠

6. x dx x Csin cos∫ = − +

7. x dx x Ccos sin∫ = +

8. x dx x Csec tan2∫ = +

9. x dx x Ccsc cot2∫ = − +

10. x x dx x Csec tan sec∫ = +

11. x x dx x Ccsc cot csc∫ = − +

12. x dx x Ctan ln sec∫ = +

13. x dx x Ccot ln sin∫ = +

14. x dx x x Csec ln sec tan∫ = + +

15. x dx x x Ccsc ln csc cot∫ = − + +

16. x dx x Csinh cosh∫ = +

17. x dx x Ccosh sinh∫ = +

18. ∫ ( )
−

= +dx
a x

x
a

Carcsin
2 2

19. ∫ ( )+
= +dx

a x a
x
a

C1 arctan
2 2

20. ∫ −
= +dx

x x a a
x
a

C1 arcsec
2 2

21. ∫ ( ) ( )
+

= + >−dx
a x

x
a

C asinh 0
2 2

1

22. ∫ ( ) ( )
−

= + > >−dx
x a

x
a

C x acosh 0
2 2

1

EXAMPLE 2  Complete the square to evaluate

∫ −
dx

x x8
.

2

Solution We complete the square to simplify the denominator:

( ) ( )

( ) ( )

− = − − = − − + −

= − − + + = − −

x x x x x x

x x x

8 8 8 16 16

8 16 16 16 4 .

2 2 2

2 2

Then

∫ ∫

∫

( )

( )

( )−
=

− −

=
−

= +

= − +

dx
x x

dx

x

du
a u

u
a

C

x C

8 16 4

arcsin

arcsin 4
4

.

2 2

2 2

 

a u x
du dx

4, 4 ,( )= = −
=

Table 8.1, Formula 18

M08_HASS5901_15_GE_C08.indd   474 07/03/2023   15:30

www.konkur.in

Telegram: @uni_k



 8.1  Using Basic Integration Formulas 475

EXAMPLE 3  Evaluate the integral

x x x x dxcos sin 2 sin cos 2 .∫ ( )+

Solution We can replace the integrand with an equivalent trigonometric expression 
using the Sine Addition Formula to obtain a simple substitution:

∫ ∫

∫

∫

( ) ( )+ = +

=

=

= − +

x x x x dx x x dx

x dx

u du

x C

cos sin 2 sin cos 2 sin 2

sin 3

1
3

sin

1
3

cos 3 .

In Section 5.5 we found the indefinite integral of the secant function by multiplying it 
by a fractional form equal to one, and then integrating the equivalent result. We can use 
that same procedure in other instances as well, as we illustrate next.

EXAMPLE 4  Find dx
x1 sin

.
0

4

∫ −

π

Solution We multiply the numerator and denominator of the integrand by x1 sin+ . 
This procedure transforms the integral into one we can evaluate:

∫ ∫

∫

∫

∫

( )

( )

( )

−
=

−
⋅

+
+

=
+
−

=
+

= +

= +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= + − + =

π π

π

π

π

π

dx
x x

x
x

dx

x
x

dx

x
x

dx

x x x dx

x x

1 sin
1

1 sin
1 sin
1 sin

1 sin
1 sin

1 sin
cos

sec sec tan

tan sec 1 2 0 1 2.

0

4

0

4

20

4

20

4

2

0

4

0

4

 

EXAMPLE 5  Evaluate

x x
x

dx3 7
3 2

.
2

∫ −
+

Solution The integrand is an improper fraction since the degree of the numerator is 
greater than the degree of the denominator. To integrate it, we perform long division to 
obtain a quotient plus a remainder that is a proper fraction:

−
+

= − +
+

x x
x

x
x

3 7
3 2

3 6
3 2

.
2

)
−

+ −

+
−
− −

+

x

x x x

x x
x
x

3

3 2 3 7

3 2
9

   9 6
6

2

2

= =u x du dx3 ,  3

Table 8.1, Formula 6 

Multiply and divide by 
conjugate.

Simplify.

− =x x1 sin cos2 2

Use Table 8.1, 
Formulas 8 and 10
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476 Chapter 8 Techniques of Integration

Therefore,

x x
x

dx x
x

dx x x x C3 7
3 2

3 6
3 2 2

3 2 ln 3 2 .
2 2

∫ ∫ ( )−
+

= − +
+

= − + + +  

Reducing an improper fraction by long division (Example 5) does not always lead to 
an expression we can integrate directly. We see what to do about that in Section 8.5.

EXAMPLE 6  Evaluate

∫ +
−

x
x

dx3 2
1

.
2

Solution We first separate the integrand to get

∫ ∫ ∫+
−

=
−

+
−

x
x

dx
x dx

x
dx

x
3 2
1

3
1

2
1

.
2 2 2

In the first of these new integrals, we substitute

= − = − = −u x du x dx x dx du1 , 2 , so 1
2

.2

Then we obtain

∫ ∫ ∫
( )

−
=

−
= −

= − ⋅ + = − − +

−x dx

x

du

u
u du

u C x C

3
1

3
1 2 3

2

3
2 1 2

3 1 .

2
1 2

1 2

1
2

1

The second of the new integrals is a standard form,

∫ −
= +dx

x
x C2

1
2 arcsin .

2 2  Table 8.1, Formula 18

Combining these results and renaming +C C1 2 as C gives

∫ +
−

= − − + +x
x

dx x x C3 2
1

3 1 2 arcsin .
2

2  

The question of what to substitute for in an integrand is not always quite so clear. 
Sometimes we simply proceed by trial-and-error, and if nothing works out, we then try 
another method altogether. The next several sections of the text present some of these new 
methods, but substitution works in the following example.

EXAMPLE 7  Evaluate

∫ ( )+
dx

x1
.3

Solution We might try substituting for the term x , but the derivative factor x1  is 
missing from the integrand, so this substitution will not help. The other possibility is to 
substitute for ( )+ x1 , and it turns out this works:

∫ ∫

∫ ( )
( )

( )

+
=

−

= −

dx

x

u du
u

u u
du

1

2 1
 

2 2

3 3

2 3

( )

= + =

= = −

u x du
x

dx

dx x du u du

1 , 1
2

;

2 2 1
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 8.1  Using Basic Integration Formulas 477

( )
( )

( )

= − + +

= − +

=
− +

+
+

= − +
+

u u
C

u
u

C

x

x
C

C x

x

2 1

1 2

1 2 1

1

1 2

1
.

2

2

2

2  

When evaluating definite integrals, a property of the integrand may help us in calculat-
ing the result.

EXAMPLE 8  Evaluate 

x x dxcos .3

2

2

∫ π

π

−

Solution No substitution or algebraic manipulation is clearly helpful here. But we 
observe that the interval of integration is the symmetric interval π π[ ]− 2,   2 . Moreover, 
the factor x 3 is an odd function, and xcos  is an even function, so their product is odd. 
Therefore,

x x dxcos 0.3

2

2

∫ =
π

π

−
  Theorem 8, Section 5.6 

Assorted Integrations
The integrals in Exercises 1–44 are in no particular order. Evaluate 
each integral using any algebraic method, trigonometric identity, or 
substitution you think is appropriate.

 1. ∫ +
x

x
dx16

8 220

1
 2. x

x
dx

1

2

2∫ +

 3. x x dxsec tan 2∫ ( )−  4. dx
x xcos tan24

3

∫π
π

 5. x
x

dx1
1 2∫ −

−
 6. dx

x x∫ −

 7. ∫
−e

z
dz

sin

zcot

2
 8. 

z
dz2

16

zln 3

∫

 9. dz
e ez z∫ + −

 10. ∫ − +
dx

x x
8

2 221

2

 11. 
dx
x

4
1 2 1 21

0

∫ ( )+ +−
 12. ∫ −

+−

x
x

dx4 7
2 3

2

1

3

 13. dt
t1 sec∫ −

 14. t t dtcsc sin 3∫

 15. d
1 sin

cos 20

4

∫
θ
θ
θ

+π
 16. ∫ θ

θ θ−
d

2 2

 17. 
y

y y y
dy

ln
4  ln 2∫ +

 18. ∫
dy

y

2

2

y

 19. d
sec tan∫ θ
θ θ+

 20. ∫ +
dt

t t3 2

 21. ∫ − +
+

t t t
t

dt4 16
4

3 2

2
 22. ∫ + −

−
x x

x x
dx2 1

2 1

 23. d1 cos
0

2

∫ θ θ−
π

 24. t t dtsec cot 2∫ ( )+

 25. dy
e 1y2∫ −

 26. 
dy

y y

6

1∫ ( )+

 27. 
dx

x x

2

1 4 ln 2∫ −
 28. dx

x x x2 4 32∫ ( )− − +

 29. x x x x dxcsc sec sin cos∫ ( )( )− +

 30. ∫ ( )+x dx3 sinh
2

ln 5

 31. ∫ −
x

x
dx2

1

3

22

3
 32. x x dx1 sin2

1

1

∫ +
−

 33. ∫
+
−−

y
y

dy
1
11

0
 34. e dzz ez∫ +

EXERCISES 8.1
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478 Chapter 8 Techniques of Integration

 35. 
dx

x x x

7

1 2 482∫ ( )− − −
 36. dx

x x x2 1 4 4 2∫ ( )+ +

 37. d2 7 7
2 5

3 2

∫ θ θ θ
θ

θ− +
−

 38. ∫ θ
θ −
d

cos 1

 39. dx
e1 x∫ +

Hint: Use long division.

 40. x
x

dx
1 3∫ +

Hint: Let u x .3 2=

 41. e
e

dx
1

x

x

3

∫ +
 42. dx2 1

3

x

x∫ −

 43. ∫ ( )+x x
dx1

1
 44. d

tan 3
sin∫
θ
θ

θ
+

Theory and Examples

 45. Area Find the area of the region bounded above by y x2 cos=  
and below by y x xsec ,   4 4.π π= − ≤ ≤

 46. Volume Find the volume of the solid generated by revolving the 
region in Exercise 45 about the x-axis.

 47. Arc length Find the length of the curve y xln cos ,( )=  
x0 3.π≤ ≤

 48. Arc length Find the length of the curve y xln sec ,( )=  
x0 4.π≤ ≤

 49. Centroid Find the centroid of the region bounded by the x-axis, 
the curve y xsec= , and the lines π π= − =x x4,   4.

 50. Centroid Find the centroid of the region bounded by the x-axis, 
the curve y xcsc ,=  and the lines π π= =x x6,   5 6.

 51. The functions =y e x 3 and =y x e x3 3  do not have elementary 
antiderivatives, but ( )= +y x e1 3 x3 3 does. Evaluate

∫ ( )+ x e dx1 3 .x3 3

 52. Use the substitution u xtan=  to evaluate the integral

dx
x1 sin

.
2∫ +

 53. Use the substitution = +u x 14  to evaluate the integral

x x dx1 .7 4∫ +

 54. Using different substitutions Show that the integral

∫ ( )( )( )− + −x x dx1 12 2 3

can be evaluated with any of the following substitutions.

 a. ( )= +u x1 1

 b. ( )( ) ( )= − +u x x1 1 k for = − −k 1,  1 2,  1 3,   1 3,   2 3, 
and 1−

 c. =u xarctan

 d. = −u xtan 1

 e. ( )( )= −−u xtan 1 21

 f. =u xarccos

 g. u xcosh 1= −

What is the value of the integral?

8.2 Integration by Parts

Integration by parts is a technique for simplifying integrals of the form

u x x dx( ) ( ) .∫ υ′

It is useful when u can be differentiated repeatedly and υ′ can be integrated repeatedly 
without difficulty. The integrals

∫ ∫x x dx x e dxcos and x2

are such integrals because u x x( ) =  or u x x( ) 2=  can be differentiated repeatedly, and 
x x( ) cosυ′ =  or x e( ) xυ′ =  can be integrated repeatedly without difficulty. Integration 

by parts also applies to integrals like

x dx e x dxln and cos .x∫ ∫
In the first case, the integrand ln x can be rewritten as xln 1( )( ), and u x x( ) ln=  is easy 
to differentiate while x( ) 1υ′ =  easily integrates to x. In the second case, each part of the 
integrand appears again after repeated differentiation or integration.

Product Rule in Integral Form

If u and υ are differentiable functions of x, the Product Rule says that

d
dx

u x x u x x u x x( ) ( ) ( ) ( ) ( ) ( ).υ υ υ[ ] = ′ + ′
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 8.2  Integration by Parts 479

In terms of indefinite integrals, this equation becomes

∫ ∫υ υ υ[ ] [ ]= ′ + ′d
dx

u x x dx u x x u x x dx( ) ( ) ( ) ( ) ( ) ( )

or

d
dx

u x x dx u x x dx u x x dx( ) ( ) ( ) ( ) ( ) ( ) .∫ ∫ ∫υ υ υ[ ] = ′ + ′

Rearranging the terms of this last equation, we get

∫ ∫ ∫υ υ υ[ ]′ = − ′u x x dx d
dx

u x x dx x u x dx( ) ( ) ( ) ( ) ( ) ( ) ,

leading to the following integration by parts formula.

Integration by Parts Formula—Differential Version

 ∫ ∫υ υ υ= −u d u du (2)

Integration by Parts Formula

 u x x dx u x x x u x dx( ) ( ) ( ) ( ) ( ) ( )  ∫ ∫υ υ υ′ = − ′  (1)

This formula allows us to exchange the problem of computing the integral u x x dx( ) ( )υ∫ ′  
for the problem of computing a different integral, x u x dx( ) ( )υ∫ ′ . In many cases, we can 
choose the functions u and υ so that the second integral is easier to compute than the first. 
There can be many choices for u and υ, and it is not always clear which choice works best, 
so sometimes we need to try several.

The formula is often given in differential form. With x dx d( )υ υ′ =  and u x dx du( )′ = , 
the integration by parts formula becomes

The next examples illustrate the technique.

EXAMPLE 1  Find

∫ x x dxcos .

Solution There is no obvious antiderivative of x xcos , so we use the integration by parts 
formula

∫ ∫υ υ υ′ = − ′u x x dx u x x x u x dx( ) ( ) ( ) ( ) ( ) ( )

to change this expression to one that is easier to integrate. We first decide how to choose 
the functions u x( ) and υ x( ). There is more than one way to do this, but here we choose to 
factor the expression x xcos  into

υ= ′ =u x x x x( ) and ( ) cos .

Next we differentiate u x( ) and find an antiderivative of x( )υ′ ,

υ′ = =u x x x( ) 1 and ( ) sin .
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480 Chapter 8 Techniques of Integration

When finding an antiderivative for x( )υ′ , we have a choice of how to pick a constant of 
integration C. We choose the constant =C 0, since that makes this antiderivative as sim-
ple as possible. We now apply the integration by parts formula:

∫ ∫ ( )= −

= + +
υ υ υ′ ′

| | | | |
x x dx x x x dx

x x x C

cos sin sin 1

sin cos

u x x u x x x u x( ) ( ) ( ) ( ) ( ) ( )

and we have found the integral of the original function. 

There are at least four apparent choices available for u x( ) and υ′ x( ) in Example 1:

1. Let =u x( ) 1 and υ′ =x x x( ) cos . 2. Let =u x x( )  and υ′ =x x( ) cos .

3. Let =u x x x( ) cos  and υ′ =x( ) 1. 4. Let =u x x( ) cos  and υ′ =x x( ) .

We used choice 2 in Example 1. The other three choices lead to integrals that we do not 
know how to evaluate. For instance, Choice 3, with ′ = −u x x x x( ) cos sin , leads to the 
integral

x x x x dxcos sin .2∫ ( )−

The goal of integration by parts is to go from an integral υ∫ ′u x x dx( ) ( )  that we don’t 
see how to evaluate to an integral υ∫ ′x u x dx( ) ( )  that we can evaluate. Generally, we choose 
υ′ x( ) first to be as much of the integrand as we can readily integrate; then we let u x( ) be 
the leftover part. When finding υ x( ) from υ′ x( ), any antiderivative will work, and we usu-
ally pick the simplest one. In particular, no arbitrary constant of integration is needed in 
υ x( ) because it would simply cancel out of the right-hand side of Equation (2).

EXAMPLE 2  Find x dxln .∫
Solution We have not yet seen how to find an antiderivative for xln . If we set u x x( ) ln ,=  
then ′u x( ) is the simpler xfunction 1 . It may not appear that a second function υ′ x( ) is 
multiplying u x x( ) ln ,=  but we can choose υ′ x( ) to be the constant function υ′ =x( ) 1. 
We use the integration by parts formula given in Equation (1), with

υ= ′ =u x x x( ) ln and ( ) 1.

We differentiate u x( ) and find an antiderivative of υ′ x( ),

u x
x

x x( ) 1 and ( ) .υ′ = =

Then

∫ ∫

∫

( )⋅ = −

= −

= − +

υ υ υ′ ′
| | | | |
x dx x x x x dx

x x dx

x x x C

ln   1 ln  1

ln 1

ln

u x x u x x x u x( ) ( ) ( ) ( ) ( ) ( )

In the following examples we use the differential form to indicate the process of 
integration by parts. The computations are the same, with du and υd  providing shorter 
expressions for ′u x dx( )  and υ′ x dx( ) .

Sometimes we have to use integration by parts more than once, as in the next example.

EXAMPLE 3  Evaluate

∫ x e dx.x2

Integration by parts formula

Integrate and simplify.

Integration by parts formula

Simplify and integrate. 
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 8.2  Integration by Parts 481

Solution We use the integration by parts formula given in Equation (1), with

u x x x e( ) and ( ) .x2 υ= ′ =

We differentiate u x( ) and find an antiderivative of υ′ x( ),

υ′ = =u x x x e( ) 2 and ( ) .x

We summarize this choice by setting = ′du u x dx( )  and υ υ= ′d x dx( ) , so

υ= =du x dx d e dx2 and .x

We then have

∫ ∫ ∫= − = −

υ υ
| | | |
x e dx x e e x dx x e x e dx2 2

u u

x x x x x2 2 2   Integration by parts formula

The new integral is less complicated than the original because the exponent on x is reduced 
by one. To evaluate the integral on the right, we integrate by parts again with 

υ= =u x d e dx,   .x  Then υ= =du dx e,   ,x  and

∫ ∫= − = − +

υ υ
| | | |

�x e dx x e e dx x e e C.

u u du

x x x x x

|

Using this last evaluation, we then obtain

∫ ∫= −

= − + +

x e dx x e x e dx

x e x e e C

2

2 2 ,

x x x

x x x

2 2

2

where the constant of integration is renamed after substituting for the integral on the right. 
 

The technique of Example 3 works for any integral ∫ x e dxn x  in which n is a positive 
integer, because differentiating x n will eventually lead to a constant, and repeatedly inte-
grating e x is easy.

Integrals like the one in the next example occur in electrical engineering. Their evalu-
ation requires two integrations by parts, followed by solving for the unknown integral.

EXAMPLE 4  Evaluate

e x dxcos .x∫
Solution Let =u e x  and d x dxcos .υ =  Then du e dx x,   sin ,x υ= =  and

e x dx e x e x dxcos sin sin .x x x∫ ∫= −

The second integral is like the first except that it has sin x in place of cos x. To evaluate it, 
we use integration by parts with

u e d x dx x du e dx, sin , cos , .x xυ υ= = = − =

Then

e x dx e x e x x e dx

e x e x e x dx

cos sin cos cos

                   sin cos cos .

x x x x

x x x

∫ ∫

∫

( )( )( )= − − − −

= + −

The unknown integral now appears on both sides of the equation, but with opposite signs. 
Adding the integral to both sides and adding the constant of integration gives

e x dx e x e x C2 cos sin cos .x x x
1∫ = + +

Integration by parts Equation (2)
u x d e dx,   xυ= =

= =v e du dx,  x

|
� ��� ���

dv

|
υ

� ��� ���
d

|
� ��� ���

du
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482 Chapter 8 Techniques of Integration

Dividing by 2 and renaming the constant of integration then gives

e x dx
e x e x

Ccos
sin cos

2
.x

x x

∫ =
+

+  

EXAMPLE 5  Obtain a formula that expresses the integral

∫ x dxcos n

in terms of an integral of a lower power of cos x.

Solution We may think of xcos n  as ⋅− x xcos cos .n 1  Then we let

υ= =−u x d x dxcos and cos ,n 1

so that

υ( )( )( )= − − =−du n x x dx x1 cos sin and sin .n 2

Integration by parts then gives

∫ ∫

∫

∫∫

( )

( )

( )

( ) ( )

= + −

= + − −

= + − − −

− −

− −

− −

x dx x x n x x dx

x x n x x dx

x x n x dx n x dx

cos cos sin 1 sin cos

cos sin 1 1 cos cos

cos sin 1 cos 1 cos .

n n n

n n

n n n

1 2 2

1 2 2

1 2

If we add

∫( )−n x dx1 cos n

to both sides of this equation, we obtain

∫ ∫( )= + −− −n x dx x x n x dxcos cos sin 1 cos .n n n1 2

We then divide through by n, and the final result is

∫ ∫= + −−
−x dx

x x
n

n
n

x dxcos
cos sin 1 cos .n

n
n

1
2  

The formula found in Example 5 is called a reduction formula because it replaces an 
integral containing some power of a function with an integral of the same form having the 
power reduced. When n is a positive integer, we may apply the formula repeatedly until the 
remaining integral is easy to evaluate. For example, the result in Example 5 tells us that

∫ ∫= +

= + +

x dx
x x

x dx

x x x C

cos
cos sin

3
2
3

cos

1
3

cos sin 2
3

sin .

3
2

2

Evaluating Definite Integrals by Parts

The integration by parts formula in Equation (1) can be combined with Part 2 of the 
Fundamental Theorem in order to evaluate definite integrals by parts. Assuming that both 
′u  and υ′ are continuous over the interval [ ]a b,   , Part 2 of the Fundamental Theorem gives

Integration by Parts Formula for Definite Integrals

 ∫ ∫υ υ υ′ =
⎤

⎦
⎥
⎥

− ′u x x dx u x x x u x dx( ) ( ) ( ) ( ) ( ) ( )
a

b

a

b

a

b
 (3)
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 8.2  Integration by Parts 483

EXAMPLE 6  Find the area of the region bounded by the curve = −y x e x and the 
x-axis from =x 0 to =x 4.

Solution The region is shaded in Figure 8.1. Its area is

∫ −x e dx.x

0

4

Let υ υ= = = −− −u x d e dx e,   ,   ,x x  and =du dx. Then

∫ ∫

∫( )[ ]

( )

( )= −
⎤

⎦
⎥
⎥

− −

= − − − +

= − − ⎤
⎦
⎥

= − − − = − ≈

− − −

− − −

− −

− − − −

x e dx x e e dx

e e e dx

e e

e e e e

4 0

4

4 1 5 0.91.

x x x

x

x

0

4

0

4

0

4

4 0

0

4

4

0

4

4 4 0 4  

Integration by Parts
Evaluate the integrals in Exercises 1–24 using integration by parts.

 1. x x dxsin
2∫  2. ∫ θ πθ θd cos

 3. t t dtcos2∫  4. x x dxsin2∫

 5. x x dxln
1

2

∫  6. x x dxln
e

3

1∫

 7. ∫ x e dxx  8. ∫ x e dxx3

 9. x e dxx2∫ −  10. ∫ ( )− +x x e dx2 1 x2 2

 11. ∫ − y dytan 1  12. ∫ y dyarcsin

 13. x x dxsec 2∫  14. x x dx4 sec 22∫

 15. ∫ x e dxx3  16. ∫ −p e dpp4

 17. ∫ ( )−x x e dx5 x2  18. ∫ ( )+ +r r e dr1 r2

 19. ∫ x e dxx5  20. ∫ t e dtt2 4

 21. e dsin∫ θ θθ  22. e y dycosy∫ −

 23. ∫ e x dxcos 3x2  24. ∫ −e x dxsin 2x2

Using Substitution
Evaluate the integrals in Exercises 25–30 by using a substitution prior 
to integration by parts.

 25. ∫ +e dss3 9  26. ∫ −x x dx1
0

1

 27. ∫
π

x x dxtan 2

0

3
 28. ∫ ( )+x x dxln 2

 29. ∫ ( )x dxsin ln  30. ∫ ( )z z dzln 2

Evaluating Integrals
Evaluate the integrals in Exercises 31–56. Some integrals do not 
require integration by parts.

 31. ∫ x x dxsec 2  32. x
x

dxcos∫

 33. x x dxln 2∫ ( )  34. ∫ ( )x x
dx1

ln 2

 35. ∫
x

x
dx

ln
2

 36. ∫
( )x

x
dx

ln 3

 37. x e dxx3 4∫  38. x e dxx5 3∫

 39. ∫ +x x dx13 2  40. ∫ x x dxsin2 3

 41. ∫ x x dxsin 3  cos 2  42. x x dxsin 2  cos 4∫

 43. x x dxln∫  44. ∫ e
x

dx
x

 45. ∫ x dxcos  46. ∫ x e dxx

 47. ∫ θ θ θ
π

dsin 22

0

2
 48. x x dxcos 23

0

2

∫
π

 49. t t dtsec 1

2 3

2

∫ −  50. ∫ x x dx2 arcsin( )2

0

1 2

 51. ∫ x x dxarctan  52. ∫ −x x dxtan
2

2 1

 53. ∫ ( )+ x e dx1 2 x2 2  54. ∫ ( )+
x e

x
dx

1

x

2

 55. ∫ ( )x x dxarcsin  56. ∫
( )

−

− x
x

dxsin
1

1 2

2

EXERCISES 8.2

FIGURE 8.1 The region in Example 6.

x

y

1 2 3 4-1 0

-0.5

-1

0.5

1

y = xe-x

Integration by parts Formula (3)
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484 Chapter 8 Techniques of Integration

0

10

-10

y = x cos x

x

y

p
2

7p
2

5p
2

3p
2

0

Massy

Dashpot

y

x

y

0 2pp

5

y = x sin x10

-5

3p

Theory and Examples

 57. Finding area Find the area of the region enclosed by the curve 
y x xsin=  and the x-axis (see the accompanying figure) for

 a. π≤ ≤x0 .

 b. π π≤ ≤x 2 .

 c. π π≤ ≤x2 3 .

 d. What pattern do you see here? What is the area between the 
curve and the x-axis for π π( )≤ ≤ +n x n n1 ,    an arbitrary 
nonnegative integer? Give reasons for your answer.

 62. Finding volume Find the volume of the solid generated 
by revolving the region bounded by the x-axis and the curve 
y x x xsin ,  0 ,π= ≤ ≤  about

 a. the y-axis.

 b. the line π=x .

(See Exercise 57 for a graph.)

 63. Consider the region bounded by the graphs of = =y x yln ,   0, 
and =x e.

 a. Find the area of the region.

 b. Find the volume of the solid formed by revolving this region 
about the x-axis.

 c. Find the volume of the solid formed by revolving this region 
about the line = −x 2.

 d. Find the centroid of the region.

 64. Consider the region bounded by the graphs of = =y x yarctan ,   0, 
and =x 1.

 a. Find the area of the region.

 b. Find the volume of the solid formed by revolving this region 
about the y-axis.

 65. Average value A retarding force, symbolized by the dashpot in 
the accompanying figure, slows the motion of the weighted spring 
so that the mass’s position at time t is

= ≥−y e t t2 cos , 0.t

Find the average value of y over the interval π≤ ≤t0 2 .

 58. Finding area Find the area of the region enclosed by the curve 
y x xcos=  and the x-axis (see the accompanying figure) for

 a. π π≤ ≤x2 3 2.

 b. π π≤ ≤x3 2 5 2.

 c. π π≤ ≤x5 2 7 2.

 d. What pattern do you see? What is the area between the curve 
and the x-axis for

π π( ) ( )− ≤ ≤ +n x n2 1
2

2 1
2

,

n an arbitrary positive integer? Give reasons for your answer.

 59. Finding volume Find the volume of the solid generated by 
revolving the region in the first quadrant bounded by the coordi-
nate axes, the curve =y e ,x  and the line x ln 2=  about the line 
x ln 2.=

 60. Finding volume Find the volume of the solid generated by 
revolving the region in the first quadrant bounded by the coordi-
nate axes, the curve = −y e ,x  and the line =x 1

 a. about the y-axis.

 b. about the line =x 1.

 61. Finding volume Find the volume of the solid generated by 
revolving the region in the first quadrant bounded by the coordi-
nate axes and the curve y x xcos ,  0 2,π= ≤ ≤  about

 a. the y-axis.

 b. the line π=x 2.

 66. Average value In a mass-spring-dashpot system like the one in 
Exercise 65, the mass’s position at time t is

y e t t t4 sin cos , 0.t ( )= − ≥−

Find the average value of y over the interval π≤ ≤t0 2 .

Reduction Formulas
In Exercises 67–73, use integration by parts to establish the reduction 
formula.

 67. ∫ ∫= − −x x dx x x n x x dxcos sin sinn n n 1

 68. x x dx x x n x x dxsin cos cosn n n 1∫ ∫= − + −
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 8.2  Integration by Parts 485

 69. x e dx
x e

a
n
a

x e dx a  , 0n ax
n ax

n ax1∫ ∫= − ≠−

 70. x dx x x n x dxln ln lnn n n 1∫ ∫( ) ( ) ( )= − −

 71. x x dx

x
m

x n
m

x x dx m

ln

1
ln

1
ln ,   1

m n

m n m n1 1

∫

∫

( )

( ) ( )=
+

−
+

≠ −
+ −

 72. ∫

∫( )

+

=
+

+ −
+

+−

x x dx

x
n

x n
n

x x dx

1

2
2 3

1 2
2 3

  1

n

n
n3 2 1

 73. ∫

∫
+

=
+

+ −
+ +

−

x
x

dx

x
n

x n
n

x
x

dx

1
2

2 1
1 2

2 1 1

n

n n 1

 74. Use Example 5 to show that

∫ ∫=
π π

x dx x dxsin cosn n

0

2

0

2

�
�

�
�

π( ) ( )

( )
=

⋅ ⋅ −
⋅ ⋅

⋅ ⋅ −
⋅ ⋅

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

n
n

n

n
n

n

2
1 3 5 1

2 4 6
,   even

2 4 6 1
1 3 5

,   odd

 75. Show that

∫∫ ∫( ) ( )= −f t dt dx x a f x dx( )   ( ) .
x

b

a

b

a

b

 76. Use integration by parts to obtain the formula

∫ ∫− = − +
−

x dx x x
x

dx1 1
2

1 1
2

1
1

.2 2
2

Integrating Inverses of Functions
Integration by parts leads to a rule for integrating inverses that usually 
gives good results:

∫ ∫

∫

∫

= ′

= −

= −

−

−

f x dx y f y dy

y f y f y dy

x f x f y dy

( ) ( )

( ) ( )

( ) ( )

1

1

The idea is to take the most complicated part of the integral, in this 
case f x( ),1−  and simplify it first. For the integral of ln x, we get

x dx ye dy

ye e C

x x x C

ln

ln .

y

y y

∫ ∫=

= − +

= − +

For the integral of xarccos , we get

x dx x x y dy

x x y C

x x x C

arccos arccos cos

arccos sin

arccos sin arccos .

∫ ∫

( )

= −

= − +

= − +

Use the formula

∫ ∫= −− −f x dx x f x f y dy( ) ( ) ( )1 1  (4)

to evaluate the integrals in Exercises 77–80. Express your answers in 
terms of x.

 77. ∫ x dxarcsec  78. ∫ x dxarctan

 79. ∫ − x dxsec 1  80. ∫ x dxlog2

Another way to integrate −f x( )1  (when −f 1 is integrable) is to 
use integration by parts with = −u f x( )1  and υ =d dx to rewrite the 
integral of −f 1 as

∫∫ ( )= −− − −f x dx x f x x d
dx

f x dx( ) ( ) ( ) .1 1 1  (5)

Exercises 81 and 82 compare the results of using Equations (4) 
and (5).

 81. Equations (4) and (5) give different formulas for the integral of 
xarccos :

 a. ∫ ( )= − +x dx x x x Carccos arccos sin arccos  Eq. (4)

 b. ∫ = − − +x dx x x x Carccos arccos 1 2  Eq. (5)

Can both integrations be correct? Explain.

 82. Equations (4) and (5) lead to different formulas for the integral of 
xarctan :

 a. ∫ ( )= − +x dx x x x Carctan arctan ln sec arctan  Eq. (4)

 b. ∫ = − + +x dx x x x Carctan arctan ln 1 2  Eq. (5)

Can both integrations be correct? Explain.

Evaluate the integrals in Exercises 83 and 84 with (a) Eq. (4) and (b) 
Eq. (5). In each case, check your work by differentiating your answer 
with respect to x.

 83. ∫ − x dxsinh 1

 84. ∫ − x dxtanh 1

Integration by parts with 
υ= = ′( )u y d f y dy,  

= =
= ′

− ( ) ( )
( )

y f x x f y
dx f y dy

,1

y x x e
dx e dy

ln , y

y
= =

=

=y xarccos

= − ( )y f x1
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486 Chapter 8 Techniques of Integration

Here are some examples illustrating each case.

EXAMPLE 1  Evaluate ∫ x x dxsin cos .3 2

Solution This is an example of Case 1.

∫ ∫

∫

∫

∫

( )( )

( )

( )

( )

=

= −

= − −

= −

= − + = − +

x x dx x x x dx

x x x dx

u u du

u u du

u u C x x C

sin cos sin cos sin

1 cos cos sin

1 ( )

5 3
cos

5
cos

3

3 2 2 2

2 2

2 2

4 2

5 3 5 3
 

8.3 Trigonometric Integrals

Trigonometric integrals involve algebraic combinations of the six basic trigonometric 
functions. In principle, we can always express such integrals in terms of sines and cosines, 
but it is often simpler to work with other functions, as in the integral

x dx x Csec tan .2∫ = +

The general idea is to use identities to transform the integrals we must find into integrals 
that are easier to work with.

Products of Powers of Sines and Cosines

We begin with integrals of the form

x x dxsin cos ,m n∫
where m and n are nonnegative integers (positive or zero). We can divide the appropriate 
substitution into three cases according to m and n being odd or even.

Case 1 If m is odd in ∫ x x dxsin cos ,m n  we write m as +k2 1 and use the identity 
= −x xsin 1 cos2 2  to obtain

 x x x x x xsin sin sin sin 1 cos sin .m k k k2 1 2 2( ) ( )= = = −+  (1)

Then we substitute = = −u x du x dxcos  and  sin .

Case 2 If n is odd in x x dxsin cos ,m n∫  we write n as +k2 1 and use the identity 
= −x xcos 1 sin2 2  to obtain

x x x x x xcos cos cos cos 1 sin cos .n k k k2 1 2 2( ) ( )= = = −+

We then substitute = =u x du x dxsin  and  cos .

Case 3 If both m and n are even in ∫ x x dxsin cos ,m n  we substitute

 x
x

x
x

sin
1 cos 2

2
, cos

1 cos 2
2

2 2=
−

=
+

 (2)

to reduce the integrand to one in lower powers of xcos 2 .

m is odd.

= −x xsin 1 cos2 2

= = −u x du x dxcos ,   sin

Distribute.

M08_HASS5901_15_GE_C08.indd   486 07/03/2023   15:32

www.konkur.in

Telegram: @uni_k



 8.3  Trigonometric Integrals 487

EXAMPLE 2  Evaluate

∫ x dxcos .5

Solution This is an example of Case 2, where =m 0 is even and n 5=  is odd.

x dx x x dx

x x dx

u du

u u du

u u u C x x x C

cos cos cos

1 sin cos

1

1 2

2
3

1
5

sin 2
3

sin 1
5

sin

5 4

2 2

2 2

2 4

3 5 3 5

∫ ∫

∫

∫

∫

( )

( )

( )

=

= −

= −

= − +

= − + + = − + +  

EXAMPLE 3  Evaluate

x x dxsin cos .2 4∫

Solution This is an example of Case 3.

x x dx
x x

dx

x x x dx

x x x dx

x x x x dx

sin cos
1 cos 2

2
1 cos 2

2

1
8

1 cos 2 1 2 cos 2 cos 2

1
8

1 cos 2 cos 2 cos 2

1
8

1
2

sin 2 cos 2 cos 2

2 4
2

2

2 3

2 3

∫ ∫

∫

∫

∫

( )( )
( )( )

( )

( )

=
− +

= − + +

= + − −

= + − +⎡
⎣⎢

⎤
⎦⎥

For the term involving xcos 2 ,2  we use

x dx x dx

x x C

cos 2 1
2

  1 cos 4

1
2

1
4

sin 4 .

2

1

∫ ∫

( )

( )= +

= + +

For the xcos 23  term, we have

x dx x x dx

u du x x C

cos 2 1 sin 2 cos 2

1
2

  1 1
2

sin 2 1
3

sin 2 .

3 2

2 3
2

∫ ∫

∫ ( )

( )

( )

= −

= − = − +

Combining everything and simplifying, we get

x x dx x x x Csin cos 1
16

1
4

sin 4 1
3

sin 2 .2 4 3∫ ( )= − + +  

u x du x dxsin ,   cos= =

uSquare 1 .2−

m n and   both even

u x du x dxsin 2 ,   2 cos 2= =

x

Use the identity 

cos 1 cos 2 2,  

with 2 .

2 θ θ
θ

( )= +

=
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488 Chapter 8 Techniques of Integration

Eliminating Square Roots

In the next example, we use the identity cos 1 cos 2 22 θ θ( )= +  to eliminate a square 
root.

EXAMPLE 4  Evaluate

x dx1 cos 4 .
0

4

∫ +
π

Solution To eliminate the square root, we use the identity

cos
1 cos 2

2
or 1 cos 2 2 cos .2 2θ

θ
θ θ=

+
+ =

With x2 ,θ =  this becomes

x x1 cos 4 2 cos 2 .2+ =

Therefore,

x dx x dx x dx

x dx x dx

x

1 cos 4 2 cos 2 2 cos 2

2 cos 2 2 cos 2

2
sin 2

2
2

2
1 0 2

2
.

0

4
2

0

4
2

0

4

0

4

0

4

0

4

∫ ∫ ∫

∫ ∫

[ ]

+ = =

= =

= ⎡
⎣
⎢

⎤
⎦
⎥ = − =

π π π

π π

π
 

Integrals of Powers of tan x and sec x

We know how to integrate the tangent and secant functions and their squares. To integrate 
higher powers, we use the identities x xtan sec 12 2= −  and x xsec tan 1,2 2= +  and inte-
grate by parts when necessary to reduce the higher powers to lower powers.

EXAMPLE 5  Evaluate

x dxtan .4∫

Solution 

x dx x x dx

x x dx

x x dx x dx

x x dx x dx

x x dx x dx dx

tan tan · tan

tan · sec 1

tan sec tan

tan sec sec 1

tan sec sec  

4 2 2

2 2

2 2 2

2 2 2

2 2 2

∫ ∫

∫

∫∫

∫ ∫

∫ ∫ ∫

( )

( )

=

= −

= −

= − −

= − +

In the first integral, we let

u x du x dxtan , sec 2= =

= −x xtan sec 12 2

= −x xtan sec 12 2

π[ ]
≥xcos 2 0 

on 0,  4
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 8.3  Trigonometric Integrals 489

and have

u du u C1
3

.2 3
1∫ = +

The remaining integrals are standard forms, so

x dx x x x Ctan 1
3

tan tan .4 3∫ = − + +  

EXAMPLE 6  Evaluate

x dxsec .3∫

Solution We integrate by parts using

u x d x dx x du x x dxsec , sec , tan , sec tan .2υ υ= = = =

Then

∫ ∫

∫

∫ ∫

( )( )

( )

= −

= − −

= − +

x dx x x x x x dx

x x x x dx

x x x dx x dx

sec sec tan tan sec tan

sec tan sec 1 sec

sec tan sec sec

3

2

3

Combining the two secant-cubed integrals gives

x dx x x x dx2 sec sec tan sec3∫ ∫= +

and therefore

x dx x x x x Csec 1
2

sec tan 1
2

ln sec tan .3∫ = + + +  

EXAMPLE 7  Evaluate

x x dxtan sec .4 4∫

Solution 

∫ ∫

∫

∫

( )( ) ( )( )( )

( )( )

( )

= +

= +

= + = + +

= + +

x x dx x x x dx

x x x dx

u u du u u C

x x C

tan sec tan 1 tan sec

tan tan sec

5 7

tan
5

tan
7

4 4 4 2 2

4 6 2

4 6
5 7

5 7
 

Integrate by parts.

x xtan sec 12 2= −

= +x xsec 1 tan2 2

Distribute.

u x
du x dx

tan ,
sec 2

=
=

M08_HASS5901_15_GE_C08.indd   489 07/03/2023   15:32

www.konkur.in

Telegram: @uni_k



490 Chapter 8 Techniques of Integration

Products of Sines and Cosines

The integrals

mx nx dx mx nx dx mx nx dxsin sin , sin cos , and cos cos∫ ∫ ∫
arise in many applications involving periodic functions. We can evaluate these integrals 
through integration by parts, but two such integrations are required in each case. It is sim-
pler to use the following identities.

 mx nx m n x m n xsin sin 1
2

cos cos( ) ( )[ ]= − − +  (3)

 mx nx m n x m n xsin cos 1
2

sin sin[ ]( ) ( )= − + +  (4)

 mx nx m n x m n xcos cos 1
2

cos cos( ) ( )[ ]= − + +  (5)

These identities come from the angle sum formulas for the sine and cosine functions 
(Section 1.3). They give functions whose antiderivatives are easily found.

EXAMPLE 8  Evaluate

x x dxsin 3 cos 5 . ∫

Solution From Equation (4) with m 3=  and n 5= , we get

x x dx x x dx

x x dx

x x
C

sin 3 cos 5 1
2

sin 2 sin 8

1
2

sin 8 sin 2

cos 8
16

cos 2
4

.

∫ ∫

∫

( )[ ]

( )

= − +

= −

= − + +  

Powers of Sines and Cosines
Evaluate the integrals in Exercises 1–22.

 1. x dxcos 2∫  2. x dx3 sin
30∫

π

 3. x x dxcos sin3∫  4. x x dxsin 2 cos 24∫

 5. ∫ x dxsin 3  6. ∫ x dxcos 43

 7. ∫ x dxsin 5  8. ∫
π x dxsin

2
5

0

 9. ∫ x dxcos3  10. x dx3 cos 35

0

6

∫
π

 11. x x dxsin cos3 3∫  12. x x dxcos 2 sin 23 5∫

 13. ∫ x dxcos 2  14. ∫
π

x dxsin 2

0

2

 15. ∫
π

y dysin 7

0

2
 16. t dt7 cos 7∫

 17. x dx8 sin 4

0∫
π

 18. x dx8 cos 24∫ π

 19. x x dx16 sin cos2 2∫  20. y y dy8 sin cos  4 2

0∫
π

 21. d8 cos 2 sin 23∫ θ θ θ  22. dsin 2 cos 22 3

0

2

∫ θ θ θ
π

EXERCISES 8.3
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 8.3  Trigonometric Integrals 491

Integrating Square Roots
Evaluate the integrals in Exercises 23–32.

 23. 
x

dx
1 cos

20

2

∫
−π

 24. x dx1 cos 2
0∫ −
π

 25. ∫ −
π

t dt1 sin 2

0
 26. d1 cos 2

0∫ θ θ−
π

 27. x
x

dxsin
1 cos

2

3

2

∫ −π

π
 28. x dx1 sin

0

6

∫ +
π

Hint
x
x

: Multiply by 
1 sin
1 sin

.
−
−

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

 29. x
x

dxcos
1 sin

4

5 6∫ −π

π
 30. x dx1 sin 2

2

3 4

∫ −
π

π

 31. d1 cos 2
0

2

∫ θ θ θ−
π

 32. ∫ ( )−
π

π

−
t dt1 cos 2 3 2

Powers of Tangents and Secants
Evaluate the integrals in Exercises 33–52.

 33. x x dxsec tan2∫  34. x x dxsec tan 2∫

 35. x x dxsec tan3∫  36. ∫ x x dxsec tan3 3

 37. ∫ x x dxsec tan2 2  38. ∫ x x dxsec tan4 2

 39. x dx2 sec3

3

0

∫ π−
 40. ∫ e e dxsecx x3

 41. ∫ θ θdsec 4  42. x x dxtan sec4 3∫

 43. ∫ θ θ
π

π
dcsc 4

4

2
 44. ∫ x dxsec 6

 45. x dx4 tan 3∫  46. x dx6 tan 4

4

4

∫ π

π

−

 47. ∫ x dxtan 5  48. ∫ x dxcot 26

 49. x dxcot 3

6

3

∫π
π

 50. t dt8 cot 4∫

 51. dtan sec5 4

4

3

∫ θ θ θ
π

π
 52. t t dtcot csc3 4∫

Products of Sines and Cosines
Evaluate the integrals in Exercises 53–58.

 53. x x dxsin 3 cos 2∫  54. x x dxsin 2 cos 3∫

 55. x x dxsin 3 sin 3∫ π

π

−
 56. x x dxsin cos

0

2

∫
π

 57. x x dxcos 3 cos 4∫  58. x x dxcos cos 7
2

2

∫ π

π

−

Exercises 59–64 require the use of various trigonometric identities 
before you evaluate the integrals.

 59. dsin cos 32∫ θ θ θ  60. dcos 2 sin2∫ θ θ θ

 61. dcos sin 23∫ θ θ θ  62. dsin cos 23∫ θ θ θ

 63. dsin cos cos 3∫ θ θ θ θ  64. dsin sin 2 sin 3∫ θ θ θ θ

Assorted Integrations
Use any method to evaluate the integrals in Exercises 65–70.

 65. x
x

dxsec
tan

3

∫  66. ∫ x
x

dxsin
cos

3

4

 67. x
x

dxtan
csc

2

∫  68. 
x
x

dx
cot
cos 2∫

 69. ∫ x x dxsin 2  70. ∫ x x dxcos3

Applications

 71. Arc length Find the length of the curve

y x xln sin ,
6 2
π π( )= ≤ ≤

 72. Center of gravity Find the center of gravity of the region 
bounded by the x-axis, the curve y xsec ,=  and the lines 

π π= − =x x4,   4.

 73. Volume Find the volume generated by revolving one arch of the 
curve y xsin=  about the x-axis.

 74. Area Find the area between the x-axis and the curve 
y x x1 cos 4 ,  0 .π= + ≤ ≤

 75. Centroid Find the centroid of the region bounded by the graphs 
of y x xcos= +  and =y 0 for π≤ ≤x0 2 .

 76. Volume Find the volume of the solid formed by revolving the 
region bounded by the graphs of y x x ysin sec ,   0,= + =  

=x 0, and π=x 3 about the x-axis.

 77. Volume Find the volume of the solid formed by revolving the 
region bounded by the graphs of =y xarctan , =x 0, and 

π=y 4 about the y-axis.

 78. Average Value Find the average value of the function 

f x( ) 1
1 sin θ

=
−

 on 0, 6π[ ].
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492 Chapter 8 Techniques of Integration

8.4 Trigonometric Substitutions

Trigonometric substitutions occur when we replace the variable of integration by a trigo-
nometric function. The most common substitutions are x a x atan ,   sin , and 
x a sec . These substitutions are effective in transforming integrals involving 

a x ,2 2  a x ,2 2  and x a2 2  into integrals with respect to , since they come 
from the reference right triangles in Figure 8.2.

FIGURE 8.2 Reference triangles for the three basic substitutions,  
identifying the sides labeled x and a for each substitution.

u u u

a

a

a

x
xx

"a2 - x2

x = a tan u x = a sin u x = a sec u

"x2 - a2"a2 + x2

"a2 + x2 = a 0 sec u 0 "a2 - x2 = a 0 cos u 0 "x2 - a2 = a 0 tan u 0

FIGURE 8.3 The arctangent, arcsine, 
and arcsecant of x a, graphed as functions 
of x a.

u

u

u

x
a

x
a

x
a

x
a

p
2

p
2

p
2

p
2-

p
2-

p
u = arcsec

x
au = arctan 

x
au = arcsin

0

0 1-1

0 1-1

With x a tan ,

( )+ = + = + =a x a a a atan 1 tan sec .2 2 2 2 2 2 2 2 2

With x a sin ,

( )− = − = − =a x a a a asin 1 sin cos .2 2 2 2 2 2 2 2 2

With x a sec ,

( )− = − = − =x a a a a asec sec 1 tan .2 2 2 2 2 2 2 2 2

We want any substitution we use in an integration to be reversible so that we can 
change back to the original variable afterward. For example, if x a tan , we want to be 
able to set ( )= x aarctan  after the integration takes place. If x a sin , we want to be 
able to set ( )= x aarcsin  when we’re done, and similarly for x a sec .

As we know from Section 1.5, the functions in these substitutions have inverses only 
for selected values of  (Figure 8.3). For reversibility,

x a x
a

x a x
a

x a x
a

x
a

x
a

tan requires arctan with
2 2

,

sin requires arcsin with
2 2

,

sec requires arcsec with

0
2

if 1,

2
if 1.

θ θ π θ π

θ θ π θ π

θ θ

θ π

π θ π

( )

( )

( )

= = − < <

= = − ≤ ≤

= =

≤ < ≥

< ≤ ≤ −

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

To simplify calculations with the substitution x a sec , we will restrict its use  
to integrals in which x a 1. This will place  in [ )0,   2  and make tan 0. We  
will then have x a a a atan tan tan ,2 2 2 2− = = =  free of absolute values, 
provided a 0.
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 8.4  Trigonometric Substitutions 493

Procedure for a Trigonometric Substitution

1. Write down the substitution for x, calculate the differential dx, and specify the 
selected values of θ for the substitution.

2. Substitute the trigonometric expression and the calculated differential into the 
integrand, and then simplify the results algebraically.

3. Evaluate the trigonometric integral, keeping in mind the restrictions on the 
angle θ for reversibility.

4. Draw an appropriate reference triangle to reverse the substitution in the inte-
gration result and convert it back to the original variable x.

EXAMPLE 1  Evaluate

∫ +
dx

x4
.

2

Solution We set

x dx d

x

2 tan , 2 sec ,
2 2

,

4 4 4 tan 4 1 tan 4 sec .

2

2 2 2 2

θ θ θ π θ π

θ θ θ( )

= = − < <

+ = + = + =

Then

dx
x

d d

d

C

x x C

4

2 sec

4 sec

sec
sec

sec

ln sec tan

ln 4
2 2

.

2

2

2

2

2

∫ ∫ ∫

∫

θ θ
θ

θ θ
θ

θ θ

θ θ

+
= =

=

= + +

= + + +

Notice how we expressed ln sec tanθ θ+  in terms of x: We drew a reference triangle for 
the original substitution x 2 tan θ=  (Figure 8.4) and read the ratios from the triangle. 

EXAMPLE 2  Here we find an expression for the inverse hyperbolic sine function in 
terms of the natural logarithm. Following the same procedure as in Example 1, we find 
that

dx
a x

d

C

a x
a

x
a

C

sec

ln sec tan

ln

2 2

2 2

∫ ∫ θ θ

θ θ

+
=

= + +

= + + +

From Table 7.9, x asinh 1( )−  is also an antiderivative of +a x1 ,2 2  so the two anti-
derivatives differ by a constant, giving

= + + +− x
a

a x
a

x
a

Csinh ln .1
2 2

sec sec2 θ θ=

sec 0 for
2 2

θ π θ π> − < <

From Fig. 8.4

x a dx a dtan ,  sec 2θ θ θ= =

Fig. 8.2

FIGURE 8.4 Reference triangle for 
x 2 tan θ=  (Example 1):

xtan
2

θ =

and

xsec 4
2

.
2

θ = +

u

2

x
"4 + x2
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494 Chapter 8 Techniques of Integration

Setting =x 0 in this last equation, we find that = + C0 ln 1 , so =C 0. Since 

+ >a x x ,2 2  we conclude that a x
a

x
a

0,
2 2+ + >  and therefore

= + +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

− x
a

a x
a

x
a

sinh ln1
2 2

(See also Exercise 76 in Section 7.3.) 

EXAMPLE 3  Evaluate

∫ −
x dx

x9
.

2

2

Solution We set

x dx d

x

3 sin , 3 cos ,
2 2

9 9 9 sin 9 1 sin 9 cos .2 2 2 2

θ θ θ π θ π

θ θ θ( )

= = − < <

− = − = − =

Then

∫ ∫

∫

∫

θ θ θ
θ

θ θ

θ
θ

θ
θ

θ θ θ

( )
( )

−
=

⋅

=

=
−

= − +

= − +

= − ⋅ −⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +

= − − +

x dx

x

d

d

d

C

C

x x x C

x x x C

9

9 sin 3 cos
3 cos

9 sin

9
1 cos 2

2

9
2

sin 2
2

9
2

sin cos

9
2

arcsin
3 3

9
3

9
2

arcsin
3 2

9 .

2

2

2

2

2

2  

EXAMPLE 4  Evaluate

∫ −
>dx

x
x

25 4
, 2

5
.

2

Solution We first rewrite the radical as

( )

( )

− = −

= −

x x

x

25 4 25 4
25

5 2
5

2 2

2
2

cos 0 for
2 2

θ π θ π> − < <

sin
1 cos 2

2
2 θ

θ
=

−

sin 2 2 sin cosθ θ θ=

From Fig. 8.5

− =x a a with  2
5

2 2

FIGURE 8.5 Reference triangle for 
x 3 sin θ=  (Example 3):

xsin
3

θ =

and

xcos 9
3

.
2

θ = −

u

3 x

"9 - x2
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 8.4  Trigonometric Substitutions 495

FIGURE 8.6 If x 2 5 sec ,θ( )=  
θ π< <0 2, then xarcsec 5 2 ,θ ( )=  

and we can read the values of the other 
trigonometric functions of θ from this right 
triangle (Example 4).

u

2

5x
"25x2 - 4

to put the radicand in the form −x a .2 2  We then substitute

x dx d2
5

sec , 2
5

sec tan , 0
2

.θ θ θ θ θ π= = < <

We then get

θ θ θ( ) ( )− = − = − =x 2
5

4
25

sec 4
25

4
25

sec 1 4
25

tan2
2

2 2 2

and

x 2
5

2
5

tan 2
5

tan .2
2

θ θ( )− = =    tan 0 for 0 2θ θ π> < <

With these substitutions, we have

dx
x

dx
x

d

d C

x x C

25 4 5 4 25

2 5 sec tan
5 2 5 tan

1
5

sec 1
5

ln sec tan

1
5

ln 5
2

25 4
2

.

2 2

2

∫ ∫ ∫

∫

θ θ θ
θ

θ θ θ θ

( )
( )

( )−
=

−
=

⋅

= = + +

= + − + From Fig. 8.6 

Using Trigonometric Substitutions
Evaluate the integrals in Exercises 1–14.

 1. ∫ +
dx

x9 2
 2. ∫ +

dx

x

3

1 9 2

 3. ∫ +−

dx
x4 22

2
 4. ∫ +

dx
x8 2 20

2

 5. ∫ −
dx

x9 20

3 2
 6. ∫ −

dx

x

2

1 4 20

1 2 2

 7. ∫ − t dt25 2  8. ∫ − t dt1 9 2

 9. ∫ −
>dx

x
x

4 49
, 7

22
 10. ∫ −

>
dx

x
x

5

25 9
, 3

52

 11. ∫ − >y
y

dy y49 , 7
2

 12. ∫ − >y
y

dy y25 , 5
2

3

 13. ∫ −
>dx

x x
x

1
, 1

2 2
 14. ∫ −

>
dx

x x
x

2

1
, 1

3 2

Assorted Integrations
Use any method to evaluate the integrals in Exercises 15–38. Most 
will require trigonometric substitutions, but some can be evaluated by 
other methods.

 15. ∫ −
dx

x x 12
 16. ∫ +

dx
x1 2

 17. ∫ −
x dx

x 12
 18. ∫ −

dx
x1 2

 19. ∫ −
x

x
dx

9 2
 20. ∫ +

x
x

dx
4

2

2

 21. ∫ +
x dx

x 4

3

2
 22. ∫ +

dx
x x 12 2

 23. ∫ −
dw

w w

8

42 2
 24. ∫ − w

w
dw9 2

2

 25. ∫ +
−

x
x

dx1
1

 26. ∫ −x x dx42

 27. ∫ ( )−
x dx

x

4

1

2

2 3 20

3 2
 28. ∫ ( )−

dx
x4 2 3 20

1

 29. ∫ ( )−
>dx

x
x

1
, 1

2 3 2  30. ∫ ( )−
>

x dx

x
x

1
, 1

2

2 5 2

 31. ∫
( )− x

x
dx1 2 3 2

6
 32. ∫

( )− x
x

dx1 2 1 2

4

 33. ∫ ( )+
dx

x

8

4 12 2  34. ∫ ( )+
dt

t

6

9 12 2

EXERCISES 8.4
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496 Chapter 8 Techniques of Integration

NOT  TO SCALE

x

y

0 (10, 0)x

f (x) (x, f (x)) skier

10 m rope

y = f (x) path of skier

boat

x

y

0 1

y = "x arctan x

 35. ∫ −
x dx

x 1

3

2
 36. ∫ +

x dx
x25 4 2

 37. ∫ ( )−
d

1

2

2 5 2  38. ∫
( )− r

r
dr1 2 5 2

8

In Exercises 39–48, use an appropriate substitution and then a trigono-
metric substitution to evaluate the integrals.

 39. ∫ +
e dt

e 9

t

t20

ln 4
 40. 

e dt

e1

t

t2 3 2ln 3 4

ln 4 3

∫ ( )+( )

( )

 41. ∫ +
dt

t t t

2

41 12

1 4
 42. ∫

( )+

dy

y y1 ln

e

21

 43. ∫ +
x dx

x1 4
 44. ∫

( )− x
x x

dx1 ln
ln

2

 45. ∫
( )

−

=

x
x

dx

Hint x u

4

: Let  .2

 46. ∫
( )

−
=

x
x

dx

Hint u x
1

: Let  .

3

3 2

 47. ∫ −x x dx1  48. ∫ −
−

x
x

dx2
1

Complete the Square Before Using Trigonometric Substitutions
For Exercises 49–52, complete the square before using an appropriate 
trigonometric substitution.

 49. ∫ − −x x dx8 2 2  50. ∫ − +x x
dx1

2 52

 51. ∫ + +
+

x x
x

dx4 3
2

2
 52. ∫ + +

+ +
x x

x x
dx2 2

2 1

2

2

Initial Value Problems
Solve the initial value problems in Exercises 53–56 for y as a function 
of x.

 53. = − ≥ =x
dy
dx

x x y4, 2, (2) 02

 54. − = > =x
dy
dx

x y9 1, 3, (5) ln 32

 55. ( )+ = =x
dy
dx

y4 3, (2) 02

 56. ( )+ = + =x
dy
dx

x y1 1, (0) 12 2 2

Applications and Examples

 57. Area Find the area of the region in the first quadrant that is 
enclosed by the coordinate axes and the curve = −y x9 3.2

 58. Area Find the area enclosed by the ellipse

+ =x
a

y
b

1.
2

2

2

2

 59. Consider the region bounded by the graphs of = =−y x ysin ,   0,1  
and x 1 2.

 a. Find the area of the region.

 b. Find the centroid of the region.

 60. Consider the region bounded by the graphs of y x xarctan  
and y 0 for x0 1. Find the volume of the solid formed 
by revolving this region about the x-axis (see accompanying 
figure).

 61. Evaluate ∫ −x x dx13 2  using

 a. integration by parts.

 b. a u-substitution.

 c. a trigonometric substitution.

 62. Path of a water skier Suppose that a boat is positioned at the 
origin with a water skier tethered to the boat at the point 10,  0( ) on 
a rope 10 m long. As the boat travels along the positive y-axis, the 
skier is pulled behind the boat along an unknown path y f x( ), 
as shown in the accompanying figure.

 a. Show that f x x
x

( ) 100 .
2

′ = − −

(Hint: Assume that the skier is always pointed directly at the boat 
and the rope is on a line tangent to the path y f x( ).)

 b. Solve the equation in part (a) for f x( ), using f (10) 0.

 63. Find the average value of = +f x x
x

( ) 1 on the interval [ ]1,  3 .

 64. Find the length of the curve = − ≤ ≤−y e x1 ,  0 1.x
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 8.5  Integration of Rational Functions by Partial Fractions 497

8.5 Integration of Rational Functions by Partial Fractions

This section shows how to express a rational function (a quotient of polynomials) as a sum 
of simpler fractions, called partial fractions, which are more easily integrated. For instance, 
the rational function ( )( )− − −x x x5 3 2 32  can be rewritten as

−
− −

=
+

+
−

x
x x x x

5 3
2 3

2
1

3
3

.
2

You can verify this equation algebraically by placing the fractions on the right side over a 
common denominator ( )( )+ −x x1 3 . The skill acquired in writing rational functions as 
such a sum is useful in other settings as well (for instance, when using certain transform 
methods to solve differential equations). To integrate the rational function 

( )( )− − −x x x5 3 2 32  on the left side of the expression we are considering, we simply 
sum the integrals of the fractions on the right side:

x
x x

dx
x

dx
x

dx

x x C

5 3
1 3

2
1

3
3

2 ln 1 3 ln 3 .

∫ ∫ ∫( )( )

−
+ −

=
+

+
−

= + + − +

The method for rewriting rational functions as a sum of simpler fractions is called the 
method of partial fractions. In the case of our example, it consists of finding constants  
A and B such that

 −
− −

=
+

+
−

x
x x

A
x

B
x

5 3
2 3 1 3

.
2

 (1)

(Pretend for a moment that we do not know that =A 2 and =B 3 will work.) We call the 
fractions ( )+A x 1  and ( )−B x 3  partial fractions because their denominators are only 
part of the original denominator − −x x2 3.2  We call A and B undetermined coefficients 
until suitable values for them have been found.

To find A and B, we first clear Equation (1) of fractions and regroup in powers of x, 
obtaining

( ) ( ) ( )− = − + + = + − +x A x B x A B x A B5 3 3 1 3 .

This will be an identity in x if and only if the coefficients of like powers of x on the two 
sides are equal:

A B A B5, 3 3.+ = − + = −

Solving these equations simultaneously gives =A 2 and =B 3.

General Description of the Method

Success in writing a rational function f x g x( ) ( ) as a sum of partial fractions depends on 
three things:

• The degree of f x( ) must be less than the degree of g x( ). That is, the fraction must be 
proper. If it isn’t, divide f x( ) by g x( ) and work with the remainder term. Example 3 of 
this section illustrates such a case.

• We must know the factors of g x( ). In theory, any polynomial with real coefficients can 
be written as a product of real linear factors and real quadratic factors. In practice, the 
factors may be hard to find.

• The values of the undetermined coefficients form a system of n linear equations in n 
unknowns. For large n, solving such systems may require linear algebra methods (such 
as Gaussian Elimination).
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498 Chapter 8 Techniques of Integration

Here is how we find the partial fractions of a proper fraction f x g x( ) ( ) when the factors of 
g are known. A quadratic polynomial (or factor) is irreducible if it cannot be written as the 
product of two linear factors with real coefficients. That is, the polynomial has no real 
roots.

Method of Partial Fractions When ( ) ( )f x g x  Is Proper

1. Let −x r  be a linear factor of g x( ). Suppose that ( )−x r m is the highest 
power of −x r  that divides g x( ). Then, to this factor, assign the sum of the m 
partial fractions:

…A
x r

A
x r

A
x r

      .m
m

1 2
2( ) ( ) ( )−

+
−

+ +
−

Do this for each distinct linear factor of g x( ).

2. Let + +x px q2  be an irreducible quadratic factor of g x( ). In this case, 
+ +x px q2  has no real roots. Suppose that ( )+ +x px q n2  is the highest 

power of this factor that divides g x( ). Then, to this factor, assign the sum of 
the n partial fractions:

�
( ) ( ) ( )

+
+ +

+
+

+ +
+ +

+
+ +

B x C
x px q

B x C
x px q

B x C
x px q

.n n
n

1 1
2

2 2
2 2 2

Do this for each distinct quadratic factor of g x( ).

3. Set the original fraction f x g x( ) ( ) equal to the sum of all these partial frac-
tions. Clear the resulting equation of fractions.

4. Find the values of the undetermined coefficients.

There are often multiple ways to find the values of the undetermined coefficients in 
Step 4. To find the values of the coefficients that satisfy Equation (1), we equated coeffi-
cients of like powers of x. In the next example, we instead will assign convenient values 
of x, leading to simple equations that we can solve for the undetermined coefficients.

EXAMPLE 1  Use partial fractions to evaluate

∫ ( )( )( )

+ +
− + +

x x
x x x

dx4 1
1 1 3

.
2

Solution Note that each of the factors ( ) ( )− +x x1 ,   1 , and ( )+x 3  is raised only to 
the first power. Therefore, the partial fraction decomposition has the form

( )( )( )

+ +
− + +

=
−

+
+

+
+

x x
x x x

A
x

B
x

C
x

4 1
1 1 3 1 1 3

.
2

To find the values of the undetermined coefficients A, B, and C, we clear fractions and get

( )( ) ( )( ) ( )( )+ + = + + + − + + − +x x A x x B x x C x x4 1 1 3 1 3 1 1 .2

On the right side, we notice that a factor ( )−x 1  is present in all terms except for the one 
containing A. Therefore, letting x 1=  allows us to solve for A.

x A B C

A

A

1: 1 4(1) 1 (2)(4) (0) (0)

6 8

3
4

2= + + = + +

=

=
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 8.5  Integration of Rational Functions by Partial Fractions 499

In a similar manner, we can let x equal −1 to find B or −3 to find C.

x A B C

B

B

1: 1 4 1 1 (0) 2 (2) (0)

2 4

1
2

2( ) ( ) ( )= − − + − + = + − +

− = −

=

x A B C

C

C

3: 3 4 3 1 (0) (0) 4 2

2 8

1
4

2( ) ( ) ( )( )= − − + − + = + + − −

− =

= −

Hence we have

∫ ∫( )( )( )

+ +
− + +

=
−

+
+

−
+

⎡
⎣⎢

⎤
⎦⎥

= − + + − + +

x x
x x x

dx
x x x

dx

x x x K

4 1
1 1 3

3
4

1
1

1
2

1
1

1
4

1
3

3
4

ln 1 1
2

ln 1 1
4

ln 3 ,  

2

where K is the arbitrary constant of integration (we call it K here to avoid confusion with 
the undetermined coefficient we labeled as C). 

You can solve for the undetermined coefficients (A, B, etc.) by equating coefficients of 
like powers of x or by assigning convenient values to x. You should choose the method that 
is most convenient for the problem at hand.

EXAMPLE 2  Use partial fractions to evaluate

∫ ( )

+
+

x
x

dx6 7
2

.2

Solution First we express the integrand as a sum of partial fractions with undetermined 
coefficients.

x
x

A
x

B
x

x A x B

Ax A B

6 7
2 2 2

6 7 2

2

2 2( ) ( )

( )

( )

+
+

=
+

+
+

+ = + +

= + +

Equating coefficients of corresponding powers of x gives

= + = + = = = −A A B B A B6 and 2 12 7, or 6 and 5.

Therefore,

∫ ∫

∫ ∫

( )( ) ( )

( )

( )

+
+

=
+

−
+

=
+

− +

= + + + +

−

−

x
x

dx
x x

dx

dx
x

x dx

x x C

6 7
2

6
2

5
2

6
2

5 2

6 ln 2 5 2 .

2 2

2

1  

The next example shows how to handle the case when f x g x( ) ( ) is an improper 
fraction. It is a case where the degree of f  is larger than the degree of g.

Two terms because ( )+x 2  is squared

Multiply both sides by ( )+x 2 .2
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500 Chapter 8 Techniques of Integration

EXAMPLE 3  Use partial fractions to evaluate

∫ − − −
− −

x x x
x x

dx2 4 3
2 3

.
3 2

2

Solution First we divide the denominator into the numerator to get a polynomial plus a 
proper fraction.

)− − − − −
− −

−

x
x x x x x

x x x
x

2
2 3 2 4 3

2 4 6
5 3

2 3 2

3 2

Then we write the improper fraction as a polynomial plus a proper fraction.

− − −
− −

= + −
− −

x x x
x x

x x
x x

2 4 3
2 3

2 5 3
2 3

3 2

2 2

We found the partial fraction decomposition of the fraction on the right in the opening 
example, so

x x x
x x

dx x dx x
x x

dx

x dx
x

dx
x

dx

x x x C

2 4 3
2 3

2 5 3
2 3

2 2
1

3
3

2 ln 1 3 ln 3 .

3 2

2 2

2

∫ ∫ ∫

∫ ∫ ∫

− − −
− −

= + −
− −

= +
+

+
−

= + + + − +  

EXAMPLE 4  Use partial fractions to evaluate

∫ ( )

− +
+ −

x
x x

dx
2 4
1 ( 1)

.
2 2

Solution The denominator has an irreducible quadratic factor +x 12  as well as a 
repeated linear factor ( )−x 1 2, so we write

 
( )( ) ( )

− +
+ −

= +
+

+
−

+
−

x
x x

Ax B
x

C
x

D
x

2 4
1 1 1 1 1

.
2 2 2 2  (2)

Clearing the equation of fractions gives

( ) ( )( )( ) ( )

( ) ( )

( ) ( )

− + = + − + − + + +

= + + − + − +
+ − + + − +

x Ax B x C x x D x

A C x A B C D x
A B C x B C D

2 4 1 1 1 1

2
2 .

2 2 2

3 2

Equating coefficients of like terms gives

x A C

x A B C D

x A B C

x B C D

Coefficients of  : 0

Coefficients of  : 0 2

Coefficients of  : 2 2

Coefficients of  : 4

3

2

1

0

= +

= − + − +

− = − +

= − +

We solve these equations simultaneously to find the values of A, B, C, and D.

( )

− = − =

= − = −

= + + =

= − + =

A A

C A

B A C

D B C

4 2 , 2

2

2 2 1

4 1.

Subtract fourth equation from second.

From the first equation

From the third equation and = −C A

From the fourth equation
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 8.5  Integration of Rational Functions by Partial Fractions 501

We substitute these values into Equation (2), obtaining

( )( ) ( )

− +
+ −

= +
+

−
−

+
−

x
x x

x
x x x

2 4
1 1

2 1
1

2
1

1
1

.
2 2 2 2

Finally, using the expansion above, we can integrate:

x
x x

dx x
x x x

dx

x
x x x x

dx

x x x
x

K

2 4
1 1

2 1
1

2
1

1
1

2
1

1
1

2
1

1
1

ln 1 tan 2 ln 1 1
1

.

2 2 2 2

2 2 2

2 1

∫ ∫

∫

( )

( )
( )

( )

( ) ( )

( )

− +
+ −

= +
+

−
−

+
−

=
+

+
+

−
−

+
−

= + + − − −
−

+−

We use the letter K instead of C to represent an arbitrary constant here because we have 
already used C to represent a variable in the partial fraction representation. 

EXAMPLE 5  Use partial fractions to evaluate

∫ ( )+
dx

x x 1
.

2 2

Solution The form of the partial fraction decomposition is

( ) ( )+
= + +

+
+ +

+x x
A
x

Bx C
x

Dx E
x

1
1 1 1

.
2 2 2 2 2

Multiplying by ( )+x x 1 ,2 2  we have

( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

( )= + + + + + +

= + + + + + + + +

= + + + + + + + +

A x Bx C x x Dx E x

A x x B x x C x x Dx Ex

A B x Cx A B D x C E x A

1 1 1

2 1

2 .

2 2 2

4 2 4 2 3 2

4 3 2

If we equate coefficients, we get the system

A B C A B D C E A0, 0, 2 0, 0, 1.+ = = + + = + = =

Solving this system gives = = − = = −A B C D1,   1,   0,   1, and E 0. Thus,

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

( ) ( )

( )
( )

( )

+
= + −

+
+ −

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
+

−
+

= − −

= − + +

= − + +
+

+

=
+

+
+

+

dx
x x x

x
x

x
x

dx

dx
x

x dx
x

x dx
x

dx
x

du
u

du
u

x u
u

K

x x
x

K

x
x x

K

1
1

1 1

1 ( 1)

1
2

1
2

ln 1
2

ln 1
2

ln 1
2

ln 1 1
2 1

ln
1

1
2 1

.

2 2 2 2 2

2 2 2

2

2
2

2 2
 

u x
du x dx

1,
2
2= +

=

HISTORICAL BIOGRAPHY

Oliver Heaviside
(1850–1925)
Heaviside studied electricity and languages 
on his own. He was able to simplify 
Maxwell’s 20 equations into the two we 
now call Maxwell’s equations. Heaviside’s 
contributions in mathematics are in the areas 
of vector algebra and vector calculus.

To know more, visit the companion Website. 
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502 Chapter 8 Techniques of Integration

Determining Coefficients by Differentiating

Another way to determine the constants that appear in partial fractions is to differentiate, as 
in the next example.

EXAMPLE 6  Find A, B, and C in the equation

( ) ( ) ( )

−
+

=
+

+
+

+
+

x
x

A
x

B
x

C
x

1
1 1 1 1

.3 2 3

Solution We first clear fractions:

( ) ( )− = + + + +x A x B x C1 1 1 .2

Substituting = −x 1 shows = −C 2. We then differentiate both sides with respect to x, 
obtaining

( )= + +A x B1 2 1 .

Substituting = −x 1 shows =B 1. We differentiate again to get = A0 2 , which shows 
=A 0. Hence,

( ) ( ) ( )

−
+

=
+

−
+

x
x x x

1
1

1
1

2
1

.3 2 3  

Expanding Quotients into Partial Fractions
Expand the quotients in Exercises 1–8 by partial fractions.

 1. 
( )( )

−
− −

x
x x

5 13
3 2

 2. −
− +
x

x x
5 7

3 22

 3. 
( )

+
+

x
x

4
1 2  4. +

− +
x

x x
2 2

2 12

 5. 
( )

+
−

z
z z

1
12

 6. 
− −

z
z z z63 2

 7. +
− +
t

t t
8

5 6

2

2
 8. +

+
t

t t
9

9

4

4 2

Nonrepeated Linear Factors
In Exercises 9–16, express the integrand as a sum of partial fractions 
and evaluate the integrals.

 9. ∫ −
dx

x1 2
 10. ∫ +

dx
x x22

 11. ∫ +
+ −
x

x x
dx4

5 62
 12. ∫ +

− +
x

x x
dx2 1

7 122

 13. ∫ − −
y dy

y y2 324

8
 14. ∫

+
+

y
y y

dy
4

21 2

1

 15. ∫ + −
dt

t t t23 2
 16. ∫ +

−
x
x x

dx3
2 83

Repeated Linear Factors
In Exercises 17–20, express the integrand as a sum of partial fractions 
and evaluate the integrals.

 17. ∫ + +
x dx

x x2 1

3

20

1
 18. ∫ − +−

x dx
x x2 1

3

21

0

 19. ∫ ( )−
dx

x 12 2  20. ∫ ( )( )− + +
x dx

x x x1 2 1

2

2

Irreducible Quadratic Factors
In Exercises 21–32, express the integrand as a sum of partial fractions 
and evaluate the integrals.

 21. ∫ ( )( )+ +
dx

x x1 120

1
 22. ∫ + +

+
t t

t t
dt3 42

31

3

 23. ∫ ( )

+ +
+

y y
y

dy
2 1

1

2

2 2  24. ∫ ( )
+ +

+
x x

x
dx8 8 2

4 1

2

2 2

 25. ∫ ( )( )

+
+ −

s
s s

ds2 2
1 12 3  26. ∫ ( )

+
+

s
s s

ds81
9

4

2 2

 27. ∫ − +
−

x x
x

dx2
1

2

3
 28. ∫ +x x

dx1
4

 29. ∫ −
x

x
dx

1

2

4
 30. ∫ +

− −
x x

x x
dx

3 4

2

4 2

 31. ∫ θ θ θ
θ θ

θ
( )

+ + +
+ +

d2 5 8 4
2 2

3 2

2 2

 32. ∫ θ θ θ θ
θ

θ
( )

− + − +
+

d4 2 3 1
1

4 3 2

2 3

EXERCISES 8.5
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 8.5  Integration of Rational Functions by Partial Fractions 503

Improper Fractions
In Exercises 33–38, perform long division on the integrand, write the 
proper fraction as a sum of partial fractions, and then evaluate the 
integral.

 33. ∫ − +
−

x x
x x

dx2 2 13 2

2
 34. ∫ −

x
x

dx
1

4

2

 35. ∫ − +
−

x x
x x

dx9 3 13

3 2
 36. ∫ − +

x
x x

dx16
4 4 1

3

2

 37. ∫
+ −

+
y y

y y
dy

14 2

3
 38. ∫ − + −

y
y y y

dy
2

1

4

3 2

Evaluating Integrals
Evaluate the integrals in Exercises 39–54.

 39. ∫ + +
e dt

e e3 2

t

t t2
 40. ∫ + −

+
e e e

e
dt2

1

t t t

t

4 2

2

 41. 
y dy

y y
cos

sin sin 62∫ + −
 42. 

dsin
cos cos 22∫

θ θ
θ θ+ −

 43. ∫ ( )
( ) ( )

( )

− − −
+ −

−x x x x
x x

dx2 tan 2 12 3
4 1 2

2 1 3

2 2

 44. ∫ ( )
( ) ( )

( )

+ + +
+ +

−x x x x
x x

dx1 tan 3 9
9 1 1

2 1 3

2 2

 45. ∫ −x x
dx1

3 2
 46. ∫ ( )−x x

dx1
11 3

( )=Hint x u: Let  .6

 47. ∫ +x
x

dx1

( )+ =Hint x u: Let  1 .2

 48. ∫ +x x
dx1

9

 49. ∫ ( )+x x
dx1

14

( )Hint x
x

: Multiply by .
3

3

 50. ∫ ( )+x x
dx1

46 5

 51. d1
cos 2   sin∫ θ θ

θ  52. d1
cos sin 2∫ θ θ

θ
+

 53. ∫ + x
x

dx1  54. ∫
− +

x

x x
dx

2

Use any method to evaluate the integrals in Exercises 55–66.

 55. ∫ − −
+

x x x
x

dx2 3
2

3 2
 56. ∫ +

− −
x

x x x
dx2

2 33 2

 57. ∫ −
+

−

−
dx2 2

2 2

x x

x x
 58. ∫ + −

dx2
2 2 2

x

x x2

 59. ∫ −x
dx1

14
 60. ∫ −

− +
x

x x
dx1

5 1

4

5

 61. 
x

x x x
dx

ln 2
ln 1 ln 3∫ ( )( )

+
+ +

 62. 
x x

dx2
ln 2 3∫ ( )−

 63. ∫ −x
dx1

12
 64. ∫ + +

x
x x

dx
22

 65. ∫ +x x dx15 3  66. ∫ −x x dx12 2

Initial Value Problems
Solve the initial value problems in Exercises 67–70 for x as a function 
of t.

 67. ( ) ( )− + = > =t t dx
dt

t x3 2 1 2 , (3) 02

 68. π( )+ + = = −t t dx
dt

x3 4 1 2 3, (1) 3 44 2

 69. ( ) ( )+ = + > =t t dx
dt

x t x x2 2 2 ,   0 , (1) 12

 70. ( )( )+ = + > − =t dx
dt

x t x1 1 1 , (0) 02

Applications and Examples
In Exercises 71 and 72, find the volume of the solid generated by 
revolving the shaded region about the indicated axis.

 71. The x-axis

x

y

2

0 0.5 2.5

y = 3

"3x - x2

1

1
x

y y = 2
(x + 1)(2 - x)

0

 72. The y-axis

 73. Find the length of the curve ( )= − ≤ ≤y x xln 1 ,  0 1
2

.2

 74. Evaluate dsec∫ θ θ by

 a. multiplying by 
sec tan
sec tan
θ θ
θ θ

+
+

 and then using a u-substitution.

 b. writing the integral as d1
cos∫ θ

θ. Then multiply by 
cos
cos

,
θ
θ

 

use a trigonometric identity and a u-substitution, and finally 
integrate using partial fractions.
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504 Chapter 8 Techniques of Integration

x

y

30 5

y = 4x2 + 13x - 9
x3 + 2x2 - 3x

1

 75. Find, to two decimal places, the x-coordinate of the centroid of 
the region in the first quadrant bounded by the x-axis, the curve 

=y xarctan , and the line =x 3.

 76. Find the x-coordinate of the centroid of this region to two decimal 
places.

T

T

Suppose t is in days, =k 1 250, and two people start a 
rumor at time =t 0 in a population of =N 1000 people.

 a. Find x as a function of t.

 b. When will half the population have heard the rumor? (This is 
when the rumor will be spreading the fastest.)

 78. Second-order chemical reactions Many chemical reactions 
are the result of the interaction of two molecules that undergo a 
change to produce a new product. The rate of the reaction typically 
depends on the concentrations of the two kinds of molecules. If a 
is the amount of substance A and b is the amount of substance B 
at time =t 0, and if x is the amount of product at time t, then the 
rate of formation of x may be given by the differential equation

( )( )= − −dx
dt

k a x b x ,

or

( )( )− −
=

a x b x
dx
dt

k1 ,

where k is a constant for the reaction. Integrate both sides of this 
equation to obtain a relation between x and t (a) if =a b, and 
(b) if ≠a b. Assume in each case that =x 0 when =t 0.

T

 77. Social diffusion Sociologists sometimes use the phrase “social 
diffusion” to describe the way information spreads through a popula-
tion. The information might be a rumor, a cultural fad, or news about 
a technical innovation. In a sufficiently large population, the number 
of people x who have the information is treated as a differentiable 
function of time t, and the rate of diffusion, dx dt, is assumed to be 
proportional to the number of people who have the information times 
the number of people who do not. This leads to the equation

( )= −dx
dt

kx N x ,

where N is the number of people in the population.

T

8.6 Integral Tables and Computer Algebra Systems

In this section we discuss how to use tables and computer algebra systems (CAS) to evalu-
ate integrals.

Integral Tables

A Brief Table of Integrals is provided at the back of the text, after the index. (More exten-
sive tables appear in compilations such as CRC Mathematical Tables, which contain thou-
sands of integrals.) The integration formulas are stated in terms of constants a, b, c, m, n, 
and so on. These constants can usually assume any real value and need not be integers. 
Occasional limitations on their values are stated with the formulas. Formula 21 requires 

≠ −n 1, for example, and Formula 27 requires ≠ −n 2.
The formulas also assume that the constants do not take on values that require dividing 

by zero or taking even roots of negative numbers. For example, Formula 24 assumes that 
≠a 0, and Formulas 29a and 29b cannot be used unless b is positive.

EXAMPLE 1  Find

∫ ( )+ −x x dx2 5 .1

Solution We use Formula 24 at the back of the text (not 22, which requires ≠ −n 1):

x ax b dx x
a

b
a

ax b Cln .1
2∫ ( )+ = − + +−

With =a 2 and =b 5, we have

x x dx x x C2 5
2

5
4

ln 2 5 .1∫ ( )+ = − + +−  
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 8.6  Integral Tables and Computer Algebra Systems 505

EXAMPLE 2  Find

∫ −
dx

x x2 4
.

Solution We use Formula 29b:

∫ −
= − +dx

x ax b b
ax b

b
C2 arctan .

With =a 2 and =b 4, we have

∫ −
= − + = − +dx

x x
x C x C

2 4
2
4

arctan 2 4
4

arctan 2
2

. 

EXAMPLE 3  Find

∫ x x dxarcsin .

Solution We begin by using Formula 106:

x ax dx x
n

ax a
n

x dx

a x
narcsin

1
arcsin

1 1
, 1.n

n n1 1

2 2∫ ∫=
+

−
+ −

≠ −
+ +

With =n 1 and =a 1, we have

x x dx x x
x dx

x
arcsin

2
arcsin 1

2 1
.

2 2

2∫ ∫= −
−

Next we use Formula 49 to find the integral on the right:

∫ ( )
−

= − − +x
a x

dx a x
a

x a x C
2

arcsin 1
2

.
2

2 2

2
2 2

With =a 1,

x dx

x
x x x C

1
1
2

arcsin 1
2

1 .
2

2
2∫ −

= − − +

The combined result is

∫

( )
( )= − − − +

= − + − + ′

x x dx x x x x x C

x x x x C

arcsin
2

arcsin 1
2

1
2

arcsin 1
2

1

2
1
4

arcsin 1
4

1 .

2
2

2
2  

Reduction Formulas

The time required for repeated integrations by parts can sometimes be shortened by apply-
ing reduction formulas like the following.

 x dx
n

x x dxtan 1
1

tan tann n n1 2∫ ∫=
−

−− −  (1)

 x dx x x n x dxln ln   lnn n n 1∫ ∫( ) ( ) ( )= − −  (2)

x x dx
x x

m n
n
m n

x x dx n msin cos
sin cos 1   sin cos .n m

n m
n m

1 1
2∫ ∫ ( )= −

+
+ −

+
≠ −

− +
−

 (3)
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506 Chapter 8 Techniques of Integration

By applying such a formula repeatedly, we can eventually express the original integral in 
terms of a power low enough to be evaluated directly. The next example illustrates this 
procedure.

EXAMPLE 4  Find

∫ x dxtan .5

Solution We apply Equation (1) with =n 5 to get

∫ ∫= −x dx x x dxtan 1
4

tan tan .5 4 3

We then apply Equation (1) again, with =n 3, to evaluate the remaining integral:

x dx x x dx x x Ctan 1
2

tan tan 1
2

tan ln cos .3 2 2
1∫ ∫= − = + +

The combined result is

x dx x x x Ctan 1
4

tan 1
2

tan ln cos .5 4 2∫ = − − +  

As their form suggests, reduction formulas are derived using integration by parts. (See 
Example 5 in Section 8.3.)

Integration with a CAS

A powerful capability of computer algebra systems is their ability to integrate symboli-
cally. This is performed with the integrate command specified by the particular system 
(for example, int in Maple, Integrate in Mathematica).

EXAMPLE 5  Suppose that you want to evaluate the indefinite integral of the function

= +f x x a x( ) .2 2 2

Using Maple, you first define or name the function:

( )> = +f x a x: ^2 * sqrt ^2 ^2 ;

Then you use the integrate command on f , identifying the variable of integration:

f xint , ;( )>

Maple returns the answer

( )( )+ − + −
+ +x a x a x a x a x a x

4 8

ln

8

2 2 3 2 2 2 2 4 2 2

If you want to see whether the answer can be simplified, enter

( )> simplify % ;

Maple returns

a x a x x a x a xln

8
2

8

4 2 2 2 2 2 2( ) ( )−
+ +

+ + +

If you want the definite integral for π≤ ≤x0 2, you can use the format

f xint , 0..Pi 2 ;( )> =
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 8.6  Integral Tables and Computer Algebra Systems 507

Maple will return the expression

a a a a a a

a a

ln( )
16

4
64

4
32

ln(2)
8

ln 4

8

4 2 2 2 3 2 2 2 2 4

4 2 2

π π π π

π π( )

( )+ + − + +

−
+ +

You can also find the definite integral for a particular value of the constant a:

a

f x

: 1;

int , 0..1 ;( )

> =

> =

Maple returns the numerical answer

3
8

2 1
8

ln 2 1 .( )+ −  

EXAMPLE 6  Use a CAS to find

x x dxsin cos .2 3∫

Solution With Maple, we have the entry

( ) ( )( )> x x xint sin^2 ( ) * cos^3 ( ), ;

with the immediate return

− + +x x x x x1
5

sin( ) cos( ) 1
15

cos( ) sin( ) 2
15

sin( ).4 2  

Computer algebra systems vary in how they process integrations. We used Maple in 
Examples 5 and 6. Mathematica would have returned somewhat different results:

1. In Example 5, given

[ ][ ]= +[ ]In 1 x a x x: Integrate ^2 * Sqrt ^2 ^2 ,

Mathematica returns

( )
= + + −

+

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

−

[ ]Out 1 a x a x x
a x

a
x
a

1
8

2
sinh

1

2 2 2 3

3 1

2

2

without having to simplify an intermediate result. The answer is different from, but 
equivalent to, Formula 36 in the integral tables.

2. The Mathematica answer to the integral

[ ][ ] [ ]=In 2 x x x: Integrate Sin ^2 * Cos ^3,[ ]

in Example 6 is

[ ] [ ]
[ ]= − −Out 2 x x xSin

8
1

48
Sin 3 1

80
Sin 5[ ]

differing from the Maple answer. Both answers are correct.

Although a CAS is very powerful and can aid us in solving difficult problems, each 
CAS has its own limitations. There are even situations where a CAS may further compli-
cate a problem (in the sense of producing an answer that is extremely difficult to use or 
interpret). Note, too, that neither Maple nor Mathematica returns an arbitrary constant +C. 
On the other hand, a little mathematical thinking on your part may reduce the problem to 
one that is quite easy to handle. We provide an example in Exercise 67.
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508 Chapter 8 Techniques of Integration

Nonelementary Integrals

Many functions have antiderivatives that cannot be expressed using the standard functions 
that we have encountered, such as polynomials, trigonometric functions, and exponential 
functions. Integrals of functions that do not have elementary antiderivatives are called 
nonelementary integrals. These integrals can sometimes be expressed with infinite series 
(Chapter 9) or approximated using numerical methods (Section 8.7). Examples of nonele-
mentary integrals include the error function (which measures the probability of random 
errors)

∫= −x e dterf( ) 2 t
x

0

2

and integrals such as

x dx x dxsin and 12 4∫ ∫ +

that arise in engineering and physics. These and a number of others, such as

e
x

dx e dx
x

dx x dx
x

x
dx

k x dx k

, , 1
ln

, ln ln ,
sin

,

1 sin , 0 1,

x
e

2 2

x∫ ∫ ∫ ∫ ∫

∫

( )

− < <

( )

look so easy they tempt us to try them just to see how they turn out. It can be proved, how-
ever, that there is no way to express any of these integrals as finite combinations of elemen-
tary functions. The same applies to integrals that can be changed into these by substitution. 
The functions in these integrals all have antiderivatives, as a consequence of the 
Fundamental Theorem of Calculus, Part 1, because they are continuous. However, none of 
the antiderivatives are elementary. The integrals you are asked to evaluate in this chapter 
have elementary antiderivatives.

Using Integral Tables
Use the table of integrals at the back of the text to evaluate the inte-
grals in Exercises 1–26.

 1. dx
x x 3∫ −

 2. dx
x x 4∫ +

 3. x dx
x 2∫ −

 4. x dx
x2 3 3 2∫ ( )+

 5. x x dx2 3∫ −  6. x x dx7 5 3 2∫ ( )+

 7. x
x

dx9 4
2∫ −  8. dx

x x4 92∫ −

 9. ∫ −x x x dx4 2  10. x x
x

dx
2

∫ −

 11. dx
x x7 2∫ +

 12. dx
x x7 2∫ −

 13. x
x

dx4 2

∫ −  14. ∫ −x
x

dx42

 15. e t dtcos 3t2  16. e t dtsin 4t3∫ −

 17. x x dxarccos  18. x x dxarctan

EXERCISES 8.6
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 8.6  Integral Tables and Computer Algebra Systems 509

 19. x x dxarctan2∫  20. x
x

dxtan 1

2∫
−

 21. x x dxsin 3 cos 2∫  22. x x dxsin 2 cos 3∫

 23. t t dt8 sin 4 sin
2∫  24. t t dtsin

3
sin

6∫

 25. dcos
3

cos
4∫ θ θ θ  26. dcos

2
cos 7∫ θ θ θ

Substitution and Integral Tables
In Exercises 27–40, use a substitution to change the integral into one 
you can find in the table. Then evaluate the integral.

 27. x x
x

dx1
1

3

2 2∫ ( )
+ +

+
 28. ∫ ( )

+
+

x x
x

dx6
3

2

2 2

 29. x dxarcsin∫  30. x
x

dxcos 1

∫
−

 31. x
x

dx
1∫ −

 32. ∫ − x
x

dx2

 33. ∫ π− < <t t dt tcot 1 sin , 0 22

 34. ∫ −
dt

t ttan 4 sin 2

 35. dy

y y3 ln 2∫
( )+

 36. y dytan 1∫ −

 37. 
x x

dx1
2 52∫ + +

(Hint: Complete the square.)

 38. x
x x

dx
4 5

2

2∫ − +

 39. x x dx5 4 2∫ − −  40. x x x dx22 2∫ −

Using Reduction Formulas
Use reduction formulas to evaluate the integrals in Exercises 41–50.

 41. x dxsin 25∫  42. t dt8 cos 24∫ π

 43. ∫ θ θ θdsin 2 cos 22 3  44. t t dt2 sin sec2 4∫

 45. x dx4 tan 23∫  46. t dt8 cot 4∫

 47. x dx2 sec3∫ π  48. x dx3 sec 34∫

 49. x dxcsc 5∫  50. ∫ ( )x x dx16 ln3 2

Evaluate the integrals in Exercises 51–56 by making a substitution 
(possibly trigonometric) and then applying a reduction formula.

 51. e e dtsec 1t t3∫ ( )−  52. dcsc3

∫ θ
θ

θ

 53. x dx2 12

0

1

∫ +  54. ∫ ( )−
dy
y1 2 5 20

3 2

 55. r
r

dr12 3 2

1

2

∫
( )−  56. dt

t 12 7 20

1 3

∫ ( )+

Applications

 57. Surface area Find the area of the surface generated by revolv-
ing the curve y x x2,  0 2,2= + ≤ ≤  about the x-axis.

 58. Arc length Find the length of the curve y x x, 0 3 2.2= ≤ ≤

 59. Centroid Find the centroid of the region cut from the first quad-
rant by the curve y x1 1= +  and the line x 3.=

 60. Moment about y-axis A thin plate of constant density 1δ =  
occupies the region enclosed by the curve y x36 2 3( )= +  and 
the line x 3=  in the first quadrant. Find the moment of the plate 
about the y-axis.

 61. Use the integral table and a calculator to find, to two decimal 
places, the area of the surface generated by revolving the curve 
y x x, 1 1,2= − ≤ ≤  about the x-axis.

 62. Volume The head of your firm’s accounting department has 
asked you to find a formula she can use in a computer program 
to calculate the year-end inventory of gasoline in the company’s 
tanks. A typical tank is shaped like a right circular cylinder of 
radius r and length L, mounted horizontally, as shown in the 
accompanying figure. The data come to the accounting office as 
depth measurements taken with a vertical measuring stick marked 
in centimeters.

 a. Show, in the notation of the figure, that the volume of gasoline 
that fills the tank to a depth d is

∫= −
−

− +
V L r y dy2 .

r

r d
2 2

 b. Evaluate the integral.

T

y

r

−r
L

d = Depth of
gasoline

Measuring stick

 63. What is the largest value that

∫ −x x dx
a

b
2

can have for any a and b? Give reasons for your answer.
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510 Chapter 8 Techniques of Integration

 64. What is the largest value that

x x x dx2
a

b
2∫ −

can have for any a and b? Give reasons for your answer.

COMPUTER EXPLORATIONS
In Exercises 65 and 66, use a CAS to perform the integrations.

 65. Evaluate the integrals

 a. x x dxln∫ b. x x dxln2∫ c. x x dxln .3∫
 d. What pattern do you see? Predict the formula for x x dxln4∫  

and then see if you are correct by evaluating it with a CAS.

 e. What is the formula for x x dx nln ,   1?n∫ ≥  Check your 
answer using a CAS.

 66. Evaluate the integrals

 a. 
x

x
dx

ln
2∫  b. 

x
x

dx
ln

3∫  c. 
x

x
dx

ln
.

4∫
 d. What pattern do you see? Predict the formula for

x
x

dx
ln

5∫
and then see if you are correct by evaluating it with a CAS.

 e. What is the formula for

x
x

dx n
ln

, 2?
n∫ ≥

Check your answer using a CAS.

 67. a. Use a CAS to evaluate

∫ +

π x
x x

dxsin
sin cos

,
n

n n0

2

where n is an arbitrary positive integer. Does your CAS find 
the result?

 b. In succession, find the integral when n 1,  2,  3,  5,  and 7.=  
Comment on the complexity of the results.

 c. Now substitute x u2π( )= −  and add the new and old 
integrals. What is the value of

∫ +

π x
x x

dxsin
sin cos

?
n

n n0

2

This exercise illustrates how a little mathematical ingenuity 
can sometimes solve a problem not immediately amenable to 
solution by a CAS.

8.7 Numerical Integration

The antiderivatives of some functions, like xsin( )2 ,  1 ln x, and x1 4+ , have no elementary 
formulas. When we cannot find a workable antiderivative for a function f  that we have to 
integrate, we can partition the interval of integration, replace f  by a closely fitting polyno-
mial on each subinterval, integrate the polynomials, and add the results to approximate the 
definite integral of f . This procedure is an example of numerical integration. In this section 
we start by revisiting the Midpoint Rule, which we studied in Section 5.2. We then study two 
new methods, the Trapezoidal Rule and Simpson’s Rule. A key goal in our analysis is to con-
trol the possible error that is introduced when computing an approximation to an integral.

Approximating Integrals with the Midpoint Rule

In Section 5.2 we introduced the Midpoint Rule to approximate a definite integral over an 
interval a b,  [ ]. The rule is based on subdividing a b,  [ ] into n equal subintervals,

…x x x x x x,   ,   ,   ,   ,   ,  n n0 1 1 2 1[ ]] [ ] [ −

each of width

x b a
n

.Δ = −

We then approximate the integral using n rectangles, where the height of the kth rectangle 
is the value of f  at the midpoint c x x 2k k k1( )= +−  of the kth subinterval x x,k k1[ ]− .

Midpoint Rule for Approximating a Definite Integral

f x dx f c b a
n

f c f c f c b a
n

( ) ( ) ( ) ( ) ( )
a

b

k

n

k n
1

1 2 �∫ ∑ ( ) ( )[ ]≈ − = + + + −

=

with c
x x

2k
k k1=

+−  and ( )= + −x a k b a
nk .
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 8.7  Numerical Integration 511

where =− −y f x( )i i1 1  and =y f x( ).i i  (See Figure 8.7.) The area below the curve 
y f x( )=  and above the x-axis is then approximated by adding the areas of all the 
trapezoids:

T y y x y y x

y y x y y x

x y y y y y

x y y y y y

1
2

1
2

1
2

1
2

1
2

1
2

2
2 2 2 ,

n n n n

n n

n n

0 1 1 2

2 1 1

0 1 2 1

0 1 2 1

�

�

�

( )

( )

( ) ( )

( )

( )= + Δ + + Δ +

+ + Δ + + Δ

= Δ + + + + +

= Δ + + + + +

− − −

−

−

where

…y f a y f x y f x y f b( ), ( ),  , ( ), ( ).n n n0 1 1 1 1= = = =− −

The Trapezoidal Rule says: Use T to estimate the integral of f  from a to b.

Trapezoidal Approximations

The Trapezoidal Rule for the value of a definite integral is based on approximating the region 
between a curve and the x-axis with trapezoids instead of rectangles, as in Figure 8.7. It is not 
necessary for the subdivision points …x x x x,   ,   ,  ,   n0 1 2  in the figure to be evenly spaced, 
but the resulting formula is simpler if they are. We therefore assume that the length of each 
subinterval is

Δ = −x b a
n

.

The length x b a n( )Δ = −  is called the step size or mesh size. The area of the trapezoid 
that lies above the ith subinterval is

( ) ( )Δ
+

= Δ +−
−x

y y x y y
2 2

,i i
i i

1
1

FIGURE 8.7 The Trapezoidal Rule approximates short 
stretches of the curve y f x( )=  with line segments. To 
approximate the integral of f  from a to b, we add the 
areas of the trapezoids made by vertically joining the ends 
of the segments to the x-axis.

x

y = f (x)

Trapezoid area
   (y1 + y2)¢x1
2

x0 = a x1

y1 y2 yn-1

xn-1 xn = b

yn

x2
¢x
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512 Chapter 8 Techniques of Integration

EXAMPLE 1  Use the Trapezoidal Rule with n 4=  to estimate x dx.1
2 2∫  Compare 

the estimate with the exact value.

Solution Partition 1,  2[ ] into four subintervals of equal length (Figure 8.8). Then evalu-
ate y x 2=  at each partition point (Table 8.2).

Using these y-values, n 4,=  and x 2 1 4 1 4( )Δ = − =  in the Trapezoidal Rule, 
we have

T x y y y y y
2

2 2 2

1
8

1 2 25
16

2 36
16

2 49
16

4

75
32

2.34375.

0 1 2 3 4

( ) ( ) ( )( )

( )= Δ + + + +

= + + + +

= =

Since the parabola is concave up, the approximating segments lie above the curve, giving 
each trapezoid slightly more area than the corresponding strip under the curve. The exact 
value of the integral is

x dx x
3

8
3

1
3

7
3

.2

1

2 3

1

2

∫ = ⎤
⎦⎥

= − =

The T approximation overestimates the integral by about half a percent of its true value of 
7 3. The percentage error is 2.34375 7 3 7 3 0.00446,( ) ( )− ≈  or 0.446%. 

Simpson’s Rule: Approximations Using Parabolas

Another rule for approximating the definite integral of a continuous function results from 
using parabolas instead of the straight-line segments that produced trapezoids. As before, 
we partition the interval a b,  [ ] into n subintervals of equal length h x b a n ,( )= Δ = −  
but this time we require that n be an even number. On each consecutive pair of intervals we 
approximate the curve y f x( ) 0= ≥  by a parabola, as shown in Figure 8.9. A typical 
parabola passes through three consecutive points x y x y,   ,   ,   ,i i i i1 1( ) ( )− −  and x y,  i i1 1( )+ +  
on the curve.

Let’s calculate the shaded area beneath a parabola passing through three consecu-
tive points. To simplify our calculations, we first take the case where x h x,   0,0 1= − =  
and x h2 =  (Figure 8.10), where h x b a n.( )= Δ = −  The area under the parabola 
will be the same if we shift the y-axis to the left or right. The parabola has an equation of 
the form

y Ax Bx C,2= + +

TABLE 8.2

x y x 2=

1 1

5
4

25
16

6
4

36
16

7
4

49
16

2 4

The Trapezoidal Rule

To approximate f x dx( ) ,a
b∫  use

T x y y y y y
2

2 2 2 .n n0 1 2 1�( )= Δ + + + + +−

The y’s are the values of f  at the partition points

…x a x a x x a x x a n x x b,   ,   2 ,   ,   1 ,   ,n n0 1 2 1 ( )= = + Δ = + Δ = + − Δ =−

where x b a n.( )Δ = −

FIGURE 8.8 The trapezoidal approxima-
tion of the area under the graph of y x 2=  
from x 1=  to x 2=  is a slight overesti-
mate (Example 1).

x

y

20 1

1

4

5
4

6
4

7
4

y = x2

25
16

36
16

49
16

FIGURE 8.9 Simpson’s Rule approxi-
mates short stretches of the curve with 
parabolas.

x

y

Parabola

h h

y0 yn-1 yn

xn-1 xn= b

y1 y2

y = f (x)

0 a = x0 x1 x2 h
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 8.7  Numerical Integration 513

Simpson’s Rule

To approximate f x dx( ) ,a
b  use

S x y y y y y y y
3

4 2 4 2 4 .n n n0 1 2 3 2 1( )= Δ + + + + + + +− −

The y’s are the values of f  at the partition points

x a x a x x a x x a n x x b,   ,   2 ,   ,   1 ,   .n n0 1 2 1 ( )= = + Δ = + Δ = + − Δ =−

The number n is even, and x b a n.( )Δ = −

so the area under it from x h= −  to x h is

∫ ( )

( )

= + +

= + +⎡
⎣⎢

⎤
⎦⎥

= + = +

−

−

A Ax Bx C dx

Ax Bx Cx

Ah Ch h Ah C

3 2

2
3

2
3

2 6 .

p
h

h

h

h

2

3 2

3
2

Since the curve passes through the three points h y y, , 0, ,0 1( ) ( )−  and h y,   ,2( )  we also have

y Ah Bh C y C y Ah Bh C, , .0
2

1 2
2= − + = = + +

After some algebraic manipulation, we find that

A h y y y
3

4 .p 0 1 2( )= + +

Now shifting the parabola horizontally to its shaded position in Figure 8.9 does not change 
the area under it. Thus the area under the parabola through x y x y,   ,   ,  ,0 0 1 1( ) ( )  and x y, 2 2( ) 
in Figure 8.9 is still

h y y y
3

4 .0 1 2( )+ +

Similarly, the area under the parabola through the points x y x y,   ,   ,   ,2 2 3 3( )( )  and x y,  4 4( ) is

h y y y
3

4 .2 3 4( )+ +

Computing the areas under all the parabolas and adding the results give the approximation

f x dx h y y y h y y y

h y y y

h y y y y y y y y

( )
3

4
3

4

3
4

3
4 2 4 2 2 4 .

a

b

n n n

n n n

0 1 2 2 3 4

2 1

0 1 2 3 4 2 1

∫ ( ) ( )

( )

( )

≈ + + + + + +

+ + +

= + + + + + + + +

− −

− −

The result is known as Simpson’s Rule. The function need not be positive, as in our deriva-
tion, but the number n of subintervals must be even for us to apply the rule because each 
parabolic arc uses two subintervals.

FIGURE 8.10 By integrating from h 
to h, we find the shaded area to be

h y y y
3

4 .0 1 2( )+ +

0 h-h

y = Ax2 + Bx + C
y0 y1 y2

(-h, y0)
(0, y1)

(h, y2)

x

y

Note the pattern of the coefficients in the above rule: 1, 4, 2, 4, 2, 4, 2, . . . , 4, 1.

EXAMPLE 2  Use Simpson’s Rule with n 4 to approximate x dx5 .0
2 4

HISTORICAL BIOGRAPHY

Thomas Simpson 
(1720–1761)
Simpson was a successful text writer and 
did most of his research on probability. 
Simpson’s rule to approximate definite 
integrals was developed before he was born. 
It is another of history’s beautiful quirks that 
one of the ablest mathematicians of the 18th 
century is remembered not for his own work 
but for a rule that was never his, that he 
never claimed, and that bears his name only 
because he happened to mention it in one of 
his books.

To know more, visit the companion Website. 
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514 Chapter 8 Techniques of Integration

Solution Partition 0,  2[ ] into four subintervals and evaluate y x5 4 at the partition 
points (Table 8.3). Then apply Simpson’s Rule with n 4 and x 1 2:Δ =

S x y y y y y
3

4 2 4

1
6

0 4 5
16

2 5 4 405
16

80

32 1
12

.

0 1 2 3 4

( ) ( )( )

( )

( )

= Δ + + + +

= + + + +

=

This estimate differs from the exact value (32) by only 1 12, a percentage error of less than 
three-tenths of one percent, and this was with just four subintervals. 

Error Analysis

Whenever we use an approximation technique, we must consider how accurate the approx-
imation might be. The following theorem gives formulas for estimating the errors when 
using the Midpoint Rule, the Trapezoidal Rule, and Simpson’s Rule. The error is the dif-
ference between the approximation obtained by using the rule and the actual value of the 
definite integral f x dx( )a

b .

TABLE 8.3

x y x5 4

0 0

1
2

5
16

1 5

3
2

405
16

2 80

THEOREM 1—Error Estimates in the Midpoint, Trapezoidal,  
and Simpson’s Rules
If f  is continuous and M is any upper bound for the values of f  on a b,  [ ], then 
the error E M  in the Midpoint Rule approximation of the integral of f  from a to b 
for n steps satisfies the inequality

E M b a
n24

.M

3

2

( )≤ −
   Midpoint Rule

If f  is continuous and M is any upper bound for the values of f  on a b,  [ ], then 
the error ET  in the Trapezoidal Rule approximation of the integral of f  from a to 
b for n steps satisfies the inequality

E M b a
n12

.T

3

2

( )≤ −
   Trapezoidal Rule

If f 4( ) is continuous and M is any upper bound for the values of ( )f 4  on a b,  [ ], then 
the error E S in the Simpson’s Rule approximation of the integral of f  from a to b 
for n steps satisfies the inequality

E M b a
n180

.S

5

4

( )≤ −
   Simpson’s Rule

To give an idea of why Theorem 1 is true in the case of the Trapezoidal Rule, we begin 
with a result which says that if f  is continuous on the interval a b,  [ ], then

f x dx T b a f c x( )
12

( )
a

b
2∫ ( )= − − ⋅ ′′ Δ

for some number c between a and b. This result follows from Taylor’s Remainder Theorem, 
which we discuss in Theorem 24 of Section 9.9. It follows that as x approaches zero, the 
error defined by

( )= − − ⋅ ′′ ΔE b a f c x
12

( )T
2

approaches zero at the rate of the square of x.
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 8.7  Numerical Integration 515

The inequality

( )≤ − ′′ ΔE b a f x x
12

max ( ) ,T
2

where “max” refers to the maximum of ′′f x( )  over the interval a b,  [ ], gives an upper bound 
for the magnitude of the error. In practice, we usually cannot find the exact value of ′′f xmax ( )  
and have to estimate an upper bound or “worst case” value for it instead. If M is any upper 
bound for the values of ′′f x( )  on a b,  [ ], so that ′′ ≤f x M( )  for every x in a b,  [ ], then

E b a M x
12

.T
2( )≤ − Δ

If we substitute b a n( )−  for x,Δ  we get

E M b a
n12

.T

3

2

( )≤ −

The upper bound for the error in the Midpoint Rule,

E M b a
n24

,M

3

2

( )≤ −

is based on a similar argument. Taylor’s Remainder Theorem implies that the Midpoint 
Rule approximation and the definite integral differ by at most

( )′′ −f c b a
n

( )
24

3

2

for some c a b,  [ ]∈ . Taking M to be at least as large as the maximum of ′′f c( )  on a b,  [ ], we 
obtain the error bound in Theorem 1. Note that this is half as large as the error bound for 
the Trapezoidal Rule. This does not mean that the Midpoint Rule is always more accurate 
than the Trapezoidal Rule, but rather that the largest possible error that might occur is only 
half as large as the largest possible error for the Trapezoidal Rule.

To estimate the error in Simpson’s Rule, we start with a result, again following from 
Taylor’s Remainder Theorem, that says that if the fourth derivative f (4) is continuous, then

f x dx S b a f c x( )
180

( )
a

b
(4) 4∫ ( )= − − ⋅ Δ

for some point c between a and b. Thus, as xΔ  approaches zero, the error,

E b a f c x
180

( ) ,S
(4) 4( )= − − ⋅ Δ

approaches zero as the fourth power of xΔ . (This helps to explain why Simpson’s Rule is 
likely to give better results than the Trapezoidal Rule.)

The inequality

( )≤ − ΔE b a f x x
180

max ( ) ,S
(4) 4

where “max” refers to the maximum of f x( )(4)  over the interval a b,  [ ], gives an upper 
bound for the magnitude of the error. As with fmax ′′  in the error formula for the Trapezoidal 
Rule, we usually cannot find the exact value of f xmax ( )(4)  and have to replace it with an 
upper bound. If M is any upper bound for the values of f x( )(4)  on a b,  [ ], then

E b a M x
180

.S
4( )≤ − Δ

Substituting b a n( )−  for xΔ  in this last expression gives

E M b a
n180

.S

5

4

( )≤ −
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516 Chapter 8 Techniques of Integration

You might wonder why we don’t just take M to be the maximum value of ′′f x( )  
on a b,  [ ] for the first two rules, or the maximum value of f x( )(4)  for Simpson’s Rule. 
The reason is that sometimes this maximum is hard to compute, while a less accurate 
upper bound is easily found. We can certainly set M to the maximum value if we can 
compute it.

EXAMPLE 3  Find an upper bound for the error in estimating  x dx50
2 4∫  using Simpson’s 

Rule with n 4=  (Example 2).

Solution To estimate the error, we first find an upper bound M for the magnitude of the 
fourth derivative of f x x( ) 5 4=  on the interval x0 2.≤ ≤  Since the fourth derivative 
has the constant value f x( ) 120,(4) =  we take M 120.=  With b a 2− =  and n 4,=  
the error estimate for Simpson’s Rule gives

E M b a
n180

120 2
180 4

1
12

.S

5

4

5

4

( ) ( )≤ − =
⋅

=

This estimate is consistent with the result of Example 2. 

Theorem 1 can also be used to estimate the number of subintervals required when 
using the Trapezoidal or Simpson’s Rule if we specify a certain tolerance for the error.

EXAMPLE 4  Estimate the minimum number of subintervals needed to approximate 
the integral in Example 3 using Simpson’s Rule with an error of magnitude less than 10 .4−

Solution Using the inequality in Theorem 1, if we choose the number of subintervals n 
to satisfy

M b a
n180

10 ,
5

4
4( )− < −

then the error E S in Simpson’s Rule satisfies E 10S
4< − , as required.

From the solution in Example 3, we have M 120=  and b a 2,− =  so we want n to 
satisfy

n
120 2
180

1
10

,
5

4 4

( ) <

or, equivalently,

n 64 10
3

.4
4

> ⋅

It follows that

n 10 64
3

21.5.
1 4

( )> ≈

Since n must be even in Simpson’s Rule, we estimate the minimum number of subin-
tervals required for the error tolerance to be n 22.=  

EXAMPLE 5  As we saw in Chapter 7, the value of ln  2 can be calculated from the 
integral

x
dxln 2 1 .

1

2

∫=

Table 8.4 shows values of T and S for approximations of x dx11
2 ( )∫  using various 

values of n. Notice how Simpson’s Rule dramatically improves over the Trapezoidal Rule.
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 8.7  Numerical Integration 517

In particular, notice that when we double the value of n (thereby halving the value of h x= Δ ), 
the T error is divided by 2 squared, whereas the S error is divided by 2 to the fourth.

This has a dramatic effect as x n2 1( )Δ = −  gets very small. The Simpson approxi-
mation for n 50 rounds accurately to seven places and for n 100 is accurate to nine 
decimal places (billionths)! 

If f x( ) is a polynomial of degree less than 4, then its fourth derivative is zero, and

E b a f c x b a x
180

( )
180

0 0.S
(4) 4 4( ) ( )( )= − − Δ = − − Δ =

Thus, there will be no error in the Simpson approximation of any integral of f . In other 
words, if f  is a constant, a linear function, or a quadratic or cubic polynomial, Simpson’s 
Rule will give the value of any integral of f  exactly, whatever the number of subdivisions. 
Similarly, if f  is a constant or a linear function, then its second derivative is zero, and

E b a f c x b a x
12

( )
12

0 0.T
2 2( ) ( )( )= − − ′′ Δ = − − Δ =

The Trapezoidal Rule will therefore give the exact value of any integral of f . This is no 
surprise, for the trapezoids fit the graph perfectly.

Although decreasing the step size x reduces the error in the Simpson and Trapezoidal 
approximations in theory, it may fail to do so in practice. When x is very small, say 

x 10 ,8Δ = −  computer or calculator round-off errors in the arithmetic required to evaluate 
S and T may accumulate to such an extent that the error formulas no longer describe what 
is going on. Shrinking x below a certain size can actually make things worse. You should 
consult a text on numerical analysis for more sophisticated methods if you are having 
problems with round-off error using the rules discussed in this section.

EXAMPLE 6  A town wants to drain and fill a polluted swamp (Figure 8.11).  
The swamp averages 1.5 m deep. About how many cubic meters of dirt will it take to fill 
the area after the swamp is drained?

Solution To calculate the volume of the swamp, we estimate the surface area and multi-
ply by 1.5. To estimate the area, we use Simpson’s Rule with x 6 mΔ = , and the y’s equal 
to the distances measured across the swamp, as shown in Figure 8.11.

S x y y y y y y y
3

4 2 4 2 4

6
3

44 148 46 64 24 36 4 732

0 1 2 3 4 5 6( )

( )

= Δ + + + + + +

= + + + + + + =

The volume is about 732 1.5 1098 m 3( )( ) = . 
FIGURE 8.11 The dimensions of the 
swamp in Example 6.

Vertical spacing = 6 m

4 m

37 m

Ignored

23 m

16 m

12 m

9 m

44 m

TABLE 8.4 Trapezoidal Rule approximations T( )n  and Simpson’s Rule  
approximations S( )n  of x dxln 2 1= ∫ ( )1

2

 n Tn

Error
less than . . . Sn

Error
less than . . .

 10 0.6937714032 0.0006242227 0.6931502307 0.0000030502

 20 0.6933033818 0.0001562013 0.6931473747 0.0000001942

 30 0.6932166154 0.0000694349 0.6931472190 0.0000000385

 40 0.6931862400 0.0000390595 0.6931471927 0.0000000122

 50 0.6931721793 0.0000249988 0.6931471856 0.0000000050

100 0.6931534305 0.0000062500 0.6931471809 0.0000000004
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518 Chapter 8 Techniques of Integration

For some exercises, a calculator may be helpful for expressing answers 
in decimal form.

Estimating Definite Integrals
The instructions for the integrals in Exercises 1–10 have three parts, 
one for the Midpoint Rule, one for the Trapezoidal Rule, and one for 
Simpson’s Rule.

 I. Using the Midpoint Rule

 a. Estimate the integral with n 4 steps and find an upper 
bound for E M .

 b. Evaluate the integral directly and find E M .

 c. Use the formula E true value 100M( )( ) ×  to express E M  
as a percentage of the integral’s true value.

 II. Using the Trapezoidal Rule

 a. Estimate the integral with n 4 steps and find an upper 
bound for E .T

 b. Evaluate the integral directly and find E .T

 c. Use the formula E true value 100T( )( ) ×  to express ET  
as a percentage of the integral’s true value.

 III. Using Simpson’s Rule

 a. Estimate the integral with n 4 steps and find an upper 
bound for E .S

 b. Evaluate the integral directly and find E .S

 c. Use the formula E true value 100S( )( ) ×  to express E S  as 
a percentage of the integral’s true value.

 1. x dx
1

2
 2. ∫ ( )−x dx2 1

1

3

 3. ∫ ( )+
−

x dx12

1

1
 4. ∫ ( )−

−
x dx12

2

0

 5. ∫ ( )+t t dt3

0

2
 6. ∫ ( )+

−
t dt13

1

1

 7. 
s

ds1
21

2
 8. ∫ ( )−s

ds1
1 22

4

 9. t dtsin
0

 10. t dtsin
0

1

Estimating the Number of Subintervals
In Exercises 11–22, estimate the minimum number of subintervals 
needed to approximate the integrals with an error of magnitude less 
than 10 4 by (a) the Trapezoidal Rule and (b) Simpson’s Rule. (The 
integrals in Exercises 11–18 are the integrals from Exercises 1–8.)

 11. x dx
1

2
 12. ∫ ( )−x dx2 1

1

3

 13. ∫ ( )+
−

x dx12

1

1
 14. ∫ ( )−

−
x dx12

2

0

 15. ∫ ( )+t t dt3

0

2
 16. ∫ ( )+

−
t dt13

1

1

 17. 
s

ds1
21

2
 18. ∫ ( )−s

ds1
1 22

4

 19. ∫ +x dx1
0

3
 20. ∫ +x

dx1
10

3

 21. ∫ ( )+x dxsin 1
0

2
 22. ∫ ( )+

−
x dxcos

1

1

Estimates with Numerical Data

 23. Volume of water in a swimming pool A rectangular swimming 
pool is 5 m wide and 10 m long. The accompanying table shows 
the depth h x( ) of the water at 1-m intervals from one end of the 
pool to the other. Estimate the volume of water in the pool using 
the Trapezoidal Rule with n 10 applied to the integral

V h x dx5 ( ) .
0

10

∫= ⋅

Position (m)  
x

Depth (m)  
( )h x

Position (m)  
x

Depth (m)  
( )h x

 0 1.20  6 2.30

 1 1.64  7 2.38

 2 1.82  8 2.46

 3 1.98  9 2.54

 4 2.10 10 2.60

 5 2.20

 24. Distance traveled The accompanying table shows time-to-
speed data for a car accelerating from rest to 130 km h. How far 
had the car traveled by the time it reached this speed? (Use trap-
ezoids to estimate the area under the velocity curve, but be care-
ful: The time intervals vary in length.)

Speed change Time (s)

Zero to 30 km h  2.2

40 km h  3.2

50 km h  4.5

60 km h  5.9

70 km h  7.8

80 km h 10.2

90 km h 12.7

100 km h 16.0

110 km h 20.6

120 km h 26.2

130 km h 37.1

 25. Wing design
 

The design of a new airplane requires a gasoline 
tank of constant cross-sectional area in each wing. A scale draw-
ing of a cross-section is shown here. The tank must hold 2000 kg 

EXERCISES 8.7
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 8.7  Numerical Integration 519

of gasoline, which has a density of 673 kg m .3  Estimate the 
length of the tank by Simpson’s Rule.

 a. Use the fact that ≤( )f 14  on 0, 2[ ] to give an upper 
bound for the error that will occur if

t
t

dtSi
2

sin
0

2

∫( ) =

is estimated by Simpson’s Rule with n 4.

 b. Estimate Si 2( ) by Simpson’s Rule with n 4.

 c. Express the error bound you found in part (a) as a percentage 
of the value you found in part (b).

 28. The error function  The error function,

∫= −x e dterf( ) 2   ,t
x

0

2

which is important in probability and in the theories of heat flow 
and signal transmission, must be evaluated numerically because 
there is no elementary expression for the antiderivative of e .t 2

 a. Use Simpson’s Rule with n 10 to estimate erf (1).

 b. In 0,  1[ ],

( ) ≤−d
dt

e 12.t
4

4
2

Give an upper bound for the magnitude of the error of the 
estimate in part (a).

 29. Prove that the sum T in the Trapezoidal Rule for f x dx( )a
b

 
is a Riemann sum for f  continuous on a b,  [ ]. (Hint: Use the 
Intermediate Value Theorem to show the existence of ck in the sub-
interval x x,  k k1[ ]−  satisfying ( )= +−f c f x f x( ) ( ) ( ) 2.k k k1 )

 30. Prove that the sum S in Simpson’s Rule for f x dx( )a
b

 is a 
Riemann sum for f  continuous on a b,  [ ]. (See Exercise 29.)

 31. Elliptic integrals The length of the ellipse

x
a

y
b

1
2

2

2

2
+ =

turns out to be

∫= −a e t dtLength 4   1 cos ,2 2

0

2

where e a b a2 2= −  is the ellipse’s eccentricity. The integral 
in this formula, called an elliptic integral, is nonelementary except 
when e 0 or 1.

 a. Use the Trapezoidal Rule with n 10 to estimate the length 
of the ellipse when a 1 and e 1 2.

 b. Use the fact that the absolute value of the second derivative of 
f t e t( ) 1 cos2 2= −  is less than 1 to find an upper bound 
for the error in the estimate you obtained in part (a).

Applications

 32. The length of one arch of the curve y xsin  is given by

∫= +L x dx1 cos .2

0

Estimate L by Simpson’s Rule with n 8.
t

y

0 x 2p

1
dtSi(x) =

x

0L

sin t
t

y = sin t
t

-p p

y1y0
y2 y3 y4 y5 y6

y0 = 0.5 m, y1 = 0.55 m, y2 = 0.6 m, y3 = 0.65 m,
y4 = 0.7 m, y5 = y6 = 0.75 m Horizontal spacing = 0.3 m

 26. Oil consumption on Pathfinder Island A diesel generator runs 
continuously, consuming oil at a gradually increasing rate until it 
must be temporarily shut down to have the filters replaced. Use 
the Trapezoidal Rule to estimate the amount of oil consumed by 
the generator during that week.

Day
Oil consumption rate 

(liters/hour)

Sun 0.019

Mon 0.020

Tue 0.021

Wed 0.023

Thu 0.025

Fri 0.028

Sat 0.031

Sun 0.035

Theory and Examples

 27. Usable values of the sine-integral function The sine-integral 
function,

∫=x
t

t
dtSi ( )

sin
,

x

0
  x“Sine integral of  ”

is one of the many functions in engineering whose formulas can-
not be simplified. There is no elementary formula for the anti-
derivative of t t(sin ) . The values of Si(x), however, are readily 
estimated by numerical integration.

Although the notation does not show it explicitly, the func-
tion being integrated is

f t
t

t
t

t
( )

sin
, 0

 1, 0,
=

≠

=

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

the continuous extension of t t(sin )  to the interval [0, x]. The 
function has derivatives of all orders at every point of its domain. 
Its graph is smooth, and you can expect good results from 
Simpson’s Rule.
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520 Chapter 8 Techniques of Integration

x (m)

y

0
-7.5

7.5

y = 7.5 cos (px�15)

90 m

NOT TO SCALE

When solving Exercises 33-40, you may need to use a calculator or a 
computer.

 33. Your metal fabrication company is bidding for a contract to make 
sheets of corrugated iron roofing like the one shown here. The 
cross-sections of the corrugated sheets are to conform to the curve

y x xsin 3
20

, 0 20 cm.= ≤ ≤

If the roofing is to be stamped from flat sheets by a process that 
does not stretch the material, how wide should the original mate-
rial be? To find out, use numerical integration to approximate the 
length of the sine curve to two decimal places.

T Find, to two decimal places, the areas of the surfaces generated by 
revolving the curves in Exercises 35 and 36 about the x-axis.

 35. y x xsin , 0= ≤ ≤

 36. y x x4, 0 22= ≤ ≤

 37. Use numerical integration to estimate the value of

∫= −
dx

x
arcsin 0.6

1
.

20

0.6

For reference, arcsin 0.6 0.64350 to five decimal places.

 38. Use numerical integration to estimate the value of

x
dx4 1

1
.

20

1

∫=
+

 39. Drug assimilation An average adult under age 60 years assimi-
lates a 12-hour cold medicine into his or her system at a rate mod-
eled by

dy
dt

t t6 ln 2 3 3 ,2( )= − − +

where y is measured in milligrams and t is the time in hours since 
the medication was taken. What amount of medicine is absorbed 
into a person’s system over a 12-hour period?

 40. Effects of an antihistamine The concentration of an antihista-
mine in the bloodstream of a healthy adult is modeled by

C t t12.5 4 ln 3 4 ,2( )= − − +

where C is measured in grams per liter and t is the time in hours 
since the medication was taken. What is the average level of con-
centration in the bloodstream over a 6-hour period?

Corrugated sheet

20
y = sin      x

20 cm

x (cm)

y

3p
20

Original sheet

0

 34. Your engineering firm is bidding for the contract to construct the 
tunnel shown here. The tunnel is 90 m long and 15 m wide at 
the base. The cross-section is shaped like one arch of the curve 
y x7.5cos 15 .( )=  Upon completion, the tunnel’s inside sur-
face (excluding the roadway) will be treated with a waterproof 
sealer that costs $26.11 per square meter to apply. How much will 
it cost to apply the sealer? (Hint: Use numerical integration to find 
the length of the cosine curve.)

8.8 Improper Integrals

Up to now, we have required definite integrals to satisfy two properties. First, the 
domain of integration a b,  [ ] must be finite. Second, the range of the integrand must be 
finite on this domain. In practice, we may encounter problems that fail to meet one or 
both of these conditions. The integral for the area under the curve y x xln 2( )=  from 
x 1 to x = ∞ is an example for which the domain is infinite (Figure 8.12a). The 
integral for the area under the curve of y x1  between x 0 and x 1 is an 
example for which the range of the integrand is infinite (Figure 8.12b). In either case, the 
integrals are said to be improper and are calculated as limits. We will see in Chapter 9 
that improper integrals are useful for investigating the convergence of certain infinite 
series.
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 8.8  Improper Integrals 521

Infinite Limits of Integration

Consider the infinite region (unbounded on the right) that lies under the curve y e x 2= −  in 
the first quadrant (Figure 8.13a). You might think this region has infinite area, but we 
will see that the value is finite. We assign a value to the area in the following way. First 
find the area A b( ) of the portion of the region that is bounded on the right by x b=  
(Figure 8.13b).

∫= = − ⎤
⎦⎥

= − + = −− − − −A b e dx e e e( ) 2 2 2 2 2 ,x
b

x
b

b b2

0

2

0

2 2

which is a little less than 2. Then find the limit of A b( ) as b .→ ∞

( )= − =
→∞ →∞

−A b elim ( ) lim 2 2 2
b b

b 2

Therefore, the value we assign to the area under the curve from 0 to ∞ is

∫ ∫= =−
∞

→∞

−e dx e dxlim 2.x

b

x
b

2

0

2

0

FIGURE 8.12 Are the areas under these infinite curves finite? We will 
see that the answer is yes for both curves.

(b)

x

y

0

0.1

1 2 3 4 5 6

0.2

(a)

x

y

0

1

1

y = ln x
x2

"

x
1y =

FIGURE 8.13 (a) The area in the first 
quadrant under the curve = −y e .x 2   
(b) The area is an improper integral of the 
first type.

x

x

y

(a)

y

(b)

b

Area = 2

Area = 2 - 2e-b�2

DEFINITION Integrals with infinite limits of integration are improper integrals 
of Type I.

1. If f x( ) is continuous on [ )∞a, , then

∫ ∫=
∞

→∞
f x dx f x dx( ) lim ( ) .

a b a

b

2. If f x( ) is continuous on ( ]−∞ b, , then

∫ ∫=
−∞ →−∞

f x dx f x dx( ) lim ( ) .
b

a a

b

3. If f x( ) is continuous on ( )−∞ ∞, , then

∫ ∫ ∫= +
−∞

∞

−∞

∞
f x dx f x dx f x dx( ) ( ) ( ) ,

c

c

where c is any real number.

In each case, if the limit exists and is finite, we say that the improper integral 
converges and that the limit is the value of the improper integral. If the limit fails 
to exist, the improper integral diverges.
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522 Chapter 8 Techniques of Integration

The choice of c in Part 3 of the definition is unimportant. We can evaluate or deter-
mine the convergence or divergence of ∫−∞

∞
f x dx( )  with any convenient choice.

Any of the integrals in the above definition can be interpreted as an area if f 0 on 
the interval of integration. For instance, we interpreted the improper integral in Figure 8.13 
as an area. In that case, the area has the finite value 2. If f 0 and the improper integral 
diverges, we say the area under the curve is infinite.

EXAMPLE 1  Is the area under the curve ( )=y x xln 2 from x 1 to = ∞x  
finite? If so, what is its value?

Solution We find the area under the curve from x 1 to x b and examine the limit 
as → ∞b . If the limit is finite, we take it to be the area under the curve (Figure 8.14). The 
area from 1 to b is

x
x

dx x
x x x

dx

b
b x

b
b b

ln
ln 1 1 1

ln 1

ln 1 1.

b b b

b

21 1 1

1

∫ ∫( ) ( )( )( )= −⎡
⎣⎢

⎤
⎦⎥
− −

= − − ⎡
⎣⎢
⎤
⎦⎥

= − − +

The limit of the area as → ∞b  is

x
x

dx
x

x
dx

b
b b

b
b

b

ln
lim

ln

lim
ln 1 1

lim
ln

0 1

lim
1
1

1 0 1 1.

b

b

b

b

b

21 21∫ ∫=

= − − +⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

= −⎡
⎣
⎢⎢

⎤
⎦
⎥⎥
− +

= −⎡
⎣
⎢⎢

⎤
⎦
⎥⎥
+ = + =

∞

→∞

→∞

→∞

→∞

Thus, the improper integral converges and the area has finite value 1. 

EXAMPLE 2  Evaluate

∫ +−∞

∞ dx
x1

.
2

Solution According to Part 3 of the definition, we can choose c 0 and write

∫ ∫ ∫+
=

+
+

+−∞

∞

−∞

∞dx
x

dx
x

dx
x1 1 1

.
2 2

0

20

Next we evaluate each improper integral on the right side of the equation above.

dx
x

dx
x

x

a

1
lim

1

lim tan

lim tan 0 tan 0
2 2

a a

a a

a

2

0

2

0

1
0

1 1

∫ ∫

( )( )

+
=

+

= ⎤
⎦⎥

= − = − − =

−∞ →−∞

→−∞
−

→−∞
− −

FIGURE 8.14 The area under this curve 
is an improper integral (Example 1).

x

y

0

0.1

1 b

0.2 y = ln x
x2

Integration by parts with
u x d dx x
du dx x x

ln ,   ,
,   1

2= =
= = −

L’Hôpital’s Rule

HISTORICAL BIOGRAPHY

Lejeune Dirichlet 
(1805–1859)
Dirichlet, a German mathematician, 
investigated the solution and equilibrium 
of systems of differential equations and 
discovered many results on the convergence 
of series. In 1855, Dirichlet succeeded 
Gauss as the professor of mathematics at 
Göttingen.

To know more, visit the companion Website. 
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 8.8  Improper Integrals 523

∫ ∫

π π( )

+
=

+

= ⎤
⎦⎥

= − = − =

∞

→∞

→∞
−

→∞
− −

dx
x

dx
x

x

b

1
lim

1

lim tan

lim tan tan 0
2

0
2

b

b

b

b

b

20 20

1

0

1 1

Thus,

∫ π π π
+

= + =
−∞

∞ dx
x1 2 2

.
2

Since ( )+ >x1 1 0,2  the improper integral can be interpreted as the (finite) area beneath 
the curve and above the x-axis (Figure 8.15). 

The Integral dx
x p1∫

∞

The function =y x1  is the boundary between the convergent and divergent improper 
integrals with integrands of the form =y x1 .p  As the next example shows, the improper 
integral converges if >p 1 and diverges if ≤p 1.

EXAMPLE 3  For what values of p does the integral dx x p
1∫
∞

 converge? When the 
integral does converge, what is its value?

Solution If ≠p 1, then

∫ ( )( )=
− +

⎤
⎦
⎥
⎥

=
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ − =

−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ −

− +
− +

−
dx
x

x
p p

b
p b1

1
1

1 1
1

1 1 .
p

b p b
p

p1

1

1

1
1

Thus,

∫ ∫

( )

=

=
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ −

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

= −
>

∞ <

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

∞

→∞

→∞ −

dx
x

dx
x

p b
p

p

p

lim

lim 1
1

1 1
1

1
, 1

, 1

p b p

b

b p

1 1

1

because

=
>

∞ <

⎧
⎨
⎪⎪

⎩
⎪⎪→∞ −b

p

p
lim 1 0, 1

, 1.b p 1

Therefore, the integral converges to the value ( )−p1 1  if >p 1, and it diverges if <p 1.
If =p 1, the integral also diverges:

∫ ∫

∫

( )

=

=

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − = ∞

∞ ∞

→∞

→∞

→∞

dx
x

dx
x

dx
x

x

b

lim

lim ln

lim ln ln1 .

p

b

b

b

b

b

1 1

1

1

 

FIGURE 8.15 The area under this 
curve is finite (Example 2).

x

y

0

y = 1
1 + x2 Area = p

NOT TO SCALE
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524 Chapter 8 Techniques of Integration

Integrands with Vertical Asymptotes

Another type of improper integral arises when the integrand has a vertical asymptote—an 
infinite discontinuity—at a limit of integration or at some point between the limits of inte-
gration. If the integrand f  is positive over the interval of integration, we can again interpret 
the improper integral as the area under the graph of f  and above the x-axis between the 
limits of integration.

Consider the region in the first quadrant that lies under the curve =y x1   
from =x 0 to =x 1 (Figure 8.12b). First we find the area of the portion from a to 1 
(Figure 8.16):

∫ = ⎤
⎦⎥

= −dx
x

x a2 2 2 .
aa

11

Then we find the limit of this area as → +a 0 :

∫ ( )= − =
→ →+ +

dx
x

alim lim 2 2 2.
a a a0

1

0

Therefore, the area under the curve from 0 to 1 is finite and is defined to be

∫ ∫= =
→ +

dx
x

dx
x

lim 2.
a a0

1

0

1

FIGURE 8.16 The area under this curve 
is an example of an improper integral of 
the second kind.

x

y

0

1

1a

"

x
1y =

Area = 2 - 2
"

a

DEFINITION Integrals of functions that become infinite at a point within the 
interval of integration are improper integrals of Type II.

1. If f x( ) is continuous on a b,( ] and discontinuous at a, then

∫ ∫=
→ +

f x dx f x dx( ) lim ( ) .
a

b

c a c

b

2. If f x( ) is continuous on [ )a b,  and discontinuous at b, then

∫ ∫=
→ −

f x dx f x dx( ) lim ( ) .
a

b

c b a

c

3. If f x( ) is discontinuous at c, where < <a c b, and continuous on 
a c c b, ) ( , ,[ ]∪  then

∫ ∫ ∫= +f x dx f x dx f x dx( ) ( ) ( ) .
a

b

a

c

c

b

In each case, if the limit exists and is finite, we say that the improper integral 
converges and that the limit is the value of the improper integral. If the limit does 
not exist, the integral diverges.

In Part 3 of the definition, the integral on the left side of the equation converges if both 
integrals on the right side converge; otherwise, it diverges.

EXAMPLE 4  Investigate the convergence of

∫ − x
dx1

1
.

0

1
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 8.8  Improper Integrals 525

Solution The integrand ( )= −f x x( ) 1 1  is continuous on [0, 1) but is discontinuous at 
=x 1 and becomes infinite as → −x 1  (Figure 8.17). We evaluate the integral as

∫
( )[ ]

−
= − −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − − + = ∞

→ →

→

− −

−

x
dx x

b

lim 1
1

lim ln 1

lim ln 1 0 .

b

b

b

b

b

1 0 1
0

1

The limit is infinite, so the integral diverges. 

EXAMPLE 5  Evaluate

∫ ( )−
dx

x 1
.2 30

3

Solution The integrand has a vertical asymptote at =x 1 and is continuous on [0, 1) 
and (1, 3] (Figure 8.18). Thus, by Part 3 of the definition above,

∫ ∫ ∫( ) ( ) ( )−
=

−
+

−
dx

x
dx

x
dx

x1 1 1
.2 30

3

2 30

1

2 31

3

Next, we evaluate each improper integral on the right-hand side of this equation.

dx
x

dx
x

x

b

dx
x

dx
x

x

c

1
lim

1

lim 3 1

lim 3 1 3 3

1
lim

1

lim 3 1

lim 3 3 1 3 1 3 2

b

b

b

b

b

c c

c c

c

2 30

1

1 2 30

1

1 3

0

1

1 3

2 31

3

1 2 3

3

1

1 3
3

1

1 3 1 3 3

∫ ∫

∫ ∫

[ ]

[ ]

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

−
=

−

= − ⎤
⎦⎥

= − + =

−
=

−

= − ⎤
⎦⎥

= − − − =

→

→

→

→

→

→

−

−

−

+

+

+

We conclude that

dx
x 1

3 3 2.2 30

3
3∫ ( )−

= +  

Improper Integrals with a CAS

Computer algebra systems can evaluate many convergent improper integrals. To evaluate 
the integral

∫ ( )( )

+
− +

∞ x
x x

dx3
1 122

(which converges) using Maple, enter

( )( )( ) ( )> = + − +f x x x: 3 1 * ^2 1 ;

Then use the integration command

( )> =f xint , 2..infinity ;

Maple returns the answer

ln(5) arctan(2)
2
π+ −

FIGURE 8.17 The area beneath the 
curve and above the x-axis for [0, 1) is not 
a real number (Example 4).

x

y

0

1

1b

y = 1
1 - x

FIGURE 8.18 Example 5 shows that 
the area under the curve exists (so it is a 
real number).

x

y

0 3b

1

 

1
c

y = 1
(x - 1)2�3
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526 Chapter 8 Techniques of Integration

To obtain a numerical result, use the evaluation command evalf and specify the num-
ber of digits as follows:

( )> evalf %, 6 ;

The symbol % instructs the computer to evaluate the last expression on the screen, in this 
case 1 2 ln(5) arctan(2).( )− + +  Maple returns 1.14579.

If you are using Mathematica, entering

( )( ) { }[ ]( ) ( )= + − +In 1 x x x x: Integrate 3 1 ^2 1 ,   , 2, Infinity[ ]

returns

[ ] [ ]= − + +Out 1
2

ArcTan 2 Log 5 .[ ]

To obtain a numerical result with six digits, use the command “N[%, 6]”; it also yields 1.14579.

Tests for Convergence and Divergence

When we cannot evaluate an improper integral directly, we try to determine whether it 
converges or diverges. If the integral diverges, that’s the end of the story. If it converges, we 
can use numerical methods to approximate its value. The principal tests for convergence or 
divergence are the Direct Comparison Test and the Limit Comparison Test.

THEOREM 2—Direct Comparison Test
Let f  and g be continuous on [ )∞a,    with f x g x0 ( ) ( ) for all x a. Then

1. if ∫
∞

g x dx( )
a

 converges, then ∫
∞

f x dx( )
a

 also converges.

2. if ∫
∞

f x dx( )
a

 diverges, then ∫
∞

g x dx( )
a

 also diverges.

FIGURE 8.19 The graph of e x 2  lies  
below the graph of e x for x 1 
(Example 6a).

x

y

0 b1

1

y = e-x

y = e-x2

(1, e-1)

Outline of a Proof  Assume that g x dx( )a∫
∞

 converges. For each number b a, let 
I b f x dx( ) ( )a

b
= ∫ . Since f x( ) is nonnegative, we know that I b( ) is an increasing function 

of b. Using the completeness property of the real numbers (Appendix A.7), it can be shown 
that since this integral increases with b, it either has a limit or it diverges to infinity as 
→ ∞b . We will not give a proof of this fact here. Since f x g x( ) ( ) for every x,

I b f x dx g x dx g x dx( ) ( ) ( ) ( ) .
a

b

a

b

a∫ ∫ ∫= ≤ ≤
∞

Thus, the finite number M g x dx( )a= ∫
∞

 is an upper bound to the values of I b( ). Therefore 
I b( ) cannot diverge to infinity, so it must must converge to a finite value as → ∞b . Hence 
∫
∞

f x dx( )a  converges. This establishes that statement 1 holds. Since statement 2 is the 
contrapositive form of statement 1, it must hold as well. 

Although the theorem is stated for Type I improper integrals, a similar result is true for 
integrals of Type II as well.

EXAMPLE 6  These examples illustrate how we use Theorem 2.

 (a) ∫
∞

−e dxx
1

2  converges because < <− −e e0 x x2  for every x 1 (Figure 8.19) and

e dx e dx

e dx

e e

e

lim

lim

lim

1

x

b

x
b

b

x
b

b

b

1 1

1

1

∫ ∫

( )

=

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − +

=

−
∞

→∞
−

→∞
−

→∞
− −

  converges.
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to learn public administration, but he found 
that his passion was for mathematics. In 
his Berlin lectures in the 1860s, he also 
proved several theorems for continuous and 
complex functions. The standards of rigor 
that he set greatly affected the future of 
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 (b) x
x

dxsin 2

21∫
∞

  converges because

x
x x x

dx0 sin 1 on 1, and 1 converges.
2

2 2 21∫[ )≤ ≤ ∞
∞

  Example 3

 (c) ∫ −

∞

x
dx1

0.121
   diverges because

x x x
dx1

0.1
1 on 1, and 1 diverges.

2 1∫[ )
−

≥ ∞
∞

    Example 3

 (d) 
x

x
dx

cos
0

2

∫
π

  converges because

x

x x
0

cos 1 on 0,
2

,π≤ ≤ ⎡
⎣⎢

⎤
⎦⎥

  x0 cos 1 on  0,
2
π≤ ≤ ⎡

⎣⎢
⎤
⎦⎥

and

∫ ∫

π π( )

=

=
⎤

⎦

⎥
⎥
⎥

= − =

π π

π

→

→

→

+

+

+

dx
x

dx
x

x

a

lim

lim 4

lim 2 4 2 converges.

a a

a
a

a

0

2

0

2

0

2

0
 

Although we have shown that the integrals in parts (a), (b), and (d) of Example 6 con-
verge, we do not know the exact values of these integrals. For example, our computations 
in part (d) imply that

x

x
dx dx

x
0

cos
2 ,

0

2

0

2

∫ ∫ π≤ ≤ =
π π

but unless we do further calculations the most we can say is that the integral is some real 
number between 0 and π2 .

THEOREM 3—Limit Comparison Test
If the positive functions f  and g are continuous on [ )∞a, , and if

= < < ∞
→∞

f x
g x

L Llim
( )
( )

, 0 ,
x

then

f x dx g x dx( ) and ( )
a a∫ ∫
∞ ∞

either both converge or both diverge.

=x x2 4

We omit the proof of Theorem 3, which is similar to that of Theorem 2.

If two functions f x( ) and g x( ) satisfy the hypotheses of Theorem 3 and their improper 
integrals both converge, it need not be the case that these two integrals have the same 
value. This is illustrated in the next example.

EXAMPLE 7  Show that

∫ +

∞ dx
x1 21

converges by comparison with ( )∫
∞

x dx1 .1
2  Find and compare the values of the two integrals.
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528 Chapter 8 Techniques of Integration

Solution The functions =f x x( ) 1 2  and ( )= +g x x( ) 1 1 2  are positive and continu-
ous on [ )∞1, . Also,

f x
g x

x
x

x
x

x

lim
( )
( )

lim
1

1 1
lim 1

lim 1 1 0 1 1,

x x x

x

2

2

2

2

2( )
( )

=
+

= +

= + = + =

→∞ →∞ →∞

→∞

which is a positive finite limit (Figure 8.20). Therefore, ∫ +

∞ dx
x1 21

 converges because ∫
∞ dx

x 21
 

converges.
The integrals converge to different values, however:

∫ =
−

=
∞ dx

x
1

2 1
1

21
  Example 3

and

∫ ∫ π π π[ ]
+

=
+

= − = − =
∞

→∞ →∞
− −dx

x
dx

x
b

1
lim

1
lim tan tan 1

2 4 4
.

b

b

b21 21

1 1  

EXAMPLE 8  Investigate the convergence of ∫ − −∞ e
x

dx1 .
x

1

Solution The integrand suggests a comparison of ( )= − −f x e x( ) 1 x  with =g x x( ) 1 . 
However, we cannot use the Direct Comparison Test because ≤f x g x( ) ( ) and the integral 
of g x( ) diverges. On the other hand, using the Limit Comparison Test, we find that

( )( ) ( )= − = − =
→∞ →∞

−

→∞
−f x

g x
e

x
x elim

( )
( )

lim 1
1

lim 1 1,
x x

x

x

x

which is a positive finite limit. Therefore, ∫ − −∞ e
x

dx1 x

1
 diverges because ∫

∞ dx
x1

 diverges. 

Approximations to the improper integral are given in Table 8.5. Note that the values of these 
approximations do not appear to approach a fixed finite limit as → ∞b . 

TABLE 8.5

b ∫ − −e

x
dx

1 xb

1

    2  0.5226637569

    5  1.3912002736

   10  2.0832053156

  100  4.3857862516

 1000  6.6883713446

 10000  8.9909564376

100000 11.2935415306

Evaluating Improper Integrals
The integrals in Exercises 1–34 converge. Evaluate the integrals with-
out using tables.

 1. ∫ +

∞ dx
x 120

 2. ∫
∞ dx

x 1.0011

 3. ∫ dx
x0

1
 4. ∫ −

dx
x40

4

 5. ∫−

dx
x 2 31

1
 6. ∫−

dx
x1 38

1

 7. ∫ −
dx

x1 20

1
 8. ∫ dr

r 0.9990

1

 9. ∫ −−∞

− dx
x

2
12

2
 10. ∫ +−∞

dx
x

2
42

2

 11. ∫ υ υ
υ

−

∞
d2

22
 12. ∫ −

∞ dt
t

2
122

 13. ∫ ( )+−∞

∞ x dx

x

2

12 2  14. ∫ ( )+−∞

∞ x dx

x 42 3 2

 15. ∫ θ
θ θ

θ+
+

d1
220

1
 16. ∫ +

−
s

s
ds1

4 20

2

 17. ∫ ( )+

∞ dx
x x10

 18. ∫ −

∞

x x
dx1

121

 19. ∫ υ
υ υ( )( )+ + −

∞ d
1 1 tan2 10

 20. 
x

x
dx

16 tan
1

1

20∫ +

−∞

 21. ∫ θ θθ
−∞

e d
0

 22. e d2 sin
0∫ θ θθ−
∞

 23. ∫ −
−∞

e dxx
0

 24. ∫ −
−∞

∞
x e dx2 x 2

 25. ∫ x x dxln
0

1
 26. ∫ ( )− x dxln

0

1

EXERCISES 8.8

FIGURE 8.20 The functions in 
Example 7.

x

y

0

1

321

y = 1
1 + x2

y = 1
x2
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 8.8  Improper Integrals 529

 27. ∫ −
ds

s4 20

2

 28. ∫ −
r dr

r

4

1 40

1

 29. ∫ −
ds

s s 121

2
 30. ∫ −

dt
t t 422

4

 31. dx
x1

4

∫−
 32. dx

x 10

2

∫ −

 33. ∫ θ
θ θ+ +−

∞ d
5 621

 34. ∫ ( )( )+ +

∞ dx
x x1 120

Testing for Convergence
In Exercises 35–68, use integration, the Direct Comparison Test, or the 
Limit Comparison Test to test the integrals for convergence. If more 
than one method applies, use whatever method you prefer.

 35. ∫ dx
x xln1 2

2
 36. ∫ θ

θ θ−−

d
221

1

 37. ∫ ( )

∞ dx
x xln 31 2

 38. ∫ θ
θ −

∞ d
120

 39. dtan
0

2

∫ θ θ
π

 40. dcot
0

2

∫ θ θ
π

 41. ∫ x
x

dxln
20

1
 42. ∫ dx

x xln1

2

 43. ∫ − −x e dxx2 1

0

ln 2
 44. ∫

−e
x

dx
x

0

1

 45. dt
t tsin0∫ +

π
 46. dt

t tsin0

1

∫ −
 

(Hint: t tsin≥  for ≥t 0)

 47. ∫ −
dx

x1 20

2
 48. ∫ −

dx
x10

2

 49. ∫−
x dxln

1

1
 50. x x dxln

1

1

∫ −
−

 51. ∫ +

∞ dx
x 131

 52. ∫ −

∞ dx
x 14

 53. ∫ υ
υ −

∞ d
12

 54. ∫ θ
+ θ

∞ d
e10

 55. ∫ +

∞ dx
x 160

 56. ∫ −

∞ dx
x 122

 57. ∫ +∞ x
x

dx1
21

 58. ∫ −

∞ x dx

x 142

 59. 
x

x
dx

2 cos
∫

+
π

∞
 60. 

x
x

dx
1 sin

2∫
+

π

∞

 61. ∫ −

∞ dt
t

2
13 24

 62. ∫
∞

x
dx1

ln2

 63. ∫
∞ e

x
dx

x

1
 64. ∫ ( )

∞
x dxln ln

ee

 65. ∫ −

∞

e x
dx1

x1
 66. ∫ −

∞

e
dx1

2x x1

 67. ∫ +−∞

∞ dx
x 14

 68. ∫ + −−∞

∞ dx
e ex x

In Exercises 69–80, determine whether the improper integral converges 
or diverges. If it converges, evaluate the integral.

 69. ∫ x x
dx1

0

1
 70. ∫

∞

x x
dx1

2

 71. ∫ x
dx1

50

32
 72. ∫

∞

x
dx1

51

 73. ∫
∞

x
dx1

43
 74. ∫− x

dx1
42

1

 75. x e dxx2

0

3∫
∞

 76. x e dxx2
0

3∫−∞

 77. ∫ +− x x
dx1

323

0
 78. ∫ +

∞

x x
dx1

321

 79. x
x

dx
92 5 2

4

∫ ( )+−∞
 80. x

x
dx

92 2 5

4

∫ ( )+−∞

Theory and Examples

 81. Find the values of p for which each integral converges.

 a. ∫ ( )
dx

x xln p1

2
 b. ∫ ( )

∞ dx
x xln p2

 82. ∫−
f x dx( )

∞

∞

 may not equal lim
∞b

f x dx  ( ) .
b

b

∫→ −
 Show that

∫ +

∞ x dx
x
2

120

diverges and hence that

∫ +−∞

∞ x dx
x
2

12

diverges. Then show that

∫ +
=

→∞ −

x dx
x

lim
2

1
0.

b b

b

2

Exercises 83–86 are about the infinite region in the first quadrant 
between the curve = −y e x and the x-axis.

 83. Find the area of the region.

 84. Find the centroid of the region.

 85. Find the volume of the solid generated by revolving the region 
about the y-axis.

 86. Find the volume of the solid generated by revolving the region 
about the x-axis.

 87. Find the area of the region that lies between the curves y xsec=  
and y xtan=  from =x 0 to π=x 2.

 88. The region in Exercise 87 is revolved about the x-axis to generate 
a solid.

 a. Find the volume of the solid.

 b. Show that the inner and outer surfaces of the solid have  
infinite area.
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530 Chapter 8 Techniques of Integration

 89. Consider the infinite region in the first quadrant bounded by the 

graphs of = =y
x

y1 ,   0,
2

 and =x 1.

 a. Find the area of the region.

 b. Find the volume of the solid formed by revolving the region 
(i) about the x-axis; (ii) about the y-axis.

 90. Consider the infinite region in the first quadrant bounded by the 

graphs of = = =y
x

y x1 ,   0,   0, and =x 1.

 a. Find the area of the region.

 b. Find the volume of the solid formed by revolving the region 
(i) about the x-axis; (ii) about the y-axis.

 91. Evaluate the integrals.

 a. ∫ ( )+
dt

t t10

1
 b. ∫ ( )+

∞ dt
t t10

 92. Evaluate ∫ −

∞ dx
x x 9

.
23

 93. Estimating the value of a convergent improper integral whose 
domain is infinite

 a. Show that

∫ = <−
∞

−e dx e1
3

0.000042,x3

3

9

and hence that ∫ <
∞

−e dx 0.000042.x
3

2  Explain why this 

means that e dxx
0

2∫
∞

−  can be replaced by e dxx
0
3 2∫ −  without 

introducing an error of magnitude greater than 0.000042.

 b. Evaluate ∫ −e dxx
0
3 2  numerically.

 94. The infinite paint can or Gabriel’s horn As Example 3 shows, 
the integral ( )∫

∞
dx x1  diverges. This means that the integral

∫ π +
∞

x x
dx2 1 1 1 ,

41

which measures the surface area of the solid of revolution traced 
out by revolving the curve = ≤y x x1 ,  1 , about the x-axis, 
diverges also. By comparing the two integrals, we see that, for 
every finite value >b 1,

∫ ∫π π+ >
x x

dx
x

dx2 1 1 1 2 1 .
b b

41 1

T

amount of paint cannot cover an infinite surface. But if we fill 
the horn with paint (a finite amount), then we will have cov-
ered an infinite surface. Explain the apparent contradiction.

 95. Sine-integral function The integral

x
t

t
dtSi ( )

sin
,

x

0∫=

called the sine-integral function, has important applications in 
optics.

 a. Plot the integrand t tsin( )  for >t 0. Is the sine-integral 
function everywhere increasing or decreasing? Do you think 

=xSi( ) 0 for x 0≥ ? Check your answers by graphing the 
function xSi( ) for ≤ ≤x0 25.

 b. Explore the convergence of

t
t

dt
sin

.
0∫
∞

If it converges, what is its value?

 96. Error function The function

∫ π
=

−
x e dterf( ) 2 ,

tx

0

2

called the error function, has important applications in probability 
and statistics.

 a. Plot the error function for ≤ ≤x0 25.

 b. Explore the convergence of

∫ π

−∞ e dt2 .
t

0

2

If it converges, what appears to be its value? You will see how 
to confirm your estimate in Section 14.4, Exercise 41.

 97. Normal probability distribution The function

σ π
=

μ
σ( )− −

f x e( ) 1
2

x1
2

2

is called the normal probability density function with mean μ and 
standard deviation σ. The number μ tells where the distribution is 
centered, and σ measures the “scatter” around the mean.

From the theory of probability, it is known that

∫ =
−∞

∞
f x dx( ) 1.

In what follows, let 0μ =  and σ = 1.

 a. Draw the graph of f . Find the intervals on which f  is increas-
ing, the intervals on which f  is decreasing, and any local 
extreme values and where they occur.

 b. Evaluate

∫−
f x dx( )

n

n

for =n 1,  2, and 3.

 c. Give a convincing argument that

∫ =
−∞

∞
f x dx( ) 1.

(Hint: Show that < < −f x e0 ( ) x 2 for >x 1, and for >b 1,

∫ → → ∞−
∞

e dx b0 as .)x

b

2

T

T

T

x

y

1
0

b

y = 1
x

However, the integral

∫ π( )∞

x
dx1 2

1

for the volume of the solid converges.

 a. Calculate it.

 b. This solid of revolution is sometimes described as a can that 
does not hold enough paint to cover its own interior. Think 
about that for a moment. It is common sense that a finite 
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 Chapter 8  Questions to Guide Your Review 531

 98. Show that if f x( ) is integrable on every interval of real numbers, 
and if a and b are real numbers with <a b, then

 a. f x dx( )
a

∫−∞  and ∫
∞

f x dx( )a  both converge if and only if 

f x dx( )
b

∫−∞  and ∫
∞

f x dx( )b  both converge.

 b. f x dx f x dx f x dx f x dx( ) ( ) ( ) ( )
a

a

b

b∫ + ∫ = ∫ + ∫−∞
∞

−∞
∞

 

when the integrals involved converge.

COMPUTER EXPLORATIONS
In Exercises 99–102, use a CAS to explore the integrals for various 
values of p (include noninteger values). For what values of p does the 

integral converge? What is the value of the integral when it does con-
verge? Plot the integrand for various values of p.

 99. ∫ x x dxlnp
e

0
 100. ∫

∞
x x dxlnp

e

 101. ∫
∞

x x dxlnp

0
 102. ∫−∞

∞
x x dxlnp

Use a CAS to evaluate the integrals.

 103. 
x

dxsin 1
0

2

∫
π

 104. x
x

dxsin 1
0

2

∫
π

 1. What is the formula for integration by parts? Where does it come 
from? Why might you want to use it?

 2. When applying the formula for integration by parts, how do you 
choose the u and υd ? How can you apply integration by parts to 
an integral of the form ∫ f x dx( ) ?

 3. If an integrand is a product of the form x xsin cos ,n m  where m and 
n are nonnegative integers, how do you evaluate the integral? Give 
a specific example of each case.

 4. What substitutions are made to evaluate integrals of sin mx sin 
nx, sin mx cos nx, and cos mx cos nx? Give an example of each 
case.

 5. What substitutions are sometimes used to transform integrals 
involving − +a x a x,   ,2 2 2 2  and −x a2 2  into integrals 
that can be evaluated directly? Give an example of each case.

 6. What restrictions can you place on the variables involved in the 
three basic trigonometric substitutions to make sure the substitu-
tions are reversible (have inverses)?

 7. What is the goal of the method of partial fractions?

 8. When the degree of a polynomial f x( ) is less than the degree of a 
polynomial g x( ), how do you write f x g x( ) ( ) as a sum of partial 
fractions if g x( )

 a. is a product of distinct linear factors?

 b. consists of a repeated linear factor?

 c. contains an irreducible quadratic factor?

What do you do if the degree of f  is not less than the degree of g?

 9. How are integral tables typically used? What do you do if a par-
ticular integral you want to evaluate is not listed in the table?

 10. What is a reduction formula? How are reduction formulas used? 
Give an example.

 11. How would you compare the relative merits of the Midpoint Rule, 
the Trapezoidal Rule, and Simpson’s Rule?

 12. What is an improper integral of Type I? Type II? How are the 
values of various types of improper integrals defined? Give 
examples.

 13. What tests are available for determining the convergence and 
divergence of improper integrals that cannot be evaluated directly? 
Give examples of their use.

 14. What is a random variable? What is a continuous random vari-
able? Give some specific examples.

 15. What is a probability density function? What is the probability 
that a continuous random variable has a value in the interval 
[ ]c d, ?

 16. What is an exponentially decreasing probability density function? 
What are some typical events that might be modeled by this dis-
tribution? What do we mean when we say such distributions are 
memoryless?

 17. What is the expected value of a continuous random variable? 
What is the expected value of an exponentially distributed random 
variable?

 18. What is the median of a continuous random variable? What is the 
median of an exponential distribution?

 19. What does the variance of a random variable measure? What is 
the standard deviation of a continuous random variable X?

 20. What probability density function describes the normal distribu-
tion? What are some examples typically modeled by a normal dis-
tribution? How do we usually calculate probabilities for a normal 
distribution?

 21. In a normal distribution, what percentage of the population lies 
within 1 standard deviation of the mean? Within 2 standard 
deviations?

CHAPTER 8 Questions to Guide Your Review
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532 Chapter 8 Techniques of Integration

Integration by Parts
Evaluate the integrals in Exercises 1–8 using integration by parts.

 1. ∫ ( )+x dxln 1  2. x x dxln2∫

 3. ∫ x dxarctan 3  4. ∫ ( )− x dxcos
2

1

 5. ∫ ( )+x e dx1 x2  6. ∫ ( )−x x dxsin 12

 7. e x dxcos 2x∫  8. x x x dxsin cos∫
Partial Fractions
Evaluate the integrals in Exercises 9–28. It may be necessary to use a 
substitution first.

 9. ∫ − +
x dx

x x3 22
 10. ∫ + +

x dx
x x4 32

 11. ∫ ( )+
dx

x x 1 2  12. ∫ ( )

+
−

x
x x

dx1
12

 13. ∫
θ θ

θ θ+ −
dsin

cos cos 22
 14. ∫

θ θ
θ θ+ −

dcos
sin sin 62

 15. ∫ + +
+

x x
x x

dx3 4 42

3
 16. ∫ +

x dx
x x

4
43

 17. ∫ υ
υ υ

υ+
−

d3
2 83

 18. ∫
υ υ

υ υ υ
( )

( )( )( )

−
− − −

d3 7
1 2 3

 19. ∫ + +
dt

t t4 34 2
 20. ∫ − −

t dt
t t 24 2

 21. ∫ +
+ −

x x
x x

dx
2

3 2

2
 22. ∫ +

−
x
x x

dx13

3

 23. ∫ +
+ +

x x
x x

dx4
4 3

3 2

2
 24. ∫

+ − +
+ −

x x x
x x

dx
2 21 24

2 8

3 2

2

 25. ∫ ( )+
dx

x x3 1
 26. ∫ ( )+

dx
x x1 3

 27. ∫ −
ds

e 1s
 28. ∫ +

ds
e 1s

Trigonometric Substitutions
Evaluate the integrals in Exercises 29–32 (a) without using a trigono-
metric substitution, (b) using a trigonometric substitution.

 29. ∫ −
y dy

y16 2
 30. ∫ +

x dx

x4 2

 31. 
x dx

x4 2∫ −
 32. 

t dt

t4 12∫ −

Evaluate the integrals in Exercises 33–36.

 33. 
x dx

x9 2∫ −
 34. ∫ ( )−

dx
x x9 2

 35. ∫ −
dx

x9 2
 36. ∫ −

dx
x9 2

Trigonometric Integrals
Evaluate the integrals in Exercises 37–44.

 37. x x dxsin cos3 4∫  38. x x dxcos sin5 5∫
 39. x x dxtan sec4 2∫  40. x x dxtan sec3 3∫
 41. dsin 5 cos 6∫ θ θ θ  42. dsec sin2 3∫ θ θ θ

 43. ∫ ( )+ t dt1 cos 2  44. ∫ +e e dttan 1t t2

Numerical Integration

 45. According to the error-bound formula for Simpson’s Rule, how many 
subintervals should you use to be sure of estimating the value of

x
dxln 3 1

1

3

∫=

by Simpson’s Rule with an error of no more than −10 4 in absolute 
value? (Remember that for Simpson’s Rule, the number of subin-
tervals has to be even.)

 46. A brief calculation shows that if ≤ ≤x0 1, then the second 
derivative of = +f x x( ) 1 4  lies between 0 and 8. Based on 
this, about how many subdivisions would you need to estimate 
the integral of f  from 0 to 1 with an error no greater than −10 3 in 
absolute value using the Trapezoidal Rule?

 47. A direct calculation shows that

x dx2 sin .2

0∫ π=
π

How close do you come to this value by using the Trapezoidal 
Rule with =n 6? The Midpoint Rule with =n 6? Simpson’s 
Rule with =n 6? Try them and find out.

 48. You are planning to use Simpson’s Rule to estimate the value of 
the integral

∫ f x dx( )
1

2

with an error magnitude less than −10 .5  You have determined that 
≤f x( ) 3(4)  throughout the interval of integration. How many 

subintervals should you use to ensure the required accuracy? 
(Remember that for Simpson’s Rule, the number has to be even.)

 49. Mean temperature Compute the average value of the tempera-
ture function

f x x( ) 20 sin 2
365

101 4π( )( )= − −

for a 365-day year. This is one way to estimate the annual mean 
air temperature in Fairbanks, Alaska. The National Weather 
Service’s official figure, a numerical average of the daily normal 
mean air temperatures for the year, is 3.5  C− ° , which is slightly 
higher than the average value of f x( ).

 50. Heat capacity of a gas Heat capacity υC  is the amount of heat 
required to raise the temperature of a given mass of gas with con-
stant volume by °1  C, measured in units of cal deg-mol (calories 
per degree gram molecular weight). The heat capacity of oxygen 
depends on its temperature T and satisfies the formula

( )= + −υ
−C T T8.27 10 26 1.87 .5 2

T
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Use Simpson’s Rule to find the average value of υC  and the tem-
perature at which it is attained for ° ≤ ≤ °T20  C 675  C.

 51. Fuel efficiency An automobile computer gives a digital readout 
of fuel consumption in liters per hour. During a trip, a passenger 
recorded the fuel consumption every 5 min for a full hour of travel.

Time L/h Time L/h

0 2.5 35 2.5

5 2.4 40 2.4

10 2.3 45 2.3

15 2.4 50 2.4

20 2.4 55 2.4

25 2.5 60 2.3

30 2.6

 a. Use the Trapezoidal Rule to approximate the total fuel con-
sumption during the hour.

 b. If the automobile covered 60 km in the hour, what was its fuel 
efficiency (in kilometers per liter) for that portion of the trip?

 52. A new parking lot To meet the demand for parking, your town 
has allocated the area shown here. As the town engineer, you have 
been asked by the town council to find out if the lot can be built 
for $11,000. The cost to clear the land will be $1.00 a square 
meter, and the lot will cost $20.00 a square meter to pave. Use 
Simpson’s Rule to find out if the job can be done for $11,000.

22 m

18 m

Ignored

17 m

18 m

16.5 m

21 m

12 m

14 m

0 m

Vertical spacing = 5 m

Improper Integrals
Evaluate the improper integrals in Exercises 53–62.

 53. ∫ −
dx

x9 20

3
 54. ∫ x dxln

0

1

 55. ∫ ( )−
dy

y 1 2 30

2
 56. ∫ θ

θ( )+−

d
1 3 52

0

 57. ∫ −

∞ du
u u

2
223

 58. ∫ υ
υ υ

υ−
−

∞
d3 1

4 3 21

 59. x e dxx2

0∫ −
∞

 60. x e dxx3
0

∫−∞

 61. ∫ +−∞

∞ dx
x4 92

 62. ∫ +−∞

∞ dx
x

4
162

Which of the improper integrals in Exercises 63–68 converge and 
which diverge?

 63. ∫ θ
θ +

∞ d
126

 64. e u ducosu

0∫ −
∞

 65. 
z

z
dz

ln
1∫

∞
 66. ∫

−∞ e
t

dt
t

1

 67. ∫ + −−∞

∞ dx
e e

2
x x

 68. ∫ ( )+−∞

∞ dx
x e1 x2

Assorted Integrations
Evaluate the integrals in Exercises 69–134. The integrals are listed in 
random order so you need to decide which integration technique to use.

 69. x e dxx2∫  70. x e dxx2

0

1
3∫

 71. ∫ ( )+x x dxtan sec2 2  72. ∫
π

x dxcos 22

0

4

 73. x x dxsec 2∫  74. x x dxsec ( )2 2∫

 75. x x dxsin cos 2∫  76. x x dxsin 2 sin cos 2∫ ( )

 77. ∫ + −−

e
e e

dx
x

x x1

0
 78. ∫ ( )+ −e e dxx x2 2

 79. ∫ +
−

x
x x

dx1
4 3

 80. ∫ ( )
+

−
e

e e
dx1

4

x

x x2

 81. ∫ +e e
e

dx x x

x

3

2
 82. e e e e dxx x x x 3∫ ( )( )− +− −

 83. x x dxtan sec3 2

0

3

∫
π

 84. x x dxtan sec4 4∫

 85. ∫ ( )+ +x x dx2 1
0

3
 86. x x x dx1 22∫ ( )+ +

 87. x x dxcot csc3∫  88. x x x dxsin tan cot 2∫ ( )−

 89. ∫ +
x dx

x1
 90. ∫ +

−
x

x
dx2

4

3

2

 91. ∫ −x x dx2 2  92. dx
x x2 2∫ − −

 93. 
x x

x
dx

2 cos sin
sin 2∫

− +
 94. dsin cos2 5∫ θ θ θ

 95. ∫
υ
υ−

d9
81 4

 96. ∫ ( )−

∞ dx
x 1 22

 97. dcos 2 1∫ θ θ θ( )+  98. ∫ − +
x dx

x x2 1

3

2

 99. 
dsin 2

1 cos 2 2∫
θ θ
θ( )+

 100. x dx1 cos 4
4

2

∫ +
π

π

 101. ∫ −
x dx

x2
 102. ∫ υ

υ
υ− d1 2

2
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534 Chapter 8 Techniques of Integration

 103. ∫ − +
dy

y y2 22  104. ∫ − −
x dx

x x8 2 2 4

 105. ∫ ( )
+

+
z

z z
dz1

42 2
 106. ∫ ( )−x x dx12 1 3

 107. ∫ −
t dt

t9 4 2
 108. ∫

x
x

dx
arctan

2

 109. 
e dt

e e3 2

t

t t2∫ + +
 110. ∫ t dttan 3

 111. ∫
∞ y

y
dy

ln
31

 112. ∫ ( )y y dyln3 2 2

 113. ∫ e dxxln  114. ∫ θ+θ θe e d3 4

 115. 
t dt

t

sin 5

1 cos 5 2∫ ( )+
 116. ∫ υ

−υ
d

e 12

 117. ∫ +
dr

r1
 118. ∫ −

− +
x x

x x
dx4 20

10 9

3

4 2

 119. ∫ +
x

x
dx

1

3

2
 120. ∫ +

x
x

dx
1

2

3

 121. ∫ +
+

x
x

dx1
1

2

3
 122. ∫ ( )

+
+

x
x

dx1
1

2

3

 123. ∫ ⋅ +x x dx1  124. ∫ + + x dx1 1

 125. ∫ ⋅ +x x
dx1

1
 126. ∫ + − x dx1 1 2

0

1 2

 127. 
x

x x x
dx

ln
ln∫ +

 128. 
x x x

dx1
ln ln ln∫ ( )⋅ ⋅

 129. 
x x

x
dx

lnxln

∫  130. x
x

x
x

dxln 1 ln lnxln∫ ( )
( )

+
⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

 131. ∫ −x x
dx1

1 4
 132. ∫ − x

x
dx1

 133. ∫ +
x

x
dxsin

1 sin

2

2
 134. 

x
x

dx
1 cos
1 cos∫

−
+

 135. Evaluate 
x

x x
dx

sin
sin cos0

2

∫ +

π
 in two ways:

 a.  By evaluating 
x

x x
dx

sin
sin cos

,∫ +
 then using the Evaluation 

Theorem.

 b.  By showing that ∫ ∫ ( )= −f x dx f a x dx( ) ,
a a

0 0
 then using 

this result.

Evaluating Integrals
Evaluate the integrals in Exercises 1–6.

 1. ∫ ( )x dxarcsin 2

 2. 
�∫ ( )( ) ( )+ + +

dx
x x x x m1 2

 3. x x dxarcsin∫  4. ∫ − y dysin 1

 5. ∫ − −
dt

t t1 2
 6. ∫ +

dx
x 44

Evaluate the limits in Exercise 7 and 8.

 7. t dtlim sin
x x

x

∫→∞ −
 8. x

t
t

dtlim
cos

x x0 2

1

∫→ +

Evaluate the limits in Exercise 9 and 10 by identifying them with defi-
nite integrals and evaluating the integrals.

 9. k
n

lim ln 1
n

k

n
n

1
∑ +

→∞ =

 10. 
n k

lim 1
n

k

n

0

1

2 2∑ −→∞ =

−

Applications
 11. Finding arc length Find the length of the curve

y t dt xcos 2 , 0 4.
x

0∫ π= ≤ ≤

 12. Finding arc length Find the length of the graph of the function 
( )= − ≤ ≤y x xln 1 ,  0 1 2.2

 13. Finding volume The region in the first quadrant that is enclosed 
by the x-axis and the curve = −y x x3 1  is revolved about the 
y-axis to generate a solid. Find the volume of the solid.

 14. Finding volume The region in the first quadrant that is enclosed 
by the x-axis, the curve ( )= −y x x5 5 , and the lines =x 1 
and =x 4 is revolved about the x-axis to generate a solid. Find 
the volume of the solid.

 15. Finding volume The region in the first quadrant enclosed by the 
coordinate axes, the curve =y e ,x  and the line =x 1 is revolved 
about the y-axis to generate a solid. Find the volume of the solid.

 16. Finding volume The region in the first quadrant that is bounded 
above by the curve = −y e 1,x  below by the x-axis, and on the 
right by the line =x ln2 is revolved about the line =x ln2 to 
generate a solid. Find the volume of the solid.

 17. Finding volume Let R be the “triangular” region in the first 
quadrant that is bounded above by the line =y 1, below by the 
curve =y xln , and on the left by the line =x 1. Find the volume 
of the solid generated by revolving R about

 a. the x-axis.  b. the line =y 1.

 18. Finding volume (Continuation of Exercise 17.) Find the vol-
ume of the solid generated by revolving the region R about

 a. the y-axis.  b. the line =x 1.

 19. Finding volume The region between the x-axis and the curve

y f x
x

x x x
( )

0, 0

ln , 0 2
= =

=

< ≤

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪
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 Chapter 8  Additional and Advanced Exercises 535

is revolved about the x-axis to generate the solid shown here.

 a. Show that f  is continuous at =x 0.

 b. Find the volume of the solid.

y

0

y = x ln x

x
1 2

 20. Finding volume The infinite region bounded by the coordinate 
axes and the curve = −y xln  in the first quadrant is revolved 
about the x-axis to generate a solid. Find the volume of the solid.

 21. Centroid of a region Find the centroid of the region in the first 
quadrant that is bounded below by the x-axis, above by the curve 

=y xln , and on the right by the line =x e.

 22. Centroid of a region Find the centroid of the region in the plane 
enclosed by the curves ( )= ± − −y x1 2 1 2 and the lines =x 0 
and =x 1.

 23. Length of a curve Find the length of the curve =y xln  from 
=x 1 to =x e.

 24. Finding surface area Find the area of the surface generated by 
revolving the curve in Exercise 23 about the y-axis.

 25. The surface generated by an astroid The graph of the equation 
+ =x y 12 3 2 3  is an astroid (see accompanying figure). Find the 

area of the surface generated by revolving the curve about the x-axis.

x2�3 + y2�3 = 1

x

y

0-1 1

-1

1

 26. Length of a curve Find the length of the curve

∫= − ≤ ≤y t dt x1 , 1 16.
x

1

 27. For what value or values of a does

∫ ( )+
−

∞ ax
x x

dx
1

1
221

converge? Evaluate the corresponding integral(s).

 28. For each >x 0, let = ∫
∞

−G x e dt( ) . xt
0  Prove that =xG x( ) 1 

for each >x 0.

 29. Infinite area and finite volume What values of p have the 
following property? The area of the region between the curve 

= ≤ < ∞−y x x,  1 ,p  and the x-axis is infinite but the volume of 
the solid generated by revolving the region about the x-axis is finite.

 30. Infinite area and finite volume What values of p have the 
following property? The area of the region in the first quadrant 
enclosed by the curve = −y x ,p  the y-axis, the line =x 1, and 
the interval [ ]0,1  on the x-axis is infinite, but the volume of the 

solid generated by revolving the region about one of the coordi-
nate axes is finite.

 31. Integrating the square of the derivative If f  is continuously 
differentiable on [ ]0,1 , and = = −f f(1) (0) 1 6, prove that

f x dx f x dx( ( )) 2 ( ) 1
4

.2

0

1

0

1

∫ ∫′ ≥ +

Hint: Consider the inequality ∫ ( )≤ ′ + −f x x dx0 ( ) 1
2

.
2

0

1

Source: Mathematics Magazine, vol. 84, no. 4, Oct. 2011.

 32. (Continuation of Exercise 31.) If f  is continuously differentiable 
on [ ]a0,  for >a 0, and = =f a f b( ) (0) , prove that

f x dx f x dx ab a( ( )) 2 ( ) 2
12

.
a a

2

0 0

3

∫ ∫ ( )′ ≥ − +

Hint: Consider the inequality ∫ ( )≤ ′ + −f x x a dx0 ( )
2

.
a 2

0

Source: Mathematics Magazine, vol. 84, no. 4, Oct. 2011.

The Substitution = ( )z xtan 2
The substitution

 z xtan
2

=  (1)

reduces the problem of integrating a rational expression in sin x and 
cos x to a problem of integrating a rational function of z. This in turn 
can be integrated by partial fractions.

From the accompanying figure

A

P(cos x, sin x)

sin x
x

cos x1 0

1

2
x

we can read the relation

x x
x

tan
2

sin
1 cos

.=
+

To see the effect of the substitution, we calculate

 

x x
x

x z

x z
z

cos 2 cos
2

1 2
sec 2

1

2
1 tan 2

1 2
1

1

cos 1
1

,

2
2

2 2

2

2

( ) ( )

( )

= − = −

=
+

− =
+

−

= −
+

 (2)

and

 

x x x x
x

x

x
x

x
x

x z
z

sin 2 sin
2

cos
2

2
sin 2
cos 2

cos
2

2 tan
2

1
sec 2

2 tan 2
1 tan 2

sin 2
1

.

2

2 2

2

( )( )
( )

( )
( )

( )

= = ⋅

= ⋅ =
+

=
+

 (3)
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536 Chapter 8 Techniques of Integration

∫ ∫

∫ ∫

∫

( )

( )( )

( )

+
= +

+ + +

=
+ +

=
+ +

=
+

= +

= + +

=
+

+

x
dx z

z z
dz

z

dz
z z

dz
z

du
u a

a
u
a

C

z C

x
C

1
2 sin

1
2 2 2

2
1

1 1 2 3 4

1 arctan

2
3

arctan 2 1
3

2
3

arctan
1 2 tan 2

3

2

2 2

2 2

2 2

Use the substitutions in Equations (1)–(4) to evaluate the integrals in 
Exercises 33–40. Integrals like these arise in calculating the average 
angular velocity of the output shaft of a universal joint when the input 
and output shafts are not aligned.

 33. dx
x1 sin∫ −

 34. dx
x x1 sin cos∫ + +

 35. dx
x1 sin0

2

∫ +
 36. dx

x1 cos3

2

∫ −

 37. d
2 cos0

2

∫ θ
θ+

π
 38. 

dcos
sin cos sin2

2 3

∫
θ θ

θ θ θ+π

π

 39. dt
t tsin cos∫ −

 40. 
t dt

t
cos

1 cos∫ −

Use the substitution ( )=z tan 2  to evaluate the integrals in Exercises 
41 and 42.

 41. dsec  42. dcsc

The Gamma Function and Stirling’s Formula
Euler’s gamma function x( ) (“gamma of x”;  is a Greek capital g) 
uses an integral to extend the factorial function from the nonnegative 
integers to other real values. The formula is

∫Γ = >− −
∞

x t e dt x( ) , 0.x t1

0

For each positive x, the number x( ) is the integral of t ex t1  with 
respect to t from 0 to . Figure 8.21 shows the graph of  near 
the origin. You will see how to calculate 1 2( )Γ  if you do Additional 
Exercise 23 in Chapter 14.

x
dx z dz

z

dz z C

x C

1
1 cos

1
2

2 
1

tan
2

2

2∫ ∫

∫

( )

+
= +

+

= = +

= +

 b. 

Finally, x z2 arctan , so

 =
+

dx
dz

z
2

1
.

2
 (4)

Examples

 a. 

 43. If n is a nonnegative integer, then n n1 !Γ + =( )

 a. Show that 1 1.( )Γ =

 b. Then apply integration by parts to the integral for x 1( )Γ +  to 
show that ( )Γ + = Γx x x1 ( ). This gives

 

n n n n

(2) 1 (1) 1

(3) 2 (2) 2

(4) 3 (3) 6

1 ( ) !( )

Γ = Γ =
Γ = Γ =
Γ = Γ =

Γ + = Γ =  (1)

 c. Use mathematical induction to verify Equation (1) for every 
nonnegative integer n.

 44. Stirling’s formula Scottish mathematician James Stirling 
(1692–1770) showed that

( ) Γ =
→∞

e
x

x xlim
2

( ) 1,
x

x

so, for large x,

 π ε ε( ) ( )Γ = + → → ∞x x
e x

x x x( ) 2 1 ( ) ( ) 0 as  .
x

 (2)

Dropping x( ) leads to the approximation

 ( ) ( )Γ ≈x x
e x

Stirling s formula( ) 2 ’   .
x

 (3)

 a. Stirling’s approximation for n! Use Equation (3) and the 
fact that = Γn n n! ( ) to show that

 n n
e

n Stirling s approximation! 2 ’   .
n

( ) ( )≈  (4)

FIGURE 8.21 Euler’s gamma function 
x( ) is a continuous function of x whose 

value at each positive integer n 1 is  
n!. The defining integral formula for  is 
valid only for x 0, but we can extend   
to negative noninteger values of x with the  
formula ( )( )Γ = Γ +x x x( ) 1 , which is 
the subject of Exercise 43.

x

y

0 1-1 3-2 2-3

-1

-2

-3

1

2

3
y = ≠(x)
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 Chapter 8  Technology Application Projects 537

As you will see if you do Exercise 114 in Section 9.1, Equation 
(4) leads to the approximation

 n n
e

! .n  (5)

 b. Compare your calculator’s value for n! with the value given 
by Stirling’s approximation for n 10, 20, 30,  , as far as 
your calculator can go.

 c. A refinement of Equation (2) gives

x x
e x

e x( ) 2   1 ( )
x

x1 12π ε( ) ( )Γ = +( )

T

T

or

x x
e x

e( ) 2 ,
x

x1 12( )Γ ≈ ( )

which tells us that

 ( )≈ ( )n n
e

n e! 2 .
n

n1 12  (6)

Compare the values given for 10! by your calculator, Stirling’s 
approximation, and Equation (6).

Mathematica/Maple Projects

Projects can be found within MyLab Math.

• Riemann, Trapezoidal, and Simpson Approximations

Part I: Visualize the error involved in using Riemann sums to approximate the area under a curve.
Part II: Build a table of values and compute the relative magnitude of the error as a function of the step size x.
Part III: Investigate the effect of the derivative function on the error.
Parts IV and V: Trapezoidal Rule approximations.
Part VI: Simpson’s Rule approximations.

• Games of Chance: Exploring the Monte Carlo Probabilistic Technique for Numerical Integration

Graphically explore the Monte Carlo method for approximating definite integrals.

• Computing Probabilities with Improper Integrals

More explorations of the Monte Carlo method for approximating definite integrals.

CHAPTER 8 Technology Application Projects
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538

OVERVIEW In this chapter we introduce the topic of infinite series. Such series give us 
precise ways to express many numbers and functions, both familiar and new, as arithmetic 
sums with infinitely many terms. For example, we will learn that

4
1 1

3
1
5

1
7

1
9

= − + − + −

and

= − + − + −x x x x xcos 1
2 24 720 40,320

.
2 4 6 8

We need to develop a method to make sense of such expressions. Everyone knows 
how to add two numbers together, or even several. But how do you add together infinitely 
many numbers? Or, when adding together functions, how do you add infinitely many pow-
ers of x? In this chapter we answer these questions, which are part of the theory of infinite 
sequences and series. As with the differential and integral calculus, limits play a major role 
in the development of infinite series.

One common and important application of series occurs in making computations with 
complicated functions. A hard-to-compute function is replaced by an expression that looks 
like an “infinite degree polynomial,” an infinite series in powers of x, as we see with the 
cosine function given above. Using the first few terms of this infinite series can allow for 
highly accurate approximations of functions by polynomials, enabling us to work with 
more general functions than those we have encountered before. These new functions are 
commonly obtained as solutions to differential equations arising in important applications 
of mathematics to science and engineering.

The terms “sequence” and “series” are sometimes used interchangeably in spoken 
language. In mathematics, however, each has a distinct meaning. A sequence is a type of 
infinite list, whereas a series is an infinite sum. To understand the infinite sums described 
by series, we first must understand infinite sequences.

Infinite Sequences 

and Series

9 

HISTORICAL ESSAY

Sequences and Series
To read this essay, visit the companion 
Website. 

9.1 Sequences

Sequences are fundamental to the study of infinite series and to many aspects of mathematics. 
We saw one example of a sequence when we studied Newton’s Method in Section 4.7. 
Newton’s Method produces a sequence of approximations xn that become closer and closer 
to the root of a differentiable function. Now we will explore general sequences of numbers 
and the conditions under which they converge to a finite number.
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 9.1  Sequences 539

Representing Sequences

A sequence is a list of numbers

a a a a, , , , ,n1 2 3 … …

in a given order. Each of a a a, ,1 2 3, and so on represents a number. These are the terms of 
the sequence. For example, the sequence

n2, 4, 6, 8,10,12, , 2 ,… …

has first term a 21 = , second term a 42 = , and nth term a n2 .n =  The integer n is called 
the index of an and indicates where an occurs in the list. Order is important. The sequence 
2, 4, 6, 8…  is not the same as the sequence 4, 2, 6, 8 .…

We can think of the sequence

a a a a, , , , ,n1 2 3 … …

as a function that sends 1 to a , 21  to a , 32  to a ,3  and in general sends the positive integer n to 
the nth term a .n  More precisely, an infinite sequence of numbers is a function whose 
domain is the set of positive integers. For example, the function associated with the sequence

n2, 4, 6, 8,10,12, , 2 ,… …

sends 1 to a 2, 21 =  to a 42 = , and so on. The general behavior of this sequence is 
described by the formula a n2 .n =

We can change the index to start at any given number n. For example, the sequence

12,14,16,18, 20, 22…

is described by the formula a n10 2 ,n = +  if we start with n 1.=  It can also be described 
by the simpler formula b n2 ,n =  where the index n starts at 6 and increases. To allow such 
simpler formulas, we let the first index of the sequence be any appropriate integer. In the 
sequence above, an{ } starts with a1 while bn{ } starts with b .6

Sequences can be described by writing rules that specify their terms, such as

( ) ( )= = − = − = −+ +a n b
n

c n
n

d, 1 1 , 1, 1 ,n n
n

n n
n1 1

or by listing terms:

… …

… …

… …

… …

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

( )

( )

=

= − − −

= −

= − − − −

+

+

a n

b
n

c n
n

d

1, 2, 3, , ,

1, 1
2

, 1
3

, 1
4

, , 1 1 ,

0, 1
2

, 2
3

, 3
4

, 4
5

, , 1,

1, 1,1, 1,1, 1, , 1 , .

n

n
n

n

n
n

1

1

We also sometimes write a sequence using its rule, as with

a nn n 1{ }{ } =
=

∞

and

{ }{ } ( )= − +

=

∞
b

n
1 1 .n

n

n

1

1

Figure 9.1 shows two ways to represent sequences graphically. The first marks the 
first few points from a a a a, , , , ,n1 2 3 … …  on the real axis. The second method shows the 
graph of the function defining the sequence. The function is defined only on integer 
inputs, and the graph consists of some points in the xy-plane located at a1, ,1( )  

… …( ) ( )a n a2, , , , , .n2
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540 Chapter 9  Infinite Sequences and Series

Convergence and Divergence

Sometimes the numbers in a sequence approach a single value as the index n increases. 
This happens in the sequence

n
1, 1

2
, 1
3

, 1
4

, , 1 , ,{ }… …

whose terms approach 0 as n gets large, and in the sequence

n
0, 1

2
, 2

3
, 3

4
, 4

5
, ,1 1 , ,{ }−… …

whose terms approach 1. On the other hand, sequences like

n1, 2, 3, , ,{ }… …

have terms that get larger than any number as n increases, and sequences like

1, 1,1, 1,1, 1, , 1 ,n 1{ }( )− − − − +… …

bounce back and forth between 1 and 1,−  never converging to a single value. The follow-
ing definition captures the meaning of having a sequence converge to a limiting value. It 
says that if we specify any number 0,ε >  then by going far enough out in the sequence, 
taking the index n to be larger than some value N, the difference between an and the limit 
of the sequence becomes less than .ε

FIGURE 9.1 Sequences can be represented as points on the real line or 
as points in the plane where the horizontal axis n is the index number of the 
term and the vertical axis an is its value.

0

an = 
"

n

1 2

0 1 32 4 5

1

3

2

1

0 1 32 4 5

0

an =

1

0

1

0

a2 a4 a5 a3 a1

1

1
n

n

an

n

an

n

an

a1 a2 a3 a4 a5

a3 a2 a1

an = (−1)n+1 1
n

FIGURE 9.2 In the representation of a 
sequence as points in the plane, a Ln →  if  
y L=  is a horizontal asymptote of the 
sequence of points n a, .n( ){ }  In this figure, 
all the a ’sn  after aN  lie within ε of L.

aN

(N, aN)

0 1 32 N n

L

L − e

L − e L + eL

L + e
(n, an)

0 a2 a3 a1 an

n

an

DEFINITIONS The sequence an{ } converges to the number L if for every 
positive number ε there corresponds an integer N such that

ε− < >a L n Nwhenever .n

If no such number L exists, we say that an{ } diverges.
If an{ } converges to L, we write a Llim ,

n
n =

→∞
 or simply a L,n →  and call 

L the limit of the sequence (Figure 9.2).

The definition is very similar to the definition of 
→∞

f xlim ( )
x

, the limit of a function f x( ) 

as x tends to ∞, discussed in Section 2.5. We will exploit this connection to calculate limits 
of sequences.

HISTORICAL BIOGRAPHY

Nicole Oresme
(ca. 1320–1382)
Frenchman Oresme went to the University 
of Paris in the 1340s, studying theology and 
liberal arts. Later he was a faculty member 
and administrator at the same university. His 
work entitled De configurationibus (1350s) 
contained results in geometry and was the  
first to present graphs of velocities. The 
argument we use to show the divergence of  
the harmonic series was devised by Oresme  
in this publication.

To know more, visit the companion Website. 
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 9.1  Sequences 541

EXAMPLE 1  Show that

 (a) =
→∞ n
lim 1 0
n

 (b) k k klim where   is a constant
n

( )=
→∞

Solution 

 (a) Let 0ε >  be given. We must show that there exists an integer N such that

n
n N1 0 whenever .ε− < >

The inequality n1 0 ε− <  will hold if n1 ε<  or n 1 .ε>  If N is any integer 
greater than 1 ,ε  the inequality will hold for all n N.>  This proves that nlim 1 0.

n
=

→∞

 (b) Let k be a constant, and let 0ε >  be given. We must show that there exists an integer 
N such that

ε− < >k k n Nwhenever .

Since k k 0,− =  we can use any positive integer for N and the inequality k k ε− <  
will hold. This proves that k klim .

n
=

→∞
 

FIGURE 9.3 (a) The sequence diverges 
to ∞ because no matter what number M 
is chosen, the terms of the sequence after 
some index N all lie in the yellow band 
above M. (b) The sequence diverges to 
−∞ because all terms after some index N 
lie below any chosen number m.

0 1 32 N

M

n

an

0 N

m

n

an

1 32

(a)

(b)

EXAMPLE 2  Show that the sequence 1, 1,1, 1,1, 1, , 1 ,n 1{ }( )− − − − +… …  diverges.

Solution Since the terms in this sequence alternate between 1 and 1,−  our intuition is 
that they cannot approach arbitrarily close to some single limit L. To prove this, suppose 
that there did exist a number L that is the limit of this sequence. The definition of conver-
gence then tells us that for every number 0,ε >  there is an integer N such that 
a Ln ε− <  for all n N.>  No matter what positive number ε we consider, such an 

integer N must exist. In particular, for the number 1 2ε = , there must exist some integer 
N such that a L 1 2n − <  for all n N.>  If n N>  is odd, then a 1,n =  so we have 

L1 1 2,− <  or

L1
2

3
2

.< <

On the other hand, if n N>  is even, then a 1,n = −  and so we have L1 1 2,− − <  or

L3
2

1
2

.− < < −

However, these two conditions on L cannot both hold, so we have reached a contradiction. 
Therefore there is no number L to which this sequence converges.

We chose 1 2ε =  in this argument simply for convenience. The same argument 
would work if we had instead chosen 1 4 ,ε =  or any value less than 1. 

The sequence n{ } also diverges, but for a different reason. As n increases, its terms 
become larger than any fixed number. We describe the behavior of this sequence by writing

nlim .
n

= ∞
→∞

In writing infinity as the limit of a sequence, we are not saying that the differences between 
the terms an and ∞ become small as n increases, nor are we asserting that there is some 
number infinity that the sequence approaches. We are merely using a notation that captures 
the idea that an eventually gets and stays larger than any fixed number as n gets large  
(see Figure 9.3a). The terms of a sequence might also decrease to negative infinity, as in 
Figure 9.3b.
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542 Chapter 9  Infinite Sequences and Series

A sequence may diverge without diverging to infinity or negative infinity, as we saw in 
Example 2. The sequences 1, 2, 3, 4, 5, 6, 7, 8,{ }− − − − …  and 1, 0, 2, 0, 3, 0,{ }…  are also 
sequences that diverge but do not diverge to infinity or negative infinity.

The convergence or divergence of a sequence is not affected by the values of any num-
ber of its initial terms (whether we omit or change the first 10, the first 1000, or even the 
first million terms does not matter). From Figure 9.2, we can see that only the part of the 
sequence that remains after discarding some initial number of terms determines whether 
the sequence has a limit and the value of that limit when it does exist.

DEFINITION The sequence an{ } diverges to infinity if for every number M 
there is an integer N such that for all n larger than N a M, .n >  If this condition 
holds, then we write

a alim or .
n

n n= ∞ → ∞
→∞

Similarly, if for every number m there is an integer N such that for all n N ,>  we 
have a m,n <  then we say an{ } diverges to negative infinity and write

a alim or .
n

n n= −∞ → −∞
→∞

Calculating Limits of Sequences

Since sequences are functions with domain restricted to the positive integers, it is not sur-
prising that the theorems on limits of functions given in Chapter 2 have versions for 
sequences.

THEOREM 1 Let an{ } and bn{ } be sequences of real numbers, and let A and B 
be real numbers. The following rules hold if a Alim

n
n =

→∞
 and b Blim .

n
n =

→∞

1. Sum Rule: a b A Blim
n

n n( )+ = +
→∞

2. Difference Rule: a b A Blim
n

n n( )− = −
→∞

3. Constant Multiple Rule: k b k B klim any number
n

n ( )( )⋅ = ⋅
→∞

4. Product Rule: a b A Blim
n

n n( )⋅ = ⋅
→∞

5. Quotient Rule: = ≠
→∞

a
b

A
B

Blim if 0
n

n

n

The proof is similar to that of Theorem 1 in Section 2.2 and is omitted.

EXAMPLE 3  By combining Theorem 1 with the limits of Example 1, we have:

 (a) 
n n

lim 1 1 lim 1 1 0 0
n n

( )− = − ⋅ = − ⋅ =
→∞ →∞

  Constant Multiple Rule  
and Example 1a

 (b) n
n n n

lim 1 lim 1 1 lim 1 lim 1 1 0 1
n n n n

( ) ( )− = − = − = − =
→∞ →∞ →∞ →∞

 
 Difference Rule  
and Example 1a

 (c) 
n n n

lim 5 5 lim 1 lim 1 5 0 0 0
n n n2

= ⋅ ⋅ = ⋅ ⋅ =
→∞ →∞ →∞

 Product Rule

 (d) n
n

n
n

lim 4 7
3

lim
4 7

1 3
0 7
1 0

7.
n n

6

6

6

6

( )
( )

−
+

=
−

+
= −

+
= −

→∞ →∞
 

 Divide numerator and denominator  
by n 6 and use the Sum and  
Quotient Rules.
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 9.1  Sequences 543

Be cautious in applying Theorem 1. It does not say, for example, that both of the 
sequences an{ } and bn{ } have limits if their sum a bn n{ }+  has a limit. For instance, 

a 1, 2, 3,n { }{ } = …  and b 1, 2, 3,n { }{ } = − − − …  both diverge, but their sum 
a b 0, 0, 0,n n { }{ }+ = …  clearly converges to 0.

One consequence of Theorem 1 is that every nonzero multiple of a divergent sequence 
an{ } diverges. Suppose, to the contrary, that can{ } converges for some number c 0.≠  Then, 

by taking k c1=  in the Constant Multiple Rule in Theorem 1, we see that the sequence

c
ca a1

n n{ } { }⋅ =

converges. Thus, can{ } cannot converge unless an{ } also converges. If an{ } does not con-
verge, then can{ } does not converge.

The next theorem is the sequence version of the Sandwich Theorem in Section 2.2. 
You are asked to prove the theorem in Exercise 119. (See Figure 9.4.)

FIGURE 9.4 The terms of sequence 
bn{ } are sandwiched between those of 
an{ } and c ,n{ }  forcing them to the same 

common limit L.

0

L

n
an

bn

cn

THEOREM 2—The Sandwich Theorem for Sequences
Let a b, ,n n{ } { }  and cn{ } be sequences of real numbers. If a b cn n n≤ ≤   
holds for all n beyond some index N, and if a c Llim lim ,

n
n

n
n= =

→∞ →∞
 then 

b Llim
n

n =
→∞

 also.

THEOREM 3—The Continuous Function Theorem for Sequences
Let an{ } be a sequence of real numbers. If a Ln →  and if f  is a function that is 
continuous at L and defined at all a ,n  then f a f L( ) ( ).n →

FIGURE 9.5 As n n,1 0→ ∞ →  
and 2 2n1 0→  (Example 6). The terms 
of  n1{ } are shown on the x-axis; the 
terms of 2 n1{ } are shown as the y-values 
on the graph of f x( ) 2 .x=

1
3

0

1

(1, 2)

y = 2x

1

2

, 21/3

, 21/2

1
3

1
2

1
2

x

y

a      b

a      b

An immediate consequence of Theorem 2 is that if b cn n≤  and c 0,n →  then 
b 0n →  because c b c .n n n− ≤ ≤  We use this fact in the next example.

EXAMPLE 4  Since n1 0,→  we know that 

(a) →
n

n
cos

0 because − ≤ ≤
n

n
n n

1 cos 1 ;

(b) 
1

2
0

n
→ because

n
0 1

2
1 ;

n
≤ ≤

(c) ( )− →
n

1 1 0n because ( )− ≤ − ≤
n n n
1 1 1 1 .n

(d) If a 0,n →  then a 0n → because a a a .n n n− ≤ ≤

The application of Theorems 1 and 2 is broadened by a theorem stating that applying 
a continuous function to a convergent sequence produces a convergent sequence. We state 
the theorem, leaving the proof as an exercise (Exercise 120).

EXAMPLE 5  Show that n n1 1.( )+ →

Solution We know that n n1 1.( )+ →  Taking f x x( ) =  and L 1=  in Theorem 3 
gives n n1 1 1.( )+ → =  

EXAMPLE 6  The sequence n1{ } converges to 0. By taking a n f x1 , ( ) 2 ,n
x= =  

and L 0=  in Theorem 3, we see that f n f L2 1 ( ) 2 1.n1 0( )= → = =  The sequence 
2 n1{ } converges to 1 (Figure 9.5). 

Using L’Hôpital’s Rule

The next theorem formalizes the connection between alim
n

n
→∞

 and f xlim ( ).
x→∞

 It enables us 

to use l’Hôpital’s Rule to find the limits of some sequences.
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544 Chapter 9  Infinite Sequences and Series

Proof  Suppose that f x Llim ( ) .
x

=
→∞

 Then for each positive number ,ε  there is a 
number M such that

f x L x M( ) whenever .ε− < >

Let N be an integer that is both greater than M and greater than or equal to n .0  Since 
a f n( ),n =  it follows that for all n N ,>  we have

 a L f n L( ) .n ε− = − <  

THEOREM 4 Suppose that f x( ) is a function defined for all x n0≥  and that 
an{ } is a sequence of real numbers such that a f n( )n =   for  n n .0≥  Then

a L f x Llim whenever lim ( ) .
n

n
x

= =
→∞ →∞

EXAMPLE 7  Show that

=
→∞

n
n

lim
ln

0.
n

Solution The function ( )x xln  is defined for all x 1≥  and agrees with the given 
sequence at positive integers. Therefore, by Theorem 4, ( )

→∞
n nlim ln

n
 will equal 

( )
→∞

x xlim ln
x

 if the latter exists. A single application of l’Hôpital’s Rule shows that

= = =
→∞ →∞

x
x

x
lim

ln
lim

1
1

0
1

0.
x x

We conclude that ( ) =
→∞

n nlim ln 0.
n

 

EXAMPLE 8  Does the sequence whose nth term is

a n
n

n1
1

, 2n

n

( )= +
−

≥

converge? If so, find alim .
n

n
→∞

Solution The function f x x
x

( ) 1
1

x

( )= +
−

 is defined for all real numbers x 2≥  and 

agrees with an at all integers n 2.≥  If we can show that x
x

Llim 1
1

,
x

x

( )+
−

=
→∞

 then by 

Theorem 4, n
n

Llim 1
1

.
n

n

( )+
−

=
→∞

The limit f xlim ( )
x→∞

 leads to the indeterminate form 1 .∞  To evaluate this limit, we 

apply l’Hôpital’s Rule after taking the natural logarithm of f x( ):

( ) ( )= +
−

= +
−

f x x
x

x x
x

ln ( ) ln 1
1

ln 1
1

.
x

Then

( )
( )

( )

= +
−

=

+
−

=
− −

−

=
−

=

→∞ →∞

→∞

→∞

→∞

f x x x
x

x
x

x

x
x

x
x

lim ln ( ) lim ln 1
1

lim
ln 1

1
1

lim
2 1

1

lim 2
1

2.

x x

x

x

x

2

2

2

2

0 form∞ ⋅

0
0

form

Apply I’Hôpital’s Rule.

Simplify and evaluate.

Therefore, x
x

f x e elim 1
1

lim ( ) lim .
x

x

x x

f xln ( ) 2( )+
−

= = =
→∞ →∞ →∞

 Applying Theorem 4, we 

conclude that the sequence an{ } also converges to e .2  
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 9.1  Sequences 545

Commonly Occurring Limits

The next theorem gives some limits that arise frequently.

THEOREM 5 The following six sequences converge to the limits listed below.

1. =
→∞

n
n

lim
ln

0
n

2. nlim 1
n

n =
→∞

3. x xlim 1 0
n

n1 ( )= >
→∞

4. x xlim 0 1
n

n ( )= <
→∞

5. ( ) ( )+ =
→∞

x
n

e xlim 1 any
n

n
x 6. ( )=

→∞

x
n

xlim
!

0 any
n

n

In Formulas (3) through (6),  x remains fixed as n .→ ∞

Factorial Notation
The notation n! (“n factorial”)  
means the product n1 2 3⋅ ⋅ �   
of the integers from 1 to n. Notice 
that n n n1 ! 1 !.( ) ( )+ = + ⋅  
Thus, 4! 1 2 3 4 24= ⋅ ⋅ ⋅ =  and 
5! 1 2 3 4 5 5 4! 120.= ⋅ ⋅ ⋅ ⋅ = ⋅ =  
We define 0! to be 1. Factorials grow 
even faster than exponentials, as the 
table suggests. The values in the table are 
rounded.

n en n!

  1 3 1

  5 148 120

10 22,026 3,628,800

20 ×4.9 108 ×2.4 1018

Proof  The first limit was computed in Example 7. The next two can be proved by taking 
logarithms and applying Theorem 4 (Exercises 117 and 118). The remaining proofs are 
given in Appendix A.6. 

EXAMPLE 9  These are examples involving the limits in Theorem 5.

 (a) = → ⋅ =
n

n
n

n
ln ( ) 2 ln

2 0 0
2

 Formula 1

 (b) n n n 1 1n n n2 2 1 2 2( ) ( )= = → =  Formula 2

 (c) n n3 3 1 1 1n n n1 1( )= → ⋅ =  Formula 3 with x 3=  and Formula 2

 (d) 1
2

0
n

( )− →  Formula 4 with x 1
2

= −

 (e) n
n n

e2 1 2n n
2( ) ( )− = + − → −  Formula 5 with x 2= −

 (f ) 
n

100
!

0
n

→  Formula 6 with x 100=  

Recursive Definitions

So far, we have calculated each an directly from the value of n. But sequences are often 
defined recursively by giving

1. The value(s) of the initial term or terms, and

2. a rule called a recursion formula for calculating any later term from terms that 
precede it.

EXAMPLE 10

 (a) The statements a 11 =  and a a 1n n 1= +−  for n 1>  define the sequence  
n1, 2, 3, , ,… … of positive integers. With a 1,1 =  we have a a 1 2,2 1= + =  

a a 1 3,3 2= + =  and so on.

 (b) The statements a 11 =  and a n an n 1= ⋅ −  for n 1>  define the sequence 
n1, 2, 6, 24, , !,… … of factorials. With a 1,1 =  we have a a2 2,2 1= ⋅ =  

a a3 6,3 2= ⋅ =  a a4 24,4 3= ⋅ =  and so on.

 (c) The statements a a1, 1,1 2= =  and a a an n n1 1= ++ −  for n 2>  define the 
sequence 1,1, 2, 3, 5,… of Fibonacci numbers. With a 11 =  and a 1,2 =  we have 
a a a1 1 2, 2 1 3, 3 2 5,3 4 5= + = = + = = + =  and so on.
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546 Chapter 9  Infinite Sequences and Series

 (d) As we can see by applying Newton’s method (see Exercise 145), the statements x 10 =  
and ( ) ( )[ ]= − − −+x x x x x xsin cos 2n n n n n n1

2  for n 0>  define a sequence  
that, when it converges, gives a solution to the equation − =x xsin 0.2  

Bounded Monotonic Sequences

Two concepts that play a key role in determining the convergence of a sequence are those 
of a bounded sequence and a monotonic sequence. First we define bounded sequences.

EXAMPLE 11

 (a) The sequence n1, 2, 3, , ,… …   has no upper bound because it eventually surpasses every 
number M. However, it is bounded below by every real number less than or equal to 1. 
The number m 1=  is the greatest lower bound of the sequence.

 (b) The sequence 
+

… …n
n

1
2

, 2
3

, 3
4

, ,
1

,    is bounded above by every real number greater 

than or equal to 1. The upper bound M 1=  is the least upper bound (Exercise 137). 

The sequence is also bounded below by every number less than or equal to 1
2

, which is 
its greatest lower bound. 

DEFINITION A sequence an{ } is bounded from above if there exists a number 
M such that a Mn ≤  for all n. The number M is an upper bound for a .n{ }  If 
M is an upper bound for an{ } but no number less than M is an upper bound for 

a ,n{ }  then M is the least upper bound for a .n{ }
A sequence an{ } is bounded from below if there exists a number m such 

that a mn ≥  for all n. The number m is a lower bound for a .n{ }  If m is a lower 
bound for an{ } but no number greater than m is a lower bound for a ,n{ }  then m 
is the greatest lower bound for a .n{ }

If an{ } is bounded from above and below, then an{ } is bounded. If an{ } is 
not bounded, then we say that an{ } is an unbounded sequence.

Suppose that a sequence an{ } converges to a number L. Applying the definition of 
convergence with the particular value 1,ε =  there must exist a number N such that 
a L 1n − <  if n N.>  That is,

L a L n N1 1 for .n− < < + >

If M is a number larger than both L 1+  and all of the finitely many numbers a a a, , , ,N1 2 …  
then for every index n we have a M ,n ≤  and therefore an{ } is bounded from above. 
Similarly, if m is a number smaller than both L 1−  and all of the numbers a a a, , , ,N1 2 …  
then m is a lower bound for the sequence. Therefore, all convergent sequences are bounded.

Although it is true that every convergent sequence is bounded, there are bounded 
sequences that fail to converge. One example is the bounded sequence { }( )− +1 n 1  dis-
cussed in Example 2. The problem here is that some bounded sequences bounce around in 
the band determined by any lower bound m and any upper bound M but do not converge 
(Figure 9.6). An important type of sequence that does not behave that way is one for which 
each term is at least as large, or at least as small, as its predecessor.

DEFINITIONS A sequence an{ } is nondecreasing if a an n 1≤ +  for all n. That 
is, a a a   .1 2 3≤ ≤ ≤…  The sequence is nonincreasing if a an n 1≥ +  for all n. 
The sequence an{ } is monotonic if it is either nondecreasing or nonincreasing.

FIGURE 9.6 Some bounded sequences 
bounce around between their bounds and 
fail to converge to any limiting value.

0

M

m

n

an

1 32

Convergent sequences are bounded.
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 9.1  Sequences 547

EXAMPLE 12

 (a) The sequence n1, 2, 3, , ,… …  is nondecreasing.

 (b) The sequence n
n

1
2

, 2
3

, 3
4

, ,
1

,
+

… …  is nondecreasing.

 (c) The sequence 1, 1
2

, 1
4

, 1
8

, , 1
2

,
n

… …  is nonincreasing.

 (d) The constant sequence 3, 3, 3, , 3,… …  is both nondecreasing and nonincreasing.

 (e) The sequence 1, 1,1, 1,1, 1,− − − …  is not monotonic. 

A sequence that is bounded from above always has a least upper bound. Likewise, a 
sequence bounded from below always has a greatest lower bound. These results are based 
on the completeness property of the real numbers, discussed in Appendix A.9. We now 
prove that if L is the least upper bound of a nondecreasing sequence, then the sequence 
converges to L, and that if L is the greatest lower bound of a nonincreasing sequence, then 
the sequence converges to L.

Proof  Suppose an{ } is nondecreasing, L is its least upper bound, and we plot the points 
a a n a1, , 2, , , , ,n1 2( ) ( ) ( )… …  in the xy-plane. If M is an upper bound of the sequence, all 

these points will lie on or below the line y M=  (Figure 9.7). The line y L=  is the lowest 
such line. None of the points n a, n( ) lies above y L,=  but some do lie above any lower 
line y L ,ε= −  if ε is a positive number (because L ε−  is not an upper bound). That is,

 a. a Ln ≤  for all values of n, and

 b. given any 0,ε >  there exists at least one integer N for which a L .N ε> −

The fact that an{ } is nondecreasing tells us further that

a a L n Nfor all  .n N ε≥ > − ≥

Thus, all the numbers an beyond the Nth number lie within ε of L. This is precisely the 
condition for L to be the limit of the sequence a .n{ }

The proof for nonincreasing sequences bounded from below is similar. 

It is important to realize that Theorem 6 does not say that convergent sequences are 
monotonic. The sequence { }( )− + n1 n 1  converges and is bounded, but it is not monotonic 
since it alternates between positive and negative values as it tends toward zero. What the 
theorem does say is that a nondecreasing sequence converges when it is bounded from 
above, but it diverges to infinity otherwise.

Finding Terms of a Sequence
Each of Exercises 1–6 gives a formula for the nth term an of a sequence 

a .n{ }  Find the values of a a a, , ,1 2 3  and a .4

 1. a n
n

1
n 2

= −  2. a
n
1
!n =

 3. 
( )= −

−

+
a

n
1

2 1n

n 1

 4. ( )= + −a 2 1n
n

 5. a 2
2n

n

n 1
=

+
 6. a 2 1

2n

n

n
= −

Each of Exercises 7–12 gives the first term or two of a sequence along 
with a recursion formula for the remaining terms. Write out the first 
ten terms of the sequence.

 7. ( )= = ++a a a1, 1 2n n
n

1 1

 8. a a a n1, 1n n1 1 ( )= = ++

EXERCISES 9.1 

THEOREM 6—The Monotonic Sequence Theorem
If a sequence an{ } is both bounded and monotonic, then the sequence converges.

FIGURE 9.7 If the terms of a nonde-
creasing sequence have an upper bound M, 
then they have a limit L M.≤

0

L

L − e

M

N

y = L

y = M

x

y
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548 Chapter 9  Infinite Sequences and Series

 9. ( )= = −+
+a a a2, 1 2n

n
n1 1

1

 10. a a na n2, 1n n1 1 ( )= − = ++

 11. a a a a a1, n n n1 2 2 1= = = ++ +

 12. a a a a a2, 1, n n n1 2 2 1= = − =+ +

 41. a n
n n

1
2

1 1
n ( )( )= + −  42. a 2 1

2
3 1

2n n n( )( )= − +

 43. 
( )= −

−

+
a

n
1

2 1n

n 1

 44. a 1
2n

n

( )= −

 45. a n
n

2
1n =

+
 46. a 1

0.9n n( )
=

 47. a
n

sin
2

1
n

π( )= +  48. a n ncosn π π( )=

 49. =a
n

n
sin

n  50. =a
nsin

2n n

2

 51. a n
2n n

=  52. a
n
3

n

n

3
=

 53. 
( )= +a n

n
ln 1

n  54. =a
n
n

ln
ln 2n

 55. a 8n
n1=  56. a 0.03n

n1( )=

 57. a
n

1 7
n

n

( )= +  58. a
n

1 1
n

n

( )= −

 59. a n10n
n=  60. a nn

n 2=

 61. a
n
3

n

n1

( )=  62. a n 4n
n1 4( )= + ( )+

 63. =a
n

n
ln

n n1
 64. ( )= − +a n nln ln 1n

 65. a n4n
nn=  66. a 3n

nn 2 1= +

 67. a n
n

!
n n

=  (Hint: Compare with n1 .)

 68. 
( )= −a

n
4
!n

n

 69. a n!
10n n6

=

 70. a n!
2 3n n n

=
⋅

 71. ( )=
( )

a
n
1

n

n1 ln

 72. a n
n

1 !
3 !n

( )

( )
= +

+
 73. a n

n
2 2 !
2 1 !n

( )

( )
= +

−

 74. a e e
e e
3

3n

n n

n n
= +

+

−

−
 75. a e e

e e
2

n

n n

n n

2 3

2
= −

−

− −

− −

 76. a

n n n n

1 1
2

1
2

1
3

1
3

1
4

1
2

1
1

1
1

1

n ( ) ( )
( ) ( )

( )= − + − + − +

+
−

−
−

+
−

−

�

 77. ( ) ( ) ( )

( ) ( )( ) ( ) ( )

= − + − + − +

+ − − − + − −

a

n n n n

ln 3 ln 2 ln 4 ln 3 ln 5 ln 4

ln 1 ln 2 ln ln 1
n �

 78. ( )= +a
n

ln 1 1
n

n

 79. a n
n

3 1
3 1n

n

( )= +
−

 80. a n
n 1n

n

( )=
+

 81. a x
n

x
2 1

, 0n

n n1

( )=
+

>

 82. a
n

1 1
n

n

2( )= −  83. a
n

3 6
2 !n

n n

n
= ⋅

⋅−

 84. a
10 11

9 10 11 12n

n

n n

( )
( ) ( )

=
+

 85. =a ntanhn

 86. ( )=a nsinh lnn  87. =
−

a n
n n2 1

sin 1
n

2

 23. 5
1

, 8
2

, 11
6

, 14
24

, 17
120

,…

 26. 0,1,1, 2, 2, 3, 3, 4,…

 27. 1
2

1
3

, 1
3

1
4

, 1
4

1
5

, 1
5

1
6

,− − − − …

 28. 5 4, 6 5, 7 6, 8 7,− − − − …

 29. sin 2
1 4

, sin 3
1 9

, sin 4
1 16

, sin 5
1 25

,
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ …

 30. 5
8

, 7
11

, 9
14

, 11
17

,…

Finding a Sequence’s Formula
In Exercises 13–30, find a formula for the nth term of the sequence.

 13. 1, 1,1, 1,1,− − … 1’s with alternating signs

 14. 1,1, 1,1, 1,− − − … 1’s with alternating signs

 15. 1, 4, 9, 16, 25,− − … Squares of the positive  
integers, with alternating  
signs

 16. 1, 1
4

, 1
9

, 1
16

, 1
25

,− − …
Reciprocals of squares of  
the positive integers, with  
alternating signs

 17. 1
9

, 2
12

, 2
15

, 2
18

, 2
21

,
2 3 4

…
Powers of 2 divided by  
multiples of 3

 18. 3
2

, 1
6

, 1
12

, 3
20

, 5
30

,− − …
Integers differing by 2  
divided by products of  
consecutive integers

 19. 0, 3, 8,15, 24,… Squares of the positive  
integers diminished by 1

 20. 3, 2, 1, 0,1,− − − … Integers, beginning with 3−

 21. 1, 5, 9,13,17,… Every other odd positive  
integer

 22. 2, 6,10,14,18,… Every other even positive  
integer
Integers differing by 3  
divided by factorials

 24. 1
25

, 8
125

, 27
625

, 64
3125

, 125
15,625

,…
Cubes of positive integers  
divided by powers of 5

 25. 1, 0,1, 0,1,… Alternating 1’s and 0’s

Each positive integer  
repeated

Convergence and Divergence
Which of the sequences an{ } in Exercises 31–100 converge, and which 
diverge? Find the limit of each convergent sequence.

 31. a 2 0.1n
n( )= +  32. 

( )= + −a n
n

1
n

n

 33. a n
n

1 2
1 2n = −

+
 34. a n

n
2 1

1 3n = +
−

 35. a n
n n
1 5

8n

4

4 3
= −

+
 36. a n

n n
3

5 6n 2
= +

+ +

 37. = − +
−

≥a n n
n

n2 1
1

, 2n

2
 38. a n

n
1

70 4n

3

2
= −

−

 39. ( )= + −a 1 1n
n 40. ( )( )= − −a

n
1 1 1

n
n
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 9.1  Sequences 549

 88. ( )= −a n
n

1 cos 1
n  89. a n

n
sin 1

n =

 90. a 3 5n
n n n1( )= +  91. = −a ntann

1

 92. =a
n

n1 arctann  93. a 1
3

1
2

n

n

n( )= +

 94. a n nn
n 2= +  95. 

( )
=a

n
n

ln
n

200

 96. 
( )

=a
n

n

ln
n

5

 97. a n n nn
2= − −

 98. a
n n n

1
1

n 2 2
=

− − +

 99. a
n x

dx1 1
n

n

1∫=  100. a
x

dx p1 , 1n p

n

1∫= >

Recursively Defined Sequences
In Exercises 101–108, assume that each sequence converges and find 
its limit.

 101. a a
a

2, 72
1n

n
1 1= =

++

 102. a a
a
a

1,
6
2n

n

n
1 1= − =

+
++

 103. a a a4, 8 2n n1 1= − = ++

 104. a a a0, 8 2n n1 1= = ++

 105. a a a5, 5n n1 1= =+

 106. a a a3, 12n n1 1= = −+

 107. 2, 2 1
2

, 2 1

2 1
2

, 2 1

2 1

2 1
2

,+ +
+

+
+

+

…

 108. 1, 1 1, 1 1 1,+ + +  

1 1 1 1 ,+ + + …

Theory and Examples

 109. The first term of a sequence is x 1.1 =  Each succeeding term is 
the sum of all those that come before it:

x x x x .n n1 1 2= + + ++ �

Write out enough early terms of the sequence to deduce a general 
formula for x n that holds for n 2.≥

 110. A sequence of rational numbers is described as follows:

a
b

a b
a b

1
1

, 3
2

, 7
5

, 17
12

, , , 2 , .+
+

… …

Here the numerators form one sequence, the denominators form 
a second sequence, and their ratios form a third sequence. Let x n 
and yn be, respectively, the numerator and the denominator of the 
nth fraction r x y .n n n=

 a. Verify that − = − − = +x y x y2 1, that 2 1,1
2

1
2

2
2

2
2  and, 

more generally, that if a b2 12 2− = −    or      1,+  then

( ) ( )+ − + = + −a b a b2 2 1 or 1,2 2

respectively.

 b. The fractions r x yn n n=  approach a limit as n increases. 
What is that limit? (Hint: Use part (a) to show that 

( )− = ±r y2 1n n
2 2 and that yn is not less than n.)

 111. Newton’s method The following sequences come from the 
recursion formula for Newton’s method,

x x
f x
f x

( )
( )

.n n
n

n
1 = −

′+

Do the sequences converge? If so, to what value? In each case, 
begin by identifying the function f  that generates the sequence.

 a. x x x
x

x
x

x
1,

2
2 2

1
n n

n

n

n

n
0 1

2

= = −
−

= ++

 b. = = −
−

+x x x
x

x
1,

tan 1
secn n

n

n
0 1 2

 c. x x x1, 1n n0 1= = −+

 112. a.  Suppose that f x( ) is differentiable for all x in 0,1[ ] and that 
f (0) 0.=  Define sequence an{ } by the rule ( )=a n f n1 .n  
Show that = ′

→∞
a flim (0).

n
n  Use the result in part (a) to find 

the limits of the following sequences a .n{ }

 b. = −a n
n

tan 1
n

1  c. a n e 1n
n1( )= −

 d. ( )= +a n
n

ln 1 2
n

 113. Pythagorean triples A triple of positive integers a, b, and c is 
called a Pythagorean triple if a b c .2 2 2+ =  Let a be an odd 
positive integer and let

b a c a
2

and
2

2 2
= ⎢

⎣⎢
⎥
⎦⎥

= ⎡
⎢⎢

⎤
⎥⎥

be, respectively, the integer floor and ceiling for a 2.2

a

a2

2

u

l  m a2

2
j k

 a. Show that a b c .2 2 2+ =  (Hint: Let a n2 1= +  and 
express b and c in terms of n.)

 b. By direct calculation, or by appealing to the accompanying 
figure, find

⎢
⎣⎢

⎥
⎦⎥

⎡
⎢⎢

⎤
⎥⎥

→∞

a

a
lim 2

2

.
a

2

2

M09_HASS5901_15_GE_C09.indd   549 07/03/2023   14:11

www.konkur.in

Telegram: @uni_k



550 Chapter 9  Infinite Sequences and Series

 114. The nth root of n! 

 a. Show that nlim 2 1
n

n1 2π( ) =( )

→∞
 and hence, using Stirling’s 

approximation (Chapter 8, Additional Exercise 44a), that

n n
e

n! for large values of  .n ≈

 b. Test the approximation in part (a) for n 40, 50, 60, ,= …   as 
far as your calculator will allow.

 115. a.  Assuming that nlim 1 0
n

c( ) =
→∞

 if c is any positive constant, 
show that

=
→∞

n
n

lim
ln

0
n c

if c is any positive constant.

 b. Prove that nlim 1 0
n

c( ) =
→∞

 if c is any positive constant. 

(Hint: If 0.001ε =  and c 0.04,=  how large should N be to 
ensure that n1 0c ε− <  if n N ?> )

 116. The zipper theorem Prove the “zipper theorem” for sequences: 
If an{ } and bn{ } both converge to L, then the sequence

a b a b a b, , , , , , ,n n1 1 2 2 … …

converges to L.

 117. Prove that nlim 1.
n

n =
→∞

 118. Prove that x xlim 1, 0 .
n

n1 ( )= >
→∞

 119. Prove Theorem 2. 120. Prove Theorem 3.

In Exercises 121–124, determine whether the sequence is monotonic 
and whether it is bounded.

 121. a n
n

3 1
1n = +

+
 122. a n

n
2 3 !

1 !n
( )

( )
= +

+

 123. a
n

2 3
!n

n n
=  124. a

n
2 2 1

2n n
= − −

In Exercises 125–134, determine whether the sequence is monotonic, 
whether it is bounded, and whether it converges.

 125. a
n

1 1
n = −  126. a n

n
1

n = −

 127. a 2 1
2n

n

n
= −  128. a 2 1

3n

n

n
= −

 129. ( )( )( )= − + +a n
n

1 1 1
n

n

 130. The first term of a sequence is x cos (1).1 =  The next terms are 
x x2 1=  or cos (2), whichever is larger; and x x3 2=  or cos (3), 
whichever is larger (farther to the right). In general,

x x nmax , cos 1 .n n1 { }( )= ++

 131. a n
n

1 2
n = +  132. a n

n
1

n = +

 133. a 4 3
4n

n n

n

1
= ++

 134. a a a1, 2 3n n1 1= = −+

In Exercises 135–136, use the definition of convergence to prove the 
given limit.

 135. =
→∞

n
n

lim
sin

0
n

 136. 
n

lim 1 1 1
n 2( )− =

→∞

T

 137. The sequence n n 1{ }( )+  has a least upper bound of 1  
Show that if M is a number less than 1, then the terms of 
n n 1{ }( )+  eventually exceed M. That is, if M 1,<  there is 

an integer N such that n n M1( )+ >  whenever n N.>  Since 
n n 1 1( )+ <  for every n, this proves that 1 is a least upper 
bound for n n 1 .{ }( )+

 138. Uniqueness of least upper bounds Show that if M1 and M 2 
are least upper bounds for the sequence a ,n{ }  then M M .1 2=  
That is, a sequence cannot have two different least upper bounds.

 139. Is it true that a sequence an{ } of positive numbers must converge 
if it is bounded from above? Give reasons for your answer.

 140. Prove that if an{ } is a convergent sequence, then to every posi-
tive number ε there corresponds an integer N such that

a a m N n Nwhenever and .m n ε− < > >

 141. Uniqueness of limits Prove that limits of sequences are unique. 
That is, show that if L1 and L2 are numbers such that a Ln 1→  
and a L ,n 2→  then L L .1 2=

 142. Limits and subsequences If the terms of one sequence 
appear in another sequence in their given order, we call the first 
sequence a subsequence of the second. Prove that if two subse-
quences of a sequence an{ } have different limits L L ,1 2≠  then 
an{ } diverges.

 143. For a sequence an{ } the terms of even index are denoted by a k2  
and the terms of odd index by a .k2 1+  Prove that if a Lk2 →  and 
a L,k2 1 →+  then a L.n →

 144. Prove that a sequence an{ } converges to 0 if and only if the 
sequence of absolute values an{ } converges to 0.

 145. Sequences generated by Newton’s method Newton’s method, 
applied to a differentiable function f x( ), begins with a starting 
value x 0 and constructs from it a sequence of numbers x n{ } that 
under favorable circumstances converges to a zero of f . The 
recursion formula for the sequence is

x x
f x
f x

( )
( )

.n n
n

n
1 = −

′+

 a. Show that the recursion formula for f x x a a( ) , 0,2= − >  
can be written as x x a x 2.n n n1 ( )= ++

 b. Starting with x 10 =  and a 3,=  calculate successive terms 
of the sequence until the display begins to repeat. What num-
ber is being approximated? Explain.

 146. A recursive definition of 2π  If you start with x 11 =  and  
if you define the subsequent terms of x n{ } by the rule 

= +− −x x xcos ,n n n1 1  you generate a sequence that converges 
rapidly to 2.π  (a) Try it. (b) Use the accompanying figure to 
explain why the convergence is so rapid.

10

cos xn − 11

xn − 1

xn − 1
x

y

T

T
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 9.2  Infinite Series 551

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for the sequences in 
Exercises 147–158.

 a. Calculate and then plot the first 25 terms of the sequence. 
Does the sequence appear to be bounded from above or 
below? Does it appear to converge or diverge? If it does  
converge, what is the limit L?

 b. If the sequence converges, find an integer N such that 
a L 0.01n − ≤  for n N.≥  How far in the sequence do 

you have to get for the terms to lie within 0.0001 of L?

 147. a nn
n=  148. a

n
1 0.5

n

n

( )= +

 149. a a a1, 1
5n n n1 1= = ++

 150. ( )= = + −+a a a1, 2n n
n

1 1

 151. =a nsinn  152. =a n
n

sin 1
n

 153. =a
n

n
sin

n  154. =a
n

n
ln

n

 155. a 0.9999n
n( )=  156. a 123456n

n1( )=

 157. a
n
8

!n

n
=  158. a n

19n n

41
=

An infinite series is the sum of an infinite sequence of numbers

+ + + + +� �a a a a .n1 2 3

The goal of this section is to understand the meaning of such an infinite sum and to develop 
methods to calculate it. Since there are infinitely many terms to add in an infinite series, we 
cannot just keep adding to see what comes out. Instead we look at the result of summing 
just the first n terms of the sequence. The sum of the first n terms

s a a a an n1 2 3= + + + +�

is an ordinary finite sum and can be calculated by normal addition. It is called the nth  
partial sum. As n gets larger, we expect the partial sums to get closer and closer to a limiting 
value in the same sense that the terms of a sequence approach a limit, as discussed in 
Section 9.1.

For example, to assign meaning to an expression like

1 1
2

1
4

1
8

1
16

,+ + + + +�

we add the terms one at a time from the beginning and look for a pattern in how these par-
tial sums grow.

Partial sum Value
Suggestive expression  

for partial sum

First: s 11 = 1 2 1−

Second: s 1 1
22 = + 3

2
2 1

2
−

Third: s 1 1
2

1
43 = + + 7

4
2 1

4
−

� � � �

nth: s 1 1
2

1
4

1
2n n 1

= + + + +
−

� 2 1
2

n

n 1

−
−

2 1
2n 1

−
−

Indeed there is a pattern. The partial sums form a sequence whose nth term is

s 2 1
2

.n n 1
= −

−

9.2 Infinite Series
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552 Chapter 9  Infinite Sequences and Series

This sequence of partial sums converges to 2 because lim 1 2 0.
n

n 1( ) =
→∞

−  We say

“the sum of the infinite series 1 1
2

1
4

1
2

is 2.”
n 1

+ + + + +
−

Is the sum of any finite number of terms in this series equal to 2? No. Can we actually add 
an infinite number of terms one by one? No. But we can still define their sum by defining 
it to be the limit of the sequence of partial sums as n ,→ ∞  in this case 2 (Figure 9.8).  
Our knowledge of sequences and limits enables us to break away from the confines of 
finite sums.

FIGURE 9.8 As the lengths 1,1 2,1 4 ,1 8,   are added one by one, the sum 
approaches 2.

0

1

21�2 1�8

1�4

DEFINITIONS Given a sequence of numbers a ,n{ }  an expression of the form

a a a an1 2 3

is an infinite series. The number an is the nth term of the series. The sequence 
sn{ } defined by

s a

s a a

s a a a an n
k

n

k

1 1

2 1 2

1 2
1
∑

=

= +

= + + + =
=

�

�

�

is the sequence of partial sums of the series, the number sn being the nth partial 
sum. If the sequence of partial sums converges to a limit L, we say that the series 
converges and that its sum is L. In this case, we also write

a a a a L.n
n

n1 2
1
∑+ + + + = =
=

∞

If the sequence of partial sums of the series does not converge, we say that the 
series diverges.

FIGURE 9.9 The sum of a series with 
positive terms can be interpreted as a total 
area of an infinite collection of rectangles. 
The series converges when the total area 
of the rectangles is finite (a) and diverges 
when the total area is unbounded (b). Note 
that the total area can be infinite even if 
the area of the rectangles is decreasing.

a1

(a)

1

2

a2
a3 a4 a5 a6

an =

1 2 3 4 5
x

2
n2

y

6 ...

a1

(b)

1

2

a2 a3 a4 a5 a6

an = 1 + 

1 2 3 4 5 6 ...

1
n

y

x

If all the terms an in an infinite series are positive, then we can represent each term  
in the series by the area of a rectangle. The series converges if the total area is finite,  
and diverges otherwise. Figure 9.9a shows an example where the series converges, and 
Figure 9.9b shows an example where it diverges. The convergence of the total area is 
related to the convergence or divergence of improper integrals, as we found in Section 8.8. 
We make this connection explicit in the next section, where we develop an important test 
for convergence of series, the Integral Test.

When we begin to study a given series a a a ,n1 2  we might not know 
whether it converges or diverges. In either case, it is convenient to use sigma notation to 
write the series as

a a a, , or
n

n
k

k n
1 1
∑ ∑ ∑
=

∞

=

∞
A useful shorthand  
when summation  
from 1 to  is  
understood

HISTORICAL BIOGRAPHY

Blaise Pascal
(1623–1662)
Pascal was born in France and was 
encouraged by his father to study science. 
He met Fermat and was inspired to work on 
applied science problems. As early as 1640, he 
wrote an essay on conic sections and earned 
praise for his work from Descartes. Despite 
his poor health, Pascal designed an “arithmetic 
machine” to perform computations for tax 
collecting. Pascal also contributed to the 
development of differential calculus. 

To know more, visit the companion Website. 
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Geometric Series

Geometric series are series of the form

∑+ + + + + =−

=

∞
−� �a ar ar ar ar ,n

n

n2 1

1

1

in which a and r are fixed real numbers and a 0.≠  The series can also be written  
as ∑ =

∞
ar .n

n 0
 The ratio r can be positive, as in

1 1
2

1
4

1
2

,
n 1

( )+ + + + +
−

� �  r a1 2, 1= =

or negative, as in

1 1
3

1
9

1
3

.
n 1

( )− + − + − +
−

� �  r a1 3, 1= − =

If r 1,=  the nth partial sum of the geometric series is

= + ⋅ + ⋅ + + ⋅ =−�s a a a a na1 1 1 ,n
n2 1

and the series diverges because slim ,
n

n = ±∞
→∞

 depending on the sign of a. If r 1,= −   

the series diverges because the nth partial sums alternate between a and 0 and never 
approach a single limit. If r 1,≠  we can determine the convergence or divergence of the 
series in the following way:

�

�

( )

( )

( )

( )

= + + + +

= + + + +

− = −

− = −

= −
−

≠

−

−

s a ar ar ar

rs ar ar ar ar

s rs a ar

s r a r

s a r
r

r

1 1

1
1

, 1 .

n
n

n
n n

n n
n

n
n

n

n

2 1

2 1

Write the nth partial sum.

Multiply sn  by r.

Subtract rsn  from sn . Most of  
the terms on the right cancel.

Factor.

We can solve for sn  if r 1.≠

If r 1,<  then r 0n →  as n → ∞ (as in Section 9.1), so s a r1n ( )→ −  in this case. 
On the other hand, if r 1,>  then r n → ∞ and the series diverges. We summarize these 
results as follows.

The formula a r1( )−  for the sum of a geometric series applies only when the sum-
mation index begins with n 1=  in the expression ∑ −

=

∞
ar n

n
1

1
 (or with the index n 0=  if 

we write the series as ∑ =

∞
ar n

n 0
).

EXAMPLE 1  The geometric series with a 1 9=  and r 1 3=  is

� ∑ ( )+ + + =
=

∞ −1
9

1
27

1
81

1
9

1
3

.
n

n

1

1

Geometric Series
If r 1,<  the geometric series a ar ar ar n2 1+ + + + +−� � converges to 
a r1 :( )−

ar a
r

r
1

, 1.
n

n

1

1∑ =
−

<
=

∞
−

If ≥r 1, the series diverges.
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554 Chapter 9  Infinite Sequences and Series

Since r 1 3 1,= <  the series converges to

1 9
1 1 3

1
6

.
( )−

=  

EXAMPLE 2  The series

1 5
4

5 5
4

5
16

5
64n

n

n
0

∑ ( )− = − + − +
=

∞

�

is a geometric series with a 5=  and r 1 4.= −  Since r 1 4 1,= <  the series  
converges to

a
r1

5
1 1 4

4.
( )−

=
+

=  

EXAMPLE 3  You drop a ball from a meters above a flat surface. Each time the ball 
hits the surface after falling a distance h, it rebounds a distance rh, where r is positive but 
less than 1. Find the total distance the ball travels up and down (Figure 9.10).

Solution The total distance is

= + + + + ⋅⋅⋅ = +
−

= +
−

−( )
� ������������� �������������

s a ar ar ar a ar
r

a r
r

2 2 2 2
1

1
1

.

ar rThis sum is 2 1 .

2 3

If a 6 m=  and r 2 3,=  for instance, the distance is

s 6
1 2 3
1 2 3

6
5 3
1 3

30 m.
( )
( )

= ⋅
+
−

=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =  

EXAMPLE 4  Express the repeating decimal 5.232323…  as the ratio of two integers.

Solution From the definition of a decimal number, we get a geometric series.

… �

�
� ������������� �������������

( )

( )
( ) ( )

= + + + +

= + + + +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎟

= + = + =

−( )

5.232323 5 23
100

23
100

23
100

5 23
100

1 1
100

1
100

5 23
100

1
0.99

5 23
99

518
99

1 1 1 100

2 3

2

    

a

r

r

1,

1 100

1 100 1

=

=

= <

 

Unfortunately, formulas like the one for the sum of a convergent geometric series are 
rare, and we usually have to settle for an estimate of a series’ sum (more about this later). 
The next example, however, is another case in which we can find the sum exactly.

EXAMPLE 5  Find the sum of the “telescoping” series  
n n

1
1

.
n 1
∑ ( )+=

∞

ar

ar2

ar3

(a)

a

FIGURE 9.10 (a) Example 3 shows  
how to use a geometric series to calculate 
the total vertical distance traveled by a 
bouncing ball if the height of each  
rebound is reduced by the factor r. (b) A 
stroboscopic photo of a bouncing ball. 
(Source: Berenice Abbott/Science Source)

(b)
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Solution We look for a pattern in the sequence of partial sums that might lead to a for-
mula for s .k  The key observation is the partial fraction decomposition

n n n n
1

1
1 1

1
,

( )+
= −

+
so

n n n n
1

1
1 1

1n

k

n

k

1 1
∑ ∑( )( )+

= −
+= =

and

s
k k

1
1

1
2

1
2

1
3

1
3

1
4

1 1
1

.k ( )= − + −
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎟ + −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎟ + + −

+
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎟�

Removing parentheses and canceling adjacent terms of opposite sign collapse the sum to

s
k

1 1
1

.k = −
+

We now see that s 1k →  as k .→ ∞  The series converges, and its sum is 1:

n n
1

1
1.

n 1
∑ ( )+

=
=

∞

 

The nth-Term Test for a Divergent Series

One reason why a series may fail to converge is that its terms don’t become small.

EXAMPLE 6  The series

n
n

n
n

1 2
1

3
2

4
3

1

n 1
∑ + = + + + + + +

=

∞

� �

diverges because the partial sums eventually outgrow every preassigned number. Each 
term is greater than 1, so the sum of n terms is greater than n. 

Theorem 7 leads to a test for detecting the kind of divergence that occurred in Example 6.

EXAMPLE 7  The following are all examples of divergent series.

 (a) n ndiverges because .
n 1

2 2∑ → ∞
=

∞

 
→∞

alim fails to exist.
n

n

THEOREM 7 If  a
n

n
1

∑
=

∞

 converges, then a 0.n →

The nth-Term Test for Divergence

a
n

n
1

∑
=

∞

 diverges if alim
n

n
→∞

 fails to exist or is different from zero.

We now show that alim
n

n
→∞

 must equal zero if the series ∑ =

∞
ann 1

 converges. To see 

why, let S represent the series’ sum, and s a a an n1 2= + + +�  the nth partial sum. 
When n is large, both sn and sn 1−  are close to S, so their difference, a ,n  is close to zero. 
More formally, sn and sn 1−  both converge to S as n increases, so

a s s s s S Slim lim lim lim 0.
n

n
n

n n
n

n
n

n1 1( )= − = − = − =
→∞ →∞

−
→∞ →∞

−    Difference Rule  
for sequences

This establishes the following theorem.

Caution
Theorem 7 does not say that ∑ =

∞
ann 1

 

converges if a 0.n →  It is possible for  
a series to diverge when a 0.n →   
(See Example 8.)
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556 Chapter 9  Infinite Sequences and Series

 (b) ∑ + + →
=

∞ n
n

n
n

1 diverges because 1 1.
n 1

 alim 0
n

n ≠
→∞

 (c) 1
n

n

1

1∑( )−
=

∞
+   diverges because lim 1

n

n 1( )−
→∞

+  does not exist.

 (d) n
n2 5n 1

∑ −
+=

∞

  diverges because n
n

lim
2 5

1
2

0.
n

−
+

= − ≠
→∞

 

EXAMPLE 8  The series

+ + + + + + + + + + + +
� ���� ���� � �������� ��������

� �
� ���������� ����������

�1 1
2

1
2

1
4

1
4

1
4

1
4

1
2

1
2

1
2

2 terms 4 terms 2 terms

n n n

n

diverges because the terms can be grouped into infinitely many clusters each of which 
adds to 1, so the partial sums increase without bound. However, the terms of the series 
form a sequence that converges to 0. Example 1 of Section 9.3 shows that the harmonic 
series ∑ n1  also behaves in this manner. 

Combining Series

Whenever we have two convergent series, we can add them term by term, subtract them 
term by term, or multiply them by constants to make new convergent series.

Proof  The three rules for series follow from the analogous rules for sequences in 
Theorem 1, Section 9.1. To prove the Sum Rule for series, let

= + + + = + + +� �A a a a B b b b, .n n n n1 2 1 2

Then the partial sums of ∑( )+a bn n  are

s a b a b a b

a a b b

A B .

n n n

n n

n n

1 1 2 2

1 1

( )

( ) ( )

( ) ( )= + + + + + +

= + + + + +

= +

�

� �

Since A An →  and B B,n →  we have s A Bn → +  by the Sum Rule for sequences. The 
proof of the Difference Rule is similar.

To prove the Constant Multiple Rule for series, observe that the partial sums of   ∑ kan 
form the sequence

s ka ka ka k a a a kA ,n n n n1 2 1 2( )= + + + = + + + =� �

which converges to kA by the Constant Multiple Rule for sequences. 

THEOREM 8 If ∑ =a An  and ∑ =b Bn  are convergent series, then

1. Sum Rule: ∑ ∑ ∑( )+ = + = +a b a b A Bn n n n

2. Difference Rule: ∑ ∑ ∑( )− = − = −a b a b A Bn n n n

3. Constant Multiple Rule: ∑ ∑ ( )= =ka k a kA kany number  .n n

1. Every nonzero constant multiple of a divergent series diverges.

2. If ∑ an  converges and ∑ bn  diverges, then ∑( )+a bn n  and ∑( )−a bn n  
both diverge.

As corollaries of Theorem 8, we have the following results. We omit the proofs.
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 9.2  Infinite Series 557

Caution Remember that ∑( )+a bn n  can converge even if both an  and bn  diverge. For 

example, both ∑ = + + +a 1 1 1n   and  ∑ ( ) ( ) ( )= − + − + − +b 1 1 1n   diverge, 

whereas ∑( )+ = + + +a b 0 0 0n n   converges to 0. 

EXAMPLE 9  Find the sums of the following series.

 (a) 3 1
6

1
2

1
6

1
2

1
6

1
1 1 2

1
1 1 6

2 6
5

4
5

n

n

n
n

n n

n
n

n
n

1

1

1
1

1 1

1
1

1
1

∑ ∑

∑ ∑

( )

( ) ( )

− = −

= −

=
−

−
−

= − =

=

∞ −

−
=

∞

− −

=

∞

−
=

∞

−
Difference Rule

= =
< <

a rGeometric series with  1 and  1 2,  1 6
Both series converge since  1 2 1 and  1 6 1.

 (b) 4
2

4 1
2

4 1
1 1 2

8

n
n

n
n

0 0
∑ ∑

( )

=

=
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

=

=

∞

=

∞

 

Constant Multiple Rule

a r
r

Geometric series with  1 and  1 2
Converges since  1 2 1.

= =
= <

Adding or Deleting Terms

We can add a finite number of terms to a series or delete a finite number of terms without 
altering the series’ convergence or divergence, although in the case of convergence, this 
will usually change the sum. If ∑ =

∞
ann 1

 converges, then ∑ =

∞
ann k

 converges for any 
k 1 and

a a a a a .
n

n k
n k

n
1

1 2 1∑ ∑= + + + +
=

∞

−
=

∞

Conversely, if  ∑ =

∞
ann k

 converges for any k 1, then  ∑ =

∞
ann 1

 converges. Thus,

1
5

1
5

1
25

1
125

1
5n

n
n

n
1 4
∑ ∑= + + +
=

∞

=

∞

and

1
5

1
5

1
5

1
25

1
125

.
n

n
n

n
4 1
∑ ∑=

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ − − −

=

∞

=

∞

The convergence or divergence of a series is not affected by its first few terms. Only the 
“tail” of the series, the part that remains when we sum beyond some finite number of initial 
terms, influences whether it converges or diverges.

Reindexing

As long as we preserve the order of its terms, we can reindex any series without altering its 
convergence. To raise the starting value of the index h units, replace the n in the formula for 
an by n h:

a a a a a .
n

n
n h

n h
1 1

1 2 3∑ ∑= = + + +
=

∞

= +

∞

−

To lower the starting value of the index h units, replace the n in the formula for an by n h:

a a a a a .
n

n
n h

n h
1 1

1 2 3∑ ∑= = + + +
=

∞

= −

∞

+

HISTORICAL BIOGRAPHY

Richard Dedekind
(1831–1916)
Dedekind grew up in Germany and in 1850 
entered the University of Gottingen.There  
he studied with Bernhard Riemann and  
Carl Gauss. Like Gauss, Dedekind preferred 
to study the theoretical aspects of number 
theory. His work on irrational numbers gave 
the subject a logical foundation. 

To know more, visit the companion Website. 

M09_HASS5901_15_GE_C09.indd   557 22-03-2023   17:02:52

www.konkur.in

Telegram: @uni_k



558 Chapter 9  Infinite Sequences and Series

We saw this reindexing in starting a geometric series with the index n 0=  instead of the 
index n 1,=  but we can use any other starting index value as well. We usually give prefer-
ence to indexings that lead to simple expressions.

EXAMPLE 10  We can write the geometric series

1
2

1 1
2

1
4n

n
1

1∑ = + + +
=

∞

−
�

as

1
2

, 1
2

, or even 1
2

.
n

n
n

n
n

n
0 5

5
4

4∑ ∑ ∑
=

∞

=

∞

−
=−

∞

+

The partial sums remain the same no matter what indexing we choose to use. 

Finding nth Partial Sums
In Exercises 1–6, find a formula for the nth partial sum of each series 
and use it to find the series’ sum if the series converges.

 1. 2 2
3

2
9

2
27

2
3n 1

+ + + + + +
−

� �

 2. 9
100

9
100

9
100

9
100 n2 3

+ + + + +� �

 3. 1 1
2

1
4

1
8

1 1
2

n
n

1
1

( )− + − + + − +−
−

� �

 4. ( )− + − + + − +− −� �1 2 4 8 1 2n n1 1

 5. 
n n

1
2 3

1
3 4

1
4 5

1
1 2( )( )⋅

+
⋅

+
⋅

+ +
+ +

+� �

 6. 
n n

5
1 2

5
2 3

5
3 4

5
1( )⋅

+
⋅

+
⋅

+ +
+

+� �

Series with Geometric Terms
In Exercises 7–14, write out the first eight terms of each series to 
show how the series starts. Then find the sum of the series or show 
that it diverges.

 7. 1
4n

n

n
0

∑ ( )−

=

∞

 8. 1
4n

n
2

∑
=

∞

 9. 1 7
4n

n
1

∑( )−
=

∞

 10. 1 5
4n

n
n

0
∑ ( )−

=

∞

 11. 5
2

1
3n

n n
0

∑ ( )+
=

∞

 12. 5
2

1
3n

n n
0

∑ ( )−
=

∞

 13. 1
2

1
5n

n

n

n
0

∑ ( )( )+ −

=

∞

 14. 2
5n

n

n
0

1

∑ ( )
=

∞ +

In Exercises 15–22, determine whether the geometric series converges 
or diverges. If a series converges, find its sum.

 15. 1 2
5

2
5

2
5

2
5

2 3 4

( ) ( ) ( ) ( )+ + + + +�

 16. 1 3 3 3 32 3 4( ) ( ) ( ) ( )+ − + − + − + − +�

 17. 1
8

1
8

1
8

1
8

1
8

2 3 4 5

( ) ( ) ( ) ( ) ( )+ + + + +�

 18. 2
3

2
3

2
3

2
3

2
3

2 3 4 5 6

( ) ( ) ( ) ( ) ( )− + − + − + − + − +�

 19. 
e e e e

1 2 2 2 22 3 4

( ) ( ) ( ) ( )− + − + −�

 20. 1
3

1
3

1 1
3

1
3

2 1 2

( ) ( ) ( ) ( )− + − + −
− −

�

 21. 1 10
9

10
9

10
9

10
9

2 4 6 8

( ) ( ) ( ) ( )+ + + + +�

 22. − + − + −�9
4

27
8

81
16

243
32

729
64

Repeating Decimals
Express each of the numbers in Exercises 23–30 as the ratio of two 
integers.

 23. 0.23 0.23 23 23= …

 24. 0.234 0.234 234 234= …

 25. 0.7 0.7777= …

 26. d dddd0. 0. ,= …  where d is a digit

 27. = …0.06 0.06666

 28. 1.414 1.414 414 414= …

 29. 1.24123 1.24 123 123 123= …

 30. 3.142857 3.142857 142857= …

Using the nth-Term Test
In Exercises 31–38, use the nth-Term Test for divergence to show that 
the series is divergent, or state that the test is inconclusive.

 31. n
n 10n 1

∑ +=

∞

 32. n n
n n

1
2 3n 1

∑ ( )

( )( )

+
+ +=

∞

 33. 
n

1
4n 0

∑ +=

∞

 34. n
n 3n 1

2∑ +=

∞

EXERCISES 9.2 
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 35. ∑
=

∞

n
cos 1

n 1

 36. e
e nn

n

n
0

∑ +=

∞

 37. 
n

ln 1

n 1
∑

=

∞

 38. ncos
n 0
∑ π

=

∞

Telescoping Series
In Exercises 39–44, find a formula for the nth partial sum of the series 
and use it to determine whether the series converges or diverges. If a 
series converges, find its sum.

 39. 
n n
1 1

1n 1
∑( )−

+=

∞

 40. 
n n
3 3

1n 1
2 2∑( )( )

−
+=

∞

 41. ∑( )+ −
=

∞

n nln 1 ln
n 1

 42. ∑( )( )− −
=

∞

n ntan ( ) tan 1
n 1

 43. ∑ ( ) ( )( )+
−

+=

∞

n n
arccos 1

1
arccos 1

2n 1

 44. n n4 3
n 1
∑( )+ − +

=

∞

Find the sum of each series in Exercises 45–52.

 45. 
n n

4
4 3 4 1n 1

∑ ( )( )− +=

∞

 46. 
n n

6
2 1 2 1n 1

∑ ( )( )− +=

∞

 47. n
n n

40
2 1 2 1n 1

2 2∑
( ) ( )− +=

∞

 48. n
n n

2 1
1n 1

2 2∑
( )

+
+=

∞

 49. 
n n

1 1
1n 1

∑( )−
+=

∞

 50. 1
2

1
2n

n n
1

1 1 1∑( )−
( )

=

∞

+

 51. ∑( )( ) ( )+
−

+=

∞

n n
1

ln 2
1

ln 1n 1

 52. ∑( )( )− +
=

∞
− −n ntan ( ) tan 1

n 1

1 1

Convergence or Divergence
Which series in Exercises 53–76 converge, and which diverge? Give 
reasons for your answers. If a series converges, find its sum.

 53. 1
2n

n

0
∑ ( )

=

∞

 54. 2
n

n

0
∑ ( )

=

∞

 55. 1 3
2n

n
n

1

1∑( )−
=

∞
+  56. n1

n

n

1

1∑( )−
=

∞
+

 57. ∑ π( )
=

∞ ncos
2n 0

 58. ∑
π

=

∞ ncos
5n

n
0

 59. e
n

n

0

2∑
=

∞
−  60. ∑

=

∞

ln 1
3n

n
1

 61. 2
10n

n
1

∑
=

∞

 62. 
x

x1 , 1
n

n
0

∑ >
=

∞

 63. 2 1
3n

n

n
0

∑ −

=

∞

 64. 
n

1 1

n

n

1
∑( )−

=

∞

 65. n!
1000n

n
0

∑
=

∞

 66. n
n!n

n

1
∑

=

∞

 67. 2 3
4n

n n

n
1

∑ +

=

∞

 68. 2 4
3 4n

n n

n n
1

∑ +
+=

∞

 69. ∑ ( )+=

∞ n
n

ln
1n 1

 70. ∑ ( )+=

∞ n
n

ln
2 1n 1

 71. e

n

n

0
∑ π( )

=

∞

 72. e

n

n

ne
0

∑ π

π

=

∞

 73. n
n

n
n1

2
3n 1

∑( )+
− +

+=

∞

 74. ∑ π π( ) ( )( )−
−=

∞

n n
sin sin

1n 2

 75. ∑ π π( ) ( )( )+
=

∞

n n
cos sin

n 1

 76. ∑ ( )( ) ( )− − +
=

∞

e eln 4 1 ln 2 1
n

n n

0

Geometric Series with a Variable x
In each of the geometric series in Exercises 77–80, write out the first 
few terms of the series to find a and r, and find the sum of the series. 
Then express the inequality r 1<  in terms of x and find the values of 
x for which the inequality holds and the series converges.

 77. ∑ ( )−
=

∞

x1
n

n n

0

 78. ∑ ( )−
=

∞

x1
n

n n

0

2

 79. x3 1
2n

n

0
∑ ( )−

=

∞

 80. ∑ ( )−
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

=

∞

x
1
2

1
3 sinn

n n

0

In Exercises 81–86, find the values of x for which the given geometric 
series converges. Also, find the sum of the series (as a function of x) 
for those values of x.

 81. ∑
=

∞

x2
n

n n

0

 82. x1
n

n n

0

2∑ ( )−
=

∞
−

 83. x1 1
n

n n

0
∑ ( ) ( )− +

=

∞

 84. x1
2

3
n

n
n

0
∑ ( ) ( )− −

=

∞

 85. ∑
=

∞

xsin
n

n

0

 86. ∑ ( )
=

∞

xln
n

n

0

Theory and Examples

 87. The series in Exercise 5 can also be written as

n n n n
1

1 2
and 1

3 4
.

n n1 1
∑ ∑( )( ) ( )( )+ + + +=

∞

=−

∞

Write this series as a sum beginning with (a) n 2,= −  (b) n 0,=  
(c) n 5.=

 88. The series in Exercise 6 can also be written as

n n n n
5

1
and 5

1 2
.

n n1 0
∑ ∑( ) ( )( )+ + +=

∞

=

∞

Write this series as a sum beginning with (a) n 1,= −  (b) n 3,=  
(c) n 20.=

 89. Make up an infinite series of nonzero terms whose sum is

 a. 1  b. 3−    c. 0.

 90. (Continuation of Exercise 89.) Can you make an infinite series of 
nonzero terms that converges to any number you want? Explain.

 91. Show by example that ∑( )a bn n  may diverge even though ∑ an  
and ∑ bn  converge and no bn equals 0.
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560 Chapter 9  Infinite Sequences and Series

 92. Find convergent geometric series ∑=A an  and ∑=B bn  

that illustrate the fact that ∑ a bn n  may converge without being 
equal to AB.

 93. Show by example that ∑( )a bn n  may converge to something 

other than A B even when ∑ ∑= = ≠A a B b, 0,n n  and no 
bn equals 0.

 94. If ∑ an  converges and a 0n >  for all n, can anything be said 

about ∑( )a1 ?n  Give reasons for your answer.

 95. What happens if you add a finite number of terms to a divergent 
series or delete a finite number of terms from a divergent series? 
Give reasons for your answer.

 96. If ∑ an  converges and ∑ bn  diverges, can anything be said 

about their term-by-term sum ∑( )+a b ?n n  Give reasons for 
your answer.

 97. Make up a geometric series ∑ −ar n 1 that converges to the num-
ber 5 if

 a. a 2=  b. a 13 2.=

 98. Find the value of b for which

e e e1 9.b b b2 3+ + + + =�

 99. For what values of r does the infinite series

r r r r r r1 2 2 22 3 4 5 6+ + + + + + +�

converge? Find the sum of the series when it converges.

 100. The accompanying figure shows the first five of a sequence of 
squares. The outermost square has an area of 4 m .2  Each of the 
other squares is obtained by joining the midpoints of the sides of 
the squares before it. Find the sum of the areas of all the squares.

 101. Drug dosage A patient takes a 300 mg tablet for the control of 
high blood pressure every morning at the same time. The concen-
tration of the drug in the patient’s system decays exponentially at 
a constant hourly rate of k 0.12.=

 a. How many milligrams of the drug are in the patient’s system 
just before the second tablet is taken? Just before the third 
tablet is taken?

 b. After the patient has taken the medication for at least six 
months, what quantity of drug is in the patient’s body just 
before the next regularly scheduled morning tablet is taken?

 102. Show that the error L sn( )−  obtained by replacing a convergent 
geometric series with one of its partial sums sn is ar r1 .n ( )−

 103. The Cantor set To construct this set, we begin with the closed 
interval [ ]0,1 . From that interval, we remove the middle open inter-
val 1 3, 2 3( ), leaving the two closed intervals [ ]0,1 3  and [ ]2 3,1 . 
At the second step we remove the open middle third interval from 
each of those remaining. From [ ]0,1 3  we remove the open inter-
val 1 9, 2 9( ), and from [ ]2 3,1  we remove 7 9, 8 9( ), leaving 
behind the four closed intervals [ ]0,1 9 , [ ]2 9,1 3 , [ ]2 3, 7 9 , and 
[ ]8 9,1 . At the next step, we remove the open middle third interval 
from each closed interval left behind, so 1 27, 2 27( ) is removed 
from [ ]0,1 9 , leaving the closed intervals [ ]0,1 27  and [ ]2 27,1 9 ;  
7 27, 8 27( ) is removed from [ ]2 9,1 3 , leaving behind 

[ ]2 9, 7 27  and [ ]8 27,1 3 , and so forth. We continue this process 
repeatedly without stopping, at each step removing the open third 
interval from every closed interval remaining behind from the pre-
ceding step. The numbers remaining in the interval [ ]0,1 , after all 
open middle third intervals have been removed, are the points in 
the Cantor set (named after Georg Cantor, 1845–1918). The set 
has some interesting properties.

 a. The Cantor set contains infinitely many numbers in [ ]0,1 . 
List 12 numbers that belong to the Cantor set.

 b. Show, by summing an appropriate geometric series, that the 
total length of all the open middle third intervals that have 
been removed from [ ]0,1  is equal to 1.

 104. Helge von Koch’s snowflake curve Helge von Koch’s snow-
flake is a curve of infinite length that encloses a region of finite 
area. To see why this is so, suppose the curve is generated by 
starting with an equilateral triangle whose sides have length 1.

 a. Find the length Ln of the nth curve Cn and show that 
Llim .

n
n = ∞

→∞

 b. Find the area An of the region enclosed by Cn and show that 
A Alim 8 5 .

n
n 1( )=

→∞

C1 C4C3C2

 105. The largest circle in the accompanying figure has radius 1. 
Consider the sequence of circles of maximum area inscribed in 
semicircles of diminishing size. What is the sum of the areas of 
all of the circles?
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 9.3  The Integral Test 561

Corollary of Theorem 6
A series ∑ =

∞
ann 1

 of nonnegative terms converges if and only if its partial sums 
are bounded from above.

9.3 The Integral Test

The most basic question we can ask about a series is whether it converges. In this section 
we begin to study this question, starting with series that have nonnegative terms. Such a 
series converges if its sequence of partial sums is bounded. If we establish that a given 
series does converge, we generally do not have a formula available for its sum. So to get an 
estimate for the sum of a convergent series, we investigate the error involved when using a 
partial sum to approximate the total sum.

EXAMPLE 1  As an application of the above corollary, consider the harmonic series

n n
1 1 1

2
1
3

1 .
n 1
∑ = + + + + +

=

∞

� �

Although the nth term n1  does go to zero, the series diverges because there is no upper 
bound for its partial sums. To see why, group the terms of the series in the following way:

1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
16

.

2
4

1
2

4
8

1
2

8
16

1
2

( )( ) ( )+ + + + + + + + + + + +

> > >= = =

� ���� ���� � ��������� ���������
�

� ���������� ����������
�

The sum of the first two terms is 1.5. The sum of the next two terms is 1 3 1 4,+  which  
is greater than 1 4 1 4 1 2.+ =  The sum of the next four terms is 1 5 1 6+ +  
1 7 1 8,+  which is greater than 1 8 1 8 1 8 1 8 1 2.+ + + =  The sum of the next eight 
terms is + + + + + + +1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16, which is greater than 
8 16 1 2.=  The sum of the next 16 terms is greater than 16 32 1 2,=  and so on. In 
general, the sum of 2 m terms ending with 1 2 m 1+  is greater than 2 2 1 2.m m 1 =+  
Therefore, if n 2 ,k=  then the partial sum sn is greater than k 2, so the sequence of partial 
sums is not bounded from above. The harmonic series diverges. 

The Integral Test

We introduce the Integral Test with a series that is related to the harmonic series, but whose 
nth term is n1 2  instead of n1 .

EXAMPLE 2  Does the following series converge?

n n
1 1 1

4
1
9

1
16

1

n 1
2 2∑ = + + + + + +

=

∞

� �

Nondecreasing Partial Sums

Suppose that ∑ =

∞
ann 1

 is an infinite series with a 0n ≥  for all n. Then each partial sum is 
greater than or equal to its predecessor because s s a ,n n n1 = ++  so

s s s s s .n n1 2 3 1≤ ≤ ≤ ≤ ≤ ≤+� �

Since the partial sums form a nondecreasing sequence, the Monotonic Sequence Theorem 
(Theorem 6, Section 9.1) gives the following result.
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562 Chapter 9  Infinite Sequences and Series

Proof  We establish the test for the case N 1.=  The proof for general N is similar.
We start with the assumption that f  is a decreasing function with f n a( ) n=  for every 

n. This leads us to observe that the rectangles in Figure 9.12a, which have areas 
a a a, , , ,n1 2 …  collectively enclose more area than that under the curve y f x( )=  from 
x 1=  to x n 1.= +  That is,

f x dx a a a( ) .
n

n
1

1

1 2∫ ≤ + + +
+

�

In Figure 9.12b the rectangles have been faced to the left instead of to the right. If we 
momentarily disregard the first rectangle of area a ,1  we see that

a a a f x dx( ) .n

n

2 3
1∫+ + + ≤�

If we include a ,1  we have

a a a a f x dx( ) .n

n

1 2 1
1∫+ + + ≤ +�

Combining these results gives

f x dx a a a a f x dx( ) ( ) .
n

n

n

1

1

1 2 1
1∫ ∫≤ + + + ≤ +

+
�

These inequalities hold for each n, and continue to hold as n .→ ∞
If f x dx( )1∫

∞
 is finite, the right-hand inequality shows that ∑ an  is finite. If 

f x dx( )1∫
∞

 is infinite, the left-hand inequality shows that ∑ an  is infinite. Hence the 
series and the integral are either both finite or both infinite. 

Caution
The series and integral need not have the 
same value in the convergent case. You 
will see in Example 6 that

∑ ∫( ) ( )≠ =
=

∞ ∞
n x dx1 1 1.

n
2

1
2

1

THEOREM 9—The Integral Test
Let an{ } be a sequence of positive terms. Suppose that a f n( ),n =  where f  
is a continuous, positive, decreasing function of x for all x N≥  (N a positive 

integer). Then the series ∑ =

∞
ann N

 and the integral f x dx( )
N∫
∞

 both converge or 
both diverge.

FIGURE 9.11 The sum of the areas 
of the rectangles under the graph of 
f x x( ) 1 2=  is less than the area under 
the graph (Example 2).

0 1

Graph of f (x) =

(1, f (1)) 

(2, f (2))

(3, f (3))
(n, f (n))

2 3 4 … n − 1 n …

1
x2

1
n2

1
22

1
12

1
32

1
42

x

y

FIGURE 9.12 Subject to the conditions 
of the Integral Test, the series ∑ =

∞
ann 1

 
and the integral f x dx( )

1∫
∞

 both converge 
or both diverge.

0 1 2 n3 n + 1

a1
a2

an

(a)

0 1 2 n3 n − 1

a1

a3
an

(b)

a2

x

y

x

y

y = f (x)

y = f (x)

Solution We determine the convergence of ∑ ( )
=

∞
n1

n
2

1
 by comparing it with 

x dx1 .1
2( )∫

∞
 To carry out the comparison, we think of the terms of the series as values of 

the function f x x( ) 1 2=  and interpret these values as the areas of rectangles under the 
curve y x1 .2=

As Figure 9.11 shows,

∫

∫

= + + + +

= + + + +

< +

< +

= + =

∞

�

�

s
n

f f f f n

f
x

dx

x
dx

1
1

1
2

1
3

1

(1) (2) (3) ( )

(1) 1

1 1

1 1 2.

n

n

2 2 2 2

21

21

Rectangle areas sum to less  
than area under graph.

( ) ( )∫ < ∫
∞

x dx x dx1 1
n

1
2

1
2

As in Section 8.8,  
Example 3, x dx1 1.1

2( )∫ =
∞

Thus the partial sums of ∑ ( )
=

∞
n1

n
2

1
 are bounded from above (by 2), and the series  

converges. 
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 9.3  The Integral Test 563

The p-series 
n

1

n
p

1
∑

=

∞

converges if p 1,>  diverges if p 1.≤

the series converges by the Integral Test. We emphasize that the sum of the p-series is not 
p1 1 .( )−  The series converges, but we don’t know the value it converges to.

If p 0,≤  the series diverges by the nth-term test. If p0 1,< <  then p1 0− >  and

∫ ( )=
−

− = ∞
∞

→∞
−

x
dx

p
b1 1

1
lim 1 .

p b

p

1

1

Therefore, the series diverges by the Integral Test.
If p 1,=  we have the (divergent) harmonic series

n
1 1

2
1
3

1 .+ + + + +� �

In summary, we have convergence for p 1>  but divergence for all other values of p. 

EXAMPLE 3  Show that the p-series

n n
1 1

1
1

2
1

3
1

n
p p p p p

1
∑ = + + + + +

=

∞

� �

( p a real constant) converges if p 1>  and diverges if p 1.≤

Solution If p 1,>  then f x x( ) 1 p=  is a positive, continuous, and decreasing function 
of x. Since

∫ ∫

( )
( )

= =
− +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−

−

=
−

− =
−

∞
−

∞

→∞

− +

→∞ −

x
dx x dx x

p

p b

p p

1 lim
1

1
1

lim 1 1

1
1

0 1 1
1

,

p
p

b

p b

b p

1 1

1

1

1

Evaluate the improper integral

b b
p

as
because 1 0.

p 1 → ∞ → ∞
− >

−

The p-series with p 1=  is the harmonic series (Example 1). The p-Series Test shows 
that the harmonic series is just barely divergent; if we increase p to 1.000000001, for 
instance, the series converges!

The slowness with which the partial sums of the harmonic series approach infinity is 
impressive. For instance, it takes more than 178 million terms of the harmonic series to 
move the partial sums beyond 20. (See also Exercise 49b.)

EXAMPLE 4  The series n1 1
n

2
1∑ ( )( )+

=

∞
 is not a p-series, but we will show that 

it converges by the Integral Test. The function f x x( ) 1 12( )= +  is positive, continuous, 
and decreasing for x 1≥  since it is the reciprocal of a function that is positive, continuous, 
and increasing on this interval, and

∫

π π π

[ ]
+

= ⎡
⎣⎢

⎤
⎦⎥

= −

= − =

∞

→∞

→∞

x
dx x

b

1
1

lim arctan

lim arctan arctan 1

2 4 4
.

b

b

b

21 1

The Integral Test tells us that the series converges, but it does not say that 4π  is the sum of 
the series. 

EXAMPLE 5  Determine the convergence or divergence of the series.

 (a) ne
n

n

1

2∑
=

∞
−   (b) ∑

=

∞ 1
2n

n
1

ln
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564 Chapter 9  Infinite Sequences and Series

an+2

0

(a)

x

y

n n+1 n+2 n+3 n+4

an+1

Remainder terms

an+3 an+4

···
···

···
···

(b)

0
x

y

n n+1 n+2 n+3 n+4

Remainder terms

an+2

an+1

an+3 an+4

FIGURE 9.13 A geometric interpreta-
tion of Remainder Formula (1).

Solutions 

 (a) The function f x xe( ) x 2= −  is continuous and positive for x 1.≥  The first derivative

f x e x e x e( ) 2 1 2x x x2 22 2 2( )′ = − = −− − −

is negative on that interval (since x 1≥  implies x1 2 1 2 02− ≤ − < ), so f  is 
decreasing and we can apply the Integral Test:

x
e

dx du
e

e

e e e

1
2

lim 1
2

lim 1
2

1
2

1
2

.

x u

b

u
b

b b

1 1

1

2∫ ∫

( )

=

= −⎡
⎣⎢

⎤
⎦⎥

= − + =

∞ ∞

→∞
−

→∞

Since the integral converges, the series also converges.

 (b) The integrand ( )1 2 xln  is a positive, continuous, and decreasing function on 1, ,( )∞  so 
we can apply the Integral Test.

∫ ∫

∫

( )
( )

( )( )

=

=

= − = ∞

∞ ∞

∞

→∞

dx e du

e du

e
e

2 2

2

lim 1

ln
2

2
1

x

u

u

u

b

b

ln1 0

0

u x du x dx, 22= =

= = =u x x e dx e duln , ,u u

e 2 1( ) >

The improper integral diverges, so the series diverges also. 

Error Estimation

For some convergent series, such as the geometric series or the telescoping series in 
Example 5 of Section 9.2, we can actually find the total sum of the series. That is, we 
can find the limiting value S of the sequence of partial sums. For most convergent series, 
however, we cannot easily find the total sum. Nevertheless, we can estimate the sum by 
adding the first n terms to get s ,n  but we need to know how far off sn is from the total 
sum S. An approximation to a function or to a number is more useful when it is accom-
panied by a bound on the size of the worst possible error that could occur. With such  
an error bound we can try to make an estimate or approximation that is close enough for 
the problem at hand. Without a bound on the error size, we are just guessing and hoping 
that we are close to the actual answer. We now show a way to bound the error size using 
integrals.

Suppose that a series ∑ an  with positive terms is shown to be convergent by the 
Integral Test, and we want to estimate the size of the remainder Rn measuring the difference 
between the total sum S of the series and its nth partial sum s .n  That is, we wish to estimate

R S s a a a .n n n n n1 2 3= − = + + ++ + + �

To get a lower bound for the remainder, we compare the sum of the areas of the 
rectangles with the area under the curve y f x( )=  for x n≥  (see Figure 9.13a). We  
see that

R a a a f x dx( ) .n n n n
n

1 2 3
1∫= + + + ≥+ + +

+

∞
�

Similarly, from Figure 9.13b, we find an upper bound with

R a a a f x dx( ) .n n n n
n

1 2 3 ∫= + + + ≤+ + +

∞
�
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 9.3  The Integral Test 565

These comparisons prove the following result, giving bounds on the size of the remainder.

Since s R S,n n+ =  if we add the partial sum sn to each side of the inequalities in (1), 
we get

 s f x dx S s f x dx( ) ( ) .n
n

n
n1∫ ∫+ ≤ ≤ +

+

∞ ∞
 (2)

The inequalities in (2) are useful for estimating the error in approximating the sum of a 
series known to converge by the Integral Test. The error can be no larger than the length of 
the interval containing S, with endpoints given by (2).

Bounds for the Remainder in the Integral Test
Suppose ak{ } is a sequence of positive terms with a f k( ),k =  where f  is a con-
tinuous positive decreasing function of x for all x n,≥  and suppose that ∑ an  
converges to S. Then the remainder R S sn n= −  satisfies the inequalities

 f x dx R f x dx( ) ( ) .
n

n
n1∫ ∫≤ ≤

+

∞ ∞
 (1)

The p-series for p 2=

n
1

6
1.64493

n 1
2

2

∑ π= ≈
=

∞

Applying the Integral Test
Use the Integral Test to determine whether the series in Exercises 1–12 
converge or diverge. Be sure to check that the conditions of the Integral 
Test are satisfied.

 1. 
n
1

n 1
2∑

=

∞

 2. 
n

1

n 1
0.2∑

=

∞

 3. 
n

1
4n 1

2∑ +=

∞

 4. 
n

1
4n 1

∑ +=

∞

 5. e
n

n

1

2∑
=

∞
−  6. ∑ ( )=

∞

n n
1

lnn 2
2

 7. n
n 4n 1

2∑ +=

∞

 8. ∑
=

∞ n
n

ln ( )

n 2

2

 9. n
en

n
1

2

3∑
=

∞

 10. n
n n

4
2 1n 2

2∑ −
− +=

∞

 11. 
n

7
4n 1

∑ +=

∞

 12. 
n n

1
5 10n 2

∑ +=

∞

EXERCISES 9.3 

EXAMPLE 6  Estimate the sum of the series ∑( )n1 2  using the inequalities in (2) 
and n 10.=

Solution We have that

x
dx

x b n n
1 lim 1 lim 1 1 1 .

n b n

b

b2∫ ( )= −⎡
⎣⎢

⎤
⎦⎥

= − + =
∞

→∞ →∞

Using this result with the inequalities in (2) gives

s S s1
11

1
10

.10 10+ ≤ ≤ +

Since s 1 1 4 1 9 1 16 1 100 1.54977,10 ( ) ( ) ( ) ( )= + + + + + ≈�  these last inequal-
ities give

S1.64068 1.64977.≤ ≤

If we approximate the sum S by the midpoint of this interval, we find that

n
1 1.6452.

n 1
2∑ ≈

=

∞

The error in this approximation is then less than half the length of the interval, so the error 
is less than 0.005. Using a trigonometric Fourier series, we prove in Section 19.4 that S is 
equal to 6 1.64493.2π ≈  
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0

1

1 2 3 4 5 ···

···

48 49 50 51
x

y

"

x + 1

1
f (x) = 

29

2×10−6

30 31 32 33
x

y

x4
1f (x) = 

···

Determining Convergence or Divergence
Which of the series in Exercises 13–46 converge, and which diverge? 
Give reasons for your answers. (When you check an answer, remem-
ber that there may be more than one way to determine the series’  
convergence or divergence.)

 13. 1
10n

n
1

∑
=

∞

 14. e
n

n

1
∑

=

∞
−  15. n

n 1n 1
∑ +=

∞

 16. 
n

5
1n 1

∑ +=

∞

 17. 
n

3

n 1
∑

=

∞

 18. 
n n

2

n 1
∑ −

=

∞

 19. 1
8n

n
1

∑ −
=

∞

 20. 
n
8

n 1
∑ −

=

∞

 21. ∑
=

∞ n
n

ln

n 2

 22. ∑
=

∞ n

n

ln

n 2

 23. 2
3n

n

n
1

∑
=

∞

 24. 5
4 3n

n

n
1

∑ +=

∞

 25. 
n

2
1n 0

∑ −
+=

∞

 26. 
n

1
2 1n 1

∑ −=

∞

 27. 
n

2
1n

n

1
∑ +=

∞

 28. 
n

1 1

n

n

1
∑( )+

=

∞

 29. ∑
=

∞ n
nlnn 2

 30. 
n n

1
1n 1

∑ ( )+=

∞

 31. ∑ ( )=

∞ 1
ln 2n

n
1

 32. ∑ ( )=

∞ 1
ln 3n

n
1

 33. ∑
( )

( ) −=

∞ n

n n

1

ln ln 1n 3
2

 34. ∑ ( )+=

∞

n n
1

1 lnn 1
2

 35. ∑
=

∞

n
n

sin 1

n 1

 36. ∑
=

∞

n
n

tan 1

n 1

 37. e
e1n

n

n
1

2∑ +=

∞

 38. 
e

2
1n

n
1

∑ +=

∞

 39. e
e10n

n

n
1

∑ +=

∞

 40. e
e10n

n

n
1

2∑
( )+=

∞

 41. n n
n n

2 1
1 2n 2

∑ + − +
+ +=

∞

 42. ∑ + +=

∞

n n
7

1 ln 1n 3

 43. ∑ +=

∞ − n
n

8 tan
1n 1

1

2
 44. n

n 1n 1
2∑ +=

∞

 45. ∑
=

∞

nsech
n 1

 46. ∑
=

∞

nsech
n 1

2

Theory and Examples
For what values of a, if any, do the series in Exercises 47 and 48 
converge?

 47. a
n n2

1
4n 1

∑( )+
−

+=

∞

 48. 
n

a
n

1
1

2
1n 3

∑( )−
−

+=

∞

 49. a.  Draw illustrations like those in Figures 9.12a and 9.12b to 
show that the partial sums of the harmonic series satisfy the 
inequalities

�∫

∫

( )+ = ≤ + + +

≤ + = +

+
n

x
dx

n

x
dx n

ln 1 1 1 1
2

1

1 1 1 ln .

n

n

1

1

1

 b. There is absolutely no empirical evidence for the divergence 
of the harmonic series even though we know it diverges.  

T

The partial sums just grow too slowly. To see what we mean,  
suppose you had started with s 11 =  the day the universe was 
formed, 13 billion years ago, and added a new term every 
second. About how large would the partial sum sn be today, 
assuming a 365-day year?

 50. Are there any values of x for which ∑ ( )
=

∞
nx1

n 1
 converges? Give 

reasons for your answer.

 51. Is it true that if ∑ =

∞
ann 1

 is a divergent series of positive numbers, 

then there is also a divergent series ∑ =

∞
bnn 1

 of positive numbers 
with b an n<  for every n? Is there a “smallest” divergent series of 
positive numbers? Give reasons for your answers.

 52. (Continuation of Exercise 51.) Is there a “largest” convergent 
series of positive numbers? Explain.

 53. ∑ ( )+
=

n1 1 diverges
n

∞

1

 a. Use the accompanying graph to show that the partial sum 

∑ ( )= +
=

s n1 1
n50 1

50
 satisfies

x
dx s

x
dx1

1
1

1
.

1

51

50
0

50

∫ ∫+
< <

+
Conclude that s11.5 12.3.50< <

 b. What should n be in order that the partial sum

∑ ( )= + >
=

s i s1 1 satisfy 1000?n i

n
n1

 54. ∑ ( )
=

n1 converges
n

∞ 4
1

 a. Use the accompanying graph to find an upper bound for the 

error if ∑ ( )=
=

s n1
n30

4
1

30
 is used to estimate the value of 

∑ ( )
=

∞
n1 .

n
4

1

 b. Find n so that the partial sum ∑ ( )=
=

∞
s i1n i

4
1

 estimates 
the value of ∑ ( )

=

∞
n1

n
4

1
 with an error of at most 0.000001. 

(The exact value of this series is computed in Exercise 20 of 
Section 19.4.)

 55. Estimate the value of ∑ ( )
=

∞
n1

n
3

1
 to within 0.01 of its exact value.

 56. Estimate the value of ∑ ( )( )+
=

∞
n1 4

n
2

2
 to within 0.1 of its 

exact value.

 57. How many terms of the convergent series ∑ ( )
=

∞
n1

n
1.1

1
 should 

be used to estimate its value with error at most 0.00001?
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 9.4  Comparison Tests 567

 58. How many terms of the convergent series ∑ ( )( )
=

∞
n n1 ln

n

3

4
 

should be used to estimate its value with error at most 0.01?

 59. The Cauchy condensation test The Cauchy condensation test 

says: Let an{ } be a nonincreasing sequence (a an n 1≥ +  for all n) of  

positive terms that converges to 0. Then ∑ an  converges if and only 

if   ∑ a2n
2n  converges. For example, ∑( )n1  diverges because 

∑ ∑( )⋅ =2 1 2 1n n  diverges. Show why the test works.

 60. Use the Cauchy condensation test from Exercise 59 to show that

 a. ∑
=

∞

n n
1
lnn 2

 diverges;

 b. 
n
1

n
p

1
∑

=

∞

 converges if p 1>  and diverges if p 1.≤

 61. Logarithmic p-series 

 a. Show that the improper integral

∫ ( )
( )

∞ dx
x x

p
ln

 a positive constantp2

converges if and only if p 1.>

 b. What implications does the fact in part (a) have for the con-
vergence of the series

∑ ( )=

∞

n n
1

ln
?

n
p

2

Give reasons for your answer.

 62. (Continuation of Exercise 61.) Use the result in Exercise 61 to 
determine which of the following series converge and which 
diverge. Support your answer in each case.

 a. ∑ ( )=

∞

n n
1
lnn 2

 b. ∑ ( )=

∞

n n
1

lnn 2
1.01

 c. ∑
=

∞

n n
1

ln ( )n 2
3

 d. ∑ ( )=

∞

n n
1

lnn 2
3

 63. Euler’s constant Graphs like those in Figure 9.12 suggest that 
as n increases there is little change in the difference between the 
sum

n
1 1

2
1+ + +�

and the integral

∫=n
x

dxln 1 .
n

1

To explore this idea, carry out the following steps.

 a. By taking f x x( ) 1=  in the proof of Theorem 9, show that

�( )+ ≤ + + + ≤ +n
n

nln 1 1 1
2

1 1 ln

or

�( )< + − ≤ + + + − ≤n n
n

n0 ln 1 ln 1 1
2

1 ln 1.

Thus, the sequence

�= + + + −a
n

n1 1
2

1 lnn

is bounded from below and from above.

 b. Show that

∫ ( )
+

< = + −
+

n x
dx n n1

1
1 ln 1 ln ,

n

n 1

and use this result to show that the sequence an{ } in part (a) 
is decreasing.

Since a decreasing sequence that is bounded from below 
converges, the numbers an defined in part (a) converge:

� γ+ + + − →
n

n1 1
2

1 ln .

The number ,γ  whose value is …0.5772 , is called Euler’s 
constant.

 64. Use the Integral Test to show that the series

e
n

n

0

2∑
=

∞
−

converges.

 65. a.  For the series ∑( )n1 ,3  use the inequalities in Equation (2) 

with n 10=  to find an interval containing the sum S.

 b. As in Example 5, use the midpoint of the interval found in 
part (a) to approximate the sum of the series. What is the 
maximum error for your approximation?

 66. Repeat Exercise 65 using the series ∑( )n1 .4

 67. Area Consider the sequence n1 .
n 1

{ } =
∞  On each subinterval 

n n1 1 ,1( )( )+  within the interval 0,1[ ], erect the rectangle with 
area an having height n1  and width equal to the length of the sub-
interval. Find the total area ∑ an  of all the rectangles. (Hint: Use 
the result of Example 5 in Section 9.2.)

 68. Area Repeat Exercise 67, using trapezoids instead of rectangles. 
That is, on the subinterval n n1 1 ,1 ,( )( )+  let an denote the area 
of the trapezoid having heights y n1 1( )= +  at x n1 1( )= +  
and y n1=  at x n1 .=

9.4 Comparison Tests

We have seen how to determine the convergence of geometric series, p-series, and a few 
others. We can test the convergence of many more series by comparing their terms to those 
of a series whose convergence is already known.
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568 Chapter 9  Infinite Sequences and Series

Proof  The series an  and bn  have nonnegative terms. The Corollary of Theorem 6 

stated in Section 9.3 tells us that the series an  and bn  converge if and only if their 
partial sums are bounded from above.

In Part (1) we assume that bn  converges to some number M. The partial sums 

∑ =
ann

N

1
 are all bounded from above by ∑=M bn  because

∑= + + + ≤ + + + ≤ =
=

∞

s a a a b b b b M.N N N
n

n1 2 1 2
1

Since the partial sums of an  are bounded from above, the Corollary of Theorem 6 implies 

that an  converges. We conclude that if bn  converges, then so does a .n  Figure 9.14 

illustrates this result, with each term of each series interpreted as the area of a rectangle.
In Part (2), where we assume that an  diverges, the partial sums of ∑ =

∞
bnn 1

 are not 

bounded from above. If they were, the partial sums for an  would also be bounded from 
above, since

+ + + ≤ + + +a a a b b b ,N N1 2 1 2

and this would mean that an  converges. We conclude that if an  diverges, then so 

does b .n  

THEOREM 10—Direct Comparison Test
Let a b and n n  be two series with a b0 n n for all n. Then

1. If bn  converges, then an  also converges.

2. If an  diverges, then bn  also diverges.

FIGURE 9.14 If the total area bn  of  
the taller bn rectangles is finite, then so  
is the total area an  of the shorter an 
rectangles.

n
1 2 3 4 5 n−1 n

b1

b2

b3

b4 b5
bn

a1 a2
a3

a4
a5 an

···

y

bn−1

EXAMPLE 1  We apply Theorem 10 to several series.

 (a) The series

∑ −=

∞

n
5

5 1n 1

diverges because its nth term

−
=

−
>

n n n
5

5 1
1

1
5

1
   ∑ >

=

∞

n
n1 diverges and 1 0.

n 1

is positive and is greater than the nth term of the (positive) divergent harmonic series.

 (b) The series

∑ = + + + +
=

∞

n
1
!

1 1
1!

1
2!

1
3!n 0

converges because its terms are all positive and less than or equal to the corresponding 
terms of

∑+ = + + + +
=

∞

1 1
2

1 1 1
2

1
2

.
n

n
0

2

The geometric series on the left converges (since = <r 1 2 1) and we have

∑ ( )
+ = +

−
=

=

∞

1 1
2

1 1
1 1 2

3.
n

n
0

The fact that 3 is an upper bound for the partial sums of ∑ ( )
=

∞
n1 !

n 0
 does not 

mean that the series converges to 3. As we will see in Section 9.9, the series converges 
to e.

HISTORICAL BIOGRAPHY

Albert of Saxony
(ca. 1316–1390)
Albert attended the University of Paris and 
gained recogintion as a teacher at its faculty 
of arts. He wrote on squaring the circle and 
other geometric problems. He also published 
books on physics and mechanics, Tractatus 
proportionum being the most popular one.

To know more, visit the companion Website. 
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 9.4  Comparison Tests 569

THEOREM 11—Limit Comparison Test
Suppose that >a 0n  and >b 0n  for all ≥n N  (N an integer).

1. If = >
→∞

a
b

c clim  and  0,
n

n

n

 then ∑ an  and ∑ bn both converge or both diverge.

2. If =
→∞

a
b

lim 0
n

n

n

 and ∑ bn  converges, then ∑ an  converges.

3. If = ∞
→∞

a
b

lim
n

n

n

 and ∑ bn  diverges, then ∑ an  diverges.

 (c) The series

� �+ + + +
+

+
+

+
+

+ +
+

+
n

5 2
3

1
7

1 1
2 1

1
4 2

1
8 3

1
2n

converges. To see this, we ignore the first three terms and compare the remaining terms 
with those of the convergent geometric series ∑ ( )

=

∞
1 2 .n

n 0
 The term ( )+ n1 2n  of 

the truncated sequence is positive and is less than the corresponding term 1 2n  of the 
geometric series. We see that term-by-term we have the comparison of positive terms

� �+
+

+
+

+
+

+ ≤ + + + +1 1
2 1

1
4 2

1
8 3

1 1
2

1
4

1
8

.

So the truncated series and the original series converge by an application of the Direct 
Comparison Test. 

The Limit Comparison Test

We now introduce a comparison test that is particularly useful for series in which an is a 
rational function of n.

Proof  We will prove Part 1. Parts 2 and 3 are left as Exercises 57a and b.

We assume that =
→∞

a
b

clim
n

n

n

 where >c 0. Then ε = c 2 is a positive number, so by 

the definition of convergence there exists an integer N such that

− < >
a
b

c c n N
2

whenever .n

n

Limit definition with  
ε = =c L c2, , and  
an replaced by a bn n

Thus, for >n N ,

( ) ( )

− < − <

< <

< <

c a
b

c c

c a
b

c

c b a c b

2 2
,

2
3
2

,

2
3
2

.

n

n

n

n

n n n

If ∑ bn  converges, then ∑( )c b3 2 n  converges and ∑ an  converges by the Direct 

Comparison Test. If ∑ bn  diverges, then ∑( )c b2 n  diverges and ∑ an  diverges by the 

Direct Comparison Test. 

EXAMPLE 2  Which of the following series converge, and which diverge?

 (a) � ∑ ∑
( )

+ + + + = +
+

= +
+ +=

∞

=

∞n
n

n
n n

3
4

5
9

7
16

9
25

2 1
1

2 1
2 1n n1

2
1

2
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570 Chapter 9  Infinite Sequences and Series

 (b) � ∑+ + + + =
−=

∞1
1

1
3

1
7

1
15

1
2 1n

n
1

 (c) � ∑+
+

+
+

+
+ =

+
+=

∞ n n
n

1 2 ln 2
9

1 3 ln 3
14

1 4 ln 4
21

1 ln
5n 2

2

Solution We apply the Limit Comparison Test to each series.

 (a) Let ( )( )= + + +a n n n2 1 2 1 .n
2  For large n, we expect an to behave like 

=n n n2 22  since the leading terms dominate for large n, so we let =b n1 .n  The 
numbers an and bn are positive for each n, the series

∑ ∑=
=

∞

=

∞

b
n
1 diverges,

n
n

n1 1

and

= +
+ +

=
→∞ →∞

a
b

n n
n n

lim lim 2
2 1

2,
n

n

n n

2

2

so  ∑ an  diverges by Part 1 of the Limit Comparison Test. We could just as well have 

taken =b n2 ,n  but n1  is simpler.

 (b) Let ( )= −a 1 2 1 .n
n  For large n, we expect an to behave like 1 2 ,n  so we let 

=b 1 2 .n
n  The numbers an and bn are positive for each n, the series

b 1
2

converges,
n

n
n

n
1 1

∑ ∑=
=

∞

=

∞

and

( )
=

−
=

−
=

→∞ →∞ →∞

a
b

lim lim 2
2 1

lim 1
1 1 2

1,
n

n

n n

n

n n n

so  ∑ an  converges by Part 1 of the Limit Comparison Test.

 (c) Let ( ) ( )= + +a n n n1 ln 5 .n
2  For large n, we expect an to behave like 

( ) ( )=n n n n nln ln ,2  which is greater than n1  for ≥n 3, so we let =b n1 .n  The 
numbers an and bn are positive for each n, the series

∑ ∑=
=

∞

=

∞

b
n
1 diverges,

n
n

n2 2

and

=
+

+
= ∞

→∞ →∞

a
b

n n n
n

lim lim
ln
5

,
n

n

n n

2

2

so  ∑ an  diverges by Part 3 of the Limit Comparison Test. 

EXAMPLE 3  Does ∑
=

∞ n
n
ln

n 1
3 2

  converge?

Solution First note that both nln  and n 3 2 are positive for ≥n 3, so the Limit 
Comparison Theorem can be applied. Because nln  grows more slowly than n c for any 
positive constant c (Section 9.1, Exercise 115), we can compare the series to a convergent 
p-series. To get the p-series, we see that

< =
n

n
n
n n

ln 1
3 2

1 4

3 2 5 4
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 9.4  Comparison Tests 571

for n sufficiently large. Then, taking ( )=a n nlnn
3 2 and =b n1 ,n

5 4  we have

( )

=

=

= =

→∞ →∞

→∞ −

→∞

a
b

n
n

n
n

n

lim lim
ln

lim
1

1 4

lim 4 0.

n

n

n n

n

n

1 4

3 4

1 4

    L’Hôpital’s Rule

Since ∑ ∑( )=b n1n
5 4  is a p-series with >p 1, it converges. Therefore, ∑ an  con-

verges by Part 2 of the Limit Comparison Test. 

Direct Comparison Test
In Exercises 1–8, use the Direct Comparison Test to determine whether 
each series converges or diverges.

 1. ∑ +=

∞

n
1

30n 1
2

 2. ∑ −
+=

∞ n
n

1
2n 1

4
 3. ∑ −=

∞

n
1

1n 2

 4. ∑ +
−=

∞ n
n n

2

n 2
2

 5. ∑
=

∞ n
n

cos

n 1

2

3 2
 6. ∑

=

∞

n
1
3n

n
1

 7. ∑ +
+=

∞ n
n

4
4n 1

4
 8. ∑ +

+=

∞ n
n

1
3n 1

2

Limit Comparison Test
In Exercises 9–16, use the Limit Comparison Test to determine 
whether each series converges or diverges.

 9. ∑ −
− +=

∞ n
n n

2
3n 1

3 2

(Hint: Limit Comparison with ∑ ( ))
=

∞
n1

n
2

1

 10. ∑ +
+=

∞ n
n

1
2n 1

2

(Hint: Limit Comparison with ∑ ( ))
=

∞
n1  

n 1

 11. ∑ ( )
( )

( )

+
+ −=

∞ n n
n n

1
1 1n 2

2
 12. ∑ +=

∞ 2
3 4n

n

n
1

 13. ∑
=

∞

n
5

4n

n

n
1

 14. ∑( )+
+=

∞ n
n

2 3
5 4n

n

1

 15. ∑
=

∞

n
1

lnn 2

(Hint: Limit Comparison with ∑ ( ))
=

∞
n1

n 2

 16. ∑ ( )+
=

∞

n
ln 1 1

n 1
2

(Hint: Limit Comparison with ∑ ( ))
=

∞
n1

n
2

1

Determining Convergence or Divergence
Which of the series in Exercises 17–56 converge, and which diverge? 
Use any method, and give reasons for your answers.

 17. ∑ +=

∞

n n
1

2n 1
3  18. ∑ +=

∞

n n
3

n 1

 19. ∑
=

∞ nsin
2n

n
1

2

 20. ∑
+

=

∞ n
n

1 cos

n 1
2

 21. ∑ −=

∞ n
n
2

3 1n 1

 22. ∑ +

=

∞ n
n n

1

n 1
2

 23. ∑ ( )( )

+
+ +=

∞ n
n n n

10 1
1 2n 1

 24. ∑ ( )( )

−
− +=

∞ n n
n n n

5 3
2 5n 3

3

2 2

 25. ∑( )+=

∞ n
n3 1n

n

1

 26. ∑
+=

∞

n
1

2n 1
3

 27. ∑ ( )=

∞

n
1

ln lnn 3

 28. ∑
( )

=

∞ n
n

ln

n 1

2

3
 29. ∑

=

∞

n n
1
lnn 2

 30. ∑
( )

=

∞ n
n
ln

n 1

2

3 2

 31. ∑ +=

∞

n
1

1 lnn 1

 32. ∑ ( )+
+=

∞ n
n

ln 1
1n 2

 33. ∑
−=

∞

n n
1

1n 2
2

 34. ∑ +=

∞ n
n 1n 1

2
 35. ∑ −

=

∞ n
n

1
2n

n
1

 36. ∑ +

=

∞ n
n

2
2n

n

n
1

2

 37. ∑ +=

∞

−
1

3 1n
n

1
1

 38. ∑ +

=

∞ −3 1
3n

n

n
1

1
 39. ∑ +

+
⋅

=

∞ n
n n n

1
3

1
5n 1

2

 40. ∑ +
+=

∞ 2 3
3 4n

n n

n n
1

 41. ∑ −

=

∞ n
n

2
2n

n

n
1

 42. ∑
=

∞ n

n e

ln

n
n

1

 43. ∑
=

∞

n
1
!n 2

(Hint: First show that ( ) ( )( )≤ −n n n1 ! 1 1  for ≥n 2.)

 44. ∑ ( )

( )

−
+=

∞ n
n

1 !
2 !n 1

 45. ∑
=

∞

n
sin 1

n 1

 46. ∑
=

∞

n
tan 1

n 1

 47. ∑
=

∞ − n
n

tan

n 1

1

1.1
 48. ∑

=

∞ n
n

arcsec

n 1
1.3

 49. ∑
=

∞ n
n

coth

n 1
2

 50. ∑
=

∞ n
n

tanh

n 1
2

 51. ∑
=

∞

n n
1

n
n

1

 52. ∑
=

∞ n
nn

n

1
2

 53. 
�∑ + + + +=

∞

n
1

1 2 3n 1

 54. 
�∑ + + + +=

∞

n
1

1 2 3n 1
2 2 2

 55. ∑ ( )=

∞ n
nlnn 2

2  56. ∑
( )

=

∞ n
n

ln

n 2

2

EXERCISES 9.4 
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572 Chapter 9  Infinite Sequences and Series

Theory and Examples

 57. Prove (a) Part 2 and (b) Part 3 of the Limit Comparison Test.

 58. If ∑ =

∞
ann 1

 is a convergent series of nonnegative numbers, can 

anything be said about ∑ ( )
=

∞
a n ?nn 1

 Explain.

 59. Suppose that >a 0n  and >b 0n  for ≥n N (N an integer). If 

( ) = ∞
→∞

a blim
n

n n  and ∑ an  converges, can anything be said 

about ∑ b ?n  Give reasons for your answer.

 60. Prove that if ∑ an  is a convergent series of nonnegative terms, 

then ∑ an
2  converges.

 61. Suppose that >a 0n  and = ∞
→∞

alim .
n

n  Prove that ∑ an  
diverges.

 62. Suppose that >a 0n  and =
→∞

n alim 0.
n

n
2  Prove that ∑ an  con-

verges.

 63. Show that ∑ ( )( )
=

∞
n nln q p

n 2
 converges for −∞ < < ∞q  and 

>p 1.

(Hint: Limit Comparison with ∑ =

∞
n1 r

n 2
 for < <r p1 .)

 64. (Continuation of Exercise 63.) Show that ∑ ( )( )
=

∞
n nln q p

n 2
 

diverges for −∞ < < ∞q  and < <p0 1.

(Hint: Limit Comparison with an appropriate p-series.)

 65. Decimal numbers Any real number in the interval [ ]0,1  can be 
represented by a decimal (not necessarily unique) as

� �= + + + +d d d d
d d d d

0.  
10 10 10 10

,1 2 3 4
1 2

2
3
3

4
4

where di is one of the integers …0, 1, 2, 3, , 9. Prove that the  
series on the right-hand side always converges.

 66. If ∑ an  is a convergent series of positive terms, prove that 

∑ asin ( )n  converges.

In Exercises 67–72, use the results of Exercises 63 and 64 to determine 
whether each series converges or diverges.

 67. ∑
( )

=

∞ n
n

ln

n 2

3

4
 68. ∑

=

∞ n
n

ln

n 2

 69. ∑
( )

=

∞ n
n

ln

n 2

1000

1.001
 70. ∑

( )

=

∞ n
n

ln

n 2

1 5

0.99

 71. ∑ ( )=

∞

n n
1
lnn 2

1.1 3  72. ∑ ⋅=

∞

n n
1

lnn 2

COMPUTER EXPLORATIONS

 73. It is not yet known whether the series

∑
=

∞

n n
1

sinn 1
3 2

converges or diverges. Use a CAS to explore the behavior of the 
series by performing the following steps.

 a. Define the sequence of partial sums

∑=
=

s
n n

1
sin

.k
n

k

1
3 2

What happens when you try to find the limit of sk as → ∞k ? 
Does your CAS find a closed form answer for this limit?

 b. Plot the first 100 points ( )k s, k  for the sequence of partial 
sums. Do they appear to converge? What would you estimate 
the limit to be?

 c. Next plot the first 200 points ( )k s, .k  Discuss the behavior in 
your own words.

 d. Plot the first 400 points ( )k s, .k  What happens when 
=k 355? Calculate the number 355 113. Explain from your 

calculation what happened at =k 355. For what values of k 
would you guess this behavior might occur again?

 74. a. Use Theorem 8 to show that

∑ ∑( )( ) ( )
=

+
+ −

+=

∞

=

∞

S
n n n n n

1
1

1 1
1

,
n n1 1

2

where ∑ ( )=
=

∞
S n1 ,

n
2

1
 the sum of a convergent p-series.

 b. From Example 5, Section 9.2, show that

∑ ( )
= +

+=

∞

S
n n

1 1
1

.
n 1

2

 c. Explain why taking the first M terms in the series in part (b) 
gives a better approximation to S than taking the first M terms 
in the original series ∑ ( )

=

∞
n1 .

n
2

1

 d. We know the exact value of S is π 6.2  Which of these sums,

∑ ∑ ( )
+

+= =n n n
1 or 1 1

1
,

n n1

1000000

2
1

1000

2

gives a better approximation to S?

9.5 Absolute Convergence; The Ratio and Root Tests

When some of the terms of a series are positive and others are negative, the series may or 
may not converge. For example, the geometric series

 � ∑ ( )− + − + = −

=

∞

5 5
4

5
16

5
64

5 1
4n

n

0

 (1)

converges ( )= <rsince 1
4

1 , whereas the different geometric series

 � ∑ ( )− + − + = −

=

∞

1 5
4

25
16

125
64

5
4n

n

0

 (2)
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 9.5  Absolute Convergence; The Ratio and Root Tests 573

diverges (since r 5 4 1).= >  In series (1), there is some cancelation in the partial sums, 
which may be assisting the convergence property of the series. However, if we make all of 
the terms positive in series (1) to form the new series

� ∑ ∑( ) ( )+ + + + = − =
=

∞

=

∞

5 5
4

5
16

5
64

5 1
4

5 1
4

,
n

n

n

n

0 0

we see that it still converges. For a general series with both positive and negative terms, we 
can apply the tests for convergence that we studied before to the series of absolute values 
of its terms. In doing so, we are led naturally to the following concept.

DEFINITION A series ∑ an  converges absolutely (is absolutely convergent) 
if the corresponding series of absolute values, ∑ a ,n  converges.

THEOREM 12—The Absolute Convergence Test

If ∑
=

∞

a
n

n
1

 converges, then a
n

n
1

∑
=

∞

 converges.

Caution
Be careful when using Theorem 12.  
A convergent series need not converge 
absolutely, as you will see in the next 
section.

So the geometric series (1) is absolutely convergent. We observed, too, that it is also con-
vergent. This situation is always true: An absolutely convergent series is convergent as 
well, which we now prove.

Proof  For each n,

− ≤ ≤ ≤ + ≤a a a a a a, so 0 2 .n n n n n n

If  ∑ =

∞
ann 1

 converges, then  ∑ =

∞
a2

n n1
 converges and, by the Direct Comparison Test, 

the nonnegative series  ∑ ( )+
=

∞
a an nn 1

  converges. The equality  ( )= + −a a a an n n n  

now lets us express  ∑ =

∞
ann 1

  as the difference of two convergent series:

∑ ∑ ∑ ∑( ) ( )= + − = + −
=

∞

=

∞

=

∞

=

∞

a a a a a a a .
n

n
n

n n n
n

n n
n

n
1 1 1 1

Therefore,  ∑ =

∞
ann 1

 converges. 

EXAMPLE 1  This example gives two series that converge absolutely.

 (a) For �∑( )− = − + − +
=

∞
+

n
1 1 1 1

4
1
9

1
16

,
n

n

1

1
2

 the corresponding series of absolute 

values is the convergent series

�∑ = + + + +
=

∞

n
1 1 1

4
1
9

1
16

.
n 1

2

The original series converges because it converges absolutely.

 (b) For  �∑ = + + +
=

∞ n
n

sin sin 1
1

sin 2
4

sin 3
9

,
n 1

2
  which contains both positive and negative  

terms, the corresponding series of absolute values is

�∑ = + +
=

∞ n
n

sin sin 1
1

sin 2
4

,
n 1

2

which converges by comparison with ∑ ( )
=

∞
n1

n
2

1
 because ≤nsin 1 for every n. 

The original series converges absolutely; therefore, it converges. 
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574 Chapter 9  Infinite Sequences and Series

The Ratio Test

The Ratio Test measures the rate of growth (or decline) of a series by examining the ratio 
a a .n n1+  For a geometric series ∑ ar ,n  this rate is a constant ar ar r ,n n1( )( ) ( ) =+  and 
the series converges if and only if its ratio is less than 1 in absolute value. The Ratio Test is 
a powerful rule extending that result.

THEOREM 13—The Ratio Test
Let ∑ an  be any series and suppose that

ρ=
→∞

+a
a

lim .
n

n

n

1

Then (a) the series converges absolutely if 1,ρ <  (b) the series diverges if 1ρ >  
or ρ is infinite, and (c) the test is inconclusive if 1.ρ =

ρ is the Greek lowercase letter rho, 
which is pronounced “row.”

Proof

 (a) ρ < 1. Let r be a number between ρ and 1. Then the number rε ρ= −  is positive. 
Since

a
a

,n

n

1 ρ→+

a an n1+  must lie within ε of ρ when n is large enough, say, for all n N.≥  In  
particular,

ρ ε< + = ≥+a
a

r n N, when .n

n

1

Hence

�

<

< <

< <

< <

+

+ +

+ +

+ + −

a r a

a r a r a

a r a r a

a r a r a

,

,

,

.

N N

N N N

N N N

N m N m
m

N

1

2 1
2

3 2
3

1

Therefore,

a a a r a r .
m N

m
m

N m
m

N
m

N
m

m

0 0 0
∑ ∑ ∑ ∑= ≤ =

=

∞

=

∞

+
=

∞

=

∞

The geometric series on the right-hand side converges because < <r0 1, so the 
series of absolute values ∑ =

∞
amm N

 converges by the Direct Comparison Test. 
Because adding or deleting finitely many terms in a series does not affect its conver-
gence or divergence property, the series ∑ =

∞
ann 1

 also converges. That is, the series 

∑ an  is absolutely convergent.

 (b) 1 .ρ< ≤ ∞  From some index M on,

�> < < <+
+ +

a
a

a a a1 and .n

n
M M M

1
1 2

The terms of the series do not approach zero as n becomes infinite, so the series 
diverges by the nth-Term Test.

M09_HASS5901_15_GE_C09.indd   574 07/03/2023   14:13

www.konkur.in

Telegram: @uni_k



 9.5  Absolute Convergence; The Ratio and Root Tests 575

 (c) 1.ρ =  The two series

∑ ∑
=

∞

=

∞

n n
1 and 1

n n1 1
2

show that some other test for convergence must be used when 1.ρ =

∑

∑ ( )

( )

( )

=
+

=
+

→

=
+

=
+

→ =

=

∞
+

=

∞
+

n
a
a

n
n

n
n

n
a
a

n

n
n

n

For 1 :
1 1

1 1
1.

For 1 :
1 1

1 1
1 1.

n

n

n

n

n

n

1

1

1
2

1
2

2

2
2

In both cases, 1,ρ =  yet the first series diverges, whereas the second converges. 

The Ratio Test is often effective when the terms of a series contain factorials of expres-
sions involving n or expressions raised to a power involving n.

EXAMPLE 2  Investigate the convergence of the following series.

 (a) 2 5
3n

n

n
0

∑ +

=

∞

 (b) n
n n
2 !
! !n 1

∑ ( )

=

∞

 (c) n n
n

4 ! !
2 !n

n

1
∑ ( )=

∞

Solution We apply the Ratio Test to each series.

 (a) For the series ∑ +
=

∞ 2 5
3

,
n

nn 0

( )( )

( )
=

+
+

= ⋅ +
+

= ⋅ + ⋅
+ ⋅

→ ⋅ =+
+ + + −

−

a
a

2 5 3
2 5 3

1
3

2 5
2 5

1
3

2 5 2
1 5 2

1
3

2
1

2
3

.n

n

n n

n n

n

n

n

n
1

1 1 1

The series converges absolutely (and thus converges) because 2 3ρ =  is less than 1. 
This does not mean that 2 3 is the sum of the series. In fact,

2 5
3

2
3

5
3

1
1 2 3

5
1 1 3

21
2

.
n

n

n
n

n

n
n

0 0 0
∑ ∑ ∑( ) ( ) ( )

+ = + =
−

+
−

=
=

∞

=

∞

=

∞

 (b) If a n
n n
2 !
! !

,n
( )=  then a n

n n
2 2 !
1 ! 1 !n 1

( )

( ) ( )
= +

+ ++   and

a
a

n n n n n
n n n

n n
n n

n
n

! ! 2 2 2 1 2 !
1 ! 1 ! 2 !

2 2 2 1
1 1

4 2
1

4.

n

n

1 ( )( )( )

( ) ( ) ( )

( )( )

( )( )

= + +
+ +

= + +
+ +

= +
+

→

+

The series diverges because 4ρ =  is greater than 1.

 (c) If a n n
n

4 ! !
2 !

,n

n

( )
=   then

( ) ( )

( )( )( )

( )

( )( )

( )( )

( )

= + +
+ +

⋅

= + +
+ +

= +
+

→

+
+a

a
n n

n n n
n
n n

n n
n n

n
n

4 1 ! 1 !
2 2 2 1 2 !

2 !
4 ! !

4 1 1
2 2 2 1

2 1
2 1

1.

n

n

n

n
1

1

Because the limit is 1,ρ =  we cannot decide from the Ratio Test whether the series 
converges. However, when we notice that a a n n2 2 2 1 ,n n1 ( ) ( )= + ++  we con-
clude that an 1+  is always greater than an because  n n2 2 2 1( ) ( )+ +  is always greater 
than 1. Therefore, all terms are greater than or equal to a 2,1 =  and the nth term does 
not approach zero as n .→ ∞  The series diverges. 
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576 Chapter 9  Infinite Sequences and Series

The Root Test

The convergence tests for ∑ an  that we have studied so far work best when the formula 
for a

n
 is relatively simple. However, consider the series with the terms

=
⎧
⎨
⎪⎪
⎩⎪⎪

a
n n

n

2 , odd

1 2 , even.n

n

n

To investigate convergence we write out several terms of the series:

�

�

∑ = + + + + + + +

= + + + + + + +

=

∞

a 1
2

1
2

3
2

1
2

5
2

1
2

7
2

1
2

1
4

3
8

1
16

5
32

1
64

7
128

.

n
n

1
1 2 3 4 5 6 7

Clearly, this is not a geometric series. The nth term approaches zero as n ,→ ∞  so the nth-
Term Test does not tell us whether the series diverges. The Integral Test does not look 
promising. The Ratio Test produces

=
+

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

+a
a

n
n

n n

1
2

, odd

1
2

, even.

n

n

1

As n ,→ ∞  the ratio is alternately small and large and therefore has no limit. However, we 
will see that the following test establishes that the series converges.

THEOREM 14—The Root Test
Let ∑ an  be any series and suppose that

alim .
n

n
n ρ=

→∞

Then (a) the series converges absolutely if 1,ρ <  (b) the series diverges if 1ρ >  
or ρ is infinite, and (c) the test is inconclusive if 1.ρ =

Proof

 (a) 1.ρ <  Choose an 0ε >  so small that 1.ρ ε+ <  Since a ,n
n ρ→  the terms 

an
n  eventually get to within ε of .ρ  So there exists an index M such that

ρ ε< + ≥a n Mwhen .n
n

Then it is also true that

ρ ε( )< + ≥a n Mfor .n
n

Now, ∑ ρ ε( )+
=

∞ n
n M

 is a geometric series with ratio 0 1ρ ε( )< + <  and there-

fore converges. By the Direct Comparison Test, ∑ =

∞
ann M

 converges. Adding finitely 
many terms to a series does not affect its convergence or divergence, so the series

�∑ ∑= + + +
=

∞

−
=

∞

a a a a
n

n M
n M

n
1

1 1

also converges. Therefore, ∑ an  converges absolutely.

 (b) 1 .ρ< ≤ ∞  For all indices beyond some integer M, we have a 1,n
n >  and there-

fore a 1n >  for n M.>  The terms of the series do not converge to zero. The series 
diverges by the nth-Term Test.

 (c) ρ = 1. The series ∑ ( )
=

∞
n1

n 1
 and ∑ ( )

=

∞
n1

n
2

1
 show that the test is not conclusive 

when 1.ρ =  The first series diverges and the second converges, but in both cases 
a 1.n

n →  
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 9.5  Absolute Convergence; The Ratio and Root Tests 577

EXAMPLE 3  Consider again the series with terms =
⎧
⎨
⎪⎪
⎩⎪⎪

a
n n

n

2 , odd

1 2 , even.n

n

n
  

Does ∑ an  converge?

Solution We apply the Root Test, finding that

=
⎧
⎨
⎪⎪
⎩⎪⎪

a
n n

n

2,  odd

1 2,  even.n
n

n

Therefore,

a n1
2 2

.n
n

n

≤ ≤

Since n 1n →  (Section 9.1, Theorem 5), we have alim 1 2
n

n
n =

→∞
 by the Sandwich 

Theorem. The limit is less than 1, so the series converges absolutely by the Root Test. 

EXAMPLE 4  Which of the following series converge, and which diverge?

 (a) n
2n

n
1

2

∑
=

∞

 (b) 
n
2

n

n

1
3∑

=

∞

 (c) 
n

1
1n

n

1
∑( )+=

∞

Solution We apply the Root Test to each series, noting that each series has positive terms.

 (a) n
2n

n
1

2

∑
=

∞

 converges because n n n

2 2 2
1
2

1.
n

n
n

nn

n2 2
2

2( )
= = → <

 (b) 
n
2

n

n

1
3∑

=

∞

 diverges because 
n n

2 2 2
1

1.
n

n
n3 3 3( )

= → >

 (c) 
n

1
1n

n

1
∑( )+=

∞

 converges because 
n n

1
1

1
1

0 1.
n

n ( )+
=

+
→ <  

Using the Ratio Test
In Exercises 1–8, use the Ratio Test to determine whether each series 
converges absolutely or diverges.

 1. ∑
=

∞

n
2

!n

n

1

 2. ∑( )− +

=

∞ n1 2
3n

n
n

1

 3. ∑ ( )

( )

−
+=

∞ n
n

1 !
1n 1

2  4. ∑
=

∞ +

−n
2
3n

n

n
1

1

1

 5. ∑ ( )−=

∞ n
4n

n
1

4
 6. ∑

=

∞ +

n
3
lnn

n

2

2

 7. ∑( )
( )− +

=

∞ n n
n

1 2 !
!3n

n
n

1

2

2
 8. ∑ ( ) ( )+ +=

∞ n
n n

5
2 3 ln 1n

n

1

Using the Root Test
In Exercises 9–16, use the Root Test to determine whether each series 
converges absolutely or diverges.

 9. ∑ ( )+=

∞

n
7

2 5n
n

1

 10. ∑ ( )=

∞

n
4

3n

n

n
1

 11. ∑( )+
−=

∞ n
n

4 3
3 5n

n

1

 12. ∑ ( )( )− +
=

∞ +
e

n
ln 1

n

n

1

2
1

 13. ∑ ( )( )
−

+=

∞

n
8

3 1n
n

1
2  14. ∑ ( )

=

∞

n
sin 1

n

n

1

 15. ∑ ( )( )− −
=

∞

n
1 1 1

n

n
n

1

2

(Hint: ( )+ =
→∞

x n elim 1
n

n x )

 16. ∑ ( )−

=

∞

+n
1

n

n

n
2

1

Determining Convergence or Divergence
In Exercises 17–46, use any method to determine whether the series 
converges or diverges. Give reasons for your answer.

 17. ∑
=

∞ n
2n

n
1

2
 18. ∑( )−

=

∞
−n e1

n

n n

1

2

 19. ∑ ( )−
=

∞
−n e!

n

n

1

 20. ∑
=

∞ n!
10n

n
1

 21. ∑
=

∞ n
10n

n
1

10
 22. ∑( )−

=

∞ n
n

2

n

n

1

EXERCISES 9.5 
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578 Chapter 9  Infinite Sequences and Series

 23. ∑ ( )+ −

=

∞ 2 1
1.25n

n

n
1

 24. ∑ ( )−

=

∞ 2
3n

n

n
1

 25. ∑ ( )( )− −
=

∞

n
1 1 3

n

n
n

1

 26. ∑( )−
=

∞

n
1 1

3n

n

1

 27. ∑
=

∞ n
n

ln

n 1
3

 28. ∑
( )−

=

∞ n
n
ln

n

n

n
1

 29. ∑( )−
=

∞

n n
1 1

n 1
2

 30. ∑( )−
=

∞

n n
1 1

n

n

1
2

 31. ∑
=

∞ e
nn

n

e
1

 32. ∑ ( )−=

∞ n nln

2n
n

1

 33. ∑ ( )( )+ +

=

∞ n n
n

1 2
!n 1

 34. ∑
=

∞
−e n( )

n

n

1

3

 35. ∑ ( )+

=

∞ n
n

3 !
3! !3n

n
1

 36. ∑ ( )+

=

∞ n n
n

2 1 !
3 !n

n

n
1

 37. ∑ ( )+=

∞ n
n

!
2 1 !n 1

 38. ∑ −=

∞ n
n
!

( )n
n

1

 39. ∑ ( )
−

=

∞ n
nlnn

n
2

 40. ∑
( )( )

=

∞ n
nlnn

n
2

2

 41. ∑ ( )+=

∞ n n
n n

! ln
2 !n 1

 42. ∑ ( )−

=

∞

n
3
2n

n

n
1

3

 43. ∑ ( )

( )=

∞ n
n
!

2 !n 1

2

 44. ∑ ( )( )+ +
+=

∞ n2 3 2 3
3 2n

n

n
1

 45. ∑
=

∞

n
2

n

n

3
2
 46. ∑

=

∞

n
2

n

n

3
2n

2

Recursively Defined Terms Which of the series ∑ =

∞
ann 1

 defined 

by the formulas in Exercises 47–56 converge, and which diverge? 
Give reasons for your answers.

 47. = =
+

+a a
n

n
a2,

1 sin
n n1 1

 48. = =
+

+

−

a a
n

n
a1,

1 tan
n n1 1

1

 49. = = −
++a a n

n
a1

3
, 3 1

2 5n n1 1

 50. = =
++a a n

n
a3,

1n n1 1

 51. = =+a a
n

a2, 2
n n1 1

 52. = =+a a n a5,
2n

n

n1 1

 53. = =
+

+a a
n

n
a1,

1 ln
n n1 1

 54. = =
+
++a a

n n
n

a1
2

,
ln
10n n1 1

 55. = =+a a a1
3

, n n
n

1 1  56. = =+
+a a a1

2
, ( )n n

n
1 1

1

Convergence or Divergence
Which of the series in Exercises 57–64 converge, and which diverge? 
Give reasons for your answers.

 57. ∑ ( )=

∞ n n
n

2 ! !
2 !n

n

1

 58. ∑ ( ) ( )

( ) ( )

−
+ +=

∞ n
n n n

1 3 !
! 1 ! 2 !n

n

1

 59. ∑ ( )

=

∞ n
n

!
( )n

n

n
1

2
 60. ∑( )

( )−
=

∞ n
n

1 !

n

n
n

n
1

( )2

 61. ∑
=

∞ n
2n

n

n
1

( )2  62. ∑
( )=

∞ n
2n

n

n
1

2

 63. n
n

1 3 2 1
4 2 !n

n n
1

�∑ ( )⋅ ⋅ ⋅ −

=

∞

 64. n
n

1 3 2 1
2 4 2 3 1n

n
1

�
�∑ ( )

( )

( )[ ]

⋅ ⋅ ⋅ −
⋅ ⋅ ⋅ +=

∞

 65. Assume that bn is a sequence of positive numbers converging to 
4 5. Determine whether the following series converge or diverge.

 a. ∑
=

∞

b( )
n

n
n

1

1  b. ∑( )
=

∞

b5
4

( )
n

n

n
1

 c. ∑
=

∞

b( )
n

n
n

1

 d. ∑ +=

∞

n b
1000
!n

n

n1

 66. Assume that bn is a sequence of positive numbers converging to 
1 3. Determine whether the following series converge or diverge.

 a. ∑
=

∞
+b b

n4n

n n
n

1

1  b. 
�∑

=

∞ n
n b b b!n

n

n1 1
2

2
2 2

Theory and Examples

 67. Neither the Ratio Test nor the Root Test helps with p-series. Try 
them on

∑
=

∞

n
1

n
p

1

and show that both tests fail to provide information about conver-
gence.

 68. Show that neither the Ratio Test nor the Root Test provides infor-
mation about the convergence of

∑ ( )
( )

=

∞

n
p1

ln
constant .

n
p

2

 69. Let =
⎧
⎨
⎪⎪
⎩⎪⎪

a
n n2 , if   is a prime number

1 2 , otherwise.n

n

n

Does ∑ an  converge? Give reasons for your answer.

 70. Show that ∑ =

∞
n2 !n

n
( )

1

2  diverges. Recall from the Laws of 

Exponents that ( )=2 2 .n n n( )2

 71. Determine whether the series ∑ =

∞
cnn 1

 converges, where

=
−⎧

⎨
⎪⎪
⎩⎪⎪

c
n n

n n

1 , if   is a perfect square,

1 , if   is not a perfect square.n 2
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 9.6  Alternating Series and Conditional Convergence 579

FIGURE 9.15 The partial sums of 
an alternating series that satisfies the 
hypotheses of Theorem 15 for N 1=  
straddle the limit from the beginning.

L0

+u1

−u2

+u3

−u4

s2 s4 s3 s1

x

THEOREM 15—The Alternating Series Test
The series

�∑( )− = − + − +
=

∞
+ u u u u u1

n

n
n

1

1
1 2 3 4

converges if the following conditions are satisfied:

1. The u ’sn  are all positive.

2. The u ’sn  are eventually nonincreasing: u un n 1≥ +  for all n N ,≥  for some 
integer N.

3. u 0.n →

A series in which the terms are alternately positive and negative is an alternating series. 
Here are three examples:

 � �( )− + − + − + − +
+

n
1 1

2
1
3

1
4

1
5

1 n 1

 (1)

 � �( )− + − + − + + − +2 1 1
2

1
4

1
8

1 4
2

n

n
 (2)

 � �( )− + − + − + + − ++ n1 2 3 4 5 6 1 n 1  (3)

We see from these examples that the nth term of an alternating series is of the form

( ) ( )= − = −+a u a u1 or 1 ,n
n

n n
n

n
1

where u an n=  is a positive number.
Series (1), called the alternating harmonic series, converges, as we will see in a 

moment. Series (2), which is a geometric series with ratio r 1 2,= −  converges to 
2 1 1 2 4 3.( )[ ]− + = −  Series (3) diverges because the nth term does not approach zero.

We prove the convergence of the alternating harmonic series by applying the 
Alternating Series Test. This test is for convergence of an alternating series and cannot be 
used to conclude that such a series diverges. If we multiply �( )− + − +u u u u1 2 3 4  by 

1,−  we see that the test is also valid for the alternating series �− + − + −u u u u ,1 2 3 4  
as with the one in Series (2) given above.

9.6 Alternating Series and Conditional Convergence

Proof  We look at the case N 1,=  where we have nonincreasing terms 
u u u .1 2 3 �≥ ≥ ≥  If n is an even integer, say n m2 ,=  then the sum of the first n 
terms is

�( ) ( )( )= − + − + + −−s u u u u u u .m m m2 1 2 3 4 2 1 2

Written this way, we see that s m2  is the sum of n nonnegative terms, since each term in 
parentheses is positive or zero. In particular, s m2 2+  equals s m2  plus the nonnegative term 
u u ,m m2 1 2 2( )−+ +  so s s .m m2 2 2≥+  This shows that the sequence s m2{ } is nondecreasing. 

On the other hand, we can write

�( ) ( ) ( )= − − − − − − − −− −s u u u u u u u u .m m m m2 1 2 3 4 5 2 2 2 1 2

This shows that s um2 1≤  for every m. Hence the sequence s m2{ } is both nondecreasing 
and bounded from above, so it has a limit, which we call L,

 =
→∞

s Llim . Theorem 6
m

m2  (4)

If n is an odd integer, say n m2 1,= +  then the sum of the first n terms is 
s s u .m m m2 1 2 2 1= ++ +  Since u 0,n →

ulim 0.
m

m2 1 =
→∞

+
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580 Chapter 9  Infinite Sequences and Series

Therefore,

 s s u L Llim lim lim 0 .
m

m
m

m
m

m2 1 2 2 1= + = + =
→∞

+
→∞ →∞

+  (5)

Combining the results of Equations (4) and (5) gives s Llim
n

n =
→∞

 (Section 9.1,  
Exercise 143). 

Rather than directly verifying the definition u u ,n n 1≥ +  a second way to show that the 
sequence un{ } is nonincreasing is to define a differentiable function f x( ) satisfying 
f n u( ) .n=  That is, the values of f  match the values of the sequence at every positive inte-
ger n. If ′ ≤f x( ) 0 for all x greater than or equal to some positive integer N, then f x( ) is 
nonincreasing for x N.≥  It follows that f n f n( ) 1 ,( )≥ +  or u u ,n n 1≥ +  for n N.≥

(b)

0.50

0.75

0.25

1.00

1 2

ln 2

3 4 5 76
x

y

1 − − + − − − + − − −
1
2

1
3

1
4

1
5

1
6

1 − − + − − − + −
1
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1
3

1
4

1
5

1 − − + − − −
1
2

1
3

1
4

1 − − + −
1
2

1
3

1 − −
1
2

1

(a)
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y

1 + − + − + − + − + −
1
2

1
3

1
4

1
5

1
6

1 + − + − + − + −
1
2

1
3

1
4

1
5

1 + − + − + −
1
2

1
3

1
4

1 + − + −
1
2

1
3

1 + −
1
2

1

sn increases, eventually becoming
larger than any constant M

M

FIGURE 9.16 (a) The harmonic series diverges, with partial sums that eventually exceed any 
constant. (b) The alternating harmonic series converges to ≈ln 2 .693.

EXAMPLE 1  The alternating harmonic series

�∑( )− = − + − +
=

∞
+

n
1 1 1 1

2
1
3

1
4n

n

1

1

clearly satisfies the three requirements of Theorem 15 with N 1;=  it therefore converges 
by the Alternating Series Test. Notice that the test gives no information about what the sum 
of the series might be. Figure 9.16 shows histograms of the partial sums of the divergent 
harmonic series and those of the convergent alternating harmonic series. It turns out that 
the alternating harmonic series converges to ln 2 (Exercise 61 in Section 9.7). 

EXAMPLE 2  We show that the sequence u n n10 16n
2( )= +  is eventually nonin-

creasing. Define f x x x( ) 10 16 .2( )= +  Then, from the Derivative Quotient Rule,

( )

( )
′ = −

+
≤ ≥f x x

x
x( ) 10 16

16
0 whenever  4.

2

2 2

It follows that u un n 1≥ +  for n 4.≥  That is, the sequence un{ } is nonincreasing for 
n 4.≥  

A graphical interpretation of the partial sums (Figure 9.15) shows how an alternating 
series converges to its limit L when the three conditions of Theorem 15 are satisfied with 
N 1.=  Starting from the origin of the x-axis, we lay off the positive distance s u .1 1=  To 
find the point corresponding to s u u ,2 1 2= −  we back up a distance equal to u .2  Since 
u u ,2 1≤  we do not back up any farther than the origin. We continue in this seesaw fash-
ion, backing up or going forward as the signs in the series demand. Each forward or back-
ward step is shorter than (or at most the same size as) the preceding step because u u .n n1 ≤+  
And since the nth term approaches zero as n increases, the size of step we take forward or 
backward gets smaller and smaller. We oscillate back and forth across the limit L, and the 
amplitude of oscillation approaches zero. The limit L lies between any two successive 
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 9.6  Alternating Series and Conditional Convergence 581

sums sn and sn 1+  and hence differs from sn by an amount less than u .n 1+  If N 1> , then the 
first few forward and backward steps need not get smaller, but from N onward they will 
decrease. Therefore

L s u n Nfor ,n n 1− < ≥+

and we can use this fact to make useful estimates of the sums of convergent alternating series.

DEFINITION A series that is convergent but not absolutely convergent is called 
conditionally convergent.

THEOREM 16—The Alternating Series Estimation Theorem
If the alternating series ∑ ( )− +

=

∞
u1 n

n n
1

1
 satisfies the three conditions of 

Theorem 15, then for n N ,≥

� ( )= − + + − +s u u u1n
n

n1 2
1

approximates the sum L of the series with an error whose absolute value is less 
than u ,n 1+  the absolute value of the first unused term. Furthermore, the sum L lies 
between any two successive partial sums sn and s ,n 1+  and the remainder, L s ,n−  
has the same sign as the first unused term.

EXAMPLE 3  We try Theorem 16 on a series whose sum we know:

�∑ ( )− = − + − + − + − + −
=

∞

1 1
2

1 1
2

1
4

1
8

1
16

1
32

1
64

1
128

1
256

.
n

n
n

0

The theorem says that if we truncate the series after the eighth term, we throw away a total 
that is positive and less than 1 256. The sum of the first eight terms is s 0.66406258 =  
and the sum of the first nine terms is s 0.66796875.9 =  The sum of the geometric series is

1
1 1 2

1
3 2

2
3

,
( )− −

= =

and we note that 0.6640625 2 3 0.66796875.( )< <  The difference,

…( ) − =2 3 0.6640625 0.0026041666 ,

is positive and is less than 1 256 0.00390625.( ) =  

We leave the verification of the sign of the remainder for Exercise 87.

Conditional Convergence

If we replace all the negative terms in the alternating series in Example 3, changing them 
to positive terms instead, we obtain the geometric series 1 2 .n∑  The original series and 
the new series of absolute values both converge (although to different sums). For an abso-
lutely convergent series, changing infinitely many of the negative terms in the series to 
positive values does not change its property of still being a convergent series. Other con-
vergent series may behave differently. The convergent alternating harmonic series has infi-
nitely many negative terms, but if we change its negative terms to positive values, the 
resulting series is the divergent harmonic series. So the presence of infinitely many nega-
tive terms is essential to the convergence of this alternating harmonic series. The following 
terminology distinguishes these two types of convergent series.

The alternating harmonic series is conditionally convergent, or converges conditionally. 
The next example extends that result to the alternating p-series.
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582 Chapter 9  Infinite Sequences and Series

EXAMPLE 4  If p is a positive constant, the sequence n1 p{ } is a decreasing sequence 
with limit zero. Therefore, the alternating p-series

n
p1 1 1

2
1

3
1

4
, 0

n

n

p p p p
1

1

�∑ ( )− = − + − + >
=

∞ −

converges.
If p 1,>  the series converges absolutely as an ordinary p-series. If p0 1,< ≤  the 

series converges conditionally: It converges by the alternating series test, but the corre-
sponding series of absolute values is a divergent p-series. For instance,

p

p

Absolute convergence  3 2 : 1 1
2

1
3

1
4

Conditional convergence  1 2 : 1 1
2

1
3

1
4

3 2 3 2 3 2
�

�

( )

( )

= − + − +

= − + − +  

THEOREM 17—The Rearrangement Theorem for Absolutely Convergent 
Series
If  ∑ =

∞
ann 1

 converges absolutely, and  … …b b b, , , ,n1 2   is any arrangement of the 

sequence a ,n{ }  then ∑ =

∞
bnn 1

 converges absolutely and

b a .
n

n
n

n
1 1

∑ ∑=
=

∞

=

∞

We need to be careful when using a conditionally convergent series. We have seen 
with the alternating harmonic series that altering the signs of infinitely many terms of a 
conditionally convergent series can change its convergence status. Even more, simply 
changing the order of occurrence of infinitely many of its terms can also have a significant 
effect, as we now discuss.

On the other hand, if we rearrange the terms of a conditionally convergent series, we 
can get different results. In fact, for any real number r, a given conditionally convergent 
series can be rearranged so that its sum is equal to r. (We omit the proof of this.) Here’s an 
example where summing the terms of a conditionally convergent series with different 
orderings gives different values for the sum.

EXAMPLE 5  We know that the alternating harmonic series ∑ ( )− +
=

∞
n1 n

n
1

1
 con-

verges to some number L. Moreover, by Theorem 16, L lies between the successive partial 
sums s 1 22 =  and s 5 6,3 =  so L 0.≠  If we multiply the series by 2, we obtain

L
n

2 2 1 2 1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

2 1 2
3

1
2

2
5

1
3

2
7

1
4

2
9

1
5

2
11

.

n

n

1

1

�

�

∑ ( )( )= − = − + − + − + − + − + −

= − + − + − + − + − + −

=

∞ +

Now we change the order of this last sum by grouping each pair of terms with the same 
odd denominator, but leaving the negative terms with the even denominators as they are 

Rearranging Series

We can always rearrange the terms of a finite collection of numbers without changing 
their sum. The same result is true for an infinite series that is absolutely convergent (see 
Exercise 96 for an outline of the proof ).
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 9.6  Alternating Series and Conditional Convergence 583

Convergence of Alternating Series
In Exercises 1–14, determine whether the alternating series converges 
or diverges. Some of the series do not satisfy the conditions of the 
Alternating Series Test.

 1. 
n

1 1

n

n

1

1∑( )−
=

∞
+  2. 

n
1 1

n

n

1

1
3 2∑( )−

=

∞
+

 3. 
n

1 1
3n

n
n

1

1∑( )−
=

∞
+  4. ∑ ( )

( )−
=

∞

n
1 4

lnn

n

2
2

 5. n
n

1
1n

n

1
2∑( )−

+=

∞

 6. n
n

1 5
4n

n

1

1
2

2∑( )− +
+=

∞
+

 7. 
n

1 2

n

n
n

1

1
2∑( )−

=

∞
+  8. 

n
1 10

1 !n

n
n

1
∑( )

( )
−

+=

∞

 9. n1
10n

n
n

1

1∑ ( )( )−
=

∞
+  10. ∑( )−

=

∞
+

n
1 1

lnn

n

2

1

EXERCISES 9.6 

1. The nth-Term Test for Divergence: Unless a 0,n →  the series diverges.

2. Geometric series: ∑ ar n  converges if r 1;<  otherwise, it diverges.

3. p-series: ∑ n1
p
 converges if p 1;>  otherwise, it diverges.

4. Series with nonnegative terms: Try the Integral Test or try comparing to a 
known series with the Direct Comparison Test or the Limit Comparison Test. 
Try the Ratio or Root Test.

5. Series with some negative terms: Does an∑  converge by the Ratio or 
Root Test, or by another of the tests listed above? Remember, absolute conver-
gence implies convergence.

6. Alternating series: ∑ an  converges if the series satisfies the conditions of 
the Alternating Series Test.

placed (so that the denominators are the positive integers in their natural order). This rear-
rangement gives

n
L

2 1 1
2

2
3

1
3

1
4

2
5

1
5

1
6

2
7

1
7

1
8

1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1 .
n

n

1

1

�

�

∑

( )
( ) ( ) ( )( )

( )

− − + − − + − − + − − +

= − + − + − + − + − + −

= − =
=

∞ +

So when we rearrange the terms of the conditionally convergent series ∑ ( )− +
=

∞
n2 1 ,n

n
1

1
 

the series becomes ∑ ( )− +
=

∞
n1 ,n

n
1

1
 which is the alternating harmonic series itself. If the 

two series are the same, it would imply that L L2 ,=  which is clearly false since L 0.≠  

Summary of Tests to Determine Convergence or Divergence

We have developed a variety of tests to determine convergence or divergence for an infinite 
series of constants. Other tests that we have not presented are sometimes given in more 
advanced courses. Here is a summary of the tests we have considered.

Example 5 shows that we cannot rearrange the terms of a conditionally convergent 
series and expect the new series to be the same as the original one. When we use a condi-
tionally convergent series, we must add the terms together in the order in which they are 
given to obtain a correct result. In contrast, Theorem 17 guarantees that the terms of an 
absolutely convergent series can be summed in any order without affecting the result.
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584 Chapter 9  Infinite Sequences and Series

 11. ∑( )−
=

∞
+ n

n
1

ln

n

n

1

1  12. ∑ ( )( )− +
=

∞

n
1 ln 1 1

n

n

1

 13. n
n

1 1
1n

n

1

1∑( )− +
+=

∞
+  14. n

n
1 3 1

1n

n

1

1∑( )− +
+=

∞
+

Absolute and Conditional Convergence
Which of the series in Exercises 15–48 converge absolutely, which con-
verge conditionally, and which diverge? Give reasons for your answers.

 15. 1 0.1
n

n n

1

1∑( ) ( )−
=

∞
+  16. 

n
1 0.1

n

n
n

1

1∑( )
( )−

=

∞
+

 17. 
n

1 1

n

n

1
∑( )−

=

∞

 18. 
n

1
1n

n

1
∑ ( )−

+=

∞

 19. n
n

1
1n

n

1

1
3∑( )−

+=

∞
+  20. n1 !

2n

n
n

1

1∑( )−
=

∞
+

 21. 
n

1 1
3n

n

1
∑( )−

+=

∞

 22. ∑( )−
=

∞ n
n

1
sin

n

n

1
2

 23. n
n

1 3
5n

n

1

1∑( )− +
+=

∞
+  24. 

n
2

5n

n

n
1

1

∑ ( )−
+=

∞ +

 25. n
n

1 1

n

n

1

1
2∑( )− +

=

∞
+  26. 1 10

n

n n

1

1∑ ( )( )−
=

∞
+

 27. n1 2 3
n

n n

1

2∑ ( )( )−
=

∞

 28. ∑( )−
=

∞
+

n n
1 1

lnn

n

2

1

 29. ∑( )−
+=

∞ n
n

1
arctan

1n

n

1
2

 30. ∑( )−
−=

∞ n
n n

1
ln

lnn

n

1

 31. n
n

1
1n

n

1
∑( )−

+=

∞

 32. 5
n

n

1
∑( )−

=

∞
−

 33. 
n

100
!n

n

1
∑ ( )−

=

∞

 34. 
n n

1
2 1n

n

1

1

2∑ ( )−
+ +=

∞ −

 35. ∑
π

=

∞ n

n n

cos

n 1

 36. ∑
π

=

∞ n
n

cos

n 1

 37. n
n

1 1
2n

n n

n
1

∑ ( ) ( )

( )

− +

=

∞

 38. n
n

1 !
2 !n

n

1

1 2

∑ ( ) ( )

( )

−

=

∞ +

 39. n
n n

1 2 !
2 !n

n
n

1
∑( )

( )−
=

∞

 40. n
n

1 ! 3
2 1 !n

n
n

1

2

∑( )
( )

( )
−

+=

∞

 41. n n1 1
n

n

1
∑ ( )( )− + −

=

∞

 42. n n n1
n

n

1

2∑ ( )( )− + −
=

∞

 43. n n n1
n

n

1
∑ ( )( )− + −

=

∞

 44. 
n n

1
1n

n

1
∑ ( )−

+ +=

∞

 45. ∑( )−
=

∞

n1 sech
n

n

1

 46. ∑( )−
=

∞

n1 csch
n

n

1

 47. 1
4

1
6

1
8

1
10

1
12

1
14

�− + − + − +

 48. 1 1
4

1
9

1
16

1
25

1
36

1
49

1
64

�+ − − + + − − +

Error Estimation
In Exercises 49–52, estimate the magnitude of the error involved in 
using the sum of the first four terms to approximate the sum of the 
entire series.

 49. 
n

1 1

n

n

1

1∑( )−
=

∞
+  50. 1 1

10n

n
n

1

1∑( )−
=

∞
+

 51. 
n

1   0.01

n

n
n

1

1∑( )
( )−

=

∞
+     

 As you will see in Section 9.7,  
the sum is ( )ln 1.01 .

 52. 
t

t t1
1

1 , 0 1
n

n n

0
∑ ( )

+
= − < <

=

∞

In Exercises 53–56, determine how many terms should be used to esti-
mate the sum of the entire series with an error of less than 0.001.

 53. 
n

1 1
3n

n

1
2∑( )−

+=

∞

 54. n
n

1
1n

n

1

1
2∑( )−

+=

∞
+

 55. 
n n

1 1

3n

n

1

1
3∑

( )
( )−

+=

∞
+  56. ∑( )

( )( )
−

+=

∞

n
1 1

ln ln 2n

n

1

Determining Convergence or Divergence
In Exercises 57–82, use any method to determine whether the series 
converges or diverges. Give reasons for your answer.

 57. 
n
3

n

n

n
1

∑
=

∞

 58. 
n
3

n

n

1
3∑

=

∞

 59. 
n n

1
2

1
3n 1

∑( )+
−

+=

∞

 60. 
n n

1
2 1

1
2 2n 1

∑( )+
−

+=

∞

 61. n
n

1 2 !
2 !n

n

0
∑ ( )

( )

( )
− +

=

∞

 62. n
n
3 !

!n 2
3∑ ( )

( )=

∞

 63. n
n 1

2 5∑
=

∞
−  64. 

n
3

10n 2
4 3∑ +=

∞

 65. 
n

1 2

n

n

1

2

∑( )−
=

∞

 66. n
n

1
2n

n

0
∑ ( )+

+=

∞

 67. n
n n

2
3

2
3n

n

1
2∑ ( )−

+
−

=

∞

 68. n
n

1
2 !

3
2n

n

0
∑ ( )( )

+
+=

∞

 69. 1
2

1
2

1
2

1
2

1
2

1
2
�− + − + − +

 70. 1 1
8

1
64

1
512

1
4096

�− + − + −

 71. ∑ ( )
=

∞

n
sin 1

n 3

 72. ∑ ( )
=

∞

ntan
n

n

1

1

 73. ∑
=

∞ n
nlnn 2

 74. ∑
=

∞

n n
1
lnn 2

 75. ∑ ( )+
+=

∞ n
n

ln 2
1n 2

 76. ∑( )
=

∞ n
n

ln

n 2

3

 77. 1
1 2 2 2n

n
2

2 �∑ + + + +=

∞

 78. 
n

1 3 3 3
1 2 3n

n

2

2 1�
�∑ + + + +

+ + + +=

∞ −
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 79. e
e e

1
n

n
n

n n
0

2∑ ( )−
+=

∞

 80. n2 3 2 3
3 2n

n

n
0

∑ ( )( )+ +
+=

∞

 81. n
n

3
3 5 7 2 1n

n

1

2

�∑ ( )⋅ ⋅ +=

∞

 82. 
n

n
4 6 8 2

5 2 !n
n

1
1

�
∑

( )

( )

⋅ ⋅
+=

∞

+

Approximate the sums in Exercises 83 and 84 with an error of magni-
tude less than 5 10 .6× −

 83. 
n

1 1
2 !n

n

0
∑ ( )

( )
−

=

∞

    
 As you will see in Section 9.9, the sum is  
cos 1, the cosine of 1 radian.

 84. 
n

1 1
!n

n

0
∑ ( )−

=

∞

            
As you will see in Section 9.9  
the sum is e .1−

Theory and Examples

 85. a. The series

1
3

1
2

1
9

1
4

1
27

1
8

1
3

1
2n n

� �− + − + − + + − +

does not meet one of the conditions of the Alternating Series 
Test. Which one?

 b. Use the Sum Rule for series given in Section 9.2 to find the 
sum of the series in part (a).

 86. The limit L of an alternating series that satisfies the conditions of 
Theorem 15 lies between the values of any two consecutive partial 
sums. This suggests using the average

s s
s a

2
1
2

1n n
n

n
n

1 2
1( )

+
= + −+ +

+

to estimate L. Compute

s 1
2

1
2120 + ⋅

as an approximation to the sum of the alternating harmonic series. 
The exact sum is …=ln 2 0.69314718 .

 87. The sign of the remainder of an alternating series that satisfies 
the conditions of Theorem 15 Prove the assertion in Theorem 
16 that whenever an alternating series satisfying the conditions 
of Theorem 15 is approximated with one of its partial sums, the 
remainder (the sum of the unused terms) has the same sign as the 
first unused term. (Hint: Group the remainder’s terms in consecu-
tive pairs.)

 88. Show that the sum of the first 2n terms of the series

1 1
2

1
2

1
3

1
3

1
4

1
4

1
5

1
5

1
6
�− + − + − + − + − +

is the same as the sum of the first n terms of the series

1
1 2

1
2 3

1
3 4

1
4 5

1
5 6

.�
⋅

+
⋅

+
⋅

+
⋅

+
⋅

+

Do these series converge? What is the sum of the first n2 1+  
terms of the first series? If the series converge, what is their sum?

 89. Show that if ∑ =

∞
ann 1

 diverges, then ann 1∑ =

∞
 diverges.

T

T

 90. Show that if ∑ =

∞
ann 1

 converges absolutely, then

∑ ∑≤
=

∞

=

∞

a a .
n

n
n

n
1 1

 91. Show that if ∑ =

∞
ann 1

 and ∑ =

∞
bnn 1

 both converge absolutely, 

then so do the following.

 a. a b
n

n n
1

∑( )+
=

∞

 b. a b
n

n n
1

∑( )−
=

∞

 c. ka
n

n
1

∑
=

∞

 (k any number)

 92. Show by example that ∑ =

∞
a bn nn 1

 may diverge even if ∑ =

∞
ann 1

 

and ∑ =

∞
bnn 1

 both converge.

 93. Prove that if ∑ an  converges absolutely, then ∑ an
2  converges.

 94. Does the series

n n
1 1

n 1
2∑( )−

=

∞

converge or diverge? Justify your answer.

 95. In the alternating harmonic series, suppose the goal is to arrange 
the terms to get a new series that converges to 1 2.−  Start the new 
arrangement with the first negative term, which is 1 2.−  Whenever 
you have a sum that is less than or equal to 1 2,−  start introducing 
positive terms, taken in order, until the new total is greater than 

1 2.−  Then add negative terms until the total is less than or equal 
to 1 2−  again. Continue this process until your partial sums have 
been above the target at least three times and finish at or below 
it. If sn is the sum of the first n terms of your new series, plot the 
points n s, n( ) to illustrate how the sums are behaving.

 96. Outline of the proof of the Rearrangement Theorem 
(Theorem 17)

 a. Let ε be a positive real number, let ∑=
=

∞
L a ,nn 1

 and let 

∑=
=

s a .k nn

k

1
 Show that for some index N1 and for some 

index N N ,2 1≥

a s L
2

and
2

.
n N

n N

1
2∑ ε ε< − <

=

∞

Since all the terms a a a, , , N1 2 2
…  appear somewhere in the 

sequence b ,n{ }  there is an index N N3 2≥  such that if 

n N ,3≥  then ∑( ) −
=

b skk

n
N1 2

 is at most a sum of terms am  

with m N .1≥  Therefore, if n N ,3≥  then

b L b s s L

a s L .

k

n

k
k

n

k N N

k N
k N

1 1
2 2

1
2

∑ ∑

∑ ε

− ≤ − + −

≤ + − <

= =

=

∞

 b. The argument in part (a) shows that if ∑ =

∞
ann 1

  

converges absolutely, then ∑ =

∞
bnn 1

 converges and 

∑ ∑=
=

∞

=

∞
b a .nn nn1 1

 Now show that because ∑ =

∞
ann 1

  

converges, ∑ =

∞
bnn 1

 converges to ∑ =

∞
a .nn 1

T
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586 Chapter 9  Infinite Sequences and Series

Now that we can test many infinite series of numbers for convergence, we can study sums 
that look like “infinite polynomials.” We call these sums power series because they are 
defined as infinite series of powers of some variable, in our case x. Like polynomials, 
power series can be added, subtracted, multiplied, differentiated, and integrated to give 
new power series. With power series we can extend the methods of calculus to a vast array 
of functions, making the techniques of calculus applicable in an even wider setting.

9.7 Power Series

Power Series and Convergence

We begin with the formal definition, which specifies the notation and terminology used for 
power series.

Equation (1) is the special case obtained by taking =a 0 in Equation (2). We will see 
that a power series defines a function f x( ) on a certain interval where it converges. 
Moreover, this function will be shown to be continuous and differentiable over the interior 
of that interval.

DEFINITIONS A power series about =x 0 is a series of the form

 ∑ = + + + + +
=

∞

� �c x c c x c x c x .
n

n
n

n
n

0
0 1 2

2  (1)

A power series about =x a is a series of the form

� �∑ ( ) ( ) ( ) ( )− = + − + − + + − +
=

∞

c x a c c x a c x a c x a
n

n
n

n
n

0
0 1 2

2  (2)

in which the center a and the coefficients … …c c c c, , , , ,  n0 1 2  are constants.

EXAMPLE 1  Taking all the coefficients to be 1 in Equation (1) gives the geometric 
power series

� �∑ = + + + + +
=

∞

x x x x1 .
n

n n

0

2

This is the geometric series with first term 1 and ratio x. It converges to ( )− x1 1  for 
<x 1. We express this fact by writing

 
−

= + + + + + − < <� �
x

x x x x1
1

1 , 1 1.n2  (3)

 

Up to now, we have used Equation (3) as a formula for the sum of the series on the 
right. We now change the focus: We think of the partial sums of the series on the right as 
polynomials P x( )n  that approximate the function on the left. For values of x near zero, we 
need take only a few terms of the series to get a good approximation. As we move toward 

=x 1, or −1, we must take more terms. Figure 9.17 shows the graphs of ( )= −f x x( ) 1 1  
and the approximating polynomials y P x( )n n=  for =n 0,1, 2, and 8. The function 

( )= −f x x( ) 1 1  is not continuous on intervals containing =x 1, where it has a vertical 
asymptote. The approximations do not apply when ≥x 1.

Power Series for 
− x

1
1

∑−
= <

=

∞

x
x x1

1
, 1

n

n

0
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 9.7  Power Series 587

FIGURE 9.18 The graphs of =f x x( ) 2  
and its first three polynomial approxima-
tions (Example 2).

0 2

1

1

y1 = 2 −

y2 = 3 −     +

y0 = 1
(2, 1)

y =

3

2 3x
2

x2

4

2
x

x
2
x

y

EXAMPLE 2  The power series

 ( )( ) ( ) ( )− − + − + + − − +� �x x x1 1
2

2 1
4

  2 1
2

2
n

n2  (4)

matches Equation (2) with … ( )= = = − = = −a c c c c2, 1, 1 2, 1 4 , , 1 2 .n
n

0 1 2  

This is a geometric series with first term 1 and ratio = − −r x 2
2

. The series converges for 
− <x 2
2

1, which simplifies to < <x0 4. The sum is

−
=

+ − =
r x x

1
1

1

1 2
2

2 ,

so

( )( ) ( )
( )= − − + − − + − − + < <� �

x
x x x x2 1 2

2
2

4
1
2

2 , 0 4.
n

n
2

Series (4) generates useful polynomial approximations of =f x x( ) 2  for values of x 
near 2:

P x

P x x x

P x x x x x

( ) 1

( ) 1 1
2

2 2
2

( ) 1 1
2

2 1
4

  2 3 3
2 4

,

0

1

2
2

2

( )

( ) ( )

=

= − − = −

= − − + − = − +

and so on (Figure 9.18). 

FIGURE 9.17 The graphs of ( )= −f x x( ) 1 1  in 
Example 1 and four of its polynomial approximations.

0

1

1−1

2

3

4

5

7

8

9

y2 = 1 + x + x2

y1 = 1 + x

y0 = 1

y = 1
1 − x

y8 = 1 + x + x2 + x3 + x4 + x5 + x6
 + x7 + x8

x

y

The following example illustrates how we test a power series for convergence by using 
the Ratio Test to see where it converges and where it diverges.

EXAMPLE 3  For what values of x do the following power series converge?

 (a) �∑( )− = − + −
=

∞
− x

n
x x x1

2 3n

n
n

1

1
2 3

 (b) �∑( )−
−

= − + −
=

∞
−

−x
n

x x x1
2 1 3 5n

n
n

1

1
2 1 3 5
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588 Chapter 9  Infinite Sequences and Series

FIGURE 9.19 The power series �− + − +x x x x
2 3 4

2 3 4
 

converges on the interval ( ]−1,1 .

Diverges

Converges

y = ln(1 + x)

−2
x

y
y = x

y = x  − − + − − − + −x2

2
x3

3
x4

4
x5

5

y = x  − − + − − −x2

2
x3

3
x4

4

y = x  − − + −x2

2
x3

3

y = x  − −x
2

2

1

−1

−2

2

21−1

 (c) �∑ = + + + +
=

∞ x
n

x x x
!

1
2! 3!n

n

0

2 3

 (d) n x x x x! 1 2! 3!
n

n

0

2 3 �∑ = + + + +
=

∞

Solution Apply the Ratio Test to the series ∑ u ,n  where un is the nth term of the power 
series in question.

 (a) =
+

⋅ =
+

→+
+u

u
x

n
n
x

n
n

x x
1 1

  .n

n

n
1

1

By the Ratio Test, this series converges absolutely for <x 1, and it diverges for 
x 1.>  At x 1,=  we obtain the alternating harmonic series 1 1 2 1 3 1 4 ,�− + − +  

which converges (though it does not converge absolutely). At = −x 1, we get 
�− − − − −1 1 2 1 3 1 4 , the negative of the harmonic series, which diverges. 

Series (a) converges for − < ≤x1 1 and diverges elsewhere. The convergence is 
absolute for − < <x1 1, but conditional at the point =x 1.

−1 0 1
x

We will see in Example 6 that this series converges to the function ( )+ xln 1  on the 
interval ( ]−1,1  (see Figure 9.19).

−1 0 1
x

 (b) =
+

⋅ − = −
+

→+
+

−

u
u

x
n

n
x

n
n

x x
2 1

2 1 2 1
2 1

.n

n

n

n
1

2 1

2 1
2 2     ( )+ − = +n n2 1 1 2 1

By the Ratio Test, the series converges absolutely for <x 12  and diverges for 
>x 1.2  At =x 1 the series becomes �− + − +1 1 3 1 5 1 7 , which converges 

by the Alternating Series Theorem. It also converges at = −x 1 because it is again an 
alternating series that satisfies the conditions for convergence. The value at = −x 1 
is the negative of the value at =x 1. Series (b) converges for − ≤ ≤x1 1 and 
diverges elsewhere. The convergence is absolute for x1 1,− < <  but conditional at 
the points = −x 1 and =x 1.
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 9.7  Power Series 589

THEOREM 18—The Convergence Theorem for Power Series
If the power series

�∑ = + + + = ≠
=

∞

a x a a x a x x cconverges at 0,  then it converges
n

n
n

0
0 1 2

2

absolutely for all x with <x c . If the series diverges at =x d, then it diverges 
for all x with >x d .

FIGURE 9.20 Convergence of  a xn
n∑   

at =x c implies absolute convergence on 
the interval − < <c x c ; divergence at 

=x d  implies divergence for >x d . 
The corollary to Theorem 18 asserts the 
existence of a radius of convergence 

≥R 0. For <x R the series converges 
absolutely, and for >x R it diverges.

0 @d @−@d @ −R

Series
diverges

Series
diverges

Series
converges

R−@ c @ @ c @
x

 (d) 
( )

( )=
+

= + →
=

∞ ≠
⎧
⎨
⎪⎪
⎩⎪⎪

+
+u

u
n x

n x
n x

x

x
1 !
!

1
0 if 0

if 0.
n

n

n

n
1

1

The series diverges for all values of x except =x 0. 

0
x

 (c)  
( )

=
+

⋅ =
+

→+
+u

u
x

n
n
x

x
n

x
1 !

!
1

0 for every  .n

n

n

n
1

1
 

( ) ( )+
=

⋅ ⋅
⋅ ⋅ ⋅ +

�
�

n
n

n
n n

!
1 !

1 2 3
1 2 3 1

The series converges absolutely for all x.

0
x

The previous example illustrated how a power series might converge. The next result 
shows that if a power series converges at a nonzero value, then it converges over an entire 
interval of values. The interval might be finite or infinite and might contain one, both, or 
none of its endpoints. We will see that each endpoint of a finite interval must be tested 
independently for convergence or divergence.

Proof  The proof uses the Direct Comparison Test, with the given series compared to a 
converging geometric series.

Suppose the series ∑ =

∞
a cn

n
n 0

 converges. Then =
→∞

a clim 0
n

n
n  by the nth-Term Test. 

Hence, there is an integer N such that <a c 1n
n  for all >n N , so

 a
c

n N1 for .n n< >  (5)

Now take any x such that <x c , so that <x c 1. Multiplying both sides of Equation (5) 
by x n gives

a x x
c

n Nfor .n
n

n

n< >

Since <x c 1, it follows that the geometric series ∑ =

∞
x c n

n 0
 converges. By the Direct 

Comparison Test (Theorem 10), the series ∑ =

∞
a xn

n
n 0

 converges, so the original power 

series a xn
n

n 0∑ =

∞
 converges absolutely for − < <c x c , as claimed by the theorem. 

(See Figure 9.20.)
Now suppose that the series a xn

n
n 0∑ =

∞
 diverges at =x d. If x is a number with 

>x d  and the series converges at x, then the first half of the theorem shows that the 
series also converges at d, contrary to our assumption. So the series diverges for all x with 

>x d . 

To simplify the notation, Theorem 18 deals with the convergence of series of the form 
a x .n

n∑  For series of the form a x a ,n
n∑ ( )−  we can replace −x a by t and apply the 

results to the series a t .n
n∑

The Radius of Convergence of a Power Series

The theorem we have just proved and the examples we have studied lead to the conclu-
sion that a power series c x an

n∑ ( )−  behaves in one of three possible ways. It might 
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590 Chapter 9  Infinite Sequences and Series

converge only at =x a, or converge everywhere, or converge on some interval of radius 
R centered at =x a. We prove this as a corollary to Theorem 18. When we also consider 
the convergence at the endpoints of an interval, we see that there are six different possi-
bilities, shown in Figure 9.21.

a  − R a  + R

Converges on [a − R, a  + R]

(a)

a

Diverges

a

a  − R a  + R

Diverges

Converges on [a − R, a  + R)

(b)

FIGURE 9.21 The six possibilities for an interval of convergence.

a

a  − R a  + R

Diverges

Converges on (a − R, a  + R]

(c)

a

Converges everywhere

(e)

Diverges

a

Converges only at x = a 

(f)

a

a  − R a  + R

Diverges

Converges on (a − R, a  + R)

(d)

Corollary to Theorem 18
The convergence of the series c x an

n∑ ( )−  is described by one of the follow-
ing three cases:

1. There is a positive number R such that the series diverges for x with 
− >x a R but converges absolutely for x with − <x a R. The series may 

or may not converge at either of the endpoints = −x a R and = +x a R.

2. The series converges absolutely for every ( )= ∞x R .

3. The series converges at =x a and diverges elsewhere ( )=R 0 .

Proof  We first consider the case where =a 0, so that we have a power series 
c xn

n
n 0∑ =

∞
 centered at 0. If the series converges everywhere we are in Case 2. If it con-

verges only at =x 0 then we are in Case 3. Otherwise there is a nonzero number d such 
that c dn

n
n 0∑ =

∞
 diverges. Let S be the set of values of x for which c xn

n
n 0∑ =

∞
 converges. 

The set S does not include any x with >x d , since Theorem 18 implies the series 
diverges at all such values. So the set S is bounded. By the Completeness Property of the 
Real Numbers (Appendix A.9) S has a least upper bound R. (This is the smallest number 
with the property that all elements of S are less than or equal to R.) Since we are not in 
Case 3, the series converges at some number ≠b 0 and, by Theorem 18, also on the open 
interval ( )− b b, . Therefore, >R 0.

If <x R then there is a number c in S with < <x c R, since otherwise R would 
not be the least upper bound for S. The series converges at c since ∈c S, so by Theorem 18 
the series converges absolutely at x.
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 9.7  Power Series 591

THEOREM 19—Series Multiplication for Power Series
If A x a x( ) n

n
n 0∑=

=

∞
 and B x b x( ) n

n
n 0∑=

=

∞
 converge absolutely for x R,<  

and

∑= + + + + + =− − −
=

−c a b a b a b a b a b a b ,n n n n n n
k

n

k n k0 1 1 2 2 1 1 0
0

�

then c xn
n

n 0∑ =

∞
 converges absolutely to A x B x( ) ( ) for <x R:

∑ ∑ ∑
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =

=

∞

=

∞

=

∞

a x b x c x .
n

n
n

n
n

n

n
n

n

0 0 0

Now suppose >x R. If the series converges at x, then Theorem 18 implies it con-
verges absolutely on the open interval ( )− x x, , so that S contains this interval. Since R 
is an upper bound for S, it follows that ≤x R, which is a contradiction. So if >x R, 
then the series diverges. This proves the theorem for power series centered at =a 0.

For a power series centered at an arbitrary point =x a, set = −t x a and repeat the 
argument above, replacing x with t. Since =t 0 when =x a, convergence of the series 

∑ =

∞
c tn

n
n 0

 on a radius R open interval centered at =t 0 corresponds to convergence of 

the series ∑ ( )−
=

∞
c x an

n
n 0

 on a radius R open interval centered at =x a. 

How to Test a Power Series for Convergence
1. Use the Ratio Test or the Root Test to find the largest open interval where the 

series converges absolutely,

x a R a R x a Ror .− < − < < +

2. If R is finite, test for convergence or divergence at each endpoint, as in 
Examples 3a and b.

3. If R is finite, the series diverges for − >x a R.

Operations on Power Series

On the intersection of their intervals of convergence, two power series can be added and 
subtracted term by term just like series of constants (Theorem 8). They can be multiplied 
just as we multiply polynomials, but we often limit the computation of the product to the 
first few terms, which are the most important. The following result gives a formula for the 
coefficients in the product, but we omit the proof. (Power series can also be divided in a 
way similar to division of polynomials, but we do not give a formula for the general coef-
ficient here.)

Finding the general coefficient cn in the product of two power series can be tedious, 
and the term may be unwieldy. The following computation provides an illustration of a 

R is called the radius of convergence of the power series, and the interval of radius R 
centered at =x a is called the interval of convergence. The interval of convergence may 
be open, closed, or half-open, depending on the particular series. At points x with 

− <x a R, the series converges absolutely. If the series converges for all values of x, we 
say its radius of convergence is infinite. If it converges only at =x a, we say its radius of 
convergence is zero.
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592 Chapter 9  Infinite Sequences and Series

THEOREM 20 If a xn
n

n 0∑ =

∞
 converges absolutely for <x R, and f  is a 

continuous function, then a f x( ( ))n
n

n 0∑ =

∞
 converges absolutely on the set of 

points x that satisfy <f x R( ) .

product where we find the first few terms by multiplying the terms of the second series by 
each term of the first series:

x x
n

x x x x x

x x x x x x x x x

x x x

1
1

1
2 3

2 3 2 3 2 3

2
5

6
.

x xby 1 by by

n

n

n

n
n

0 0

1

2
2 3

2 3
2

3 4
3

4 5

2 3

2

� �

� � � �
� ��������� ��������� � ���������� ���������� � ���������� ����������

�

∑ ∑

( )
( ) ( ) ( )

( )

( )
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ⋅ −

+
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

= + + + − + −

= − + − + − + − + − + − +

= + + +

=

∞

=

∞ +

Multiply second series …

and gather the first three powers.

We can also substitute a function f x( ) for x in a convergent power series.

For example, since x x1 1 n
n 0∑( )− =

=

∞
 converges absolutely for <x 1, it fol-

lows from Theorem 20 that x x1 1 4 (4 )n
n

2 2
0∑( )− =

=

∞
 converges absolutely when x 

satisfies <x4 1,2  or, equivalently, when <x 1 2.
Theorem 21 says that a power series can be differentiated term by term at each interior 

point of its interval of convergence. A proof of a restricted case of the theorem is outlined 
in Exercise 66.

THEOREM 21—Term-by-Term Differentiation
If c x an

n∑ ( )−  has radius of convergence >R 0, it defines a function

∑ ( )= − − < < +
=

∞

f x c x a a R x a R( ) on the interval .
n

n
n

0

This function f  has derivatives of all orders inside the interval, and we obtain the 
derivatives by differentiating the original series term by term:

∑

∑ ( )

( )

( )

′ = −

′′ = − −

=

∞
−

=

∞
−

f x nc x a

f x n n c x a

( ) ,

( ) 1 ,

n
n

n

n
n

n

1

1

2

2

and so on. Each of these derived series converges at every point of the interval 
− < < +a R x a R.

EXAMPLE 4  Find series for ′f x( ) and ′′f x( ) if

∑

=
−

= + + + + + + +

= − < <
=

∞

f x
x

x x x x x

x x

( ) 1
1

1

, 1 1.

n

n

n

2 3 4

0

� �
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 9.7  Power Series 593

THEOREM 22—Term-by-Term Integration
Suppose that

∑ ( )= −
=

∞

f x c x a( )
n

n
n

0

converges for − < < +a R x a R (where >R 0). Then

∑ ( )−
+=

∞ +
c x a

n 1n
n

n

0

1

converges for − < < +a R x a R and

∫ ∑ ( )
= −

+
+

=

∞ +
f x dx c x a

n
C( )

1n
n

n

0

1

for − < < +a R x a R.

Solution We differentiate the power series on the right term by term:

f x
x

x x x nx

nx x

f x
x

x x n n x

n n x x

( ) 1
1

1 2 3 4

, 1 1;

( ) 2
1

2 6 12 1

1 , 1 1.

n

n

n

n

n

n

2
2 3 1

1

1

3
2 2

2

2

� �

� �

∑

∑

( )

( )
( )

( )

′ =
−

= + + + + + +

= − < <

′′ =
−

= + + + + − +

= − − < <

−

=

∞
−

−

=

∞
−

 

Caution Term-by-term differentiation might not work for series that are not power 
series. For example, the trigonometric series

∑ ( )

=

∞ n x
n

sin !

n 1
2

converges for all x. But if we differentiate term by term, we get the series

∑
( )

=

∞ n n x
n

! cos !
,

n 1
2

which diverges for all x. These are not power series since they are not sums of positive 
integer powers of x. 

It is also true that a power series can be integrated term by term throughout its interval 
of convergence. The proof is outlined in Exercise 67.

EXAMPLE 5  Identify the function

�∑
( )

=
−

+
= − + − − ≤ ≤

=

∞ +

f x
x

n
x x x x( )

1
2 1 3 5

, 1 1.
n

n n

0

2 1 3 5

Solution We differentiate the original series term by term and get

�′ = − + − + − < <f x x x x x( ) 1 , 1 1.2 4 6     Theorem 21
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594 Chapter 9  Infinite Sequences and Series

Intervals of Convergence
In Exercises 1–36, (a) find the series’ radius and interval of conver-
gence. For what values of x does the series converge (b) absolutely, 
(c) conditionally?

 1. ∑
=

∞

x
n

n

0

 2. ∑ ( )+
=

∞

x 5
n

n

0

 3. ∑ ( ) ( )− +
=

∞

x1 4 1
n

n n

0

 4. ∑ ( )−

=

∞ x
n

3 2

n

n

1

 5. ∑ ( )−

=

∞ x 2
10n

n

n
0

 6. ∑ ( )
=

∞

x2
n

n

0

 7. ∑ +=

∞ nx
n 2n

n

0

 8. ∑ ( ) ( )− +

=

∞ x
n

1 2

n

n n

1

 9. ∑
=

∞ x
n n 3n

n

n
1

 10. ∑ ( )−

=

∞ x
n
1

n

n

1

 11. ∑
( )−

=

∞ x
n

1
!n

n n

0

 12. ∑
=

∞ x
n

3
!n

n n

0

 13. ∑
=

∞ x
n

4

n

n n

1

2
 14. ∑ ( )−

=

∞ x
n

1
3n

n

n
1

3

 15. ∑
+=

∞ x
n 3n

n

0
2

 16. ∑
( )−

+=

∞ +x

n

1

3n

n n

0

1

EXERCISES 9.7

Notice that the original series in Example 5 converges at both endpoints of the original 
interval of convergence, but Theorem 22 can guarantee only the convergence of the inte-
grated series inside the interval.

This is a geometric series with first term 1 and ratio −x ,2  so

( )
′ =

− −
=

+
f x

x x
( ) 1

1
1

1
.

2 2

We can now integrate ( )′ = +f x x( ) 1 1 2  to get

∫ ∫′ =
+

= +f x dx dx
x

x C( )
1

arctan .
2

The series for f x( ) is zero when =x 0, so =C 0. Hence

 = − + − + = − < <f x x x x x x x( )
3 5 7

arctan , 1 1.
3 5 7

�  (6)

It can be shown that the series also converges to xarctan  at the endpoints = ±x 1, but we 
omit the proof. 

The Number π as a Series

∑π ( )= = −
+=

∞

n4
arctan 1 1

2 1n

n

0

EXAMPLE 6  The series

�
+

= − + − +
t

t t t1
1

1 2 3

converges on the open interval − < <t1 1. Therefore,

∫( )+ =
+

= − + − + ⎤
⎦⎥

= − + − +

�

�

x
t

dt t t t t

x x x x

ln 1 1
1 2 3 4

2 3 4
,

x x

0

2 3 4

0

2 3 4

    Theorem 22

or

∑( )
( )

+ =
−

− < <
=

∞ −

x
x

n
xln 1

1
, 1 1.

n

n n

1

1

It can also be shown that the series converges at =x 1 to the number ln 2, but that was not 
guaranteed by the theorem. A proof of this is outlined in Exercise 63. 

Alternating Harmonic Series Sum

∑ ( )= −

=

∞ −

n
ln 2 1

n

n

1

1
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 9.7  Power Series 595

 17. ∑ ( )+

=

∞ n x 3
5n

n

n
0

 18. ∑ ( )+=

∞ nx
n4 1n

n

n
0

2

 19. ∑
=

∞ nx
3n

n

n
0

 20. ∑ ( )+
=

∞

n x2 5
n

n n

1

 21. ∑( )( ) ( )+ − ⋅ +
=

∞
−x2 1 1

n

n n

1

1

 22. ∑
( ) ( )− −

=

∞ x
n

1 3 2
3n

n n n

1

2

 23. ∑( )+
=

∞

n
x1 1

n

n
n

1

 24. ∑( )
=

∞

n xln
n

n

1

 25. ∑
=

∞

n x
n

n n

1

 26. n x! 4
n

n

0
∑ ( )−

=

∞

 27. ∑
( ) ( )− +

=

∞ + x
n

1 2
2n

n n

n
1

1

 28. ∑ ( ) ( )( )− + −
=

∞

n x2 1 1
n

n n

0

 29. ∑ ( )=

∞ x
n nlnn

n

2
2     

 Get the information you need about  

∑ ( )( )n n1 ln 2  from Section 9.3, Exercise 61.

 30. ∑
=

∞ x
n nlnn

n

2

          
 Get the information you need about  

∑ ( )n n1 ln  from Section 9.3, Exercise 60.

 31. ∑ ( )−

=

∞ +x
n

4 5

n

n

1

2 1

3 2
  32. ∑ ( )+

+=

∞ +x
n

3 1
2 2n

n

1

1

 33. 
�∑ ( )⋅ ⋅=

∞

n
x1

2 4 6 2n

n

1

 34. 
�

∑
( )⋅ ⋅ +

⋅=

∞
+n

n
x

3 5 7 2 1
2n

n
n

1
2

1

 35. �
�∑ + + + +

+ + + +=

∞ n
n

x1 2 3
1 2 3n

n

1
2 2 2 2

 36. ∑( )( )+ − −
=

∞

n n x1 3
n

n

1

In Exercises 37–42, find the series’ radius of convergence.

 37. 
�∑ ⋅ ⋅=

∞ n
n

x!
3 6 9 3n

n

1

 38. 
�
�∑

( )

( )

⋅ ⋅
⋅ ⋅ −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

=

∞ n
n

x
2 4 6 2

2 5 8 3 1n

n

1

2

 39. ∑ ( )

( )=

∞ n
n

x!
2 2 !n

n
n

1

2

 40. ∑
=

∞ n x
n
!

n

n

n
1

 41. ∑ ( )

( )+
+=

∞ n a
n n b

x!
! !

,
n

n

1

 where a, b are positive integers

 42. ∑( )+=

∞ n
n

x
1n

n
n

1

2

(Hint: Apply the Root Test.)

In Exercises 43–50, use Theorem 20 to find the series’ interval of con-
vergence and, within this interval, the sum of the series as a function 
of x.

 43. ∑
=

∞

x3
n

n n

0

 44. ∑ ( )−
=

∞

e 4
n

x n

0

 45. ∑ ( )−

=

∞ x 1
4n

n

n
0

2

 46. ∑ ( )+

=

∞ x 1
9n

n

n
0

2

 47. ∑ −⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

=

∞ x
2

1
n

n

0

 48. ∑ ( )
=

∞

xln
n

n

0

 49. ∑ ( )+

=

∞ x 1
3n

n

0

2
 50. ∑ ( )−

=

∞ x 1
2n

n

0

2

Using the Geometric Series

 51. In Example 2 we represented the function =f x x( ) 2  as a power 
series about =x 2. Use a geometric series to represent f x( ) as a 
power series about =x 1, and find its interval of convergence.

 52. Use a geometric series to represent each of the given functions as a 
power series about =x 0, and find their intervals of convergence.

 a. =
−

f x
x

( ) 5
3

 b. =
−

g x
x

( ) 3
2

 53. Represent the function g x( ) in Exercise 52 as a power series about 
=x 5, and find the interval of convergence.

 54. a. Find the interval of convergence of the power series

∑
=

∞

+
x8

4
.

n
n

n

0
2

 b. Represent the power series in part (a) as a power series about 
=x 3 and identify the interval of convergence of the new 

series. (Later in the chapter you will understand why the new 
interval of convergence does not necessarily include all of the 
numbers in the original interval of convergence.)

Theory and Examples

 55. For what values of x does the series

� �( )( ) ( ) ( )− − + − + + − − +x x x1 1
2

3 1
4

3 1
2

3
n

n2

converge? What is its sum? What series do you get if you differen-
tiate the given series term by term? For what values of x does the 
new series converge? What is its sum?

 56. If you integrate the series in Exercise 55 term by term, what new 
series do you get? For what values of x does the new series con-
verge, and what is another name for its sum?

 57. The series

�= − + − + − +x x x x x x xsin
3! 5! 7! 9! 11!

3 5 7 9 11

converges to sin x for all x.

 a. Find the first six terms of a series for cos x. For what values of 
x should the series converge?

 b. By replacing x by 2x in the series for sin x, find a series that 
converges to sin 2x for all x.

 c. Using the result in part (a) and series multiplication, calculate 
the first six terms of a series for 2 sin x cos x. Compare your 
answer with the answer in part (b).

 58. The series

�= + + + + + +e x x x x x1
2! 3! 4! 5!

x
2 3 4 5

converges to e x for all x.

 a. Find a series for ( )d dx e .x  Do you get the series for e ?x  
Explain your answer.
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596 Chapter 9  Infinite Sequences and Series

 b. Find a series for e dx.x∫  Do you get the series for e ?x  Explain 
your answer.

 c. Replace x by −x in the series for e x to find a series that con-
verges to −e x for all x. Then multiply the series for e x and −e x 
to find the first six terms of a series for ⋅−e e .x x

 59. The series

�= + + + + +x x x x x xtan
3

2
15

17
315

62
2835

3
5 7 9

converges to tan x for π π− < <x2 2.

 a. Find the first five terms of the series for xln sec . For what 
values of x should the series converge?

 b. Find the first five terms of the series for xsec .2  For what  
values of x should this series converge?

 c. Check your result in part (b) by squaring the series given for 
sec x in Exercise 60.

 60. The series

�= + + + + +x x x x xsec 1
2

5
24

61
720

277
8064

2
4 6 8

converges to sec x for π π− < <x2 2.

 a. Find the first five terms of a power series for the function 
+x xln sec tan . For what values of x should the series  

converge?

 b. Find the first four terms of a series for sec x tan x. For what 
values of x should the series converge?

 c. Check your result in part (b) by multiplying the series for  
sec x by the series given for tan x in Exercise 59.

 61. Uniqueness of convergent power series 

 a. Show that if two power series a xn
n

n 0∑ =

∞
 and b xn

n
n 0∑ =

∞
 

are convergent and equal for all values of x in an open 
interval ( )−c c, , then =a bn n for every n. (Hint: Let 

f x a x b x( ) .n
n

n n
n

n0 0∑ ∑= =
=

∞

=

∞
 Differentiate term by 

term to show that an and bn both equal f n(0) ! .n( ) ( ) )

 b. Show that if a x 0n
n

n 0∑ =
=

∞
 for all x in an open interval 

( )−c c, , then =a 0n  for every n.

 62. The sum of the series n 2 n
n

2
0∑ ( )

=

∞
 To find the sum of this 

series, express ( )− x1 1  as a geometric series, differentiate both 
sides of the resulting equation with respect to x, multiply both 
sides of the result by x, differentiate again, multiply by x again, 
and set x equal to 1 2. What do you get?

 63. The sum of the alternating harmonic series This exercise will 
show that

∑ ( )− =
+

=

∞

n
1 ln 2.

n

n

1

1

Let hn be the nth partial sum of the harmonic series, and let sn be 
the nth partial sum of the alternating harmonic series.

 a. Use mathematical induction or algebra to show that

= −s h h .n n n2 2

 b. Use the results in Exercise 63 in Section 9.3 to conclude that

γ( )− =
→∞

h nlim ln
n

n

and

γ( )− =
→∞

h nlim ln 2 ,
n

n2

where γ is Euler’s constant.

 c. Use these facts to show that

∑ ( )− = =
=

∞ +

→∞n
s1 lim ln 2.

n

n

n
n

1

1

2

 64. Assume that the series a xn
n∑  converges for =x 4 and diverges 

for =x 7. Answer true (T), false (F), or not enough information 
given (N) for the following statements about the series.

 a. Converges absolutely for = −x 4

 b. Diverges for =x 5

 c. Converges absolutely for = −x 8.5

 d. Converges for = −x 2

 e. Diverges for =x 8

 f. Diverges for = −x 6

 g. Converges absolutely for =x 0

 h. Converges absolutely for = −x 7.1

 65. Assume that the series a x 2n
n∑ ( )−  converges for = −x 1 and  

diverges for =x 6. Answer true (T), false (F), or not enough infor-
mation given (N) for the following statements about the series.

 a. Converges absolutely for =x 1

 b. Diverges for = −x 6

 c. Diverges for =x 2

 d. Converges for =x 0

 e. Converges absolutely for =x 5

 f. Diverges for =x 4.9

 g. Diverges for =x 5.1

 h. Converges absolutely for =x 4

 66. Proof of a special case of Theorem 21 Assume that =a 0 

in Theorem 21, and assume further that L
c
c

lim
n

n

n

1=
→∞

+  exists. 

If ≠L 0, then set =R L1 , while if =L 0, then set = ∞R . 

The Ratio Test implies that ∑=
=

∞

f x c x( )
n

n
n

0

 converges for 

− < <R x R. Let g x nc x( ) .
n

n
n

1

1∑=
=

∞
−  This exercise will 

prove that f  is differentiable and that ′ =f x g x( ) ( ), that is 
( )+ − =

→

f x h f x
h

g xlim
( )

( )
h 0

 for any x with − < <R x R. 

Throughout parts (a)–(h), assume that − < <R x R and that h is 
small enough that − < + <R x h R.

 a. Use the Ratio Test to prove that the series defining  g x( ) converges.

 b. Apply the Mean Value Theorem to the function p x x( )n
n=  

to show that

( )+ − = −x h x
h

n t( )
n n

n
n 1

for some t n between x and +x h for …=n 1, 2, 3, .

 c. Show

∑ ( )( )
( )

− + − = −
=

∞
− −g x

f x h f x
h

nc x t( )
( )

.
n

n
n

n
n

2

1 1
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 9.8  Taylor and Maclaurin Series 597

 d. Apply the Mean Value Theorem to the function 
p x x( )n

n
1

1=−
−  to show that

( )( )
−
−

= −
− −

−
−x t

x t
n d

( )
1

n
n

n

n
n

n
1 1

1
2

for some −dn 1 between x and t n for …=n 2, 3, 4, .

 e. Explain why x t hn− <  and why

α { }≤ = +−d x x hmax , .n 1  

 f. Show that

∑ α
( )

( )− + − ≤ −
=

∞
−g x

f x h f x
h

h n n c( )
( )

1 .
n

n
n

2

2

Hint: Multiply each term ( )−− −nc x t( )n
n

n
n1 1  in part (c)  

by 
−
−

x t
x t

.n

n

 g. Show that n n c1 n
n

n
2

2∑ α( )− −
=

∞
 converges.

 h. Let →h 0 in part (f) to conclude that

( )+ − =
→

f x h f x
h

g xlim
( )

( ).
h 0

 67. Proof of Theorem 22 Assume that =a 0 in Theorem 22 

and assume that ∑=
=

∞

f x c x( )
n

n
n

0

 converges for − < <R x R. 

Let ∑=
+=

∞
+g x

c
n

x( )
1

.
n

n n

0

1  This exercise will prove that 

′ =g x f x( ) ( ).

 a. Prove that the series defining g x( ) converges for − < <R x R .

 b. Use Theorem 21 to show that ′ =g x f x( ) ( ), that is,

∫ = +f x dx g x C( ) ( ) .

We have seen how geometric series can be used to generate a power series for functions 
such as ( )= −f x x( ) 1 1  or ( )= −g x x( ) 3 2 . Now we expand our capability to repre-
sent a function with a power series. This section shows how functions that are infinitely 
differentiable generate power series called Taylor series. In many cases, these series pro-
vide useful polynomial approximations of the original functions. Because approximation 
by polynomials is extremely useful to both mathematicians and scientists, Taylor series are 
an important application of the theory of infinite series.

Series Representations

We know from Theorem 21 that within its interval of convergence I, the sum of a power 
series is a continuous function with derivatives of all orders. But what about the other way 
around? If a function f x( ) has derivatives of all orders on an interval, can it be expressed 
as a power series on at least part of that interval? And if it can, what are its coefficients?

We can answer the last question readily if we assume that f x( ) is the sum of a power 
series about =x a,

� �

∑ ( )

( ) ( ) ( )

= −

= + − + − + + − +
=

∞

f x a x a

a a x a a x a a x a

( )
n

n
n

n
n

0

0 1 2
2

with a positive radius of convergence. By repeated term-by-term differentiation within the 
interval of convergence I, we obtain

� �

�

�

( ) ( ) ( )

( ) ( )

( ) ( )

′ = + − + − + + − +

′′ = ⋅ + ⋅ − + ⋅ − +

′′′ = ⋅ ⋅ + ⋅ ⋅ − + ⋅ ⋅ − +

−f x a a x a a x a na x a

f x a a x a a x a

f x a a x a a x a

( ) 2 3 ,

( ) 1 2 2 3 3 4 ,

( ) 1 2 3 2 3 4 3 4 5 ,

n
n

1 2 3
2 1

2 3 4
2

3 4 5
2

with the nth derivative being

f x n a x a( ) ! a sum of terms with   as a factor.n
n

( ) ( )= + −

Since these equations all hold at =x a, we have

f a a f a a f a a( ) , ( ) 1 2 , ( ) 1 2 3 ,1 2 3′ = ′′ = ⋅ ′′′ = ⋅ ⋅

and, in general,

f a n a( ) ! .n
n

( ) =

9.8 Taylor and Maclaurin Series
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598 Chapter 9  Infinite Sequences and Series

DEFINITIONS Let f  be a function with derivatives of all orders throughout 
some interval containing a as an interior point. Then the Taylor series generated 
by f  at x a is

f a
k

x a f a f a x a
f a

x a

f a
n

x a

( )
!

( ) ( )
( )

2!

( )
!

.

k

k
k

n
n

0

( )
2

( )

∑ ( ) ( ) ( )

( )

− = + ′ − + ′′ −

+ + − +

=

∞

The Maclaurin series of f is the Taylor series generated by f  at x 0, or

f
k

x f f x
f

x
f

n
x

(0)
!

(0) (0)
(0)

2!
(0)
!

.
k

k
k

n
n

0

( )
2

( )

∑ = + ′ + ′′ + + +
=

∞

These formulas reveal a pattern in the coefficients of any power series a x an
n

n 0∑ ( )−
=

∞
 

that converges to the values of f  on I (“represents f  on I ”). If there is such a series (still an 
open question), then there is only one such series, and its nth coefficient is

a
f a

n
( )
!

.n

n( )

If f  has a series representation with the center at a, then the series must be

 
f x f a f a x a

f a
x a

f a
n

x a

( ) ( ) ( )
( )

2!
( )
!

.
n

n

2

( )

( ) ( )

( )

= + ′ − + ′′ −

+ + − +
 

(1)

But if we start with an arbitrary function f that is infinitely differentiable on an interval 
containing x a and use it to generate the series in Equation (1), does the series converge 
to f x( ) at each x in the interval of convergence? The answer is maybe—for some functions 
it will, but for other functions it will not (as we will see in Example 4).

Taylor and Maclaurin Series

The series on the right-hand side of Equation (1) is the most important and useful series we 
will study in this chapter.

The Maclaurin series generated by f is often just called the Taylor series of f.

EXAMPLE 1  Find the Taylor series generated by f x x( ) 1  at a 2. Where, if 
anywhere, does the series converge to x1 ?

Solution We need to find f f f(2), (2), (2), . Taking derivatives, we get

f x x f x x f x x f x n x( ) , ( ) , ( ) 2! , , ( ) 1 ! ,n n n1 2 3 ( ) 1( )= ′ = − ′′ = = − ( )− − − − +

so that

f f
f f

n
(2) 2 1

2
, (2) 1

2
,

(2)
2!

2 1
2

, ,  
(2)
!

1
2

.
n n

n
1

2
3

3

( )

1

( )= = ′ = − ′′ = = = −− −
+

The Taylor series is

f f x
f

x
f

n
x

x x x

(2) (2) 2
(2)

2!
2

(2)
!

2

1
2

2
2

2
2

1 2
2

.

n
n

n
n

n

2
( )

2

2

3 1

( ) ( ) ( )

( ) ( )
( )

( )

+ ′ − − ″ − + + − +

= − − + − − + − − +
+

HISTORICAL BIOGRAPHIES

Brook Taylor
(1685–1731)
Taylor was an ingenious and productive 
British mathematician. Taylor published his 
book on calculus Methodus incrementorum 
directa et inversa in 1715 and his book on 
geometry Linear Perspective in the same year.

To know more, visit the companion Website. 

Colin Maclaurin
(1698–1746)
Maclaurin was elected a fellow of the Royal 
Society of London when he was only 21 years 
old. His Treatise of Fluxions (1742) has been 
described as the earliest logical and systematic 
publication of Newton’s methods. 

To know more, visit the companion Website. 
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 9.8  Taylor and Maclaurin Series 599

DEFINITION Let f  be a function with derivatives of order k for …=k N1, 2, ,  
in some interval containing a as an interior point. Then, for any integer n from 
0 through N, the Taylor polynomial of order n generated by f  at =x a is the 
polynomial

P x f a f a x a
f a

x a

f a
k

x a
f a

n
x a

( ) ( ) ( )
( )

2!
( )
!

( )
!

.

n

k
k

n
n

2

( ) ( )

�

�

( ) ( )

( ) ( )

= + ′ − + ′′ − +

+ − + + −

FIGURE 9.22 The graph of =f x e( ) x  
and its Taylor polynomials

P x x

P x x x

P x x x x

( ) 1

( ) 1 2!

( ) 1 2! 3! .

1

2
2

3
2 3

( )

( ) ( )

= +

= + +

= + + +

Notice the very close agreement near the 
center =x 0 (Example 2).

0.5

1.0

y = e x

0 0.5

1.5

2.0

2.5

3.0
y = P3(x)

y = P2(x)

y = P1(x)

1.0

x

y

−0.5

This is a geometric series with first term 1 2 and ratio ( )= − −r x 2 2. It converges  
absolutely for − <x 2 2 and its sum is

( ) ( )+ −
=

+ −
=

x x x
1 2

1 2 2
1

2 2
1 .

In this example the Taylor series generated by =f x x( ) 1  at =a 2 converges to x1  for 
− <x 2 2, or < <x0 4. 

Taylor Polynomials

The linearization of a differentiable function f at a point a is the polynomial of degree at 
most 1 given by

P x f a f a x a( ) ( ) ( ) .1 ( )= + ′ −

In Section 3.11 we used this linearization to approximate f x( ) at values of x near a. If f has 
derivatives of higher order at a, then it has higher-order polynomial approximations as well, 
one for each available derivative. These polynomials are called the Taylor polynomials of f.

We speak of a Taylor polynomial of order n rather than degree n because f a( )n( )  may 
be zero. The first two Taylor polynomials of =f x x( ) cos  at =x 0, for example, are 
P x( ) 10 =  and P x( ) 1.1 =  The first-order Taylor polynomial has degree 0, not 1.

Just as the linearization of f at =x a provides the best linear approximation of f in 
the neighborhood of a, the higher-order Taylor polynomials provide the “best” polynomial 
approximations of their respective degrees. (See Exercise 51.)

EXAMPLE 2  Find the Taylor series and the Taylor polynomials generated by 
=f x e( ) x at =x 0.

Solution Since f x e( )n x( ) =  and f (0) 1n( ) =  for every …=n 0,1, 2, , the Taylor 
series generated by f  at =x 0 (see Figure 9.22) is

f f x
f

x
f

n
x

x x x
n

x
k

(0) (0)
(0)

2!
(0)
!

1
2 !

!
.

n
n

n

k

k

2
( )

2

0

� �

� �

∑

+ ′ + ′′ + + +

= + + + + +

=
=

∞

This is also the Maclaurin series for e .x  In the next section we will see that this series 
converges to e x  at every x.

The Taylor polynomial of order n at =x 0 is

P x x x x
n

( ) 1
2 !

.n

n2
�= + + + +  
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600 Chapter 9  Infinite Sequences and Series

EXAMPLE 3  Find the Taylor series and Taylor polynomials generated by 
=f x x( ) cos  at =x 0.

Solution The cosine and its derivatives are

( )

=

″ = −

= −

f x x

f x x

f x x

( ) cos ,

( ) cos ,

( ) 1 cos ,n n(2 )

�
  

�

( )

′ = −

=

= −( )+ +

f x x

f x x

f x x

( ) sin ,

( ) sin ,

( ) 1 sin .n n

(3)

2 1 1

At =x 0, the cosines are 1 and the sines are 0, so

f f(0) 1 , (0) 0.n n n(2 ) 2 1( )= − =( )+

The Taylor series generated by f  at 0 is

f f x
f

x
f

x
f

n
x

x x x x x
n

x
k

(0) (0)
(0)

2!
(0)

3!
(0)
!

1 0
2!

0
4!

1
(2 )!

1
(2 )!

.

n
n

n
n

k

k k

2 3
( )

2
3

4 2

0

2

� �

� �

∑

( )

( )

+ ′ + ′′ + ′′′ + + +

= + ⋅ − + ⋅ + + + − +

=
−

=

∞

This is also the Maclaurin series for cos x. Notice that only even powers of x occur in the 
Taylor series generated by the cosine function, which is consistent with the fact that it is an 
even function. In Section 9.9, we will see that the series converges to cos x at every x.

Because f (0) 0,n2 1 =( )+  the Taylor polynomials of orders 2n and +n2 1 are identical:

P x P x x x x
n

( ) ( ) 1
2! 4!

1
(2 )!

.n n
n

n

2 2 1

2 4 2
� ( )= = − + − + −+

Figure 9.23 shows how well these polynomials approximate =f x x( ) cos  near =x 0. 
Only the right-hand portions of the graphs are given because the graphs are symmetric 
about the y-axis. 

FIGURE 9.23 The polynomials

P x
x

k
( )

1
(2 )!n

k

n k k

2
0

2

∑
( )

=
−

=

converge to cos x as → ∞n . We can deduce the behavior of 
cos x arbitrarily far away solely from knowing the values of the 
cosine and its derivatives at =x 0 (Example 3).

0 1

1
y = cos x

2

−1

−2

2 3 4 5 6 7 9

P0
P4 P8 P12 P16

P2 P6 P10 P14 P18

8
x

y

EXAMPLE 4  By using mathematical induction (see Exercise 51), it can be shown that

=
=

≠

⎧
⎨
⎪⎪
⎩⎪⎪

−
f x

x

e x
( )

0, 0

, 0x1 2
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 9.8  Taylor and Maclaurin Series 601

(Figure 9.24) has derivatives of all orders at =x 0 and that f (0) 0n( ) =  for all n. This 
means that the Taylor series generated by f  at =x 0 is

f f x
f

x
f

n
x

x x x

(0) (0)
(0)

2!
(0)
!

0 0 0 0
0 0 0 .

n
n

n

2
( )

2

� �

� �
� �

+ ′ + ′′ + + +

= + ⋅ + ⋅ + + ⋅ +
= + + + +

The series converges for every x (its sum is 0) but converges to f x( ) only at =x 0. That 
is, the Taylor series generated by f x( ) in this example is not equal to the function f x( ) over 
the entire interval of convergence. 

FIGURE 9.24 The graph of the continu-
ous extension of = −y e x1 2 is so flat at the  
origin that all of its derivatives there are 
zero (Example 4). Therefore, its Taylor 
series, which is zero everywhere, is not the 
function itself.

0 1 2

1

−1−2

e−1�x2
,  x ≠ 0

 0 , x = 0  
y =

x

y

Finding Taylor Polynomials
In Exercises 1–10, find the Taylor polynomials of orders 0, 1, 2, and 3 
generated by f at a.

 1. = =f x e a( ) , 0x2  2. = =f x x a( ) sin , 0

 3. = =f x x a( ) ln , 1 4. ( )= + =f x x a( ) ln 1 , 0

 5. = =f x x a( ) 1 , 2 6. ( )= + =f x x a( ) 1 2 , 0

 7. π= =f x x a( ) sin , 4 8. π= =f x x a( ) tan , 4

 9. = =f x x a( ) , 4 10. = − =f x x a( ) 1 , 0

Finding Taylor Series at =x 0 (Maclaurin Series)
Find the Maclaurin series for the functions in Exercises 11–24.

 11. −e x 12. xe x

 13. 
+ x
1

1
 14. +

−
x
x

2
1

 15. sin 3x 16. xsin
2

 17. −x7 cos ( ) 18. πx5 cos

 19. = + −
x e ecosh

2

x x
 20. = − −

x e esinh
2

x x

 21. − − +x x x2 5 44 3  22. 
+
x

x 1

2

 23. x xsin  24. ( ) ( )+ +x x1 ln 1

Finding Taylor and Maclaurin Series
In Exercises 25–34, find the Taylor series generated by f at =x a.

 25. = − + =f x x x a( ) 2 4, 23

 26. = + + − =f x x x x a( ) 2 3 8, 13 2

 27. = + + = −f x x x a( ) 1, 24 2

 28. = − + + − = −f x x x x x a( ) 3 2 2, 15 4 3 2

 29. = =f x x a( ) 1 , 12

 30. ( )= − =f x x a( ) 1 1 , 03

 31. = =f x e a( ) , 2x

 32. = =f x a( ) 2 , 1x

 33. π π( )( )= + =f x x a( ) cos 2 2 , 4

 34. = + =f x x a( ) 1, 0

In Exercises 35–40, find the first three nonzero terms of the Maclaurin 
series for each function.

 35. ( )( )= − −f x x x( ) cos 2 1

 36. ( )= − +f x x x e( ) 1 x2

 37. ( ) ( )= +f x x x( ) sin ln 1

 38. =f x x x( ) sin 2

 39. =f x x e( ) x4 2 40. =
+

f x x
x

( )
1 2

3

Quadratic Approximations The Taylor polynomial of order 2 
generated by a twice-differentiable function f x( ) at =x a  is called 
the quadratic approximation of f at =x a. In Exercises 41–46, find 
the (a) linearization (Taylor polynomial of order 1) and (b) quadratic 
approximation of f at =x 0.

 41. ( )=f x x( ) ln cos  42. =f x e( ) xsin

 43. = −f x x( ) 1 1 2  44. =f x x( ) cosh

 45. =f x x( ) sin  46. =f x x( ) tan

 47. If m is a small positive number, then the graphs of =y xsin  and 
=y mx intersect at a point whose x-coordinate is close to π. Find 

the quadratic approximation to = −f x x mx( ) sin  at π=x , 
and use this to show that an approximate solution to the equation 

=x mxsin  is π ( )≈ +x m1 .

Theory and Examples

 48. Use the Taylor series generated by e x at =x a  to show that

�( )
( )= + − + − +⎡

⎣
⎢⎢

⎤
⎦
⎥⎥

e e x a x a1
2!

.x a
2

 49. (Continuation of Exercise 48.) Find the Taylor series generated by e x 
at =x 1. Compare your answer with the formula in Exercise 48.

 50. Let f x( ) have derivatives through order n at =x a. Show that the 
Taylor polynomial of order n and its first n derivatives have the 
same values that f and its first n derivatives have at =x a.

EXERCISES 9.8

Two questions still remain.

1. For what values of x can we normally expect a Taylor series to converge to its generat-
ing function?

2. How accurately do a function’s Taylor polynomials approximate the function on a 
given interval?

The answers are provided by a theorem of Taylor in the next section.
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602 Chapter 9  Infinite Sequences and Series

 51. Approximation properties of Taylor polynomials Suppose 
that f x( ) is differentiable on an interval centered at =x a  and 
that ( ) ( )= + − + + −�g x b b x a b x a( ) n

n
0 1  is a poly-

nomial of degree n with constant coefficients …b b, , .n0  Let 
= −E x f x g x( ) ( ) ( ). Show that if we impose on g the conditions

   i) =E a( ) 0              The approximation error is zero at x a.=

 ii) 
( )−

=
→

E x
x a

lim ( ) 0,
x a n      

The error is negligible when compared to 
x a .n( )−

then

g x f a f a x a
f a

x a

f a
n

x a

( ) ( ) ( )
( )

2!
( )
!

.
n

n

2

( )

�( ) ( )

( )

= + ′ − + ″ − +

+ −

Thus, the Taylor polynomial P x( )n  is the only polynomial of 
degree less than or equal to n whose error is both zero at =x a  
and negligible when compared with ( )−x a .n

 52. Let f be the function from Example 4. Let p t t( ) 21
3=  and 

p t t t( ) 4 62
6 4= − .

 a. Show that if x 0> , then

f x x e p x f x( ) 2 1 ( ),x3
1

2 ( )′ = =− − −

while for x 0= ,

f
f h
h

f t
t

(0) lim
( ) 0

0
lim

1
1

0.
h t0

( )
′ = −

−
= =

→ →∞+

 b. Show that if x 0> , then

f x x x e p x f x( ) 4 6 1 ( ),x6 3
2

2 ( )( )′′ = − =− − − −

and f (0) 0′′ = .

 c. For n 2≥ , recursively define polynomials pn by 
= − ′+p t t p t t p t( ) 2 ( ) ( )n n n1

3 2 . Use mathematical induction 
to prove that pn has degree n3 , f x p x f x( ) 1 ( )n

n
( ) ( )=  for 

x 0> , and f (0) 0n( ) = .

THEOREM 23—Taylor’s Theorem
If f and its first n derivatives …′ ′′f f f, , , n( ) are continuous on the closed interval 
between a and b, and f n( ) is differentiable on the open interval between a and b, 
then there exists a number c between a and b such that

( ) ( )

( ) ( )
( )

= + ′ − + ′′ − +

+ − +
+

−
( )+

+

�f b f a f a b a
f a

b a

f a
n

b a
f c
n

b a

( ) ( ) ( )
( )

2!
( )
!

( )
1 !

.
n

n
n

n

2

( ) 1
1

9.9 Convergence of Taylor Series

In the last section we asked when a Taylor series for a function can be expected to converge 
to the function that generates it. The finite-order Taylor polynomials that approximate the 
Taylor series provide estimates for the generating function. In order for these estimates to 
be useful, we need a way to control the possible errors we may encounter when approxi-
mating a function with its finite-order Taylor polynomials. How do we bound such possi-
ble errors? We answer the question in this section with the following theorem.

Taylor’s Theorem is a generalization of the Mean Value Theorem (Exercise 49), and we 
omit its proof here.

When we apply Taylor’s Theorem, we usually want to hold a fixed and treat b as an 
independent variable. Taylor’s formula is easier to use in circumstances like these if we 
change b to x. Here is a version of the theorem with this change.

Taylor’s Formula
If f  has derivatives of all orders in an open interval I containing a, then for each 
positive integer n and for each x in I,

 
( ) ( )

( )

= + ′ − + ′′ − +

+ − +

�f x f a f a x a
f a

x a

f a
n

x a R x

( ) ( ) ( )
( )

2!
( )
!

( ),
n

n
n

2

( )
 

(1)

where

 
( )

( )=
+

−
( )+

+R x
f c
n

x a c a x( )
( )
1 !

for some   between   and  .n

n
n

1
1  (2)
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 9.9  Convergence of Taylor Series 603

When we state Taylor’s theorem this way, it says that for each ∈x I ,

= +f x P x R x( ) ( ) ( ).n n

The function R x( )n  is determined by the value of the ( )+n 1 st derivative ( )+f n 1  at a point 
c that depends on both a and x, and that lies somewhere between them. For any value of n 
we want, the equation gives both a polynomial approximation of f  of that order and a for-
mula for the error involved in using that approximation over the interval I.

Equation (1) is called Taylor’s formula. The function R x( )n  is called the remainder 
of order n or the error term for the approximation of f  by P x( )n  over I.

If →R x( ) 0n  as → ∞n  for all ∈x I , we say that the Taylor series generated 
by f  at =x a converges to f  on I, and we write

∑ ( )= −
=

∞

f x
f a

k
x a( )

( )
!

.
k

k
k

0

( )

The Number e as a Series

e
n
1
!n 0

∑=
=

∞

Often we can estimate Rn without knowing the value of c, as the following example 
illustrates.

EXAMPLE 1  Show that the Taylor series generated by =f x e( ) x at =x 0 converges 
to f x( ) for every real value of x.

Solution The function has derivatives of all orders throughout the interval  
( )= −∞ ∞I , . Equations (1) and (2) with =f x e( ) x and =a 0 give

= + + + + +�e x x x
n

R x1
2! !

( )x
n

n

2
    

 Polynomial from  
Section 9.8, Example 2

and

( )
=

+
+R x e

n
x c x( )

1 !
for some   between 0 and  .n

c
n 1

Since e x is an increasing function of x e, c lies between =e 10  and e .x  When x is negative, 
so is c, and <e 1.c  When x is zero, =e 1x  so that =R x( ) 0.n  When x is positive, so is c, 
and <e e .c x  Thus, for R x( )n  given as above,

( )
≤

+
≤

+
R x x

n
x( )

1 !
when  0,n

n 1

         < <e c1 since 0c

and

( )
<

+
>

+
R x e x

n
x( )

1 !
when  0.n

x
n 1

    < <e e c x sincec x

Finally, because

( )+
=

→∞

+x
n

xlim
1 !

0 for every ,
n

n 1
      Section 9.1, Theorem 5

we see that =
→∞

R xlim ( ) 0,
n

n  and therefore the Taylor series converges to e x for every x. 
Thus,

 ∑= = + + + + +
=

∞

� �e x
k

x x x
k!

1
2! !

.x

k

k k

0

2
 (3)

 

We can use the result of Example 1 with =x 1 to write

= + + + + +�e
n

R1 1 1
2!

1
!

(1),n
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604 Chapter 9  Infinite Sequences and Series

where, for some c between 0 and 1,

( ) ( )
=

+
<

+
R e

n n
(1) 1

1 !
3

1 !
.n

c     < <e e 3c 1

THEOREM 24—The Remainder Estimation Theorem
If there is a positive constant M such that ≤( )+f t M( )n 1  for all t between x 
and a, inclusive, then the remainder term R x( )n  in Taylor’s Theorem satisfies the 
inequality

( )
≤ −

+

+
R x M x a

n
( )

1 !
.n

n 1

If this inequality holds for every n, and the other conditions of Taylor’s Theorem 
are satisfied by f , then the Taylor series converges to f x( ).

�= − + − +x x x x xsin
3! 5! 7!

3 5 7

EXAMPLE 2  Show that the Taylor series for sin x at =x 0 converges for all x.

Solution The function and its derivatives are

�

( )

=

″ = −

= −

f x x

f x x

f x x

( ) sin ,

( ) sin ,

( ) 1 sin ,k k(2 )

    
�

( )

′ =

′′′ = −

= −( )+

f x x

f x x

f x x

( ) cos ,

( ) cos ,

( ) 1 cos ,k k2 1

so

( )= = −( )+f f(0) 0 and (0) 1 .k k k(2 ) 2 1

The series has only odd-powered terms, and for = +n k2 1, Taylor’s Theorem gives

�
( )

( )
= − + − +

−
+

+
+

+x x x x x
k

R xsin
3! 5!

1
2 1 !

( ).
k k

k

3 5 2 1

2 1

All the derivatives of sin x have absolute values less than or equal to 1, so we can apply the 
Remainder Estimation Theorem with =M 1 to obtain

( )
≤ ⋅

++

+
R x x

k
( ) 1

2 2 !
.k

k

2 1

2 2

From Theorem 5, Rule 6, we have ( )( )+ →+x k2 2 ! 0k2 2  as → ∞k , whatever the 
value of x, so →+R x( ) 0k2 1  and the Maclaurin series for sin x converges to sin x for every 
x. Thus,

 �∑ ( )

( )
=

−
+

= − + − +
=

∞ +

x
x

k
x x x xsin

1
2 1 ! 3! 5! 7!

.
k

k k

0

2 1 3 5 7
 (4)

 

Estimating the Remainder

It is often possible to estimate R x( )n  as we did in Example 1. This method of estimation is 
so convenient that we state it as a theorem for future reference.

The next two examples use Theorem 24 to show that the Taylor series generated by the 
sine and cosine functions do in fact converge to the functions themselves.
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 9.9  Convergence of Taylor Series 605

EXAMPLE 3  Show that the Taylor series for cos x at =x 0 converges to cos x for 
every value of x.

Solution We add the remainder term to the Taylor polynomial for cos x (Section 9.8, 
Example 3) to obtain Taylor’s formula for cos x with =n k2 :

� ( )= − + − + − +x x x x
k

R xcos 1
2! 4!

1
(2 )!

( ).k
k

k

2 4 2

2

Because the derivatives of the cosine have absolute value less than or equal to 1, the 
Remainder Estimation Theorem with =M 1 gives

( )
≤ ⋅

+

+
R x x

k
( ) 1

2 1 !
.k

k

2

2 1

For every value of x, →R x( ) 0k2  as → ∞k . Therefore, the series converges to cos x for 
every value of x. Thus,

 �∑
( )

=
−

= − + − +
=

∞

x
x

k
x x xcos

1
(2 )!

1
2! 4! 6!

.
k

k k

0

2 2 4 6
 (5)

 
�= − + − +x x x xcos 1

2! 4! 6!

2 4 6

Using Taylor Series

Since every Taylor series is a power series, the operations of adding, subtracting, and mul-
tiplying Taylor series are all valid on the intersection of their intervals of convergence.

EXAMPLE 4  Using known series, find the first few terms of the Taylor series for the 
given function by using power series operations.

 (a) ( )+x x x1
3

2 cos  (b) e xcosx

Solution 

 (a) � �

� �

( )( ) ( )+ = + − + − + − +

= + − +
⋅

− = − + −

x x x x x x x x
k

x x x x x x x

1
3

2 cos 2
3

1
3

1
2! 4!

1
(2 )!

2
3

1
3 3! 3 4! 6 72

k
k2 4 2

3 5 3 5

Taylor series  
for xcos

 (b) � �

� �

� �

�

( )( )
( ) ( )

( )

= + + + + + − + −

= + + + + + − + + + +

+ + + + +

= + − − +

e x x x x x x x

x x x x x x x x

x x x

x x x

cos 1
2! 3! 4!

1
2! 4!

1
2! 3! 4! 2! 2! 2!2! 2!3!

4! 4! 2!4!

1
3 6

x
2 3 4 2 4

2 3 4 2 3 4 5

4 5 6

3 4

 

Multiply the first  
series by each term  
of the second series.

By Theorem 20, if the Taylor series generated by f at =x 0,

 ∑ = + ′ + ′′ + + +
=

∞

� �f
k

x f f x
f

x
f

n
x

(0)
!

(0) (0)
(0)

2!
(0)
!

,
k

k
k

n
n

0

( )
2

( )
 (6)
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606 Chapter 9  Infinite Sequences and Series

converges absolutely for <x R, and if u is a continuous function, then the series

 ∑
=

∞ f
k

u x
(0)
!

( ( ))
k

k
k

0

( )
 (7)

obtained by substituting u x( ) for x in the Taylor series of Formula (6) converges absolutely 
on the set of points x where <u x R( ) .

If =u x cx( ) ,m  where ≠c 0 and m is a positive integer, then the series of Formula (7) 
is a power series and can be shown to be the Taylor series generated by f u x( ( )) at =x 0.

For instance, we can find the Taylor series for cos  2x by substituting 2x for x in the 
Taylor series for cos x:

�

�

∑

∑

( )

( )

=
−

= − + − +

= − + − +

= −

=

∞

=

∞

x
x

k
x x x

x x x

x
k

cos 2
1 (2 )
(2 )!

1 (2 )
2!

(2 )
4!

(2 )
6!

1 2
2!

2
4!

2
6!

1 2
(2 )!

.

k

k k

k

k
k k

0

2 2 4 6

2 2 4 4 6 6

0

2 2

    

x xEq. (5) with 2  for 

By Theorem 20, this new Taylor series converges for all x.

FIGURE 9.25 The polynomials

∑ ( )

( )
=

−
++

=

+

P x
x

k
( )

1
2 1 !n

k

n k k

2 1
0

2 1

converge to sin x as → ∞n . Notice how closely P x( )3  
approximates the sine curve for ≤x 1 (Example 5).

1

y = sin x

2 3 4 8 9

P1 P5

P3 P7 P11 P15 P19

P9 P13 P17

5 6 70

1

2

−1

−2

x

y

EXAMPLE 5  For what values of x can we replace sin x by ( )−x x 3!3  and obtain an 
error whose magnitude is no greater than × −3 10 ?4

Solution Here we can take advantage of the fact that the Taylor series for sin x is an alter-
nating series for every nonzero value of x. According to the Alternating Series Estimation 
Theorem (Section 9.6), the error in truncating

after ( )x 3!3  is no greater than

=x x
5! 120

.
5 5

Therefore, the error will be less than or equal to × −3 10 4 if

< × < × ≈− −x x
120

3 10 or 360 10 0.514.
5

4 45
    

 Rounded down,  
to be safe

The Alternating Series Estimation Theorem tells us something that the Remainder 
Estimation Theorem does not: The estimate ( )−x x 3!3  for sin x is an underestimate when 
x is positive, because then x 1205  is positive.

Figure 9.25 shows the graph of sin x, along with the graphs of a number of its approx-
imating Taylor polynomials. The graph of ( )= −P x x x( ) 3!3

3  is almost indistinguish-
able from the sine curve when ≤ ≤x0 1. 

�= − + − +x x x x xsin
3! 5! 7!

3 5 7
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 9.9  Convergence of Taylor Series 607

A Proof of Taylor’s Theorem

We prove Taylor’s theorem assuming <a b. The proof for >a b is nearly the same.
The Taylor polynomial

( ) ( ) ( )= + ′ − + ′′ − + + −�P x f a f a x a
f a

x a
f a

n
x a( ) ( ) ( )

( )
2!

( )
!n

n
n2

( )

and its first n derivatives match the function f  and its first n derivatives at =x a. We do 
not disturb that matching if we add another term of the form ( )− +K x a ,n 1  where K is any 
constant, because such a term and its first n derivatives are all equal to zero at =x a. The 
new function

φ ( )= + − +x P x K x a( ) ( )n n
n 1

and its first n derivatives still agree with f  and its first n derivatives at =x a.
We now choose the particular value of K that makes the curve φ=y x( )n  agree with 

the original curve =y f x( ) at =x b. In symbols,

 ( )
( )

= + − =
−

−
+

+f b P b K b a K
f b P b

b a
( ) ( ) , or

( ) ( )
.n

n n
n

1
1  (8)

With K defined by Equation (8), the function

φ= −F x f x x( ) ( ) ( )n

measures the difference between the original function f  and the approximating function φn 
for each x in [ ]a b, .

We now use Rolle’s Theorem (Section 4.2). First, because = =F a F b( ) ( ) 0 and 
both F and ′F  are continuous on [ ]a b, , we know that

( )′ =F c c a b( ) 0 for some   in  , .1 1

Next, because ′ = ′ =F a F c( ) ( ) 01  and both ′F  and ′′F  are continuous on [ ]a c, ,1  we 
know that

( )″ =F c c a c( ) 0 for some   in  , .2 2 1

Rolle’s Theorem, applied successively to …′′ ′′′ ( )−F F F, , , ,n 1  implies the existence of

( )

( )

( )

′′′ =

=

=−

�

c a c F c

c a c F c

c a c F c

in  , such that  ( ) 0,

in  , such that  ( ) 0,

in  , such that  ( ) 0.n n
n

n

3 2 3

4 3
(4)

4

1
( )

Finally, because F n( ) is continuous on [ ]a c, n  and differentiable on ( )a c, ,n  and 
= =F a F c( ) ( ) 0,n n

n
( ) ( )  Rolle’s Theorem implies that there is a number +cn 1 in ( )a c, n  

such that

 ( ) =( )+
+F c 0.n

n
1

1  (9)

If we differentiate ( )= − − − +F x f x P x K x a( ) ( ) ( )n
n 1 a total of +n 1 times, we get

 ( )= − − +( ) ( )+ +F x f x n K( ) ( ) 0 1 ! .n n1 1  (10)

Equations (9) and (10) together give

 ( )
( )

=
+

=
( )+

+K
f c
n

c c a b
( )
1 !

for some number   in  , .
n

n

1

1  (11)

Equations (8) and (11) give

( )
( )

= +
+

−
( )+

+f b P b
f c
n

b a( ) ( )
( )
1 !

.n

n
n

1
1

This concludes the proof. 
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608 Chapter 9  Infinite Sequences and Series

Finding Taylor Series
Use substitution (as in Formula (7)) to find the Taylor series at =x 0 
of the functions in Exercises 1–12.

 1. −e x5  2. −e x 2  3. −x5 sin ( )

 4. π( )xsin
2

 5. xcos 5 2  6. ( )xcos 2

 7. ( )+ xln 1 2  8. xarctan (3 )4  9. 
+ x

1
1 3

4
3

 10. 
− x
1

2
 11. ( )+ xln 3 6  12. − +e x ln 52

Use power series operations to find the Taylor series at =x 0 for the 
functions in Exercises 13–30.

 13. xe x  14. x xsin2  15. − +x x
2

1 cos
2

 16. − +x x xsin
3!

3
 17. πx xcos  18. x xcos ( )2 2

 19. xcos 2  (Hint: ( )= +x xcos 1 cos 2 2.2 )

 20. xsin 2  21. 
−
x

x1 2

2
 22. ( )+x xln 1 2

 23. 
( )− x

1
1 2  24. 

( )− x
2

1 3  25. x xarctan 2

 26. ⋅x xsin cos  27. +
+

e
x

1
1

x  28. −x xcos sin

 29. ( )+x x
3

 ln 1 2  30. ( ) ( )+ − −x xln 1 ln 1

Find the first four nonzero terms in the Maclaurin series for the func-
tions in Exercises 31–38.

 31. e xsinx  32. 
( )+

−
x

x
ln 1

1
 33. ( )xarctan 2

 34. ⋅x xcos  sin2  35. e xsin  36. ( )− xsin tan 1

 37. ( )−ecos 1x  38. ( )+x xcos ln cos

Error Estimates

 39. Estimate the error if ( )= −P x x x( ) 63
3  is used to estimate the 

value of sin x at =x 0.1.

 40. Estimate the error if ( ) ( )= + + + +P x x x x( ) 1 2 64
2 3  

x 244( ) is used to estimate the value of e x at =x 1 2.

 41. For approximately what values of x can you replace sin x by 
( )−x x 63  with an error of magnitude no greater than × −5 10 ?4  

Give reasons for your answer.

 42. If cos x is replaced by ( )− x1 22  and <x 0.5, what estimate 
can be made of the error? Does ( )− x1 22  tend to be too large, or 
too small? Give reasons for your answer.

 43. How close is the approximation =x xsin  when < −x 10 ?3  
For which of these values of x is <x xsin ?

 44. The estimate ( )+ = +x x1 1 2  is used when x is small. 
Estimate the error when <x 0.01.

 45. The approximation ( )= + +e x x1 2x 2  is used when x is 
small. Use the Remainder Estimation Theorem to estimate the 
error when <x 0.1.

 46. (Continuation of Exercise 45.) When <x 0, the series for e x 
is an alternating series. Use the Alternating Series Estimation 
Theorem to estimate the error that results from replacing e x by 

( )+ +x x1 22  when − < <x0.1 0. Compare your estimate 
with the one you obtained in Exercise 45.

Theory and Examples

 47. Use the identity ( )= −x xsin 1 cos 2 22  to obtain the Maclaurin 
series for xsin .2  Then differentiate this series to obtain the Maclaurin 
series for 2 sin x cos x. Check that this is the series for sin 2x.

 48. (Continuation of Exercise 47.) Use the identity 
= +x x xcos cos 2 sin2 2  to obtain a power series for xcos .2

 49. Taylor’s Theorem and the Mean Value Theorem Explain how 
the Mean Value Theorem (Section 4.2, Theorem 4) is a special 
case of Taylor’s Theorem.

 50. Linearizations at inflection points Show that if the graph of 
a twice-differentiable function f x( ) has an inflection point at 

=x a, then the linearization of f at =x a  is also the quadratic 
approximation of f at =x a. This explains why tangent lines fit 
so well at inflection points.

 51. The (second) second derivative test Use the equation

( ) ( )= + ′ − +
′′

−f x f a f a x a
f c

x a( ) ( ) ( )
( )
2

2 2

to establish the following test.
Let f have continuous first and second derivatives and sup-

pose that ′ =f a( ) 0. Then

 a. f has a local maximum at a if ′′ ≤f 0 throughout an interval 
whose interior contains a;

 b. f has a local minimum at a if ′′ ≥f 0 throughout an interval 
whose interior contains a.

 52. A cubic approximation Use Taylor’s formula with =a 0 
and =n 3 to find the standard cubic approximation of 

( )= −f x x( ) 1 1  at =x 0. Give an upper bound for the magni-
tude of the error in the approximation when ≤x 0.1.

 53. a.  Use Taylor’s formula with =n 2 to find the quadratic 
approximation of ( )= +f x x( ) 1 k at =x 0 (k a constant).

 b. If =k 3, for approximately what values of x in the interval 
[ ]0,1  will the error in the quadratic approximation be less 
than 1 100?

 54. Improving approximations of π 

 a. Let P be an approximation of π accurate to n decimals. Show 
that +P Psin  gives an approximation correct to 3n decimals. 
(Hint: Let π= +P x.)

 b. Try it with a calculator.

 55. The Taylor series generated by f x a x( ) n
n

n 0∑=
=

∞
 is 

a xn
n

n 0∑ =

∞
 A function defined by a power series a xn

n
n 0∑ =

∞
 

with a radius of convergence >R 0 has a Taylor series that  
converges to the function at every point of ( )−R R, . Show this by 

showing that the Taylor series generated by f x a x( ) n
n

n 0∑=
=

∞
 

is the series a xn
n

n 0∑ =

∞
 itself.

An immediate consequence of this is that series like

�= − + − +x x x x x xsin
3! 5! 7!

2
4 6 8

T

EXERCISES 9.9 
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 9.10  Applications of Taylor Series 609

and

�= + + + +x e x x x x
2! 3!

,x2 2 3
4 5

obtained by multiplying Taylor series by powers of x, as well as 
series obtained by integration and differentiation of convergent 
power series, are themselves the Taylor series generated by the 
functions they represent.

 56. Taylor series for even functions and odd functions (Continu-
ation of Section 9.7, Exercise 61.) Suppose that f x a x( ) n

n
n 0∑=

=

∞
 

converges for all x in an open interval ( )−R R, . Show that

 a. If f is even, then �= = = =a a a 0,1 3 5  i.e., the Taylor 
series for f at =x 0 contains only even powers of x.

 b. If f is odd, then �= = = =a a a 0,0 2 4  i.e., the Taylor 
series for f at =x 0 contains only odd powers of x.

COMPUTER EXPLORATIONS
Taylor’s formula with =n 1 and =a 0 gives the linearization of a 
function at =x 0. With =n 2 and =n 3, we obtain the standard 
quadratic and cubic approximations. In these exercises we explore the 
errors associated with these approximations. We seek answers to two 
questions:

 a. For what values of x can the function be replaced by each 
approximation with an error less than −10 ?2

 b. What is the maximum error we can expect if we replace the 
function by each approximation over the specified interval?

Using a CAS, perform the following steps to aid in answering 
questions (a) and (b) for the functions and intervals in Exercises 57–62.

Step 1: Plot the function over the specified interval.

Step 2: Find the Taylor polynomials P x P x( ), ( ),1 2  and P x( )3  
at =x 0.

Step 3: Calculate the ( )+n 1 st  derivative ( )+f c( )n 1  associ-
ated with the remainder term for each Taylor polynomial. Plot 
the derivative as a function of c over the specified interval  
and estimate its maximum absolute value, M.

Step 4: Calculate the remainder R x( )n  for each polynomial. 
Using the estimate M from Step 3 in place of ( )+f c( ),n 1  plot 
R x( )n  over the specified interval. Then estimate the values of 
x that answer question (a).

Step 5: Compare your estimated error with the actual error 
= −E x f x P x( ) ( ) ( )n n  by plotting E x( )n  over the specified 

interval. This will help you answer question (b).

Step 6: Graph the function and its three Taylor approxima-
tions together. Discuss the graphs in relation to the informa-
tion discovered in Steps 4 and 5.

 57. =
+

≤f x
x

x( ) 1
1

, 3
4

 58. ( )= + − ≤ ≤f x x x( ) 1 , 1
2

23 2

 59. =
+

≤f x x
x

x( )
1

, 2
2

 60. ( )( )= ≤f x x x x( ) cos sin 2 , 2

 61. = ≤−f x e x x( ) cos 2 , 1x

 62. = ≤f x e x x( ) sin 2 , 2x 3

9.10  Applications of Taylor Series

We can use Taylor series to solve problems that would otherwise be intractable. For exam-
ple, many functions have antiderivatives that cannot be expressed using familiar functions. 
In this section we show how to evaluate integrals of such functions by giving them as 
Taylor series. We also show how to use Taylor series to evaluate limits that lead to indeter-
minate forms and how Taylor series can be used to extend the exponential function from 
real to complex numbers. We begin with a discussion of the binomial series, which comes 
from the Taylor series of the function ( )= +f x x( ) 1 ,m  and we conclude the section with 
Table 9.1, which lists some commonly used Taylor series.

The Binomial Series for Powers and Roots

The Taylor series generated by ( )= +f x x( ) 1 ,m  when m is constant, is

 
( )

( ) ( )( )

( )( )

+ + − + − − +

+
− − − +

+

�

�
�

mx m m x m m m x

m m m m k
k

x

1 1
2!

1 2
3!
1 2 1

!
.k

2 3

 
(1)
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610 Chapter 9  Infinite Sequences and Series

This series, called the binomial series, converges absolutely for <x 1. To derive the 
series, we first list the function and its derivatives:

( )

( )

( )

( )( )

( )( )( )

( )( ) ( )

= +

′ = +

′′ = − +

′′′ = − − +

= − − − + +

−

−

−

−

�
�

f x x

f x m x

f x m m x

f x m m m x

f x m m m m k x

( ) 1

( ) 1

( ) 1 1

( ) 1 2 1

( ) 1 2 1 1 .

m

m

m

m

k m k

1

2

3

( )

We then evaluate these at =x 0 and substitute into the Taylor series formula to obtain 
Series (1).

If m is an integer greater than or equal to zero, the series stops after ( )+m 1  terms 
because the coefficients from = +k m 1 on are zero.

If m is not a positive integer or zero, the series is infinite and converges for <x 1. 
To see why, let uk be the term involving x .k  Then apply the Ratio Test for absolute conver-
gence to see that

= −
+

→ → ∞+u
u

m k
k

x x k
1

as  .k

k

1

Our derivation of the binomial series shows only that it is generated by ( )+ x1 m   
and converges for <x 1. The derivation does not show that the series converges to 
( )+ x1 .m  It does, but we leave the proof to Exercise 58. The following formulation gives 
a succinct way to express the series.

The Binomial Series
For x1 1,− < <

∑( )+ = +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

=

∞

x
m

k
x1 1 ,m

k

k

1

where we define

( )⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ =

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = −m

m
m m m

1
,

2
1

2!
,

and

( )( )( )⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ =

− − − +
≥

�m

k
m m m m k

k
k

1 2 1
!

for 3.

EXAMPLE 1  If = −m 1, then

( )−⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = −

−⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = − − =

1

1
1,

1

2
1 2

2!
1,

and

( )( )( )( )
( ) ( )

−⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =

− − − − − +
= − = −

�
k

k
k

k
k

1 1 2 3 1 1
!

1 !
!

1 .k k

With these coefficient values and with x replaced by −x, the binomial series formula gives 
the familiar geometric series

� �∑( ) ( ) ( )+ = + − = − + − + + − +−

=

∞

x x x x x x1 1 1 1 1 .
k

k k k k1

1

2 3  
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 9.10  Applications of Taylor Series 611

EXAMPLE 2  We know from Section 3.11, Example 1, that ( )+ ≈ +x x1 1 2   
for x  small. With =m 1 2, the binomial series gives quadratic and higher-order 
approximations as well, along with error estimates that come from the Alternating Series 
Estimation Theorem:

( )( ) ( )( )( )

( )( )( )( )

( )+ = + +
−

+
− −

+
− − −

+

= + − + − +

�

�

x x x x

x

x x x x

1 1
2

1
2

1
2

2!

1
2

1
2

3
2

3!
1
2

1
2

3
2

5
2

4!

1
2 8 16

5
128

.

1 2 2 3

4

2 3 4

Substitution for x gives still other approximations. For example,

− ≈ − −

− ≈ − −

x x x x

x x x x
x

1 1
2 8

for   small

1 1 1 1
2

1
8

for  1  small,  that is,    large.

2
2 4

2

2
 

Evaluating Nonelementary Integrals

Sometimes we can use a familiar Taylor series to find the sum of a given power series in 
terms of a known function. For example,

� �− + − + = − + − + =x x x x x x x x x
3! 5! 7!

( ) ( )
3!

( )
5!

( )
7!

sin .2
6 10 14

2
2 3 2 5 2 7

2

Additional examples are provided in Exercises 59–62.
Taylor series can be used to express nonelementary integrals in terms of series. 

Integrals like ∫ x dxsin 2  arise in the study of the diffraction of light.

EXAMPLE 3  Express ∫ x dxsin 2  as a power series.

Solution From the series for sin x, we substitute x 2 for x to obtain

�= − + − + −x x x x x xsin
3! 5! 7! 9!

.2 2
6 10 14 18

Therefore,

�∫ = + −
⋅

+
⋅

−
⋅

+
⋅

−x dx C x x x x xsin
3 7 3! 11 5! 15 7! 19 9!

.2
3 7 11 15 19

 

EXAMPLE 4  Estimate ∫ x dxsin0
1 2  with an error of less than 0.001.

Solution From the indefinite integral in Example 3, we easily find that

�∫ = −
⋅

+
⋅

−
⋅

+
⋅

−x dxsin 1
3

1
7 3!

1
11 5!

1
15 7!

1
19 9!

.2

0

1

The series on the right-hand side alternates, and we find by numerical evaluations that

⋅
≈1

11 5!
0.00076
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612 Chapter 9  Infinite Sequences and Series

is the first term to be numerically less than 0.001. The sum of the preceding two terms 
gives

∫ ≈ − ≈x dxsin 1
3

1
42

0.310.2

0

1

With two more terms, we could estimate

∫ ≈x dxsin 0.3102682

0

1

with an error of less than −10 .6  With only one term beyond that, we have

∫ ≈ − + − + ≈x dxsin 1
3

1
42

1
1320

1
75600

1
6894720

0.310268303,2

0

1

with an error of about × −1.08 10 .9  Guaranteeing this accuracy with the error formula for 
the Trapezoidal Rule would require using about 8000 subintervals. 

Arctangents

In Section 9.7, Example 5, we found a series for xarctan  by differentiating to get

�=
+

= − + − +d
dx

x
x

x x xarctan 1
1

1
2

2 4 6

and then integrating to get

�= − + − +x x x x xarctan
3 5 7

.
3 5 7

However, we did not prove the term-by-term integration theorem on which this conclusion 
depended. We now derive the series again by integrating both sides of the finite formula

 � ( )
( )

+
= − + − + + − +

−
+

+ +

t
t t t t

t
t

1
1

1 1
1
1

,n n
n n

2
2 4 6 2

1 2 2

2
 (2)

in which the last term comes from adding the remaining terms as a geometric series with 
first term ( )= − + +a t1 n n1 2 2 and ratio = −r t .2  Integrating both sides of Equation (2) 
from =t 0 to =t x  gives

� ( )= − + − + + −
+

+
+

x x x x x x
n

R xarctan
3 5 7

1
2 1

( ),n
n

n

3 5 7 2 1

where

∫
( )

=
−

+

+ +

R x
t
t

dt( )
1
1

.n

n nx 1 2 2

20

The denominator of the integrand is greater than or equal to 1; hence

∫≤ =
+

+
+

R x t dt x
n

( )
2 3

.n
n

x n
2 2

0

2 3

If ≤x 1, the right side of this inequality approaches zero as → ∞n . Therefore, 
=

→∞
R xlim ( ) 0

n
n  if ≤x 1 and

 

�

∑
( )

=
−

+
≤

= − + − + ≤

=

∞ +

x
x

n
x

x x x x x x

arctan
1
2 1

, 1.

arctan
3 5 7

, 1.

n

n n

0

2 1

3 5 7
 (3)
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 9.10  Applications of Taylor Series 613

We take this route instead of finding the Taylor series directly because the formulas 
for the higher-order derivatives of xarctan  are unmanageable. When we put =x 1 in 
Equation (3), we get Leibniz’s formula:

π ( )= − + − + − + −
+

+� �
n4

1 1
3

1
5

1
7

1
9

1
2 1

.
n

Because this series converges very slowly, it is not used in approximating π to many deci-
mal places. The series for xarctan  converges most rapidly when x is near zero. For that 
reason, people who use the series for xarctan  to compute π use various trigonometric 
identities.

For example, if

α β= =arctan 1
2

and arctan 1
3

,

then

α β
α β
α β

π
( )+ =

+
−

=
+
−

= =tan
tan tan

1 tan tan 1
1 tan

4
,

1
2

1
3
1
6

and therefore,

π α β= + = +
4

arctan 1
2

arctan 1
3

.

Now Equation (3) may be used with =x 1 2 to evaluate ( )arctan 1 2  and with =x 1 3 to 
give ( )arctan 1 3 . The sum of these results, multiplied by 4, gives π.

Evaluating Indeterminate Forms

We can sometimes evaluate indeterminate forms by expressing the functions involved as 
Taylor series.

EXAMPLE 5  Evaluate

−→

x
x

lim
ln

1
.

x 1

Solution We represent ln x as a Taylor series in powers of −x 1. This can be accom-
plished by calculating the Taylor series generated by ln x at =x 1 directly or by replacing 
x by −x 1 in the series for ( )+ xln 1  in Section 9.7, Example 6. Either way, we obtain

�( ) ( )= − − − +x x xln 1 1
2

1 ,2

from which we find that

�( )( )
−

= − − + =
→ →

x
x

xlim
ln

1
lim 1 1

2
1 1.

x x1 1

Of course, this particular limit can be evaluated just as well using l’Hôpital’s Rule. 

EXAMPLE 6  Evaluate

−
→

x x
x

lim
sin tan

.
x 0 3

M09_HASS5901_15_GE_C09.indd   613 07/03/2023   14:18

www.konkur.in

Telegram: @uni_k



614 Chapter 9  Infinite Sequences and Series

Solution The Taylor series for sin x and tan x, to terms in x ,5  are

� �= − + − = + + +x x x x x x x xsin
3! 5!

, tan
3

2
15

.
3 5 3 5

Subtracting the series term by term, it follows that

� �( )− = − − − = − − −x x x x x xsin tan
2 8

1
2 8

.
3 5

3
2

Division of both sides by x 3 and taking limits then give

�( )−
= − − − = −

→ →

x x
x

xlim
sin tan

lim 1
2 8

1
2

.
x x0 3 0

2
 

EXAMPLE 7  Find −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟→ x x

lim 1
sin

1 .
x 0

Solution Using algebra and the Taylor series for sin x, we have

�

�

�

�

�

�

( )
( )

( )
( )

− =
−

=
− − + −

⋅ − + −

=
− +

− +
= ⋅

− +

− +

x x
x x

x x

x x x x

x x x x

x x

x x
x

x

x

1
sin

1 sin
sin

3! 5!

3! 5!

1
3! 5!

1
3!

1
3! 5!

1
3!

.

3 5

3 5

3
2

2
2

2

2

Therefore,

�

�
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ = ⋅

− +

− +

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟
=

→ →x x
x

x

x
lim 1

sin
1 lim

1
3! 5!

1
3!

0.
x x0 0

2

2

From the quotient on the right, we can see that if x  is small, then

− ≈ ⋅ = ≈ +
x x

x x x
x

x1
sin

1 1
3! 6

or csc 1
6

. 

Euler’s Identity

A complex number is a number of the form +a bi, where a and b are real numbers and 
= −i 1 (see Chapter 18). If we substitute θ=x i  (with θ real) in the Taylor series for  

e x and use the relations

= − = = − = = = =i i i i i i i i i i i i1, , 1, ,2 3 2 4 2 2 5 4

If we apply series to calculate A Bx xlim 1 sin 1 ,
x 0

( ) ( )−
→

 we not only find the limit suc-

cessfully but also discover an approximation formula for csc x.
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 9.10  Applications of Taylor Series 615

∑−
= + + + + + = <

=

∞

� �
x

x x x x x1
1

1 , 1n

n

n2

0

� � ∑ ( )( )
+

= − + − + − + = − <
=

∞

x
x x x x x1

1
1 1 , 1n

n

n n2

0

� � ∑= + + + + + = < ∞
=

∞

e x x x
n

x
n

x1
2! ! !

,x
n

n

n2

0

� � ∑( )
( )

( )

( )
= − + − + −

+
+ =

−
+

< ∞
+

=

∞ +

x x x x x
n

x
n

xsin
3! 5!

1
2 1 !

1
2 1 !

,n
n

n

n n3 5 2 1

0

2 1

� � ∑( )
( )

= − + − + − + =
−

< ∞
=

∞

x x x x
n

x
n

xcos 1
2! 4!

1
(2 )!

1
(2 )!

,n
n

n

n n2 4 2

0

2

� � ∑( ) ( )
( )

+ = − + − + − + =
−

− < ≤−

=

∞ −

x x x x x
n

x
n

xln 1
2 3

1
1

, 1 1n
n

n

n n2 3
1

1

1

� � ∑( )
( )

= − + − + −
+

+ =
−

+
≤

+

=

∞ +

x x x x x
n

x
n

xarctan
3 5

1
2 1

1
2 1

, 1n
n

n

n n3 5 2 1

0

2 1

TABLE 9.1  Frequently Used Taylor Series

and so on to simplify the result, we obtain

�

� �

θ θ θ θ θ θ

θ θ θ θ θ θ θ θ( ) ( )
= + + + + + + +

= − + − + + − + − = +

θe i i i i i i

i i

1
1! 2! 3! 4! 5! 6!

1
2! 4! 6! 3! 5!

cos sin .

i
2 2 3 3 4 4 5 5 6 6

2 4 6 3 5

This does not prove that θ θ= +θe icos sini  because we have not yet defined what 
it means to raise e to an imaginary power. Rather, it tells us how to define θe i  so that its 
properties are consistent with the properties of the exponential function for real numbers.

Equation (4), called Euler’s identity, enables us to define +e a bi to be ⋅e ea bi for any 
complex number +a bi. So

( )= ++e e b i bcos sin .a ib a

One consequence of this identity is the equation

= −πe 1.i

When written in the form + =πe 1 0,i  this equation combines five of the most important 
constants in mathematics.

DEFINITION For any real number θ,

 θ θ= +θe icos sin .i  (4)
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616 Chapter 9  Infinite Sequences and Series

Taylor Series
Find the first four nonzero terms of the Taylor series for the functions 
in Exercises 1–10.

 1. ( )+ x1 1 2  2. ( )+ x1 1 3

 3. ( )− −x1 3 4. ( )− x1 2 1 2

 5. ( )+
−x1

2

2

 6. ( )− x1
3

4

 7. ( )+ −x1 3 1 2 8. ( )+ −x1 2 1 3

 9. ( )+ x1
2

2 3 2

 10. 
+
x

x13

Find the binomial series for the functions in Exercises 11–14.

 11. ( )+ x1 4 12. ( )+ x1 2 3

 13. ( )− x1 2 3 14. ( )− x1
2

4

Approximations and Nonelementary Integrals
In Exercises 15–18, use series to estimate the integrals’ values with 
an error of magnitude less than −10 .5  (The answer section gives the 
integrals’ values rounded to seven decimal places.)

 15. ∫ x dxsin 2

0

0.6
 16. ∫ −−e

x
dx1x

0

0.4

 17. ∫ + x
dx1

1 40

0.5
 18. ∫ + x dx1 23

0

0.35

Use series to approximate the values of the integrals in Exercises 19–22 
with an error of magnitude less than −10 .8

 19. ∫
x

x
dx

sin
0

0.1
 20. ∫ −e dxx

0

0.1
2

 21. ∫ + x dx1 4

0

0.1
 22. ∫

− x
x

dx
1 cos

20

1

 23. Estimate the error if tcos 2 is approximated by − +t t1
2 4!

4 8
 in the 

integral ∫ t dtcos .0
1 2

 24. Estimate the error if tcos  is approximated by − + −t t t1
2 4! 6!

2 3
 

in the integral ∫ t dtcos .0
1

In Exercises 25–28, find a polynomial that will approximate F x( ) 
throughout the given interval with an error of magnitude less than 

−10 .3

 25. ∫ [ ]=F x t dt( ) sin , 0,1
x

2

0

 26. ∫ [ ]= −F x t e dt( ) , 0,1t
x

2

0

2

 27. ∫=F x t dt( ) arctan ,
x

0
 (a) [ ]0, 0.5  (b) [ ]0,1

 28. ∫
( )= +F x t

t
dt( ) ln 1 ,

x

0
 (a) [ ]0, 0.5  (b) [ ]0,1

T

T

Indeterminate Forms
Use series to evaluate the limits in Exercises 29–40.

 29. 
( )− +

→

e x
x

lim 1
x

x

0 2
 30. −

→

−e e
x

lim
x

x x

0

 31. 
( )− −

→

t t
t

lim
1 cos 2

t 0

2

4
 32. 

θ θ θ
θ

( )− +
θ→
lim

sin 6
0

3

5

 33. 
−

→

y y
y

lim
arctan

y 0 3
 34. 

−
→

− y y
y y

lim
tan sin

cosy 0

1

3

 35. ( )−
→∞

−x elim 1
x

x2 1 2  36. ( )+
+→∞

x
x

lim 1 sin 1
1x

 37. 
( )+
−→

x
x

lim ln 1
1 cosx 0

2
 38. 

( )

−
−→

x
x

lim 4
ln 1x 2

2

 39. 
−→

x
x

lim
sin 3

1 cos 2x 0

2

 40. 
( )+
⋅→

x
x x

lim ln 1
sinx 0

3

2

Using Table 9.1
In Exercises 41–52, use Table 9.1 to find the sum of each series.

 41. �+ + + + +1 1 1
2!

1
3!

1
4!

 42. �( ) ( ) ( ) ( )+ + + +1
4

1
4

1
4

1
4

3 4 5 6

 43. �−
⋅

+
⋅

−
⋅

+1 3
4 2!

3
4 4!

3
4 6!

2

2

4

4

6

6

 44. �−
⋅

+
⋅

−
⋅

+1
2

1
2 2

1
3 2

1
4 22 3 4

 45. �π π π π−
⋅

+
⋅

−
⋅

+
3 3 3! 3 5! 3 7!

3

3

5

5

7

7

 46. �−
⋅

+
⋅

−
⋅

+2
3

2
3 3

2
3 5

2
3 7

3

3

5

5

7

7

 47. �+ + + +x x x x3 4 5 6

 48. �− + − +x x x1 3
2!

3
4!

3
6!

2 2 4 4 6 6

 49. �− + − + −x x x x x3 5 7 9 11

 50. �− + − + −x x x x x2 2
2!

2
3!

2
4!

2 3
2 4 3 5 4 6

 51. �− + − + − +x x x x1 2 3 4 52 3 4

 52. �+ + + + +x x x x1
2 3 4 5

2 3 4

Theory and Examples

 53. Replace x by −x in the Taylor series for ( )+ xln 1  to obtain a 
series for ( )− xln 1 . Then subtract this from the Taylor series for 

( )+ xln 1  to show that for <x 1,

( )+
−

= + + +�x
x

x x xln1
1

2
3 5

.
3 5

 54. How many terms of the Taylor series for ( )+ xln 1  should you 
add to be sure of calculating ( )ln 1.1  with an error of magnitude 
less than −10 ?8  Give reasons for your answer.

EXERCISES 9.10
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 9.10  Applications of Taylor Series 617

 55. According to the Alternating Series Estimation Theorem, how 
many terms of the Taylor series for arctan 1 would you have to 
add to be sure of finding π 4 with an error of magnitude less than 

−10 ?3  Give reasons for your answer.

 56. Show that the Taylor series for =f x x( ) arctan  diverges for 
>x 1.

 57. Estimating pi About how many terms of the Taylor series for 
xarctan  would you have to use to evaluate each term on the right-

hand side of the equation

π = + −48 arctan 1
18

32 arctan 1
57

20 arctan 1
239

with an error of magnitude less than −10 ?6  In contrast, the conver-
gence of n1

n
2

1∑ ( )
=

∞
 to π 62  is so slow that even 50 terms will 

not yield two-place accuracy.

 58. Use the following steps to prove that the binomial series in 
Equation (1) converges to ( )+ x1 .m

 a. Differentiate the series

∑= +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

=

∞

f x
m

k
x( ) 1

k

k

1

to show that

′ =
+

− < <f x
m f x

x
x( )

( )
1

, 1 1.

 b. Define ( )= + −g x x( ) 1 m f x( ) and show that ′ =g x( ) 0.

 c. From part (b), show that

( )= +f x x( ) 1 .m

 59. a. Use the binomial series and the fact that

( )= − −d
dx

x xarcsin 1 2 1 2

to generate the first four nonzero terms of the Taylor series 
for xarcsin . What is the radius of convergence?

 b. Series for xarccos  Use your result in part (a) to find the 
first five nonzero terms of the Taylor series for xarccos .

 60. a.  Series for − xsinh 1  Find the first four nonzero terms of the 
Taylor series for

∫=
+

− x dt
t

sinh
1

.
x

1
20

 b. Use the first three terms of the series in part (a) to estimate 
−sinh 0.25.1  Give an upper bound for the magnitude of the 

estimation error.

 61. Obtain the Taylor series for ( )+ x1 1 2 from the series for 
( )− + x1 1 .

 62. Use the Taylor series for ( )− x1 1 2  to obtain a series for 
( )−x x2 1 .2 2

 63. Estimating pi The English mathematician Wallis discovered 
the formula

π =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

�
�4

2 4 4 6 6 8
3 3 5 5 7 7

.

Find π to two decimal places with this formula.

T

T

T

 64. The complete elliptic integral of the first kind is the integral

∫ θ
θ

=
−

π
K d

k1 sin
,

2 20

2

where < <k0 1 is constant.

 a. Show that the first four terms of the binomial series for 
− x1 1  are

�( )− = + + ⋅
⋅

+ ⋅ ⋅
⋅ ⋅

+−x x x x1 1 1
2

1 3
2 4

1 3 5
2 4 6

.1 2 2 3

 b. From part (a) and the reduction integral Formula 67 at the 
back of the text, show that

π ( )( ) ( )= + + ⋅
⋅

+ ⋅ ⋅
⋅ ⋅

+⎡
⎣
⎢⎢

⎤
⎦
⎥⎥
�K k k k

2
1 1

2
1 3
2 4

1 3 5
2 4 6

.
2

2
2

4
2

6

 65. Series for xarcsin  Integrate the binomial series for ( )− −x1 2 1 2 
to show that for <x 1,

�
�∑

( )
= +

⋅ ⋅ ⋅ ⋅ −
⋅ ⋅ ⋅ ⋅ +=

∞ +
x x

n
n

x
n

arcsin
1 3 5 2 1

2 4 6 (2 ) 2 1
.

n

n

1

2 1

 66. Series for xarctan  for >x 1 Derive the series

�

�

π

π

= − + − + >

= − − + − + < −

x
x x x

x

x
x x x

x

arctan
2

1 1
3

1
5

, 1

arctan
2

1 1
3

1
5

, 1,

3 5

3 5

by integrating the series

�
( )+

= ⋅
+

= − + − +
t t t t t t t

1
1

1 1
1 1

1 1 1 1
2 2 2 2 4 6 8

in the first case from x to ∞ and in the second case from −∞ to x.

Euler’s Identity

 67. Use Equation (4) to write the following powers of e in the form 
+a bi.

 a. π−e i  b. πe i 4 c. π−e i 2

 68. Use Equation (4) to show that

θ θ= + = −θ θ θ θ− −e e e e
i

cos
2

and sin
2

.
i i i i

 69. Establish the equations in Exercise 68 by combining the formal 
Taylor series for θe i  and θ−e .i

 70. Show that

 a. θ θ=icosh cos , b. θ θ=i isinh sin .

 71. By multiplying the Taylor series for e x and sin x, find the terms 
through x 5 of the Taylor series for e xsin .x  This series is the imag-
inary part of the series for

⋅ = ( )+e e e .x ix i x1

Use this fact to check your answer. For what values of x should 
the series for e xsinx  converge?

 72. When a and b are real, we define ( )+e a ib x  with the equation

( )= ⋅ = +( )+e e e e bx i bxcos sin .a ib x ax ibx ax
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618 Chapter 9  Infinite Sequences and Series

Differentiate the right-hand side of this equation to show that

( )= +( ) ( )+ +d
dx

e a ib e .a ib x a ib x

Thus the familiar rule ( ) =d dx e kekx kx  holds for k complex as 
well as real.

 73. Use the definition of θe i  to show that for any real numbers θ θ, ,1  
and θ ,2

 a. =θ θ θ θ( )+e e e ,i i i1 2 1 2

 b. =θ θ−e e1 .i i

 74. Two complex numbers +a ib and +c id  are equal if and only if 
=a c and =b d. Use this fact to evaluate

∫ ∫e bx dx e bx dxcos and sinax ax

from

∫ = −
+

+( ) ( )+ +e dx a ib
a b

e C,a ib x a ib x
2 2

where = +C C iC1 2 is a complex constant of integration.

 1. What is an infinite sequence? What does it mean for such a 
sequence to converge? To diverge? Give examples.

 2. What is a monotonic sequence? Under what circumstances does 
such a sequence have a limit? Give examples.

 3. What theorems are available for calculating limits of sequences? 
Give examples.

 4. What theorem sometimes enables us to use l’Hôpital’s Rule to 
calculate the limit of a sequence? Give an example.

 5. What are the six commonly occurring limits in Theorem 5 that 
arise frequently when you work with sequences and series?

 6. What is an infinite series? What does it mean for such a series to 
converge? To diverge? Give examples.

 7. What is a geometric series? When does such a series converge? 
Diverge? When it does converge, what is its sum? Give examples.

 8. Besides geometric series, what other convergent and divergent 
series do you know?

 9. What is the nth-Term Test for Divergence? What is the idea behind 
the test?

 10. What can be said about term-by-term sums and differences of 
convergent series? About constant multiples of convergent and 
divergent series?

 11. What happens if you add a finite number of terms to a convergent 
series? A divergent series? What happens if you delete a finite 
number of terms from a convergent series? A divergent series?

 12. How do you reindex a series? Why might you want to do this?

 13. Under what circumstances will an infinite series of nonnegative 
terms converge? Diverge? Why study series of nonnegative terms?

 14. What is the Integral Test? What is the reasoning behind it? Give 
an example of its use.

 15. When do p-series converge? Diverge? How do you know? Give 
examples of convergent and divergent p-series.

 16. What are the Direct Comparison Test and the Limit Comparison 
Test? What is the reasoning behind these tests? Give examples of 
their use.

 17. What are the Ratio and Root Tests? Do they always give you the 
information you need to determine convergence or divergence? 
Give examples.

CHAPTER 9 Questions to Guide Your Review

 18. What is absolute convergence? Conditional convergence? How 
are the two related?

 19. What is an alternating series? What theorem is available for deter-
mining the convergence of such a series?

 20. How can you estimate the error involved in approximating the 
sum of an alternating series with one of the series’ partial sums? 
What is the reasoning behind the estimate?

 21. What do you know about rearranging the terms of an absolutely 
convergent series? Of a conditionally convergent series?

 22. What is a power series? How do you test a power series for con-
vergence? What are the possible outcomes?

 23. What are the basic facts about

 a. sums, differences, and products of power series?

 b. substitution of a function for x in a power series?

 c. term-by-term differentiation of power series?

 d. term-by-term integration of power series?

 e. Give examples.

 24. What is the Taylor series generated by a function f x( ) at a point 
=x a? What information do you need about f to construct the 

series? Give an example.

 25. What is a Maclaurin series?

 26. Does a Taylor series always converge to its generating function? 
Explain.

 27. What are Taylor polynomials? Of what use are they?

 28. What is Taylor’s formula? What does it say about the errors 
involved in using Taylor polynomials to approximate functions? 
In particular, what does Taylor’s formula say about the error in a 
linearization? A quadratic approximation?

 29. What is the binomial series? On what interval does it converge? 
How is it used?

 30. How can you sometimes use power series to estimate the values of 
nonelementary definite integrals? To find limits?

 31. What are the Taylor series for ( ) ( )− +x x e x1 1 ,1 1 , , sin ,x  
( )+x xcos , ln 1 , and xarctan ? How do you estimate the errors 

involved in replacing these series with their partial sums?
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 Chapter 9  Practice Exercises 619

Determining Convergence of Sequences
Which of the sequences whose nth terms appear in Exercises 1–18 
converge, and which diverge? Find the limit of each convergent 
sequence.

 1. 
( )= + −a

n
1 1

n

n

 2. 
( )= − −a

n
1 1

n

n

 3. = −a 1 2
2n

n

n
 4. ( )= +a 1 0.9n

n

 5. π=a nsin
2n  6. π=a nsinn

 7. 
( )=a n
n

ln
n

2
 8. 

( )= +a n
n

ln 2 1
n

 9. =
+

a
n n

n
ln

n  10. 
( )= +a n

n
ln 2 1

n

3

 11. ( )= −a n
n

5
n

n

 12. ( )= +
−

a
n

1 1
n

n

 13. =a
n

3
n

n
n  14. ( )=a

n
3

n

n1

 15. ( )= −a n 2 1n
n1  16. = +a n2 1n

n

 17. 
( )= +a n

n
1 !

!n  18. 
( )= −a

n
4
!n

n

Convergent Series
Find the sums of the series in Exercises 19–24.

 19. ∑ ( )( )− −=

∞

n n
1

2 3 2 1n 3

 20. ∑ ( )

−
+=

∞

n n
2

1n 2

 21. ∑ ( )( )− +=

∞

n n
9

3 1 3 2n 1

 22. ∑ ( )( )

−
− +=

∞

n n
8

4 3 4 1n 3

 23. ∑
=

∞
−e

n

n

0

 24. ∑( )−
=

∞

1 3
4n

n
n

1

Determining Convergence of Series
Which of the series in Exercises 25–44 converge absolutely, which 
converge conditionally, and which diverge? Give reasons for your 
answers.

 25. ∑
=

∞

n
1

n 1

 26. ∑ −

=

∞

n
5

n 1

 27. ∑ ( )−

=

∞

n
1

n

n

1

 28. ∑
=

∞

n
1

2n 1
3

 29. ∑ ( )

( )

−
+=

∞

n
1

ln 1n

n

1

 30. ∑ ( )=

∞

n n
1

lnn 2
2

 31. ∑
=

∞ n
n

ln

n 1
3

 32. ∑ ( )=

∞ n
n

ln
ln lnn 3

 33. ∑ ( )−
+=

∞

n n
1

1n

n

1
2

 34. ∑ ( )−
+=

∞ n
n
1 3

1n

n

1

2

3

CHAPTER 9 Practice Exercises

 35. ∑ +

=

∞ n
n

1
!n 1

 36. ∑ ( )( )− +
+ −=

∞ n
n n
1 1

2 1n

n

1

2

2

 37. ∑ ( )−

=

∞

n
3
!n

n

1

 38. ∑
=

∞

n
2 3

n

n n

n
1

 39. ∑
( )( )+ +=

∞

n n n
1
1 2n 1

 40. ∑
−=

∞

n n
1

1n 2
2

 41. �( ) ( ) ( ) ( )− + − + −1 1
3

1
3

1
3

1
3

2 4 6 8

 42. ∑ ( )−
+=

∞

−e
1

1n

n

n
0

 43. ∑ + + + +
− < <

=

∞

�r r r
r1

1
, for 1 1

n
n

0
2

 44. ∑ ( )−
+ −=

∞

n n
1

100n

n

1

 45. Prove that 
A Bn n n

1
ln ln lnn

p
3

∑ ( ) ( )=

∞

 converges if and only if >p 1.

 46. Prove that ∑
=

∞ n
n
ln

n
p

1

 converges if and only if >p 1.

Power Series
In Exercises 47–56, (a) find the series’ radius and interval of conver-
gence. Then identify the values of x for which the series converges  
(b) absolutely and (c) conditionally.

 47. ∑ ( )+

=

∞ x
n

4
3n

n

n
1

 48. ∑ ( )

( )

−
−=

∞ −x
n

1
2 1 !n

n

1

2 2

 49. ∑ ( ) ( )− −

=

∞ − x
n

1 3 1

n

n n

1

1

2
 50. ∑ ( )( )

( )

+ +
+=

∞ n x
n
1 2 1

2 1 2n

n

n
0

 51. ∑
=

∞ x
nn

n

n
1

 52. ∑
=

∞ x
nn

n

1

 53. ∑ ( )+

=

∞ −n x1
3n

n

n
0

2 1
 54. ∑

( ) ( )− −
+=

∞ +x
n

1 1
2 1n

n n

0

2 1

 55. ∑( )
=

∞

n xcsch
n

n

1

 56. ∑( )
=

∞

n xcoth
n

n

1

Maclaurin Series
Each of the series in Exercises 57–62 is the value of the Taylor series 
at =x 0 of a function f x( ) at a particular point. What function and 
what point? What is the sum of the series?

 57. � �( )− + − + − +1 1
4

1
16

1 1
4

n
n

 58. � �( )− + − + − +−

n
2
3

4
18

8
81

1 2
3

n
n

n
1

 59. � �π π π π
( )

( )
− + − + −

+
+

+

n3! 5!
1

2 1 !
n

n3 5 2 1

 60. π π π
( )−

⋅
+

⋅
− + − +� �

n
1

9 2! 81 4!
1

3 (2 )!
n

n

n

2 4 2

2
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620 Chapter 9  Infinite Sequences and Series

 61. � �
( ) ( )

+ + + + +
n

1 ln 2
ln 2

2!
ln 2

!

n2

 62. �

�
( )

( )
( )

− + −

+ −
−

+−
−

n

1
3

1
9 3

1
45 3

  1 1

2 1 3
n

n
1

2 1

Find Taylor series at =x 0 for the functions in Exercises 63–70.

 63. 
− x
1

1 2
 64. 

+ x
1

1 3

 65. πxsin  66. xsin 2
3

 67. ( )xcos 5 3  68. xcos
5

3

 69. π( )e x 2  70. −e x 2

Taylor Series
In Exercises 71–74, find the first four nonzero terms of the Taylor 
series generated by f at =x a.

 71. = + = −f x x x( ) 3 at 12

 72. ( )= − =f x x x( ) 1 1 at 2

 73. ( )= + =f x x x( ) 1 1 at 3

 74. = = >f x x x a( ) 1 at 0

Nonelementary Integrals
Use series to approximate the values of the integrals in Exercises 75–78 
with an error of magnitude less than −10 .8  (The answer section gives 
the integrals’ values rounded to ten decimal places.)

 75. ∫ −e dxx

0

1 2
3  76. ∫ x x dxsin ( )3

0

1

 77. ∫
− x
x

dx
tan 1

0

1 2
 78. ∫

x

x
dx

arctan
0

1 64

Using Series to Find Limits
In Exercises 79–84:

 a. Use power series to evaluate the limit.

 b. Then use a grapher to support your calculation.

 79. 
−→

x
e

lim
7 sin

1x x0 2
 80. θ

θ θ
− −

−θ

θ θ

→

−e elim 2
sin0

 81. 
−

−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟→ t t

lim 1
2 2 cos

1
t 0 2

 82. 
( ) −

→

h h h
h

lim
sin cos

h 0 2

 83. 
( )

−
− +→

z
z z

lim
1 cos

ln 1 sinz 0

2

 84. 
−→

y
y y

lim
cos coshy 0

2

Theory and Examples

 85. Use a series representation of sin 3x to find values of r and s for 
which

( )+ + =
→

x
x

r
x

slim
sin 3

0.
x 0 3 2

 86. Compare the accuracies of the approximations ≈x xsin  
and ( )≈ +x x xsin 6 6 2  by comparing the graphs of 

= −f x x x( ) sin  and ( )( )= − +g x x x x( ) sin 6 6 .2  Describe 
what you find.

T

T

 87. Find the radius of convergence of the series

n
n

x
2 5 8 3 1

2 4 6 (2 )
.

n

n

1

�
�∑

( )⋅ ⋅ ⋅ ⋅ −
⋅ ⋅ ⋅ ⋅=

∞

 88. Find the radius of convergence of the series

∑
( )

( )
( )

⋅ ⋅ ⋅ ⋅ +
⋅ ⋅ ⋅ ⋅ −

−
=

∞ �
�

n
n

x
3 5 7 2 1
4 9 14 5 1

1 .
n

n

1

 89. Find a closed-form formula for the nth partial sum of the series 
nln 1 1

n
2

2∑ ( )( )−
=

∞
 and use it to determine the convergence or 

divergence of the series.

 90. Evaluate k1 1
k

2
2∑ ( )( )−

=

∞
 by finding the limits as → ∞n  of 

the series’ nth partial sum.

 91. a. Find the interval of convergence of the series

�

�
�

( )

= + + +

+
⋅ ⋅ ⋅ ⋅ −

+

y x x

n
n

x

1 1
6

1
180

1 4 7 3 2
(3 )!

.n

3 6

3

 b. Show that the function defined by the series satisfies a  
differential equation of the form

= +d y
dx

x y b,a
2

2

and find the values of the constants a and b.

 92. a. Find the Maclaurin series for the function ( )+x x1 .2

 b. Does the series converge at =x 1? Explain.

 93. If ann 1∑ =

∞
 and bnn 1∑ =

∞
 are convergent series of nonnegative 

numbers, can anything be said about a b ?n nn 1∑ =

∞
 Give reasons 

for your answer.

 94. If ann 1∑ =

∞
 and bnn 1∑ =

∞
 are divergent series of nonnegative 

numbers, can anything be said about a b ?n nn 1∑ =

∞
 Give reasons 

for your answer.

 95. Prove that the sequence { }x n  and the series x xk kk 11∑ ( )−+=

∞
 

both converge or both diverge.

 96. Prove that a a1n nn 1∑ ( )( )+
=

∞
 converges if >a 0n  for all n and 

ann 1∑ =

∞
 converges.

 97. Suppose that …a a a a, , , , n1 2 3  are positive numbers satisfying the 
following conditions:

 i) ≥ ≥ ≥�a a a   ;1 2 3

 ii) the series + + + +a a a a2 4 8 16 � diverges.

Show that the series

+ + +
a a a
1 2 3
1 2 3 �

diverges.

 98. Use the result in Exercise 97 to show that

∑+
=

∞

n n
1 1

lnn 2

diverges.
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 Chapter 9  Additional and Advanced Exercises 621

 99. Show that if >a 0n  and ∑
=

∞

a
n

n
1

 converges, then ∑
=

∞ a
nn

n

1

 converges.

 100. Determine whether ∑
=

∞

b
n

n
1

 converges or diverges.

 a. ( )= = − +
++b b n

n
b1, 1 1

3 2n
n

n1 1

 b. = =+b b n
n

b3,
lnn n1 1

 101. Assume that >b 0n  and ∑
=

∞

b
n

n
1

 converges. What, if anything, 

can be said about the following series?

 a. ∑
=

∞

btan ( )
n

n
1

 b. ∑ ( )+
=

∞

bln 1
n

n
1

 c. ∑ ( )+
=

∞

bln 2
n

n
1

1

1

−
1
2

−
1
2

−
1
4

−
1
4 −

1
8

−
1
8

 102. Consider the convergent series ∑ ( )−
+=

∞

e e
1 ,

n

n

n cn
1

 where c is a constant. 

What should c be so that the first 10 terms of the series estimate 
the sum of the entire series with an error of less than 0.00001?

 103. Assume that the following sequence has a limit L. Find the value 
of L.

…4 , (4(4 )) , (4(4(4 )) ) , (4(4(4(4 )) ) ) ,1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

 104. Consider the infinite sequence of shaded right triangles in the 
accompanying diagram. Compute the total area of the triangles.

Determining Convergence of Series

Which of the series ann 1∑ =

∞
 defined by the formulas in Exercises 1–4 

converge, and which diverge? Give reasons for your answers.

 1. ∑
( )− ( )

=

∞

+n
1

3 2n
n

1
1 2  2. ∑

( )
+=

∞ − n
n

tan
1n 1

1 2

2

 3. ∑( )−
=

∞

n1 tanh
n

n

1

 4. ∑
( )

=

∞ n
n

log !

n

n

2
3

Which of the series ann 1∑ =

∞
 defined by the formulas in Exercises 5–8 

converge, and which diverge? Give reasons for your answers.

 5. 
( )

( )( )
= = +

+ ++a a n n
n n

a1, 1
2 3n n1 1

(Hint: Write out several terms, see which factors cancel, and then 
generalize.)

 6. 
( )( )

= = =
− +

≥+a a a n
n n

a n7,
1 1

if 2n n1 2 1

 7. = = =
+

≥+a a a
a

n1, 1
1

if 2n
n

1 2 1

 8. =a 1 3n
n if n is odd, =a n 3n

n  if n is even

Choosing Centers for Taylor Series

Taylor’s formula

f x f a f a x a
f a

x a

f a
n

x a
f c
n

x a

( ) ( ) ( )
( )

2!
( )
!

( )
1 !

n
n

n
n

2

( ) 1
1

�

( )

( ) ( )

( ) ( )

= + ′ − + ′′ − +

+ − +
+

−
( )+

+

expresses the value of f at x in terms of the values of f and its deriva-
tives at =x a. In numerical computations, we therefore need a to be a 

CHAPTER 9 Additional and Advanced Exercises

point where we know the values of f and its derivatives. We also need 
a to be close enough to the values of f in which we are interested to 
make ( )− +x a n 1 so small we can neglect the remainder.

In Exercises 9–14, what Taylor series would you choose to represent 
the function near the given value of x? (There may be more than one 
good answer.) Write out the first four nonzero terms of the series you 
choose.

 9. =x xcos near 1 10. =x xsin near 6.3

 11. =e xnear 0.4x  12. =x xln near 1.3

 13. =x xcos near 69 14. =x xarctan near 2

Theory and Examples

 15. Let a and b be constants with < <a b0 . Does the sequence 
{ }( )+a bn n n1  converge? If it does converge, what is the limit?

 16. Find the sum of the infinite series

+ + + + + + +

+ + +

1 2
10

3
10

7
10

2
10

3
10

7
10

2
10

3
10

7
10

.

2 3 4 5 6 7

8 9
�

 17. Evaluate

∑ ∫ +=

∞ +

x
dx1

1
.

n
n

n

0
2

1

 18. Find all values of x for which

∑ ( )( )+ +=

∞ nx
n x1 2 1n

n

n
1

converges absolutely.
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622 Chapter 9  Infinite Sequences and Series

 19. a. Does the value of

( )
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟→∞

a n
n

alim 1
cos

, constant,
n

n

appear to depend on the value of a? If so, how?

 b. Does the value of

( )
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ≠

→∞

a n
bn

a b blim 1
cos

, and constant, 0,
n

n

appear to depend on the value of b? If so, how?

 c. Use calculus to confirm your findings in parts (a) and (b).

 20. Show that if  ann 1∑ =

∞
 converges, then

∑( )+

=

∞ a1 sin
2n

n
n

1

converges.

 21. Find a value for the constant b that will make the radius of conver-
gence of the power series

b x
nlnn

n n

2
∑

=

∞

equal to 5.

 22. How do you know that the functions sin x, ln x, and e x are not 
polynomials? Give reasons for your answer.

 23. Find the value of a for which the limit

ax x x
x

lim
sin ( ) sin

x 0 3

− −
→

is finite, and evaluate the limit.

 24. Find values of a and b for which

ax b
x

lim
cos ( )

2
1.

x 0 2

−
= −

→

 25. Raabe’s (or Gauss’s) Test The following test, which we state 
without proof, is an extension of the Ratio Test.

Raabe’s Test: If  unn 1∑ =

∞
 is a series of positive constants and 

there exist constants C, K, and N such that

= + +
+

u
u

C
n

f n
n

1
( )

,n

n 1
2

where <f n K( )  for ≥n N, then unn 1∑ =

∞
 converges if >C 1 

and diverges if ≤C 1.
Show that the results of Raabe’s Test agree with what you 

know about the series n1
n

2
1∑ ( )

=

∞
 and n1 .

n 1∑ ( )
=

∞

 26. (Continuation of Exercise 25.) Suppose that the terms of  unn 1∑ =

∞
 

are defined recursively by the formulas

( )

( )
= = −

++u u n
n n

u1, 2 1
(2 ) 2 1

.n n1 1

2

Apply Raabe’s Test to determine whether the series converges.

 27. Suppose that ann 1∑ =

∞
 converges, ≠a 1,n  and >a 0n  for all n.

 a. Show that ann
2

1∑ =

∞
 converges.

 b. Does a a1n nn 1∑ ( )−
=

∞
 converge? Explain.

T  28. (Continuation of Exercise 27.) If ann 1∑ =

∞
 converges, and if 

a0 1n< <  for all n, show that aln 1 nn 1∑ ( )−
=

∞
 converges.

(Hint: First show that ( ) ( )− ≤ −a a aln 1 1 .n n n )

 29. Nicole Oresme’s Theorem Prove Nicole Oresme’s Theorem:

+ ⋅ + ⋅ + + + =
−

n1 1
2

2 1
4

3
2

4.
n 1

� �

(Hint: Differentiate both sides of the equation x1 1( )− = 

x1 .n
n 1∑+

=

∞
)

 30. a. Find a power series representation of  −e
x

1.
x

 b. By differentiating the series in part (a) term by term, show 

that  ∑ ( )+
=

=

∞ n
n 1 !

1.
n 1

 31. a. Find a power series representation of −e .x 2

 b. By differentiating the series in part (a) twice term-by-term, 

show that  ∑( )− + =
=

∞
+ n

n
1 2 1

2 !
1.

n

n
n

1

1

 32. a. Show that

∑ ( )

( )

+ =
−=

∞ n n
x

x
x

1 2
1n

n
1

2

3

for >x 1 by differentiating the identity

∑ =
−=

∞
+x x

x1n

n

1

1
2

twice, multiplying the result by x, and then replacing x by x1 .

 b. Use part (a) to find the real solution greater than 1 of the 
equation

∑ ( )= +

=

∞

x n n
x

1 .
n

n
1

 33. Quality control 

 a. Differentiate the series

−
= + + + + +

x
x x x1

1
1 n2 � �

to obtain a series for ( )− x1 1 .2

 b. In one throw of two dice, the probability of getting a roll of 7 
is =p 1 6. If you throw the dice repeatedly, the probability 
that a 7 will appear for the first time at the nth throw is −q p,n 1  
where = − =q p1 5 6. The expected number of throws until 

a 7 first appears is nq p.n
n

1
1∑ −

=

∞
 Find the sum of this series.

 c. As an engineer applying statistical control to an industrial 
operation, you inspect items taken at random from the assem-
bly line. You classify each sampled item as either “good” or 
“bad.” If the probability of an item’s being good is p and of an 
item’s being bad is = −q p1 , the probability that the first 
bad item found is the nth one inspected is −p q.n 1  The average 
number inspected up to and including the first bad item found 
is np q.n

n
1

1∑ −
=

∞
 Evaluate this sum, assuming < <p0 1.

 34. Expected value Suppose that a random variable X may assume 
the values 1, 2, 3, … , with probabilities p p p, , , ,1 2 3 …  where pk 
is the probability that X equals ( )=k k 1, 2, 3, .…  Suppose also 

that ≥p 0k  and that p 1.kk 1∑ =
=

∞
 The expected value of X, 
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 Chapter 9  Technology Application Projects 623

denoted by E X( ), is the number kp ,kk 1∑ =

∞
 provided the series 

converges. In each of the following cases, show that p 1kk 1∑ =
=

∞
 

and find E X( ) if it exists. (Hint: See Exercise 33.)

 a. = −p 2k
k  b. =

−
p 5

6k

k

k

1

 c. 
( )

=
+

= −
+

p
k k k k

1
1

1 1
1k

 35. Safe and effective dosage The concentration in the blood 
resulting from a single dose of a drug normally decreases with 
time as the drug is eliminated from the body. Doses may therefore 
need to be repeated periodically to keep the concentration from 
dropping below some particular level. One model for the effect 
of repeated doses gives the residual concentration just before the 
( )+n 1 st dose as

= + + +− − −R C e C e C e ,n
kt kt nkt

0 0
2

0
0 0 0�

where =C0  the change in concentration achievable by a single 
dose ( ) =kmg mL , the elimination constant (h ),1−  and =t0  
time between doses (h). See the accompanying figure.

T

Mathematica/Maple Projects

Projects can be found within MyLab Math.

• Bouncing Ball

The model predicts the height of a bouncing ball, and the time until it stops bouncing.

• Taylor Polynomial Approximations of a Function

A graphical animation shows the convergence of the Taylor polynomials to functions having derivatives of all orders over an interval in their 
domains.

CHAPTER 9 Technology Application Projects

 36. Time between drug doses (Continuation of Exercise 35.) If 
a drug is known to be ineffective below a concentration C L and 
harmful above some higher concentration C ,H  we need to find val-
ues of C0 and t0 that will produce a concentration that is safe (not 
above C H) but effective (not below C L). See the accompanying 
figure. We therefore want to find values for C0 and t0 for which

= + =R C C R Cand .L H0

t0

C0

0

Time (h)

C
on

ce
nt

ra
tio

n 
(m

g�
m

L
)

C1 = C0 + C0e−k t0

R1 = C0e−k t0

R2
R3

Rn

Cn−1
C2

t

C

t0

CL

0 Time

C
on

ce
nt

ra
tio

n 
in

 b
lo

od

C0

Highest safe level
CH

Lowest effective level

t

C

 a. Write Rn in closed from as a single fraction, and find 
=

→∞
R Rlim .

n
n

 b. Calculate R1 and R10 for = = −C k1 mg mL, 0.1 h ,0
1  and 

=t 10 h.0  How good an estimate of R is R10?

 c. If = −k 0.01 h 1 and =t 10 h,0  find the smallest n such that 
( )>R R1 2 .n  Use =C 1 mg mL.0

(Source: Prescribing Safe and Effective Dosage, B. Horelick and 
S. Koont, COMAP, Inc., Lexington, MA.)

Thus = −C C C .H L0  When these values are substituted in the 
equation for R obtained in part (a) of Exercise 35, the resulting 
equation simplifies to

t
k

C
C

1 ln .H

L
0 =

To reach an effective level rapidly, one might administer a “load-
ing” dose that would produce a concentration of C mg mL.H  This 
could be followed every t0 hours by a dose that raises the concen-
tration by = −C C C mg mL.H L0

 a. Verify the preceding equation for t .0

 b. If = −k 0.05 h 1 and the highest safe concentration is e 
times the lowest effective concentration, find the length of time 
between doses that will ensure safe and effective concentrations.

 c. Given = =C C2 mg mL, 0.5 mg mL,H L  and = −k 0.02 h ,1   
determine a scheme for administering the drug.

 d. Suppose that = −k 0.2 h 1 and that the smallest effective 
concentration is 0.03 mg mL. A single dose that produces a 
concentration of 0.1 mg mL is administered. About how long 
will the drug remain effective?
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624

OVERVIEW In this chapter we study new ways to describe curves in the plane. Instead of 
considering a curve as the graph of a function or equation, we think of it as the path of a mov-
ing particle whose position is changing over time. Then each of the x- and y-coordinates of 
the particle’s position becomes a function of a third variable t. We can also change the way in 
which points in the plane themselves are described by using polar coordinates rather than the 
rectangular or Cartesian system. Both of these new tools are useful for describing motion, 
like that of planets and satellites, or projectiles moving in the plane or in space.

Parametric Equations 

and Polar Coordinates

10

FIGURE 10.1 The curve or path traced 
by a particle moving in the xy-plane is not 
always the graph of a function or single 
equation.

( f (t), g(t))

Position of particle
at time t

10.1 Parametrizations of Plane Curves

Parametric Equations

Figure 10.1 shows the path of a moving particle in the xy-plane. Notice that the path fails 
the vertical line test, so it cannot be described as the graph of a function of the variable x. 
However, we can describe the path by a pair of equations, x f t( )=  and y g t( )= , where 
f  and g are continuous functions. In the study of motion, t usually denotes time. Equations 
like these can describe more general curves than those described by a single function, and 
they provide not only the graph of the path traced out but also the location of the particle 
x y f t g t,  ( ),  ( )( ) ( )=  at any time t.

DEFINITION If x and y are given as functions

= =x f t y g t( ), ( )

over an interval I of t-values, then the set of points x y f t g t,  ( ),  ( )( ) ( )=  defined 
by these equations is a parametric curve. The equations are parametric equations 
for the curve.

The variable t is a parameter for the curve, and its domain I is the parameter 
interval. If I is a closed interval, a t b,≤ ≤  the point f a g a( ),  ( )( ) is the initial point of 
the curve and f b g b( ),  ( )( ) is the terminal point. When we give parametric equations and 
a parameter interval for a curve, we say that we have parametrized the curve. The equa-
tions and interval together constitute a parametrization of the curve. A given curve can be 
represented by different sets of parametric equations. (See Exercises 29 and 30.)

EXAMPLE 1  Sketch the curve defined by the parametric equations

x t y t tsin
2

, , 0 6.π= = ≤ ≤
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 10.1  Parametrizations of Plane Curves 625

Solution We make a table of values (Table 10.1), plot the points x y,  ,( )  and draw a 
smooth curve through them (Figure 10.2). If we think of the curve as the path of a moving 
particle, the particle starts at time t 0=  at the initial point 0, 0( ) and then moves upward 
in a wavy path until at time t 6=  it reaches the terminal point 0, 6( ). The direction of 
motion is shown by the arrows in Figure 10.2.

t x y

0 0 0

1 1 1

2 0 2

3 −1 3

4 0 4

5 1 5

6 0 6

TABLE 10.1 Values of x tsin
2

=  

and y t=  for selected values  
of t.

FIGURE 10.2 The curve given by the 

parametric equations x tsin
2
π=  and 

y t=  (Example 1). 

x

y

0 1−1

1

2

5

6

4

3

(0, 0)
t = 0

(0, 6)
t = 6

(1, 1)
t = 1

(−1, 3)
t = 3

(1, 5)
t = 5

(0, 2)
t = 2

(0, 4)
t = 4

EXAMPLE 2  Sketch the curve defined by the parametric equations

x t y t t, 1, .2= = + −∞ < < ∞

Solution We make a table of values (Table 10.2), plot the points x y, ( ), and draw a 
smooth curve through them (Figure 10.3). We think of the curve as the path that a particle 
moves along the curve in the direction of the arrows. Although the time intervals in the 
table are equal, the consecutive points plotted along the curve are not at equal arc length 
distances. The reason for this is that the particle slows down as it gets nearer to the y-axis 
along the lower branch of the curve as t increases, and then speeds up after reaching the 
y-axis at 0, 1( ) and moving along the upper branch. Since the interval of values for t is all 
real numbers, there is no initial point or terminal point for the curve.

t x y

−3 9 −2

−2 4 −1

−1 1 0

0 0 1

1 1 2

2 4 3

3 9 4

TABLE 10.2 Values of x t 2=  and 
1y t= +  for selected values  

of t.

FIGURE 10.3 The curve given by 
the parametric equations x t 2=  and 
y t 1= +  (Example 2).

(1, 2)
(4, 3)

(4, −1)

(9, 4)

(9, −2)

(0, 1)
(1, 0)

x

y

t = 0

t = −1

t = 1
t = 2

t = 3

t = −2

t = −3
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626 Chapter 10 Parametric Equations and Polar Coordinates

For this example we can use algebraic manipulation to eliminate the parameter t and 
obtain an algebraic equation for the curve in terms of x and y alone. We solve y t 1= +  
for t and substitute the resulting equation t y 1= −  into the equation for x, which yields

x t y y y1 2 1.2 2 2( )= = − = − +

The equation x y y2 12= − +  represents a parabola, as displayed in Figure 10.3. It is 
sometimes quite difficult, or even impossible, to eliminate the parameter from a pair of 
parametric equations, as we did here. 

EXAMPLE 3  Graph the parametric curves

 (a) x t y t tcos , sin , 0 2 .π= = ≤ ≤
 (b) x a t y a t tcos , sin , 0 2 .π= = ≤ ≤

Solution 

 (a) Since x y t tcos sin 1,2 2 2 2+ = + =  the parametric curve lies along the unit circle 
x y 1.2 2+ =  As t increases from 0 to 2 ,π  the point x y t t,  cos , sin( )( ) =  starts at 
1, 0( ) and traces the entire circle once counterclockwise (Figure 10.4).

 (b) For x a t y a tcos , sin ,= =  we have x y a t a t acos sin .2 2 2 2 2 2 2+ = + =  The 
parametrization describes a motion that begins at the point a, 0( ) and traverses  
the circle x y a2 2 2+ =  once counterclockwise, returning to a, 0( ) at t 2 .π=  
The graph is a circle centered at the origin with radius r a=  and coordinate points 
a t a tcos ,   sin( ). 

EXAMPLE 4  The position P x y, ( ) of a particle moving in the xy-plane is given by 
the equations and parameter interval

x t y t t, , 0.= = ≥

Identify the path traced by the particle and describe the motion.

Solution We try to identify the path by eliminating t between the equations x t=  and 
y t= , which might produce a recognizable algebraic relation between x and y. We find 
that

y t t x .
2 2( )= = =

Thus, the particle’s position coordinates satisfy the equation y x ,2=  so the particle moves 
along the parabola y x .2=

It would be a mistake, however, to conclude that the particle’s path is the entire 
parabola y x ;2=  it is only half the parabola. The particle’s x-coordinate is never negative. 
The particle starts at 0, 0( ) when t 0=  and rises into the first quadrant as t increases 
(Figure 10.5). The parameter interval is 0, [ )∞ , and there is no terminal point. 

The graph of any function y f x( )=  can always be given a natural parametrization 
x t=  and y f t( ).=  The domain of the parameter in this case is the same as the domain 
of the function f .

EXAMPLE 5  A parametrization of the graph of the function =f x x( ) 2 is given by

x t y f t t t, ( ) , .2= = = −∞ < < ∞

When t 0≥ , this parametrization gives the same path in the xy-plane as we had in 
Example 4. However, since the parameter t here can now also be negative, we obtain the 
left-hand part of the parabola as well; that is, we have the entire parabolic curve. For this 
parametrization, there is no starting point and no terminal point (Figure 10.6). 

FIGURE 10.4 The equations x tcos=  
and y tsin=  describe motion on the 
circle x y 1.2 2+ =  The arrow shows the 
direction of increasing t (Example 3).

x
0

t

(1, 0)

y

x2 + y2 = 1

P(cos t, sin t)

t = 0t = p

 t = 3p
2

 t = p
2

FIGURE 10.5 The equations x t=  
and y t=  and the interval t 0≥  describe 
the path of a particle that traces the 
right-hand half of the parabola y x 2=  
(Example 4).

x

y

0

(1, 1)

(2, 4)

  

Starts at
t = 0

t = 1

t = 4

y = x2, x ≥ 0

P(
"

t, t)

FIGURE 10.6 The path defined by 
x t y t t,   ,2= = −∞ < < ∞ is the 
entire parabola y x 2=  (Example 5).

x

y

0

y = x2

(−2, 4) (2, 4)

(1, 1)

t = −2 t = 2

t = 1

P(t, t 2)
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 10.1  Parametrizations of Plane Curves 627

Notice that a parametrization also specifies when a particle moving along the curve is 
located at a specific point along the curve. In Example 4, the point 2, 4( ) is reached when 
t 4; in Example 5, it is reached “earlier” when t 2. You can see the implications of 
this aspect of parametrizations when considering the possibility of two objects coming into 
collision: they have to be at the exact same location point P x y, ( ) for some (possibly dif-
ferent) values of their respective parameters. We will say more about this aspect of param-
etrizations when we study motion in Chapter 12.

EXAMPLE 6  Find a parametrization for the line through the point a b, ( ) having 
slope m.

Solution A Cartesian equation of the line is y b m x a .( )− = −  If we define the 
parameter t by t x a= − , we find that x a t= +  and − =y b mt. That is,

x a t y b mt t, ,= + = + −∞ < < ∞

parametrizes the line. This parametrization differs from the one we would obtain by the 
natural parametrization in Example 5 when t x. However, both parametrizations 
describe the same line. 

EXAMPLE 7  Sketch and identify the path traced by the point P x y, ( ) if

x t
t

y t
t

t1, 1, 0.= + = − >

Solution We make a brief table of values in Table 10.3, plot the points, and draw a 
smooth curve through them, as we did in Example 1. Next we eliminate the parameter t 
from the equations. The procedure is more complicated than in Example 2. Taking the dif-
ference between x and y as given by the parametric equations, we find that

x y t
t

t
t t

1 1 2 .( ) ( )− = + − − =

If we add the two parametric equations, we get

x y t
t

t
t

t1 1 2 .( ) ( )+ = + + − =

We can then eliminate the parameter t by multiplying these last equations together:

x y x y
t

t2 2 4.( )( )( ) ( )− + = =

Expanding the expression on the left-hand side, we obtain a standard equation for a hyper-
bola (Section 10.6):

 − =x y 4.2 2  (1)

Thus the coordinates of all the points P x y, ( ) described by the parametric equations satisfy 
Equation (1). However, Equation (1) does not require that the x-coordinate be positive. 
So there are points x y, ( ) on the hyperbola that do not satisfy the parametric equation 

( )= + >x t t t1 ,   0. In fact, the parametric equations do not yield any points on the left 
branch of the hyperbola given by Equation (1), points where the x-coordinate would be 
negative. For small positive values of t, the path lies in the fourth quadrant and rises 
into the first quadrant as t increases, crossing the x-axis when t 1 (see Figure 10.7). 
The parameter domain is 0, ( )∞  and there is no starting point or terminal point for  
the path. 

FIGURE 10.7 The curve for 
( ) ( )= + = − >x t t y t t t1 ,   1 ,   0 

in Example 7. (The part shown is for 
t0.1 10.)

t = 1
t = 2

t = 5

t = 10

t = 0.4

t = 0.2

t = 0.1

5 10

−5

−10

5

0

10

(10.1, −9.9)

(5.2, −4.8)

(2.9, −2.1)
(2, 0)

(2.5, 1.5)

(10.1, 9.9)

(5.2, 4.8)

x

y

t t1 x y

0.1 10.0 10.1 9.9

0.2 5.0 5.2 4.8

0.4 2.5 2.9 2.1

1.0 1.0 2.0 0.0

2.0 0.5 2.5 1.5

5.0 0.2 5.2 4.8

10.0 0.1 10.1 9.9

TABLE 10.3 Values of 1x t t= + ( ) 
and = − ( )y t t1  for selected val-
ues of t.
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628 Chapter 10 Parametric Equations and Polar Coordinates

Examples 4, 5, and 6 illustrate that a given curve, or portion of it, can be represented 
by different parametrizations. In the case of Example 7, we can also represent the right-
hand branch of the hyperbola by the parametrization

x t y t t4 , , ,2= + = −∞ < < ∞

which is obtained by solving Equation (1) for x 0 and letting y be the parameter. Still 
another parametrization for the right-hand branch of the hyperbola given by Equation (1) is

x t y t t2 sec , 2 tan ,
2 2

.= = − < <

This parametrization follows from the trigonometric identity − =t tsec tan 1,2 2  because

x y t t t t4 sec 4 tan 4 sec tan 4.2 2 2 2 2 2( )− = − = − =

As t runs between 2 and x t2,  sec  remains positive and y ttan  runs between 
−∞ and , so P traverses the hyperbola’s right-hand branch. It comes in along the 
branch’s lower half as → −t 0 , reaches 2, 0( ) at t 0, and moves out into the first quad-
rant as t increases steadily toward 2. This is the same branch of the hyperbola shown in 
Figure 10.7.

Cycloids

The problem with a pendulum clock whose bob swings in a circular arc is that the fre-
quency of the swing depends on the amplitude of the swing. The wider the swing, the  
longer it takes the bob to return to center (its lowest position).

This does not happen if the bob can be made to swing in a curve called a cycloid. In 
1673, Christiaan Huygens designed a pendulum clock whose bob would swing in a cycloid, 
a curve we define in Example 8. He hung the bob from a fine wire constrained by guards 
that caused it to draw up as it swung away from center (Figure 10.8). We describe the path 
parametrically in the next example.

EXAMPLE 8  A wheel of radius a rolls along a horizontal straight line. Find paramet-
ric equations for the path traced by a point P on the wheel’s circumference. The path is 
called a cycloid.

Solution We take the line to be the x-axis, mark a point P on the wheel, start the wheel 
with P at the origin, and roll the wheel to the right. As parameter, we use the angle t 
through which the wheel turns, measured in radians. Figure 10.9 shows the wheel a short 
while later when its base lies at units from the origin. The wheel’s center C lies at at a, ( ) 
and the coordinates of P are

x at a y a acos , sin .= + = +

To express  in terms of t, we observe that θ π+ =t 3 2 in the figure, so that

t3
2

.θ π= −

This makes

t t t tcos cos 3
2

sin , sin sin 3
2

cos .θ π θ π( ) ( )= − = − = − = −

The equations we seek are

x at a t y a a tsin , cos .= − = −

These are usually written with the a factored out:

 x a t t y a tsin , 1 cos .( ) ( )= − = −  (2)

Figure 10.10 shows the first arch of the cycloid and part of the next. 

FIGURE 10.8 In Huygens’ pendulum 
clock, the bob swings in a cycloid, so the 
frequency is independent of the amplitude.

Cycloid

Guard
cycloid

Guard
cycloid

FIGURE 10.9 The position of P x y, ( ) on 
the rolling wheel at angle t (Example 8).

x

y

t
a
u

C(at, a)

M0 at

P(x, y) = (at + a cos u, a + a sin u)

HISTORICAL BIOGRAPHY

Christiaan Huygens 
(1629–1695)
Huygens was born in the Hague, Netherlands. 
He studied mathematics at the University of 
Leiden. Huygens was a follower of Descartes. 
He published his important geometrical results 
in Theoremata de quadratura hyperboles, 
ellipses et circuli and De circuli magnitudine 
inventa (1654). Later, he considered the 
subject of probability and published Tractatus 
de ratiociniis in aleae ludo (1657).

To know more, visit the companion Website. 
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 10.1  Parametrizations of Plane Curves 629

Brachistochrones and Tautochrones

If we turn Figure 10.10 upside down, Equations (2) still apply and the resulting curve 
(Figure 10.11) has two interesting physical properties. The first relates to the origin O and 
the point B at the bottom of the first arch. Among all smooth curves joining these points, 
the cycloid is the curve along which a frictionless bead, subject only to the force of gravity, 
will slide from O to B the fastest. This makes the cycloid a brachistochrone (“brah-kiss-
toe-krone”), or shortest-time curve for these points. The second property is that even if you 
start the bead partway down the curve toward B, it will still take the bead the same amount 
of time to reach B. This makes the cycloid a tautochrone (“taw-toe-krone”), or same-time 
curve for O and B.

Are there any other brachistochrones joining O and B, or is the cycloid the only one? 
We can formulate this as a mathematical question in the following way. At the start, the 
kinetic energy of the bead is zero since its velocity (speed) is zero. The work done by grav-
ity in moving the bead from 0, 0( ) to any other point x y, ( ) in the plane is mgy, and this 
must equal the change in kinetic energy. (See Exercise 25 in Section 6.5.) That is,

υ= −mgy m m1
2

1
2

(0) .2 2

Thus, the speed of the bead when it reaches x y, ( ) has to be υ = gy2 . That is,

=ds
dT

gy2

or

 
( )

= =
+

dT ds
gy

dy dx dx

gy2

1

2
.

2

 (3)

The time T f  it takes the bead to slide along a particular path =y f x( ) from O to B a a, 2π( ) 
is

 ∫
( )

=
+π

=

=
T

dy dx
gy

dx
1

2
.f

x

x a 2

0
 (4)

What curves =y f x( ), if any, minimize the value of this integral?
At first sight, we might guess that the straight line joining O and B would give the 

shortest time, but perhaps not. There might be some advantage in having the bead fall ver-
tically at first to build up its speed faster. With a higher speed, the bead could travel a lon-
ger path and still reach B first. Indeed, this is the right idea. The solution, from a branch of 
mathematics known as the calculus of variations, is that the original cycloid from O to B is 
the one and only brachistochrone for O and B (Figure 10.12).

In the next section we show how to find the arc length differential ds for a parame-
trized curve. Once we know how to find ds, we can calculate the time given by the right-
hand side of Equation (4) for the cycloid. This calculation gives the amount of time it takes 
a frictionless bead to slide down the cycloid to B after it is released from rest at O. The time 
turns out to be equal to π a g, where a is the radius of the wheel defining the particular  
cycloid. Moreover, if we start the bead at some lower point on the cycloid, corresponding to 
a parameter value >t 00 , we can integrate the parametric form of ds gy2  in Equation (3) 
over the interval t , 0 π[ ] to find the time it takes the bead to reach the point B. That calcula-
tion results in the same time π=T a g. It takes the bead the same amount of time to 
reach B no matter where it starts, which makes the cycloid a tautochrone. Beads starting 
simultaneously from O, A, and C in Figure 10.13, for instance, will all reach B at exactly the 
same time. This is the reason why Huygens’ pendulum clock in Figure 10.8 is independent 
of the amplitude of the swing.

ds is the arc length differential along the 
bead’s path, and T represents time.

FIGURE 10.10 The cycloid curve 
x a t t y a tsin ,   1 cos ,( ) ( )= − = −  for 

≥t 0.

O
x

y

(x, y)

2pa

t
a

FIGURE 10.11 When Figure 10.10 
is turned upside down, the y-axis points 
downward, indicating the direction of 
the gravitational force. Equations (2) still 
describe the curve parametrically.

x

y

O a

a

2a

2a

2papa

P(at − a sin t, a − a cos t)

B(ap, 2a)

FIGURE 10.12 The cycloid is the 
unique curve that minimizes the time it 
takes for a frictionless bead to slide from 
point O to point B.

cycloid

O

B

FIGURE 10.13 Beads released simulta-
neously on the upside-down cycloid at O, 
A, and C will reach B at the same time.

O
x

y

A

B
C
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630 Chapter 10 Parametric Equations and Polar Coordinates

Finding Cartesian from Parametric Equations
Exercises 1–18 give parametric equations and parameter intervals for 
the motion of a particle in the xy-plane. Identify the particle’s path by 
finding a Cartesian equation for it. Graph the Cartesian equation. (The 
graphs will vary with the equation used.) Indicate the portion of the 
graph traced by the particle and the direction of motion.

 1. x t y t t3 , 9 ,2= = −∞ < < ∞

 2. = − = ≥x t y t t, , 0

 3. x t y t t2 5, 4 7,= − = − −∞ < < ∞

 4. = − = ≤ ≤x t y t t3 3 , 2 , 0 1

 5. x t y t tcos 2 , sin 2 , 0 π= = ≤ ≤

 6. π π π( ) ( )= − = − ≤ ≤x t y t tcos , sin , 0

 7. x t y t t4 cos , 2 sin , 0 2π= = ≤ ≤

 8. x t y t t4 sin , 5 cos , 0 2π= = ≤ ≤

 9. x t y t tsin , cos 2 ,
2 2
π π= = − ≤ ≤

 10. x t y t t1 sin , cos 2, 0 π= + = − ≤ ≤

 11. x t y t t t, 2 ,2 6 4= = − −∞ < < ∞

 12. x t
t

y t
t

t
1

, 2
1

, 1 1=
−

= −
+

− < <

 13. = = − − ≤ ≤x t y t t, 1 , 1 02

 14. = + = ≥x t y t t1, , 0

 15. x t y t tsec 1, tan , 2 22 π π= − = − < <

 16. x t y t tsec , tan , 2 2π π= − = − < <

 17. x t y t tcosh , sinh ,= − = −∞ < < ∞

 18. x t y t t2 sinh , 2 cosh ,= = −∞ < < ∞

In Exercises 19–24, match the parametric equations with the paramet-
ric curves labeled A through F.

 19. x t y t1 sin , 1 cos= − = +

 20. x t y tcos , 2 sin= =

 21. x t t y t t1
4

cos , 1
4

sin= =

 22. x t y t t, cos= =

 23. x t y eln , 3 t 2= = −

 24. x t y tcos , sin 3= =

A. B. 

EXERCISES 10.1

x

y

21 3

−2

−3

−1

3

1

2

t
1−1

1

t

x

f g

1

1

−1

y

x

y

2−2

−2

2

C. D. 

x
21−2 −1

y

1

2

3

x

y

21

1

2

E. F. 

x

y

21 3−3 −2 −1

−2

−3

−1

3

1

2

x

y

1−1

−1

1

In Exercises 25–28, use the given graphs of =x f t( ) and =y g t( ) to 
sketch the corresponding parametric curve in the xy-plane.

 25. 

t

x

1−1

−1

1
f

t

y

1−1

−1

1
g

 26. 
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x

y

u

(x, y)

y = 
"

x

0

x

y

2

0 4

u

(x, y)

t

y

f

2−1

1

t
21−2 −1

2

1

−1

g

x

−1

−2

1

 27.  37. Find parametric equations and a parameter interval for the motion 
of a particle starting at the point 2, 0( ) and tracing the top half of 
the circle + =x y 42 2  four times.

 38. Find parametric equations and a parameter interval for the motion 
of a particle that moves along the graph of =y x 2 in the follow-
ing way: Beginning at 0, 0( ) it moves to 3, 9( ), and then it travels 
back and forth from 3, 9( ) to 3, 9( )−  infinitely many times.

 39. Find parametric equations for the semicircle

x y a y, 0,2 2 2+ = >

using as parameter the slope t dy dx=  of the tangent line to the 
curve at x y,  .( )

 40. Find parametric equations for the circle

+ =x y a ,2 2 2

using as parameter the arc length s measured counterclockwise 
from the point a, 0( ) to the point x y, ( ).

 41. Find a parametrization for the line segment joining points 0, 2( ) 
and 4, 0( ) using the angle θ in the accompanying figure as the 
parameter.

 28. 

t

x

1 2−1−2

−4

−2

4

2
f

t

y

21−2 −1

−2

−1

2

1
g

Finding Parametric Equations

 29. Find parametric equations and a parameter interval for the 
motion of a particle that starts at a, 0( ) and traces the circle 

+ =x y a2 2 2

 a. once clockwise.

 b. once counterclockwise.

 c. twice clockwise.

 d. twice counterclockwise.

(There are many ways to do these, so your answers may not be the 
same as the ones at the back of the text.)

 30. Find parametric equations and a parameter interval for the 
motion of a particle that starts at a, 0( ) and traces the ellipse 
( ) ( )+ =x a y b 12 2 2 2

 a. once clockwise.

 b. once counterclockwise.

 c. twice clockwise.

 d. twice counterclockwise.

(As in Exercise 29, there are many correct answers.)

In Exercises 31–36, find a parametrization for the curve.

 31. the line segment with endpoints 1,  3( )− −  and 4, 1( )

 32. the line segment with endpoints 1, 3( )−  and 3,  2( )−

 33. the lower half of the parabola − =x y1 2

 34. the left half of the parabola = +y x x22

 35. the ray (half line) with initial point 2, 3( ) that passes through the 
point 1,  1( )− −

 36. the ray (half line) with initial point 1, 2( )−  that passes through 
the point 0, 0( )

 42. Find a parametrization for the curve =y x  with terminal 
point 0, 0( ) using the angle θ in the accompanying figure as the 
parameter.

 43. Find a parametrization for the circle ( )− + =x y2 12 2  starting 
at 1, 0( ) and moving clockwise once around the circle, using the 
central angle θ in the accompanying figure as the parameter.

x

y

1

1

1 2 30

u

(x, y)
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632 Chapter 10 Parametric Equations and Polar Coordinates

x

y

N

M

A(0, a)

t

P

O

x

y

O P

C
A(a, 0)b

u

 44. Find a parametrization for the circle + =x y 12 2  starting at 
1, 0( ) and moving counterclockwise to the terminal point 0, 1( ), 

using the angle θ in the accompanying figure as the parameter.

x

y

1

–2
u

(x, y)

(1, 0)

(0, 1)

 45. The witch of Maria Agnesi The bell-shaped witch of Maria 
Agnesi can be constructed in the following way. Start with a circle 
of radius 1, centered at the point 0, 1( ), as shown in the accompa-
nying figure. Choose a point A on the line =y 2 and connect it to 
the origin with a line segment. Call the point where the segment 
crosses the circle B. Let P be the point where the vertical line 
through A crosses the horizontal line through B. The witch is the 
curve traced by P as A moves along the line =y 2. Find paramet-
ric equations and a parameter interval for the witch by expressing 
the coordinates of P in terms of t, the radian measure of the angle 
that segment OA makes with the positive x-axis. The following 
equalities (which you may assume) will help.

 a. =x AQ  b. y AB t2 sin= −

 c. ( )⋅ =AB OA AQ 2

 46. Hypocycloid When a circle rolls on the inside of a fixed circle, 
any point P on the circumference of the rolling circle describes a 
hypocycloid. Let the fixed circle be + =x y a ,2 2 2  let the radius 
of the rolling circle be b, and let the initial position of the tracing 
point P be A a, 0( ). Find parametric equations for the hypocycloid, 
using as the parameter the angle θ from the positive x-axis to the 
line joining the circles’ centers. In particular, if =b a 4, as in the 
accompanying figure, show that the hypocycloid is the astroid

x a y acos , sin .3 3θ θ= =

 47. As the point N moves along the line =y a in the accompanying 
figure, P moves in such a way that =OP MN . Find parametric 
equations for the coordinates of P as functions of the angle t that 
the line ON makes with the positive y-axis.

x

y

O

Q A

B P(x, y)(0, 1)

y = 2

t

 48. Trochoids A wheel of radius a rolls along a horizontal straight 
line without slipping. Find parametric equations for the curve traced 
out by a point P on a spoke of the wheel b units from its center. 
As parameter, use the angle θ through which the wheel turns. The 
curve is called a trochoid, which is a cycloid when =b a.

Distance Using Parametric Equations

 49. Find the point on the parabola x t y t t,   ,  ,2= = −∞ < < ∞  
closest to the point 2, 1 2( ). (Hint: Minimize the square of the 
distance as a function of t.)

 50. Find the point on the ellipse x t y t t2 cos ,   sin ,  0 2 ,π= = ≤ ≤  
closest to the point 3 4, 0( ). (Hint: Minimize the square of the 
distance as a function of t.)

GRAPHER EXPLORATIONS
Using a parametric equation grapher, graph the equations over the 
given intervals in Exercises 51–58.

 51. Ellipse x t y t4 cos , 2 sin , over= =

 a. π≤ ≤t0 2

 b. π≤ ≤t0

 c. π π− ≤ ≤t2 2

 52. Hyperbola branch x tsec=  (enter as t1 cos( )), y ttan=  
(enter as t tsin( ) cos( )), over

 a. − ≤ ≤t1.5 1.5

 b. − ≤ ≤t0.5 0.5

 c. − ≤ ≤t0.1 0.1

 53. Parabola = + = − − ≤ ≤x t y t t2 3, 1, 2 22

 54. Cycloid x t t y tsin , 1 cos , over= − = −

 a. π≤ ≤t0 2

 b. π≤ ≤t0 4

 c. π π≤ ≤t 3

 55. Deltoid 

x t t y t t t2 cos cos 2 , 2 sin sin 2 , 0 2π= + = − ≤ ≤

What happens if you replace 2 with −2 in the equations for x and 
y? Graph the new equations and find out.

 56. A nice curve 

x t t y t t t3 cos cos 3 , 3 sin sin 3 , 0 2π= + = − ≤ ≤

What happens if you replace 3 with −3 in the equations for x and 
y? Graph the new equations and find out.

T
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 10.2  Calculus with Parametric Curves 633

Parametric Formula for d y dx2 2

If the equations = =x f t y g t( ),   ( ) define y as a twice-differentiable function of 
x, then at any point where ≠dx dt 0 and ′ =y dy dx,

 =
′d y

dx
dy dt
dx dt

.
2

2
 (2)

Parametric Formula for dy dx

If all three derivatives exist and ≠dx dt 0, then

 =dy
dx

dy dt
dx dt

. (1)

FIGURE 10.14 The curve in Example 1 
is the right-hand branch of the hyperbola 

− =x y 1.2 2

x

y

0 1 2

1

2

(
"

2, 1)
t = p

4

x = sec t, y = tan t,
p
2

p
2

– < t <

 57. a. Epicycloid

x t t y t t t9 cos cos 9 , 9 sin sin 9 , 0 2π= − = − ≤ ≤

 b. Hypocycloid

x t t y t t t8 cos 2 cos 4 , 8 sin 2 sin 4 , 0 2π= + = − ≤ ≤

 c. Hypotrochoid

x t t y t t tcos 5 cos 3 , 6 cos 5 sin 3 , 0 2π= + = − ≤ ≤

 58. a.  x t t y t t6 cos 5 cos 3 , 6 sin 5 sin 3 ,= + = −  
t0 2π≤ ≤

 b. x t t y t t6 cos 2 5 cos 6 , 6 sin 2 5 sin 6 ,= + = −  
t0 π≤ ≤

 c.  x t t y t t6 cos 5 cos 3 , 6 sin 2 5 sin 3 ,= + = −  
t0 2π≤ ≤

 d. x t t y t t6 cos 2 5 cos 6 , 6 sin 4 5 sin 6 ,= + = −  
t0 π≤ ≤

10.2 Calculus with Parametric Curves

In this section we use calculus to study parametric curves. Specifically, we find slopes, 
lengths, and areas associated with parametrized curves.

Tangent Lines and Areas

A parametrized curve =x f t( ) and =y g t( ) is differentiable at t if f  and g are each dif-
ferentiable at t. At a point on a differentiable parametrized curve where y is also a differen-
tiable function of x, the derivatives dy dt dx dt,  , and dy dx  are related by the Chain Rule:

= ⋅dy
dt

dy
dx

dx
dt

.

If ≠dx dt 0, we may divide both sides of this equation by dx dt  to solve for dy dx.

If parametric equations define y as a twice-differentiable function of x, we can apply 
Equation (1) to the function = ′dy dx y  to calculate d y dx2 2 as a function of t:

= ′ =
′d y

dx
d
dx

y
dy dt
dx dt

( ) .
2

2
  Eq. (1) with ′y  in place of y

EXAMPLE 1  Find the tangent line to the curve

x t y t tsec , tan ,
2 2

,π π= = − < <

at the point 2, 1 ,( )  where π=t 4 (Figure 10.14).

Solution The slope of the curve at t is

dy
dx

dy dt
dx dt

t
t t

t
t

sec
sec tan

sec
tan

.
2

= = =   Eq. (1)

M10_HASS5901_15_GE_C10.indd   633 08/03/23   08:00

www.konkur.in

Telegram: @uni_k



634 Chapter 10 Parametric Equations and Polar Coordinates

Finding d y dx2 2  in Terms of t

1. Express y dy dx′ =  in terms of t.

2. Find dy dt.′

3. Divide dy dt′  by dx dt.

Setting t equal to π 4 gives

dy
dx

sec 4
tan 4

2
1

2.
t 4

π
π

( )
( )

= = =
π=

The tangent line is

( )− = −

= − +

= −

y x

y x

y x

1 2 2

2 2 1

2 1.  

EXAMPLE 2  Find d y dx2 2 as a function of t if = − = −x t t y t t and  .2 3

Solution 

1. Express ′ =y dy dx in terms of t.

′ = = = −
−

y
dy
dx

dy dt
dx dt

t
t

1 3
1 2

2

2. Differentiate ′y  with respect to t.

dy
dt

d
dt

t
t

t t
t

1 3
1 2

2 6 6
1 2

2 2

2( ) ( )

′ = −
−

= − +
−

  Derivative Quotient Rule

3. Divide dy dt′  by dx dt.

d y
dx

dy dt
dx dt

t t t
t

t t
t

2 6 6 1 2
1 2

2 6 6
1 2

2

2

2 2 2

3

( ) ( )

( )
=

′
=

− + −
−

= − +
−

  Eq. (2) 

EXAMPLE 3  Find the area enclosed by the astroid (Figure 10.15)

x t y t tcos , sin , 0 2 .3 3 π= = ≤ ≤

Solution By symmetry, the enclosed area is four times the area beneath the curve in the 
first quadrant where t0 2.π≤ ≤  We can apply the definite integral formula for area 
studied in Chapter 5, using substitution to express the curve and differential dx in terms of 
the parameter t. Thus,

A y dx

t t t dt

t t t dt

t t
dt

t t t dt

t t t dt

t dt t dt t dt

t t t t t t

4

4 sin 3 cos sin

4 sin 3 cos sin

12
1 cos 2

2
1 cos 2

2
3
2

1 2 cos 2 cos 2 1 cos 2

3
2

1 cos 2 cos 2 cos 2

3
2

1 cos 2 cos 2 cos 2

3
2

1
2

sin 2 1
2

1
4

sin 4 1
2

sin 2 1
3

sin 2

3
2 2

0 0 0 1
2 2

0 0 0 1
2

0 0 0 0

3
8

.

0

1

3 2

2

0

3 2

0

2

2

0

2

2

0

2

2 3

0

2

0

2
2

0

2
3

0

2

3

0

2

∫

∫

∫

∫

∫

∫

∫ ∫ ∫

π π

π

( ) ( )

( )( ) ( )
( ) ( )

( )

( )

( )( )

( )

( )

( )

( )

( )

=

= −

=

=
− +

= − + +

= − − +

= − − +⎡
⎣⎢

⎤
⎦⎥

= − − + + −⎡
⎣⎢

⎤
⎦⎥

= − − − − + − − + − − +⎡
⎣⎢

⎤
⎦⎥

=

π

π

π

π

π

π π π

π

 

FIGURE 10.15 The astroid in 
Example 3.

x

y

0

1

1−1

−1

x = cos3 t
y = sin3 t
0 ≤ t ≤ 2p

Four times area under y 
from x 0=  to x 1=

cos 2 0,   cos 0 13 3π = =

Substitution for y and dx

t
t

sin
1 cos 2

2
4

2

( )=
−

Expand squared term.

Multiply terms.

As in Section 8.3, 
Example 3

Evaluate.
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 10.2  Calculus with Parametric Curves 635

Length of a Parametrically Defined Curve

Let C be a curve given parametrically by the equations

x f t y g t a t b( ) and ( ), .= = ≤ ≤

We assume the functions f  and g are continuously differentiable (meaning they have 
continuous first derivatives) on the interval a b, [ ]. We also assume that the derivatives ′f t( ) 
and ′g t( ) are not simultaneously zero, which prevents the curve C from having any corners 
or cusps. Such a curve is called a smooth curve. We subdivide the path (or arc) AB into n 
pieces at points A P P P P B,  ,  , . . . ,  n0 1 2= =  (Figure 10.16). These points correspond 
to a partition of the interval a b, [ ] by a t t t t b,n0 1 2 �= < < < < =  where 
P f t g t( ),   ( ) .k k k( )=  Join successive points of this subdivision by straight-line segments 
(Figure 10.16). A representative line segment has length

L x y

f t f t g t g t

( ) ( )

( ) ( ) ( ) ( )

k k k

k k k k

2 2

1
2

1
2[ ] [ ]

= Δ + Δ

= − + −− −

(see Figure 10.17). If Δt k is small, the length Lk is approximately the length of arc −P P .k k1  
By the Mean Value Theorem, there are numbers t k

* and t k
** in [ ]−t t, k k1  such that

x f t f t f t t

y g t g t g t t

( ) ( ) ( ) ,

( ) ( ) ( ) .
k k k k k

k k k k k

1
*

1
**

Δ = − = ′ Δ

Δ = − = ′ Δ
−

−

Assuming the path from A to B is traversed exactly once as t increases from =t a to 
=t b, with no doubling back or retracing, an approximation to the (yet to be defined) 

“length” of the curve AB is the sum of all the lengths L :k

L x y

f t g t t

( ) ( )

( ) ( ) .

k

n

k
k

n

k k

k

n

k k k

1 1

2 2

1

* 2 ** 2

∑ ∑

∑ [ ] [ ]

= Δ + Δ

= ′ + ′ Δ

= =

=

Although this last sum on the right is not exactly a Riemann sum (because ′f  and ′g  are 
evaluated at different points), it can be shown that its limit, as the norm of the partition 
tends to zero and the number of segments → ∞n , is the definite integral

∑ ∫[ ] [ ] [ ] [ ]′ + ′ Δ = ′ + ′
→ =

f t g t t f t g t dtlim ( ) ( ) ( ) ( ) .
P

k

n

k k k
a

b

0
1

* 2 ** 2 2 2

Therefore, it is reasonable to define the length of the curve from A to B to be this integral.

FIGURE 10.16 The length of the smooth 
curve C from A to B is approximated by the 
sum of the lengths of the polygonal path 
(straight-line segments) starting at A P ,0=  
then to P ,1  and so on, ending at B P .n=

y

x
0

A = P0

B = Pn

P1

P2

C

Pk

Pk−1

FIGURE 10.17 The arc P Pk k1−  is 
approximated by the straight-line  
segment shown here, which has length 
L x y( ) ( ) .k k k

2 2= Δ + Δ

y

x
0

Lk

Δxk

Δyk

Pk–1 = ( f (tk–1), g(tk–1))

Pk = ( f (tk), g(tk))

DEFINITION If a curve C is defined parametrically by x f t( )=  and y g t( ),=  
a t b,≤ ≤  where f ′ and g′ are continuous and not simultaneously zero on a b, [ ],  
and if C is traversed exactly once as t increases from t a=  to t b,=  then the 
length of C is the definite integral

L f t g t dt( ) ( ) .
a

b 2 2∫ [ ] [ ]= ′ + ′

If =x f t( ) and =y g t( ), then using the Leibniz notation we can write the formula 
for arc length this way:

 L dx
dt

dy
dt

dt.
a

b 2 2

∫ ( )( )= +  (3)
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636 Chapter 10 Parametric Equations and Polar Coordinates

A smooth curve C does not come to a stop and reverse its direction of motion over the 
time interval [ ]a b,   since f g( ) ( ) 02 2′ + ′ >  throughout the interval. At a point where a 
curve stops and then doubles back on itself, either the curve fails to be differentiable or 
both derivatives must simultaneously equal zero. We will examine this phenomenon in 
Chapter 12, where we study tangent vectors to curves.

If there are two different parametrizations for a curve C whose length we want to 
find, it does not matter which one we use. However, the parametrization we choose must 
meet the conditions stated in the definition of the length of C (see Exercise 41 for an 
example).

EXAMPLE 4  Using the definition, find the length of the circle of radius r defined 
parametrically by

x r t y r t tcos and sin , 0 2 .= = ≤ ≤

Solution As t varies from 0 to 2 , the circle is traversed exactly once, so the circumfer-
ence is

L dx
dt

dy
dt

dt.
2 2

0

2

∫ ( )( )= +

We find

dx
dt

r t
dy
dt

r tsin , cos= − =

and

dx
dt

dy
dt

r t t rsin cos .
2 2

2 2 2 2( )( ) ( )+ = + =

Therefore, the total arc length is

L r dt r t r2 .2

0

2

0

2

∫= = ⎡
⎣⎢
⎤
⎦⎥
=  

EXAMPLE 5  Find the length of the astroid (Figure 10.15)

x t y t tcos , sin , 0 2 .3 3= = ≤ ≤

Solution Because of the curve’s symmetry with respect to the coordinate axes, its length 
is four times the length of the first-quadrant portion. We have

x t y t

dx
dt

t t t t

dy
dt

t t t t

dx
dt

dy
dt

t t t t

t t

t t

t t

cos , sin

3 cos sin 9 cos sin

3 sin cos 9 sin cos

9 cos sin cos sin

9 cos sin

3 cos sin

3 cos sin .

3 3

2
2 2 4 2

2
2 2 4 2

2 2
2 2 2 2

2 2

( )

( )

( )

( )

( )[ ]

( )[ ]

( )

= =

= − =

= =

+ = +

=

=

=

t t tcos sin 0 for 0 2≥ ≤ ≤

1
�����������������
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 10.2  Calculus with Parametric Curves 637

Therefore,

t t dt

t dt

t

Length of first-quadrant portion 3 cos sin

3
2

sin 2

3
4

cos 2 3
2

.

0

2

0

2

0

2

∫

∫

=

=

= − ⎤
⎦⎥

=

The length of the astroid is four times this: 4 3 2 6.( ) =  

EXAMPLE 6  Find the perimeter of the ellipse + =x
a

y
b

1,
2

2

2

2
 where a b 0.

Solution Parametrically, we represent the ellipse by the equations x a tsin  and 
y b t tcos ,  0 2 .= ≤ ≤  Then

dx
dt

dy
dt

a t b t

a a b t

a e t

cos sin

sin

1 sin .

2 2
2 2 2 2

2 2 2 2

2 2 2

( )( )
( )

[ ]

+ = +

= − −

= −

From Equation (3), the perimeter is given by

P a e t dt4 1 sin .2 2

0

2

∫= −

The integral for P is nonelementary and is known as the complete elliptic integral of 
the second kind. We can compute its value to within any degree of accuracy using  
infinite series in the following way. From the binomial expansion for x1 in2  
Section 9.10, we have

e t e t e t1 sin 1 1
2

sin 1
2 4

sin .2 2 2 2 4 4− = − −
⋅

−   e t esin 1≤ <

Then, to each term in this last expression, we apply the integral Formula 157 (at the back 
of the text) for t dtsin n

0

2
 when n is even, which yields the perimeter

P a e t dt

a e e e

a e e e

4 1 sin

4
2

1
2

1
2 2

1
2 4

1 3
2 4 2

1 3
2 4 6

1 3 5
2 4 6 2

2 1 1
2

1 3
2 4 3

1 3 5
2 4 6 5

.

2 2

0

2

2 4 6

2
2

2 4 2 6

∫

( )( )

( )

( )( ) ( )( )

( ) ( )

= −

= − ⋅ −
⋅

⋅
⋅
⋅ − ⋅

⋅ ⋅
⋅ ⋅
⋅ ⋅

⋅ −⎡
⎣⎢

⎤
⎦⎥

= − − ⋅
⋅

− ⋅ ⋅
⋅ ⋅

−⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

Since e 1, the series on the right-hand side converges by comparison with the geometric 
series e( ) .

n
n

1
2∑ =

∞
 We do not have an explicit value for P, but we can estimate it as closely 

as we like by summing finitely many terms from the infinite series. 

t t tcos sin 1 2 sin 2( )=

e b
a

1
2

2
= −   

(eccentricity, not the number 2.71828 . . . )
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638 Chapter 10 Parametric Equations and Polar Coordinates

Length of a Curve y f x( )=

We will show that the length formula in Section 6.3 is a special case of Equation (3). Given 
a continuously differentiable function = ≤ ≤y f x a x b( ),   , we can assign =x t as a 
parameter. The graph of the function f  is then the curve C defined parametrically by

x t y f t a t band ( ), ,= = ≤ ≤

which is a special case of what we have considered in this chapter. We have

dx
dt

dy
dt

f t1 and ( ).= = ′

From Equation (1),

dy
dx

dy dt
dx dt

f t( ),= = ′

giving

dx
dt

dy
dt

f t

f x

1 ( )

1 ( ) .

2 2
2

2

( )( ) [ ]

[ ]

+ = + ′

= + ′   t x=

Substitution into Equation (3) gives exactly the arc length formula for the graph of 
=y f x( ) that we found in Section 6.3.

The Arc Length Differential

As in Section 6.3, we define the arc length function for a parametrically defined curve 
=x f t( ) and = ≤ ≤y g t a t b( ),   , by

s t f z g z dz( ) ( ) ( ) .
a

t 2 2∫ [ ] [ ]= ′ + ′

Then, by the Fundamental Theorem of Calculus,

ds
dt

f t g t dx
dt

dy
dt

( ) ( ) .2 2
2 2

( )( )[ ] [ ]= ′ + ′ = +

The differential of arc length is

 ds dx
dt

dy
dt

dt.
2 2

( )( )= +  (4)

Equation (4) is often abbreviated as

= +ds dx dy .2 2

Just as in Section 6.3, we can integrate the differential ds between appropriate limits to find 
the total length of a curve.

Here’s an example where we use the arc length differential to find the centroid of an arc.

EXAMPLE 7  Find the centroid of the first-quadrant arc of the astroid in Example 5.

Solution We take the curve’s density to be δ = 1 and calculate the curve’s mass and 
moments about the coordinate axes as we did in Section 6.6.

The distribution of mass is symmetric about the line =y x, so =x y . A typical seg-
ment of the curve (Figure 10.18) has mass

dm ds dx
dt

dy
dt

dt t t dt1 3 cos sin .
2 2

( )( )= ⋅ = + =   From Example 5
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 10.2  Calculus with Parametric Curves 639

The curve’s mass is

M dm t t dt3 cos sin 3
2

.
0

2

0

2

∫ ∫= = =
π π

  Again from Example 5

The curve’s moment about the x-axis is

M y dm t t t dt

t t dt t

sin 3 cos sin

3 sin cos 3 sin
5

3
5

.

x
3

0

2

4
5

0

2

0

2

�∫ ∫

∫

= = ⋅

= = ⋅ ⎤
⎦⎥

=

π

ππ

It follows that

y
M
M

3 5
3 2

2
5

.x= = =

The centroid is the point 2 5, 2 5 .( )  

EXAMPLE 8  Find the time Tc it takes for a frictionless bead to slide along the cycloid 
x a t t y a tsin ,   1 cos( ) ( )= − = −  from t t0 to  π= =  (see Figure 10.13).

Solution From Equation (3) in Section 10.1, we want to find the time

T ds
gy2

. c
t

t

0∫=
π

=

=

We need to express ds parametrically in terms of the parameter t. For the cycloid, 
dx dt a t1 cos( )= −  and dy dt a tsin ,=  so

ds dx
dt

dy
dt

dt

a t t t dt

a t dt

1 2 cos cos sin

2 2 cos .

2 2

2 2 2

2

( )( )
( )

( )

= +

= − + +

= −

Substituting for ds and y in the integrand, it follows that

T
a t

ga t
dt

a
g

dt a
g

2 2 cos
2 1 cos

.

c

2

0

0

∫

∫ π

( )
( )

=
−

−

= =

π

π

  y a t1 cos( )= −

This is the amount of time it takes the frictionless bead to slide down the cycloid to B after 
it is released from rest at O (see Figure 10.13). 

Areas of Surfaces of Revolution

In Section 6.4 we found integral formulas for the area of a surface when a curve is revolved 
about a coordinate axis. Specifically, we found that the surface area is S y ds2π= ∫  for 
revolution about the x-axis, and S x ds2π= ∫  for revolution about the y-axis. If the curve 
is parametrized by the equations =x f t( ) and = ≤ ≤y g t a t b( ),   , where f  and g are 
continuously differentiable and f g( ) ( ) 02 2′ + ′ >  on a b, [ ], then the arc length differen-
tial ds is given by Equation (4). This observation leads to the following formulas for area 
of surfaces of revolution for smooth parametrized curves.

FIGURE 10.18 The centroid C of the 
astroid arc in Example 7.

x

y

0

B(0, 1)

A(1, 0)

C
ds

~ ~(x, y) = (cos3 t, sin3 t)
~x

~y
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640 Chapter 10 Parametric Equations and Polar Coordinates

As with length, we can calculate surface area from any convenient parametrization that 
meets the stated criteria.

EXAMPLE 9  The standard parametrization of the circle of radius 1 centered at the 
point 0, 1( ) in the xy-plane is

x t y t tcos , 1 sin , 0 2 .π= = + ≤ ≤

Use this parametrization to find the area of the surface swept out by revolving the circle 
about the x-axis (Figure 10.19).

Solution We evaluate the formula

S y dx
dt

dy
dt

dt

t t t dt

t dt

t t

2

2 1 sin   sin cos

2 1 sin

2 cos 4 .

a

b 2 2

2 2

0

2

0

2

0

2
2

∫

∫

∫

π

π

π

π π

( )( )

( ) ( ) ( )

( )

= +

= + − +

= +

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

π

π

π

 

Area of Surface of Revolution for Parametrized Curves
If a smooth curve x f t y g t a t b( ),   ( ),   ,= = ≤ ≤  is traversed exactly once as 
t increases from a to b, then the areas of the surfaces generated by revolving the 
curve about the coordinate axes are as follows.

1. Revolution about the x-axis y 0 :≥( )

 S y dx
dt

dy
dt

dt2
a

b 2 2

∫ π ( )( )= +  (5)

2. Revolution about the y-axis x 0 :≥( )

 S x dx
dt

dy
dt

dt2
a

b 2 2

∫ π ( )( )= +  (6)

FIGURE 10.19 In Example 9 we 
calculate the area of the surface of 
revolution swept out by this  
parametrized curve.

Circle
x = cos t
y = 1 + sin t
0 ≤ t ≤ 2p

x

(0, 1)

y

Tangent Lines to Parametrized Curves
In Exercises 1–14, find an equation for the line tangent to the curve 
at the point defined by the given value of t. Also, find the value of 
d y dx2 2  at this point.

 1. x t y t t2 cos , 2 sin , 4π= = =

 2. x t y t tsin 2 , cos 2 , 1 6π π= = = −

 3. x t y t t4 sin , 2 cos , 4π= = =

 4. x t y t tcos , 3 cos , 2 3π= = =

 5. x t y t t, , 1 4= = =

 6. x t y t tsec 1, tan , 42 π= − = = −

 7. x t y t tsec , tan , 6π= = =

 8. x t y t t1, 3 , 3= − + = =

 9. x t y t t2 3, , 12 4= + = = −

 10. x t y t t1 , 2 ln , 1= = − + =

 11. x t t y t tsin , 1 cos , 3π= − = − =

EXERCISES 10.2 

Eq. (5) for revolution about the  
x-axis; y t1 sin 0= + ≥

���������������������
1
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 10.2  Calculus with Parametric Curves 641

 12. x t y t tcos , 1 sin , 2π= = + =

 13. =
+

=
−

=x
t

y t
t

t1
1

,
1

, 2

 14. = + = − =x t e y e t, 1 , 0t t

Implicitly Defined Parametrizations
Assuming that the equations in Exercises 15–20 define x and y implic-
itly as differentiable functions = =x f t y g t( ),   ( ), find the slope of 
the curve = =x f t y g t( ),   ( ) at the given value of t.

 15. x t y t t2 9, 2 3 4, 23 2 3 2+ = − = =

 16. ( )= − − = =x t y t t t5 , 1 , 4

 17. x x t t y t t y t2 , 1 2 4, 03 2 2+ = + + + = =

 18. x t x t t t t y tsin 2 , sin 2 , π+ = − = =

 19. x t t y t x t t, 2 2 , 13 3 2= + + = + =

 20. t x t y te tln , , 0t( )= − = =

Area

 21. Find the area under one arch of the cycloid

x a t t y a tsin , 1 cos .( ) ( )= − = −

 22. Find the area enclosed by the y-axis and the curve

x t t y e, 1 .t2= − = + −

 23. Find the area enclosed by the ellipse

x a t y b t tcos , sin , 0 2 .π= = ≤ ≤

 24. Find the area under =y x 3 over 0, 1[ ] using the following param-
etrizations.

 a. = =x t y t,2 6  b. x t y t,3 9= =

Lengths of Curves
Find the lengths of the curves in Exercises 25–30.

 25. x t y t t tcos , sin , 0 π= = + ≤ ≤

 26. x t y t t, 3 2, 0 33 2= = ≤ ≤

 27. x t y t t2, 2 1 3, 0 42 3 2( )= = + ≤ ≤

 28. x t y t t t2 3 3, 2, 0 33 2 2( )= + = + ≤ ≤

 
29.

 

x t t t

y t t t

t

8 cos 8 sin

8 sin 8 cos ,

0 2π

= +

= −

≤ ≤

 
30.

 
x t t t

y t t

ln sec tan sin

cos , 0 3π

( )= + −

= ≤ ≤

Surface Area
Find the areas of the surfaces generated by revolving the curves in 
Exercises 31–34 about the indicated axes.

 31. x t y t t xcos , 2 sin , 0 2 ; -axisπ= = + ≤ ≤

 32. x t y t t y2 3 , 2 , 0 3; -axis3 2( )= = ≤ ≤

 33. x t y t t t y2, 2 2 , 2 2; -axis2( )= + = + − ≤ ≤

 34. x t t t y t t xln sec tan sin ,   cos ,  0 3;   -axisπ( )= + − = ≤ ≤

 35. A cone frustum The line segment joining the points 0, 1( ) 
and 2, 2( ) is revolved about the x-axis to generate a frustum of a 
cone. Find the surface area of the frustum using the parametriza-
tion = = + ≤ ≤x t y t t2 ,   1,  0 1. Check your result with the 
geometry formula: π( )( )= +r rArea slant height .1 2

 36. A cone The line segment joining the origin to the point h r, ( ) is 
revolved about the x-axis to generate a cone of height h and base 
radius r. Find the cone’s surface area with the parametric equa-
tions x ht y rt t,   ,  0 1.= = ≤ ≤  Check your result with the 
geometry formula: rArea slant height .π ( )=

Centroids

 37. Find the coordinates of the centroid of the curve

x t t t y t t t tcos sin , sin cos , 0 2.π= + = − ≤ ≤

 38. Find the coordinates of the centroid of the curve

x e t y e t tcos , sin , 0 .t t π= = ≤ ≤

 39. Find the coordinates of the centroid of the curve

x t y t t tcos , sin , 0 .π= = + ≤ ≤

 40. Most centroid calculations for curves are done with a calculator 
or computer that has an integral evaluation program. As a case in 
point, find, to the nearest hundredth, the coordinates of the cen-
troid of the curve

x t y t t, 3 2, 0 3.3 2= = ≤ ≤

Theory and Examples

 41. Length is independent of parametrization To illustrate the 
fact that the numbers we get for length do not depend on the 
way we parametrize our curves (except for the mild restrictions 
preventing doubling back mentioned earlier), calculate the 
length of the semicircle = −y x1 2  with these two different 
parametrizations:

 a. x t y t tcos 2 , sin 2 , 0 2.π= = ≤ ≤

 b. x t y t tsin , cos , 1 2 1 2.π π= = − ≤ ≤

 42. a. Show that the Cartesian formula

L dx
dy

dy1
c

d 2

∫= +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

for the length of the curve = ≤ ≤x g y c y d( ),    (Section 6.3, 
Equation 4), is a special case of the parametric length formula

L dx
dt

dy
dt

dt.
a

b 2 2

∫ ( )( )= +

Use this result to find the length of each curve.

 b. x y y, 0 4 33 2= ≤ ≤

 c. x y y3
2

, 0 12 3= ≤ ≤

 43. The curve with parametric equations

x y1 2 sin cos , 1 2 sin sinθ θ θ θ( ) ( )= + = +

is called a limaçon and is shown in the accompanying figure. Find the 
points x y, ( ) and the slopes of the tangent lines at these points for

 a. θ = 0. b. 2.θ π= c. 4 3.θ π=

T

x

y

1−1

3

2

1
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642 Chapter 10 Parametric Equations and Polar Coordinates

FIGURE 10.20 To define polar coordi-
nates for the plane, we start with an origin, 
called the pole, and an initial ray.

O

r

Initial ray

Origin (pole)

x

P(r, u)

u

x

y

2

0 2p

 44. The curve with parametric equations

x t y t t, 1 cos , 0 2= = − ≤ ≤

is called a sinusoid and is shown in the accompanying figure. Find 
the point x y, ( ) where the slope of the tangent line is

 a. largest. b. smallest.

 48. Volume Find the volume swept out by revolving the region 
bounded by the x-axis and one arch of the cycloid

x t t y tsin , 1 cos= − = −

about the x-axis.

 49. Find the volume swept out by revolving the region bounded by the 
x-axis and the graph of

( )= = −x t y t t2 , 2

about the x-axis.

 50. Find the volume swept out by revolving the region bounded by the 
y-axis and the graph of

( )= − = +x t t y t1 , 1 2

about the y-axis.

COMPUTER EXPLORATIONS
In Exercises 51–54, use a CAS to perform the following steps for the 
given curve over the closed interval.

 a. Plot the curve together with the polygonal path approxima-
tions for n 2, 4, 8 partition points over the interval. (See  
Figure 10.16.)

 b. Find the corresponding approximation to the length of the 
curve by summing the lengths of the line segments.

 c. Evaluate the length of the curve using an integral. Compare 
your approximations for n 2, 4, 8 with the actual length 
given by the integral. How does the actual length compare 
with the approximations as n increases? Explain your answer.

 51. x t y t t1
3

, 1
2

, 0 13 2= = ≤ ≤

 52. x t t t y t t t2 16 25 5, 3, 0 63 2 2= − + + = + − ≤ ≤

 53. x t t y t tcos , 1 sin ,= − = + − ≤ ≤

 54. x e t y e t tcos , sin , 0t t= = ≤ ≤

x

y

1−1

x = sin t
y = sin 2t

x

y

1−1

1

−1

x = sin 2t
y = sin 3t

The curves in Exercises 45 and 46 are called Bowditch curves or 
Lissajous figures. In each case, find the point in the interior of the first 
quadrant where the tangent line to the curve is horizontal, and find the 
equations of the two tangent lines at the origin.

 45.  46. 

T

 47. Cycloid 

 a. Find the length of one arch of the cycloid

x a t t y a tsin , 1 cos .( ) ( )= − = −

 b. Find the area of the surface generated by revolving one arch 
of the cycloid in part (a) about the x-axis for a 1.

10.3 Polar Coordinates

In this section we study polar coordinates and their relation to Cartesian coordinates. 
You will see that polar coordinates are very useful for calculating many multiple inte-
grals studied in Chapter 14. They are also useful in describing the paths of planets and 
satellites.

Definition of Polar Coordinates

To define polar coordinates, we first fix an origin O (called the pole) and an initial ray 
from O (Figure 10.20). Usually the positive x-axis is chosen as the initial ray. Then each 
point P can be located by assigning to it a polar coordinate pair r, ( ) in which r gives 
the directed distance from O to P, and  gives the directed angle from the initial ray to ray 
OP. So we label the point P as

P r,
/ \

O P OP
Directed distance

from   to 
Directed angle from

initial ray to 

( )
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 10.3  Polar Coordinates 643

As in trigonometry, θ is positive when measured counterclockwise and negative when 
measured clockwise. The angle associated with a given point is not unique. A point in the 
plane has just one pair of Cartesian coordinates, but it has infinitely many pairs of polar 
coordinates. For instance, the point 2 units from the origin along the ray 6θ π=  has polar 
coordinates r 2,  6.θ π= =  It also has coordinates r 2,  11 6θ π= = −  (Figure 10.21). 
In some situations we allow r to be negative. That is why we use directed distance in defin-
ing P r,  .θ( )  The point P 2, 7 6π( ) can be reached by turning 7 6π  radians counterclock-
wise from the initial ray and going forward 2 units (Figure 10.22). It can also be reached by 
turning 6π  radians counterclockwise from the initial ray and going backward 2 units. So 
the point also has polar coordinates r 2,  6.θ π= − =

EXAMPLE 1  Find all the polar coordinates of the point P 2,  6 .π( )

Solution We sketch the initial ray of the coordinate system, draw the ray from the 
origin that makes an angle of 6π  radians with the initial ray, and mark the point 2,  6π( ) 
(Figure 10.23). We then find the angles for the other coordinate pairs of P in which 

=r 2 and = −r 2.
For =r 2, the complete list of angles is

6
,

6
2 ,

6
4 ,

6
6 , . . . .π π π π π π π± ± ±

For r 2,= −  the angles are

5
6

, 5
6

2 , 5
6

4 , 5
6

6 , . . . .π π π π π π π− − ± − ± − ±

The corresponding coordinate pairs of P are

n n2, 
6

2 , 0,  1,  2, . . . π π( )+ = ± ±

and

n n2,  5
6

2 , 0,  1,  2, . . . .π π( )− − + = ± ±

When =n 0, the formulas give 2,  6π( ) and 2,  5 6 .π( )− −  When =n 1, they give 
2, 13 6π( ) and 2, 7 6 ,π( )−  and so on. 

Polar Equations and Graphs

If we hold r fixed at a constant value r a 0,= ≠  the point P r, θ( ) will lie a  units from 
the origin O. As θ varies over any interval of length π2 , P then traces a circle of radius a  
centered at O (Figure 10.24).

If we hold θ fixed at a constant value 0θ θ=  and let r vary between −∞ and ,∞  the 
point P r, θ( ) traces the line through O that makes an angle of measure 0θ  with the initial 
ray. (See Figure 10.22 for an example.)

EXAMPLE 2  A circle or line can have more than one polar equation.

 (a) r 1=  and = −r 1 are equations for the circle of radius 1 centered at O.

 (b) θ π θ π= =6,   7 6, and θ π= −5 6 are equations for the line in Figure 10.23. 

Equations of the form =r a and ,0θ θ=  and inequalities such as ≤r a and 
0 ,θ π≤ ≤  can be combined to define regions, segments, and rays.

FIGURE 10.21 Polar coordinates are not 
unique.

O x
Initial ray
u = 0

u = p�6

−11p
6

P  2,      = P  2, −11p
6

p
6a     b a           b

FIGURE 10.22 Polar coordinates can 
have negative r-values.

O
x

u = 0

u = p�6

p�6

7p�6

P  2,        = P  –2,p
6

7p
6a      b a      b

FIGURE 10.23 The point P 2,  6π( ) 
has infinitely many polar coordinate pairs 
(Example 1).

O

7p�6

–5p�6

Initial ray
x

6

  2,      =   –2, – 5p
6

p
6

=   –2, 7p

etc.

p
6

a    b

a      b

a        b

FIGURE 10.24 The polar equation for a 
circle is r a.=

x

0 a 0

r = a

O
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644 Chapter 10 Parametric Equations and Polar Coordinates

EXAMPLE 3  Graph the sets of points whose polar coordinates satisfy the following 
conditions.

 (a) θ π≤ ≤ ≤ ≤r1 2 and 0
2

 (b) θ π− ≤ ≤ =r3 2 and
4

 (c) r2
3

5
6

(no restriction on  )π θ π≤ ≤

Solution The graphs are shown in Figure 10.25. 

Relating Polar and Cartesian Coordinates

When we use both polar and Cartesian coordinates in a plane, we place the two origins 
together and let the initial polar ray be the positive x-axis. The ray θ π= >r2,   0, 
becomes the positive y-axis (Figure 10.26). The two coordinate systems are then related by 
the following equations.

Equations Relating Polar and Cartesian Coordinates

Polar to Cartesian:

x r y rcos , sinθ θ= =

Cartesian to Polar:

r x y
y
x

, tan2 2 2 θ= + =

The first two of these equations uniquely determine the Cartesian coordinates x and y 
given  the polar coordinates r and θ. On the other hand, if x and y are given and 
( ) ( )≠x y, 0, 0 , the third equation gives two possible choices for r (a positive and a 
negative value). For each of these r values, there is a unique θ π[ )∈ 0, 2  satisfying the 
first two equations, each then giving a polar coordinate representation of the Cartesian 
point ( )x y,  . The other polar coordinate representations for the point can be determined 
from these two, as in Example 1.

EXAMPLE 4  Here are some plane curves expressed in terms of both polar coordinate 
and Cartesian coordinate equations.

Polar equation Cartesian equivalent

r cos 2θ = x 2=

r cos sin 42 θ θ = xy 4=

θ θ− =r rcos sin 12 2 2 2 x y 12 2− =

r r1 2 cos θ= + y x x3 4 1 02 2− − − =

r 1 cos θ= − x y x y x xy y2 2 2 04 4 2 2 3 2 2+ + + + − =

Some curves are more simply expressed with polar coordinates; others are not. 

EXAMPLE 5  Find a polar equation for the circle ( )+ − =x y 3 92 2  (Figure 10.27).

Solution We apply the equations relating polar and Cartesian coordinates:

FIGURE 10.25 The graphs of typical 
inequalities in r and θ (Example 3).

x

y

0 1

(a)

2

x

y

0
3

(b)

2

(c)

x

y

0

1 ≤ r ≤ 2, 0 ≤ u ≤ p
2

u =    ,p
4

−3 ≤ r ≤ 2p
4

2p
3

5p
6

2p
3

5p
6≤ u ≤

FIGURE 10.26 The usual way to relate 
polar and Cartesian coordinates.

x

y

Common
origin

0 Initial rayx

yr

P(x, y) = P(r, u)

u = 0, r ≥ 0u

Ray u = p
2

FIGURE 10.27 The circle in Example 5.

x

y

(0, 3)

0

x2 + ( y − 3)2 = 9
or

r = 6 sin u
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 10.3  Polar Coordinates 645

x y

x y y

x y y

r r

r r

r

3 9

6 9 9

6 0

6 sin 0

0 or 6 sin 0

6 sin

2 2

2 2

2 2

2 θ

θ

θ

( )+ − =

+ − + =

+ − =

− =

= − =

=

EXAMPLE 6  Replace the following polar equations by equivalent Cartesian equa-
tions and identify their graphs.

 (a) r cos 4θ = −
 (b) r r4 cos2 θ=

 (c) r 4
2 cos sinθ θ

=
−

Solution We use the substitutions r x r y r x ycos ,   sin ,  and  .2 2 2θ θ= = = +

 (a) r cos 4θ = −

r

x

The Cartesian equation: cos 4

4

θ = −

= −                  Substitute.

The graph:  Vertical line through = −x 4 on the x-axis

 (b) r r4 cos2 θ=

r r

x y x

x x y

x x y

x y

The Cartesian equation: 4 cos

4

4 0

4 4 4

2 4

2

2 2

2 2

2 2

2 2

θ

( )

=

+ =

− + =

− + + =

− + =

The graph:  Circle, radius 2, center ( ) ( )=h k,  2, 0

 (c) r 4
2 cos sinθ θ

=
−

r

r r

x y

y x

The Cartesian equation: 2 cos sin 4

2 cos sin 4

2 4

2 4

θ θ

θ θ

( )− =

− =

− =

= −

The graph:  Line, slope m 2,=  y-intercept = −b 4 

Expand ( )−y 3 .2

Cancelation

x y r y r,   sin2 2 2 θ+ = =

Includes both possibilities 

Substitute.

Complete the square.

Factor.

Multiply by r.

Substitute.

Solve for y.

Polar Coordinates

 1. Which polar coordinate pairs label the same point?

 a. ( )3, 0 b. ( )−3, 0 c. π( )2, 2 3

 d. π( )2, 7 3 e. π( )−3,  f. π( )2,  3

 g. π( )−3, 2 h. π( )− −2,  3

 2. Which polar coordinate pairs label the same point?

 a. π( )−2,  3 b. π( )−2,  3 c. θ( )r, 

 d. θ π( )+r,  e. θ( )−r,  f. π( )−2,  2 3

 g. θ π( )− +r,  h. π( )−2, 2 3

EXERCISES 10.3
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646 Chapter 10 Parametric Equations and Polar Coordinates

 3. Plot the following points, given in polar coordinates. Then find all 
the polar coordinates of each point.

 a. π( )2,  2 b. ( )2, 0

 c. π( )−2,  2 d. ( )−2, 0

 4. Plot the following points, given in polar coordinates. Then find all 
the polar coordinates of each point.

 a. π( )3,  4 b. π( )−3,  4

 c. π( )−3,  4 d. π( )− −3,  4

Polar to Cartesian Coordinates

 5. Find the Cartesian coordinates of the points in Exercise 1.

 6. Find the Cartesian coordinates of the following points, given in 
polar coordinates.

 a. π( )2,  4 b. ( )1, 0

 c. π( )0,  2 d. π( )− 2,  4

 e. π( )−3, 5 6 f. ( )( )−5, tan 4 31

 g. π( )−1, 7 h. π( )2 3, 2 3

Cartesian to Polar Coordinates

 7. Find the polar coordinates, θ π≤ <0 2  and ≥r 0, of the  
following points given in Cartesian coordinates.

 a. ( )1, 1 b. ( )−3, 0

 c. ( )−3,  1 d. ( )−3, 4

 8. Find the polar coordinates, π θ π− ≤ <  and ≥r 0, of the  
following points given in Cartesian coordinates.

 a. ( )− −2,  2 b. ( )0, 3

 c. ( )− 3, 1 d. ( )−5,  12

 9. Find the polar coordinates, θ π≤ <0 2  and ≤r 0, of the  
following points given in Cartesian coordinates.

 a. ( )3, 3 b. ( )−1, 0

 c. ( )−1,  3 d. ( )−4,  3

 10. Find the polar coordinates, π θ π− ≤ <  and ≤r 0, of the  
following points given in Cartesian coordinates.

 a. ( )−2, 0 b. ( )1, 0

 c. ( )−0,  3 d.   3
2

,  1
2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

Graphing Sets of Polar Coordinate Points
Graph the sets of points whose polar coordinates satisfy the equations 
and inequalities in Exercises 11–26.

 11. =r 2  12. ≤ ≤r0 2

 13. ≥r 1  14. ≤ ≤r1 2

 15. θ π≤ ≤ ≥r0 6, 0  16. θ π= ≤ −r2 3, 2

 17. θ π= − ≤ ≤r3, 1 3  18. θ π= ≥ −r11 4, 1

 19. θ π= ≥r2, 0  20. θ π= ≤r2, 0

 21. θ π≤ ≤ =r0 , 1  22. θ π≤ ≤ = −r0 , 1

 23. π θ π≤ ≤ ≤ ≤r4 3 4, 0 1

 24. π θ π− ≤ ≤ − ≤ ≤r4 4, 1 1

 25. π θ π− ≤ ≤ ≤ ≤r2 2, 1 2

 26. θ π≤ ≤ ≤ ≤r0 2, 1 2

Polar to Cartesian Equations
Replace the polar equations in Exercises 27–52 with equivalent 
Cartesian equations. Then describe or identify the graph.

 27. r cos 2θ =  28. r sin 1θ = −

 29. r sin 0θ =  30. r cos 0θ =

 31. r 4 csc θ=  32. r 3 sec θ= −

 33. r rcos sin 1θ θ+ =  34. r rsin cosθ θ=

 35. =r 12  36. r r4 sin2 θ=

 37. r 5
sin 2 cosθ θ

=
−

 38. r sin 2 22 θ =

 39. r cot cscθ θ=  40. r 4 tan secθ θ=

 41. r ecsc r cosθ= θ  42. r rsin ln ln cosθ θ= +

 43. r r2 cos sin 12 2 θ θ+ =  44. θ θ=cos sin2 2

 45. r r4 cos2 θ= −  46. r r6 sin2 θ= −

 47. r 8 sin θ=  48. r 3 cos θ=

 49. r 2 cos 2 sinθ θ= +  50. r 2 cos sinθ θ= −

 51. r sin
6

2θ π( )+ =  52. r sin 2
3

5π θ( )− =

Cartesian to Polar Equations
Replace the Cartesian equations in Exercises 53–66 with equivalent 
polar equations.

 53. =x 7  54. =y 1  55. =x y

 56. − =x y 3  57. + =x y 42 2  58. − =x y 12 2

 59. + =x y
9 4

1
2 2

 60. =xy 2

 61. =y x42  62. + + =x xy y 12 2

 63. ( )+ − =x y 2 42 2  64. ( )− + =x y5 252 2

 65. ( )( )− + + =x y3 1 42 2  66. ( )( )+ + − =x y2 5 162 2

 67. Find all polar coordinates of the origin.

 68. Vertical and horizontal lines 

 a. Show that every vertical line in the xy-plane has a polar  
equation of the form r a sec .θ=

 b. Find the analogous polar equation for horizontal lines in the 
xy-plane.

10.4 Graphing Polar Coordinate Equations

It is often helpful to graph an equation expressed in polar coordinates in the Cartesian 
xy-plane. This section describes some techniques for graphing these equations using 
symmetries and tangent lines to the graph.
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 10.4  Graphing Polar Coordinate Equations 647

Symmetry

The following list shows how to test for three standard types of symmetries when using 
polar coordinates. These symmetries are illustrated in Figure 10.28.

FIGURE 10.28 Three tests for symmetry 
in polar coordinates.

x

y

(r, u)

(r, −u)
or (−r, p − u)

0

(a)  About the x-axis

x

y

0

0

(b)  About the y-axis

(r, p − u)
or (−r, −u) (r, u)

x

y

(−r, u) or (r, u + p)

(c)  About the origin

(r, u)

Symmetry Tests for Polar Graphs in the Cartesian xy-Plane

1. Symmetry about the x-axis: If the point θ( )r,   lies on the graph, then the point 
θ( )−r,   or π θ( )− −r,   lies on the graph (Figure 10.28a).

2. Symmetry about the y-axis: If the point θ( )r,   lies on the graph, then the point 
π θ( )−r,   or θ( )− −r,   lies on the graph (Figure 10.28b).

3. Symmetry about the origin: If the point θ( )r,   lies on the graph, then the point 
θ( )−r,   or θ π( )+r,   lies on the graph (Figure 10.28c).

Slope

The slope of a polar curve θ=r f ( ) in the xy-plane is dy dx, but this is not given by the 
formula θ′ =r df d . To see why, think of the graph of f  as the graph of the parametric 
equations

x r f y r fcos ( )cos , sin ( )sin .θ θ θ θ θ θ= = = =

If f  is a differentiable function of θ, then so are x and y, and when θ ≠dx d 0, we can 
calculate dy dx  from the parametric formula

dy
dx

dy d
dx d

d
d

f

d
d

f

df
d

f

df
d

f

( ( )sin )

( ( )cos )

sin ( )cos

cos ( )sin

θ
θ

θ
θ θ

θ
θ θ

θ
θ θ θ

θ
θ θ θ

=

=

=
+

−

Therefore, we see that dy dx  is not the same as θdf d .

Section 10.2, Eq. (1) with θ=t

Substitute

Product Rule for derivatives

Slope of the Curve =r f ( ) in the Cartesian xy-Plane

 
dy
dx

f f
f f

( )sin ( )cos
( )cos ( )sin

,
r , 

θ θ θ θ
θ θ θ θ

=
′ +
′ −θ( )

 (1)

provided θ ≠dx d 0 at θ( )r,  .

If the curve r f ( )θ=  passes through the origin at ,0θ θ=  then θ =f ( ) 0,0  and the 
slope equation gives

dy
dx

f
f

( )sin
( )cos

tan .
0, 

0 0

0 0
0

0

θ θ
θ θ

θ=
′
′

=
θ( )

That is, the slope at θ( )0,  0  is tan θ .0  The reason we say “slope at θ( )0,  0 ” and not just 
“slope at the origin” is that a polar curve may pass through the origin (or any point) more 
than once, with different slopes at different θ-values. This is not the case in our first exam-
ple, however.

M10_HASS5901_15_GE_C10.indd   647 08/03/23   08:05

www.konkur.in

Telegram: @uni_k



648 Chapter 10 Parametric Equations and Polar Coordinates

EXAMPLE 1  Graph the curve r 1 cos θ= −  in the Cartesian xy-plane.

Solution The curve is symmetric about the x-axis because

r r

r
r

, on the graph 1 cos

1 cos
,  on the graph.

θ θ

θ
θ

( )

( )

( )

⇒ = −

⇒ = − −
⇒ −

  cos cosθ θ( )= −

As θ increases from 0 to , cosπ θ decreases from 1 to −1, and r 1 cos θ= −  increases 
from a minimum value of 0 to a maximum value of 2. As θ continues on from π to 2 , cosπ θ 
increases from 1−  back to 1, and r decreases from 2 back to 0. The curve starts to repeat 
when θ π= 2  because the cosine has period π2 .

The curve leaves the origin with slope =tan(0) 0 and returns to the origin with slope 
π( ) =tan 2 0.

We make a table of values from θ = 0 to θ π= , plot the points, draw a smooth curve 
through them with a horizontal tangent line at the origin, and reflect the curve across the 
x-axis to complete the graph (Figure 10.29). The curve is called a cardioid because of its 
heart shape. 

EXAMPLE 2  Graph the curve r 4 cos2 θ=  in the Cartesian xy-plane.

Solution The equation r 4 cos2 θ=  requires cos 0,θ ≥  so we get the entire graph by 
running θ from π− 2 to π 2. The curve is symmetric about the x-axis because

r r

r

r

,   on the graph 4 cos

4 cos

,  on the graph.

2

2

θ θ

θ

θ

( )

( )

( )

⇒ =

⇒ = −

⇒ −

  cos cosθ θ( )= −

The curve is also symmetric about the origin because

r r

r

r

,   on the graph 4 cos

4 cos

,   on the graph.

2

2

θ θ

θ

θ

( )

( )

( )

⇒ =

⇒ − =

⇒ −

Together, these two symmetries imply symmetry about the y-axis.
The curve passes through the origin when θ π= − 2 and θ π= 2. It has a vertical 

tangent line both times because tan θ is infinite.
For each value of θ in the interval between π− 2 and π 2, the formula r 4 cos2 θ=  

gives two values of r:

r 2 cos .θ= ±

We make a short table of values, plot the corresponding points, and use information about sym-
metry and tangent lines to guide us in connecting the points with a smooth curve (Figure 10.30).

FIGURE 10.30 The graph of r 4 cos .2 θ=  The arrows show the direction of increasing θ.  
The values of r in the table are rounded (Example 2). 

(b)

x

y
r2 = 4 cos u

2 2
0

Loop for r = −2
"

cos u,

 ≤ u ≤ p2
p
2

−  ≤ u ≤ p2
p
2

−

Loop for r = 2
"

cos u,

cos r 2 cos= ±

0 1 ±2
π±
6

3
2

≈ ±1.9

π±
4

1
2

≈ ±1.7

π±
3

1
2

≈ ±1.4

π±
2

0 0

(a)

(p, 2)

(p, 2)

3
2

(b)

x

y

02

1

(c)

y

x
02

1

r = 1 − cos u

2p
3

3
2

,

1, p2

p
3

1
2

,

2p
3

3
2

,

4p
3

3
2

,

1, p2

1, 3p
2

p
3

1
2

,

5p
3

1
2

,

a   b

a   b

a     b

a     b

a     b

a     b

a    b

a   b

a   b

FIGURE 10.29 The steps in graphing the 
cardioid r 1 cos θ= −  (Example 1). The 
arrow shows the direction of increasing θ.

r 1 cos= −

0 0

3
π 1

2

2
π

1

2
3
π 3

2
π 2

(a)
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 10.4  Graphing Polar Coordinate Equations 649

Converting a Graph from the r -Plane to the xy-Plane

One way to graph a polar equation θ=r f ( ) in the xy-plane is to make a table of 
θ( )r,  -values, plot the corresponding points there, and connect them in order of increasing 

θ. This can work well if enough points have been plotted to reveal all the loops and dimples 
in the graph. Another method of graphing follows.

1. First graph the function θ=r f ( ) in the Cartesian θr -plane.

2. Then use that Cartesian graph as a “table” and guide to sketch the polar coordinate 
graph in the xy-plane.

This method is sometimes better than simple point plotting because the first Cartesian 
graph shows at a glance where r is positive, where negative, and where nonexistent, as well 
as where r is increasing and where it is decreasing. Here is an example.

EXAMPLE 3  Graph the lemniscate curve r sin 22 θ=  in the Cartesian xy-plane.

Solution For this example it will be easier to first plot r ,2  instead of r, as a function of θ 
in the Cartesian θr -plane2  (see Figure 10.31a). We pass from there to the graph of 
r sin 2θ= ±  in the θr -plane (Figure 10.31b), and then draw the polar graph (Figure 
10.31c). The graph in Figure 10.31b “covers” the final polar graph in Figure 10.31c twice. 
We could have managed with either loop alone, with the two upper halves, or with the two 
lower halves. The double covering does no harm, however, and we actually learn a little 
more about the behavior of the function this way. 

FIGURE 10.31 To plot θ=r f ( ) in 
the Cartesian θr -plane in (b), we first 
plot r sin 22 θ=  in the θr -plane2  in (a) 
and then ignore the values of θ for which 
sin 2θ is negative. The radii from the 
sketch in (b) cover the polar graph of the 
lemniscate in (c) twice (Example 3).

−1

0

1

3p
2p2

p
4

p

p

2

r2 = sin 2u

(a)

(b)

(c)

−1

1

0

r = +
"

sin 2u

r = −
"

sin 2u

p p
2

3p
2

r2

u

u

r

No square roots of
negative numbers

± parts from
square roots

x

y

r2 = sin 2u

0

Symmetries and Polar Graphs
Identify the symmetries of the curves in Exercises 1–12. Then sketch 
the curves in the xy-plane.

 1. r 1 cos θ= +  2. r 2 2 cos θ= −

 3. r 1 sin θ= −  4. r 1 sin θ= +

 5. r 2 sin θ= +  6. r 1 2 sin θ= +

 7. θ( )=r sin 2  8. θ( )=r cos 2

 9. r cos2 θ=  10. r sin2 θ=

 11. r sin2 θ= −  12. r cos2 θ= −

Graph the lemniscates in Exercises 13–16. What symmetries do these 
curves have?

 13. r 4 cos 22 θ=  14. r 4 sin 22 θ=

 15. r sin 22 θ= −  16. r cos 22 θ= −

Slopes of Polar Curves in the xy-Plane
Find the slopes of the curves in Exercises 17–20 at the given points. 
Sketch the curves along with their tangent lines at these points.

 17. Cardioid r 1 cos ; 2θ θ π= − + = ±

 18. Cardioid r 1 sin ; 0,  θ θ π= − + =

 19. Four-leaved rose r sin 2 ; 4 ,   3 4θ θ π π= = ± ±

 20. Four-leaved rose r cos 2 ; 0,   2,  θ θ π π= = ±

EXERCISES 10.4 

USING TECHNOLOGY  Graphing Polar Curves Parametrically
For complicated polar curves, we may need to use a graphing calculator or computer to 
graph the curve. If the device does not plot polar graphs directly, we can convert θ=r f ( ) 
into parametric form using the equations

x r f y r fcos ( ) cos , sin ( ) sin .θ θ θ θ θ θ= = = =

Then we use the device to draw a parametrized curve in the Cartesian xy-plane.
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650 Chapter 10 Parametric Equations and Polar Coordinates

Concavity of Polar Curves in the xy-Plane
Equation (1) gives the formula for the derivative ′y  of a polar curve 

θ=r f ( ). The second derivative is 
θ
θ

=
′d y

dx
dy d
dx d

2

2
 (see Equation (2) in 

Section 10.2). Find the slope and concavity of the curves in Exercises 
21–24 at the given points.

 21. r sin , 6,  3θ θ π π= =  22. r e , 0, θ π= =θ

 23. θ θ π= =r , 0, 2  24. r 1 , , 1θ θ π= = −

Graphing Limaçons
Graph the limaçons in Exercises 25–28. Limaçon (“lee-ma-sahn”) is 
Old French for “snail.” You will understand the name when you graph 
the limaçons in Exercise 25. Equations for limaçons have the form 
r a b cos θ= ±  or r a b sin .θ= ±  There are four basic shapes.

 25. Limaçons with an inner loop 

 a. r 1
2

cos θ= + b. r 1
2

sin θ= +

 26. Cardioids 

 a. r 1 cos θ= − b. r 1 sin θ= − +

 27. Dimpled limaçons 

 a. r 3
2

cos θ= + b. r 3
2

sin θ= −

 28. Oval limaçons 

 a. r 2 cos θ= + b. r 2 sin θ= − +

Graphing Polar Regions and Curves in the xy-Plane

 29. Sketch the region defined by the inequalities − ≤ ≤r1 2 and 
π θ π− ≤ ≤2 2.

 30. Sketch the region defined by the inequalities r0 2 sec θ≤ ≤  
and π θ π− ≤ ≤4 4.

In Exercises 31 and 32, sketch the region defined by the inequality.

 31. r0 2 2 cos θ≤ ≤ −  32. r0 cos2 θ≤ ≤

 33. Which of the following has the same graph as r 1 cos ?θ= −

 a. r 1 cos θ= − − b. r 1 cos θ= +

Confirm your answer with algebra.

 34. Which of the following has the same graph as r cos 2 ?θ=

 a. θ π( )= − +r sin 2 2 b. θ( )= −r cos 2

Confirm your answer with algebra.

 35. A rose within a rose Graph the equation r 1 2 sin 3 .θ= −

 36. The nephroid of Freeth Graph the nephroid of Freeth:

r 1 2 sin
2

.θ= +

 37. Roses Graph the roses r mcos θ=  for =m 1 3, 2, 3, and 7.

 38. Spirals Polar coordinates are just the thing for defining spirals. 
Graph the following spirals.

 a. θ=r

 b. θ= −r

 c. A logarithmic spiral: = θr e 10

 d. A hyperbolic spiral: θ=r 8

 e. An equilateral hyperbola: θ= ±r 10

(Use different colors for the two branches.)

 39. Graph the equation θ( )=r sin 8
7  for θ π≤ ≤0 14 .

 40. Graph the equation

θ θ( ) ( )= +r sin 2.3 cos 2.32 4

for θ π≤ ≤0 10 .

T

T

T

T

T

T

T

T

10.5 Areas and Lengths in Polar Coordinates

This section shows how to calculate areas of plane regions and lengths of curves in polar 
coordinates.

Area in the Plane

The region OTS in Figure 10.32 is bounded by the rays θ α=  and θ β=  and the curve 
r f ( ).θ=  We approximate the region with n nonoverlapping fan-shaped circular sectors 
based on a partition P of angle TOS. The typical sector has radius r f ( )k kθ=  and central 
angle of radian measure .kθΔ  Its area is 2kθ πΔ  times the area of a circle of radius r ,k  or

A r f1
2

1
2

( ) .k k k k k
2 2θ θ θ( )= Δ = Δ

The area of region OTS is approximately

A f1
2

( ) .
k

n

k
k

n

k k
1 1

2∑ ∑ θ θ( )= Δ
= =

If f  is continuous, we expect the approximations to improve as the norm of the parti-
tion P goes to zero, where the norm of P is the largest value of .kθΔ  We are therefore led to 
the following formula for the region’s area.

FIGURE 10.32 To derive a formula for 
the area of region OTS, we approximate 
the region with fan-shaped circular sectors.

x

y

O

S rn

rk

u = b

u = ar1

r2

uk

r = f (u)

( f (uk), uk)

Δuk

T
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 10.5  Areas and Lengths in Polar Coordinates 651

A f f dlim 1
2

( ) 1
2

( ) .
P

k

n

k k
0

1

2 2∑ ∫θ θ θ θ( ) ( )= Δ =
α

β

→ =

Area of the Fan-Shaped Region Between the Origin and the Curve  
=r f ( ) when α θ β≤ ≤ ≥r, 0,   and β α π− ≤ 2

A r d1
2

2∫ θ=
α

β

This is the integral of the area differential (Figure 10.33)

dA r d f d1
2

1
2

( ) .2 2θ θ θ( )= =

FIGURE 10.33 The area differential dA 
for the curve r f ( ).θ=

O
x

y

P(r, u)

du

u

r

dA =    r 2du1
2

In the area formula above, we assumed that r 0≥  and that the region does not sweep out 
an angle of more than 2 .π  This avoids issues with negatively signed areas or with regions 
that overlap themselves. More general regions can usually be handled by subdividing them 
into regions of this type if necessary.

EXAMPLE 1  Find the area of the region in the xy-plane enclosed by the cardioid 
r 2 1 cos .θ( )= +

Solution We graph the cardioid (Figure 10.34) and determine that the radius OP sweeps 
out the region exactly once as θ runs from 0 to 2 .π  The area is therefore

r d d

d

d

d

1
2

1
2

4 1 cos

2 1 2 cos cos

2 4 cos 2
1 cos 2

2

3 4 cos cos 2

3 4 sin
sin 2

2
6 0 6 .

2

0

2 2

0

2

2

0

2

0

2

0

2

0

2

∫ ∫

∫

∫

∫

θ θ θ

θ θ θ

θ
θ
θ

θ θ θ

θ θ
θ

π π

( )

( )

( )

( )

= ⋅ +

= + +

= + + ⋅
+

= + +

= + +⎡
⎣
⎢

⎤
⎦
⎥ = − =

θ

θ π π

π

π

π

π

=

=

 

To find the area of a region like the one in Figure 10.35, which lies between two polar 
curves r r ( )1 1 θ=  and r r ( )2 2 θ=  from θ α=  to ,θ β=  we subtract the integral of 

r d1 2 1
2 θ( )  from the integral of r d1 2 .2

2 θ( )  This leads to the following formula.

Area of the Region r r r0 ( ) ( ), , 1 2θ θ α θ β≤ ≤ ≤ ≤ ≤  and 2β α π− ≤

 A r d r d r r d1
2

1
2

1
22

2
1
2

2
2

1
2∫ ∫ ∫θ θ θ( )= − = −

α

β

α

β

α

β
 (1)

EXAMPLE 2  Find the area of the region that lies inside the circle r 1=  and outside 
the cardioid r 1 cos .θ= −

Solution We sketch the region to determine its boundaries and find the limits of integra-
tion (Figure 10.36). The outer curve is r 1,2 =  the inner curve is r 1 cos ,1 θ= −  and θ 
runs from 2π−  to 2.π  The area, from Equation (1), is

FIGURE 10.34 The cardioid in 
Example 1.

x

y

0 4

r

r = 2(1 + cos u)

u = 0, 2p

P(r, u)2

−2

FIGURE 10.35 The area of the shaded 
region is calculated by subtracting the area 
of the region between r1 and the origin 
from the area of the region between r2 and 
the origin.

y

x
0

u = b

u = a

r2

r1
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652 Chapter 10 Parametric Equations and Polar Coordinates

A r r d

r r d

d

d d

1
2

2 1
2

1 1 2 cos cos

2 cos cos 2 cos
1 cos 2

2

2 sin
2

sin 2
4

2
4

.

2
2

1
2

2

2

2
2

1
2

0

2

2

0

2

2

0

2

0

2

0

2

∫

∫

∫

∫ ∫

θ

θ

θ θ θ

θ θ θ θ
θ
θ

θ θ θ π

( )

( )( )

( )

( )

( )

= −

= −

= − − +

= − = −
+

= − −⎡
⎣
⎢

⎤
⎦
⎥ = −

π

π

π

π

π π

π

−

 

The fact that we can represent a point in different ways in polar coordinates requires 
that we take extra care in deciding when a point lies on the graph of a polar equation and in 
determining the points at which polar graphs intersect. (We needed intersection points in 
Example 2.) In Cartesian coordinates, we can always find the points where two curves 
cross by solving their equations simultaneously. In polar coordinates, the story is different. 
Simultaneous solution may reveal some intersection points without revealing others, so it 
is sometimes difficult to find all points of intersection of two polar curves. One way to 
identify all the points of intersection is to graph the equations.

EXAMPLE 3  Find all of the points where the curve r 2 cos 3θ( )=  intersects the 
circle of radius 2 centered at the origin.

Solution Note that the function r 2 cos 3θ( )=  takes both positive and negative values. 
Therefore, when we look for the points where this curve intersects the circle, it is important 
to take into account that the circle is described both by the equation r 2=  and by the 
equation r 2.= −

Solving 2 cos 3 2θ( ) =  for θ yields

2 cos 3 2, cos 3 2 2, 3 4, 3 4.θ θ θ π θ π( ) ( )= = = =

This gives us one point, 2, 3 4 ,π( )  where the two curves intersect. However, as we can 
see by looking at the graphs in Figure 10.37, there is a second intersection point. To find 
the second point, we solve 2 cos 3 2θ( ) = −  for θ:

2 cos 3 2, cos 3 2 2, 3 3 4, 9 4.θ θ θ π θ π( ) ( )= − = − = =

The second intersection point is located at 2, 9 4 .π( )−  We can specify this point in polar 
coordinates using a positive value of r and an angle between 0 and 2 .π  In polar coordinates, 
adding multiples of 2π to θ gives a second description of the same point in the plane. 
Similarly, changing the sign of r, while at the same time adding or subtracting π to or from 
θ, also gives a description of the same point. So in polar coordinates, 2, 9 4π( )−  

describes the same point in the plane as 2,  4π( )−  and also as 2, 5 4 .π( )  The second 

intersection point is located at 2, 5 4 .π( )  

Length of a Polar Curve

We can obtain a polar coordinate formula for the length of a curve r f ( ),   ,θ α θ β= ≤ ≤  
by parametrizing the curve as

 x r f y r fcos ( )cos , sin ( )sin , .θ θ θ θ θ θ α θ β= = = = ≤ ≤  (2)

FIGURE 10.36 The region and limits of 
integration in Example 2.

x

y

0

r2 = 1

r1 = 1 − cos u

Upper limit
u = p�2

Lower limit
u = −p�2

u

Eq. (1)

Symmetry

r r1 and  1 cos2 1 θ= = −

FIGURE 10.37 The curves 
r 2 cos 3θ( )=  and r 2=   
intersect at two points (Example 3).

x

y

1 2−1

−1

2

1

r = 2 cos (u/3)

r ="2

(      , 3p/4)"2

(      , 5p/4)"2
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 10.5  Areas and Lengths in Polar Coordinates 653

The parametric length formula, Equation (3) from Section 10.2, then gives the length as

L dx
d

dy
d

d .
2 2

∫ θ θ
θ( )( )= +

α

β

This equation becomes

L r dr
d

d2
2

∫ θ
θ( )= +

α

β

when Equations (2) are substituted for x and y (Exercise 29).

Length of a Polar Curve
If r f ( )θ=  has a continuous first derivative for ,α θ β≤ ≤  and if the point 
P r, θ( ) traces the curve r f ( )θ=  exactly once as θ runs from α to ,β  then the 
length of the curve is

 L r dr
d

d .2
2

∫ θ
θ( )= +

α

β
 (3)

EXAMPLE 4  Find the length of the cardioid r 1 cos .θ= −

Solution We sketch the cardioid to determine the limits of integration (Figure 10.38). 
The point P r, θ( ) traces the curve once, counterclockwise as θ runs from 0 to 2 ,π  so these 
are the values we take for α and .β

With

r dr
d

1 cos , sin ,θ
θ

θ= − =

we have

r dr
d

1 cos sin

1 2 cos cos sin 2 2 cos

2
2

2 2

2 2

θ
θ θ

θ θ θ θ

( ) ( ) ( )+ = − +

= − + + = −

and

L r dr
d

d d

d

d

d

2 2 cos

4 sin
2

2 sin
2

2 sin
2

4 cos
2

4 4 8.

2
2

0

2

2

0

2

0

2

0

2

0

2

∫ ∫

∫

∫

∫

θ
θ θ θ

θ θ

θ θ

θ θ

θ

( )= + = −

=

=

=

= −⎡
⎣⎢

⎤
⎦⎥

= + =

α

β π

π

π

π

π

1
�����������������

1 cos 2 sin 22θ θ( )− =

sin 2 0 for 0 2θ θ π( ) ≥ ≤ ≤

FIGURE 10.38 Calculating the length of 
a cardioid (Example 4).

0

1

2

r

x

y

u

r = 1 − cos u
P(r, u)
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654 Chapter 10 Parametric Equations and Polar Coordinates

Finding Polar Areas
Find the areas of the regions in Exercises 1–8.

 1. Bounded by the spiral r θ=  for 0 θ π≤ ≤

 15. Inside the circle r 2 cos θ= −  and outside the circle r 1=

 16. Inside the circle r 6=  and above the line r 3 csc θ=

 17. Inside the circle r 4 cos θ=  and to the right of the vertical line 
r sec θ=

 18. Inside the circle r 4 sin θ=  and below the horizontal line 
r 3 csc θ=

 19. a. Find the area of the shaded region in the accompanying figure.

EXERCISES 10.5

x

y

0 1−1

(1, p�4)

r = tan u
< u <

p
2

p
2

–

r = (
"

2�2) csc u

x

y

1

r = cos 3u

x

y

0

r = u
p
2

p
2

,

(p, p)

a      b

x

y

0

r = 2 sin u

2 p
2

,

u = p
4

a     b

 2. Bounded by the circle r 2 sin θ=  for 4 2π θ π≤ ≤

 3. Inside the oval limaçon r 4 2 cos θ= +

 4. Inside the cardioid r a a1 cos , 0θ( )= + >

 5. Inside one leaf of the four-leaved rose r cos 2θ=

 6. Inside one leaf of the three-leaved rose r cos 3θ=

 7. Inside one loop of the lemniscate r 4 sin 22 θ=

 8. Inside the six-leaved rose r 2 sin 32 θ=

Find the areas of the regions in Exercises 9–18.

 9. Shared by the circles r 2 cos θ=  and r 2 sin θ=

 10. Shared by the circles r 1=  and r 2 sin θ=

 11. Shared by the circle r 2=  and the cardioid r 2 1 cos θ( )= −

 12. Shared by the cardioids r 2 1 cos θ( )= +  and r 2 1 cos θ( )= −

 13. Inside the lemniscate r 6 cos 22 θ=  and outside the circle r 3=

 14. Inside the circle r a3 cos θ=  and outside the cardioid 
r a a1 cos ,   0θ( )= + >

 b. It looks as if the graph of r tan ,   2 2,θ π θ π= − < <  
could be asymptotic to the lines x 1=  and x 1.= −  Is it? 
Give reasons for your answer.

 20. The area of the region that lies inside the cardioid curve 
r cos 1θ= +  and outside the circle r cos θ=  is not

d1
2

cos 1 cos .2 2

0

2

∫ θ θ θ π( )+ −⎡⎣ ⎤⎦ =
π

Why not? What is the area? Give reasons for your answers.

Finding Lengths of Polar Curves
Find the lengths of the curves in Exercises 21–28.

 21. The spiral r , 0 52θ θ= ≤ ≤

 22. The spiral r e 2, 0 θ π= ≤ ≤θ

 23. The cardioid r 1 cos θ= +

 24. The curve r a asin 2 , 0 , 02 θ θ π( )= ≤ ≤ >

 25. The parabolic segment r 6 1 cos , 0 2θ θ π( )= + ≤ ≤

 26. The parabolic segment r 2 1 cos , 2θ π θ π( )= − ≤ ≤

 27. The curve r cos 3 , 0 43 θ θ π( )= ≤ ≤

 28. The curve r 1 sin 2 , 0 2θ θ π= + ≤ ≤

 29. The length of the curve θ α θ β= ≤ ≤r f ( ),    Assuming 
that the necessary derivatives are continuous, show how the 
substitutions

x f y f( )cos , ( )sinθ θ θ θ= =

(Equations 2 in the text) transform

L dx
d

dy
d

d
2 2

∫ θ θ
θ( )( )= +

α

β

into

L r dr
d

d .2
2

∫ θ
θ( )= +

α

β
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 10.6  Conic Sections 655

 30. Circumferences of circles As usual, when faced with a new 
formula, it is a good idea to try it on familiar objects to be sure 
it gives results consistent with past experience. Use the length  
formula in Equation (3) to calculate the circumferences of the  
following circles a 0 .( )>

 a. r a b. r a cos c. r a sin
Theory and Examples

 31. Average value  If f  is continuous, the average value of the polar 
coordinate r over the curve r f ( ),   ,θ α θ β= ≤ ≤  with respect 
to  is given by the formula

r f d1 ( ) .av ∫β α
θ θ=

− α

β

Use this formula to find the average value of r with respect to  
over the following curves a 0 .( )>

 a. The cardioid r a 1 cos( )= −

 b. The circle r a

 c. The circle r a cos , 2 2θ π θ π= − ≤ ≤

 32. r f r f( ) 2 ( ) vs.   Can anything be said about the 
relative lengths of the curves r f ( ),   ,θ α θ β= ≤ ≤  and 
r f2 ( ),   ?θ α θ β= ≤ ≤  Give reasons for your answer.

FIGURE 10.39 The standard conic sections (a) are the curves in which a plane cuts a double cone. Hyperbolas come in two parts, 
called branches. The point and lines obtained by passing the plane through the cone’s vertex (b) are degenerate conic sections.

Circle: plane perpendicular
to cone axis

Ellipse: plane oblique
to cone axis

Point: plane through
cone vertex only

Single line: plane
tangent to cone

Pair of intersecting lines

Parabola: plane parallel
to side of cone

Hyperbola: plane
parallel to cone axis

(a)

(b)

10.6 Conic Sections

In this section we define and review parabolas, ellipses, and hyperbolas geometrically and 
derive their standard Cartesian equations. These curves are called conic sections or conics 
because they are formed by cutting a double cone with a plane (Figure 10.39). This 

HISTORICAL BIOGRAPHY

Gregory St. Vincent 
(1584–1667)
Born in Belgium, St. Vincent studied 
mathematics at Douai. He made important 
contributions to the development of 
calculus, and his books were read by the 
next generation of mathematicians as they 
connected ideas and refined the concepts of 
calculus.

To know more, visit the companion Website. 
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656 Chapter 10 Parametric Equations and Polar Coordinates

geometric method was the only way that conic sections could be described by Greek math-
ematicians, since they did not have our tools of Cartesian or polar coordinates. In the next 
section we express the conics in polar coordinates.

Parabolas

FIGURE 10.40 The standard form of the 
parabola x py p4 ,   0.2 = >

Directrix: y = −p

The vertex lies
halfway between
directrix and focus.

Q(x, −p)

P(x, y)

F(0, p)
Focus

p

p

x2 = 4py

L

x

y

FIGURE 10.41 (a) The parabola y px4 .2 =  (b) The parabola 
y px4 .2 = −

Vertex

Directrix
x = −p

0

Focus

F(p, 0)

y2 = 4px

x

y

(a)

Directrix
x = p

0

Focus

F(−p, 0)

y2 = −4px

Vertex

x

y

(b)

DEFINITIONS A set that consists of all the points in a plane equidistant from a 
given fixed point and a given fixed line in the plane is a parabola. The fixed point 
is the focus of the parabola. The fixed line is the directrix.

If the focus F lies on the directrix L, the parabola is the line through F perpendicular to L. 
We consider this to be a degenerate case and assume henceforth that F  does not lie on L.

A parabola has its simplest equation when its focus and directrix straddle one of the 
coordinate axes. For example, suppose that the focus lies at the point F p0, ( ) on the posi-
tive y-axis and that the directrix is the line y p= −  (Figure 10.40). In the notation of the 
figure, a point P x y, ( ) lies on the parabola if and only if PF PQ.=  From the distance 
formula,

PF x y p x y p

PQ x x y p y p

0

.

2 2 2 2

2 2 2

( ) ( )

( )( ) ( )

( )

( )

= − + − = + −

= − + − − = +

When we equate these expressions, square, and simplify, we get

 y x
p

x py
4

or 4 .
2

2= =   Standard form (1)

These equations reveal the parabola’s symmetry about the y-axis. We call the y-axis the 
axis of the parabola (short for “axis of symmetry”).

The point where a parabola crosses its axis is the vertex. The vertex of the parabola 
x py42 =  lies at the origin (Figure 10.40). The positive number p is the parabola’s focal 
length.

If the parabola opens downward, with its focus at p0, ( )−  and its directrix the line 
y p,=  then Equations (1) become

y x
p

x py
4

and 4 .
2

2= − = −

By interchanging the variables x and y, we obtain similar equations for parabolas opening 
to the right or to the left (Figure 10.41).
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 10.6  Conic Sections 657

EXAMPLE 1  Find the focus and directrix of the parabola y x10 .2 =

Solution We find the value of p in the standard equation y px4 :2 =

p p4 10, so 10
4

5
2

.= = =

Then we find the focus and directrix for this value of p:

p

x p x

Focus: , 0 5
2

, 0

Directrix: or 5
2

.

( )( ) =

= − = −  

Ellipses

DEFINITIONS An ellipse is the set of points in a plane whose distances from 
two fixed points in the plane have a constant sum. The two fixed points are the 
foci of the ellipse.

The line through the foci of an ellipse is the ellipse’s focal axis. The point on 
the axis halfway between the foci is the center. The points where the focal axis 
and ellipse cross are the ellipse’s vertices (Figure 10.42).FIGURE 10.42 Points on the focal axis 

of an ellipse.

Vertex VertexFocus FocusCenter

Focal axis

FIGURE 10.43 The ellipse defined by the 
equation PF PF a21 2+ =  is the graph 
of the equation x a y b 1,2 2 2 2( ) ( )+ =  
where b a c .2 2 2= −

x

y

Focus Focus

Center0F1(−c, 0)
F2(c, 0)

P(x, y)

a

b

If the foci are F c, 01( )−  and F c, 02 ( ) (Figure 10.43), and PF PF1 2+  is denoted by 
2a, then the coordinates of a point P on the ellipse satisfy the equation

x c y x c y a2 .2 2 2 2( ) ( )+ + + − + =

To simplify this equation, we move the second radical to the right-hand side, square, isolate 
the remaining radical, and square again, obtaining

 x
a

y
a c

1.
2

2

2

2 2
+

−
=  (2)

Since PF PF1 2+  is greater than the length F F1 2 (by the triangle inequality for triangle 
PF F1 2), the number 2a is greater than 2c. Accordingly, a c>  and the number a c2 2−  in 
Equation (2) is positive.

The algebraic steps leading to Equation (2) can be reversed to show that every point P 
whose coordinates satisfy an equation of this form with c a0 < <  also satisfies the equa-
tion PF PF a2 .1 2+ =  A point therefore lies on the ellipse if and only if its coordinates 
satisfy Equation (2).

If we let b denote the positive square root of a c ,2 2−

 b a c ,2 2= −  (3)

then a c b2 2 2− =  and Equation (2) takes the form

 x
a

y
b

1.
2

2

2

2
+ =  (4)

Equation (4) reveals that this ellipse is symmetric with respect to the origin and both 
coordinate axes. It lies inside the rectangle bounded by the lines x a= ±  and y b.= ±  It 
crosses the axes at the points a, 0( )±  and b0,  .( )±  The tangents at these points are per-
pendicular to the axes because

dy
dx

b x
a y

,
2

2
= −

which is zero if x 0=  and infinite if y 0.=

Obtained from Eq. (4)  
by implicit differentiation
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658 Chapter 10 Parametric Equations and Polar Coordinates

The major axis of the ellipse in Equation (4) is the line segment of length 2a joining 
the points a, 0 .( )±  The minor axis is the line segment of length 2b joining the points 

b0,  .( )±  The number a itself is the semimajor axis, the number b the semiminor axis. 
The number c, found from Equation (3) as

c a b ,2 2= −

is the center-to-focus distance of the ellipse. If a b=  then the ellipse is a circle.

EXAMPLE 2  The ellipse

 x y
16 9

1
2 2

+ =  (5)

shown in Figure 10.44 has

a b

c

c

a

Semimajor axis: 16 4, Semiminor axis: 9 3,

Center-to-focus distance: 16 9 7,

Foci: , 0 7, 0 ,

Vertices: ,  0 4, 0 ,

Center: 0, 0 .

( )( )

( ) ( )

( )

= = = =

= − =

± = ±

± = ±

 

If we interchange x and y in Equation (5), we have the equation

 x y
9 16

1.
2 2

+ =  (6)

The major axis of this ellipse is now vertical instead of horizontal, with the foci and vertices on 
the y-axis. We can determine which way the major axis runs simply by finding the intercepts of 
the ellipse with the coordinate axes. The longer of the two axes of the ellipse is the major axis.

FIGURE 10.44 An ellipse with its major 
axis horizontal (Example 2).

x

y

(0, 3)

(0, −3)

Vertex
(4, 0)

Vertex
(−4, 0)

Focus Focus

Center

0(−
"

7, 0) (
"

7, 0)

x2

16
y2

9
+      = 1

Standard-Form Equations for Ellipses Centered at the Origin

Foci on the x-axis:
x
a

y
b

a b1
2

2

2

2
( )+ = >

c a bCenter-to-focus distance: 2 2= −
cFoci: , 0( )±

aVertices: , 0( )±

Foci on the y-axis:
x
b

y
a

a b1
2

2

2

2
( )+ = >

c a bCenter-to-focus distance: 2 2= −
cFoci: 0, ( )±

aVertices: 0, ( )±
In each case, a is the semimajor axis and b is the semiminor axis.

FIGURE 10.45 Points on the focal axis 
of a hyperbola.

Focus Focus

Center

Focal axis

Vertices

DEFINITIONS A hyperbola is the set of points in a plane whose distances from 
two fixed points in the plane have a constant difference. The two fixed points are 
the foci of the hyperbola.

The line through the foci of a hyperbola is the focal axis. The point on the 
axis halfway between the foci is the hyperbola’s center. The points where the 
focal axis and hyperbola cross are the vertices (Figure 10.45).

Hyperbolas
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 10.6  Conic Sections 659

If the foci are F c, 01( )−  and F c, 02 ( ) (Figure 10.46) and the constant difference is 2a, 
then a point x y, ( ) lies on the hyperbola if and only if

 x c y x c y a2 .2 2 2 2( ) ( )+ + − − + = ±  (7)

To simplify this equation, we move the second radical to the right-hand side, square, isolate 
the remaining radical, and square again, obtaining

 x
a

y
a c

1.
2

2

2

2 2
+

−
=  (8)

So far, this looks just like the equation for an ellipse. But now a c2 2−  is negative because 
2a, being the difference of two sides of triangle PF F ,1 2  is less than 2c, the third side.

The algebraic steps leading to Equation (8) can be reversed to show that every point P 
whose coordinates satisfy an equation of this form with < <a c0  also satisfies Equation (7). 
A point therefore lies on the hyperbola if and only if its coordinates satisfy Equation (8).

If we let b denote the positive square root of c a ,2 2−

 = −b c a ,2 2  (9)

then a c b2 2 2− = −  and Equation (8) takes the compact form

 − =x
a

y
b

1.
2

2

2

2
 (10)

The differences between Equation (10) and the equation for an ellipse (Equation (4)) are 
the minus sign and the new relation

= +c a b .2 2 2   From Eq. (9)

Like the ellipse, the hyperbola is symmetric with respect to the origin and coordinate axes. 
It crosses the x-axis at the points a, 0 .( )±  The tangents at these points are vertical because

dy
dx

b x
a y

2

2
=

and this is infinite when y 0.=  The hyperbola has no y-intercepts; in fact, no part of the 
curve lies between the lines x a= −  and x a.=

The lines

y b
a

x= ±

are the two asymptotes of the hyperbola defined by Equation (10). The fastest way to find 
the equations of the asymptotes is to replace the 1 in Equation (10) by 0 and solve the new 
equation for y:

��������������� ��������������� �����������

− = → − = → = ±x
a

y
b

x
a

y
b

y b
a

x1 0 .

hyperbola 0 for 1 asymptotes

2

2

2

2

2

2

2

2

EXAMPLE 3  The equation

 x y
4 5

1
2 2

− =  (11)

is Equation (10) with a 42 =  and b 52 =  (Figure 10.47). We have

c a b

c a

x y
y x

Center-to-focus distance: 4 5 3,

Foci: , 0 3, 0 , Vertices: , 0 2, 0 ,

Center: 0, 0 ,

Asymptotes:
4 5

0 or 5
2

.

2 2

2 2

( ) ( ) ( ) ( )

( )

= + = + =

± = ± ± = ±

− = = ±  

FIGURE 10.46 Hyperbolas have two 
branches. For points on the right-hand 
branch of the hyperbola shown here, 
PF PF a2 .1 2− =  For points on the left-
hand branch, PF PF a2 .2 1− =  We then 
let b c a .2 2= −

x

y

0F1(−c, 0) F2(c, 0)

x = −a x = a

P(x, y)

FIGURE 10.47 The hyperbola and its 
asymptotes in Example 3.

x

y

F(3, 0)F(−3, 0)

2−2

y = −       x"

5
2

y =        x"

5
2

x2

4
y2

5
−      = 1

Obtained from Eq. (10) by  
implicit differentiation
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660 Chapter 10 Parametric Equations and Polar Coordinates

If we interchange x and y in Equation (11), the foci and vertices of the resulting hyper-
bola will lie along the y-axis. We still find the asymptotes in the same way as before, but 
now their equations will be y x2 5.= ±

Standard-Form Equations for Hyperbolas Centered at the Origin

Foci on the x axis x
a

y
b

c a b

c

a

x
a

y
b

y b
a

x

y
a

x
b

c a b

c

a

y
a

x
b

y a
b

x

      :  1

Center-to-focus distance:

Foci: ,  0

Vertices: ,  0

Asymptotes: 0 or

:  1

Center-to-focus distance:

Foci: 0, 

Vertices: 0, 

Asymptotes: 0 or

2

2

2

2

2 2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

( )

( )

( )

( )

− =

= +

±

±

− = = ±

− =

= +

±

±

− = = ±

- Foci on the y-axis

Notice the difference in the asymptote equations (b a in the first, a b in the second).

We shift conics using the principles reviewed in Section 1.2, replacing x by x h+  and 
y by y k.+

EXAMPLE 4  Show that the equation x y x y4 2 8 7 02 2− + + − =  represents a 
hyperbola. Find its center, asymptotes, and foci.

Solution We reduce the equation to standard form by completing the square in x and y as 
follows:

x x y y

x x y y

x y

2 4 2 7

2 1 4 2 1 7 1 4

1
4

1 1.

2 2

2 2

2
2

( ) ( )

( ) ( )

( )
( )

+ − − =

+ + − − + = + −

+ − − =

This is the standard form Equation (10) of a hyperbola with x replaced by x 1+  and y 
replaced by y 1.−  The hyperbola is shifted one unit to the left and one unit upward, and it 
has center x 1 0+ =  and y 1 0,− =  or x 1= −  and y 1.=  Moreover,

a b c a b4, 1, 5,2 2 2 2 2= = = + =

so the asymptotes are the two lines

x y x y1
2

1 0 and 1
2

1 0,( ) ( )+ − − = + + − =

or

y x1 1
2

1 .( )− = ± +

The shifted foci have coordinates 1 5,  1 .( )− ±  
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 10.6  Conic Sections 661

 12. y x22 = −  13. y x4 2=  14. y x8 2= −

 15. x y3 2= −  16. =x y2 2

Ellipses
Exercises 17–24 give equations for ellipses. Put each equation in stan-
dard form. Then sketch the ellipse. Include the foci in your sketch.

 17. + =x y16 25 4002 2  18. x y7 16 1122 2+ =

 19. x y2 22 2+ =  20. x y2 42 2+ =

 21. x y3 2 62 2+ =  22. x y9 10 902 2+ =

 23. x y6 9 542 2+ =  24. x y169 25 42252 2+ =

Exercises 25 and 26 give information about the foci and vertices of 
ellipses centered at the origin of the xy-plane. In each case, find the 
ellipse’s standard-form equation from the given information.

 25. Foci: 2, 0( )±  Vertices: 2, 0( )±

 26. Foci: 0,  4( )±  Vertices: 0,  5( )±

Hyperbolas
Exercises 27–34 give equations for hyperbolas. Put each equation in 
standard form and find the hyperbola’s asymptotes. Then sketch the 
hyperbola. Include the asymptotes and foci in your sketch.

 27. x y 12 2− =  28. x y9 16 1442 2− =

 29. y x 82 2− =  30. y x 42 2− =

 31. x y8 2 162 2− =  32. y x3 32 2− =

 33. y x8 2 162 2− =  34. x y64 36 23042 2− =

Exercises 35–38 give information about the foci, vertices, and asymp-
totes of hyperbolas centered at the origin of the xy-plane. In each case, 
find the hyperbola’s standard-form equation from the information 
given.

 35. Foci: 0,  2( )±

Asymptotes: y x= ±

 36. Foci: 2, 0( )±

Asymptotes: y x1
3

= ±

 37. Vertices: 3,  0( )±

Asymptotes: y x4
3

= ±

 38. Vertices: 0,  2( )±

Asymptotes: y x1
2

= ±

Shifting Conic Sections
You may wish to review Section 1.2 before solving Exercises 39–56.

 39. The parabola y x82 =  is shifted down 2 units and right 1 unit to 
generate the parabola y x2 8 1 .2( ) ( )+ = −

 a. Find the new parabola’s vertex, focus, and directrix.

 b. Plot the new vertex, focus, and directrix, and sketch in the 
parabola.

 40. The parabola x y42 = −  is shifted left 1 unit and up 3 units to 
generate the parabola x y1 4 3 .2 ( )( )+ = − −

 a. Find the new parabola’s vertex, focus, and directrix.

 b. Plot the new vertex, focus, and directrix, and sketch in the 
parabola.

EXERCISES 10.6

Identifying Graphs
Match the parabolas in Exercises 1–4 with the following equations:

x y x y y x y x2 , 6 , 8 , 4 .2 2 2 2= = − = = −

Then find each parabola’s focus and directrix.

 1.  2. 

x

y

x

y

x

y

x

y 3.  4. 

Match each conic section in Exercises 5–8 with one of these  
equations:

x y x y

y
x x y

4 9
1,

2
1,  

4
1,

4 9
1.

2 2 2
2

2
2

2 2

+ = + =

− = − =

Then find the conic section’s foci and vertices. If the conic section is a 
hyperbola, find its asymptotes as well.

 5.  6. 

x

y

x

y

x

y

x

y 7.  8. 

Parabolas
Exercises 9–16 give equations of parabolas. Find each parabola’s 
focus and directrix. Then sketch the parabola. Include the focus and 
directrix in your sketch.

 9. y x122 =  10. x y62 =  11. x y82 = −
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662 Chapter 10 Parametric Equations and Polar Coordinates

 41. The ellipse x y16 9 12 2( ) ( )+ =  is shifted 4 units to the right 
and 3 units up to generate the ellipse

x y4
16

3
9

1.
2 2( )( )− + − =

 a. Find the foci, vertices, and center of the new ellipse.

 b. Plot the new foci, vertices, and center, and sketch in the new 
ellipse.

 42. The ellipse x y9 25 12 2( ) ( )+ =  is shifted 3 units to the left 
and 2 units down to generate the ellipse

x y3
9

2
25

1.
2 2( )( )+ + + =

 a. Find the foci, vertices, and center of the new ellipse.

 b. Plot the new foci, vertices, and center, and sketch in the new 
ellipse.

 43. The hyperbola x y16 9 12 2( ) ( )− =  is shifted 2 units to the 
right to generate the hyperbola

x y2
16 9

1.
2 2( )− − =

 a. Find the center, foci, vertices, and asymptotes of the new 
hyperbola.

 b. Plot the new center, foci, vertices, and asymptotes, and sketch 
in the hyperbola.

 44. The hyperbola y x4 5 12 2( ) ( )− =  is shifted 2 units down to 
generate the hyperbola

y x2
4 5

1.
2 2( )+ − =

 a. Find the center, foci, vertices, and asymptotes of the new 
hyperbola.

 b. Plot the new center, foci, vertices, and asymptotes, and sketch 
in the hyperbola.

Exercises 45–48 give equations for parabolas and tell how many units 
up or down and to the right or left each parabola is to be shifted. Find 
an equation for the new parabola, and find the new vertex, focus, and 
directrix.

 45. y x4 , left 2,  down 32 =

 46. y x12 , right 4,  up 32 = −

 47. x y8 , right 1,  down 72 =

 48. x y6 , left 3,  down 22 =

Exercises 49–52 give equations for ellipses and tell how many units 
up or down and to the right or left each ellipse is to be shifted. Find an 
equation for the new ellipse, and find the new foci, vertices, and center.

 49. x y
6 9

1, left 2,  down 1
2 2

+ =

 50. x y
2

1, right 3,  up 4
2

2+ =

 51. x y
3 2

1, right 2,  up 3
2 2

+ =

 52. x y
16 25

1, left 4,  down 5
2 2

+ =

Exercises 53–56 give equations for hyperbolas and tell how many 
units up or down and to the right or left each hyperbola is to be shifted. 
Find an equation for the new hyperbola, and find the new center, foci, 
vertices, and asymptotes.

 53. x y
4 5

1,  right 2,  up 2
2 2

− =

 54. x y
16 9

1,  left 2,  down 1
2 2

− =

 55. y x 1,  left 1,  down 12 2− =

 56. y
x

3
1,  right 1,  up 3

2
2− =

Find the center, foci, vertices, asymptotes, and radius, as appropriate, 
of the conic sections in Exercises 57–68.

 57. x x y4 122 2+ + =

 58. x y x y2 2 28 12 114 02 2+ − + + =

 59. x x y2 4 3 02 + + − =  60. y y x4 8 12 02 − − − =

 61. x y x5 4 12 2+ + =  62. x y y9 6 36 02 2+ + =

 63. x y x y2 2 4 12 2+ − − = −

 64. x y x y4 8 2 12 2+ + − = −

 65. x y x y2 4 42 2− − + =  66. x y x y4 6 62 2− + − =

 67. x y y2 6 32 2− + =  68. y x x4 16 242 2− + =

Theory and Examples

 69. If lines are drawn parallel to the coordinate axes through a point 
P on the parabola y kx k,   0,2 = >  the parabola partitions the 
rectangular region bounded by these lines and the coordinate axes 
into two smaller regions, A and B.

 a. If the two smaller regions are revolved about the y-axis, show 
that they generate solids whose volumes have the ratio 4:1.

 b. What is the ratio of the volumes generated by revolving the 
regions about the x-axis?

0
x

y

A

B

P

y2 = kx

x

y

Bridge cable

0

 70. Suspension bridge cables hang in parabolas The suspension 
bridge cable shown in the accompanying figure supports a uniform 
load of w newtons per horizontal meter. It can be shown that if  
H is the horizontal tension of the cable at the origin, then the curve 
of the cable satisfies the equation

dy
dx

w
H

x.=

Show that the cable hangs in a parabola by solving this differential 
equation subject to the initial condition that y 0=  when x 0.=
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 10.7  Conics in Polar Coordinates 663

x

y

0 F( p, 0)

P(x0, y0)

f

a

b

b

L

L′

y0

y2 = 4px

 71. The width of a parabola at the focus Show that the number 4p 
is the width of the parabola x py p4 02 ( )= >  at the focus by 
showing that the line y p=  cuts the parabola at points that are 4p 
units apart.

 72. The asymptotes of x a y b 12 2 2 2− =( ) ( )  Show that the 
vertical distance between the line y b a x( )=  and the upper half 

of the right-hand branch y b a x a2 2( )= −  of the hyperbola 

x a y b 12 2 2 2( ) ( )− =  approaches 0 by showing that

b
a

x b
a

x a b
a

x x alim lim 0.
x x

2 2 2 2( ) ( )− − = − − =
→∞ →∞

Similar results hold for the remaining portions of the hyperbola 
and the lines y b a x.( )= ±

 73. Area Find the dimensions of the rectangle of largest area that 
can be inscribed in the ellipse x y4 42 2+ =  with its sides parallel 
to the coordinate axes. What is the area of the rectangle?

 74. Volume Find the volume of the solid generated by revolving 
the region enclosed by the ellipse x y9 4 362 2+ =  about the  
(a) x-axis, (b) y-axis.

 75. Volume The “triangular” region in the first quadrant bounded by 
the x-axis, the line x 4,=  and the hyperbola x y9 4 362 2− =  is 
revolved about the x-axis to generate a solid. Find the volume of 
the solid.

 76. Tangents Show that the tangents to the curve y px42 =  from 
any point on the line x p= −  are perpendicular.

 77. Tangents Find equations for the tangents to the circle 
x y2 1 52 2( )( )− + − =  at the points where the circle crosses 

the coordinate axes.

 78. Volume The region bounded on the left by the y-axis, on the 
right by the hyperbola x y 1,2 2− =  and above and below by the 
lines y 3= ±  is revolved about the y-axis to generate a solid. Find 
the volume of the solid.

 79. Centroid Find the centroid of the region that is bounded below 
by the x-axis and above by the ellipse x y9 16 1.2 2( ) ( )+ =

 80. Surface area The curve y x x1,  0 2,2= + ≤ ≤  which 
is part of the upper branch of the hyperbola y x 1,2 2− =  is 
revolved about the x-axis to generate a surface. Find the area of 
the surface.

 81. The reflective property of parabolas The accompanying  
figure shows a typical point P x y, 0 0( ) on the parabola y px4 .2 =  
The line L is tangent to the parabola at P. The parabola’s focus lies 
at F p, 0 .( )  The ray L′ extending from P to the right is parallel to 
the x-axis. We show that light from F to P will be reflected out 
along L′ by showing that β  equals .α  Establish this equality by 
taking the following steps.

 a. Show that p ytan 2 .0β =

 b. Show that y x ptan .0 0φ ( )= −

 c. Use the identity

tan
tan tan

1 tan tan
α

φ β
φ β

=
−

+

to show that p ytan 2 .0α =

Since α and β  are both acute, tan tanβ α=  implies .β α=
This reflective property of parabolas is used in applications 

like car headlights, radio telescopes, and satellite TV dishes.

10.7 Conics in Polar Coordinates

Polar coordinates are especially important in astronomy and astronautical engineering 
because satellites, moons, planets, and comets all move approximately along ellipses, 
parabolas, and hyperbolas that can be described with a single relatively simple polar coor-
dinate equation. We develop that equation here after first introducing the idea of a conic 
section’s eccentricity. The eccentricity reveals the conic section’s type (circle, ellipse, 
parabola, or hyperbola) and the degree to which it is “squashed” or flattened.

Eccentricity

Although the center-to-focus distance c does not appear in the standard Cartesian equation

x
a

y
b

a b1,
2

2

2

2
( )+ = >

for an ellipse, we can still determine c from the equation c a b .2 2= −  If we fix a and 
vary c over the interval c a0 ,≤ ≤  the resulting ellipses will vary in shape. They are cir-
cles if c 0=  (so that a b= ) and flatten, becoming more oblong, as c increases. If c a,=  
the foci and vertices overlap and the ellipse degenerates into a line segment. Thus we are 
led to consider the ratio e c a.=  We use this ratio for hyperbolas as well, except in this 
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664 Chapter 10 Parametric Equations and Polar Coordinates

DEFINITION
The eccentricity of the ellipse x a y b a b1 2 2 2 2( ) ( ) ( )+ = >  is

e c
a

a b
a

.
2 2

= = −

The eccentricity of the hyperbola x a y b 12 2 2 2( ) ( )− =  is

e c
a

a b
a

.
2 2

= = +

The eccentricity of a parabola is e 1.=

FIGURE 10.48 The distance from the 
focus F to any point P on a parabola 
equals the distance from P to the nearest 
point D on the directrix, so PF PD.=

0 F(c, 0)

D P(x, y)

x

y
Directrix

x = −c

FIGURE 10.49 The foci and directrices 
of the ellipse x a y b 1.2 2 2 2( ) ( )+ =  
Directrix 1 corresponds to focus F1 and 
directrix 2 to focus F .2

x

y
Directrix 1
x = −

a
e

Directrix 2
x = a

eb

−b

0

a
c = ae

a
e

D1 D2
P(x, y)

F1(−c, 0) F2(c, 0)

case c equals a b2 2+  instead of a b .2 2−  We refer to this ratio as the eccentricity of 
the ellipse or hyperbola.

FIGURE 10.50 The foci and directrices 
of the hyperbola x a y b 1.2 2 2 2( ) ( )− =  
No matter where P lies on the hyperbola, 
PF e PD1 1= ⋅  and PF e PD .2 2= ⋅

Directrix 1
x = − a

e

Directrix 2
x = a

e

a

c = ae

a
e

F1(−c, 0) F2(c, 0)

D2D1
P(x, y)

x

y

0

Whereas a parabola has one focus and one directrix, each ellipse has two foci and two 
directrices. These are the lines perpendicular to the major axis at distances a e±  from the 
center. From Figure 10.48 we see that a parabola has the property

 PF PD1= ⋅  (1)

for any point P on it, where F  is the focus and D is the point nearest P on the directrix. For 
an ellipse, it can be shown that the equations that replace Equation (1) are

 PF e PD PF e PD, .1 1 2 2= ⋅ = ⋅  (2)

Here, e is the eccentricity, P is any point on the ellipse, F1 and F2 are the foci, and D1 and 
D2 are the points on the directrices nearest P (Figure 10.49).

In both Equations (2) the directrix and focus must correspond; that is, if we use the 
distance from P to F ,1  we must also use the distance from P to the directrix at the same 
end of the ellipse. The directrix x a e= −  corresponds to ( )−F c, 0 ,1  and the directrix 
x a e=  corresponds to F c, 0 .2 ( )

As with the ellipse, it can be shown that the lines x a e= ±  act as directrices for the 
hyperbola and that

 PF e PD PF e PDand .1 1 2 2= ⋅ = ⋅  (3)

Here P is any point on the hyperbola, F1 and F2 are the foci, and D1 and D2 are the points 
nearest P on the directrices (Figure 10.50).

In both the ellipse and the hyperbola, the eccentricity is the ratio of the distance 
between the foci to the distance between the vertices (because c a c a2 2= ).

Eccentricity distance between foci
distance between vertices

=

In an ellipse, the foci are closer together than the vertices and the ratio is less than 1. In a 
hyperbola, the foci are farther apart than the vertices and the ratio is greater than 1.

The “focus–directrix” equation PF e PD= ⋅  unites the parabola, ellipse, and hyper-
bola in the following way. Suppose that the distance PF of a point P from a fixed point F  
(the focus) is a constant multiple of its distance from a fixed line (the directrix). That is, 
suppose

 PF e PD,= ⋅  (4)

where e is the constant of proportionality. Then the path traced by P is

(a) a parabola if e 1,=
(b) an ellipse of eccentricity e if <e 1, and

(c) a hyperbola of eccentricity e if >e 1.
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 10.7  Conics in Polar Coordinates 665

As e increases ( )→ −e 1 , ellipses become more oblong, and ( )→ ∞e  hyperbolas flatten 
toward two lines parallel to the directrix. There are no coordinates in Equation (4), and 
when we try to translate it into Cartesian coordinate form, it translates in different ways 
depending on the size of e. However, as we are about to see, in polar coordinates the equa-
tion = ⋅PF e PD translates into a single equation regardless of the value of e.

Given the focus and corresponding directrix of a hyperbola centered at the origin and 
with foci on the x-axis, we can use the dimensions shown in Figure 10.50 to find e. Knowing 
e, we can derive a Cartesian equation for the hyperbola from the equation = ⋅PF e PD, as 
in the next example. We can find equations for ellipses centered at the origin and with foci on 
the x-axis in a similar way, using the dimensions shown in Figure 10.49.

EXAMPLE 1  Find a Cartesian equation for the hyperbola centered at the origin that 
has a focus at 3, 0( ) and the line =x 1 as the corresponding directrix.

Solution We first use the dimensions shown in Figure 10.50 to find the hyperbola’s 
eccentricity. The focus is (see Figure 10.51)

c c, 0 3, 0 , so 3.( ) ( )= =

Again from Figure 10.50, the directrix is the line

= = =x a
e

a e1, so .

When combined with the equation =e c a that defines eccentricity, these results give

= = = =e c
a e

e e3, so 3 and 3.2

Knowing e, we can now derive the equation we want from the equation = ⋅PF e PD. 
In the coordinates of Figure 10.51, we have

PF e PD

x y x
x x y x x

x y

x y

3 ( 0) 3 1
6 9 3 2 1

2 6

3 6
1.

2 2

2 2 2

2 2

2 2

( )

( )

= ⋅

− + − = −
− + + = − +

− =

− =  

Polar Equations

To find a polar equation for an ellipse, parabola, or hyperbola, we place one focus at the 
origin and the corresponding directrix to the right of the origin along the vertical line 

=x k (Figure 10.52). In polar coordinates, this makes

=PF r

and

PD k FB k r cos .θ= − = −

The conic’s focus–directrix equation = ⋅PF e PD then becomes

r e k r cos ,θ( )= −

which can be solved for r to obtain the following expression.

Eq. (4)

=e 3

Square both sides.

Simplify.

Polar Equation for a Conic with Eccentricity e

 r ke
e1 cos

,
θ

=
+

 (5)

where = >x k 0 is the vertical directrix.

FIGURE 10.51 The hyperbola and 
directrix in Example 1.

0 1 F(3, 0)

D(1, y)

P(x, y)

x

x = 1

y

x2

3
y2

6
−      = 1

FIGURE 10.52 If a conic section is put 
in the position with its focus placed at the 
origin and a directrix perpendicular to the 
initial ray and right of the origin, we can 
find its polar equation from the conic’s 
focus–directrix equation.

Conic section

P

F B

r

r cos u

Focus at
origin

D

x
k

x = k

Directrix
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666 Chapter 10 Parametric Equations and Polar Coordinates

EXAMPLE 2  Here are polar equations for three conics. The eccentricity values iden-
tifying the conic are the same for both polar and Cartesian coordinates.

e r k

e r k

e r k

1
2

: ellipse
2 cos

1: parabola
1 cos

2: hyperbola 2
1 2 cos

θ

θ

θ

= =
+

= =
+

= =
+  

You may see variations of Equation (5), depending on the location of the directrix. If 
the directrix is the line = −x k to the left of the origin (the origin is still a focus), we 
replace Equation (5) with

r ke
e1 cos

.
θ

=
−

The denominator now has a −( ) instead of a +( ). If the directrix is either of the lines =y k 
or = −y k, the equations have sines in them instead of cosines, as shown in Figure 10.53.

EXAMPLE 3  Find an equation for the hyperbola with eccentricity 3 2 and directrix 
=x 2.

Solution We use Equation (5) with =k 2 and =e 3 2:

r r
2 3 2

1 3 2 cos
or 6

2 3 cos
.

θ θ
( )

( )
=

+
=

+  

EXAMPLE 4  Find the directrix of the parabola r 25
10 10 cos

.
θ

=
+

Solution We divide the numerator and denominator by 10 to put the equation in standard 
polar form:

r
5 2

1 cos
.
θ

=
+

This is the equation

r ke
e1 cos θ

=
+

with =k 5 2 and =e 1. The equation of the directrix is x 5 2.=  

From the ellipse diagram in Figure 10.54, we see that k is related to the eccentricity e 
and the semimajor axis a by the equation

= −k a
e

ea.

From this, we find that ( )= −ke a e1 .2  Replacing ke in Equation (5) by ( )−a e1 2  gives 
the standard polar equation for an ellipse.

FIGURE 10.53 Equations for conic sec-
tions with eccentricity >e 0 but different 
locations of the directrix. The graphs here 
show a parabola, so =e 1.

Focus at origin

Directrix x = k

r = ke
1 + e cos u

x

(a)

Focus at origin

Directrix x = −k

r = ke
1 − e cos u

x

(b)

Directrix y = k

r = ke
1 + e sin u

y

Focus at
origin

(c)

Directrix y = −k

r = ke
1 − e sin u

y
Focus at origin

(d)

FIGURE 10.54 In an ellipse with semi-
major axis a, the focus–directrix distance 
is ( )= −k a e ea, so ke a e1 .2( )= −

Center
Focus at
origin

ea

a

a
e

x

Directrix
x = k
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 10.7  Conics in Polar Coordinates 667

Notice that when e 0,=  Equation (6) becomes =r a, which represents a circle.

Lines

Suppose the perpendicular from the origin to line L meets L at the point θ( )P r ,  ,0 0 0  with 
≥r 00  (Figure 10.55). Then, if θ( )P r,   is any other point on L, the points P P,   ,0  and O are 

the vertices of a right triangle, from which we can read the relation

r r cos .0 0θ θ( )= −

Polar Equation for the Ellipse with Eccentricity e and Semimajor Axis a

 r a e
e

1
1 cos

2

θ
( )= −
+

 (6)

The Standard Polar Equation for Lines
If the point θ( )P r , 0 0 0  is the foot of the perpendicular from the origin to the line L, 
and ≥r 0,0  then an equation for L is

 r rcos .0 0θ θ( )− =  (7)

For example, if θ π= 30  and =r 2,0  we find that

r

r

r r x y

cos
3

2

cos cos
3

sin sin
3

2

1
2

cos 3
2

sin 2, or 3 4.

θ π

θ π θ π

θ θ

( )
( )

− =

+ =

+ = + =

Circles

To find a polar equation for the circle of radius a centered at θ( )P r ,  ,0 0 0  we let θ( )P r,   be 
a point on the circle and apply the Law of Cosines to triangle OP P0  (Figure 10.56). This 
gives

θ θ( )= + − −a r r r r2 cos .2
0

2 2
0 0

If the circle passes through the origin, then =r a0  and this equation simplifies to

θ θ

θ θ

θ θ

( )

( )

( )

= + − −

= −

= −

a a r ar

r ar

r a

2 cos

2 cos

2 cos .

2 2 2
0

2
0

0

If the circle’s center lies on the positive x-axis, θ = 0,0  and we get the further simplification

 r a2 cos .θ=  (8)

If the center lies on the positive y-axis, 2, cos 2 sin ,θ π θ π θ( )= − =  and the 
equation r a2 cos 0θ θ( )= −  becomes

 r a2 sin .θ=  (9)

Equations for circles through the origin centered on the negative x- and y-axes can be 
obtained by replacing r with −r in the above equations.

FIGURE 10.55 We can obtain a polar 
equation for line L by reading the relation 
r r cos0 0θ θ( )= −  from the right triangle 
OP P.0

x

y

O

u0

r0

u

r

L

P(r, u)

P0(r0 , u0)

FIGURE 10.56 We can get a polar equa-
tion for this circle by applying the Law of 
Cosines to triangle OP P.0

O
x

y

u0

r0
u

r

a

P(r, u)

P0(r0 , u0)
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668 Chapter 10 Parametric Equations and Polar Coordinates

EXAMPLE 5  Here are several polar equations given by Equations (8) and (9) for 
circles through the origin and having centers that lie on the x- or y-axis.

Radius
Center  

(polar coordinates)
Polar  

equation

3 ( )3, 0 r 6 cos θ=

2 π( )2,  2 r 4 sin θ=

1 2 ( )−1 2, 0 r cos θ= −

1 π( )−1,  2 r 2 sin θ= −

Ellipses and Eccentricity
In Exercises 1–8, find the eccentricity of the ellipse. Then find and 
graph the ellipse’s foci and directrices.

 1. + =x y16 25 4002 2  2. + =x y7 16 1122 2

 3. + =x y2 22 2  4. + =x y2 42 2

 5. + =x y3 2 62 2  6. + =x y9 10 902 2

 7. + =x y6 9 542 2  8. + =x y169 25 42252 2

Exercises 9–12 give the foci or vertices and the eccentricities of 
ellipses centered at the origin of the xy-plane. In each case, find the 
ellipse’s standard-form equation in Cartesian coordinates.

 9. Foci: ( )±0,  3

Eccentricity: 0.5

 10. Foci: ( )±8, 0

Eccentricity: 0.2

 11. Vertices: ( )±0,  70

Eccentricity: 0.1

 12. Vertices: ( )±10, 0

Eccentricity: 0.24

Exercises 13–16 give foci and corresponding directrices of ellipses 
centered at the origin of the xy-plane. In each case, use the dimensions 
in Figure 10.49 to find the eccentricity of the ellipse. Then find the 
ellipse’s standard-form equation in Cartesian coordinates.

 13. Focus: ( )5, 0

Directrix: =x 9
5

 14. Focus: ( )4, 0

Directrix: =x 16
3

 15. Focus: ( )−4, 0

Directrix: = −x 16

 16. Focus: ( )− 2, 0

Directrix: = −x 2 2

Hyperbolas and Eccentricity
In Exercises 17–24, find the eccentricity of the hyperbola. Then find 
and graph the hyperbola’s foci and directrices.

 17. − =x y 12 2  18. − =x y9 16 1442 2

 19. − =y x 82 2  20. − =y x 42 2

 21. − =x y8 2 162 2  22. − =y x3 32 2

 23. − =y x8 2 162 2  24. − =x y64 36 23042 2

Exercises 25–28 give the eccentricities and the vertices or foci of 
hyperbolas centered at the origin of the xy-plane. In each case, find the 
hyperbola’s standard-form equation in Cartesian coordinates.

 25. Eccentricity: 3

Vertices: ( )±0,  1

 26. Eccentricity: 2

Vertices: ( )±2, 0

 27. Eccentricity: 3

Foci: ( )±3, 0

 28. Eccentricity: 1.25

Foci: ( )±0,  5

Eccentricities and Directrices
Exercises 29–36 give the eccentricities of conic sections with one 
focus at the origin along with the directrix corresponding to that focus. 
Find a polar equation for each conic section.

 29. = =e x1, 2  30. = =e y1, 2

 31. = = −e y5, 6  32. = =e x2, 4

 33. = =e x1 2, 1  34. = = −e x1 4, 2

 35. = = −e y1 5, 10  36. = =e y1 3, 6

Parabolas and Ellipses
Sketch the parabolas and ellipses in Exercises 37–44. Include the 
directrix that corresponds to the focus at the origin. Label the vertices 
with appropriate polar coordinates. Label the centers of the ellipses as 
well.

 37. r 1
1 cos θ

=
+

 38. r 6
2 cos θ

=
+

 39. r 25
10 5 cos θ

=
−

 40. r 4
2 2 cos θ

=
−

 41. r 400
16 8 sin θ

=
+

 42. r 12
3 3 sin θ

=
+

 43. r 8
2 2 sin θ

=
−

 44. r 4
2 sin θ

=
−

EXERCISES 10.7
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 Chapter 10  Questions to Guide Your Review 669

Aphelion
(farthest
from sun)

Perihelion
(closest
to sun)

Planet

Sun

u
a

Lines
Sketch the lines in Exercises 45–48 and find Cartesian equations for 
them.

 45. r cos
4

2θ π( )− =  46. r cos 3
4

1θ π( )+ =

 47. r cos 2
3

3θ π( )− =  48. r cos
3

2θ π( )+ =

Find a polar equation in the form r rcos 0 0θ θ( )− =  for each of the 
lines in Exercises 49–52.

 49. + =x y2 2 6  50. − =x y3 1

 51. = −y 5  52. = −x 4

Circles
Sketch the circles in Exercises 53–56. Give polar coordinates for their 
centers and identify their radii.

 53. r 4 cos θ=  54. r 6 sin θ=

 55. r 2 cos θ= −  56. r 8 sin θ= −

Find polar equations for the circles in Exercises 57–64. Sketch each 
circle in the coordinate plane and label it with both its Cartesian and 
polar equations.

 57. ( )− + =x y6 362 2  58. ( )+ + =x y2 42 2

 59. ( )+ − =x y 5 252 2  60. ( )+ + =x y 7 492 2

 61. + + =x x y2 02 2  62. − + =x x y16 02 2

 63. + + =x y y 02 2  64. + − =x y y4
3

02 2

Examples of Polar Equations
Graph the lines and conic sections in Exercises 65–74.

 65. r 3 sec 3θ π( )= −  66. r 4 sec 6θ π( )= +

 67. r 4 sin θ=  68. r 2 cos θ= −

 69. r 8 4 cos θ( )= +  70. r 8 4 sin θ( )= +

T

 71. r 1 1 sin θ( )= −  72. r 1 1 cos θ( )= +

 73. r 1 1 2 sin θ( )= +  74. r 1 1 2 cos θ( )= +

 75. Perihelion and aphelion A planet travels about its sun in an 
ellipse whose semimajor axis has length a. (See accompanying 
figure.)

 a. Show that ( )= −r a e1  when the planet is closest to the sun 
and that ( )= +r a e1  when the planet is farthest from the sun.

 b. Use the data in the table in Exercise 76 to find how close each 
planet in our solar system comes to the sun and how far away 
each planet gets from the sun.

 76. Planetary orbits Use the data in the table below and Equation (6) 
to find polar equations for the orbits of the planets.

Planet
Semimajor axis  

(astronomical units) Eccentricity

Mercury    0.3871 0.2056

Venus    0.7233 0.0068

Earth   1.000 0.0167

Mars   1.524 0.0934

Jupiter   5.203 0.0484

Saturn   9.539 0.0543

Uranus 19.18 0.0460

Neptune 30.06 0.0082

 1. What is a parametrization of a curve in the xy-plane? Does a func-
tion =y f x( ) always have a parametrization? Are parametriza-
tions of a curve unique? Give examples.

 2. Give some typical parametrizations for lines, circles, parabolas, 
ellipses, and hyperbolas. How might the parametrized curve differ 
from the graph of its Cartesian equation?

 3. What is a cycloid? What are typical parametric equations for 
cycloids? What physical properties account for the importance of 
cycloids?

 4. What is the formula for the slope dy dx of a parametrized curve 
= =x f t y g t( ),   ( )? When does the formula apply? When can 

you expect to be able to find d y dx2 2  as well? Give examples.

 5. How can you sometimes find the area bounded by a parametrized 
curve and one of the coordinate axes?

 6. How do you find the length of a smooth parametrized curve 
= = ≤ ≤x f t y g t a t b( ),   ( ),   ? What does smoothness have to 

do with length? What else do you need to know about the param-
etrization in order to find the curve’s length? Give examples.

 7. What is the arc length function for a smooth parametrized curve? 
What is its arc length differential?

 8. Under what conditions can you find the area of the surface gen-
erated by revolving a curve = = ≤ ≤x f t y g t a t b( ),   ( ),   , 
about the x-axis? the y-axis? Give examples.

 9. What are polar coordinates? What equations relate polar coordi-
nates to Cartesian coordinates? Why might you want to change 
from one coordinate system to the other?

 10. What consequence does the lack of uniqueness of polar coordi-
nates have for graphing? Give an example.

CHAPTER 10 Questions to Guide Your Review
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670 Chapter 10 Parametric Equations and Polar Coordinates

 11. How do you graph equations in polar coordinates? Include in your 
discussion symmetry, slope, behavior at the origin, and the use of 
Cartesian graphs. Give examples.

 12. How do you find the area of a region θ θ≤ ≤ ≤r r r0 ( ) ( ),1 2  
α θ β≤ ≤ , in the polar coordinate plane? Give examples.

 13. Under what conditions can you find the length of a curve 
θ α θ β= ≤ ≤r f ( ),   , in the polar coordinate plane? Give an 

example of a typical calculation.

 14. What is a parabola? What are the Cartesian equations for parabo-
las whose vertices lie at the origin and whose foci lie on the coor-
dinate axes? How can you find the focus and directrix of such a 
parabola from its equation?

 15. What is an ellipse? What are the Cartesian equations for ellipses 
centered at the origin with foci on one of the coordinate axes? 

How can you find the foci, vertices, and directrices of such an 
ellipse from its equation?

 16. What is a hyperbola? What are the Cartesian equations for hyper-
bolas centered at the origin with foci on one of the coordinate 
axes? How can you find the foci, vertices, and directrices of such 
an ellipse from its equation?

 17. What is the eccentricity of a conic section? How can you classify 
conic sections by eccentricity? How does eccentricity change the 
shape of ellipses and hyperbolas?

 18. Explain the equation = ⋅PF e PD.

 19. What are the standard equations for lines and conic sections in 
polar coordinates? Give examples.

Identifying Parametric Equations in the Plane
Exercises 1–6 give parametric equations and parameter intervals for 
the motion of a particle in the xy-plane. Identify the particle’s path by 
finding a Cartesian equation for it. Graph the Cartesian equation and 
indicate the direction of motion and the portion traced by the particle.

 1. = = + −∞ < < ∞x t y t t2, 1,

 2. = = − ≥x t y t t, 1 , 0

 3. x t y t t1 2 tan , 1 2 sec , 2 2π π( ) ( )= = − < <

 4. x t y t t2 cos , 2 sin , 0 π= − = ≤ ≤

 5. x t y t tcos , cos , 02 π= − = ≤ ≤

 6. x t y t t4 cos , 9 sin , 0 2π= = ≤ ≤

Finding Parametric Equations and Tangent Lines

 7. Find parametric equations and a parameter interval for the 
motion of a particle in the xy-plane that traces the ellipse 

+ =x y16 9 1442 2  once counterclockwise. (There are many 
ways to do this.)

 8. Find parametric equations and a parameter interval for the motion 
of a particle that starts at the point ( )−2, 0  in the xy-plane and 
traces the circle + =x y 42 2  three times clockwise. (There are 
many ways to do this.)

In Exercises 9 and 10, find an equation for the line in the xy-plane that 
is tangent to the curve at the point corresponding to the given value of 
t. Also, find the value of d y dx2 2  at this point.

 9. x t y t t1 2 tan , 1 2 sec , 3π( ) ( )= = =

 10. = + = − =x t y t t1 1 , 1 3 , 22

 11. Eliminate the parameter to express the curve in the form =y f x( ).

 a. = = −x t y t4 , 12 3

 b. x t y tcos , tan= =

 12. Find parametric equations for the given curve.

 a. Line through ( )−1,  2  with slope 3

 b. ( )( )− + + =x y1 2 92 2

 c. = −y x x4 2

 d. + =x y9 4 362 2

CHAPTER 10 Practice Exercises

Lengths of Curves
Find the lengths of the curves in Exercises 13–19.

 13. ( )= − ≤ ≤y x x x1 3 , 1 41 2 3 2

 14. = ≤ ≤x y y, 1 82 3

 15. ( ) ( )= − ≤ ≤y x x x5 12 5 8 , 1 326 5 4 5

 16. ( ) ( )= + ≤ ≤x y y y12 1 , 1 23

 17. x t t y t t t5 cos cos 5 , 5 sin sin 5 , 0 2π= − = − ≤ ≤

 18. = − = + ≤ ≤x t t y t t t6 , 6 , 0 13 2 3 2

 19. x y3 cos , 3 sin , 0 3
2

θ θ θ π= = ≤ ≤

 20. Find the length of the enclosed loop ( )= = −x t y t t,   32 3  
shown here. The loop starts at = −t 3 and ends at =t 3.

y

0

1

1

−1

2 4
x

t = ±
"

3t = 0

t  > 0

t  < 0

Surface Areas
Find the areas of the surfaces generated by revolving the curves in 
Exercises 21 and 22 about the indicated axes.

 21. x t y t t x2, 2 , 0 5, -axis2= = ≤ ≤

 22. x t t y t t y1 2 , 4 , 1 2 1, -axis2 ( )= + = ≤ ≤
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 Chapter 10  Practice Exercises 671

x

y

x

y
 43. Circle  44. CardioidPolar to Cartesian Equations

Sketch the lines in Exercises 23–28. Also, find a Cartesian equation 
for each line.

 23. r cos
3

2 3θ π( )+ =  24. r cos 3
4

2
2

θ π( )− =

 25. r 2 sec θ=  26. r 2 sec θ= −

 27. r 3 2 csc θ( )= −  28. r 3 3 csc θ( )=

Find Cartesian equations for the circles in Exercises 29–32. Sketch 
each circle in the coordinate plane and label it with both its Cartesian 
and polar equations.

 29. r 4 sin θ= −  30. r 3 3 sin θ=

 31. r 2 2 cos θ=  32. r 6 cos θ= −

Cartesian to Polar Equations
Find polar equations for the circles in Exercises 33–36. Sketch each 
circle in the coordinate plane and label it with both its Cartesian and 
polar equations.

 33. + + =x y y5 02 2  34. + − =x y y2 02 2

 35. + − =x y x3 02 2  36. + + =x y x4 02 2

Graphs in Polar Coordinates
Sketch the regions defined by the polar coordinate inequalities in 
Exercises 37 and 38.

 37. r0 6 cos θ≤ ≤  38. r4 sin 0θ− ≤ ≤

Match each graph in Exercises 39–46 with the appropriate equation 
(a)–(l). There are more equations than graphs, so some equations will 
not be matched.

 a. r cos 2θ= b. r cos 1θ = c. r 6
1 2 cos θ

=
−

 d. r sin 2θ= e. θ=r f. r cos 22 θ=

 g. r 1 cos θ= + h. r 1 sin θ= − i. r 2
1 cos θ

=
−

 j. r sin 22 θ= k. r sin θ= − l. r 2 cos 1θ= +

 39. Four-leaved rose  40. Spiral

x

y

x

y

x

y

x

y
 41. Limaçon  42. Lemniscate

x

y

x

y
 45. Parabola  46. Lemniscate

Area in Polar Coordinates
Find the areas of the regions in the polar coordinate plane described in 
Exercises 47–50.

 47. Enclosed by the limaçon r 2 cos θ= −

 48. Enclosed by one leaf of the three-leaved rose r sin 3θ=

 49. Inside the “figure eight” r 1 cos 2θ= +  and outside the circle 
=r 1

 50. Inside the cardioid r 2 1 sin θ( )= +  and outside the circle 
r 2 sin θ=

Length in Polar Coordinates
Find the lengths of the curves given by the polar coordinate equations 
in Exercises 51–54.

 51. r 1 cos θ= − +

 52. r 2 sin 2 cos , 0 2θ θ θ π= + ≤ ≤

 53. r 8 sin 3 , 0 43 θ θ π( )= ≤ ≤

 54. r 1 cos 2 , 2 2θ π θ π= + − ≤ ≤

Graphing Conic Sections
Sketch the parabolas in Exercises 55–58. Include the focus and direc-
trix in each sketch.

 55. = −x y42  56. =x y22

 57. =y x32  58. ( )= −y x8 32

Find the eccentricities of the ellipses and hyperbolas in Exercises 
59–62. Sketch each conic section. Include the foci, vertices, and 
asymptotes (as appropriate) in your sketch.

 59. + =x y16 7 1122 2  60. + =x y2 42 2

 61. − =x y3 32 2  62. − =y x5 4 202 2

Exercises 63–68 give equations for conic sections and tell how many 
units up or down and to the right or left each curve is to be shifted. Find 
an equation for the new conic section, and find the new foci, vertices, 
centers, and asymptotes, as appropriate. If the curve is a parabola, find 
the new directrix as well.

 63. = −x y12 , right 2, up 32

 64. =y x10 , left 1 2, down 12

 65. + =x y
9 25

1, left 3, down 5
2 2
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672 Chapter 10 Parametric Equations and Polar Coordinates

 66. + =x y
169 144

1, right 5, up 12
2 2

 67. − =y x
8 2

1, right 2, up 2 2
2 2

 68. − =x y
36 64

1, left 10, down 3
2 2

Identifying Conic Sections
Complete the squares to identify the conic sections in Exercises 69–76. 
Find their foci, vertices, centers, and asymptotes (as appropriate). If 
the curve is a parabola, find its directrix as well.

 69. − − =x x y4 4 02 2  70. − + =x y y4 4 82 2

 71. − + = −y y x2 16 492  72. − + = −x x y2 8 172

 73. + + − = −x y x y9 16 54 64 12 2

 74. + − + =x y x y25 9 100 54 442 2

 75. + − − =x y x y2 2 02 2  76. + + + =x y x y4 2 12 2

Conics in Polar Coordinates
Sketch the conic sections whose polar coordinate equations are given 
in Exercises 77–80. Give polar coordinates for the vertices and, in the 
case of ellipses, for the centers as well.

 77. r 2
1 cos θ

=
+

 78. r 8
2 cos θ

=
+

 79. r 6
1 2 cos θ

=
−

 80. r 12
3 sin θ

=
+

Exercises 81–84 give the eccentricities of conic sections with one 
focus at the origin of the polar coordinate plane, along with the direc-
trix for that focus. Find a polar equation for each conic section.

 81. e r2, cos 2θ= =  82. e r1, cos 4θ= = −

 83. e r1 2, sin 2θ= =  84. e r1 3, sin 6θ= = −

Theory and Examples

 85. Find the volume of the solid generated by revolving the region 
enclosed by the ellipse + =x y9 4 362 2  about (a) the x-axis,  
(b) the y-axis.

 86. The “triangular” region in the first quadrant bounded by the x-axis, 
the line =x 4, and the hyperbola − =x y9 4 362 2  is revolved 
about the x-axis to generate a solid. Find the volume of the solid.

 87. Show that the equations x r y rcos ,   sinθ θ= =  transform the 
polar equation

r k
e1 cos θ

=
+

into the Cartesian equation

( )− + + − =e x y kex k1 2 0.2 2 2 2

 88. Archimedes spirals The graph of an equation of the form 
θ=r a , where a is a nonzero constant, is called an Archimedes 

spiral. Is there anything special about the widths between the suc-
cessive turns of such a spiral?

Finding Conic Sections

 1. Find an equation for the parabola with focus ( )4, 0  and directrix 
=x 3. Sketch the parabola together with its vertex, focus, and 

directrix.

 2. Find the vertex, focus, and directrix of the parabola

− − + =x x y6 12 9 0.2

 3. Find an equation for the curve traced by the point ( )P x y,   if the 
distance from P to the vertex of the parabola =x y42  is twice the 
distance from P to the focus. Identify the curve.

 4. A line segment of length +a b runs from the x-axis to the y-axis. 
The point P on the segment lies a units from one end and b units 
from the other end. Show that P traces an ellipse as the ends of the 
segment slide along the axes.

 5. The vertices of an ellipse of eccentricity 0.5 lie at the points 
( )±0,  2 . Where do the foci lie?

 6. Find an equation for the ellipse of eccentricity 2 3 that has the line 
=x 2 as a directrix and the point ( )4, 0  as the corresponding 

focus.

 7. One focus of a hyperbola lies at the point ( )−0,  7  and the cor-
responding directrix is the line = −y 1. Find an equation for the 
hyperbola if its eccentricity is (a) 2, (b) 5.

 8. Find an equation for the hyperbola with foci ( )−0,  2  and ( )0, 2  
that passes through the point ( )12, 7 .

 9. Show that the line

+ − =b xx a yy a b 02
1

2
1

2 2

is tangent to the ellipse + − =b x a y a b 02 2 2 2 2 2  at the point 
( )x y, 1 1  on the ellipse.

 10. Show that the line

− − =b xx a yy a b 02
1

2
1

2 2

is tangent to the hyperbola − − =b x a y a b 02 2 2 2 2 2  at the point 
( )x y, 1 1  on the hyperbola.

Equations and Inequalities
What points in the xy-plane satisfy the equations and inequalities in 
Exercises 11–16? Draw a figure for each exercise.

 11. ( )( )( )− − + − + − =x y x y x y1 25 4 4 02 2 2 2 2 2

 12. ( )( )+ + − =x y x y 1 02 2

 13. ( ) ( )+ ≤x y9 16 12 2

 14. ( ) ( )− ≤x y9 16 12 2

 15. ( )( )+ − + − ≤x y x y9 4 36 4 9 16 02 2 2 2

 16. ( )( )+ − + − >x y x y9 4 36 4 9 16 02 2 2 2

CHAPTER 10 Additional and Advanced Exercises
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 Chapter 10  Additional and Advanced Exercises 673

Polar Coordinates

 17. a. Find an equation in polar coordinates for the curve

x e t y e t tcos , sin , .t t2 2= = −∞ < < ∞

 b. Find the length of the curve from =t 0 to π=t 2 .

 18. Find the length of the curve r 2 sin 3 ,  0 3 ,3 θ θ π( )= ≤ ≤  in 
the polar coordinate plane.

Exercises 19–22 give the eccentricities of conic sections with one focus 
at the origin of the polar coordinate plane, along with the directrix for 
that focus. Find a polar equation for each conic section.

 19. e r2, cos 2θ= =  20. e r1, cos 4θ= = −

 21. e r1 2, sin 2θ= =  22. e r1 3, sin 6θ= = −

Theory and Examples

 23. Epicycloids When a circle rolls externally along the circumfer-
ence of a second, fixed circle, any point P on the circumference of 
the rolling circle describes an epicycloid, as shown here. Let the 
fixed circle have its center at the origin O and have radius a.

Suppose the equation of the curve is given in the form θ=r f ( ), 
where θf ( ) is a differentiable function of θ. Then

 x r y rcos and sinθ θ= =  (2)

are differentiable functions of θ with

 

dx
d

r dr
d

dy
d

r dr
d

sin cos ,

cos sin .

θ
θ θ

θ

θ
θ θ

θ

= − +

= +
 (3)

Since ψ φ θ= −  from (1),

tan tan
tan tan

1 tan tan
.ψ φ θ

φ θ
φ θ

( )= − =
−

+

Furthermore,

dy
dx

dy d
dx d

tan φ
θ
θ

= =

because tan φ is the slope of the curve at P. Also,

y
x

tan .θ =

Hence

 

dy d
dx d

y
x

y
x

dy d
dx d

x
dy
d

y dx
d

x dx
d

y
dy
d

tan
1

.ψ

θ
θ

θ
θ

θ θ

θ θ

=
−

+
=

−

+
 (4)

The numerator in the last expression in Equation (4) is found from 
Equations (2) and (3) to be

x
dy
d

y dx
d

r .2

θ θ
− =

Similarly, the denominator is

x dx
d

y
dy
d

r dr
d

.
θ θ θ

+ =

When we substitute these into Equation (4), we obtain

 r
dr d

tan .ψ
θ

=  (5)

This is the equation we use for finding ψ as a function of θ.

 25. Show, by reference to a figure, that the angle β  between the tan-
gents to two curves at a point of intersection may be found from 
the formula

 tan
tan tan

1 tan tan
.2 1

2 1

β
ψ ψ
ψ ψ

=
−

+
 (6)

When will the two curves intersect at right angles?

 26. Find the value of tan ψ for the curve θ( )=r sin 4 .4

x

y

O

u

b
C

P

A(a, 0)

x

y

0
u f

c

r

r = f (u)

P(r, u)

Let the radius of the rolling circle be b and let the initial position 
of the tracing point P be ( )A a, 0 . Find parametric equations for 
the epicycloid, using as the parameter the angle θ from the posi-
tive x-axis to the line through the circles’ centers.

 24. Find the centroid of the region enclosed by the x-axis and the 
cycloid arch

x a t t y a t tsin , 1 cos ; 0 2 .π( ) ( )= − = − ≤ ≤

The Angle Between the Radius Vector and the Tangent Line to a 
Polar Coordinate Curve In Cartesian coordinates, when we want to 
discuss the direction of a curve at a point, we use the angle φ measured 
counterclockwise from the positive x-axis to the tangent line. In polar 
coordinates, it is more convenient to calculate the angle ψ from the 
radius vector to the tangent line (see the accompanying figure). The 
angle φ can then be calculated from the relation

 φ θ ψ= + , (1)

which comes from applying the Exterior Angle Theorem to the triangle 
in the accompanying figure.
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674 Chapter 10 Parametric Equations and Polar Coordinates

 27. Find the angle between the radius vector to the curve r a2 sin 3θ=  
and its tangent when θ π= 6.

 28. a.  Graph the hyperbolic spiral θ =r 1. What appears to happen 
to ψ as the spiral winds in around the origin?

 b. Confirm your finding in part (a) analytically.

 29. The circles r 3 cos θ=  and r sin θ=  intersect at the point 

π( )3 2,  3 . Show that their tangents are perpendicular there.

 30. Find the angle at which the cardioid r a 1 cos θ( )= −  crosses 
the ray θ π= 2.

T

Mathematica/Maple Projects

Projects can be found within MyLab Math.

• Radar Tracking of a Moving Object

Part I: Convert from polar to Cartesian coordinates.

• Parametric and Polar Equations with a Figure Skater

Part I: Visualize position, velocity, and acceleration to analyze motion defined by parametric equations.
Part II: Find and analyze the equations of motion for a figure skater tracing a polar plot.

CHAPTER 10 Technology Application Projects
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675

OVERVIEW In this chapter we begin the study of multivariable calculus. To apply calculus 
in many real-world situations, we introduce three-dimensional coordinate systems and 
vectors. We establish coordinates in space by adding a third axis that measures distance 
above and below the xy-plane. Then we define vectors, which provide simple ways to 
introduce equations for lines, planes, curves, and surfaces in space.

Vectors and the 

Geometry of Space

11

FIGURE 11.1 The Cartesian coordinate 
system is right-handed.

z

x

(x, 0, 0)

(x, y, 0)

(x, 0, z)

(0, 0, z)

(0, y, z)

(0, y, 0)

x = constant

y = constant

z = constant

y

P(x, y, z)00

11.1 Three-Dimensional Coordinate Systems

To locate a point in space, we use three mutually perpendicular coordinate axes, arranged 
as in Figure 11.1. The axes shown there make a right-handed coordinate frame. When you 
hold your right hand so that the fingers curl from the positive x-axis toward the positive 
y-axis, your thumb points along the positive z-axis. So when you look down on the xy-
plane from the positive direction of the z-axis, positive angles in the plane are measured 
counterclockwise from the positive x-axis and around the positive z-axis. (In a left-handed 
coordinate frame, the z-axis would point downward in Figure 11.1, and angles in the plane 
would be positive when measured clockwise from the positive x-axis. Right-handed and 
left-handed coordinate frames are not equivalent.)

The Cartesian coordinates x y z,  , ( ) of a point P in space are the values at which the 
planes through P perpendicular to the axes cut the axes. Cartesian coordinates for space are 
also called rectangular coordinates because the axes that define them meet at right 
angles. Points on the x-axis have y- and z-coordinates equal to zero. That is, they have 
coordinates of the form x, 0, 0( ). Similarly, points on the y-axis have coordinates of the 
form y0,  , 0( ), and points on the z-axis have coordinates of the form z0, 0, ( ).

The planes determined by the coordinate axes are the xy-plane, whose standard equa-
tion is z 0;=  the yz-plane, whose standard equation is x 0;=  and the xz-plane, whose 
standard equation is y 0.=  They meet at the origin 0, 0, 0( ) (Figure 11.2), which is also 
identified by 0 or the letter O.

The three coordinate planes x y0,   0,= =  and z 0=  divide space into eight cells 
called octants. The octant in which the point coordinates are all positive is called the first 
octant; there is no convention for numbering the other seven octants.

The points in a plane perpendicular to the x-axis all have the same x-coordinate, this 
being the number at which that plane cuts the x-axis. The y- and z-coordinates can be any 
numbers. Similarly, the points in a plane perpendicular to the y-axis have a common 
y-coordinate, and the points in a plane perpendicular to the z-axis have a common z- 
coordinate. To write equations for these planes, we name the common coordinate’s value. 
The plane x 2=  is the plane perpendicular to the x-axis at x 2.=  The plane y 3=  is the 
plane perpendicular to the y-axis at y 3.=  The plane z 5=  is the plane perpendicular to 
the z-axis at z 5.=  Figure 11.3 shows the planes x y2,   3,= =  and z 5,=  together 
with their intersection point 2, 3, 5( ).
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676 Chapter 11 Vectors and the Geometry of Space

The planes x 2=  and y 3=  in Figure 11.3 intersect in a line parallel to the z-axis. 
This line is described by the pair of equations x y2,   3.= =  A point x y z,  , ( ) lies on the 
line if and only if x 2=  and y 3.=  Similarly, the line of intersection of the planes y 3=  
and z 5=  is described by the equation pair y z3,   5.= =  This line runs parallel to the 
x-axis. The line of intersection of the planes x 2=  and z 5,=  parallel to the y-axis, is 
described by the equation pair x z2,   5.= =

In the following examples, we match coordinate equations and inequalities with the 
sets of points they define in space.

EXAMPLE 1  We interpret these equations and inequalities geometrically.

(a) z 0≥ The half-space consisting of the points on and above 
the xy-plane.

(b) x 3= − The plane perpendicular to the x-axis at x 3.= −  This 
plane lies parallel to the yz-plane and 3 units behind it.

(c) z x y0,   0,   0= ≤ ≥ The second quadrant of the xy-plane.

(d) x y z0,   0,   0≥ ≥ ≥ The first octant.

(e) y1 1− ≤ ≤ The slab between the planes y 1= −  and y 1=   
(planes included).

(f) y z2,   2= − = The line in which the planes y 2= −  and z 2=  inter-
sect. Alternatively, the line through the point 0,  2, 2( )−  
parallel to the x-axis.

EXAMPLE 2  What points x y z,  , ( ) satisfy the equations

x y z4 and 3?2 2+ = =

Solution The points lie in the horizontal plane z 3=  and, in this plane, make up the 
circle x y 4.2 2+ =  We call this set of points “the circle x y 42 2+ =  in the plane 
z 3= ” or, more simply, “the circle x y z4,   32 2+ = = ” (Figure 11.4). 

FIGURE 11.2 The planes x y0,   0,= =  and z 0=  divide 
space into eight octants.

z

yz-plane: x = 0

xz-plane: y = 0

xy-plane: z = 0

y

x

(0, 0, 0)

Origin

FIGURE 11.3 The planes x y2,   3,= =  and 
z 5=  determine three lines through the  
point 2, 3, 5( ).

y

z

x

(0, 0, 5) (2, 3, 5)

(0, 3, 0)
(2, 0, 0)

0

Line y = 3, z = 5

Line x = 2, z = 5

Plane y = 3

Line x = 2, y = 3

Plane z = 5

Plane x = 2

FIGURE 11.4 The circle x y 42 2+ =  
in the plane z 3=  (Example 2).

x

z

(0, 2, 0)

y(2, 0, 0)

(0, 2, 3)

The circle
x2 + y2 = 4,  z = 3

The plane
z = 3

x2 + y2 = 4, z = 0

(2, 0, 3)
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 11.1  Three-Dimensional Coordinate Systems 677

Distance and Spheres in Space

The formula for the distance between two points in the xy-plane extends to points in space.

The Distance Between , ,1 1 1 1x y zP ( ) and , ,2 2 2 2x y zP ( )

P P x x y y z z1 2 2 1
2

2 1
2

2 1
2( ) ( ) ( )= − + − + −

FIGURE 11.5 We find the distance 
between P1 and P2 by applying the 
Pythagorean theorem to the right triangles 
P AB1  and P BP .1 2

x

z

y

0

P1(x1, y1, z1)

A(x2, y1, z1)

P2(x2, y2, z2)

B(x2, y2, z1)

FIGURE 11.6 The sphere of radius a 
centered at the point x y z,  ,  .0 0 0( )

P0(x0, y0, z0)
P(x, y, z)

a

y

z

0

x

Proof  We construct a rectangular box with faces parallel to the coordinate planes and 
the points P1 and P2 at opposite corners of the box (Figure 11.5). If A x y z,  , 2 1 1( ) and 
B x y z,  , 2 2 1( ) are the vertices of the box indicated in the figure, then the three box edges 
P A AB,   ,1  and BP2 have lengths

P A x x AB y y BP z z, , .1 2 1 2 1 2 2 1= − = − = −

Because triangles P BP1 2 and P AB1  are both right-angled, two applications of the 
Pythagorean theorem give

P P P B BP P B P A ABand1 2
2

1
2

2
2

1
2

1
2 2= + = +

(see Figure 11.5). So

P P P B BP

P A AB BP

x x y y z z

x x y y z z .

1 2
2

1
2

2
2

1
2 2

2
2

2 1
2

2 1
2

2 1
2

2 1
2

2 1
2

2 1
2( ) ( ) ( )

= +

= + +

= − + − + −

= − + − + −

Therefore,

P P x x y y z z .1 2 2 1
2

2 1
2

2 1
2( ) ( ) ( )= − + − + −  

EXAMPLE 3  The distance between P 2, 1, 51( ) and P 2, 3, 02 ( )−  is

P P 2 2 3 1 0 5

16 4 25

45 6.708.

1 2
2 2 2( ) ( ) ( )= − − + − + −

= + +

= ≈  

We can use the distance formula to write equations for spheres in space (Figure 11.6). 
A point P x y z,  , ( ) lies on the sphere of radius a centered at P x y z,  , 0 0 0 0( ) precisely 
when P P a0 = , or

x x y y z z a .0
2

0
2

0
2 2( ) ( ) ( )− + − + − =

P B P A ABSubstitute  .1
2

1
2 2= +

The Standard Equation for the Sphere of Radius a and Center , ,0 0 0x y z( )

x x y y z z a0
2

0
2

0
2 2( ) ( ) ( )− + − + − =

EXAMPLE 4  Find the center and radius of the sphere

x y z x z3 4 1 0.2 2 2+ + + − + =

Solution We find the center and radius of a sphere the way we find the center and radius 
of a circle: Complete the squares on the x-, y-, and z-terms as necessary and write each 
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678 Chapter 11 Vectors and the Geometry of Space

quadratic as a squared linear expression. Then, from the equation in standard form, read off 
the center and radius. For this sphere, we have

x y z x z

x x y z z

x x y z z

x y z

3 4 1 0

3 4 1

3 3
2

4 4
2

1 3
2

4
2

3
2

2 21
4

.

2 2 2

2 2 2

2
2

2 2
2 2 2

2
2 2

( ) ( ) ( ) ( )

( )

( ) ( )

( )

+ + + − + =

+ + + − = −

+ +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎟ + + − + −⎛

⎝
⎜⎜

⎞
⎠
⎟⎟⎟ = − + + −

+ + + − =

From this standard form, we read that x y z3 2,   0,   2,0 0 0= − = =  and a 21 2. 
The center is 3 2, 0, 2 .( )−  The radius is 21 2. 

Geometric Interpretations of Equations
In Exercises 1–16, give a geometric description of the set of points in 
space whose coordinates satisfy the given pairs of equations.

 1. x y2, 3  2. x z1, 0= − =

 3. y z0, 0  4. x y1, 0

 5. x y z4, 02 2+ = =  6. x y z4, 22 2+ = = −

 7. x z y4, 02 2+ = =  8. y z x1, 02 2+ = =

 9. x y z x1, 02 2 2+ + = =

 10. x y z y25, 42 2 2+ + = = −

 11. x y z z3 25, 02 2 2( )+ + + = =

 12. x y z y1 4, 02 2 2( )+ − + = =

 13. x y z y4,2 2+ = =

 14. x y z y x4,2 2 2+ + = =

 15. y x z, 02

 16. z y x, 12

Geometric Interpretations of Inequalities and Equations
In Exercises 17–24, describe the sets of points in space whose coor-
dinates satisfy the given inequalities or combinations of equations and 
inequalities.

 17. a. x y z0, 0, 0≥ ≥ = b. x y z0, 0, 0≥ ≤ =

 18. a. x0 1 b. x y0 1, 0 1

 c. x y z0 1, 0 1, 0 1

 19. a. x y z 12 2 2+ + ≤ b. x y z 12 2 2+ + >

 20. a. x y z1, 02 2+ ≤ = b. x y z1, 32 2+ ≤ =

 c. x y z1, no restriction on 2 2+ ≤

 21. a. x y z1 42 2 2≤ + + ≤ b. x y z z1, 02 2 2+ + ≤ ≥

 22. a. x y z, 0 b. x y z, no restriction on 

 23. a. y x z, 02 b. x y z, 0 22

 24. a. z y x1 , no restriction on = −

 b. z y x, 23

EXERCISES 11.1

EXAMPLE 5  Here are some geometric interpretations of inequalities and equations 
involving spheres.

(a) x y z 42 2 2+ + < The interior of the sphere x y z 4.2 2 2+ + =

(b) x y z 42 2 2+ + ≤ The solid ball bounded by the sphere 
x y z 4.2 2 2+ + =  Alternatively, the sphere 
x y z 42 2 2+ + =  together with its interior.

(c) x y z 42 2 2+ + > The exterior of the sphere x y z 4.2 2 2+ + =

(d) x y z z4,   02 2 2+ + = ≤ The lower hemisphere cut from the sphere 
x y z 42 2 2+ + =  by the xy-plane (the plane 
z 0).

Just as polar coordinates give another way to locate points in the xy-plane (Section 10.3), 
alternative coordinate systems, different from the Cartesian coordinate system developed 
here, exist for three-dimensional space. We examine two of these coordinate systems in 
Section 14.7.
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 11.1  Three-Dimensional Coordinate Systems 679

Distance
In Exercises 25–30, find the distance between points P1 and P .2

 25. P P1, 1, 1 , 3, 3, 01 2( ) ( )

 26. P P1, 1, 5 , 2, 5, 01 2( ) ( )−

 27. P P1, 4, 5 , 4,  2, 71 2( ) ( )−

 28. P P3, 4, 5 , 2, 3, 41 2( ) ( )

 29. P P0, 0, 0 , 2,  2,  21 2( ) ( )− −

 30. P P5, 3,  2 , 0, 0, 01 2( ) ( )−

 31. Find the distance from the point 3,  4, 2( )−  to the

 a. xy-plane b. yz-plane c. xz-plane

 32. Find the distance from the point 2, 1, 4( )−  to the

 a. plane x 3= b. plane y 5= − c. plane z 1= −

 33. Find the distance from the point 4, 3, 0( ) to the

 a. x-axis b. y-axis c. z-axis

 34. Find the distance from the

 a. x-axis to the plane z 3.=

 b. origin to the plane z x2 .= −

 c. point 0, 4, 0( ) to the plane y x.=

In Exercises 35–44, describe the given set with a single equation or 
with a pair of equations.

 35. The plane perpendicular to the

 a. x-axis at 3, 0, 0( ) b. y-axis at 0,  1, 0( )−

 c. z-axis at 0, 0,  2( )−

 36. The plane through the point 3,  1, 2( )−  perpendicular to the

 a. x-axis b. y-axis c. z-axis

 37. The plane through the point 3,  1, 1( )−  parallel to the

 a. xy-plane b. yz-plane c. xz-plane

 38. The circle of radius 2 centered at 0, 0, 0( ) and lying in the

 a. xy-plane b. yz-plane c. xz-plane

 39. The circle of radius 2 centered at 0, 2, 0( ) and lying in the

 a. xy-plane b. yz-plane c. plane y 2=

 40. The circle of radius 1 centered at 3, 4, 1( )−  and lying in a plane 
parallel to the

 a. xy-plane b. yz-plane c. xz-plane

 41. The line through the point 1, 3,  1( )−  parallel to the

 a. x-axis b. y-axis c. z-axis

 42. The set of points in space equidistant from the origin and the point 
0, 2, 0( )

 43. The circle in which the plane through the point 1, 1, 3( ) perpen-
dicular to the z-axis meets the sphere of radius 5 centered at the 
origin

 44. The set of points in space that lie 2 units from the point 0, 0, 1( ) 
and, at the same time, 2 units from the point 0, 0,  1( )−

Inequalities to Describe Sets of Points
Write inequalities to describe the sets in Exercises 45–50.

 45. The slab bounded by the planes z 0=  and z 1=  (planes 
included)

 46. The solid cube in the first octant bounded by the coordinate planes 
and the planes x y2,   2,= =  and z 2=

 47. The half-space consisting of the points on and below the xy-plane

 48. The upper hemisphere of the sphere of radius 1 centered at the 
origin

 49. The (a) interior and (b) exterior of the sphere of radius 1 centered 
at the point 1, 1, 1( )

 50. The closed region bounded by the spheres of radius 1 and radius 2  
centered at the origin. (Closed means the spheres are to be included. 
Had we wanted the spheres left out, we would have asked for  
the open region bounded by the spheres. This is analogous to the 
way we use closed and open to describe intervals: closed means end-
points included, open means endpoints left out. Closed sets include 
boundaries; open sets leave them out.)

Spheres
Find the center C and the radius a for the spheres in Exercises 51–60.

 51. x y z2 2 82 2 2( ) ( )+ + + − =

 52. x y z1 1
2

3 252
2

2( )( ) ( )− + + + + =

 53. x y z2 2 2 2
2 2 2( ) ( ) ( )− + − + + =

 54. x y z1
3

1
3

16
9

2
2 2

( ) ( )+ + + − =

 55. x y z x z4 4 02 2 2+ + + − =

 56. x y z y z6 8 02 2 2+ + − + =

 57. x y z x y z2 2 2 92 2 2+ + + + + =

 58. x y z y z3 3 3 2 2 92 2 2+ + + − =

 59. x y z x y z4 6 10 112 2 2+ + − + − =

 60. x y z x y z1 2 1 103 2 4 22 2 2( )( ) ( )− + − + + = + + −

Find equations for the spheres whose centers and radii are given in 
Exercises 61–64.

Center Radius

 61. 1, 2, 3( ) 14

 62. 0,  1, 5( )− 2

 63. 1, 
1
2

, 
2
3( )− − 4

9

 64. 0,  7, 0( )− 7

Theory and Examples

 65. Find a formula for the distance from the point P x y z,  , ( ) to the

 a. x-axis. b. y-axis. c. z-axis.

 66. Find a formula for the distance from the point P x y z,  , ( ) to the

 a. xy-plane. b. yz-plane. c. xz-plane.

 67. Find the perimeter of the triangle with vertices A 1, 2, 1( )− , 
B 1,  1, 3 ,( )−  and C 3, 4, 5( ).

 68. Show that the point P 3, 1, 2( ) is equidistant from the points 
A 2,  1, 3( )−  and B 4, 3, 1( ).

 69. Find an equation for the set of all points equidistant from the 
planes y 3=  and y 1.= −

 70. Find an equation for the set of all points equidistant from the point 
0, 0, 2( ) and the xy-plane.
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680 Chapter 11 Vectors and the Geometry of Space

 71. Find the point on the sphere x y z3 5 42 2 2( ) ( )+ − + + =  
nearest

 a. the xy-plane. b. the point 0, 7,  5 .( )−

 72. Find the point equidistant from the points 0, 0, 0 , 0, 4, 0 ,( ) ( )

3, 0, 0( ), and 2, 2,  3 .( )−

 73. Find an equation for the set of points equidistant from the point 
0, 0, 2( ) and the x-axis.

 74. Find an equation for the set of points equidistant from the y-axis 
and the plane z 6.

 75. Find an equation for the set of points equidistant from the

 a. xy-plane and the yz-plane. b. x-axis and the y-axis.

 76. Find all points that simultaneously lie 3 units from each of the 
points 2, 0, 0 ,   0, 2, 0( ) ( ), and 0, 0, 2( ).

11.2 Vectors

Some of the things we measure are determined simply by their magnitudes. To record 
mass, length, or time, for example, we need only write down a number and name an appro-
priate unit of measure. We need more information to describe a force, displacement, or 
velocity. To describe a force, we need to record the direction in which it acts as well as how 
large it is. To describe a body’s displacement, we have to say in what direction it moved as 
well as how far. To describe a body’s velocity, we have to know its direction of motion, as 
well as how fast it is going. In this section we show how to represent things that have both 
magnitude and direction in the plane or in space.

Component Form

A quantity such as force, displacement, or velocity is called a vector and is represented by 
a directed line segment (Figure 11.7). The arrow points in the direction of the action and 
its length gives the magnitude of the action in terms of a suitably chosen unit. For example, 
a force vector points in the direction in which the force acts and its length is a measure of 
the force’s strength; a velocity vector points in the direction of motion and its length is the 
speed of the moving object. Figure 11.8 displays the velocity vector v at a specific location 
for a particle moving along a path in the plane or in space. (This application of vectors is 
studied in Chapter 12.)

FIGURE 11.7 The directed line segment 
AB
	 
		

 is called a vector.

Initial
point

Terminal
point

A

B

AB

FIGURE 11.8 The velocity vector of a particle moving along a path  
(a) in the plane (b) in space. The arrowhead on the path indicates the 
direction of motion of the particle.

x

y

y

z

0
0

x

v v

(a)  two dimensions (b)  three dimensions

DEFINITIONS The vector represented by the directed line segment AB
	 
		

 has 
initial point A and terminal point B, and its length is denoted by AB .

	 
		
 Two 

vectors are equal if they have the same length and direction.

The arrows we use when we draw vectors are understood to represent the same vector 
if they have the same length, are parallel, and point in the same direction (Figure 11.9) 
regardless of the initial point.

FIGURE 11.9 The four arrows in the 
plane (directed line segments) shown here 
have the same length and direction. They 
therefore represent the same vector, and 
we write AB CD OP EF.

	 
		 	 
		 	 
		 	 
		

x

y

O

A

P

D

C

F

E

B
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 11.2  Vectors 681

In texts, vectors are usually written in lowercase boldface letters—for example u, v, 
and w. Sometimes we use uppercase boldface letters, such as F, to denote a force vector. In 
handwritten form, it is customary to draw small arrows above the letters—for example 
u w,   ,   , and F.

We need a way to represent vectors algebraically so that we can be more precise about 
the direction of a vector. Let PQv .

	 
		
 There is one directed line segment equal to PQ

	 
		
 

whose initial point is the origin (Figure 11.10). It is the representative of v in standard 
position and is the vector we normally use to represent v. We can specify v by writing the 
coordinates of its terminal point ,  , 1 2 3( ) when v is in standard position. If v is a vector 
in the plane, its terminal point , 1 2( ) has two coordinates.

HISTORICAL BIOGRAPHY

Carl Friedrich Gauss 
(1777–1855)
Gauss was born in Brunswick, Germany.  
The list of Gauss’s accomplishments in 
science and mathematics is astonishing, 
ranging from the invention of the electric 
telegraph (with Wilhelm Weber in 1833) to  
the development of a theory of planetary orbits 
and the development of an accurate theory of 
non-Euclidean geometry.

To know more, visit the companion Website. 

FIGURE 11.10 A vector 
	 
		
PQ  in standard 

position has its initial point at the origin. 
The directed line segments 

	 
		
PQ  and v are 

parallel and have the same length.

x

z

y

0

P(x1, y1, z1)

Q(x2, y2, z2)

(v1, v2, v3)Position vector
of PQ

v = ⟨v1, v2, v3⟩  v3

v1
v2

DEFINITION If v is a two-dimensional vector in the plane equal to the vector 
with initial point at the origin and terminal point ,  ,1 2( )  then the component 
form of v is

v ,  .1 2= 〈 〉

If v is a three-dimensional vector equal to the vector with initial point at the 
origin and terminal point ,  ,  ,1 2 3( )  then the component form of v is

v ,  ,  .1 2 3= 〈 〉

The magnitude or length of the vector v v v x x y y z zv , , , ,1 2 3 2 1 2 1 2 1= 〈 〉 = 〈 − − − 〉 
is the nonnegative number

x x y y z zv 1
2

2
2

3
2

2 1
2

2 1
2

2 1
2( ) ( ) ( )= + + = − + − + −

(see Figure 11.10).

Thus a two-dimensional vector is an ordered pair v , 1 2= 〈 〉 of real numbers, and a 
three-dimensional vector is an ordered triple v ,  , 1 2 3= 〈 〉 of real numbers. The num-
bers ,   ,1 2  and 3 are the components of v.

If v ,  , 1 2 3= 〈 〉 is represented by the directed line segment PQ,
	 
		

 where the initial 
point is P x y z,  , 1 1 1( ) and the terminal point is Q x y z,  ,  ,2 2 2( )  then x x ,1 1 2+ =  
y y ,1 2 2+ =  and z z1 3 2+ =  (see Figure 11.10). Thus x x y y, ,1 2 1 2 2 1= − = −  
and z z3 2 1= −  are the components of PQ.

	 
		

In summary, given the points P x y z,  , 1 1 1( ) and Q x y z,  ,  ,2 2 2( )  the standard position 
vector v ,   ,  1 2 3= 〈 〉 equal to PQ

	 
		
 is

x x y y z zv ,   ,       .2 1 2 1 2 1= 〈 − − − 〉

If v is two-dimensional with P x y,  1 1( ) and Q x y, 2 2( ) as points in the plane, then 
x x y yv ,   .2 1 2 1= 〈 − − 〉  There is no third component for planar vectors. With this under-

standing, we will develop the algebra of three-dimensional vectors and simply drop the 
third component when the vector is two-dimensional (a planar vector).

Two vectors are equal if and only if their standard position vectors are identical. Thus 
u u u,  , 1 2 3〈 〉 and ,  , 1 2 3〈 〉 are equal if and only if u u,   ,1 1 2 2  and u .3 3

The magnitude or length of the vector PQ
	 
		

 is the length of any of its equivalent 
directed line segment representations. In particular, if x x y y z zv ,   ,  2 1 2 1 2 1= 〈 − − − 〉 is 
the component form of PQ,

	 
		
 then the distance formula gives the magnitude or length of v, 

denoted by the symbol v  or (in some texts) v .

The only vector with length 0 is the zero vector 0 0, 0= 〈 〉 or 0 0, 0, 0 .= 〈 〉  This 
vector is also the only vector with no specific direction.
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682 Chapter 11 Vectors and the Geometry of Space

EXAMPLE 1  Find the (a) component form and (b) length of the vector with initial 
point P 3, 4, 1( )−  and terminal point Q 5, 2, 2 .( )−

Solution 

 (a) The vector PQv
� ���

=  has components

x x y y5 3 2, 2 4 2,1 2 1 2 2 1υ υ( )= − = − − − = − = − = − = −

and

z z 2 1 1.3 2 1υ = − = − =

The component form of PQ
� ���

 is

v 2,  2, 1 .= 〈− − 〉

 (b) The length, or magnitude, of PQv
� ���

=  is

( ) ( )= − + − + = =v 2 2 (1) 9 3.2 2 2  

EXAMPLE 2  A small cart is being pulled along a smooth horizontal floor with a 
20-N force F making a 45° angle to the floor (Figure 11.11). What is the effective force 
moving the cart forward?

Solution The effective force is the horizontal component of a bF ,  ,= 〈 〉  given by

a Fcos 45 (20) 2
2

14.14 N.( )= ° = ≈

Notice that F is a two-dimensional vector. 

Vector Algebra Operations

Two principal operations involving vectors are vector addition and scalar multiplication. A 
scalar is simply a real number; we call it a scalar when we want to draw attention to the 
differences between numbers and vectors. Scalars can be positive, negative, or zero and are 
used to “scale” a vector by multiplication.

DEFINITIONS Let u u uu ,  , 1 2 3= 〈 〉 and v ,  , 1 2 3υ υ υ= 〈 〉 be vectors with k a 
scalar.

u u u

k ku ku ku

Addition: u v

Scalar multiplication: u

,  , 

  ,  , 
1 1 2 2 3 3

1 2 3

υ υ υ+ = 〈 + + + 〉

= 〈 〉

We add vectors by adding the corresponding components of the vectors. We multiply 
a vector by a scalar by multiplying each component by the scalar. The definitions also 
apply to planar vectors, except in that case there are only two components, u u, 1 2〈 〉 and 

,  .1 2υ υ〈 〉
The definition of vector addition is illustrated geometrically for planar vectors in 

Figure 11.12a, where the initial point of one vector is placed at the terminal point of the 
other. Another interpretation is shown in Figure 11.12b. In this parallelogram law of addi-
tion, the sum, called the resultant vector, is the diagonal of the parallelogram. In physics, 
forces add vectorially, as do velocities, accelerations, and so on. So the force acting on a 
particle subject to two gravitational forces, for example, is obtained by adding the two 
force vectors.

FIGURE 11.11 The force pulling the 
cart forward is represented by the vector F  
whose horizontal component is the effec-
tive force (Example 2).

x

y

45˚

F = ⟨a, b⟩

FIGURE 11.12 (a) Geometric interpreta-
tion of the vector sum. (b) The parallelo-
gram law of vector addition in which both 
vectors are in standard position.

⟨u1  +  y1, u2  +  y2⟩

y2

y1

u2

u1

u

vu + v

x

y

(a)

u

v
u + v

x

y

(b)

0

0
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 11.2  Vectors 683

Figure 11.13 displays a geometric interpretation of the product ku of the scalar k and 
vector u. If k 0,>  then ku has the same direction as u; if k 0,<  then the direction of ku 
is opposite to that of u. Comparing the lengths of u and ku, we see that

k ku ku ku k u u u

k u u u k

u

u .

1
2

2
2

3
2 2

1
2

2
2

3
2

2
1

2
2

2
3

2

( ) ( )( ) ( )= + + = + +

= + + =

The length of ku is the absolute value of the scalar k times the length of u. The vector 
u u1( )− = −  has the same length as u but points in the opposite direction. For k 0≠ , we 

often express the scalar multiple k u1( )  as ku .
The difference u v−  of two vectors is defined by

u v u v .( )− = + −

If u u uu ,  , 1 2 3= 〈 〉 and v ,  ,  ,1 2 3υ υ υ= 〈 〉  then

u u uu v ,   ,   .1 1 2 2 3 3υ υ υ− = 〈 − − − 〉

Note that u v v u,( )− + =  so adding the vector u v( )−  to v gives u (Figure 11.14a). 
Figure 11.14b shows the difference u v−  as the sum u v .( )+ −

EXAMPLE 3  Let u 1, 3, 1= 〈− 〉 and v 4, 7, 0 .= 〈 〉  Find the components of

 (a) u v2 3+  (b) u v−  (c) u1
2

.

Solution 

 (a) u v2 3 2 1,  3,  1 3 4,  7,  0 2,  6,  2 12,  21,  0 10,  27,  2+ = 〈− 〉 + 〈 〉 = 〈− 〉 + 〈 〉 = 〈 〉

 (b) u v 1,  3,  1 4,  7,  0 1 4,  3 7,  1 0 5,  4, 1− = 〈− 〉 − 〈 〉 = 〈− − − − 〉 = 〈− − 〉

 (c) u1
2

1
2

, 3
2

, 1
2

1
2

3
2

1
2

1
2

11.
2 2 2

( ) ( ) ( )= − = − + + =  

Vector operations have many of the properties of ordinary arithmetic.

FIGURE 11.14 (a) The vector 
u v,−  when added to v, gives u. 
(b) u v u v .( )− = + −

u

v

u − v

(a)

u

v

−v

u + (−v)

(b)

Properties of Vector Operations
Let u, v, w be vectors and a, b be scalars.

1. u v v u+ = + 2. u v w u v w( ) ( )+ + = + +
3. u 0 u+ = 4. u u 0( )+ − =
5. u 00 = 6. u u1 =
7. a b abu u( ) ( )= 8. a a au v u v( )+ = +
9. a b a bu u u( )+ = +

These properties are readily verified using the definitions of vector addition and 
multiplication by a scalar. For instance, to establish Property 1, we have

u u u

u u u

u u u

u u u

u v

v u

,   ,   ,   ,  

,   ,  

,   ,  

,   ,   ,   ,  

.

1 2 3 1 2 3

1 1 2 2 3 3

1 1 2 2 3 3

1 2 3 1 2 3

υ υ υ

υ υ υ

υ υ υ

υ υ υ

+ = 〈 〉 + 〈 〉

= 〈 + + + 〉

= 〈 + + + 〉

= 〈 〉 + 〈 〉
= +

When three or more space vectors lie in the same plane, we say they are coplanar 
vectors. For example, the vectors u, v, and u v+  are always coplanar.

Definition of vector addition

Commutativity of real numbers (in each component)

Definition of vector addition

FIGURE 11.13 (a) Scalar multiples  
of u. (b) Scalar multiples of a vector u in 
standard position.

u

1.5u

2u −2u

(a)

u

2u

−u

x

y

0

(b)
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684 Chapter 11 Vectors and the Geometry of Space

Unit Vectors

A vector v of length 1 is called a unit vector. The standard unit vectors are

i j k1,  0,  0 , 0,  1,  0 , and 0,  0,  1 .= 〈 〉 = 〈 〉 = 〈 〉

Any vector v ,  , 1 2 3= 〈 〉 can be written as a linear combination of the standard unit 
vectors as follows:

v

i j k

,   ,   ,  0,  0 0,   ,  0 0,  0,  

1,  0,  0 0,  1,  0 0,  0,  1

.

1 2 3 1 2 3

1 2 3

1 2 3

= 〈 〉 = 〈 〉 + 〈 〉 + 〈 〉

= 〈 〉 + 〈 〉 + 〈 〉

= + +

We call the scalar (or number) 1 the i-component of the vector v, 2 the j-component, 
and 3 the k-component. As shown in Figure 11.15, the component form of the vector 
from P x y z,  , 1 1 1 1( ) to P x y z,  , 2 2 2 2( ) is

	 
			
P P x x y y z zi j k.1 2 2 1 2 1 2 1( ) ( ) ( )= − + − + −

If v 0, then its length v  is not zero and

v
v

v
v1 1 1.

That is, if the vector v is not the zero vector, then v v  is a unit vector in the direction of 
v, and it is also called the direction of v.

EXAMPLE 4  Find a unit vector u in the direction of the vector from P 1, 0, 11( ) to 
P 3, 2, 0 .2 ( )

Solution We write 
	 
			
P P1 2  as a linear combination of the standard unit vectors and then 

divide it by its length:
	 
			

	 
			

	 
			
	 
			

P P

P P

P P
P P

i j k i j k

u i j k i j k

3 1 2 0 0 1 2 2

2 2 1 4 4 1 9 3

2 2
3

2
3

2
3

1
3

.

1 2

1 2
2 2 2

1 2

1 2

( ) ( ) ( )

( ) ( ) ( )

= − + − + − = + −

= + + − = + + = =

= = + − = + −

This unit vector u is the direction of 
	 
			
P P .1 2  

EXAMPLE 5  If v i j3 4= −  is a velocity vector, express v as a product of its magni-
tude (its speed) times its direction.

Solution Speed is the magnitude (length) of v:

v 3 4 9 16 5.2 2( ) ( )= + − = + =

The unit vector v v  is the direction of v:

v
v

i j i j3 4
5

3
5

4
5

.= − = −

So

v i j i j3 4 5 3
5

4
5

.( )= − = −  

FIGURE 11.15 The vector from P1 to P2 
is 
	 
			
P P x x y yi j1 2 2 1 2 1( ) ( )= − + − + 

z z k.2 1( )−

y

z

O

k

x

i
j

P2(x2, y2, z2)

OP2 = x2i + y2 j + z2k

P1P2

P1(x1, y1, z1)

OP1 = x1i + y1j + z1k

� ����� �����
Direction of motionLength

(speed)

HISTORICAL BIOGRAPHY

Hermann Grassmann 
(1809–1877)
Grassmann was born in Prussia (modern-day  
Poland) and attended the University of Berlin.  
However, his study of mathematics and 
physics was done on his own. In 1844, he 
published Die lineale Ausdehnungslehre, 
which contained new concepts in geometric 
calculus. He introduced the n-dimensional 
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 11.2  Vectors 685

In summary, we can express any nonzero vector v in terms of its two important features, 

length and direction, by writing v v v
v

.=

If v 0,≠  then

1. v
v

 is a unit vector called the direction of v;

2. the equation v v v
v

=  expresses v as its length times its direction.

The midpoint M of the line segment joining points P x y z,  , 1 1 1 1( ) and 
P x y z,  , 2 2 2 2( ) is the point

x x y y z z
2

,  
2

,  
2

.1 2 1 2 1 2( )+ + +

FIGURE 11.16 The coordinates of the 
midpoint are the averages of the coordinates 
of P1 and P .2

O

P1(x1, y1, z1)

P2(x2, y2, z2)

M
x1 + x2

2
z1 + z2

2
y1 + y2

2
, , ba

EXAMPLE 6  A force of 6 newtons is applied in the direction of the vector 
v i j k2 2 .= + −  Express the force F as a product of its magnitude and direction.

Solution The force vector has magnitude 6 and direction v
v

, so

F v
v

i j k i j k

i j k

6 6 2 2

2 2 1
6 2 2

3

6 2
3

2
3

1
3

.

2 2 2

( )
( )

= = + −

+ + −
= + −

= + −  

Midpoint of a Line Segment

Vectors are often useful in geometry. For example, the coordinates of the midpoint of a line 
segment are found by averaging.

To see why, observe (Figure 11.16) that

� ��� � ��� � ���� � ��� � ��� � ���

� ��� � ���

OM OP P P OP OP OP

OP OP

x x y y z z
i j k

1
2

1
2

1
2

2 2 2
.

1 1 2 1 2 1

1 2

1 2 1 2 1 2

( )

( )

( )= + = + −

= +

=
+

+
+

+
+

EXAMPLE 7  The midpoint of the segment joining P 3,  2, 01( )−  and P 7, 4, 42 ( ) is

3 7
2

,   2 4
2

,   0 4
2

5, 1, 2 .( ) ( )
+ − + + =  
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686 Chapter 11 Vectors and the Geometry of Space

Applications

An important application of vectors occurs in navigation.

EXAMPLE 8  A jet airliner, flying due east at 800 km h in still air, encounters a 
110 km h tailwind blowing in the direction 60  north of east. The airplane holds its 
compass heading due east but, because of the wind, acquires a new ground speed and 
direction. What are they?

Solution If u is the velocity of the airplane alone and v is the velocity of the tailwind, 
then  u v800 and  110 (Figure 11.17). The velocity of the airplane with respect 
to the ground is given by the magnitude and direction of the resultant vector u v. If we 
let the positive x-axis represent east and the positive y-axis represent north, then the com-
ponent forms of u and v are

u v800,  0 and 110 cos 60 ,  110 sin 60 55,  55 3 .= 〈 〉 = 〈 ° °〉 = 〈 〉

Therefore,

u v i j

u v

855, 55 3 855 55 3

855 55 3 860.32 2( )

+ = 〈 〉 = +

+ = + ≈

and

tan 55 3
855

6.4 .1= ≈ °−

The new ground speed of the airplane is about 860.3 km h, and its new direction is about 
6.4  north of east. 

Another important application occurs in physics and engineering when several forces 
are acting on a single object.

EXAMPLE 9  A 75-N weight is suspended by two wires, as shown in Figure 11.18a. 
Find the forces F1 and F2 acting in both wires.

Solution The force vectors F1 and F2 have magnitudes F1  and F2  and components that 
are measured in newtons. The resultant force is the sum F F1 2, which must be equal in 
magnitude to the weight vector w but acting in the opposite (or upward) direction (see 
Figure 11.18b). It follows from the figure that

F F F F F Fcos 55 , sin 55 and cos 40 , sin 40 .1 1 1 2 2 2= 〈− ° °〉 = 〈 ° °〉

Since F F 0, 75 ,1 2+ = 〈 〉  the resultant vector leads to the system of equations

F F

F F

cos 55 cos 40 0

sin 55 sin 40 75.
1 2

1 2

− ° + ° =

° + ° =

Solving for F2  in the first equation and substituting the result into the second equation, 
we get

F
F

F
Fcos 55

cos 40
and sin 55

cos 55
cos 40

sin 40 75.2
1

1
1=

°
°

° +
°
°

° =

It follows that

F 75
sin 55 cos 55 tan 40

57.67 N1 = ° + ° °
≈

FIGURE 11.17 Vectors representing the 
velocities of the airplane u and tailwind v 
in Example 8.

E

N

u

v
u + v30̊

110

800

NOT TO SCALE

θ

FIGURE 11.18 The suspended weight in 
Example 9.

F1

F2

40°

75

40°

55°

55°

(a)

(b)

0F1 0

0F2 0 F2

F1

40°55°

F = F1+ F2 = ⟨0, 75⟩

w = ⟨0, −75⟩

M11_HASS5901_15_GE_C11.indd   686 22-03-2023   17:26:05

www.konkur.in

Telegram: @uni_k



 11.2  Vectors 687

and

=
°

°
=

° + ° °
°
°

≈F
F cos 55

cos 40
75

sin 55 cos 55 tan 40
cos 55
cos 40

43.18 N.2
1

The force vectors are then

F F Fcos 55 ,   sin 55 33.08,  47.241 1 1= 〈− ° °〉 ≈ 〈− 〉

and

F F Fcos 40 ,   sin 40 33.08,  27.76 .2 2 2= 〈 ° °〉 ≈ 〈 〉  

Vectors in n Dimensions

So far in this section, we introduced two- and three-dimensional vectors. We extend these 
notions by considering an n-dimensional vector υ υ υ= 〈 〉…v , , , n1 2  (an n-tuple of real 
numbers). We define

1. the magnitude or length of �v v: n1
2

2
2 2υ υ υ= + + + ;

2. addition of two vectors:

υ υ υ υ υ υ〈 〉 + 〈 〉 = 〈 + + + 〉… … …u u u u u u, , , , , , , , , ;n n n n1 2 1 2 1 1 2 2

3. scalar multiplication of a vector by a real number:

υ υ υ υ υ υ〈 〉 = 〈 〉… …k k k k, , , , , , .n n1 2 1 2

The Properties of Vector Operations stated earlier in this section hold for n-dimensional 
vectors.

When discussing vectors in this text, we will usually focus on the cases where n 2=  
and n 3=  since these correspond to vectors in the plane and vectors in three-dimensional 
space, which are used in many applications (for instance, such vectors can represent  
velocity or force). Vectors with more than three components do arise in applications,  
but in those contexts they do not correspond to line segments in the plane or in three-
dimensional space.

EXAMPLE 10  The components of the vector u 70.9, 63.2, 77.2, 47.1, 55.6= 〈 〉 
contain the average temperatures (in degrees Fahrenheit) recorded between the years 2006 
and 2010 in Houston, Los Angeles, Miami, Minneapolis, and New York. Likewise, the  
vectors v 71.2, 64.3, 78.0, 47.1, 56.0= 〈 〉 and w 72.5, 64.7, 78.6, 47.6, 56.5= 〈 〉  
represent average temperatures in the same cities over the periods 2011 through 2015 and 
2016 through 2020. Find the vector whose components are the average temperatures 
between the year 2006 and the year 2020 in these cities.

Solution To find the vector containing average temperatures, we add scalar multiples of 
the three vectors (in other words, we evaluate a linear combination):

a u v w1
3

1
3

1
3

1
3

70.9,  63.2,  77.2,  47.1,  55.6 1
3

71.2,  64.3,  78.0,  47.1,  56.0

1
3

72.5,  64.7,  78.6,  47.6,  56.5

71.5,  64.1,  77.9,  47.3,  56.0 .

= + +

= 〈 〉 + 〈 〉

+ 〈 〉

≈ 〈 〉  
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688 Chapter 11 Vectors and the Geometry of Space

EXAMPLE 11  A rectangular grayscale image m pixels (dots) wide and n pixels tall 
can be represented on a computer as a vector with m n⋅  components. A common format 
assigns an integer between 0 and 255 to each pixel, with 255 corresponding to the highest 
intensity (white), 0 to the lowest (black), and intermediate values to various shades of gray.

Using this format, the 400 400×  image containing all white pixels is represented by 
the 160,000-dimensional vector = 〈 〉…w 255, , 255 . Figures 11.19a and b can be similarly 
represented by vectors u and v, respectively.

In parts c, d, and e of Figure 11.19, we show different linear combinations of the 
vectors u and v. Notice how changing the scalar in front of each vector affects the result-
ing image.

In Figure 11.19f, the image corresponds to the difference w v− , effectively inverting 
the grayscale in that image. 

Vectors in the Plane
In Exercises 1–8, let u 3,  2= 〈 − 〉 and v 2, 5 .= 〈− 〉  Find the (a) com-
ponent form and (b) magnitude (length) of the vector.

 1. 3u  2. v2−

 3. u v+  4. u v−
 5. u v2 3−  6. u v2 5− +

 7. u v3
5

4
5

+  8. u v5
13

12
13

− +

EXERCISES 11.2

FIGURE 11.19 Each 400 400×  pixel image corresponds to a 160,000-dimensional vector:  
(a) u; (b) v; (c) u v1

4
3
4+ ; (d) u v1

2
1
2+ ; (e) u v3

4
1
4+ ; (f) w v− .

 (a)

(a)

 (b)

(b)

 (c)

(c)

 (d)

(d)

 (e)

(e)

 (f)

(f)
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 11.2  Vectors 689

In Exercises 9–16, find the component form of the vector.

 9. The vector PQ,
� ���

 where P 1, 3( )=  and Q 2,  1( )= −

 10. The vector OP
� ���

, where O is the origin and P is the midpoint of seg-
ment RS, where R 2,  1( )= −  and S 4, 3( )= −

 11. The vector from the point A 2, 3( )=  to the origin

 12. The sum of AB
� ���

 and CD,
� ���

 where A B1,  1 ,   2, 0 ,( ) ( )= − =  
C 1, 3 ,( )= −  and D 2, 2( )= −

 13. The unit vector that makes an angle 2 3θ π=  with the positive 
x-axis

 14. The unit vector that makes an angle 3 4θ π= −  with the positive 
x-axis

 15. The unit vector obtained by rotating the vector 0, 1  by 120〈 〉 ° 
counterclockwise about the origin

 16. The unit vector obtained by rotating the vector 1, 0  by 135〈 〉 ° 
counterclockwise about the origin

Vectors in Space
In Exercises 17–22, express each vector in the form 

w w ww i j k.1 2 3= + +

 17. 
� ����
P P1 2  if P1 is the point 5, 7,  1( )−  and P2 is the point 2, 9,  2( )−

 18. 
� ����
P P1 2  if P1 is the point 1, 2, 0( ) and P2 is the point 3, 0, 5( )−

 19. AB
� ���

 if A is the point 7,  8, 1( )− −  and B is the point 10, 8, 1( )−

 20. AB
� ���

 if A is the point 1, 0, 3( ) and B is the point 1, 4, 5( )−

 21. u v5 −  if u 1, 1,  1= 〈 − 〉 and v 2, 0, 3= 〈 〉

 22. u v2 3− +  if u 1, 0, 2= 〈− 〉 and v 1, 1, 1= 〈 〉

Geometric Representations
In Exercises 23 and 24, copy vectors u, v, and w head to tail as needed 
to sketch the indicated vector.

 23. 

v

w
u

 a. u v+

 b. u v w+ +

 c. u v−

 d. u w−

 24. 

u

w

v
 a. u v−

 b. u v w− +

 c. u v2 −

 d. u v w+ +

Length and Direction
In Exercises 25–30, express each vector as a product of its length and 
direction.

 25. i j k2 2+ −  26. i j k9 2 6− +

 27. 5k  28. i k3
5

4
5

+

 29. i j k1
6

1
6

1
6

− −  30. i j k
3 3 3

+ +

 31. Find the vectors whose lengths and directions are given. Try to do 
the calculations without writing.

Length Direction

a. 2 i

b. 3 k−

c. 
1
2

j k
3
5

4
5

+

d. 7 i j k
6
7

2
7

3
7

− +

 32. Find the vectors whose lengths and directions are given. Try to do 
the calculations without writing.

Length Direction

a. 7 j−

b. 2 i k
3
5

4
5

− −

c. 
13
12

i j k
3

13
4

13
12
13

− −

d. a 0> i j k
1
2

1
3

1
6

+ −

 33. Find a vector of magnitude 7 in the direction of v i k12 5 .= −

 34. Find a vector of magnitude 3 in the direction opposite to the direc-
tion of v i j k1 2 1 2 1 2 .( ) ( ) ( )= − −

Direction and Midpoints
In Exercises 35–38, find a. the direction of 

� ����
P P1 2  and b. the midpoint 

of line segment P P .1 2

 35. P P1, 1, 5 2, 5, 01 2( ) ( )−

 36. P P1, 4, 5 4,  2, 71 2( ) ( )−

 37. P P3, 4, 5 2, 3, 41 2( ) ( )

 38. P P0, 0, 0 2,  2,  21 2( ) ( )− −

 39. If AB i j k4 2
� ���

= + −  and B is the point 5, 1, 3( ), find A.

 40. If AB i j k7 3 8
� ���

= − + +  and A is the point 2,  3, 6 ,( )− −  find B.

Theory and Applications

 41. Linear combination Let u i j2 ,= +  v i j,= +  and 
w i j.= −  Find scalars a and b such that a bu v w.= +

 42. Linear combination Let u i j2 ,= −  v i j2 3 ,= +  and 
w i j.= +  Write u u u ,1 2= +  where u1 is parallel to v and u 2 
is parallel to w. (See Exercise 41.)

 43. Linear combination Let u 1, 2, 1 ,= 〈 〉  v 1,  1,  1= 〈 − − 〉,  
w 1, 1,  1 ,= 〈 − 〉  and z 2,  3,  4 .= 〈 − − 〉  Find scalars a, b, and c 
such that a b cz u v w.= + +

 44. Linear combination Let u 1, 2, 2 ,= 〈 〉  v 1,  1,  1 ,= 〈 − − 〉  
w 1, 3,  1 ,= 〈 − 〉  and z 2, 11, 8 .= 〈 〉  Write z u u u ,1 2 3= + +  
where u1 is parallel to u u,   2 is parallel to v, and u 3 is parallel to 
w . What are u u u,   ,   ?1 2 3

When solving Exercises 45–50, you may need to use a calculator or a 
computer.

 45. Velocity An airplane is flying in the direction 25° west of north 
at 800 km h. Find the component form of the velocity of the air-
plane, assuming that the positive x-axis represents due east and 
the positive y-axis represents due north.
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690 Chapter 11 Vectors and the Geometry of Space

 46. (Continuation of Example 8.) What speed and direction should the 
jetliner in Example 8 have in order for the resultant vector to be 
800 km/h due east?

 47. Consider a 100-N weight suspended by two wires as shown in the 
accompanying figure. Find the magnitudes and components of the 
force vectors F1 and F .2

F1 F2

45°

100

30°

 48. Consider a 50-N weight suspended by two wires as shown in the 
accompanying figure. If the magnitude of vector F1 is 35 N, find 
angle α and the magnitude of vector F .2

F1

F2

60°a

50

 49. Consider a w-N weight suspended by two wires as shown in the 
accompanying figure. If the magnitude of vector F2 is 100 N, find 
w and the magnitude of vector F .1

F1 F2

35°

w

40°

 50. Consider a 25-N weight suspended by two wires as shown in the 
accompanying figure. If the magnitudes of vectors F1 and F2 are 
both 75 N, then angles α and β  are equal. Find .α

F1 F2

25

a b

 51. Location A bird flies from its nest 5 km in the direction 60° 
north of east, where it stops to rest on a tree. It then flies 10 km in 
the direction due southeast and lands atop a telephone pole. Place 
an xy-coordinate system so that the origin is the bird’s nest, the 
x-axis points east, and the y-axis points north.

 a. At what point is the tree located?

 b. At what point is the telephone pole?

 52. Use similar triangles to find the coordinates of the point Q that 
divides the segment from P x y z,  , 1 1 1 1( ) to P x y z,  , 2 2 2 2( ) into 
two lengths whose ratio is p q r.=

 53. Medians of a triangle Suppose that A, B, and C are the corner 
points of the thin triangular plate of constant density shown here.

 a. Find the vector from C to the midpoint M of side AB.

 b. Find the vector from C to the point that lies two-thirds of the 
way from C to M on the median CM.

 c. Find the coordinates of the point in which the medians of 
ABCΔ  intersect. According to Exercise 27, Section 6.6, this 

point is the plate’s center of mass. (See the figure.)

z

y

x

c.m.

M

C(1, 1, 3)

B(1, 3, 0)

A(4, 2, 0)

 54. Find the vector from the origin to the point of intersection of the 
medians of the triangle whose vertices are

A B C1,  1, 2 , 2, 1, 3 , and 1, 2,  1 .( ) ( ) ( )− − −

 55. Let ABCD be a general, not necessarily planar, quadrilateral in 
space. Show that the two segments joining the midpoints of 
opposite sides of ABCD bisect each other. (Hint: Show that the 
segments have the same midpoint.)

 56. Vectors are drawn from the center of a regular n-sided polygon in 
the plane to the vertices of the polygon. Show that the sum of the 
vectors is zero. (Hint: What happens to the sum if you rotate the 
polygon about its center?)

 57. Suppose that A, B, and C are vertices of a triangle and that a, b, 
and c are, respectively, the midpoints of the opposite sides. Show 
that Aa Bb Cc 0.
� �� � �� � ��

+ + =

 58. Unit vectors in the plane  Show that a unit vector in the plane 
can be expressed as u i jcos sin ,θ θ( ) ( )= +  obtained by rotat-
ing i through an angle θ in the counterclockwise direction. Explain 
why this form gives every unit vector in the plane.

 59. Consider a triangle whose vertices are A B2,  3, 4 ,   1, 0,  1 ,( ) ( )− −  
and C 3, 1, 2( ).

 a. Find AB BC CA.
� ��� � ��� � ��

+ + b. Find BA AC CB.
� �� � ��� � ��

+ +

n-Dimensional Vectors
In Exercises 60–65, let u 2,  3, 0, 1= 〈 − 〉 and v 0,  4,  1, 3= 〈 − − 〉. 
Find the (a) component form and (b) magnitude (length) of the vector.

 60. 2u  61. v4−

 62. u v+  63. v u−

 64. u v3 2−  65. u v4 3+
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 11.3  The Dot Product 691

We use the law of cosines to prove Theorem 1, but before doing so, we focus attention 
on the expression u u u1 1 2 2 3 3υ υ υ+ +  in the calculation for .θ  This expression is the sum 
of the products of the corresponding components of the vectors u and v.

FIGURE 11.20 The magnitude of the 
force F  in the direction of vector v is the 
length F cos θ of the projection of F   
onto v.

v

F

Length = 0 F 0  cos u

u

11.3 The Dot Product

If a force F is applied to a particle moving along a path, we often need to know the magni-
tude of the force in the direction of motion. If v is parallel to the tangent line to the path at 
the point where F is applied, then we want the magnitude of F in the direction of v. 
Figure 11.20 shows that the scalar quantity we seek is the length F cos ,θ  where θ is the 
angle between the two vectors F and v.

In this section we show how to calculate easily the angle between two vectors directly 
from their components. A key part of the calculation is an expression called the dot product. 
Dot products are also called inner or scalar products because the product results in a 
scalar, not a vector. After investigating the dot product, we apply it to finding the projection 
of one vector onto another (as displayed in Figure 11.20) and to finding the work done by 
a constant force acting through a displacement.

Angle Between Vectors

When two nonzero vectors u and v are placed so their initial points coincide, they form an 
angle θ of measure 0 θ π≤ ≤  (Figure 11.21). If the vectors do not lie along the same 
line, the angle θ is measured in the plane containing both of them. If they do lie along the 
same line, the angle between them is 0 if they point in the same direction and π if they 
point in opposite directions. The angle θ is the angle between u and v. Theorem 1 gives a 
formula to determine this angle.

THEOREM 1—Angle Between Two Vectors
The angle θ between two nonzero vectors u u uu ,  , 1 2 3= 〈 〉 and v ,  , 1 2 3υ υ υ= 〈 〉 
is given by

θ
υ υ υ

=
+ +⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

u u u
u v

arccos .1 1 2 2 3 3

DEFINITION The dot product u v⋅  (“u dot v”) of vectors u u uu ,  , 1 2 3= 〈 〉 
and v ,  , 1 2 3υ υ υ= 〈 〉 is the scalar

u u uu v .1 1 2 2 3 3υ υ υ⋅ = + +

EXAMPLE 1  We illustrate the definition.

 
(a)

 
1,  2,  1 6, 2,  3 1 6 2 2 1 3

6 4 3 7

( )( ) ( )( ) ( )( )〈 − − 〉 ⋅ 〈− − 〉 = − + − + − −

= − − + = −

 (b) i j k i j k1
2

3 4 2 1
2

4 3 1 1 2 1( ) ( )( ) ( ) ( )( ) ( )( )+ + ⋅ − + = + − + =  

The dot product of a pair of two-dimensional vectors is defined in a similar fashion:

u u u u,   ,   .1 2 1 2 1 1 2 2υ υ υ υ〈 〉 ⋅ 〈 〉 = +

We will see throughout the remainder of this text that the dot product is a key tool for many 
important geometric and physical calculations in space (and the plane).

FIGURE 11.21 The angle between u 
and v given by Theorem 1 lies in the  
interval 0,  .π[ ]

v

u

u
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692 Chapter 11 Vectors and the Geometry of Space

Proof of Theorem 1  Applying the law of cosines (Equation (8), Section 1.3) to the 
triangle in Figure 11.22, we find that

w u v u v

u v u v w

2 cos

2 cos .

2 2 2

2 2 2

θ

θ

= + −

= + −

  Law of cosines

Because w u v,= −  the component form of w is u u u,   ,   .1 1 2 2 3 3υ υ υ〈 − − − 〉  So

u u u u u u

u u u

u u u

u u u u u u

u

v

w

2 2 2

2
1

2
2

2
3

2
2

1
2

2
2

3
2

2
1

2
2

2
3

2
2

1
2

2
2

3
2

2
1 1

2
2 2

2
3 3

2
2

1 1
2

2 2
2

3 3
2

1
2

1 1 1
2

2
2

2 2 2
2

3
2

3 3 3
2

υ υ υ υ υ υ

υ υ υ

υ υ υ

υ υ υ υ υ υ

( )

( )

( )

( )

( )

( ) ( )

( ) ( )

= + + = + +

= + + = + +

= − + − + −

= − + − + −

= − + + − + + − +

and

u u uu v w 2 .2 2 2
1 1 2 2 3 3υ υ υ( )+ − = + +

Therefore,

u u u

u u u

u u u

u v u v w

u v

u v

2 cos 2

cos

cos .

2 2 2
1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

θ υ υ υ

θ υ υ υ

θ
υ υ υ

( )= + − = + +

= + +

=
+ +

Thus, for 0 ,θ π≤ ≤  we have θ
υ υ υ

=
+ +⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

u u u
u v

arccos .1 1 2 2 3 3  

FIGURE 11.22 The parallelogram law 
of addition of vectors gives w u v.= −

u

v

u

w

Dot Product and Angles

The angle between two nonzero vectors u and v is θ = ⋅⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

u v
u v

arccos .

The dot product of two vectors u and v is given by u v u v cos .θ⋅ =

EXAMPLE 2  Find the angle between u i j k2 2= − −  and v i j k6 3 2 .= + +

Solution We use the formula above:

θ ( )

( )( ) ( )( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

( )( )

⋅ = + − + − = − − = −

= + − + − = =

= + + = =

= ⋅⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ = − ≈ °

u v

u

v

u v
u v

1 6 2 3 2 2 6 6 4 4

1 2 2 9 3

6 3 2 49 7

arccos arccos 4
3 7

1.76 radians or 100.98 .

2 2 2

2 2 2

 

The angle formula applies to two-dimensional vectors as well. Note that the angle θ is 
acute if u v 0⋅ >  and obtuse if u v 0.⋅ <

FIGURE 11.23 The triangle in 
Example 3.

x

y

A

u

B(3, 5)

C(5, 2)

1

1

EXAMPLE 3  Find the angle θ in the triangle ABC determined by the vertices 
A B0, 0 ,   3, 5 ,( ) ( )= =  and C 5, 2( )=  (Figure 11.23).
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 11.3  The Dot Product 693

Solution The angle θ is the angle between the vectors CA
� ��

 and CB.
� ��

 The component forms 
of these two vectors are

CA CB5,  2 and 2, 3 .
� �� � ��

= 〈− − 〉 = 〈− 〉

First we calculate the dot product and magnitudes of these two vectors.

CA CB

CA

CB

5 2 2 3 4

5 2 29

2 3 13

2 2

2 2

� �� � ��

� ��

� ��

( )( ) ( )( )

( ) ( )

( ) ( )

⋅ = − − + − =

= − + − =

= − + =

Then, applying the angle formula, we have

θ
( )( )

= ⋅⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ =

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

≈ °

� �� � ��
� �� � ��CA CB
CA CB

arccos arccos 4
29 13

78.1  or 1.36 radians.  

DEFINITION Vectors u and v are orthogonal if u v 0.⋅ =

EXAMPLE 4  To determine if two vectors are orthogonal, calculate their dot product.

 (a) u 3,  2= 〈 − 〉 and v 4, 6= 〈 〉 are orthogonal because u v 3 4 2 6 0.( )( ) ( )( )⋅ = + − =
 (b) u i j k3 2= − +  and v j k2 4= +  are orthogonal because

u v 3 0 2 2 1 4 0.( )( ) ( )( ) ( )( )⋅ = + − + =

 (c) 0 is orthogonal to every vector u because

u u u

u u u

0 u 0, 0, 0 ,  , 

0 ( ) 0 ( ) 0 ( ) 0.
1 2 3

1 2 3( ) ( ) ( )

⋅ = 〈 〉 ⋅ 〈 〉

= + + =  

Properties of the Dot Product
If u, v, and w are any vectors and c is a scalar, then

1. u v v u⋅ = ⋅ 2. c c cu v u v u v( ) ( ) ( )⋅ = ⋅ = ⋅
3. u v w u v u w( )⋅ + = ⋅ + ⋅ 4. u u u 2⋅ =
5. 0 u 0.⋅ =

Orthogonal Vectors

Two nonzero vectors u and v are perpendicular if the angle between them is 2.π  For 
such vectors, we have u v 0⋅ =  because cos 2 0.π( ) =  The converse is also true. If u 
and v are nonzero vectors with u v u v cos 0,θ⋅ = =  then cos 0θ =  and 
θ π= =arccos 0 2. The following definition also allows for one or both of the vec-
tors to be the zero vector.

Dot Product Properties and Vector Projections

The dot product obeys many of the laws that hold for ordinary products of real numbers 
(scalars).
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694 Chapter 11 Vectors and the Geometry of Space

Proofs of Properties 1 and 3  The properties are easy to prove using the definition. 
For instance, here are the proofs of Properties 1 and 3.

1. u u u u u uu v v u1 1 2 2 3 3 1 1 2 2 3 3υ υ υ υ υ υ⋅ = + + = + + = ⋅

3.

 

u u u w w w

u w u w u w

u u w u u w u u w

u u u u w u w u w

u v w

u v u w

,   ,   ,   ,  1 2 3 1 1 2 2 3 3

1 1 1 2 2 2 3 3 3

1 1 1 1 2 2 2 2 3 3 3 3

1 1 2 2 3 3 1 1 2 2 3 3

υ υ υ

υ υ υ
υ υ υ

υ υ υ

( )

( ) ( )

( ) ( )

( )⋅ + = 〈 〉 ⋅ 〈 + + + 〉

= + + + + +
= + + + + +

= + + + + +
= ⋅ + ⋅  

We now return to the problem of projecting one vector onto another, posed in the 
opening to this section. The vector projection of PQu

� ���
=  onto a nonzero vector PSv

� ��
=  

(Figure 11.24) is the vector PR
� ��

 determined by dropping a perpendicular from Q to the line 
PS. The notation for this vector is

“ ”u u vproj the vector projection of   onto  .v ( )

If u represents a force, then uprojv  represents the effective force in the direction of v 
(Figure 11.25).

If the angle θ between u and v is acute, uprojv  has length u cos θ and direction v v  
(Figure 11.26). If θ is obtuse, cos 0θ <  and uprojv  has length u cos θ−  and direction 

v v .−  In both cases,

u u v
v

u v
v

v
v

u v
v

v

proj cos

.

v

2

θ

( )
( )

( )=

= ⋅

= ⋅

  u
u v

v
u v

v
cos

cos
θ

θ
= = ⋅

FIGURE 11.24 The vector projection 
of u onto v.

Q

P

u

S

v

R

Q

P

u

S

v

R

FIGURE 11.25 If we pull on the box 
with force u, the effective force moving 
the box forward in the direction v is the 
projection of u onto v.

v

Force = u

projv u

FIGURE 11.26 The length of uprojv  is (a) u cos θ if cos 0θ ≥  and  
(b) u cos θ−  if cos 0.θ <

u

v

(b)

u

v 

(a)

u

u

projv u projv u

Length = 0u 0  cos u Length = −0u 0  cos u 

The vector projection of u onto v is the vector

 u u v
v

v u v
v

v
v

proj .v 2( ) ( )= ⋅ = ⋅  (1)

The scalar component of u in the direction of v is the scalar

 u u v
v

u v
v

cos .θ = ⋅ = ⋅  (2)

The number θu cos  is called the scalar component of u in the direction of v. To 
summarize,
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 11.3  The Dot Product 695

Note that both the vector projection of u onto v and the scalar component of u in the direc-
tion of v depend only on the direction of the vector v, not on its length. This is because in 
both cases we take the dot product of u with the direction vector v v , which is the direc-
tion of v, and for the projection we go on to multiply the result by the direction vector.

EXAMPLE 5  Find the vector projection of u i j k6 3 2= + +  onto v i j k2 2= − −  
and the scalar component of u in the direction of v.

Solution We find uprojv  from Equation (1):

u u v
v

v u v
v v

v i j k

i j k i j k

proj 6 6 4
1 4 4

2 2

4
9

2 2 4
9

8
9

8
9

.

v 2
( )

( )

= ⋅ = ⋅
⋅

= − −
+ +

− −

= − − − = − + +

We find the scalar component of u in the direction of v from Equation (2):

u u v
v

i j k i j kcos 6 3 2 1
3

2
3

2
3

2 2 4
3

4
3

.

θ ( )( )= ⋅ = + + ⋅ − −

= − − = −  

Equations (1) and (2) also apply to two-dimensional vectors. We demonstrate this in 
the next example.

EXAMPLE 6  Find the vector projection of a force F i j5 2= +  onto v i j3= −  
and the scalar component of F in the direction of v.

Solution The vector projection is

F F v
v

v F v
v v

v

i j i j

i j

proj

5 6
1 9

3 1
10

3

1
10

3
10

.

v 2( ) ( )
( ) ( )

= ⋅ = ⋅
⋅

= −
+

− = − −

= − +

The scalar component of F in the direction of v is

F F v
v

cos 5 6
1 9

1
10

.θ = ⋅ = −
+

= −  

EXAMPLE 7  Verify that the vector u uprojv−  is orthogonal to the projection vector 
uproj .v

Solution The vector u u v
v

vprojv 2( )= ⋅  is parallel to v. So it suffices to show that the 

vector u uprojv−  is orthogonal to v. We verify orthogonality by showing that the dot 
product of u uprojv−  with v is zero:

u u v u v u v
v

v v

u v u v
v

v v

u v u v
v

v

u v u v

proj

0.

v 2

2

2
2

( )( )

( )

− ⋅ = ⋅ − ⋅ ⋅

= ⋅ − ⋅ ⋅

= ⋅ − ⋅

= ⋅ − ⋅ =  

Definition of uprojv

Dot product property (2)

v v v 2⋅ =
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696 Chapter 11 Vectors and the Geometry of Space

Example 7 verifies that the vector u uprojv  is orthogonal to the projection vector 
uprojv  (which has the same direction as v). So the equation

u u u u u v
v

v u u v
v

vproj projv v 2 2( ) ( )( )( )= + − = ⋅ + − ⋅

expresses u as a sum of orthogonal vectors (see Figure 11.27).

Work

In Chapter 6, we calculated the work done by a constant force of magnitude F  in moving 
an object through a distance d as W Fd. That formula holds only if the force is directed 
along the line of motion. If a force F moving an object through a displacement PQD

	 
		
 

has some other direction, the work is performed by the component of F in the direction of 
D. If  is the angle between F and D (Figure 11.28), then

F

D
D

F D

F D

Work
scalar component of 

in the direction of 
length of 

cos

.

( )

( )=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=

= ⋅

FIGURE 11.27 The vector u is the  
sum of two perpendicular vectors: a  
vector uproj ,v  parallel to v, and a vector 
u uproj ,v  perpendicular to v.

v

u

projvu

u − projvu

FIGURE 11.28 The work done by a 
constant force F  during a displacement D 
is F Dcos ,( )  which is the dot product 
F D.

F

P QD

0F 0  cos u

u

DEFINITION The work done by a constant force F acting through a displacement 
PQD
	 
		

 is

W F D.= ⋅

� ���� ����
vParallel to

� ���������� ����������
vOrthogonal to

EXAMPLE 8  If F 40 N (newtons), D 3 m, and 60 ,= °  the work done by 
F in acting from P to Q is

F D
F D

Work
cos

40 3 cos 60

120 1 2 60 J joules .( ) ( )

( )( )

( )

= ⋅
=

= °

= =  

We encounter more challenging work problems in Chapter 15 when we learn to find 
the work done by a variable force along a more general path in space.

The Dot Product of Two n-Dimensional Vectors

If = 〈 〉u u uu , , , n1 2  and = 〈 〉v , , , n1 2  are n-dimensional vectors, then we define 
the dot product to be

u u uu v .n n1 1 2 2⋅ = + + +

As for two- and three-dimensional vectors, the dot product is calculated by adding the 
products of the corresponding components of the two vectors.

This generalized dot product can be shown to satisfy the Properties of the Dot Product 
that were introduced earlier in this section, and similar terminology is used. If u and v are 
n-dimensional vectors, then

1. u and v are said to be orthogonal if u v 0⋅ = ,

2. the vector projection of u onto v is v u u v
v

vproj 2= ⋅ , and

Definition

Given values
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 11.3  The Dot Product 697

3. the angle between the vectors u and v is defined as u v
u v

arccosθ = ⋅⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟. (The Cauchy-

Schwarz inequality, u v u v⋅ ≤ , stated in Exercise 27 can be extended to  

n-dimensional vectors. This guarantees that u v
u v

⋅  is within the interval 1, 1[ ]− .)

EXAMPLE 9  An automobile assembly plant makes four different car models. The 
components of the vector u 36, 50, 24, 10= 〈 〉 indicate the plant’s output of each model 
per hour, whereas the revenue per vehicle (in US dollars) of each model is represented by 
the vector v 24,000, 31,000, 39,000, 52,000= 〈 〉. Calculate the dot product u v⋅  and 
explain the significance of the value that was obtained.

Solution 

u v 36 24,000 50 31,000 24 39,000 10 52,000 3,870,000.( )( ) ( )( ) ( )( ) ( )( )⋅ = + + + =

The value $3,870,000 represents the total hourly revenue. 

For some exercises, a calculator may be helpful when expressing 
answers in decimal form.

Dot Product and Projections
In Exercises 1–8, find

 a. v u v u,   ,  ⋅

 b. the cosine of the angle between v and u

 c. the scalar component of u in the direction of v

 d. the vector uproj .v

 1. v i j k u i j k2 4 5 , 2 4 5= − + = − + −

 2. v i k u i j3 5 4 5 , 5 12( ) ( )= + = +

 3. v i j k u j k10 11 2 , 3 4= + − = +

 4. v i j k u i j k2 10 11 , 2 2= + − = + +

 5. v j k u i j k5 3 ,= − = + +

 6. v i j u i j k, 2 3 2= − + = + +

 7. v i j u i j5 , 2 17= + = +

 8. v u1
2

,  1
3

, 1
2

,  1
3

= = −

Angle Between Vectors
Find the angles between the vectors in Exercises 9–12 to the nearest 
hundredth of a radian.

 9. u i j v i j k2 , 2= + = + −

 10. u i j k v i k2 2 , 3 4= − + = +

 11. u i j v i j k3 7 , 3 2= − = + −

 12. u i j k v i j k2 2 ,= + − = − + +

 13. Triangle Find the measures of the angles of the triangle whose 
vertices are A B1, 0 ,   2, 1 ,( ) ( )= − =  and C 1,  2 .( )= −

 14. Rectangle Find the measures of the angles between the diago-
nals of the rectangle whose vertices are A B1, 0 ,   0, 3 ,( ) ( )= =  
C 3, 4 ,( )=  and D 4, 1 .( )=

 15. Direction angles and direction cosines The direction angles 
,  ,α β  and γ of a vector a b cv i j k= + +  are defined as follows:

α is the angle between v and the positive x-axis 0 .α π( )≤ ≤

β  is the angle between v and the positive y-axis 0 .β π( )≤ ≤

γ is the angle between v and the positive z-axis 0 .γ π( )≤ ≤

y

z

x

v

0
b

a

g

 a. Show that

a b c
v v v

cos , cos , cos ,α β γ= = =

and cos cos cos 1.2 2 2α β γ+ + =  These cosines are called 
the direction cosines of v.

 b. Unit vectors are built from direction cosines Show that 
if a b cv i j k= + +  is a unit vector, then a, b, and c are the 
direction cosines of v.

 16. Water main construction A water main is to be constructed 
with a 20% grade in the north direction and a 10% grade in the 

EXERCISES 11.3
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698 Chapter 11 Vectors and the Geometry of Space

east direction. Determine the angle θ required in the water main 
for the turn from north to east.

East

North

u

For Exercises 17 and 18, find the acute angle between the given lines 
by using vectors parallel to the lines.

 17. y x y x, 2 3= = +

 18. x y x y2 2 0, 3 4 12− + = − = −

Theory and Examples

 19. Sums and differences In the accompanying figure, it looks as if 
v v1 2+  and v v1 2−  are orthogonal. Is this mere coincidence, or  
are there circumstances under which we may expect the sum of two 
vectors to be orthogonal to their difference? Give reasons for your 
answer.

v1 + v2

v1 − v2

v2

v1 −v2

 20. Orthogonality on a circle Suppose that AB is the diameter of 
a circle with center O and that C is a point on one of the two arcs 
joining A and B. Show that CA

� ��
 and CB
� ��

 are orthogonal.

B
O

v

A

C

u−u

 21. Diagonals of a rhombus Show that the diagonals of a rhombus 
(parallelogram with sides of equal length) are perpendicular.

 22. Perpendicular diagonals Show that squares are the only rect-
angles with perpendicular diagonals.

 23. When parallelograms are rectangles Prove that a parallelo-
gram is a rectangle if and only if its diagonals are equal in length. 
(This fact is often exploited by carpenters.)

 24. Diagonal of parallelogram Show that the indicated diagonal of 
the parallelogram determined by vectors u and v bisects the angle 
between u and v if u v .=

u

v

 25. Projectile motion A gun with muzzle velocity of 400 m s is 
fired at an angle of 8° above the horizontal. Find the horizontal 
and vertical components of the velocity.

 26. Inclined plane Suppose that a box is being towed up an inclined 
plane as shown in the figure. Find the force w needed to make 
the component of the force parallel to the inclined plane equal to  
2.5 N.

15°

33°

w

 27. a.  Cauchy-Schwarz inequality Since u v u v cos ,θ⋅ =   
show that the inequality u v u v⋅ ≤  holds for any  
vectors u and v.

 b. Under what circumstances, if any, does u v⋅  equal u v ? 
Give reasons for your answer.

 28. Dot multiplication is positive definite Show that dot multipli-
cation of vectors is positive definite; that is, show that u u 0⋅ ≥  
for every vector u and that u u 0⋅ =  if and only if u 0.=

 29. Orthogonal unit vectors If u1 and u 2 are orthogonal unit vectors 
and a bv u u ,1 2= +  find v u .1⋅

 30. Cancelation in dot products In real-number multiplication, if 
u u1 2υ υ=  and u 0,≠  we can cancel the u and conclude that 

.1 2υ υ=  Does the same rule hold for the dot product? That is, 
if u v u v1 2⋅ = ⋅  and u 0,≠  can you conclude that v v ?1 2=  
Give reasons for your answer.

 31. If u and v are orthogonal, show that uproj 0.v =

 32. A force F i j k2 3= + −  is applied to a spacecraft with velocity 
vector v i j3 .= −  Express F  as a sum of a vector parallel to v 
and a vector orthogonal to v.

Equations for Lines in the Plane

 33. Line perpendicular to a vector Show that a bv i j= +  is per-
pendicular to the line ax by c+ = . (Hint: For a and b nonzero, 
establish that the slope of the vector v is the negative reciprocal of 
the slope of the given line. Also verify the statement when a 0=  
or b 0= .)

 34. Line parallel to a vector Show that the vector a bv i j= +  
is parallel to the line bx ay c− = . (Hint: For a and b nonzero, 
establish that the slope of the line segment representing v is the 
same as the slope of the given line. Also verify the statement when 
a 0=  or b 0= .)

In Exercises 35–38, use the result of Exercise 33 to find an equation 
for the line through P perpendicular to v. Then sketch the line. Include 
v in your sketch as a vector starting at the origin.

 35. P v i j2, 1 , 2( ) = +  36. P v i j1, 2 , 2( )− = − −

 37. P v i j2,  7 , 2( )− − = − +  38. P v i j11, 10 , 2 3( ) = −

In Exercises 39–42, use the result of Exercise 34 to find an equation 
for the line through P parallel to v. Then sketch the line. Include v in 
your sketch as a vector starting at the origin.

 39. P v i j2, 1 ,( )− = −  40. P v i j0,  2 , 2 3( )− = +

 41. P v i j1, 2 , 2( ) = − −  42. P v i j1, 3 , 3 2( ) = −
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 11.4  The Cross Product 699

Work

 43. Work along a line Find the work done by a force F i5=  (mag-
nitude 5 N) in moving an object along the line from the origin to 
the point 1, 1( ) (distance in meters).

 44. Locomotive The Union Pacific’s Big Boy locomotive could 
pull 6000-tonne trains with a tractive effort (pull) of 602,148 N. 
At this level of effort, about how much work did Big Boy do on 
the (approximately straight) 605-km journey from San Francisco 
to Los Angeles?

 45. Inclined plane How much work does it take to slide a crate  
20 m along a loading dock by pulling on it with a 200-N force at 
an angle of 30° from the horizontal?

 46. Sailboat The wind passing over a boat’s sail exerted a 1000 N 
magnitude force F  as shown here. How much work did the wind 
perform in moving the boat forward 1 km? Answer in joules.

F

60°
1000-N
magnitude
force

Angles Between Lines in the Plane
The acute angle between intersecting lines that do not cross at right 
angles is the same as the angle determined by vectors normal to the 
lines or by vectors parallel to the lines.

u

u

u

n1
n2

L2

L2

L1

L1
v1

v2

Use this fact and the results of Exercise 33 or 34 to find the acute 
angles between the lines in Exercises 47–52.

 47. x y x y3 5, 2 4+ = − =

 48. y x y x3 1, 3 2= − = − +

 49. x y x y3 2, 3 1− = − − =

 50. x y x y3 1, 1 3 1 3 8( ) ( )+ = − + + =

 51. x y x y3 4 3, 7− = − =

 52. x y x y12 5 1, 2 2 3+ = − =

Dot Products of n-Dimensional Vectors
In Exercises 53–56, (a) find u v⋅  and (b) determine whether the vectors 
u and v are orthogonal.

 53. u v3, 2,  4, 0 ,   1, 0, 0, 2= 〈 − 〉 = 〈 〉

 54. u v2, 1, 1, 2 ,   1, 2,  2,  1= 〈− 〉 = 〈− − − 〉

 55. u v6, 3, 0, 1,  2 ,   0, 2,  7, 0, 3= 〈 − 〉 = 〈 − 〉

 56. u v4, 2,  3,  2, 1, 5 ,   3,  3, 2,  2, 1,  1= 〈 − − 〉 = 〈 − − − 〉

FIGURE 11.29 The construction of 
u v.×

v

u

n
u

u × v

DEFINITION The cross product u v×  (“u cross v”) is the vector

u v u v nsin   .θ( )× =

11.4 The Cross Product

In studying lines in the plane, when we needed to describe how a line was tilting, we used 
the notions of slope and angle of inclination. In space, we want a way to describe how a 
plane is tilting. We accomplish this by multiplying two vectors in the plane together to get 
a third vector perpendicular to the plane. The direction of this third vector tells us the 
“inclination” of the plane. The product we use to multiply the vectors together is the vector 
or cross product, the second of the two vector multiplication methods. The cross product 
gives us a simple way to find a variety of geometric quantities, including volumes, areas, 
and perpendicular vectors. We study the cross product in this section.

The Cross Product of Two Vectors in Space

We start with two nonzero vectors u and v in space. Two vectors are parallel if one is a 
nonzero multiple of the other. If u and v are not parallel, they determine a plane. The vec-
tors in this plane are linear combinations of u and v, so they can be written as a sum 
a bu v.+  We select the unit vector n perpendicular to the plane by the right-hand rule. 
This means that we choose n to be the unit normal vector that points the way your right 
thumb points when your fingers curl through the angle θ from u to v (Figure 11.29). Then 
we define a new vector as follows.
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700 Chapter 11 Vectors and the Geometry of Space

Unlike the dot product, the cross product is a vector. For this reason it is also called the 
vector product of u and v, and can be applied only to vectors in space. The vector u v 
is orthogonal to both u and v because it is a scalar multiple of n.

There is a straightforward way to calculate the cross product of two vectors from their 
components. The method does not require that we know the angle between them (as sug-
gested by the definition), but we postpone that calculation momentarily so we can focus 
first on the properties of the cross product.

Because the sines of 0 and  are both zero, it makes sense to define the cross product 
of two parallel nonzero vectors to be 0. If one or both of u and v are zero, we also define 
u v to be zero. This way, the cross product of two vectors u and v is zero if and only if u 
and v are parallel or one or both of them are zero.

Parallel Vectors

u v u v 0Nonzero vectors   and   are parallel if and only if  .× =

FIGURE 11.30 The construction of 
v u.

v

u

u−n

v × u

FIGURE 11.31 The pairwise cross 
products of i, j, and k.

y

x

z
k = i × j

j = k × i

i = j × k

The cross product obeys the following laws.

Properties of the Cross Product
If u, v, and w are any vectors and r, s are scalars, then

1. r s rsu v u v( ) ( ) ( )( )× = × 2. u v w u v u w( )× + = × + ×
3. v u u v( )× = − × 4. v w u v u w u( )+ × = × + ×
5. 0 u 0× = 6. u v w u w v u v w( ) ( ) ( )× × = ⋅ − ⋅

To visualize Property 3, for example, notice that when the fingers of your right hand 
curl through the angle  from v to u, your thumb points the opposite way; the unit vector 
we choose in forming v u is the negative of the one we choose in forming u v 
(Figure 11.30).

Property 1 can be verified by applying the definition of cross product to both sides of 
the equation and comparing the results. Property 2 is proved in Appendix A.9. Property 4 
follows by multiplying both sides of the equation in Property 2 by 1 and reversing the 
order of the products using Property 3. Property 5 is a definition. As a rule, cross product 
multiplication is not associative so u v w( )× ×  does not generally equal u v w .( )× ×  
(See Additional Exercise 17.)

When we apply the definition and Property 3 to calculate the pairwise cross products 
of i, j, and k, we find (Figure 11.31)

i j j i k

j k k j i

k i i k j

( )

( )

( )

× = − × =
× = − × =
× = − × =

and

i i j j k k 0.× = × = × =

u v  Is the Area of a Parallelogram

Because n is a unit vector, the magnitude of u v is

u v u v n u vsin sin .× = =
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 11.4  The Cross Product 701

This is the area of the parallelogram determined by u and v (Figure 11.32), u  being the 
base of the parallelogram and v sin θ  being the height.

Determinant Formula for u v×

Our next objective is to calculate u v×  from the components of u and v relative to a 
Cartesian coordinate system.

Suppose that

u u uu i j k v i j kand .1 2 3 1 2 3υ υ υ= + + = + +

Then the distributive laws and the rules for multiplying i, j, and k tell us that

u u u

u u u

u u u

u u u

u u u u u u

u v i j k i j k

i i i j i k

j i j j j k

k i k j k k

i j k.

1 2 3 1 2 3

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

2 3 3 2 1 3 3 1 1 2 2 1

υ υ υ

υ υ υ

υ υ υ

υ υ υ

υ υ υ υ υ υ

( ) ( )

( ) ( ) ( )

× = + + × + +

= × + × + ×

+ × + × + ×

+ × + × + ×

= − − − + −

The component terms in the last line are hard to remember, but they are the same as 
the terms in the expansion of the symbolic determinant

u u u

i j k
.1 2 3

1 2 3υ υ υ

So we restate the calculation in the following easy-to-remember form.

FIGURE 11.32 The parallelogram 
determined by u and v.

v

u

u

h = 0 v 0 0 sin u 0

Area = base · height  
= 0u 0  · 0 v 0 0 sin u 0
= 0u × v 0

Calculating the Cross Product as a Determinant
If u u uu i j k1 2 3= + +  and v i j k,1 2 3υ υ υ= + +  then

u u uu v
i j k

.1 2 3

1 2 3υ υ υ
× =

FIGURE 11.33 The vector PQ PR
� ��� � ��

×  is 
perpendicular to the plane of triangle PQR 
(Example 2). The area of triangle PQR is 
half of 

� ��� � ��
×PQ PR  (Example 3).

y

x

z

0

P(1, −1, 0)

Q(2, 1, –1)

R(−1, 1, 2)

Determinants
2 2×  and 3 3×  determinants are  
evaluated as follows:

a b
c d

ad bc

a a a

b b b

c c c

a
b b

c c

a
b b

c c
a

b b

c c

1 2 3

1 2 3

1 2 3

1
2 3

2 3

2
1 3

1 3
3

1 2

1 2

= −

=

− +

EXAMPLE 1  Find u v×  and v u×  if u i j k2= + +  and v i j k4 3 .= − + +

Solution We expand the symbolic determinant.

u v

i j k

i j k

i j k

v u u v i j k

2 1 1

4 3 1

1 1

3 1

2 1

4 1

2 1

4 3

2 6 10

2 6 10( )

× =
−

= −
−

+
−

= − − +

× = − × = + −  

EXAMPLE 2  Find a vector perpendicular to the plane of P Q1,  1, 0 ,   2, 1,  1 ,( ) ( )− −  
and R 1, 1, 2( )−  (Figure 11.33).

Property 3
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702 Chapter 11 Vectors and the Geometry of Space

Solution The vector PQ PR
� ��� � ��

×  is perpendicular to the plane because it is perpendicular 
to both vectors. In terms of components,

PQ

PR

PQ PR

i j k i j k

i j k i j k

i j k

i j k

i k

2 1 1 1 1 0 2

1 1 1 1 2 0 2 2 2

1 2 1
2 2 2

2 1
2 2

1 1
2 2

1 2
2 2

6 6 .

( ) ( ) ( )

( ) ( ) ( )

= − + + + − − = + −

= − − + + + − = − + +

× = −
−

= − − −
−

+
−

= +

� ���

� ��

� ��� � ��

 

EXAMPLE 3  Find the area of the triangle with vertices P Q1,  1, 0 ,   2, 1,  1 ,( ) ( )− −  
and R 1, 1, 2( )−  (Figure 11.33).

Solution The area of the parallelogram determined by P, Q, and R is

PQ PR i k6 6

6 6 2 36 6 2.2 2

� ��� � ��

( ) ( )

× = +

= + = ⋅ =

  Values from Example 2

The triangle’s area is half of this, or 3 2. 

EXAMPLE 4  Find a unit vector perpendicular to the plane of P Q1, 1, 0 , 2, 1, 1 ,( ) ( )− −  
and R 1, 1, 2 .( )−

Solution Since PQ PR
� ��� � ��

×  is perpendicular to the plane, its direction n is a unit vector 
perpendicular to the plane. Taking values from Examples 2 and 3, we have

PQ PR
PQ PR

n i k i k6 6
6 2

1
2

1
2

.
� ��� � ��
� ��� � ��= ×

×
= + = +  

For ease in calculating the cross product using determinants, we usually write vectors 
in the form v i j k1 2 3υ υ υ= + +  rather than as ordered triples v ,  ,  .1 2 3υ υ υ= 〈 〉

Torque

When we turn a bolt by applying a force F to a wrench (Figure 11.34), we produce a torque 
that causes the bolt to rotate. The torque vector points in the direction of the axis of the 
bolt according to the right-hand rule (so the rotation is counterclockwise when viewed 
from the tip of the vector). The magnitude of the torque depends on how far out on the 
wrench the force is applied and on how much of the force is perpendicular to the wrench at 
the point of application. The number we use to measure the torque’s magnitude is the prod-
uct of the length of the lever arm r and the scalar component of F perpendicular to r. In the 
notation of Figure 11.34,

r FMagnitude of torque vector sin ,θ=

or ×r F . If we let n be a unit vector along the axis of the bolt in the direction of the 
torque, then a complete description of the torque vector is r F,×  or

r F r F nTorque vector sin .θ( )= × =

Recall that we defined u v×  to be 0 when u and v are parallel. This is consistent with the 
torque interpretation as well. If the force F in Figure 11.34 is parallel to the wrench, mean-
ing that we are trying to turn the bolt by pushing or pulling along the line of the wrench’s 
handle, the torque produced is zero.

FIGURE 11.34 The torque vector 
describes the tendency of the force F  to 
drive the bolt forward.

n

r

F

Torque

Component of F
perpendicular to r.
Its length is 0F 0  sin u. u
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 11.4  The Cross Product 703

EXAMPLE 5  The magnitude of the torque generated by force F at the pivot point P 
in Figure 11.35 is

	 
		 	 
		
PQ PQF F sin 70 3 20 0.94 56.4 N m.( )( )( )× = ° ≈ ≈ ⋅

In this example, the torque vector is pointing out of the page toward you. 

Triple Scalar or Box Product

The product u v w( )× ⋅  is called the triple scalar product of u, v, and w (in that order). 
As you can see from the formula

u v w u v w cos ,( )× ⋅ = ×

the absolute value of this product is the volume of the parallelepiped (parallelogram-sided 
box) determined by u, v, and w (Figure 11.36). The number u v  is the area of the 
base parallelogram. The number w cos  is the parallelepiped’s height. Because of this 
geometry, u v w( )× ⋅  is also called the box product of u, v, and w.

FIGURE 11.36 The number u v w( )× ⋅  is the volume of a parallelepiped.

v

w

u

uHeight = 0w 0  0 cos u 0

u × v

Area of base
= 0u × v 0

Volume = area of base · height
= 0u × v 0 0w 0 0 cos u 0
= 0 (u × v) · w 0

v

FIGURE 11.35 The magnitude of the 
torque exerted by F at P is about 56.4 N  ·  m 
(Example 5). The bar rotates counter-
clockwise around P.

F

P Q
3 m bar

20 N
magnitude
force

70°

The dot and cross may be interchanged 
in a triple scalar product without altering 
its value.

By treating the planes of v and w and of w and u as the base planes of the parallelepi-
ped determined by u, v, and w, we see that

u v w v w u w u v.( ) ( ) ( )× ⋅ = × ⋅ = × ⋅

Since the dot product is commutative, we also have

u v w u v w .( ) ( )× ⋅ = ⋅ ×

The triple scalar product can be evaluated as a determinant:

u u u u u u

w
u u

w
u u

w
u u

u u u

w w w

u v w i j k w

.

2 3

2 3

1 3

1 3

1 2

1 2

1
2 3

2 3
2

1 3

1 3
3

1 2

1 2

1 2 3

1 2 3

1 2 3

( )× ⋅ = − +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
⋅

= − +

=
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704 Chapter 11 Vectors and the Geometry of Space

EXAMPLE 6  Find the volume of the box (parallelepiped) that is determined by 
u i j k v i k2 ,   2 3 ,= + − = − +  and w j k7 4 .= −

Solution Using the rule for calculating a 3 3 determinant, we find

Calculating the Triple Scalar Product as a Determinant

u u u

w w w

u v w
1 2 3

1 2 3

1 2 3

( )× ⋅ =
u u u

w w w

w w w

u u u

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

= −

Any two rows of a matrix can be inter-
changed without changing the absolute 
value of the determinant. So we can take 
the vectors u, v, w in any order when  
calculating the absolute value of the 
triple product.

u v w
1 2 1
2 0 3
0 7 4

1 0 3
7 4

2 2 3
0 4

1 2 0
0 7

23.( ) ( ) ( )( )× ⋅ =
−

−
−

=
−

− −
−

+ − − = −

The volume is ( )× ⋅ =u v w 23 units cubed. 

Cross Product Calculations
In Exercises 1–8, find the length and direction (when defined) of 
u v  and v u.

 1. u i j k v i k2 2 ,= − − = −

 2. u i j v i j2 3 ,= + = − +

 3. u i j k v i j k2 2 4 , 2= − + = − + −

 4. u i j k v 0,= + − =

 5. u i v j2 , 3= = −

 6. u i j v j k,= × = ×

 7. u i j k v i j k8 2 4 , 2 2= − − − = + +

 8. u i j k v i j k3
2

1
2

, 2= − + = + +

In Exercises 9–14, sketch the coordinate axes and then include the 
vectors u, v, and u v  as vectors starting at the origin.

 9. u i v j,  10. u i k v j,= − =

 11. u i k v j k,= − = +  12. u i j v i j2 , 2= − = +

 13. u i j v i j,= + = −  14. u j k v i2 ,= + =

Triangles in Space
In Exercises 15–18,

 a. Find the area of the triangle determined by the points P, Q, 
and R.

 b. Find a unit vector perpendicular to plane PQR.

 15. P Q R1,  1, 2 , 2, 0,  1 , 0, 2, 1( ) ( ) ( )− −

 16. P Q R1, 1, 1 , 2, 1, 3 , 3,  1, 1( ) ( ) ( )−

 17. P Q R2,  2, 1 , 3,  1, 2 , 3,  1, 1( ) ( ) ( )− − −

 18. P Q R2, 2, 0 , 0, 1,  1 , 1, 2,  2( ) ( ) ( )− − − −

Triple Scalar Products
In Exercises 19–22, verify that

u v w v w u w u v( ) ( ) ( )× ⋅ = × ⋅ = × ⋅

and find the volume of the parallelepiped (box) determined by u, v, 
and w.

u v w

 19. 2i 2j 2k

 20. i j k− + i j k2 2+ − i j k2− + −

 21. i j2 i j k2 − + i k2

 22. i j k2+ − i k i j k2 4 2+ −

EXERCISES 11.4

 24. Parallel and perpendicular vectors Let u i j k2= + − ,  
v i j k= − + + , w i k= + , r i j k2 2( ) ( )= − − + .  
Which vectors, if any, are (a) perpendicular? (b) Parallel? Give 
reasons for your answers.

In Exercises 25 and 26, find the magnitude of the torque exerted by F  
on the bolt at P if PQ 20 cm

	 
		
 and F 15 N. Answer in newton-

meters. 

 25. 

F

Q

P

60°

 26. 

F
Q

P

135°

Theory and Examples

 23. Parallel and perpendicular vectors Let u i j k5 ,= − +  
v j k w i j k5 ,   15 3 3 .= − = − + −  Which vectors, if any, are 
(a) perpendicular? (b) Parallel? Give reasons for your answers.
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 11.5  Lines and Planes in Space 705

 27. Which of the following are always true, and which are not always 
true? Give reasons for your answers.

 a. u u u= ⋅

 b. u u u⋅ =

 c. u 0 0 u 0× = × =

 d. u u 0( )× − =

 e. u v v u× = ×

 f. u v w u v u w( )× + = × + ×

 g. u v v 0( )× ⋅ =

 h. u v w u v w( ) ( )× ⋅ = ⋅ ×

 28. Which of the following are always true, and which are not always 
true? Give reasons for your answers.

 a. u v v u⋅ = ⋅

 b. u v v u( )× = − ×

 c. u v u v( ) ( )− × = − ×

 d. c c c cu v u v u v any number ( )( ) ( ) ( )⋅ = ⋅ = ⋅

 e. c c c cu v u v u v any number ( )( ) ( ) ( )× = × = ×

 f. u u u 2⋅ =

 g. u u u 0( )× ⋅ =

 h. u v u v u v( ) ( )× ⋅ = ⋅ ×

 29. Given nonzero vectors u, v, and w, use dot product and cross 
product notation, as appropriate, to describe the following.

 a. The vector projection of u onto v

 b. A vector orthogonal to u and v

 c. A vector orthogonal to u v×  and w

 d. The volume of the parallelepiped determined by u, v, and w

 e. A vector orthogonal to u v×  and u w×

 f. A vector of length u  in the direction of v

 30. Compute i j j( )× ×  and i j j .( )× ×  What can you conclude 
about the associativity of the cross product?

 31. Let u, v, and w be vectors. Which of the following make sense, 
and which do not? Give reasons for your answers.

 a. u v w( )× ⋅ b. u v w( )× ⋅

 c. u v w( )× × d. u v w( )⋅ ⋅

 32. Cross products of three vectors Show that except in degen-
erate cases, u v w( )× ×  lies in the plane of u and v, whereas 
u v w( )× ×  lies in the plane of v and w. What are the degenerate 
cases?

 33. Cancelation in cross products If u v u w× = ×  and 0u ,≠  
then does v w?=  Give reasons for your answer.

 34. Double cancelation If 0u ≠  and if u v u w× = ×  and 
u v u w,⋅ = ⋅  then does v w?=  Give reasons for your answer.

Area of a Parallelogram
Find the areas of the parallelograms whose vertices are given in 
Exercises 35–40.

 35. A B C D1, 0 , 0, 1 , 1, 0 , 0,  1( ) ( ) ( ) ( )− −

 36. A B C D0, 0 , 7, 3 , 9, 8 , 2, 5( ) ( ) ( ) ( )

 37. ( ) ( ) ( ) ( )−A B C D1, 2 , 2, 0 , 7, 1 , 4, 3

 38. ( ) ( ) ( ) ( )− − −A B C D6, 0 , 1,  4 , 3, 1 , 4, 5

 39. ( ) ( ) ( ) ( )−A B C D0, 0, 0 , 3, 2, 4 , 5, 1, 4 , 2,  1, 0

 40. ( ) ( ) ( ) ( )− −A B C D1, 0,  1 , 1, 7, 2 , 2, 4,  1 , 0, 3, 2

Area of a Triangle
Find the areas of the triangles whose vertices are given in Exer- 
cises 41–47.

 41. ( ) ( ) ( )−A B C0, 0 , 2, 3 , 3, 1

 42. ( ) ( ) ( )− −A B C1,  1 , 3, 3 , 2, 1

 43. ( ) ( ) ( )− − −A B C5, 3 , 1,  2 , 6,  2

 44. ( ) ( ) ( )− − −A B C6, 0 , 10,  5 , 2, 4

 45. ( ) ( ) ( )−A B C1, 0, 0 , 0, 2, 0 , 0, 0,  1

 46. ( ) ( ) ( )− −A B C0, 0, 0 , 1, 1,  1 , 3, 0, 3

 47. ( ) ( ) ( )− −A B C1,  1, 1 , 0, 1, 1 , 1, 0,  1

 48. Find the volume of a parallelepiped with one of its eight vertices 
at A 0, 0, 0( ) and three adjacent vertices at B C1, 2, 0 , 0, 3, 2( ) ( )− , 
and ( )−D 3,  4, 5 .

 49. Triangle area Find a ×2 2 determinant formula for the area of 
the triangle in the xy-plane with vertices at a a0, 0 , ,  ,1 2( )( )  and 
( )b b, 1 2 . Explain your work.

 50. Triangle area Find a concise ×3 3 determinant formula 
that gives the area of a triangle in the xy-plane having vertices 

a a b b,  , ,  ,1 2 1 2( ) ( )  and ( )c c,  .1 2

Volume of a Tetrahedron
Using the methods of Section 6.1, where volume is computed by 
integrating cross-sectional area, it can be shown that the volume of 

a tetrahedron formed by three vectors is equal to 1
6

 the volume of the 

parallelepiped formed by the three vectors. Find the volumes of the 
tetrahedra whose vertices are given in Exercises 51–54.

 51. ( ) ( ) ( ) ( )A B C D0, 0, 0 , 2, 0, 0 , 0, 3, 0 , 0, 0, 4

 52. ( ) ( ) ( ) ( )A B C D0, 0, 0 , 1, 0, 2 , 0, 2, 1 , 3, 4, 0

 53. ( ) ( ) ( ) ( )− − −A B C D1,  1, 0 , 0, 2,  2 , 3, 0, 3 , 0, 4, 4

 54. ( ) ( ) ( ) ( )− − − −A B C D1, 2, 3 , 2, 0, 1 , 1,  3, 2 , 2, 1,  1

In Exercises 55–57, determine whether the given points are coplanar.

 55. ( ) ( ) ( ) ( )− −A B C D1, 1, 1 , 1, 0, 4 , 0, 2, 1 , 2,  2, 3

 56. ( ) ( ) ( ) ( )− − −A B C D0, 0, 4 , 6, 2, 0 , 2,  1, 1 , 3,  4, 3

 57. ( ) ( ) ( ) ( )− − −A B C D0, 1, 2 , 1, 1, 0 , 2, 0,  1 , 1,  1, 1

11.5 Lines and Planes in Space

This section shows how to use scalar and vector products to write equations for lines, line 
segments, and planes in space. We will use these representations throughout the rest of the 
text in studying the calculus of curves and surfaces in space.
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706 Chapter 11 Vectors and the Geometry of Space

Lines and Line Segments in Space

In the plane, a line is determined by a point and a number giving the slope of the line. In 
space a line is determined by a point and a vector giving the direction of the line.

Suppose that L is a line in space passing through a point ( )P x y z,  , 0 0 0 0  parallel to a 
vector υ υ υ= + +v i j k.1 2 3  Then L is the set of all points ( )P x y z,  ,   for which 

� ���
P P0  is 

parallel to v (Figure 11.37). Thus, 
� ���

=P P tv0  for some scalar parameter t. The value of t 
depends on the location of the point P along the line, and the domain of t is ( )−∞ ∞,  . The 
expanded form of the equation 

� ���
=P P tv0  is

υ υ υ( ) ( ) ( ) ( )− + − + − = + +x x y y z z ti j k i j k ,0 0 0 1 2 3

which can be rewritten as

 υ υ υ( )+ + = + + + + +x y z x y z ti j k i j k i j k .0 0 0 1 2 3  (1)

If tr( ) is the position vector of a point ( )P x y z,  ,   on the line and r0 is the position vec-
tor of the point ( )P x y z,  ,  ,0 0 0 0  then Equation (1) gives the following vector form for the 
equation of a line in space.

Vector Equation for a Line
A vector equation for the line L through , ,P x y z( )0 0 0 0  parallel to a nonzero 
vector v is

 t t tr r v( ) , ,0= + −∞ < < ∞  (2)

where r is the position vector of a point ( )P x y z,  ,   on L and r0 is the position 
vector of ( )P x y z,  , 0 0 0 0 .

Equating the corresponding components of the two sides of Equation (1) gives three 
scalar equations involving the parameter t:

υ υ υ= + = + = +x x t y y t z z t, , .0 1 0 2 0 3

These equations give us the standard parametrization of the line for the parameter interval 
−∞ < < ∞t .

Parametric Equations for a Line
The standard parametrization of the line through , ,P x y z( )0 0 0 0  parallel to a 
nonzero vector v i j k1 2 3υ υ υ= + +  is

 υ υ υ= + = + = + −∞ < < ∞x x t y y t z z t t, , , .0 1 0 2 0 3  (3)

EXAMPLE 1  Find parametric equations for the line through 2, 0, 4( )−  parallel to 
= + −v i j k2 4 2  (Figure 11.38).

Solution With ( )P x y z,  , 0 0 0 0  equal to ( )−2, 0, 4  and + +v v vi j k1 2 3  equal to 
+ −i j k2 4 2 , Equations (3) become

= − + = = −x t y t z t2 2 , 4 , 4 2 . 

EXAMPLE 2  Find parametric equations for the line through ( )− −P 3, 2,  3  and 
( )−Q 1,  1, 4 .

Solution The vector
� ���

( )( ) ( ) ( )( )= − − + − − + − − = − +PQ i j k i j k1 3 1 2 4 3 4 3 7

FIGURE 11.37 A point P lies on L 
through P0 parallel to v if and only if 

� ���
P P0  

is a scalar multiple of v.

y

z

0

x

v

L
P(x, y, z)

P0(x0, y0, z0)

FIGURE 11.38 Selected points and 
parameter values on the line in Example 1. 
The arrows show the direction of  
increasing t.

y

z

0

x

2 4

4

2

4

8

v = 2i + 4j − 2k

t = 2 P2(2, 8, 0)

P1(0, 4, 2)

t = 1

t = 0

P0(–2, 0, 4)
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 11.5  Lines and Planes in Space 707

is parallel to the line, and Equations (3) with ( ) ( )= − −x y z,  ,  3, 2,  30 0 0  give

= − + = − = − +x t y t z t3 4 , 2 3 , 3 7 .

We could have chosen ( )−Q 1,  1, 4  as the “base point” and written

= + = − − = +x t y t z t1 4 , 1 3 , 4 7 .

These equations serve as well as the first; they simply place you at a different point on the 
line for a given value of t. 

Notice that parametrizations are not unique. Not only can the “base point” change, but 
so can the parameter. The equations = − + = −x t y t3 4 ,   2 3 ,3 3  and = − +z t3 7 3 
also parametrize the line in Example 2.

To parametrize a line segment joining two points, we first parametrize the line through 
the points. We then find the t-values for the endpoints and restrict t to lie in the closed inter-
val bounded by these values. The line equations, together with this added restriction, 
parametrize the segment.

EXAMPLE 3  Parametrize the line segment joining the points ( )− −P 3, 2,  3  and 
( )−Q 1,  1, 4  (Figure 11.39).

Solution We begin with equations for the line through P and Q, taking them, in this case, 
from Example 2:

= − + = − = − +x t y t z t3 4 , 2 3 , 3 7 .

We observe that the point

x y z t t t,  ,  3 4 ,  2 3 , 3 7( )( ) = − + − − +

on the line passes through ( )− −P 3, 2,  3  at =t 0 and ( )−Q 1,  1, 4  at =t 1. We add the 
restriction ≤ ≤t0 1 to parametrize the segment:

= − + = − = − + ≤ ≤x t y t z t t3 4 , 2 3 , 3 7 , 0 1. 

The vector form (Equation (2)) for a line in space is more revealing if we think of a 
line as the path of a particle starting at position ( )P x y z,  , 0 0 0 0  and moving in the direction 
of vector v. Rewriting Equation (2), we have

 
t t

t

r r v

r v v
v

( )

.

0

0

= +

= +
 (4)

In other words, the position of the particle at time t is its initial position plus its distance 
moved ( )×speed time  in the direction v v  of its straight-line motion.

EXAMPLE 4  A helicopter is to fly directly from a helipad at the origin in the direc-
tion of the point ( )1, 1, 1  at a speed of 60 m s. What is the position of the helicopter  
after 10 s?

Solution We place the origin at the starting position (helipad) of the helicopter. Then the 
unit vector

= + +u i j k1
3

1
3

1
3

FIGURE 11.39 Example 3 derives a 
parametrization of line segment PQ. The 
arrow shows the direction of increasing t.

y

z

0

x

1 2

−1

−3

t = 1

t = 0
P(−3, 2, −3)

Q(1, −1, 4)

Initial 
position

Time Speed Direction

› › › ›

�
�

M11_HASS5901_15_GE_C11.indd   707 08/03/2023   13:30

www.konkur.in

Telegram: @uni_k



708 Chapter 11 Vectors and the Geometry of Space

gives the flight direction of the helicopter. From Equation (4), the position of the helicopter 
at any time t is

( )
( )

( )

= +

= + + +

= + +

t t

t

t

r r u

0 i j k

i j k

( ) speed

(60) 1
3

1
3

1
3

20 3 .

0

When t 10 s,=

( )= + +

= 〈 〉

r i j k(10) 200 3

200 3,  200 3,  200 3 .

After 10 s of flight from the origin toward 1, 1, 1( ), the helicopter is located at  
the point 200 3, 200 3, 200 3( ) in space. It has traveled a distance of 
60 m s 10 s 600 m,( )( ) =  which is the length of the vector r(10). 

The Distance from a Point to a Line in Space

To find the distance from a point S to a line that passes through a point P parallel to a vector 
v, we find the absolute value of the scalar component of 

� ��
PS in the direction of a vector 

normal to the line (Figure 11.40). In the notation of the figure, the absolute value of the 

scalar component is 
� ��

θPS sin , which is 

� �� � ��
PS PSv

v
v

v
sin

.
θ

=
×

FIGURE 11.40 The distance from 
S to the line through P parallel to v is 
PS sin ,
� ��

θ  where θ is the angle between � ��
PS  and v.

S

P
v

u

0PS 0  sin u

Distance from a Point S to a Line Through P Parallel to v

 

� ��
=

×
d

PS v
v

 (5)

EXAMPLE 5  Find the distance from the point ( )S 1, 1, 5  to the line

= + = − =L x t y t z t: 1 , 3 , 2 .

Solution We see from the equations for L that L passes through ( )P 1, 3, 0  parallel to 
= − +v i j k2 . With

� ��
( ) ( ) ( )= − + − + − = − +PS i j k j k1 1 1 3 5 0 2 5

and

� ��
PS v

i j k

i j k0 2 5

1 1 2

5 2 ,× = −

−

= + +

Equation (5) gives
� ��

=
×

= + +
+ +

= =d
PS v

v
1 25 4
1 1 4

30
6

5. 

An Equation for a Plane in Space

A plane in space is determined by knowing a point on the plane and its “tilt” or orientation. 
This “tilt” is defined by specifying a vector that is perpendicular, or normal, to the plane.
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 11.5  Lines and Planes in Space 709

Suppose that plane M passes through a point ( )P x y z,  , 0 0 0 0  and is normal to the nonzero 
vector = + +A B Cn i j k. A vector from P0 to any point P on the plane is orthogonal to n. 
Then M is the set of all points ( )P x y z,  ,   for which 

� ���
P P0  is orthogonal to n (Figure 11.41). 

Thus, the dot product 
� ���

⋅ =P Pn 0.0  This equation is equivalent to

( ) ( ) ( )[ ]( )+ + ⋅ − + − + − =A B C x x y y z zi j k i j k 0,0 0 0

so the plane M consists of the points ( )x y z,  ,   satisfying

( ) ( ) ( )− + − + − =A x x B y y C z z 0.0 0 0FIGURE 11.41 The standard equation 
for a plane in space is defined in terms of a 
vector normal to the plane: A point P lies 
in the plane through P0 normal to n if and 
only if 

� ���
⋅ =P Pn 0.0

n

P0(x0, y0, z0)

Plane M

P(x, y, z)

Equation for a Plane
The plane through P x y z, ,0 0 0 0( ) normal to a nonzero vector A B Cn i j k= + +  
has

:

:

:

P P

A x x B y y C z z

Ax By Cz D

D Ax By Cz

Vector equation n

Component equation

Component equation simplified

  0

  0

    , where

0

0 0 0

0 0 0

( ) ( ) ( )

⋅ =

− + − + − =

+ + =

= + +

� ���

EXAMPLE 6  Find an equation for the plane through ( )−P 3, 0, 70  perpendicular to 
= + −n i j k5 2 .

Solution The component equation is

( )( )( ) ( )( )− − + − + − − =x y z5 3 2 0 1 7 0.

Simplifying, we obtain

x y z

x y z

5 15 2 7 0

5 2 22.

+ + − + =
+ − = −  

Notice in Example 6 how the components of = + −n i j k5 2  became the coeffi-
cients of x, y, and z in the equation + − = −x y z5 2 22. The vector = + +A B Cn i j k 
is normal to the plane + + =Ax By Cz D.

EXAMPLE 7  Find an equation for the plane through ( ) ( )A B0, 0, 1 ,   2, 0, 0 , and 
( )C 0, 3, 0 .

Solution We find a vector normal to the plane and use it with one of the points (it does 
not matter which) to write an equation for the plane.

The cross product

� ��� � ���
AB AC

i j k

i j k2 0 1

0 3 1

3 2 6× = −

−

= + +

is normal to the plane. We substitute the components of this vector and the coordinates of 
( )A 0, 0, 1  into the component form of the equation to obtain

x y z

x y z

3 0 2 0 6 1 0

3 2 6 6.

( )( ) ( )− + − + − =
+ + =  

Lines of Intersection

Just as lines are parallel if and only if they have the same direction, two planes are parallel 
if and only if their normals are parallel, or = kn n1 2 for some scalar k. Two planes that are 
not parallel intersect in a line.
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710 Chapter 11 Vectors and the Geometry of Space

FIGURE 11.42 How the line of intersec-
tion of two planes is related to the planes’ 
normal vectors (Example 8).

PLANE 2

PLA
N

E 1

n1 × n2

n2

n1

EXAMPLE 8  Find a vector parallel to the line of intersection of the planes 
− − =x y z3 6 2 15 and + − =x y z2 2 5.

Solution The line of intersection of two planes is perpendicular to both planes’ normal 
vectors n1 and n 2 (Figure 11.42) and therefore parallel to ×n n .1 2  Turning this around, 

×n n1 2 is a vector parallel to the planes’ line of intersection. In our case,

n n

i j k

i j k3 6 2

2 1 2

14 2 15 .1 2× = − −

−

= + +

Any nonzero scalar multiple of ×n n1 2 will do as well. 

EXAMPLE 9  Find parametric equations for the line in which the planes 
− − =x y z3 6 2 15 and + − =x y z2 2 5 intersect.

Solution We find a vector parallel to the line and a point on the line and use Equations (3).
Example 8 identifies = + +v i j k14 2 15  as a vector parallel to the line. To find a 

point on the line, we can take any point common to the two planes. Substituting =z 0 in 
the plane equations and solving for x and y simultaneously identifies one of these points as 
( )−3,  1, 0 . The line is

= + = − + =x t y t z t3 14 , 1 2 , 15 .

The choice =z 0 is arbitrary, and we could have chosen =z 1 or = −z 1 just as well. Or 
we could have let =x 0 and solved for y and z. The different choices would simply give 
different parametrizations of the same line. 

Sometimes we want to know where a line and a plane intersect. For example, if we are 
looking at a flat plate and a line segment passes through it, we may be interested in know-
ing what portion of the line segment is hidden from our view by the plate. This application 
is used in computer graphics (Exercise 78).

EXAMPLE 10  Find the point where the line

= + = − = +x t y t z t8
3

2 , 2 , 1

intersects the plane + + =x y z3 2 6 6.

Solution The point

t t t8
3

2 ,  2 ,  1( )+ − +

lies in the plane if its coordinates satisfy the equation of the plane—that is, if

t t t

t t t
t
t

3 8
3

2 2 2 6 1 6

8 6 4 6 6 6
8 8

1.

( ) ( ) ( )+ + − + + =

+ − + + =
= −
= −

The point of intersection is

x y z,  ,  8
3

2, 2, 1 1 2
3

, 2, 0 .t 1 ( ) ( )( ) = − − ==−  
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 11.5  Lines and Planes in Space 711

The Distance from a Point to a Plane

If P is a point on a plane with a normal n, then the distance from any point S to the plane is 
the length of the vector projection of 

� ��
PS onto n, as given in the following formula.

FIGURE 11.43 The distance from S to the plane is the 
length of the vector projection of 

� ��
PS  onto n (Example 11).

(0, 0, 1)

(2, 0, 0)

0

y

x

z

n = 3i + 2j + 6k

Distance from
S to the plane

P(0, 3, 0)

3x + 2y + 6z = 6

S(1, 1, 3)

Distance from a Point S to a Plane Through a Point P with a Normal n

 
� ��

= ⋅d PS n
n

 (6)

EXAMPLE 11  Find the distance from ( )S 1, 1, 3  to the plane + + =x y z3 2 6 6.

Solution We find a point P in the plane and calculate the length of the vector projection 
of 
� ��
PS onto a vector n normal to the plane (Figure 11.43). The coefficients in the equation 
+ + =x y z3 2 6 6 give

= + +n i j k3 2 6 .

The points on the plane easiest to find from the plane’s equation are the intercepts. If 
we take P to be the y-intercept ( )0, 3, 0 , then

PS i j k i j k

n

1 0 1 3 3 0 2 3 ,

3 2 6 49 7.2 2 2

� ��
( ) ( ) ( )

( ) ( ) ( )

= − + − + − = − +

= + + = =

Therefore, the distance from S to the plane is

� ��

( )( )

= ⋅

= − + ⋅ + +

= − + =

d PS n
n

i j k i j k2 3 3
7

2
7

6
7

3
7

4
7

18
7

17
7

.  

Angles Between Planes

The angle between two intersecting planes is defined to be the acute angle between their 
normal vectors (Figure 11.44).

Length of PSprojn

� ��
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712 Chapter 11 Vectors and the Geometry of Space

FIGURE 11.44 The angle between two 
planes is obtained from the angle between 
their normals.

n2
n1

u

u

EXAMPLE 11  Find the angle between the planes − − =x y z3 6 2 15 and 
+ − =x y z2 2 5.

Solution The vectors

= − − = + −n i j k n i j k3 6 2 , 2 21 2

are normals to the planes. The angle between them is

θ

( )

=
⋅⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

= ≈

n n
n n

arccos

arccos 4
21

1.38 radians.

1 2

1 2

Lines and Line Segments
Find parametric equations for the lines in Exercises 1–12.

 1. The line through the point ( )− −P 3,  4,  1  parallel to the vector 
+ +i j k

 2. The line through ( )−P 1, 2,  1  and ( )−Q 1, 0, 1

 3. The line through ( )−P 2, 0, 3  and ( )−Q 3, 5,  2

 4. The line through ( )P 1, 2, 0  and ( )−Q 1, 1,  1

 5. The line through the origin parallel to the vector +j k2

 6. The line through the point ( )−3,  2, 1  parallel to the line 
= + = − =x t y t z t1 2 ,   2 ,   3

 7. The line through ( )1, 1, 1  parallel to the z-axis

 8. The line through ( )2, 4, 5  perpendicular to the plane 
+ − =x y z3 7 5 21

 9. The line through ( )−0,  7, 0  perpendicular to the plane 
+ + =x y z2 2 13

 10. The line through ( )2, 3, 0  perpendicular to the vectors 
= + +u i j k2 3  and = + +v i j k3 4 5

 11. The x-axis  12. The z-axis

Find parametrizations for the line segments joining the points in 
Exercises 13–20. Draw coordinate axes and sketch each segment, indi-
cating the direction of increasing t for your parametrization.

 13. ( )( )0, 0, 0 , 1, 1, 3 2  14. ( ) ( )0, 0, 0 , 1, 0, 0

 15. ( ) ( )1, 0, 0 , 1, 1, 0  16. ( ) ( )1, 1, 0 , 1, 1, 1

 17. ( ) ( )−0, 1, 1 , 0,  1, 1  18. ( ) ( )0, 2, 0 , 3, 0, 0

 19. ( ) ( )2, 0, 2 , 0, 2, 0  20. ( ) ( )−1, 0,  1 , 0, 3, 0

Planes
Find equations for the planes in Exercises 21–26.

 21. The plane through ( )−P 0, 2,  10  normal to = − −n i j k3 2

 22. The plane through ( )−1,  1, 3  parallel to the plane

+ + =x y z3 7

 23. The plane through ( ) ( )−1, 1,  1 ,   2, 0, 2 , and ( )−0,  2, 1

 24. The plane through ( ) ( )2, 4, 5 ,   1, 5, 7 , and ( )−1, 6, 8

 25. The plane through ( )P 2, 4, 50  perpendicular to the line

= + = + =x t y t z t5 , 1 3 , 4

 26. The plane through ( )−A 1,  2, 1  perpendicular to the vector from 
the origin to A.

 27. Find the point of intersection of the lines x t2 1,= +   
y t3 2,= +  z t4 3,= +  and x s 2,= +  y s2 4,= +  
z s4 1,= − −  and then find the plane determined by these lines.

 28. Find the point of intersection of the lines x t y t,   2,= = − +  
z t 1,= +  and x s2 2,= +  y s 3,= +  z s5 6,= +  and  
then find the plane determined by these lines.

In Exercises 29 and 30, find the plane containing the intersecting lines.

 29. L x t y t z t t1: 1 , 2 , 1 ;= − + = + = − −∞ < < ∞

L x s y s z s s2: 1 4 , 1 2 , 2 2 ;= − = + = − −∞ < < ∞

 30. L x t y t z t t1: , 3 3 , 2 ;= = − = − − −∞ < < ∞

L x s y s z s s2: 1 , 4 , 1 ;= + = + = − + −∞ < < ∞

 31. Find a plane through ( )−P 2, 1,  10  and perpendicular to the line of 
intersection of the planes + − = + + =x y z x y z2 3,   2 2.

 32. Find a plane through the points ( )P 1, 2, 3 ,1  and ( )P 3, 2, 12  and 
perpendicular to the plane − + =x y z4 2 7.

Distances
In Exercises 33–38, find the distance from the point to the line.

 33. x t y t z t0, 0, 12 ; 4 , 2 , 2( ) = = − =

 34. x t y t z t0, 0, 0 ; 5 3 , 5 4 , 3 5( ) = + = + = − −

 35. x t y t z2, 1, 3 ; 2 2 , 1 6 , 3( ) = + = + =

 36. x t y t z t2, 1,  1 ; 2 , 1 2 , 2( )− = = + =

 37. x t y t z t3,  1, 4 ; 4 , 3 2 , 5 3( )− = − = + = − +

 38. x t y z t1, 4, 3 ; 10 4 , 3, 4( )− = + = − =

In Exercises 39–44, find the distance from the point to the plane.

 39. x y z2,  3, 4 , 2 2 13( )− + + =

 40. x y z0, 0, 0 , 3 2 6 6( ) + + =

 41. y z0, 1, 1 , 4 3 12( ) + = −

EXERCISES 11.5 

About 79 degrees 
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 11.5  Lines and Planes in Space 713

 42. x y z2, 2, 3 , 2 2 4( ) + + =

 43. x y z0,  1, 0 , 2 2 4( )− + + =

 44. x y z1, 0,  1 , 4 4( )− − + + =

 45. Find the distance from the plane + + =x y z2 6 1 to the plane 
+ + =x y z2 6 10.

 46. Find the distance from the line x t y t2 ,   1 ,= + = +  
z t1 2 1 2( ) ( )= − −  to the plane + + =x y z2 6 10.

Angles
In Exercises 47 and 48, find the angles between the planes.

 47. + = + − =x y x y z1, 2 2 2

 48. + − = − + = −x y z x y z5 10, 2 3 1

In Exercises 49 and 50, find the acute angles between the intersecting 
lines.

 49. x t y t z t x t y t z t,   2 ,   and 1 ,   5 ,   2= = = − = − = + =

 50. x t y t z t2 ,   4 2,   1 and= + = + = +  
x t y z t3 2,   2,   2 2= − = − = −

In Exercises 51 and 52, find the acute angles between the lines and 
planes.

 51. = − = = + − + =x t y t z t x y z1 ,   3 ,   1 ; 2 3 6

 52. = = + = − − + =x y t z t x y z2,   3 2 ,   1 2 ; 0

Use a calculator to find the acute angles between the planes in 
Exercises 53–56 to the nearest hundredth of a radian.

 53. + + = − − =x y z x y z2 2 2 3, 2 2 5

 54. x y z z xy1, 0 the  -plane( )+ + = =

 55. + − = + + =x y z x y z2 2 3, 2 2

 56. + = − + + =y z x y z4 3 12, 3 2 6 6

Intersecting Lines and Planes
In Exercises 57–60, find the point in which the line meets the plane.

 57. = − = = + − + =x t y t z t x y z1 , 3 , 1 ; 2 3 6

 58. x y t z t x y z2, 3 2 , 2 2 ; 6 3 4 12= = + = − − + − = −

 59. = + = + = + + =x t y t z t x y z1 2 , 1 5 , 3 ; 2

 60. = − + = − = − =x t y z t x z1 3 , 2, 5 ; 2 3 7

Find parametrizations for the lines in which the planes in Exercises 
61–64 intersect.

 61. + + = + =x y z x y1, 2

 62. − − = + − =x y z x y z3 6 2 3, 2 2 2

 63. − + = + − =x y z x y z2 4 2, 2 5

 64. − = − = −x y y z5 2 11, 4 5 17

Given two lines in space, either they are parallel, they intersect, or they 
are skew (lie in parallel planes). In Exercises 65 and 66, determine 
whether the lines, taken two at a time, are parallel, intersect, or are 
skew. If they intersect, find the point of intersection. Otherwise, find 
the distance between the two lines.

 

65.

 

L x t y t z t t

L x s y s z s s

L x r y r z r r

1: 3 2 ,   1 4 ,   2 ;

2: 1 4 ,   1 2 ,   3 4 ;

3: 3 2 ,   2 ,   2 2 ;

= + = − + = − −∞ < < ∞

= + = + = − + −∞ < < ∞

= + = + = − + −∞ < < ∞

 

66.

 

L x t y t z t t

L x s y s z s s

L x r y r z r r

1: 1 2 , 1 , 3 ;

2: 2 , 3 , 1 ;

3: 5 2 , 1 , 8 3 ;

= + = − − = −∞ < < ∞

= − = = + −∞ < < ∞

= + = − = + −∞ < < ∞

T

Theory and Examples

 67. Use Equations (3) to generate a parametrization of the line through 
( )−P 2,  4, 7  parallel to = − +v i j k2 3 .1  Then generate another 

parametrization of the line using the point ( )− −P 2,  2, 12  and the 
vector ( ) ( )= − + −v i j k1 2 3 2 .2

 68. Use the component form to generate an equation for the plane 
through ( )P 4, 1, 51  normal to = − +n i j k2 .1  Then generate 
another equation for the same plane using the point ( )−P 3,  2, 02  
and the normal vector n i j k2 2 2 2 .2 = − + −

 69. Find the points in which the line x t y t z t1 2 , 1 , 3= + = − − =  
meets the coordinate planes. Describe the reasoning behind your 
answer.

 70. Find equations for the line in the plane =z 3 that makes an angle 
of π 6 rad with i and an angle of π 3 rad with j. Describe the rea-
soning behind your answer.

 71. Is the line = − = + = −x t y t z t1 2 ,   2 5 ,   3  parallel to the 
plane + − =x y z2 8? Give reasons for your answer.

 72. How can you tell when two planes + + =A x B y C z D1 1 1 1 and 
+ + =A x B y C z D2 2 2 2 are parallel? Perpendicular? Give rea-

sons for your answer.

 73. Find two different planes whose intersection is the line 
= + = − = +x t y t z t1 ,   2 ,   3 2 . Write equations for each 

plane in the form + + =Ax By Cz D.

 74. Find a plane through the origin that is perpendicular to the plane 
M x y z: 2 3 12+ + =  in a right angle. How do you know that 
your plane is perpendicular to M?

 75. The graph of ( ) ( ) ( )+ + =x a y b z c 1 is a plane for any non-
zero numbers a, b, and c. Which planes have an equation of this form?

 76. Suppose L1 and L2 are disjoint (nonintersecting) nonparallel lines. 
Is it possible for a nonzero vector to be perpendicular to both L1 
and L ?2  Give reasons for your answer.

 77. Perspective in computer graphics In computer graphics and 
perspective drawing, we need to represent objects seen by the eye 
in space as images on a two-dimensional plane. Suppose that the 
eye is at ( )E x , 0, 00  as shown here and that we want to represent 
a point ( )P x y z,  , 1 1 1 1  as a point on the yz-plane. We do this by 
projecting P1 onto the plane with a ray from E. The point P1 will be 
portrayed as the point ( )P y z0,  ,  . The problem for us as graphics 
designers is to find y and z given E and P .1

 a. Write a vector equation that holds between 
� ���
EP  and 

� ���
EP .1  Use 

the equation to express y and z in terms of x x y,   ,   ,0 1 1  and z .1

 b. Test the formulas obtained for y and z in part (a) by investigat-
ing their behavior at =x 01  and =x x1 0 and by seeing what 
happens as → ∞x .0  What do you find?

0 y

z

x

P(0, y, z)

P1(x1, y1, z1)

E(x0, 0, 0)

(x1, y1, 0)
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714 Chapter 11 Vectors and the Geometry of Space

FIGURE 11.45 A cylinder and 
generating curve.

y

z

x
Lines through
generating curve
parallel to x-axis

Generating curve
(in the yz-plane)

FIGURE 11.46 Every point of the cyl-
inder in Example 1 has coordinates of the 
form x x z,  ,  .0 0

2( )

x
y

PA
RABOLA 

0

y = x2

P0(x0, x0
2, 0)

Q0(x0, x0
2, z)

z

 78. Hidden lines in computer graphics Here is another typical 
problem in computer graphics. Your eye is at ( )4, 0, 0 . You are 
looking at a triangular plate whose vertices are at ( ) ( )1, 0, 1 ,   1, 1, 0 ,  
and ( )−2, 2, 2 . The line segment from 1, 0, 0( ) to 0, 2, 2( ) 

passes through the plate. What portion of the line segment is 
hidden from your view by the plate? (This is an exercise in finding 
intersections of lines and planes.)

11.6 Cylinders and Quadric Surfaces

Up to now, we have studied two special types of surfaces: spheres and planes. In this 
section, we extend our inventory to include a variety of cylinders and quadric surfaces. 
Quadric surfaces are surfaces defined by second-degree equations in x, y, and z. Spheres 
are quadric surfaces, but there are others of equal interest that will be needed in 
Chapters 13–15.

Cylinders

Suppose we are given a plane in space that contains a curve, and in addition we are given a 
line that is not parallel to this plane. A cylinder is a surface that is generated by moving a 
line that is parallel to the given line along the curve, while keeping it parallel to the given 
line. The curve is called a generating curve for the cylinder (Figure 11.45 illustrates this 
when the given plane is the yz-plane and the given line is the x-axis). In solid geometry, 
where cylinder means circular cylinder, the generating curves are circles, but now we 
allow generating curves of any kind. The cylinder in our first example is generated by a 
parabola.

EXAMPLE 1  Find an equation for the cylinder made by the lines parallel to the z-axis 
that pass through the parabola y x z,   02  (Figure 11.46).

Solution The point P x x,  , 00 0 0
2( ) lies on the parabola y x 2 in the xy-plane. Then, for 

any value of z, the point Q x x z,  , 0 0
2( ) lies on the cylinder because it lies on the line 

x x y x,  0 0
2 through P0 parallel to the z-axis. Conversely, any point Q x x z,  , 0 0

2( ) 
whose y-coordinate is the square of its x-coordinate lies on the cylinder because it lies on 
the line x x y x,  0 0

2 through P0 parallel to the z-axis (Figure 11.46).
Regardless of the value of z, therefore, the points on the surface are the points whose coor-

dinates satisfy the equation y x .2  This makes y x 2 an equation for the cylinder. 

As Example 1 suggests, any curve f x y c, ( ) =  in the xy-plane generates a cylinder 
parallel to the z-axis whose equation is also f x y c, ( ) = . For instance, the equation 
x y 12 2+ =  corresponds to the circular cylinder made by the lines parallel to the z-axis 
that pass through the circle x y 12 2+ =  in the xy-plane.

In a similar way, any curve g x z c, ( ) =  in the xz-plane generates a cylinder parallel to 
the y-axis whose space equation is also g x z c,  .( ) =  Any curve h y z c, ( ) =  generates a 
cylinder parallel to the x-axis whose space equation is also h y z c,  .( ) =  The axis of a cyl-
inder need not be parallel to a coordinate axis, however.

Quadric Surfaces

A quadric surface is the graph in space of a second-degree equation in x, y, and z. We first 
focus on quadric surfaces given by the equation

Ax By Cz Dz E,2 2 2+ + + =

where A, B, C, D, and E are constants. The basic quadric surfaces are ellipsoids, 
paraboloids, elliptical cones, and hyperboloids. Spheres are special cases of ellipsoids. 
We present a few examples illustrating how to sketch a quadric surface, and then we give a 
summary table of graphs of the basic types.
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 11.6  Cylinders and Quadric Surfaces 715

EXAMPLE 2  The ellipsoid

x
a

y
b

z
c

1
2

2

2

2

2

2
+ + =

(Figure 11.47) cuts the coordinate axes at a b, 0, 0 ,   0,  , 0 ,( )( )± ±  and c0, 0,  .( )±  It lies 
within the rectangular box defined by the inequalities x a y b,  ,≤ ≤  and z c.≤  The 
surface is symmetric with respect to each of the coordinate planes because each variable in 
the defining equation is squared.

FIGURE 11.47 The ellipsoid x
a

y
b

z
c

1
2

2

2

2

2

2
+ + =  in Example 2 has elliptical cross-sections in each of the 

three coordinate planes.

y

x

z

E
L

L
IP

S
E

 

c

z0

a

b y

x

z

E
L

L
IP

S
E 

ELLIPSE 

Elliptical cross-section
      in the plane z = z0

The ellipse       +      = 1

in the xy-plane

x2

a2

y2

b2

The ellipse       +      = 1

in the yz-plane

y2

b2
z2

c2

The ellipse

in the xz-plane

x2

a2
z2

c2+       = 1

The curves in which the three coordinate planes cut the surface are ellipses. For 
example,

x
a

y
b

z1 when 0.
2

2

2

2
+ = =

The curve cut from the surface by the plane z z z c,  ,0 0= <  is the ellipse

x
a z c

y
b z c1 1

1.
2

2
0

2

2

2
0

2( ) ( )( ) ( )−
+

−
=

If any two of the semiaxes a, b, and c are equal, the surface is an ellipsoid of revolution. 
If all three are equal, the surface is a sphere. 

EXAMPLE 3  The hyperbolic paraboloid

y
b

x
a

z
c

c, 0
2

2

2

2
− = >

has symmetry with respect to the planes x 0=  and y 0=  (Figure 11.48). The cross-
sections in these planes are

 x z c
b

y0: the parabola  .
2

2= =  (1)

 y z c
a

x0: the parabola  .
2

2= = −  (2)
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716 Chapter 11 Vectors and the Geometry of Space

FIGURE 11.48 The hyperbolic paraboloid y b x a z c c,   0.2 2 2 2( ) ( )− = >  The cross-sections in planes perpendicular to the 
z-axis above and below the xy-plane are hyperbolas. The cross-sections in planes perpendicular to the other axes are parabolas.

y

z

x y

z

x

The parabola z =     y2 in the yz-planec
b2

The parabola z = −     x2 

in the xz-plane

c
a2

Part of the hyperbola       −      = 1

in the plane z = c

y2

b2
x2

a2

Part of the hyperbola       −      = 1

in the plane z = −c

y2

b2
x2

a2

Saddle
point

PARABOLA 
PA

R
A

B
O

LA
 

HYPERBOLA

In the plane x 0, the parabola opens upward from the origin. The parabola in the plane 
y 0 opens downward.

If we cut the surface by a plane z z 0,0= >  the cross-section is a hyperbola,

y
b

x
a

z
c

,
2

2

2

2
0− =

with its focal axis parallel to the y-axis and its vertices on the parabola in Equation (1). If 
z0 is negative, the focal axis is parallel to the x-axis and the vertices lie on the parabola in 
Equation (2).

Near the origin, the surface is shaped like a saddle or mountain pass. To a person trav-
eling along the surface in the yz-plane the origin looks like a minimum. To a person travel-
ing the xz-plane the origin looks like a maximum. Such a point is called a saddle point of 
a surface. We will say more about saddle points in Section 13.7. 

Table 11.1 shows graphs of the six basic types of quadric surfaces. Each surface shown 
is symmetric with respect to the z-axis, but other coordinate axes can serve as well (with 
appropriate changes to the equation).

General Quadric Surfaces

The quadric surfaces we have considered have symmetries relative to the x-, y-, or z-axes. 
The general equation of second degree in three variables x, y, z is

Ax By Cz Dxy Exz Fyz Gz Hy Iz J 0,2 2 2+ + + + + + + + + =

where A, B, C, D, E, F , G, H, I, and J are constants. This equation leads to surfaces similar 
to those in Table 11.1, but in general these surfaces might be translated and rotated relative 
to the x-, y-, and z-axes. Terms of the type Gx, Hy, or Iz in the above formula lead to trans-
lations, which can be seen by a process of completing the squares.

EXAMPLE 4  Identify the surface given by the equation

x y z x y4 2 4 1 0.2 2 2+ + − + + =

Solution We complete the squares to simplify the expression:

x y z x y x y z

x y z

4 2 4 1 1 1 2 4 4 1

1 2 4 4.

2 2 2 2 2 2

2 2 2

( )

( )

( )

( )

+ + − + + = − − + + − + +

= − + + + −
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y

x

z

E
L

L
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S
E

 

c

z0

a

b y
x

z

ELLIPSE 

Elliptical cross-section
      in the plane z = z0

The ellipse       +      = 1

in the xy-plane

x2

a2

y2

b2

The ellipse       +      = 1

in the yz-plane

y2

b2
z2

c2

The ellipse

in the xz-plane

x2

a2
z2

c2+       = 1

E
L

L
IP

S
E

 

ELLIPSOID     x

a

y

b

z

c
1

2

2

2

2

2

2
+ + =

ba

z

x

y

PA
R

A
B

O
L

A
 

ELLIPSE 

z

y

x

The parabola z =     x2

in the xz-plane

c
a2

c
b2

The parabola z =      y2

in the yz-plane

z = c

The ellipse       +      = 1

in the plane z = c

x2

a2

y2

b2

ELLIPTICAL PARABOLOID  x

a

y

b

z

c

2

2

2

2
+ =

a b

x

y

zx2

a2
y2

b2
z

y

x

ELLIPSE 

z = c

The line z = –   y

in the yz-plane

c
b

The line z =    x

in the xz-plane

c
a

ELLIPSE 

The ellipse       +      = 1

in the plane z = c

ELLIPTICAL CONE  x

a

y

b

z

c

2

2

2

2

2

2
+ =

a

b

z

y

x

z = c

z

y

x

ELLIPSE 

ELLIPSE 

H
Y

P
E

R
B

O
L

A
 

ELLIPSE 

Part of the hyperbola        −       = 1 in the xz-planex2

a2
z2

c2

The ellipse       +       = 2

in the plane z = c

x2

a2

y2

b2

The ellipse       +       = 1

in the xy-plane

x2

a2

y2

b2

Part of the hyperbola        −       = 1

in the yz-plane

y2

b2
z2

c2

a
"

2
b
"

2

H
Y

P
E

R
B

O
L

A
 

HYPERBOLOID OF ONE SHEET  x

a

y

b

z

c
1

2

2

2

2

2

2
+ − =

z

y

x

HYPER
B

O
L

AELLIPSE
a b

0

H
Y

P
E

R
B

O
L

A

ELLIPSE

x2

a2

y2

b2

The hyperbola

      −      = 1

in the xz-plane

z2

c2
x2

a2

The hyperbola

       −       = 1

in the yz-plane

z2

c2

y2

b2

(0, 0, c)
Vertex

(0, 0, −c)
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H
Y

PERBOLA

z

y

x

The ellipse       +       = 1

in the plane z = c
"

2

HYPERBOLOID OF TWO SHEETS z

c

x

a

y

b
1

2

2

2

2
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2
− − =

y

z

x

The parabola z =     y2 in the yz-planec
b2

The parabola z = –     x2 

in the xz-plane

c
a2

y2

b2
x2

a2
Part of the hyperbola        −       = 1

in the plane z = c

y2

b2
x2

a2
Part of the hyperbola       −       = 1

in the plane z = –c

Saddle
point
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B

O
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HYPERBOLA 

y

z

x

HYPERBOLIC PARABOLOID  y

b

x

a

z

c
c 0,  

2

2

2

2
− = >

TABLE 11.1 Graphs of Quadric Surfaces
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718 Chapter 11 Vectors and the Geometry of Space

We can rewrite the original equation as

x y z1
4

2
4 1

1.
2 2 2( )( )− + + + =

This is the equation of an ellipsoid whose three semiaxes have lengths 2, 2, and 1 and 
which is centered at the point 1,  2, 0 ,( )−  as shown in Figure 11.49. 

FIGURE 11.49 An ellipsoid centered at the point 1,  2, 0 .( )−

y

x

z

y

x

z(y + 2)2

4
z2

1
The ellipse                +      = 1

in the plane x = 1

(x - 1)2

4
z2

1
The ellipse                +      = 1

in the plane y = -2 (x - 1)2

4
(y + 2)2

4
The ellipse                +              = 1

in the plane z = 0 (This ellipse is a circle.)

0

3
−1

1

1
0

−1

−1

1

−1

Matching Equations with Surfaces
In Exercises 1–12, match the equation with the surface it defines. Also, 
identify each surface by type (paraboloid, ellipsoid, etc.). The surfaces 
are labeled (a)–(l).

 1. x y z4 102 2 2+ + =  2. z y x4 4 42 2 2+ − =

 3. y z9 162 2+ =  4. y z x2 2 2+ =

 5. x y z2 2= −  6. x y z2 2= − −

 7. x z2 82 2+ =  8. z x y 12 2 2+ − =

 9. x z y2 2= −  10. z x y4 2 2= − −

 11. x z y42 2 2+ =  12. x y z9 4 2 362 2 2+ + =

 a.  b. 

EXERCISES 11.6 

z

y
x

z

y
x

 e.  f. z

yx

z

y
x

z

yx

z

yx

 c.  d. 

z

y
x

z

yx

 g.  h. 

z

yx

z

y
x

 i.  j. 

z

x y

z

y
x

 k.  l. 

M11_HASS5901_15_GE_C11.indd   718 08/03/2023   13:31

www.konkur.in

Telegram: @uni_k



 11.6  Cylinders and Quadric Surfaces 719

Drawing
Sketch the surfaces in Exercises 13–44.

CYLINDERS

 13. x y 42 2+ =  14. z y 12= −

 15. x z4 162 2+ =  16. x y4 362 2+ =

ELLIPSOIDS

 17. x y z9 92 2 2+ + =  18. x y z4 4 162 2 2+ + =

 19. x y z4 9 4 362 2 2+ + =  20. x y z9 4 36 362 2 2+ + =

PARABOLOIDS AND CONES

 21. z x y42 2= +  22. z x y8 2 2= − −

 23. x y z4 4 2 2= − −  24. y x z1 2 2= − −

 25. x y z2 2 2+ =  26. x z y4 9 92 2 2+ =

HYPERBOLOIDS

 27. x y z 12 2 2+ − =  28. y z x 12 2 2+ − =

 29. z x y 12 2 2− − =  30. y x z4 4 12 2 2( ) ( )− − =

HYPERBOLIC PARABOLOIDS

 31. y x z2 2− =  32. x y z2 2− =

ASSORTED

 33. z y x1 2 2= + −  34. x y z4 42 2 2+ =

 35. y x z2 2( )= − +  36. x y16 4 12 2+ =

 37. x y z 42 2 2+ − =  38. x z y2 2+ =

 39. x z 12 2+ =  40. y z x16 9 42 2 2+ =

 41. z x y2 2( )= − +  42. y x z 12 2 2− − =

 43. y z x4 4 42 2 2+ − =  44. x y z2 2+ =

Theory and Examples

 45. a. Express the area A of the cross-section cut from the ellipsoid

x
y z
4 9

12
2 2

+ + =

by the plane z c=  as a function of c. (The area of an ellipse 
with semiaxes a and b is ab.π )

 b. Use slices perpendicular to the z-axis to find the volume of the 
ellipsoid in part (a).

 c. Now find the volume of the ellipsoid

x
a

y
b

z
c

1.
2

2

2

2

2

2
+ + =

Does your formula give the volume of a sphere of radius a if 
a b c?= =

 46. The barrel shown here is shaped like an ellipsoid with equal pieces 
cut from the ends by planes perpendicular to the z-axis. The cross-
sections perpendicular to the z-axis are circular. The barrel is 2h 
units high, its midsection radius is R, and its end radii are both r. 
Find a formula for the barrel’s volume. Then check two things. 
First, suppose the sides of the barrel are straightened to turn the 
barrel into a cylinder of radius R and height 2h. Does your formula 
give the cylinder’s volume? Second, suppose r 0=  and h R=  so 
the barrel is a sphere. Does your formula give the sphere’s volume?

 47. Show that the volume of the segment cut from the paraboloid

x
a

y
b

z
c

2

2

2

2
+ =

by the plane z h=  equals half the segment’s base times its altitude.

 48. a. Find the volume of the solid bounded by the hyperboloid

x
a

y
b

z
c

1
2

2

2

2

2

2
+ − =

and the planes z 0=  and z h h,   0.= >

 b. Express your answer in part (a) in terms of h and the areas A0 
and Ah of the regions cut by the hyperboloid from the planes 
z 0=  and z h.=

 c. Show that the volume in part (a) is also given by the formula

V h A A A
6

4 ,m h0( )= + +

where Am is the area of the region cut by the hyperboloid 
from the plane z h 2.=

Viewing Surfaces
Plot the surfaces in Exercises 49–52 over the indicated domains. If you 
can, rotate the surface into different viewing positions.

 49. z y x y, 2 2, 0.5 22= − ≤ ≤ − ≤ ≤

 50. z y x y1 , 2 2, 2 22= − − ≤ ≤ − ≤ ≤

 51. z x y x y, 3 3, 3 32 2= + − ≤ ≤ − ≤ ≤

 52. z x y2 over2 2= +

 a. x y3 3, 3 3− ≤ ≤ − ≤ ≤

 b. x y1 1, 2 3− ≤ ≤ − ≤ ≤

 c. x y2 2, 2 2− ≤ ≤ − ≤ ≤

 d. x y2 2, 1 1− ≤ ≤ − ≤ ≤

COMPUTER EXPLORATIONS
Use a CAS to plot the surfaces in Exercises 53–58. Identify the type of 
quadric surface from your graph.

 53. x y z
9 36

1
25

2 2 2
+ = −  54. x z y

9 9
1

16

2 2 2
− = −

 55. x z y5 32 2 2= −  56. y x z
16

1
9

2 2
= − +

 57. x y z
9

1
16 2

2 2 2
− = +  58. y z4 02− − =

T

z

y

h r

−h

R

x r
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720 Chapter 11 Vectors and the Geometry of Space

 1. When do directed line segments in the plane represent the same 
vector?

 2. How are vectors added and subtracted geometrically? How are 
they added and subtracted algebraically?

 3. How do you find a vector’s magnitude and direction?

 4. If a vector is multiplied by a positive scalar, how is the result 
related to the original vector? What if the scalar is zero? Negative?

 5. Define the dot product (scalar product) of two vectors. Which 
algebraic laws are satisfied by dot products? Give examples. 
When is the dot product of two vectors equal to zero?

 6. What geometric interpretation does the dot product have? Give 
examples.

 7. What is the vector projection of a vector u onto a vector v? Give 
an example of a useful application of a vector projection.

 8. Define the cross product (vector product) of two vectors. Which 
algebraic laws are satisfied by cross products, and which are not? 
Give examples. When is the cross product of two vectors equal  
to zero?

 9. What geometric or physical interpretations do cross products 
have? Give examples.

 10. What is the determinant formula for calculating the cross product 
of two vectors relative to the Cartesian i, j, k-coordinate system? 
Use it in an example.

 11. How do you find equations for lines, line segments, and planes in 
space? Give examples. Can you express a line in space by a single 
equation? A plane?

 12. How do you find the distance from a point to a line in space? 
From a point to a plane? Give examples.

 13. What are box products? What significance do they have? How are 
they evaluated? Give an example.

 14. How do you find equations for spheres in space? Give examples.

 15. How do you find the intersection of two lines in space? A line and 
a plane? Two planes? Give examples.

 16. What is a cylinder? Give examples of equations that define cylin-
ders in Cartesian coordinates.

 17. What are quadric surfaces? Give examples of different kinds of 
ellipsoids, paraboloids, cones, and hyperboloids (equations and 
sketches).

CHAPTER 11 Questions to Guide Your Review

Vector Calculations in Two Dimensions
In Exercises 1–4, let u 3, 4= 〈− 〉 and v 2,  5 .= 〈 − 〉  Find (a) the com-
ponent form of the vector and (b) its magnitude.

 1. u v3 4−  2. u v+

 3. u2−  4. 5v

In Exercises 5–8, find the component form of the vector.

 5. The vector obtained by rotating 0, 1〈 〉 through an angle of 2 3π  
radians

 6. The unit vector that makes an angle of 6π  radian with the positive 
x-axis

 7. The vector 2 units long in the direction i j4 −

 8. The vector 5 units long in the direction opposite to the direction of 
i j3 5 4 5( ) ( )+

Express the vectors in Exercises 9–12 in terms of their lengths and 
directions.

 9. i j2 2+  10. i j− −

 11. Velocity vector t tv i j2 sin 2 cos( ) ( )= − +  when t 2.π=

 12. Velocity vector e t e t e t e tv i jcos sin sin cost t t t( ) ( )= − + +  
when t ln 2.=

Vector Calculations in Three Dimensions
Express the vectors in Exercises 13 and 14 in terms of their lengths 
and directions.

 13. i j k2 3 6− +  14. i j k2+ −

 15. Find a vector 2 units long in the direction of v i j k4 4 .= − +

 16. Find a vector 5 units long in the direction opposite to the direction 
of v i k3 5 4 5 .( ) ( )= +

In Exercises 17 and 18, find v u v u u v v u u v,   ,   ,   ,   ,   ,⋅ ⋅ × ×  
v u ,×  the angle between v and u, the scalar component of u in the 

direction of v, and the vector projection of u onto v.

 
17.

 
v i j

i j k2 2u

= +
= + −

 
18.

 
v i j k

u i k

2= + +
= − −

In Exercises 19 and 20, find uproj .v

 
19.

 
v i j k

u i j k

2

5

= + −
= + −

 
20.

 
u i j

v i j k

2= −
= + +

In Exercises 21 and 22, draw coordinate axes and then sketch u, v, and 
u v×  as vectors at the origin.

 21. u i v i j,= = +  22. u i j v i j,= − = +

 23. If v w2,   3,= =  and the angle between v and w is 3,π  find 
v w2 .−

 24. For what value or values of a will the vectors u i j k2 4 5= + −  
and av i j k4 8= − − +  be parallel?
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 Chapter 11  Practice Exercises 721

In Exercises 25 and 26, find (a) the area of the parallelogram deter-
mined by vectors u and v and (b) the volume of the parallelepiped 
determined by the vectors u, v, and w.

 25. u i j k v i j k w i j k, 2 , 2 3= + − = + + = − − +

 26. u i j v j w i j k, ,= + = = + +

Lines, Planes, and Distances

 27. Suppose that n is normal to a plane and that v is parallel to the 
plane. Describe how you would find a vector n that is both per-
pendicular to v and parallel to the plane.

 28. Find a vector in the plane parallel to the line ax by c.+ =

In Exercises 29 and 30, find the distance from the point to the line.

 29. x t y t z t2,  2,  0 ;   , , 1( ) = − = = − +

 30. x t y t z t0, 4, 1 ;   2 , 2 ,( ) = + = + =

 31. Parametrize the line that passes through the point 1, 2, 3( ) parallel 
to the vector v i k3 7 .= − +

 32. Parametrize the line segment joining the points P 1, 2, 0( ) and 
Q 1, 3,  1 .( )−

In Exercises 33 and 34, find the distance from the point to the plane.

 33. x y6, 0,  6 , 4( )− − =

 34. x y z3, 0, 10 , 2 3 2( ) + + =

 35. Find an equation for the plane that passes through the point 
3,  2, 1( )−  normal to the vector n i j k2 .= + +

 36. Find an equation for the plane that passes through the point 
1, 6, 0( )−  perpendicular to the line x t y t1 ,   6 2 ,= − + = −  

z t3 .=

In Exercises 37 and 38, find an equation for the plane through points 
P, Q, and R.

 37. P Q R1,  1, 2 , 2, 1, 3 , 1, 2,  1( ) ( ) ( )− − −

 38. P Q R1, 0, 0 , 0, 1, 0 , 0, 0, 1( ) ( ) ( )

 39. Find the points in which the line x t y t1 2 ,   1 ,= + = − −  
z t3=  meets the three coordinate planes.

 40. Find the point in which the line through the origin perpendicular 
to the plane x y z2 4− − =  meets the plane x y z3 5 2 6.− + =

 41. Find the acute angle between the planes x 7=  and 
x y z2 3.+ + = −

 42. Find the acute angle between the planes x y 1+ =  and 
y z 1.+ =

 43. Find parametric equations for the line in which the planes 
x y z2 1+ + =  and x y z2 8− + = −  intersect.

 44. Show that the line in which the planes

x y z x y z2 2 5 and 5 2 0+ − = − − =

intersect is parallel to the line

x t y t z t3 2 , 3 , 1 4 .= − + = = +

 45. The planes x z3 6 1+ =  and x y z2 2 3+ − =  intersect in a line.

 a. Show that the planes are orthogonal.

 b. Find equations for the line of intersection.

 46. Find an equation for the plane that passes through the point 
1, 2, 3( ) parallel to u i j k2 3= + +  and v i j k2 .= − +

 47. Is v i j k2 4= − +  related in any special way to the plane 
x y2 5?+ =  Give reasons for your answer.

 48. The equation P Pn 00

� ���
⋅ =  represents the plane through P0 nor-

mal to n. What set does the inequality P Pn 00

� ���
⋅ >  represent?

 49. Find the distance from the point P 1, 4, 0( ) to the plane through 
A B0, 0, 0 ,   2, 0,  1 ,( ) ( )−  and C 2,  1, 0 .( )−

 50. Find the distance from the point 2, 2, 3( ) to the plane 
x y z2 3 5 0.+ + =

 51. Find a vector parallel to the plane x y z2 4− − =  and orthogo-
nal to i j k.+ +

 52. Find a unit vector orthogonal to A in the plane of B and C if 
A i j k B i j k2 ,   2 ,= − + = + +  and C i j k2 .= + −

 53. Find a vector of magnitude 2 parallel to the line of intersection of 
the planes x y z2 1 0+ + − =  and x y z2 7 0.− + + =

 54. Find the point in which the line through the origin perpendicular to 
the plane x y z2 4− − =  meets the plane x y z3 5 2 6.− + =

 55. Find the point in which the line through P 3, 2, 1( ) normal to the 
plane x y z2 2 2− + = −  meets the plane.

 56. What angle does the line of intersection of the planes 
x y z2 0+ − =  and x y z2 0+ + =  make with the positive 

x-axis?

 57. The line

L x t y t z t: 3 2 , 2 ,= + = =

intersects the plane x y z3 4+ − = −  in a point P. Find the 
coordinates of P and find equations for the line in the plane 
through P perpendicular to L.

 58. Show that for every real number k, the plane

x y z k x y z2 3 2 1 0( )− + + + − − + =

contains the line of intersection of the planes

x y z x y z2 3 0 and 2 1 0.− + + = − − + =

 59. Find an equation for the plane through A 2, 0, 3( )− −  and  
B 1, 2,1( )−  that lies parallel to the line through C 2, 13 5, 26 5( )− −  
and D 16 5, 13 5, 0 .( )−

 60. Is the line x t y t z t1 2 ,   2 3 ,   5= + = − + = −  related in any 
way to the plane x y z4 6 10 9?− − + =  Give reasons for your 
answer.

 61. Which of the following are equations for the plane through the 
points P Q1, 1,  1 ,   3, 0, 2( ) ( )− , and R 2, 1, 0 ?( )−

 a. x y zi j k i j k2 3 3 2 1 0( ) ( )( )( )− + ⋅ + + − + =

 b. x t y t z t3 , 11 , 2 3= − = − = −

 c. x y z2 11 1 3( )( )+ + − =

 d. x y zi j k i j k 02 3 3 2 1( ) ( )( )( )− + × + + − + =

 e. xi j k i k i2 3 3 2( ) ( ) (( )− + × − + ⋅ +  
y zj k1 0)( )+ − + =

M11_HASS5901_15_GE_C11.indd   721 08/03/2023   13:32

www.konkur.in

Telegram: @uni_k



722 Chapter 11 Vectors and the Geometry of Space

 62. The parallelogram shown here has vertices at A 2,  1, 4 ,( )−  
B C1, 0,  1 ,   1, 2, 3 ,( ) ( )−  and D. Find

z

y

x

D

C(1, 2, 3)

A(2, −1, 4)

B(1, 0, −1)

 a. the coordinates of D.

 b. the cosine of the interior angle at B.

 c. the vector projection of BA
	 
	

 onto BC.
	 
		

 d. the area of the parallelogram.

 e. an equation for the plane of the parallelogram.

 f. the areas of the orthogonal projections of the parallelogram on 
the three coordinate planes.

 63. Distance between skew lines Find the distance between the line 
L1 through the points A 1, 0,  1( )−  and B 1, 1, 0( )−  and the line L2 
through the points C 3, 1,  1( )−  and D 4, 5,  2 .( )−  The distance is 
to be measured along the line perpendicular to the two lines. First 
find a vector n perpendicular to both lines. Then project AC

	 
		
  

onto n.

 64. (Continuation of Exercise 63.) Find the distance between the line 
through A 4, 0, 2( ) and B 2, 4, 1( ) and the line through C 1, 3, 2( ) 
and D 2, 2, 4( ).

Quadric Surfaces
Identify and sketch the surfaces in Exercises 65–76.

 65. x y z 42 2 2+ + =

 66. x y z1 12 2 2( )+ − + =

 67. x y z4 4 42 2 2+ + =

 68. x y z36 9 4 362 2 2+ + =

 69. z x y2 2( )= − +

 70. y x z2 2( )= − +

 71. x y z2 2 2+ =

 72. x z y2 2 2+ =

 73. x y z 42 2 2+ − =

 74. y z x4 4 42 2 2+ − =

 75. y x z 12 2 2− − =

 76. z x y 12 2 2− − =

 1. Submarine hunting Two surface ships on maneuvers are trying 
to determine a submarine’s course and speed to prepare for an 
aircraft intercept. As shown here, ship A is located at 4, 0, 0( ), 
whereas ship B is located at 0, 5, 0( ). All coordinates are given in 
thousands of meters. Ship A locates the submarine in the direction 
of the vector i j k2 3 1 3 ,( )+ −  and ship B locates it in the direc-
tion of the vector i j k18 6 . Four minutes ago, the subma-
rine was located at 2,  1,  1 3 .( )− −  The aircraft is due in 20 min. 
Assuming that the submarine moves in a straight line at a con-
stant speed, to what position should the surface ships direct the 
aircraft?

z

y
x

(4, 0, 0)

Submarine

(0, 5, 0)
Ship A

Ship B

NOT TO SCALE

 2. A helicopter rescue Two helicopters, H1 and H ,2  are travel-
ing together. At time t 0, they separate and follow different 
straight-line paths given by

H x t y t z t

H x t y t z t

: 6 40 , 3 10 , 3 2

: 6 110 , 3 4 , 3 .
1

2

= + = − + = − +

= + = − + = − +

Time t is measured in hours, and all coordinates are measured 
in kilometers. Due to system malfunctions, H 2 stops its flight 
at 446, 13, 1( ) and, in a negligible amount of time, lands at 

446, 13, 0( ). Two hours later, H1 is advised of this fact and heads 
toward H 2 at 150 km h. How long will it take H1 to reach H ?2

 3. Torque The operator’s manual for the Toro® 53-cm lawnmower 
says, “tighten the spark plug to 20.4 N m.” If you are installing 
the plug with a 26.5-cm socket wrench that places the center of 
your hand 23 cm from the axis of the spark plug, about how hard 
should you pull? Answer in newtons.

23 cm

CHAPTER 11 Additional and Advanced Exercises
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 Chapter 11  Additional and Advanced Exercises 723

 4. Rotating body The line through the origin and the point 
A 1, 1, 1( ) is the axis of rotation of a rigid body rotating with a 
constant angular speed of 3 2 rad s. The rotation appears to be 
clockwise when we look toward the origin from A. Find the veloc-
ity v of the point of the body that is at the position B 1, 3, 2( ).

y

z

O

x

1

1

3
v

B(1, 3, 2)A(1, 1, 1)

 5. Consider the weight suspended by two wires in each diagram. 
Find the magnitudes and components of vectors F1 and F ,2  and 
angles  and .

 a. 

F1
F2

100 N

5 m
a b

4 m3 m

 b. 

F1 F2

200 N

13 m

a b

12 m
5 m

(Hint: This triangle is a right triangle.)

 6. Consider a weight of w N suspended by two wires in the diagram, 
where T1 and T2 are force vectors directed along the wires.

T1 T2

a b

w

ba

 a. Find the vectors T1 and T2 and show that their magnitudes are

w
T

cos
sin1

β
α β( )

=
+

and

w
T

cos
sin

.2

α
α β( )

=
+

 b. For a fixed , determine the value of  that minimizes the 
magnitude T .1

 c. For a fixed , determine the value of  that minimizes the 
magnitude T .2

 7. Determinants and planes 
 a. Show that

x x y y z z

x x y y z z

x x y y z z

0
1 1 1

2 2 2

3 3 3

− − −

− − −

− − −

=

is an equation for the plane through the three noncollinear 
points P x y z P x y z,  ,  ,   ,  ,  ,1 1 1 1 2 2 2 2( ) ( )  and P x y z,  ,  .3 3 3 3( )

 b. What set of points in space is described by the equation

x y z

x y z

x y z

x y z

1

1

1

1

0?
1 1 1

2 2 2

3 3 3

 8. Determinants and lines Show that the lines

x a s b y a s b z a s b s, , ,1 1 2 2 3 3= + = + = + −∞ < < ∞

and

x c t d y c t d z c t d t, , ,1 1 2 2 3 3= + = + = + −∞ < < ∞

intersect or are parallel if and only if

−

−

−

=

a c b d

a c b d

a c b d

0.
1 1 1 1

2 2 2 2

3 3 3 3

 9. Consider a regular tetrahedron of side length 2.
 a. Use vectors to find the angle  formed by the base of the tetra-

hedron and any one of its other edges.

C

P

B

2 1

1

22

A

D

u

 b. Use vectors to find the angle  formed by any two adjacent 
faces of the tetrahedron. This angle is commonly referred to 
as a dihedral angle.

 10. In the figure here, D is the midpoint of side AB of triangle ABC, 
and E is one-third of the way between C and B. Use vectors to 
prove that F is the midpoint of line segment CD.

C

A B

E

F

D

 11. Use vectors to show that the distance from P x y,  1 1 1( ) to the line 
ax by c+ =  is

d
ax by c

a b
.1 1

2 2
=

+ −
+
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724 Chapter 11 Vectors and the Geometry of Space

 12. a.  Use vectors to show that the distance from P x y z,  , 1 1 1 1( ) to 
the plane Ax By Cz D+ + =  is

d
Ax By Cz D

A B C
.1 1 1

2 2 2
=

+ + −
+ +

 b. Find an equation for the sphere that is tangent to the 
planes x y z 3+ + =  and x y z 9+ + =  if the planes 

x y2 0− =  and x z3 0− =  pass through the center of the 
sphere.

 13. a.  Distance between parallel planes Show that the distance 
between the parallel planes Ax By Cz D1+ + =  and 
Ax By Cz D2+ + =  is

d
D D

A B Ci j k
.1 2=

−
+ +

 b. Find the distance between the planes x y z2 3 6+ − =  and 
x y z2 3 12.+ − =

 c. Find an equation for the plane parallel to the plane 
x y z2 2 4− + = −  if the point 3, 2,  1( )−  is equidistant 

from the two planes.

 d. Write equations for the planes that lie parallel to, and 5 units 
away from, the plane x y z2 3.− + =

 14. Prove that four points A, B, C, and D are coplanar (lie in a com-
mon plane) if and only if AD AB BC 0.

� ��� � ��� � ���
( )⋅ × =

 15. The projection of a vector on a plane Let P be a plane in space 
and let v be a vector. The vector projection of v onto the plane P, 

vproj ,P  can be defined informally as follows. Suppose the sun is 
shining so that its rays are normal to the plane P. Then vprojP  is 
the “shadow” of v onto P. If P is the plane x y z2 6 6+ + =  and 
v i j k,= + +  find vproj .P

 16. The accompanying figure shows nonzero vectors v, w, and z, with 
z orthogonal to the line L, and v and w making equal angles β  
with L. Assuming v w ,=  find w in terms of v and z.

v w

z

L
bb

 17. Triple vector products The triple vector products u v w( )× ×  
and u v w( )× ×  are usually not equal, although the formulas for 
evaluating them from components are similar:

u v w u w v v w u

u v w u w v u v w

.

.

( ) ( ) ( )

( ) ( ) ( )

× × = ⋅ − ⋅

× × = ⋅ − ⋅

Verify each formula for the following vectors by evaluating its 
two sides and comparing the results.

u v w

a. 2i 2j 2k

b. i j k− + i j k2 2+ − i j k2− + −

c. i j2 + i j k2 − + i k2+

d. i j k2+ − i k− − i j k2 4 2+ −

 18. Cross and dot products Show that if u, v, w, and r are any vec-
tors, then

 a. u v w v w u w u v 0( ) ( ) ( )× × + × × + × × =

 b. u v u v i i u v j j u v k k( ) ( ) ( )× = ⋅ × + ⋅ × + ⋅ ×

 c. u v w r u w v w
u r v r

.( ) ( )× ⋅ × = ⋅ ⋅
⋅ ⋅

 19. Cross and dot products Prove or disprove the formula

u u u v w u u v w.2( )( )× × × ⋅ = − ⋅ ×

 20. By forming the cross product of two appropriate vectors, derive 
the trigonometric identity

A B A B A Bsin sin cos cos sin .( )− = −

 21. Use vectors to prove that

a b c d ac bd2 2 2 2 2( )( ) ( )+ + ≥ +

for any four numbers a, b, c, and d. (Hint: Let a bu i j= +  and 
c dv i j.= + )

 22. Dot multiplication is positive definite Show that dot multipli-
cation of vectors is positive definite; that is, show that u u 0⋅ ≥  
for every vector u and that u u 0⋅ =  if and only if u 0.=

 23. Show that u v u v+ ≤ +  for any vectors u and v.

 24. Show that w v u u v= +  bisects the angle between u and v.

 25. Show that v u u v+  and v u u v−  are orthogonal.

Mathematica/Maple Projects

Projects can be found within MyLab Math.

• Using Vectors to Represent Lines and Find Distances

Parts I and II: Learn the advantages of interpreting lines as vectors.
Part III: Use vectors to find the distance from a point to a line.

• Putting a Scene in Three Dimensions onto a Two-Dimensional Canvas

Use the concept of planes in space to obtain a two-dimensional image.

• Getting Started in Plotting in 3D

Part I: Use the vector definition of lines and planes to generate graphs and equations, and to compare different forms for the equations of  
a single line.
Part II: Plot functions that are defined implicitly.

CHAPTER 11 Technology Application Projects
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725

OVERVIEW In this chapter we introduce the calculus of vector-valued functions. The 
domains of these functions are sets of real numbers, as before, but their ranges consist of 
vectors instead of scalars. When a vector-valued function changes, the change can occur in 
both magnitude and direction, so the derivative is itself a vector. The integral of a vector-
valued function is also a vector. We use the calculus of these functions to describe the paths 
and motions of objects moving in a plane or in space, so their velocities and accelerations 
are given by vectors.

Vector-Valued Functions 

and Motion in Space

12

12.1 Curves in Space and Their Tangents

When a particle moves through space during a time interval I, we think of the particle’s 
coordinates as functions defined on I:

 = = = ∈x f t y g t z h t t I( ), ( ), ( ), . (1)

The points ( ) = ∈x y z f t g t h t t I, , ( ( ), ( ), ( )), , make up the curve in space that we call 
the particle’s path. The equations and interval in Equation (1) parametrize the curve.

A curve in space can also be represented in vector form. The vector

 = = + +
	 
		

t OP f t g t h tr i j k( ) ( ) ( ) ( )  (2)

from the origin to the particle’s position P f t g t h t( ( ), ( ), ( )) at time t is the particle’s position 
vector (Figure 12.1). The functions f, g, and h are the component functions (or compo-
nents) of the position vector. We think of the particle’s path as the curve traced by r during 
the time interval I. Figure 12.2 displays several space curves generated by a computer 
graphing program.

Equation (2) defines r as a vector function of the real variable t on the interval I. More 
generally, a vector-valued function or vector function on a domain set D is a rule that 
assigns a vector in space to each element in D. For now, the domains will be intervals of 
real numbers, and the graph of the function represents a curve in space. Vector functions on 
a domain in the plane or in space give rise to “vector fields,” which are important to the 
study of fluid flows, gravitational fields, and electromagnetic phenomena. We investigate 
vector fields and their applications in Chapter 15.

Real-valued functions are often called scalar functions to distinguish them from  
vector functions. The components of r in Equation (2) are scalar functions of t. The domain 
of a vector-valued function is the common domain of its components.

FIGURE 12.1 The position vector 	 
		
OPr  of a particle moving through 

space is a function of time.

r

y

z

O

x

P( f (t), g(t), h(t))
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726 Chapter 12 Vector-Valued Functions and Motion in Space

EXAMPLE 1  Graph the vector function

( ) ( )= + +t t t tr i j k( ) cos sin .

Solution This vector function tr( ) is defined for all real values of t. The curve traced by 
r winds around the circular cylinder + =x y 12 2  (Figure 12.3). The curve lies on the 
cylinder because the i- and j-components of r, being the x- and y-coordinates of the tip of r, 
satisfy the cylinder’s equation:

( ) ( )+ = + =x y t tcos sin 1.2 2 2 2

The curve rises as the k-component =z t  increases. Each time t increases by π2 , the 
curve completes one turn around the cylinder. The curve is called a helix (from an ancient 
Greek word for “spiral”). The equations

= = =x t y t z tcos , sin ,

parametrize the helix. The domain is the largest set of points t for which all three equations 
are defined, or −∞ < < ∞t  for this example. Figure 12.4 shows more helices. 

FIGURE 12.2 Space curves are defined by the position vectors tr( ).

r(t) = (cos t)i + (sin t)j + (sin2t)k 
r(t) = (sin3t)(cos t)i +
     (sin3t)(sin t)j + tk 

r(t) = (4 + sin20t)(cos t)i +
     (4 + sin20t)(sint)j +
     (cos20t)k 

y

z

x y

(a) (b) (c)

z

x
y

x

z

FIGURE 12.3 The helix 
( ) ( )= + +t t t tr i j k( ) cos sin  

(Example 1).

y

z

0

x

(1, 0, 0)

r
P

t

x2 + y2 = 1t = 0

t = p
2

t = 2p
t = p

2p

Limits and Continuity

The way we define limits of vector-valued functions is similar to the way we define limits 
of real-valued functions.

FIGURE 12.4 Helices spiral upward around a cylinder, like coiled springs.

y

x

y

r(t) = (cos t)i + (sin t)j + tk

x

z

y

r(t) = (cos 5t)i + (sin 5t)j + tkr(t) = (cos t)i + (sin t)j + 0.3tk

x

z z
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 12.1  Curves in Space and Their Tangents 727

If = + +L L LL i j k,1 2 3  then it can be shown that =
→

tr Llim ( )
t t0

 precisely when

= = =
→ → →

f t L g t L h t Llim ( ) , lim ( ) , and lim ( ) .
t t t t t t

1 2 3
0 0 0

We omit the proof. The equation

 ( ) ( ) ( )= + +
→ → → →

t f t g t h tr i j klim ( ) lim ( ) lim ( ) lim ( )
t t t t t t t t0 0 0 0

 (3)

provides a practical way to calculate limits of vector functions.

DEFINITION Let = + +t f t g t h tr i j k( ) ( ) ( ) ( )  be a vector function with 
domain D, and let L be a vector. We say that r has limit L as t approaches t0 and 
write

=
→

tr Llim ( )
t t0

if, for every number ε > 0, there exists a corresponding number δ > 0 such that, 
for all ∈t D,

ε δ− < < − <t t tr L( ) whenever 0 .0

DEFINITION A vector function tr( ) is continuous at a point =t t0 in its 
domain if =

→
t tr rlim ( ) ( ).

t t
0

0

 The function is continuous if it is continuous at 

every point in its domain.

To calculate the limit of a vector func-
tion, we find the limit of each component 
scalar function.

EXAMPLE 2  If ( ) ( )= + +t t t tr i j k( ) cos sin , then

π

( ) ( ) ( )= + +

= + +

π π π π→ → → →
t t t tr i j k

i j k

lim ( ) lim cos lim sin lim

2
2

2
2 4

.

t t t t4 4 4 4

 

We define continuity for vector functions the same way we define continuity for scalar 
functions defined over an interval.

From Equation (3), we see that tr( ) is continuous at =t t0 if and only if each compo-
nent function is continuous there (Exercise 45).

EXAMPLE 3

 (a) All the space curves shown in Figures 12.2 and 12.4 are continuous because their com-
ponent functions are continuous at every value of t in ( )−∞ ∞, .

 (b) The function

( ) ( ) ⎣ ⎦= + +t t t tg i j k( ) cos sin

is discontinuous at every integer, because the greatest integer function ⎣ ⎦t  is discon-
tinuous at every integer. 

Derivatives and Motion

Suppose that = + +t f t g t h tr i j k( ) ( ) ( ) ( )  is the position vector of a particle moving 
along a curve in space and that f, g, and h are differentiable functions of t. Then the differ-
ence between the particle’s positions at time t and time + Δt t  is the vector

( )Δ = + Δ −t t tr r r( )
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728 Chapter 12 Vector-Valued Functions and Motion in Space

(Figure 12.5a). In terms of components,

( )

( ) ( ) ( )[ ] [ ]

( )[ ] ( )[ ] ( )[ ]

Δ = + Δ −

= + Δ + + Δ + + Δ − + +

= + Δ − + + Δ − + + Δ −

t t t

f t t g t t h t t f t g t h t

f t t f t g t t g t h t t h t

r r r

i j k i j k

i j k

( )

( ) ( ) ( )

( ) ( ) ( ) .

As Δt approaches zero, three things seem to happen simultaneously. First, Q approaches P 
along the curve. Second, the secant line PQ seems to approach a limiting position tangent 
to the curve at P. Third, the quotient Δ Δtr  (Figure 12.5b) approaches the limit

( ) ( )

( )

Δ
Δ

= + Δ −
Δ

⎡
⎣⎢

⎤
⎦⎥

+ + Δ −
Δ

⎡
⎣⎢

⎤
⎦⎥

+ + Δ −
Δ

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

+ ⎡
⎣⎢

⎤
⎦⎥

+ ⎡
⎣⎢

⎤
⎦⎥

Δ → Δ → Δ →

Δ →

t
f t t f t

t
g t t g t

t

h t t h t
t

d f
dt

dg
dt

dh
dt

r i j

k

i j k

lim lim
( )

lim
( )

lim ( )

.

t t t

t

0 0 0

0

These observations lead us to the following definition.

FIGURE 12.5 As Δ →t 0, the point Q 
approaches the point P along the curve C. 
In the limit, the vector 

� ���
ΔPQ t becomes 

the tangent vector ′ tr ( ).

y

z

(a)
x

P

C

O

O

Q
r(t + Δt) − r(t) 

r(t)

r(t + Δt)

y

z

(b)
x

P

C

Q

r(t)

r′(t)

r(t + Δt)

r(t + Δt) − r(t) 
Δt

Δr
=

Δt

DEFINITION The vector function = + +t f t g t h tr i j k( ) ( ) ( ) ( )  has a derivative 
(is differentiable) at t if f, g, and h have derivatives at t. The derivative is the 
vector function

( )′ = = + Δ −
Δ

= + +
Δ →

t d
dt

t t t
t

d f
dt

dg
dt

dh
dt

r r r r i j k( ) lim ( ) .
t 0

A vector function r is differentiable if it is differentiable at every point of its 
domain.

FIGURE 12.6 A piecewise smooth 
curve made up of five smooth curves con-
nected end to end in a continuous fashion. 
The curve here is not smooth at the points 
joining the five smooth curves.

C1

C2

C3 C4

C5

The geometric significance of the definition of derivative is shown in Figure 12.5. The 
points P and Q have position vectors tr( ) and ( )+ Δt tr , and the vector 

� ���
PQ is represented 

by ( )+ Δ −t t tr r( ). For Δ >t 0, the scalar multiple ( ) ( )( )Δ + Δ −t t t tr r1 ( )  points 
in the same direction as the vector 

� ���
PQ. As Δ →t 0, this vector approaches the vector ′ tr ( ), 

which is a vector tangent to the curve at P, as long as it is different from the zero vector 0 
(Figure 12.5b).

The curve traced by r is smooth if d dtr  is continuous and never 0, that is, if f, g, and 
h have continuous first derivatives that are not simultaneously 0. We require ≠d dtr 0 for 
a smooth curve to make sure the curve has a continuously turning tangent at each point. On 
a smooth curve, there are no sharp corners or cusps.

A curve that is made up of a finite number of smooth curves pieced together in a con-
tinuous fashion is called piecewise smooth (Figure 12.6).

Look once again at Figure 12.5. We drew the figure for Δt positive, so Δr points for-
ward, in the direction of the motion. The vector Δ Δtr , having the same direction as Δr, 
points forward too. Had Δt been negative, Δr would have pointed backward, against the 
direction of motion. The quotient Δ Δtr , however, being a negative scalar multiple of Δr, 
would once again have pointed forward. No matter how Δr points, Δ Δtr  points forward, 
and we expect the vector = Δ Δ

Δ →
d dt tr rlim ,

t 0
 when different from 0, to do the same. 

This means that the derivative d dtr , which is the rate of change of position with respect to 
time, always points in the direction of motion. For a smooth curve, d dtr  is never zero; the 
particle does not stop or reverse direction.
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 12.1  Curves in Space and Their Tangents 729

EXAMPLE 4  Find the velocity, speed, and acceleration of a particle whose motion in 
space is given by the position vector = + +t t t tr i j k( ) 2 cos 2 sin 5 cos .2  Sketch the 
velocity vector π( )v 7 4 .

Solution The velocity and acceleration vectors at time t are

= ′ = − + −

= − + −

t t t t t t

t t t

v r i j k

i j k

( ) ( ) 2 sin 2 cos 10 cos sin

2 sin 2 cos 5 sin 2 ,

= ′′ = − − −t t t t ta r i j k( ) ( ) 2 cos 2 sin 10 cos 2 ,

and the speed is

( ) ( ) ( )= − + + − = +t t t t tv( ) 2 sin 2 cos 5 sin 2 4 25 sin 2 .2 2 2 2

When π=t 7 4, we have

π π π( ) ( ) ( )= + + = − + =v i j k a i j v7
4

2 2 5 , 7
4

2 2 , 7
4

29.

A sketch of the curve of motion, and the velocity vector when π=t 7 4, can be seen in 
Figure 12.7. 

DEFINITIONS If r is the position vector of a particle moving along a smooth 
curve in space, then

=t d
dt

v r( )

is the particle’s velocity vector. If v is a nonzero vector, then it is tangent to the 
curve, and its direction is the direction of motion. The magnitude of v is the 
particle’s speed, and the derivative = d dta v , when it exists, is the particle’s 
acceleration vector. In summary,

1. Velocity is the derivative of = d
dt

v rposition: .

2. Speed is the magnitude of = vvelocity: Speed .

3. Acceleration is the derivative of = =d
dt

d
dt

a v rvelocity: .
2

2

4. The unit vector v v  is the direction of motion at time t.

FIGURE 12.7 The curve and the 
velocity vector when π=t 7 4 for  
the motion given in Example 4.

z

x

y

7p
4

r′

7p
4

t =

a    b

Differentiation Rules

Because the derivatives of vector functions may be computed component by component, 
the rules for differentiating vector functions have the same form as the rules for differenti-
ating scalar functions.

We can express the velocity of a moving particle as the product of its speed and 
direction:

( ) ( )( )= =v v
v

Velocity speed direction .
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730 Chapter 12 Vector-Valued Functions and Motion in Space

We will prove the product rules and the Chain Rule but will leave the rules for constants, 
scalar multiples, sums, and differences as exercises.

Differentiation Rules for Vector Functions
Let u and v be differentiable vector functions of t, C a constant vector, c any sca-
lar, and f any differentiable scalar function.

1. Constant Function Rule: =d
dt

C 0

2. Scalar Multiple Rules:

[ ]

[ ] = ′

= ′ + ′

d
dt

c t c t

d
dt

f t t f t t f t t

u u

u u u

( ) ( )

( )  ( ) ( )  ( ) ( )  ( )

3. Sum Rule: [ ]+ = ′ + ′d
dt

t t t tu v u v( ) ( ) ( ) ( )

4. Difference Rule: [ ]− = ′ − ′d
dt

t t t tu v u v( ) ( ) ( ) ( )

5. Dot Product Rule: [ ]⋅ = ′ ⋅ + ⋅ ′d
dt

t t t t t tu v u v u v( ) ( ) ( ) ( ) ( ) ( )

6. Cross Product Rule: [ ]× = ′ × + × ′d
dt

t t t t t tu v u v u v( ) ( ) ( ) ( ) ( ) ( )

7. Chain Rule: [ ] = ′ ′d
dt

f t f t f tu u( ( )) ( ) ( ( ))

When you use the Cross Product Rule, 
remember to preserve the order of the 
factors. If u comes first on the left side of 
the equation, it must also come first on 
the right, or the signs will be wrong.

Proof of the Dot Product Rule  Suppose that

= + +u t u t u tu i j k( ) ( ) ( )1 2 3

and
υ υ υ= + +t t tv i j k( ) ( ) ( ) .1 2 3

Then

� ���������� ���������� � ���������� ����������

υ υ υ

υ υ υ υ υ υ

( )( )⋅ = + +

= ′ + ′ + ′

′ ⋅

+ ′ + ′ + ′

⋅ ′

d
dt

d
dt

u u u

u u u u u u

u v

u v u v

.

1 1 2 2 3 3

1 1 2 2 3 3 1 1 2 2 3 3

 

Proof of the Cross Product Rule  We model the proof after the proof of the Product 
Rule for scalar functions. According to the definition of derivative,

( ) ( )
( )× = + × + − ×

→

d
dt

t h t h t t
h

u v u v u vlim ( ) ( ) .
h 0

To change this fraction into an equivalent one that contains the difference quotients for the 
derivatives of u and v, we subtract and add ( )× +t t hu v( )  in the numerator. Then

( ) ( ) ( ) ( )

( )
( )

( )

( )
( )

( )

( )×

= + × + − × + + × + − ×

= + − × + + × + −⎡
⎣⎢

⎤
⎦⎥

= + − × + + × + −

→

→

→ → → →

d
dt

t h t h t t h t t h t t
h

t h t
h

t h t t h t
h

t h t
h

t h t t h t
h

u v

u v u v u v u v

u u v u v v

u u v u v v

lim ( ) ( ) ( ) ( )

lim ( ) ( ) ( )

lim ( ) lim lim ( ) lim ( ) .

h

h

h h h h

0

0

0 0 0 0
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 12.1  Curves in Space and Their Tangents 731

If r is a differentiable vector function of t and the length of tr( ) is constant, then

 ⋅ =d
dt

r r 0. (4)

As an algebraic convenience, we some-
times write the product of a scalar c and a 
vector v as vc instead of cv. This permits 
us, for instance, to write the Chain Rule 
in a familiar form:

=d
dt

d
ds

ds
dt

u u ,

where =s f t( ).

FIGURE 12.8 If a particle moves on 
a sphere in such a way that its position r 
is a differentiable function of time, then 

( )⋅ =d dtr r 0.

y

z

x

P
r(t)

dr
dt

The last of these equalities holds because the limit of the cross product of two vector func-
tions is the cross product of their limits if the latter exist (Exercise 46). As h approaches 
zero, ( )+t hv  approaches tv( ) because v, being differentiable at t, is continuous at t 
(Exercise 47). The two fractions approach the values of d dtu  and d dtv  at t. In short,

( ) ( )( )× = × + ×d
dt

d
dt

d
dt

u v u v u v . 

We will use this observation repeatedly in Section 12.4. The converse is also true (see 
Exercise 41).

Proof of the Chain Rule  Suppose that = + +s a s b s c su i j k( ) ( ) ( ) ( )  is a differen-
tiable vector function of s and that =s f t( ) is a differentiable scalar function of t. Then a, 
b, and c are differentiable functions of t, and the Chain Rule for differentiable real-valued 
functions gives

d
dt

s da
dt

db
dt

dc
dt

da
ds

ds
dt

db
ds

ds
dt

dc
ds

ds
dt

ds
dt

da
ds

db
ds

dc
ds

ds
dt

d
ds

f t f t

u i j k

i j k

i j k

u

u

( )

( )  ( ( )).

( )

[ ] = + +

= + +

= + +

=

= ′ ′ =s f t( ) 

Vector Functions of Constant Length

When we track a particle moving on a sphere centered at the origin (Figure 12.8), the posi-
tion vector has a constant length equal to the radius of the sphere. The velocity vector d dtr ,  
tangent to the path of motion, is tangent to the sphere and hence perpendicular to r. This is 
always the case for a differentiable vector function of constant length: The vector and its 
first derivative are orthogonal. By direct calculation,

t t t c

d
dt

t t

t t t t

t t

r r r

r r

r r r r

r r

( ) ( ) ( )

( ) ( ) 0

( ) ( ) ( ) ( ) 0

2 ( ) ( ) 0.

2 2

[ ]

⋅ = =

⋅ =

′ ⋅ + ⋅ ′ =

′ ⋅ =

=t cr( )  is constant.

Differentiate both sides.

Rule 5 with = =t t tr u v( ) ( ) ( )

Thus the vectors ′ tr ( ) and tr( ) are orthogonal because their dot product is 0. In summary, 
the following holds.
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732 Chapter 12 Vector-Valued Functions and Motion in Space

In Exercises 1–4, find the given limits.

 1. t t ti j klim sin
2

cos 2
3

tan 5
4t

( )( ) ( )+ +⎡
⎣⎢

⎤
⎦⎥π→

 2. t t ti j klim sin
2

ln 2
t 1

3 π( ) ( )( )+ + +⎡
⎣⎢

⎤
⎦⎥→−

 3. t
t

t
t

ti j klim 1
ln

1
1

arctan
t 1

2
( )−⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ − −

−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥→

 4. 
t

t
t
t

t
t

i j klim
sin tan

sin 2
8
2t 0

2 3( ) ( )+
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ − −

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥→

Motion in the Plane
In Exercises 5–8, tr( ) is the position of a particle in the xy-plane at 
time t. Find an equation in x and y whose graph is the path of the par-
ticle. Then find the particle’s velocity and acceleration vectors at the 
given value of t.

 5. ( )( )= + + − =t t t tr i j( ) 1 1 , 12

 6. =
+

+ = −t t
t t

tr i j( )
1

1 , 1
2

 7. = + =t e e tr i j( ) 2
9

, ln 3t t2

 8. ( ) ( )= + =t t t tr i j( ) cos 2 3 sin 2 , 0

Exercises 9–12 give the position vectors of particles moving along 
various curves in the xy-plane. In each case, find the particle’s velocity 
and acceleration vectors at the stated times and sketch them as vectors 
on the curve.

 9. Motion on the circle + =x y 12 2

π π( ) ( )= + =t t t tr i j( ) sin cos ; 4 and 2

 10. Motion on the circle + =x y 162 2

π π( ) ( )= + =t t t tr i j( ) 4 cos
2

4 sin
2

; and 3 2

 11. Motion on the cycloid = − = −x t t y tsin , 1 cos

π π( ) ( )= − + − =t t t t tr i j( ) sin 1 cos ; and 3 2

 12. Motion on the parabola = +y x 12

( )= + + = −t t t tr i j( ) 1 ; 1, 0, and 12

Motion in Space
In Exercises 13–18, tr( ) is the position of a particle in space at time t. 
Find the particle’s velocity and acceleration vectors. Then find the par-
ticle’s speed and direction of motion at the given value of t. Write the 
particle’s velocity at that time as the product of its speed and direction.

 13. ( )( )= + + − + =t t t t tr i j k( ) 1 1 2 , 12

 14. ( )= + + + =t t t t tr i j k( ) 1
2 3

, 1
2 3

 15. π( ) ( )= + + =t t t t tr i j k( ) 2 cos 3 sin 4 , 2

 16. π( ) ( )= + + =t t t t tr i j k( ) sec tan 4
3

, 6

 17. ( )( )= + + + =t t t t tr i j k( ) 2 ln 1
2

, 12
2

 18. ( ) ( )= + + =−t e t t tr i j k( ) 2 cos 3 2 sin 3 , 0t

In Exercises 19–22, tr( ) is the position of a particle in space at time t. 
Find the angle between the velocity and acceleration vectors at time 

=t 0.

 19. ( )= + + +t t t tr i j k( ) 3 1 3 2

 20. =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ + −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟t t t tr i j( ) 2

2
2

2
16 2

 21. ( )( )( )= + + + +t t t tr i j k( ) ln 1 arctan 12 2

 22. ( ) ( )= + + − +t t t tr i j k( ) 4
9

1 4
9

1 1
3

3 2 3 2

Tangents to Curves
As mentioned in the text, the tangent line to a smooth curve 

= + +t f t g t h tr i j k( ) ( ) ( ) ( )  at =t t0 is the line that passes through 
the point f t g t h t( ( ), ( ), ( ))0 0 0  parallel to tv( ),0  the curve’s velocity vec-
tor at t .0  In Exercises 23–26, find parametric equations for the line that 
is tangent to the given curve at the given parameter value =t t .0

 23. ( ) ( )= + − + =t t t t e tr i j k( ) sin cos , 0t2
0

 24. ( )= + − + =t t t t tr i j k( ) 2 1 , 22 3
0

 25. = + −
+

+ =t t t
t

t t tr i j k( ) ln 1
2

ln , 10

 26. π( ) ( ) ( )= + + =t t t t tr i j k( ) cos sin sin 2 ,
20

In Exercises 27–30, find the value(s) of t so that the tangent line to the 
given curve contains the given point.

 27. ( )( ) ( )= + + + − − −t t t tr i j k( ) 1 2 3 ; 8, 2, 12

 28. ( ) ( )= + + −t t tr i j k( ) 3 2
3

; 0, 3, 8 33 2

 29. ( )= + − −t t t tr i j k( ) 2 ; 0, 4, 42 2

 30. ( ) ( )= − + + − −t t t tr i j k( ) ln ; 2, 5, 32

In Exercises 31–36, tr( ) is the position of a particle in space at time t. 
Match each position function with one of the graphs A–F.

 31. ( ) ( )= + +t t t t t tr i j k( ) cos sin

 32. ( ) ( ) ( )= + +t t t tr i j k( ) cos sin sin 2

 33. ( )= + + +t t t tr i j k( ) 12 2 4

 34. ( ) ( )= + +t t t tr i j k( ) ln sin

EXERCISES 12.1 
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 12.1  Curves in Space and Their Tangents 733

 35. ( ) ( )= + +t t t tr i j k( ) cos sin

 36. ( )( ) ( )= + +
+

t t t t t t
t

r i j k( ) sin cos
12

x

y

z

A.  

x

y

z

B.

x

y

z

C.  D.

x y

z

E.

x

y

z

 F.

z

x

y

Theory and Examples

 37. Motion along a circle Each of the following equations in parts 
(a)–(e) describes the motion of a particle having the same path, 
namely the unit circle + =x y 1.2 2  Although the path of each 
particle in parts (a)–(e) is the same, the behavior, or “dynamics,” 
of each particle is different. For each particle, answer the follow-
ing questions.

 i) Does the particle have constant speed? If so, what is its con-
stant speed?

 ii) Is the particle’s acceleration vector always orthogonal to its 
velocity vector?

 iii) Does the particle move clockwise or counterclockwise 
around the circle?

 iv) Is the particle initially located at the point ( )1, 0 ?

 a. ( ) ( )= + ≥t t t tr i j( ) cos sin , 0

 b. = + ≥t t t tr i j( ) cos (2 ) sin (2 ) , 0

 c. π π( ) ( )= − + − ≥t t t tr i j( ) cos 2 sin 2 , 0

 d. ( ) ( )= − ≥t t t tr i j( ) cos sin , 0

 e. = + ≥t t t tr i j( ) cos ( ) sin ( ) , 02 2

 38. Motion along a circle Show that the vector-valued function

( ) ( )
( )= + +

+ − + + +

t

t t

r i j k

i j i j k

( ) 2 2

cos 1
2

1
2

sin 1
3

1
3

1
3

describes the motion of a particle moving in the circle of 
radius 1 centered at the point ( )2, 2,1  and lying in the plane 

+ − =x y z2 2.

 39. Motion along a parabola A particle moves along the top of the 
parabola =y x22  from left to right at a constant speed of 5 units 
per second. Find the velocity of the particle as it moves through 
the point ( )2, 2 .

 40. Motion along a cycloid A particle moves in the xy-plane in 
such a way that its position at time t is

( ) ( )= − + −t t t tr i j( ) sin 1 cos .

 a. Graph tr( ). The resulting curve is a cycloid.

 b. Find the maximum and minimum values of v  and a .  
(Hint: Find the extreme values of v 2 and a 2 first, and take 
square roots later.)

 41. Let r be a differentiable vector function of t. Show that if 
( )⋅ =d dtr r 0 for all t, then r  is constant.

 42. Derivatives of triple scalar products 

 a. Show that if u, v, and w are differentiable vector functions of 
t, then 

( )⋅ × = ⋅ × + ⋅ × + ⋅ ×d
dt

d
dt

d
dt

d
dt

u v w u v w u v w u v w .

 b. Show that

( ) ( )⋅ × = ⋅ ×d
dt

d
dt

d
dt

d
dt

d
dt

r r r r r r .
2

2

3

3

(Hint: Differentiate on the left and look for vectors whose prod-
ucts are zero.)

 43. Prove the two Scalar Multiple Rules for vector functions.

 44. Prove the Sum and Difference Rules for vector functions.

 45. Component test for continuity at a point Show that the vector 
function r defined by = + +t f t g t h tr i j k( ) ( ) ( ) ( )  is continuous 
at =t t0 if and only if f, g, and h are continuous at t .0

 46. Limits of cross products of vector functions Suppose that 
= + + = + +t f t f t f t t g t g t g tr i j k r i j k( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) ,1 1 2 3 2 1 2 3  

=
→

tr Alim ( ) ,
t t

1
0

 and =
→

tr Blim ( ) .
t t

2
0

 Use the determinant formula 

for cross products and the Limit Product Rule for scalar functions 
to show that

( )× = ×
→

t tr r A Blim ( ) ( ) .
t t

1 2
0

T
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734 Chapter 12 Vector-Valued Functions and Motion in Space

DEFINITION The indefinite integral of r with respect to t is the set of all anti-
derivatives of r, denoted by

∫ t dtr( ) .

 47. Differentiable vector functions are continuous Show that if 
= + +t f t g t h tr i j k( ) ( ) ( ) ( )  is differentiable at =t t ,0  then it 

is continuous at t0 as well.

 48. Constant Function Rule Prove that if u is the vector function 
with the constant value C, then =d dtu 0.

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps in Exercises 49–52.

 a. Plot the space curve traced out by the position vector r.

 b. Find the components of the velocity vector d dtr .

 c. Evaluate d dtr  at the given point t0 and determine the equa-
tion of the tangent line to the curve at tr( ).0

 d. Plot the tangent line together with the curve over the given 
interval.

 49. ( ) ( )= − + + +t t t t t t t tr i j k( ) sin cos cos sin ,2  
π π≤ ≤ =t t0 6 , 3 20

 50. = + + − ≤ ≤ =−t t e e t tr i j k( ) 2 , 2 3, 1t t
0

 51. π( ) ( )( )= + + + ≤ ≤t t t t tr i j k( ) sin 2 ln 1 , 0 4 , 
π=t 40

 52. ( ) ( )( )= + + + +t t t tr i j k( ) ln 2 arctan 3 1  ,2 2  
− ≤ ≤ =t t3 5, 30

In Exercises 53 and 54, you will explore graphically the behavior of 
the helix

( ) ( )= + +t at at btr i j k( ) cos sin

as you change the values of the constants a and b. Use a CAS to per-
form the steps in each exercise.

 53. Set =b 1. Plot the helix tr( ) together with the tangent line  
to the curve at π=t 3 2 for =a 1, 2, 4, and 6 over the inter-
val π≤ ≤t0 4 . Describe in your own words what happens to 
the graph of the helix and the position of the tangent line as a 
increases through these positive values.

 54. Set =a 1. Plot the helix tr( ) together with the tangent line to the 
curve at π=t 3 2 for =b 1 4, 1 2, 2, and 4 over the interval 

π≤ ≤t0 4 . Describe in your own words what happens to the  
graph of the helix and the position of the tangent line as b increases 
through these positive values.

In this section we investigate integrals of vector functions and their application to motion 
along a path in space or in the plane.

12.2 Integrals of Vector Functions; Projectile Motion

Integrals of Vector Functions

A differentiable vector function tR( ) is an antiderivative of a vector function tr( ) on an 
interval I if =d dtR r at each point of I. If R is an antiderivative of r on I, it can be 
shown, working one component at a time, that every antiderivative of r on I has the form 

+R C for some constant vector C (Exercise 45). The set of all antiderivatives of r on I is 
the indefinite integral of r on I.

The usual arithmetic rules for indefinite integrals apply.

EXAMPLE 1  To integrate a vector function, we integrate each of its components.

 ∫ ∫ ∫ ∫( ) ( ) ( )( )( )+ − = + −t t dt t dt dt t dti j k i j kcos 2 cos 2  (1)

 ( ) ( )( )= + + + − +t C t C t Ci j ksin 1 2
2

3  (2)

 ( )= + − +t t ti j k Csin 2     = + −C C C Ci j k1 2 3
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 12.2  Integrals of Vector Functions; Projectile Motion 735

As in the integration of scalar functions, we recommend that you skip the steps in  
Equa tions (1) and (2) and go directly to the final form. Find an antiderivative for each  
component and add a constant vector at the end. 

DEFINITION If the components of = + +t f t g t h tr i j k( ) ( ) ( ) ( )  are integra-
ble over [ ]a b, , then so is r, and the definite integral of r from a to b is

∫ ∫ ∫ ∫( ) ( ) ( )= + +t dt f t dt g t dt h t dtr i j k( ) ( ) ( ) ( ) .
a

b

a

b

a

b

a

b

EXAMPLE 2  As in Example 1, we integrate each component.

∫ ∫ ∫ ∫

π π
π π

( ) ( ) ( )( )( )

[ ]] [ ] [

+ − = + −

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − + − − −

= −

π π π π

π π π

t t dt t dt dt t dt

t t t

i j k i j k

i j k

i j k

j k

cos 2 cos 2

sin  

0 0 0 0

0 0 0 0

0 0

2

0

2 2

2  

The Fundamental Theorem of Calculus for continuous vector functions says that

∫ = ⎤
⎦⎥

= −t dt t b ar R R R( ) ( ) ( ) ( ),
a

b

a

b

where R is any antiderivative of r, so that ′ =t tR r( ) ( ) (Exercise 46). Notice that an anti-
derivative of a vector function is also a vector function, whereas a definite integral of a 
vector function is a single constant vector.

EXAMPLE 3  Suppose we do not know the path of a hang glider, but only its accel-
eration vector ( ) ( )= − − +t t ta i j k( ) 3 cos 3 sin 2 . We also know that initially (at time 

=t 0) the glider departed from the point ( )4, 0, 0  with velocity =v j(0) 3 . Find the glid-
er’s position as a function of t.

Solution Our goal is to find tr( ) knowing

( ) ( )= = − − +

= = + +

d
dt

t ta r i j k

v j r i j k

The differential equation: 3 cos 3 sin 2

The initial conditions: (0) 3 and (0) 4 0 0 .

2

2

Integrating both sides of the differential equation with respect to t gives

( ) ( )= − + + +t t t tv i j k C( ) 3 sin 3 cos 2 .1

We use =v j(0) 3  to find C :1

( ) ( )= − + + +

= +

=

j i j k C

j j C

C

3 3 sin 0 3 cos 0 (0)

3 3

0.

1

1

1

The glider’s velocity as a function of time is

( ) ( )= = − + +d
dt

t t t tr v i j k( ) 3 sin 3 cos 2 .

Definite integrals of vector functions are best defined in terms of components. The 
definition is consistent with how we compute limits and derivatives of vector functions.
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736 Chapter 12 Vector-Valued Functions and Motion in Space

FIGURE 12.9 The path of the hang 
glider in Example 3. Although the path 
spirals around the z-axis, it is not a helix.

z

x y

(4, 0, 0)

Integrating both sides of this last differential equation gives

( ) ( )= + + +t t t tr i j k C( ) 3 cos 3 sin .2
2

We then use the initial condition r i(0) 4  to find C :2

( ) ( ) ( )

( ) ( )

= + + +

= + + +

=

i i j k C

i i j k C

C i

4 3 cos 0 3 sin 0 0

4 3 0 0

.

2
2

2

2

The glider’s position as a function of t is

( ) ( )= + + +t t t tr i j k( ) 1 3 cos 3 sin .2

This is the path of the glider shown in Figure 12.9. Although the path resembles that of a 
helix due to its spiraling nature around the z-axis, it is not a helix because of the way it is 
rising. (We say more about this in Section 12.5.) 

The Vector and Parametric Equations for Ideal Projectile Motion

A classic example of integrating vector functions is the derivation of the equations for the 
motion of a projectile. In physics, projectile motion describes how an object fired at some 
angle from an initial position, and acted upon by only the force of gravity, moves in a verti-
cal coordinate plane. In the classic example, we ignore the effects of any frictional drag on 
the object, which may vary with its speed and altitude, and also the fact that the force of 
gravity changes slightly with the projectile’s changing height. In addition, we ignore the 
long-distance effects of Earth turning beneath the projectile, such as in a rocket launch or 
the firing of a projectile from a cannon. Ignoring these effects gives us a reasonable 
approximation of the motion in most cases.

To derive equations for projectile motion, we assume that the projectile behaves like a 
particle moving in a vertical coordinate plane and that the only force acting on the projec-
tile during its flight is the constant force of gravity, which always points straight down.  
The magnitude of the gravitational acceleration g is approximately 9.8 m s2 at sea level. 
We assume that the projectile is launched from the origin at time t 0 into the first  
quadrant with an initial velocity v 0 (Figure 12.10). If v 0 makes an angle  with the  
horizontal, then

( ) ( )= +v v i v jcos sin .0 0 0

If we use the simpler notation 0 for the initial speed v ,0  then

 υ α υ α( ) ( )= +v i jcos sin .0 0 0  (3)

The projectile’s initial position is

 = + =r i j0 0 0.0  (4)

Newton’s second law of motion says that the force acting on the projectile is equal to 
the projectile’s mass m times its acceleration, or ( )m d dtr2 2 , if r is the projectile’s position 
vector and t is time. If the force is solely the gravitational force mgj, then

= − = −m d
dt

mg d
dt

gr j r jand ,
2

2

2

2

where g is the acceleration due to gravity. We find r as a function of t by solving the fol-
lowing initial value problem.

= −

= = =

d
dt

g

d
dt

t

r j

r r r v

Differential equation:

Initial conditions: and when  0

2

2

0 0

FIGURE 12.10 (a) Position, velocity, 
acceleration, and launch angle at t 0. 
(b) Position, velocity, and acceleration at 
a later time t.

x

y

(a)

(b)

x

y

0
R

Horizontal range

v

a = −gj

@ v0 @  cos a i

@ v0 @  sin a j
v0

r = 0 at
time t = 0

(x, y)

a = −gj

r = x i + yj

a
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 12.2  Integrals of Vector Functions; Projectile Motion 737

Ideal Projectile Motion Equation

 υ α υ α( )( ) ( )= + −t t gtr i jcos sin 1
2

.0 0
2  (5)

The first integration gives

= − +d
dt

gtr j v( ) .0

A second integration gives

= − + +gt tr j v r1
2

.2
0 0

Substituting the values of v 0 and r0 from Equations (3) and (4) gives

� ������������� �������������
gt t tr j i j 01

2
cos sin .

tv

2
0 0

0

υ α υ α( ) ( )= − + + +

Collecting terms, we obtain the following.

Equation (5) is the vector equation of the path for ideal projectile motion. The angle α 
is the projectile’s launch angle (firing angle, angle of elevation), and υ ,0  as we said 
before, is the projectile’s initial speed. The components of r give the parametric equations

 υ α υ α( ) ( )= = −x t y t gtcos and sin 1
2

,0 0
2  (6)

where x is the distance downrange and y is the height of the projectile at time ≥t 0.

EXAMPLE 4  A projectile is fired from the origin over horizontal ground at an initial 
speed of 500 m s and a launch angle of °60 . Where will the projectile be 10  s later?

Solution We use Equation (5) with υ α= = ° =g500, 60 , 9.8,0  and =t 10 to find 
the projectile’s components 10 s after firing.

υ α υ α( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )

= + −

= +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

≈ +

t t gtr i j

i j

i j

cos sin 1
2

500 1
2

10 500 3
2

10 1
2

9.8 100

2500 3840

0 0
2

Ten seconds after firing, the projectile is about 3840 m above ground and 2500 m down-
range from the origin. 

Ideal projectiles move along parabolas, as we now deduce from Equations (6). If we 
substitute υ α( )=t x cos0  from the first equation into the second, we obtain the Cartesian 
coordinate equation

υ α
α( )= −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +y

g
x x

2 cos
tan .

0
2 2

2

This equation has the form = +y ax bx,2  so its graph is a parabola.
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738 Chapter 12 Vector-Valued Functions and Motion in Space

If we fire our ideal projectile from the point ( )x y,0 0  instead of the origin (Figure 12.11), 
the position vector for the path of motion is

 υ α υ α( )( )( ) ( )= + + + −x t y t gtr i jcos sin 1
2

,0 0 0 0
2  (7)

as you are asked to show in Exercise 33.

Height, Flight Time, and Range for Ideal Projectile Motion
For ideal projectile motion when an object is launched from the origin over a 
horizontal surface with initial speed υ0 and launch angle α:

Maximum height:
υ α( )

=y
g

sin
2max

0
2

Flight time:
υ α

=t
g

2 sin0

Range:
υ

α=R
g

sin 20
2

FIGURE 12.11 The path of a projectile 
fired from ( )x y,0 0  with an initial velocity  
v 0 at an angle of α degrees with the  
horizontal.

0
x

y

a

v0

(x0, y0)

A projectile reaches its highest point when its vertical velocity component is zero. 
When fired over horizontal ground, the projectile lands when its vertical component equals 
zero in Equation (5), and the range R is the distance from the origin to the point of impact. 
We summarize the results here, which you are asked to verify in Exercise 31.

EXAMPLE 5  A baseball is hit when it is 1 m above the ground. It leaves the bat with 
initial speed of 50 m s, making an angle of 20° with the horizontal. At the instant the ball 
is hit, an instantaneous gust of wind blows in the horizontal direction directly opposite the 
direction the ball is taking toward the outfield, adding a component of i2.5 m s( )−  to the 
ball’s initial velocity 2.5 m s 9 km h .( )=

 (a) Find a vector equation (position vector) for the path of the baseball.

 (b) How high does the baseball go, and when does it reach maximum height?

 (c) Assuming that the ball is not caught, find its range and flight time.

Solution 

 (a) Using Equation (3) and accounting for the gust of wind, the initial velocity of the 
baseball is

v i j i

i j i

i j

cos sin 2.5

50 cos 20 50 sin 20 2.5

50 cos 20 2.5 50 sin 20 .

0 0 0υ α υ α( ) ( )

( ) ( )

( ) ( )

( )

= + −

= ° + ° −

= ° − + °

The initial position is r i j0 1 .0 = +  Integration of d dt gr j2 2 = −  gives

d
dt

gtr j v( ) .0= − +

Projectile Motion with Wind Gusts

The next example shows how to account for another force acting on a projectile due to a 
gust of wind. We assume that the path of the baseball in Example 5 lies in a vertical plane.
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 12.2  Integrals of Vector Functions; Projectile Motion 739

Integrating Vector-Valued Functions
Evaluate the integrals in Exercises 1–10.

 1. ∫ [ ]( )+ + +t t dti j k7 13

0

1

 2. ∫ ( )( )− + +⎡
⎣⎢

⎤
⎦⎥

t t
t

dti j k6 6 3 4
21

2

 3. ∫ ( ) ( )[ ]( )+ + +
π

π

−
t t t dti j ksin 1 cos sec 2

4

4

 4. ∫ ( ) ( ) ( )[ ]+ +
π

t t t t t dti j ksec tan tan 2 sin cos
0

3

 5. ∫ +
−

+⎡
⎣⎢

⎤
⎦⎥t t t
dti j k1 1

5
1
21

4

 6. ∫ −
+

+
⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥t t
dti k2

1
3

12 20

1

 7. ∫ [ ]+ +−te e dti j kt t

0

1
2

 8. ∫ [ ]+ +te e t dti j klnt t

1

ln3

 9. ∫ [ ]− +
π

t t t dti j kcos sin 2 sin 2

0

2

 10. ∫ [ ]+ −
π

t t t t dti j ksec tan sin2

0

4

EXERCISES 12.2 

A second integration gives

gt tr j v r1
2

.2
0 0= − + +

Substituting the values of v 0 and r0 into the last equation gives the position vector of 
the baseball.

gt t

t t t

t t t

r j v r

j i j j

i j

1
2
4.9 50 cos 20 2.5 50 sin 20 1

50 cos 20 2.5 1 50 sin 20 4.9 .

2
0 0

2

2

( ) ( )

( ) ( )( )

= − + +

= − + ° − + ° +

= ° − + + ° −

 (b) The baseball reaches its highest point when the vertical component of velocity is zero, or

dy
dt

t50 sin 20 9.8 0.= ° − =

Solving for t we find

t
50 sin 20

9.8
1.75 s.=

°
≈

Substituting this time into the vertical component for r gives the maximum height

y 1 50 sin 20 1.75 4.9 1.75 15.9 m.max
2( )( ) ( )= + ° − ≈

That is, the maximum height of the baseball is about 15.9 m, reached about 11.75 s 
after leaving the bat.

 (c) To find when the baseball lands, we set the vertical component for r equal to 0 and 
solve for t:

t t

t t

1 50 sin 20 4.9 0

1 17.1 4.9 0.

2

2

( )
( )

+ ° − =

+ − =

The solution values are about t 3.55 s=  and t 0.06 s.= −  Substituting the positive 
time into the horizontal component for r, we find the range

R 50 cos 20 2.5 3.55 157.8 m.( )( )= ° − ≈

Thus, the horizontal range is about 157.8 m, and the flight time is about 3.55 s. 

In Exercises 41 and 42, we consider projectile motion when there is air resistance 
slowing down the flight.
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740 Chapter 12 Vector-Valued Functions and Motion in Space

Initial Value Problems
Solve the initial value problems in Exercises 11–20 for r as a vector 
function of t.

 11. = − − −

= + +

d
dt

t t tr i j k

r i j k

Differential equation:

Initial condition: (0) 2 3

 12. ( )( )= + −

=

d
dt

t t tr i j

r j

Differential equation: 180 180 16

Initial condition: (0) 100

2

 13. ( )= + + +
+

=

−d
dt

t e
t

r i j k

r k

Differential equation: 3
2

1 1
1

Initial condition: (0)

t1 2

 14. ( )= + + +

= +

d
dt

t t t tr i j k

r i j

Differential equation: 4 2

Initial condition: (0)

3 2

 15. 

π π( )( )( ) ( )= + − − < <

= − +

d
dt

t t t tr i j k

r i j k

Differential equation:

tan cos 1
2

sec 2 ,
4 4

Initial condition: (0) 3 2

 16. 

( ) ( )( )=
+

− +
−

+ +
+

<

= − +

d
dt

t
t

t
t

t
t

tr i j k

r i j k

Differential equation:

2
1

2
4
3

, 2

Initial condition: (0)

2

2 2

2

 17. = −

=

= +
=

d
dt

d
dt

r k

r k

r i j

Differential equation: 32

Initial conditions: (0) 100  and

8 8
t

2

2

0

 18. ( )= − + +

= + +

=
=

d
dt

d
dt

r i j k

r i j k

r 0

Differential equation:

Initial conditions: (0) 10 10 10  and

t

2

2

0

 19. = − +

= + +

= − +

−

=

d
dt

e e e

d
dt

r i j k

r i j k

r i j

Differential equation: 4

Initial conditions: (0) 3 2  and

4

t t t

t

2

2
2

0

 20. 

( ) ( ) ( )= − +

= −

=
=

d
dt

t t t t

d
dt

r i j k

r i k

r i

Differential equation:

sin cos 4 sin cos

Initial conditions: (0)  and

t

2

2

0

Motion Along a Straight Line

 21. At time =t 0, a particle is located at the point ( )1, 2, 3 . It travels 
in a straight line to the point ( )4,1, 4 , has speed 2 at ( )1, 2, 3 , and 
has constant acceleration − +i j k3 . Find an equation for the 
position vector tr( ) of the particle at time t.

 22. A particle traveling in a straight line is located at the point 
( )−1, 1, 2  and has speed 2 at time =t 0. The particle moves 
toward the point ( )3, 0, 3  with constant acceleration + +i j k2 . 
Find its position vector tr( ) at time t.

Projectile Motion
Projectile flights in Exercises 23–40 are to be treated as ideal unless 
stated otherwise. All launch angles are assumed to be measured from 
the horizontal. All projectiles are assumed to be launched from the ori-
gin over a horizontal surface unless stated otherwise. For some exer-
cises, a calculator may be helpful.

 23. Travel time A projectile is fired at a speed of 840 m s at an 
angle of °60 . How long will it take to get 21 km downrange?

 24. Range and height versus speed 

 a. Show that doubling a projectile’s initial speed at a given 
launch angle multiplies its range by 4.

 b. By about what percentage should you increase the initial 
speed to double the height and range?

 25. Flight time and height A projectile is fired with an initial speed 
of 500 m s at an angle of elevation of °45 .

 a. When and how far away will the projectile strike?

 b. How high overhead will the projectile be when it is 5 km 
downrange?

 c. What is the greatest height reached by the projectile?

 26. Throwing a baseball A baseball is thrown from the stands 
9.8 m above the field at an angle of °30  up from the horizontal. 
When and how far away will the ball strike the ground if its initial 
speed is 9.8 m s?

 27. Firing golf balls A spring gun at ground level fires a golf ball at 
an angle of °45 . The ball lands 10 m away.

 a. What was the ball’s initial speed?

 b. For the same initial speed, find the two firing angles that make 
the range 6 m.

 28. Beaming electrons An electron in a cathode-ray tube (CRT) is 
beamed horizontally at a speed of 5 10 m s6×  toward the face of 
the tube 40 cm away. About how far will the electron drop before 
it hits?

 29. Equal-range firing angles What two angles of elevation will 
enable a projectile to reach a target 16 km downrange on the same 
level as the gun if the projectile’s initial speed is 400 m s?

 30. Finding muzzle speed Find the muzzle speed of a gun whose 
maximum range is 24.5 km.

 31. Verify the results given in the text (following Example 4) for 
the maximum height, flight time, and range for ideal projectile 
motion.

 32. Colliding marbles The accompanying figure shows an experi-
ment with two marbles. Marble A was launched toward marble B 
with launch angle α and initial speed υ .0  At the same instant, mar-
ble B was released to fall from rest at αR tan  units directly above 
a spot R units downrange from A. The marbles were found to col-
lide regardless of the value of υ .0  Was this mere coincidence, or 
must this happen? Give reasons for your answer.

B

A

R

1
2

a

v0

R tan a
gt2
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 12.2  Integrals of Vector Functions; Projectile Motion 741

 33. Firing from ( )x y,0 0  Derive the equations

υ α

υ α

( )

( )

= +

= + −

x x t

y y t gt

cos ,

sin 1
2

0 0

0 0
2

(see Equation (7) in the text) by solving the following initial value 
problem for a vector r in the plane.

υ α υ α( ) ( )

= −

= +

= +

d
dt

g

x y

d
dt

r j

r i j

r i j

Differential equation:

Initial conditions: (0)

(0) cos sin

2

2

0 0

0 0

 34. Where trajectories crest For a projectile fired from the ground 
at launch angle α with initial speed υ ,0  consider α as a variable 
and υ0  as a fixed constant. For each α α π< <, 0 2, we obtain 
a parabolic trajectory as shown in the accompanying figure. Show 
that the points in the plane that give the maximum heights of these 
parabolic trajectories all lie on the ellipse

υ υ
+ −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ =x y

g g
4

4 4
,2 0

2 2
0

4

2

where ≥x 0.

x

y

0

Ellipse

1
2

Parabolic
trajectory

R, ymaxa             b

 35. Launching downhill An ideal projectile is launched straight 
down an inclined plane as shown in the accompanying figure.

 a. Show that the greatest downhill range is achieved when the 
initial velocity vector bisects angle AOR.

 b. If the projectile were fired uphill instead of down, what launch 
angle would maximize its range? Give reasons for your answer.

A

R

V
er

tic
al

O

Hill

v0

a

 36. Elevated green A golf ball is hit with an initial speed of 
35.5 m s at an angle of elevation of °45  from the tee to a green 

that is elevated 14 m above the tee as shown in the diagram. 
Assuming that the pin, 112 m downrange, does not get in the way, 
where will the ball land in relation to the pin?

112 m

Pin

Green

14 m

NOT TO SCALE

Tee

45°
35.5 m�s

 37. Volleyball A volleyball is hit when it is 1.3 m above the ground 
and 4 m from a 2-m-high net. It leaves the point of impact with an 
initial velocity of 12 m s at an angle of °27  and slips by the oppos-
ing team untouched.

 a. Find a vector equation for the path of the volleyball.

 b. How high does the volleyball go, and when does it reach 
maximum height?

 c. Find its range and flight time.

 d. When is the volleyball 2.3 m above the ground? How far 
(ground distance) is the volleyball from where it will land?

 e. Suppose that the net is raised to 2.5 m. Does this change 
things? Explain.

 38. Shot put In Moscow in 1987, Natalya Lisouskaya set a women’s  
world record by putting a 4kg shot 22.63 m. Assuming that she 
launched the shot at a °40  angle to the horizontal from 2 m above 
the ground, what was the shot’s initial speed?

 39. A child throws a ball with an initial speed of 18 m s at an angle of 
elevation of °60  toward a tall building that is 7 m from the child. 
If the child’s hand is 1.6 m from the ground, show that the ball 
hits the building, and find the height above the ground of the point 
where the ball hits the building.

 40. Hitting a baseball under a wind gust A baseball is hit when it 
is 0.8 m above the ground. It leaves the bat with an initial velocity  
of 40 m s at a launch angle of °23 . At the instant the ball is hit, 
an instantaneous gust of wind blows against the ball, adding a 
component of i4 m s( )−  to the ball’s initial velocity. A 5-m-high 
fence lies 90 m from home plate in the direction of the flight.

 a. Find a vector equation for the path of the baseball.

 b. How high does the baseball go, and when does it reach maxi-
mum height?

 c. Find the range and flight time of the baseball, assuming that 
the ball is not caught.

 d. When is the baseball 6 m high? How far (ground distance) is 
the baseball from home plate at that height?

 e. Has the batter hit a home run? Explain.

Projectile Motion with Linear Drag
The main force affecting the motion of a projectile, other than gravity, 
is air resistance. This slowing down force is drag force, and it acts in 
a direction opposite to the velocity of the projectile (see accompanying 
figure). For projectiles moving through the air at relatively low speeds, 
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742 Chapter 12 Vector-Valued Functions and Motion in Space

however, the drag force is (very nearly) proportional to the speed (to 
the first power) and so is called linear.

y

x

Drag force

Velocity

Gravity

 41. Linear drag Derive the equations

υ
α

υ
α( )

( )

( ) ( )

= −

= − + − −

−

− −

x
k

e

y
k

e
g

k
kt e

1 cos

1 sin 1

kt

kt kt

0

0
2

by solving the following initial value problem for a vector r in 
the plane.

υ α υ α( ) ( )

= − − = − −

=

= = +
=

d
dt

g k g k d
dt

d
dt

r j v j r

r 0

r v i j

Differential equation:

Initial conditions: (0)

cos sin
t

2

2

0
0 0 0

The drag coefficient k is a positive constant representing 
resistance due to air density, 0  and  are the projectile’s initial 
speed and launch angle, and g is the acceleration of gravity.

 42. Hitting a baseball with linear drag Consider the baseball 
problem in Example 5 when there is linear drag (see Exercise 41). 
Assume a drag coefficient k 0.12, but no gust of wind.

 a. From Exercise 41, find a vector form for the path of the baseball.

 b. How high does the baseball go, and when does it reach maxi-
mum height?

 c. Find the range and flight time of the baseball.

 d. When is the baseball 9 m high? How far (ground distance) is 
the baseball from home plate at that height?

 e. A 3-m-high outfield fence is 115 m from home plate in the 
direction of the flight of the baseball. The outfielder can jump 
and catch any ball up to 3.3 m off the ground to stop it from 
going over the fence. Has the batter hit a home run?

Theory and Examples

 43. Establish the following properties of integrable vector functions.

 a. The Constant Scalar Multiple Rule:

∫ ∫ ( )=k t dt k t dt kr r( ) ( ) any scalar 
a

b

a

b

The Rule for Negatives,

∫ ∫( )− = −t dt t dtr r( ) ( ) ,
a

b

a

b

is obtained by taking = −k 1.

 b. The Sum and Difference Rules:

∫ ∫ ∫( )± = ±t t dt t dt t dtr r r r( ) ( ) ( ) ( )
a

b

a

b

a

b

1 2 1 2

 c. The Constant Vector Multiple Rules:

∫ ∫ ( )⋅ = ⋅t dt t dtC r C r C( ) ( ) any constant vector 
a

b

a

b

and

∫ ∫ ( )× = ×t dt t dtC r C r C( ) ( ) any constant vector 
a

b

a

b

 44. Products of scalar and vector functions Suppose that the sca-
lar function u t( ) and the vector function tr( ) are both defined for 
a t b.

 a. Show that ur is continuous on [ ]a b,  if u and r are continuous 
on [ ]a b, .

 b. If u and r are both differentiable on [ ]a b, , show that ur is dif-
ferentiable on [ ]a b,  and that

= +d
dt

u u d
dt

du
dt

r r r( ) .

 45. Antiderivatives of vector functions 

 a. Use Corollary 2 of the Mean Value Theorem for scalar func-
tions to show that if two vector functions tR ( )1  and tR ( )2  
have identical derivatives on an interval I, then the functions 
differ by a constant vector value throughout I.

 b. Use the result in part (a) to show that if tR( ) is any antideriva-
tive of tr( ) on I, then any other antiderivative of r on I equals 

tR C( )  for some constant vector C.

 46. The Fundamental Theorem of Calculus The Fundamental 
Theorem of Calculus for scalar functions of a real variable holds 
for vector functions of a real variable as well. Prove this by using 
the theorem for scalar functions to show first that if a vector func-
tion tr( ) is continuous for a t b, then

∫ =d
dt

d tr r( ) ( )
a

t

at every point t of ( )a b, . Then use the conclusion in part (b) of 
Exercise 45 to show that if R is any antiderivative of r on [ ]a b, ,  
then

∫ = −t dt b ar R R( ) ( ) ( ).
a

b

 47. Hitting a baseball with linear drag under a wind gust  
Consider again the baseball problem in Example 5. This time, 
assume a drag coefficient of 0.08 and an instantaneous gust of 
wind that adds a component of i5 m s( )−  to the initial velocity  
at the instant the baseball is hit.

 a. Find a vector equation for the path of the baseball.

 b. How high does the baseball go, and when does it reach  
maximum height?

 c. Find the range and flight time of the baseball.

 d. When is the baseball 10 m high? How far (ground distance)  
is the baseball from home plate at that height?

 e. A 6-m-high outfield fence is 120 m from home plate in the 
direction of the flight of the baseball. Has the batter hit a home 
run? If “yes,” what change in the horizontal component of the 
ball’s initial velocity would have kept the ball in the park? If 
“no,” what change would have allowed it to be a home run?

 48. Height versus time Show that a projectile attains three-quarters 
of its maximum height in half the time it takes to reach the maxi-
mum height.
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 12.3  Arc Length in Space 743

DEFINITION The length of a smooth curve = + +t x t y t z tr i j k( ) ( ) ( ) ( ) , 
≤ ≤a t b, that is traced exactly once as t increases from =t a to =t b is

 L dx
dt

dy
dt

dz
dt

dt.
a

b
2 2 2

∫ ( )( ) ( )= + +  (1)

Arc Length Formula

 ∫=L dtv
a

b
 (2)

FIGURE 12.13 The helix in Example 1, 
( ) ( )= + +t t t tr i j k( ) cos sin .

y

z

0

x

(1, 0, 0)

r
P

t = 0

t = p
2

t = 2p
t = p

2p

FIGURE 12.12 Smooth curves can be 
scaled like number lines, the coordinate of 
each point being its directed distance along 
the curve from a preselected base point.

Base point

s

–2

–1 20
1

3 4

In this and the next two sections, we study the mathematical features of a curve’s shape 
that describe the sharpness of its turning and its twisting.

12.3 Arc Length in Space

Arc Length Along a Space Curve

One of the features of smooth space and plane curves is that they have a measurable length. 
This enables us to locate points along these curves by giving their directed distance s along 
the curve from some base point, the way we locate points on coordinate axes by giving 
their directed distance from the origin (Figure 12.12). This is what we did for plane curves 
in Section 10.2.

To measure distance along a smooth curve in space, we add a z-term to the formula we 
use for curves in the plane.

Just as for plane curves, we can calculate the length of a curve in space from any con-
venient parametrization that meets the stated conditions. We omit the proof.

The square root in Equation (1) is v , the length of a velocity vector d dtr . This 
enables us to write the formula for length a shorter way.

EXAMPLE 1  A glider is soaring upward along the helix

( ) ( )= + +t t t tr i j k( ) cos sin .

How long is the glider’s path from =t 0 to π=t 2 ?

Solution The path segment during this time corresponds to one full turn of the helix 
(Figure 12.13). The length of this portion of the curve is

∫ ∫

∫ π

( ) ( ) ( )= = − + +

= =

π

π

L dt t t dt

dt

v sin cos 1

2 2 2 units of length.

a

b 2 2 2

0

2

0

2

This is 2 times the circumference of the circle in the xy-plane over which the helix 
stands. 

If we choose a base point P t( )0  on a smooth curve C parametrized by t, each value of 
t determines a point =P t x t y t z t( ) ( ( ), ( ), ( )) on C and a “directed distance”

∫ τ τ=s t dv( ) ( ) ,
t

t

0
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744 Chapter 12 Vector-Valued Functions and Motion in Space

measured along C from the base point (Figure 12.14). This is the arc length function we 
defined in Section 10.2 for plane curves that have no z-component. If t t ,0  s t( ) is the 
distance along the curve from P t( )0  to P t( ). If t t ,0  s t( ) is the negative of the distance. 
Each value of s determines a point on C, and this parametrizes C with respect to s. We call 
s an arc length parameter for the curve. The parameter’s value increases in the direction 
of increasing t. We will see that the arc length parameter is particularly effective for inves-
tigating the turning and twisting nature of a space curve.

FIGURE 12.14 The directed distance 
along the curve from P t( )0  to any point 

P t( ) is ∫=s t dv( ) ( ) .
t

t

0

x

0

y

r

z

Base
point

P(t0)

s(t)

P(t)

Arc Length Parameter with Base Point P t( )0

 ∫ ∫[ ] [ ] [ ]= ′ + ′ + ′ =s t x y z d dv( ) ( ) ( ) ( ) ( )
t

t

t

t2 2 2

0 0

 (3)

 is the Greek letter tau (rhymes with 
“now”)

We use the Greek letter  (“tau”) as the variable of integration in Equation (3) because 
the letter t is already in use as the upper limit.

If a curve tr( ) is already given in terms of some parameter t, and s t( ) is the arc length 
function given by Equation (3), then we may be able to solve for t as a function of s: 
t t s( ). Then the curve can be reparametrized in terms of s by substituting for t: 

t sr r( ( )). The new parametrization identifies a point on the curve with its directed dis-
tance along the curve from the base point.

Unlike the case that appears in Example 2, the arc length parametrization is generally 
difficult to find analytically for a curve already given in terms of some other parameter t. 
Fortunately, however, we rarely need an exact formula for s t( ) or its inverse t s( ).

Speed on a Smooth Curve

Since the derivatives beneath the radical in Equation (3) are continuous (the curve is 
smooth), the Fundamental Theorem of Calculus tells us that s is a differentiable function of 
t with derivative

 ds
dt

tv( ) . (4)

EXAMPLE 2  This is an example for which we can actually find the arc length param-
etrization of a curve. If t 0,0  then the arc length parameter along the helix

( ) ( )= + +t t t tr i j k( ) cos sin

from t0 to t is

∫

∫

=

=

=

s t d

d

t

v( ) ( )

2

2 .

t

t

t

0

0

Eq. (3)

Value from Example 1

Solving this equation for t gives t s 2. Substituting into the position vector r gives the 
following arc length parametrization for the helix:

 ( ) ( )= + +t s s s sr i j k( ( )) cos
2

sin
2 2

. 

HISTORICAL BIOGRAPHY

Josiah Willard Gibbs  
(1839–1903)
Gibbs, born in Connecticut, USA, taught 
at Yale as a professor of mathematics. He 
made contributions to thermodynamics, 
electromagnetics, and statistical mechanics. 
For his foundational work, Gibbs is known  
as the father of vector analysis.

To know more, visit the companion Website. 
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 12.3  Arc Length in Space 745

FIGURE 12.16 Counterclockwise 
motion around the unit circle.

x

y

0
t

r

T = v

P(x, y)

(1, 0)

x2 + y2 = 1

FIGURE 12.15 We find the unit tangent 
vector T by dividing v by its length v .

y

z

0

x

r

s

v

P(t0)

T = v
@ v @

Although the base point P t( )0  plays a role in defining s in Equation (3), it plays no 
role in Equation (4). The rate at which a moving particle covers distance along its path is 
independent of how far away it is from the base point. Equation (4) says that this rate is the 
magnitude of v.

Notice that >ds dt 0 since, by definition, v  is never zero for a smooth curve. We 
see once again that s is an increasing function of t.

Unit Tangent Vector

On a smooth curve, we already know that the velocity vector = d dtv r  is tangent to the 
curve tr( ) and that the vector

=T v
v

is therefore a unit vector tangent to the curve, called the unit tangent vector (Figure 12.15). 
The unit tangent vector T for a smooth curve is a differentiable function of t whenever v is 
a differentiable function of t. As we will see in Section 12.5, T is one of three unit vectors 
in a traveling reference frame that is used to describe the motion of objects traveling in 
three dimensions.

EXAMPLE 3  Find the unit tangent vector of the curve

( ) ( )= + + +t t t tr i j k( ) 1 3 cos 3 sin 2

representing the path of the glider in Example 3, Section 12.2.

Solution In that example, we found

( ) ( )= = − + +d
dt

t t tv r i j k3 sin 3 cos 2

and

= + tv 9 4 .2

Thus,

= = −
+

+
+

+
+

t

t

t

t

t

t
T v

v
i j k

3 sin

9 4

3 cos

9 4

2

9 4
.

2 2 2
 

For the counterclockwise motion

( ) ( )= +t t tr i j( ) cos sin

around the unit circle, we see that

( ) ( )= − +t tv i jsin cos

is already a unit vector, so =T v and T is orthogonal to r (Figure 12.16).
The velocity vector is the change in the position vector r with respect to time t, but 

how does the position vector change with respect to arc length? More precisely, what is the 
derivative d dsr ? Since >ds dt 0 for the curves we are considering, s is one-to-one and 
has an inverse that gives t as a differentiable function of s (Section 3.8). The derivative of 
the inverse is

= =dt
ds ds dt v

1 1 .

This makes r a differentiable function of s whose derivative can be calculated with the 
Chain Rule to be

 = = = =d
ds

d
dt

dt
ds

r r v
v

v
v

T1 . (5)

This equation says that d dsr  is the unit tangent vector in the direction of the velocity  
vector v (Figure 12.15).
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746 Chapter 12 Vector-Valued Functions and Motion in Space

Finding Tangent Vectors and Lengths
In Exercises 1–8, find the curve’s unit tangent vector. Also, find the 
length of the indicated portion of the curve.

 1. π( ) ( )= + + ≤ ≤t t t t tr i j k( ) 2 cos 2 sin 5 , 0

 2. π( ) ( )= + + ≤ ≤t t t t tr i j k( ) 6 sin 2 6 cos 2 5 , 0

 3. ( )= + ≤ ≤t t t tr i k( ) 2 3 , 0 83 2

 4. ( ) ( )= + − + + ≤ ≤t t t t tr i j k( ) 2 1 , 0 3

 5. π( ) ( )= + ≤ ≤t t t tr j k( ) cos sin , 0 23 3

 6. = − − ≤ ≤t t t t tr i j k( ) 6 2 3 , 1 23 3 3

 7. π( )( ) ( )= + + ≤ ≤t t t t t t tr i j k( ) cos sin 2 2 3 , 03 2

 8. ( ) ( )= + + − ≤ ≤t t t t t t t tr i j( ) sin cos cos sin , 2 2

 9. Find the point on the curve

( ) ( )= + +t t t tr i j k( ) 5 sin 5 cos 12

at a distance π26  units along the curve from the point ( )0, 5, 0  in 
the direction corresponding to increasing t values.

 10. Find the point on the curve

( ) ( )= − +t t t tr i j k( ) 12 sin 12 cos 5

at a distance π13  units along the curve from the point ( )−0, 12, 0  
in the direction corresponding to decreasing t values.

Arc Length Parameter
In Exercises 11–14, find the arc length parameter along the curve from 
the point where =t 0 by evaluating the integral

∫ τ τ=s t dv( ) ( )
t

0

from Equation (3). Then use the formula for s t( ) to find the length of 
the indicated portion of the curve.

 11. π( ) ( )= + + ≤ ≤t t t t tr i j k( ) 4 cos 4 sin 3 , 0 2

 12. π π( ) ( )= + + − ≤ ≤t t t t t t t tr i j( ) cos sin sin cos , 2

 13. ( ) ( )= + + − ≤ ≤t e t e t e tr i j k( ) cos sin   , ln 4 0t t t

 14. ( ) ( ) ( )= + + + + − − ≤ ≤t t t t tr i j k( ) 1 2 1 3 6 6 , 1 0

Theory and Examples

 15. Arc length Find the length of the curve

( ) ( ) ( )= + + −t t t tr i j k( ) 2 2 1 2

from ( )0, 0,1  to ( )2, 2, 0 .

 16. Length of helix The length π2 2 of the turn of the helix in 
Example 1 is also the length of the diagonal of a square π2  units 
on a side. Show how to obtain this square by cutting away and 
flattening a portion of the cylinder around which the helix winds.

 17. Ellipse 

 a. Show that the curve ( ) ( ) ( )= + + −t t t tr i j k( ) cos sin 1 cos , 
π≤ ≤t0 2 , is an ellipse by showing that it is the intersection 

of a right circular cylinder and a plane. Find equations for the 
cylinder and plane.

 b. Sketch the ellipse on the cylinder. Add to your sketch the unit 
tangent vectors at π π=t 0, 2, , and 3 2.π

 c. Show that the acceleration vector always lies parallel to the 
plane (orthogonal to a vector normal to the plane). Thus, if 
you draw the acceleration as a vector attached to the ellipse, it 
will lie in the plane of the ellipse. Add the acceleration vectors 
for t 0, 2, ,π π=  and 3 2π  to your sketch.

 d. Write an integral for the length of the ellipse. Do not try to 
evaluate the integral; it is nonelementary.

 e. Numerical integrator Estimate the length of the ellipse to 
two decimal places.

 18. Length is independent of parametrization To illustrate that 
the length of a smooth space curve does not depend on the param-
etrization you use to compute it, calculate the length of one turn of 
the helix in Example 1 with the following parametrizations.

 a. π( ) ( )= + + ≤ ≤t t t t tr i j k( ) cos 4 sin 4 4 , 0 2

 b. t t t t tr i j k( ) cos  2 sin 2 2 , 0 4π( )[ ] ( )[ ] ( )= + + ≤ ≤

 c. π( ) ( )= − − − ≤ ≤t t t t tr i j k( ) cos sin , 2 0

 19. The involute of a circle If a string wound around a fixed circle 
is unwound while held taut in the plane of the circle, its end P 
traces an involute of the circle. In the accompanying figure, the 
circle in question is the circle x y 12 2+ =  and the tracing point 
starts at 1, 0( ). The unwound portion of the string is tangent to the 
circle at Q, and t is the radian measure of the angle from the posi-
tive x-axis to segment OQ. Derive the parametric equations

= + = − >x t t t y t t t tcos sin , sin cos , 0

of the point P x y,( ) for the involute.

x

y

Q

t

O 1 (1, 0)

String

P(x, y)

 20. (Continuation of Exercise 19.) Find the unit tangent vector to the 
involute of the circle at the point P x y,( ).

 21. Distance along a line Show that if u is a unit vector, then the 
arc length parameter along the line t P tr u( ) 0= +  from the 
point P x y z, ,0 0 0 0( ) where t 0= , is t itself.

 22. Use Simpson’s Rule with n 10=  to approximate the length of arc 
of t t t tr i j k( ) 2 3= + +  from the origin to the point 2, 4, 8( ).

T

EXERCISES 12.3 
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 12.4  Curvature and Normal Vectors of a Curve 747

FIGURE 12.17 As P moves along the 
curve in the direction of increasing arc 
length, the unit tangent vector turns.  
The value of d dsT  at P is called the 
curvature of the curve at P.

x

y

0

s

P T

T

T

P0

κ is the Greek letter kappa.

DEFINITION If T is the unit tangent vector of a smooth curve in the plane, then 
the curvature function of the curve is

d
ds
T .κ =

Formula for Calculating Curvature
If tr( ) is a smooth curve in the plane, then the curvature is the scalar function

 d
dtv
T1 ,κ =  (1)

where T v v=  is the unit tangent vector.

FIGURE 12.18 Along a straight line,  
T always points in the same direction. The 
curvature, d dsT , is zero (Example 1).

T

In this section we study how a curve turns or bends. To gain perspective, we look first at 
curves in the coordinate plane. Then we consider curves in space.

12.4 Curvature and Normal Vectors of a Curve

Curvature of a Plane Curve

As a particle moves along a smooth curve in the plane, d dsT r=  turns as the curve 
bends. Since T is a unit vector, its length remains constant and only its direction changes 
as the particle moves along the curve. The rate at which T turns per unit of length along the 
curve is called the curvature (Figure 12.17). The traditional symbol for the curvature func-
tion is the Greek letter κ (“kappa”).

If d dsT  is large, T turns sharply as the particle passes through P, and the curvature 
at P is large. If d dsT  is close to zero, T turns more slowly, and the curvature at P is 
smaller.

If a smooth curve tr( ) is already given in terms of some parameter t other than the arc 
length parameter s, we can calculate the curvature as

κ = =

=

=

d
ds

d
dt

dt
ds

ds dt
d
dt

d
dt

T T

T

v
T

1

1 .

Chain Rule

ds
dt

v=

Testing the definition, we see in Examples 1 and 2 below that the curvature is constant 
for straight lines and circles.

EXAMPLE 1  A straight line is parametrized by t tr C v( ) = +  for constant vectors 
C and v. Thus, tr v( ) ,′ =  and the unit tangent vector T v v=  is a constant vector that 
always points in the same direction and has derivative 0 (Figure 12.18). It follows that, for 
any value of the parameter t, the curvature of the straight line is zero:

κ = = =d
dtv
T

v
01 1 0. 
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748 Chapter 12 Vector-Valued Functions and Motion in Space

EXAMPLE 2  Here we find the curvature of a circle. We begin with the parametrization

( ) ( )= +t a t a tr i j( ) cos sin

of a circle of radius a. Then

( ) ( )

( ) ( )

= = − +

= − + = = =

d
dt

a t a t

a t a t a a a

v r i j

v

sin cos

sin cos .2 2 2   Since a a a0, .> =

From this we find

( ) ( )

( ) ( )

= = − +

= − −

= + =

t t

d
dt

t t

d
dt

t t

T v
v

i j

T i j

T

sin cos

cos sin

cos sin 1.2 2

Hence, for any value of the parameter t, the curvature of the circle is

d
dt a av
T1 1 (1) 1 1

radius
.κ = = = =  

FIGURE 12.19 The vector d dsT , 
normal to the curve, always points in the 
direction in which T is turning. The unit 
normal vector N is the direction of d dsT .

T

s

T

N = 1
k

dT
ds

N = 1
k

dT
ds

P0

P1
P2

Among the vectors orthogonal to the unit tangent vector T, there is one of particular 
significance because it points in the direction in which the curve is turning. Since T has 
constant length (because its length is always 1), the derivative d dsT  is orthogonal to T 
(Equation 4, Section 12.1). Therefore, if we divide d dsT  by its length ,κ  we obtain a unit 
vector N orthogonal to T (Figure 12.19).

The vector d dsT  points in the direction in which T turns as the curve bends. 
Therefore, if we face in the direction of increasing arc length, the vector d dsT  points 
toward the right if T turns clockwise and toward the left if T turns counterclockwise. In 
other words, the principal normal vector N will point toward the concave side of the curve 
(Figure 12.19).

If a smooth curve tr( ) is already given in terms of some parameter t other than the arc 
length parameter s, we can use the Chain Rule to calculate N directly:

( )( )

=

=

=

d ds
d ds

d dt dt ds
d dt dt ds

d dt
d dt

N
T
T

T
T

T
T

.     dt
ds ds dt

1 0 cancels.= >

This formula enables us to find N without having to find κ and s first.

DEFINITION At a point where 0,κ ≠  the principal unit normal vector for a 
smooth curve in the plane is

d
ds

N T1 .
κ

=
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 12.4  Curvature and Normal Vectors of a Curve 749

EXAMPLE 3  Find T and N for the circular motion

( ) ( )= +t t tr i j( ) cos 2 sin 2 .

Solution We first find T:

( ) ( )

( ) ( )

= − +

= + =

= = − +

t t

t t

t t

v i j

v

T v
v

i j

2 sin 2 2 cos 2

4 sin 2 4 cos 2 2

sin 2 cos 2 .

2 2

From this we find

( ) ( )= − −

= + =

d
dt

t t

d
dt

t t

T i j

T

2 cos 2 2 sin 2

4 cos 2 4 sin 2 22 2

and

( ) ( )= = − −
d dt
d dt

t tN
T
T

i jcos 2 sin 2 .    Eq. (2)

Notice that T N 0,⋅ =  verifying that N is orthogonal to T. Notice too, that for the circular 
motion here, N points from tr( ) toward the circle’s center at the origin. 

Formula for Calculating N
If tr( ) is a smooth curve in the plane, then the principal unit normal is

 
d dt
d dt

N
T
T

,=  (2)

where T v v=  is the unit tangent vector.

FIGURE 12.20 The center of the  
osculating circle at P x y,( ) lies toward the 
inner side of the curve.

Curve

N
T

P(x, y)

Center of
curvature Radius of

curvature

Circle of
curvature

EXAMPLE 4  Find and graph the osculating circle of the parabola y x 2=  at the  
origin.

Solution We parametrize the parabola using the parameter t x=  (Section 10.1, 
Example 5):

t t tr i j( ) .2= +

Circle of Curvature for Plane Curves

The circle of curvature or osculating circle at a point P on a plane curve where 0κ ≠  is 
the circle in the plane of the curve that

1. is tangent to the curve at P (has the same tangent line the curve has)

2. has the same curvature the curve has at P

3. has center that lies toward the concave or inner side of the curve (as in Figure 12.20).

The radius of curvature of the curve at P is the radius of the circle of curvature, 
which, according to Example 2, is

Radius of curvature 1 .ρ
κ

= =

To find ,ρ  we find κ and take the reciprocal. The center of curvature of the curve at P is 
the center of the circle of curvature.
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750 Chapter 12 Vector-Valued Functions and Motion in Space

First we find the curvature of the parabola at the origin, using Equation (1):

= = +

= +

d
dt

t

t

v r i j

v

2

1 4 2

so that

t t tT v
v

i j1 4 2 1 4 .2 1 2 2 1 2( ) ( )= = + + +− −

From this we find

d
dt

t t t t tT i j4 1 4 2 1 4 8 1 4 .2 3 2 2 1 2 2 2 3 2( ) ( ) ( )= − + + + − +⎡⎣ ⎤⎦
− − −

At the origin, t 0,=  so the curvature is

κ( )
( )

( )

( )

=

= +

= + =

d
dtv
T

i j

0 1
0

0

1
1

0 2

1 0 2 2.2 2

  Eq. (1)

Therefore, the radius of curvature is 1 1 2κ = . At the origin we have t 0=  and T i,=  
so N j.=  Thus the center of the circle is 0,1 2( ). The equation of the osculating circle is

x y0 1
2

1
2

.2
2 2

( ) ( )( )− + − =

You can see from Figure 12.21 that the osculating circle is a better approximation to the 
parabola at the origin than is the tangent line approximation y 0.=  

FIGURE 12.21 The osculating circle 
for the parabola y x 2=  at the origin 
(Example 4).

x

y

0 1

Osculating
circle

1
2

y = x2

EXAMPLE 5  Find the curvature for the helix (Figure 12.22)

( ) ( )= + + ≥ + ≠t a t a t bt a b a br i j k( ) cos sin , , 0, 0.2 2

Solution We calculate T from the velocity vector v:

( ) ( )

( ) ( )[ ]

= − + +

= + + = +

= =
+

− + +

a t a t b

a t a t b a b

a b
a t a t b

v i j k

v

T v
v

i j k

sin cos

sin cos

1 sin cos .

2 2 2 2 2 2 2

2 2

FIGURE 12.22 The helix

( ) ( )= + +t a t a t btr i j k( ) cos sin ,

drawn with a and b positive and  t 0≥  
(Example 5).

y

z

0

x

(a, 0, 0)

r
P

t = 0

t = p
2

t = 2p
t = p

2pb

x2 + y2 = a2

Curvature and Normal Vectors for Space Curves

If a smooth curve in space is specified by the position vector tr( ) as a function of some 
parameter t, and if s is the arc length parameter of the curve, then the unit tangent vector T 
is d dsr v v .=  The curvature in space is then defined to be

 κ = =d
ds

d
dt

T
v

T1  (3)

just as for plane curves. The vector d dsT  is orthogonal to T, and we define the principal 
unit normal to be

 d
ds

d dt
d dt

N T T
T

1 .
κ

= =  (4)
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 12.4  Curvature and Normal Vectors of a Curve 751

Plane Curves
Find T, N, and κ for the plane curves in Exercises 1–4.

 1. π π( )= + − < <t t t tr i j( ) ln cos , 2 2

 2. π π( )= + − < <t t t tr i j( ) ln sec , 2 2

 3. t t tr i j( ) 2 3 5 2( )( )= + + −

 4. ( ) ( )= + + − >t t t t t t t tr i j( ) cos sin sin cos , 0

 5. A formula for the curvature of the graph of a function in the 
xy-plane 

 a. The graph y f x( )=  in the xy-plane automatically has the 
parametrization = =x x y f x, ( ), and the vector formula 

x x f xr i j( ) ( ) .= +  Use this formula to show that if f is a 
twice-differentiable function of x, then

x
f x

f x
( )

( )

1 ( )
.

2 3 2κ
( )

= ′′

+ ′⎡⎣ ⎤⎦
 b. Use the formula for κ in part (a) to find the curvature of 

π π( )= − < <y x xln cos , 2 2. Compare your answer 
with the answer in Exercise 1.

 c. Show that the curvature is zero at a point of inflection.

 6. A formula for the curvature of a parametrized plane curve 

 a. Show that the curvature of a smooth curve 
t f t g tr i j( ) ( ) ( )= +  defined by twice-differentiable func-

tions x f t( )=  and y g t( )=  is given by the formula

κ
[ ]

= ′ ′′ − ′ ′′
′ + ′
x y y x

x y( ) ( )
.

2 2 3 2

Apply this formula to find the curvatures of the following 
curves.

 b. π( )= + < <t t t tr i j( ) ln sin , 0

 c. ( )[ ] ( )= +t t tr i j( ) arctan sinh ln cosh

 7. Normals to plane curves 

 a. Show that t g t f tn i j( ) ( ) ( )= − ′ + ′  and 
t g t f tn i j( ) ( ) ( )− = ′ − ′  are both normal to the curve 

t f t g tr i j( ) ( ) ( )= +  at the point f t g t( ( ),  ( )).

To obtain N for a particular plane curve, we can choose the one of 
n or n−  from part (a) that points toward the concave side of the 
curve, and make it into a unit vector. (See Figure 12.19.) Apply 
this method to find N for the following curves.

EXERCISES 12.4 

Then we use Equation (3):

κ

( ) ( )[ ]

( ) ( )

( ) ( )

=

=
+ +

− −

=
+

− −

=
+

+ =
+

d
dt

a b a b
a t a t

a
a b

t t

a
a b

t t a
a b

v
T

i j

i j

1

1 1 cos sin

cos sin

cos sin .

2 2 2 2

2 2

2 2
2 2

2 2

From this equation, we see that increasing b for a fixed a decreases the curvature. 
Decreasing a for a fixed b eventually decreases the curvature as well.

If b 0,=  the helix reduces to a circle of radius a, and its curvature reduces to a1 , as 
it should. If a 0,=  the helix becomes the z-axis, and its curvature reduces to 0, again as it 
should. 

EXAMPLE 6  Find N for the helix in Example 5 and describe how the vector is pointing.

Solution We have

( ) ( )[ ]

( ) ( )[ ]

( ) ( )

= −
+

+

=
+

+ =
+

=

= − + ⋅
+

+

= − −

d
dt a b

a t a t

d
dt a b

a t a t a
a b

d dt
d dt

a b
a a b

a t a t

t t

T i j

T

N
T
T

i j

i j

1 cos sin

1 cos sin

1 cos sin

cos sin .

2 2

2 2
2 2 2 2

2 2

2 2

2 2

Example 5

Eq. (4)

Thus, N is parallel to the xy-plane and always points toward the z-axis. 
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752 Chapter 12 Vector-Valued Functions and Motion in Space

 b. t t er i j( ) t2= +

 c. t t t tr i j( ) 4 , 2 22= − + − ≤ ≤

 8. (Continuation of Exercise 7)

 a. Use the method of Exercise 7 to find N for the curve 
t t tr i j( ) 1 3 3( )= +  when t 0;<  when t 0.>

 b. Calculate N for t 0≠  directly from T using Equation (4) for 
the curve in part (a). Does N exist at t 0?=  Graph the  
curve and explain what is happening to N as t passes from 
negative to positive values.

Space Curves
Find T, N, and κ for the space curves in Exercises 9–16.

 9. ( ) ( )= + +t t t tr i j k( ) 3 sin 3 cos 4

 10. ( ) ( )= + + − +t t t t t t tr i j k( ) cos sin sin cos 3

 11. ( ) ( )= + +t e t e tr i j k( ) cos sin 2t t

 12. ( ) ( )= + +t t t tr i j k( ) 6 sin 2 6 cos 2 5

 13. t t t tr i j k( ) 3 2 , 03 2( ) ( )= + + >

 14. π( ) ( )= + < <t t t tr j k( ) cos sin , 0 23 3

 15. ( )( )= + >t t a t a ar i k( ) cosh , 0

 16. ( ) ( )= − +t t t tr i j k( ) cosh sinh

More on Curvature

 17. Show that the parabola y ax a,  0,2= ≠  has its largest curva-
ture at its vertex and has no minimum curvature. (Note: Since the 
curvature of a curve remains the same if the curve is translated or 
rotated, this result is true for any parabola.)

 18. Show that the ellipse = = > >x a t y b t a bcos , sin , 0, has 
its largest curvature on its major axis and its smallest curvature on 
its minor axis. (The same is true for any ellipse.)

 19. Maximizing the curvature of a helix In Example 5, we found  
the curvature of the helix t a t a t btr i j k( ) cos sin( ) ( )= + +  
a b, 0( )≥  to be a a b .2 2κ ( )= +  What is the largest value κ 

can have for a given value of b? Give reasons for your answer.

 20. Total curvature We find the total curvature of the portion of a 
smooth curve that runs from s s0=  to s s s1 0= >  by integrat-
ing κ from s0 to s .1  If the curve has some other parameter, say t, 
then the total curvature is

K ds ds
dt

dt dtv ,
s

s

t

t

t

t

0

1

0

1

0

1

∫ ∫ ∫κ κ κ= = =

where t0 and t1 correspond to s0 and s .1  Find the total curvatures of

 a. The portion of the helix ( ) ( )= + +t t t tr i j k( ) 3 cos 3 sin , 
t0 4 .π≤ ≤

 b. The parabola y x x,  .2= −∞ < < ∞

 21. Find an equation for the circle of curvature of the curve 
( )= +t t tr i j( ) sin  at the point 2,1 .π( )  (The curve param-

etrizes the graph of =y xsin  in the xy-plane.)

 22. Find an equation for the circle of curvature of the curve 
t t t t e t er i j( ) 2 ln 1 , ,2 2( ) ( )[ ]= − + ≤ ≤−  at the point 

0, 2 ,( )−  where t 1.=

The formula

x
f x

f x
( )

( )

1 ( )
,

2 3 2κ
( )

=
′′

+ ′⎡⎣ ⎤⎦

T

derived in Exercise 5, expresses the curvature x( )κ  of a twice-
differentiable plane curve y f x( )=  as a function of x. Find the 
curvature function of each of the curves in Exercises 23–26. Then 
graph f x( ) together with x( )κ  over the given interval. You will find 
some surprises.

 23. y x x, 2 22= − ≤ ≤  24. y x x4, 2 24= − ≤ ≤

 25. π= ≤ ≤y x xsin , 0 2  26. y e x, 1 2x= − ≤ ≤

In Exercises 27 and 28, determine the maximum curvature for the 
graph of each function.

 27. =f x x( ) ln  28. f x x
x

x( )
1

for 1=
+

> −

 29. Osculating circle Show that the center of the osculating 
circle for the parabola y x 2=  at the point a a, 2( ) is located at 

a a4 , 3 1
2

3 2( )− + .

 30. Osculating circle Find a parametrization of the osculating cir-
cle for the parabola y x 2=  when x 1= .

COMPUTER EXPLORATIONS
In Exercises 31–38 you will use a CAS to explore the osculating circle 
at a point P on a plane curve where 0.κ ≠  Use a CAS to perform the 
following steps:

 a. Plot the plane curve given in parametric or function form over 
the specified interval to see what it looks like.

 b. Calculate the curvature κ of the curve at the given value t0 
using the appropriate formula from Exercise 5 or 6. Use the 
parametrization x t=  and y f t( )=  if the curve is given as a 
function y f x( ).=

 c. Find the unit normal vector N at t .0  Notice that the signs of 
the components of N depend on whether the unit tangent vec-
tor T is turning clockwise or counterclockwise at t t .0=  (See 
Exercise 7.)

 d. If a bC i j= +  is the vector from the origin to the center a b,( ) 
of the osculating circle, find the center C from the vector  
equation

t
t

tC r N( ) 1
( )

( ).0
0

0κ
= +

The point ( )P x y,0 0  on the curve is given by the position  
vector tr( ).0

 e. Plot implicitly the equation x a y b 12 2 2κ( )( )− + − =   
of the osculating circle. Then plot the curve and osculating 
circle together. You may need to experiment with the size of 
the viewing window, but be sure the axes are equally scaled.

 31. π π( ) ( )= + ≤ ≤ =t t t t tr i j( ) 3 cos 5 sin , 0 2 , 40

 32. π π( ) ( )= + ≤ ≤ =t t t t tr i j( ) cos sin , 0 2 , 43 3
0

 33. ( )= + − − ≤ ≤ =t t t t t tr i j( ) 3 , 4 4, 3 52 3
0

 34. t t t t t
t

t tr i j( ) 2 3
1

, 2 5, 13 2
2 0( )= − − +

+
− ≤ ≤ =

 35. π( ) ( )= − + − ≤ ≤t t t t tr i j( ) 2 sin 2 2 cos , 0 3 , 
t 3 20 π=

 36. π π( ) ( )= + ≤ ≤ =− −t e t e t t tr i j( ) cos sin , 0 6 , 4t t
0

 37. y x x x x, 2 5, 12
0= − − ≤ ≤ =

 38. y x x x x1 , 1 2, 1 22 5
0( )= − − ≤ ≤ =

M12_HASS5901_15_GE_C12.indd   752 08/03/2023   13:50

www.konkur.in

Telegram: @uni_k



 12.5  Tangential and Normal Components of Acceleration 753

FIGURE 12.23 The TNB frame of 
mutually orthogonal unit vectors traveling 
along a curve in space.

y

z

x

N = 1
k

dT
ds

P0

s

P

B = T × N 

T = dr
dsr

FIGURE 12.24 The vectors T, N, and B 
(in that order) make a right-handed frame 
of mutually orthogonal unit vectors in 
space.

T

P

B

N

DEFINITION If the acceleration vector is written as

 a aa T N,T N= +  (1)

then

 κ κ( )= = = =a d s
dt

d
dt

a ds
dt

v vandT

2

2 N

2
2 (2)

are the tangential and the normal scalar components of acceleration.

FIGURE 12.25 The tangential and 
normal components of acceleration. The 
acceleration a always lies in the plane of 
T and N and is orthogonal to B.

T

s

N

a

P0

aT = d2s
dt2

2
aN = k ds

dtQ  R

If you are flying in an airplane that is traveling along a curve in space, the Cartesian i, j, 
and k coordinate system for representing the vectors describing your motion may not be 
very relevant to you. Vectors that are likely to be more important are those representing 
your forward direction (the unit tangent vector T) and the direction in which your path is 
turning (the unit normal vector N), along with a third unit vector perpendicular to the other 
two. Expressing the acceleration vector along the curve as a linear combination of these 
three mutually orthogonal unit vectors traveling with the motion (Figure 12.23) can reveal 
much about the nature of your path and your motion along it.

The TNB Frame

The binormal vector of a curve in space is B T N,= ×  which is a unit vector that is 
orthogonal to both T and N (Figure 12.24). Together T, N, and B define a moving right-
handed vector frame that plays a significant role in analyzing the paths of particles mov-
ing through space. It is called the Frenet (“fre-nay”) frame (after Jean-Frédéric Frenet, 
1816–1900), or the TNB frame.

Tangential and Normal Components of Acceleration

When an object is accelerated by gravity, brakes, or rocket motors, we often need to know 
how much of the acceleration acts in the direction of motion, which is the direction of the 
tangent vector T. We can calculate this using the Chain Rule to rewrite v as

d
dt

d
ds

ds
dt

ds
dt

v r r T .= = =

Then we differentiate both ends of this string of equalities to get

κ

κ

( )

( ) ( )

( )

= = = +

= + = +

= +

d
dt

d
dt

ds
dt

d s
dt

ds
dt

d
dt

d s
dt

ds
dt

d
ds

ds
dt

d s
dt

ds
dt

ds
dt

d s
dt

ds
dt

a v T T T

T T T N

T N.

2

2

2

2

2

2

2

2

2

    d
ds
T Nκ=

12.5 Tangential and Normal Components of Acceleration

Notice that the binormal vector B does not appear in Equation (1). No matter how the path 
of the moving object we are watching may appear to twist and turn in space, the accelera-
tion a always lies in the plane of  T and N and therefore is orthogonal to B. The equation 
also tells us exactly how much of the acceleration takes place tangent to the motion 
d s dt2 2( ) and how much takes place normal to the motion ds dt 2κ( )⎡⎣ ⎤⎦ (Figure 12.25).

What information can we discover from Equations (2)? By definition, acceleration a is 
the rate of change of velocity v, and in general, both the length and direction of v change 
as an object moves along its path. The tangential component of acceleration aT measures 
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754 Chapter 12 Vector-Valued Functions and Motion in Space

the rate of change of the length of v (that is, the change in the speed). The normal compo-
nent of acceleration aN is proportional to the rate of change of the direction of v.

Notice that the normal scalar component of the acceleration is the curvature times the 
square of the speed. This explains why you have to hold on when your car makes a sharp 
(large κ), high-speed (large v ) turn. If you double the speed of your car, you will experi-
ence four times the normal component of acceleration for the same curvature.

If an object moves in a circle at a constant speed, d s dt2 2  is zero and all the accelera-
tion points along N toward the circle’s center. If the object is speeding up or slowing down, 
a has a positive or negative tangential component (Figure 12.26).

To calculate a ,N  we usually use the formula a aa ,N
2

T
2= −  which comes from 

solving the equation a aa a a2
T

2
N

2= ⋅ = +  for aN (which, unlike the tangential 
component, cannot be negative). With this formula, we can find aN without having to cal-
culate κ first.

FIGURE 12.26 The tangential and 
normal components of the acceleration 
of an object that is speeding up as it 
moves counterclockwise around a circle 
of radius .ρ

P

C

T

a

d2s
dt2

k 0 v 0 2N =        Nr
0 v 0 2

Formula for Calculating the Normal Component of Acceleration

 a aaN
2

T
2= −  (3)

EXAMPLE 1  Without finding T and N, write the acceleration of the motion

( ) ( )= + + − >t t t t t t t tr i j( ) cos sin sin cos , 0

in the form a aa T N.T N= +  (The path of the motion is the involute of the circle in 
Figure 12.27. See also Section 12.3, Exercise 19.)

Solution We use the first of Equations (2) to find a :T

( ) ( )

( ) ( )

= = − + + + − +

= +

= + = = =

= = =

d
dt

t t t t t t t t

t t t t

t t t t t t t

a d
dt

d
dt

t

v r i j

i j

v

v

sin sin cos cos cos sin

cos sin

cos sin

( ) 1.

2 2 2 2 2

T

t 0>

Eq. (2)

Knowing a ,T  we use Equation (3) to find a :N

( ) ( )

( ) ( )

= − + +

= +

= −

= + − = =

t t t t t t

t

a a

t t t

a i j

a

a

cos sin sin cos

1

1 1 .

2 2

N
2

T
2

2 2

   After some algebra

We then use Equation (1) to write

( )= + = + = +a a t ta T N T N T N1 ( ) .T N  

Torsion

How does d dsB  behave in relation to T, N, and B? From the rule for differentiating a cross 
product in Section 12.1, we have

d
ds

d
ds

d
ds

d
ds

B T N T N T N .
( )= × = × + ×

FIGURE 12.27 The tangential and  
normal components of the acceleration  
of the motion ( )= + +t t t tr i( ) cos sin  
( )−t t t jsin cos , for t 0.>  If a string 
wound around a fixed circle is unwound 
while held taut in the plane of the circle, 
its end P traces an involute of the circle 
(Example 1).

Strin
g

O

y

t

(1, 0)
x

Q r

T
a

x2 + y2 = 1 

P(x, y)tN

M12_HASS5901_15_GE_C12.indd   754 08/03/2023   13:50

www.konkur.in

Telegram: @uni_k



 12.5  Tangential and Normal Components of Acceleration 755

Since N is the direction of d ds d dsT T N 0, ( ) × =  and

d
ds

d
ds

d
ds

B 0 T N T N .= + × = ×

From this we see that d dsB  is orthogonal to T, since a cross product is orthogonal to its 
factors.

Since d dsB  is also orthogonal to B (the latter has constant length), it follows that 
d dsB  is orthogonal to the plane of B and T. In other words, d dsB  is parallel to N, so 
d dsB  is a scalar multiple of N. In symbols,

d
ds
B N.τ= −

The negative sign in this equation is traditional. The scalar τ is called the torsion along the 
curve. Notice that

d
ds
B N N N (1) .τ τ τ⋅ = − ⋅ = − = −

We use this equation for our next definition.

DEFINITION Let B T N.= ×  The torsion function of a smooth curve is

 d
ds
B N.τ = − ⋅  (4)

FIGURE 12.28 The names of the three 
planes determined by T, N, and B.

P

Binormal

Osculating plane
Unit tangent

N
T

B

Normal plane

Principal
normal

Rectifying
plane

Unlike the curvature ,κ  which is never negative, the torsion τ may be positive, nega-
tive, or zero.

The three planes determined by T, N, and B are named and shown in Figure 12.28. 
The curvature d dsTκ =  can be thought of as the rate at which the normal plane turns 
as the point P moves along its path. Similarly, the torsion d dsB Nτ ( )= − ⋅  is the rate at 
which the osculating plane turns about T as P moves along the curve. Torsion measures 
how the curve twists.

Look at Figure 12.29. If P is a train climbing up a curved track, the rate at which the 
headlight turns from side to side per unit distance is the curvature of the track. The rate at 
which the engine tends to twist out of the plane formed by T and N is the torsion. It can be 
shown that a space curve is a helix if and only if it has constant nonzero curvature and 
constant nonzero torsion.

FIGURE 12.29 Every moving body travels with a TNB frame 
that characterizes the geometry of its path of motion.

T
N

B

P

The torsion
at P is −(dB�ds) ∙ N.

ds
dB

The curvature at P
is @ (dT�ds) @ .

s increases

s = 0
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756 Chapter 12 Vector-Valued Functions and Motion in Space

Vector Formula for Curvature

 v a
v 3κ = ×  (5)

Newton’s Dot Notation for Derivatives
The dots in Equation (6) denote differ-
entiation with respect to t, one derivative  
for each dot. Thus, �x (“x dot”) means 
dx dt , ��x (“x double dot”) means d x dt ,2 2  
and ���x  (“x triple dot”) means d x dt .3 3  
Similarly, �y dy dt,=  and so on.

Equation (5) calculates the curvature, a geometric property of the curve, from the 
velocity and acceleration of any vector representation of the curve in which v  is different 
from zero. From any formula for motion along a curve, no matter how variable the motion 
may be (as long as v is never zero), we can calculate a geometric property of the curve that 
seems to have nothing to do with the way the curve is parametrically defined.

The most widely used formula for torsion, derived in more advanced texts, is given in 
a determinant form.

Formula for Torsion

 

� � �
�� �� ��
��� ��� ���

x y z

x y z

x y z

v a
v a 0if 2τ ( )=

×
× ≠  (6)

This formula calculates the torsion directly from the derivatives of the component func-
tions x f t y g t z h t( ), ( ), ( )= = =  that make up r. The determinant’s first row comes 
from v, the second row comes from a, and the third row comes from � d dta a .=  This 
formula for torsion is traditionally written using Newton’s dot notation for derivatives.

EXAMPLE 2  Use Equations (5) and (6) to find the curvature κ and torsion τ for the 
helix

( ) ( )= + + ≥ + ≠t a t a t bt a b a br i j k( ) cos sin , , 0, 0.2 2

Formulas for Computing Curvature and Torsion

We now give easy-to-use formulas for computing the curvature and torsion of a smooth 
curve. From Equations (1) and (2), we have

κ

κ

κ

( )

( ) ( )

( )

( )

( ) ( )

× = × +
⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

= × + ×

=

ds
dt

d s
dt

ds
dt

ds
dt

d s
dt

ds
dt

ds
dt

v a T T N

T T T N

B.

2

2

2

2

2

3

3

= =dr dt ds dtv T( )

× =
× =

T T
T N B

0 and

It follows that

κ κ× = =ds
dt

v a B v .
3

3     = =ds
dt

v Band 1

Solving for κ gives the following formula.
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 12.5  Tangential and Normal Components of Acceleration 757

Solution We calculate the curvature with Equation (5):

 

κ

( ) ( )

( ) ( )

( ) ( )

( ) ( )

= − + +

= − −

× = −

− −

= − +

= × = +
+

= +
+

=
+

a t a t b

a t a t

a t a t b

a t a t

ab t ab t a

a b a
a b

a a b
a b

a
a b

v i j k

a i j

v a

i j k

i j k

v a
v

sin cos

cos sin

sin cos

cos sin 0

sin cos

.

2

3

2 2 4

2 2 3 2

2 2

2 2 3 2 2 2

 

(7)

Notice that Equation (7) agrees with the result in Example 5 in Section 12.4, where we 
calculated the curvature directly from its definition.

To evaluate Equation (6) for the torsion, we find the entries in the determinant by dif-
ferentiating r with respect to t. We already have v and a, and

� ( ) ( )= = −d
dt

a t a ta a i jsin cos .

Hence,

� � �

�� �� ��

��� ��� ���
τ

( )
( )

( )

=
×

=

−

− −

−

+

=
+
+

=
+

x y z

x y z

x y z

a t a t b

a t a t

a t a t

a a b

b a t a t
a a b

b
a b

v a

sin cos

cos sin 0

sin cos 0

cos sin

.

2
2 2

2

2 2 2 2

2 2 2

2 2

   ×v aValue of   from Eq. (7)

From this last equation we see that the torsion of a helix about a circular cylinder is 
constant. In fact, constant curvature and constant torsion characterize the helix among all 
curves in space. 

Computation Formulas for Curves in Space

Unit tangent vector: T v
v

=

Principal unit normal vector:
d dt
d dt

N
T
T

=

Binormal vector: B T N= ×

Curvature: d
ds
T v a

v 3κ = = ×

Torsion:

� � �

�� �� ��

��� ��� ���
τ = − ⋅ =

×
d
ds

x y z

x y z

x y zB N
v a 2

Tangential and normal scalar  
components of acceleration:

κ

= +

=

= = −

a a

a d
dt

a a

a T N

v

v a

T N

T

N
2 2

T
2
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758 Chapter 12 Vector-Valued Functions and Motion in Space

Finding Tangential and Normal Components
In Exercises 1–4, write a in the form a aa T NT N= +  without  
finding T and N.

 1. t t tr i j( ) 2 3 12( )( )= + + −

 2. t t tr i j( ) 3 22 3= +

 3. ( ) ( )= + +t a t a t btr i j k( ) cos sin

 4. ( ) ( )= + + − −t t t tr i j k( ) 1 3 2 3

In Exercises 5–10, write a in the form a aa T NT N= +  at the given 
value of t without finding T and N.

 5. t e e tr i j( ) , 0t t= + =−

 6. π= + =t t t tr i j( ) cos( ) sin( ) ,2 2 1
2

 7. t t t t tr i j k( ) 1 2 , 12( )= + + + =

 8. ( ) ( )= + + =t t t t t t tr i j k( ) cos sin , 02

 9. t t t t t t tr i j k( ) 1 3 1 3 , 02 3 3( )( ) ( )( )= + + + − =

 10. ( ) ( )= + + =t e t e t e tr i j k( ) cos sin 2 , 0t t t

Finding the TNB Frame
In Exercises 11 and 12, find r, T, N, and B at the given value of t. Then 
find equations for the osculating, normal, and rectifying planes at that 
value of t.

 11. π( ) ( )= + − =t t t tr i j k( ) cos sin , 4

 12. ( ) ( )= + + =t t t t tr i j k( ) cos sin , 0

In Exercises 9–16 of Section 12.4, you found T, N, and κ. Now, in the 
following Exercises 13–20, find B and τ  for these space curves.

 13. ( ) ( )= + +t t t tr i j k( ) 3 sin 3 cos 4

 14. ( ) ( )= + + − +t t t t t t tr i j k( ) cos sin sin cos 3

 15. ( ) ( )= + +t e t e tr i j k( ) cos sin 2t t

 16. ( ) ( )= + +t t t tr i j k( ) 6 sin 2 6 cos 2 5

 17. t t t tr i j k( ) 3 2 , 03 2( ) ( )= + + >

 18. π( ) ( )= + < <t t t tr j k( ) cos sin , 0 23 3

 19. ( )( )= + >t t a t a ar i k( ) cosh , 0

 20. ( ) ( )= − +t t t tr i j k( ) cosh sinh

Physical Applications

 21. The speedometer on your car reads a steady 35 km/h. Could you 
be accelerating? Explain.

 22. Can anything be said about the acceleration of a particle that is 
moving at a constant speed? Give reasons for your answer.

 23. Can anything be said about the speed of a particle whose accelera-
tion is always orthogonal to its velocity? Give reasons for your 
answer.

 24. An object of mass m travels along the parabola =y x 2 with a 
constant speed of 10 units s. What is the force on the object due to 
its acceleration at ( )0, 0 ? at ( )2 , 2 ?1 2  Write your answers in terms 
of i and j. (Remember Newton’s law, = mF a.)

Theory and Examples

 25. Show that κ and τ  are both zero for the line

( ) ( ) ( )= + + + + +t x At y Bt z Ctr i j k( ) .0 0 0

 26. Show that a moving particle will move in a straight line if the 
normal component of its acceleration is zero.

 27. A sometime shortcut to curvature If you already know aN  
and v , then the formula κ=a vN

2 gives a convenient way to 
find the curvature. Use it to find the curvature and radius of curva-
ture of the curve

( ) ( )= + + − >t t t t t t t tr i j( ) cos sin sin cos , 0.

(Take aN and v  from Example 1.)

 28. What can be said about the torsion of a smooth plane curve 
= +t f t g tr i j( ) ( ) ( ) ? Give reasons for your answer.

 29. Differentiable curves with zero torsion lie in planes That a 
sufficiently differentiable curve with zero torsion lies in a plane 
is a special case of the fact that a particle whose velocity remains 
perpendicular to a fixed vector C moves in a plane perpendicular 
to C. This, in turn, can be viewed as the following result.

Suppose = + +t f t g t h tr i j k( ) ( ) ( ) ( )  is twice differentia-
ble for all t in an interval [ ]a b, , that =r 0 when =t a, and that 

⋅ =v k 0 for all t in [ ]a b, . Show that =h t( ) 0 for all t in [ ]a b, .  
(Hint: Start with = d dta r2 2  and apply the initial conditions in 
reverse order.)

 30. A formula that calculates τ  from B and v If we start with 
the definition τ ( )= − ⋅d dsB N and apply the Chain Rule to 
rewrite d dsB  as

= =d
ds

d
dt

dt
ds

d
dt

B B B
v
1 ,

we arrive at the formula

τ ( )= − ⋅d
dtv
B N1 .

Use the formula to find the torsion of the helix in Example 2.

COMPUTER EXPLORATIONS
Rounding the answers to four decimal places, use a CAS to find v, 
a, speed, T, N, B, κ τ,  , and the tangential and normal components of 
acceleration for the curves in Exercises 31–34 at the given values of t.

 31. ( ) ( )= + + =t t t t t t tr i j k( ) cos sin , 3

 32. ( ) ( )= + + =t e t e t e tr i j k( ) cos sin , ln 2t t t

 33. π( ) ( )= − + − + − = −t t t t t tr i j k( ) sin 1 cos , 3

 34. ( ) ( ) ( )= − + + + =t t t t t t tr i j k( ) 3 3 3 , 12 2 3

EXERCISES 12.5
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 12.6  Velocity and Acceleration in Polar Coordinates 759

FIGURE 12.30 The length of r is the 
positive polar coordinate r of the point P.  
Thus u ,r  which is r r , is also rr . 
Equations (1) express u r  and θu  in terms 
of i and j.

O

y

x

r

uu

ur
P(r, u)

u

FIGURE 12.31 In polar coordinates, the 
velocity vector is � �θ= + θr rv u u .r

.

.

O

y

x

r

v

P(r, u)

rur

ruuu

u

� � �

�� � �� � � ��

θ

θ θ θ( ) ( )

= +

= + +

= − + + +

θ

θ

Position r z

Velocity r r z

Acceleration r r r r z

r u k

v u u k

a u u k

:

:

: 2

r

r

r
2

 (3)

FIGURE 12.32 Position vector and 
basic unit vectors in cylindrical coordi-
nates. Notice that ≠ rr  if ≠z 0 since 

= +r zr .2 2

x

y

z

k

zk

r = rur + zk

rur

ur

uu

u

In this section we derive equations for velocity and acceleration in polar coordinates. These 
equations are useful for calculating the paths of planets and satellites in space, and we use 
them to examine Kepler’s three laws of planetary motion.

12.6 Velocity and Acceleration in Polar Coordinates

Motion in Polar and Cylindrical Coordinates

When a particle at θ( )P r,  moves along a curve in the polar coordinate plane, we express 
its position, velocity, and acceleration in terms of the moving unit vectors

 θ θ θ θ( ) ( ) ( ) ( )= + = − +θu i j u i jcos sin , sin cos ,r  (1)

shown in Figure 12.30. The vector u r  points along the position vector 
� ���
OP, so = rr u .r  

The vector θu , orthogonal to u ,r  points in the direction of increasing θ.
We find from Equations (1) that

θ
θ θ

θ
θ θ

( ) ( )

( ) ( )

= − + =

= − − = −

θ

θ

d
d

d
d

u
i j u

u
i j u

sin cos

cos sin .

r

r

We next differentiate u r  and θu  with respect to t to find how they change with time. 
The Chain Rule gives

 � � � � � �
θ
θ θ

θ
θ θ= = = = −θ θ
θd

d
d
d

u
u

u u
u

u, .r
r

r  (2)

Hence, we can express the velocity vector in terms of u r  and θu  as

� � � � �θ( )= = = + = + θ
d
dt

r r r r rv r u u u u u .r r r r

See Figure 12.31. As in the previous section, we use Newton’s dot notation for time deriva-
tives to keep the formulas as simple as we can: �u r  means �θd dtu ,r  means θd dt , and so on.

The acceleration is

� �� � � � � �� � �θ θ θ( )( )= = + + + +θ θ θr r r r ra v u u u u u .r r

When Equations (2) are used to evaluate �u r  and � θu  and the components are separated, the 
equation for acceleration in terms of u r  and θu  becomes

�� � �� � �θ θ θ( ) ( )= − + + θr r r ra u u2 .r
2

To extend these equations of motion to space, we add zk to the right-hand side of the 
equation = rr u .r  Then, in these cylindrical coordinates, we have

The vectors θu u, ,r  and k make a right-handed frame (Figure 12.32) in which

× = × = × =θ θ θu u k u k u k u u, , .r r r
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760 Chapter 12 Vector-Valued Functions and Motion in Space

Planets Move in Planes

Newton’s law of gravitation says that if r is the radius vector from the center of a sun of 
mass M to the center of a planet of mass m, then the force F of the gravitational attraction 
between the planet and sun is

= −GmMF
r

r
r2

(Figure 12.33). The number G is the universal gravitational constant. If we measure 
mass in kilograms, force in newtons, and distance in meters, G is about 

× − −6.6738 10 Nm kg .11 2 2

Combining the gravitation law with Newton’s second law, mF r, for the force act-
ing on the planet gives

= −

= −

m GmM

GM

r
r

r
r

r
r

r
r

,

.

2

2

The planet is therefore accelerated toward the sun’s center of mass at all times.
Since r is a scalar multiple of r, we have

× =r r 0.

From this last equation,

� � � �� ��� ��� ���( )× = × + × = × =d
dt

r r r r r r r r 0.
0

It follows that

 × =r r C (4)

for some constant vector C.
Equation (4) tells us that r and r always lie in a plane perpendicular to C. Hence, the 

planet moves in a fixed plane through the center of mass of its sun (Figure 12.34). We next 
see how Kepler’s laws describe the motion in a precise way.

Kepler’s First Law (Ellipse Law)

Kepler’s first law says that a planet’s path is an ellipse with its sun at one focus. The eccen-
tricity of the ellipse is

 = −e
r
GM

1,0 0
2

 (5)

and the polar equation (see Section 10.7 Equation (5)) is

 
( )

=
+
+

r
e r

e
1

1 cos
.0  (6)

Here 0 is the speed when the planet is positioned at its minimum distance r0 from the sun. 
We omit the lengthy proof. The sun’s mass M is 1.99 10 kg.30

Kepler’s Second Law (Equal Area Law)

Kepler’s second law says that the radius vector from the sun to a planet (the vector r in our 
model) sweeps out equal areas in equal times, as displayed in Figure 12.35. In that figure, we 
assume the plane of the planet is the xy-plane, so the unit vector in the direction of C is k.  

FIGURE 12.33 The force of gravity is 
directed along the line joining the centers 
of mass.

r
m

M

r
0 r 0

F = −GmM
0 r 0 2

r
0 r 0

FIGURE 12.34 A planet that obeys 
Newton’s laws of gravitation and motion 
travels in the plane through its sun’s center 
of mass perpendicular to = ×C r r.

.

.
r

r

Planet

Sun

C = r × r

FIGURE 12.35 The line joining a planet 
to its sun sweeps over equal areas in equal 
times.

r

Planet

Sun
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 12.6  Velocity and Acceleration in Polar Coordinates 761

We introduce polar coordinates in the plane, choosing as initial line 0, the direction r 
when rr  is a minimum value. Then at t 0, we have r r(0) 0 being a minimum so,

υ θ= = = = ⎡⎣ ⎤⎦=
=

= =
r dr

dt
rv0 and .

t
t

t t0
0

0 0 0
    Eq. (3), z 0

To derive Kepler’s second law, we use Equation (3) to evaluate the cross product 
= ×C r r from Equation (4):

 

�

� �

�
� ����� �����

�
� ����� �����

�

( ) ( )

= × = ×

= × +

= × + ×

=

r r r

rr r r

r r

C r r r v

u u u

u u u u

k

( )

( )

( ) .
0 k

r r

r r r

    Eq. (3), z 0

 

(7)

Setting t equal to zero shows that

θ υ= ⎡⎣ ⎤⎦ =
=

r r rC k k( ) .
t 0 0 0

Substituting this value for C in Equation (7) gives

υ θ θ υr r r rk k, or .0 0
2 2

0 0

This is where the area comes in. The area differential in polar coordinates is

dA r d1
2

2

(Section 10.5). Accordingly, dA dt  has the constant value

 θ υdA
dt

r r1
2

1
2

.2
0 0  (8)

So dA dt  is constant, giving Kepler’s second law.

HISTORICAL BIOGRAPHY

Johannes Kepler  
(1571–1630)
The German astronomer, mathematician, 
and physicist Johannes Kepler was the first 
scientist to demand physical explanations 
of celestial phenomena. His three laws of 
planetary motion, the results of a lifetime of 
work, changed astronomy and played a crucial 
role in the development of Newtonian physics 
and calculus.

To know more, visit the companion Website. 

Kepler’s Third Law (Time–Distance Law)

The time T it takes a planet to go around its sun once is the planet’s orbital period. Kepler’s 
third law says that T and the orbit’s semimajor axis a are related by the equation

T
a GM

4 .
2

3

2

Since the right-hand side of this equation is constant within a given solar system, the ratio 
of T 2 to a 3 is the same for every planet in the system.

Here is a partial derivation of Kepler’s third law. The area enclosed by the planet’s 
elliptical orbit is calculated as follows:

∫

∫

=

=

=

dA

r dt

Tr

Area

1
2

1
2

.

T

T

0

0 0
0

0 0

    Eq. (8)

If b is the semiminor axis, the area of the ellipse is ab, so

 π
υ

π
υ

= = −T ab
r

a
r

e2 2 1 .
0 0

2

0 0

2     For any ellipse, = −b a e1 .2  (9)

It remains only to express a and e in terms of r G, , ,0 0  and M. Equation (5) does this 
for e. For a, we observe that setting  equal to  in Equation (6) gives

= +
−

r r e
e

1
1

.max 0
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762 Chapter 12 Vector-Valued Functions and Motion in Space

Hence, from Figure 12.36,

 
υ

= + =
−

=
−

a r r
r

e
r GM

GM r
2

2
1

2
2

.0 max
0 0

0 0
2

 (10)

Squaring both sides of Equation (9) and substituting the results of Equations (5) and (10) 
produce Kepler’s third law (Exercise 11).

FIGURE 12.36 The length of the major 
axis of the ellipse is = +a r r2 .0 max

r

Planet

Sunrmax r0

In Exercises 1–7, find the velocity and acceleration vectors in terms 
of u r  and θu .

 1. θ=r  and θ =d
dt

2

 2. 
θ

=r 1 and θ =d
dt

t 2

 3. θ( )= −r a 1 cos  and θ =d
dt

3

 4. θ=r a sin 2  and θ =d
dt

t2

 5. = θr e a  and θ =d
dt

2

 6. ( )= +r a t1 sin  and θ = − −e1 t

 7. =r t2 cos 4  and θ = t2

 8. Type of orbit For what values of υ0  in Equation (5) is the orbit 
in Equation (6) a circle? An ellipse? A parabola? A hyperbola?

 9. Circular orbits Show that a planet in a circular orbit moves 
with a constant speed. (Hint: This is a consequence of one of 
Kepler’s laws.)

 10. Suppose that r is the position vector of a particle moving along a 
plane curve and dA dt is the rate at which the vector sweeps out 
area. Without introducing coordinates, and assuming the neces-
sary derivatives exist, give a geometric argument based on incre-
ments and limits for the validity of the equation

�= ×dA
dt

r r1
2

.

 11. Kepler’s third law Complete the derivation of Kepler’s third 
law (the part following Equation (10)).

 12. Do the data in the accompanying table support Kepler’s third law? 
Give reasons for your answer.

Planet
Semimajor axis 

( )a 10 m10 Period T (years)

Mercury     5.79   0.241

Venus   10.81   0.615

Mars   22.78   1.881

Saturn 142.70 29.457

 13. Earth’s major axis Estimate the length of the major axis of 
Earth’s orbit if its orbital period is 365.256 days.

 14. Estimate the length of the major axis of the orbit of Uranus if its 
orbital period is 84 years.

 15. The eccentricity of Earth’s orbit is =e 0.0167, so the orbit is 
nearly circular, with radius approximately ×150 10 km6 . Find, 
in units of km s2 , the rate dA dt satisfying Kepler’s second law.

 16. Jupiter’s orbital period Estimate the orbital period of Jupiter, 
assuming that = ×a 77.8 10 m.10

 17. Mass of Jupiter Io is one of the moons of Jupiter. It has a semi-
major axis of ×0.042 10 m10  and an orbital period of 1.769 days. 
Use these data to estimate the mass of Jupiter.

 18. Distance from Earth to the moon The period of the moon’s 
rotation around Earth is 2.36055 10 s.6×  Estimate the distance 
to the moon.

EXERCISES 12.6 

 1. State the rules for differentiating and integrating vector functions. 
Give examples.

 2. How do you define and calculate the velocity, speed, direction of 
motion, and acceleration of a body moving along a sufficiently 
differentiable space curve? Give an example.

 3. What is special about the derivatives of vector functions of con-
stant length? Give an example.

 4. What are the vector and parametric equations for ideal projectile 
motion? How do you find a projectile’s maximum height, flight 
time, and range? Give examples.

CHAPTER 12 Questions to Guide Your Review

 5. How do you define and calculate the length of a segment of a 
smooth space curve? Give an example. What mathematical 
assumptions are involved in the definition?

 6. How do you measure distance along a smooth curve in space from 
a preselected base point? Give an example.

 7. What is a differentiable curve’s unit tangent vector? Give an example.

 8. Define curvature, circle of curvature (osculating circle), center of 
curvature, and radius of curvature for twice-differentiable curves 
in the plane. Give examples. What curves have zero curvature? 
Constant curvature?
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 Chapter 12  Practice Exercises 763

 9. What is a plane curve’s principal normal vector? When is it 
defined? Which way does it point? Give an example.

 10. How do you define N and κ for curves in space? How are these 
quantities related? Give examples.

 11. What is a curve’s binormal vector? Give an example. How is this 
vector related to the curve’s torsion? Give an example.

 12. What formulas are available for writing a moving object’s accel-
eration as a sum of its tangential and normal components? Give an 
example. Why might one want to write the acceleration this way? 
What if the object moves at a constant speed? At a constant speed 
around a circle?

 13. State Kepler’s laws.

Motion in the Plane
In Exercises 1 and 2, graph the curves and sketch their velocity and 
acceleration vectors at the given values of t. Then write a in the form 

= +a aa T NT N  without finding T and N, and find the value of κ at 
the given values of t.

 1. π( )( )= + =t t t tr i j( ) 4 cos 2 sin , 0 and  4

 2. ( ) ( )= + =t t t tr i j( ) 3 sec 3 tan , 0

 3. The position of a particle in the plane at time t is

=
+

+
+t
t

t
r i j1

1 1
.

2 2

Find the particle’s highest speed.

 4. Suppose ( ) ( )= +t e t e tr i j( ) cos sin .t t  Show that the angle 
between r and a never changes. What is the angle?

 5. Finding curvature At point P, the velocity and acceleration of a 
particle moving in the plane are = +v i j3 4  and = +a i j5 15 . 
Find the curvature of the particle’s path at P.

 6. Find the point on the curve =y e x  where the curvature is greatest.

 7. A particle moves around the unit circle in the xy-plane. Its posi-
tion at time t is = +x yr i j, where x and y are differentiable 
functions of t. Find dy dt  if ⋅ = yv i . Is the motion clockwise or 
counterclockwise?

 8. You send a message through a pneumatic tube that follows the 
curve =y x9 3 (distance in meters). At the point ( )3, 3 , ⋅ =v i 4 
and ⋅ = −a i 2. Find the values of ⋅v j and ⋅a j at ( )3, 3 .

 9. Characterizing circular motion A particle moves in the plane 
so that its velocity and position vectors are always orthogonal. 
Show that the particle moves in a circle centered at the origin.

 10. Speed along a cycloid A circular wheel with radius 1 m and 
center C rolls to the right along the x-axis at a half-turn per  
second. (See the accompanying figure.) At time t seconds, the 
position vector of the point P on the wheel’s circumference is

π π π( ) ( )= − + −t t tr i jsin 1 cos .

 a. Sketch the curve traced by P during the interval ≤ ≤t0 3.

 b. Find v and a at =t 0, 1, 2, and 3 and add these vectors to 
your sketch.

 c. At any given time, what is the forward speed of the topmost 
point of the wheel? Of C?

CHAPTER 12 Practice Exercises

x

y

1

C

P

pt
r

0

Projectile Motion

 11. Shot put A shot leaves the thrower’s hand 2 m above the ground 
at a °45  angle at 14 m s. Where is it 3 s later?

 12. Javelin A javelin leaves the thrower’s hand 2.5 m above the 
ground at a °45  angle at 24 m s. How high does it go?

 13. A golf ball is hit with an initial speed υ0  at an angle α to the hori-
zontal from a point that lies at the foot of a straight-sided hill that 
is inclined at an angle φ to the horizontal, where

φ α π< < <0
2

.

Show that the ball lands at a distance

υ α
φ

α φ( )−
g

2 cos
cos

sin ,0
2

2

measured up the face of the hill. Hence, show that the great-
est range that can be achieved for a given υ0  occurs when 
α φ π( ) ( )= +2 4 , that is, when the initial velocity vector 
bisects the angle between the vertical and the hill.

 14. Javelin In Potsdam in 1988, Petra Felke of (then) East Germany 
set a women’s world record by throwing a javelin 80 m.

 a. Assuming that Felke launched the javelin at a °40  angle to the 
horizontal 2 m above the ground, what was the javelin’s initial 
speed?

 b. How high did the javelin go?

Motion in Space
Find the lengths of the curves in Exercises 15 and 16.

 15. π( ) ( )= + + ≤ ≤t t t t tr i j k( ) 2 cos 2 sin , 0 42

 16. ( ) ( )= + + ≤ ≤t t t t tr i j k( ) 3 cos 3 sin 2 , 0 33 2

T
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764 Chapter 12 Vector-Valued Functions and Motion in Space

FIGURE 12.37 Figures for Exercise 31.

x

y

y

x

0

f

f
u

T

i

(a)

(b)

O

a
s

s = 0 at (a, 0)

P

Tx2 + y2 = a2

In Exercises 17–20, find T, N, B, κ, and τ  at the given value of t.

 17. ( ) ( )= + + − + =t t t t tr i j k( ) 4
9

1 4
9

1 1
3

, 03 2 3 2

 18. ( ) ( )= + + =t e t e t e tr i j k( ) sin 2 cos 2 2 , 0t t t

 19. = + =t t e tr i j( ) 1
2

, ln 2t2

 20. ( ) ( )= + + =t t t t tr i j k( ) 3 cosh 2 3 sinh 2 6 , ln 2

In Exercises 21 and 22, write a in the form = +a aa T NT N  at =t 0 
without finding T and N.

 21. ( )( ) ( )= + + + + −t t t t t tr i j k( ) 2 3 3 4 4 6 cos2 2

 22. ( ) ( )( )= + + + + +t t t t tr i j k( ) 2 2 12 2

 23. Find T, N, B, κ, and τ  as functions of t if

( )( ) ( )= + +t t t tr i j k( ) sin 2 cos sin .

 24. At what times in the interval π≤ ≤t0  are the velocity and accel-
eration vectors of the motion ( ) ( )= + +t t tr i j k( ) 5 cos 3 sin  
orthogonal?

 25. The position of a particle moving in space at time ≥t 0 is

π( ) ( )= + + −t t tr i j k( ) 2 4 sin
2

3 .

Find the first time r is orthogonal to the vector −i j.

 26. Find equations for the osculating, normal, and rectifying planes of 
the curve = + +t t t tr i j k( ) 2 3  at the point ( )1,1,1 .

 27. Find parametric equations for the line that is tangent to the curve 
( ) ( )= + + −t e t tr i j k( ) sin ln 1t  at =t 0.

 28. Find parametric equations for the line that is tangent to the helix 
( ) ( )= + +t t t tr i j k( ) 2 cos 2 sin  at the point where 

π=t 4.

Theory and Examples

 29. Synchronous curves By eliminating α from the ideal projectile 
equations

υ α υ α( ) ( )= = −x t y t gtcos , sin 1
2

,0 0
2

show that υ( )+ + =x y gt t2 .2 2 2
0

2 2  This shows that projec-
tiles launched simultaneously from the origin at the same initial 
speed will, at any given instant, all lie on the circle of radius υ t0  
centered at ( )−gt0, 2 ,2  regardless of their launch angle. These 
circles are the synchronous curves of the launching.

 30. Radius of curvature Show that the radius of curvature of a 
twice-differentiable plane curve = +t f t g tr i j( ) ( ) ( )  is given by 
the formula

� �
�� �� ��

�� � �ρ = +
+ −

= +x y
x y s

s d
dt

x y, where   .
2 2

2 2 2
2 2

 31. An alternative definition of curvature in the plane An alter-
native definition gives the curvature of a sufficiently differentiable 
plane curve to be φd ds , where φ is the angle between T and i  

(Figure 12.37a). Figure 12.37b shows the distance s measured 
counterclockwise around the circle + =x y a2 2 2 from the 
point ( )a, 0  to a point P, along with the angle φ at P. Calculate 
the circle’s curvature using the alternative definition. (Hint: 
φ θ π= + 2.)

 32. The view from Skylab 4 What percentage of Earth’s surface 
area could the astronauts see when Skylab 4 was at its apogee 
height, 437 km above the surface? To find out, model the visible 
surface as the surface generated by revolving the circular arc GT, 
shown here, about the y-axis. Then carry out these steps:

 1. Use similar triangles in the figure to show that 
( )= +y 6380 6380 6380 437 .0  Solve for y .0

 2. To four significant digits, calculate the visible area as

∫ π= +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟VA x dx

dy
dy2 1 .

y

26380

0

 3. Express the result as a percentage of Earth’s surface area.

y

x

437 G

6380

0

T

S (Skylab)

y0

x = "(6380)2 − y2
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 Chapter 12  Additional and Advanced Exercises 765

Applications

 1. A frictionless particle P, starting from rest at time =t 0 at the 
point ( )a, 0, 0 , slides down the helix

θ θ θ θ( ) ( ) ( )= + + >a a b a br i j k( ) cos sin , 0

under the influence of gravity, as in the accompanying figure. The 
θ in this equation is the cylindrical coordinate θ, and the helix is 
the curve θ θ= = ≥r a z b,  ,  0, in cylindrical coordinates. We 
assume θ to be a differentiable function of t for the motion. The 
law of conservation of energy tells us that the particle’s speed 
after it has fallen straight down a distance z is gz2 , where g is 
the constant acceleration of gravity.

 a. Find the angular velocity θd dt when θ π= 2 .

 b. Express the particle’s θ- and z-coordinates as functions of t.

 c. Express the tangential and normal components of the velocity  
d dtr  and acceleration d dtr2 2  as functions of t. Does the 
acceleration have any nonzero component in the direction of 
the binormal vector B?

x
The helix
r = a, z = bu

z

Positive z-axis
points down.

a

P

r

y

 2. Suppose the curve in Exercise 1 is replaced by the conical helix 
θ θ= =r a z b,   shown in the accompanying figure.

 a. Express the angular velocity θd dt as a function of θ.

 b. Express the distance the particle travels along the helix as a 
function of θ.

Conical helix
r = au, z = bu

Positive z-axis points down.

Cone z =    r  b
a

z

x

y

P

CHAPTER 12 Additional and Advanced Exercises

Motion in Polar and Cylindrical Coordinates

 3. Deduce from the orbit equation

θ
( )

=
+

+
r

e r
e

1
1 cos

0

that a planet is closest to its sun when θ = 0, and show that 
=r r0 at that time.

 4. A Kepler equation The problem of locating a planet in its orbit 
at a given time and date eventually leads to solving “Kepler” 
equations of the form

= − − =f x x x( ) 1 1
2

sin 0.

 a. Show that this particular equation has a solution between 
=x 0 and =x 2.

 b. With your computer or calculator in radian mode, use 
Newton’s method to find the solution to as many places as  
you can.

 5. In Section 12.6, we found the velocity of a particle moving in the 
plane to be

� � � �θ= + = + θx y r rv i j u u .r

 a. Express �x  and �y in terms of �r  and �θr  by evaluating the dot 
products ⋅v i and ⋅v j.

 b. Express �r  and �θr  in terms of �x  and �y by evaluating the dot 
products ⋅v u r and ⋅ θv u .

 6. Express the curvature of a twice-differentiable curve θ=r f ( ) in 
the polar coordinate plane in terms of f and its derivatives.

 7. A slender rod through the origin of the polar coordinate plane 
rotates (in the plane) about the origin at the rate of 3 rad min.  
A beetle starting from the point ( )2, 0  crawls along the rod toward 
the origin at the rate of 1 cm min.

 a. Find the beetle’s acceleration and velocity in polar form when 
it is halfway to (1 cm from) the origin.

 b. To the nearest millimeter, what will be the length of the path 
the beetle has traveled by the time it reaches the origin?

 8. Arc length in cylindrical coordinates 

 a. Show that when you express = + +ds dx dy dz2 2 2 2 
in terms of cylindrical coordinates, you get 

θ= + +ds dr r d dz .2 2 2 2 2

 b. Interpret this result geometrically in terms of the edges and a 
diagonal of a box. Sketch the box.

 c. Use the result in part (a) to find the length of the curve 
θ= = ≤ ≤θ θr e z e,  , 0 ln 8.

 9. Unit vectors for position and motion in cylindrical coordinates  
When the position of a particle moving in space is given in cylin-
drical coordinates, the unit vectors we use to describe its position 
and motion are

θ θ θ θ( ) ( ) ( ) ( )= + = − +θu i j u i jcos sin , sin cos ,r

T

T
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766 Chapter 12 Vector-Valued Functions and Motion in Space

Mathematica/Maple Projects

Projects can be found within MyLab Math.

• Radar Tracking of a Moving Object

Visualize position, velocity, and acceleration vectors to analyze motion.

• Parametric and Polar Equations with a Figure Skater

Visualize position, velocity, and acceleration vectors to analyze motion.

• Moving in Three Dimensions

Compute distance traveled, speed, curvature, and torsion for motion along a space curve. Visualize and compute the tangential, normal, and 
binormal vectors associated with motion along a space curve.

CHAPTER 12 Technology Application Projects

and k (see accompanying figure). The particle’s position vector is 
then = +r zr u k,r  where r is the positive polar distance coordi-
nate of the particle’s position.

y

z

x

k

r

uu

ur

z

r

(r, u, 0)

u

0

 a. Show that θu u,  ,r  and k, in this order, form a right-handed 
frame of unit vectors.

 b. Show that

θ θ
= = −θ

θd
d

d
d

u
u

u
uand .r

r

 c. Assuming that the necessary derivatives with respect to t exist, 
express �=v r and ��=a r in terms of �θ ru u k,  ,  ,  ,r  and �θ.

 d. Conservation of angular momentum Let tr( ) denote the 
position in space of a moving object at time t. Suppose the 
force acting on the object at time t is

= −t c
t

tF
r

r( )
( )

( ),3

where c is a constant. In physics the angular momentum 
of an object at time t is defined to be = ×t t m tL r v( ) ( ) ( ), 
where m is the mass of the object and tv( ) is the velocity. 
Prove that angular momentum is a conserved quantity; that 
is, prove that tL( ) is a constant vector, independent of time. 
Remember Newton’s law = mF a. (This is a calculus  
problem, not a physics problem.)
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767

OVERVIEW The volume of a right circular cylinder is a function π=V r h2  of its radius 
and its height, so it is a function ( )V r h,  of two variables r and h. The speed of sound 
through seawater is primarily a function of salinity S and temperature T. The monthly pay-
ment on a home mortgage is a function of the principal borrowed P, the interest rate i, and 
the term t of the loan. These are examples of functions that depend on more than one inde-
pendent variable. In this chapter we extend the ideas of single-variable differential calculus 
to functions of several variables.

Partial Derivatives

13

DEFINITIONS Suppose D is a set of n-tuples of real numbers …( )x x x, , , .n1 2  
A real-valued function f  on D is a rule that assigns a real number

…( )=w f x x x, , , n1 2

to each element in D. The set D is the function’s domain. The set of w-values 
taken on by f  is the function’s range. The symbol w is the dependent variable 
of f , and f  is said to be a function of the n independent variables x1 to x .n  We 
also call the x j’s the function’s input variables and call w the function’s output 
variable.

13.1 Functions of Several Variables

Real-valued functions of several independent real variables are defined analogously to 
functions of a single variable. Points in the domain are now ordered pairs (or triples, qua-
druples, n-tuples) of real numbers, and values in the range are real numbers.

If f  is a function of two independent variables, we usually call the independent vari-
ables x and y and the dependent variable z, and we picture the domain of f  as a region in 
the xy-plane (Figure 13.1). If f  is a function of three independent variables, we call the 
independent variables x, y, and z and the dependent variable w, and we picture the domain 
as a region in space.

In applications, we tend to use letters that remind us of what the variables stand for. To 
say that the volume of a right circular cylinder is a function of its radius and height, we 
might write ( )=V f r h, . To be more specific, we might replace the notation ( )f r h,  by 
the formula that calculates the value of V from the values of r and h, and write π=V r h.2  
In either case, r and h would be the independent variables and V the dependent variable of 
the function.
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768 Chapter 13 Partial Derivatives

FIGURE 13.1 An arrow diagram for the function ( )=z f x y, .

As usual, we evaluate functions defined by formulas by substituting the values of the 
independent variables in the formula and calculating the corresponding value of the dependent 

variable. For example, the value of ( ) = + +f x y z x y z, , 2 2 2  at the point ( )3, 0, 4  is

( ) ( ) ( ) ( )= + + = =f 3, 0, 4 3 0 4 25 5.2 2 2

Domains and Ranges

In defining a function of more than one variable, we follow the usual practice of excluding 
inputs that lead to complex numbers or division by zero. If ( ) = −f x y y x, ,2  then y 
cannot be less than x .2  If ( ) =f x y xy, 1 ( ) , then xy cannot be zero. The domain of a func-
tion is assumed to be the largest set for which the defining rule generates real numbers, 
unless the domain is otherwise specified explicitly. The range consists of the set of output 
values for the dependent variable.

EXAMPLE 1

 (a) These are functions of two variables. Note the restrictions that apply to their domains 
in order to obtain a real value for the dependent variable z.

Function Domain Range

= −z y x 2 ≥y x 2 0,[ )∞

=z
xy
1 ≠xy 0 ( ) ( )−∞ ∪ ∞, 0 0,

=z xysin Entire plane 1,1[ ]−

 (b) These are functions of three variables with restrictions on some of their domains.

Function Domain Range

= + +w x y z2 2 2 Entire space 0,[ )∞

=
+ +

w
x y z

1
2 2 2

( ) ( )≠x y z, , 0, 0, 0 ( )∞0,

=w xy zln Half-space >z 0 ( )−∞ ∞,
 

Functions of Two Variables

On the real line, closed intervals  [ ]a b,  include their boundary points while open intervals 
( )a b,  do not. Intervals such as  [ )a b, , which includes only one of its two boundary points, 
are neither open nor closed. Regions in the plane can also be open, closed, or neither.

y

x z
0 0D f (x, y)

f (a, b)

f

(a, b)

(x, y)
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 13.1  Functions of Several Variables 769

DEFINITIONS A point ( )x y,0 0  in a region (set) R in the xy-plane is an interior 
point of R if it is the center of a disk of positive radius that lies entirely in R 
(Figure 13.2). A point ( )x y,0 0  is a boundary point of R if every disk centered at 
( )x y,0 0  contains points that lie outside of R as well as points that lie in R. (The 
boundary point itself need not belong to R.)

The interior points of a region, as a set, make up the interior of the region. 
The region’s boundary points make up its boundary. A region is open if it con-
sists entirely of interior points. A region is closed if it contains all its boundary 
points (Figure 13.3).

FIGURE 13.2 Interior points and bound-
ary points of a plane region R. An interior 
point is necessarily a point of R. A bound-
ary point of R need not belong to R.

FIGURE 13.3 Interior points and boundary points of the unit disk in the plane.

DEFINITIONS A region in the plane is bounded if it lies inside a disk of finite 
radius. A region is unbounded if it is not bounded.

FIGURE 13.4 The domain of ( )f x y,  in 
Example 2 consists of the shaded region 
and its bounding parabola.

As with a half-open interval of real numbers [ )a b, , some regions in the plane are nei-
ther open nor closed. If you start with the open disk in Figure 13.3 and add to it some, but 
not all, of its boundary points, the resulting set is neither open nor closed. The boundary 
points that are there keep the set from being open. The absence of the remaining boundary 
points keeps the set from being closed. Two interesting examples are the empty set and the 
entire plane. The empty set has no interior points and no boundary points. This implies that 
the empty set is open (because it does not contain points that are not interior points), and at 
the same time it is closed (because there are no boundary points that it fails to contain). The 
entire xy-plane is also both open and closed: open because every point in the plane is an 
interior point, and closed because it has no boundary points. The empty set and the entire 
plane are the only subsets of the plane that are both open and closed. Other sets may be 
open, or closed, or neither.

Examples of bounded sets in the plane include line segments, triangles, interiors of 
triangles, rectangles, circles, and disks. Examples of unbounded sets in the plane include 
lines, coordinate axes, the graphs of functions defined on infinite intervals, quadrants, half-
planes, and the plane itself.

EXAMPLE 2  Describe the domain of the function ( ) = −f x y y x, .2

Solution Since f  is defined only where − ≥y x 0,2  the domain is the closed, 
unbounded region shown in Figure 13.4. The parabola =y x 2 is the boundary of the 
domain. The points above the parabola make up the domain’s interior. 

R

(a) Interior point

R

(b) Boundary point

(x0, y0)

(x0, y0)

y

x
0

y

x
0

y

x
0

{(x, y) 0  x2 + y2 < 1}
Open unit disk.
Every point an
interior point.

{(x, y) 0  x2 + y2 = 1}
Boundary of unit
disk. (The unit
circle.)

{(x, y) 0  x2 + y2 ≤ 1}
Closed unit disk.
Contains all
boundary points.

y

x
0 1−1

1

Interior points,
where y − x2 > 0

The parabola
y − x2 = 0
is the boundary.

Outside,
y − x2 < 0
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770 Chapter 13 Partial Derivatives

Graphs, Level Curves, and Contours of Functions of Two Variables

There are two standard ways to picture the values of a function ( )f x y, . One is to draw and 
label curves in the domain on which f  has a constant value. The other is to sketch the sur-
face ( )=z f x y,  in space.

DEFINITIONS The set of points in the plane where a function ( )f x y,  has a 
constant value ( ) =f x y c,  is called a level curve of f . The set of all points 

( )( )x y f x y, , ,  in space, for ( )x y,  in the domain of f , is called the graph of f .

The graph of f  is often called the surface z f x y,( )= .

EXAMPLE 3  Graph ( ) = − −f x y x y, 100 2 2 and plot the level curves ( ) =f x y, 0, 
( ) =f x y, 51, and ( ) =f x y, 75 in the domain of f  in the plane.

Solution The domain of f  is the entire xy-plane, and the range of f  is the set of real 
numbers less than or equal to 100. The graph is the paraboloid = − −z x y100 ,2 2  the 
positive portion of which is shown in Figure 13.5.

The level curve ( ) =f x y, 0 is the set of points in the xy-plane at which

( ) = − − = + =f x y x y x y, 100 0, or 100,2 2 2 2

which is the circle of radius 10 centered at the origin. Similarly, the level curves 
( ) =f x y, 51 and ( ) =f x y, 75 (Figure 13.5) are the circles

f x y x y x y

f x y x y x y

, 100 51, or 49

, 100 75, or 25.

2 2 2 2

2 2 2 2

( )

( )

= − − = + =

= − − = + =

The level curve ( ) =f x y, 100 consists of the origin alone. (It is still a level curve.)
If + >x y 100,2 2  then the values of ( )f x y,  are negative. For example, the circle 

+ =x y 144,2 2  which is the circle centered at the origin with radius 12, gives the constant 
value ( ) = −f x y, 44 and is a level curve of f . 

The curve in space in which the plane =z c cuts a surface ( )=z f x y,  is made up 
of the points that represent the function value ( ) =f x y c, . It is called the contour curve 

( ) =f x y c,  to distinguish it from the level curve ( ) =f x y c,  in the domain of f . 
Figure 13.6 shows the contour curve ( ) =f x y, 75 on the surface = − −z x y100 2 2 
defined by the function ( ) = − −f x y x y, 100 .2 2  The contour curve lies directly above 
the circle + =x y 25,2 2  which is the level curve ( ) =f x y, 75 in the function’s domain.

The distinction between level curves and contour curves is often overlooked, and it is 
common to call both types of curves by the same name, relying on context to make it clear 
which type of curve is meant. On most maps, for example, the curves that represent con-
stant elevation (height above sea level) are called contours, not level curves (Figure 13.7).

Functions of Three Variables

In the plane, the points where a function of two independent variables has a constant value 
( ) =f x y c,  make a curve in the function’s domain. In space, the points where a function 

of three independent variables has a constant value ( ) =f x y z c, ,  make a surface in the 
function’s domain.

DEFINITION The set of points ( )x y z, ,  in space where a function of three inde-
pendent variables has a constant value ( ) =f x y z c, ,  is called a level surface of f .

FIGURE 13.5 The graph and selected 
level curves of the function ( )f x y,  in 
Example 3. The level curves lie in the 
xy-plane,which is the domain of the 
function ( )f x y, .

FIGURE 13.6 A plane =z c paral-
lel to the xy-plane intersecting a surface 

( )=z f x y,  produces a contour curve.

y

z

x

10
10

100

f (x, y) = 75

f (x, y) = 0

f (x, y) = 51
(a typical
level curve in
the function’s
domain)

The surface
z = f (x, y)
  = 100 − x2 − y2

is the graph of f.

z

x

0

y

75

The contour curve f(x, y) = 100 − x2 − y2 = 75
is the circle x2 + y2 = 25 in the plane z = 75. 

Plane z = 75

The level curve f (x, y) = 100 − x2 − y2 = 75
is the circle x2 + y2 = 25 in the xy-plane.

z = 100 − x2 − y2

100
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 13.1  Functions of Several Variables 771

Since the graphs of functions of three variables consist of points ( )( )x y z f x y z, , , , ,  
lying in a four-dimensional space, we cannot sketch them effectively in our three-
dimensional frame of reference. We can see how the function behaves, however, by look-
ing at its three-dimensional level surfaces.

FIGURE 13.7 Contours on Mt. Washington in New Hampshire. 
(Source: United States Geological Survey)

FIGURE 13.8 The level surfaces of 
( ) = + +f x y z x y z, , 2 2 2  are concen-

tric spheres (Example 4).

EXAMPLE 4  Describe the level surfaces of the function

( ) = + +f x y z x y z, , .2 2 2

Solution The value of f  is the distance from the origin to the point ( )x y z, , . Each level sur-
face + + = >x y z c c, 0,2 2 2  is a sphere of radius c centered at the origin. Figure 13.8 
shows a cutaway view of three of these spheres. The level surface + + =x y z 02 2 2  
consists of the origin alone.

We are not graphing the function here; we are looking at level surfaces in the function’s 
domain. The level surfaces show how the function’s values change as we move through its 
domain. If we remain on a sphere of radius c centered at the origin, the function maintains a 
constant value, namely c. If we move from a point on one sphere to a point on another, the 
function’s value changes. It increases if we move away from the origin and decreases if we 
move toward the origin. The way the values change depends on the direction we take. The 
dependence of change on direction is important. We return to it in Section 13.5. 

The definitions of interior, boundary, open, closed, bounded, and unbounded for 
regions in space are similar to those for regions in the plane. To accommodate the extra 
dimension, we use solid balls of positive radius instead of disks.

DEFINITIONS A point ( )x y z, ,0 0 0  in a region R in space is an interior point 
of R if it is the center of a solid ball that lies entirely in R (Figure 13.9a). A point 
( )x y z, ,0 0 0  is a boundary point of R if every solid ball centered at ( )x y z, ,0 0 0  
contains points that lie outside of R as well as points that lie inside R (Figure 13.9b). 
The interior of R is the set of interior points of R. The boundary of R is the set 
of boundary points of R.

A region is open if it consists entirely of interior points. A region is closed if 
it contains its entire boundary.

A region is bounded if it lies inside a solid ball of finite radius; otherwise, the 
region is unbounded.

Examples of open sets in space include the interior of a sphere, the open half-space 
>z 0, the first octant (where x, y, and z are all positive), and space itself. Examples of 

closed sets in space include lines, planes, and the closed half-space ≥z 0. A solid sphere 

FIGURE 13.9 Interior points and bound-
ary points of a region in space. As with 
regions in the plane, a boundary point need 
not belong to the space region R.

x

y

z

1
2

3

"x2 + y2 + z2 = 3

"x2 + y2 + z2 = 2

"x2 + y2 + z2 = 1

x

y

z

(a) Interior point

x

y

z

(b) Boundary point

(x0, y0, z0)

(x0, y0, z0)
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772 Chapter 13 Partial Derivatives

with part of its boundary removed or a solid cube with a missing face, edge, or corner point 
is neither open nor closed.

Functions of more than three independent variables are also important. For example, a 
model that measures temperature in the atmosphere may depend not only on the location 
of the point ( )P x y z, ,  in space, but also on the time t when it is measured, so we would 
write ( )=T f x y z t, , , .

FIGURE 13.10 This graph shows  
the seasonal variation of the temperature 
below ground as a fraction of surface 
temperature (Example 5).

Computer Graphing

Three-dimensional graphing software makes it possible to graph functions of two vari-
ables. We can often get information more quickly from a graph than from a formula, since 
the surfaces reveal increasing and decreasing behavior, and high points or low points.

EXAMPLE 5  The temperature w beneath the Earth’s surface is a function of the  
depth x beneath the surface and the time t of the year. If we measure x in meters and t as the 
number of days elapsed from the expected date of the yearly highest surface temperature, 
we can model the variation in temperature with the function

w t x ecos 1.7 10 0.6 .x2 0.6( )= × −− −

(The temperature at 0 m is scaled to vary from +1 to −1, so that the variation at x meters 
can be interpreted as a fraction of the variation at the surface.)

Figure 13.10 shows a graph of the function. At a depth of 5 m, the variation (change in 
vertical amplitude in the figure) is about 5% of the surface variation. At 8 m, there is 
almost no variation during the year.

The graph also shows that the temperature 5 m below the surface is about half a year 
out of phase with the surface temperature. When the temperature is lowest on the surface 
(late January, say), it is at its highest 5 m below. Five meters below the ground, the seasons 
are reversed. 

Figure 13.11 shows computer-generated graphs of a number of functions of two vari-
ables together with their level curves.

FIGURE 13.11 Computer-generated graphs and level curves of typical functions of two variables.

z

y

x

(a) = +z x ysin 2 sin (b) ( )= + − −z x y e4 x y2 2 2 2 (c) = −z xye y2

5
8

t
x

w

y

z

x
x

z

y

x

y

x

y

x

y
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 13.1  Functions of Several Variables 773

Domain, Range, and Level Curves
In Exercises 1–4, find the specific function values.

 1. ( ) = +f x y x xy, 2 3

 a. ( )f 0, 0  b. ( )−f 1,1

 c. ( )f 2, 3  d. ( )− −f 3, 2

 2. ( ) =f x y xy, sin ( )

 a. π( )f 2,
6

 b. π( )−f 3,
12

 c. π( )f , 1
4

 d. π( )− −f
2

, 7

 3. ( ) = −
+

f x y z
x y

y z
, ,

2 2

 a. ( )−f 3, 1, 2  b. ( )−f 1, 1
2

, 1
4

 c. ( )−f 0, 1
3

, 0  d. ( )f 2, 2,100

 4. ( ) = − − −f x y z x y z, , 49 2 2 2

 a. ( )f 0, 0, 0  b. ( )−f 2, 3, 6

 c. ( )−f 1, 2, 3  d. ( )f 4
2

, 5
2

, 6
2

In Exercises 5–12, find and sketch the domain for each function.

 5. ( ) = − −f x y y x, 2

 6. ( ) ( )= + −f x y x y, ln 42 2

 7. ( )
( )

( )

( )

( )
= − +

− −
f x y

x y
y x y x

,
1 2

3

 8. ( ) =
+ −

f x y
xy

x y
,

sin ( )
252 2

 9. ( ) ( )= −−f x y y x, cos 1 2

 10. ( ) ( )= + − −f x y xy x y, ln 1

 11. ( ) ( )( )= − −f x y x y, 4 92 2

 12. ( )
( )

=
− −

f x y
x y

, 1
ln 4 2 2

In Exercises 13–16, find and sketch the level curves ( ) =f x y c,  on 
the same set of coordinate axes for the given values of c. We refer to 
these level curves as a contour map.

 13. ( ) = + − = − − −f x y x y c, 1, 3, 2, 1, 0,1, 2, 3

 14. ( ) = + =f x y x y c, , 0,1, 4, 9,16, 252 2

 15. ( ) = = − − −f x y xy c, , 9, 4, 1, 0,1, 4, 9

 16. ( ) = − − =f x y x y c, 25 , 0,1, 2, 3, 42 2

In Exercises 17–30, (a) find the function’s domain, (b) find the func-
tion’s range, (c) describe the function’s level curves, (d) find the 
boundary of the function’s domain, (e) determine whether the domain 
is an open region, a closed region, or neither, and (f) decide whether 
the domain is bounded or unbounded.

 17. ( ) = −f x y y x,  18. ( ) = −f x y y x,

 19. ( ) = +f x y x y, 4 92 2 20. ( ) = −f x y x y, 2 2

 21. ( ) =f x y xy,  22. ( ) =f x y y x, 2

 23. ( ) =
− −

f x y
x y

, 1
16 2 2

 24. ( ) = − −f x y x y, 9 2 2

 25. ( ) ( )= +f x y x y, ln 2 2  26. ( ) = ( )− +f x y e, x y2 2

 27. ( ) ( )= −−f x y y x, sin 1  28. ( )( ) = −f x y
y
x

, tan 1

 29. ( ) ( )= + −f x y x y, ln 12 2  30. ( ) ( )= − −f x y x y, ln 9 2 2

Matching Surfaces with Level Curves
Exercises 31–36 show level curves for six functions. The graphs of 
these functions are given on the next page (items a–f  ), as are their 
equations (items g–l). Match each set of level curves with the appro-
priate graph and the appropriate equation.

 31. 

x

y
 32. 

y

x

 33. 

x

y
 34. 

x

y

 35. 

x

y
 36. 

x

y

EXERCISES 13.1 
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774 Chapter 13 Partial Derivatives

z

x y

 g. = −
+

z
xy

x y

2

2 2
 h. = − −z y y x2 4 2

 i. ( )( )= − +z x y ecos cos x y 42 2

 j. = −z e xcosy  k. =
+

z
x y

1
4 2 2

 l. 
( )

= −
+

z
xy x y

x y

2 2

2 2

Functions of Two Variables
Display the values of the functions in Exercises 37–48 in two ways: 
(a) by sketching the surface ( )=z f x y,  and (b) by drawing an 
assortment of level curves in the function’s domain. Label each level 
curve with its function value.

 37. ( ) =f x y y, 2 38. ( ) =f x y x,

 39. ( ) = +f x y x y, 2 2 40. ( ) = +f x y x y, 2 2

 41. ( ) = −f x y x y, 2  42. ( ) = − −f x y x y, 4 2 2

 43. ( ) = +f x y x y, 4 2 2 44. ( ) = − −f x y x y, 6 2 3

 45. ( ) = −f x y y, 1  46. ( ) = − −f x y x y, 1

 47. ( ) = + +f x y x y, 42 2  48. ( ) = + −f x y x y, 42 2

Finding Level Curves
In Exercises 49–52, find an equation for, and sketch the graph of, the 
level curve of the function ( )f x y,  that passes through the given point.

 49. ( )( ) = − −f x y x y, 16 , 2 2, 22 2

 50. ( ) ( )= −f x y x, 1, 1, 02

 51. ( ) ( )= + − −f x y x y, 3, 3, 12

 52. ( ) ( )= −
+ +

−f x y
y x

x y
,

2
1

, 1,1

Sketching Level Surfaces
In Exercises 53–60, sketch a typical level surface for the function.

 53. ( ) = + +f x y z x y z, , 2 2 2 54. ( ) ( )= + +f x y z x y z, , ln 2 2 2

 55. ( ) = +f x y z x z, ,  56. ( ) =f x y z z, ,

 57. ( ) = +f x y z x y, , 2 2 58. ( ) = +f x y z y z, , 2 2

 59. ( ) = − −f x y z z x y, , 2 2

 60. ( ) ( ) ( ) ( )= + +f x y z x y z, , 25 16 92 2 2

Finding Level Surfaces
In Exercises 61–64, find an equation for the level surface of the func-
tion through the given point.

 61. ( ) ( )= − − −f x y z x y z, , ln , 3, 1,1

z

v
x

 a. 

z

y
x

 b. 

x y

z c. 

x

y

z d. 

z

x

y

 e. 

 f. 
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 13.2  Limits and Continuity in Higher Dimensions 775

 62. ( ) ( )( )= + + −f x y z x y z, , ln , 1, 2,12 2

 63. ( )( ) = + + −g x y z x y z, , , 1, 1, 22 2 2

 64. ( ) ( )= − +
+ −

−g x y z
x y z
x y z

, ,
2

, 1, 0, 2

In Exercises 65–68, find and sketch the domain of f . Then find an 
equation for the level curve or surface of the function passing through 
the given point.

 65. ∑( ) ( )=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

=

∞

f x y x
y

, , 1, 2
n

n

0

 66. ∑( ) ( )
( )

= +

=

∞

g x y z
x y

n z
, ,

!
, ln 4, ln 9, 2

n

n

n
0

 67. ∫ θ
θ

( ) ( )=
−

f x y d,
1

, 0,1
x

y

2

 68. ∫ ∫ θ
θ

( )( ) =
+

+
−

g x y z dt
t

d, ,
1 4

, 0,1, 3
x

y z

2 20

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for each of the functions in 
Exercises 69–72.

 a. Plot the surface over the given rectangle.

 b. Plot several level curves in the rectangle.

 c. Plot the level curve of f  through the given point.

 69. π π( ) = + ≤ ≤ ≤ ≤f x y x
y

y x x y, sin
2

sin 2 , 0 5 , 0 5 , 

π π( )P 3 , 3

 70. π( ) ( )( )= ≤ ≤+f x y x y e x, sin cos , 0 5 ,x y 82 2  
π π π( )≤ ≤y P0 5 , 4 , 4

 71. π π( ) ( )= + − ≤ ≤f x y x y x, sin 2 cos , 2 2 , 
π π π π( )− ≤ ≤y P2 2 , ,

 72. π( ) ( )= + ≤ ≤( )−f x y e x y x,  sin , 0 2 ,x y 2 20.1  
π π π π( )− ≤ ≤ −y P2 , ,

Use a CAS to plot the implicitly defined level surfaces in  
Exercises 73–76.

 73. ( )+ + =x y z4 ln 12 2 2  74. + =x z 12 2

 75. + − =x y z3 12 2

 76. ( ) ( )− + =x y x zsin
2

cos 22 2

Parametrized Surfaces Just as you describe curves in the plane 
parametrically with a pair of equations = =x f t y g t( ), ( ) defined on 
some parameter interval I, you can sometimes describe surfaces in space 
with a triple of equations υ υ υ( ) ( ) ( )= = =x f u y g u z h u, , , , ,  
defined on some parameter rectangle υ≤ ≤ ≤ ≤a u b c d, . 
Many computer algebra systems permit you to plot such surfaces in  
parametric mode. (Parametrized surfaces are discussed in detail in 
Section 15.5.) Use a CAS to plot the surfaces in Exercises 77–80. 
Also plot several level curves in the xy-plane.

 77. υ υ= = = ≤ ≤x u y u z u ucos , sin , , 0 2, 
υ π≤ ≤0 2

 78. υ υ υ= = = ≤ ≤x u y u z ucos , sin , , 0 2, 
υ π≤ ≤0 2

 79. υ υ( ) ( )= + = + =x u y u z u2 cos cos , 2 cos sin , sin , 
π υ π≤ ≤ ≤ ≤u0 2 , 0 2

 80. υ υ= = =x u y u z u2 cos cos , 2 cos sin , 2 sin , 
π υ π≤ ≤ ≤ ≤u0 2 , 0

DEFINITION Suppose that every open circular disk centered at ( )x y,0 0  con-
tains a point in the domain of f  other than ( )x y,0 0  itself. We say that a function 

( )f x y,  approaches the limit L as ( )x y,  approaches ( )x y,0 0 , and write

( ) =
( ) ( )→

f x y Llim , ,
x y x y, ,0 0

if, for every number ε > 0, there exists a corresponding number δ > 0 such that 
for all ( )x y,  in the domain of f ,

ε δ( ) ( ) ( )− < < − + − <f x y L x x y y, whenever 0 .0
2

0
2

In this section we develop limits and continuity for multivariable functions. The theory is 
similar to that developed for single-variable functions, but since we now have more than 
one independent variable, there is additional complexity that requires some new ideas.

13.2 Limits and Continuity in Higher Dimensions

Limits for Functions of Two Variables

If the values of ( )f x y,  lie arbitrarily close to a fixed real number L for all points ( )x y,  
sufficiently close to a point ( )x y,0 0 , we say that f  approaches the limit L as ( )x y,  
approaches ( )x y,0 0 . This is similar to the informal definition for the limit of a function of 
a single variable. Notice, however, that when ( )x y,0 0  lies in the interior of f ’s domain, 
( )x y,  can approach ( )x y,0 0  from any direction, not just from the left or the right. For the 
limit to exist, the same limiting value must be obtained whatever direction of approach is 
taken. We illustrate this issue in several examples following the definition.
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776 Chapter 13 Partial Derivatives

The definition of limit says that the distance between ( )f x y,  and L becomes arbi-
trarily small whenever the distance from ( )x y,  to ( )x y,0 0  is made sufficiently small (but 
not 0). The definition applies to interior points ( )x y,0 0  as well as boundary points of the 
domain of f , although a boundary point need not lie within the domain. The points ( )x y,  
that approach ( )x y,0 0  are always taken to be in the domain of f . See Figure 13.12.

FIGURE 13.12 In the limit definition, δ is the radius of a disk centered at 
( )x y, .0 0  For all points ( )x y,  within this disk, the function values ( )f x y,  lie inside 
the corresponding interval ε ε( )− +L L, .

z
0 L − ε L + εL

f

y

z

D
(x, y)

d

0

(x0, y0)

As for functions of a single variable, it can be shown that

=
( ) ( )→

x xlim
x y x y, ,

0
0 0

 (1)

=
( ) ( )→

y ylim
x y x y, ,

0
0 0

 (2)

 ( )=
( ) ( )→

k k klim any number  .
x y x y, ,0 0

 (3)

For example, in the first limit statement above, ( ) =f x y x,  and =L x .0  Using the defini-
tion of limit, suppose that ε > 0 is chosen. If we let δ  equal this ε, we see that if

x x y y0 ,0
2

0
2 δ ε( ) ( )< − + − < =

then

ε

ε

ε( )

( )− <

− <

− <

x x

x x

f x y x, .

0
2

0

0

( ) ( ) ( )− ≤ − + −x x x x y y0
2

0
2

0
2

=a a2

( )=x f x y,

That is,

ε δ( ) ( ) ( )− < < − + − <f x y x x x y y, whenever 0 .0 0
2

0
2

So a δ  has been found satisfying the requirement of the definition, and therefore we have 
proved that

( ) = =
( ) ( ) ( ) ( )→ →

f x y x xlim , lim .
x y x y x y x y, , , ,

0
0 0 0 0

Equation (1) is a special case of the more general formula

 =
( ) ( )→ →

g x g xlim ( ) lim ( ),
x y x y x x, ,0 0 0

 (4)

according to which, if ( )f x y,  can be expressed as a function g of a single variable x, then 
( )

( ) ( )→
f x ylim ,

x y x y, ,0 0

 depends only on what happens to g as x approaches x 0. Similarly, the 

following formula generalizes Equation (2):

 =
( ) ( )→ →

h y h ylim ( ) lim ( )
x y x y y y, ,0 0 0

 (5)

As with single-variable functions, the limit of the sum of two functions is the sum of their 
limits (when they both exist), with similar results for the limits of the differences, constant 
multiples, products, quotients, powers, and roots. These facts are summarized in Theorem 1.
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 13.2  Limits and Continuity in Higher Dimensions 777

Although we will not prove Theorem 1 here, we give an informal discussion of why it 
is true. If ( )x y,  is sufficiently close to ( )x y,0 0 , then ( )f x y,  is close to L and ( )g x y,  is 
close to M (from the informal interpretation of limits). It is then reasonable that 

( ) ( )+f x y g x y, ,  is close to ( ) ( )+ −L M f x y g x y; , ,  is close to ( )−L M k f x y; ,  is 
close to kL; ( ) ( )f x y g x y, ,  is close to LM; and ( ) ( )f x y g x y, ,  is close to L M  if ≠M 0. 
Similarly, powers and roots of f  are close to those of L, and a continuous function h com-
posed with f  has a value close to its value h (L) when applied to L.

When we apply Theorem 1 and Equations (1)–(3) to polynomials and rational func-
tions, we obtain the useful result that the limits of these functions as ( ) ( )→x y x y, ,0 0  
can be calculated by evaluating the functions at ( )x y,0 0 . The only requirement is that the 
rational functions be defined at ( )x y,0 0 .

THEOREM 1—Properties of Limits of Functions of Two Variables
The following rules hold if L, M, and k are real numbers and

( ) ( )= =
( ) ( ) ( ) ( )→ →

f x y L g x y Mlim , and lim , .
x y x y x y x y, , , ,0 0 0 0

1. Sum Rule: ( ) ( )[ ]+ = +
( ) ( )→

f x y g x y L Mlim , ,
x y x y, ,0 0

2. Difference Rule: ( ) ( )[ ]− = −
( ) ( )→

f x y g x y L Mlim , ,
x y x y, ,0 0

3. Constant Multiple Rule: ( ) ( )=
( ) ( )→

k f x y kL klim , any number 
x y x y, ,0 0

4. Product Rule: ( ) ( )[ ]⋅ = ⋅
( ) ( )→

f x y g x y L Mlim , ,
x y x y, ,0 0

5. Quotient Rule:
( )
( )

= ≠
( ) ( )→

f x y
g x y

L
M

Mlim
,
,

, 0
x y x y, ,0 0

6. Power Rule: ( )[ ] =
( ) ( )→

f x y Llim , ,
x y x y

n n

, ,0 0

 n a positive integer

7. Root Rule: f x y L Llim ,   ,
x y x y

n n n

, ,

1

0 0

( ) = =
( ) ( )→

n a positive integer, and if n is even,  
we assume that >L 0.

8. Composition Rule: If h z( ) is continuous at =z L, then 

( )( ) =
( ) ( )→

h f x y h Llim , ( )
x y x y, ,0 0

.

EXAMPLE 1  In this example, we combine Equations (1)–(5) with the results in Theorem 1 
to calculate the limits.

 (a) 
( )( )

( ) ( ) ( )( ) ( )

− +
+ −

= − +
+ −

= −
( ) ( )→

x xy
x y xy y

lim
3

5
0 0 1 3

0 1 5 0 1 1
3

x y, 0,1 2 3 2 3

 (b)           ( )

( )

+ = +

= + −

= =

( ) ( ) ( ) ( )→ − → −
x y x ylim lim

3 4

25 5

x y x y, 3, 4

2 2

, 3, 4

2 2

2 2

Rule 7

Rules 1 and 6 and Eq. (1) and (2)

 (c) 

π

−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ = −

= −

= −

π π π

π

( ) ( ) ( ) ( ) ( ) ( )→ → →

→ →

x
x

y
y

x
x

y
y

x
x

y
y

lim
sin

sin
lim

sin
lim

sin

lim
sin

lim
sin

2
1

x y x y x y

x y

, 2, 0 , 2, 0 , 2, 0

2 0

Rule 2

Eq. (4) and (5)

Theorem 6, Section 2.4 
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778 Chapter 13 Partial Derivatives

FIGURE 13.13 The surface graph 
suggests that the limit of the function in 
Example 3 must be 0, if it exists.

x

z

y11

EXAMPLE 2  Find 
−
−( ) ( )→

x xy
x y

lim .
x y, 0, 0

2

Solution Since the denominator −x y approaches 0 as ( ) ( )→x y, 0, 0 , we cannot 
use the Quotient Rule from Theorem 1. If we multiply numerator and denominator by 

+x y, however, we produce an equivalent fraction whose limit we can find:

Multiply by a form  
equal to 1.

Algebra

Cancel the nonzero  
factor ( )−x y .

Rules 4 and 1

Rule 7

Eq. (1) and (2)

( ) ( ) ( )
( )

[ ]

( )
( )( )

( )

( )

( )

( )

( )

−
−

=
− +
− +

=
− +

−

= +

= +⎡
⎣
⎢

⎤
⎦
⎥

= +⎡
⎣⎢

⎤
⎦⎥

= + =

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

→ →

→

→

→ → →

→ → →

x xy
x y

x xy x y

x y x y

x x y x y

x y

x x y

x x y

x x y

lim lim

lim

lim

lim lim lim

lim lim lim

0 0 0 0

x y x y

x y

x y

x y x y x y

x y x y x y

, 0, 0

2

, 0, 0

2

, 0, 0

, 0, 0

, 0, 0 , 0, 0 , 0, 0

, 0, 0 , 0, 0 , 0, 0

We can cancel the factor ( )−x y  because the path =y x (where we would have 
− =x y 0) is not in the domain of the function

( ) = −
−

f x y
x xy
x y

, .
2

 

EXAMPLE 3  Find 
+( ) ( )→

xy
x y

lim
4

x y, 0, 0

2

2 2
 if it exists.

Solution We first observe that along the line =x 0, the function always has value 0 
when ≠y 0. Likewise, along the line =y 0, the function has value 0 provided ≠x 0. So 
if the limit does exist as ( )x y,  approaches ( )0, 0 , the value of the limit must be 0 (see 
Figure 13.13). To see whether this is true, we apply the definition of limit.

Let ε > 0 be given, but arbitrary. We want to find a δ > 0 such that

ε δ
+

− < < + <xy
x y

x y
4

0 whenever 0
2

2 2
2 2

or

ε δ
+

< < + <
x y

x y
x y

4
whenever 0 .

2

2 2
2 2

Since ≤ +y x y2 2 2, we have that

x y
x y

x x x y
4

4 4 4 .
2

2 2
2 2 2

+
≤ = ≤ +     

+
≤y

x y
1

2

2 2

So if we choose δ ε= 4 and let δ< + <x y0 ,2 2  we get

δ ε ε( )+
− ≤ + < = =xy

x y
x y

4
0 4 4 4

4
.

2

2 2
2 2

It follows from the definition that

+
=

( ) ( )→

xy
x y

lim
4

0.
x y, 0, 0

2

2 2
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 13.2  Limits and Continuity in Higher Dimensions 779

EXAMPLE 4  If ( ) =f x y
y
x

, , does ( )
( ) ( )→

f x ylim ,
x y, 0, 0

 exist?

Solution The domain of f  does not include the y-axis, so we do not consider any points 
( )x y,  where =x 0 in the approach toward the origin ( )0, 0 . Along the x-axis, the value of 
the function is ( ) =f x, 0 0 for all ≠x 0. So if the limit does exist as ( ) ( )→x y, 0, 0 , 
the value of the limit must be =L 0. On the other hand, along the line =y x, the value 
of the function is ( ) = =f x x x x, 1 for all ≠x 0. That is, the function f  approaches 
the value 1 along the line =y x. This means that for every disk of radius δ  centered at 
( )0, 0 , the disk will contain points ( )x, 0  on the x-axis where the value of the function is 0, 
and also points ( )x x,  along the line =y x where the value of the function is 1. So no mat-
ter how small we choose δ  as the radius of the disk in Figure 13.12, there will be points 
within the disk for which the function values differ by 1. Therefore, the limit cannot exist 
because we can take ε to be any number less than 1 in the limit definition and deny that 

=L 0 or 1, or any other real number. The limit does not exist because we have different 
limiting values along different paths approaching the point ( )0, 0 . 

DEFINITION Suppose that every open circular disk centered at ( )x y,0 0  contains 
a point in the domain of f  other than ( )x y,0 0  itself. Then a function ( )f x y,  is  
continuous at the point x y,0 0( ) if

1. f  is defined at ( )x y, ,0 0

2. ( )
( ) ( )→

f x ylim ,
x y x y, ,0 0

 exists, and

3. ( ) ( )=
( ) ( )→

f x y f x ylim , , .
x y x y, ,

0 0
0 0

A function is continuous if it is continuous at every point of its domain.

FIGURE 13.14 (a) The graph of

( )
( ) ( )

( ) ( )
= +

≠

=

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x y

xy
x y

x y

x y
,

2
, , 0, 0

0, , 0, 0 .

2 2

The function is continuous at every point 
except the origin. (b) The value of f  along 
each line = ≠y mx x, 0, is constant but 
varies with m (Example 5).

(a)

x

y

0

0.8
1

0

00.8

0.8

1

−0.8

−0.8

−0.8

−0.8

−1

−1

(b)

0.8

−y

x

z

Continuity

As with functions of a single variable, continuity is defined in terms of limits.

As with the definition of limit, the definition of continuity applies at boundary points 
as well as interior points of the domain of f .

A consequence of Theorem 1 is that algebraic combinations of continuous functions 
are continuous at every point at which all the functions involved are defined. This means that 
sums, differences, constant multiples, products, quotients, and powers of continuous func-
tions are continuous where defined. In particular, polynomials and rational functions of two 
variables are continuous at every point at which they are defined.

EXAMPLE 5  Show that

( )
( ) ( )

( ) ( )
= +

≠

=

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x y

xy
x y

x y

x y
,

2
, , 0, 0

0, , 0, 0 .

2 2

is continuous at every point except the origin (Figure 13.14).

Solution The function f  is continuous at every point ( )x y,  except ( )0, 0  because its 
values at points other than ( )0, 0  are given by a rational function of x and y, and therefore 
at those points the limiting value is simply obtained by substituting the values of x and y 
into that rational expression.

M13_HASS5901_15_GE_C13.indd   779 08/03/2023   15:56

www.konkur.in

Telegram: @uni_k



780 Chapter 13 Partial Derivatives

At ( )0, 0 , the value of f  is defined, but f  has no limit as ( ) ( )→x y, 0, 0 . The reason 
is that different paths of approach to the origin can lead to different results, as we now see.

For every value of m, the function f  has a constant value on the “punctured” line 
= ≠y mx x, 0, because

( )
( )

( )
=

+
=

+
=

+
=

+= =

f x y
xy

x y
x mx

x mx
mx

x m x
m
m

,
2 2 2 2

1
.

y mx y mx
2 2 2 2

2

2 2 2 2

Therefore, f  has this number as its limit as ( )x y,  approaches ( )0, 0  along the line:

( ) ( )=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
+( ) ( ) ( ) ( )→

=
→ =

f x y f x y m
m

lim , lim , 2
1

.
x y

y mx
x y y mx, 0, 0

along
, 0, 0 2

This limit changes with each value of the slope m. There is therefore no single number we 
may call the limit of f  as ( )x y,  approaches the origin. The limit fails to exist, and the func-
tion is not continuous at the origin. 

Two-Path Test for Nonexistence of a Limit
If a function ( )f x y,  has different limits along two different paths in the domain of 
f  as ( )x y,  approaches ( )x y,0 0 , then ( )

( ) ( )→
f x ylim ,

x y x y, ,0 0

 does not exist.

FIGURE 13.15 (a) The graph of 
( ) ( )= +f x y x y x y, 2 .2 4 2  (b) Along 

each path = ≠y kx x, 02 , the value of f  
is constant, but varies with k (Example 6).

(a)

x

(b)

y

k = −1

k = 10
k = 3

k = 1

k = −0.1

−1

1

1
1 y

z

x

−1

Examples 4 and 5 illustrate an important point about limits of functions of two or more 
variables. For a limit to exist at a point, the limit must be the same along every approach 
path. This result is analogous to the single-variable case where both the left- and right-sided 
limits had to have the same value. For functions of two or more variables, if we ever find 
paths with different limits, we know the function has no limit at the point they approach.

EXAMPLE 6  Show that the function

( ) =
+

f x y
x y

x y
,

2 2

4 2

(Figure 13.15) has no limit as ( )x y,  approaches ( )0, 0 .

Solution As ( )x y,  approaches ( )0, 0 , both the numerator and the denominator 
approach 0, which gives the indeterminate form 0 0. We examine the values of f  along 
parabolic curves that end at ( )0, 0 . Along the curve = ≠y kx x, 0,2  the function has 
the constant value

( ) =
+

=
+

=
+

=
+= =

f x y
x y

x y
x kx

x kx
kx

x k x
k
k

,
2 2 ( )

( )
2 2

1
.

y kx y kx

2

4 2

2 2

4 2 2

4

4 2 4 22 2

Therefore,

( ) ( )=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
+( ) ( ) ( ) ( )→

=
→ =

f x y f x y k
k

lim , lim , 2
1

.
x y

y kx
x y y kx, 0, 0

along
, 0, 0 2

2
2

This limit varies with the path of approach. If ( )x y,  approaches ( )0, 0  along the parabola 
=y x ,2  for instance, =k 1 and the limit is 1. If ( )x y,  approaches ( )0, 0  along the x-axis, 
=k 0 and the limit is 0. By the two-path test, f  has no limit as ( )x y,  approaches ( )0, 0 . 

It can be shown that the function in Example 6 has limit 0 along every straight line 
path =y mx  (Exercise 57). This implies the following observation:

Having the same limit along all straight lines approaching ( )x y,0 0  does not 
imply that a limit exists at ( )x y,0 0 .
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 13.2  Limits and Continuity in Higher Dimensions 781

Whenever it is correctly defined, the composition of continuous functions is also con-
tinuous. The only requirement is that each function be continuous where it is applied. The 
proof, omitted here, is similar to that for functions of a single variable (Theorem 9 in 
Section 2.6).

Continuity of Compositions
If f  is continuous at ( )x y,0 0  and g is a single-variable function continuous at 

( )f x y, ,0 0  then the composition =h g f�  defined by ( ) ( )( )=h x y g f x y, ,  is 
also continuous at ( )x y, .0 0

Limits with Two Variables
Find the limits in Exercises 1–12.

 1. 
− +
+ +( ) ( )→

x y
x y

lim
3 5

2x y, 0, 0

2 2

2 2
 2. 

( ) ( )→

x
y

lim
x y, 0, 4

 3. + −
( ) ( )→

x ylim 1
x y, 3, 4

2 2  4. +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟( ) ( )→ − x y

lim 1 1
x y, 2, 3

2

 5. 
π( ) ( )→

x ylim sec tan
x y, 0, 4

 6. 
+

+ +( ) ( )→

x y
x y

lim cos
1x y, 0, 0

2 3

EXERCISES 13.2

For example, the composite functions

( )
+

+−e
xy

x
x y, cos

1
, ln 1x y

2
2 2

are continuous at every point ( )x y, .

Functions of More Than Two Variables

The definitions of limit and continuity for functions of two variables and the conclusions 
about limits and continuity for sums, products, quotients, powers, and compositions all 
extend to functions of three or more variables. Functions like

( )+ +
−

x y z
y z
x

ln and
sin

1

are continuous throughout their domains, and limits like

( )+
=

− +
=

( )→ −

+ −e
z xy

elim
cos 1 cos 0

1
2

,
P

x z

1, 0, 1 2

1 1

2

where P denotes the point ( )x y z, , , may be found by direct substitution.

Extreme Values of Continuous Functions on Closed, Bounded Sets

The Extreme Value Theorem (Theorem 1, Section 4.1) states that a function of a single 
variable that is continuous at every point of a closed, bounded interval a b,[ ] takes on an 
absolute maximum value and an absolute minimum value at least once in a b,[ ]. The same 
holds true of a function ( )=z f x y,  that is continuous on a closed, bounded set R in the 
plane (like a line segment, a disk, or a filled-in triangle). The function takes on an absolute 
maximum value at some point in R and an absolute minimum value at some point in R. The 
function may take on a maximum or minimum value more than once over R.

Similar results hold for functions of three or more variables. A continuous function 
( )=w f x y z, ,  must take on absolute maximum and minimum values on any closed, 

bounded set (such as a solid ball or cube, spherical shell, or rectangular solid) on which it 
is defined. We will learn how to find these extreme values in Section 13.7.
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782 Chapter 13 Partial Derivatives

 7. 
( ) ( )→

−elim
x y

x y

, 0, ln 2
 8. +

( ) ( )→
x ylim ln 1

x y, 1,1

2 2

 9. 
( ) ( )→

e x
x

lim
sin

x y

y

, 0, 0
 10. 

π( )( )→
xylim cos

x y, 1 27,

3
3

 11. 
+π( ) ( )→

x y
x

lim
sin

1x y, 1, 6 2
 12. 

+
−π( ) ( )→

y
y x

lim
cos 1

sinx y, 2, 0

Limits of Quotients
Find the limits in Exercises 13–24 by rewriting the fractions first.

 13. 
− +

−( ) ( )→
≠

x xy y
x y

lim
2

x y, 1,1

2 2

x y

 14. 
−
−( ) ( )→

≠

x y
x y

lim
x y, 1,1

2 2

x y

 15. 
− − +

−( ) ( )→
≠

xy y x
x

lim
2 2
1x y, 1,1

x 1

 16. 
+

− + −( ) ( )→ −
≠− ≠

y
x y xy x x

lim
4
4 4x y, 2, 4 2 2

x x x4, 2

 17. 
− + −

−( ) ( )→
≠

x y x y
x y

lim
2 2

x y, 0, 0
x y

 18. 
+ −
+ −( ) ( )→

+ ≠

x y
x y

lim
4
2x y, 2, 2

x y 4

 19. − −
− −( ) ( )→

− ≠

x y
x y

lim 2 2
2 4x y, 2, 0

x y2 4

 20. − +
− −( ) ( )→

≠ +

x y
x y

lim 1
1x y, 4, 3

x y 1

 21. 
( )+

+( ) ( )→

x y
x y

lim
sin

x y, 0, 0

2 2

2 2
 22. 

−
( ) ( )→

xy
xy

lim
1 cos ( )

x y, 0, 0

 23. 
+
+( ) ( )→ −

x y
x y

lim
x y, 1, 1

3 3
 24. 

−
−( ) ( )→

x y
x y

lim
x y, 2, 2 4 4

Limits with Three Variables
Find the limits in Exercises 25–30.

 25. + +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟( )→ x y z

lim 1 1 1
P 1, 3, 4

 26. 
+
+( )→ − −

xy yz
x z

lim
2

P 1, 1, 1 2 2

 27. ( )+ +
π π( )→

x y zlim sin cos sec
P , , 0

2 2 2

 28. 
π( )→ −

− xyzlim tan
P 1 4, 2, 2

1  29. 
π( )→

−ze xlim cos 2
P

y

, 0, 3

2

 30. + +
( )→ −

x y zlim ln
P 2, 3, 6

2 2 2

Continuity for Two Variables
At what points ( )x y,  in the plane are the functions in Exercises 31–34 
continuous?

 31. a. ( ) ( )= +f x y x y, sin  b. ( ) ( )= +f x y x y, ln 2 2

 32. a. ( ) = +
−

f x y
x y
x y

,  b. ( ) =
+

f x y
y

x
,

12

 33. a. ( ) =g x y
xy

, sin 1  b. ( ) = +
+

g x y
x y

x
,

2 cos

 34. a. ( ) = +
− +

g x y
x y

x x
,

3 2

2 2

2
 b. ( ) =

−
g x y

x y
, 1

2

Continuity for Three Variables
At what points ( )x y z, ,  in space are the functions in Exercises 35–40 
continuous?

 35. a. ( ) = + −f x y z x y z, , 22 2 2

 b. ( ) = + −f x y z x y, , 12 2

 36. a. ( ) =f x y z xyz, , ln  b. ( ) = +f x y z e z, , cosx y

 37. a. ( ) =h x y z xy
z

, , sin 1  b. ( ) =
+ −

h x y z
x z

, , 1
12 2

 38. a. ( ) =
+

h x y z
y z

, , 1  b. ( ) =
+

h x y z
xy z

, , 1

 39. a. ( ) ( )= − − −h x y z z x y, , ln 12 2

 b. ( ) =
− +

h x y z
z x y

, , 1
2 2

 40. a. ( ) = − − −h x y z x y z, , 4 2 2 2

 b. ( ) =
− + + −

h x y z
x y z

, , 1
4 92 2 2

No Limit Exists at the Origin
By considering different paths of approach, show that the functions in 
Exercises 41–48 have no limit as ( ) ( )→x y, 0, 0 .

 41. ( ) = −
+

f x y x
x y

,
2 2

z

y

x

 42. ( ) =
+

f x y x
x y

,
4

4 2

z

yx

 43. ( ) = −
+

f x y
x y
x y

,
4 2

4 2
 44. ( ) =f x y

xy
xy

,

 45. ( ) = −
+

g x y
x y
x y

,  46. ( ) = −
−

g x y
x y
x y

,
2

 47. ( ) = +
h x y

x y
y

,
2

 48. ( ) =
+

h x y
x y

x y
,

2

4 2

Theory and Examples
In Exercises 49–54, show that the limits do not exist.

 49. 
−

−( ) ( )→

xy
y

lim
1

1x y, 1,1

2
 50. 

+
−( ) ( )→ −

xy
x y

lim
1

x y, 1, 1 2 2

 51. 
( )+( ) ( )→

x y

x y
lim

ln

lnx y, 0,1 2 2  52. −
− +( ) ( )→

xe
xe y

lim 1
1x y

y

y, 1, 0

 53. 
+
+( ) ( )→

y x

x y
lim

sin

sinx y, 0, 0
 54. 

−
−( ) ( )→

y y x
y x

lim
tan tan

x y, 1,1

M13_HASS5901_15_GE_C13.indd   782 08/03/2023   15:56

www.konkur.in

Telegram: @uni_k



 13.2  Limits and Continuity in Higher Dimensions 783

 55. Let f x y

y x

y,  

1,

1, 0

0, otherwise.

4

( ) =

≥

≤

⎧

⎨
⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

Find each of the following limits, or explain that the limit does 
not exist.

 a. ( )
( ) ( )→

f x ylim ,
x y, 0,1

 b. ( )
( ) ( )→

f x ylim ,
x y, 2, 3

 c. ( )
( ) ( )→

f x ylim ,
x y, 0, 0

 56. Let ( ) =
≥

<

⎧
⎨
⎪⎪
⎩⎪⎪

f x y
x x

x x
,

, 0

, 0
.

2

3

Find the following limits.

 a. ( )
( ) ( )→ −

f x ylim ,
x y, 3, 2

 b. ( )
( ) ( )→ −

f x ylim ,
x y, 2,1

 c. ( )
( ) ( )→

f x ylim ,
x y, 0, 0

 57. Show that the function in Example 6 has limit 0 along every 
straight line approaching ( )0, 0 .

 58. If f x y, 3,0 0( ) =  what can you say about

( )
( ) ( )→

f x ylim ,
x y x y, ,0 0

if f  is continuous at ( )x y, ?0 0  If f  is not continuous at ( )x y, ?0 0  
Give reasons for your answers.

The Sandwich Theorem for functions of two variables states that 
if ( ) ( ) ( )≤ ≤g x y f x y h x y, , ,  for all ( ) ( )≠x y x y, ,0 0  in a disk 
centered at ( )x y,0 0  and if g and h have the same finite limit L as 
( ) ( )→x y x y, , ,0 0  then

( ) =
( ) ( )→

f x y Llim , .
x y x y, ,0 0

Use this result to support your answers to the questions in Exer-
cises 59–62.

 59. Does knowing that

− < <
−x y xy
xy

1
3

tan
1

2 2 1

tell you anything about

( ) ( )→

− xy
xy

lim
tan

?
x y, 0, 0

1

Give reasons for your answer.

 60. Does knowing that

− < − <xy
x y

xy xy2
6

4 4 cos 2
2 2

tell you anything about

−
( ) ( )→

xy
xy

lim
4 4 cos

?
x y, 0, 0

Give reasons for your answer.

 61. Does knowing that ( ) ≤xsin 1 1 tell you anything about

( ) ( )→
y

x
lim sin 1 ?

x y, 0, 0

Give reasons for your answer.

 62. Does knowing that ( ) ≤ycos 1 1 tell you anything about

( ) ( )→
x

y
lim cos 1 ?

x y, 0, 0

Give reasons for your answer.

 63. (Continuation of Example 5.)

 a. Reread Example 5. Then substitute θ=m tan  into the  
formula

( ) =
+=

f x y m
m

, 2
1y mx

2

and simplify the result to show how the value of f  varies with 
the line’s angle of inclination.

 b. Use the formula you obtained in part (a) to show that the limit 
of f  as ( ) ( )→x y, 0, 0  along the line =y mx varies from −1 
to 1, depending on the angle of approach.

 64. Continuous extension Define ( )f 0, 0  in a way that extends

( ) = −
+

f x y xy
x y
x y

,
2 2

2 2

to be continuous at the origin.

Changing Variables to Polar Coordinates
If you cannot make any headway with ( )

( ) ( )→
f x ylim ,

x y, 0, 0
 in rect-

angular coordinates, try changing to polar coordinates. Substitute 
θ θ= =x r y rcos , sin , and investigate the limit of the resulting 

expression as →r 0. In other words, try to decide whether there 
exists a number L satisfying the following criterion:

Given ε > 0, there exists a δ > 0 such that for all r and θ,

 δ θ ε( )< ⇒ − <r f r L, . (1)

If such an L exists, then

θ θ( ) ( )= =
( ) ( )→ →

f x y f r r Llim , lim cos , sin .
x y r, 0, 0 0

For instance,

θ θ
+

= = =
( ) ( )→ → →

x
x y

r
r

rlim lim cos lim cos 0.
x y r r, 0, 0

3

2 2 0

3 3

2 0

3

To verify the last of these equalities, we need to show that Equation 
(1) is satisfied with θ θ( ) =f r r, cos3  and =L 0. That is, we need 
to show that given any ε > 0, there exists a δ > 0 such that for all 
r and θ,

δ θ ε< ⇒ − <r r cos 0 .3

Since

r r r rcos cos 1 ,3 3θ θ= ≤ ⋅ =

the implication holds for all r and θ if we take δ ε= .
In contrast,

θ θ
+

= =x
x y

r
r
cos cos

2

2 2

2 2

2
2
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784 Chapter 13 Partial Derivatives

takes on all values from 0 to 1 regardless of how small r  is, so that 
( )+

( ) ( )→
x x ylim

x y, 0, 0

2 2 2  does not exist.

In each of these instances, the existence or nonexistence of the 
limit as →r 0 is fairly clear. Shifting to polar coordinates does not 
always help, however, and may even tempt us to false conclusions. 
For example, the limit may exist along every straight line (or ray) 
θ = constant and yet fail to exist in the broader sense. Example 5 illus-
trates this point. In polar coordinates, ( ) ( ) ( )= +f x y x y x y, 2 2 4 2  
becomes

θ θ
θ θ
θ θ

( ) =
+

f r r
r

r
cos , sin

cos sin 2
cos sin2 4 2

for ≠r 0. If we hold θ constant and let →r 0, the limit is 0. On the 
path =y x ,2  however, we have θ θ=r rsin cos2 2  and

θ θ
θ θ

θ θ

θ θ
θ

θ
θ

( )
( )

=
+

= = =

f r r
r

r r

r
r

r
r

cos , sin
cos sin 2

cos cos

2 cos sin
2 cos

sin
cos

1.

2 4 2 2

2

2 4 2 2

In Exercises 65–70, find the limit of f  as ( ) ( )→x y, 0, 0  or show that 
the limit does not exist.

 65. ( ) = −
+

f x y
x xy
x y

,
3 2

2 2
 66. ( ) = −

+
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟f x y

x y
x y

, cos
3 3

2 2

 67. ( ) =
+

f x y
y

x y
,

2

2 2
 68. ( ) =

+ +
f x y x

x x y
, 2

2 2

 69. ( ) = +
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−f x y
x y

x y
, tan 1

2 2

 70. ( ) = −
+

f x y
x y
x y

,
2 2

2 2

In Exercises 71 and 72, define ( )f 0, 0  in a way that extends f  to be 
continuous at the origin.

 71. ( ) = − +
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟f x y

x x y y
x y

, ln
3 32 2 2 2

2 2

 72. ( ) =
+

f x y
x y

x y
,

3 2

2 2

Using the Limit Definition
Each of Exercises 73–78 gives a function ( )f x y,  and a positive num-
ber ε. In each exercise, show that there exists a δ > 0 such that for all 
( )x y, ,

δ ε( ) ( )+ < ⇒ − <x y f x y f, 0, 0 .2 2

 73. ε( ) = + =f x y x y, , 0.012 2

 74. ε( ) ( )= + =f x y y x, 1 , 0.052

 75. ε( ) ( )( )= + + =f x y x y x, 1 , 0.012

 76. ε( ) ( )( )= + + =f x y x y x, 2 cos , 0.02

 77. ε( ) ( )=
+

= =f x y
xy

x y
f, and 0, 0 0, 0.04

2

2 2

 78. ε( ) ( )= +
+

= =f x y
x y
x y

f, and 0, 0 0, 0.02
3 4

2 2

Each of Exercises 79–82 gives a function ( )f x y z, ,  and a positive 
number ε. In each exercise, show that there exists a δ > 0 such that 
for all ( )x y z, , ,

δ ε( ) ( )+ + < ⇒ − <x y z f x y z f, , 0, 0, 0 .2 2 2

 79. ε( ) = + + =f x y z x y z, , , 0.0152 2 2

 80. ε( ) = =f x y z xyz, , , 0.008

 81. f x y z
x y z

x y z
, ,

1
, 0.015

2 2 2
ε( ) = + +

+ + +
=

 82. ε( ) = + + =f x y z x y z, , tan tan tan , 0.032 2 2

 83. Show that ( ) = + −f x y z x y z, ,  is continuous at every point 
( )x y z, , .0 0 0

 84. Show that ( ) = + +f x y z x y z, , 2 2 2 is continuous at the origin.

The calculus of several variables is similar to single-variable calculus applied to several 
variables, one at a time. When we hold all but one of the independent variables of a func-
tion constant and differentiate with respect to that one variable, we get a “partial” deriva-
tive. This section shows how partial derivatives are defined and interpreted geometrically, 
and how to calculate them by applying the familiar rules for differentiating functions of a 
single variable. The idea of differentiability for functions of several variables requires more 
than the existence of the partial derivatives, because a point can be approached from many 
different directions. However, we will see that differentiable functions of several variables 
behave similarly to differentiable single-variable functions. In particular, they are continu-
ous and can be well approximated by linear functions.

Partial Derivatives of a Function of Two Variables

If ( )x y,0 0  is a point in the domain of a function ( )f x y, , the vertical plane =y y0 will cut 
the surface ( )=z f x y,  in the curve ( )=z f x y, 0  (Figure 13.16). This curve is the graph 

13.3 Partial Derivatives
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 13.3  Partial Derivatives 785

of the function ( )=z f x y, 0  in the plane =y y .0  The horizontal coordinate in this plane 
is x; the vertical coordinate is z. The y-value is held constant at y0, so y is not a variable.

We define the partial derivative of f  with respect to x at the point ( )x y,0 0  as the ordi-
nary derivative of ( )f x y, 0  with respect to x at the point =x x .0  To distinguish partial 
derivatives from ordinary derivatives, we use the symbol ∂ rather than the d previously 
used. In the definition, h represents a real number, positive or negative.

DEFINITION The partial derivative of ( )f x y,  with respect to x at the point 
( )x y,0 0  is

( ) ( )∂
∂

=
+ −

( ) →

f
x

f x h y f x y
h

lim
, ,

,
x y h, 0

0 0 0 0

0 0

provided the limit exists.

FIGURE 13.16 The intersection of the plane =y y0 
with the surface ( )=z f x y, , viewed from above the first 
quadrant of the xy-plane.

x
y

z

0

 

Tangent line

The curve z = f (x, y0)
in the plane y = y0

P(x0, y0, f (x0, y0))

Vertical axis in
the plane y = y0

z = f (x, y)

y0

x0

Horizontal axis in the plane y = y0

(x0 + h,  y0)
(x0, y0)

The partial derivative of ( )f x y,  with respect to x at the point ( )x y,0 0  is the same as 
the ordinary derivative of ( )f x y, 0  at the point x 0:

( )∂
∂

=
( ) =

f
x

d
dx

f x y, .
x y x x,

0
0 0 0

A variety of notations are used to denote the partial derivative at a point ( )x y, ,0 0  
including

( ) ( )∂
∂

∂
∂ ( )

f
x

x y f x y z
x

, , , , and .x
x y

0 0 0 0
,0 0

When we do not specify a specific point ( )x y,0 0  at which the partial derivative is being 
evaluated, then the partial derivative becomes a function whose domain is the points where 
the partial derivative exists. Notations for this function include

∂
∂

∂
∂

f
x

f z
x

, , and .x
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786 Chapter 13 Partial Derivatives

The slope of the curve ( )=z f x y, 0  at the point ( )( )P x y f x y, , ,0 0 0 0  in the plane 
=y y0 is the value of the partial derivative of f  with respect to x at ( )x y, .0 0  (In 

Figure 13.16 this slope is negative.) The tangent line to the curve at P is the line in the 
plane =y y0 that passes through P with this slope. The partial derivative ∂ ∂f x at 
( )x y,0 0  gives the rate of change of f  with respect to x when y is held fixed at the value y .0

The definition of the partial derivative of ( )f x y,  with respect to y at a point ( )x y,0 0  
is similar to the definition of the partial derivative of f  with respect to x. We hold x fixed at 
the value x 0 and take the ordinary derivative of ( )f x y,0  with respect to y at y .0

DEFINITION The partial derivative of ( )f x y,  with respect to y at the point 
( )x y,0 0  is

( )
( ) ( )∂

∂
= =

+ −

( ) = →

f
y

d
dy

f x y
f x y h f x y

h
, lim

, ,
,

x y y y h,
0

0

0 0 0 0

0 0 0

provided the limit exists.

FIGURE 13.17 The intersection of the 
plane =x x 0 with the surface ( )=z f x y, , 
viewed from above the first quadrant of  
the xy-plane.

x

z

y

P(x0, y0, f (x0, y0))

y0x0

(x0, y0)

(x0, y0 + k)

The curve z = f (x0, y)
in the plane

x = x0

Horizontal axis
in the plane x = x0

z = f (x, y)

Tangent line

Vertical axis
in the plane

x = x0

0

FIGURE 13.18 Figures 13.16 and 13.17 combined. The tangent 
lines at the point ( )( )x y f x y, , ,0 0 0 0  determine a plane that, in this 
picture at least, appears to be tangent to the surface.

x

y

z

This tangent line
has slope fy(x0, y0). This tangent line

has slope fx(x0, y0).

The curve z = f (x, y0) in
the vertical plane y = y0

z =  f (x, y)

x = x0y = y0 (x0, y0)

The curve z = f (x0, y) in
the vertical plane x = x0

 P(x0, y0, f (x0, y0))

The slope of the curve ( )=z f x y,0  at the point ( )( )P x y f x y, , ,0 0 0 0  in the vertical 
plane =x x 0 (Figure 13.17) is the partial derivative of f  with respect to y at ( )x y, .0 0  The 
tangent line to the curve at P is the line in the plane =x x 0 that passes through P with this 
slope. The partial derivative gives the rate of change of f  with respect to y at ( )x y,0 0  when 
x is held fixed at the value x .0

The partial derivative with respect to y is denoted the same way as the partial deriva-
tive with respect to x:

( ) ( )∂
∂

∂
∂

f
y

x y f x y
f
y

f, , , , , .y y0 0 0 0

Notice that we now have two tangent lines associated with the surface ( )=z f x y,  at 
the point ( )( )P x y f x y, , ,0 0 0 0  (Figure 13.18). Is the plane they determine tangent to the 
surface at P? We will see that it is for the differentiable functions defined at the end of this 
section, and we will learn how to find the tangent plane in Section 13.6. First we have to 
better understand partial derivatives.
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 13.3  Partial Derivatives 787

Calculations

The definitions of ∂ ∂f x and ∂ ∂f y give us two different ways of differentiating f  at a 
point: with respect to x in the usual way while treating y as a constant, and with respect to 
y in the usual way while treating x as a constant. As the following examples show, the val-
ues of these partial derivatives are usually different at a given point ( )x y, .0 0

EXAMPLE 1  Find the values of ∂ ∂f x and ∂ ∂f y at the point ( )−4, 5  if

( ) = + + −f x y x xy y, 3 1.2

Solution To find ∂ ∂f x , we treat y as a constant and differentiate with respect to x:

( )
∂
∂

= ∂
∂

+ + − = + ⋅ ⋅ + − = +f
x x

x xy y x y x y3 1 2 3 1 0 0 2 3 .2

The value of ∂ ∂f x at ( )−4, 5  is ( ) ( )+ − = −2 4 3 5 7.
To find ∂ ∂f y , we treat x as a constant and differentiate with respect to y:

( )
∂
∂

= ∂
∂

+ + − = + ⋅ ⋅ + − = +f
y y

x xy y x x3 1 0 3 1 1 0 3 1.2

The value of ∂ ∂f y at ( )−4, 5  is ( ) + =3 4 1 13. 

EXAMPLE 2  Find ∂ ∂f y as a function if ( ) =f x y y xy, sin .

Solution We treat x as a constant and f  as a product of y and sin xy:

( ) ( )

( )

∂
∂

= ∂
∂

= ∂
∂

+ ∂
∂

= ∂
∂

+ = +

f
y y

y xy y
y

xy xy
y

y

y xy
y

xy xy xy xy xy

sin sin sin ( )

cos ( ) sin cos sin .  

EXAMPLE 3  Find f x  and f y as functions if

( ) =
+

f x y
y

y x
,

2
cos

.

Solution We treat f  as a quotient. With y held constant, we use the quotient rule to get

( ) ( )

( )

( ) ( )
( ) ( )

( )

( )

= ∂
∂ +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =

+ ∂
∂

− ∂
∂

+

+

=
+ − −

+
=

+

f
x

y
y x

y x
x

y y
x

y x

y x

y x y x

y x

y x

y x

2
cos

cos 2 2 cos

cos

cos 0 2 sin

cos

2 sin

cos
.

x 2

2 2

With x held constant and again applying the quotient rule, we get

( ) ( )

( )

( )
( ) ( )

( )

( ) ( )

= ∂
∂ +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =

+ ∂
∂

− ∂
∂

+

+

=
+ −

+
=

+

f
y

y
y x

y x
y

y y
y

y x

y x

y x y

y x

x

y x

2
cos

cos 2 2 cos

cos

cos 2 2 1

cos

2 cos

cos
.

y 2

2 2  

Implicit differentiation works for partial derivatives the way it works for ordinary 
derivatives, as the next example illustrates.
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788 Chapter 13 Partial Derivatives

EXAMPLE 4  Find ∂ ∂z x assuming that the equation

− = +yz z x yln

defines z as a function of the two independent variables x and y and the partial derivative 
exists.

Solution We differentiate both sides of the equation with respect to x, holding y constant 
and treating z as a differentiable function of x:

( )

∂
∂

− ∂
∂

= ∂
∂

+ ∂
∂

∂
∂

− ∂
∂

= +

− ∂
∂

=

∂
∂

=
−

x
yz

x
z x

x
y
x

y z
x z

z
x

y
z

z
x

z
x

z
yz

( ) ln

1 1 0

1 1

1
.

    ∂
∂

= ∂
∂

y
x

yz y z
x

With   constant,  ( ) .

 

FIGURE 13.19 The tangent line to the 
curve of intersection of the plane =x 1 
and the surface = +z x y2 2 at the point 
( )1, 2, 5  (Example 5).

(1, 2, 5)

z

x

y

x = 1

Surface
z = x2 + y2

Tangent
line

Plane
x = 1

21

EXAMPLE 5  The plane =x 1 intersects the paraboloid = +z x y2 2 in a parabola. 
Find the slope of the tangent line to the parabola at ( )1, 2, 5  (Figure 13.19).

Solution The parabola lies in a plane parallel to the yz-plane, and the slope is the value 
of the partial derivative ∂ ∂z y at ( )1, 2 :

( ) ( )
∂
∂

= ∂
∂

+ = = =
( ) ( ) ( )

z
y y

x y y2 2 2 4.
1, 2

2 2

1, 2 1, 2

As a check, we can treat the parabola as the graph of the single-variable function 
( )= + = +z y y1 12 2 2 in the plane =x 1 and ask for the slope at =y 2. The slope, 

calculated now as an ordinary derivative, is

( )= + = =
= = =

dz
dy

d
dy

y y1 2 4.
y y y2

2

2 2
 

Functions of More Than Two Variables

The definitions of the partial derivatives of functions of more than two independent vari-
ables are similar to the definitions for functions of two variables. They are ordinary deriva-
tives with respect to one variable, taken while the other independent variables are held 
constant.

EXAMPLE 6  If x, y, and z are independent variables and

( ) ( )= +f x y z x y z, , sin 3 ,

then

[ ]( ) ( )

( ) ( )

( )

∂
∂

= ∂
∂

+ = ∂
∂

+

= + ∂
∂

+

= +

f
z z

x y z x
z

y z

x y z
z

y z

x y z

sin 3 sin 3

cos 3 3

3 cos 3 .

x held constant

Chain rule

y held constant 
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 13.3  Partial Derivatives 789

FIGURE 13.21 The graph of

( ) =
≠

=
⎧
⎨
⎪⎪
⎩⎪⎪

f x y
xy

xy
,

0, 0

1, 0

consists of the lines L1 and L2 (lying  
1 unit above the xy-plane) and the four 
open quadrants of the xy-plane. The  
function has partial derivatives at the origin 
but is not continuous there (Example 8).

y

z

x

0

1

L1

L 2

z =
0,  xy ≠ 0
1,  xy = 0

FIGURE 13.20 Resistors arranged this 
way are said to be connected in parallel 
(Example 7). Each resistor lets a portion 
of the current through. Their equivalent 
resistance R is calculated with the formula

= + +
R R R R
1 1 1 1 .

1 2 3

+ −

R3

R2

R1 EXAMPLE 7  If resistors of R R, ,1 2  and R3 ohms are connected in parallel to make an 
R-ohm resistor, the value of R can be found from the equation

= + +
R R R R
1 1 1 1

1 2 3

(Figure 13.20). Find the value of ∂ ∂R R2  when = =R R30, 45,1 2  and =R 903  ohms.

Solution To find ∂ ∂R R ,2  we treat R1 and R3 as constants and, using implicit differen-
tiation, differentiate both sides of the equation with respect to R :2

( )∂
∂

= ∂
∂

+ +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

− ∂
∂

= − +

∂
∂

= =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

R R R R R R

R
R
R R

R
R

R
R

R
R

1 1 1 1

1 0 1 0

.

2 2 1 2 3

2
2 2

2

2

2

2
2

2

2

When = =R R30, 45,1 2  and =R 90,3

= + + = + + = =
R
1 1

30
1

45
1

90
3 2 1

90
6

90
1

15
,

so =R 15 and

( ) ( )∂
∂

= = =R
R

15
45

1
3

1
9

.
2

2 2

Thus at the given values, a small change in the resistance R2 leads to a change in R about 
one-ninth as large. 

Partial Derivatives and Continuity

A function ( )f x y,  can have partial derivatives with respect to both x and y at a point with-
out the function being continuous there. This is different from functions of a single  
variable, where the existence of a derivative implies continuity. If the partial derivatives of 

( )f x y,  exist and are continuous throughout a disk centered at ( )x y, ,0 0  however, then f  is 
continuous at ( )x y, ,0 0  as we see at the end of this section.

EXAMPLE 8  Let

( ) =
≠

=
⎧
⎨
⎪⎪
⎩⎪⎪

f x y
xy

xy
,

0, 0

1, 0
(Figure 13.21).

 (a) Find the limit of f  as ( )x y,  approaches ( )0, 0  along the line =y x.

 (b) Find the limit of f  as ( )x y,  approaches ( )0, 0  along the line =y 0.

 (c) Prove that f  is not continuous at the origin.

 (d) Show that both partial derivatives ∂ ∂f x and ∂ ∂f y exist at the origin.

Solution 

 (a) Since ( )f x y,  is zero at every point on the line =y x (except at the origin), we have

( ) = =
( ) ( ) ( ) ( )→ = →

f x ylim , lim 0 0.
x y y x x y, 0, 0 , 0, 0

 (b) Since ( )f x y,  takes the constant value 1 at every point on the line =y 0, we have

( ) = =
( ) ( ) ( ) ( )→ = →

f x ylim , lim 1 1.
x y y x y, 0, 0 0 , 0, 0
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790 Chapter 13 Partial Derivatives

 (c) By the two-path test, f  has no limit as ( )x y,  approaches ( )0, 0 . Consequently, f  is not 
continuous at ( )0, 0 .

 (d) To find f x at ( )0, 0 , we hold y fixed at y 0. Then ( ) =f x y, 1 for all x, and the 
graph of f  is the line L1 in Figure 13.21. The slope of this line at any x is ∂ ∂ =f x 0. 
In particular, ∂ ∂ =f x 0 at ( )0, 0 . Similarly, f y is the slope of line L2 at any y, so 
∂ ∂ =f y 0 at ( )0, 0 . 

EXAMPLE 9  If ( ) = +f x y x y ye, cos ,x  find the second-order derivatives

f
x

f
y x

f
y

f
x y

, , , and .
2

2

2 2

2

2

Solution The first step is to calculate both first partial derivatives.

f
x x

x y ye

y ye

cos

cos

x

x

( )∂
∂

= ∂
∂

+

= +

 
f
y y

x y ye

x y e

cos

sin

x

x

( )∂
∂

= ∂
∂

+

= − +

Now we find both partial derivatives of each first partial:

f
y x y

f
x

y e

f
x x

f
x

ye

sin

.

x

x

2

2

2

( )

( )

∂
∂ ∂

= ∂
∂

∂
∂

= − +

∂
∂

= ∂
∂

∂
∂

=

 
f

x y x
f
y

y e

f
y y

f
y

x y

sin

cos .

x
2

2

2

∂
∂ ∂

= ∂
∂

∂
∂
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = − +

∂
∂

= ∂
∂

∂
∂
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = −  

∂
∂ ∂

=

f
x y

f f( )yx y x

2
Differentiate first with respect to y, then with respect to x.

Means the same thing

Second-Order Partial Derivatives

When we differentiate a function ( )f x y,  twice, we produce its second-order derivatives. 
These derivatives are usually denoted by

f
x

f
f

y
f

f
x y

f
f

y x
f

 or   ,  or   ,

 or   , and  or   .

xx yy

yx xy

2

2

2

2

2 2

The defining equations are

( )∂
∂

= ∂
∂

∂
∂

∂
∂ ∂

= ∂
∂

∂
∂
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

f
x x

f
x

f
x y x

f
y

, ,
2

2

2

and so on. Notice the order in which the mixed partial derivatives are taken:

What Example 8 suggests is that we need a stronger requirement for differentiability in 
higher dimensions than the mere existence of the partial derivatives. We define differentiability 
for functions of two variables (which is somewhat more complicated than for single-variable 
functions) at the end of this section and then revisit the connection to continuity.

The Mixed Derivative Theorem

You may have noticed that the “mixed” second-order partial derivatives

f
y x

f
x y

and
2 2

HISTORICAL BIOGRAPHY

Pierre-Simon Laplace
(1749–1827)
Mathematician and astronomer, Laplace was 
born in Normandy, France. He was among the 
most influential scientists of his time and was 
called the Newton of France for contributions 
to the understanding of the solar system’s 
stability. Laplace also generalized the laws of 
mechanics for their application to the motion 
and properties of the heavenly bodies.

To know more, visit the companion Website. 
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 13.3  Partial Derivatives 791

in Example 9 are equal. This is not a coincidence. They must be equal whenever 
f f f f, , , ,x y xy  and f yx are continuous, as stated in the following theorem. However, the 
mixed derivatives can be different when the continuity conditions are not satisfied (see 
Exercise 82).

THEOREM 2—The Mixed Derivative Theorem
If ( )f x y,  and its partial derivatives f f f, , ,x y xy  and f yx are defined throughout an 
open region containing a point ( )a b,  and are all continuous at ( )a b, , then

( ) ( )=f a b f a b, , .xy yx

Theorem 2 is also known as Clairaut’s Theorem, after the French mathematician 
Alexis Clairaut, who discovered it. A proof is given in Appendix A.10. Theorem 2 says that 
to calculate a mixed second-order derivative, we may differentiate in either order, provided 
the continuity conditions are satisfied. This ability to proceed in different order sometimes 
simplifies our calculations.

EXAMPLE 10  Find   w
x y

2
  if

= +
+

w xy e
y 1

.
y

2

Solution The symbol w x y2  tells us to differentiate first with respect to y and then 
with respect to x. However, if we interchange the order of differentiation and differentiate 
first with respect to x, we get the answer more quickly. In two steps,

w
x

y w
y x

and 1.
2∂

∂
= ∂

∂ ∂
=

If we differentiate first with respect to y, we obtain ∂ ∂ ∂ =w x y 12  as well, but with more 
work. We can differentiate in either order because the conditions of Theorem 2 hold for w 
at all points (x y,0 0). 

Partial Derivatives of Still Higher Order

Although we will deal mostly with first- and second-order partial derivatives, because 
these appear the most frequently in applications, there is no theoretical limit to how many 
times we can differentiate a function as long as the derivatives involved exist. Thus, we get 
third- and fourth-order derivatives denoted by symbols like

f
x y

f

f
x y

f

,

,

yyx

yyxx

3

2

4

2 2

∂
∂ ∂

=

∂
∂ ∂

=

and so on. As with second-order derivatives, the order of differentiation is immaterial as 
long as all the derivatives through the order in question are continuous.

EXAMPLE 11  Find f yxyz  if ( ) = − +f x y z xy z x y, , 1 2 .2 2

Solution We first differentiate with respect to the variable y, then x, then y again, and 
finally with respect to z:

= − +

= − +

= −

= −

f xyz x

f yz x

f z

f

4

4 2

4

4.

y

yx

yxy

yxyz

2

 

HISTORICAL BIOGRAPHY

Alexis Clairaut
(1713–1765)
Alexis Clairaut was a mathematical genius, 
who was called to visit the Academy of 
Sciences in Paris when he was only 12 years 
old. n a study published in 1743, the Clairaut 
proposition postulates in a simple way the 
dependency of the geometrical flattening  
ratio on the relationship between the gravity 
and the centrifugal force. 

To know more, visit the companion Website. 
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792 Chapter 13 Partial Derivatives

DEFINITION A function ( )=z f x y,  is differentiable at ( )x y,0 0  if both 
( )f x y,x 0 0  and ( )f x y,y 0 0  exist and if ( ) ( )Δ = −z f x y f x y, ,0 0  satisfies

z f x y x f x y y x y, , ,x y0 0 0 0 1 2ε ε( ) ( )Δ = Δ + Δ + Δ + Δ

where Δ = − Δ = −x x x y y y, ,0 0  and both ε → 01  and ε → 02  as 
( ) ( )→x y x y, ,0 0 . We call the function f  differentiable if it is differentiable 
at every point in its domain, and we then say that its graph is a smooth surface.

Differentiability

The concept of differentiability for functions of several variables is more complicated than 
for single-variable functions, because a point in the domain can be approached from many 
directions and along any path, not just from the left or from the right. The existence of both 
partial derivatives at a point ( )x y,0 0  is not by itself even enough to show continuity at 
( )x y,0 0 , as we saw in Example 8. The differentiability of f  is instead based on the idea 
that a linear function gives a good model of a differentiable function near a point.

In Section 3.11, we saw that a differentiable function f  can be approximated near a 
point x 0 by its linearization,

( )= + ′ −L x f x f x x x( ) ( ) ( ) .0 0 0

This formula allows us to find a linear function L, a function whose graph is a straight line, 
such that L closely approximates f  near x 0. This can be done whenever f  is differentiable, 
even when f  itself is described by a very complicated formula. Approximations are much 
more useful and meaningful when they are accompanied by information on their accuracy. 
In Section 3.11, Equation (1), we saw that a differentiable function f  satisfies

ε( ) ( )− = ′ − + −f x f x f x x x x x( ) ( ) ( ) ,0 0 0 0

where ε → 0 as →x x 0. Framed in terms of approximating f  by L, this becomes

 ε( )− = −f x L x x x( ) ( ) ,0  (1)

where again ε → 0 as →x x 0.
Rather than being a consequence of the definition, the differentiability for a function of 

two variables ( )f x y,  is defined to mean that f  can be approximated by a linear function. 
The approximating linear function ( )L x y,  for ( )f x y,  near the point ( )x y,0 0  takes the form

( ) ( ) ( ) ( )( ) ( )= + − + −L x y f x y f x y x x f x y y y, , , , ,x y0 0 0 0 0 0 0 0

and the graph of L is a plane, called the tangent plane, that approximates the graph of f  
near ( )x y,0 0 . Notice that ( ) ( )=L x y f x y, ,0 0 0 0 , so the functions L and f  coincide at 
( )x y,0 0 . Moreover the partial derivatives of L and f  are also equal at ( )x y,0 0 . We will 
study tangent planes in detail in Section 13.6.

We now specify how closely f  is approximated by L at ( )x y,0 0 . Extending the for-
mula for single variable functions in Equation (1), we require that the difference between f  
and L satisfies

 ε ε( ) ( ) ( ) ( )− = − + −f x y L x y x x y y, , ,1 0 2 0  (2)

where both ε → 01  and ε → 02  as ( ) ( )→x y x y, ,0 0 .
If we insert the formula for ( )L x y,  into Equation (2) we see that

ε( ) ( ) ( ) ( )( ) ( ) ( )− = − + − + −f x y f x y f x y x x f x y y y x x, , , ,x y0 0 0 0 0 0 0 0 1 0

ε ( )+ −y y .2 0

Setting Δ = − Δ = −x x x y y y,0 0, and ( ) ( )Δ = −z f x y f x y, ,0 0 , we get

z f x y x f x y y x y, , .x y0 0 0 0 1 2ε ε( ) ( )Δ = Δ + Δ + Δ + Δ

Based on these ideas, we now state the formal definition of differentiability, which 
captures the idea that  f  is well approximated by L.

Differentiability is defined in a similar way for functions of more than two variables.
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 13.3  Partial Derivatives 793

THEOREM 3—The Increment Theorem for Functions of Two Variables
Suppose that the first partial derivatives of ( )f x y,  are defined throughout an 
open region R containing the point ( )x y,0 0  and that f x  and f y are continuous at 
( )x y, .0 0  Then the change

( ) ( )Δ = + Δ + Δ −z f x x y y f x y, ,0 0 0 0

in the value of f  that results from moving from ( )x y,0 0  to another point 
( )+ Δ + Δx x y y,0 0  in R satisfies an equation of the form

z f x y x f x y y x y, , ,x y0 0 0 0 1 2( ) ( )Δ = Δ + Δ + Δ + Δ

in which each of , 01 2  as both Δ Δ →x y, 0.

Corollary of Theorem 3
If the partial derivatives f x  and f y of a function ( )f x y,  are continuous through-
out an open region R, then f  is differentiable at every point of R.

Calculating First-Order Partial Derivatives
In Exercises 1–22, find f x  and f y.

 1. ( ) = − −f x y x y, 2 3 42  2. ( ) = − +f x y x xy y, 2 2

 3. ( ) ( )( )= − +f x y x y, 1 22

 4. ( ) = − − + − +f x y xy x y x y, 5 7 3 6 22 2

 5. ( ) ( )= −f x y xy, 1 2 6. ( ) ( )= −f x y x y, 2 3 3

 7. ( ) = +f x y x y, 2 2  8. ( ) ( )( )= +f x y x y, 23 2 3

 9. ( ) ( )= +f x y x y, 1  10. ( ) ( )= +f x y x x y, 2 2

 11. ( ) ( ) ( )= + −f x y x y xy, 1  12. ( ) ( )= −f x y y x, tan 1

 13. ( ) = ( )+ +f x y e, x y 1  14. ( ) ( )= +−f x y e x y, sinx

 15. ( ) ( )= +f x y x y, ln  16. ( ) =f x y e y, lnxy

 17. ( ) ( )= −f x y x y, sin 32  18. ( ) ( )= −f x y x y, cos 32 2

 19. ( ) =f x y x, y 20. ( ) =f x y x, log y

 21. ∫( ) ( )=f x y g t dt g t, ( )  continuous for all 
x

y

 22. ∑( ) ( )= <
=

∞

f x y xy xy, ( ) 1
n

n

0

In Exercises 23–34, find f f, ,x y  and f .z

 23. ( ) = + −f x y z xy z, , 1 22 2 24. ( ) = + +f x y z xy yz xz, ,

 25. ( ) = − +f x y z x y z, , 2 2

EXERCISES 13.3 

The following theorem (proved in Appendix A.10) and its accompanying corollary tell 
us that functions with continuous first partial derivatives at ( )x y,0 0  are differentiable there, 
and they are closely approximated locally by a linear function. We study this approxima-
tion in Section 13.6.

In many cases the partial derivatives are defined and continuous at every point in the 
domain of f . We then have the following Corollary.

THEOREM 4—Differentiable Implies Continuous
If a function ( )f x y,  is differentiable at ( )x y, ,0 0  then f  is continuous at ( )x y, .0 0

If ( )=z f x y,  is differentiable, then the definition of differentiability ensures that 
( ) ( )Δ = + Δ + Δ −z f x x y y f x y, ,0 0 0 0  approaches 0 as x and y approach 0. This 

tells us that a function of two variables is continuous at every point where it is differentiable.

As we can see from Corollary 3 and Theorem 4, a function ( )f x y,  must be continu-
ous at a point ( )x y,0 0  if f x  and f y are continuous throughout an open region containing 
( )x y, .0 0  Remember, however, that it is still possible for a function of two variables to be 
discontinuous at a point where its first partial derivatives exist, as we saw in Example 8. 
Existence alone of the partial derivatives at that point is not enough, but continuity of the 
partial derivatives guarantees differentiability.
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794 Chapter 13 Partial Derivatives

 26. ( ) ( )= + + −f x y z x y z, , 2 2 2 1 2

 27. ( ) =f x y z xyz, , arcsin( )

 28. ( ) ( )= +f x y z x yz, , arcsec

 29. ( ) ( )= + +f x y z x y z, , ln 2 3

 30. ( ) =f x y z yz xy, , ln ( )

 31. ( ) = ( )− + +f x y z e, , x y z2 2 2

 32. ( ) = −f x y z e, , xyz

 33. ( ) ( )= + +f x y z x y z, , tanh 2 3

 34. ( ) ( )= −f x y z xy z, , sinh 2

In Exercises 35–40, find the partial derivative of the function with 
respect to each variable.

 35. α π α( ) ( )= −f t t, cos 2

 36. υ υ( ) = υ( )g u e, u2 2

 37. ρ φ θ ρ φ θ( ) =h , , sin cos

 38. θ θ( ) ( )= − −g r z r z, , 1 cos

 39. Work done by the heart (Section 3.11, Exercise 59)

δ υ δυ( ) = +W P V g PV V
g

, , , ,
2

2

 40. Wilson lot size formula (Section 4.6, Exercise 61)

( ) = + +A c h k m q km
q

cm
hq

, , , ,
2

Calculating Second-Order Partial Derivatives
Find all the second-order partial derivatives of the functions in 
Exercises 41–54.

 41. ( ) = + +f x y x y xy,  42. ( ) =f x y xy, sin

 43. ( ) = + +g x y x y y y x, cos sin2

 44. ( ) = + +h x y xe y, 1y  45. ( ) ( )= +r x y x y, ln

 46. ( ) ( )=s x y y x, arctan  47. =w x xytan ( )2

 48. = −w ye x y 2  49. =w x x ysin ( )2

 50. = −
+

w
x y

x y2
 51. ( ) = − +f x y x y x y, 2 3 4 5

 52. ( ) = −g x y x y, cos sin 32  53. ( )= −z x x ysin 2 2

 54. =z xe x y2

Mixed Partial Derivatives
In Exercises 55–60, verify that =w w .xy yx

 55. ( )= +w x yln 2 3  56. = + +w e x y y xln lnx

 57. = + +w xy x y x y2 2 3 3 4

 58. = + +w x y y x xysin sin

 59. =w x
y

2

3
 60. = −

+
w

x y
x y

3

 61. Which order of differentiation enables one to calculate f xy faster: 
x first or y first? Try to answer without writing anything down.

 a. ( ) = +f x y x y e, sin y

 b. ( ) =f x y x, 1

 c. ( ) ( )= +f x y y x y,

 d. ( ) ( )= + + − +f x y y x y y y, 4 ln 12 3 2

 e. ( ) = + + +f x y x xy x e, 5 sin 7 x2

 f. ( ) =f x y x xy, ln

 62. The fifth-order partial derivative ∂ ∂ ∂f x y5 2 3 is zero for each 
of the following functions. To show this as quickly as possible, 
which variable would you differentiate with respect to first: x or y? 
Try to answer without writing anything down.

 a. ( ) = +f x y y x e, 2x2 4

 b. ( ) ( )= + −f x y y y x x, sin2 4

 c. ( ) = + + +f x y x xy x e, 5 sin 7 x2

 d. ( ) =f x y x e, y 22

Using the Partial Derivative Definition
In Exercises 63–66, use the limit definition of partial derivative to 
compute the partial derivatives of the functions at the specified points.

 63. f x y x y x y
f
x

f
y

, 1 3 , and at 1, 22( ) ( )= − + − ∂
∂

∂
∂

 64. f x y x y xy
f
x

f
y

, 4 2 3 , and at 2,12( ) ( )= + − − ∂
∂

∂
∂

−

 65. f x y x y
f
x

f
y

, 2 3 1, and at 2, 3( ) ( )= + − ∂
∂

∂
∂

−

 66. ( )
( ) ( )

( ) ( )

( )

=
+

+
≠

=

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x y

x y
x y

x y

x y
,

sin
, , 0, 0

0, , 0, 0 ,

3 4

2 2

∂
∂

f
x

 and 
∂
∂

f
y

 at ( )0, 0

 67. Three variables Let ( )=w f x y z, ,  be a function of three 
independent variables and write the formal definition of the par-
tial derivative ∂ ∂f z  at ( )x y z, , .0 0 0  Use this definition to find 
∂ ∂f z  at ( )1, 2, 3  for ( ) =f x y z x yz, , .2 2

 68. Three variables Let ( )=w f x y z, ,  be a function of three 
independent variables and write the formal definition of the par-
tial derivative ∂ ∂f y at ( )x y z, , .0 0 0  Use this definition to find 
∂ ∂f y at ( )−1, 0, 3  for ( ) = − +f x y z xy yz, , 2 .2 2

Differentiating Implicitly

 69. Find the value of ∂ ∂z x  at the point ( )1,1,1  if the equation

+ − =xy z x yz2 03

defines z as a function of the two independent variables x and y 
and the partial derivative exists.

 70. Find the value of ∂ ∂x z  at the point ( )− −1, 1, 3  if the equation

+ − + =xz y x xln 4 02

defines x as a function of the two independent variables y and z 
and the partial derivative exists.

Exercises 71 and 72 are about the triangle shown here.

c

B

C
A

a

b

 71. Express A implicitly as a function of a, b, and c and calculate 
∂ ∂A a and ∂ ∂A b.

 72. Express a implicitly as a function of A, b, and B and calculate 
∂ ∂a A and ∂ ∂a B.
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 13.3  Partial Derivatives 795

 73. Two dependent variables Express υx  in terms of u and y if 
the equations υ=x uln  and υ=y u ln  define u and υ as func-
tions of the independent variables x and y, and if υx  exists. (Hint: 
Differentiate both equations with respect to x and solve for υx  by 
eliminating u .x )

 74. Two dependent variables Find ∂ ∂x u and ∂ ∂y u if the equa-
tions = −u x y2 2 and υ = −x y2  define x and y as functions 
of the independent variables u and υ, and the partial derivatives 
exist. (See the hint in Exercise 73.) Then let = +s x y2 2 and 
find ∂ ∂s u.

Theory and Examples

 75. Let ( ) = + −f x y x y, 2 3 4. Find the slope of the line tangent  
to this surface at the point ( )−2, 1  and lying in a. the plane =x 2 
b. the plane = −y 1.

 76. Let ( ) = +f x y x y, 2 3. Find the slope of the line tangent to 
this surface at the point ( )−1,1  and lying in a. the plane = −x 1  
b. the plane =y 1.

In Exercises 77–80, find a function ( )=z f x y,  whose partial deriva-
tives are as given, or explain why this is impossible.

 77. ∂
∂

= − ∂
∂

= +f
x

x y x
f
y

x y y3 2 , 2 62 2 3

 78. 
∂
∂

= + + ∂
∂

= −f
x

xe x y e
f
y

x ye e2 3, 2xy xy xy y2 2 32 2 2

 79. 
( ) ( )

∂
∂

=
+

∂
∂

=
+

f
x

y
x y

f
y

x
x y

2
, 2

2 2

 80. ( ) ( ) ( )
∂
∂

= + ∂
∂

=f
x

xy xy xy
f
y

x xycos sin , cos

 81. Let f x y
y y

y y
,

, 0

, 0.

3

2
( ) =

≥

− <

⎧
⎨
⎪⎪
⎩⎪⎪

Find f f f f, , ,  and  ,x y xy yx  and state the domain for each partial 
derivative.

 82. Let ( )
( )

( )

=
−
+

≠

=

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x y
xy

x y
x y

x y

x y
,

, if  ,   0,

0, if  ,   0.

2 2

2 2

 a. Show that ( )∂
∂

=f
y

x x, 0  for all x, and ( )∂
∂

= −f
x

y y0,  for 

all y.

 b. Show that ( ) ( )∂
∂ ∂

≠ ∂
∂ ∂

f
y x

f
x y

0, 0 0, 0 .
2 2

The three-dimensional Laplace equation

∂
∂

+ ∂
∂

+ ∂
∂

=f
x

f
y

f
z

0
2

2

2

2

2

2

is satisfied by steady-state temperature distributions ( )=T f x y z, ,  in  
space, by gravitational potentials, and by electrostatic potentials. The 
two-dimensional Laplace equation

∂
∂

+ ∂
∂

=f
x

f
y

0,
2

2

2

2

obtained by dropping the ∂ ∂f z2 2 term from the previous equation, 
describes potentials and steady-state temperature distributions in a 
plane. The plane may be treated as a thin slice of the solid perpendicular 
to the z-axis.

Show that each function in Exercises 83–90 satisfies a Laplace 
equation.

 83. ( ) = + −f x y z x y z, , 22 2 2

 84. ( ) ( )= − +f x y z z x y z, , 2 33 2 2

 85. ( ) = −f x y e x, cos 2y2

 86. ( ) = +f x y x y, ln 2 2

 87. ( ) = + −f x y x y, 3 2 4

 88. ( ) =f x y x
y

, arctan

 89. ( ) ( )= + + −f x y z x y z, , 2 2 2 1 2

 90. ( ) = +f x y z e z, , cos 5x y3 4

The wave equation If we stand on an ocean shore and take a snap-
shot of the waves, the picture shows a regular pattern of peaks and 
valleys in an instant of time. We see periodic vertical motion in space, 
with respect to distance. If we stand in the water, we can feel the rise 
and fall of the water as the waves go by. We see periodic vertical 
motion in time. In physics, this beautiful symmetry is expressed by the 
one-dimensional wave equation

∂
∂

= ∂
∂

w
t

c w
x

,
2

2
2

2

2

where w is the wave height, x is the distance variable, t is the time vari-
able, and c is the velocity with which the waves are propagated.

w

0

x

In our example, x is the distance across the ocean’s surface, but 
in other applications, x might be the distance along a vibrating string, 
distance through air (sound waves), or distance through space (light 
waves). The number c varies with the medium and type of wave.

Show that the functions in Exercises 91–97 are all solutions of 
the wave equation.

 91. ( )= +w x ctsin  92. ( )= +w x ctcos 2 2

 93. ( )( )= + + +w x ct x ctsin cos 2 2

 94. ( )= +w x ctln 2 2  95. ( )= −w x cttan 2 2

 96. ( )= + + +w x ct e5 cos 3 3 x ct

 97. =w f u( ), where f  is a differentiable function of u, and 
( )= +u a x ct , where a is a constant

 98. Does a function ( )f x y,  with continuous first partial derivatives 
throughout an open region R have to be continuous on R? Give 
reasons for your answer.

 99. If a function ( )f x y,  has continuous second partial derivatives 
throughout an open region R, must the first-order partial deriva-
tives of f  be continuous on R? Give reasons for your answer.
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796 Chapter 13 Partial Derivatives

 100. The heat equation An important partial differential equation 
that describes the distribution of heat in a region at time t can be 
represented by the one-dimensional heat equation

∂
∂

= ∂
∂

f
t

f
x

.
2

2

Show that α( ) = ⋅ β−u x t x e, sin ( ) t satisfies the heat equation 
for constants α and β . What is the relationship between α and β  
for this function to be a solution?

 101. Let ( )
( ) ( )

( ) ( )
= +

≠

=

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x y

xy
x y

x y

x y
,

, , 0, 0

0, , 0, 0 .

2

2 4

Show that ( )f 0, 0x  and ( )f 0, 0y  exist, but f  is not differentiable 
at ( )0, 0 . (Hint: Use Theorem 4 and show that f  is not continu-
ous at ( )0, 0 .)

 102. Let ( ) =
< <⎧

⎨
⎪⎪
⎩⎪⎪

f x y
x y x

,
0, 2

1, otherwise.

2 2

Show that ( )f 0, 0x  and ( )f 0, 0y  exist, but f  is not differentiable 
at ( )0, 0 .

 103. The Korteweg–de Vries equation 

This nonlinear differential equation, which describes wave 
motion on shallow water surfaces, is given by

+ + =u u uu12 0.t xxx x

Show that ( ) ( )= −u x t x t, sech 2  satisfies the Korteweg–de 
Vries equation.

 104. Show that =
+

T
x y

1
2 2

 satisfies the equation 

+ =T T T .xx yy
3

The Chain Rule for functions of a single variable studied in Section 3.6 says that if 
=w f x( ) is a differentiable function of x, and =x g t( ) is a differentiable function of t, 

then w is a differentiable function of t, and dw dt  can be calculated by the formula

=dw
dt

dw
dx

dx
dt

.

For this composite function =w t f g t( ) ( ( )), we can think of t as the independent variable 
and =x g t( ) as the “intermediate variable” because t determines the value of x that in turn 
gives the value of w from the function f . We display the Chain Rule in a “dependency 
diagram” in the margin. Such diagrams capture which variables depend on which.

For functions of several variables the Chain Rule has more than one form, which 
depends on how many independent and intermediate variables are involved. However, 
once the variables are taken into account, the Chain Rule works in the same way we just 
discussed.

Functions of Two Variables

The Chain Rule formula for a differentiable function ( )=w f x y,  when =x x t( ) and 
=y y t( ) are both differentiable functions of t is given in the following theorem.

13.4 The Chain Rule

To find dw dt, we read down the route 
from w to t, multiplying derivatives  
along the way.

Chain Rule

t

x

w = f (x)

dx
dt

dw
dx

Intermediate
variable

Dependent
variable

Independent
variable

dw
dt

dw
dx

dx
dt=

THEOREM 5—Chain Rule for Functions of One Independent Variable and 
Two Intermediate Variables
If w f x y,( )=  is differentiable and if x x t y y t( ), ( )= =  are differentiable 
functions of t, then the composition w f x t y t( ( ), ( ))=  is a differentiable function 
of t and

dw
dt

f x t y t x t f x t y t y t( ),  ( ) ( ) ( ),  ( ) ( ),x y( ) ( )= ′ + ′

or

dw
dt

f
x

dx
dt

f
y

dy
dt

.= ∂
∂

+ ∂
∂
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 13.4  The Chain Rule 797

dw
dt

w
x

dx
dt

w
y

dy
dt

.= ∂
∂

+ ∂
∂

Each of 
∂
∂

∂
∂

f
x

w
x

f, , x indicates the partial 

derivative of f  with respect to x.

Proof  The proof consists of showing that if x and y are differentiable at =t t ,0  then 
w is differentiable at t0 and

= ∂
∂

+ ∂
∂

dw
dt

t w
x

P dx
dt

t w
y

P
dy
dt

t( ) ( ) ( ) ( ) ( ),0 0 0 0 0

where ( )=P x t y t( ), ( ) .0 0 0

Let Δ Δx y, , and Δw be the increments that result from changing t from t0 to + Δt t.0  
Since f  is differentiable (see the definition in Section 13.3),

w w
x

P x w
y

P y x y( ) ( ) ,0 0 1 2ε εΔ = ∂
∂

Δ + ∂
∂

Δ + Δ + Δ

where ε ε →, 01 2  as Δ Δ →x y, 0. To find dw dt , we divide this equation through by Δt 
and let Δt approach zero (therefore, Δx and Δy approach zero as well since the fact that 
x t( ) and y t( ) are differentiable implies that they are continuous). The division gives

ε εΔ
Δ

= ∂
∂

Δ
Δ

+ ∂
∂

Δ
Δ

+ Δ
Δ

+ Δ
Δ

w
t

w
x

P x
t

w
y

P
y
t

x
t

y
t

( ) ( ) .0 0 1 2

Letting Δt approach zero gives

= Δ
Δ

= ∂
∂

+ ∂
∂

+ ⋅ + ⋅

Δ →

dw
dt

t w
t

w
x

P dx
dt

t w
y

P
dy
dt

t dx
dt

t
dy
dt

t

( ) lim

( ) ( ) ( ) ( ) 0 ( ) 0 ( ).

t
0

0

0 0 0 0 0 0  To remember the Chain Rule, picture the 
diagram below. To find dw dt, start at w 
and read down each route to t, multiply-
ing derivatives along the way. Then add 
the products.

Chain Rule

t

yx

w = f (x, y)

'w
'y

'w
'x

dy
dt

dx
dt

dw
dt

'w
'x

dx
dt

'w
'y

dy
dt

= +

Intermediate
variables

Dependent
variable

Independent
variable

However, the meaning of the dependent variable w is different on each side of the preced-
ing equation. On the left-hand side, it refers to the composite function ( )=w f x t y t( ), ( )  
as a function of the single variable t. On the right-hand side, it refers to the function 

( )=w f x y,  as a function of the two variables x and y. Moreover, the single derivatives 
dw dt , dx dt , and dy dt  are being evaluated at a point t ,0  whereas the partial derivatives 
∂ ∂w x and ∂ ∂w y are being evaluated at the point ( )x y, ,0 0  with =x x t( )0 0  and 

=y y t( ).0 0  With that understanding, we will use both of these forms interchangeably 
throughout the text whenever no confusion will arise.

The dependency diagram on the preceding page provides a convenient way to 
remember the Chain Rule. The “true” independent variable in the composite function is 
t, whereas x and y are intermediate variables (controlled by t) and w is the dependent 
variable.

A more precise notation for the Chain Rule shows where the various derivatives in 
Theorem 5 are evaluated:

( ) ( )= ∂
∂

+ ∂
∂

dw
dt

t
f
x

x y dx
dt

t
f
y

x y
dy
dt

t( ) , ( ) , ( ),0 0 0 0 0 0 0

or, using another notation,

= ∂
∂

+ ∂
∂( ) ( )

dw
dt

f
x

dx
dt

f
y

dy
dt

.
t x y t x y t, ,0 0 0 0 0 0 0

Often we write ∂ ∂w x for the partial derivative ∂ ∂f x , so we can rewrite the Chain 
Rule in Theorem 5 in the form
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798 Chapter 13 Partial Derivatives

EXAMPLE 1  Use the Chain Rule to find the derivative of

=w xy

with respect to t along the path = =x t y tcos , sin . What is the derivative’s value at 
π=t 2?

Solution We apply the Chain Rule to find dw dt  as follows:

( ) ( )

( ) ( )

( )( ) ( )( )

= ∂
∂

+ ∂
∂

=
∂

∂
+

∂
∂

= − +

= − +

= − +
=

dw
dt

w
x

dx
dt

w
y

dy
dt

xy
x

d
dt

t
xy
y

d
dt

t

y t x t

t t t t

t t
t

( )
cos

( )
sin

( ) sin ( ) cos

sin sin cos cos

sin cos
cos 2 .

2 2

In this example, we can check the result with a more direct calculation. As a function 
of t,

= = =w xy t t tcos sin 1
2

sin 2 ,

so

( ) ( )= = =dw
dt

d
dt

t t t1
2

sin 2 1
2

2 cos 2 cos 2 .

In either case, at the given value of t,

π π( )= = = −
π=

dw
dt

 cos 2
2

 cos 1.
t 2

 

Here we have three routes from w to  
t instead of two, but finding dw dt is 
still the same. Read down each route, 
multiplying derivatives along the way; 
then add.

Chain Rule

t

zyx

w = f (x, y, z)

'w
'z

'w
'x 'w

'y

dy
dt dz

dt
dx
dt

dw
dt

'w
'x

dx
dt

'w
'y

dy
dt= +

'w
'z

dz
dt+

Intermediate
variables

Dependent
variable

Independent
variable

The proof is identical to the proof of Theorem 5, except that there are now three inter-
mediate variables instead of two. The dependency diagram we use for remembering the 
new equation is similar as well, with three routes from w to t.

EXAMPLE 2  Find dw dt  if

= + = = =w xy z x t y t z t, cos , sin , .

Functions of Three Variables

You can probably predict the Chain Rule for functions of three intermediate variables, as it 
involves adding the expected third term to the two-variable formula.

THEOREM 6—Chain Rule for Functions of One Independent Variable and 
Three Intermediate Variables
If w f x y z, ,( )=  is differentiable and x, y, and z are differentiable functions of t, 
then w is a differentiable function of t, and

dw
dt

w
x

dx
dt

w
y

dy
dt

w
z

dz
dt

.= ∂
∂

+ ∂
∂

+ ∂
∂
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 13.4  The Chain Rule 799

THEOREM 7—Chain Rule for Two Independent Variables and Three 
Intermediate Variables
Suppose that w f x y z x g r s y h r s, , , , , , ,( ) ( ) ( )= = =  and z k r s, .( )=  If all 
four functions are differentiable, then w has partial derivatives with respect to r 
and s, given by the formulas

w
r

w
x

x
r

w
y

y
r

w
z

z
r

w
s

w
x

x
s

w
y

y
s

w
z

z
s

.

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

+ ∂
∂

∂
∂

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

+ ∂
∂

∂
∂

In this example the values of w(t) are changing along the path of a helix (Section 12.1) as t 
changes. What is the derivative’s value at =t 0?

Solution Using the Chain Rule for three intermediate variables, we have

( ) ( )

( )( ) ( )( )

( )( )

= ∂
∂

+ ∂
∂

+ ∂
∂

= − + +

= − + +

= − + + = +

dw
dt

w
x

dx
dt

w
y

dy
dt

w
z

dz
dt

y t x t

t t t t

t t t

( ) sin ( ) cos 1 1

sin sin cos cos 1

sin cos 1 1 cos 2 ,2 2

Substitute for intermediate  
variables.

so

( )= + =
=

dw
dt

1 cos 0 2.
t 0

 

The first of these equations can be derived from the Chain Rule in Theorem 6 by 
holding s fixed and treating r as t. The second can be derived in the same way, holding r 
fixed and treating s as t. The dependency diagrams for both equations are shown in 
Figure 13.22.

Functions Defined on Surfaces

If we are interested in the temperature ( )=w f x y z, ,  at points ( )x y z, ,  on Earth’s sur-
face, we might prefer to think of x, y, and z as functions of the variables r and s that give 
the points’ longitudes and latitudes. If ( ) ( )= =x g r s y h r s, , , , and ( )=z k r s, , we 
could then express the temperature as a function of r and s with the composite function

( ) ( ) ( )( )=w f g r s h r s k r s, , , , , .

Under the conditions stated below, w has partial derivatives with respect to both r and s that 
can be calculated in the following way.

For a physical interpretation of change along a curve, think of an object whose posi-
tion is changing with time t. If ( )=w T x y z, ,  is the temperature at each point ( )x y z, ,  
along a curve C with parametric equations = =x x t y y t( ), ( ), and =z z t( ), then the 
composite function ( )=w T x t y t z t( ), ( ), ( )  represents the temperature relative to t along 
the curve. The derivative dw dt  is then the instantaneous rate of change of temperature due 
to the motion along the curve, as calculated in Theorem 6.
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800 Chapter 13 Partial Derivatives

FIGURE 13.22 Composite function and dependency diagrams for Theorem 7.

w

(a)

g h k

f

x y z

r, s

Dependent
variable

Independent
variables

Intermediate
variables

w = f( g(r, s), h(r, s), k(r, s))

(b)

r

zx y

w = f (x, y, z)

'w
'x 'w

'y

'y
'r'x

'r

'w
'z

'z
'r

'w
'r

'w
'x
'x
'r

'w
dy
'y
'r=

'w
'z
'z
'r++

s

zx y

(c)

'w
'x 'w

'y

'y
's'x

's

'w
'z

'z
's

'w
's

'w
'x
'x
's

'w
'y
'y
's=

'w
'z
'z
's++

w = f (x, y, z)

FIGURE 13.23 Dependency diagram for 
the equation

w
r

w
x

x
r

w
y

y
r

.∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

Chain Rule

r

yx

 w = f (x, y)

'w
'x

'x
'r

'w
'y

'y
'r

'w
'r

'w
'x
'x
'r

'w
'y
'y
'r= +

EXAMPLE 3  Express ∂ ∂w r and ∂ ∂w s in terms of r and s if

= + + = = + =w x y z x r
s

y r s z r2 , , ln , 2 .2 2

Solution Using the formulas in Theorem 7, we find

( )

( ) ( )

( ) ( )( ) ( )( )

( )( )

( ) ( ) ( )( )

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

+ ∂
∂

∂
∂

= + +

= + + = +

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

+ ∂
∂

∂
∂

= − + + = −

w
r

w
x

x
r

w
y

y
r

w
z

z
r

s
r z

s
r r

s
r

w
s

w
x

x
s

w
y

y
s

w
z

z
s

r
s s

z
s

r
s

1 1 2 2 2 2

1 4 4 2 1 12

1 2 1 2 0 2 .
2 2

 

Substitute for intermediate variable z.

If f  is a function of two intermediate variables instead of three, each equation in 
Theorem 7 becomes correspondingly one term shorter.

If w f x y x g r s, , , ,( ) ( )= =  and y h r s, ,( )=  then

w
r

w
x

x
r

w
y

y
r

w
s

w
x

x
s

w
y

y
s

and .∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

Figure 13.23 shows the dependency diagram for the first of these equations. The dia-
gram for the second equation is similar; just replace r with s.

EXAMPLE 4  Express ∂ ∂w r and ∂ ∂w s in terms of r and s if

= + = − = +w x y x r s y r s, , .2 2
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 13.4  The Chain Rule 801

If w f x( )=  and x g r s, ,( )=  then

w
r

dw
dx

x
r

w
s

dw
dx

x
s

and .∂
∂

= ∂
∂

∂
∂

= ∂
∂

FIGURE 13.24 Dependency diagram for 
differentiating f  as a composite function of 
r and s with one intermediate variable.

Chain Rule

r

x

s

w = f (x)

dw
dx

'x
'r

'x
's

'w
'r

dw
dx

'x
'r=

'w
's

dw
dx

'x
's=

FIGURE 13.25 Dependency diagram for  
differentiating w F x y,( )=  with  
respect to x. Setting dw dx 0=  leads to a 
simple computational formula for implicit 
differentiation (Theorem 8).

x

x

w = F(x, y)

= Fx
'w
'x

dx
dx
= 1

y = h(x)

Fy =
'w
'y

dy
dx
= h′(x)

= Fx • 1 + Fy •
dw
dx

dy
dx THEOREM 8—A Formula for Implicit Differentiation

Suppose that F x y,( ) is differentiable and that the equation F x y, 0( ) =  defines 
y as a differentiable function of x. Then, at any point where F 0,y ≠

 
dy
dx

F
F

.x

y

= −  (1)

Solution The preceding discussion gives the following.

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

= + = − +

= − + + = − − + +

= =

w
r

w
x

x
r

w
y

y
r

w
s

w
x

x
s

w
y

y
s

x y x y

r s r s r s r s

r s

(2 ) 1 (2 ) 1 (2 ) 1 (2 ) 1

2 2 2 2

4 4  

Substitute for  
the intermediate  
variables.

If f  is a function of a single intermediate variable x, our equations are even simpler.

In this case, we use the ordinary (single-variable) derivative, dw dx. The dependency dia-
gram is shown in Figure 13.24.

Implicit Differentiation Revisited

The two-variable Chain Rule in Theorem 5 leads to a formula that takes some of the alge-
bra out of implicit differentiation. Suppose that

1. The function F x y,( ) is differentiable and

2. The equation ( ) =F x h x, ( ) 0 defines y implicitly as a differentiable function of x, say 
=y h x( ).

Since ( )= =w F x h x, ( ) 0, the derivative dw dx must be zero. Computing the derivative 
from the Chain Rule (dependency diagram in Figure 13.25), we find

= = +

= ⋅ + ⋅

dw
dx

F dx
dx

F
dy
dx

F F
dy
dx

0

1 .

x y

x y

  Theorem 5 with  
=t x  and =f F

If = ∂ ∂ ≠F w y 0,y  we can solve this equation for dy dx  to get

= −dy
dx

F
F

.x

y

We state this result formally.
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802 Chapter 13 Partial Derivatives

EXAMPLE 5  Use Theorem 8 to find dy dx  if − − =y x xysin 0.2 2

Solution Take ( ) = − −F x y y x xy, sin .2 2  Then

= − = −
− −

−
=

+
−

dy
dx

F
F

x y xy
y x xy

x y xy
y x xy

2 cos
2 cos

2 cos
2 cos

.x

y

This calculation is significantly shorter than a single-variable calculation using implicit 
differentiation. 

 z
x

F
F

z
y

F

F
and .x

z

y

z

∂
∂

= − ∂
∂

= −  (2)

The result in Theorem 8 is easily extended to three variables. Suppose that the equa-
tion ( ) =F x y z, , 0 defines the variable z implicitly as a function ( )=z f x y, . Then, for 
all ( )x y,  in the domain of f , we have ( )( ) =F x y f x y, , , 0. Assuming that F and f  are 
differentiable functions, we can use the Chain Rule to differentiate the equation 

( ) =F x y z, , 0 with respect to the independent variable x:

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

+ ∂
∂

∂
∂

= ⋅ + ⋅ + ⋅ ∂
∂

F
x

x
x

F
y

y
x

F
z

z
x

F F F z
x

0

1 0 ,x y z

   y is constant when  
we differentiate  
with respect to x.

so

+ ∂
∂

=F F z
x

0.x z

A similar calculation for differentiating with respect to the independent variable y gives

+ ∂
∂

=F F z
y

0.y z

Whenever ≠F 0,z  we can solve these last two equations for the partial derivatives of 
( )=z f x y,  to obtain

An important result from advanced calculus, called the Implicit Function Theorem, 
states the conditions for which our results in Equations (2) are valid. If the partial deriva-
tives F F, ,x y  and Fz are continuous throughout an open region R in space containing the 
point ( )x y z, , ,0 0 0  and if for some constant ( ) =c F x y z c, , ,0 0 0  and ( ) ≠F x y z, , 0,z 0 0 0  
then the equation ( ) =F x y z c, ,  defines z implicitly as a differentiable function of x and y 
near ( )x y z, , ,0 0 0  and the partial derivatives of z are given by Equations (2).

EXAMPLE 6  Find ∂
∂

z
x

 and ∂
∂

z
y
 at ( )0, 0, 0  if + + + =x z ye z ycos 0.xz3 2

Solution Let ( ) = + + +F x y z x z ye z y, , cos .xz3 2  Then

= + = − = + +F x zye F e z y F z xye y3 , sin , and 2 cos .x
xz

y
xz

z
xz2
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 13.4  The Chain Rule 803

Chain Rule: One Independent Variable
In Exercises 1–6, (a) express dw dt as a function of t, both by using 
the Chain Rule and by expressing w in terms of t and differentiating 
directly with respect to t. Then (b) evaluate dw dt at the given value 
of t.

 1. w x y x t y t t, cos , sin ;2 2 π= + = = =

 2. w x y x t t y t t t, cos sin , cos sin ; 02 2= + = + = − =  

 3. w x
z

y
z

x t y t z t t, cos , sin , 1 ; 32 2= + = = = =

 4. w x y z x t y t z tln , cos , sin , 4 ;2 2 2( )= + + = = =  
t 3=

 5. w ye z x t y t z e2 ln , ln 1 , tan , ;x t2 1( )= − = + = =−  
t 1=

 6. w z xy x t y t z e tsin , , ln , ; 1t 1= − = = = =−

Chain Rule: Two and Three Independent Variables
In Exercises 7 and 8, (a) express z u∂ ∂  and z υ∂ ∂  as functions of u 
and υ both by using the Chain Rule and by expressing z directly in 
terms of u and υ before differentiating. Then (b) evaluate z u∂ ∂  and 

z υ∂ ∂  at the given point u, .υ( )

 7. z e y x u y u4 ln , ln cos , sin ;x υ υ( )= = =  
u, 2, 4υ π( ) ( )=

EXERCISES 13.4 

Since ( ) ( )= = ≠F F0, 0, 0 0, 0, 0, 0 1 0,z  and all first partial derivatives are continu-
ous, the Implicit Function Theorem says that ( ) =F x y z, , 0 defines z as a differentiable 
function of x and y near the point ( )0, 0, 0 . From Equations (2),

Functions of Many Variables

We have seen several different forms of the Chain Rule in this section, but each one is just 
a special case of one general formula. When solving particular problems, it may help to 
draw the appropriate dependency diagram by placing the dependent variable on top, the 
intermediate variables in the middle, and the selected independent variable at the bottom. 
To find the derivative of the dependent variable with respect to the selected independent 
variable, start at the dependent variable and read down each route of the dependency dia-
gram to the independent variable, calculating and multiplying the derivatives along each 
route. Then add the products found for the different routes.

In general, suppose that …( )=w f x x x, , , n1 2  is a differentiable function of the 
intermediate variables …x x x, , , n1 2  (a finite set) and that …x x x, , , n1 2  are differentiable 
functions of the independent variables …t t t, , , m1 2  (another finite set). Then w is a differen-
tiable function of the variables …t t t, , , m1 2 , and the partial derivatives of w with respect to 
these variables are given by equations of the form

� …∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

+ + ∂
∂

∂
∂

=w
t

w
x

x
t

w
x

x
t

w
x

x
t

i mfor 1, 2, , .
i i i n

n

i1

1

2

2

One way to remember this equation is to think of the right-hand side as the dot product 
of two n-dimensional vectors:

…
� ���������� ����������

…
� ���������� ����������

∂
∂

= ∂
∂

∂
∂

∂
∂

⋅
∂
∂

∂
∂

∂
∂

w
t

w
x

w
x

w
x

x
t

x
t

x
t

, , , , , , .

wDerivatives of   with
respect to the

intermediate variables

Derivatives of the
intermediate variables with

respect to the selected
independent variable

i n i i

n

i1 2

1 2

The first vector describes how w changes in various directions, while the second vector 
indicates the velocity vector of …t x t x t x tx( ) ( ) ( ) ( ), , , .i i i n i1 2=  These concepts will be 
studied further in the next section.

∂
∂

= − = − +
+ +

∂
∂

= − = −
−

+ +
z
x

F
F

x zye
z xye y

z
y

F

F
e z y

z xye y
3

2 cos
and

sin
2 cos

.x

z

xz

xz

y

z

xz

xz

2

At ( )0, 0, 0  we find

∂
∂

= − = ∂
∂

= − = −z
x

z
y

0
1

0 and 1
1

1. 
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804 Chapter 13 Partial Derivatives

 8. z x y x u y utan , cos , sin ;1 υ υ( )= = =−  
u, 1.3, 6υ π( ) ( )=

In Exercises 9 and 10, (a) express w u∂ ∂  and w υ∂ ∂  as functions of 
u and υ both by using the Chain Rule and by expressing w directly in 
terms of u and υ before differentiating. Then (b) evaluate w u∂ ∂  and 

w υ∂ ∂  at the given point (u, υ).

 9. w xy yz xz x u y u z u, , , ;υ υ υ= + + = + = − =  
u, 1 2,1υ( ) ( )=

 10. w x y z x ue u y ue uln , sin , cos ,2 2 2( )= + + = =υ υ  
z ue u; , 2, 0υ( ) ( )= = −υ

In Exercises 11 and 12, (a) express u x u y, ,∂ ∂ ∂ ∂  and u z∂ ∂  as func-
tions of x, y, and z both by using the Chain Rule and by expressing u 
directly in terms of x, y, and z before differentiating. Then (b) evaluate 

u x u y, ,∂ ∂ ∂ ∂  and u z∂ ∂  at the given point x y z, ,( ).

 11. u
p q
q r

p x y z q x y z, , ,= −
−

= + + = − +

r x y z x y z; , , 3, 2,1( )( )= + − =

 12. u e p p x q z y r zsin , sin , ln , 1 ;qr 1 2= = = =−

x y z, , 4 ,1 2, 1 2π( ) ( )= −

Using a Dependency Diagram
In Exercises 13–24, draw a dependency diagram and write a Chain 
Rule formula for each derivative.

 13. dz
dt

z f x y x g t y h tfor , , ( ), ( )( )= = =

 14. dz
dt

z f u w u g t h t w k tfor , , , ( ), ( ), ( )υ υ( )= = = =

 15. w
u

w w h x y z x f u y g uand for , , , , , , ,
υ

υ υ( ) ( ) ( )∂
∂

∂
∂

= = =  

z k u, υ( )=

 16. w
x

w
y

w f r s t r g x y s h x yand for , , , , , , ,( ) ( ) ( )∂
∂

∂
∂

= = =  

t k x y,( )=

 17. w
u

w w g x y x h u y k uand for , , , , ,
υ

υ υ( ) ( ) ( )∂
∂

∂
∂

= = =

 18. w
x

w
y

w g u u h x y k x yand for , , , , ,υ υ( ) ( ) ( )∂
∂

∂
∂

= = =

 19. z
t

z
s

z f x y x g t s y h t sand for , , , , ,( ) ( ) ( )∂
∂

∂
∂

= = =

 20. 
y
r

y f u u g r sfor ( ), ,( )∂
∂

= =

 21. w
s

w
t

w g u u h s tand for ( ), ,( )∂
∂

∂
∂

= =

 22. w
p

w f x y z x g p q y h p qfor , , , , , , , ,υ( ) ( ) ( )∂
∂

= = =  

z j p q k p q, , ,υ( ) ( )= =

 23. w
r

w
s

w f x y x g r y h sand for , , ( ), ( )( )∂
∂

∂
∂

= = =

 24. w
s

w g x y x h r s t y k r s tfor , , , , , , ,( ) ( ) ( )∂
∂

= = =

Implicit Differentiation
Assuming that the equations in Exercises 25–30 define y as a differ-
entiable function of x, use Theorem 8 to find the value of dy dx at the 
given point.

 25. x y xy2 0, 1,13 2 ( )− + =

 26. xy y x3 3 0, 1,12 ( )+ − − = −

 27. x xy y 7 0, 1, 22 2 ( )+ + − =

 28. xe xy ysin ln 2 0, 0, ln 2y ( )+ + − =

 29. x y x yln 1, 1, 03 4 6 2 ( )( ) ( )− + + = −

 30. ( )− = + −xe ye x y 2, 1,1x y x2

Find the values of z x∂ ∂  and z y∂ ∂  at the points in Exercises 31–34.

 31. z xy yz y 2 0, 1,1,13 3 ( )− + + − =

 32. 
x y z
1 1 1 1 0, 2, 3, 6( )+ + − =

 33. x y y z x zsin sin sin 0, , ,π π π( )( ) ( ) ( )+ + + + + =

 34. xe ye x2 ln 2 3 ln 2 0, 1, ln 2, ln 3y z ( )+ + − − =

Finding Partial Derivatives at Specified Points

 35. Find w r∂ ∂  when r s1, 1= = −  if w x y z ,2( )= + +  
x r s y r s z r s, cos , sin .( ) ( )= − = + = +

 36. Find w υ∂ ∂  when u 1, 2υ= − =  if w xy zln ,= +  
x u y u z u, , cos .2υ υ= = + =

 37. Find w υ∂ ∂  when u 0, 0υ= =  if w x y x ,2 ( )= +  
x u y u2 1, 2 2.υ υ= − + = + −

 38. Find z u∂ ∂  when u 0, 1υ= =  if z xy x ysin sin ,= +  
x u y u, .2 2υ υ= + =

 39. Find z u∂ ∂  and z υ∂ ∂  when u ln 2, 1υ= =  if z x5 tan 1= −  
and x e ln .u υ= +

 40. Find z u∂ ∂  and z υ∂ ∂  when u 1= , 2υ = −  if z qln=  and 

q u3 tan .1υ= + −

Theory and Examples

 41. Assume that w f s t3 2( )= +  and f x e( ) .x′ =  Find w
t

∂
∂

 and w
s

.∂
∂

 42. Assume that w f ts s
t

, ,2( )=  
f
x

x y xy, ,( )∂
∂

=  and 

( )∂
∂

=f
y

x y x,
2

.
2

  Find w
t

∂
∂

 and w
s

.∂
∂

 43. Assume that ( ) ( )= = = − =z f x y x g t y h t f, , ( ), ( ), 2,  1 3x ,  
and f 2, 1 2y ( )− = − . If g h g(0) 2, (0) 1, (0) 5,= = − ′ =  and 

h (0) 4,′ = −  find dz
dt

.
t 0=

 44. Assume that ( ) ( )= = = = −z f x y x g t y h t f, , ( ), ( ), 1, 0 1,x
2  

f 1, 0 1y ( ) = , and f 1, 0 2( ) = . If g h(3) 1, (3) 0,= =  

g (3) 3,′ = −  and h (3) 4,′ =  find dz
dt

.
t 3=

 45. Assume that ( )= = = −z f w w g x y x r s( ), , , 2 ,3 2  and 
y re s= . If g g f2,1 3, 2,1 2, (7) 1,x y( ) ( )= − = ′ = −  and 

g 2,1 7,( ) =  find z
r r s1, 0

∂
∂ = =

 and z
s

.
r s1, 0

∂
∂ = =

 46. Assume that z f w w g x y x r sln ( ) ,  , , ,( ) ( )= = = −  and 
y r s2= . If g g f2, 9 1, 2, 9 3, ( 2) 2,x y( ) ( )− = − − = ′ − =  

f ( 2) 5,− =  and g 2, 9 2,( )− = −  find z
r r s3, 1

∂
∂ = =−

 and 
z
s

.
r s3, 1

∂
∂ = =−

 47. Changing voltage in a circuit The voltage V in a circuit that 
satisfies the law V IR=  is slowly dropping as the battery wears 
out. At the same time, the resistance R is increasing as the resistor 
heats up. Use the equation

dV
dt

V
I

dI
dt

V
R

dR
dt

= ∂
∂

+ ∂
∂
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 13.4  The Chain Rule 805

to find how the current is changing at the instant when 
R 600 ohms, I 0.04 amp, dR dt 0.5 ohm s, and 
dV dt 0.01 volt s .= −

R

+ −
V

I

Battery

 48. Changing dimensions in a box The lengths a, b, and c of the  
edges of a rectangular box are changing with time. At the instant  
in question, a b c da dt db dt1 m, 2 m, 3 m, 1 m s,  
and dc dt 3 m s.= −  At what rates are the box’s volume V and 
surface area S changing at that instant? Are the box’s interior diag-
onals increasing in length or decreasing?

 49. If f u w, ,( ) is differentiable and u x y y z, ,= − = −  and 
w z x,= −  show that

f
x

f
y

f
z

0.
∂
∂
+ ∂
∂
+ ∂
∂

=

 50. Polar coordinates Suppose that we substitute polar coordi-
nates x r cos  and y r sin  in a differentiable function 
w f x y, .( )=

 a. Show that
w
r

f fcos sinx y
∂
∂

= +

and

r
w f f1 sin cos .x y
∂
∂

= − +

 b. Solve the equations in part (a) to express f x  and f y in terms of 
w r  and w .

 c. Show that

f f w
r r

w( ) ( ) 1 .x y
2 2

2

2

2

( ) ( )+ = ∂
∂

+ ∂
∂

 51. Laplace equations Show that if w f u,( )=  satisfies the 
Laplace equation f f 0uu + =  and if u x y 22 2( )= −  and 

xy, then w satisfies the Laplace equation w w 0.xx yy+ =

 52. Laplace equations Let w f u g( ) ( ),= +  where u x iy,= +  
x iy= − , and i 1.= −  Show that w satisfies the Laplace equa-

tion w w 0xx yy+ =  if all the necessary functions are differentiable.

 53. Extreme values on a helix Suppose that the partial derivatives 
of a function f x y z, ,( ) at points on the helix x t y tcos , sin , 
z t are

f t f t f t tcos , sin , 2.x y z
2= = = + −

At what points on the curve, if any, can f  take on extreme values?

 54. A space curve Let w x e zcos 3 .y2 2  Find the value of dw dt 
at the point 1, ln 2, 0( ) on the curve x t y tcos , ln 2 ,( )= = +  
z t.

 55. Temperature on a circle Let T f x y,( )=  be the temperature 
at the point x y,( ) on the circle x t y t tcos , sin , 0 2= = ≤ ≤ , 
and suppose that

T
x

x y T
y

y x8 4 , 8 4 .∂
∂

= − ∂
∂

= −

 a. Find where the maximum and minimum temperatures on the 
circle occur by examining the derivatives dT dt and d T dt .2 2

 b. Suppose that T x xy y4 4 4 .2 2= − +  Find the maximum 
and minimum values of T on the circle.

 56. Temperature on an ellipse Let T g x y,( )=  be the tempera-
ture at the point x y,( ) on the ellipse

x t y t t2 2 cos , 2 sin , 0 2 ,= = ≤ ≤

and suppose that

T
x

y T
y

x, .∂
∂

= ∂
∂

=

 a. Locate the maximum and minimum temperatures on the 
ellipse by examining dT dt and d T dt .2 2

 b. Suppose that T xy 2.= −  Find the maximum and minimum 
values of T on the ellipse.

 57. The temperature T T x y,( )=  in C at point x y,( ) satis-
fies T 1, 2 3x ( ) =  and T 1, 2 1y ( ) = − . If x e cmt2 2= −  and 
y t2 ln cm= + , find the rate at which the temperature T 
changes when t 1 s.

 58. A bug crawls on the surface z x y2 2= −  directly above 
a path in the xy-plane given by x f t( ) and y g t( ). If 
f f g(2) 4, (2) 1, (2) 2,= ′ = − = −  and g (2) 3,′ = −  then at 
what rate is the bug’s elevation z changing when t 2?

Differentiating Integrals Under mild continuity restrictions, it is 
true that if

F x g t x dt( ) , ,
a

b

∫ ( )=

then F x g t x dt( ) , .x
a

b

∫ ( )′ =  Using this fact and the Chain Rule, we 

can find the derivative of

F x g t x dt( ) ,
a

f x( )

∫ ( )=

by letting

G u x g t x dt, , ,
a

u

∫( ) ( )=

where u f x( ). Find the derivatives of the functions in Exercises 59 
and 60.

 59. F x t x dt( )
x

4 3

0

2

∫= +

 60. F x t x dt( )
x

3 2
1

2∫= +

 61. Water is flowing into a tank in the form of a right-circular cylinder 
at the rate of 4 5 m min3( ) . The tank is stretching in such a way 
that even though it remains cylindrical, its radius is increasing at 
the rate of 0.002 m min. How fast is the surface of the water ris-
ing when the radius is 2 m and the volume of water in the tank is 
20 m 3?

 62. Suppose f  is a differentiable function of x, y, and z and 
u f x y z, , .( )=  Then if x r y rsin cos , sin sinφ θ φ θ , 
and z r cos , express u r u, , and u  in terms of 

u x u y, , and u z.

 63. At a given instant, the length of one leg of a right triangle is 10 m,  
and it is increasing at the rate of 1 m min, and the length of the 
other leg of the right triangle is 12  m, and it is decreasing at  
the rate of 2 m min. Find the rate of change of the measure of the 
acute angle opposite the leg of length 12  m at the given instant.
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806 Chapter 13 Partial Derivatives

If you look at the map (Figure 13.26) showing contours within Yosemite National Park in 
California, you will notice that the streams flow perpendicular to the contours. The streams 
are following paths of steepest descent so the waters reach lower elevations as quickly as 
possible. Therefore, the fastest instantaneous rate of change in a stream’s elevation above 
sea level has a particular direction. In this section, you will see why this direction, called 
the “downhill” direction, is perpendicular to the contours.

FIGURE 13.26 Contours within 
Yosemite National Park in California show 
streams, which follow paths of steepest 
descent, running perpendicular to the  
contours. (Source: Yosemite National Park 
Map from U.S. Geological Survey,  
http://www.usgs.gov)

13.5 Directional Derivatives and Gradient Vectors

FIGURE 13.27 The rate of change of f  
in the direction of u at a point P0 is the rate 
at which f  changes along this line at P .0

x

y

0

R

Line x = x0 + su1, y = y0 + su2

u = u1i + u2 j

Direction of
increasing s

P0(x0, y0) 

EXAMPLE 1  Using the definition, find the derivative of

( ) = +f x y x xy, 2

at ( )P 1, 20  in the direction of the unit vector ( ) ( )= +u i j1 2 1 2 .

DEFINITION The derivative of f  at P x y,0 0 0( ) in the direction of the unit 
vector u uu i j1 2= +  is the number

 
df
ds

f x su y su f x y
s

lim
, ,

,
P su, 0

0 1 0 2 0 0

0
( ) ( ) ( )

=
+ + −

→
 (1)

provided the limit exists.

Directional Derivatives in the Plane

We know from Section 13.4 that if ( )f x y,  is differentiable, then the rate at which f  
changes with respect to t along a differentiable curve = =x g t y h t( ), ( ) is

= ∂
∂

+ ∂
∂

df
dt

f
x

dx
dt

f
y

dy
dt

.

At any point ( ) ( )=P x y P g t h t, ( ),   ( ) ,0 0 0 0 0 0  this equation gives the rate of change of f  
with respect to increasing t and therefore depends, among other things, on the direction of 
motion along the curve. If the curve is a straight line and t is the arc length parameter along 
the line measured from P0 in the direction of a given unit vector u, then df dt  is the rate of 
change of f  with respect to distance in its domain in the direction of u. By varying u, we 
find the rates at which f  changes with respect to distance as we move through P0 in differ-
ent directions. We now define this idea more precisely.

Suppose that the function ( )f x y,  is defined throughout a region R in the xy-plane, that 
( )P x y,0 0 0  is a point in R, and that = +u uu i j1 2  is a unit vector. Then the equations

= + = +x x su y y su,0 1 0 2

parametrize the line through P0 parallel to u. If the parameter s measures arc length from P0 
in the direction of u, we find the rate of change of f  at P0 in the direction of u by calculat-
ing d f ds at P0 (Figure 13.27).

The directional derivative defined by Equation (1) is also denoted by

D f P D f( ) or .Pu u0 0
    

 “The derivative of f   
in the direction of u,  
evaluated at P0”

The partial derivatives ( )f x y,x 0 0  and ( )f x y,y 0 0  are the directional derivatives of f  at P0 
in the i and j directions. This observation can be seen by comparing Equation (1) to the 
definitions of the two partial derivatives given in Section 13.3.
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 13.5  Directional Derivatives and Gradient Vectors 807

FIGURE 13.28 The slope of the trace curve C at P0 is 
lim
Q P→

 slope PQ( ); this is the directional derivative

df
ds

D f .
P Pu

u
, 0 0

( ) =

y

z

Surface S:
z = f (x, y) f (x0 + su1, y0 + su2) − f (x0, y0)

P0(x0, y0) u = u1i + u2j

(x0 + su1, y0 + su2)

Tangent line

P(x0, y0, z0)

s

C

Q

x

Solution Applying the definition in Equation (1), we obtain

( )

( )

( )

( ) ( )( )

( ) ( )

( ) ( )

( )

( )

=
+ + −

=
+ ⋅ + ⋅ −

=
+ + + + − + ⋅

=
+ + + + + −

=
+

= + =

→

→

→

→

→ →

df
ds

f x su y su f x y
s

f s s f

s

s s s

s
s s s s

s
s s

s
s

lim
, ,

lim
1 1

2
, 2 1

2
1, 2

lim
1

2
1

2
2

2
1 1 2

lim
1 2

2 2
2 3

2 2
3

lim

5
2 lim 5

2
5
2

.

P s

s

s

s

s s

u, 0

0 1 0 2 0 0

0

0

2
2

0

2 2

0

2

0

0

Eq. (1)

Substitute.

The rate of change of ( ) = +f x y x xy, 2  at ( )P 1, 20  in the direction u is 5 2. 

Interpretation of the Directional Derivative

The equation ( )=z f x y,  represents a surface S in space. If ( )=z f x y, ,0 0 0  then the point 
( )P x y z, ,0 0 0  lies on S. The vertical plane that passes through P and ( )P x y,0 0 0  parallel to u 

intersects S in a curve C (Figure 13.28). The rate of change of f  in the direction of u is the 
slope of the tangent to C at P in the right-handed system formed by the vectors u and k.

When u i,=  the directional derivative at P0 is ∂ ∂f x evaluated at ( )x y, .0 0  When 
u j,=  the directional derivative at P0 is ∂ ∂f y evaluated at ( )x y, .0 0  The directional 
derivative generalizes the two partial derivatives. We can now ask for the rate of change of 
f  in any direction u, not just in the directions i and j.

For a physical interpretation of the directional derivative, suppose that ( )=T f x y,  
is the temperature at each point ( )x y,  over a region in the plane. Then ( )f x y,0 0  is the 
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808 Chapter 13 Partial Derivatives

temperature at the point P x y, ,0 0 0( )  and D f
Pu 0

 is the instantaneous rate of change of the 
temperature at P0 stepping off in the direction u.

DEFINITION The gradient vector (or gradient) of f x y,( ) is the vector

f
f
x

f
y

i j.∇ = ∂
∂

+ ∂
∂

The value of the gradient vector obtained by evaluating the partial derivatives 
at a point P x y,0 0 0( ) is written

f f x yor , .
P 0 00

( )∇ ∇

Calculation and Gradients

We now develop an efficient formula to calculate the directional derivative for a differen-
tiable function f . We begin with the line

 = + = +x x su y y su, ,0 1 0 2  (2)

through ( )P x y, ,0 0 0  parametrized with the arc length parameter s increasing in the direc-
tion of the unit vector = +u uu i j.1 2  Then, by the Chain Rule we find

� ��������� ��������� � ����� �����

( ) = ∂
∂

+ ∂
∂

= ∂
∂

+ ∂
∂

= ∂
∂

+ ∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ⋅ +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

df
ds

f
x

dx
ds

f
y

dy
ds

f
x

u
f
y

u

f
x

f
y

u ui j i j

 

.

f P uGradient of   at  Direction 

P P P

P P

P P

u,

1 2

1 2

0 0 0

0 0

0 0

0

 

(3)

Chain Rule for differentiable f

From Eqs. (2), =dx ds u1  
and =dy ds u2

Equation (3) says that the derivative of a differentiable function f  in the direction of u 
at P0 is the dot product of u with a special vector, which we now define.

The notation ∇f  is read “grad f ” as well as “gradient of f ” and “del f .” The symbol ∇ by 
itself is read “del.” Another notation for the gradient is grad f . Using the gradient notation, 
we restate Equation (3) as a theorem.

THEOREM 9—The Directional Derivative Is a Dot Product
If f x y,( ) is differentiable in an open region containing P x y, ,0 0 0( )  then

 
df
ds

f u,
P

P
u, 0

0( ) = ∇ ⋅  (4)

the dot product of the gradient f∇  at P0 with the vector u. In brief, D f f u.u = ∇ ⋅

EXAMPLE 2  Find the derivative of ( ) = +f x y xe xy, cos ( )y  at the point ( )2, 0  in 
the direction of = −v i j3 4 .

Solution Recall that the direction of a vector v is the unit vector obtained by dividing v 
by its length:

= = = −u v
v

v i j
5

3
5

4
5

.
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 13.5  Directional Derivatives and Gradient Vectors 809

FIGURE 13.29 Picture f∇  as a vector  
in the domain of f . The figure shows a 
number of level curves of f . The rate at 
which f  changes at 2, 0( ) in the direction  
u is f u 1∇ ⋅ = − , which is the component  
of f∇  in the direction of unit vector u 
(Example 2).

x

y

0 1 3 4

−1

1

2
∇ f = i + 2j

u =     i −    j3
5

4
5

P0(2, 0)

Evaluating the dot product in the brief version of Equation (4) gives

θ θ= ∇ ⋅ = ∇ = ∇D f f f fu u cos cos ,u

where θ is the angle between the vectors u and ∇f , and reveals the following properties.

EXAMPLE 3  Find the directions in which ( ) ( ) ( )= +f x y x y, 2 22 2

 (a) increases most rapidly at the point ( )1,1 , and

 (b) decreases most rapidly at ( )1,1 .

 (c) What are the directions of zero change in f  at ( )1,1 ?

Solution 

 (a) The function increases most rapidly in the direction of ∇f  at ( )1,1 . The gradient there is

( )∇ = + = +( )
( )

f x yi j i j.
1,1

1,1

Its direction is

( ) ( )
= +

+
= +

+
= +u i j

i j
i j i j

1 1

1
2

1
2

.
2 2

Properties of the Directional Derivative D f f fu cosu θ= ∇ ⋅ = ∇
1. The function f  increases most rapidly when cos 1θ = , which means that 

0θ =  and u is the direction of f .∇  That is, at each point P in its domain, 
f  increases most rapidly in the direction of the gradient vector f∇  at P. The 
derivative in this direction is

D f f fcos (0) .u = ∇ = ∇

2. Similarly, f  decreases most rapidly in the direction of f .−∇  The derivative in 
this direction is D f f fcos ( ) .u π= ∇ = − ∇

3. Any direction u orthogonal to a gradient f 0∇ ≠  is a direction of zero change 
in f  because θ then equals 2π  and

D f f fcos 2 0 0.u π( )= ∇ = ∇ ⋅ =

The partial derivatives of f  are everywhere continuous and at ( )2, 0  are given by

( ) ( )

( ) ( )

= − = − =

= − = − ⋅ =

( )

( )

f e y xy e

f xe x xy e

2, 0 sin ( ) 0 1

2, 0 sin ( ) 2 2 0 2.

x
y

y
y

2, 0

0

2, 0

0

The gradient of f  at ( )2, 0  is

( ) ( )∇ = + = +( )f f fi j i j2, 0 2, 0 2x y2, 0

(Figure 13.29). The derivative of f  at ( )2, 0  in the direction of v is therefore

( )( )

= ∇ ⋅

= + ⋅ − = − = −

( ) ( )D f f u

i j i j2 3
5

4
5

3
5

8
5

1.

u 2, 0 2, 0

 

Eq. (4) with the D f Pu 0
 notation

As we discuss later, these properties hold in three dimensions as well as two.

M13_HASS5901_15_GE_C13.indd   809 08/03/2023   16:00

www.konkur.in

Telegram: @uni_k



810 Chapter 13 Partial Derivatives

 (b) The function decreases most rapidly in the direction of −∇f  at ( )1,1 , which is

− = − −u i j1
2

1
2

.

 (c) The directions of zero change at ( )1,1  are the directions orthogonal to ∇f :

= − + − = −n i j n i j1
2

1
2

and 1
2

1
2

.

See Figure 13.30. 

FIGURE 13.30 The direction in which 
f x y,( ) increases most rapidly at 1,1( ) is 
the direction of f i j.

1,1
∇ = +

( )
 It corre-

sponds to the direction of steepest ascent  
on the surface at 1,1,1( ) (Example 3).

z

x

y
1

1

(1, 1)

(1, 1, 1)

Most rapid
increase in f

Most rapid
decrease in f

∇f = i + j

Zero change
in f

−∇f

z = f (x, y)

=      +
2
x2

2
y2

At every point ( )x y,0 0  in the domain of a differentiable function ( )f x y,  where the 
gradient of f  is a nonzero vector, this vector is normal to the level curve through 
( )x y,0 0  (Figure 13.31).

FIGURE 13.31 When it is nonzero, the 
gradient of a differentiable function of two 
variables at a point is always normal to the 
function’s level curve through that point.

The level curve f (x, y) = f (x0, y0)

(x0, y0)

∇ f (x0, y0)

Equation (5) validates our observation that streams flow perpendicular to the contours 
in topographical maps (see Figure 13.26). Since the downflowing stream will reach its 
destination in the fastest way, it must flow in the direction of the negative gradient vectors 
from Property 2 for the directional derivative. Equation (5) tells us these directions are 
perpendicular to the level curves.

This observation also enables us to find equations for tangent lines to level curves. 
They are the lines normal to the gradients. The line through a point ( )P x y,0 0 0  normal to a 
nonzero vector = +A BN i j has the equation

( ) ( )− + − =A x x B y y 00 0

(Exercise 39). If N is the gradient ( ) ( )∇ = +( )f f x y f x yi j, , ,  
x y x y, 0 0 0 00 0

 and this gra-

dient is not the zero vector, then this equation gives the following formula.

Gradients and Tangents to Level Curves

If a differentiable function ( )f x y,  has a constant value c along a smooth curve 
= +g t h tr i j( ) ( )  (making the curve part of a level curve of f ), then ( ) =f g t h t c( ), ( ) . 

Differentiating both sides of this equation with respect to t leads to the equations

� ������� ������� � ������ ������
( )

( ) =

∂
∂

+ ∂
∂

=

∂
∂

+ ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ⋅ + =

∇

d
dt

f g t h t d
dt

c

f
x

dg
dt

f
y

dh
dt

f
x

f
y

dg
dt

dh
dt

i j i j

( ),   ( ) ( )

0

0.

f d
dt
r

 (5)Chain Rule

Assuming the gradient of f  is a nonzero vector, Equation (5) says that ∇f  is normal to the 
tangent vector d dtr , so it is normal to the curve. This is seen in Figure 13.31.

EXAMPLE 4  Find an equation for the tangent to the ellipse

+ =x y
4

2
2

2

(Figure 13.32) at the point ( )−2,1 .

Equation for the Tangent Line to a Level Curve

 ( ) ( )( ) ( )− + − =f x y x x f x y y y, , 0x y0 0 0 0 0 0  (6)
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 13.5  Directional Derivatives and Gradient Vectors 811

FIGURE 13.32 We can find the tangent 
to the ellipse x y4 22 2( ) + =  by  
treating the ellipse as a level curve of  
the function f x y x y, 42 2( ) ( )= +  
(Example 4).

y

x
0−1−2

1

1 2

∇ f (−2, 1) = −i + 2j x − 2y = −4

(−2, 1)

"

2

2
"

2

+ y2 = 2x2

4

If we know the gradients of two functions f  and g, we automatically know the gradi-
ents of their sum, difference, constant multiples, product, and quotient. You are asked to 
establish the following rules in Exercise 40. Notice that these rules have the same form as 
the corresponding rules for derivatives of single-variable functions.

Algebra Rules for Gradients

1. Sum Rule: f g f g( )∇ + = ∇ + ∇

2. Difference Rule: f g f g( )∇ − = ∇ − ∇

3. Constant Multiple Rule: kf k f k( ) any number ( )∇ = ∇

4. Product Rule:

5. Quotient Rule:

fg f g g f

f
g

g f f g
g

( )
Scalar multipliers on
left of gradients

2

∇ = ∇ + ∇

∇
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = ∇ − ∇

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

Solution The ellipse is a level curve of the function

( ) = +f x y x y,
4

.
2

2

The gradient of f  at ( )−2,1  is

( )∇ = + = − +( )
( )

−
−

f x yi j i j
2

2 2 .
2,1

2,1

Because this gradient vector is nonzero, the tangent to the ellipse at ( )−2,1  is the line

( )( )( ) ( )− + + − =

− = −

x y

x y

1 2 2 1 0

2 4.  

Eq. (6)

Simplify.

EXAMPLE 5  We illustrate two of the rules with

( ) ( )= − =

∇ = − ∇ =

f x y x y g x y y

f gi j j

, , 3

3 .

We have

1. ( ) ( )∇ − = ∇ − = − = ∇ − ∇f g x y f gi j4 4     Rule 2

2. ( ) ( )∇ = ∇ − = + −fg xy y y x yi j( ) 3 3 3 3 62

and

( ) ( )

( )

∇ + ∇ = − + −
= + −

f g g f x y y

y x y

j i j

i j

3 3

3 3 6 .

We have therefore verified that for this example, ∇ = ∇ + ∇fg f g g f( ) . 

Substitute.

Simplify.

Functions of Three Variables

For a differentiable function ( )f x y z, ,  and a unit vector = + +u u uu i j k1 2 3  in space, 
we have

∇ = ∂
∂

+ ∂
∂

+ ∂
∂

f
f
x

f
y

f
z

i j k

and

= ∇ ⋅ = ∂
∂

+ ∂
∂

+ ∂
∂

D f f
f
x

u
f
y

u
f
z

uu .u 1 2 3
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812 Chapter 13 Partial Derivatives

The directional derivative can once again be written in the form

θ θ= ∇ ⋅ = ∇ = ∇D f f f fu u cos cos ,u

so the properties listed earlier for functions of two variables extend to three variables. At 
any given point, f  increases most rapidly in the direction of ∇f  and decreases most rapidly 
in the direction of −∇f . In any direction orthogonal to ∇f , the derivative is zero.

EXAMPLE 6

 (a) Find the derivative of ( ) = − −f x y z x xy z, , 3 2  at ( )P 1,1, 00  in the direction of 
= − +v i j k2 3 6 .

 (b) In what directions does f  change most rapidly at P ,0  and what are the rates of change 
in these directions?

Solution 

 (a) The direction of v is obtained by dividing v by its length:

v

u v
v

i j k

2 3 6 49 7
2
7

3
7

6
7

.

2 2 2( ) ( ) ( )= + − + = =

= = − +

The partial derivatives of f  at P0 are

f x y f xy f3 2, 2 2, 1 1.x y z
2 2

1,1, 0 1,1, 0 1,1, 0

( )= − = = − = − = − = −
( ) ( ) ( )

The gradient of f  at P0 is

f i j k2 2 .
1,1, 0

∇ = − −( )

The derivative of f  at P0 in the direction of v is therefore

D f f u i j k i j k2 2 2
7

3
7

6
7

4
7

6
7

6
7

4
7

.

u 1,1, 0 1,1, 0 ( )( )= ∇ ⋅ = − − ⋅ − +

= + − =

( ) ( )

 (b) The function increases most rapidly in the direction of ∇ = − −f i j k2 2  and 
decreases most rapidly in the direction of −∇f . The rates of change in the directions 
are, respectively,

( ) ( ) ( )∇ = + − + − = = − ∇ = −f f2 2 1 9 3 and 3.2 2 2  

Functions of More Than Three Variables

The gradient of a differentiable function of n variables …( )f x x x, , , n1 2  is

f
f

x
f

x
f

x
, , , .

n1 2

�∇ = ∂
∂

∂
∂

∂
∂

If …= 〈 〉u u uu , , , n1 2  is an n-dimensional vector such that �+ + + =u u u 1n1
2

2
2 2  (so 

u is a unit vector since �= + + + =u u uu 1n1
2

2
2 2 ), then the directional derivative 

of f  in the direction of u is

�= ∇ ⋅ = ∂
∂

+ ∂
∂

+ + ∂
∂

D f f
f

x
u

f
x

u
f

x
uu .u

n
n

1
1

2
2
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 13.5  Directional Derivatives and Gradient Vectors 813

EXAMPLE 7  The volume of the solid shown in Figure 13.33 consisting of a tetrahe-

dron on top of a triangular prism is given by ( )( ) = +f x y z w
xy

z w, , ,
2 3

.

 (a) Calculate the derivative of ( )f x y z w, , ,  at the point ( )P 6, 5, 8, 40  in the direction of 
= 〈 − − 〉v 1, 1, 1,1 .

 (b) What is the geometric significance of the value obtained in part (a)?

Solution 

 (a) The direction of v is the unit vector

( ) ( )

=

=
+ − + − +

〈 − − 〉

= 〈 − − 〉

= − −

u
v

v1

1

1 1 1 1
1, 1, 1,1

1
2

1, 1, 1,1

1
2

, 1
2

, 1
2

, 1
2

.

2 2 2 2

The four partial derivatives of f  at the point P0 are

( )
( )

= + =

= + =

= =

= =

( )

( )

( )

( )

f
y

z w

f x z w

f
xy

f
xy

2 3
70
3

,

2 3
28,

2
15,

6
5.

x

y

z

w

6, 5, 8, 4

6, 5, 8, 4

6, 5, 8, 4

6, 5, 8, 4

The gradient of f  at P0 is

∇ =( )f 70
3

, 28,15, 5 .
6, 5, 8, 4

The derivative of f  at ( )6, 5, 8, 4  in the direction of v is

D f f u

70
3

, 28,15, 5 1
2

, 1
2

, 1
2

, 1
2

70
3

1
2

28 1
2

15 1
2

5 1
2

22
3

.

P Pu 0 0

( )( ) ( ) ( ) ( )( ) ( ) ( )

= ∇ ⋅

= ⋅ − −

= + − + − +

= −

 (b) Geometrically, this means that if the dimensions are = = =x y z6, 5, 8, and 
=w 4, and the dimensions are changed by moving at unit speed so that x and w 

increase at the same rate while both y and z decrease at that rate, then the volume of the 
solid decreases at the rate of 7 1 3. 

FIGURE 13.33 A tetrahedron on top of 
a triangular prism (Example 7).

x

y

w

z

y

The Chain Rule for Paths

If = + +t x t y t z tr i j k( ) ( ) ( ) ( )  is a smooth path C, and ( )=w f tr( )  is a scalar function 
evaluated along C, then according to the Chain Rule, Theorem 6 in Section 13.4,

= ∂
∂

+ ∂
∂

+ ∂
∂

dw
dt

w
x

dx
dt

w
y

dy
dt

w
z

dz
dt

.
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814 Chapter 13 Partial Derivatives

The partial derivatives on the right-hand side of the above equation are evaluated along the 
curve tr( ), and the derivatives of the intermediate variables are evaluated at t. If we express 
this equation using vector notation, we have

The Derivative Along a Path

 d
dt

f t f t tr r r( ) ( ) ( ).( ) ( )= ∇ ⋅ ′  (7)

What Equation (7) says is that the derivative of the composite function ( )f tr( )  is the 
“derivative” (gradient) of the outside function f , evaluated at tr( ), “times” (dot product) the 
derivative of the inside function r. This is analogous to the “Outside-Inside” Rule for deriva-
tives of composite functions studied in Section 3.6. That is, the multivariable Chain Rule for 
paths has exactly the same form as the rule for single-variable differential calculus when 
appropriate interpretations are given to the meanings of the terms and operations involved.

Calculating Gradients
In Exercises 1–6, find the gradient of the function at the given point. 
Then sketch the gradient, together with the level curve that passes 
through the point.

 1. ( ) ( )= −f x y y x, , 2,1  2. ( ) ( )( )= +f x y x y, ln , 1,12 2

 3. ( ) ( )= −g x y xy, , 2, 12  4. ( )( ) = −g x y x y
,

2 2
, 2,1

2 2

 5. ( ) ( )= + −f x y x y, 2 3 , 1, 2

 6. ( ) ( )= −−f x y x
y

, tan , 4, 21

In Exercises 7–10, find ∇f  at the given point.

 7. ( ) ( )= + − +f x y z x y z z x, , 2 ln , 1,1,12 2 2

 8. ( ) ( )( )= − + +f x y z z x y z xz, , 2 3 arctan , 1,1,13 2 2

 9. ( ) ( )( ) ( )= + + + − −−f x y z x y z xyz, , ln , 1, 2, 22 2 2 1 2

 10. π( ) ( )( )= + ++f x y z e z y x, , cos 1 arcsin , 0, 0, 6x y

Finding Directional Derivatives
In Exercises 11–18, find the derivative of the function at P0 in the 
direction of v.

 11. ( ) ( )= − = +f x y xy y P v i j, 2 3 , 5, 5 , 4 32
0

 12. ( ) ( )= + − = −f x y x y P v i j, 2 , 1,1 , 3 42 2
0

 13. ( ) ( )= −
+

− = +g x y
x y
xy

P v i j,
2

, 1, 1 , 12 50

 14. h x y y x xy P, arctan 3 arcsin 2 , 1,1 ,0( ) ( ) ( ) ( )= +  
v i j3 2= −

 15. ( ) ( )= + + − = + −f x y z xy yz zx P v i j k, , , 1, 1, 2 , 3 6 20

 16. ( ) ( )= + − = + +f x y z x y z P v i j k, , 2 3 , 1,1,1 ,2 2 2
0

 17. ( ) ( )= = + −g x y z e yz P v i j k, , 3 cos , 0, 0, 0 , 2 2x
0

 18. h x y z xy e zx P, , cos ln , 1, 0,1 2 ,yz
0( ) ( )= + +  

v i j k2 2= + +

In Exercises 19–24, find the directions in which the functions increase 
most rapidly, and the directions in which they decrease most rapidly, at 
P .0  Then find the derivatives of the functions in these directions.

 19. ( ) ( )= + + −f x y x xy y P, , 1,12 2
0

 20. ( ) ( )= +f x y x y e y P, sin , 1, 0xy2
0

 21. ( ) ( ) ( )= −f x y z x y yz P, , , 4,1,10

 22. ( ) ( )= +g x y z xe z P, , , 1, ln 2,1 2y 2
0

 23. ( ) ( )= + +f x y z xy yz xz P, , ln ln ln , 1,1,10

 24. ( ) ( )( )= + − + +h x y z x y y z P, , ln 1 6 , 1,1, 02 2
0

Tangent Lines to Level Curves
In Exercises 25–28, sketch the curve ( ) =f x y c, , together with ∇f  
and the tangent line at the given point. Then write an equation for the 
tangent line.

 25. ( )+ =x y 4, 2, 22 2  26. ( )− =x y 1, 2,12

 27. ( )= − −xy 4, 2, 2  28. ( )− + = −x xy y 7, 1, 22 2

Theory and Examples

 29. Let ( ) = − + −f x y x xy y y, .2 2  Find the directions u and the 
values of ( )−D f 1, 1u  for which

 a. ( )−D f 1, 1u  is largest b. ( )−D f 1, 1u  is smallest

 c. ( )− =D f 1, 1 0u  d. ( )− =D f 1, 1 4u

 e. ( )− = −D f 1, 1 3u

 30. Let ( )
( )

( )
= −

+
f x y

x y
x y

, . Find the directions u and the values of 

( )−D f 1
2

, 3
2u  for which

 a. ( )−D f 1
2

, 3
2u  is largest b. ( )−D f 1

2
, 3
2u  is smallest

 c. ( )− =D f 1
2

, 3
2

0u  d. ( )− = −D f 1
2

, 3
2

2u

 e. ( )− =D f 1
2

, 3
2

1u

 31. Zero directional derivative In what direction is the derivative 
of ( ) = +f x y xy y, 2 at ( )P 3, 2  equal to zero?

 32. Zero directional derivative In what directions is the derivative 
of ( ) ( ) ( )= − +f x y x y x y, 2 2 2 2  at ( )P 1,1  equal to zero?

 33. Is there a direction u in which the rate of change of 
( ) = − +f x y x xy y, 3 42 2 at ( )P 1, 2  equals 14? Give reasons 

for your answer.

EXERCISES 13.5
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 13.6  Tangent Planes and Differentials 815

 34. Changing temperature along a circle Is there a direc-
tion u in which the rate of change of the temperature function 

( ) = −T x y z xy yz, , 2  (temperature in degrees Celsius, distance 
in meters) at ( )−P 1, 1,1  is 3 C m?− °  Give reasons for your answer.

 35. The derivative of ( )f x y,  at ( )P 1, 20  in the direction of +i j is 
2 2 and in the direction of − j2  is −3. What is the derivative of f  
in the direction of − −i j2 ? Give reasons for your answer.

 36. The derivative of ( )f x y z, ,  at a point P is greatest in the direction 
of = + −v i j k. In this direction, the value of the derivative is 
2 3.

 a. What is ∇f  at P? Give reasons for your answer.

 b. What is the derivative of f  at P in the direction of +i j?

 37. Directional derivatives and scalar components How is the 
derivative of a differentiable function ( )f x y z, ,  at a point P0 in 
the direction of a unit vector u related to the scalar component of 
∇f

P0
 in the direction of u? Give reasons for your answer.

 38. Directional derivatives and partial derivatives Assuming 
that the necessary derivatives of ( )f x y z, ,  are defined, how are 
D f D f, ,i j  and D fk  related to f f, ,x y  and f ?z  Give reasons for 
your answer.

 39. Lines in the xy-plane Show that ( ) ( )− + − =A x x B y y 00 0  
is an equation for the line in the xy-plane through the point 
( )x y,0 0  normal to the vector = +A BN i j.

 40. The algebra rules for gradients Given a constant k and the 
gradients

∇ = ∂
∂

+ ∂
∂

+ ∂
∂

∇ = ∂
∂

+ ∂
∂

+ ∂
∂

f
f
x

f
y

f
z

g
g
x

g
y

g
z

i j k

i j k

,

,

establish the algebra rules for gradients.

In Exercises 41–44, find a parametric equation for the line that is per-
pendicular to the graph of the given equation at the given point.

 41. ( )+ = −x y 25, 3, 42 2

 42. ( )+ + = −x xy y 3, 2, 12 2

 43. ( )+ + = −x y z 14, 3, 2,12 2 2

 44. ( )= − −z x xy , 1,1, 03 2

Gradients and Directional Derivatives for Functions of  
More Than Three Variables
In Exercises 45–48, find ∇f  at the given point.

 45. ( ) ( )= − −f x y z w x y
w

x z, , , , 2, 4, 1, 32 3

 46. π( ) ( )= + −f x y z w x y w z, , , sin cos , 2, , 0, 33 2

 47. π( )( ) = +f x y z s t e s x t z e, , , , ln tan , 3, 0,
4

, , 5y 2

 48. ( ) ( )
( )

=
+

− −f x y z s t
x y t

z s
, , , ,

arctan
, 2,1, 1, 2,1

2 2

2

In Exercises 49–52, find the derivative of the function at P0 in the 
direction of v.

 49. ( ) ( )= − − = 〈− − 〉f x y z w
w x
y z

P e v, , ,
ln

, , 2,1, 3 , 1, 2, 2, 4
2 3 0

2

 50. f x y z w x y e P, , , , 4, 2, 3,1 ,z w2
0( ) ( )( )= − + −  

v 1, 0, 2, 2= 〈 − 〉

 51. ( ) ( ) ( )= + − −f x y z s t s x y t x z, , , , arcsin arctan ,2  

P 0, 1
2

, 1,1, 10 ( )− − , = 〈− 〉v 1,1, 0, 3, 5

 52. π π( )( ) = + −f x y z s t tx sy st
z

P, , , , sin cos ,
4

,
6

, 2, 5,10 , 

= 〈− − 〉v 3, 2, 2, 2, 2

FIGURE 13.34 The gradient f∇  is 
orthogonal to the velocity vector of every 
smooth curve in the surface through P .0  
The velocity vectors at P0 therefore lie in a 
common plane, which we call the tangent 
plane at P .0

∇ f
v2

v1
P0

f (x, y, z) = c

In single-variable differential calculus, we saw how the derivative defined the tangent line 
to the graph of a differentiable function at a point on the graph. The tangent line then pro-
vided for a linearization of the function at the point. In this section, we will see analo-
gously how the gradient defines the tangent plane to the level surface of a function 

( )=w f x y z, ,  at a point on the surface. The tangent plane then provides for a lineariza-
tion of f  at the point and defines the total differential of the function.

Tangent Planes and Normal Lines

If = + +t x t y t z tr i j k( ) ( ) ( ) ( )  is a smooth curve on the level surface ( ) =f x y z c, ,  of a 
differentiable function f , we found in Equation (7) of the last section that

( ) ( )= ∇ ⋅ ′d
dt

f t f t tr r r( ) ( ) ( ).

Since f  is constant along the curve r, the derivative on the left-hand side of the equation is 
0, so the gradient ∇f  is orthogonal to the curve’s velocity vector ′r .

Now let us restrict our attention to the curves that pass through a point P0  
(Figure 13.34). All the velocity vectors at P0 are orthogonal to ∇f  at P ,0  so the curves’ 
tangent lines all lie in the plane through P0 normal to ∇f . (assuming it is a nonzero vector). 
We now define this plane.

13.6 Tangent Planes and Differentials
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816 Chapter 13 Partial Derivatives

The results of Section 11.5 imply that the tangent plane and normal line satisfy the 
following equations, as long as the gradient at the point P0 is not the zero vector.

DEFINITIONS The tangent plane to the level surface f x y z c, ,( ) =  of a dif-
ferentiable function f  at a point P0 where the gradient is not zero is the plane 
through P0 normal to f .

P0
∇

The normal line of the surface at P0 is the line through P0 parallel to f .
P0

∇

FIGURE 13.35 The tangent plane and 
normal line to this level surface at P0 
(Example 1).

z

y

x

Normal line

Tangent plane

The surface
x2 + y2 + z − 9 = 0

P0(1, 2, 4)

1 2

Tangent Plane to f x y z c, ,( ) =  at P x y z, ,0 0 0 0( )

 f P x x f P y y f P z z( ) ( ) ( ) 0x y z0 0 0 0 0 0( ) ( ) ( )− + − + − =  (1)

Normal Line to f x y z c, ,( ) =  at P x y z, ,0 0 0 0( )

 x x f P t y y f P t z z f P t( ) , ( ) , ( )x y z0 0 0 0 0 0= + = + = +  (2)

EXAMPLE 1  Find the tangent plane and normal line of the level surface

( ) = + + − =f x y z x y z, , 9 02 2     A circular paraboloid

at the point ( )P 1, 2, 4 .0

Solution The surface is shown in Figure 13.35.
The tangent plane is the plane through P0 perpendicular to the gradient of f  at P .0  The 

gradient is

( )∇ = + + = + +
( )

f x yi j k i j k2 2 2 4 .
P

1, 2, 4
0

The tangent plane is therefore the plane

( )( ) ( )− + − + − = + + =x y z x y z2 1 4 2 4 0, or 2 4 14.

The line normal to the surface at P0 is

= + = + = +x t y t z t1 2 , 2 4 , 4 . 

To find an equation for the plane tangent to a smooth surface ( )=z f x y,  at a point 
( )P x y z, ,0 0 0 0  where ( )=z f x y, ,0 0 0  we first observe that the equation ( )=z f x y,  is 

equivalent to ( ) − =f x y z, 0. The surface ( )=z f x y,  is therefore the zero level sur-
face of the function ( ) ( )= −F x y z f x y z, , , . The partial derivatives of F  are

( )( )

( )( )

( )( )

= ∂
∂

− = − =

= ∂
∂

− = − =

= ∂
∂

− = − = −

F
x

f x y z f f

F
y

f x y z f f

F
z

f x y z

, 0

, 0

, 0 1 1.

x x x

y y y

z

The formula

F P x x F P y y F P z z( ) ( ) ( ) 0x y z0 0 0 0 0 0( ) ( ) ( )− + − + − =

for the plane tangent to the level surface at P0 therefore reduces to

f x y x x f x y y y z z, , 0.x y0 0 0 0 0 0 0( ) ( )( ) ( ) ( )− + − − − =
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 13.6  Tangent Planes and Differentials 817

EXAMPLE 2  Find the plane tangent to the surface = −z x y yecos x at ( )0, 0, 0 .

Solution We calculate the partial derivatives of ( ) = −f x y x y ye, cos x and use 
Equation (3):

f y ye

f x y e

0, 0 cos 1 0 1 1

0, 0 sin 0 1 1.

x
x

y
x

0, 0

0, 0

( ) ( )

( ) ( )

= − = − ⋅ =

= − − = − = −

( )

( )

The tangent plane is therefore

( )( ) ( )⋅ − − ⋅ − − − =x y z1 0 1 0 0 0,    Eq. (3)

or

− − =x y z 0. 

Plane Tangent to a Surface z f x y,( )=  at x y f x y, , ,0 0 0 0( )( )
The plane tangent to the surface z f x y,( )=  of a differentiable function f  at the 
point P x y z x y f x y, , , , ,0 0 0 0 0 0 0 0( ) ( )( )=  is

 f x y x x f x y y y z z, , 0.x y0 0 0 0 0 0 0( ) ( )( ) ( ) ( )− + − − − =  (3)

FIGURE 13.36 This cylinder and plane 
intersect in an ellipse E (Example 3).

z

y

x

∇g

(1, 1, 3)

∇ f

The cylinder
x2 + y2 − 2 = 0

f(x, y, z)

∇ f × ∇g

The plane
x + z − 4 = 0

g(x, y, z)

The ellipse E

EXAMPLE 3  The surfaces

( ) = + − =f x y z x y, , 2 02 2     A cylinder

and

( ) = + − =g x y z x z, , 4 0    A plane

meet in an ellipse E (Figure 13.36). Find parametric equations for the line tangent to E at 
the point ( )P 1,1, 3 .0

Solution The tangent line is orthogonal to both ∇f  and ∇g at P ,0  and therefore parallel 
to = ∇ × ∇f gv . The components of v and the coordinates of P0 give us equations for the 
line. We have

( )

( )

( ) ( )

∇ = + = +

∇ = + = +

= + × + = = − −

( )
( )

( )
( )

f x y

g

i j i j

i k i k

v i j i k

i j k

i j k

2 2 2 2

2 2 2 2 0

1 0 1

2 2 2 .

1,1, 3
1,1, 3

1,1, 3
1,1, 3

The tangent line to the ellipse of intersection is

= + = − = −x t y t z t1 2 , 1 2 , 3 2 . 
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818 Chapter 13 Partial Derivatives

Estimating Change in a Specific Direction

The directional derivative plays a role similar to that of an ordinary derivative when we 
want to estimate how much the value of a function f  changes if we move a small distance 
ds from a point P0 to another point nearby. If f  were a function of a single variable, we 
would have

= ′df f P ds( ) .0     Ordinary derivative × increment

For a function of two or more variables, we use the formula

( )= ∇ ⋅df f dsu ,
P0

    Directional derivative × increment

where u is the direction of the motion away from P .0

FIGURE 13.37 As P x y z, ,( ) moves off 
the level surface at P0 by 0.1 unit directly 
toward P1, the function f  changes value by 
approximately 0.067−  unit (Example 4).

P0

2
1

0

1

2
∇f

z

12

P1(2, 2, −2)

x

y

–2

Estimating the Change in f  in a Direction u
To estimate the change in the value of a differentiable function f  when we move 
a small distance ds from a point P0 in a particular direction u, use this formula:

� ����� ����� � ��� ���
df f dsu

Directional
derivative

Distance
increment

P0
( )= ∇ ⋅

EXAMPLE 4  Estimate how much the value of

( ) = +f x y z y x yz, , sin 2

will change if the point ( )P x y z, ,  moves 0.1 unit from ( )P 0,1, 00  straight toward 
( )−P 2, 2, 2 .1

Solution We first find the derivative of f  at P0 in the direction of the vector 
= + −P P i j k2 2 .0 1

� ����
 The direction of this vector is

= = = + −
P P
P P

P P
u i j k

3
2
3

1
3

2
3

.0 1

0 1

0 1

� ����
� ����

� ����

The gradient of f  at P0 is

( ) ( )∇ = + + + = +( )
( )

f y x x z yi j k i kcos sin 2 2 2 .
0,1, 0

0,1, 0
A B

Therefore,

( )( )∇ ⋅ = + ⋅ + − = − = −f u i k i j k2 2
3

1
3

2
3

2
3

4
3

2
3

.
P0

The change df in f  that results from moving =ds 0.1 unit away from P0 in the direction 
of u is approximately

( )( ) ( )= ∇ ⋅ = − ≈ −df f dsu ( ) 2
3

0.1 0.067 unit.
P0

See Figure 13.37. 

How to Linearize a Function of Two Variables

Functions of two variables can be quite complicated, and we sometimes need to approxi-
mate them with simpler ones that give the accuracy required for specific applications with-
out being so difficult to work with. We do this in a way that is similar to the way we find 
linear replacements for functions of a single variable (Section 3.11).
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 13.6  Tangent Planes and Differentials 819

Suppose the function we wish to approximate is ( )=z f x y,  near a point ( )x y,0 0  at 
which we know the values of f f, ,x  and f y and at which f  is differentiable. If we move 
from ( )x y,0 0  to a nearby point ( )x y,  by increments Δ = −x x x 0 and Δ = −y y y0 
(see Figure 13.38), then the definition of differentiability from Section 13.3 shows that  
the change

f x y f x y f x y x f x y y x y, , , , ,x y0 0 0 0 0 0 1 2ε ε( ) ( ) ( ) ( )− = Δ + Δ + Δ + Δ

where ε ε →, 01 2  as Δ Δ →x y, 0. If the increments Δx and Δy are small, the products 
x1ε Δ  and y2ε Δ  will eventually be smaller still, and we have the approximation

( ) ( ) ( ) ( )( ) ( )≈ + − + −

( )

f x y f x y f x y x x f x y y y, , , , .

L x y,

x y0 0 0 0 0 0 0 0� ��������������������������� ���������������������������

In other words, as long as Δx and Δy are small, f  will have approximately the same value 
as the linear function L.

FIGURE 13.38 If f  is differentiable  
at x y, ,0 0( )  then the value of f  at 
point x y,( ) nearby is approximately 
f x y f x y x f x y y, , , .x y0 0 0 0 0 0( ) ( ) ( )+ Δ + Δ

A point
near (x0, y0)

(x, y)

Δy = y − y0

Δx = x − x0
(x0, y0)

A point where
f is differentiable

DEFINITIONS The linearization of a function f x y,( ) at a point x y,0 0( ) 
where f  is differentiable is the function

L x y f x y f x y x x f x y y y, , , , .x y0 0 0 0 0 0 0 0( ) ( ) ( ) ( )( ) ( )= + − + −

The approximation

f x y L x y, ,( ) ( )≈

is the standard linear approximation of f  at x y, .0 0( )

FIGURE 13.39 The tangent plane 
L x y,( ) represents the linearization of 
f x y,( ) in Example 5.

x

z

4

4 3 2

3

1

y

(3, 2, 8)

z = f (x, y)

L(x, y)

From Equation (3), we find that the plane ( )=z L x y,  is tangent to the surface 
( )=z f x y,  at the point ( )x y, .0 0  Thus, the linearization of a function of two variables is 

a tangent-plane approximation in the same way that the linearization of a function of a 
single variable is a tangent-line approximation. (See Exercise 57.)

EXAMPLE 5  Find the linearization of

( ) = − + +f x y x xy y, 1
2

32 2

at the point ( )3, 2 .

Solution We first evaluate f f, ,x  and f y at the point ( ) ( )=x y, 3, 2 :0 0

( )

( )

( )

( )

( )

( )

( )

( )

= − + + =

= ∂
∂

− + + = − =

= ∂
∂

− + + = − + = −

( )

( ) ( )

( ) ( )

f x xy y

f
x

x xy y x y

f
y

x xy y x y

3, 2 1
2

3 8

3, 2 1
2

3 2 4

3, 2 1
2

3 1,

x

y

2 2

3, 2

2 2

3, 2 3, 2

2 2

3, 2 3, 2

which yields

( ) ( ) ( ) ( )( ) ( )

( )( )( ) ( )

= + − + −

= + − + − − = − −

L x y f x y f x y x x f x y y y

x y x y

, , , ,

8 4 3 1 2 4 2.
x y0 0 0 0 0 0 0 0

The linearization of f  at ( )3, 2  is ( ) = − −L x y x y, 4 2 (see Figure 13.39). 
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820 Chapter 13 Partial Derivatives

When we approximate a differentiable function ( )f x y,  by its linearization ( )L x y,  at 
( )x y, ,0 0  an important question is how accurate the approximation might be.

If we can find a common upper bound M for f f, ,xx yy  and f xy  on a rectangle R 
centered at ( )x y,0 0  (Figure 13.40), then we can bound the error E throughout R by using a 
simple formula. The error is defined by ( ) ( ) ( )= −E x y f x y L x y, , , .

The Error in the Standard Linear Approximation
If f  has continuous first and second partial derivatives throughout an open set 
containing a rectangle R centered at x y,0 0( ), and if M is any upper bound for the 
values of f f, ,xx yy  and f xy  on R, then the error E x y,( ) incurred in replacing 
f x y,( ) on R by its linearization

L x y f x y f x y x x f x y y y, , , ,x y0 0 0 0 0 0 0 0( ) ( ) ( ) ( )( ) ( )= + − + −

satisfies the inequality

E x y M x x y y, 1
2

.0 0
2( ) ( )≤ − + −

To make ( )E x y,  small for a given M, we just make −x x 0  and −y y0  small.

DEFINITION If we move from x y,0 0( ) to a point x dx y dy,0 0( )+ +  nearby, 
the resulting change

df f x y dx f x y dy, ,x y0 0 0 0( ) ( )= +

in the linearization of f  is called the total differential of f .

FIGURE 13.40 The rectangular region 
R x x h y y k: ,0 0− ≤ − ≤  in the 
xy-plane.

y

x
0

k
h

R

(x0, y0)

Differentials

Recall from Section 3.11 that for a function of a single variable, =y f x( ), we defined the 
change in f  as x changes from a to + Δa x by

( )Δ = + Δ −f f a x f a( )

and the differential of f  as

= ′ Δd f f a x( ) .

We now consider the differential of a function of two variables.
Suppose a differentiable function ( )f x y,  and its partial derivatives exist at a point 

( )x y, .0 0  If we move to a nearby point ( )+ Δ + Δx x y y, ,0 0  the change in f  is

( ) ( )Δ = + Δ + Δ −f f x x y y f x y, , .0 0 0 0

A straightforward calculation based on the definition of ( )L x y, , using the notation 
− = Δx x x0  and − = Δy y y,0  shows that the corresponding change in L is

L L x x y y L x y f x y x f x y y, , , , .x y0 0 0 0 0 0 0 0( ) ( ) ( ) ( )Δ = + Δ + Δ − = Δ + Δ

The differentials dx and dy are independent variables, so they can be assigned any values. 
Often we take = Δ = −dx x x x ,0  and = Δ = −dy y y y .0  We then have the follow-
ing definition of the differential or total differential of f .
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 13.6  Tangent Planes and Differentials 821

EXAMPLE 6  Suppose that a cylindrical can is designed to have a radius of 1 cm and 
a height of 5 cm, but that the radius and height are off by the amounts = +dr 0.03 and 

= −dh 0.1. Estimate the resulting absolute change in the volume of the can.

Solution To estimate the absolute change in π=V r h,2  we use

( ) ( )Δ ≈ = +V dV V r h dr V r h dh, , .r h0 0 0 0

With π=V rh2r  and π=V r ,h
2  we get

dV r h dr r dh2 2 1 5 0.03 1 0.1

0.3 0.1 0.2 0.63 cm .
0 0 0

2 2

3

π π π π

π π π

( )( ) ( ) ( ) ( )= + = + −

= − = ≈  

FIGURE 13.41 The volume of cylinder 
(a) is more sensitive to a small change in r 
than it is to an equally small change in h. 
The volume of cylinder (b) is more sensi-
tive to small changes in h than it is to small 
changes in r (Example 7).

EXAMPLE 7  Your company manufactures stainless steel right circular cylindrical 
molasses storage tanks that are 2.5 m high with a radius of 0.5 m. How sensitive are the 
tanks’ volumes to small variations in height and radius?

Solution With π=V r h,2  the total differential gives the approximation for the change 
in volume as

dV V dr V dh

rh dr r dh

dr dh

0.5, 2.5 0.5, 2.5

2

2.5 0.25 .

r h

0.5, 2.5

2

0.5, 2.5
π π

π π

( ) ( )

( )( )

= +

= +

= +
( ) ( )

Thus, a 1-unit change in r will change V by about 2.5 units.π  A 1-unit change in h will 
change V by about 0.25 units.π  The tank’s volume is 10 times more sensitive to a small 
change in r than it is to a small change of equal size in h. As a quality control engineer 
concerned with being sure the tanks have the correct volume, you would want to pay  
special attention to their radii.

In contrast, if the values of r and h are reversed to make r 2.5=  and h 0.5,=  then 
the total differential in V becomes

dV rh dr r dh dr dh2 2.5 6.25 .
2.5, 0.5

2

2.5, 0.5
π π π π( )( )= + = +

( ) ( )

Now the volume is more sensitive to changes in h than to changes in r (Figure 13.41).
The general rule is that functions are most sensitive to small changes in the variables 

that generate the largest partial derivatives. 

Functions of More Than Two Variables

Analogous results hold for differentiable functions of more than two variables.

1. The linearization of ( )f x y z, ,  at a point ( )P x y z, ,0 0 0 0  is

( ) ( ) ( ) ( )= + − + − + −L x y z f P f P x x f P y y f P z z, , ( ) ( ) ( ) ( ) .x y z0 0 0 0 0 0 0

2. Suppose that R is a closed rectangular solid centered at P0 and lying in an open region 
on which the second partial derivatives of f  are continuous. Suppose also that 

f f f f f, , , , ,xx yy zz xy xz  and f yz  are all less than or equal to M throughout R. Then 
the error ( ) ( ) ( )= −E x y z f x y z L x y z, , , , , ,  in the approximation of f  by L is 
bounded throughout R by the inequality

( )≤ − + − + −E M x x y y z z1
2

.0 0 0
2

(a) (b)

r = 5

r = 25
h = 25

h = 5
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822 Chapter 13 Partial Derivatives

3. If the second partial derivatives of f  are continuous and if x, y, and z change from 
x y, ,0 0  and z0 by small amounts dx, dy, and dz, the total differential

= + +d f f P dx f P dy f P dz( ) ( ) ( )x y z0 0 0

gives a good approximation of the resulting change in f .

EXAMPLE 8  Find the linearization ( )L x y z, ,  of

( ) = − +f x y z x xy z, , 3 sin2

at the point ( ) ( )=x y z, , 2,1, 0 .0 0 0  Find an upper bound for the error incurred in replac-
ing f  by L on the rectangular region

− ≤ − ≤ ≤R x y z: 2 0.01, 1 0.02, 0.01.

Solution Routine calculations give

( ) ( ) ( ) ( )= = = − =f f f f2,1, 0 2, 2,1, 0 3, 2,1, 0 2, 2,1, 0 3.x y z

Thus,

( ) ( )( ) ( ) ( )= + − + − − + − = − + −L x y z x y z x y z, , 2 3 2 2 1 3 0 3 2 3 2.

Since

= = = − = − = =f f f z f f f2, 0, 3 sin , 1, 0, 0,xx yy zz xy xz yz

and − ≤ ≈z3 sin 3 sin 0.01 0.03, we may take =M 2 as a bound on the second  
partials. Hence, the error incurred by replacing f  by L on R satisfies

( )( )≤ + + =E 1
2

2 0.01 0.02 0.01 0.0016.2  

Tangent Planes and Normal Lines to Surfaces
In Exercises 1–10, find equations for the

 (a) tangent plane and

 (b) normal line at the point P0 on the given surface.

 1. ( )+ + =x y z P3, 1,1,12 2 2
0

 2. ( )+ − = −x y z P18, 3, 5, 42 2 2
0

 3. ( )− =z x P2 0, 2, 0, 22
0

 4. ( )+ − + = −x xy y z P2 7, 1, 1, 32 2 2
0

 5. π ( )− + + =x x y e yz Pcos 4, 0,1, 2xz2
0

 6. ( )− − − = −x xy y z P0, 1,1, 12 2
0

 7. ( )+ + =x y z P1, 0,1, 00

 8. ( )+ − − + − = − −x y xy x y z P2 3 4, 2, 3,182 2
0

 9. ( )+ =x y y z x P eln ln , 1,1,0

 10. ye ze z P,  0, 0,1x y
0

2 ( )+ =

In Exercises 11–14, find an equation for the plane that is tangent to the 
given surface at the given point.

 11. ( )( )= +z x yln , 1, 0, 02 2

 12. ( )= ( )− +z e , 0, 0,1x y2 2

 13. ( )= −z y x , 1, 2,1

 14. ( )= +z x y4 , 1,1, 52 2

Tangent Lines to Intersecting Surfaces
In Exercises 15–20, find parametric equations for the line tangent to 
the curve of intersection of the surfaces at the given point.

 15. 

( )

+ + = =x y z xSurfaces: 2 4, 1

Point: 1,1,1

2

 16. 

( )

= + + =xyz x y zSurfaces: 1, 2 3 6

Point: 1,1,1

2 2 2

 17. 

( )

+ + = =x y z ySurfaces: 2 2 4, 1

Point: 1,1,1 2

2

 18. 

( )

+ + = =x y z ySurfaces: 2, 1

Point: 1 2,1,1 2

2

 19. 

( )

+ + + − =

+ + =

x x y y xy z

x y z

Surfaces: 3 4 0,

11

Point: 1,1, 3

3 2 2 3 2

2 2 2

 20. 

( )

+ = + − =x y x y zSurfaces: 4, 0

Point: 2, 2, 4

2 2 2 2

EXERCISES 13.6 
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Estimating Change

 21. By about how much will

( ) = + +f x y z x y z, , ln 2 2 2

change if the point ( )P x y z, ,  moves from ( )P 3, 4,120  a distance 
of =ds 0.1 unit in the direction of + −i j k3 6 2 ?

 22. By about how much will

( ) =f x y z e yz, , cosx

change as the point ( )P x y z, ,  moves from the origin a distance of 
=ds 0.1 unit in the direction of + −i j k2 2 2 ?

 23. By about how much will

( ) = + − +g x y z x x z y z y, , cos sin

change if the point ( )P x y z, ,  moves from ( )−P 2, 1, 00  a distance 
of =ds 0.2 unit toward the point ( )P 0,1, 2 ?1

 24. By about how much will

π( ) = +h x y z xy xz, , cos ( ) 2

change if the point ( )P x y z, ,  moves from ( )− − −P 1, 1, 10  a dis-
tance of =ds 0.1 unit toward the origin?

 25. Temperature change along a circle Suppose that the Celsius 
temperature at the point ( )x y,  in the xy-plane is ( ) =T x y x y, sin 2  
and that distance in the xy-plane is measured in meters. A particle 
is moving clockwise around the circle of radius 1 m centered at 
the origin at the constant rate of 2 m s.

 a. How fast is the temperature experienced by the particle chang-
ing in degrees Celsius per meter at the point ( )P 1 2, 3 2 ?

 b. How fast is the temperature experienced by the particle 
changing in degrees Celsius per second at P?

 26. Changing temperature along a space curve The Celsius tem-
perature in a region in space is given by ( ) = −T x y z x xyz, , 2 .2  
A particle is moving in this region and its position at time t is 
given by = = = −x t y t z t2 , 3 , ,2 2  where time is measured in 
seconds and distance in meters.

 a. How fast is the temperature experienced by the particle 
changing in degrees Celsius per meter when the particle is at 
the point ( )−P 8, 6, 4 ?

 b. How fast is the temperature experienced by the particle 
changing in degrees Celsius per second at P?

Finding Linearizations
In Exercises 27–32, find the linearization ( )L x y,  of the function at 
each point.

 27. ( ) = + +f x y x y, 12 2  at a. ( )0, 0 , b. ( )1,1

 28. ( ) ( )= + +f x y x y, 2 2 at a. ( )0, 0 , b. ( )1, 2

 29. ( ) = − +f x y x y, 3 4 5 at a. ( )0, 0 , b. ( )1,1

 30. ( ) =f x y x y, 3 4 at a. ( )1,1 , b. ( )0, 0

 31. ( ) =f x y e y, cosx  at a. ( )0, 0 , b. π( )0, 2

 32. ( ) = −f x y e, y x2  at a. ( )0, 0 , b. ( )1, 2

 33. Wind chill factor Wind chill, a measure of the apparent tem-
perature felt on exposed skin, is a function of air temperature and 

wind speed. The precise formula, updated by the National Weather 
Service in 2001 and based on modern heat transfer theory, a human 
face model, and skin tissue resistance, is (after unit conversion)

W W T T

T

, 13.13 0.6215 11.36

0.396 ,

0.16

0.16

υ υ

υ

( )= = + −

+ ⋅

where T is air temperature in C°  and υ is wind speed in km/h. A 
partial wind chill chart is given.

T(°C)

5 0 −5 −10 −15 −20 −25

υ  
(km/ 

h)

10 2.7 −3.3 −9.3 −15.2 −21.2 −27.2 −33.1

20 1.1 −5.2 −11.5 −17.8 −24.1 −30.4 −36.7

30 0.1 −6.4 −13.0 −19.5 −26.0 −32.5 −39.0

40 −0.7 −7.4 −14.0 −20.7 −27.4 −34.1 −40.8

50 −1.3 −8.1 −14.9 −21.7 −28.5 −35.4 −42.2

60 −1.8 −8.7 −15.7 −22.6 −29.5 −36.4 −43.3

 a. Use the table to find W W30, 5 , 50, 25 ,( ) ( )− −  and 
W 30, 10 .( )−

 b. Use the formula to find W W15, 40 , 80, 40 ,( ) ( )− −  and 
W 90, 0 .( )

 c. Find the linearization υ( )L T,  of the function υ( )W T,  at the 
point 40, 10( )− .

 d. Use υ( )L T,  in part (c) to estimate the following wind chill values.

   i) W 39, 9( )−  ii) W 42, 12( )−

 iii)  W 10, 25( )−  (Explain why this value is much different 
from the value found in the table.)

 34. Find the linearization υ( )L T,  of the function υ( )W T,  in 
Exercise 31 at the point ( )−50, 20 . Use it to estimate the follow-
ing wind chill values.

 a. ( )−W 49, 22

 b. ( )−W 53, 19

 c. ( )−W 60, 30

Bounding the Error in Linear Approximations
In Exercises 35–40, find the linearization ( )L x y,  of the function 

( )f x y,  at P .0  Then find an upper bound for the magnitude E  of the 
error in the approximation ( ) ( )≈f x y L x y, ,  over the rectangle R.

 35. f x y x xy P, 3 5 at 2,1 ,2
0( ) ( )= − +

− ≤ − ≤R x y: 2 0.1, 1 0.1

 36. f x y x xy y x y P, 1 2 1 4 3 3 4 at 2, 2 ,2 2
0( ) ( ) ( ) ( )= + + + − +

− ≤ − ≤R x y: 2 0.1, 2 0.1

 37. f x y y x y P, 1 cos at 0, 0 ,0( ) ( )= + +

≤ ≤R x y: 0.2, 0.2

(Use ≤ycos 1 and ≤ysin 1 in estimating E.)

 38. f x y xy y x P, cos 1 at 1, 2 ,2
0( ) ( )( )= + −

R x y: 1 0.1, 2 0.1− ≤ − ≤

13.6  Tangent Planes and Differentials 
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824 Chapter 13 Partial Derivatives

 39. f x y e y P, cos at 0, 0 ,x
0( ) ( )=

R x y: 0.1, 0.1≤ ≤

(Use e 1.11x ≤  and ycos 1≤  in estimating E.)

 40. f x y x y P, ln ln at 1,1 ,0( ) ( )= +

R x y: 1 0.2, 1 0.2− ≤ − ≤

Linearizations for Three Variables
Find the linearizations L(x, y, z) of the functions in Exercises 41–46 at 
the given points.

 41. f x y z xy yz xz, ,( ) = + +  at

 a. 1,1,1( ) b. 1, 0, 0( ) c. 0, 0, 0( )

 42. f x y z x y z, , 2 2 2( ) = + +  at

 a. 1,1,1( ) b. 0,1, 0( ) c. 1, 0, 0( )

 43. f x y z x y z, , 2 2 2( ) = + +  at

 a. 1, 0, 0( ) b. 1,1, 0( ) c. 1, 2, 2( )

 44. f x y z xy z, , sin( ) ( )=  at

 a. 2,1,1π( ) b. 2, 0,1( )

 45. f x y z e y z, , cosx( ) ( )= + +  at

 a. 0, 0, 0( ) b. 0,
2

, 0π( ) c. 0,
4

,
4

π π( )
 46. f x y z xyz, , tan ( )1( ) = −  at

 a. 1, 0, 0( ) b. 1,1, 0( ) c. 1,1,1( )

In Exercises 47–50, find the linearization L(x, y, z) of the function  
f (x, y, z) at P .0  Then find an upper bound for the magnitude of the error 
E in the approximation f x y z L x y z, , , ,( ) ( )≈  over the region R.

 47. f x y z xz yz P, , 3 2 at 1,1, 2 ,0( ) ( )= − +

R x y z: 1 0.01, 1 0.01, 2 0.02− ≤ − ≤ − ≤

 48. f x y z x xy yz z P, , 1 4 at 1,1, 2 ,2 2
0( ) ( ) ( )= + + +

R x y z: 1 0.01, 1 0.01, 2 0.08− ≤ − ≤ − ≤

 49. f x y z xy yz xz P, , 2 3 at 1,1, 0 ,0( ) ( )= + −

R x y z: 1 0.01, 1 0.01, 0.01− ≤ − ≤ ≤

 50. f x y z x y z P, , 2 cos sin at 0, 0, 4 ,0 π( ) ( )( )= +

R x y z: 0.01, 0.01, 4 0.01π≤ ≤ − ≤

Estimating Error; Sensitivity to Change

 51. Estimating maximum error Suppose that T is to be found 
from the formula T x e e ,y y( )= + −  where x and y are found  
to be 2 and ln 2 with maximum possible errors of dx 0.1=  and 
dy 0.02.=  Estimate the maximum possible error in the com-

puted value of T.

 52. Variation in electrical resistance The resistance R produced 
by wiring resistors of R1 and R2 ohms in parallel (see accompany-
ing figure) can be calculated from the formula

R R R
1 1 1 .

1 2

= +

 a. Show that

dR R
R

dR R
R

dR .
1

2

1
2

2

2=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

 b. You have designed a two-resistor circuit, like the one shown, 
to have resistances of R 100 ohms1 =  and R 400 ohms,2 =  
but there is always some variation in manufacturing, and the 
resistors received by your firm will probably not have these 
exact values. Will the value of R be more sensitive to variation 
in R1 or to variation in R ?2  Give reasons for your answer.

+

−
V R1 R2

 c. In another circuit like the one shown, you plan to change R1 
from 20 to 20.1 ohms and R2 from 25 to 24.9 ohms. By about 
what percentage will this change R?

 53. You plan to calculate the area of a long, thin rectangle from mea-
surements of its length and width. Which dimension should you 
measure more carefully? Give reasons for your answer.

 54. a.  Around the point 1, 0( ), is f x y x y, 12( ) ( )= +  more sensi-
tive to changes in x or to changes in y? Give reasons for your 
answer.

 b. What ratio of dx to dy will make df equal zero at 1, 0( )?

 55. Value of a 2 2×  determinant If a  is much greater than 
b c, , and d , to which of a, b, c, and d is the value of the  

determinant

f a b c d
a b

c d
, , ,( ) =

most sensitive? Give reasons for your answer.

 56. The Wilson lot size formula The Wilson lot size formula in 
economics says that the most economical quantity Q of goods  
(radios, shoes, brooms, whatever) for a store to order is given by the 
formula Q KM h2 ,=  where K is the cost of placing the order, 
M is the number of items sold per week, and h is the weekly holding 
cost for each item (cost of space, utilities, security, and so on). To 
which of the variables K, M, and h is Q most sensitive near the point 
K M h, , 2, 20, 0.05 ?0 0 0( ) ( )=  Give reasons for your answer.

Theory and Examples

 57. The linearization of f x y,( ) is a tangent-plane approximation  
Show that the tangent plane at the point P x y f x y, , ,0 0 0 0 0( )( ) on 
the surface z f x y,( )=  defined by a differentiable function f  is 
the plane

f x y x x f x y y y z f x y, , , 0,x y0 0 0 0 0 0 0 0( )( ) ( )( ) ( )( )− + − − − =

or

z f x y f x y x x f x y y y, , , .x y0 0 0 0 0 0 0 0( ) ( ) ( )( ) ( )= + − + −
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 13.7  Extreme Values and Saddle Points 825

Thus, the tangent plane at P0 is the graph of the linearization of f  
at P0 (see accompanying figure).

z

y

x

(x0,  y0)

z = L(x, y)

z = f (x, y)

(x0,  y0, f (x0, y0))

 58. Change along the involute of a circle Find the derivative of 
f x y x y, 2 2( ) = +  in the direction of the unit tangent vector of 
the curve

t t t t t t t tr i j( ) cos sin sin cos , 0.( ) ( )= + + − >

 59. Tangent curves A smooth curve is tangent to the surface at a 
point of intersection if its velocity vector is orthogonal to f  there.

Show that the curve

t t t tr i j k( ) 2 1( )= + + −

is tangent to the surface x y z 12 2+ − =  when t 1.

 60. Normal curves A smooth curve is normal to a surface 
f x y z c, ,( ) =  at a point of intersection if the curve’s velocity 
vector is a nonzero scalar multiple of f  at the point.

Show that the curve

t t t tr i j k( )   1
4

3( )= + − +

is normal to the surface x y z 32 2+ − =  when t 1.

 61. Consider a closed rectangular box with a square base, as shown 
in the figure. Assume x is measured with an error of at most 0.5% 
and y is measured with an error of at most 0.75%, so we have 
dx x 0.005 and dy y 0.0075.

x

y

x

 a. Use a differential to estimate the relative error dV V  in  
computing the box’s volume V.

 b. Use a differential to estimate the relative error dS S in  
computing the box’s surface area S.

Hint for
x xy
x xy

x xy
x xy

xy
x xy

x xy
x xy

b:
4 4
2 4

4 8
2 4

2 and

4
2 4

2 4
2 4

1.

2

2

2

2

2

2

2

+
+

≤ +
+

=

+
≤ +

+
=

Continuous functions of two variables assume extreme values on closed, bounded domains 
(see Figures 13.42 and 13.43). We see in this section that we can narrow the search for 
these extreme values by examining the functions’ first partial derivatives. A function of two 
variables can assume extreme values only at boundary points of the domain or at interior 
domain points where both first partial derivatives are zero or where one or both of the first 
partial derivatives fail to exist. However, the vanishing of derivatives at an interior point a b,( ) 
does not always signal the presence of an extreme value. The surface that is the graph of the 
function might be shaped like a saddle right above a b,( ) and cross its tangent plane there.

Local Extreme Values for Functions of Two Variables

To find the local extreme values of a function of a single variable, we look for points 
where the graph has a horizontal tangent line. At such points, we then look for local max-
ima, local minima, and points of inflection. For a function f x y,( ) of two variables, we 
look for points where the surface z f x y,( )=  has a horizontal tangent plane. At such 
points, we then look for local maxima, local minima, and saddle points. We begin by 
defining maxima and minima.

HISTORICAL BIOGRAPHY

Siméon-Denis Poisson
(1781–1840)
French mathematician Poisson studied 
with Lagrange and Laplace at the École 
polytechnique.and did so well that he 
was made an assistant professor upon his 
graduation. In 1806, he replaced Fourier as the 
professor of mathematics. Poisson’s early work 
in mechanics appeared in his first volume of 
Traité de mécanique (1811), where he applied 
mathematics to applications in physics and 
mechanics, including elasticity and vibrations.

To know more, visit the companion Website. 

FIGURE 13.42 The function

z x y ecos cos x y2 2( )( )= − +

has a maximum value of 1 and a minimum  
value of about 0.067 on the square region  
x y3 2, 3 2.

y

x

13.7 Extreme Values and Saddle Points

DEFINITIONS Let f x y,( ) be defined on a region R containing the point a b,( ).  
Then

1. f a b,( ) is a local maximum value of f  if f a b f x y, ,( ) ( )≥  for all domain 
points x y,( ) in an open disk centered at a b,( ). f a b,( ) is an absolute maximum 
value of f  on R if f a b f x y, ,( ) ( )≥  for all domain points x y,( ) in R.

2. f a b,( ) is a local minimum value of f  if f a b f x y, ,( ) ( )≤  for all domain 
points x y,( ) in an open disk centered at a b,( ). f a b,( ) is an absolute minimum 
value of f  on R if f a b f x y, ,( ) ( )≤  for all domain points x y,( ) in R.
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826 Chapter 13 Partial Derivatives

Local maxima correspond to mountain peaks on the surface z f x y,( )= , and local min-
ima correspond to valley bottoms (Figure 13.44). At such points the tangent planes, when 
they exist, are horizontal. Local extrema are also called relative extrema.

As with functions of a single variable, the key to identifying the local extrema is the 
First Derivative Theorem, which we next state and prove.

FIGURE 13.43 The “roof surface”

z x y x y1
2

( )= − − −

has a maximum value of 0 and a minimum  
value of a−  on the square region ≤x a, 

≤y a.

z

y
x

FIGURE 13.44 A local maximum occurs at a mountain peak, and a 
local minimum occurs at a valley low point.

Local maximum
No greater value of f nearby.

Local minimum
No smaller value of f nearby.

Absolute maximum
No greater value of f anywhere.

Also a local maximum.

Absolute minimum
No smaller value of f anywhere.

Also a local minimum.

THEOREM 10—First Derivative Theorem for Local Extreme Values
If f x y,( ) has a local maximum or minimum value at an interior point a b,( ) of 
its domain and if the first partial derivatives exist there, then f a b, 0x ( ) =  and 
f a b, 0.y ( ) =

DEFINITION An interior point of the domain of a function f x y,( ) where both 
f x  and f y are zero or where one or both of f x  and f y do not exist is a critical 
point of f .

FIGURE 13.45 If a local maximum of 
f  occurs at x a y b,  ,= =  then the first 
partial derivatives f a b,x ( ) and f a b,y ( ) are 
both zero.

y

x

0

z

a
b

(a, b, 0)

h(y) = f(a, y)

z = f(x, y)

= 0
0f
0y

= 0
0f
0x

g(x) = f(x, b)

Proof  If f  has a local extremum at a b,( ), then the function g x f x b( ) ,( )=  has a 
local extremum at x a=  (Figure 13.45). Therefore, g a( ) 0′ =  (Chapter 4, Theorem 2). 
Now g a f a b( ) , ,x ( )′ =  so f a b, 0.x ( ) =  A similar argument with the function 
h y f a y( ) ,( )=  shows that f a b, 0.y ( ) =  

If we substitute the values f a b, 0x ( ) =  and f a b, 0y( ) =  into the equation

f a b x a f a b y b z f a b, ,   , 0x y( ) ( )( )( )( )( )− + − − − =

for the tangent plane to the surface z f x y,( )=  at a b,( ), the equation reduces to

x a y b z f a b0 0 , 0,( )( )( )⋅ − + ⋅ − − + =

or

z f a b, .( )=

Thus, Theorem 10 says that the surface does indeed have a horizontal tangent plane at a 
local extremum, provided there is a tangent plane there.
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 13.7  Extreme Values and Saddle Points 827

Theorem 10 says that the only points where a function f x y,( ) can assume extreme 
values are critical points and boundary points. As with differentiable functions of a single 
variable, not every critical point gives rise to a local extremum. A differentiable function of 
a single variable might have a point of inflection. A differentiable function of two variables 
might have a saddle point, with the graph of f  crossing the tangent plane defined there.

FIGURE 13.47 The graph of the func-
tion f x y x y y, 4 92 2( ) = + − +  is a 
paraboloid which has a local minimum 
value of 5 at the point 0, 2( ) (Example 1).

1
2

1 2 3 4

5

z

y
x

10

15

DEFINITION A differentiable function f x y,( ) has a saddle point at a critical 
point a b,( ) if in every open disk centered at a b,( ) there are domain points x y,( ) 
where f x y f a b, ,( ) ( )>  and domain points x y,( ) where f x y f a b, , .( ) ( )<  
The corresponding point a b f a b, , ,( )( ) on the surface z f x y,( )=  is called a 
saddle point of the surface (Figure 13.46).

FIGURE 13.46 Saddle points at the 
origin.

x

z

y

x

z

y

z =
xy (x2 − y2)

x2 + y2

z = y2 − y4 − x2

EXAMPLE 1  Find the local extreme values of f x y x y y, 4 9.2 2( ) = + − +

Solution The domain of f  is the entire plane (so there are no boundary points) and the 
partial derivatives f x2x =  and f y2 4y = −  exist everywhere. Therefore, local extreme 
values can occur only where

f x f y2 0 and 2 4 0.x y= = = − =

The only possibility is the point 0, 2( ), where the value of f  is 5. Since 
f x y x y, 2 52 2( ) ( )= + − +  is never less than 5, we see that the critical point 0, 2( ) 
gives a local minimum (Figure 13.47). 

EXAMPLE 2  Find the local extreme values (if any) of f x y y x, .2 2( ) = −

Solution The domain of f  is the entire plane (so there are no boundary points) and the 
partial derivatives f x2x = −  and f y2y =  exist everywhere. Therefore, local extrema can 
occur only at the origin 0, 0( ), where f 0x =  and f 0.y =  The value of f  at the origin is 
0. However, away from the origin along the positive x-axis, f  has the value 
f x x, 0 0;2( ) = − <  along the positive y-axis, f  has the value f y y0, 0.2( ) = >  
Therefore, every open disk in the xy-plane centered at 0, 0( ) contains points where the 
function is positive and points where it is negative. The function has a saddle point at the 
origin and no local extreme values (Figure 13.48a). Figure 13.48b displays the level curves 
(they are hyperbolas) of f  and shows the function decreasing and increasing in an alternat-
ing fashion among the groupings of hyperbolas. 

That f f 0x y= =  at an interior point a b,( ) of R does not guarantee that f  has a 
local extreme value there. If f  and its first and second partial derivatives are continuous on 
R, however, we may be able to learn more from the following theorem.

THEOREM 11—Second Derivative Test for Local Extreme Values
Suppose that f x y,( ) and its first and second partial derivatives are continuous 
throughout a disk centered at a b,( ) and that f a b f a b, , 0.x y( ) ( )= =  Then

 i) f  has a local maximum at a b,( ) if f 0xx <  and f f f 0xx yy xy
2− >  at a b,( ).

 ii) f  has a local minimum at a b,( ) if f 0xx >  and f f f 0xx yy xy
2− >  at a b,( ).

 iii) f  has a saddle point at a b,( ) if f f f 0xx yy xy
2− <  at a b,( ).

 iv) the test is inconclusive at a b,( ) if f f f 0xx yy xy
2− =  at a b,( ). In this case, 

we must find some other way to determine the behavior of f  at a b,( ).

The expression f f fxx yy xy
2−  is called the discriminant or Hessian of f . It is some-

times easier to remember it in determinant form,

f f f
f f

f f
.xx yy xy

xx xy

xy yy

2− =
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828 Chapter 13 Partial Derivatives

The discriminant is the determinant of the Hessian matrix of f ,

( ) =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

H f x y
f f

f f
, .

xx xy

yx yy

Note that by Theorem 2, we have ( ) ( )=f a b f a b, ,xy yx  at any point a b,( ) satisfying the 
assumptions of Theorem 11.

Theorem 11 says that if the discriminant is positive at the point a b,( ), then the surface 
curves the same way in all directions: downward if f 0,xx <  giving rise to a local maxi-
mum, and upward if f 0,xx >  giving a local minimum. On the other hand, if the discrimi-
nant is negative at a b,( ), then the surface curves up in some directions and down in others, 
so we have a saddle point.

FIGURE 13.48 (a) The origin is a saddle 
point of the function f x y y x, .2 2( ) = −  
There are no local extreme values 
(Example 2). (b) Level curves for the  
function f  in Example 2.

y

z

x

z = y2 − x2

3

y

x

Saddle
point

f inc

f dec

f inc

f dec 1

1

−1−3

−1
−3

3

(a)

(b)

FIGURE 13.49 The surface 
z y y x xy3 2 3 62 3 2= − − +  has a saddle 
point at the origin and a local maximum at 
the point 2, 2( ) (Example 4).

3

5

10

3

z

y

x

2
1

EXAMPLE 3  Find the local extreme values of the function

f x y xy x y x y, 2 2 4.2 2( ) = − − − − +

Solution The function is defined and differentiable for all x and y, and its domain has no 
boundary points. The function therefore has extreme values only at the points where f x  and 
f y are simultaneously zero. This leads to

f y x f x y2 2 0, 2 2 0,x y= − − = = − − =

or
x y 2.= = −

Therefore, the point 2, 2( )− −  is the only point where f  may take on an extreme value. To 
see whether it does so, we calculate

f f f2, 2, 1.xx yy xy= − = − =

The discriminant of f  at a b, 2, 2( ) ( )= − −  is

f f f 2 2 1 4 1 3.xx yy xy
2 2( )( ) ( )− = − − − = − =

The combination

f f f f0 and 0xx xx yy xy
2< − >

tells us that f  has a local maximum at 2, 2( )− − . The value of f  at this point is 
f 2, 2 8.( )− − =  

EXAMPLE 4  Find the local extreme values of f x y y y x xy, 3 2 3 6 .2 3 2( ) = − − +

Solution Since f  is differentiable everywhere, it can assume extreme values only where

f y x f y y x6 6 0 and 6 6 6 0.x y
2= − = = − + =

From the first of these equations we find x y,=  and substitution for y into the second 
equation then gives

x x x x x6 6 6 0 or 6 2 0.2 ( )− + = − =

The two critical points are therefore 0, 0( ) and 2, 2( ).
To classify the critical points, we calculate the second derivatives:

f f y f6, 6 12 , 6.xx yy xy= − = − =

The discriminant is given by

f f f y y36 72 36 72 1 .xx yy xy
2 ( ) ( )− = − + − = −

At the critical point 0, 0( ) we see that the value of the discriminant is the negative number 
72,−  so the function has a saddle point at the origin. At the critical point 2, 2( ) we see that 

the discriminant has the positive value 72. Combining this result with the negative value of 
the second partial f 6,xx = −  Theorem 11 says that the critical point 2, 2( ) gives a local 
maximum value of f 2, 2 12 16 12 24 8.( ) = − − + =  A graph of the surface is shown 
in Figure 13.49. 
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x

z

y

z = 10xye−(x2 + y2)

FIGURE 13.50 A graph of the function 
in Example 5.

EXAMPLE 5  Find the critical points of the function f x y xye, 10 x y2 2( ) = ( )− +  and 
use the Second Derivative Test to classify each point as one where a saddle, local mini-
mum, or local maximum occurs.

Solution First we find the partial derivatives f x  and f y and set them simultaneously to 
zero in seeking the critical points:

f ye x ye y x e y x

f xe xy e x y e x y

10 20 10 1 2 0 0 or 1 2 0,  

10 20 10 1 2 0 0 or 1 2 0.

x
x y x y x y

y
x y x y x y

2 2 2

2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

( )

( )

= − = − = ⇒ = − =

= − = − = ⇒ = − =

( ) ( ) ( )

( ) ( ) ( )

− + − + − +

− + − + − +

Since both partial derivatives are continuous everywhere, the only critical points are

0, 0 , 1
2

, 1
2

, 1
2

, 1
2

, 1
2

, 1
2

, and 1
2

, 1
2

.( ) ( ) ( ) ( )( ) − − − −

Next we calculate the second partial derivatives in order to evaluate the discriminant at 
each critical point:

f xy x e xye xy x e

f f x e y x e x y e

f xy y e xye xy y e

20 1 2 40 20 3 2 , 

10 1 2 20 1 2 10 1 2 1 2 , 

20 1 2 40 20 3 2 .

xx
x y x y x y

xy yx
x y x y x y

yy
x y x y x y

2 2

2 2 2 2 2

2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

( ) ( )

( ) ( ) ( )( )

( ) ( )

= − − − = − −

= = − − − = − −

= − − − = − −

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

− + − + − +

− + − + − +

− + − + − +

The following table summarizes the values needed by the Second Derivative Test.

Critical Point f xx f xy f yy Discriminant D

0, 0( ) 0 10 0 100−

1
2

, 1
2( ) e

20−   0
e

20−
e

400
2

1
2

, 1
2( )−

e
20   0

e
20

e
400

2

1
2

, 1
2( )−

e
20   0

e
20

e
400

2

1
2

, 1
2( )− −

e
20−   0

e
20−

e
400

2

From the table we find that D 0<  at the critical point 0, 0( ), giving a saddle; D 0>  and 
f 0xx <  at the critical points 1 2 ,1 2( ) and 1 2 , 1 2( )− − , giving local maximum 
values there; and D 0>  and f 0xx >  at the critical points 1 2 ,1 2( )−  and 
1 2 , 1 2( )− , each giving local minimum values. A graph of the surface is shown in 

Figure 13.50. 

Absolute Maxima and Minima on Closed Bounded Regions

We organize the search for the absolute extrema of a continuous function f x y,( ) on a 
closed and bounded region R into three steps.

1. List the interior points of R where f  may have local maxima and minima and evaluate f  
at these points. These are the critical points of f .

2. List the boundary points of R where f  has local maxima and minima and evaluate f  at 
these points. We show how to do this in the next example.

3. Look through the lists for the maximum and minimum values of f . These will be the 
absolute maximum and minimum values of f  on R.
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830 Chapter 13 Partial Derivatives

EXAMPLE 6  Find the absolute maximum and minimum values of

f x y x y x y, 2 2 4 2 2( ) = + + − −

on the triangular region in the first quadrant bounded by the lines x y0, 0,= =  and 
y x9 .= −

Solution Since f  is differentiable, the only places where f  can assume these values are 
points inside the triangle where f f 0x y= =  and points on the boundary (Figure 13.51a).

 (a) Interior points. For these we have

f x f y2 2 0, 4 2 0,x y= − = = − =

yielding the single point x y, 1, 2 .( ) ( )=  The value of f  there is

f 1, 2 7.( ) =

 (b) Boundary points. We take the triangle one side at a time:

 i) On the segment OA we always have y 0.=  Therefore, we can regard f x y,( ) as 
being solely a function of x on this segment. That is, on this segment we want to 
consider the function

g x f x x x( ) , 0 2 2 2( )= = + −

for x0 9.≤ ≤  Its extreme values (as we know from Chapter 4) may occur at the 
endpoints

x g f

x g f

0 where (0) 0, 0 2

9 where (9) 9, 0 2 18 81   61

( )

( )

= = =

= = = + − = −

or at the interior points where g x x( ) 2 2 0.′ = − =  The only interior point where 
g x( ) 0′ =  is x 1,=  where

g f(1) 1, 0 3.( )= =

 ii) On the segment OB we always have x 0= . Therefore, on this segment we can 
regard f x y,( ) as being solely a function of y, and so we consider the function

h y f y y y( ) 0, 2 4 2( )= = + −

on the closed interval 0, 9[ ]. Its extreme values can occur at the endpoints or at  
interior points where h y( ) 0.′ =  Since h y y( ) 4 2 ,′ = −  the only interior point where 
h y( ) 0′ =  occurs at 0, 2( ), with h(2) 6.=  So the candidates for this segment are

h f h f h f(0) 0, 0 2, (9) 0, 9 43, and (2) 0, 2 6.( ) ( ) ( )= = = = − = =

 iii) We have already accounted for the values of f  at the endpoints of AB, so we need 
only look at the interior points of the line segment AB. On this segment we have 
y x9 ,= −  so we consider the function

k x f x x x x x x x x( ) , 9 2 2 4 9 9 43 16 2 .2 2 2( ) ( ) ( )= − = + + − − − − = − + −

Setting k x x( ) 16 4 0′ = − =  gives

x 4.=
At this value of x,

y k f9 4 5 and (4) 4, 5 11.( )= − = = = −

Summary We list all the function value candidates: 7, 2, 61, 3, 43, 6, 11.− − −  The maxi-
mum is 7, which f  assumes at 1, 2( ). The minimum is 61,−  which f  assumes at 9, 0( ). See 
Figure 13.51b. 

Solving extreme value problems with algebraic constraints on the variables usually 
requires the method of Lagrange multipliers, which is introduced in the next section. But 
sometimes we can solve such problems directly, as in the next example.

FIGURE 13.51 (a) This triangular 
region is the domain of the function in 
Example 6. (b) The graph of the function 
in Example 6. The blue points are the  
candidates for maxima or minima.

y

x
O

(1, 2)

(4, 5)
x = 0

B(0, 9)

y = 9 − x

A(9, 0)y = 0

(a)

z

x

y

−40

−20

−60

3
6

9

6 93

(1, 2, 7)

(9, 0, −61)

(b)
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 13.7  Extreme Values and Saddle Points 831

EXAMPLE 7  A delivery company accepts only rectangular boxes the sum of whose 
length and girth (perimeter of a cross-section) does not exceed 270 cm. Find the dimen-
sions of an acceptable box of largest volume.

Solution Let x, y, and z represent the length, width, and height of the rectangular box, 
respectively. Then the girth is y z2 2 . We want to maximize the volume V xyz of the 
box (Figure 13.52) satisfying x y z2 2 270+ + =  (the largest box accepted by the deliv-
ery company). Thus, we can write the volume of the box as a function of two variables:

V y z y z yz

yz y z yz

, 270 2 2

270 2 2 .2 2

( ) ( )= − −

= − −
  

V xyz
x y z

and
270 2 2

=
= − −

Setting the first partial derivatives equal to zero,

V y z z yz z y z z

V y z y y yz y z y

, 270 4 2 270 4 2 0

, 270 2 4 270 2 4 0,

y

z

2

2

( )

( )

( )

( )

= − − = − − =

= − − = − − =

gives the critical points 0, 0 , 0, 135 , 135, 0( ) ( ) ( ), and 45, 45( ). The volume is zero at 
0, 0 , 0, 135( ) ( ), and 135, 0( ), which are not maximum values. At the point 45, 45( ), we 

apply the Second Derivative Test (Theorem 11):

V z V y V y z4 , 4 , 270 4 4 .yy zz yz= − = − = − −
Then

V V V yz y z16 4 135 2 2 .yy zz yz
2 2( )− = − − −

Thus,

V 45, 45 4 45 0yy ( ) ( )= − <
and

V V V 16 45 45 4 45 0,yy zz yz
2

45, 45

2( ) ( )( ) ( )− = − − >
( )

so 45, 45( ) gives a maximum volume. The dimensions of the package are 
x y270 2 45 2 45 90 cm, 45 cm,( ) ( )= − − = =  and z 45 cm. The maximum  
volume is V 90 45 45 182,250 cm ,3( )( )( )= =  or 182.25 liters. 

FIGURE 13.52 The box in Example 7.

x y

z

Girth = perimeter
around here

Despite the power of Theorem 11, we urge you to remember its limitations. It does not 
apply to boundary points of a function’s domain, where it is possible for a function to have 
extreme values along with nonzero derivatives. Also, it does not apply to points where 
either f x  or f y fails to exist.

Summary of Max-Min Tests
The extreme values of f x y,( ) can occur only at

 i) boundary points of the domain of f

 ii) critical points (interior points where f f 0x y  or points where f x  or f y 
fails to exist)

If the first- and second-order partial derivatives of f  are continuous throughout a 
disk centered at a point a b,( ) and if f a b f a b, , 0,x y( ) ( )= =  then the nature of 
f a b,( ) can be tested with the Second Derivative Test:

 i) f 0xx  and f f f 0xx yy xy
2− >  at a b local maximum,      ( ) ⇒

 ii) f 0xx  and f f f 0xx yy xy
2− >  at a b local minimum,      ( ) ⇒

 iii) f f f 0xx yy xy
2− <  at a b saddle point,      ( ) ⇒

 iv) f f f 0xx yy xy
2− =  at a b test is inconclusive,        ( ) ⇒
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832 Chapter 13 Partial Derivatives

Finding Local Extrema
Find all the local maxima, local minima, and saddle points of the func-
tions in Exercises 1–30.

 1. f x y x xy y x y, 3 3 42 2( ) = + + + − +

 2. f x y xy x y x y, 2 5 2 4 4 42 2( ) = − − + + −

 3. f x y x xy x y, 3 2 52( ) = + + + +

 4. f x y xy x x y, 5 7 3 6 22( ) = − + − +

 5. f x y xy x y x, 2 2 3 42 2( ) = − − + +

 6. f x y x xy y y, 4 6 22 2( ) = − + + +

 7. f x y x xy y x y, 2 3 4 5 22 2( ) = + + − +

 8. f x y x xy y x y, 2 2 2 2 12 2( ) = − + − + +

 9. f x y x y x y, 2 4 62 2( ) = − − + +

 10. f x y x xy, 22( ) = +

 11. f x y x y x x, 56 8 16 31 1 82 2( ) = − − − + −

 12. f x y x y, 1 2 23( ) = − +

 13. f x y x y xy, 2 63 3( ) = − − +

 14. f x y x xy y, 33 3( ) = + +

 15. f x y x x y xy, 6 2 3 62 3 2( ) = − + +

 16. f x y x y x y, 3 3 83 3 2 2( ) = + + − −

 17. f x y x xy x y y, 3 15 153 2 3( ) = + − + −

 18. f x y x y x y y, 2 2 9 3 123 3 2 2( ) = + − + −

 19. f x y xy x y, 4 4 4( ) = − −

 20. f x y x y xy, 44 4( ) = + +

 21. f x y
x y

, 1
12 2

( ) =
+ −

 22. f x y
x

xy
y

, 1 1( ) = + +

 23. f x y y x, sin( ) =  24. f x y e y, cosx2( ) =

 25. f x y e, x y x42 2( ) = + −  26. f x y e ye, y x( ) = −

 27. f x y e x y, y 2 2( ) ( )= +−  28. f x y e x y, x 2 2( ) ( )= −

 29. f x y x y x y, 2 ln ln 4( ) = + − −

 30. f x y x y x y, ln 2( ) ( )= + + −

Finding Absolute Extrema
In Exercises 31–38, find the absolute maxima and minima of the func-
tions on the given domains.

 31. ( ) = − + − +f x y x x y y, 2 4 4 12 2  on the closed triangular plate 
bounded by the lines x y y x0, 2, 2= = =  in the first quadrant

 32. D x y x xy y, 12 2( ) = − + +  on the closed triangular plate in 
the first quadrant bounded by the lines x y y x0, 4,= = =

 33. f x y x y, 2 2( ) = +  on the closed triangular plate bounded by the 
lines x y y x0, 0, 2 2= = + =  in the first quadrant

 34. T x y x xy y x, 62 2( ) = + + −  on the rectangular plate 
x y0 5, 3 3≤ ≤ − ≤ ≤

 35. T x y x xy y x, 6 22 2( ) = + + − +  on the rectangular plate 
x y0 5, 3 0≤ ≤ − ≤ ≤

 36. f x y xy x y, 48 32 243 2( ) = − −  on the rectangular plate 
x y0 1, 0 1≤ ≤ ≤ ≤

 37. f x y x x y, 4 cos2( ) ( )= −  on the rectangular plate 
x y1 3, 4 4π π≤ ≤ − ≤ ≤

 38. f x y x xy y, 4 8 2 1( ) = − + +  on the triangular plate bounded 
by the lines x y x y0, 0, 1= = + =  in the first quadrant

 39. Find two numbers a and b with a b≤  such that

x x dx6
a

b
2∫ ( )− −

has its largest value.

 40. Find two numbers a and b with a b≤  such that

x x dx24 2
a

b
2 1 3∫ ( )− −

has its largest value.

 41. Temperatures A flat circular plate has the shape of the 
region x y 1.2 2+ ≤  The plate, including the boundary where 
x y 1,2 2+ =  is heated so that the temperature at the point x y,( ) is

T x y x y x, 2 .2 2( ) = + −

Find the temperatures at the hottest and coldest points on the plate.

 42. Find the critical point of

f x y xy x x y, 2 ln 2( ) = + −

in the open first quadrant x y0, 0( )> >  and show that f  takes 
on a minimum there.

Theory and Examples

 43. Find the maxima, minima, and saddle points of f x y,( ), if any, 
given that

 a. f x y f y x2 4 and 2 4x y= − = −

 b. f x f y2 2 and 2 4x y= − = −

 c. f x f y9 9 and 2 4x y
2= − = +

Describe your reasoning in each case.

 44. The discriminant f f fxx yy xy
2−  is zero at the origin for each of 

the following functions, so the Second Derivative Test fails there. 
Determine whether the function has a maximum, a minimum, or 
neither at the origin by imagining what the surface z f x y,( )=  
looks like. Describe your reasoning in each case.

 a. f x y x y, 2 2( ) =  b. f x y x y, 1 2 2( ) = −

 c. f x y xy, 2( ) =  d. f x y x y, 3 2( ) =

 e. f x y x y, 3 3( ) =  f. f x y x y, 4 4( ) =

 45. Show that 0, 0( ) is a critical point of f x y x kxy y, 2 2( ) = + +  
no matter what value the constant k has. (Hint: Consider two cases:  
k 0=  and k 0.≠ )

EXERCISES 13.7 

Finding maximum and minimum values for functions of more than two variables is an 
important problem with many important applications, from machine learning to making 
economic predictions. The problem becomes much harder as the number of variables 
increases. The process of finding extrema for functions with high-dimensional domains is 
discussed in Appendices B.2 and B.3.
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 13.7  Extreme Values and Saddle Points 833

Extreme Values on Parametrized Curves To find the extreme values 
of a function f x y,( ) on a curve x x t y y t( ), ( ),= =  we treat f  as a 
function of the single variable t and use the Chain Rule to find where 
df dt  is zero. As in any other single-variable case, the extreme values 
of f  are then found among the values at

 a. The critical points (points where df dt  is zero or fails to exist), and

 b. The endpoints of the parameter domain.

In Exercises 63–66, find the absolute maximum and minimum values 
of the following functions on the given curves.

 63. Functions:

 a. f x y x y,( ) = +  b. g x y xy,( ) =

 c. h x y x y, 2 2 2( ) = +

Curves:

 i) The semicircle x y y4, 02 2+ = ≥

 ii) The quarter circle x y x y4, 0, 02 2+ = ≥ ≥

Use the parametric equations x t y t2 cos , 2 sin .= =

 64. Functions:

 a. f x y x y, 2 3( ) = +  b. g x y xy,( ) =

 c. h x y x y, 32 2( ) = +

Curves:

 i) The semiellipse x y y9 4 1, 02 2( ) ( )+ = ≥

 ii) The quarter ellipse x y x y9 4 1, 0, 02 2( ) ( )+ = ≥ ≥

Use the parametric equations x t y t3 cos , 2 sin .= =

 65. Function: f x y xy,( ) =

Curves:

 i) The line x t y t2 , 1= = +

 ii) The line segment x t y t t2 , 1, 1 0= = + − ≤ ≤

 iii) The line segment x t y t t2 , 1, 0 1= = + ≤ ≤

 66. Functions:

 a. f x y x y, 2 2( ) = +  b. g x y x y, 1 2 2( ) ( )= +

Curves:

 i) The line x t y t, 2 2= = −

 ii) The line segment x t y t t, 2 2 , 0 1= = − ≤ ≤

 67. Least squares and regression lines When we try to 
fit a line y mx b= +  to a set of numerical data points 
x y x y x y, , , , , ,n n1 1 2 2 …( ) ( ) ( ), we usually choose the line that 

minimizes the sum of the squares of the vertical distances from 
the points to the line. In theory, this means finding the values of m 
and b that minimize the value of the function

 w mx b y mx b y .n n1 1
2 2� ( )( )= + − + + + −  (1)

(See the accompanying figure.) Show that the values of m and b 
that do this are

 

∑ ∑ ∑
∑ ∑

=
−

−
m

x y n x y

x n x
,

k k k k

k k

2
2

Q R Q R

Q R

 (2)

 ∑ ∑= −b
n

y m x1 ,k kQ R  (3)

with all sums running from k 1=  to k n.=  Many scientific cal-
culators have these formulas built in, enabling you to find m and b 
with only a few keystrokes after you have entered the data.

 46. For what values of the constant k does the Second Derivative Test 
guarantee that f x y x kxy y, 2 2( ) = + +  will have a saddle point 
at 0, 0( )? A local minimum at 0, 0( )? For what values of k is the 
Second Derivative Test inconclusive? Give reasons for your answers.

 47. If f a b f a b, , 0,x y( ) ( )= =  must f  have a local maximum or 
minimum value at a b,( )? Give reasons for your answer.

 48. Can you conclude anything about f a b,( ) if f  and its first and 
second partial derivatives are continuous throughout a disk cen-
tered at the critical point a b,( ) and f a b,xx ( ) and f a b,yy ( ) differ 
in sign? Give reasons for your answer.

 49. Among all the points on the graph of z x y10 2 2= − −  that lie 
above the plane x y z2 3 0,+ + =  find the point farthest from 
the plane.

 50. Find the point on the graph of z x y 102 2= + +  nearest the 
plane x y z2 0.+ − =

 51. Find the point on the plane x y z3 2 6+ + =  that is nearest the 
origin.

 52. Find the minimum distance from the point 2, 1,1( )−  to the plane 
x y z 2.+ − =

 53. Find three numbers whose sum is 9 and whose sum of squares is a 
minimum.

 54. Find three positive numbers whose sum is 3 and whose product is 
a maximum.

 55. Find the maximum value of s xy yz xz= + +  where 
x y z 6.+ + =

 56. Find the minimum distance from the cone z x y2 2= +  to the 
point 6, 4, 0 .( )−

 57. Find the dimensions of the rectangular box of maximum volume 
that can be inscribed inside the sphere x y z 4.2 2 2+ + =

 58. Among all closed rectangular boxes of volume 27 cm 3, what is 
the smallest surface area?

 59. You are to construct an open rectangular box from 12 m 2 of mate-
rial. What dimensions will result in a box of maximum volume?

 60. Consider the function f x y x y xy x y, 2 12 2( ) = + + − − +  
over the square x0 1≤ ≤  and y0 1.≤ ≤

 a. Show that f  has an absolute minimum along the line segment 
x y2 2 1+ =  in this square. What is the absolute minimum 

value?

 b. Find the absolute maximum value of f  over the square.

 61. Find the point on the graph of y xz 42 2− =  nearest the origin.

 62. A rectangular box is inscribed in the region in the first octant 
bounded above by the plane with x-intercept 6, y-intercept 6, and 
z-intercept 6.

(x, y, z)

6

6
6

z

x

y

 a. Find an equation for the plane.

 b. Find the dimensions of the box of maximum volume.
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y

x
0

P1(x1, y1)

P2(x2, y2)

Pn(xn, yn)

y = mx + b

The line y mx b= +  determined by these values of m and b 
is called the least squares line, regression line, or trend line for 
the data under study. Finding a least squares line lets you

1. summarize data with a simple expression,

2. predict values of y for other, experimentally untried values of x,

3. handle data analytically.

 a. Plot the function over the given rectangle.

 b. Plot some level curves in the rectangle.

 c. Calculate the function’s first partial derivatives and use the 
CAS equation solver to find the critical points. How are the 
critical points related to the level curves plotted in part (b)? 
Which critical points, if any, appear to give a saddle point? 
Give reasons for your answer.

 d. Calculate the function’s second partial derivatives and find the 
discriminant f f f .xx yy xy

2

 e. Using the max-min tests, classify the critical points found in 
part (c). Are your findings consistent with your discussion in 
part (c)?

 71. f x y x y xy x y, 3 , 5 5, 5 52 3( ) = + − − ≤ ≤ − ≤ ≤

 72. f x y x xy y x y, 3 , 2 2, 2 23 2 2( ) = − + − ≤ ≤ − ≤ ≤

 73. ( ) = + − − + − ≤ ≤f x y x y x y x, 8 6 16, 3 3,4 2 2  
− ≤ ≤y6 6

 74. ( ) = + − − + − ≤ ≤f x y x y x y x, 2 2 2 3, 3 2 3 2,4 4 2 2  
− ≤ ≤y3 2 3 2

 75. ( ) = + − + −f x y x x x xy x, 5 18 30 30 120 ,6 5 4 2 3  
− ≤ ≤ − ≤ ≤x y4 3, 2 2

 76. ( )
( ) ( )

( ) ( )

( )
=

+ ≠

=

⎧
⎨
⎪⎪
⎩⎪⎪

f x y
x x y x y

x y
,

ln , , 0, 0

0, , 0, 0 ,

5 2 2

 

− ≤ ≤ − ≤ ≤x y2 2, 2 2

In Exercises 68–70, use Equations (2) and (3) to find the least squares 
line for each set of data points. Then use the linear equation you obtain 
to predict the value of y that would correspond to x 4.

 68. 2, 0 , 0, 2 , 2, 3( ) ( ) ( )−

 69. 1, 2 , 0,1 , 3, 4( ) ( ) ( )− −

 70. 0, 0 , 1, 2 , 2, 3( ) ( ) ( )

COMPUTER EXPLORATIONS
In Exercises 71–76, you will explore functions to identify their local 
extrema. Use a CAS to perform the following steps:

Sometimes we need to find the extreme values of a function whose domain is constrained 
to lie within some particular subset of the plane—for example, a disk, a closed triangular 
region, or along a curve. We saw an instance of this situation in Example 6 of the previous 
section. Here we explore a powerful method for finding extreme values of constrained 
functions: the method of Lagrange multipliers.

Constrained Maxima and Minima

To gain some insight, we first consider a problem where a constrained minimum can be 
found by eliminating a variable.

EXAMPLE 1  Find the point p x y z, ,( ) on the plane x y z2 5 0+ − − =  that is  
closest to the origin.

Solution The problem asks us to find the minimum value of the function

OP x y z x y z0 0 02 2 2 2 2 2
	 
		

( )( ) ( )= − + − + − = + +

subject to the constraint that

x y z2 5 0.+ − − =

Since OP
	 
		

 has a minimum value wherever the function

f x y z x y z, , 2 2 2( ) = + +

13.8 Lagrange Multipliers

HISTORICAL BIOGRAPHY

Joseph Louis Lagrange
(1736–1813)
Lagrange was born in Turin, Italy. He 
enjoyed studying mathematics, despite his 
father’s wish that he study law. Lagrange’s 
mathematical contributions began as early  
as 1754 with the discovery of the calculus  
of variations and continued with applications 
to mechanics in 1756.

To know more, visit the companion Website. 
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 13.8  Lagrange Multipliers 835

has a minimum value, we may solve the problem by finding the minimum value of 
f x y z, ,( ) subject to the constraint x y z2 5 0+ − − =  (thus avoiding square roots). If 
we regard x and y as the independent variables in this equation and write z as

z x y2 5,= + −

our problem reduces to finding the points x y,( ) at which the function

h x y f x y x y x y x y, , , 2 5 2 52 2 2( ) ( ) ( )= + − = + + + −

has its minimum value or values. Since the domain of h is the entire xy-plane, the First 
Derivative Theorem of Section 13.7 tells us that any minima that h might have must occur 
at points where

h x x y h y x y2 2 2 5 2 0, 2 2 2 5 0.x y( ) ( )( )= + + − = = + + − =

This leads to

x y x y10 4 20, 4 4 10,+ = + =

which has the solution

x y5
3

, 5
6

.= =

We may apply a geometric argument together with the Second Derivative Test to show that 
these values minimize h. The z-coordinate of the corresponding point on the plane 
z x y2 5= + −  is

z 2 5
3

5
6

5 5
6

.( )= + − = −

Therefore, the point we seek is

PClosest point: 5
3

, 5
6

, 5
6

.( )−

The distance from P to the origin is 5 6 2.04.≈  

FIGURE 13.53 The hyperbolic cylinder 
x z 1 02 2− − =  in Example 2.

(1, 0, 0)

z

y

x

x2 − z2 = 1

(−1, 0, 0)(((−−−

Attempts to solve a constrained maximum or minimum problem by substitution, as we 
might call the method of Example 1, do not always go smoothly.

EXAMPLE 2  Find the points on the hyperbolic cylinder x z 1 02 2− − =  that are 
closest to the origin.

Solution 1 The cylinder is shown in Figure 13.53. We seek the points on the cylinder clos-
est to the origin. These are the points whose coordinates minimize the value of the function

f x y z x y z, , 2 2 2( ) = + +     Square of the distance

subject to the constraint that x z 1 0.2 2− − =  If we regard x and y as independent vari-
ables in the constraint equation, then

z x 1,2 2= −

and the values of f x y z x y z, , 2 2 2( ) = + +  on the cylinder are given by the function

h x y x y x x y, 1 2 1.2 2 2 2 2( ) ( )= + + − = + −

To find the points on the cylinder whose coordinates minimize f , we look for the points in 
the xy-plane whose coordinates minimize h. The only extreme value of h occurs where

h x h y4 0 and 2 0,x y= = = =
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836 Chapter 13 Partial Derivatives

that is, at the point 0, 0( ). But there are no points on the cylinder where both x and y are 
zero. What went wrong?

What happened is that the First Derivative Theorem found (as it should have) the point 
in the domain of h where h has a minimum value. We, on the other hand, want the points 
on the cylinder where h has a minimum value. Although the domain of h is the entire xy-
plane, the domain from which we can select the first two coordinates of the points x y z, ,( ) 
on the cylinder is restricted to the projection, or “shadow” of the cylinder on the xy-plane; 
it does not include the band between the lines x 1= −  and x 1=  (Figure 13.54).

We can avoid this problem if we treat y and z as independent variables (instead of x 
and y) and express x in terms of y and z as

x z 1.2 2= +

With this substitution, f x y z x y z, , 2 2 2( ) = + +  becomes

k y z z y z y z, 1 1 22 2 2 2 2( ) ( )= + + + = + +

and we look for the points where k takes on its smallest value. The domain of k in the yz-
plane now matches the domain from which we select the y- and z-coordinates of the points 
x y z, ,( ) on the cylinder. Hence, the points that minimize k in the plane will have corre-

sponding points on the cylinder. The smallest values of k occur where

k y k z2 0 and 4 0,y z= = = =

or where y z 0.= =  This leads to

x z x1 1, 1.2 2= + = = ±

The corresponding points on the cylinder are 1, 0, 0 .( )±  We can see from the inequality

k y z y z, 1 2 12 2( ) = + + ≥

that the points 1, 0, 0( )±  give a minimum value for k. We can also see that the minimum 
distance from the origin to a point on the cylinder is 1 unit.

FIGURE 13.54 The region in the xy-
plane from which the first two coordinates 
of the points x y z, ,( ) on the hyperbolic 
cylinder x z 12 2− =  are selected excludes 
the band x1 1− < <  in the xy-plane 
(Example 2).

On this part, On this part,

x = 
"

z2 + 1.

x

z

−11

y
x = −1x = 1

The hyperbolic cylinder x2 − z2 = 1

x = −
"

z2 + 1.

FIGURE 13.55 A sphere expanding 
like a soap bubble centered at the origin 
until it just touches the hyperbolic cylinder 
x z 1 02 2− − =  (Example 2).

z

y

x

x2 + y2 + z2 − a2 = 0

x2 − z2 − 1 = 0

Solution 2 Another way to find the points on the cylinder closest to the origin is to imag-
ine a small sphere centered at the origin expanding like a soap bubble until it just touches 
the cylinder (Figure 13.55). At each point of contact, the cylinder and sphere have the same 
tangent plane and normal line. Therefore, if the sphere and cylinder are represented as the 
level surfaces obtained by setting

f x y z x y z a g x y z x z, , and , , 12 2 2 2 2 2( ) ( )= + + − = − −

equal to 0, then the gradients f∇  and g∇  will be parallel where the surfaces touch. At any 
point of contact, we should therefore be able to find a scalar λ (“lambda”) such that

f g,λ∇ = ∇

or

x y z x zi j k i k2 2 2 2 2 .λ( )+ + = −

Thus, the coordinates x, y, and z of any point of tangency will have to satisfy the three sca-
lar equations

x x y z z2 2 , 2 0, 2 2 .λ λ= = = −

For what values of λ will a point x y z, ,( ) whose coordinates satisfy these scalar equa-
tions also lie on the surface x z 1 0?2 2− − =  To answer this question, we use our 
knowledge that no point on the surface has a zero x-coordinate to conclude that x 0.≠  
Hence, x x2 2λ=  only if

2 2 , or 1.λ λ= =

λ is the Greek letter lambda.
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 13.8  Lagrange Multipliers 837

For 1,λ =  the equation z z2 2λ= −  becomes z z2 2 .= −  If this equation is to be satisfied 
as well, z must be zero. Since y 0=  also (from the equation y2 0= ), we conclude that 
the points we seek all have coordinates of the form

( )x, 0, 0 .

What points on the surface − =x z 12 2  have coordinates of this form? The answer is the 
points ( )x, 0, 0  for which

( )− = = = ±x x x0 1, 1, or 1.2 2 2

The points on the cylinder closest to the origin are the points ( )±1, 0, 0 . 

THEOREM 12—The Orthogonal Gradient Theorem
Suppose that ( )f x y z, ,  is differentiable in a region whose interior contains a 
smooth curve

= + +C t x t y t z tr i j k: ( ) ( ) ( ) ( ) .

If P0 is a point on C where f  has a local maximum or minimum relative to its 
values on C, then ∇f  is orthogonal to the curve’s tangent vector ′r  at P .0

Proof  The values of f  on C are given by the composition ( )f x t y t z t( ), ( ), ( ) , whose 
derivative with respect to t is

= ∂
∂

+ ∂
∂

+ ∂
∂

= ∇ ⋅ ′df
dt

f
x

dx
dt

f
y

dy
dt

f
z

dz
dt

f r .

At any point P0 where f  has a local maximum or minimum relative to its values on the 
curve, =df dt 0, so

∇ ⋅ ′ =f r 0. 

The Method of Lagrange Multipliers

In Solution 2 of Example 2, we used the method of Lagrange multipliers. The method 
says that the local extreme values of a function ( )f x y z, ,  whose variables are subject to a 
constraint ( ) =g x y z, , 0 are to be found on the surface =g 0 among the points where

λ∇ = ∇f g

for some scalar λ (called a Lagrange multiplier).
To explore the method further and see why it works, we first make the following 

observation, which we state as a theorem.

By dropping the z-terms in Theorem 12, we obtain a similar result for functions of two 
variables.

Theorem 12 is the key to the method of Lagrange multipliers. Suppose that ( )f x y z, ,  
and ( )g x y z, ,  are differentiable and that P0 is a point on the surface ( ) =g x y z, , 0 where f  
has a local maximum or minimum value relative to its other values on the surface. We 
assume also that ∇ ≠g 0 at points on the surface ( ) =g x y z, , 0. Then f  takes on a local 
maximum or minimum at P0 relative to its values on every differentiable curve through P0 
on the surface ( ) =g x y z, , 0. Therefore, ∇f  is orthogonal to the tangent vector of every 

COROLLARY At the points on a smooth curve = +t x t y tr i j( ) ( ) ( )  where a 
differentiable function ( )f x y,  takes on its local maxima or minima relative to its 
values on the curve, we have ∇ ⋅ ′ =f r 0.
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838 Chapter 13 Partial Derivatives

such differentiable curve through P .0  Moreover, so is g∇  (because ∇g is perpendicular to 
the level surface =g 0, as we saw in Section 13.5). Therefore, at ∇P f,0  is some scalar 
multiple λ of ∇g.

Some care must be used in applying this method. An extreme value may not actually exist 
(Exercise 45).

EXAMPLE 3  Find the largest and smallest values that the function

( ) =f x y xy,

takes on the ellipse (Figure 13.56)

+ =x y
8 2

1.
2 2

Solution We want to find the extreme values of ( ) =f x y xy,  subject to the constraint

( ) = + − =g x y x y
,

8 2
1 0.

2 2

To do so, we first find the values of x, y, and λ for which

λ ( )∇ = ∇ =f g g x yand , 0.

The gradient equation in Equations (1) gives

λ λ+ = +y x x yi j i j
4

,

from which we find

y x x y
4

, ,λ λ= =

and

y y y
4

( )
4

,
2λ λ λ= =      Caution: Don’t cancel y without 

considering the case where =y 0.

so that

λ= = ±y 0 or 2.

We now consider these two cases.

Case 1: If =y 0, then = =x y 0. But ( )0, 0  is not on the ellipse. Hence, ≠y 0.

Case 2: If ≠y 0, then λ = ±2 and = ±x y2 . Substituting this in the equation 
( ) =g x y, 0 gives

( )± + = + = = ±y y
y y y

2
8 2

1, 4 4 8 and 1.
2 2

2 2

The Method of Lagrange Multipliers
Suppose that ( )f x y z, ,  and ( )g x y z, ,  are differentiable and ∇ ≠g 0 when 

( ) =g x y z, , 0. To find the local maximum and minimum values of f  subject to 
the constraint ( ) =g x y z, , 0 (if these exist), find the values of x, y, z, and λ that 
simultaneously satisfy the equations

 λ ( )∇ = ∇ =f g g x y zand , , 0. (1)

If they exist, absolute extrema can be found by comparing these values of f  at 
each critical point satisfying Equation (1). For functions of two independent vari-
ables, the condition is similar, but without the variable z.

FIGURE 13.56 Example 3 shows how 
to find the largest and smallest values of 
the product xy on this ellipse.

y

x
0 2

"

2

"

2 +      = 1
x2

8
y2

2
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 13.8  Lagrange Multipliers 839

The function ( ) =f x y xy,  therefore has critical points on the ellipse at the four points 
( ) ( )± ± −2,1 , 2, 1 . The extreme values are found by examining the values of f  at these four 
points. The absolute maximum is = − − =f f(2,1) ( 2, 1) 2, and the absolute minimum  
is − = − = −f f( 2,1) (2, 1) 2.

The Geometry of the Solution The level curves of the function ( ) =f x y xy,  are  
the hyperbolas =xy c (Figure 13.57). The farther the hyperbolas lie from the origin, the 
larger the absolute value of f . We want to find the extreme values of ( )f x y, , given that  
the point ( )x y,  also lies on the ellipse + =x y4 8.2 2  Which hyperbolas intersecting the 
ellipse lie farthest from the origin? The hyperbolas that just graze the ellipse, the ones that 
are tangent to it, are farthest. At these points, any vector normal to the hyperbola is normal 
to the ellipse, so ∇ = +f y xi j is a multiple λ( )= ±2  of ( )∇ = +g x yi j4 . At the 
point ( )2,1 , for example,

∇ = + ∇ = + ∇ = ∇f g f gi j i j2 , 1
2

, and 2 .

At the point ( )−2,1 ,

∇ = − ∇ = − + ∇ = − ∇f g f gi j i j2 , 1
2

, and 2 . 

FIGURE 13.57 When subjected  
to the constraint ( ) = +g x y x, 82  

− =y 2 1 0,2  the function ( ) =f x y xy,  
takes on extreme values at the four points 
( )± ±2, 1 . These are the points on the 
ellipse where ∇f  (red) is a scalar multiple 
of ∇g (blue) (Example 3).

x

y
xy = −2

∇f = i + 2j
xy = 2

∇g =    i + j1
2

xy = −2xy = 2

0 1

1

FIGURE 13.58 The function ( ) =f x y,  
+x y3 4  takes on its largest value on the 

unit circle ( ) = + − =g x y x y, 1 02 2  at  
the point ( )3 5, 4 5  and its smallest value 
at the point ( )− −3 5, 4 5  (Example 4). At 
each of these points, ∇f  is a scalar mul-
tiple of ∇g. The figure shows the gradients 
at the first point but not at the second.

y

x

3x + 4y = 5

3x + 4y = −5

3
5

4
5

,

∇f = 3i + 4j =    ∇g5
2

∇g =    i +    j6
5

8
5

a    b
x2 + y2 = 1

EXAMPLE 4  Find the maximum and minimum values of the function 
( ) = +f x y x y, 3 4  on the circle + =x y 1.2 2

Solution We model this as a Lagrange multiplier problem with

( ) ( )= + = + −f x y x y g x y x y, 3 4 , , 12 2

and look for the values of x, y, and λ that satisfy the equations

λ λ λ

( )

∇ = ∇ + = +

= + − =

f g x y

g x y x y

i j i j: 3 4 2 2

, 0: 1 0.2 2

The gradient equation implies that λ ≠ 0 and gives

λ λ
= =x y3

2
, 2 .

These equations tell us, among other things, that x and y have the same sign. With these 
values for x and y, the equation ( ) =g x y, 0 gives

λ λ( ) ( )+ − =3
2

2 1 0,
2 2

so

λ λ
λ λ λ+ = + = = = ±9

4
4 1, 9 16 4 , 4 25, and 5

2
.

2 2
2 2

Thus,

λ λ
= = ± = = ±x y3

2
3
5

, 2 4
5

,

and ( ) = +f x y x y, 3 4  has critical points at x y, 3 5, 4 5 .( ) ( )= ±
By calculating the value of +x y3 4  at the points 3 5, 4 5 ,( )±  we see that its maxi-

mum and minimum values on the circle + =x y 12 2  are

( ) ( ) ( ) ( )+ = = − + − = − = −3 3
5

4 4
5

25
5

5 and 3 3
5

4 4
5

25
5

5.

The Geometry of the Solution The level curves of ( ) = +f x y x y, 3 4  are the lines 
+ =x y c3 4  (Figure 13.58). The farther the lines lie from the origin, the larger the abso-

lute value of f . We want to find the extreme values of ( )f x y,  given that the point ( )x y,  
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840 Chapter 13 Partial Derivatives

also lies on the circle + =x y 1.2 2  Which lines intersecting the circle lie farthest from 
the origin? The lines tangent to the circle are farthest. At the points of tangency, any vector 
normal to the line is normal to the circle, so the gradient ∇ = +f i j3 4  is a multiple 
λ( )= ±5 2  of the gradient ∇ = +g x yi j2 2 . At the point ( )3 5, 4 5 , for example,

f g f gi j i j3 4 , 6
5

8
5

, and 5
2

.∇ = + ∇ = + ∇ = ∇  

Lagrange Multipliers with Two Constraints

Many problems require us to find the extreme values of a differentiable function ( )f x y z, ,  
whose variables are subject to two constraints. If the constraints are

( ) ( )= =g x y z g x y z, , 0 and , , 01 2

and g1 and g2 are differentiable, with ∇g1 not parallel to ∇g ,2  we find the constrained local 
maxima and minima of f  by introducing two Lagrange multipliers λ and μ (mu, pro-
nounced “mew”). That is, we locate the points ( )P x y z, ,  where f  takes on its constrained 
extreme values by finding the values of λx y z, , , , and μ that simultaneously satisfy the 
three equations

Equations (2) have a nice geometric interpretation. The surfaces =g 01  and =g 02  (usu-
ally) intersect in a smooth curve, say C (Figure 13.59). Along this curve we seek the points 
where f  has local maximum and minimum values relative to its other values on the curve. 
These are the points where ∇f  is normal to C, as we saw in Theorem 12. But ∇g1 and ∇g2 
are also normal to C at these points because C lies in the surfaces =g 01  and =g 0.2  
Therefore, ∇f  lies in the plane determined by ∇g1 and ∇g ,2  which means that 

λ μ∇ = ∇ + ∇f g g1 2 for some λ and μ. Since the points we seek also lie in both surfaces, 
their coordinates must satisfy the equations ( ) =g x y z, , 01  and ( ) =g x y z, , 0,2  which 
are the remaining requirements in Equations (2).

μ is the Greek letter mu,  
pronounced “mew”.

EXAMPLE 5  The plane + + =x y z 1 cuts the cylinder + =x y 12 2  in an ellipse 
(Figure 13.60). Find the points on the ellipse that lie closest to and farthest from the origin.

FIGURE 13.60 On the ellipse where the plane and  
cylinder meet, we find the points closest to and farthest 
from the origin (Example 5).

Cylinder x2 + y2 = 1

z

y

Plane
x + y + z = 1x

P1

(1, 0, 0)

(0, 1, 0)

P2

 λ μ ( ) ( )∇ = ∇ + ∇ = =f g g g x y z g x y z, , , 0, , , 01 2 1 2  (2)

FIGURE 13.59 The vectors ∇g1 and 
∇g2 lie in a plane perpendicular to the 
curve C, because ∇g1 is normal to the  
surface =g 01  and ∇g2 is normal to  
the surface =g 0.2

C

g2 = 0

g1 = 0

∇ f

∇g2

∇g1

Solution We find the extreme values of

( ) = + +f x y z x y z, , 2 2 2
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 13.8  Lagrange Multipliers 841

(the square of the distance from ( )x y z, ,  to the origin) subject to the constraints

( ) = + − =g x y z x y, , 1 01
2 2  (3)

( ) = + + − =g x y z x y z, , 1 0.2  (4)

The gradient equation in Equations (2) then gives

λ μ

λ μ
λ μ λ μ μ

( ) ( )

( ) ( )

∇ = ∇ + ∇

+ + = + + + +
+ + = + + + +

f g g

x y z x y

x y z x y

i j k i j i j k

i j k i j k

2 2 2 2 2

2 2 2 2 2 ,

1 2

or

 λ μ λ μ μ= + = + =x x y y z2 2 , 2 2 , 2 . (5)

The scalar equations in Equations (5) yield

 
λ λ
λ λ

( )

( )

= + ⇒ − =
= + ⇒ − =

x x z x z
y y z y z

2 2 2 1 ,  
2 2 2 1 .

 
(6)

Equations (6) are satisfied simultaneously if either λ = 1 and =z 0 or λ ≠ 1 and 
λ( )= = −x y z 1 .

In the first case, where =z 0, solving Equations (3) and (4) simultaneously to find 
the corresponding points on the ellipse gives the two points ( )1, 0, 0  and ( )0,1, 0 . This 
makes sense when you look at Figure 13.60.

In the second case, where =x y, Equations (3) and (4) give

∓

+ − = + + − =

= = −

= ± =

x x x x z

x z x

x z

1 0 1 0

2 1 1 2

2
2

1 2.

2 2

2

The corresponding points on the ellipse are

= −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = − − +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟P P2

2
, 2

2
,1 2 and 2

2
, 2

2
,1 2 .1 2

To find the points at maximum and minimum distance from the origin, we evaluate f  
at the four critical points ( ) ( ) P1, 0, 0 , 0,1, 0 , 1, and P2. We see that

( ) ( )= = = − = +f f f P f P1, 0, 0 0,1, 0 1, ( ) 4 2 2, and   ( ) 4 2 2.1 2

The largest and smallest of these give the absolute extrema. Since

< − < +1 4 2 2 4 2 2,

we see that the absolute minimum value of f  is 1 and is attained when f  is evaluated at 
either ( )1, 0, 0  or ( )0,1, 0 . The absolute maximum value of f  is +4 2 2 and occurs when 
f  is evaluated at P2. The value = −f P( ) 4 2 21  is neither the largest nor the smallest 
among the values of f  at the critical points, so f  does not have an absolute extremum at P1.

The points on the ellipse closest to the origin are ( )1, 0, 0  and ( )0,1, 0 . The point on 
the ellipse farthest from the origin is P .2  (See Figure 13.60.) 

Two Independent Variables with One Constraint

 1. Extrema on an ellipse Find the points on the ellipse 
+ =x y2 12 2  where ( ) =f x y xy,  has its extreme values.

 2. Extrema on a circle Find the extreme values of ( ) =f x y xy,  
subject to the constraint ( ) = + − =g x y x y, 10 0.2 2

 3. Maximum on a line Find the maximum value of ( ) = −f x y, 49   
−x y2 2 on the line + =x y3 10.

 4. Extrema on a line Find the local extreme values of ( ) =f x y x y, 2  
on the line + =x y 3.

EXERCISES 13.8 
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842 Chapter 13 Partial Derivatives

 5. Constrained minimum Find the points on the curve =xy 542  
nearest the origin.

 6. Constrained minimum Find the points on the curve =x y 22  
nearest the origin.

 7. Use the method of Lagrange multipliers to find

 a. Minimum on a hyperbola The minimum value of +x y, 
subject to the constraints = > >xy x y16, 0, 0.

 b. Maximum on a line The maximum value of xy, subject to 
the constraint + =x y 16.

Comment on the geometry of each solution.

 8. Extrema on a curve Find the points on the curve + +x xy2  
=y 12  in the xy-plane that are nearest to and farthest from the 

origin.

 9. Minimum surface area with fixed volume Find the dimen-
sions of the closed right circular cylindrical can of smallest sur-
face area whose volume is π16 cm .3

 10. Cylinder in a sphere Find the radius and height of the open 
right circular cylinder of largest surface area that can be inscribed 
in a sphere of radius a. What is the largest surface area?

 11. Rectangle of greatest area in an ellipse Use the method of 
Lagrange multipliers to find the dimensions of the rectangle of 
greatest area that can be inscribed in the ellipse + =x y16 9 12 2  
with sides parallel to the coordinate axes.

 12. Rectangle of longest perimeter in an ellipse Find the dimen-
sions of the rectangle of largest perimeter that can be inscribed in 
the ellipse + =x a y b 12 2 2 2  with sides parallel to the coordi-
nate axes. What is the largest perimeter?

 13. Extrema on a circle Find the maximum and minimum values 
of +x y2 2 subject to the constraint − + − =x x y y2 4 0.2 2

 14. Extrema on a circle Find the maximum and minimum values 
of − +x y3 6 subject to the constraint + =x y 4.2 2

 15. Ant on a metal plate The temperature at a point ( )x y,  on a 
metal plate is ( ) = − +T x y x xy y, 4 4 .2 2  An ant on the plate 
walks around the circle of radius 5 centered at the origin. What are 
the highest and lowest temperatures encountered by the ant?

 16. Cheapest storage tank Your firm has been asked to design a 
storage tank for liquid petroleum gas. The customer’s specifications 
call for a cylindrical tank with hemispherical ends, and the tank is 
to hold 8000 m 3 of gas. The customer also wants to use the smallest 
amount of material possible in building the tank. What radius and 
height do you recommend for the cylindrical portion of the tank?

Three Independent Variables with One Constraint

 17. Minimum distance to a point Find the point on the plane 
+ + =x y z2 3 13 closest to the point ( )1,1,1 .

 18. Maximum distance to a point Find the point on the sphere 
+ + =x y z 42 2 2  farthest from the point ( )−1, 1,1 .

 19. Minimum distance to the origin Find the minimum distance 
from the surface − − =x y z 12 2 2  to the origin.

 20. Minimum distance to the origin Find the point on the surface 
= +z xy 1 nearest the origin.

 21. Minimum distance to the origin Find the points on the surface 
= +z xy 42  closest to the origin.

 22. Minimum distance to the origin Find the point(s) on the sur-
face =xyz 1 closest to the origin.

 23. Extrema on a sphere Find the maximum and minimum  
values of

( ) = − +f x y z x y z, , 2 5

on the sphere + + =x y z 30.2 2 2

 24. Extrema on a sphere Find the points on the sphere 
+ + =x y z 252 2 2  where ( ) = + +f x y z x y z, , 2 3  has its 

maximum and minimum values.

 25. Minimizing a sum of squares Find three real numbers whose 
sum is 9 and the sum of whose squares is as small as possible.

 26. Maximizing a product Find the largest product the positive 
numbers x, y, and z can have if + + =x y z 16.2

 27. Rectangular box of largest volume in a sphere Find the 
dimensions of the closed rectangular box with maximum volume 
that can be inscribed in the unit sphere.

 28. Box with vertex on a plane Find the volume of the largest closed 
rectangular box in the first octant having three faces in the coor-
dinate planes and a vertex on the plane + + =x a y b z c 1, 
where > >a b0, 0, and >c 0.

 29. Hottest point on a space probe A space probe in the shape of 
the ellipsoid

+ + =x y z4 4 162 2 2

enters Earth’s atmosphere and its surface begins to heat. After 1 
hour, the temperature at the point ( )x y z, ,  on the probe’s surface is

( ) = + − +T x y z x yz z, , 8 4 16 600.2

Find the hottest point on the probe’s surface.

 30. Extreme temperatures on a sphere Suppose that the Celsius 
temperature at the point ( )x y z, ,  on the sphere + + =x y z 12 2 2  
is =T xyz400 .2  Locate the highest and lowest temperatures on 
the sphere.

 31. Cobb–Douglas production function During the 1920s, Charles 
Cobb and Paul Douglas modeled total production output P (of a 
firm, industry, or entire economy) as a function of labor hours 
involved x and capital invested y (which includes the monetary 
worth of all buildings and equipment). The Cobb–Douglas pro-
duction function is given by

( ) = α α−P x y kx y, ,  1

where k and α are constants representative of a particular firm or 
economy.

 a. Show that a doubling of both labor and capital results in a 
doubling of production P.

 b. Suppose a particular firm has the production function for 
=k 120 and α = 3 4. Assume that each unit of labor costs 

$250 and each unit of capital costs $400, and that the total 
expenses for all costs cannot exceed $100,000. Find the maxi-
mum production level for the firm.

 32. (Continuation of Exercise 31.) If the cost of a unit of labor is c1 
and the cost of a unit of capital is c2, and if the firm can spend only 
B dollars as its total budget, then production P is constrained by 

+ =c x c y B.1 2  Show that the maximum production level sub-
ject to the constraint occurs at the point

α α( )= = −x B
c

y B
c

and 1 .
1 2
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 13.8  Lagrange Multipliers 843

 33. Maximizing a utility function: an example from economics  
In economics, the usefulness or utility of amounts x and y of two 
capital goods G1 and G2 is sometimes measured by a function 

( )U x y, . For example, G1 and G2 might be two chemicals a phar-
maceutical company needs to have on hand, and ( )U x y,  might be 
the gain from manufacturing a product whose synthesis requires 
different amounts of the chemicals depending on the process used. 
If G1 costs a dollars per kilogram, G2 costs b dollars per kilo-
gram, and the total amount allocated for the purchase of G1 and 
G2 together is c dollars, then the company’s managers want to 
maximize ( )U x y,  given that + =ax by c. Thus, they need to 
solve a typical Lagrange multiplier problem.

Suppose that

( ) = +U x y xy x, 2

and that the equation + =ax by c simplifies to

+ =x y2 30.

Find the maximum value of U and the corresponding values of x 
and y subject to this latter constraint.

 34. Blood types Human blood types are classified by three gene 
forms A, B, and O. Blood types AA, BB, and OO are homozygous, 
and blood types AB, AO, and BO are heterozygous. If p, q, and r 
represent the proportions of the three gene forms to the popula-
tion, respectively, then the Hardy–Weinberg Law asserts that the 
proportion Q of heterozygous persons in any specific population 
is modeled by

( ) ( )= + +Q p q r pq pr qr, , 2 ,  

subject to + + =p q r 1. Find the maximum value of Q.

 35. Length of a beam In Section 4.6, Exercise 47, we posed a prob-
lem of finding the length L of the shortest beam that can reach 
over a wall of height h to a tall building located k units from the 
wall. Use Lagrange multipliers to show that

( )= +L h k .2 3 2 3 3 2

 36. Locating a radio telescope You are in charge of erecting 
a radio telescope on a newly discovered planet. To minimize 
interference, you want to place it where the magnetic field of 
the planet is weakest. The planet is spherical, with a radius of  
6 units. Based on a coordinate system whose origin is at the cen-
ter of the planet, the strength of the magnetic field is given by 

( ) = − + +M x y z x y xz, , 6 60.2  Where should you locate the 
radio telescope?

Extreme Values Subject to Two Constraints

 37. Maximize the function ( ) = + −f x y z x y z, , 22 2 subject to the 
constraints − =x y2 0 and + =y z 0.

 38. Minimize the function ( ) = + +f x y z x y z, , 2 2 2 subject to the 
constraints + + =x y z2 3 6 and + + =x y z3 9 9.

 39. Minimum distance to the origin Find the point closest to the 
origin on the line of intersection of the planes + =y z2 12 and 

+ =x y 6.

 40. Find the extreme values of ( ) = +f x y z x yz, , 2 2  on the inter-
section of the cylinder + =x z 92 2  and the plane − =y z 4.

 41. Extrema on a curve of intersection Find the extreme values 
of ( ) = +f x y z x yz, , 12  on the intersection of the plane =z 1 
with the sphere + + =x y z 10.2 2 2

 42. a.  Maximum on line of intersection Find the maximum 
value of =w xyz on the line of intersection of the two planes 

+ + =x y z 40 and + − =x y z 0.

 b. Give a geometric argument to support your claim that you 
have found a maximum, and not a minimum, value of w.

 43. Extrema on a circle of intersection Find the extreme values 
of the function ( ) = +f x y z xy z, , 2 on the circle in which the 
plane − =y x 0 intersects the sphere + + =x y z 4.2 2 2

 44. Minimum distance to the origin Find the point closest to the 
origin on the curve of intersection of the plane + =y z2 4 5 and 
the cone = +z x y4 4 .2 2 2

Theory and Examples

 45. The condition f gλ∇ = ∇  is not sufficient Even though 
λ∇ = ∇f g is a necessary condition for the occurrence of an 

extreme value of ( )f x y,  subject to the conditions ( ) =g x y, 0 
and g 0∇ ≠ , it does not in itself guarantee that one exists. As a 
case in point, try using the method of Lagrange multipliers to find 
a maximum value of ( ) = +f x y x y,  subject to the constraint 
that =xy 16. The method will identify the two points ( )4, 4  and 
( )− −4, 4  as candidates for the location of extreme values. Yet the 
sum +x y has no maximum value on the hyperbola =xy 16. 
The farther you go from the origin on this hyperbola in the first 
quadrant, the larger the sum ( ) = +f x y x y,  becomes.

 46. A least squares plane The plane = + +z Ax By C  is to be 
“fitted” to the following points ( )x y z, , :k k k

( ) ( ) ( ) ( )−0, 0, 0 , 0,1,1 , 1,1,1 , 1, 0, 1 .

Find the values of A, B, and C that minimize

∑( )+ + −
=

Ax By C z ,
k

k k k
1

4
2

the sum of the squares of the deviations.

 47. a.  Maximum on a sphere Show that the maximum value 
of a b c2 2 2 on a sphere of radius r centered at the origin of a 
Cartesian abc-coordinate system is ( )r 3 .2 3

 b. Geometric and arithmetic means Using part (a), show that 
for nonnegative numbers a, b, and c,

≤ + +abc a b c( )
3

;1 3

that is, the geometric mean of three nonnegative numbers is 
less than or equal to their arithmetic mean.

 48. Sum of products Let …a a a, , , n1 2  be n positive numbers. Find 

the maximum of   ∑ =
a x

i

n
i i1

   subject to the constraint   ∑ =
=

x 1
i

n
i1
2 .

COMPUTER EXPLORATIONS
In Exercises 49–54, use a CAS to perform the following steps implement-
ing the method of Lagrange multipliers for finding constrained extrema:

 a. Form the function λ λ= − −h f g g ,1 1 2 2  where f  is the func-
tion to optimize subject to the constraints =g 01  and =g 0.2

 b. Determine all the first partial derivatives of h, including the 
partials with respect to λ1 and λ ,2  and set them equal to 0.

 c. Solve the system of equations found in part (b) for all the 
unknowns, including λ1 and λ .2

 d. Evaluate f  at each of the solution points found in part (c),  
and select the extreme value subject to the constraints asked 
for in the exercise.
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844 Chapter 13 Partial Derivatives

In this section we use Taylor’s formula to derive the Second Derivative Test for local 
extreme values (Section 13.7) and the error formula for linearizations of functions of two 
independent variables (Section 13.6). The use of Taylor’s formula in these derivations 
leads to an extension of the formula that provides polynomial approximations of all orders 
for functions of two independent variables.

 49. Minimize ( ) = +f x y z xy yz, ,  subject to the constraints 
+ − =x y 2 02 2  and + − =x z 2 0.2 2

 50. Minimize ( ) =f x y z xyz, ,  subject to the constraints 
+ − =x y 1 02 2  and − =x z 0.

 51. Maximize ( ) = + +f x y z x y z, , 2 2 2 subject to the constraints 
+ − =y z2 4 5 0 and + − =x y z4 4 0.2 2 2

 52. Minimize ( ) = + +f x y z x y z, , 2 2 2 subject to the constraints 
− + − − =x xy y z 1 02 2 2  and + − =x y 1 0.2 2

 53. Minimize ( ) = + + +f x y z w x y z w, , , 2 2 2 2 sub-
ject to the constraints − + − − =x y z w2 1 0 and 
x y z w 1 0.+ − + − =

 54. Determine the distance from the line = +y x 1 to the parabola 
=y x.2  (Hint: Let ( )x y,  be a point on the line and (w, z) a point 

on the parabola. You want to minimize ( )( )− + −x w y z .2 2 )

13.9 Taylor’s Formula for Two Variables

Derivation of the Second Derivative Test

Let ( )f x y,  have continuous first and second partial derivatives in an open region R con-
taining a point ( )P a b,  where = =f f 0x y  (Figure 13.61). Let h and k be increments 
small enough to put the point ( )+ +S a h b k,  and the line segment joining it to P inside 
R. We parametrize the segment PS as

= + = + ≤ ≤x a th y b tk t, , 0 1.

If ( )= + +F t f a th b tk( ) , , the Chain Rule gives

′ = + = +F t f dx
dt

f
dy
dt

hf kf( ) .x y x y

Since f x  and f y are differentiable (because they have continuous partial derivatives), 
′F  is a differentiable function of t and

( ) ( )′′ = ∂ ′
∂

+ ∂ ′
∂

= ∂
∂

+ ⋅ + ∂
∂

+ ⋅

= + +

F F
x

dx
dt

F
y

dy
dt x

hf kf h
y

hf kf k

h f hkf k f2 .

x y x y

xx xy yy
2 2 =f fxy yx

Since F  and ′F  are continuous on 0,1[ ] and ′F  is differentiable on ( )0,1 , we can apply 
Taylor’s formula with =n 2 and =a 0 to obtain

 
F F F F c

F F F c

(1) (0) (0) 1 0 ( ) 1 0
2

(0) (0) 1
2

( )

2
( )

( )= + ′ − + ′′ −

= + ′ + ′′
 (1)

for some c between 0 and 1. Writing Equation (1) in terms of f  gives

  

f a h b k f a b hf a b kf a b

h f hkf k f

, , , ,

1
2

2 .

x y

xx xy yy
a ch b ck

2 2

,
( )

( ) ( ) ( ) ( )+ + = + +

+ + +
( )+ +

 (2)

Since ( ) ( )= =f a b f a b, , 0,x y  this reduces to

 ( )( ) ( )+ + − = + +
( )+ +

f a h b k f a b h f hkf k f, , 1
2

2 .xx xy yy
a ch b ck

2 2

,
 (3)

FIGURE 13.61 We begin the derivation 
of the Second Derivative Test at ( )P a b,  by 
parametrizing a typical line segment from 
P to a point S nearby.

Part of open region R

(a + th, b + tk),
a typical point
on the segment

P(a, b)
t = 0

Parametrized
segment
in R

t = 1
S(a + h, b + k)
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 13.9  Taylor’s Formula for Two Variables 845

To determine whether f  has an extremum at ( )a b, , we examine the sign of the differ-
ence ( ) ( )+ + −f a h b k f a b, , . By Equation (3), this is the same as the sign of

( )= + +
( )+ +

Q c h f hkf k f( ) 2 .xx xy yy
a ch b ck

2 2

, 

Now, if Q(0) 0,≠  the sign of Q c( ) will be the same as the sign of Q(0) for sufficiently 
small values of h and k. We can predict the sign of

 Q h f a b hkf a b k f a b(0) , 2 , ,xx xy yy
2 2( ) ( ) ( )= + +  (4)

from the signs of f xx  and −f f fxx yy xy
2 at ( )a b, . Multiply both sides of Equation (4) by f xx  

and rearrange the right-hand side to get

 f Q hf kf f f f k(0) .xx xx xy xx yy xy
2 2 2( ) ( )= + + −  (5)

From Equation (5) we see that

1. If <f 0xx  and − >f f f 0xx yy xy
2  at ( )a b, , then Q(0) 0<  for all sufficiently small 

nonzero values of h and k, and f  has a local maximum value at ( )a b, .

2. If >f 0xx  and − >f f f 0xx yy xy
2  at ( )a b, , then Q(0) 0>  for all sufficiently small 

nonzero values of h and k, and f  has a local minimum value at ( )a b, .

3. If − <f f f 0xx yy xy
2  at ( )a b, , there are combinations of arbitrarily small nonzero val-

ues of h and k for which Q(0) 0,>  and other values for which Q(0) 0.<  Arbitrarily 
close to the point ( )( )P a b f a b, , ,0  on the surface ( )=z f x y,  there are points above 
P0 and points below P ,0  so f  has a saddle point at ( )a b, .

4. If − =f f f 0,xx yy xy
2  another test is needed. The possibility that Q(0) equals zero pre-

vents us from drawing conclusions about the sign of Q c( ).

The Error Formula for Linear Approximations

We want to show that the difference ( )E x y,  between the values of a function ( )f x y,  and 
its linearization ( )L x y,  at ( )x y,0 0  satisfies the inequality

( ) ( )≤ − + −E x y M x x y y, 1
2

.0 0
2

The function f  is assumed to have continuous second partial derivatives throughout an 
open set containing a closed rectangular region R centered at ( )x y, .0 0  The number M is an 
upper bound for f f, ,xx yy  and f xy  on R.

The inequality we want comes from Equation (2). We substitute x 0 and y0 for a and b, 
and −x x 0 and −y y0 for h and k, respectively, and rearrange the result as

f x y f x y f x y x x f x y y y

x x f x x y y f y y f

, , , ,

1
2

2 .

L x y

E x y

linearization  ,

error  ,

x y

xx xy yy
x c x x y c y y

0 0 0 0 0 0 0 0

0
2

0 0 0
2

,0 0 0 0

� ��������������������������� ���������������������������

� ���������������������������������������� ����������������������������������������
( )

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

= + − + −

+ − + − − + −

( )

( )

( )( ) ( )+ − + −

This equation reveals that

( )≤ − + − − + −E x x f x x y y f y y f1
2

2 .xx xy yy0
2

0 0 0
2

Hence, if M is an upper bound for the values of f f, ,xx xy  and f yy  on R, then

( )

( )

≤ − + − − + −

= − + −

E x x M x x y y M y y M

M x x y y

1
2

2

1
2

.

0
2

0 0 0
2

0 0
2
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846 Chapter 13 Partial Derivatives

Taylor’s Formula for Functions of Two Variables

The formulas derived earlier for ′F  and ′′F  can be obtained by applying to ( )f x y,  the dif-
ferentiation operators

h
x

k
y

h
x

k
y

h
x

hk
x y

k
y

and 2 .
2

2
2

2

2
2

2

2

∂
∂

+ ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

∂
∂

+ ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = ∂

∂
+ ∂

∂ ∂
+ ∂

∂

These are the first two instances of a more general formula,

 ( )= = ∂
∂

+ ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟F t d

dt
F t h

x
k

y
f x y( ) ( ) , ,n

n

n

n
( )  (6)

which says that applying d dtn n  to F t( ) gives the same result as applying the operator

∂
∂

+ ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟h

x
k

y

n

to ( )f x y,  after expanding it by the Binomial Theorem.
If the partial derivatives of f  through order +n 1 are continuous throughout a rectan-

gular region centered at ( )a b, , we may extend the Taylor formula for F t( ) to

�F t F F t F t F
n

t( ) (0) (0) (0)
2!

(0)
!

remainder,  
n

n2
( )

( )= + ′ + ′′ + + +

and take =t 1 to obtain

�F F F F F
n

(1) (0) (0) (0)
2!

(0)
!

remainder.
n( )

= + ′ + ′′ + + +

When we replace the first n derivatives on the right of this last series by their equivalent 
expressions from Equation (6) evaluated at =t 0 and add the appropriate remainder term, 
we arrive at the following formula.

Taylor’s Formula for ( )f x y,  at the Point ( )a b,
Suppose ( )f x y,  and its partial derivatives through order +n 1 are continuous throughout an open rectangular region R 
centered at a point ( )a b, . Then, throughout R,

 
�

( ) ( )

( )

+ + = + +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ + + +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

+ + + +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ + + ∂

∂
+ ∂

∂
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

+
+

∂
∂

+ ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

( ) ( )

( ) ( )

( )

+

+ +

f a h b k f a b hf kf h f hkf k f

h f h kf hk f k f
n

h
x

k
y

f

n
h

x
k

y
f

, , 1
2!

2

1
3!

3 3 1
!

1
1 !

.

x y
a b

xx xy yy
a b

xxx xxy xyy yyy
a b

n

a b

n

a ch b ck

,

2 2

,

3 2 2 3

, ,

1

,

 

(7)

The first n derivative terms are evaluated at ( )a b, . The last term is evaluated at some point 
( )+ +a ch b ck,  on the line segment joining ( )a b,  and ( )+ +a h b k, .

If ( ) ( )=a b, 0, 0  and we treat h and k as independent variables (denoting them now 
by x and y), then Equation (7) assumes the following form.
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 13.9  Taylor’s Formula for Two Variables 847

The first n derivative terms are evaluated at ( )0, 0 . The last term is evaluated at a point on 
the line segment joining the origin and ( )x y, .

Taylor’s formula provides polynomial approximations of two-variable functions. The 
first n derivative terms give the polynomial; the last term gives the approximation error. 
The first three terms of Taylor’s formula give the function’s linearization. To improve on 
the linearization, we add higher-power terms.

Taylor’s Formula for ( )f x y,  at the Origin

� �

�

( ) ( )

( )
( )

= + + + + +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

+ + + +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ + + ∂

∂
+ ∂

∂ ∂
+ + ∂

∂
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

+
+

∂
∂

+ + ∂
∂ ∂

+ + ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

( )

−
−

+
+

+

+
+

+

+

f x y f xf yf x f xyf y f

x f x yf xy f y f
n

x
f

x
nx y

f
x y

y
f

y

n
x

f
x

n x y
f

x y
y

f
y

, 0, 0 1
2!

2

1
3!

3 3 1
!

 

1
1 !

  1

x y xx xy yy

xxx xxy xyy yyy
n

n

n
n

n

n
n

n

n

n
n

n
n

n

n
n

n

n
cx cy

2 2

3 2 2 3 1
1

1
1

1

1
1

1

1
,

 

(8)

EXAMPLE 1  Find a quadratic approximation to ( ) =f x y x y, sin sin  near the ori-
gin. How accurate is the approximation if ≤x 0.1 and ≤y 0.1?

Solution We take =n 2 in Equation (8):

f x y f xf yf x f xyf y f

x f x yf xy f y f

, 0, 0 1
2

2

1
6

3 3 .

x y xx xy yy

xxx xxy xyy yyy
cx cy

2 2

3 2 2 3

,

( ) ( )

( )

( ) ( )= + + + + +

+ + + +
( )

Calculating the values of the partial derivatives,

f x y f x y

f x y f x y

f x y f x y

0, 0 sin sin 0, 0, 0 sin sin 0,

0, 0 cos sin 0, 0, 0 cos cos 1,

0, 0 sin cos 0, 0, 0 sin sin 0,

xx

x xy

y yy

0, 0 0, 0

0, 0 0, 0

0, 0 0, 0

( ) ( )

( ) ( )

( ) ( )

= = = − =

= = = =

= = = − =

( ) ( )

( ) ( )

( ) ( )

we have the result

x y x xy y x y xysin sin 0 0 0 1
2

(0) 2 (1) (0) , or sin sin .2 2( )≈ + + + + + ≈

The error in the approximation is

( )( ) = + + +
( )

E x y x f x yf xy f y f, 1
6

3 3 .xxx xxy xyy yyy
cx cy

3 2 2 3

,

The third derivatives never exceed 1 in absolute value because they are products of sines 
and cosines. Also, ≤x 0.1 and ≤y 0.1. Hence

( )( ) ( ) ( ) ( ) ( ) ( )≤ + + + = ≤E x y, 1
6

0.1 3 0.1 3 0.1 0.1 8
6

0.1 0.001343 3 3 3 3

(rounded up). The error will not exceed 0.00134 if ≤x 0.1 and ≤y 0.1. 
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848 Chapter 13 Partial Derivatives

Finding Quadratic and Cubic Approximations
In Exercises 1–10, use Taylor’s formula for ( )f x y,  at the origin to 
find quadratic and cubic approximations of f  near the origin.

 1. ( ) =f x y xe, y 2. ( ) =f x y e y, cosx

 3. ( ) =f x y y x, sin  4. ( ) =f x y x y, sin cos

 5. ( ) ( )= +f x y e y, ln 1x  6. ( ) ( )= + +f x y x y, ln 2 1

 7. ( ) ( )= +f x y x y, sin 2 2  8. ( ) ( )= +f x y x y, cos 2 2

 9. ( ) =
− −

f x y
x y

, 1
1

 10. ( ) =
− − +

f x y
x y xy

, 1
1

 11. Use Taylor’s formula to find a quadratic approximation of 
( ) =f x y x y, cos cos  at the origin. Estimate the error in the 

approximation if ≤x 0.1 and ≤y 0.1.

 12. Use Taylor’s formula to find a quadratic approximation of e ysinx  
at the origin. Estimate the error in the approximation if ≤x 0.1 
and ≤y 0.1.

EXERCISES 13.9 

In finding partial derivatives of functions like ( )=w f x y, , we have assumed x and y to be 
independent. In many applications, however, this is not the case. For example, the internal 
energy U of a gas may be expressed as a function ( )=U f P V T, ,  of pressure P, volume 
V, and temperature T. If the individual molecules of the gas do not interact, however, P, V, 
and T obey (and are constrained by) the ideal gas law

( )=PV nRT n R and   constant ,

and fail to be independent. In this section we learn how to find partial derivatives in situa-
tions like this, which occur in economics, engineering, and physics.

Decide Which Variables Are Dependent and Which Are Independent

If the variables in a function ( )=w f x y z, ,  are constrained by a relation like the one 
imposed on x, y, and z by the equation = +z x y ,2 2  the geometric meanings and the 
numerical values of the partial derivatives of f  will depend on which variables are chosen 
to be dependent and which are chosen to be independent. To see how this choice can affect 
the outcome, we consider the calculation of ∂ ∂w x when = + +w x y z2 2 2 and 

= +z x y .2 2

EXAMPLE 1  Find ∂ ∂w x if = + +w x y z2 2 2 and = +z x y .2 2

Solution We are given two equations in the four unknowns x, y, z, and w. Like many 
such systems, this one can be solved for two of the unknowns (the dependent variables) in 
terms of the others (the independent variables). In being asked for ∂ ∂w x, we are told that 
w is to be a dependent variable and x an independent variable. The possible choices for the 
other variables come down to

Dependent Independent

w z x y

w y x z

Choice 1: , ,

Choice 2: , ,

In either case, we can express w explicitly in terms of the selected independent variables. 
We do this by using the second equation = +z x y2 2 to eliminate the remaining depen-
dent variable in the first equation.

In the first case, the remaining dependent variable is z. We eliminate it from the first 
equation by replacing it by +x y .2 2  The resulting expression for w is

( )= + + = + + +

= + + + +

w x y z x y x y

x y x x y y2

2 2 2 2 2 2 2 2

2 2 4 2 2 4

13.10 Partial Derivatives with Constrained Variables
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 13.10  Partial Derivatives with Constrained Variables 849

and therefore

 ∂
∂

= + +w
x

x x xy2 4 4 .3 2  (1)

This is the formula for ∂ ∂w x when x and y are the independent variables.
In the second case, where the independent variables are x and z and the remaining 

dependent variable is y, we eliminate the dependent variable y in the expression for w by 
replacing y 2 in the second equation by −z x .2  This gives

( )= + + = + − + = +w x y z x z x z z z2 2 2 2 2 2 2

and therefore

 ∂
∂

=w
x

0. (2)

This is the formula for ∂ ∂w x when x and z are the independent variables.
The formulas for ∂ ∂w x in Equations (1) and (2) are genuinely different. We cannot 

change either formula into the other by using the relation = +z x y .2 2  There is not just 
one ∂ ∂w x , there are two, and we see that the original instruction to find ∂ ∂w x was 
incomplete. Which ∂ ∂w x? we ask.

The geometric interpretations of Equations (1) and (2) help to explain why the equa-
tions differ. The function = + +w x y z2 2 2 measures the square of the distance from 
the point (x, y, z) to the origin. The condition = +z x y2 2 says that the point (x, y, z) lies 
on the paraboloid of revolution shown in Figure 13.62. What does it mean to calculate 
∂ ∂w x at a point ( )P x y z, ,  that can move only on this surface? What is the value of 
∂ ∂w x when the coordinates of P are, say, ( )1, 0,1 ?

If we take x and y to be independent, then we find ∂ ∂w x by holding y fixed (at =y 0 
in this case) and letting x vary. Hence, P moves along the parabola =z x 2 in the xz-plane. 
As P moves on this parabola, w, which is the square of the distance from P to the origin, 
changes. We calculate ∂ ∂w x in this case (our first solution above) to be

∂
∂

= + +w
x

x x xy2 4 4 .3 2

At the point ( )P 1, 0,1 , the value of this derivative is

∂
∂

= + + =w
x

2 4 0 6.

If we take x and z to be independent, then we find ∂ ∂w x by holding z fixed while x 
varies. Since the z-coordinate of P is 1, varying x moves P along a circle in the plane 

=z 1. As P moves along this circle, its distance from the origin remains constant, and w, 
being the square of this distance, does not change. That is,

∂
∂

=w
x

0,

as we found in our second solution. 

How to Find ∂w ∂x When the Variables in ( )=w f x y z, ,   
Are Constrained by Another Equation

As we saw in Example 1, a typical routine for finding ∂ ∂w x when the variables in the 
function ( )=w f x y z, ,  are related by another equation has three steps. These steps apply 
to finding ∂ ∂w y and ∂ ∂w z  as well.

FIGURE 13.62 If P is constrained 
to lie on the paraboloid = +z x y ,2 2  
the value of the partial derivative of 

= + +w x y z2 2 2 with respect to x at  
P depends on the direction of motion 
(Example 1). (1) As x changes, with 

=y 0, P moves up or down the surface 
on the parabola =z x 2 in the xz-plane 
with ∂ ∂ = +w x x x2 4 .3  (2) As x 
changes, with =z 1, P moves on the circle 

+ = =x y z1, 1,2 2  and ∂ ∂ =w x 0.

y

x

0

(1, 0, 1)

1

P
1

z = x2, y = 0

z = x2 + y2

Circle x2 + y2 = 1
in the plane z = 1 

z
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850 Chapter 13 Partial Derivatives

If we cannot carry out Step 2 after deciding which variables are dependent, we differ-
entiate the equations as they are and try to solve for w x afterward. The next example 
shows how this is done.

1. Decide which variables are to be dependent and which are to be independent. 
(In practice, the decision is based on the physical or theoretical context of our 
work. In the exercises at the end of this section, we say which variables are 
which.)

2. Eliminate the other dependent variable(s) in the expression for w.

3. Differentiate as usual.

EXAMPLE 2  Find w x at the point ( ) ( )= −x y z, , 2, 1,1  if

= + + − + + =w x y z z xy yz y, 1,2 2 2 3 3

and x and y are the independent variables.

Solution It is not convenient to eliminate z in the expression for w. We therefore differ-
entiate both equations implicitly with respect to x, treating x and y as independent variables 
and w and z as dependent variables. This gives

 ∂
∂

= + ∂
∂

w
x

x z z
x

2 2  (3)

and

 ∂
∂
− + ∂

∂
+ =z z

x
y y z

x
3 0 0.2  (4)

These equations may now be combined to express w x in terms of x, y, and z. We solve 
Equation (4) for z x to get

∂
∂

=
+

z
x

y
y z3 2

and substitute into Equation (3) to get

∂
∂

= +
+

w
x

x
yz

y z
2

2
3

.
2

The value of this derivative at ( ) ( )= −x y z, , 2, 1,1  is

( )
( )( )

( )

∂
∂

= + −
− +

= + − =
( )−

w
x

2 2 2 1 1
1 3 1

4 2
2

3.
2, 1,1

2  

Notation

To show what variables are assumed to be independent in calculating a derivative, we can 
use the following notation:

( )∂
∂

∂ ∂

∂
∂
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ∂ ∂

w
x

w x x y

f
y

f y y x t

with   and   independent

with  ,   ,  and   independent.

y

x t, 
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 13.10  Partial Derivatives with Constrained Variables 851

EXAMPLE 3  Find ( )∂ ∂ = + − + + =w x w x y z t x y tif sin and .
y z,

2

Solution With x, y, z independent, we have

( )
( )

( ) ( )

( )

= + = + − + +

∂
∂

= + − + + ∂
∂

+

= + +

t x y w x y z x y

w
x

x x y
x

x y

x x y

, sin

2 0 0 cos

2 cos .

y z

2

,

 

Arrow Diagrams

In solving problems like the one in Example 3, it often helps to start with an arrow diagram 
that shows how the variables and functions are related. If

= + − + + =w x y z t x y tsin and2

and we are asked to find ∂ ∂w x when x, y, and z are independent, the appropriate diagram 
is one like this:

 

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟
→

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

→
x
y

z

x
y

z
t

w

Independent
variables

Intermediate
variables

Dependent
variable

 (5)

To avoid confusion between the independent and intermediate variables with the same 
symbolic names in the diagram, it is helpful to rename the intermediate variables (so they 
are seen as functions of the independent variables). Thus, let υ= =u x y, , and =s z  
denote the renamed intermediate variables. With this notation, the arrow diagram becomes

 υ
⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟
→

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

→

υ
=
=
=
= +

x
y

z

u

s
t

w

u x
y

s z
t x y

Independent
variables

Intermediate
variables and
relations

Dependent
variable

 (6)

The diagram shows the independent variables on the left, the intermediate variables and 
their relation to the independent variables in the middle, and the dependent variable on the 
right. The function w now becomes

υ= + − +w u s tsin ,2

where

υ= = = = +u x y s z t x y, , , and .

To find ∂ ∂w x, we apply the four-variable form of the Chain Rule to w, guided by the 
arrow diagram in Equation (6):

w
x

w
u

u
x

w
x

w
s

s
x

w
t

t
x

u t

u t

x x y

(2 ) 1 1 0 1 0 cos 1

2 cos

2 cos .

υ
υ

( )

( )

( ) ( )( ) ( )( ) ( )

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

+ ∂
∂

∂
∂

+ ∂
∂

∂
∂

= + + − +

= +

= + +

   

 Substitute the original independent 
variables =u x  and = +t x y
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852 Chapter 13 Partial Derivatives

Finding Partial Derivatives with Constrained Variables
In Exercises 1–3, begin by drawing a diagram that shows the relations 
among the variables.

 1. If = + +w x y z2 2 2 and = +z x y ,2 2  find

 a. ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

w
y z

 b. ( )∂
∂

w
z x

 c. ( )∂
∂

w
z

.
y

 2. If = + − +w x y z tsin2  and + =x y t, find

 a. ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

w
y x z,

 b. ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

w
y z t,

 c. ( )∂
∂

w
z x y,

 d. ( )∂
∂

w
z y t,

 e. ( )∂
∂
w
t x z,

 f. ( )∂
∂
w
t

.
y z,

 3. Let ( )=U f P V T, ,  be the internal energy of a gas that obeys the 
ideal gas law =PV nRT  (n and R constant). Find

 a. ( )∂
∂

U
P V

 b. ( )∂
∂

U
T

.
V

 4. Find

 a. ( )∂
∂

w
x y

 b. ( )∂
∂

w
z y

at the point π( ) ( )=x y z, , 0,1,  if

= + + + =w x y z y z z xand sin sin 0.2 2 2

 5. Find

 a. ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

w
y x

 b. ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

w
y z

at the point ( ) ( )= −w x y z, , , 4, 2,1, 1  if

= + − + + =w x y yz z x y zand 6.2 2 3 2 2 2

 6. Find ( )∂ ∂u y
x
 at the point υ ( )( ) =u, 2,1  if υ= +x u 2 2 and 

υ=y u .

 7. Suppose that + =x y r2 2 2 and θ=x r cos , as in polar coordi-
nates. Find

( ) ( )∂
∂

∂
∂θ

x
r

r
x

and .
y

 8. Suppose that

= − + + + + =w x y z t x z t4 and 2 25.2 2

Show that the equations

∂
∂

= − ∂
∂

= −w
x

x w
x

x2 1 and 2 2

each give ∂ ∂w x , depending on which variables are chosen to 
be dependent and which variables are chosen to be independent. 
Identify the independent variables in each case.

Theory and Examples

 9. Establish the fact, widely used in hydrodynamics, that if 
( ) =f x y z, , 0, then

( ) ( )∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

∂
∂

∂
∂

= −x
y

y
z

z
x

1.
z x y

(Hint: Express all the derivatives in terms of the formal partial 
derivatives ∂ ∂ ∂ ∂f x f y, , and ∂ ∂f z .)

 10. If = +z x f u( ), where =u xy, show that

∂
∂

− ∂
∂

=x z
x

y z
y

x.

 11. Suppose that the equation ( ) =g x y z, , 0 determines z as a dif-
ferentiable function of the independent variables x and y and that 

≠g 0.z  Show that

∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = −

∂ ∂
∂ ∂

z
y

g y
g z

.
x

 12. Suppose that ( ) =f x y z w, , , 0 and ( ) =g x y z w, , , 0 determine 
z and w as differentiable functions of the independent variables x 
and y, and suppose that

∂
∂

∂
∂

− ∂
∂

∂
∂

≠f
z

g
w

f
w

g
z

0.

Show that

( )∂
∂

= −

∂
∂

∂
∂

− ∂
∂

∂
∂

∂
∂

∂
∂

− ∂
∂

∂
∂

z
x

f
x

g
w

f
w

g
x

f
z

g
w

f
w

g
z

y

and

∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = −

∂
∂

∂
∂

− ∂
∂

∂
∂

∂
∂

∂
∂

− ∂
∂

∂
∂

w
y

f
z

g
y

f
y

g
z

f
z

g
w

f
w

g
z

.
x

EXERCISES 13.10 

 1. What is a real-valued function of two independent variables? 
Three independent variables? Give examples.

 2. What does it mean for sets in the plane or in space to be open? 
Closed? Give examples. Give examples of sets that are neither 
open nor closed.

 3. How can you display the values of a function ( )f x y,  of two inde-
pendent variables graphically? How do you do the same for a 
function ( )f x y z, ,  of three independent variables?

CHAPTER 13 Questions to Guide Your Review

 4. What does it mean for a function ( )f x y,  to have limit L as 
( ) ( )→x y x y, , ?0 0  What are the basic properties of limits of 
functions of two independent variables?

 5. When is a function of two (three) independent variables continu-
ous at a point in its domain? Give examples of functions that are 
continuous at some points but not others.

 6. What can be said about algebraic combinations and compositions 
of continuous functions?
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 Chapter 13  Practice Exercises 853

 7. Explain the two-path test for nonexistence of limits.

 8. How are the partial derivatives ∂ ∂f x  and ∂ ∂f y of a function 
( )f x y,  defined? How are they interpreted and calculated?

 9. How does the relation between first partial derivatives and con-
tinuity of functions of two independent variables differ from the 
relation between first derivatives and continuity for real-valued 
functions of a single independent variable? Give an example.

 10. What is the Mixed Derivative Theorem for mixed second-order 
partial derivatives? How can it help in calculating partial deriva-
tives of second and higher orders? Give examples.

 11. What does it mean for a function ( )f x y,  to be differentiable? 
What does the Increment Theorem say about differentiability?

 12. How can you sometimes decide from examining f x  and f y that a 
function ( )f x y,  is differentiable? What is the relation between 
the differentiability of f  and the continuity of f  at a point?

 13. What is the general Chain Rule? What form does it take for func-
tions of two independent variables? Three independent variables? 
Functions defined on surfaces? How do you diagram these differ-
ent forms? Give examples. What pattern enables one to remember 
all the different forms?

 14. What is the derivative of a function ( )f x y,  at a point P0 in the 
direction of a unit vector u? What rate does it describe? What geo-
metric interpretation does it have? Give examples.

 15. What is the gradient vector of a differentiable function ( )f x y, ? 
How is it related to the function’s directional derivatives? State 
the analogous results for functions of three independent variables.

 16. How do you find the tangent line at a point on a level curve of 
a differentiable function ( )f x y, ? How do you find the tangent 

plane and normal line at a point on a level surface of a differen-
tiable function ( )f x y z, , ? Give examples.

 17. How can you use directional derivatives to estimate change?

 18. How do you linearize a function ( )f x y,  of two independent vari-
ables at a point ( )x y, ?0 0  Why might you want to do this? How do 
you linearize a function of three independent variables?

 19. What can you say about the accuracy of linear approximations of 
functions of two (three) independent variables?

 20. If ( )x y,  moves from ( )x y,0 0  to a point ( )+ +x dx y dy,0 0  
nearby, how can you estimate the resulting change in the value of 
a differentiable function ( )f x y, ? Give an example.

 21. How do you define local maxima, local minima, and saddle points 
for a differentiable function ( )f x y, ? Give examples.

 22. What derivative tests are available for determining the local 
extreme values of a function ( )f x y, ? How do they enable you to 
narrow your search for these values? Give examples.

 23. How do you find the extrema of a continuous function ( )f x y,  on 
a closed bounded region of the xy-plane? Give an example.

 24. Describe the method of Lagrange multipliers and give examples.

 25. How does Taylor’s formula for a function ( )f x y,  generate poly-
nomial approximations and error estimates?

 26. If ( )=w f x y z, , , where the variables x, y, and z are constrained 
by an equation ( ) =g x y z, , 0, what is the meaning of the nota-
tion ( )∂ ∂w x ?y  How can an arrow diagram help you calculate 
this partial derivative with constrained variables? Give examples.

Domain, Range, and Level Curves
In Exercises 1–4, find the domain and range of the given function and 
identify its level curves. Sketch a typical level curve.

 1. ( ) = +f x y x y, 9 2 2 2. ( ) = +f x y e, x y

 3. ( ) =g x y xy, 1  4. ( ) = −g x y x y, 2

In Exercises 5–8, find the domain and range of the given function and 
identify its level surfaces. Sketch a typical level surface.

 5. ( ) = + −f x y z x y z, , 2 2  6. ( ) = + +g x y z x y z, , 4 92 2 2

 7. ( ) =
+ +

h x y z
x y z

, , 1
2 2 2

 8. ( ) =
+ + +

k x y z
x y z

, , 1
12 2 2

Evaluating Limits
Find the limits in Exercises 9–14.

 9. 
π( ) ( )→

e xlim cos
x y

y

, , ln 2
 10. 

+
+( ) ( )→

y
x y

lim
2

cosx y, 0, 0

 11. 
−
−( ) ( )→

x y
x y

lim
x y, 1,1 2 2

 12. 
−

−( ) ( )→

x y
xy

lim
1

1x y, 1,1

3 3

 13. + +
( )→ −

x y zlim ln
P e1,  1, 

 14. ( )+ +
( )→ − −

x y zlim arctan
P 1, 1, 1

CHAPTER 13 Practice Exercises

By considering different paths of approach, show that the limits in 
Exercises 15 and 16 do not exist.

 15. 
−( ) ( )→

≠

y
x y

lim
x y, 0,0 2

y x 2

 16. 
+

( ) ( )→
≠

x y
xy

lim
x y, 0,0

2 2

xy 0

 17. Continuous extension Let ( ) ( ) ( )= − +f x y x y x y, 2 2 2 2  
for ( ) ( )≠x y, 0, 0 . Is it possible to define ( )f 0, 0  in a way that 
makes f  continuous at the origin? Why?

 18. Continuous extension Let

( )
( ) ( )

( )

=
−

+
+ ≠

=

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x y

x y
x y

x y

x y
,

sin
, 0

0, , 0, 0 .

Is f  continuous at the origin? Why?

Partial Derivatives
In Exercises 19–24, find the partial derivative of the function with 
respect to each variable.

 19. θ θ θ( ) = +g r r r, cos sin

 20. ( ) ( )= + +f x y x y
y
x

, 1
2

ln arctan2 2
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854 Chapter 13 Partial Derivatives

 21. ( ) = + +f R R R
R R R

, , 1 1 1
1 2 3

1 2 3

 22. π( ) ( )= + −h x y z x y z, , sin 2 3

 23. ( ) =P n R T V nRT
V

, , ,  (the ideal gas law)

 24. 
π

( ) =f r l T w
rl

T
w

, , , 1
2

Second-Order Partials
Find the second-order partial derivatives of the functions in Exercises 
25–28.

 25. ( ) = +g x y y x
y

,  26. ( ) = +g x y e y x, sinx

 27. ( ) ( )= + − + +f x y x xy x x, 5 ln 13 2

 28. ( ) = − + +f x y y xy y e, 3 cos 7 y2

Chain Rule Calculations

 29. Find dw dt at =t 0 if π( )= +w xysin , =x e ,t  and 
( )= +y tln 1 .

 30. Find dw dt at =t 1 if = + −w xe y z zsin cos ,y  =x t2 , 
= − +y t t1 ln , and π=z t.

 31. Find ∂ ∂w r  and ∂ ∂w s  when π=r  and =s 0 if 
( )= − = + =w x y x r s y rssin 2 , sin , .

 32. Find ∂ ∂w u and υ∂ ∂w  when υ= =u 0 if 
= + − −w x xln 1 tan2 1  and υ=x e2 cos .u

 33. Find the value of the derivative of ( ) = + +f x y z xy yz xz, ,  
with respect to t on the curve = = =x t y t z tcos , sin , cos 2  
at =t 1.

 34. Show that if =w f s( ) is any differentiable function of s and if 
= +s y x5 , then

∂
∂

− ∂
∂

=w
x

w
y

5 0.

Implicit Differentiation
Assuming that the equations in Exercises 35 and 36 define y as a dif-
ferentiable function of x, find the value of dy dx at point P.

 35. ( )− − − =x y xy P1 sin 0, 0,12

 36. ( )+ − =+xy e P2 2 0, 0, ln 2x y

Directional Derivatives
In Exercises 37–40, find the directions in which f  increases and 
decreases most rapidly at P0 and find the derivative of f  in each direc-
tion. Also, find the derivative of f  at P0 in the direction of the vector v.

 37. π π( ) ( )= = +f x y x y P v i j, cos cos , 4 , 4 , 3 40

 38. ( ) ( )= = +−f x y x e P v i j, , 1, 0 ,y2 2
0

 39. ( ) ( )( )= + + − −f x y z x y z P, , ln 2 3 6 , 1, 1,1 ,0  
= + +v i j k2 3 6

 40. ( ) ( )= + − + + +f x y z x xy z y z P, , 3 2 4, 0, 0, 0 ,2 2
0  

= + +v i j k
 41. Derivative in velocity direction Find the derivative of 

( ) =f x y z xyz, ,  in the direction of the velocity vector of the helix

( ) ( )= + +t t t tr i j k( ) cos 3 sin 3 3

at π=t 3.

 42. Maximum directional derivative What is the largest value 
that the directional derivative of ( ) =f x y z xyz, ,  can have at the 
point ( )1,1,1 ?

 43. Directional derivatives with given values At the point ( )1, 2 , 
the function ( )f x y,  has a derivative of 2 in the direction toward 
( )2, 2  and a derivative of −2 in the direction toward ( )1,1 .

 a. Find ( )f 1, 2x  and ( )f 1, 2 .y

 b. Find the derivative of f  at ( )1, 2  in the direction toward the 
point ( )4, 6 .

 44. Which of the following statements are true if ( )f x y,  is differen-
tiable at ( )x y, ?0 0  Give reasons for your answers.

 a. If u is a unit vector, the derivative of f  at ( )x y,0 0  in the direc-
tion of u is ( )( ) ( )+ ⋅f x y f x yi j u, , .x y0 0 0 0

 b. The derivative of f  at ( )x y,0 0  in the direction of u is a vector.

 c. The directional derivative of f  at ( )x y,0 0  has its greatest 
value in the direction of ∇f .

 d. At ( )x y, ,0 0  vector ∇f  is normal to the curve 
( ) ( )=f x y f x y, , .0 0

Gradients, Tangent Planes, and Normal Lines
In Exercises 45 and 46, sketch the surface ( ) =f x y z c, ,  together 
with ∇f  at the given points.

 45. ( ) ( )+ + = − ±x y z 0; 0, 1, 1 , 0, 0, 02 2

 46. ( ) ( )+ = ± ±y z 4; 2, 2, 0 , 2, 0, 22 2

In Exercises 47 and 48, find an equation for the plane tangent to the 
level surface ( ) =f x y z c, ,  at the point P .0  Also, find parametric 
equations for the line that is normal to the surface at P .0

 47. ( )− − = −x y z P5 0, 2, 1,12
0

 48. ( )+ + =x y z P4, 1,1, 22 2
0

In Exercises 49 and 50, find an equation for the plane tangent to the 
surface ( )=z f x y,  at the given point.

 49. ( )( )= +z x yln , 0,1, 02 2

 50. ( )( )= +z x y1 , 1,1,1 22 2

In Exercises 51 and 52, find equations for the lines that are tangent and 
normal to the level curve ( ) =f x y c,  at the point P .0  Then sketch the 
lines and level curve together with ∇f  at P .0

 51. π( )− =y x Psin 1, ,10

 52. ( )− =y x P
2 2

3
2

, 1, 2
2 2

0

Tangent Lines to Curves
In Exercises 53 and 54, find parametric equations for the line that is 
tangent to the curve of intersection of the surfaces at the given point.

 53. 

( )

+ + = =x y z ySurfaces: 2 2 4, 1

Point: 1,1,1 2

2

 54. 

( )

+ + = =x y z ySurfaces: 2, 1

Point: 1 2,1,1 2

2

Linearizations
In Exercises 55 and 56, find the linearization ( )L x y,  of the function 

( )f x y,  at the point P .0  Then find an upper bound for the magnitude of 
the error E in the approximation ( ) ( )≈f x y L x y, ,  over the rectangle R.

 55. π π( ) ( )=f x y x y P, sin cos , 4 , 40

π π− ≤ − ≤R x y:
4

0.1,
4

0.1

 56. ( ) ( )= − +f x y xy y P, 3 2, 1,12
0

− ≤ − ≤R x y: 1 0.1, 1 0.2
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 Chapter 13  Practice Exercises 855

Find the linearizations of the functions in Exercises 57 and 58 at the 
given points.

 57. ( ) = + −f x y z xy yz xz, , 2 3    at   ( )1, 0, 0    and   ( )1,1, 0

 58. ( ) ( )= +f x y z x y z, , 2 cos sin  at π( )0, 0, 4  and 
π π( )4, 4 , 0

Estimates and Sensitivity to Change

 59. Measuring the volume of a pipeline You plan to calculate the 
volume inside a stretch of pipeline that is about 36 cm in diameter  
and 1 km long. With which measurement should you be more 
careful, the length or the diameter? Why?

 60. Sensitivity to change Is ( ) = − + −f x y x xy y, 32 2  more 
sensitive to changes in x or to changes in y when it is near the 
point ( )1, 2 ? How do you know?

 61. Change in an electrical circuit Suppose that the current I 
(amperes) in an electrical circuit is related to the voltage V (volts) 
and the resistance R (ohms) by the equation =I V R . If the volt-
age drops from 24 to 23 volts and the resistance drops from 100 to 
80 ohms, will I increase or decrease? By about how much? Is the 
change in I more sensitive to change in the voltage or to change in 
the resistance? How do you know?

 62. Maximum error in estimating the area of an ellipse If 
=a 10 cm and =b 16 cm to the nearest millimeter, what should 

you expect the maximum percentage error to be in the calculated 
area π=A ab of the ellipse + =x a y b 1?2 2 2 2

 63. Error in estimating a product Let υ=y u  and υ= +z u , 
where u and υ are positive independent variables.

 a. If u is measured with an error of 2% and υ with an error of 3%, 
about what is the percentage error in the calculated value of y?

 b. Show that the percentage error in the calculated value of z is 
less than the percentage error in the value of y.

 64. Cardiac index To make different people comparable in studies 
of cardiac output, researchers divide the measured cardiac output 
by the body surface area to find the cardiac index C:

=C
cardiac output

body surface area
.

The body surface area B of a person with weight w and height h is 
approximated by the formula

=B w h71.84 ,0.425 0.725

which gives B in square centimeters when w is measured in kilo-
grams and h in centimeters. You are about to calculate the cardiac 
index of a person 180 cm tall, weighing 70 kg, with cardiac output 
of 7 L min. Which will have a greater effect on the calculation, a 
1-kg error in measuring the weight or a 1-cm error in measuring 
the height?

Local Extrema
Test the functions in Exercises 65–70 for local maxima and minima 
and saddle points. Find each function’s value at these points.

 65. ( ) = − + + + −f x y x xy y x y, 2 2 42 2

 66. ( ) = + − + −f x y x xy y x y, 5 4 2 4 42 2

 67. ( ) = + +f x y x xy y, 2 3 23 3

 68. ( ) = + − +f x y x y xy, 3 153 3

 69. ( ) = + + −f x y x y x y, 3 33 3 2 2

 70. ( ) = − + −f x y x x y y, 8 3 64 2 2

Absolute Extrema
In Exercises 71–78, find the absolute maximum and minimum values 
of f  on the region R.

 71. ( ) = + + − +f x y x xy y x y, 3 32 2

R: The triangular region cut from the first quadrant by the line 
+ =x y 4

 72. ( ) = − − + +f x y x y x y, 2 4 12 2

R: The rectangular region in the first quadrant bounded by the 
coordinate axes and the lines =x 4 and =y 2

 73. ( ) = − − +f x y y xy y x, 3 22

R: The square region enclosed by the lines = ±x 2 and = ±y 2

 74. ( ) = + − −f x y x y x y, 2 2 2 2

R: The square region bounded by the coordinate axes and the lines 
= =x y2, 2 in the first quadrant

 75. ( ) = − − +f x y x y x y, 2 42 2

R: The triangular region bounded below by the x-axis, above by 
the line = +y x 2, and on the right by the line =x 2

 76. ( ) = − − +f x y xy x y, 4 164 4

R: The triangular region bounded below by the line = −y 2, 
above by the line =y x, and on the right by the line =x 2

 77. ( ) = + + −f x y x y x y, 3 33 3 2 2

R: The square region enclosed by the lines = ±x 1 and = ±y 1

 78. ( ) = + + +f x y x xy y, 3 13 3

R: The square region enclosed by the lines = ±x 1 and = ±y 1

Lagrange Multipliers

 79. Extrema on a circle Find the extreme values of 
( ) = +f x y x y, 3 2 on the circle + =x y 1.2 2

 80. Extrema on a circle Find the extreme values of ( ) =f x y xy,  
on the circle + =x y 1.2 2

 81. Extrema in a disk Find the extreme values of 
( ) = + +f x y x y y, 3 22 2  on the unit disk + ≤x y 1.2 2

 82. Extrema in a disk Find the extreme values of 
( ) = + − −f x y x y x xy, 32 2  on the disk + ≤x y 9.2 2

 83. Extrema on a sphere Find the extreme values of 
( ) = − +f x y z x y z, ,  on the unit sphere + + =x y z 1.2 2 2

 84. Minimum distance to origin Find the points on the surface 
− =x zy 42  closest to the origin.

 85. Minimizing cost of a box A closed rectangular box is to 
have volume V cm .3  The cost of the material used in the box is 
a cents cm 2  for top and bottom, b cents cm 2  for front and back, 
and c cents cm 2 for the remaining sides. What dimensions mini-
mize the total cost of materials?

 86. Least volume Find the plane + + =x a y b z c 1 that passes 
through the point ( )2,1, 2  and cuts off the least volume from the 
first octant.

 87. Extrema on curve of intersecting surfaces Find the extreme 
values of ( ) ( )= +f x y z x y z, ,  on the curve of intersection of 
the right circular cylinder + =x y 12 2  and the hyperbolic cylin-
der =xz 1.

 88. Minimum distance to origin on curve of intersecting plane and 
cone Find the point closest to the origin on the curve of intersec-
tion of the plane + + =x y z 1 and the cone = +z x y2 2 .2 2 2
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856 Chapter 13 Partial Derivatives

Theory and Examples

 89. Let θ( )= = +w f r r x y, , ,2 2  and θ ( )= − y xtan .1  Find 
∂ ∂w x  and ∂ ∂w y, and express your answers in terms of r and θ.

 90. Let υ( )= = +z f u u ax by, , , and υ = −ax by. Express z x  
and z y  in terms of υf f, ,u  and the constants a and b.

 91. If a and b are constants, = + +w u u utanh cos ,3  and 
= +u ax by, show that

∂
∂

= ∂
∂

a w
y

b w
x

.

 92. Using the Chain Rule If ( )= + + = +w x y z x r sln 2 , ,2 2  
= −y r s, and =z rs2 , find wr and ws by the Chain Rule. Then 

check your answer another way.

 93. Angle between vectors The equations υ − =e xcos 0u  and 
υ − =e ysin 0u  define u and υ as differentiable functions of x 

and y. Show that the angle between the vectors

υ υ∂
∂

+ ∂
∂

∂
∂

+ ∂
∂

u
x

u
y x y

i j i jand

is constant.

 94. Polar coordinates and second derivatives Introducing polar 
coordinates θ=x r cos  and θ=y r sin  changes ( )f x y,  to 
θ( )g r, . Find the value of θ∂ ∂g2 2  at the point θ π( ) ( )=r, 2, 2 , 

given that

∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

=f
x

f
y

f
x

f
y

1
2

2

2

2

at that point.

 95. Normal line parallel to a plane Find the points on the surface

( ) ( )+ + − =y z z x 162 2

where the normal line is parallel to the yz-plane.

 96. Tangent plane parallel to xy-plane Find the points on the  
surface

+ + − − =xy yz zx x z 02

where the tangent plane is parallel to the xy-plane.

 97. When gradient is parallel to position vector Suppose that 
( )∇f x y z, ,  is always parallel to the position vector + +x y zi j k. 

Show that ( ) ( )= −f a f a0, 0, 0, 0,  for any a.

 98. One-sided directional derivative in all directions, but no gra-
dient The one-sided directional derivative of f  at ( )P x y z, ,0 0 0   
in the direction = + +u u uu i j k1 2 3  is the number

( ) ( )+ + + −
→ +

f x su y su z su f x y z
s

lim
, , , ,

.
s 0

0 1 0 2 0 3 0 0 0

Show that the one-sided directional derivative of

( ) = + +f x y z x y z, , 2 2 2

at the origin equals 1 in any direction but that f  has no gradient 
vector at the origin.

 99. Normal line through origin Show that the line normal to the 
surface + =xy z 2 at the point ( )1,1,1  passes through the origin.

 100. Tangent plane and normal line 

 a. Sketch the surface − + =x y z 4.2 2 2

 b. Find a vector normal to the surface at ( )−2, 3, 3 . Add the  
vector to your sketch.

 c. Find equations for the tangent plane and the normal line at 
( )−2, 3, 3 .

Partial Derivatives with Constrained Variables
In Exercises 101 and 102, begin by drawing a diagram that shows the 
relations among the variables.

 101. If =w x e yz2  and = −z x y2 2 find

 a. ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

w
y z

 b. ( )∂
∂

w
z x

 c. ( )∂
∂

w
z

.
y

 102. Let ( )=U f P V T, ,  be the internal energy of a gas that obeys 
the ideal gas law =PV nRT  (n and R constant). Find

 a. ( )∂
∂

U
T P

 b. ( )∂
∂

U
V

.
T

Partial Derivatives

 1. Function with saddle at the origin If you did Exercise 64 in 
Section 13.2, you know that the function

( )
( ) ( )

( ) ( )
=

−
+

≠

=

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x y
xy

x y
x y

x y

x y
,

, , 0, 0

0, , 0, 0

2 2

2 2

(see the accompanying figure) is continuous at ( )0, 0 . Find 
( )f 0, 0xy  and ( )f 0, 0 .yx

z

y

x

CHAPTER 13 Additional and Advanced Exercises

 2. Finding a function from second partials Find a func-
tion ( )=w f x y,  whose first partial derivatives are 
∂ ∂ = +w x e y1 cosx  and ∂ ∂ = −w y y e y2 sinx  and whose 
value at the point ( )ln 2, 0  is ln 2.

 3. A proof of Leibniz’s Rule Leibniz’s Rule says that if f  is con-
tinuous on a b,[ ] and if u x( ) and υ x( ) are differentiable functions 
of x whose values lie in a b,[ ], then

∫ υ υ= −
υd

dx
f t dt f x d

dx
f u x du

dx
( ) ( ( )) ( ( )) .

u x

x

( )

( )

Prove the rule by setting

∫υ υ υ( ) = = =
υ

g u f t dt u u x x, ( ) , ( ), ( )
u

and calculating dg dx  with the Chain Rule.

 4. Finding a function with constrained second partials  
Suppose that f  is a twice-differentiable function of r, that 

= + +r x y z ,2 2 2  and that

+ + =f f f 0.xx yy zz
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 Chapter 13  Additional and Advanced Exercises 857

Show that for some constants a and b,

= +f r a
r

b( ) .

 5. Homogeneous functions A function ( )f x y,  is homogeneous of 
degree n (n a nonnegative integer) if ( ) ( )=f tx ty t f x y, ,n  for all t, 
x, and y. For such a function (sufficiently differentiable), prove that

 a. ( )∂
∂

+ ∂
∂

=x
f
x

y
f
y

nf x y,

 b. x
f

x
xy

f
x y

y
f

y
n n f2 1 .2

2

2

2
2

2

2( ) ( )
∂
∂

+ ∂
∂ ∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ + ∂

∂
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = −

 6. Surface in polar coordinates Let

f r
r

r
r

r
,

sin 6
6

, 0

1, 0,
θ( ) =

≠

=

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

where r and θ are polar coordinates. Find

 a. θ( )
→

f rlim ,
r 0

 b. ( )f 0, 0r

 c. θ( ) ≠θf r r, , 0.

z = f (r, u)

Gradients and Tangents

 7. Properties of position vectors Let = + +x y zr i j k and let 
=r r .

 a. Show that ∇ =r rr .

 b. Show that ( )∇ = −r nr r.n n 2

 c. Find a function whose gradient equals r.

 d. Show that ⋅ =d r drr r .

 e. Show that ( )∇ ⋅ =A r A for any constant vector A.

 8. Gradient orthogonal to tangent Suppose that a differentiable 
function ( )f x y,  has the constant value c along the differentiable 
curve = =x g t y h t( ), ( ); that is,

( ) =f g t h t c( ), ( )

for all values of t. Differentiate both sides of this equation with 
respect to t to show that ∇f  is orthogonal to the curve’s tangent 
vector at every point on the curve.

 9. Curve tangent to a surface Show that the curve

( ) ( )= + +t t t t tr i j k( ) ln ln

is tangent to the surface

− + =xz yz xycos 12

at ( )0, 0,1 .

 10. Curve tangent to a surface Show that the curve

( ) ( ) ( )= − + − + −t t
t

tr i j k( )
4

2 4 3 cos 2
3

is tangent to the surface

+ + − =x y z xyz 03 3 3

at ( )−0, 1,1 .

Extreme Values

 11. Extrema on a surface Show that the only possible maxima and 
minima of z on the surface = + − +z x y xy9 273 3  occur at 
( )0, 0  and ( )3, 3 . Show that neither a maximum nor a minimum 
occurs at ( )0, 0 . Determine whether z has a maximum or a mini-
mum at ( )3, 3 .

 12. Maximum in closed first quadrant Find the maximum value 
of ( ) = ( )− +f x y xye, 6 x y2 3  in the closed first quadrant (includes 
the nonnegative axes).

 13. Minimum volume cut from first octant Find the minimum 
volume for a region bounded by the planes = = =x y z0, 0, 0 
and a plane tangent to the ellipsoid

+ + =x
a

y
b

z
c

1
2

2

2

2

2

2

at a point in the first octant.

 14. Minimum distance from a line to a parabola in xy-plane By 
minimizing the function υ υ( ) ( )( )= − + −f x y u x u y, , , 2 2 
subject to the constraints = +y x 1 and υ=u ,2  find the mini-
mum distance in the xy-plane from the line = +y x 1 to the 
parabola =y x.2

Theory and Examples

 15. Boundedness of first partials implies continuity Prove the 
following theorem: If ( )f x y,  is defined in an open region R of 
the xy-plane and if f x  and f y are bounded on R, then ( )f x y,  is 
continuous on R. (The assumption of boundedness is essential.)

 16. Suppose that = + +t g t h t k tr i j k( ) ( ) ( ) ( )  is a smooth curve in 
the domain of a differentiable function ( )f x y z, , . Describe the 
relation among ∇df dt f, , and = d dtv r . What can be said 
about ∇f  and v at interior points of the curve where f  has extreme 
values relative to its other values on the curve? Give reasons for 
your answer.

 17. Finding functions from partial derivatives Suppose that f  
and g are functions of x and y such that

∂
∂

= ∂
∂

∂
∂

= ∂
∂

f
y

g
x

f
x

g
y

and ,

and suppose that

( ) ( ) ( )∂
∂

= = = =f
x

f g f0, 1, 2 1, 2 5, and 0, 0 4.

Find ( )f x y,  and ( )g x y, .

 18. Rate of change of the rate of change We know that if ( )f x y,  
is a function of two variables and if = +a bu i j is a unit vector, 
then D f x y f x y a f x y b, , ,x yu ( ) ( ) ( )= +  is the rate of change 
of ( )f x y,  at ( )x y,  in the direction of u. Give a similar formula for 
the rate of change of the rate of change of ( )f x y,  at ( )x y,  in the 
direction u.

 19. Path of a heat-seeking particle A heat-seeking particle has 
the property that at any point ( )x y,  in the plane, it moves in the 
direction of maximum temperature increase. If the temperature at 
( )x y,  is ( ) = − −T x y e x, cos ,y2  find an equation =y f x( ) for 
the path of a heat-seeking particle at the point π( )4, 0 .
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858 Chapter 13 Partial Derivatives

 20. Velocity after a ricochet A particle traveling in a straight 
line with constant velocity + −i j k5  passes through the point 
( )0, 0, 30  and hits the surface = +z x y2 3 .2 2  The particle rico-
chets off the surface, the angle of reflection being equal to the 
angle of incidence. Assuming no loss of speed, what is the veloc-
ity of the particle after the ricochet? Simplify your answer.

 21. Directional derivatives tangent to a surface Let S be 
the surface that is the graph of ( ) = − −f x y x y, 10 .2 2  
Suppose that the temperature in space at each point (x, y, z) is 
T x y z x y y z x y z, , 4 14 .2 2( ) = + + + +

 a. Among all the possible directions tangential to the surface S 
at the point ( )0, 0,10 , which direction will make the rate of 
change of temperature at ( )0, 0,10  a maximum?

 b. Which direction tangential to S at the point ( )1,1, 8  will make 
the rate of change of temperature a maximum?

 22. Drilling another borehole On a flat surface of land, geologists  
drilled a borehole straight down and hit a mineral deposit at  
300 m. They drilled a second borehole 30 m to the north of the first 
and hit the mineral deposit at 285 m. A third borehole 30 m east 
of the first borehole struck the mineral deposit at 307.5 m. The  
geologists have reasons to believe that the mineral deposit is in the 

shape of a dome, and for the sake of economy, they would like to  
find where the deposit is closest to the surface. Assuming the sur-
face to be the xy-plane, in what direction from the first borehole 
would you suggest the geologists drill their fourth borehole?

The one-dimensional heat equation If ( )w x t,  represents the tem-
perature at position x at time t in a uniform wire with perfectly insu-
lated sides, then the partial derivatives wxx  and wt  satisfy a differential 
equation of the form

=w
c

w1 .xx t2

This equation is called the one-dimensional heat equation. The value 
of the positive constant c 2 is determined by the material from which 
the wire is made.

 23. Find all solutions of the one-dimensional heat equation of the 
form π=w e xsin ,rt  where r is a constant.

 24. Find all solutions of the one-dimensional heat equation that have the 
form =w e kxsinrt  and satisfy the conditions that ( ) =w t0, 0 
and ( ) =w L t, 0. What happens to these solutions as → ∞t ?

Mathematica/Maple Projects

Projects can be found within MyLab Math.

• Plotting Surfaces

Efficiently generate plots of surfaces, contours, and level curves.

• Exploring the Mathematics Behind Skateboarding: Analysis of the Directional Derivative

The path of a skateboarder is introduced, first on a level plane, then on a ramp, and finally on a paraboloid. Compute, plot, and analyze the 
directional derivative in terms of the skateboarder.

• Looking for Patterns and Applying the Method of Least Squares to Real Data

Fit a line to a set of numerical data points by choosing the line that minimizes the sum of the squares of the vertical distances from the points to 
the line.

• Lagrange Goes Skateboarding: How High Does He Go?

Revisit and analyze the skateboarders’ adventures for maximum and minimum heights from both a graphical and analytic perspective using 
Lagrange multipliers.

CHAPTER 13 Technology Application Projects
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OVERVIEW In this chapter we define the double integral of a function of two variables 
f x y, ( ) over a region in the plane as the limit of approximating Riemann sums. Just as a 
single integral can represent signed area, so can a double integral represent signed volume. 
Double integrals can be evaluated using the Fundamental Theorem of Calculus studied in 
Section 5.4, but now the evaluations are done twice by integrating with respect to each of 
the variables x and y in turn. Double integrals can be used to find areas of more general 
regions in the plane than those encountered in Chapter 5. Moreover, just as the Substitution 
Rule could simplify finding single integrals, we can sometimes use polar coordinates to 
simplify computing a double integral. We study more general substitutions for evaluating 
double integrals as well.

We also define the triple integral of a function of three variables f x y z,   ,  ( ) over a 
region in space. Triple integrals can be used to find volumes of still more general regions 
in space, and their evaluation is like that of double integrals with yet a third evaluation. 
Cylindrical or spherical coordinates can sometimes be used to simplify the calculation of 
a triple integral, and we investigate those techniques. Double and triple integrals have a 
number of applications, such as calculating the average value of a multivariable function, 
and finding moments and centers of mass.

Multiple Integrals

14

14.1 Double and Iterated Integrals over Rectangles

In Chapter 5 we defined the definite integral of a function f x( ) over an interval a b,  [ ] as a 
limit of Riemann sums. In this section we extend this idea to define the double integral of 
a function of two variables f x y,  ( ) over a bounded rectangle R in the plane. The Riemann 
sums for the integral of a single-variable function f x( ) are obtained by partitioning a finite 
interval into thin subintervals, multiplying the width of each subinterval by the value of f  
at a point ck inside that subinterval, and then adding together all the products. A similar 
method of partitioning, multiplying, and summing is used to construct double integrals as 
limits of approximating Riemann sums.

Double Integrals

We begin our investigation of double integrals by considering the simplest type of planar 
region, a rectangle. We consider a function f x y, ( ) defined on a rectangular region R,

R a x b c y d: , .≤ ≤ ≤ ≤

We subdivide R into small rectangles using a network of lines parallel to the x- and y-axes 
(Figure 14.1). The lines divide R into n rectangular pieces, where the number of such 
pieces n gets large as the width and height of each piece gets small. These rectangles form 
a partition of R. A small rectangular piece of width xΔ  and height yΔ  has area 

FIGURE 14.1 Rectangular grid parti-
tioning the region R into small rectangles 
of area Δ = Δ ΔA x y .k k k

x

y

0 a

c

b

d

R

Δyk

Δxk

ΔAk

(xk, yk)
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860 Chapter 14 Multiple Integrals

FIGURE 14.2 Approximating solids 
with rectangular boxes leads us to define 
the volumes of more general solids as 
double integrals. The volume of the solid 
shown here is the double integral of f x y,  ( ) 
over the base region R.

z

y
d

b

x
ΔAk

z = f (x, y)

f (xk, yk)

(xk, yk)
R

Δ = Δ ΔA x y. If we number the small pieces partitioning R in some order, then their areas are 
given by numbers Δ Δ Δ…A A A, , , ,n1 2  where AkΔ  is the area of the kth small rectangle.

To form a Riemann sum over R, we choose a point x y, k k( ) in the kth small rectangle, 
multiply the value of f  at that point by the area A ,kΔ  and add together the products:

S f x y A,  .n
k

n

k k k
1

∑ ( )= Δ
=

Depending on how we pick x y, k k( ) in the kth small rectangle, we may get different values 
for S .n

We are interested in what happens to these Riemann sums as the widths and heights of 
all the small rectangles in the partition of R approach zero. The norm of a partition P, writ-
ten P , is the largest width or height of any rectangle in the partition. If =P 0.1, then 
all the rectangles in the partition of R have width at most 0.1 and height at most 0.1. 
Sometimes the Riemann sums converge as the norm of P goes to zero, which is written 

→P 0. The resulting limit is then written as

∑ ( ) Δ
→ =

f x y Alim ,  .
P

k

n

k k k
0

1

As P 0→  and the rectangles get narrow and short, their number n increases, so we can 
also write this limit as

f x y Alim ,  ,
n

k

n

k k k
1

∑ ( ) Δ
→∞ =

with the understanding that →P 0, and hence A 0kΔ → , as n → ∞.
Many choices are involved in a limit of this kind. The collection of small rectangles is 

determined by the grid of vertical and horizontal lines that determine a rectangular parti-
tion of R. In each of the resulting small rectangles there is a choice of an arbitrary point 
x y, k k( ) at which f  is evaluated. These choices together determine a single Riemann sum. 

To form a limit, we repeat the whole process again and again, choosing partitions whose 
rectangle widths and heights both go to zero and whose number goes to infinity.

When a limit of the sums Sn exists, giving the same limiting value no matter what 
choices are made, then the function f  is said to be integrable and the limit is called the 
double integral of f  over R, which is written as

f x y dA f x y dx dy,  or ,  .
R R
∫∫ ∫∫( ) ( )

It can be shown that if f x y, ( ) is a continuous function throughout R, then f  is integrable, 
as in the single-variable case discussed in Chapter 5. Many discontinuous functions are 
also integrable, including functions that are discontinuous only on a finite number of points 
or smooth curves. We leave the proof of these facts to a more advanced text.

Double Integrals as Volumes

When f x y, ( ) is a positive function over a rectangular region R in the xy-plane, we may 
interpret the double integral of f  over R as the volume of the three-dimensional solid 
region over the xy-plane bounded below by R and above by the surface z f x y,  ( )=  
(Figure 14.2). Each term f x y A, k k k( ) Δ  in the sum ∑ ( )= ΔS f x y A, n k k k  is the vol-
ume of a vertical rectangular box that approximates the volume of the portion of the solid 
that stands directly above the base A .kΔ  The sum Sn thus approximates what we want to 
call the total volume of the solid. We define this volume to be

S f x y dAVolume lim ,   ,
n

n

R
∫∫ ( )= =

→∞

where A 0kΔ →  as n .→ ∞
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 14.1  Double and Iterated Integrals over Rectangles 861

As you might expect, this more general method of calculating volume agrees with the 
methods in Chapter 6, but we do not prove this here. Figure 14.3 shows Riemann sum 
approximations to the volume becoming more accurate as the number n of boxes increases.

FIGURE 14.3 As n increases, the Riemann sum approximations approach the total 
volume of the solid shown in Figure 14.2.

(a) n = 16 (b) n = 64 (c) n = 256

Fubini’s Theorem for Calculating Double Integrals

Suppose that we wish to calculate the volume under the plane z x y4= − −  over the 
rectangular region ≤ ≤ ≤ ≤R x y: 0 2,  0 1 in the xy-plane. If we apply the method of 
slicing from Section 6.1, with slices perpendicular to the x-axis (Figure 14.4), then the 
volume is

 A x dx( ) ,
x

x

0

2

∫ =

=
 (1)

where A x( ) is the cross-sectional area at x. For each value of x, we may calculate A x( ) as 
the integral

 A x x y dy( ) 4 ,
y

y

0

1

∫ ( )= − −
=

=
 (2)

which is the area under the curve z x y4= − −  in the plane of the cross-section at x. In 
calculating A x( ), x is held fixed and the integration takes place with respect to y. Combining 
Equations (1) and (2), we see that the volume of the entire solid is

∫ ∫∫

∫ ∫

( )
( )

( )= = − −

= − −⎡
⎣⎢

⎤
⎦⎥

= −

= −⎡
⎣⎢

⎤
⎦⎥

=

=

=

=

=

=

=

=

=

=

=

=

=

A x dx x y dy dx

y xy
y

dx x dx

x x

Volume ( ) 4

4
2

7
2

7
2 2

5.

x

x

y

y

x

x

y

y

x

x

x

x

0

2

0

1

0

2

2

0

1

0

2

0

2

2

0

2

We often omit parentheses separating the two integrals in the formula above and write

 x y dy dxVolume 4 .
0

1

0

2

∫∫ ( )= − −  (3)

The expression on the right, called an iterated or repeated integral, says that the volume 
is obtained by integrating x y4 − −  with respect to y from y 0=  to y 1=  while holding 
x fixed, and then integrating the resulting expression in x from x 0=  to x 2.=  The limits 
of integration 0 and 1 are associated with y, so they are placed on the integral closest to dy. 
The other limits of integration, 0 and 2, are associated with the variable x, so they are 
placed on the outside integral symbol that is paired with dx.

FIGURE 14.4 To obtain the cross-
sectional area A x( ), we hold x fixed and 
integrate with respect to y.

y

z

x

x
1

2

4

z = 4 − x − y

A(x) = 

          
(4 − x − y) dy

y = 1

y = 0
L
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862 Chapter 14 Multiple Integrals

FIGURE 14.5 To obtain the cross-
sectional area A y( ), we hold y fixed and 
integrate with respect to x.

y

z

x

x
1

2

4

z = 4 − x − y

A(y) = 

          
(4 − x − y) dx

x = 2

x = 0
L

THEOREM 1—Fubini’s Theorem (First Form)
If f x y,  ( ) is continuous throughout the rectangular region R a x b: , 
c y d, then

f x y dA f x y dx dy f x y dy dx,  ,   ,   .
R

a

b

c

d

c

d

a

b

∫∫ ∫∫ ∫∫( ) ( ) ( )= =

What would have happened if we had calculated the volume by slicing with planes 
perpendicular to the y-axis (Figure 14.5)? As a function of y, the typical cross-sectional 
area is

 A y x y dx x x xy y( ) 4 4
2

6 2 .
x

x

x

x

0

2 2

0

2

∫ ( )= − − = − −⎡
⎣⎢

⎤
⎦⎥

= −
=

=

=

=

 (4)

The volume of the entire solid is therefore

A y dy y dy y yVolume ( ) 6 2 6 5,
y

y

y

y

0

1
2

0

1

0

1

∫ ∫ ( )= = − = −⎡
⎣
⎢

⎤
⎦
⎥ =

=

=

=

=

in agreement with our earlier calculation.
Again, we may give a formula for the volume as an iterated integral by writing

x y dx dyVolume 4 .
0

2

0

1

∫∫ ( )= − −

The expression on the right says we can find the volume by integrating x y4  with 
respect to x from x 0 to x 2 as in Equation (4) and integrating the result with respect 
to y from y 0 to y 1. In this iterated integral, the order of integration is first x and 
then y, the reverse of the order in Equation (3).

What do these two volume calculations with iterated integrals have to do with the 
double integral

x y dA4
R
∫∫ ( )− −

over the rectangle R x y: 0 2,  0 1? The answer is that both iterated integrals 
give the value of the double integral. This is what we would reasonably expect, since the 
double integral measures the volume of the same region as the two iterated integrals. A 
theorem published in 1907 by Guido Fubini says that the double integral of any continu-
ous function over a rectangle can be calculated as an iterated integral in either order of 
integration. (Fubini proved his theorem in greater generality, but this is what it says in our 
setting.)

Fubini’s Theorem says that double integrals over rectangles can be calculated as iter-
ated integrals. Thus, we can evaluate a double integral by integrating with respect to one 
variable at a time using the Fundamental Theorem of Calculus.

Fubini’s Theorem also says that we may calculate the double integral by integrating in 
either order, a genuine convenience. When we calculate a volume by slicing, we may use 
either planes perpendicular to the x-axis or planes perpendicular to the y-axis.

EXAMPLE 1  Calculate f x y dA,R ( )∫∫  for

f x y x y R x y, 100 6 and : 0 2, 1 1.2( ) = − ≤ ≤ − ≤ ≤

HISTORICAL BIOGRAPHY

Guido Fubini
(1879–1943)
Fubini attended secondary school in Venice, 
Italy, where he showed that he was brilliant 
at mathematics. His advanced study was at 
the Scuola Normale Superiore di Pisa, where 
his doctoral thesis was in geometry. He then 
worked on harmonic functions in curved 
spaces. Fubini’s interests were wide ranging, 
from differential geometry to analysis and to 
the applications of differential equations. 

To know more, visit the companion Website. 
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 14.1  Double and Iterated Integrals over Rectangles 863

Solution Figure 14.6 displays the volume beneath the surface. By Fubini’s Theorem,

f x y dA x y dx dy x x y dy

y dy y y

, 100 6 100 2

200 16 200 8 400.

R x

x
2

0

2

1

1
3

0

2

1

1

2

1

1

1

1

∫∫ ∫∫ ∫

∫

( ) ( )

( )

= − = −⎡
⎣
⎢

⎤
⎦
⎥

= − = −⎡
⎣
⎢

⎤
⎦
⎥ =

− =

=

−

−−

Reversing the order of integration gives the same answer:

x y dy dx y x y dx

x x dx

dx

100 6 100 3

100 3 100 3

200 400.

y

y
2

1

1

0

2
2 2

1

1

0

2

2 2

0

2

0

2

∫∫ ∫

∫

∫

( )

( ) ( )[ ]

− = −⎡
⎣
⎢

⎤
⎦
⎥

= − − − −

= =

− =−

=

EXAMPLE 2  Find the volume of the region bounded above by the elliptical parabo-
loid z x y10 32 2= + +  and below by the rectangle ≤ ≤ ≤ ≤R x y: 0 1,  0 2.

Solution The surface and volume are shown in Figure 14.7. The volume is given by the 
double integral

V x y dA x y dy dx

y x y y dx

x dx x x

10 3 10 3

10

28 2 28 2
3

86
3

.

R

y

y

2 2 2 2

0

2

0

1

2 3

0

2

0

1

2

0

1
3

0

1

∫∫ ∫∫

∫

∫

( ) ( )

( )

= + + = + +

= + +⎡
⎣
⎢

⎤
⎦
⎥

= + = +⎡
⎣⎢

⎤
⎦⎥

=

=

=

FIGURE 14.6 The double integral 
f x y dA,R ( )∫∫  gives the volume under 

this surface over the rectangular region R 
(Example 1).

1R
2

1

50

z

x

−1

z = 100 − 6x2y

y

100

Evaluating Iterated Integrals
In Exercises 1–14, evaluate the iterated integral.

 1. xy dy dx2
0

4

1

2

∫∫  2. x y dy dx
1

1

0

2

∫∫ ( )−
−

 3. x y dx dy1
1

1

1

0

∫∫ ( )+ +
−−

 4. x y
dx dy1

2

2 2

0

1

0

1

∫∫ ( )− +

 5. ∫∫ ( )− y dy dx4 2

0

2

0

3
 6. x y xy dy dx22

2

0

0

3

∫∫ ( )−
−

 7. y
xy

dx dy
10

1

0

1

∫∫ +
 8. x y dx dy

20

4

1

4

∫∫ ( )+

 9. ∫∫ +e dy dxx y2

1

ln 5

0

ln 2
 10. ∫∫ xye dy dxx

1

2

0

1

 11. y x dx dysin
0

2

1

2

∫∫
π

−
 12. x y dx dysin cos

0

2

∫∫ ( )+
π

π

π

 13. 
x

xy
dx dy

lne

11

4

∫∫  14. x y dy dxln
1

2

1

2

∫∫−

 15. Find all values of the constant c so that x y dx dy2 3
c

00

1

∫∫ ( )+ = .

 16. Find all values of the constant c so that 

xy dy dx c1 4 4
c

0

2

1 ∫∫ ( )+ = +
−

.

Evaluating Double Integrals over Rectangles
In Exercises 17–24, evaluate the double integral over the given 
region R.

 17. ∫∫ ( )− ≤ ≤ ≤ ≤y x dA R x y6 2 , : 0 1, 0 2
R

2

 18. x
y

dA R x y,  : 0 4, 1 2
R

2∫∫
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ≤ ≤ ≤ ≤

EXERCISES 14.1

FIGURE 14.7 The double 
integral f x y dA,  R ( )∫∫  gives the 
volume under this surface over the 
rectangular region R (Example 2).

y

x

z

R
2

10

1

z = 10 + x2 + 3y2
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864 Chapter 14 Multiple Integrals

FIGURE 14.8 A rectangular grid parti-
tioning a bounded, nonrectangular region 
into rectangular cells.

R

Δxk

Δyk

ΔAk

(xk, yk)

 19. xy y dA R x ycos , : 1 1, 0
R
∫∫ π− ≤ ≤ ≤ ≤

 20. y x y dA R x ysin , : 0, 0
R
∫∫ π π( )+ − ≤ ≤ ≤ ≤

 21. e dA R x y, : 0 ln 2, 0 ln 2x y

R
∫∫ ≤ ≤ ≤ ≤−

 22. xye dA R x y, : 0 2, 0 1xy

R

2∫∫ ≤ ≤ ≤ ≤

 23. 
xy

x
dA R x y

1
, : 0 1, 0 2

R

3

2∫∫ +
≤ ≤ ≤ ≤

 24. 
y

x y
dA R x y

1
, : 0 1, 0 1

R
2 2∫∫ +

≤ ≤ ≤ ≤

In Exercises 25 and 26, integrate f  over the given region.

 25. Square f x y xy, 1( ) ( )=  over the square x1 2,≤ ≤  
y1 2≤ ≤

 26. Rectangle f x y y xy, cos( ) =  over the rectangle x0 ,π≤ ≤  
y0 1≤ ≤

In Exercises 27 and 28, sketch the solid whose volume is given by the 
specified integral.

 27. x y dy dx9 2 2

0

2

0

1

∫∫ ( )− −  28. x y dx dy7
1

4

0

3

∫∫ ( )− −

 29. Find the volume of the region bounded above by the parabo-
loid = +z x y2 2 and below by the square − ≤ ≤R x: 1 1, 
− ≤ ≤y1 1.

 30. Find the volume of the region bounded above by the elliptical parab-
oloid z x y16 2 2= − −  and below by the square ≤ ≤R x: 0 2, 

≤ ≤y0 2.

 31. Find the volume of the region bounded above by the plane 
= − −z x y2  and below by the square ≤ ≤R x: 0 1, 
≤ ≤y0 1.

 32. Find the volume of the region bounded above by the plane 
=z y 2 and below by the rectangle ≤ ≤R x: 0 4, ≤ ≤y0 2.

 33. Find the volume of the region bounded above by the surface 
=z x y2 sin cos  and below by the rectangle π≤ ≤R x: 0 2, 

π≤ ≤y0 4.

 34. Find the volume of the region bounded above by the sur-
face = −z y4 2 and below by the rectangle ≤ ≤R x: 0 1, 

≤ ≤y0 2.

 35. Find a value of the constant k so that ∫∫ =kx y dx dy 1.2

0

3

1

2

 36. Evaluate ∫∫
π

−
x y dy dxsin .

0

2

1

1

 37. Use Fubini’s Theorem to evaluate

∫∫ +
x

xy
dx dy

1
.

0

1

0

2

 38. Use Fubini’s Theorem to evaluate

∫∫ xe dx dy.xy

0

3

0

1

 39. Use a software application to compute the integrals

 a. ∫∫ ( )

−
+

y x
x y

dx dy30

2

0

1
 b. ∫∫ ( )

−
+

y x
x y

dy dx30

1

0

2

Explain why your results do not contradict Fubini’s Theorem.

 40. If ( )f x y,  is continuous over ≤ ≤ ≤ ≤R a x b c y d:  ,   and

∫∫ υ υ( ) ( )=F x y f u d du, ,
c

y

a

x

on the interior of R, find the second partial derivatives Fxy and F .yx

T

14.2 Double Integrals over General Regions

In this section we define and evaluate double integrals over bounded regions in the plane 
that are more general than rectangles. These double integrals are also evaluated as iter-
ated integrals, with the main practical problem being that of determining the limits of 
integration. Since the region of integration may have boundaries other than line segments 
parallel to the coordinate axes, the limits of integration often involve variables, not just 
constants.

Double Integrals over Bounded, Nonrectangular Regions

To define the double integral of a function ( )f x y,  over a bounded, nonrectangular region 
R, such as the one in Figure 14.8, we again begin by covering R with a grid of small 
rectangular cells whose union contains all points of R. This time, however, we cannot 
exactly fill R with a finite number of rectangles lying inside R since its boundary is 
curved, and some of the small rectangles in the grid lie partly outside R. A partition of R 
is formed by taking the rectangles that lie completely inside it, not using any that are 
either partly or completely outside. For commonly arising regions, more and more of R 
is included as the norm of a partition (the largest width or height of any rectangle used) 
approaches zero.

M14_HASS5901_15_GE_C14.indd   864 08/03/2023   11:13

www.konkur.in

Telegram: @uni_k



 14.2  Double Integrals over General Regions 865

Once we have a partition of R, we number the rectangles in some order from 1 to n and 
let ΔAk be the area of the kth rectangle. We then choose a point ( )x y,k k  in the kth rectan-
gle and form the Riemann sum

∑ ( )= Δ
=

S f x y A, .n
k

n

k k k
1

As the norm of the partition forming Sn goes to zero, →P 0, the width and height of 
each enclosed rectangle go to zero, their area ΔAk goes to zero, and their number goes to 
infinity. If ( )f x y,  is a continuous function, then these Riemann sums converge to a limit-
ing value that is not dependent on any of the choices we made. This limit is called the 
double integral of ( )f x y,  over R:

∑ ∫∫( ) ( )Δ =
→ =

f x y A f x y dAlim , , .
P

k

n

k k k

R
0

1

The nature of the boundary of R introduces issues not found in integrals over an  
interval. When R has a curved boundary, the n rectangles of a partition lie inside R but do 
not cover all of R. In order for a partition to approximate R well, the parts of R covered by 
small rectangles lying partly outside R must become negligible as the norm of the partition 
approaches zero. This property of being nearly filled in by a partition of small norm is 
satisfied by all the regions that we will encounter. There is no problem with boundaries 
made from polygons, circles, and ellipses or from continuous graphs over an interval, 
joined end to end. A curve with a “fractal” type of shape would be problematic, but such 
curves arise rarely in most applications. A careful discussion of which types of regions R 
can be used for computing double integrals is left to a more advanced text.

Volumes

If ( )f x y,  is positive and continuous over R, we define the volume of the solid region 
between R and the surface ( )=z f x y,  to be f x y dA, ,R ( )∫∫  as before (Figure 14.9).

If R is a region like the one shown in the xy-plane in Figure 14.10, bounded “above” 
and “below” by the curves =y g x( )2  and =y g x( )1  and on the sides by the lines 

= =x a x b, , we may again calculate the volume by the method of slicing. We first 
calculate the cross-sectional area

∫ ( )=
=

=
A x f x y dy( ) ,

y g x

y g x

( )

( )

1

2

and then integrate A x( ) from =x a to =x b to get the volume as an iterated integral:

 ∫ ∫∫ ( )= =V A x dx f x y dy dx( ) , .
a

b

g x

g x

a

b

( )

( )

1

2
 (1)

Similarly, if R is a region like the one shown in Figure 14.11, bounded by the curves 
=x h y( )2  and =x h y( )1  and the lines =y c and =y d, then the volume calculated by 

slicing is given by the iterated integral

 ∫∫ ( )= f x y dx dyVolume , .
h y

h y

c

d

( )

( )

1

2
 (2)

That the iterated integrals in Equations (1) and (2) both give the volume that we 
defined to be the double integral of f  over R is a consequence of the following stronger 
form of Fubini’s Theorem.

FIGURE 14.9 We define the volume of 
a solid with a curved base as a limit of the 
sums of volumes of approximating rectan-
gular boxes.

z

y

x

R

0

Volume = lim Σ f(xk, yk) ΔAk =∫∫
  
  f (x, y) dA

R

ΔAk(xk, yk)

Height = f(xk, yk)

z = f(x, y)

FIGURE 14.10 The area of the vertical 
slice shown here is A x( ). To calculate the 
volume of the solid, we integrate this area 
from =x a to =x b:

∫ ∫∫ ( )=A x dx f x y dy dx( ) , .
a

b

g x

g x

a

b

( )

( )

1

2

z

yx

0

R

x
a

b

R

y = g2(x)

y = g1(x)

z = f (x, y)

A(x)
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866 Chapter 14 Multiple Integrals

FIGURE 14.11 The volume of the solid 
shown here is 

∫ ∫∫ ( )=A y dy f x y dx dy( ) , .
c

d

h y

h y

c

d

( )

( )

1

2

For a given solid, Theorem 2 says we can 
calculate the volume as in Figure 14.10 or 
in the way shown here. Both calculations 
have the same result.

z

y

y
d

c

x

z = f (x, y)
A(y)

x = h1(y)

x = h2(y)

THEOREM 2—Fubini’s Theorem (Stronger Form)
Let ( )f x y,  be continuous on a region R.

1. If R is defined by ≤ ≤ ≤ ≤a x b g x y g x,   ( ) ( ),1 2  with g1 and g2 continuous 
on a b,[ ], then

f x y dA f x y dy dx, , .
R

g x

g x

a

b

( )

( )

1

2

∫∫ ∫∫( ) ( )=

2. If R is defined by ≤ ≤ ≤ ≤c y d h y x h y,   ( ) ( ),1 2  with h1 and h2 continuous 
on c d,[ ], then

f x y dA f x y dx dy, , .
R

h y

h y

c

d

( )

( )

1

2

∫∫ ∫∫( ) ( )=

Some iterated double integrals we will encounter later in this text will use variables of 
integration other than x and y. For instance, we may write

∫∫ ∫∫υ υ υ υ( ) ( )=
υ

υ

=

=

=

=
F u d du F u d du, , .

G u

G u

u p

u q

G u

G u

p

q

( )

( )

( )

( )

1

2

1

2

Regardless of which specific variables of integration are used, the limits of an iterated 
double integral always satisfy these properties:

• The limits of the outside integral are constants (they do not depend on either variable 
of integration), and

• the limits of the inside integral are functions that may depend on the variable of the 
outside integral.

EXAMPLE 1  Find the volume of the right prism whose base is the triangle in the 
xy-plane bounded by the x-axis and the lines =y x and =x 1 and whose top lies in 
the plane

( )= = − −z f x y x y, 3 .

Solution See Figure 14.12a. For any x between 0 and 1, y may vary from =y 0 to 
=y x (Figure 14.12b). Hence,

∫∫ ∫

∫ ( )

( )= − − = − −⎡
⎣⎢

⎤
⎦⎥

= − = −⎡
⎣⎢

⎤
⎦⎥

=

=

=

=

=

V x y dy dx y xy
y

dx

x x dx x x

3 3
2

3 3
2

3
2 2

1.

x

y

y x

x

x

00

1 2

00

1

2

0

1 2 3

0

1

When the order of integration is reversed (Figure 14.12c), the integral for the volume is

∫∫ ∫

∫

∫

( )
( )

( )= − − = − −⎡
⎣⎢

⎤
⎦⎥

= − − − + +

= − + = − +⎡
⎣⎢

⎤
⎦⎥

=

=

=

=

=

V x y dx dy x x xy dy

y y
y

y dy

y y dy y y
y

3 3
2

3 1
2

3
2

5
2

4 3
2

5
2

2
2

1.

y x y

x

y

y

1

0

1 2 1

0

1

2
2

0

1

2 2
3

0

1

0

1

The two integrals are equal, as they should be. 
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 14.2  Double Integrals over General Regions 867

EXAMPLE 2  Calculate

x
x

dA
sin

,
R
∫∫

where R is the triangle in the xy-plane bounded by the x-axis, the line =y x, and the line 
=x 1.

Solution The region of integration is shown in Figure 14.13. If we integrate first with 
respect to y and next with respect to x, then because x is held fixed in the first integration, 
we find

∫∫ ∫ ∫( ) = ⎡
⎣
⎢

⎤
⎦
⎥ = = − + ≈

=

=x
x

dy dx y
x

x
dx x dx

sin sin
sin cos(1) 1 0.46.

x

y

y x

00

1

00

1

0

1

FIGURE 14.12 (a) Prism with a triangular base in the xy-plane. The volume of this prism is defined 
as a double integral over R. To evaluate it as an iterated integral, we may integrate first with respect to 
y and then with respect to x, or the other way around (Example 1). (b) Integration limits of

∫∫ ( )
=

=

=

=
f x y dy dx, .

y

y x

x

x

00

1

If we integrate first with respect to y, we integrate along a vertical line through R and then integrate 
from left to right to include all the vertical lines in R. (c) Integration limits of

∫∫ ( )
=

=

=

=
f x y dx dy, .

x y

x

y

y 1

0

1

If we integrate first with respect to x, we integrate along a horizontal line through R and then inte-
grate from bottom to top to include all the horizontal lines in R.

(a)

y

z

x
R

(3, 0, 0)

(1, 0, 2)

(1, 0, 0) (1, 1, 0)

(1, 1, 1)

y = x

x = 1

z = f(x, y) = 3 − x − y

(b)

y

x

R

0 1

y = x

y = x

x = 1

y = 0

x

(c)

y

0 1

R

x = 1

y = x

x = y

x = 1

FIGURE 14.13 The region of integration 
in Example 2.

R

x

y

0 1

1

x = 1

y = x

Although Fubini’s Theorem assures us that a double integral may be calculated as an 
iterated integral in either order of integration, the value of one integral may be easier to 
find than the value of the other. The next example shows how this can happen.
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868 Chapter 14 Multiple Integrals

FIGURE 14.14 Finding the limits of 
integration when integrating first with 
respect to y and then with respect to x.

x

y

0 1

R
1 x2 + y2 = 1

x + y = 1

x

y

0 1x

L

1
R

Leaves at
y = 

"

1 − x2

Enters at
y = 1 − x

Leaves at
y = 

"

1 − x2

Enters at
y = 1 − x

x

y

0 1x

L

1
R

Smallest x
is x = 0.

Largest x
is x = 1.

(a)

(b) 

(c)

FIGURE 14.15 Finding the limits of 
integration when integrating first with 
respect to x and then with respect to y.

x

y

Leaves at
x = 

"

1 − y2

Enters at
x = 1 − y

0 1

y

1
R

Smallest y
is y = 0.

Largest y
is y = 1.

If we reverse the order of integration and attempt to calculate

∫∫
x

x
dx dy

sin
,

y

1

0

1

we run into a problem because ( )( )∫ x x dxsin  cannot be expressed in terms of elementary 
functions (there is no simple antiderivative).

There is no general rule for predicting which order of integration will be the good 
one in circumstances like these. If the order you first choose doesn’t work, try the 
other. Sometimes neither order will work, and then we may need to use numerical 
approximations. 

Finding Limits of Integration

We now give a procedure for finding limits of integration that applies for many regions in 
the plane. Regions that are more complicated, and for which this procedure fails, can often 
be split up into pieces on which the procedure works.

Using Vertical Cross-Sections When faced with evaluating ( )∫∫ f x y dA, ,R  integrating 
first with respect to y and then with respect to x, do the following three steps:

1. Sketch. Sketch the region of integration and label the bounding curves (Figure 14.14a).

2. Find the y-limits of integration. Imagine a vertical line L cutting through R in the direc-
tion of increasing y. Mark the y-values where L enters and leaves. These are the y-limits 
of integration and are usually functions of x (instead of constants) (Figure 14.14b).

3. Find the x-limits of integration. Choose x-limits that include all the vertical lines 
through R. These must be constants. The integral whose region of integration is shown 
in Figure 14.14c is

f x y dA f x y dy dx, , .
R

y x

y x

x

x

1

1

0

1 2

∫∫ ∫∫( ) ( )=
= −

= −

=

=

Using Horizontal Cross-Sections To evaluate the same double integral as an iterated 
integral with the order of integration reversed, use horizontal lines instead of vertical lines 
in Steps 2 and 3 (see Figure 14.15). The integral is

f x y dA f x y dx dy, , .
R

y

y

1

1

0

1 2

∫∫ ∫∫( ) ( )=
−

−

EXAMPLE 3  Sketch the region of integration for the integral

∫∫ ( )+x dy dx4 2
x

x2

0

2

2

and write an equivalent integral with the order of integration reversed.

Solution The region of integration is given by the inequalities ≤ ≤x y x22  and 
≤ ≤x0 2. It is therefore the region bounded by the curves =y x 2 and =y x2  between 
=x 0 and =x 2 (Figure 14.16a).

To find limits for integrating in the reverse order, we imagine a horizontal line passing 
from left to right through the region. It enters at =x y 2 and leaves at =x y. To include 
all such lines, we let y run from =y 0 to =y 4 (Figure 14.16b). The integral is

∫∫ ( )+x dx dy4 2 .
y

y

20

4

The common value of these integrals is 8. 

M14_HASS5901_15_GE_C14.indd   868 08/03/2023   11:14

www.konkur.in

Telegram: @uni_k



 14.2  Double Integrals over General Regions 869

Properties of Double Integrals

Like single integrals, double integrals of continuous functions have algebraic properties 
that are useful in computations and applications.

If ( )f x y,  and ( )g x y,  are continuous on the bounded region R, then the following 
properties hold.

1. Constant Multiple: cf x y dA c f x y dA c, , any number 
R R
∫∫ ∫∫( ) ( ) ( )=

2. Sum and Difference:

f x y g x y dA f x y dA g x y dA,   ,   , ,
R R R
∫∫ ∫∫ ∫∫( ) ( ) ( )( ) ( )± = ±

3. Domination:

(a) f x y dA f x y R, 0 if , 0 on
R
∫∫ ( ) ( )≥ ≥

(b) f x y dA g x y dA f x y g x y R, , if , , on
R R
∫∫ ∫∫( ) ( ) ( ) ( )≥ ≥

4. Additivity: If R is the union of two nonoverlapping regions R1 and R2, then

f x y dA f x y dA f x y dA, ,   ,
R R R1 2

∫∫ ∫∫ ∫∫( ) ( ) ( )= +

Property 4 assumes that the region of integration R is decomposed into nonoverlap-
ping regions R1 and R2 with boundaries consisting of a finite number of line segments or 
smooth curves. Figure 14.17 illustrates an example of this property.

The idea behind these properties is that integrals behave like sums. If the function 
( )f x y,  is replaced by its constant multiple ( )c f x y, , then a Riemann sum for f ,

∑ ( )= Δ
=

S f x y A, ,n
k

n

k k k
1

is replaced by a Riemann sum for c f:

∑ ∑( ) ( )Δ = Δ =
= =

c f x y A c f x y A cS, , .
k

n

k k k
k

n

k k k n
1 1

Taking limits as → ∞n  shows that = ∫∫
→∞

c S c f dAlim
n

n R  and = ∫∫
→∞

cS cf dAlim
n

n R  

are equal. It follows that the Constant Multiple Property carries over from sums to double 
integrals.

The other properties are also easy to verify for Riemann sums, and carry over to dou-
ble integrals for the same reason. While this discussion gives the idea, an actual proof that 
these properties hold requires a more careful analysis of how Riemann sums converge.

EXAMPLE 4  Find the volume of the wedgelike solid that lies beneath the surface 
= − −z x y16 2 2 and above the region R bounded by the curve =y x2 , the line 
= −y x4 2, and the x-axis.

Solution Figure 14.18a shows the surface and the “wedgelike” solid whose volume we 
want to calculate. Figure 14.18b shows the region of integration in the xy-plane. If we inte-
grate in the order dy dx (first with respect to y and then with respect to x), two integrations 

FIGURE 14.16 Region of integration for 
Example 3.

0 2

(a)

4 (2, 4)

0 2

(b)

4 (2, 4)

y
2

y

y

x

x

y = 2x

y = x2

x = 
"

yx =

FIGURE 14.17 The Additivity Property 
for rectangular regions holds for regions 
bounded by smooth curves.

0
x

y

R1

R2

R

R = R1 ∪  R2

LL LL LL

R1

f (x, y) dA = f (x, y) dA +

R2

f (x, y) dA
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870 Chapter 14 Multiple Integrals

will be required because y varies from =y 0 to =y x2  for ≤ ≤x0 0.5, and then 
varies from = −y x4 2 to =y x2  for ≤ ≤x0.5 1. So we choose to integrate in the 
order dx dy, which requires only one double integral whose limits of integration are indi-
cated in Figure 14.18b. The volume is then calculated as the iterated integral:

x y dA

x y dx dy

x x xy dx

y
y y y

y
y y

dy

y y y y y y

16

16

16
3

4 2
2

3 64
2

4
4

3 64 4

191
24

63
32

145
96

49
768 20 1344

20803
1680

12.4.

R

y

y

x y

x y

2 2

2 2

4

2 4

0

2

3
2

/ 4

2 / 4

0

2

3 2
2

6 4

0

2

2 3 4 5 7

0

2

2

2

∫∫

∫∫

∫

∫

( )

( )

( )
( ) ( )

− −

= − −

= − −⎡
⎣⎢

⎤
⎦⎥

= + − +
⋅

− + − +
⋅

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= + − − + +⎡
⎣⎢

⎤
⎦⎥

= ≈

( )

( )

+

=

= +

Our development of the double integral has focused on its representation of the 
volume of the solid region between R and the surface ( )=z f x y,  of a positive continuous 
function. Just as we saw with signed area in the case of single integrals, when ( )f x y,k k  is 
negative, the product ( ) Δf x y A,k k k is the negative of the volume of the rectangular box 
shown in Figure 14.9 that was used to form the approximating Riemann sum. So for an 
arbitrary continuous function f  defined over R, the limit of any Riemann sum represents 
the signed volume (not the total volume) of the solid region between R and the surface. The 
double integral has other interpretations as well, and in the next section we will see how it 
is used to calculate the area of a general region in the plane.

FIGURE 14.18 (a) The solid “wedge-
like” region whose volume is found in 
Example 4. (b) The region of integration  
R showing the order dx dy.

16

1

2 y

x

z

y = 4x − 2

z = 16 − x2 − y2

y = 2
"

 x

(a)

(b)

0 10.5

(1, 2)2

x

y
y = 4x − 2

y = 2
"

x

R

x =
4
y2

x =
4

y + 2

Sketching Regions of Integration
In Exercises 1–8, sketch the regions of integration associated with the 
given double integrals.

 1. ∫∫ ( )f x y dy dx,
x

0

2

0

3

 2. ∫∫ ( )
−−

f x y dy dx,
x

x

11

2 2

 3. ∫∫ ( )
−

f x y dx dy,  
y

4

2

2

2

 4. ∫∫ ( )f x y dx dy,
y

y2

0

1

 5. ∫∫ ( )f x y dy dx,
e

e

0

1

x

 6. ∫∫ ( )f x y dy dx,
xe

0

ln

1

2

 7. ∫∫ ( )f x y dx dy,
y

0

arcsin

0

1

 8. ∫∫ ( )f x y dx dy,
y

y

40

8 1 3

EXERCISES 14.2 

 9.  10. 

x

y

y = 2x

x = 3

x

y
y = x3

y = 8

x

y

y = x2

y = 3x

 11.  12. 

x

y

y = 1

x = 2

y = ex

Finding Limits of Integration
In Exercises 9–18, write an iterated integral for ∫∫ dAR  over the 
described region R using (a) vertical cross-sections, (b) horizontal 
cross-sections.
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 14.2  Double Integrals over General Regions 871

 13. Bounded by = =y x y,   0, and =x 9

 14. Bounded by = =y x xtan ,   0, and =y 1

 15. Bounded by = =−y e y,   1,x  and =x ln 3

 16. Bounded by = = =y x y0,   0,   1, and =y xln

 17. Bounded by = − =y x y x3 2 ,   , and =x 0

 18. Bounded by =y x 2 and = +y x 2

Evaluating Iterated Integrals
In Exercises 19–26, evaluate the integral.

 19. ∫∫ xy dy dx
x

3

0

2

1

2
 20. y dx dy

y

y2

1

3

∫∫

 21. x xy dx dy
y

1

0

1

∫∫ ( )+  22. ∫∫ ( )−y x dy dx
x

2

00

2 3

 23. ∫∫
π

x y dy dxsin
x

00

2

 24. 
y

dx dy1
1

y

20

arctan

0

1

∫∫ +

 25. 
y
x

dx dy
y

y

1

4 2

∫∫  26. ∫∫ xy
dy dx1e

13

5 x

Finding Regions of Integration and Double Integrals
In Exercises 27–32, sketch the region of integration and evaluate the 
integral.

 27. ∫∫
π

x y dy dxsin
x

00
 28. ∫∫

π
y dy dx

x

0

sin

0

 29. ∫∫ +e dx dyx y
y

1

ln

1

ln 8
 30. ∫∫ dx dy

y

y

1

2 2

 31. ∫∫ y e dx dy3 xy
y

3

00

1 2

 32. ∫∫ e dy dx3
2

y x
x

01

4

In Exercises 33–36, integrate f  over the given region.

 33. Quadrilateral ( ) =f x y x y,  over the region in the first quad-
rant bounded by the lines = = =y x y x x,   2 ,   1, and =x 2

 34. Triangle ( ) = +f x y x y, 2 2 over the triangular region with 
vertices ( )0, 0 , ( )1, 0 , and ( )0,1

 35. Triangle υ υ( ) = −f u u,  over the triangular region cut 
from the first quadrant of the uυ-plane by the line υ+ =u 1

 36. Curved region ( ) =f s t e t, lns  over the region in the first 
quadrant of the st-plane that lies above the curve =s tln  from 

=t 1 to =t 2

Each of Exercises 37–40 gives an integral over a region in a Cartesian 
coordinate plane. Sketch the region and evaluate the integral.

 37. ∫∫ υ υ( )
υ

υ−

−
dp d p2 the  -plane

2

0

 38. ∫∫ ( )
−

t dt ds st8 the  -plane
s

0

1

0

1 2

 39. ∫∫ ( )
π

π

−
t du dt tu3 cos the  -plane

t

0

sec

3

3

 40. ∫∫ υ
υ υ( )−− u d du u4 2 the  -plane

u

21

4 2

0

3 2

Reversing the Order of Integration
In Exercises 41–54, sketch the region of integration, and write an 
equivalent double integral with the order of integration reversed.

 41. ∫∫
−

dy dx
x

2

4 2

0

1
 42. ∫∫ −

dx dy
y 2

0

0

2

 43. ∫∫ dx dy
y

y

0

1
 44. ∫∫ −

−
dy dx

x

x

1

1

0

1 2

 45. ∫∫ dy dx
e

10

1 x

 46. ∫∫ dx dy
e

2

0

ln 2

y

 47. ∫∫
−

x dy dx16
x

0

9 4

0

3 2 2

 48. ∫∫
−

y dx dy
y

0

4

0

2 2

 49. ∫∫ − −

−
y dx dy3

y

y

1

1

0

1

2

2

 50. ∫∫ − −

−
x dy dx6

x

x

4

4

0

2

2

2

 51. ∫∫ xy dy dx
xe

0

ln

1
 52. ∫∫

π
xy dy dx

x

2

sin

1 2

0

6

 53. ∫∫ ( )+x y dx dy
e

10

3 y

 54. ∫∫
−

xy dx dy
y

0

tan

0

3 1

In Exercises 55–64, sketch the region of integration, reverse the order 
of integration, and evaluate the integral.

 55. ∫∫
ππ y

y
dy dx

sin
x0

 56. ∫∫ y xy dy dx2 sin
x

2
2

0

2

 57. ∫∫ x e dx dyxy

y

2
1

0

1
 58. ∫∫ −

− xe
y

dy dx
4

yx 2

0

4

0

2 2

 59. ∫∫ e dx dyx

y 2

ln 3

0

2 ln 3
2

 60. ∫∫ e dy dxy

x 3

1

0

3
3

 61. ∫∫ π( )x dx dycos 16
y

5
1 2

0

1 16

1 4

 62. ∫∫ +
dy dx

y 1x 4

2

0

8

3

 63. Square region ( )∫∫ −y x dA2R
2  where R is the region bounded 

by the square + =x y 1

 64. Triangular region ∫∫ xy dAR  where R is the region bounded by 
the lines = =y x y x,   2 , and + =x y 2

Volume Beneath a Surface ( )=z f x y,

 65. Find the volume of the region bounded above by the paraboloid 
= +z x y2 2 and below by the triangle enclosed by the lines 
= =y x x,   0, and + =x y 2 in the xy-plane.

 66. Find the volume of the solid that is bounded above by the cyl-
inder =z x 2 and below by the region enclosed by the parabola 

= −y x2 2 and the line =y x in the xy-plane.

 67. Find the volume of the solid whose base is the region in the 
xy-plane that is bounded by the parabola = −y x4 2 and the 
line =y x3 , while the top of the solid is bounded by the plane 

= +z x 4.

 68. Find the volume of the solid in the first octant bounded by the 
coordinate planes, the cylinder + =x y 4,2 2  and the plane 

+ =z y 3.

 69. Find the volume of the solid in the first octant bounded by the 
coordinate planes, the plane =x 3, and the parabolic cylinder 

= −z y4 .2

 70. Find the volume of the solid cut from the first octant by the sur-
face = − −z x y4 .2

 71. Find the volume of the wedge cut from the first octant by the cyl-
inder = −z y12 3 2 and the plane + =x y 2.

 72. Find the volume of the solid cut from the square column 
+ ≤x y 1 by the planes =z 0 and + =x z3 3.
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872 Chapter 14 Multiple Integrals

 73. Find the volume of the solid that is bounded on the front and back 
by the planes =x 2 and =x 1, on the sides by the cylinders 

= ±y x1 , and above and below by the planes = +z x 1 and 
=z 0.

 74. Find the volume of the solid bounded on the front and back by 
the planes π= ±x 3, on the sides by the cylinders = ±y xsec , 
above by the cylinder = +z y1 ,2  and below by the xy-plane.

In Exercises 75 and 76, sketch the region of integration and the solid 
whose volume is given by the double integral.

 75. ∫∫ ( )− −
−

x y dy dx1 1
3

1
2

x

0

2 2 3

0

3

 76. ∫∫ − −
− −

−
x y dx dy25

y

y
2 2

16

16

0

4

2

2

Integrals over Unbounded Regions
Improper double integrals can often be computed similarly to 
improper integrals of one variable. The first iteration of the following 
improper integrals is conducted just as if they were proper integrals. 
One then evaluates an improper integral of a single variable by taking 
appropriate limits, as in Section 8.8. Evaluate the improper integrals in 
Exercises 77–80 as iterated integrals.

 77. ∫∫
∞

− x y
dy dx1

e 3

1

1 x
 78. ∫∫ ( )+

− −

−

−
y dy dx2 1

x

x

1 1

1 1

1

1

2

2

 79. ∫∫ ( )( )+ +−∞

∞

−∞

∞

x y
dx dy1

1 12 2

 80. ∫∫ ( )− +
∞∞

xe dx dyx y2

00

Approximating Integrals with Finite Sums
In Exercises 81 and 82, approximate the double integral of ( )f x y,  
over the region R partitioned by the given vertical lines =x a and 
horizontal lines =y c. In each subrectangle, use ( )x y,k k  as indicated 
for your approximation.

f x y dA f x y A, ,
R k

n

k k k
1

∫∫ ∑( ) ( )≈ Δ
=

 81. ( ) = +f x y x y,  over the region R bounded above by the semi-
circle = −y x1 2  and below by the x-axis, using the partition 

= − −x 1,  1 2, 0, 1 4, 1 2, 1 and =y 0, 1 2, 1 with ( )x y,k k  the 
lower left corner in the kth subrectangle (provided the subrect-
angle lies within R)

 82. ( ) = +f x y x y, 2  over the region R inside the circle 
( )( )− + − =x y2 3 12 2  using the partition =x 1, 3 2, 2, 5 2,  

3 and =y 2, 5 2, 3, 7 2, 4 with ( )x y,k k  the center (centroid) in 
the kth subrectangle (provided the subrectangle lies within R)

Theory and Examples

 83. Circular sector Integrate ( ) = −f x y x, 4 2  over the smaller 
sector cut from the disk + ≤x y 42 2  by the rays θ π= 6 and 
θ π= 2.

 84. Unbounded region Integrate ( ) ( )( )= − −⎡⎣ ⎤⎦f x y x x y, 1 12 2 3  
over the infinite rectangle ≤ < ∞ ≤ ≤x y2 ,  0 2.

 85. Noncircular cylinder  A solid right (noncircular) cylinder has 
its base R in the xy-plane and is bounded above by the paraboloid 

= +z x y .2 2  The cylinder’s volume is

∫∫ ∫∫( ) ( )= + + +
−

V x y dx dy x y dx dy.
y y

2 2

00

1
2 2

0

2

1

2

Sketch the base region R, and express the cylinder’s volume as 
a single iterated integral with the order of integration reversed. 
Then evaluate the integral to find the volume.

 86. Converting to a double integral Evaluate the integral

∫ π( )−x x dxarctan arctan .
0

2

(Hint: Write the integrand as an integral.)

 87. Maximizing a double integral What region R in the xy-plane 
maximizes the value of

x y dA4 2 ?
R

2 2∫∫ ( )− −

Give reasons for your answer.

 88. Minimizing a double integral What region R in the xy-plane 
minimizes the value of

x y dA9 ?
R

2 2∫∫ ( )+ −

Give reasons for your answer.

 89. Is it possible to evaluate the integral of a continuous function 
( )f x y,  over a rectangular region in the xy-plane and get different 

answers depending on the order of integration? Give reasons for 
your answer.

 90. How would you evaluate the double integral of a continuous func-
tion ( )f x y,  over the region R in the xy-plane enclosed by the tri-
angle with vertices ( )0, 1 , ( )2, 0 , and ( )1, 2 ? Give reasons for your 
answer.

 91. Unbounded region  Prove that

∫∫ ∫∫

∫( )

=

=

− −
−∞

∞

−∞

∞

→∞
− −

−−

−
∞

e dx dy e dx dy

e dx

lim

4 .

x y

b

x y

b

b

b

b

x

0

2

2 2 2 2

2

 92. Improper double integral Evaluate the improper integral

∫∫ ( )−
x

y
dy dx

1
.

2

2 30

3

0

1

COMPUTER EXPLORATIONS
Use a CAS double-integral evaluator to estimate the values of the inte-
grals in Exercises 93–96.

 93. ∫∫ xy
dy dx1x

11

3
 94. ∫∫ ( )− +e dy dxx y

0

1

0

1
2 2

 95. ∫∫ xy dy dxarctan
0

1

0

1

 96. ∫∫ − −
−

−
x y dy dx3 1

x
2 2

0

1

1

1 2
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 14.3  Area by Double Integration 873

DEFINITION The area of a closed, bounded plane region R is

A dA.
R
∫∫=

Use a CAS double-integral evaluator to find the integrals in Exer- 
cises 97–102. Then reverse the order of integration and evaluate, again 
with a CAS.

 97. ∫∫ e dx dyx

y2

4

0

1
2

 98. ∫∫ x y dy dxcos ( )
x

2
9

0

3

2

 99. ∫∫ ( )−x y xy dx dy
y

y
2 2

4 2

0

2

3

 100. ∫∫
−

e dx dyxy
y

0

4

0

2 2

 101. ∫∫ +x y
dy dx1x

01

2 2

 102. ∫∫ +x y
dx dy1

y 2 2

8

1

2

3

14.3 Area by Double Integration

In this section we show how to use double integrals to calculate the areas of bounded 
regions in the plane, and to find the average value of a function of two variables.

Areas of Bounded Regions in the Plane

If we take ( ) =f x y, 1 in the definition of the double integral over a region R in the preced-
ing section, the Riemann sums reduce to

 ∑ ∑( )= Δ = Δ
= =

S f x y A A, .n
k

n

k k k
k

n

k
1 1

 (1)

This is simply the sum of the areas of the small rectangles in the partition of R, and it approx-
imates what we would like to call the area of R. As the norm of a partition of R approaches 
zero, the height and width of all rectangles in the partition approach zero, and the coverage of 
R becomes increasingly complete (Figure 14.8). We define the area of R to be the limit

 A dAlim .
P

k

n

k

R
0

1
∑ ∫∫Δ =

→ =

 (2)

As with the other definitions in this chapter, the definition here applies to a greater 
variety of regions than does the earlier single-variable definition of area, but it agrees with 
the earlier definition on regions to which they both apply. To evaluate the integral in the 
definition of area, we integrate the constant function ( ) =f x y, 1 over R.

EXAMPLE 1  Find the area of the region R bounded by =y x and =y x 2 in the first 
quadrant.

Solution We sketch the region (Figure 14.19), noting where the two curves intersect at 
the origin and ( )1, 1 , and calculate the area as

∫∫ ∫ ∫ ( )= = ⎡
⎣
⎢

⎤
⎦
⎥ = − = −⎡

⎣⎢
⎤
⎦⎥

=
=

=

A dy dx y dx x x dx x x
2 3

1
6

.
x

x

y x

y x

0

1

0

1
2

0

1 2 3

0

1

2 2

Notice that the single-variable integral ( )∫ −x x dx,0
1 2  obtained from evaluating the inside 

iterated integral, is the integral for the area between these two curves using the method of 
Section 5.6. 

FIGURE 14.19 The region in 
Example 1.

(1, 1)

0

y = x

y = x2

y = x 2

1

1

x

y

y = x 
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874 Chapter 14 Multiple Integrals

FIGURE 14.20 Calculating this area 
takes (a) two double integrals if the first 
integration is with respect to x, but (b) only 
one if the first integration is with respect  
to y (Example 2).

(2, 4)

y

x
0

(a)

  dx dy
(−1, 1)

R1

R2

y = x + 2

y = x 2

1

0

"

y

–
"

y

  dx dy
4

1

"

y

y – 2

(2, 4)

y

x
0

(b)

y = x + 2

y = x2

   dy dx
2

−1

x + 2

x2(−1, 1)

L L

L L

L  L

EXAMPLE 2  Find the area of the region R enclosed by the parabola =y x 2 and the 
line = +y x 2.

Solution If we divide R into the regions R1 and R2 shown in Figure 14.20a, we may 
calculate the area as

A dA dA dx dy dx dy.
R R

y

y

y

y

0

1

21

4

1 2

∫∫ ∫∫ ∫∫ ∫∫= + = +
− −

On the other hand, reversing the order of integration (Figure 14.20b) gives

∫∫=
+

−
A dy dx.

x

x 2

1

2

2

This second result, which requires only one integral, is simpler to evaluate, giving

∫ ∫ ( )= ⎡
⎣
⎢

⎤
⎦
⎥ = + − = + −⎡

⎣⎢
⎤
⎦⎥

=
=

= +

− −−
A y dx x x dx x x x2

2
2

3
9
2

.
y x

y x 2

1

2
2

2 3

1

2

1

2

2
 

EXAMPLE 3  Find the area of the playing field described by 
− ≤ ≤ − − − ≤ ≤ + −R x x y x: 2 2,  1 4 1 4 ,2 2  using

 (a) Fubini’s Theorem (b) simple geometry.

Solution The region R is shown in Figure 14.21a.

 (a) From the symmetries observed in the figure, we see that the area of R is 4 times its 
area in the first quadrant. As shown in Figure 14.21b, a vertical line at x enters this 
part of the region at =y 0 and exits at = + −y x1 4 .2  Therefore, using Fubini’s 
Theorem, we have

A dA dy dx

x dx

x x x x

4

4 1 4

4
2

4 4
2

sin
2

4 2 0 2
2

0 8 4 .

x

R
0

1 4

0

2

2

0

2

2 1

0

2

2

∫∫∫∫

∫

π π( )

( )

= =

= + −

= + − +⎡
⎣⎢

⎤
⎦⎥

= + + ⋅ − = +

+ −

−

 (b) The region R consists of a rectangle mounted on two sides by half disks of radius 2. 
The area can be computed by summing the area of the ×4 2 rectangle and the area of 
a circle of radius 2, so

π π= + = +A 8 2 8 4 .2  

Average Value

The average value of an integrable function of one variable on a closed interval is the inte-
gral of the function over the interval divided by the length of the interval. For an integrable 
function of two variables defined on a bounded region in the plane, the average value is the 
integral over the region divided by the area of the region. This can be visualized by think-
ing of the region as being the base of a tank with vertical walls around the boundary of the 
region, and imagining that the tank is filled with water that is sloshing around. The value 

Integral Table Formula 45
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 14.3  Area by Double Integration 875

( )f x y,  is then the height of the water that is directly above the point ( )x y, . The average 
height of the water in the tank can be found by letting the water settle down to a con-
stant height. This height is equal to the volume of water in the tank divided by the area 
of R. We therefore define the average value of an integrable function f  over a region R 
as follows:

 f R
R

f dAAverage value of   over  1
area of 

. 
R
∫∫=  (3)

If f  is the temperature of a thin plate covering R, then the double integral of f  over R 
divided by the area of R is the plate’s average temperature. If ( )f x y,  is the distance from 
the point ( )x y,  to a fixed point P, then the average value of f  over R is the average distance 
of points in R from P.

EXAMPLE 4  Find the average value of ( ) =f x y x xy, cos  over the rectangle 
π≤ ≤ ≤ ≤R x y: 0 ,  0 1.

Solution The value of the integral of f  over R is

∫∫ ∫

∫ ( )

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − = −
⎤

⎦
⎥
⎥

= + =

π

ππ

=

=π

x xy dy dx xy dx

x dx x

cos sin

sin 0 cos 1 1 2.

y

y

0

1

0
0

1

0

0
0

The area of R is π. The average value of f  over R is π2 . 

∫ = +x xy dy xy Ccos sin

FIGURE 14.21 (a) The playing field 
described by the region R in Example 3. 
(b) First quadrant of the playing field.

y

x
0 2

2

−2

3

1

−3

(a)

y

x
0 2

3

1

y = 1 + 
"

4 − x2
Leaves at

Enters at
y = 0

(b)

Area by Double Integrals
In Exercises 1–12, sketch the region bounded by the given lines and 
curves. Then express the region’s area as an iterated double integral 
and evaluate the integral.

 1. The coordinate axes and the line + =x y 2

 2. The lines = =x y x0,   2 , and =y 4

 3. The parabola = −x y 2 and the line = +y x 2

 4. The parabola = −x y y 2 and the line = −y x

 5. The curve =y e x and the lines = =y x0,   0, and =x ln 2

 6. The curves =y xln  and =y x2 ln  and the line =x e, in the 
first quadrant

 7. The parabolas =x y 2 and = −x y y2 2

 8. The parabolas = −x y 12  and = −x y2 22

 9. The lines = =y x y x,   3, and =y 2

 10. The lines = −y x1  and =y 2 and the curve =y e x

 11. The lines = =y x y x2 ,   2, and = −y x3

 12. The lines = −y x 2 and = −y x  and the curve =y x

Identifying the Region of Integration
The integrals and sums of integrals in Exercises 13–18 give the areas 
of regions in the xy-plane. Sketch each region, label each bounding 

curve with its equation, and give the coordinates of the points where 
the curves intersect. Then find the area of the region.

 13. ∫∫ dx dy
y

y

3

2

0

6

2
 14. ∫∫

( )

−

−
dy dx

x

x x2

0

3

 15. ∫∫
π

dy dx
x

x

sin

cos

0

4
 16. ∫∫

+

−
dx dy

y

y 2

1

2

2

 17. ∫∫ ∫∫+
−

−

− −

−
dy dx dy dx

x

x

x

x

2

1

1

0

2

1

0

2

 18. ∫∫ ∫∫+
−

dy dx dy dx
x

x

4

0

0

2

00

4

2

Finding Average Values

 19. Find the average value of ( ) ( )= +f x y x y, sin  over

 a. the rectangle π π≤ ≤ ≤ ≤x y0 , 0 .

 b. the rectangle π π≤ ≤ ≤ ≤x y0 , 0 2.

 20. Which do you think will be larger, the average value of 
( ) =f x y xy,  over the square ≤ ≤ ≤ ≤x y0 1,  0 1, or the 

average value of f  over the quarter circle + ≤x y 12 2  in the first 
quadrant? Calculate them to find out.

 21. Find the average height of the paraboloid = +z x y2 2 over the 
square ≤ ≤ ≤ ≤x y0 2,  0 2.

EXERCISES 14.3
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876 Chapter 14 Multiple Integrals

 22. Find the average value of ( ) =f x y xy, 1 ( ) over the square 
≤ ≤ ≤ ≤x yln 2 2 ln 2, ln 2 2 ln 2.

Theory and Examples

 23. Geometric area Find the area of the region

≤ ≤ − ≤ ≤ −R x x y x: 0 2,  2 4 ,2

using (a) Fubini’s Theorem, (b) simple geometry.

 24. Geometric area Find the area of the circular washer with outer 
radius 2 and inner radius 1, using (a) Fubini’s Theorem, (b) sim-
ple geometry.

 25. Bacterium population If ( ) ( )( )= +f x y e x, 10,000 1 2y  
represents the “population density” of a certain bacterium on the 
xy-plane, where x and y are measured in centimeters, find the total 
population of bacteria within the rectangle − ≤ ≤x5 5 and 
− ≤ ≤y2 0.

 26. Regional population If ( ) ( )= +f x y y, 100 1  represents the 
population density of a planar region on Earth, where x and y are 
measured in kilometers, find the number of people in the region 
bounded by the curves =x y 2 and = −x y y2 .2

 27. Average temperature in Texas According to the Texas 
Almanac, Texas has 254 counties and a National Weather Service 

station in each county. Assume that at time t ,0  each of the 254 
weather stations recorded the local temperature. Find a formula 
that would give a reasonable approximation of the average tem-
perature in Texas at time t .0  Your answer should involve informa-
tion that you would expect to be readily available in the Texas 
Almanac.

 28. If =y f x( ) is a nonnegative continuous function over the closed 
interval ≤ ≤a x b, show that the double integral definition of 
area for the closed plane region bounded by the graph of f , the 
vertical lines =x a and =x b, and the x-axis agrees with the 
definition for area beneath the curve in Section 5.3.

 29. Suppose ( )f x y,  is continuous over a region R in the plane and 
that the area A R( ) of the region is defined. If there are constants 
m and M such that ( )≤ ≤m f x y M,  for all ( ) ∈x y R, , prove 
that

mA R f x y dA MA R( ) , ( ).
R
∫∫ ( )≤ ≤

 30. Suppose ( )f x y,  is continuous and nonnegative over a region R in 
the plane with a defined area A R( ). If ( )∫∫ =f x y dA, 0,R  prove 
that ( ) =f x y, 0 at every point ( ) ∈x y R, .

14.4 Double Integrals in Polar Form

Double integrals are sometimes easier to evaluate if we change to polar coordinates. This 
section shows how to accomplish the change and how to evaluate double integrals over 
regions whose boundaries are given by polar equations.

Integrals in Polar Coordinates

When we defined the double integral of a function over a region R in the xy-plane, we 
began by cutting R into rectangles whose sides were parallel to the coordinate axes. These 
were the natural shapes to use because their sides have either constant x-values or constant 
y-values. In polar coordinates, the natural shape is a “polar rectangle” whose sides have 
constant r- and θ-values. To avoid ambiguities when describing the region of integration 
with polar coordinates, we use polar coordinate points θ( )r,  where ≥r 0.

Suppose that a function θ( )f r,  is defined over a region R that is bounded by the rays 
θ α=  and θ β=  and by the continuous curves θ=r g ( )1  and θ=r g ( ).2  Suppose also 
that θ θ≤ ≤ ≤g g a0 ( ) ( )1 2  for every value of θ between α and β. Then R lies in a fan-
shaped region Q defined by the inequalities ≤ ≤r a0  and α θ β≤ ≤ , where 

β α π≤ − ≤0 2 . See Figure 14.22.
We cover Q by a grid of circular arcs and rays. The arcs are cut from circles centered 

at the origin, with radii Δ Δ Δ…r r m r, 2 , , , where Δ =r a m. The rays are given by

θ α θ α θ θ α θ θ α θ β= = + Δ = + Δ = + ′Δ =… m, , 2 ,   , ,

where θ β α( )Δ = − ′m . The arcs and rays partition Q into small patches called “polar 
rectangles.”

We number the polar rectangles that lie inside R (the order does not matter), calling 
their areas Δ Δ Δ…A A A, , , .n1 2  We let θ( )r ,k k  be any point in the polar rectangle whose 
area is ΔA .k  We then form the sum

∑ θ( )= Δ
=

S f r A, .n
k

n

k k k
1
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 14.4  Double Integrals in Polar Form 877

If f  is continuous throughout R, this sum will approach a limit as we refine the grid to 
make Δr  and θΔ  go to zero. The limit is the double integral of f  over R. In symbols,

S f r dAlim , .
n

n

R
∫∫ θ( )=

→∞

To evaluate this limit, we first have to write the sum Sn in a way that expresses ΔAk  in 
terms of Δr  and θΔ . For convenience we choose rk to be the average of the radii of the 
inner and outer arcs bounding the kth polar rectangle ΔA .k  The radius of the inner arc 
bounding ΔAk  is then ( )− Δr r 2k  (Figure 14.23). The radius of the outer arc is 

( )+ Δr r 2 .k

The area of a wedge-shaped sector of a circle having radius r and central angle θΔ  is

θ= Δ ⋅A r1
2

,2

as can be seen by multiplying πr ,2  the area of the circle, by θ πΔ 2 , the fraction of the 
circle’s area contained in the wedge. So the areas of the circular sectors subtended by these 
arcs at the origin are

θ

θ

( )

( )

− Δ Δ

+ Δ Δ

r r

r r

Area of small sector: 1
2 2

Area of large sector: 1
2 2

.

k

k

2

2

Therefore,

θ θ θ( ) ( ) ( )

Δ = −

= Δ + Δ − − Δ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

= Δ Δ = Δ Δ

A

r r r r r r r r

area of large sector area of small sector

2 2 2 2
2 .

k

k k k k

2 2

Combining this result with the sum defining Sn gives

∑ θ θ( )= Δ Δ
=

S f r r r, .n
k

n

k k k
1

As → ∞n  and the values of Δr  and θΔ  approach zero, these sums converge to the double 
integral

S f r r dr dlim , .
n

n

R
∫∫ θ θ( )=

→∞

FIGURE 14.22 The region R: θ θ α θ β≤ ≤ ≤ ≤g r g( ) ( ),   ,1 2  is contained in the  
fan-shaped region α θ β≤ ≤ ≤ ≤Q r a: 0 ,  , where β α π≤ − ≤0 2 . The partition of 
Q by circular arcs and rays induces a partition of R.

0

R

Q

u = b

u = p
Δr

Δr

ΔAk

2Δr

3Δr

Δu

(rk, uk)

r = g1(u)

a + 2Δu

a + Δu

u = a

u = 0

r = g2(u) r = a

FIGURE 14.23 The observation that

Δ =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟A

area of
large sector

area of
small sectork

leads to the formula θΔ = Δ ΔA r r .k k

a         b

a         b

Small sector

Large sector

0

Δu

Δr
rkΔr

2
rk −

Δr
2

rk +

ΔAk
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878 Chapter 14 Multiple Integrals

FIGURE 14.25 Finding the limits of 
integration in polar coordinates for the 
region in Example 1.

1 2

L

u

Enters
at r = 1 Leaves at

r = 1 + cos u

r = 1 + cos u

y

x

u = p
2

u = −p
2

Area in Polar Coordinates
The area of a closed and bounded region R in the polar coordinate plane is

A r dr d .
R
∫∫ θ=

A version of Fubini’s Theorem says that the limit approached by these sums can be evalu-
ated by repeated single integrations with respect to r and θ as

f r dA f r r dr d, , .
R

r g

r g

( )

( )

1

2

∫∫ ∫∫θ θ θ( ) ( )=
θ

θ

θ α

θ β

=

=

=

=

Finding Limits of Integration

The procedure for finding limits of integration in rectangular coordinates also works for 
polar coordinates. We illustrate this using the region R shown in Figure 14.24. To evaluate 

θ( )∫∫ f r dA,R  in polar coordinates, integrating first with respect to r and then with respect 
to θ, take the following steps.

1. Sketch. Sketch the region and label the bounding curves (Figure 14.24a).

2. Find the r-limits of integration. Imagine a ray L from the origin cutting through R in the 
direction of increasing r. Mark the r-values where L enters and leaves R. These are the 
r-limits of integration. They usually depend on the angle θ that L makes with the posi-
tive x-axis (Figure 14.24b).

3. Find the θ limits-  of integration. Find the smallest and largest θ-values that bound R. 
These are the θ-limits of integration (Figure 14.24c). The polar iterated integral is

f r dA f r r dr d, , .
R

r

r

2 cos

2

4

2

∫∫ ∫∫θ θ θ( ) ( )=
θθ π

θ π

=

=

=

=

EXAMPLE 1  Find the limits of integration for integrating θ( )f r,  over the region R 
that lies inside the cardioid θ= +r 1 cos  and outside the circle =r 1.

Solution 

1. We first sketch the region and label the bounding curves (Figure 14.25).

2. Next we find the r-limits of integration. A typical ray from the origin enters R where 
=r 1 and leaves where θ= +r 1 cos .

3. Finally, we find the θ limits-  of integration. The rays from the origin that intersect R 
run from θ π= − 2 to θ π= 2. The integral is

∫∫ θ θ( )
θ

π

π +

−
f r r dr d, .

1

1 cos

2

2
 

If θ( )f r,  is the constant function whose value is 1, then the integral of f  over R is the 
area of R.

Area Differential in Polar Coordinates

θ=dA r dr d This formula for area is consistent with all earlier formulas.

y

x
0

2
R

L

u

Enters at r = 
"

2 csc u

Leaves at r = 2

r sin u = y = 
"

2
or

r = 
"

2 csc u

(b)

FIGURE 14.24 Finding the limits of 
integration in polar coordinates.

(a)

y

x
0

2
R

x2 + y2 = 4

y = 
"

2
"

2
"

2, 
"

2Q       R

y

x
0

2
R

L

Largest u is .p
2

Smallest u is .p
4

y = x

"

2

(c)

M14_HASS5901_15_GE_C14.indd   878 08/03/2023   11:15

www.konkur.in

Telegram: @uni_k



 14.4  Double Integrals in Polar Form 879

EXAMPLE 2  Find the area enclosed by the lemniscate θ=r 4 cos 2 .2

Solution We graph the lemniscate to determine the limits of integration (Figure 14.26) 
and see from the symmetry of the region that the total area is 4 times the first-quadrant 
portion.

∫∫ ∫

∫

θ θ

θ θ θ

= = ⎡
⎣⎢

⎤
⎦⎥

= =
⎤

⎦
⎥
⎥

=

θπ θπ

π π

=

=

A r dr d r d

d

4  4
2

4  2 cos 2 4 sin 2 4.

r

r

0

4 cos 2

0

4 2

0

4 cos 2

0

4

0

4

0

4

Changing Cartesian Integrals into Polar Integrals

The procedure for changing a Cartesian integral ( )∫∫ f x y dx dy,R  into a polar integral has 
two steps. First substitute θ=x r cos  and θ=y r sin , and replace dx dy by θr dr d  in the 
Cartesian integral. Then supply polar limits of integration for the boundary of R. The 
Cartesian integral then becomes

f x y dx dy f r r r dr d, cos , sin ,
R G
∫∫ ∫∫ θ θ θ( ) ( )=

where G denotes the same region of integration, but now described in polar coordinates. 
This is like the substitution method in Chapter 5 except that there are now two variables to 
substitute for instead of one. Notice that the area differential dx dy is replaced not by θdr d  
but by θr dr d . A more general discussion of changes of variables (substitutions) in multi-
ple integrals is given in Section 14.8.

EXAMPLE 3  Evaluate

e dy dx,x y

R

2 2∫∫ +

where R is the semicircular region bounded by the x-axis and the curve = −y x1 2  
(Figure 14.27).

Solution In Cartesian coordinates, the integral in question is a nonelementary integral 
and there is no direct way to integrate +e x y2 2  with respect to either x or y. Yet this integral 
and others like it are important in mathematics—in statistics, for example—and we need to 
evaluate it. Polar coordinates make this possible. Substituting θ=x r cos  and θ=y r sin  
and replacing dy dx by θr dr d  give

e dy dx e r dr d e d

e d e

1
2

1
2

1
2

1 .

x y

R

r r

r

r

0

1

00

1

0

0

2 2 2 2∫∫ ∫∫∫

∫

θ θ

θ π
( ) ( )

= = ⎡
⎣⎢

⎤
⎦⎥

= − = −

ππ

π

+

=

=

The r in the θr dr d  is what allowed us to integrate e .r 2  Without it, we would have been 
unable to find an antiderivative for the first (innermost) iterated integral. 

EXAMPLE 4  Evaluate the integral

∫∫ ( )+
−

x y dy dx.
x

2 2

0

1

0

1 2

FIGURE 14.26 To integrate over 
the shaded region, we run r from 0 to 

θ4 cos 2  and θ from 0 to π 4  
(Example 2).

y

x

Enters at
r = 0

r2 = 4 cos 2u
–p

4

p
4

Leaves at
r = 

"

4 cos 2u

FIGURE 14.27 The semicircular region 
in Example 3 is the region

θ π≤ ≤ ≤ ≤r0 1, 0 .

0 1

1

y

x
−1

r = 1

u = 0u = p

y = "1 − x2
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880 Chapter 14 Multiple Integrals

Solution Integration with respect to y gives

∫
( )− + −⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟x x x dx  1     1

3
,2 2

2 3 2

0

1

which is difficult to evaluate without tables. Things go better if we change the original 
integral to polar coordinates. The region of integration in Cartesian coordinates is given by 
the inequalities ≤ ≤ −y x0 1 2  and ≤ ≤x0 1, which correspond to the interior of the 
unit quarter circle + =x y 12 2  in the first quadrant. (See Figure 14.27, first quadrant.) 
Substituting the polar coordinates θ θ θ π= = ≤ ≤x r y rcos ,   sin ,  0 2, and 

≤ ≤r0 1, and replacing dy dx by θr dr d  in the double integral, we get

∫∫ ∫∫

∫ ∫

θ

θ θ π

( )+ =

= ⎡
⎣⎢

⎤
⎦⎥

= =

π

π π

−

=

=

x y dy dx r r dr d

r d d

( )

4
1
4 8

.

x

r

r

2 2

0

1

0

1
2

0

1

0

2

4

0

1

0

2

0

2

2

The polar coordinate transformation is effective here because +x y2 2 simplifies to r 2 and 
the limits of integration become constants. 

EXAMPLE 5  Find the volume of the solid region bounded above by the paraboloid 
= − −z x y9 2 2 and below by the unit circle in the xy-plane.

Solution The region of integration R is bounded by the unit circle + =x y 1,2 2  which 
is described in polar coordinates by θ π= ≤ ≤r 1,  0 2 . The solid region is shown in 
Figure 14.28. The volume is given by the double integral

x y dA r r dr d

r r dr d

r r d

d

9 9

9

9
2

1
4

17
4

17
2

.

R

r

r

2 2 2

0

1

0

2

3

0

1

0

2

2 4

0

1

0

2

0

2

∫∫ ∫∫

∫∫

∫

∫

θ

θ

θ

θ π

( ) ( )

( )

− − = −

= −

= −⎡
⎣⎢

⎤
⎦⎥

= =

π

π

π

π

=

=

EXAMPLE 6  Using polar integration, find the area of the region R enclosed by the 
circle + =x y 4,2 2  above the line =y 1, and below the line =y x3 .

Solution A sketch of the region R is shown in Figure 14.29. First we note that the line 
=y x3  has slope θ=3 tan , so θ π= 3. Next we observe that the line =y 1 inter-

sects the circle + =x y 42 2  when + =x 1 4,2  or =x 3. Moreover, the radial line 
from the origin through the point ( )3,1  has slope θ=1 3 tan , giving its angle of incli-
nation as θ π= 6. This information is shown in Figure 14.29.

Now, for the region R, as θ varies from π 6 to π 3, the polar coordinate r varies from 
the horizontal line =y 1 to the circle + =x y 42 2 . Substituting θr sin  for y in the equa-
tion for the horizontal line, we have θ =r sin 1, or θ=r csc , which is the polar equation 
of the line. The polar equation for the circle is =r 2. So in polar coordinates, for 
π θ π≤ ≤6 3, r varies from θ=r csc  to =r 2. It follows that the iterated integral for 
the area is

FIGURE 14.28 The solid region in 
Example 5.

2

2
x

y
x2 + y2 = 1

−2

z = 9 − x2 − y2

z

9

R

FIGURE 14.29 The region R in 
Example 6.

x

y

y = 1, or
r = csc u

2

2

1

0 1

y = 
"

3x

x2 + y2 = 4

(1, 
"

3)

(
"

3, 1)

p
6

p
3

R

θ= + =r x y dA r dr d, .2 2 2
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 14.4  Double Integrals in Polar Form 881

dA r dr d

r d

d

1
2

1
2

4 csc

1
2

4 cot

1
2

4
3

1
3

1
2

4
6

3 3
3

.

R

r

r

csc

2

6

3

2

csc

2

6

3

2

6

3

6

3

∫∫ ∫∫

∫

∫

θ

θ

θ θ

θ θ

π π π( ) ( )

[ ]

=

= ⎡
⎣⎢

⎤
⎦⎥

= −

= +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= + − + = −

θπ

π

θπ

π

π

π

π

π

=

=

 7. The region enclosed by the circle + =x y x22 2

 8. The region enclosed by the semicircle + = ≥x y y y2 ,   12 2

Evaluating Polar Integrals
In Exercises 9–22, change the Cartesian integral into an equivalent 
polar integral. Then evaluate the polar integral.

 9. ∫∫
−

−
dy dx

x

0

1

1

1 2

 10. ∫∫ ( )+
−

x y dx dy
y

2 2

0

1

0

1 2

 11. ∫∫ ( )+
−

x y dx dy
y

2 2

0

4

0

2 2

 12. ∫∫ − −

−

−
dy dx

a x

a x

a

a

2 2

2 2

 13. ∫∫ x dx dy
y

00

6
 14. ∫∫ y dy dx

x

00

2

 15. ∫∫ dy dx
x

11

3
 16. ∫∫ −

dx dy
y

y

42

2

2

 17. ∫∫ + +− −− x y
dy dx2

1x 2 21

0

1

0

2

 18. ∫∫ ( )+ +− −

−

− x y
dy dx2

1
 

x

x

2 2 21

1

1

1

2

2

 19. ∫∫
( )

+
−

e dx dyx y
y

0

ln 2

0

ln 2
2 2

2 2

 20. ∫∫ ( )+ +
− −

−

−
x y dx dyln 1

y

y
2 2

1

1

1

1

2

2

 21. ∫∫ ( )+
−

x y dy dx2
x

x2

0

1 2

EXERCISES 14.4 

x

y

1−1 0

1

 3.  4. 

x

y

10

"

3

Regions in Polar Coordinates
In Exercises 1–8, describe the given region in polar coordinates.

 1.  2. 

x

y

90

9

x

y

40

1

4

 5.  6. 

x

y

0 1 2

−2

2

x

y

10

1

2

2
"

3
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882 Chapter 14 Multiple Integrals

 22. ∫∫ ( )+

−

x y
dy dx1x x

2 2 20

2

1

2 2

In Exercises 23–26, sketch the region of integration, and convert each 
polar integral or sum of integrals into a Cartesian integral or sum of 
integrals. Do not evaluate the integrals.

 23. ∫∫ θ θ θ
π

r dr dsin cos3

0

1

0

2

 24. ∫∫ θ θ
θ

π

π
r dr dcos2

1

csc

6

2

 25. ∫∫ θ θ
θπ

r dr dsin5 2

0

2 sec

0

4

 26. ∫∫ ∫∫θ θ+
θ θπ

r dr d r dr d 7

0

3 sec

0

arctan 4
3 7

0

4 csc

arctan 4
3

2

Area in Polar Coordinates
 27. Find the area of the region cut from the first quadrant by the curve 

θ( )= −r 2 2 sin 2 .1 2

 28. Cardioid overlapping a circle Find the area of the region that 
lies inside the cardioid θ= +r 1 cos  and outside the circle 

=r 1.

 29. One leaf of a rose Find the area enclosed by one leaf of the rose 
θ=r 12 cos 3 .

 30. Snail shell Find the area of the region enclosed by the positive 
x-axis and spiral θ θ π= ≤ ≤r 4 3,  0 2 . The region looks like a 
snail shell.

 31. Cardioid in the first quadrant Find the area of the region cut 
from the first quadrant by the cardioid θ= +r 1 sin .

 32. Overlapping cardioids Find the area of the region common to 
the interiors of the cardioids θ= +r 1 cos  and θ= −r 1 cos .

Average Values
In polar coordinates, the average value of a function over a region R 
(Section 14.3) is given by

R
f r r dr d1

Area( )
, .

R
∫∫ θ θ( )

 33. Average height of a hemisphere Find the average height of 
the hemispherical surface = − −z a x y2 2 2  above the disk 

+ ≤x y a2 2 2 in the xy-plane.

 34. Average height of a cone Find the average height of the  
(single) cone = +z x y2 2  above the disk + ≤x y a2 2 2 in 
the xy-plane.

 35. Average distance from interior of disk to center Find the 
average distance from a point ( )P x y,  in the disk + ≤x y a2 2 2 
to the origin.

 36. Average distance squared from a point in a disk to a point 
in its boundary Find the average value of the square of the 
distance from the point ( )P x y,  in the disk + ≤x y 12 2  to the 
boundary point ( )A 1, 0 .

Theory and Examples

 37. Converting to a polar integral Integrate ( ) =f x y,  

x y x yln 2 2 2 2[ ]( )+ +  over the region ≤ + ≤x y e1 .2 2

 38. Converting to a polar integral Integrate ( ) =f x y,  
x y x yln 2 2 2 2[ ]( ) ( )+ +  over the region ≤ + ≤x y e1 .2 2 2

 39. Volume of noncircular right cylinder The region that lies 
inside the cardioid θ= +r 1 cos  and outside the circle =r 1 is 
the base of a solid right cylinder. The top of the cylinder lies in the 
plane =z x. Find the cylinder’s volume.

 40. Volume of noncircular right cylinder The region enclosed by 
the lemniscate θ=r 2 cos 22  is the base of a solid right cylin-
der whose top is bounded by the sphere = −z r2 .2  Find the  
cylinder’s volume.

 41. Converting to polar integrals 

 a. The usual way to evaluate the improper integral 
= ∫

∞
−I e dxx

0
2  is first to calculate its square:

∫ ∫ ∫∫( )( )= = ( )−
∞

−
∞

− +
∞∞

I e dx e dy e dx dy.x y x y2

0 0 00

2 2 2 2

Evaluate the last integral using polar coordinates and solve the 
resulting equation for I.

 b. Evaluate

∫ π
=

→∞ →∞

−
x e dtlim erf( ) lim 2 .

x x

tx

0

2

 42. Converting to a polar integral Evaluate the integral

∫∫ ( )+ +

∞∞

x y
dx dy1

1
.

2 2 200

 43. Existence Integrate the function ( ) ( )= − −f x y x y, 1 1 2 2  
over the disk + ≤x y 3 4.2 2  Does the integral of ( )f x y,  over 
the disk + ≤x y 12 2  exist? Give reasons for your answer.

 44. Area formula in polar coordinates Use the double integral in 
polar coordinates to derive the formula

∫ θ=
α

β
A r d1

2
2

for the area of the fan-shaped region between the origin and the 
polar curve θ α θ β= ≤ ≤r f ( ),   .

 45. Average distance to a given point inside a disk Let P0 be 
a point inside a circle of radius a and let h denote the distance 
from P0 to the center of the circle. Let d denote the distance from 
an arbitrary point P to P .0  Find the average value of d 2 over the 
region enclosed by the circle. (Hint: Simplify your work by plac-
ing the center of the circle at the origin and P0 on the x-axis.)

 46. Area  Suppose that the area of a region in the polar coordinate 
plane is

∫∫ θ=
θ

θ

π

π
A r dr d .

csc

2 sin

4

3 4

Sketch the region and find its area.

 47. Evaluate the integral ∫∫ +x y dAR
2 2 , where R is the region 

inside the upper semicircle of radius 2 centered at the origin, but 
outside the circle ( )+ − =x y 1 1.2 2

 48. Evaluate the integral ( )∫∫ + −x y dAR
2 2 2 , where R is the region 

inside the circle + =x y 22 2  for ≤ −x 1.
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 14.5  Triple Integrals in Rectangular Coordinates 883

COMPUTER EXPLORATIONS
In Exercises 49–52, use a CAS to change the Cartesian integrals into 
an equivalent polar integral and evaluate the polar integral. Perform 
the following steps in each exercise.

 a. Plot the Cartesian region of integration in the xy-plane.

 b. Change each boundary curve of the Cartesian region in 
part (a) to its polar representation by solving its Cartesian 
equation for r and .

 c. Using the results in part (b), plot the polar region of integra-
tion in the r -plane.

 d. Change the integrand from Cartesian to polar coordinates. 
Determine the limits of integration from your plot in part (c) 
and evaluate the polar integral using the CAS integration 
utility.

 49. ∫∫ +
y

x y
dy dx

x 2 2

1

0

1
 50. ∫∫ +

x
x y

dy dx
x

2 20

2

0

1

 51. ∫∫ +−

y
x y

dx dy
y

y

2 23

3

0

1
 52. ∫∫ +

−
x y dx dy

y

y2

0

1

14.5 Triple Integrals in Rectangular Coordinates

Just as double integrals allow us to deal with more general situations than could be handled 
by single integrals, triple integrals enable us to solve still more general problems. We use 
triple integrals to calculate the volumes of three-dimensional shapes and the average value 
of a function over a three-dimensional region. Triple integrals also arise in the study of 
vector fields and fluid flow in three dimensions, as we will see in Chapter 15.

Triple Integrals

If ( )F x y z,  ,   is a function defined on a closed bounded solid region D in space, such as the 
region occupied by a solid ball or a lump of clay, then the integral of F  over D may be 
defined in the following way. We partition a rectangular boxlike region containing D into 
rectangular cells by planes parallel to the coordinate axes (Figure 14.30). We number the 
cells that lie completely inside D from 1 to n in some order, the kth cell having dimensions 

x k by yk  by z k and volume Δ = Δ Δ ΔV x y z .k k k k  We choose a point ( )x y z,  , k k k  in 
each cell and form the sum

 ∑ ( )= Δ
=

S F x y z V,  ,  .n
k

n

k k k k
1

 (1)

We are interested in what happens as D is partitioned by smaller and smaller cells, so 
that x y z,  ,  ,k k k  and the norm of the partition P , the largest value among 

x y z,  ,  ,k k k  all approach zero. When a single limiting value is attained, no matter how 
the partitions and points ( )x y z,  , k k k  are chosen, we say that F  is integrable over D. As 
before, it can be shown that when F  is continuous and the bounding surface of D is formed 
from finitely many smooth surfaces joined together along finitely many smooth curves, 
then F  is integrable. In this case, as P 0 and the number of cells n goes to , the 
sums Sn approach a limit. We call this limit the triple integral of F over D and write

S F x y z dV S F x y z dx dy dzlim , , or lim , , .
n

n

D
P

n

D
0∫∫∫ ∫∫∫( ) ( )= =

→∞ →

The regions D over which continuous functions are integrable are those having “reason-
ably smooth” boundaries.

Volume of a Solid Region in Space

If F  is the constant function whose value is 1, then the sums in Equation (1) reduce to

∑ ∑ ∑( )= Δ = ⋅ Δ = Δ
= = =

S F x y z V V V, , 1 .n
k

n

k k k k
k

n

k
k

n

k
1 1 1

FIGURE 14.30 Partitioning a solid 
with rectangular cells of volume V .k

z

y
x

D

(xk, yk, zk)

Δzk

Δxk
Δyk
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884 Chapter 14 Multiple Integrals

DEFINITION The volume of a closed and bounded solid region D in space is

V dV.
D

∫∫∫=

z

y

x

D

Rb

a

z = f2(x, y)

z = f1(x, y)

As Δ Δx y,  ,k k  and Δz k approach zero, the cells ΔVk become smaller and more numerous 
and fill up more and more of D. We therefore define the volume of D to be the triple 
integral

V dVlim .
n

k

n

k

D1
∑ ∫∫∫Δ =

→∞ =

This definition is in agreement with our previous definitions of volume, although we omit 
the verification of this fact. As we will see in a moment, this integral enables us to calculate 
the volumes of solids enclosed by curved surfaces. These are more general solids than the 
ones encountered before (Chapter 6 and Section 14.2).

Iterated Integrals

We evaluate a triple integral by applying a three-dimensional version of Fubini’s Theorem 
(Section 14.2) to evaluate it by three repeated single integrations. As with double 
integrals, there is a geometric procedure for finding the limits of integration for these iter-
ated integrals.

To evaluate

F x y z dV, ,
D

∫∫∫ ( )

over a solid region D, integrate first with respect to z, then with respect to y, and finally 
with respect to x. (You might choose a different order of integration, but the procedure is 
similar, as we illustrate in Example 2.)

1. Sketch. Sketch the solid region D along with its “shadow” R (vertical projection) in the 
xy-plane. Label the upper and lower bounding surfaces of D and the upper and lower 
bounding curves of R.

M14_HASS5901_15_GE_C14.indd   884 08/03/2023   11:15

www.konkur.in

Telegram: @uni_k
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z

y

x

D

Rb

a

M

(x, y)

Leaves at
z = f2(x, y)

Enters at
z = f1(x, y)

3. Find the y-limits of integration. Draw a line L through ( )x y,  parallel to the y-axis. As y 
increases, L enters R at =y g x( )1  and leaves at =y g x( ).2  These are the y-limits of 
integration.

y

x

D

R
b

a

M

L

x

z

(x, y)

Enters at
y = g1(x)

Leaves at
y = g2(x)

4. Find the x-limits of integration. Choose x-limits that include all lines through R parallel 
to the y-axis ( =x a and =x b in the preceding figure). These are the x-limits of inte-
gration. The integral is

∫∫∫ ( )
( )

( )

=

=

=

=

=

=
F x y z dz dy dx, , .

z f x y

z f x y

y g x

y g x

x a

x b

, 

, 

( )

( )

1

2

1

2

Follow similar procedures if you change the order of integration. The “shadow” of the 
solid region D lies in the plane of the last two variables with respect to which the iterated 
integration takes place. The limits of an iterated triple integral satisfy these properties:

• The limits of the outside integral are constants (they do not depend on any of the three 
variables of integration),

• the limits of the middle integral are functions that may depend on the variable of the 
outside integral, and

• the limits of the inside integral are functions that may depend on two variables: the 
middle integration variable and the outside integration variable.

2. Find the z-limits of integration. Draw a line M passing through a typical point ( )x y,  in 
R parallel to the z-axis. As z increases, M enters D at ( )=z f x y,1  and leaves at 

( )=z f x y, .2  These are the z-limits of integration.
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886 Chapter 14 Multiple Integrals

FIGURE 14.31 Finding the limits of integration for evaluating  
the triple integral of a function defined over the portion of the 
sphere of radius 5 that lies above the plane =z 3 (Example 1).

(x, y)
y

x

Surface x2 + y2 + z2 = 25 

z = 3

R

D

Leaves at
z =

"

25 − x2 − y2

Enters at
z = 3

5
4

4
5

M

z

The preceding procedure applies whenever a solid region D is bounded above and 
below by a surface, and when the “shadow” region R is bounded by a lower and upper 
curve. It does not apply to regions with more complicated shapes (such as regions contain-
ing holes); although, sometimes such regions can be subdivided into simpler regions for 
which the procedure does apply.

We illustrate this method of finding the limits of integration in our first example.

EXAMPLE 1  Let S be the sphere of radius 5 centered at the origin, and let D be the 
solid region under the sphere that lies above the plane =z 3. Set up the limits of integra-
tion for evaluating the triple integral of a function ( )F x y z,  ,   over the region D.

Solution The solid region under the sphere that lies above the plane =z 3 is enclosed 
by the surfaces + + =x y z 252 2 2  and =z 3.

To find the limits of integration, we first sketch the solid region, as shown in Figure 14.31. 
The “shadow region” R in the xy-plane is a circle of some radius centered at the origin. By con-
sidering a side view of the region D, we can determine that the radius of this circle is 4; see 
Figure 14.32a.

If we fix a point ( )x y,  in R and draw a vertical line M above ( )x y, , then we see that 
this line enters the region D at the height =z 3 and leaves the region at the height 

= − −z x y25 ;2 2  see Figure 14.31. This gives us the z-limits of integration.
To find the y-limits of integration, we consider a line L that lies in the region R, 

passes through the point ( )x y, , and is parallel to the y-axis. For clarity we have separately 
pictured the region R and the line L in Figure 14.32b. The line L enters R when y = 

x16 2− −  and exits when = −y x16 2 . This gives us the y-limits of integration.
Finally, as L sweeps across R from left to right, the value of x varies from = −x 4 to 

=x 4. This gives us the x-limits of integration. Therefore, the triple integral of F  over the 
region D is given by

F x y z dz dy dx F x y z dz dy dx, , , , .
D

x y

x

x

3

25

16

16

4

4 2 2

2

2

∫∫∫ ∫∫∫( ) ( )=
− −

− −

−

−
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 14.5  Triple Integrals in Rectangular Coordinates 887

The region D in Example 1 has a great deal of symmetry, which makes visualization 
easier. Even without symmetry, the steps in finding the limits of integration are the same, 
as shown in the next example.

EXAMPLE 2  Set up the limits of integration for evaluating the triple integral of a 
function ( )F x y z, ,  over the tetrahedron D whose vertices are ( ) ( )O A0, 0, 0 ,   1,1, 0 , 
( ) ( )B C0,1, 0 , and  0,1,1 . Use the order of integration dz dy dx.

Solution The solid region D and its “shadow” R in the xy-plane are shown in Figure 14.33a. 
The “top” face is contained in the plane through the points O, A, and C. Following the proce-
dure introduced in Example 7 of Section 11.5, we first form a normal vector to that plane:

	 
		 	 
		
OA OCn

i j k

i j k1 1 0
0 1 1

,= × = = − +

and then use this vector and the coordinates of O to set up an equation for the plane:

( )( ) ( )− − − + − =
− + =

x y z

x y z

1 0 1 0 1 0 0

0.

 The “side” face of D is parallel to the xz-plane, the “back” face lies in the yz-plane, and the 
“bottom” face is contained in the xy-plane.

To find the z-limits of integration, fix a point ( )x y,  in the shadow region R, and con-
sider the vertical line M that passes through x y,  ( ) and is parallel to the z-axis. This line 
enters D at the height z 0, and it exits at height = −z y x.

To find the y-limits of integration we again fix a point ( )x y,  in R, but now we consider 
a line L that lies in R, passes through ( )x y, , and is parallel to the y-axis. This line is shown 
in Figure 14.33a and also in the face-on view of R that is pictured in Figure 14.33b. The 
line L enters R when y x and exits when y 1.

Finally, as L sweeps across R, the value of x varies from x 0 to x 1. Therefore, 
the triple integral of F  over the region D is given by

F x y z dz dy dx F x y z dz dy dx, , , , .
D

y x

x 0

1

0

1

∫∫∫ ∫∫∫( ) ( )=
−

 

FIGURE 14.32 (a) Side view of the solid region from Example 1, looking down the x-axis. The 
dashed right triangle has a hypotenuse of length 5 and sides of lengths 3 and 4. In this side 
view, the shadow region R lies between 4 and 4 on the y-axis. (b) The “shadow region”  
R shown face-on in the xy-plane.

z

y
0 4 5−4−5

5

3

R

D

(a)

y

x
0 4−4

4

−4

R
(x, y)

Enters at
y = −

"

16 − x2

Leaves at
y =

"

16 − x2

L

(b)

FIGURE 14.33 (a) The tetrahedron in 
Example 2, showing how the limits of  
integration are found for the order  
dz dy dx. (b) The “shadow region” R 
shown face-on in the xy-plane.

z

y

x

x

R

D

M

L

B(0, 1, 0)

C(0, 1, 1)

A(1, 1, 0)
1

(x, y)
y = 1

O

y = x

z = y − x

(a)

1

(x, y)

Enters at
y = x

y

x

R

L

0

y = x

Leaves at
y = 1

1

(b)

M14_HASS5901_15_GE_C14.indd   887 22-03-2023   17:51:57

www.konkur.in

Telegram: @uni_k



888 Chapter 14 Multiple Integrals

FIGURE 14.34 Finding the limits of 
integration for evaluating the triple integral 
of a function defined over the tetrahedron 
D (Example 3).

z

y

x

x

R

D

L

M

(0, 1, 0)

(1, 1, 0)
1

1

(x, z)

Line
x + z = 1

(0, 1, 1)

y = 1

y = x + z

Leaves at
y = 1Enters at

y = x + z

In the next example we project the region D onto the xz-plane instead of the xy-plane, 
to show how to use a different order of integration.

EXAMPLE 3  Find the volume of the tetrahedron D from Example 2 by integrating 
( ) =F x y z, , 1 over the region using the order dz dy dx. Then do the same calculation 

using the order dy dz dx.

Solution Using the limits of integration that we found in Example 2, we calculate the 
volume of the tetrahedron as follows:

∫∫∫

∫∫

∫

∫ ( )

( )

=

= −

= −⎡
⎣⎢

⎤
⎦⎥

= − +

= − +⎡
⎣⎢

⎤
⎦⎥

=

−

=

=

V dz dy dx

y x dy dx

y xy dx

x x dx

x x x

1
2

1
2

1
2

1
2

1
2

1
6

1
6

.

y x

x

x

y x

y

0

1

0

1

1

0

1

2
1

0

1

2

0

1

2 3

0

1

Now we will compute the volume using the order of integration dy dz dx. The proce-
dure for finding the limits of integration is similar, except that we find the limits for y first, 
then for z, and then for x. The region D is the same tetrahedron as before, but now the 
“shadow region” R lies in the xz-plane, as shown in Figure 14.34.

To find the y-limits of integration, we fix a point ( )x z,  in the shadow R and consider 
the line M that passes through ( )x z,  and is parallel to the y-axis. As shown in Figure 14.34, 
this line enters D when = +y x z , and it leaves when =y 1.

Next we find the z-limits of integration. The line L that passes through a point ( )x z,  
in R and is parallel to the z-axis enters R when =z 0 and exits when = −z x1  (see 
Figure 14.34).

Finally, as L sweeps across R, the value of x varies from =x 0 to =x 1. Therefore, 
the volume of the tetrahedron is

∫∫∫

∫∫

∫

∫

∫

( )

( )

( ) ( )

( )

( )

=

= − −

= − −⎡
⎣⎢

⎤
⎦⎥

= − − −⎡
⎣⎢

⎤
⎦⎥

= −

= − − ⎤
⎦⎥

=

+

−

−

=

= −

V dy dz dx

x z dz dx

x z z dx

x x dx

x dx

x

1

1 1
2

1 1
2

1

1
2

1

1
6

1 1
6

.

x z

x

x

z

z x

1

0

1

0

1

0

1

0

1

2

0

1

0

1

2 2

0

1

2

0

1

3

0

1

Next we set up and evaluate a triple integral over a more complicated region.

Integrand is 1 when 
computing volume.

Integrate over z 
and evaluate.

Integrate over y.

Evaluate.

Integrate over x.

Evaluate.

M14_HASS5901_15_GE_C14.indd   888 08/03/2023   11:16

www.konkur.in

Telegram: @uni_k



 14.5  Triple Integrals in Rectangular Coordinates 889

EXAMPLE 4  Find the volume of the solid region D enclosed by the surfaces 
= +z x y32 2 and = − −z x y 8 .2 2

Solution The volume is

V dz dy dx,
D

∫∫∫=

the integral of ( ) =F x y z, , 1 over D. To find the limits of integration for evaluating the 
integral, we first sketch the region. The surfaces (Figure 14.35) intersect on the elliptical 
cylinder + = − −x y x y3 82 2 2 2 or + = >x y z2 4,   0.2 2  The boundary of the region R, 
the projection of D onto the xy-plane, is an ellipse with the same equation: + =x y2 4.2 2  
The “upper” boundary of R is the curve ( )= −y x4 2.2  The lower boundary is the 
curve ( )= − −y x4 2.2

FIGURE 14.35 The volume of the region enclosed by two paraboloids, 
calculated in Example 4.

Leaves at
z = 8 − x2 − y2 

(2, 0, 4)

(2, 0, 0)
x

z

yL

(−2, 0, 0)

R

x

D

(−2, 0, 4)

The curve of intersection

z = 8 − x2 − y2

x2 + 2y2 = 4

Leaves at
y = 

"

(4 − x2)�2

z = x2 + 3y2

M

(x, y)

Enters at
z = x2 + 3y2

Enters at
y = −

"

(4 − x2)/2

Now we find the z-limits of integration. The line M passing through a typical point 
( )x y,  in R parallel to the z-axis enters D at = +z x y32 2 and leaves at = − −z x y8 .2 2

Next we find the y-limits of integration. The line L through ( )x y,  that lies parallel to the 
y-axis enters the region R when ( )= − −y x4 22  and leaves when ( )= −y x4 2.2

Finally, we find the x-limits of integration. As L sweeps across R, the value of x varies 
from = −x 2 at ( )−2, 0, 0  to =x 2 at ( )2, 0, 0 . The volume of D is

V dz dy dx

dz dy dx

D

x y

x y

x

x

3

8

4 2

4 2

2

2

2 2

2 2

2

2

∫∫∫

∫∫∫

=

=
( )

( )

+

− −

− −

−

−

Integrand is 1 when computing volume.

Form an iterated integral.
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890 Chapter 14 Multiple Integrals

FIGURE 14.36 The region of integration 
in Example 5.
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⎣⎢

⎤
⎦⎥

= − − − −⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

= − − −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −

=

( )

( )

( )

( )

− −

−

−

=− −

= −

−

−

−

−

x y dy dx

x y y dx

x x x dx

x x dx

x dx

8 2 4

8 2 4
3

2 8 2 4
2

8
3

4
2

8 4
2

8
3

4
2

4 2
3

4

8 2.

x

x

y x

y x

2 2

4 2

4 2

2

2

2 3

4 2

4 2

2

2

2
2 2 3 2

2

2

2 3 2 2 3 2

2

2

2 3 2

2

2

2

2

2

2

Average Value of a Function in Space

The average value of a function F  over a solid region D in space is defined by the formula

 F D
D

F dVAverage value   of   over  1
volume of 

  .
D

∫∫∫=  (2)

For example, if ( ) = + +F x y z x y z, , ,2 2 2  then the average value of F  over D is the 
average distance of points in D from the origin. If ( )F x y z, ,  is the temperature at ( )x y z, ,  
on a solid that occupies a region D in space, then the average value of F  over D is the aver-
age temperature of the solid.

EXAMPLE 5  Find the average value of ( ) =F x y z xyz, ,  throughout the cubical 
region D bounded by the coordinate planes and the planes = =x y2,   2, and =z 2 in 
the first octant.

Solution We sketch the cube with enough detail to show the limits of integration 
(Figure 14.36). We then use Equation (2) to calculate the average value of F  over the cube.

The volume of the region D is ( )( )( ) =2 2 2 8. The value of the integral of F  over the 
cube is

∫∫∫ ∫∫ ∫∫

∫ ∫

= ⎡
⎣⎢

⎤
⎦⎥

=

= ⎡
⎣
⎢

⎤
⎦
⎥ = = ⎡

⎣
⎢

⎤
⎦
⎥ =

=

=

=

=

xyz dx dy dz x yz dy dz yz dy dz

y z dz z dz z

2
2

4 2 8.

x

x

y

y

0

2

0

2

0

2 2

0

2

0

2

0

2

0

2

0

2

2

0

2

0

2

0

2
2

0

2

With these values, Equation (2) gives

xyz
xyz dV

Average value of

 over the cube
1

volume
1
8

8 1.
cube
∫∫∫ ( )( )= = =

In evaluating the integral, we chose the order dx dy dz, but any of the other five possible 
orders would have done as well. 

Properties of Triple Integrals

Triple integrals have the same algebraic properties as double and single integrals. Simply 
replace the double integrals in the four properties given in Section 14.2, page 864, with 
triple integrals.

Integrate over z and evaluate.

Integrate over y.

Evaluate.

After integration with the substitution θ=x 2 sin  
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Triple Integrals in Different Iteration Orders

 1. Evaluate the integral in Example 3, taking ( ) =F x y z, , 1 to find 
the volume of the tetrahedron in the order dz dx dy.

 2. Volume of rectangular solid Write six different iterated triple 
integrals for the volume of the rectangular solid in the first octant 
bounded by the coordinate planes and the planes = =x y1,   2, 
and =z 3. Evaluate one of the integrals.

 3. Volume of tetrahedron Write six different iterated triple inte-
grals for the volume of the tetrahedron cut from the first octant by 
the plane + + =x y z6 3 2 6. Evaluate one of the integrals.

 4. Volume of solid Write six different iterated triple integrals for 
the volume of the solid region in the first octant enclosed by the 
cylinder + =x z 42 2  and the plane y 3.=  Evaluate one of the 
integrals.

 5. Volume enclosed by paraboloids Let D be the solid region 
bounded by the paraboloids z x y8 2 2= − −  and z x y .2 2= +  
Write six different triple iterated integrals for the volume of D. 
Evaluate one of the integrals.

 6. Volume inside paraboloid beneath a plane Let D be the 
solid region bounded by the paraboloid z x y2 2= +  and the 
plane =z y2 . Write triple iterated integrals in the order dz dx dy 
and dz dy dx  that give the volume of D. Do not evaluate either 
integral.

Evaluating Triple Iterated Integrals
Evaluate the integrals in Exercises 7–20.

 7. ∫∫∫ ( )+ +x y z dz dy dx2 2 2

0

1

0

1

0

1

 8. ∫∫∫ +

− −
dz dx dy

x y

x yy

3

8

0

3

0

2

2 2

2 2

 9. ∫∫∫ xyz
dx dy dz1eee

111

32

 10. ∫∫∫
− −−

dz dy dx
x yx

0

3 3

0

3 3

0

1
 11. ∫∫∫

π

−
y z dx dy dzsin

2

3

0

1

0

6

 12. ∫∫∫ ( )+ +
−

x y z dy dx dz
0

2

0

1

1

1

 13. ∫∫∫
−−

dz dy dx
xx

0

9

0

9

0

3 22

 14. ∫∫∫
+

− −

−
dz dx dy

x y

y

y

0

2

4

4

0

2

2

2

 15. ∫∫∫
− −−

dz dy dx
x yx

0

2

0

2

0

1
 16. ∫∫∫

− −−
x dz dy dx

x yx

3

4

0

1

0

1 22

 17. ∫∫∫ υ υ υ( )( )+ +
πππ

u w du d dw u wcos -space
000

 18. ∫∫∫
( )

( )se r
t

t
dt dr ds rstln  

ln
-spaces

ee 2

110

1

 19. ∫∫∫ υ υ( )
υπ

−∞
e dx dt d t x space-x

t2

0

ln sec

0

4

 20. ∫∫∫ ( )
+

− q
r

dp dq dr pqr
1

-space
q

0

4

0

2

0

7 2

Finding Equivalent Iterated Integrals

 21. Here is the region of integration of the integral

∫∫∫
−

−
dz dy dx.

y

x 0

11

1

1

2

EXERCISES 14.5 

0

z

y

x
1

1

(1, −1, 0)

(1, −1, 1)

(0, −1, 1)

z = y2

z

x

y

11

1

(1, 1, 0)

y

x

z

Top:  y + z = 1

(−1, 1, 0)

Side:
y = x2

−11

Rewrite the integral as an equivalent iterated integral in the order

 a. dy dz dx  b. dy dx dz

 c. dx dy dz  d. dx dz dy

 e. dz dx dy.

 22. Here is the region of integration of the integral

∫∫∫ −
dz dy dx

y

01

0

0

1 2

Rewrite the integral as an equivalent iterated integral in the order

 a. dy dz dx  b. dy dx dz

 c. dx dy dz  d. dx dz dy

 e. dz dx dy.

Finding Volumes Using Triple Integrals
Find the volumes of the solid regions in Exercises 23–36.

 23. The region between the cylinder =z y 2 and the xy-plane that is 
bounded by the planes = = = − =x x y y0,   1,   1,   1
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892 Chapter 14 Multiple Integrals

z

y

x

(1, 0, 0)

(0, 2, 0)

(0, 0, 3)

z

y

x

z

y

x

 24. The region in the first octant bounded by the coordinate planes 
and the planes + = + =x z y z1,   2 2

 29. The region common to the interiors of the cylinders + =x y 12 2  
and + =x z 1,2 2  one-eighth of which is shown in the accompa-
nying figure

z

y

x

z

y

x

z

y
x

z

y

x

z

y

x

 25. The region in the first octant bounded by the coordinate planes, 
the plane + =y z 2, and the cylinder = −x y4 2

 26. The wedge cut from the cylinder + =x y 12 2  with ≥z 0 by the 
planes = −z y and =z 0

 27. The tetrahedron in the first octant bounded by the coordinate planes 
and the plane passing through ( ) ( ) ( )1, 0, 0 , 0, 2, 0 , and 0, 0, 3

 28. The region in the first octant bounded by the coordinate planes, the 
plane = −y x1 , and the surface π( )= ≤ ≤z x xcos 2 ,  0 1

z

y
x

x2 + z2 = 1

x2 + y2 = 1

 30. The region in the first octant bounded by the coordinate planes 
and the surface = − −z x y4 2

 31. The region in the first octant bounded by the coordinate planes, 
the plane + =x y 4, and the cylinder + =y z4 162 2

 32. The region cut from the cylinder + =x y 42 2  by the plane 
=z 0 and the plane + =x z 3
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 14.6  Applications 893

 33. The region between the planes + + =x y z2 2 and 
+ + =x y z2 2   4 in the first octant

 34. The finite region bounded by the planes =z x, 
+ = = =x z z y y8,   ,   8, and =z 0

 35. The region cut from the solid elliptical cylinder + ≤x y4 42 2  
by the xy-plane and the plane = +z x 2

 36. The region bounded in back by the plane =x 0, on the front and 
sides by the parabolic cylinder = −x y1 ,2  on the top by the 
paraboloid = +z x y ,2 2  and on the bottom by the xy-plane

Average Values
In Exercises 37–40, find the average value of ( )F x y z, ,  over the given 
region.

 37. ( ) = +F x y z x, , 92  over the cube in the first octant bounded by 
the coordinate planes and the planes = =x y2,   2, and =z 2

 38. ( ) = + −F x y z x y z, ,  over the rectangular box in the first octant 
bounded by the coordinate planes and the planes = =x y1,   1, 
and =z 2

 39. ( ) = + +F x y z x y z, , 2 2 2 over the cube in the first octant 
bounded by the coordinate planes and the planes = =x y1,   1, 
and =z 1

 40. ( ) =F x y z xyz, ,  over the cube in the first octant bounded by the 
coordinate planes and the planes = =x y2,   2, and =z 2

Changing the Order of Integration
Evaluate the integrals in Exercises 41–44 by changing the order of 
integration in an appropriate way.

 41. ∫∫∫
( )x

z
dx dy dz

4 cos

2y

2

2

2

0

1

0

4

 42. xze dy dx dz12 zy

x

1

0

1

0

1
2

2∫∫∫

 43. ∫∫∫
π πe y

y
dx dy dz

sinx

z

2 2

20

ln 31

0

1

3

 44. ∫∫∫ −

− z
z

dy dz dx
sin 2
4

xx

00

4

0

2 2

Theory and Examples

 45. Finding an upper limit of an iterated integral Solve for a:

∫∫∫ =
− −− −

dz dy dx 4
15

.
a

x ya x 4

0

4

0

1 22

 46. Ellipsoid For what value of c is the volume of the ellipsoid 
( ) ( )+ + =x y z c2 12 2 2  equal to π8 ?

 47. Minimizing a triple integral What domain D in space mini-
mizes the value of the integral

x y z dV4 4 4 ?
D

2 2 2∫∫∫ ( )+ + −

Give reasons for your answer.

 48. Maximizing a triple integral What domain D in space maxi-
mizes the value of the integral

x y z dV1 ?
D

2 2 2∫∫∫ ( )− − −

Give reasons for your answer.

COMPUTER EXPLORATIONS
In Exercises 49–52, use a CAS integration utility to evaluate the triple 
integral of the given function over the specified solid region.

 49. ( ) =F x y z x y z, , 2 2  over the solid cylinder bounded by 
+ =x y 12 2  and the planes =z 0 and =z 1

 50. ( ) =F x y z xyz, ,  over the solid bounded below by the parabo-
loid = +z x y2 2 and above by the plane =z 1

 51. ( )
( )

=
+ +

F x y z z
x y z

, ,
2 2 2 3 2  over the solid bounded below 

by the cone = +z x y2 2  and above by the plane =z 1

 52. ( ) = + +F x y z x y z, , 4 2 2 over the solid sphere + +x y2 2  
≤z 12

FIGURE 14.37 To define an object’s 
mass, we first imagine it to be partitioned 
into a finite number of mass elements Δm .k

x

z

y

D
(xk, yk, zk)

Δmk = d(xk, yk, zk) ΔVk

14.6 Applications

This section shows how to calculate the masses and moments of two- and three- 
dimensional objects in Cartesian coordinates. The definitions and ideas are similar to 
the single-variable case we studied in Section 6.6, but now we can consider more general 
situations.

Masses and First Moments

If δ( )x y z, ,  is the density (mass per unit volume) of an object occupying a solid region D 
in space, the integral of δ  over D gives the mass of the object. To see why, imagine 
partitioning the object into n mass elements like the one in Figure 14.37. The object’s 
mass is the limit

M m x y z V x y z dVlim lim , , , , .
n

k

n

k
n

k

n

k k k k

D1 1
∑ ∑ ∫∫∫δ δ( ) ( )= Δ = Δ =

→∞ = →∞ =

The first moment of a solid region D about a coordinate plane is defined as the triple 
integral over D of the (signed) distance from a point ( )x y z, ,  in D to the plane multiplied 
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894 Chapter 14 Multiple Integrals

FIGURE 14.38 Finding the center of 
mass of a solid (Example 1).

z

y

x

0
R

c.m.

x2 + y2 = 4

z = 4 − x2 − y2

by the density of the solid at that point. For instance, the first moment about the yz-plane is 
the integral

M x x y z dV, , .yz

D
∫∫∫ δ( )=

The center of mass is found from the first moments. For instance, the x-coordinate of 
the center of mass is x M Myz= .

For a two-dimensional object, such as a thin, flat plate, we calculate first moments 
about the coordinate axes by simply dropping the z-coordinate. So the first moment about 
the y-axis is the double integral over the region R forming the plate of the (signed) distance 
from the axis multiplied by the density, or

M x x y dA, .y

R
∫∫ δ( )=

Table 14.1 summarizes the formulas.

THREE-DIMENSIONAL SOLID

M dVMass:
D

∫∫∫ δ=

First moments about the coordinate planes:

M x dV M y dV M z dV, ,yz

D

xz

D

xy

D
∫∫∫ ∫∫∫ ∫∫∫δ δ δ= = =

Center of mass:  x
M

M
y

M
M

z
M

M
, ,yz xz xy= = =

TWO-DIMENSIONAL PLATE

M dAMass:
R
∫∫ δ=

M x dA M y dAFirst moments:  ,y

R

x

R
∫∫ ∫∫δ δ= =

x
M

M
y

M
M

Center of mass:    ,y x= =

TABLE 14.1 Mass and first moment formulas

( )δ δ= x y z, ,  is the density at ( ).x y z, ,

( )δ δ= x y,  is the density at ( )x y, .

EXAMPLE 1  Find the center of mass of a solid of constant density δ  bounded 
below by the disk R x y: 42 2+ ≤  in the plane z 0=  and above by the paraboloid 
z x y4 2 2= − −  (Figure 14.38).

Solution By symmetry x y 0.= =  To find z , we first calculate

M z dz dy dx z dy dx

x y dy dx

2

2
4

xy
z

z x y

R
z

z x y

R

R

0

4 2

0

4

2 2 2

2 2 2 2

∫∫∫ ∫∫

∫∫

δ δ

δ ( )

= = ⎡
⎣⎢

⎤
⎦⎥

= − −

=

= − −

=

= − −
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 14.6  Applications 895

∫∫

∫ ∫

δ θ

δ θ δ θ πδ

( )

( )

= −

= − −⎡
⎣⎢

⎤
⎦⎥

= =

π

π π

=

=

r r dr d

r d d

2
4

2
1
6

  4 16
3

32
3

.
r

r

2 2

0

2

0

2

2 3

0

2

0

2

0

2

A similar calculation gives the mass:

M dz dy dx 8 .
x y

R
0

4 2 2

∫∫∫ δ πδ= =
− −

Therefore, z M M 4 3xy( )= =  and the center of mass is x y z, , 0, 0, 4 3 .( ) ( )=  

When the density of a solid object or plate is constant (as in Example 1), the center of 
mass is called the centroid of the object. To find a centroid, we set δ  equal to 1 and pro-
ceed to find x y, , and z  as before, by dividing first moments by masses. These calculations 
are also valid for two-dimensional objects.

EXAMPLE 2  Find the centroid of the region in the first quadrant that is bounded 
above by the line y x=  and below by the parabola y x .2=

Solution We sketch the region and include enough detail to determine the limits of inte-
gration (Figure 14.39). We then set δ  equal to 1 and evaluate the appropriate formulas from 
Table 14.1:

M dy dx y dx x x dx x x

M y dy dx
y

dx

x x dx x x

M x dy dx xy dx x x dx x x

1
2 3

1
6

2

2 2 6 10
1

15

3 4
1

12
.

x

x

y x

y x

x
x

x

y x

y x

y
x

x

y x

y x

0

1

0

1
2

0

1 2 3

0

1

0

1 2

0

1

2 4

0

1 3 5

0

1

0

1

0

1
2 3

0

1 3 4

0

1

2 2

2 2

2 2

∫∫ ∫ ∫

∫∫ ∫

∫

∫∫ ∫ ∫

( )

( )

( )

= = ⎡
⎣
⎢

⎤
⎦
⎥ = − = −⎡

⎣⎢
⎤
⎦⎥

=

= = ⎡
⎣⎢

⎤
⎦⎥

= − = −⎡
⎣⎢

⎤
⎦⎥

=

= = ⎡
⎣
⎢

⎤
⎦
⎥ = − = −⎡

⎣⎢
⎤
⎦⎥

=

=

=

=

=

=

=

From these values of M M, ,x  and M ,y  we find

x
M

M
y

M
M

1 12
1 6

1
2

and
1 15
1 6

2
5

.y x= = = = = =

The centroid is the point ( )1 2, 2 5 . 

Note that each coordinate of the centroid of a region is equal to the average value of 
the corresponding variable over the region.

Moments of Inertia

An object’s first moments (Table 14.1) give us information related to balance and to the 
torque the object experiences about different axes in a gravitational field. If the object is a 
rotating shaft, we are interested in how much energy is stored in the shaft and how much 
energy is generated by a shaft rotating at a particular angular velocity. This is captured by 
the second moment or moment of inertia.

Think of partitioning the shaft into small blocks of mass mkΔ  and let rk denote the 
distance from the kth block’s center of mass to the axis of rotation (Figure 14.40). If the 

Polar coordinates simplify the integration.

FIGURE 14.39 The centroid of this 
region is found in Example 2.

(1, 1)

0 1

1

x

y

y = x2

y = x

FIGURE 14.40 To find an integral for 
the amount of energy stored in a rotating 
shaft, we first imagine the shaft to be parti-
tioned into small blocks. Each block has its 
own kinetic energy. We add the contribu-
tions of the individual blocks to find the 
kinetic energy of the shaft.

u

L

yk

Δmk
rku

rk
Axis of
rotation
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896 Chapter 14 Multiple Integrals

FIGURE 14.41 Distances from dV to 
the axes.

z

y

x

x

y

x

y

z
x

dV

0

"y2 + z2

"x2 + z2

"x2 + y2

shaft rotates at a constant angular velocity of ω θ= d dt radians per second, the block’s 
center of mass will trace its orbit at a linear speed of

υ θ θ ω( )= = =d
dt

r r d
dt

r .k k k k

The block’s kinetic energy will be approximately

υ ω ω( )Δ = Δ = Δm m r r m1
2

1
2

1
2

.k k k k k k
2 2 2 2

The kinetic energy of the shaft will be approximately

∑ ω Δr m1
2

.k k
2 2

The integral approached by these sums as the shaft is partitioned into smaller and smaller 
blocks gives the shaft’s kinetic energy:

 ∫∫ ω ω= =r dm r dmKE 1
2

1
2

. shaft
2 2 2 2  (1)

The factor

∫=I r dm2

is the moment of inertia of the shaft about its axis of rotation, and we see from Equation (1) 
that the shaft’s kinetic energy is

ω= IKE 1
2

.shaft
2

The moment of inertia of a shaft resembles in some ways the inertial mass of a loco-
motive. To start a locomotive with mass m moving at a linear velocity υ, we need to pro-
vide a kinetic energy of υ( )= mKE 1 2 .2  To stop the locomotive we have to remove this 
amount of energy. To start a shaft with moment of inertia I rotating at an angular velocity 
ω, we need to provide a kinetic energy of ω( )= IKE 1 2 .2  To stop the shaft we have to 
take this amount of energy back out. The shaft’s moment of inertia is analogous to the 
locomotive’s mass. What makes the locomotive hard to start or stop is its mass. What 
makes the shaft hard to start or stop is its moment of inertia. The moment of inertia depends 
not only on the mass of the shaft but also on its distribution. Mass that is farther away from 
the axis of rotation contributes more to the moment of inertia.

We now derive a formula for the moment of inertia for a solid in space. If ( )r x y z, ,  
is the distance from the point ( )x y z, ,  in D to a line L, then the moment of inertia of the 
mass δ( )Δ = Δm x y z V, ,k k k k k  about the line L (as in Figure 14.40) is approximately 

I r x y z m, , .k k k k k
2 ( )Δ = Δ  The moment of inertia about L of the entire object is

I I r x y z x y z V r dVlim lim ( , , ) , , .L
n

k

n

k
n

k

n

k k k k k k k

D1 1

2 2∑ ∑ ∫∫∫δ δ( )= Δ = Δ =
→∞ = →∞ =

If L is the x-axis, then = +r y z2 2 2 (Figure 14.41) and

I y z x y z dV, , .x

D

2 2∫∫∫ δ( )( )= +

Similarly, if L is the y-axis or the z-axis, we have

I x z x y z dV I x y x y z dV, , and , , .y

D

z

D

2 2 2 2∫∫∫ ∫∫∫δ δ( ) ( )( ) ( )= + = +

M14_HASS5901_15_GE_C14.indd   896 08/03/2023   11:17

www.konkur.in

Telegram: @uni_k



 14.6  Applications 897

Table 14.2 summarizes the formulas for these moments of inertia (second moments 
because they invoke the squares of the distances). It shows the definition of the polar 
moment about the origin as well.

THREE-DIMENSIONAL SOLID

About the x-axis: I y z dVx

D

2 2∫∫∫ δ( )= + ( )δ δ= x y z, ,

About the y-axis: I x z dVy

D

2 2∫∫∫ δ( )= +

About the z-axis: I x y dVz

D

2 2∫∫∫ δ( )= +

About a line L: I r x y z dV, ,  L

D

2∫∫∫ δ( )=
( ) =r x y z, , distance from the

( )x y z Lpoint  , ,  to line 

TWO-DIMENSIONAL PLATE

About the x-axis: I y dAx

R

2 ∫∫ δ= ( )δ δ= x y,

About the y-axis: I x dAy

R

2 ∫∫ δ=

About a line L: I r x y dA,L

R

2∫∫ δ( )= ( ) ( )=r x y x y L, distance from  ,  to 

About the origin  
(polar moment):

I x y dA I Ix y

R

0
2 2∫∫ δ( )= + = +

TABLE 14.2 Moments of inertia (second moments) formulas

EXAMPLE 3  Find I I I,   ,  x y z  for the rectangular solid of constant density δ  shown in 
Figure 14.42.

Solution The formula for I x gives

I y z dx dy dz.x
a

a

b

b

c

c
2 2

2

2

2

2

2

2

∫∫∫ δ( )= +
−−−

We can avoid some of the work of integration by observing that δ( )+y z2 2  is an even 
function of x, y, and z since δ  is constant. The rectangular solid consists of eight symmetric 
pieces, one in each octant. We can evaluate the integral on one of these pieces and then 
multiply by 8 to get the total value:

I y z dx dy dz a y z dy dz

a
y

z y dz

a b z b dz

8 4

4
3

4
24 2

x

abc bc

y

y bc

c

2 2

0

2

0

2

0

2
2 2

0

2

0

2

3
2

0

2

0

2

3 2

0

2

∫∫∫ ∫∫

∫

∫

δ δ

δ

δ ( )

( ) ( )= + = +

= +⎡
⎣⎢

⎤
⎦⎥

= +

=

=

FIGURE 14.42 Finding I I,   ,x y  and Iz   
for the block shown here. The origin lies at 
the center of the block (Example 3).

b

a

c

Center of 
block

x

y

z
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898 Chapter 14 Multiple Integrals

FIGURE 14.44 The greater the polar 
moment of inertia of the cross-section 
of a beam about the beam’s longitudinal 
axis, the stiffer the beam. Beams A and B 
have the same cross-sectional area, but A 
is stiffer.

Beam B

Beam A

Axis

Axis

δ δ( ) ( ) ( )= + = + = +a b c c b abc b c M b c4
48 48 12 12

.
3 3

2 2 2 2

Similarly,

I M a c I M a b
12

and
12

.y z
2 2 2 2( ) ( )= + = +  

EXAMPLE 4  A thin plate covers the triangular region bounded by the x-axis and the 
lines =x 1 and =y x2  in the first quadrant. The plate’s density at the point ( )x y,  is 
δ( ) = + +x y x y, 6 6 6. Find the plate’s moments of inertia about the coordinate axes 
and the origin.

Solution We sketch the plate and put in enough detail to determine the limits of integra-
tion for the integrals we have to evaluate (Figure 14.43). The moment of inertia about the 
x-axis is

I y x y dy dx xy y y dy dx

xy y y dx x x dx

x x

, 6 6 6

2 3
2

2 40 16

8 4 12.

x

x x

y

y x

2

0

2

0

1
2 3 2

0

2

0

1

3 4 3

0

2

0

1
4 3

0

1

5 4

0

1

∫∫ ∫∫

∫ ∫

δ( ) ( )

( )

= = + +

= + +⎡
⎣⎢

⎤
⎦⎥

= +

= +⎡
⎣
⎢

⎤
⎦
⎥ =

=

=

Similarly, the moment of inertia about the y-axis is

I x x y dy dx, 39
5

.y

x
2

0

2

0

1

∫∫ δ( )= =

Notice that we integrate y 2 times density in calculating Ix, and x 2 times density to find I .y

Since we know Ix and I ,y  we do not need to evaluate an integral to find I0; we can use 
the equation = +I I Ix y0  from Table 14.2 instead:

I 12 39
5

60 39
5

99
5

.0 = + = + =  

The moment of inertia also plays a role in determining how much a horizontal metal 
beam will bend under a load. The stiffness of the beam is a constant times I, the moment of 
inertia of a typical cross-section of the beam about the beam’s longitudinal axis. The 
greater the value of I, the stiffer the beam and the less it will bend under a given load. That 
is why we use I-beams instead of beams whose cross-sections are square. The flanges at 
the top and bottom of the beam hold most of the beam’s mass away from the longitudinal 
axis to increase the value of I (Figure 14.44).

Probability

The probability that a continuous random variable X takes values between a and b is found 
by integrating a probability density function f  (Appendix A.8),

∫( )≤ ≤ =P a X b f x dx( ) .
a

b

A similar process applies to probabilities involving two continuous random variables. The 
probability that a pair of random variables ( )X Y,  takes values lying within a particular 

FIGURE 14.43 The triangular region 
covered by the plate in Example 4.

(1, 2)

0 1

2

x

y

y = 2x

x = 1

δ=M abc
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 14.6  Applications 899

region is determined by a joint probability density function f . Integrating the joint 
probability density function over a region R in the plane gives the probability that the pair 
of random variables take values in that region:

P X Y R f x y dx dy, , .
R
∫∫( ) ( )( ) ∈ =

If the region is a rectangle, then this expression has the simple form

P a X b c Y d f x y dx dy and  , .
a

b

c

d

∫∫ ( )( )≤ ≤ ≤ ≤ =

A joint probability density function f  is defined by three basic properties. The first 
property ensures that there are no negative probabilities, and the second implies that the 
total probability of all possible outcomes is one. The final property describes the connec-
tion of f  to probabilities.

DEFINITION A joint probability density function f  is a function that satisfies 
three conditions:

1. ( ) ≥f x y, 0

2. ∫∫ ( ) =
−∞

∞

−∞

∞
f x y dx dy, 1

3. P X Y R f x y dx dy, , .
R
∫∫( ) ( )( ) ∈ =

FIGURE 14.45 The pair of random 
variables X and Y take values anywhere in 
this rectangle with equal probability. In the 
shaded region we have >X Y .

105

y

x
0

5

A pair of random variables has a uniform distribution on a region R with finite area A 
if ( ) =f x y A, 1  for any ( ) ∈x y R, , and ( ) =f x y, 0 otherwise.

EXAMPLE 5  A random number generator is used to generate two random real num-
bers X and Y in succession. The first number X is chosen between 0 and 10, and the second 
number Y is chosen between 0 and 5. The random number generation is done by a process 
that gives a uniform distribution. Find the joint probability density function f  for the pair 
of numbers ( )X Y,  and use it to compute the probability that X is larger than Y.

Solution The joint probability density function f  is constant on the rectangle 
≤ ≤ ≤ ≤x y0 10,  0 5, because ( )X Y,  is uniformly distributed. The area of the rect-

angle is 50, so f  takes the value 1 50 inside this rectangle:

( ) =
≤ ≤ ≤ ≤⎧

⎨
⎪⎪

⎩
⎪⎪

f x y
x y

,
1 50, if 0 10 and 0 5,

0, otherwise.

To compute the probability that >X Y , we integrate the joint probability density function 
f  over the region in the rectangle where >X Y . This region is bounded on the left by the 
line =x y and on the right by the line =x 10. An integral over this region has limits of 
integration given by ≤ ≤ ≤ ≤y x y10,  0 5 (see Figure 14.45). The probability is 
given by

∫∫( )> = =P X Y dx dy1
50

3
4

.
y

10

0

5

There is a 75% probability that the first number is larger than the second. 
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900 Chapter 14 Multiple Integrals

Plates of Constant Density

 1. Finding a center of mass  Find the center of mass of a thin 
plate of density δ = 3 bounded by the lines = =x y x0,   , and 
the parabola = −y x2 2 in the first quadrant.

 2. Finding moments of inertia  Find the moments of inertia about 
the coordinate axes of a thin rectangular plate of constant density 

δ gm cm 2 bounded by the lines =x 3 and =y 3 in the first 
quadrant.

 3. Finding a centroid  Find the centroid of the region in the first 
quadrant bounded by the x-axis, the parabola =y x2 ,2  and the 
line + =x y 4.

EXERCISES 14.6

EXAMPLE 6  Using the joint probability density function

( ) =
< <⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

( )− +

f x y
e x y

,
, if 0  and 0

0, otherwise

x y

find the probability that < <X1 2 and < <Y2 3.

Solution 

∫∫< < < < = = + − ≈( )− + − − −P X Y e dx dy e e e(1 2,  2 3) 2 0.01989.x y

1

2

2

3
5 3 4

There is slightly less than a 2% probability that X and Y fall within these bounds. 

Means and Expected Values

The mean, or expected value, of a random variable is (Appendix A.8)

∫μ =
−∞

∞
x f x dx  ( ) .

When X and Y have joint probability density function f , the expected value of X and the 
expected value of Y are

∫∫ ∫∫μ μ( ) ( )= =
−∞

∞

−∞

∞

−∞

∞

−∞

∞
x f x y dx dy y f x y dx dy  , and   , .X Y

These indicate the average value expected for each of X and Y. The expected values μX and 
μY  are sometimes called the first moments of the distribution, because their defining  
formulas have the same form as those seen in Table 14.1 for the moments of a two-
dimensional plate. The joint probability density function plays the role in computing μX 
that the mass density function plays in computing the x-coordinate x  of the center of mass, 
and the same applies to μY  and y . One can roughly think of the joint probability density 
function as measuring the probability concentration per unit area on the plane, just as den-
sity measures the mass per unit area for a plate.

EXAMPLE 7  Find the expected values μX and μY  for the joint probability density 
function in Example 5.

Solution For the joint probability density function in Example 5, we compute

∫∫μ ( )= =x dx dy1 50 5X
0

10

0

5

and

∫∫μ ( )= =y dx dy1 50 2.5.Y
0

10

0

5

The expected value of X is 5 and that of Y is 2.5. 

M14_HASS5901_15_GE_C14.indd   900 07/04/2023   15:27

www.konkur.in

Telegram: @uni_k



 14.6  Applications 901

 4. Finding a centroid Find the centroid of the triangular region 
cut from the first quadrant by the line + =x y 3.

 5. Finding a centroid Find the centroid of the region cut from the 
first quadrant by the circle + =x y a .2 2 2

 6. Finding a centroid Find the centroid of the region between the 
x-axis and the arch π= ≤ ≤y x xsin ,  0 .

 7. Finding moments of inertia Find the moment of inertia about the 
x-axis of a thin plate of density δ = 1 gm cm 2 bounded by the circle 

+ =x y 4.2 2  Then use your result to find I y and I 0 for the plate.

 8. Finding a moment of inertia Find the moment of inertia  
with respect to the y-axis of a thin sheet of constant density 
δ = 1 gm cm 2  bounded by the curve ( )=y x xsin 2 2  and the 
interval π π≤ ≤x 2  of the x-axis.

 9. The centroid of an infinite region Find the centroid of the 
infinite region in the second quadrant enclosed by the coordinate 
axes and the curve =y e .x  (Use improper integrals in the mass-
moment formulas.)

 10. The first moment of an infinite plate Find the first moment 
about the y-axis of a thin plate of density δ( ) =x y, 1 covering the 
infinite region under the curve = −y e x 22  in the first quadrant.

Plates with Varying Density

 11. Finding a moment of inertia Find the moment of inertia about 
the x-axis of a thin plate bounded by the parabola = −x y y 2 
and the line + =x y 0 if δ( ) = +x y x y, .

 12. Finding mass Find the mass of a thin plate occupying the 
smaller region cut from the ellipse + =x y4 122 2  by the parab-
ola =x y4 2 if δ( ) =x y x, 5 kg m 2 .

 13. Finding a center of mass Find the center of mass of a thin 
triangular plate bounded by the y-axis and the lines =y x  and 

= −y x2  if δ( ) = + +x y x y, 6 3 3.

 14. Finding a center of mass and moment of inertia Find the cen-
ter of mass and moment of inertia about the x-axis of a thin plate 
bounded by the curves =x y 2 and = −x y y2 2 if the density at 
the point ( )x y,  is δ( ) = +x y y, 1.

 15. Center of mass, moment of inertia Find the center of mass 
and the moment of inertia about the y-axis of a thin rectangular 
plate cut from the first quadrant by the lines =x 6 and =y 1 if 
δ( ) = + +x y x y, 1.

 16. Center of mass, moment of inertia Find the center of mass 
and the moment of inertia about the y-axis of a thin plate bounded 
by the line =y 1 and the parabola =y x 2 if the density is 
δ( ) = +x y y, 1.

 17. Center of mass, moment of inertia Find the center of mass 
and the moment of inertia about the y-axis of a thin plate bounded 
by the x-axis, the lines = ±x 1, and the parabola =y x 2 if 
δ( ) = +x y y, 7 1.

 18. Center of mass, moments of inertia Find the center of mass 
and the moments of inertia about the x-axis of a thin rectangular 
plate bounded by the lines = = = −x x y0,   20,   1, and =y 1 
if δ( ) ( )= +x y x, 1 20 .

 19. Center of mass, moments of inertia Find the center of mass, 
the moment of inertia about the coordinate axes, and the polar 
moment of inertia of a thin triangular plate bounded by the lines 

= = −y x y x,   , and =y 1 if δ( ) = +x y y, 1 kg m .2

 20. Center of mass, moments of inertia  Repeat Exercise 19 for 
δ( ) = +x y x, 3 1 kg m .2 2

Solids with Constant Density

 21. Moments of inertia Find the moments of inertia of the rect-
angular box of constant density δ( ) =x y z, , 1 shown here with 
respect to its edges by calculating I I,   ,x y  and I .z

z

y

x

1

2

2

z = 2 − x

x = −2

x 2 + 4y2 = 4

z

y

x b

a

Centroid
at (0, 0, 0)

c b
3

a
2

c
3

z

y

x

c

b

a

 22. Moments of inertia The coordinate axes in the figure run 
through the centroid of a solid wedge parallel to the labeled 
edges. Find I I,   ,x y  and Iz  if = =a b 6, =c 4, and the density is 
δ( ) =x y z, , 1.

 23. Center of mass and moments of inertia A solid “trough” of 
constant density δ( ) =x y z, , 1 is bounded below by the surface 

=z y4 ,2  above by the plane =z 4, and on the ends by the planes 
=x 1 and = −x 1. Find the center of mass and the moments of 

inertia with respect to the three axes.

 24. Center of mass  A solid of constant density is bounded 
below by the plane =z 0, on the sides by the elliptical cylin-
der + =x y4 4,2 2  and above by the plane = −z x2  (see the 
accompanying figure).

 a. Find x  and y.

 b. Evaluate the integral

M z dz dy dx,xy

x

x

x

0

2

1 2 4

1 2 4

2

2

2

2

∫∫∫=
( )

( ) −

− −

−

−

using integral tables to carry out the final integration with 
respect to x. Then divide Mxy  by M to verify that =z 5 4.
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902 Chapter 14 Multiple Integrals

 25. a.  Center of mass Find the center of mass of a solid of con-
stant density bounded below by the paraboloid = +z x y2 2 
and above by the plane =z 4.

 b. Find the plane =z c that divides the solid into two parts of 
equal volume. This plane does not pass through the center of 
mass.

 26. Moments A solid cube of constant density δ( ) =x y z, , 1,  
2 units on a side, is bounded by the planes = ± = ±x z1,   1, 

=y 3, and =y 5. Find the center of mass and the moments of 
inertia about the coordinate axes.

 27. Moment of inertia about a line A wedge like the one in 
Exercise 22 has = =a b4,   6, =c 3, and a constant density 
δ( ) =x y z, , 1. Make a quick sketch to check for yourself that the 
square of the distance from a typical point ( )x y z, ,  of the wedge 
to the line = =L z y: 0,   6 is ( )= − +r y z6 .2 2 2  Then cal-
culate the moment of inertia of the wedge about L.

 28. Moment of inertia about a line A wedge like the one in 
Exercise 22 has = =a b4,   6, =c 3, and a constant density 
δ( ) =x y z, , 1. Make a quick sketch to check for yourself that the 
square of the distance from a typical point ( )x y z, ,  of the wedge 
to the line = =L x y: 4,   0 is ( )= − +r x y4 .2 2 2  Then cal-
culate the moment of inertia of the wedge about L.

Solids with Varying Density
In Exercises 29 and 30, find

 a. the mass of the solid. b. the center of mass.

 29. A solid region in the first octant is bounded by the coordinate 
planes and the plane + + =x y z 2. The density of the solid is 
δ( ) =x y z x, , 2 gm cm 3.

 30. A solid in the first octant is bounded by the planes =y 0 and 
=z 0 and by the surfaces = −z x4 2 and =x y 2 (see the 

accompanying figure). Its density function is δ( ) =x y z kxy k, , ,    
a constant.

 31. A solid cube in the first octant is bounded by the coordinate planes 
and by the planes = =x y1,   1, and =z 1. The density of the 
cube is δ( ) = + + +x y z x y z, , 1.

 32. A wedge like the one in Exercise 22 has dimensions 
= =a b2,   6, and =c 3. The density is δ( ) = +x y z x, , 1. 

Notice that if the density is constant, the center of mass will be 
( )0, 0, 0 .

 33. Mass Find the mass of the solid bounded by the planes 
+ = − = − =x z x z y1,   1,   0, and the surface =y z. The 

density of the solid is δ( ) = +x y z y, , 2 5 kg m 3.

 34. Mass Find the mass of the solid region bounded by the para-
bolic surfaces = − −z x y16 2 22 2 and = +z x y2 22 2 if the 
density of the solid is δ( ) = +x y z x y, , .2 2

Theory and Examples
The Parallel Axis Theorem Let Lc.m. be a line through the center of 
mass of a body of mass m and let L be a parallel line h units away from 
L .c.m.  The Parallel Axis Theorem says that the moments of inertia I c.m. 
and IL  of the body about Lc.m. and L satisfy the equation

 I I mh .L c.m.
2= +  (2)

As in the two-dimensional case, the theorem gives a quick way to cal-
culate one moment when the other moment and the mass are known.

 35. Proof of the Parallel Axis Theorem 

 a. Show that the first moment of a body in space about any plane 
through the body’s center of mass is zero. (Hint: Place the 
body’s center of mass at the origin and let the plane be the  
yz-plane. What does the formula x M Myz=  then tell you?)

z

y

x

2

4

x = y2

(2, 
"

2, 0)

z = 4 − x2

z

x

y
c.m.

L

D

v = xi + yj

(x, y, z)

Lc.m.

hi

v − hi

(h, 0, 0)

In Exercises 31 and 32, find

a. the mass of the solid.

b. the center of mass.

c. the moments of inertia about the coordinate axes.

 b. To prove the Parallel Axis Theorem, place the body with 
its center of mass at the origin, with the line Lc.m. along the 
z-axis and the line L perpendicular to the xy-plane at the point 
( )h, 0, 0 . Let D be the region of space occupied by the body. 
Then, in the notation of the figure,

I h dmv i .L

D

2∫∫∫= −

Expand the integrand in this integral and complete the proof.

 36. The moment of inertia about a diameter of a solid sphere of constant 
density and radius a is ( )ma2 5 ,2  where m is the mass of the sphere. 
Find the moment of inertia about a line tangent to the sphere.

 37. The moment of inertia of the solid in Exercise 21 about the z-axis 
is I abc a b 3.z

2 2( )= +

 a. Use Equation (2) to find the moment of inertia of the solid about 
the line parallel to the z-axis through the solid’s center of mass.
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 14.7  Triple Integrals in Cylindrical and Spherical Coordinates 903

 b. Use Equation (2) and the result in part (a) to find the moment 
of inertia of the solid about the line = =x y b0,   2 .

 38. If = =a b 6 and =c 4, the moment of inertia of the solid 
wedge in Exercise 22 about the x-axis is I 208.x =  Find the 
moment of inertia of the wedge about the line = = −y z4,   4 3 
(the edge of the wedge’s narrow end).

Joint Probability Density Functions
For Exercises 39–42, verify that f  gives a joint probability density 
function. Then find the expected values μX and μY.

 39. ( ) =
+ ≤ ≤ ≤ ≤⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x y
x y x y

,
, if 0 1 and 0 1,

0, otherwise.

 40. ( ) =
≤ ≤ ≤ ≤⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x y
xy x y

,
4 , if 0 1 and 0 1,

0, otherwise.

 41. ( ) =
≤ ≤ ≤ ≤⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x y
x y x y

,
6 , if 0 1 and 0 1,

0, otherwise.

2

 42. 
( )

( ) =
+ ≤ ≤ ≤ ≤⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x y
x y x y

,  
, if 0 1 and 0 1,

0, otherwise.

3
2

2 2

 43. Suppose that f  is a uniform joint probability density function on 
≤ < ≤ <x y0 2,  0 3. What is the formula for f ? What is the 

probability that <X Y ?

 44. The following formula defines a joint probability density func-
tion. What is the value of C? What are the expected values μX 
and μY?

f x y
Cxy x y

,
, if 0 2 and 0 3,

0, otherwise.
( ) =

≤ ≤ ≤ ≤⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

14.7 Triple Integrals in Cylindrical and Spherical Coordinates

When a calculation in physics, engineering, or geometry involves a cylinder, cone, or 
sphere, we can often simplify our work by using cylindrical or spherical coordinates, which 
are introduced in this section. The procedure for transforming to these coordinates and 
evaluating the resulting triple integrals is similar to the transformation to polar coordinates 
in the plane discussed in Section 14.4.

Integration in Cylindrical Coordinates

We obtain cylindrical coordinates for space by combining polar coordinates in the xy-plane 
with the usual z-axis. This assigns to every point in space coordinate triples of the form 
r z, , ,θ( )  as shown in Figure 14.46. Here we require r 0≥ .

DEFINITION Cylindrical coordinates represent a point P in space by ordered 
triples r z, ,θ( ) in which

1. r and θ are polar coordinates for the vertical projection of P on the xy-plane, 
with r 0≥ , and

2. z is the rectangular vertical coordinate.

The values of x, y, r, and θ in rectangular and cylindrical coordinates are related by the 
usual equations.

Equations Relating Rectangular ( )x y z, ,  and Cylindrical ( )θr z, ,  Coordinates

x r y r z z

r x y y x

cos , sin , ,

, tan2 2 2

θ θ

θ

= = =

= + =

In cylindrical coordinates, the equation r a=  describes not just a circle in the xy-plane 
but an entire cylinder about the z-axis (Figure 14.47). The z-axis is given by r 0.=  The 
equation 0θ θ=  describes the half-plane that contains the z-axis and makes an angle 0θ  with 
the positive x-axis. And, just as in rectangular coordinates, the equation z z0=  describes 
a plane perpendicular to the z-axis.

FIGURE 14.46 The cylindrical coordi-
nates of a point in space are r, ,θ  and z.

0

r
x

z

y
y

z

x

P(r, u, z)

u

FIGURE 14.47 Constant-coordinate 
equations in cylindrical coordinates yield 
cylinders and planes.

z

y

x

0

a

r = a,
u and z vary

z = z0,
r and u vary

u = u0,
r and z vary

z0

u0
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904 Chapter 14 Multiple Integrals

Cylindrical coordinates are good for describing cylinders whose axes run along the 
z-axis and planes that either contain the z-axis or lie perpendicular to the z-axis. Surfaces 
like these have equations of constant coordinate value:

r

z

4

3
2.

θ π
=

=

=

When computing triple integrals over a solid region D in cylindrical coordinates, we 
partition the region into n small cylindrical wedges, rather than into rectangular boxes. In 
the kth cylindrical wedge, r, ,θ  and z change by r , ,k kθΔ Δ  and z ,kΔ  and the largest of these 
numbers among all the cylindrical wedges is called the norm of the partition. We express 
the triple integral as a limit of Riemann sums using these wedges. The volume of such a 
cylindrical wedge VkΔ  is obtained by taking the area AkΔ  of its base in the r -planeθ  and 
multiplying by the height Δz k (Figure 14.48).

For a point r z, ,k k kθ( ) in the center of the kth wedge, we calculated in polar coordi-
nates that A r r .k k k kθΔ = Δ Δ  So θ θΔ = Δ Δ Δ = Δ Δ ΔV z r r r z r k k k k k k k k k, and a 
Riemann sum for f  over D has the form

S f r z r z r, , .n
k

n

k k k k k k k
1

∑ θ θ( )= Δ Δ Δ
=

The triple integral of a function f  over D is obtained by taking a limit of such Riemann 
sums with partitions whose norms approach zero:

Cylinder, radius 4, axis the z-axis

Half-plane containing the z-axis

Plane perpendicular to the z-axis

S f dV f r dz dr dlim .
n

n

D D
∫∫∫ ∫∫∫ θ= =

→∞

Triple integrals in cylindrical coordinates are then evaluated as iterated integrals, as in the 
following example. Although the definition of cylindrical coordinates makes sense without 
any restrictions on θ, in most situations when integrating, we will need to restrict θ to an 
interval of length 2π. So we impose the requirement that α θ β≤ ≤ , where 
0 2 .β α π≤ − ≤

EXAMPLE 1  Find the limits of integration in cylindrical coordinates for integrating 
a function f r z, ,θ( ) over the solid region D bounded below by the plane z 0,=  laterally 
by the circular cylinder ( )+ − =x y 1 1,2 2  and above by the paraboloid = +z x y .2 2

Solution The base of D is also the region’s projection R on the xy-plane. The boundary 
of R is the circle ( )+ − =x y 1 1.2 2  Its polar coordinate equation is

θ

θ

( )+ − =

+ − + =

− =

=

x y

x y y

r r

r

1 1

2 1 1

2 sin 0

2 sin .

2 2

2 2

2

The region is sketched in Figure 14.49.
We find the limits of integration, starting with the z-limits. A line M through a typical 

point θ( )r,  in R parallel to the z-axis enters D at =z 0 and leaves at = + =z x y r .2 2 2

Next we find the r-limits of integration. A ray L through θ( )r,  from the origin enters R 
at =r 0 and leaves at θ=r 2 sin .

FIGURE 14.48 In cylindrical coordi-
nates the volume of the wedge is approxi-
mated by the product θΔ = Δ Δ ΔV r z r  .

Δz

r Δu
r Δr Δu

r

z

Δr
Δu

Volume Differential in Cylindrical 
Coordinates

dV r dz dr dθ=

FIGURE 14.49 Finding the limits of 
integration for evaluating an integral in 
cylindrical coordinates (Example 1).

x

y

z

D

2

R L

Cartesian: x2 + ( y − 1)2 = 1
Polar:       r = 2 sin u

(r, u)
u

Top
Cartesian:    z = x2 + y2

Cylindrical: z = r2

M
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 14.7  Triple Integrals in Cylindrical and Spherical Coordinates 905

Finally, we find the -limitsθ  of integration. As L sweeps across R, the angle θ it makes 
with the positive x-axis runs from θ = 0 to θ π= . The integral is

f r z dV f r z r dz dr d, , , , .
D

r

00

2 sin

0

2

∫∫∫ ∫∫∫θ θ θ( ) ( )=
θπ

 

Example 1 illustrates a good procedure for finding limits of integration in cylindrical 
coordinates. The procedure is summarized as follows.

How to Integrate in Cylindrical Coordinates

To evaluate

f r z dV, ,
D

∫∫∫ θ( )

over a solid region D in space in cylindrical coordinates, integrating first with respect to z, 
then with respect to r, and finally with respect to θ, take the following steps.

1. Sketch. Sketch the solid region D along with its projection R on the xy-plane. Label the 
surfaces and curves that bound D and R.

y

x
R

D

z = g1(r, u)

z = g2(r, u)

z

y

z = g1(r, u)

x R
(r, u)

z = g2(r, u)

D

z
M

2. Find the z-limits of integration. Draw a line M through a typical point θ( )r,  of R parallel 
to the z-axis. As z increases, M enters D at θ( )=z g r,1  and leaves at θ( )=z g r, .2  
These are the z-limits of integration.
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906 Chapter 14 Multiple Integrals

3. Find the r-limits of integration. Draw a ray L through θ( )r,  from the origin. The ray 
enters R at θ=r h ( )1  and leaves at θ=r h ( ).2  These are the r-limits of integration.

L

u = a u = b

r = h2(u)

y

z = g1(r, u)

z = g2(r, u)

x

r = h1(u)

D

z
M

(r, u)

u

a b

R

FIGURE 14.50 Example 2 shows how 
to find the centroid of this solid.

z

M4

L

x y

x2 + y2 = 4
r = 2

z = x2 + y2

  = r2

u

(r, u)

4. Find the θ limits-  of integration. As L sweeps across R, the angle θ it makes with the positive 
x-axis runs from θ α=  to θ β= . These are the θ-limits of integration. The integral is

f r z dV f r z r dz dr d, , , , .
D

z g r

z g r

r h

r h

,

,

( )

( )

1

2

1

2

∫∫∫ ∫∫∫θ θ θ( ) ( )=
θ

θ

θ

θ

θ α

θ β

( )

( )

=

=

=

=

=

=

EXAMPLE 2  Find the centroid δ( )= 1  of the solid enclosed by the cylinder 
+ =x y 4,2 2  bounded above by the paraboloid = +z x y ,2 2  and bounded below by 

the xy-plane.

Solution We sketch the solid, bounded above by the paraboloid =z r 2 and below by 
the plane =z 0 (Figure 14.50). Its base R is the disk ≤ ≤r0 2 in the xy-plane.

The solid’s centroid ( )x y z, ,  lies on its axis of symmetry, here the z-axis. This makes 
= =x y 0. To find z , we divide the first moment Mxy by the mass M.

To find the limits of integration for the mass and moment integrals, we continue with 
the four basic steps. We completed our initial sketch. The remaining steps give the limits of 
integration.

The z-limits. A line M through a typical point θ( )r,  in the base parallel to the z-axis 
enters the solid at =z 0 and leaves at =z r .2

The r-limits. A ray L through θ( )r,  from the origin enters R at =r 0 and leaves at 
=r 2.

The θ limits- . As L sweeps over the base like a clock hand, the angle θ it makes with 
the positive x-axis runs from θ = 0 to θ π= 2 . The value of Mxy is

M z r dz dr d z r dr d

r dr d r d d

2

2 12
16
3

32
3

.

xy

r

z

z r

r

r

00

2

0

2 2

00

2

0

2

5

0

2

0

2 6

0

2

0

2

0

2

2 2

∫∫∫ ∫∫

∫∫ ∫ ∫

θ θ

θ θ θ π

= = ⎡
⎣⎢

⎤
⎦⎥

= = ⎡
⎣⎢

⎤
⎦⎥

= =

π π

π π π

=

=

=

=

The value of M is

∫∫∫ ∫∫

∫∫ ∫ ∫

θ θ

θ θ θ π

= = ⎡
⎣⎢

⎤
⎦⎥

= = ⎡
⎣⎢

⎤
⎦⎥

= =

π π

π π π

=

=

=

=

M r dz dr d z r dr d

r dr d r d d
4

4 8 .

r

z

z r

r

r

00

2

0

2

00

2

0

2

3

0

2

0

2 4

0

2

0

2

0

2

2 2
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 14.7  Triple Integrals in Cylindrical and Spherical Coordinates 907

Therefore,

z
M

M
32

3
1

8
4
3

,xy π
π

= = =

and the centroid is ( )0, 0, 4 3 . Notice that the centroid lies on the z-axis, outside the solid. 
 

Spherical Coordinates and Integration

Spherical coordinates locate points in space with two angles and one distance, as shown in 
Figure 14.51. The first coordinate, 

� ���
ρ = OP , is the point’s distance from the origin and is 

never negative. The second coordinate, φ, is the angle 
� ���
OP  makes with the positive z-axis. 

It is required to lie in the interval 0, .π[ ]  The third coordinate is the angle θ as measured in 
cylindrical coordinates.

φ is the Greek letter phi, pronounced 
“fee.”

FIGURE 14.51 The spherical coordi-
nates ρ φ, , and θ and their relation to x, y, 
z, and r.

y

z

0

r

x

x

y

P(r, f, u)

z = r cos f

f

u

r

DEFINITION Spherical coordinates represent a point P in space by ordered 
triples ρ φ θ( ), ,  in which

1. ρ is the distance from P to the origin ρ( )≥ 0 .

2. φ is the angle 
� ���
OP  makes with the positive z-axis φ π( )≤ ≤0 .

3. θ is the angle from cylindrical coordinates.

FIGURE 14.52 Constant-coordinate 
equations in spherical coordinates yield 
spheres, single cones, and half-planes.

r = a, 
f and u vary

u = u0, 
r and f vary

x

y

P(r, f0, u0)
f0

z

f = f0, 
r and u vary

u0

Equations Relating Spherical Coordinates to Cartesian  
and Cylindrical Coordinates

 

r x r

z y r

x y z r z

sin , cos sin cos ,

cos , sin sin sin ,

.2 2 2 2 2

ρ φ θ ρ φ θ

ρ φ θ ρ φ θ

ρ

= = =

= = =

= + + = +

 (1)

On maps of Earth, θ is related to the longitude of a point on the planet and φ to its 
latitude, while ρ is related to elevation above Earth’s surface.

The equation ρ = a describes the sphere of radius a centered at the origin 
(Figure 14.52). The equation φ φ= 0 describes a single cone whose vertex lies at the 
origin and whose axis lies along the z-axis. (We broaden our interpretation to include the 
xy-plane as the cone φ π= 2.) If φ0 is greater than π 2, the cone φ φ= 0 opens down-
ward. The equation θ θ= 0 describes the half-plane that contains the z-axis and makes an 
angle θ0 with the positive x-axis.

EXAMPLE 3  Find a spherical coordinate equation for the sphere 
( )+ + − =x y z 1 1.2 2 2

Solution We use Equations (1) to substitute for x, y, and z:

ρ φ θ ρ φ θ ρ φ

ρ φ θ θ ρ φ ρ φ

ρ φ φ ρ φ

ρ ρ φ

ρ φ

( )

( )

( )

( )+ + − =

+ + − =

+ + − + =

+ =

=

=

x y z 1 1

sin cos sin sin cos 1 1

sin cos sin cos 2 cos 1 1

sin cos 2 cos

2 cos

2 cos .

2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

2

� ���������� ����������
1

� ����������� �����������
1

Eqs. (1)

Includes ρ = 0
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908 Chapter 14 Multiple Integrals

The angle φ  varies from 0 at the north pole of the sphere to π 2 at the south pole; the 
angle θ  does not appear in the expression for ρ, reflecting the symmetry about the z-axis 
(see Figure 14.53). 

EXAMPLE 4  Find a spherical coordinate equation for the cone = +z x y2 2 .

Solution 1 Use geometry. The cone is symmetric with respect to the z-axis and cuts the 
first quadrant of the yz-plane along the line =z y. The angle between the cone and the 
positive z-axis is therefore π 4 radians. The cone consists of the points whose spherical 
coordinates have φ equal to π 4, so its equation is φ π= 4. (See Figure 14.54.)

Solution 2 Use algebra. If we use Equations (1) to substitute for x, y, and z, we obtain 
the same result:

ρ φ ρ φ

ρ φ ρ φ

φ φ

φ π

= +

=

=

=

=

z x y

cos sin

cos sin

cos sin

4
.

2 2

2 2

Spherical coordinates are useful for describing spheres centered at the origin, half-
planes hinged along the z-axis, and cones whose vertices lie at the origin and whose axes 
lie along the z-axis. Surfaces like these have equations of constant coordinate value:

ρ

φ π

θ π

=

=

=

4

2
3

3
.

When computing triple integrals over a solid region D in spherical coordinates, we 
partition the region into n spherical wedges. The size of the kth spherical wedge, which 
contains a point ρ φ θ( ), , ,k k k  is given by the changes ρ φΔ Δ,   ,k k  and θΔ k  in ρ φ, , and θ. 
Such a spherical wedge has one edge a circular arc of length ρ φΔ ,k k  another edge a circu-
lar arc of length ρ φ θΔsin ,k k k  and thickness ρΔ .k  The spherical wedge closely approxi-
mates a rectangular box of these dimensions when ρ φΔ Δ,   ,k k  and θΔ k  are all small 
(Figure 14.55). It can be shown that the volume of this spherical wedge ΔVk is 

ρ φ ρ φ θΔ = Δ Δ ΔV sink k k k k k
2  for ρ φ θ( ), , ,k k k  a point chosen inside the wedge.

The corresponding Riemann sum for a function ρ φ θ( )f , ,  is

∑ ρ φ θ ρ φ ρ φ θ( )= Δ Δ Δ
=

S f , , sin .n
k

n

k k k k k k k k
1

2

As the norm of a partition approaches zero, and the spherical wedges get smaller, the limit 
of the Riemann sums is the triple integral:

FIGURE 14.53 The sphere in 
Example 3.

y

x

z

2

1

r

f

x2 + y2 + (z − 1)2 = 1
r = 2 cos f

Volume Differential in Spherical 
Coordinates

dV d d dsin2ρ φ ρ φ θ=

Example 3

0, sin 0ρ φ≥ ≥

ρ ( )=Includes  0 the origin

0 φ π≤ ≤  

Sphere, radius 4, center at origin

Cone opening down from the origin, making an 
angle of π2 3 radians with the positive z-axis

Half-plane, hinged along the z-axis, making an 
angle of π 3 radians with the positive x-axis

S f dV f d d dlim , , , , sin .
n

n

D D

2∫∫∫ ∫∫∫ρ φ θ ρ φ θ ρ φ ρ φ θ( ) ( )= =
→∞

FIGURE 14.54 The cone in Example 4.

y

z

x

p
4

f =

p
4

f =

z = "x2 + y2 

FIGURE 14.55 In spherical coordinates 
we use the volume of a spherical wedge, 
which closely approximates that of a  
rectangular box.

y

x

z

O

r sin fΔu

Δu

u

rΔf

Δf

f

Δr

r
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 14.7  Triple Integrals in Cylindrical and Spherical Coordinates 909

To evaluate integrals in spherical coordinates, we usually integrate first with respect 
to ρ. The procedure for finding the limits of integration is as follows. As with cylindrical 
coordinates, we restrict θ in the form α θ β≤ ≤  and β α π≤ − ≤0 2 .

How to Integrate in Spherical Coordinates

To evaluate

f dV, ,
D

∫∫∫ ρ φ θ( )

over a solid region D in space in spherical coordinates, integrating first with respect to ρ, 
then with respect to φ, and finally with respect to θ, take the following steps.

1. Sketch. Sketch the solid region D along with its projection R on the xy-plane. Label the 
surfaces that bound D.

x

yR

r = g1(f, u)

D

z

r = g2(f, u)

x

y

z

R

D

L

M

r = g2(f, u)

r = g1(f, u)

u = a
u = b

fmax

fmin
f

u

FIGURE 14.56 The ice cream cone in 
Example 5.

x y

z

R

L

M

D

u

f
Sphere r = 1

Cone f = p
3

2. Find the ρ limits-  of integration. Draw a ray M from the origin through D, making an 
angle φ with the positive z-axis. Also draw the projection of M on the xy-plane (call the 
projection L). The ray L makes an angle θ with the positive x-axis. As ρ increases, M 
enters D at ρ φ θ( )= g ,1  and leaves at ρ φ θ( )= g , .2  These are the ρ-limits of integra-
tion shown in the above figure.

3. Find the φ limits-  of integration. For any given θ, the angle φ that M makes with the 
positive z-axis runs from φ φ= min to φ φ= .max  The φ-limits of integration may 
depend on θ, but they are often constant.

4. Find the θ limits-  of integration. The ray L sweeps over R as θ runs from α to β. These 
are the θ-limits of integration. The integral is

f dV f d d d, , , , sin .  
D

g

g
2

,

,

1

2

min

max

∫∫∫ ∫∫∫ρ φ θ ρ φ θ ρ φ ρ φ θ( ) ( )=
ρ φ θ

ρ φ θ

φ φ

φ φ

θ α

θ β

( )

( )

=

=

=

=

=

=

EXAMPLE 5  Find the volume of the “ice cream cone” D bounded above by the 
sphere ρ = 1 and bounded below by the cone φ π= 3.

Solution The volume is V d d dsin ,D
2ρ φ ρ φ θ= ∫∫∫  the integral of ρ φ θ( ) =f , , 1 

over D.
To find the limits of integration for evaluating the integral, we begin by sketching D 

and its projection R on the xy-plane (Figure 14.56).
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910 Chapter 14 Multiple Integrals

The ρ limits-  of integration. We draw a ray M from the origin through D, making an angle φ 
with the positive z-axis. We also draw L, the projection of M on the xy-plane, along with the angle 
θ that L makes with the positive x-axis. Ray M enters D at ρ = 0 and leaves at ρ = 1.

The φ limits-  of integration. The cone φ π= 3 makes an angle of π 3 with the posi-
tive z-axis. For any given θ, the angle φ can run from φ = 0 to φ π= 3.

The θ limits-  of integration. The ray L sweeps over R as θ runs from 0 to π2 . The vol-
ume is

V d d d d d d

d d d d

d d

sin sin

3
  sin 1

3
sin

1
3

cos 1
6

1
3

1
6

(2 )
3

.

D

2 2

0

1

0

3

0

2

3

0

1

0

3

0

2

0

3

0

2

0

3

0

2

0

2

∫∫∫ ∫∫∫

∫∫ ∫∫

∫ ∫

ρ φ ρ φ θ ρ φ ρ φ θ

ρ φ φ θ φ φ θ

φ θ θ π π( )

= =

= ⎡
⎣⎢

⎤
⎦⎥

=

= −⎡
⎣⎢

⎤
⎦⎥

= − + = =

ππ

ρ

ρππ ππ

φ

φ ππ π

=

=

=

=

EXAMPLE 6  A solid of constant density δ = 1 occupies the solid region D in 
Example 5. Find the solid’s moment of inertia about the z-axis.

Solution In rectangular coordinates, the moment is

I x y dV.z

D

2 2∫∫∫ ( )= +

In spherical coordinates, x y sin cos sin sin sin .2 2 2 2 2 2ρ φ θ ρ φ θ ρ φ( ) ( )+ = + =  
Hence,

I d d d d d dsin sin sin .z

DD

2 2 2 4 3∫∫∫∫∫∫ ρ φ ρ φ ρ φ θ ρ φ ρ φ θ( )= =

For the region D in Example 5, this becomes

I d d d d d

d d d

d d

sin
5

sin

1
5

1 cos sin 1
5

cos
cos

3

1
5

1
2

1
24

1 1
3

1
5

5
24

1
24

(2 )
12

.

z
4 3

5

0

1
3

0

3

0

2

0

1

0

3

0

2

2

0

3

0

2 3

0

3

0

2

0

2

0

2

∫∫∫∫∫

∫∫ ∫

∫ ∫

ρ φ ρ φ θ ρ φ φ θ

φ φ φ θ φ φ θ

θ θ π π( )

( )

= = ⎡
⎣⎢

⎤
⎦⎥

= − = − +⎡
⎣⎢

⎤
⎦⎥

= − + + − = = =

ρ

ρππππ

ππ

φ

φ ππ

π π

=

=

=

=

Coordinate Conversion Formulas

Cylindrical to 
Rectangular

Spherical to 
Rectangular

Spherical to 
Cylindrical

θ=x r cos ρ φ θ=x sin cos ρ φ=r sin

θ=y r sin ρ φ θ=y sin sin ρ φ=z cos

=z z ρ φ=z cos θ θ=

Corresponding formulas for dV in triple integrals:

dV dx dy dz

r dz dr d

d d dsin2

θ

ρ φ ρ φ θ

=

=

=
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 14.7  Triple Integrals in Cylindrical and Spherical Coordinates 911

In Exercises 1–12, sketch the region described by the following cylin-
drical coordinates in three-dimensional space.

 1. =r 2  2. θ π=
4

 3. = −z 1  4. =z r

 5. θ=r  6. θ=z r sin

 7. + =r z 42 2  8. θ π≤ ≤ ≤ ≤r1 2, 0
3

 9. ≤ ≤ −r z r9 2

 10. θ≤ ≤ ≤ ≤r z0 2 sin , 1 3

 11. θ θ π≤ ≤ ≤ ≤ ≤ ≤r z0 4 cos , 0
2

, 0 5

 12. π θ π θ≤ ≤ − ≤ ≤ ≤ ≤r z r0 3,
2 2

, 0 cos

In Exercises 13–22, sketch the region described by the following 
spherical coordinates in three-dimensional space.

 13. ρ = 3  14. φ π=
6

 15. θ π= 2
3

 16. ρ φ= csc

 17. ρ φ =cos 4

 18. ρ φ φ π≤ ≤ ≤ ≤1 2 sec , 0
4

 19. ρ φ≤ ≤0 3 csc

 20. ρ π φ π θ π≤ ≤ ≤ ≤ ≤ ≤0 1,
2

, 0

 21. 0 cos sin 2, 0 sin sin 3,ρ θ φ ρ θ φ≤ ≤ ≤ ≤  
0 cos 4ρ φ≤ ≤

 22. 4 sec 5, 0
2

φ ρ φ π≤ ≤ ≤ ≤

Evaluating Integrals in Cylindrical Coordinates
Evaluate the cylindrical coordinate integrals in Exercises 23–28.

 23. ∫∫∫ θ
π −

r dz dr d
r

r2

0

1

0

2 2

 24. ∫∫∫ θ
π −

r dz dr d
r

r

3

18

0

3

0

2

2

2

 25. ∫∫∫ θ
θ ππ +

r dz dr d
r

0

3 24

0

2

0

2 2

 26. ∫∫∫ θ
θ ππ

− −

−
z r dz dr d

r

r

4

3 4

00 2

2

 27. ∫∫∫ θ
π −

r dz dr d3
r

r1 2

0

1

0

2 2

 28. ∫∫∫ θ θ( )+
π

−
r z r dz dr dsin2 2 2

1 2

1 2

0

1

0

2

Changing the Order of Integration in Cylindrical Coordinates
The integrals we have seen so far suggest that there are preferred 
orders of integration for cylindrical coordinates, but other orders usu-
ally work well and are occasionally easier to evaluate. Evaluate the 
integrals in Exercises 29–32.

 29. ∫∫∫ θ
π

r dr dz d
z

3

0

3

0

3

0

2
 30. ∫∫∫ θ

θπ +

−
r dr d dz4

0

1 cos

0

2

1

1

 31. ∫∫∫ θ θ( )+
π

r z r d dr dzcos
z

2 2 2

0

2

00

1

 32. ∫∫∫ θ θ( )+
π

−

−
r r d dz drsin 1

r

r

0

2

2

4

0

2 2

 33. Let D be the solid region bounded below by the plane =z 0, 
above by the sphere + + =x y z 4,2 2 2  and on the sides by the 
cylinder + =x y 1.2 2  Set up the triple integrals in cylindrical 
coordinates that give the volume of D using the following orders 
of integration.

 a. θdz dr d  b. θdr dz d c. θd dz dr

 34. Let D be the solid region bounded below by the cone 
= +z x y2 2  and above by the paraboloid = − −z x y2 .2 2  

Set up the triple integrals in cylindrical coordinates that give the 
volume of D using the following orders of integration.

 a. θdz dr d  b. θdr dz d c. θd dz dr

Finding Iterated Integrals in Cylindrical Coordinates

 35. Give the limits of integration for evaluating the integral

f r z r dz dr d, ,
D

∫∫∫ θ θ( )

as an iterated integral over the solid region D that is bounded 
below by the plane =z 0, on the side by the cylinder θ=r cos , 
and on top by the paraboloid =z r3 .2

 36. Convert the integral

∫∫∫ ( )+
−

−
x y dz dx dy

xy
2 2

00

1

1

1 2

to an equivalent integral in cylindrical coordinates and evaluate 
the result.

In Exercises 37–42, set up the iterated integral for evaluating 
θ θ( )∫∫∫ f r z r dz dr d, ,D  over the given solid region D.

 37. D is the right circular cylinder whose base is the circle θ=r 2 sin  
in the xy-plane and whose top lies in the plane = −z y4 .

EXERCISES 14.7 

In the next section we offer a more general procedure for determining dV in cylindri-
cal and spherical coordinates. The results, of course, will be the same.

z

y

x r = 2 sin u

z = 4 − y
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912 Chapter 14 Multiple Integrals

 38. D is the right circular cylinder whose base is the circle θ=r 3 cos  
and whose top lies in the plane = −z x5 .

 42. D is the right prism whose base is the triangle in the xy-plane 
bounded by the y-axis and the lines =y x  and =y 1 and whose 
top lies in the plane = −z x2 .

x

r = 3 cos u

y

z = 5 − x

z

 39. D is the solid right cylinder whose base is the region in the  
xy-plane that lies inside the cardioid θ= +r 1 cos  and outside 
the circle =r 1 and whose top lies in the plane =z 4.

 40. D is the solid right cylinder whose base is the region between the 
circles θ=r cos  and θ=r 2 cos  and whose top lies in the plane 

= −z y3 .

 41. D is the right prism whose base is the triangle in the xy-plane 
bounded by the x-axis and the lines =y x  and =x 1 and whose 
top lies in the plane = −z y2 .

z

y

x

4

r = 1 + cos u

r = 1

y

z

x

2

1
y = x

z = 2 − y

z

y

x

r = 2 cos u

r = cos u

z = 3 − y

y

z

x

2

1

y = x

z = 2 − x

Evaluating Integrals in Spherical Coordinates
Evaluate the spherical coordinate integrals in Exercises 43–48.

 43. d d dsin2

0

2 sin

00 ∫∫∫ ρ φ ρ φ θ
φππ

 44. d d dcos sin2

0

2

0

4

0

2

∫∫∫ ρ φ ρ φ ρ φ θ( )
ππ

 45. d d dsin2

0

1 cos 2

00

2

∫∫∫ ρ φ ρ φ θ
φππ ( )−

 46. d d d5 sin3 3

0

1

00

3 2

∫∫∫ ρ φ ρ φ θ
ππ

 47. d d d3 sin2

sec

2

0

3

0

2

∫∫∫ ρ φ ρ φ θ
φ

ππ

 48. d d dcos sin2

0

sec

0

4

0

2

∫∫∫ ρ φ ρ φ ρ φ θ( )
φππ

Changing the Order of Integration in Spherical Coordinates
The previous integrals suggest there are preferred orders of integra-
tion for spherical coordinates, but other orders give the same value 
and are occasionally easier to evaluate. Evaluate the integrals in 
Exercises 49–52.

 49. d d dsin 23

4

20

0

2

∫∫∫ ρ φ φ θ ρ
π

π

π−

 50. d d dsin2

0

2

csc

2 csc

6

3

∫∫∫ ρ φ θ ρ φ
π

φ

φ

π

π

 51. d d d12 sin 3

0

4

00

1

∫∫∫ ρ φ φ θ ρ
ππ

 52. d d d5 sin4 3

csc

2

2

2

6

2

∫∫∫ ρ φ ρ θ φ
φπ

π

π

π

−

 53. Let D be the region in Exercise 33. Set up the triple integrals in 
spherical coordinates that give the volume of D using the follow-
ing orders of integration.

 a. d d dρ φ θ

 b. d d dφ ρ θ
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 14.7  Triple Integrals in Cylindrical and Spherical Coordinates 913

 54. Let D be the solid region bounded below by the cone 
= +z x y2 2  and above by the plane =z 1. Set up the triple 

integrals in spherical coordinates that give the volume of D using 
the following orders of integration.

 a. d d dρ φ θ b. d d dφ ρ θ

Finding Iterated Integrals in Spherical Coordinates
In Exercises 55–60, (a) find the spherical coordinate limits for the 
integral that calculates the volume of the given solid and then (b) eval-
uate the integral.

 55. The solid between the sphere ρ φ= cos  and the hemisphere 
ρ = ≥z2,   0

yx

r = 1
r = 1 + cos f

z

yx 2 2

2 r = 2r = cos f

z

Finding Triple Integrals

 61. Set up triple integrals for the volume of the sphere ρ = 2 in  
(a) spherical, (b) cylindrical, and (c) rectangular coordinates.

 62. Let D be the solid region in the first octant that is bounded below 
by the cone φ π= 4 and above by the sphere ρ = 3. Express 
the volume of D as an iterated triple integral in (a) cylindrical and 
(b) spherical coordinates. Then (c) find the volume.

 63. Let D be the smaller cap cut from a solid ball of radius 2 units by 
a plane 1 unit from the center of the sphere. Express the volume of 
D as an iterated triple integral in (a) spherical, (b) cylindrical, and 
(c) rectangular coordinates. Then (d) find the volume by evaluat-
ing one of the three triple integrals.

 64. Let D be the solid hemisphere + + ≤ ≥x y z z1,   02 2 2  . If the 
density is δ( ) =x y z, , 1, express the moment of intertia I z as an 
iterated integral in (a) cylindrical and (b) spherical coordinates. 
Then (c) find I .z

Volumes
Find the volumes of the solids in Exercises 65–70.

 65.  66. 
z

yx

z = 4 − 4 (x2 + y2)

z = (x2 + y2)2 −1

z

yx 1

–1

1

z = 1 − r

z = −"1 − r2

–1

yx

f = p
3

r = 2

z

 56. The solid bounded below by the hemisphere ρ = ≥z1,   0, and 
above by the surface ρ φ= +1 cos

 57. The solid enclosed by the surface ρ φ= −1 cos

 58. The upper portion cut from the solid in Exercise 57 by the xy-plane

 59. The solid bounded below by the sphere ρ φ= 2 cos  and above by 
the cone = +z x y2 2

yx

r = 2 cos f

z = "x2 + y2z

 60. The solid bounded below by the xy-plane, on the sides by the 
sphere ρ = 2, and above by the cone φ π= 3

 71. Ball and cones  Find the volume of the portion of the ball 
ρ ≤ a that lies between the cones φ π= 3 and φ π= 2 3.

 72. Ball and half-planes  Find the volume of the region cut from 
the ball ρ ≤ a by the half-planes θ = 0 and θ π= 6 in the first 
octant.

r = cos u

z = 3"1 − x2 − y2

yx

zz

y
x

z = "1 − x2 − y2

r = sin u

 69.  70. 

z

yx

z = "x2 + y2

r = −3 cos u

 67.  68. 
z

y

x

r = 3 cos u

z = −y
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914 Chapter 14 Multiple Integrals

 73. Ball and plane Find the volume of the smaller region cut from 
the ball ρ ≤ 2 by the plane =z 1.

 74. Cone and planes Find the volume of the solid enclosed by the 
cone = +z x y2 2  between the planes =z 1 and =z 2.

 75. Cylinder and paraboloid Find the volume of the solid region 
bounded below by the plane =z 0, laterally by the cylinder 

+ =x y 1,2 2  and above by the paraboloid = +z x y .2 2

 76. Cylinder and paraboloids Find the volume of the solid 
region bounded below by the paraboloid = +z x y ,2 2  later-
ally by the cylinder + =x y 1,2 2  and above by the paraboloid 

= + +z x y 1.2 2

 77. Cylinder and cones Find the volume of the solid cut from 
the thick-walled cylinder ≤ + ≤x y1 22 2  by the cones 

= ± +z x y .2 2

 78. Sphere and cylinder Find the volume of the solid region that 
lies inside the sphere + + =x y z 22 2 2  and outside the cylin-
der + =x y 1.2 2

 79. Cylinder and planes Find the volume of the solid region 
enclosed by the cylinder + =x y 42 2  and the planes =z 0 and 

+ =y z 4.

 80. Cylinder and planes Find the volume of the solid region 
enclosed by the cylinder + =x y 42 2  and the planes =z 0 and 

+ + =x y z 4.

 81. Region trapped by paraboloids Find the volume of the solid 
region bounded above by the paraboloid = − −z x y5 2 2 and 
below by the paraboloid = +z x y4 4 .2 2

 82. Paraboloid and cylinder Find the volume of the solid region 
bounded above by the paraboloid = − −z x y9 ,2 2  bounded 
below by the xy-plane, and lying outside the cylinder + =x y 1.2 2

 83. Cylinder and sphere Find the volume of the region cut from the 
solid cylinder + ≤x y 12 2  by the sphere + + =x y z 4.2 2 2

 84. Sphere and paraboloid Find the volume of the solid region 
bounded above by the sphere + + =x y z 22 2 2  and below by 
the paraboloid = +z x y .2 2

Average Values

 85. Find the average value of the function θ( ) =f r z r, ,  over the 
solid region bounded by the cylinder =r 1 between the planes 

= −z 1 and =z 1.

 86. Find the average value of the function θ( ) =f r z r, ,  over the 
solid ball bounded by the sphere + =r z 1.2 2  (This is the sphere 

+ + =x y z 1.2 2 2 )

 87. Find the average value of the function ρ φ θ ρ( ) =f , ,  over the 
solid ball ρ ≤ 1.

 88. Find the average value of the function ρ φ θ ρ φ( ) =f , , cos  over 
the upper half of the solid ball ρ φ π≤ ≤ ≤1,  0 2.

Masses, Moments, and Centroids

 89. Center of mass A solid of constant density is bounded below 
by the plane =z 0, above by the cone = ≥z r r,   0, and on the 
sides by the cylinder =r 1. Find the center of mass.

 90. Centroid Find the centroid of the solid region in the first octant 
that is bounded above by the cone = +z x y ,2 2  below by the 
plane =z 0, and on the sides by the cylinder + =x y 42 2  and 
the planes =x 0 and =y 0.

 91. Centroid Find the centroid of the solid in Exercise 60.

 92. Centroid Find the centroid of the solid bounded above by the 
sphere ρ = a and below by the cone φ π= 4.

 93. Centroid Find the centroid of the solid region that is bounded 
above by the surface =z r , on the sides by the cylinder =r 4, 
and below by the xy-plane.

 94. Centroid Find the centroid of the region cut from the solid 
ball + ≤r z 12 2  by the half-planes θ π= − ≥r3,   0, and 
θ π= ≥r3,   0.

 95. Moment of inertia of solid cone Find the moment of inertia 
of a solid right circular cone of base radius 1 and height 1 about 
an axis through the vertex parallel to the base if the density is 
δ = 1.

 96. Moment of inertia of ball Find the moment of inertia of a ball 
of radius a about a diameter if the density is δ = 1.

 97. Moment of inertia of solid cone Find the moment of inertia of 
a solid right circular cone of base radius a and height h about its 
axis if the density is δ = 1. (Hint: Place the cone with its vertex 
at the origin and its axis along the z-axis.)

 98. Variable density A solid is bounded on the top by the parabo-
loid =z r ,2  on the bottom by the plane =z 0, and on the sides 
by the cylinder =r 1. Find the center of mass and the moment 
of inertia about the z-axis if the density is

 a. δ θ( ) =r z z, ,

 b. δ θ( ) =r z r, , .

 99. Variable density A solid is bounded below by the cone 
= +z x y2 2  and above by the plane =z 1. Find the center 

of mass and the moment of inertia about the z-axis if the den-
sity is

 a. δ θ( ) =r z z, ,

 b. δ θ( ) =r z z, , .2

 100. Variable density A solid ball is bounded by the sphere ρ = a. 
Find the moment of inertia about the z-axis if the density is

 a. δ ρ φ θ ρ( ) =, , 2

 b. δ ρ φ θ ρ φ( ) = =r, , sin .

 101. Centroid of solid semi-ellipsoid Show that the centroid of 
the solid semi-ellipsoid of revolution ( ) ( )+ ≤r a z h 1,2 2 2 2  

≥z 0, lies on the z-axis three-eighths of the way from the base 
to the top. The special case =h a gives a solid hemisphere. Thus, 
the centroid of a solid hemisphere lies on the axis of symmetry 
three-eighths of the way from the base to the top.

 102. Centroid of solid cone Show that the centroid of a solid right 
circular cone is one-fourth of the way from the base to the vertex. 
(In general, the centroid of a solid cone or pyramid is one-fourth 
of the way from the centroid of the base to the vertex.)

 103. Density of center of a planet A planet is in the shape of a 
sphere of radius R and total mass M with spherically symmetric 
density distribution that increases linearly as one approaches its 
center. What is the density at the center of this planet if the den-
sity at its edge (surface) is taken to be zero?

 104. Mass of planet’s atmosphere A spherical planet of radius R 
has an atmosphere whose density is μ μ= −e ,ch

0  where h is the 
altitude above the surface of the planet, μ0 is the density at sea 
level, and c is a positive constant. Find the mass of the planet’s 
atmosphere.
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 14.8  Substitutions in Multiple Integrals 915

FIGURE 14.57 The equations 
( )=x g u,  and ( )=y h u,  allow us to 

change an integral over a region R in the 
xy-plane into an integral over a region G in 
the u -plane.

y

u
0

0

y

x

G

R

(u, y)

(x, y)

Cartesian uy-plane

x = g(u, y)
y = h(u, y)

Cartesian xy-plane

Theory and Examples

 105. Vertical planes in cylindrical coordinates 

 a. Show that planes perpendicular to the x-axis have equations 
of the form r a sec  in cylindrical coordinates.

 b. Show that planes perpendicular to the y-axis have equations 
of the form r b csc .

 106. (Continuation of Exercise 105.) Find an equation of the form 
r f ( ) in cylindrical coordinates for the plane ax by c,+ =  
c 0.

 107. Symmetry What symmetry will you find in a surface that has 
an equation of the form r f z( ) in cylindrical coordinates? 
Give reasons for your answer.

 108. Symmetry What symmetry will you find in a surface that has 
an equation of the form ρ φf ( ) in spherical coordinates? Give 
reasons for your answer.

14.8 Substitutions in Multiple Integrals

This section introduces the ideas involved in coordinate transformations to evaluate 
multiple integrals by substitution. The method replaces complicated integrals by ones 
that are easier to evaluate. Substitutions accomplish this by simplifying the integrand, 
the limits of integration, or both. A thorough discussion of multivariable transforma-
tions and substitutions is best left to a more advanced course, but our introduction here 
shows how the substitutions just studied reflect the general idea derived for single 
integral calculus.

Substitutions in Double Integrals

The polar coordinate substitution of Section 14.4 is a special case of a more general substi-
tution method for double integrals, a method that pictures changes in variables as transfor-
mations of regions.

Suppose that a region G in the u -plane is transformed into the region R in the  
xy-plane by equations of the form

( ) ( )= =x g u y h u, , , ,

as suggested in Figure 14.57. We assume the transformation is one-to-one on the interior of 
G. We call R the image of G under the transformation, and G the preimage of R. Any func-
tion ( )f x y,  defined on R can be thought of as a function ( )( ) ( )f g u h u, ,   ,  defined on G 
as well. How is the integral of ( )f x y,  over R related to the integral of ( )( ) ( )f g u h u, ,   ,  
over G?

To gain some insight into the question, we look again at the single variable case. To be 
consistent with how we are using them now, we interchange the variables x and u used in 
the substitution method for single integrals in Chapter 5, so the equation is

∫ ∫= ′f x dx f g u g u du( ) ( ( )) ( ) .
g a

g b

a

b

( )

( )
  x g u dx g u du( ), ( )= = ′

To propose an analogue for substitution in a double integral ( )∫∫ f x y dx dy, ,R  we need a 
derivative factor like g u( ) as a multiplier that transforms the area element du d  in the 
region G to its corresponding area element dx dy in the region R. We denote this factor 
by J. In continuing with our analogy, it is reasonable to assume that J is a function of 
both variables u and , just as g  is a function of the single variable u. Moreover, J  
should register instantaneous change, so partial derivatives are going to be involved in its 
expression. Since four partial derivatives are associated with the transforming equations 

( )=x g u,  and ( )=y h u, , it is also reasonable to assume that the factor ( )J u,  we 
seek includes them all. These features are captured in the following definition, which is 
constructed from the partial derivatives and is named after the German mathematician 
Carl Jacobi.

HISTORICAL BIOGRAPHY

Carl Gustav Jacob Jacobi
(1804–1851)
Jacobi, one of nineteenth-century Germany’s 
most accomplished scientists, developed the 
theory of determinants and transformations 
into a powerful tool for evaluating multiple 
integrals and solving differential equations. 
He also applied transformation methods to 
study integrals like the ones that arise in the 
calculation of arc length.

To know more, visit the companion Website. 
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916 Chapter 14 Multiple Integrals

The Jacobian can also be denoted by

υ
υ

( )
( )
( )

=
∂
∂

J u
x y
u

,
,
,

to help us remember how the determinant in Equation (1) is constructed from the partial 
derivatives of x and y. The array of partial derivatives in Equation (1) behaves just like the 
derivative ′g  in the single variable situation. The Jacobian measures how much the trans-
formation is expanding or contracting the area around the point υ( )u, . Effectively, the fac-
tor J  converts the area of the differential rectangle υdu d  in G to match its corresponding 
differential area dx dy in R. We note that, in general, the value of the scaling factor J  
depends on the point υ( )u,  in G; that is, the scaling changes as the point υ( )u,  varies 
through the region G. Our examples to follow will show how it scales the differential area 
υdu d  for specific transformations.
Now we can answer our original question concerning the relationship of the integral 

of ( )f x y,  over the region R to the integral of υ υ( )( ) ( )f g u h u, ,   ,  over G.

Differential Area Change Substituting 
υ υ= ( ) ( )=x g u y h u, , , 

dx dy
x y

u
du d

,

,

( )
( )υ

υ=
∂

∂

DEFINITION The Jacobian determinant or Jacobian of the coordinate trans-
formation υ υ( ) ( )= =x g u y h u, ,   ,  is

 υ υ

υ
υ υ

( ) =

∂
∂

∂
∂

∂
∂

∂
∂

= ∂
∂

∂
∂

− ∂
∂

∂
∂

J u

x
u

x

y
u

y
x
u

y y
u

x, . (1)

THEOREM 3—Substitution for Double Integrals
Suppose that ( )f x y,  is continuous over the region R. Let G be the preimage of 
R under the transformation υ υ( ) ( )= =x g u y h u, ,   , , which is assumed to be 
one-to-one on the interior of G. If the functions g and h have continuous first par-
tial derivatives within the interior of G, then

 f x y dx dy f g u h u
x y
u

du d, , ,   ,
,
,

.
R G
∫∫ ∫∫ υ υ

υ
υ( )

( )
( )

( ) ( ) ( )=
∂
∂

 (2)

The derivation of Equation (2) is intricate and properly belongs to a course in advanced 
calculus, so we do not include it here. We now present examples illustrating the substitu-
tion method defined by the equation.

EXAMPLE 1  Find the Jacobian for the polar coordinate transformation x r cos ,θ=   
y r sin ,θ=  and use Equation (2) to write the Cartesian integral ( )∫∫ f x y dx dy,R  as a 
polar integral.

Solution Figure 14.58 shows how the equations θ θ= =x r y rcos ,   sin  transform the 
rectangle θ π≤ ≤ ≤ ≤G r: 0 1,  0 2, into the quarter of a circular disk R bounded by 

+ =x y 12 2  in the first quadrant of the xy-plane.
For polar coordinates, we have r and θ in place of u and υ. With θ=x r cos  and 

θ=y r sin , the Jacobian is

θ θ

θ

θ θ

θ θ
θ θ( ) ( )=

∂
∂

∂
∂

∂
∂

∂
∂

=
−

= + =J r

x
r

x

y
r

y

r

r
r r,

cos sin

sin cos
cos sin .2 2

FIGURE 14.58 The equations 
θ θ= =x r y rcos ,   sin  transform G 

into R. The Jacobian factor r, calculated in 
Example 1, scales the differential rectangle 
θdr d  in G to match the differential area 

element dx dy in R.

r
0

0

1

y

x
1

1

R

G

R

Cartesian ru-plane

p
2

p
2

x = r cos u
y = r sin u

u =

u = 0

Cartesian xy-plane

u
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 14.8  Substitutions in Multiple Integrals 917

Since we assume ≥r 0 when integrating in polar coordinates, θ( ) = =J r r r,  so that 
Equation (2) gives

 f x y dx dy f r r r dr d, cos , sin .
R G
∫∫ ∫∫ θ θ θ( ) ( )=  (3)

This is the same formula we derived independently using a geometric argument for polar 
area in Section 14.4. 

Here is an example of a substitution in which the image of a rectangle under the coor-
dinate transformation is a trapezoid. Transformations like this one are called linear trans-
formations, and their Jacobians are constant throughout G.

EXAMPLE 2  Evaluate

∫∫
−( )

=

= + x y
dx dy

2
2x y

x y

2

2 1

0

4

by applying the transformation

 υ= − =u
x y y2

2
,

2
 (4)

and integrating over an appropriate region in the υu -plane.

Solution We sketch the region R of integration in the xy-plane and identify its boundaries 
(Figure 14.59).

FIGURE 14.59 The equations υ= +x u  and υ=y 2  transform G 
into R. Reversing the transformation by the equations ( )= −u x y2 2 
and υ = y 2 transforms R into G (Example 2).

y

u
0

y

x
01

2

G

1

4

R

y = 0

y = 2

u = 1u = 0

x = u + y
y = 2y

y = 0

y = 2x − 2

y = 4

y = 2x

To apply Equation (2), we need to find the corresponding υu -region G and the Jacobian 
of the transformation. To find them, we first solve Equations (4) for x and y in terms of u 
and υ. From those equations it is easy to find algebraically that

 υ υ= + =x u y, 2 . (5)

We then find the boundaries of G by substituting these expressions into the equations for 
the boundaries of R (Figure 14.59)

xy-equations for  
the boundary of R

Corresponding uυ-equations  
for the boundary of G

Simplified  
uυ-equations

=x y 2 υ υ υ+ = =u 2 2 =u 0

( )= +x y 2 1 υ υ υ( )+ = + = +u 2 2 1 1 =u 1

=y 0 υ =2 0 υ = 0

=y 4 υ =2 4 υ = 2
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918 Chapter 14 Multiple Integrals

From Equations (5) the Jacobian of the transformation is

υ υ

υ

υ
υ

υ

υ
υ
υ

( )
( ) ( )

=

∂
∂

∂
∂

∂
∂

∂
∂

=

∂
∂

+ ∂
∂

+

∂
∂

∂
∂

= =J u

x
u

x

y
u

y
u

u u

u

,
(2 ) (2 )

1 1

0 2
2.

We now have everything we need to apply Equation (2):

x y
dx dy u J u du d

u du d u d d

2
2

,

( ) 2 2.

u

u

x y

x y

u

u

0

1

0

2

2

2 1

0

4

0

1

0

2
2

0

1

0

2

0

2

∫∫∫∫

∫∫ ∫ ∫

υ υ

υ υ υ

( )

( )

− =

= = ⎡
⎣
⎢

⎤
⎦
⎥ = =

υ

υ( )

=

=

=

=

=

= +

=

=

EXAMPLE 3  Evaluate

x y y x dy dx2 .
x

2

0

1

0

1

∫∫ ( )+ −
−

Solution We sketch the region R of integration in the xy-plane and identify its boundar-
ies (Figure 14.60). The integrand suggests the transformation = +u x y and υ = −y x2 . 
Routine algebra produces x and y as functions of u and υ:

 υ υ= − = +x u y u
3 3

, 2
3 3

. (6)

From Equations (6), we can find the boundaries of the υu -region G (Figure 14.60).

xy-equations for  
the boundary of R

Corresponding uυ-equations  
for the boundary of G

Simplified  
uυ-equations

+ =x y 1 υ υ( ) ( )− + + =u u
3 3

2
3 3

1 =u 1

=x 0 υ− =u
3 3

0 υ = u

=y 0 υ+ =u2
3 3

0 υ = − u2

The Jacobian of the transformation in Equations (6) is

υ υ

υ

( ) =

∂
∂

∂
∂

∂
∂

∂
∂

=
−

=J u

x
u

x

y
u

y
,

1
3

1
3

2
3

1
3

1
3

.

Applying Equation (2), we evaluate the integral:

x y y x dy dx u J u d du

u d du u du

u u u du u du u

2 ,

1
3

1
3

1
3

1
9

8 2
9

2
9

.

x

u

u

u

u

u

u

u

u

2

0

1

0

1
1 2 2

20

1

1 2 2

20

1
1 2 3

20

1

1 2 3 3

0

1
7 2 9 2

0

1

0

1

∫∫ ∫∫

∫∫ ∫

∫ ∫

υ υ υ

υ υ υ( )

( )

( )

( )+ − =

= = ⎡
⎣⎢

⎤
⎦⎥

= + = = ⎤
⎦⎥

=

υ

υ

υ

υ

−

=−

=

=

=

− =−

=

In the next example we illustrate a nonlinear transformation of coordinates resulting 
from simplifying the form of the integrand. Like the polar coordinates’ transformation, 
nonlinear transformations can map a straight-line boundary of a region into a curved 

FIGURE 14.60 The equations  
υ( ) ( )= −x u 3 3  and 
υ( ) ( )= +y u2 3 3  transform G into R. 

Reversing the transformation by the  
equations = +u x y and υ = −y x2  
transforms R into G (Example 3).

y

u
0

y

x
0 1

1

R

1

1G

y = −2u

y = u

u = 1

−2

x + y = 1
x = 0

y = 0

u
3

y
3

x = −

2u
3

y
3

y = +
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 14.8  Substitutions in Multiple Integrals 919

boundary (or vice versa with the inverse transformation). In general, nonlinear transforma-
tions are more complex to analyze than linear ones, and a complete treatment is left to a 
more advanced course.

EXAMPLE 4  Evaluate the integral

∫∫
y
x

e dx dy.xy

y

y

11

2

Solution The square root terms in the integrand suggest that we might simplify the inte-
gration by substituting =u xy and υ = y x . Squaring these equations gives =u xy2  
and υ = y x,2  which imply that υ =u y2 2 2 and υ =u x .2 2 2  So we obtain the transfor-
mation (in the same ordering of the variables as discussed before)

υ
υ= =x u y uand ,

with >u 0 and υ > 0. Let’s first see what happens to the integrand itself under this trans-
formation. The Jacobian of the transformation is not constant:

υ υ

υ

υ υ
υ υ

( ) =

∂
∂

∂
∂

∂
∂

∂
∂

=
−

=J u

x
u

x

y
u

y

u

u

u,
1

2 .2

If G is the region of integration in the υu -plane, then by Equation (2) the transformed 
double integral under the substitution is

∫∫ ∫∫ ∫∫ ∫∫υ υ υ υ
υ

υ υ( )= = =y
x

e dx dy e J u du d e u du d ue du d, 2 2 .xy

R

u

G

u

G

u

G

The transformed integrand function is easier to integrate than the original one, so we pro-
ceed to determine the limits of integration for the transformed integral.

The region of integration R of the original integral in the xy-plane is shown in Figure 
14.61. From the substitution equations =u xy and υ = y x , we see that the image of 
the left-hand boundary =xy 1 for R is the vertical line segment υ= ≥ ≥u 1,  2 1, in G 
(see Figure 14.62). Likewise, the right-hand boundary =y x of R maps to the horizontal 
line segment υ = ≤ ≤u1,  1 2, in G. Finally, the horizontal top boundary =y 2 of R 
maps to υ υ= ≤ ≤u 2,  1 2, in G. As we move counterclockwise around the boundary of 
the region R, we also move counterclockwise around the boundary of G, as shown in 
Figure 14.62. Knowing the region of integration G in the υu -plane, we can now write 
equivalent iterated integrals:

∫∫ ∫∫ υ=y
x

e dx dy ue d du  2 .xy

y

y
u

u

11

2

1

2

1

2
  Note the order of integration.

We now evaluate the transformed integral on the right-hand side:

ue d du ue du

e ue du

u e du

u e e

e e e e e

2 2

2 2

2 2

2 2

2 2 2 .

u
u

u
u

u u

u

u u

u

u

1

2

1

2

1

2

1

2

1

2

1

2

1

2

2

∫∫ ∫

∫

∫

υ υ

( )

( )

( )

( )

( )( )

= ⎡
⎣⎢

⎤
⎦⎥

= −

= −

= − +⎡
⎣⎢

⎤
⎦⎥

= − + = −

υ

υ

=

=

=

=

FIGURE 14.61 The region of integration 
R in Example 4.

1 20

1

2

x

y

R

xy = 1

y = x

y = 2

FIGURE 14.62 The boundaries of the 
region G correspond to those of region R 
in Figure 14.61. Notice that as we move 
counterclockwise around the region R, we 
move counterclockwise around the region 
G as well. The inverse transformation 
equations υ= =u xy y x,    produce 
the region G from the region R.

1 20

1

2

G

y

u

uy = 2 3 y = 2

y = 1 3 y = x

u = 1 3 xy = 1

Integrate by parts.
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920 Chapter 14 Multiple Integrals

Substitutions in Triple Integrals

The cylindrical and spherical coordinate substitutions in Section 14.7 are special cases of a 
substitution method that pictures changes of variables in triple integrals as transformations 
of solid regions. The method is like the method for double integrals given by Equation (2) 
except that now we work in three dimensions instead of two.

Suppose that a solid region G in υu w-space is transformed one-to-one into the solid 
region D in xyz-space by differentiable equations of the form

υ υ υ( ) ( ) ( )= = =x g u w y h u w z k u w, , , , , , , , ,

as suggested in Figure 14.63. Then any function ( )F x y z, ,    defined on D can be thought of 
as a function

υ υ υ υ( ) ( ) ( )( ) ( )=F g u w h u w k u w H u w, , ,   , , ,   , , , ,

defined on G. If g, h, and k have continuous first partial derivatives, then the integral of 
( )F x y z, ,  over D is related to the integral of υ( )H u w, ,  over G by the equation

 F x y z dx dy dz H u w J u w du d dw, , , , , , .
D G

∫∫∫ ∫∫∫ υ υ υ( ) ( ) ( )=  (7)

FIGURE 14.63 The equations υ υ( ) ( )= =x g u w y h u w, , ,   , , , and 
υ( )=z k u w, ,  allow us to change an integral over a region D in Cartesian 

xyz-space into an integral over a region G in Cartesian υu w-space using 
Equation (7).

w

G

u

z

D

x

y

x = g(u, y, w)
y = h(u, y, w)
z = k(u, y, w)

y

Cartesian uyw-space Cartesian xyz-space

The factor υ( )J u w, , , whose absolute value appears in this equation, is the Jacobian 
determinant

υ

υ

υ

υ

υ
( )

( )
( )

=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

J u w

x
u

x x
w

y
u

y y
w

z
u

z z
w

x y z
u w

, ,
, ,
, ,

.

This determinant measures how much the volume near a point in G is being expanded 
or contracted by the transformation from υ( )u w, ,  to ( )x y z, ,  coordinates. As in the 
two-dimensional case, the derivation of the change-of-variable formula in Equation (7) 
is omitted.

For cylindrical coordinates, θr, , and z take the place of u, υ, and w. The transformation 
from Cartesian θr z-space to Cartesian xyz-space is given by the equations

θ θ= = =x r y r z zcos , sin ,

Determinants
2 2×  and 3 3×  determinants are  
evaluated as follows:

= −

=

− +

a b

c d
ad bc

a a a

b b b

c c c

a
b b

c c

a
b b

c c
a

b b

c c

1 2 3

1 2 3

1 2 3

1
2 3

2 3

2
1 3

1 3
3

1 2

1 2
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 14.8  Substitutions in Multiple Integrals 921

(Figure 14.64). The Jacobian of the transformation is

J r z

x
r

x x
z

y
r

y y
z

z
r

z z
z

r

r r r r, ,

cos sin 0

sin cos 0

0 0 1

cos sin .2 2θ

θ

θ

θ

θ θ

θ θ θ θ( ) =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

−

= + =

The corresponding version of Equation (7) is

F x y z dx dy dz H r z r dr d dz, , , , .
D G

∫∫∫ ∫∫∫ θ θ( ) ( )=

We can drop the absolute value signs because ≥r 0.
For spherical coordinates, ρ φ, , and θ take the place of u, υ, and w. The transformation 

from Cartesian ρφθ-space to Cartesian xyz-space is given by

ρ φ θ ρ φ θ ρ φ= = =x y zsin cos , sin sin , cos

(Figure 14.65). The Jacobian of the transformation (see Exercise 23) is

ρ φ θ

ρ φ θ

ρ φ θ

ρ φ θ

ρ φ( ) =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=J

x x x

y y y

z z z

, , sin .2

The corresponding version of Equation (7) is

F x y z dx dy dz H d d d, , , , sin .
D G

2∫∫∫ ∫∫∫ ρ φ θ ρ φ ρ φ θ( ) ( )=

FIGURE 14.64 The equations 
θ θ= =x r y rcos ,   sin , and =z z 

transform the rectangular box G into a 
cylindrical wedge D.

z

D

x

y

Cartesian ruz-space

x = r cos u
y = r sin u
z = z

z = constant

r = constant

u = constant

Cartesian xyz-space

G

r

u

z

Rectangular box with
sides parallel to the
coordinate axes

FIGURE 14.65 The equations ρ φ θ ρ φ θ= =x ysin cos ,   sin sin , and 
ρ φ=z cos  transform the rectangular box G into the spherical wedge D.

x

y

Cartesian rfu-space

f

r Cartesian xyz-space

u

G

Rectangular box with
sides parallel to the
coordinate axesu

x = r sin f cos u
y = r sin f sin u
z = r cos f

z

f

u = constant

(x, y, z) D

f = constant

r = constant

r

We can drop the absolute value signs because φsin  is never negative for φ π≤ ≤0 . Note 
that this is the same result we obtained in Section 14.7.

Here is an example of another substitution. Although we could evaluate the integral in 
this example directly, we have chosen it to illustrate the substitution method in a simple 
(and fairly intuitive) setting.
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922 Chapter 14 Multiple Integrals

EXAMPLE 5  Evaluate

∫∫∫ ( )− +
( )

=

= + x y z dx dy dz
2

2 3x y

x y

2

2 1

0

4

0

3

by applying the transformation

 υ( )= − = =u x y y w z2 2, 2, 3 (8)

and integrating over an appropriate region in υu w-space.

Solution We sketch the solid region D of integration in xyz-space and identify its bound-
aries (Figure 14.66). In this case, the bounding surfaces are planes.

To apply Equation (7), we need to find the corresponding υu w-region G and the 
Jacobian of the transformation. To find them, we first solve Equations (8) for x, y, and z in 
terms of u, υ, and w. Routine algebra gives

 υ υ= + = =x u y z w, 2 , 3 . (9)

We then find the boundaries of G by substituting these expressions into the equations for 
the boundaries of D.

xyz-equations for  
the boundary of D

Corresponding u wυ -equations  
for the boundary of G

Simplified  
u wυ -equations

=x y 2 υ υ υ+ = =u 2 2 =u 0

( )= +x y 2 1 υ υ υ( )+ = + = +u 2 2 1 1 =u 1

=y 0 υ =2 0 υ = 0

=y 4 υ =2 4 υ = 2

=z 0 =w3 0 =w 0

=z 3 =w3 3 =w 1

The Jacobian of the transformation, again from Equations (9), is

υ

υ

υ

υ

( ) =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

= =J u w

x
u

x x
w

y
u

y y
w

z
u

z z
w

, ,

1 1 0

0 2 0

0 0 3

6.

We now have everything we need to apply Equation (7):

x y z dx dy dz

u w J u w du d dw

u w du d dw u uw d dw

w d dw w dw w dw

w w

2
2 3

, ,

6 6
2

6 1
2

6
2

6 1 2

6 6 2 12.

x y

x y

u

u

2

2 1

0

4

0

3

0

1

0

2

0

1

0

1

0

2

0

1 2

0

1

0

2

0

1

0

2

0

1

0

2

0

1

0

1

2

0

1

∫∫∫

∫∫∫

∫∫∫ ∫∫

∫∫ ∫ ∫

υ υ

υ υ

υ υ υ

( )

( )

( )

( )

( )

( )

( )

( )

− +

= +

= + = +⎡
⎣⎢

⎤
⎦⎥

= + = +⎡
⎣⎢

⎤
⎦⎥

= +

= +⎡
⎣
⎢

⎤
⎦
⎥ = =

υ

υ

( )

=

= +

=

=

=

=

FIGURE 14.66 The equations 
υ υ= + =x u y,   2 , and =z w3  

transform G into D. Reversing the 
transformation by the equations 

υ( )= − =u x y y2 2,   2, and  
=w z 3 transforms D into G (Example 5).

Rear plane:

x =    , or y = 2x
y
2

Front plane:

x =     + 1, or y = 2x − 2
y
2

1

D

3

y

y

4

x

z

x = u + y
y = 2y
z = 3w

2

u

1

G

w

1
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 14.8  Substitutions in Multiple Integrals 923

Jacobians and Transformed Regions in the Plane

 1. a. Solve the system

υ= − = +u x y x y, 2

for x and y in terms of u and υ. Then find the value of the 
Jacobian υ( ) ( )∂ ∂x y u, , .

 b. Find the image under the transformation u x y,= −  
x y2υ = +  of the triangular region with vertices ( )0, 0 , 

( )1,1 , and ( )−1, 2  in the xy-plane. Sketch the transformed 
region in the υu -plane.

 2. a. Solve the system

υ= + = −u x y x y2 ,

for x and y in terms of u and υ. Then find the value of the 
Jacobian υ( ) ( )∂ ∂x y u, , .

 b. Find the image under the transformation u x y2 ,= +  
x yυ = −  of the triangular region in the xy-plane bounded 

by the lines = =y y x0,   , and + =x y2 2. Sketch the 
transformed region in the υu -plane.

 3. a. Solve the system

υ= + = +u x y x y3 2 , 4

for x and y in terms of u and υ. Then find the value of the 
Jacobian υ( ) ( )∂ ∂x y u, , .

 b. Find the image under the transformation u x y3 2 ,= +  
x y4υ = +  of the triangular region in the xy-plane bounded 

by the x-axis, the y-axis, and the line + =x y 1. Sketch the 
transformed region in the υu -plane.

 4. a. Solve the system

υ= − = − +u x y x y2 3 ,

for x and y in terms of u and υ. Then find the value of the 
Jacobian υ( ) ( )∂ ∂x y u, , .

 b. Find the image under the transformation u x y2 3 ,= −  
x yυ = − +  of the parallelogram R in the xy-plane with 

boundaries = − = =x x y x3,   0,   , and = +y x 1. Sketch 
the transformed region in the υu -plane.

Substitutions in Double Integrals

 5. Evaluate the integral

∫∫
−( )

=

= + x y
dx dy

2
2x y

x y

2

2 1

0

4

from Example 1 directly by integration with respect to x and y to 
confirm that its value is 2.

 6. Use the transformation in Exercise 1 to evaluate the integral

x xy y dx dy2
R

2 2∫∫ ( )− −

for the region R in the first quadrant bounded by the lines 
= − + = − + = −y x y x y x2 4,   2 7,   2, and = +y x 1.

 7. Use the transformation in Exercise 3 to evaluate the integral

x xy y dx dy3 14 8
R

2 2∫∫ ( )+ +

for the region R bounded by the lines y x3 2 1,( )= − +  
y x y x3 2 3,   1 4 ,( ) ( )= − + = −  and ( )= − +y x1 4 1.

 8. Use the transformation and parallelogram R in Exercise 4 to eval-
uate the integral

x y dx dy2 .
R
∫∫ ( )−

 9. Let R be the region in the first quadrant of the xy-plane bounded 
by the hyperbolas = =xy xy1,   9 and the lines = =y x y x,   4 . 
Use the transformation υ υ= =x u y u,    with >u 0 and υ > 0 
to rewrite

y
x

xy dx dy
R
∫∫ +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

as an integral over an appropriate region G in the υu -plane. Then 
evaluate the υu -integral over G.

 10. a.  Find the Jacobian of the transformation υ= =x u y u,    and 
sketch the region υ≤ ≤ ≤ ≤G u u:1 2,  1 2, in the υu -plane.

 b. Then use Equation (2) to transform the integral

∫∫
y
x

dy dx
1

2

1

2

into an integral over G, and evaluate both integrals.

 11. Polar moment of inertia of an elliptical plate  A thin plate 
of constant density covers the region bounded by the ellipse 

+ = > >x a y b a b1,   0,   0,2 2 2 2  in the xy-plane. Find the 
first moment of the plate about the origin. (Hint: Use the transfor-
mation θ θ= =x ar y brcos ,   sin .)

 12. The area of an ellipse The area πab of the ellipse 
+ =x a y b 12 2 2 2  can be found by integrating the function 

( ) =f x y, 1 over the region bounded by the ellipse in the xy-plane. 
Evaluating the integral directly requires a trigonometric substitu-
tion. An easier way to evaluate the integral is to use the transforma-
tion υ= =x au y b,    and evaluate the transformed integral over 
the disk υ+ ≤G u: 12 2  in the υu -plane. Find the area this way.

 13. Use the transformation in Exercise 2 to evaluate the integral

x y e dx dy2 y x

y

y2 2

0

2 3

∫∫ ( )+ ( )−
−

by first writing it as an integral over a region G in the υu -plane.

 14. Use the transformation υ υ( )= + =x u y1 2 ,    to evaluate the 
integral

y x y e dx dy2 x y

y

y
3 2

2

4 2

0

2 2∫∫ ( )− ( )
( )

−
+

by first writing it as an integral over a region G in the υu -plane.

 15. Use the transformation x u y u,  υ υ= =  to evaluate the integral sum

∫∫ ∫∫( ) ( )+ + +x y dx dy x y dx dy.
y

y

y

y
2 2

11

2
2 2

4

4

2

4

 16. Use the transformation υ υ= − =x u y u,   22 2  to evaluate the 
integral

∫∫ +
−

x y dy dx.
x

2 2

0

2 1

0

1

(Hint: Show that the image of the triangular region G with verti-
ces ( )0, 0 , ( )1, 0 , ( )1,1  in the υu -plane is the region of integration 
R in the xy-plane defined by the limits of integration.)

EXERCISES 14.8 
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924 Chapter 14 Multiple Integrals

Substitutions in Triple Integrals

 17. Evaluate the integral in Example 5 by integrating with respect to 
x, y, and z.

 18. Volume of a solid ellipsoid Find the volume of the solid ellipsoid

+ + ≤x
a

y
b

z
c

1.
2

2

2

2

2

2

(Hint: Let υ= =x au y b,   , and =z cw. Then find the volume 
of an appropriate region in υu w-space.)

 19. Evaluate

xyz dx dy dz
D

∫∫∫

over the solid ellipsoid D,

+ + ≤x
a

y
b

z
c

1.
2

2

2

2

2

2

(Hint: Let υ= =x au y b,   , and =z cw. Then integrate over an 
appropriate region in υu w-space.)

 20. Let D be the solid region in xyz-space defined by the inequalities

≤ ≤ ≤ ≤ ≤ ≤x xy z1 2, 0 2, 0 1.

Evaluate

x y xyz dx dy dz3
D

2∫∫∫ ( )+

by applying the transformation

υ= = =u x xy w z, , 3

and integrating over an appropriate region G in υu w-space.

Theory and Examples

 21. Find the Jacobian υ( ) ( )∂ ∂x y u, ,  of the transformation

 a. υ υ= =x u y ucos , sin

 b. υ υ= =x u y usin , cos .

 22. Find the Jacobian υ( ) ( )∂ ∂x y z u w, , , ,  of the transformation

 a. υ υ= = =x u y u z wcos , sin ,

 b. υ ( )( )= − = − = −x u y z w2 1, 3 4, 1 2 4 .

 23. Evaluate the appropriate determinant to show that the Jacobian 
of the transformation from Cartesian ρφθ-space to Cartesian xyz-
space is ρ φsin .2

 24. Substitutions in single integrals How can substitutions in 
single definite integrals be viewed as transformations of regions? 
What is the Jacobian in such a case? Illustrate with an example.

 25. Centroid of a solid semi-ellipsoid Assuming the result that 
the centroid of a solid hemisphere lies on the axis of symmetry 
three-eighths of the way from the base toward the top, show, by 
transforming the appropriate integrals, that the center of mass of a 
solid semi-ellipsoid ( ) ( ) ( )+ + ≤ ≥x a y b z c z1,   0,2 2 2 2 2 2  
lies on the z-axis three-eighths of the way from the base toward 
the top. (You can do this without evaluating any of the integrals.)

 26. Cylindrical shells In Section 6.2, we learned how to find 
the volume of a solid of revolution using the shell method. 
Specifically, if the region between the curve =y f x( ) and the 
x-axis from a to b ( )< <a b0  is revolved about the y-axis, the 
volume of the resulting solid is π∫ x f x dx2 ( ) .a

b
 Prove that finding 

volumes by using triple integrals gives the same result. (Hint: Use 
cylindrical coordinates with the roles of y and z changed.)

 27. Inverse transform The equations υ υ( ) ( )= =x g u y h u, ,   ,  
in Figure 14.57 transform the region G in the υu -plane into 
the region R in the xy-plane. Since the substitution trans-
formation is one-to-one with continuous first partial deriva-
tives, it has an inverse transformation, and there are equations 

α υ β( ) ( )= =u x y x y, ,   ,  with continuous first partial deriva-
tives transforming R back into G. Moreover, the Jacobian determi-
nants of the transformations are related reciprocally by

 
υ

υ( )
( )

( )
( )

∂
∂

=
∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

−x y
u

u
x y

,
,

,
,

.
1

 (10)

Equation (10) is proved in advanced calculus. Use it to find the 
area of the region R in the first quadrant of the xy-plane bounded 
by the lines = =y x y x2 ,  2 , and the curves = =xy xy2,  2 1 
for =u xy and υ = y x.

 28. (Continuation of Exercise 27.) For the region R described in 
Exercise 27, evaluate the integral y dA.R

2∫∫

 1. Define the double integral of a function of two variables over a 
bounded region in the coordinate plane.

 2. How are double integrals evaluated as iterated integrals? Does 
the order of integration matter? How are the limits of integration 
determined? Give examples.

 3. How are double integrals used to calculate areas and average  
values. Give examples.

 4. How can you change a double integral in rectangular coordi-
nates into a double integral in polar coordinates? Why might it be 
worthwhile to do so? Give an example.

 5. Define the triple integral of a function ( )f x y z, ,  over a bounded 
solid region in space.

 6. How are triple integrals in rectangular coordinates evaluated? 
How are the limits of integration determined? Give an example.

 7. How are double and triple integrals in rectangular coordinates 
used to calculate volumes, average values, masses, moments, and 
centers of mass? Give examples.

 8. How are triple integrals defined in cylindrical and spherical coor-
dinates? Why might one prefer working in one of these coordinate 
systems to working in rectangular coordinates?

 9. How are triple integrals in cylindrical and spherical coordinates 
evaluated? How are the limits of integration found? Give examples.

 10. How are substitutions in double integrals pictured as transforma-
tions of regions in the plane? Give a sample calculation.

 11. How are substitutions in triple integrals pictured as transforma-
tions of solid regions? Give a sample calculation.

CHAPTER 14 Questions to Guide Your Review
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 Chapter 14  Practice Exercises 925

Evaluating Double Iterated Integrals
In Exercises 1–4, sketch the region of integration and evaluate the 
double integral.

 1. ∫∫ ye dx dyxy
y

0

1

1

10
 2. ∫∫ e dy dxy x

x

00

1 3

 3. ∫∫ − −

−
t ds dt

t

t

9 4

9 4

0

3 2

2

2

 4. ∫∫
−

xy dx dy
y

y2

0

1

In Exercises 5–8, sketch the region of integration and write an equiva-
lent integral with the order of integration reversed. Then evaluate both 
integrals.

 5. ∫∫
( )

− −

−
dx dy

y

y

4

4 2

0

4
 6. ∫∫ x dy dx

x

x

0

1

2

 7. ∫∫ − −

−
y dx dy

y

y

9 4

9 4

0

3 2

2

2

 8. ∫∫
−

x dy dx2
x

0

4

0

2 2

Evaluate the integrals in Exercises 9–12.

 9. ∫∫ x dx dy4 cos ( )
y

2

2

2

0

1
 10. ∫∫ e dx dyx

y 2

1

0

2
2

 11. ∫∫ +
dy dx

y 1x 4

2

0

8

3
 12. ∫∫

π πx
x

dx dy
2 sin

y

2

2

1

0

1

3

Areas and Volumes Using Double Integrals

 13. Area between line and parabola Find the area of the region 
enclosed by the line = +y x2 4 and the parabola = −y x4 2 
in the xy-plane.

 14. Area bounded by lines and parabola Find the area of the  
“triangular” region in the xy-plane that is bounded on the right 
by the parabola =y x ,2  on the left by the line + =x y 2, and 
above by the line =y 4.

 15. Volume of the region under a paraboloid Find the volume 
under the paraboloid = +z x y2 2 above the triangle enclosed 
by the lines = =y x x,   0, and + =x y 2 in the xy-plane.

 16. Volume of the region under a parabolic cylinder Find the 
volume under the parabolic cylinder =z x 2 above the region 
enclosed by the parabola = −y x6 2 and the line =y x  in the 
xy-plane.

Average Values
Find the average value of ( ) =f x y xy,  over the regions in Exercises 17 
and 18.

 17. The square bounded by the lines = =x y1,   1 in the first 
quadrant

 18. The quarter circle + ≤x y 12 2  in the first quadrant

Polar Coordinates
Evaluate the integrals in Exercises 19 and 20 by changing to polar 
coordinates.

 19. ∫∫ ( )+ +− −

−

−

dy dx

x y

2

1x

x

2 2 21

1

1

1

2

2

 20. ∫∫ ( )+ +
− −

−

−
x y dx dyln 1

y

y
2 2

1

1

1

1

2

2

CHAPTER 14 Practice Exercises

x
x2 + y2 = 4

y

z

z = 4 − x2

z

y
x

p
2

−
2

x = −cos y

z = −2x

p

 21. Integrating over a lemniscate Integrate the function 
( ) ( )= + +f x y x y, 1 1 2 2 2 over the region enclosed by one 

loop of the lemniscate ( ) ( )+ − − =x y x y 0.2 2 2 2 2

 22. Integrate ( ) ( )= + +f x y x y, 1 1 2 2 2 over

 a. Triangular region The triangle with vertices ( )0, 0 , ( )1, 0 , 
and ( )1,   3 .

 b. First quadrant The first quadrant of the xy-plane.

Evaluating Triple Iterated Integrals
Evaluate the integrals in Exercises 23–26.

 23. ∫∫∫ ( )+ +
πππ

x y z dx dy dzcos
000

 24. ∫∫∫ ( )+ +e dz dy dxx y z

ln 4

ln 5

0

ln 2

ln 6

ln 7

 25. ∫∫∫ ( )− −
+

x y z dz dy dx2
x yx

000

1 2

 26. ∫∫∫
y

z
dy dz dx

2zxe

3011

Volumes and Average Values Using Triple Integrals

 27. Volume Find the volume of the wedge-shaped solid region enc-
losed on the side by the cylinder π π= − − ≤ ≤x y ycos ,   2 2, 
on the top by the plane = −z x2 , and below by the xy-plane.

 28. Volume Find the volume of the solid that is bounded above 
by the cylinder = −z x4 ,2  on the sides by the cylinder 

+ =x y 4,2 2  and below by the xy-plane.

 29. Average value Find the average value of f x y z, ,( ) = 

xz x y30 2 +  over the rectangular solid in the first octant boun-
ded by the coordinate planes and the planes = = =x y z1, 3, 1.
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926 Chapter 14 Multiple Integrals

 30. Average value Find the average value of ρ  over the ball ρ ≤ a 
(spherical coordinates).

Cylindrical and Spherical Coordinates

 31. Cylindrical to rectangular coordinates Convert

∫∫∫ θ ≥
π −

r dz dr d r3 , 0
r

r4

0

2

0

2 2

to (a) rectangular coordinates with the order of integration  
dz dx dy and (b) spherical coordinates. Then (c) evaluate one of 
the integrals.

 32. Rectangular to cylindrical coordinates (a) Convert to cylin-
drical coordinates. Then (b) evaluate the new integral.

∫∫∫ ( )

( )

− +

+

− −

−
xy dz dy dx21

x y

x y

x

x
2

1

1

0

1

2 2

2 2

2

2

 33. Rectangular to spherical coordinates (a) Convert to spherical 
coordinates. Then (b) evaluate the new integral.

∫∫∫ +− −

−

−
dz dy dx

x yx

x 1

1

1

1

1

2 22

2

 34. Rectangular, cylindrical, and spherical coordinates Write an 
iterated triple integral for the integral of ( ) = +f x y z y, , 6 4  over 
the region in the first octant bounded by the cone = +z x y ,2 2  
the cylinder + =x y 1,2 2  and the coordinate planes in (a) rect-
angular coordinates, (b) cylindrical coordinates, and (c) spherical 
coordinates. Then (d) find the integral of f  by evaluating one of 
the triple integrals.

 35. Cylindrical to rectangular coordinates Set up an integral in 
rectangular coordinates equivalent to the integral

∫∫∫ θ θ θ( )
π −

r z dz dr dsin cos .
r

3 2

1

4

1

3

0

2 2

Arrange the order of integration to be z first, then y, then x.

 36. Rectangular to cylindrical coordinates The volume of a solid is

∫∫∫ − − −

− −−
dz dy dx.

x y

x yx x

4

4

0

2

0

2

2 2

2 22

 a. Describe the solid by giving equations for the surfaces that 
form its boundary.

 b. Convert the integral to cylindrical coordinates, but do not 
evaluate the integral.

 37. Spherical versus cylindrical coordinates Triple integrals 
involving spherical shapes do not always require spherical coor-
dinates for convenient evaluation. Some calculations may be 
accomplished more easily with cylindrical coordinates. As a case 
in point, find the volume of the solid region bounded above by 
the sphere + + =x y z 82 2 2  and below by the plane =z 2 by 
using (a) cylindrical coordinates and (b) spherical coordinates.

Masses and Moments

 38. Finding Iz  in spherical coordinates Find the moment of  
inertia about the z-axis of a solid of constant density δ = 1 that 
is bounded above by the sphere ρ = 2 and below by the cone 
φ π= 3 (spherical coordinates).

z

y

x

r = 1 − cos f

 39. Moment of inertia of a “thick” sphere Find the moment of 
inertia of a solid of constant density δ bounded by two concentric 
spheres of radii a and ( )<b a b  about a diameter.

 40. Moment of inertia of an apple Find the moment of inertia 
about the z-axis of a solid of density δ = 1 enclosed by the spher-
ical coordinate surface ρ φ= −1 cos . The solid is the red curve 
rotated about the z-axis in the accompanying figure.

 41. Centroid Find the centroid of the “triangular” region bounded 
by the lines = =x y2,   2 and the hyperbola =xy 2 in the 
xy-plane.

 42. Centroid Find the centroid of the region between the parabola 
+ − =x y y2 02  and the line + =x y2 0 in the xy-plane.

 43. Polar moment Find the polar moment of inertia about the ori-
gin of a thin triangular plate of constant density δ = 3 bounded 
by the y-axis and the lines =y x2  and y 4=  in the xy-plane.

 44. Polar moment Find the polar moment of inertia about the center 
of a thin rectangular sheet of constant density δ = 1 bounded by 
the lines

 a. = ± = ±x y2, 1 in the xy-plane

 b. = ± = ±x a y b,  in the xy-plane.

(Hint: Find I .x  Then use the formula for Ix to find I ,y  and add the 
two to find I .0 )

 45. Inertial moment Find the moment of inertia about the x-axis of 
a thin plate of constant density δ covering the triangle with verti-
ces ( )0, 0 , ( )3, 0 , and ( )3, 2  in the xy-plane.

 46. Plate with variable density Find the center of mass and the 
moments of inertia about the coordinate axes of a thin plate 
bounded by the line =y x  and the parabola =y x 2 in the xy-
plane if the density is δ( ) = +x y x, 1.

 47. Plate with variable density Find the mass and first moments 
about the coordinate axes of a thin square plate bounded by 
the lines = ± = ±x y1,   1 in the xy-plane if the density is 
δ( ) = + +x y x y, 1 3.2 2

 48. Triangles with same inertial moment Find the moment of 
inertia about the x-axis of a thin triangular plate of constant den-
sity δ whose base lies along the interval [ ]b0,  on the x-axis and 
whose vertex lies on the line =y h above the x-axis. As you will 
see, it does not matter where on the line this vertex lies. All such 
triangles have the same moment of inertia about the x-axis.

M14_HASS5901_15_GE_C14.indd   926 08/03/2023   11:20

www.konkur.in

Telegram: @uni_k



 Chapter 14  Additional and Advanced Exercises 927

 49. Centroid Find the centroid of the region in the polar coordinate 
plane defined by the inequalities π θ π≤ ≤ − ≤ ≤r0 3,   3 3.

 50. Centroid Find the centroid of the region in the first quadrant 
bounded by the rays θ = 0 and θ π= 2 and the circles =r 1 
and =r 3.

 51. a.  Centroid Find the centroid of the region in the polar  
coordinate plane that lies inside the cardioid θ= +r 1 cos  
and outside the circle =r 1.

 b. Sketch the region and show the centroid in your sketch.

 52. a.  Centroid Find the centroid of the plane region defined by 
the polar coordinate inequalities r a0 , α θ α≤ ≤ − ≤ ≤  
(0 ).α π< ≤   How does the centroid move as α π→ −?

 b. Sketch the region for α π= 5 6 and show the centroid in 
your sketch.

Substitutions

 53. Show that if = −u x y and υ = y, then for any continuous f ,

∫∫ ∫∫ υ υ( ) ( )− = υ( )−
∞

− +
∞∞

e f x y y dy dx e f u du d  ,   , .sx
x

s u

00 00

 54. What relationship must hold between the constants a, b, and c to 
make

∫∫ =( )− + +

−∞

∞

−∞

∞
e dx dy 1?ax bxy cy22 2

(Hint: Let s x yα β= +  and t x y,γ δ= +  where 2αδ βγ( )− = 
ac b .2−  Then + + = +ax bxy cy s t2 .2 2 2 2 )

Volumes

 1. Sand pile: double and triple integrals The base of a sand pile 
covers the region in the xy-plane that is bounded by the parabola 

+ =x y 62  and the line =y x. The height of the sand above 
the point ( )x y,  is x .2  Express the volume of sand as (a) a double 
integral and (b) a triple integral. Then (c) find the volume.

 2. Water in a hemispherical bowl A hemispherical bowl of 
radius 5 cm is filled with water to within 3 cm of the top. Find the 
volume of water in the bowl.

 3. Solid cylindrical region between two planes Find the volume 
of the portion of the solid cylinder + ≤x y 12 2  that lies between 
the planes =z 0 and + + =x y z 2.

 4. Sphere and paraboloid Find the volume of the solid region 
bounded above by the sphere + + =x y z 22 2 2  and below by 
the paraboloid = +z x y .2 2

 5. Two paraboloids Find the volume of the solid region bounded 
above by the paraboloid = − −z x y3 2 2 and below by the 
paraboloid = +z x y2 2 .2 2

 6. Spherical coordinates Find the volume of the solid region 
enclosed by the spherical coordinate surface ρ φ= 2 sin  (see 
accompanying figure).

CHAPTER 14 Additional and Advanced Exercises

z

x

y

r = 2 sin f

 7. Hole in solid ball A circular cylindrical hole is bored through a 
ball, the axis of the hole being a diameter of the sphere. The vol-
ume of the remaining solid is

∫∫∫ θ=
π −

V r dr dz d2  .
z

1

4

0

3

0

2 2

 a. Find the radius of the hole and the radius of the sphere.

 b. Evaluate the integral.

 8. Ball and cylinder Find the volume of material cut from the ball 
+ ≤r z 92 2  by the cylinder θ=r 3 sin .

 9. Two paraboloids Find the volume of the solid region enclosed 
by the surfaces = +z x y2 2 and ( )= + +z x y 1 2.2 2

 10. Cylinder and surface =z xy Find the volume of the solid 
region in the first octant that lies between the cylinders =r 1 and 

=r 2 and is bounded below by the xy-plane and above by the 
surface =z xy.

Changing the Order of Integration

 11. Evaluate the integral

∫ −− −∞ e e
x

dx.
ax bx

0

(Hint: Use the relation

∫− =
− −

−e e
x

e dy
ax bx

xy

a

b

to form a double integral, and evaluate the integral by changing 
the order of integration.)

 12. a. Polar coordinates Show, by changing to polar coordinates, 
that

∫∫ β( )( )+ = −
β

β −
x y dx dy a aln ln 1

2
,

y

a ya
2 2

cot0

sin
2

2 2

where >a 0 and β π< <0 2.
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928 Chapter 14 Multiple Integrals

 b. Rewrite the Cartesian integral with the order of integration 
reversed.

 13. Reducing a double to a single integral By changing the order 
of integration, show that the following double integral can be 
reduced to a single integral:

∫∫ ∫ ( )= −( ) ( )− −e f t dt du x t e f t dt  ( )   ( ) .m x t
ux

m x t
x

00 0

Similarly, it can be shown that

∫∫∫ ∫υ ( )= −υ
( ) ( )− −e f t dt du d x t e f t dt  ( )

2
  ( ) .m x t

ux
m x t

x

000

2

0

 14. Transforming a double integral to obtain constant limits  
Sometimes a multiple integral with variable limits can be changed 
into one with constant limits. By changing the order of integra-
tion, show that

f x g x y f y dy dx

f y g x y f x dx dy

g x y f x f y dx dy

( ) ( )

( ) ( )

1
2

( ) ( ) .

x

y

00

1

1

0

1

0

1

0

1

∫∫

∫∫

∫∫

( )
( )

( )

( )

( )

−

= −

= −

Masses and Moments

 15. Minimizing polar inertia A thin plate of constant density is to 
occupy the triangular region in the first quadrant of the xy-plane 
having vertices ( )0, 0 , ( )a, 0 , and ( )a a,1 . What value of a will 
minimize the plate’s polar moment of inertia about the origin?

 16. Polar inertia of triangular plate Find the polar moment 
of inertia about the origin of a thin triangular plate of constant 
density δ = 3 bounded by the y-axis and the lines =y x2  and 

=y 4 in the xy-plane.

 17. Mass and polar inertia of a counterweight The counterweight 
of a flywheel of constant density 1 has the form of the smaller 
segment cut from a circle of radius a by a chord at a distance b 
from the center ( )<b a . Find the mass of the counterweight and 
its polar moment of inertia about the center of the wheel.

 18. Centroid of a boomerang Find the centroid of the boomerang- 
shaped region between the parabolas ( )= − −y x4 12  and 

( )= − −y x2 22  in the xy-plane.

Theory and Examples

 19. Evaluate

∫∫ ( )e dy dx,b x a y
ba

max , 

00

2 2 2 2

where a and b are positive numbers and

b x a y
b x b x a y

a y b x a y
max ,

if 

if  .
2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2
( ) =

≥

<

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

 

 20. Show that

∫∫
( )∂

∂ ∂
F x y
x y

dx dy
,2

over the rectangle ≤ ≤ ≤ ≤x x x y y y,  0 1 0 1 is

( ) ( ) ( ) ( )− − +F x y F x y F x y F x y, , , , .1 1 0 1 1 0 0 0

 21. Suppose that ( )f x y,  can be written as a product 
( ) =f x y F x G y, ( ) ( ) of a function of x and a function of y. Then 

the integral of f  over the rectangle ≤ ≤ ≤ ≤R a x b c y d: ,    
can be evaluated as a product as well, by the formula

 f x y dA F x dx G y dy, ( ) ( ) .
R

a

b

c

d

∫∫ ∫ ∫( )( )( ) =  (1)

The argument is that

 f x y dA F x G y dx dy, ( ) ( )
R

a

b

c

d

∫∫ ∫∫ ( )( ) =  (i)

 ∫∫ ( )= G y F x dx dy( ) ( )
a

b

c

d
 (ii)

 ∫∫ ( )= F x dx G y dy( ) ( )
a

b

c

d
 (iii)

 ∫ ∫( ) ( )= F x dx G y dy( ) .
a

b

c

d
 (iv)

 a. Give reasons for Steps (i) through (iv).

When it applies, Equation (1) can be a time-saver. Use it to eval-
uate the following integrals.

 b. ∫∫
π

e y dy dxcosx

0

2

0

ln 2
 c. ∫∫ −

x
y

dx dy
21

1

1

2

 22. Let D fu  denote the derivative of ( ) ( )= +f x y x y, 22 2  in the 
direction of the unit vector = +u uu i j.1 2

 a. Finding average value Find the average value of D fu  over 
the triangular region cut from the first quadrant by the line 

+ =x y 1.

 b. Average value and centroid Show in general that the 
average value of D fu  over a region in the xy-plane is the 
value of D fu  at the centroid of the region.

 23. The value of Γ( )1 2  The gamma function,

∫Γ = − −
∞

x t e dt( )   ,x t1

0

extends the factorial function from the nonnegative integers to 
other real values. Of particular interest in the theory of differential 
equations is the number

 ∫ ∫( )Γ = =( )− −
∞ −∞

t e dt e
t

dt1
2

.t
t

1 2 1

0 0
 (2)

 a. If you have not yet done Exercise 41 in Section 14.4, do it 
now to show that

∫ π= =−
∞

I e dy
2

.y

0

2

 b. Substitute =y t  in Equation (2) to show that 
π( )Γ = =I1 2 2 .

 24. Total electrical charge over circular plate The electri-
cal charge distribution on a circular plate of radius R meters is 
σ θ θ( ) ( )= −r kr, 1 sin coulomb m 2  (k a constant). Integrate σ 
over the plate to find the total charge Q.
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 Chapter 14  Additional and Advanced Exercises 929

Mathematica/Maple Projects

Projects can be found within MyLab Math.

• Take Your Chances: Try the Monte Carlo Technique for Numerical Integration in Three Dimensions

Use the Monte Carlo technique to integrate numerically in three dimensions.

• Means and Moments and Exploring New Plotting Techniques, Part II

Use the method of moments in a form that makes use of geometric symmetry as well as multiple integration.

CHAPTER 14 Technology Application Projects

 25. A parabolic rain gauge A bowl is in the shape of the graph of 
= +z x y2 2 from =z 0 to z = 30 cm. You plan to calibrate the 

bowl to make it into a rain gauge. What height in the bowl would 
correspond to 3 cm of rain? 9 cm of rain?

 26. Water in a satellite dish A parabolic satellite dish is 2 m wide 
and 1 2 m deep. Its axis of symmetry is tilted 30 degrees from the 
vertical.

 a. Set up, but do not evaluate, a triple integral in rectangular 
coordinates that gives the amount of water the satellite dish 
will hold. (Hint: Put your coordinate system so that the satellite 
dish is in “standard position” and the plane of the water level is 
slanted.) (Caution: The limits of integration are not “nice.”)

 b. What would be the smallest tilt of the satellite dish so that it 
holds no water?

 27. An infinite half-cylinder Let D be the interior of the infinite 
right circular half-cylinder of radius 1 with its single-end face  

suspended 1 unit above the origin and its axis the ray from ( )0, 0,1  
to ∞. Use cylindrical coordinates to evaluate

z r z dV.
D

2 2 5 2∫∫∫ ( )+ −

 28. Hypervolume We have learned that ∫ dx1 a
b

 is the length of 
the interval [ ]a b,  on the number line (one-dimensional space), 
∫∫ dA1R  is the area of region R in the xy-plane (two-dimensional 
space), and ∫∫∫ dV1D  is the volume of the region D in three-
dimensional space (xyz-space). We could continue: If Q is a region 
in 4-space (xyzw-space), then ∫∫∫∫ dV1Q  is the “hyper-volume” 
of Q. Use your generalizing abilities and a Cartesian coordinate 
system of 4-space to find the hypervolume inside the unit four-
dimensional sphere + + + =x y z w 1.2 2 2 2
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930

OVERVIEW In this chapter we extend the theory of integration to functions whose domains 
are curves and surfaces in space. The resulting line and surface integrals give powerful 
mathematical tools for science and engineering. Line integrals are used to find the work 
done by a force in moving an object along a path and to find the mass of a curved wire  
with variable density. Surface integrals are used to find the rate of flow of a fluid across a 
surface and to describe the interactions of electric and magnetic forces. We present the 
fundamental theorems of vector integral calculus and discuss their mathematical conse-
quences and physical applications. The theorems of vector calculus are then shown to be 
generalized versions of the Fundamental Theorem of Calculus.

Integrals and Vector 

Fields

15

15.1 Line Integrals of Scalar Functions

To calculate the total mass of a wire lying along a curve in space, or to find the work done 
by a variable force acting along such a curve, we need a more general notion of integral 
than was defined in Chapter 5. We need to integrate over a curve C rather than over an 
interval [ ]a b, . These more general integrals are called line integrals (although path integrals 
might be more descriptive). We make our definitions for space curves, with curves in the 
xy-plane being the special case with z-coordinate identically zero.

Suppose that ( )f x y z, ,  is a real-valued function we wish to integrate over the curve C 
lying within the domain of f  and parametrized by = + + ≤ ≤t g t h t k t a t br i j k( ) ( ) ( ) ( ) ,  . 
The values of f  along the curve are given by the composite function ( )f g t h t k t( ), ( ), ( ) . We 
are going to integrate this composition with respect to arc length from =t a to =t b. To 
begin, we first partition the curve C into a finite number n of subarcs (Figure 15.1). The typi-
cal subarc has length Δs .k  In each subarc we choose a point ( )x y z, ,k k k  and form the sum

S f x y z s, , ,

fvalue of at a point length of a small

on the subarc subarc of the curve

n
k

n

k k k k
1 � ������ ������ �∑ ( )= Δ

=

which is similar to a Riemann sum. Depending on how we partition the curve C and pick 
( )x y z, ,k k k  in the kth subarc, we may get different values for Sn. If f  is continuous and the 
functions g, h, and k have continuous first derivatives, then these sums approach a limit as 
n increases and the lengths Δsk approach zero. This leads to the following definition, 
which is similar to that for a single integral. In the definition, we assume that the norm of 
the partition approaches zero as → ∞n , so that the length of the longest subarc approaches 
zero.

z

y

x

r(t)

t = b

t = a
(xk, yk, zk)

Δsk

FIGURE 15.1 The curve tr( ) partitioned 
into small arcs from =t a to =t b. The 
length of a typical subarc is Δs .k
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 15.1  Line Integrals of Scalar Functions 931

If the curve C is smooth for ≤ ≤a t b (so d dtv r=  is continuous and never 0) and 
the function f  is continuous on C, then the limit in Equation (1) can be shown to exist. We 
can then apply the Fundamental Theorem of Calculus to differentiate the arc length equation,

s t dv( ) ( ) ,
a

t

∫ τ τ=     
 Eq. (3) of Section 12.3  
with t a0 =

to express ds in Equation (1) as =ds t dtv( )  and evaluate the integral of f  over C as

 ∫ ∫( ) ( )=f x y z ds f g t h t k t t dtv, , ( ), ( ), ( ) ( ) .
C a

b
 (2)

The integral on the right side of Equation (2) is just an ordinary definite integral, as 
defined in Chapter 5, where we are integrating with respect to the parameter t. The for-
mula evaluates the line integral on the left side correctly no matter what smooth parametri-
zation is used. Note that the parameter t defines a direction along the path. The starting 
point on C is the position ar( ), and movement along the path is in the direction of increas-
ing t (see Figure 15.1).

DEFINITION If f  is defined on a curve C given parametrically by 
= + + ≤ ≤t g t h t k t a t br i j k( ) ( ) ( ) ( ) ,  , then the line integral of f  over C is

 f x y z ds f x y z s, , lim , , ,
C n

k

n

k k k k
1

∫ ∑( ) ( )= Δ
→∞ =

 (1)

provided this limit exists.

ds
dt

dx
dt

dy
dt

dz
dt

v
2 2 2

( )( ) ( )= = + +

f t f g t h t k tr( ) ( ), ( ), ( )( ) ( )=

How to Evaluate a Line Integral
To integrate a continuous function ( )f x y z, ,  over a curve C:

1. Find a smooth parametrization of C,

= + + ≤ ≤t g t h t k t a t br i j k( ) ( ) ( ) ( ) , .

2. Evaluate the integral as

∫ ∫( ) ( )=f x y z ds f g t h t k t t dtv, , ( ), ( ), ( ) ( ) .
C a

b

If f  has the constant value 1, then the integral of f  over C gives the length of C 
from =t a to =t b. We also write ( )f tr( )  for the evaluation ( )f g t h t k t( ), ( ), ( )  along 
the curve r.

EXAMPLE 1  Integrate ( ) = − +f x y z x y z, , 3 2  over the line segment C joining 
the origin to the point ( )1,1,1  (Figure 15.2).

Solution Since any choice of parametrization will give the same answer, we choose the 
simplest parametrization we can think of:

= + + ≤ ≤t t t t tr i j k( ) , 0 1.

z

x

C

(1, 1, 0)

(1, 1, 1)

y

FIGURE 15.2 The integration path in 
Example 1.
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932 Chapter 15 Integrals and Vector Fields

The components have continuous first derivatives, and tv i j k( ) = + + = 
1 1 1 32 2 2+ + =  is never 0, so the parametrization is smooth. The integral of f   

over C is

f x y z ds f t t t dt

t t t dt

t t dt t t

, , , , 3

3 3

3 2 3 3 0.

C 0

1

2

0

1

2

0

1
2 3

0

1

∫ ∫

∫

∫

( ) ( )

( )

( )

=

= − +

= − = −⎡
⎣
⎢

⎤
⎦
⎥ =  

= =ds t dt dtvEq. (2),  ( ) 3

Additivity

Line integrals have the useful property that if a piecewise smooth curve C is made by join-
ing a finite number of smooth curves C C C, , , n1 2 …  end to end (Section 12.1), then the 
integral of a function over C is the sum of the integrals over the curves that make it up:

 �∫ ∫ ∫ ∫= + + +f ds f ds f ds f ds.
C C C Cn1 2

 (3)

EXAMPLE 2  Figure 15.3 shows another path from the origin to 1,1,1( ), formed from 
two line segments C1 and C .2  Integrate f x y z x y z, , 3 2( ) = − +  over C C .1 2∪

Solution We choose the simplest parametrizations for C1 and C2 we can find, calculating 
the lengths of the velocity vectors as we go along:

C t t t t

C t t t

r i j v

r i j k v

: ( ) , 0 1; 1 1 2

: ( ) , 0 1; 0 0 1 1.

1
2 2

2
2 2 2

= + ≤ ≤ = + =

= + + ≤ ≤ = + + =

With these parametrizations we find that

f x y z ds f x y z ds f x y z ds

f t t dt f t dt

t t dt t dt

t t t t

, , , , , ,

, , 0 2 1,1, 1

3 0 2 1 3 1

2
2 2

2 2
2

3
2

.

C C C C

0

1

0

1

2

0

1

0

1

2
3

0

1 2

0

1

1 2 1 2
∫ ∫ ∫

∫ ∫

∫ ∫

( ) ( ) ( )

( ) ( )

( )

( )

( )( )

= +

= +

= − + + − +

= −⎡
⎣⎢

⎤
⎦⎥

+ −⎡
⎣⎢

⎤
⎦⎥

= − −

∪

 

Eq. (3)

Eq. (2)

Notice three things about the integrations in Examples 1 and 2. First, as soon as the 
components of the appropriate curve were substituted into the formula for f , the integra-
tion became a standard integration with respect to t. Second, the integral of f  over C C1 2∪  
was obtained by integrating f  over each section of the path and adding the results. Third, 
the integrals of f  over C and C C1 2∪  had different values. We investigate this third obser-
vation in Section 15.3.

z

x

(0, 0, 0)

(1, 1, 0)

(1, 1, 1)

C1

C2
y

FIGURE 15.3 The path of integration in 
Example 2.
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 15.1  Line Integrals of Scalar Functions 933

EXAMPLE 3  Find the line integral of f x y z xy z, , 2( ) = +  over the helix 
t t t t tr i j k( ) cos sin , 0 .π= + + ≤ ≤

Solution For the helix (Figure 15.4) we find t t t tv r i j k( ) ( ) sin cos= ′ = − + +  and 

( ) ( )= − + + =t t tv( ) sin cos 1 2.2 2  Evaluating the function f  at the point tr( ), 
we obtain

f t f t t t t t t t tr( ) cos , sin , 2 cos sin sin 2 .( ) ( )= = + = +

The line integral is given by

∫ ∫

π

( )( ) = +

= − +⎡
⎣⎢

⎤
⎦⎥

= ≈

π

π

f x y z ds t t dt

t t

, , sin 2 2

2 1
2

cos 2 2
3

2 2
3

5.25.

C 0

3 2

0

3 2  

z

y
x

1

1

center 
of mass

y2 + z2 = 1, z ≥ 0

(x, y, z )¯ ¯ ¯

−1

The value of a line integral along a path joining two points can change if you 
change the path between them.

Mass and Moment Calculations

We treat coil springs and wires as masses distributed along smooth curves in space. The 
distribution is described by a continuous density function x y z, ,δ( ) representing mass per 
unit length. When a curve C is parametrized by t x t y t z t a t br i j k( ) ( ) ( ) ( ) ,  ,= + + ≤ ≤  
then x, y, and z are functions of the parameter t, the density is the function x t y t z t( ), ( ), ( ) ,δ( )  
and the arc length differential is given by

ds dx
dt

dy
dt

dz
dt

dt.
2 2 2

( )( ) ( )= + +

(See Section 12.3.) The spring’s or wire’s mass, center of mass, and moments are then 
calculated using the formulas in Table 15.1, with the integrations in terms of the parameter t  
over the interval  [ ]a b, . For example, the formula for mass becomes

∫ δ ( )( ) ( )( )= + +M x t y t z t dx
dt

dy
dt

dz
dt

dt( ), ( ), ( ) .
a

b 2 2 2

These formulas also apply to thin rods, and their derivations are similar to those in Section 6.6. 
Notice how similar the formulas are to those in Tables 15.1 and 15.2 for double and triple 
integrals. The double integrals for planar regions, and the triple integrals for solids, become 
line integrals for coil springs, wires, and thin rods.

Notice that the element of mass dm is equal to dsδ  in the table, rather than to dVδ  as 
in Table 15.1, and that the integrals are taken over the curve C.

EXAMPLE 4  A slender metal arch, denser at the bottom than at the top, lies along 
the semicircle y z z1,  0,2 2+ = ≥  in the yz-plane (Figure 15.5). Find the center of the 
arch’s mass if the density at the point x y z, ,( ) on the arch is x y z z, , 2 .δ( ) = −

Solution We know that x 0=  and y 0=  because the arch lies in the yz-plane with its 
mass distributed symmetrically about the z-axis. To find z , we parametrize the circle as

t t t tr j k( ) cos sin , 0 .π( ) ( )= + ≤ ≤

−1−1 −−11−−111−−−−−

z

y
x

1

11

11

FIGURE 15.4 A line integral is taken 
over a curve such as this helix from 
Example 3.

FIGURE 15.5 Example 4 shows how to 
find the center of mass of a circular arch of 
variable density.
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934 Chapter 15 Integrals and Vector Fields

∫ δ=M dsMass:
C

    x y z, ,δ δ( )=  is the density at x y z, ,( ).

First moments about the coordinate planes:

M x ds M y ds M z ds, ,yz
C

xz
C

xy
C∫ ∫ ∫δ δ δ= = =

Coordinates of the center of mass:

x M M y M M z M M, ,yz xz xy= = =

Moments of inertia about axes and other lines:

I y z ds I x z ds I x y ds

I r ds

, , ,x
C

y
C

z
C

L
C

2 2 2 2 2 2

2

∫ ∫ ∫

∫

δ δ δ

δ

( ) ( ) ( )= + = + = +

= r r x y z, ,( )=  is the distance from the point x y z, ,( ) to line L.

TABLE 15.1 Mass and moment formulas for coil springs, wires, and thin rods lying 
along a smooth curve C in space

For this parametrization,

t dx
dt

dy
dt

dz
dt

t tv( ) 0 sin cos 1,
2 2 2

2 2 2( )( ) ( ) ( ) ( )( )= + + = + − + =

so ds dt dtv .= =

The formulas in Table 15.1 then give

M ds z ds t dt

M z ds z z ds t t dt

t t dt

z
M

M

2 2 sin 2 2

2 sin 2 sin

2 sin sin 8
2

8
2

1
2 2

8
4 4

0.57.

C C

xy
C C

xy

0

0

2

0

∫ ∫ ∫

∫ ∫ ∫

∫

δ π

δ

π

π
π

π
π

( )

( )( )

( )

( )

( )

= = − = − = −

= = − = −

= − = −

= = − ⋅
−

= −
−

≈

π

π

π
Routine integration

With z  to the nearest hundredth, the center of mass is 0, 0, 0.57( ). 

Line Integrals in the Plane

Line integrals for curves in the plane have a natural geometric interpretation. If C is a 
smooth curve in the xy-plane parametrized by t x t y t a t br i j( ) ( ) ( ) ,  ,= + ≤ ≤  we gen-
erate a cylindrical surface by moving a straight line along C perpendicular to the plane, 
holding the line parallel to the z-axis, as in Figure 15.6. If z f x y,( )=  is a nonnegative 
continuous function over a region in the plane containing the curve C, then the graph of f  
is a surface that lies above the plane. The cylinder cuts through this surface, forming a 
curve on it that lies above the curve C and follows its winding nature. The part of the cylin-
drical surface that lies beneath the surface curve and above the xy-plane forms a “curved 

z

y

x

t = a

t = b

(x, y)

Height f (x, y)

Plane curve C
Δsk

FIGURE 15.6 The line integral 

∫ f ds
C

 gives the area of the portion of 

the cylindrical surface or “wall” beneath 
z f x y, 0.( )= ≥
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 15.1  Line Integrals of Scalar Functions 935

Graphs of Vector Equations
Match the vector equations in Exercises 1–8 with the graphs (a)–(h) 
given here.

 a. 

y

z

x

1

−1

 b. 

y

z

x

2

1

 c. 

y

z

x

1 1

 d. 

y

z

x

2

2

(2, 2, 2)

 e. 

y

z

x

1
1

(1, 1, 1)

(1, 1, −1)

 f. 

y

z

x

2

−2

−1

 g. 

y

z

x

2

2

 h. 

y

z

x

2

2

−2

 1. t t t tr i j( ) 1 , 0 1( )= + − ≤ ≤

 2. t t tr i j k( ) , 1 1= + + − ≤ ≤

 3. t t t tr i j( ) 2 cos 2 sin , 0 2π( ) ( )= + ≤ ≤

 4. t t tr i( ) , 1 1= − ≤ ≤

 5. t t t t tr i j k( ) , 0 2= + + ≤ ≤

 6. t t t tr j k( ) 2 2 , 0 1( )= + − ≤ ≤

 7. t t t tr j k( ) 1 2 , 1 12( )= − + − ≤ ≤

 8. t t t tr i k( ) 2 cos 2 sin , 0 π( ) ( )= + ≤ ≤

Evaluating Line Integrals over Space Curves

 9. Evaluate x y dsC ( )∫ + , where C is the straight-line segment 
x t y t z,  1 ,  0,( )= = − =  from 0,1, 0( ) to 1, 0, 0( ).

 10. Evaluate ( )∫ − + −x y z ds2 ,C  where C is the straight-line  
segment x t y t z,  1 ,  1,( )= = − =  from 0,1,1( ) to 1, 0,1( ).

 11. Evaluate xy y z dsC ( )∫ + +  along the curve t tr i( ) 2= + 
t t tj k2 2 , 0 1.( )+ − ≤ ≤

 12. Evaluate x y dsC
2 2∫ +  along the curve t tr i( ) 4 cos( )= + 

t t tj k4 sin 3 ,  2 2 .π π( ) + − ≤ ≤

 13. Find the line integral of f x y z x y z, ,( ) = + +  over the 
straight-line segment from 1, 2, 3( ) to 0, 1,1 .( )−

 14. Find the line integral of f x y z x y z, , 3 2 2 2( ) ( )= + +  over 
the curve t t t t tr i j k( ) , 1 .= + + ≤ < ∞

 15. Integrate f x y z x y z, , 2( ) = + −  over the path C1 followed 
by C2 from 0, 0, 0( ) to 1,1,1( ) (see accompanying figure) given by

C t t t t

C t t t

r i j

r i j k

: ( ) , 0 1

: ( ) , 0 1.
1

2

2

= + ≤ ≤

= + + ≤ ≤

z

y

x

(a)
(1, 1, 0)

(1, 1, 1)
(0, 0, 0)

z

y
x

(b)

(0, 0, 0)
(1, 1, 1)

(0, 0, 1)
(0, 1, 1)

C1

C1

C2

C2

C3

The paths of integration for Exercises 15 and 15.

EXERCISES 15.1

wall” or “fence” standing on the curve C and orthogonal to the plane. At any point x y,( ) 
along the curve, the height of the wall is f x y,( ). From the definition

∫ ∑ ( )= Δ
→∞ =

f ds f x y slim , ,
C n

k

n

k k k
1

where s 0kΔ →  as n ,→ ∞  we see that the line integral ∫ f ds
C

 is the area of the wall 
shown in the figure.
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936 Chapter 15 Integrals and Vector Fields

 16. Integrate f x y z x y z, , 2( ) = + −  over the path C1 followed 
by C2 followed by C3 from 0, 0, 0( ) to 1,1,1( ) (see accompanying 
figure) given by

C t t t

C t t t

C t t t

r k

r j k

r i j k

: ( ) , 0 1

: ( ) , 0 1

: ( ) , 0 1.

1

2

3

= ≤ ≤

= + ≤ ≤

= + + ≤ ≤

 17. Integrate f x y z x y z x y z, , 2 2 2( ) ( )( )= + + + +  over the 
path t t t t a t br i j k( ) , 0 .= + + < ≤ ≤

 18. Integrate f x y z x z, , 2 2( ) = − +  over the circle

t a t a t tr j k( ) cos sin , 0 2 .π( ) ( )= + ≤ ≤

Line Integrals over Plane Curves

 19. Evaluate x ds,C∫  where C is

 a. the straight-line segment x t y t,  2,= =  from 0, 0( ) to 4, 2 .( )

 b. the parabolic curve x t y t,  ,2= =  from 0, 0( ) to 2, 4( ).

 20. Evaluate x y ds2 ,C∫ +  where C is

 a. the straight-line segment x t y t,  4 ,= =  from 0, 0( ) to 1, 4( ).

 b. C C C; 1 2 1∪  is the line segment from 0, 0( ) to 1, 0( ) and C2 is 
the line segment from 1, 0( ) to 1, 2( ).

 21. Find the line integral of f x y ye, x 2( ) =  along the curve 
t t t tr i j( ) 4 3 ,  1 2.= − − ≤ ≤

 22. Find the line integral of f x y x y, 3( ) = − +  along the curve 
t t t tr i j( ) cos sin , 0 2 .π( ) ( )= + ≤ ≤

 23. Evaluate x
y

ds,
C

2

4 3∫  where C is the curve x t y t,  ,2 3= =  for 

t1 2.≤ ≤

 24. Find the line integral of f x y y x,( ) =  along the curve 
t t t tr i j( ) , 1 2 1.3 4= + ≤ ≤

 25. Evaluate x y dsC ( )∫ + , where C is given in the accompany-
ing figure.

x

y

y = x2

y = x

(0, 0)

(1, 1)
C

 26. Evaluate 
x y

ds1
1C 2 2∫ + +

, where C is given in the accompa-

nying figure.

x

y

(0, 0)

(0, 1)

(1, 0)

(1, 1)

In Exercises 27–30, integrate f  over the given curve.

 27. f x y x y C y x x, , : 2, 0 23 2( ) = = ≤ ≤

 28. f x y x y x C y x, 1 , : 22 2 2( ) ( )= + + =  from 1,1 2( ) to 
0, 0( )

 29. f x y x y C x y, , : 42 2( ) = + + =  in the first quadrant from 
2, 0( ) to 0, 2( )

 30. f x y x y C x y, , : 42 2 2( ) = − + =  in the first quadrant from  
0, 2( ) to 2, 2( )

 31. Find the area of one side of the “winding wall” standing perpen-
dicularly on the curve y x x, 0 2,2= ≤ ≤  and beneath the curve 
on the surface f x y x y, .( ) = +

 32. Find the area of one side of the “wall” standing perpendicularly on  
the curve x y x2 3 6, 0 6,+ = ≤ ≤  and beneath the curve on the 
surface f x y x y, 4 3 2 .( ) = + +

Masses and Moments

 33. Mass of a wire Find the mass of a wire that lies along the curve  
t t t tr j k( ) 1 2 , 0 1,2( )= − + ≤ ≤  if the density is t3 2 .δ ( )=

 34. Center of mass of a curved wire A wire of density  
x y z y, , 15 2δ( ) = +  lies along the curve t tr j( ) 12( )= − + 

t tk2 ,  1 1.− ≤ ≤  Find its center of mass. Then sketch the curve 
and center of mass together.

 35. Mass of wire with variable density Find the mass of a thin 
wire lying along the curve t t t tr i j k( ) 2 2 4 ,2( )= + + −  

t0 1,≤ ≤  if the density is (a) t3δ =  and (b) 1.δ =

 36. Center of mass of wire with variable density Find the center  
of mass of a thin wire lying along the curve t t tr i j( ) 2= + + 

t tk2 3 , 0 2,3 2( ) ≤ ≤  if the density is t3 5 .δ = +

 37. Moment of inertia of wire hoop A circular wire hoop of con-
stant density δ lies along the circle x y a2 2 2+ =  in the xy-plane. 
Find the hoop’s moment of inertia about the z-axis.

 38. Inertia of a slender rod A slender rod of constant density lies 
along the line segment t t t tr j k( ) 2 2 , 0 1,( )= + − ≤ ≤  in 
the yz-plane. Find the moments of inertia of the rod about the 
three coordinate axes.

 39. Two springs of constant density A spring of constant density δ 
lies along the helix

t t t t tr i j k( ) cos sin , 0 2 .π( ) ( )= + + ≤ ≤

 a. Find Iz .

 b. Suppose that you have another spring of constant density δ 
that is twice as long as the spring in part (a) and lies along the 
helix for t0 4 .π≤ ≤  Do you expect Iz  for the longer spring 
to be the same as that for the shorter one, or should it be dif-
ferent? Check your prediction by calculating Iz for the longer 
spring.

 40. Wire of constant density A wire of constant density 1δ =  lies 
along the curve

t t t t t t tr i j k( ) cos sin 2 2 3 , 0 1.3 2( )( ) ( )= + + ≤ ≤

Find z I and  .z

 41. The arch in Example 4 Find Ix for the arch in Example 4.
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 15.2  Vector Fields and Line Integrals: Work, Circulation, and Flux 937

 42. Center of mass and moments of inertia for wire with vari-
able density Find the center of mass and the moments of inertia 
about the coordinate axes of a thin wire lying along the curve

t t t t tr i j k( ) 2 2
3 2

, 0 2,3 2
2

= + + ≤ ≤

if the density is t1 1 .δ ( )= +

COMPUTER EXPLORATIONS
In Exercises 43–46, use a CAS to perform the following steps to evalu-
ate the line integrals.

 a. Find ds t dtv( )=  for the path t g t h t k tr i j k( ) ( ) ( ) ( ) .= + +

 b. Express the integrand f g t h t k t tv( ), ( ), ( ) ( )( )  as a function of 
the parameter t.

 c. Evaluate f dsC∫  using Equation (2) in the text.

 43. f x y z x y t t t tr i j k, , 1 30 10 ; ( ) 3 ,2 2 2( ) = + + = + +  
t0 2≤ ≤

 44. f x y z x y t t t tr i j k, , 1 5 ; ( ) 1
3

,3 3 2( ) = + + = + +  

t0 2≤ ≤

 45. f x y z x y z t t t tr i j k, , 3 ; ( ) cos 2 sin 2 5 ,2( ) ( ) ( )= − = + +  
t0 2π≤ ≤

 46. f x y z z, , 1 9
4

;1 3
1 4

( )( ) = +  

t t t t tr i j k( ) cos 2 sin 2 , 0 25 2 π( ) ( )= + + ≤ ≤

FIGURE 15.7 Velocity vectors of a flow 
around an airfoil.

FIGURE 15.8 Streamlines in a contract-
ing channel. The water speeds up as the 
channel narrows, and the velocity vectors 
increase in length.

Gravitational and electric forces have both a direction and a magnitude. They are repre-
sented by a vector at each point in their domain, producing a vector field. In this section we 
show how to compute the work done in moving an object through such a field by using a 
line integral involving the vector field. We also discuss velocity fields, such as the vector 
field representing the velocity of a flowing fluid in its domain. A line integral can be used 
to find the rate at which the fluid flows along or across a curve within the domain.

Vector Fields

Suppose a region in the plane or in space is occupied by a moving fluid, such as air or 
water. The fluid is made up of a large number of particles, and at any instant of time, a 
particle has a velocity v. At different points of the region at a given (same) time, these 
velocities can vary. We can think of a velocity vector being attached to each point of the 
fluid, representing the velocity of a particle at that point. Such a fluid flow is an example 
of a vector field. Figure 15.7 shows a velocity vector field obtained from air flowing around 
an airfoil in a wind tunnel. Figure 15.8 shows a vector field of velocity vectors along the 
streamlines of water moving through a contracting channel. Vector fields are also associ-
ated with forces such as gravitational attraction (Figure 15.9) and with magnetic fields and 
electric fields. There are purely mathematical fields as well.

Generally, a vector field is a function that assigns a vector to each point in its domain. 
A vector field on a three-dimensional domain in space might have a formula like

x y z M x y z N x y z P x y zF i j k, , , , , , , , .( ) ( ) ( ) ( )= + +

The vector field is continuous if the component functions M, N, and P are continuous; it 
is differentiable if each of the component functions is differentiable. The formula for a 
field of two-dimensional vectors could look like

x y M x y N x yF i j, , , .( ) ( ) ( )= +

We encountered another type of vector field in Chapter 12. The tangent vectors T and 
normal vectors N for a curve in space both form vector fields along the curve. Along a 
curve tr( ) they might have a component formula similar to the velocity field expression

t f t g t h tv i j k( ) ( ) ( ) ( ) .= + +

If we attach the gradient vector f∇  of a scalar function f x y z, ,( ) to each point of a 
level surface of the function, we obtain a three-dimensional field on the surface. If we attach 
the velocity vector to each point of a flowing fluid, we have a three-dimensional field 

15.2 Vector Fields and Line Integrals: Work, Circulation, and Flux
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938 Chapter 15 Integrals and Vector Fields

defined on a region in space. These and other fields are illustrated in Figures 15.7–15.16. 
To sketch the fields, we picked a representative selection of domain points and drew the 
vectors attached to them. The arrows are drawn with their tails, not their heads, attached to 
the points where the vector functions are evaluated.

FIGURE 15.9 Vectors in a gravitational 
field point toward the center of mass that 
gives the source of the field.

y

z

x

FIGURE 15.10 A surface might represent a filter (or a net or a 
parachute) in a vector field representing water or wind flow veloc-
ity vectors. The arrows show the direction of fluid flow, and their 
lengths indicate speed.

z

x

y

FIGURE 15.11 The field of  
gradient vectors f∇  on a level surface 
f x y z c, , .( ) =  The function f  is constant 
on the surface, and each vector points in 
the direction where f  is increasing fastest.

f (x, y, z) = c

FIGURE 15.12 The radial field 
x yF i j= +  formed by the position vectors 

of points in the plane. Notice the convention 
that an arrow is drawn with its tail, not its 
head, at the point where F is evaluated.

y

x

FIGURE 15.13 A “spin” field of rotat-
ing unit vectors

y x x yF i j 2 2 1 2( )( )= − + +

in the plane. The field is not defined at 
the origin.

x

y

FIGURE 15.14 The flow of fluid 
in a long cylindrical pipe. The vectors 

a rv k2 2( )= −  inside the cylinder that 
have their bases in the xy-plane have their 
tips on the paraboloid z a r .2 2= −

z

y

x

x2 + y2 ≤ a2

z = a2 − r2

0

Gradient Fields

The gradient vector of a differentiable scalar-valued function at a point gives the direction 
of greatest increase of the function. An important type of vector field is formed by all the 
gradient vectors of the function (see Section 13.5). We define the gradient field of a dif-
ferentiable function f x y z, ,( ) to be the field of gradient vectors

f
f
x

f
y

f
z

i j k.∇ = ∂
∂

+ ∂
∂

+ ∂
∂

At each point x y z, ,( ), the gradient field gives a vector pointing in the direction of greatest 
increase of f , with magnitude being the value of the directional derivative in that direction. 
The gradient field might represent a force field, or a velocity field that gives the motion of a 
fluid, or the flow of heat through a medium, depending on the application being considered. 
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 15.2  Vector Fields and Line Integrals: Work, Circulation, and Flux 939

FIGURE 15.15 The velocity vectors tv( ) 
of a projectile’s motion make a vector field 
along the trajectory.

y

x
0

FIGURE 15.16 Data from NASA’s QuikSCAT satellite were used to create this 
representation of wind speed and wind direction in Hurricane Irene approximately 
six hours before it made landfall in North Carolina on August 27, 2011. The 
arrows show wind direction, and speed is indicated by color (rather than length). 
The maximum wind speeds (over 130 km hour) occurred over a region too small 
to see in this illustration. (Source: JPL-Caltech/ISRO/NASA)

FIGURE 15.17 The vectors in a temper-
ature gradient field point in the direction 
of greatest increase in temperature. In this 
case they are pointing toward the origin.

z

y

x

In many physical applications, f  represents a potential energy, and the gradient vector field 
indicates the corresponding force. In such situations, f  is often taken to be negative, so that 
the force gives the direction of decreasing potential energy.

EXAMPLE 1  Suppose that a material is heated, that the resulting temperature T at 
each point x y z, ,( ) in a region of space is given by

T x y z100 ,2 2 2= − − −

and that x y zF , ,( ) is defined to be the gradient of T. Find the vector field F.

Solution The gradient field F is the field T x y zF i j k2 2 2 .= ∇ = − − −  At each 
point in the region, the vector field F gives the direction for which the increase in tempera-
ture is greatest. The vectors point toward the origin, where the temperature is greatest. See 
Figure 15.17. 

Line Integrals of Vector Fields

In Section 15.1 we defined the line integral of a scalar function f x y z, ,( ) over a path C. 
We turn our attention now to the idea of a line integral of a vector field F along the curve 
C. Such line integrals have important applications in the study of fluid flows, work and 
energy, and electrical or gravitational fields.

Assume that the vector field M x y z N x y z P x y zF i j k, , , , , ,( ) ( ) ( )= + +  has con-
tinuous components, and that the curve C has a smooth parametrization 

t g t h t k t a t br i j k( ) ( ) ( ) ( ) ,  .= + + ≤ ≤  As discussed in Section 15.1, the parametriza-
tion tr( ) defines a direction (or orientation) along C that we call the forward direction. At 
each point along the path C, the tangent vector d dsT r v v= =  is a unit vector tangent 
to the path and pointing in this forward direction. (The vector d dtv r=  is the velocity 
vector tangent to C at the point, as discussed in Sections 12.1 and 12.3.) The line integral 
of the vector field is the line integral of the scalar tangential component of F along C. This 
tangential component is given by the dot product

d
ds

F T F r ,⋅ = ⋅

so we are led to the following definition.
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940 Chapter 15 Integrals and Vector Fields

We evaluate line integrals of vector fields in a way similar to the way we evaluate line 
integrals of scalar functions (Section 15.1). The vector field may also be defined on points 
not meeting the curve, but only the vectors along the curve play a role in the line integral. 
See Figure 15.18.

DEFINITION Let F be a vector field with continuous components defined along 
a smooth curve C parametrized by t a t br( ),  .≤ ≤  Then the line integral of F 
along C is

 ∫ ∫ ∫( )⋅ = ⋅ = ⋅ds d
ds

ds dF T F r F r.
C C C

 (1)

Evaluating the Line Integral of M N PF i j k= + +  Along 
C t g t h t k tr( ) ( )i ( )j ( )k: = + +

1. Express the vector field F along the parametrized curve C as tF r( )( ) by substitut-
ing the components x g t y h t z k t( ),  ( ),  ( )= = =  of r into the scalar compo-
nents M x y z, ,( ), N x y z, ,( ), P x y z, ,( ) of F.

2. Find the derivative (velocity) vector d dtr .

3. Evaluate the line integral with respect to the parameter t a t b,  ,≤ ≤  to  
obtain

 ∫ ∫ ( )⋅ = ⋅d t d
dt

dtF r F r r( ) .
C a

b
 (2)

EXAMPLE 2  Evaluate dF r,C∫ ⋅  where x y z z xy yF i j k, , 2( ) = + −  along the 
curve C given by t t t t tr i j k( ) , 0 12= + + ≤ ≤ .

Solution We have

t t t tF r i j k( ) 3 2( ) = + −     z t xy t y t, , 3 2 2= = − = −

and

d
dt

t
t

r i j k2 1
2

  .= + +

Thus,

d t d
dt

dt

t t t dt

t t

F r F r r( )

2 1
2

3
2

2
5

1
4

17
20

.

C 0

1

3 2 3 3 2

0

1

5 2 4

0

1

∫ ∫

∫

( )

( )

( )

( )⋅ = ⋅

= + −

= +
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

   

Eq. (2)

 

Line Integrals with Respect to dx, dy, or dz

When analyzing forces or flows, it is often useful to consider each component direction 
separately. For example, when analyzing the effect of a gravitational force, we might want 
to consider motion and forces in the vertical direction, while ignoring horizontal motions. 
Or we might be interested only in the force exerted horizontally by water pushing against 

FIGURE 15.18 A curve (in red) winds 
through a vector field as in Example 2. 
The line integral is determined by the  
vectors that lie along the curve.

z

y

x
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 15.2  Vector Fields and Line Integrals: Work, Circulation, and Flux 941

the face of a dam or in wind affecting the course of a plane. In such situations we want to 
evaluate a line integral of a scalar function with respect to only one of the coordinates, such 
as M dx.C∫  This type of integral is not the same as the arc length line integral M dsC∫  we 
defined in Section 15.1, since it picks out displacement in the direction of only one coordi-
nate. To define the integral M dxC∫  for the scalar function M x y z, ,( ), we specify a vector 
field M x y zF i, ,( )=  having a component only in the x-direction, and none in the y- or 
the z-direction. Then, over the curve C parametrized by t g t h t k tr i j k( ) ( ) ( ) ( )= + +  for 
a t b,≤ ≤  we have x g t dx g t dt( ),  ( ) ,= = ′  and

d d
dt

dt M x y z g t h t k t dt

M x y z g t dt M x y z dx

F r F r i i j k, , ( ) ( ) ( )

, , ( ) , , .

( ) ( )

( ) ( )

⋅ = ⋅ = ⋅ ′ + ′ + ′

= ′ =

As in the definition of the line integral of F along C, we define

∫ ∫( ) ( )= ⋅ =M x y z dx d M x y zF r F i, , , where , , .
C C

In the same way, by defining N x y zF j, ,( )=  with a component only in the y-direction, or 
P x y zF k, ,( )=  with a component only in the z-direction, we obtain the line integrals 

N dyC∫  and P dz.C∫  Expressing everything in terms of the parameter t along the curve  
C, we have the following formulas for these three integrals:

 ∫ ∫( ) ( )= ′M x y z dx M g t h t k t g t dt, , ( ), ( ), ( ) ( )
C a

b
 (3)

 ∫ ∫( ) ( )= ′N x y z dy N g t h t k t h t dt, , ( ), ( ), ( ) ( )
C a

b
 (4)

 ∫ ∫( ) ( )= ′P x y z dz P g t h t k t k t dt, , ( ), ( ), ( ) ( )
C a

b
 (5)Line Integral Notation

The commonly occurring expression

M dx N dy P dz
C∫ + +

is a short way of expressing the sum of 
three line integrals, one for each coordi-
nate direction:

M x y z dx N x y z dy

P x y z dz

, , , ,

, , .

C C

C

∫ ∫

∫

( ) ( )

( )

+

+

To evaluate these integrals, we param-
etrize C as + +g t h t k ti j k( ) ( ) ( )  and  
use Equations (3), (4), and (5).

It often happens that these line integrals occur in combination, and we abbreviate the nota-
tion by writing

∫ ∫ ∫ ∫( ) ( ) ( )+ + = + +M x y z dx N x y z dy P x y z dz M dx N dy P dz, , , , , , .
C C C C

EXAMPLE 3  Evaluate the line integral y dx z dy x dz2 ,C∫ − + +  where C is the 
helix t t t t tr i j k( ) cos sin , 0 2 .π( ) ( )= + + ≤ ≤

Solution We express everything in terms of the parameter t, so x t y tcos , sin ,= =  
z t,=  and dx t dt dy t dt dz dtsin ,  cos ,  .= − = =  Then

y dx z dy x dz t t t t t dt

t t t t dt

t t t t t t

2 sin sin cos 2 cos

2 cos cos sin

2 sin sin cos
2

sin 2
4

0 0 1 0 0 0 1 0 0

.

C 0

2

2

0

2

0

2

∫ ∫

∫

π
π

( )

( )( )[ ]

[ ]

( )

[ ] [ ]( ) ( ) ( ) ( )

− + + = − − + +

= + +

= + + + −⎡
⎣
⎢

⎤
⎦
⎥

= + + + − − + + + −
=

π

π

π
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942 Chapter 15 Integrals and Vector Fields

Work Done by a Force over a Curve in Space

Suppose that the vector field M x y z N x y z P x y zF i j k, , , , , ,( ) ( ) ( )= + +  represents a 
force throughout a region in space (it might be the force of gravity or an electromagnetic 
force) and that

t g t h t k t a t br i j k( ) ( ) ( ) ( ) , ,= + + ≤ ≤

represents a smooth curve C in the region. The formula for the work done by the force in 
moving an object along the curve is motivated by the same kind of reasoning we used in 
Chapter 6 to derive the ordinary single integral for the work done by a continuous force of 
magnitude F x( ) directed along an interval of the x-axis. For the curve C in space, we define 
the work done by a continuous force field F to move an object along C from a point A to 
another point B as follows.

We divide C into n subarcs P Pk k1−  with lengths s ,kΔ  starting at A and ending at B. We 
choose any point x y z, ,k k k( ) in the subarc P Pk k1−  and let x y zT , ,k k k( ) be the unit tangent 
vector at the chosen point. The work Wk  done to move the object along the subarc P Pk k1−  
is approximated by the tangential component of the force x y zF , ,k k k( ) times the arc 
length skΔ , the distance the object moves along the subarc (see Figure 15.19). The total 
work done in moving the object from point A to point B is then obtained by summing the 
work done along each of the subarcs, so

∑ ∑ ( ) ( )= ≈ ⋅ Δ
= =

W W x y z x y z sF T, , , , .
k

n

k
k

n

k k k k k k k
1 1

For any subdivision of C into n subarcs, and for any choice of the points x y z, ,k k k( ) within 
each subarc, as n → ∞ and s 0,kΔ →  these sums approach the line integral

∫ ⋅ dsF T .
C

This is the line integral of F along C, which now defines the total work done.

DEFINITION Let C be a smooth curve parametrized by t a t br( ),  ,≤ ≤  and 
let F be a continuous force field over a region containing C. Then the work done 
in moving an object from the point A ar( )=  to the point B br( )=  along C is

 ∫ ∫ ( )= ⋅ = ⋅W ds t d
dt

dtF T F r r( ) .
C a

b
 (6)

FIGURE 15.19 The work done along 
the subarc shown here is approximately 

sF T ,k k k⋅ Δ  where x y zF F , ,k k k k( )=  
and x y zT T , , .k k k k( )=

Pk−1

Tk

Fk . Tk

Fk
Pk

(xk, yk, zk)

FIGURE 15.20 The work done by a 
force F is the line integral of the scalar 
component F T⋅  over the smooth curve 
from A to B.

T        

F

A

B t = b

t = a

The sign of the number we calculate with this integral depends on the direction in 
which the curve is traversed. If we reverse the direction of motion, then we reverse the 
direction of T in Figure 15.20 and change the sign of F T⋅  and its integral.

Using the notations we have presented, we can express the work integral in a variety of 
ways, depending upon what seems most suitable or convenient for a particular discussion. 
Table 15.2 shows five ways we can write the work integral in Equation (6). In the table, the 
field components M, N, and P are functions of the intermediate variables x, y, and z,  
which in turn are functions of the independent variable t along the curve C in the vector field. 
So along the curve, x g t y h t( ),  ( ),= =  and z k t( )=  with dx g t dt( ) ,= ′  dy h t dt( ) ,= ′  
and dz k t dt( ) .= ′
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 15.2  Vector Fields and Line Integrals: Work, Circulation, and Flux 943

EXAMPLE 4  Find the work done by the force field y x z yF i j2 2( ) ( )= − + − + 
x z k2( )−  in moving an object along the curve t t t t tr i j k( ) , 0 1,2 3= + + ≤ ≤  from 
0, 0, 0( ) to 1,1,1( ) (Figure 15.21).

Solution First we evaluate F on the curve tr( ):

y x z y x z

t t t t t t

F i j k

i j k.

0

2 2 2

2 2 3 4 6

( ) ( ) ( )

( ) ( ) ( )

= − + − + −

= − + − + −� ���� ����
   x t y t z tSubstitute  ,  ,  .2 3= = =

Then we find d dtr :

d
dt

d
dt

t t t t tr i j k i j k2 3 .2 3 2( )= + + = + +

Finally, we find d dtF r⋅  and integrate from t 0=  to t 1:=

( ) ( )[ ] ( )

( ) ( )

⋅ = − + − ⋅ + +

= − + − = − + −

d
dt

t t t t t t

t t t t t t t t t t

F r j k i j k2 3

(2 ) (3 ) 2 2 3 3 .

3 4 6 2

3 4 6 2 4 5 3 8

       

Evaluate dot product.

Thus

d
dt

dt t t t t dt

t t t t

F rWork 2 2 3 3

2
5

2
6

3
4

3
9

29
60

.

a

b
4 5 3 8

0

1

5 6 4 9

0

1

∫ ∫ ( )= ⋅ = − + −

= − + −
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
 

∫

∫

∫

∫

∫

( )

= ⋅

= ⋅

= ⋅

= ′ + ′ + ′

= + +

W ds

d

d
dt

dt

M g t N h t Pk t dt

M dx N dy P dz

F T

F r

F r

  The definition

Vector differential form

Parametric vector evaluation

( ) ( ) ( ) Parametric scalar evaluation

Scalar differential form

C

C

a

b

a

b

C

TABLE 15.2 Different ways to write the work integral for M N PF i j k= + +  over 
the curve C t g t h t k t a t br( ) ( )i ( ) j ( )k,: = + + ≤ ≤

EXAMPLE 5  Find the work done by the force field x y zF i j k= + +  in moving an 
object along the curve C parametrized by t t t t tr i j k( ) cos( ) sin ( ) , 0 1.2π π= + + ≤ ≤

Solution We begin by writing F along C as a function of t:

t t t tF r i j k( ) cos( ) sin ( ) .2π π( ) = + +

Next we compute d dtr :

d
dt

t t tr i j ksin ( ) 2 cos( ) .π π π π= − + +

FIGURE 15.21 The curve in Example 4.

y

z

x

(0, 0, 0)

(1, 1, 0)

(1, 1, 1)

r(t) = ti + t2j + t3k
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944 Chapter 15 Integrals and Vector Fields

We then calculate the dot product:

t d
dt

t t t t t tF r r( ) sin ( ) cos( ) 2 sin( ) cos( ) 2 .3 3π π π π π π( ) ⋅ = − + + =

The work done is the line integral

∫ ∫( ) ⋅ = = ⎤
⎦⎥

=t d
dt

dt t dt tF r r( ) 2
2

1
2

.
a

b
3

0

1 4

0

1

 

DEFINITION If tr( ) parametrizes a smooth curve C in the domain of a continu-
ous velocity field F, then the flow along the curve from = =A a B br r( ) to  ( ) is

 ∫= ⋅ dsF TFlow .
C

 (7)

The integral is called a flow integral. If the curve starts and ends at the same 
point, so that A B,=  the flow is called the circulation around the curve.

The direction we travel along C matters. If we reverse the direction, then T is replaced 
by T−  and the sign of the integral changes. We evaluate flow integrals the same way we 
evaluate work integrals.

EXAMPLE 6  A fluid’s velocity field is x z yF i j k.= + +  Find the flow along the 
helix t t t t tr i j k( ) cos sin , 0 2.π( ) ( )= + + ≤ ≤

Solution We evaluate F on the curve tr( ):

x z y t t tF i j k i j kcos sin( ) ( )= + + = + +    x t z t y tSubstitute  cos ,  ,  sin .= = =

and then find d dtr :

d
dt

t tr i j ksin cos .( ) ( )= − + +

The dot product of F with d dtr  is

d
dt

t t t t t

t t t t t

F r cos sin ( ) cos sin 1

sin cos cos sin .

( )( ) ( ) ( )( )⋅ = − + +

= − + +

Finally, we integrate d dtF r( )⋅  from t 0=  to t
2

:π=

∫ ∫
π π( ) ( )

( )= ⋅ = − + +

= +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= + − + = −

π

π

=

= d
dt

dt t t t t t dt

t
t t

F rFlow sin cos cos sin

cos
2

sin 0
2

1
2

0
2

1
2

.

t a

t b

0

2

2

0

2

 

Flow Integrals and Circulation for Velocity Fields

Suppose that F represents the velocity field of a fluid flowing through a region in space (a 
tidal basin or the turbine chamber of a hydroelectric generator, for example). Under these 
circumstances, the integral of F T⋅  along a curve in the region gives the fluid’s flow 
along, or circulation around, the curve. For instance, the vector field in Figure 15.12  
gives zero circulation around the unit circle in the plane. By contrast, the vector field in 
Figure 15.13 gives a nonzero circulation around the unit circle.
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 15.2  Vector Fields and Line Integrals: Work, Circulation, and Flux 945

DEFINITION If C is a smooth simple closed curve in the domain of a continu-
ous vector field M x y N x yF i j, ,( ) ( )= +  in the plane, and if n is the outward-
pointing unit normal vector on C, the flux of F across C is

 ∫= ⋅C dsF F nFlux of   across  .
C

 (8)

FIGURE 15.22 The vector field F and 
curve tr( ) in Example 7.

x

y

FIGURE 15.23 Distinguishing between 
curves that are simple and curves that are 
closed. Closed curves are also called loops.

Simple,
closed

Not simple,
closed

Simple,
not closed

Not simple,
not closed

EXAMPLE 7  Find the circulation of the field x y xF i j( )= − +  around the circle 
t t t tr i j( ) cos sin , 0 2π( ) ( )= + ≤ ≤  (Figure 15.22).

Solution On the circle, x y x t t tF i j i jcos sin cos ,( ) ( )( )= − + = − +  and

d
dt

t tr i jsin cos .( ) ( )= − +

Then

� ������� �������⋅ = − + +d
dt

t t t tF r sin cos sin cos
1

2 2

gives

∫ ∫

π

( )= ⋅ = −

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

π π

π

d
dt

dt t t dt

t
t

F rCirculation 1 sin cos

sin
2

2 .

0

2

0

2

2

0

2

As Figure 15.22 suggests, a fluid with this velocity field is circulating counterclockwise 
around the circle. The circle is also traversed counterclockwise as t increases from 0 to 2π, 
so the circulation is positive. 

Notice the difference between flux and circulation. The flux of F across C is the line 
integral with respect to arc length of F n,⋅  the scalar component of F in the direction of the 
outward normal. The circulation of F around C is the line integral with respect to arc length 
of F T,⋅  the scalar component of F in the direction of the unit tangent vector. Flux is the 
integral of the normal component of F; circulation is the integral of the tangential compo-
nent of F. In Section 15.6 we will define flux across a surface.

To evaluate the integral for flux in Equation (8), we begin with a smooth parametrization

x g t y h t a t b( ), ( ), ,  = = ≤ ≤

Flux Across a Simple Closed Plane Curve

A curve in the xy-plane is simple if it does not cross itself (Figure 15.23). When a curve 
starts and ends at the same point, it is a closed curve or loop. To find the rate at which a 
fluid is entering or leaving a region enclosed by a smooth simple closed curve C in the xy-
plane, we calculate the line integral over C of F n,⋅  the scalar component of the fluid’s 
velocity field in the direction of the curve’s outward-pointing normal vector. We use only 
the normal component of F, while ignoring the tangential component, because the normal 
component leads to the flow across C. The value of this integral is the flux of F across C. 
Flux is Latin for flow, but many flux calculations involve no motion at all. When F is an 
electric or magnetic field, for instance, the integral of F n⋅  is still called the flux of the 
field across C.
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946 Chapter 15 Integrals and Vector Fields

that traces the curve C exactly once as t increases from a to b. We can find the outward unit 
normal vector n by crossing the curve’s unit tangent vector T with the vector k. But which 
order do we choose, T k×  or k T?×  Which one points outward? It depends on which 
way C is traversed as t increases. If the motion is clockwise, k T×  points outward; if the 
motion is counterclockwise, T k×  points outward (Figure 15.24). The usual choice is 
n T k,= ×  the choice that assumes counterclockwise motion. Thus, even though the 
value of the integral in Equation (8) does not depend on which way C is traversed, the for-
mulas we are about to derive for computing n and evaluating the integral assume counter-
clockwise motion.

In terms of components,

dx
ds

dy
ds

dy
ds

dx
ds

n T k i j k i j.( )= × = + × = −    dx
ds

dy
ds

i j k

0

0 0 1

If M x y N x yF i j, , ,( ) ( )= +  then

M x y
dy
ds

N x y dx
ds

F n , , .( ) ( )⋅ = −

Hence,

D

∫ ∫ ( )⋅ = − = −ds M
dy
ds

N dx
ds

ds M dy N dxF n .
C C

C

We put a directed circle  on the last integral as a reminder that the integration around the 
closed curve C is to be in the counterclockwise direction. To evaluate this integral, we 
express M, dy, N, and dx in terms of the parameter t and integrate from t a=  to t b.=   
We do not need to know n or ds explicitly to find the flux.

FIGURE 15.24 To find an outward 
unit normal vector for a smooth simple 
curve C in the xy-plane that is traversed 
counterclockwise as t increases, we take 
n T k.= ×  For clockwise motion, we 
take n k T.= ×

T

z

y

x
k

C

T

z

y

x
k

C

For clockwise motion,
k × T points outward.

For counterclockwise
motion, T × k points
outward.

k × T

T × k

EXAMPLE 8  Find the flux of x y xF i j( )= − +  across the circle x y 12 2+ =  in 
the xy-plane. (The vector field and curve were shown in Figure 15.22.)

Solution The parametrization t t t tr i j( ) cos sin , 0 2 ,π( ) ( )= + ≤ ≤  traces the circle 
counterclockwise exactly once. We can therefore use this parametrization in Equation (9). 
With

M x y t t dy d t t dt

N x t dx d t t dt

cos sin , sin cos ,

cos , cos sin ,

( )

( )

= − = − = =

= = = = −

we find

D

∫

∫ ∫ π

( )= − = − +

= =
+

= +⎡
⎣
⎢

⎤
⎦
⎥ =

π

π π π

M dy N dx t t t t t dt

t dt
t

dt t t

Flux cos sin cos cos sin

cos
1 cos 2

2 2
sin 2

4
.

C

2

0

2

2

0

2

0

2

0

2

  Eq. (9)

The flux of F across the circle is .π  Since the answer is positive, the net flow across the 
curve is outward. A net inward flow would have given a negative flux. 

Calculating Flux Across a Smooth Closed Plane Curve

 ( )= + = −
D

M N C M dy N dxF i jFlux of   across 
C

 (9)

The integral can be evaluated from any smooth parametrization x g t( ),=  
y h t a t b( ),  ,= ≤ ≤  that traces C counterclockwise exactly once.
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 15.2  Vector Fields and Line Integrals: Work, Circulation, and Flux 947

Vector Fields
Find the gradient fields of the functions in Exercises 1–4.

 1. f x y z x y z, , 2 2 2 1 2( ) ( )= + + −

 2. f x y z x y z, , ln 2 2 2( ) = + +

 3. g x y z e x y, , lnz 2 2( ) ( )= − +

 4. g x y z xy yz xz, ,( ) = + +

 5. Give a formula M x y N x yF i j, ,( ) ( )= +  for the vector field in 
the plane that has the property that F points toward the origin with 
magnitude inversely proportional to the square of the distance 
from x y,( ) to the origin. (The field is not defined at 0, 0( ).)

 6. Give a formula M x y N x yF i j, ,( ) ( )= +  for the vector field in  
the plane that has the properties that =F 0 at 0, 0( ) and that at any 
other point a b,( ), F is tangent to the circle x y a b2 2 2 2+ = +  
and points in the clockwise direction with magnitude  

F =  a b .2 2+

Line Integrals of Vector Fields
In Exercises 7–12, find the line integrals of F from 0, 0, 0( ) to 1,1,1( ) 
over each of the following paths in the accompanying figure.

 a. The straight-line path C t t t t tr i j k:  ( ) , 0 11 = + + ≤ ≤

 b. The curved path C t t t t tr i j k:  ( ) , 0 12
2 4= + + ≤ ≤

 c. The path C C3 4∪  consisting of the line segment from 0, 0, 0( ) 
to 1,1, 0( ) followed by the segment from 1,1, 0( ) to 1,1,1( )

 7. y x zF i j k3 2 4= + +  8. xF j1 12[ ]( )= +

 9. z x yF i j k2= − +  10. xy yz xzF i j k= + +

 11. x x zF i j k3 3 32( )= − + +

 12. y z z x x yF i j k( ) ( )( )= + + + + +

z

y

x

(0, 0, 0)

(1, 1, 0)

(1, 1, 1)C1

C2

C3

C4

Line Integrals with Respect to x, y, and z
In Exercises 13–16, find the line integrals along the given path C.

 13. ∫ ( )−x y dx,
C

 where C x t y t:  ,  2 1,= = +  for t0 3≤ ≤

 14. ∫ x
y

dy,
C

 where C x t y t:  ,  ,2= =  for t1 2≤ ≤

 15. ∫ ( )+x y dy,
C

2 2  where C is given in the accompanying figure

x

y

C

(0, 0) (3, 0)

(3, 3)

 16. ∫ +x y dx,
C

 where C is given in the accompanying figure

x

y

(0, 0)

(0, 3) (1, 3)
C

y = 3x

 17. Along the curve t t t tr i j k( ) , 0 1,2= − + ≤ ≤  evaluate each 
of the following integrals.

 a. ∫ ( )+ −x y z dx
C

 b. ∫ ( )+ −x y z dy
C

 c. ∫ ( )+ −x y z dz
C

 18. Along the curve  π( ) ( ) ( )= + − ≤ ≤t t t t tr i j k( ) cos sin cos , 0 ,  
evaluate each of the following integrals.

 a. ∫ xz dx
C

 b. ∫ xz dy
C

 c. ∫ xyz dz
C

Work
In Exercises 19–22, find the work done by F over the curve in the 
direction of increasing t.

 19. xy y yzF i j k= + −

t t t t tr i j k( ) , 0 12= + + ≤ ≤

 20. y x x yF i j k2 3 ( )= + + +

t t t t tr i j k( ) cos sin 6 , 0 2π( ) ( ) ( )= + + ≤ ≤

 21. z x yF i j k= + +

t t t t tr i j k( ) sin cos , 0 2π( ) ( )= + + ≤ ≤

 22. z y xF i j k6 122= + +

t t t t tr i j k( ) sin cos 6 , 0 2π( ) ( ) ( )= + + ≤ ≤

EXERCISES 15.2 
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948 Chapter 15 Integrals and Vector Fields

Line Integrals in the Plane

 23. Evaluate xy dx x y dyC ( )∫ + +  along the curve y x 2=  from 
1,1( )−  to 2, 4( ).

 24. Evaluate x y dx x y dyC ( ) ( )∫ − + +  counterclockwise around 
the triangle with vertices 0, 0( ), 1, 0( ), and 0,1( ).

 25. Evaluate dsF TC∫ ⋅  for the vector field x yF i j2= −  along the 
curve x y 2=  from 4, 2( ) to 1, 1 .( )−

 26. Evaluate dF rC∫ ⋅  for the vector field y xF i j= −  counter-
clockwise along the unit circle x y 12 2+ =  from 1, 0( ) to 
0,1( ).

Work, Circulation, and Flux in the Plane

 27. Work Find the work done by the force xy y xF i j( )= + −  
over the straight line from 1,1( ) to 2, 3( ).

 28. Work Find the work done by the gradient of f x y x y, 2( ) ( )= +  
counterclockwise around the circle x y 42 2+ =  from 2, 0( ) to 
itself.

 29. Circulation and flux Find the circulation and flux of the 
fields

x y y xF i j F i jand1 2= + = − +

around and across each of the following curves.

 a. The circle t t t tr i j( ) cos sin , 0 2π( ) ( )= + ≤ ≤

 b. The ellipse t t t tr i j( ) cos 4 sin , 0 2π( ) ( )= + ≤ ≤

 30. Flux across a circle Find the flux of the fields

x y x x yF i j F i j2 3 and 21 2 ( )= − = + −

across the circle

t a t a t tr i j( ) cos sin , 0 2 .π( ) ( )= + ≤ ≤

In Exercises 31–34, find the circulation and flux of the field F around 
and across the closed semicircular path that consists of the semicircu-
lar arch t a t a t tr i j( ) cos sin , 0 ,1 π( ) ( )= + ≤ ≤  followed by the 
line segment t t a t ar i( ) ,  .2 = − ≤ ≤

 31. x yF i j= +  32. x yF i j2 2= +

 33. y xF i j= − +  34. y xF i j2 2= − +

 35. Flow integrals Find the flow of the velocity field F = 
x y x yi j2 2( )( )+ − +  along each of the following paths from 
1, 0( ) to 1, 0( )−  in the xy-plane.

 a. The upper half of the circle x y 12 2+ =

 b. The line segment from 1, 0( ) to 1, 0( )−

 c. The line segment from 1, 0( ) to 0, 1( )−  followed by the line 
segment from 0, 1( )−  to 1, 0( )−

 36. Flux across a triangle Find the flux of the field F in 
Exercise 35 outward across the triangle with vertices 1, 0( ), 
0,1( ), 1, 0 .( )−

 37. The flow of a gas with a density of 0.001 kg m 2δ =  over the 
closed curve t t t tr i j( ) sin cos , 0 2 ,π( ) ( )= − + ≤ ≤  is given 

by the vector field F v,δ=  where x yv i j2= +  is a velocity 
field measured in meters per second. Find the flux of F across the 
curve tr( ).

 38. The flow of a gas with a density of 0.3 kg m 2δ =  over the 
closed curve t t t tr i j( ) cos sin , 0 2 ,π( ) ( )= + ≤ ≤  is given 
by the vector field F v,δ=  where x yv i j2= −  is a velocity 
field measured in meters per second. Find the flux of F across the 
curve tr( ).

 39. Find the flow of the velocity field y xyF i j22= +  along each of 
the following paths from 0, 0( ) to 2, 4( ).

 a. 

x

y

(0, 0)

(2, 4)

2

y = 2x

 b. 

x

y

(0, 0)

(2, 4)

2

y = x2

 c. Use any path from 0, 0( ) to 2, 4( ) different from parts (a)  
and (b).

 40. Find the circulation of the field y x yF i j2( )= + +  around 
each of the following closed paths.

 a. 

x

y
(1, 1)

(1, −1)

(−1, 1)

(−1, −1)

 b. 

x

y x2 + y2 = 4

 c. Use any closed path different from parts (a) and (b).

 41. Find the work done by the force y xF i j,2 3= +  where force 
is measured in newtons, in moving an object over the curve 

t t t tr i j( ) 2 , 0 2,2= + ≤ ≤  where distance is measured in 
meters.

 42. Find the work done by the force e x zF i j kln 3 ,y ( )= + +  
where force is measured in newtons, in moving an object over the 
curve t e t t t er i j k( ) ln , 1 ,t 2( )= + + ≤ ≤  where distance is 
measured in meters.

 43. Find the flow of the velocity field x
y

y
x

F i j
1 1

,=
+

+
+

 

where velocity is measured in meters per second, over the curve 
t t t tr i j( ) , 0 12= + ≤ ≤ .
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 15.2  Vector Fields and Line Integrals: Work, Circulation, and Flux 949

 44. Find the flow of the velocity field y z x yF i j k,( )= + + −  
where velocity is measured in meters per second, over the curve 

t e e e tr i j k( ) , 0 ln 2t t t2= − + ≤ ≤− .

 45. Salt water with a density of 0.25 g cm 2δ =  flows over the 
curve t t t tr i j( ) , 0 4,= + ≤ ≤  according to the vector field 
F v,δ=  where xy y xv i j( )= + −  is a velocity field measured 
in centimeters per second. Find the flow of F over the curve tr( ).

 46. Propyl alcohol with a density of 0.2 g cm 2δ =  flows over the 
closed curve t t t tr i j( ) sin cos , 0 2 ,π( ) ( )= − ≤ ≤  accord-
ing to the vector field F v,δ=  where x y xv i j2( )= − +  is a 
velocity field measured in centimeters per second. Find the circu-
lation of F around the curve tr( ).

Vector Fields in the Plane

 47. Spin field Draw the spin field

y
x y

x
x y

F i j
2 2 2 2

= −
+

+
+

(see Figure 15.13) along with its horizontal and vertical com-
ponents at a representative assortment of points on the circle 
x y 4.2 2+ =

 48. Radial field Draw the radial field

x yF i j= +

(see Figure 15.12) along with its horizontal and vertical com-
ponents at a representative assortment of points on the circle 
x y 1.2 2+ =

 49. A field of tangent vectors 

 a. Find a field P x y Q x yG i j, ,( ) ( )= +  in the xy-plane 
with the property that at any point a b, 0, 0 ,( ) ( )≠  G is 

a vector of magnitude a b2 2+  tangent to the circle 
x y a b2 2 2 2+ = +  and pointing in the counterclockwise 
direction. (The field is undefined at 0, 0( ).)

 b. How is G related to the spin field F in Figure 15.13?

 50. A field of tangent vectors 

 a. Find a field P x y Q x yG i j, ,( ) ( )= +  in the xy-plane with 
the property that at any point a b, 0, 0 ,( ) ( )≠  G is a unit vec-
tor tangent to the circle x y a b2 2 2 2+ = +  and pointing in 
the clockwise direction.

 b. How is G related to the spin field F in Figure 15.13?

 51. Unit vectors pointing toward the origin Find a field 
M x y N x yF i j, ,( ) ( )= +  in the xy-plane with the property that 

at each point x y, 0, 0 ,( ) ( )≠  F is a unit vector pointing toward 
the origin. (The field is undefined at 0, 0( ).)

 52. Two “central” fields Find a field M x y N x yF i j, ,( ) ( )= +  in 
the xy-plane with the property that at each point x y, 0, 0 ,( ) ( )≠  
F points toward the origin and F  is (a) the distance from x y,( ) to 
the origin, (b) inversely proportional to the distance from x y,( ) to 
the origin. (The field is undefined at 0, 0( ).)

 53. Work and area Suppose that f t( ) is differentiable and positive 
for a t b.≤ ≤  Let C be the path t t f t a t br i j( ) ( ) ,  ,= + ≤ ≤  
and yF i.=  Is there any relation between the value of the work 
integral

∫ ⋅ dF r
C

and the area of the region bounded by the t-axis, the graph of f ,  
and the lines t a=  and t b?=  Give reasons for your answer.

 54. Work done by a radial force with constant magnitude A par-
ticle moves along the smooth curve y f x( )=  from a f a, ( )( ) to 
b f b, ( )( ). The force moving the particle has constant magnitude k 

and always points away from the origin. Show that the work done 
by the force is

∫ ( ) ( )( ) ( )⋅ = + − +⎡
⎣⎢

⎤
⎦⎥ds k b f b a f aF T ( ) ( ) .

C

2 2 1 2
2 2 1 2

Flow Integrals in Space
In Exercises 55–58, F is the velocity field of a fluid flowing through 
a region in space. Find the flow along the given curve in the direction 
of increasing t.

 55. xy yF i j k4 8 2= − + +

t t t tr i j k( ) , 0 22= + + ≤ ≤

 56. x yz yF i j k2 2= + +

t t t tr j k( ) 3 4 , 0 1= + ≤ ≤

 57. x z xF i k( )= − +

t t t tr i k( ) cos sin , 0 π( ) ( )= + ≤ ≤

 58. y xF i j k2= − + +

t t t t tr i j k( ) 2 cos 2 sin 2 , 0 2π( ) ( )= − + + ≤ ≤

 59. Circulation Find the circulation of x z yF i j k2 2 2= + +  
around the closed path consisting of the following three curves 
traversed in the direction of increasing t.

C t t t t t

C t t t

C t t t t

r i j k

r j k

r i j

: ( ) cos sin , 0 2

: ( ) 2 1 , 0 1

: ( ) 1 , 0 1

1

2

3

π

π

( ) ( )

( )( )

( )

= + + ≤ ≤

= + − ≤ ≤

= + − ≤ ≤

y

z

x

(1, 0, 0) (0, 1, 0)

0, 1,

C1 C2

C3

p
2a          b

 60. Zero circulation Let C be the ellipse in which the plane 
+ − =x y z2 3 0 meets the cylinder + =x y 12.2 2  Show, 

without evaluating either line integral directly, that the circulation 
of the field = + +x y zF i j k around C in either direction is 
zero.
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950 Chapter 15 Integrals and Vector Fields

 61. Flow along a curve The field = + −xy y yzF i j k  is the 
velocity field of a flow in space. Find the flow from ( )0, 0, 0  to 
( )1,1,1  along the curve of intersection of the cylinder =y x 2 and 
the plane =z x. (Hint: Use =t x  as the parameter.)

y

z

x

(1, 1, 1)

y = x2

z = x

 62. Flow of a gradient field Find the flow of the field  
=F   ( )∇ xy z :2 3

 a. Once around the curve C in Exercise 58, clockwise as viewed 
from above;

 b. Along the line segment from ( )1,1,1  to ( )−2,1, 1 .

COMPUTER EXPLORATIONS
In Exercises 63–68, use a CAS to perform the following steps for find-
ing the work done by force F over the given path:

 a. Find dr for the path = + +t g t h t k tr i j k( ) ( ) ( ) ( ) .

 b. Evaluate the force F along the path.

 c. Evaluate ∫ ⋅ dF r.
C

 63. xy x xy t t tF i j r i j3 2 ; ( ) 2 cos sin ,6 5 ( ) ( )( )= + + = +  
t0 2π≤ ≤

 64. 
x y

t t tF i j r i j3
1

2
1

; ( ) cos sin ,
2 2

( ) ( )=
+

+
+

= +  

t0 π≤ ≤

 65. y yz xyz x xz xyzF i jcos cos2( ) ( )= + + + + 
z xy xyz t t tk r i j kcos ; ( ) 2 cos 3 sin ,( ) ( ) ( )+ = + +  

t0 2π≤ ≤

 66. xy y ze t t t tF i j k r i j k2 ; ( ) 3 ,x2= − + = − + +  
t1 4≤ ≤

 67. y x z y xF i j k2 sin 1 3 cos ;2 4( ) ( )( )= + + + +  
t t t t tr i j k( ) sin cos sin 2 , 2 2π π( ) ( ) ( )= + + − ≤ ≤

 68. x y x xy t t tF i j k r i j1
3

; ( ) cos sin2 3 ( ) ( )( )= + + = + + 

t tk2 sin 1 , 0 22 π( )− ≤ ≤

A gravitational field G is a vector field that represents the effect of gravity at a point in 
space due to the presence of a massive object. The gravitational force on a body of mass m 
placed in the field is given by = mF G. Similarly, an electric field E is a vector field in 
space that represents the effect of electric forces on a charged particle placed within it. The 
force on a body of charge q placed in the field is given by = qF E. In gravitational and 
electric fields, the amount of work it takes to move a mass or charge from one point to 
another depends on the initial and final positions of the object—not on which path is taken 
between these positions. In this section we study vector fields with this independence-of-
path property and the calculation of work integrals associated with them.

Path Independence

If A and B are two points in an open region D in space, the line integral of F along C 
from A to B for a field F defined on D usually depends on the path C taken, as we saw in 
Section 15.1. For some special fields, however, the integral’s value is the same for all 
paths from A to B.

DEFINITIONS Let F be a vector field defined on an open region D in space, 
and suppose that for any two points A and B in D, the line integral ∫ ⋅ dF rC  along 
a path C from A to B in D is the same over all paths from A to B. Then the integral 
∫ ⋅ dF rC  is path independent in D and the field F is conservative on D.

15.3 Path Independence, Conservative Fields, and Potential Functions

The word conservative comes from physics, where it refers to fields in which the prin-
ciple of conservation of energy holds. When a line integral is independent of the path C from 
point A to point B, we sometimes represent the integral by the symbol ∫A

B
 rather than the 

usual line integral symbol ∫ .C  This substitution helps us remember the path-independence 
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 15.3  Path Independence, Conservative Fields, and Potential Functions 951

property by indicating that the integral depends only on the initial and final points, not on 
the path connecting them.

Under reasonable differentiability conditions that we will specify, we will show that a 
field F is conservative if and only if it is the gradient field of a scalar function f —that is, if 
and only if = ∇fF  for some f . The function f  then has a special name.

DEFINITION If F is a vector field defined on D and = ∇fF  for some scalar 
function f  on D, then f  is called a potential function for F.

A gravitational potential is a scalar function whose gradient field is a gravitational 
field, an electric potential is a scalar function whose gradient field is an electric field, and 
so on. As we will see, once we have found a potential function f  for a field F, we can 
evaluate all the line integrals in the domain of F over any path between A and B by

 ∫ ∫⋅ = ∇ ⋅ = −d f d f B f AF r r ( ) ( ).
A

B

A

B
 (1)

If you think of ∇f  for functions of several variables as analogous to the derivative ′f  
for functions of a single variable, then you see that Equation (1) is the vector calculus ren-
dition of the Fundamental Theorem of Calculus formula

∫ ′ = −f x dx f b f a( ) ( ) ( ).
a

b

Conservative fields have other important properties. For example, saying that F is 
conservative on D is equivalent to saying that the integral of F around every closed path in 
D is zero. Certain conditions on the curves, fields, and domains must be satisfied for 
Equation (1) to be valid. We discuss these conditions next.

Assumptions on Curves, Vector Fields, and Domains

In order for the computations and results we derive below to be valid, we must assume 
certain properties for the curves, surfaces, domains, and vector fields we consider. We give 
these assumptions in the statements of theorems, and they also apply to the examples and 
exercises unless otherwise stated.

The curves we consider are piecewise smooth. Such curves are made up of finitely 
many smooth pieces connected end to end, as discussed in Section 12.1. For such curves 
we can compute lengths and, except at finitely many points where the smooth pieces con-
nect, tangent vectors. We consider vector fields F whose components have continuous first 
partial derivatives.

The domains D we consider are connected. For an open region, this means that any two 
points in D can be joined by a smooth curve that lies in the region. Some results require D to 
be simply connected, which means that every loop in D can be contracted to a point in D 
without ever leaving D. The plane with a disk removed is a two-dimensional region that is 
not simply connected; a loop in the plane that goes around the disk cannot be contracted to 
a point without going into the “hole” left by the removed disk (see Figure 15.25c). Similarly, 
if we remove a line from space, the remaining region D is not simply connected. A curve 
encircling the line cannot be shrunk to a point while remaining inside D.

Connectivity and simple connectivity are not the same, and neither property implies 
the other. Think of connected regions as being in “one piece” and of simply connected 
regions as not having any “loop-catching holes.” All of space itself is both connected and 
simply connected. Figure 15.25 illustrates some of these properties.

y

x

(a)

Simply connected

(b)

Simply connected

z

y

x

y

x

C1

(c)

Not simply connected

z

y

x

C2

(d)

Not simply connected

FIGURE 15.25 Four connected regions. 
In (a) and (b), the regions are simply  
connected. In (c) and (d), the regions are 
not simply connected because the curves 
C1 and C2 cannot be contracted to a point 
inside the regions containing them.

Caution Some of the results in this chapter can fail to hold if applied to situations where 
the conditions we’ve imposed are not met. In particular, the component test for conserva-
tive fields, given later in this section, is not valid on domains that are not simply connected 
(see Example 5). The condition will be stated when needed. 
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952 Chapter 15 Integrals and Vector Fields

Line Integrals in Conservative Fields

A gradient field F is obtained by differentiating a scalar function f . A theorem analogous 
to the Fundamental Theorem of Calculus gives a way to evaluate the line integrals of gra-
dient fields.

Like the Fundamental Theorem of Calculus, Theorem 1 gives a direct way to evaluate 
line integrals without having to take limits of Riemann sums and without needing to  
compute a line integral by the procedure used in Section 15.2. Before proving Theorem 1, 
we give an example.

THEOREM 1—Fundamental Theorem of Line Integrals
Let C be a smooth curve joining the point A to the point B in the plane or in space 
and parametrized by tr( ). Let f  be a differentiable function with a continuous 
gradient vector = ∇fF  on a domain D containing C. Then

∫ ⋅ = −d f B f AF r ( ) ( ).
C

EXAMPLE 1  Suppose the force field = ∇fF  is the gradient of the function

( ) = −
+ +

f x y z
x y z

, , 1 .
2 2 2

Find the work done by F in moving an object along a smooth curve C joining ( )1, 0, 0  to 
( )0, 0, 2  that does not pass through the origin.

Solution An application of Theorem 1 shows that the work done by F along any smooth 
curve C joining the two points and not passing through the origin is

∫ ( ) ( ) ( )⋅ = − = − − − =d f fF r 0, 0, 2 1, 0, 0 1
4

1 3
4

.
C

 

The gravitational force due to a planet, and the electric force associated with a charged 
particle, can both be modeled by the field F given in Example 1 up to a constant that 
depends on the units of measurement. When used to model gravity, the function f  in 
Example 1 represents gravitational potential energy. The sign of f  is negative, and f  
approaches −∞ near the origin. This choice ensures that the gravitational force F, the gra-
dient of f , points toward the origin, so that objects fall down rather than up.

Proof of Theorem 1  Suppose that A and B are two points in the region D and that 
= + + ≤ ≤C t g t h t k t a t br i j k:  ( ) ( ) ( ) ( ) ,  , is a smooth curve in D joining A to B. In 

Section 13.5 we found that the derivative of a scalar function f  along a path C is the dot 
product ( )∇ ⋅ ′f t tr r( ) ( ), so we have

d f d

f t t dt

d
dt

f t dt

f b f a

f B f A

F r r

r r

r

r r

( ) ( )

( )

( ) ( )

( ) ( ).

C C

t a

t b

a

b

∫ ∫

∫

∫

( )

( )

( ) ( )

⋅ = ∇ ⋅

= ∇ ⋅ ′

=

= −

= −

=

=

 

= ∇fF

Eq. (2) of Section 15.2 for computing dr

Eq. (7) of Section 13.5 giving derivative along a path

Fundamental Theorem of Calculus

= =a A b Br r( ) ,   ( )
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 15.3  Path Independence, Conservative Fields, and Potential Functions 953

We see from Theorem 1 that the line integral of a gradient field = ∇fF  is straightfor-
ward to compute once we know the function f . Many important vector fields arising in 
applications are indeed gradient fields. The next result, which follows from Theorem 1, 
shows that any conservative field is of this type.

THEOREM 2—Conservative Fields Are Gradient Fields
Let = + +M N PF i j k be a vector field whose components are continuous 
throughout an open connected region D in space. Then F is conservative if and 
only if F is a gradient field ∇f  for a differentiable function f .

FIGURE 15.26 The function ( )f x y z, ,  
in the proof of Theorem 2 is computed by 
a line integral ∫ ⋅ =d f BF r ( )C 00

 from A 
to B ,0  plus a line integral ∫ ⋅ dF rL  along 
a line segment L parallel to the x-axis and 
joining B0 to B located at ( )x y z, , . The 
value of f  at A is =f A( ) 0.

z

y

x

B
L

A

D

B0

x0

x

C0
(x0, y, z)

(x, y, z)

Theorem 2 says that = ∇fF  if and only if, for any two points A and B in the region D,  
the value of the line integral ∫ ⋅ dF rC  is independent of the path C joining A to B in D.

Proof of Theorem 2  If F is a gradient field, then = ∇fF  for a differentiable func-
tion f , and Theorem 1 shows that ∫ ⋅ = −d f B f AF r ( ) ( ).C  The value of the line inte-
gral does not depend on C, but only on its endpoints A and B. So the line integral is path 
independent and F satisfies the definition of a conservative field.

On the other hand, suppose that F is a conservative vector field. We want to find a func-
tion f  on D satisfying ∇ =f F. First, pick a point A in D and set =f A( ) 0. For any other 
point B in D define f B( ) to equal ∫ ⋅ dF r,C  where C is any smooth path in D from A to B. 
The value of f B( ) does not depend on the choice of C, since F is conservative. To show that 
∇ =f F, we need to demonstrate that ∂ ∂ = ∂ ∂ =f x M f y N, , and ∂ ∂ =f z P.

Suppose that B has coordinates ( )x y z, , . By the definition of f , the value of the func-
tion f  at a nearby point B0 located at ( )x y z, ,0  is ∫ ⋅ dF r,C0

 where C0 is any path from A 
to B .0  We take a path = ∪C C L0  from A to B formed by first traveling along C0 to arrive 
at B0 and then traveling along the line segment L from B0 to B (Figure 15.26). When B0  
is close to B, the segment L lies in D and, since the value f B( ) is independent of the path 
from A to B,

∫ ∫( ) = ⋅ + ⋅f x y z d dF r F r, , .
C L0

Differentiating, we have

∫ ∫( )( )∂
∂

= ∂
∂

⋅ + ⋅
x

f x y z
x

d dF r F r, , .
C L0

Only the last term on the right depends on x, so

∫( )∂
∂

= ∂
∂

⋅
x

f x y z
x

dF r, , .
L

Now we parametrize L as = + + ≤ ≤t t y z x t xr i j k( ) ,  .0  Then =d dtr i, and since 
= + +M N PF i j k, it follows that ⋅ =d dt MF r  and ( )∫ ⋅ = ∫d M t y z dtF r , , .L x

x

0
 

Differentiating then gives

∫( ) ( ) ( )∂
∂

= ∂
∂

=
x

f x y z
x

M t y z dt M x y z, , , , , ,
x

x

0

by the Fundamental Theorem of Calculus. The partial derivatives ∂ ∂ =f y N  and 
∂ ∂ =f z P follow similarly, showing that = ∇fF . 
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954 Chapter 15 Integrals and Vector Fields

THEOREM 3—Loop Property of Conservative Fields
The following statements are equivalent.

1. ⋅ =dF r 0CD  around every loop (that is, closed curve C ) in D.

2. The field F is conservative on D.

FIGURE 15.27 If we have two paths 
from A to B, one of them can be reversed 
to make a loop.

A

B

A

B

C1
C1

C2

−C2

FIGURE 15.28 If A and B lie on a loop, 
we can reverse part of the loop to make 
two paths from A to B.

A

B

A

B

C2

C1

−C2

C1

Proof that Part 1 ⇒ Part 2  We want to show that for any two points A and B in D, 
the integral of ⋅ dF r has the same value over any two paths C1 and C2 from A to B. We 
reverse the direction on C2 to make a path −C2 from B to A (Figure 15.27). Together, C1 
and −C2 make a closed loop C, and by assumption,

∫ ∫ ∫ ∫ ∫⋅ − ⋅ = ⋅ + ⋅ = ⋅ =
−

d d d d dF r F r F r F r F r 0.
C C C C C1 2 1 2

Thus, the integrals over C1 and C2 give the same value. Note that the definition of ⋅ dF r 
shows that changing the direction along a curve reverses the sign of the line integral.

Proof that Part 2 ⇒ Part 1  We want to show that the integral of ⋅ dF r is zero over 
any closed loop C. We pick two points A and B on C and use them to break C into two 
pieces: C1 from A to B followed by C2 from B back to A (Figure 15.28). Then

∫ ∫ ∫ ∫⋅ = ⋅ + ⋅ = ⋅ − ⋅ =
D

d d d d dF r F r F r F r F r 0.
C

C C A

B

A

B

1 2

 

EXAMPLE 2  Find the work done by the conservative field

( )= + + = ∇ =yz xz xy f f x y z xyzF i j k , where , , ,

in moving an object along any smooth curve C joining the point ( )−A 1, 3, 9  to ( )−B 1, 6, 4 .

Solution With ( ) =f x y z xyz, , , we have

d f d

f B f A

xyz xyz

F r r

( ) ( )

1 6 4 1 3 9

24 27 3.

C A

B

1,6, 4 1,3,9

∫ ∫

( )( ) ( ) ( )( )( )

⋅ = ∇ ⋅

= −

= −

= − − −

= − + =

( ) ( )− −

 

= ∇fF  and path independence

Theorem 1

A very useful property of line integrals in conservative fields comes into play when 
the path of integration is a closed curve, or loop. We often use the notation CD  for integra-
tion around a closed path (discussed with more detail in the next section).

The following diagram summarizes the results of Theorems 2 and 3.

= ∇ ⇔ ⇔ ⋅ =
D

f D d
D

D

F F F r on   conservative 0
on 

over any loop in 

Theorem 2 Theorem 3

C
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 15.3  Path Independence, Conservative Fields, and Potential Functions 955

Two questions arise:

1. How do we know whether a given vector field F is conservative?

2. If F is in fact conservative, how do we find a potential function f  (so that = ∇fF )?

Component Test for Conservative Fields
Let ( ) ( ) ( )= + +M x y z N x y z P x y zF i j k, , , , , ,  be a field on an open simply  
connected domain whose component functions have continuous first partial 
derivatives. Then F is conservative if and only if

 ∂
∂

= ∂
∂

∂
∂

= ∂
∂

∂
∂

= ∂
∂

P
y

N
z

M
z

P
x

N
x

M
y

, , and . (2)

We can view the component test as saying that on a simply connected region, the vector

 ( )∂
∂

− ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ + ∂

∂
− ∂

∂
+ ∂

∂
− ∂

∂
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

P
y

N
z

M
z

P
x

N
x

M
y

i j k (3)

is zero if and only if F is conservative. This interesting vector curl F is called the curl of F. 
We study it in Sections 15.4 and 15.7.

Finding Potentials for Conservative Fields

The test for a vector field being conservative involves the equivalence of certain first par-
tial derivatives of the field components.

Proof that Equations (2) hold if F is conservative  If F is conservative, then there 
is a potential function f  such that

= + + = ∇ = ∂
∂

+ ∂
∂

+ ∂
∂

M N P f
f
x

f
y

f
z

F i j k i j k.

Hence,

P
y y

f
z

f
y z

f
z y

z
f
y

N
z

.

2

2

( )∂
∂

= ∂
∂

∂
∂

= ∂
∂ ∂

= ∂
∂ ∂

= ∂
∂

∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = ∂

∂

   Mixed Derivative Theorem,  
Section 13.3

The others in Equations (2) are proved similarly. 

The second half of the proof, that Equations (2) imply that F is conservative, is a con-
sequence of Stokes’ Theorem, taken up in Section 15.7, and requires our assumption that 
the domain of F be simply connected.

Once we know that F is conservative, we often want to find a potential function for F. 
This requires solving the equation ∇ =f F or

∂
∂

+ ∂
∂

+ ∂
∂

= + +f
x

f
y

f
z

M N Pi j k i j k
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956 Chapter 15 Integrals and Vector Fields

for f . We accomplish this by integrating the three equations

∂
∂

= ∂
∂

= ∂
∂

=f
x

M
f
y

N
f
z

P, , ,

as illustrated in the next example.

EXAMPLE 3  Show that ( ) ( ) ( )= + + − + +e y yz xz e y xy zF i j kcos sinx x  is 
conservative over its natural domain, and find a potential function for it.

Solution The natural domain of F is all of space, which is open and simply connected. 
We apply the test in Equations (2) to

= + = − = +M e y yz N xz e y P xy zcos , sin ,x x

and calculate

∂
∂

= = ∂
∂

∂
∂

= = ∂
∂

∂
∂

= − + = ∂
∂

P
y

x N
z

M
z

y P
x

N
x

e y z M
y

, , sin .x

The partial derivatives are continuous, so these equalities tell us that F is conservative, so 
there is a function f  with ∇ =f F (Theorem 2).

We find f  by integrating the equations

 
∂
∂

= + ∂
∂

= − ∂
∂

= +f
x

e y yz
f
y

xz e y
f
z

xy zcos , sin , .x x  (4)

We integrate the first equation with respect to x, holding y and z fixed, to get

( ) ( )= + +f x y z e y xyz g y z, , cos , .x

We write the constant of integration as a function of y and z because its value may depend 
on y and z, though not on x. We then calculate ∂ ∂f y from this equation and match it with 
the expression for ∂ ∂f y in Equations (4). This gives

− + + ∂
∂

= −e y xz
g
y

xz e ysin sin ,x x

so ∂ ∂ =g y 0. Therefore, g is a function of z alone, and

( ) = + +f x y z e y xyz h z, , cos ( ).x

We now calculate ∂ ∂f z from this equation and match it to the formula for ∂ ∂f z in 
Equations (4). This gives

+ = + =xy dh
dz

xy z dh
dz

z, or ,

so

= +h z z C( )
2

.
2

Hence,

( ) = + + +f x y z e y xyz z C, , cos
2

.x
2

We found infinitely many potential functions of F, one for each value of C. 
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 15.3  Path Independence, Conservative Fields, and Potential Functions 957

EXAMPLE 4  Show that ( )( )= − − +x z zF i j k2 3 cos  is not conservative.

Solution We apply the Component Test in Equations (2) and find immediately that

( )∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

− = −P
y y

z N
z z

zcos 0, ( ) 1.

The two are unequal, so F is not conservative. No further testing is required. 

Example 5 shows that the Component Test does not apply when the domain of the 
field is not simply connected. However, if we change the domain in the example so that it 
is restricted to the ball of radius 1 centered at the point ( )2, 2, 2 , or to any similar ball-
shaped region that does not contain a piece of the z-axis, then this new domain D is simply 
connected. Now the partial derivative Equations (2), as well as all the assumptions of the 
Component Test, are satisfied. In this new situation, the field F in Example 5 is conserva-
tive on D. Just as we must be careful with a function when determining whether it satisfies 
a property throughout its domain (such as continuity, which is required for the Intermediate 
Value Property), so must we also be careful with a vector field in determining the proper-
ties it may or may not have over its assigned domain.

EXAMPLE 5  Show that the vector field

= −
+

+
+

+y
x y

x
x y

F i j k0
2 2 2 2

satisfies the equations in the Component Test but is not conservative over its natural 
domain. Explain why this is possible.

Solution We have ( ) ( )= − + = +M y x y N x x y,  ,2 2 2 2  and =P 0. If we apply 
the Component Test, we find

( )
∂
∂

= = ∂
∂

∂
∂

= = ∂
∂

∂
∂

= −
+

= ∂
∂

P
y

N
z

P
x

M
z

M
y

y x
x y

N
x

0 , 0 , and .
2 2

2 2 2

So it may appear that the field F passes the Component Test. However, the test assumes 
that the domain of F is simply connected, which is not the case here. Since +x y2 2 cannot 
equal zero, the natural domain is the complement of the z-axis and contains loops that can-
not be contracted to a point. One such loop is the unit circle C in the xy-plane. The circle is 
parametrized by π( ) ( )= + ≤ ≤t t t tr i j( ) cos sin , 0 2 . This loop wraps around the 
z-axis and cannot be contracted to a point while staying within the complement of the 
z-axis.

To show that F is not conservative, we compute the line integral ⋅
D

dF r
C

 around the 
loop C. First we write the field in terms of the parameter t:

( ) ( )= −
+

+
+

=
−

+
+

+
= − +y

x y
x

x y
t

t t
t

t t
t tF i j i j i j

sin
sin cos

cos
sin cos

sin cos .
2 2 2 2 2 2 2 2

Next we find ( ) ( )= − +d dt t tr i jsin cos  and then calculate the line integral as

∫ π( )⋅ = ⋅ = + =
π

D D

d d
dt

dt t t dtF r F r sin cos 2 .
C C

2 2

0

2

Since the line integral of F around the loop C is not zero, the field F is not conservative, by 
Theorem 3. The field F is displayed in Figure 15.31d in the next section. 
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958 Chapter 15 Integrals and Vector Fields

DEFINITIONS Any expression ( ) ( ) ( )+ +M x y z dx N x y z dy P x y z dz, , , , , ,  
is a differential form. A differential form is exact on a domain D in space if

+ + = ∂
∂

+ ∂
∂

+ ∂
∂

=M dx N dy P dz
f
x

dx
f
y

dy
f
z

dz df

for some scalar function f  throughout D.

Component Test for Exactness of + +M dx N dy P dz

The differential form + +M dx N dy P dz is exact on an open simply con-
nected domain if and only if

∂
∂

= ∂
∂

∂
∂

= ∂
∂

∂
∂

= ∂
∂

P
y

N
z

M
z

P
x

N
x

M
y

, , and .

This is equivalent to saying that the field = + +M N PF i j k is conservative.

Notice that if + + =M dx N dy P dz df  on D, then = + +M N PF i j k is the 
gradient field of f  on D. Conversely, if = ∇fF , then the form + +M dx N dy P dz  is 
exact. The test for the form being exact is therefore the same as the test for F being 
conservative.

EXAMPLE 6  Show that + +y dx x dy dz4  is exact, and evaluate the integral

∫ + +
( )

( )

−
y dx x dy dz4

1,1,1

2,3, 1

over any path from ( )1,1,1  to ( )−2, 3, 1 .

Exact Differential Forms

It is often convenient to express work and circulation integrals in the differential form

∫ + +M dx N dy P dz
C

discussed in Section 15.2. Such line integrals are relatively easy to evaluate if 
+ +M dx N dy P dz is the total differential of a function f  and if C is any path joining 

the point A to the point B, for then

M dx N dy P dz
f
x

dx
f
y

dy
f
z

dz

f d

f B f A

r

( ) ( ).

C C

A

B

∫ ∫

∫

+ + = ∂
∂

+ ∂
∂

+ ∂
∂

= ∇ ⋅

= −

∇f  is conservative.

Theorem 1

Thus,

∫ = −df f B f A( ) ( ),
A

B

just as with differentiable functions of a single variable.
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 15.3  Path Independence, Conservative Fields, and Potential Functions 959

Testing for Conservative Fields
Which fields in Exercises 1–6 are conservative, and which are not?

 1. = + +yz xz xyF i j k

 2. ( ) ( ) ( )= + +y z x z xy zF i j ksin sin cos

 3. ( )= + + −y x z yF i j k

 4. = − +y xF i j

 5. ( ) ( )= + + + +z y z y xF i j k

 6. ( ) ( )= − +e y e y zF i j kcos sinx x

Finding Potential Functions
In Exercises 7–12, find a potential function f  for the field F.

 7. = + +x y zF i j k2 3 4

 8. ( ) ( )( )= + + + + +y z x z x yF i j k

 9. ( )= + ++e x xF i j k2y z2

 10. ( ) ( ) ( )= + +y z x z xy zF i j ksin sin cos

 11. ( )( )= + + +x x yF iln sec 2

( )+ +
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +

+
x y

y
y z

z
y z

j ksec 2
2 2 2 2

 12. =
+

+
+

+
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +y

x y
x
x y

z
y z

F i j
1 1 12 2 2 2 2 2

−
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

y
y z z

k
1

1
2 2

Exact Differential Forms
In Exercises 13–17, show that the differential forms in the integrals are 
exact. Then evaluate the integrals.

 13. ∫ + +
( )

( )−
x dx y dy z dz2 2 2

0,0,0

2,3, 6

 14. ∫ + +
( )

( )

yz dx xz dy xy dz
1,1,2

3,5,0

EXERCISES 15.3 

Solution Note that the domain of F fills all of three-dimensional space, so it is simply 
connected. We let = = =M y N x P,  ,  4 and apply the Component Test for Exactness:

∂
∂

= = ∂
∂

∂
∂

= = ∂
∂

∂
∂

= = ∂
∂

P
y

N
z

M
z

P
x

N
x

M
y

0 , 0 , 1 .

These equalities tell us that + +y dx x dy dz4  is exact, so

+ + =y dx x dy dz df4

for some function f , and the integral’s value is ( ) ( )− −f f2, 3, 1 1,1,1 .
We find f  up to a constant by integrating the equations

 
∂
∂

= ∂
∂

= ∂
∂

=f
x

y
f
y

x
f
z

, , 4. (5)

From the first equation we get

( ) ( )= +f x y z xy g y z, , , .

The second equation tells us that

∂
∂

= + ∂
∂

= ∂
∂

=f
y

x
g
y

x
g
y

, or 0.

Hence, g is a function of z alone, and

( ) = +f x y z xy h z, , ( ).

The third of Equations (5) tells us that

∂
∂

= + = = +f
z

dh
dz

h z z C0 4, or ( ) 4 .

Therefore,
( ) = + +f x y z xy z C, , 4 .

The value of the line integral is independent of the path taken from ( )1,1,1  to ( )−2, 3, 1   
and equals

( ) ( ) ( )− − = + − + = −f f C C2, 3, 1 1,1,1 2 5 3. 
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960 Chapter 15 Integrals and Vector Fields

 15. ∫ ( )+ − −
( )

( )

xy dx x z dy yz dz2 2
0,0,0

1,2,3
2 2

 16. ∫ − −
+( )

( )

x dx y dy
z

dz2 4
10,0,0

3,3,1
2

2

 17. ∫ + +
( )

( )

y x dx y x dy dzsin cos cos sin
1,0,0

0,1,1

Finding Potential Functions to Evaluate Line Integrals
Although they are not defined on all of space R ,3  the fields associated 
with Exercises 18–22 are conservative. Find a potential function for 
each field, and evaluate the integrals as in Example 6.

 18. ∫ + −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +

π( )

( )
y dx

y
x y dy

z
dz2 cos 1 2 sin 1

0,2,1

1, 2,2

 19. ∫ + +
( )

( )

x dx z
y

dy z y dz3 2 ln2

1,1,1

1,2,3 2

 20. ∫ ( )− + −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ −

( )

( )

x y yz dx x
y

xz dy xy dz2 ln
1,2,1

2,1,1 2

 21. ∫ + −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ −

( )

( )

y
dx

z
x
y

dy
y

z
dz1 1

1,1,1

2,2,2

2 2

 22. ∫
+ +

+ +( )

( )

− − −

x dx y dy z dz
x y z

2 2 2
2 2 21, 1, 1

2,2,2

Applications and Examples

 23. Revisiting Example 6 Evaluate the integral

∫ + +
( )

( )

−
y dx x dy dz4

1,1,1

2,3, 1

from Example 6 by finding parametric equations for the line seg-
ment from ( )1,1,1  to ( )−2, 3, 1  and evaluating the line integral of 

= + +y xF i j k4  along the segment. Since F is conservative, 
the integral is independent of the path.

 24. Evaluate

∫ ( )+ +x dx yz dy y dz2
C

2 2

along the line segment C joining ( )0, 0, 0  to ( )0, 3, 4 .

Independence of path Show that the values of the integrals in 
Exercises 25 and 26 do not depend on the path taken from A to B.

 25. ∫ + +z dx y dy xz dz2 2
A

B
2

 26. ∫
+ +

+ +

x dx y dy z dz

x y zA

B

2 2 2

In Exercises 27 and 28, find a potential function for F.

 27. ( ){ }= + −⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ >x

y
x

y
x y yF i j2 1 , , :  0

2

2

 28. ( ) ( )= + +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +e y e

y
z y zF i j kln sin cosx

x

 29. Work along different paths Find the work done by 
( ) ( )= + + + +x y y x zeF i j kz2 2  over the following paths 

from ( )1, 0, 0  to ( )1, 0,1 .

 a. The line segment = = ≤ ≤x y z1,  0, 0 1

 b. The helix π π( ) ( ) ( )= + + ≤ ≤t t t t tr i j k( ) cos sin 2 , 0 2

 c. The x-axis from ( )1, 0, 0  to ( )0, 0, 0  followed by the parabola 
= =z x y,  02  from ( )0, 0, 0  to ( )1, 0,1

z

y

x

(1, 0, 1)

(0, 0, 0)

1

(1, 0, 0)

z = x2

 30. Work along different paths Find the work done by  
=F   ( ) ( )+ + + +e xze z y xye yi j kcos sinyz yz yz  over the 

following paths from ( )1, 0,1  to π( )1, 2, 0 .

 a. The line segment π= = = − ≤ ≤x y t z t t1,  2,  1 , 0 1

z

y

x

(1, 0, 1)

1

p
2

p
21,    , 01

Q     R

 b. The line segment from ( )1, 0,1  to the origin followed by the 
line segment from the origin to π( )1, 2, 0

z

y

x

(1, 0, 1)

(0, 0, 0)

1

1

p
2

p
21,    , 0

Q     R

 c. The line segment from ( )1, 0,1  to ( )1, 0, 0 , followed by the 
x-axis from ( )1, 0, 0  to the origin, followed by the parabola 

π= =y x z2,  02  from there to π( )1, 2, 0

z

y

x

(1, 0, 1)

(1, 0, 0)

(0, 0, 0)

1

p
21,    , 0

y =    x2p
2

Q     R
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 15.4  Green’s Theorem in the Plane 961

 31. Evaluating a work integral two ways Let ( )= ∇ x yF 3 2  and 
let C be the path in the xy-plane from ( )−1,1  to ( )1,1  that consists 
of the line segment from ( )−1,1  to ( )0, 0  followed by the line seg-
ment from ( )0, 0  to ( )1,1 . Evaluate ∫ ⋅ dF rC  in two ways.

 a. Find parametrizations for the segments that make up C and 
evaluate the integral.

 b. Use ( ) =f x y x y, 3 2 as a potential function for F.

 32. Integral along different paths Evaluate the line integral 
∫ −x y dx x y dy2 cos sinC

2  along the following paths C in the 
xy-plane.

 a. The parabola ( )= −y x 1 2 from ( )1, 0  to ( )0,1

 b. The line segment from π( )−1,  to ( )1, 0

 c. The x-axis from ( )−1, 0  to ( )1, 0

 d. The astroid π( ) ( )= + ≤ ≤t t t tr i j( ) cos sin , 0 2 ,3 3  coun-
terclockwise from ( )1, 0  back to ( )1, 0

x

y

(0, 1)

(0, −1)

(1, 0)(−1, 0)

 33. a.  Exact differential form How are the constants a, b, and c 
related if the following differential form is exact?

( ) ( )( )+ + + + +ay czx dx y bx cz dy ay cx dz22 2 2

 b. Gradient field For what values of b and c will

( ) ( )( )= + + + + +y czx y bx cz y cxF i j k22 2 2

be a gradient field?

 34. Gradient of a line integral Suppose that = ∇fF  is a conser-
vative vector field and

∫( ) = ⋅
( )

( )
g x y z dF r, , .

x y z

0,0,0

, ,

Show that ∇ =g F.

 35. Path of least work You have been asked to find the path along 
which a force field F will perform the least work in moving a 
particle between two locations. A quick calculation on your part 
shows F to be conservative. How should you respond? Give rea-
sons for your answer.

 36. A revealing experiment By experiment, you find that a force 
field F performs only half as much work in moving an object 
along path C1 from A to B as it does in moving the object along 
path C2 from A to B. What can you conclude about F? Give rea-
sons for your answer.

 37. Work by a constant force Show that the work done by a con-
stant force field = + +a b cF i j k  in moving a particle along 
any path from A to B is 

� ���
= ⋅W ABF .

 38. Gravitational field 

 a. Find a potential function for the gravitational field

( )
= − + +

+ +
GmM

x y z
x y z

F
i j k

2 2 2 3 2

(G, m, and M are constants).

 b. Let P1 and P2 be points at distances s1 and s2 from the origin. 
Show that the work done by the gravitational field in part (a) 
in moving a particle from P1 to P2 is

−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟GmM

s s
1 1 .
2 1

If F is a conservative field, then we know = ∇fF  for a differentiable function f , and we 
can calculate the line integral of F over any path C joining point A to point B as 
∫ ⋅ = −d f B f AF r ( ) ( ).C  In this section we derive a method for computing a work or 
flux integral over a closed curve C in the plane. This method, which can be used even when 
the field F is not conservative, comes from Green’s Theorem. It enables us to convert the 
line integral into a double integral over the region enclosed by C.

The discussion is given in terms of velocity fields of fluid flows (a fluid is a liquid or 
a gas) because they are easy to visualize. However, Green’s Theorem applies to any vector 
field, independent of any particular interpretation of the field, provided the assumptions of 
the theorem are satisfied. We introduce two new ideas for Green’s Theorem: circulation 
density around an axis perpendicular to the plane and divergence (or flux density).

Spin Around an Axis: The k-Component of Curl

Suppose that ( ) ( ) ( )= +x y M x y N x yF i j, , ,  is the velocity field of a fluid flowing in 
the plane and that the first partial derivatives of M and N are continuous at each point of a 
region R. Let ( )x y,  be a point in R, and let A be a small rectangle with one corner at ( )x y,  

15.4 Green’s Theorem in the Plane
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962 Chapter 15 Integrals and Vector Fields

that, along with its interior, lies entirely in R. The sides of the rectangle, parallel to the 
coordinate axes, have lengths of Δx and Δy. Assume that the components M and N do not 
change sign throughout a small region containing the rectangle A. The first idea we use to 
convey Green’s Theorem quantifies the rate at which a floating paddle wheel, with axis 
perpendicular to the plane, spins at a point in a fluid flowing in a plane region. This idea 
gives some sense of how the fluid is circulating around axes located at different points and 
perpendicular to the plane. Physicists sometimes refer to this as the circulation density of a 
vector field F at a point. To obtain it, we consider the velocity field

( ) ( ) ( )= +x y M x y N x yF i j, , ,

and the rectangle A in Figure 15.29 (where we assume both components of F are  
positive).

FIGURE 15.29 The rate at which a fluid flows along the bottom edge of a 
rectangular region A in the direction i is approximately ( ) ⋅ Δx y xF i, , which 
is positive for the vector field F shown here. To approximate the rate of  
circulation at the point ( )x y, , we calculate the (approximate) flow rates along 
each edge in the directions of the red arrows, sum these rates, and then divide 
the sum by the area of A. Taking the limit as Δ →x 0 and Δ →y 0 gives the 
rate of the circulation per unit area.

(x, y + Δy) (x + Δx, y + Δy)

(x + Δx, y)(x, y)

F(x, y)

F · i > 0

F · (−i) < 0

F · j > 0

F · (−j) < 0 A

Δx

Δy

The circulation rate of F around the boundary of A is the sum of flow rates along the 
sides in the tangential direction. For the bottom edge, the flow rate is approximately

( ) ( )⋅ Δ = Δx y x M x y xF i, , .

This is the scalar component of the velocity ( )x yF ,  in the tangent direction i times the 
length of the segment. The flow rates may be positive or negative, depending on the com-
ponents of F. We approximate the net circulation rate around the rectangular boundary of 
A by summing the flow rates along the four edges as defined by the following dot products.

( ) ( )

( ) ( )

( ) ( )

( ) ( )

+ Δ ⋅ − Δ = − + Δ Δ

⋅ Δ = Δ

+ Δ ⋅ Δ = + Δ Δ

⋅ − Δ = − Δ

x y y x M x y y x

x y x M x y x

x x y y N x x y y

x y y N x y y

F i

F i

F j

F j

Top: , ( ) ,

Bottom: , ,

Right: , ,

Left: , ( ) ,

We sum opposite pairs to get

( )

( ) ( )( )

( ) ( )( )

− + Δ − Δ ≈ − ∂
∂

Δ
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ Δ

+ Δ − Δ ≈ ∂
∂

Δ Δ

M x y y M x y x M
y

y x

N x x y N x y y N
x

x y

Top and bottom: , ,

Right and left: , , .
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 15.4  Green’s Theorem in the Plane 963

Adding these last two equations gives the net circulation rate relative to the counterclock-
wise orientation,

≈ ∂
∂

− ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ Δ ΔN

x
M
y

x yCirculation rate around rectangle .

We now divide by Δ Δx y to estimate the circulation rate per unit area, or circulation density, 
for the rectangle:

≈ ∂
∂

− ∂
∂

N
x

M
y

Circulation around rectangle
rectangle area

.

We let Δx and Δy approach zero to define the circulation density of F at the point ( )x y, .
If we see a counterclockwise rotation looking downward onto the xy-plane from the 

tip of the unit k vector, then the circulation density is positive (Figure 15.30).

DEFINITION The circulation density of a vector field = +M NF i j at the 
point ( )x y,  is the scalar expression

 ∂
∂

− ∂
∂

N
x

M
y

. (1)

FIGURE 15.30 In the flow of an  
incompressible fluid over a plane region, 
the k-component of the curl measures the 
rate of the fluid’s rotation at a point. The 
k-component of the curl is positive at 
points where the rotation is counterclock-
wise and negative where the rotation is 
clockwise.

k

k

Vertical axis

Vertical axis

(x0, y0)

(x0, y0)

curl F (x0, y0) . k > 0
Counterclockwise circulation

curl F (x0, y0) . k < 0
Clockwise circulation

The expression in Equation (1) is the the k-component of the curl of F, which was 
introduced in Equation (3) of Section 15.3:

( )
∂
∂

− ∂
∂

= ⋅N
x

M
y

F kcurl  .

If water is moving about a region in the xy-plane in a thin layer, then the  
k-component of the curl at a point ( )x y,0 0  gives a way to measure how fast and in what 
direction a small paddle wheel spins if it is put into the water at ( )x y,0 0  with its axis per-
pendicular to the plane, parallel to k (Figure 15.30). Looking downward onto the  
xy-plane, it spins counterclockwise when ( ) ⋅F kcurl   is positive and clockwise when the 
k-component is negative.

EXAMPLE 1  The following vector fields represent the velocity of a gas flowing in  
the xy-plane. Find the circulation density of each vector field and interpret its physical 
meaning. Figure 15.31 displays the vector fields.

 (a) Uniform expansion or compression: ( ) = +x y cx cyF i j,   c a constant

 (b) Uniform rotation: ( ) = − +x y cy cxF i j,

 (c) Shearing flow: ( ) =x y yF i,

 (d) Whirlpool effect: ( ) = −
+

+
+

x y
y

x y
x

x y
F i j,

2 2 2 2

Solution 

 (a) Uniform expansion: ( ) ⋅ = ∂
∂

− ∂
∂

=
x

cy
y

cxF kcurl  ( ) ( ) 0. The gas is not circulating 
at very small scales.

 (b) Rotation: ( ) ⋅ = ∂
∂

− ∂
∂

− =
x

cx
y

cy cF kcurl  ( ) ( ) 2 . The constant circulation density 

indicates rotation around every point. If >c 0, the rotation is counterclockwise; if 
<c 0, the rotation is clockwise.
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964 Chapter 15 Integrals and Vector Fields

 (c) Shear: ( ) ⋅ = − ∂
∂

= −
y

yF kcurl  ( ) 1. The circulation density is constant and negative, 

so a paddle wheel floating in water undergoing such a shearing flow spins clockwise.  
The rate of rotation is the same at each point. The average rotational effect of  
the fluid flow is to push fluid clockwise around each of the small circles shown in 
Figure 15.32.

 (d) Whirlpool:

( ) ( )
( ) ⋅ = ∂

∂ +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ − ∂

∂
−
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =

−
+

−
−

+
=

x
x

x y y
y

x y
y x

x y

y x

x y
F kcurl  0.

2 2 2 2

2 2

2 2 2

2 2

2 2 2

The circulation density is 0 at every point away from the origin (where the vector field 
is undefined and the whirlpool effect blows up), and the gas is not circulating at any 
point for which the vector field is defined. 

FIGURE 15.31 Velocity fields of a gas flowing in the plane (Example 1).

y

x

(a)

y

x

(d)

(b)

y

x

y

x

(c)

One form of Green’s Theorem tells us how circulation density can be used to calculate 
the line integral for flow in the xy-plane. (The flow integral was defined in Section 15.2.) 
A second form of the theorem tells us how we can calculate the flux integral, which gives 
the flow across the boundary, from flux density. We define this idea next and then present 
both versions of the theorem.

Divergence

Consider again the velocity field ( ) ( ) ( )= +x y M x y N x yF i j, , ,  in a domain contain-
ing the rectangle A, as shown in Figure 15.33. As before, we assume the field components 
do not change sign throughout a small region containing the rectangle A. Our interest now 
is to determine the rate at which the fluid leaves A by flowing across its boundary.

FIGURE 15.32 A shearing flow pushes 
the fluid clockwise around each point 
(Example 1c).

y

x
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 15.4  Green’s Theorem in the Plane 965

The rate at which fluid leaves the rectangle across the bottom edge is approximately 
(Figure 15.33)

( ) ( )⋅ − Δ = − Δx y x N x y xF j, ( ) , .

This is the scalar component of the velocity at ( )x y,  in the direction of the outward normal 
times the length of the segment. If the velocity is in meters per second, for example, the 
flow rate will be in meters per second times meters, or square meters per second. The rates 
at which the fluid crosses the other three sides in the directions of their outward normals 
can be estimated in a similar way. The flow rates may be positive or negative, depending 
on the signs of the components of F. We approximate the net flow rate across the rectangu-
lar boundary of A by summing the flow rates across the four edges as defined by the fol-
lowing dot products.

( ) ( )

( ) ( )

( ) ( )

( ) ( )

+ Δ ⋅ Δ = + Δ Δ

⋅ − Δ = − Δ

+ Δ ⋅ Δ = + Δ Δ

⋅ − Δ = − Δ

x y y x N x y y x

x y x N x y x

x x y y M x x y y

x y y M x y y

Fluid Flow Rates F j

F j

F i

F i

    : Top: , ,

Bottom: , ( ) ,

Right: , ,

Left: , ( ) ,

Summing opposite pairs gives

( )

( ) ( )( )

( ) ( )( )

+ Δ − Δ ≈ ∂
∂

Δ
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ Δ

+ Δ − Δ ≈ ∂
∂

Δ Δ

N x y y N x y x N
y

y x

M x x y M x y y M
x

x y

Top and bottom: , , ,

Right and left: , , .

Adding these last two equations gives the net effect of the flow rates, or the

≈ ∂
∂

+ ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ Δ ΔM

x
N
y

x yFlux across rectangle boundary .

We now divide by Δ Δx y to estimate the total flux per unit area, or flux density, for the 
rectangle:

≈ ∂
∂

+ ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

M
x

N
y

Flux across rectangle boundary
rectangle area

.

FIGURE 15.33 The rate at which the fluid leaves the rectangular region A across the  
bottom edge in the direction of the outward normal −j is approximately ( ) ⋅ − Δx y xF j, ( ) , 
which is negative for the vector field F shown here. To approximate the flow rate at the 
point ( )x y, , we calculate the (approximate) flow rates across each edge in the directions of 
the red arrows, sum these rates, and then divide the sum by the area of A. Taking the limit 
as Δ →x 0 and Δ →y 0 gives the flow rate per unit area.

(x, y + Δy) (x + Δx, y + Δy)

(x + Δx, y)(x, y)

F(x, y)

F · (−j) < 0

F · j > 0

F · (−i) < 0

F · i > 0

A

Δx

Δy
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966 Chapter 15 Integrals and Vector Fields

div F is the symbol for divergence.

A gas is compressible, unlike a liquid, and the divergence of its velocity field mea-
sures to what extent it is expanding or compressing at each point. Intuitively, if a gas is 
expanding at the point ( )x y, ,0 0  the lines of flow would diverge there (hence the name), and 
since the gas would be flowing out of a small rectangle about ( )x y, ,0 0  the divergence of F 
at ( )x y,0 0  would be positive. If the gas were compressing instead of expanding, the diver-
gence would be negative (Figure 15.34).

DEFINITION The divergence (flux density) of a vector field = +M NF i j at 
the point ( )x y,  is

 = ∂
∂

+ ∂
∂

M
x

N
y

Fdiv  . (2)

FIGURE 15.34 If a gas is expanding at a 
point ( )x y, ,0 0  the lines of flow have posi-
tive divergence; if the gas is compressing, 
the divergence is negative.

Source: div F (x0, y0) > 0

Sink: div F (x0, y0) < 0

A gas expanding
at the point (x0, y0)

A gas compressing
at the point (x0, y0)

Finally, we let Δx and Δy approach zero to define the flux density of F at the point ( )x y, . 
The mathematical term for the flux density is the divergence of F. The symbol for it is  
div F, which is pronounced “divergence of F” or “div F.”

EXAMPLE 2  Find the divergence, and interpret what it means, for each vector field in 
Example 1 representing the velocity of a gas flowing in the xy-plane.

Solution 

 (a) div = ∂
∂

+ ∂
∂

=
x

cx
y

cy cF ( ) ( ) 2 : If >c 0, the gas is undergoing uniform expansion; 

if <c 0, it is undergoing uniform compression.

 (b) div = ∂
∂

− + ∂
∂

=
x

cy
y

cxF ( ) ( ) 0: The gas is neither expanding nor compressing.

 (c) div = ∂
∂

=
x

yF ( ) 0: The gas is neither expanding nor compressing.

 (d) div 
( ) ( )

= ∂
∂

−
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ + ∂

∂ +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =

+
−

+
=

x
y

x y y
x

x y
xy

x y
xy

x y
F 2 2

0:
2 2 2 2 2 2 2 2 2 2  Again, 

the divergence is zero at all points in the domain of the velocity field. 

Cases (b), (c), and (d) of Figure 15.31 are plausible models for the two-dimensional 
flow of a liquid. In fluid dynamics, when the velocity field of a flowing fluid always has 
divergence equal to zero, as in those cases, the flow is said to be incompressible.

Two Forms for Green’s Theorem

A simple closed curve C can be traversed in two possible directions. (Recall that a curve is 
simple if it does not cross itself.) The curve is traversed counterclockwise, and said to be 
positively oriented, if the region it encloses is always to the left when moving along the 
curve. If the curve is traversed clockwise, then the enclosed region is on the right when 
moving along the curve, and the curve is said to be negatively oriented. The line integral of 
a vector field F along C reverses sign if we change the orientation. We use the notation

( ) ⋅
D

x y dF r,
C

for the line integral when the simple closed curve C is traversed counterclockwise, with its 
positive orientation.

In one form, Green’s Theorem says that the counterclockwise circulation of a vector 
field around a simple closed curve is the double integral of the k-component of the curl of 
the field over the region enclosed by the curve. Recall the defining Equation (5) for circu-
lation in Section 15.2.
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 15.4  Green’s Theorem in the Plane 967

A second form of Green’s Theorem says that the outward flux of a vector field across 
a simple closed curve in the plane equals the double integral of the divergence of the field 
over the region enclosed by the curve. Recall the formulas for flux in Equations (8) and (9) 
in Section 15.2.

( )

= ⋅

⋅ = ∂
∂

− ∂
∂

C ds

N
x

M
y

F T

F k

Circulation around 

curl 

C
D

= ⋅

= ∂
∂

+ ∂
∂

C ds

M
x

N
y

F F n

F

Flux of   across 

div 

C
D

THEOREM 4—Green’s Theorem (Circulation-Curl or Tangential Form)
Let C be a piecewise smooth, simple closed curve enclosing a region R in the 
plane. Let = +M NF i j be a vector field with M and N having continuous first 
partial derivatives in an open region containing R. Then the counterclockwise 
circulation of F around C equals the double integral of ( ) ⋅F kcurl   over R.

 ∫∫⋅ = + = ∂
∂

− ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

D D

ds M dx N dy N
x

M
y

dx dyF T
C C R

 (3)

Counterclockwise circulation Curl integral

THEOREM 5—Green’s Theorem (Flux-Divergence or Normal Form)
Let C be a piecewise smooth, simple closed curve enclosing a region R in the 
plane. Let = +M NF i j be a vector field with M and N having continuous first 
partial derivatives in an open region containing R. Then the outward flux of F 
across C equals the double integral of div F over the region R enclosed by C.

 ∫∫⋅ = − = ∂
∂

+ ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

D D

ds M dy N dx M
x

N
y

dx dyF n
C C R

 (4)

Outward flux Divergence integral

The two forms of Green’s Theorem are equivalent. Applying Equation (3) to the field 
= − +N MG i j1  gives Equation (4), and applying Equation (4) to = −N MG i j2  gives 

Equation (3).
Both forms of Green’s Theorem can be viewed as two-dimensional generalizations of 

the Fundamental Theorem of Calculus from Section 5.4. The counterclockwise circulation 
of F around C, defined by the line integral on the left-hand side of Equation (3), is the inte-
gral of its rate of change (circulation density) over the region R enclosed by C, which is the 
double integral on the right-hand side of Equation (3). Likewise, the outward flux of  
F across C, defined by the line integral on the left-hand side of Equation (4), is the integral 
of its rate of change (flux density) over the region R enclosed by C, which is the double 
integral on the right-hand side of Equation (4).

EXAMPLE 3  Verify both forms of Green’s Theorem for the vector field

( ) ( )= − +x y x y xF i j,

and the region R bounded by the unit circle

π( ) ( )= + ≤ ≤C t t t tr i j: ( ) cos sin , 0 2 .

Solution First we evaluate the counterclockwise circulation of = +M NF i j around C. 
On the curve C we have =x tcos  and =y tsin . Evaluating ( )tF r( )  and computing the 
derivatives of the components of r, we have

( )

( )

= − = − = = −

= = = =

M x y t t dx d t t dt

N x t dy d t t dt

cos sin , cos sin ,

cos , sin cos .
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968 Chapter 15 Integrals and Vector Fields

Therefore,

∫

∫ π

( )( ) ( )( )

( )

⋅ = +

= − − +

= − + =

π

π

=

=

D D

ds M dx N dy

t t t dt t t dt

t t dt

F T

cos sin sin cos cos

sin cos 1 2 .

C C

t

t

0

2

0

2

This gives the left side of Equation (3). Next we find the curl integral, the right side of 
Equation (3). Since = −M x y and =N x, we have

∂
∂

= ∂
∂

= − ∂
∂

= ∂
∂

=M
x

M
y

N
x

N
y

1, 1, 1, 0.

Therefore,

∫∫ ∫∫

∫∫ π

( )( )

( )

∂
∂

− ∂⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = − −

= = =

N
x

M
dy

dx dy dx dy

dx dy

1 1

2 2 area inside the unit circle 2 .

R R

R

Thus, the right and left sides of Equation (3) both equal π2 , as asserted by the circulation-
curl version of Green’s Theorem.

Figure 15.35 displays the vector field and circulation around C.
Now we compute the two sides of Equation (4) in the flux-divergence form of Green’s 

Theorem, starting with the outward flux:

∫

∫ π

( )( ) ( )( )− = − − −

= =

π

π

=

=

D

M dy N dx t t t dt t t dt

t dt

cos sin cos cos sin

cos .

C
t

t

0

2

2

0

2

Next we compute the divergence integral:

∫∫ ∫∫ ∫∫ π( )
∂
∂

+ ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = + = =M

x
N
y

dx dy dx dy dx dy1 0 .
R R R

Hence the right and left sides of Equation (4) both equal π, as asserted by the flux-divergence 
version of Green’s Theorem. 

FIGURE 15.35 The vector field in 
Example 3 has a counterclockwise  
circulation of π2  around the unit circle.

y

x

T

T

Using Green’s Theorem to Evaluate Line Integrals

If we construct a closed curve C by piecing together a number of different curves end to 
end, the process of evaluating a line integral over C can be lengthy because there are so 
many different integrals to evaluate. If C bounds a region R to which Green’s Theorem 
applies, however, we can use Green’s Theorem to change the line integral around C into 
one double integral over R.

EXAMPLE 4  Evaluate the line integral

−
D

xy dy y dx,
C

2

where C is the boundary of the square ≤ ≤ ≤ ≤x y0 1, 0 1.
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 15.4  Green’s Theorem in the Plane 969

Solution We can use either form of Green’s Theorem to change the line integral into a 
double integral over the square, where C is the square’s boundary and R is its interior.

1. With the Tangential Form Equation (3): Taking = −M y 2 and =N xy gives the result:

∫∫ ∫∫

∫∫ ∫ ∫

( )( )− + = ∂
∂

− ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = − −

= = ⎡
⎣
⎢

⎤
⎦
⎥ = = ⎤

⎦⎥
=

=

=

D

y dx xy dy N
x

M
y

dx dy y y dx dy

y dx dy xy dy y dy y

2

3 3 3 3
2

3
2

.

C R R

x

x

2

0

1

0

1

0

1

0 

1

0

1
2

0

1

2. With the Normal Form Equation (4): Taking = =M xy N y,  ,2  gives the same result:

∫∫ ∫∫ ( )− = ∂
∂

+ ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = + =

D

xy dy y dx M
x

N
y

dx dy y y dx dy2 3
2

.
C R R

2  

EXAMPLE 5  Calculate the outward flux of the vector field ( ) = +x y e yF i j, 2 xy 3  
across the boundary of the square  − ≤ ≤ − ≤ ≤x y1 1,  1 1.

Solution Calculating the flux with a line integral would take four integrations, one for 
each side of the square. With Green’s Theorem, we can change the line integral to one 
double integral. With = =M e N y2 ,  ,xy 3  C the square’s boundary, and R the square’s 
interior, we have

∫∫

∫∫ ∫

∫

( )

( )

= ⋅ = −

= ∂
∂

+ ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

= + = +⎡
⎣
⎢

⎤
⎦
⎥

= + − = + +⎡
⎣
⎢

⎤
⎦
⎥ =

−− − =−

=

−
−

−

−

D D

ds M dy N dx

M
x

N
y

dx dy

ye y dx dy e xy dy

e y e dy e y e

F nFlux

2 3 2 3

2 6 2 2 2 2 4.

C C

R

xy xy

x

x

y y y y

2

1

1

1

1
2

1

1

1

1

2

1

1
3

1

1

 

Green’s Theorem, Eq. (4)

Proof of Green’s Theorem for Special Regions

Let C be a smooth simple closed curve in the xy-plane with the property that lines parallel 
to the axes cut it at no more than two points. Let R be the region enclosed by C and suppose 
that M, N, and their first partial derivatives are continuous at every point of some open 
region containing C and R. We want to prove the circulation-curl form of Green’s Theorem,

 ∫∫+ = ∂
∂

− ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

D

M dx N dy N
x

M
y

dx dy.
C R

 (5)

Figure 15.36 shows C made up of two directed parts:

= ≤ ≤ = ≥ ≥C y f x a x b C y f x b x a: ( ), , : ( ), .1 1 2 2

For any x between a and b, we can integrate ∂ ∂M y with respect to y from =y f x( )1  to 
=y f x( )2  and obtain

∫ ( ) ( ) ( )∂
∂

=
⎤

⎦
⎥
⎥

= −
=

=
M
y

dy M x y M x f x M x f x, , ( ) , ( ) .
f x

f x

y f x

y f x

( )

( )

( )

( )

2 1
1

2

1

2FIGURE 15.36 The boundary curve C 
is made up of C ,1  the graph of =y f x( ),1  
and C ,2  the graph of =y f x( ).2

x

y

a0 x b

R

P2(x, f2(x))
C2:  y = f2(x)

C1:  y = f1(x)
P1(x, f1(x))
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970 Chapter 15 Integrals and Vector Fields

We can then integrate this with respect to x from a to b:

∫∫ ∫

∫ ∫

∫ ∫

( ) ( )[ ]

( ) ( )

∂
∂

= −

= − −

= − −

= −

M
y

dy dx M x f x M x f x dx

M x f x dx M x f x dx

M dx M dx

M dx

, ( ) , ( )

, ( ) , ( )

.

f x

f x

a

b

a

b

b

a

a

b

C C

C

( )

( )

2 1

2 1

1

2

2 1

D

Therefore, reversing the order of the equations, we have

 ∫∫= −∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

D

M dx M
y

dx dy.
C R

 (6)

Equation (6) is half the result we need for Equation (5). We derive the other half by 
integrating ∂ ∂N x first with respect to x and then with respect to y, as suggested by 
Figure 15.37. This shows the curve C of Figure 15.36 decomposed into the two directed 
parts = ≥ ≥′C x g y d y c:  ( ),1 1  and = ≤ ≤′C x g y c y d:  ( ),  .2 2  The result of this 
double integration is

 ∫∫= ∂
∂D

N dy N
x

dx dy.
C R

 (7)

Summing Equations (6) and (7) gives Equation (5). This concludes the proof. 

FIGURE 15.37 The boundary curve C 
is made up of ′C ,1  the graph of =x g y( ),1  
and ′C ,2  the graph of =x g y( ).2

R

x

y

c

0

y

d

C′2:  x = g2(y)

C′1:  x = g1(y)

Q2(g2( y), y)
Q1(g1( y), y)

Green’s Theorem also holds for more general regions, such as those shown in  
Figure 15.38. Notice that the region in Figure 15.38c is not simply connected. The curves 
C1 and Ch on its boundary are oriented so that the region R is always on the left-hand side 
as the curves are traversed in the directions shown, and cancelation occurs over common 
boundary arcs traversed in opposite directions. With this convention, Green’s Theorem is 
valid for regions that are not simply connected. The proof proceeds by summing the con-
tributions to the integral of a collection of special regions, which overlap along their 
boundaries. Cancelation occurs along arcs that are traversed twice, once in each direction, 
as in Figure 15.38c. We do not give the full proof here.

FIGURE 15.38 Other regions to which Green’s Theorem applies. In (c) the axes convert the region into four 
simply connected regions, and we sum the line integrals along the oriented boundaries.

y

x
0

R

(b)

C

a b

a

b

x

y

h 1

R Ch

C1

0

(c)

y

x
0

R

(a)

C
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 15.4  Green’s Theorem in the Plane 971

Computing the k-Component of Curl(F)
In Exercises 1–6, find the k-component of Fcurl( ) for the following 
vector fields on the plane.

 1. ( )= + +x y xyF i j(2 )

 2. ( )= − +x y yF i j( )2 2

 3. = +xe yeF i j( ) ( )y x

 4. = +x y xyF i j( ) ( )2 2

 5. ( ) ( )= +y x x yF i jsin sin

 6. ( ) ( )= −x y y xF i j

Verifying Green’s Theorem
In Exercises 7–10, verify the conclusion of Green’s Theorem by evaluat-
ing both sides of Equations (3) and (4) for the field = +M NF i j. Take 
the domains of integration in each case to be the disk + ≤R x y a:     2 2 2 
and its bounding circle π( ) ( )= + ≤ ≤C a t a t tr i j:  cos sin , 0 2 .

 7. = − +y xF i j 8. = yF i

 9. = −x yF i j2 3  10. = − +x y xyF i j2 2

Circulation and Flux
In Exercises 11–20, use Green’s Theorem to find the counterclockwise 
circulation and outward flux for the field F and the curve C.

 11. ( ) ( )= − + −x y y xF i j

C: The square bounded by = = = =x x y y0,  1,  0, and 1

 12. ( ) ( )= + + +x y x yF i j42 2

C: The square bounded by = = = =x x y y0,  1,  0, and 1

 13. ( ) ( )= − + +y x x yF i j2 2 2 2

C: The triangle bounded by = =y x0,   3, and =y x

 14. ( )( )= + − +x y x yF i j2 2

C: The triangle bounded by = =y x0,  1, and =y x

 19. ( ) ( )= + + +x e y x e yF i jsin cosx x

C: The right-hand loop of the lemniscate θ=r cos 22

 20. ( ) ( )= + +− y
x

x yF i jtan ln1 2 2

C: The boundary of the region defined by the polar coordinate 
inequalities θ π≤ ≤ ≤ ≤r1 2, 0

 21. Find the counterclockwise circulation and outward flux of the 
field = +xy yF i j2  around and over the boundary of the region 
enclosed by the curve =y x 2 and the line =y x .

 22. Find the counterclockwise circulation and the outward flux of the 
field ( ) ( )= − +y x yF i jsin cos  around and over the boundary 
of the square π π≤ ≤ ≤ ≤x y0 2, 0 2.

 23. Find the outward flux of the field

( )= −
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ + + −xy x

y
e yF i j3

1
tanx

2
1

across the cardioid θ( )= + >r a a1 cos ,  0.

 24. Find the counterclockwise circulation of ( )= + +y e yF ilnx  
( )e y jx  around the boundary of the region that is bounded above 
by the curve = −y x3 2 and below by the curve = +y x 1.4

Work
In Exercises 25 and 26, find the work done by F in moving a particle 
once counterclockwise around the given curve.

 25. = +xy x yF i j2 43 2 2

C: The boundary of the “triangular” region in the first quadrant 
enclosed by the x-axis, the line =x 1, and the curve =y x 3

 26. ( ) ( )= − + −x y x yF i j4 2 2 4

C: The circle ( )( )− + − =x y2 2 42 2

Using Green’s Theorem
Apply Green’s Theorem to evaluate the integrals in Exercises 27–30.

 27. ( )+
D

y dx x dy
C

2 2

C: The boundary of the triangle enclosed by the lines =x 0, 
+ = =x y y1, and 0

 28. ( )+
D

y dx x dy3 2
C

C: The boundary of π≤ ≤ ≤ ≤x y x0 , 0 sin

 29. ( ) ( )+ + +
D

y x dx y x dy6 2
C

C: The circle ( )( )− + − =x y2 3 42 2

 30. ( ) ( )+ + +
D

x y dx xy y dy2 2 3
C

2

C: Any simple closed curve in the plane for which Green’s 
Theorem holds

EXERCISES 15.4

 15. ( ) ( )= + + −xy y x yF i j2

x

y

y = x2

x = y2

(0, 0)

(1, 1)

C

 16. ( ) ( )= + + −x y x yF i j3 2

x

y

x2 + 2y2 = 2C

2−2

−1

1

 17. = +x y x yF i j1
2

3 2 4

x

y

y = x2 − x 

y = x

(0, 0)

(2, 2)C

 18. ( )=
+

+ −x
y

yF i j
1

tan
2

1

C

1−1

−1

x

1

y

x2 + y2 = 1
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972 Chapter 15 Integrals and Vector Fields

The reason is that, by Equation (4) run backward,

∫∫ ∫∫ ( )= = +

= −
D

R dy dx dy dx

x dy y dx

Area of  1
2

1
2

1
2

1
2

.

R R

C

Use the Green’s Theorem area formula given above to find the areas of 
the regions enclosed by the curves in Exercises 31–34.

 31. The circle π( ) ( )= + ≤ ≤t a t a t tr i j( ) cos sin , 0 2

 32. The ellipse π( ) ( )= + ≤ ≤t a t b t tr i j( ) cos sin , 0 2

 33. The astroid π( ) ( )= + ≤ ≤t t t tr i j( ) cos sin , 0 23 3

 34. One arch of the cycloid = − = −x t t y tsin , 1 cos

 35. Let C be the boundary of a region on which Green’s Theorem 
holds. Use Green’s Theorem to calculate

 a. +
D

f x dx g y dy( ) ( )
C

 b. +
D

ky dx hx dy
C

  (k and h constants).

 36. Integral dependent only on area Show that the value of

( )+ +
D

xy dx x y x dy2
C

2 2

around any square depends only on the area of the square and not 
on its location in the plane.

 37. Evaluate the integral

+
D

x y dx x dy4
C

3 4

for any closed path C.

 38. Evaluate the integral

D

− +y dy x dx
C

3 3

for any closed path C.

 39. Area as a line integral Show that if R is a region in the plane 
bounded by a piecewise smooth, simple closed curve C, then

= = −
D D

R x dy y dxArea of  .
C C

 40. Definite integral as a line integral Suppose that a nonnegative 
function =y f x( ) has a continuous first derivative on [ ]a b, . Let 
C be the boundary of the region in the xy-plane that is bounded 

below by the x-axis, above by the graph of f , and on the sides by 
the lines =x a  and =x b. Show that

∫ = −
D

f x dx y dx( ) .
a

b

C

 41. Area and the centroid Let x  be the x-coordinate of the cen-
troid of a region R that is bounded by a piecewise smooth, simple 
closed curve C in the xy-plane. If A is the area of R, show that

= − = − =
D D D

x dy xy dx x dy xy dx Ax1
2

1
3

.
C C C

2 2

 42. Moment of inertia Let I y be the moment of inertia about the 
y-axis of the region in Exercise 41. Show that

= − = − =
D D D

x dy x y dx x dy x y dx I1
3

1
4

.
C C C

y
3 2 3 2

 43. Green’s Theorem and Laplace’s equation Assuming that all 
the necessary derivatives exist and are continuous, show that if 

( )f x y,  satisfies the Laplace equation

∂
∂

+ ∂
∂

=f
x

f
y

0,
2

2

2

2

then

∂
∂

− ∂
∂

=
D

f
y

dx
f
x

dy 0
C

for all closed curves C to which Green’s Theorem applies. (The 
converse is also true: If the line integral is always zero, then f  
satisfies the Laplace equation.)

 44. Maximizing work Among all smooth, simple closed curves in 
the plane, oriented counterclockwise, find the one along which the 
work done by

( )= + +x y y xF i j1
4

1
3

2 3

is greatest. (Hint: Where is ( ) ⋅F kcurl   positive?)

 45. Regions with many holes Green’s Theorem holds for a region 
R with any finite number of holes as long as the bounding curves 
are smooth, simple, and closed and we integrate over each compo-
nent of the boundary in the direction that keeps R on our immedi-
ate left as we proceed along the curve (see accompanying figure).

 a. Let ( ) ( )= +f x y x y, ln 2 2  and let C be the circle 
+ =x y a .2 2 2  Evaluate the flux integral

∇ ⋅
D

f dsn .
C

Green’s Theorem Area Formula

= −R x dy y dxArea of  1
2

C
D

Calculating Area with Green’s Theorem If a simple closed curve 
C in the plane and the region R it encloses satisfy the hypotheses of 
Green’s Theorem, the area of R is given by
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 15.5  Surfaces and Area 973

 b. Let K be an arbitrary smooth, simple closed curve in the  
plane that does not pass through ( )0, 0 . Use Green’s Theorem 
to show that

∇ ⋅
D

f dsn
K

has two possible values, depending on whether ( )0, 0  lies 
inside K or outside K.

 46. Bendixson’s criterion The streamlines of a planar fluid flow 
are the smooth curves traced by the fluid’s individual particles. 
The vectors ( ) ( )= +M x y N x yF i j, ,  of the flow’s velocity 
field are the tangent vectors of the streamlines. Show that if the 
flow takes place over a simply connected region R (no holes or 
missing points) and that if + ≠M N 0x y  throughout R, then 
none of the streamlines in R is closed. In other words, no par-
ticle of fluid ever has a closed trajectory in R. The criterion 

+ ≠M N 0x y  is called Bendixson’s criterion for the nonexis-
tence of closed trajectories.

 47. Establish Equation (7) to finish the proof of the special case of 
Green’s Theorem.

 48. Curl component of conservative fields Can anything be said 
about the curl component of a conservative two-dimensional  
vector field? Give reasons for your answer.

COMPUTER EXPLORATIONS
In Exercises 49–52, use a CAS and Green’s Theorem to find the coun-
terclockwise circulation of the field F around the simple closed curve 
C. Perform the following CAS steps.

 a. Plot C in the xy-plane.

 b. Determine the integrand ( ) ( )∂ ∂ − ∂ ∂N x M y  for the tangen-
tial form of Green’s Theorem.

 c. Determine the (double integral) limits of integration from 
your plot in part (a), and evaluate the curl integral for the  
circulation.

 49. ( ) ( )= − + + + =x y x y C x yF i j2 3 , : The ellipse  4 42 2

 50. ( ) ( )= − + + + =x y x y C x y
F i j2 , : The ellipse 

4 9
13 3 3 3

2 2

 51. ( )= + +−x e e x xF i jln 2 ,y y1

C: The boundary of the region defined by = +y x1 4 (below) 
and =y 2 (above)

 52. ( )= +xe x yF i j4 ln ,y 2

C: The triangle with vertices ( )0, 0 , ( )2, 0 , and ( )0, 4

FIGURE 15.39 A parametrized surface 
S expressed as a vector function of two 
variables defined on a region R.

z

x

y

S P

Curve y = constant

Curve u = constant

r(u, y) = f (u, y)i + g(u, y)j + h(u, y)k,
position vector to surface point

y

0
u

R

Parametrization

u = constant

y = constant
(u, y)

We have described curves in the plane in three different ways.

Explicit form: =y f x( )

Implicit form: ( ) =F x y, 0

Parametric vector form: = + ≤ ≤t f t g t a t br i j( ) ( ) ( ) , .

We have analogous descriptions of surfaces in space.

Explicit form: ( )=z f x y,

Implicit form: ( ) =F x y z, , 0.

There is also a parametric form for surfaces that gives the position of a point on the surface 
as a vector function of two variables. We discuss this new form in this section and apply the 
form to obtain the area of a surface as a double integral. Double integral formulas for areas 
of surfaces given in implicit and explicit forms are then obtained as special cases of the 
more general parametric formula.

Parametrizations of Surfaces

Suppose

 υ υ υ υ( ) ( ) ( ) ( )= + +u f u g u h ur i j k, , , ,  (1)

is a continuous vector function that is defined on a region R in the υu -plane and is one-to-one 
on the interior of R (Figure 15.39). We call the range of r the surface S defined or traced by 
r. Equation (1) together with the domain R constitutes a parametrization of the surface. The 
variables u and υ are the parameters, and R is the parameter domain. To simplify our dis-
cussion, we take R to be a rectangle defined by inequalities of the form ≤ ≤a u b, 

υ≤ ≤c d. The requirement that r be one-to-one on the interior of R ensures that S does not 
cross itself. Notice that Equation (1) is the vector equivalent of three parametric equations:

υ υ υ( ) ( ) ( )= = =x f u y g u z h u, , , , , .

15.5 Surfaces and Area
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974 Chapter 15 Integrals and Vector Fields

EXAMPLE 1  Find a parametrization of the cone

= + ≤ ≤z x y z, 0 1.2 2

Solution Here, cylindrical coordinates provide a parametrization. A typical point 
( )x y z, ,  on the cone (Figure 15.40) has θ θ= =x r y rcos ,  sin , and = + =z x y r,2 2  
with ≤ ≤r0 1 and θ π≤ ≤0 2 . Taking =u r and υ θ=  in Equation (1) gives the 
parametrization

θ θ θ θ π( ) ( ) ( )= + + ≤ ≤ ≤ ≤r r r r rr i j k, cos sin , 0 1, 0 2 .

The parametrization is one-to-one on the interior of the domain, though not on the bound-
ary where =r 0 (mapped to the tip of the cone) or where θ = 0 or θ π= 2  (where the 
cone glues together along a seam above the x-axis). 

FIGURE 15.40 The cone in Example 1  
can be parametrized using cylindrical  
coordinates.

z

x y
r

1

(x, y, z) =
(r cos u, r sin u, r)

u

r(r, u) = (r cos u)i
+ (r sin u)j + rk

Cone:
z = "x2 + y2

  = r

FIGURE 15.42 The cylinder in 
Example 3 can be parametrized using 
cylindrical coordinates.

z

x

y

z

r = 6 sin u

r(u, z)

Cylinder: x2 + (y − 3)2 = 9
or
r = 6 sin u

(x, y, z)
=(3 sin 2u, 6 sin2u, z)

FIGURE 15.41 The sphere in Example 2 
can be parametrized using spherical coor-
dinates.

z

x
y

a a

a

r(f, u)

f

u

(x, y, z) = (a sin f cos u, a sin f sin u, a cos f)

EXAMPLE 2  Find a parametrization of the sphere + + =x y z a .2 2 2 2

Solution Spherical coordinates provide what we need. A typical point ( )x y z, ,  on the 
sphere (Figure 15.41) has φ θ φ θ= =x a y asin cos ,  sin sin , and φ=z a cos , 

φ π θ π≤ ≤ ≤ ≤0 , 0 2 . Taking φ=u  and υ θ=  in Equation (1) gives the parame-
trization

a a ar i j k, sin cos sin sin cos ,

0 , 0 2 .

φ θ φ θ φ θ φ

φ π θ π

( ) ( ) ( ) ( )= + +

≤ ≤ ≤ ≤

Again, the parametrization is one-to-one on the interior of the domain, though not on its 
boundary. 

EXAMPLE 3  Find a parametrization of the cylinder

( )+ − = ≤ ≤x y z3 9, 0 5.2 2

Solution In cylindrical coordinates, a point ( )x y z, ,  has θ θ= =x r y rcos ,   sin , and 
=z z. For points on the cylinder ( )+ − =x y 3 92 2  (Figure 15.42), the equation is the 

same as the polar equation for the cylinder’s base in the xy-plane:

θ

( )+ − + =

− =

x y y

r r

6 9 9

6 sin 0

2 2

2
  

θ+ = =x y r y r,  sin2 2 2

or

θ θ π= ≤ ≤r 6 sin , 0 .

A typical point on the cylinder therefore has

θ θ θ θ

θ θ

= = =

= =

=

x r

y r

z z

cos 6 sin cos 3 sin 2

sin 6 sin

.

2

Taking θ=u  and υ = z in Equation (1) gives the parametrization

θ θ θ θ π( ) ( ) ( )= + + ≤ ≤ ≤ ≤z z zr i j k, 3 sin 2 6 sin , 0 , 0 5,2

which is one-to-one on the interior of the domain. 

Surface Area

Our goal is to find a double integral that gives the area of a curved surface S based on the 
parametrization

υ υ υ υ υ( ) ( ) ( ) ( )= + + ≤ ≤ ≤ ≤u f u g u h u a u b c dr i j k, , , , , , .
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 15.5  Surfaces and Area 975

We need S to be smooth for the construction we now describe. The definition of smooth-
ness involves the partial derivatives of r with respect to u and υ:

υ υ υ υ

= ∂
∂

= ∂
∂

+ ∂
∂

+ ∂
∂

= ∂
∂

= ∂
∂

+ ∂
∂

+ ∂
∂υ

u
f
u

g
u

h
u

f g h

r r i j k

r r i j k.

u

DEFINITION A parametrized surface υ υ υ υ( ) ( ) ( ) ( )= + +u f u g u h ur i j k, , , ,  
is smooth if ru and υr  are continuous and if × υr ru  is never zero on the interior 
of the parameter domain.

The condition that × υr ru  is never the zero vector in the definition of smoothness 
means that the two vectors ru and υr  are nonzero and never lie along the same line, so they 
always determine a plane tangent to the surface. We relax this condition on the boundary of 
the domain, but this does not affect the area computations.

Now consider a small rectangle Δ υAu  in R with sides on the lines =u u ,0  
υ υ= + Δ =u u u,  ,0 0  and υ υ υ= + Δ0  (Figure 15.43). Each side of Δ υAu  maps onto 

a curve on the surface S, and together these four curves bound a “curved patch element” 
σΔ υ.u  In the notation of the figure, the side υ υ= 0 maps to curve C ,1  the side =u u0 

maps onto C ,2  and their common vertex υ( )u ,0 0  maps to P .0

FIGURE 15.43 A rectangular area element Δ υAu  in the υu -plane maps onto a curved 
patch element σΔ υu  on S.

 

0
u

z

x

y

Parametrization

d

c

a b

R

S

u0 u0 + Δu

ΔAuy

y0 + Δy

y0
u = u0 + Δu

y = y0 + ΔyΔsuy

P0C1: y = y0 C2: u = u0

y

FIGURE 15.44 A magnified view of a 
surface patch element σΔ υ .u

yx

z

ru × ry

ru

ryP0

C1: y = y0

Δsuy

C2: u = u0

FIGURE 15.45 The area of the paral-
lelogram determined by the vectors Δuru 
and υΔ υr  approximates the area of the 
surface patch element σΔ υ .u

yx

z

Δuru

ΔyryP0

C1 Δsuy

C2

Figure 15.44 shows an enlarged view of σΔ υ.u  The partial derivative vector υ( )ur ,u 0 0  
is tangent to C1 at P .0  Likewise, υ( )υ ur ,0 0  is tangent to C2 at P .0  The cross product × υr ru  
is normal to the surface at P .0  (Here is where we begin to use the assumption that S is 
smooth. We want to be sure that × ≠υr r 0.u )

We next approximate the surface patch element σΔ υu  by the parallelogram on the 
tangent plane whose sides are determined by the vectors Δuru and υΔ υr  (Figure 15.45). 
The area of this parallelogram is

 υ υΔ × Δ = × Δ Δυ υu ur r r r .u u  (2)

A partition of the region R in the υu -plane by rectangular regions Δ υAu  induces a partition 
of the surface S into surface patch elements σΔ υ.u  We approximate the area of each surface 
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976 Chapter 15 Integrals and Vector Fields

patch element σΔ υu  by the parallelogram area in Equation (2) and sum these areas together 
to obtain an approximation of the surface area of S:

 ∑ υ× Δ Δυ ur r .u
n

 (3)

As Δu and υΔ  approach zero independently, the number of area elements n approaches ∞ 
and the continuity of ru and υr  guarantees that the sum in Equation (3) approaches the 
double integral υ∫ ∫ × υ du dr r .

c

d

a

b
u  This double integral over the region R is used to 

define the area of the surface S.

We can abbreviate the integral in Equation (4) by writing σd  for υ× υ du dr r .u  The 
surface area differential σd  is analogous to the arc length differential ds in Section 12.3.

DEFINITION The area of the smooth surface

υ υ υ υ υ( ) ( ) ( ) ( )= + + ≤ ≤ ≤ ≤u f u g u h u a u b c dr i j k, , , , , ,

is

 ∫∫ ∫∫ υ= × = ×υ υA dA du dr r r r .u

R

u
a

b

c

d
 (4)

Surface Area Differential for a Parametrized Surface

 ∫∫σ υ σ= × υd du d dr ru

S

 (5)

Surface area differential, also  
called surface area element

Differential formula 
for surface area

EXAMPLE 4  Find the surface area of the cone in Example 1 (Figure 15.40).

Solution In Example 1, we found the parametrization

θ θ θ θ π( ) ( ) ( )= + + ≤ ≤ ≤ ≤r r r r rr i j k, cos sin , 0 1, 0 2 .

To apply Equation (4), we first find × θr r :r

r r

r r r r

r r

i j k

i j k

cos sin 1

sin cos 0

cos sin cos sin .

r

r

2 2

� ���������� ����������

θ θ
θ θ

θ θ θ θ( ) ( ) ( )

× =

−

= − − + +

θ

Thus, θ θ× = + + = =θ r r r r rr r cos sin 2 2 .r
2 2 2 2 2 2  The area of the cone is

A dr d

r dr d d

r r

2 2
2

2
2

(2 ) 2 square units.

r
0

1

0

2

0

1

0

2

0

2

∫∫

∫∫ ∫

θ

θ θ π π

= ×

= = = =

θ

π

π π
 

υ θ= =u rEq. (4) with  ,  
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 15.5  Surfaces and Area 977

EXAMPLE 5  Find the surface area of a sphere of radius a.

Solution We use the parametrization from Example 2:

φ θ φ θ φ θ φ

φ π θ π

( ) ( ) ( ) ( )= + +

≤ ≤ ≤ ≤

a a ar i j k, sin cos sin sin cos ,

0 , 0 2 .

For ×φ θr r , we get

a a a

a a

a a a

r r

i j k

i j k

cos cos cos sin sin

sin sin sin cos 0

sin cos sin sin sin cos .2 2 2 2 2

φ θ φ θ φ
φ θ φ θ

φ θ φ θ φ φ( ) ( ) ( )

× = −

−

= + +

φ θ

Thus,

a a a

a a a

a a

r r sin cos sin sin sin cos

sin sin cos sin sin cos

sin sin

4 4 2 4 4 2 4 2 2

4 4 4 2 2 4 2 2 2

2 2 2

φ θ φ θ φ φ

φ φ φ φ φ φ

φ φ

( )

× = + +

= + = +

= =

φ θ

because φ ≥sin 0 for φ π≤ ≤0 . Therefore, the area of the sphere is

A a d d

a d a d a

sin

cos 2 4 square units.

2

00

2

2

0

2

0

2

0

2
2

∫∫

∫ ∫

φ φ θ

φ θ θ π

=

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= =

ππ

π

φ

φ π π

=

=

This gives the well-known formula for the surface area of a sphere. 

EXAMPLE 6  Let S be the “football” surface formed by rotating the curve x zcos ,=  
y z0,  2 2π π= − ≤ ≤  around the z-axis (see Figure 15.46). Find a parametrization for 
S and compute its surface area.

Solution Example 2 suggests finding a parametrization of S based on its rotation around 
the z-axis. If we rotate a point ( )x z, 0,  on the curve = =x z ycos ,  0 about the z-axis, we 
obtain a circle at height z above the xy-plane that is centered on the z-axis and has radius 

=r zcos  (see Figure 15.46). The point sweeps out the circle through an angle of rotation 
θ θ π≤ ≤, 0 2 . We let ( )x y z, ,  be an arbitrary point on this circle, and define the parameters 

=u z and υ θ= . Then we have θ υ θ υ= = = =x r u y r ucos cos cos ,  sin cos sin , 
and =z u, giving a parametrization for S as

υ υ υ π π υ π( ) = + + − ≤ ≤ ≤ ≤u u u u ur i j k, cos cos cos sin ,
2 2

, 0 2 .

Next we use Equation (5) to find the surface area of S. Differentiation of the parame-
trization gives

υ υ= − − +u ur i j ksin cos sin sinu

and

υ υ= − +υ u ur i jcos sin cos cos .

Computing the cross product, we have

u u

u u

u u u u u u

r r

i j k

i j k

sin cos sin sin 1

cos sin cos cos 0

cos cos cos sin sin cos cos cos sin sin .

u

2 2

υ υ
υ υ

υ υ υ υ( )

× = − −

−

= − − − +

υ

FIGURE 15.46 The “football” surface 
in Example 6 obtained by rotating the 
curve =x zcos  about the z-axis.

(x, y, z)

p
2

p
2

−

y

z

x
11

r = cos z is the
radius of a circle
at height z.x = cos z , y = 0

1
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978 Chapter 15 Integrals and Vector Fields

FIGURE 15.47 As we soon see, the area 
of a surface S in space can be calculated by 
evaluating a related double integral over 
the vertical projection or “shadow” of S 
on a coordinate plane. The unit vector p is 
normal to the plane.

R

S

The vertical projection
or “shadow” of S on a
coordinate plane

Surface F(x, y,  z) = c

p

Taking the magnitude of the cross product gives

u u u

u u

u u

r r cos   cos sin sin cos

cos   1 sin

cos   1 sin .

u
2 2 2 2 2

2 2

2

υ υ( )

( )

× = + +

= +

= +

υ

u ucos 0 for 
2 2
π π≥ − ≤ ≤

From Equation (4) the surface area is given by the integral

∫∫ υ= +
π

ππ

−
A u u du dcos 1 sin .

2

2

0

2
2

To evaluate the integral, we substitute =w usin  and = − ≤ ≤dw u du wcos ,  1 1. 
Since the surface S is symmetric across the xy-plane, we need only integrate with respect 
to w from 0 to 1 and multiply the result by 2. In summary, we have

A w dw d

w w w w d

d

2 1

2
2

1 1
2

ln 1

2 1
2

2 1
2

ln 1 2

2 2 ln 1 2 .

w

w

2

0

1

0

2

2 2

0

1

0

2

0

2

∫∫

∫

∫

υ

υ

υ

π

( )

( )

( )[ ]

= +

= + + + +⎡
⎣⎢

⎤
⎦⎥

= + +⎡
⎣⎢

⎤
⎦⎥

= + +

π

π

π

=

=

 
 Integral Table Formula 35

 

Implicit Surfaces

Surfaces are often presented as level sets of a function, described by an equation such as

( ) =F x y z c, , ,

for some constant c. Such a level surface does not come with an explicit parametrization 
and is called an implicitly defined surface. Implicit surfaces arise, for example, as equipo-
tential surfaces in electric or gravitational fields. Figure 15.47 shows a piece of such a 
surface. It may be difficult to find explicit formulas for the functions f , g, and h that 
describe the surface in the form υ υ υ υ( ) ( ) ( ) ( )= + +u f u g u h ur i j k, , , , . We now 
show how to compute the surface area differential σd  for implicit surfaces.

Figure 15.47 shows a piece of an implicit surface S that lies above its “shadow” region 
R in the plane beneath it. The surface is defined by the equation ( ) =F x y z c, , , and we 
choose p to be a unit vector normal to the plane region R. We assume that the surface is 
smooth (F is differentiable and ∇F  is nonzero and continuous on S) and that ∇ ⋅ ≠F p 0, 
so the surface never folds back over itself.

Assume that the normal vector p is the unit vector k, so the region R in Figure 15.47 
lies in the xy-plane. By assumption, we then have ∇ ⋅ = ∇ ⋅ = ≠F F Fp k 0z  on S. 
The Implicit Function Theorem (see Section 13.4) implies that S is then the graph of a differ-
entiable function ( )=z h x y, , although the function ( )h x y,  is not explicitly known. Define 
the parameters u and υ by =u x and υ = y. Then υ( )=z h u,  and

 υ υ υ( ) ( )= + +u u h ur i j k, ,  (6)

gives a parametrization of the surface S. We use Equation (4) to find the area of S.
Calculating the partial derivatives of r, we find

υ
= + ∂

∂
= + ∂

∂υ
h
u

hr i k r j kand .u
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 15.5  Surfaces and Area 979

Formula for the Surface Area of an Implicit Surface
The area of the surface ( ) =F x y z c, ,  over a closed and bounded plane region R is

 ∫∫= ∇
∇ ⋅

F
F

dA
p

Surface area ,
R

 (7)

where =p i j k, , or  is normal to R and ∇ ⋅ ≠F p 0.

FIGURE 15.48 The area of this parabolic 
surface is calculated in Example 7.

y

x

4

S

R
0

z = x2 + y2

x2 + y2 = 4

z

Thus, the area is the double integral over R of the magnitude of ∇F  divided by the 
magnitude of the scalar component of ∇F  normal to R.

We reached Equation (7) under the assumption that ∇ ⋅ ≠F p 0 throughout R and 
that ∇F  is continuous. Whenever the integral exists, however, we define its value to be the 
area of the portion of the surface ( ) =F x y z c, ,  that lies over R. (Recall that the projection 
is assumed to be one-to-one.)

Applying the Chain Rule for implicit differentiation (see Equation (2) in Section 13.4) to 
( ) =F x y z c, , , where υ= =x u y, , and υ( )=z h u, , we obtain the partial derivatives

υ
∂
∂

= − ∂
∂

= −h
u

F
F

h F

F
and .x

z

y

z

  F 0z ≠

Substitution of these derivatives into the derivatives of r gives

= − = −υ
F
F

F

F
r i k r j kand .u

x

z

y

z

From a routine calculation of the cross product, we find

( )

× = + +

= + +

= ∇ = ∇
∇ ⋅

= ∇
∇ ⋅

υ
F
F

F

F

F
F F F

F
F

F
F

F
F

r r i j k

i j k

k

p

1    

.

u
x

z

y

z

z
x y z

z

−

− υ

F F

F F

i j k

r

r

1 0

0 1

cross product of

x z

y z

u

p k=

Therefore, the surface area differential is given by

σ υ= × = ∇
∇ ⋅υd du d F

F
dx dyr r

p
.u   υ= =u x y and 

We obtain similar calculations if instead the vector =p j is normal to the xz-plane when 
≠F 0y  on S, or if =p i is normal to the yz-plane when ≠F 0x  on S. Combining these 

results with Equation (4) then gives the following general formula.

EXAMPLE 7  Find the area of the surface cut from the bottom of the paraboloid 
+ − =x y z 02 2  by the plane =z 4.

Solution We sketch the surface S and the region R below it in the xy-plane (Figure 15.48). 
The surface S is part of the level surface ( ) = + − =F x y z x y z, , 0,2 2  and R is the 
disk + ≤x y 42 2  in the xy-plane. To get a unit vector normal to the plane of R, we can 
take =p k.
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980 Chapter 15 Integrals and Vector Fields

At any point ( )x y z, ,  on the surface, we have

F x y z x y z

F x y

F x y x y

F F

i j k

p k

, ,

2 2

(2 ) (2 ) 1 4 4 1

1 1.

2 2

2 2 2 2 2

( )

( )

= + −

∇ = + −

∇ = + + − = + +

∇ ⋅ = ∇ ⋅ = − =

In the region =R dA dx dy,  . Therefore,

∫∫

∫∫

∫∫

∫

∫

θ

θ

θ π( )( )

( )

= ∇
∇ ⋅

= + +

= +

= +⎡
⎣⎢

⎤
⎦⎥

= − = −

π

π

π

+ ≤

=

=

F
F

dA

x y dx dy

r r dr d

r d

d

p
Surface area

4 4 1

4 1

1
12

4 1

1
12

17 1
6

17 17 1 .

R

x y

r

r

2 2

4

2

0

2

0

2

2 3 2

0

2

0

2

3 2

0

2

2 2

 

Eq. (7)

Polar coordinates

Example 7 illustrates how to find the surface area for a function ( )=z f x y,  over a 
region R in the xy-plane. Actually, the surface area differential can be obtained in two 
ways, and we show this in the next example.

EXAMPLE 8  Derive the surface area differential σd  of the surface ( )=z f x y,  over a 
region R in the xy-plane (a) parametrically using Equation (5), and (b) implicitly, as in 
Equation (7).

Solution 

 (a) We parametrize the surface by taking υ= =x u y,  , and ( )=z f x y,  over R. This 
gives the parametrization

υ υ υ( ) ( )= + +u u f ur i j k, , .

Computing the partial derivatives gives = + = +υ υf fr i k r j k, u u  and

× = − − +υ υf fr r i j k.u u   

υ

f

f

i j k

1 0

0 1
u

Then υ υ× = + +υ υdu d f f du dr r 1 .u u
2 2  Substituting for u and υ. then gives 

the surface area differential

σ = + +d f f dx dy1 .x y
2 2

 (b) We define the implicit function ( ) ( )= −F x y z f x y z, , , . Since ( )x y,  belongs to the 
region R, the unit normal to the plane of R is =p k. Then ∇ = + −F f fi j kx y  so 
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 15.5  Surfaces and Area 981

Finding Parametrizations
In Exercises 1–16, find a parametrization of the surface. (There are 
many correct ways to do these, so your answers may not be the same 
as those in the back of the text.)

 1. The paraboloid = + ≤z x y z,  42 2

 2. The paraboloid = − − ≥z x y z9 ,  02 2

 3. Cone frustum The first-octant portion of the cone z = 
x y 22 2+  between the planes =z 0 and =z 3

 4. Cone frustum The portion of the cone = +z x y2 2 2  
between the planes =z 2 and =z 4

 5. Spherical cap The cap cut from the sphere + + =x y z 92 2 2  
by the cone = +z x y2 2

 6. Spherical cap The portion of the sphere + + =x y z 42 2 2  in 

the first octant between the xy-plane and the cone = +z x y2 2

 7. Spherical band The portion of the sphere + + =x y z 32 2 2  
between the planes =z 3 2 and = −z 3 2

 8. Spherical cap The upper portion cut from the sphere 
+ + =x y z 82 2 2  by the plane = −z 2

 9. Parabolic cylinder between planes The surface cut from the 
parabolic cylinder = −z y4 2 by the planes = =x x0,  2, and 

=z 0

 10. Parabolic cylinder between planes The surface cut from the 
parabolic cylinder =y x 2 by the planes = =z z0,  3, and 

=y 2

 11. Circular cylinder band The portion of the cylinder 
+ =y z 92 2  between the planes =x 0 and =x 3

 12. Circular cylinder band The portion of the cylinder 
+ =x z 42 2  above the xy-plane between the planes = −y 2 

and =y 2

 13. Tilted plane inside cylinder The portion of the plane 
+ + =x y z 1

 a. Inside the cylinder + =x y 92 2

 b. Inside the cylinder + =y z 92 2

 14. Tilted plane inside cylinder The portion of the plane 
− + =x y z2 2

 a. Inside the cylinder + =x z 32 2

 b. Inside the cylinder + =y z 22 2

 15. Circular cylinder band The portion of the cylinder 
 x z2 42 2( )− + =  between the planes =y 0 and =y 3

 16. Circular cylinder band The portion of the cylinder  
y z 5 252 2( )+ − =  between the planes =x 0 and =x 10

Surface Area of Parametrized Surfaces
In Exercises 17–26, use a parametrization to express the area of the 
surface as a double integral. Then evaluate the integral. (There are many 
correct ways to set up the integrals, so your integrals may not be the 
same as those in the back of the text. They should have the same values, 
however.)

 17. Tilted plane inside cylinder The portion of the plane 
+ =y z2 2 inside the cylinder + =x y 12 2

 18. Plane inside cylinder The portion of the plane = −z x inside 
the cylinder + =x y 42 2

 19. Cone frustum The portion of the cone = +z x y2 2 2  
between the planes =z 2 and =z 6

 20. Cone frustum The portion of the cone = +z x y 32 2  
between the planes =z 1 and =z 4 3

 21. Circular cylinder band The portion of the cylinder + =x y 12 2  
between the planes =z 1 and =z 4

 22. Circular cylinder band The portion of the cylinder  
x z 102 2+ =  between the planes = −y 1 and =y 1

 23. Parabolic cap The cap cut from the paraboloid z x y2 2 2= − −  
by the cone = +z x y2 2

 24. Parabolic band The portion of the paraboloid = +z x y2 2 
between the planes =z 1 and =z 4

 25. Sawed-off sphere The lower portion cut from the sphere 
+ + =x y z 22 2 2  by the cone = +z x y2 2

 26. Spherical band The portion of the sphere + + =x y z 42 2 2  
between the planes = −z 1 and =z 3

EXERCISES 15.5 

Formula for the Surface Area of a Graph ( )=z f x y,
For a graph ( )=z f x y,  over a region R in the xy-plane, the surface area  
formula is

 ∫∫= + +A f f dx dy1 .x y

R

2 2  (8)

that ∇ ⋅ = − = ∇ = + +F F f fp 1 1, 1,x y
2 2  and F F Fp .∇ ∇ ⋅ = ∇  

The surface area differential is again given by

σ = + +d f f dx dy1 .x y
2 2

The surface area differential derived in Example 8 gives the following formula for calculat-
ing the surface area of the graph of a function defined explicitly as ( )=z f x y, .
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982 Chapter 15 Integrals and Vector Fields

Planes Tangent to Parametrized Surfaces
The tangent plane at a point υ υ υ( ) ( ) ( )( )P f u g u h u, ,   , ,   ,0 0 0 0 0 0 0  on 
a parametrized surface υ υ υ υ( ) ( ) ( ) ( )= + +u f u g u h ur i j k, , , ,  is 
the plane through P0 normal to the vector υ υ( ) ( )× υu ur r, , ,u 0 0 0 0  
the cross product of the tangent vectors υ( )ur ,u 0 0  and υ( )υ ur ,0 0  
at P .0  In Exercises 27–30, find an equation for the plane tangent to 
the surface at P .0  Then find a Cartesian equation for the surface, and 
sketch the surface and tangent plane together.

 27. Cone The cone r r r r rr i j k, cos sin , 0,θ θ θ( ) ( ) ( )= + + ≥  
0 2θ π≤ ≤  at the point ( )P 2, 2, 20  corresponding to 
θ π( ) ( )=r, 2, 4

 28. Hemisphere The hemisphere surface r i, 4 sin cosφ θ φ θ( ) ( )=  
φ θ φ φ π θ π( ) ( )+ + ≤ ≤ ≤ ≤j k4 sin sin 4 cos , 0 2, 0 2 , 

at the point ( )P 2, 2, 2 30  corresponding to ,φ θ( ) = 

6, 4π π( )

 29. Circular cylinder The circular cylinder θ( ) =zr ,  
θ θ θ π( ) ( )+ + ≤ ≤zi j k3 sin 2 6 sin , 0 ,2  at the point 

( )P 3 3 2, 9 2, 00  corresponding to θ π( ) ( )=z, 3, 0  (See 

Example 3.)

 30. Parabolic cylinder The parabolic cylinder surface x yr ,( ) = 
x y x x yi j k,  ,  ,2+ − −∞ < < ∞ −∞ < < ∞  at the point 

( )−P 1, 2, 10  corresponding to ( ) ( )=x y, 1, 2

More Parametrizations of Surfaces

 31. a.  A torus of revolution (doughnut) is obtained by rotating a circle 
C in the xz-plane about the z-axis in space. (See the accompa-
nying figure.) If C has radius >r 0 and center ( )R, 0, 0 , show 
that a parametrization of the torus is

υ υ

υ

( ) ( )( )

( )( ) ( )

= +

+ + +

u R r u

R r u r u

r i

j k

, cos cos

cos sin sin ,

where π≤ ≤u0 2  and υ π≤ ≤0 2  are the angles in the 
figure.

 b. Show that the surface area of the torus is π=A Rr4 .2

x
0

C

ur

R

u
yx

z

z

y

 32. Parametrization of a surface of revolution Suppose that the 
parametrized curve ( )C f u g u:  ( ),  ( )  is revolved about the x-axis, 
where >g u( ) 0 for ≤ ≤a u b.

 a. Show that

υ υ υ( ) ( ) ( )= + +u f u g u g ur i j k, ( ) ( )cos ( )sin

is a parametrization of the resulting surface of revolution, 
where υ π≤ ≤0 2  is the angle from the xy-plane to the 
point υ( )ur ,  on the surface. (See the accompanying figure.) 
Notice that f u( ) measures distance along the axis of revolu-
tion and g u( ) measures distance from the axis of revolution.

y

x

z

C

( f (u), g(u), 0)

g(u)

r(u, y)

f (u)

y

 b. Find a parametrization for the surface obtained by revolving 
the curve = ≥x y y, 0,2  about the x-axis.

 33. a.  Parametrization of an ellipsoid The parametrization 
θ θ θ π= = ≤ ≤x a y bcos ,  sin , 0 2  gives the ellipse 

( ) ( )+ =x a y b 1.2 2 2 2  Using the angles θ and φ in spheri-
cal coordinates, show that

a b cr i j k, cos sin sin sin cosθ φ θ φ θ φ φ( ) ( ) ( ) ( )= + +

is a parametrization of the ellipsoid 

x a y b z c 1.2 2 2 2 2 2( ) ( ) ( )+ + =

 b. Write an integral for the surface area of the ellipsoid, but do 
not evaluate the integral.

 34. Hyperboloid of one sheet 

 a. Find a parametrization for the hyperboloid of one sheet 
+ − =x y z 12 2 2  in terms of the angle θ associated with  

the circle + =x y r2 2 2 and the hyperbolic parameter u 
associated with the hyperbolic function − =r z 1.2 2   
(Hint: − =u ucosh sinh 1.2 2 )

 b. Generalize the result in part (a) to the hyperboloid 
( ) ( ) ( )+ − =x a y b z c 1.2 2 2 2 2 2

 35. (Continuation of Exercise 34.) Find a Cartesian equation for the 
plane tangent to the hyperboloid + − =x y z 252 2 2  at the 
point ( )x y, , 0 ,0 0  where + =x y 25.0

2
0

2

 36. Hyperboloid of two sheets Find a parametrization of the hyper-
boloid of two sheets ( ) ( ) ( )− − =z c x a y b 1.2 2 2 2 2 2

Surface Area for Implicit and Explicit Forms

 37. Find the area of the surface cut from the paraboloid x y z 02 2+ − =  
by the plane =z 2.

 38. Find the area of the band cut from the paraboloid x y z 02 2+ − =  
by the planes =z 2 and =z 6.

 39. Find the area of the region cut from the plane + + =x y z2 2 5 
by the cylinder whose walls are =x y 2 and = −x y2 .2
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 15.6  Surface Integrals 983

 40. Find the area of the portion of the surface − =x z2 02  that lies 

above the triangle bounded by the lines = =x y3,  0, and 

=y x  in the xy-plane.

 41. Find the area of the surface − − =x y z2 2 02  that lies above 
the triangle bounded by the lines = =x y2,  0, and =y x3  in 
the xy-plane.

 42. Find the area of the cap cut from the sphere + + =x y z 22 2 2  

by the cone = +z x y .2 2

 43. Find the area of the ellipse cut from the plane =z cx  (c a con-
stant) by the cylinder + =x y 1.2 2

 44. Find the area of the upper portion of the cylinder + =x z 12 2  
that lies between the planes = ±x 1 2 and = ±y 1 2.

 45. Find the area of the portion of the paraboloid = − −x y z4 2 2 
that lies above the ring ≤ + ≤y z1 42 2  in the yz-plane.

 46. Find the area of the surface cut from the paraboloid x y z 22 2+ + =  
by the plane =y 0.

 47. Find the area of the surface − + − =x x y z2 ln 15 02  above 
the square ≤ ≤ ≤ ≤R x y: 1 2, 0 1, in the xy-plane.

 48. Find the area of the surface + − =x y z2 2 3 03 2 3 2  above the 
square ≤ ≤ ≤ ≤R x y: 0 1, 0 1, in the xy-plane.

Find the area of the surfaces in Exercises 49–54.

 49. The surface cut from the bottom of the paraboloid = +z x y2 2 
by the plane =z 3

 50. The surface cut from the “nose” of the paraboloid x 1= − 
y z2 2−  by the yz-plane

 51. The portion of the cone = +z x y2 2  that lies over the region 
between the circle + =x y 12 2  and the ellipse + =x y9 4 362 2  
in the xy-plane. (Hint: A formula from geometry states that the 
area inside the ellipse + =x a y b 12 2 2 2  is πab.)

 52. The triangle cut from the plane + + =x y z2 6 3 6 by the bound-
ing planes of the first octant. Calculate the area three ways, using 
different explicit forms.

 53. The surface in the first octant cut from the cylinder ( )=y z2 3 3 2 
by the planes =x 1 and =y 16 3

 54. The portion of the plane + =y z 4 that lies above the region cut 
from the first quadrant of the xz-plane by the parabola = −x z4 2

 55. Use the parametrization

( ) ( )= + +x z x f x z zr i j k, ,

and Equation (5) to derive a formula for σd  associated with the 
explicit form ( )=y f x z, .

 56. Let S be the surface obtained by rotating the smooth curve 
= ≤ ≤y f x a x b( ),  , about the x-axis, where ≥f x( ) 0.

 a. Show that the vector function

θ θ θ( ) = + +x x f x f xr i j k, ( ) cos ( ) sin

is a parametrization of S, where θ is the angle of rotation 
around the x-axis (see the accompanying figure).

y

x

z

0

(x, y, z)

z u

f (x)

 b. Use Equation (4) to show that the surface area of this surface 
of revolution is given by

A f x f x dx2 ( ) 1 ( ) .
a

b 2∫ π [ ]= + ′

To compute the mass of a surface, the flow of a liquid across a curved membrane, or the 
total electrical charge on a surface, we need to integrate a function over a curved surface in 
space. Such a surface integral is the two-dimensional extension of the line integral concept 
used to integrate over a one-dimensional curve. Like line integrals, surface integrals arise 
in two forms. The first occurs when we integrate a scalar function over a surface, such as 
integrating a mass density function defined on a surface to find its total mass. This form 
corresponds to line integrals of scalar functions defined in Section 15.1 and can be used to 
find the mass of a thin wire. The second form involves surface integrals of vector fields, 
analogous to the line integrals for vector fields defined in Section 15.2. An example occurs 
when we want to measure the net flow of a fluid across a surface submerged in the fluid 
(just as we previously defined the flux of F across a curve). In this section we investigate 
these ideas and their applications.

Surface Integrals

Suppose that the function ( )G x y z, ,  gives the mass density (mass per unit area) at each point 
on a surface S. Then we can calculate the total mass of S as an integral in the following way.

15.6 Surface Integrals
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984 Chapter 15 Integrals and Vector Fields

Assume, as in Section 15.5, that the surface S is defined parametrically on a region R 
in the υu -plane,

υ υ υ υ υ( ) ( ) ( ) ( ) ( )= + + ∈u f u g u h u u Rr i j k, , , , , , .

In Figure 15.49, we see how a subdivision of R (considered as a rectangle for simplicity) 
divides the surface S into corresponding curved surface elements, or patches, of area

σ υΔ ≈ ×υ υ du dr r .u u

As we did for the subdivisions when defining double integrals in Section 14.2, we 
number the surface element patches in some order with their areas given by 

…σ σ σΔ Δ Δ,  ,   ,  .n1 2  To form a Riemann sum over S, we choose a point ( )x y z, ,k k k  in the 
kth patch, multiply the value of the function G at that point by the area σΔ ,k  and add 
together the products:

∑ σ( ) Δ
=

G x y z, , .
k

n

k k k k
1

Depending on how we pick ( )x y z, ,k k k  in the kth patch, we may get different values for 
this Riemann sum. Then we take the limit as the number of surface patches increases, their 
areas shrink to zero, and both Δ →u 0 and υΔ → 0. This limit, whenever it exists inde-
pendent of all choices made, defines the surface integral of G over the surface S as

FIGURE 15.49 The area of the patch 
σΔ k is approximated by the area of the 

tangent parallelogram determined by 
the vectors Δu ru and υΔ υr . The point 
( )x y z, ,k k k  lies on the surface patch, 
beneath the parallelogram shown here.

yx

z
Δuru

ΔyryPk

Δsk = Δsuy

(xk, yk, zk)

 ∫∫ ∑σ σ( ) ( )= Δ
→∞ =

G x y z d G x y z, , lim , , .
S k

n

k k k k
n

1

 (1)

Formulas for a Surface Integral of a Scalar Function

1. For a smooth surface S defined parametrically as 

u f u g u h u u Rr i j k, , , , , , ,υ υ υ υ υ( ) ( ) ( ) ( ) ( )= + + ∈

and a continuous function ( )G x y z, ,  defined on S, the surface integral of G 
over S is given by the double integral over R,

 ∫∫ ∫∫σ υ υ υ υ( ) ( ) ( ) ( )( )= × υG x y z d G f u g u h u du dr r, , , ,  , ,  , .
S R

u  (2)

2. For a surface S given implicitly by ( ) =F x y z c, , , where F  is a continuously  
differentiable function, with S lying above its closed and bounded shadow 
region R in the coordinate plane beneath it, the surface integral of the continu-
ous function G over S is given by the double integral over R,

 ∫∫ ∫∫σ( ) ( )= ∇
∇ ⋅

G x y z d G x y z F
F

dA
p

, , , , ,
S R

 (3)

where p is a unit vector normal to R and ∇ ⋅ ≠F p 0.

3. For a surface S given explicitly as the graph of ( )=z f x y, , where f  is a con-
tinuously differentiable function over a region R in the xy-plane, the surface inte-
gral of the continuous function G over S is given by the double integral over R,

 ∫∫ ∫∫σ( ) ( )( )= + +G x y z d G x y f x y f f dx dy, , , , , 1 .
S R

x y
2 2  (4)

Notice the analogy with the definition of the double integral (Section 14.2) and with the 
line integral (Section 15.1). If S is a piecewise smooth surface, and G is continuous over S, 
then the surface integral defined by Equation (1) can be shown to exist.

The formula for evaluating the surface integral depends on the manner in which S is 
described—parametrically, implicitly, or explicitly—as discussed in Section 15.5.
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 15.6  Surface Integrals 985

The surface integral in Equation (1) takes on different meanings in different applica-
tions. If G has the constant value 1, the integral gives the area of S. If G gives the mass 
density of a thin shell of material modeled by S, the integral gives the mass of the shell. If 
G gives the charge density of a thin shell, the integral gives the total charge.

FIGURE 15.50 The cube in Example 2.

1

1

1

0

z

y

x
Side B

Side C

Side A

Surface integrals behave like other double integrals, the integral of the sum of two func-
tions being the sum of their integrals and so on. The domain Additivity Property takes the form

∫∫ ∫∫ ∫∫ ∫∫σ σ σ σ= + + +�G d G d G d G d .
S S S Sn1 2

When S is partitioned by smooth curves into a finite number of smooth patches with non-
overlapping interiors (i.e., if S is piecewise smooth), then the integral over S is the sum of 
the integrals over the patches. Thus, the integral of a function over the surface of a cube is 
the sum of the integrals over the faces of the cube. We integrate over a “turtle shell” of 
welded plates by integrating over one plate at a time and adding the results.

EXAMPLE 1  Integrate ( ) =G x y z x, , 2 over the cone = + ≤ ≤z x y z, 0 1.2 2

Solution Using Equation (2) and the calculations from Example 4 in Section 15.5, we 
have × =θ rr r 2r  and

∫∫ ∫∫

∫∫

∫

σ θ θ

θ θ

θ θ θ θ π

( )( )=

=

= = +⎡
⎣⎢

⎤
⎦⎥

=

π

π

π π

x d r r dr d

r dr d

d

cos 2

2 cos

2
4

cos 2
4 2

1
4

sin 2 2
4

.

S

2 2 2

0

1

0

2

3 2

0

1

0

2

2

0

2

0

2

 

x r cos θ=

EXAMPLE 2  Integrate ( ) =G x y z xyz, ,  over the surface of the cube cut from the 
first octant by the planes = =x y1,  1, and =z 1 (Figure 15.50).

Solution We integrate xyz over each of the six sides and add the results. Since =xyz 0 
on the sides that lie in the coordinate planes, the integral over the surface of the cube 
reduces to

∫∫ ∫∫ ∫∫ ∫∫σ σ σ σ= + +xyz d xyz d xyz d xyz d .
A B CCube

surface
Si de Si de Si de

Side A is the surface ( ) = =f x y z z, , 1 over the square region R x: 0 1,xy ≤ ≤  
y0 1,≤ ≤  in the xy-plane. For this surface and region,

f f f

d
f

f
dA dx dy dx dy

xyz xy xy

p k k p k k

p

, , 1, 1

1
1

(1)

σ

= ∇ = ∇ = ∇ ⋅ = ⋅ =

= ∇
∇ ⋅

= =

= =

Eq. (3)

and

∫∫ ∫∫ ∫∫ ∫σ = = = =xyz d xy dx dy xy dx dy
y

dy
2

1
4

.
A RSi de

0

1

0

1

0

1

xy

Symmetry tells us that the integrals of xyz over sides B and C are also 1 4. Hence,

∫∫ σ = + + =xyz d 1
4

1
4

1
4

3
4

.
Cube

surface
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986 Chapter 15 Integrals and Vector Fields

FIGURE 15.51 The surface S in 
Example 4.

0, 1,
1
2

z =   y21
2

1

1
y

x

z

x + y = 1

a     b

EXAMPLE 3  Integrate ( ) = − −G x y z x y, , 1 2 2  over the “football” surface S 
formed by rotating the curve π π= = − ≤ ≤x z y zcos ,  0,  2 2, around the z-axis.

Solution The surface is displayed in Figure 15.46, and in Example 6 of Section 15.5 we 
found the parametrization

υ υ π π υ π= = = − ≤ ≤ ≤ ≤x u y u z u ucos cos , cos sin , ,
2 2

and 0 2 ,

where υ represents the angle of rotation from the xz-plane about the z-axis. Substituting 
this parametrization into the expression for G gives

υ υ( )( )− − = − + = − =x y u u u1 1 cos cos sin 1 cos sin .2 2 2 2 2 2

The surface area differential for the parametrization was found to be (Example 6,  
Section 15.5)

σ υ= +d u u du dcos 1 sin .2

These calculations give the surface integral

∫∫ ∫∫

∫∫

∫∫

σ υ

υ

υ

π π( )

− − = +

= +

=

= ⋅ ⎤
⎦⎥

= −

π

ππ

ππ

π

−
x y d u u u du d

u u u du d

w dw d

w

1 sin cos 1 sin

2 sin cos 1 sin

2 2
3

4
3

2 2 1 .

S

2 2

2

2

0

2
2

0

2

0

2
2

1

2

0

2

3 2

1

2

 

w u
dw u u du

u w
u w

1 sin ,
2 sin cos

When 0,   1.
When 2,   2.

2

π

= +
=

= =
= =

π
= −

− < <
u u

u
sin sin( )

for 2 0

EXAMPLE 4  Evaluate x z d1 2S σ( )∫∫ +  on the portion of the cylinder =z y 22  
over the triangular region ≥ ≥ + ≤R x y x y: 0,  0,  1, in the xy-plane (Figure 15.51).

Solution The function G on the surface S is given by

( ) ( )= + = +G x y z x z x y, , 1 2 1 .2

With ( )= =z f x y y, 2,2  we use Equation (4) to evaluate the surface integral:

σ = + + = + +d f f dx dy y dx dy1 0 1x y
2 2 2

and

∫∫ ∫∫

∫∫

∫

∫

σ

( )

( )( )

( )

( ) ( )

= + +

= +

= − + −⎡
⎣⎢

⎤
⎦⎥

= − + −

= − + −⎡
⎣⎢

⎤
⎦⎥

= − + − = ≈

−

G x y z d x y y dx dy

x y dy dx

x x x dx

x x x x dx

x x x x

, , 1 1

1

1 1
3

1

4
3

2 1
3

8
9

4
5

2
7

2
27

8
9

4
5

2
7

2
27

284
945

0.30.

S R

x

2 2

2

0

1

0

1

0

1
3

1 2 3 2 5 2 7 2

0

1

3 2 5 2 7 2 9 2

0

1

 

Integrate and evaluate.

Routine algebra
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 15.6  Surface Integrals 987

Orientation of a Surface

A curve C with a parametrization tr( ) has a natural orientation, or direction, that comes 
from the direction of increasing t. The unit tangent vector T along C points in this forward 
direction at each point on the curve. There are two possible orientations for a curve, cor-
responding to whether we follow the direction of the tangent vector T at each point, or the 
direction of −T.

To specify an orientation on a surface in space S, we do something similar, but this 
time we specify a normal vector at each point on the surface. A parametrization of a sur-
face υ( )ur ,  gives a vector × υr ru  that is normal to the surface, and so gives an orientation 
wherever the parametrization applies. A second choice of orientation is found by taking 

( )− × υr ru , giving a vector that points to the opposite side of the surface at each point. In 
essence, an orientation is a way of consistently choosing one of the two sides of a surface. 
Not all surfaces have orientations, but a surface that does have one also has a second, oppo-
site orientation.

Each point on the sphere in Figure 15.52 has one normal vector pointing inward, 
toward the center of the sphere, and another opposite normal vector pointing outward. We 
specify one of two possible orientations for the sphere by choosing either the inward vector 
at each point, or alternatively the outward vector at each point.

When we can choose a continuous field of unit normal vectors n on a smooth surface 
S, we say that S is orientable (or two-sided). Spheres and other smooth surfaces that are the 
boundaries of solid regions in space are orientable since we can choose an outward-pointing 
unit vector n at each point to specify an orientation.

A surface together with its normal field n, or, equivalently, a surface with a consistent 
choice of sides, is called an oriented surface. The vector n at any point gives the positive 
direction or positively oriented side at that point (Figure 15.52). Not all surfaces can be 
oriented. The Möbius band in Figure 15.53 is an example of a surface that is not orientable. 
No matter how you try to construct a continuous unit normal vector field (shown as the 
shafts of thumbtacks in the figure), starting at one point and moving the vector continu-
ously around the surface in the manner shown will return it to the starting point, but point-
ing in the opposite direction. No choice of a vectors can give a continuous normal vector 
field on the Möbius band, so the Möbius band is not orientable.

FIGURE 15.52 (a) An outward-pointing 
vector field and (b) an inward-pointing 
vector field give the two possible orienta-
tions of a sphere.

(a) (b)

FIGURE 15.53 To make a Möbius band, 
take a rectangular strip of paper abcd,  
give the end bc a single twist, and paste  
the ends of the strip together to match a 
with c and b with d. The Möbius band is  
a nonorientable, or one-sided, surface.

d c

a b
Start

Finish
d b

ca

DEFINITION Let F be a vector field in three-dimensional space with continu-
ous components defined over a smooth surface S having a chosen field of normal 
unit vectors n orienting S. Then the surface integral of F over S is

 ∫∫ σ⋅ dF n .
S

 (5)

This integral is also called the flux of the vector field F across S.

If F is the velocity field of a three-dimensional fluid flow, then the flux of F across S 
is the net rate at which fluid is crossing S per unit time in the chosen positive  
direction n defined by the orientation of S. Fluid flows are discussed in more detail in 
Section 15.7.

Surface Integrals of Vector Fields

In Section 15.2 we defined the line integral of a vector field along a path C as ∫ ⋅ dsF T ,
C

 

where T is the unit tangent vector to the path pointing in the forward-oriented direction. 
We have a similar definition for surface integrals.
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988 Chapter 15 Integrals and Vector Fields

FIGURE 15.54 Finding the flux 
through the surface of a parabolic 
cylinder (Example 5).

z

x

y

n

1

1

4

(1, 0, 4) y = x2

Flux Across a Parametrized Surface

∫∫ υ( )= ± ⋅ × υ du dF r rFlux u

R

Computing a Surface Integral for a Parametrized Surface

EXAMPLE 5  Find the flux of = + −yz x zF i j k2  through the parabolic cylinder 
= ≤ ≤ ≤ ≤y x x z, 0 1, 0 4,2  in the direction n indicated in Figure 15.54.

Solution On the surface we have = =x x y x,  ,2  and =z z, so we have the parametri-
zation ( ) = + + ≤ ≤ ≤ ≤x z x x z x zr i j k, , 0 1, 0 4.2  The cross product of tangent 
vectors,

x xr r

i j k

i j1 2 0

0 0 1

2 ,x z× = = −   
xi j

k
2x

z

r
r

= +
=

can be used to find unit normal vectors to the surface,

=
×
×

= −
+

x
x

n
r r
r r

i j2
4 1

.x z

x z
2

We can equally well choose the unit normal vectors −n that point in the opposite direction. 
The first choice is shown in Figure 15.54.

On the surface we have =y x ,2  so the vector field there is

= + − = + −yz x z x z x zF i j k i j k.2 2 2

Thus,

( )( ) ( )⋅ =
+

+ − + − = −
+x

x z x x z x z x
x

F n 1
4 1

( )(2 ) ( ) 1 ( ) 0 2
4 1

.
2

2 2
3

2

The flux of F outward through the surface is

∫∫ ∫∫

∫∫

∫∫ ∫

∫

σ

( )

( ) ( )

( ) ( )

⋅ = −
+

×

= −
+

+

= − = −⎡
⎣⎢

⎤
⎦⎥

= − = − ⎤
⎦⎥

= − =

=

=

d x z x
x

dx dz

x z x
x

x dx dz

x z x dx dz x z x dz

z dz z

F n r r2
4 1

2
4 1

4 1

2 1
2

1
2

1
2

1 1
4

1

1
4

9 1
4

1 2.

S

x z

x

x

3

20

1

0

4

3

20

1

0

4
2

3

0

1

0

4
4 2

0

1

0

4

0

4
2

0

4

 

d dx dzr rx zσ = ×

There is a simple formula for the flux of F across a parametrized surface υ( )ur , . Since

σ υ= × υd du dr ru

and

=
×
×

υ

υ
n

r r
r r

,u

u

it follows that

∫∫ ∫∫ ∫∫σ υ υ( )⋅ = ⋅
×
×

× = ⋅ ×υ

υ
υ υd du d du dF n F

r r
r r

r r F r r .
S

u

uR

u u

R

The other choice of unit normal vector, −n, would add a negative sign to this formula. The 
choice of n or −n depends on the direction in which we choose to measure the flux across 
the surface.

This integral for flux simplifies the computation in Example 5 by eliminating the need 
to compute the canceled factor × υr ru . Since

( ) ( ) ( )

( )

⋅ × = + − = + − ⋅ −

= + − = −

yz x z x z x z x

x z x x x z x

F r r i j k i j k i j2

( )(2 ) ( ) 1 2 ,
x z

2 2 2

2 3
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 15.6  Surface Integrals 989

we obtain directly

∫∫ ∫∫σ ( )= ⋅ = − =d x z x dx dzF nFlux 2 2
S

3

0

1

0

4

in Example 5.

FIGURE 15.55 Calculating the flux of a 
vector field through the surface S. The area 
of the shadow region Rxy is 2 (Example 6).

(1, 1, 0)
x

y

z

n

1

(1, −1, 0)

Rxy

y2 + z2 = 1

S

Computing a Surface Integral for a Level Surface

If S is part of a level surface ( ) =g x y z c, , , then n may be taken to be one of the two fields

 = ± ∇
∇

g
g

n , (6)

depending on which one gives the preferred direction. The corresponding flux is

 

∫∫

∫∫

∫∫

σ= ⋅

= ⋅ ±∇
∇

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

∇
∇ ⋅

= ⋅ ±∇
∇ ⋅

d

g
g

g
g

dA

g
g

dA

F n

F
p

F
p

Flux

.

S

R

R

 

(7)

Eqs. (6) and (3)

EXAMPLE 6  Find the flux of = +yz zF j k2  through the surface S cut from the 
cylinder + = ≥y z z1, 0,2 2  by the planes =x 0 and =x 1, in the direction away from 
the x-axis.

Solution The normal field on S (Figure 15.55) in the specified direction may be calcu-
lated from the gradient of ( ) = +g x y z y z, , 2 2 to be

= + ∇
∇

= +
+

= + = +g
g

y z
y z

y z
y zn j k j k j k2 2

4 4
2 2

2 1
.

2 2

With =p k, we also have

σ = ∇
∇ ⋅

= =d
g

g
dA

z
dA

z
dA

k
2
2

1 .  Eq. (3)

We can drop the absolute value bars because ≥z 0 on S.
The value of ⋅F n on the surface is

( )

( )

( )⋅ = + ⋅ +

= + = +
=

yz z y z

y z z z y z

z

F n j k j k

.

2

2 3 2 2   

+ =y z S1 on  .2 2

The surface projects onto the shadow region R ,xy  which is the rectangle in the xy-plane 
shown in Figure 15.55. Therefore, the flux of F through S in the direction away from the 
x-axis is

∫∫ ∫∫ ∫∫σ ( )⋅ = = = =d z
z

dA dA RF n ( ) 1 area ( ) 2.
S R R

xy

xy xy

 

Moments and Masses of Thin Shells

Thin shells of material like bowls, metal drums, and domes are modeled with surfaces. Their 
moments and masses are calculated with the formulas in Table 15.3. The derivations are 
similar to those in Section 6.6. The formulas resemble those for line integrals in Table 15.1, 
Section 15.1.
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990 Chapter 15 Integrals and Vector Fields

∫∫ δ σ=M dMass:
S

  x y z x y z, , density at  , ,  is mass per unit area.δ δ( ) ( )= =

First moments about the coordinate planes:

∫∫ ∫∫ ∫∫δ σ δ σ δ σ= = =M x d M y d M z d, ,yz

S

xz

S

xy

S

Coordinates of center of mass:

x M M y M M z M M, ,yz xz xy= = =

Moments of inertia about coordinate axes:

∫∫ ∫∫ ∫∫

∫∫

δ σ δ σ δ σ

δ σ

( ) ( ) ( )= + = + = +

=

I y z d I x z d I x y d

I r d

, , ,x

S

y

S

z

S

L

S

2 2 2 2 2 2

2   r x y z x y z L, , distance from point  , ,  to line ( ) ( )=

TABLE 15.3 Mass and moment formulas for very thin shells

EXAMPLE 7  Find the center of mass of a thin hemispherical shell of radius a and 
constant density δ.

Solution We model the shell with the hemisphere

( ) = + + = ≥f x y z x y z a z, , , 02 2 2 2

(Figure 15.56). The symmetry of the surface about the z-axis tells us that = =x y 0. It 
remains only to find z  from the formula =z M M .xy

The mass of the shell is

∫∫ ∫∫δ σ δ σ δ π δ( )= = = =M d d S a( ) area of  2 .
S S

2   constantδ =

To evaluate the integral for M ,xy  we take =p k and calculate

f x y z x y z a

f f z z

d
f

f
dA a

z
dA

i j k

p k

p

2 2 2 2 2

2 2

.

2 2 2

σ

∇ = + + = + + =

∇ ⋅ = ∇ ⋅ = =

= ∇
∇ ⋅

=   Eq. (3)

Then

∫∫ ∫∫ ∫∫δ σ δ δ δ π δπ

π δ
π δ

= = = = =

= = =

M z d z a
z

dA a dA a a a

z
M

M
a
a

a

( )

2 2
.

xy

S R R

xy

2 3

3

2

The shell’s center of mass is the point ( )a0, 0, 2 . 

FIGURE 15.56 The center of mass of a 
thin hemispherical shell of constant den-
sity lies on the axis of symmetry halfway 
from the base to the top (Example 7).

z
x2 + y2 + z2 = a2

0, 0,
a

x2 + y2 = a2

a

x

R
a

2

S

a          b

y
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 15.6  Surface Integrals 991

EXAMPLE 8  Find the center of mass of a thin shell of density δ = z1 2  cut from the 
cone = +z x y2 2  by the planes =z 1 and =z 2 (Figure 15.57).

Solution Since the surface and the density function δ  are symmetric about the z-axis, we 
have = =x y 0. We now proceed to find =z M M .xy  Working as in Example 4 of 
Section 15.5, we have

θ θ θ θ π( ) ( ) ( )= + + ≤ ≤ ≤ ≤r r r r rr i j k, cos sin , 1 2, 0 2 ,

and

× =θ rr r 2 .r

Therefore,

∫∫ ∫∫

∫ ∫

∫∫ ∫∫

∫∫

∫

δ σ θ

θ θ

π

δ σ θ

θ

θ π

π
π

= =

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

=

= =

=

= =

= = =

π

π π

π

π

π

M d
r

r dr d

r d d

M z d
r

r r dr d

dr d

d

z
M

M

1 2

2 ln 2 ln 2

2 2 ln 2,

1 2

2

2 2 2,

2 2
2 2 ln 2

1
ln 2

.

S

xy

S

xy

2

0

2

1

2

0

2

0

2

1

2

21

2

0

2

1

2

0

2

0

2

The shell’s center of mass is the point ( )0, 0,1 ln 2 . 

FIGURE 15.57 The cone frustum 
formed when the cone = +z x y2 2  
is cut by the planes =z 1 and =z 2 
(Example 8).

y

z

x

1

2
z = "x2 + y2

Surface Integrals of Scalar Functions
In Exercises 1–8, integrate the given function over the given surface.

 1. Parabolic cylinder ( ) =G x y z x, , , over the parabolic cylinder 
= ≤ ≤ ≤ ≤y x x z, 0 2, 0 32

 2. Circular cylinder ( ) =G x y z z, , , over the cylindrical surface 
+ = ≥ ≤ ≤y z z x4, 0,1 42 2

 3. Sphere G x y z x, , ,2( ) =  over the unit sphere x y z 12 2 2+ + =

 4. Hemisphere ( ) =G x y z z, , ,2  over the hemisphere x y2 2+ + 
z a z,  02 2= ≥

 5. Portion of plane ( ) =F x y z z, , , over the portion of the 
plane + + =x y z 4 that lies above the square x0 1,≤ ≤  

y0 1,≤ ≤  in the xy-plane

 6. Cone ( ) = −F x y z z x, , , over the cone z x y ,2 2= +  
z0 1≤ ≤

 7. Parabolic dome ( ) = −H x y z x z, , 5 4 ,2  over the parabolic 
dome = − − ≥z x y z1 ,  02 2

 8. Spherical cap ( ) =H x y z yz, , , over the part of the sphere 
+ + =x y z 42 2 2  that lies above the cone = +z x y2 2

 9. Integrate ( ) = + +G x y z x y z, ,  over the surface of the cube 
cut from the first octant by the planes = = =x a y a z a,  ,  .

 10. Integrate ( ) = +G x y z y z, ,  over the surface of the wedge in 
the first octant bounded by the coordinate planes and the planes 

=x 2 and + =y z 1.

 11. Integrate ( ) =G x y z xyz, ,  over the surface of the rectangular solid 
cut from the first octant by the planes = =x a y b,  , and =z c.

 12. Integrate ( ) =G x y z xyz, ,  over the surface of the rectangular 
solid bounded by the planes = ± = ±x a y b,  , and = ±z c.

 13. Integrate ( ) = + +G x y z x y z, ,  over the portion of the plane 
+ + =x y z2 2 2 that lies in the first octant.

 14. Integrate ( ) = +G x y z x y, , 42  over the surface cut from the 
parabolic cylinder + =y z4 162  by the planes = =x x0,  1, 
and =z 0.

EXERCISES 15.6
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992 Chapter 15 Integrals and Vector Fields

 15. Integrate ( ) = −G x y z z x, ,  over the portion of the graph of 
= +z x y 2 above the triangle in the xy-plane having vertices 

( ) ( )0, 0, 0 ,   1,1, 0 , and ( )0,1, 0 . (See accompanying figure.)

z

x

y

z = x + y2

(1, 1, 0)

(0, 1, 0)

(0, 0, 0)

(0, 1, 1)

(1, 1, 2)

1

1

1

 16. Integrate ( ) =G x y z x, ,  over the surface given by

= + ≤ ≤ − ≤ ≤z x y x yfor 0 1, 1 1.2

 17. Integrate ( ) =G x y z xyz, ,  over the triangular surface with vertices 
( ) ( )1, 0, 0 ,  0, 2, 0 , and ( )0,1,1 .

z

y

x (1, 0, 0)

(0, 1, 1)

(0, 2, 0)

1

 18. Integrate ( ) = − −G x y z x y z, ,  over the portion of the plane 
+ =x y 1 in the first octant between =z 0 and =z 1 (see the 

figure below).

z

y

x

(1, 0, 1)

(0, 1, 1)

1

1

1

Finding Flux or Surface Integrals of Vector Fields
In Exercises 19–28, use a parametrization to find the flux σ∫∫ ⋅ dF nS  
across the surface in the specified direction.

 19. Parabolic cylinder = + −z x zF i j k32  through the sur-
face cut from the parabolic cylinder = −z y4 2 by the planes 

= =x x0,  1, and =z 0 in the direction away from the x-axis

 20. Parabolic cylinder = −x xzF j k2  through the surface cut 
from the parabolic cylinder = − ≤ ≤y x x,  1 1,2  by the planes 

=z 0 and =z 2 in the direction away from the yz-plane

 21. Sphere = zF k across the portion of the sphere + +x y2 2  
=z a2 2 in the first octant in the direction away from the origin

 22. Sphere = + +x y zF i j k across the sphere + + =x y z a2 2 2 2 
in the direction away from the origin

 23. Plane = + +xy yz xzF i j k2 2 2  upward across the portion of 
the plane + + =x y z a2  that lies above the square ≤ ≤x a0 , 

≤ ≤y a0 , in the xy-plane

 24. Cylinder = + +x y zF i j k through the portion of the cylinder 
+ =x y 12 2  cut by the planes =z 0 and =z a in the direction 

away from the z-axis

 25. Cone = −xy zF i k through the cone = +z x y ,2 2  
≤ ≤z0 1, in the direction away from the z-axis

 26. Cone = + −y xzF i j k2  through the cone = +z x y2 ,2 2  
≤ ≤z0 2, in the direction away from the z-axis

 27. Cone frustum = − − +x y zF i j k2  through the portion of the 
cone = +z x y2 2  between the planes =z 1 and =z 2 in the 
direction away from the z-axis

 28. Paraboloid = + +x yF i j k4 4 2  through the surface cut from 
the bottom of the paraboloid = +z x y2 2 by the plane =z 1 in 
the direction away from the z-axis

In Exercises 29 and 30, find the surface integral of the field F over the 
portion of the given surface in the specified direction.

 29. ( ) = − + +x y zF i j k, , 2 3

S:  rectangular surface = ≤ ≤ ≤ ≤z x y0, 0 2, 0 3, 
direction k

 30. ( ) = − +x y z yx xzF i j k, , 22

S:  rectangular surface = − ≤ ≤ ≤ ≤y x z0, 1 2, 2 7, 
direction −j

In Exercises 31–36, use Equation (7) to find the surface integral of the 
field F over the portion of the sphere + + =x y z a2 2 2 2 in the first 
octant in the direction away from the origin.

 31. ( ) =x y z zF k, ,

 32. ( ) = − +x y z y xF i j, ,

 33. ( ) = − +x y z y xF i j k, ,

 34. ( ) = + +x y z zx zy zF i j k, , 2

 35. ( ) = + +x y z x y zF i j k, ,

 36. x y z
x y z

x y z
F

i j k
, ,

2 2 2
( ) =

+ +
+ +

 37. Find the flux of the field ( ) = + −x y z z x zF i j k, , 32  through 
the surface cut from the parabolic cylinder = −z y4 2 by the 
planes = =x x0,  1, and =z 0 in the direction away from the 
x-axis.

 38. Find the flux of the field ( ) = + +x y z x yF i j k, , 4 4 2  through 
the surface cut from the bottom of the paraboloid = +z x y2 2 
by the plane =z 1 in the direction away from the z-axis.

M15_HASS5901_15_GE_C15.indd   992 07/03/23   4:57 PM

www.konkur.in

Telegram: @uni_k



 15.7  Stokes’ Theorem 993

 39. Let S be the portion of the cylinder =y e x  in the first octant that  
projects parallel to the x-axis onto the rectangle ≤ ≤R y: 1 2,yz  

≤ ≤z0 1, in the yz-plane (see the accompanying figure). Let n 
be the unit vector normal to S that points away from the yz-plane. 
Find the flux of the field ( ) = − + +x y z y zF i j k, , 2 2  across S 
in the direction of n.

z

yx

1

1

2
Sy = e x

Ryz

 40. Let S be the portion of the cylinder =y xln  in the first octant 
whose projection parallel to the y-axis onto the xz-plane is the 
rectangle ≤ ≤ ≤ ≤R x e z: 1 , 0 1.xz  Let n be the unit vector 
normal to S that points away from the xz-plane. Find the flux of 

= +y zF j k2  through S in the direction of n.

 41. Find the outward flux of the field = + +xy yz xzF i j k2 2 2  
across the surface of the cube cut from the first octant by the 
planes = = =x a y a z a,  , and .

 42. Find the outward flux of the field = + +xz yzF i j k across the 
surface of the upper cap cut from the ball + + ≤x y z 252 2 2  
by the plane =z 3.

Moments and Masses

 43. Centroid Find the centroid of the portion of the sphere 
+ + =x y z a2 2 2 2 that lies in the first octant.

 44. Centroid Find the centroid of the surface cut from the cylinder 
+ = ≥y z z9,  0,2 2  by the planes =x 0 and =x 3 (resem-

bles the surface in Example 6).

 45. Thin shell of constant density Find the center of mass and the 
moment of inertia about the z-axis of a thin shell of constant den-
sity δ cut from the cone + − =x y z 02 2 2  by the planes =z 1 
and =z 2.

 46. Conical surface of constant density Find the moment of iner-
tia about the z-axis of a thin shell of constant density δ cut from 
the cone + − = ≥x y z z4 4 0,  0,2 2 2  by the circular cylinder 

+ =x y x22 2  (see the accompanying figure).

z

y

x 2

4x2 + 4y2 − z2 = 0

z ≥ 0

x2 + y2 = 2x
or

r = 2 cos u

 47. Spherical shells Find the moment of inertia about a diameter 
of a thin spherical shell of radius a and constant density δ. (Work 
with a hemispherical shell and double the result.)

 48. Conical Surface Find the centroid of the lateral surface of a 
solid cone of base radius a and height h (cone surface minus the 
base).

 49. A surface S lies on the plane + + =x y z2 3 6 12 directly above 
the rectangle in the xy-plane with vertices ( ) ( ) ( )0, 0 ,  1, 0 ,  0, 2 ,  
and ( )1, 2 . If the density at a point ( )x y z, ,  on S is given by 
δ( ) = +x y z xy z, , 4 6 mg cm ,2  find the total mass of S.

 50. A surface S lies on the paraboloid = +z x y1
2

1
2

2 2 directly 

above the triangle in the xy-plane with vertices ( ) ( )0, 0 ,  2, 0 ,  
and ( )2, 4 . If the density at a point ( )x y z, ,  on S is given by 
δ( ) =x y z xy, , 9 g cm ,2  find the total mass of S.

15.7 Stokes’ Theorem

To calculate the counterclockwise circulation of a two-dimensional vector field 
= +M NF i j around a simple closed curve in the plane, Green’s Theorem says we can 

compute the double integral over the region enclosed by the curve of the scalar quantity 
( )∂ ∂ − ∂ ∂N x M y . This expression is the k-component of a curl vector field, and it 
measures the rate of rotation of F at each point in the region around an axis parallel to k. 
For a vector field in three-dimensional space, the rotation at each point is around an axis 
that is parallel to the curl vector at that point. When a closed curve C in space is the bound-
ary of an oriented surface, we will see that the circulation of F around C is equal to the 
surface integral of the curl vector field. This result extends Green’s Theorem from regions 
in the plane to general surfaces in space having a smooth boundary curve.
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994 Chapter 15 Integrals and Vector Fields

The Curl Vector Field

Suppose that F is the velocity field of a fluid flowing in space. Particles near the point 
( )x y z, ,  in the fluid tend to rotate around an axis through ( )x y z, ,  that is parallel to a certain 
vector we are about to identify. This vector points in the direction for which the rotation is 
counterclockwise when viewed looking down onto the plane of the circulation from the tip 
of the arrow representing the vector. This is the direction your right-hand thumb points when 
your fingers curl around the axis of rotation in the way consistent with the rotating motion 
of the particles in the fluid (see Figure 15.58). The length of the vector measures the rate of 
rotation. The vector, introduced in Equation (3) of Section 15.3, is called the curl vector for 
the vector field = + +M N PF i j k, and it is given by

 ( )= ∂
∂

− ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ + ∂

∂
− ∂

∂
+ ∂

∂
− ∂

∂
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

P
y

N
z

M
z

P
x

N
x

M
y

F i j kcurl  . (1)

This information is a consequence of Stokes’ Theorem, the generalization to space of the 
circulation-curl form of Green’s Theorem.

Notice that ( )( ) ⋅ = ∂ ∂ − ∂ ∂N x M yF kcurl  , which is consistent with our discussion 
in Section 15.4 when ( ) ( )= +M x y N x yF i j, , . The formula for curl F in Equation (1) is 
often expressed using the symbol

 ∇ = ∂
∂

+ ∂
∂

+ ∂
∂x y z

i j k . (2)

The symbol ∇ is pronounced “del,” and we can use this symbol to express the curl of F 
with the formula

( )

∇ × = ∂
∂

∂
∂

∂
∂

= ∂
∂

− ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ + ∂

∂
− ∂

∂
+ ∂

∂
− ∂

∂
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

x y z
M N P

P
y

N
z

M
z

P
x

N
x

M
y

F

i j k

i j k.

We often use this cross product notation to write the curl symbolically as “del cross F.”

FIGURE 15.58 The circulation vector 
at a point ( )x y z, ,  in a plane in a three-
dimensional fluid flow. Notice its right-
hand relation to the rotating particles in 
the fluid.

Curl F

(x, y, z)

∇ is the symbol “del.”

 = ∇ ×F Fcurl   (3)

EXAMPLE 1  Find the curl of ( )= − + +x z xe xyF i j k.z2

Solution We use Equation (3) and the determinant form for the cross product, which 
gives,

( )( )

( )

( ) ( )

( )

( )

( )

= ∇ ×

= ∂
∂

∂
∂

∂
∂

−

= ∂
∂

− ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ − ∂

∂
− ∂

∂
−

+ ∂
∂

− ∂
∂

−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

= − − + + −

= − − + +

x y z

x z xe xy

y
xy

z
xe

x
xy

z
x z

x
xe

y
x z

x xe y e

x e y e

F F

i j k

i j

k

i j k

i j k

curl 

( ) ( ) ( )

( )

1 0

1 1 .

z

z

z

z z

z z

2

2

2

 

Curl F is a vector, not  
a scalar.
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 15.7  Stokes’ Theorem 995

FIGURE 15.59 The orientation of the 
bounding curve C gives it a right-hand 
relation to the normal field n. If the thumb 
of a right hand points along n, the fingers 
curl in the direction of C.

nS

C

THEOREM 6—Stokes’ Theorem
Let S be a piecewise smooth oriented surface having a piecewise smooth boundary 
curve C. Let = + +M N PF i j k be a vector field whose components have con-
tinuous first partial derivatives on an open region containing S. Then the circulation 
of F around C in the direction counterclockwise with respect to the surface’s unit 
normal vector n equals the integral of the curl vector field ∇ × F over S:

 ∫∫ σ( )⋅ = ∇ × ⋅
D

d dF r F n
C S

 (4)

Counterclockwise  
circulation

Curl integral

As we will see, the operator ∇ has a number of other applications. For instance, when 
applied to a scalar function ( )f x y z, , , it gives the gradient of f :

∇ = ∂
∂

+ ∂
∂

+ ∂
∂

f
f
x

f
y

f
z

i j k.

In this setting it is read sometimes as “del f ” and sometimes as “grad f .”

Notice from Equation (4) that if two different oriented surfaces S1 and S2 have the 
same boundary C, their curl integrals are equal:

∫∫ ∫∫σ σ( ) ( )∇ × ⋅ = ∇ × ⋅d dF n F n .
S S

1 2

1 2

Both curl integrals equal the counterclockwise circulation integral on the left side of 
Equation (4) as long as the unit normal vectors n1 and n 2 correctly orient the surfaces. So 
the curl integral is independent of the surface and depends only on circulation along the 
boundary curve. This independence of surface resembles the path independence for the 
flow integral of a conservative velocity field along a curve, where the value of the flow 
integral depends only on the endpoints (that is, the boundary points) of the path. In that 
sense, the curl field ∇ × F is analogous to the gradient field ∇f  of a scalar function f .

If C is a curve in the xy-plane, oriented counterclockwise, and R is the region in the 
xy-plane bounded by C, then σ =d dx dy and

( ) ( )∇ × ⋅ = ∇ × ⋅ = ∂
∂

− ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

N
x

M
y

F n F k .

Under these conditions, Stokes’ equation becomes

∫∫⋅ = ∂
∂

− ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

D

d N
x

M
y

dx dyF r ,
C R

which is the circulation-curl form of the equation in Green’s Theorem. Conversely, by 
reversing these steps we can rewrite the circulation-curl form of Green’s Theorem for two-
dimensional fields in del notation as

Stokes’ Theorem

Stokes’ Theorem generalizes Green’s Theorem to three dimensions. The circulation-curl 
form of Green’s Theorem relates the counterclockwise circulation of a vector field around 
a simple closed curve C in the xy-plane to a double integral over the plane region R enclosed 
by C. Stokes’ Theorem relates the circulation of a vector field around the boundary C of an 
oriented surface S in space (Figure 15.59) to a surface integral over the surface S. We 
require that the surface be piecewise smooth, which means that it is a finite union of 
smooth surfaces joining along smooth curves.
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996 Chapter 15 Integrals and Vector Fields

 ∫∫ ( )⋅ = ∇ × ⋅
D

d dAF r F k .
C R

 (5)

See Figure 15.60.

FIGURE 15.60 When applied to  
curves and surfaces in the plane, Stokes’ 
Theorem gives the circulation-curl version 
of Green’s Theorem. But Stokes’ Theorem 
also applies more generally, to curves and 
surfaces not lying in the plane.

Circulation 

Curl

k

R

Green:

Circulation 

Curl

Stokes:
n

S

FIGURE 15.61 A hemisphere and a 
disk, each with boundary C (Examples 2 
and 3).

y

z

x

n
x2 + y2 + z2 = 9

C: x2 + y2 = 9

k
y

z

x

EXAMPLE 2  Evaluate both sides of Equation (4) for the hemisphere 
+ + = ≥S x y z z:  9,  0;2 2 2  its bounding circle + = =C x y z:  9,  0,2 2  traversed 

counterclockwise (when viewed from above); and the field = −y xF i j.

Solution The hemisphere looks much like the surface in Figure 15.59 with the bounding 
circle C in the xy-plane (see Figure 15.61). We calculate the counterclockwise circulation 
around C (as viewed from above) using the parametrization θ θ( )= +r i( ) 3 cos  

θ θ π( ) ≤ ≤j3 sin , 0 2 :

∫

θ θ θ θ

θ θ

θ θ θ θ θ

θ π

( ) ( )

( ) ( )

= − +

= − = −

⋅ = − − = −

⋅ = − = −
π

d d d

y x

d d d d

d d

r i j

F i j i j

F r

F r

3 sin 3 cos

3 sin 3 cos

9 sin 9 cos 9

9 18 .
C

2 2

0

2

D

When evaluating the right side of Equation (4), we choose the orientation of the unit nor-
mal vector so that it points away from the origin, giving it a right-hand relation to the pre-
scribed orientation of the curve C (see Figure 15.61). We have

P
y

N
z

M
z

P
x

N
x

M
y

x y z
x y z

x y z

d
z

dA

d
x y z

d z
z

dA dA

F i j k

i j k k

n i j k i j k

F n k i j k

0 0 0 0 1 1 2

3

3

( 2 )
3

2
3

3 2

2 2 2

σ

σ σ

( )

( )

( ) ( ) ( )

( )

∇ × = ∂
∂

− ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ + ∂

∂
− ∂

∂
+ ∂

∂
− ∂

∂
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

= − + − + − − = −

= + +
+ +

= + +

=

∇ × ⋅ = − × + + = − = −

Unit normal vector

Section 15.6, Example 7,  
with =a 3

and

∫∫ ∫∫σ π( )∇ × ⋅ = − = −
+ ≤

d dAF n 2 18 .
S x y 92 2

The circulation around the circle equals the integral of the curl over the hemisphere, as it 
should from Stokes’ Theorem. 

The surface integral in Stokes’ Theorem can be computed using any surface having 
boundary curve C, provided the surface is properly oriented and lies within the domain of 
the field F. The next example illustrates this fact for the circulation around the curve C in 
Example 2.

EXAMPLE 3  Calculate the circulation around the bounding circle C in Example 2, 
using the disk of radius 3 centered at the origin in the xy-plane as the surface S (instead of 
the hemisphere). See Figure 15.61.

Solution As in Example 2, ∇ × = −F k2 . When the surface is the described disk in the 
xy-plane, we have the normal vector =n k, chosen to give a counterclockwise direction 
for C as required by Stokes’ Theorem, so that

σ( )∇ × ⋅ = − ⋅ = −d dA dAF n k k2 2
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 15.7  Stokes’ Theorem 997

FIGURE 15.62 The curve C and cone S 
in Example 4.

y

z

x

n

S: r(r, u) = (r cos u)i + (r sin u)j + rk

C: x2 + y2 = 4,  z = 2

and

∫∫ ∫∫σ π( )∇ × ⋅ = − = −
+ ≤

d dAF n 2 18 ,
S x y 92 2

a simpler calculation than before. 

EXAMPLE 4  Find the circulation of the field ( )= − + +x y z xF i j k42 2  around 

the curve C in which the plane =z 2 meets the cone = +z x y ,2 2  counterclockwise 
as viewed from above (Figure 15.62).

Solution Stokes’ Theorem enables us to find the circulation by integrating over the sur-
face of the cone. Traversing C in the counterclockwise direction viewed from above cor-
responds to taking the inner normal n to the cone, the normal with a positive k-component.

We parametrize the cone as

θ θ θ θ π( ) ( ) ( )= + + ≤ ≤ ≤ ≤r r r r rr i j k, cos sin , 0 2, 0 2 .

We then have

r r r

r

d r dr d

x

r

n
r r
r r

i j k

i j k

F i j k

i j k

cos sin

2

1
2

cos sin

2

4 2

4 2 cos .

r

r

θ θ

θ θ

σ θ

θ

( ) ( )

( ) ( )( )

=
×
×

=
− − +

= − − +

=

∇ × = − − +

= − − +

θ

θ

Accordingly,

θ θ θ

θ θ

( )

( )

( )∇ × ⋅ = + +

= + +

r

r

F n 1
2

4 cos 2 cos sin 1

1
2

4 cos sin 2 1 ,

and the circulation is

∫∫

∫∫

σ

θ θ θ π( )( )

( )⋅ = ∇ × ⋅

= + + =
π

D

d d

r r dr d

F r F n

1
2

4 cos sin 2 1 2 4 .

C S

0

2

0

2
 

Section 15.5, Example 4

Section 15.5, Example 4

Computation of curl

θ=x r cos

Stokes’ Theorem, Eq. (4)

EXAMPLE 5  The cone used in Example 4 is not the easiest surface to use for calculat-
ing the circulation around the bounding circle C lying in the plane =z 2. If instead we use 
the flat disk of radius 2 centered on the z-axis and lying in the plane =z 2, then the normal 
vector to the surface S is =n k (chosen to give a counterclockwise direction for the curve 
C). Just as in the computation for Example 4, we still have ∇ × = − − +xF i j k4 2 . 
However, now we get ( )∇ × ⋅ =F n 1, so that

∫∫ ∫∫σ π( )∇ × ⋅ = =
+ ≤

d dAF n 1 4 .
S x y 42 2

  The shadow is the disk of radius 2 in the xy-plane.

This result agrees with the circulation value found in Example 4. 
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998 Chapter 15 Integrals and Vector Fields

EXAMPLE 6  Find a parametrization for the surface S formed by the part of the hyper-
bolic paraboloid = −z y x2 2 lying inside the cylinder of radius one around the z-axis 
and for the boundary curve C of S. (See Figure 15.63.) Then verify Stokes’ Theorem for S 
using the normal having positive k-component and the vector field = − +y x xF i j k.2

Solution As the unit circle is traversed in the xy-plane, the z-coordinate of the surface 
with the curve C as boundary is given by −y x .2 2  We choose the orientation for the curve 
C to be counterclockwise when viewed from above (see Figure 15.63). A parametrization 
of C is given by

π( ) ( ) ( )= + + − ≤ ≤t t t t t tr i j k( ) cos sin sin cos , 0 22 2

with

π( ) ( ) ( )= − + + ≤ ≤d
dt

t t t t tr i j ksin cos 4 sin cos , 0 2 .

Along the curve tr( ) the formula for the vector field F is

( ) ( ) ( )= − +t t tF i j ksin cos cos .2

The counterclockwise circulation along C is the value of the line integral

∫ ∫

∫

π

( )

( )

⋅ = − − +

= −

= − −⎡
⎣
⎢

⎤
⎦
⎥ = −

π π

π

π

d
dt

dt t t t t dt

t t dt

t t

F r sin cos 4 sin cos

4 sin cos 1

cos 2 .

0

2
2 2 3

0

2

3

0

2

4

0

2

We now compute the same quantity by integrating ( )∇ × ⋅F n over the surface S. We 
use polar coordinates and parametrize S by noting that above the point θ( )r,  in the plane, 
the z–coordinate of S is θ θ− = −y x r rsin cos .2 2 2 2 2 2  A parametrization of S is

θ θ θ θ θ θ π( ) ( ) ( ) ( )= + + − ≤ ≤ ≤ ≤r r r r rr i j k, cos sin sin cos , 0 1, 0 2 .2 2 2

We next compute σ( )∇ × ⋅ dF n . We have

θ( )∇ × = ∂
∂

∂
∂

∂
∂

−

= − − = − −
x y z

y x x

x rF

i j k

j k j k2 2 2 cos 2

2

and

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

( ) ( )

( ) ( ) ( )

( )

( )

( )

( )

( )

= + + −

= − + +

× = −

−

= − +

− + + +

θ

θ

r

r r r

r

r r r

r

r r

r i j k

r i j k

r r

i j k

i

j k

cos sin 2 sin cos

sin cos 4 sin cos

cos sin 2 sin cos

sin cos 4 sin cos

2 2 sin cos sin cos cos

2 2 sin cos sin sin cos .

r

r

2 2

2

2 2

2

2 2 2 3

2 2 3 2

Note that the k-component is always nonnegative. Therefore, we take

( )
= +

×
×

θ

θ
n

r r
r r

.r

r

y

x

S

z

C

n

1

1

−1

1

y

x

S

z

C

1

n

FIGURE 15.63 The surface and vector 
field for Example 6.
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 15.7  Stokes’ Theorem 999

FIGURE 15.64 Circulation curve C in 
Example 7.

y
x

z

1

1

Sphere
x2 + y2 + z2 = 1

Circle C in the
plane z = 

Cone
z = "x2 + y2 

"

2

1

1

We now obtain

∫∫ ∫∫

∫∫

∫∫

∫

∫

σ θ

θ

θ θ θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

θ θ θ

π π( )

( )[ ]

( )

( )

( )

( ) ( )

( )

∇ × ⋅ = ∇ × ⋅
×
×

×

= ∇ × ⋅ ×

= + + −

= + −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= + −

= − + −⎡
⎣⎢

⎤
⎦⎥

= − + − + − + = −

θ

θ
θ

π

θ

π

π

π

π

π

=

=

d dr d

dr d

r r dr d

r r d

d

F n F
r r
r r

r r

F r r

4 2 sin cos sin   cos sin cos 2

3 sin cos sin cos

3 sin cos sin cos 1

3
4

cos 1
4

sin

3
4

0 2 3
4

0 0 2 .

S

r

r
r

r

r

r

0

1

0

2

0

1

0

2

3 3 3 3

0

1

0

2

4 3 3 2

0

1

0

2

3 3

0

2

4 4

0

2

Integrate.

Evaluate.

So the surface integral of ( )∇ × ⋅F n over S equals the counterclockwise circulation of F 
along C, as asserted by Stokes’ Theorem. 

EXAMPLE 7  Calculate the circulation of the vector field

( ) ( ) ( )= + + + + −x z y x z yF i j k22 2 2

along the curve of intersection of the sphere + + =x y z 12 2 2  with the cone 
= +z x y2 2  traversed in the counterclockwise direction around the z-axis when viewed 

from above.

Solution The sphere and cone intersect when ( )= + + = + =x y z z z z1 2 ,2 2 2 2 2 2  
or =z 1 2 (see Figure 15.64). We apply Stokes’ Theorem to the curve of intersection 

+ =x y 1 22 2  considered as the boundary of the enclosed disk in the plane =z 1 2. 
The normal vector to the surface that gives a counterclockwise orientation to the boundary 
curve is then =n k. We calculate the curl vector as

∇ × = ∂
∂

∂
∂

∂
∂

+ + −

= − + +
x y z

x z y x z y

F

i j k

i j k

2

2 ,

2 2 2

so that ( )∇ × ⋅ =F k 2. The circulation around the disk is

∫∫

∫∫

σ

σ π π( )

( )⋅ = ∇ × ⋅

= = ⋅ = ⋅ =

D

d d

d

F r F k

2 2 area of disk 2 1
2

.

C S

S

2

 

Paddle Wheel Interpretation of ∇ × F

Suppose that F is the velocity field of a fluid moving in a region R in space containing the 
closed curve C. Then

⋅ dF r
C
D
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1000 Chapter 15 Integrals and Vector Fields

is the circulation of the fluid around C. By Stokes’ Theorem, the circulation is equal to the 
flux of ∇ × F through any suitably oriented surface S with boundary C:

∫∫ σ( )⋅ = ∇ × ⋅
D

d dF r F n .
C S

Suppose we fix a point Q in the region R and a direction u at Q. Take C to be a circle of 
radius ρ, with center at Q, whose plane is normal to u. If ∇ × F is continuous at Q, the 
average value of the u-component of ∇ × F over the circular disk S bounded by C 
approaches the u-component of ∇ × F at Q as the radius ρ → 0:

∫∫πρ
σ( )( )∇ × ⋅ = ∇ × ⋅

ρ→
dF u F ulim 1 ( ) .

Q S
0 2

If we apply Stokes’ Theorem and replace the surface integral by a line integral over C, we get

 
Dπρ

( )( )∇ × ⋅ = ⋅
ρ→

dF u F rlim 1 .
Q C

0 2
 (6)

The left-hand side of Equation (6) has its maximum value when u is the direction of ∇ × F. 
When ρ is small, the limit on the right-hand side of Equation (6) is approximately

πρ
⋅ dF r1 ,

C
2
D

which is the circulation around C divided by the area of the disk (circulation density). 
Suppose that a small paddle wheel of radius ρ is introduced into the fluid at Q, with its axle 
directed along u (Figure 15.65). The circulation of the fluid around C affects the rate of 
spin of the paddle wheel. The wheel spins fastest when the circulation integral is maxi-
mized; therefore, it spins fastest when the axle of the paddle wheel points in the direction 
of ∇ × F.

EXAMPLE 8  A fluid of constant density rotates around the z-axis with velocity 
ω( )= − +y xF i j , where ω  is a positive constant called the angular velocity of the rota-

tion (Figure 15.66). Find ∇ × F and relate it to the circulation density.

Solution With ω ω= − +y xF i j, we find the curl

ω ω ω

( )
( )( ) ( )

∇ × = ∂
∂

− ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ + ∂

∂
− ∂

∂
+ ∂

∂
− ∂

∂
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

= − + − + − − =

P
y

N
z

M
z

P
x

N
x

M
y

F i j k

i j k k0 0 0 0 ( ) 2 ,

and therefore ω( )∇ × ⋅ =F k 2 . By Stokes’ Theorem, the circulation of F around a circle  
C of radius ρ (traversed counterclockwise when viewed from above) bounding a disk S in 
a plane normal to ∇ × F, say the xy-plane, is

∫∫ ∫∫σ ω ω πρ( )⋅ = ∇ × ⋅ = ⋅ =
D

d d dx dyF r F n k k2 (2 )( ).
C S S

2

Solving this last equation for ω2 , we see that

ω
πρ

( )∇ × ⋅ = = ⋅ dF k F r2 1 ,
C

2
D

which is consistent with Equation (6) when =u k. 

EXAMPLE 9  Use Stokes’ Theorem to evaluate ∫ ⋅ dF r,C  if = + +xz xy xzF i j k3  
and C is the boundary of the portion of the plane + + =x y z2 2 in the first octant, tra-
versed counterclockwise as viewed from above (Figure 15.67).

FIGURE 15.65 A small paddle wheel 
in a fluid spins fastest at point Q when its 
axle points in the direction of curl F.

Q

Curl F

FIGURE 15.66 A steady rotational flow 
parallel to the xy-plane, with constant 
angular velocity ω in the positive (coun-
terclockwise) direction (Example 8).

x

y

r

0

z

 P(x, y, z)

v

P(x, y, 0)

F = v(−yi + xj)

FIGURE 15.67 The planar surface in 
Example 9.

y

z

x

(1, 0, 0)

(0, 2, 0)

(0, 0, 2)

C

y = 2 − 2x

n

2x + y + z = 2

R
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 15.7  Stokes’ Theorem 1001

FIGURE 15.68 The portion of the  
elliptic paraboloid in Example 10, showing 
its curve of intersection C with the plane 

=z 1 and its inner normal orientation by n.

z

y
x

C: x2 + 4y2 = 1, z = 1

z = x2 + 4y2

n

Solution The plane is the level surface ( ) =f x y z, , 2 of the function 
( ) = + +f x y z x y z, , 2 . The unit normal vector

( )
( )= ∇

∇
= + +

+ +
= + +f

f
n i j k

i j k
i j k2

2
1
6

2

is consistent with the counterclockwise motion around C. To apply Stokes’ Theorem, we find

( )= ∇ × = ∂
∂

∂
∂

∂
∂

= − +
x y z

xz xy xz

x z yF F

i j k

j kcurl 

3

3 .

On the plane, z equals − −x y2 2 , so

( )( ) ( )∇ × = − − − + = + − +x x y y x y yF j k j k3 2 2 7 3 6

and

( ) ( )( )∇ × ⋅ = + − + = + −x y y x yF n 1
6

7 3 6 1
6

7 4 6 .

The surface area differential is

σ = ∇
∇ ⋅

=d
f

f
dA dx dy

k
6

1
.  Formula (7) in Section 15.5

The circulation is

∫∫

∫∫

∫∫

σ

( )

( )

( )⋅ = ∇ × ⋅

= + −

= + − = −

−

−

D

d d

x y dy dx

x y dy dx

F r F n

1
6

7 4 6 6

7 4 6 1.

C S

x

x

0

2 2

0

1

0

2 2

0

1
 

Stokes’ Theorem, Eq. (4)

EXAMPLE 10  Let the surface S be the elliptic paraboloid = +z x y42 2 lying 
beneath the plane =z 1 (Figure 15.68). We define the orientation of S by taking the inner 
normal vector n to the surface, which is the normal having a positive k-component. Find 
the flux of ∇ × F across S in the direction n for the vector field = − +y xz xzF i j k.2

Solution We use Stokes’ Theorem to calculate the curl integral by finding the equivalent 
counterclockwise circulation of F around the curve of intersection C of the paraboloid 

= +z x y42 2 and the plane =z 1, as shown in Figure 15.68. Note that the orientation of 
S is consistent with traversing C in a counterclockwise direction around the z-axis. The 
curve C is the ellipse + =x y4 12 2  in the plane =z 1. We can parametrize the ellipse by 

= = =x t y t zcos ,  sin ,  11
2  for π≤ ≤t0 2 , so C is given by

π( ) ( )= + + ≤ ≤t t t tr i j k( ) cos 1
2

sin , 0 2 .

To compute the circulation integral ⋅ dF r,CD  we evaluate F along C and find the velocity 
vector d dtr :

( ) ( ) ( ) ( )= − +t t t tF r i j k( ) 1
2

sin cos cos
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1002 Chapter 15 Integrals and Vector Fields

and

( ) ( )= − +d
dt

t tr i jsin 1
2

cos .

Then

∫

∫

∫ π

( )

( )⋅ = ⋅

= − −

= − = −

π

π

π

d t d
dt

dt

t t dt

dt

F r F r r( )

1
2

sin 1
2

cos

1
2

.

C
0

2

2 2

0

2

0

2

D

Therefore, by Stokes’ Theorem the flux of the curl across S in the direction n for the field 
F is

∫∫ σ π( )∇ × ⋅ = −dF n .
S

 

Proof Outline of Stokes’ Theorem for Polyhedral Surfaces

Let S be a polyhedral surface consisting of a finite number of plane regions or faces. (See 
Figure 15.69 for examples.) We apply Green’s Theorem to each separate face of S. There 
are two types of faces:

1. Those that are surrounded on all sides by other faces.

2. Those that have one or more edges that are not adjacent to other faces.

The boundary of S consists of those edges of the type 2 faces that are not adjacent to other 
faces. In Figure 15.69a, the triangles EAB, BCE, and CDE represent a part of S, with 
ABCD part of the boundary of the surface, boundary(S). Although Green’s Theorem was 
stated for curves in the xy-plane, a generalized form applies to curves that lie in a plane in 
space. In the generalized form, the theorem asserts that the line integral of F around the 
curve enclosing the plane region R normal to n equals the double integral of ( ) ⋅F ncurl   
over R. Applying this generalized form to the three triangles of Figure 15.69a in turn, and 
adding the results, gives

 
D D D

d dF r F n .
EAB BCE CDE EAB BCE CDE

∫∫ ∫∫ ∫∫ σ( )+ +
⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
⋅ = + +

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

∇ × ⋅  (7)

The three line integrals on the left-hand side of Equation (7) combine into a single line 
integral taken around the periphery ABCDE because the integrals along interior segments 
cancel in pairs. For example, the integral along segment BE in triangle ABE is opposite in 
sign to the integral along the same segment in triangle EBC. The same holds for segment 
CE. Hence, Equation (7) reduces to

D

∫∫ σ( )⋅ = ∇ × ⋅d dF r F n .
ABCDE ABCDE

When we apply Green’s Theorem to all the faces and add the results, we get

∫∫ σ( )⋅ = ∇ × ⋅
D

d dF r F n .
S Sboundary( )

A

B C

D

E

(a)

(b)

FIGURE 15.69 (a) Part of a polyhedral 
surface. (b) Other polyhedral surfaces.
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 15.7  Stokes’ Theorem 1003

FIGURE 15.70 Stokes’ Theorem also 
holds for oriented surfaces with holes. 
Consistent with the orientation of S, the 
outer curve is traversed counterclockwise 
around n, and the inner curves surrounding 
the holes are traversed clockwise.

S

n

 = ∇ × ∇ =f f0 0curl grad  or  (8)

THEOREM 7— =Curl F 0 Related to the Closed-Loop Property
If ∇ × =F 0 at every point of a simply connected open region D in space, then 
on any piecewise-smooth closed path C in D,

⋅ =dF r 0.
C
D

This is Stokes’ Theorem for the polyhedral surface S in Figure 15.69a. More general poly-
hedral surfaces are shown in Figure 15.69b, and the proof can be extended to them. General 
smooth surfaces can be obtained as limits of polyhedral surfaces.

(a)

S
C

(b)

FIGURE 15.71 (a) In a simply  
connected open region in space, a simple 
closed curve C is the boundary of a smooth 
surface S. (b) Smooth curves that cross 
themselves can be divided into loops to 
which Stokes’ Theorem applies.

Sketch of a Proof  Theorem 7 can be proved in two steps. The first step is for simple 
closed curves (loops that do not cross themselves), like the one in Figure 15.71a. A theorem 
from topology, a branch of advanced mathematics, states that every smooth simple closed 

Stokes’ Theorem for Surfaces with Holes

Stokes’ Theorem holds for an oriented surface S that has one or more holes (Figure 15.70). 
The surface integral over S of the normal component of ∇ × F equals the sum of the line 
integrals around all the boundary curves of the tangential component of F, where the 
curves are to be traced in the direction induced by the orientation of S. For such surfaces 
the theorem is unchanged, but C is considered as a union of simple closed curves.

An Important Identity

The following identity arises frequently in mathematics and the physical sciences.

( ) ( )( )∇ × ∇ = ∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

= − − − + −f
x y z

f
x

f
y

f
z

f f f f f f

i j k

i j k.zy yz zx xz yx xy

Forces arising in the study of electromagnetism and gravity are often associated with 
a potential function f . The identity (8) says that these forces have curl equal to zero. The 
identity (8) holds for any function ( )f x y z, ,  whose second partial derivatives are continuous. 
The proof goes like this:

If the second partial derivatives are continuous, the mixed second derivatives in parenthe-
ses are equal (Theorem 2, Section 13.3) and the vector is zero.

Conservative Fields and Stokes’ Theorem

In Section 15.3, we found that a field F being conservative in an open region D in space is 
equivalent to the integral of F around every closed loop in D being zero. This, in turn, is 
equivalent in simply connected open regions to saying that ∇ × =F 0 (which gives a test 
for determining whether F is conservative for such regions).
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1004 Chapter 15 Integrals and Vector Fields

curve C in a simply connected open region D is the boundary of a smooth two-sided  
surface S that also lies in D. Hence, by Stokes’ Theorem,

∫∫ σ( )⋅ = ∇ × ⋅ =
D

d dF r F n 0.
C S

The second step is for curves that cross themselves, like the one in Figure 15.71b. The 
idea is to break these into simple loops spanned by orientable surfaces, apply Stokes’ 
Theorem one loop at a time, and add the results.

The following diagram summarizes the results for conservative fields defined on con-
nected, simply connected open regions. For such regions, the four statements are equiva-
lent to each other.

Theorem 2,
Section 15.3

Theorem 7
Domain’s simple
connectivity and
Stokes’ Theorem

over any closed
path in D

F = ∇ f on DF conservative on D

∇  × F = 0 throughout D
F

C 
F ∙ dr = 0

Vector identity (Eq. 8)
(continuous second
partial derivatives)

Theorem 3,
Section 15.3

In Exercises 1–6, find the curl of each vector field F .

 1. ( ) ( ) ( )= + − + − + + + +x y z x y z x y zF i j k2 3 3 2

 2. ( ) ( ) ( )= − + − + −x y y z z xF i j k2 2 2

 3. ( ) ( ) ( )= + + + + +xy z yz x xz yF i j k

 4. = + −ye ze xeF i j kz x y

 5. = + +x yz xy z xyzF i j k2 2 2

 6. = − +x
yz

y
xz

z
xy

F i j k

Using Stokes’ Theorem to Find Line Integrals
In Exercises 7–12, use the surface integral in Stokes’ Theorem to cal-
culate the circulation of the field F around the curve C in the indicated 
direction.

 7. = + +x x zF i j k22 2

C: The ellipse + =x y4 42 2  in the xy-plane, counterclockwise 
when viewed from above

 8. = + −y x zF i j k2 3 2

C: The circle + =x y 92 2  in the xy-plane, counterclockwise 
when viewed from above

 9. = + +y xz xF i j k2

C: The boundary of the triangle cut from the plane + + =x y z 1 
by the first octant, counterclockwise when viewed from above

 10. ( ) ( ) ( )= + + + + +y z x z x yF i j k2 2 2 2 2 2

C: The boundary of the triangle cut from the plane + + =x y z 1 
by the first octant, counterclockwise when viewed from above

 11. ( ) ( ) ( )= + + + + +y z x y x yF i j k2 2 2 2 2 2

C: The square bounded by the lines = ±x 1 and = ±y 1 in the 
xy-plane, counterclockwise when viewed from above

 12. = + +x y zF i j k2 3

C: The intersection of the cylinder + =x y 42 2  and the hemi-
sphere + + = ≥x y z z16, 02 2 2 , counterclockwise when viewed  
from above

Integral of the Curl Vector Field

 13. Let n be the unit normal in the direction away from the origin of 
the elliptic shell

+ + = ≥S x y z z: 4 9 36 36, 0,2 2 2

and let

( )= + + +y x x y eF i j ksin .xyz2 2 4 3 2

Find the value of

∫∫ σ( )∇ × ⋅ dF n .
S

(Hint: One parametrization of the ellipse at the base of the shell is 
π= = ≤ ≤x t y t t3 cos , 2 sin , 0 2 .)

 14. Let n be the unit normal in the direction away from the origin of 
the parabolic shell

+ + = ≥S x y z y: 4 4, 0,2 2

EXERCISES 15.7 
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 15.7  Stokes’ Theorem 1005

and let

( ) ( )( )= − +
+

+ + +
+

−z
x

y x
z

F i j k1
2

tan 1
4

.1

Find the value of

∫∫ σ( )∇ × ⋅ dF n .
S

 15. Let S be the cylinder + = ≤ ≤x y a z h, 0 ,2 2 2  together with 
its top, + ≤ =x y a z h,  .2 2 2  Let = − + +y x xF i j k.2  Use 
Stokes’ Theorem to find the flux of ∇ × F through S in the direc-
tion away from the origin.

 16. Evaluate

∫∫ σ( )( )∇ × ⋅y di n ,
S

where S is the hemisphere + + = ≥x y z z1,  0,2 2 2  in the 
direction away from the origin.

 17. Suppose = ∇ ×F A, where

( )= + + +y z e xzA i j kcos( ) .xyz2

Determine the flux of F through the hemisphere 
+ + = ≥x y z z1,  0,2 2 2  in the direction away from the origin.

 18. Repeat Exercise 17 for the flux of F across the entire unit sphere.

Stokes’ Theorem for Parametrized Surfaces
In Exercises 19–24, use the surface integral in Stokes’ Theorem to  
calculate the flux of the curl of the field F across the surface S.

 19. 

θ θ θ
θ π

( ) ( ) ( ) ( )

= + +

= + + −

≤ ≤ ≤ ≤

z x y

S r r r r

r

F i j k

r i j k

2 3 5

: , cos sin 4 ,

0 2, 0 2 ,

2

in the direction away from the origin.

 20. 

θ θ θ
θ π

( ) ( ) ( ) ( )

( ) ( ) ( )= − + − + +

= + + −

≤ ≤ ≤ ≤

y z z x x z

S r r r r

r

F i j k

r i j k: , cos sin 9 ,

0 3, 0 2 ,

2

in the direction away from the origin.

 21. 

θ θ θ
θ π

( ) ( ) ( )

= + +

= + +

≤ ≤ ≤ ≤

x y y z z

S r r r r

r

F i j k

r i j k

2 3

: , cos sin ,

0 1, 0 2 ,

2 3

in the direction away from the z-axis.

 22. 

θ θ θ
θ π

( ) ( ) ( )

( ) ( )

( )

( )= − + − + −

= + + −

≤ ≤ ≤ ≤

x y y z z x

S r r r r

r

F i j k

r i j k: , cos sin 5 ,

0 5, 0 2 ,
in the direction away from the z-axis.

 23. 

φ θ φ θ φ θ

φ φ π θ π

( ) ( )
( )

( )

( )( )= + − + −

= + +

≤ ≤ ≤ ≤

y x z

S

F i j k

r i j

k

3 5 2 2

: , 3 sin cos 3 sin sin

3 cos , 0 2, 0 2 ,

2

in the direction away from the origin.

 24. 

φ θ φ θ φ θ φ
φ π θ π
( ) ( ) ( ) ( )

= + +

= + +

≤ ≤ ≤ ≤

y z x

S

F i j k

r i j k: , 2 sin cos 2 sin sin 2 cos ,

0 2, 0 2 ,

2 2

in the direction away from the origin.

Theory and Examples

 25. Let C be the smooth curve ( ) ( )= + +t t tr i j( ) 2 cos 2 sin    
( )− t k3 2 cos ,3  oriented to be traversed counterclockwise around 
the z-axis when viewed from above. Let S be the piecewise smooth 
cylindrical surface + =x y 4,2 2  below the curve for ≥z 0, 
together with the base disk in the xy-plane. Note that C lies on 
the cylinder S and above the xy-plane (see the accompanying  
figure). Verify Equation (4) in Stokes’ Theorem for the vector field 

= − +y x xF i j k.2

C

2
2

y

z

x

 26. Verify Stokes’ Theorem for the vector field = + +xy xF i j2    
( )+y z k and surface = − − ≥z x y z4 ,  0,2 2  oriented with 
unit normal n pointing upward.

 27. Zero circulation Use Equation (8) and Stokes’ Theorem to show 
that the circulations of the following fields around the boundary of 
any smooth orientable surface in space are zero.

 a. = + +x y zF i j k2 2 2  b. ( )= ∇ xy zF 2 3

 c. ( )= ∇ × + +x y zF i j k  d. = ∇fF

 28. Zero circulation Let ( ) ( )= + + −f x y z x y z, , .2 2 2 1 2  Show 
that the clockwise circulation of the field = ∇fF  around the 
circle + =x y a2 2 2 in the xy-plane is zero

 a. by taking π( ) ( )= + ≤ ≤a t a t tr i jcos sin , 0 2 , and inte-
grating ⋅ dF r  over the circle.

 b. by applying Stokes’ Theorem.

 29. Let C be a simple closed smooth curve in the plane 
+ + =x y z2 2 2, oriented as shown here. Show that

+ −y dx z dy x dz2 3
C
D

y

z

O a

x

C

1

1

2
2x + 2y + z = 2

depends only on the area of the region enclosed by C and not on 
the position or shape of C.

 30. Show that if = + +x y zF i j k, then ∇ × =F 0.

 31. Find a vector field with twice-differentiable components whose 
curl is + +x y zi j k , or prove that no such field exists.

 32. Does Stokes’ Theorem say anything special about circulation in a 
field whose curl is zero? Give reasons for your answer.
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1006 Chapter 15 Integrals and Vector Fields

 33. Let R be a region in the xy-plane that is bounded by a piecewise 
smooth simple closed curve C, and suppose that the density is 
δ = 1 and the moments of inertia of R about the x- and y-axes are 
known to be I x and I .y  Evaluate the integral

∇ ⋅r dsn( ) ,
C

4

D

where = +r x y ,2 2  in terms of I x and I .y

 34. Zero curl, yet the field is not conservative Show that the curl of

= −
+

+
+

+y
x y

x
x y

zF i j k
2 2 2 2

is zero but that

⋅ dF r
C
D

is not zero if C is the circle + =x y 12 2  in the xy-plane. 
(Theorem 7 does not apply here because the domain of F is not 
simply connected. The field F is not defined along the z-axis, 
so there is no way to contract C to a point without leaving the 
domain of F.)

The divergence form of Green’s Theorem in the plane states that the net outward flux of a 
vector field across a simple closed curve can be calculated by integrating the divergence of 
the field over the region enclosed by the curve. The corresponding theorem in three dimen-
sions, called the Divergence Theorem, states that the net outward flux of a vector field 
across a closed surface in space can be calculated by integrating the divergence of the field 
over the solid region enclosed by the surface. In this section we prove the Divergence 
Theorem and show how it simplifies the calculation of flux, which is the integral of the 
field over the closed oriented surface. We also derive Gauss’s law for flux in an electric 
field and the continuity equation of hydrodynamics. Finally, we summarize the chapter’s 
vector integral theorems in a single unifying principle generalizing the Fundamental 
Theorem of Calculus.

Divergence in Three Dimensions

The divergence of a vector field ( ) ( ) ( )= + +M x y z N x y z P x y zF i j k, , , , , ,  is the 
scalar function

 = ∇ ⋅ = ∂
∂

+ ∂
∂

+ ∂
∂

M
x

N
y

P
z

F Fdiv  . (1)

The symbol “div F” is read as “divergence of F” or “div F.” The notation ∇ ⋅ F is read  
“del dot F.”

Div F has the same physical interpretation in three dimensions as it has in two. If F is 
the velocity field of a flowing gas, the value of div F at a point ( )x y z, ,  is the rate at which 
the gas is compressing or expanding at ( )x y z, , . The gas is expanding if div F is positive 
and compressing if div F is negative. The divergence is the flux per unit volume, or flux 
density, at the point.

EXAMPLE 1  The following vector fields represent the velocity of a gas flowing in 
space. Find the divergence of each vector field and interpret its physical meaning. Figure 15.72  
displays the vector fields.

 (a) Expansion: ( ) = + +x y z x y zF i j k, ,

 (b) Compression: ( ) = − − −x y z x y zF i j k, ,

 (c) Rotation about the z-axis: ( ) = − +x y z y xF i j, ,

 (d) Shearing along parallel horizontal planes: ( ) =x y z zF j, ,

Solution 

 (a) ( )= ∂
∂

+ ∂
∂

+ ∂
∂

=
x

x
y

y
z

zFdiv  ( ) ( ) 3: The gas is undergoing constant uniform 

expansion at all points.

15.8 The Divergence Theorem and a Unified Theory
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 15.8  The Divergence Theorem and a Unified Theory 1007

 (b) = ∂
∂

− + ∂
∂

− + ∂
∂

− = −
x

x
y

y
z

zFdiv  ( ) ( ) ( ) 3: The gas is undergoing constant uni-

form compression at all points.

 (c) = ∂
∂

− + ∂
∂

=
x

y
y

xFdiv  ( ) ( ) 0: The gas is neither expanding nor compressing at any  

point.

 (d) = ∂
∂

=
y

zFdiv  ( ) 0: Again, the divergence is zero at all points in the domain of the 

velocity field, so the gas is neither expanding nor compressing at any point. 

z

y

(b)

x

z

y

(c)

x

z

y

(d)

x

z

y

(a)

x

FIGURE 15.72 Velocity fields of a gas 
flowing in space (Example 1).

EXAMPLE 2  Evaluate both sides of Equation (2) for the expanding vector field 
= + +x y zF i j k over the sphere + + =x y z a2 2 2 2 (Figure 15.73).

Solution The outer unit normal to S, calculated from the gradient of ( ) = +f x y z x, , 2  
+ −y z a ,2 2 2  is

( )

( )
= + +

+ +
= + +x y z

x y z
x y z

a
n i j k i j k2

4
.

2 2 2
  + + =x y z a S on 2 2 2 2

It follows that

σ σ σ σ⋅ = + + = =d
x y z

a
d a

a
d a dF n .

2 2 2 2

Therefore, the outward flux is

∫∫ ∫∫ ∫∫σ σ σ π π⋅ = = = =d a d a d a a aF n (4 ) 4 .
S S S

2 3   Area of S is πa4 .2

For the right-hand side of Equation (2), the divergence of F is

( )∇ ⋅ = ∂
∂

+ ∂
∂

+ ∂
∂

=
x

x
y

y
z

zF ( ) ( ) 3,

so we obtain the divergence integral,

∫∫∫ ∫∫∫ π π( )∇ ⋅ = = =dV dV a aF 3 3 4
3

4 .
D D

3 3  

Divergence Theorem

The Divergence Theorem says that under suitable conditions, the outward flux of a vector 
field across a closed surface equals the triple integral of the divergence of the field over the 
three-dimensional region enclosed by the surface.

THEOREM 8—Divergence Theorem
Let F be a vector field whose components have continuous first partial derivatives, 
and let S be a piecewise smooth oriented closed surface. The flux of F across S in 
the direction of the surface’s outward unit normal field n equals the triple integral 
of the divergence ∇ ⋅ F over the solid region D enclosed by the surface:

 ∫∫ ∫∫∫σ⋅ = ∇ ⋅d dVF n F .
S D

 (2)

Outward  
flux

Divergence  
integral
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1008 Chapter 15 Integrals and Vector Fields

Many vector fields of interest in applied science have zero divergence at each point. A 
common example is the velocity field of a circulating incompressible liquid, since it is 
neither expanding nor contracting. Other examples include constant vector fields 

= + +a b cF i j k, and velocity fields for shearing action along a fixed plane (see 
Example 1d). If F is a vector field whose divergence is zero at each point in the region D, 
then the integral on the right-hand side of Equation (2) equals 0. So if S is any closed sur-
face for which the Divergence Theorem applies, then the outward flux of F across S is 
zero. We state this important application of the Divergence Theorem.

FIGURE 15.73 A uniformly expanding 
vector field and a sphere (Example 2).

y

z

x

COROLLARY The outward flux across a piecewise smooth oriented closed 
surface S is zero for any vector field F having zero divergence at every point of 
the region enclosed by the surface.

FIGURE 15.74 The integral of div F 
over this region equals the total flux across 
the six sides (Example 4).

2
3

z

x

y

1
EXAMPLE 4

 (a) Calculate the flux of the vector field

= + +x xyz zeF i j k4 x2

out of the box-shaped region ≤ ≤ ≤ ≤ ≤ ≤D x y z: 0 3, 0 2, 0 1. (See  
Figure 15.74.)

 (b) Integrate div F over this region and show that the result is the same value as in part (a), 
as asserted by the Divergence Theorem.

Solution 

 (a) The region D has six sides. We calculate the flux across each side in turn. Consider the 
top side in the plane =z 1, having outward normal =n k. The flux across this side is 
given by ⋅ = zeF n .x  Since =z 1 on this side, the flux at a point ( )x y z, ,  on the top 
is e x. The total outward flux across this side is given by the surface integral

∫∫ = −e dx dy e2 2.x

0

3

0

2
3   Routine integration

The outward flux across the other sides is computed similarly, and the results are sum-
marized in the following table.

EXAMPLE 3  Find the flux of = + +xy yz xzF i j k outward through the surface of 
the cube cut from the first octant by the planes = =x y1,  1, and =z 1.

Solution Instead of calculating the flux as a sum of six separate integrals, one for each 
face of the cube, we can calculate the flux by integrating the divergence

∇ ⋅ = ∂
∂

+ ∂
∂

+ ∂
∂

= + +
x

xy
y

yz
z

xz y z xF ( ) ( ) ( )

over the cube’s interior:

∫∫ ∫∫∫

∫∫∫

σ

( )

= ⋅ = ∇ ⋅

= + + =

d dV

x y z dx dy dz

F n FFlux

3
2

.

Cube
surface

Cube
interior

0

1

0

1

0

1
 

The Divergence Theorem

Routine integration
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 15.8  The Divergence Theorem and a Unified Theory 1009

Side Unit normal n ⋅F n Flux across side

=x 0 −i − =x 02   0

=x 3 i =x 92 18

=y 0 −j − =xyz4 0   0

=y 2 j =xyz xz4 8 18

=z 0 −k − =ze 0x   0

=z 1 k =ze ex x −e2 23

THEOREM 9 If = + +M N PF i j k is a vector field with continuous second 
partial derivatives, then

( ) ( )= ∇ ⋅ ∇ × =F Fdiv curl  0.

Proof  From the definitions of the divergence and curl, we have

( )
( ) ( )= ∇ ⋅ ∇ ×

= ∂
∂

∂
∂

− ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ + ∂

∂
∂
∂

− ∂
∂

+ ∂
∂

∂
∂

− ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

= ∂
∂ ∂

− ∂
∂ ∂

+ ∂
∂ ∂

− ∂
∂ ∂

+ ∂
∂ ∂

− ∂
∂ ∂

=

x
P
y

N
z y

M
z

P
x z

N
x

M
y

P
x y

N
x z

M
y z

P
y x

N
z x

M
z y

F Fdiv curl 

0,

2 2 2 2 2 2

The total outward flux is obtained by adding the terms for each of the six sides:

+ + − = +e e18 18 2 2 34 2 .3 3

 (b) We first compute the divergence of F, obtaining

= ∇ ⋅ = + +x xz eF Fdiv 2 4 .x

The integral of the divergence of F over D is

∫∫∫ ∫∫∫

∫∫

∫

( )

( )

( )= + +

= + +

= + +

= +

dV x xz e dx dy dz

z e dy dz

z e dz

e

Fdiv 2 4

8 18

16 36 2

34 2 .

D

x

0

3

0

2

0

1

3

0

2

0

1

3

0

1

3

As asserted by the Divergence Theorem, the integral of the divergence over D equals 
the outward flux across the boundary surface of D. 

Divergence and the Curl

If F is a vector field on three-dimensional space, then the curl ∇ × F is also a vector field 
on three-dimensional space. So we can calculate the divergence of ∇ × F using  
Equation (1). The result of this calculation is always 0.
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1010 Chapter 15 Integrals and Vector Fields

FIGURE 15.75 We prove the Diver-
gence Theorem for the kind of three-
dimensional region shown here.

y

z

x

D

Rxy

S2

S1

RyzRxz

FIGURE 15.76 The components of n are 
the cosines of the angles α β,  , and γ that it 
makes with i, j, and k.

y

z

x

n

k

j
i

n3

n2n1

a

b

g

(n1, n2, n3)

because the mixed second partial derivatives cancel by the Mixed Derivative Theorem in 
Section 13.3. 

Theorem 9 has some interesting applications. If a vector field =G Fcurl  , then the 
field G must have divergence 0. Saying this another way, if ≠Gdiv  0, then G cannot be 
the curl of any vector field F having continuous second partial derivatives. Moreover, if 

=G Fcurl  , then the outward flux of G across any closed surface S is zero by the corol-
lary to the Divergence Theorem, provided the conditions of the theorem are satisfied. So if 
there is a closed surface for which the surface integral of the vector field G is nonzero, we 
can conclude that G is not the curl of some vector field F.

Proof of the Divergence Theorem for Special Regions

To prove the Divergence Theorem, we take the components of = + +M N PF i j k to 
have continuous first partial derivatives. We first assume that D is a convex region with no 
holes or bubbles, such as a solid ball, cube, or ellipsoid, and that S is a piecewise smooth 
surface. In addition, we assume that any line perpendicular to the xy-plane at an interior 
point of the region Rxy that is the projection of D on the xy-plane intersects the surface S in 
exactly two points, producing surfaces

( ) ( )

( ) ( )

=

=

S z f x y x y R

S z f x y x y R

: , , ,  in 

: , , ,  in  ,

xy

xy

1 1

2 2

with ≤f f .1 2  We make similar assumptions about the projection of D onto the other coor-
dinate planes. See Figure 15.75, which illustrates these assumptions.

The components of the unit normal vector = + +n n nn i j k1 2 3  are the cosines of 
the angles α β,  , and γ  that n makes with i, j, and k (Figure 15.76). This is true because all 
the vectors involved are unit vectors, giving the direction cosines

α α

β β

γ γ

= ⋅ = =

= ⋅ = =

= ⋅ = =

n

n

n

n i n i

n j n j

n k n k

cos cos

cos cos

cos cos .

1

2

3

Thus the unit normal vector is given by

α β γ( ) ( ) ( )= + +n i j kcos cos cos ,

and

α β γ⋅ = + +M N PF n cos cos cos .

In component form, the Divergence Theorem states that

∫∫ ∫∫∫α β γ σ( )+ + = ∂
∂

+ ∂
∂

+ ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⋅
� ���������������� ���������������� � ��������� ���������

M N P d M
x

N
y

P
z

dx dy dzcos cos cos .

F n Fdiv 
S D

We prove the theorem by establishing the following three equations:

 ∫∫ ∫∫∫α σ = ∂
∂

M d M
x

dx dy dzcos
S D

 (3)

 ∫∫ ∫∫∫β σ = ∂
∂

N d N
y

dx dy dzcos
S D

 (4)

 ∫∫ ∫∫∫γ σ = ∂
∂

P d P
z

dx dy dzcos
S D

 (5)
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 15.8  The Divergence Theorem and a Unified Theory 1011

Proof of Equation (5)  We prove Equation (5) by converting the surface integral on 
the left to a double integral over the projection Rxy of D on the xy-plane (Figure 15.77). The 
surface S consists of an upper part S2 whose equation is ( )=z f x y,2  and a lower part S1 
whose equation is ( )=z f x y, .1  On S ,2  the outer normal n has a positive k-component and

γ σ σ
γ γ

= = =d dx dy d
dA dx dy

cos because
cos cos

.

See Figure 15.78. On S ,1  the outer normal n has a negative k-component and

γ σ = −d dx dycos .

Therefore,

∫∫ ∫∫ ∫∫

∫∫ ∫∫

∫∫

∫∫∫ ∫∫∫

γ σ γ σ γ σ

( )( ) ( )( )

( )( ) ( )( )[ ]

= +

= −

= −

= ∂
∂

⎡
⎣
⎢

⎤
⎦
⎥ = ∂

∂( )

( )

P d P d P d

P x y f x y dx dy P x y f x y dx dy

P x y f x y P x y f x y dx dy

P
z

dz dx dy P
z

dz dx dy

cos cos cos

, , , , , ,

, , , , , ,

. 

S S S

R R

R

f x y

f x y

R D

2 1

2 1

,

,

xy xy

xy

xy

2 1

1

2

This proves Equation (5). The proofs for Equations (3) and (4) follow the same pattern; 
just permute α β γx y z M N P, , ;  , , ;  , , , in order, and get those results from Equation (5). 
This proves the Divergence Theorem for these special regions. 

Divergence Theorem for Other Regions

The Divergence Theorem can be extended to regions that can be partitioned into a finite 
number of simple regions of the type just discussed and to regions that can be defined as 
limits of simpler regions in certain ways. For an example of one step in such a splitting 
process, suppose that D is the region between two concentric spheres and that F has con-
tinuously differentiable components throughout D and on the bounding surfaces. Split D 
by an equatorial plane and apply the Divergence Theorem to each half separately. The bot-
tom half, D ,1  is shown in Figure 15.79. The surface S1 that bounds D1 consists of an outer 
hemisphere, a plane washer-shaped base, and an inner hemisphere. The Divergence Theorem 
says that

 ∫∫ ∫∫∫σ⋅ = ∇ ⋅d dVF n F .
S D

1

1 1

 (6)

The unit normal n1 that points outward from D1 points away from the origin along the outer 
surface, equals k along the flat base, and points toward the origin along the inner surface. 
Next apply the Divergence Theorem to D2 and its surface S2 (Figure 15.80):

 ∫∫ ∫∫∫σ⋅ = ∇ ⋅d dVF n F .
S D

2

2 2

 (7)

As we follow n 2 over S ,2  pointing outward from D ,2  we see that n 2 equals −k  along the 
washer-shaped base in the xy-plane, points away from the origin on the outer sphere, and 
points toward the origin on the inner sphere. When we add Equations (6) and (7), the inte-
grals over the flat base cancel because of the opposite signs of n1 and n .2  We thus arrive at 
the result

FIGURE 15.77 The region D enclosed 
by the surfaces S1 and S2 projects verti-
cally onto Rxy in the xy-plane.

y

z

x

O n

ds

ds

n
D z = f2(x, y)

S2

S1

z = f1(x, y)

dA = dx dy

Rxy

FIGURE 15.78 An enlarged view of the 
area patches in Figure 15.77. The relations 
σ γ= ±d dx dy cos  come from Eq. (7) in 

Section 15.5 with = ⋅F F n.

n
k

n

k

Here g is acute, so

ds =           .

g

g

dx
dy

dx dy
cos g

Here g is obtuse, so

ds = −          .
dx dy
cos g

FIGURE 15.79 The lower half of the 
solid region between two concentric 
spheres.

z

x

y

k

O

n1D1
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1012 Chapter 15 Integrals and Vector Fields

FIGURE 15.80 The upper half of the 
solid region between two concentric 
spheres.

z

x

y

D2

n2

−k

FIGURE 15.81 Two concentric spheres 
in an expanding vector field. The outer 
sphere Sa  surrounds the inner sphere S .b

y

z

x

Sa

Sb

∫∫ ∫∫∫σ⋅ = ∇ ⋅d dVF n F ,
S D

with D the region between the spheres, S the boundary of D consisting of two spheres, and 
n the unit normal to S directed outward from D.

EXAMPLE 5  Find the net outward flux of the field

 
ρ

ρ= + + = + +x y z
x y zF i j k

,
3

2 2 2  (8)

across the boundary of the region < ≤ + + ≤D b x y z a: 0 2 2 2 2 2 (Figure 15.81).

Solution The flux can be calculated by integrating ∇ ⋅ F over D. Note that ρ ≠ 0 in D. 
We have

ρ
ρ

( )
∂
∂

= + + =−

x
x y z x x1

2
(2 )2 2 2 1 2

and

ρ ρ ρ ρ
ρ ρ

∂
∂

= ∂
∂

= − ∂
∂

= −− − −M
x x

x x
x

x( ) 3 1 3 .3 3 4
3

2

5

Similarly,

ρ ρ ρ ρ
∂
∂

= − ∂
∂

= −N
y

y P
z

z1 3
and 1 3 .

3

2

5 3

2

5

Hence,

ρ ρ ρ
ρ
ρ

( )= ∂
∂

+ ∂
∂

+ ∂
∂

= − + + = − =M
x

N
y

P
z

x y zFdiv 3 3 3 3
0.

3 5
2 2 2

3

2

5

So the net outward flux of F across the boundary of D is zero by the corollary to the 
Divergence Theorem. There is more to learn about this vector field F, though. The flux 
leaving D across the inner sphere Sb is the negative of the flux leaving D across the outer 
sphere Sa (because the sum of these fluxes is zero). Hence, the flux of F across Sb in the 
direction away from the origin equals the flux of F across Sa in the direction away from  
the origin. Thus, the flux of F across a sphere centered at the origin is independent of the 
radius of the sphere. What is this flux?

To find it, we evaluate the flux integral directly for an arbitrary sphere S .a  The out-
ward unit normal on the sphere of radius a is

= + +
+ +

= + +x y z

x y z

x y z
a

n i j k i j k
.

2 2 2

Hence, on the sphere,

⋅ = + + ⋅ + + = + + = =x y z
a

x y z
a

x y z
a

a
a a

F n i j k i j k 1
3

2 2 2

4

2

4 2

and

∫∫ ∫∫σ σ π π⋅ = = =d
a

d
a

aF n 1 1 (4 ) 4 .
S S

2 2
2

a a

The outward flux of F in Equation (8) across any sphere centered at the origin is π4 . 
This result does not contradict the Divergence Theorem because F is not continuous at 
the origin. 
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 15.8  The Divergence Theorem and a Unified Theory 1013

Gauss’s Law: One of the Four Great Laws  
of Electromagnetic Theory

In electromagnetic theory, the electric field created by a point charge q located at the  
origin is

πε πε πε ρ( )( ) = = = + +
x y z

q q q x y zE
r

r
r

r
r

i j k
, , 1

4 4 4
,

0
2

0
3

0
3

where ε0 is a physical constant, r is the position vector of the point ( )x y z, , , and 
ρ = = + +x y zr .2 2 2  From Equation (8),

πε
= qE F

4
.

0

The calculations in Example 5 show that the outward flux of E across any sphere cen-
tered at the origin is εq ,0  but this result is not confined to spheres. The outward flux of E 
across any closed surface S that encloses the origin (and to which the Divergence Theorem 
applies) is also εq .0  To see why, we have only to imagine a large sphere Sa centered at the 
origin and enclosing the surface S (see Figure 15.82). Because

πε πε
∇ ⋅ = ∇ ⋅ = ∇ ⋅ =q qE F F

4 4
0

0 0

when ρ > 0, the triple integral of ∇ ⋅ E over the region D between S and Sa is zero. 
Hence, by the Divergence Theorem,

∫∫ σ⋅ =dE n 0.

D
Boundary

of 

So the flux of E across S in the direction away from the origin must be the same as the flux 
of E across Sa in the direction away from the origin, which is εq .0  This statement, called 
Gauss’s law, also applies to charge distributions that are more general than the one assumed 
here, as shown in most physics texts. For any closed surface that encloses the origin, we have

∫∫ σ
ε

⋅ =d
qE nGauss’s law: .

S 0

Continuity Equation of Hydrodynamics

Let D be a region in space bounded by a closed oriented surface S. If x y zv( ,   ,   ) is the velocity 
field of a fluid flowing smoothly through D t x y z,   ,   ,   ,  δ δ( )=  is the fluid’s density at 
(x, y, z) at time t, and F v,δ=  then the continuity equation of hydrodynamics states that

t
F 0.δ∇ ⋅ + ∂

∂
=

If the functions involved have continuous first partial derivatives, the equation evolves 
naturally from the Divergence Theorem, as we now demonstrate.

First, the integral

dF n
S
∫∫ σ⋅

is the rate at which mass leaves D across S (leaves because n is the outer normal). To see 
why, consider a patch of area σΔ  on the surface (Figure 15.83). In a short time interval t,Δ  
the volume VΔ  of fluid that flows across the patch is approximately equal to the volume 
of a cylinder with base area σΔ  and height tv n,( )Δ ⋅  where v is a velocity vector rooted 
at a point of the patch:

V tv n .σΔ ≈ ⋅ Δ Δ

FIGURE 15.82 A sphere Sa  surrounding 
another surface S. The tops of the surfaces 
are removed for visualization.

z

x

y

Sphere Sa

S

FIGURE 15.83 The fluid that flows 
upward through the patch σΔ  in a short 
time tΔ  fills a “cylinder” whose volume 
is approximately base height× =

tv n .σ⋅ Δ Δ

n

S

h = (v Δt) . n
v Δt

Δs
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1014 Chapter 15 Integrals and Vector Fields

The mass of this volume of fluid is about

m tv n ,δ σΔ ≈ ⋅ Δ Δ

so the rate at which mass is flowing out of D across the patch is about

m
t

v n .δ σΔ
Δ

≈ ⋅ Δ

This leads to the approximation

m

t
v n∑ ∑ δ σ

Δ
Δ

≈ ⋅ Δ

as an estimate of the average rate at which mass flows across S. Finally, letting 0σΔ →  
and t 0Δ →  gives the instantaneous rate at which mass leaves D across S as

dm
dt

dv n ,
S
∫∫ δ σ= ⋅

which for our particular flow is

dm
dt

dF n .
S
∫∫ σ= ⋅

Now let B be a solid sphere centered at a point Q in the flow. The average value of 
F∇ ⋅  over B is

B
dVF1

volume of 
.

B
∫∫∫ ∇ ⋅

It is a consequence of the continuity of the divergence that F∇ ⋅  actually takes on this 
value at some point P in B. Thus, by the Divergence Theorem Equation (2),

 

P
B

dV

d

B

B S
B

F F

F n
1

volume of  volume of 

rate at which mass leaves   across its surface 
volume of 

.

B

S∫∫∫
∫∫ σ

( )( )∇ ⋅ = ∇ ⋅ =

⋅

=
 

(9)

The last term of the equation describes decrease in mass per unit volume.
Now let the radius of B approach zero while the center Q stays fixed. The left side  

of Equation (9) converges to F ,Q( )∇ ⋅  and the right side converges to t ,
Q

δ( )−∂ ∂  since 
m V.δ =  The equality of these two limits is the continuity equation

t
F .δ∇ ⋅ = −∂

∂

The continuity equation “explains” F:∇ ⋅  The divergence of F at a point is the rate at 
which the density of the fluid is decreasing there. The Divergence Theorem

d dVF n F
S D
∫∫ ∫∫∫σ⋅ = ∇ ⋅

now says that the net decrease in density of the fluid in region D (divergence integral) is 
accounted for by the mass transported across the surface S (outward flux integral). So, the 
theorem is a statement about conservation of mass (Exercise 35).
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 15.8  The Divergence Theorem and a Unified Theory 1015

Unifying the Integral Theorems

If we think of a two-dimensional field ( ) ( )= +M x y N x yF i j, ,  as a three-dimensional 
field whose k-component is zero, then ( ) ( )∇ ⋅ = ∂ ∂ + ∂ ∂M x N yF , and the normal 
form of Green’s Theorem can be written as

∫∫ ∫∫⋅ = ∂
∂

+ ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = ∇ ⋅

D

ds M
x

N
y

dx dy dAF n F .
C R R

Similarly, ( ) ( )( )∇ × ⋅ = ∂ ∂ − ∂ ∂N x M yF k , so the tangential form of Green’s 
Theorem can be written as

∫∫ ∫∫ ( )⋅ = ∂
∂

− ∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = ∇ × ⋅

D

ds N
x

M
y

dx dy dAF T F k .
C R R

With the equations of Green’s Theorem expressed in del notation, we can see their relation-
ships to the equations in Stokes’ Theorem and the Divergence Theorem, all summarized 
here.

Green’s Theorem and Its Generalization to Three Dimensions

Tangential form of Green’s Theorem: ∫∫ ( )⋅ = ∇ × ⋅
D

ds dAF T F k
C R

Stokes’ Theorem: ∫∫ σ( )⋅ = ∇ × ⋅
D

ds dF T F n
C S

Normal form of Green’s Theorem: ∫∫⋅ = ∇ ⋅
D

ds dAF n F
C R

Divergence Theorem: ∫∫ ∫∫∫σ⋅ = ∇ ⋅d dVF n F
S D

FIGURE 15.84 The outward unit nor-
mals at the boundary of [ ]a b,  in  
one-dimensional space.

x
a b

n = −i n = i

Notice how Stokes’ Theorem generalizes the tangential (curl) form of Green’s 
Theorem from a flat surface in the plane to a surface in three-dimensional space. In each 
case, the surface integral of curl F over the interior of the oriented surface equals the circu-
lation of F around the boundary.

Likewise, the Divergence Theorem generalizes the normal (flux) form of Green’s 
Theorem from a two-dimensional region in the plane to a three-dimensional region in 
space. In each case, the integral of ∇ ⋅ F over the interior of the region equals the total flux 
of the field across the boundary enclosing the region.

All these results can be thought of as forms of a single fundamental theorem. The 
Fundamental Theorem of Calculus in Section 5.4 says that if f (x) is differentiable on ( )a b,  
and continuous on a b,[ ], then

∫ = −df
dx

dx f b f a( ) ( ).
a

b

If we let = f xF i( )  throughout a b,[ ], then = ∇ ⋅df dx F. If we define the unit vector 
field n normal to the boundary of a b,[ ] to be i at b and −i at a (Figure 15.84), then

− = ⋅ + ⋅ −
= ⋅ + ⋅
=

f b f a f b f a

b a

a b

i i i i

F n F n
F

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

total outward flux of   across the boundary of [ , ].
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1016 Chapter 15 Integrals and Vector Fields

A Unifying Fundamental Theorem of Vector Integral Calculus
The integral of a differential operator acting on a field over a region equals the sum 
of the field components appropriate to the operator over the boundary of the region.

The Fundamental Theorem now says that

b a dxF n F n F( ) ( ) .
a b,
∫⋅ + ⋅ = ∇ ⋅

[ ]

The Fundamental Theorem of Calculus, the normal form of Green’s Theorem, and the 
Divergence Theorem all say that the integral of the differential operator ∇ ⋅ operating on 
a field F over a region equals the sum of the normal field components over the boundary 
enclosing the region. (Here we are interpreting the line integral in Green’s Theorem and 
the surface integral in the Divergence Theorem as “sums” over the boundary.)

Stokes’ Theorem and the tangential form of Green’s Theorem say that, when things 
are properly oriented, the surface integral of the differential operator ∇ × operating on a 
field equals the sum of the tangential field components over the boundary of the surface.

The beauty of these interpretations is the observance of a single unifying principle, 
which we can state as follows.

Calculating Divergence
In Exercises 1–8, find the divergence of the field.

 1. ( ) ( ) ( )= − + + + − + + −x y z x y z x y zF i j k2 3 2 2

 2. ( ) ( ) ( )= + +x y y z z xF i j kln ln ln

 3. = + +ye ze xeF i j kxyz xyz xyz

 4. = + +xy yz xzF i j ksin( ) cos( ) tan( )

 5. The spin field in Figure 15.13

 6. The radial field in Figure 15.12

 7. The gravitational field in Figure 15.9 and Exercise 38a in Section 15.3

 8. The velocity field ( ) ( )= − −x y z a x yv k, , 2 2 2  in Figure 15.14

Calculating Flux Using the Divergence Theorem
In Exercises 9–20, use the Divergence Theorem to find the outward 
flux of F across the boundary of the region D.

 9. Cube ( ) ( ) ( )= − + − + −y x z y y xF i j k

D:  The cube bounded by the planes = ± = ±x y1,  1, and 
= ±z 1

 10. = + +x y zF i j k2 2 2

 a. Cube D:  The cube cut from the first octant by 
the planes = =x y1,  1, and =z 1

 b. Cube D:  The cube bounded by the planes 
= ± = ±x y1,  1, and = ±z 1

 c. Cylindrical can D:  The region cut from the solid cylinder 
+ ≤x y 42 2  by the planes =z 0 

and =z 1

 11. Cylinder and paraboloid = + −y xy zF i j k

D:  The region inside the solid cylinder + ≤x y 42 2  between the 
plane =z 0 and the paraboloid = +z x y2 2

 12. Ball = + +x xz zF i j k32

D: The ball + + ≤x y z 42 2 2

 13. Portion of ball = − +x xy xzF i j k2 32

D:  The region cut from the first octant by the ball + +x y2 2  
=z 42

 14. Cylindrical can ( ) ( )= + + + +x xy y x z x yF i j k6 2 2 42 2 2 3

D:  The region cut from the first octant by the cylinder + =x y 42 2  
and the plane =z 3

 15. Wedge = − −xz xy zF i j k2 2

D:  The wedge cut from the first octant by the plane + =y z 4 
and the elliptic cylinder + =x y4 162 2

 16. Ball = + +x y zF i j k3 3 3

D: The ball + + ≤x y z a2 2 2 2

 17. Thick sphere ( )= + + + +x y z x y zF i j k2 2 2

D: The region ≤ + + ≤x y z1 22 2 2

 18. Thick sphere ( )= + + + +x y z x y zF i j k 2 2 2

D: The region ≤ + + ≤x y z1 42 2 2

 19. Thick sphere ( ) ( )= + + + +x xy y e zF i j5 12 siny3 2 3  
( )+z e z k5 cosy3

D:  The solid region between the spheres + + =x y z 12 2 2  and 
+ + =x y z 22 2 2

 20. Thick cylinder ( )( )= + − +x y z
x

y
x

F i jln 2 arctan2 2  

+z x y k2 2

D: The thick-walled cylinder ≤ + ≤ − ≤ ≤x y z1 2,  1 22 2

EXERCISES 15.8 
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 15.8  The Divergence Theorem and a Unified Theory 1017

Theory and Examples

 21. a.  Show that the outward flux of the position vector field =F  
+ +x y zi j k  through a smooth closed surface S is three 

times the volume of the region enclosed by the surface.

 b. Let n be the outward unit normal vector field on S. Show  
that it is not possible for F to be orthogonal to n at every  
point of S.

 22. The base of the closed cubelike surface shown here is the unit 
square in the xy-plane. The four sides lie in the planes =x 0, 

= =x y1,  0, and =y 1. The top is an arbitrary smooth surface 
whose identity is unknown. Let ( )= − + +x y zF i j k2 3 , and 
suppose the outward flux of F through Side A is 1 and through 
Side B is −3. Can you conclude anything about the outward flux 
through the top? Give reasons for your answer.

z

(1, 1, 0)

Top

Side B
Side A

x

1
y

1

 23. Let ( ) ( ) ( )= + + +y x y x x y zF i j kcos 2 sin 2 .2 2  Is there a 
vector field A such that = ∇ ×F A? Explain your answer.

 24. Outward flux of a gradient field Let S be the surface of the 
portion of the ball + + ≤x y z a2 2 2 2 that lies in the first 

octant, and let ( ) = + +f x y z x y z, , ln .2 2 2  Calculate

∫∫ σ∇ ⋅f dn .
S

(∇ ⋅f n is the derivative of f  in the direction of outward normal n.)

 25. Let F be a field whose components have continuous first partial 
derivatives throughout a portion of space containing a region D 
bounded by a smooth closed surface S. If ≤F 1, can any bound 
be placed on the size of

∫∫∫ ∇ ⋅ dVF ?
D

Give reasons for your answer.

 26. Maximum flux Among all rectangular boxes defined by the 
inequalities ≤ ≤ ≤ ≤ ≤ ≤x a y b z0 , 0 , 0 1, find the one for 
which the total flux of ( )= − − − +x xy yz zF i j k4 6 122  out-
ward through the six sides is greatest. What is the greatest flux?

 27. Calculate the net outward flux of the vector field

( )( )= + + + +xy xz y e xF i j ksin xy2 2

over the surface S surrounding the region D bounded by the planes 
= = = −y z z y0,  0,  2  and the parabolic cylinder = −z x1 .2

 28. Compute the net outward flux of the vector field 
( )( )= + + + +x y z x y zF i j k 2 2 2 3 2 across the ellipsoid 

+ + =x y z9 4 6 36.2 2 2

 29. Let F be a differentiable vector field, and let ( )g x y z, ,  be a differ-
entiable scalar function. Verify the following identities.

 a. ( )∇ ⋅ = ∇ ⋅ + ∇ ⋅g g gF F F

 b. ( )∇ × = ∇ × + ∇ ×g g gF F F

 30. Let F1 and F2 be differentiable vector fields, and let a and b be 
arbitrary real constants. Verify the following identities.

 a. ( )∇ ⋅ + = ∇ ⋅ + ∇ ⋅a b a bF F F F1 2 1 2

 b. ( )∇ × + = ∇ × + ∇ ×a b a bF F F F1 2 1 2

 c. ( )∇ ⋅ × = ⋅ ∇ × − ⋅ ∇ ×F F F F F F1 2 2 1 1 2

 31. If = + +M N PF i j k  is a differentiable vector field, we define 
the notation ⋅ ∇F  to mean

∂
∂

+ ∂
∂

+ ∂
∂

M
x

N
y

P
z

.

For differentiable vector fields F1 and F ,2  verify the following 
identities.

 a. ( ) ( ) ( ) ( )∇ × × = ⋅ ∇ − ⋅ ∇ + ∇ ⋅ −F F F F F F F F1 2 2 1 1 2 2 1  
( )∇ ⋅ F F1 2

 b. ( ) ( ) ( ) ( )∇ ⋅ = ⋅ ∇ + ⋅ ∇ + × ∇ × +F F F F F F F F1 2 1 2 2 1 1 2  
( )× ∇ ×F F2 1

 32. Harmonic functions A function ( )f x y z, ,  is said to be harmonic 
in a region D in space if it satisfies the Laplace equation

∇ = ∇ ⋅ ∇ = ∂
∂

+ ∂
∂

+ ∂
∂

=f f
f

x
f

y
f

z
02

2

2

2

2

2

2

throughout D.

 a. Suppose that f  is harmonic throughout a bounded region D 
enclosed by a smooth surface S and that n is the chosen unit 
normal vector on S. Show that the integral over S of ∇ ⋅f n, 
the derivative of f  in the direction of n, is zero.

 b. Show that if f  is harmonic on D, then

∫∫ ∫∫∫σ∇ ⋅ = ∇f f d f dVn .
S D

2

 33. Green’s first formula Suppose that f  and g are scalar func-
tions with continuous first- and second-order partial derivatives 
throughout a region D that is bounded by a closed piecewise 
smooth surface S. Show that

 ∫∫ ∫∫∫σ ( )∇ ⋅ = ∇ + ∇ ⋅ ∇f g d f g f g dVn .
S D

2  (10)

Equation (10) is Green’s first formula. (Hint: Apply the 
Divergence Theorem to the field = ∇f gF .)

 34. Green’s second formula (Continuation of Exercise 33.) 
Interchange f  and g in Equation (10) to obtain a similar formula. 
Then subtract this formula from Equation (10) to show that

∫∫ ∫∫∫σ( ) ( )∇ − ∇ ⋅ = ∇ − ∇f g g f d f g g f dVn .
S D

2 2  (11)

This equation is Green’s second formula.
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1018 Chapter 15 Integrals and Vector Fields

 35. Conservation of mass Let ( )t x y zv , , ,  be a continuously 
differentiable vector field over the region D in space, and let 

( )p t x y z, , ,  be a continuously differentiable scalar function. The 
variable t represents the time domain. The Law of Conservation of 
Mass asserts that

∫∫∫ ∫∫ σ( ) = − ⋅d
dt

p t x y z dV p dv n, , , ,
D S

where S is the surface enclosing D.

 a. Give a physical interpretation of the conservation of mass law 
if v is a velocity flow field and p represents the density of the 
fluid at point ( )x y z, ,  at time t.

 b. Use the Divergence Theorem and Leibniz’s Rule,

∫∫∫ ∫∫∫( ) = ∂
∂

d
dt

p t x y z dV
p
t

dV, , , ,
D D

to show that the Law of Conservation of Mass is equivalent to 
the continuity equation,

∇ ⋅ + ∂
∂

=p
p
t

v 0.

(In the first term ∇ ⋅ pv, the variable t is held fixed, and in the 
second term ∂ ∂p t , it is assumed that the point ( )x y z, ,  in D is 
held fixed.)

 36. The heat diffusion equation Let ( )T t x y z, , ,  be a function with 
continuous second derivatives giving the temperature at time t at 
the point ( )x y z, ,  of a solid occupying a region D in space. If the 
solid’s heat capacity and mass density are denoted by the con-
stants c and ρ, respectively, the quantity ρc T  is called the solid’s 
heat energy per unit volume.

Let − ∇k T  denote the energy flux vector. (Here the constant k is 
called the conductivity.) Assuming the Law of Conservation of 
Mass with − ∇ =k T v and ρ =c T p in Exercise 35, derive the 
diffusion (heat) equation

∂
∂

= ∇T
t

K T ,2

where ρ= >K k c( ) 0 is the diffusivity constant. (Notice that 
if ( )T t x,  represents the temperature at time t at position x in a 
uniform conducting rod with perfectly insulated sides, then 
∇ = ∂ ∂T T x2 2 2  and the diffusion equation reduces to the one-
dimensional heat equation in Chapter 13’s Additional Exercises.)

 1. What are line integrals of scalar functions? How are they evalu-
ated? Give examples.

 2. How can you use line integrals to find the centers of mass of 
springs or wires? Explain.

 3. What is a vector field? What is the line integral of a vector field? 
What is a gradient field? Give examples.

 4. What is the flow of a vector field along a curve? What is the work 
done by a vector field moving an object along a curve? How do you 
calculate the work done? Give examples.

 5. What is the Fundamental Theorem of line integrals? Explain how 
it is related to the Fundamental Theorem of Calculus.

 6. Specify three properties that are special about conservative fields. 
How can you tell when a field is conservative?

 7. What is special about path independent fields?

 8. What is a potential function? Show by example how to find a 
potential function for a conservative field.

 9. What is a differential form? What does it mean for such a form to 
be exact? How do you test for exactness? Give examples.

 10. What is Green’s Theorem? Discuss how the two forms of Green’s 
Theorem extend the Net Change Theorem in Chapter 5.

CHAPTER 15 Questions to Guide Your Review

 11. How do you calculate the area of a parametrized surface in space? 
Of an implicitly defined surface ( ) =F x y z, , 0? Of the surface 
that is the graph of ( )=z f x y, ? Give examples.

 12. How do you integrate a scalar function over a parametrized sur-
face? Over surfaces that are defined implicitly or in explicit form? 
Give examples.

 13. What is an oriented surface? What is the surface integral of a vec-
tor field in three-dimensional space over an oriented surface? How 
is it related to the net outward flux of the field? Give examples.

 14. What is the curl of a vector field? How can you interpret it?

 15. What is Stokes’ Theorem? Explain how it generalizes Green’s 
Theorem to three dimensions.

 16. What is the divergence of a vector field? How can you interpret it?

 17. What is the Divergence Theorem? Explain how it generalizes 
Green’s Theorem to three dimensions.

 18. How are Green’s Theorem, Stokes’ Theorem, and the Divergence 
Theorem related to the Fundamental Theorem of Calculus for 
ordinary single integrals?
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 Chapter 15  Practice Exercises 1019

Evaluating Line Integrals

 1. The accompanying figure shows two polygonal paths in space 
joining the origin to the point ( )1,1,1 . Integrate ( ) =f x y z, ,  

− − +x y z2 3 2 32  over each path.

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

Path 1

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

Path 2

 2. The accompanying figure shows three polygonal paths joining the 
origin to the point ( )1,1,1 . Integrate ( ) = + −f x y z x y z, , 2  over 
each path.

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

(1, 0, 0)

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

z

y

x

(0, 0, 0)
(1, 1, 1)

(0, 1, 1)
(0, 0, 1) C6

C5 C7

C2

C1 C3 C3
C4

 3. Integrate ( ) = +f x y z x z, , 2 2  over the circle

π( ) ( )= + ≤ ≤t a t a t tr j k( ) cos sin , 0 2 .

 4. Integrate ( ) = +f x y z x y, , 2 2  over the involute curve

( ) ( )= + + − ≤ ≤t t t t t t t tr i j( ) cos sin sin cos , 0 3.

Evaluate the integrals in Exercises 5 and 6.

 5. ∫
+ +

+ +( )

( )

−

− dx dy dz
x y z1,1,1

4, 3,0
 6. ∫ − −

( )

( )

dx z
y

dy
y
z

dz
1,1,1

10,3,3

 7. Integrate ( ) ( ) ( )= − + +y z x z xy zF i j ksin sin cos  around 
the circle cut from the sphere + + =x y z 52 2 2  by the plane 

= −z 1, clockwise as viewed from above.

 8. Integrate ( )= + + +x y x zF i j k3 1 92 3 2  around the circle cut 
from the sphere + + =x y z 92 2 2  by the plane =x 2.

Evaluate the integrals in Exercises 9 and 10.

 9. ∫ −x y dx y x dy8 sin 8 cos
C

C is the square cut from the first quadrant by the lines π=x 2 
and π=y 2.

 10. ∫ +y dx x dy
C

2 2

C is the circle + =x y 4.2 2

CHAPTER 15 Practice Exercises

Finding and Evaluating Surface Integrals

 11. Area of an elliptic region Find the area of the elliptic region cut 
from the plane + + =x y z 1 by the cylinder + =x y 1.2 2

 12. Area of a parabolic cap Find the area of the cap cut from the 
paraboloid + =y z x32 2  by the plane =x 1.

 13. Area of a spherical cap Find the area of the cap cut from the 
top of the sphere + + =x y z 12 2 2  by the plane =z 2 2.

 14. a.  Hemisphere cut by cylinder Find the area of the surface  
cut from the hemisphere + + = ≥x y z z4,  0,2 2 2  by the  
cylinder + =x y x2 .2 2

 b. Find the area of the portion of the cylinder that lies inside the 
hemisphere. (Hint: Project onto the xz-plane. Or evaluate the 
integral ∫ h ds, where h is the altitude of the cylinder and ds  
is the element of arc length on the circle + =x y x22 2  in the 
xy-plane.)

z

x

yCylinder r = 2 cos u

Hemisphere

z = "4 − r2

 15. Area of a triangle Find the area of the triangle in which the plane 
( ) ( ) ( ) ( )+ + = >x a y b z c a b c1  , , 0  intersects the first 
octant. Check your answer with an appropriate vector calculation.

 16. Parabolic cylinder cut by planes Integrate

 a. ( ) =
+

g x y z
yz

y
, ,

4 12
 b. ( ) =

+
g x y z z

y
, ,

4 12

over the surface cut from the parabolic cylinder − =y z 12  by 
the planes = =x x0,  3, and =z 0.

 17. Circular cylinder cut by planes Integrate ( ) =g x y z, ,  
( )+x y y z4 2 2  over the portion of the cylinder + =y z 252 2  

that lies in the first octant between the planes =x 0 and =x 1 
and above the plane =z 3.

 18. Area of Wyoming The state of Wyoming is bounded by the 
meridians ° ′111 3  and ° ′104 3  west longitude and by the circles 

°41  and °45  north latitude. Assuming that Earth is a sphere of 
radius =R 6370 km, find the area of Wyoming.

Parametrized Surfaces
Find parametrizations for the surfaces in Exercises 19–24. (There are 
many ways to do these, so your answers may not be the same as those 
in the back of the text.)

 19. Spherical band The portion of the sphere + + =x y z 362 2 2  
between the planes = −z 3 and =z 3 3
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1020 Chapter 15 Integrals and Vector Fields

 20. Parabolic cap The portion of the paraboloid ( )= − +z x y 22 2   
above the plane = −z 2

 21. Cone The cone = + + ≤z x y z1 ,  32 2

 22. Plane above square The portion of the plane + + =x y z4 2 4  
12 that lies above the square ≤ ≤ ≤ ≤x y0 2, 0 2, in the first 
quadrant

 23. Portion of paraboloid The portion of the paraboloid 
( )= + ≤y x z y2 ,  2,2 2  that lies above the xy-plane

 24. Portion of hemisphere The portion of the hemisphere 
+ + = ≥x y z y10,  0,2 2 2  in the first octant

 25. Surface area Find the area of the surface

υ υ υ υ

υ

( ) ( ) ( )= + + − +

≤ ≤ ≤ ≤

u u u

u

r i j k, ,  

0 1, 0 1.

 26. Surface integral Integrate ( ) = −f x y z xy z, , 2 over the sur-
face in Exercise 25.

 27. Area of a helicoid Find the surface area of the helicoid θ( ) =rr ,  
θ θ θ θ π( ) ( )+ + ≤ ≤ ≤ ≤r r ri j kcos sin , 0 2 , 0 1, in 

the accompanying figure.

y

z

x

(1, 0, 0)

(1, 0, 2p)

2p

 28. Surface integral Evaluate the integral σ∫ ∫ + +x y d1 ,S
2 2  

where S is the helicoid in Exercise 27.

Conservative Fields
Which of the fields in Exercises 29–32 are conservative, and which 
are not?

 29. = + +x y zF i j k

 30. ( )( )= + + + +x y z x y zF i j k 2 2 2 3 2

 31. = + +xe ye zeF i j ky z x

 32. ( ) ( )= + + +z y x yzF i j k

Find potential functions for the fields in Exercises 33 and 34.

 33. ( ) ( )= + + + +y z yF i j k2 2 1

 34. ( ) ( )= + +z xz e x xzF i j kcos cosy

Work and Circulation
In Exercises 35 and 36, find the work done by each field along the 
paths from ( )0, 0, 0  to ( )1,1,1  in Exercise 1.

 35. = + +xy xF i j k2 2

 36. = + +xy xF i j k2 2

 37. Finding work in two ways Find the work done by

( )
= +

+
x y

x y
F

i j
2 2 3 2

over the plane curve ( ) ( )= +t e t e tr i j( ) cos sint t  from the point  
( )1, 0  to the point ( )πe , 02  in two ways:

 a. By using the parametrization of the curve to evaluate the  
work integral.

 b. By evaluating a potential function for F.

 38. Flow along different paths Find the flow of the field =F  
∇ x ze( )y2

 a. once around the ellipse C in which the plane + + =x y z 1 
intersects the cylinder + =x z 25,2 2  clockwise as viewed 
from the positive y-axis.

 b. along the curved boundary of the helicoid in Exercise 27 from 
( )1, 0, 0  to π( )1, 0, 2 .

In Exercises 39 and 40, use the curl integral in Stokes’ Theorem to 
find the circulation of the field F around the curve C in the indicated 
direction.

 39. Circulation around an ellipse = − +y y zF i j k32 2

C:  The ellipse in which the plane + − =x y z2 6 3 6 meets the 
cylinder + =x y 1,2 2  counterclockwise as viewed from above

 40. Circulation around a circle ( ) ( )= + + + +x y x yF i j2  
( )−y z k4 2

C:  The circle in which the plane = −z y meets the sphere 
+ + =x y z 4,2 2 2  counterclockwise as viewed from above

Masses and Moments

 41. Wire with different densities Find the mass of a thin wire lying 
along the curve ( )= + + − ≤ ≤t t t t tr i j k( ) 2 2 4 , 0 1,2  
if the density at t is (a) δ = t3  and (b) δ = 1.

 42. Wire with variable density Find the center of mass of a 
thin wire lying along the curve ( )= + +t t t tr i j k( ) 2 2 3 ,3 2  

≤ ≤t0 2, if the density at t is δ = + t3 5 .

 43. Wire with variable density Find the center of mass and the 
moments of inertia about the coordinate axes of a thin wire lying 
along the curve

= + + ≤ ≤t t t t tr i j k( ) 2 2
3 2

, 0 2,3 2
2

if the density at t is δ ( )= +t1 1 .

 44. Center of mass of an arch A slender metal arch lies along the 
semicircle = −y a x2 2  in the xy-plane. The density at the point  
( )x y,  on the arch is δ( ) = −x y a y, 2 . Find the center of mass.

 45. Wire with constant density A wire of constant density δ = 1 
lies along the curve ( ) ( )= + + ≤t e t e t er i j k( ) cos sin , 0 t t t  

≤t ln 2. Find z  and I .z

 46. Helical wire with constant density Find the mass and center 
of mass of a wire of constant density δ that lies along the helix 

π( ) ( )= + + ≤ ≤t t t t tr i j k( ) 2 sin 2 cos 3 , 0 2 .

 47. Inertia and center of mass of a shell Find I z and the center of 
mass of a thin shell of density δ( ) =x y z z, ,  cut from the upper 
portion of the sphere + + =x y z 252 2 2  by the plane =z 3.

 48. Moment of inertia of a cube Find the moment of inertia about 
the z-axis of the surface of the cube cut from the first octant by the 
planes = =x y1,  1, and =z 1 if the density is δ = 1.

Flux Across a Plane Curve or Surface
Use Green’s Theorem to find the counterclockwise circulation and 
outward flux for the fields and curves in Exercises 49 and 50.

 49. Square ( ) ( )= + + −xy x xy yF i j2

C: The square bounded by = = = =x x y y0, 1, 0, 1
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 Chapter 15  Additional and Advanced Exercises 1021

 50. Triangle ( ) ( )= − + +y x x yF i j6 2 2

C: The triangle made by the lines = =y y x0,  , and =x 1

 51. Zero line integral Show that

− =x y dy
y

x
dxln sin

cos
0

C
D

for any closed curve C to which Green’s Theorem applies.

 52. a.  Outward flux and area Show that the outward flux of the 
position vector field = +x yF i j across any closed curve to 
which Green’s Theorem applies is twice the area of the region 
enclosed by the curve.

 b. Let n be the outward unit normal vector to a closed curve to 
which Green’s Theorem applies. Show that it is not possible 
for = +x yF i j to be orthogonal to n at every point of C.

In Exercises 53–56, find the outward flux of F across the boundary  
of D.

 53. Cube = + +xy yz xzF i j k2 2 2

D:  The cube cut from the first octant by the planes 
= = =x y z1,  1, and  1

 54. Spherical cap = + +xz yzF i j k

D:  The entire surface of the upper cap cut from the ball 
+ + ≤x y z 252 2 2  by the plane =z 3

 55. Spherical cap = − − +x y zF i j k2 3

D:  The upper region cut from the ball + + ≤x y z 22 2 2  by the 
paraboloid = +z x y2 2

 56. Cone and cylinder ( ) ( )= + − + +x y x z yzF i j k6 4

D:  The region in the first octant bounded by the cone =z  
+x y ,2 2  the cylinder + =x y 1,2 2  and the coordinate 

planes

 57. Hemisphere, cylinder, and plane Let S be the surface that is  
bounded on the left by the hemisphere  + + = ≤x y z a y, 0,2 2 2 2  
in the middle by the cylinder + = ≤ ≤x z a y a, 0 ,2 2 2  and on 
the right by the plane =y a. Find the flux of = + +y z xF i j k 
outward across S.

 58. Cylinder and planes Find the outward flux of the field 
= + −xz y zF i j k3 2 3  across the surface of the solid in the first 

octant that is bounded by the cylinder + =x y4 162 2  and the 
planes = =y z x2 ,  0, and =z 0.

 59. Cylindrical can Use the Divergence Theorem to find the flux of  
= + +xy x y yF i j k2 2  outward through the surface of the region  

enclosed by the cylinder + =x y 12 2  and the planes =z 1 and 
= −z 1.

 60. Hemisphere Find the flux of ( )= +zF k3 1  upward across the  
hemisphere + + = ≥x y z a z,  02 2 2 2 , (a) with the Divergence 
Theorem and (b) by evaluating the flux integral directly.

Finding Areas with Green’s Theorem

Use the Green’s Theorem area formula in Exercises 15.4 to find the 
areas of the regions enclosed by the curves in Exercises 1–4.

 1. The limaçon π= − = ≤ ≤x t t y t t2 cos cos 2 ,  2 sin , 0 2
y

x
0 1

 2. The deltoid = + = −x t t y t t2 cos cos 2 ,  2 sin sin 2 , 
π≤ ≤t0 2

y

x
0 3

CHAPTER 15 Additional and Advanced Exercises

 3. The eight curve π( )= = ≤ ≤x t y t t1 2 sin 2 ,  sin , 0  (one 
loop)

y

x

1

−1

 4. The teardrop π= − = ≤ ≤x a t a t y b t t2 cos sin 2 ,  sin , 0 2
y

x
0

b

2a
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1022 Chapter 15 Integrals and Vector Fields

Theory and Applications

 5. a.  Give an example of a vector field ( )x y zF , ,  that has value 0 at 
only one point and such that curl F is nonzero everywhere. Be 
sure to identify the point and compute the curl.

 b. Give an example of a vector field ( )x y zF , ,  that has value 0 
on precisely one line and such that curl F is nonzero every-
where. Be sure to identify the line and compute the curl.

 c. Give an example of a vector field ( )x y zF , ,  that has value 0 
on a surface and such that curl F is nonzero everywhere. Be 
sure to identify the surface and compute the curl.

 6. Find all points ( )a b c, ,  on the sphere + + =x y z R2 2 2 2 where  
the vector field = + +yz xz xyzF i j k22 2  is normal to the surface  
and ( ) ≠a b cF 0, , .

 7. Find the mass of a spherical shell of radius R such that at each 
point ( )x y z, ,  on the surface, the mass density δ( )x y z, ,  is its dis-
tance to some fixed point ( )a b c, ,  of the surface.

 8. Find the mass of a helicoid

θ θ θ θ( ) ( ) ( )= + +r r rr i j k, cos sin ,

θ π≤ ≤ ≤ ≤r0 1, 0 2 , if the density function is δ( ) =x y z, ,  

+x y2 .2 2  See Practice Exercise 27 for a figure.

 9. Among all rectangular regions ≤ ≤ ≤ ≤x a y b0 , 0 , find the 
one for which the total outward flux of ( )= + −x xy yF i j4 62  
across the four sides is least. What is the least flux?

 10. Find an equation for the plane through the origin such that the 
circulation of the flow field = + +z x yF i j k around the circle 
of intersection of the plane with the sphere + + =x y z 42 2 2  is 
a maximum.

 11. A string lies along the circle + =x y 42 2  from ( )2, 0  to ( )0, 2  in 
the first quadrant. The density of the string is ρ( ) =x y xy, .

 a. Partition the string into a finite number of subarcs to show 
that the work done by gravity to move the string straight down 
to the x-axis is given by

∑ ∫= Δ =
→∞ =

g x y s g xy dsWork lim ,
n

k

n

k k k
C

1

2 2

where g is the gravitational constant.

 b. Find the total work done by evaluating the line integral in part (a).

 c. Show that the total work done equals the work required to move  
the string’s center of mass ( )x y,  straight down to the x-axis.

 12. A thin sheet lies along the portion of the plane + + =x y z 1 in 
the first octant. The density of the sheet is δ( ) =x y z xy, , .

 a. Partition the sheet into a finite number of subpieces to show 
that the work done by gravity to move the sheet straight down 
to the xy-plane is given by

∑ ∫∫σ σ= Δ =
→∞ =

g x y z g xyz dWork lim ,
n

k

n

k k k k

S1

where g is the gravitational constant.

 b. Find the total work done by evaluating the surface integral in 
part (a).

 c. Show that the total work done equals the work required to 
move the sheet’s center of mass ( )x y z, ,  straight down to the 
xy-plane.

 13. Archimedes’ principle If an object such as a ball is placed in 
a liquid, it will either sink to the bottom, float, or sink a certain 
distance and remain suspended in the liquid. Suppose a fluid has 
constant weight density w and that the fluid’s surface coincides 
with the plane =z 4. A spherical ball remains suspended in the 
fluid and occupies the region ( )+ + − ≤x y z 2 1.2 2 2

 a. Show that the surface integral giving the magnitude of the 
total force on the ball due to the fluid’s pressure is

∑ ∫∫σ σ( ) ( )= − Δ = −
→∞ =

w z w z dForce lim 4 4 .
n

k

n

k k

S1

 b. Since the ball is not moving, it is being held up by the buoyant 
force of the liquid. Show that the magnitude of the buoyant 
force on the sphere is

∫∫ σ( )= − ⋅w z dk nBuoyant force 4 ,
S

where n is the outer unit normal at ( )x y z, , . This illustrates 
Archimedes’ principle that the magnitude of the buoyant force 
on a submerged solid equals the weight of the displaced fluid.

 c. Use the Divergence Theorem to find the magnitude of the 
buoyant force in part (b).

 14. Fluid force on a curved surface A cone in the shape of the sur-
face = + ≤ ≤z x y z, 0 22 2 , is filled with a liquid of con-
stant weight density w. Assuming the xy-plane is “ground level,” 
show that the total force on the portion of the cone from =z 1 to 

=z 2 due to liquid pressure is the surface integral

∫∫ σ( )= −F w z d2 .
S

Evaluate the integral.

 15. Faraday’s law If ( )t x y zE , , ,  and ( )t x y zB , , ,  represent the 
electric and magnetic fields at point ( )x y z, ,  at time t, a basic prin-
ciple of electromagnetic theory says that ∇ × = −∂ ∂tE B . In 
this expression ∇ × E is computed with t held fixed and ∂ ∂tB  
is calculated with ( )x y z, ,  fixed. Use Stokes’ Theorem to derive 
Faraday’s law,

∫∫ σ⋅ = − ∂
∂

⋅
D

d
t

dE r B n ,
C S

where C represents a wire loop through which current flows coun-
terclockwise with respect to the surface’s unit normal n, giving 
rise to the voltage

⋅ dE r
C
D

around C. The surface integral on the right side of the equation 
is called the magnetic flux, and S is any oriented surface with 
boundary C.

 15. Let

= −GmMF
r

r3

be the gravitational force field defined for ≠r 0. Use Gauss’s 
law in Section 15.8 to show that there is no continuously differen-
tiable vector field H satisfying = ∇ ×F H.
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 Chapter 15  Technology Application Projects 1023

Mathematica/Maple Projects

Projects can be found within MyLab Math.

• Work in Conservative and Nonconservative Force Fields

Explore integration over vector fields and experiment with conservative and nonconservative force functions along different paths in the field.

• How Can You Visualize Green’s Theorem?

Explore integration over vector fields and use parametrizations to compute line integrals. Both forms of Green’s Theorem are explored.

• Visualizing and Interpreting the Divergence Theorem

Verify the Divergence Theorem by formulating and evaluating certain divergence and surface integrals.

CHAPTER 15 Technology Application Projects

 17. If ( )f x y z, ,  and ( )g x y z, ,  are continuously differentiable scalar 
functions defined over the oriented surface S with boundary curve 
C, prove that

∫∫ σ( )∇ × ∇ ⋅ = ∇ ⋅
D

f g d f g dn r.
S C

 18. Suppose that ∇ ⋅ = ∇ ⋅F F1 2 and ∇ × = ∇ ×F F1 2 over a 
region D enclosed by the oriented surface S with outward unit 
normal n and that ⋅ = ⋅F n F n1 2  on S. Prove that =F F1 2 
throughout D.

 19. Prove or disprove that if ∇ ⋅ =F 0 and ∇ × =F 0, then =F 0.

 20. Let S be an oriented surface parametrized by υ( )ur , . Define the 
notation υ= × υd du dr ru  so that d  is a vector normal to the 

surface. Also, the magnitude σ =d d  is the element of surface 
area (by Equation 5 in Section 15.5). Derive the identity

σ υ( )= −d EG F du d ,2 1 2

where

= = ⋅ =υE F Gr r r r, , and .u u u
2 2

 21. Show that the volume V of a region D in space enclosed by the 
oriented surface S with outward normal n satisfies the identity

∫∫ σ= ⋅V dr n1
3

,
S

where r is the position vector of the point ( )x y z, ,  in D.
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1024

OVERVIEW Many real-world problems, when formulated mathematically, lead to differ-
ential equations. We encountered a number of these equations in previous chapters when 
studying phenomena such as the motion of an object along a straight line, the decay of a 
radioactive material, the growth of a population, and the cooling of a heated object placed 
within a medium of lower temperature.

Section 4.8 introduced differential equations of the form =dy dx f x( ), where f  
is given and y is an unknown function of x. We learned that when f is continuous over 
some interval, the general solution y x( ) is found directly by integration, y f x dx( ) .= ∫  In 
Section 7.2 we investigated differential equations of the form =dy dx f x y( , ), where f is 
a function of both the independent variable x and the dependent variable y. There we 
learned how to find the general solution for the special case when the differential equa-
tion is separable. In this chapter we further extend our study to include other commonly 
occurring first-order differential equations. These differential equations involve only first 
derivatives of the unknown function y x( ), and they model phenomena varying from simple 
electrical circuits to the concentration of a chemical in a container. Differential equations 
involving second derivatives are examined in Chapter 17.

First-Order Differential 

Equations

16

Chapter 17 is available online.

To access this chapter, visit the companion 
Website. 

16.1 Solutions, Slope Fields, and Euler’s Method

We begin this section by defining general differential equations involving first derivatives. 
We then look at slope fields, which give a geometric picture of the solutions to such equa-
tions. Many differential equations cannot be solved by obtaining an explicit formula for the 
solution. However, we can often find numerical approximations to solutions. We present 
one such method here, called Euler’s method, which is the basis for many other numerical 
methods as well.

General First-Order Differential Equations and Solutions

A first-order differential equation is an equation

 =dy
dx

f x y( , ) (1)

in which f x y( , ) is a function of two variables defined on a region in the xy-plane. The 
equation is of first order because it involves only the first derivative dy dx  and not  
higher-order derivatives. In a typical situation y represents an unknown function of x, and 
f x y( , ) is a known function. Some examples of first-order differential equations are 
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 16.1  Solutions, Slope Fields, and Euler’s Method 1025

′ = + ′ =y x y y y x,  , and ′ =y xy3 . In all cases we should think of y as an unknown 
function of x whose derivative is given by f x y( , ). The equations

′ = =y f x y d
dx

y f x y( , ) and ( , )

are equivalent to Equation (1), and all three forms will be used interchangeably in the text.
A solution of Equation (1) is a differentiable function y y x( )=  defined on an interval 

I of x-values (possibly an infinite interval) such that

( )=d
dx

y x f x y x( ) , ( )

on that interval. That is, when y x( ) and its derivative y x( )′  are substituted into Equation (1), 
the resulting equation is true for all x over the interval I.

EXAMPLE 1  Show that every member of the family of functions

= +y C
x

2

is a solution of the first-order differential equation

( )= −dy
dx x

y1 2

on the interval ( )∞0, , where C is any constant.

Solution Differentiating = +y C x 2 gives

( )= + = −dy
dx

C d
dx x

C
x

1 0 .
2

We need to show that the differential equation is satisfied when we substitute into it the 
expressions ( ) +C x 2 for y, and C x 2−  for dy dx . That is, we need to verify that for all 

( )∈ ∞x 0, ,
C
x x

C
x

1 2 2 .
2 ( )− = − +⎡

⎣⎢
⎤
⎦⎥

This last equation follows immediately by expanding the expression on the right-hand 
side:

( ) ( )− +⎡
⎣⎢

⎤
⎦⎥

= − = −
x

C
x x

C
x

C
x

1 2 2 1 .
2

Therefore, for every value of C, the function = +y C x 2 is a solution of the differential 
equation. 

The differential equation in Example 1 has a whole family of solutions, one for each value 
of C. A natural question to consider is whether this family contains all the solutions to the dif-
ferential equation, or whether there are others that can somehow arise. The general solution to 
a first-order differential equation is the name given to an expression that contains all possible 
solutions. The general solution always contains an arbitrary constant, but a solution may con-
tain an arbitrary constant without being the general solution. Establishing when a solution is the 
general solution is left to a more extensive development of the theory of differential equations.

As with antiderivatives, we often need a particular rather than the general solution to 
a first-order differential equation ′ =y f x y( , ). A common way to pick out one of the col-
lection of possible solutions is to specify the value of y at a point =x x 0. The particular 
solution satisfying the initial condition y x y( )0 0=  is the solution y y x( )=  whose value 
is y0 when =x x .0  Thus the graph of the particular solution passes through the point 
( )x y,0 0  in the xy-plane. A first-order initial value problem is a differential equation 

′ =y f x y( , ) whose solution must satisfy an initial condition y x y( ) .0 0=
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1026 Chapter 16 First-Order Differential Equations

EXAMPLE 2  Show that the function

( )= + −y x e1 1
3

x

is a solution to the first-order initial value problem

dy
dx

y x y, (0) 2
3

.= − =

Solution The equation

= −dy
dx

y x

is a first-order differential equation with = −f x y y x( , ) .

On the left side of the equation:

( )= + − = −dy
dx

d
dx

x e e1 1
3

1 1
3

.x x

On the right side of the equation:

( )− = + − − = −y x x e x e1 1
3

1 1
3

.x x

The function satisfies the initial condition because

y x e(0) 1 1
3

1 1
3

2
3

.x

x 0
( )= + −⎡
⎣⎢

⎤
⎦⎥

= − =
=

The graph of the function is shown in Figure 16.1. 
FIGURE 16.1 Graph of the solution to 
the initial value problem in Example 2.

−4 −2 2 4

−4

−3

−2

−1

1

2

x

y

0, 2
3

y = (x + 1) −   ex1
3

a     b

FIGURE 16.2 (a) Slope field for = −dy
dx

y x. (b) The particular solu-

tion curve through the point ( )0, 2
3

 (Example 2).

0 2−2−4 4

2

4

−2

−4

0 2−2−4 4

2

4

−2

−4

(a) (b)

x x

y y 0, 2
3a     b

Slope Fields: Viewing Solution Curves

Each time we specify an initial condition y x y( )0 0=  for the solution of a differential 
equation ′ =y f x y( , ), the solution curve (graph of the solution) is required to pass 
through the point ( )x y,0 0  and to have slope ( )f x y,0 0  there. We can picture these slopes 
graphically by drawing short line segments of slope f x y( , ) at selected points x y( , ) in the 
region of the xy-plane that constitutes the domain of f. Each segment has the same slope as 
the solution curve through x y( , ) and so is tangent to the curve there. The resulting picture 
is called a slope field (or direction field) and gives a visualization of the general shape of 
the solution curves. Figure 16.2a shows a slope field, with a particular solution sketched 
into it in Figure 16.2b. We see how these line segments indicate the direction the solution 
curve takes at each point it passes through.
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 16.1  Solutions, Slope Fields, and Euler’s Method 1027

EXAMPLE 3  For the differential equation

y y x2 ,′ = −

draw line segments representing the slope field at the points ( )1, 2 , ( )1,1 , ( )2, 2 , and ( )2,1 .

Solution At ( )1, 2  the slope is ( ) ( )− =2 2 1 3. Similarly, the slope at ( )2, 2  is 2, at ( )2,1  
is 0, and at ( )1,1  is 1. We indicate this on the graph by drawing short line segments of the 
given slope through each point, as in Figure 16.3. 

FIGURE 16.4 Slope fields (top row) and selected solution curves (bottom row). In computer 
renditions, slope segments are sometimes portrayed with arrows, as they are here, but they 
should be considered as just tangent line segments.

(a) y′ = y − x2 (b) y′ = −
1 + x2

2xy
(c) y′ = (1 − x)y + x

2

FIGURE 16.5 The linearization L x( ) of 
y y x( )=  at =x x .0

0

y
y = L(x) = y0 + f (x0, y0)(x − x0)

y = y (x)

(x0, y0)y0

x0
x

(a)

y

x210

2

1

(b)

y

x21

2

1

0

FIGURE 16.3 (a) The slope field for 
′ = −y y x2  is shown at four points.  

(b) The slope field at several hundred  
additional points in the plane.

Figure 16.4 shows three slope fields, and we see how the solution curves behave by 
following the tangent line segments in these fields. Slope fields are useful because they 
display the overall behavior of the family of solution curves for a given differential 
equation. For instance, the slope field in Figure 16.4b reveals that every solution y x( ) to 
the differential equation specified in the figure satisfies y xlim ( ) 0

x
=

→±∞
. We will see that 

knowing the overall behavior of the solution curves is often critical to understanding 
and predicting outcomes in a real-world system modeled by a differential equation.

Constructing a slope field with pencil and paper can be quite tedious. Our examples 
were generated by computer software.

Euler’s Method

If we do not require or cannot find an exact solution that gives an explicit formula for an 
initial value problem ′ = =y f x y y x y( , ),   ( ) ,0 0  we can often use a computer to generate 
a table of approximate numerical values of y for values of x in an appropriate interval. Such 
a table is called a numerical solution of the problem, and the process by which we gener-
ate the table is called a numerical method.

Given a differential equation =dy dx f x y( , ) and an initial condition y x y( ) ,0 0=  
we can approximate the solution y y x( )=  by its linearization

L x y x y x x x L x y f x y x x( ) ( ) ( ) or ( ) , .0 0 0 0 0 0 0( )( ) ( )= + ′ − = + −

The function L x( ) gives a good approximation to the solution y x( ) in a short interval about 
x 0 (Figure 16.5). The basis of Euler’s method is to patch together a string of linearizations 
to approximate the curve over a longer stretch. Here is how the method works.

We know the point ( )x y,0 0  lies on the solution curve. Suppose that we specify a new 
value for the independent variable to be = +x x dx.1 0  (Recall that dx x= Δ  in the defi-
nition of differentials.) If the increment dx is small, then

y L x y f x y dx( ) ,1 1 0 0 0( )= = +
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1028 Chapter 16 First-Order Differential Equations

is a good approximation to the exact solution value y y x( ).1=  So from the point x y, ,0 0( )  
which lies exactly on the solution curve, we have obtained the point x y, ,1 1( )  which lies 
very close to the point x y x, ( )1 1( ) on the solution curve (Figure 16.6).

Using the point x y,1 1( ) and the slope f x y,1 1( ) of the solution curve through x y, ,1 1( )  
we take a second step. Setting x x dx,2 1= +  we use the linearization of the solution 
curve through x y,1 1( ) to calculate

y y f x y dx, .2 1 1 1( )= +

This gives the next approximation x y,2 2( ) to values along the solution curve y y x( )=  
(Figure 16.7). Continuing in this fashion, we take a third step from the point x y,2 2( ) with 
slope f x y,2 2( ) to obtain the third approximation

y y f x y dx, ,3 2 2 2( )= +

and so on. We are building an approximation to a solution by following the direction of  
the slope field of the differential equation.

The steps in Figure 16.7 are drawn large to illustrate the construction process, so the 
approximation looks crude. In practice, dx would be chosen small enough to make the red 
curve hug the blue one and give a better approximation.

The step-by-step process used in Example 4 can be continued with more points. Using 
equally spaced values for the independent variable in the table for the numerical solution, 
and generating n of them, set

�

x x dx

x x dx

x x dx.n n

1 0

2 1

1

= +

= +

= +−

Then calculate the approximations to the solution,

�

y y f x y dx

y y f x y dx

y y f x y dx

,

,

, .n n n n

1 0 0 0

2 1 1 1

1 1 1

( )

( )

( )

= +

= +

= +− − −

( )

( )

( )( )

= +

= + +

= + + =

First y y f x y dx

y y dx

: ,

1

1 1 1 0.1 1.2

1 0 0 0

0 0

( )

( )

( )( )

= +

= + +

= + + =

Second y y f x y dx

y y dx

: ,

1

1.2 1 1.2 0.1 1.42

2 1 1 1

1 1

( )

( )

( )( )

= +

= + +

= + + =

Third y y f x y dx

y y dx

: ,

1

1.42 1 1.42 0.1 1.662

3 2 2 2

2 2

 

= +f x y y( , ) 1
y dx1, 0.10 = =

EXAMPLE 4  Find the first three approximations y y y, ,1 2 3 using Euler’s method for 
the initial value problem

y y y1 , (0) 1,′ = + =

starting at x 00 =  with dx 0.1.=

Solution We already have the starting values x 00 =  and y 1.0 =  Next we determine 
the values of x at which the Euler approximations will take place: x x dx 0.1,1 0= + =  
x x dx2 0.2,2 0= + =  and x x dx3 0.3.3 0= + =  Then we find

FIGURE 16.6 The first Euler step 
approximates y x( )1  with y L x( ).1 1=

0

y

y = y(x)

(x1, y(x1))

(x1, y1)

x0 x1 = x0 + dx
dx x

(x0, y0)

FIGURE 16.7 Three steps in the Euler  
approximation to the solution of the initial  
value problem ′ = =y f x y y x y( , ), ( ) .0 0  
As we take more steps, the errors involved 
usually accumulate, but not in the exagger-
ated way shown here.

x

y

0

Euler approximation

Error

(x0, y0)

(x1, y1)

(x2, y2)
(x3, y3)

x0 x1 x2 x3

dx dx dx

True solution curve
y = y(x)

y dx1.2, 0.11 = =

y dx1.42, 0.12 = =
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 16.1  Solutions, Slope Fields, and Euler’s Method 1029

The number of steps n can be as large as we like, but errors involving the representation of 
numbers in software can accumulate if n is too large.

Euler’s method is easy to implement on a computer or calculator. A typical software 
program takes as input x 0 and y ,0  the number of steps n, and the step size dx. It then calcu-
lates the approximate solution values …y y y, , , n1 2  in iterative fashion, as just described.

Solving the separable equation in Example 4, we find that the exact solution to the 
initial value problem is y e2 1.x= −  We use this information in Example 5.

HISTORICAL BIOGRAPHY

Leonhard Euler  
(1707–1783)
Born in Basel, Switzerland, Leonhard Euler 
was the dominant mathematical figure of his 
century and the most prolific mathematician 
who ever lived. He was also an astronomer, 
physicist, engineer, and chemist. He was the 
first scientist to give the function concept 
prominence in his work, thereby setting a 
strong foundation for the development of 
calculus and other areas of mathematics.

To know more, visit the companion Website. 

FIGURE 16.8 The graph of 
y e2 1x= −  superimposed on a scatter-
plot of the Euler approximations shown in 
Table 16.1 (Example 5).

10

1

2

3

4

x

y

y = 2ex − 1

EXAMPLE 5  Use Euler’s method to solve

y y y1 , (0) 1,′ = + =

on the interval x0 1,≤ ≤  starting at x 00 =  and taking (a) dx 0.1=  and (b) dx 0.05.=  
Compare the approximations with the values of the exact solution y e2 1.x= −

Solution 

 (a) We used a computer to generate the approximate values in Table 16.1. The “error” col-
umn is obtained by subtracting the unrounded Euler values from the unrounded values 
found using the exact solution. All entries are then rounded to four decimal places.

TABLE 16.1 Euler solution of y y y1 , (0) 1,′ = + =  
step size dx 0.1=

x y (Euler) y (exact) Error

0 1 1 0

0.1 1.2 1.2103 0.0103

0.2 1.42 1.4428 0.0228

0.3 1.662 1.6997 0.0377

0.4 1.9282 1.9836 0.0554

0.5 2.2210 2.2974 0.0764

0.6 2.5431 2.6442 0.1011

0.7 2.8974 3.0275 0.1301

0.8 3.2872 3.4511 0.1639

0.9 3.7159 3.9192 0.2033

1.0 4.1875 4.4366 0.2491

By the time we reach x 1=  (after 10 steps), the error is about 5.6% of the exact 
solution. A plot of the exact solution curve with the scatterplot of Euler solution points 
from Table 16.1 is shown in Figure 16.8.

 (b) One way to try to reduce the error is to decrease the step size. Table 16.2 shows the 
results and their comparisons with the exact solutions when we decrease the step size 
to 0.05, doubling the number of steps to 20. As in Table 16.1, all computations are 
performed before rounding. This time when we reach x 1,=  the relative error is only 
about 2.9%. 

It might be tempting to reduce the step size even further in Example 5 to obtain greater 
accuracy. Each additional calculation, however, not only requires additional computer time 
but, more importantly, adds to the buildup of round-off errors due to the approximate repre-
sentations of numbers inside the computer.
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1030 Chapter 16 First-Order Differential Equations

The analysis of error and the investigation of methods to reduce it when making 
numerical calculations are important. An area of mathematics called numerical analysis 
studies advanced numerical methods that are more accurate than Euler’s method.

Slope Fields
In Exercises 1–4, match the differential equations with their slope 
fields, graphed here.

−2

2

4

−4

2−2−4 4

(a)

x

y

2

−2

−4

4

−2 2 4−4

(b)

x

y 2

−2

−2 2 4−4

−4

4

(c)

x

y

2

−2

−2 2 4−4

−4

4

(d)

x

y

 1. y x y′ = +  2. y y 1′ = +

 3. y x
y

′ = −  4. y y x2 2′ = −

EXERCISES 16.1 

TABLE 16.2 Euler solution of y y y1 , (0) 1,′ = + =  
step size dx 0.05=

x y (Euler) y (exact) Error

0 1 1 0

0.05 1.1 1.1025 0.0025

0.10 1.205 1.2103 0.0053

0.15 1.3153 1.3237 0.0084

0.20 1.4310 1.4428 0.0118

0.25 1.5526 1.5681 0.0155

0.30 1.6802 1.6997 0.0195

0.35 1.8142 1.8381 0.0239

0.40 1.9549 1.9836 0.0287

0.45 2.1027 2.1366 0.0340

0.50 2.2578 2.2974 0.0397

0.55 2.4207 2.4665 0.0458

0.60 2.5917 2.6442 0.0525

0.65 2.7713 2.8311 0.0598

0.70 2.9599 3.0275 0.0676

0.75 3.1579 3.2340 0.0761

0.80 3.3657 3.4511 0.0853

0.85 3.5840 3.6793 0.0953

0.90 3.8132 3.9192 0.1060

0.95 4.0539 4.1714 0.1175

1.00 4.3066 4.4366 0.1300
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 16.1  Solutions, Slope Fields, and Euler’s Method 1031

In Exercises 5 and 6, copy the slope fields, and sketch in some of the 
solution curves.

 5. y y y2 2( )( )′ = + −

Using Euler’s Method
In Exercises 15–20, use Euler’s method to calculate the first three 
approximations to the given initial value problem for the specified 
increment size. Calculate the exact solution and investigate the accu-
racy of your approximations. Round your results to four decimal 
places.

 15. y
y

x
y dx

2
, (1) 1, 0.5′ = = − =

 16. y x y y dx1 , (1) 0, 0.2( )′ = − = =

 17. y xy y y dx2 2 , (0) 3, 0.2′ = + = =

 18. y y x y dx1 2 , ( 1) 1, 0.52 ( )′ = + − = =

 19. y xe y dx2 , (0) 2, 0.1x 2′ = = =

 20. y ye y dx, (0) 2, 0.5x′ = = =

 21. Use Euler’s method with dx 0.2=  to estimate y(1) if y y′ =  and 
y(0) 1.=  What is the exact value of y(1)?

 22. Use Euler’s method with dx 0.2=  to estimate y(2) if y y x′ =  
and y(1) 2.=  What is the exact value of y(2)?

 23. Use Euler’s method with dx 0.5=  to estimate y(5) if 
y y x2′ =  and y(1) 1.= −  What is the exact value of y(5)?

 24. Use Euler’s method with dx 1 3=  to estimate y(2) if y x ysin′ =  
and y(0) 1.=  What is the exact value of y(2)?

 25. Show that the solution of the initial value problem

y x y y x y, ( )0 0′ = + =

is

y x x y e1 1   .x x
0 0

0( )= − − + + + −

 26. What integral equation is equivalent to the initial value problem 
y f x y x y( ), ( ) ?0 0′ = =

COMPUTER EXPLORATIONS
In Exercises 27–32, obtain a slope field and add to it graphs of the 
solution curves passing through the given points.

 27. y y′ =  with

 a. 0,1( ) b. 0, 2( ) c. 0, 1( )−

 28. y y2 4( )′ = −  with

 a. 0,1( ) b. 0, 4( ) c. 0, 5( )

 29. y y x y( )′ = +  with

 a. 0,1( ) b. 0, 2( )−  c. 0,1 4( ) d. 1, 1( )− −

 30. y y 2′ =  with

 a. 0,1( ) b. 0, 2( ) c. ( )−0, 1  d. 0, 0( )

 31. y y x1 2( )( )′ = − +  with

 a. ( )−0, 1  b. 0,1( ) c. 0, 3( ) d. ( )−1, 1

 32. y
xy

x 42
′ =

+
 with

 a. 0, 2( ) b. ( )−0, 6  c. 2 3, 4( )− −

In Exercises 33 and 34, obtain a slope field, and graph the particular 
solution over the specified interval. Use your CAS DE solver to find 
the general solution of the differential equation.

 33. A logistic equation y y y y x2 , (0) 1 2; 0 4,( )′ = − = ≤ ≤  
y0 3≤ ≤

 34. y x y y x ysin sin , (0) 2; 6 6, 6 6( )( )′ = = − ≤ ≤ − ≤ ≤

T

T

2

−2

−2 2 4−4

−4

4

x

y

 6. y y y y1 1( )( )′ = + −

2

−2

−2 2 4−4

−4

4

x

y

Integral Equations
In Exercises 7–12, write an equivalent first-order differential equation 
and initial condition for y.

 7. y t y t dt1 ( )
x

1∫ ( )= − + −  8. ∫=y
t

dt1x

1

 9. y y t t dt2 1 ( ) sin
x

0∫ ( )= − +

 10. y y t dt1 ( )
x

0∫= +  11. ∫= + +
−

y x te dt4 y t
x

( )

2

 12. y x t y t dtln ( )
x

e
2 2∫ ( )= + +

In Exercises 13 and 14, consider the differential equation y f y( )′ =  
and the given graph of f. Make a rough sketch of a direction field for 
each differential equation.

 13. 

y

f (y)

−1

−2

0 21 3−2 −1−3

1

2

 14. 

y

f (y)

−1

−2

21 3−2 −1−3

1

2
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1032 Chapter 16 First-Order Differential Equations

Exercises 35 and 36 have no explicit solution in terms of elementary 
functions. Use a CAS to explore graphically each of the differential 
equations.

 35. y x y y x ycos 2 , (0) 2; 0 5, 0 5( )′ = − = ≤ ≤ ≤ ≤

 36. A Gompertz equation y y y y1 2 ln , (0) 1 3;( )′ = − =  
x y0 4, 0 3≤ ≤ ≤ ≤

 37. Use a CAS to find the solutions of y y f x( )′ + = , subject to the 
initial condition y(0) 0,=  if f x( ) is

 a. 2x b. xsin 2  c. e3 x 2 d. e x2 cos 2 .x 2−

Graph all four solutions over the interval x2 6− ≤ ≤  to com-
pare the results.

 38. a. Use a CAS to plot the slope field of the differential equation

y x x
y

3 4 2
2 1

2

( )
′ = + +

−

over the region x3 3− ≤ ≤  and y3 3.− ≤ ≤

 b. Separate the variables and use a CAS integrator to find the 
general solution in implicit form.

 c. Using a CAS implicit function grapher, plot solution curves 
for the arbitrary constant values C 6, 4, 2, 0, 2, 4, 6.= − − −

 d. Find and graph the solution that satisfies the initial condition 
y(0) 1.= −

In Exercises 39–42, use Euler’s method with the specified step size to 
estimate the value of the solution at the given point x*. Find the value 
of the exact solution at x*.

 39. y xe y dx x2 , (0) 2, 0.1, * 1x 2′ = = = =

 40. y y x y dx x2 1 , (2) 1 2, 0.1, * 32 ( )′ = − = − = =

 41. y x y y y dx x, 0, (0) 1, 0.1, * 1′ = > = = =

 42. y y y dx x1 , (0) 0, 0.1, * 12′ = + = = =

Use a CAS to explore graphically each of the differential equations 
in Exercises 43–46. Perform the following steps to help with your 
explorations.

 a. Plot a slope field for the differential equation in the given  
xy-window.

 b. Find the general solution of the differential equation using 
your CAS DE solver.

 c. Graph the solutions for the values of the arbitrary constant 
C 2, 1, 0,1, 2= − −  superimposed on your slope field plot.

 d. Find and graph the solution that satisfies the specified initial 
condition over the interval [ ]b0, .

 e. Find the Euler numerical approximation to the solution of  
the initial value problem with 4 subintervals of the x-interval, 
and plot the Euler approximation superimposed on the graph  
produced in part (d).

 f. Repeat part (e) for 8, 16, and 32 subintervals. Plot these  
three Euler approximations superimposed on the graph from 
part (e).

 g. Find the error y yexact Euler( )( )( ) −  at the specified point 
x b=  for each of your four Euler approximations. Discuss 
the improvement in the percentage error.

 43. y x y y x y, (0) 7 10; 4 4, 4 4;′ = + = − − ≤ ≤ − ≤ ≤  
b 1=

 44. ′ = − = − ≤ ≤ − ≤ ≤ =y x y y x y b, (0) 2; 3 3, 3 3; 2

 45. y y y y x y2 , (0) 1 2; 0 4, 0 3;( )′ = − = ≤ ≤ ≤ ≤  
b 3=

 46. y x y y x ysin sin , (0) 2; 6 6, 6 6;( )( )′ = = − ≤ ≤ − ≤ ≤  
b 3 2π=

16.2 First-Order Linear Equations

A first-order linear differential equation is one that can be written in the form

 
dy
dx

P x y Q x( ) ( ),+ =  (1)

where P and Q are continuous functions of x. Equation (1) is the linear equation’s standard 
form. Since the exponential growth decay equation dy dx ky=  (Section 7.2) can be put 
in the standard form

dy
dx

ky 0,− =

we see it is a linear equation with P x k( ) = −  and Q x( ) 0.=  Equation (1) is linear (in y) 
because y and its derivative dy dx  occur only to the first power, they are not multiplied 
together, nor do they appear as the argument of a function (such as y esin , ,y  or dy dx).

EXAMPLE 1  Put the following equation in standard form:

x
dy
dx

x y x3 , 0.2= + >
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 16.2  First-Order Linear Equations 1033

Solution 

x
dy
dx

x y

dy
dx

x
x

y

dy
dx x

y x

3

3

3

2= +

= +

− =

Divide by x.

Standard form with P x x( ) 3= −  
Q x xand  ( ) =

Notice that P x( ) is x3 ,−  not x3 .+  The standard form is y P x y Q x( ) ( ),′ + =  so the 
minus sign is part of the formula for P x( ). 

Solving Linear Equations

We solve the equation
dy
dx

P x y Q x( ) ( )+ =

by multiplying both sides by a positive function x( )υ  that transforms the left-hand side 
into the derivative of the product υ ⋅x y( ) . We will show how to find υ in a moment, but 
first we want to show how, once found, it provides the solution we seek.

Here is why multiplying by x( )υ  works:

dy
dx

P x y Q x

x
dy
dx

P x x y x Q x

d
dx

x y x Q x

x y x Q x dx

y
x

x Q x dx

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1
( )

( ) ( )

∫

∫

υ υ υ

υ υ

υ υ

υ
υ

( )

+ =

+ =

⋅ =

⋅ =

=

 

(2)

Original equation is  
in standard form.

Multiply by positive x( ).υ

x( )υ  is chosen to make

υ υ υ( )+ = ⋅dy
dx

P y d
dx

y .

Integrate with respect to x.

Divide by x( ).υ

Equation (2) expresses the solution of Equation (1) in terms of the functions x( )υ  and  
Q x( ). We call x( )υ  an integrating factor for Equation (1) because its presence makes the 
equation integrable.

Why doesn’t the formula for P x( ) appear in the solution as well? It does, but indi-
rectly, in the construction of the positive function x( )υ . We have

d
dx

y
dy
dx

P y

dy
dx

y d
dx

dy
dx

P y

y d
dx

P y

( )

.

υ υ υ

υ υ υ υ

υ υ

= +

+ = +

=

Condition imposed on υ

Derivative Product Rule

The terms 
dy
dx
υ  cancel.

This last equation will hold if

d
dx

P

d P dx

d P dx∫ ∫

υ υ

υ
υ

υ
υ

=

=

=

Variables separated, 0υ >

Integrate both sides.
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1034 Chapter 16 First-Order Differential Equations

Thus a formula for the general solution to Equation (1) is given by Equation (2), where 
x( )υ  is given by Equation (3). However, rather than memorizing the formula, just remem-

ber how to find the integrating factor once you have the standard form so P x( ) is correctly 
identified. Any antiderivative of P works for Equation (3).

Integrating Factors
To solve the linear equation y P x y Q x( ) ( ),′ + =  multiply both sides by the inte-
grating factor x e( ) P x dx( )υ = ∫  and integrate both sides.

P dx

e e

e

ln

.

P dx

P dx

ln

∫υ

υ

=

=

=

υ ∫

∫

 

(3)

Since 0,υ >  we do not need absolute  
value signs in ln .υ

Exponentiate both sides to solve for .υ

When you integrate the product on the left-hand side in this procedure, you always obtain 
the product x y( )υ  of the integrating factor and solution function y because of the way υ is 
defined.

EXAMPLE 2  Solve the equation

x
dy
dx

x y x3 , 0.2= + >

Solution First we put the equation in standard form (Example 1):

dy
dx x

y x3 ,− =

so P x x( ) 3= −  is identified.
The integrating factor is

x e e

e

e

e
x

( )

1 .

P x dx x dx

x

x

x

( ) 3

3 ln

3 ln

ln
3

3

υ = =

=

=

= =

( )∫ ∫ −

−

−

−

Constant of integration is 0,  
so υ is as simple as possible.

x 0>

Next we multiply both sides of the standard form by x( )υ  and integrate:

∫

( )

( )

⋅ − = ⋅

− =

=

=

= − +

x
dy
dx x

y
x

x

x
dy
dx x

y
x

d
dx x

y
x

x
y

x
dx

x
y

x
C

1 3 1

1 3 1

1 1

1 1

1 1 .

3 3

3 4 2

3 2

3 2

3

Left-hand side is υ( )⋅d
dx

y .

Integrate both sides.

Solving this last equation for y gives the general solution:

( )= − + = − + >y x
x

C x Cx x1 , 0.3 2 3  

HISTORICAL BIOGRAPHY

Adrien-Marie Legendre  
(1752–1833)
Legendre, a French mathematician, taught at 
the École polytechnique and won a research 
prize from the Berlin Academy in 1782. He 
encountered and developed polynomials, 
today named for him, in his research on 
the gravitational attraction of ellipsoids. He 
devoted 40 years to this research to elliptic 
integrals.

To know more, visit the companion Website. 
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 16.2  First-Order Linear Equations 1035

EXAMPLE 3  Find the particular solution of

xy y x x3 ln 1, 0,′ − = + >

that satisfying y(1) 2.= −

Solution With x 0,>  we write the equation in standard form:

y
x

y
x

x
1

3
ln 1

3
.′ − =

+

Then the integrating factor is given by

e e x .x dx x1 3 1 3 ln 1 3υ = = =( )( )∫ − − −     x 0>

Thus

x y x x dx1
3

ln 1 .1 3 4 3∫ ( )= +− −           Left-hand side is y.υ

Integration by parts of the right-hand side gives

x y x x x dx Cln 1 .1 3 1 3 4 3∫( )= − + + +− − −

Therefore,

x y x x x Cln 1 31 3 1 3 1 3( )= − + − +− − −

or, solving for y,

y x Cxln 4 .1 3( )= − + +

When x 1=  and y 2= − , this last equation becomes

C2 0 4 ,( )− = − + +
so

C 2.=

Substitution into the equation for y gives the particular solution

y x x2 ln 4.1 3= − −  

In solving the linear equation in Example 2, we integrated both sides of the equation 
after multiplying each side by the integrating factor. However, we can shorten the amount 
of work, as in Example 3, by remembering that the left-hand side always integrates into the 
product υ ⋅x y( )  of the integrating factor times the solution function. From Equation (2) 
this means that

 x y x Q x dx( ) ( ) ( ) .∫υ υ=  (4)

We need only integrate the product of the integrating factor x( )υ  with Q x( ) on the right-
hand side of Equation (1) and then equate the result with x y( )υ  to obtain the general solu-
tion. Nevertheless, to emphasize the role of x( )υ  in the solution process, we sometimes 
follow the complete procedure as illustrated in Example 2.

Observe that if the function Q x( ) is identically zero in the standard form given by 
Equation (1), the linear equation is separable and can be solved by the method of Section 7.2:

dy
dx

P x y Q x

dy
dx

P x y

dy
y

P x dx

( ) ( )

( ) 0

( ) .

+ =

+ =

= −

Q x( ) 0=

Separating the variables
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1036 Chapter 16 First-Order Differential Equations

RL Circuits

The diagram in Figure 16.9 represents an electrical circuit whose total resistance is a con-
stant R ohms and whose self-inductance, shown as a coil, is L henries, also a constant. 
There is a switch whose terminals at a and b can be closed to connect a constant electrical 
source of V volts.

Ohm’s Law, V RI ,=  has to be augmented for such a circuit. The correct equation 
accounting for both resistance and inductance is

 L di
dt

Ri V,+ =  (5)

where i is the current in amperes and t is the time in seconds. By solving this equation, we 
can predict how the current will flow after the switch is closed.

FIGURE 16.9 The RL circuit 
in Example 4.

Switch

R L

a b
i

V
+ −

FIGURE 16.10 The growth of the  
current in the RL circuit in Example 4. 
I is the current’s steady-state value. The 
number t L R=  is the time constant of 
the circuit. The current gets to within 5% 
of its steady-state value in 3 time constants 
(Exercise 27).

i

t
0 432

i = (1 − e−Rt�L)V
R

I = V
R I

e

L
R

L
R

L
R

L
R

EXAMPLE 4  The switch in the RL circuit in Figure 16.9 is closed at time t 0.=  How 
will the current flow as a function of time?

Solution Equation (5) is a first-order linear differential equation for i as a function of t. 
Its standard form is

 di
dt

R
L

i V
L

,+ =  (6)

and the corresponding solution, given that i 0=  when t 0,=  is

 i V
R

V
R

e .R L t= − ( )−  (7)

(We leave the calculation of the solution to Exercise 28.) Since R and L are positive, 
R L( )−  is negative and →( )−e 0R L t  as → ∞t . Thus,

( )= − = − ⋅ =( )
→∞ →∞

−i V
R

V
R

e V
R

V
R

V
R

lim lim 0 .
t t

R L t

At any given time, the current is less than V R, but as time passes, the current approaches 
the steady-state value V R. According to the equation

L di
dt

Ri V,+ =

I V R=  is the current that will flow in the circuit if either L 0=  (no inductance) or 
di dt 0=  (steady current, i constant= ) (Figure 16.10).

Equation (7) expresses the solution of Equation (6) as the sum of two terms: a steady-state 
solution V R and a transient solution V R e R L t( )− ( )−  that tends to zero as t .→ ∞  

First-Order Linear Equations
Solve the differential equations in Exercises 1–14.

 1. x
dy
dx

y e x, 0x+ = >

 2. e
dy
dx

e y2 1x x+ =

 3. xy y
x

x
x3

sin
, 0

2
′ + = >

 4. y x y x xtan cos , 2 22 π π( )′ + = − < <

 5. x
dy
dx

y
x

x2 1 1 , 0+ = − >

 6. x y y x1  ( )+ ′ + =  7. y e y2 x 2′ = +

 8. e y e y x2 2x x2 2′ + =  9. xy y x x2 ln′ − =

 10. x
dy
dx

x
x

y x
cos

2 , 0= − >

EXERCISES 16.2 
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 16.2  First-Order Linear Equations 1037

 11. t ds
dt

t s t t1 4 1 1, 13 2( ) ( )− + − = + >

 12. t ds
dt

s t
t

t1 2 3 1 1
1

, 12
( ) ( )

( )
+ + = + +

+
> −

 13. dr
d

rsin cos tan , 0 2θ
θ

θ θ θ π( )+ = < <

 14. dr
d

rtan sin , 0 22θ
θ

θ θ π+ = < <

Solving Initial Value Problems
Solve the initial value problems in Exercises 15–20.

 15. 
dy
dt

y y2 3, (0) 1+ = =

 16. t
dy
dt

y t t y2 , 0, (2) 13+ = > =

 17. dy
d

y ysin , 0, 2 1θ
θ

θ θ π( )+ = > =

 18. dy
d

y y2 sec tan , 0, 3 23θ
θ

θ θ θ θ π( )− = > =

 19. x
dy
dx

x x y e
x

x y1 2
1

, 1, (0) 5
x

2
2

( )( )+ − + =
+

> − =

 20. 
dy
dx

xy x y, (0) 6+ = = −

 21. Solve the exponential growth/decay initial value problem for y as 
a function of t by thinking of the differential equation as a first-
order linear equation with P x k( ) = −  and Q x( ) 0:=

= =dy
dt

ky k y y( constant), (0) 0

 22. Solve the following initial value problem for u as a function of t:

+ = =du
dt

k
m

u k m u u0 (  and   positive constants), (0) 0

 a. as a first-order linear equation.

 b. as a separable equation.

Theory and Examples

 23. Is either of the following equations correct? Give reasons for your 
answers.

 a. x
x

dx x x C1 ln∫ = +

 b. x
x

dx x x Cx1 ln∫ = +

 24. Is either of the following equations correct? Give reasons for your 
answers.

 a. 
x

x dx x C1
cos

cos tan∫ = +

 b. 
x

x dx x C
x

1
cos

cos tan
cos∫ = +

 25. Current in a closed RL circuit How many seconds after the 
switch in an RL circuit is closed will it take the current i to reach 
half of its steady-state value? Notice that the time depends on R 
and L, not on how much voltage is applied.

 26. Current in an open RL circuit If the switch is thrown open 
after the current in an RL circuit has built up to its steady-state 

value I V R= , the decaying current (see accompanying figure) 
obeys the equation

L di
dt

Ri 0,+ =

which is Equation (5) with V 0.=

 a. Solve the equation to express i as a function of t.

 b. How long after the switch is thrown will it take the current to 
fall to half its original value?

 c. Show that the value of the current when t L R=  is I e. (The 
significance of this time is explained in the next exercise.)

i

t
0 32

V
R

I
e

L
R

L
R

L
R

 27. Time constants Engineers call the number L R the time con-
stant of the RL circuit in Figure 16.10. The significance of the time 
constant is that the current will reach 95% of its final value within 
3 time constants of the time the switch is closed (Figure 16.10). 
Thus, the time constant gives a built-in measure of how rapidly an 
individual circuit will reach equilibrium.

 a. Find the value of i in Equation (7) that corresponds to 
t L R3= , and show that it is about 95% of the steady-state 
value I V R .=

 b. Approximately what percentage of the steady-state current 
will be flowing in the circuit 2 time constants after the switch 
is closed (i.e., when t L R2= )?

 28. Derivation of Equation (7) in Example 4 

 a. Show that the solution of the equation

di
dt

R
L

i V
L

+ =

is

i V
R

Ce .R L t= + ( )−

 b. Then use the initial condition i(0) 0=  to determine the value 
of C. This will complete the derivation of Equation (7).

 c. Show that i V R=  is a solution of Equation (6) and that 
i Ce R L t= ( )−  satisfies the equation

di
dt

R
L

i 0.+ =

A Bernoulli differential equation is of the form

dy
dx

P x y Q x y( ) ( ) .n+ =

Observe that, if n 0=  or 1, the Bernoulli equation is linear. 
For other values of n, the substitution u y n1= −  transforms 
the Bernoulli equation into the linear equation

du
dx

n P x u n Q x1 ( ) 1 ( ).( ) ( )+ − = −
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1038 Chapter 16 First-Order Differential Equations

For example, in the equation
dy
dx

y e y ,x 2− = −

we have n 2,=  so that u y y1 2 1= =− −  and  
du dx y dy dx .2= − −  Then 
dy dx y du dx u du dx .2 2= − = − −   
Substitution into the original equation gives

u du
dx

u e u ,x2 1 2− − =− − − −

or, equivalently,

du
dx

u e .x+ = − −

This last equation is linear in the (unknown) dependent  
variable u.

Solve the Bernoulli equations in Exercises 29–32.

 29. y y y 2′ − = −  30. y y xy 2′ − =
 31. xy y y 2′ + = −  32. x y xy y22 3′ + =

16.3 Applications

We now look at four applications of first-order differential equations. The first application 
analyzes an object moving along a straight line while subject to a force opposing its motion. 
The second is a model of population growth. The third application considers a curve or 
curves intersecting each curve in a second family of curves orthogonally (that is, at right 
angles). The final application analyzes chemical concentrations entering and leaving a con-
tainer. The various models involve separable or linear first-order equations.

Motion with Resistance Proportional to Velocity

In some cases it is reasonable to assume that the resistance encountered by a moving 
object, such as a car coasting to a stop, is proportional to the object’s velocity. The faster 
the object moves, the more its forward progress is resisted by the air through which it 
passes. Picture the object as a mass m moving along a coordinate line with position func-
tion s and velocity υ at time t. From Newton’s second law of motion, the resisting force 
opposing the motion is

m d
dt

Force mass acceleration .υ= × =

If the resisting force is proportional to velocity, we have

υ υ υ υ ( )= − = − >m d
dt

k d
dt

k
m

kor 0 .

This is a separable differential equation representing exponential change. The solution to 
the equation with initial condition 0υ υ=  at t 0=  is (Section 7.2)

 e .k m t
0υ υ= ( )−  (1)

What can we learn from Equation (1)? For one thing, we can see that if m is something 
large, like the mass of a 20,000-ton ore boat in Lake Erie, it will take a long time for the 
velocity to approach zero (because t must be large in the exponent of the equation in order 
to make kt m large enough for υ to be small). We can learn even more if we integrate 
Equation (1) to find the position s as a function of time t.

Suppose that an object is coasting to a stop and the only force acting on it is a resistance 
proportional to its speed. How far will it coast? To find out, we start with Equation (1) and 
solve the initial value problem

υ= =( )−ds
dt

e s, (0) 0.k m t
0
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16.3  Applications 1039

Integrating with respect to t gives

s
m

k
e C.k m t0υ= − +( )−

Substituting s 0=  when t 0=  gives

υ υ
= − + =

m
k

C C
m

k
0 and .0 0

The body’s position at time t is therefore

s t
m

k
e

m
k

m
k

e( ) 1 .k m t k m t0 0 0υ υ υ
( )= − + = −( ) ( )− − (2)

To find how far the body will coast, we find the limit of s t( ) as t .→ ∞  Since k m 0,( )− <  
we know that e 0k m t →( )−  as t ,→ ∞  so that

s t
m

k
e

m
k

m
k

lim ( ) lim 1   1 0 .
t t

k m t0 0 0υ υ υ
( ) ( )= − = − =( )

→∞ →∞

−

Thus,
m

k
Distance coasted .0υ= (3)

The number m k0υ  is only an upper bound (albeit a useful one). It is true to life in one 
respect, at least: If m is large, the body will coast a long way.

EXAMPLE 1  For a 90-kg ice skater, the k in Equation (1) is about 5 kg/s. How long 
will it take the skater to coast from 3.3 m/s (11.88 km/h) to 0.3 m/s? How far will the 
skater coast before coming to a complete stop?

Solution We answer the first question by solving Equation (1) for t:

We answer the second question with Equation (3):

υ
= = ⋅ =

m
k

Distance coasted 3.3 90
5

59.4 m.0  

( )

=

=

− = = −

= ≈

−

−

e

e

t

t

33 0.3

1 11

18 ln 1 11 ln 11

18 ln 11 43 s.

t

t

18

18

Eq. (1) with =k 5,

υ υ= = =m 90, 3.3, 0.30

Inaccuracy of the Exponential Population Growth Model

In Section 7.2 we modeled population growth with the Law of Exponential Change:

dP
dt

kP P P, (0) ,0= =

where P is the population at time t, k 0>  is a constant growth rate, and P0 is the size of the 
population at time t 0.=  In Section 7.2 we found the solution P P e kt

0=  to this model.
To assess the model, notice that the exponential growth differential equation says that

dP dt
P

k=  (4)

is constant. This rate is called the relative growth rate. We can use this to predict total 
future world population based on historical data. Table 16.3 gives the world population at 
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1040 Chapter 16 First-Order Differential Equations

midyear for the years 1980 to 19816. Taking dt 1=  and dP P,≈ Δ  we see from the table 
that the relative growth rate in Equation (4) is approximately equal to 0.017. Thus, based 
on the tabled data with t 0=  representing 1980, t 1=  representing 1981, and so forth, 
the world population could be modeled by the initial value problem

dP
dt

P P0.017 , (0) 4454.= =

The solution to this initial value problem gives the population function P e4454 .t0.017=  
In year 2008 (so t 28= ), the solution predicts the world population in midyear to be 
about 7169 million, or 7.2 billion (Figure 16.11), which is more than the actual population 
of 6707 million, an error of about 7%. The error grows as the number of years increases. 
For 2020 t 40( )=  the model predicts a population of 8792 million. The reported popula-
tion for 2020 is 7795 million, an overprediction error of about 13%. A more realistic model 
would consider environmental, economic, and other factors affecting the growth rate, 
which has been steadily declining. We consider one such model in Section 16.4.

FIGURE 16.11 The value of the solution 
P e4454 t0.017=  is 8792 when t 40,=  
which is nearly 13% more than the actual 
population in 2020.

t

P

0 10 40

8000

9000

5000

4000

World population (1980–2020)

P = 4454e0.017t

FIGURE 16.12 An orthogonal trajec-
tory intersects the family of curves at 
right angles, or orthogonally.

Orthogonal trajectory

FIGURE 16.13 Every straight line 
through the origin is orthogonal to the 
family of circles centered at the origin.

x

y

TABLE 16.3 World population (midyear)

Year
Population  
(millions) ΔP P

1980 4454 76 4454 0.0171≈

1981 4530 80 4530 0.0177≈

1982 4610 80 4610 0.0174≈

1983 4690 80 4690 0.0171≈

1984 4770 81 4770 0.0170≈

1985 4851 82 4851 0.0169≈

1986 4933 85 4933 0.0172≈

1987 5018 87 5018 0.0173≈

1988 5105 85 5105 0.0167≈

1989 5190

EXAMPLE 2  Find the orthogonal trajectories of the family of curves xy a,=  where 
a 0≠  is an arbitrary constant.

Solution The curves xy a=  form a family of hyperbolas having the coordinate axes as 
asymptotes. First we find the slopes of each curve in this family, or their dy dx  values. 
Differentiating xy a=  implicitly gives

+ = = −x
dy
dx

y
dy
dx

y
x

0 or .

Orthogonal Trajectories

An orthogonal trajectory of a family of curves is a curve that intersects each curve of the 
family at right angles, or orthogonally (Figure 16.12). For instance, each straight line 
through the origin is an orthogonal trajectory of the family of circles x y a ,2 2 2+ =  cen-
tered at the origin (Figure 16.13). Such mutually orthogonal systems of curves are of par-
ticular importance in physical problems related to electrical potential, where the curves in 
one family correspond to strength of an electric field, and those in the other family corre-
spond to constant electric potential. They also occur in hydrodynamics and heat-flow 
problems.
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 16.3  Applications 1041

FIGURE 16.14 Each curve is orthogonal 
to every curve it meets in the other family 
(Example 2).

x

y

x2 − y2 = b
b ≠ 0

xy = a,
a ≠ 0

0

Thus the slope of the tangent line at any point x y,( ) on one of the hyperbolas xy a=  is 
y y x .′ = −  On an orthogonal trajectory the slope of the tangent line at this same point 
must be the negative reciprocal, or x y. Therefore, the orthogonal trajectories must satisfy 
the differential equation

dy
dx

x
y

.=

This differential equation is separable, and we solve it as in Section 7.2:

 

y dy x dx

y dy x dx

y x C

y x b

1
2

1
2
,

2 2

2 2

∫ ∫

=

=

= +

− =

 

(5)

Separate variables.

Integrate both sides.

where b C2=  is an arbitrary constant. The orthogonal trajectories are the family of hyper-
bolas given by Equation (5) and sketched in Figure 16.14. 

Mixture Problems

Suppose a chemical in a liquid solution (or dispersed in a gas) runs into a container hold-
ing the liquid (or the gas) with, possibly, a specified amount of the chemical dissolved as 
well. The mixture is kept uniform by stirring and flows out of the container at a known 
rate. In this process, it is often important to know the concentration of the chemical in the 
container at any given time. The differential equation describing the process is based on 
the formula

 

Rate of change

of amount
in container

rate at which
chemical
arrives

rate at which
chemical
departs.

.=
⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟
−

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟
 (6)

If y t( ) is the amount of chemical in the container at time t, and V t( ) is the total volume of 
liquid in the container at time t, then the departure rate of the chemical at time t is

 

y t
V t

t

Departure rate
( )
( )

outflow rate

concentration in
container at time

outflow rate .

( )

( )

= ⋅

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⋅
 

(7)

Accordingly, Equation (6) becomes

 ( ) ( )= − ⋅dy
dt

y t
V t

chemical’s arrival rate
( )
( )

outflow rate . (8)

If, say, y is measured in kilograms, V in liters, and t in minutes, the units in Equation (8) are

= − ⋅kilograms
minutes

kilograms
minutes

kilograms
liters

liters
minutes

.

EXAMPLE 3  In an oil refinery, a storage tank contains 10,000 L of gasoline that ini-
tially has 50 kg of an additive dissolved in it. In preparation for winter weather, gasoline 
containing 0.2 kg of additive per liter is pumped into the tank at a rate of 200 L/min. 
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1042 Chapter 16 First-Order Differential Equations

The well-mixed solution is pumped out at a rate of 220 L/min. How much of the addi-
tive is in the tank 20 min after the pumping process begins (Figure 16.15)?

FIGURE 16.15 The storage tank in Example 3 mixes input 
liquid with stored liquid to produce an output liquid.

200 L/min containing 0.2 kg/L

220 L/min containing y  kg/L
V

Solution Let y be the amount (in kilograms) of additive in the tank at time t. We know 
that y = 50 when t = 0. The number of liters of gasoline and additive in solution in the tank 
at any time t is

( )( ) ( )= + − = −V t t t( ) 10,000 L 200 L
min

220 L
min

min 10,000 20 L.

Therefore,

( )
= ⋅

=
−

=
−

y t
V t

y
t

y
t

Rate out
( )
( )

outflow rate

10,000 20
200

220
10,000 20

kg
min

.

Eq. (7)

Outflow rate is 220 L min 
and = −V t10,000 20 .

Also,

( )( )= =Rate in 0.2
kg
L

200 L
min

40
kg

min
.

The differential equation modeling the mixture process is

= −
−

dy
dt

y
t

40
220

10,000 20
    Eq. (8)

in kilograms per minute.
To solve this differential equation, we first write it in standard linear form:

+
−

=dy
dt t

y220
10,000 20

40.

Thus, ( )= −P t t( ) 220 10,000 20  and =Q t( ) 40. The integrating factor is

υ

( )

= = ∫

=

= −

( )

∫ −

− −

−

t e e

e

t

( )

10,000 20 .

P dt t
dt

t

220
10,000 20

11 ln 10,000 20

11

    − >t10,000 20 0

M16_HASS5901_15_GE_C16.indd   1042 08/03/2023   12:47

www.konkur.in

Telegram: @uni_k



 16.3  Applications 1043

Multiplying both sides of the standard equation by t( )υ  and integrating both sides gives

∫

( )

[ ]

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )
( )

( )( )

− ⋅ +
−

= −

− + − = −

− = −

− = −

− = ⋅ −
− −

+

− −

− − −

− −

− −

−
−

t
dy
dt t

y t

t
dy
dt

t y t

d
dt

t y t

t y t dt

t y t C

10,000 20 220
10,000 20

40 10,000 20

10,000 20 220 10,000 20 40 10,000 20

10,000 20 40 10,000 20

10,000 20 40 10,000 20

10,000 20 40 10,000 20
10 20

.

11 11

11 12 11

11 11

11 11

11
10

The general solution is

( ) ( )= − + −y t C t0.2 10,000 20 10,000 20 .11

Because =y 50 when =t 0, we can determine the value of C:

( ) ( )

( )

= − + −

= −

C

C

50 0.2 10,000 0 10,000 0

1950
10,000

.

11

11

The particular solution of the initial value problem is

( )
( )

( )= − − −y t t0.2 10,000 20 1950
10,000

10,000 20 .11
11

The amount of additive in the tank 20 min after the pumping begins is

Motion Along a Line

 1. Coasting bicycle A 66-kg cyclist on a 7-kg bicycle starts 
coasting on level ground at 9 m s. The k in Equation (1) is about 
3.9 kg s.

 a. About how far will the cyclist coast before reaching a com-
plete stop?

 b. How long will it take the cyclist’s speed to drop to 1 m s?

 2. Coasting battleship An Iowa class battleship has mass around 
51,000 metric tons (51,000,000 kg) and a k value in Equation (1) 
of about 59,000 kg s. Assume that the ship loses power when it is 
moving at a speed of 9 m s.

 a. About how far will the ship coast before it is dead in the water?

 b. About how long will it take the ship’s speed to drop to  
1 m s?

 3. The data in Table 16.4 were collected with a motion detector 
and a CBL™ by Valerie Sharritts, then a mathematics teacher at 
St. Francis DeSales High School in Columbus, Ohio. The table 
shows the distance s (meters) coasted on inline skates in t s by 
her daughter Ashley when she was 10 years old. Find a model for 
Ashley’s position given by the data in Table 16.4 in the form of  

EXERCISES 16.3 

TABLE 16.4 Ashley Sharritts skating data

t (s) s (m) t (s) s (m) t (s) s (m)

0 0 2.24 3.05 4.48 4.77

0.16 0.31 2.40 3.22 4.64 4.82

0.32 0.57 2.56 3.38 4.80 4.84

0.48 0.80 2.72 3.52 4.96 4.86

0.64 1.05 2.88 3.67 5.12 4.88

0.80 1.28 3.04 3.82 5.28 4.89

0.96 1.50 3.20 3.96 5.44 4.90

1.12 1.72 3.36 4.08 5.60 4.90

1.28 1.93 3.52 4.18 5.76 4.91

1.44 2.09 3.68 4.31 5.92 4.90

1.60 2.30 3.84 4.41 6.08 4.91

1.76 2.53 4.00 4.52 6.24 4.90

1.92 2.73 4.16 4.63 6.40 4.91

2.08 2.89 4.32 4.69 6.56 4.91

( )[ ]
( )

( )[ ]= − − − ≈y(20) 0.2 10,000 20 20 1950
10,000

10,000 20 20 675 kg.11
11  
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1044 Chapter 16 First-Order Differential Equations

Equation (2). Her initial velocity was υ = 2.75 m s,0  her mass 
m 39.92 kg= , and her total coasting distance was 4.91 m.

 4. Coasting to a stop Table 16.5 shows the distance s (meters) 
coasted on inline skates in terms of time t (seconds) by Kelly 
Schmitzer. Find a model for her position in the form of 
Equation (2). Her initial velocity was υ = 0.80 m s,0  her mass 
m 49.90 kg= , and her total coasting distance was 1.32 m.

Mixture Problems

 13. Salt mixture A tank initially contains 400 L of brine in which 
20 kg/L of salt are dissolved. A brine containing 0.2 kg/L of salt 
runs into the tank at the rate of 20 L/min. The mixture is kept uni-
form by stirring and flows out of the tank at the rate of 16 L/min.

 a. At what rate (kilograms per minute) does salt enter the tank at 
time t?

 b. What is the volume of brine in the tank at time t?

 c. At what rate (kilograms per minute) does salt leave the tank at 
time t?

 d. Write down and solve the initial value problem describing the 
mixing process.

 e. Find the concentration of salt in the tank 25 min after the 
 process starts.

 14. Mixture problem A 800-L tank is half full of distilled water. At 
time t = 0, a solution containing 50 grams/L of concentrate enters 
the tank at the rate of 20 L/min, and the well-stirred mixture is 
withdrawn at the rate of 12 L/min.

 a. At what time will the tank be full?

 b. At the time the tank is full, how many kilograms of 
 concentrate will it contain?

 15. Fertilizer mixture A tank contains 400 L of fresh water. 
A solution containing 0.1 kg/L of soluble lawn fertilizer runs into 
the tank at the rate of 4 L/min, and the mixture is pumped out 
of the tank at the rate of 12 L/min. Find the maximum amount of 
fertilizer in the tank and the time required to reach the maximum.

 16. Carbon monoxide pollution An executive conference room of 
a corporation contains 120 m 3 of air initially free of carbon mon-
oxide. Starting at time t = 0, cigarette smoke containing 4% car-
bon monoxide is blown into the room at the rate of 0.008 m min3 .  
A ceiling fan keeps the air in the room well circulated and the air 
leaves the room at the same rate of 0.008 m min3 . Find the time 
when the concentration of carbon monoxide in the room reaches 
0.01%.

TABLE 16.5 Kelly Schmitzer skating data

t (s) s (m) t (s) s (m) t (s) s (m)

0 0 1.5 0.89 3.1 1.30

0.1 0.07 1.7 0.97 3.3 1.31

0.3 0.22 1.9 1.05 3.5 1.32

0.5 0.36 2.1 1.11 3.7 1.32

0.7 0.49 2.3 1.17 3.9 1.32

0.9 0.60 2.5 1.22 4.1 1.32

1.1 0.71 2.7 1.25 4.3 1.32

1.3 0.81 2.9 1.28 4.5 1.32

Orthogonal Trajectories
In Exercises 5–10, find the orthogonal trajectories of the family of 
curves. Sketch several members of each family.

 5. y mx=  6. y cx 2=  7. kx y 12 2+ =

 8. x y c2 2 2 2+ =  9. y ce x= −  10. y e kx=

 11. Show that the curves x y2 3 52 2+ =  and y x2 3=  are orthogonal.

 12. Find the family of solutions of the given differential equation and 
the family of orthogonal trajectories. Sketch both families.

 a. x dx y dy 0+ =

 b. x dy y dx2 0− =

16.4 Graphical Solutions of Autonomous Equations

In Chapter 4 we learned that the sign of the first derivative tells where the graph of a func-
tion is increasing and where it is decreasing. The sign of the second derivative tells the 
concavity of the graph. We can build on our knowledge of how derivatives determine the 
shape of a graph to solve differential equations graphically. We will see that the ability to 
discern physical behavior from graphs is a powerful tool in understanding real-world sys-
tems. The starting ideas for a graphical solution are the notions of phase line and equilib-
rium value. We arrive at these notions by investigating, from a point of view quite different 
from that studied in Chapter 4, what happens when the derivative of a differentiable func-
tion is zero.

Equilibrium Values and Phase Lines

When we differentiate implicitly the equation

y x1
5

ln 5 15 1,( )− = +
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 16.4  Graphical Solutions of Autonomous Equations 1045

DEFINITION If dy dx g y( )=  is an autonomous differential equation, then the 
values of y for which dy dx 0=  are called equilibrium values or rest points.

we obtain

y
dy
dx

1
5

5
5 15

1.
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ =

Solving for y dy dx′ = , we find y y y5 15 5 3 .( )′ = − = −  In this case the derivative y′ 
is a function of y only (the dependent variable) and is zero when y 3.=

A differential equation for which dy dx  is a function of y only is called an autonomous 
differential equation. Let’s investigate what happens when the derivative in an autonomous 
equation equals zero. We assume any derivatives are continuous.

Thus, equilibrium values are those at which no change occurs in the dependent vari-
able, so y is at rest. The emphasis is on the value of y where dy dx 0,=  not the value of x, 
as we studied in Chapter 4. For example, the equilibrium values for the autonomous dif-
ferential equation

dy
dx

y y1 2( )( )= + −

are y 1= −  and y 2.=
To construct a graphical solution to an autonomous differential equation, we first 

make a phase line for the equation, a plot on the y-axis that shows the equation’s equilib-
rium values along with the intervals where dy dx  and d y dx2 2 are positive and negative. 
Then we know where the solutions are increasing and decreasing, and the concavity of the 
solution curves. These are the essential features we found in Section 4.4, so we can deter-
mine the shapes of the solution curves without having to find formulas for them.

−1 2
y

–1 2
y

y′ > 0 y′ < 0 y′ > 0

EXAMPLE 1  Draw a phase line for the equation

dy
dx

y y1 2 ,( )( )= + −

and use it to sketch solutions to the equation.

Solution 

1. Draw a number line for y and mark the equilibrium values = −y 1 and =y 2, where 
=dy dx 0.

2. Identify and label the intervals where ′ >y 0 and ′ <y 0. This step resembles what 
we did in Section 4.3, only now we are marking the y-axis instead of the x-axis.

We can encapsulate the information about the sign of ′y  on the phase line itself. 
Since ′ >y 0 on the interval to the left of = −y 1, a solution of the differential equation 
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1046 Chapter 16 First-Order Differential Equations

FIGURE 16.16 Graphical solutions from 
Example 1 include the horizontal lines 

= −y 1 and =y 2 through the equilib-
rium values. No two solution curves can 
ever cross or touch each other.

y

x

−1

2

0

y′ > 0

y′ < 0

y′ < 0

y′ > 0

y″ < 0

y″ > 0

y″ < 0

y″ > 0

1
2

−1 2
y

with a y-value less than −1 will increase from there toward = −y 1. We display this 
information by drawing an arrow on the interval pointing to −1.

Similarly, ′ <y 0 between = −y 1 and =y 2, so any solution with a value in 
this interval will decrease toward = −y 1.

For >y 2, we have ′ >y 0, so a solution with a y-value greater than 2 will 
increase from there without bound.

In short, solution curves below the horizontal line = −y 1 in the xy-plane rise 
toward = −y 1. Solution curves between the lines = −y 1 and =y 2 fall away from 

=y 2 toward = −y 1. Solution curves above =y 2 rise away from =y 2 and keep 
going up.

3. Calculate ″y  and mark the intervals where ″ >y 0 and ′′ <y 0. To find ″y , we dif-
ferentiate ′y  with respect to x, using implicit differentiation.

( )( )

( )( )

( )

( )( )( )

′ = + − = − −

″ = ′ = − −

= ′ − ′
= − ′
= − + −

y y y y y

y d
dx

y d
dx

y y

yy y

y y

y y y

1 2 2

2

2

2 1

2 1 1 2 .

2

2

Formula for ′y

Substitute for ′y .

Differentiate implicitly  
with respect to x.

From this formula, we see that ″y  changes sign at = − =y y1, 1 2, and =y 2. We 
add the sign information to the phase line.

4. Sketch an assortment of solution curves in the xy-plane. The horizontal lines 
= − =y y1, 1 2, and =y 2 partition the plane into horizontal bands in which we 

know the signs of ′y  and ″y . In each band, this information tells us whether the solu-
tion curves rise or fall and how they bend as x increases (Figure 16.16).

The “equilibrium lines” = −y 1 and =y 2 are also solution curves. (The con-
stant functions = −y 1 and =y 2 satisfy the differential equation.) Solution curves 
that cross the line =y 1 2 have an inflection point there. The concavity changes from 
concave down (above the line) to concave up (below the line).

As predicted in Step 2, solutions in the middle and lower bands approach the 
equilibrium value = −y 1 as x increases. Solutions in the upper band rise steadily 
away from the value =y 2. 

−1 2
y

y′ > 0 y′ < 0 y′ < 0 y′ > 0
y″ < 0 y″ > 0 y″ < 0 y″ > 0

1
2

Stable and Unstable Equilibria

Look at Figure 16.16 once more, in particular at the behavior of the solution curves near the 
equilibrium values. Once a solution curve has a value near = −y 1, it tends steadily toward 
that value; = −y 1 is a stable equilibrium. The behavior near =y 2 is just the opposite: 
All solutions except the equilibrium solution =y 2 itself move away from it as x increases. 
We call =y 2 an unstable equilibrium. If the solution is at that value, it stays, but if it is 
off by any amount, no matter how small, it moves away. (Sometimes an equilibrium value 
is unstable because a solution moves away from it only on one side of the point.)

Now that we know what to look for, we can already see this behavior on the initial 
phase line (the second diagram in Step 2 of Example 1). The arrows lead away from =y 2 
and, once to the left of =y 2, toward = −y 1.
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 16.4  Graphical Solutions of Autonomous Equations 1047

We now present several applied examples for which we can sketch a family of solution 
curves to the differential equation models using the method in Example 1.

Newton’s Law of Cooling

In Section 7.2 we solved analytically the differential equation

( )= − − >dH
dt

k H H k, 0S

modeling Newton’s Law of Cooling. Here H is the temperature of an object at time t, and 
H S  is the constant temperature of the surrounding medium.

Suppose that the surrounding medium (say, a room in a house) has a constant Celsius 
temperature of °15 C. We can then express the difference in temperature as H t( ) 15.−  
Assuming H is a differentiable function of time t, by Newton’s Law of Cooling, there is a 
constant of proportionality >k 0 such that

 ( )= − −dH
dt

k H 15  (1)

(minus k to give a negative derivative when >H 15).
Since =dH dt 0 at =H 15, the temperature °15 C is an equilibrium value. If 

>H 15, Equation (1) tells us that ( )− >H 15 0 and <dH dt 0. If the object is hotter 
than the room, it will get cooler. Similarly, if <H 15, then ( )− <H 15 0 and >dH dt 0. 
An object cooler than the room will warm up. Thus, the behavior described by Equation (1) 
agrees with our intuition of how temperature should behave. These observations are  
captured in the initial phase line diagram in Figure 16.17. The value =H 15 is a stable 
equilibrium.

We determine the concavity of the solution curves by differentiating both sides of 
Equation (1) with respect to t:

d
dt

dH
dt

d
dt

k H

d H
dt

k dH
dt

15

.
2

2

( ) ( )( )= − −

= −

Since −k is negative, we see that d H dt2 2 is positive when <dH dt 0 and negative when 
>dH dt 0. Figure 16.18 adds this information to the phase line.

The completed phase line shows that if the temperature of the object is above the equi-
librium value of °15 C, the graph of H t( ) will be decreasing and concave upward. If the 
temperature is below °15 C (the temperature of the surrounding medium), the graph of 
H t( ) will be increasing and concave downward. We use this information to sketch typical 
solution curves (Figure 16.19).

From the upper solution curve in Figure 16.19, we see that as the object cools down, 
the rate at which it cools slows down because dH dt  approaches zero. This observation is 
implicit in Newton’s Law of Cooling and contained in the differential equation, but the 
flattening of the graph as time advances gives an immediate visual representation of the 
phenomenon.

A Falling Body Encountering Resistance

Newton observed that the rate of change of the momentum of a moving object is equal to 
the net force applied to it. In mathematical terms,

 υ=F d
dt

m( ), (2)

FIGURE 16.17 First step in construct-
ing the phase line for Newton’s Law of 
Cooling. The temperature tends toward the 
equilibrium (surrounding-medium) value 
in the long run.

15
H

> 0 < 0dH
dt

dH
dt

FIGURE 16.18 The complete phase line 
for Newton’s Law of Cooling.

15
H

< 0dH
dt> 0dH

dt

< 0d2H
dt2 > 0d2H

dt2

FIGURE 16.19 Temperature versus 
time. Regardless of initial temperature, the 
object’s temperature H t( ) tends toward 

°15 C, the temperature of the surrounding 
medium.

H

Initial
temperature

t

15

Temperature
of surrounding
medium

Initial
temperature
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1048 Chapter 16 First-Order Differential Equations

where F is the net force acting on the object, and m and υ are the object’s mass and velocity. 
If m varies with time, as it will if the object is a rocket burning fuel, the right-hand side of 
Equation (2) expands to

υ υ+m d
dt

dm
dt

using the Derivative Product Rule. In many situations, however, m is constant, =dm dt 0, 
and Equation (2) takes the simpler form

 υ= =F m d
dt

F maor , (3)

which is known as Newton’s second law of motion (see Section 16.3).
In free fall, the constant acceleration due to gravity is denoted by g, and the one force 

propelling the body downward is

=F mg,p

the force due to gravity. If, however, we think of a real body falling through the air—say, 
a penny from a great height or a parachutist from an even greater height—we know that 
at some point air resistance is a factor in the speed of the fall. A more realistic model of 
free fall would include air resistance, shown as a force Fr  in the schematic diagram in 
Figure 16.20.

For low speeds well below the speed of sound, physical experiments have shown that 
Fr  is approximately proportional to the body’s velocity. The net force on the falling body is 
therefore

= −F F F ,p r

giving

 

υ υ

υ υ

= −

= −

m d
dt

mg k

d
dt

g k
m

.
 (4)

We can use a phase line to analyze the velocity functions that solve this differential 
equation.

The equilibrium point, obtained by setting the right-hand side of Equation (4) equal to 
zero, is

υ = mg
k

.

If the body is initially moving faster than this, υd dt is negative and the body slows 
down. If the body is moving at a velocity below mg k, then υ >d dt 0 and the body 
speeds up. These observations are captured in the initial phase line diagram in Figure 16.21.

We determine the concavity of the solution curves by differentiating both sides of 
Equation (4) with respect to t:

υ υ υ( )= − = −d
dt

d
dt

g k
m

k
m

d
dt

.
2

2

We see that υ <d dt 02 2  when υ < mg k and that υ >d dt 02 2  when υ > mg k. 
Figure 16.22 adds this information to the phase line. Notice the similarity to the phase 
line for Newton’s Law of Cooling (Figure 16.18). The solution curves are similar as well 
(Figure 16.23).

FIGURE 16.20 An object falling under 
the propulsion due to gravity, with a  
resistive force assumed to be proportional 
to the velocity.

m
y = 0

y positive

Fp = mg

Fr = ky

FIGURE 16.21 Initial phase line for the 
falling body encountering resistance.

y

> 0 < 0dy
dt

dy
dt

mg
k

FIGURE 16.22 The completed phase 
line for the falling body.

y

< 0dy
dt> 0dy

dt

< 0d2y

dt2 > 0d2y

dt2

mg
k

FIGURE 16.23 Typical velocity curves 
for a falling body encountering resistance. 
The value υ = mg k is the terminal 
velocity.
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velocity

Initial
velocity

y

t

mg
k

mg
k

y =
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 16.4  Graphical Solutions of Autonomous Equations 1049

Figure 16.23 shows two typical solution curves. Regardless of the initial velocity, we 
see the body’s velocity tending toward the limiting value υ = mg k. This value, a stable 
equilibrium point, is called the body’s terminal velocity. Skydivers can vary their terminal 
velocity from 153 km/h to 290 km/h by changing the amount of body area opposing the 
fall, which affects the value of k.

The Logistic Model for Population Growth

In Section 16.3 we examined population growth using the model of exponential change. 
That is, if P represents the number of individuals and we neglect departures and arrivals, 
then

 =dP
dt

kP, (5)

where >k 0 is the birth rate minus the death rate per individual per unit time.
Because the natural environment has only a limited number of resources to sustain 

life, it is reasonable to assume that only a maximum population M can be accommodated. 
As the population approaches this limiting population or carrying capacity, resources 
become less abundant and the growth rate k decreases. A simple relationship exhibiting 
this behavior is

( )= −k r M P ,

where >r 0 is a constant. Notice that k decreases as P increases toward M and that k is 
negative if P is greater than M. Substituting ( )−r M P  for k in Equation (5) gives the dif-
ferential equation

 ( )= − = −dP
dt

r M P P rMP rP .2  (6)

The model given by Equation (6) is referred to as logistic growth.
We can forecast the behavior of the population over time by analyzing the phase line 

for Equation (6). The equilibrium values are =P M and =P 0, and we can see that 
>dP dt 0 if < <P M0  and <dP dt 0 if >P M. These observations are recorded 

on the phase line in Figure 16.24.
We determine the concavity of the population curves by differentiating both sides of 

Equation (6) with respect to t:

 

d P
dt

d
dt

rMP rP

rM dP
dt

rP dP
dt

r M P dP
dt

2

2 .

2

2
2( )

( )

= −

= −

= −

 

(7)

If =P M 2, then =d P dt 0.2 2  If <P M 2, then ( )−M P2  and dP dt are positive and 
>d P dt 0.2 2  If < <M P M2 , then M P dP dt2 0, 0,( )− < >  and <d P dt 0.2 2  If 

>P M , then ( )−M P2  and dP dt are both negative and >d P dt 0.2 2  We add this  
information to the phase line (Figure 16.25).

The lines =P M 2 and =P M divide the first quadrant of the tP-plane into horizon-
tal bands in which we know the signs of both dP dt and d P dt .2 2  In each band, we know 
how the solution curves rise and fall, and how they bend as time passes. The equilibrium 
lines =P 0 and =P M are both population curves. Population curves crossing the line 

FIGURE 16.24 The initial phase line for 
logistic growth (Equation 6).

0 M
P

> 0 < 0dP
dt

dP
dt

FIGURE 16.25 The completed phase 
line for logistic growth (Equation 6).

0 M
P

< 0dP
dt> 0dP

dt

> 0d2P
dt2 > 0d2P

dt2< 0d2P
dt2

M
2
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1050 Chapter 16 First-Order Differential Equations

=P M 2 have an inflection point there, giving them a sigmoid shape (curved in two 
directions like a letter S). Figure 16.26 displays typical population curves. Notice that each 
population curve approaches the limiting population M as → ∞t .

FIGURE 16.26 Population curves for logistic growth.

Time

Limiting
populationM

Po
pu

la
tio

n

t

P

M
2

The Logistic Equation in Neural Networks  
and Machine Learning

While Figure 16.26 gives a general idea of the behavior of solutions to the Logistic 
Equation (6), we have not yet found explicit solutions. Exact formulas for solutions of first 
order differential equations cannot always be found, but they can be derived for the case of 
the Logistic Equation, where the solutions are called logistic functions. In Example 2 we 
find the solutions lying between =y 0 and =y 1 for the Logistic Equation in the case 
where =M 1 and r is an arbitrary positive constant.

EXAMPLE 2  Find the solutions to the Logistic Equation = −dy
dx

ry ry 2 that satisfy 

< <y0 1. Where does a solution cross the horizontal line =y 1 2, and what is the 
slope of its graph at this point?

Solution To solve the differential equation we use the method of separation of variables 
introduced in Section 7.2.

dy
dx

ry ry ry y

y y
dy r dx

y y
dy r dx

y y
dy r dx

y C y C rx C

y y rx C

y
y

rx C

y
y

e

y e
e

y
e

1

1
1

1
1

1 1
1

ln ln 1

ln ln 1

ln
1

1

1

1
1

.

rx C

rx C

rx C

rx C

2

1 2 3

∫ ∫

∫ ∫

( )

( )

( )

( )

( )

= − = −

−
=

−
=

+
−

=

+ − − + = +

− − = +

−
= +

−
=

=
+

=
+

+

+

+

− −

Partial fractions

= − = − < <y y y y yand 1 1 , since 0 1.

Combine constants, = − −C C C C .3 1 2

Exponentiate.

Use algebra to solve for y.

Divide through by e .rx C+
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 16.4  Graphical Solutions of Autonomous Equations 1051

This gives an explicit formula for all the solutions whose graphs lie strictly between =y 0 
and =y 1.

When a solution crosses the line =y 1 2 we have

e

e

e

rx C

x C r

1
1

1
2

1 2

1

0

.

rx C

rx C

rx C

+
=

+ =

=

+ =

= −

− −

− −

− −

So the solution graph crosses at the point ( )−C r , 1 2 . The slope is found by evaluating 
= −dy dx ry ry 2 at this point,

dy
dx

C r ry ry r r r1 2 1 2
4

.2 2( ) ( ) ( )− = − = − =  

Figure 16.27 shows the graph of a logistic function with =r 3 and = −C 6.

FIGURE 16.27 The constants r and C determine the steepness and horizontal displace-
ment of a solution to the logistic equation. In this example =r 3 and = −C 6.

Centered at x = -C /r

Slope r /4

x

y

1 2 3 4

1

-
2
1

Logistic functions have applications in many areas beyond the study of population 
growth. A field of Computer Science called Machine Learning develops methods to use a 
large collection of experimental data, called a training set, to construct a predictor function. 
The training set might consist of thousands of images of signs, for example, and the predictor 
function might decide whether a newly obtained image represents a Stop sign.

One highly successful approach to Machine Learning is the method of Neural 
Networks, which creates predictor functions based on a model of interacting neurons. 
Neural network models are built by taking repeated compositions of linear and logistic 
functions. Linear functions, such as L x ax b( ) = +  can give accurate approximations of 
a function f nearby to a point where f is differentiable, as seen in Chapter 3. The optimal 
choices for the constants a and b in L x( ) are found by minimizing an error function that is 
calculated using the training set in a process called linear regression. Logistic functions 
have several features that make them a useful complement to linear functions in construct-
ing predictor functions. They have values lying between 0 and 1 and are well suited to 
modeling probabilities. They are differentiable and specified by a small number of con-
stants, such as the constants r and C in Example 2. These constants can be adjusted, or 
tuned, to minimize the error of a prediction. Logistic functions are nonlinear, and taking 
compositions of linear and logistic functions allows for the approximation of much more 
complicated functions than linear functions alone. A more complete discussion of the utility 
of logistic functions involves multivariable functions and their derivatives, which are intro-
duced in Chapter 13.
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1052 Chapter 16 First-Order Differential Equations

Phase Lines and Solution Curves
In Exercises 1–8,

 a. Identify the equilibrium values. Which are stable and which 
are unstable?

 b. Construct a phase line. Identify the signs of ′y  and ″y .

 c. Sketch several solution curves.

 1. ( )( )= + −dy
dx

y y2 3  2. = −dy
dx

y 42

 3. = −dy
dx

y y3  4. = −dy
dx

y y22

 5. ′ = >y y y, 0 6. ′ = − >y y y y, 0

 7. ( )( )( )′ = − − −y y y y1 2 3  8. ′ = −y y y3 2

Models of Population Growth
The autonomous differential equations in Exercises 16–12 represent 
models for population growth. For each exercise, use a phase line 
analysis to sketch solution curves for P t( ), selecting different starting 
values P(0). Which equilibria are stable, and which are unstable?

 9. = −dP
dt

P1 2  10. ( )= −dP
dt

P P1 2

 11. ( )= −dP
dt

P P2 3  12. ( )( )= − −dP
dt

P P P3 1 1
2

 13. Catastrophic change in logistic growth Suppose that a healthy 
population of some species is growing in a limited environment 
and that the current population P0 is fairly close to the carrying 
capacity M .0  You might imagine a population of fish living in a 
freshwater lake in a wilderness area. Suddenly a catastrophe such 
as the Mount St. Helens volcanic eruption contaminates the lake 
and destroys a significant part of the food and oxygen on which 
the fish depend. The result is a new environment with a carrying  
capacity M1 considerably less than M0 and, in fact, less than the 
current population P .0  Starting at some time before the catastrophe, 
sketch a “before-and-after” curve that shows how the fish population 
responds to the change in environment.

 14. Controlling a population The fish and game department in a 
certain state is planning to issue hunting permits to control the 
deer population (one deer per permit). It is known that if the deer 
population falls below a certain level m, the deer will become 
extinct. It is also known that if the deer population rises above 
the carrying capacity M, the population will decrease back to M 
through disease and malnutrition.

 a. Discuss the reasonableness of the following model for the 
growth rate of the deer population as a function of time:

( )( )= − −dP
dt

rP M P P m ,

where P is the population of the deer and r is a positive con-
stant of proportionality. Include a phase line.

 b. Explain how this model differs from the logistic model 
( )= −dP dt rP M P . Is it more or less reasonable than the 

logistic model?

 c. Show that if >P M for all t, then =
→∞

P t Mlim ( ) .
t

 d. What happens if <P m  for all t?

 e. Discuss the solutions to the differential equation. What are 
the equilibrium points of the model? Explain the dependence 
of the steady-state value of P on the initial values of P. About 
how many permits should be issued?

Applications and Examples

 15. Skydiving If a body of mass m falling from rest under the action 
of gravity encounters an air resistance proportional to the square 
of velocity, then the body’s velocity t seconds into the fall satisfies 
the equation

m d
dt

mg k k, 0,2υ υ= − >

where k is a constant that depends on the body’s aerodynamic 
properties and the density of the air. (We assume that the fall is too 
short to be affected by changes in the air’s density.)

 a. Draw a phase line for the equation.

 b. Sketch a typical velocity curve.

 c. For a 45-kg skydiver ( )=mg 441  and with time in seconds 
and distance in meter, a typical value of k is 0.15. What is the 
diver’s terminal velocity? Repeat for an 80-kg skydiver.

 16. Resistance proportional to  A body of mass m is projected 
vertically downward with initial velocity υ .0  Assume that the 
resisting force is proportional to the square root of the velocity, 
and find the terminal velocity from a graphical analysis.

 17. Sailing A sailboat is running along a straight course with the 
wind providing a constant forward force of 200 N. The only other 
force acting on the boat is resistance as the boat moves through 
the water. The resisting force is numerically equal to five times 
the boat’s speed, and the initial velocity is 1 m s. What is the maxi-
mum velocity in meters per second of the boat under this wind?

 18. The spread of information Sociologists recognize a phenom-
enon called social diffusion, which is the spreading of a piece of 
information, technological innovation, or cultural fad among a 
population. The members of the population can be divided into two 
classes: those who have the information and those who do not. In 
a fixed population whose size is known, it is reasonable to assume 
that the rate of diffusion is proportional to the number who have 
the information times the number yet to receive it. If X denotes the 
number of individuals who have the information in a population of 
N people, then a mathematical model for social diffusion is given by

( )= −dX
dt

kX N X ,

where t represents time in days and k is a positive constant.

 a. Discuss the reasonableness of the model.

 b. Construct a phase line identifying the signs of ′X  and ′′X .

 c. Sketch representative solution curves.

 d. Predict the value of X for which the information is spreading 
most rapidly. How many people eventually receive the  
information?

EXERCISES 16.4 
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 16.5  Systems of Equations and Phase Planes 1053

 19. Current in an RL circuit The accompanying diagram represents  
an electrical circuit whose total resistance is a constant R ohms 
and whose self-inductance, shown as a coil, is L henries, also a  
constant. There is a switch whose terminals at a and b can be 
closed to connect a constant electrical source of V volts. From 
Section 16.2, we have

+ =L di
dt

Ri V,

where i is the current in amperes and t is the time in seconds.

proportional to its velocity. Suppose that there is also a resistive 
buoyant force exerted by the shampoo. According to Archimedes’ 
principle, the buoyant force equals the weight of the fluid dis-
placed by the pearl. Using m for the mass of the pearl and P for 
the mass of the shampoo displaced by the pearl as it descends, 
complete the following steps.

 a. Draw a schematic diagram showing the forces acting on the 
pearl as it sinks, as in Figure 16.20.

 b. Using t( )υ  for the pearl’s velocity as a function of time t, 
write a differential equation modeling the velocity of the pearl 
as a falling body.

 c. Construct a phase line displaying the signs of υ′ and υ′′.

 d. Sketch typical solution curves.

 e. What is the terminal velocity of the pearl?

Logistic Functions

 21. Write the formula for a logistic function that has values between 
=y 0 and =y 1, crosses the line =y 1 2 at =x 0, and has 

slope 5 at this point.

 22. Write the formula for a logistic function that has values between 
=y 0 and =y 1, crosses the line =y 1 2 at =x 0, and has 

slope 1 5 at this point.

Switch

R L

a b
i

V
+ −

Use a phase line analysis to sketch the solution curve assum-
ing that the switch in the RL circuit is closed at time =t 0. What 
happens to the current as → ∞t ? This value is called the steady-
state solution.

 20. A pearl in shampoo Suppose that a pearl is sinking in a thick 
fluid, like shampoo, subject to a frictional force opposing its fall and  

16.5 Systems of Equations and Phase Planes

In some situations we are led to consider not one, but several, first-order differential equations. 
Such a collection is called a system of differential equations. In this section we present an 
approach to understanding systems through a graphical procedure known as a phase-plane 
analysis. We present this analysis in the context of modeling the populations of trout and bass 
living in a common pond.

Phase Planes

A general system of two first-order differential equations may take the form

dx
dt

F x y

dy
dt

G x y

, ,

, .

( )

( )

=

=

In this system we often think of t as representing time and take x t( ) and y t( ) to be two 
functions of t. Such a system of equations is called autonomous because dx dt  and dy dt  
do not depend on the independent variable time t, but only on the dependent variables x 
and y. A solution of such a system consists of a pair of functions x t( ) and y t( ) that satisfies 
both of the differential equations simultaneously for every t over some time interval (finite 
or infinite).

We cannot look at just one of these equations in isolation to find solutions x t( ) or y t( ) 
since each derivative depends on both x and y. To gain insight into the solutions, we look at 
both dependent variables together by plotting the points x t y t( ), ( )( ) in the xy-plane starting 
at some specified point. Therefore the solution functions define a solution curve through 
the specified point, called a trajectory of the system. The xy-plane itself, in which these 
trajectories reside, is referred to as the phase plane. Thus we consider both solutions 
together and study the behavior of all the solution trajectories in the phase plane. It can be 
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1054 Chapter 16 First-Order Differential Equations

proved that two trajectories can never cross or touch each other. (Solution trajectories are 
examples of parametric curves, which will be examined in detail in Chapter 9.)

A Competitive-Hunter Model

Imagine two species of fish, say trout and bass, competing for the same limited resources 
(such as food and oxygen) in a certain pond. We let x t( ) represent the number of trout and 
y t( ) the number of bass living in the pond at time t. In reality, x t( ) and y t( ) are always integer 
valued, but we will approximate them with real-valued differentiable functions. This allows 
us to apply the methods of differential equations.

Several factors affect the rates of change of these populations. As time passes, each 
species breeds, so we assume its population increases proportionally to its size. Taken by 
itself, this would lead to exponential growth in each of the two populations. However, there 
is a countervailing effect from the fact that the two species are in competition. A large 
number of bass tends to cause a decrease in the number of trout, and vice versa. Our model 
takes the size of this effect to be proportional to the frequency with which the two species 
interact, which in turn is proportional to xy, the product of the two populations. These con-
siderations lead to the following model for the growth of the trout and bass in the pond:

 ( )= −dx
dt

a by x, (1a)

 ( )= −dy
dt

m nx y. (1b)

Here x t( ) represents the trout population, y t( ) the bass population, and a, b, m, n are positive 
constants. A solution of this system then consists of a pair of functions x t( ) and y t( ) that 
give the population of each fish species at time t. Each equation in (1) contains both of the 
unknown functions x and y, so we are unable to solve them individually. Instead, we will 
use a graphical analysis to study the solution trajectories of this competitive-hunter model.

We now examine the nature of the phase plane in the trout-bass population model. We 
will be interested in the 1st quadrant of the xy-plane, where ≥x 0 and ≥y 0, since popu-
lations cannot be negative. First, we determine where the bass and trout populations are 
both constant. Noting that the x t y t( ), ( )( ) values remain unchanged when =dx dt 0 and 

=dy dt 0, we see that Equations (1a and 1b) then become

( )

( )

− =

− =

a by x

m nx y

0,

0.

This pair of simultaneous equations has two solutions: ( )=x y( , ) 0, 0  and  
( )=x y m n a b( , ) , . At these x y( , ) values, called equilibrium or rest points, the two 

populations remain at constant values over all time. The point ( )0, 0  represents a pond 
containing no members of either fish species; the point ( )m n a b,  corresponds to a pond 
with an unchanging number of each fish species.

Next, we note that if =y a b, then Equation (1a) implies =dx dt 0, so the trout 
population x t( ) is constant. Similarly, if =x m n, then Equation (1b) implies =dy dt 0, 
and the bass population y t( ) is constant. This information is recorded in Figure 16.28.

FIGURE 16.28 Rest points in the competitive-hunter model given by Equations (1a) and (1b).
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 16.5  Systems of Equations and Phase Planes 1055

In setting up our competitive-hunter model, we do not generally know precise values 
of the constants a, b, m, n. Nonetheless, we can analyze the system of Equations (1) to 
learn the nature of its solution trajectories. We begin by determining the signs of dx dt  and 
dy dt  throughout the phase plane. Although x t( ) represents the number of trout and y t( ) 
the number of bass at time t, we are thinking of the pair of values x t y t( ), ( )( ) as a point 
tracing out a trajectory curve in the phase plane. When dx dt  is positive, x t( ) is increasing 
and the point is moving to the right in the phase plane. If dx dt  is negative, the point is 
moving to the left. Likewise, the point is moving upward where dy dt  is positive and 
downward where dy dt  is negative.

We saw that =dy dt 0 along the vertical line =x m n. To the left of this line, dy dt  
is positive since ( )= −dy dt m nx y and <x m n. So the trajectories on this side of the 
line are directed upward. To the right of this line, dy dt  is negative and the trajectories 
point downward. The directions of the associated trajectories are indicated in Figure 16.29. 
Similarly, above the horizontal line =y a b, we have <dx dt 0 and the trajectories head 
leftward; below this line they head rightward, as shown in Figure 16.30. Combining this 
information gives four distinct regions in the plane A, B, C, D, with their respective trajec-
tory directions shown in Figure 16.31.

Next, we examine what happens near the two equilibrium points. The trajectories near 
( )0, 0  point away from it, upward and to the right. The behavior near the equilibrium point 
( )m n a b,  depends on the region in which a trajectory begins. If it starts in region B, for 
instance, then it will move downward and leftward toward the equilibrium point. Depending 
on where the trajectory begins, it may move downward into region D, leftward into region 
A, or perhaps straight into the equilibrium point. If it enters into regions A or D, then it will 
continue to move away from the rest point. We say that both rest points are unstable, 
meaning (in this setting) there are trajectories near each point that head away from them. 
These features are indicated in Figure 16.32.

It turns out that in each of the half-planes above and below the line =y a b, there 
is exactly one trajectory approaching the equilibrium point ( )m n a b,  (see Exercise 7). 
Above these two trajectories the bass population increases, and below them it 
decreases. The two trajectories approaching the equilibrium point are suggested in 
Figure 16.33.

FIGURE 16.29 To the left of the line 
=x m n the trajectories move upward, 

and to the right they move downward.
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FIGURE 16.30 Above the line =y a b 
the trajectories move to the left, and below 
it they move to the right.
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FIGURE 16.31 Composite graphical 
analysis of the trajectory directions in the 
four regions determined by =x m n and 

=y a b.
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FIGURE 16.32 Motion along the 
trajectories near the rest points ( )0, 0  
and ( )m n a b, .
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FIGURE 16.33 Qualitative results 
of analyzing the competitive-hunter 
model. There are exactly two trajectories 
approaching the point ( )m n a b, .
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Our graphical analysis leads us to conclude that, under the assumptions of the competitive-
hunter model, it is unlikely that both species will reach equilibrium levels. This is because it 
would be almost impossible for the fish populations to move exactly along one of the two 
approaching trajectories for all time. Furthermore, the initial populations point ( )x y,0 0  
determines which of the two species is likely to survive over time, and mutual coexistence of 
the species is highly improbable.
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1056 Chapter 16 First-Order Differential Equations

Limitations of the Phase-Plane Analysis Method

Unlike the situation for the competitive-hunter model, it is not always possible to deter-
mine the behavior of trajectories near a rest point. For example, suppose we know that the 
trajectories near a rest point, chosen here to be the origin ( )0, 0 , behave as in Figure 16.34. 
The information provided by Figure 16.34 is not sufficient to distinguish among the three 
possible trajectories shown in Figure 16.35. Even if we could determine that a trajectory 
near an equilibrium point resembles that of Figure 16.35c, we would still not know how the 
other trajectories behave. It could happen that a trajectory closer to the origin behaves like 
the motions displayed in Figure 16.35a or 16.35b. The spiraling trajectory in Figure 16.35c 
can never actually reach the rest point in a finite time period.

FIGURE 16.34 Trajectory direction near 
the rest point ( )0, 0 .

FIGURE 16.35 Three possible trajectory motions: (a) periodic motion, (b) motion 
toward an asymptotically stable rest point, and (c) motion near an unstable rest point.
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FIGURE 16.36 The solution 
+ =x y 12 2  is a limit cycle.

y

x

(x0, y0)

x2 + y2 = 1

(x1, y1)
Another Type of Behavior

The system

 ( )= + − +dx
dt

y x x x y ,2 2  (2a)

 ( )= − + − +dy
dt

x y y x y2 2  (2b)

can be shown to have only one equilibrium point at ( )0, 0 . Yet any trajectory starting on the 
unit circle traverses it clockwise because, when + =x y 12 2 , we have = −dy dx x y 
(see Exercise 2). If a trajectory starts inside the unit circle, it spirals outward, asymptotically 
approaching the circle as → ∞t . If a trajectory starts outside the unit circle, it spirals 
inward, again asymptotically approaching the circle as → ∞t . The circle + =x y 12 2  
is called a limit cycle of the system (Figure 16.36). In this system, the values of x and y 
eventually become periodic.

 1. List three of the important considerations that are ignored in the 
competitive-hunter model as presented in the text.

 2. For the system (2a) and (2b), show that any trajectory starting 
on the unit circle + =x y 12 2  will traverse the unit circle in a 
periodic solution. First introduce polar coordinates and rewrite the 
system as ( )= −dr dt r r1 2  and θ− = −d dt 1.

 3. Develop a model for the growth of trout and bass, assuming that 
in isolation trout demonstrate exponential decay [so that <a 0 
in Equations (1a) and (1b)] and that the bass population grows 
logistically with a population limit M. Analyze graphically the 
motion in the vicinity of the rest points in your model. Is coexis-
tence possible?

EXERCISES 16.5
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 16.5  Systems of Equations and Phase Planes 1057

 4. How might the competitive-hunter model be validated? Include a 
discussion of how the various constants a, b, m, and n might be 
estimated. How could state conservation authorities use the model 
to ensure the survival of both species?

 5. Consider another competitive-hunter model defined by

dx
dt

a x
k

x bxy

dy
dt

m
y

k
y nxy

1 ,

1 ,

1

2

= −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ −

= −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ −

where x and y represent trout and bass populations, respectively.

 a. What assumptions are implicitly being made about the growth 
of trout and bass in the absence of competition?

 b. Interpret the constants a, b, m, n, k k a b, , ,1 2  and m n in  
terms of the physical problem.

 c. Perform a graphical analysis:

 i) Find the possible equilibrium levels.

 ii) Determine whether coexistence is possible.

 iii)  Pick several typical starting points, and sketch typical  
trajectories in the phase plane.

 iv)  Interpret the outcomes predicted by your graphical  
analysis in terms of the constants a, b, m, n, k ,1  and k .2

Note: When you get to part (iii), you should realize that five  
cases exist. You will need to analyze all five cases.

 6. An economic model Consider the following economic model. 
Let P be the price of a single item on the market. Let Q be the 
quantity of the item available on the market. Both P and Q are 
functions of time. If one considers price and quantity as two inter-
acting species, the following model might be proposed:

( )
( )

= −

= −

dP
dt

aP b
Q

P

dQ
dt

cQ fP Q

,

,

where a, b, c, and f are positive constants. Justify and discuss the 
adequacy of the model.

 a. If = = =a b c1, 20,000, 1, and =f 30, find the equi-
librium points of this system. If possible, classify each equi-
librium point with respect to its stability. If a point cannot be 
readily classified, give some explanation.

 b. Perform a graphical stability analysis to determine what will 
happen to the levels of P and Q as time increases.

 c. Give an economic interpretation of the curves that determine 
the equilibrium points.

 7. Two trajectories approach equilibrium Show that the two tra-
jectories leading to ( )m n a b,  shown in Figure 16.33 are unique 
by carrying out the following steps.

 a. From system (1a) and (1b) apply the Chain Rule to derive the 
following equation:

( )

( )
= −

−
dy
dx

m nx y
a by x

.

 b. Separate the variables, integrate, and exponentiate to obtain

=− −y e Kx e ,a by m nx

where K is a constant of integration.

 c. Let =f y y e( ) a by  and =g x x e( ) .m nx  Show that f y( ) 
has a unique maximum of M a eby

a( )=  when =y a b as 
shown in Figure 16.37. Similarly, show that g x( ) has a unique 
maximum M m enx

m( )=  when =x m n , also shown in 
Figure 16.37.

FIGURE 16.37 Graphs of the functions 
=f y y e( ) a by  and =g x x e( ) m nx .
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 d. Consider what happens as x y( , ) approaches ( )m n a b, .  
Take limits in part (b) as →x m n and →y a b  to show 
that either

y
e

e
x

Klim
x m n
y a b

a

by

nx

m( )( )⎡
⎣⎢

⎤
⎦⎥

=
→

→

or M M K.y x =  Thus any solution trajectory that approaches 
( )m n a b,  must satisfy

y
e

M

M
x
e

.
a

by
y

x

m

nx( )=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

 e. Show that only one trajectory can approach ( )m n a b,  from 
below the line =y a b. Pick <y a b.0  From Figure 16.37 
you can see that f y M( ) ,y0 <  which implies that

M

M
x
e

y e M .y

x

m

nx
a by

y0
0( ) = <

This in turn implies that

x
e

M .
m

nx x<
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1058 Chapter 16 First-Order Differential Equations

FIGURE 16.38 For any 
<y a b , only one solution 

trajectory leads to the rest point 
( )m n a b, .

y

x

a
b

m
n

Unique x0
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Figure 16.37 tells you that for g x( ) there is a unique value 
<x m n0  satisfying this last inequality. That is, for each 

<y a b there is a unique value of x satisfying the equation 
in part (d). Thus there can exist only one trajectory solution 
approaching ( )m n a b,  from below, as shown in Figure 16.38.

 f. Use a similar argument to show that the solution trajectory 
leading to ( )m n a b,  is unique if >y a b.0

 9. What happens to the rabbit population if there are no foxes  
present?

 10. What happens to the fox population if there are no rabbits  
present?

 11. Show that ( )0, 0  and ( )c d a b,  are equilibrium points. Explain 
the meaning of each of these points.

 12. Show, by differentiating, that the function

C t a y t by t dx t c x t( ) ln ( ) ( ) ( ) ln ( )= − − +

is constant when x t( ) and y t( ) are positive and satisfy the predator-
prey equations.

While x and y may change over time, C t( ) does not. Thus, C is a con-
served quantity and its existence gives a conservation law. A trajec-
tory that begins at a point x y( , ) at time =t 0 gives a value of C that 
remains unchanged at future times. Each value of the constant C gives 
a trajectory for the autonomous system, and these trajectories close up, 
rather than spiraling inward or outward. The rabbit and fox populations 
oscillate through repeated cycles along a fixed trajectory. Figure 16.39 
shows several trajectories for the predator-prey system.

FIGURE 16.39 Some trajectories along which C is 
conserved.
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 8. Show that the second-order differential equation ( )″ = ′y F x y y, ,  
can be reduced to a system of two first-order differential equations

( )

=

=

dy
dx

z

dz
dx

F x y z

,

, , .

Can something similar be done to the nth-order differential equa-
tion …( )= ′ ″ ( )( ) −y F x y y y y, , , , , ?n n 1

Lotka-Volterra Equations for a Predator-Prey Model
In 1925 Lotka and Volterra introduced the predator-prey equations, a 
system of equations that models the populations of two species, one 
of which preys on the other. Let x t( ) represent the number of rabbits 
living in a region at time t, and y t( ) the number of foxes in the same 
region. As time passes, the number of rabbits increases at a rate pro-
portional to their population, and decreases at a rate proportional to 
the number of encounters between rabbits and foxes. The foxes, which 
compete for food, increase in number at a rate proportional to the 
number of encounters with rabbits but decrease at a rate proportional  
to the number of foxes. The number of encounters between rabbits and 
foxes is assumed to be proportional to the product of the two populations. 
These assumptions lead to the autonomous system

( )

( )

= −

= − +

dx
dt

a by x

dy
dt

c dx y

,

,

where a, b, c, d are positive constants. The values of these constants 
vary according to the specific situation being modeled. We can study 
the nature of the population changes without setting these constants to 
specific values.

 13. Using a procedure similar to that in the text for the competitive-
hunter model, show that each trajectory is traversed in a counter-
clockwise direction as time t increases.

Along each trajectory, both the rabbit and fox populations fluctuate 
between their maximum and minimum levels. The maximum and 
minimum levels for the rabbit population occur where the trajec-
tory intersects the horizontal line =y a b. For the fox population,  
they occur where the trajectory intersects the vertical line =x c d.  
When the rabbit population is at its maximum, the fox population 
is below its maximum value. As the rabbit population declines from 
this point in time, we move counterclockwise around the trajectory, 
and the fox population grows until it reaches its maximum value. 
At this point the rabbit population has declined to =x c d and is 
no longer at its peak value. We see that the fox population reaches 
its maximum value at a later time than the rabbits. The predator 
population lags behind that of the prey in achieving its maximum 
values. This lag effect is shown in Figure 16.40, which graphs both 
x t( ) and y t( ).

M16_HASS5901_15_GE_C16.indd   1058 08/03/2023   12:48

www.konkur.in

Telegram: @uni_k



 Chapter 16  Practice Exercises 1059

 14. At some time during a trajectory cycle, a wolf invades the rabbit–
fox territory, eats some rabbits, and then leaves. Does this mean 
that the fox population will from then on have a lower maximum 
value? Explain your answer.

FIGURE 16.40 The fox and rabbit populations oscillate peri-
odically, with the maximum fox population lagging the maxi-
mum rabbit population.
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 1. What is a first-order differential equation? When is a function a 
solution of such an equation?

 2. What is a general solution? What is a particular solution?

 3. What is the slope field of a differential equation ′ =y f x y( , )? 
What can we learn from such fields?

 4. Describe Euler’s method for solving the initial value problem 
′ = =y f x y y x y( , ), ( )0 0 numerically. Give an example. Comment 

on the method’s accuracy. Why might you want to solve an initial 
value problem numerically?

 5. How do you solve linear first-order differential equations?

 6. What is an orthogonal trajectory of a family of curves? Describe 
how one is found for a given family of curves.

CHAPTER 16 Questions to Guide Your Review

 7. What is an autonomous differential equation? What are its equi-
librium values? How do they differ from critical points? What is a 
stable equilibrium value? Unstable?

 8. How do you construct the phase line for an autonomous differen-
tial equation? How does the phase line help you produce a graph 
that qualitatively depicts a solution to the differential equation?

 9. Why is the exponential model unrealistic for predicting long-term 
population growth? How does the logistic model correct for the 
deficiency in the exponential model for population growth? What is 
the logistic differential equation? What is the form of its solution? 
Describe the graph of the logistic solution.

 10. What is an autonomous system of differential equations? What is 
a solution to such a system? What is a trajectory of the system?

In Exercises 1–22, solve the differential equation.

 1. ′ = −y xe x 2y  2. ′ =y xy e x 2

 3. x dy x y dxsec cos 02+ =  4. x dx y x dy2 3 csc 02 − =

 5. ′ =y e
xy

y
 6. y xe ycscx y′ = −

 7. ( )− − =x x dy y dx1 0 8. ( )′ = − −y y x12 1

 9. ′ − =y y xe2 x 2 10. 
y

y e x
2

sinx′ + = −

 11. ′ + = − −xy y x2 1 1 12. xy y x x2 ln′ − =

 13. ( )( )+ + + =−e dy ye e dx1 0x x x

 14. ( )+ − =− −e dy e y x dx4 0x x

 15. ( )+ + =x y dy y dx3 02  (Hint: ( ) = +d xy y dx x dy)

 16. x dy y x x dx x3 cos 0, 02( )+ − = >−

 17. ′ =y x ysin cos3 2  18. ( )− − =x dy x y dx 04

 19. ( )+ − =−dy x y e dx2 0x x 2  20. ′ + =y x y x3 72 2

 21. y xy x yln ln′ =  22. xy y x x2 ln ln′ + =

CHAPTER 16 Practice Exercises

Initial Value Problems
In Exercises 23–28, solve the initial value problem.

 23. x
dy
dx

y x x y1 2 , 1, (0) 1( )+ + = > − =

 24. x
dy
dx

y x x y2 1, 0, (1) 12+ = + > =

 25. 
dy
dx

x y x y3 , (0) 12 2+ = = −

 26. x dy y x dx ycos 0,
2

0π( )( )+ − = =

 27. xy x y x e y2 3 , (1) 0x3( )′ + − = =−

 28. y dx x xy dy y y3 2 0, (2) 1, 0( )+ − + = = − <

Euler’s Method
In Exercises 29 and 30, use Euler’s method to solve the initial value 
problem on the given interval starting at x 0 with =dx 0.1.

 29. y y x y x xcos , (0) 0; 0 2; 00′ = + = ≤ ≤ =

 30. y y x y x x2 2 3 , 3 1; 3 1; 30( )( ) ( )′ = − + − = − ≤ ≤ − = −

T

T
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1060 Chapter 16 First-Order Differential Equations

In Exercises 31 and 32, use Euler’s method with =dx 0.05 to estimate 
y c( ), where y is the solution to the given initial value problem.

 31. c
dy
dx

x y
x

y3;
2
1

, (0) 1= = −
+

=

 32. c
dy
dx

x y
x

y4;
2 1

, (1) 1
2

= = − + =

In Exercises 33 and 34, use Euler’s method to solve the initial value 
problem graphically, starting at =x 00  with

 a. =dx 0.1. b. = −dx 0.1.

 33. 
dy
dx e

y1 , (0) 2
x y 2

= = −
+ +

 34. 
dy
dx

x y
e x

y, (0) 0
y

2
= − +

+
=

Slope Fields
In Exercises 35–38, sketch part of the equation’s slope field. Then 
add to your sketch the solution curve that passes through the point 
P 1, 1 .( )−  Use Euler’s method with =x 10  and =dx 0.2 to estimate 
y(2). Round your answers to four decimal places. Find the exact value 
of y(2) for comparison.

 35. ′ =y x  36. ′ =y x1

 37. ′ =y xy 38. ′ =y y1

Autonomous Differential Equations and Phase Lines
In Exercises 39 and 40:

 a. Identify the equilibrium values. Which are stable and which 
are unstable?

 b. Construct a phase line. Identify the signs of ′y  and ″y .

 c. Sketch a representative selection of solution curves.

 39. = −dy
dx

y 12  40. = −dy
dx

y y 2

Applications

 41. Escape velocity The gravitational attraction F exerted by an air-
less moon on a body of mass m at a distance s from the moon’s 
center is given by the equation = − −F mg R s ,2 2  where g is the 
acceleration of gravity at the moon’s surface and R is the moon’s 
radius (see accompanying figure). The force F is negative because 
it acts in the direction of decreasing s.

Moon’s
center

Mass m

F = −
mgR2

s2

R
s

 a. If the body is projected vertically upward from the moon’s 
surface with an initial velocity υ0  at time =t 0, use 
Newton’s second law, =F ma, to show that the body’s 
velocity at position s is given by the equation

υ υ= + −gR
s

gR
2

2 .2
2

0
2

T

T

T

T

Thus, the velocity remains positive as long as υ ≥ gR2 .0  The 
velocity υ = gR20  is the moon’s escape velocity. A body pro-
jected upward with this velocity or a greater one will escape from 
the moon’s gravitational pull.

 b. Show that if υ = gR2 ,0  then

s R
R

t1
3
2

.0
2 3υ( )= +

 42. Coasting to a stop Table 16.6 shows the distance s (meters) 
coasted on inline skates in t s by Johnathon Krueger. Find a 
model for his position in the form of Equation (2) of Section 16.3.  
His initial velocity was υ = 0.86 m s,0  his mass m 30.84 kg= , 
and his total coasting distance was 0.97 m.

TABLE 16.6 Johnathon Krueger skating data

t (s) s(m) t (s) s(m) t (s) s(m)

0 0 0.93 0.61 1.86 0.93

0.13 0.08 1.06 0.68 2.00 0.94

0.27 0.19 1.20 0.74 2.13 0.95

0.40 0.28 1.33 0.79 2.26 0.96

0.53 0.36 1.46 0.83 2.39 0.96

0.67 0.45 1.60 0.87 2.53 0.97

0.80 0.53 1.73 0.90 2.66 0.97

Mixture Problems
In Exercises 43 and 44, let S represent the kilograms of salt in a tank 
at time t minutes. Set up a differential equation representing the given 
information and the rate at which S changes. Then solve for S and 
answer the particular questions.

 43. A mixture containing 1
4

kg of salt per liter flows into a tank at the 

rate of 24 L/min, and the well-stirred mixture flows out of the 
tank at the rate of 16 L/min. The tank initially holds 600 liters of 
solution containing 6 kilograms of salt.

 a. How many liters of solution are in the tank after 1 minute? 
after 10 minutes? after 1 hour?

 b. How many kilograms of salt are in the tank after 1 minute? 
after 10 minutes? after 1 hour?

 44. Pure water flows into a tank at the rate of 16 L/min, and the well-
stirred mixture flows out of the tank at the rate of 20 L/min. The 
tank initially holds 800 liters of solution containing 25 kilograms 
of salt.

 a. How many liters of solution are in the tank after 1 minute? 
after 10 minutes? after 200 minutes?

 b. How many kilograms of salt are in the tank after 1 minute? 
after 30 minutes?

 c. When will the tank have exactly 5 kilograms of salt, and how 
many liters of solution will be in the tank?
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 Chapter 16  Technology Application Projects 1061

Mathematica/Maple Projects

Projects can be found within MyLab Math.

• Drug Dosages: Are They Effective? Are They Safe?

Formulate and solve an initial value model for the absorption of a drug in the bloodstream.

• First-Order Differential Equations and Slope Fields

Plot slope fields and solution curves for various initial conditions to selected first-order differential equations.

CHAPTER 16 Technology Application Projects

Theory and Applications

 1. Transport through a cell membrane Under some conditions, 
the result of the movement of a dissolved substance across a cell’s 
membrane is described by the equation

( )= −dy
dt

k A
V

c y .

In this equation, y is the concentration of the substance inside the 
cell, and dy dt  is the rate at which y changes over time. The let-
ters k, A, V, and c stand for constants, k being the permeability 
coefficient (a property of the membrane), A the surface area of 
the membrane, V the cell’s volume, and c the concentration of the 
substance outside the cell. The equation says that the rate at which 
the concentration within the cell changes is proportional to the 
difference between it and the outside concentration.

 a. Solve the equation for y t( ), using y0 to denote y(0).

 b. Find the steady-state concentration, y tlim ( ).
t→∞

 2. Height of a rocket If an external force F acts upon a system 
whose mass varies with time, Newton’s law of motion is

υ υ( )= + +d m
dt

F u dm
dt

( ) .

In this equation, m is the mass of the system at time t, υ is its 
velocity, and υ + u is the velocity of the mass that is entering 
(or leaving) the system at the rate dm dt . Suppose that a rocket 
of initial mass m0 starts from rest, but is driven upward by fir-
ing some of its mass directly backward at the constant rate of 

= −dm dt b  units per second and at constant speed relative to 
the rocket = −u c. The only external force acting on the rocket 
is = −F mg due to gravity. Under these assumptions, show that  
the height of the rocket above the ground at the end of t seconds 
(t small compared to m b0 ) is

y c t
m bt

b
m bt

m
gtln 1

2
.0 0

0

2= +
− −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

 3. a.  Assume that P x( ) and Q x( ) are continuous over the interval 
[ ]a b, . Use the Fundamental Theorem of Calculus, Part 1, to 
show that any function y satisfying the equation

x y x Q x dx C( ) ( ) ( )∫υ υ= +

for x e( ) P x dx( )υ = ∫  is a solution to the first-order linear  
equation

dy
dx

P x y Q x( ) ( ).+ =

 b. If υ υ= − ∫C y x t Q t dt( ) ( ) ( ) ,x

x

0 0 0
 then show that any solution 

y in part (a) satisfies the initial condition y x y( ) .0 0=

CHAPTER 16 Additional and Advanced Exercises

 4. (Continuation of Exercise 3.) Assume the hypotheses of Exercise 3, 
and assume that y x( )1  and y x( )2  are both solutions to the first-order 
linear equation satisfying the initial condition y x y( ) .0 0=

 a. Verify that y x y x y x( ) ( ) ( )1 2= −  satisfies the initial value 
problem

y P x y y x( ) 0, ( ) 0.0′ + = =

 b. For the integrating factor x e( ) ,P x dx( )υ = ∫  show that

d
dx

x y x y x( ) ( ) ( ) 0.1 2υ [ ]( )− =

Conclude that x y x y x( ) ( ) ( ) constant.1 2υ [ ]− ≡

 c. From part (a), we have y x y x( ) ( ) 0.1 0 2 0− =  Since 
x( ) 0υ >  for < <a x b, use part (b) to establish 

that y x y x( ) ( ) 01 2− ≡  on the interval a b,( ). Thus 
y x y x( ) ( )1 2=  for all < <a x b.

Homogeneous Equations
A first-order differential equation of the form

( )=dy
dx

F
y
x

is called homogeneous. It can be transformed into an equation whose 
variables are separable by defining the new variable υ = y x . Then 

υ=y x and

υ υ= +dy
dx

x d
dx

.

Substituting into the original differential equation and collecting terms 
with like variables then give the separable equation

dx
x

d
F( )

0.υ
υ υ

+
−

=

After solving this separable equation, we obtain the solution of the 
original equation when we replace υ by y x .

Solve the homogeneous equations in Exercises 5–10. First put the 
equation in the form of a homogeneous equation.

 5. ( )+ + =x y dx xy dy 02 2

 6. ( )+ − =x dy y xy dx 02 2

 7. ( )+ − =xe y dx x dy 0y x

 8. ( ) ( )+ + − =x y dy x y dx 0

 9. y
y
x

y x
x

cos′ = + −

 10. x
y
x

y
y
x

dx x
y
x

dysin cos cos 0( )− + =
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17-1

OVERVIEW In this chapter we extend our study of differential equations to those of 
second order, equations that involve second derivatives of a function. Second-order dif-
ferential equations arise in many applications in the sciences and engineering. For instance, 
they can be applied to the study of vibrating springs and electric circuits. You will learn 
how to solve such differential equations by several methods in this chapter.

Second-Order  
Differential Equations

17

THEOREM 1—The Superposition Principle
If y x( )1  and y x( )2  are two solutions to the linear homogeneous equation (2), then 
for any constants c1 and c2, the function

= +y x c y x c y x( ) ( ) ( )1 1 2 2

is also a solution to Equation (2).

17.1 Second-Order Linear Equations

An equation of the form

 ′′ + ′ + =P x y x Q x y x R x y x G x( ) ( ) ( ) ( ) ( ) ( ) ( ), (1)

which is linear in y and its derivatives, is called a second-order linear differential 
equation. We assume that the functions P , Q, R, and G are continuous throughout some 
open interval I. If G x( ) is identically zero on I, the equation is said to be homogeneous; 
otherwise it is called nonhomogeneous. Therefore, the form of a second-order linear 
homogeneous differential equation is

 ′′ + ′ + =P x y Q x y R x y( ) ( ) ( ) 0. (2)

We also assume that P x( ) is never zero for any ∈x I .
Two fundamental results are important to solving Equation (2). The first of these says 

that if we know two solutions y1 and y2 of the linear homogeneous equation, then any 
linear combination = +y c y c y1 1 2 2 is also a solution for any constants c1 and c2.

Denis Kalinichenko/Shutterstock
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17-2 Chapter 17 Second-Order Differential Equations 

Proof  Substituting y into Equation (2), we have

P x y Q x y R x y

P x c y c y Q x c y c y R x c y c y

P x c y c y Q x c y c y R x c y c y

c P x y Q x y R x y c P x y Q x y R x y

c c

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

(0) (0) 0.
y y

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2 1 1 2 2

1 1 1 1

0,   is a solution

2 2 2 2

0,   is a solution

1 2

1 2

� ��������������� ��������������� � ��������������� ���������������

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

′′ + ′ +

= + ″ + + ′ + +

= ″ + ″ + ′ + ′ + +

= ″ + ′ + + ″ + ′ +

= + =
= =

Therefore, = +y c y c y1 1 2 2 is a solution of Equation (2). 

Theorem 1 immediately establishes the following facts concerning solutions to the 
linear homogeneous equation.

1. A sum of two solutions +y y1 2 to Equation (2) is also a solution. (Choose = =c c 11 2 .)

2. A constant multiple ky1 of any solution y1 to Equation (2) is also a solution. (Choose 
=c k1  and =c 02 .)

3. The trivial solution ≡y x( ) 0 is always a solution to the linear homogeneous equation. 
(Choose = =c c 01 2 .)

The second fundamental result about solutions to the linear homogeneous equation 
concerns its general solution, or solution containing all solutions. This result says that 
there are two solutions y1 and y2 such that any solution is some linear combination of them 
for suitable values of the constants c1 and c2. However, not just any pair of solutions will 
do. The solutions must be linearly independent, which means that neither y1 nor y2 is a 
constant multiple of the other. For example, the functions =f x e( ) x and =g x xe( ) x are 
linearly independent, whereas =f x x( ) 2 and =g x x( ) 7 2 are not (they are linearly 
dependent). These results on linear independence and the following theorem are proved in 
more advanced courses.

THEOREM 2 If P , Q, and R are continuous over the open interval I and P x( ) is 
never zero on I, then the linear homogeneous equation (2) has two linearly inde-
pendent solutions y1 and y2 on I. Moreover, if y1 and y2 are any two linearly indepen-
dent solutions of Equation (2), then the general solution is given by

= +y x c y x c y x( ) ( ) ( ),1 1 2 2

where c1 and c2 are arbitrary constants.

We now turn our attention to finding two linearly independent solutions to the special 
case of Equation (2) where P , Q, and R are constant functions.

Constant-Coefficient Homogeneous Equations

Suppose we wish to solve the second-order homogeneous differential equation

 ′′ + ′ + =ay by cy 0, (3)

where a, b, and c are constants. To solve Equation (3), we seek a function that, when multi-
plied by a constant and added to a constant times its first derivative plus a constant times its 
second derivative, sums identically to zero. One function that behaves this way is the expo-
nential function =y erx, when r is a constant. Two differentiations of this exponential 
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 17.1  Second-Order Linear Equations 17-3

function give ′ =y rerx  and ′′ =y r erx2 , which are just constant multiples of the original 
exponential. If we substitute =y erx into Equation (3), we obtain

+ + =ar e bre ce 0.rx rx rx2

Since the exponential function is never zero, we can divide this last equation through by 
erx. Thus, =y erx is a solution to Equation (3) if and only if r is a solution to the algebraic 
equation

 + + =ar br c 0.2  (4)

THEOREM 3 If r1 and r2 are two real and unequal roots of the auxiliary equation 
+ + =ar br c 02 , then

= +y c e c er x r x
1 2

1 2

is the general solution to ′′ + ′ + =ay by cy 0.

Equation (4) is called the auxiliary equation (or characteristic equation) of the differen-
tial equation ′′ + ′ + =ay by cy 0. The auxiliary equation is a quadratic equation with 
roots

= − + − = − − −r b b ac
a

r b b ac
a

4
2

and 4
2

.1

2

2

2

There are three cases to consider, which depend on the value of the discriminant −b ac4 .2

Case 1: − >b ac4 0.2  In this case the auxiliary equation has two real and unequal 
roots r1 and r2. Then =y er x

1
1  and =y er x

2
2  are two linearly independent solutions 

to Equation (3) because er x2  is not a constant multiple of er x1  (see Exercise 61). From 
Theorem 2 we conclude the following result.

EXAMPLE 1  Find the general solution of the differential equation

′′ − ′ − =y y y6 0.

Solution Substitution of =y erx into the differential equation yields the auxiliary 
equation

− − =r r 6 0,2

which factors as

( )( )− + =r r3 2 0.

The roots are =r 31  and = −r 2.2  Thus, the general solution is

= + −y c e c e .x x
1

3
2

2

Case 2: − =b ac4 0.2  In this case = = −r r b a2 .1 2  To simplify the notation, let 
= −r b a2 . Then we have one solution =y erx

1  with + =ar b2 0. Since multiplication 
of erx by a constant fails to produce a second linearly independent solution, suppose we try 
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17-4 Chapter 17 Second-Order Differential Equations 

multiplying by a function instead. The simplest such function would be =u x x( ) , so let’s 
see where =y xerx

2  is also a solution. Substituting y2 into the differential equation gives

( )

( )

( )

( )

( )

( )

″ + ′ + = + + + +

= + + + +
= + =

ay by cy a re r xe b e rxe cxe

ar b e ar br c xe

e xe

2

2

0 0 0.

rx rx rx rx rx

rx rx

rx rx

2 2 2
2

2

The first term is zero because = −r b a2 ; the second term is zero because r solves the 
auxiliary equation. The functions =y erx

1  and =y xerx
2  are linearly independent (see 

Exercise 62). From Theorem 2 we conclude the following result.

THEOREM 4 If r is the only (repeated) real root of the auxiliary equation 
+ + =ar br c 02 , then

= +y c e c xerx rx
1 2

is the general solution to ′′ + ′ + =ay by cy 0.

EXAMPLE 2  Find the general solution to

′′ + ′ + =y y y4 4 0.

Solution The auxiliary equation is

+ + =r r4 4 0,2

which factors into

( )+ =r 2 0.2

Thus, = −r 2 is a double root. Therefore, the general solution is

= +− −y c e c xe .x x
1

2
2

2

Case 3: − <b ac4 0.2  In this case the auxiliary equation has two complex roots: 
α β= +r i1  and α β= −r i ,2  where α and β are real numbers and = −i 12 . (These real 

numbers are α = −b a2  and β = −ac b a4 2 .2 ) These two complex roots then give 
rise to two linearly independent solutions:

β β β β( ) ( )= = + = = −α β α α β α( ) ( )+ −y e e x i x y e e x i xcos sin and cos sin .i x x i x x
1 2

(The expressions involving the sine and cosine terms follow from Euler’s identity, as seen 
in the discussion of Taylor series.) However, the solutions y1 and y2 are complex valued 
rather than real valued. Nevertheless, because of the superposition principle (Theorem 1), 
we can obtain from them the two real-valued solutions

β β= + = = − =α αy y y e x y
i

y
i

y e x1
2

1
2

cos and 1
2

1
2

sin .x x
3 1 2 4 1 2

The functions y3 and y4 are linearly independent (see Exercise 63). From Theorem 2 we 
conclude the following result.

THEOREM 5 If α β= +r i1  and α β= −r i2  are two complex roots of the 
auxiliary equation + + =ar br c 02 , then

β β( )= +αy e c x c xcos sinx
1 2

is the general solution to ′′ + ′ + =ay by cy 0.
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 17.1  Second-Order Linear Equations 17-5

EXAMPLE 3  Find the general solution to the differential equation

′′ − ′ + =y y y4 5 0.

Solution The auxiliary equation is

− + =r r4 5 0.2

The roots are the complex pair ( )= ± −r 4 16 20 2, or = +r i21  and = −r i2 .2  
Thus, α = 2 and β = 1 give the general solution

( )= +y e c x c xcos sin .x2
1 2

Initial Value and Boundary Value Problems

To determine a unique solution to a first-order linear differential equation, it was sufficient 
to specify the value of the solution at a single point. Since the general solution to a second-
order equation contains two arbitrary constants, it is necessary to specify two conditions. 
One way of doing this is to specify the value of the solution function and the value of its 
derivative at a single point: =y x y( )0 0 and ′ =y x y( )0 1. These conditions are called initial 
conditions. The following result is proved in more advanced texts and guarantees the exis-
tence of a unique solution for both homogeneous and nonhomogeneous second-order  
linear initial value problems.

THEOREM 6 If P Q R,   ,   , and G are continuous throughout an open interval I, 
then there exists one and only one function y x( ) satisfying both the differential 
equation

′′ + ′ + =P x y x Q x y x R x y x G x( ) ( ) ( ) ( ) ( ) ( ) ( )

on the interval I, and the initial conditions

= ′ =y x y y x y( ) and ( )0 0 0 1

at the specified point ∈x I0 .

It is important to realize that any real values can be assigned to y0 and y1, and Theorem 6 
applies. Here is an example of an initial value problem for a homogeneous equation.

EXAMPLE 4  Find the particular solution to the initial value problem

′′ − ′ + = = ′ = −y y y y y2 0, (0) 1, (0) 1.

Solution The auxiliary equation is

( )− + = − =r r r2 1 1 0.2 2

The repeated real root is =r 1, giving the general solution

= +y c e c xe .x x
1 2

Then

( )′ = + +y c e c x e1 .x x
1 2

From the initial conditions we have

= + ⋅ − = + ⋅c c c c1 0 and 1 1.1 2 1 2
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17-6 Chapter 17 Second-Order Differential Equations 

Thus, =c 11  and = −c 2.2  The unique solution satisfying the initial conditions is

= −y e xe2 .x x

The solution curve is shown in Figure 17.1. 

Another approach to determine the values of the two arbitrary constants in the general 
solution to a second-order differential equation is to specify the values of the solution 
function at two different points in the interval I. That is, we solve the differential equation 
subject to the boundary values

= =y x y y x y( ) and ( ) ,1 1 2 2

where x1 and x 2 both belong to I. Here again the values for y1 and y2 can be any real numbers. 
The differential equation together with specified boundary values is called a boundary 
value problem. Unlike the result stated in Theorem 6, boundary value problems do not 
always possess a solution, or more than one solution may exist (see Exercise 65). These 
problems are studied in more advanced texts, but here is an example for which there is a 
unique solution.

EXAMPLE 5  Solve the boundary value problem

π( )′′ + = = =y y y y4 0, (0) 0,
12

1.

Solution The auxiliary equation is + =r 4 0,2  which has the complex roots = ±r i2 . 
The general solution to the differential equation is

= +y c x c xcos 2 sin 2 .1 2

The boundary conditions are satisfied if

π π π( ) ( )( )
= ⋅ + ⋅ =

= + =

y c c

y c c

(0) 1 0 0

12
cos

6
sin

6
1.

1 2

1 2

It follows that =c 01  and =c 22 . The solution to the boundary value problem is

=y x2 sin 2 .

FIGURE 17.1 Particular solution curve 
for Example 4.

–4 –3 –2 –1 0 1

–6

–8

–4

–2
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x

y = ex – 2xex

In Exercises 1–30, find the general solution of the given equation.

 1. ′′ − ′ − =y y y12 0  2. ′′ − ′ =y y3 0

 3. ′′ + ′ − =y y y3 4 0  4. ′′ − =y y9 0

 5. ′′ − =y y4 0  6. ′′ − =y y64 0

 7. ′′ − ′ − =y y y2 3 0  8. ′′ − =y y9 0

 9. ′′ − ′ − =y y y8 10 3 0  10. ′′ − ′ + =y y y3 20 12 0

 11. ′′ + =y y9 0  12. ′′ + ′ + =y y y4 5 0

 13. ′′ + =y y25 0  14. ′′ + =y y 0

 15. ′′ − ′ + =y y y2 5 0  16. ′′ + =y y16 0

 17. ′′ + ′ + =y y y2 4 0  18. ′′ − ′ + =y y y2 3 0

 19. ′′ + ′ + =y y y4 9 0  20. ′′ − ′ + =y y y4 4 13 0

 21. ′′ =y 0  22. ′′ + ′ + =y y y8 16 0

 23. + + =d y
dx

dy
dx

y4 4 0
2

2
 24. − + =d y

dx
dy
dx

y6 9 0
2

2

 25. + + =d y
dx

dy
dx

y6 9 0
2

2
 26. − + =d y

dx
dy
dx

y4 12 9 0
2

2

 27. + + =d y
dx

dy
dx

y4 4 0
2

2
 28. − + =d y

dx
dy
dx

y4 4 0
2

2

 29. + + =d y
dx

dy
dx

y9 6 0
2

2
 30. − + =d y

dx
dy
dx

y9 12 4 0
2

2

In Exercises 31–40, find the unique solution of the second-order initial 
value problem.

 31. ′′ + ′ + = = ′ =y y y y y6 5 0, (0) 0,   (0) 3

 32. ′′ + = = ′ = −y y y y16 0, (0) 2,   (0) 2

 33. ′′ + = = ′ =y y y y12 0, (0) 0,   (0) 1

EXERCISES 17.1
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 17.2  Nonhomogeneous Linear Equations 17-7

 34. ′′ + ′ − = = ′ = −y y y y y12 5 2 0, (0) 1,   (0) 1

 35. ′′ + = = − ′ =y y y y8 0, (0) 1,   (0) 2

 36. ′′ + ′ + = = ′ =y y y y y4 4 0, (0) 0,   (0) 1

 37. ′′ − ′ + = = ′ =y y y y y4 4 0, (0) 1,   (0) 0

 38. ′′ − ′ + = = ′ =y y y y y4 4 0, (0) 4,   (0) 4

 39. + + = = =d y
dx

dy
dx

y y
dy
dx

4 12 9 0, (0) 2,   (0) 1
2

2

 40. − + = = − =d y
dx

dy
dx

y y
dy
dx

9 12 4 0, (0) 1,   (0) 1
2

2

In Exercises 41–55, find the general solution.

 41. ′′ − ′ − =y y y2 3 0  42. ′′ − ′ − =y y y6 0

 43. ′′ + ′ + =y y y4 4 0  44. ′′ + ′ + =y y y9 12 4 0

 45. ′′ + =y y4 20 0  46. ′′ + ′ + =y y y2 2 0

 47. ′′ + ′ + =y y y25 10 0  48. ′′ + ′ − =y y y6 13 5 0

 49. ′′ + ′ + =y y y4 4 5 0  50. ′′ + ′ + =y y y4 6 0

 51. ′′ − ′ + =y y y16 24 9 0  52. ′′ − ′ − =y y y6 5 6 0

 53. ′′ + ′ + =y y y9 24 16 0  54. ′′ + ′ + =y y y4 16 52 0

 55. ′′ − ′ − =y y y6 5 4 0

In Exercises 56–60, solve the initial value problem.

 56. ′′ − ′ + = = ′ =y y y y y2 2 0, (0) 0, (0) 2

 57. ′′ + ′ + = = ′ =y y y y y2 0, (0) 1, (0) 1

 58. ′′ − ′ + = = − ′ =y y y y y4 4 0, (0) 1, (0) 2

 59. ′′ + ′ − = = ′ = −y y y y y3 14 0, (0) 2, (0) 1

 60. π π′′ + ′ + = = ′ =y y y y y4 4 5 0, ( ) 1, ( ) 0

 61. Prove that the two solution functions in Theorem 3 are linearly 
independent.

 62. Prove that the two solution functions in Theorem 4 are linearly 
independent.

 63. Prove that the two solution functions in Theorem 5 are linearly 
independent.

 64. Prove that if y1 and y2 are linearly independent solutions to the 
homogeneous equation (2), then the functions = +y y y3 1 2 and 

= −y y y4 1 2 are also linearly independent solutions.

 65. a. Show that there is no solution to the boundary value problem

π′′ + = = =y y y y4 0, (0) 0, ( ) 1.

 b. Show that there are infinitely many solutions to the boundary 
value problem

π′′ + = = =y y y y4 0, (0) 0, ( ) 0.

 66. Show that if a, b, and c are positive constants, then all solutions of 
the homogeneous differential equation

′′ + ′ + =ay by cy 0

approach zero as → ∞x .

17.2 Nonhomogeneous Linear Equations

In this section we study two methods for solving second-order linear nonhomogeneous 
differential equations with constant coefficients. These are the methods of undetermined 
coefficients and variation of parameters. We begin by considering the form of the general 
solution.

Form of the General Solution

Suppose we wish to solve the nonhomogeneous equation

 ′′ + ′ + =ay by cy G x( ), (1)

where a, b, and c are constants and G is continuous over some open interval I. Let 
= +y c y c yc 1 1 2 2 be the general solution to the associated complementary equation

 ′′ + ′ + =ay by cy 0. (2)

(We learned how to find yc in Section 17.1.) Now suppose we could somehow come up 
with a particular function yp that solves the nonhomogeneous equation (1). Then the sum

 = +y y yc p (3)

also solves the nonhomogeneous equation (1) because

( ) ( ) ( )

( )( )

+ ″ + + ′ + +

= ″ + ′ + + ″ + ′ +

= +
=

a y y b y y c y y

ay by cy ay by cy

G x

G x

0 ( )

( ).

c p c p c p

c c c p p p

yc solves Eq. (2) and yp solves Eq. (1)
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17-8 Chapter 17 Second-Order Differential Equations 

Moreover, if =y y x( ) is the general solution to the nonhomogeneous equation (1), it must 
have the form of Equation (3). The reason for this last statement follows from the observa-
tion that for any function yp satisfying Equation (1), we have

( ) ( ) ( )

( )( )

− ″ + − ′ + −

= ′′ + ′ + − ″ + ′ +

= − =

a y y b y y c y y

ay by cy ay by cy

G x G x( ) ( ) 0.

p p p

p p p

Thus, = −y y yc p is the general solution to the homogeneous equation (2). We have 
established the following result.

THEOREM 7 The general solution =y y x( ) to the nonhomogeneous differen-
tial equation (1) has the form

= +y y y ,c p

where the complementary solution yc is the general solution to the associated 
homogeneous equation (2), and yp is any particular solution to the nonhomoge-
neous equation (1).

The Method of Undetermined Coefficients

This method for finding a particular solution yp to the nonhomogeneous equation (1) 
applies to special cases for which G x( ) is a sum of terms of various polynomials p x( ) mul-
tiplying an exponential with possibly sine or cosine factors. That is, G x( ) is a sum of terms 
of the following forms:

β βα αp x e p x e x p x e x( ) , ( ) cos , ( ) sin .rx x x
1 2 3

For instance, − x e xe x1 ,   ,   ,   cos ,x x2  and −e x5 sin 2x  represent functions in this category. 
(Essentially these are functions solving homogeneous linear differential equations with 
constant coefficients, but the equations may be of order higher than two.) We now present 
several examples illustrating the method.

EXAMPLE 1  Solve the nonhomogeneous equation ′′ − ′ − = −y y y x2 3 1 .2

Solution The auxiliary equation for the complementary equation ′′ − ′ − =y y y2 3 0 is

( )( )− − = + − =r r r r2 3 1 3 0.2

It has the roots = −r 1 and =r 3, giving the complementary solution

= +−y c e c e .x x
c 1 2

3

Now = −G x x( ) 1 2 is a polynomial of degree 2. It would be reasonable to assume that a 
particular solution to the given nonhomogeneous equation is also a polynomial of degree 2 
because if y is a polynomial of degree 2, then ′′ − ′ −y y y2 3  is also a polynomial of degree 2. 
So we seek a particular solution of the form

= + +y Ax Bx C.p
2

We need to determine the unknown coefficients A, B, and C. When we substitute the poly-
nomial yp and its derivatives into the given nonhomogeneous equation, we obtain

( )( )− + − + + = −A Ax B Ax Bx C x2 2 2 3 1 ,2 2

or, collecting terms with like powers of x,

( ) ( )− + − − + − − = −Ax A B x A B C x3 4 3 2 2 3 1 .2 2
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 17.2  Nonhomogeneous Linear Equations 17-9

This last equation holds for all values of x if its two sides are identical polynomials of 
degree 2. Thus, we equate corresponding powers of x to get

− = − − − = − − =A A B A B C3 1, 4 3 0, and 2 2 3 1.

These equations imply in turn that = = −A B1 3,   4 9, and =C 5 27. Substituting 
these values into the quadratic expression for our particular solution gives

= − +y x x1
3

4
9

5
27

.p
2

By Theorem 7, the general solution to the nonhomogeneous equation is

= + = + + − +−y y y c e c e x x1
3

4
9

5
27

.x x
c p 1 2

3 2

EXAMPLE 2  Find a particular solution of ′′ − ′ =y y x2 sin .

Solution If we try to find a particular solution of the form

=y A xsinp

and substitute the derivatives of yp in the given equation, we find that A must satisfy the 
equation

− + =A x A x xsin cos 2 sin

for all values of x. Since this requires A to equal both −2 and 0 at the same time, we 
conclude that the nonhomogeneous differential equation has no solution of the form 
A xsin .

It turns out that the required form is the sum

= +y A x B xsin cos .p

The result of substituting the derivatives of this new trial solution into the differential 
equation is

( )− − − − =A x B x A x B x xsin cos cos sin 2 sin ,

or

( ) ( )− − + =B A x A B x xsin cos 2 sin .

This last equation must be an identity. Equating the coefficients for like terms on each side 
then gives

− = + =B A A B2 and 0.

Simultaneous solution of these two equations gives = −A 1 and =B 1. Our particular 
solution is

= −y x xcos sin .p

EXAMPLE 3  Find a particular solution of ′′ − ′ + =y y y e3 2 5 .x

Solution If we substitute

=y Ae x
p

and its derivatives into the differential equation, we find that

− + =Ae Ae Ae e3 2 5 ,x x x x

or

= e0 5 .x
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17-10 Chapter 17 Second-Order Differential Equations 

However, the exponential function is never zero. The trouble can be traced to the fact that 
=y e x is already a solution of the related homogeneous equation

′′ − ′ + =y y y3 2 0.

The auxiliary equation is

( )( )− + = − − =r r r r3 2 1 2 0,2

which has =r 1 as a root. So we would expect Ae x to become zero when substituted into 
the left-hand side of the differential equation.

The appropriate way to modify the trial solution in this case is to multiply Ae x by x. 
Thus, our new trial solution is

=y Axe .x
p

The result of substituting the derivatives of this new candidate into the differential equation is

( ) ( )+ − + + =Axe Ae Axe Ae Axe e2 3 2 5 ,x x x x x x

or

− =Ae e5 .x x

Thus, = −A 5 gives our sought-after particular solution

= −y xe5 .x
p

EXAMPLE 4  Find a particular solution of ′′ − ′ + =y y y e6 9 .x3

Solution The auxiliary equation for the complementary equation

( )− + = − =r r r6 9 3 02 2

has =r 3 as a repeated root. The appropriate choice for yp in this case is neither Ae x3  nor 
Axe x3  because the complementary solution contains both of those terms already. Thus, we 
choose a term containing the next higher power of x as a factor. When we substitute

=y Ax e x
p

2 3

and its derivatives into the given differential equation, we get

( ) ( )+ + − + + =Ax e Axe Ae Ax e Axe Ax e e9 12 2 6 3 2 9 ,x x x x x x x2 3 3 3 2 3 3 2 3 3

or

=Ae e2 .x x3 3

Thus, =A 1 2, and the particular solution is

=y x e1
2

.x
p

2 3

When we wish to find a particular solution of Equation (1) and the function G x( ) is the 
sum of two or more terms, we choose a trial function for each term in G x( ) and add them.

EXAMPLE 5  Find the general solution to ′′ − ′ = −y y e x5 sin 2 .x

Solution We first check the auxiliary equation

− =r r 0.2

Its roots are =r 1 and =r 0. Therefore, the complementary solution to the associated 
homogeneous equation is

= +y c e c .x
c 1 2
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 17.2  Nonhomogeneous Linear Equations 17-11

We now seek a particular solution y .p  That is, we seek a function that will produce 
−e x5 sin 2x  when substituted into the left-hand side of the given differential equation. 

One part of yp is to produce e5 ,x  the other − xsin 2 .
Since any function of the form c e x

1  is a solution of the associated homogeneous equa-
tion, we choose our trial solution yp to be the sum

= + +y Axe B x C xcos 2 sin 2 ,x
p

including xe x where we might otherwise have included only e .x  When the derivatives of yp 
are substituted into the differential equation, the resulting equation is

( )

+ − −

− + − + = −

Axe Ae B x C x

Axe Ae B x C x e x

( 2 4 cos 2 4 sin 2 )

2 sin 2 2 cos 2 5 sin 2 ,

x x

x x x

or

( ) ( )− + + − = −Ae B C x B C x e x4 2 cos 2 2 4 sin 2 5 sin 2 .x x

This equation will hold if

= + = − = −A B C B C5, 4 2 0, 2 4 1,

or = = −A B5,   1 10, and =C 1 5. Our particular solution is

= − +y xe x x5 1
10

cos 2 1
5

sin 2 .x
p

The general solution to the differential equation is

= + = + + − +y y y c e c xe x x5 1
10

cos 2 1
5

sin 2 .x x
c p 1 2

You may find the following table helpful in solving the problems at the end of this 
section.

If ( )G x  has a term  
that is a constant  
multiple of . . . And if . . .

Then include this  
expression in the  
trial function for yp

erx r is not a root of  
the auxiliary equation

Aerx

r is a single root of the  
auxiliary equation

Axerx

r is a double root of the  
auxiliary equation

Ax erx2

kx kxsin ,   cos ki is not a root of the  
auxiliary equation

+B kx C kxcos sin

+ +px qx m2 0 is not a root of the  
auxiliary equation

+ +Dx Ex F2

0 is a single root of  
the auxiliary equation

+ +Dx Ex Fx3 2

0 is a double root of  
the auxiliary equation

+ +Dx Ex Fx4 3 2

TABLE 17.1 The method of undetermined coefficients for selected equations  
of the form

ay by cy G x( ).+ + =′′ ′
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17-12 Chapter 17 Second-Order Differential Equations 

The Method of Variation of Parameters

This is a general method for finding a particular solution of the nonhomogeneous equation (1) 
once the general solution of the associated homogeneous equation is known. The method 
consists of replacing the constants c1 and c2 in the complementary solution by functions 
υ υ= x( )1 1  and υ υ= x( )2 2  and requiring (in a way to be explained) that the resulting 
expression satisfy the nonhomogeneous equation (1). There are two functions to be deter-
mined, and requiring that Equation (1) be satisfied is only one condition. As a second 
condition, we also require that

 υ υ′ + ′ =y y 0.1 1 2 2  (4)

Then we have

υ υ

υ υ

υ υ υ υ

= +

′ = ′ + ′

′′ = ″ + ″ + ′ ′ + ′ ′

y y y

y y y

y y y y y

,

,

.

1 1 2 2

1 1 2 2

1 1 2 2 1 1 2 2

If we substitute these expressions into the left-hand side of equation (1), we obtain

υ υ υ υ( ) ( ) ( )″ + ′ + + ″ + ′ + + ′ ′ + ′ ′ =ay by cy ay by cy a y y G x( ).1 1 1 1 2 2 2 2 1 1 2 2

The first two parenthetical terms are zero since y1 and y2 are solutions of the associated 
homogeneous equation (2). So the nonhomogeneous equation (1) is satisfied if, in addition 
to equation (4), we require that

 υ υ( )′ ′ + ′ ′ =a y y G x( ).1 1 2 2  (5)

Equations (4) and (5) can be solved together as a pair

υ υ

υ υ

′ + ′ =

′ ′ + ′ ′ =

y y

y y G x
a

0,

( )
1 1 2 2

1 1 2 2

for the unknown functions υ ′1  and υ ′.2  The usual procedure for solving this simple system is to 
use the method of determinants (also known as Cramer’s Rule), which will be demonstrated in 
the examples to follow. Once the derivative functions υ ′1  and υ ′2  are known, the two functions 
υ υ= x( )1 1  and υ υ= x( )2 2  can be found by integration. Here is a summary of the method.

Variation of Parameters Procedure
To use the method of variation of parameters to find a particular solution to the 
nonhomogeneous equation

′′ + ′ + =ay by cy G x( ),

we can work directly with Equations (4) and (5). It is not necessary to rederive 
them. The steps are as follows.
1. Solve the associated homogeneous equation

′′ + ′ + =ay by cy 0

to find the functions y1 and y2.
2. Solve the equations

υ υ

υ υ

′ + ′ =

′ ′ + ′ ′ =

y y

y y G x
a

0,

( )
1 1 2 2

1 1 2 2

simultaneously for the derivative functions υ ′1  and υ ′.2

3. Integrate υ ′1  and υ ′2  to find the functions υ υ= x( )1 1  and υ υ= x( ).2 2

4. Write down the particular solution to the nonhomogeneous equation (1) as

υ υ= +y y y .p 1 1 2 2
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 17.2  Nonhomogeneous Linear Equations 17-13

EXAMPLE 6  Find the general solution to the equation

′′ + =y y xtan .

Solution The solution of the homogeneous equation

′′ + =y y 0

is given by

= +y c x c xcos sin .c 1 2

Since =y x x( ) cos1  and =y x x( ) sin ,2  the conditions to be satisfied in Equations (4) and 
(5) are

υ υ

υ υ

′ + ′ =

− ′ + ′ =

x x

x x x

cos sin 0,

sin cos tan .
1 2

1 2

Solving this system gives

υ ′ =

−

=
−

+
= −

x

x x

x x

x x

x x
x x

x
x

0 sin

tan cos

cos sin

sin cos

tan   sin
cos sin

sin
cos

.1 2 2

2

Likewise,

υ ′ =
−

−

=

x

x x

x x

x x

x

cos 0

sin tan

cos sin

sin cos

sin .2

After integrating υ ′1  and υ ′,2  we have

∫

∫

υ

( )

= −

= − −

= − + +

x x
x

dx

x x dx

x x x

( ) sin
cos

sec cos

ln sec tan sin ,

1

2

and

∫υ = = −x x dx x( ) sin cos .2

Note that we have omitted the constants of integration in determining υ1 and υ .2  They 
would merely be absorbed into the arbitrary constants in the complementary solution.

Substituting υ1 and υ2 into the expression for yp in Step 4 gives

[ ] ( )

( )

= − + + + −

= − +

y x x x x x x

x x x

ln sec tan sin cos cos sin

cos ln sec tan .

p

The general solution is

( )= + − +y c x c x x x xcos sin cos ln sec tan .1 2

EXAMPLE 7  Solve the nonhomogeneous equation

′′ + ′ − =y y y xe2 .x

Solution The auxiliary equation is

( )( )+ − = + − =r r r r2 2 1 0,2

a 1=
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17-14 Chapter 17 Second-Order Differential Equations 

giving the complementary solution

= +−y c e c e .x x
c 1

2
2

The conditions to be satisfied in Equations (4) and (5) are

υ υ

υ υ

′ + ′ =

− ′ + ′ =

−

−

e e

e e xe

  0,

2 .

x x

x x x

1
2

2

1
2

2

  
a 1=

Solving the above system for υ ′1  and υ ′2  gives

υ ′ =

−

= − = −
−

−

−

e

xe e

e e

e e

xe
e

xe

0

2

3
1
3

.

x

x x

x x

x x

x

x
x

1
2

2

2
3

Likewise,

υ ′ =
−

= =

−

−

−

−

−

e

e xe

e
xe
e

x

0

2

3 3 3
.

x

x x

x

x

x2

2

2

Integrating to obtain the parameter functions, we have

∫

∫

υ

( )
( )

= −

= − −

= −

x xe dx

xe e dx

x e

( ) 1
3

1
3 3 3

1
27

1 3

x

x x

x

1
3

3 3

3

and

∫υ = =x x dx x( )
3 6

.2

2

Therefore,

( )( )= −





+

= − +

−y x e e x e

e xe x e

1 3
27 6

1
27

1
9

1
6

.

x
x x

x x x

p

3
2

2

2

The general solution to the differential equation is

= + − +−y c e c e xe x e1
9

1
6

,x x x x
1

2
2

2

where the term ( )e1 27 x in yp has been absorbed into the term c e x
2  in the complementary 

solution. 

Solve the equations in Exercises 1–16 by the method of undetermined 
coefficients.

 1. ′′ − ′ − = −y y y3 10 3  2. ′′ − ′ − = −y y y x3 10 2 3

 3. ′′ − ′ =y y xsin  4. ′′ + ′ + =y y y x2 2

 5. ′′ + =y y xcos 3  6. ′′ + =y y e x2

 7. ′′ − ′ − =y y x7 2 20 cos  8. ′′ + = +y y x e2 3 x

 9. ′′ − = +y y e xx 2  10. ′′ + ′ + =y y y x2 6 sin 2

 11. ′′ − ′ − = −−y y y e x6 7 cosx

 12. ′′ + ′ + = + −− −y y y e e x3 2 x x2

EXERCISES 17.2
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 17.3  Applications 17-15

 13. + =d y
dx

dy
dx

x5 15
2

2
2  14. − = − +d y

dx
dy
dx

x8 3
2

2

 15. − = −d y
dx

dy
dx

e x3 12x
2

2
3  16. d y

dx
dy
dx

x x7 42 5 1
2

2
2+ = + +

Solve the equations in Exercises 17–28 by variation of parameters.

 17. ′′ + ′ =y y x

 18. π π′′ + = − < <y y x xtan ,
2 2

 19. ′′ + =y y xsin  20. ′′ + ′ + =y y y e2 x

 21. ′′ + ′ + = −y y y e2 x  22. ′′ − =y y x

 23. ′′ − =y y e x  24. ′′ − =y y xsin

 25. ′′ + ′ + =y y y4 5 10  26. ′′ − ′ =y y 2 x

 27. π π+ = − < <d y
dx

y x xsec ,
2 2

2

2

 28. − = >d y
dx

dy
dx

e x xcos ,   0x
2

2

In each of Exercises 29–32, the given differential equation has a particu-
lar solution yp of the form given. Determine the coefficients in y .p  Then 
solve the differential equation.

 29. ′′ − ′ = = +y y xe y Ax e Bxe5 ,x x x5
p

2 5 5

 30. ′′ − ′ = + = +y y x x y A x B xcos sin , cos sinp

 31. ′′ + = + = +y y x x y Ax x Bx x2 cos sin , cos sinp

 32. ′′ + ′ − = = +y y y xe y Ax e Bxe2 ,x x x
p

2

In Exercises 33–36, solve the given differential equations (a) by varia-
tion of parameters and (b) by the method of undetermined coefficients.

 33. − = + −d y
dx

dy
dx

e ex x
2

2
 34. − + =d y

dx
dy
dx

y e4 4 2 x
2

2
2

 35. − − = +d y
dx

dy
dx

y e4 5 4x
2

2
 36. − =d y

dx
dy
dx

e9 9 x
2

2
9

Solve the differential equations in Exercises 37–46. Some of the equa-
tions can be solved by the method of undetermined coefficients, but  
others cannot.

 37. π′′ + = < <y y x xcot , 0

 38. π′′ + = < <y y x xcsc , 0

 39. ′′ − ′ =y y e8 x8  40. ′′ + =y y x4 sin

 41. ′′ − ′ =y y x 3  42. ′′ + ′ + = +y y y x4 5 2

 43. ′′ + ′ = −y y x e2 x2  44. ′′ + = −y y x x9 9 cos

 45. π π′′ + = − < <y y x x xsec tan ,
2 2

 46. ′′ − ′ + = −y y y e e3 2 x x2

The method of undetermined coefficients can sometimes be used  
to solve first-order ordinary differential equations. Use the method to 
solve the equations in Exercises 47–50.

 47. ′ − =y y e3 x  48. ′ + =y y x4

 49. ′ − =y y e3 5 x3  50. ′ + =y y xsin

Solve the differential equations in Exercises 51 and 52 subject to the 
given initial conditions.

 51. π π+ = − < < = ′ =d y
dx

y x x y ysec ,
2 2

; (0) (0) 1
2

2
2

 52. + = = ′ =d y
dx

y e y y; (0) 0, (0) 2
5

x
2

2
2

In Exercises 53–58, verify that the given function is a particular solu-
tion to the specified nonhomogeneous equation. Find the general solu-
tion, and evaluate its arbitrary constants to find the unique solution 
satisfying the equation and the given initial conditions.

 53. ′′ + ′ = = − = ′ =y y x y x x y y,
2

, (0) 0, (0) 0p

2

 54. ′′ + = = + = ′ =y y x y x x y y, 2 sin , (0) 0, (0) 0p

 
55.

 
( )′′ + ′ + = −

= = ′ =

y y y e x x

y e x y y

1
2

4 cos sin ,

2 cos , (0) 0, (0) 1

x

x
p

 56. ′′ − ′ − = − = − = ′ =y y y x y x y y2 1 2 , 1, (0) 0, (0) 1p

 57. ′′ − ′ + = = = ′ =y y y e y x e y y2 2 , , (0) 1, (0) 0x x
p

2

 
58.

 
′′ − ′ + = >

= = ′ =

−y y y x e x

y xe x y e y

2 ,   0,

ln , (1) , (1) 0

x

x

1

p

In Exercises 59 and 60, two linearly independent solutions y1 and y2 
are given to the associated homogeneous equation of the variable-
coefficient nonhomogeneous equation. Use the method of variation  
of parameters to find a particular solution to the nonhomogeneous 
equation. Assume >x 0 in each exercise.

 59. ′′ + ′ − = = =−x y xy y x y x y x2 2 , ,  2 2
1

2
2

 60. ′′ + ′ − = = =−x y xy y x y x y x, ,  2
1

1
2

17.3 Applications

In this section we apply second-order differential equations to the study of vibrating 
springs and electric circuits.

Vibrations

A spring has its upper end fastened to a rigid support, as shown in Figure 17.2. An object 
of mass m is suspended from the spring and stretches it a length s when the spring comes 
to rest in an equilibrium position. According to Hooke’s Law (Section 6.5), the tension 
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17-16 Chapter 17 Second-Order Differential Equations 

force in the spring is ks, where k is the spring constant. The force due to gravity pulling 
down on the spring is mg, and equilibrium requires that

 =ks mg. (1)

Suppose that the object is pulled down an additional amount y0 beyond the equilibrium 
position and then released. We want to study the object’s motion, that is, the vertical posi-
tion of its center of mass at any future time.

Let y, with positive direction downward, denote the displacement position of the 
object away from the equilibrium position =y 0 at any time t after the motion has started. 
Then the forces acting on the object are (see Figure 17.3)

δ

( )

=

= +

=

F mg

F k s y

F
dy
dt

, the propulsion force due to gravity,

, the restoring force of the spring’s tension,

, a frictional force assumed proportional to velocity.

p

s

r

The frictional force tends to slow the motion of the object. The resultant of these forces is 
= − −F F F F ,p s r  and by Newton’s second law =F ma, we must then have

δ= − − −m
d y
dt

mg ks ky
dy
dt

.
2

2

By Equation (1), − =mg ks 0, so this last equation becomes

 δ+ + =m
d y
dt

dy
dt

ky 0,
2

2
 (2)

subject to the initial conditions =y y(0) 0 and ′ =y (0) 0. (Here we use the prime notation 
to denote differentiation with respect to time t.)

You might expect that the motion predicted by Equation (2) will be oscillatory about 
the equilibrium position =y 0 and eventually damp to zero because of the frictional force. 
This is indeed the case, and we will show how the constants m, δ , and k determine the 
nature of the damping. You will also see that if there is no friction (so δ = 0), then the 
object will simply oscillate indefinitely.

Simple Harmonic Motion

Suppose first that there is no frictional force. Then δ = 0 and there is no damping. If 
we substitute ω = k m  to simplify our calculations, then the second-order equation (2) 
becomes

ω′′ + = = ′ =y y y y y0, with (0) and (0) 0.2
0

The auxiliary equation is

ω+ =r 0,2 2

which has the imaginary roots ω= ±r i. The general solution to the differential equation 
in (2) is

 ω ω= +y c t c tcos sin .1 2  (3)

To fit the initial conditions, we compute

ω ω ω ω′ = − +y c t c tsin cos1 2

and then substitute the conditions. This yields =c y1 0 and =c 0.2  The particular solution

 ω=y y tcos0  (4)

FIGURE 17.3 The propulsion force 
(weight) Fp pulls the mass downward, but 
the spring restoring force Fs and frictional 
force Fr  pull the mass upward. The motion 
starts at =y y0 with the mass vibrating up 
and down.

y

y 5 0

y

y0

s

Fs Fr

Fp

A position
after release

Start
position

FIGURE 17.2 Mass m stretches a spring 
by length s to the equilibrium position at 

=y 0.

y

y 5 0

s

Mass m
at equilibrium
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FIGURE 17.4 φ=c C sin1  and 
φ=c C cos .2

f

c2

c1

C = 1c1
2 + c2

2
describes the motion of the object. Equation (4) represents simple harmonic motion of 
amplitude y0 and period π ω=T 2 .

The general solution given by Equation (3) can be combined into a single term by 
using the trigonometric identity

ω φ ω φ ω φ( )+ = +t t tsin cos sin sin cos .

To apply the identity, we take (see Figure 17.4)

φ φ= =c C c Csin and cos ,1 2

where

φ= + = −C c c
c
c

and tan .1
2

2
2 1 1

2

Then the general solution in Equation (3) can be written in the alternative form

 ω φ( )= +y C tsin . (5)

Here C and φ may be taken as two new arbitrary constants, replacing the two constants c1 
and c2. Equation (5) represents simple harmonic motion of amplitude C and period 

π ω=T 2 . The angle ω φ+t  is called the phase angle, and φ may be interpreted as its 
initial value. A graph of the simple harmonic motion represented by Equation (5) is given 
in Figure 17.5.

FIGURE 17.5 Simple harmonic motion of amplitude 
C and period T with initial phase angle φ (Equation 5).

y

t

–C

C

0

C sin f

y = C sin(vt + f)

T = 2p
v

Period

Damped Motion

Assume now that there is friction in the spring system, so δ ≠ 0. If we substitute 
ω = k m  and δ=b m2 , then the differential equation (2) is

 ω′′ + ′ + =y by y2 0.2  (6)

The auxiliary equation is

ω+ + =r br2 0,2 2

with roots ω= − ± −r b b .2 2  Three cases now present themselves, depending on the 
relative sizes of b and ω.

Case 1: ω=b . The double root of the auxiliary equation is real and equals ω=r . The 
general solution to Equation (6) is

( )= + ω−y c c t e .t
1 2

This situation of motion is called critical damping and is not oscillatory. Figure 17.6a 
shows an example of this kind of damped motion.
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17-18 Chapter 17 Second-Order Differential Equations 

Case 2: ω>b . The roots of the auxiliary equation are real and unequal, and they are 
given by ω= − + −r b b1

2 2  and ω= − − −r b b .2
2 2  The general solution to 

Equation (6) is given by

= +ω ω( ) ( )− + − − − −y c e c e .b b t b b t
1 2

2 2 2 2

Here again the motion is not oscillatory and both r1 and r2 are negative. Thus y approaches 
zero as time goes on. This motion is referred to as overdamping (see Figure 17.6b).

Case 3: ω<b . The roots to the auxiliary equation are complex and are given by 
ω= − ± −r b i b .2 2  The general solution to Equation (6) is given by

ω ω( )= − + −−y e c b t c b tcos sin .bt
1

2 2
2

2 2

This situation, called underdamping, represents damped oscillatory motion. It is analo-
gous to simple harmonic motion of period π ω= −T b2 2 2  except that the amplitude 
is not constant but damped by the factor −e .bt  Therefore, the motion tends to zero as t 
increases, so the vibrations tend to die out as time goes on. Notice that the period 

π ω= −T b2 2 2  is larger than the period π ω=T 20  in the friction-free system. 
Moreover, the larger the value of δ ( )=b m2  in the exponential damping factor, the more 
quickly the vibrations tend to become unnoticeable. A curve illustrating underdamped 
motion is shown in Figure 17.6c.

FIGURE 17.6 Three examples of damped vibratory motion for a spring system 
with friction, so δ ≠ 0.

y

t

y

t

y

t

(a) Critical damping (b) Overdamping (c) Underdamping

y = (1 + t)e–t y = 2e–2t – e–t y = e–t sin (5t + p/4)
0 0 0

An external force F t( ) can also be added to the spring system modeled by Equation (2). 
The forcing function may represent an external disturbance on the system. For instance, if 
the equation models an automobile suspension system, the forcing function might repre-
sent periodic bumps or potholes in the road affecting the performance of the suspension 
system. Or it might represent the effects of winds when modeling the vertical motion of a 
suspension bridge. Inclusion of a forcing function results in the second-order nonhomoge-
neous equation

 δ+ + =m
d y
dt

dy
dt

ky F t( ).
2

2
 (7)

Such equations are studied in the theory of Differential Equations.

Electric Circuits

The basic quantity in electricity is the charge q (analogous to the idea of mass). In an elec-
tric field we use the flow of charge, or current =I dq dt, as we might use velocity in a 
gravitational field. There are many similarities between motion in a gravitational field and 
the flow of electrons (the carriers of charge) in an electric field.

Consider the electric circuit shown in Figure 17.7. It consists of four components: 
voltage source, resistor, inductor, and capacitor. Think of electrical flow as being like a 
fluid flow, where the voltage source is the pump and the resistor, inductor, and capacitor 
tend to block the flow. A battery or generator is an example of a source, producing a 
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 17.3  Applications 17-19

FIGURE 17.7 An electric circuit.

R, Resistor

C, Capacitor

L, InductorE
Voltage

source

voltage that causes the current to flow through the circuit when the switch is closed. An 
electric light bulb or appliance would provide resistance. The inductance is due to a mag-
netic field that opposes any change in the current as it flows through a coil. The capaci-
tance is normally created by two metal plates that alternate charges and thus reverse the 
current flow. The following symbols specify the quantities relevant to the circuit.

q: charge at a cross section of a conductor, measured in coulombs (abbreviated c)

I  :  current or rate of change of charge dq dt (flow of electrons) at a cross section of  
a conductor, measured in amperes (abbreviated A)

E: electric (potential) source, measured in volts (abbreviated V)

V: difference in potential between two points along the conductor, measured in 
volts (V)

Ohm observed that the current I flowing through a resistor, caused by a potential 
difference across it, is (approximately) proportional to the potential difference (voltage 
drop). He named his constant of proportionality R1  and called R the resistance. So 
Ohm’s law is

=I
R

V1 .

Similarly, it is known from physics that the voltage drops across an inductor and a 
capacitor are, respectively,

L dI
dt

q
C

and ,

where L is the inductance and C is the capacitance (with q the charge on the capacitor).
The German physicist Gustav R. Kirchhoff (1824–1887) formulated the law that the 

sum of the voltage drops in a closed circuit is equal to the supplied voltage E t( ). 
Symbolically, this says that

+ + =RI L dI
dt

q
C

E t( ).

Since =I dq dt, Kirchhoff’s law becomes

 + + =L
d q
dt

R
dq
dt C

q E t1 ( ).
2

2
 (8)

The second-order differential equation (8), which models an electric circuit, has exactly 
the same form as Equation (7) modeling vibratory motion. Both models can be solved 
using the methods developed in Section 17.2.

Summary

The following chart summarizes our analogies between the physics of motion of an object 
in a spring system and the flow of charged particles in an electric circuit.
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17-20 Chapter 17 Second-Order Differential Equations 

Linear Second-Order Constant-Coefficient Models
Mechanical System Electrical System

δ′′ + ′ + =my y ky F t( ) ′′ + ′ + =Lq Rq
C

q E t1 ( )

y displacement q charge
′y velocity ′q current
′′y acceleration ′′q change in current

m mass L inductance
δ damping constant R resistance
k spring constant C1 where C is the capacitance
F t( ) forcing function E t( ) voltage source

 1. A 70-N weight is attached to the lower end of a coil spring sus-
pended from the ceiling and having a spring constant of 15 N/m. 
The resistance in the spring–mass system is numerically equal to 
15 times the instantaneous velocity. At =t 0, the weight is set in 
motion from a position 0.6 m below its equilibrium position by 
giving it a downward velocity of 0.6 m/s. Write an initial value 
problem that models the given situation.

 2. A 36-N weight stretches a spring 1.2 m. The spring–mass system 
resides in a medium offering a resistance to the motion that is 
numerically equal to 20 times the instantaneous velocity. If the 
weight is released at a position 0.6 m above its equilibrium posi-
tion with a downward velocity of 0.9 m/s, write an initial value 
problem modeling the given situation.

 3. A 90-N weight is hung on a 0.4-m spring and stretches it 0.15 m. 
The weight is pulled down 0.1 m and 30 N are added to the 
weight. If the weight is now released with a downward velocity 
of υ0  m/s, write an initial value problem modeling the vertical 
displacement.

 4. A 49-N weight is suspended by a spring that is stretched 0.05 m by 
the weight. Assume a resistance whose magnitude is g300  N 
times the instantaneous velocity υ in meters per second. If the 
weight is pulled down 0.08 m below its equilibrium position and 
released, formulate an initial value problem modeling the behav-
ior of the spring–mass system.

 5. An (open) electric circuit consists of an inductor, a resistor, and a 
capacitor. There is an initial charge of 2 coulombs on the capacitor.  
At the instant the circuit is closed, a current of 3 amperes is  
present and a voltage of =E t( ) 20 cos t is applied. In this circuit 
the voltage drop across the resistor is 4 times the instantaneous 
change in the charge, the voltage drop across the capacitor is  
10 times the charge, and the voltage drop across the inductor is 
2 times the instantaneous change in the current. Write an initial 
value problem to model the circuit.

 6. An inductor of 2 henrys is connected in series with a resistor 
of 12 ohms, a capacitor of 1 16 farad, and a 300-volt battery. 

Initially, the charge on the capacitor is zero and the current is zero. 
Formulate an initial value problem modeling this electric circuit.

 7. A 49-N weight is attached to the lower end of a coil spring sus-
pended from the ceiling and having a spring constant of 10 N/m. 
The resistance in the spring–mass system is numerically equal to 
10 times the instantaneous velocity. At =t 0, the weight is set in 
motion from a position 0.6 m below its equilibrium position by 
giving it a downward velocity of 0.6 m/s. At the end of π s, deter-
mine whether the mass is above or below the equilibrium position 
and by what distance.

 8. A 29.4-N weight stretches a spring 1.225 m. The spring–mass sys-
tem resides in a medium offering a resistance to the motion equal 
to 18 times the instantaneous velocity. If the weight is released at 
a position 0.6 m above its equilibrium position with a downward 
velocity of 0.9 m/s, find its position relative to the equilibrium 
position 2 s later.

 9. A 98-N weight is hung on a 0.6 m spring stretching it 0.2 m. The 
weight is pulled down 0.15 m and 49 N are added to the weight. 
If the weight is now released with a downward velocity of υ0  m/s, 
find the position of mass relative to the equilibrium in terms of υ0  
and valid for any time  ≥t 0.

 10. A mass of 15 kg is attached to a spring whose constant is 
375/4  N/m. Initially the mass is released 1 m above the equi-
librium position with a downward velocity of 3 m/s, and the sub-
sequent motion takes place in a medium that offers a damping 
force numerically equal to 45 times the instantaneous velocity. An 
external force f t( ) is driving the system, but assume that initially 

≡f t( ) 0. Formulate and solve an initial value problem that mod-
els the given system. Interpret your results.

 11. A 50-N weight is suspended by a spring that is stretched 0.05 m 
by the weight. Assume a resistance whose magnitude is 100 N 
times the instantaneous velocity in meters per second. If the 
weight is pulled down 0.1 m below its equilibrium position and 
released, find the time required to reach the equilibrium position 
for the first time.

EXERCISES 17.3 
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 17.3  Applications 17-21

 12. A weight stretches a spring 0.2 m. It is set in motion at a point 
0.05 m below its equilibrium position with a downward velocity 
of 0.05 m/s.

 a. When does the weight return to its equilibrium position?

 b. When does it reach its highest point?

 c. Show that the maximum velocity is g0.05 10  m s.

 13. A weight of 50 N stretches a spring 0.25 m. The weight is drawn 
down 0.05 m below its equilibrium position and given an initial 
velocity of 0.1 m/s. An identical spring has a different weight 
attached to it. This second weight is drawn down from its equilib-
rium position a distance equal to the amplitude of the first motion 
and then given an initial velocity of 0.6 m/s. If the amplitude of 
the second motion is twice that of the first, what weight is attached 
to the second spring?

 14. A weight stretches one spring 0.05 m and a second weight 
stretches another spring 0.15 m. If both weights are simultane-
ously pulled down 0.02 m below their respective equilibrium posi-
tions and then released, find the first time after =t 0 when their 
velocities are equal.

 15. A weight of 80 N stretches a spring 1 m. The weight is pulled 
down 1.5 m below the equilibrium position and then released. 
What initial velocity υ0  given to the weight would have the effect 
of doubling the amplitude of the vibration?

 16. A mass weighing 40 N stretches a spring 0.1 m. The spring–
mass system resides in a medium with a damping constant of 
32 N-s/m. If the mass is released from its equilibrium position 
with a velocity of 0.1 m/s in the downward direction, find the 
time required for the mass to return to its equilibrium position 
for the first time.

 17. A weight suspended from a spring executes damped vibrations 
with a period of 2 s. If the damping factor decreases by 90% in 
10 s, find the acceleration of the weight when it is 0.1 m below 
its equilibrium position and is moving upward with a speed  
of 0.8 m/s.

 18. A 50-N weight stretches a spring 0.6 m. If the weight is pulled 
down 0.15 m below its equilibrium position and released, find the 
highest point reached by the weight. Assume the spring–mass sys-
tem resides in a medium offering a resistance of 30 N times the 
instantaneous velocity in meters per second.

 19. An LRC circuit is set up with an inductance of 1 5 henry, a resis-
tance of 1 ohm, and a capacitance of 5 6 farad. Assuming the ini-
tial charge is 2 coulombs and the initial current is 4 amperes, find 
the solution function describing the charge on the capacitor at 
any time. What is the charge on the capacitor after a long period 
of time?

 20. An (open) electric circuit consists of an inductor, a resistor, and a 
capacitor. There is an initial charge of 2 coulombs on the capacitor.  
At the instant the circuit is closed, a current of 3 amperes is pres-
ent but no external voltage is being applied. In this circuit the volt-
age drops at three points are numerically related as follows: across 

the capacitor, 10 times the charge; across the resistor, 4 times 
the instantaneous change in the charge; and across the inductor, 
2 times the instantaneous change in the current. Find the charge 
on the capacitor as a function of time.

 21. A 78.4-N weight stretches a spring 1.225 m. This spring–mass 
system is in a medium with a damping constant of 72 N-s/m, 
and an external force given by = + −f t e( ) 25.6 6.4 t2  (in new-
tons) is being applied. What is the solution function describing 
the position of the mass at any time if the mass is released from 
0.6 m below the equilibrium position with an initial velocity of 
1.2 m/s downward?

 22. A 10-kg mass is attached to a spring having a spring constant of 
140 N m. The mass is started in motion from the equilibrium 
position with an initial velocity of 1 m s in the upward direction 
and with an applied external force given by =f t t( ) 5 sin  (in 
newtons). The mass is in a viscous medium with a coefficient of 
resistance equal to 90 N-s m. Formulate an initial value problem 
that models the given system; solve the model and interpret the 
results.

 23. A 2-kg mass is attached to the lower end of a coil spring suspended 
from the ceiling. The mass comes to rest in its equilibrium posi-
tion thereby stretching the spring 1.96 m. The mass is in a viscous 
medium that offers a resistance in newtons numerically equal to  
4 times the instantaneous velocity measured in meters per sec-
ond. The mass is then pulled down 2 m below its equilibrium 
position and released with a downward velocity of 3 m s. At 
this same instant an external force given by =f t( ) 20 cos t (in 
newtons) is applied to the system. At the end of π s determine 
if the mass is above or below its equilibrium position and by 
how much.

 24. A 39.2-N weight stretches a spring 1.225 m. The spring–mass 
system resides in a medium offering a resistance to the motion 
equal to 24 times the instantaneous velocity, and an external force 
given by = + −f t e( ) 28.8 19.2 t  (in newtons) is being applied. 
If the weight is released at a position 0.6 m above its equilibrium 
position with downward velocity of 0.9 m/s, find its position rela-
tive to the equilibrium after 2 s have elapsed.

 25. Suppose =L 10 henrys, =R 10 ohms, =C 1 500 farads, 
=E 100 volts, =q (0) 10 coulombs, and ′ = =q i(0) (0) 0. 

Formulate and solve an initial value problem that models the 
given LRC circuit. Interpret your results.

 26. A series circuit consisting of an inductor, a resistor, and a capaci-
tor is open. There is an initial charge of 2 coulombs on the 
capacitor, and 3 amperes of current is present in the circuit at the 
instant the circuit is closed. A voltage given by =E t( ) 20 cos t 
is applied. In this circuit the voltage drops are numerically equal 
to the following: across the resistor, to 4 times the instantaneous 
change in the charge; across the capacitor, to 10 times the charge; 
and across the inductor, to 2 times the instantaneous change in 
the current. Find the charge on the capacitor as a function of 
time. Determine the charge on the capacitor and the current at 
time =t 10.
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17-22 Chapter 17 Second-Order Differential Equations 

17.4 Euler Equations

In Section 17.1 we introduced the second-order linear homogeneous differential equation

′′ + ′ + =P x y x Q x y x R x y x( ) ( ) ( ) ( ) ( ) ( ) 0

and showed how to solve this equation when the coefficients P, Q, and R are constants. If 
the coefficients are not constant, we cannot generally solve this differential equation in 
terms of elementary functions we have studied in calculus. In this section you will learn 
how to solve the equation when the coefficients have the special forms

= = =P x ax Q x bx R x c( ) , ( ) , and ( ) ,2

where a, b, and c are constants. These special types of equations are called Euler 
equations in honor of Leonhard Euler, who studied them and showed how to solve them. 
Such equations arise in the study of mechanical vibrations.

The General Solution of Euler Equations

Consider the Euler equation

 ′′ + ′ + = >ax y bxy cy x0, 0.2  (1)

To solve Equation (1), we first make the change of variables

= =z x y x Y zln and ( ) ( ).

We next use the chain rule to find the derivatives ′y x( ) and ′′y x( ):

′ = = = ′y x d
dx

Y z d
dz

Y z dz
dx

Y z
x

( ) ( ) ( ) ( ) 1

and

′′ = ′ = ′ = − ′ + ′′ = − ′ + ′′y x d
dx

y x d
dx

Y z
x x

Y z
x

Y z dz
dx x

Y z
x

Y z( ) ( ) ( ) 1 1 ( ) 1 ( ) 1 ( ) 1 ( ).
2 2 2

Substituting these two derivatives into the left-hand side of Equation (1), we find

( ) ( )
( )

′′ + ′ + = − ′ + ′′ + ′ +

= ′′ + − ′ +

ax y bxy cy ax
x

Y z
x

Y z bx
x

Y z cY z

aY z b a Y z cY z

1 ( ) 1 ( ) 1 ( ) ( )

( ) ( ) ( ).

2 2
2 2

Therefore, the substitutions give us the second-order linear differential equation with con-
stant coefficients

 ( )′′ + − ′ + =aY z b a Y z cY z( ) ( ) ( ) 0. (2)

We can solve Equation (2) using the method of Section 17.1. That is, we find the roots of 
the associated auxiliary equation

 ( )+ − + =ar b a r c 02  (3)

to find the general solution for Y z( ). After finding Y z( ), we can determine y x( ) from the 
substitution =z xln .

EXAMPLE 1  Find the general solution of the equation ′′ + ′ − =x y xy y2 2 0.2

Solution This is an Euler equation with = =a b1, 2, and = −c 2. The auxiliary 
equation (3) for Y z( ) is

( ) ( )( )+ − − = − + =r r r r2 1 2 1 2 0,2
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 17.4  Euler Equations 17-23

with roots = −r 2 and =r 1. The solution for Y z( ) is given by

= +−Y z c e c e( ) .z z
1

2
2

Substituting =z xln  gives the general solution for y x( ):

= + = +− −y x c e c e c x c x( ) .x x
1

2 ln
2

ln
1

2
2

EXAMPLE 2  Solve the Euler equation ′′ − ′ + =x y xy y5 9 0.2

Solution Since = = −a b1, 5, and =c 9, the auxiliary equation (3) for Y z( ) is

( ) ( )+ − − + = − =r r r5 1 9 3 0.2 2

The auxiliary equation has the double root =r 3, giving

= +Y z c e c ze( ) .z z
1

3
2

3

Substituting =z xln  into this expression gives the general solution

= + = +y x c e c x e c x c x x( ) ln ln .x x
1

3 ln
2

3 ln
1

3
2

3

EXAMPLE 3  Find the particular solution to ′′ − ′ + =x y xy y3 68 02  that satisfies 
the initial conditions =y(1) 0 and ′ =y (1) 1.

Solution Here = = −a b1, 3, and =c 68 substituted into the auxiliary equation (3) 
give

− + =r r4 68 0.2

The roots are = +r i2 8  and = −r i2 8 , giving the solution

( )= +Y z e c z c z( ) cos 8 sin 8 .z2
1 2

Substituting =z xln  into this expression gives

( ) ( )( )= +y x e c x c x( ) cos 8 ln sin 8 ln .x2 ln
1 2

From the initial condition =y(1) 0, we see that =c 01  and

( )=y x c x x( ) sin 8 ln .2
2

To fit the second initial condition, we need the derivative

( ) ( )( )′ = +y x c x x x x( ) 8 cos 8 ln 2 sin 8 ln .2

Since ′ =y (1) 1, we immediately obtain =c 1 8.2  Therefore, the particular solution satis-
fying both initial conditions is

( )=y x x x( ) 1
8

sin 8 ln .2

Since x1 sin 8 ln 1,( )− ≤ ≤  the solution satisfies

− ≤ ≤x y x x
8

( )
8

.
2 2

A graph of the solution is shown in Figure 17.8.
FIGURE 17.8 Graph of the solution 
to Example 3.
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In Exercises 1–24, find the general solution to the given Euler equation. 
Assume >x 0 throughout.

 1. ′′ + ′ − =x y xy y2 2 02  2. ′′ + ′ − =x y xy y4 02

 3. ′′ − =x y y6 02  4. ′′ + ′ − =x y xy y 02

 5. ′′ − ′ + =x y xy y5 8 02  6. ′′ + ′ + =x y xy y2 7 2 02

 7. ′′ + ′ =x y xy3 4 02  8. ′′ + ′ + =x y xy y6 4 02

 9. ′′ − ′ + =x y xy y 02  10. ′′ − ′ + =x y xy y2 02

 11. ′′ − ′ + =x y xy y5 02  12. ′′ + ′ + =x y xy y7 13 02

 13. ′′ + ′ + =x y xy y3 10 02  14. ′′ − ′ + =x y xy y5 10 02

 15. ′′ + ′ + =x y xy y4 8 5 02  16. ′′ − ′ + =x y xy y4 4 5 02

 17. ′′ + ′ + =x y xy y3 02  18. ′′ − ′ + =x y xy y3 9 02

 19. ′′ + ′ =x y xy 02  20. ′′ + =x y y4 02

 21. ′′ + ′ + =x y xy y9 15 02

 22. ′′ − ′ + =x y xy y16 8 9 02

 23. ′′ + ′ + =x y xy y16 56 25 02

 24. ′′ − ′ + =x y xy y4 16 25 02

In Exercises 25–30, solve the given initial value problem.

 25. ′′ + ′ − = = ′ = −x y xy y y y3 3 0, (1) 1, (1) 12

 26. ′′ + ′ − = = ′ =x y xy y y y6 7 2 0, (1) 0, (1) 12

 27. ′′ − ′ + = = ′ =x y xy y y y0, (1) 1, (1) 12

 28. ′′ + ′ + = = ′ =x y xy y y y7 9 0, (1) 1, (1) 02

 29. ′′ − ′ + = = − ′ =x y xy y y y2 0, (1) 1, (1) 12

 30. ′′ + ′ + = = ′ =x y xy y y y3 5 0, (1) 1, (1) 02

EXERCISES 17.4 

17.5 Power-Series Solutions

In this section we extend our study of second-order linear homogeneous equations with 
variable coefficients. With the Euler equations in Section 17.4, the power of the variable x 
in the nonconstant coefficient had to match the order of the derivative with which it was 
paired: x 2 with ′′y x,   1 with ′y , and ( )=x 10  with y. Here we drop that requirement so we 
can solve more general equations.

Method of Solution

The power-series method for solving a second-order homogeneous differential equation 
consists of finding the coefficients of a power series

 �∑= = + + +
=

∞

y x c x c c x c x( )
n

n
n

0
0 1 2

2  (1)

which solves the equation. To apply the method we substitute the series and its derivatives 
into the differential equation to determine the coefficients c c c,   ,   , .0 1 2 …  The technique for 
finding the coefficients is similar to that used in the method of undetermined coefficients 
presented in Section 17.2.

In our first example we demonstrate the method in the setting of a simple equation 
whose general solution we already know. This is to help you become more comfortable 
with solutions expressed in series form.

EXAMPLE 1  Solve the equation ′′ + =y y 0 by the power-series method.

Solution We assume the series solution takes the form of

∑=
=

∞

y c xn
n

n 0

and calculate the derivatives

∑ ∑ ( )′ = ′′ = −
=

∞
−

=

∞
−y nc x y n n c xand 1 .

n
n

n

n
n

n

1

1

2

2
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 17.5  Power-Series Solutions 17-25

Substitution of these forms into the second-order equation gives us

∑ ∑( )− + =
=

∞
−

=

∞

n n c x c x1 0.
n

n
n

n
n

n

2

2

0

Next, we equate the coefficients of each power of x to zero as summarized in the following 
table.

Power of x Coefficient equation

x 0 ( ) + =c c2 1 02 0 or = −c c1
22 0

x1 ( ) + =c c3 2 03 1 or = −
⋅

c c1
3 23 1

x 2 ( ) + =c c4 3 04 2 or = −
⋅

c c1
4 34 2

x 3 ( ) + =c c5 4 05 3 or = −
⋅

c c1
5 45 3

x 4 ( ) + =c c6 5 06 4 or = −
⋅

c c1
6 56 4

� � �

−x n 2 ( )− + =−n n c c1 0n n 2 or
( )

= −
− −c

n n
c1

1n n 2

From the table we notice that the coefficients with even indices n k k2 ,   1, 2, 3, …( )= =  
are related to each other and the coefficients with odd indices ( )= +n k2 1  are also inter-
related. We treat each group in turn.

Even indices: Here =n k2 , so the power is −x .k2 2  From the last line of the table, we have

( )− + =−k k c c2 2 1 0k k2 2 2

or

( )
= −

− −c
k k

c1
2 2 1

.k k2 2 2

From this recursive relation we find

�
( ) ( )( )

( )

( )

( )

= −
−







 −

− −






 −






 −





= −

c
k k k k

c

k
c

1
2 2 1

1
2 2 2 3

1
4 3

1
2

1
2 !

.

k

k

2 0

0

Odd indices: Here = +n k2 1, so the power is −x .k2 1  Substituting this into the last 
line of the table yields

( )+ + =+ −k k c c2 1 (2 ) 0k k2 1 2 1

or

( )
= −

++ −c
k k

c1
2 1 (2 )

.k k2 1 2 1

Thus,

�
( ) ( )( )

( )

( ) ( )

( )

= −
+









−
− −







 −






 −







= −
+

+c
k k k k

c

k
c

1
2 1 (2 )

1
2 1 2 2

1
5 4

1
3 2

1
2 1 !

.

k

k

2 1 1

1
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17-26 Chapter 17 Second-Order Differential Equations 

Writing the power series by grouping its even and odd powers together and substitut-
ing for the coefficients yields

∑

∑ ∑

∑ ∑ ( )

( ) ( )

=

= +

= − + −
+

=

∞

=

∞

=

∞

+
+

=

∞

=

∞
+

y c x

c x c x

c
k

x c
k

x1
(2 )!

1
2 1 !

.

n
n

n

k
k

k

k
k

k

k

k
k

k

k
k

0

0
2

2

0
2 1

2 1

0
0

2
1

0

2 1

From our study of Taylor series, we see that the first series on the right-hand side of the last 
equation represents the cosine function, and the second series represents the sine. Thus, the 
general solution to ′′ + =y y 0 is

= +y c x c xcos sin .0 1

EXAMPLE 2  Find the general solution to ′′ + ′ + =y xy y 0.

Solution We assume the series solution form

∑=
=

∞

y c x
n

n
n

0

and calculate the derivatives

∑ ∑′ = ′′ = −
=

∞
−

=

∞
−y nc x y n n c xand ( 1) .

n
n

n

n
n

n

1

1

2

2

Substitution of these forms into the second-order equation yields

∑ ∑ ∑( )− + + =
=

∞
−

=

∞

=

∞

n n c x nc x c x1 0.
n

n
n

n
n

n

n
n

n

2

2

1 0

We equate the coefficients of each power of x to zero as summarized in the following table.

Power of x Coefficient equation

x 0 ( ) + =c c2 1 02 0 or = −c c1
22 0

x1 ( ) + + =c c c3 2 03 1 1 or = −c c1
33 1

x 2 ( ) + + =c c c4 3 2 04 2 2 or = −c c1
44 2

x 3 ( ) + + =c c c5 4 3 05 3 3 or = −c c1
55 3

x 4 ( ) + + =c c c6 5 4 06 4 4 or = −c c1
66 4

� � �

x n ( )( ) ( )+ + + + =+n n c n c2 1 1 0n n2 or = −
++c

n
c1

2n n2

From the table notice that the coefficients with even indices are interrelated and the coef-
ficients with odd indices are also interrelated.

Even indices: Here = −n k2 2, so the power is −x .k2 2  From the last line in the table, 
we have

= − −c
k

c1
2

.k k2 2 2
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 17.5  Power-Series Solutions 17-27

From this recurrence relation we obtain

c
k k

c

k
c

1
2

1
2 2

1
6

1
4

1
2

1
2 4 6 (2 )

.

k

k

2 0

0

�

�

( )( ) ( )( )( )

( )

( )

( )( )

= − −
−

− − −

= −

Odd indices: Here = −n k2 1, so the power is −x .k2 1  From the last line in the table, 
we have

= −
++ −c

k
c1

2 1
.k k2 1 2 1

From this recurrence relation we obtain

c
k k

c

k
c

1
2 1

1
2 1

1
5

1
3

1
3 5 2 1

.

k

k

2 1 1

1

�

�

( )( ) ( )( )

( )( )

( )

( )

= −
+

−
−

− −

= −
+

+

Writing the power series by grouping its even and odd powers and substituting for the 
coefficients yields

y c x c x

c
k

x c
k

x1
2 4 (2 )

1
3 5 2 1

.

k
k

k

k
k

k

k

k
k

k

k
k

0
2

2

0
2 1

2 1

0
0

2
1

0

2 1

� �

∑ ∑

∑ ∑ ( )( )

( )

( )( )

( )

( )

= +

= − + −
+

=

∞

=

∞

+
+

=

∞

=

∞
+

EXAMPLE 3  Find the general solution to

( )− ′′ − ′ − = <x y xy y x1 6 4 0, 1.2

Solution Notice that the leading coefficient is zero when = ±x 1. Thus, we assume the 
solution interval − < <I x: 1 1. Substitution of the series form

∑=
=

∞

y c x
n

n
n

0

and its derivatives gives us

∑ ∑ ∑

∑ ∑ ∑ ∑

( ) ( )

( ) ( )

− − − − =

− − − − − =

=

∞
−

=

∞

=

∞

=

∞
−

=

∞

=

∞

=

∞

x n n c x nc x c x

n n c x n n c x nc x c x

1 1 6 4 0,

1 1 6 4 0.

n
n

n

n
n

n

n
n

n

n
n

n

n
n

n

n
n

n

n
n

n

2

2

2

1 0

2

2

2 1 0
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17-28 Chapter 17 Second-Order Differential Equations 

Next, we equate the coefficients of each power of x to zero as summarized in the following 
table.

Power of x Coefficient equation

x 0 ( ) − =c c2 1 4 02 0 or =c c2
4
2 0

x1 ( ) ( )− − =c c c3 2 6 1 4 03 1 1 or =c c3
5
3 1

x 2 ( ) ( ) ( )− − − =c c c c4 3 2 1 6 2 4 04 2 2 2 or =c c4
6
4 2

x 3 ( ) ( ) ( )− − − =c c c c5 4 3 2 6 3 4 05 3 3 3 or =c c5
7
5 3

� � �

x n n n c n n n c2 1 1 6 4 0n n2( )( ) ( )[ ]+ + − − + + =+

n n c n n c2 1 4 1 0n n2( )( ) ( )( )+ + − + + =+ or = +
++c n

n
c4

2n n2

Again we notice that the coefficients with even indices are interrelated and those with odd 
indices are interrelated.

Even indices: Here = −n k2 2, so the power is x .k2  From the right-hand column and 
the last line of the table, we get

c k
k

c

k
k

k
k

k
k

c

k c

2 2
2

2 2
2

2
2 2

2 2
2 4

6
4

4
2

1 .

k k2 2 2

0

0

�( )( )( ) ( )
( )

= +

= +
−

−
−

= +

−

Odd indices: Here = −n k2 1, so the power is +x .k2 1  The right-hand column and the 
last line of the table give us

c k
k

c

k
k

k
k

k
k

c

k c

2 3
2 1
2 3
2 1

2 1
2 1

2 1
2 3

7
5

5
3

2 3
3

.

k k2 1 2 1

1

1

�( )( )( ) ( )

= +
+

= +
+

+
−

−
−

= +

+ −

The general solution is

∑

∑ ∑

∑ ∑( )

=

= +

= + + +

=

∞

=

∞

=

∞

+
+

=

∞

=

∞
+

y c x

c x c x

c k x c k x1 2 3
3

.

n
n

n

k
k

k

k
k

k

k

k

k

k

0

0
2

2

0
2 1

2 1

0
0

2
1

0

2 1

EXAMPLE 4  Find the general solution to ′′ − ′ + =y xy y2 0.

Solution Assuming that

∑=
=

∞

y c x ,
n

n
n

0
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 17.5  Power-Series Solutions 17-29

In Exercises 1–18, use power series to find the general solution of the 
differential equation.

 1. ′′ + ′ =y y2 0

 2. ′′ + ′ + =y y y2 0

 3. ′′ + =y y4 0

 4. ′′ − ′ + =y y y3 2 0

 5. ′′ − ′ + =x y xy y2 2 02

 6. ′′ − ′ + =y xy y 0

 7. ( )+ ′′ − =x y y1 0

 8. ( )− ′′ − ′ + =x y xy y1 4 6 02

 9. ( )− ′′ + ′ − =x y xy y1 2 2 02

 10. ′′ + ′ − =y y x y 02

 11. ( )− ′′ − =x y y1 6 02

 12. ( )′′ − + ′ + =xy x y y2 2 0

 13. ( )− ′′ + ′ + =x y xy y1 4 2 02

 14. ′′ − ′ + =y xy y2 4 0

 15. ′′ − ′ + =y xy y2 3 0

 16. ( )− ′′ − ′ + =x y xy y1 4 02

 17. ′′ − ′ + =y xy y3 0

 18. ′′ − ′ + =x y xy y4 6 02

EXERCISES 17.5 

substitution into the differential equation gives us

∑ ∑ ∑( )− − + =
=

∞
−

=

∞

=

∞

n n c x nc x c x1 2 0.
n

n
n

n
n

n

n
n

n

2

2

1 0

We next determine the coefficients, listing them in the following table.

Power of x Coefficient equation

x 0 ( ) + =c c2 1 02 0 or = −c c1
22 0

x1 ( ) − + =c c c3 2 2 03 1 1 or =
⋅

c c1
3 23 1

x 2 ( ) − + =c c c4 3 4 04 2 2 or =
⋅

c c3
4 34 2

x 3 ( ) − + =c c c5 4 6 05 3 3 or =
⋅

c c5
5 45 3

x 4 ( ) − + =c c c6 5 8 06 4 4 or =
⋅

c c7
6 56 4

� � �

x n ( )( ) ( )+ + − − =+n n c n c2 1 2 1 0n n2 or
( )( )

= −
+ ++c n

n n
c2 1

2 1n n2

From the recursive relation

( )( )
= −

+ ++c n
n n

c2 1
2 1

,n n2

we write out the first few terms of each series for the general solution:

y c x x x

c x x x x

1 1
2

3
4!

21
6!

1
3!

5
5!

45
7!

.

0
2 4 6

1
3 5 7

�

�

( )
( )

= − − − −

+ + + + +
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17-30

ANSWERS TO ODD-NUMBERED EXERCISES

 33. = + + +−y c c e e xe1
2

x x x
1 2

 35. = + − −−y c e c e e1
8

4
5

x x x
1

5
2

 37. ( ) ( )[ ]= + − +y c x c x x x xcos sin sin ln csc cot1 2

 39. = + +y c c e xe1
8

x x
1 2

8 8

 41. = + − − − −y c c e x x x x4 3 6x
1 2

4 3 2

 43. = + − + − +−y c c e e x x x1
3

6 4 4x x
1 2

2 3 2

 45. 
( ) ( )

( ) ( )
= + + − −
= + + −′

y c x c x x x x x x

c x c x x x x x

cos sin tan cos sin ln cos
cos sin cos sin ln cos

1 2

1 2

 47. = −y ce e1
2

x x3

 49. = +y ce xe5x x3 3

 51. ( )= + − + +y x x x x x2 cos sin 1 sin ln sec tan

 53. = − + + −−y e x x1 1
2

x 2

 55. ( )= − −− −y e e x e x2 cos 3 sinx x x

 57. = − +y x x e(1 ) x2

 59. =y x1
4p

2

SECTION 17.4, p. 17-24

 1. = +y
c
x

c x1
2 2   3. = +y

c
x

c x1
2 2

3

 5. = +y c x c x1
2

2
4  7. = +−y c x c1

1 3
2

 9. ( )= +y x c c xln1 2

 11. ( ) ( )[ ]= +y x c x c xcos 2 ln sin 2 ln1 2

 13. ( ) ( )[ ]= +y
x

c x c x1 cos 3 ln sin 3 ln1 2

 15. ( ) ( )[ ]= +y
x

c x c x1 cos ln sin ln1 2

Chapter 17
SECTION 17.1, pp. 17-6–17-7
 1. = +−y c e c ex x

1
3

2
4   3. = +−y c e c ex x

1
4

2

 5. = +−y c e c ex x
1

2
2

2   7. = +−y c e c ex x
1 2

3 2

 9. = +−y c e c ex x
1

4
2

3 2  11. = +y c x c xcos 3 sin 31 2

 13. = +y c x c xcos 5 sin 51 2   15. ( )= +y e c x c xcos 2 sin 2x
1 2

 17. y e c x c xcos 3 sin 3x
1 2( )= +−

 19. y e c x c xcos 5 sin 5x2
1 2( )= +−

 21. = +y c c x1 2   23. = +− −y c e c xex x
1

2
2

2

 25. = +− −y c e c xex x
1

3
2

3   27. = +− −y c e c xex x
1

2
2

2

 29. = +− −y c e c xex x
1

3
2

3  31. = − +− −y e e3
4

3
4

x x5

 33. =y x1
2 3

sin 2 3

 35. y x xcos 2 2 1
2

sin 2 2= − +

 37. ( )= −y x e1 2 x2   39. ( )= + −y x e2 1 2 x3 2

 41. = +−y c e c ex x
1 2

3   43. = +− −y c e c xex x
1

2
2

2

 45. = +y c x c xcos 5 sin 51 2   47. = +− −y c e c xex x
1

5
2

5

 49. ( )= +−y e c x c xcos sinx 2
1 2   51. = +y c e c xex x

1
3 4

2
3 4

 53. = +− −y c e c xex x
1

4 3
2

4 3  55. = +−y c e c ex x
1

2
2

4 3

 57. ( )= + −y x e1 2 x   59. = +−y e e15
13

11
13

x x7 3 2

SECTION 17.2, pp. 17-14–17-15

 1. = + +−y c e c e 3
10

x x
1

5
2

2

 3. = + + −y c c e x x1
2

cos 1
2

sinx
1 2

 5. = + −y c x c x xcos sin 1
8

cos 31 2

 7. = + − −−y c e c e x x6 cos 2 sinx x
1

2
2

 9. = + − − +−y c e c e x xe2 1
2

x x x
1 2

2

 11. = + − + +− −y c e c e e x x1
4

49
50

cos 7
50

sinx x x
1

3
2

2

 13. = + + + −−y c c e x x x3
5

6
25

x
1 2

5 3 2

 15. = + + + +y c c e x x xe2 4
3

1
3

x x
1 2

3 2 3

 17. = + + −−y c c e x x1
2

x
1 2

2

 19. = + −y c x c x x xcos sin 1
2

cos1 2

 21. ( )= + +− −y c c x e x e1
2

x x
1 2

2

 23. = + +−y c e c e xe1
2

x x x
1 2

 25. ( )= + +−y e c x c xcos sin 2x2
1 2

 27. ( )= + + +y A x B x x x x xcos sin sin cos ln cos

 29. = + + −y c c e x e xe1
10

1
25

x x x
1 2

5 2 5 5

 31. = + − +y c x c x x x x xcos sin 1
2

cos sin1 2
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SeCtion 17.3, pp. 17-20–17-21

 1. 1
2

 y″ + y′ + y = 0, y(0) = 0.6, y′(0) = 0.6

 3. 
120
9.8

 y″ + 600y = 0, y(0) = 0.05, y′(0) = y0

 5. 2q″ + 4q′ + 10q = 20 cos t, q(0) = 2, q′(0) = 3

 7. 0.0259 m (above equilibrium)

 9. y(t) = 0.05 cos (5.715t) +
y0

5.715
 sin (5.715t)  

(in meters)
 11. 1.806 s  13. 45 N  15. 8.13 m > s
 17. 0.6238 m > s2 (acceleration upward)
 19. q(t) = -8e-3t + 10e-2t, lim

tSq
 q(t) = 0

 21. y(t) = 0.3 + 0.6e-t - 0.1e-2t - 0.2e-8t

 23. y(p) = -2 m (above equilibrium)

 25. q(t) = 1
5

+ ¢491199
995

 sin 
1199

2
 t + 49

5
 cos 

1199
2

 t≤e-t>2
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 Chapter 17: Answers to Odd-Numbered Exercises 17-31

 17. ( )= +y
x

c c x1 ln1 2   19. = +y c c xln1 2

 21. ( )= +y
x

c c x1 ln3 1 2   23. ( )= +−y x c c xln5 4
1 2

 25. = +y
x

x1
2 23

  27. =y x

 29. ( ) ( )[ ]= − +y x x xcos ln 2 sin ln

SECTION 17.5, p. 17-29

 1. �( )= + − + − = − −y c c x x x c
c

e2
3 2

x
0 1

2 3
0

1 2

 
3.

 
� �( )( )= − + + − +

= +

y c x c x x

c x c x

1 2 2
3

cos 2 sin 2

0
2

1
3

0 1

 5. = +y c x c x1 2
2

 7. � �( ) ( )= + − + + + +y c x x c x x1 1
2

1
6

1
60

2 3
1

3

 9. �( )= − + − +y c x x c x1 5
120

2 4
1

 11. �( ) ( )= − + + −y c x c x x1 30
2

1
3

 13. � �( ) ( )= + + + + + + +y c x x c x x x1 2
3

3
50

2 4
1

3 5

 15. � �( ) ( )= − + + − +y c x c x x1 3
2

1
20

2
1

3

 17. �( ) ( )= − + + + −y c x x c x x1 3
2

1
8

1
30

2 4
1

3
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18-1

INTRODUCTION The study of derivatives, integrals, and series can be extended from the 
real to the complex numbers, where it is called complex analysis. The study of complex 
functions is far from a straightforward extension of the study of real variable functions. 
Differentiable functions of a complex variable have many properties not found in their real 
relatives. For example, while we can find real functions that are once but not twice differ-
entiable, this is not true for complex functions. If a complex function is differentiable once 
on an open region, then its second, third, and all higher order derivatives also exist. In 
Chapter 9 we saw differentiable functions that are not equal to any power series. In con-
trast, a complex differentiable function can always be expressed as a convergent power 
series. The study of complex functions gives profound new insights into the properties of 
the real-valued functions we have already encountered and opens the way to many new 
applications. The study of complex functions, particularly in higher dimensions, remains 
an active area of mathematical research. In this chapter we introduce the complex numbers 
and then study some of the many beautiful aspects of complex differentiable functions.

Complex Functions

18

18.1 Complex Numbers

Complex numbers are expressed in the form a ib,+  or a bi,+  where a and b are real num-
bers and i is a symbol for a new type of number whose square equals − = −i1; that is, 12 . 
We refer to a as the real part of the complex number and to b as the imaginary part. The 
words “real” and “imaginary” have connotations that tend to place 1−  in a less favorable 
position in our minds than a real number such as 2. In fact, a good deal of imagination, 
or inventiveness, was required to construct the real number system, which forms the basis of 
calculus (see Appendix A.7). We begin this chapter with a review of the successive stages 
of invented number systems.

The Hierarchy of Numbers

The first stage of number development was the recognition of the counting numbers 
1, 2, 3, ,…  which we now call the natural numbers or the positive integers. Certain arith-
metical operations on the positive integers, such as addition and multiplication, keep us 
entirely within this system. That is, if m and n are any positive integers, then their sum 
m n+  and product mn are also positive integers. Some equations can be solved entirely 
within the system of positive integers. For example, we can solve x3 7+ =  using only 
positive integers. But other simple equations, such as x7 3,+ =  cannot be solved if only 
positive integers are at our disposal. The invention of the number zero and the negative 
numbers allowed the solution of equations such as x7 3.+ =  Using the integers

, 3, 2, 1, 0,1, 2, 3,… …− − −
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18-2 Chapter 18 Complex Functions

we can always find the missing integer x that solves the equation m x p+ =  when we are 
given the other two integers m and p in the equation. Addition and multiplication of inte-
gers always keep us within the system of integers. However, division does not, and so frac-
tions m n , where m and n are integers with n nonzero, were invented. The resulting system 
is called the rational numbers and is rich enough to perform all of the rational operations of 
arithmetic, including addition, subtraction, multiplication, and division (although division 
by zero is excluded since it is meaningless). Yet there are still simple polynomial equations 
that cannot be solved within the system of rational numbers. The ancient Greeks realized 
that there is no rational number that solves the equation x 2,2 =  even though the 
Pythagorean Theorem implies that the length x of the diagonal of the unit square satisfies 
this equation. (See Figure 18.1.)

To see why x 22 =  has no rational solution, consider the following argument. 
Suppose that there did exist some positive integers p and q with no common factor other 
than 1 such that the fraction x p q=  satisfies x 22 = . Writing this out, we see that 
p q 2,2 2 =  and therefore

p q2 .2 2=

Then p2 is also an even integer. Since the square of an odd number is odd, we conclude 
that p itself must be an even number (for if p were odd, then p2 would also be odd). So p is 
divisible by 2, and p k2=  for some integer k. Hence p k4 .2 2=  Since we already saw 
that p q2 ,2 2=  it follows that q p k2 4 ,2 2 2= =  and therefore q k2 .2 2=

Consequently, q2 is an even number and this requires in turn that q itself be even. 
Therefore, both p and q are divisible by 2, which is contrary to our assumption that they 
contain no common factors other than 1. Since we have arrived at a contradiction, there 
cannot exist any such integers p and q, and therefore there is no rational number that 
solves the equation x 2.2 =  

The invention of real numbers addressed this issue (and others). Using real numbers, 
we can represent every possible physical length. Each real number can be represented as 
an infinite decimal a d d d d. ,1 2 3 4…  where a is an integer followed by a sequence of decimal 
digits each between 0 and 9 (Appendix A.7). If the sequence stops or repeats in a periodic 
pattern, then the decimal represents a rational number. An irrational number is represented 
by a nonterminating and nonrepeating decimal. The rational and irrational numbers 
together make up the real number system. Unlike the rational numbers, the real numbers 
have the completeness property, meaning that there are no “holes” or “gaps” in the real 
line. This property is essential in calculus, implying for example that continuous functions 
on a closed interval have an absolute maximum value and an absolute minimum value 
(Extreme Value Theorem, Section 4.1), and that an increasing and bounded sequence con-
verges (Monotonic Sequence Theorem, Section 9.1). Yet for all of its utility, there are  
simple equations that cannot be solved when working only within the real number system. 
As an example, the polynomial equation x 1 02 + =  has no real solutions.

The Complex Numbers

We have discussed three systems of numbers that form a hierarchy, with each system con-
taining the previous system. Each system is richer than its predecessor in that it permits 
additional operations to be performed without going outside the system.

1. Using the integer system, we can solve all equations of the form

 x a 0,+ =  (1)

where a is an integer.

2. Using the rational numbers, we can solve all equations of the form

 ax b 0,+ =  (2)

provided that a and b are rational numbers and a 0.≠

FIGURE 18.1 The diagonal of the unit 
square has irrational length.

1

1"2
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 18.1  Complex Numbers 18-3

3. Using the real numbers, we can solve all of Equations (1) and (2) and, in addition, all 
quadratic equations

 ax bx c 0,2 + + =  (3)

provided that a 0≠  and b ac4 0.2 − ≥

The quadratic formula

 x b b ac
a

4
2

2
= − ± −  (4)

gives the solutions to Equation (3). When b ac42 −  is negative, there are no real number 
solutions to the equation ax bx c 0.2 + + =  In particular, the simple quadratic equation 
x 1 02 + =  cannot be solved using any of the three invented systems of numbers that we 
have discussed. Thus we are led to the fourth system of numbers, the set of complex num-
bers a ib.+  The symbol i represents a new number whose square equals 1.−  We call a the 
real part and b the imaginary part of the complex number a ib.+

Real and Imaginary parts
For a complex number z a ib,= +  we write

z aRe =
and

z bIm .=

Sometimes it is convenient to write a bi+  instead of a ib;+  both notations describe  
the same complex number. We define equality and addition for complex numbers in the 
following way.

Equality a ib c id+ = +   if and only if  a c=  and b d= .

Two complex numbers a ib+  and c id+  are equal if and only if their real parts are 
equal and their imaginary parts are equal.

Addition a ib c id a c i b d( ) ( ) ( )( )+ + + = + + +

We sum the real parts and separately sum the imaginary parts.
To multiply two complex numbers, we multiply using the distributive rule and then 

simplify using i 1.2 = −

Multiplication a ib c id

ac iad ibc i bd
ac bd i ad bc

2

( )( )

( ) ( )

+ +
= + + +
= − + +   i 12 = −

EXAMPLE 1  Basic arithmetic operations with complex numbers

 a. The set of all complex numbers a i0,+  where the second number b is zero, has all of 
the properties of the set of real numbers. For example, addition and multiplication as 
complex numbers give

a i c i a c i a i c i ac i0 0 0, 0 0 0,( ) ( ) ( )( )( )+ + + = + + + + = +

which are numbers of the same type with imaginary part zero. We usually just write a 
instead of a i0,+  and in this sense the complex number system contains the real num-
ber system.

 b. If we multiply a real number a a i0= +  by a complex number c id,+  we get 
a c id a i c id ac iad0 .( ) ( )( )+ = + + = +
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18-4 Chapter 18 Complex Functions

 c. The number i0 0 0= +  plays the role of zero in the complex number system, and the 
complex number i1 1 0= +  plays the role of unity, or one.

 d. The complex number i i0 1,= +  which has real part zero and imaginary part one,  
has the property that its square is i i i i0 1 0 1 0 12 2( ) ( )( )= + = + + = 

i1 0 1.( )− + = −  So x i=  is a solution to the quadratic equation x 1 0.2 + =  In 
the complex number system there are exactly two solutions to this equation, the other 
solution being x i i0 ( 1).= − = + −

 e. We can divide any two complex numbers, as long as we do not divide by the number 
i0 0 0.= +  When a ib 0+ ≠  (meaning that either a 0≠  or b 0≠  or both a 0≠  

and b 0≠ ), we carry out division as follows:

c id
a ib

c id a ib
a ib a ib

ac bd i ad bc
a b

ac bd
a b

i ad bc
a b

.
2 2 2 2 2 2

( )( )

( )( )

( ) ( )+
+

= + −
+ −

= + + −
+

= +
+

+ −
+

In this way we express the quotient in the standard form x iy,+  where 
x ac bd a b2 2( )( )= + +  and y ad bc a b2 2( )( )= − +  are real numbers. Note 
that a b 02 2+ ≠  since we stipulated that a and b cannot both be zero.

 f. The number a ib−  that was used in part (e) as the multiplier to clear the i from the 
denominator is called the complex conjugate of a ib.+  If we denote the original com-
plex number by z a ib,= +  then it is customary to write z  (read “z bar”) to denote its 
complex conjugate:

z a ib z a ib, .= + = −

Multiplying the numerator and denominator of a fraction c id a ib( ) ( )+ +  by 
the complex conjugate of the denominator will always replace the denominator by a 
real number. 

EXAMPLE 2  Computations with complex numbers

 a. i i i i2 3 6 2 2 6 3 2 8( ) ( ) ( ) ( )+ + − = + + − = +
 b. i i i i2 3 6 2 2 6 3 2 4 5( ) ( ) ( ) ( )( )+ − − = − + − − = − +
 c. i i i i i i2 3 6 2 2 6 2 ( 2 ) (3 ) 6 (3 )( 2 )( )( ) ( )( ) ( ) ( )+ − = + − + + −  

          i i i i i12 4 18 6 12 14 6 18 142= − + − = + + = −

 d. 
( )( )

( )( )

+
−

= + +
− +

= + + +
+ − −

= + = +i
i

i i
i i

i i i
i i i

i i2 3
6 2

2 3 6 2
6 2 6 2

12 4 18 6
36 12 12 4

6 22
40

3
20

11
20

2

2
 

The Complex Plane

We can use the usual xy-coordinate system to represent complex numbers as points or vec-
tors in the plane. In this context we call it the complex plane. There are now two geometric 
representations of a complex number z x iy:= +

1. as a point P x y,( ) in the xy-plane,

2. as a vector 
� ���
OP  from the origin to P.

In each representation, the x-axis is called the real axis and the y-axis is the imaginary 
axis, as in Figure 18.2. Geometric representations of complex numbers are sometimes 
called Argand Diagrams.

In polar coordinates we have

x r y rcos , sin ,θ θ= =
and

 z x iy r icos sin .θ θ( )= + = +  (5)

The number 0, or i0 0+  is a special case, with r 0=  but no specified θ.

x

y

O

r
y

x

P(x, y)

u

FIGURE 18.2 The complex number 
z x iy= +  can be represented both as  
a point P x y,( ) and as a vector.
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 18.1  Complex Numbers 18-5

We define the absolute value (or magnitude) of a complex number x iy+  to be the 
length r of a vector 

� ���
OP  from the origin to P x y, .( )  We denote the absolute value by verti-

cal bars; thus,

x iy x y .2 2+ = +

We always choose the polar coordinates r and θ so that r is nonnegative, and then

r x iy .= +

The polar angle θ is called the argument of z and is written zarg .θ =  There is more 
than one choice for the argument. Any integer multiple of 2π may be added to θ to produce 
another appropriate angle. The following equation gives a useful formula connecting a 
complex number z, its conjugate z , and its absolute value z :

z z z .2⋅ =

Euler’s Formula

The identity

 e icos sini θ θ= +θ  (6)

is called Euler’s Formula. The origins of this formula will be seen in Section 18.6. We show 
a vector representing e iθ in Figure 18.3. Using Equation (6), we can write Equation (5) as

z re .i= θ

FIGURE 18.3 The complex number z e i= θ as a vector and as a point.

x x

y y

uu = arg z
r = 1

O O

eiu = cos u + i sin u eiu = cos u + i sin u

(cos u, sin u)

(a) (b)

The notation Aexp( ) is also used for e ,A  so we could write z r iexp( ).θ=
Euler’s formula leads to the following rules for calculating products, quotients, pow-

ers, and roots of complex numbers in polar form.

Products

To multiply two complex numbers in polar form, we multiply their absolute values and add 
their arguments. To see why, let

 = =θ θz r e z r eand ,i i
1 1 2 2

1 2  (7)

so that

z r z z r z, arg ; , arg .1 1 1 1 2 2 2 2θ θ= = = =

In the Cartesian a bi+  form we have

z r ircos sin1 1 1 1 1θ θ= +

and

z r ircos sin .2 2 2 2 2θ θ= +
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18-6 Chapter 18 Complex Functions

Their product is then

z z r e r e

r r i i

r r i

r r i

r r e

cos sin cos sin

cos cos sin sin cos  sin sin  cos

cos sin

.

i i

i

1 2 1 2

1 2 1 1 2 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2

1 2

1 2

θ θ θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ

( )( )

[ ] [ ]( )

( )( ) ( )

=

= + +

= − + +

= + + +

=

θ θ

θ θ( )+

Angle sum formulas

Therefore

 r e r e r r e  .i i i
1 2 1 2

1 2 1 2=θ θ θ θ( )+  (8)

The absolute value of the product is r r1 2 and the argument of the product is the sum of the 
arguments of z1 and z .2  We have shown that the product of two complex numbers is repre-
sented by a vector whose length is the product of the lengths of the two factors and whose 
angle with the x-axis is the sum of the corresponding angles of the factors. (Figure 18.4.) 
In particular, Equation (8) implies that multiplying a vector by e iθ causes its vector repre-
sentation to be rotated counterclockwise through an angle θ. Multiplication by i rotates 
90 ,°  by 1−  rotates 180 ,°  by i−  rotates 270°, and so on.

EXAMPLE 3  We compute the product of z i11 = +  and z i3 .2 = −  We first plot 
these complex numbers in Figure 18.5, and we can then read off their polar representations

z z i i

i i

i

i

i

2 exp
4

2 exp
6

2 2 exp
4 6

2 2 exp
12

2 2 cos
12

sin
12

2.73 0.73 .

1 2
π π

π π

π

π π

( )
( )

( )

( )
( )

⋅ = ⋅ −

= −

=

= +

≈ +  

EXAMPLE 4  Computing Reciprocals Show that if z re i= θ and r 0,>  then 

z r
e1 1 .i= θ−

Solution Applying the formula for products, Equation (8), we see that

re
r

e e1 1 1.i i i0( )( ) = ⋅ =θ θ−

Dividing both sides by z re i= θ gives

r
e

re z
1 1 1.i

i
= =θ

θ
−  

FIGURE 18.5 To multiply two complex 
numbers, multiply their absolute values 
and add their arguments.

0

1

−1

x

y

"2

"3 − 1

1 + "3  

2"2

2
1

z1z2

z1 = 1 + i

z2 = "3 − i

p
4 p

12
p
6

−

Quotients

We now look at how to divide z r e i
1 1

1= θ  by z r e i
2 2

2= θ  in polar form. We assume that 
r 02 >  so that we are not dividing by zero. To compute the quotient z z1 2  we multiply z1 
by z1 .2  This gives

z
z

z
z

r e
r

e
r
r

e1 1 ,i i i1

2
1

2
1

2

1

2

1 2 1 2=






 =







 =θ θ θ θ( )− −   Equation  8( )

x

y

O

u1

u2

u1

z1z2

r1r2

r2 r1

z1

z2

FIGURE 18.4 When z1 and z 2 
are multiplied, z z r r1 2 1 2= ⋅  and 

z zarg .1 2 1 2θ θ( ) = +
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 18.1  Complex Numbers 18-7

so that

z
z

z
z

1

2

1

2

=

and

z
z

z zarg arg arg .1

2
1 2 1 2θ θ







 = − = −

That is, we divide lengths and subtract angles to compute the quotient of complex numbers.

De Moivre’s Theorem

 i n i ncos sin cos sinnθ θ θ θ( )+ = +  (10)

EXAMPLE 5  Let z i11 = +  and z i3 ,2 = −  as in Example 3. Then

i
i

e
e

e i i1
3

2
2

2
2

0.707 cos 5
12

  sin 5
12

0.183 0.683 .
i

i
i

4

6
5 12 π π( )+

−
= = ≈ + ≈ +

π

π
π

−  

Powers

If n is a positive integer, we can apply the product formulas in Equation (8) to find the polar 
form of a power

z z z z.n �= ⋅ ⋅ ⋅   n factors

With z re ,i= θ  we obtain

 
�= =

=

θ θ θ

θ

( )+ +z re r e

r e

( )

.

n i n n i

n in
 

(9)n summands

The length r z=  is raised to the nth power, and the angle zargθ =  is multiplied by n.
If we take r 1=  in Equation (9), we obtain De Moivre’s Theorem.

If we expand the left side of the equation in De Moivre’s Theorem using the Binomial 
Theorem and reduce it to the form a ib,+  we obtain trigonometric identities, namely for-
mulas for ncos θ and nsin θ as polynomials of degree n in cos θ and sin .θ

EXAMPLE 6  If n 3=  in Equation (10), we have

i icos sin cos(3 ) sin (3 ).3θ θ θ θ( )+ = +

The left side of this equation expands to

i icos 3 cos sin 3 cos sin sin .3 2 2 3θ θ θ θ θ θ+ − −

The real part of this must equal cos(3 )θ  and the imaginary part must equal sin (3 ).θ  
Therefore,

θ θ θ θ

θ θ θ θ

= −

= −

cos(3 ) cos 3 cos sin ,

sin(3 ) 3 cos sin sin .

3 2

2 3  

Roots

If x is a positive real number, then it has exactly one real nth root if n is an odd integer and 
exactly two nth roots if n is even. If x is a negative real number, then x has exactly one real 
nth root if n is an odd integer and no real nth root if n is even. In contrast, if z re i= θ is a 
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18-8 Chapter 18 Complex Functions

complex number different from zero, then there are precisely n different complex numbers, 
w w w, , , ,n0 1 1… −  that are nth roots of z. To see why, let w eiρ= α be an nth root of 
z re .i= θ  Then

w zn =

or

e re .n in iρ =α θ

Since both r and ρ are positive real numbers, this implies that r,nρ =  and so

rnρ =

is the real, positive nth root of r. Although we cannot say that nα and θ must be equal, since 
the argument of a complex number is only defined up to multiples of 2 ,π  we can say that 
they may differ only by an integer multiple of 2 .π  That is,

…α θ π= + = ± ±n k k2 , 0, 1, 2, .

Therefore,

n
k

n
2 .α θ π= +

This gives the following collection of n distinct complex numbers,

 re r i
n

k
n

kexp 2 , 0, 1, 2, .in n …θ π( )= +





= ± ±θ  (11)

FIGURE 18.6 The three cube roots of 
z re i= θ

x

y

O

r

w2

w1

w0

2p
3

2p
3

2p
3

r1�3

z = reiu

u

u
3

Each of these has the property that its nth power equals z, so these n complex numbers give 
all of the nth roots of z re .i= θ

The expression re in θ  on the left of Equation (11) defines a new concept, the nth root 
of a complex number, while the term rn  on the right refers to the real nth root. There is 
exactly one positive real number whose nth power equals the positive real number r, and 
that number gives the value of r.n  On the other hand, the expression re in θ  refers to a col-
lection of n distinct numbers. In practice we often want to pick out a particular nth root, the 
principal nth root. We can do that by requiring that z re i= θ have ,π θ π− < ≤  and then 
taking the principal nth root to be

r i
n

exp .n θ( )





There might appear to be infinitely many different answers in Equation (11), corre-
sponding to the infinitely many possible values of k, but k m n= +  gives the same com-
plex number as k m.=  This is true because the complex number

i
n

m n
n

i
n

m
n

exp 2 exp 2 2θ π θ π π( ) ( )+ +





= + +





and the complex number

i
n

m
n

exp 2 ,θ π( )+





are equal, since they have arguments that differ by 2 .π  Therefore we need only take n con-
secutive values for k to obtain all the different complex numbers that are nth roots of z. For 
convenience, we take

k n0,1, 2, , 1.…= −

All the nth roots of re iθ lie on a circle centered at the origin and having radius equal to 
the real, positive nth root of r. One of them has argument w n.0 θ=  The others are uni-
formly spaced around the circle, each being separated from its neighbors by an angle equal 
to n2 .π  (Figure 18.6 illustrates the placement of the three cube roots, w w w, , ,0 1 2  of the 
complex number z re .i= θ )
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 18.1  Complex Numbers 18-9

EXAMPLE 7  Find the four fourth roots of −16.

Solution As our first step, we plot the number −16 in the complex plane (Figure 18.7) 
and determine its polar representation re .iθ  Here, z 16,= −  r 16,= +  and .θ π=  One of 
the fourth roots of e16 iπ  is e2 .i 4π  We obtain others by successive additions of 2 4 2π π=  
to the argument of this first one. Hence,

 e e k16 2 , 1, 3, 5, 7,i ik4 4= =π π  (12)

and the four roots are

π π

π π

π π

π π

( )

( )

( )

( )

= +





= +

= +





= − +

= +





= − −

= +





= −

w i i

w i i

w i i

w i i

2 cos
4

sin
4

2 1 ,

2 cos 3
4

sin 3
4

2 1 ,

2 cos 5
4

sin 5
4

2 1 ,

2 cos 7
4

sin 7
4

2 1 .

0

1

2

3  

FIGURE 18.7 The four fourth roots  
of 16−

2

x

y

−16

w0

w3w2

w1

p
4

p
2

p
2

p
2

p
2

The Fundamental Theorem of Algebra
Every polynomial equation of the form

�+ + + + =−
−a z a z a z a 0,n

n
n

n
1

1
1 0

in which the coefficients a a a a, , , ,n n0 1 1… −  are any complex numbers, whose 
degree n is greater than or equal to one, and whose leading coefficient an is not 
zero, has exactly n roots in the complex number system, provided each multiple 
root of multiplicity m is counted as m roots.

The Fundamental Theorem of Algebra

One might say that the invention of 2 is all well and good and leads to a number system 
that is richer than the rational number system alone, and the complex number system is 
richer still, but where will this process end? Will we need to develop still more systems so 
as to obtain 14 −  (a solution of x 14 = − ), 16 −  (a solution of x 16 = − ), and so on? It 
turns out this is not necessary. These numbers are already expressible in the complex num-
ber system as a ib+  for appropriate a and b. In fact, the Fundamental Theorem of Algebra 
says that with the introduction of the complex numbers, we now have enough numbers to 
factor every polynomial into a product of linear factors. We have enough numbers to solve 
every possible polynomial equation.

A proof of this theorem can be found in most texts on the theory of functions of a 
complex variable.

Operations with Complex Numbers

 1. Express the following products of complex numbers in the form 
a ib+  where a and b are real numbers.

 a. i i2 3 4 2( )( )+ −

 b. i i2 2 3( )( )− − −

 c. i i1 2 2( )( )− − +

 2. Solve the following equations for the real numbers x and y.

 a. i x iy x iy3 4 22 ( )( )+ − − = +

 b. i
i x iy

i1
1

1 1
2

( )+
−

+
+

= +

 c. i x iy x iy i3 2 2 2 2 1( ) ( )( )− + = − + −

EXERCISES 18.1
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18-10 Chapter 18 Complex Functions

Graphing and Geometry

 3. How may the following complex numbers be obtained from 
z x iy= +  geometrically? Sketch.

 a. z  b. −z  c. z−  d. z1

 4. Show that the distance between the two points z1 and z 2 in the 
complex plane is z z .1 2−

In Exercises 5–10, graph the points z x iy= +  that satisfy the given 
conditions.

 5. a. z 2=  b. z 2<  c. z 2>

 6. z 1 2− =  7. z 1 1+ =

 8. z z1 1+ = −  9. z i z 1+ = −

 10. z z1 1+ ≥ −

Express the complex numbers in Exercises 11–14 in the form re ,iθ  
with r 0≥  and ,π θ π− < ≤  and for each of them draw a diagram 
in the complex plane.

 11. 1 3
2( )+ −  12. i

i
1
1

+
−

 13. 1 3
1 3

+ −
− −

 14. i i2 3 1 2( )( )+ −

Powers and Roots
Use De Moivre’s Theorem to express the trigonometric functions in 
Exercises 15 and 16 in terms of cos θ  and sin .θ

 15. cos 4θ  16. sin 4θ

 17. Find the three cube roots of 1.

 18. Find the two square roots of i.

 19. Find the three cube roots of i8 .−

 20. Find the six sixth roots of 64.

 21. Find the four solutions of the equation z z2 4 0.4 2− + =

 22. Find the six solutions of the equation z z2 2 0.6 3+ + =

 23. Find all solutions of the equation x x4 16 0.4 2+ + =

 24. Solve the equation x 1 0.4 + =

Theory and Examples

 25. Complex numbers and vectors in the plane Show with a  
diagram in the complex plane that the law for adding complex 
numbers is the same as the parallelogram law for adding vectors.

 26. Complex arithmetic with conjugates Show that the conjugate 
of the sum (product, or quotient) of two complex numbers, z1 and 
z ,2  is the same as the sum (product, or quotient) of their conjugates.

 27. Complex roots of polynomials with real coefficients come in 
complex-conjugate pairs 

 a. Extend the results of Exercise 26 to show that f z f z( ) ( )=  
when

f z a z a z a z a( ) n
n

n
n

1
1

1 0�= + + + +−
−

is a polynomial with real coefficients a a, , .n0 …

 b. If z is a root of the equation f z( ) 0,=  where f z( ) is a 
polynomial with real coefficients as in part (a), show that 
the conjugate z  is also a root of the equation. (Hint: Let 
f z u i( ) 0;υ= + =  then both u and υ are zero. Use the fact 
that f z f z u i( ) ( ) υ= = − .)

 28. Absolute value of a conjugate Show that z z .=

 29. When z z=  If z and z  are equal, what can you say about the 
location of the point z in the complex plane?

 30. Real and imaginary parts Show that the following relations 
hold for any complex numbers z z, ,1  and z .2

 a. z z z2Re( )+ =

 b. − =z z z2Im( )

 c. z z2Re( ) ≤

 d. ( )+ = + +z z z z z z2Re1 2
2

1
2

2
2

1 2

 e. z z z z1 2 1 2+ ≤ +

18.2 Functions of a Complex Variable

Complex Domains

The domains of the real variable functions discussed in Chapter 1 consisted of subsets of 
the real line, such as 0,1[ ] or 0,( )∞ . The domain of a complex function is a subset of the 
complex numbers, which we can visualize as a region in the complex plane.

EXAMPLE 1  Examples of complex domains

 a. The set of complex numbers z for which z 1≤  
  The corresponding region in the complex plane is the set of points lying inside or on a 

circle of radius 1 centered at the origin O, shown in Figure 18.8(a).

 b. The set of complex numbers with z z 10− ≤  
  This corresponds to the region inside or on a circle of radius 1 centered at a complex 

number z a b i,0 0 0= +  as in Figure 18.8b.

 c. A complex region can have a more general shape. Three more examples of complex 
domains are shown in Figure 18.8c.
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 18.2  Functions of a Complex Variable 18-11

We usually use the letter z for a variable that describes a point in the domain of a com-
plex function, just as we used x for a real function. We write w f z( )=  to describe a func-
tion that takes as input a complex number z and gives as output a complex number w.

x

y

0

(c)
Another three complex domains.

FIGURE 18.8 Some complex domains. 

|z | = 1

|z | < 1

x

y

0 1

(a)
The set of complex numbers z  
for which ≤z 1

0

|z  − z0| ≤ 1

z0

z

x

y

a

b

(b)
The set of complex numbers z for which 

− ≤z z 10

DEFINITION We say that the complex-valued function z t x t iy t( ) ( ) ( )= +  has 
limit z0 as t approaches t ,0  and write

z t zlim ( )
t t

0
0

=
→

if, for every number ε > 0, there exists a corresponding number 0δ >  such that

 z t z t t( )  whenever 0 .0 0ε δ− < < − <  (13)

One way of interpreting Equation (13) is that z t z( ) 0−  is small when t t0−  is 
small. In other words, if we draw a circle around the complex number z0 in the complex 
plane, as small as we like, then the point z t x t iy t( ) ( ) ( )= +  will be inside that circle if we 
choose t sufficiently close to t .0  Since

( )( )− = + − + ≤ − + −z t z x t iy t x iy x t x y t y( ) ( ) ( ) ( ) ( ) ,0 0 0 0 0   Figure 18.9

Complex Limits

To understand complex limits, we take advantage of the fact that a complex number 
z x iy= +  can be identified with a point x y,( ) in the xy-plane. This identification allows 
us to extend our knowledge of real limits to complex numbers.

We first consider the case where a complex number z z t( )=  is a function of a real 
variable t, which we often consider to be time. So we think of a vector whose position in 
the complex plane changes with time. We can write z t x t iy t( ) ( ) ( ),= +  and then each t 
describes a vector x t y t( ), ( )( ) in the complex plane. By describing z t( ) as a vector-valued 
function we are able to understand limits of z t( ) similarly to the limits of vector functions 
seen in Section 12.1. The meaning of an expression such as

z t zlim ( ) ,
t 1

0=
→

which states that z t( ) is approaching z x iy0 0 0= +  as t approaches 1 is that

− =
→

z t zlim ( ) 0.
t 1

0

More specifically, we make the following definition.
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18-12 Chapter 18 Complex Functions

we see that if x t x( ) 00− →  and y t y( ) 0,0− →  then also z t z( ) 0.0− →  So z t( ) con-
verges to z0 when its real part converges to the real part of z0 and its imaginary part con-
verges to the imaginary part of z .0

On the other hand, since z z x x0 0− ≥ −  and z z y y ,0 0− ≥ −  it follows 
that if z t z( ) ,0→  then also x t x( ) 0→  and y t y( ) .0→  In summary, as t t z t, ( )0→  
approaches z0 if and only if both x t( ) approaches x 0 and y t( ) approaches y ,0

 z t z x t x y t y( ) ( )  and  ( ) .0 0 0→ ⇔ → →  (14)

This gives a practical formula that can be used to compute the complex limit of a function 
z t x t iy t( ) ( ) ( ):= +

z t x t i y tlim ( ) lim ( ) lim ( ).
t t t t t t0 0 0

= +
→ → →

FIGURE 18.9
z z x x y y0

2
0

2
0

2( ) ( )− = − + −

|z  − z0|
|y − y0|

|x − x0|z0

z

EXAMPLE 2  For the function z t t i t( ) cos sin ,= +  find z tlim ( ).
t π→

Solution 

z t t i tlim ( ) lim cos lim sin 1.
t t t

= + = −
π π π→ → →

 

Functions of a Complex Variable

We say that f  is a complex function on a domain S in the complex plane if to each z in S, 
the function f  assigns a single complex number f z( ).

EXAMPLE 3  The function taking z to z 2

For this function, the domain S is the set of all complex numbers, or the complex plane C, 
and the function sends a complex number z to the complex number z .2

As before, we write f z z( ) 2=  to give an explicit name f  to the function that inputs a 
complex number z and outputs a new complex number f z( ). For each point z x iy,= +  
this function f  outputs the complex number u iυ+  where

 υ ( )( )+ = + = + + = − +u i x iy x i xy i y x y i xy(2 ) (2 ).2 2 2 2 2 2  (15)

The real part of the complex variable u iυ+  is given by a real function of x and y, 
( ) = −u x y x y, ,2 2  and the imaginary part by a second real function υ( ) =x y xy, 2 . 

We cannot draw the graph of such a function, as we did with real functions whose 
graphs were curves or surfaces, since both the domain and the range in this case are the 
complex plane. We would need four dimensions, or four perpendicular directions, to graph 
a complex function, but we only have three dimensions to work with. Instead, we can set 
w f z( )=  and get a feeling for what this function is doing by drawing some lines or curves 
in the z-plane and looking at their images in the w-plane. We can visualize the behavior of 
a complex function by thinking of the domain as a rubber sheet that has a grid of lines 
drawn on it, parallel to the x and y axes. By drawing the image of this grid under the map, 
we can get an understanding of how the complex function maps one domain to another.

EXAMPLE 4  Compute where f z z( ) 2=  maps the vertical line x 1.=  More gener-
ally, compute where it maps the vertical line x a=  and the horizontal line y b.=

Solution Looking at u and υ in Equation (15), and setting the value of x to be x a,=  we 
see that

u a y a y a y ay,  and  , 2 .2 2 υ( ) ( )= − =

When a 0≠  we obtain y a(2 )υ=  in Equation (15); we have that the vertical line x a=  
is mapped to the curve

 u a
a4

.2
2

2

υ= −  (16)
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 18.2  Functions of a Complex Variable 18-13

For each nonzero choice of constant a, this equation describes a parabola. For a 1=  the 
parabola u 1 42υ= −  in the complex w-plane is the image of the line x 1=  in the com-
plex z-plane. If we chose a 1= −  in Equation (16), the image of the line x 1= −  is the 
same parabola. This is to be expected since the squares of z−  and z coincide under the map 
z z .2→

In the case a 0,=  corresponding to the y-axis, we have u y y0, 2( ) = −  and 
a y, 0.υ( ) =  Thus the point y0,( ) on the y-axis is mapped to the point y , 0 .2( )−  The 

y-axis is folded at 0 so that the positive y-axis and the negative y-axis each map onto the 
negative real axis.

We can get further insight into the behavior of the map f z z( ) 2=  by examining the 
images of some horizontal lines. The line y b=  in the complex z-plane has image points 
satisfying

u x b x b x b xb,  and  , 2 .2 2 υ( ) ( )= − =

We can solve for x, and when b 0,≠  we see that x b(2 )υ=  and

 u
b

b
4

.
2

2
2υ= −  (17)

Again this gives us a parabola for each nonzero choice of b. As before, the lines y b= ±  
map to the same parabola. The x-axis, corresponding to b 0,=  is folded over at the origin. 
The positive real axis is mapped to itself, while the negative real axis is mapped not to 
itself, but also to the positive real axis. Four parabolas obtained as the images of horizontal 
and vertical lines are shown in Figure 18.10.

The images of two squares in the first quadrant are seen in Figure 18.11 and Figure 18.13. 
Green stripes are taken to green, and red to red. These figures give us a feeling for the behavior 
of the complex function f z z( ) .2=  

x = 1/2

y = 1/2

y = 1

x

y

−1

−2

0 1 2−1−2

1

2
x = 1

FIGURE 18.10 The images of the horizontal lines y 1 2=  and 
y 1,=  and of the vertical lines x 1 2=  and x 1,=  under the  
complex map f z z( ) .2=

x

y

−1

−2

0 1 2−1−2

1

2

Limits of a function of a complex variable f z u x y i x y( ) , ,υ( ) ( )= +  are defined by 
considering the limits of the real and imaginary parts. Each of u and υ is a real-valued func-
tion of two variables, and we extend the definition of limits developed for such functions in 
Section 13.2.

DEFINITION We say that the complex-valued function υ( ) ( )= +f z u x y i x y( ) , ,  
has limit w u i0 0 0υ= +  as z approaches z x iy ,0 0 0= +  and write

f z wlim ( )
z z

0
0

=
→

if, for every number 0,ε >  there exists a corresponding number 0δ >  such that

 ε δ− < < − <f z w z z( )  whenever 0 .0 0  (18)
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18-14 Chapter 18 Complex Functions

FIGURE 18.13 A quarter of the unit disk in the complex plane and its image 
under the complex map f z z( ) .2=  Radial lines at angle θ are taken to new 
radial lines at angle 2 ,θ  and circular arcs of radius r to circular arcs of radius r .2

x

y

0 1

i

0.80.5
x

0 10.25 0.64−1

i

y

FIGURE 18.12 The image of a square with vertices at i i1, 2,1 , 2+ +  under 
the same map

x
0 1

i 2 + i1 + i

2

y

x

y

0 1 2 3 4

4i

3i

2i

i

3 + 4i

If we express f  in the form f x iy u x y i x y, , ,υ( ) ( )( )+ = +  then we have

f z w u x y u x y( ) , , .0 0
2

0
2υ υ( )( ) ( )( )− = − + −

For a point in the complex plane w u i ,0 0 0υ= +  the definition implies (Exercise 7) 
that f z wlim ( )

z z
0

0

=
→

 exactly when both

u x y ulim ,
x y x y, ,

0
0 0

( ) =
( ) ( )→

and

x ylim , .
x y x y, ,

0
0 0

υ υ( ) =
( ) ( )→

We often use this formulation in computations. Namely the limit of a function 
f x iy u x y i x y, ,υ( ) ( )( )+ = +  as x iy x iy0 0+ → +  exists if and only if the limit of 
u x y,( ) and of x y,υ( ) each exists as x y x y, , .0 0( ) ( )→

FIGURE 18.11 The image of a square with vertices at i i0,1, ,1 +  under the 
complex map f z z( ) 2=

x

y

0 1−1

2i

x

y

0 1

i 1 + i
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 18.2  Functions of a Complex Variable 18-15

EXAMPLE 5  Show that

 a. z zlim ,
z z

0
0

=
→

 b. z zlim ,
z z

2
0

2

0

=
→

 c. z zlim
z 0→

 does not exist.

Solution 

 a. We express f z z( ) =  in the form f z u x y i x y( ) , , ,υ( ) ( )= +  where u x y x,( ) =  
and x y y, ,υ( ) =  and compute the limit as z approaches z x iy .0 0 0= +  Then since 
the real-valued functions u x y x,( ) =  and x y y,υ( ) =  are continuous,

u x y xlim ,
x y x y, ,

0
0 0

( ) =
( ) ( )→

and

x y ylim , .
x y x y, ,

0
0 0

υ( ) =
( ) ( )→

So z x iy zlim
z z

0 0 0
0

= + =
→

 as claimed.

 b. We express f z z( ) =  as f z u x y i x y( ) , , ,υ( ) ( )= +  where u x y x y, 2 2( ) = −  and  
x y xy, 2υ( ) =  (Equation 15). Then since the real-valued function ( ) =u x y,   
−x y2 2 is continuous,

u x y x ylim ,
x y x y, ,

0
2

0
2

0 0

( ) = −
( ) ( )→

and similarly, since the real-valued function x y xy, 2υ( ) =  is continuous,

x y x ylim , 2 .
x y x y, ,

0 0
0 0

υ( ) =
( ) ( )→

So = − + =
→

z x y i x y zlim 2
z z

2
0

2
0

2
0 0 0

2

0

 as claimed.

 c. We express f z z z( ) =  in the form f x iy u x y i x y, , .υ( ) ( )( )+ = +

( )
( )( )

( )( )
+ = −

+
= − −

+ −
= −

+
+ −

+
f x iy

x iy
x iy

x iy x iy
x iy x iy

x y
x y

i
xy

x y
2

.
2 2

2 2 2 2

The function

( ) = −
+

u x y
x y
x y

,
2 2

2 2

is not continuous at 0, 0( ) since it has limit equal to 1 if x y, 0, 0( ) ( )→  along the 
x-axis (with y 0= ), and it has limit equal to 1−  if x y, 0, 0( ) ( )→  along the y-axis 
(with x 0= ). Since different limits are obtained as x y, 0, 0( ) ( )→  from different 
directions, no limit exists for u x y,( ) and therefore no limit exists for f z( ). 

Continuity

A function w f z( )=  that is defined throughout an open set containing a point z z0=  is 
said to be continuous at z0 if

 f z f zlim ( ) ( ) 0.
z z

0
0

− =
→

 (19)

Intuitively, this means that as the point z approaches z ,0  its image f z( ) approaches f z( ),0  
as shown in Figure 18.14. The notion of continuity for real-valued functions of two vari-
ables u and υ was defined in Section 13.2. If we write f  as a sum of its real and imaginary 
parts, f z u x y i x y( ) , , ,υ( ) ( )= +  then f  is continuous at z0 if and only if u x y,( ) and 

x y,υ( ) are each continuous at x y,0 0( ) (Exercise 8).
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18-16 Chapter 18 Complex Functions

As with functions of a real variable, polynomial functions are continuous. The proof is 
similar to the real case, and while we do not give it in full, we illustrate the idea with two 
examples.

FIGURE 18.14 Choose any circle C2 around f z( )0  in the 
w-plane. A continuous function takes points in the z-plane that 
lie inside a small enough circle C1 around z 0 to points inside C .2

0

z0

z

z -plane

C1

x

y

0

f (z0)

w = f (z )

w -plane

C2

u

v

EXAMPLE 6  Show that at any point z0 in the complex plane, the function f z z( ) =  
is continuous.

Solution The definition of continuity given in Equation (19) requires us to show that the limit

f z f z z zlim ( ) ( ) lim 0.
z z z z

0 0
0 0

− = − =
→ →

Using the definition of limit in Equation (18), our challenge is to find a δ  so that

z z z z whenever 0 .0 0ε δ− < < − <

For this very simple function we can choose .δ ε=  So the requirement for continuity is 
satisfied, and we conclude that f  is continuous at any point z .0  

By similar arguments we can show that sums and products of continuous functions 
are continuous, as are quotients of continuous functions wherever the denominator is 
nonzero. These arguments combine to show that polynomial functions and rational func-
tions are continuous on their domains. We illustrate such an argument for the function 
f z z( ) .2=

EXAMPLE 7  Show that at any point z0 in the complex plane, the function f z z( ) 2=  
is continuous.

Solution For the function f z z( ) 2=  we have

f z f z z z

z z z z

z z z z

z

lim ( ) ( ) lim

lim

lim lim

0 2

0.

z z z z

z z

z z z z

0
2

0
2

0 0

0 0

0

0 0

0

0 0

− = −

= − +

= − +

= ⋅

=

→ →

→

→ →

Factor.

Example 1 and Exercise 9

The requirement for continuity given by Equation (19) is satisfied, and we conclude that f  
is continuous at any point z .0  
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 18.3  Derivatives 18-17

Although we will not prove it here, the arguments of Examples 1 and 2 can be extended 
to show that all complex polynomials are continuous, as are all quotients of complex poly-
nomials where the denominator is nonzero.

 1. For each of the following regions in the complex plane, describe 
the image of the region under the map w z .2=  (Hint: Use polar 
coordinates.)

 a. π= ≤ ≤z z1, 0  arg  b. π π= ≤ ≤z z2,  2  arg

 c. zarg 4π=  d. π< − ≤ ≤z z1,  arg 0

 e. The x-axis f . The y-axis

 2. Show that the two parabolas in the w-plane in Figure 18.10 inter-
sect orthogonally (at right angles) if neither a nor b is zero.

 3. Show that the function w z 3=  maps the wedge z0 arg 3π< <  
in the z-plane onto the upper half-plane of the w-plane, the half-
plane whose imaginary part satisfies wIm( ) 0.>  Use polar coor-
dinates and sketch.

 4. Show that f z z( ) 3=  is continuous at z z 0=  for any z .0

 5. Show that f z z( ) 1=  is continuous at z z 0=  if z 0.0 ≠

 6. The function w z 3=  maps the square with vertices at 
+i i0,1, , and 1  to the region shown in Figure 18.15.

 a. Determine the four complex numbers to which the vertices of 
the square are mapped.

 b. Give parameterizations of the four curves to which the sides 
of the square are mapped.

 7. Use Formula (18) with υ( ) ( )= +f z u x y i x y( ) , , , 
= +z x iy ,0 0 0  and w u i0 0 0υ= +  to show that

f z wlim ( )
z z

0
0

=
→

exactly when both

u x y ulim ,
x y x y, ,

0
0 0

( ) =
( ) ( )→

and

x ylim , .
x y x y, ,

0
0 0

υ υ( ) =
( ) ( )→

 8. Suppose that f z u x y i x y( ) , ,υ( ) ( )= +  is defined on an open 
set containing the point z x iy .0 0 0= +  Show that f z( ) is con-
tinuous at z 0 if and only if u x y,( ) and x y,υ( ) are each continu-
ous at x y, .0 0( )

 9. a. Show that the constant function f z z( ) 0=  is continuous.

 b. Show that if f z( ) and g z( ) are continuous, then so is 
f g z( ).( )+

x

y

x

y

0 1

i 1 + i

FIGURE 18.15 The image under the complex map f z z( ) 3=  
of a square with vertices at i i0,1, , and 1 +

EXERCISES 18.2 

18.3 Derivatives

The derivative of a complex function w f z( )=  at z0 is defined in the same way as for a 
real-valued function of a real variable.

DEFINITION The derivative of a complex-valued function f  at z z0=  is

 f z
f z f z

z z
( ) lim

( ) ( )
,

z z
0

0

00

′ =
−
−→

 (20)

provided that this limit exists. When this limit exists we say that f  is complex 
differentiable at z .0
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18-18 Chapter 18 Complex Functions

As usual, we also use the equivalent notation

df
dz

z( )0

to denote the derivative of f  at z .0  A function that has a complex derivative at every point 
in its domain D is said to be complex differentiable or holomorphic on D. Due to a property 
of complex differentiable functions, that they are equal to their Taylor series where the 
Taylor series converges, they are also often called analytic functions.

The derivative of a real-valued function exists at a point x 0 if the derivative from the 
left and from the right exist and agree at x .0  For a complex differentiable function the 
derivative from any direction must exist and agree with the derivative computed from any 
other direction.

There are many ways in which z can approach z0. It can approach z0 on a horizontal 
path from the left, from the right, or along a vertical path coming from above or from 
below. And there are many other possibilities. It is possible for z to approach z0 along a line 
coming from any direction, or even along a curved path or spiral that ends at z .0  The exis-
tence of a single limiting value for

f z f z
z z

( ) ( )0

0

−
−

says that no matter how z0 is approached, the same value is obtained. Despite this very 
restrictive condition, there is still a large collection of complex differentiable functions. 
The very special implications of differentiability and the large number of such functions 
make the use of complex differentiable functions an extremely powerful tool.

FIGURE 18.16 The limit defining a  
differentiable function has the same value 
as z approaches z 0 from any direction, 
including the horizontal and vertical.

0

x = x0

y = y0

x

y

z0

EXAMPLE 1  The complex conjugation function f z z( ) =  takes a point z x iy= +  
to its complex conjugate z x iy.= −  Show that at any point z0 in the complex plane, this 
function is not complex differentiable.

Solution We compute the limit defining the derivative as we approach the point 
z x iy0 0 0= +  from two different directions:

 a. along the vertical line x x 0=  and

 b. along the horizontal line y y .0=  See Figure 18.16.

In case (a), we fix x x 0=  and consider what happens as y y .0→  On the vertical line 
x x 0=  we have that z approaches z0 only from above or below. On this line z z0→  
exactly when y y .0→  The limit defining a derivative, Equation (20), gives

f z f z
z z

z z
z z

x iy x iy
x iy x iy

x iy x iy
i y y

i y y
i y y

i
i

lim
( ) ( )

lim

lim

lim

lim

lim

1.

z z z z

y y

y y

y y

y y

0

0

0

0

0 0 0

0 0 0

0 0 0

0

0

0

0 0

0

0

0

0

( ) ( )
( ) ( )

( ) ( )
( )

( )
( )

−
−

=
−
−

=
+ − +
+ − +

=
− − −

−

=
− −

−

= −

= −

→ →

→

→

→

→
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 18.3  Derivatives 18-19

In case (b), we fix y y0=  and consider what happens along this horizontal line. With 
y fixed at y ,0  we have z z0→  exactly when x x ,0→  and Equation (20) becomes

f z f z
z z

z z
z z

x iy x iy
x iy x iy

x iy x iy
x x

x x
x x

lim
( ) ( )

lim

lim

lim

lim

1.

z z z z

x x

x x

x x

0

0

0

0

0 0 0

0 0 0

0 0 0

0

0

0

0 0

0

0

0

( ) ( )
( ) ( )

( ) ( )

−
−

=
−
−

=
+ − +
+ − +

=
− − −

−

=
−
−

=

→ →

→

→

→

Two different paths along which z approaches z0 lead to two different answers.  
So, there is no single complex number that is equal to the limit, no matter which path is 
chosen. There is no number that we can call f z( ),0′  and we conclude that the function 
w z=  does not have a derivative at any point z0 in the complex plane. 

EXAMPLE 2  Show from the definition that f z z( ) 3=  has derivative

f z z( ) 3 .2′ =

Solution We compute the limit defining a derivative,

f z f z
z z

z z
z z

z z z zz z
z z

z zz z

z

lim
( ) ( )

lim

lim

lim

3 .

z z z z

z z

z z

0

0

3
0
3

0

0
2

0 0
2

0

2
0 0

2

0
2

0 0

0

0

( )( )

−
−

=
−
−

=
− + +

−

= + +

=

→ →

→

→

Factor numerator.

zEach of the three terms approaches  .0
2

Note that no matter how z approaches z ,0  the terms z 2 and zz0 each approaches z ,0
2  and the 

limit is z3 .0
2  So ′ =f z z( ) 3 .0 0

2  

Rules for Finding Complex Derivatives

The formulas for differentiating sums, products, quotients, and powers of the complex vari-
able z are the same as those for a real variable x. For example, if c is any complex number, 
and if f z( ) and g z( ) are functions that have derivatives at z z ,0=  then at z z0=  we have:

(1) ′ =c( ) 0 cDerivative of a constant 

(2) ′ = ′cf z cf z( ) ( ) ( ) Constant Multiple Rule

(3) ( )+ ′ = ′ + ′f g z f z g z( ) ( ) ( ) Sum Rule

(4) ′ = ′ + ′fg z f z g z f z g z( ) ( ) ( ) ( ) ( ) ( ) Product Rule

(5) ( ) [ ]′ = ′ − ′ ≠f g z g z f z f z g z g z g z( ) ( ) ( ) ( ) ( ) ( ) ,  if  ( ) 02  Quotient Rule

(6) z nz( ) ,n n 1′ = −  where n is any integer Power Rule

(7) g f z g f z f z( ) ( ) ( ), �( ) ( )′ = ′ ′   for f z( ) in domain of g Chain Rule

These formulas are derived in the same manner as the formulas for functions of a real 
variable. We give an idea of the techniques used to prove them by establishing one case of 
the power rule.

M18_HASS5901_15_GE_C18.indd   19M18_HASS5901_15_GE_C18.indd   19 07/03/2023   15:2607/03/2023   15:26

www.konkur.in

Telegram: @uni_k



18-20 Chapter 18 Complex Functions

In Exercises 1–3, find the derivative with respect to z of the given 
function at the point z .0

 1. = +
−

= +f z z
z

z i( ) 1
1

, 10

 2. = + + + = − +f z z z z z i( ) 3 3 2, 1 23 2
0

 3. = + = +f z z z i( ) 1, 1
2

2
0

(Here we get two answers depending on our choice of the square 
root. Give the answer using the principal square root, as defined 
in Section 18.1.)

 4. Use the definition of a complex derivative to find f z( )0′  if 
f z z( ) 1=  and z 0.≠

Theory and Examples

 5. The directional derivative of a real-valued function f  in the com-
plex plane in the direction of a unit vector w is given by

 D f z
f z tw f z

t
( ) lim

( )
.w

t
0

0

0 0( )
=

+ −
→

 (21)

Compare this to the derivative of a complex function f z( ) by 
computing the complex derivative of f  as z approaches z 0 along 
the line z z tw0= + , where w now represents a complex num-
ber with magnitude 1. What are the differences between these 
two formulas?

EXERCISES 18.3 

Formula for the Complex Derivative

 f z u
x

x y i
x

x y( ) , ,0 0 0 0 0
υ( ) ( )′ = ∂

∂
+ ∂

∂
 (22)

When we write z x iy= +  and the complex function w f z u i( ) υ= = +  is differen-
tiable, the real part of f u x y, , ,( )  and the imaginary part of f x y, , ,υ( )  are real-valued dif-
ferentiable functions of the real variables x and y. We can compute the derivative of f  at a 
point z x iy0 0 0= +  by approaching z0 from any direction we choose. By comparing the 
derivative f z( )0′  obtained from approaching z0 along horizontal and vertical directions, we 
obtain equations relating the partial derivatives of u and .υ

If we approach along the horizontal line y y ,0=  then

z z x iy x iy x x0 0 0 0 0( ) ( )− = + − + = −
and therefore

f z
f z f z

z z

f x iy f x iy
x x

u x y i x y u x y i x y

x x

u x y u x y

x x
i

x y x y

x x

u
x

x y i
x

x y

( ) lim
( ) ( )

lim

lim
, , , ,

lim
, ,

lim
, ,

, , .

z z

x x

x x

x x x x

0
0

0

0 0 0

0

0 0 0 0 0 0

0

0 0 0

0

0 0 0

0

0 0 0 0

0

0

0

0 0

υ υ

υ υ

υ

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

′ =
−
−

=
+ − +

−

=
+ − +

−

=
−
−

+
−
−

= ∂
∂

+ ∂
∂

→

→

→

→ →

Though we have approached z0 in only one of the many possible ways, we obtained a 
useful formula for the derivative, equal to what we would get if we approached z0 from any 
other direction. For f z u x iy i x iy( ) ,υ( ) ( )= + + +  we obtain the following explicit 
formula for the complex derivative of a function that has a complex derivative at z .0

18.4 The Cauchy-Riemann Equations

The formula in Equation (22) does not depend on which direction is taken to approach 
z .0  Instead of approaching z0 along the x-axis, we can approach along the vertical line 
x x ,0=  on which

z z x iy x iy i y y .0 0 0 0 0( ) ( ) ( )− = + − + = −
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 18.4  The Cauchy-Riemann Equations 18-21

In this case we have

f z
f z f z

z z

f x iy f x iy
i y y

u x y i x y u x y i x y

i y y

u x y u x y

i y y

i x y x y

i y y

y
x y i u

y
x y

( ) lim
( ) ( )

lim

lim
, , , ,

lim
, ,

lim
, ,

, , .

z z

y y

y y

y y y y

0
0

0

0 0 0

0

0 0 0 0 0 0

0

0 0 0

0

0 0 0

0

0 0 0 0

0

0

0

0 0

υ υ

υ υ

υ

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )[ ]

( ) ( )

( ) ( )
( )

( )

( ) ( )

′ =
−
−

=
+ − +

−

=
+ − +

−

=
−
−

+
−
−

= ∂
∂

− ∂
∂

→

→

→

→ →

= −i i1

Since f  is complex differentiable, these two computations must give the same value 
for the derivative. The two real parts in the two equations must be equal, and the imaginary 
parts in the two equations must be the same. This gives relations between the partial deriv-
atives of u and υ that hold at any point where f z u x y i x y( ) , ,υ( ) ( )= +  has a complex 
derivative.

The Cauchy-Riemann Equations

u
x y

u
y x

andυ υ∂
∂

= ∂
∂

∂
∂

= −∂
∂

EXAMPLE 1  Show that the function f z z( ) 1=  satisfies the Cauchy-Riemann 
Equations at any point in the complex plane where z 0.≠

Solution Let z x iy= +  be a nonzero point in the complex plane, and let

w f z z( ) 1 .= =

Then

w u i
x iy x iy

x iy
x iy

x iy
x y

1 1 ,
2 2

υ= + =
+

=
+

⋅ −
−

= −
+

and therefore

u x
x y

y
x y

, .
2 2 2 2

υ=
+

= −
+

  x y z0 since  0.2 2+ ≠ ≠

After computing partial derivatives four times and simplifying, we find that

u
x

y x
x y y

2 2

2 2 2
υ

( )
∂
∂

= −
+

= ∂
∂

and

u
y

xy
x y x

2
.

2 2 2
υ

( )
∂
∂

= −
+

= −∂
∂

This shows that the Cauchy-Riemann Equations are satisfied at all points where 
x y 0.2 2+ ≠  

The Cauchy-Riemann Equations give relationships between u and υ that must be satis-
fied by a complex differentiable function. We cannot independently specify functions 
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18-22 Chapter 18 Complex Functions

u x y,( ) and x y,υ( ) and expect the function w u iυ= +  to be complex differentiable. 
However if we take functions u and ,υ  which have continuous partial derivatives

u
x

u
y x y

, , , andυ υ∂
∂

∂
∂

∂
∂

∂
∂

on a region R and satisfy the Cauchy-Riemann Equations on R, then a theorem that we will 
not prove here states that the function w u iυ= +  is complex differentiable on R. This is 
a very powerful conclusion, since it means that by checking agreement of the computation 
of the limit

f z f z
z z

lim
( ) ( )

z z

0

00

−
−→

only as z z0→  in the horizontal and vertical directions, we know the derivative is the 
same as →z z0 in every direction.

For the following functions, find the real and imaginary parts of the 
function w f z w u i z x iy( ), , ,υ= = + = +  and show that they 
satisfy the Cauchy-Riemann equations.

 1. z 2  2. z 3

 3. z 4  4. z z1 , 02 ≠

 5. A real-valued function with continuous second partial derivatives 
g x y,( ) is called harmonic if it satisfies Laplace’s Equation,

g
x

g
y

0.
2

2

2

2

∂
∂

+ ∂
∂

=

Show that both the real part u u x y,( )=  and the imaginary part 
x y,υ υ( )=  of a complex differentiable function w f z( )=   

satisfy Laplace’s Equation.

 6. Verify that Laplace’s Equation in Exercise 5 is satisfied by the real 
and imaginary parts of the functions

 a. z,

 b. z ,2

 c. z .3

 7. Show that the following functions are complex differentiable 
on the complex plane by verifying that their real and imaginary 
parts have continuous partial derivatives and satisfy the Cauchy-
Riemann Equations.

 a. f z e y ie y( ) cos sinx x= +

 b. f z x y i x y( ) sin cosh cos sinh= +

EXERCISES 18.4 

18.5 Complex Power Series

Applying the rules for finding the derivatives of sums, products, and quotients of complex 
functions, we can see that polynomials and rational functions (quotients of polynomials) 
are complex differentiable on their domains. We have extended these functions from dif-
ferentiable functions on the real line to differentiable functions on the complex plane C. We 
now investigate how to extend other elementary functions such as z z e zsin , cos , , cosh ,z  
and so on that are defined on the real line to functions that are differentiable on C. To do 
this we will need to make sense of expressions such as isin 2 3( )+  and e .i3−  When evalu-
ating isin 2 3( )+  it is not helpful to try to think of i2 3+  as an angle whose sine is evalu-
ated, as we did when evaluating the sine of a real number. Rather we define the value of the 
sine function evaluated on a complex number by extending the expression of the sine func-
tion as a power series from real to complex numbers. In Chapter 9 we derived the Taylor 
series expression

x x x x xsin
3! 5! 7!

.
3 5 7

…= − + − +

When we use this series to calculate a value such as sin 2, we don’t think of x 2=  as a 
radian measure of an angle, but just consider it as a number that is input into the series. 
This leads us to define the function f z z( ) sin=  for a complex variable z by the formula

 z z z z z z
n

sin
3! 5! 7!

1
2 1 !

.
n

n
n3 5 7

0

2 1
� ∑ ( )

( )
= − + − + = −

+=

∞ +
 (23)
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 18.5  Complex Power Series 18-23

For real z, for which z x iy= +  with y 0,=  this gives the familiar series for xsin . So 
this new definition of zsin  for complex numbers z is consistent with our previous under-
standing of the sine function. We now consider what it means for such a series to converge.

Sequences

As we did with real numbers, we base the concept of convergence of a complex series on 
the more basic concept of the convergence of complex sequences. A complex sequence is 
defined to be a function from the positive integers to the complex numbers. These sequences 
are often presented as an infinite list of complex numbers,

z z z z, , , , .n n1 2 … …{ } =

We say that a sequence zn{ } converges to a complex number L if for every positive num-
ber ε there corresponds an integer N such that

z L n N whenever  .n ε− < >

If no such number exists we say that zn{ } diverges.
While each number zn in the sequence and the limiting number L is complex, the con-

ditions for convergence involve the real numbers z L , ,n ε−  and .δ  Because of this, many 
of the arguments for convergence of sequences given in Section 9.1 carry over to complex 
sequences.

Series

A complex power series

 �∑ = + + +
=

∞

a z a a z a z
n

n
n

0
0 1 2

2  (24)

converges at a point z if the sequence of partial sums

s a a z a z a zn n
n

0 1 2
2 �= + + + +

has a limit S u iυ= +  as n .→ ∞
If we separate sn into its real and imaginary parts, by writing

υ( ) ( )= +s u x y i x y, , ,n n n

then

s Sn →  if and only if u un →  and .nυ υ→   As in Equation (14)

Many properties of real series proved in Chapter 9 carry over to complex series. For 
example, sums of convergent series converge. If

c L d Mand
n

n
n

n
0 0

∑ ∑= =
=

∞

=

∞

are two convergent complex series, then the series ∑ ( )+
=

∞

c d
n

n n
0

 also converges, and

∑ ( )+ = +
=

∞

c d L M.
n

n n
0

Proofs of these properties are very similar to the proofs for real series.

The series a z
n

n
n

0
∑

=

∞

 is said to converge absolutely if the corresponding series of abso-
lute values

 �∑ = + + +
=

∞

a z a a z a z  
n

n
n

0
0 1 2

2  (25)
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18-24 Chapter 18 Complex Functions

converges. The sum in Equation (25) is a series of real numbers, so we can apply the tests 
developed in Chapter 9, such as the Ratio Test, Comparison Test, or Integral Test, to 
verify its convergence. If the series of absolute values does converge, then the following 
theorem tells us that the original series also converges.

THEOREM 1—The Absolute Convergence Test for Complex Series

If a series converges absolutely, then it converges.

Proof  Separate each term of the series into its real and imaginary part by writing

a z c id k, 0,1, 2,k
k

k k …= + =

where ck and dk are real numbers. Suppose that the series of absolute values in Equation (25) 
converges. Then, since

= ≤ + = = ≤ + =c c c d a z d d c d a zand ,k k k k k
k

k k k k k
k2 2 2 2 2 2

the Direct Comparison Test tells us that the series

∑ ∑
=

∞

=

∞

c dand  
k

k
k

k
0 0

both converge (Theorem 10 in Chapter 9). From this we can conclude that each of  
the series

∑ ∑
=

∞

=

∞

c dand ,
k

k
k

k
0 0

computed without taking absolute values, also converge. Therefore the series

c id c i d
k

k k
k

k
k

k
0 0 0

∑ ∑ ∑( )+ = +
=

∞

=

∞

=

∞

converges. 

EXAMPLE 1  Show that the series for zsin  in Equation (23) converges for all complex 
numbers z.

Solution We test the series of real numbers

 z
n

1
2 1 !n

n
n

0

2 1

∑ ( )
( )

−
+=

∞ +
 (26)

for absolute convergence. For this series we apply the Ratio Test. Set

w z
n

1
2 1 !

.n
n

n2 1
( )

( )
= −

+

+

Then we calculate

w
w

z
n n2 3 2 2

,n

n

1
2

( )( )
=

+ +
+

and

w
w

z
n n

lim lim
2 3 2 2

0.
n

n

n n

1
2

( )( )
=

+ +
=

→∞

+

→∞
  nAs  ,  denominator  .→ ∞ → ∞

Since this limit is less than one, the Ratio Test implies that the series in Equation (26) con-
verges absolutely. By Theorem 1, the series in Equation (26) itself converges, without the 
absolute value signs, and we have shown that the complex series for zsin , the series in 
Equation (23), converges at every point z in the complex plane. 
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 18.6  Some Complex Functions 18-25

In Exercises 1–5, find the regions in which each of the series converges. 
Sketch the region of absolute convergence.

 1. �+ + + +z z z1 2 3

 2. �− + − +z z z1 2 3 42 3

 3. �( )
( ) ( ) ( )− − − + − − − +z z z z1 1

2
1

3
1

4
 

2 3 4

 4. �( )
( ) ( ) ( )+ + + + + + + +z i z i z i z i

2 3 4
 

2 3 4

 5. �( ) ( ) ( ) ( )− + + + − + + + −z z z z1 1
2

1
4

1
8

1
16

 
2 3 4

 6. Show that the series z
k!k

k

0
∑

=

∞

 converges absolutely for all z.

 7. Show that the series z
k

1
(2 )!k

k
k

0

2

∑( )−
=

∞

 converges absolutely for  
all z.

 8. Show that the series z
k

1
k

k
k

1

1∑( )−
=

∞
−  converges absolutely for 

z 1.<

 9. Use the series in Equation (23) for zsin  to compute 
isin 0.2 0.3( )+  to three decimals.

T

EXERCISES 18.5 

THEOREM 2—The Convergence Theorem for Complex Power Series

If a series a z
n

n
n

0
∑

=

∞

 converges at a point z z ,0=  then it converges absolutely for 

all z with z z .0<  If the series diverges at z z ,0=  then it diverges for all z 
with z z .0>

We have seen how to define the sine function as a complex series by extending the series 
expansion for real numbers to complex numbers. We can similarly define other basic complex 
functions by extending the series formulas developed for a real variable x to complex numbers.

�

�

�

e z z z z
n

z z z z z
n

z z z z z z
n

1
2! 3! !

cos 1
2! 4! 6!

1
(2 )!

Arctan
3 5 7

1
2 1

z

n

n

n

n
n

n

n
n

2 3

0

2 4 6

0

2

3 5 7

0

2 1

∑

∑

∑

( )

( )

= + + + + =

= − + − + = −

= − + − + = −
+

=

∞

=

∞

=

∞ +

Using the Ratio Test as in Example 1 of Section 18.5, we can show that the series for 
e z and zcos  converge absolutely for all z in the complex plane. To define Arctan z as an 
inverse function for the function ztan , we need to restrict the domain of ztan  to a region 
on which it is one-to-one. The formula for Arctan z in the above power series corresponds 
to one choice for such a restricted domain and is called the principal value of arctan z. 
The Ratio Test shows that this series for Arctan z converges when z 1,<  and diverges 
when z 1.>  We will explore this idea in more detail when we look at the complex loga-
rithmic function later in this section.

If there is an open region of the complex plane containing a point z in which all points 
except for z are in the domain of a complex differentiable function, then z is called an  
isolated singularity of f . For example, the point z 0=  is not in the domain of =f z z( ) 1  
and is an isolated singularity of this complex differentiable function.

A basic theorem in the theory of complex functions says that a power series a z
n

n
n

0
∑

=

∞

 
either

(1) converges for all z, or

(2) converges inside a circle z R<  and diverges for z R,>  or

(3) converges only at z 0.=

This theorem closely resembles Theorem 18 in Chapter 9, and its proof, based on the  
Ratio Test, is similar.

18.6 Some Complex Functions
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18-26 Chapter 18 Complex Functions

EXAMPLE 1  Show that the largest radius circle centered at 0 inside which the series

�− + − +z z z1 2 4 6

converges is the circle of radius R 1.=

Solution The absolute value of the nth term a zn
n2=  of this series is z .n2  By 

Theorem 1, the Absolute Convergence Test, this converges for all z with z 1.<  For 
z i=  the series becomes

� �− + − + = + + + +i i i1 1 1 1 1 ,2 4 6

which diverges. By Theorem 2 the series diverges for all z with z 1.>  So the largest radius 
circle centered at zero inside which the series converges is the circle of radius one. 

The largest radius circle around a point z0 inside of which a series converges is called 
the circle of convergence for z .0  The series converges for all points inside this circle and 
diverges at any point outside it. Understanding the convergence for points lying on the 
circle of convergence is a more difficult problem that we will not discuss. The circle 
z 1=  is the circle of convergence centered at zero for the function in Example 1.

Many of the basic properties of trigonometric and exponential functions extend to the 
complex versions of these functions that are defined using series.

EXAMPLE 2  Using the series definition of the exponential function

e z z z z
n

1
2! 3! !

,z

n

n2 3

0

� ∑= + + + + =
=

∞

show that

 e e e .z w z w= +  (27)

Solution We multiply the series for e z and the series for e ,w  and gather terms to get a 
series for the product:

� �

�

( )( )
( )( )

+ + + + + + + +

= + + + + ⋅ + +

z z z w w w

z w z z w w

1
2! 3!

1
2! 3!

 

1
2! 2!

  .

2 3 2 3

2 2

The general form for the terms whose degree is n is given by

z
n

z
n

w z
n

w z
n k

w
k

w
n!

1
1 ! 2 ! 2! ! !

1
!

,
n n n n k k n1 2 2

� �
( )( ) ( )

⋅ +
−

⋅ +
−

⋅ + +
−

⋅ + + ⋅
− − −

which in summation form equals

 z
n k

w
k! !

.
k

n n k k

0
∑ ( )−=

−
 (28)

On the other hand, the series expression for e z w+  is

e z z w z w z w
n

1
2! 3! !

,z w

n

n2 3

0

� ∑( ) ( ) ( )
= + + + + + + = ++

=

∞

and the term of degree n is

z w
n!

.
n( )+

By noticing that

�( ) ( )

( ) ( )

( )− − +
⋅ −

−
=

−
n n n k

k
n k
n k

n
k n k

1 1
!

!
!

!
! !
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1
e

x

y

e−e

−1 + 3i 1 + 3i

−1 − 3i 1 − 3i

x

y

FIGURE 18.17 The image under the map f z e( ) z=  of a rectangle 
with vertices at i i i1 3 ,1 3 , 1 3 ,− − − − +  and i1 3+

This last expression is identical to the one that appeared in Equation (28). We have shown 
that e ez w and e z w+  have power series whose terms of degree n are equal for each value of n. 
It follows that the power series themselves are equal, and so e e e .z w z w= +  

we may also write this in summation form as

z w
n n

z nz w n n z w n n n z w w

n
n

n k k
z w

z
n k

w
k

!
1
!

1
2

1 2
3!

1
!

!
! !

! !
.

n
n n n n n

k

n
n k k

k

n n k k

1 2 2 3 3

0

0

�

∑

∑

( )

( )

( ) ( )( )( )+ = + + − + − − + +





=
−

=
−

− − −

=

−

=

−

In a similar way, we can multiply and add power series term by term to show that

z w z w z wsin sin( ) cos( ) cos( ) sin( )( )+ = +

and

z w z w z wcos cos( ) cos( ) sin( ) sin( ).( )+ = −

When we substitute iz for z in the series expansion for e ,z  we obtain

�

�

� �( ) ( )

= + + + + +

= + − − + +

= − + − + + − + − +

= +

e iz iz iz iz

iz z i z z

z z z i z z z z

z i z

1 ( )
2!

( )
3!

( )
4!

 

1
2! 3! 4!

 

1
2! 4! 6!

   
3! 5! 7!

 

cos sin .

iz
2 3 4

2 3 4

2 4 6 3 5 7

…
= − = −
=

i i i
i

1, ,
1,

2 3

4

z z
Series expansions for
cos  and  sin

This establishes Euler’s Formula, which we stated in Section 18.1,

 e z i zcos sin .iz = +  (29)

Euler’s formula tells us how to make sense of a complex exponent. Namely if we write 
z x iy,= +  then

 e e e e e y i ycos sin .z x iy x iy x ( )= = = ++  (30)

Thus the value of e z is expressed in terms of sines and cosines of the real numbers x and y.
With this formula, we can begin to understand the behavior of the exponential func-

tion on the complex plane. The image of a rectangle in the complex plane under the expo-
nential map, computed using Euler’s formula, is shown in Figure 18.17. The rectangle is 
wrapped around the origin, which is not in the range of e .z  If the rectangle is translated 
upwards by or downwards by a multiple of i2 ,π  then the formula for e z yields the same 
value, as can be seen in Equation (30). The height of the rectangle in Figure 18.17 is 6, just 
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18-28 Chapter 18 Complex Functions

short of 2 .π  The top and bottom edges are wrapped around by the exponential function and 
almost coincide. A slightly taller rectangle with height 2π would have its top and bottom 
edges mapped by w e z=  to coinciding radial segments.

If we replace z by iz−  in Euler’s formula, we get the companion equation

 e z i zcos sin .iz = −−  (31)

By adding these two equations and dividing by two, we obtain a formula for zcos ,

 z e ecos
2

.
iz iz

= + −
 (32)

If we subtract Equation (31) from Equation (29), then we obtain a formula for zsin ,

 z e e
i

sin
2

.
iz iz

= − −
 (33)

The complex versions of the other trigonometric functions are derived from zsin  and zcos  
in the usual way. For example

 = = −
+

−

−
z

z
z i

e e
e e

tan
sin
cos

1 .
iz iz

iz iz
 (34)

The usual trigonometric identities can be established by expressing the trigonometric func-
tions as exponentials and then making use of the properties of the exponential function.

EXAMPLE 3  Show that

z zcos sin 1.2 2+ =

Solution We square both sides of Equation (32) and Equation (33) and add:

z z e e e e e e

e

cos sin 2
4

2
4

4
4

1.

iz iz iz iz
2 2

2 0 2 2 0 2

0

+ = + + − − +

= =

− −

Equations (32) and (33) also reveal the close relationship between the trigonometric and 
hyperbolic functions. We define the complex hyperbolic functions by extending the series 
formulas for the real case, so that

�

�

= + = + + + +

= − = + + + +

−

−

z e e z z z

z e e z z z z

cosh
2

1
2! 4! 6!

  ,

sinh
2 3! 5! 7!

  .

z z

z z

2 4 6

3 5 7

Then Equations (32) and (33) say that

 z iz i z izcos cosh and sin sinh .= =  (35)

These relationships explain the similarities between trigonometric identities such as

z zcos sin 1,2 2+ =

and the corresponding identities for hyperbolic functions, such as

z zcosh sinh 1.2 2− =  

The Logarithmic Function

We now define the logarithm of a complex number, extending the familiar notion of the 
logarithm of a real positive number. It is convenient to work with the extension of the natu-
ral logarithm, xln , and we will assume this choice of base. However we will reserve usage 
of the notation xln  to the case where the x is a real number.
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 18.6  Some Complex Functions 18-29

FIGURE 18.18 The polar description  
of i1 +

p
4

1

10
x

y

1 + i

"2

If x is a positive real number, then the logarithm arises as the inverse of the exponen-
tial function, so that x yln =  if and only if x e .y=  We wish to have the complex loga-
rithmic function be the inverse of the exponential function in a similar manner. However, 
when we replace x with an arbitrary complex number z, we are faced with a problem 
because

e e e e i ecos 2 sin 2 .z i z i z z2 2 π π( )= = + =π π+

The function w e z=  is not one-to-one, and therefore does not have an inverse if the 
domain of the exponential function is the entire complex plane. We ran into this type of 
problem when we defined inverse functions, such as xarcsin , because xsin  is not one-
to-one. We handled the issue by restricting the domain of xsin  to an interval on which 
it is one-to-one, namely 2, 2 .π π[ ]−  We do the same now, restricting the domain of e z 
to a subset on which it is one-to-one. This allows for defining an unambiguous inverse 
for e ,z  which we call Log z, written with a capital “L.” While there are many possibilities 
for such a subset of the complex plane, we make a choice that gives what is called the 
principal branch of the logarithm function. Other choices of notation, such as zLn , are 
sometimes used for this function.

The idea behind the definition of Log z is most easily understood if we represent a 
complex number using its polar coordinate form, z re ,i= θ  where r z=  and zarg( ).θ =  
Now recall the property ab a bln ln ln= +  that is satisfied by the real logarithmic func-
tion, whose domain is the positive real numbers. If we retain this property, we are led to 
define the complex logarithm of a nonzero complex number z to be

 z r ilog ln .θ= +  (36)

There is still an ambiguity to resolve, because zarg( )θ =  is only defined up to mul-
tiples of 2 .π  The description of the complex number z could also have been given as 
z re ,i 2= θ π( )+  or z re i 4= θ π( )+ , or in general

z re n, 0, 1, 2, .i n2 …= = ± ±θ π( )+

The definition in Equation (36) could be applied to any of these choices that describe z, 
leading to infinitely many possible values for the logarithm of z, with any pair differing by 
a multiple of i2 .π  To pin down one choice, we require that the angle θ used to specify z 
should be chosen to satisfy .π θ π− < ≤  (We always take r 0,>  which implies that 0 is 
not in the domain of the logarithmic function.) We call the resulting complex number 

r iln , ,θ π θ π+ − < ≤  the principal value of the complex logarithmic function. The 
definition of the complex logarithmic function now becomes unambiguous,

z r iLog ln , .θ π θ π= + − < ≤

If we do not require that θ satisfy ,π θ π− < ≤  then we get multiple values for r iln .θ+  
We use zlog  to denote this entire collection of values. So zlog  denotes all complex num-
bers w satisfying e z.w =  A value of zlog  other than the principal value differs from it by 
a multiple of i2 .π  Thus all possible values w for the logarithm of z are related to the principal 
value by

w z n i nLog 2 , 0, 1, 2, .…π= + = ± ±

EXAMPLE 4  Find all possible values for the logarithm of i1 .+

Solution The complex number i1 +  is described with polar coordinates r 2,=  
4θ π=  (Figure 18.18). Since 4 ,π π π− < ≤  the principal value Log i1( )+  is

i iLog 1 ln 2 4 .π( )( )+ = +

So the possible values w for the logarithm of i1 +  are

w i n i i n i nLog 1 (2 ) ln 2 4 (2 ) , 0, 1, 2, .…π π π( )( )= + + = + + = ± ±  
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18-30 Chapter 18 Complex Functions

 1. Estimate e i1 2( )+  by using the first four terms of the series expan-
sion for e .z

 2. Express the sines and cosines in the following identity in terms of 
exponentials and thereby show that

A B A B A Bsin sin( ) cos( ) cos( ) sin( )( )+ = +

is a consequence of the exponential law e e e .z z z z1 2 1 2= +

 3. Establish the following differentiation formulas by differentiating 
the appropriate series term-by-term.

 a. =de
dz

e
z

z b. =
d z

dz
z

sin
cos

 c. = −
d z

dz
z

cos
sin  d. =

+
d z

dz z

Arctan 1
1 2

 4. The derivative of a complex-valued function 
f x u x i x( ) ( ) ( )υ= +  whose input is a real variable x is defined to 
be f x u x i x( ) ( ) ( ).υ′ = ′ + ′

 a. Show that y e i x= ω  and y e i x= ω−  are solutions of the differ-
ential equation

d y
dx

w y 0.
2

2
2+ =

 b. Show that y e a ib x= ( )+  and y e a ib x= ( )−  are solutions of the 
differential equation

d y
dx

a
dy
dx

a b y2 0.
2

2
2 2( )+ + + =

 c. Assuming that a and b are real in part 4(b), show that both

e bx ecos Reax a ib x( )= ( )+

and

e bx esin Imax a ib x( )= ( )+

are solutions of the given differential equation.

 5. Find values of a such that y e ax=  is a solution of the differential 
equation

 a. d y
dx

dy
dx

y2 5 0,
2

2
+ + =

 b. 
d y
dx

y4 0,
4

4
+ =

 c. 
d y
dx

y8 0.
3

3
− =

 6. Show that the point z t( ) traverses a unit circle with angular veloc-
ity ω if z t e( ) i t= ω  and ω is a real constant.

 7. If x and y are real, show that e e .x iy x=+

 8. Show that the real and imaginary parts of w e z=  satisfy the 
Cauchy-Riemann Equations.

 9. Show using the relevant series that

 a. iz i zsin( ) sinh ,=  b. iz zcos( ) cosh .=

 10. Show using the results of Exercises 2 and 9 that 
x iy x y i x ysin sin cosh cos sinh ,( )+ = +  and find a value of 

z such that zsin 2.=

T  11. Show that the real and imaginary parts of w zsin=  in Exercise 10 
satisfy the Cauchy-Riemann equations.

 12. Show that x iy x ysin sin sinh2 2( )+ = +  if x and y are real.

 13. Let z x iy w u i w z, , and sin .υ= + = + =  Show that for any 
nonzero real constant b, the line segment x y b,π π{ }− < ≤ =  
in the z-plane maps to the ellipse

u
b bcosh sinh

1
2

2

2

2

υ+ =

in the w-plane.

 14. Show that the only complex roots z x iy= +  (x and y real) of 
the equation zsin 0=  are at points on the real axis y 0( )=  at 
which xsin 0.=

 15. Show that x iy x y i x ycosh cosh cos sinh sin .( )+ = +

 16. Show that x iy y xcosh cos sinh2 2( )+ = +  if x and y are real.

 17. If x and y are real and x iycosh 0,( )+ =  show that x 0=  and 
ycos 0.=

 18. What is the image in the w-plane of a line x constant=  in the 
z-plane if

 a. w e ,z=  b. w zsin ?=  Sketch.

 19. The integral of a complex-valued function of a real 
variable x, f x u x i x( ) ( ) ( ),υ= +  is defined to be 

f x dx u x dx i x dx( ) ( ) ( ) .∫ ∫ ∫ υ= +  Evaluate e dxa ib x∫ ( )+  

and by equating real and imaginary parts, obtain formulas for 

e bx dxcosax∫  and e bx dxsin .ax∫

Logarithms

 20. Find the principal value of zlog  for each of the following complex 
numbers z:

 a. i2 2 ,−  b. i3 ,+

 c. 4,−  d. 4,

 e. i2 , f. i
i

1
1

.+
−

 21. Find all values of log z for each of the following complex num-
bers z:

 a. 2, b. 2,−

 c. i2 , d. i2 ,−

 e. i 3.−

 22. Express w ztan=  in terms of exponentials; then solve for z in 
terms of w and thereby show that

w
i

iw
iw

arctan 1
2

log1
1

.= +
−

 23. a. Show that

z i iz zarcsin log 1 .2( )= − + −

 b. Use part (a) to find a complex number z satisfying zsin 3.=  
Note that since z zsin sin 2π( )= +  there are infinitely many 
choices for such a z.

EXERCISES 18.6 
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 18.7  Conformal Maps 18-31

FIGURE 18.19 The map w zLog=  
maps a square to this region.

x

y

0

 24. Sketch the images in the w-plane of the following sets in the  
z-plane, under the mapping function w zln :=

 a. π π= − < <z zconstant, arg ,

 b. = < < ∞z zarg constant, 0 .

 25. Figure 18.19 shows the image under the complex map f z z( ) Log=  
of a square with vertices at ( ) ( )+ − + −e e i e e i1, , 1 1 , and 1 .

 a. Find the complex number to which each of the four vertices is 
mapped.

 b. Find parameterizations of the four curves forming the boundary 
of the image.

In this section we will introduce the concept of a conformal map. Informally, these maps 
are functions on open regions in the plane that preserve the angles between curves. There 
is a close connection between this idea and properties of complex functions. It turns out 
that complex differentiable functions with nonzero derivative are conformal. This geomet-
ric concept plays an important role in many applications.

To measure the angle between two differentiable curves that meet at a point z ,0  we 
take the angle between their tangent vectors, as we did in Chapter 12. We now look at what 
a map f x y u x y f x y, , , ,( ) ( ) ( )( )=  does to such angles. We can compare the angle 
between two curves a t( ) and b t( ) intersecting at z0 with the angle between the two curves 
c t f a t( ) ( ( ))=  and d t f b t( ) ( ( ))=  that they are sent to by f , as in Figure 18.20. When 
these angles are unchanged for all choices of curves, we say that the map f  is conformal.

18.7 Conformal Maps

Intuitively, conformal maps act at infinitesimal scales by stretching or contracting 
equally in all directions, and by rotating. Since angles are preserved, a conformal map f  
rotates the tangent vector of all curves through a point z0 by the same angle. The length of 
a tangent vector can be changed by a conformal map, but any two tangent vectors are 
stretched or compressed by the same factor. It is a rather amazing fact, shown in Theorem 3, 
that all complex differentiable maps have this powerful and useful geometric property 
wherever their derivative is nonzero.

Figure 18.21 shows the square domain A x y x y, : 0 1, 0 1 ,( ){ }= < < < <  
which is mapped by f z z( ) 2=  to the domain B in the complex w-plane.

Blue stripes in A are sent by f  to blue stripes in B, and red stripes to red. Notice that 
the edges of the red and blue stripes in A meet at right angles, as do their images in B. The 
angle between these curves is preserved. Even though the region A itself is stretched and 
distorted when mapped to B, the angle between any two curves in A is the same as the 
angle between the images of these curves in B.

a(t)
b(t)

x

y

u1
u2

c(t) = f (a(t))

d(t) = f (b(t))

f

u

v

z -plane w -plane

FIGURE 18.20 A conformal map preserves angles, meaning that 1 2θ θ=  
for any pair of curves in the domain of f .
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18-32 Chapter 18 Complex Functions

Cartographers making maps of the earth for navigational purposes made use of con-
formal maps. The most commonly used method for displaying a map of the earth, the 
Mercator Projection, shown in Figure 18.22, is conformal. It maps the surface of the earth, 
cut open from the north to the south pole along a longitude, to a rectangle in the plane. To 
set a course to a distant port, a navigator could draw a straight line on the Mercator map 
between their location and the destination. This would give a heading to follow, such as 
south 10 degrees west, or due east. If they then sailed their ship in that direction, they 
would follow the line drawn on the map till they reached their goal. This was very useful 
before the days of GPS. Note that while it preserves angles, the Mercator conformal map 
distorts lengths, and can give a distorted impression of the size of two regions. Antarctica 
and Greenland appear large relative to regions near the equator in this representation.

x

y

0 1

i 1 + i

A

 

x

y

0 1−1

2i

B

FIGURE 18.21 The map f z z( ) 2=  takes the perpendicular hori-
zontal and vertical lines in A to perpendicular curves in B. It preserves 
the angle between any pair of curves, at all points other than z 0.=

Since they preserve angles, conformal maps give an accurate representation of shapes 
at a small scale. This makes them useful for computer graphics, shape recognition, align-
ment algorithms, and many other applications. Conformal maps also have many uses in 
solving problems in electromagnetism and heat distribution.

To compute angles between two curves, we use their tangent vectors. If  
a t x t y t( ) ( ), ( )( )=  is a curve with a x y(0) ,0 0( )=  and a (0) 0,′ ≠  the vector 

′ = ′ ′a x y(0) (0), (0)  gives the tangent vector. A second curve b t( ) has tangent vector b (0)′  
at the point x y, .0 0( )  The angle between these two vectors at z0 gives the angle between the 
two curves.

A complex-valued map f  whose domain includes a disk around z x iy0 0 0= +  maps 
a t( ) to a new curve, c t f a t( ) ( ( )),=  with tangent vector c (0)′  at f z( ).0  Similarly 
d t f b t( ) ( ( ))=  has tangent vector d (0)′  at f z( ).0  We can compare the angle between the 
vectors c (0)′  and d (0)′  at f z( )0  with the angle between a (0)′  and b (0)′  at z .0  In general there 
is no reason to expect these angles to be the same. However when f  is a complex differen-
tiable map and f z( ) 0,0′ ≠  then it turns out that these angles are indeed equal, no matter 
which point z0 and which curves a and b are considered. Theorem 3 explains why this is true.

FIGURE 18.22 The Mercator projection preserves angles, but distorts 
area. Regions near the poles are highly stretched.

Qimono/Pixabay NASA
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 18.7  Conformal Maps 18-33

Proof  We will show that f  preserves the angle between the tangent vectors of any pair 
of differentiable curves. Suppose that a t( ) and b t( ) are two differentiable curves with 

= =a b z(0) (0) 0 and that their tangent vectors meet at an angle α. Take ar  to be a point 
on >a t t( ), 0, that has distance r from z ,0  and pick br to be a point on b t( ) at the same 
distance r from z .0  Then we can write

a z re b z reand .r
i

r
i

0 0
1 2− = − =θ θ

The quotient satisfies

a z
b z

e .r

r

i0

0

1 2
−
−

= θ θ( )−

As →r 0, the angle θ θ−1 2 approaches the angle α between the tangent vectors to the 
two curves,

α =
−
−







→

a z
b z

lim arg .
r

r

r0

0

0

Set c t( ) and d t( ) to be the images of a t( ) and b t( ) under f  so that this pair of curves inter-
sects at f z( ).0

The angle β at which c t( ) and d t( ) intersect at f z( )0  is

β =
−
−







→

f a f z
f b f z

lim arg
( ) ( )
( ) ( )r

r

r0

0

0

as this limit gives the angle between tangent vectors to the two image curves. We can 
rewrite this limit as

β =
−
−









=

−
−









−
−





















−
−









→

→

f a f z
f b f z

f a f z
a z

f b f z
b z

a z
b z

lim arg
( ) ( )
( ) ( )

lim arg

( ) ( )

( ) ( )
.

r

r

r

r

r

r

r

r

r

r

0

0

0

0

0

0

0

0

0

0

As →r 0 we have

−
−

= ′
−
−

= ′
→

f a f z
a z

f z
f b f z

b z
f zlim

( ) ( )
( ) and

( ) ( )
( )

r

r

r

r

r0

0

0
0

0

0
0

since the complex derivative can be computed as we approach z0 from any direction. We 
assumed ′ ≠f z( ) 0,0  so we can cancel these terms. Then

β =
−
−







→

a z
b z

lim arg .
r

r

r0

0

0

This is the same as the formula giving α, so the two angles are equal. 

THEOREM 3 Suppose that a map υ= +f u i  is complex differentiable and 
′ ≠f z( ) 0 on a domain A. Then f  is conformal.

EXAMPLE 1  Conformal maps of a square

We consider the square { }< < < <x y0 1, 0 1 , shown in Figure 18.23a, and its image 
under three conformal maps:

The image under the map =f z z( ) sin  is shown in Figure 18.23b.
The image under the map =f z z( ) cos  is shown in Figure 18.23c.
The image under the map =f z z( ) Arctan  is shown in Figure 18.23d.
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18-34 Chapter 18 Complex Functions

FIGURE 18.23 Conformal images of (a) a square region divided into ten 
vertical stripes under the conformal maps (b) sin z, (c) cos z, and (d) Arctan z.

x

y

0 1

i

x

y

0 1

i

(a) (b)

x

y

0.5 1 1.5 2

−i

−0.5i

0

y

x
0.50 1

i

2i

(c) (d)

0 2 4−2−4

y

x

−2i

−4i

2i

4i

x

y

−5i

−10i

0 1 2−1−2

5i

10i

FIGURE 18.24. (a) A rectangle divided 
into 20 vertical stripes and (b) its image  
under the conformal map f z z( ) sin=

(b)

(a)

Only part of the image of the vertical green stripe in the square is shown in Fig-
ure 18.23d. As →z i the values of Arctan z diverge, and Arctan z is not defined at =z i. 
The image of the green stripe is not bounded. This illustrates that conformal maps can 
stretch bounded domains such as the square to unbounded domains.

Since these maps are conformal, the images of perpendicular, vertical, and horizontal 
lines in the square remain perpendicular in the image. In fact, all angles between pairs of 
curves are preserved by these conformal maps. 

In Example 1 we see three regions in the plane that are the images of a square under a 
conformal map. It turns out that these types of region are not so special, and any simply 
connected open region in the plane is the image of an open square under a conformal map, 
with one exception. The exception is the entire complex plane. The existence of a confor-
mal map between any other pair of simply connected open regions is given by the Riemann 
Mapping Theorem, a deep result from the theory of conformal maps.

EXAMPLE 2  The sine function =f z z( ) sin( ) has nonzero derivative when rest-
ricted to the rectangle { }− < < − < <x y1.5 1.5, 10 10 , shown in Figure 18.24a. 
The image of this rectangle lying within the square x y2.5 2.5, 2.5 2.5{ }− < < − < <  
is shown in Figure 18.24b. If the rectangle is enlarged to the infinite rectangle 

x y2 2, ,π π{ }− < < −∞ < < ∞  then its image under the sine function fills  
up the entire complex plane except for two “slits”, the intervals ( ]−∞ −, 1  and [ )∞1,  on 
the x-axis.
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 Chapter 18  Questions to Guide Your Review 18-35

 1. Does the map =f z z( ) 2 preserve the angles between the intersect-
ing lines =y 0 and =y x? How does this fit into Theorem 3?

 2. For which z is the map =f z e( ) z conformal?

 3. For which z is the map =f z z( ) 3 conformal? What happens to 
angles at points where it is not conformal?

 4. For the map ( ) ( )=f x y x y, 2 , , compute the angle of intersec-
tion of the images under f  of the horizontal line { }=x 1  and the 
vertical line { }=y 1 . Is this map conformal?

 5. Is the map ( ) ( )= +f x y x x y, ,  conformal? If not, find two 
intersecting curves whose angles are not preserved by f .

 6. Show that the map ( ) ( )= − +f z z i z i( )  is a conformal map 
from the upper half-plane ( ){ }>x y y, :  0  to the open unit disk 
( ){ }+ <x y x y, :  0 .2 2  A deep result, the Riemann Mapping 

Theorem, shows that this is not unusual. Any simply connected 
region in the plane can be conformally mapped to the open unit 
disk, with the exception of the entire complex plane.

 7. Find the angle by which a curve through the point z 0 is rotated 
by the map =f z z( ) 2 if a. =z 1,0  b. =z i,0  c. = +z i1 ,0   
d. = −z i,0  e. =z i2 ,0  and f. = −z 1.0

 8. The conformal factor of f  at z 0 is the amount by which it stretches 
tangent vectors. Where is the conformal factor of =f z z( ) 2 
smaller than one?

 9. Given two complex numbers a and b, the map = +f z az b( )  
rotates all vectors by the same angle. What is this angle?

 10. Given two complex numbers a and b, the map = +f z az b( ) , 
stretches all vectors by the same factor. What is this factor?

 11. The most basic conformal maps have the form = +f z az b( ) . 
Show that such a map is conformal when a 0≠ . When a is not 
real show that f  has a fixed point z 0 satisfying =f z z( ) .0 0  If 

=a 1 and ≠b 0, show that f  does not have a fixed point.

 12. What is the fixed point in Exercise 11 when a. = +f z z i( ) 3 ,  
b. f z i z i( ) 1 4 2 ?( )= + + −

EXERCISES 18.7 

 1. Define the set of complex numbers.

 2. Define, for complex numbers, the concepts of equality, addition, 
multiplication, and division.

 3. A set of numbers is said to be closed under an operation ⊗ if 
⊗a b is in the set whenever a and b are. Is the set of complex 

numbers closed under the operations of addition, subtraction, 
multiplication, division, and raising to a power (including com-
plex exponents)? (Be careful to consider all complex numbers in 
formulating your answer, including 0.)

 4. How may the complex number +a ib be represented graphically 
in the complex plane?

 5. Illustrate in the complex plane how the absolute values and argu-
ments of the product and quotient of two complex numbers z1 and  
z 2 are related to the absolute values and the arguments of z1  
and z .2

 6. State De Moivre’s theorem and explain how to find the n  distinct 
complex nth roots of a nonzero complex number +a ib.

 7. Prove that if n is an even positive integer, then θncos  may be 
expressed as a polynomial with integer coefficients, in θcos .2  
(Example: θ θ= −cos 2 2 cos 1.2 )

 8. Using vectors in the complex plane, illustrate geometrically how 
to find the n complex nth roots of any complex number +a ib.

 9. Using the complex plane, illustrate geometrically how the conju-
gate and the reciprocal of a complex number +a ib are related to 
that number.

CHAPTER 18 Questions to Guide Your Review

 10. If z is a complex number such that =z z , what else can you con-
clude about z?

 11. If z is a complex number such that = −z z , what else can you 
conclude about z?

 12. Describe the sets of complex numbers z satisfying the following 
equalities or inequalities, where = +z a ib0  is a given complex 
number and k is a positive real constant.

 a. − =z z k,0

 b. − <z z k,0

 c. − >z z k.0

 13. Define the concept of continuity for a function of a complex vari-
able z. Define the derivative of f  at = +z a ib.

 14. What are the Cauchy-Riemann Equations and when are they 
known to be satisfied?

 15. Define the convergence of a series of complex numbers.

 16. How do we define e z z, sin , cos ,z  and ztan  for a complex number 
= +z a ib?

 17. What is a conformal map and what is its relationship to a complex 
differentiable map?
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18-36 Chapter 18 Complex Functions

 1. Let = −z i2 2 .

 a. Plot the points z z, , and z .2

 b. Plot the three complex cube roots of z 2 (that is, z 2 3).

 2. Express each of the following complex numbers in the form θre i  
with ≥r 0 and π θ π− < ≤ . Sketch

 a. ( )( )+ −i i1 1 3 ,
2

 b. − i2 23  (three answers).

 3. Express the four 4th roots of − i16  in the form +a bi.

 4. a. Solve the equation + =z 16 0,4  obtaining four distinct roots.

 b. Express the five roots of the equation + =z 32 05  in polar 
form.

 5. a. Find all complex numbers z such that + + =z i1 3 0.4

 b. Express the number π+e i2 4 in the form +a bi.

 6. Plot the complex number − i2 2 3  in the complex plane and find

 a. its two square roots,

 b. the principal value of its logarithm.

 7. Find the values of r and θ  such that + = θi re3 4 .i

 8. If = −z i3 3 , find all values of zlog .

 9. Find a complex number +a ib that satisfies the equation

= −+e i1 3.a ib

 10. Express the following in the form +a bi:

 a. ( )− − i1 1 3 (write down all the roots).

 b. ( )+ ilog 3 3 . (There are infinitely many possible answers. 
Give an answer that expresses all of these.)

 c. π+e .i2

CHAPTER 18 Additional and Advanced Exercises

 11. Let =f z z( )  (the conjugate of z).

 a. Study the behavior of the quotient

−
−

f z f z
z z

( ) ( )1

1

when →z z1 along straight lines of slope m.

 b. From the results of part (a) what can you conclude about the 
derivative of f z( )?

 12. If ∑=
=

∞

f z a z( )
n

n
n

0

 and =f z f z( ) ( ), for <z R, show that the 

an are real.

 13. If ∑=
=

∞

f z a z( )
n

n
n

0

 and =f z f z( ) ( ), for <z R, show that 

f z( ) is a constant.

 14. Show that 
θ

θ θ θ θ( ) ( )+ = +d
d

i i icos sin cos sin .
n

n
n

 15. Draw the set of points in the complex plane that satisfy

 a. >zRe( ) 0, b. ( )= − ≤z z iIm( ) 2, 0,

 c. −
+

<z i
z i

1, d. ≥e 1,z

 e. ≤zsin 1.

 16. If υ( ) ( )u x y x y, and ,  are the real and imaginary parts of a com-
plex differentiable function of = +z x iy, show that the family 
of curves =u constant is orthogonal (perpendicular) to the fam-
ily υ = constant at every point of intersection where ′ ≠f z( ) 0.

 17. Given that =z e zLog  and ( ) =e e ,z z z z1 2 1 2  how would you 
compute z w for complex numbers z and w? Compute z w for 

= + =z i w i1 , 2 .
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18-37

ANSWERS TO ODD-NUMBERED EXERCISES

Chapter 18
SECTION 18.1, pp. 18-9–18-10
 1. (a) + i14 8  (b) − − i7 4  (c) − i5
 3. (a) By reflecting z across the real axis
 (b) By reflecting z across the imaginary axis
 (c)  By reflecting z through the origin, or equivalently, rotating it 

by 180 degrees.
 (d)  By reflecting z across the real axis and then multiplying the 

length of the vector by z1 2

 5. (a) Points on the circle + =x y 42 2

 (b) Points inside the circle + =x y 42 2

 (c) Points outside the circle + =x y 42 2

 7. Points on a circle of radius 1, center ( )−1, 0

 9. Points on the line = −y x   11. πe4 i2 3  13. πe1 i2 3

 15. θ θ θ θ− +cos 6 cos sin sin4 2 2 4

 17. − ± i1, 1
2

3
2

  19. − − −i i i2 , 3 , 3

 21. ± − ±i i6
2

2
2

, 6
2

2
2

  23. i i1 3 , 1 3± − ±

SECTION 18.2, p. 18-17
 1. (a) π= ≤ ≤w w1, 0 arg 2
 (b) π π= ≤ ≤w w4, arg 2
 (c) π=warg 2
 (d) π< − < ≤w w1, 2 arg 0
 (e) The u-axis, ≥u 0
 (f) The u-axis, ≤u 0

SECTION 18.3, p. 18-20

 1. 
( )

−
−

= +
z

2
1

2
0

2

 3. f z
z

z

i i

( )
1

, which gives two values;

1
2

exp
8

and 1
2

exp 9
8

.

0
0

0
2

4 4
π π( ) ( )

′ =
+

SECTION 18.4, p. 18-22
 1. υ= − =u x y xy, 22 2

 3. υ= − + = −u x x y y x y xy6 , 4 44 2 2 4 3 3

SECTION 18.5, p. 18-25
 1. <z 1  3. − <z 1 1  5. + <z 1 2
 9. i0.208 0.298+

SECTION 18.6, pp. 18-30–18-31
 1. + i1.59 1.32
 5. (a) − ± i1 2  (b) ± − ±i i1 , 1  (c) − ± i2, 1 3

 19. ∫ ( )=
+

+ +e bx dx e
a b

a bx b bx Ccos cos sinaz
ax

2 2

∫ ( )=
+

− +e bx dx e
a b

a bx b bx Csin sin cosax
ax

2 2

 21. (a) π+ n iln 2 2
 (b) π( )+ +n iln 2 2 1
 (c) π( )+ +n iln 2 2 1

2

 (d) π( )+ −n iln 2 2 1
2

 (e) π( )+ +n iln 2 2 ,5
6

( )= ± ±n 0, 1, 2,…

 23. (b) n i
2

2 ln 3 2 2π π( ) ( )+ − +

SECTION 18.7, p. 18-35
 1. No. The angle between the lines is °90 , but the angle between 

their images is °180 . This is the case in Theorem 3 where 
′ =f z( ) 0.0

 3. All ≠z 0 since ′ ≠f z( ) 0 except at =z 0 and f  is analytic. At 
=z 0 angles multiply by 3.

 5. No. The angle between =y 0 and =x 0 is π 2. These two 
lines are taken by f to =y x  and =x 0, which intersect at an 
angle of π 4.

 7. (a) 0 (b) π 2 (c) π 4 (d) π3 2 (e) π 2 (f) π
 9. aarg   11. ( )= −z b a10

ADDITIONAL AND ADVANCED EXERCISES, p. 18-36

 3. (a) ( ) ( )± + − − ± − + +i i2 2 2 2 , 2 2 2 2

 (b)  π π ( )= + − +− n isin 5 2 2 ln 5 24 ,1  

…( )= ± ±n 0, 1, 2,

 5. (a) ( )=π( )+e n2 0,1, 2, 3i n1 4 2 3 6  (b) ( )+e i e2 22 2

 7. θ= = −r 5, tan 1 4
3   9. π− iln 2 3

 11. (b) Derivative doesn’t exist.
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19-1

In Section 9.8 we saw that if a function f  has derivatives f k( ) of order = …k n1, 2,  ,  ,  
then we can create a polynomial function Pn that approximates f  near a chosen point. This 
Taylor polynomial gives a close fit to f  near that particular point, but the error in the 
approximation can be large at points that are far away. In this chapter we will introduce 
Fourier series, which provide a way to approximate a function over an interval, rather than 
near a single point. Instead of involving polynomials, a Fourier series approximation is a 
sum of multiples of the functions kxsin  and kxcos . In a sense that we will describe, a 
Fourier series approximation minimizes an error that is distributed over an interval. 
Additionally, while Taylor polynomials cannot be used to approximate discontinuous func-
tions, Fourier series approximations will often be applicable to such functions.

Fourier series, introduced by Joseph Fourier, are well-suited to analyzing periodic 
functions, such as radio signals and alternating currents. They can also be used to solve 
heat transfer problems; indeed, this was the problem that motivated Fourier. A large field 
of mathematics called harmonic analysis began with Fourier series. Fourier series and 
harmonic analysis have applications to electrical engineering, acoustics, optics, signal 
processing, image processing, quantum mechanics, econometrics, and many other areas in 
science and engineering.

Fourier Series  
and Wavelets

19

19.1 Periodic Functions

Let f  be a function whose domain is the real line. We say that f  is periodic if there is a 
positive real number P  such that f x P f x( )( )+ =  for every real number x. In Section 1.3  
we defined the period of f  to be the smallest such number P. In this chapter we will call the 
smallest P  the fundamental period of f , and say that any other positive number P  that 
satisfies f x P f x( )( )+ =  for every x is a period for f . We will focus in this chapter on 
functions with period P 2 ,π=  but it is not difficult to adapt to other periods.

EXAMPLE 1

 (a) The function f x x( ) sin=  is periodic with period 2π because for every real number x 
we have

f x x x f x2 sin 2 sin ( ).π π( ) ( )+ = + = =

Likewise, xcos  is periodic with period 2 ,π  and 2π is the fundamental period for both 
functions.

BIOGRAPHY

Jean-Baptiste Joseph Fourier
(1768–1830)
Fourier was a French mathematician, who as a 
young boy aspired to become an army officer. 
He was denied that opportunity for military 
service and, therefore, switched his passion to 
mathematics.

To know more, visit the companion Website. 

For some periodic functions, such 
as the constant function =f x( ) 1, 
there is no smallest >P 0 such that 

( )+ =f x P f x( ) for every x.
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19-2 Chapter 19 Fourier Series and Wavelets 

DEFINITION The collection of functions

…x x x x x x1, cos , sin , cos 2 , sin 2  cos 3 , sin 3 , 

is called the trigonometric system.

 (b) Let k be any positive integer. Then the function g x kx( ) sin=  has period k2π  because 
if x is any real number, then

g x
k

k x
k

kx kx g x2 sin 2 sin 2 sin ( ).π π π( ) ( ) ( )+ = +





= + = =

The number k2π  is the fundamental period of g, but it is not the only period. Any 
positive integer multiple of k2π  is also a period. For example, 2π is a period for g 
because for every x we have

π π π[ ] ( )( ) ( )+ = + = + = =g x k x kx k kx g x2 sin 2 sin 2 sin ( ).

Similarly, g x kx( ) cos=  has fundamental period k2 ,π  and it is also periodic with 
period 2 .π

 (c) We will let 1 denote the constant function that takes the value 1 at every point:

=x x1( ) 1 for every real number  .

The function 1 is periodic, and every positive real number P  is a period. There is no 
smallest period P, so 1 does not have a fundamental period. 

We will use the functions kxsin  and kxcos , along with the constant function 1, to define 
the Fourier series approximation of a function. Each of these functions is periodic with 
period 2 .π  The oscillatory nature of these functions is one reason that they are well-suited 
for forming approximations. We say that kxsin  and kxcos  have frequency k, because their 
graphs show k complete oscillations within the interval π[ ]0, 2  (Figure 19.1). Since 

= =x x1cos 0 1 ( ) for every x, we say that the constant function 1 has frequency zero. 
We introduce a name for this set of functions.

(b) Graph of sin 7x over the interval [0, 2p]

p
2

3p
2

x

y

2pp

−1

−0.5

0.5

1

p
2

3p
2

x

y

2p

(a) Graph of cos 2x over the interval [0, 2p]

p

−1

−0.5

0.5

1

FIGURE 19.1 Two functions in the trigonometric 
system.
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 19.2  Summing Sines and Cosines 19-3

Periodic Functions
In Exercises 1–6, determine whether the given function is periodic. If 
it is, find its fundamental period P.

 1. x1 sin+  2. x  3. x

 4. e xcos  5. x xsin cos2  6. xsin 2

Theory and Examples

 7. Show that if f x( ) and g x( ) are both periodic with the same period 
P, then the following functions are also periodic with period P.

 a. f x g x( ) ( )+

 b. cf x( ), where c is a real number

 c. f x g x( ) ( )

 d. e f x( )

 8. Periodic extension Suppose that the values of f x( ) are speci-
fied for x0 2 .π≤ <  Then for each x0 2π≤ <  and every 
nonzero integer k, define f x k f x2 ( ).π( )+ =  Show that this 
extends the definition of f  to the entire real line, and that the 
resulting function is periodic with period 2 .π

EXERCISES 19.1

19.2 Summing Sines and Cosines

We discussed Taylor series and Taylor polynomials in Section 9.8. If a function f  has 
derivatives of order k for = …k n1, 2,  ,   then the Taylor polynomial of order n at  
x 0=  is

P x a a x a x a x a
f

k
( )  where 

(0)
!

.n n
n

k

k

0 1 2
2

( )
�= + + + + =

By choosing the coefficients ak in this way we obtain a polynomial Pn that approximates f  
near the point x 0.=

Taylor series are based on the functions …x x x1,  ,  ,  ,  ,2 3  while Fourier series are 
instead based on sines and cosines. Just as a Taylor polynomial is a combination of finitely 
many of the functions …x x x1,  ,  ,  ,  ,2 3  we seek a combination of finitely many elements 
of the trigonometric system that will approximate a function. We refer to such a finite 
combination of sines and cosines as a trigonometric polynomial.

EXAMPLE 1  Define a periodic function f  by letting its values on the interval 
π[ ]0, 2  be

 
π π

π π
=

− ≤ <

− =








f x
x x

x
( )

, 0 2 ,

, 2 ,
 (1)

and then let those values repeat every 2π units (Figure 19.2). This gives us a function f  that 
is periodic on the real line with period 2 .π  Observe that f  has a jump discontinuity at 
x k2π=  for every integer k.

x
4p2p 3p−2p −p p

y

−p

1

p

−1

FIGURE 19.2 Graph of the periodic function f  defined in 
Equation (1) over the interval 2 ,  4π π[ ]−
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19-4 Chapter 19 Fourier Series and Wavelets 

We would like to approximate f  by a trigonometric polynomial, which is a sum of 
finitely many multiples of the functions in the trigonometric system (the real number that 
we multiply 1 or kxsin  or kxcos  by is called the amplitude of that term). We cannot do a 
very good job using only one function from the trigonometric system (see Figure 19.3a, 
which compares the graphs of f  and x2 sin− ). However, we can make a better approxima-
tion by using more elements of the trigonometric system. Figure 19.3b shows a trigono-
metric polynomial that is a sum of two scaled sines, while Figure 19.3c shows that we can 
do a better approximation using a sum of three scaled sines. As seen in Figure 19.3d, a 
certain combination of 9 terms gives us a trigonometric polynomial that appears to be a 
good approximation over most of the domain, though still not close at points near integer 
multiples of 2 .π  If we use yet more terms, we can improve the approximation. In particular, 
the trigonometric polynomial

 p x x x x
n

nx( ) 2 sin sin 2 2
3

sin 3 2 sinn �= − − − − −  (2)

is a good approximation to f  using a sum of n sines. We will explain below how we knew 
what amplitudes to choose for the sines in this sum, and why no cosine terms are used. 

(b) f (x) and p2(x) = −2 sin x − sin 2x

x
4p2p 3p−2p −p p

y

−p

1

p

−1

(c) f (x) and p3(x) = −2 sin x − sin 2x − −sin 3x2
3

x
4p2p 3p−2p −p p

y

−p

1

p

−1

(a) f (x) and p1(x) = −2 sin x

x
4p2p 3p−2p −p p

y

−p

1

p

−1

(d) f (x) and p9(x) = −2 sin x − sin 2x − −sin 3x − . . . − −sin 9x2
3

2
9

x
4p2p 3p−2p −p p

y

−p

1

p

−1

FIGURE 19.3 Trigonometric polynomial approximations to the function f  defined in Equation (1) 
over the interval π π[ ]−2 , 4 , using sums of scaled sines.

We see in Example 1 that we can closely approximate a particular function over most 
of the interval π[ ]0, 2  by using sines and cosines from the trigonometric system (for that 
function we only needed sines). We would like to approximate other functions in a similar 
way. Given a function f  that has period 2 ,π  we seek a function

 p x a a x a x a nx b x b x b nx( ) cos cos 2 cos sin sin 2 sinn n n0 1 2 1 2= + + + + + + + +� �  (3)

that approximates f  across the interval π[ ]0, 2 . We refer to pn as a trigonometric polyno-
mial (Exercises 5–18 will explain why we use the word “polynomial” in this context). We 
say that ak is the amplitude of the term a kxcos ,k  and similarly bk  is the amplitude of the 
term b kxsin .k  Since a a x cos 0 ,0 0=  this number is the amplitude of the zero frequency 
term. Recalling the constant function 1, which satisfies x1( ) 1=  for every x, we have 

=a a x1( ).0 0  Thus we also say that a0 is the amplitude of the constant term in the sum in 
Equation (3).
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 19.3  Vectors and Approximation in Three and More Dimensions 19-5

We can write Equation (3) more succinctly using sigma notation:

 p x a a kx b kx( ) cos sin .n
k

n

k
k

n

k0
1 1

∑ ∑= + +
= =

 (4)

We will show how to choose the amplitudes ak and bk  so that pn is the “best approxima-
tion” to f  that is a sum of constant multiples of the constant function, the n cosines xcos , 

x nxcos 2 , …, cos  and the n sines …x x nxsin , sin 2 , , sin . To do this, we will demonstrate 
how to approximate vectors in three and higher dimensions in Section 19.3, and then show 
in Section 19.4 that ideas that work for approximating vectors by other vectors also work 
for functions.

Theory and Examples

 1. Show that a function of the form p x b kx( ) sinn
k

n

k
1

∑=
=

 is odd, 

that is, p x p x( ) ( )n n− = −  for every x.

 2. Show that a function of the form p x a a kx( ) cosn
k

n

k0
1

∑= +
=

 is 

even, that is, p x p x( ) ( )n n− =  for every x.

Sums of Sines and Cosines
In Exercises 3 and 4, the values of a a,  ,k0  and bk that define a trigono-

metric polynomial p x a a kx b kx( ) cos sinn k

n
k k

n
k0 1 1∑ ∑= + +

= =
 

are given. Use a CAS to plot pn for various values of n  over the 
domain π π[ ]−2 , 4 . Does it appear that p x( )n  is converging to some 
limit function f x( ) as n  increases? If so, what function? Is the conver-
gence “fast” (the limit is apparent even for small values of n) or “slow” 
(you must use a large value of n  before the graph of pn appears to be 
close to the graph of f )?

 3. π
π( )

= =
−

= =−a a
k

a b
2

,  4
2 1

,  0,  0k k k0 2 1 2 2

 4. 
π( )

( )= = −
−

= =−a a
k

a b1
2

,  1 2
2 1

,  0,  0k
k

k k0 2 1 2

Complex Numbers and Trigonometric Polynomials
The exercises below illustrate the connection between trigonometric 
polynomials and complex polynomials in the variable z e .ix=  Some 
knowledge of complex numbers is required. In particular, we will use 
Euler’s Formula e x i xcos sinix = +  and De Moivre’s Theorem,

( )= + = + ≥e x i x nx i nx ncos sin cos sin , 0,inx n

T

T

which are derived in Chapter 18, and we will use the fact that 
z z( ) .m n mn=  These exercises will show that trigonometric polynomi-

als equal “generalized” polynomials

a z a z a a z a zn
n

n
n

1 0 1
1+ + + + +−

−
−

−� �

that use both positive and negative powers of z e ix=  with complex 
numbers a .k

Prove the identities stated in Exercises 5–18. We assume that 
z e ix=  where x  is a real number.

 5. z 10 =

 6. z i x i x1 1 cos 1 sin( ) ( )+ + = + + +

 7. z z x x i x x2 3 5 2 cos 2 3 cos 5 2 sin 2 3 sin2 ( ) ( )+ − = + − + +

 8. a z a a kx i a kxcos sin
k

n

k
k

k

n

k
k

n

k
0

0
0 0

∑ ∑ ∑= + +
= = =

 9. z e x i xcos sinix1 = = −− −

 10. = = − ≥− −z e nx i nx ncos sin , 0n inx

 11. z z x2 cos1+ =−

 12. z z i x2 sin1− =−

 13. + = ≥−z z nx n2 cos , 0n n

 14. − = ≥−z z i nx n2 sin , 0n n

 15. z z z z x x2 3 5 3 2 4 cos 2 6 cos 52 1 2+ − + + = + −− −

 16. iz iz iz iz x x4 2 2 4 8 sin 2 4 sin2 1 2− + − = − +− −

 17. x x i z i zcos 2 sin 3 0.5 3 0.5 1( ) ( )+ − = − − + + −

 18. 
( ) ( )

− + −
= − − − − + +− −

x x x
i z z z i z

2 cos 3 6 cos 2 8 sin 3 5
1 4 3 5 3 1 43 2 2 3

EXERCISES 19.2

19.3 Vectors and Approximation in Three and More Dimensions

Vectors in two and three dimensions were introduced in Chapter 11. If v is a three-
dimensional vector equal to the vector with initial point at the origin and terminal point 
υ υ υ( ),  ,  ,1 2 3  then the component form of v is

υ υ υ= 〈 〉v ,  ,  .1 2 3

Vectors in Three Dimensions

We review some definitions and facts about vectors in three dimensions.

M19_HASS5901_15_GE_C19.indd   5M19_HASS5901_15_GE_C19.indd   5 23/03/23   9:07 AM23/03/23   9:07 AM

www.konkur.in

Telegram: @uni_k



19-6 Chapter 19 Fourier Series and Wavelets 

DEFINITION The dot product of = 〈 〉u u uu ,  , 1 2 3  and υ υ υ= 〈 〉v ,  , 1 2 3  is the 
number

u u uu v .1 1 2 2 3 3υ υ υ⋅ = + +

DEFINITION Vectors u and v are orthogonal if u v 0.⋅ =  They are ortho-
normal if u v 0⋅ =  and additionally u v 1.= =

Observe that u v v u .− = −

DEFINITION

1. The length of a vector υ υ υ= 〈 〉v ,  , 1 2 3  is

v .1
2

2
2

3
2υ υ υ= + +

If v 1,=  then we say that v is a unit vector.

2. The distance between two vectors = 〈 〉u u uu ,  , 1 2 3  and υ υ υ= 〈 〉v ,  , 1 2 3  is

u u uu v .1 1
2

2 2
2

3 3
2υ υ υ( )( ) ( )− = − + − + −

An important fact is that the length squared of a vector equals the dot product of the 
vector with itself:

v v v.2
1
2

2
2

3
2υ υ υ= + + = ⋅

Some other properties of dot products and lengths are laid out in Exercises 21–30.
 Theorem 1 in Section 11.3 shows that the dot product of two nonzero vectors satisfies

u v u v cos ,θ⋅ =

where θ is the angle between u and v. If u and v are perpendicular then 2θ π=  and there-
fore u v 0.⋅ =  The converse is also true. That is, if u and v are nonzero vectors with 
u v u v cos 0,θ⋅ = =  then cos 0θ =  and therefore arccos 0 2.θ π= =  The fol-
lowing definition also allows for one or both of the vectors to be the zero vector.

Often we deal with more than two vectors. We say that three vectors u, v, w are 
orthogonal if the dot product of any two of them is zero: u v 0,⋅ =    u w 0,⋅ =  and 
v w 0.⋅ =  If in addition each of u, v, and w is a unit vector, then we say that the vectors 
u, v, w are orthonormal. Sometimes we will use the longer but more precise phrasing 
that { }u v w,  ,   is an orthogonal set of vectors (or orthonormal set of vectors). In three-
dimensional space, it is not possible to have a set of more than three orthonormal vectors, but 
we will see below that it is possible to have larger collections in higher-dimensional space.

We will derive some formulas that relate lengths, distances, and dot products. 
Statement 3 of the next result is the Pythagorean Theorem for vectors. Exercise 25 shows 
that the converse of the Pythagorean Theorem holds as well.

THEOREM 1 Let u and v be three-dimensional vectors.

1. ( )− = − ⋅ +u v u u v v2 .2 2 2

2. ( )+ = + ⋅ +u v u u v v2 .2 2 2

3. If u and v are orthogonal, then + = +u v u v .2 2 2
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 19.3  Vectors and Approximation in Three and More Dimensions 19-7

Proof  Statement 1 follows because

υ υ υ

υ υ υ υ υ υ

υ υ υ υ υ υ

( )

( ) ( ) ( )

( ) ( )

( )

− = − + − + −

= − + + − + + − +

= + + − + + + + +

= − ⋅ +

u u u

u u u u u u

u u u u u u

u v

u u v v

2 2 2

2

2 ,

2
1 1

2
2 2

2
3 3

2

1
2

1 1 1
2

2
2

2 2 2
2

3
2

3 3 3
2

1
2

2
2

3
2

1 1 2 2 3 3 1
2

2
2

3
2

2 2

and the proof of Statement 2 is similar. If u and v are orthogonal then ⋅ =u v 0, so 
Statement 3 follows from Statement 2. 

We need one additional definition.

DEFINITION A linear combination of finitely many vectors …u u u,  ,  ,  n1 2  is 
a sum where we scale each vector u k by a real number ak and add those terms 
together, giving the vector

+ + +�a a au u u .n n1 1 2 2

EXAMPLE 1  The standard unit vectors in three-dimensional space were introduced 
in Section 11.2. They are

= 〈 〉 = 〈 〉 = 〈 〉i j k1, 0, 0 , 0, 1, 0 , 0, 0, 1 .

We can form linear combinations of one, two, or three of the standard unit vectors by 
multiplying the vectors by real numbers and adding them together. For example, using two 
of the vectors we can create linear combinations such as

+ = 〈 〉 + 〈 〉 = 〈 〉

− = 〈 〉 − 〈 〉 = 〈 − 〉

− − = −〈 〉 − 〈 〉 = 〈 − − 〉

i j

i k

j k

2 4 2, 0, 0 0, 4, 0 2, 4, 0 ,

5 7 5, 0, 0 0, 0, 7 5, 0, 7 ,

3 2 0, 3, 0 0, 0, 2 0, 3, 2 .

Some linear combinations of all three of the standard unit vectors are

π π π

+ − = 〈 〉 + 〈 〉 − 〈 〉 = 〈 − 〉

+ − = 〈 〉 + 〈 〉 − 〈 〉 = 〈 − 〉

− − = 〈 〉 − 〈 〉 − 〈 〉 = 〈 − − 〉

i j k

i j k

i j k

5 2 7 5, 0, 0 0, 2, 0 0, 0, 7 5, 2, 7 ,

6 , 0, 0 0, 6, 0 0, 0, 1 , 6, 1 ,

2 2 1, 0, 0 0,  2, 0 0, 0, 2 1, 2, 2 .

To create a linear combination of one vector, we simply multiply that vector by a real number:

= 〈 〉

= 〈 〉

− = 〈 − 〉

i

j

k

3 3, 0, 0 ,

5 0,  5, 0 ,

9 0, 0, 9 .

We are not restricted to using just three vectors. For example, one linear combination of 
= 〈 − 〉 = 〈 〉 = 〈 〉u v w1, 1, 0 ,   2, 0, 2 ,   3, 1, 2 , and = 〈 − 〉y 0, 1, 3  is

 + − − = 〈 − 〉 + 〈 〉 − 〈 〉 − 〈 − 〉 = 〈 − 〉u v w y2 3 3 2, 2, 0 6, 0, 6 3, 1, 2 0, 3, 9 5, 6, 13 . 

Orthonormal Bases in Three Dimensions

Any vector υ υ υ= 〈 〉v ,  , 1 2 3  can be written as a linear combination of the standard unit 
vectors:

υ υ υ υ υ υ υ υ υ= 〈 〉 = 〈 〉 + 〈 〉 + 〈 〉 = + +v i j k,  ,  1, 0, 0 0, 1, 0 0, 0, 1 .1 2 3 1 2 3 1 2 3
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19-8 Chapter 19 Fourier Series and Wavelets 

THEOREM 2 Let r, s, t be orthonormal vectors in three-dimensional space. Then 
every vector υ υ υ= 〈 〉v ,  , 1 2 3  can be written as

( ) ( ) ( )= ⋅ + ⋅ + ⋅v v r r v s s v t t.

DEFINITION A set of three orthonormal vectors { }r s t,  ,   in three-dimensional 
space is called an orthonormal basis for three-dimensional space.

The dot product between any two of the standard basis vectors is zero: ⋅ = ⋅ =i j i k0,   0, 
and ⋅ =j k 0. Further, each of i, j, and k is a unit vector. Therefore, i, j, k are orthonormal 
vectors.

Now choose any other orthonormal vectors r, s, t. For example, we might take the 
standard unit vectors i, j, k and rotate them in space around some axis that passes through 
the origin to obtain new vectors r, s, t. The lengths of the vectors and the angles between 
them remain unchanged under a rotation, so this process gives us orthonormal vectors. 
However we obtain them, if we have three orthonormal vectors r, s, t, then we can write 
any vector v as a linear combination of them (this is proved in texts on linear algebra). That 
is, if we choose a vector v, then there must be real numbers c ,1  c ,2  and c3 so that

= + +c c cv r s t.1 2 3

We now determine these coefficients. Taking the dot product of v with r gives us

( )

( ) ( ) ( )

⋅ = + + ⋅
= ⋅ + ⋅ + ⋅

= + +
=

c c c

c c c

c

c

v r r s t r

r r s r t r

r 0 0

.

1 2 3

1 2 3

1
2

1

A similar calculation shows that = ⋅c v s2  and = ⋅c v t.3  We state these facts as a theorem.

= + +c c cv r s t1 2 3

distributive property of the dot product

⋅ = ⋅ = ⋅ =r r r s r t r, 0, 02

r has unit length.

Using the standard unit vectors, we can write υ υ υ= 〈 〉v ,  , 1 2 3  as 
υ υ υ= + +v i j k.1 2 3  Theorem 2 tells us that if r, s, t are three orthonormal vectors,  

then v is also a linear combination of r, s, and t, namely = + +c c cv r s t1 2 3  where 
= ⋅ = ⋅c cv r v s,  1 2  and = ⋅c v t.3  Because every vector v can be written as a unique 

linear combination of r, s, and t, this collection of vectors is called a basis. Since the 
vectors are also orthonormal, we use the following name.

Approximation Using an Orthonormal  
Basis in Three Dimensions

Suppose that υ υ υ= 〈 〉v ,  , 1 2 3  is a vector. Out of all the vectors = 〈 〉p pp ,  , 01 2  in the 
xy-plane, which one is closest to v? It is the vector p that we obtain by dropping v straight 
down onto the xy-plane. That is, υ υ= 〈 〉p ,  , 01 2  is the vector in the xy-plane that is closest 
to v (Figure 19.4). Expressing this in terms of linear combinations, if we choose any vector 
v and write it as υ υ υ= + +v i j k,1 2 3  then the vector in the xy-plane that is closest to v 
is υ υ= +p i j.1 2  The distance from v to the xy-plane is the length of υ− =v p k,3  
which is υ .3

We saw in Section 5 of Chapter 11 how to find the distance from a point to a generic 
plane in space. Now we formulate that discussion in terms of orthonormal vectors and best 
approximation. Suppose that r, s, t are three orthonormal vectors in three-dimensional space. 
If we fix a vector v, then Theorem 2 tells us that ( ) ( ) ( )= ⋅ + ⋅ + ⋅v v r r v s s v t t. 
How closely can we approximate v by a linear combination of just r and s? The set of all 
possible linear combinations +a ar s1 2  forms a plane in three-dimensional space, which 

p

k

y3k

y2 j
y1i

i
j

v

p

y

z

x

FIGURE 19.4 The vector in the xy-plane 
that is closest to υ υ υ= + +v i j k1 2 3  is 

υ υ= +p i j.1 2
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 19.3  Vectors and Approximation in Three and More Dimensions 19-9

we call the plane determined by or spanned by r and s. We seek to find the vector p in 
this plane that minimizes the error between v and p. This error is the distance between v 
and p, so we want to find the vector p in the plane that is closest to v. We saw above how 
to solve this optimization problem for the case where our orthonormal vectors are the stan-
dard unit vectors i, j, and k. A similar approach works here. As shown in Figure 19.5, we 
obtain the closest point by dropping v down perpendicularly onto the plane determined by 
r and s, landing on the point ( ) ( )= ⋅ + ⋅p v r r v s s. If the vector v happens to actually 
be in the plane determined by r and s, then we will have =p v.

FIGURE 19.5 The vector in the  
plane determined by orthonormal  
vectors r and s that is closest to v is 

( ) ( )= ⋅ + ⋅p v r r v s s.

p

t

(v · t) t

(v · s) s

(v · r) r r

s v

THEOREM 3 If { }r s t,   ,    is an orthonormal basis for three-dimensional space 
and v is a vector, then the linear combination of r and s that is closest to v is

 ( ) ( )= ⋅ + ⋅p v r r v s s. (5)

The vector −v p is orthogonal to both r and s.

Proof  Let v be a vector and let p be given by Equation (5). Consider any linear com-
bination = +a aw r s1 2  of r and s. We want to show that the distance from v to p is less 
than or equal to the distance from v to w (less than or equal to because w could possibly 
equal p). That is, we must prove that − ≤ −v p v w .

Observe that ( ) ( )− = − + −v w v p p w . Since p and w are each linear combina-
tions of r and s, their difference −p w is also a linear combination of r and s. Therefore, 
since r and s are each orthogonal to t, the vector −p w is orthogonal to t, and hence it is 
also orthogonal to ( )− = ⋅v p v t t. Consequently,

( ) ( )− = − + −

= − + −

≥ −

v w v p p w

v p p w

v p .

2 2

2 2

2

Taking square roots gives − ≤ −v p v w . This shows that p is the linear combination 
of r and s that is closest to v. Finally, ( )− = ⋅v p v t t is a multiple of t, which is orthog-
onal to both r and s. 

Add and subtract.

Pythagorean Theorem

Vectors in Higher Dimensions

Written in component form, a two-dimensional vector υ υ= 〈 〉v , 1 2  is an ordered pair of 
real numbers, while a three-dimensional vector v ,  , 1 2 3υ υ υ= 〈 〉 is an ordered triple of 
real numbers. Although we cannot easily visualize vectors in higher dimensions, we can 
still define and understand them. A vector in four dimensions is an ordered quadruple 

υ υ υ υ= 〈 〉v ,  ,  , 1 2 3 4  of real numbers. The length of such a vector is

υ υ υ υ= + + +v .1
2

2
2

3
2

4
2

There are four axis directions, and the number kυ  is the component of v in the direction of 
the kth axis.

Higher-dimensional vectors are similar. If d is a positive integer, then a d-dimensional 
vector is an ordered list υ υ υ= 〈 … 〉v ,  ,  ,  d1 2  of d real numbers (also called a d-tuple of 
numbers). Its length is

 ∑υ υ υ υ= + + + =
=

�v .d
k

d

k1
2

2
2 2

1

2  (6)

The distance between two d-dimensional vectors u and v is −u v , the length of the dif-
ference of u and v. The dot product of = 〈 … 〉u u uu ,  ,  ,  d1 2  with υ υ υ= 〈 … 〉v ,  ,  ,  d1 2  is

� ∑υ υ υ υ⋅ = + + + =
=

u u u uu v .d d
k

d

k k1 1 2 2
1
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19-10 Chapter 19 Fourier Series and Wavelets 

THEOREM 5 Assume that …{ }u u u,  ,  ,  d1 2  is an orthonormal basis for 
d-dimensional space. If v is a vector and ≤ <n d1 , then the linear combination 
of …u u u,  ,  ,  n1 2  that is closest to v is

 � ∑( ) ( )( ) ( )= ⋅ + ⋅ + + ⋅ = ⋅
=

p v u u v u u v u u v u u .n n
k

n

k k1 1 2 2
1

 (7)

The vector v p−  is orthogonal to …u u u,  ,  ,  .n1 2

The length of a vector is related to the dot product of the vector with itself by the formula

υ υ υ⋅ = + + + =�v v v .d1
2

2
2 2 2

Vectors u and v are orthogonal if ⋅ =u v 0. In this case, the Pythagorean Theorem 
holds (Exercise 24):

⋅ = + = +u v u v u vIf  0,  then  .2 2 2

The converse of the Pythagorean Theorem also holds (Exercise 25).
As a reminder, dot products are defined in any dimension, but cross products are 

special to dimension 3.

Orthonormal Bases and Approximation in Higher Dimensions

The standard unit vectors in d dimensions are the d vectors

�

= 〈 … 〉

= 〈 … 〉

= 〈 … 〉

e

e

e

1, 0, 0,  , 0 ,

0, 1, 0,  , 0 ,

0, 0, 0,  , 1 .d

1

2

The kth vector ek has a 1 as its kth component, while all other components are zero. The set 
of unit vectors …{ }e e e,  ,  ,  d1 2  is orthonormal, and additionally every vector v in  
d-dimensional space is a linear combination of these vectors. Therefore, we say that 

…{ }e e e,  ,  ,  d1 2  forms an orthonormal basis for d-dimensional space.
Likewise, any collection of d orthonormal vectors is an orthonormal basis for 

d-dimensional space, and we have the following explicit formula for writing any vector as 
a linear combination of the basis vectors (this theorem is proved in texts on linear algebra). 
The coefficients in this representation are dot products of v with the vectors u .k

THEOREM 4 If …u u u,  ,  ,  d1 2  are d orthonormal vectors in d-dimensional 
space (so …{ }u u u,  ,  ,  d1 2  is an orthonormal basis for d-dimensional space), then 
every vector υ υ υ= 〈 … 〉v ,  ,  ,  d1 2  can be written as

� ∑( ) ( )( ) ( )= ⋅ + ⋅ + + ⋅ = ⋅
=

v v u u v u u v u u v u u .d d
k

d

k k1 1 2 2
1

Now fix an integer ≤ <n d1 . If  …{ }u u u,  ,  ,  d1 2  is an orthonormal basis and v is a 
vector in d dimensions, how close can we get to v using a linear combination of only the 
first n vectors …u u u,  ,  ,  ?n1 2  This type of optimization problem occurs widely through-
out mathematics, science, and engineering. The answer (which is often called the least 
squares solution) is given in the next theorem. The proof is similar to the proof of Theorem 3 
(Exercise 31).
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 19.3  Vectors and Approximation in Three and More Dimensions 19-11

The set of all possible linear combinations + + +�a a au u un n1 1 2 2  of vectors 
…u u u,  ,  ,  n1 2  is called the subspace spanned by …u u u,  ,  ,  .n1 2  The vector p given in 

Equation (7) is the vector in this subspace that is closest to v. It is the vector in that sub-
space that minimizes the distance between v and the vectors in the subspace, and it is 
called the orthogonal projection of v onto the span of …u u u,  ,  ,  .n1 2  Geometrically, 
Theorem 5 tells us that to find the closest vector p, we should simply drop down perpen-
dicularly from v onto the subspace spanned by …u u u,  ,  ,  .n1 2

EXAMPLE 2  Assume that u1 is a unit vector in d-dimensional space. A linear combi-
nation of the single vector u1 is simply a multiple au ,1  where a is a real number. Therefore, 
the subspace spanned by u1 is the set of all multiples au1 of u .1  We also call this the line 
through u .1  If v is a vector in d-dimensional space, what is the vector p on the line through 
u1 that is closest to v?

Solution We will apply Theorem 5 with =n 1. By results from linear algebra, starting 
with a unit vector u1 we can find vectors …u u,  ,  d2  so that …u u u,  ,  ,  d1 2  forms an 
orthonormal basis for d-dimensional space. Then, by Equation (7) with =n 1, the vector 
on the line through u1 that is closest to v is

( )= ⋅p v u u .1 1

This agrees with the formula that we found in Section 11.3 for vectors in two- or three-
dimensional space, where we denoted the vector p by u vproj

1
 (compare Figure 19.6 to 

Figure 11.27). 

Orthogonal Vectors in Three Dimensions
In Exercises 1–6, find

 a. the dot products ⋅ ⋅r s r t,   , and ⋅s t,

 b. the lengths r s t, , .

Also determine whether { }r s t,   ,    is

 c. an orthogonal set of vectors,

 d. an orthonormal set of vectors.

 1. = 〈 〉 = 〈 − 〉 = 〈 〉r s t1, 1, 0 ,   1,  1, 0 ,   0, 0, 1 .

 2. = 〈 〉 = 〈 − 〉 = 〈 〉r s t1 2, 1 2, 0 ,   1 2,  1 2, 0 ,   0, 0, 1 .

 3. = 〈 〉 = 〈 − 〉 = 〈 − 〉r s t1, 1, 1 ,   1, 1,  2 ,   0,  1, 1 .

 
4.

 
= 〈 〉 = 〈 − 〉

= 〈 − 〉

r s

t

1 3, 1 3, 1 3 ,   1 6, 1 6,  2 3 ,

0,  1 2, 1 2 .

 
5.

 
= 〈 〉 = 〈 − 〉

= 〈 − 〉

r s

t

1 3, 1 3, 1 3 ,   1 6, 1 6,  2 3 ,

1 2,  1 2, 0 .

 
6.

 
( ) ( )

= 〈 − 〉 = 〈 〉

= 〈− 〉

r s

t

2 3,  2 3, 1 3 ,   1 2, 1 2, 0 ,

1 3 2 , 1 3 2 , 2 2 3 .

Closest Point in a Plane
In Exercises 7–10,

 a. verify that { }r s t,   ,    is an orthonormal basis for three- 
dimensional space,

 b. find the linear combination p of r and s that is closest to v,

 c. find the distance from v to p.

 7. = 〈 〉 = 〈 − 〉 = 〈 − 〉 = 〈 〉r s t v1, 0, 0 ,   0,  1, 0 ,   0, 0,  1 ,   1, 2, 3 .

 
8.

 
= 〈 − − 〉 = 〈 − 〉

= 〈 〉 = 〈 〉

r s

t v

2 3,  2 3,  1 3 ,   1 3, 2 3,  2 3 ,

2 3, 1 3, 2 3 ,   3, 6, 3 .

 9. = 〈 − 〉 = 〈 〉r s2 3,  2 3, 1 3 ,   1 2, 1 2, 0 , 

( ) ( )= 〈− 〉t 1 3 2 , 1 3 2 , 2 2 3 , and = 〈 〉v 3, 0, 3 .

 
10.

 
= 〈 〉 = 〈− 〉

= 〈 − 〉 = 〈 〉

r s

t v

3 5, 3 5,  7 5 ,   7 4, 0, 3 4 ,  

9 20,  4 5, 3 7 20 ,   0, 1, 0 .

Vectors in Five Dimensions
In Exercises 11–14, let = 〈 − 〉 = 〈− − 〉u v2, 0, 1, 3, 2 ,   1, 1, 1, 1, 0 , 
and = 〈 − − 〉w 3,  1, 2,  1, 1 .

 11. Find the linear combinations + −u v w2 3  and − + −u v w5 .

 12. Find the lengths u v,   , and w .

 13. Find the dot products ⋅ ⋅u v u w,   , and ⋅v w.

 14. Find the linear combination ( ) ( ) ( )⋅ − ⋅ + ⋅w u u w v v u v w2 3 4 .

In Exercises 15–20, let = 〈 〉u 1 2, 1 2, 0, 0, 0 ,1  

= 〈 − 〉 = 〈 〉u u1 2,   1 2 ,  0,  0,  0 , 0,  0,  1 2,  1 2,  0 ,2 3  

= 〈 − 〉 = 〈 〉u u0, 0, 1 2,  1 2, 0 , 0, 0, 0, 0, 1 ,4 5  and 

= 〈 − 〉v 2,  4, 4, 2, 1 .

 15. Verify that { }u u u u u,  ,  ,  , 1 2 3 4 5  is an orthonormal basis for five-
dimensional space.

 16. Find the vector p on the line through u1 that is closest to v, and 
find the distance from v to p. Verify that −v p is orthogonal  
to u .1

EXERCISES 19.3 

v

p

u1

v − p 

FIGURE 19.6 The vector on the 
line through u1 that is closest to v is 

( )= ⋅p v u u .1 1  The vector −v p is 
orthogonal to u .1
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19-12 Chapter 19 Fourier Series and Wavelets 

 17. Find the linear combination p of u1 and u 2 that is closest to v, and 
find the distance from v to p. Verify that −v p is orthogonal to 
both u1 and u .2

 18. Find the linear combination p of u u,  ,1 2  and u 3 that is closest to v, 
and find the distance from v to p. Verify that −v p is orthogonal to 
u ,1  u ,2  and u .3

 19. Find the linear combination p of u u u,  ,  ,1 2 3  and u 4 that is clos-
est to v, and find the distance from v to p. Verify that −v p is 
orthogonal to u u u,  ,  ,1 2 3  and u .4

 20. Verify that

v u u v u u v u u v u u v u u1 1 2 2 3 3 4 4 5 5( ) ( ) ( ) ( ) ( )⋅ + ⋅ + ⋅ + ⋅ + ⋅

equals v.

Theory and Examples
In Exercises 21–30, υ υ υ= 〈 … 〉 = 〈 … 〉u u uu v,  ,  ,  ,   ,  ,  ,  ,d d1 2 1 2   
and = 〈 … 〉w w ww ,  ,  ,  d1 2  are d-dimensional vectors.

 21. Symmetry  Prove that ⋅ = ⋅u v v u.

 22. Distributive properties  Prove that if a and b are real numbers, 
then

a b a bu v w u w v w and( ) ( ) ( )+ ⋅ = ⋅ + ⋅  
a b a bu v w u v u w .( ) ( ) ( )⋅ + = ⋅ + ⋅

 23. Prove that ( )+ = + ⋅ +u v u u v v2 .2 2 2

 24. Pythagorean Theorem Prove that if ⋅ =u v 0, then 
+ = +u v u v .2 2 2

 25. Converse of the Pythagorean Theorem Prove that if 
+ = +u v u v ,2 2 2  then ⋅ =u v 0.

 26. Parallelogram Law Prove that + + − =u v u v2 2  
+u v2 2 .2 2

 27. Cauchy–Schwarz Inequality Let = =a bu v,   ,2 2  and 
= ⋅c u v.  Set = −b cw u v,   so = +b cu w v.

 a. Prove that w and cv are orthogonal.

 b. Prove that = +b a cw v ,2 2  and use the Pythagorean 
Theorem to show that + = + ≥c c c bw v w v .2 2 2 2 2

 c. Prove that ⋅ ≤u v u v .

 28. Triangle Inequality Use Exercises 23 and 27 to prove that 
u v u v .+ ≤ +

 29. Reverse Triangle Inequality Prove that = − + ≤u u v v  
− +u v v  and = − + ≤ − +v v u u v u u . Use 

these facts to prove that 

u v u v .− ≤ −

 30. Parseval Equality Assume that { }…u u u,  ,  ,  d1 2  is an ortho-
normal basis for d-dimensional space. Use Theorem 4 to prove that

�

∑

( )

( )

( ) ( )= ⋅ + ⋅ + + ⋅

= ⋅
=

v v u v u v u

v u .

d

k

d

k

2
1

2
2

2 2

1

2

 31. Prove Theorem 5.

19.4 Approximation of Functions

The Norm of a Function

The main goal of Fourier series is to find the best approximation of a function by a trigo-
nometric polynomial. We have seen that for vectors, it is easy to find best approximations 
when we have an orthonormal collection …u u u,  ,  , d1 2  of vectors. If we had an orthonor-
mal collection of functions, then we could use similar ideas to find the best approximation. 
We will show below that the trigonometric system is, after being appropriately rescaled, an 
analogue of such an orthonormal basis. Before doing this, we must explain what we mean 
by the norm of a function (because we need unit functions) and the inner product of two 
functions (because we need orthogonal functions). We will assume that the functions we 
are working with are periodic with period π2 . Any such function simply repeats the values 
that it takes in the interval π[ ]0, 2  in any other interval π π( )[ ]+n n2 , 2 1  with n an integer.

Vectors and functions are more similar than might be apparent at first glance. A vector 
υ υ υ= 〈 … 〉v ,  ,  ,  d1 2  in d dimensions is an ordered list of numbers υ υ υ…,  ,  ,  .d1 2  For 

each integer = …k d1, 2,  ,   we have an associated number υ .k  If f  is a function on 
π[ ]0, 2 , then for each real number x in π[ ]0, 2  we have an associated number f x( ).

Many of the things that we have done with vectors can also be done with functions if 
we use the analogy that the function values f x( ) are like the components υk of a vector. 
There are infinitely many function values instead of finitely many components, so where 
we used sums before, we now use “continuous sums,” or integrals.

There is one technical issue here that does not arise with vectors. While we can always 
sum up finitely many numbers, there are functions whose integrals do not exist. We cannot 
define the norm of such functions. Instead, we restrict our attention to integrable functions, 
those whose integral does exist. Fortunately, most of the functions that we encounter in 
real world problems are integrable. All of the functions that we will see in later examples 
or exercises will be integrable. In particular, any function that is continuous on a finite 
interval [ ]a b,   is integrable. More generally, any function that is bounded and piecewise 
continuous on [ ]a b,   (continuous at all but finitely many points) is integrable.
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 19.4  Approximation of Functions 19-13

The norm of a function is analogous to the length of a vector. The length of a vector 
υ υ υ= 〈 … 〉v ,  ,  ,  d1 2  is

∑ υ=
=

v .
k

d

k
1

2

We define the norm of a function using a similar formula, replacing components υk with 
function values f x( ), and a finite sum with an integral.

DEFINITION

1. The norm of an integrable function f  on the domain π[ ]0, 2  is

∫=
π

f f x dx( ) .2

0

2

We say that f  is a unit function if =f 1.

2. The distance between two integrable functions f  and g on the domain 
π[ ]0, 2  is

∫ ( )− = −
π

f g f x g x dx( ) ( ) .2

0

2

Our definition of the norm of a function is suited to the applications that we consider in 
this chapter, but it is only one of many ways to extend the idea of length from vectors to func-
tions. The notion of a norm is explored in the mathematical subject called Real Analysis.

We compute the norms of some functions, including the functions that belong to the 
trigonometric system.

EXAMPLE 1
 (a) Let f  be the function defined in Equation (1). Observe that π= −f x x( )  for all but 

one point in the interval π[ ]0, 2 . Since changing the value of a function at a single 
point does not change the value of its integral, we can ignore that exceptional point and 
compute that

∫ ∫ π π
( )= = − =

π π
f f x dx x dx( ) 2

3
.2 2

0

2
2

0

2 3

Taking square roots, π= ≈f 2 3  4.55.3 2

 (b) Let k be any positive integer. The norm of the function kxsin  is

∫=
π

kx kx dxsin sin .2

0

2

We can use trigonometric identities to evaluate this integral, but an easier way is to 
note that the graph of kxcos  equals the graph of kxsin  translated π ( )k2  units to the 
left, and therefore the area under the graph of kxcos2  over π[ ]0, 2  is the same as the area 
under the graph of kxsin 2  over π[ ]0, 2 ; see Figure 19.7. Therefore, using the identity 

+ =x xsin cos 1,2 2  we see that

∫ ∫

∫ ∫

∫

∫ π

( )

= +

= +

= +

= =

π π

π π

π

π

kx kx dx kx dx

kx dx kx dx

kx kx dx

dx

2 sin sin sin

sin cos

sin cos

1 2 .

2 2

0

2
2

0

2

2

0

2
2

0

2

2 2

0

2

0

2
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19-14 Chapter 19 Fourier Series and Wavelets 

DEFINITION The inner product of two integrable functions f  and g on π[ ]0, 2  is

∫〈 〉 =
π

f g f x g x dx,  ( ) ( ) .
0

2

x

y

2pp

1

(a) Graph of cos2 3x over the interval [0, 2p]

p
3

2p
3

4p
3

5p
3

x

y

2pp

1

(b) Graph of sin2 3x over the interval [0, 2p]

p
3

2p
3

4p
3

5p
3

FIGURE 19.7 The area under the graph of xcos 32  
between 0 and π2  is the same as the area under the graph 
of xsin 32  between 0 and π2 .

The Inner Product of Functions

The inner product of functions is analogous to the dot product of vectors. The dot product 
of a vector = 〈 … 〉u u uu ,  ,  ,  d1 2  with υ υ υ= 〈 … 〉v ,  ,  ,  d1 2  is the number

∑υ υ υ υ⋅ = + + + =
=

�u u u uu v .d d
k

d

k k1 1 2 2
1

The inner product of two functions is a number that is defined by a similar formula. 
However, because the notation ⋅f g resembles the definition of the product function 
f x g x( ) ( ) rather than a number, we denote the inner product of f  and g by 〈 〉f g,  .

Therefore, π=kxsin 2  for each positive integer k. A similar computation applies  
to kxcos , so by taking square roots we conclude that π= =kx kxsin cos .

 (c) The norm of the constant function 1 on the domain π[ ]0, 2  is

x dx dx1 1( ) 1 2 .2

0

2
2

0

2

∫ ∫ π= = =
π π

The norm of the constant function 1 is 
not 1 because the length of the interval 

π[ ]0, 2  is π2 , not 1.

The notation = 〈 〉u uu , 1 2  denotes the 
components of a two-dimensional vector, 
while 〈 〉f g,   denotes the inner product 
of functions f  and g. Despite the similar 
notation, we can tell from context which 
meaning is intended.
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 19.4  Approximation of Functions 19-15

The properties of the inner product of functions are similar to the properties of the dot 
product of vectors. For example, just as the dot product of a vector with itself is the square 
of its length, the inner product of a function with itself is the square of its norm:

 ∫〈 〉 = =
π

f f f x dx f, ( ) .2

0

2
2  (8)

Hence f  is a unit function if and only if  〈 〉 =f f,  1.
The definition of orthogonality for functions is similar to the definition for vectors.

DEFINITION Let f  and g be integrable functions on π[ ]0, 2 . Then f  and g are 
orthogonal if  〈 〉 =f g,  0. They are orthonormal if they are orthogonal and, addi-
tionally, = =f g 1.

Often we deal with more than two functions. We say that a collection of functions is 
orthogonal if any two distinct functions in the collection are orthogonal. If in addition each 
function in the collection is a unit function, then we say that the collection is orthonormal.

The next theorem is the analogue for functions of Theorem 1 in Section 19.3. Statement 3 
of this theorem is the Pythagorean Theorem for functions.

THEOREM 6 Let f  and g be integrable functions on π[ ]0, 2 .

1. − = − 〈 〉 +f g f f g g2 , 2 2 2

2. + = + 〈 〉 +f g f f g g2 , 2 2 2

3. If f  and g are orthogonal, then + = +f g f g .2 2 2

Proof  Statement 1 follows because

∫

∫ ∫ ∫

( )− = −

= − +

= − 〈 〉 +

π

π π π

f g f x g x dx

f x dx f x g x dx g x dx

f f g g

( ) ( )

( ) 2 ( ) ( ) ( )

2 ,  ,

2 2

0

2

2

0

2

0

2
2

0

2

2 2

and the proof of Statement 2 is similar. If f  and g are orthogonal, then 〈 〉 =f g,  0, so 
Statement 3 follows from Statement 2. 

Orthogonality of the Trigonometric System

We will show that the trigonometric system is an orthogonal collection of functions. It is not 
an orthonormal collection because the functions 1, kxcos  and kxsin  do not have norm 1.

EXAMPLE 2

 (a) If k is any positive integer, then the inner product of the constant function 1 with kxsin  is

∫ ∫〈 〉 = ⋅ =
π π

kx kx dx kx dx1, sin 1 sin sin .
0

2

0

2

We see by looking at the graph of kxsin  on the interval π[ ]0, 2  that this integral is zero 
since it has as much area below as above the x-axis, and therefore the signed areas 
cancel. We demonstrate this explicitly by computing that

∫
π

〈 〉 = = − 



=
−

+ = − + =
π π

kx kx dx
kx

k

k

k k k k
1, sin sin

cos cos 2 cos 0 1 1 0.
0

2

0

2
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19-16 Chapter 19 Fourier Series and Wavelets 

DEFINITION The normalized trigonometric system is the collection of ortho-
normal functions υ υ …u u u,  ,  ,  ,  ,  .0 1 1 2 2   Explicitly, these are

…
x x x x x x1

2
, 

cos
, 

sin
, 

cos 2
, 

sin 2
, 

cos 3
, 

sin 3
,  .

π π π π π π π

Consequently, the constant function is orthogonal to kxsin  for every integer >k 0. A 
similar calculation shows that 1 is orthogonal to kxcos  for every positive k.

 (b) We show next that xsin  and xcos  are orthogonal. Using the u-substitution =u xsin , 
their inner product is

∫ π〈 〉 = = 


= − =
π π

x x x x dx xsin , cos sin cos sin
2

sin 2 sin 0
2

0.
0

2 2

0

2 2 2

Looking at their graphs, there is no obvious reason why we should expect that xsin  
and xcos  should be orthogonal. We can understand visually what it means for two 
vectors u and v in three-dimensional space to be perpendicular (there is a 90-degree 
angle between them), but there is no easy way to see from their graphs why two func-
tions are orthogonal.

 (c) We compute another special case. The inner product of xsin  and xsin 2  is zero because

∫ π( )〈 〉 = = 


= − =
π π

x x x x x dx tsin , sin 2 sin 2 sin cos 2 sin
3

2 sin 2 sin 0
3

0.
0

2 3

0

2 3 3

Therefore, xsin  and xsin 2  are orthogonal.

 (d) We have shown that the constant function 1 is orthogonal to kxsin  and kxcos  for every 
positive integer k. To complete the proof that the trigonometric system is a collection of 
orthogonal functions, it remains to prove that for all positive integers m and n we have:

∫

∫

∫

〈 〉 = = ≠

〈 〉 = = ≠

〈 〉 = =

π

π

π

mx nx mx nx dx m n

mx nx mx nx dx m n

mx nx mx nx dx m n

sin , sin sin sin 0 whenever  ,

cos , cos cos cos 0 whenever  ,

sin , cos sin cos 0 for all   and  .

0

2

0

2

0

2

This can be done through the use of trigonometric identities (Exercises 31–33). 

The functions in the trigonometric system do not have unit norm. However, if we 
divide each function by its norm, then we obtain functions whose norm is 1. We set

u x 1( )
2

,0 π
=

and for each integer >k 0 let

π
υ

π
= =u x

kx
x

kx
( )

cos
and ( )

sin
.k k

Each function u u,  ,k0   and υk is a unit function, and the set of these functions is orthonormal.

Approximation of Functions

Now we find the best approximation to a function using the normalized constant function 
u ,0  the first n normalized cosine functions …u u u,  ,  ,  ,n1 2  and the first n normalized sine 
functions υ υ υ…,  ,  ,  .n1 2  That is, out of all of the linear combinations

 ∑ ∑ υ= + +
= =

w a u a u b ,
k

n

k k
k

n

k k0 0
1 1

 (9)
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 19.4  Approximation of Functions 19-17

we identify the one whose distance from f  is the smallest. We let pn denote this closest 
function.

THEOREM 7 If f  is an integrable function on π[ ]0, 2  and n is a positive integer, 
then the linear combination of u0 and …u u u,  ,  ,  n1 2  and υ υ υ…,  ,  ,  n1 2  that is  
closest to f  is

 ∑ ∑ υ υ= 〈 〉 + 〈 〉 + 〈 〉
= =

p f u u f u u f,  ,  ,  .n
k

n

k k
k

n

k k0 0
1 1

 (10)

Proof  Let pn be the function in Equation (10), and let w be any linear combination of 
the form given in Equation (9). We must prove that  − ≤ −f p f w .n

To simplify the notation, let

= − = −q f p z p wand .n n

Also let = 〈 〉c f u,  ,0 0  and for each positive integer k set = 〈 〉c f u, k k  and υ= 〈 〉d f ,  ,k k  
so

∑ ∑ υ= + +
= =

p c u c u d .n
k

n

k k
k

n

k k0 0
1 1

The inner product satisfies a distributive law, just as the dot product of vectors does 
(Exercise 24). Using this and the fact that u0 is orthogonal to all of the other functions uk 
and υk with >k 0, the inner product of pn with u0 is

p u c u c u d u

c u u c u u d u

c u c d

c c

,  , 

,  ,  , 

0 0

1 0 0 .

n
k

n

k k
k

n

k k

k

n

k k
k

n

k k

k

n

k
k

n

k

0 0 0
1 1

0

0 0 0
1

0
1

0

0 0
2

1 1

0 0

∑ ∑

∑ ∑

∑ ∑

υ

υ

〈 〉 = 〈 + + 〉

= 〈 〉 + 〈 〉 + 〈 〉

= + ⋅ + ⋅

= ⋅ + + =

= =

= =

= =

Substitute

Distributive laws

Orthogonality

u0 is a unit function

= − = −q f p z p w,  n n

Pythagorean Theorem

≥z 02

= −q f pn

It follows from this that q is orthogonal to u0 because = −q f p ,n  and therefore

〈 〉 = 〈 − 〉 = 〈 〉 − 〈 〉 = − =q u f p u f u p u c c,  ,  ,  ,  0.n n0 0 0 0 0 0

A similar calculation holds for inner products of q with each of the functions …u u u,  ,  ,  n1 2  
and each of υ υ υ…,  ,  ,  .n1 2  That is, q is orthogonal to every one of these functions. Using 
the distributive law again, it follows that q is orthogonal to every linear combination of u0 
and …u u u,  ,  ,  n1 2  and υ υ υ…,  ,  ,  .n1 2  Now, pn is a linear combination of those functions, 
and so is w, so q is orthogonal to both pn and w. Hence

〈 〉 = 〈 − 〉 = 〈 〉 − 〈 〉 = − =q z q p w q p q w,  ,  ,  ,  0 0 0,n n

and so we see that q and z are orthogonal. Therefore, we can apply the Pythagorean 
Theorem for functions:

− = +

= +

≥ +

= −

f w q z

q z

q

f p

0

.n

2 2

2 2

2

2

Taking square roots, it follows that − ≤ −f p f w .n  
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19-18 Chapter 19 Fourier Series and Wavelets 

We now show how to write the function pn that is closest to f  directly in terms of sines 
and cosines. We call the function pn given in Equation (11) a trigonometric polynomial 
of degree n. The numbers a ,0  a ,k  and bk  defined in this theorem are called the Fourier 
coefficients of f .

THEOREM 8 Let f  be an integrable function on π[ ]0, 2  and let n be a positive 
integer. Define real numbers

∫

∫

∫

π π

π π

π π

= 〈 〉 =

= 〈 〉 =

= 〈 〉 =

π

π

π

a f f x dx

a f kx f x kx dx

b f kx f x kx dx

11
2

,  1
2

( ) ,

1 , cos 1 ( ) cos ,

1 , sin 1 ( ) sin ,

k

k

0
0

2

0

2

0

2

where k is a positive integer. Then the best approximation to f  by a linear combi-
nation of 1, … …x nx x nxcos ,  , cos , sin ,  , sin  is

 ∑ ∑= + +
= =

p x a a kx b kx( ) cos sin .n
k

n

k
k

n

k0
1 1

 (11)

Proof  By Theorem 7, the best approximation is the function pn given in Equation (10). 
Expanding and simplifying shows that this function satisfies Equation (11):

∑ ∑

∑ ∑

∑ ∑

∑ ∑

υ υ

π π π π π π

π π π

= 〈 〉 + 〈 〉 + 〈 〉

= + +

= 〈 〉 + 〈 〉 + 〈 〉

= + +

= =

= =

= =

= =

p x f u u x f u u x f x

f f
kx kx

f
kx kx

f f kx kx f kx kx

a a kx b kx

1 1

1 1

( ) , ( ) , ( ) , ( )

,
2 2

,
cos cos

,
sin sin

1
2

, 1 , cos cos 1 , sin sin

cos sin .

n
k

n

k k
k

n

k k

k

n

k

n

k

n

k

n

k

n

k
k

n

k

0 0
1 1

1 1

1 1

0
1 1

EXAMPLE 3  Let f  be the function defined in Equation (1). We will verify that the 
function pn given in Equation (2) is the best approximation to f  by a trigonometric poly-
nomial of degree n. We must compute the numbers a ,0  a ,k  and bk  given in Theorem 8. If k 
is a positive integer, then we use Equation 86 from the Table of Integrals to compute that

∫

∫ ∫

π
π

π

π π
π( )

( )= −

= −

= −







− = − = −

π

π π

π

b x kx dx

x kx dx kx dx

kx

k

x kx

k k k

1 sin

1 sin sin

1 sin cos
0 1 2 2.

k
0

2

0

2

0

2

2
0

2

A similar calculation shows that =a 00  and =a 0k  for every >k 0. Therefore, the best 
approximation uses amplitude zero for the constant term and the cosine terms, and ampli-
tude − k2  for the sine term of frequency k, so

∑( )= − + + + = −
=

p x x
x nx

n

kx

k
( ) 2 sin

sin 2

2

sin
2

sin
.n

k

n

1

�

This is the trigonometric polynomial given in Equation (2). 
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 19.4  Approximation of Functions 19-19

EXAMPLE 4  Let f  be the step function

π π

π π
=

≤ < =

≤ <








f x
x x

x
( )

1, 0  or  2 ,

2, 2 .

Find the best approximation to f  by a trigonometric polynomial of degree n.

Solution We compute the Fourier coefficients for f . If k is a positive integer, then

∫

∫ ∫

π

π π

π

π
π π

π( )

=

= +

=
−








+
−


















=
−

= − − =
−










π

π

π

π

π

π

π

b f x kx dx

kx dx kx dx

kx

k

kx

k

k

k k
k

k

k

1 ( ) sin

1 sin 1 2 sin

1 cos 2 cos

cos 1 1 1
2 ,  odd,

0,  even.

k

k

0

2

0

2

0

2

A similar calculation shows that =a 3 2,0  but =a 0k  for every >k 0. Therefore, the best 
approximation to f  uses only a constant term and sine terms with odd frequencies. Specifically, 
if n is odd then the linear combination of …x nx1, sin ,  , sin  that is closest to f  is

π ( )= − + + + +p x x
x x nx

n
( ) 3

2
2 sin

sin 3

3

sin 5

5

sin
.n �

At the point π=x , where f x( ) jumps from 1 to 2, all of the sine terms vanish, so 
π =p ( ) 3 2n  for every n. This is not the value of πf ( ), nor does it approach closer to πf ( ) 

as n increases. This does not contradict the fact that pn is the best approximation to f  
because best does not mean that p x( )n  is close to f x( ) at every point. Instead, pn is the best 
approximation because the error is being measured here by an integral. The error in the 
approximation is the distance between f  and p ,n  which is

∫ ( )− = −
π

f p f x p x dx( ) ( ) .n n
2

0

2

Out of all linear combinations using frequencies of at most n, the trigonometric polynomial 
pn minimizes this error, which is defined by an integral that takes all of the values of f x( ) 
and p x( )n  across the entire domain π[ ]0, 2  into account (see Figure 19.8). 

Convergence of Fourier Series

If f  is an integrable function on π[ ]0, 2 , then Theorem 8 gives us the best approximation pn 
to f  by a linear combination of   x nx x nx1, cos , , cos , sin , , sin .… …  The only information 
that we needed to prove this theorem is that the functions in the trigonometric system are 
orthogonal. Looking at Figures 19.3 and 19.7, it appears that the approximation pn becomes 
closer to f  in some sense as n increases. The next theorem makes this precise. Specifically, it 
is the distance −f pn  between f  and pn that converges to zero as → ∞n .

THEOREM 9 Let f  be an integrable function on π[ ]0, 2  and for each positive 
integer n let pn be the function defined in Equation (11). Then the distance between 
f  and pn converges to zero as → ∞n :

∫ ( )− = − =
π

→∞ →∞
f p f x p x dxlim lim ( ) ( ) 0.

n
n

n
n

2

0

2
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19-20 Chapter 19 Fourier Series and Wavelets 

The proof of Theorem 9 is harder than the proof of Theorem 8. It can be found in 
advanced texts on real analysis. We can get some insight into why the proof is difficult by 
recalling our discussion of orthonormal bases in three dimensions. Whenever we have 
three orthonormal vectors r, s, t in three-dimensional space, we know that these three vec-
tors form an orthonormal basis, and therefore every vector v can be written as a linear 
combination of those three vectors, as shown in Theorem 2. A similar fact holds in higher-
dimensional space. That is, a set of d orthonormal vectors in d-dimensional space will be 
an orthonormal basis for that space (Theorem 4). However, the normalized trigonometric 
system is a set of infinitely many orthonormal functions. Just having infinitely many ortho-
normal functions is not enough to ensure that they form the correct analogue of an ortho-
normal basis. For example, the cosine functions xcos , xcos 2 , xcos 3 , … are infinitely 
many orthogonal functions, but they are only “half” of the trigonometric system. The dif-
ficulty in the proof of Theorem 9 is in showing that the trigonometric system contains 
“enough” functions.

x

f

p25

y

2pp

2

1.5

1

0.5

p
2

3p
2

x

f

p5

y

2pp

2

1.5

1

0.5

p
2

3p
2

x

f

p15

y

2pp

2

1.5

1

0.5

p
2

3p
2

x

f

p1

y

2pp

2

1.5

1

0.5

p
2

3p
2

x

f

p3

y

2pp

2

1.5

1

0.5

p
2

3p
2

x

f

p75

y

2pp

2

1.5

1

0.5

p
2

3p
2

FIGURE 19.8 The trigonometric polynomials p ,1  p ,3  p ,5  p ,15  p ,25  and p75 approximating the 
function f  from Example 4
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 19.4  Approximation of Functions 19-21

Let a a,  ,k0  and bk  be the Fourier coefficients of f  as given in Theorem 8, and let

∑ ∑= + +
= =

p x a a kx b kx( ) cos sinn
k

n

k
k

n

k0
1 1

be the trigonometric polynomial defined in Equation (11). Theorem 9 says that if f  is 
an integrable function, then pn converges to f  in the sense that the distance 

( )− = ∫ −
πf p f x p x dx( ) ( )n n0

2 2  between pn and f  converges to zero as → ∞n . 

This does not imply that p x( )n  must converge to f x( ) at each point x. We often call

 ∑ ∑+ +
=

∞

=

∞

a a kx b kxcos sin
k

k
k

k0
1 1

 (12)

the Fourier series for f , but it is important to note that this series need not converge. 
Under the right hypothesis, it will be true that p x( )n  converges to f x( ), and hence f x( ) 
will equal its Fourier series at x. Loosely speaking, the smoother that f  is, the “better” 
the convergence of p x( )n  to f x( ) will be. The following result, whose proof we will 
omit, states that if f  is smooth enough as a periodic function on the real line, then con-
vergence will hold at every point, and the maximum difference between f x( ) and p x( )n  
shrinks as n increases.

THEOREM 11—The Parseval Equality

If f  is an integrable function on π[ ]0, 2 , then

∑ ∑π π π= + +
=

∞

=

∞

f a a b2 .
k

k
k

k
2

0
2

1

2

1

2

THEOREM 10 Let f  be a function on π[ ]0, 2  such that π=f f(0) (2 ), and 
extend f  to be a periodic function on the real line by repeating values every π2  
units. If f  is differentiable at every point and ′f  is continuous, then we have for 
every x that

∑ ∑= = + +
→∞ =

∞

=

∞

f x p x a a kx b kx( ) lim ( ) cos sin .
n

n
k

k
k

k0
1 1

Further, if for each n we let Mn be the maximum value of f x p x( ) ( )n−  over 
all x, then

=
→∞

Mlim 0.
n

n

The function f  pictured in Figure 19.8 does not satisfy the hypotheses of Theorem 10, 
and it can be shown that for that function the maximum Mn defined in Theorem 10 does 
not decrease to zero as n increases (this is known as the Gibbs phenomenon).

The Parseval Equality for Fourier Series

By Exercise 30 of Section 19.3, if …{ }u u u,   ,  ,   d1 2  is an orthonormal basis for 
d-dimensional space, then the Parseval Equality holds for every vector v in d-dimensional 
space:

∑( )= ⋅
=

v v u .
k

d

k
2

1

2

We will prove an analogous result for Fourier series.
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19-22 Chapter 19 Fourier Series and Wavelets 

Proof  Let pn be the trigonometric polynomial of degree n given in Equation (11). 
According to Exercise 34, we have π〈 〉 =p a1, 2 ,n 0  while π〈 〉 =p kx a, cosn k  and 

π〈 〉 =p kx b, sinn k  for = …k n1,  ,  .  Therefore,

∑ ∑

∑ ∑

∑ ∑

∑ ∑

π π

π π π

= 〈 〉

= + +

= 〈 〉 + 〈 〉 + 〈 〉

= 〈 〉 + +

= + +

= =

= =

= =

= =

p p p

p a a kx b kx

p a a p kx b p kx

a p a a b b

a a b

1

1

, 

,  cos sin

,  , cos , sin

,  .

2 .

n n n

n
k

n

k
k

n

k

n
k

n

k n
k

n

k n

n
k

n

k k
k

n

k k

k

n

k
k

n

k

2

0
1 1

0
1 1

0
1 1

0
2

1

2

1

2

Since Theorem 9 tells us that − →f p 0,n  it follows that

∑ ∑

∑ ∑

π π π

π π π

=

= + +








= + +

→∞

→∞ = =

=

∞

=

∞

f p

a a b

a a b

lim

lim 2

2 .

n
n

n
k

n

k
k

n

k

k
k

k
k

2 2

0
2

1

2

1

2

0
2

1

2

1

2

Equation (8)

Equation (11)

Distributive property

Exercise 34

Exercise 34 and simplify

Exercise 28

Calculated above

Monotonic Sequence Theorem  
(Theorem 6 in Section 9.1)

EXAMPLE 5  Let f  be the function from Example 4. The square of the norm of f  is

∫ ∫ π= + =
π

π

π
f dx dx1 2 5 .2 2

0

2
2

We saw in Example 4 that =a 3 2,0   =a 0k  for all >k 0,  π= −b k2 ( )k  if k is odd,  
and =b 0k  if k is even. Theorem 10 therefore implies that

∑ ∑

∑

∑

π π π π

π π
π

π
π

( )

= = + +

= + + −

= + +

=

∞

=

∞

f a a b

k

k

5 2

2 9
4

0 2

18
4

0 4 1 .

k
k

k
k

k

k

2
0
2

1

2

1

2

 odd

2

 odd
2

Simplifying, we obtain

∑ ∑ π
( )−

= =
=

∞

k k
1

2 1
1

8
.

k k1
2

 odd
2

2

Therefore,

k k k k
1 1

2 1
1

(2 ) 8
1
4

1 .
k k k k1

2
1

2
1

2

2

1
2∑ ∑ ∑ ∑π

( )
=

−
+ = +

=

∞

=

∞

=

∞

=

∞

This gives us

∑ π=
=

∞

k
3
4

1
8

,
k 1

2

2

and hence

 ∑ π=
=

∞

k
1

6
.

k 1
2

2
 (13)
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 19.4  Approximation of Functions 19-23

Norms of Functions
In Exercises 1–6, a periodic function with period π2  is defined by 
specifying its values on the interval π[ ]0, 2 . Find the norm of each 
function.

 1. 
π

π π π
=

≤ ≤

− < ≤








f x
x x

x x
( )

, 0

2 , 2

 2. 
π π

π π π
=

< <

≤ ≤ ≤ ≤








g x
x

x x
( )

1, 2 3 2

0, 0 2  or  3 2 2

 3. π( )= −h x x( ) 2

 4. 
π

π π
=

≤ ≤

< ≤








j x
x x

x
( )

, 0

0, 2

2

 5. 
π

π
=

≤ <

=








k x
e x

x
( )

, 0 2

1, 2

x

 6. 
π

π π
=

≤ ≤

< ≤








� x
x x

x
( )

cos , 0

1, 2

Inner Product of Functions
In Exercises 7–12, use the functions defined in Exercises 1–6 to com-
pute the given inner product. Are the two functions orthogonal?

 7. 〈 〉g j,   8. 〈 〉k x, cos

 9. 〈 〉h 1,   10. �〈 〉1, 

 11. 〈 〉f x, sin 3  12. �〈 〉x, cos

Finding Fourier Series
In Exercises 13–18, find the Fourier coefficients a a,  ,k0  and bk and 
the trigonometric polynomial pn of degree n  for the given function. 
If available, use a CAS to plot pn for for various values of n  over the 
domain π π[ ]−2 , 4 .

 13. The function f  from Exercise 1.

 14. The function g from Exercise 2.

 15. The function h  from Exercise 3.

 16. The function j from Exercise 4.

 17. The function k  from Exercise 5.

 18. The function � from Exercise 6.

The Parseval Equality

 19. Apply the Parseval Equality to the function f  defined in 

Equation (11) to give another proof that ∑ π=
=

∞
k1 6.

k 1
2 2

 20. Apply the Parseval Equality to the function f  from Exercise 1 to 
prove that

∑ π
( )−

=
=

∞

k
1

2 1 96
.

k 1
4

4

Use that equality to prove that

∑ π=
=

∞

k
1

90
.

k 1
4

4

 21. Apply the Parseval Equality to the function h  from Exercise 3 to 
give another proof of the equalities specified in Exercise 20.

 22. Define a function f  on π[ ]0, 2  by

π π

π π π π( )

( )

( )
=

− ≤ ≤

− − < ≤








f x
x x x

x x x
( )

, 0

2 , 2

Apply the Parseval Equality to this function f  to prove that

∑ π
( )−

=
=

∞

k
1

2 1 960
.

k 1
6

6

Use that equality to prove that

∑ π=
=

∞

k
1

945
.

k 1
6

6

Theory and Examples
In Exercises 23–28, f g,  , and h  denote integrable functions on π[ ]0, 2 .

 23. Symmetry Prove that 〈 〉 = 〈 〉f g g f,  , .

 24. Distributive properties Prove that if a  and b  are real numbers, 
then

〈 + 〉 = 〈 〉 + 〈 〉
〈 + 〉 = 〈 〉 + 〈 〉
af bg h a f h b g h
f ag bh a f g b f h

,  ,  ,  and
,  ,  ,  .

 25. Cauchy–Schwarz Inequality Prove that 〈 〉 ≤f g f g,  . 
(Hint: Follow the approach given in Exercise 27 of Section 19.3.)

 26. Triangle Inequality Prove that + ≤ +f g f g . (Hint: 
Compare Exercise 28 in Section 19.3.)

 27. Reverse Triangle Inequality Prove that  f g f g .− ≤ −  

(Hint: Compare Exercise 29 in Section 19.3.)

 28. Convergence of norms Use Theorem 9 and the Reverse 
Triangle Inequality (Exercise 27) to prove that =

→∞
p flim .

n
n

 29. Let = + +f x x x( ) 1 cos sin . Find the Fourier coefficients 
a a,  ,k0  and bk and the trigonometric polynomial pn of degree n  
corresponding to f .

 30. Suppose that ∑ ∑= + +
= =

f x c c jx d jx( ) cos sin .
j

m
j j

m
j0 1 1

 

What are the Fourier coefficients a a,  ,k0  and bk for f ? Prove that 

pn is equal to f  for all ≥n m.

Establish the identities stated in Exercises 31–33, where m and n  are 
positive integers.

 31. If ≠m n, then ∫〈 〉 = =
π

mx nx mx nx dxsin , sin sin sin 0.
0

2

(Hint: ( ) )( ) ( )= − − +A B A B A Bsin sin cos cos 2.

 32. If ≠m n, then ∫〈 〉 = =
π

mx nx mx nx dxcos , cos cos cos 0.
0

2

(Hint: ( )( ) ( )= + + −A B A B A Bcos cos cos cos 2.)

 33. ∫〈 〉 = =
π

mx nx mx nx dxsin , cos sin cos 0.
0

2

(Hint: A B A B A Bsin cos sin sin 2.( ) ( )= + + −1 2 )

 34. Let f  be an integrable function on π[ ]0, 2 , and let pn be the trigo-
nometric polynomial defined in Equation (11). Prove that:

 a. π〈 〉 =p a1,  2 .n 0

 b. π〈 〉 =p jx a, cosn k for =j n1,  ,  .…

 c. π〈 〉 =p jx b, sinn k for =j n1,  ,  .…

EXERCISES 19.4 
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19-24 Chapter 19 Fourier Series and Wavelets 

19.5 Advanced Topic: The Haar System and Wavelets

Fourier series approximations are based on the trigonometric system, which is an orthogo-
nal collection of functions. Today many sets of orthonormal functions are used in mathe-
matics, science, and engineering. We will discuss a family of systems collectively known 
as wavelets, which are especially useful in signal and image processing, data analysis, and 
related areas. The JPEG 2000 image compression standard uses wavelets.

In contrast to Fourier series approximations, which are best suited to applications 
involving periodic functions, wavelets can be used to approximate functions that are not 
periodic. The domain of the functions in the wavelet systems that we will discuss will be 
the entire real line, but each individual wavelet function that we will consider is identically 
zero outside of some finite interval, and is integrable on that interval.

We say that a function that is integrable on an interval [ ]a b,   and identically zero out-
side of that interval is supported in [ ]a b,  . The function may be zero at points within 
[ ]a b,  . If f  is supported in [ ]a b,  , then its norm is

∫=f f x dx( ) .
a

b
2

Since f  is zero outside of [ ]a b,  , we often write this integral as

∫=
−∞

∞
f f x dx( ) .2

We say that f  is a unit function if =f 1.
If g is another integrable function that is supported in an interval ([ ]c d,  which need 

not equal )[ ]a b,  , then the inner product of f  and g is

 ∫〈 〉 =
−∞

∞
f g f x g x dx,  ( ) ( ) . (14)

The product f x g x( ) ( ) is identically zero outside of the intersection of the intervals [ ]a b,   
and [ ]c d,  .

We say that two functions f  and g are orthogonal if 〈 〉 =f g,  0. Functions f  and g 
are orthonormal if they are orthogonal and both are unit functions = =f g 1 .A B  A 
collection of functions is orthogonal if any two different functions from the collection are 
orthogonal, and the collection is orthonormal if it is orthogonal and every function in the 
collection is a unit function.

The Haar System

The first wavelet system was introduced by Alfréd Haar (1885–1933). The construction is 
based on two simple functions that are each supported in the interval [ ]0, 1 . The first is the 
box function or Haar scaling function,

ϕ =
≤ <

< ≥








x
x

x x
( )

1, 0 1,

0, 0 or  1,

and the second is the square wave or Haar wavelet,

ψ =

≤ <

− ≤ <

< ≥











x

x

x

x x

( )

1, 0 1
2

,

1, 1
2

1,

0, 0 or  1.

These functions are shown in Figure 19.9.
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 19.5  Advanced Topic: The Haar System and Wavelets 19-25

We have ϕ = 1 and ψ = 1, so ϕ and ψ are unit functions. Further, they are 
orthogonal, because their inner product is zero:

∫

∫

∫ ∫

ϕ ψ ϕ ψ

ϕ ψ

( )

〈 〉 =

=

= ⋅ + ⋅ − = − =

−∞

∞
x x dx

x x dx

dx dx

,  ( ) ( )

( ) ( )

1 1 1 1 1
2

1
2

0.

0

1

0

1 2

1 2

1

Now we create more functions based on ϕ and ψ. For each integer k, we horizontally 
translate ϕ by k units to obtain the function

ϕ ϕ( )= − =
≤ < +

< ≥ +








x x k
k x k

x k x k
( )

1, 1,

0,  or  1.k

We say that ϕ k is the box function on [ )+k k,  1 . If ≠j k, then the product ϕ ϕx x( ) ( )j k  
is identically zero. Therefore,   ϕ ϕ〈 〉 =,  0j k  whenever ≠j k.

Next, we translate and also dilate (stretch or compress) the Haar wavelet to create new 
functions ψ ,n k,  where n and k are integers. For =n 0 there is no dilation, only translation:

ψ ψ( )= − =

≤ < +

− + ≤ < +

< ≥ +











x x k

k x k

k x k

x k x k

( )

1, ,

1, 1,

0,  or  1.
k0,

1
2

1
2

For =n 1 we horizontally shrink ψ by a factor of 2 and horizontally translate by k 2 units, 
also vertically rescaling so that the resulting function has norm 1:

ψ ψ ψ ( )( )( )= − = − =

≤ < +

− + ≤ < +

< ≥ +











x x k x k

x

x

x x

( ) 2 2 2 2 2

2, ,

2, ,

0,  or  .

k

k k

k k

k k

1,
1 2 1 2

2 2
1
4

2
1
4 2

1
2

2 2
1
2

The functions ψ k1,  for =k 0, 1, 2, 3 are shown in Figure 19.10.

y

x
1

1

1
2

−1

−

w

1
2

1
2

FIGURE 19.9 The Haar scaling function ϕ  and the Haar wavelet ψ. The 
region between the graphs and the x-axis is shaded.
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x
1

1

1
2
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−

c
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2
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19-26 Chapter 19 Fourier Series and Wavelets 

For arbitrary integers n and k we define

ψ ψ

( )
( )( ) ( )

( )

= − =

≤ < +

− + ≤ < +

< ≥ +











− −

− −

− −

x x k

k x k

k x k

x k x k

( ) 2 2

2 , 2 2 1
2

,

2 , 2 1
2

2 1 ,

0, 2  or  2 1 .

n k
n n

n n n

n n n

n n

,
2

2

2

We refer to ψn k,  as a wavelet. It is supported in the interval [ ]( )+− −k k2 , 2 1 ,n n  which has 
length −2 .n  We have ψn k,  take the values ±2n 2 instead of ±1 so that it is a unit function 
(Exercise 19).

For ≥n 0, the wavelet ψn k,  is obtained by compressing the Haar wavelet ψ and trans-
lating and rescaling it, while <n 0 corresponds to a stretching of ψ along with a transla-
tion and rescaling. It is useful in some applications to consider ψn k,  with negative n, but for 
our purposes we will define the Haar system using only ≥n 0. The functions ψ k2,  for 

=k 0, 1, 2, 3 are shown in Figure 19.11.

y y y

"2

x
21

2

1

1
2

3
2

−"2

−2

−1

c1, 0

"2

x
21

2

1

1
2

3
2

−"2

−2

−1

c1, 1

"2

x
21

2

1

1
2

3
2

−"2

−2

−1

c1, 2

y

"2

x
21

2

1

1
2

3
2

−"2

−2

−1

c1, 3

FIGURE 19.10 The functions ψ ψ ψ, , ,1,0 1,1 1,2  and ψ .1,3
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1
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FIGURE 19.11 The functions ψ ψ ψ, , ,2,0 2,1 2,2  and .2,3ψ
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 19.5  Advanced Topic: The Haar System and Wavelets 19-27

Since ϕ k is identically 1 on [ )+k k,  1  and 0 elsewhere, the Haar coefficient ak is 
given by

 ∫ ∫ϕ ϕ= 〈 〉 = =
−∞

∞ +
a f f x x dx f x dx,  ( )  ( ) ( ) .k k k

k

k 1
 (15)

This is the average value of f  on the interval [ )+k k,  1 .
The function ψ x( )n k,  takes the value 2n 2 for ( )≤ < +− −k x k2 2 ,n n 1

2  the value 
−2n 2 for ( ) ( )+ ≤ < +− −k x k2 2 1 ,n n1

2  and 0 elsewhere. Therefore, the Haar coeffi-
cient bn k,  is given by

 
∫

∫ ∫

ψ ψ= 〈 〉 =

= −
( )

( )

( )

−∞

∞

+

+

+

−

−

−

−

b f f x x dx

f x dx f x dx

,  ( )  ( )

2 ( ) 2 ( ) .

n k n k n k

n

k

k
n

k

k

, , ,

2

2

2 1 2
2

2 1 2

2 1

n

n

n

n
 (16)

EXAMPLE 1  Find the Haar coefficients for the function

=

≤ <

≤ <

− ≤ <

≤ <











f x

x

x

x x

x

( )

3, 0 1 2

1, 1 2 1

2 4, 1 2

3, 2 3

0, otherwise.

This function is pictured in Figure 19.13.

DEFINITION Let f  be an integrable function that is supported in a finite interval. 
The Haar coefficients of f  are the numbers

ϕ

ψ

= 〈 〉

= 〈 〉

a f k

b f k n

,  for integer  ,

,  for integer   and nonnegative integer  .
k k

n k n k, ,

DEFINITION The Haar system is the collection of functions ϕ k for integers k, 
together with ψn k,  for integers k and integers ≥n 0.

Each function in the Haar system is a unit function. Further, any two different ele-
ments are orthogonal. To illustrate why this is, consider the specific two wavelets ψ0,1 and 
ψ2,4 shown in Figure 19.12. The wavelet ψ0,1 is supported in the interval [ ]1, 2 , while ψ2,4 
is supported in [ ]1, 5 4 . Therefore, their product is ψ ψ =x x( ) ( ) 00,1 2,4  for every x outside 
[ ]1, 5 4 . For all x inside [ )1, 5 4  we have ψ =x( ) 1,0,1  so for these x the product is 
ψ ψ ψ=x x x( ) ( ) ( ).0,1 2,4 2,4  Consequently, their inner product is

∫ ∫ψ ψ ψ ψ ψ〈 〉 = = =
−∞

∞
x x dx x dx,  ( ) ( ) ( ) 0.0,1 2,4 0,1 2,4 2,4

1

5 4

This shows that 0,1ψ  and 2,4ψ  are orthogonal. A similar argument shows that any two different 
functions ψn k,  and ψm j,  are orthogonal, and that ψn k,  is orthogonal to every function ϕ j  
(Exercise 20). Therefore, the Haar system is an orthonormal collection of functions.

y

2

1

−2

−1

c2, 4

211
2

3
2

c0, 1

x

FIGURE 19.12 The functions ψ0,1 and 
ψ .2,4  The second function completes its 
oscillation on an interval where the first 
function is constant.
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19-28 Chapter 19 Fourier Series and Wavelets 

Solution By Equation (15), the Haar coefficient ϕ= 〈 〉a f , k k  is the average value of f  
on [ )+k k,  1 . Since f  is supported in the interval [ ]0, 3 , the coefficient ϕ〈 〉f ,  k  can only 
be nonzero for =k 0, 1, and 2. For these k we compute that

∫ ∫ ∫

∫ ∫

∫ ∫

ϕ

ϕ

ϕ

( )

= 〈 〉 = = + =

= 〈 〉 = = − = −

= 〈 〉 = = =

a f f x dx dx dx

a f f x dx x dx

a f f x dx dx

,  ( ) 3 1 2

,  ( ) 2 4 1

,  ( ) 3 3.

0 0
0

1

0

1 2

1 2

1

1 1
1

2

1

2

2 2
2

3

2

3

Now consider the coefficients ψ= 〈 〉b f , n k n k, ,  with =n 0. The function ψ k0,  is sup-
ported in [ ]+k k,  1  while f  is supported in [ ]0, 3 , so ψ〈 〉f ,  k0,  can only be nonzero for 
k 0,=  1, and 2. For these k we use Equation (16) to compute that

FIGURE 19.13 The function f  from Example 1.

y

−2

−1

1

2

3

2.01.5 3.02.51.00.5
x

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

ψ

ψ

ψ

( ) ( )

= 〈 〉 = − = − =

= 〈 〉 = − = − − − = −

= 〈 〉 = − = − =

b f f x dx f x dx dx dx

b f f x dx f x dx x dx x dx

b f f x dx f x dx dx dx

, ( ) ( ) 3 1 1

, ( ) ( ) 2 4 2 4 1
2

, ( ) ( ) 3 3 0.

0,0 0,0
0

1 2

1 2

1

0

1 2

1 2

1

0,1 0,1
1

3 2

3 2

2

1

3 2

3 2

2

0,2 0,2
2

5 2

5 2

3

2

5 2

5 2

3

Notice that b0,2 is zero because f  is constant on the interval [ )2, 3  while ψ0,2 is a square 
wave on that interval.

Next we compute ψ= 〈 〉b f , n k n k, ,  for n 1.=  Since f  is supported in [ ]0, 3  while 
ψ k1,  is supported in [ ]( )+k k2,  1 2 , this coefficient will be zero if these intervals do not 
overlap. Hence =b 0k1,  for all k 0<  and k 5.>  However, even for k between 0 and 5 
the Haar coefficient could be zero. For example, f  is constant on [ )0, 1 2  while ψ1,0 is a 
square wave on [ )0, 1 2 , so

∫ ∫

∫ ∫

ψ= 〈 〉 = −

= − =

b f f x dx f x dx

dx dx

,  2 ( ) 2 ( )

2 3 2 3 0.

1,0 1,0
1 2 1 2

0

1 4

1 4

1 2

1 2 1 2

0

1 4

1 4

1 2

For the same reason, b ,1,1  b ,1,4  and b1,5 are all zero. For k 2=  we have

∫ ∫

∫ ∫

ψ

( ) ( )

= 〈 〉 = −

= − − − = −

b f f x dx f x dx

x dx x dx

,  2 ( ) 2 ( )

2 2 4 2 2 4 1
4 2

,

1,2 1,2
1 2 1 2

1

5 4

5 4

3 2

1 2

1

5 4
1 2

5 4

3 2

M19_HASS5901_15_GE_C19.indd   28M19_HASS5901_15_GE_C19.indd   28 07/03/2023   17:5207/03/2023   17:52

www.konkur.in

Telegram: @uni_k



 19.5  Advanced Topic: The Haar System and Wavelets 19-29

The proof of Theorem 12 is similar to the proof of Theorem 7. Because f  is identically 
zero outside of a finite interval, only finitely many Haar coefficients ak will be nonzero, so 
the series in Equation (17) is actually a finite sum. In fact, if M N<  are integers and f  is 
identically zero outside of the interval [ ]M N,  , then a 0k =  for all k M<  and k N ,≥  
so in this case the series in Equation (17) becomes

p x a x( ) ( ).
k M

N

k k0

1

∑ ϕ=
=

−

Consider the function f  from Example 1. Since f  is identically zero outside of [ ]0, 3 , 
all Haar coefficients ak with k 0<  and k 3≥  are zero. Using the values for a a,  ,0 1  and a2 
that we computed in that example, the best approximation p0 to f  is

∑ ϕ ϕ ϕ ϕ= = − +
=

p x a x x x x( ) ( ) 2 ( ) ( ) 3 ( ).
k

k k0
0

2

0 1 2

This function is shown in Figure 19.14. As we can see, p0 takes the average value of f  on 
each interval [ ]+k k,  1 . It is the best approximation to f  by a step function that has jumps 
at integers. Since f  is constant on the interval [ )2, 3 , the approximation p0 equals f  on 
that interval.

The function p0 gives only a coarse approximation to f , analogous to representing an 
image using very large pixels. We refer to p0 as the approximation at resolution level zero. 
The approximation p0 to a function g that varies considerably across the interval [ ]0, 3  is 
shown in Figure 19.15.

THEOREM 12 If f  is an integrable function that is supported in a finite interval, 
then the linear combination of the box functions kϕ  that is closest to f  is

 ∑ ϕ=
=−∞

∞

p x a x( ) ( ),
k

k k0  (17)

where ∫ϕ= 〈 〉 =
+

a f f x dx,  ( ) .k k
k

k 1

and for k 3,=

∫ ∫

∫ ∫

ψ

( ) ( )

= 〈 〉 = −

= − − − = −

b f f x dx f x dx

x dx x dx

,  2 ( ) 2 ( )

2 2 4 2 2 4 1
4 2

.

1,3 1,3
1 2

3 2

7 4
1 2

7 4

2

1 2

3 2

7 4
1 2

7 4

2

For larger n, most of the Haar coefficients ψ= 〈 〉b f , n k n k, ,  are zero; in particular, this 
includes all of those for which the support of ψn k,  intersects [ ]0, 1  or [ ]2, 3 . The coefficient 
bn k,  is nonzero only for those k for which the support of ψn k,  intersects [ ]1, 2 . 

Approximation Using the Haar System

Now we describe how to use Haar system to create approximations of a function f . We do 
this in a series of steps where we first create a “low-resolution” approximation to f  and 
then iteratively add finer and finer “details” to improve the approximation.

In the first step we find the linear combination of box functions kϕ  that is closest to f . 
Since kϕ  is 1 on [ )+k k,  1  and zero elsewhere, this approximation, which we call p ,0  is a 
step function with jumps at integer points k. Because the kϕ  are orthonormal functions, we 
know how to compute p .0
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19-30 Chapter 19 Fourier Series and Wavelets 

Adding Details at Resolution Level Zero

Now we will see how to create an approximation p1 at resolution level 1 that is better than 
the approximation p0 at resolution level zero. To do this, we first create a function q0 that 
represents the “details in f ” at resolution level zero. This function is

 ∑ ψ=
=−∞

∞

q x b x( ) ( ),
k

k k0 0, 0,  (18)

where ψ= 〈 〉b f ,  .k k0, 0,  Since f  is supported in a finite interval, only finitely many of the 
Haar coefficients b k0,  can be nonzero, so the series in Equation (18) is actually a finite sum. 
Hence the detail function q0 is a linear combination of finitely many of the wavelets ψ .k0,

In Example 1 we computed the Haar coefficients b k0,  for the function f  shown in 
Figure 19.13. Using those coefficients, we see that the detail function for this f  is

q x b x b x b x x x( ) ( ) ( ) ( ) ( ) 1
2

( ).0 0,0 0,0 0,1 0,1 0,2 0,2 0,0 0,1ψ ψ ψ ψ ψ= + + = −

This function is shown in Figure 19.16.

FIGURE 19.16 The detail function ψ ψ= −q0 0,0
1
2 0,1 

for the function f from Example 1.
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1

2

3

2.01.5 3.02.51.00.5
x

The detail function q0 is not itself a good approximation to f ; instead, it gives us the 
information needed to move from the coarse approximation p0 to a better approximation 
p .1  Specifically, p1 is obtained by adding the detail function q0 to the approximation p :0

∑ ∑ϕ ψ= + = +
=−∞

∞

=−∞

∞

p x p x q x a x b x( ) ( ) ( ) ( ) ( ).
k

k k
k

k k1 0 0 0, 0,

y

−2

−1

1

2

3

2.01.5 3.02.51.00.5
x

FIGURE 19.14 The function f  from Example 1 (blue) and 
its approximation p 2 30 0 1 2ϕ ϕ ϕ= − +  (red) at resolution 
level zero. The two functions are equal on the interval [ )2, 3 .

x

y
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1.5

2.01.5 3.02.51.00.5

FIGURE 19.15 A function g (blue) and its approximation 
p0 (red) at resolution level zero. p0 takes the average value  
of g on each interval [ )+k k,  1 .
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 19.5  Advanced Topic: The Haar System and Wavelets 19-31

As before, only finitely many terms in each series can be nonzero, so these are actually 
finite sums. This function p1 is the best approximation to f  using both the box functions kϕ  
and the Haar wavelets ψ .k0,  We say that p1 is the approximation to f  at resolution level 1.

The improved approximation p1 for the function f  from Example 1 is shown in 
Figure 19.17. Like p ,0  it is a step function. However, while p0 is a step function  
with jumps at integers k, the new approximation p1 is a step function with jumps at 
points k 2 where k is an integer. Because f  is constant on each of the intervals 
[ ) [ ) [ )0, 1 2 ,   1 2, 1 ,   2, 5 2 , and [ )5 2, 3 , the approximation p1 equals f  on those intervals. 
On the intervals [ )1, 3 2  and [ )3 2, 2  it takes the average value of f  on those intervals.

Figure 19.18 shows a superposition of p0 and p .1  Comparing this to Figure 19.16, we 
see how p1 is obtained by adding scaled Haar wavelets ψb  k k0, 0,  to p .0

The Multiresolution Recursion

We iterate the process described above to further improve the level of resolution in the 
approximation to f . The function p1 gave us the approximation at resolution level 1. The 
detail function at this level is

∑ ψ=
=−∞

∞

q x b x( ) ( ),
k

k k1 1, 1,

y

−2

−1

1

2

3

1.5 3.02.51.00.5 2.0 3.0
x

FIGURE 19.17 The approximation p1 (red) to the function 
f  (blue) from Example 1.
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1.5 3.02.51.00.5

p0

p1

2.0
x

FIGURE 19.18 The approximations p0 (black) and p1 
(red) to the function f  from Example 1. We obtain p1 by 
adding ψ ψ= −q0 0,0

1
2 0,1 to p .0
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where ψ= 〈 〉b f ,  .k k1, 1,  Adding q1 to p1 gives us the best approximation to f  at resolution 
level 2:

∑ ∑ ∑ϕ ψ ψ

= +

= + +

= + +
=−∞

∞

=−∞

∞

=−∞

∞

p x p x q x

p x q x q x

a x b x b x

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ).
k

k k
k

k k
k

k k

2 1 1

0 0 1

0, 0, 1, 1,

This is a step function with jumps at points k 4 where k is an integer. The approximation 
p0 at resolution level zero for a function g was shown in Figure 19.15. Figure 19.19 shows 
the approximation p1 at resolution level 1 and the approximation p2 at resolution level 2 
for this same function g.

THEOREM 13 Let f  be an integrable function on the real line that is supported 
in a finite interval, and for each positive integer n let pn be the function defined 
by the recursive process given above. That is, pn is the linear combination of the 
functions ϕ ψ,  ,k k0,  ψ ψ −,  , k n k1, 1,…  (k integer) that is closest to f . Then the distance 
between f  and pn converges to zero as n :→ ∞

∫ ( )− = − =
→∞ →∞ −∞

∞
f p f x p x dxlim lim ( ) ( ) 0.

n
n

n
n

2

In general, once we have the approximation pn at resolution level n, the detail function 
at that resolution level is

∑ ∑ψ ψ ψ= = 〈 〉
=−∞

∞

=−∞

∞

q x b x f x( ) ( ) ,   ( ),n
k

n k n k
k

n k n k, , , ,

and the best approximation at the next resolution level n 1+  is

p x p x q x( ) ( ) ( ).n n n1 = ++

Expanding,

p x p x q x q x q x( ) ( ) ( ) ( ) ( ).n n1 0 0 1= + + + ++ �

We see that the approximation p x( )n 1+  is obtained by progressively adding finer and finer 
details to p x( ).0  The next theorem states that the distance between f  and the approximation 
pn at resolution level n converges to zero as n .→ ∞  The proof of Theorem 13 can be 
found in more advanced texts on wavelets or real analysis.

1.0
x

2.01.5 3.02.5

−0.5

y

−1.0

−1.5

0.5

1.0

1.5

FIGURE 19.19 The approximations p1 (red) and p2 (dark blue) for the function 
g from Figure 19.15.
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 19.5  Advanced Topic: The Haar System and Wavelets 19-33

Wavelets

The Haar system and the trigonometric system are not well-suited to every application. 
Each system is better suited for certain types of applications than the other. Fourier series 
often provide good approximations when dealing with periodic functions. The Haar sys-
tem is typically a better choice when an application has a multiresolution aspect. 
However, there are other wavelet systems that can be even more advantageous in such 
applications.

One drawback of the Haar system is that the box functions kϕ  and the wavelets ψn k,  are 
discontinuous. To explain another drawback, consider the function

f x
x m

x x m
( )

1, 0 ,

0, 0 or  ,
=

≤ <

< ≥








where m  is an integer. Using the Haar system, the approximation to f  at resolution level 
zero is f  itself. Specifically,

∑ϕ= =
=

−

p x x f x( ) ( ) ( ).
k

m

k0
0

1

However, only functions that, like this f , are “locally constant” can be well represented at 
this low resolution level. In contrast, the approximation p0 to

g x
x x m

x x m
( )

, 0 ,

0, 0 or  ,
=

≤ <

< ≥








is not g itself, but rather a step function with jumps at integer points.
Today we have constructions of orthonormal wavelet systems that consist of continu-

ous, differentiable, or smoother functions, and these systems provide good representations 
of functions that are locally linear, locally quadratic, or locally polynomial of higher order. 
In particular, for each even integer N N2 where 1, 2, 3,…( )= , Ingrid Daubechies con-
structed functions D N2  and W N2  that can be used instead of the box function ϕ and the Haar 
wavelet ψ to generate orthonormal systems. Indeed, ϕ and ψ are precisely the functions D2 
and W2 that correspond to N 1.=  The function D N2  is called a Daubechies scaling func-
tion and W N2  is a Daubechies wavelet. The functions D4 and W ,4  corresponding to N 2,=  
are shown in Figures 19.20 and 19.21. They cannot be given by closed-form formulas, but 
Exercises 11–15 in the Additional and Advanced Exercises discuss the recursive process 
by which they are defined.

3.01.5 2.51.00.5 2.0
x

y

−0.5

0.5

1.0

1.5

FIGURE 19.20 The Daubechies scaling function 
D .4  This function is identically zero outside of the 
interval [ ]0, 3 .

3.01.5 2.51.00.5 2.0

−1.0

−0.5

−2.0

−1.5

0.5

1.0

1.5

y

FIGURE 19.21 The Daubechies wavelet W .4  
This function is identically zero outside of the 
interval [ ]0, 3 .
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19-34 Chapter 19 Fourier Series and Wavelets 

It is not apparent from their graphs, but D4 and W4 satisfy the same orthogonality rela-
tions as the box function ϕ and the Haar wavelet .ψ  The translated box functions 

x x k( )kϕ ϕ( )= −  are orthogonal, and likewise the translated functions D x k4 ( )−  are 
orthogonal. It is easy to see that the functions kϕ  are orthogonal because their supports do 
not overlap. In contrast, the supports of the functions D x k4 ( )−  do overlap, but even so 
the inner product ( ) ( )− −D x j D x k, 4 4H I is zero whenever j k.≠  Further, the collec-
tion of translates and dilates W x k2 2n n2

4 ( )−  over all integer k and nonnegative n is  
orthonormal, and we can substitute D4 and W4 for ϕ and ψ in the multiresolution approxi-
mation process that we described earlier.

The Daubechies scaling function D4 and wavelet W4  are each supported in the inter-
val [ ]0, 3 , and they are continuous, but not differentiable. Indeed, their graphs have a 
fractal appearance in the sense that no matter how much they are magnified, they are still 
jagged. Figure 19.22 shows an enlargement of the graph of D4 centered on the interval 
[ ]1.48, 1.58 . Linear combinations of the translates D x k4 ( )−  can represent functions 
that are locally constant as well as functions that are locally linear. As N  increases, D N2  
and W N2  become smoother but more spread out   ( )[ ]−Nsupported in 0, 2 1 , and can 
locally represent polynomials of higher order. The proof of these facts about Daubechies’ 
constructions are much more involved than for the Haar wavelets, and can be found in 
texts on wavelet theory.

FIGURE 19.22 An enlargement of 
the graph of D .4

y

0.04

0.05

0.06

0.01

0.02

0.03

x
1.54 1.581.521.50 1.56

Norms of Functions
In Exercises 1–6, the values of a function on the interval [ ]0, 2  are 
given, and we assume that the function is identically zero outside of 
that interval. Find the norm of each function.

 1. f x
x

x
( )

5, 0 1

1, 1 2
=

≤ <

≤ ≤








 2. g x

x

x

x

( )

5, 0 1 2

1, 1 2 1

1, 1 2

=

≤ <

≤ <

− ≤ ≤










 3. h x x x( ) , 0 2= ≤ ≤

 4. j x x x( ) , 0 22= ≤ ≤

 5. x
x

x x
( )

1, 0 1

sin 2 , 1 2π
=

≤ <

≤ ≤








�

 6. m x

x

x

x x

( )

2, 0 1 2

2, 1 2 1

cos 2 , 1 2π

=

≤ <

− ≤ <

≤ ≤










Inner Product of Functions
In Exercises 7–12, use the functions defined in Exercises 1–6 to com-
pute the given inner product. Are the two functions orthogonal?

 7. 〈 〉g j,  8. ψ〈 〉, �

 9. 〈 〉g m,   10. ψ〈 〉h,  2,1

 11. ϕ〈 〉f ,  1  12. ψ〈 〉m,  2,3

Finding Haar Coefficients
In Exercises 13–18, find the Haar coefficients ϕ= 〈 〉a f , k k  and 

ψ= 〈 〉b f , n k n k, ,  for the given function. If available, use a CAS to plot  
the approximation pn at resolution levels =n 0, 1, and 2 over the 
domain [ ]0, 2 .

 13. The function f  from Exercise 1.

 14. The function g from Exercise 2.

 15. The function h  from Exercise 3.

 16. The function j from Exercise 4.

 17. The function � from Exercise 5.

 18. The function m from Exercise 6.

Theory and Examples

 19. Explain why the Haar wavelet ψn k,  is supported in the interval 
[ ]( )+− −k k2 , 2 1n n  and why it is a unit function.

 20. Prove that for integers j and k  and nonnegative integers m and n  
we have

 a. ϕ ϕ〈 〉 =,  0j k      for all j k,≠

 b. ϕ ψ〈 〉 =,  0j n k,     for all n j,  , and k,

 c. ψ ψ〈 〉 =,  0n j n k, ,    for all n  and all j k,≠

 d. ψ ψ〈 〉 =,  0m j n k, ,   for all j and k  and all m n.≠

Explain why this implies that the Haar system is an orthonormal 
collection of functions.

EXERCISES 19.5

M19_HASS5901_15_GE_C19.indd   34M19_HASS5901_15_GE_C19.indd   34 07/03/2023   17:5407/03/2023   17:54

www.konkur.in

Telegram: @uni_k



 Chapter 19  Additional and Advanced Exercises 19-35

Vectors
Questions 1–5 are about vectors in d-dimensional space.

 1. What is the length of a vector in d-dimensional space?

 2. How do you determine the dot product of vectors in d-dimensional 
space? Which algebraic properties are satisfied by the dot product?

 3. What does it mean for a collection of vectors in d-dimensional 
space to be orthogonal? orthonormal?

 4. What is an orthonormal basis of vectors for d-dimensional space?

 5. Assume that { }u u u,  ,  ,  d1 2 …  is an orthonormal basis for 
d-dimensional space and n d1 .≤ <  If v is a vector in  
d-dimensional space, what is the linear combination of 
u u u,  ,  ,  n1 2 …  that is closest to v?

Periodic Functions
Questions 6–11 are about periodic functions.

 6. What is a periodic function?

 7. What is the norm of an integrable function on the domain π[ ]0, 2 ? 
What is a unit function?

 8. What is the inner product of two integrable functions on the 
domain π[ ]0, 2 ? When are two such functions orthogonal? 
orthonormal?

 9. What does it mean for a collection of integrable functions on the 
domain π[ ]0, 2  to be orthogonal? orthonormal?

 10. What are the Fourier coefficients of an integrable function f  that 
is periodic with period 2 ?π

 11. If f  is an integrable function on π[ ]0, 2 , how do you find the trig-
onometric polynomial pn that is the best approximation to f  by a  
linear combination of 1, x nxcos ,  , cos ,…  x nxsin ,  , sin ?…

Functions on the Real Line
Questions 12–16 are about functions whose domain is the real line.

 12. What does it mean to say that an integrable function f  is sup-
ported in an interval [ ]a b,  ? What is the norm of f ? What is a unit 
function?

 13. What is the inner product of two integrable functions that are 
each supported in a finite interval? When are two such functions 
orthogonal? orthonormal?

 14. What interval is the function kϕ  supported in? ψn k, ?

 15. What are the Haar coefficients of an integrable function f  that is 
supported in a finite interval?

 16. If f  is an integrable function that is supported in a finite interval, 
how do you find the Haar approximation pn to f  at resolution 
level n? What is the detail function qn at resolution level n?

CHAPTER 19 Questions to Guide Your Review

Finding More Orthonormal Vectors

 1. Let = 〈 〉u 1 5, 2 51  and = 〈 − 〉v 3, 1 .

 a. Show that u1 is a unit vector.

 b. Find the vector p on the line through u1 that is closest to v.

 c. Verify that q v p= −  is orthogonal to u .1

 d. Set u q q ,2 =  and explain why { }u u, 1 2  is an orthonormal 
basis for two-dimensional space.

 2. Let = 〈 − 〉 = 〈 〉u u1 6, 1 6, 2 3 ,   1 2, 1 2, 0 ,1 2  and 
v 3,   1,  1 .= 〈 − 〉

 a. Show that u1 and u 2 are orthonormal.

 b. Find the linear combination p of u1 and u 2 that is closest to v.

 c. Verify that q v p= −  is orthogonal to both u1 and u .2

 d. Set =u q q ,3  and explain why { }u u u,  , 1 2 3  is an ortho-
normal basis for three-dimensional space.

Orthogonal Polynomials
The functions in Exercises 3–9 are all supported in the interval [ ]−1, 1 . 
The norm of such a function f  is

∫=
−

f f x dx( ) ,2

1

1

and the inner product of f  with g is

∫〈 〉 =
−

f g f x g x dx,  ( )  ( ) .
1

1

For each integer n 0≥  we let nυ  be the function defined by x x( )n
nυ =  

for x1 1− ≤ ≤  and x( ) 0nυ =  for x 1.>

 3. Find the norm of nυ  for each n 0.≥

 4. Find the inner product of mυ  with nυ  for ≥m n, 0. For which m 
and n  is mυ  orthogonal to ?nυ  Is n n 0υ{ } ≥  an orthogonal collection 
of functions?

In Exercises 5–9, for x1 1− ≤ ≤  define

q x q x x q x x( ) 1, ( ) , ( ) 3 1,0 1 2
2= = = −

and set q x q x q x( ) ( ) ( ) 00 1 2= = =  for x 1.>  Also define

u x
q x

q
u x

q x
q

u x
q x

q
( )

( )
, ( )

( )
, ( )

( )
.0

0

0
1

1

1
2

2

2

= = =

 5. Find qn   for =n 0, 1, and 2.

 6. Prove that { }q q q,  , 0 1 2  is an orthogonal set of functions.

 7. Find explicit formulas for u u,  ,0 1  and u ,2  and prove that 
{ }u u u,  , 0 1 2  is an orthonormal set of functions.

 8. Find the function

υ υ υ= 〈 〉 + 〈 〉 + 〈 〉w x u u x u u x u u x( ) ,  ( ) ,  ( ) ,  ( ).3 3 0 0 3 1 1 3 2 2

This is the linear combination of u u,  ,0 1  and u2 that is closest to 
the function .3υ

 9. Using the function w3 from Exercise 8, let

q x x w x( ) ( ) ( ).3 3 3υ= −

Find q ,3  and set

u x
q x

q
( )

( )
.3

3

3

=

Prove that { }u u u u,  ,  , 0 1 2 3  is an orthonormal set of functions.

CHAPTER 19 Additional and Advanced Exercises
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19-36 Chapter 19 Fourier Series and Wavelets 

The Haar System

 10. Prove that the box function ϕ  satisfies the refinement equation

x x x( ) 2 2 1 ,ϕ ϕ ϕ( ) ( )= + −

and the Haar wavelet ψ can be obtained from the box function ϕ  by

x x x( ) 2 2 1 .ψ ϕ ϕ( ) ( )= − −

See the accompanying figure.

y

x
1

1

1
2

−1

c(x)

y

x
1

1

1
2

−1

w(2x)

y

x
1

1

1
2

−1

w(2x − 1)

= –

y

x
1

1

1
2

w(x)

y

x
1

1

1
2

w(2x)

y

x
1

1

1
2

w(2x − 1)

= +

The Daubechies Scaling Function D4

It is proved on texts in wavelet theory that the Daubechies scaling 
function D4 is a continuous function that is supported in a finite inter-
val and satisfies the refinement equation

( ) ( ) ( )

( )

= + − + −
+ −

D x c D x c D x c D x
c D x

( ) 2 2 1 2 2
2 3 ,

4 0 4 1 4 2 4

3 4

where

= + = + = − = −c c c c1 3
4

, 3 3
4

, 3 3
4

, 1 3
4

.0 1 2 3

We will use this refinement equation in Exercises 11–15.

 11. The Daubechies scaling function D4 is supported in some finite 
interval [ ]a b,  . Use the refinement equation given above to prove 
that D4 is actually supported in the interval [ ]0, 3 . (Hint: Let 
[ ]a b,   be the smallest interval such that D x( ) 04 =  for every x  
outside of [ ]a b,  . Use the refinement equation to prove that if 

[ ]( )∉ +x a b2, 3 2 , then x a2 <  and x b2 3 ,− >  and there-
fore D x( ) 0.4 = )

 12. Since D4 is continuous and supported in the interval [ ]0, 3 , we have 
D D(0) (3) 0.4 4= =  Let a D (1)4=  and b D (2),4=  and use  
the refinement equation to show that a and b satisfy the equations

a c b c a

b c b c a

,

.
0 1

3 2

= +

= +

Prove that

a b1 3
2

, 1 3
2

= + = −

solves this system of equations and also satisfies a b 1.+ =

 13. Exercise 12 computed the values D (1)4  and D (2).4  Since D4 is 
continuous and identically zero outside of [ ]0, 3 , we know that 
D k( ) 04 =  for every integer k  other than k 1=  and k 2.=  Use 
the refinement equation to compute D k 24 ( ) for integer k.

 14. This exercise will explain how Figure 19.20 was generated. 
Exercises 12 and 13 computed the values D k( )4  and ( )D k 24  for 
integer k. Use a CAS to compute the values ( )D k 44  for integer k  
and plot the result. Then compute ( )D k 84  for integer k  and plot 
the result. Iterate this process until a sufficiently detailed plot of 
the graph of D4 is obtained.

 15. The Daubechies wavelet W4 is derived from the Daubechies scal-
ing function D4 by the equation

W x c D x c D x c D x
c D x

( ) 2 2 1 2 2
2 3 .

4 3 4 2 4 1 4

0 4

( ) ( ) ( )

( )

= − + − − −
+ −

Use the values for D x( )4  obtained in Exercise 14 to make a plot 
of the graph of W .4

 16. Using the values for D x( )4  obtained in Exercise 14, plot the function

∑ ( )= −
=−

F x D x k( )
k 2

4

4

on the interval [ ]−2, 7  (remember that D x( ) 04 =  if x 0≤  or 
x 3≥ ). Numerically, it appears that F x( ) is constant on the inter-
val [ ]0, 5 .

 17. Using the values for D x( )4  obtained in Exercise 14, plot the 
function

G x k D x k( )
k 2

4

4∑ ( )= −
=−

on the interval [ ]−2, 7  (remember that D x( ) 04 =  if x 0≤  
or x 3≥ ). Numerically, it appears that G x( ) is linear on the 
interval [ ]0, 5 ; that is, there are constants c and d  such that 
G x cx d( ) = +  for  x0 5.≤ ≤

T

T

T

T
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19-37

ANSWERS TO ODD-NUMBERED EXERCISES

Chapter 19
SECTION 19.1, p. 19-3
 1. π2   3. Not periodic  5. π2
 7. (a)  Since ( )+ =f x P f x( ) and ( )+ =g x P g x( ) for every 

x, it follows that ( ) ( )+ + + = +f x P g x P f x g x( ) ( ) 
for every x.

SECTION 19.2, p. 19-5
 1. This follows from the fact that ( )− = −kx kxsin sin .
 3. The graphs of p5 and p13 are shown in the accompanying figure. 

It appears that pn is converging to the function f  whose values on 
the domain π[ ]0, 2  are

π

π π π
=

≤ ≤

− < ≤








f x
x x

x x
( )

, 0 ,

2 , 2 ,

  with these values then repeated every π2  units. The convergence 
is “fast” since the graph of pn is already close to the graph of f  
when n  is small.

p5

x

y

p
2

p

p

2

p
2

3p
2

3p
2

5p
2

7p
2

pp 2p 4p02p 3p- - - -

y

p

p

2

x
p
2

p
2

3p
2

3p
2

5p
2

7p
2

pp 2p 4p02p 3p- - - -

p13

 5. = + =z x i xcos 0 sin 0 10

 
7.

 
z z e e

x i x x i x

2 3 5 2 3 5

2 cos 2 sin 2 3 cos sin 5

i x ix2 2

( ) ( )
+ − = + −

= + + + −

 9. z e e x i x x i xcos sin cos sinix ix1 1( ) ( ) ( )= = = − + − = −− − −

 11. ( ) ( )+ = + + − =−z z x i x x i x xcos sin cos sin 2 cos1

 
13.

 
( )

( )
+ = +

+ − =

−z z nx i nx
nx i nx nx

cos sin
cos sin 2 cos

n n

 
15.

 
( )

( )

+ − + + = +
+ + − = ⋅ + ⋅ −

− − −

−

z z z z z z

z z x x

2 3 5 3 2 2

3 5 2 2 cos 2 3 2 cos 5.

2 1 2 2 2

1

 
17.

 
x x z z i z z

i z i z

cos 2 sin 3 3

0.5 3 0.5

1
2

1 1

1

( ) ( )

( ) ( )

+ − = + − − −
= − − + +

− −

−

SECTION 19.3, pp. 19-11–19-12

 1. (a) ⋅ = ⋅ = ⋅ =r s r t s t0,   0,   0

 (b) = = =r s t2,   2,   1

 (c) Yes (d) No

 3. (a) r s r t s t0,   0,   3⋅ = ⋅ = ⋅ = −
 (b) r s t3,   6,   2= = =
 (c) No (d) No

 5. (a) r s r t s t0,   0,   0⋅ = ⋅ = ⋅ =
 (b) = = =r s t1,   1,   1
 (c) Yes (d) Yes
 7. (b) = 〈 〉p 1, 2, 0  (c) 3
 9. (b) = 〈 − 〉p 7 2,  1 2, 1  (c) 3 2

 
11.

 
+ − = 〈− − 〉

− + − = 〈− − − 〉
u v w
u v w

2 3 6, 4,  7, 8, 1 ,  

5 10, 6, 4,  7,  3

 13. ⋅ = − ⋅ = ⋅ = −u v u w v w6,   3,   1
 15. ⋅ =u u 0j k  when ≠j k, and =u 1k  for =k 1, 2, 3, 4, 5
 17. ( ) ( )= ⋅ + ⋅ = 〈 − 〉p v u u v u u 2,  4, 0, 0, 0 ,1 1 2 2  

v p v p u v p u21 4.58,   01 2( ) ( )− = ≈ − ⋅ = − ⋅ =
 19. ( )( ) ( ) ( )= ⋅ + ⋅ + ⋅ + ⋅p v u u v u u v u u v u u1 1 2 2 3 3 4 4 

v p v p u v p u
v p u v p u
2,   4, 4, 2, 0 , 1,

0
1 2

3 4

( ) ( )
( ) ( )

= 〈 − 〉 − = − ⋅ = − ⋅
= − ⋅ = − ⋅ =

 21. u uu v v u.
k

d

k k
k

d

k k
1 1

∑ ∑υ υ⋅ = = = ⋅
= =

 23. By the symmetry and distributive properties (Exercises 21 and 22),  
u v u v u v

u u v u u v v v u u v v2 .

2

2 2

( ) ( )

( )

+ = + ⋅ +
= ⋅ + ⋅ + ⋅ + ⋅ = + ⋅ +

SECTION 19.4, p. 19-23

 1. π2 3 3 2  3. 2 5 5 2π   5. ( )−πe 1 24

 7. π7 24,3  no  9. 2 3,3π  no  11. 0, yes

 13. a a
k

a b
2

,   4
2 1

,   0,   0,k k k0 2 1 2 2
π

π( )
= = −

−
= =−  

∑π
π( )

( )= = −
−

−−
=

p x p x
k

k x( ) ( )
2

4
2 1

cos 2 1n n
k

n

2 2 1
1

2

p9

x

y

p
2

p

p

2

p
2

3p
2

3p
2

5p
2

7p
2

pp 2p 4p02p 3p- - - -

 15. a a
k

b p x
k

kx
3

, 4 , 0, ( )
3

4 cosk k n
k

n

0

2

2

2

1
2∑π π= = = = +

=
y

p2

p

p21

x
p
2

p
2

3p
2

3p
2

5p
2

7p
2

pp 2p 4p02p 3p- - - -

 17. a e a e
k

b k e
k

1
2

,   1
1

,   1
1

,k k0

2 2

2

2

2π π π( )
( )

( )
= − = −

+
= − −

+

π π π
 

p x
e e

k
kx

k e

k
kx( )

1
2

1
1

cos
1

1
sinn

k

n

k

n2

1

2

2
1

2

2∑ ∑π π π( )
( )

( )
=

−
+

−
+

−
−

+

π π π

= =

p11

x

y

p
2

400

200

p
2

3p
2

3p
2

5p
2

7p
2

pp 2p 4p02p 3p- - - -
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19-38 Chapter 19: Answers to Odd-Numbered Exercises

 23. ∫ ∫〈 〉 = = = 〈 〉
π π

f g f x g x dx g x f x dx g f,  ( ) ( ) ( ) ( ) , 
0

2

0

2

 29. = = =a a b 1,0 1 1  and = =a b 0k k  for all k 2≥  so 
p x x f x1 cos( ) sin( ) ( )n = + + =  for all n.

 31. Assume that ≠m n are positive integers. The integral of kxcos  
over π[ ]0, 2  is zero when k  is a nonzero integer. Therefore, since 

− ≠m n 0 and + ≠m n 0, we have

∫ ∫( ) ( )− = + =
π π

m n x dx m n x dxcos 0 and cos 0.
0

2

0

2

  Applying the trigonometric identity given in the hint, it follows 
that

mx nx dx m n x dx

m n x dx

sin sin 1
2

cos

1
2

cos 0 0 0.

0

2

0

2

0

2

∫ ∫

∫

( )

( )

= −

− + = − =

π π

π

 33. Assume that m and n  are positive integers. The integral of kxsin  
over π[ ]0, 2  is zero for every integer k. Applying the trigonomet-
ric identity given in the hint, it follows that

mx nx dx m n x dx

m n x dx

sin cos 1
2

sin

1
2

sin 0 0 0.

0

2

0

2

0

2

∫ ∫

∫

( )

( )

= +

+ − = + =

π π

π

SECTION 19.5, p. 19-34

 1. 26  3. 2 2 3   5. 3 2

 7. −11 6, no  9. 4, no  11. 1, no

 13. = =a a5,   1,0 1  and all other Haar coefficients are zero.

 15. If <k 0 or >k 1, then =a 0.k  For =k 0 or =k 1,

∫= = +
+

a x dx k 1
2

.k
k

k 1

Given ≥n 0, if <k 0 or ≥ +k 2n 1, then the support of ψn k,  does 
not intersect [ ]0, 2 , and therefore =b 0n k,  for those k. For all 
other k,

b x dx x dx2 2 1
4 2

.n k
n

k

k
n

k

k

n,
2

2

2 1 2
2

2 1 2

2 1

3 2n

n

n

n

∫ ∫= − = −
⋅

( )

( )

( )+

+

+

−

−

−

−

This graph shows h  and p2:

x
2.00.5 1.0 1.5

1.0

0.5

2.0

1.5

p2

h

y

 17. a a1,   0.0 1= =  For ≥n 0, if ≤ < +k2 2 ,n n 1  then the sup-
port of ψn k,  intersects the interval [ ]1, 2 . For these k,

∫ ∫π π

π
π π

π

( )

( )

= −

= − + −




− +




( )

( )

( )+

+

+

− −

−

−

−

−

−

b x dx x dx

k k

k

2 sin 2 2 sin 2

2
2

2 cos 2 2 1 2 cos 2 2

cos 2 2 1

n k
n

k

k
n

k

k

n
n n

n

,
2

2

2 1 2
2

2 1 2

2 1

2

n

n

n

n

All other Haar coefficients are zero.
This graph shows � and p1; they are equal on [ ]0, 1 :

x

y

2.00.5 1.0 1.5

1.0

0.5

-1.5

-0.5

p1

l

ADDITIONAL AND ADVANCED EXERCISES, pp. 19-35–19-36

 1. (a) u 11
2 =   (b) = 〈 〉p 1 5, 2 5

 (c) = 〈 − 〉 ⋅ =q q u14 5,  7 5 , 01

 (d) q u7 5 ,   2
5

, 1
52= = −

 3. 
n

2
2 1nυ =

+

 5. = = =q q q2, 2 3, 2 2 5.0 1 2

 7. u x u x x u x x( ) 1
2

, ( )
2 3

, ( ) 3 1
2 2 5

.0 1 2

2
= = = −

 
9.

 
q x x x q

u x x x

( ) 1
5

5 3 , 2
5

2
7

,

( ) 1
2

7
2

5 3 .

3
3

3

3
3

( )

( )

= − =

= −

 13. ( ) ( ) ( )= + = = −D D D1 2 2 3
4

, 3 2 0, 5 2 2 3
44 4 4

 17. The graph of G:

1

y

2 3 4 5 6 7-1-2
x

1

-1

-2

-3

2

3

4

M19B_HASS5582_15_SE_ANS.indd   38M19B_HASS5582_15_SE_ANS.indd   38 22/02/22   7:58 PM22/02/22   7:58 PM

www.konkur.in

Telegram: @uni_k



AP-1

Appendix A 

A.1 Real Numbers and the Real Line

This section reviews real numbers, inequalities, intervals, and absolute values.

Real Numbers

Much of calculus is based on properties of the real number system. Real numbers are 
numbers that can be expressed as decimals, such as

3
4

0.75000 

1
3

0.33333 

2 1.4142 

…

…

…

− = −

=

=

The dots  . . .   in each case indicate that the sequence of decimal digits goes on forever. 
Every conceivable decimal expansion represents a real number; although, some numbers 
have two representations. For instance, the infinite decimals .999 . . .  and 1.000 . . .  repre-
sent the same real number 1. A similar statement holds for any number with an infinite tail 
of 9’s.

The real numbers can be represented geometrically as points on a number line called 
the real line.

−2 −1 0 1 2 3p 43
4

1
3− "

2

RULES FOR INEQUALITIES

If a, b, and c are real numbers, then:
1. a b a c b c< ⇒ + < +
2. a b a c b c< ⇒ − < −
3. a b<  and c ac bc0> ⇒ <
4. a b<  and c bc ac0< ⇒ <   

Special case: a b b a< ⇒ − < −

5. a
a

0 1 0> ⇒ >

6. If a and b are both positive or both 

negative, then a b
b a
1 1 .< ⇒ <

The symbol R denotes either the real number system or, equivalently, the real line.
The properties of the real number system fall into three categories: algebraic proper-

ties, order properties, and completeness. The algebraic properties say that the real num-
bers can be added, subtracted, multiplied, and divided (except by 0) to produce more real 
numbers under the usual rules of arithmetic. You can never divide by 0.

The order properties of real numbers are given in Appendix A.7. The useful rules at 
the left can be derived from them, where the symbol ⇒ means “implies.”

Notice the rules for multiplying an inequality by a number. Multiplying by a positive 
number preserves the inequality; multiplying by a negative number reverses the inequality. 
Also, reciprocation reverses the inequality for numbers of the same sign. For example, 
2 5<  but 2 5− > −  and 1 2 1 5.>

The completeness property of the real number system is deeper and harder to define 
precisely. However, the property is essential to the idea of a limit (Chapter 2). Roughly 
speaking, it says that there are enough real numbers to “complete” the real number line, in 
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AP-2 Appendix A

the sense that there are no “holes” or “gaps” in it. Many theorems of calculus would fail if 
the real number system were not complete. Appendix A.7 introduces the ideas involved 
and discusses how the real numbers are constructed.

We distinguish three special subsets of real numbers.

1. The natural numbers, namely 1, 2, 3, 4, . . .

2. The integers, namely 0,  1,  2,  3, …± ± ±
3. The rational numbers, namely the numbers that can be expressed in the form of a frac-

tion m n , where m and n are integers and n 0.≠  Examples are

1
3

, 4
9

4
9

4
9

, 200
13

, and 57 57
1

.− = − =
−

=

The rational numbers are precisely the real numbers with decimal expansions that are 
either

a. terminating (ending in an infinite string of zeros), for example,

3
4

0.75000    0.75 or…= =

b. eventually repeating (ending with a block of digits that repeats over and over), for 
example,

23
11

2.090909    2.09…= =   
 The bar indicates the block  
of repeating digits.

A terminating decimal expansion is a special type of repeating decimal, since the ending 
zeros repeat.

The set of rational numbers has all the algebraic and order properties of the real num-
bers but lacks the completeness property. For example, there is no rational number whose 
square is 2; there is a “hole” in the rational line where 2 should be.

Real numbers that are not rational are called irrational numbers. They are character-
ized by having nonterminating and nonrepeating decimal expansions. Examples are 
π, 2, 5,3  and log 3.10  Since every decimal expansion represents a real number, there  
are infinitely many irrational numbers. Both rational and irrational numbers are found arbi-
trarily close to any given point on the real line.

Set notation is very useful for specifying sets of real numbers. A set is a collection of 
objects, and these objects are the elements of the set. If S is a set, the notation a S∈  means 
that a is an element of S, and a S∉  means that a is not an element of S. If S and T are sets, 
then S T∪  is their union and consists of all elements belonging to either S or T (or to both 
S and T). The intersection S T∩  consists of all elements belonging to both S and T. The 
empty set ∅ is the set that contains no elements. For example, the intersection of the  
rational numbers and the irrational numbers is the empty set.

Some sets can be described by listing their elements in braces. For instance, the set A 
consisting of the natural numbers (or positive integers) less than 6 can be expressed as

{ }=A 1, 2, 3, 4, 5 .

The entire set of integers is written as

…0,  1,  2,  3,  .{ }± ± ±

Another way to describe a set is to enclose in braces a rule that generates all the ele-
ments of the set. For instance, the set

A x x x is an integer and 0 6{ }= < <

is the set of positive integers less than 6.
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 A.1  Real Numbers and the Real Line AP-3

Intervals

A subset of the real line is called an interval if it contains at least two numbers and contains 
all the real numbers lying between any two of its elements. For example, the set of all real 
numbers x such that x 6>  is an interval, as is the set of all x such that x2 5.− ≤ ≤  The 
set of all nonzero real numbers is not an interval; since 0 is absent, the set fails to contain 
every real number between 1−  and 1 (for example).

Geometrically, intervals correspond to rays and line segments on the real line, along 
with the real line itself. Intervals of numbers corresponding to line segments are finite 
intervals; intervals corresponding to rays and the real line are infinite intervals.

A finite interval is said to be closed if it contains both of its endpoints, half-open if it 
contains one endpoint but not the other, and open if it contains neither endpoint. The end-
points are also called boundary points; they make up the interval’s boundary. The 
remaining points of the interval are interior points and together compose the interval’s 
interior. Infinite intervals are closed if they contain a finite endpoint, and open otherwise. 
The entire real line R is an infinite interval that is both open and closed. Table A.1 sum-
marizes the various types of intervals.

TABLE A.1 Types of intervals

Notation Set description Type Picture

( )a b, x a x b{ }< < Open
a b

a b

a b

a

a

b

b

b

a

[ ]a b, x a x b{ }≤ ≤ Closed

[ )a b, x a x b{ }≤ < Half-open

( ]a b, x a x b{ }< ≤ Half-open

( )∞a, x x a{ }> Open

[ )∞a, x x a{ }≥ Closed

( )−∞ b, x x b{ }< Open

( ]−∞ b, x x b{ }≤ Closed

( )−∞ ∞, R (set of all real  
numbers)

Both open  
and closed

Solving Inequalities

The process of finding the interval or intervals of numbers that satisfy an inequality in x is 
called solving the inequality.

EXAMPLE 1  Solve the following inequalities and show their solution sets on the  
real line.

 (a) x x2 1 3− < +  (b) 
x

6
1

5
−

≥
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AP-4 Appendix A

0

0 1

1 4

(a)

11
5

(b)

x

x

FIGURE A.1 Solution sets for the 
inequalities in Example 1. Hollow circles 
indicate endpoints that are not included 
in the interval, and solid dots indicate 
included endpoints.

0−5 0  = 5 03 0

04 − 1 0 = 01 − 4 0 = 3

−5 0 3

1 4

FIGURE A.2 Absolute values give dis-
tances between points on the number line.

Absolute Value Properties

1. a a− =   A number and its negative have the same  
absolute value.

2. ab a b=   The absolute value of a product is the product  
of the absolute values.

3. a
b

a
b

=   The absolute value of a quotient is the quotient  
of the absolute values.

4. a b a b+ ≤ +   The triangle inequality. The absolute value of 
the sum of two numbers is less than or equal to 
the sum of their absolute values.

Absolute Value

The absolute value of a number x, denoted by x , is defined by the formula

x
x x

x x

, 0

, 0.
=

≥

− <
⎧
⎨
⎪⎪
⎩⎪⎪

Solution 

 (a) x x
x x

x

2 1 3
2 4

4

− < +
< +

<

Add 1 to both sides.

Subtract x from both sides.

The solution set is the open interval ( )−∞, 4  (Figure A.1a).

 (b) The inequality x6 1 5( )− ≥  can hold only if x 1>  because otherwise x6 1( )−  is 
undefined or negative. Therefore, x 1( )−  is positive, and the inequality will be pre-
served if we multiply both sides by x 1 :( )−

x
x

x

x

6
1

5

6 5 5

11 5

11
5

.

−
≥

≥ −

≥

≥

Multiply both sides by x 1 .( )−

Add 5 to both sides.

xOr  11
5

.≤

The solution set is the half-open interval 1, 11 5( ] (Figure A.1b). 

EXAMPLE 2  a a3 3, 0 0, 5 5 5,( )= = − = − − = − =  

Geometrically, the absolute value of x is the distance from x to 0 on the real number 
line. Since distances are always positive or 0, we see that x 0≥  for every real number x, 
and x 0=  if and only if x 0.=  Also,

x y x ythe distance between   and − =

on the real line (Figure A.2).
Since the symbol a  always denotes the nonnegative square root of a, an alternate 

definition of x  is

x x .2=

It is important to remember that a a .2 =  Do not write a a2 =  unless you already 
know that a 0.≥

The absolute value function has the following properties. (You are asked to prove 
these properties in the exercises.)

Z01_HASS5901_15_GE_APPA.indd   4 08/03/2023   17:49

www.konkur.in

Telegram: @uni_k



 A.1  Real Numbers and the Real Line AP-5

Note that a a .− ≠ −  For example, − =3 3, whereas 3 3.− = −  If a and b dif-
fer in sign, then a b+  is less than a b .+  In all other cases, a b+  equals  
a b .+  Absolute value bars in expressions like 3 5− +  work like parentheses: We do 

the arithmetic inside before taking the absolute value.

FURTHER PROPERTIES:  
ABSOLUTE VALUES AND INTERVALS

If a is any positive number, then:
5. x a x a= ⇔ = ±
6. x a a x a< ⇔ − < <
7. x a x a x a or > ⇔ > < −
8. x a a x a≤ ⇔ − ≤ ≤
9. x a x a x a or ≥ ⇔ ≥ ≤ −

EXAMPLE 3

3 5 2 2 3 5 8
3 5 8 3 5

3 5 8 8 3 5

− + = = < − + =
+ = = +

− − = − = = − + −  

The inequality x a<  says that the distance from x to 0 is less than the positive num-
ber a. This means that x must lie between a−  and a, as we can see from Figure A.3.

Statements 5–9 in the table at left are all consequences of the definition of absolute 
value and are often helpful when solving equations or inequalities involving absolute val-
ues. The symbol ⇔ that appears in the table is often used by mathematicians to denote the 
“if and only if” logical relationship. It also means “implies and is implied by.”

EXAMPLE 4  Solve the equation x2 3 7.− =

Solution By Property 5, x2 3 7,− = ±  so there are two possibilities:

x x
x x

x x

2 3 7 2 3 7
2 10 2 4

5 2

− = − = −
= = −

= = −

Equivalent equations without absolute values

Solve as usual.

The solutions of x2 3 7− =  are x 5=  and x 2.= −  

EXAMPLE 5  Solve the inequality 
x

5 2 1.− <

Solution We have

x x

x

x

x

5 2 1 1 5 2 1

6 2 4

3 1 2

1
3

1
2

.

− < ⇔ − < − <

⇔ − < − < −

⇔ > >

⇔ < <

Property 6

Subtract 5.

Multiply by 1
2

.−

Take reciprocals.

Notice how the various rules for inequalities were used here. Multiplying by a negative 
number reverses the inequality. So does taking reciprocals in an inequality in which both 
sides are positive. The original inequality holds if and only if x1 3 1 2 .( ) ( )< <  The 
solution set is the open interval ( )1 3,1 2 . 

−a 0 ax

aa

0 x 0

FIGURE A.3 x a<  means x lies 
between a−  and a.
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 1. Express 1 9 as a repeating decimal, using a bar to indicate the 
repeating digits. What are the decimal representations of 2 9? 
3 9? 8 9? 9 9?

 2. If x2 6,< <  which of the following statements about x are nec-
essarily true, and which are not necessarily true?

 a. x0 4< <  b. x0 2 4< − <

 c. x1
2

3< <  d. 
x

1
6

1 1
2

< <

 e . 
x

1 6 3< <  f . x 4 2− <

 g . x6 2− < − <  h. x6 2− < − < −

In Exercises 3–6, solve the inequalities and show the solution sets on 
the real line.

 3. x2 4− >  4. x x5 3 7 3− ≤ −

 5. − ≥ +x x2 1
2

7 7
6

 6. ( ) ( )− < −x x4
5

2 1
3

6

Solve the equations in Exercises 7–9.

 7. =y 3 8. + =t2 5 4 9. s8 3 9
2

− =

Solve the inequalities in Exercises 10–17, expressing the solution sets 
as intervals or unions of intervals. Also, show each solution set on the 
real line.

 10. <x 2 11. − ≤t 1 3 12. − <y3 7 4

 13. − ≤z
5

1 1 14. − <
x

3 1 1
2

 15. ≥s2 4

 16. − >x1 1 17. + ≥r 1
2

1

Solve the inequalities in Exercises 18–21. Express the solution sets as 
intervals or unions of intervals and show them on the real line. Use the 
result =a a2  as appropriate.

 18. <x 22  19. < <x4 92

 20. ( )− <x 1 42  21. − <x x 02

 22. Do not fall into the trap of thinking − =a a. For what real num-
bers a is this equation true? For what real numbers is it false?

 23. Solve the equation − = −x x1 1 .

 24. A proof of the triangle inequality  Give the reason justifying 
each of the numbered steps in the following proof of the triangle 
inequality.

( )

( )

+ = +

= + +
≤ + +

= + +

= +
+ ≤ +

a b a b

a ab b

a a b b

a a b b

a b

a b a b

(1)

2
2 (2)

2 (3)

(4)

2 2

2 2

2 2

2 2

2

 25. Prove that ab a b=  for any numbers a and b.

 26. If x 3≤  and x 1 2,> −  what can you say about x?

 27. Graph the inequality x y 1.+ ≤

 28. For any number a, prove that a a .− =

 29. Let a be any positive number. Prove that x a>  if and only if 
x a>  or < −x a.

 30. a. If b is any nonzero real number, prove that =b b1 1 .

 b. Prove that =a
b

a
b

 for any numbers a and ≠b 0.

EXERCISES A.1

A.2 Graphing with Software

Many computers, calculators, and smartphones have graphing applications that enable us 
to graph very complicated functions with high precision. Many of these functions could 
not otherwise be easily graphed. However, some care must be taken when using such 
graphing software, and in this section we address some of the issues that can arise. In 
Chapter 4 we will see how calculus helps us determine that we are accurately viewing the 
important features of a function’s graph.

Graphing Windows

When software is used for graphing, a portion of the graph is visible in a display or 
viewing window. Depending on the software, the default window may give an incom-
plete or misleading picture of the graph. We use the term square window when the 
units or scales used on both axes are the same. This term does not mean that the dis-
play window itself is square (usually it is rectangular), but instead it means that the 
x-unit is the same length as the y-unit.
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 A.2  Graphing with Software AP-7

When a graph is displayed in the default mode, the x-unit may differ from the y-unit of 
scaling in order to capture essential features of the graph. This difference in scaling can cause 
visual distortions that may lead to erroneous interpretations of the function’s behavior.  
Some graphing software enables us to set the viewing window by specifying one or both 
of the intervals, ≤ ≤a x b and ≤ ≤c y d, and it may allow for equalizing the scales 
used for the axes as well. The software selects equally spaced x-values in [ ]a b,  and then 
plots the points x f x, ( )( ). A point is plotted if and only if x lies in the domain of the func-
tion and f x( ) lies within the interval [ ]c d, . A short line segment is then drawn between 
each plotted point and its next neighboring point. We now give illustrative examples of 
some common problems that may occur with this procedure.

EXAMPLE 1  Graph the function f x x x( ) 7 283 2= − +  in each of the following 
display or viewing windows:

 (a) [ ]−10,10  by [ ]−10,10  (b) [ ]−4, 4  by [ ]−50,10  (c) [ ]−4,10  by [ ]−60, 60

Solution 

 (a) We select − −= = =a b c10, 10, 10, and d 10=  to specify the interval of  
x-values and the range of y-values for the window. The resulting graph is shown in Fig-
ure A.4a. It appears that the window is cutting off the bottom and top parts of the graph 
and that the interval of x-values is too large. Let’s try the next window.

 (b) We see some new features of the graph (Figure A.4b), but the top is still missing and 
we need to view more to the right of x 4=  as well. The next window should help.

 (c) Figure A.4c shows the graph in this new viewing window. Observe that we get a more 
complete picture of the graph in this window, and it is a reasonable graph of a third-
degree polynomial. 

EXAMPLE 2  When a graph is displayed, the x-unit may differ from the y-unit, as in 
the graphs shown in Figure A.4. The result is distortion in the picture, which may be mis-
leading. The display window can be made square by compressing or stretching the units on 
one axis to match the scale on the other, giving the true graph. Many software systems have 
built-in options to make the window “square.” If yours does not, you may have to bring to 
your viewing some foreknowledge of the true picture.

Figure A.5a shows the graphs of the perpendicular lines y x=  and y x 3 2,−= +  
together with the semicircle y x9 ,2= −  in a nonsquare [ ]−4, 4  by [ ]−6, 8  display win-
dow. Notice the distortion. The lines do not appear to be perpendicular, and the semicircle 
appears to be elliptical in shape.

FIGURE A.4 The graph of f x x x( ) 7 283 2= − +  in different viewing windows. Selecting a window that gives a clear 
picture of a graph is often a trial-and-error process (Example 1). The default window used by the software may automatically 
display the graph in (c).

10

- 10

10- 10

10

- 50

4- 4

(a) (b) (c)

60

- 60

10- 4
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Figure A.5b shows the graphs of the same functions in a square window in which  
the x-units are scaled to be the same as the y-units. Notice that the scaling on the x-axis  
for Figure A.5a has been compressed in Figure A.5b to make the window square. Figure A.5c  
gives an enlarged view of Figure A.5b with a square [ ]−3, 3  by [ ]0, 4  window. 

FIGURE A.6 Graphs of the function =y xsin 100  in three viewing windows. Because the period is π ≈2 100 0.063, 
the smaller window in (c) best displays the true aspects of this rapidly oscillating function (Example 3).

(a)

1

- 1

12- 12

(b)

1

- 1

6- 6

(c)

1

- 1

0.1- 0.1

FIGURE A.5 Graphs of the perpendicular lines y x=  and y x 3 2−= +  and of the semicircle 
y x9 2= −  appear distorted (a) in a nonsquare window, but clear (b) and (c) in square windows 
(Example 2). Some software may not provide options for the views in (b) or (c).

(a)

8

- 6

4- 4

(b)

4

- 4

6- 6

(c)

4

0

3- 3

If the denominator of a rational function is zero at some x-value within the viewing 
window, graphing software may produce a steep, near-vertical line segment from the top 
to the bottom of the window. Example 3 illustrates steep line segments.

Sometimes the graph of a trigonometric function oscillates very rapidly. When graph-
ing software plots the points of the graph and connects them, many of the maximum and 
minimum points are actually missed. The resulting graph is then very misleading.

EXAMPLE 3  Graph the function =f x x( ) sin 100 .

Solution Figure A.6a shows the graph of  f  in the viewing window [ ]−12,12  by [ ]−1,1 . 
We see that the graph looks very strange because the sine curve should oscillate periodi-
cally between 1−  and 1. This behavior is not exhibited in Figure A.6a. We might experi-
ment with a smaller viewing window, say [ ]−6, 6  by [ ]−1,1 , but the graph is not better 
(Figure A.6b). The difficulty is that the period of the trigonometric function =y xsin 100  
is very small π( )≈2 100 0.063 . If we choose the much smaller viewing window 
[ ]−0.1, 0.1  by [ ]−1,1  we get the graph shown in Figure A.6c. This graph reveals the 
expected oscillations of a sine curve. 

EXAMPLE 4  Graph the function = +y x xcos 1
200

sin 200 .

Solution In the viewing window [ ]−6, 6  by [ ]−1,1  the graph appears much like the 
cosine function with some very small sharp wiggles on it (Figure A.7a). We get a better 
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 A.2  Graphing with Software AP-9

Obtaining a Complete Graph

Some graphing software will not display the portion of a graph for f x( ) when <x 0. 
Usually that happens because of the algorithm the software is using to calculate the func-
tion values. Sometimes we can obtain the complete graph by defining the formula for the 
function in a different way, as illustrated in the next example.

EXAMPLE 5  Graph the function =y x .1 3

Solution Some graphing software displays the graph shown in Figure A.8a. When we 
compare it with the graph of = =y x x1 3 3  in Figure 1.17, we see that the left branch 
for <x 0 is missing. The reason the graphs differ is that the software algorithm calculates 
x1 3 as ( )e .x1 3 ln  Since the logarithmic function is not defined for negative values of x, the 
software can produce only the right branch, where >x 0. (Logarithmic and exponential 
functions are introduced in the next two sections.)

FIGURE A.7 (a) The function = +y x xcos 1
200

sin 200 . (b) A close-up 

view, blown up near the y-axis. The term cos x clearly dominates the second 

term, x1
200

sin 200 , which produces the rapid oscillations along the cosine 

curve. Both views are needed for a clear idea of the graph (Example 4).

(a)

1

- 1

6- 6

(b)

1.01

0.97
0.2- 0.2

FIGURE A.8 The graph of y x 1 3=  is missing the left branch in (a). In 
(b) we graph the function f x x

x
x( ) ,1 3= ⋅  obtaining both branches. 

(See Example 5.)

(a)

2

- 2

3- 3

(b)

2

- 2

3- 3

look when we significantly reduce the window to [ ]−0.2, 0.2  by [ ]0.97,1.01 , obtaining 
the graph in Figure A.7b. We now see the small but rapid oscillations of the second term, 
1 200( ) sin 200x, added to the comparatively larger values of the cosine curve. 

To obtain the full picture showing both branches, we can graph the function

f x x
x

x( ) .1 3= ⋅

This function equals x1 3 except at =x 0 (where  f  is undefined, although =0 01 3 ). A 
graph of  f  is displayed in Figure A.8b. 
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Choosing a Viewing Window
In Exercises 1–4, use graphing software to determine which of the 
given viewing windows displays the most appropriate graph of the 
specified function.

 1. f x x x x( ) 7 64 2= − +

 a. 1,1[ ]−  by 1,1[ ]−  b. 2, 2[ ]−  by 5, 5[ ]−

 c. 10,10[ ]−  by 10,10[ ]−  d. 5, 5[ ]−  by 25,15[ ]−

 2. f x x x x( ) 4 4 163 2= − − +

 a. 1,1[ ]−  by 5, 5[ ]−  b. 3, 3[ ]−  by 10,10[ ]−

 c. 5, 5[ ]−  by 10, 20[ ]−  d. 20, 20[ ]−  by 100,100[ ]−

 3. f x x x( ) 5 12 3= + −

 a. 1,1[ ]−  by 1,1[ ]−  b. 5, 5[ ]−  by 10,10[ ]−

 c. 4, 4[ ]−  by 20, 20[ ]−  d. 4, 5[ ]−  by 15, 25[ ]−

 4. f x x x( ) 5 4 2= + −

 a. 2, 2[ ]−  by 2, 2[ ]−  b. 2, 6[ ]−  by 1, 4[ ]−

 c. 3, 7[ ]−  by 0,10[ ] d. 10,10[ ]−  by 10,10[ ]−
Finding a Viewing Window
In Exercises 5–30, find an appropriate graphing software viewing win-
dow for the given function and use it to display that function’s graph. 
The window should give a picture of the overall behavior of the func-
tion. There is more than one choice, but incorrect choices can miss 
important aspects of the function.

 5. f x x x( ) 4 154 3= − +  6. f x x x x( )
3 2

2 1
3 2

= − − +

 7. f x x x( ) 5 105 4= − +  8. f x x x( ) 4 3 4= −

 9. f x x x( ) 9 2= −  10. f x x x( ) 62 3( )= −

T

 11. y x x2 3 2 3= −  12. y x x 81 3 2( )= −

 13. y x x5 22 5= −  14. y x x52 3 ( )= −

 15. y x 12= −  16. y x x2= −

 17. y x
x

3
2

= +
+

 18. y
x

1 1
3

= −
+

 19. f x x
x

( ) 2
1

2

2
= +

+
 20. f x x

x
( ) 1

1

2

2
= −

+

 21. f x x
x x

( ) 1
62

= −
− −

 22. f x
x

( ) 8
92

=
−

 23. f x x x
x x

( ) 6 15 6
4 10

2

2
= − +

−
 24. f x x

x
( ) 3

2

2
= −

−
 25. =y xsin 250  26. =y x3 cos 60

 27. ( )=y xcos
50

 28. ( )=y x1
10

sin
10

 29. = +y x x1
10

sin 30  30. = +y x x1
50

cos 1002

Use graphing software to graph the functions specified in Exercises 31–36. 
Select a viewing window that reveals the key features of the function.

 31. Graph the lower half of the circle defined by the equation 
x x y y2 4 4 .2 2+ = + −

 32. Graph the upper branch of the hyperbola y x16 1.2 2− =

 33. Graph four periods of the function −=f x x( ) tan 2 .

 34. Graph two periods of the function = +f x x( ) 3 cot
2

1.

 35. Graph the function = +f x x x( ) sin 2 cos 3 .

 36. Graph the function =f x x( ) sin .3

EXERCISES A.2

T

A.3 Mathematical Induction

Many formulas, like

( )+ + + = +� n n n1 2 1
2

,

can be shown to hold for every positive integer n by applying an axiom called the mathe-
matical induction principle. A proof that uses this axiom is called a proof by mathematical 
induction or a proof by induction.

The steps in proving a formula by induction are the following:

1. Check that the formula holds for =n 1.

2. Prove that if the formula holds for any positive integer =n k, then it also holds for the 
next integer, = +n k 1.

The induction axiom says that once these steps are completed, the formula holds for all 
positive integers n. By Step 1 it holds for =n 1. By Step 2 it holds for =n 2, and there-
fore by Step 2 also for =n 3, and by Step 2 again for =n 4, and so on. If the first domino 
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 A.3  Mathematical Induction AP-11

falls, and if the kth domino always knocks over the ( )+k 1 st when it falls, then all the 
dominoes fall.

EXAMPLE 1  Use mathematical induction to prove that for every positive integer n,

( )+ + + = +� n n n1 2 1
2

.

Solution We accomplish the proof by carrying out the two steps above.

1. The formula holds for =n 1 because

( )= +1 1 1 1
2

.

2. If the formula holds for =n k, does it also hold for = +n k 1? The answer is yes, 
as we now show. If it is the case that

( )+ + + = +� k k k1 2 1
2

,

then it follows that

( )
( )

( )

( )( ) ( ) ( )( )

+ + + + + = + + + = + + +

= + + = + + +

� k k k k k k k k

k k k k

1 2 1 1
2

1 2 2
2

1 2
2

1 1 1
2

.

2

The last expression in this string of equalities is the expression ( )+n n 1 2 for 
( )= +n k 1 .

The mathematical induction principle now guarantees the original formula for all  
positive integers n. 

In Example 4 of Section 5.2 we gave another proof for the formula giving the sum of 
the first n positive integers. However, proofs by mathematical induction can also be used to 
find the sums of the squares and cubes of the first n positive integers (Exercises 9 and 10). 
Here is another example of a proof by induction.

EXAMPLE 2  Show by mathematical induction that for all positive integers n,

+ + + = −�1
2

1
2

1
2

1 1
2

.
n n1 2

Solution We accomplish the proof by carrying out the two steps of mathematical 
induction.

1. The formula holds for =n 1 because

1
2

1 1
2

.
1 1

= −

2. If it is the case that

+ + + = −�1
2

1
2

1
2

1 1
2

,
k k1 2
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AP-12 Appendix A

then it follows that

�+ + + + = − + = − +

= − + = −

+ + +

+ + +

1
2

1
2

1
2

1
2

1 1
2

1
2

1
1· 2

2 · 2
1

2

1 2
2

1
2

1 1
2

.

k k k k k k

k k k

1 2 1 1 1

1 1 1

Thus, the original formula holds for ( )= +n k 1  whenever it holds for =n k.

With these steps verified, the mathematical induction principle now guarantees the 
formula for every positive integer n. 

Other Starting Integers

Instead of starting at =n 1, some induction arguments start at another integer. The steps 
for such an argument are as follows.

1. Check that the formula holds for =n n1 (the first appropriate integer).

2. Prove that if the formula holds for any integer = ≥n k n ,1  then it also holds for 
( )= +n k 1 .

Once these steps are completed, the mathematical induction principle guarantees the for-
mula for all ≥n n .1

EXAMPLE 3  Show that >n! 3n if n is large enough.

Solution How large is large enough? We experiment:

n 1 2   3   4     5     6       7

n! 1 2   6 24 120 720 5040

3n 3 9 27 81 243 729 2187

It looks as if >n! 3n for ≥n 7. To be sure, we apply mathematical induction. We take 
=n 71  in Step 1 and complete Step 2.
Suppose >k! 3 k for some ≥k 7. Then

( ) ( ) ( )+ = + > + > ⋅ > +k k k k1 ! 1 ( !) 1 3 7 3 3 .k k k 1

Thus, for ≥k 7,

( )> + > +k k! 3 implies 1 ! 3 .k k 1

The mathematical induction principle now guarantees ≥n! 3n for all ≥n 7. 

Proof of the Derivative Sum Rule for Sums of Finitely Many 
Functions

We prove the statement

( )+ + + = + + +� �d
dx

u u u
du
dx

du
dx

du
dxn

n
1 2

1 2

by mathematical induction. The statement is true for =n 2, as was proved in Section 3.3. 
This is Step 1 of the induction proof.

Step 2 is to show that if the statement is true for any positive integer =n k, where 
≥ =k n 2,0  then it is also true for = +n k 1. So suppose that

 ( )+ + + = + + +� �d
dx

u u u
du
dx

du
dx

du
dx

.k
k

1 2
1 2  (1)
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 A.4  Lines, Circles, and Parabolas AP-13

 1. Assuming that the triangle inequality + ≤ +a b a b  holds 
for any two numbers a and b, show that

+ + + ≤ + + +� �x x x x x xn n1 2 1 2

for any n numbers.

 2. Show that if ≠r 1, then

+ + + + = −
−

+
�r r r r

r
1 1

1
n

n
2

1

for every positive integer n.

 3. Use the Product Rule, d
dx

u u d
dx

du
dx

( ) ,υ υ υ= +  and the fact that 

=d
dx

x( ) 1 to show that = −d
dx

x nx( )n n 1 for every positive  

integer n.

 4. Suppose that a function f x( ) has the property that 
( ) = +f x x f x f x( ) ( )1 2 1 2  for any two positive numbers x1 and 

x .2  Show that

( ) = + + +… �f x x x f x f x f x( ) ( ) ( )n n1 2 1 2

for the product of any n positive numbers …x x x,  ,   , .n1 2

 5. Show that

+ + + = −�2
3

2
3

2
3

1 1
3n n1 2

for all positive integers n.

 6. Show that >n n! 3 if n is large enough.

 7. Show that > n2n 2 if n is large enough.

 8. Show that ≥2 1 8n  for ≥ −n 3.

 9. Sums of squares  Show that the sum of the squares of the first n 
positive integers is

( )( )+ +n n n1
2

1

3
.

 10. Sums of cubes  Show that the sum of the cubes of the first n 
positive integers is ( )( )+n n 1 2 .2

 11. Rules for finite sums  Show that the following finite sum rules 
hold for every positive integer n. (See Section 5.2.)

 a. ∑ ∑ ∑( )+ = +
= = =

a b a b
k

n

k k
k

n

k
k

n

k
1 1 1

 b. ∑ ∑ ∑( )− = −
= = =

a b a b
k

n

k k
k

n

k
k

n

k
1 1 1

 c. ∑ ∑= ⋅
= =

ca c a
k

n

k
k

n

k
1 1

 (any number c)

 d. ∑ = ⋅
=

a n c
k

n

k
1

 (if ak has the constant value c)

 12. Show that =x xn n for every positive integer n and every real 
number x.

EXERCISES A.3

A.4 Lines, Circles, and Parabolas

This section reviews coordinates, lines, distance, circles, and parabolas in the plane. The 
notion of increment is also discussed.

Cartesian Coordinates in the Plane

In Appendix A.1 we identified the points on the line with real numbers by assigning them 
coordinates. Points in the plane can be identified with ordered pairs of real numbers. To 
begin, we draw two perpendicular coordinate lines that intersect at the 0-point of each line. 

Then

d
dx

u u u u

d
dx

u u u
du

dx
du
dx

du
dx

du
dx

du

dx
.

u
Call the function

defined by this sum .
Call this

function .

k k

k
k

k k

1 2 1

1 2
1

1 2 1

�
� ��������� ���������

�

�

�
( )

( )

+ + + +

= + + + +

= + + + +

υ

+

+

+

Sum Rule for  υ( )+d
dx

u

Eq. (1)

With these steps verified, the mathematical induction principle now guarantees the 
Sum Rule for every integer ≥n 2.
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These lines are called coordinate axes. On the horizontal x-axis, numbers are denoted by 
x and increase to the right. On the vertical y-axis, numbers are denoted by y and increase 
upward (Figure A.9). Thus “upward” and “to the right” are positive directions, whereas 
“downward” and “to the left” are considered negative. The origin O, also labeled 0, of the 
coordinate system is the point in the plane where x and y are both zero.

If P is any point in the plane, it can be located by exactly one ordered pair of real  
numbers in the following way. Draw lines through P perpendicular to the two coordinate 
axes. These lines intersect the axes at points with coordinates a and b (Figure A.9). The 
ordered pair ( )a b,  is assigned to the point P and is called its coordinate pair. The first 
number a is the x-coordinate (or abscissa) of P; the second number b is the y-coordinate 
(or ordinate) of P. The x-coordinate of every point on the y-axis is 0. The y-coordinate of 
every point on the x-axis is 0. The origin is the point ( )0, 0 .

Starting with an ordered pair ( )a b, , we can reverse the process and arrive at a corre-
sponding point P in the plane. Often we identify P with the ordered pair and write ( )P a b, .  
We sometimes also refer to “the point ( )a b, ” and it will be clear from the context when 
( )a b,  refers to a point in the plane and not to an open interval on the real line. Several 
points labeled by their coordinates are shown in Figure A.10.

This coordinate system is called the rectangular coordinate system or Cartesian 
coordinate system (after the sixteenth-century French mathematician René Descartes). 
The coordinate axes of this coordinate or Cartesian plane divide the plane into four regions 
called quadrants, numbered counterclockwise as shown in Figure A.10.

The graph of an equation or inequality in the variables x and y is the set of all points 
( )P x y,  in the plane whose coordinates satisfy the equation or inequality. When we plot 

data in the coordinate plane or graph formulas whose variables have different units of  
measure, we do not need to use the same scale on the two axes. If we plot time vs. thrust 
for a rocket motor, for example, there is no reason to place the mark that shows 1 s on  
the time axis the same distance from the origin as the mark that shows 1 N on the thrust 
axis.

Usually when we graph functions whose variables do not represent physical measure-
ments and when we draw figures in the coordinate plane to study their geometry and trigo-
nometry, we make the scales on the axes identical. A vertical unit of distance then looks  
the same as a horizontal unit. As on a surveyor’s map or a scale drawing, line segments  
that are supposed to have the same length will look as if they do, and angles that are sup-
posed to be congruent will look congruent.

Computer displays and calculator displays are another matter. The vertical and hori-
zontal scales on machine-generated graphs usually differ, and there are corresponding  
distortions in distances, slopes, and angles. Circles may look like ellipses, rectangles may 
look like squares, right angles may appear to be acute or obtuse, and so on. We discuss 
these displays and distortions in greater detail in Appendix A.2.

Positive x-axis
Negative y-axis

Negative x-axis Origin

Positive y-axis

P(a, b)

0 1−1−2−3 2 3a

y

1

−1

−2

−3

2

3

b

x

FIGURE A.9 Cartesian coordinates in 
the plane are based on two perpendicular 
axes intersecting at the origin.

x

y

Second
quadrant
  (−, +)

First
quadrant
  (+, +)

Third
quadrant
  (−, −)

Fourth
quadrant
  (+, −)

10−1−2 2

(0, 0)
(1, 0)

(2, 1)

(1, 3)

(1, −2)

(−2, −1)

(−2, 1)
1

−1

−2

2

3

FIGURE A.10 Points labeled in the  
xy-coordinate or Cartesian plane. The 
points on the axes all have coordinate pairs 
but are usually labeled with single real 
numbers, (so ( )1, 0  on the x-axis is labeled 
as 1). Notice the coordinate sign patterns 
of the quadrants.

HISTORICAL BIOGRAPHY

René Descartes
(1596–1650)
The Cartesian coordinate system is named 
in honor of Descartes. Legend tells us that 
he thought of this coordinate system while 
watching a fly crawl around on the ceiling. 
He noticed that the path of the fly could be 
described by the fly’s distances from each of 
the walls. His discovery of analytic geometry 
was hailed as one of the most remarkable feats 
in mathematical history.

To know more, visit the companion Website.

Increments and Straight Lines

When a particle moves from one point in the plane to another, the net changes in its coor-
dinates are called increments. They are calculated by subtracting the coordinates of the 
starting point from the coordinates of the ending point. If x changes from x1 to x ,2  the 
increment in x is

Δ = −x x x .2 1

EXAMPLE 1  As shown in Figure A.11, in going from the point ( )−A 4, 3  to the point 
( )B 2, 5 , the increments in the x- and y-coordinates are

( )Δ = − = − Δ = − − =x y2 4 2, 5 3 8.

From ( )C 5, 6  to ( )D 5,1  the coordinate increments are

Δ = − = Δ = − = −x y5 5 0, 1 6 5. 
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 A.4  Lines, Circles, and Parabolas AP-15

Given two points ( )P x y,1 1 1  and ( )P x y,2 2 2  in the plane, we call the increments 
Δ = −x x x2 1 and Δ = −y y y2 1 the run and the rise, respectively, between P1 and P .2  
Two such points always determine a unique straight line (usually called simply a line) 
passing through them both. We call the line P P .1 2

Any nonvertical line in the plane has the property that the ratio

= = Δ
Δ

=
−
−

m
y
x

y y
x x

rise
run

2 1

2 1

has the same value for every choice of the two points ( )P x y,1 1 1  and ( )P x y,2 2 2  on the line 
(Figure A.12). This is because the ratios of corresponding sides for similar triangles are equal.

Δy = 8

Δx = −2

A(4, −3)
(2, −3)

Δy = −5,
Δx = 0

D(5, 1)

C(5, 6)

B (2, 5)

1 2 3 4 50

1

2

3

4

5

6

−1

−2

−3

y

x

FIGURE A.11 Coordinate increments 
may be positive, negative, or zero  
(Example 1).

P1′

P2(x2, y2)

Δx′

Δx
(run)

P1(x1, y1)

Q(x2, y1)

Δy
(rise) Δy′

P2′

0

Q′

L

x

y

FIGURE A.12 Triangles P QP1 2 and 
′ ′ ′P Q P1 2 are similar, so the ratio of their 

sides has the same value for any two points 
on the line. This common value is the 
line’s slope.

x

y

P2(4, 2)

P1(0, 5)
P4(3, 6)

P3(0, −2)

10
−1

1

2

3

4

6

2 3 4 5 6

L2

L1

FIGURE A.13 The slope of L1 is

( )= Δ
Δ

= − −
−

=m
y
x

6 2
3 0

8
3

.

That is, y increases 8 units every time 
x increases 3 units. The slope of L2 is

= Δ
Δ

= −
−

= −m
y
x

2 5
4 0

3
4

.

That is, y decreases 3 units every 
time x increases 4 units.

this

not this

this

not this

x x

FIGURE A.14 Angles of inclination 
are measured counterclockwise from the 
x-axis.

DEFINITION The constant ratio

= = Δ
Δ

=
−
−

m
y
x

y y
x x

rise
run

2 1

2 1

is the slope of the nonvertical line P P .1 2

The slope tells us the direction (uphill, downhill) and steepness of a line. A line with 
positive slope rises uphill to the right; one with negative slope falls downhill to the right 
(Figure A.13). The greater the absolute value of the slope, the more rapid the rise or fall.  
The slope of a vertical line is undefined. Since the run Δx is zero for a vertical line, we 
cannot form the slope ratio m.

The direction and steepness of a line can also be measured with an angle. The angle of 
inclination of a line that crosses the x-axis is the smallest counterclockwise angle from the 
x-axis to the line (Figure A.14). The inclination of a horizontal line is °0 . The inclination of a  
vertical line is °90 . If φ (the Greek letter phi) is the inclination of a line, then φ≤ < °0 180 .
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The relationship between the slope m of a nonvertical line and the line’s angle of incli-
nation φ is shown in Figure A.15:

φ=m tan .

Straight lines have relatively simple equations. All points on the vertical line through 
the point a on the x-axis have x-coordinates equal to a. Thus, =x a is an equation for the 
vertical line. Similarly, =y b is an equation for the horizontal line meeting the y-axis at b. 
(See Figure A.16.)

x

y

P1

P2 L

Δy

Δx

Δy
Δx

m = = tan f

f

FIGURE A.15 The slope of a  
nonvertical line is the tangent of its  
angle of inclination.

x

y

0

1

2

3

4

5

6

1 2 3 4

Along this line,
x = 2

Along this line,
y = 3(2, 3)

FIGURE A.16 The standard equa-
tions for the vertical and horizontal lines 
through ( )2, 3  are =x 2 and =y 3.

We can write an equation for a nonvertical straight line L if we know its slope m and 
the coordinates of one point ( )P x y,1 1 1  on it. If ( )P x y,  is any other point on L, then we can 
use the two points P1 and P to compute the slope,

=
−
−

m
y y
x x

1

1

so that

( ) ( )− = − = + −y y m x x y y m x x, or .1 1 1 1

The equation

( )= + −y y m x x1 1

is the point-slope equation of the line that passes through the point ( )x y,1 1  and 
has slope m.

EXAMPLE 2  Write an equation for the line through the point ( )2, 3  with slope −3 2.

Solution We substitute = =x y2,  3,1 1  and = −m 3 2 into the point-slope equation 
and obtain

y x y x3 3
2

2 , or 3
2

6.( )= − − = − +  
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x

y

4

0−2 1 2 3
−1

(−2, −1)

(3, 4)

y = x + 1

FIGURE A.17 The line in Example 3.

x

y

b

0 a

L

FIGURE A.18 Line L has x-intercept a 
and y-intercept b.

The equation

= +y mx b

is called the slope-intercept equation of the line with slope m and y-intercept b.

Lines with equations of the form =y mx  have y-intercept 0 and so pass through the  
origin. Equations of lines are called linear equations.

The equation

Ax By C A B and   not both 0( )+ =

is called the general linear equation in x and y because its graph always represents a line 
and every line has an equation in this form (including lines with undefined slope).

x

y

0 A D Ba

Slope m1 Slope m2

C

L2
L1

h
f1

f2
f1

FIGURE A.19 Δ ADC is similar to 
ΔCDB. Hence φ1 is also the upper angle  
in ΔCDB. From the sides of ΔCDB, we 
read a htan .1φ =

EXAMPLE 3  Write an equation for the line through ( )− −2, 1  and ( )3, 4 .

Solution The line’s slope is

= − −
− −

= −
−

=m 1 4
2 3

5
5

1.

We can use this slope with either of the two given points in the point-slope equation:

x yWith , 2, 11 1( ) ( )= − −

y x

y x

y x

1 1 2

1 2

1

( )( )= − + ⋅ − −

= − + +

= +

x yWith , 3, 41 1( ) ( )=

y x

y x

y x

4 1 3

4 3

1

( )= + ⋅ −

= + −

= +

Same result

Either way, we see that = +y x 1 is an equation for the line (Figure A.17). 

The y-coordinate of the point where a nonvertical line intersects the y-axis is called  
the y-intercept of the line. Similarly, the x-intercept of a nonhorizontal line is the  
x-coordinate of the point where it crosses the x-axis (Figure A.18). A line with slope m and 
y-intercept b passes through the point ( )b0, , so it has equation

( )= + − = +y b m x y mx b0 , or, more simply, .

Parallel and Perpendicular Lines

Lines that are parallel have equal angles of inclination, so they have the same slope (if they 
are not vertical). Conversely, lines with equal slopes have equal angles of inclination and 
so are parallel.

If two nonvertical lines L1 and L2 are perpendicular, their slopes m1 and m2 satisfy 
= −m m 1,1 2  so each slope is the negative reciprocal of the other:

= − = −m
m

m
m

1 , 1 .1
2

2
1

To see this, notice by inspecting similar triangles in Figure A.19 that =m a h ,1  and 
= −m h a.2  Hence, ( )( )= − = −m m a h h a 1.1 2

Distance and Circles in the Plane

The distance between points in the plane is calculated with a formula that comes from the 
Pythagorean theorem (Figure A.20).
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By definition, a circle of radius a is the set of all points ( )P x y,  whose distance from 
some center ( )C h k,  equals a (Figure A.21). From the distance formula, P lies on the circle 
if and only if

− + − =x h y k a( ) ( ) ,2 2

so

@ x2 − x1 @

P(x1, y1)

@ y2 − y1 @

C(x2, y1)

Q(x2, y2)
d = 
"

(x2 − x1)
2 + (y2 − y1)

2

This distance is

x

y

0 x1

y1

y2

x2

FIGURE A.20 To calculate the distance 
between ( )P x y,1 1  and ( )Q x y, ,2 2  apply the 
Pythagorean theorem to triangle PCQ.

(x − h)2 + (y − k)2 = a2

C(h, k)

a

P(x, y)

0
x

y

FIGURE A.21 A circle of radius a in the 
xy-plane, with center at ( )h k, .

Distance Formula for Points in the Plane
The distance between ( )P x y,1 1  and ( )Q x y,2 2  is

( ) ( )( ) ( )= Δ + Δ = − + −d x y x x y y .2 2
2 1

2
2 1

2

 ( ) ( )− + − =x h y k a .2 2 2  (1)

Equation (1) is the standard equation of a circle with center ( )h k,  and radius a. The circle 
of radius =a 1 and centered at the origin is the unit circle with equation

+ =x y 1.2 2

EXAMPLE 4

 (a) The standard equation for the circle of radius 2 centered at ( )3, 4  is

x y3 4 2 4.2 2 2( )( )− + − = =

 (b) The circle

x y1 5 32 2( )( )− + + =

has = = −h k1,  5, and =a 3. The center is the point ( ) ( )= −h k, 1, 5  and the 
radius is =a 3. 

If an equation for a circle is not in standard form, we can find the circle’s center and 
radius by first converting the equation to standard form. The algebraic technique for doing 
so is completing the square.

EXAMPLE 5  Find the center and radius of the circle

+ + − − =x y x y4 6 3 0.2 2
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Exterior: (x − h)2 + (y − k)2 > a2

Interior: (x − h)2 + (y − k)2 < a2

(h, k)

a

0 h
x

y

k

On: (x − h)2 + (y − k)2 = a2

FIGURE A.22 The interior and exterior 
of the circle ( ) ( )− + − =x h y k a .2 2 2

0 1 2−1−2

1

4
(−2, 4)

(−1, 1) (1, 1)

(2, 4)

3
2

9
4

,

x

y

y = x2

a      b

FIGURE A.23 The parabola =y x 2 
(Example 6).

The Graph of y ax bx c a, 02= + + ≠
The graph of the equation = + + ≠y ax bx c a,  0,2  is a parabola. The parab-
ola opens upward if >a 0 and downward if <a 0. The axis is the line

 x b
a2

.= −  (2)

The vertex of the parabola is the point where the axis and parabola intersect. Its 
x-coordinate is = −x b a2 ; its y-coordinate is found by substituting = −x b a2  
in the parabola’s equation.

The points ( )x y,  satisfying the inequality

( ) ( )− + − <x h y k a2 2 2

make up the interior region of the circle with center ( )h k,  and radius a (Figure A.22). The 
circle’s exterior consists of the points ( )x y,  satisfying

( ) ( )− + − >x h y k a .2 2 2

Solution We convert the equation to standard form by completing the squares in x and y:

x y x y

x x y y

x x y y

x x y y

x y

4 6 3 0

4 6 3

4 4
2

6 6
2

3 4
2

6
2

4 4 6 9 3 4 9

2 3 16

2 2

2 2

2
2

2
2

2 2

2 2

2 2

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )( )

+ + − − =

+ + − =

+ +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎟ + − + −⎛

⎝
⎜⎜

⎞
⎠
⎟⎟⎟

= + + −

+ + + − + = + +

+ + − =

Start with the given equation. 
Gather terms. Move the con-
stant to the right-hand side.

Add the square of half the coefficient 
of x to each side of the equation. Do 
the same for y. The parenthetical 
expressions on the left-hand side are 
now perfect squares.

Write each quadratic as a squared 
linear expression.

The center is ( )−2, 3  and the radius is =a 4. 

Parabolas

The geometric definition and properties of general parabolas are reviewed in Chapter 10. 
Here we look at parabolas arising as the graphs of equations of the form = + +y ax bx c.2

EXAMPLE 6  Consider the equation =y x .2  Some points whose coordinates satisfy 

this equation are ( )0, 0 , ( )1,1 , ( ) ( )−3
2

, 9
4

,  1,1 , ( )2, 4 , and ( )−2, 4 . These points (and all 

others satisfying the equation) make up a smooth curve called a parabola (Figure A.23). 

The graph of an equation of the form

=y ax 2

is a parabola whose axis (axis of symmetry) is the y-axis. The parabola’s vertex (point 
where the parabola and axis cross) lies at the origin. The parabola opens upward if >a 0 
and downward if <a 0. The larger the value of a , the narrower the parabola  
(Figure A.24).

Generally, the graph of = + +y ax bx c2  is a shifted and scaled version of the 
parabola =y x .2  We discuss shifting and scaling of graphs in more detail in Section 1.2.
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Notice that if =a 0, then we have = +y bx c, which is an equation for a line. The 
axis, given by Equation (2), can be found by completing the square.

A
xi

s 
of

sy
m

m
et

ry

Vertex at
origin

−1

 1

−4 −3 −2 2 3 4

y = −x2

y = − x2

6

y = x2

10

y = x2

2

y = 2x2

x

y

FIGURE A.24 Besides determining the 
direction in which the parabola =y ax 2 
opens, the number a is a scaling factor. 
The parabola widens as a approaches zero 
and narrows as a  becomes large.

a        b

Intercepts at
x = −4 and x = 2

Point symmetric
with y-intercept

Vertex is 9
2

−1,

Intercept at y = 4

(0, 4)(−2, 4)

0

1

2

3

1−2−3

A
xi

s:
 x

 =
 −

1

x

y

y = − x2 − x + 41
2

FIGURE A.25 The parabola in  
Example 7.

x

y

(a) circle

−r

−r

r

r0

x2 + y2 = r2

x

y

(b) ellipse, 0 < c < 1

–r

0

c2x2 + y2 = r2

r
c− r

c

x

y

(c) ellipse,  c > 1

−r

r

0

c2x2 + y2 = r2

r
c− r

c

r

FIGURE A.26 Horizontal stretching or compression of a circle produces graphs of ellipses.

EXAMPLE 7  Graph the equation = − − +y x x1
2

4.2

Solution Comparing the equation with = + +y ax bx c2  we see that

= − = − =a b c1
2

, 1, 4.

Since <a 0, the parabola opens downward. From Equation (2) the axis is the vertical line

( )
( )= − = − −
−

= −x b
a2

1
2 1 2

1.

When = −x 1, we have

( ) ( )= − − − − + =y 1
2

1 1 4 9
2

.2

The vertex is ( )−1, 9 2 .
The x-intercepts are where =y 0:

x x

x x

x x

x x

1
2

4 0

2 8 0

2 4 0

2, 4

2

2

( )( )

− − + =

+ − =

− + =

= = −

We plot some points, sketch the axis, and use the direction of opening to complete the 
graph in Figure A.25. 

Ellipses

The geometric definition and properties of general ellipses are reviewed in Chapter 10. 
Here we relate them to circles. Although they are not the graphs of functions, circles can 
be stretched horizontally or vertically in the same way as the graphs of functions. The stan-
dard equation for a circle of radius r centered at the origin is

+ =x y r .2 2 2

Substituting cx for x in the standard equation for a circle (Figure A.26) gives

 + =c x y r .2 2 2 2  (3)
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 A.4  Lines, Circles, and Parabolas AP-21

If < <c0 1, the graph of Equation (3) horizontally stretches the circle; if >c 1 the  
circle is compressed horizontally. In either case, the graph of Equation (3) is an ellipse 
(Figure A.26). Notice in Figure A.26 that the y-intercepts of all three graphs are always −r 
and r. In Figure A.26b, the line segment joining the points ( )±r c , 0  is called the major 
axis of the ellipse; the minor axis is the line segment joining ( )±r0, . The axes of the 
ellipse are reversed in Figure A.26c: The major axis is the line segment joining the points 
( )±r0, , and the minor axis is the line segment joining the points ( )±r c , 0 . In both cases, 
the major axis is the longer line segment.

If we divide both sides of Equation (3) by r ,2  we obtain

 + =x
a

y
b

1
2

2

2

2
 (4)

where =a r c and =b r. If >a b, the major axis is horizontal; if <a b, the major axis is 
vertical. The center of the ellipse given by Equation (4) is the origin (Figure A.27).

Substituting −x h for x, and −y k for y, in Equation (4) results in

 
( ) ( )− + − =x h

a
y k

b
1.

2

2

2

2
 (5)

Equation (5) is the standard equation of an ellipse with center at ( )h k, .

x

y

−a

−b

b

a

Major axis

Center

FIGURE A.27 Graph of the ellipse 

+ = >x
a

y
b

a b1,  ,
2

2

2

2
 where the major 

axis is horizontal.

Distance, Slopes, and Lines

In Exercises 1 and 2, a particle moves from A to B in the coordinate 
plane. Find the increments Δx  and Δy in the particle’s coordinates. 
Also find the distance from A to B.

 1. ( ) ( )− − −A B3, 2 , 1, 2  2. ( ) ( )− − − −A B3.2, 2 , 8.1, 2

Describe the graphs of the equations in Exercises 3 and 4.

 3. + =x y 12 2  4. + ≤x y 32 2

Plot the points in Exercises 5 and 6 and find the slope (if any) of the 
line they determine. Also find the common slope (if any) of the lines 
perpendicular to line AB.

 5. ( ) ( )− − −A B1, 2 , 2, 1  6. ( ) ( )−A B2, 3 , 1, 3

In Exercises 7 and 8, find an equation for (a) the vertical line and  
(b) the horizontal line through the given point.

 7. ( )−1, 4 3  8. ( )−0, 2

In Exercises 9–15, write an equation for each line described.

 9. Passes through ( )−1,1  with slope −1

 10. Passes through ( )3, 4  and ( )−2, 5

 11. Has slope −5 4 and y-intercept 6

 12. Passes through ( )− −12, 9  and has slope 0

 13. Has y-intercept 4 and x-intercept −1

 14. Passes through ( )−5, 1  and is parallel to the line + =x y2 5 15

 15. Passes through ( )4,10  and is perpendicular to the line 
− =x y6 3 5

In Exercises 16 and 17, find the line’s x- and y-intercepts and use this 
information to graph the line.

 16. + =x y3 4 12 17. − =x y2 3 6

 18. Is there anything special about the relationship between the lines 
+ =Ax By C1 and ( )− = ≠ ≠Bx Ay C A B0, 0 ?2  Give 

reasons for your answer.

 19. A particle starts at ( )−A 2, 3  and its coordinates change by incre-
ments Δ = Δ = −x y5,  6. Find its new position.

 20. The coordinates of a particle change by Δ =x 5 and Δ =y 6 as 
it moves from ( )A x y,  to B 3, 3 .( )−  Find x and y.

Circles
In Exercises 21–23, find an equation for the circle with the given 
center ( )C h k,  and radius a. Then sketch the circle in the xy-plane. 
Include the circle’s center in your sketch. Also, label the circle’s x- and  
y-intercepts, if any, with their coordinate pairs.

 21. ( ) =C a0, 2 , 2 22. ( )− =C a1, 5 , 10

 23. ( )− − =C a3,  2 , 2

Graph the circles whose equations are given in Exercises 24–26.  
Label each circle’s center and intercepts (if any) with their coordinate 
pairs.

 24. + + − + =x y x y4 4 4 02 2

 25. + − − =x y y3 4 02 2  26. + − + =x y x y4 4 02 2

Parabolas
Graph the parabolas in Exercises 27–30. Label the vertex, axis, and 
intercepts in each case.

 27. = − −y x x2 32  28. = − +y x x42

 29. = − − −y x x6 52  30. = + +y x x1
2

42

EXERCISES A.4
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Inequalities
Describe the regions defined by the inequalities and pairs of inequali-
ties in Exercises 31–34.

 31. + >x y 72 2  32. ( )− + ≤x y1 42 2

 33. + > + <x y x y1, 42 2 2 2

 34. + + < > −x y y y6 0, 32 2

 35. Write an inequality that describes the points that lie inside the 
circle with center ( )−2,1  and radius 6.

 36. Write a pair of inequalities that describe the points that lie inside 
or on the circle with center ( )0, 0  and radius 2, and on or to the 
right of the vertical line through ( )1, 0 .

Theory and Examples
In Exercises 37–40, graph the two equations and find the points at 
which the graphs intersect.

 37. = + =y x x y2 , 12 2  38. − = =y x y x1, 2

 39. y x y x, 2 12 2= − = −

 40. x y x y1, 1 12 2 2 2( )+ = − + =

 41. Insulation By measuring slopes in the figure, estimate the tem-
perature change in degrees per centimeter for (a) the gypsum 
wallboard; (b) the fiberglass insulation; (c) the wood sheathing.

Te
m

pe
ra

tu
re

 (
°C

)

−15°

−10°

−5°

0°

5°

10°

15°

20°

25°

Distance through wall (millimeters)

0 25 50 75 100 125 150 175

Gypsum wallboard
Sheathing

Siding

Air outside
at −15°C

Fiberglass
between studs

Air
inside
room
at 21° C

The temperature changes in the wall in Exercises 41 and 42.

 42. Insulation According to the figure in Exercise 41, which of the 
materials is the best insulator? The poorest? Explain.

 43. Pressure under water The pressure p experienced by a diver 
under water is related to the diver’s depth d by an equation of the 
form p kd 1= +  (k a constant). At the surface, the pressure is 1 
atmosphere. The pressure at 100 meters is about 10.94 atmo-
spheres. Find the pressure at 50 meters.

 44. Reflected light A ray of light comes in along the line x y 1+ =  
from the second quadrant and reflects off the x-axis (see the 
accompanying figure). The angle of incidence is equal to the 

angle of reflection. Write an equation for the line along which the 
departing light travels.

Angle of
incidence

Angle of
reflection

x + y = 1

1

0 1
x

y

The path of the light ray in Exercise 44.

Angles of incidence and reflection are measured from the perpen-
dicular.

 45. Fahrenheit vs. Celsius In the FC-plane, sketch the graph of the 
equation

C F5
9

32( )= −

linking Fahrenheit and Celsius temperatures. On the same graph 
sketch the line C F.=  Is there a temperature at which a Celsius 
thermometer gives the same numerical reading as a Fahrenheit 
thermometer? If so, find it.

 46. The Mt. Washington Cog Railway Civil engineers calculate the 
slope of roadbed as the ratio of the distance it rises or falls to the 
distance it runs horizontally. They call this ratio the grade  
of the roadbed, usually written as a percentage. Along the coast, 
commercial railroad grades are usually less than 2%. In the moun-
tains, they may go as high as 4%. Highway grades are usually less 
than 5%.

The steepest part of the Mt. Washington Cog Railway in New 
Hampshire has an exceptional 37.1% grade. Along this part of the 
track, the seats in the front of the car are 4 m above those in the 
rear. About how far apart are the front and rear rows of seats?

 47. By calculating the lengths of its sides, show that the triangle with 
vertices at the points A 1, 2( ), B 5, 5( ), and C 4, 2( )−  is isosceles 
but not equilateral.

 48. Show that the triangle with vertices A 0, 0( ), B 1, 3 ,( )  and 
C 2, 0( ) is equilateral.

 49. Show that the points A 2, 1 ,( )−  B 1, 3( ), and C 3, 2( )−  are vertices 
of a square, and find the fourth vertex.

 50. Three different parallelograms have vertices at 1,1 ,( )−  2, 0( ), and 
2, 3( ). Sketch them and find the coordinates of the fourth vertex of 

each.

 51. For what value of k is the line x ky2 3+ =  perpendicular to the 
line x y4 1?+ =  For what value of k are the lines parallel?

 52. Midpoint of a line segment Show that the point with coordinates

x x y y
2

, 
2

1 2 1 2( )+ +

is the midpoint of the line segment joining P x y,1 1( ) to Q x y, .2 2( )
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This appendix proves Theorem 1, Parts 2–5, and Theorem 4 from Section 2.2.

A.5 Proofs of Limit Theorems

THEOREM 1—Limit Laws
If L, M, c, and k are real numbers and

f x L g x Mlim ( ) and lim ( ) , then
x c x c

= =
→ →

1. Sum Rule: f x g x L Mlim ( ) ( )
x c

( )+ = +
→

2. Difference Rule: f x g x L Mlim ( ) ( )
x c

( )− = −
→

3. Constant Multiple Rule: k f x kLlim ( )
x c

( ) =
→

4. Product Rule: f x g x LMlim ( ) ( )
x c

( ) =
→

5. Quotient Rule: 
f x
g x

L
M

Mlim
( )
( )

, 0
x c

= ≠
→

6. Power Rule: f x Llim ( ) ,
x c

n n[ ] =
→

 n a positive integer

7. Root Rule: f x L Llim ( ) ,
x c

n n n1= =
→

 n a positive integer

(If n is even, we assume that f x Llim ( ) 0.
x c

= >
→

)

We proved the Sum Rule in Section 2.3, and the Power and Root Rules are proved in 
more advanced texts. We obtain the Difference Rule by replacing g x( ) by g x( )−  and M by 

M−  in the Sum Rule. The Constant Multiple Rule is the special case g x k( ) =  of the 
Product Rule. This leaves only the Product and Quotient Rules.

Proof of the Limit Product Rule  We show that for any 0ε >  there exists a 0δ >  
such that for all x in the intersection D of the domains of f  and g,

f x g x LM x c( ) ( ) whenever 0 .ε δ− < < − <

Suppose then that ε is a positive number, and write f x( ) and g x( ) as

f x L f x L g x M g x M( ) ( ) , ( ) ( ) .( ) ( )= + − = + −

Multiply these expressions together and subtract LM:

 

f x g x LM L f x L M g x M LM

LM L g x M M f x L
f x L g x M LM

L g x M M f x L f x L g x M

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) .

( )( ) ( )( )

( ) ( )

( )( )

( ) ( ) ( )( )

− = + − + − −

= + − + −
+ − − −

= − + − + − −

 

(1)

Since f  and g have limits L and M as x c,→  there exist positive numbers ,  ,  ,1 2 3δ δ δ  and 4δ   
such that

 

ε δ

ε δ

ε δ

ε δ

( )( )

( )( )

− < < − <

− < < − <

− < + < − <

− < + < − <

f x L x c

g x M x c

f x L M x c

g x M L x c

( ) 3 whenever 0

( ) 3 whenever 0

( ) 3 1 whenever 0

( ) 3 1 whenever 0 .

1

2

3

4

 (2)
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Proof of the Limit Quotient Rule  We show that g x Mlim 1 ( ) 1 .
x c

( ) =
→

 We can then 
conclude that

f x
g x

f x
g x

f x
g x

L
M

L
M

lim
( )
( )

lim ( ) 1
( )

lim ( ) lim 1
( )

1
x c x c x c x c

= ⋅
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = ⋅ = ⋅ =

→ → → →

by the Limit Product Rule.
Let 0ε >  be given. To show that g x Mlim 1 ( ) 1 ,

x c
( ) =

→
 we need to show that there 

exists a 0δ >  such that

ε δ− < < − <
g x M

x c1
( )

1 whenever 0 .

Since g has the limit M as x c→  and since M 0,>  there exists a positive number 1δ  
such that

 g x M M x c( )
2

whenever 0 .1δ− < < − <  (3)

For any numbers A and B, the triangle inequality implies that A B A B− ≤ −  and 
B A A B ,− ≤ −  from which it follows that − ≤ −A B A B . With A g x( )=  

and B M ,=  this becomes

− ≤ −g x M g x M( ) ( ) ,

which can be combined with the inequality on the right in Implication (3) to get, in turn,

− <g x M M( )
2

 

− < − <

< <

< <

< <

M g x M M

M g x
M

M g x M

g x M g x

2
( )

2

2
( )

3
2

2 ( ) 3

1
( )

2 3
( )

.

 

(4)

Therefore, x c0 1δ< − <  implies that

 
g x M

M g x
Mg x M g x

M g x

M M
M g x

1
( )

1 ( )
( )

1 1
( )

( )

1 2 ( ) .

− = − ≤ ⋅ ⋅ −

< ⋅ ⋅ −
 

(5)

If we take δ  to be the smallest of the numbers 1δ  through ,4δ  the inequalities on the right-
hand side of the Implications (2) will hold simultaneously for x c0 .δ< − <  There-
fore, for all x in D, if x c0 δ< − <  then

ε ε ε ε ε

( ) ( )

−

≤ − + − + − −

≤ + − + + − + − −

< + + =

f x g x LM

L g x M M f x L f x L g x M

L g x M M f x L f x L g x M

( ) ( )

( ) ( ) ( ) ( )

1 ( ) 1 ( ) ( ) ( )

3 3 3 3
.

Triangle inequality applied to Eq. (1)

Values from (2)

This completes the proof of the Limit Product Rule. 

Inequality (4)
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Since M1 2 0,2 ε( ) >  there exists a number 02δ >  such that

 ε δ− < < − <M g x M x c( )
2

whenever 0 .2
2  (6)

If we take δ  to be the smaller of 1δ  and ,2δ  the conclusions in (5) and (6) both hold when-
ever x c0 .δ< − <  Combining these conclusions gives

g x M
x c1

( )
1 whenever 0 .ε δ− < < − <

This concludes the proof of the Limit Quotient Rule. 

Proof for Right-Hand Limits  Suppose g x h x Llim ( ) lim ( ) .
x c x c

= =
→ →+ +

 Then for any 

0ε >  there exists a 0δ >  such that the interval c c,  δ( )+  is contained in I, and

L g x L L h x L( ) and ( )ε ε ε ε− < < + − < < +

whenever c x c .δ< < +  Since we always have g x f x h x( ) ( ) ( )≤ ≤  it follows that if 
c x c ,δ< < +  then

L g x f x h x L

L f x L

f x L

( ) ( ) ( ) ,

( ) ,

( ) .

ε ε
ε ε
ε ε

− < ≤ ≤ < +
− < < +
− < − <

Therefore, f x L( ) ε− <  whenever c x c .δ< < +

Proof for Left-Hand Limits  Suppose g x h x Llim ( ) lim ( ) .
x c x c

= =
→ →− −

 Then for any 

0ε >  there exists a 0δ >  such that the interval c c, δ( )−  is contained in I, and

L g x L L h x L( ) and ( )ε ε ε ε− < < + − < < +

whenever c x c.δ− < <  We conclude as before that f x L( ) ε− <  whenever 
c x c.δ− < <

Proof for Two-Sided Limits  If g x h x Llim ( ) lim ( ) ,
x c x c

= =
→ →

 then g x( ) and h x( ) both 

approach L as x c→ + and as x c ;→ −  so f x Llim ( )
x c

=
→ +

 and f x Llim ( ) .
x c

=
→ −

 Hence 

f xlim ( )
x c→

 exists and equals L. 

THEOREM 4—The Sandwich Theorem
Suppose that g x f x h x( ) ( ) ( )≤ ≤  for all x in some open interval I containing 
c, except possibly at x c=  itself. Suppose also that g x h x Llim ( ) lim ( ) .

x c x c
= =

→ →
 

Then f x Llim ( ) .
x c

=
→

 1. Suppose that functions f x f x( ),  ( ),1 2  and f x( )3  have limits 
L L,  ,1 2  and L ,3  respectively, as x c.→  Show that their sum  
has limit L L L .1 2 3+ +  Use mathematical induction (Appen-
dix A.3) to generalize this result to the sum of any finite number 
of functions.

 2. Use mathematical induction and the Limit Product Rule in The-
orem 1 to show that if functions …f x f x f x( ),  ( ),   ,  ( )n1 2  have 
limits …L L L,  ,   , n1 2  as x c,→  then

� �f x f x f x L L Llim ( ) ( ) ( ) .
x c

n n1 2 1 2⋅ ⋅ ⋅ = ⋅ ⋅ ⋅
→

EXERCISES A.5
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 3. Use the fact that x clim
x c

=
→

 and the result of Exercise 2 to show 

that x clim
x c

n n=
→

 for any integer n 1.>

 4. Limits of polynomials Use the fact that k klim ( )
x c

=
→

 for any 

number k, together with the results of Exercises 1 and 3, to show 
that f x f clim ( ) ( )

x c
=

→
 for any polynomial function

�f x a x a x a x a( ) .n
n

n
n

1
1

1 0= + + + +−
−

 5. Limits of rational functions Use Theorem 1 and the result of 
Exercise 4 to show that if f x( ) and g x( ) are polynomial functions 
and g c( ) 0,≠  then

f x
g x

f c
g c

lim
( )
( )

( )
( )

.
x c

=
→

 6. Composites of continuous functions Figure A.28 gives the 
diagram for a proof that the composite of two continuous func-
tions is continuous. Reconstruct the proof from the diagram. The 
statement to be proved is this: If f  is continuous at x c=  and g is 
continuous at f c( ), then �g f  is continuous at c.

Assume that c is an interior point of the domain of f  and 
that f c( ) is an interior point of the domain of g. This will make 
the limits involved two-sided. (The arguments for the cases that 
involve one-sided limits are similar.)

c f(c) g( f(c))

df df dg dg « «

f g

g ∘ f

FIGURE A.28 The diagram for a proof that the composite of two continuous  
functions is continuous.

A.6 Commonly Occurring Limits

This appendix verifies limits (4)–(6) in Theorem 5 of Section 9.1.

Limit 4: If x x1, lim 0
n

n< =
→∞

  We need to show that to each 0ε >  there corre-

sponds an integer N so large that x n ε<  for all n greater than N. Since 1,n1ε →  while 
x 1,<  there exists an integer N for which x .N1ε >  In other words,

 x x .N N ε= <  (1)

This is the integer we seek because, if x 1,<  then

 x x n Nfor all  .n N< >  (2)

Combining (1) and (2) produces x n ε<  for all n N ,>  concluding the proof. 

Limit 5: For any number x x
n

e,  lim 1
n

n
x( )+ =

→∞
  Let

a x
n

1 .n

n

( )= +

Then

a x
n

n x
n

xln ln 1 ln 1 ,n

n

( ) ( )= + = + →

as we can see by the following application of L’Hôpital’s Rule, in which we differentiate 
with respect to n:

n x
n

x n

n

x n
x

n

n
x
x n

x

lim ln 1 lim
ln 1

1

lim

1
1

1
lim

1
.

n n

n n

2

2

( )

( )

( )
+ =

+

=
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ⋅ −

−
=

+
=

→∞ →∞

→∞ →∞
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Apply Theorem 3, Section 9.1, with f x e( ) x=  to conclude that

x
n

a e e1 .
n

n
a xln n( )+ = = →  

A.7 Theory of the Real Numbers

A rigorous development of calculus is based on properties of the real numbers. Many 
results about functions, derivatives, and integrals would be false if stated for functions 
defined only on the rational numbers. In this appendix we briefly examine some basic 
concepts of the theory of the reals that hint at what might be learned in a deeper, more 
theoretical study of calculus.

Three types of properties make the real numbers what they are. These are the  
algebraic, order, and completeness properties. The algebraic properties involve addition 
and multiplication, subtraction and division. They apply to rational or complex numbers 
(discussed in Chapter 18) as well as to the reals.

The structure of numbers is built around a set with addition and multiplication opera-
tions. The following properties are required of addition and multiplication.

A1 a b c a b c( ) ( )+ + = + +  for all a, b, c.

A2 a b b a+ = +  for all a, b.

A3 There is a number called “0” such that a a0+ =  for all a.

A4 For each number a, there is a number b such that a b 0.+ =

M1 a bc ab c( ) ( )=  for all a, b, c.

M2 ab ba=  for all a, b.

M3 There is a number called “1” such that a a1⋅ =  for all a.

M4 For each nonzero number a, there is a number b such that ab 1.=

D a b c ab ac( )+ = +  for all a, b, c.

Limit 6: For any number x x
n

,  lim
!

0
n

n
=

→∞
  Since

x
n

x
n

x
n! ! !

,
n n n

− ≤ ≤

all we need to show is that →x n! 0.n  We can then apply the Sandwich Theorem for 
Sequences (Section 9.1, Theorem 2) to conclude that x n! 0.n →

The first step in showing that →x n! 0n  is to choose an integer M x ,>  so that 
x M 1.( ) <  By Limit 4, just proved, we then have x M 0.n( ) →  We then restrict our 

attention to values of n M.>  For these values of n, we can write

� �� ������������� �������������

( )

( ) ( )
=

⋅ ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅

≤ = =

−( )

−

x
n

x
M M M n

x
M M

x M
M M

M
M

x
M

! 1 2 1 2

! ! !
.

n M  factors

n n

n

n M

n M

n

M n

Thus,

x
n

M
M

x
M

0
! !

  .
n M n

( )≤ ≤

Now, the constant M M !M  does not change as n increases. Thus the Sandwich Theorem 
tells us that x n! 0n →  because x M 0.n( ) →  
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A1 and M1 are associative laws, A2 and M2 are commutativity laws, A3 and M3 are 
identity laws, and D is the distributive law. Sets that have these algebraic properties are 
examples of fields; they are studied in depth in the area of theoretical mathematics called 
abstract algebra.

The order properties enable us to compare the sizes of any two numbers. The order 
properties are

O1 For any a and b, either a b≤  or b a≤  or both.

O2 If a b≤  and b a≤  then a b.=

O3 If a b≤  and b c≤  then a c.≤

O4 If a b≤  then a c b c.+ ≤ +

O5 If a b≤  and c0 ≤  then ac bc.≤

O3 is the transitivity law, and O4 and O5 relate ordering to addition and multiplication.
We can order the reals, the integers, and the rational numbers, but we cannot order the 

complex numbers (there is no reasonable way to decide whether a number like i 1= −  is 
bigger or smaller than zero). A field in which the size of any two elements can be com-
pared as above is called an ordered field. Both the rational numbers and the real numbers 
are ordered fields, and there are many others.

We can think of real numbers geometrically, lining them up as points on a line. The 
completeness property says that the real numbers correspond to all points on the line, 
with no “holes” or “gaps.” The rationals, in contrast, omit points such as 2 and ,π  and  
the integers even leave out fractions like 1 2. The reals, having the completeness property, 
omit no points.

What exactly do we mean by this vague idea of missing holes? To answer this we must 
give a more precise description of completeness. A number M is an upper bound for a set 
of numbers if all numbers in the set are smaller than or equal to M M.  is a least upper 
bound if it is the smallest upper bound. For example, M 2=  is an upper bound for the 
negative numbers. So is M 1,=  showing that 2 is not a least upper bound. The least upper 
bound for the set of negative numbers is M 0.=  We define a complete ordered field to be 
one in which every nonempty set bounded above has a least upper bound.

If we work with just the rational numbers, the set of numbers less than 2 is bounded, 
but it does not have a rational least upper bound, since any rational upper bound M must be 
larger than 2 and can be replaced by a slightly smaller rational number that is still larger 
than 2. So the rationals are not complete. In the real numbers, a set that is bounded above 
always has a least upper bound. The reals are a complete ordered field.

The completeness property is at the heart of many results in calculus. One example 
occurs when we search for a maximum value for a function on a closed interval a b, ,[ ]  as 
in Section 4.1. The function y x x 3= −  has a maximum value on 0,1[ ] at the point x 
satisfying x1 3 0,2− =  or x 1 3.=  If we limited our consideration to functions defined 
only on rational numbers, we would have to conclude that the function has no maximum, 
since 1 3 is irrational (Figure A.29). The Extreme Value Theorem (Section 4.1), which 
implies that continuous functions on closed intervals a b,[ ] have a maximum value, is not 
true for functions defined only on the rationals.

The Intermediate Value Theorem implies that a continuous function f  on an interval 
a b,[ ] with f a( ) 0<  and f b( ) 0>  must be zero somewhere in a b, .[ ]  The function val-

ues cannot jump from negative to positive without there being some point x in a b,[ ] where 
f x( ) 0.=  The Intermediate Value Theorem also relies on the completeness of the real 
numbers and is false for continuous functions defined only on the rationals. The function 
f x x( ) 3 12= −  has f (0) 1= −  and f (1) 2,=  but if we consider f only on the rational 
numbers, it never equals zero. The only value of x for which f x( ) 0=  is x 1 3,=  an 
irrational number.

We have captured the desired properties of the reals by saying that the real numbers 
are a complete ordered field. But we’re not quite finished. Greek mathematicians in the 

0.1 0.3 0.5 0.7 0.9 1

0.1

0.3

0.5

"

1�3

y = x − x3

y

x

FIGURE A.29 The maximum value  
of y x x 3= −  on 0,1[ ] occurs at the  
irrational number x 1 3.=
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school of Pythagoras tried to impose another property on the numbers of the real line, the 
condition that all numbers are ratios of integers. They learned that their effort was doomed 
when they discovered irrational numbers such as 2. How do we know that our efforts to 
specify the real numbers are not also flawed, for some unseen reason? The artist Escher 
drew optical illusions of spiral staircases that went up and up until they rejoined themselves 
at the bottom. An engineer trying to build such a staircase would find that no structure real-
ized the plans the architect had drawn. Could it be that our design for the reals contains 
some subtle contradiction, and that no construction of such a number system can be made?

We resolve this issue by giving a specific description of the real numbers and verifying 
that the algebraic, order, and completeness properties are satisfied in this model. This is 
called a construction of the reals, and just as stairs can be built with wood, stone, or steel, 
there are several approaches to constructing the reals. One construction treats the reals as 
all the infinite decimals,

a d d d d. .1 2 3 4�

In this approach a real number is an integer a followed by a sequence of decimal digits 
…d d d,  ,  ,   ,1 2 3  each between 0 and 9. This sequence may stop, or repeat in a periodic pattern, 

or keep going forever with no pattern. In this form, 2.00, 0.3333333 . . .  and 3.1415926535898 . . .  
represent three familiar real numbers. The real  meaning of the dots “. . .” following these  
digits requires development of the theory of sequences and series, as in Chapter 9. Each real 
number is constructed as the limit of a sequence of rational numbers given by its finite deci-
mal approximations. An infinite decimal is then the same as a series

�a
d d
10 100

.1 2+ + +

This decimal construction of the real numbers is not entirely straightforward. It’s easy 
enough to check that it gives numbers that satisfy the completeness and order properties, 
but verifying the algebraic properties is rather involved. Even adding or multiplying two 
numbers requires an infinite number of operations. Making sense of division requires a 
careful argument involving limits of rational approximations to infinite decimals.

A different approach was taken by Richard Dedekind (1831–1916), a German mathe-
matician, who gave the first rigorous construction of the real numbers in 1872. Given any 
real number x, we can divide the rational numbers into two sets: those less than or equal to 
x and those greater. Dedekind cleverly reversed this reasoning and defined a real number to 
be a division of the rational numbers into two such sets. This seems like a strange approach, 
but such indirect methods of constructing new structures from old are powerful tools in 
theoretical mathematics.

These and other approaches can be used to construct a system of numbers having the 
desired algebraic, order, and completeness properties. A final issue that arises is whether 
all the constructions give the same thing. Is it possible that different constructions result in 
different number systems satisfying all the required properties? If yes, which of these com-
prises the real numbers? Fortunately, the answer turns out to be no. The reals are the only 
number system satisfying the algebraic, order, and completeness properties.

Confusion about the nature of the numbers and about limits caused considerable con-
troversy in the early development of calculus. Calculus pioneers such as Newton, Leibniz, 
and their successors, when looking at what happens to the difference quotient

y
x

f x x f x
x

( )( )Δ
Δ

= + Δ −
Δ

as each of yΔ  and xΔ  approach zero, talked about the resulting derivative being a quotient 
of two infinitely small quantities. These “infinitesimals,” written dx and dy, were thought 
to be some new kind of number, smaller than any fixed number but not zero. Similarly, a 
definite integral was thought of as a sum of an infinite number of infinitesimals

f x dx( ) ⋅
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as x varied over a closed interval. The approximating difference quotients y xΔ Δ  were 
understood much as today, but it was the quotient of infinitesimal quantities, rather than a 
limit, that was thought to encapsulate the meaning of the derivative. This way of thinking 
led to logical difficulties, as attempted definitions and manipulations of infinitesimals ran 
into contradictions and inconsistencies. The more concrete and computable difference 
quotients did not cause such trouble, but they were thought of merely as useful calculation 
tools. Difference quotients were used to work out the numerical value of the derivative and 
to derive general formulas for calculation, but they were not considered to be at the heart of 
what the derivative actually was. Today we realize that the logical problems associated 
with infinitesimals can be avoided by defining the derivative to be the limit of its approxi-
mating difference quotients. The ambiguities of the old approach are no longer present, 
and in the standard theory of calculus, infinitesimals are neither needed nor used.

A.8 Probability

The outcome of some events, such as a heavy rock falling from a great height, can be mod-
eled so that we can predict with high accuracy what will happen. On the other hand, many 
events have more than one possible outcome and which one of them will occur is uncertain.  
If we toss a coin, a head or a tail will result with each outcome being equally likely, but  
we do not know in advance which one it will be. If we randomly select and then weigh a 
person from a large population, there are many possible weights the person might have, 
and it is not certain whether the weight will be between 80 and 85 kg. We are told it is 
highly likely, but not known for sure, that an earthquake of magnitude 6.0 or greater on the 
Richter scale will occur near a major population area in California within the next one 
hundred years. Events having more than one possible outcome are probabilistic in nature, 
and when modeling them we assign a probability to the likelihood that a particular out-
come may occur. In this section we show how calculus plays a central role in making pre-
dictions with probabilistic models.

Random Variables

We begin our discussion with some familiar examples of uncertain events for which the 
collection of all possible outcomes is finite.

EXAMPLE 1

 (a) If we toss a coin once, there are two possible outcomes { }H, T , where H represents the 
coin landing head face up and T a tail landing face up. If we toss a coin three times, 
there are eight possible outcomes, taking into account the order in which a head or tail 
occurs. The set of outcomes is { }HHH, HHT, HTH, THH, HTT, THT, TTH, TTT .

 (b) If we roll a six-sided die once, the set of possible outcomes is { }1, 2, 3, 4, 5, 6  represent-
ing the six faces of the die.

 (c) If we select at random two cards from a 52-card deck, there are 52 possible outcomes for 
the first card drawn and then 51 possibilities for the second card. Since the order of the 
cards does not matter, there are ( )⋅ =52 51 2 1,326 possible outcomes altogether. 

It is customary to refer to the set of all possible outcomes as the sample space for an 
event. With an uncertain event we are usually interested in which outcomes, if any, are 
more likely to occur than others, and to how large an extent. In tossing a coin three times, 
is it more likely that two heads or that one head will result? To answer such questions, we 
need a way to quantify the outcomes.

DEFINITION A random variable is a function X that assigns a numerical value 
to each outcome in a sample space.
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Random variables that have only finitely many values are called discrete random 
variables. A continuous random variable can take on values in an entire interval, and it is 
associated with a distribution function, which we explain later.

EXAMPLE 2

 (a) Suppose we toss a coin three times giving the possible outcomes {HHH, HHT, HTH, 
}THH, HTT, THT, TTH, TTT . Define the random variable X to be the number of 

heads that appear. So ( ) ( )= =X XHHT 2, THT 1, and so forth. Since X can only 
assume the values 0, 1, 2, or 3, it is a discrete random variable.

 (b) We spin an arrow anchored by a pin located at the origin. The arrow can wind up point-
ing in any possible direction, and we define the random variable X as the radian angle 
the arrow makes with the positive x-axis, measured counterclockwise. In this case, X is 
a continuous random variable that can take on any value in the interval π[ )0, 2 .

 (c) The weight of a randomly selected person in a given population is a continuous random 
variable W. The cholesterol level of a randomly chosen person, and the waiting time for 
service of a person in a queue at a bank, are also continuous random variables.

 (d) The scores on the national ACT Examination for college admissions in a particular year 
are described by a discrete random variable S taking on integer values between 1 and 36. 
If the number of outcomes is large, or for reasons involving statistical analysis, discrete 
random variables such as test scores are often modeled as continuous random variables 
(Example 13).

 (e) We roll a pair of dice and define the random variable X to be the sum of the numbers 
on the top faces. This sum can only assume the integer values from 2 through 12, so X 
is a discrete random variable.

 (f) A tire company produces tires for mid-sized sedans. The tires are guaranteed to last 
for 50,000 kilometers, but some will fail sooner, and some will last many more kilo-
meters beyond 50,000 kilometers. The lifetime in kilometers of a tire is described by 
a continuous random variable L. 

Probability Distributions

A probability distribution describes the probabilistic behavior of a random variable. 
Our chief interest is in probability distributions associated with continuous random 
variables, but to gain some perspective we first consider a distribution for a discrete 
random variable.

Suppose we toss a coin three times, with each side H or T equally likely to occur on a 
given toss. We define the discrete random variable X that assigns the number of heads 
appearing in each outcome, giving the following.

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓X
{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

3 2 2 1 2 1 1 0

Next we count the frequency or number of times a specific value of X occurs. Because 
each of the eight outcomes is equally likely to occur, we can calculate the probability of 
the random variable X by dividing the frequency of each value by the total number of out-
comes. We summarize our results as follows:

Value of X 0 1 2 3

Frequency 1 3 3 1

( )P X 1 8 3 8 3 8 1 8
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We display this information in a probability bar graph of the discrete random variable 
X, as shown in Figure A.30. The values of X are portrayed by intervals of length 1 on the 
x-axis so the area of each bar in the graph is the probability of the corresponding outcome. 
For instance, the probability that exactly two heads occurs in the three tosses of the coin is 
the area of the bar associated with the value =X 2, which is 3 8. Similarly, the probabil-
ity that two or more heads occurs is the sum of areas of the bars associated with the values 

=X 2 and =X 3, or 4 8. The probability that either zero or three heads occurs is 
+ =1

8
1
8

1
4, and so forth. Note that the total area of all the bars in the graph is 1, which  

is the sum of all the probabilities for X.
With a continuous random variable, even when the outcomes are equally likely, we 

cannot simply count the number of outcomes in the sample space or the frequencies of 
outcomes that lead to a specific value of X. In fact, the probability that X takes on any par-
ticular one of its values is zero. What is meaningful to ask is how probable it is that the 
random variable takes on a value within some specified interval of values.

We capture the information we need about the probabilities of X in a function whose 
graph behaves much like the bar graph in Figure A.30. That is, we take a nonnegative function 
f  defined over the range of the random variable with the property that the total area beneath 
the graph of f  is 1. The probability that a value of the random variable X lies within some 
specified interval [ ]c d,  is then the area under the graph of f  over that interval. The following 
definition assumes the range of the continuous random variable X is any real value, but the 
definition is general enough to account for random variables having a range of finite length.

FIGURE A.30 Probability bar graph for 
the random variable X when tossing a fair 
coin three times.

3210
X

P

1
8

1
4

3
8

DEFINITIONS A probability density function for a continuous random vari-
able is a function f  defined over ( )−∞ ∞,  and having the following properties:

1. f  is continuous, except possibly at a finite number of points.

2. f  is nonnegative, so ≥f 0.

3. ∫ =
−∞

∞
f x dx( ) 1.

If X is a continuous random variable with probability density function f , the 
probability that X assumes a value in the interval between =X c and =X d  is 
given by the integral

∫( )≤ ≤ =P c X d f x dx( ) .
c

d

The probability that a continuous random variable X assumes a particular real value c is 

P X c f x dx( ) 0c

c
( )= = ∫ = , consistent with our previous assertion. Since the area under 

the graph of f  over the interval [ ]c d,  is only a portion of the total area beneath the graph, 
the probability ( )≤ ≤P c X d  is always a number between zero and one. Figure A.31 
illustrates a probability density function.

A probability density function for a random variable X resembles the density function 
for a wire of varying density. To obtain the mass of a segment of the wire, we integrate the 
density of the wire over an interval. To obtain the probability that a random variable has val-
ues in a particular interval, we integrate the probability density function over that interval.

EXAMPLE 3  Let = −f x e( ) 2 x2  if ≤ < ∞x0  and =f x( ) 0 for all negative values 
of x.

 (a) Verify that f  is a probability density function.

 (b) The time T in hours until a car passes a spot on a remote road is described by the prob-
ability density function f . Find the probability ( )≤P T 1  that a hitchhiker at that spot 
will see a car within one hour.

 (c) Find the probability ( )=P T 1  that a car passes by the spot after precisely one hour.

FIGURE A.31 A probability density 
function for the continuous random  
variable X.

x

y

x

y

y = f (x)

f (x) dx = 1
L−∞

∞

c d

P(c ≤ X ≤ d ) =
d

c
f (x) dx

L
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Solution 

 (a) The function f  is continuous except at =x 0, and is everywhere nonnegative. Moreover,

∫ ∫ ∫ ( )= = = − =
−∞

∞
−

∞

→∞
−

→∞
−f x dx e dx e dx e( ) 2 lim 2 lim 1 1.x

b

x
b

b

b2

0

2

0

2

So all of the conditions are satisfied and we have shown that f  is a probability density 
function.

 (b) The probability that a car comes after a time lapse between zero and one hour is given 
by integrating the probability density function over the interval [ ]0,1 . So

∫( )≤ = = − ⎤
⎦⎥

= − ≈− − −P T e dt e e1 2 1 0.865.t t2

0

1
2

0

1
2

This result can be interpreted to mean that if 100 people were to hitchhike at that spot, 
about 87 of them can expect to see a car within one hour.

 (c) This probability is the integral ∫ f t dt( )1

1
, which equals zero. We interpret this to mean 

that a sufficiently accurate measurement of the time until a car comes by the spot 
would have no possibility of being precisely equal to one hour. It might be very close, 
perhaps, but it would not be exactly one hour. 

We can extend the definition to finite intervals. If f  is a nonnegative function with at 
most finitely many discontinuities over the interval [ ]a b, , and its extension F  to ( )−∞ ∞, , 
obtained by defining F  to be 0 outside of [ ]a b, , satisfies the definition for a probability 
density function, then f  is a probability density function for [ ]a b, . This means that 
∫ =f x dx( ) 1a

b
. Similar definitions can be made for the intervals ( )a b, , ( ]a b, , and [ )a b, .

EXAMPLE 4  Show that ( )= −f x x x( ) 4
27

32  is a probability density function over 
the interval [ ]0, 3 .

Solution The function f  is continuous and nonnegative over [ ]0, 3 . Also,

∫ ( )( )− = −⎡
⎣⎢

⎤
⎦⎥

= − =x x dx x x4
27

3 4
27

1
4

4
27

27 81
4

1.2

0

3
3 4

0

3

We conclude that f  is a probability density function over [ ]0, 3 . 

Exponentially Decreasing Distributions

The distribution in Example 3 is called an exponentially decreasing probability density 
function. These probability density functions always take on the form

=
<
≥

⎧
⎨
⎪⎪
⎩⎪⎪

−
f x

x
ce x

( )
0 if  0

if  0cx

(see Exercise 23). Exponential density functions can provide models for describing ran-
dom variables such as the lifetimes of light bulbs, radioactive particles, tooth crowns, and 
many kinds of electronic components. They also model the amount of time until some 
specific event occurs, such as the time until a pollinator arrives at a flower, the arrival times 
of a bus at a stop, the time between individuals joining a queue, the waiting time between 
phone calls at a help desk, and even the lengths of the phone calls themselves. A graph of 
an exponential density function is shown in Figure A.32.

Random variables with exponential distributions are memoryless. If we think of X as 
describing the lifetime of some object, then the probability that the object survives for at 
least +s t hours, given that it has survived t hours, is the same as the initial probability 
that it survives for at least s hours. For instance, the current age t of a radioactive particle 
does not change the probability that it will survive for at least another time period of 
length s. Sometimes the exponential distribution is used as a model when the memoryless  

FIGURE A.32 An exponentially 
decreasing probability density function.
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principle is violated because it provides reasonable approximations that are good enough 
for their intended use. For instance, this might be the case when predicting the lifetime of 
an artificial hip replacement or heart valve for a particular patient. Here is an application 
illustrating the exponential distribution.

EXAMPLE 5  An electronics company models the lifetime T in years of a chip they 
manufacture with the exponential density function

f t
t

e t
( )

0 if  0
0.1 if  0.t0.1=

<
≥

⎧
⎨
⎪⎪

⎩⎪⎪
−

Using this model,

 (a) Find the probability ( )>P T 2  that a chip will last for more than two years.

 (b) Find the probability ( )≤ ≤P T4 5  that a chip will fail in the fifth year.

 (c) If 1000 chips are shipped to a customer, how many can be expected to fail within 
three years?

Solution 

 (a) The probability that a chip lasts at least two years is

∫ ∫
[ ]

( )> = =

= − = ≈

−
∞

→∞
−

→∞
− − −

P T e dt e dt

e e e

2 0.1 lim 0.1

lim 0.819.

t

b

t
b

b

b

0.1

2

0.1

2

0.2 0.1 0.2

That is, about 82% of the chips last more than two years.

 (b) The probability is

∫( )≤ ≤ = = − ⎤
⎦⎥

= − ≈− − − −P T e dt e e e4 5 0.1 0.064t t0.1 0.1

4

5

4

5
0.4 0.5

which means that about 6% of the chips fail during the fifth year.

 (c) We want the probability

∫( )≤ ≤ = = − ⎤
⎦⎥

= − ≈− − −P T e dt e e0 3 0.1 1 0.259.t t0.1 0.1

0

3

0

3
0.3

We can expect that about 259 of the 1000 chips will fail within three years. 

Expected Values, Means, and Medians

Suppose the weight in lbs of a steer raised on a cattle ranch is described by a continuous 
random variable W with probability density function f w( ) and that the rancher can sell a 
steer of weight w for g w( ) dollars. How much can the rancher expect to earn for a ran-
domly chosen steer on the ranch?

To answer this question, we consider a small interval [ ]+w w,  i i 1  of width Δwi and 
note that the probability a steer has weight in this interval is

∫ ≈ Δ+ f w dw f w w( ) ( ) .i i
w

w

i

i 1

The earning on a steer in this interval is approximately g w( )i . The Riemann sum

g w f w w( )  ( )i i i∑ Δ

then approximates the amount the rancher would receive for a steer. We assume that steers 
have a maximum weight, so f  is zero outside some finite interval [0, b]. Then taking the 
limit of the Riemann sum as the width of each interval approaches zero gives the integral

∫−∞

∞
g w f w dw( )  ( ) .
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This integral estimates how much the rancher can expect to earn for a typical steer on the 
ranch and is the expected value of the function g.

The expected values of certain functions of a random variable X have particular 
importance in probability and statistics. One of the most important of these functions is the 
expected value of the function =g x x( ) .

DEFINITION The expected value or mean of a continuous random variable X 
with probability density function f  is the number

X xf x dxE( ) ( ) .∫μ = =
−∞

∞

The expected value XE( ) can be thought of as a weighted average of the random vari-
able X, where each value of X is weighted by f X( ). The mean can also be interpreted as 
the long-run average value of the random variable X, and it is one measure of the centrality 
of the random variable X.

EXAMPLE 6  Find the mean of the random variable X with exponential probability 
density function

f x
x

ce x
( )

0 if  0

if  0.cx
=

<

≥

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

−

Solution From the definition we have

∫ ∫

∫ ∫

μ

( )

= =

= = −
⎤

⎦
⎥
⎥

+
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= − − + =

−∞

∞
−

∞

→∞
−

→∞
− −

→∞
− −

x f x dx x ce dx

x ce dx x e e dx

be
c

e
c c

( )

lim lim

lim 1 1 1.

cx

b

cx
b

b

cx
b

cx
b

b

cb cb

0

0
0

0

Therefore, the mean is μ = c1 . 

From the result in Example 6, knowing the mean or expected value μ of a random 
variable X having an exponential density function allows us to write its entire formula.

l’Hôpital’s Rule on first term

Exponential Density Function for a Random Variable X with Mean μ

μ
=

<
≥

⎧
⎨
⎪⎪

⎩⎪⎪
μ− −f x

x
e x

( )
0 if  0

if  0x1

EXAMPLE 7  Suppose the time T before a chip fails in Example 5 is modeled instead 
by the exponential density function with a mean of eight years. Find the probability that a 
chip will fail within five years.

Solution The exponential density function with mean μ = 8 is

f t
t

e t
( )

0 if  0
1
8

if  0t 8=
<

≥

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

−
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Then the probability a chip will fail within five years is the definite integral

∫( )≤ ≤ = = − ⎤
⎦⎥

= − ≈− − −P T e dt e e0 5 0.125 1 0.465t t0.125

0

5
0.125

0

5
0.625

so about 47% of the chips can be expected to fail within five years. 

EXAMPLE 8  Find the expected value for the random variable X with probability den-
sity function given by Example 4.

Solution The expected value is

X x x dx x xE( ) 4
27

3 4
27

3
4

1
5

4
27

243
4

243
5

1.8

3

0

3
4 5

0

3

∫μ

( )

( )= = − = −⎡
⎣⎢

⎤
⎦⎥

= − =

From Figure A.33, you can see that this expected value is reasonable because the 
region beneath the probability density function appears to be balanced about the vertical 
line =x 1.8. That is, the horizontal coordinate of the centroid of a plate described by the 
region is =x 1.8. 

There are other ways to measure the centrality of a random variable with a given 
probability density function.

DEFINITION The median of a continuous random variable X with probability 
density function f  is the number m for which

f x dx f x dx( ) 1
2

and ( ) 1
2

.
m

m∫ ∫= =
−∞

∞

The definition of the median means that there is an equal likelihood that the random 
variable X will be smaller than m or larger than m.

EXAMPLE 9  Find the median of a random variable X with exponential probability 
density function

f x
x

ce x
( )

0 if  0
if  0.cx=

<
≥

⎧
⎨
⎪⎪

⎩⎪⎪
−

Solution The median m must satisfy

∫= = − ⎤
⎦⎥

= −− − −ce dx e e1
2

1 .cx
m

cx
m

cm

0 0

It follows that

e m
c

1
2

or 1 ln 2.cm = =−

Also,

ce dx e e e e1
2

lim lim lim
b

cx

m

b

b

cx

m

b

b

cm cb cm∫ ( )= = −⎡
⎣⎢

⎤
⎦⎥

= − =
→∞

−
→∞

−
→∞

− − −

giving the same value for m. Since c1  is the mean μ of X with an exponential distribution, 
we conclude that the median is μ=m ln2. The mean and median differ because the prob-
ability density function is skewed and spreads toward the right. 

FIGURE A.33 The expected value of a 
random variable with this probability den-
sity function is μ = 1.8 (Example 8).
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Variance and Standard Deviation

Random variables with exactly the same mean μ but different distributions can behave 
very differently (see Figure A.34). The variance of a random variable X measures how 
spread out the values of X are in relation to the mean, and we measure this dispersion by 
the expected value of μ( )−X 2. Since the variance measures the expected square of the 
difference from the mean, we often work instead with its square root.

FIGURE A.34 Probability density  
functions with the same mean can have 
different spreads in relation to the mean. 
The blue and red regions under the curves 
have equal area.

y = f (x)

m
x

DEFINITIONS The variance of a random variable X with probability density 
function f  is the expected value of μ( )−X 2:

X x f x dxVar ( ) ( )2∫ μ( )= −
−∞

∞

The standard deviation of X is

∫σ μ( )= = −
−∞

∞
X x f x dxVar( ) ( ) .X

2

EXAMPLE 10  Find the standard deviation of the random variable T in Example 5, 
and find the probability that T lies within one standard deviation of the mean.

Solution The probability density function is the exponential density function with mean 
μ = 10 by Example 6. To find the standard deviation we first calculate the variance integral:

t f t dt t e dt

t e dt

t t e

e dt

e

e

( ) 10 0.1

lim 10 0.1

lim 10 20 10

lim 20

0 10 20 10 20 lim 10

100 200 lim 1 100.

t

b

t
b

b

t

b

b

t
b

b

t

b

b

2 2 0.1

0

2 0.1

0

2 0.1

0

0.1

0

2 0.1

0.1

∫ ∫

∫

∫

μ

( )

[ ]

( )

( )

( )

( )

( ) ( )

( )

( ) ( )

( ) ( )

− = −

= −

= − − − −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+

= + − + − −

= − − − =

−∞

∞
−

∞

→∞
−

→∞
−

→∞
−

→∞
−

→∞
−

The standard deviation is the square root of the variance, so σ = 10.0.
To find the probability that T lies within one standard deviation of the mean, we find 

the probability μ σ μ σ( )− ≤ ≤ +P T . For this example, we have

∫( )− ≤ ≤ + = = −
⎤

⎦
⎥
⎥

= − ≈− − −P T e dt e e10 10 10 10 0.1 1 0.865t t0.1 0.1

0

20

0

20
2

This means that about 87% of the chips will fail within twenty years. 

Uniform Distributions

The uniform distribution is very simple, but it occurs commonly in applications. The 
probability density function for this distribution on the interval [ ]a b,  is

=
−

≤ ≤f x
b a

a x b( ) 1 , .

If each outcome in the sample space is equally likely to occur, then the random variable X 
has a uniform distribution. Since f  is constant on [ ]a b, , a random variable with a uniform 

Integrating by parts

b

0

⎤
⎦
⎥⎥
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distribution is just as likely to be in one subinterval of a fixed length as in any other of the 
same length. The probability that X assumes a value in a subinterval of [ ]a b,  is the length 
of that subinterval divided by ( )−b a .

EXAMPLE 11  An anchored arrow is spun around the origin, and the random variable 
X is the radian angle the arrow makes with the positive x-axis, measured within the interval 
π[ )0, 2 . Assuming there is equal probability for the arrow pointing in any direction, find 

the probability density function and the probability that the arrow ends up pointing between 
North and East.

Solution We model the probability density function with the uniform distribution 
π π= ≤ <f x x( ) 1 2 ,  0 2 , and =f x( ) 0 elsewhere.

The probability that the arrow ends up pointing between North and East is given by

∫π
π( )≤ ≤ = =

π
P X dx0

2
1

2
1
4

.
0

2
 

Normal Distributions

Numerous applications use the normal distribution, which is defined by the probability 
density function

σ π
= μ σ( )− −f x e( ) 1

2
.x 22 2

It can be shown that the mean of a random variable X with this probability density 
function is μ and its standard deviation is σ. In applications the values of μ and σ are often 
estimated using large sets of data. The function is graphed in Figure A.35, and the graph is 
sometimes called a bell curve because of its shape. Since the curve is symmetric about the 
mean, the median for X is the same as its mean. It is often observed in practice that many 
random variables have approximately a normal distribution. Some examples illustrating 
this phenomenon are the height of a man, the annual rainfall in a certain region, an indi-
vidual’s blood pressure, the serum cholesterol level in the blood, the brain weights in a 
certain population of adults, and the amount of growth in a given period for a population 
of sunflower seeds.

The normal probability density function does not have an antiderivative expressible in 
terms of familiar functions. Once μ and σ are fixed, however, an integral involving the nor-
mal probability density function can be computed using numerical integration methods. 
Usually we use the numerical integration capability of a computer or calculator to estimate 
the values of these integrals. Such computations show that for any normal distribution,  
we get the following values for the probability that the random variable X lies within 

=k 1, 2, 3, or 4 standard deviations of the mean:

P X

P X

P X

P X

0.68269

2 2 0.95450

3 3 0.99730

4 4 0.99994

μ σ μ σ

μ σ μ σ

μ σ μ σ

μ σ μ σ

( )

( )

( )

( )

− < < + ≈

− < < + ≈

− < < + ≈

− < < + ≈

This means, for instance, that the random variable X will take on a value within two stan-
dard deviations of the mean about 95% of the time. About 68% of the time, X will lie 
within one standard deviation of the mean (see Figure A.36).

EXAMPLE 12  An individual’s blood pressure is an important indicator of overall 
health. A medical study of healthy individuals between 14 and 70 years of age modeled 

FIGURE A.35 The normal probability 
density function with mean μ and standard 
deviation σ.

m m + sm − s

f (x) =               e−(x−m)2�2s2
 

1
s
"

2p

x

FIGURE A.36 Probabilities of the  
normal distribution within its standard 
deviation bands.

m m + s m + 2s m + 3sm − sm − 2sm − 3s

34%

68% within
1 standard
deviation

of the mean

95% within 2 standard
deviations of the mean

99.7% within 3 standard
deviations of the mean

13.6%
2.14%2.14%

13.6%

34%
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their systolic blood pressure using a normal distribution with mean 119.7 mm Hg and 
standard deviation 10.9 mm Hg.

 (a) Using this model, what percentage of the population has a systolic blood pressure 
between 140 and 160 mm Hg, the levels set by the American Heart Association for 
Stage 1 hypertension?

 (b) What percentage has a blood pressure between 160 and 180 mm Hg, the levels set by 
the American Heart Association for Stage 2 hypertension?

 (c) What percentage has a blood pressure in the normal range of 90–120, as set by the 
American Heart Association?

Solution 

 (a) Since we cannot find an antiderivative, we use a computer to evaluate the probability 
integral of the normal probability density function with μ = 119.7 and σ = 10.9:

∫ π
( )≤ ≤ = ≈( ) ( )− −P X e dx140 160 1

10.9 2
0.03117.x 119.7 2 10.9

140

160 2 2

This means that about 3% of the population in the studied age range have Stage 1 
hypertension.

 (b) Again we use a computer to calculate the probability that the blood pressure is between 
160 and 180 mm Hg:

∫ π
( )≤ ≤ = ≈( ) ( )− −P X e dx160 180 1

10.9 2
0.00011.x 119.7 2 10.9

160

180 2 2

We conclude that about 0.011% of the population has Stage 2 hypertension.

 (c) The probability that the blood pressure falls in the normal range is

∫ π
( )≤ ≤ = ≈( ) ( )− −P X e dx90 120 1

10.9 2
0.50776.x 119.7 2 10.9

90

120 2 2

That is, about 51% of the population has a normal systolic blood pressure. 

Many national tests are standardized using the normal distribution. The following 
example illustrates modeling the discrete random variable for scores on a test using the 
normal distribution function for a continuous random variable.

EXAMPLE 13  The ACT is a standardized test taken by high school students seeking 
admission to many colleges and universities. The test measures knowledge, skills, and 
proficiency in the areas of English, math, and science, with scores ranging over the interval 
[ ]1, 36 . Nearly 1.5 million high school students took the test in 2009, and the composite 
mean score across the academic areas was μ = 21.1 with standard deviation σ = 5.1.

 (a) What percentage of the population had an ACT score between 18 and 24?

 (b) What is the ranking of a student who scored 27 on the test?

 (c) What is the minimal integer score a student needed to get in order to be in the top 8% 
of the scoring population?

Solution 

 (a) We use a computer to evaluate the probability integral of the normal probability den-
sity function with μ = 21.1 and σ = 5.1:

∫ π
( )≤ ≤ = ≈( ) ( )− −P X e dx18 24 1

5.1 2
0.44355.x 21.1 2 5.1

18

24 2 2

This means that about 44% of the students had an ACT score between 18 and 24.
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 (b) Again we use a computer to calculate the probability of a student getting a score lower 
than 27 on the test:

∫ π
( )≤ < = ≈( ) ( )− −P X e dx1 27 1

5.1 2
0.87630.x 21.1 2 5.1

1

27 2 2

We conclude that about 88% of the students scored below a score of 27, so the student 
ranked in the top 12% of the population.

 (c) We look at how many students had a mark higher than 28:

∫ π
( )< ≤ = ≈( ) ( )− −P X e dx28 36 1

5.1 2
0.0863.x 21.1 2 5.1

28

36 2 2

Since this number gives more than 8% of the students, we look at the next higher inte-
ger score:

∫ π
( )< ≤ = ≈( ) ( )− −P X e dx29 36 1

5.1 2
0.0595.x 21.1 2 5.1

29

36 2 2

Therefore, 29 is the lowest integer score a student could get in order to score in the top 
8% of the population (and actually scoring here in the top 6%). 

The simplest form for a normal distribution of X occurs when its mean is zero and its 
standard deviation is one. The standard normal probability density function f  giving mean 
μ = 0 and standard deviation σ = 1 is

π
= −f x e( ) 1

2
.x 22

Note that the substitution μ σ( )= −z x  gives the equivalent integrals

∫ ∫σ π π
=μ σ

α

β
( )( )− − −e dx e dz1

2
1
2

,x

a

b
z2 22 2

where α μ σ( )= −a  and β μ σ( )= −b . So we can convert random variable values to 
the “z-values” to standardize a normal distribution, and then use the integral on the right-
hand side of the last equation to calculate probabilities for the original random variable 
normal distribution with mean μ and standard deviation σ. In a normal distribution, we 
know that 95.5% of the population lies within two standard deviations of the mean, so a 
random variable X converted to a z-value has more than a 95% chance of occurring in the 
interval [ ]−2, 2 .

Probability Density Functions
In Exercises 1–8, determine which are probability density functions 
and justify your answer.

 1. [ ]=f x x( ) 1
18

over 4, 8

 2. [ ]( )= −f x x( ) 1
2

2 over 0, 2

 3. 
( )= +⎡

⎣⎢
⎤
⎦⎥

f x( ) 2 over 0, ln 1 ln2
ln2

x

 4. [ ]= − +f x x( ) 1 over 0,1 3

 5. f x x
x

x
( )

1 1

0 1

2=
≥

<

⎧

⎨
⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

 6. π( )= +
≥

<

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

f x x
x

x
( )

8
4

, 0

0, 0

2

 7. π= ⎡
⎣⎢

⎤
⎦⎥

f x x( ) 2 cos 2 over 0,
4

 8. ( ]=f x
x

e( ) 1 over 0,  

 9. Let f  be the probability density function for the random variable 
L in Example 2f. Explain the meaning of each integral.

 a. ∫ f l dl( )
25,000

32,000
b. ∫

∞
f l dl( )

30,000

 c. ∫ f l dl( )
0

20,000
d. ∫−∞

f l dl( )
15,000

EXERCISES A.8
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 10. Let f x( ) be the uniform distribution for the random variable X in 
Example 11. Express the following probabilities as integrals.

 a. The probability that the arrow points either between South 
and West or between North and West.

 b. The probability that the arrow makes an angle of at least  
2 radians.

Verify that the functions in Exercises 11–16 are probability density 
functions for a continuous random variable X over the given interval. 
Determine the specified probability.

 11. [ ) ( )= ∞ ≤ ≤−f x xe P X( ) over 0, ,   1 3x

 12. [ ) ( )= ∞ < <f x x
x

P X( ) ln over 1, ,   2 15
2

 13. [ ]( ) ( )= − >f x x x P X( ) 3
2

2 over 0,1 ,   0.5

 14. π
π

π) ( )= ∞ <⎡
⎣⎢

f x x
x

P X( ) sin over 200
1059

, ,   6
2

2

 15. ( ) ( )=
>

≤
−∞ ∞ ≤ <

⎧

⎨
⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

f x x
x

x
P X( )

2 1

0 1
over , ,   4 93

 16. π π π( )[ ]= < ≤f x x P X( ) sin over 0, 2 ,  
6 4

In Exercises 17–20, find the value of the constant c so that the given 
function is a probability density function for a random variable over 
the specified interval.

 17. [ ]=f x x c( ) 1
6

over 3,  18. [ ]= +f x
x

c c( ) 1 over , 1

 19. [ ]= −f x e c( ) 4 over 0,x2

 20. [ ]= −f x cx x( ) 25 over 0, 52

 21. Let =
+

f x c
x

( )
1

.
2

 Find the value of c so that f  is a probability 

density function. If f  is a probability density function for the ran-
dom variable X, find the probability ( )≤ <P X1 2 .

 22. Find the value of c so that ( )= −f x c x x( ) 1  is a probability 
density function for the random variable X over [ ]0,1 , and find the 
probability ( )≤ ≤P X0.25 0.5 .

 23. Show that if the exponentially decreasing function

f x
x

Ae x
( )

0 if  0

if  0cx
=

<

≥

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

−

is a probability density function, then =A c.

 24. Suppose f  is a probability density function for the random vari-
able X with mean μ. Show that its variance satisfies

X x f x dxVar ( ) ( ) .2 2∫ μ= −
−∞

∞

Compute the mean and median for a random variable with the prob-
ability density functions in Exercises 25–28.

 25. [ ]=f x x( ) 1
8

over 0, 4  26. [ ]=f x x( ) 1
9

over 0, 32

 27. f x x
x

x
( )

2 1

0 1

3=
≥

<

⎧

⎨
⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

 28. f x x
x e

( )
1 1

0 Otherwise
=

≤ ≤
⎧

⎨
⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

T

T

Exponential Distributions

 29. Digestion time The digestion time in hours of a fixed amount of 
food is exponentially distributed with a mean of 1 hour. What is 
the probability that the food is digested in less than 30 minutes?

 30. Pollinating flowers A biologist models the time in minutes 
until a bee arrives at a flowering plant with an exponential distri-
bution having a mean of 4 minutes. If 1000 flowers are in a field, 
how many can be expected to be pollinated within 5 minutes?

 31. Lifetime of light bulbs A manufacturer of light bulbs finds that 
the mean lifetime of a bulb is 1200 hours. Assume the life of a 
bulb is exponentially distributed.

 a. Find the probability that a bulb will last less than its guaran-
teed lifetime of 1000 hours.

 b. In a batch of light bulbs, what is the expected time until half 
the light bulbs in the batch fail?

 32. Lifetime of an electronic component The life expectancy in years 
of a component in a microcomputer is exponentially distributed, and 
1 3 of the components fail in the first 3 years. The company that 
manufactures the component offers a 1 year warranty. What is the 
probability that a component will fail during the warranty period?

 33. Lifetime of an organism A hydra is a small fresh-water ani-
mal, and studies have shown that its probability of dying does not 
increase with the passage of time. The lack of influence of age 
on mortality rates for this species indicates that an exponential 
distribution is an appropriate model for the mortality of hydra. A 
biologist studies a population of 500 hydra and observes that 200 
of them die within the first 2 years. How many of the hydra would 
you expect to die within the first six months?

 34. Car accidents The number of days that elapse between the 
beginning of a calendar year and the moment a high-risk driver is 
involved in an accident is exponentially distributed. Based on his-
torical data, an insurance company expects that 30% of high-risk 
drivers will be involved in an accident during the first 50 days of 
the calendar year. In a group of 100 high-risk drivers, how many 
do you expect to be involved in an accident during the first 80 days 
of the calendar year?

 35. Customer service time The mean waiting time to get served 
after walking into a bakery is 30 seconds. Assume that an expo-
nential density function describes the waiting times.

 a. What is the probability a customer waits 15 seconds or less?

 b. What is the probability a customer waits longer than one minute?

 c. What is the probability a customer waits exactly 5 minutes?

 d. If 200 customers come to the bakery in a day, how many are 
likely to be served within three minutes?

 36. Airport waiting time According to the U.S. Customs and Bor-
der Protection Agency, the average airport wait time at Chicago’s 
O’Hare International airport is 16 minutes for a traveler arriving 
during the hours 7–8 a.m., and 32 minutes for arrival during the 
hours 4–5 p.m. The wait time is defined as the total processing time 
from arrival at the airport until the completion of a passenger’s secu-
rity screening. Assume the wait time is exponentially distributed.

 a. What is the probability of waiting between 10 and 30 minutes 
for a traveler arriving during the 7–8 a.m. hour?

 b. What is the probability of waiting more than 25 minutes for a 
traveler arriving during the 7–8 p.m. hour?
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 c. What is the probability of waiting between 35 and 50 minutes 
for a traveler arriving during the 4–5 p.m. hour?

 d. What is the probability of waiting less than 20 minutes for a 
traveler arriving during the 4–5 p.m. hour?

 37. Printer lifetime The lifetime of a $200 printer is exponentially 
distributed with a mean of 2 years. The manufacturer agrees to 
pay a full refund to a buyer if the printer fails during the first year 
following its purchase, and a one-half refund if it fails during the 
second year. If the manufacturer sells 100 printers, how much 
should it expect to pay in refunds?

 38. Failure time The time between failures of a photocopier is expo-
nentially distributed. Half of the copiers at a university require 
service during the first 2 years of operations. If the university  
purchased 150 copiers, how many do you expect to require service 
during the first year of their operation?

Normal Distributions

 39. Cholesterol levels The serum cholesterol levels of children 
aged 12 to 14 years follows a normal distribution with mean 

162 mg dlμ =  and standard deviation 28 mg dlσ = . In a 
population of 1000 of these children, how many would you expect  
to have serum cholesterol levels between 165 and 193? between 
148 and 167?

 40. Annual rainfall The annual rainfall in millimeters for San 
Francisco, California, is approximately a normal random variable 
with mean 510 mm and standard deviation 120 mm. What is the 
probability that next year’s rainfall will exceed 444 mm?

 41. Manufacturing time The assembly time in minutes for a com-
ponent at an electronic manufacturing plant is normally distrib-
uted with a mean of μ = 55 and standard deviation σ = 4. What 
is the probability that a component will be made in less than one 
hour?

 42. Lifetime of a tire Assume the random variable L in Example 2f  
is normally distributed with mean μ = 35,000 kilometers and 
σ = 6,000 kilometers.

 a. In a batch of 4000 tires, how many can be expected to last for 
at least 29,000 kilometers?

 b. What is the minimum number of kilometers you would expect 
to find as the lifetime for 90% of the tires?

 43. Height The average height of American women aged 18–24 
is normally distributed with mean μ = 166 cm and σ = 6 cm.

 a. What percentage of women are taller than 172 cm?

 b. What is the probability a woman is between 155 cm and 163 cm 
tall?

 44. Life expectancy At birth, a French citizen has an average life 
expectancy of 82 years with a standard deviation of 7 years. If 
100 newly born French babies are selected at random, how many 
would you expect to live between 75 and 85 years? Assume life 
expectancy is normally distributed.

 45. Length of pregnancy A team of medical practitioners determines 
that in a population of 1000 women with ages ranging from 20 to 35 
years, the length of pregnancy from conception to birth is approxi-
mately normally distributed with a mean of 266 days and a standard 
deviation of 16 days. How many of these women would you expect 
to have a pregnancy lasting from 36 weeks to 40 weeks?

T

 46. Brain weights In a population of 500 adult Swedish men, 
medical researchers find their brain weights to be approximately 
normally distributed with mean μ = 1400 gm and standard devi-
ation σ = 100 gm.

 a. What percentage of brain weights are between 1325 and  
1450 gm?

 b. How many men in the population would you expect to have a 
brain weight exceeding 1480 gm?

 47. Blood pressure Diastolic blood pressure in adults is normally 
distributed with μ = 80 mm Hg and σ = 12 mm Hg. In a ran-
dom sample of 300 adults, how many would be expected to have a 
diastolic blood pressure below 70 mm Hg?

 48. Albumin levels Serum albumin in healthy 20-year-old men 
is normally distributed with μ = 4.4 and σ = 0.2. How likely  
is it for a healthy 20-year-old man to have a level in the range 4.3 
to 4.45?

 49. Quality control A manufacturer of generator shafts finds that 
it needs to add additional weight to its shafts in order to achieve 
proper static and dynamic balance. Based on experimental tests, 
the average weight it needs to add is μ = 35 gm with σ = 9 gm. 
Assuming a normal distribution, from 1000 randomly selected 
shafts, how many would be expected to need an added weight in 
excess of 40 gm?

 50. Kilometers driven A taxicab company in New York City ana-
lyzed the daily number of kilometers driven by each of its drivers. 
It found the average distance was 300 km with a standard devia-
tion of 50 km. Assuming a normal distribution, what prediction 
can we make about the percentage of drivers who will log in either 
more than 400 km or less than 250 km?

 51. Germination of sunflower seeds The germination rate of a 
particular seed is the percentage of seeds in the batch which suc-
cessfully emerge as plants. Assume that the germination rate for a 
batch of sunflower seeds is 80%, and that among a large popula-
tion of n seeds the number of successful germinations is normally 
distributed with mean μ = n0.8  and σ = n0.4 .

 a. In a batch of =n 2500 seeds, what is the probability that at 
least 1960 will successfully germinate?

 b. In a batch of =n 2500 seeds, what is the probability that at 
most 1980 will successfully germinate?

 c. In a batch of =n 2500 seeds, what is the probability that 
between 1940 and 2020 will successfully germinate?

 52. Suppose you toss a fair coin n times and record the number of 
heads that land. Assume that n is large and approximate the dis-
crete random variable X with a continuous random variable that is 
normally distributed with n 2μ =  and σ = n 2. If =n 400, 
find the given probabilities.

 a. ( )≤ <P X190 210 b. ( )<P X 170

 c. ( )>P X 220 d. ( )=P X 300

Discrete Random Variables

 53. A fair coin is tossed four times and the random variable X assigns 
the number of tails that appear in each outcome.

 a. Determine the set of possible outcomes.

 b. Find the value of X for each outcome.
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 c. Create a probability bar graph for X, as in Figure A.30. What 
is the probability that at least two heads appear in the four 
tosses of the coin?

 54. You roll a pair of six-sided dice, and the random variable X assigns 
to each outcome the sum of the number of dots showing on each 
face, as in Example 2e.

 a. Find the set of possible outcomes.

 b. Create a probability bar graph for X.

 c. What is the probability that =X 8?

 d. What is the probability that ≤ >X X5?   9?

 55. Three people are asked their opinion in a poll about a particular 
brand of a common product found in grocery stores. They can 
answer in one of three ways: “Like the product brand” (L), “Dislike 

the product brand” (D), or “Undecided” (U). For each outcome, the 
random variable X assigns the number of L’s that appear.

 a. Find the set of possible outcomes and the range of X.

 b. Create a probability bar graph for X.

 c. What is the probability that at least two people like the  
product brand?

 d. What is the probability that no more than one person dislikes 
the product brand?

 56. Spacecraft components A component of a spacecraft has both 
a main system and a backup system operating throughout a flight. 
The probability that both systems fail sometime during the flight 
is 0.0148. Assuming that each system separately has the same fail-
ure rate, what is the probability that the main system fails during  
the flight?

A.9 The Distributive Law for Vector Cross Products

In this appendix we prove the Distributive Law

u v w u v u w,( )× + = × + ×

which is Property 2 in Section 11.4.

Proof  To derive the Distributive Law, we construct u v×  a new way. We draw u and 
v from the common point O and construct a plane M perpendicular to u at O (Figure A.37). 
We then project v orthogonally onto M, yielding a vector v1 with length v sin .θ  We rotate 

°v by 901  about u in the positive sense to produce a vector v .2  Finally, we multiply v 2 by 
the length of u. The resulting vector u v 2 is equal to u v×  since v 2 has the same direction 
as u v×  by its construction (Figure A.37) and

u v u v u v u vsin .2 1 θ= = = ×

M

M1

u

v2

90°

v

v1

O u × v

u

u

FIGURE A.37 As explained in the text, u v u v .2× =

Now each of these three operations, namely,

1. projection onto M

2. rotation about u through 90°
3. multiplication by the scalar u ,

when applied to a triangle whose plane is not parallel to u, will produce another triangle. 
If we start with the triangle whose sides are v, w, and s v w= +  (Figure A.38) and apply 
these three steps, we successively obtain the following:

1. A triangle whose sides are v w s, , and1 1 1 satisfying the vector equation

v w s1 1 1+ =
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2. A triangle whose sides are v w s, , and2 2 2 satisfying the vector equation

v w s2 2 2+ =

M

uw

v

v1
w1

s1

s

FIGURE A.38 The vectors v w v w, , and +  and their  
projections onto a plane perpendicular to u.

3. A triangle whose sides are u v u w u s, , and2 2 2 satisfying the vector equation

u v u w u s .2 2 2+ =

Substituting u v u v u w u w u s u v w, , and2 2 2 ( )= × = × = × +  from our 
discussion above into this last equation gives

u v u w u v w ,( )× + × = × +

which is the law we wanted to establish. 

A.10 The Mixed Derivative Theorem and the Increment Theorem

This appendix derives the Mixed Derivative Theorem (Theorem 2, Section 13.3) and the 
Increment Theorem for Functions of Two Variables (Theorem 3, Section 13.3). Euler first 
published the Mixed Derivative Theorem in 1734, in a series of papers he wrote on hydro-
dynamics.

THEOREM 2—The Mixed Derivative Theorem
If f x y,( ) and its partial derivatives f f f, , ,x y xy  and f yx are defined throughout an 
open region containing a point a b,( ) and are all continuous at a b, ,( )  then

f a b f a b, , .xy yx( ) ( )=

Proof  The equality of f a b,xy ( ) and f a b,yx ( ) can be established by four applications 

of the Mean Value Theorem (Theorem 4, Section 4.2). By hypothesis, the point a b,( ) lies 
in the interior of a rectangle R in the xy-plane on which f f f f, , , ,x y xy  and f yx are all defined. 

We let h and k be the numbers such that the point a h b k, ( )+ +  also lies in R, and we 
consider the difference

 F a h F a( ),( )Δ = + −  (1)

where

 F x f x b k f x b( ) , , .( ) ( )= + −  (2)

We apply the Mean Value Theorem to F, which is continuous because it is differentiable. 
Then Equation (1) becomes

 hF c( ),1Δ = ′  (3)
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where c1 lies between a and a h.+  From Equation (2),

F x f x b k f x b( ) , , ,x x( ) ( )′ = + −

so Equation (3) becomes

 h f c b k f c b, , .x x1 1( ) ( )[ ]Δ = + −  (4)

Now we apply the Mean Value Theorem to the function g y f c y( ) ,x 1( )=  and have

g b k g b kg d( ) ( ),1( )+ − = ′

or

f c b k f c b k f c d, , ,x x xy1 1 1 1( ) ( ) ( )+ − =

for some d1 between b and b k.+  By substituting this into Equation (4), we get

 hkf c d,xy 1 1( )Δ =  (5)

for some point c d,1 1( ) in the rectangle R′ whose vertices are the four points a b, ,( )  
a h b a h b k, ,  , ,( ) ( )+ + +  and a b k, .( )+  (See Figure A.39.)

By substituting from Equation (2) into Equation (1), we may also write

 

f a h b k f a h b f a b k f a b

f a h b k f a b k f a h b f a b

b k b

, , , ,

, , , ,

( ),φ φ

( ) ( ) ( ) ( )

( ) ( )[ ] ( ) ( )[ ]
( )

Δ = + + − + − + +

= + + − + − + −

= + −

 

(6)

where

 y f a h y f a y( ) , , .φ ( ) ( )= + −  (7)

The Mean Value Theorem applied to Equation (6) now gives

 k d( )2φΔ = ′  (8)

for some d2 between b and b k.+  By Equation (7),

 y f a h y f a y( ) , , .y yφ ( ) ( )′ = + −  (9)

Substituting from Equation (9) into Equation (8) gives

k f a h d f a d, , .y y2 2[ ]( ) ( )Δ = + −

Finally, we apply the Mean Value Theorem to the expression in brackets and get

 khf c d,yx 2 2( )Δ =  (10)

for some c2 between a and a h.+
Together, Equations (5) and (10) show that

 f c d f c d, , ,xy yx1 1 2 2( ) ( )=  (11)

where c d,1 1( ) and c d,2 2( ) both lie in the rectangle R′ (Figure A.39). Equation (11) is 
not quite the result we want, since it says only that f xy has the same value at c d,1 1( ) 
that f yx has at c d, .2 2( )  The numbers h and k in our discussion, however, may be 
made as small as we wish. The hypothesis that f xy and f yx are both continuous at 
a b,( ) means that f c d f a b, ,xy xy1 1 1ε( ) ( )= +  and f c d f a b, , ,yx yx2 2 2ε( ) ( )= +  

where each of ,  01 2ε ε →  as both h k,  0.→  Hence, if we let h and k 0,→  we have 
f a b f a b, , .xy yx( ) ( )=  

x

y

R

0

h

k R′

(a, b)

FIGURE A.39 The key to proving 
f a b f a b, ,xy yx( ) ( )=  is that no matter 
how small R′ is, f xy and f yx  take on equal 
values somewhere inside R′ (though not 
necessarily at the same point).

The equality of f a b,xy ( ) and f a b,yx ( ) can be proved with hypotheses weaker than 
the ones we assumed. For example, it is enough for f f,  ,x  and f y to exist in R and for f xy 
to be continuous at a b, .( )  Then f yx will exist at a b,( ) and will equal f xy at that point.
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THEOREM 3—The Increment Theorem for Functions of Two Variables
Suppose that the first partial derivatives of f x y,( ) are defined throughout an 
open region R containing the point x y,0 0( ) and that f x  and f y are continuous at 
x y, .0 0( )  Then the change

z f x x y y f x y, ,0 0 0 0( ) ( )Δ = + Δ + Δ −

in the value of f that results from moving from x y,0 0( ) to another point 
x x y y,0 0( )+ Δ + Δ  in R satisfies an equation of the form

z f x y x f x y y x y, ,x y0 0 0 0 1 2ε ε( ) ( )Δ = Δ + Δ + Δ + Δ

in which each of , 01 2ε ε →  as both x y, 0.Δ Δ →

Proof  We work within a rectangle T centered at A x y,0 0( ) and lying within R, and we 
assume that xΔ  and yΔ  are already so small that the line segment joining A to 
B x x y,0 0( )+ Δ  and the line segment joining B to C x x y y,0 0( )+ Δ + Δ  lie in the interior 
of T (Figure A.40).

We may think of zΔ  as the sum z z z1 2Δ = Δ + Δ  of two increments, where

z f x x y f x y, ,1 0 0 0 0( ) ( )Δ = + Δ −

is the change in the value of f from A to B and

z f x x y y f x x y, ,2 0 0 0 0( ) ( )Δ = + Δ + Δ − + Δ

is the change in the value of f from B to C (Figure A.41).
On the closed interval of x-values joining x 0 to x x,0 + Δ  the function F x f x y( ) , 0( )=  

is a differentiable (and hence continuous) function of x, with derivative

F x f x y( ) , .x 0( )′ =

By the Mean Value Theorem (Theorem 4, Section 4.2), there is an x-value c between x 0 
and x x0 + Δ  at which

F x x F x F c x( ) ( )0 0( )+ Δ − = ′ Δ

or

f x x y f x y f c y x, , ,x0 0 0 0 0( ) ( ) ( )+ Δ − = Δ

or

 z f c y x, .x1 0( )Δ = Δ  (12)

Similarly, G y f x x y( ) ,0( )= + Δ  is a differentiable (and hence continuous) function 
of y on the closed y-interval joining y0 and y y,0 + Δ  with derivative

G y f x x y( ) , .y 0( )′ = + Δ

Hence, there is a y-value d between y0 and y y0 + Δ  at which

G y y G y G d y( ) ( )0 0( )+ Δ − = ′ Δ

or

f x x y y f x x y f x x d y, , ,y0 0 0 0( ) ( ) ( )+ Δ + Δ − + Δ = + Δ Δ

or

 z f x x d y, .y2 0( )Δ = + Δ Δ  (13)

T

C(x0 + Δx, y0 + Δy)

B(x0 + Δx, y0)

A(x0, y0)

FIGURE A.40 The rectangular region 
T in the proof of the Increment Theorem. 
The figure is drawn for xΔ  and yΔ  posi-
tive, but either increment might be zero or 
negative.
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 A.10  The Mixed Derivative Theorem and the Increment Theorem AP-47

y

z

x

Q

P″

P′

Q′

S

B

0

y0

P0

y0 + Δy

(x0 + Δx, y0) C(x0 + Δx, y0 + Δy)

A(x0, y0)

z = f (x, y)

Δz 1

Δz 2

Δz

P0

FIGURE A.41 Part of the surface z f x y,( )=  near P x y f x y, , , .0 0 0 0 0( )( )   
The points P P, ,0 ′  and P″ have the same height z f x y,0 0 0( )=  above the xy-plane. 
The change in z is z P S.Δ = ′  The change

z f x x y f x y, , ,1 0 0 0 0( ) ( )Δ = + Δ −

shown as P Q P Q ,″ = ′ ′  is caused by changing x from x 0 to x x0 + Δ  while  
holding y equal to y .0  Then, with x held equal to x x,0 + Δ

z f x x y y f x x y, ,2 0 0 0 0( ) ( )Δ = + Δ + Δ − + Δ

is the change in z caused by changing y0 from y y,0 + Δ  which is represented by 
Q S.′  The total change in z is the sum of z1Δ  and z .2Δ

Now, as both xΔ  and y 0,Δ →  we know that c x 0→  and d y .0→  Therefore, since 
f x  and f y are continuous at x y, ,0 0( )  the quantities

 
f c y f x y

f x x d f x y

, , ,

, ,
x x

y y

1 0 0 0

2 0 0 0

ε

ε

( ) ( )

( ) ( )

= −

= + Δ −
 

(14)

both approach zero as both xΔ  and y 0.Δ →
Finally,

z z z

f c y x f x x d y

f x y x f x y y

f x y x f x y y x y

, ,

, , 

, , ,

x y

x y

x y

1 2

0 0

0 0 1 0 0 2

0 0 0 0 1 2

ε ε

ε ε

[ ]

( ) ( )

( )[ ]

( ) ( )

( )

Δ = Δ + Δ

= Δ + + Δ Δ

= + Δ + + Δ

= Δ + Δ + Δ + Δ

From Eqs. (12) and (13)

From Eq. (14)

where both 1ε  and 02ε →  as both xΔ  and y 0,Δ →  which is what we set out to prove. 
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AP-48 Appendix A

Analogous results hold for functions of any finite number of independent variables. 
Suppose that the first partial derivatives of w f x y z, ,( )=  are defined throughout an open 
region containing the point x y z, ,0 0 0( ) and that f f, ,x y  and f z are continuous at x y z, , .0 0 0( )  
Then

 
w f x x y y z z f x y z

f x f y f z x y z

, , , ,

,x y z

0 0 0 0 0 0

1 2 3ε ε ε

( ) ( )Δ = + Δ + Δ + Δ −

= Δ + Δ + Δ + Δ + Δ + Δ
 

(15)

where , , and 01 2 3ε ε ε →  as x y, ,Δ Δ  and z 0.Δ →
The partial derivatives f f f, ,x y z in Equation (15) are to be evaluated at the point 

x y z, , .0 0 0( )
Equation (15) can be proved by treating wΔ  as the sum of three increments,

 w f x x y z f x y z, , , ,1 0 0 0 0 0 0( ) ( )Δ = + Δ −  (16)

 w f x x y y z f x x y z, , , ,2 0 0 0 0 0 0( ) ( )Δ = + Δ + Δ − + Δ  (17)

 w f x x y y z z f x x y y z, , , , ,3 0 0 0 0 0 0( ) ( )Δ = + Δ + Δ + Δ − + Δ + Δ  (18)

and applying the Mean Value Theorem to each of these separately. Two coordinates remain 
constant and only one varies in each of these partial increments w w w, , .1 2 3Δ Δ Δ  In Equa-
tion (17), for example, only y varies, since x is held equal to x x0 + Δ  and z is held equal 
to z .0  Since f x x y z, ,0 0( )+ Δ  is a continuous function of y with a derivative f ,y  it is 
subject to the Mean Value Theorem, and we have

w f x x y z y, ,y2 0 1 0( )Δ = + Δ Δ

for some y1 between y0 and y y.0 + Δ
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B-1

B.1 Determinants

Appendix B 

A matrix is a rectangular array of numbers. For example,

A
2 1 3

1 0 2
=

−













is a matrix with two rows and three columns. We call A a “2 by 3” matrix. More generally, 
an “m by n matrix” is one that has m rows and n columns.

The element in the ith row and jth column of a matrix is represented by aij . In the 
example above, we have

a a a

a a a

2, 1, 3,

1, 0, 2.
11 12 13

21 22 23

= = =

= = = −

If A is an n by n matrix, then we associate A with a number called the determinant of 
A, written sometimes as det A and sometimes as A  with vertical bars (which do not mean 
absolute value). For n 1=  and n 2=  we have these definitions:

[ ] =










 = −a a

a b

c d
ad bcdet , det . (1)

For a 3 by 3 matrix, we define

( ) ( ) ( )



















= − +

= − − − + −

a a a

a a a

a a a

a
a a

a a
a

a a

a a
a

a a

a a

a a a a a a a a a a a a a a a

det

.

11 12 13

21 22 23

31 32 33

11
22 23

32 33
12

21 23

31 33
13

21 22

31 32

11 22 33 23 32 12 21 33 23 31 13 21 32 22 31

 (2)

In Equation (2) there are some determinants of 2 by 2 matrices – each of those matri-
ces is obtained by deleting one row and one column of the original 3 by 3 matrix.

For an n by n matrix A, we define the minor of the element aij  to be the determinant 
of the n 1( )−  by n 1( )−  matrix that remains when the row and the column that contain aij  
are deleted from A.

In particular, deleting the row and the column that contain the element a11 in the matrix 
a a a

a a a

a a a

11 12 13

21 22 23

31 32 33


















, and then taking the determinant of the resulting matrix yields

a a

a a
,

22 23

32 33
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B-2 Appendix B

which is the minor of a11. Similarly, 
a a

a a
21 23

31 33

 and 
a a

a a
21 22

31 32

 are the minors of a12 and a13, 
respectively.

Given an n by n matrix A, the cofactor of aij  is defined as 1 i j( )− +  times the minor of 
aij . We denote the cofactor of aij  by Aij.

We can express Equation (2) using cofactors:

 

a a a

a a a

a a a

a A a A a Adet  .
11 12 13

21 22 23

31 32 33

11 11 12 12 13 13



















= + +  (3)

EXAMPLE 1  Given the matrix

A

2 1 3

3 1 2

2 3 0

,= − −



















 (a) find the minors of a11, a12, and a .13

 (b) find the cofactors A A,  ,11 12  and A .13

 (c) use Equation (3) to evaluate Adet .

Solution 

 (a) To obtain the minor of a ,11  we delete row 1 and column 1 from the matrix, and then 
compute the determinant by using Equation (1):

aminor of
1 2

3 0
1 0 2 3 6.11 ( )( ) ( )( )=

− −
= − − − =

Likewise, we obtain

aminor of
3 2

2 0
3 0 2 2 412 ( )( ) ( )( )=

−
= − − =

and

aminor of
3 1

2 3
3 3 1 2 11.13 ( )( ) ( )( )=

−
= − − =

 (b) The cofactor of a11 is 1 11 1( )− =+  times the minor of a :11

A a1 minor of 1 6 6.11
1 1

11( )( ) ( )( )= − = =+

The cofactor of a12 is 1 11 2( )− = −+  times the minor of a :12

A a1 minor of 1 4 412
1 2

12( )( ) ( )( )= − = − = −+

and the cofactor of a13 is 1 11 3( )− =+  times the minor of a :13

A a1 minor of 1 11 11.13
1 3

13( )( ) ( )( )= − = =+

There is a simple checkerboard pattern 
for the signs that correspond to ( )− +1 i j.  
This pattern can be applied to convert the 
minor of an element in a matrix to the 
cofactor of the element. For a determinant 
of a 3 by 3 matrix the sign pattern is

+ − +
− + −
+ − +

In the upper left corner, =i 1, =j 1,  
and ( )− = ++1 11 1 . In going from any 
element to an adjacent element in the 
same row or column, we change i by 
1 or j by 1, but not both, so we change 
the exponent from even to odd or from 
odd to even, which changes the sign 

+ − − +from to or from to .
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 B.1  Determinants B-3

 (c) To find det A by using Equation (3), we multiply each element of the first row of A by 
its cofactor and add:

A a A a A a Adet  

2 6 1 4 3 11
12 4 33
41.

11 11 12 12 13 13

( )( ) ( )( ) ( )( )

= + +

= + − +
= − +
=  

For any integer n 3,>  the determinant of an n by n matrix is defined to be the sum of 
the products of the elements in the first row by their cofactors:

 

�

�

�

� � � � �

�

�

a a a a

a a a a

a a a a

a a a a

a A a A a A a Adet .

n

n

n

n n n nn

n n

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

11 11 12 12 13 13 1 1





























= + + + +  (4)

EXAMPLE 2  Use the cofactors of the elements in the first row of the matrix

A

1 2 3 1

2 1 0 2

1 2 1 2

0 1 2 1

=

−

− −























to evaluate det A.

Solution The cofactors are

A A

A A

1

1 0 2

2 1 2

1 2 1

, 1

2 0 2

1 1 2

0 2 1

,

1

2 1 2

1 2 2

0 1 1

, 1

2 1 0

1 2 1

0 1 2

.

11
1 1

12
1 2

13
1 3

14
1 4

( ) ( )

( ) ( )

= − − = − − −

= − − − = − −

+ +

+ +

These are multiplied by the corresponding elements of A, and then the determinant is 
obtained by using Equation (4):

A a A a A a A a Adet  

1

1 0 2

2 1 2

1 2 1

2 1

2 0 2

1 1 2

0 2 1

3

2 1 2

1 2 2

0 1 1

1 1

2 1 0

1 2 1

0 1 2

.

11 11 12 12 13 13 14 14

( ) ( )

= + + +

= − − − − − + − − + − −

Each of the determinants on the right side can now be evaluated using Equation (2):

Adet  1 1 1 4 0 2 4 1

2 2 1 4 0 2 2 0

3 2 2 2 1 1 0 2 1 0

1 2 4 1 1 2 0 0

11 12 21 8 36.

( ) ( )[ ]

( ) ( )[ ]

( ) ( ) ( )[ ]

( ) ( )[ ]

= + − + −

+ + − + − −

+ + − − − + − −

− − − − − +

= + + − = 
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B-4 Appendix B

THEOREM 1—Cofactor Expansion Suppose that A is an n by n matrix, where 
n 2.>  For any i, the determinant of A is the sum of the products of the elements 
in the ith row (or column) with their cofactors.

EXAMPLE 3  Apply Theorem 1 to evaluate the determinant from Example 1 by a 
cofactor expansion along the third column.

Solution 

det

2 1 3

3 1 2

2 3 0

− −



















a A a A a A13 13 23 23 33 33= + +

3
3 1

2 3
2 1

2 1

2 3
0

2 1

3 1
( )=

−
− − +

−

3 9 2 2 6 2 0 2 3( ) ( ) ( )= + + − + − −

= + − =33 8 0 41 

Expand by cofactors of the  
third column (Theorem 1).

Cofactor of aij  is 1 i j( )− +   
times the minor of a .ij

Equation (1)

According to Theorem 1, it is no accident that the answers in Examples 1 and 3 are the 
same. If we were to multiply the elements of any row (or column) by the cofactors of the 
corresponding elements and add the products, we would get the same answer: the value of 
the determinant.

In Example 3, we do not actually need to compute the cofactor A33 since it is multi-
plied by a 0.33 =  Generally, when calculating the determinant of a matrix containing 
some zero elements, we may want to choose to expand along a row or column with as 
many zeros as possible.

In an n by n matrix

�

�

�

�

� � � �
�

=





























a

a

a

a

A

a a a

a a a

a a a

a a a nn

n

n

n

n n n

11

22

33

12 13 1

21 23 2

31 32 3

1 2 3

we refer to the elements a a a a, , , , nn11 22 33 …  as the main diagonal of the matrix.
If an n by n matrix has all elements below the main diagonal (or all elements above the 

main diagonal) equal to zero, then its determinant is easy to calculate as illustrated in our 
next example.

It becomes very lengthy to compute determinants of large matrices by using the definition. 
In the mathematical field called linear algebra, additional methods are developed to speed 
up this process. We present a few of those results without proofs.

EXAMPLE 4  Evaluate the determinant of the matrix

A

7 4 0 1

0 3 16 8

0 0 2 12

0 0 0 2

.=

− −

−

−
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 B.1  Determinants B-5

The first part of the following theorem generalizes this result. The remaining parts give 
other methods that can simplify the computation of a determinant.

THEOREM 2—Properties of Determinants
Suppose that A is an n by n matrix, where n 2.>

1. If all elements of A below the main diagonal (or all above it) are zero, the 
determinant of A is the product of the elements on the main diagonal.

2. If each element of a row (or column) of A is multiplied by a constant c and the 
results are added to a different row (or column), the determinant is not changed.

3. If each element of a row (or column) of A is multiplied by a constant c, the 
determinant is multiplied by c.

4. If two rows (or columns) of A are interchanged, the determinant just changes 
its sign.

Solution 

det

7 4 0 1

0 3 16 8

0 0 2 12

0 0 0 2

− −

−

−























a A a A a A a A11 11 21 21 31 31 41 41= + + +

( )=

−

− + + +7

3 16 8

0 2 12

0 0 2

0 0 0

( )= −
−

+ +






7 3

2 12

0 2
0 0

7 3 2 2( )( )( )( )= − −

84=  

Expand by cofactors of the first column  
(Theorem 1).

We do not need the values of the cofactors  
A A,  ,21 31  and A41 since each of them is  
multiplied by 0.

Expand the 3 by 3 determinant by cofactors  
of the first column (Theorem 1).

Equation (1)

EXAMPLE 5  We can apply Theorems 1 and 2 to make the evaluation of the determi-
nant from Example 2 easier.

1 2 3 1

2 1 0 2

1 2 1 2

0 1 2 1

1 2 3 1

0 5 6 0

1 2 1 2

0 1 2 1

−

− −
=

−

−

− −

=

−

−

−

1 2 3 1

0 5 6 0

0 0 4 1

0 1 2 1

=

−

− + + +1

5 6 0

0 4 1

1 2 1

0 0 0

5 4 2 6 0 1 0 36( ) ( )( )= + − − + + =  

We add 2−  times row 1 to row 2.  
By part 2 of Theorem 2 the  
determinant does not change.

We add 1 times row 1 to row 3.  
By part 2 of Theorem 2 the  
determinant does not change.

Expand by cofactors of the first  
column (Theorem 1).

Equation (2)
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Evaluating Determinants
Evaluate the determinants in Exercises 1–14.

 1. 

2 3 1

4 5 2

1 2 3

 2. 

− −

−

−

2 1 2

1 2 1

3 0 3

 3. 

5 2 0

2 1 1

3 3 1

−

−

 4. 

4 0 3

3 2 2

1 2 1

−

−

−

 5. 

5 0 0 0

0 2 0 0

0 0 2 0

0 0 0 5

−

−

 6. 

0 0 0 4

0 0 3 0

0 2 0 0

1 0 0 0

 7. 

1 2 3 4

0 1 2 3

0 0 2 1

0 0 3 2

 8. 

−

− −

1 1 2 3

2 1 2 6

1 0 2 3

2 2 0 5

 9. 

0 2 1 0

3 0 2 1

1 2 2 3

1 0 0 2

−

−

 10. 

1 1 3 3

2 2 1 1

0 1 2 0

2 1 1 0

− −

− −

− −

 11. 

3 0 0 0 0

1 1 0 0 0

4 1 5 0 0

0 2 1 4 0

6 8 3 2 1

−

−

−

−

 12. 

4 5 6 7 8

0 2 5 6 7

0 0 2 5 6

0 0 0 2 5

0 0 0 0 2

−

−

−

 13. 

1 2 0 0 1

0 2 1 2 0

0 0 3 1 0

0 2 0 2 2

1 0 0 0 1

 14. 

−

−

−

−

2 0 0 1 2

1 2 1 0 1

0 2 2 1 0

1 0 1 1 1

1 0 2 0 0

EXERCISES B.1

The determinant has several important applications, which are studied in a course in linear 
algebra.

• The absolute value of the determinant gives the volume of the region spanned by the 
vectors that form the columns (or rows) of the matrix. We saw this in Section 11.4, 
where we encountered the box product.

• A determinant can be used to indicate whether a system of n linear equations in n 
unknowns has a unique solution. The answer is yes when the determinant is not equal 
to zero, and in this case determinants can be used to solve the system.

• We saw in Section 13.7 that the determinant of the Hessian matrix of a function of 
two variables can help us decide whether a critical point is a saddle point or a local 
extremum. In Appendix B.2, we will use determinants to extend this to functions of 
more than two variables.

B.2 Extreme Values and Saddle Points for Functions of More than Two Variables

Many applications involve functions of multiple independent variables. For instance, 
to predict energy trends in the United States, an econometric model may use a function 
f p p p, , ,1 2 50…( ) of fifty independent variables representing average prices of gasoline 
in the fifty states.

It is often important to determine extreme values of such functions. In Section 13.1 we 
defined a function of n variables whose domain is a set of n-tuples of real numbers 
x x x, , , n1 2 …( ). The domain is a region in n-dimensional space.

We will use open balls to define some important concepts, such as interior and 
boundary points. An n-dimensional open ball (or open n-ball) of radius r centered at 
a a a, , , n1 2 …( ) is the set consisting of the points x x x, , , n1 2 …( ) that satisfy 
x a x a x a r .n n1 1

2
2 2

2 2 2� ( )( ) ( )− + − + + − <
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 B.2  Extreme Values and Saddle Points for Functions of More than Two Variables B-7

DEFINITIONS A point x x x, , , n1 2 …( ) in a region D in n-dimensional space is 
an interior point of D if it is the center of an open n-ball of positive radius that 
lies entirely in D. A point x x x, , , n1 2 …( ) is a boundary point of D if every open 
n-ball centered at x x x, , , n1 2 …( ) contains points that lie outside D as well as 
points that lie inside D. 

The interior of D is the set of interior points of D. The boundary of D is the 
set of boundary points of D.

A region is open if it consists entirely of interior points. A region is closed if 
it contains its entire boundary.

A region is bounded if it lies inside an open n-ball of finite radius. A region 
is unbounded if it is not bounded.

EXAMPLE 1  Determine whether the following points in 4-dimensional space are in 
the open 4-ball with radius 5 and center at 2, 0, 3, 1 .( )−

 (a) 1,  2, 1, 0( )−
 (b) 0, 1,  1, 5( )−

Solution 

 (a) 1 2 2 0 1 3 0 1 9 4 4 12 2 2 2( )( ) ( ) ( ) ( )− − + − − + − + − = + + + = 
18 25 5 ;2< =  therefore, 1,  2, 1, 0( )−  is in the open 4-ball.

 (b) 0 2 1 0 1 3 5 1 4 1 16 162 2 2 2( )( ) ( ) ( ) ( )− − + − + − − + − = + + + = 
37 25 5 ;2≥ =  therefore, 0, 1,  1, 5( )−  is not in the open 4-ball. 

Using open n-balls we can extend definitions from Section 13.1 to regions in 
n-dimensional spaces.

Extreme Values and Saddle Points of Functions of More 
than Two Variables

While Section 13.7 discussed extreme values and saddle points for functions of two vari-
ables, here we extend this treatment to functions of three or more variables.

DEFINITIONS Let f x x x, , , n1 2 …( ) be defined on a set D of n-tuples of real 
numbers x x x, , , n1 2 …( ) including a point a a a, , , .n1 2 …( )

f a a a, , , n1 2( )…  is a local maximum value of f  if 
f a a a f x x x, , , , , ,n n1 2 1 2… …( ) ( )≥  for all domain points x x x, , , n1 2 …( ) 
that lie in an open n-ball centered at a a a, , , .n1 2 …( )

f a a a, , , n1 2 …( ) is a local minimum value of f  if 
f a a a f x x x, , , , , ,n n1 2 1 2… …( ) ( )≤  for all domain points x x x, , , n1 2 …( ) 
that lie in an open n-ball centered at a a a, , , .n1 2 …( )

EXAMPLE 2  The function f x y z x y z,  ,  10 2 2 2( ) = − − −  is defined on all of 
three-dimensional space. Figure B.1 shows an assortment of level surfaces of this function. 
The level set f x y z,  ,  10( ) =  is a single point, the origin. At every point x y z,  , ( ) we 
have f x y z x y z f,  ,  10 10 0, 0, 0 ;2 2 2( ) ( )= − − − ≤ =  therefore, f  has a local 
(and absolute) maximum value of 10 at 0, 0, 0( ). This function has no local minimum 
values. 
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B-8 Appendix B

Suppose f x x x, , , n1 2 …( ) has a local maximum or minimum value at an interior 
point a a a, , , n1 2 …( ) of its domain and all of its first-order partial derivatives are defined 
there. The function g t f t a a( ) , , , n1 2 …( )=  must then have a local extremum at t a1= . 
Therefore, g a( ) 01 1′ =  and consequently

f
x

a a a, , , 0.n
1

1 2 …( )∂
∂

=

Likewise, we can use the function g t f a t a a( ) , , , , n2 1 3 …( )=  to show that

f
x

a a a, , , 0,n
2

1 2 …( )∂
∂

=

and continue in the same manner to conclude that

f
x

a a a, , , 0
i

n1 2 …( )∂
∂

=

for all i n1, 2, , .…=
The above discussion extends Theorem 10 of Section 13.7 to functions of n variables. 

We present this in a more succinct form by using the gradient notation

f
f

x
f

x
f

x
, , , .

n1 2

…∇ = ∂
∂

∂
∂

∂
∂

FIGURE B.1 Level surfaces of the function 
f x y z x y z,  ,  10 2 2 2( ) = − − −  in Example 2.

z

x

3

3
2

1

2

1

y

f (x , y, z) = 9

f (x , y, z) = 10
Local maximum

value of 10 at (0, 0, 0)

f (x , y, z) = 6
f (x , y, z) = 1

3
2

1

3

111

1111

Note that a vector does not exist whenever one or more of its components does not 
exist.

THEOREM 3—First Derivative Theorem for Local Extreme Values (General 
Version) If f x x x, , , n1 2 …( ) has a local maximum or minimum value at an 
interior point a a a( , , , )n1 2 …  of its domain and if  f∇   exists at that point, then 

…( )∇ =f a a a 0, , , ,n1 2  where 0 0, 0, , 0…=  denotes the zero vector in  
n-dimensional space.

DEFINITION An interior point of the domain of f  where either ∇ =f 0 or f∇  
does not exist is called a critical point of f .

The following definition of a critical point uses the gradient notation.
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 B.2  Extreme Values and Saddle Points for Functions of More than Two Variables B-9

DEFINITION A critical point a a a, , , n1 2 …( ) of a differentiable func-
tion f x x x, , , n1 2 …( ) is a saddle point if every open n-ball cen-
tered at the point  a a a, , , n1 2 …( ) contains points x x x, , , n1 2 …( ) with 
f a a a f x x x, , , , , ,n n1 2 1 2… …( ) ( )>  as well as points y y y, , , n1 2 …( ) with 
f a a a f y y y, , , , , ,n n1 2 1 2… …( ) ( )< .

The Hessian matrix of a function of two variables was introduced in Section 13.7. We 
now generalize this concept for functions of n variables.

DEFINITIONS The Hessian matrix of f x x x, , , n1 2 …( ) is the n n×  matrix 
(containing n rows and n columns)

�

�

� � � �

�

H f

f f f

f f f

f f f

.

x x x x x x

x x x x x x

x x x x x x

n

n

n n n n

1 1 1 2 1

2 1 2 2 2

1 2

=



























The principal minor determinants of the Hessian matrix are

f ,x x1 1 1
∆ =

f f

f f
,

x x x x

x x x x
2

1 1 1 2

2 1 2 2

∆ =

f f f

f f f

f f f

,
x x x x x x

x x x x x x

x x x x x x

3

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

∆ =

…

�

�

� � � �

�

H f

f f f

f f f

f f f

.n

x x x x x x

x x x x x x

x x x x x x

n

n

n n n n

1 1 1 2 1

2 1 2 2 2

1 2

∆ = =

Theorem 11 in Section 13.7 gave us tools to decide whether a critical point of a func-
tion f x x, 1 2( ) is a local maximum, local minimum, or a saddle point. The nature of a 
critical point of a function of more than two variables can be similarly determined using 
the principal minor determinants of the Hessian matrix.

THEOREM 4—Second Derivative Test for Local Extreme Values (General 
Version) Suppose that f x x x, , , n1 2 …( ) and its first and second partial deriva-
tives are continuous throughout an open n-ball centered at a a a, , , n1 2 …( ) and 
suppose that f a a a 0, , , .n1 2 …( )∇ =  Then

 i) f  has a local maximum at a a a, , , n1 2 …( ) if 1 0i
i( )− ∆ >  at the point 

a a a, , , n1 2 …( ) for i n1, 2, ,…= .

 ii) f  has a local minimum at a a a, , , n1 2( )…  if 0i∆ >  at a a a, , , n1 2 …( ) for 
i n1, 2, , .…=

 iii) f  has a saddle point at a a a, , , n1 2 …( ) if 0n∆ ≠  at a a a, , , n1 2 …( ) and 
neither of conditions (i) or (ii) hold.

 iv) the test is inconclusive if 0n∆ =  at a a a, , , n1 2 …( ).

The notion of a saddle point generalizes to functions f  of n variables.
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B-10 Appendix B

For n 2= , Theorem 4 reduces to Theorem 11 of Section 13.7 (see Exercise 11).
The principal minor determinants i∆  keep track of directions along which f  has a 

local maximum and directions along which f  has a local minimum. If it has a local maxi-
mum (or local minimum) when traveling along each of the n possible axis directions, then 
f  has a local maximum (or local minimum) in an open n-ball.

Applying Theorem 4 to the function f x y z x y z,  ,  10 2 2 2( ) = − − −  of Example 2, 

we get the Hessian matrix H f

2 0 0

0 2 0

0 0 2

.=

−

−

−



















 Its principal minor determinants are

2,1∆ = −

2 0

0 2
4,2∆ =

−

−
=  and

2 0 0

0 2 0

0 0 2

2
2 0

0 2
0

0 0

0 2
0

0 2

0 0
8.3∆ =

−

−

−

= −
−

−
−

−
+

−
= −

At the critical point 0, 0, 0 ,( )  we have 0,  0,1 2∆ < ∆ >  and 0,3∆ <  so Theorem 4 
confirms the conclusion we reached in Example 2: f  has a local maximum at 0, 0, 0 .( )

EXAMPLE 3  Find the local extreme values and saddle points of the function

f x y z x y y yz z xy,  ,  2 3 6 6 6 .3 2 2( ) = + + + −

Solution The function f  is differentiable, therefore its critical points are points at which 
∇ =f 0. Setting each component of the gradient equal to zero yields the following 
equations:

f x y y y x

f x y z x

f y z

6 6 6 1 0

2 6 6 6 0

6 12 0.

x

y

z

2 2

3

( )= − = − =

= + + − =

= + =

The equation f 0x =  can be satisfied in three possible ways: (i) if y 0,=   (ii) if x 1,=   
or (iii) if x 1.= −  Let’s consider these possibilities one at a time.

 (i) If y 0,=  then the equation f 0z =  yields z 0,=  and then the equation f 0y =  
leads to

x x x x2 6 2 3 0.3 2( )− = − =

This equation has three solutions: x 0,  3,= ±  so we obtain critical points 
0, 0, 0 ,  3, 0, 0 ,( )( )  and 3, 0, 0 .( )−

 (ii) If x 1,=  then the equation f 0y =  becomes y z6 6 4 0.+ − =  Together with the 
equation f y z6 12 0,z = + =  this forms a system of two linear equations, which 
can be solved to obtain y 4 3=  and z 2 3= − . The resulting critical point is 
1, 4 3,  2 3 .( )−

 (iii) If x 1,= −  then similarly to case (ii) we solve the remaining two equations, which 
yields y 4 3= −  and z 2 3=  and the final critical point is 1,  4 3, 2 3 .( )− −

The Hessian matrix of f  is

=





















=

−

−



















H f

f f f

f f f

f f f

xy x

x

12 6 6 0

6 6 6 6

0 6 12

,
xx xy xz

yx yy yz

zx zy zz

2

2
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 B.2  Extreme Values and Saddle Points for Functions of More than Two Variables B-11

and the principal minor determinants are

xy121∆ =

xy x

x
xy x

12 6 6

6 6 6
72 6 62

2

2
2 2( )∆ =

−

−
= − −

( )∆ =

−

− = − −
−

+

xy x

x xy x
x

12 6 6 0

6 6 6 6

0 6 12

12
6 6

6 12
6 6

6 6 6

0 12
03

2

2 2
2

xy x12 36 6 6 12 .2 2( ) ( )= ⋅ − −

We list the values of these determinants at the critical points in the following table.

Critical Point 1∆ 2∆ 3∆
0, 0, 0( ) 0 36− 432−

3, 0, 0( ) 0 144− 1728−

3, 0, 0( )− 0 144− 1728−

1, 4
3

,  2
3( )− 16 96 576

1,  4
3

, 2
3( )− − 16 96 576

According to Theorem 4,

 (i) f  has a local maximum at a critical point if ∆ < ∆ >0, 0,1 2  and ∆ < 0.3  This 
pattern is not observed at any of our critical points; therefore, f  has no local  
maximum values.

 (ii) f  has a local minimum at a critical point if 0,  0,1 2∆ > ∆ >  and 0.3∆ >  The 
signs of the principal minor determinants listed in the table follow this pattern for the 
last two critical points, so f  has local minimum values at (1, 4 3,  2 3)−  and at 

1,  4 3, 2 3( )− − .

 (iii) f  has a saddle point at a critical point if 0,3∆ ≠  but neither of the conditions (i) or 
(ii) hold. Based on our table, this is the case at each of the first three critical points. We 
conclude that f  has saddle points at 0, 0, 0 ,  3, 0, 0 ,( )( )  and 3, 0, 0 .( )−

Finding Local Extrema and Saddle Points
Find all the local maxima, local minima, and saddle points of the func-
tions in Exercises 1–10.

 1. f x y z x y xy yz y z,  ,  3 3 3 63( ) = − + − +

 2. f x y z xy x z x y z,  ,  2 2 2 2 2( ) = + + + +

 3. f x y z x x y y z z,  ,  3 2 2 8 63 2 2( ) = − + + + − +

 4. f x y z x x xy y z,  , 
8 2

3
2 2( ) = − + − −

 5. f x y z z
x y z

,  ,  12
42 2 2

( ) =
+ + +

 6. f x y z x y xz yz,  ,  4 42 2( ) = + + − +

 7. f x y z w x y z w xy zw y z,  ,  ,  22 2 2 2( ) = + + + + + − +

 8. f x y z w x yz z w x y z w,  ,  ,  3 4 2 2 2 2( ) = + − − − − − −

 9. f x y z w,  ,  ,  , υ( ) = 
x y z w x x2 32 2 2 2 2υ υ υ+ − + + + − +

 10. f x y z w,  ,  ,  , υ( ) = 
x z y w x y z w4 3 22 2 2 2 2υ υ+ + − − − − − −

Theory
 11. Show that for n 2=  Theorem 4 reduces to Theorem 11 of  

Section 13.7.

EXERCISES B.2
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B-12 Appendix B

Method of Gradient Descent

1. Start with a first approximation to a local minimum of f x( ).0

2. Use the first approximation to obtain a second, the second to obtain a third, 
and so on, using the formula

 h fx x x( )k k k k1 = − ∇+  (1)

with h 0k > .

In Section 13.7 and in Appendix B.2 we discussed methods allowing us to analytically 
determine local maxima, local minima, and saddle points of a differentiable function f  of 
n variables. While these methods apply for any integer n 2,≥  they may not be practical 
when n is very large. Furthermore, there are important applications where we can evaluate 
(or approximate) f  and its partial derivative values without having an explicit formula for 
f . These are among the reasons to numerically search for local extrema of a function of n 
variables.

In this appendix, we will refer to values of a function of n variables f x x x, , , n1 2 …( ) 
using the notation f x( ) where x x xx , , , n1 2 …= 〈 〉 is the position vector of the point 
x x x, , , .n1 2 …( )  The directional derivative of f  at that point in the direction of a unit vector 

u can be expressed as

D f fu x x u( ) ( ) .= ∇ ⋅

In Section 13.5, where the notion of the directional derivative was introduced, we 
noticed that the function f  increases most rapidly in the direction of f∇  while it decreases 
most rapidly in the direction of f .−∇  This leads to the method of gradient descent (also 
known as the method of steepest descent) for numerically approximating a local minimum 
for a function f  of n variables.

The initial approximation x 0 can be chosen to be the best guess for where a minimum 
might be. (Alternatively a randomly chosen point can be used for x 0.) We then take a step 
in the direction of f x( )0−∇  to yield the next approximation

h fx x x( ),1 0 0 0= − ∇

where the positive quantity h0 controls the size of the step. We obtain subsequent approxi-
mations …x x,  ,2 3  in the same manner.

B.3 The Method of Gradient Descent

In applications, including those in the field of machine learning, the method of gradi-
ent descent can be applied to approximate a local minimum of a function involving a large 
number of independent variables. To gain insight into this method, consider Figure B.2, 
where we show the method being applied to a function of two variables f f x yx( ) ( ,  )=  
(we take x yx , = 〈 〉 to be the position vector of the point x y, ( )). Notice that the vector 

f x( )0−∇  is perpendicular to the level curve of f  passing through the point x ,0  which con-
sists of all points x in the plane that satisfy the equation f fx x( ) ( ).0=  Adding f x( )0−∇  
to x 0 gives us our next approximation, x .1  Once again, f x( )1−∇  is perpendicular to the 
level curve through that point. The process then continues in a similar manner. In addition 
to level curves, Figure B.2 shows the surface z f x( ),=  which helps visualize the descent 
of the values …f f fx x x( ),  ( ),  ( ), .0 1 2  These values appear to be approaching a minimum 
value of f .

In Figure B.2, we used a constant value h 1=  for all h .k  Figure B.3 illustrates how 
different choices of h value could affect the method’s performance. When h is small (Fig-
ure B.3a), the method is forced to take more steps. It is often more efficient to take larger 
steps (Figure B.3b, same h as in Figure B.2). If the value of h is too large (Figure B.3c), 
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 B.3  The Method of Gradient Descent B-13

then the method may not converge. To understand why the method may fail when h is too 
large, recall that while at x k  the function f  decreases most rapidly in the direction of 

f x( )k−∇ , the function may start increasing if we continue in this direction and go too far 
from x .k

Choosing a desirable value for the quantity h (which in machine learning is some-
times called the learning rate) that is neither too small nor too large could be challenging.  
We consider here only the case where the gradient descent method uses a constant, pre-
chosen value h h.k =  More advanced methods focus on identifying desirable hk  values 
(which may not be constant) – one of those would involve performing a line search (see 
Exercise 5).

x

x3

x2

x0

x1

f (x) = f (x2)

(a)  h = −

f (x) = f (x1)
f (x) = f (x0)

−−∇f (x0)
1
2

1
2

−−∇f (x1)
1
2

−−∇f (x2)
1
2

y

x

x2x1

x0

f (x) = f (x2)

(b)  h = 1

f (x) = f (x1)
f (x) = f (x0)

x3

y

−∇f (x0)

−∇f (x1)

−∇f (x2)

x

x0

x1

f (x) = f (x2)

(c)  h = 2

f (x) = f (x1)
f (x) = f (x0)

− 2∇f (x0)

− 2∇f (x1)

− 2∇f (x2)

x3

y

x2

FIGURE B.3 Different choices of h affect the performance of the method of gradient descent.

z

x

y

x0

−∇f (x0)

f (x) = f (x2)

z = f (x)

f (x) = f (x1)
f (x) = f (x0)

−∇f (x1)
−∇f (x2)

x3

x2

x1

FIGURE B.2 The method of gradient descent 
is applied to a function f  of two variables using 
a constant h 1.=  The level curves and the cor-
responding surface plot show how the value of 
f  decreases at each step.
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B-14 Appendix B

EXAMPLE 1  Apply the method of gradient descent to ( ) =f x y z,  ,   
+ + + −x y y yz z xy2 3 6 6 63 2 2  using the initial approximation x 2, 1,  10 = 〈 − 〉  

and taking h h 0.1k = = . List the components of x k  and f x( )k  for …k 0, 1, 2,  , 10.=

Solution At the initial approximation x 2, 1,  1 ,0 = 〈 − 〉  we have =f x( )0  
( )− =f 2, 1,  1 7.

The gradient of the function f  is

f x y y x y z x y z6 6 , 2 6 6 6 , 6 12 .2 3∇ = 〈 − + + − + 〉

Evaluating the gradient at the initial approximation yields f x( ) 18, 4,  6 .0∇ = 〈 − 〉  
We now apply Equation (1) to obtain the second approximation

h fx x x( )

2, 1,  1 (0.1) 18, 4,  6

0.2, 0.6,  0.4 .

1 0 0 0= − ∇

= 〈 − 〉 − 〈 − 〉

= 〈 − 〉

At this point, f x( ) 0.11.1 ≈ −
Subsequent approximations …x x,  , 2 3  are then obtained using technology by repeat-

edly applying Equation (1). These approximations, along with the corresponding f  values, 
are listed in the table below.

k x component of xk y component of xk z component of xk f (x )k

  0 2 1 1− 7

  1 0.200000000000001 0.600000000000001 0.399999999999999− 0.110400000000005−
  2 0.545600000000001 0.598400000000001 0.280000000000001− 1.22520965376901−
  3 0.7977612025856 0.702237228236801 0.30304− 1.8946600083389−
  4 0.950951612242085 0.839832907434822 0.360734336942082− 2.26841318086511−
  5 0.999170298397954 0.95095391811045 0.431752877072477− 2.43587094205513−
  6 1.00011671520043 1.03943288055905 0.484221775451776− 2.5295411401069−
  7 0.999971125564279 1.1063062093209 0.526815373245074− 2.58519263199985−
  8 1.0000094577719 1.15861170717517 0.558420650943528− 2.61825804593691−
  9 0.999996308247422 1.19849707338251 0.583482894116396− 2.63790410815758−
10 1.00000161770321 1.22948856581467 0.602401665206229− 2.64957702176556−

The function f  in Example 1 was analyzed in Example 3 of Appendix B.2 and was 
shown to have a local minimum ( )− = −f 1, 4 3,  2 3 8 3. The sequence of approxima-
tions generated in Example 1 appears to converge to this local minimum.

The method of gradient descent is designed to approximate a local minimum of a 
function of many variables. If we are interested in approximating a local maximum instead, 
then we apply the method of gradient ascent

h fx x x( ),k k k k1 = + ∇+

in which we follow the direction of the gradient f ,∇  rather than f .−∇
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 B.3  The Method of Gradient Descent B-15

You may need to use appropriate technology (such as a calculator or 
a computer).

Gradient Descent
 1. Apply the method of gradient descent to f x y z,  , ( ) = 

z
x y z

12
42 2 2+ + +

 using the initial approximation 

x 1, 1,  10 = 〈 − 〉 and the given constant value h h 1.k = =  List 
the components of x k  and f x( )k  for …k 0, 1, 2,  , 5.=

 2. Apply the method of gradient descent to f x y z,  , ( ) = 
x x y y z z3 2 2 8 63 2 2− + + + − +  using the initial approxi-
mation x 0, 0, 10 = 〈 〉 and the given constant value 
h h 0.2.k = =  List the components of x k  and f x( )k  for 

…k 0, 1, 2,  , 5.=

 3. Apply the method of gradient descent to f x y z w,  ,  , ( ) = 
x y z w xy zw y z22 2 2 2+ + + + + − +  using the initial 
approximation x 1, 1,  1, 10 = 〈− − 〉 and the given constant value 
h h 0.5.k = =  List the components of x k  and f x( )k  for 

…k 0, 1, 2,  , 5.=

 4. Apply the method of gradient descent to υ( ) =f x y z w,  ,  ,  ,   
υ υ− − − + + + + + +x z y w x y z w4 3 22 2 2 2 2 using the 

initial approximation x 1, 1, 1, 1, 10 = 〈 〉 and the given constant 
value h h 0.2.k = =  List the components of x k  and f x( )k  for 

…k 0, 1, 2,  , 5.=

Line Search

 5. In Example 1, we applied the method of gradient descent to the 
function f x y z x y y yz z xy,  ,  2 3 6 6 63 2 2( ) = + + + −  with 
the initial approximation = −x 2, 1,  10 . Plot the function 
g h f h fx x( ) ( )0 0 0 0( )= − ∇  to approximate a positive value of 
h0 that minimizes g h( ).0  (This process, known as the line search, 
can then be repeatedly used at subsequent steps of the gradient 
descent method to obtain the values …h h,  ,  .1 2  Using these val-
ues, rather than a constant h , can lead to a faster convergence to a 
minimum.)

EXERCISES B.3

 3. 

k

x  
component 

of xk

y  
component 

of xk

z  
component 

of xk

w  
component 

of xk f (x )k

0 1− 1 1− 1 1−

1 0.5− 1 1.5− 0.5 1.5−

2 0.5− 0.75 1.25− 0.75 1.625−

3 0.375− 0.75 1.375− 0.625 1.65625−

4 0.375− 0.6875 1.3125− 0.6875 1.664062−

5 0.34375− 0.6875 1.34375− 0.65625 1.666016−

 5. 

h0

g(h0)  

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

1

-1

2

3

4

5

6

7

h0 L 0.058 minimizes g(h0)  

Appendix B
APPENDIX B.1, p. B-6
 1. 5−   3. 0   5. 100  7. 1  9. 22
 11. 60−   13. 20−

APPENDIX B.2, p. B-11

 1. f 1,  2, 5
3

10,( )− =  saddle point; f 1,  2, 1
3

2,( )− − =   

saddle point
 3. f (1,  1, 2) 5,− = −  local minimum; f ( 1,  1, 2) 1,− − = −   

saddle point
 5. f 0, 0, 2 3,( ) =  local maximum; f (0, 0,  2) 3,− = −  local  

minimum

 7. f 1
3

, 2
3

,  4
3

, 2
3

5
3

,( )− − = −  local minimum

 9. f 5
3

, 0, 0, 7
3

, 0 13
3

,( )− = −  saddle point

APPENDIX B.3, p. B-15
 1. 

k

x  
component 

of xk

y  
component 

of xk

z  
component 

of xk f (x )k

0 1 1 1− 1.714286−

1 0.510204 0.510204 2.22449− 2.81909−

2 0.20641 0.20641 2.167243− 2.961338−

3 0.067207 0.067207 2.072064− 2.994859−

4 0.018721 0.018721 2.022551− 2.999552−

5 0.004841 0.004841 2.006053− 2.999969−

ANSWERS TO ODD-NUMBERED EXERCISES
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AN-1

 29. (a) f x
x x
x x( )
, 0 1

2, 1 2{=
≤ ≤

− + < ≤

 (b) f x

x
x
x
x

( )

2,  0 1
0,  1 2
2,  2 3
0,  3 4

=

≤ <
≤ <
≤ <
≤ ≤

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

 31. (a) f x
x x

x
x x

( )
, 1 0

1, 0 1
, 1 31

2
3
2

=
− − ≤ <

< ≤
− + < <

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

 (b) f x
x x
x x

x
( )

, 2 0
2 2, 0 1
1, 1 3

1
2

=
− ≤ ≤

− + < ≤
− < ≤

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

 33. (a) ≤ <x0 1 (b) − < ≤x1 0  35.  Yes
 37. Symmetric about the origin

- 2 2

- 2

2 y = - x3

x

y

−∞ < < ∞xDec.

Chapter 1
SECTION 1.1, pp. 31–33
 1. ( ) [ )−∞ ∞ ∞D R: , , : 1,
 3. [ ) [ )− ∞ ∞D R: 2, , : 0,
 5. ( ) ( ) ( ) ( )−∞ ∪ ∞ −∞ ∪ ∞D R: , 3 3, , : , 0 0,
 7. (a)  Not a function of x because some values of x have two  

values of y
 (b) A function of x because for every x there is only one possible y

 9. = =A x p x3
4

, 32

 11. = = =x d A d V d
3

, 2 ,
3 3

2
3

 13. = − +L x x20 20 25
4

2

 15. ( )−∞ ∞,

- 4 - 2 2 4

- 4

- 2

2

4

6

x

y

f (x) = 5 - 2x

ANSWERS TO ODD-NUMBERED EXERCISES

 17. ( )−∞ ∞,

- 5- 4- 3- 2 - 1 1 2 3 4 5

- 2
- 1

1
2
3
4

x

y

g(x) = 
Í

0 x 0

 19. ( ) ( )−∞ ∪ ∞, 0 0,

- 4 - 3 - 2 - 1 1 2 3 4

- 2

1

2

t

y

F(t) = t
0 t 0

 21. , 5 5, 3 3, 5 5,( ) ( ] [ ) ( )−∞ − ∪ − − ∪ ∪ ∞
 23. (a)  For each positive value of  

x, there are two values of y.

 

0 y 0 = x

x

y

0 2 4 6

2

- 2

- 4

4

 (b)  For each value of ≠x 0, 
there are two values of y.

y2 = x2

x

y

- 1 1

1

- 1

 25. 

1

1 20

2 - x,  1 6 x … 2

0 … x … 1x,
f (x) =

x

y  27.

y = x2 + 2x

x

y

y = 4 - x2

- 2 1

4

 39. Symmetric about the origin

1

- 1

1 2

- 1- 2

2

- 2

y = - 1
x

x

y

−∞ < <xInc. 0 and 
< < ∞x0

 41. Symmetric about the y-axis

2

2

40

4

y = 
Í

0 x 0

x

y

- 4 - 2

−∞ < ≤xDec.  0;
≤ < ∞xInc. 0

 43. Symmetric about the origin

1

1 2

x3
––
8

y =

x

y

- 2 - 1

- 1

- 1>8
1>8

−∞ < < ∞xInc. 

 45. No symmetry

0

- 1
1

- 2

- 3

- 4

- 5

2 3

y = - x3
>

2

x

y

≤ < ∞xDec. 0
 47. Even  49. Even  51. Odd  53. Even
 55. Neither  57. Neither  59. Odd  61. Even
 63. =t 180  65. =s 2.4  67. ( )( )= − −V x x x14 2 22 2
 69. (a) h (b)  f  (c) g  71. (a) ( ) ( )− ∪ ∞2, 0 4,
 75. C h5 2 2( )= +
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AN-2 Chapter 1: Answers to Odd-Numbered Exercises

SECTION 1.2, pp. 38–41
 1. −∞ < < ∞ ≥ = =+ ⋅D x D x D D D: , : 1,f g f g f g g

 3. −∞ < < ∞ −∞ < < ∞ −∞ < < ∞
−∞ < < ∞

D x D x D x
D x

: , : , : ,
:

f g f g

g f

 5. (a) 2 (b) 22 (c) +x 22  (d) + +x x10 222  (e) 5
 (f) −2 (g) +x 10 (h) − +x x6 64 2

 7. − x13 3   9. +
+

x
x

5 1
4 1

 11. (a) f g x( ( )) (b) j g x( ( )) (c) g g x( ( )) (d) j j x( ( ))
 (e) g h f x( ( ( ))) (f) h j f x( ( ( )))

 13. g x( ) f x( ) f g x( )�( )

(a) −x 7 x −x 7
(b) +x 2 x3 +x3 6

(c) x 2 −x 5 −x 52

(d) 
−
x

x 1 −
x

x 1
x

(e) 
−x
1

1
+

x
1 1 x

(f) 
x
1

x
1 x

 15. (a) 1 (b) 2 (c) −2 (d) 0 (e) −1 (f) 0

 17. (a) f g x
x

( ( )) 1 1= + , g f x
x

( ( )) 1
1

=
+

 (b) � �( ] ( ) ( )= −∞ − ∪ ∞ = − ∞D D, 1 0, ,  1,f g g f

 19. g x x
x

( ) 2
1

=
−

  21. = − +V t t t( ) 4 8 62

 23. (a) ( )= − +y x 7 2 (b) ( )= − −y x 4 2

 25. (a) Position 4 (b) Position 1 (c) Position 2 (d) Position 3
 27. ( )( )+ + + =x y2 3 492 2

0

x2 + y2 = 49

(x + 2)2 + (y + 3)2 = 49

(-2, -3)
x

y
 29. ( )+ = +y x1 1 3

0

1

x

y
y + 1 = (x + 1)3

y = x3

- 2 - 1

- 1

- 2

1

 31. = +y x 0.81

1

2

0.9

y =  
Í

x +  0.81

y = 
Í

x

x

y

- 0.81 1 4

 33. =y x2

7

- 7

y = 2x - 7

y = 2x

x

y

7>2

 35. − =
−

y
x

1 1
1

0

1

- 1
- 1 2

2

1

y - 1 = 1
x - 1

y - 1 = 1
x - 1

y  = 1
x

y = 1
x

x

y

 37. 

0

2

x

y

y = 
Í

x + 4

- 4

 39. 

2

0

4

y = 0 x  - 2 0

x

y

- 2 2 4 6

 41. 

0 1

1

2 5

2

3

y = 1 + 
Í

x - 1
(1, 1)

x

y

 43. 

0 1

1

- 1- 2- 3
x

y

y = (x + 1)2
>

3

 45. 

0
- 1

1
1

2- 2 - 1
x

y

y = 1 - x2
>

3

 47. 

0 1- 1 2 3

- 2

- 1

1

(1, - 1)

y =  
Í

x - 1 - 13

x

y  49. 

0

1

- 1

1 2 3

- 2

4

2

x

y

y =
1

x - 2

 51. 

0

2

1

3

1

2 3- 3 - 2 - 1

y =    + 2 x
1

x

y  53. 

- 1 1

1

2

3

4

2 30

1–––––––
(x - 1)2

y =

x

y

 55. 

- 1 1 2- 2

1

2

3

4

5

0
x

y

y =       + 11
x2

 57. (a) D R: 0, 2 , : 2, 3[ ] [ ]

1

10

2

3

2 3 4

y = f (x) + 2

x

y
(b) D R: 0, 2 , : 1, 0[ ] [ ]−

1

10 2

- 1

x

y

y = f (x) - 1

 (c) D R: 0, 2 , : 0, 2[ ] [ ]

1

10

2

2 3

y = 2 f (x)

x

y

 (d) D R: 0, 2 , : 1, 0[ ] [ ]−

1

10 2

- 1

x

y

y = - f (x)
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 Chapter 1: Answers to Odd-Numbered Exercises AN-3

SECTION 1.3, pp. 47–49

 1. (a) π8 m (b) π55
9

m 3. 8.4 cm (or 84 mm)

 5. 

 (e) D R: 2, 0 , : 0,1[ ] [ ]−

1

0

2

y = f (x + 2)

- 1- 2
x

y
(f) D R: 1, 3 , : 0,1[ ] [ ]

1

10

2

2 3

y = f (x - 1)

x

y

 (g) D R: 2, 0 , : 0,1[ ] [ ]−

1

0

2

- 1- 2
x

y

y =  f (- x)

 (h) D R: 1,1 , : 0,1[ ] [ ]−

1

10- 1

2

y = - f (x + 1) + 1

x

y

 59. = −y x3 32   61. = +y
x

1
2

1
2 2

  63. = +y x4 1

 65. = −y x4
4

2
  67. = −y x1 27 3

 69. 

- 2 - 1 1 2 3 4

- 4

- 3

- 2

- 1

1

2

x

y

y = -
Í

2x + 1

 71. 

- 3 - 2 - 1 1 2 3 4 5

1

2

3

4

5

x

y

y = (x - 1)3 + 2

 73. 

- 4 - 3 - 2 - 1 2 3 4
x

y

- 4

1

2

3

4

- 1

y =       - 1 2x
1

 75. 

- 4 - 3 - 2 - 1 1 2 3 4

- 4
- 3
- 2
- 1

1

2

3

4

x

y

y = - 
Í

x
3

 77. 

- 2 - 1 1 2

- 1

2

3

x

y

y =  0 x 2 -  1 0

 79. (a) Odd (b) Odd (c) Odd (d) Even (e) Even
 (f) Even (g) Even (h) Even (i) Odd

θ π− π−2 3 0 π 2 π3 4

θsin 0 − 3
2

0 1 1
2

θcos −1 −1
2

1 0 − 1
2

θtan 0 3 0 UND −1

θcot UND 1
3

UND 0 −1

θsec −1 −2 1 UND − 2

θcsc UND − 2
3

UND 1 2

 7. = − = −x xcos 4 5, tan 3 4

 9. = − = −x xsin 8
3

, tan 8

 11. = − = −x xsin 1
5

, cos 2
5

 13. Period π

1

- 1

y =  sin 2x

x

y

p
2

p

 15. Period 2

1

1

- 1

20

y = cos px

x

y

 17. Period 6

1

- 1
3 60

y = - sin
3
px

x

y
 19. Period π2

1

- 1

0
x

y

y =  cos  x - 

p
2

p
2

p 2p

a      b

 21. Period π2

1

0

2

x

y

y =  sin  x - + 1p
4a     b

p
4

-  p
4

3p
4

7p
4

 23. Period π 2, symmetric 
about the origin

1

- 1

0

2

- 2

s = cot 2t

t

s

p
2

-  p
2

- p p
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AN-4 Chapter 1: Answers to Odd-Numbered Exercises

 19. = −−f x x( ) 11   21. = +−f x x( ) 11 3

 23. = −−f x x( ) 11

 25. =−f x x( ) ;1 5  D x R y: ; :−∞ < < ∞ −∞ < < ∞
 27. = −−f x x( ) 1;1 3  D x R y: ; :−∞ < < ∞ −∞ < < ∞

 29. =−f x
x

( ) 1 ;1  D x R y: 0; : 0> >

 
31.

 
= +

−
−∞ < < ∞ ≠

−∞ < < ∞ ≠

−f x x
x

D x x

R y y

( ) 2 3
1

; : , 1;

: , 2

1

 33. = − + − ≤ < ∞ −∞ < ≤−f x x D x R y( ) 1 1; : 1 ; : 11

 
35.

 
= +

−
−∞ < < ∞ ≠ −∞ < < ∞ ≠

−f x x b
x

D x x R y y

( ) 2
1

;

: , 1, : , 2

1

 37. (a) =−f x
m

x( ) 11

 (b) The graph of −f 1 is the line through the origin with slope m1 .

 25. Period 4, symmetric about  
the y-axis

1

- 1
2- 2- 3 - 1 31

s = sec

t

s

p t
2

 
29.

 
D
R y

: , ,
: 1, 0,1
( )−∞ ∞

= −

1

- 1

y =  :sin x; y = sin x

x

y

- p p- 2p 2p

 39. − xcos   41. − xcos   43. +6 2
4

  45. +2 6
4

 47. +2 2
4

  49. −2 3
4

  51. π π π π
3

, 2
3

, 4
3

, 5
3

 53. π π π π
6

,
2

, 5
6

, 3
2

  59. = ≈c 7 2.65  63. ≈a 1.464

 65. r
sin( )

1 sin( )
α θ

θ
=

−

 67. A B
C D

2, 2 ,
, 1

π
π

= =
= − = −

1

- 1

- 3

y = 2sin (x + p) - 1

x

y

-   p
2

p
2

3p
2

5p
2

 
69.

 
A B

C D

2 , 4,

0, 1
π

π

= − =

= =

- 1 31 5

3
p

2
p

1
p

1
p

1
p

t

y

-   

y  =  -     sin         +2
pt
a   b

SECTION 1.4, pp. 53–54
 1. 

- 4 - 3 - 2 - 1 10 2 3 4

1

2

3

4

5

6

x

y

y = 3-x

y = 4x

y = 2x

y = (1>5)x

 3. 

- 4 - 3 - 2 - 1 1 2 3 4

- 5
- 4
- 3
- 2
- 1

1
2
3
4
5

y = 2-t

y =  - 2t

t

y

 5. 

- 4 - 3 - 2 - 1 10 2 3 4

1

2

3

4

5

x

y

y = exy =
ex
1

 7. 

- 4 - 3 - 2 - 1 1 2 3 4

- 2

1

2

3

4

5

x

y

y = 2-x  - 1 y = 2x - 1

 9. 

- 4 - 3 - 2 - 1 1 2 3 4

- 5
- 4
- 3
- 2
- 1

2

3

x

y

y = 1 - e -x y = 1 - ex

 11. =16 21 4   13. =4 21 2   15. 5  17. 14 3  19. 4
 21. D x:−∞ < < ∞; R : < <y0 1 2
 23. D t:−∞ < < ∞; R : < < ∞y1
 25. ≈x 2.3219  27. ≈ −x 0.6309  29. After 19 years

 31. (a) ( )=A t( ) 6.6 1
2

t 14

 (b) About 38 days later

 33. ≈11.433 years, or when interest is paid
 35. ≈ ×2 2.815 1048 14

SECTION 1.5, pp. 64–66
 1. One-to-one  3. Not one-to-one  5. One-to-one
 7. Not one-to-one  9. One-to-one

 11. D R: 0,1 : 0,( ] [ )∞

y = f (x)

y = x
y = f -1(x)

1

1
x

y
 13. D R: 1,1 : 2, 2π π[ ] [ ]− −

y = f (x)

y = x
y = f -1(x)

p
2

p
2

-

p
2

-

p
2

- 1

- 1

1

1 x

y

 15. D R: 0, 6 : 0, 3[ ] [ ]

3 6

3

6

x

y

y = f (x)

y = f -1(x)

y = x

 17. Symmetric about the line 
=y x

x

y

1

0 1

y = 
Í

1 - x2

0 … x … 1
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 Chapter 1: Answers to Odd-Numbered Exercises AN-5

 39. (a) = −−f x x( ) 11

x

y

1- 1- 2 2

- 2

- 1

1

2

y = x + 1

y = x - 1

y = x

 (b)  = −−f x x b( ) .1  The graph of −f 1 is a line parallel to the 
graph of f . The graphs of f  and −f 1 lie on opposite sides of 
the line =y x  and are equidistant from that line.

 (c)  Their graphs will be parallel to one another and lie on oppo-
site sides of the line =y x  equidistant from that line.

 41. (a) −ln 3 2 ln 2 (b) ( )−2 ln 2 ln 3  (c) −ln 2

 (d) 2
3

ln 3 (e) +ln 3 1
2

ln 2 (f) ( )−1
2

3 ln 3 ln 2

 43. (a) ln 5 (b) xln 3( )−  (c) t
b

ln 2 2( )
 45. (a) 7.2 (b) 

x
1

2
 (c) x

y
  47. (a) 1 (b) 1 (c) − −x y2 2

 49. +e t2 4   51. +e bt5   53. = +y xe2 1x

 55. (a) =k ln 2 (b) ( )=k 1 10 ln 2 (c) =k a1000 ln

 57. (a) = −t 10 ln 3 (b) = −t
k

ln 2
 (c) =t

ln .4
ln .2

 59. ( )=t x4 ln 2  61. =t ln 3  63. ( )= −t e e 12 2

 65. (a) 7 (b) 2  (c) 75 (d) 2 (e) 0.5 (f) −1

 67. (a) x  (b) x 2 (c) xsin   69. (a) 
ln 3
ln 2

 (b) 3 (c) 2

 71. (a) π− 6 (b) π 4 (c) π− 3  73. (a) π (b) π 2
 75. Yes, g x( ) is also one-to-one.
 77. Yes, f g�  is also one-to-one.

 79. (a) ( )=
−

−f x x
x

( ) log
100

1
2  (b) ( )=

−
−f x x

x
( ) log

50
1

1.1

 (c) ( )= +
−

−f x x
x

( ) ln 1
1

1  (d) =− +f x e( )
x

x1   2
1

 81. (a) = −y xln 3 (b) ( )= −y xln 1
 (c) ( )= + +y x3 ln 1  (d) ( )= − −y xln 2 4
 (e) = −y xln( ) (f) =y e x

 83. ≈−0.7667  85. (a) Amount 8 1
2

t 12

( )=  (b) 36 hours

 87. ≈44.081 years

PRACTICE EXERCISES, pp. 67–69

 1. A r C r A C,  2 , 
4

2
2

π π
π

= = =   3. θ θ= =x ytan ,  tan 2

 5. Origin  7. Neither  9. Even  11. Even
 13. Odd  15. Neither
 17. (a) Even (b) Odd (c) Odd (d) Even (e) Even
 19. (a) Domain: all reals (b) Range:  2,[ )− ∞
 21. (a) Domain:  4, 4[ ]−  (b) Range:  0, 4[ ]
 23. (a) Domain: all reals (b) Range: 3,( )− ∞
 25. (a) Domain: all reals (b) Range:  3,1[ ]−
 27. (a) Domain: 3,( )∞  (b) Range: all reals
 29. (a) Domain: , 1  and  3,( ] [ )−∞ − ∞  (b) Range: , 5( ]−∞
 31. (a) Domain: , 0  and  0,( ) ( )−∞ ∞  (b) Range:  4, 4[ ]−
 33. (a) Increasing (b) Neither (c) Decreasing (d) Increasing
 35. (a) Domain:  4, 4[ ]−  (b) Range:  0, 2[ ]

 37. f x
x x

x x
( )

1 , 0 1

2 , 1 2
=

− ≤ <

− ≤ ≤
⎧
⎨
⎪⎪
⎩⎪⎪

 39. (a) 1 (b) =1
2.5

2
5

 (c) x x,  0≠  (d) 
x

1

1 2 2+ +

 41. (a) f g x x x g f x x( )( ) , 2, ( ) 4 2� �( )= − ≥ − = −
 (b) Domain f g( ):  2, ,� [ )− ∞  domain g f :  2, 2�( ) [ ]−
 (c) Range f g( ):  , 2 ,� ( ]−∞  range g f :  0, 2�( ) [ ]
 43. 

2

- 1

1- 2 - 1 2- 4
x

y

  - 1

- 3 2- 4
x

y

 45. Replace the portion for x 0<  with the mirror image of the por-
tion for x 0>  to make the new graph symmetric with respect to 
the y-axis.

y

x

 y = x 

 y = x 

 y = 0 x 0

 47. Reflects the portion for y 0<  across the x-axis
 49. Reflects the portion for y 0<  across the x-axis
 51. Adds the mirror image of the portion for x 0>  to make the new 

graph symmetric with respect to the y-axis

 53. (a) y g x 3 1
2

( )= − +  (b) y g x  2
3

2( )= + −

 (c) y g x( )= −  (d) y g x( )= −
 (e) y g x5 ( )=  (f) y g x(5 )=
 55. 

- 2

- 1

1

- 1 21- 2
x

y

y = - 
Í 2

x1 +

 57. 

- 1

1

2

- 1 2 3 41- 2- 3- 4
x

y

1

2x2
y  = + 1

 59. Period π

0

- 1

1
y = cos 2x

x

y

p
2

3p
2

p 2p

 61. Period 2

1

1

- 1

2

y = sin px

x

y

 63. 

- 1

1

2

- 2

x

y

y = 2cos  x - 

-   p
3

p
3

p
6

5p
6

11p
6

4p
3

a        b
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AN-6 Chapter 2: Answers to Odd-Numbered Exercises

 65. (a) = =a b1 3 (b) a c2 3 3 4 3 3= =

 67. (a) =a b
Btan

 (b) =c a
Asin

 69. ≈16.98 m   71. (b) 4π
 73. (a) Domain: x−∞ < < ∞ (b) Domain: x 0>
 75. (a) Domain: x3 3− ≤ ≤  (b) Domain: x0 4≤ ≤
 77. f g x x( ) ln 4 2�( ) ( )= −  and domain: x2 2;− < <

g f x x( ) 4 ln 2�( ) ( )= −  and domain: x 0;>
f f x x( ) ln ln�( ) ( )=  and domain: x 1;>
g g x x x( ) 8 124 2�( ) = − + −  and domain: x .−∞ < < ∞

 83. (a) D: , R:
2

,
2

π π( )−∞ ∞ −⎡
⎣⎢

⎤
⎦⎥
 (b) D: 1,1 R: 1,1[ ] [ ]− −

 85. (a) No (b) Yes

 87. (a) ( )= = = =f g x x x g f x x x( ( )) ,   ( ( ))3 3 33

 (b) 

x

y

1- 1- 2 2

1

- 1

- 2

2 y = x3

y = x1>3

ADDITIONAL AND ADVANCED EXERCISES, pp. 69–71
 1. Yes. For instance: f x x( ) 1=  and g x x( ) 1 ,=  or f x x( ) 2=  

and g x x( ) 2,=  or f x e( ) x=  and =g x x( ) ln .
 3. If f x( ) is odd, then g x f x( ) ( ) 2= −  is not odd. Nor is 

g x( ) even, unless f x( ) 0=  for all x. If ƒ is even, then 
g x f x( ) ( ) 2= −  is also even.

 5. 

- 1

1

1–
2

0 x 0  +  0 y 0  = 1 + x

x

y

-   

 19. (a)  Domain: all reals. Range: If a 0> , then d,( )∞ ; if a 0< , 
then d,( )−∞ .

 (b) Domain: c, ,( )∞  range: all reals
 21. (a) y x x100,000 10,000 , 0 10= − ≤ ≤
 (b) After 4.5 years

 23. After 
( )

≈
ln 10 3
ln 1.08

15.6439 years. (If the bank only pays interest 

at the end of the year, it will take 16 years.)

 25. x x2,  1= =   27. 1 2

 19. Your estimates may not completely agree with these.

 (a) PQ1 PQ2 PQ3 PQ4

43 46 49 50
The appropriate units are m s.

 (b) ≈50 m s or 180 km h

 21. (a) 

Pr
of

it 
($

10
00

s)

18

100

0
19 20 212017

200

Year

x

y

 (b) $56,000 year≈
 (c) $42,000 year≈
 23. (a) 0.414213, 0.449489, ( )+ −h h1 1  (b) g x x( ) =

h1 + 1.1 1.01 1.001 1.0001 1.00001 1.000001

h1 + 1.04880 1.004987 1.0004998 1.0000499 1.000005 1.0000005

h h1 1( )+ − 0.4880 0.4987 0.4998 0.499 0.5 0.5

 (c) 0.5
 25. (a) 15 km/h, 3.3 km/h, 10 km/h (b) 10 km/h, 0 km/h, 4 km/h
 (c) 20 km/h when =t 3.5 hr

SECTION 2.2, pp. 87–90
 1. (a)  Does not exist. As x approaches 1 from the right, g x( ) 

 approaches 0. As x approaches 1 from the left, g x( ) 
 approaches 1. There is no single number L that all the values 
g x( ) get arbitrarily close to as →x 1.

 (b) 1 (c) 0 (d) 1 2
 3. (a) True (b) True (c) False (d) False (e) False
 (f) True (g) True (h) False (i) True (j) True (k) False
 5. As x approaches 0 from the left, x x  approaches −1. As x approaches 

0 from the right, x x  approaches 1. There is no single number L 
that the function values all get arbitrarily close to as →x 0.

 7. Nothing can be said.  9. No; no; no  11. −4  13. −8
 15. 3 17. −25 2 19. 16 21. 3 2 23. 1 10 25. −7 27. 3 2
 29. −1 2 31. −1 33. 4 3 35. 1 6 37. 4 39. 1 2 41. 3 2
 43. −1 45. 1 47. 1 3 49. 4 π−
 51. (a) Quotient Rule (b) Difference and Power Rules
 (c) Sum and Constant Multiple Rules
 53. (a) −10 (b) −20 (c) 1−  (d) 5 7
 55. (a) 4 (b) −21 (c) −12 (d) −7 3
 57. 2  59. 3  61. ( )1 2 7   63. 5
 65. (a) The limit is 1.
 67. (a) f x x x( ) 9 32( ) ( )= − +

x −3.1 −3.01 −3.001 −3.0001 −3.00001 −3.000001

f (x) −6.1 −6.01 −6.001 −6.0001 −6.00001 −6.000001

x −2.9 −2.99 −2.999 −2.9999 −2.99999 −2.999999

f (x) −5.9 −5.99 −5.999 −5.9999 −5.99999 −5.999999

 (c) f xlim ( ) 6
x  3

= −
→−

 69. (a) G x x x x( ) 6 4 122( )( )= + + −

x −5.9 −5.99 −5.999 −5.9999

G x( ) −.126582 −.1251564 −.1250156 −.1250015

−5.99999 −5.999999

−.1250001 −.1250000

x −6.1 −6.01 −6.001 −6.0001

G x( ) −.123456 −.124843 −.124984 −.124998

Chapter 2
SECTION 2.1, pp. 77–79
 1. (a) 19 (b) 1

 3. (a) 4
π

−  (b) 3 3
π

−  5. 1

 7. (a) 4 (b) = −y x4 9
 9. (a) 2 (b) = −y x2 7
 11. (a) 12 (b) = −y x12 16
 13. (a) −9 (b) = − −y x9 2
 15. (a) −1 4 (b) = − −y x 4 1
 17. (a) 1 4 (b) = +y x 4 1
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 Chapter 2: Answers to Odd-Numbered Exercises AN-7

−6.00001 −6.000001

−.124999 −.124999

 (c) G xlim ( ) 1 8 0.125
x  6

= − = −
→−

 71. (a) f x x x( ) 1 12( ) ( )= − −

x −1.1 −1.01 −1.001 −1.0001 −1.00001 −1.000001

f (x) 2.1 2.01 2.001 2.0001 2.00001  2.000001

x −.9 −.99 −.999 −.9999 −.99999 −.999999

f (x) 1.9 1.99 1.999 1.9999 1.99999 1.999999

 (c) f xlim ( ) 2
x  1

=
→−

 73. (a) g( ) sinθ θ θ( )=

θ .1 .01 .001 .0001 .00001 .000001

g( )θ .998334 .999983 .999999 .999999 .999999 .999999

θ −.1 −.01 −.001 −.0001 −.00001 −.000001

g( )θ .998334 .999983 .999999 .999999 .999999 .999999

   glim ( ) 1
  0

θ =
θ→

 75. (a) f x x( ) x1 1= ( )−

x .9 .99 .999 .9999 .99999 .999999

f (x) .348678 .366032 .367695 .367861 .367877 .367879

x 1.1 1.01 1.001 1.0001 1.00001 1.000001

f (x) .385543 .369711 .368063 .367897 .367881 .367878

   f xlim ( ) 0.36788
x  1

≈
→

 77. = −c 0,1, 1; the limit is 0 at =c 0, and 1 at = −c 1, 1.
 79. 7  81. (a) 5 (b) 5  83. (a) 0 (b) 0

SECTION 2.3, pp. 95–98
 1. δ = 2, or a smaller positive value 

1 7
( (

5
x

 3. δ = 1 2, or a smaller positive value x
-7�2 -1�2-3

 5. δ = 1 18, or a smaller positive value x
1�24�9 4�7

 7. δ = 0.1, or a smaller positive value
 9. δ = 7 16, or a smaller positive value
 11. 5 2δ = − , or a smaller positive value
 13. 0.36δ = , or a smaller positive value
 15. 3.99, 4.01 , 0.01δ( ) = , or a smaller positive value
 17. 0.19, 0.21 , 0.19δ( )− = , or a smaller positive value
 19. 3,15 , 5δ( ) = , or a smaller positive value

 21. 10 3, 5 , 2 3δ( ) = , or a smaller positive value

 23. 4.5, 3.5 , 4.5 2 0.12δ( )− − = − ≈ , or a smaller  
positive value

 25. 15, 17 , 17 4 0.12δ( ) = − ≈ , or a smaller positive value

 27. 
m m m

2 0.03 , 2 0.03 , 0.03δ( )− + = , or a smaller positive value

 29. c
m

c
m

c
m

1
2

, 1
2

, δ( )− + = , or a smaller positive value

 31. L 3,  0.01δ= − = , or a smaller positive value

 33. L 4,  0.05δ= = , or a smaller positive value
 35. L 4,  0.75δ= = , or a smaller positive value
 55.  8.7332, 8.7476[ ]. To be safe, the left endpoint was rounded up 

and the right endpoint was rounded down.
 59. The limit does not exist as x approaches 3.

SECTION 2.4, pp. 104–106
 1. (a) True (b) True (c) False
 (d) True (e) True (f) True
 (g) False (h) False (i) False
 (j) False (k) True (l) False
 3. (a) 2, 1 (b) No, f x f xlim ( ) lim ( )

x x  2   2
≠

→ →+ −

 (c) 3, 3 (d) Yes, 3
 5. (a) No (b) Yes, 0 (c) No
 7. (a) 

1

-1

1-1

0,

x

y

y = x3,   x Z 1

x = 1

 (b) 1, 1
 (c) Yes, 1
 9. (a) D x R y: 0 2, : 0 1≤ ≤ < ≤  and y 2=
 (b)  0,1 1, 2[ ) ( ]∪  (c) x 2=  (d) x 0=

1

1

2

2

1,

2,

0
x

y

y  =
Í

1 - x2  , 0 … x 6 1

1 … x 6 2

x = 2

 11. 3  13. 1  15. 2 5  17. (a) 1 (b) 1−
 19. (a) 1 (b) 1−   21. (a) 1 (b) 2 3  23. 1
 25. 3 4  27. 2  29. 1 2  31. 2  33. 0  35. 1
 37. 1 2  39. 0  41. 3 8  43. 3  45. 0

 51. 2δ ε= , or a smaller positive value, xlim 5 0
x  5

− =
→ +

 55. (a) 400 (b) 399 (c) The limit does not exist.

SECTION 2.5, pp. 117–120
 1. (a) 0 (b) 2−  (c) 2 (d) Does not exist (e) 1−
 (f) ∞ (g) Does not exist (h) 1 (i) 0
 3. (a) 3−  (b) 3−   5. (a) 1 2 (b) 1 2  7. (a) −5 3
 (b) −5 3  9. 0  11. 1−   13. (a) 2 5 (b) 2 5
 15. (a) 0 (b) 0  17. (a) 7 (b) 7  19. (a) 0 (b) 0
 21. (a) ∞ (b) ∞  23. 2  25. ∞  27. 0  29. 1
 31. ∞  33. 1  35. 1 2  37. ∞  39. −∞
 41. −∞  43. ∞  45. (a) ∞ (b) −∞  47. ∞
 49. ∞  51. −∞  53. (a) ∞ (b) −∞ (c) −∞ (d) ∞
 55. (a) −∞ (b) ∞ (c) 0 (d) 3 2
 57. (a) −∞ (b) 1 4 (c) 1 4 (d) 1 4 (e) It will be −∞.
 59. (a) −∞ (b) ∞  61. (a) ∞ (b) ∞ (c) ∞ (d) ∞

 63. 

5

-5

1-1 2 3 4-2

10

-10

x = 1

y = 1
x - 1

x

y  65. 

5

1 2

10

0

x = -2

y = 1
2x + 4

x

y

- 4 -3 -2 -1

-5

-10
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AN-8 Chapter 2: Answers to Odd-Numbered Exercises

 67. 

0-3

1.5

-2

y = x + 3
x + 2

y = 1
x + 2

x

y

x = -2

y =  1

 69. Domain: ( )−∞ ∞, ; horizontal asymptote: y 7=
 71. Domain: ( )−∞ ∞, ; horizontal asymptotes: y y1, 4= − =
 73. Domain: , 0( )−∞  and 0, ;( )∞  horizontal asymptotes: 

y y1, 1= − = ; vertical asymptote: x 0=
 75. Here is one possibility.

1 2 3 4

(1, 2)

(0, 0)

-4 -3 -2 -1

(-1, -2)

3
2
1

-2
-3

x

y
 77. Here is one possibility.

1-1
0

y = f (x)

x

y

 79. Here is one possibility.

1

3

2

1

0 2 3

4

5

4 5
x

y

f (x) = 1
(x - 2)2

 81. Here is one possibility.

0

1

-1

h(x) =       ,  x Z 0
x
0 x 0

x

y

 85. At most one  87. 0  89. −3 4  91. 5 2
 99. (a)  For every positive real number B there exists a correspond-

ing number 0δ >  such that for all x,

c x c f x B( ) .δ− < < ⇒ >

 (b)  For every negative real number B−  there exists a corre-
sponding number 0δ >  such that for all x,

c x c f x B( ) .δ< < + ⇒ < −

 (c)  For every negative real number B−  there exists a corre-
sponding number 0δ >  such that for all x,

c x c f x B( ) .δ− < < ⇒ < −

 105. 

-3 10 2 3 4 5

-2

2

3

4

5

6

x

y

(2, 4)

y = =  x + 1  +x2

x - 1
1

x - 1
y = x + 1

 107. 

-3 1 3 4 5

-2

1

0

2

4

5

6

x

y

y = x + 1

y = = x + 1 -x2 - 4 3
x - 1 x - 1

 113. 

1

-1
1- 1

2

3

- 2

-3

2 3- 2- 3
x

y

y = x2/3 + 1

x1/3

 109. 

1

-1

1-1

y = x

y = x2 - 1
x

y = - 1
x

x

y
 111. 

1

-1

1-1

2

-2

2-2

x = -2

x = 2

x

y

Í

4 - x2
y = x

 115. (a) y → ∞ (b) y → ∞
  (c) cusps at 1±

x

y

-2 -1 1 2-3 3

5

4

3

2

1

y = -3
2

x -  -1
x

2/3

PRACTICE EXERCISES, pp. 133–134
 1. At = −x 1: f x f xlim ( ) lim ( ) 1,

x x  1   1
= =

→− →−− +
 so 

f x flim ( ) 1 1 ;
x  1

( )= = −
→−

 continuous at = −x 1

At =x 0: f x f xlim ( ) lim ( ) 0,
x x  0   0

= =
→ →− +

 so f xlim ( ) 0.
x  0

=
→

However, f (0) 0,≠  so  f  is discontinuous at =x 0. 
The discontinuity can be removed by redefining  f (0) 
to be 0.

At =x 1: f xlim ( ) 1
x  1

= −
→ −

 and f xlim ( ) 1,
x  1

=
→ +

 so f xlim ( )
x  1→

 

does not exist. The function is discontinuous at  
=x 1, and the discontinuity is not removable.

y

x

1

-1

10

y = f(x)

-1

SECTION 2.6, pp. 130–132
 1. No; not defined at x 2=
 3. Continuous
 5. (a) Yes (b) Yes (c) Yes (d) Yes
 7. (a) No (b) No  9. 0
 11. 1, nonremovable; 0, removable  13. All x except x 2=
 15. All x except = =x x3, 1  17. All x
 19. All x except x 0=   21. All x except πn n2,  any integer
 23. All x except n n2,π  an odd integer  25. All ≥ −x 3 2
 27. All x  29. All x  31. All x except x 1=
 33. 0; continuous at x π=   35. 1; continuous at y 1=
 37. 2 2; continuous at t 0=   39. 1; continuous at x 0=
 41. 1−   43. 0  45. g(3) 6=   47. f (1) 3 2=
 49. =a 4 3  51. = −a 2, 3  53. = = −a b5 2, 1 2
 77. ≈ − −x 1.8794, 1.5321, 0.3473  79. x 1.7549≈
 81. x 3.5156≈   83. x 0.7391≈
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 Chapter 3: Answers to Odd-Numbered Exercises AN-9

 3. (a) 21−  (b) 49 (c) 0 (d) 1 (e) 1 (f) 7

 (g) 7−  (h) 1
7

−   5. 4

 7. (a) ,( )−∞ ∞  (b)  0,[ )∞  (c) , 0( )−∞  and ( )∞0,  (d)  0,[ )∞

 9. (a) Does not exist (b) 0  11. 1
2

  13. 2x  15. −1
4

 17. 2 3  19. π2   21. 1  23. 4  25. −∞
 27. 0  29. 2  31. 0
 35. No in both cases, because f xlim ( )

x  1→
 does not exist, and f xlim ( )

x  1→−
 

does not exist.
 37. Yes,  f  does have a continuous extension, to a 1=  with 

f (1) 4 3.=
 39. No  41. 2 5  43. 0  45. −∞  47. 0  49. 1
 51. 1  53. π− 2  55. (a) x 3=  (b) x 1=  (c) x 4= −
 57. Domain:  4, 2[ )−  and ( ]2, 4 , Range: ,( )−∞ ∞

ADDITIONAL AND ADVANCED EXERCISES, pp. 134–137
 3. 0; the left-hand limit was taken because the function is undefined 

for c.υ >
 5. t17.5 22.5;< <  within 2.5 C°   
 13. (a) B (b) A (c) A (d) A
 21. (a) r a r alim ( ) 0.5, lim ( ) 1

a a  0   1
= =

→
+

→−
++

 (b) r alim ( )
a  0→

−  does not exist, r alim ( ) 1
a  1

=
→−

−+

 25. 0  27. 1  29. 4  31. 1−   33. 1 2  35. 4
 37. 1  39. To make g continuous at the origin, define g(0) 1.=
 41. y x2=   43. = = −y x y x,   47. −4 3
 49. (a) Domain: 0,1,1 2,1 3,1 4 ,…{ }
 (b) The domain intersects any interval ( )a b,  containing 0.
 (c) 0
 51. (a)  Domain: , 1 1 (2 ), 1 (3 )π π π( ] [ ]−∞ − ∪ − − ∪

1 (4 ),π[− 1 (5 ) 1 (5 ),1 (4 )�π π π] [ ]− ∪ ∪ ∪
1 (3 ),1 (2 ) 1 ,π π π[ ] [ )∪ ∞

 (b) The domain intersects any interval ( )a b,  containing 0.
 (c) 0

 9. = +y x12 16

−8

−2

y = x3
y = 12x + 16

(−2, −8)

x

y

Chapter 3
SECTION 3.1, pp. 140–142
 1. = =P m P m: 1, : 51 1 2 2

 3. = = −P m P m: 5 2, : 1 21 1 2 2

 5. = +y x2 5

1

1−1 2−2−3

2

3

4

5

0

y = 2x + 5

x

y

y = 4 − x2(−1, 3)

 7. = +y x 1

1

1 2 3 4

2

3

4

0

y = 2
Í

x

(1, 2)

y = x + 1

x

y

 11. ( )= − = −m y x4, 5 4 2

 13. ( )= − − = − −m y x2, 3 2 3

 15. ( )= − = −m y t12, 8 12 2

 17. ( )= − = −m y x1
4

, 2 1
4

4

 19. = −m 1
 21. = −m 1 4
 23. (a)  It is the rate of change of the number of cells when =t 5. 

The units are the number of cells per hour.
 (b) ′P (3) because the slope of the curve is greater there.
 (c) ≈51.72 52 cells h
 25. ( )− −2, 5   27. ( ) ( )= − + = − −y x y x1 , 3

 29. 19.6 m s  31. π6   35. Yes  37. No
 39. (a) Nowhere
 41. (a) At =x 0
 43. (a) Nowhere
 45. (a) At =x 1
 47. (a) At =x 0

SECTION 3.2, pp. 147–151

 1. − −x2 , 6, 0, 2 3. − − −
t
2 , 2, 1

4
, 2

3 33

 5. 
θ

3
2 3

, 3
2 3

, 1
2

, 3
2 2

 7. x6 2 9. 
( )+t

1
2 1 2

 11. q3
2

1 2 13. −
x

1 9 , 0
2

 15. −t t3 2 , 52

 17. ( )
( )

−
− −

− = − −
x x

y x4
2 2

, 4 1
2

6  19. 6

 21. 1 8 23. 
( )

−
+x

1
2 2  25. 

( )

−
−x

1
1 2  27. (b) 29. (d)

 31. (a) =x 0,1, 4
 (b) 

2

62

3

84

4

1

0
x

y′

f ′

–2–4–6–8

 33. 

−3

−1

−2

−4

−5

2

1

0
x

y′

6 7 8 9 10 11

 35. (a)    i) 0.77 C h°  ii) 1.43 C h°
 iii) 0 C h°  iv) 1.88 C h− °

 (b) 3.63 C h°  at 12 P.M., 4 C h− °  at 6 P.M.
 (c) 

420

−4.5

6 12108

y =
dT––
 dt

−1.5

−3

−6

4.5

3

1.5

t (h)

Slope

(ºC/h)

 37. Since 
( )+ −

=
→ +

f h f
h

lim
0 (0)

1
h 0

 

  while 
( )+ − =

→ −

f h f
h

lim
0 (0)

0,
h 0

 

  
( )

′ = + −
→

f
f h f

h
(0) lim

0 (0)
h 0

 does not exist and f x( ) is 

  not differentiable at =x 0.
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AN-10 Chapter 3: Answers to Odd-Numbered Exercises

 39. Since 
( )+ −

=
→ +

f h f
h

lim
1 (1)

2
h 0

 while 

  
( )+ − =

→ −

f h f
h

lim
1 (1) 1

2
,

h 0
 

( )
′ = + −

→
f

f h f
h

(1) lim
1 (1)

h 0
 

  does not exist and f x( ) is not differentiable at =x 1.
 41. Since f x( ) is not continuous at =x f x0, ( ) is not differentiable 

at =x 0.

 43. Since 
( )+ −

=
→ +

f h f
h

lim
0 (0)

3
h 0

 while 

  
( )+ −

=
→ −

f h f
h

lim
0 (0)

0
h 0

, f  is not differentiable at =x 0.

 45. (a) − ≤ ≤x3 2 (b) None (c) None
 47. (a) − ≤ < < ≤x x3 0, 0 3 (b) None (c) =x 0
 49. (a) − ≤ < < ≤x x1 0, 0 2 (b) =x 0 (c) None

SECTION 3.3, pp. 159–161

 1. = − = −dy
dx

x
d y
dx

2 , 2
2

2

 3. = − = −ds
dt

t t d s
dt

t t15 15 , 30 602 4
2

2
3

 5. = − + = +dy
dx

x e
d y
dx

x e4 1 2 , 8 2x x2
2

2

 7. = − + = −dw
dz z z

d w
dz z z

6 1 , 18 2
3 2

2

2 4 3

 9. = − + = −− −dy
dx

x x
d y
dx

x12 10 10 , 12 303
2

2
4

 11. = − + = −dr
ds s s

d r
ds s s

2
3

5
2

, 2 5
3 2

2

2 4 3

 13. ′ = − + − −y x x x5 12 2 34 2

 15. ′ = + + −y x x
x

3 10 2 12
2

 17. 
( )

′ = −
−

y
x

19
3 2 2  19. 

( )
′ = + +

+
g x x x

x
( ) 4

0.5

2

2

 21. 
( )

= − −
+

dv
dt

t t
t

2 1
1

2

2 2  23. 
( )

′ =
+

f s
s s

( ) 1

1
2

 25. υ′ = − + −

x
x1 2

2
3 2 27. 

( ) ( )
′ = − − +

− + +
y x x

x x x
4 3 1
1 1

3 2

2 2 2 2

 29. ′ = − +−y e e2 3x x3  31. ′ = +y x e x e3 x x2 3

 33. ′ = − −y x e9
4

2 x5 4 2  35. =ds
dt

t3 1 2

 37. ′ = − −y
x

ex2
7

e
5 7

1 39. = −dr
ds

se e
s

s s

2

 41. ′ = − − ′′ = − ′′′ = =y x x y x y x y2 3 1, 6 3, 12 , 12,3 2 (4)  

  = ≥y n0 for 5n( )

 43. ′ = + + ″ = + ′′′ = =y x x y x yt y3 8 1, 6 8, 6, 0n2 ( )   
for ≥n 4

 45. ′ = − ″ = +− −y x x y x2 7 , 2 142 3

 47. 
θ

θ
θ

θ= = −− −dr
d

d r
d

3 , 124
2

2
5

 49. = − − =− −dw
dz

z d w
dz

z1, 22
2

2
3

 51. ( )( )= + = + +dw
dz

ze z d w
dz

e z z6 1 , 6 1 4 2z z2
2

2
2 2

 53. (a) 13 (b) −7 (c) 7 25 (d) 20

 55. (a) = − +y x
8

5
4

 (b) = −m 4 at ( )0,1

 (c) = − = +y x y x8 15, 8 17

 57. = =y x y4 , 2  59. = = =a b c1, 1, 0  61. ( )2, 4

 63. ( ) ( )0, 0 , 4, 2   65. = − +y x16 24
 67. (a) = +y x2 2 (c) ( )2, 6
 69. 50  71. = −a 3
 73. �( )′ = + − + + +−

−
−P x na x n a x a x a( ) 1 2n

n
n

n1
1

2
2 1

 75. The Product Rule is then the Constant Multiple Rule, so the  
latter is a special case of the Product Rule.

 77. (a) υ υ υ υ( ) = ′ + ′ + ′d
dx

u w u w u w u w

 (b) ( ) = ′ + ′ + ′ +d
dx

u u u u u u u u u u u u u u u u1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4  

′u u u u1 2 3 4 

 (c) � � �( ) = ′ + ′ +− − −
d
dx

u u u u u u u u u u un n n n n n1 1 2 1 1 2 2 1

+ ′� �u u un1 2

 79. 
( )

= −
−

+dP
dV

nRT
V nb

an
V

2
2

2

3

SECTION 3.4, pp. 167–170
 1. (a) − −2 m, 1 m s

 (b) 3 m s,1 m s; 2 m s , 2 m s2 2

 (c) Changes direction at =t 3 2 s

 3. (a) − −9 m, 3 m s

 (b) −3 m s,12 m s; 6 m s , 12 m s2 2

 (c) No change in direction

 5. (a) − −20 m, 5 m s

 (b) ( ) ( )45 m s, 1 5 m s;140 m s , 4 25 m s2 2

 (c) No change in direction

 7. (a) = − =a a(1) 6 m s , (3) 6 m s2 2

 (b) =v (2) 3 m s  (c) 6 m

 9. Mars: 7.5 s, Jupiter: 1.2 s≈ ≈
 11. =g 0.75 m ss

2

 13. (a) t t a9.8 , 9.8 m s, 9.8 m s 2υ υ= − = = −
 (b) t 3.4 s≈   (c) 33.1 m sυ ≈ −
 15. (a) = =t t2, 7  (b) ≤ ≤t3 6
 (c) 

3

t (s)
20 4 6 8 10

0 y 0  (m�s)

Speed

 (d) 

31 420 6 75 9 108

a =
dy––
 dt

−1
−2
−3
−4

4
3
2
1

t

a

 17. (a) 57 m s (b) 2 s (c) 8 s, 0 m s
 (d) 10.8 s, 27 m s (e) 2.8 s
 (f ) Greatest acceleration happens 2 s after launch
 (g) Constant acceleration between 2 and 10.8 s, 10 m s 2−
 19. = = =C A Bposition, velocity, acceleration
 21. (a) $110 machine
 (b) $80
 (c) $79.90
 23. (a) ′ =b (0) 10 bacteria h4

 (b) ′ =b (5) 0 bacteria h
 (c) ′ = −b (10) 10 bacteria h4

 25. (a) = −dy
dt

t
12

1
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 Chapter 3: Answers to Odd-Numbered Exercises AN-11

 (b)  The largest value of 
dy
dt

 is 0 m h when =t 12 and the  

smallest value of 
dy
dt

 is −1 m h when =t 0.

 (c) 

12
−1

1

2

3

4

5

6

t

y

y = 6 21 − t
12

t
12

dy
dt = − 1

a        b

 27. 0.846 m, 1.482 m, additional meters to stop car for 1 km/h speed 
increase

 29. = =t D25 s, 6250
9

m

 31. 

12

−60

60

120

180

t

s

ds
dt

= 60 − 9.8t

d2s
dt2

= −9.8

s = 60t − 4.9t2

 (a) υ = 0 when t 6.12 s= .
 (b)  0υ >  when t0 6.12≤ < ⇒ the object moves up; υ < 0 

when t6.12 12.24< ≤ ⇒ the object moves down.
 (c) The object changes direction at t 6.12 s= .
 (d)  The object speeds up on 6.12, 12.24( ] and slows down on 

0, 6.12 .[ )
 (e)  The object is moving fastest at the endpoints =t 0 and 

t 12.24=  when it is traveling 60 m s. It’s moving slowest 
at t 6.12=  when the speed is 0.

 (f)  When t 6.12= , the object is s 183.6 m=  from the origin 
and farthest away.

 33. 

−10

−5

5

10

s

ds
dt

= 3t2 − 12t + 7
d2s
dt2

= 6t − 12

s = t3 − 6t2 + 7t

 (a) υ = 0 when = ±t 6 15
3

s

 (b)  υ < 0 when − < < + ⇒t6 15
3

6 15
3

 the  

object moves left; >v 0 when ≤ < −t0 6 15
3

 or  

+ < ≤ ⇒t6 15
3

4  the object moves right.

 (c) The object changes direction at = ±t 6 15
3

s.

 (d)  The object speeds up on −⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ∪ +⎛

⎝
⎜⎜⎜

⎤
⎦
⎥
⎥

6 15
3

, 2 6 15
3

, 4   

and slows down on 0, 6 15
3

  2, 6 15
3

  .−⎡
⎣
⎢
⎢

⎞
⎠
⎟⎟⎟ ∪ +⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

 (e)  The object is moving fastest at =t 0 and =t 4 when it is 

moving 7 units second and slowest at = ±t 6 15
3

s.

 (f)  When = +t 6 15
3

 the object is at position ≈ −s 6.303 

units and farthest from the origin.

SECTION 3.5, pp. 174–176
 1. − − x10 3 sin    3. −x x x x2 cos sin2

 5. − − −x x
x e

csc cot 2 7
x
   7. +x x xsin sec sin2

 9. ( )( )− +−e x x x xsec 1 tanx  11. 
( )

−
+

x
x

csc
1 cot

2

2

 13. −x x x4 tan sec csc 2  15. 0
 17. + −x x x x x x x3 sin cos   cos sin2 3 2 3 2

 19. + −t esec t2   21. 
( )
−

−
t t

t

2 csc cot

1 csc 2   23. θ θ θ θ( )− +cos 2 sin

 25. θ θ θ θ θ θ( )− = −sec csc tan cot sec csc2 2

 27. qsec 2   29. qsec 2

 31. 
( )

− − −
−

q q q q q q q

q

cos sin cos sin

1

3 2

2 2

 33. (a) −x x2 csc csc3  (b) −x x2 sec sec3

 35. 

1

−1

x

y

y = x

y = sin x

p/2 p 2p−p/2−p 3p/2−3p/2

y = −x − p

(3p�2, −1)y = −1

 37. 

1

2

0
x

y
y = sec x

(−p�3, 2)

p�2p�4−p�3−p�2

2
Í

3p
3

y = −2
Í

3x − +2
Í

2p
4

y = 
Í

2x − + 
Í

2

Í

2 p�4, 
Í

2a           b

 39. Yes, at π=x   41. No
 43. Yes, at π=x 0, , and π2

 45. π π( ) ( )− −
4

, 1 ;
4

,1

1

−1

x

y

y = tan x

(p�4, 1)

(−p�4, −1)

p�2p�4−p�4−p�2

2
py = 2x + − 1

2
py = 2x − + 1
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AN-12 Chapter 3: Answers to Odd-Numbered Exercises

 67. ( ) ( )t t t t6 tan sin sec sin sin cos3 2 3 2

 69. ( ) ( )− −t t3 2 5 18 52 3 2   71. 
x x x
6 1 1 1 2

3 ( )( )+ +

 73. ( ) ( )− −x x2 csc 3 1 cot 3 12   75. x x16 2 1 5 12( ) ( )+ +

 77. x e2 2 1 x2 2( )+
 79. ′ =f x( ) 0 for x 1, 4= ; ″ =f x( ) 0 for x 2, 4=   81. 5 2
 83. 4π−   85. 0  87. −5
 89. (a) 2 3 (b) 2 5π +  (c) 15 8π−  (d) 37 6

 (e) 1−  (f ) 2 24 (g) 5 32 (h) ( )−5 3 17
 91. 5  93. (a) 1 (b) 1
 95. y x1 4= −   97. (a) y x 2π π= + −  (b) 2π
 99. It multiplies the velocity, acceleration, and jerk by 2, 4, and 8, 

respectively.

 101. υ = = −a(6) 2
5

m s, (6) 4
125

m s 2

SECTION 3.7, pp. 187–189

 1. 
xy y

x xy
2

2

2

2

− −
+

   3. 
y

x y
1 2

2 2 1
−

+ −

 5. 
x x y xy x

x y x y
2 33 2 2

2 3

− + − +
− +

   7. 
y x

1
1 2( )+

 9. y ycos cot  11. 
xy y
x

cos 2 ( )− −

 13. −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +

y

y
y y

xysin 1 cos 1

2
 15. 

( )

( )

− +
+

e x y
x y

2 cos 3
3 cos 3

x2

 17. r
θ

−   19. r
θ

−   21. y x
y

y
y x

y
,

2 2

3
′ = − ″ = − −

 23. 
( )

=
+

=
+ − − −dy

dx
xe

y
d y
dx

x y y x e x e
y

1
,

2 2 1x x x2

2

2 2 2 2 2

3

2 2 2

 25. y y
y

y
y1

, 1

2 1
3( )

′ =
+

″ =
+

 27. 
( )

( )
′ =

−
″ =

− −
−

y x
y

y
x y x y

y
3

1 cos
,

6 1 cos 9 sin

1 cos

2 2 4

3

 29. 2−   31. ( ) ( )− = − − − =m m2,1 : 1, 2, 1 : 1

 33. (a) y x7
4

1
2

= −  (b) y x4
7

29
7

= − +

 35. (a) y x3 6= +  (b) y x1
3

8
3

= − +

 37. (a) y x6
7

6
7

= +  (b) y x7
6

7
6

= − −

 39. (a) y x
2
π π= − +  (b) y x2 2

2π π
π= − +

 41. (a) y x2 2π π= −  (b) y x
2

1
2π π

= − +

 43. Points: 7, 0( )−  and 7, 0 , Slope: 2( ) −

 45. m 1= −  at m3
4

, 3
2

, 3
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ =  at 3

4
, 1
2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

 47. ( ) ( ) ( )− = − − − = =m m m3, 2 : 27
8

; 3, 2 : 27
8

; 3, 2 : 27
8

;

( )− = −m3, 2 : 27
8

 49. 3, 1( )−

 55. 
dy
dx

y xy
x xy

dx
dy

x xy
y xy

dx
dy dy dx

2
3

,
3
2

, 13

2 2

2 2

3
= − +

+
= − +

+
=

 47. (a) π= − + +y x 2 2 (b) = −y 4 3

 49. − 2 m s, 2 m s, 2 m s , 2 m s2 3  51. =c 9

 53. (a) xsin  (b) −x x3 cos sin  (c) +x x x73 sin cos
 55. (a) i) 10 cm ii) 5 cm iii) − ≈ −5 2 7.1 cm

 (b) i) 0 cm/s ii) − ≈ −5 3 8.7 cm s

   iii) − ≈ −5 2 7.1 cm s

SECTION 3.6, pp. 181–184

 1. x12 3  3. ( )+x3 cos 3 1   5. 
x

x

cos

2 sin
 7. π π( )x x2 sec 2 2

 9. With ( )= + = = = ⋅ =u x y u
dy
dx

dy
du

du
dx

u2 1 , : 5 25 4  

( )+x10 2 1 4

 11. With ( )( )= − = = =−u x y u
dy
dx

dy
du

du
dx

1 7 , :  7  

( ) ( )− ⋅ − = −−
−

u x7 1
7

1
7

8
8

 13. With ( ) ( )( )= + − = = =u x x x y u
dy
dx

dy
du

du
dx

8 1 , :2 4  

( )( ) ( )⋅ + + = + − + +u x
x

x x
x

x
x

4
4

1 1 4
8

1
4

1 13
2

2 3

2

 15. With = = = =u x y u
dy
dx

dy
du

du
dx

tan , sec :    

( )( ) ( ) ( )=u u x x x xsec tan sec sec tan tan tan sec2 2

 17. With = = = = =u x y u
dy
dx

dy
du

du
dx

u xtan , : 3 sec3 2 2  

( )x x3 tan sec2 2

 19. = = − = − −y e u x
dy
dx

e, 5 : 5u x5

 21. = = − = − ( )−y e u x
dy
dx

e, 5 7 : 7u x5 7

 23. −
− t

1
2 3

  25. 
π

( )−t t4 cos 3 sin 5   27. 
θ

θ θ+
csc

cot csc
 29. + + +− −x x x x x x x x x2 sin 4 sin cos cos 2 cos sin4 2 3 2 3

 31. 

( )
( )− −

−
x

x
x

3 2 1

4 1
2

5

3
2

2   33. 
( ) ( )

( )

+ +
+

x x
x

4 3 4 7
1

3

4

 35. ( )− +−x e x e1 3x x2 3   37. x x e5
2

3 3 x2 5 2( )− +

 39. ( ) ( )+x x xsec 2 tan 22   41. 
+

+
x x x x

x x

sec tan sec

2 7 sec

 43. 
θ
θ( )+

2 sin

1 cos 2   45. θ θ θ θ θ( )− +2 sin ( )sin 2 2 cos 2 cos( )2 2

 47. t
t

t
t

2
2 1

cos
13 2( ) ( )( )

+
+ +

  49. e e2 sin2 2θ ( )θ θ− −

 51. π π π( ) ( )− −t t2 sin 2 cos 2   53. 
( )+

t

t

8 sin (2 )

1 cos 2 5

 55. +t t t t t10 tan sec 10 tan10 9 2 9 10

 57. π π π( ) ( )= − − ⋅ − ⋅ π( )−dy
dt

t t e2 sin 1 cos 1 tcos 12

 59. 
t t

t t

3 4

4

6 2

3 4

( )

( )

− +
−

  61. ( )( )( ) ( )− − −t t2 cos cos 2 5 sin 2 5

 63. t t t1 tan
12

tan
12

sec
12

4
2

3 2( )( ) ( ) ( )( )+

 65. −
+

t t

t

sin( )

1 cos( )

2

2
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 Chapter 3: Answers to Odd-Numbered Exercises AN-13

 51. t t t
t t t

t t1 2 1 1
1

1
2

3 6 22( )( )+ + +
+

+
+

⎡
⎣⎢

⎤
⎦⎥

= + +

 53. θ
θ θ θ θ

θ+
+

− +⎡
⎣⎢

⎤
⎦⎥

5
cos

1
5

1 tan

 55. x x
x x

x
x x

1
1

1
1

2
3 1

2

2 3 2( ) ( )

+
+

+
+

−
+

⎡
⎣
⎢

⎤
⎦
⎥

 57. x x
x x x

x
x

1
3

  2
1

  1 1
2

2
12

3
2( )( )−

+
+

−
−

+
  59. θ−2 tan

 61. − t
t

1  63. e1 1( )+ θ  65. ( )−e t t1 sintcos

 67. 
−
ye x

ye x
cos

1 sin

y

y
 69. =

−
−

dy
dx

y xy y
x xy x

ln
ln

2

2
 71. 2 ln 2x

 73. ( )s

ln 5

2
5 s  75. π π( )−x 1  77. 

θ
1
ln 2

 79. 
x

3
ln 4

 81. 
( )

( )( )
r

r
2 ln

ln 2 ln 4
 83. 

( )( )

−
+ −x x

2
1 1

 85. θ θ( ) ( )+sin log 1
ln 7

cos log7 7   87. 1
ln 5

 89. ( )
t
1 log 3 3 t

2
log2   91. 

t
1

 93. ( )( ) ( )+
+

+ +x x
x

x1
1

ln 1x   95. ( )( ) +t
tln

2
1
2

t

 97. ( ) ( )+x x x xsin ln sin cotx   99. ( )
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟x

x
x

lnxln
2

 101. 
−

−
y xy y

x x
3 ln

2
  103. 

( )
−

+
xy y

x y
1 ln

1 ln2

SECTION 3.9, pp. 204–206
 1. (a) 4π  (b) 3π−  (c) 6π
 3. (a) 6π−  (b) 4π  (c) 3π−
 5. (a) 3π  (b) 3 4π  (c) 6π
 7. (a) 3 4π  (b) 6π  (c) 2 3π

 9. 1 2   11. 1 3−   13. 2π   15. 2π   17. 2π

 19. 0    21. −
−

x
x

2
1 4

    23. 
− t

2
1 2 2

    25.  
s s s

1
2 1 2+ +

 27. 
( )

−
+ +

x
x x x

2
1 22 4 2

  29. −
− t

  1
1 2

  31. 
( )

−
+t t

  1
2 1

 33. 
( )( )+− x x

1
tan 11 2

  35. e

e e e1

1
1

t

t t t2 2( )

−

−
= −

−

 37. −
−

s
s

2
1

2

2
  39. 0  41. − xsin 1

 43. 
−x x

1
2 arcsin 1 2

   45. ( )( )− − +
−

x x
x

sin arccos 1 1
1 2

 47. ( )−
+
x

x
x9

1
arccot ( )

2

6
3 2  49. 0  51. 

π+
8 2

4 3
 57. (a) Defined; there is an angle whose tangent is 2.
 (b) Not defined; there is no angle whose cosine is 2.
 59. (a) Not defined; no angle has secant 0.
 (b) Not defined; no angle has sine 2.
 69. (a) Domain: all real numbers except those having the form 
π π+ k
2

 where k is an integer; range: y2 2π π− < <

 (b) Domain: −∞ < < ∞x ; range: −∞ < < ∞y
 71. (a) Domain: −∞ < < ∞x ; range: π≤ ≤y0
 (b) Domain: − ≤ ≤x1 1; range: − ≤ ≤y1 1
 73. The graphs are identical.

SECTION 3.8, pp. 198–200

 1. (a) = −−f x x( )
2

3
2

1

 (b) 

x

y

−3�2 0

3

3

−3�2

y = f –1(x) =

y = f (x) = 2x + 3

x
2 2

3
−

 (c) 2,1 2

 3. (a) = − +−f x x( )
4

5
4

1

 (b) 

x

y

0

5

5
4

5 5
4

y = f –1(x) = −

y = f (x) = −4x + 5

x
4 4

5
+

 (c) 4, 1 4− −

 5. (b) 

x

y

1−1−2 2

1

−1

−2

2 y = x3

y = x1�3

 (c)  Slope of f  at 1,1 : 3( ) ; slope of g at 1,1 : 1 3( ) ; slope of f  at 
1, 1 :( )− −  3; slope of g at 1, 1 : 1 3( )− −

 (d)  =y 0 is tangent to =y x 3 at x x0; 0= =  is tangent to 
=y x3  at =x 0.

 7. 1 9  9. 3  11. (a) 2 (b) 1 3 (c) 3

 13. (a) 2 (b) 7 (c) 3 4  15. +
x
1 1  17. t2

 19. x1−   21. 
θ +

− θe1
1

  23. x3

 25. ( ) ( )+t t2 ln ln 2  27. x xln3   29. 
− t
t

1 ln
2

 31. 
( )+x x

1
1 ln 2   33. 

x x
1
ln

  35. θ( )2 cos ln

 37. 
( )

− +
+

x
x x
3 2

2 1
  39. 

( )−t t
2

1 ln 2   41. 
θ

θ
( )tan ln

 43. 
( )+

+
−

x
x x

10
1

1
2 12

 45. x x
x x

x
x x

1
2

1 1 1
1

2 1
2 1( )( ) ( )

( )
+ +

+
= +

+

 47. ( )( )
( )+

−
+

=
+

t
t t t t t

1
2 1

1 1
1

1
2 1 3 2

 49. θ θ
θ

θ( )( )
( )

+
+

+3 sin 1
2 3

cot
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AN-14 Chapter 3: Answers to Odd-Numbered Exercises

 17. (a) 1.01 (b) 1.003

 19. ( )−x
x

dx3 3
2

2  21. 
( )

−
+

x
x

dx2 2
1

2

2 2

 23. 
−

+
y

y x
dx

1
3

 25. ( )
x

x dx5
2

cos 5

 27. ( )( )x x dx4 sec
3

2 2
3

 29. ( ) ( )( )− −
x

x x dx3 csc 1 2 cot 1 2

 31. ⋅
x

e dx1
2 

x   33. 
+

x
x

dx2
1 2

  35. 
+
xe

e
dx2

1

x

x2

2

2

 37. −
−−e

dx1
1x2

 39. (a) 0.41 (b) 0.4 (c) 0.01

 41. (a) 0.231 (b) 0.2 (c) 0.031

 43. (a) 1 3−  (b) 2 5−  (c) 1 15

 45. π=dV r dr4 0
2   47. =dS x dx12 0   

49. π=dV r h dr2 0

 51. (a) π0.08 m 2 (b) 2%

 53. dV 565.5 cm 3≈  55. (a) 2% (b) 4%

 57. 1
3

%  59. 3%

 61. The ratio equals 37.52, so a change in the acceleration of gravity 
on the moon has about 38 times the effect that a change of the 
same magnitude has on Earth.

 63. Increase ≈V 40%

 65. (a) i) =b f a( )0  ii) = ′b f a( )1  iii) = ′′b
f a( )

22

 (b) = + +Q x x x( ) 1 2

 (d) ( ) ( )= − − + −Q x x x( ) 1 1 1 2

 (e) = + −Q x x x( ) 1
2 8

2

 (f)  The linearization of any differentiable function u x( ) at x a=  
is ( ) ( )= + ′ − = + −L x u a u a x a b b x a( ) ( ) ( ) ,0 1  
where b0 and b1 are the coefficients of the constant and linear 
terms of the quadratic approximation. Thus, the linearization  
for f x( ) at x 0=  is x1 ;+  the linearization for g x( ) at 
x 1=  is x1 1( )− −  or x2 ;−  and the linearization for 

h x( ) at x 0=  is x1
2

.+

 67. (a) = + ≈ +L x x x( ) ln 2 1 0.69 1

 (b) 

−3 −2 −1 0 1 2 3

1

2

3

x

y

y = (ln 2)x + 1

y = 2x

 −1 −0.5 0 0.5 1

0.4

1.4

1

0.8

x

y

y = (ln 2)x + 1

y = 2x

PRACTICE EXERCISES, pp. 227–231
 1. x x5 0.25 0.254 − +    3. x x3 2( )−
 5. x x x2 1 2 4 12( )( )+ + +

 7. θ θ θ θ θ( ) ( )+ + +3 sec 1 2 sec tan2 2

 9. 
t t

1

2 1
2( )+

 11. x x2 sec tan2

SECTION 3.10, pp. 211–214

 1. π=dA
dt

r dr
dt

2   3. 10  5. −6  7. 3 2−   9. 31 13

 11. (a) −180 m min2  (b) −135 m min3

 13. (a) dV
dt

r dh
dt

2π=  (b) dV
dt

hr dr
dt

2π=

 (c) dV
dt

r dh
dt

hr dr
dt

22π π= +

 15. (a) 1 volt s (b) −1
3

amp s (c) ( )= −dR
dt I

dV
dt

V
I

dI
dt

1

 (d) 3 2 ohms s, R is increasing.

 17. (a) ds
dt

x
x y

dx
dt2 2

=
+

 (b) ds
dt

x
x y

dx
dt

y
x y

dy
dt2 2 2 2

=
+

+
+

 (c) dx
dt

y
x

dy
dt

= −

 19. (a) θ θ=dA
dt

ab d
dt

1
2

cos

 (b) θ θ θ= +dA
dt

ab d
dt

b da
dt

1
2

cos 1
2

sin

 (c) θ θ θ θ= + +dA
dt

ab d
dt

b da
dt

a db
dt

1
2

cos 1
2

sin 1
2

sin

 21. (a) 14 cm s,2  increasing (b) 0 cm s, constant

 (c) −14 13 cm s, decreasing

 23. (a) 3.6 m s−  (b) 5.355 m s2−  (c) 1 rad s−

 25. 6 m s

 27. (a) 
π

= ≈dh
dt

1125
32

11.19 cm min

 (b) 
π

= ≈dr
dt

375
8

14.92 cm min

 29. (a) 
π

−1
24

m min (b) r y y26 m2= −

 (c) 
π

= −dr
dt

5
288

m min

 31. 1 m min, 40 m min2π   33. 3.16 m s

 35. Increasing at L466 1681 min 2   37. −5 m s

 39. 441 m s−

 41. 5
72

cm min, 10
3

cm min2

π
 43. (a) 10 13 2.774 m s− ≈ −

 (b) d dt d dt5/39 rad s, 5 39 rad s1 2θ θ= = −

 (c) d dt d dt1 6 rad s, 1 6 rad s1 2θ θ= = −

 45. −5.5 deg min

 47. π12 km min

SECTION 3.11, pp. 224–226
 1. = −L x x( ) 10 13  3. =L x( ) 2  5. π= −L x x( )

 7. x2   9. − −x 5  11. x1
12

4
3

+   13. − x1

 15. =f (0) 1. Also, ( )′ = + −f x k x( ) 1 ,k 1  so ′ =f k(0) . This 
means the linearization at =x 0 is = +L x kx( ) 1 .
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 Chapter 3: Answers to Odd-Numbered Exercises AN-15

 105. y

1

x

−1 y = − – − 1x − 

y = −
8
p
+ 11 –

2

1
2

x +

y = tan x

−p�2 −p�4 p�4 p�2

(p�4, 1)

(−p�4, −1)
8
p

  107. 1
4

  109. 4

 111. Tangent: y x1
4

9
4

,= − +  normal: y x4 2= −

 113. Tangent: y x2 4,= −  normal: y x1
2

7
2

= − +

 115. Tangent: y x5
4

6,= − +  normal: y x4
5

11
5

= −

 117. m1,1 : 1
2

; 1, 1 :( ) ( )= − −  m not defined

 119. B f A fgraph of  , graph of = = ′

 121. y

2

x
41−1 6

(6, 1)

(4, 3)3 y = f (x)

(−1, 2)

 123. ( )+
+

+⎡
⎣⎢

⎤
⎦⎥

x
x

x
x

x2 1
cos 2

  2
  1

tan 2
2

2

 125. t t
t t t t t t

5 1 1
2 3

  1
1

1
1

1
2

1
3

5( )( )

( )( )

+ −
− +

⎡
⎣⎢

⎤
⎦⎥ +

+
−

−
−

−
+

⎡
⎣⎢

⎤
⎦⎥

 127. 
θ

θ
θ

θ θ( )( ) +θ1 sin
ln sin

2
cot 

 129. (a) dS
dt

r h dr
dt

4 2π π( )= +  (b) dS
dt

r dh
dt

2π=

 (c) dS
dt

r h dr
dt

r dh
dt

4 2 2π π π( )= + +   (d) dr
dt

r
r h

dh
dt2

= −
+

 131. −40 m s2   133. 0.02 ohm s  135. 2 m s

 137. (a) r h2
5

=  (b) 5
16

m min
π

−

 139. (a) 3
5

km s or 600 m s (b) 
π

18 rpm

 141. (a) π= + −L x x( ) 2 2
2

y

1

x

−1

p�4−p�4

y = tan x

(−p�4, −1)

y = 2x + (p − 2)�2

 13. ( ) ( )− −t t8 cos 1 2 sin 1 23  15. ( )( )+t t t5 sec sec tan 5

 17. 
θ θ θ

θ θ
+cos sin

2 sin
 19. θ

θ
cos 2

2

 21. ( ) ( ) ( )+x
x x x

csc 2 csc 2 cot 2

 23. [ ]− −x x x x1
2

sec(2 ) 16 tan(2 )1 2 2 2 2  25. − x x10 csc ( )2 2

 27. +x x x x x8 sin(2 ) cos(2 ) 2 sin (2 )3 2 2 2 2  29. t
t

1
8 3

( )− +

 31. x
x
1

1 3( )

−
+

  33. 
x

x

  1

2 1 12
1 2

( )
−

+
 35. 

θ
θ( )

−
−

2 sin

cos 1 2

 37. x3 2 1+   39. 
( )

−
+
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x x

x x
9

5 cos 2

5 sin 22 5 2   41. − −e2 x 5

 43. xe x4

 45. 
θ θ
θ

θ=
2 sin cos

sin
2 cot

2
 47. 

( )x
2

ln 2
 49. ( )− −8 ln 8t

 51. x18 2.6    53. ( ) ( )[ ]+ + ++x x2 ln 2 1x 2     55. 
u

1
1 2

−
−

 57. −
− x x

  1
1 arccos2

 59. +
+

−− t t
t t

tan ( )
1

1
2

1
2

 61. −
−

+z
z

z1
1

arcsec
2

 63. 1−  65. 
y
x

2
3

− +
+

 67. 
x y
x y

3 4 2
4 4

2

1 3

− − +
−

 69. 
y
x

−  71. 
( )+y x

1
2 1 2

 73. 1 2−  75. y x 77. −
+

−e
x

2
1

xarctan

2

 79. 
dp
dq

q p
p q

6 4
3 42

= −
+

 81. ( )( )= −dr
ds

r s2 1 tan 2

 83. (a) 
d y
dx

xy x
y

2 22

2

3 4

5
= − −

 (b) 
d y
dx

xy
x y

2 12

2

2

4 3
= − −

 85. (a) 7 (b) 2−  (c) 5 12 (d) 1 4 (e) 12 (f ) 9 12 (g) 3 4

 87. 0  89. e e3 2
4

cos
3 2

3 2( )  91. 1
2

−   93. 
t

2
2 1 2( )

−
+

 95. (a) y

x
1−1

−1

1

0

   x2, −1 ≤ x < 0

−x2,    0 ≤ x < 1
f (x) =

 (b) Yes (c) Yes

 97. (a) y

1

x
10 2

x,       0 ≤ x ≤ 1
2 − x, 1 < x ≤ 2

y =
 (b) Yes (c) No

 99. 5
2

, 9
4( ) and 3

2
, 1

4( )−   101. 1, 27( )−  and 2, 0( )

 103. (a) 2,16 , 3,11( ) ( )−  (b) 0, 20 , 1, 7( ) ( )
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AN-16 Chapter 4: Answers to Odd-Numbered Exercises

 (b) π( )= − + −L x x( ) 2 2 4
4

y

x
0

y = sec x

Í

2

−p�4 p�2−p�2

−p�4, 
Í

2

y = −
Í

2x + 
Í

2  4 − p �4
Q    R

 143. = +L x x( ) 1.5 0.5  145. dS
rh

r h
dh0

2
0
 2

π
=

+
 147. (a) 4% (b) 8% (c) 12%

ADDITIONAL AND ADVANCED EXERCISES, pp. 231–234
 1. (a)  θ θ θ θ θ θ( )= = − +sin 2 2 sin cos ; 2 cos 2 2 sin sin  

θ θ θ θ θ θ( ) = − + =cos 2 cos ; 2 cos 2 2 sin 2 cos ; cos 22 2  
θ θ−cos sin2 2

 (b)  θ θ θ θ= − − =cos 2 cos sin ; 2 sin 22 2  
θ θ θ θ θ( ) ( )− − =2 cos sin 2 sin cos ; sin 2  
θ θ θ θ θ θ θ+ =cos sin sin cos ; sin 2 2 sin cos

 3. (a) = = = −a b c1, 0, 1
2

 (b) = =b a c acos , sin

 5. h k a4, 9
2

, 5 5
2

= − = =

 7. (a) 0.09y (b) Increasing at 1% per year
 9. Answers will vary. Here is one possibility.

y

0
t

 11. (a) 2 s, 19.6 m s (b) 12.25 s, 120 m

 15. 
( )

( )
′ =

− +
+ −

−
y

x y ye x y
e x x y x

1 ln
1 ln

y x y

x y y

1 2

 17. (a) m b
π

= −  (b) π= − =m b1,

 19. (a) a b3
4

, 9
4

= =   21. f f odd ⇒ ′ is even

 25. h′ is defined but not continuous at x k0;= ′ is defined and 
 continuous at x 0.=

 27. −7
75

rad s

 31. (a) 0.248 m (b) 0.02015 s
 (c) It will lose about 28.3 min day.

Chapter 4
SECTION 4.1, pp. 241–243
 1. Absolute minimum at =x c ;2  absolute maximum at =x b
 3. Absolute maximum at =x c; no absolute minimum
 5. Absolute minimum at =x a; absolute maximum at =x c
 7. No absolute minimum; no absolute maximum
 9. Absolute maximum at ( )0, 5   11. (c)  13. (d)

 15. Absolute minimum  
at =x 0; no absolute  
maximum

y

2

1

x
−1 1 2

f (x) = 0 x 0

 17. Absolute maximum at =x 2; 
no absolute minimum
y

1

−1

x
1 2

y = g(x)

 19. Absolute maximum at π=x 2; absolute minimum at 
π=x 3 2

3

−3

x

y

pp/2 2p3p/2

 21. Absolute maximum: −3; 
absolute minimum: −19 3

−1
1−1

−2

−3

−4

−5

−6

−7

2 3−2 0
x

y

(−2, −19/3)
Abs
min

Abs
max

(3, −3)

y = x − 52
3

−2 ≤ x ≤ 3

 23. Absolute maximum: 3;  
absolute minimum: −1

1

1−1

2

3

2
x

y

Abs
max

y = x2 − 1
−1 ≤ x ≤ 2

(2, 3)

(0, −1) Abs
min

 25. Absolute maximum: −0.25; 
absolute minimum: −4

−1

10

−2

−3

−4

x

y

(0.5, −4)
Abs min

y = − , 0.5 ≤ x ≤ 21
x2

(2, −0.25)
Abs max

 27. Absolute maximum: 2;  
absolute minimum: −1

1

−1
1−1 2 3 4 5 6 7 8

2

x

y

(8, 2) 
Abs
max

(−1, −1)
Abs min

y = 
Î

x
−1 ≤ x ≤ 8

3

 29. Absolute maximum: 2; 
absolute minimum: 0

1

−1

1−1 0
x

y

(−2, 0)
Abs
min

y = 
Î

4 − x2

−2 ≤ x ≤ 1

(0, 2) Abs max

 31. Absolute maximum: 1;  
absolute minimum: −1

1

−1

u

y

(p�2, 1) Abs max

p/2−p/2 5p/6

y = sin u, −p�2 ≤ u ≤ 5p�6
(−p�2, −1)

Abs min
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 Chapter 4: Answers to Odd-Numbered Exercises AN-17

 9. Does not; f  is not differentiable at the interior domain point 
=x 0.

 11. Does
 13. Does not; f  is not differentiable at = −x 1.
 17. (a) 

 i) 
x

−2 20

 ii) 
x

−5 −4 −3

 iii) 
x

−1 0 2

 iv) 0 4 9 18 24
x

 29. Yes  31. (a) 4 (b) 3 (c) 3

 33. (a) +x C
2

2
 (b) +x C

3

3
 (c) +x C

4

4

 35. (a) +
x

C1  (b) + +x
x

C1  (c) − +x
x

C5 1

 37. (a) t C1
2

cos 2− +  (b) +t C2 sin
2

 (c) − + +t t C1
2

cos 2 2 sin
2

 39. = −f x x x( ) 2  41. = +f x e( ) 1
2

x2

 43. = + +s t t4.9 5 102  45. 
π

π
=

−
s

t1 cos( )

 47. = + +s e t19 4t  49. = −s tsin(2 ) 3
 51. If T t( ) is the temperature of the thermometer at time t, then 

= − °T (0) 19 C and = °T (14) 100 C. From the Mean 
Value Theorem, there exists a < <t0 140  such that 

−
−

= ° = ′T T T t(14) (0)
14 0

8.5 C s ( ),0  the rate at which the  

temperature was changing at =t t0 as measured by the rising 
mercury on the thermometer.

 53. Because its average speed was approximately 7.667 knots, and 
by the Mean Value Theorem, it must have been going that speed 
at least once during the trip.

 57. The conclusion of the Mean Value Theorem yields 

( )
−

−
= − ⇒ − = − ⇒ =b a

b a c
c a b

ab
a b c ab

1 1
1 .
2

2

 61. f x( ) must be zero at least once between a and b by the Inter-
mediate Value Theorem. Now suppose that f x( ) is zero twice 
between a and b. Then, by the Mean Value Theorem, ′f x( ) 
would have to be zero at least once between the two zeros of 
f x( ), but this can’t be true since we are given that ′ ≠f x( ) 0 
on this interval. Therefore, f x( ) is zero once and only once 
between a and b.

 71. ≤ ≤f1.09999 (0.1) 1.1

SECTION 4.3, pp. 253–255
 1. (a) 0, 1
 (b) Increasing on ( )−∞, 0  and ( )∞1, ; decreasing on ( )0,1
 (c) Local maximum at =x 0; local minimum at =x 1
 3. (a) −2,1
 (b) Increasing on ( )−2,1  and ( )∞1, ; decreasing on ( )−∞ −, 2
 (c) No local maximum; local minimum at = −x 2
 5. (a) Critical point at =x 1
 (b) Decreasing on ( )−∞,1 , increasing on ( )∞1,
 (c) Local (and absolute) minimum at =x 1

 33. Absolute maximum: 2 3; 
absolute minimum: 1

1.0

0

1.2

0.8
0.6
0.4
0.2

x

y

p�3 p�2 2p�3

y = csc x
p�3 ≤ x ≤ 2p�3

(p�2, 1)
Abs
min

Abs max

 p�3, 2�
Î

3

Abs max

 2p�3, 2�
Î

3Q        R Q         R

 35. Absolute maximum: 2;  
absolute minimum: −1

1

−1

1−1 2 30
t

y

(3, −1)

Abs
min

Abs
max

(0, 2)

y = 2 − 0 t 0
−1 ≤ t ≤ 3

 37. (a)  Absolute maximum is 
=e x1  at  1; absolute 

minimum is −e at  
= −x 1.

 (b) 

−2−3 −1 2 31

−4

−3

−2

−1

2

1

x

y Absolute
max
 

e
11, 

(−1, −e)
Absolute
min

Q   R

y = xe−x

 39. (a)  Absolute maximum value 
is x1 4 ln 4 at  4;( ) + =   
absolute minimum value  
is 1 at =x 1; local maxi-
mum at 1 2, 2 ln 2 .( )−

 (b) 

21 53 4

0.25
0.5

0.75

1

1.25

1.5

y

x

Abs min at (1, 1)

Abs max at
4
1

+ ln 4 4,

y = x
1 + ln x 

a                b

 41. Increasing on ( )0, 8 , decreasing on ( )−1, 0 ; absolute maximum: 
16 at =x 8; absolute minimum: 0 at =x 0

 43. Increasing on ( )−32,1 ; absolute maximum: 1 at θ = 1; absolute 
minimum: −8 at θ = −32

 45. =x 3
 47. x x1, 4= =
 49. =x 1
 51. x x0, 4= =
 53. x x0, 1= =
 55. x x2, 4= = −
 57. (a) No
 (b)  The derivative is defined and nonzero for ≠x 2. Also, 

=f (2) 0 and >f x( ) 0 for all ≠x 2.
 (c) No, because ( )−∞ ∞,  is not a closed interval.
 (d)  The answers are the same as parts (a) and (b), with 2 

replaced by a.
 59. y is increasing on ( )−∞ ∞,  so has no extrema.
 61. y is decreasing on ( )−∞ ∞,  so has no extrema.
 63. Yes
 65. g assumes a local maximum at −c.
 67. (a) Maximum value is 144 at =x 2.
 (b)  The largest volume of the box is 144 cubic units, and it 

occurs when =x 2.

 69. 
v

g
s

2
0

2

0+

 71. Maximum value is 11 at =x 5; minimum value is 5 on the 
interval [ ]−3, 2 ; local maximum at ( )−5, 9 .

 73. Maximum value is 5 on the interval [ )∞3, ; minimum value is 
−5 on the interval ( ]−∞ −, 2 .

SECTION 4.2, pp. 248–249

 1. 1 2  3. 1  5. 
π

± − ≈ ±1 4 0.771
2

 7. ( ) ( )+ ≈ − ≈ −1
3

1 7 1.22, 1
3

1 7 0.549
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AN-18 Chapter 4: Answers to Odd-Numbered Exercises

 7. (a) 0,1
 (b)  Increasing on ( )−∞ −, 2  and ( )∞1, ; decreasing on ( )−2, 0  

and ( )0,1
 (c) Local minimum at =x 1
 9. (a) −2, 2
 (b)  Increasing on ( )−∞ −, 2  and ( )∞2, ; decreasing on ( )−2, 0  

and ( )0, 2
 (c) Local maximum at = −x 2; local minimum at =x 2
 11. (a) −2, 0
 (b) Increasing on ( )−∞ −, 2  and ( )∞0, ; decreasing on ( )−2, 0
 (c) Local maximum at = −x 2; local minimum at =x 0

 13. (a) π π π
2

, 2
3

, 4
3

 (b)  Increasing on π π( )2
3

, 4
3

; decreasing on π( )0,
2

, π π( )2
, 2

3
, 

and π π( )4
3

, 2

 (c)  Local maximum at =x 0 and x 4
3
π= ; local minimum at 

x 2
3
π=  and π=x 2

 15. (a)  Increasing on ( )−2, 0  and ( )2, 4 ; decreasing on ( )− −4, 2  
and 0, 2( )

 (b)  Absolute maximum at ( )−4, 2 ; local maximum at ( )0,1  and 
( )−4, 1 ; absolute minimum at ( )−2, 3 ; local minimum at 
( )−2, 0

 17. (a)  Increasing on ( ) ( )− −4, 1 , 1 2, 2 , and ( )2, 4 ; decreasing on 
( )−1,1 2

 (b)  Absolute maximum at ( )4, 3 ; local maximum at ( )−1, 2  and 
( )2,1 ; no absolute minimum; local minimum at ( )− −4, 1  
and ( )−1 2, 1

 19. (a) Increasing on ( )−∞ −, 1.5 ; decreasing on ( )− ∞1.5,
 (b) Local maximum: 5.25 at = −t 1.5
 21. (a)  Decreasing on ( )−∞, 0 ; increasing on ( )0, 4 3 ; decreasing 

on ( )∞4 3,
 (b)  Local minimum at ( )=x 0 0, 0 ; local maximum at 

( )=x 4 3 4 3, 32 27
 23. (a)  Decreasing on ( )−∞, 0 ; increasing on ( )0,1 2 ; decreasing 

on ( )∞1 2,
 (b)  Local minimum at θ ( )= 0 0, 0 ; local maximum at 

θ ( )= 1 2 1 2,1 4
 25. (a) Increasing on ( )−∞ ∞, ; never decreasing
 (b) No local extrema
 27. (a)  Increasing on ( )−2, 0  and ( )∞2, ; decreasing on ( )−∞ −, 2  

and ( )0, 2
 (b)  Local maximum: 16 at =x 0; local minimum: 0 at = ±x 2
 29. (a)  Increasing on ( )−∞ −, 1 ; decreasing on ( )−1, 0 ; increasing 

on ( )0,1 ; decreasing on ( )∞1,
 (b) Local maximum: 0.5 at = ±x 1; local minimum: 0 at =x 0
 31. (a) Increasing on ( )∞10, ; decreasing on ( )1,10
 (b)  Local maximum: 1 at =x 1; local minimum: −8 at  

=x 10
 33. (a)  Decreasing on ( )− −2 2, 2 ; increasing on ( )−2, 2 ; decreas-

ing on ( )2, 2 2
 (b)  Local minima: ( )− = − =g g( 2) 4, 2 2 0; local maxima: 

( )− = =g g2 2 0, (2) 4
 35. (a)  Increasing on ( )−∞,1 ; decreasing when < <x1 2; 

decreasing when < <x2 3; discontinuous at =x 2; 
increasing on ( )∞3,

 (b)  Local minimum at ( )=x 3 3, 6 ; local maximum at 
x 1 1, 2( )=

 37. (a) Increasing on ( )−2, 0  and ( )∞0, ; decreasing on ( )−∞ −, 2

 (b) Local minimum: −6 23  at = −x 2

 39. (a)  Increasing on ( )−∞ −, 2 7  and ( )∞2 7 , ; decreasing 

on ( )−2 7 , 0  and ( )0, 2 7

 (b)  Local maximum: ≈24 2 7 3.123 7 6
 at = −x 2 7; local 

minimum: − ≈ −24 2 7 3.123 7 6
 at =x 2 7

 41. (a)  Increasing on ( ) ( )( )∞1 3 ln 1 2 , , decreasing on 
( ) ( )( )−∞, 1 3 ln 1 2

 (b)  Local minimum is 3
22 3

 at ( ) ( )=x 1 3 ln 1 2 ; no local  
maximum

 43. (a) Increasing on ( )∞−e , ;1  decreasing on ( )−e0, 1

 (b) A local minimum is − −e 1 at = −x e ;1  no local maximum
 45. (a) Increasing on ( )−e0, 2  and ( )∞1, ; decreasing on ( )−e ,12

 (b) Local maximum is e4 2  at = −x e 2

 47. (a) Local maximum: 1 at =x 1; local minimum: 0 at =x 2
 (b) Absolute maximum: 1 at =x 1; no absolute minimum
 49. (a) Local maximum: 1 at =x 1; local minimum: 0 at =x 2
 (b) No absolute maximum; absolute minimum: 0 at =x 2
 51. (a)  Local maxima: −9 at = −t 3 and 16 at =t 2; local  

minimum: −16 at = −t 2
 (b) Absolute maximum: 16 at =t 2; no absolute minimum
 53. (a) Local minimum: 0 at =x 0
 (b) No absolute maximum; absolute minimum: 0 at =x 0
 55. (a)  Local maximum: 5 at =x 0; local minimum: 0 at = −x 5 

and =x 5
 (b)  Absolute maximum: 5 at =x 0; absolute minimum: 0 at 

= −x 5 and =x 5
 57. (a) Local maximum: 2 at =x 0;

local minimum: 
−
3

4 3 6
 at = −x 2 3

 (b) No absolute maximum; absolute minimum at = −x 2 3
 59. (a) Local maximum: 1 at π=x 4;

local maximum: 0 at π=x ;
local minimum: 0 at =x 0;
local minimum: −1 at π=x 3 4

 61. (a) Local maximum: 2 at π=x 6;
local maximum: 3 at π=x 2 ;
local minimum: −2 at π=x 7 6;
local minimum: 3 at =x 0

 63. (a) Local minimum: π( ) −3 3 at π=x 2 3;
local maximum: 0 at =x 0;
local maximum: π at π=x 2

 65. (a) Local minimum: 0 at π=x 4
 67. Local minimum at =x 1; no local maximum
 69. (a) Increasing on ( )−1, 2 ;

decreasing on ( )− −2, 1
 (b)  The sign of f  cannot be determined solely from the graph of ′f .
 71. Local maximum: 3 at θ = 0;

local minimum: −3 at θ π= 2
 73. 

1

10
x

y

(a)

y = f (x)

1

10
x

y

(b)

y= f (x)
1

10
x

y

(c)

y = f (x)
1

10
x

y

(d)

y = f (x)
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 Chapter 4: Answers to Odd-Numbered Exercises AN-19

 75. (a) 

2

0 2

y = g(x)

x

y
 (b) 

2

0 2

y = g(x)

x

y

 79. = − =a b2, 4
 81. (a)  Absolute minimum occurs at π=x 3 with 

π( ) = −f 3 ln 2, and the absolute maximum occurs at 
=x 0 with =f (0) 0.

 (b)  Absolute minimum occurs at =x 1 2 and =x 2 with 
( ) ( )= =f f1 2 (2) cos ln 2 , and the absolute maximum 

occurs at =x 1 with =f (1) 1.
 83. Minimum of − ≈2 2 ln 2 0.613706 at =x ln 2; maximum of 1 

at =x 0
 85. Absolute maximum value of e1 2  assumed at =x e1

 89. Increasing; =
−

−df
dx

x1
9

1
2 3

 91. Decreasing; = −
−

−df
dx

x1
3

1
2 3

SECTION 4.4, pp. 264–268
 1. Local maximum: 3 2 at = −x 1; local minimum: −3 at =x 2; 

point of inflection at ( )−1 2, 3 4 ; rising on ( )−∞ −, 1  and 
( )∞2, ; falling on ( )−1, 2 ; concave up on ( )∞1 2, ; concave 
down on ( )−∞,1 2

 3. Local maximum: 3 4 at =x 0; local minimum: 0 at = ±x 1; 

points of inflection at −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟3, 3 4

4

3

 and 
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟3, 3 4

4
;

3

  

rising on ( )−1, 0  and ( )∞1, ; falling on ( )−∞ −, 1  and ( )0,1 ;  

concave up on ( )−∞ −, 3  and ( )∞3, ; concave down on 

( ) ( )( )− − −3, 1 , 1,1 , and 1, 3

 5. Local maxima: π− +2
3

3
2

 at π π= − +x 2 3,
3

3
2

 at 

π=x 3; local minima: π− −
3

3
2

 at π= −x 3, π −2
3

3
2

 

at π=x 2 3; points of inflection at π π( )− −2, 2 , ( )0, 0 , and 
π π( )2, 2 ; rising on π π( )− 3, 3 ; falling on π π( )− −2 3, 3  

and π π( )3, 2 3 ; concave up on π( )− 2, 0  and π π( )2, 2 3 ; 
concave down on π π( )− −2 3, 2  and π( )0, 2

 7. Local maxima: 1 at π= −x 2 and π=x 2, 0 at π= −x 2  
and π=x 2 ; local minima: −1 at π= −x 3 2 and π=x 3 2,  
0 at =x 0; points of inflection at π( )− , 0  and π( ), 0 ; rising  
on π π π( ) ( )− −3 2, 2 , 0, 2 , and π π( )3 2, 2 ; falling on 
π π π( ) ( )− − −2 , 3 2 , 2, 0 , and π π( )2, 3 2 ; concave up on 
π π( )− −2 ,  and π π( ), 2 ; concave down on π( )− , 0  and π( )0,

 9. 

1

−1
1−1 2 3 4−2−3−4

−2

2

3

4

0

y = x2 − 4x + 3

(2, −1)
Abs min

x

y
 11. 

1

1−1

4

5

2

Loc
max
(−1, 5)

(1, 1)
Loc min

Infl

y = x3 − 3x + 3

x

y

 13. 

1

1−1 2−3

2

x

y

(0, −3)
Loc min y = −2x3 + 6x2 − 3

(2, 5) Loc max

Infl
(1, 1)

 15. 

1

−1

1−1 2 3 4−2

2

3

−2

0

Infl
(2, 1)

y = (x − 2)3 + 1

x

y

 17. 

1 2−1−2

1

Abs min
(1, −1)

Loc max
(0, 0)

Abs min
(−1, −1)

−1�
Î

3, −5�9
Infl

1�
Î

3, −5�9
Infl

x

y

y = x4 − 2x2

Q          R Q        R

 19. 

3

4

9

15

21

27

321

(2, 16)

Abs max
(3, 27)

y = 4x3 − x4

Infl

Infl
(0, 0)

x

y

 21. 

−100

−200

−300

543210−2
x

y

y = x5 − 5x4Loc max
(0, 0)

(3, −162)
Infl

(4, −256)
Loc min

 23. 

210 3

−2

−1
−1

1

2

4

3

5

x

y

2x2 + x − 1
x2 − 1

y =

y = 2

x = 1

 25. 

−1 1

1

2
Abs min (−1, 2)

(1, 2) Abs min

x

y

x4 + 1
x2

y =

 27. 

1

−1

x

y

x =  − 1 x =  1

1
x2 − 1

y =

−1 1
(0, −1) Loc max

 29. 

−1 1

−2

−1

y

x = −1

y = −1

x = 1

−
Î

2
Î

2

x2 − 2
x2 − 1

y = −

x

(0, −2) Loc max

 31. 

1 2 3−2−3−4

−4

x

y

x2

x + 1
y =

y = x − 1

x = −1

Loc max
(−2, −4)

(0, 0) Loc min
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AN-20 Chapter 4: Answers to Odd-Numbered Exercises

 33. 

x

y

x2 − x + 1
x − 1

y =

3

−1

21

(0, −1)
Loc max

x = 1

y = x

Loc min
(2, 3)

 35. 

−2−6 −4 41

−16

−12

−8

−4

y

x

(x − 1)3

x2 + x − 2
y =

y = x − 4

x  = −2

9
2

0

(−5, −12)
Loc max

 53. 

1

1−1 2−2

2

3

4

−3

−4

x

y

(0, 0) Infl

Abs max
(2, 4)

Loc max

Q−2
Î

2, 0R

Q2
Î

2, 0R

Loc min

y = xÎ8 − x2

(−2, −4)
Abs min

 55. 

x

y

y = Î16 − x2

(0, 4)  Abs max

(4, 0)
Abs min

(−4, 0)
Abs min

 37. 

−1 1

1

0

−1

x

y

x
x2 − 1x = −1

x = 1

y =

Infl
(0, 0)

 39. 

0 1

2

x

y

y = 8�(x2 + 4)

(0, 2)
Abs max

 57. 

2

2

−2
4 6 8−4−6−8

−4

−6

−8

4

6

8

(3, 6) Loc min

(1, 2) Loc max

x2 − 3
x − 2

y =

x

y
 59. 

−1 1 2

1

2

−2

x

y

y =

Q−2
Î

3, −
Î

3R
Infl

Q2
Î

3, 
Î

3R
Infl

(−2, −2)
Abs min

(2, 2)
Abs max8x

x2 + 4

(0, 0)
Infl

 41. 

0

Abs min

Infl

y = x + sin x

Abs max

(p, p)

(2p, 2p)

x

y

2p

p

2pp

 43. 

10

8

2

4

6

x

y

pp�2 2p3p�20

Q3p�2, 3
Î

3p�2R

Q2p, 2
Î

3p − 2R

Qp�2, 
Î

3p�2R
Infl

Abs max

(0, −2)
Abs min y = 

Î

3x − 2 cos x

Q4p�3, 4
Î

3p�3 + 1R

Loc max

Q5p�3, 5
Î

3p�3 − 1R
Loc minInfl

 61. 

2−2

2

3

Loc max
(0, 1)

y = ∣x2 − 1∣

(1, 0)
Abs min

(−1, 0)
Abs min

x

y
 63. 

1

1−1 2 3 4−2−3−4

2
y = 

Î

0 x 0

(0, 0)

Cusp
Abs min

x

y

 45. 

1

−1

x

y

p�2p�4 p3p�4(0, 0)
Loc min

Abs max
(p�4, 1�2) Infl

(p�2, 0)
Loc max

(p, 0)

(3p�4, −1�2)
Abs min

y = sin x cos x

 47. 

−1

1 2 3−1−2−3

1

2

−2

x

y

y = x1�5

(0, 0)
Infl

Vert tan
at x = 0

 65. 

2 4
(0, 0)
Infl

−2

−3

−1
−2−4

1

2

3

x

y

x 
9 − x2

y =

 67. 

−3 −2 −1 1 2 3

−3

−2

−1

1

2

x

y

−
Î

3
Î

3

y = ln (3 − x2)

(0, ln 3)
Loc max

 49. 

−1
1−1 4 5

−5

x

y

Cusp, Loc max 
(0, 0)

y = 2x − 3x2�3

(1, −1)
Loc min

 51. 

1−1

2

3

4

2 3−2
x

y

Inf l

 Q−1�2, 3�
3
Î

4R

 (1, 3�2) Loc max

y = x2�3  5–
2 − x

(0, 0)
Cusp
Loc min

Q    R

 69. 

1
2
3

x

y

−4p −2p 2p 4p

y = ln (cos x)

Loc
max

(−4p, 0)

Loc
max

(−2p, 0)

Loc
max

(2p, 0)

Loc
max
(0, 0)

Loc
max

(4p, 0)

 71. ′′ = −y x1 2
Loc max

x = 2
Infl

Loc min

x = −1

x = 1
2
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 Chapter 4: Answers to Odd-Numbered Exercises AN-21

 95. 

x

y

y ″

y′

InflInfl

Loc
min

P y

 77. ( )( )′′ = − − +y x x x4 4 5 16 82

Loc min
x = 0

Loc max
x = 8�5

Infl

x = 4

Infl

x = 8 + 2Î6
5

x = 8 − 2Î6
5

Infl

 73. ( )( )′′ = − −y x x3 3 1

Loc min

Infl

Infl

x = 3

x = 1

x = 0

 75. ( )( )′′ = − +y x x3 2 2
Loc max

x = 0
Infl
x = −2

x = −2
Î

3 x = 2
Î

3

Infl x = 2
Abs minAbs min

 79. ′′ =y x x2 sec tan2

Infl

x = 0

 81. θ′′ = −y 1
2

csc
2

,2  

0 2θ π< <

Abs max

u = p

 87. ( )′′ = − + −y x2
3

1 5 3

x = −1
Infl
Vert tan

 89. y x x1
3

2
3

2 3 5 3′′ = +− −

x = 1
Abs min

Infl
vert tan
x = 0

x = −2
Infl

 91. ′′ =
− <

>
⎧
⎨
⎪⎪
⎩⎪⎪

y
x

x

2, 0

2, 0

x = 0

Infl

 93. 
y

Loc min

y ″ y′

Infl

Loc max

P

x

y

 83. θ θ π θ π′′ = − < <y 2 tan sec ,
2 2

2

u = 0
Infl

4
pu =

Loc min

4
pu = − Loc max

 85. π′′ = − ≤ ≤y t tsin , 0 2

t = 0
Loc min

Abs max

2
pt =

2
t =

t = p
Infl

3p

Abs min

 Loc max
     t = 2p

 101. 

1 3

(1, 2)

(−2, −1)

(−1, 0)

(0, 3)

(2, 0)

−2

−1
−2−3

1

2

x

y
 103. 

2−1−3
xf 0:

102 0 1 12 102 12

There are points of inflec-
tion at x x3, 1,= − = −  
and x 2= .

 105. 

30−3
xf 0:

2 202 0 2 22 01 21

2 4−1
xf 9:

111 0 0 2 21 102 2 There are local maxima at 
= − =x x1 and 4. There is a  

local minimum at =x 2. 
There are points of inflection at 

= =x x0 and 3.

 99. 

7

4

1

2 4 60
x

y

(2, 1)

(4, 4)

(6, 7)

 97. Point y′ y′′
P − +

Q + 0

R + −

S 0 −

T − −

 107. Concave up on ( )−2, 0  and 1, 2( ); concave down on 0,1( )
 109. (a)  Toward origin: ≤ < ≤ ≤t t0 2 and 6 10; away from 

origin: ≤ ≤ ≤ ≤t t2 6 and 10 15
 (b) t t t2, 6, 10= = =
 (c) t t t5, 7, 13= = =
 (d)  Positive: ≤ ≤ ≤ ≤t t5 7, 13 15; negative: 

≤ ≤ ≤ ≤t t0 5, 7 13
 111. ≈ 60 thousand units
 113. Local minimum at =x 2; inflection points at =x 1 and 

=x 5 3
 117. = −b 3  121. x x1, 2= − =
 123. a b c1, 3, 9= = =
 125. The zeros of ′ =y 0 and ″ =y 0 are extrema and points of 

inflection, respectively. Inflection at =x 3; local maximum at 
=x 0; local minimum at =x 4

0 3

−200

4 5

200

−400

x

y

y′ = 5x3(x − 4)

y = x5 − 5x4 − 240

y″ = 20x2(x − 3)
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AN-22 Chapter 4: Answers to Odd-Numbered Exercises

 17. (a) V x x x x( ) 2 60 2 45 2( )( )= − −  (b) Domain: 0, 22.5( )
V

x

20000

15000

10000

5000

5 10 15 20

Maximum
x = 8.4861217, V = 20,468.041645

 (c) Maximum volume 20,468 cm 3≈  when x 8.49 cm≈
 (d)  V x x x( ) 24 840 5400,2′ = − +  so the critical point is at

  x 35 5 13
2

,= −  which confirms the result in part (c).

 (e) x 12.5 cm=  or x 5 cm=
 19. Radius 10 2 3 cm, height 20 3 cm,= =

volume 4000 3 3 cm 3π ( )=
 21. (a) h w24, 18= =
 (b) V

V = 54h2 −

h
5

2000

4000

6000

8000

10000

0
10 20 3015 25 35

(24, 10368)
Abs max

h33
2

 23. If r is the radius of the hemisphere, h the height of the cylinder, 

and V the volume, then r V3
8

1 3

π( )=  and h V3 .
1 3

π( )=

 25. (b) x 16.2=  (c) L 28 cm≈

 27. Radius 2 m, height 1 m, volume 2
3

m 3π= = =

 29. 1  31. b9
9 3

m
π+

, triangle; b 3
9 3

mπ
π+

, circle

 33. +5 2 3 m   35. 3
2

2×   37. (a) 16 (b) 1−

 39. r h2 2
3

4
3

= =

 41. (a) +4 ln 2 (b) ( )( )+1
2

4 ln 2   43. Area 8 when a 2=

 45. (a) v(0) 29.4 m s=  (b) 78.4 m at t 3 s=
 (c) Velocity when s 0=  is v(7) 39.2 m s.= −
 47. 9.58m≈

 49. (a) 4 m

 51. (a) 10 3 10 6 cm×
 53. (a)  π ≈10 31.42 cm s; when =t 0.5 s, 1.5 s, 2.5 s,  

3.5 s; s 0,=  acceleration is 0.
 (b) 10 cm from rest position; speed is 0.

 55. (a) s t t12 12 642 2 1 2( )( )= − +
 (b) 12 knots;−  8 knots (c) No

 (e)  4 13; this limit is the square root of the sum of the squares 
of the individual speeds.

 57. = =x a v ka
2

,
4

2
  59. c

2
50+

 127. The zeros of ′ =y 0 and ″ =y 0 are extrema and points of 
inflection, respectively. Inflection at = −x 2;3  local maximum 
at = −x 2; local minimum at =x 0.

50

2−3

100

3

−50

−100

y′ = 4x(x3 + 8)

y″ = 16(x3 + 2)

x

y

y = x5 + 16x2 − 254
5

SECTION 4.5, pp. 275–276
 1. −1 4  3. 5 7  5. 1 2  7. 1 4  9. −23 7

 11. 5 7  13. 0  15. −16  17. −2  19. 3 2

 21. 1 4  23. 2  25. 3  27. 1−   29. ln 3  31. 1
ln 2

 33. ln 2  35. 1  37. 1 2  39. ln 2  41. −∞

 43. 1 2−   45. 1−   47. 1  49. 0  51. 2  53. e1

 55. 1  57. e1   59. e1 2  61. 1  63. e 3  65. 0

 67. 1  69. 3  71. 1  73. 0  75. ∞

 77. (b) is correct.  79. (d) is correct.  81. c 27
10

=

 83. (b) 1
2

−   85. 1−   89. (a) y 1=  (b) y y0, 3
2

= =

 91. (a)  We should assign the value 1 to ( )=f x x( ) sin x to make it 
continuous at x 0.=

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

x

y

y = (sin x)x

 (c)  The maximum value of f x( ) is close to 1 near the point 
x 1.55≈  (see the graph in part (a)).

SECTION 4.6, pp. 282–289
 1. 16 cm, 4 cm by 4 cm
 3. (a) x x,1( )−  (b) ( )= −A x x x( ) 2 1

 (b) 1
2

 square units, 1 by 1
2

 5. 14 35 5 cm, 2450 cm 3× ×

 7. 80,000 m ;2  400 m by 200 m

 9. (a)  The optimum dimensions of the tank are 2 m on the base 
edges and 1 m deep.

 (b)  Minimizing the surface area of the tank minimizes its weight 
for a given wall thickness. The thickness of the steel walls 
would likely be determined by other considerations such as 
structural requirements.

 11. 45 22.5 cm×   13. 
2
π  15. h r: 8:π=
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 Chapter 4: Answers to Odd-Numbered Exercises AN-23

 9. (a) x 2 3 (b) x 1 3 (c) x 1 3−

 11. (a) ln x (b) 7 ln x (c) −x x5 ln

 13. (a) πxcos( ) (b) − x3 cos  (c) 
π

π− +x x1 cos( ) cos(3 )

 15. (a) xtan  (b) ( )x2 tan
3

 (c) x2
3

tan 3
2( )−

 17. (a) − xcsc  (b) x1
5

csc(5 ) (c) π( )x2 csc
2

 19. (a) e1
3

x3  (b) e x− −  (c) e2 x 2

 21. (a) 1
ln 3

3 x  (b) − −1
ln 2

2 x  (c) 1
ln 5 3

5
3

x

( )( )

 23. (a) x2 arcsin  (b) x1
2

arctan  (c) x1
2

arctan 2

 25. x x C
2

2
+ +   27. t t C

4
3

2
+ +   29. x x x C

2
5

2
7

4 2
− + +

 31. 
x

x x C1
3 3

3
− − − +   33. x C3

2
2 3 +

 35. x x C2
3

3
4

3 2 4 3+ +   37. y y C4 8
3

2 3 4− +

 39. x
x

C22 + +   41. t
t

C2 2− +

 43. − +t C2 sin   45. θ− + C21 cos
3

 47. +x C3 cot   49. θ− + C1
2

csc

 51. − +−e e C1
3

5x x3   53. − + +−e C4
ln 4

x
x

 55. − +x x C4 sec 2 tan   57. − + +x x C1
2

cos 2 cot

 59. + +t t
C

2
sin 4

8
  61. − +x x Cln 5 arctan

 63. x C3
3 1

3 1

+
+

( )+
  65. θ + Ctan   67. − − +x x Ccot

 69. θ θ− + + Ccos

 83. (a)  Wrong: ( )+ = + =d
dx

x x C x x x x
2

sin 2
2

sin
2

cos
2 2

 

+x x x xsin
2

cos
2

 (b) Wrong: ( )− + = − +d
dx

x x C x x xcos cos sin

 (c)  Right: ( )− + + = − + +d
dx

x x x C x x xcos sin cos sin  

=x x xcos sin

 85. (a)  Wrong: d
dx

x C x2 1
3

3 2 1 2
3

3 2( )( ) ( ) ( )+ + = + = 

x2 2 1 2( )+

 (b)  Wrong: d
dx

x C x2 1 3 2 1 23 2( )( ) ( ) ( )+ + = + = 

x6 2 1 2( )+

 (c) Right: d
dx

x C x2 1 6 2 13 2( )( ) ( )+ + = +

 87. Right  89. (b)  91. y x x7 102= − +

 93. y
x

x1
2

1
2

2
= − + −   95. y x9 41 3= +

 61. (a) km
h

2  (b) km
h

2   65. 2 2 3
2

m× × , $720

 67. M C
2

=   73. (a) y 1= −

 75. (a) The minimum distance is 5
2

.

 (b)  The minimum distance is from the point 3 2, 0( ) to the 
point 1,1( ) on the graph of y x ,=  and this occurs at the 
value x 1,=  where D x( ), the distance squared, has its mini-
mum value.
y, D(x) D(x) = x2 − 2x +

x
0.5 1.5 2.51 2

 
Î

5
2

Dmin=

9–
4

y = 
Î

x

0.5

1

1.5

2

2.5

SECTION 4.7, pp. 292–294

 1. x 5
3

, 13
212 = −   3. x 51

31
, 5763

49452 = −   5. x 2387
20002 =

 7. x 2 is approximately 2.20794  9. x 2 is approximately 0.68394
 11. x1, and all later approximations will equal x .0

 13. y

x
h

y =

−h

  
Î

x , x ≥ 0

Î

−x, x < 0

 15. The points of intersection of y x 3=  and y x3 1= +  or of 
y x x33= −  and y 1=  have the same x-values as the roots of 
part (i) or the solutions of part (iv).

 17. x y1.165561185, 2.33112237≈ ≈
 19. (a) Two (b) 0.35003501505249 and 1.0261731615301−
 21. ± ±1.3065629648764, 0.5411961001462  23. x 0.45≈
 25. 0.8192  27. 0, 0.53485  29. The root is 1.17951.
 31. (a) For x 20 = −  or x x0.8, 1i0 = − → −  as i gets large.
 (b) For x 0.50 = −  or x x0.25, 0i0 = →  as i gets large.
 (c) For x 0.80 =  or x x2, 1i0 = →  as i gets large.

 (d)  For x 21 70 = −  or x 21 7,0 =  Newton’s method does 
not converge. The values of xi alternate between 21 7−  
and 21 7 as i increases.

 33. Answers will vary with machine speed.

SECTION 4.8, pp. 300–304

 1. (a) x 2 (b) x
3

3
 (c) x x x

3

3
2− +

 3. (a) x 3−  (b) x1
3

3− −  (c) x x x1
3

33 2− + +−

 5. (a) 
x
1−  (b) 

x
5−  (c) x

x
2 5+

 7. (a) x 3  (b) x  (c) x x2
3

2
3

+
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AN-24 Chapter 4: Answers to Odd-Numbered Exercises

 59. (a)  Local maximum at x 4,=  local minimum at x 4,= −  
inflection point at x 0=

 (b) 

x = −4

Loc min

x = 0
Infl

Loc max

x = 4

 61. (a)  Local maximum at x 0,=  local minima at x 1= −  and 
x 2,=  inflection points at x 1 7 3( )= ±

 (b) 

x = −1 x = 2

Loc minLoc min

Infl

Loc max

1 − 
Î

7
3

x =
1 + 

Î

7
3

x =

Infl

x = 0

 97. = + +s t tsin 4  99. πθ= −r cos( ) 1

 101. = +v t1
2

sec 1
2

  103. π= −v t3 arcsec

 105. y x x x4 12 3= − + +   107. r
t

t1 2 2= + −

 109. y x x4 53 2= − +   111. = − + + −y t t tsin cos 13

 113. y x2 503 2= −
 115. 

1

1

64
x

y

8

y = f (x)

 117. 

2 4 6 8

−2

−3

−4

−1

1

2

x

y

 119. y x x 1
2

4 3= − +

 121. = − − −y x xsin cos 2

 123. (a) (i) 33.2 units, (ii) 33.2 units, (iii) 33.2 units
 (b) True
 125. t k k88 , 16= =
 127. (a) = −v t t10 63 2 1 2 (b) s t t4 45 2 3 2= −
 131. (a) x C− +  (b) x C+  (c) x C+
 (d) x C− +
 (e) x x C− +
 (f ) x x C− − +

PRACTICE EXERCISES, pp. 305–308
 1. Minimum value is 1 at x 2.=

 3. Local maximum at 2,17 ;( )−  local minimum at 4
3

, 41
27( )−

 5. Minimum value is 0 at x 1= −  and x 1.=
 7. There is a local minimum at 0,1( ).

 9. Maximum value is 1
2

 at x 1;=  minimum value is 1
2

−  at 
x 1.= −

 11. The minimum value is 2 at x 0.=

 13. The minimum value is 
e
1−  at x

e
1.=

 15. The maximum value is 
2
π at x 0;=  an absolute minimum value 

is 0 at x 1=  and x 1.= −
 17. No  19. No minimum; absolute maximum: =f (1) 16;  

critical points: x 1=  and 11 13
 21. Absolute minimum: =g(0) 1; no absolute maximum; critical 

point: x 0=
 23. Absolute minimum: −2 2 ln 2 at x 2;=   

absolute maximum: 1 at x 1=
 25. Yes, except at x 0=   27. No  31. (b) one
 33. (b) 0.8555 99677 2  35. NA

 39. Global minimum value of 1
2

 at x 2=

 41. (a) t 0,=  6, 12 (b) t 3,=  9 (c) t6 12< <
 (d) t t0 6, 12 14< < < <

1−1 2 4−2 6

−2

0

1

x

y

15
3

x3

6

8
3

y = x2 −

 43. 

1 2
−1

1

3

3

4

y = −x3 + 6x2 − 9x + 3

x

y 45. 

100

−2 4 6 8−1

200

300

400

500

−100
0 2

(4, 256)

(6, 432)
y = x3(8 − x)

x

y 47. 

9 18 27

−4

−3

y = x − 3x2�3

x

y

(8, −4)

 49. 

1

−1

1−1 2 3

2

−2

y = x
Î

3 − x

x

y 51. 

−4−3−2−1 10 2 3 4
1
3
5

9
11

x

y

y = (x − 3)2exQ1 − 
Î

2, Q6 + 4
Î

2R e1−
Î

2
R

Q1 + 
Î

2, Q6 − 4
Î

2R e1+
Î

2
R

(1, 4e) 53. 

−5 −3 2 5 7

−4
−3
−2
−1

1
2
3
4
5

x

y

ln 3

y = ln(x2 − 4x + 3)

 55. 

−3 −2 −1 1 2 3

−2

−1

1

2

x

y

p
2

p
2−

y = arcsin(1�x)

 57. 
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 Chapter 4: Answers to Odd-Numbered Exercises AN-25

 141. r t t t4 4 85 2 3 2= + −
 143. Yes, xarcsin  and − xarccos  differ by the constant 2.π

 145. 1 2 units long by e1  units high,  

A e1 2= ≈ 0.43 units 2

 147. Absolute maximum 0=  at x e 2,=  
absolute minimum = 0.5−  at x 0.5=

 149. x 1= ±  are the critical points; y 1=  is a horizontal asymptote 
in both directions; absolute minimum value of the function 
is e 2 2−  at x 1= − , and absolute maximum value is e 2 2 at 
x 1= .

 151. (a)  Absolute maximum of e2  at x e ,2=  inflection point 

e e, 8 3 ,8 3 4 3( )( )−  concave up on e , ,8 3( )∞  concave down 

on e0, 8 3( )
 (b)  Absolute maximum of 1 at x 0,=  inflection  

points ±( 1 2 , e1 ), concave up on  

, 1 2( )−∞ − ∪ 1 2 , ,( )∞  concave down on  

1 2 ,1 2( )−

 (c)  Absolute maximum of 1 at x 0,=  inflection point e1, 2 ,( )  
concave up on 1, ,( )∞  concave down on ,1( )−∞

ADDITIONAL AND ADVANCED EXERCISES, pp. 308–311

 1. The function is constant on the interval.

 3. The extreme points will not be at the end of an open interval.

 5. NA

 9. No  11. a b c1, 0, 1= = =   13. Yes

 15. Drill the hole at y h 2.=

 17. r RH
H R

H R r R H R
2

 for  2 ,    if  2
( )

=
−

> = ≤

 19. 12
5

 and 5

 21. (a) 10
3

 (b) 5
3

 (c) 1
2

 (d) 0 (e) 1
2

−  (f) 1

 (g) 1
2

 (h) 3

 23. (a) c b
e2

−  (b) c b
2
+  (c) b bc c ae

e
2 4

4

2 2− + +

 (d) c b t
2

+ +

 25. m
q

m
q

1 1 , 1
0 1= − =

 27. s ce kt=  s

t

400

200

0

1000

800

600

1 2 3 65 74

s = soekt

s = 16t2

 29. (a) =k 15 (b) 7.5  m

 31. Yes, y x C= +   33. =v b2 2
30

3 4   39. 3

 63. (a)  Local maximum at x 2,= −  local minimum at x 2,=  
inflection points at x 1= ±  and 0

 (b) 

Infl

x = 0

Infl
x = 1

Loc min

Loc max

Infl
x = −1x = −

Î

2

x = 
Î

2

 77. 5  79. 0  81. 1  83. 3 7  85. 0  87. 1
 89. ln 10  91. ln 2  93. 5  95. −∞  97. 1  99. e bk

 101. −∞  103. (a) 0, 36 (b) 18, 18  105. 54 square units

 107. height 2,  radius 2= =

 109. x

y

5 5 hundred 276 tires,

2 5 5 hundred 553 tires( )
= − ≈
= − ≈

 111. Dimensions: base is 15 cm by 30 cm, 
height 5 cm;  maximum volume 2250 cm 3= =

 113. x 2.1958 233455 =   115. x x x C
4

5
2

7
4

2+ − +

 117. t
t

C2 43 2 − +   119. 
r

C1
5

−
+

+

 121. C12 3 2θ( )+ +   123. x C1
3

1 4 3 4( )+ +

 125. +s C10 tan
10

  127. θ− + C1
2

csc 2

 129. x x C1
2

sin
2

− +   131. − +x x C3 ln
2

2

 133. e e C1
2

t t+ +−   135. C
2

2θ
π−

+
π−

 137. +x C3
2

arcsec   139. y x
x
1 1= − −

1

−1

−3

2

5

2 3 4 6
x

y

x + 1
x − 3

4
x − 3

y = = 1 +

 69. 

1

–1
1−1 2 3 4−2−3−4

−2

−3

−4

2

3

4

5

−5

x

y

(1, 2)

y = x

(−1, −2)

x2 + 1
xy =

1
x= x +

 71. 

1

−1

1 2 3

−3

2

3

4

0

x3 + 2
2x

x2

2

x2

2

1
x

1
x

y =

y =

y =

= +

x

y 73. 

−1
1−1 2 3 4−3−4

−2

−3

2

3

4

0

y = 1

x = 
Î

3x = −
Î

3

x

y

x2 − 4
x2 − 3

y =

 75. 
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AN-26 Chapter 5: Answers to Odd-Numbered Exercises

Chapter 5
SECTION 5.1, pp. 320–322
 1. (a) 0.125 (b) 0.21875 (c) 0.625 (d) 0.46875
 3. (a) 1.066667 (b) 1.283333 (c) 2.666667 (d) 2.083333
 5. 0.3125, 0.328125  7. 1.5, 1.574603
 9. (a) 87 cm (b) 87 cm  11. (a) 1180 m (b) 1300 m
 13. (a) 22.862 m s (b) 13.867 m s (c) 44.893 m

 15. 31
16

  17. 1

 19. (a) Upper 758 L,  lower 543 L= =
 (b) Upper 2363 L,  lower 1693 L= =
 (c) 31.4 h, 32.4 h≈ ≈

 21. (a) 2 (b) 2 2 2.828≈  (c) 8 sin
8

3.061π( ) ≈

 (d)  Each area is less than the area inside the circle, π. As n 
increases, the polygon area approaches π.

SECTION 5.2, pp. 328–329

 1. 6 1
1 1

6 2
2 1

7
( ) ( )

+
+

+
=

 3. cos 1 cos 2 cos 3 cos 4 0π π π π( ) ( ) ( ) ( )+ + + =

 5. sin sin
2

sin
3

3 2
2

π π π− + = −

 7. All of them  9. b

 11. ∑
=

k
k 1

6

  13. ∑
=

1
2k

k
1

4

  15. ∑( )−
=

+

k
1 1

k

k

1

5
1

 17. (a) 15−  (b) 1 (c) 1 (d) 11−  (e) 16
 19. (a) 55 (b) 385 (c) 3025  21. −56  23. −73
 25. 240  27.  3376  29. (a) 21 (b) 3500 (c) 2620
 31. (a) 4n (b) cn (c) n n 22( )−   33. 2600  35.  2 3−
 37. (a) 

x

y
(2, 3)

f (x) = x2 − 1,
0 ≤ x ≤ 2
Left-hand

c1 = 0 c3 = 1 c4c2 2

3

2

1

−1

 (b) 

x

y
(2, 3)

f (x) = x2 − 1,
0 ≤ x ≤ 2
Right-hand

0 c3c1 c4 = 2

3

2

1

−1

c2 = 1

 (c) 

x

y
(2, 3)

f (x) = x2 − 1,
0 ≤ x ≤ 2
Midpoint

0 c3c1 c4

3

2

1

−1

c2

 39. (a) 

f (x) = sin x,
−p ≤ x ≤ p
Left-hand 1

–1

x

y

c4c2 pc3 = 0c1 = −p

(b) 

f (x) = sin x,
−p ≤ x ≤ p
Right-hand 1

−1

x

y

c3c1−p c4 = pc2 = 0

 (c) 

f (x) = sin x,
−p ≤ x ≤ p
Midpoint 1

−1

x

y

c2c1

c3 c4
−p pp�2

−p�2

41. 1.2

43. 
n n

2
3

1
2

1
6

, 2
32

− −

45. n
n

12 27 9
2

, 12
2

+ +

47. n
n

5
6

6 1
6

, 5
62

+ +

 49. 
n n

1
2

1 1
2

, 1
22

+ +

SECTION 5.3, pp. 338–341

 1. x dx2

0

2

∫   3. ∫ ( )−
−

x x dx32

7

5
  5. 

x
dx1

12

3

∫ −

 7. x dxsec
4

0

∫ π−

 9. (a) 0 (b) 8−  (c) 12−  (d) 10 (e) 2−  (f) 16

 11. (a) 5 (b) 5 3 (c) 5−  (d) 5−
 13. (a) 4 (b) 4−  15. Area 21 square units=
 17. Area 9 2  square unitsπ=   19. Area 2.5 square units=
 21. Area 3 square units=   23. b 42   25. b a2 2−
 27. (a) 2π (b) π  29. 1 2  31. 3 22π   33. 7 3
 35. 1 24  37. a3 22   39. b 3  41. 14−
 43. 2−   45. 7 4−   47. 7  49. 0
 51. Using n subintervals of length x b nΔ =  and right-endpoint 

values:

∫= =x dx bArea 3
b

2

0

3

 53. Using n subintervals of length x b nΔ =  and right-endpoint 
values:

x dx bArea 2
b

0

2∫= =

 55. =fav( ) 0  57. = −fav( ) 2  59. =fav( ) 1
 61. (a) = −gav( ) 1 2 (b) =gav( ) 1 (c) =gav( ) 1 4
 63. ( )−c b a   65. b a3 33 3−   67. 9
 69. b a4 44 4−   71. a 0=  and b 1=  maximize the integral.
 73. Upper bound 1,  lower bound 1 2= =

 75. For example, x dx dxsin( ) 12

0

1

0

1

∫ ∫≤ =

 77. f x dx dx( ) 0 0
a

b

a

b

∫ ∫≥ =   79. Upper bound 1 2=

 89. Since f  is continuous, the Extreme Value Theorem implies that the 
continuous function f  has a maximum value M and a minimum 
value m (Chapter 4, Theorem 1). The values of f  and g are equal 
except at a single point c where g c( ) differs from f c( ). The mag-
nitude of the difference is some number between the two numbers 
g c m( ) −  and g c M( ) − . Call the larger of these two numbers 

D. In the formula for a Riemann sum given in Equation (1), for a 
given n, the difference between the Riemann sum for f  and the 
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 Chapter 5: Answers to Odd-Numbered Exercises AN-27

Riemann sum for g is at most ( )−D b a n . Taking the limit as 
→ ∞n , we see that the difference between the two Riemann 

sums approaches 0, so that the two limits are equal. A similar 

bound holds for a general partition, where D P 0→ .

SECTION 5.4, pp. 351–353

 1.  −10 3  3. 124 3  5. 753 16  7. 1  9. 2 3

 11. 0  13. π− 4  15. π−1
4

  17. −2 2
4

  19. −8 3

 21. −3 4  23. − +2 8 14   25. 1 2  27. 16

 29. 7 3  31. π2 3  33. 
π

( )−π π1 4 2   35. ( )−e1
2

1

 37. −26 5   39. x
x

cos 1
2( )( )   41. t4 5

 43. −x e3 x2 3   45. + x1 2   47. x x1
2

sin1 2− −   49. 0

 51. 1  53. ( )xe2 x1 2 2   55. 1  57. 28 3  59. 1 2

 61. π  63. π2
2

 65. d, since ′ =y
x
1  and ∫π( ) = − = −

π

π
y

t
dt1 3 3

 67. b, since y xsec′ =  and y t dt0 sec 4 4
0

0

∫( ) = + =

 69. y t dtsec 3
x

2∫= +   71. ( )+ t1 ln 2

 73. bh2
3

  75. $9.00

 77. (a) T T0 20 C, 16 24 C( )( ) = ° = ° , T 25 30 C( ) = °
 (b) Tav 23.33 C= °
 79. −x2 2  81. − +x3 5
 83. (a) True. Since f  is continuous, g is differentiable by Part 1 of 

the Fundamental Theorem of Calculus.
 (b) True: g is continuous because it is differentiable.
 (c) True, since g f1 (1) 0.( )′ = =
 (d) False, since ( ) ( )″ = ′ >g f1 1 0.
 (e) True, since ( )′ =g 1 0 and ( ) ( )″ = ′ >g f1 1 0.
 (f) False: g x f x( ) ( ) 0,″ = ′ >  so ″g  never changes sign.
 (g)  True, since g f(1) (1) 0′ = =  and g x f x( ) ( )′ =  is an 

increasing function of x (because f x( ) 0′ > ).

 85. (a) ∫υ υ( )= = = ⇒ = =ds
dt

d
dt

f x dx f t f( ) ( ) 5 (5) 2 m s
t

0

 (b)   =a df dt is negative, since the slope of the tangent line at 
=t 5 is negative.

 (c)  s f x dx( ) 1
2

3 3 9
2

m
0

3

∫ ( )( )= = = , since the integral is 

the area of the triangle formed by y f x( ),=  the x-axis, and 
=x 3.

 (d)  =t 6, since after =t 6 to =t 9, the region lies below the 
x-axis.

 (e)  At =t 4 and =t 7, since there are horizontal tangents 
there.

 (f)  Toward the origin between =t 6 and =t 9, since the veloc-
ity is negative on this interval. Away from the origin between 

=t 0 and =t 6, since the velocity is positive there.
 (g)  Right or positive side, because the integral of f  from 0  

to 9 is positive, there being more area above the x-axis  
than below.

SECTION 5.5, pp. 360–361

 1. ( )+ +x C1
6

2 4 6   3. ( )− + +−x C1
3

52 3

 5. ( )+ +x x C1
10

3 42 5   7. x C1
3

cos 3− +

 9. t C1
2

sec 2 +   11. ( )− − +r C6 1 3 1 2

 13. ( ) ( )− − − +x x C1
3

1 1
6

sin 2 23 2 3 2

 15. (a) θ( )− + C1
4

cot 22  (b) θ( )− + C1
4

csc 22

 17. ( )− − +s C1
3

3 2 3 2   19. θ− − + C2
5

(1 )2 5 4

 21. ( )( )− + +x C2 1   23. ( )+ +x C1
3

tan 3 2

 25. ( ) +x C1
2

sin
3

6   27. ( )− +r C
18

1
3 6

 29. ( )− + +x C2
3

cos 13 2   31. 
t

C1
2 cos 2 1( )+

+

 33. ( )− − +
t

Csin 1 1   35. 
θ( )

− + C
sin 1

2

2

 37. ( ) ( )+ − + +x x C2
3

1 2 13 2 1 2   39. ( )− +
x

C2
3

2 1 3 2

 41. ( )− +
x

C2
27

1 3
3

3 2

  43. ( ) ( )− + − +x x C1
12

1 1
11

112 11

 45. ( ) ( ) ( )− − + − − − +x x x C1
8

1 4
7

1 2
3

18 7 6

 47. ( ) ( )+ − + +x x C1
5

1 1
3

12 5 2 2 3 2   49. 
( )

−
−

+
x

C1
4 42 2

 51. e Cxsin +   53. ( )+ +e C2 tan 1x   55. x Cln ln +

 57. ( )− + +z e Cln 1 z   59. ( ) +− r C5
6

tan 2
3

1

 61. e Cxarcsin +   63. x C1
3

arcsin 3( ) +

 65. +y Cln arctan

 67. (a) −
+

+
x

C6
2 tan 3

 (b) −
+

+
x

C6
2 tan 3

 (c) −
+

+
x

C6
2 tan 3

 69. r C1
6

sin 3 2 1 62( )− + +   73. ( )= − −s t1
2

3 1 52 4

 75. s t t4 2 sin 2
6

9π( )= − + +

 77. π( )= − + +s t tsin 2
2

100 1  79. 6 m

SECTION 5.6, pp. 367–371
 1. (a) 14 3 (b) 2 3  3. (a) 1 2 (b) −1 2
 5. (a) 15 16 (b) 0  7. (a) 0 (b) 1 8  9. (a) 4 (b) 0
 11. (a) 506 375 (b) 86, 744 375  13. (a) 0 (b) 0

 15. 2 3  17. 3 4  19. −3 15 2   21. 3  23. π 3

 25. e  27. ln 3  29. ln 2 2( )   31. 
1

ln 4
  33. ln 2

 35. ( )+ −ln 2 3 3
2

  37. π  39. π 12  41. π2 3

 43. −3 1  45. π− 12  47. π 322   49. 16 3
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AN-28 Chapter 6: Answers to Odd-Numbered Exercises

 51. 25 2  53. π 2  55. 128 15  57. 4 3  59. 5 6

 61. 38 3  63. 49 6  65. 32 3  67. 48 5  69. 8 3

 71. 8  73. 5 3 (There are three intersection points.)  75. 18

 77. 243 8  79. 8 3  81. 2  83. 104 15  85. 56 15

 87. 4  89. 
π

−4
3

4   91. π 2  93. 2  95. 1 2

 97. 1  99. ln 16  101. 2  103. 2 ln 5

 105. (a) ( )± c c,  (b) =c 4 2 3 (c) =c 4 2 3

 107. 11 3  109. 3 4  111. Neither

 113. The dark blue region has area 2, which is larger than the light 
blue region, which has an area π( ) ≈0.6 1.88.

 115. The dark blue region has area −e 2, or approximately 0.72, 
which is larger than 1 2, which is the area of the light blue region.

 117. −F F(6) (2)  119. (a) −3 (b) 3  121. =I a 2

PRACTICE EXERCISES, pp. 372–375
 1. (a) About 680 m (b) h (meters)

100

0 2 4 6 8

200
300
400
500
600
700

t (s)

h (meters)

 3. (a) −1 2 (b) 31 (c) 13 (d) 0

 5. ∫ ( )− =−x dx2 1 21 2

1

5
  7. ∫ =

π−

x dxcos
2

2
0

 9. (a) 4 (b) 2 (c) −2 (d) π−2  (e) 8 5

 11. 8 3  13. 62  15. 1  17. 1 6  19. 18

 21. 9 8  23. π + −
32

2
2

1
2

  25. 4  27. −8 2 7
6

 29. Min: −4; max: 0; area: 27 4  31. 6 5  33. 1

 37. y
t

t
dt

sin
3

x

5∫ ( )= −   39. y xarcsin=

 41. π= + >−y x xsec 2
3

, 11   43. f x e( ) x 2 1 22= −

 45. x C4 cos 1 2( )− +   47. θ θ θ( )+ + + + Csin 2 12

 49. + +t
t

C
3

43
  51. ( )− +t C1

3
cos 2 3 2

 53. ( )− +e Ctan 7x   55. e Cxtan +   57. 
ln 7
3

−

 59. ln 9 25( )  61. x C1
2

ln 2( )− +−   63. C1
2 ln 3

3 x 2( ) +

 65. r C3
2

arcsin 2 1( )− +   67. ( )− +− x C2
2

tan 1
2

1

 69. − +− x C1
4

sec 2 1
2

1   71. e Cxarcsin +

 73. y C2 arctan +   75. 
θ θ( )+

+ C1
4 sin 2 cos 2 2   77. 16

 79. 2  81. 1  83. 8  85. 27 3 160   87. π 2

 89. 3  91. π−6 3 2   93. −1  95. 2  97. 1

 99. 15 16 ln 2+   101. −e 1  103. 1 6  105. 9 14

 107. 
9 ln 2

4
  109. π  111. π 3   113. π 6

 115. π 12  117. (a) b (b) b

 121. (a) d
dx

x x x C x
x

x xln 1 ln 1 0 ln( )− + = ⋅ + − + =

  (b) 
−e
1

1

 123. 4 C− °   125. + x2 cos3   127. −
+ x

6
3 4

 129. = − ( )dy
dx x

e2 xcos 2 ln   131. 
( )

=
− −

dy
dx x x

1

1   1 2 arcsin2 2

 133. Yes  135. x1 2− +
 137. Cost $13,897≈ .50 using a lower sum estimate

 11. 36 5

y = −4

y = x2�3

−8 −4 3

4

2

−4

0
x

y

 13. 
π

−1
2

2

t

y

y = sin pt

y = t
1

1 20

−1

 17. 1 2  19. π 2

 21. ln 2
 23. (a) 0 (b) −1
 (c) π−  (d) =x 1
 (e) π= + −y x2 2
 (f) = − =x x1, 2
 (g) π[ ]−2 , 0

 15. 13 3

y = 2

y = 1 y = 1 − x2

x

y

−2 −1 1 2

2

 25. x2   27. 
y

y

y

y

sin 4 sin

2
−   29. x x x x2 ln ln

2
−

 31. x xsin( )   33. =x 1

 35. (a) 
1

ln 2
 (b) 

1
2 ln 2

 (c) 2:1  37. 2 17

 41. 1 6  43. ∫ f x dx( )
0

1
  45. (b) πr 2

ADDITIONAL AND ADVANCED EXERCISES, pp. 375–379

 1. (a) Yes (b) No  5. (a) 1 4 (b) 123

 7. f x x
x

( )
12

=
+

  9. = + −y x x2 43

Chapter 6
SECTION 6.1, pp. 387–391
 1. 16  3. 16 3  5. (a) 2 3 (b) 8  7. (a) 60 (b) 36

 9. 8π   11. 10  13. (a) s h2  (b) s h2   15. 8 3

 17. 2
3
π   19. 4 π−   21. 32

5
π   23. 36π   25. π
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 Chapter 6: Answers to Odd-Numbered Exercises AN-29

 27. 
e2

1 1
2

π ( )−   29. 
2

ln 4π   31. 
2

2 2 11
3

π π( )+ −

 33. 2π  35. 2π  37. 4 ln 4π   39. 22π π−   41. 2
3
π

 43. 117
5
π   45. 2π π( )−   47. 4

3
π   49. 8π   51. 7

6
π

 53. (a) 8π  (b) 32
5
π  (c) 8

3
π  (d) 224

15
π

 55. (a) 16
15
π  (b) 56

15
π  (c) 64

15
π   57. V a b2 2 2π=

 59.  (a) V h a h3
3

2π ( )= −  (b) 
π

1
120

m s

 63. V 3308 cm 3=   65. b a4 2( )− +

SECTION 6.2, pp. 396–399
 1. 6π  3. 2π  5. 14 3π   7. 8π   9. 5 6π

 11. 7
15
π   13. (b) 4π  15. 16

15
3 2 5π( )+

 17. 8
3
π   19. 4

3
π   21. 16

3
π

 23. (a) 16π (b) 32π  (c) 28π
  (d) 24π (e) 60π (f) 48π

 25. (a) 27
2
π  (b) 27

2
π  (c) 72

5
π  (d) 108

5
π

 27. (a) 6
5
π  (b) 4

5
π  (c) 2π (d) 2π

 29. (a) About the x-axis: V 2
15

;π=  about the y-axis: V
6
π=

 (b) About the x-axis: V 2
15

;π=  about the y-axis: V
6
π=

 31. (a) 5
3
π  (b) 4

3
π  (c) 2π (d) 2

3
π

 33. (a) 4
15
π  (b) 7

30
π   35. (a) 24

5
π  (b) 48

5
π

 37. (a) 9
16
π  (b) 9

16
π

 39. Disk: 2 integrals; washer: 2 integrals; shell: 1 integral

 41. (a) 256
3
π  (b) 244

3
π

 47. 
e

1 1π( )−   49. 2

SECTION 6.3, pp. 403–405

 1. 12  3. 53
6

  5. 123
32

  7. 99
8

  9. ln 2 3
8

+

 11. 53
6

  13. 2 5 43 2 3 2( )−   15. 2

 17. (a) x dx1 4 2

1

2

∫ +
−

 (c) 6.13≈

 19. (a) ∫ +
π

y dy1 cos 2

0
 (c) 3.82≈

 21. (a) y dy1 1 2

1

3

∫ ( )+ +
−

 (c) 9.29≈

 23. (a) x dxsec
0

6

∫
π

 (c) 0.55≈

 25. (a) y x=  from (1, 1) to (4, 2)
 (b)  Only one. We know the derivative of the function and the 

value of the function at one value of x.

 27. 1  29.  2 5  37. ∫ ( )+ −t dt  1 9 , 2
27

10 1
x

0

3 2

SECTION 6.4, pp. 408–410

 1. (a) x x dx2 tan 1 sec
0

4
4∫π ( ) +

π
 (c) S 3.84≈

 (b) 

0.2 0.4 0.6 0.8

0.2

0

0.4

0.6

0.8

1

x

y

y = tan x

 3. (a) 
y

y dy2 1 1
1

2
4∫π + −  (c) S 5.02≈

 (b) 

0.5 0.6 0.7 0.8 0.9 1

1.2

1

1.4

1.6

1.8

2

xy = 1

x

y

 5. (a) x x dx2 3 1 1 31 2 2

1

4
1 2 2∫π ( ) ( )− + − −  (c) S 63.37≈

 (b) 

1 2 3 4
1

2

3

4

y

x1�2 + y1�2 = 3

x

 7. (a) t dt y dy2 tan sec
y

00

3

∫∫π ( )π
 (c) s 2.08≈

 (b) 

0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.2

0.4

0.6

0.8

1

y

x

x = tan t dt
y

L0

 9. 4 5π   11. 3 5π   13. 98 81π   15. 2π

 17. 8 1 9π( )−   19. 35 5 3π   21. 15
16

ln 2π( )+

 23. 253 20π   27. Order 226.2 liters of each color.

SECTION 6.5, pp. 415–419
 1. 116 J  3. 400 N m   5. 4 cm, 0.08 J
 7. (a) 12,000 N/cm (b) 6000 N-cm, 18,000 N-cm
 9. 780 J  11. 108,000 J  13. 234 J
 15. (a) 235,200,000 J (b) 17 h, 46 min (c) 266 min
 (d)  At 9780 N m :3  a) 234,720,000 J b) 17 h, 44 min  

At 9820 N m :3  a) 235,680,000 J b) 17 h, 48 min
 17. 5,772,676.5 J  19. 8,977,666 J  21. 385,369 J
 23. 15,073,099.75 J  27. 120 J  29. 151.3 J
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AN-30 Chapter 7: Answers to Odd-Numbered Exercises

 31. 2.175 J  33. 5.144 10 J10×   35. 9146.7 N
 37. (a) 26,989.2 N (b) 25,401.6 N
39. (a) 182,933 N (b) 187,600 N 41. 5808 N
 43. (a) 19,600 N (b) 14,700 N (c) 16,135 N

 45. (a) 14,933 N (b) 2.94 m  47. wb
2

 49. No. The tank will overflow because the movable end will have 
moved only 2.18 m by the time the tank is full.

ADDITIONAL AND ADVANCED EXERCISES, pp. 434–435

 1. f x
x a

( )
2
π

=
−

  3. f x C x a C( ) 1 , where  12= − + ≥

 5. 
30 2
π   7. 28 3  9. h mh4 3

3

 11. x y n
n

0,
2 1

,   0,1 2( )= =
+

 15. (a) x y a ab b a b4 32 2 π( ) ( )( )= = + + +
 (b) a a2 , 2π π( )  17. ≈365.867 N

Chapter 7
SECTION 7.1, pp. 445–447

 1. ( )ln 2
3

  3. − +y Cln 252   5. t Cln 6 3 tan+ +

 7. ( )+ +x Cln 1   9. 1  11. 2 ln 2 4( )   13. 2

 15. +e C2 r   17. − +−e Ct 2   19. − +e Cx1

 21. e C1 tsec

π
+π   23. 1  25. ( )+ +e Cln 1 r   27. 1

2 ln 2

 29. 1
ln 2

  31. 6
ln 7

  33. 32760  35. +3 2 1

 37. 
x

C1
ln 10

ln
2

2( )⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ +   39. 2 ln 2 2( )   41. 

3 ln 2
2

  43. ln 10

 45. x Cln 10 ln ln( ) +   47. ( )= − −y e1 cos 2t

 49. ( )= + −−y e x2 1x   51. y x xln 2= + +

 53. ln 16π   55. 6 ln 2+   57. (b) 0.00469

 77. (a) 1.89279 (b) −0.35621 (c) 0.94575 (d) −2.80735
 (e) 5.29595 (f) 0.97041 (g) −1.03972 (h) −1.61181

SECTION 7.2, pp. 454–456

 9. − =y x C2
3

3 2 1 2   11. − =e e Cy x

 13. − + =x y C2 tan   15. + =−e e C2y x

 17. ( )= +y x Csin 2   19. − = +y x C1
3

ln 23 3

 21. y e C4 ln 2 x 2( )+ = +

 23. (a) −0.00001 (b) 10,536 years (c) 82%

 25. 54.88 g  27. 19.9 m  29. ×2.8147498 1014

 31. (a) 8 years (b) 32.02 years  33. Yes, ( ) <y 20 1

 35. 15.28 years  37. 56,562 years
 41. (a) 17.5 min (b) 13.26 min  43. − °3 C

 45. About 6693 years  47. 54.62%  49. 15,683≈  years

SECTION 7.3, pp. 462–465
 1. x x xcosh 5 4, tanh 3 5, coth 5 3,= = − = −  

x xsech 4 5, csch 4 3= = −
 3. x x xsinh 8 15, tanh 8 17, coth 17 8,= = =  

x xsech 15 17, csch 15 8= =

 5. +x
x
1   7. e x5   9. e x4   13. x2 cosh

3

 15. t t
t

sech tanh2 +   17. zcoth

 19. ln sech sech tanhθ θ θ( )( )  21. tanh3 υ  23. 2

(2, 0)
x

y

y =
Î

x

4

y = −
Î

x

4

4

−4

0 1 4

 29. x y 1 3= =   31. x a y b3, 3= =   33. 13 6δ

 35. x y a0,
4
π= =   37. x y1 2, 4= =

 39. x y6 5, 8 7= =   43. V S32 ,   32 2π π= =

 45. 4 2π   47. x y a0, 2
π

= =   49. x y b0, 4
3π

= =

 51. a2 4 3 63π π( )+   53. x a y b
3

,
3

= =

SECTION 6.6, pp. 429–431
 1. M x14 3, 93 35= =   3. M xln 4, 3 ln 4 ln 4( ) ( )= = −
 5. M x13, 41 26= =   7. x y0, 12 5= =
 9. x y1, 3 5= = −   11. x y16 105, 8 15= =
 13. x y0, 8π= =   15. x y1.44, 0.36≈ ≈

 17. x y
ln 4

, 0
π

= =   19. x y15
4 ln 2

, 15
128 ln 2

= =

 21. x y5 7, 10 33.= =  x y( )4 < , so the center of mass is outside 
the region.

 23. x y3 2, 1 2= =

 25. (a) 224
3
π  (b) x y2, 0= =

 (c) 

PRACTICE EXERCISES, pp. 432–434

 1. 9
280
π   3. 2π   5. 72

35
π

 7. (a) 2π (b) π (c) 12 5π  (d) 26 5π

 9. (a) 8π  (b) 1088 15π  (c) 512 15π

 11. 3 3 3π π( )−   13. e 1π( )−   15. π28
3

m 3

 17. a ab b h3 2 2π( )( )+ +   19. 10
3

  21. 3 1
8

ln 2+

 23. 2   25. 28 2 3π   27. 4π  29. 4640 J

 31. w ar a
2

2 2( )−   33. 65,680,230 J

 35. π3,375,000 J, 257 s  37. (a) 11.31 J (b) 29.18 J

 39. x y0, 8 5= =   41. x y3 2,   12 5= =

 43. x y9 5, 11 10= =   45. 52,267 J  47. 344,960 N
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 Chapter 8: Answers to Odd-Numbered Exercises AN-31

 25. 
( )+x x

1
2 1

  27. 1
1

tanh 1

θ
θ

+
− −

 29. 
t

t1
2

coth 1− −   31. xsech 1− −   33. 
ln 2

1 1
2

2

( )+
θ

 35. xsec   41. 
x

C
cosh 2

2
+

 43. x C12 sinh
2

ln 3( )− +   45. e e C7 ln x x7 7+ +−

 47. ( )− +x Ctanh 1
2

  49. − +t C2 sech   51. ln 5
2

 53. 3
32

ln 2+   55. − −e e 1  57. 3 4  59. +3
8

ln 2

 61. ( )ln 2 3   63. 
ln 3
2

−
  65. ln 3

 67. (a) ( )−sinh 31  (b) ( )+ln 3 2

 69. (a) coth (2) coth 5 41 1 ( )−− −  (b) 1
2

ln 1
3( )( )

 71. (a) ( ) ( )− +− −sech 12
13

sech 4
5

1 1

 (b) ln
1 1 12 13

12 13
ln

1 1 4 5
4 5

2 2( )
( )

( )
( )

−
+ −⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

+
+ −⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

  ln 3
2

ln (2) ln 4 3( ) ( )= − + =

 73. (a) 0 (b) 0

 77. (b) 
mg
k

 (c) 70 30 47 55.93 m s≈

 79. π2   81. 6
5

SECTION 7.4, pp. 469–470
 1. (a) Slower (b) Slower (c) Slower (d) Faster
 (e) Slower (f ) Slower (g) Same (h) Slower
 3. (a) Same (b) Faster (c) Same (d) Same
 (e) Slower (f ) Faster (g) Slower (h) Same
 5. (a) Same (b) Same (c) Same (d) Faster
 (e) Faster (f ) Same (g) Slower (h) Faster  7. d, a, c, b
 9. (a) False (b) False (c) True (d) True (e) True
 (f ) True (g) False (h) True
 13. When the degree of f is less than or equal to the degree of g.
 15. 1, 1

 21. (b) e e

e

ln( ) 17,000,000   ( )

24,154,952.75

17000000 17 10 1 10

17

6 6= <

= ≈

×

 (c) ≈ ×x 3.4306311 1015

 (d) They cross at ≈ ×x 3.4306311 10 .15

 23. (a) The algorithm that takes O n nlog2( ) steps
 (b) 

20 40 60 80 100

500

1000

1500

2000

2500

n

y

y = n3�2

y = n(log2 n)2

y = nlog2 n

 25. It could take one million steps for a sequential search; at most 
20 steps for a binary search.

PRACTICE EXERCISES, pp. 471–472
 1. e Ccos x− +   3. ln 8  5. 2 ln 2

 7. x C1
2

ln 5 2( )( )− +   9. 3 ln 7  11. ( )−2 2 1

 13. y
ln 2

ln 3 2( )
=   15. y xln ln 3= −   17. =

−
y

e
1

1 x

 19. (a) Same rate (b) Same rate (c) Faster (d) Faster
 (e) Same rate (f ) Same rate
 21. (a) True (b) False (c) False (d) True
 (e) True (f ) True
 23. 1 3  25. e1 m s  27. x xln 5 ln 3 ln 5 3( )− =

 29. 1 2  31. ( )( )= +−y x Ctan
2

1
2

 33. y x Csin 2 tan2 1( )= +−

 35. ( )= − + − −y e2 ln 2 x   37. = − +y x x4 4 1

 39. 19,035 years  41. ( )ln 16 9

ADDITIONAL AND ADVANCED EXERCISES, p. 472
 1. (a) 1 (b) π 2 (c) π

 3. x
x

tan tan 11 1( )+− −  is a constant and the constant is π
2

 for 

>x 0; it is π−
2

 for <x 0.

−4 −2 2 4

−2

−1

2

1

x

y

y = −
2
p

y = 
2
p

y = tan−1 x  + tan−1
x
1
Q R

 7. x y
ln 4

, 0
π

= =

Chapter 8
SECTION 8.1, pp. 477–478

 1. ln 5  3. x x x C2 tan 2 sec− − +
 5. + − +x x Carcsin 1 2   7. +−e Czcot

 9. +e Carctan( )z   11. π  13. t t t Ccot csc+ + +

 15. 2   17. y C1
8

ln 1 4 ln 2( )+ +

 19. Cln 1 sin θ+ +   21. ( )− + +t t t C2 2 arctan
2

2

 23. ( )− ≈2 2 1 0.82843  25. +e Carcsec( )y

 27. ( ) +x Carcsin 2 ln   29. x x Cln sin ln cos+ +

 31. 7 ln 8+   33. π− −⎡⎣ ⎤⎦ = −
−

y yarcsin 1
2

12
1

0

 35. − +x Carcsec 1
7

  37. θ θ θ θ− + + − + C
3 2

5
2

ln 2 5
3 2

 39. ( )− + +x e Cln 1 x   41. ( ) ( )− + + +e e e C1 2 ln 1x x x2

 43. x2 arctan( ) + C   45. 2 2 ln 3 2 2( )− +

 47. ( )+ln 2 3   49. 
( )

= =
+

x y0, 1
ln 3 2 2

 51. +xe Cx 3   53. ( ) ( )+ − +x x C1
30

1 3 24 3 2 4
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SECTION 8.2, pp. 483–485
 1. x x x C2 cos 2 4 sin 2( ) ( )− + +
 3. t t t t t Csin 2 cos 2 sin2 + − +

 5. −ln 4 3
4

  7. − +xe e Cx x

 9. ( )− + + +−x x e C2 2 x2

 11. y y y Ctan ( ) ln 11 2− + +−

 13. x x x Ctan ln cos+ +
 15. ( )− + − +x x x e C3 6 6 x3 2

 17. ( )− + +x x e C7 7 x2

 19. ( )− + − + − +x x x x x e C5 20 60 120 120 x5 4 3 2

 21. e e C1
2

cos sinθ θ( )− + +θ θ

 23. e x x C
13

3 sin 3 2 cos 3
x2
( )+ +

 25. ( )+ − ++ +s e e C2
3

3 9 s s3 9 3 9

 27. 3
3

ln (2)
18

2π π− −

 29. x x x x C1
2

cos ln sin ln( ) ( )[ ]− + +

 31. x x C1
2

ln sec tan2 2+ +

 33. x x x x x C1
2

ln 1
2

ln 1
4

2 2 2 2( ) − + +

 35. 
x

x
x

C1 ln 1− − +   37. +e C1
4

x 4

 39. ( ) ( )+ − + +x x x C1
3

1 2
15

12 2 3 2 2 5 2

 41. x x x x C2
5

sin 3 sin 2 3
5

cos 3 cos 2− − +

 43. x x C2
9

3 ln 23 2 ( )− +

 45. x x x C2 sin 2 cos+ +

 47. π − 4
8

2
  49. π −5 3 3

9

 51. ( )+ − +x x x C1
2

1 arctan
2

2   53. +xe Cx 2

 55. x x x x x C2 3 arcsin 2 9   1 4 9 13 2 ( )( ) ( ) ( )+ − + − +

 57. (a) π (b) π3  (c) 5π (d) n2 1 π( )+
 59. 2 1 ln 2π( )−   61. (a) π π( )− 2  (b) π2

 63. (a) 1 (b) π( )−e 2  (c) π( )+e
2

92

 (d) ( ) ( )= + = −x e y e1
4

1 ,   1
2

22

 65. 
π

( )− π−e1
2

1 2   67. υ= =u x d x dx,   cosn

 69. υ= =u x d e dx,  n ax   73. ( )= = + ( )−u x dv x dx,   1n 1 2

 77. ( )+ +x x x Carcsin cos arcsin

 79. x x x x Csec ln 11 2− + − +−   81. Yes

 83. (a) x x x Csinh cosh sinh1 1( )− +− −

 (b) x x x Csinh 11 2 1 2( )− + +−

SECTION 8.3, pp. 490–491

 1. x C1
2

sin 2 +   3. x C1
4

cos 4− +

 5. x x C1
3

cos cos3 − +   7. x x x Ccos 2
3

cos 1
5

cos3 5− + − +

 9. x x Csin 1
3

sin 3− +   11. − +x x C1
4

sin 1
6

sin4 6

 13. x x C1
2

1
4

sin 2+ +   15. 16 35  17. π3

 19. x x x x x C4 sin cos 2 cos sin 23− + + +
 21. Ccos 24 θ− +   23. 4  25. 2

 27. −3
2

2
3

  29. ( ) ( )− −4
5

3
2

18
35

2
7

3
2

5 2 7 2

  31. 2

 33. +x C1
2

tan 2   35. +x C1
3

sec3   37. +x C1
3

tan 3

 39. ( )+ +2 3 ln 2 3   41. C2
3

tan 1
3

sec tan2θ θ θ+ +

 43. 4 3  45. x x C2 tan 2 ln 1 tan2 2( )− + +

 47. x x x C1
4

tan 1
2

tan ln sec4 2− + +   49. −4
3

ln 3

 51. 43
3

  53. x x C1
10

cos 5 1
2

cos− − +   55. π

 57. x x C1
2

sin 1
14

sin 7+ +

 59. C1
6

sin 3 1
4

sin 1
20

sin 5θ θ θ− − +

 61. θ− + C2
5

cos 5   63. C1
4

cos 1
20

cos 5θ θ− +

 65. x x x Csec ln csc cot− + +   67. x x Ccos sec+ +

 69. x x x x C1
4

1
4

sin 2 1
8

cos 22 − − +   71. ( )+ln 2 3

 73. π 22   75. π π
π

= = +x y4
3

,   8 3
12

2
  77. π π( )( )−4 4

SECTION 8.4, pp. 495–496

 1. + + +x x Cln 9 2   3. π 4  5. π 6

 7. ( ) + − +− t t t C25
2

sin
5

25
2

1
2

 9. + − +x x C1
2

ln 2
7

4 49
7

2

 11. ( )− −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+−y y
C7 49

7
sec

7

2
1   13. − +x

x
C12

 15. +x Carcsec   17. − +x C12

 19. − − +x C9 2   21. ( )+ − + +x x C1
3

4 4 42 3 2 2

 23. − − +w
w

C2 4 2
  25. − − +x x Carcsin 1 2

 27. π−4 3 4
3

  29. −
−

+x
x

C
12

 31. − −⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +x

x
C1

5
1 2

5

  33. x x
x

C2 tan 2 4
4 1

1
2( )

+
+

+−

 35. x x C1
2

1
2

ln 12 2+ − +   37. υ
υ( )−

+ C1
3 1 2

3

 39. ln 9 ln 1 10( )− +   41. π 6

 43. + + +x x C1
2

ln 1 4 2

 45. + − +x x x C4 arcsin
2

  4

 47. ( )− − − +x x x x C1
4

arcsin 1
4

  1 1 2
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 Chapter 8: Answers to Odd-Numbered Exercises AN-33

 49. ( )( ) ( )( )
+ + + − − +x x x x C9 2 arcsin 1
3

1 2 1 8 2 2

 51. ( )+ + − + +x x x C4 3 arcsec 22

 53. ( )= − −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−y x x2 4
2

sec
2

2
1

 55. π( )= −y x3
2

arctan
2

3
8

  57. π3 4

 59. (a) π( )+ −1
12

6 3 12

 (b) π
π

π π
π( ) ( )

= −
+ −

= + −
+ −

x y3 3
4 6 3 12

,   12 3 72
12 6 3 12

2

 61. (a) ( ) ( )− − − − +x x x C1
3

1 2
15

12 2 3 2 2 5 2

 (b) ( ) ( )− − + − +x x C1
3

1 1
5

12 3 2 2 5 2

 (c) ( ) ( )− − − +x x C1
5

1 1
3

12 5 2 2 3 2

 63. − + +
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟3 2

2
1
2

ln 2 3
2 1

SECTION 8.5, pp. 502–504

 1. 
−

+
−x x

2
3

3
2

  3. 
( )+

+
+x x

1
1

3
1 2

 5. − + − +
−z z z

2 1 2
12

  7. +
−

+ −
−t t

1 17
3

12
2

 9. [ ]+ − − +x x C1
2

ln 1 ln 1

 11. ( ) ( )+ − +x x C1
7

ln 6 12 5   13. ln 15 2( )

 15. t t t C1
2

ln 1
6

ln 2 1
3

ln 1− + + + − +   17. 3 ln 2 2−

 19. 
( )

+
−

−
−

+x
x

x
x

C1
4

ln 1
1 2 12

  21. 2 ln 2 8π( )+

 23. −
+

+− y
y

Ctan 1
1

1
2

 25. ( ) ( )− − + − + +− −s s s C1 1 arctan2 1

 27. ( )− + + + − + +x x x x C2
3

ln 1 1
6

ln 1 3 arctan 2 1
3

2

 29. −
+

+ +x
x

x C1
4

ln 1
1

1
2

arctan

 31. 
θ θ

θ θ θ( ) ( )
−

+ +
+ + + − + + C1

2 2
ln 2 2 arctan 1

2
2

 33. + − +x x
x

Cln 12

 35. + + + − +x x
x

x C9 2 ln 1 7 ln 1

 37. ( )− + + +y
y y C

2
ln 1

2
ln 1

2
2   39. ( )+

+
+e

e
Cln 1

2

t

t

 41. 
y
y

C1
5

ln
sin 2
sin 3

−
+

+

 43. x x
x

Ctan 2
4

3 ln 2 6
2

1 2( ) − − +
−

+
−

 45. −
+

+x
x

Cln 1
1

 47. + + + −
+ +

+x x
x

C2 1 ln 1 1
1 1

 49. 
+

+x
x

C1
4

ln
1

4

4

 51. C1
2

ln
2 cos 1

2 cos 1
1
2

ln
1 cos
1 cos

θ
θ

θ
θ

+
−

+
−
+

+

 53. x x

x
C4 1 2 ln 1 1

1 1
+ + + −

+ +
+

 55. − + − + +x x x x C1
3

2 5 10  ln 23 2

 57. C1
ln 2

ln 2 2x x( )+ +−   59. x
x

x C1
4

ln 1
1

1
2

arctan−
+

− +

 61. x x C1
2

ln ln 1 ln 3( )( )+ + +

 63. + − +x x Cln 12

 65. ( ) ( )+ − + +x x x C2
9

1 4
45

13 3 3 2 3 5 2

 67. x t tln 2 ln 1 ln 2= − − − +

 69. =
+

−x t
t

6
2

1  71. 3 ln 25π

 73. ln (3) 1
2

−   75.  1.10

 77. (a) =
+

x e
e

1000
499

t

t

4

4
 (b) 1.55 days

SECTION 8.6, pp. 508–510

 1. −⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +x C2

3
arctan 3

3

 3. ( )( )− − + +x x C2 2 2
3

4   5. 
( ) ( )− + +x x C2 3 1

5

3 2

 7. x
x

x
x

C9 4 2
3

ln 9 4 3
9 4 3

− − − − −
− +

+

 9. ( )( )( )+ − − + − +x x x x x C2 2 6 4
6

4 arcsin 2
2

2

 11. x
x

C1
7

ln 7 7 2
− + + +

 13. x x
x

C4 2 ln 2 42
2

− − + − +

 15. e t t C
13

2 cos 3 3 sin 3
t2
( )+ +

 17. + − − +x x x x x C
2

arccos 1
4

arcsin 1
4

1
2

2

 19. ( )− + + +x x x x C
3

arctan
6

1
6

ln 1
3 2

2

 21. 
x x

C
cos 5

10
cos

2
− − +

 23. 
( ) ( )

−
⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

+
t t

C8
sin 7 2

7
sin 9 2

9

 25. C6 sin 12 6
7

sin 7 12θ θ( ) ( )+ +

 27. x x
x

x C1
2

ln 1
2 1

1
2

tan2
2

1( )
( )

+ +
+

+ +−

 29. ( )− + − +x x x x C1
2

arcsin 1
2

2

 31. − − +x x x Carcsin 2
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AN-34 Chapter 8: Answers to Odd-Numbered Exercises

 63. Diverges  65. Converges  67. Converges
 69. Diverges  71. Converges; 20  73. Converges; 1

81

 75. Diverges  77. Diverges  79. Converges; − 1
375

 81. (a) Converges when <p 1 (b) Converges when >p 1
 83. 1  85. π2   87. ln 2
 89. (a) 1 (b) π 3 (c) Diverges
 91. (a) π 2 (b) π  93. (b) 0.88621≈
 95. (a) 

5 10 15 20 250
x

y

Si(x) = sin t
t

dt

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

L0

 
5 10 15 20 25

-0.2

0.2

0

0.4

0.6

0.8

1

t

y

y = sin t
t

 (b) π 2
 97. (a) 

 33. t
t

t
C1 sin ln

1 1 sin
sin

2
2

− −
+ −

+

 35. y y Cln ln 3 ln 2( )+ + +

 37. + + + + +x x x Cln 1 2 52

 39. ( )+ − − + + +x x x x C2
2

5 4 9
2

arcsin 2
3

2

 41. 
x x x x x

C
sin 2 cos 2

10
2 sin 2 cos 2

15
4 cos 2

15

4 2

− − − +

 43. C
sin 2 cos 2

10
sin 2

15

3 2 3θ θ θ
+ +

 45. x x Ctan 2 2 ln sec 22 − +

 47. 
x x

x x C
sec tan 1 ln sec tan
π π
π π

π π
( )( )

+ + +

 49. 
x x x x

x x C
csc cot

4
3 csc cot

8
3
8

ln csc cot
3−

− − + +

 
51.

 
]

( ) ( )[

( ) ( )

− − +

− + − +

e e

e e C

1
2

sec 1 tan 1

ln sec 1 tan 1

t t

t t

 53. ( )+ +2 ln 2 1   55. π 3

 57. π π ( )+ +2 3 2  ln 2 3   59. = =x y4 3,   ln 2

 61. 7.62 63. π 8 67. (c) π 4

SECTION 8.7, pp. 518–520
 1. I: (a) 1.5, 0 (b) 1.5, 0 (c) 0%
  II: (a) 1.5, 0 (b) 1.5, 0 (c) 0%
  III: (a) 1.5, 0 (b) 1.5, 0 (c) 0%
 3. I: (a) 2.63, 0.04 (b) 2.67, 0.04 (c) 1.6%
  II:  (a) 2.75, 0.08 (b) 2.67, 0.08 (c) 3.1%
  III: (a) 2.67, 0 (b) 2.67, 0 (c) 0%
 5. I: (a) 5.88, 0.25 (b) 6, 0.13 (c) 2.1%
  II: (a) 6.25, 0.5 (b) 6, 0.25 (c) 4.2%
  III: (a) 6, 0 (b) 6, 0 (c) 0%
 7. I: (a) 0.496, 0.016 (b) 0.5, 0.004 (c) 0.9%
  II: (a) 0.509, 0.031 (b) 0.5, 0.009 (c) 1.8%
  III: (a) 0.5004, 0.0026 (b)  0.5, 0.0004 (c) 0.1%
 9. I: (a) 2.052, 0.081 (b) 2, 0.052 (c) 2.6%
  II: (a) 1.896, 0.161 (b) 2, 0.104 (c) 5.2%
  III: (a) 2.005, 0.0066 (b) 2, 0.0046 (c) 0.2%
 11. (a) 1 (b) 2  13. (a) 116 (b) 2
 15. (a) 283 (b) 2  17. (a) 71 (b) 10
 19. (a) 76 (b) 12  21. (a) 82  (b) 8
 23. 106.6 m 3  25. 2.55 m≈
 27. (a) 0.00021≈  (b) 1.37079≈  (c) 0.015%≈
 31. (a) 5.870≈  (b) ≤E 0.0032T

 33. 21.07 cm  35. 14.42  39. 28.7 mg≈

SECTION 8.8, pp. 528–531
 1. π 2  3. 2  5. 6  7. π 2  9. ln 3  11. ln 4

 13. 0  15. 3  17. π  19. ln 1
2
π( )+

 21. −1  23. 1  25. −1 4  27. π 2  29. π 3

 31. 6  33. ln 2  35. Diverges  37. Diverges
 39. Diverges  41. Diverges  43. Converges
 45. Converges  47. Diverges  49. Converges
 51. Converges  53. Diverges  55. Converges
 57. Converges  59. Diverges  61. Converges

-3 -2 -1 1 2 3

0.1

0

0.2

0.3

0.4

x

y

 (b) 0.683, 0.954, 0.997≈ ≈ ≈
 103. 0.16462≈

PRACTICE EXERCISES, pp. 532–534
 1. ( ) ( )( ) ( )+ + − + +x x x C1 ln 1 1

 3. ( )( ) − + +x x x Carctan 3 1
6

ln 1 9 2

 5. ( ) ( )+ − + + +x e x e e C1 2 1 2x x x2

 7. 
e x e x

C
2 sin 2

5
cos 2
5

x x

+ +

 9. x x C2 ln 2 ln 1− − − +

 11. − + +
+

+x x
x

Cln ln 1 1
1

 13. C1
3

ln
cos 1
cos 2
θ
θ

−
−
+

+

 15. ( )− + + +x x x C4 ln 1
2

ln 1 4 arctan2

 17. υ υ
υ

( ) ( )− + + C1
16

ln 2 25

6

 19. − +−t t C1
2

arctan 3
6

tan
3

1

 21. + + + − +x x x C
2

4
3

ln 2 2
3

ln 1
2

 23. − + + + +x x x C
2

9
2

ln 3 3
2

ln 1
2

 25. + −
+ +

+x
x

C1
3

ln 1 1
1 1

  27. − +−e Cln 1 s

 29. − − +y C16 2   31. − − +x C1
2

ln 4 2

 33. 
−

+
x

Cln 1
9 2

  35. +
−

+x
x

C1
6

ln 3
3
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 Chapter 9: Answers to Odd-Numbered Exercises AN-35

 37. − + +x x Ccos
5

cos
7

5 7
  39. +x Ctan

5

5

 41. C
cos

2
cos 11

22
θ θ

− +   43. ( )− +t C4 1 cos 2

 45. At least 16  47. All three rules yield π  49. 4  C− °
 51. (a) 2.42 L≈  (c) 24.83 km L≈
 53. π 2  55. 6  57. ln 3  59. 2  61. π 6

 63. Diverges  65. Diverges  67. Converges

 69. − +xe e C1
2

1
4

x x2 2   71. x x C2 tan − +

 73. x x x Ctan ln sec− +   75. x C1
3

cos 3( )− +

 77. ( )+
+ e

1 1
2

ln 2
1 2

  79. − + + +
x

x
x

C2ln 1 1 4 1
2 2

 81. − +e
e

C1x

x

2
  83. 9 4   85. 256 15

 87. x C1
3

csc3− +

 89. x x x x C2
3

2 2 ln 1
3 2

( )− + − + +

 91. ( ) ( )− + − − +− x x x x C1
2

sin 1 1
2

1 21 2

 93. x x x x C2 cot ln csc cot csc− − + + +

 95. υ
υ

υ+
−

+ +− C1
12

ln 3
3

1
6

tan
3

1

 97. C
sin 2 1

2
cos 2 1

4
θ θ θ( ) ( )+

+
+

+

 99. C1
4

sec 2 θ +   101. 
( )−

− −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
+

x
x C2

2

3
2 2

3

 103. ( )− +y Carctan 1

 105. ( )( )− − + +⎡
⎣⎢

⎤
⎦⎥

+z
z

z z C1
4

ln 1
4

1
4

  1
2

ln 4 1
2

arctan
2

2

 107. − − +t C1
4

9 4 2   109. ( )+
+

+e
e

Cln 1
2

t

t

 111. 1 4  113. +x C2
3

3 2   115. ( )− +t C1
5

arctan cos 5

117. r r C2 2 ln 1( )− + +   119. 
( )− + +x x C1

2
1
2

ln 12 2

 121. ( )+ + − + + − +x x x x C2
3

ln 1 1
6

ln 1 1
3

arctan 2 1
3

2

 123. ( ) ( ) ( )+ − + + + +x x x C4
7

1 8
5

1 4
3

1
7 2 5 2 3 2

 125. x x C2 ln 1+ + +   127. x x Cln ln 1 ln− + +

 129. +x C1
2

xln   131. − − +x
x

C1
2

ln 1 1 4

2

 133. ( )− +x x C1
2

arctan 2 tan   135. π
4

ADDITIONAL AND ADVANCED EXERCISES, pp. 534–537

 1. ( ) ( )+ − − +x x x x x Carcsin 2 arcsin 1 22 2

 3. 
x x x x x

C
arcsin

2
1 arcsin

4

2 2

+
− −

+

 5. ( )( )− − − +t t t C1
2

ln 1 arcsin2   7. 0

 9. ln (4) 1−   11. 1  13. π32 35  15. π2
 17. (a) π (b) π( )−e2 5

 19. (b) 
8 ln 2

3
16 ln 2

9
16
27

2

π
( ) ( )

− +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟  21. ( )+ −e e1

4
,   2

2

2

 23. ( )+ − + +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ − + +e e

e e
1 ln 1 1 2 ln 1 22

2

 25. π12
5

  27. a 1
2

,
  ln 2

4
= −   29. < ≤p1

2
1

 33. 
( )−

+
x

C2
1 tan 2

  35. 1  37. π3
9

 39. 
( )
( )

+ −
+ +

+
t

t
C1

2
ln

tan 2 1 2

tan 2 1 2

 41. 
θ
θ

( )
( )

+
−

+ Cln
1 tan 2
1 tan 2

Chapter 9
SECTION 9.1, pp. 547–551
 1. = = − = − = −a a a a0, 1 4 , 2 9, 3 161 2 3 4

 3. = = − = = −a a a a1, 1 3, 1 5, 1 71 2 3 4

 5. = = = =a a a a1 2, 1 2, 1 2, 1 21 2 3 4

 7. 1, 3
2

, 7
4

, 15
8

, 31
16

, 63
32

, 127
64

, 255
128

, 511
256

, 1023
512

 9. − − − −2, 1, 1
2

, 1
4

, 1
8

, 1
16

, 1
32

, 1
64

, 1
128

, 1
256

 11. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

 13. ( )= − ≥+a n1 , 1n
n 1

 15. ( )= − ≥+a n n1 ( ) , 1n
n 1 2  17. 

( )
=

+
≥

−
a

n
n2

3 2
, 1n

n 1

 19. = − ≥a n n1, 1n
2  21. = − ≥a n n4 3, 1n

 23. = + ≥a n
n

n3 2
!

, 1n  25. 
( )= + − ≥

+
a n1 1

2
, 1n

n 1

 27. 
( )( )

=
+ +

a
n n

1
1 2n  29. 

( )
= +

+ +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟a n

n
sin 1

1 1n 2

 31. Converges, 2 33. Converges, −1 35. Converges, −5
 37. Diverges 39. Diverges 41. Converges, 1 2
 43. Converges, 0 45. Converges, 2  47. Converges, 1
 49. Converges, 0 51. Converges, 0 53. Converges, 0
 55. Converges, 1 57. Converges, e 7 59. Converges, 1
 61. Converges, 1 63. Diverges 65. Converges, 4
 67. Converges, 0 69. Diverges 71. Converges, −e 1

 73. Diverges 75. Converges, 0 77. Diverges
 79. Converges, e 2 3 81. Converges, ( )>x x 0
 83. Converges, 0 85. Converges, 1 87. Converges, 1 2
 89. Converges, 1 91. Converges, π 2 93. Converges, 0
 95. Converges, 0 97. Converges, 1 2 99. Converges, 0

 101. 8   103. 4   105. 5   107. +1 2   109. = −x 2n
n 2

 111. (a) = − ≈f x x( ) 2, 1.414213562 22

  (b) π= − ≈f x x( ) tan( ) 1, 0.7853981635 4

  (c) =f x e( ) ,x  diverges

 113. (b) 1
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AN-36 Chapter 9: Answers to Odd-Numbered Exercises

 121. Monotonic, bounded
 123. Not monotonic, bounded
 125. Monotonic, bounded, converges
 127. Monotonic, bounded, converges
 129. Not monotonic, bounded, diverges
 131. Monotonic, bounded, converges
 133. Monotonic, bounded, converges
 145. (b) 3

SECTION 9.2, pp. 558–560

 1. 
( )( )

( )
=

−
−

s
2 1 1 3

1 1 3
, 3n

n

 3. 
( )
( )

=
− −
− −

s
1 1 2
1 1 2

, 2 3n

n

 5. = −
+

s
n

1
2

1
2

, 1
2n  7. �− + − +1 1

4
1

16
1

64
, 4

5

 9. �− + + + +3
4

9
16

57
64

249
256

, diverges.

 11. �( )( ) ( )( )+ + + + + + + +5 1 5
2

1
3

5
4

1
9

5
8

1
27

, 23
2

 13. �( ) ( ) ( )( )+ + − + + + − +1 1 1
2

1
5

1
4

1
25

1
8

1
125

, 17
6

 15. Converges, 5 3  17. Converges, 1 7

 19. Converges, 
+
e

e 2
  21. Diverges  23. 23 99

 25. 7 9  27. 1 15  29. 41333 33300   31. Diverges

 33. Inconclusive  35. Diverges  37. Diverges

 39. = −
+

s
n

1 1
1

;n  converges, 1

 41. = +s nln 1;n  diverges

 43. π ( )= −
+

s
n3

arccos 1
2

;n  converges, π−
6

    45. 1    47. 5

 49. 1  51. − 1
ln 2

  53. Converges, 2 2+

 55. Converges, 1  57. Diverges

 59. Converges, e
e 1

2

2 −
 61. Converges, 2 9  63. Converges, 3 2  65. Diverges

 67. Converges, 4  69. Diverges  71. Converges, 
e

π
π −

 73. Converges, 5 6−   75. Diverges

 77. a r x1, ;= = −  converges to x1 1( )+  for x 1<

 79. a r x3, 1 2;( )= = −  converges to x6 3( )−  for x in 1, 3( )−

 81. x
x

1
2

, 1
1 2

<
−

 83. x
x

2 0, 1
2

− < <
+

 85. x k k2 1
2

,π( )≠ +  an integer; 
x

1
1 sin−

 87. (a) 
n n

1
4 5n 2

∑ ( )( )+ +=−

∞

 (b) 
n n

1
2 3n 0

∑ ( )( )+ +=

∞

  (c) 
n n

1
3 2n 5

∑ ( )( )− −=

∞

 97. (a) r 3 5=  (b) r 3 10= −   99. r r
r

1, 1 2
1 2

< +
−

 101. (a) 16.84 mg, 17.79 mg (b) 17.84 mg

 103. (a) 0, 1
27

, 2
27

, 1
9

, 2
9

, 7
27

, 8
27

, 1
3

, 2
3

, 7
9

, 8
9

, 1

 (b) 1
2

2
3

1
n

n

1

1

∑ ( ) =
=

∞ −
  105. 4 3 π( )

SECTION 9.3, pp. 565–567
 1. Converges  3. Converges  5. Converges  7. Diverges
 9. Converges  11. Diverges

 13. Converges; geometric series, r 1
10

1= <

 15. Diverges; n
n

lim
1

1 0
n +

= ≠
→∞

 17. Diverges; p-series, p 1<
 19. Converges; geometric series, r 1

8
1= <

 21. Diverges; Integral Test
 23. Converges; geometric series, r 2 3 1= <
 25. Diverges; Integral Test

 27. Diverges; 
n

lim 2
1

0
n

n

+
≠

→∞

 29. Diverges; n nlim ln 0
n

( ) ≠
→∞

 31. Diverges; geometric series, r 1
ln 2

1= >

 33. Converges; Integral Test
 35. Diverges; nth-Term Test
 37. Converges; Integral Test
 39. Diverges; nth-Term Test
 41. Converges; by taking limit of partial sums
 43. Converges; Integral Test
 45. Converges; Integral Test  47. a 1=
 49. (a) 

1

1
1�2 1�n

0 2 3 n n + 1

n + 1

1

1

dx < 1 +      + … +

x

y

1
xy =

1
x

1
n

1
2

L

L

1

1
1�2 1�n

0 2 3 nn − 1

n

1

1

< 1 + dx1 +      + … +

x

y

1
xy =

1
x

1
n

1
2

 (b) ≈41.55
 51. True  53. n 251,415≥

 55. s
n
1 1.195

n
8

1

8

3∑= ≈
=

  57. 10 60

 65. (a) S1.20166 1.20253≤ ≤
 (b) S 1.2021, error 0.0005≈ <

 67. 
6

1 0.64493
2π( )− ≈

SECTION 9.4, pp. 571–572
 1. Converges; compare with n1 2∑ ( )

 3. Diverges; compare with n1∑ ( )

 5. Converges; compare with n1 3 2∑ ( )

 7. Converges; compare with n n
n n

4
0

5 1
4 3 2∑ ∑+

+
=

 9. Converges
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 Chapter 9: Answers to Odd-Numbered Exercises AN-37

 11. Diverges; limit comparison with n1∑ ( )

 13. Diverges; limit comparison with n1∑ ( )
 15. Diverges
 17. Diverges; limit comparison with n1∑ ( )

 19. Converges; compare with 1 2n∑ ( )

 21. Diverges; nth-Term Test
 23. Converges; compare with n1 2∑ ( )

 25. Converges; n
n

n
n3 1 3

1
3

n n n

( ) ( ) ( )+
< =

 27. Diverges; direct comparison with n1∑ ( )

 29. Diverges; limit comparison with n1∑ ( )

 31. Diverges; limit comparison with n1∑ ( )

 33. Converges; compare with n1 3 2∑ ( )

 35. Converges; 
n

1
2

1
2n n

≤   37. Converges; 1
3 1

1
3n n1 1+

<
− −

 39. Converges; comparison with n1 5 2∑ ( )

 41. Diverges; comparison with n1∑ ( )

 43. Converges; comparison with ∑ ( )−n n
1

1
 or limit comparison 

with ∑ ( )n1 2

 45. Diverges; limit comparison with ∑ ( )n1

 47. Converges; 
π

<
− n

n n
tan 21

1.1 1.1

 49. Converges; compare with ∑ ( )n1 2

 51. Diverges; limit comparison with ∑ ( )n1

 53. Converges; limit comparison with ∑ ( )n1 2

 55. Diverges nth-Term Test
 67. Converges  69. Converges  71. Converges

SECTION 9.5, pp. 577–578
 1. Converges  3. Diverges  5. Converges
 7. Converges  9. Converges  11. Diverges
 13. Converges  15. Converges  17. Converges; Ratio Test
 19. Diverges; Ratio Test  21. Converges; Ratio Test
 23. Converges; compare with ∑ ( )( )3 1.25 n

 25. Diverges; ( )− = ≠
→∞

−

n
elim 1 3 0

n

n
3

 27. Converges; compare with ∑ ( )n1 2

 29. Diverges; compare with ∑ ( )( )n1 2   31. Diverges; �a 0n

 33. Converges; Ratio Test  35. Converges; Ratio Test
 37. Converges; Ratio Test  39. Converges; Root Test
 41. Converges; compare with ∑ ( )n1 2

 43. Converges; Ratio Test  45. Diverges; Ratio Test
 47. Converges; Ratio Test  49. Diverges; Ratio Test
 51. Converges; Ratio Test  53. Converges; Ratio Test

 55. Diverges; ( )= →
( )

a 1
3

1n

n1 !

  57. Converges; Ratio Test

 59. Diverges; Root Test  61. Converges; Root Test
 63. Converges; Ratio Test
 65. (a) Diverges; nth-Term Test (b) Diverges; Root Test
 (c) Converges; Root Test (d) Converges; Ratio Test
 69. Yes  71. Converges absolutely

SECTION 9.6, pp. 583–585
 1. Converges by Alternating Series Test
 3. Converges; Alternating Series Test
 5. Converges; Alternating Series Test
 7. Diverges; �a 0n

 9. Diverges; �a 0n

 11. Converges; Alternating Series Test
 13. Converges by Alternating Series Test
 15. Converges absolutely. Series of absolute values is a convergent 

 geometric series.
 17. Converges conditionally; →n1 0 but ∑ =

∞

n
1

n 1
 diverges.

 19. Converges absolutely; compare with ∑ ( )
=

∞
n1 .

n 1
2

 21. Converges conditionally; ( )+ →n1 3 0 but ∑ +=

∞

n
1

3n 1
 

diverges ∑( )( )
=

∞
ncompare with 1

n 1
.

 23. Diverges; +
+

→n
n

3
5

1

 25. Converges conditionally; ( )+ →
n n
1 1 0

2
 but ( )+ >n n n1 12

 27. Converges absolutely; Ratio Test
 29. Converges absolutely by Integral Test
 31. Diverges; �a 0n

 33. Converges absolutely by Ratio Test

 35. Converges absolutely, since  n
n n n n

cos 1 1n 1

3 2 3 2
π ( )= − =

+
  

(convergent p-series)
 37. Converges absolutely by Root Test
 39. Diverges; → ∞an

 41. Converges conditionally; 

( )+ − = + + →n n n n1 1 1 0, but series of  

absolute values diverges ∑ ( )( )ncompare with 1 .
 43. Diverges, → ≠a 1 2 0n

 45. Converges absolutely;  

sech =
+

=
+

< =
−

n
e e

e
e

e
e e

2 2
1

2 2 ,
n n

n

n

n

n n2 2
 a term from a  

convergent geometric series.

 47. Converges conditionally; ∑ ( )
( )

−
+

+

n
1 1

2 1
n 1  converges by  

Alternating Series Test; ∑ ( )+n
1

2 1
 diverges by limit  

comparison with ∑ ( )n1 .

 49. <Error 0.2  51. < × −Error 2 10 11

 53. ≥n 31  55. ≥n 4  57. Converges; Root Test
 59. Converges; Limit of Partial Sums
 61. Converges; Ratio Test  63. Diverges; p-series Test
 65. Converges; Root Test  67. Converges; Limit Comparison Test
 69. Diverges; Limit of Partial Sums
 71. Diverges; Limit Comparison Test
 73. Diverges; nth-Term Test
 75. Diverges; Limit of Partial Sums
 77. Converges; Limit Comparison Test
 79. Converges; Limit Comparison Test
 81. Converges; Ratio Test
 83. 0.54030  85. (a) ≥ +a an n 1 (b) −1 2

SECTION 9.7, pp. 594–597
 1. (a) − < <x1,  1 1 (b) − < <x1 1 (c) none
 3. (a) − < <x1 4,  1 2 0 (b) − < <x1 2 0 (c) none
 5. (a) − < <x10,  8 12 (b) − < <x8 12 (c) none
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AN-38 Chapter 9: Answers to Odd-Numbered Exercises

 7. (a) − < <x1,  1 1 (b) − < <x1 1 (c) none

 9. (a) 3, − ≤ ≤x3 3 (b) − ≤ ≤x3 3 (c) none

 11. (a) ∞, for all x (b) for all x (c) none

 13. (a) − < <x1 2,  1 2 1 2 (b) − < <x1 2 1 2 (c) none

 15. (a) − ≤ <x1,  1 1 (b) − < <x1 1 (c) = −x 1

 17. (a) − < <x5,  8 2 (b) − < <x8 2 (c) none

 19. (a) − < <x3,  3 3 (b) − < <x3 3 (c) none

 21. (a) − < <x1,  2 0 (b) − < <x2 0 (c) none

 23. (a) − < <x1,  1 1 (b) − < <x1 1 (c) none

 25. (a) =x0, 0 (b) =x 0  (c) none

 27. (a) − < ≤x2,  4 0 (b) − < <x4 0 (c) =x 0

 29. (a) − ≤ ≤x1,  1 1 (b) − ≤ ≤x1 1 (c) none

 31. (a) ≤ ≤x1 4, 1 3 2 (b) ≤ ≤x1 3 2 (c) none

 33. (a) ∞, for all x (b) for all x (c) none

 35. (a) − ≤ <x1,  1 1 (b) − < <x1 1 (c) −1

 37. 3  39. 8  41. ∞
 43. ( )− < < −x x1 3 1 3, 1 1 3

 45. ( )− < < + −x x x1 3, 4 3 2 2

 47. ( )< < −x x0 16, 2 4

 49. ( )− < < −x x2 2, 3 2 2

 51. ∑ ( ) ( )= − − < <
=

∞

x
x x2 2 1 1 , 0 2

n

n n

0

 53. ∑ ( ) ( )− − < <
=

∞

x x5 , 2 8
n

n n

0

1
3

 55.  ∑( )( ) ( )

( )

< < − − −

< < − −
=

∞
−x x n x

x x

1 5, 2 1 ,    3 ,

1 5,  2 1

n

n n

1

1
2

1

2

 57. (a)  �= − + − + − +x x x x x xcos 1
2! 4! 6! 8! 10!

;
2 4 6 8 10

  

converges for all x
 (b) Same answer as part (c)

 (c) �− + − + − +x x x x x x2 2
3!

2
5!

2
7!

2
9!

2
11!

3 3 5 5 7 7 9 9 11 11

 59. (a) π π+ + + + − < <x x x x x x
2 12 45

17
2520

31
14175

, 
2 2

2 4 6 8 10

 (b) � π π+ + + + + − < <x x x x x1 2
3

17
45

62
315

, 
2 2

2
4 6 8

 65. (a) T (b) T (c) F (d) T (e) N (f ) F (g) N (h) T

SECTION 9.8, pp. 601–602
 1.  = = + = + +

= + + +

P x P x x P x x x

P x x x x

( ) 1,  ( ) 1 2 ,  ( ) 1 2 2 ,

( ) 1 2 2 4
3

0 1 2
2

3
2 3

 3.  ( ) ( )

( ) ( ) ( )

= = − = − − −

= − − − + −

P x P x x P x x x

P x x x x

( ) 0,  ( ) 1,  ( ) 1 1
2

1 ,

( ) 1 1
2

1 1
3

1

0 1 2
2

3
2 3

 5.  ( )

( ) ( )

( ) ( ) ( )

= = − −

= − − + −

= − − + − − −

P x P x x

P x x x

P x x x x

( ) 1
2

,  ( ) 1
2

1
4

2 ,

( ) 1
2

1
4

2 1
8

2 ,

( ) 1
2

1
4

2 1
8

2 1
16

2

0 1

2
2

3
2 3

 7.  π

π π

π π

π

( )
( ) ( )
( ) ( )

( )

= = + −

= + − − −

= + − − −

− −

P x P x x

P x x x

P x x x

x

( ) 2
2

,  ( ) 2
2

2
2 4

,

( ) 2
2

2
2 4

2
4 4

,

( ) 2
2

2
2 4

2
4 4

2
12 4

0 1

2

2

3

2

3

 9.  ( )

( ) ( )

( ) ( ) ( )

= = + −

= + − − −

= + − − − + −

P x P x x

P x x x

P x x x x

( ) 2,  ( ) 2 1
4

4 ,

( ) 2 1
4

4 1
64

4 ,

( ) 2 1
4

4 1
64

4 1
512

4

0 1

2
2

3
2 3

 11. �∑ ( )− = − + − + −
=

∞ x
n

x x x x
!

1
2! 3! 4!n

n

0

2 3 4

 13. �∑ ( )− = − + − +
=

∞

x x x x1 1
n

n n

0

2 3

 15. ∑ ( )

( )

−
+=

∞ + +x
n

1 3
2 1 !n

n n n

0

2 1 2 1
  17. ∑ ( )−

=

∞ x
n

7 1
(2 )!n

n n

0

2
  19. ∑

=

∞ x
n(2 )!n

n

0

2

 21. − − +x x x2 5 44 3  23. ∑( )
( )

−
−=

∞
+ x

n
1

2 1 !n

n
n

1

1
2

 25. ( ) ( ) ( )+ − + − + −x x x8 10 2 6 2 22 3

 27. ( ) ( ) ( ) ( )− + + + − + + +x x x x21 36 2 25 2 8 2 22 3 4

 29. ∑ ( ) ( )( )− + −
=

∞

n x1 1 1
n

n n

0

 31. ∑ ( )−
=

∞ e
n

x
!

2
n

n

0

2

 33. ∑ π( )( )− −
=

∞
+

n
x1 2

(2 )! 4n

n
n n

0

1
2 2

 35. �− − − − − < <x x x1 2 5
2

,  1 12

 37. �− + + − < <x x x x1
2

1
6

,  1 12 3 4

 39. � ( )+ + + −∞ ∞x x x
2

, ,4 6
8

 41. = = −L x Q x x( ) 0, ( ) 22    43. = = +L x Q x x( ) 1,  ( ) 1 22

 45. = =L x x Q x x( ) ,  ( )

SECTION 9.9, pp. 608–609

 1. �∑ ( )− = − + − +
=

∞ x
n

x x x5
!

1 5 5
2!

5
3!n

n

0

2 2 3 3

 3.  ∑ ∑( )

( )

( )

( )

( )− −
+

= −
+

= − + − + +

=

∞ +

=

∞ + +

�

x
n

x
n

x x x x

5 1
2 1 !

5   1
2 1 !

5 5
3!

5
5!

5
7!

n

n n

n

n n

0

2 1

0

1 2 1

3 5 7

 5. ∑ ( )( )− = − + −
=

∞

�x
n

x x1 5
(2 )!

1 25
2!

625
4!n

n n

0

2 2 4 8

 7. �∑( )− = − + − +
=

∞
+ x

n
x x x x1  

2 3 4n

n
n

1

1
2

2
4 6 8

 9. �∑ ( )( )− = − + − +
=

∞

x x x x1 3
4

1 3
4

3
4

3
4n

n
n

n

0

3 3
2

2
6

3

3
9

 11. �∑( )+ − = + − + −
=

∞
+ x

n
x x xln3 1 2 ln3 2 2 8

3n

n
n n

1

1 2 3

 13. �∑ = + + + + +
=

∞ +x
n

x x x x x
! 2! 3! 4!n

n

0

1
2

3 4 5
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 Chapter 9: Answers to Odd-Numbered Exercises AN-39

 15. ∑ ( )− = − + − +
=

∞

�x
n

x x x x1
(2 )! 4! 6! 8! 10!n

n n

2

2 4 6 8 10

 17. ∑π π π π( )− + − + = −

=

∞ +
�x x x x x

n2! 4! 6!
1

(2 )!n

n n n2 3 4 5 6 7

0

2 2 1

 19.  ∑ ( )+ −
⋅

=

−
⋅

+
⋅

−
⋅

+
⋅

−

=

∞

�

x
n

x x x x

1 1 (2 )
2 (2 )!

1 (2 )
2 2!

(2 )
2 4!

(2 )
2 6!

(2 )
2 8!

n

n n

1

2

2 4 6 8

 21. ∑ = + + +
=

∞

�x x x x x(2 ) 2 4
n

n2

0

2 3 4

 23. �∑ = + + + +
=

∞
−nx x x x1 2 3 4

n

n

1

1 2 3

 25. �∑( )−
−

= − + − +
=

∞
+

−x
n

x x x x1
2 1

 
3

 
5 7n

n
n

1

1
4 1

3
7 11 15

 27. �∑ ( )( )+ − = + − + −
=

∞

n
x x x x1

!
1 2 3

2
5
6

25
24n

n n

0

2 3 4

 29. �∑ ( )− = − + −
=

∞ − +x
n

x x x1
3

 
3

 
6

 
9n

n n

1

1 2 1 3 5 7

 31. + + − +�x x x x
3 30

2
3 5

 33. �− + − +x x x x2
3

23
45

44
105

2 4 6 8

 35. �+ + − +x x x1 1
2

1
8

2 4  37. �− − − −x x x1
2 2 4

2 3 4

 39. ≤
⋅

< × −Error 1
10 4!

4.2 10
4

6

 41. < <x (0.06) 0.569681 5

 43. < < × − < <− − − xError (10 ) 6 1.67 10 , 10 03 3 10 3

 45. < < × −Error (3 )(0.1) 6 1.87 100.1 3 4

 53. (a) ( )= + + −Q x kx k k x( ) 1 1
2

2 (b) ≤ < −x0 100 1 3

SECTION 9.10, pp. 616–618

 1. + − +x x x1
2 8 16

2 3
  3. + + +x x x1 3 6 102 3

 5. − + −x x x1 3
4 2

2 3
  7. − + −x x x1

2
3

8
5
16

3 6 9

 9. + + −x x x1 3
4

3
32

1
128

2 4 6

 11. ( )+ = + + + +x x x x x1 1 4 6 44 2 3 4

 13. ( )− = − + −x x x x1 2 1 6 12 83 2 3  15. 0.0713362
 17. 0.4969536  19. 0.0999445  21. 0.10000

 23. 
⋅

≈1
13 6!

0.00011  25. −
⋅

+
⋅

x x x
3 7 3! 11 5!

3 7 11

 27. (a) −x x
2 12

2 4

 (b) � ( )−
⋅

+
⋅

−
⋅

+ + −
⋅

x x x x x
2 3 4 5 6 7 8

1
31 32

2 4 6 8
15

32

 29. 1 2  31. −1 24  33. 1 3  35. −1  37. 2

 39. 3 2  41. e  43. cos 3
4

  45. 3
2

  47. 
−
x

x1

3

 49. 
+
x

x1

3

2
  51. 

( )

−
+ x

1
1 2   55. 500 terms  57. 4 terms

 59. (a) + + +x x x x
6

3
40

5
112

,
3 5 7

 radius of =convergence 1

  (b) π − − − −x x x x
2 6

3
40

5
112

3 5 7

 61. �− + − +x x x1 2 3 42 3

 67. (a) −1 (b) ( )( )+ i1 2 1  (c) −i

 71. �+ + − +x x x x1
3

1
30

,2 3 5  for all x

PRACTICE EXERCISES, pp. 619–621
 1. Converges to 1  3. Converges to −1  5. Diverges
 7. Converges to 0  9. Converges to 1  11. Converges to −e 5

 13. Converges to 3  15. Converges to ln 2  17. Diverges
 19. 1 6  21. 3 2  23. ( )−e e 1   25. Diverges
 27. Converges conditionally 29. Converges conditionally
 31. Converges absolutely 33. Converges absolutely
 35. Converges absolutely 37. Converges absolutely
 39. Converges absolutely 41. Converges absolutely
 43. Diverges
 47. (a) − ≤ < −x3,  7 1 (b) − < < −x7 1 (c) = −x 7
 49. (a) ≤ ≤x1 3, 0 2 3 (b) ≤ ≤x0 2 3 (c) None
 51. (a) ∞, for all x (b) For all x (c) None

 53. (a) − < <x3,  3 3 (b) − < <x3 3 (c) None
 55. (a) − < <e e x e,   (b) − < <e x e (c) Empty set

 57. 
+ x
1

1
, 1

4
, 4

5
  59. πxsin , , 0   61. e , ln 2, 2x

 63. ∑
=

∞

x2
n

n n

0

  65. ∑ π( )

( )

−
+=

∞ + +x
n

1
2 1 !n

n n n

0

2 1 2 1

 67. ∑ ( )−

=

∞ x
n

1
(2 )!n

n n

0

10 3
  69. ∑

π( )( )

=

∞ x
n

2
!n

n

0

 71. �( ) ( ) ( )− +
⋅

+ +
⋅

+ +
⋅

+x x x2 1
2 1!

3 1
2 2!

9 1
2 3!

2

3

3

5

 73. ( ) ( ) ( )− − + − − −x x x1
4

1
4

3 1
4

3 1
4

3
2 3

2
4

3

 75. 0.4849171431  77. 0.4872223583  79. 7 2  81. 1 12
 83. −2  85. = − =r s3, 9 2  87. 2 3

 89. ( )+n
n

ln 1
2

; the series converges to ( )ln 1
2

.

 91. (a) ∞ (b) = =a b1, 0  93. It converges.
 101. (a) Converges; Limit Comparison Test
  (b) Converges; Direct Comparison Test
  (c) Diverges; nth-Term Test
 103. 2

ADDITIONAL AND ADVANCED EXERCISES, pp. 621–623
 1. Converges; Comparison Test
 3. Diverges; nth-Term Test
 5. Converges; Comparison Test
 7. Diverges; nth-Term Test

 9. With π π π( ) ( )= = − − − −a x x x3, cos 1
2

3
2

3 1
4

3 2 

π( )+ − +�x  3
12

3 3

 11. With �= = + + + +a e x x x0,  1
2! 3!

x
2 3

 13. With π π π( ) ( )= = − − + −a x x x22 , cos 1 1
2

22 1
4!

222 4 

π( )− − +�x  1
6!

22 6

 15. Converges, = blimit   17. π 2  21. = ±b 1
5

 23. = = −a L2, 7 6  27. (b) Yes
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AN-40 Chapter 10: Answers to Odd-Numbered Exercises

 33. (a) ∑
=

∞
−nx

n

n

1

1 (b) 6 (c) 
q
1

 35. (a)  ( ) ( )

( ) ( ) ( )

= − −

= − = −

− − −

− −

R C e e e

R C e e C e

1 1 ,

1 1
n

kt nkt kt

kt kt kt

0

0 0

0 0 0

0 0 0

  (b) 

( )

( ) ( )

= ≈

= − ≈ ≈

≈ < − <

−

R e

R R e R

R R R R

1 0.368,

1 0.9999546 0.58195;

0.58198; 0 0.0001

1

10
10

10

  (c) 7

Chapter 10
SECTION 10.1, pp. 630–633
 1. 

x

y

t > 0t < 0

0 1

1

y = x2

 3. 

−1
−1

−2

−3

−4

1 2 3 4

1

4

x

y

t =

y = 2x  + 3

2
5

t =
4
7

 5. 

x

y

−2 −1 10 2

−1

1

2

−2

t = 0t =

t = p

x2 + y2 = 1

2
p

 7. 

x

y

0 4

2

t = 0, 2p

y2

4
x2

16
= 1+

 9. 

x

y

−1

−1

1

1

p
2

t =p
2

t = −

y = 1 − 2x2

 11. 

x

y

2

(0, 0)

Changes
direction
at t = 0

t < 0

y = x2 (x  − 2)

 13. 

x

y

0−1 1

t = 0

t = −1

y = 
Î

1 − x2

 15. 

x

y

−2 −1 1 2 3 4

−1

1

2

3

−2

−3

t = 0

0 ≤ t ≤

≤ t < 0

x = y2

p
2

−

p
2

 19. D  21. E  23. C
 25. 

1 20.5 1.5

1

0.5

x

y

−0.5

 27. 

x
2 41 3

y

−1

−2

−3

−4

 29. (a) x a t y a t tcos , sin , 0 2π= = − ≤ ≤
 (b) x a t y a t tcos , sin , 0 2π= = ≤ ≤
 (c) x a t y a t tcos , sin , 0 4π= = − ≤ ≤
 (d) x a t y a t tcos , sin , 0 4π= = ≤ ≤
 31. Possible answer: x t y t t1 5 , 3 4 , 0 1= − + = − + ≤ ≤
 33. Possible answer: x t y t t1, , 02= + = ≤
 35. Possible answer: x t y t t2 3 , 3 4 , 0= − = − ≥
 37. Possible answer: x t y t t2 cos , 2 sin , 0 4π= = ≤ ≤

 39. Possible answer: x at
t

y a
t

t
1

,
1

, 
2 2

= −
+

=
+

−∞ < < ∞

 41. Possible answer: x y4
1 2 tan

,
4 tan

1 2 tan
,

θ
θ
θ

=
+

=
+

 

x y0 2 and 0,   2θ π≤ < = =  if 2θ π=
 43. Possible answer: x t y t t2 cos , sin , 0 2π= − = ≤ ≤
 45. x t y t t2 cot , 2 sin , 02 π= = < <
 47. x a t t y a t tsin tan , sin , 0 22 2 π= = ≤ <   49. 1, 1( )

SECTION 10.2, pp. 640–642

 1. y x
d y
dx

2 2, 2
2

2
= − + = −

 3. y x
d y
dx

1
2

2 2, 2
4

2

2
= − + = −

 5. y x
d y
dx

1
4

, 2
2

2
= + = −   7. y x

d y
dx

2 3, 3 3
2

2
= − = −

 9. y x
d y
dx

4, 1
2

2

2
= − =

 11. y x
d y
dx

3 3
3

2, 4
2

2

π= − + = −

 13. y x
d y
dx

9 1, 108
2

2
= − =   15. 3

16
−   17. 6−

 19. 1  21. a3 2π  23.  ab π   25. 4  27. 12

 29. 2π   31. 8 2π   33. 52
3
π   35. 3 5π

 37. x y,  12 24 ,  24 2
2 2π π π( )( ) = − −

 39. x y,  1
3

,  4
3

π( )( ) = −   41. (a) π (b) π

 17. 

x

y

−1 0

t = 0

x2 − y2 = 1
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 Chapter 10: Answers to Odd-Numbered Exercises AN-41

 43. (a) x y
dy
dx

1, 0, 1
2

= = =   (b) x y
dy
dx

0, 3, 0= = =

 (c) x y
dy
dx

3 1
2

, 3 3
2

, 2 3 1
3 2

= − = − = −
−

 45. y x2
2

, 1 , 2
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ =  at t y x0,   2= = −  at t π=

 47. (a) 8a (b) 64
3
π   49. 32 15π

SECTION 10.3, pp. 645–646
 1. a, e; b, g; c, h; d, f  3. 

x

y

2, 
p
2

−2, 
p
2

(2, 0)(−2, 0)

Q    R

Q     R

 (a) n2, 
2

2π π( )+  and n n2, 
2

2 1 ,  π π( )( )− + +  an integer

 (b) n2, 2 π( ) and n n2,  2 1 ,  π( )( )− +  an integer

 (c) n2, 3
2

2π π( )+  and n n2, 3
2

2 1 ,  π π( )( )− + +  an integer

 (d) n2,  2 1 π( )( )+  and n n2, 2 ,  π( )−  an integer

 5. (a) 3, 0( )  (b) 3, 0( )−   (c) 1,  3( )−   (d) 1,  3( )
 (e) 3, 0( )  (f) 1,  3( )  (g) 3, 0( )−   (h) 1,  3( )−

 7. (a) 2, 
4
π( )  (b) 3, π( )  (c) 2, 11

6
π( )

 (d) 5,  tan 4
3

1π( )− −

 9. (a) 3 2, 5
4
π( )−   (b) 1, 0( )−   (c) 2, 5

3
π( )−

 (d) 5,  tan 3
4

1π( )− − −

 11. 

x

y

0

2

2

r = 2

 13. 

x

y

0 1

r ≥ 1

 15. 

x

y

0

0 ≤ u ≤ 
r ≥ 0

p
6

 17. 

x

y

0−1

−1

3

2

u = 

−1 ≤ r ≤ 3

p
3

p
3

 19. 

x

y

O

u =
2
p

r ≥ 0

 21. 

x

y

0 1

r = 1
0 ≤ u ≤ p

 27. x 2,=  vertical line through 2, 0( )  29. y 0,=  the x-axis
 31. y 4,=  horizontal line through 0, 4( )

 33. x y 1,+ =  line, m b1,   1= − =
 35. x y 1,2 2+ =  circle, C 0, 0( ), radius 1
 37. y x2 5,− =  line, m b2,   5= =
 39. y x,2 =  parabola, vertex 0, 0( ), opens right
 41. y e ,x=  graph of natural exponential function
 43. x y 1,+ = ±  two straight lines of slope 1,−  y-intercepts b 1= ±
 45. x y2 4,2 2( )+ + =  circle, C 2, 0 ,( )−  radius 2
 47. x y 4 16,2 2( )+ − =  circle, C 0, 4( ), radius 4
 49. x y1 1 2,2 2( )( )− + − =  circle, C 1, 1( ), radius 2
 51. y x3 4+ =   53. r cos 7θ =   55. 4θ π=
 57. r 2=  or r 2= −   59. r r4 cos 9 sin 362 2 2 2θ θ+ =
 61. r sin 4 cos2 θ θ=   63. r 4 sin θ=
 65. r r r6 cos 2 sin 62 θ θ= − −
 67. 0,  ,θ( )  where θ is any angle

SECTION 10.4, pp. 649–650

 23. 

x

y

0

1

p

4
3p
4

≤ u ≤

0 ≤ r ≤ 1

 25. 

x

y

0 1 2

1

2

−1

−2

p

2
p

2
≤ u ≤

1 ≤ r ≤ 2

−

 1. x-axis

x

y

1

2

−1

r = 1 + cos u

 3. y-axis

x

y

0

−2

1−1

r = 1 − sin u

 5. y-axis

x

y

0

1

2

3

−1

−1 1 2−2

r = 2 + sin u

 7. x-axis, y-axis, origin

x

y

−1 1

Î

2
2

Î

2
2

−

r = sin (u�2)

 9. x-axis, y-axis, origin

x

y

−1 1

r2 = cos u

 11. y-axis, x-axis, origin

x

y

1

−1

r2 = −sin u
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AN-42 Chapter 10: Answers to Odd-Numbered Exercises

 13. x-axis, y-axis, origin  15. Origin
 17. The slope at 1,  2π( )−  is 1,−  at 1,   2π( )− −  is 1.

x

y

r = −1 + cos u

−1, − 
p

2

−1,
p

2

2

Q      R

Q     R

 19. The slope at 1,  4π( ) is 1,−  at 1,  4π( )− −  is 1, at 1, 3 4π( )−   
is 1, at 1,  3 4π( )−  is 1.−

x

y

r = sin 2u

−1, −
p

4

1, −
3p
4

1, 
p

4

−1,
3p
4

Q       R Q   R

Q      R Q     R

 21. At 6π : slope 3, concavity 16 (concave up); at 3π : slope 3− , 
concavity 16−  (concave down).

 23. At 0: slope 0, concavity 2 (concave up); at 2π : slope 2 π− ,  
concavity 2 8 2 3π π( )− +  (concave down).

 25.  (a)

x

y

1
2

1
2

−

1
2

1
2

3
2

r =    + cos u

(b) 

x

y

1
2

1
2

−

1
2

r =    + sin u

3
2

 27. (a) 

x

y

0 5
2

1
2

−

3
2

r =    + cos u

3
2

3
2

−

(b) 

x

y

1
2

5
2

r =    − sin u

3
2

3
2

−

3
2

−

 29. 

x

y

r = −1

r = 2

 31. 

x

y

−4 0

−2

2

0 ≤ r ≤ 2 − 2 cos u

 33. Equation (a)

SECTION 10.5, pp. 654–655

 1. 1
6

3π   3. 18π  5. 
8
π  7. 2  9. 

2
1π −

 11. 5 8π −   13. 3 3 π−   15. 
3

3
2

π +

 17. 8
3

3π +   19. (a) 3
2 4

π−   21. 19 3  23. 8

 25. 3 2 ln 1 2( )( )+ +   27. 
8

3
8

π +

 31. (a) a (b) a (c) a2 π

SECTION 10.6, pp. 661–663
 1. y x F8 , 2, 0 ,2 ( )=  directrix: x 2= −
 3. x y F6 , 0,  3 2 ,2 ( )= − −  directrix: y 3 2=

 5. x y
F V

4 9
1, 13, 0 , 2, 0 ,

2 2

( ) ( )− = ± ±   

asymptotes: y x3
2

= ±

 7. x y F V
2

1, 1, 0 , 2, 0
2

2 ( )( )+ = ± ±

 9. 

x

y

0

3

−3 F(3, 0)

x = −3
y2 = 12x

 11. 

x

y

0

2

2

y = 2

x2 = −8y

F(0, −2)

 13. 

x

y

0 1�4

1
4

y = 4x2

1
16

F  0,

directrix y = − 1
16

a      b

 15. 

a     b

x

y

x = −3y2

0 1
12

1
12

x =
1
6

1
6

−

1
12

F −    , 0

 17. 

x

y

0

4

−4

3 5−3−5

x2

25

y2

16
+       = 1

F1 F2

 19. 

x

y

0 1

1

−1

F1

F2

Î

2 y2

2
x2 +       = 1

 21. 

x

y

0

−1

1 F1

F2

Î

2

Î

3 x2

2

y2

3
+       = 1

 23. 

x

y

0 3

F2F1

Î

3−
Î

3

Î

6
x2

9

y2

6
+       = 1
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 Chapter 10: Answers to Odd-Numbered Exercises AN-43

 25. x y
4 2

1
2 2

+ =

 27. Asymptotes: y x= ±  29. Asymptotes: y x= ±

x

y

F2F1

Î

2−
Î

2

x2 − y2 = 1

x

y

F2

F1

2
Î

2

x2

8

y2

8
−       = 1

4

−4

 31. Asymptotes: y x2= ±

x

y

F2F1

Î

10

Î

2

−
Î

10

x2

2

y2

8
−       = 1

 33. Asymptotes: y x 2= ±

x

y

F2

F1
Î

10

Î

2

−
Î

10

x2

2

y2

8
−       = 1

 35. y x 12 2− =         37. x y
9 16

1
2 2

− =

 39. (a) Vertex: 1,  2 ;( )−  focus: 3,  2 ;( )−  directrix: x 1= −
 (b) 

x

y

0 1 2 3

2

−2

−4

F(3, −2)

V(1, −2)

(y + 2)2 = 8(x − 1)

 41. (a) Foci: 4 7, 3 ;( )±  vertices: 8, 3( ) and 0, 3( ); center: 4, 3( )

 (b) 

x

y

0

(0, 3) (8, 3)

6

4 8

F1(4 − 
Î

7, 3)

F2(4 + 
Î

7, 3)

C(4, 3)

(x − 4)2

16

(y − 3)2

9
+               = 1

 43. (a)  Center: 2, 0( ); foci: 7, 0( ) and 3, 0 ;( )−  vertices: 6, 0( ) and 

2, 0 ;( )−  asymptotes: y x3
4

2( )= ± −

 (b) 

x

y

(7, 0)(–3, 0)

(–2, 0) (6, 0)
20

(x − 2)2

16
y2

9
−     = 1

y =    (x − 2)3
4

y = −   (x − 2)3
4

 45. y x V F3 4 2 , 2,  3 , 1,  3 ,2( ) ( ) ( ) ( )+ = + − − − −   
directrix: x 3= −

 47. x y V F y1 8 7 , 1,  7 , 1,  5 , directrix: 92 ( )( ) ( ) ( )− = + − − = −

 49. ( )( )( )

( ) ( )

+ + + = − ± −

− ± − − −

x y
F

V C

2
6

1
9

1, 2,  3 1 ,

2,  3 1 ,   2,  1

2 2

 51. 
( )( )

( )
− + − =x y

F2
3

3
2

1, 3, 3
2 2

 and ( )F 1, 3 ,  

V C3 2, 3 , 2, 3( ) ( )± +

 53. x y
C F2

4
2

5
1, 2, 2 , 5, 2

2 2( )( )
( ) ( )

− − − =  and F 1, 2 ,( )−  

V 4, 2( ) and V y x0, 2 ;  asymptotes: 2 5
2

2( )( ) ( )− = ± −

 55. y x C F1 1 1, 1,  1 , 1,  2 12 2 ( )( ) ( ) ( )+ − + = − − − −  

and F V1,  2 1 , 1, 0( ) ( )− − − −  and V 1,  2 ;( )− −  asymptotes 

( ) ( )+ = ± +y x1 1
 57. C a2, 0 , 4( )− =   59. V F1, 1 , 1, 0( ) ( )− −

 61. Ellipse: x y C F2
5

1, 2, 0 , 0, 0
2

2( )
( ) ( )

+ + = −  and 

F V4, 0 , 5 2, 0( )( )− −  and V 5 2, 0( )− −

 63. Ellipse: x y C F1
2

1 1, 1, 1 , 2, 1
2

2( )
( )

( ) ( )
− + − =  and 

F V0, 1 , 2 1, 1( )( ) +  and V 2 1, 1( )− +

 65. Hyperbola: x y C1 2 1, 1, 2 ,2 2( )( ) ( )− − − =  

F 1 2, 2( )+  and F V1 2, 2 , 2, 2( ) ( )−  and  

V 0, 2 ;( )  y xasymptotes: 2 1( ) ( )− = ± −

 67. Hyperbola: 
y x C F

3
6 3

1, 0, 3 , 0, 6
2 2( )

( ) ( )
− − =  

and F V0, 0 , 0,  6 3( )( ) +  and V 0,  6 3 ;( )− +  

y xasymptotes: 2 3= +  or y x2 3= − +

 69. (b) 1:1  73. Length 2 2,  width 2,  area 4= = =
 75. 24π

 
77.

 
x y y x x y y x

x y y x

0,   0: 2 ;   0,   2: 2 2;

4,   0: 2 8

= = = − = = = +

= = = −

 79. x y0, 16
3π

= =
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SECTION 10.7, pp. 668–669

 1. e F3
5

, 3, 0( )= ± ; 

xdirectrices are  25
3

.= ±

x

y

F1 F2

y2

16
x2

25
= 1+

3 5

−4

−3−5

4

 3. e F1
2

; 0,  1( )= ± ; 

ydirectrices are  2.= ±

x

y

F1

F2

y2

2
x2 + = 1

−1

−1 1

1

−
Î

2

Î

2

 5. e F1
3

; 0,  1( )= ± ; 

ydirectrices are  3.= ±

x

y

F1

F2

y2

3
x2

2
= 1+

−1

1

Î

3

−
Î

3

−
Î

2
Î

2

 7. e F3
3

; 3, 0( )= ± ; 

directrices are x 3 3.= ±

x

y

F1 F2

y2

6
x2

9
= 1+

3−3

Î

6

−
Î

6

−
Î

3
Î

3

 9. x y
27 36

1
2 2

+ =   11. x y
4851 4900

1
2 2

+ =

 13. x y
9 4

1
2 2

+ =   15. x y
64 48

1
2 2

+ =

 17. e F2; 2, 0( )= ± ; 

xdirectrices are  1
2

.= ±

x

y

F1 F2

−1

1

2

3

–2

−2

−3

–1 1 2 3–3

−
Î

2
Î

2

x2 − y2 = 1

x

y

F1

F2

x2

8
y2

8
= 1−

−2

−4

−4 2 4

4

6

−6

−
Î

8

Î

8

−2

2

 19. e F2; 0,  4( )= ± ; 
ydirectrices are  2.= ±

 21. e F5; 10, 0( )= ± ; 

xdirectrices are  2
10

.= ±

x

y

F1
F2

−2 2 4−4
−
Î

10
Î

10

−10

−5

5

10

y2

8
x2

2
= 1−

−
Î

2
Î

2

 23. e F5; 0,  10( )= ± ; 

ydirectrices are  2
10

.= ±

x

y

F1

F2

x2

8
y2

2
= 1−

−4 −2 2 4

−2

−1

1

2

−
Î

10

−
Î

2

Î

10

Î

2

 25. y x
8

12
2

− =   27. x
y
8

12
2

− =   29. r 2
1 cos θ

=
+

 31. r 30
1 5 sin θ

=
−

  33. r 1
2 cos θ

=
+

  35. r 10
5 sin θ

=
−

 37. 

x

y

1
1 + cos u

r =

−1 1

−1

1

2

−2

−2

x = 1

0

, 0
2
1
a     b

 39. 

x

y

25
10 − 5 cos u

r =

−5

x = −5

0

, 0
3
5

, p
3
5

(5, 0)

a      b

a      b

 41. 

x

y

400
16 + 8 sin u

r =

y = 50

0

,
3
50

2
p

,
3
50

50,
2

3p
2

3p
a          b

a          b

a          b

 43. 

x

y

8
2 − 2 sin u

r =

−2 2

y = −4

0

2,
2

3p
a       b

 45. y x2= −

2

2
x  + y = 2

x

y
 47. y x3

3
2 3= +

x

y

y = x + 2
Î

3

−6
2

4 3
Î

3

 53. 

x

y

(2, 0)

r = 4 cos u

Radius = 2

 55. 

x

y

(1, p)
r = −2 cos u

Radius = 1
−2

 57. r 12 cos θ=

x

y

(6, 0)

(x − 6)2 + y2 = 36
r = 12 cos u

 59. r 10 sin θ=

x

y

(0, 5)

r = 10 sin u
x2 + (y − 5)2 = 25

 49. r cos
4

3θ π( )− =   51. r cos
2

5θ π( )+ =

Z03_HASS5901_15_GE_ANS.indd   44 04/04/23   20:06

www.konkur.in

Telegram: @uni_k



 Chapter 10: Answers to Odd-Numbered Exercises AN-45

 73. 

x

y

−1 1

1
1 + 2 sin u

r =

11
2

 61. r 2 cos θ= −

x

y

(−1, 0)

(x + 1)2 + y2 = 1
r = −2 cos u

 63. r sin θ= −

x

y

0, −    

r = −sin u

2
1

x2 +  y +      2 =2
1

4
1

a    b

a     b

 65. 

x

y

6

2
Î

3

r = 3 s  u − p

3a         b

 67. 

x

y

r = 4 sin u4

 69. 

x

y

−1−2 1
−1

1

8
4 + cos u

r =

 71. 

x

y

−1 1

1
1 − sin ur =

 75. (b) 

Planet Perihelion Aphelion

Mercury  0.3075 AU 0.4667 AU

Venus  0.7184 AU 0.7282 AU

Earth  0.9833 AU 1.0167 AU

Mars  1.3817 AU 1.6663 AU

Jupiter  4.9512 AU 5.4548 AU

Saturn  9.0210 AU 10.0570 AU

Uranus 18.2977 AU 20.0623 AU

Neptune 29.8135 AU 30.3065 AU

PRACTICE EXERCISES, pp. 670–672
 1. 

1

0
x

y

t = 0

− 2
1

y = 2x + 1

 3. 

x

y

1

1

0

t = 0
2
1

4y2 − 4x2 = 1

 5. 

x

y

−1 0 1

1

y = x2

t = 0 t = p

 7. x t y t t3 cos , 4 sin , 0 2π= = ≤ ≤

 9. y x3
2

1
4

,   1
4

= +

 11. (a) y x
8

1
3 2

= ± −  (b) y x
x

1 2
= ± −

 13. 10
3

  15. 285
8

  17. 10  19. 9
2
π   21. 76

3
π

 23. y x3
3

4= −

x

y

−4

x − 
Î

3y = 4
Î

3

4
Î

3

 25. x 2=

x

y

2

x = 2

 27. y 3
2

= −

x

y

2
3

− 2
3

y = −

 29. x y 2 42 2( )+ + =

x

y

(0, −2)

r = −4 sin u x2 + (y + 2)2 = 4
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AN-46 Chapter 10: Answers to Odd-Numbered Exercises

 39. d  41. l  43. k  45. i  47. 9
2
π

 49. 2
4
π+   51. 8  53. 3π −

 31. x y2 2
2 2( )− + =

x

y

r =  2
Î

2 cos u

+ y2 = 2
2

x − 
Î

2

Q

Î

2 , 0R

a        b

 33. r 5 sin θ= −

x

y

0, −    

r = −5 sin u

2
5

x2 +  y +     2 =2
5

4
25

a         b

a        b

 35. r 3 cos θ=

x

y

r = 3 cos u

x −      2 + y2 =
2
3

4
9

, 0    
2
3
a      b

a         b

 37. 

x

y

0 ≤ r ≤ 6 cos u

0 6

 55. Focus is 0,  1( )− ;  
directrix is y 1.=

y

x

1

−2 20

y = 1

x2 = −4y

 57. Focus is 3
4

, 0( );  
directrix is x 3

4
.= −

y

x

−2

23
4

x =  –

y2 = 3x

0

4
3 , 0
a     b

 59. e 3
4

=

x

y

−4

−3

4

3

0
Î

7

y2

16
x2

7
= 1+

 61. e 2= ; the asymptotes are 
y x3  .= ±

1 2−1−2

y

x

y = 
Î

3x

x2 −       = 1
3
y2

y = −
Î

3x

 63. x y V F y2 12 3 , 2, 3 , 2, 0 , directrix is  6.2 ( )( ) ( ) ( )− = − − =

 65. x y
C F3

9
5

25
1,   3,  5 ,   3,  1

2 2( )( )
( ) ( )

+ + + = − − − −  and 

F V3,  9 ,   3,  10( ) ( )− − − −  and V 3, 0 .( )−

 67. 
y x C

2 2

8
2

2
1,   2, 2 2 ,

2
2( ) ( )( )−

− − =  

F V2, 2 2 10 ,   2, 4 2( ) ( )±  and V 2, 0 ,( )  the asymptotes 

are y x2 4 2 2= − +  and y x2 4 2 2.= − + +
 69. Hyperbola: C V2, 0 ,   0, 0( ) ( ) and V 4, 0( ), the foci are 

F 2 5, 0( )± , and the asymptotes are y x 2
2

.= ± −

 71. Parabola: V F3, 1 ,   7, 1( ) ( )− − , and the directrix is x 1.=
 73. Ellipse: C F V3, 2 ,   3 7, 2 ,   1, 2( )( ) ( )− − ±  and V 7, 2( )−
 75. Circle: C 1, 1( ) and radius 2=

 77. V 1, 0( )

x

y

2
1 + cos u

r =

−2

2

0 (1, 0)

 79. V 2, π( ) and V 6, π( )

0

y

x

6
1 − 2 cos u

r =

−3

3

(6, p)

(2, p)

 81. r 4
1 2 cos θ

=
+

  83. r 2
2 sin θ

=
+

 85. (a) 24π (b) 16π

ADDITIONAL AND ADVANCED EXERCISES, pp. 672–674

 1. x
y7

2 2

2
− = y

x
1 30 F(4, 0) 

y2

2
7
2

x − =

 3. x y y3 3 8 4 02 2+ − + =   5. F 0,  1( )±

 7. (a) y x1
16 48

1
2 2( )− − =   (b) 

( )
( )

( )
+

− =
y

x
3
4

25
16

75
2

1

2

2

 11. 
y

x

x2 + 4y2 − 4 = 0 x2 − y2 − 1 = 0 

x2 + y2 − 25 = 0 

210

5

1

 13. 
y

x
0 3

4y2

16
x2

9
≤ 1+
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 Chapter 11: Answers to Odd-Numbered Exercises AN-47

 15. y

x
0 2

3
4x2 + 9y2 = 16 

9x2 + 4y2 − 36 = 0

 17. (a) r e 2= θ (b) e5
2

14( )−π

 19. r 4
1 2 cos θ

=
+

  21. r 2
2 sin θ

=
+

 
23.

 
x a b b a b

b

y a b b a b
b

cos cos ,

sin sin

θ θ

θ θ

( )
( )

( )

( )

= + − +

= + − +

 27. 
2
π

Chapter 11
SECTION 11.1, pp. 678–680
 1. The line through the point 2, 3, 0( ) parallel to the z-axis
 3. The x-axis
 5. The circle x y 42 2+ =  in the xy-plane
 7. The circle x z 42 2+ =  in the xz-plane
 9. The circle y z 12 2+ =  in the yz-plane
 11. The circle x y 162 2+ =  in the xy-plane
 13. The ellipse formed by the intersection of the cylinder 

x y 42 2+ =  and the plane z y=
 15. The parabola y x 2=  in the xy-plane
 17. (a) The first quadrant of the xy-plane
 (b) The fourth quadrant of the xy-plane
 19. (a) The ball of radius 1 centered at the origin
 (b) All points more than 1 unit from the origin
 21. (a)  The ball of radius 2 centered at the origin with the interior of 

the ball of radius 1 centered at the origin removed
 (b) The solid upper hemisphere of radius 1 centered at the origin
 23. (a)  The region on or inside the parabola y x 2=  in the xy-plane 

and all points above this region
 (b)  The region on or to the left of the parabola x y 2=  in the 

xy-plane and all points above it that are 2 units or less away 
from the xy-plane

 25. 3  27. 7  29. 2 3  31. (a) 2 (b) 3 (c) 4
 33. (a) 3 (b) 4 (c) 5
 35. (a) x 3=  (b) y 1= −  (c) z 2= −
 37. (a) z 1=  (b) x 3=  (c) y 1= −
 39. (a) x y z2 4, 02 2( )+ − = =
 (b) y z x2 4, 02 2( )− + = =  (c) x z y4, 22 2+ = =
 41. (a) y z3, 1= = −  (b) x z1, 1= = −  (c) x y1, 3= =
 43. + + = =x y z z25, 32 2 2   45. z0 1≤ ≤   47. z 0≤
 49. (a) x y z1 1 1 12 2 2( )( ) ( )− + − + − <
 (b) x y z1 1 1 12 2 2( )( ) ( )− + − + − >
 51. C a2, 0, 2 , 2 2( )− =   53. C a2, 2, 2 , 2( )− =

 55. C a2, 0, 2 , 8( )− =   57. C a1
4

, 1
4

, 1
4

, 5 3
4( )− − − =

 59. C a2, 3, 5 , 7( )− =
 61. x y z1 2 3 142 2 2( )( ) ( )− + − + − =

 63. x y z1 1
2

2
3

16
81

2
2 2

( )( )( )+ + − + + =

 65. (a) y z2 2+  (b) x z2 2+  (c) x y2 2+
 67. 17 33 6+ +   69. y 1=
 71. (a) ( )−0, 3, 3  (b) ( )−0, 5, 5
 73. = +z x 4 12   75. (a) =z x2 2 (b) =y x2 2

SECTION 11.2, pp. 688–690
 1. (a) 9, 6〈 − 〉 (b) 3 13   3. (a) 〈 〉1, 3  (b) 10
 5. (a) 12, 19〈 − 〉 (b) 505

 7. (a) 1
5

, 14
5

 (b) 197
5

  9. 〈 − 〉1, 4

 11. 2, 3〈− − 〉  13. −1
2

, 3
2

  15. − −3
2

, 1
2

 17. i j k3 2− + −   19. − +i j3 16   21. + −i j k3 5 8
 23. The vector v is horizontal and 25 mm long. The vectors u and w  

are 17 mm long. w is vertical and u makes a °45  angle with the 

horizontal. All vectors must be drawn to scale.
 (a) v

u u + v

(b) 

v

w

u

u + v + w

 (c) 

u
u − v

−v (d) 
u

u − w

−w

 25. ( )+ −i j k3 2
3

1
3

2
3

  27. k5( )

 29. ( )− −i j k1
2

1
3

1
3

1
3

 31. (a) 2i (b) − k3  (c) +j k3
10

2
5

 (d) − +i j k6 2 3

 33. ( )−i k7
13

12 5

 35. (a) + −i j k3
5  2

4
5  2

1
2

 (b) ( )1 2, 3, 5 2

 37. (a) i j k1
3

1
3

1
3

− − −  (b) ( )5
2

, 7
2

, 9
2

 39. ( )−A 4, 3, 5   41. = =a b3
2

, 1
2

 43. = − = =a b c1, 2, 1  45. ≈〈− 〉338.095, 725.046

 47.  ≈

≈

= 〈− ° °〉 ≈ 〈− 〉

= 〈 ° °〉 ≈ 〈 〉

F

F

F F F

F F F

73.205 N,

89.658 N,

cos 30 , sin 30 63.397, 36.603 ,

cos 45 , sin 45 63.397, 63.397

1

2

1 1 1

2 2 2

 49.  ≈
≈

w
F

126.093 N,
106.933 N1

 51. (a) ( )° ° =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟5 cos 60 , 5 sin 60 5

2
, 5 3

2

 
(b)

 

5 cos 60 10 cos 315 , 5 sin 60 10 sin 315

5 10 2
2

, 5 3 10 2
2

( )° + ° ° + ° =

+ −⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟
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AN-48 Chapter 11: Answers to Odd-Numbered Exercises

 53. (a) + −i j k3
2

3
2

3  (b) + −i j k2  (c) ( )2, 2,1

 59. (a) 〈 〉0, 0, 0  (b) 〈 〉0, 0, 0

 61. (a) −0,16, 4, 12  (b) 4 26

 63. (a) − − −2, 1, 1, 2  (b) 10

 65. (a) − −8, 24, 3,13  (b) 818

SECTION 11.3, pp. 697–699
 1. (a) −25, 5, 5 (b) −1 (c) −5 (d) − + −i j k2 4 5

 3. (a) 25, 15, 5 (b) 1
3

 (c) 5
3

 (d) ( )+ −i j k1
9

10 11 2

 5. (a) 2, 34, 3 (b) 2
3 34

 (c) 2
34

 (d) ( )−j k1
17

5 3

 7. (a) +10 17, 26, 21 (b) +10 17
546

 (c) +10 17
26

 (d) ( )+ +i j10 17
26

5

 9. 0.75 rad  11. 1.77 rad

 13. Angle at A arccos 1
5

63.435 degrees,( )= ≈  angle at 

B arccos 3
5

53.130 degrees,( )= ≈  angle at 

C arccos 1
5

63.435 degrees.( )= ≈

 17. arccos 3
10

0.322( ) ≈  radian or 18.43 degrees

 25. Horizontal component: 396  m s,≈  vertical component: 
55.7  m s≈

 27. (a)  Since θ ≤cos 1, we have 
u v u v u v u vcos (1) .θ⋅ = ≤ =

 (b)  We have equality precisely when θ =cos 1 or when one or 
both of u and v are 0. In the case of nonzero vectors, we have 
equality when θ = 0 or π, that is, when the vectors are parallel.

 29. a
 35. + =x y2 4

2

1

i + 2j

0 4
x

y

x + 2y = 4

 37. − + = −x y2 3

−3

−2

−2i + j

−2x + y = −3

0

1

3
2

x

y

 39. + = −x y 1

1

−2 1

−1 i − j

P(−2, 1)

x + y = −1

x

y
 41. x y2 0− =

−i  −  2j

P(1, 2)

2x − y = 0

x

y

 43. 5 J  45. 3464 J  47. π
4

  49. π
6

  51. 0.14

 53. (a) 3 (b) not orthogonal
 55. (a) 0 (b) orthogonal

SECTION 11.4, pp. 704–705

 1. × =u v 3, direction is i j k v u2
3

1
3

2
3

; 3,+ + × =   

direction is i j k2
3

1
3

2
3

− − −

 3. × =u v 0, no direction; × =v u 0, no direction
 5. × =u v 6, direction is k v u; 6,− × =  direction is k

 7. × =u v 6 5, direction is i k v u1
5

2
5

; 6 5,− × =  

direction is − +i k1
5

2
5

 9. 

y

z

x

i

i × j = k

j

 11. 

y

z

x

i − j + k

i − k

j + k

 13. 
z

x

y

–2k

i – j
i + j

 15. (a) 2 6 (b) ( )± + +i j k1
6

2

 17. (a) 2
2

 (b) ( )± −i j1
2

 19. 8  21. 7  23. (a) None (b) u and w
 25. 1.5 3 N-m
 27. (a) True (b) Not always true (c) True (d) True
 (e) Not always true (f) True (g) True (h) True

 29. (a) u u v
v v

vproj    
   v = ⋅

⋅
 (b) ×ku v     (k any constant)

 (c) ( )× ×k u v w     (k any constant)
 (d)  ( )× ⋅u v w     (e) ( ) ( )× × ×k u v u w         (k any constant)

 (f )  v
v

u

 31. (a) Yes (b) No (c) Yes (d) No
 33. No, v need not equal w. For example, + ≠ − +i j i j, 

but 0i i j i i i j k k       ( )× + = × + × = + =  and 
0i i j i i i j k k        .( )× − + = − × + × = + =

 35. 2  37. 13  39. 129  41. 11
2

 43. 25
2

  45. 3
2

  47. 21
2

 49. If a aA i j1 2= +  and b bB i j,1 2= +  then

a a

b b

a a

b b
A B

i j k

k    0

0

,1 2

1 2

1 2

1 2

× = =
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 Chapter 11: Answers to Odd-Numbered Exercises AN-49

and the triangle’s area is
a a

b b
A B1

2
    1

2
  .1 2

1 2

× = ±

The applicable sign is ( )+  if the acute angle from A to B runs 
counterclockwise in the xy-plane, and ( )−  if it runs clockwise.

 51. 4  53. 44 3  55. Coplanar  57. Not coplanar

SECTION 11.5, pp. 712–714
 1. = + = − + = − +x t y t z t3 , 4 , 1
 3. = − + = = −x t y t z t2 5 , 5 , 3 5
 5. = = =x y t z t0, 2 ,
 7. = = = +x y z t1, 1, 1
 9. = = − + =x t y t z t, 7 2 , 2
 11. = = =x t y z, 0, 0

 13. = = =

≤ ≤

x t y t z t

t

, , 3
2

,

0 1

y

z

x

(0, 0, 0)

1, 1, 3
2a        b

 15. 
= = +
= − ≤ ≤

x y t
z t

1, 1 ,
0, 1 0

y

z

x

(1, 0, 0)
(1, 1, 0)

 
17.

 
= = −
= ≤ ≤

x y t
z t

0, 1 2 ,
1, 0 1

y

z

x

(0, −1, 1) (0, 1, 1)

 
19.

 
= − =
= − ≤ ≤

x t y t
z t t

2 2 , 2 ,
2 2 , 0 1

y

z

x

(0, 2, 0)

(2, 0, 2)

 21. − − = −x y z3 2 3  23. − − =x y z7 5 4 6
 25. + + =x y z3 4 34  27. ( ) − + + =x y z1, 2, 3 , 20 12 7

 29. + =y z 3  31. − + =x y z 0  33. 2 30   35. 0

 37. 9 42
7

  39. 3  41. 19 5  43. 5 3  45. 9 41

 47. π 4  49. arccos 1 6 1.738 1.403 radiansπ π( )− − ≈ − ≈
 51. arcsin 2 154 0.161 radian( ) ≈   53. 1.38 rad

 55. 0.82 rad  57. ( )−3
2

, 3
2

, 1
2

  59. ( )1,1, 0

 61. = − = + = −x t y t z1 , 1 , 1
 63. = = + = +x y t z t4, 3 6 , 1 3

 65. L1 intersects L2; L2 is parallel to L3, 5 3; L1 and L3 are skew, 
10 2 3

 
67.

 ( ) ( )
= + = − − = + = − −
= − + = −

x t y t z t x t
y t z t

2 2 , 4 , 7 3 ; 2 ,
2 1 2 , 1 3 2

 69. ( ) ( ) ( )− − − − −0, 1
2

, 3
2

, 1, 0, 3 , 1, 1, 0

 73. Many possible answers. One possibility: + =x y 3 and 
+ =y z2 7.

 75. ( ) ( ) ( )+ + =x a y b z c 1 describes all planes except those 
through the origin or parallel to a coordinate axis.

SECTION 11.6, pp. 718–719
 1. (d), ellipsoid  3. (a), cylinder  5. (l), hyperbolic paraboloid
 7. (b), cylinder  9. (k), hyperbolic paraboloid  11. (h), cone
 13. z

x

y

−2

2

x2 + y2 = 4

 15. 

4

2
x2 + 4z2 = 16 

z

x y

 17. 
9x2 + y2 + z2 = 9

3

3

−3

−3
−1

1

z

x

y

 19. 4x2 + 9y2 + 4z2 = 36

−3

−3

3

3

−2

2

z

x

y

 21. z

x

y

z = x2 + 4y2

4
1

2

 23. z

x

y

4

2

1

x = 4 − 4y2 − z2

 25. z

x

y

x2 + y2 = z2
 27. 

z

x

y

x2 + y2 − z2 = 1

−1
−1

1
1

 29. 
z2 − x2 − y2 = 1

z

x y

2

1

Î

3
Î

3

 31. z

x

y2 − x2 = z

y
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AN-50 Chapter 11: Answers to Odd-Numbered Exercises

 45. (a) π( )− c2 9
9

2
 (b) π8  (c) πabc4

3

PRACTICE EXERCISES, pp. 720–722

 1. (a) 〈− 〉17, 32  (b) 1313  3. (a) 〈 − 〉6, 8  (b) 10

 5. − −3
2

, 1
2

 [assuming counterclockwise]  7. −8
17

, 2
17

 9. = +i jLength 2;  direction is  1
2

1
2

.

 11. iLength 2;  direction is .= −

 13. = − +i j kLength 7;  direction is  2
7

3
7

6
7

.

 15. − +i j k8
33

2
33

8
33

 

17.

  θ π

θ

( )
( )

= = ⋅ = ⋅ = × = − + −

× = − + × = = =

= = +

−

v u v u u v v u i j k

u v i j k v u

u u i j

2, 3, 3, 2 2 ,

    2 2 ,     3, cos 1
2 4

,

cos 3
2

,  proj 3
2v

1

 19. ( )+ −i j k4
3

2

 21. × =u v k   
z

x

y

i + j

i × (i + j) = k

i

 33. 
z

z = 1 + y2 − x2

x

y

 35. z

x

y

y = −(x2 + z2)

 37. 
z

x

y

x2 + y2 − z2 = 4  39. z

x2 + z2 = 1

x
y

1

1

 41. z

x

y

z = −(x2 + y2)

 43. z

x

y

4y2 + z2 − 4x2 = 4

 23. 2 7  25. (a) 14  (b) 1  29. 78 3
 31. = − = = +x t y z t1 3 , 2, 3 7   33. 2
 35. + + =x y z2 5  37. − + + =x y z9 7 4

 39. ( ) ( ) ( )− − − − −0, 1
2

, 3
2

, 1, 0, 3 , 1, 1, 0

 41. π 3  43. = − + = − = −x t y t z t5 5 , 3 , 3
 45. (b) = − = + = +x t y t z t12 , 19 12 15 , 1 6 6
 47. Yes; v is parallel to the plane.  49. 3  51. − +j k3 3

 53. ( )− −i j k2
35

5 3   55. ( )−11
9

, 26
9

, 7
9

 57. x t y t z t1, 2, 1 ; 1 5 , 2 3 , 1 4( )− − = − = − + = − +
 59. + + + =x y z2 7 2 10 0
 61. (a) No (b) No (c) No (d) No (e) Yes
 63. 11 107
 65. 

z

x

x2 + y2 + z2 = 4

y2

2

−2

−2

2

 67. 
z

x

4x2 + 4y2 + z2 = 4

y

−1

11

−2

2

 69. 
z

x

y

z = −(x2 + y2)  71. z

x

x2 + y2 = z2

y

 73. 
z

x

x2 + y2 − z2 = 4

y

Î

5

−2

−2

2

2

3
3

 75. 

Î

10

z

x

y2 − x2 − z2 = 1

y

3

−3

−1
3

3

ADDITIONAL AND ADVANCED EXERCISES, pp. 722–724

 1. 26, 23, 1 3( )−   3. F 88.7 N=

 
5.

 
(a)

  
F F F

F

80 N, 60 N, 48, 64 ,

48, 36 , arctan 4
3

, arctan 3
4

1 2 1

2 α β

= = = 〈− 〉

= 〈 〉 = =

 

(b)

 

F F

F

F

2400
13

184.615 N, 1000
13

76.923 N,

12,000
169

, 28,800
169

71.006,170.414 ,

12,000
169

, 5000
169

71.006, 29.586 ,

arctan 12
5

, arctan 5
12

1 2

1

2

α β

= ≈ = ≈

= − ≈ −

= ≈

= =
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 Chapter 12: Answers to Odd-Numbered Exercises AN-51

 9. (a) arctan 2 54.74θ = ≈ °
 (b) arctan 2 2 70.53θ = ≈ °

 13. (b) 6
14

 (c) − + =x y z2 2 8

 (d) − + = +x y z2 3 5 6 and − + = −x y z2 3 5 6

 15. + −i j k32
41

23
41

13
41

 17. (a) 0, 0 (b) − − + − − +i j k i j k10 2 6 , 9 2 7
 (c) − − + − −i j k i j k4 6 2 , 2 4
 (d) − − − − −i k i j k10 10 , 12 4 8
 19. The formula is always true.

Chapter 12
SECTION 12.1, pp. 732–734

 1. − +i j k1
2

 3. π+ +i j k2 1
2 4

 5. = − = + =y x x v i j a j2 , 2 , 22

 7. = = + = +y x v i j a i j2
9

, 3 4 , 3 82

 9. π

π

= = − = − −

= = − = −

t

t

v i j a i j

v j a i
4

:  2
2

2
2

, 2
2

2
2

;

2:  ,

x

y

0 p
2

a
p
2

v

p
4

v
p
4

a

1

Q R

Q R

Q R

Q R

 11. π π= = = − = = − = −t tv i a j v i j a i:  2 , ; 3
2

:  ,

x

y

2

1

0 p 2p

3p
2

a

3p
2

3p
2

v

t =

t = p
v(p)

a(p)

r = (t – sin t)i + (1 – cos t)j
Q  R

Q  R

 13. 

( )( )

= + + = + +

= + +

tv i j k a j i j k

v i j k

2 2 ;   2 ;  speed: 3;  direction:  1
3

2
3

2
3

;

1 3 1
3

2
3

2
3

 15. 

π

( ) ( )
( ) ( )[ ]

( ) ( )

( ) ( )

( )

= − + +

= − −

− +

= − +

t t

t t

v i j k

a i j

i k

v i k

2 sin 3 cos 4 ;

2 cos 3 sin ;  speed: 2 5;

direction:  1 5 2 5 ;

2 2 5 1 5 2 5

 17. ( )( )

( )

( )

( )

=
+

+ + = −
+

+ +

+ +

= + +

t
t t

t
v i j k a i j k

i j k

v i j k

2
1

2 ;   2
1

2 ;

speed: 6;  direction: 1
6

2
6

1
6

;

1 6 1
6

2
6

1
6

2

 19. π 2  21. π 2  23. = = − = +x t y z t, 1, 1

 25. = = =x t y t z t, 1
3

,   27. −4,  2  29. −2,  2

 31. E  33. D  35. C
 37. (a) (i): It has constant speed 1. (ii): Yes
   (iii): Counterclockwise (iv): Yes
 (b) (i): It has constant speed 2. (ii): Yes
   (iii): Counterclockwise (iv): Yes
 (c) (i): It has constant speed 1. (ii): Yes
   (iii): Counterclockwise
   (iv): It starts at ( )−0, 1  instead of ( )1, 0 .
 (d) (i): It has constant speed 1. (ii): Yes
   (iii): Clockwise (iv): Yes
 (e) (i): It has variable speed. (ii): No
   (iii): Counterclockwise (iv): Yes

 39. = +v i j2 5 5

SECTION 12.2, pp. 739–742

 1. ( ) ( )+ +i j k1 4 7 3 2   3. π +⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +j k2 2

2
2

 5. ( ) ( ) ( )+ +i j kln 4 ln 4 ln 2

 7. − + − +e e
e

i j k1
2

1

 9. π− +i j k
4

 11. ( ) ( ) ( )= − + + − + + − +t t t tr i j k( )
2

1
2

2
2

3
2 2 2

 13. ( ) ( )( ) ( )( )= + − + − + + + +−t t e tr i j k( ) 1 1 1 ln 1 1t3 2

 15. ( ) ( )( )

( )( )

= + + − +

+ − +

t t t

t t

r i j

k

( ) 3 ln sec 2 2 sin 2

1 1 2 ln sec 2 tan 2

 17. ( )= + + − +t t t tr i j k( ) 8 8 16 1002

 19. ( ) ( ) ( )= − + + − + + + − +−t e t e t e tr i j k( ) 2 2 3 2 2 1t t t2

 21.  ( ) ( )
( ) ( )( )

( )

= + + − + −

+ + + = + − +

+ + +

t t t t t

t t t t

r i j

k i j k

i j k

( ) 3
2

6
11

1 1
2

2
11

2

1
2

2
11

3 1
2

2
11

3

2 3

2 2

2 2

 23. 50 s
 25. (a) 72.2 s; 25,510 m (b) 4020 m (c) 6378 m
 27. (a) υ ≈ 9.9 m s0  (b) α ≈ ° °18.4  or 71.6
 29. °39.3  or °50.7   35. (b) v 0 would bisect ∠AOR.
 37. (a)  (Assuming that “x” is zero at the point of impact)  

t x t y tr i j( ) ( ( )) ( ( )) ,= +  where x t t( ) 12 cos 27( )= °  and 
y t t t( ) 1.3 12 sin 27 4.9 .2( )= + ° −

 (b)  At t 0.556 s,≈  it reaches its maximum height of about 
2.814 m.

 (c) Range  14 m;≈  flight time 1.31 s≈
 (d)  At t 0.232≈  and t 0.880 s,≈  when it is 11.52≈  and 

≈ 4.59 m from where it will land
 (e) Yes. It changes things because the ball won’t clear the net.
 39. Height is about 10.8 m.
 47. (a)   = +t x t y tr i j( ) ( ( )) ( ( )) ; where

x t e( ) 1
0.08

1 50 cos 20 5  andt0.08( ) ( )( )= − ° −−

y t e

t e

( ) 1 50
0.08

1 sin 20

9.8
0.08

1 0.08

t

t

0.08

2
0.08

( )
( )

( )( )

( )

= + − °

+ − −

−

−
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AN-52 Chapter 12: Answers to Odd-Numbered Exercises

 (b)  At t 1.633 s≈ , it reaches a maximum height of about 
14.66 m.

 (c) Range 125.11 m;≈  flight time 3.404 s≈
 (d)  At t 0.670≈  and 2.622 s, when it is about 27.39 and 

99.30 m from home plate
 (e) No

SECTION 12.3, p. 746

 1. π( ) ( )= − + +t tT i j k2
3

sin 2
3

cos 5
3

, 3

 3. =
+

+
+t
t

t
T i k1

1 1
,  52

3

 5. = − +t tT j kcos sin ,  3
2

 7. 

π π

( ) ( )=
−
+

+
+
+

+
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +

t t t
t

t t t
t

t
t

T i j

k

cos sin
1

sin cos
1

2
1

, 
2

1 2 2

 9. π( )0, 5, 24

 11. π= =s t t L( ) 5 , 5
2

 13. = − =s t e L( ) 3 3, 3 3
4

t

 15. ( )+ +2 ln 1 2

 17. (a) Cylinder is + =x y 1;2 2  plane is + =x z 1.
 (b) and (c) 

z

x y

(0, –1, 1)
(–1, 0, 2)

(0, 1, 1)(1, 0, 0)

 (d) ∫= +
π

L t dt1 sin 2

0

2
 (e) ≈L 7.64

SECTION 12.4, pp. 751–752
 1. κ( ) ( ) ( ) ( )= − = − − =t t t t tT i j N i jcos sin , sin cos , cos

 3. 

κ
( )

=
+

−
+

= −
+

−

+
=

+

t
t

t
t

t

t t

T i j N i

j

1
1 1

, 
1

1
1

,  1

2 1

2 2 2

2 2
3

 5. (b) xcos

 7. (b) = −
+

+
+

e
e e

N i j2
1 4

1
1 4

t

t t

2

4 4

 (c) ( )= − − +t tN i j1
2

4 2

 9. 

κ( ) ( )

= − +

= − − =

t t

t t

T i j k

N i j

3 cos
5

3 sin
5

4
5

,

sin cos ,  3
25

 11. 

κ

( ) ( )
( ) ( )

=
−

+
+

=
− −

+
− +

=

t t t t

t t t t

e

T i j

N i j

cos sin

2

cos sin

2
,

cos sin

2

sin cos

2
,  1

2t

 13. 

κ
( )

=
+

+
+

=
+

−
+

=
+

t
t t

t

t

t t t

T i j

N i j
1

1
1

,

1 1
,  1

1

2 2

2 2 2 3 2

 15. 

κ

( ) ( )
( ) ( )

= +

= − +

=

t
a

t
a

t
a

t
a

a
t
a

T i k

N i k

sech tanh ,

tanh sech ,

1 sech 2

 19. ( )b1 2

 21. π( )− + =x y
2

1
2

2

 23. κ ( )= +x x( ) 2 1 4 2 3 2

 25. κ ( )= +x x x( ) sin 1 cos 2 3 2

 27. maximum curvature ( )2 3 3  at =x 1 2

SECTION 12.5, p. 758

 1. =
+

+
+

t
t t

a T N2
1

2
12 2

  3. = aa N

 5. ( ) =a N0 2   7. ( ) = +a T N1 4
3

2 5
3

  9. =a N(0) 2

 11. π π( ) ( )= + − = − +r i j k T i j
4

2
2

2
2

,
4

2
2

2
2

, 

π π( ) ( )= − − =N i j B k
4

2
2

2
2

,
4

; osculating plane:  

= −z 1; normal plane: − + =x y 0; rectifying plane: 
+ =x y 2

 13. τ( ) ( )= − − = −t tB i j k4
5

cos 4
5

sin 3
5

,  4
25

 15. τ= =B k,  0  17. τ= − =B k,  0   19. τ= − =B j,  0

 21. Yes. If the car is moving on a curved path κ( )≠ 0 , then 
κ= ≠a v 0N

2  and ≠a 0.

 27. κ ρ= =
t

t1, 

 31. Components of −v: 1.8701, 0.7089, 1.0000
Components of − −a: 1.6960, 2.0307, 0
Speed: 2.2361; Components of −T:  0.8364, 0.3170, 0.4472
Components of − − −N:  0.4143,  0.8998,  0.1369
Components of B: 0.3590, −0.2998, 0.8839; Curvature: 0.5060
Torsion: 0.2813; Tangential component of acceleration: 0.7746
Normal component of acceleration: 2.5298

 33. Components of v: 2.0000, 0, −0.1629
Components of a: 0, − −1.0000,  0.0086; Speed: 2.0066
Components of T: 0.9967, 0, −0.0812
Components of − − −N:  0.0007,  1.0000,  0.0086
Components of B: −0.0812, 0.0086, 0.9967;
Curvature: 0.2484
Torsion: 0.0411; Tangential component of acceleration: 0.0007
Normal component of acceleration: 1.0000

SECTION 12.6, p. 762
 1. θ

θ
= +

= − +
θ

θ

v u u

a u u

2 2

4 8
r

r

 3. θ θ

θ θ

( ) ( )

( ) ( )

= + −

= − +
θ

θ

a a

a a

v u u

a u u

3 sin 3 1 cos

9 2 cos 1 18 sin
r

r
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 Chapter 13: Answers to Odd-Numbered Exercises AN-53

 5. 

( )

= +

= − +

θ θ
θ

θ θ
θ

ae e

e a ae

v u u

a u u

2 2

4 1 8

a
r

a

a
r

a2

 7. ( ) ( )

( ) ( )

= − +

= − −
θ

θ

t t

t t

v u u

a u u

8 sin 4 4 cos 4

40 cos 4 32 sin 4
r

r

 13. ≈ ×29.93 10 m10   15. ≈ ×2.25 10 km s9 2

 17. ≈ ×1.876 10 kg27

PRACTICE EXERCISES, pp. 763–764

 1. + =x y
16 2

1
2 2

x

y

0

–1

1

2

4–4

Î

2 (2
Î

2, 1)

p
4

v

p
4

a

a(0)

v(0)Q R

Q R

At κ= = = =t a a0:  0,  4,  2;T N

At π κ= = = =t a a
4

:  7
3

,  4 2
3

,  4 2
27T N

 3. =v 1max   5. κ = 1 5  7. = −dy dt x; clockwise

 11. Shot put is on the ground, about 21.88 m from the stopboard.

 15. π π π π= + + + +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟Length

4
1

16
ln

4
1

16

2 2

 17. 

κ τ

( ) ( )

( )

= − + = +

= − + + = =

T i j k N i j

B i j k

0 2
3

2
3

1
3

; 0 1
2

1
2

;

0 1
3 2

1
3 2

4
3 2

; 2
3

;  1
6

 19. 

κ τ

( ) ( )

( )

= + = − +

= = =

T i j N i j

B k

ln 2 1
17

4
17

; ln 2 4
17

1
17

;

ln 2 ;  8
17 17

;  0

 21. = +a T N(0) 10 6

 23. ( ) ( )( )= − +t t tT i j k1
2

cos sin 1
2

cos ;

κ τ

( ) ( )( )= − − −

= − = =

t t tN i j k

B i k

1
2

sin cos 1
2

sin ;

1
2

1
2

;  1
2

;  0

 25. π
3

  27. = + = = −x t y t z t1 , ,   31. κ =
a
1

ADDITIONAL AND ADVANCED EXERCISES, pp. 765–766

 1. (a) θ π=
+θ π=

d
dt

gb
a b

2
2

2 2

 (b) θ
( ) ( )

=
+

=
+

gbt
a b

z
gb t

a b2
,

2

2

2 2

2 2

2 2

 (c) 

( )

=
+

=
+

+
+

t
gbt

a b

d
dt

bg
a b

a
bgt

a b

v T

r T N

( ) ;

 

2 2

2

2 2 2 2 2

2

There is no component in the direction of B.

 5. (a) � � � �θ θ θ θ θ θ= − = +dx
dt

r r
dy
dt

r rcos sin ,  sin cos

 (b) � � � �θ θ θ θ θ= + = − +dr
dt

x y r d
dt

x ycos sin ,    sin cos

 7. (a) ( ) ( )= − − = − +θ θa u u v u u1 9 6 , 1 3r r

 (b) 6.5 cm

 9. (c) � � � �� �

�� � � ��

θ θ

θ θ

( )
( )

= + + = − +

+ +

θ

θ

r r z r r

r r z

v u u k a u

u k

,

2

r r
2

Chapter 13
SECTION 13.1, pp. 773–775
 1. (a) 0 (b) 0 (c) 58 (d) 33
 3. (a) 4 5 (b) 8 5 (c) 3 (d) 0
 5. Domain: all points ( )x y,  on 

or above line = +y x 2

x

y

y = x + 2

7. Domain: all points ( )x y,  not 
lying on the graph of =y x  
or =y x 3

(1, 1)

(–1, –1)

y

x

y = x

y = x3

 9. Domain: all points ( )x y,  satisfying − ≤ ≤ +x y x1 12 2

–1

1

x

y y = x2 + 1

y = x2 – 1

 11. Domain: all points ( )x y,  for which 
( )( )( )( )− + − + ≥x x y y2 2 3 3 0

3

–3

y

–2 2
x

y = –3

x = –2 x = 2

y = 3

 13. 

2

–2

4

42–2

y

x

x + y – 1 = c

c:

–3
–2
–1
0
1
2
3

 15. 
y

x

xy = c

c = 9
c = 4

c = –1 c = 1
c = –4

c = –9

0 = c
1 = c

4 = c
9 = c

–1 = c

–4 = c

–9 = c

 17. (a) All points in the xy-plane (b) All reals
 (c) The lines − =y x c (d) No boundary points
 (e) Both open and closed (f) Unbounded
 19. (a) All points in the xy-plane (b) ≥z 0
 (c)  For ( ) =f x y, 0, the origin; for f x y c c, , 0,( ) = >   

ellipses with the center ( )0, 0 , and major and minor axes 
along the x- and y-axes, respectively
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AN-54 Chapter 13: Answers to Odd-Numbered Exercises

 (d) No boundary points (e) Both open and closed
 (f) Unbounded
 21. (a) All points in the xy-plane (b) All reals
 (c)  For ( ) =f x y, 0, the x- and y-axes; for ( ) = ≠f x y c c, , 0, 

hyperbolas with the x- and y-axes as asymptotes
 (d) No boundary points (e) Both open and closed
 (f) Unbounded
 23. (a) All ( )x y,  satisfying + <x y 162 2  (b) ≥z 1 4
 (c) Circles centered at the origin with radii <r 4
 (d) Boundary is the circle + =x y 162 2

 (e) Open (f) Bounded
 25. (a) ( ) ( )≠x y, 0, 0  (b) All reals
 (c) The circles with center ( )0, 0  and radii >r 0
 (d) Boundary is the single point ( )0, 0
 (e) Open (f) Unbounded
 27. (a) All ( )x y,  satisfying − ≤ − ≤y x1 1
 (b) π π− ≤ ≤z2 2
 (c) Straight lines of the form − =y x c, where − ≤ ≤c1 1
 (d) Boundary is two straight lines = +y x1  and = − +y x1
 (e) Closed (f) Unbounded
 29. (a) Domain: all points ( )x y,  outside the circle + =x y 12 2

 (b) Range: all reals
 (c) Circles centered at the origin with radii >r 1
 (d) Boundary: + =x y 12 2

 (e) Open (f) Unbounded
 31. (f), (h)  33. (a), (i)  35. (d), (j)
 37. (a) 

z = y2

z

x

y

(b) 

z = 4
z = 1

z = 1
z = 4

z = 0 x

y

 39. (a) 

z = x2 + y2
z

x

y

(b) 

z = 4

z = 1

1 2

z = 0

–1–2
x

y

 41. (a) 
z

z = x2 – y

y

x

(b) 

1

0

–1

3

2

–2

–3

y

x

z = –3

z = –2

z = –1

z = 0

z = 1

z = 2

z = 3

 43. (a) 

z = 4x2 + y2

2
4

16

2
4

1

0

z

x
y

(b) 

4

1

2

2

z = 0

z = 16

z = 4

x

y

 45. (a) 
z = 1 – 0 y 0

(0, 0, 1)

1

z

x

y

(b) 

z = 1
1

0

z = 0

z = –1
2

z = 0

z = –1
–1

–2

x

y

 47. (a) 
z

2

y

x

z = x2 + y2 + 4
Î

(b) 
y

x

1

3

4

2

–3 –2 –1

–1

–2

–3

–4

1 42 3–4

z = 2

z  = 
Î

20

z =
Î

13

z =
Î

8

z =
Î

5

 49. + =x y 102 2

y

xÎ

10

Î

10

–
Î

10

–
Î

10

 51. + =x y 42

2

–2

y

4
x

 53. 

f(x, y, z) = x2 + y2 + z2 = 1

1
1

1

z

x

y

 55. 

f (x, y, z) = x + z = 1

1

1

z

x

y
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 Chapter 13: Answers to Odd-Numbered Exercises AN-55

 57. 

1 1

f (x, y, z) = x2 + y2 = 1

z

x

y

 59. 

f(x, y, z) = z – x2 – y2 = 1
or z = x2 + y2 + 1 

2

1
1

1

5

2

z

x y

 61. − − =x y zln 2  63. + + =x y z 42 2 2

 65. Domain: all points ( )x y,  
satisfying <x y

y = x

y = –x

y

x

level curve: y x2=  

 67. Domain: all points ( )x y,  
satisfying − ≤ ≤x1 1 and 
− ≤ ≤y1 1

y

x

1

–1

1–1

level curve:  
y xsin sin

2
1 1 π− =− −  

SECTION 13.2, pp. 781–784
 1. 5 2  3. 2 6  5. 1  7. 1 2  9. 1
 11. 1 4  13. 0  15. −1  17. 2  19. 1 4
 21. 1  23. 3  25. 19 12  27. 2  29. 3
 31. (a) All ( )x y,  (b) All ( )x y,  except ( )0, 0
 33. (a) All ( )x y,  except where =x 0 or =y 0 (b) All ( )x y,
 35. (a) All ( )x y z, ,
 (b) All ( )x y z, ,  except the interior of the cylinder + =x y 12 2

 37. (a) All ( )x y z, ,  with z 0≠  (b) All ( )x y z, ,  with x z 12 2+ ≠
 39. (a) All points ( )x y z, ,  satisfying > + +z x y 12 2

 (b) All points ( )x y z, ,  satisfying ≠ +z x y2 2

 41. Consider paths along = >y x x, 0, and along = <y x x, 0.
 43. Consider the paths =y kx ,2  k a constant.
 45. Consider the paths =y mx, m a constant, ≠ −m 1.
 47. Consider the paths =y kx ,2  k a constant, ≠k 0.
 49. Consider the paths =x 1 and =y x.
 51. Along =y 1 the limit is 0; along =y e x  the limit is 1 2.
 53. Along =y 0 the limit is 1; along y xsin= −  the limit is 0.
 55. (a) 1 (b) 0 (c) Does not exist
 59. The limit is 1.  61. The limit is 0.
 63. (a) θ( ) ==f x y, sin 2

y mx
, where θ = mtan   65. 0

 67. Does not exist  69. π 2  71. ( ) =f 0, 0 ln 3

 73. δ = 0.1  75. δ = 0.005  77. δ = 0.04

 79. δ = 0.015  81. δ = 0.005

SECTION 13.3, pp. 793–796

 1. f
x

x
f
y

4 , 3
∂
∂

= ∂
∂

= −   3. f
x

x y
f
y

x2 2 , 12( )∂
∂

= + ∂
∂

= −

 5. f
x

y xy
f
y

x xy2 1 , 2 1( ) ( )
∂
∂

= − ∂
∂

= −

 7. f
x

x
x y

f
y

y
x y

,
2 2 2 2

∂
∂

=
+

∂
∂

=
+

 9. f
x x y

f
y x y

1 , 1
2 2( ) ( )

∂
∂

= −
+

∂
∂

= −
+

 11. f
x

y
xy

f
y

x
xy

1
1

, 1
1

2

2

2

2( ) ( )

∂
∂

= − −
−

∂
∂

= − −
−

 13. f
x

e
f
y

e,x y x y1 1∂
∂

= ∂
∂

=+ + + +   15. f
x x y

f
y x y

1 , 1∂
∂

=
+

∂
∂

=
+

 
17.

 

f
x

x y x y

f
y

x y x y

2 sin 3 cos 3 ,

6 sin 3 cos 3

( ) ( )

( ) ( )

∂
∂

= − −

∂
∂

= − − −

 19. f
x

yx
f
y

x x, lny y1∂
∂

= ∂
∂

=−   21. f
x

g x
f
y

g y( ), ( )
∂
∂

= − ∂
∂

=

 23. = = = −f y f xy f z,   2 ,   4x y z
2

 25. ( ) ( )= = − + = − +− −f f y y z f z y z1,   ,  x y z
2 2 1 2 2 2 1 2

 27. =
−

=
−

=
−

f
yz
x y z

f xz
x y z

f
xy
x y z1

,  
1

,  
1

x y z2 2 2 2 2 2 2 2 2

 29. =
+ +

=
+ +

=
+ +

f
x y z

f
x y z

f
x y z

1
2 3

,   2
2 3

,   3
2 3x y z

 31. f xe f ye f ze2 ,   2 ,   2x
x y z

y
x y z

z
x y z2 2 2 2 2 2 2 2 2= − = − = −( ) ( ) ( )− + + − + + − + +

 
33.

 
( ) ( )

( )

= + + = + +
= + +

f x y z f x y z

f x y z

sech 2 3 ,   2 sech 2 3 ,

3 sech 2 3
x y

z

2 2

2

 35. f
t

t
f

t2 sin 2 , sin 2π π α
α

π α( ) ( )
∂
∂

= − − ∂
∂

= −

 37. 
ρ

θ ρ θ
θ

ρ θ∂
∂

= ∂
∂

= ∂
∂

= −h ø h
ø

ø h øsin cos , cos cos , sin sin

 

39.

 

W P V g V W P V g P
g

W P V g V
g

W P V g V
g

W P V g V
g

,  ,  ,  ,  ,  ,  ,  ,  , 
2

,

,  ,  ,  , 
2

, ,  ,  ,  ,  ,

,  ,  ,  , 
2

P V

g

2

2

2

2

δ υ δ υ δυ

δ υ υ δ υ δυ

δ υ δυ

( ) ( )

( ) ( )

( )

= = +

= =

= −

δ υ

 41. f
x

y
f
y

x
f

x
f

y
f

y x
f

x y
1 , 1 , 0, 0, 1

2

2

2

2

2 2∂
∂

= + ∂
∂

= + ∂
∂

= ∂
∂

= ∂
∂ ∂

= ∂
∂ ∂

=

 

43.

 

g
x

xy y x
g
y

x y x

g
x

y y x
g

y
y

g
y x

g
x y

x x

2 cos , sin sin ,

2 sin , cos ,

2 cos

2

2

2

2

2

2 2

∂
∂

= + ∂
∂

= − +

∂
∂

= − ∂
∂

= −

∂
∂ ∂

= ∂
∂ ∂

= +

 
45.

 

r
x x y

r
y x y

r
x x y

r
y x y

r
y x

r
x y x y

1 , 1 , 1 , 1 ,

1

2

2 2

2

2 2

2 2

2

( ) ( )

( )

∂
∂

=
+

∂
∂

=
+

∂
∂

= −
+

∂
∂

= −
+

∂
∂ ∂

= ∂
∂ ∂

= −
+

 

47.

 

w
x

x y xy x xy w
y

x xy

w
y x

w
x y

x y xy xy x xy

w
x

xy xy x y xy xy xy

w
y

x xy xy

sec 2 tan , sec ,

2 sec tan 3 sec

4 sec 2 sec tan 2 tan

2 sec tan

2 2 3 2

2 2
3 2 2 2

2

2
2 2 2 2

2

2
4 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

∂
∂

= + ∂
∂

=

∂
∂ ∂

= ∂
∂ ∂

= +

∂
∂

= + +

∂
∂

=
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49.

 

w
x

x y x y x y w
y

x x y

w
y x

w
x y

x x y x y x y

w
x

xy x y x y x y

w
y

x x y

sin 2 cos , cos ,

3 cos 2 sin

6 cos 4 sin

sin

2 2 2 3 2

2 2
2 2 4 2

2

2
2 3 2 2

2

2
5 2

( ) ( ) ( )

( ) ( )

( ) ( )

( )

∂
∂

= + ∂
∂

=

∂
∂ ∂

= ∂
∂ ∂

= −

∂
∂

= −

∂
∂

= −

 

51.

 

f
x

xy x
f
y

x y y

f
x

y x
f

y
x y y

f
y x

f
x y

xy

2 4 , 3 5 ,

2 12 , 6 20 ,

6

3 3 2 2 4

2

2
3 2

2

2
2 3

2 2
2

∂
∂

= − ∂
∂

= +

∂
∂

= − ∂
∂

= +

∂
∂ ∂

= ∂
∂ ∂

=

 

53.

 

z
x

x x y x y

z
y

xy x y

z
x

x y x x y

z
y

xy x y x x y

z
x y

z
y x

xy x y y x y

2 cos 2 sin 2 ,

2 cos 2 ,

4 cos 2 4 sin 2 ,

4 sin 2 2 cos 2 ,

4 sin 2 2 cos 2

2 2

2

2

2
2 2

2

2
2 2 2

2 2
2 2

( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

∂
∂

= − + −

∂
∂

= − −

∂
∂

= − − −

∂
∂

= − − − −

∂
∂ ∂

= ∂
∂ ∂

= − − −

 55. w
x x y

w
y x y

w
y x

w
x y x y

2
2 3

, 3
2 3

, 6
2 3

2 2

2( )
∂
∂

=
+

∂
∂

=
+

∂
∂ ∂

= ∂
∂ ∂

= −
+

 
57.

 

w
x

y xy x y w
y

xy x y x y

w
y x

w
x y

y xy x y

2 3 , 2 3 4 ,

2 6 12

2 3 2 4 2 2 3 3

2 2
2 2 3

∂
∂

= + + ∂
∂

= + +

∂
∂ ∂

= ∂
∂ ∂

= + +

 
59.

 

w
x

x
y

w
y

x
y

w
y x

x
y

w
x y

x
y

2 , 3

6 , 6

3

2

4

2

4

2

4

∂
∂

= ∂
∂

= −

∂
∂ ∂

= − ∂
∂ ∂

= −

 61. (a) x first (b) y first (c) x first
 (d) x first (e) y first (f) y first

 63. ( ) ( )= − = −f f1, 2 13,   1, 2 2x y

 65. ( ) ( )− = − =f f2, 3 1 2,   2, 3 3 4x y

 67. 12  69. −2

 71. A
a

a
bc A

A
b

c A b
bc Asin

,
cos

sin
∂
∂

= ∂
∂

=
−

 73. υ
υ
υ( )( )

=
−u

ln
ln ln 1x

 75. (a) 3 (b) 2

 

77.

 

f
x

x y x

f x y x y x g y
f
y

x y g y x y

g y y g y y
f x y x y x y

3 2  

,   

2 ( ) 2 64 

( ) 6   ( ) 3  works 
,  3  works

2 2

3 2 2

3 3

2

3 2 2 2

( ) ( )

( )

∂
∂

= − ⇒

= − + ⇒
∂
∂

= + ′ = + ⇒

′ = ⇒ = ⇒
= − +

 79. 
( ) ( )

∂
∂ ∂

= −
+

≠ ∂
∂ ∂

= −
+

f
y x

x y
x y

f
x y

y x
x y

2 2 2 22

3

2

3  so impossible

 81. ( ) =f x y, 0x  for all points ( )x y, ,

( ) =
≥

− <

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

f x y
y y

y y
,

3 , 0

2 , 0
,y

2

( ) ( )= =f x y f x y, , 0xy yx  for all points ( )x y,

 99. Yes

SECTION 13.4, pp. 803–805

 1. (a) =dw
dt

0, (b) π =dw
dt

( ) 0

 3. (a) =dw
dt

1, (b) ( ) =dw
dt

3 1

 5. (a) = +−dw
dt

t t4 tan 1,1  (b) π( ) = +dw
dt

1 1

 
7.

 
(a)

 

z
u

u

z u u
u

4 cos ln sin 4 cos ,

4 sin ln sin
4 cos

sin

2

υ υ υ

υ
υ υ

υ
υ

( )

( )

∂
∂

= +

∂
∂

= − +

 (b) z
u

z2 ln 2 2 , 2 2 ln 2 2
υ

( ) ( )∂
∂

= + ∂
∂

= − −

 9. (a) w
u

u u w u2 4 , 2 2 2υ
υ

υ∂
∂

= + ∂
∂

= − +

 (b) w
u

w3, 3
2υ

∂
∂

= ∂
∂

= −

 11. (a) u
x

u
y

z
z y

u
z

y
z y

0, ,2 2( ) ( )
∂
∂

= ∂
∂

=
−

∂
∂

= −
−

 (b) u
x

u
y

u
z

0, 1, 2∂
∂

= ∂
∂

= ∂
∂

= −

 13. = ∂
∂

+ ∂
∂

dz
dt

z
x

dx
dt

z
y

dy
dt

yx

z

t

dt
dx

dt
dy

'x
'z

'y
'z

 
15.

 

w
u

w
x

x
u

w
y

y
u

w
z

z
u

w w
x

x w
y

y w
z

z

,

υ υ υ υ

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

+ ∂
∂

∂
∂

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

+ ∂
∂

∂
∂

zx

w

y

y
 

zx

w

u

 

y

'x
'w

'z
'w

'u
'x

'u
'z'u

'y

'y
'w 'x

'w
'z
'w

'y
'x

'y
'z'y

'y

'y
'w

 17. w
u

w
x

x
u

w
y

y
u

w w
x

x w
y

y
, .
υ υ υ

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

yx

w

u

yx

w

y

'x
'w

'y
'w

'u
'x

'u
'y

'x
'w

'y
'w

'y
'x

'y
'y
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 Chapter 13: Answers to Odd-Numbered Exercises AN-57

 19. z
t

z
x

x
t

z
y

y
t

z
s

z
x

x
s

z
y

y
s

,∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

yx

z

t

yx

z

s

'x
'z

'y
'z

't
'x

't
'y

'x
'z

'y
'z

's
'x

's
'y

 21. w
s

dw
du

u
s

w
t

dw
du

u
t

,∂
∂

= ∂
∂

∂
∂

= ∂
∂

w

u

s

w

u

t

du
dw

du
dw

's
'u

't
'u

 
23.

 

w
r

w
x

x
r

w
y

y
r

w
x

x
r

y
r

w
s

w
x

x
s

w
y

y
s

w
y

y
s

x
s

 since  0,

 since  0

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

= ∂
∂

∂
∂

∂
∂

=

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

= ∂
∂

∂
∂

∂
∂

=

yx

w

r

yx

w

s

'r
'x

'r
'y

'x
'w

'x
'w

'y
'w

'y
'w

= 0 's
'x

's
'y

= 0

 25. 4 3  27. −4 5  29. 20  31. z
x

z
y

1
4

, 3
4

∂
∂

= ∂
∂

= −

 33. z
x

z
y

1, 1∂
∂

= − ∂
∂

= −   35. 12  37. −7

 39. z
u

z2, 1
υ

∂
∂

= ∂
∂

=   41. w
t

t e w
s

s e2 , 3s t s t23 2 3 2∂
∂

= ∂
∂

=+ +

 43. 23  45. −16, 2  47. −0.00005  amp s

 53. cos 1, sin 1, 1  and  cos( 2), sin( 2),  2( ) ( )− − −

 55. (a)  Maximum at 2
2

, 2
2

−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ and −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

2
2

,  2
2

; minimum  

at 2
2

, 2
2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ and − −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

2
2

,  2
2

 (b) Max 6; min 2= =

 57. °5  C s  59. ∫+ +
+

x x x x
t x

dt2 3
2

x
8 3

2

4 30

2

 61. 0.19 m min  63. −8 61 rad min

SECTION 13.5, pp. 814–815
 1. 

(2, 1)

2

y – x = –1

1

1

2

0
–1

∇f = – i + j 

x

y
3. 

y

(2, –1)
x

2

y2
x =

∇f = i – 4j

 5. 

4 = 2x + 3y

(–1, 2)

x

y

1
2

∇f = i + 3
4

j

4
3

2

 7. ∇ = + −f i j k3 2 4   9. ∇ = − + −f i j k26
27

23
54

23
54

 11. −4  13. 21 13  15. 3  17. 2

 
19.

 
D f

D f

u i j u i j1
2

1
2

, 2;  1
2

1
2

,

  2

P

P

u

u

 

 

0

0

( )

( )

= − + = − = −

= −−

 
21.

 
D f

D f

u i j k

u i j k

1
3 3

5
3 3

1
3 3

, 3 3;

1
3 3

5
3 3

1
3 3

, 3 3

P

P

u

u

 

 

0

0

( )

( )

= − − =

− = − + + = −−

 
23.

 
D f

D f

u i j k

u i j k

1
3

, 2 3;

1
3

, 2 3

P

P

u

u

 

 

0

0

( )

( )

( )

( )

= + + =

− = − + + = −−

 25. 

x2 + y2 = 4

2

2

∇f = 2
Î

2i + 2
Î

2j

(
Î

2, 
Î

2)

y = –x + 2
Î

2

x

y
 27. 

y = x – 4
xy = –4

2
–2

(2, –2)

x

y

∇f = –2i + 2j

 29. (a) ( )= − − =D fu i j3
5

4
5

,     1,  1 5u

 (b) ( )= − + − = −D fu i j3
5

4
5

,     1,  1 5u

 (c) = + = − −u i j u i j4
5

3
5

,   4
5

3
5

 (d) = − = −u j u i j,   24
25

7
25

 (e) = − = +u i u i j,   7
25

24
25

 31. = − − = − +u i j u i j7
53

2
53

,  7
53

2
53

 33. No, the maximum rate of change is <185 14.  35. −7 5
 41. ( ) ( )= − − + + −∞ < < ∞r t t t ti j( ) 3 6 4 8 , 
 43. ( ) ( ) ( )= + + − − + + −∞ < < ∞r t t t t ti j k( ) 3 6 2 4 1 2 , 

 45. 14
3

, 1
6

,  12,  4
9

− −   47. 
e

30,1, 90, 1 , 9

 49. −
e

3
20

2
2

  51. π +
2

1
12

SECTION 13.6, pp. 822–825
 1. (a) + + =x y z 3
 (b) x t y t z t1 2 , 1 2 , 1 2= + = + = +
 3. (a) − − =x z2 2 0
 (b) x t y z t2 4 , 0, 2 2= − = = +
 5. (a) + + − =x y z2 2 4 0
 (b) x t y t z t2 , 1 2 , 2= = + = +
 7. (a) + + − =x y z 1 0
 (b) x t y t z t, 1 ,= = + =
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AN-58 Chapter 13: Answers to Odd-Numbered Exercises

 9. (a) − + + =x y z e3 2
 (b) x t y t z e e t2 , 1 3 , 1( )= − = + = +
 11. − − =x z2 2 0  13. − + − =x y z2 1 0
 15. x y t z t1, 1 2 , 1 2= = + = −

 17. x t y z t1 2 , 1, 1
2

2= − = = +

 19. x t y t z1 90 , 1 90 , 3= + = − =

 21. = ≈df 9
11,830

0.0008  23. =dg 0

 25. (a) − ≈ °3
2

sin 3 1
2

cos 3 0.935  C m

 (b) − ≈ °3 sin 3 cos 3 1.87  C s
 27. (a) ( ) =L x y, 1 (b) ( ) = + −L x y x y, 2 2 1

 29. (a) ( ) = − +L x y x y, 3 4 5

 (b) ( ) = − +L x y x y, 3 4 5
 31. (a) ( ) = +L x y x, 1

 (b) π( ) = − +L x y y,
2

 33. (a) W W30, 5 13 C, 50, 25 42.2 C,( ) ( )− = − ° − = − °

   W 30, 10 19.5 C( )− = − °

 (b)  W W15, 40 53.7  C,  80,  40 66.6  C,( ) ( )− ≈ − ° − ≈ − °  
W 90, 0 10.2  C( ) ≈ − °

 (c) L T, 1.336 T 0.11 2.952υ υ( ) ≈ − −
 (d)     i) L 39, 9 19.3  C( ) ≈ − °
  ii) L 42, 12 23.6  C( )− ≈ − °
 iii) L 10, 25 37.5  C( )− ≈ − °
 35. ( ) = + −L x y x y, 7 6 ; 0.06
 37. ( ) = + +L x y x y, 1; 0.08  39. ( ) = +L x y x, 1 ; 0.0222
 41. (a) ( ) = + + −L x y z x y z, , 2 2 2 3
 (b) ( ) = +L x y z y z, ,  (c) ( ) =L x y z, , 0
 43. (a) ( ) =L x y z x, ,

 (b) ( ) = +L x y z x y, , 1
2

1
2

 (c) ( ) = + +L x y z x y z, , 1
3

2
3

2
3

 45. (a) ( ) = +L x y z x, , 2

 (b) π( ) = − − + +L x y z x y z, ,
2

1

 (c) π( ) = − − + +L x y z x y z, ,
2

1

 47. ( ) = − − +L x y z x y z, , 2 6 2 6, 0.0024
 49. ( ) = + − −L x y z x y z, , 1, 0.00135
 51. Maximum error (estimate) ≤ 0.31 in magnitude
 53. Pay more attention to the smaller of the two dimensions. It will 

generate the larger partial derivative.
 55. f is most sensitive to a change in d.
 61. (a) 1.75% (b) 1.75%

SECTION 13.7, pp. 832–834
 1. f 3, 3 5,( )− = −  local minimum  3. f 2,1 ,( )−  saddle point

 5. f 3, 3
2

17
2

,( ) =  local maximum

 7. ( )− = −f 2,  1 6, local minimum  9. f 1, 2( ), saddle point

 11. f 16
7

, 0 16
7

,( ) = −  local maximum

 13. ( )f 0, 0 , saddle point; f 2
3

, 2
3

170
27

,( )− =  local maximum

 15. ( ) =f 0, 0 0, local minimum; ( )−f 1,  1 , saddle point

 17. f 0, 5( )± , saddle points; f 2, 1 30,( )− − =  local maximum; 
f 2,1 30,( ) = −  local minimum

 19. ( )f 0, 0 , saddle point; f f1,1 2,   1,  1 2,( ) ( )= − − =  local maxima

 21. ( ) = −f 0, 0 1, local maximum
 23. π( )f n , 0 , saddle points, for every integer n
 25. ( ) = −f e2, 0 ,4  local minimum
 27. ( ) =f 0, 0 0, local minimum; ( )f 0, 2 , saddle point

 29. ( ) ( )= −f 1
2

, 1 ln 1
4

3, local maximum

 31. Absolute maximum: 1 at ( )0, 0 ; absolute minimum: −5 at ( )1, 2
 33. Absolute maximum: 4 at ( )0, 2 ; absolute minimum: 0 at ( )0, 0
 35. Absolute maximum: 11 at ( )−0, 3 ; absolute minimum: −10 at 

( )−4,  2
 37. Absolute maximum: 4 at ( )2, 0 ; absolute minimum: 3 2

2
 at 

π π π( ) ( ) ( )− −3, 
4

,  3, 
4

,  1, 
4

, and π( )1, 
4

 39. = − =a b3,  2

 41. Hottest is 
°

2 1
4

 at −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

1
2

,  3
2

 and − −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

1
2

,  3
2

; coldest is  

−
°1

4
 at ( )1

2
, 0 .

 43. (a) ( )f 0, 0 , saddle point (b) ( )f 1, 2 , local minimum
 (c) ( )−f 1,  2 , local minimum; ( )− −f 1,  2 , saddle point

 49. ( )1
6

, 1
3

, 355
36

  51. ( )9
7

, 6
7

, 3
7

   53. 3, 3, 3  55. 12

 57. × ×4
3

4
3

4
3

  59. 2 m 2 m 1 m× ×

 61. Points ( )0, 2, 0  and ( )−0, 2, 0  have distance 2 from the origin.
 63. (a)  On the semicircle, =fmax 2 2 at π= = −t f4, min 2 

at π=t . On the quarter circle, =fmax 2 2 at 
π= =t f4, min   2 at π=t 0,  2.

 (b)  On the semicircle, =gmax 2 at π= = −t g4, min 2 
at π=t 3 4. On the quarter circle, =gmax 2 at 
π= =t g4, min 0 at π=t 0,  2.

 (c)  On the semicircle, =hmax 8 at π= =t h0,  ; min 4 
at π=t 2. On the quarter circle, =hmax 8 at 

= =t h0, min 4 at π=t 2.

 65.    i) = −fmin 1 2 at = −t 1 2; no max

   ii) =fmax 0 at = − = −t f1, 0; min 1 2 at = −t 1 2

 iii) =fmax 4 at = =t f1; min   0 at =t 0

 69. = − + = −
=

y x y20
13

9
13

,  71
13x 4

SECTION 13.8, pp. 841–844

 1. ( ) ( )± ± −1
2

, 1
2

,  1
2

,  1
2

  3. 39  5. ( )±3,  3 2

 7. (a) 8 (b) 64
 9. = =r h2 cm,  4 cm  11. = =Length 4 2, width 3 2
 13. ( ) =f 0, 0 0 is minimum; ( ) =f 2, 4 20 is maximum.
 15. = ° = °Lowest 0 , highest 125

 17. ( )3
2

, 2, 5
2

  19. 1  21. ( )0, 0, 2 , ( )−0, 0,  2

 23. ( )− =f 1, 2, 5 30 is maximum; ( )− − = −f 1, 2, 5 30 is minimum.

 25. 3, 3, 3  27. 2
3

 by  2
3

 by  2
3

 units

 29. ( )± − −4 3,  4 3,  4 3   31. (b) 24,322 units≈

 33. ( ) =U 8, 14 $128  37. ( )− =f 2 3, 4 3,  4 3 4
3

 39. ( )2, 4, 4   41. Maximum is +1 6 3 at ( )± 6,  3, 1 ; 

minimum is −1 6 3 at ( )± −6,  3, 1 .
 43. Maximum is 4 at ( )±0, 0,  2 ; minimum is 2 at ( )± ±2,  2, 0 .
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 Chapter 13: Answers to Odd-Numbered Exercises AN-59

SECTION 13.9, p. 848

 1. Quadratic: +x xy; cubic: + +x xy xy1
2

2

 3. Quadratic: xy; cubic: xy

 5. Quadratic: ( )+ −y xy y1
2

2 ;2

cubic: ( ) ( )+ − + − +y xy y x y xy y1
2

2 1
6

3 3 22 2 2 3

 7. Quadratic: ( )+ = +x y x y1
2

2 2 ;2 2 2 2   cubic: +x y2 2

 9. Quadratic: ( ) ( )+ + + +x y x y1 ;2

cubic: ( ) ( ) ( )+ + + + + +x y x y x y1 2 3

 11. Quadratic: ( )− − ≤x y E x y1 1
2

1
2

;  , 0.001342 2

SECTION 13.10, p. 852
 1. (a) 0 (b) + z1 2  (c) + z1 2

 3. (a) ( )∂
∂

+ ∂
∂

U
P

U
T

V
nR

 (b) ( )∂
∂

+ ∂
∂

U
P

nR
V

U
T

 5. (a) 5 (b) 5

 7. θ( ) ( )∂
∂

= ∂
∂

=
+θ

x
r

r
x

x
x y

cos
y 2 2

PRACTICE EXERCISES, pp. 853–856
 1. Domain: all points in the xy-plane; range: ≥z 0. Level curves 

are ellipses with major axis along the y-axis and minor axis along 
the x-axis.

1–1

–3

3

z = 9

x

y

 3. Domain: all ( )x y,   such that ≠x 0 and ≠y 0; range: ≠z 0. 
Level curves are hyperbolas with the x- and y-axes as  
asymptotes.

z = 1

x

y

 5. Domain: all points in xyz-space; range: all real numbers.  
Level surfaces are paraboloids of revolution with the z-axis  
as axis.

1

f(x, y, z) = x2 + y2 – z = –1
or
z = x2 + y2 + 1

z

x

y

 7. Domain: all ( )x y z, ,  such that ( ) ( )≠x y z, , 0, 0, 0 ; range: 
positive real numbers. Level surfaces are spheres with center  
(0, 0, 0) and radius >r 0.

1 1

h(x, y, z) =                     = 1
or
x2 + y2 + z2 = 1

1

1
x2 + y2 + z2z

x y

 9. −2  11. 1 2  13. 1  15. Let = ≠y kx k,  12

 17. No; ( )
( ) ( )→

f x ylim ,
x y,  0, 0

 does not exist.

 19. θ θ
θ

θ θ∂
∂

= + ∂
∂

= − +g
r

g
r rcos sin ,  sin cos

 21. ∂
∂

= − ∂
∂

= − ∂
∂

= −f
R R

f
R R

f
R R

1 ,  1 ,  1

1 1
2

2 2
2

3 3
2

 23. ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

= −P
n

RT
V

P
R

nT
V

P
T

nR
V

P
V

nRT
V

,  ,  , 
2

 25. ∂
∂

= ∂
∂

= ∂
∂ ∂

= ∂
∂ ∂

= −g
x

g
y

x
y

g
y x

g
x y y

0,  2 ,  12

2

2

2 3

2 2

2

 27. 
( )

∂
∂

= − + −
+

∂
∂

= ∂
∂ ∂

= ∂
∂ ∂

=f
x

x x
x

f
y

f
y x

f
x y

30 2 2
1

,  0,  1
2

2

2

2 2

2

2

2 2

 29. = −
=

dw
dt

1
t 0

 31. π∂
∂

= ∂
∂

= −
π π( ) ( )( ) ( )= =

w
r

w
s

2,  2
r s r s,  , 0 ,  , 0

 
33.

 
( )( ) ( )( )

( )( )

= − + + +

− +
=

df
dt

sin 1 cos 2 sin 1 cos 1 cos 2 cos 1

2 sin 1 cos 1 sin 2
t 1

 35. = −
( ) ( )=

dy
dx

1
x y,  0, 1

 37. Increases most rapidly in the direction = − −u i j2
2

2
2

; 

decreases most rapidly in the direction − = +u i j2
2

2
2

; 

= = −−D f D f2
2

;  2
2

;u u     = −D f  7
10u1

 where =u v
v1

 39. Increases most rapidly in the direction = + +u i j k2
7

3
7

6
7

; 

decreases most rapidly in the direction − = − − −u i j k2
7

3
7

6
7

; 

= = − =−D f D f D f7;  7;  7u u u    1
 where =u v

v1

 41. π 2   43. (a) ( ) ( )= =f f1, 2 1, 2 2x y   (b) 14 5

 45. 
x2 + y + z2 = 0

∇f 0 (0, –1, 1) = j + 2k

∇f 0 (0, –1, –1) = j – 2k

∇f 0 (0, 0, 0) = j
1

–1

z

x

y
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AN-60 Chapter 14: Answers to Odd-Numbered Exercises

 47. Tangent: − − =x y z4 5 4; normal line: 
x t y t z t2 4 ,  1 ,  1 5= + = − − = −

 49. − − =y z2 2 0
 51. Tangent: π+ = +x y 1; normal line: π= − +y x 1

2

2

y = –x + p + 1

y = x – p + 1

y = 1 + sin x

0

1

1
x

y

p

 53. = − = = +x t y z t1 2 ,  1,  1 2 2
 55. Answers will depend on the upper bound used for 

f f f, , .xx xy yy  With = ≤M E2 2,  0.0142. With 
= ≤M E1,  0.02.

 57. ( ) ( )= − = + − −L x y z y z L x y z x y z, , 3 ,  , , 1
 59. Be more careful with the diameter.
 61. =dI 0.038, % change in =I 15.83%, more sensitive to  

voltage change
 63. (a) 5%  65. Local minimum of −8 at ( )− −2, 2
 67. Saddle point at ( ) ( ) =f0, 0 ,   0, 0 0; local maximum of 1 4 at 

( )− −1 2,  1 2
 69. Saddle point at ( ) ( ) =f0, 0 ,   0, 0 0; local minimum of −4 

at ( )0, 2 ; local maximum of 4 at ( )−2, 0 ; saddle point at 
( ) ( )− − =f2, 2 ,   2, 2 0

 71. Absolute maximum: 28 at ( )0, 4 ; absolute minimum: −9 4 at 
( )3 2, 0

 73. Absolute maximum: 18 at ( )−2,  2 ; absolute minimum: −17 4 
at ( )−2,1 2

 75. Absolute maximum: 8 at ( )−2, 0 ; absolute minimum: −1 at ( )1, 0
 77. Absolute maximum: 4 at ( )1, 0 ; absolute minimum: −4 at ( )−0, 1
 79. Absolute maximum: 1 at ( )±0,  1  and ( )1, 0 ; absolute minimum: 

−1 at ( )−1, 0
 81. Maximum: 5 at ( )0,1 ; minimum: −1 3 at ( )−0,  1 3

 83. Maximum: 3 at ( )−1
3

,  1
3

,  1
3

; minimum: − 3 at 

( )− −1
3

,  1
3

,  1
3

 85. ( ) ( ) ( )= = =c V
ab

b V
ac

a V
bc

Width , depth , height
2 1 3 2 1 3 2 1 3

 87. Maximum: 3
2

 at ( )1
2

,  1
2

,  2  and ( )− − −1
2

,  1
2

,  2 ; 

minimum: 1
2

 at ( )− −1
2

,  1
2

,  2  and ( )−1
2

,  1
2

,  2

 89. θ
θ
θ

θ
θ
θ

∂
∂

= ∂
∂

− ∂
∂

∂
∂

= ∂
∂

+ ∂
∂

w
x

w
r r

w w
y

w
r r

wcos
sin

,  sin
cos

 95. ( )− ±t t t t, 4, ,   a real number

 101. (a) ( )+y x z e2 yz2  (b) −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟x e y z

y2
yz2  (c) ( )+ x y e1 yz2

ADDITIONAL AND ADVANCED EXERCISES, pp. 856–858
 1. ( ) ( )= − =f f0, 0 1,   0, 0 1xy yx

 7. (c) ( )= + +r x y z
2

1
2

2
2 2 2   13. =V abc3

2

 17. ( ) ( )= + = +f x y
y

g x y x,
2

4,  ,
2

9
2

 19. = +y x2 ln sin ln 2

 21. (a) ( )+i j1
53

2 7  (b) ( )− − +i j k1
29,097

98 127 58

 23. π= π−w e xsinc t2 2

Chapter 14
SECTION 14.1, pp. 863–864
 1. 24  3. 1  5. 16  7. −2 ln 2 1  9. ( )( )− e3 2 5
 11. 3 2  13. ln 2  15. −3 2, 2  17. 14  19. 0
 21. 1 2  23. 2 ln 2  25. ( )ln 2 2

 27. 

z = 9 − x2 − y2

(paraboloid)

x
y

z

9

1

(1, 2)

2

5
4

8

 29. 8 3  31. 1  33. 2   35. 2 27

 37. −3
2

ln 3 1  39. (a) 1 3 (b) 2 3

SECTION 14.2, pp. 870–873
 1. 

y = 2x

3

6

y

x

 3. 

2

−2

y

4
x

x = y2

 5. 

1

y

y = ex

y = e

e

x

 7. 

1

y

x = arcsin y

p
2

x

 9. (a) ∫∫ dy dx
x

8

0

2

3
 (b) ∫∫ dx dy

y

00

8 1 3

 11. (a) ∫∫ dy dx
x

x3

0

3

2
 (b) ∫∫ dx dy

y

y

30

9

 13. (a) ∫∫ dy dx
x

00

9
 (b) ∫∫ dx dy

y

9

0

3

2

 15. (a) ∫∫ −
dy dx

e

1

0

ln 3

x
 (b) ∫∫ −

dx dy
yln

ln 3

1 3

1

 17. (a) ∫∫
−

dy dx
x

x3 2

0

1

  (b) ∫∫ ∫∫+
( )−

dx dy dx dy
y y

00

1

0

3 2

1

3

 19. 42  21. 21 40  23. π 2  25. 49 5
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 Chapter 14: Answers to Odd-Numbered Exercises AN-61

 27. π +
2

2
2

0
x

y

p

p

(p, p)

 29. − + e8 ln 8 16

1

ln ln 8

(ln ln 8, ln 8)

x = ln y

0

ln 8

x

y

 31. −e 2

1

1

(1, 1)

x = y2

0
x

y

 33. 3
2

ln 2  35. −1 10

 37. 8

(2, −2)

y = p

2−2

−2(−2, −2)

y = −p

p

y

 39. π2

2

1

(p�3, 2)(−p�3, 2)
u = sec t

t

u

p
3

p
3

−

 41. ∫∫
( )−

dx dy
y

0

4 2

2

4

2

4

1

y = 4 − 2x

0

(1, 2)

x

y

 43. ∫∫ dy dx
x

x

0

1

2

1

1

(1, 1)

y = x

y = x2

0
x

y

 45. ∫∫ dx dy
y

e

ln

1

1

1

1

(1, 1)

y = ex

0

e (1, e)

x

y

 47. ∫∫
( )−

x dx dy16
y

0

9 2

0

9

y = 9 − 4x2

9

0
x

y

3
2

 49. ∫∫
−

−
y dy dx3

x

0

1

1

1 2

x2 + y2 = 1

1−1

1

0
x

y

 51. ∫∫ xy dx dy
e

e

0

1

y

1

y

y = ln x

e
x

 53. ∫∫ ( )+x y dy dx
x

e

ln

3

1

3

y

x = eyx = 1

3

e31
x

 55. 2

y = x

0

(p, p)p

p
x

y

 57. −e 2
2

0

(1, 1)1

1

x = y

x

y

 59. 2

y = 2x

0
Î

ln 3

2
Î

ln 3 (
Î

ln 3, 2
Î

ln 3)

x

y

 61. π( )1 80

Q ,   R

0

y = x4

x

y

1
16

1
2

1
16

1
2

 63. 2 3−

x + y = 1−x + y = 1

−x − y = 1 x − y = 1

1

1

−1

−1
x

y

 65. 4 3  67. 625 12  69. 16  71. 20  73. 2 1 ln 2( )+
 75. 

3

2

y

x

1

z

2

3

y

x

z = 1 − x −1
3

y1
2

 77. 1  79. 2π   81. 3
32

−   83. 20 3
9

 85. x y dy dx 4
3x

x
2 2

2

0

1

∫∫ ( )+ =
−

y =
 x

y =
 2 −

 x 
1

2

1
x

y

 87. R is the set of points x y,( ) such that x y2 42 2+ ≤ .
 89. No, by Fubini’s Theorem, the two orders of integration must give 

the same result.
 93. 0.603  95. 0.233
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SECTION 14.3, pp. 875–876

 
1.

 
dy dx

dx dy

  2 or

2

x

y

0

2

0

2

0

2

0

2

∫∫

∫∫

=

=

−

−

y = 2 − x 

2

20
x

y

 3. dx dy 9
2y

y

22

1 2

∫∫ =
−

−

−

1

0

(−4, −2)

y = x + 2

−2−4

−2

(−1, 1)

x = −y2

x

y

 5. dy dx 1
e

00

ln 2 x

∫∫ =

1

ln 2

(ln 2, 2)
y = e x

0
x

y

 7. dx dy 1
3y

y y2

0

1

2

2

∫∫ =
−

1

1

(1, 1)

x = 2y − y2

x = y2

0
x

y

 
9.

 
dx dy

dy dx dy dx

1 4 or

1 1 4

y

y

x

x

x

3

0

2

30

2

3

2

2

6

∫∫

∫∫ ∫∫

=

+ =

y = x

y = 2

2 6

2

y

x

y = x1
3

 
11.

 
∫∫ ∫∫

∫∫ ∫∫

+ =

+ =

−

−

dy dx dy dx

dx dy dx dy

  1 1 3
2

or

1 1 3
2

x

x

x

x

y

y

y

y

2

2

0

1

2

3

1

2

2

2

0

1

2

3

1

2

y = 2x  or x = y1
2

or  x = 2yy = x1
2

y

x

y = 3 − x  or  x = 3 − y

1

2

3

1 2 3

 13. 12

12

6

0

(12, 6)y2 = 3x

y = 

NOT TO SCALE

x
2

x

y
 15. 2 1−

y = sin x

y = cos x

(p�4, Î2/2)

0

2
Î2

p
4

x

y

 17. 3
2

y = −2x
y = 1 − x

(−1, 2)

(2, −1)

y = −

2

2

(0, 0)

x
2

x

y

 19. (a) 0 (b) 4 2π   21. 8 3  23. 2π −
 25. e40,000 1 ln 7 2 43,3292 ( )( )− ≈−

SECTION 14.4, pp. 881–883

 1. r
2

2 ,  0 9π θ π≤ ≤ ≤ ≤   3. r
4

3
4

,  0 cscπ θ π θ≤ ≤ ≤ ≤

 
5.

 
r

r

0
6

,  1 2 3 sec ;

6 2
,  1 2 csc

θ π θ

π θ π θ

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

 7. r
2 2

,  0 2 cosπ θ π θ− ≤ ≤ ≤ ≤   9. 
2
π

 11. 2π  13. 36  15. 2 3−   17. 1 ln 2 π( )−

 19. 2 ln 2 1 2π( )( )−   21. 
2 1 2

3
( )+

 23. 

1

1

y

x

y = 
Î

1 − x2 or  x = 
Î

1 − y2

xy dy dx xy dx dyor
x y

0

1

0

1

0

1

0

12 2

∫∫ ∫∫
− −

 25. 

2

2

y

x

y = x

x = 2

y x y dy dx y x y dx dyor
x

y

2 2 2

00

2
2 2 2

2

0

2

∫∫ ∫∫( ) ( )+ +

 27. 2 2π( )−   29. 12π  31. 3 8 1π( ) +   33. a2
3

 35. a2
3

  37. e2 2π( )−   39. 4
3

5
8
π+

 41. (a) 
2
π  (b) 1  43. ln 4,π  no  45. a h1

2
22 2( )+

 47. 8
9

3 4π( )−
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 Chapter 14: Answers to Odd-Numbered Exercises AN-63

SECTION 14.5, pp. 891–893
 1. 1 6

 

3.

 

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫

− −− − −−

− −− − −−

− −− − −−

dz dy dx dz dx dy

dy dz dx dy dx dz

dx dz dy dx dy dz

  ,  ,

,  ,

,  .

x yx x yy

x zx x zz

y zy y zz

0

3 3 3 2

0

2 2

0

1

0

3 3 3 2

0

1 2

0

2

0

2 2 2 3

0

3 3

0

1

0

2 2 2 3

0

1 3

0

3

0

1 2 3

0

3 3 2

0

2

0

1 2 3

0

2 2 3

0

3

The value of all six integrals is 1.

 

5.

 

dz dx dy dz dx dy

dx dz dy dx dz dy

dx dy dz dx dy dz

dy dz dx dy dz dx

dy dx dz dy dx dz

1 ,  1 ,

1 1 ,

1 1 ,

1 1 ,

1 1 .

x y

x y

x

x

x y

x y

y

y

z y

z yy

z y

z y

y

z y

z y

z

z

z y

z y

z

z

z x

z xx

z x

z x

x

z x

z x

z

z

z x

z x

z

z

8

4

4

2

2 8

4

4

2

2

8

8

4

8

2

2 4

2

2

8

8

8

8

4

8

0

4

8

8

4

8

2

2 4

2

2

8

8

8

8

4

8

0

4

2 2

2 2

2

2

2 2

2 2

2

2

2

22

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫

+

+

+

+

+

− −

− −

−

− +

− −

− −

−

−

− − −

− −−

− − −

−

−

− − −

− −

− −

−

− −

−

−

− − −

− −−

− − −

−

−

− − −

− −

− −

−

− −

−

−

The value of all six integrals is 16 .π

 7. 1  9. 6  11. 
5 2 3

4
( )−

  13. 18

 15. 7 6  17. 0  19. 1
2 8

π−

 21. (a) ∫∫∫
−−

−
dy dz dx

x

zx 1

0

1

1

1

2

2

  (b) dy dx dz
x

z

z

z 1

1

1

0

1

2∫∫∫
−

− −

−

 (c) dx dy dz
y

yz

0

1

0

1

∫∫∫ −

−
  (d) dx dz dy

y

yy

0

1

0

1

∫∫∫ −

−

 (e) dz dx dy
y

y

y

0

1

0

1

∫∫∫
−

−

 23. 2 3  25. 20 3  27. 1  29. 16 3  31. 8 32
3

π −

 33. 2  35. 4π  37. 31 3  39. 1  41. 2 sin 4
 43. 4  45. a 3=  or a 13 3=
 47. The domain is the set of all points x y z,   ,  ( ) such that 

x y z4 4 4.2 2 2+ + ≤

SECTION 14.6, pp. 900–903
 1. x y5 14,   38 35= =   3. x y64 35,   5 7= =
 5. π= =x y a4 (3 )

 7. I I I4 gm cm ,   8 gm cmx y
2

0
2π π= = =

 9. x y1,   1 4= − =   11. I 64 105x =

 13. x y3 8,   17 16= =   15. = = =x y I11 3,   14 27,   432y

 17. x y I0,   13 31,   7 5y= = =

 
19.

 
x y I I

I

0,   7 10;   9 10 kg m ,   3 10 kg m ,

6 5 kg m

x y
2 2

0
2

= = = =

=

 21. I M b c I M a c I M a b
3

,  
3

,  
3x y z

2 2 2 2 2 2( ) ( ) ( )= + = + = +

 
23.

 
x y z I

I I

0,   12 5,   7904 105 75.28,

4832 63 76.70,   256 45 5.69
x

y z

= = = = ≈

= ≈ = ≈

 25. (a) x y z0,   8 3= = =   (b) c 2 2=

 27. I 1386L =

 29. (a) 4 3 gm (b) x y z4 5  cm,  2 5  cm= = =

 31. (a) 5 2 (b) x y z 8 15= = =  (c) = = =I I I 11 6x y z

 33. 3 kg

 37. (a) I abc a b
12c.m.

2 2( )= +

 (b) I abc a b7
3L

2 2( )= +

 39. 7 12x yμ μ= =

 41. 3 4,  2 3x yμ μ= =

 43. f x y P X Y, 1 6,  2 3( ) ( )= < =

SECTION 14.7, pp. 911–915
 1. 

r = 2:
cylinder of
radius 2
centered on
the z-axis

z

x

y

−2

2 2

 3. 

x

y

z

−1

z = −1:
plane parallel
to the xy-plane

 5. 

−p x

y

p
2

3p
2−

5p
2

r = u:
spiral in
xy-plane

r = u:
spiral
cylinder

2p

5p
2

x

y

2p

z

3p
2−

p
2

 7. 
r2 + z2 = 4
sphere of
radius 2
centered
at (0, 0, 0)

z

x

y2

2

−2

−2

2

 9. r z r9 2≤ ≤ −  : cone with vertex angle 
2
π below a sphere of 

radius 3 centered at (0, 0, 0), and its interior

x

y

z

p
2

z = "9 − r2 

9
2

Ä

 

9
2

−
Ä

 
z = r

3
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AN-64 Chapter 14: Answers to Odd-Numbered Exercises

 11. r z0 4 cos , 0
2

, 0 5:θ θ π≤ ≤ ≤ ≤ ≤ ≤  half-cylinder of 

height 5, radius 2, and tangent to the z-axis, and its interior
z

x

y

5

4

2

 13. 3:ρ =  sphere of radius 3 centered at 0, 0, 0( )
z

x

y3

3

−3

−3

3

 15. 2
3

:θ π=  closed half-plane along the z-axis

x

y

z

2
3
2
3u =    p

 17. cos 4:ρ φ =  plane with z-intercept 4 and parallel to the xy-plane

x

y

z
r cos f = 4

4

 19. 0 3 csc 0 sin 3:ρ φ ρ φ≤ ≤ ⇒ ≤ ≤  cylinder of radius 3 
centered on the z-axis, and its interior

z

−3

3 3 y

x

 21. 0 cos sin 2,  0 sin sin 3,ρ θ φ ρ θ φ≤ ≤ ≤ ≤  
0 cos 4:ρ φ≤ ≤  rectangular box 2 3 4× × , and its interior

x
y

z

4

2
3

 23. 
4 2 1

3

π( )−
  25. 17

5
π   27. 6 2 8π( )−

 29. 3
10
π   31. 3π

 33. (a) r dz dr d
r

0

4

0

1

0

2 2

∫∫∫ θ
π −

 (b) ∫∫∫ ∫∫∫θ θ+
π π −

r dr dz d r dr dz d
z

0

1

0

3

0

2

0

4

3

2

0

2 2

 (c) r d dz dr
r

0

2

0

4

0

1 2

∫∫∫ θ
π−

 35. f r z r dz dr d, ,
r

0

3

0

cos

2

2 2

∫∫∫ θ θ( )
θ

π

π

−

 37. f r z r dz dr d, ,
r

0

4 sin

0

2 sin

0 ∫∫∫ θ θ( )
θθπ −

 39. f r z r dz dr d, ,
0

4

1

1 cos

2

2

∫∫∫ θ θ( )
θ

π

π +

−

 41. f r z r dz dr d, ,
r

0

2 sin

0

sec

0

4

∫∫∫ θ θ( )
θθπ −

 43. 2π   45. 3π   47. 5π  49. 2π  51. 8 5 2
2

π−⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

 
53. (a)

 
d d d

d d d

sin

sin

2

0

2

0

6

0

2

2

0

csc

6

2

0

2

∫∫∫

∫∫∫

ρ φ ρ φ θ

ρ φ ρ φ θ

+
ππ

φ

π

ππ

 

(b)

 

d d d

d d d

d d d

sin

sin

sin

2

6

sin 1

1

2

0

2

2

0

6

0

2

0

2

2

6

2

0

1

0

2

1

∫∫∫

∫∫∫

∫∫∫

ρ φ φ ρ θ

ρ φ φ ρ θ

ρ φ φ ρ θ

+

+

π

ρπ

ππ

π

ππ

( )−

 55. d d dsin 31
6

2

cos

2

0

2

0

2

∫∫∫ ρ φ ρ φ θ π=
φ

ππ

 57. d d dsin 8
3

2

0

1 cos

00

2

∫∫∫ ρ φ ρ φ θ π=
φππ −

 59. d d dsin
3

2

0

2 cos

4

2

0

2

∫∫∫ ρ φ ρ φ θ π=
φ

π

ππ

 61. (a) d d d8  sin2

0

2

0

2

0

2

∫∫∫ ρ φ ρ φ θ
ππ

 (b) r dz dr d8 
r

0

4

0

2

0

2 2

∫∫∫ θ
π −

 (c) dz dy dx8 
x yx

0

4

0

4

0

2 2 22

∫∫∫
− −−

 63. (a) d d dsin2

sec

2

0

3

0

2

∫∫∫ ρ φ ρ φ θ
φ

ππ

 (b) r dz dr d
r

1

4

0

3

0

2 2

∫∫∫ θ
π −

 (c) dz dy dx
x y

x

x

1

4

3

3

3

3 2 2

2

2

∫∫∫
− −

− −

−

−
 (d) 5 3π

 65. 8 3π   67. 9 4   69. 3 4
18
π −   71. a2

3

3π

 73. 
4 2 5

3

π( )−
  75. 2π   77. 

4 2 2 1

3

π( )−
  79. 16π

 81. 5 2π   83. 
4 8 3 3

3

π( )−
  85. 2 3  87. 3 4

 89. x y z0,   3 8= = =   91. x y z, , 0, 0, 3 8( ) ( )=
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 Chapter 14: Answers to Odd-Numbered Exercises AN-65

 93. x y z0,   5 6= = =   95. I 4x π=   97. a h
10

4 π

 99. (a) x y z I, , 0, 0, 4
5

,  
12z
π( )( ) = =

 (b) x y z I, , 0, 0, 5
6

,  
14z
π( )( ) = =

 101. M
R

3
3π

 103.  The surface’s equation r f z( )=  tells us that the point 
θ θ( ) ( )=r z f z z, , ( ), ,  will lie on the surface for all .θ  In  

particular, f z z( ), ,θ π( )+  lies on the surface whenever 
f z z( ), ,θ( ) lies on the surface, so the surface is symmetric with 

respect to the z-axis.

( f (z), u, z)

f(z)
f(z)

z
( f(z), u + p, z)

z

x y

u + p

u

SECTION 14.8, pp. 923–924

 1. (a) x u y u
3

,   2
3

;   1
3

υ υ= + = −

 (b)  Triangular region with boundaries u 0,   0,υ= =   
and u 3υ+ =

 3. (a) x u y u1
5

2 ,   1
10

3 ;   1
10

υ υ( ) ( )= − = −

 (b)  Triangular region with boundaries u u3 ,   2 ,υ υ= =   
and u3 10υ+ =

 7. 64 5  9. u u du d2 8 52
3

ln 2
1

3

1

2

∫∫ υ
υ

υ( )+ = +

 11. ab a b
4

2 2π ( )+   13. 
e

1
3

1 3 0.4687
2( )+ ≈

 15. 225
16

  17. 12  19. a b c
6

2 2 2

 21. (a) 
u

u
u u u

cos sin

sin cos
cos sin2 2

υ υ

υ υ
υ υ

−
= + =

 (b) 
υ υ

υ υ
υ υ

−
= − − = −

u

u
u u u

sin cos

cos sin
sin cos2 2

 27. 3
2

ln 2

PRACTICE EXERCISES, pp. 925–927
 1. e9 9−

10

1

(1, 1)

NOT TO SCALE

(1�10, 10)

1

y =

0
x

y

1
x

 3. 9 2

s2 + 4t2 = 9

−3 3 
s

t

3
2

 5. dy dx 4
3x

x

2 4

4

2

0 2

∫∫ =
+

−

−

−2

4 y = 2x + 4

x = −
Î

4 − y

x

y

 7. y dy dx 9
2

x

0

1 2 9

3

3 2

∫∫ =
( ) −

−

x2 + 4y2 = 9

−3 30
x

y

3
2

 9. sin 4  11. 
ln 17

4
  13. 4 3  15. 4 3  17. 1 4

 19. π  21. 2
4

π −   23. 0  25. 8 35  27. 2π

 29. 
2 31 3

3

5 2( )−

 31. (a) dz dx dy3
x y

x y

y

y 4

2

2

2

2

2 2

2 2

2

2

∫∫∫ +

− −

− −

−

−

 (b) d d d3 sin2

0

2

0

4

0

2

∫∫∫ ρ φ ρ φ θ
ππ

  (c) 2 8 4 2π( )−

 33. d d dsin
3

2

0

sec

0

4

0

2

∫∫∫ ρ φ ρ φ θ π=
φππ

 
35.

 
z xy dz dy dx

z xy dz dy dx 

x y

x

x

x yx

2

1

4

1

3

0

1

2

1

4

0

3

1

3

2 2

2

2

2 22

∫∫∫

∫∫∫+

− −

−

−

− −−

 37. (a) 
8 4 2 5

3

π( )−
  (b) 

8 4 2 5

3

π( )−

 39. I b a8
15z

5 5πδ( )= −   41. x y 1
2 ln 4

= =
−

 43. I 1040 =   45. I 2x δ=

 47. M M M4,   0,   0x y= = =   49. x y3 3 ,   0
π

= =

 51. (a) x y15 32
6 48

,   0π
π

= +
+

=

 (b) 

1

r = 1 + cos u

2≈ 1.18

−1

c.m.

1

r = 1

x

y

ADDITIONAL AND ADVANCED EXERCISES, pp. 927–929

 1. (a) x dy dx
x

x
2

6

3

2 2

∫∫
−

−
  (b) dz dy dx

x

x

x

0

6

3

2 22

∫∫∫
−

−

 (c) 125 4

 3. 2π  5. 3 2π
 7. (a) Hole radius 1,  sphere radius 2= =   (b) 4 3π

 9. 4π   11. b
a

ln( )  15. 1 34

 
17.

 
a b

a
b a b

I a b
a

b a b b a b

Mass cos ,

2
cos

2 6

2 1  2 2

0

4
1 

3
2 2

3
2 2 3 2

( )
( ) ( )

= − −

= − − − −

−

−
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AN-66 Chapter 15: Answers to Odd-Numbered Exercises

 19. 
ab

e1 1a b2 2( )−   21. (b) 1 (c) 0

 25. h h180  cm,   540  cm= =

 27. 2 1
3

1
3

  2
2

π ( )−
⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

Chapter 15
SECTION 15.1, pp. 935–937
 1. Graph (c)  3. Graph (g)  5. Graph (d)  7. Graph (f)

 9. 2   11. 13
2

  13. 3 14   15. ( )+1
6

5 5 9

 17. ( )b
a

3 ln  19. (a) 4 5 (b) ( )−1
12

17 13 2

 21. ( )−e e15
32

16 64   23. ( )−1
27

40 133 2 3 2

 25. ( )+ −1
6

5 7 2 13 2   27. −10 5 2
3

  29. 8

 31. ( )−1
6

17 13 2   33. −2 2 1

 35. (a) −4 2 2 (b) ( )+ +2 ln 1 2   37. πδ=I a2z
3

 39. (a) π δ=I 2 2z  (b) π δ=I 4 2z   41. π= −I 2 2x

SECTION 15.2, pp. 947–950
 1. ( )( )∇ = − + + + + −f x y z x y zi j k 2 2 2 3 2

 3. ∇ = −
+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ −

+
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +g x

x y
y

x y
ei j k2 2 z

2 2 2 2

 5. 
( ) ( )

= −
+

−
+

kx
x y

ky
x y

F i j,
2 2 3 2 2 2 3 2  any >k 0

 7. (a) 9 2 (b) 13 3 (c) 9 2
 9. (a) 1 3 (b) −1 5 (c) 0
 11. (a) 2 (b) 3 2 (c) 1 2
 13. −15 2  15. 36  17. (a) −5 6 (b) 0 (c) −7 12
 19. 1 2  21. π−   23. 69 4  25. −39 2  27. 25 6
 29. (a) π π= = = =Circ 0,  circ 2 ,  flux 2 ,  flux 01 2 1 2

 (b) π π= = = =Circ 0,  circ 8 ,  flux 8 ,  flux 01 2 1 2

 31. π= = aCirc 0,  flux 2   33. π= =aCirc ,  flux 02

 35. (a) π−
2

 (b) 0 (c) 1  37. π( ).0001 kg s

 39. (a) 32 (b) 32 (c) 32  41. 115.2 J
 43. ( )−5 3 3 2 ln 2 m s2   45. 5 3 g s

 47. 

x2 + y2 = 4

2

2

0
x

y

 49. (a) = − +y xG i j (b) = +x yG F2 2

 51. = − +
+

x y
x y

F i j
2 2

  55. 48  57. π  59. 0  61. 1
2

SECTION 15.3, pp. 959–961
 1. Conservative  3. Not conservative  5. Not conservative

 7. ( ) = + + +f x y z x
y

z C, ,
3

2
22

2
2

 9. ( ) = ++f x y z xe C, , y z2

 11. ( ) ( )( )= − + + + + +f x y z x x x x y y z C, , ln tan 1
2

ln 2 2

 13. 49  15. −16  17. 1  19. 9 ln 2  21. 0  23. −3

 27. = ∇ −⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

x
y

F 12
  29. (a) 1 (b) 1 (c) 1

 31. (a) 2 (b) 2  33. (a) = =c b a2  (b) = =c b 2
 35. It does not matter what path you use. The work will be the same 

on any path because the field is conservative.
 37. The force F is conservative because all partial derivatives of 

M, N, and P are zero. ( ) = + + + =f x y z ax by cz C A, , ;    
( )xa ya za, ,  and ( )=B xb yb zb, , . Therefore, ∫ ⋅ =dF r  

( ) ( ) ( )− = − + − + − =f B f A a xb xa b yb ya c zb za( ) ( )  � ���
⋅ ABF .

SECTION 15.4, pp. 971–973
 1. −y2 1  3. −ye xex y  5. −y xsin sin
 7. π= = aFlux 0,  circ 2 2  9. π= − =aFlux ,  circ 02

 11. = =Flux 2,  circ 0  13. = − =Flux 9,  circ 9
 15. = − = −Flux 11 60,  circ 7 60
 17. = =Flux 64 9,  circ 0   19. = =Flux 1 2,  circ 1 2
 21. = = −Flux 1 5,  circ 1 12  23. 0  25. 2 33
 27. 0  29. π−16   31. πa 2  33. π3 8
 35. (a) 0 if C is traversed counterclockwise
 (b) ( )( )−h k area of the region   37. 0
 45. (a) π4  (b) π4  if ( )0, 0  lies inside K, 0 otherwise

SECTION 15.5, pp. 981–983

 1. θ θ θ( ) ( ) ( )= + + ≤ ≤r r r r rr i j k, cos sin ,  0 2,2  
θ π≤ ≤0 2

 3. θ θ θ( ) ( ) ( ) ( )= + + ≤ ≤r r r r rr i j k, cos sin 2 ,  0 6, 
θ π≤ ≤0 2

 5. θ θ θ( ) ( ) ( )= + + −r r r rr i j k, cos sin 9 ,2  
θ π≤ ≤ ≤ ≤r0 3 2 2,  0 2 ; Also: 

φ θ φ θ φ θ( ) ( ) ( )= + +r i j, 3 sin cos 3 sin sin
φ φ π θ π( ) ≤ ≤ ≤ ≤k3 cos ,  0 4,  0 2

 7. φ θ φ θ φ θ( ) ( )( ) = + +r i j, 3 sin cos 3 sin sin  
φ π φ π θ π( ) ≤ ≤ ≤ ≤k3 cos ,   3 2 3,  0 2

 9. ( )( ) = + + − ≤ ≤ − ≤ ≤x y x y y x yr i j k,   4 ,  0 2, 2 22

 11. υ υ υ( ) ( ) ( )= + + ≤ ≤u u ur i j k, 3 cos 3 sin ,  0 3, 
υ π≤ ≤0 2

 13. (a)  θ θ θ( ) ( ) ( )= + +r r rr i j, cos sin
θ θ θ π( )− − ≤ ≤ ≤ ≤r r rk1 cos sin ,  0 3,  0 2

 (b)  υ υ υ υ( ) ( ) ( )= − − + +u u u ur i j, 1 cos sin cos
υ( )u ksin , υ π≤ ≤ ≤ ≤u0 3,  0 2

 15. υ υ υ υ( ) ( ) ( )= + + ≤ ≤u u ur i j k, 4 cos 4 cos sin ,  0 3,2  
π υ π( ) ( )− ≤ ≤2 2 ; Another way: υ υ( ) ( )= +ur i, 2 2 cos

υ υ π( )+ + ≤ ≤ ≤ ≤u uj k2 sin ,  0 3,  0 2

 17. ∫∫ θ =r dr d5
2

π 5
20

1

0

2π

 19. ∫∫ θ =r dr d5 8π 5
1

3

0

2π

Z03_HASS5901_15_GE_ANS.indd   66 04/04/23   20:12

www.konkur.in

Telegram: @uni_k



 Chapter 16: Answers to Odd-Numbered Exercises AN-67

 21. ∫∫ υ π=
π

du d1 6
1

4

0

2

 23. ∫∫ υ π
( )

+ =
−π

u u du d4 1
5 5 1

6
2

0

1

0

2

 25. ∫∫ φ φ θ π( )= +
π

ππ
d d2 sin 4 2 2

40

2

 27. 

(
Î

2, 
Î

2, 2) x + y − 
Î

2z = 0

z = 
Î

x2 + y2
z

x y

 29. 

 Á3x + y = 9

6

x2 + (y – 3)2 = 9

, 9/2, 0
2

z

x

y
3Á3

 33. (b)  A a b b csin cos sin cos2 2 2 2 2 2 4 2

00

2

∫∫ φ φ φ θ[= + +
ππ

  

    a c d dsin sin2 2 4 2 1 2φ θ φ θ]

 35. + =x x y y 250 0   37. π13 3  39. 4

 41. −6 6 2 2  43. π +c 12

 45. π( )−
6

17 17 5 5   47. +3 2 ln 2

 49. π ( )−
6

  13 13 1   51. π5 2   53. ( )−2
3

5 5 1

SECTION 15.6, pp. 991–993

 1. ∫∫ ∫∫σ υ= + = −x d u u du d4 1 17 17 1
4

S

2

0

2

0

3

 3. ∫∫ ∫∫σ φ θ φ θ π= =
ππ

x d d dsin cos 4
3

S

2 3 2

00

2

 5. ∫∫ ∫∫σ υ υ( )= − − =z d u d du4 3 3 3
S

0

1

0

1
  

(for υ= =x u y,   )

 7. ∫∫ ∫∫σ υ− = ⋅ + ⋅
π

x z d u u5 4 cos 4 1
S

2 2 2 2

0

2

0

1

υ+ =u u d du4 12  ∫∫ υ υ π( )+ =
π

u u d du4 1 cos 11
12

3 2 2

0

2

0

1

 9. a9 3  11. ( )+ +abc ab ac bc
4

  13. 2

 15. ( )+1
30

2 6 6   17. 6 30  19. −32  21. πa
6

3

 23. a13 64   25. π2 3  27. π−73 6  29. 18

 31. πa
6

3
  33. πa

4

2
  35. πa

2

3
  37. −32

39. −4  41. a3 4  43. ( )a a a
2

,  
2

,  
2

 45. π δ( )( ) = =x y z I,   ,   0,  0,   14
9

,   15 2
2z

 47. π δa8
3

4   49. 70 3 mg

SECTION 15.7, pp. 1004–1006

 1. − − +i j k4   3. ( ) ( ) ( )− + − + −y z xi j k1 1 1

 5. ( ) ( ) ( )− + − + −x z y y x z z y xi j k2 2 2 2 2 2   7. π4
 9. −5 6  11. 0  13. π−6   15. πa2 2

 17. π−   19. π12   21. π− 4  23. π−15
 25. π−8   33. +I I16 16y x

SECTION 15.8, pp. 1016–1018
 1. 0  3. ( )+ +y z xz x y e xyz2 2 2   5. 0  7. 0
 9. −16  11. π−8   13. π3   15. −40 3
 17. π12   19. π( )−12 4 2 1   23. No
 25. The integral’s value never exceeds the surface area of S.
 27. 184 35

PRACTICE EXERCISES, pp. 1019–1021
 1. Path 1: 2 3; path +2: 1 3 2  3. a4 2  5. 0
 7. π8 sin(1)  9. 0  11. π 3

 13. π( )−2 1 1
2

  15. + +abc
a b c2
1 1 1

2 2 2
  17. 50

 19. φ θ φ θ φ θ φ( ) ( ) ( ) ( )= + +r i j k, 6 sin cos 6 sin sin 6 cos , 
π φ π θ π≤ ≤ ≤ ≤
6

2
3

,  0 2

 21. θ θ θ( ) ( ) ( ) ( )= + + + ≤ ≤r r r r rr i j k, cos sin 1 ,  0 2, 
θ π≤ ≤0 2

 23. υ υ υ( ) ( ) ( )= + + ≤ ≤u u u u ur i j k, cos 2 sin ,  0 1,2  
υ π≤ ≤0

 25. 6   27. π ( )[ ]+ +2 ln 1 2   29. Conservative

 31. Not conservative  33. ( ) = + + +f x y z y yz x z,   ,   22

 35. Path 1: 2; path 2: 8 3  37. (a) − π−e1 2  (b) − π−e1 2

 39. 0  41. (a) −4 2 2 (b) ( )+ +2 ln 1 2

 43. ( )( ) = = = =x y z I I I,   ,   1, 16
15

, 2
3

;   232
45

,   64
15

,   56
9x y z

 45. = =z I3
2

,   7 3
3z   47. π( ) ( )= =x y z I, , 0, 0, 49 12 , 640z

 49. −Flux: 3 2;  circ: 1 2  53. 3

 55. π( )−2
3

7 8 2   57. 0  59. π

ADDITIONAL AND ADVANCED EXERCISES, pp. 1021–1023
 1. π6   3. 2 3
 5. (a) ( ) = + +x y z z x yF i j k,   ,  
 (b) ( ) = +x y z z yF i k,   ,  
 (c) ( ) =x y z zF i,   ,  

 7. πR16
3

3
  9. = =a b2,   1. The minimum flux is −4.

 11. (b) g16
3

  (c) ∫ ∫( )= = =gxy ds y g xy ds gWork 16
3C C

2

 13. (c) πw4
3

  19. False if = +y xF i j

Chapter 16
SECTION 16.1, pp. 1030–1032
 1. (d)  3. (a)
 5. 

x

y

 7. ′ = − = −y x y y; (1) 1

 9. y y x y1 sin ; (0) 2( )′ = − + =
 11. y x e y1 ; 2 2y ( )′ = + − =
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AN-68 Chapter 16: Answers to Odd-Numbered Exercises

 15. ( ) = − = − = − = −y x y y yexact , 2, 3.3333, 52
1 2 3

 17. ( ) = = = =( )+y e y y yexact 3 , 4.2, 6.216, 9.697x x 2
1 2 3

 19. ( ) = + = = =y e y y yexact 1, 2.0, 2.0202, 2.0618x
1 2 3

2

 21. ≈y 2.48832; exact value is e.
 23. ≈ −y 0.2272; exact value is ( )− ≈ −1 1 2 5 0.2880.
 27. 

 29. 

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

x

y  31. 

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

x

y

 39. Euler’s method gives ≈y 3.45835; the exact solution is 
= + ≈y e1 3.71828.

 41. ≈y 1.5000; exact value is 1.5275.

SECTION 16.2, pp. 1036–1038

 1. = + >y e C
x

x, 0
x

 3. y
C x

x
x

cos
, 0

3
=

−
>

 5. = − + >y
x

C
x

x1
2

1 , 0
2

 7. = +y xe Ce1
2

x x2 2

 9. y x x C xln 2( )= +

 11. 
( ) ( ) ( )

=
−

−
−

+
−

s t
t

t
t

C
t3 1 1 1

3

4 4 4

 13. r Ccsc ln sec , 0 2θ θ θ π( )( )= + < <

 15. = − −y e3
2

1
2

t2  17. y 1 cos
2θ

θ π
θ

= − +

 19. = −
+

y e
e

x
6

1
x

x
2

2

 21. =y y e kt
0

 23. (b) is correct, but (a) is not. 25. t L
R

ln 2 sec=

 27. (a) ( )= − = − ≈− −i V
R

V
R

e V
R

e V
R

1 0.95 amp3 3  (b) 86%

 29. =
+ −

y
Ce
1

1 x
 31. = + −y Cx13 3

21 3

−2

−3

−2−3 −1

2

3

1

x

y

−1

y =f y
dy

dx
( )

−3 2

−2    1.5

−1 0

0 −1

1 −0.75

2 0

3 1

 13. 

 5. + =x y C2 2

x

y

 7. − = +y y x Cln 1
2

1
2

2 2

x

y

kx2 + y 2 = 1

 9. = ± +y x2 C

x

y

 13. (a) 4 kg min  (b) t400 4 L( )+  (c) 
y

t
4

100
kg min( )+

 (d) 
dy
dt

y
t

y

y t
t

4
4

100
, (0) 20,

0.8 100 60

1
100

4

( )
( )

= −
+

=

= + −
+

 (e) 
y

Concentration
(25)

amt. brine in tank

75.424
500

0.151 kg L

=

= ≈

 15. y t(27.8) 5.93 kg, 27.8 min≈ ≈

SECTION 16.4, pp. 1052–1053
 1. ( )( )′ = + −y y y2 3
 (a)  = −y 2 is a stable equilibrium value, and =y 3 is an  

unstable equilibrium value.

 (b) ( )( ) ( )″ = + − −y y y y2 2 1
2

3

y
−4 −2 420

y′ < 0 y′ > 0 y′ > 0 

y″ < 0y ″ < 0 y″ > 0y″ > 0

0.5

 (c) y

2

4

x

−2

−0.5 0.5 1 1.5

y′ > 0, y″ > 0 

y′ < 0, y″ < 0 

y′ < 0, y″  > 0 

y′ > 0, y″ < 0 

y = 1�2

SECTION 16.3, pp. 1043–1044
 1. (a) 168.5 m (b) 41.13 s
 3. ( )= − ( )−s t e( ) 4.91 1 t22.36 39.92
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 Chapter 16: Answers to Odd-Numbered Exercises AN-69

 3. ( ) ( )′ = − = + −y y y y y y1 13

 (a)  = −y 1 and =y 1 are unstable equilibria, and =y 0 is a 
stable equilibrium.

 (b) 

( ) ( )

( )

( ) ( )

″ = − ′

= + + − −

y y y

y y y y y

3 1

3 1 1 3 1 3 1

2

y
−1.5 1.50.5−0.5

y′ < 0 y′ < 0 y′ > 0y′ > 0

y″ < 0y″ < 0 y″<0 y″ > 0y″ > 0 y″>0

−
1

Ë

3

1

Ë

3

−1 0

 (c) 

x

y

−1.5

−0.5

−0.5 0.5 1 1.5 2 2.5

0.5

1.5

y′ > 0, y″ > 0

y′ < 0, y″ < 0

y′ < 0, y″ > 0

y′ > 0, y″ < 0

y′ > 0, y″ > 0

y′ < 0, y″ < 0

 5. ′ = >y y y, 0

 (a) There are no equilibrium values.

 (b) ′′ =y 1
2

0 1 2 3 4

y′ > 0

y″ > 0

y

 (c) y

2.5
5

7.5

12.5

17.5

10

15

x
2 4 6−2 8

y′ > 0
y″ > 0

 7. ( )( )( )′ = − − −y y y y1 2 3
 (a)  =y 1 and =y 3 are unstable equilibria, and =y 2 is a 

stable equilibrium.
 (b) ( )( )( )( )

( ) ( ) ( )

′′ = − + − − − =

− − −⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ − − +⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ −

y y y y y y

y y y y y

3 12 11 1 2 3

3 1 6 3
3

2 6 3
3

3

2

6 − Ë3

3
< 1.42

y
0 4

y′ < 0 y′ < 0y′ > 0 y′ > 0

y″ > 0y″ < 0 y″ < 0 y″ < 0y″ > 0 y″ > 0
1 2 3

6 + Ë3

3
< 2.58

 (c) y

x
1 2 3−1

0.5
1

1.5

2.5

3.5

2

3

4

y′ > 0, y″ > 0
y′ < 0, y″ < 0
y′ < 0, y″ > 0
y′ > 0, y″ < 0
y′ > 0, y″ > 0
y′ < 0, y″ < 0

 9. = −dP
dt

P1 2  has a stable equilibrium at =P 1
2

; 

( )= − = − −d P
dt

dP
dt

P2 2 1 2 .
2

2

P

t

−0.5

0.5

1.5

1

0.5 10.25 0.75 1.25 1.751.5

P′ > 0, P″ < 0 

P′ < 0, P″ > 0 

 11. ( )= −dP
dt

P P2 3  has a stable equilibrium at =P 0 and an  

unstable equilibrium at ( )= = − =P d P
dt

P dP
dt

3; 2 2 3
2

2
 

( )( )− −P P P4 2 3 3 .

P
−1 43210 3.52.50.5−0.5

P′ < 0 P′ > 0 P′ > 0 

P″ < 0P″ < 0 P″ > 0P″ > 0
1.5

p

t

4

3

2

1

−1

−2

0.1 0.2 0.3 0.4 0.5 0.6 0.7

P′ > 0, P″ > 0 

P′ < 0, P″ < 0 

P′ < 0, P″ > 0 

P′ > 0, P″ < 0 

 13. Before the catastrophe, the population exhibits logistic growth 
and P t( ) increases toward M ,0  the stable equilibrium. After 
the catastrophe, the population declines logistically and P t( ) 
 decreases toward M ,1  the new stable equilibrium.

P

t

P

t

M1

Pc

M0

tcatastrophe tcatastrophe

Before Catastrophe After Catastrophe

 15. υ υ= − >d
dt

g k
m

g k m, , , 02  and υ ≥t( ) 0

Equilibrium: υ υ υ= − = ⇒ =d
dt

g k
m

mg
k

02

Concavity: υ υ υ υ υ( ) ( )( )= − = − −d
dt

k
m

d
dt

k
m

g k
m

2 2
2

2
2

 (a) 
dy
dt

> 0
dy
dt

mg
k

< 0

d2y

dt2
< 0

d2y

dt2
> 0

y

yeq = 
Ä

0

(b) 
y

t

mg
kÄ

 (c) υ = = =441
0.2

46.96 m/s 169 km/h for the 45-kg skydiverterminal

  υ = = =7.84
0.2

62.6 m/s 225 km/h for the 80-kg skydiverterminal
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AN-70 Chapter 16: Answers to Odd-Numbered Exercises

 17. υ υ υ( )= − = − = −F F F ma d
dt m

; 50 5 ; 1 50 5 .p r  

The maximum velocity occurs when υ =d
dt

0, or υ = 4 m/s.
 19. Phase line:

di
dt

> 0
di
dt

V
R

< 0

d2i

dt2
< 0

d2i

dt2
> 0

i

ieq =

0

If the switch is closed at =t 0, then =i(0) 0, and the graph of 
the solution looks like this:

i

t

V
R

As → ∞ → =t i t i V
R

, ( ) .steady state

 21. =
+ −

y
e
1

1
.

x20

SECTION 16.5, pp. 1056–1059
 1. Seasonal variations, nonconformity of the environments, effects 

of other interactions, unexpected disasters, etc.
 3. This model assumes that the number of interactions is propor-

tional to the product of x and y:

( ) ( )

( )= − <

= − − = − −

dx
dt

a by x a

dy
dt

m
y

M
y nxy y m m

M
y nx

, 0,

1 .

Rest points are ( )0, 0 , unstable, and ( )M0, , stable.
 5. (a)  Logistic growth occurs in the absence of the competitor, and 

involves a simple interaction between the species. Growth 
dominates the competition when either population is small, 
so it is difficult to drive either species to extinction.

 (b) a: per capita growth rate for trout
m: per capita growth rate for bass
b: intensity of competition to the trout
n: intensity of competition to the bass
k :1  environmental carrying capacity for the trout
k :2  environmental carrying capacity for the bass
a
b

: growth versus competition or net growth of trout

m
n

: relative survival of bass

 (c) = = = −

= = = −

dx
dt

x y a
b

a
bk

x

dy
dt

y y k
k n
m

x

0 when 0 or ,

0 when 0 or .

1

2
2

By picking >a b k2 and >m n k ,1  we ensure that an equi-
librium point exists inside the first quadrant.

PRACTICE EXERCISES, pp. 1059–1060

 1. ( )( ) ( )= − − − − −y C x xln 2
5

2 4
3

25 2 3 2

 3. y x x x Ctan sin cos= − − +
 5. ( )+ = − +−y e x C1 lny

 7. = −y C x
x

1  9. = +y x e Ce
4

x x
2

2 2

 11. = − +y x x C
x
2

2

2

2
  13. = +

+

−
y e C

e1

x

x
  15. + =xy y C3

 17. y x x Ctan cos 1 3 cos3( )= − + +

 19. ( )= − +e y x e C1x x2

 21. y x x x Cln ln 1 2 ln 1 42 2( ) ( )= − +

 23. 
( )

= + +
+

y x x
x

2 3 6
6 1

3 2

2   25. ( )= − −y e1
3

1 4 x 3

 27. ( )= −−y e x x3 3x 3 2

x y

0 0

0.1 0.1000

0.2 0.2095

0.3 0.3285

0.4 0.4568

0.5 0.5946

0.6 0.7418

0.7 0.8986

0.8 1.0649

0.9 1.2411

1.0 1.4273

 29. x y

1.1 1.6241

1.2 1.8319

1.3 2.0513

1.4 2.2832

1.5 2.5285

1.6 2.7884

1.7 3.0643

1.8 3.3579

1.9 3.6709

2.0 4.0057

 31. ≈y(3) 0.9131

 33. (a) 

[−0.2, 4.5] by [−2.5, 0.5]

 (b)  Note that we choose a small interval of x values because 
the y values decrease very rapidly and our calculator cannot 
handle the calculations for ≤ −x 1. (This occurs because 
the analytic solution is ( )= − + − −y e2 ln 2 ,x  which has 
an asymptote at x ln 2 0.69.= − ≈ −  Obviously, the Euler 
approximations are misleading for ≤ −x 0.7.)

[−1, 0.2] by [−10, 2]

 35. ( ) = − ≈y x yexact 1
2

3
2

; (2) 0.4;2  exact value is 1
2

.

 37. ( ) = − ≈ −( )−y e yexact ; (2) 3.4192;x 1 22  exact value is 
− ≈ −e 4.4817.3 2

 39. (a) = −y 1 is stable and =y 1 is unstable.

 (b) ( )= = −d y
dx

y
dy
dx

y y2 2 1
2

2
2

dy
dx

> 0
dy
dx

< 0
dydy
dx

< 0
dx

> 0

dx2
> 0

d2y

dx2
> 0

d2y d2y

dx2
< 0

d2y

dx2
< 0

y

y = 1

y = 0

y = −1
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 Appendix A: Answers to Odd-Numbered Exercises AN-71

 (c) y

2  

1

x
1

0
0.5 1.5 2.52

−1

−2

 43. (a) 1 min: 608 L; 10 min: 680 L; 60 min: 1080 L
 (b) ≈ ≈ ≈S S S(1) 11.76 kg, (10) 57.89 kg, (60) 225.56 kg

ADDITIONAL AND ADVANCED EXERCISES, p. 1061
 1. (a) ( )= + − ( )−y c y c e k A V t

0

 (b) Steady-state solution: =∞y c

 5. ( )+ =x x y C22 2 2

 7. + =−x e Cln y x

 9. ( ) ( )− − + − =x y x y x Cln ln sec 1 tan 1

Appendices
APPENDIX A.1, p. AP-6

 1. 0.1, 0.2, 0.3, 0.8, 0.9 or 1

 3. x 2< −

−2
x

 5. x 1
3

≤ −

−

x
1
3

 7. 3, 3−   9. 7 6, 25 6
 11.   2, 4[ ]−

−2 4
t

 13.   0,10[ ]

0 10
z

 15. , 2 2,( ] [ )−∞ − ∪ ∞
s

−2 2

 17. , 3 1,( ] [ )−∞ − ∪ ∞
r

−3 1

 19. 3, 2 2, 3( ) ( )− − ∪
x

-2 -1 1 2-3 0 3

 21. 0,1( )
x

10

 23. ,1( ]−∞

 27. The graph of x y 1+ ≤  is the interior and boundary of the 
“diamond-shaped” region.

−1 1

−1

1

x

y

0 x 0  + 0 y 0  ≤ 1

APPENDIX A.2, p. AP-10
 1. d  3. d
 5.  3, 5[ ]−   by  15, 40[ ]−

- 2 - 1 1 3 4

- 10

10

20

30

40

x

y
f (x) = x4 - 4x3 + 15

 7.  3, 6[ ]−   by  250, 50[ ]−

- 2 1 2 3 4 5 6

- 250

- 200

- 150

- 100

- 50

50

x

y
f (x) = x5 - 5x4 + 10

 17.  10,10[ ]−   by  10,10[ ]−

y = x + 3
x + 2

- 10 - 8- 6 - 4 2 4 6 8 10

- 8
- 6
- 4
- 2

4
6
8

x

y
 19.  4, 4[ ]−   by  0, 3[ ]

- 4 - 3 - 2 - 1 1 2 3 4

0.5

1.0

2.0

2.5

3.0

x

y

f (x)  = x2 +  2
x2 +  1

 21.  10,10[ ]−   by  6, 6[ ]−

- 10- 8- 6 - 4 2 4 6 8 10

- 6
- 4
- 2

2
4
6

x

y

f (x) = x - 1
x2 - x - 6

 23.  6,10[ ]−   by  6, 6[ ]−

- 5 5 10

- 6
- 4
- 2

4
6

x

y

f (x)  = 6x2 - 15x + 6
4x2 -  10x

 
25.

  125
,
125

 by

1.25,1.25

π π

[ ]

−⎡
⎣⎢

⎤
⎦⎥

−

- 0.02 0.02

0.5

1.0

x

y

y  =  sin 250x

 
27.

  
100 ,100  by
1.25,1.25
π π[ ]

[ ]
−
−

- 300 300

- 1.0

- 0.5

1.0

x

y

y = cos a b

x
50

 9.  5, 5[ ]−   by  6, 6[ ]−

- 5 - 4 - 2 - 1 1 2 3 4 5

- 5
- 4

1
2
3
4
5

x

y

f (x) = x
Í

9 - x2

 11.  2, 6[ ]−   by  5, 4[ ]−

- 2 - 1 1 2 4 5 6
- 1

1

2

3

4

x

y

y = 2x - 3x2>3

 13.  2, 8[ ]−   by  5,10[ ]−

- 2 2 4 6 8

- 4

- 2

2

8

10

x

y

y  = 5x2>5 - 2x

 15.  3, 3[ ]−   by  0,10[ ]

- 3 - 2 - 1 1 2 3

2
3
4
5
6
7
8
9

10

x

y

y = 0 x 2 - 1 0
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AN-72 Appendix A: Answers to Odd-Numbered Exercises

 29.  
15

,
15

π π−⎡
⎣⎢

⎤
⎦⎥
  by  0.25, 0.25[ ]−

- 0.2 - 0.1 0.1 0.2

- 0.2

0.1

0.2

x

y y = x  +      sin 30x1
10

 31. 

- 4 - 2 - 1 2

1

2

x

y
(x + 1)2 + (y - 2)2 = 9

 33. 

- 2 - 1 1 2 3

- 4

- 3

- 2

- 1

1

2

3

4

x

y f (x) = - tan 2x

 35. 

- 6 - 2 2 4 6

- 2.0

0.5

1.0

1.5

2.0

x

y

f (x) = sin 2x + cos 3x

APPENDIX A.4, pp. AP-21–AP-22

1. 2,  4; 2 5− 3. Unit circle

5. m 1
3

= −⊥

y

x

Slope = 3

y = 3x + 5
A(−1, 2)

B(−2, −1) −1

−1 0−2

1

2

7. (a) x 1= −  (b) y 4 3=   9. y x= −

 11. y x5
4

6= − +   13. y x4 4= + 15. y x
2

12= − +

 17. x y-intercept 3,   -intercept 2= = −

0 1 2

−1

−2

Î

2 x − 
Î

3y = 
Î

6

x

y

 19. 3, 3( )−

 21. x y 2 42 2( )+ − =

(0, 0)

C(0 , 2)

(0, 4)

−2 −1 1 2
x

y

 23. x y3 2 4
2 2( ) ( )+ + + =

C −
Î

 3, –2

−
Î

3, 0

−4

−4

(0, −1)

(0, −3)

x

y

Q     R

Q    R

 25. x y 3 2 25 42 2( )+ − =

0

1

1

2

3
4

2 3 4

C(0, 3�2)

(2, 0)

(0, 4)

(−2, 0)

−2 −1

−1
−2

x2 + (y – 3�2)2 = 25�4

(0, −1)

x

y

 27. 

10 2

A
xi

s:
 x

 =
 1

V(1, −4)

(0, −3)

(−1, 0)
y = x2 − 2x − 3

(3, 0)
x

y

 29. 

0−3

4

−6

(−5, 0)

(−1, 0)

A
xi

s:
 x

 =
 −

3

y = −x2 − 6x − 5
V(−3, 4)

(−6, −5) (0, −5)

x

y

 31. Exterior points of a circle of radius 7, centered at the origin
 33. The washer between the circles x y 12 2+ =  and x y 42 2+ =

(points with distance from the origin between 1 and 2)
 35. x y2 1 62 2( )( )+ + − <

37. 1
5

,  2
5

, 1
5

,  2
5( ) ( )− −

39. 1
3

,  1
3

, 1
3

,  1
3( ) ( )− − −

mm (b) 0.31 C mm≈ − °
mm

41. (a) ≈ 0.1− °C
(c) ≈ 0.15− ° C

42. 604.9 kPa
 45. Yes: C F= = −40°

C = F

C =     (F − 32)5
9

(−40, −40)

F

C

−40 32

−40

 51. k k8, 1 2= − =

APPENDIX A.8, pp. AP-40–AP-43
1. No 3. Yes 5. Yes 7. Yes 11. 0.537≈

 13. 0.688≈ 15. 0.0502≈ 17. 21 19. 1
2

ln 2

21. 1 , 1 tan 2
4

0.102421

π π
π( )− ≈−

 25. = ≈ = ≈mean 8
3

2.67, median 8 2.83

 27. = = ≈mean 2,  median 2 1.41

 29. ( )< ≈P X 0.39351
2

 31. (a) 0.57,≈  so about 57 in every 100 bulbs will fail.
(b) 832 hr≈
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 Appendix A: Answers to Odd-Numbered Exercises AN-73

 33. 60≈  hydra  35. (a) 0.393≈  (b) 0.135≈  (c) 0
(d) The probability that any customer waits longer than 3 minutes is 

( )− ≈ <1 0.997521 0.391 1 2.200  So the most likely outcome 
is that all 200 would be served within 3 minutes.

 37. $10,256  39. 323, 262≈ ≈   41. 0.89435≈
 43. (a) 16%≈  (b) 0.23832≈   45. ≈618 women
 47. 61≈  adults  49. 289≈  shafts

 51. (a) 0.977≈  (b) 0.159≈  (c) 0.838≈
 55. (a) {LLL, LLD, LDL, DLL, LLU, LUL, ULL, LDD, LDU,

LUD, LUU, DLD, DLU, ULD, ULU, DDL, DUL, UDL,

UUL, DDD, DDU, DUD, UDD, DUU, UDU, UUD, UUU}

 (c) ≈7 27 0.26 (d) ≈20 27 0.74
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AI-1

Applications Index

Business and Economics

Cobb-Douglas production  
function, 842

Cost, 287–288
Continuous price discounting, 456
Depreciation of 38-wheel  

truck, 71
Gross national product  

growth, 148
Industrial costs, 33
Inventory management, 161, 288
Inventory replenishment, 288
Investment growth, 50, 53, 54, 66, 

71, 472
Marginal costs, 166–167, 169, 267, 

280–282, 352
Marginal profit, 280–282
Marginal rates and taxes, 167
Marginal revenue, 169, 232, 

280–282, 352
Maximizing utility, 843
Maximum profit

for backpack sales, 287
for manufacturing tires, 307
for tour service rates, 287

Maximum revenue, 288
Order size, 824
Production growth, 232
Production levels, 288
Profit rate of change, 78
Revenue as function of price  

increase, 33
Rule of 86, 71, 472
Single-family home prices, 149

Engineering and  
Physical Sciences

Acceleration, 168, 183, 232, 286,  
303, 310–311, 464

Aircraft flight distance, 212
Airplane flight off course, 63
Airplane ground speed and  

direction, 686
Airplane landing path, 287
Airplane takeoff, 170
Angle for pipes, 311
Arc length, 464, 491, 509

Area, 211, 320, 373, 464, 491, 496, 
882

change with respect to diameter 
of circle, 161–162

change with respect to radius of 
circle, 225, 230

changing, of a disk, 141
of circular washer, 876
between curves, 370
of surfaces of revolution, 433
of a triangle, 211

Atmospheric pressure and  
altitude, 455

Average temperature, 183, 687,  
876

Average values, 882
Balloon/bicycle distance  

increase, 212
Beam

motion, 214
stiffness, 286
strength, 286
under a load, 898

Boring a cylinder, 212
Bouncing ball, 554
Boyle’s Law, 33
Building’s shadow, 213
Buoyant force, 1053
Carbon dating, 456
Cardiac output, 213
Center of gravity, 491
Center of mass, 894–895

fluid forces and, 427
of slender metal arch, 933–934
of thin, flat plate, 423–425, 472
for thin plate bounded by  

curves, 426
of thin plate with constant  

density, 429–430, 433
of thin plate with varying  

density, 430
of thin shell, 990–991
of thin wire, 421, 426–427, 429

Centroid, 509, 895, 906–907
of a semicircular region of  

radius, 428
of thin plates, 431, 433
of a triangle, 427, 430

Chemical mixture problem, 
1041–1043, 1060

Chemical reaction, 455, 504
Circulation

around bounding circle, 996–997
density, 963–964
of paddle wheel, 1000

Circumference of a circle, 404
Coffee draining from conical  

filter, 212–213
Conformal maps of a square,  

18-33–18-34
Conical sand pile, 212
Constructing a cone, 285–286
Constructing a cylinder, 284
Cooling, 453–454, 456, 471
Cost

to build parking lot, 533
for isosceles right triangle shaped 

fence, 33
Cylinder pressure, 161
Damped motion, 17-17–17-18
Deceleration to stop moving vehicle, 

303, 310
Density of thin wires, 430
Designing

a box with lid, 283
a can, 283
a gondola for hot air balloon,  

232
a plumb bob, 390
a suitcase, 283
a tank, 283
a wok, 390

Diameter of a tree, 225
Dimensions

of fence, 282
of silo, 284

Distance
traveled, 78, 320–321, 518
between two ships, 287

Draining
hemispherical reservoir, 212
a swamp, 517
a tank, 135, 169, 212, 230

Drilling boreholes, 858
Edges of a cube, 230
Electrical resistance, 824

Electrical resistors,  
manufacturing, 97

Electric circuit, 17-18–17-19, 211, 
230, 855, 1036, 1037, 1053

Electric force, 418
Electricity, 211
Electromagnetic theory, 1013, 1021
Elevation angle of hot air balloon, 

67, 207–208
Erecting radio telescope, 843
Error

compounding, 231
controlling, 231

Escape velocity, 1060
Falling object, 140, 141, 168, 183, 

303, 304
resistance, 1052
skydiving, 1052

Fermat’s principle in optics, 287
Filling a conical tank with water, 

206–207
Fluid force

center of mass and, 427
on a curved surface, 1021
on end plates of a trough, 419
out of hole in water tank, 309
on parabolic gate, 419
on rectangular plate, 418, 419, 435
of seawater, 419
on semicircular plate, 418, 419
on square plate in different  

positions, 419
streamlines, 973
in a swimming pool, 415
on triangular plate, 418, 419, 435
on viewing portion of fish  

tank, 419
Flux, 946, 969, 988, 989, 1008, 1012
Flying a kite, 212
Force

of attraction, 416
below Earth’s surface, 433
due to gravity pulling down,  

17-15–17-16
of wind passing over boat’s sail, 

699
Free-falling object, 78, 164, 167, 

168, 321

Note: 
• Page numbers with the prefix “17” are in the online Chapter 17 Second-Order Differential Equations
• Page numbers with the prefix “18” are in the online Chapter 18 Complex Functions
• Page numbers with the prefix “19” are in the online Chapter 19 Fourier Series and Wavelets
• Page numbers with the prefix “AP” are in Appendix A
• Page numbers with the prefix “B” are in the online Appendix B
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AI-2 Applications Index

Free-falling object (continued )
in the fourteenth century, 310
on the moon, 249
near the surface of a planet, 304

Glider position, 735–736, 743
Graphing, 287
Gravitational fields, 952
Grinding engine cylinders, 97
Haar coefficients, 19-27–19-29
Hanging cables, 464
Harmonic motion, 17-16–17-17, 

172–173
Hauling in a dinghy, 212
Heat capacity of a gas, 532–533
Heat diffusion equation, 1016
Heat equation, 796, 858
Heating a plate, 211
Heat transfer (cooling), 453–454, 456
Height

of a baseball, 739, 741
of a building, 225
of a bullet shot straight up, 168
of a lamppost, 231
of a palm tree, 352
of a paper clip shot into the air, 232
of a pole, 69
of a rocket, 1061
of a weather balloon, 69

Highway patrol plane, 214
Impedance in a series circuit, 230
Industrial costs, 33
Inertia, moments of, 895–897
Inflating balloon, 170, 206
Inner product, 19-15–19-16
Intensity of illumination, 286
Kinetic energy

and potential energy, 33
and work, 417–418, 434

Length
of airplane gasoline tank, 518–519
of an asteroid, 404
of an object, 135
of a beam, 843
of curves, 400–401, 403–405, 433
of a fish, 472
of a graph, 401
of a ladder carried around a 

corner, 307
of a line segment, 404
of a rocket, 135

Lighthouse beam, 214
Linearizations, 226, 231
Locating a planet, 293
Mass, 893–895
Maximum volume

of a box, 277, 307
of a can, 278, 821

Measuring cup stripes, 135
Melting ice layer, 214
Minimizing perimeter, 282
Motion

of an object along a line, 267
of a beam, 214
of a body along a line, 168, 169
coasting battleship, 1043
coasting bicycle, 1043
with constant acceleration, 304
damped, 17-17–17-18

of a helicopter, 707–708
of a model rocket, 168
of a particle, 168, 169, 213, 230, 

232, 286, 303, 307
in the plane, 213
of a projectile, 167, 286, 321, 

740–742
of a vehicle, 213

Moving shadow, 213
Norm of a function, 19-13–19-14
Ohm’s law for electrical circuits, 97
Oil consumption rate, 519
Oil slick spread, 214
Orthogonal trajectory of curves, 

1040–1041
Osculating circle, 232
Parametrization

of a cone, 974
of a cylinder, 974
of a sphere, 974

Particle motion, 167, 183, 209, 213, 
303, 307

Path
of a ball, 738–739, 741
of a baseball player, 214
of a football, 309
of a glider, 735–736, 743
of a heat-seeking particle, 857
of a javelin, 763
of a projectile, 737–738, 740–741
of a shot-put throw, 741
of a water skier, 496

Periodic functions, 19-1–19-2
Planetary orbits, 669
Pressure of fluid at bottom of dam, 

414
Pressure waves produced by tuning 

fork, 24
Projectile motion, 167, 321, 698, 

740–742, 763
Pumping oil to the rim of the tank, 

413
Quadratic approximations, 225–226
Quickest route, 286
Radioactive decay rate, 53, 54, 66, 

452–453, 456
Radius

increase of raindrop, 212
of inflating balloon, 212

Radon-238 decay, 66
Reservoir water, 305
Resistors connected in parallel, 230, 

789
Resultant force, 686–687
Rolle’s Theorem, 249
Rotating spool speed, 230
Satellite orbit, 418
Searchlight beam motion, 231
Shortest beam, 286
Skaters stopping distances, 1039, 

1043–1044, 1060
Skylab 24 view, 764
Sliding ladder, 211–212
Sonobuoy submarine location, 294
Specific heat of a gas, 375
Speed

of aircraft approaching island, 
209–210

of a frictionless cart, 286
of marathoner, 249
of object dropped from  

tower, 141
during parachute jump, 232
of particle, 230, 232
of a rocket, 141
of rotating spool, 230
of ships moving apart, 214
underwater transmission  

cable, 308
of a vehicle, 78, 208, 249
velocity and, 162–163
of warship, 249

Speed of light, 279–280
Spring’s force constant, 416
Standard unit vectors, 19-7, 19-11
Stopping distance, 303
Stream flow, 810
Stretching a rubber band, 106, 416
Submarine intercept, 722
Surface area, 509

of an asteroid, 410
of an oil spill, 214
of a cone, 230, 231, 409, 976
cut from bottom of paraboloid, 

979–980
of an infinite paint can or  

Gabriel’s horn, 530
of a melting ice cube, 234
of a right circular cylinder, 230
of sliced bread, 410
of a sphere, 211, 977
of a torus, 429, 982
of Weather Service dome, 409
of a wok, 409

Suspension bridge cables, 662
Temperature

air, 375
below Earth’s surface, 772
in Fairbanks, Alaska, 183
greatest, 939
mean, 532
and period of a pendulum, 183
rate of change, 149, 249
of a room, 352

Thermal expansion in laboratory 
equipment, 135

Tin pest, 287
Tolerance, 225
Torque, 702–704, 722
Underwater transmission cable 

speed, 308
Vectors, 19-7, 19-11
Vehicular stopping distance,  

169–170
Velocity

after ricochet, 858
average and instantaneous, 233
displacement from an antideriva-

tive of, 303
of falling meteorite, 183
fields, fluid, 944–945, 966
of moving object, 178
of a particle, 233
of particle moving along a  

horizontal line, 162–163, 168
in a resisting medium, 1038–1039

of a rocket, 168
of a skydiver, 464
of two particles, 232

Velocity and acceleration, 164–165, 
361

of a piston, 182
of weight on spring, 172–173, 175

Vertical motion, 286
Vertical spring with weight, 172–173
Vibrating springs, 17-15–17-16
Videotaping a moving car, 213
Volcanic lava fountains, 170
Voltage changes, 211, 455, 804–805
Volume, 191, 464

of an ice cream cone, 909–910
of a ball, 141
of a balloon, 39
of a bowl, 390
of a box, 33
of a Bundt cake, 398
of a football, 432
of gasoline tanks, 509–510
of a hemisphere, 390
of material in a cylindrical  

shell, 225
of noncircular right cylinder, 882
of a pipeline, 855
of a pyramid, 388
of a right circular cone, 211
of right prism, 866
of a solid, 380–400
of a solid region, 880
of a solid sphere hole, 432
of storage tank for molasses, 821
of a swamp, 517
of a tetrahedron, 888
of a torus (doughnut), 390, 428
of a trough, 284
using cylindrical shells, 391–396
of water in swimming pool, 518
of a wedge, 434
of a wedgelike solid beneath 

surface, 869–870
Water flow, 135
Water main, 697–698
Wave equations, 795
Weight on a pulley, 210
Wind chill factor, 823
Work

along different paths, 960
to carry water up mountain in a 

leaky tank, 433
to compress a bathroom scale, 416
done by a force field, 943–944
done by a jack, 311
done by a locomotive, 699
done by the conservative field, 954
done in lifting a bucket and rope, 

412–413
to fill a water tower, 418
to haul up a rope, 416, 433
and kinetic energy, 417–418, 434
lifting a bag of sand, 416
lifting an elevator cable, 416
lifting water in a leaking  

bucket, 416
to move electrons, 418
to pump a reservoir, 433
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 Applications Index AI-3

to pump a tank, 433
to pump liquids from containers, 

416–417
to pump oil to the rim of a tank, 

413
to put a satellite in orbit, 418
required to compress a spring, 

412, 416
to stretch a spring, 416, 433
to suck milkshake through a 

straw, 417–418

General

Box dimensions, 33, 805, 831
Clock’s moving hands, 214
Computer graphics

hidden lines, 714
perspective, 713

Designing a poster, 283
Endangered species, 455
Helicopter rescue, 722

Leibniz’s Rule, 233–234, 377
Linearizations, 226, 231
Mixtures, 1041–1044, 1060
Oil depletion, 455
Paper folding, 284
Period of a clock pendulum,  

225, 234
Random number generator,  

899–900
Rolle’s Theorem, 249
Sugar, inversion of, 455
Swing of a clock pendulum, 628
Urban gardening, 472
U.S. Postal Service box size, 284
Well depth, 222
Window proportions, 284
Working underwater, 455

Life Sciences

Antihistamine effects, 520
Blood flow, 225, 311

Blood tests, 310
Blood types, 843
Body surface area, 169
Cardiac output, 213, 855
Diseases, eliminating, 54, 455
Diseases dying out, 451–452
Drug absorption, 71
Drug assimilation, 520
Drug concentrations, 225, 455
Drug dosages, 623
Drug effectiveness, 141
Endangered species, 455
Flow velocity of a cough, 288
Heart, effect of flight maneuvers 

on, 225
Hybridization, 167
Medicine dosages, body’s  

reaction to, 160
Population

density of bacteria, 876
regional, 876

Population growth
of bacteria, 54, 169, 455
of fruit flies, 148–149
of midwestern city, 54
of rabbits and foxes, 1058–1059
of town in California, 66
of trout vs bass, 1054–1055,  

1057
in U.S., 455
of world, 1039–1040
of yeast cells, 141
of yeast culture, 450–451

Sensitivity to medicine, 288
Tooth size reduction, 454–455
Transport through cell  

membrane, 1061

Social and Behavioral Sciences

Information diffusion, 504, 1052
Population, 1052
World population, 1039–1040
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I-1

Subject Index

Absolute change, 222
Absolute convergence, 572–577

Absolute Convergence Test, 573
definition of, 573
Ratio Test, 574–575
Root Test, 576–577

Absolute Convergence Test, 573
Absolute extrema, of continuous 

functions, 829–832
Absolute (global) maxima or 

minima extrema
boundary points of, 830–831
on closed bounded regions, 

829–832
definitions of, 235, 825
Extreme Value Theorem and, 

236–237
finding, 238–240
interior points of, 830–831

Absolute maximum, 825–826, 
829–832

Absolute minimum, 825–826, 
829–832

Absolute value
of complex numbers, 18-5
definition of, AP-4–AP-5, 18-5
properties, AP-4

Abstract algebra, AP-28
Acceleration

definition of, 163
formula for calculating the 

normal component of, 754
in free fall, 164
jerk associated with, 163–164, 173
normal component of, 753–754
in polar coordinates, 759–762
in simple harmonic motion, 

172–173
tangential and normal components 

of, 753–754
torsion and, 754–757
vector, 729, 753
velocity in, 163–165

Addition
of complex numbers, 18-3–18-4
formulas in trigonometric 

functions, 45
of functions, 34–35

parallelogram law of, 682–683, 692
of terms to series, 557
of vectors, 682–683

Addition property of real numbers, 
AP-27

Additivity, line integrals and, 932
Additivity Rule

for definite integrals, 334
for double and triple integrals, 869

Agnesi, Maria Gaetana, 159
Agnesi, Mary, 632
Albert of Saxony, 568
Algebra

abstract, AP-28
Fundamental Theorem of 

Algebra, 18-9
linear, B-4
operations, vectors in, 682–683, 

687
rules

for finite sums, 324
for gradient vectors, 811

Algebraically representing vectors, 
681

Algebraic functions, 29–30
Algebraic numbers, defined, 445
Algebraic properties

of exponential functions, 442–443
of ln x, 438
of the natural logarithm, 441–442
of natural logarithmic functions, 

58–59
of real numbers, AP-1, AP-27

Alternating harmonic series, 579–583
Alternating series, 579–583
Alternating Series Estimation 

Theorem, 581
Alternating Series Test, 579–580, 

583
Amperes, 17-19
Amplitude, 19-4
Angle convention, 42
Angle of elevation, 737
Angle of inclination, AP-15–AP-16
Angles

Angle Between Two Vectors, 
691–693

of elevation, 737

firing, 737
of inclination, AP-15–AP-16
measured in degrees and  

radians, 41
phase, 17-17
between planes, 711–712
in standard position, 42
in trigonometric functions, 41–42
between two curves, computing, 

18-32
between vectors, 711–712

Angular momentum, 766
Angular velocity, 1000
Antiderivatives, 294–300

Constant Multiple Rules for, 
296–297, 299

definition of, 294
Difference Rule for, 296–297, 299
finding, 294–297
indefinite integrals of, 299–300
initial value problems and 

differential equations, 297
integration formulas, 300
linearity rules of, 296–297
motion and, 297–298
Sum Rule for, 296–297, 299
of vector functions, 734–735

Antidifferentiation, 294, 297, 300
Aphelion, 669
Applied optimization, 277–282

examples from mathematics and 
physics, 279–282

problems, solving, 277–278
Approximations

convergence of, 291–292
in converting mass to energy, 223
differential, 220–221
error in, 220–221
finite

for area, 315–320, 437
theory of limits of (Riemann 

sums), 326–328, 331
of functions, 19-16–19-19
in higher dimension vectors,  

19-10–19-11
linear, 215–217

error formula for, 845
standard, 819–820

lower sum, 313–314
Midpoint Rule for, 332–333, 510
polynomial, of two-variable 

functions, 847
quadratic, 601
at resolution level zero,  

19-29–19-31
for roots and powers, 217
sensitivity to change in, 222–223
of a series, error estimation in, 

564–565
by Simpson’s Rule, 512–514
tangent line in, 215
tangent planes, 792, 819–820
trapezoidal, 511–512
by Trapezoidal Rule, 511–512
by trigonometric polynomials, 

19-3–19-5
upper sum, 313–314
using the Haar system, 19-27, 

19-29–19-31
Arbitrary constant, 295
Arccosecant function

derivatives of, 200–201
graph of, 200
identities involving, 204

Arccosine
derivatives of, 200, 201
identities involving, 204

Arccotangent function
derivatives of, 200–201
graph of, 200
identities involving, 204

Archimedes’ principle, 1053, 1021
Archimedes spiral, 672
Arc length, 399–403

arc length function, 402–403
of a curve y  f (x), 399–401
differential formula for, 402–403
discontinuities in dy/dx, 402

Arc length differential, 638–639
Arc length in space, 743–745

arc length formula, 743
arc length parameter, 744
definition of, 743
of a function, 744
speed on a smooth curve, 744–745
unit tangent vector, 745

Note: 
• Page numbers with the prefix “17” are in the online Chapter 17 Second-Order Differential Equations
• Page numbers with the prefix “18” are in the online Chapter 18 Complex Functions
• Page numbers with the prefix “19” are in the online Chapter 19 Fourier Series and Wavelets
• Page numbers with the prefix “AP” are in Appendix A
• Page numbers with the prefix “B” are in the online Appendix B
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I-2 Subject Index

Arcsecant function
derivatives of, 200–201, 203
graph of, 200
graphs/graphing of, 492
identities involving, 204

Arcsine and arccosine functions, 
61–64

arc in, 62
definition of, 61–62
derivatives of, 189, 201, 202
graphs/graphing of, 62–63, 492
identities involving, 63–64, 204
values for, 63

Arctangent functions
derivatives of, 200–203
graphs/graphing of, 200, 492
identities involving, 204
in Taylor series, 612–613
values of, 201

Area
between curves, 364–366
definition of, 873
differential, change substituting, 

916
by double integrals, 873–875

average value of, 874–875
bounded regions in a plane, 

873–874
Riemann sums in, 873

finite approximations for, 315–320
finite sums for estimating, 

312–320
Green’s Theorem formula for, 972
infinite, 522
lower sum approximation of, 

313–314
Midpoint Rule for approximating, 

314, 332–333
Pappus’s Theorem for Surface 

Areas, 429
in a plane, 650–652
in polar coordinates, 650–653, 

878–879
of rectangles (See Rectangles, 

area of)
surface (See Surface area)
of surfaces of revolution, 

405–408, 639–640
tangent, 633–634
total, 349–350
upper sum approximation of, 

313–314
Argand Diagrams, 18-4
Argument, 18-5
Arrow diagrams, 851
Associative laws of real numbers, 

AP-28
ASTC rule, 43
Asymptotes

horizontal, 108–111
of hyperbolas, 659
oblique, 111–112
slant line, 111
vertical, 115–116

Autonomous differential equations, 
1044–1051

definition of, 1045
equilibrium values or rest points 

in, 1044–1046

falling body encountering 
resistance, 1047–1049

graphical solutions of, 1044–1051
Logistic Equation in Neural 

Networks and Machine 
Learning, 1050–1051

logistic model for population 
growth, 1049–1050

Newton’s Law of Cooling, 1047, 
1048

phase lines, 1044–1046
stable and unstable equilibria, 

1046–1047
Auxiliary equation, 17-3
Average daily cost, 281–282
Average speed, 72–74
Average value

for approximating area of 
rectangles, 319–320

of continuous functions, 337–338
definition of, 338
of a function in space, 890
of nonnegative continuous 

functions, 318–320
Average velocity, 162
Axis

coordinate, AP-14
of ellipses, AP-21

focal axis, 657
major axis, 658
minor axis, 658
semimajor axis, 658
semiminor axis, 658, 666–667

focal, of hyperbolas, 658
imaginary, 18-4
major, AP-21
minor, AP-21
moments of inertia about, 934, 990
of parabolas, AP-19–AP-20
real, 18-4
spin around, 961–964

Base a logarithm, 444
Basis

defined, 19-8
orthonormal, for three-dimensional 

space, 19-8–19-9
Behavior, exponential, 49–51
Bendixson’s criterion, 973
Bernoulli, Daniel, 236
Bernoulli, Jakob, 1038
Bernoulli, John (Johann), 179, 268
Bernoulli differential equation,  

1038
Binary search, 468–469
Binomial series, 609–611
Binormal vectors, 753, 757
Biology, derivatives in, 167
Birkhoff, George David, 357
Bolzano, Bernard, 163
Boundary

definition of, B-7
of intervals, AP-3
in a plane, 769
in space, 771–772
in substitution, 917–919, 922

Boundary points
of absolute (global) maxima or 

minima extrema, 830–831

closed bounded, absolute maxima 
and minima on, 829–832

definition of, B-11
of intervals, AP-3
in a plane, 769
in space, 771

Boundary values, 17-6
Bounded from above/below 

(sequences), 546
Bounded function, 81, 136
Bounded region

absolute maxima and minima on 
closed, 829–832

definition of, B-7
nonrectangular, 864–865
in a plane, 769, 873–874
in space, 771

Bounded sequences, 546–547
Bounds for the remainder in the 

Integral Test, 565
Bowditch curve, 642
Box function, 19-25
Box product. See Triple scalar 

product
Boyle’s Law, 33
Brachistochrones, 628–629
Branches of hyperbolas, 655
Brief Table of Integrals, 504

Calculators
to estimate limits, 84–85

Calculus of variations, 629
Calculus with parametric curves, 

633–640
arc length differential, 638–639
areas of surfaces of revolution, 

639–640
Chain Rule in, 633
complete elliptic integral of the 

second kind in, 637
continuously differentiable 

functions, 635
differentiable parametrized 

curves, 633–634
length of parametrically defined 

curves, 635–638
parametric formulas, 633–634
Riemann sums in, 635
for smooth curves, 635–636
tangent lines and areas,  

633–634
twice-differentiable functions, 

633–634
Cantor, Georg, 560
Cantor set, 560
Capacitance, 17-19
Carbon-14 decay, 452
Cardioid curve, 648
Carrying capacity, 1049
Cartesian coordinates

equations relating spherical and 
cylindrical coordinates to, 
907–909

in a plane, AP-13–AP-14
polar coordinates related to, 

643–645
system of, AP-14
in three-dimensional coordinate 

system, 675

Cartesian equations
for hyperbolas, 665
parametric, 627

Cartesian integrals, changing into 
polar integrals, 879–881

Cartographers, 18-32
CAS. See Computer algebra systems 

(CAS)
Catenary, 31, 464
Cauchy, Augustin-Louis, 273
Cauchy condensation test, 567
Cauchy-Riemann Equations,  

18-20–18-22
Cauchy’s Mean Value Theorem, 

273–274
Cavalieri, Bonaventura, 382
Center

of an ellipse, AP-21
of curvature for plane curves, 749
of ellipses, 657
of hyperbolas, 658
of linear approximation, 215, 217

Centered difference quotient, 
175–176

Center of mass, 894–895
along a line, 420–421
centroids, 426–427
coordinates of, 934, 990
definition of, 421, 422
distributed over a plane region, 422
moments and, 420–429
plates and, 422–426
of plates bounded by two curves, 

425–426
system torque, 420–421
theorems of Pappus, 427–429
of thin, flat plates, 422–425
thin wires and, 421
torque, 420–421

Center-to-focus distance of ellipses, 
658

Centroids, 426–427, 894–895
Chain curve, 464
Chain Rule, 354–359, 796–803

in calculus with parametric 
curves, 633

dependency diagrams for, 800, 801
derivatives and, 176–184

in composition of functions, 
176–178

in differentials, 219, 221–222
of exponential functions, 438, 

441–443
in implicitly defined functions, 

185–186
of inverses of differentiable 

functions, 191
of the natural logarithm 

function, 192–193
outside-inside rule and, 

178–179
with powers of a function, 

179–181
in proving Derivative Power 

Rule, 196
in related rates equations, 206, 

208
repeated use of Chain Rule 

in, 179
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 Subject Index I-3

in trigonometric functions, 
202–203

ways to write, 178
of ax and logax, 194–195

diagram for remembering, 797
differentiable parametrized curves 

and, 633–634
for finding complex derivatives, 

18-19
functions and

curvature, 747, 748
defined on surfaces, 799–801
Implicit Function Theorem, 

802–803
of many variables, 803
of three variables, 798–799
of two variables, 796–799
vector functions, 730, 731

implicit differentiation and, 
801–803, 979

motion in polar coordinates and, 
759

“outside-inside” rule and, 814
for paths, 813–814
Power Chain Rule and, 179–181
proof of, 178, 221–222, 731
theorems, 798, 799, 801–803

Chain Rule for Functions of 
One Independent Variable 
and Three Intermediate 
Variables, 798

Chain Rule for Functions of 
One Independent Variable 
and Two Intermediate 
Variables, 796

Chain Rule for Two 
Independent Variables 
and Three Intermediate 
Variables, 799

Formula for Implicit 
Differentiation, 801

Implicit Function Theorem, 
802–803

Change. See also Rates of change
exponential, 447–448
sensitivity to, 222–223

in approximations, 222–223
genetic data and, 167

Change-of-base formula, 59
Characteristic equation, 17-3
Charge, 17-18–17-19
Circles

of convergence, 18-26
of curvature for plane curves, 

749–750
exterior regions of, AP-19
interior regions of, AP-19
osculating, 232, 749–750
in a plane, AP-17–AP-19
standard equation of, AP-18
unit, AP-18

Circular cylinder, 714
Circular functions, 458. See also 

Trigonometric functions
Circulation

density, 963–964
flux differentiated from, 945
in Green’s Theorem, 966–968
for velocity fields, 944–945

Cissoid of Diocles, 188
Clairaut, Alexis, 791
Clairaut’s Theorem, 790–791
Closed curves, 945
Closed intervals, AP-3, 122, 127
Closed region

bounded, absolute maxima and 
minima on, 829–832

definition of, B-7
in a plane, 769
in space, 771–772

Coefficients
drag, 742
Fourier, 19-18–19-19
Haar, 19-27–19-29
linear second-order constant-

coefficient models, 17-20
method of undetermined,  

17-8–27-31
of polynomials, 29
in power-series solutions,  

17-24–17-29
rational functions in, determining 

by differentiating, 502
undetermined, 497

Cofactor, B-2–B-5
Cofactor Expansion, B-4
Common logarithmic functions, 58
Commutativity laws of real 

numbers, AP-28
Comparison tests, 18-24, 567–571

Direct Comparison Test, 
568–569, 583

Limit Comparison Test, 569–571, 
583

Competitive-hunter model, 
1054–1055

Complementary solution, 17-8
Complete elliptic integral of the 

second kind, 637
Completeness property, 51, 547
Complete ordered field, AP-28
Completing the square,  

AP-18–AP-19
Complex analysis, 18-1
Complex conjugate, 18-4
Complex derivatives

definition of, 18-17–18-19
differentiable, 18-18–18-19
formula for, 18-20–18-21
rules for finding, 18-19

Complex differentiable function, 
18-18–18-19

Complex functions, 18-1–18-36
Cauchy-Riemann Equations,  

18-20–18-22
complex numbers, 18-1–18-9
complex power series, 18-22– 

18-24, 18-25
conformal maps, 18-31–18-34
derivatives of, 18-17–18-19
Euler’s Formula, 18-27–18-28
logarithmic, 18-28–18-29
variables of, 18-10–18-17

Complex numbers, 18-1–18-9
absolute value of, 18-5
adding, 18-3–18-4
Argand Diagrams, 18-4
complex conjugate, 18-4

complex plane and, 18-4–18-5
computations with, 18-4
computing reciprocals, 18-6
definition of, 18-1
De Moivre’s Theorem, 18-7
dividing, 18-4
equality in, 18-3
Euler’s Formula, 18-5
Fundamental Theorem of 

Algebra, 18-9
geometric representations of, 

18-4–18-5
hierarchy of, 18-1–18-3
imaginary parts of, 18-3–18-4
multiplying, 18-3–18-4
powers of, 18-7
products of, 18-5–18-6
quotients in, 18-6–18-7
real parts of, 18-3–18-4
roots in, 18-7–18-9

Complex plane, 18-4–18-5
Complex power series,  

18-22–18-24
complex sequences, 18-23
complex series, 18-23–18-24
Convergence Theorem for 

Complex Power Series, 
18-25

Complex variables, 18-10–18-17
complex domains, 18-10–18-11
complex limits, 18-11–18-15
continuous, 18-15–18-17
functions of, 18-12–18-15

Component equation for a plane, 709
Component form of vectors, 680–682
Component functions, 725, 937
Component test

for conservative fields, 955–957
for exact differential form, 958

Composite functions
Chain Rule in, 176–178, 814
continuity of, 125–126
continuous, 125–126
derivative of, 176–178
evaluating, 35–36

Composition Rule, 777
Computer algebra systems (CAS)

improper integrals and, 525–526
improper integrals in integration 

evaluated with, 525–526
integrate command in, 506–507
integration with, 506–507

Computer graphing, 772
Computing reciprocals, 18-6
Concavity

curve sketching and, 255–268
definition of, 256
graphing y  f(x), 261–263
points of inflection and, 256–259
Second Derivative Test for, 256, 

259–261
Conditionally convergent series, 

581–582
Cones

elliptical, 714–717
parametrization of, 974
surface area of, 976

Conformal maps, 18-31–18-34
Conic sections, 655–660

ellipses, 657–658
hyperbolas, 658–660
illustrated, 655
parabolas, 656–657

Conics in polar coordinates, 663–668
directrices for, 663–665
eccentricity of, 663–667
polar equations for, 665–667

Connected domains and regions, 951
Connectedness, 127
Conservation of angular momentum, 

766
Conservative fields

component test for, 955–957
line integrals in, 952–955
potentials for, finding, 955–957
properties of, 951
Stokes’ Theorem and, 1003–1004

Constant-depth surface, fluid force 
on, 414–415

Constant force, work done by, 
410–411

Constant Function Rule, 730
Constant functions, 27, 81

norm of, 19-13–19-14
zero derivatives in, 246

Constant length, vector functions 
of, 731

Constant Multiple Rule, 82–83, 
556–557

for antiderivatives, 296–297, 299
to calculate limits of sequences, 

542
for definite integrals, 334
for derivatives (See Derivative 

Constant Multiple Rule)
for double and triple integrals, 869
for finding complex derivatives, 

18-19
for finite sums, 324
for gradients, 811
for limits, AP-23
for limits for functions of two 

variables, 777
for series, 556–557

Constant Value Rule, 324
Constrained variables

arrow diagrams for, 851
constrained by another equation, 

determining, 849–850
dependent/independent, 

determining, 848–849
notation for, 850–851
partial derivatives with, 848–851

Containers, lifting objects and 
pumping liquids from, 
412–413

Continuity, 120–132. See also 
Continuous functions

on an interval, 124
of compositions of functions, 

125–126
continuous derivatives, 273
continuous extension, 128–129, 

783, 853
continuously differentiable 

functions, 635
continuous partial derivatives, 

1003
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I-4 Subject Index

Continuity (continued )
continuous vector fields, 937
discontinuity and, 122–123
at interior point, 121–122
inverse functions and, 124–125
at left endpoint, 121
limits and, 106–132
for multivariable functions, 

779–781
one-sided, 122
partial derivatives and, 779–781, 

789–790
at a point, 121–123
test, 122
two-sided, 122
of vector functions, 726–727

Continuous functions, 123–129, 
779–781

absolute extrema of, 829–832
of compositions, 781
compositions of, 125–126
continuous at the point, 779–780
continuous extension of, 783, 853
definition of, 123, 779
differentiable, 147, 407, 408, 429, 

635, 638, 639
extension to a point, 128–129
graphing, 127–128
Intermediate Value Theorem for, 

126–128
left (or continuous from the left), 

121–122
limits of, 126
over a closed interval, 122, 127
partial derivatives and, 789–790
properties of, 124
right (or continuous from the 

right), 121–122
Contour curves of functions of two 

variables, 770
Convergence

absolute, 572–577
of approximations, 291–292
circle of, 18-26
conditional, 581–582
of improper integrals, 523

tests for convergence, 526–528
interval of, 591
in Newton’s method, 291–292
of power series, 586–591

Convergence Theorem for 
Power Series, 589–591

operations on, 591–594
radius of, 589–591
testing for convergence, 591

radius of, 589–591
of Riemann sums, 331
testing for

alternating series, 579–583
Alternating Series Estimation 

Theorem, 581
Alternating Series Test, 

579–580
Direct Comparison Test, 

568–569, 583
geometric series, 553–555,  

583
improper integrals, 526–528

Limit Comparison Test, 
569–571, 583

power series, 591
p-Series Test, 563, 583
Ratio Test, 574–575, 583
Rearrangement Theorem for 

Absolutely Convergent 
Series, 582, 583

Root Test, 576–577, 583
series with some negative 

terms, 573, 581–583
summary of, 583

Convergence Theorem for Complex 
Power Series, 18-25

Convergence Theorem for Power 
Series, 589–591

Convex, 256
Coordinate axes, AP-14
Coordinate pair, AP-14
Coordinate planes in three-

dimensional coordinate 
system, 675–676

Coordinates
of center of mass, 934, 990
cylindrical (See Cylindrical 

coordinates)
polar (See Polar coordinates)
rectangular (See Rectangular 

coordinates)
Coordinate systems

Cartesian, AP-14
rectangular, AP-14
three-dimensional, coordinate 

planes in, 675–678
Coplanar vectors, 683
Corner, 146
Cosecant function, 42–43

derivatives of, 173–174
graphs of, 44, 62
integrals of, 359
inverse of, 200–201
odd, 44
periodicity of, 44

Cosine function, 19-2, 42–43
arccosine function and, 61–62
derivatives of, 171–172
to eliminate a square root, 488
even, 44
graphs of, 30, 44, 62
inequalities and, 46
periodicity of, 44
product of, 490
products of powers of, 486–487

Cosines
direction, 697
law of, 45–46
summing, 19-3–19-5, 19-3–19-5
values of, 43

Costs
fixed, 166
marginal, 165–166, 280–281
of production, 165–166
variable, 166

Cotangent function, 42–43
derivatives of, 173–174
graphs of, 44, 62
integrals of, 359
inverse of, 200–201

odd, 44
periodicity of, 44

Coulombs, 17-19
Courant, Richard, 151
Cramer, Gabriel, 188
Cramer’s Rule, 17-12
Critical damping, 17-17–17-18
Critical points

definition of, B-8
extreme values and, 239–240
to find increasing or decreasing 

functions, 250–253
on graphs, 259–262
in local (relative) maxima or 

minima extrema, 826–829
in Max-Min Tests, 831
in optimization problems, 80, 

277, 279, 282
Cross Product Rule, 730–731
Cross products, 699–704

area of a parallelogram in, 
700–701

calculating, as a determinant, 
701–702

Cross Product Rule, proof of, 
730–731

definition of, 699–700
determinant formula for, 701
distributive law for, AP-30–AP-31
pairwise, 700
parallel vectors in, 700
properties of, 700
torque vector in, 702–703
triple scalar product  

(box product) in, 703–704
of two vectors in space,  

699–700
Cross-sections

definition of, 380
for finding limits of integration, 

868
method of slicing, 380–382
solids of revolution, 382–387

disk method, 382–385
washer method, 385–387

volumes using, 380–387
Cube root function, 28
Cubic function, 29
Curl vector

divergence and, 1009–1010
field, 993–995
in Green’s Theorem, 966–968
k-component of, 961–964

Current, 17-18–17-19
Curvature

calculating, formula for, 747–749
center of, 749
circle of, for plane curves, 

749–750
computing, formulas for, 756–757
definition of, 747
normal vectors for space curves 

and, 750–751
normal vectors of a curve and, 

747–751
of a plane curve, 747–750
radius of, 749
vector formula for, 756

Curve
arc length

definition of, 399–401
differential formula for, 

402–403
discontinuities in, 402
discontinuities in dy/dx, 402
formula for, 399–401
function, 403
plates bounded by two, 

425–426
smooth, 399

areas between, 364–366
assumptions on, 951
Bowditch, 642
cardioid, 648
chain, 464
closed, 945
contour, of functions of two 

variables, 770
generating, 714
infinite area under, 522
level, 810
level, of functions of two 

variables, 770
normal vectors of, 747–751
parametric, 1054
parametric, arc length of, 

743–745
parametric, calculus with  

(See Calculus with 
parametric curves)

parametrization of  
(See Parametrizations of 
plane curves)

piecewise smooth, 728
plane

circle of curvature for, 749–750
curvature of, 747–750

plane, flux across, 945–946
plates bounded by two, 425–426
polar, length of a, 652–653
principal unit normal vector for 

smooth, 748
sigmoid shape of, 1050
sinusoid, 642
sketching, 255–264
slope of, 138–139
smooth, 635–636, 728–729
snowflake, 560
space

arc length and, 743–745
binormal vectors for, 753
computation formulas for, 757
curvature and normal vectors 

for, 750–751
definition of, 750
normal vectors for, 750–751
parametric equations for, 725, 

736–738
tangents of, 725–731
work done by a force over a 

curve in, 942–944
synchronous, 764
tangent line to a level curve, 

equation for, 810
tangents to, 745
torsion along, 755

Z05_HASS5901_15_GE_Subject Index.indd   4 13/04/23   6:21 PM

www.konkur.in

Telegram: @uni_k



 Subject Index I-5

Cusp, 146
Cycloid

brachistochrones, 628–629
calculus of variations in, 629
definition of, 628
Huygens’ pendulum clock and, 

628, 629
parametric equations of,  

628–629
tautochrones, 628–629

Cylinders
definition of, 714
hyperbolic, 835–836
parametrization of, 974
slicing with, 391–393

Cylindrical coordinates, 903–907
definition of, 903
equations relating rectangular 

coordinates to, 903–905
equations relating spherical and 

Cartesian coordinates to, 
907–909

integration in, 903–907
limits of integration in, finding, 

905–907
motion in, 759
parametrization by, 974

Cylindrical shells, volumes using, 
391–396

shell method, 393–396
slicing with cylinders, 391–393

Damped motion, 17-17–17-18
Damped vibrations, 17-18
Daubechies, Ingrid, 19-33
Daubechies scaling function,  

19-33–19-34
Daubechies wavelet,  

19-33–19-34
Decay

exponential, 52–53, 448
radioactive, 452–453
rate, 53

Decreasing functions, 25–26
Dedekind, Richard, 327, 557
Definite integrals, 329–338

applications of, 380–435
arc length, 399–403
areas of surfaces of revolution, 

405–408
moments and centers of mass, 

420–429
volumes using cross-sections, 

380–387
volumes using cylindrical 

shells, 391–396
work and fluid forces, 410–415

area under the graph of a 
nonnegative function, 
336–337

average value of a continuous 
function, 337–338

definition of, 312, 329–331
existence of, 330–331
in integrable and nonintegrable 

functions, 331–332
integration by parts for evaluating, 

482–483

as a limit of Riemann sums with 
equal-width subintervals, 
331

Mean Value Theorem for, 
342–343, 345–347

Midpoint Rule for approximating, 
314, 332–333, 510

notation for, 330
properties of, 333–335
rules satisfied by, 334
shift property for, 371
substitution for, 361–367
of symmetric functions, 363–364
Trapezoidal Rule for the value of, 

511–512
of vector functions, 735

Degrees
angles measured in, 41
of polynomials, 29

, 91, 93–95
De Moivre’s Theorem, 18-7, 19-5
Density

circulation, 963–964
flux, 964–966, 1006–1007
mass, of surface integrals, 983, 

985
of plates, 422

Dependent variables
constrained, 848–849
of functions, 21
in functions of several variables, 

767
Derivative Constant Multiple Rule, 

152–153, 155
Derivative Power Rule

applying, 152
generalizing, 160, 196
general version, 152, 195–197
irrational exponents and, 195–197
for negative integers, 160
positive integer, 151
Power Chain Rule and, 179–180
in solving a differentiation 

problem, 158
Derivative Product Rule

definition of, 155–156
picturing, 156
proof of, 156
for trigonometric functions, 171, 

172, 174
Derivative Quotient Rule, 157–158, 

173, 180
Derivatives, 138–234

of absolute value function, 180
antiderivatives, 294–304
applications of, 235–311
applied optimization, 277–289
arctangent, 202–203
in biology, 167
calculating (See Differentiation)
Chain Rule and, 176–184
complex (See Complex 

derivatives)
of composite functions, 176–178, 

814
concavity and curve sketching, 

255–268
of a constant function, 151

continuous, 273
Cross Product Rule, 730–731
definition of, 142

calculating derivatives 
from, 143–144 (See also 
Differentiation)

difference quotient and, 139–140
difference rules for (See under 

Differentiation)
differentials and, 218–223
directional (See Directional 

derivatives)
in direction of vectors, 728–729
Dot Product Rule, 730
in economics, 165–167
First Derivative Test for Local 

Extreme Values (General 
Version), B-8

of functions, 139, 142–151
cosecant, 173–174
cosine, 171–172
cotangent, 173–174
definition of, 142–143
differentiable (See 

Differentiable functions)
exponential, 154–155
extreme values of, on closed 

intervals, 235–243
f at a point x0, 139
graphical behavior of, 263–264
hyperbolic, 458–462
inverse, 189–191
monotonic, and the first 

derivative test, 250–255
natural exponential, 438, 

440–441
natural logarithm, 192
negative, 153
with no derivative at a point, 

146
reciprocal, 143
recovering, from its derivative, 

148
secant, 173–174
sine, 170–171
trigonometric, 170–176, 

200–206
u and v for denoting, 153
vector, 727–729

General Power Rule for, 152, 
195–197

graphing, 144–145
higher-order, 158
history of, 142
implicit differentiation and, 

184–189
as instantaneous rate of change, 

140, 161–162
intermediate forms and 

l’Hôpital’s Rule, 268–276
involving logax, 444–445
in irrational exponents and the 

Power Rule, 195–197
left-hand, 145–146
Leibniz’s Rule, 233–234, 377
linearization and, 214–217
in logarithmic differentiation, 195
Mean Value Theorem in, 245–249

Mixed Derivative Theorem,  
AP-31–AP-32, 790–791

motion and, 727–729
Newton’s dot notation for, 756
Newton’s method in, 289–294
notations for, 144
nth, 158
number e expressed as a limit 

and, 197
one-sided, 145–146
partial (See Partial derivatives)
at a point, 138–142

rates of change and, 139–140
of a positive integer power, 151
of power series, 592
as a rate of change, 161–170
of related rates, 206–214
right-hand, 145–146
Rolle’s Theorem in, 243–244
second, 158
Second Derivative Test for Local 

Extreme Values (General 
Version), B-9

of the sine function, 170–171
of the square root function, 144, 

146, 191
symbols for, 158
of the tangent function, 173–174
tangent lines and, 138–142

definition of, 138
finding, to graph a function, 

138–139
slope of, 138–139, 144

of tangent vector, 748
third, 158
of trigonometric functions, 

170–176
as velocity, 162, 729
of ax and logax, 193–194

Derivative Sum Rule, AP-12–AP-13, 
153–154, 171

Descartes, René, AP-14, 184, 188
Determinants, B-1–B-6

absolute value of, 704
calculating a cross product as, 

701–702
calculating the triple scalar 

product as, 703–704
cofactors in, B-2–B-5
definition of, B-1
evaluating, 701
formula, 701
Jacobian, 916, 920
matrix in, B-1–B-6
method of, 17-12
properties of, B-5
vector as, 703–704

Difference. See Subtraction
Difference quotient, 139–140

definition of, 139
forms for, 143
limit of, 143

Difference Rule, 82–83, 153–154, 
171

for antiderivatives, 296–297, 299
to calculate limits of sequences, 

542
definition of, 153
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I-6 Subject Index

Difference Rule (continued )
for double and triple integrals, 

869
to find derivatives, 153–154, 171
for finite sums, 324
for gradients, 811
for limits, AP-23
for limits for functions of two 

variables, 777
for series, 556–557
for vector functions, 730

Differentiability
on an interval, 145–146
definition of, 792–793
for functions of several variables, 

792–793
partial derivatives and, 792–793

Differentiable functions
absolute maxima and minima, 

239–240
Cauchy’s Mean Value Theorem, 

273–274
Chain Rule formula for

functions of many variables, 
803

functions of three variables, 
798–799

functions of two variables, 
796–798

implicit differentiation, 802
complex, 18-18–18-19
continuous, 147, 407, 408, 429, 

635, 638, 639
with continuous first partial 

derivatives, 793
continuously, 635
definition of, 143, 792–793
domain of, 810
Extreme Value Theorem, 240
First Derivative Test for Local 

Extrema, 251–253
graphical behavior, 263–264
increasing and decreasing 

functions, 250–251
l’Hôpital’s Rule, 268–274
Mean Value Theorem, 245–246
of more than two variables, 

821–822
negative, 153
with no derivative at a point, 146
on one-sided derivatives, 145–146
optimization problems, 278, 280
parametrized curves, 633–634
plane tangent to the surface of, 

815–817
points of, 827
Rolle’s Theorem, 243
rules for (See under 

Differentiation)
Second Derivative Test for

concavity, 256
local extrema, 259–263

twice-, 633–634
vector functions, 728

Differentiable Implies Continuous 
Theorem, 793

Differential equations
definition of, 297

first-order, 1024–1061
applications of, 1038–1043
autonomous differential 

equations, 1044–1051, 1053
autonomous systems of, 1053
Bernoulli differential equation, 

1038
carrying capacity, 1049
competitive-hunter model, 

1054–1055
curve, sigmoid shape of, 1050
definition of, 1024–1025
equilibrium values, 1044–1046
Euler’s method, 1027–1030
Euler solution, 1029–1030
exponential population growth 

model, inaccuracy of, 
1039–1040

falling body encountering 
resistance, 1047–1049

first-order initial value problem, 
1025–1026

first-order linear equations, 
1032–1036

graphical solutions of 
autonomous, 1044–1051

homogeneous, 1061
initial value problems, 

1025–1026
integrating factor, 1033–1035
Law of Exponential Change, 

1039–1040
limit cycle, 1056
limiting population, 1049
logistic equation in Neural 

Networks and Machine 
Learning, 1050–1051

logistic growth, 1049
logistic model for population 

growth, 1049–1050
mixture problems, 1041–1043
motion with resistance 

proportional to velocity, 
1038–1039

Newton’s Law of Cooling, 
1047

Newton’s second law of 
motion, 1038, 1048

numerical method, 1027–1030
numerical solution of the 

problem, 1027–1030
orthogonal trajectories, 1038, 

1040–1041
particular solution, 1025–1026
phase-plane analysis method, 

limitations of, 1056
phase planes, 1053–1054
predator-prey, 1058–1059
resistance proportional to 

velocity, 1038–1039
rest points, 1044–1046
RL circuits, 1036
slope fields, 1026–1027
solution curves, 1026–1027
solutions, 1024–1026
standard form of linear 

equations, 1032–1033
steady-state value, 1036

systems of, 1053–1056
terminal velocity, 355, 1049

initial value problems and, 297
second-order, 17-1–17-29

applications, 17-15–17-20
auxiliary equation, 17-3
boundary value problems,  

17-6
boundary values, 17-6
constant-coefficient 

homogeneous equations, 
17-2–17-5

damped motion, 17-17–17-18
damped vibrations, 17-18
definition of, 17-1
electric circuits, 17-18–17-19
Euler equations, 17-22–17-23
general solution, 17-2
homogeneous linear equations, 

17-1
initial conditions, 17-5
initial value and boundary 

value problems, 17-5–17-6
linear combination, 17-1
linearly independent solutions, 

17-2
linear second-order constant-

coefficient models, 17-20
nonhomogeneous linear 

equations, 17-1, 17-7– 
17-14

overdamping, 17-18
power-series solutions,  

17-24–17-29
simple harmonic motion,  

17-16–17-17
superposition principle, 17-1
trivial solution, 17-2
underdamping, 17-18
variation of parameters, 17-7, 

17-12–17-14
vibrations, 17-15–17-16

separable, 448–450
solution of, 449
solving, 297
for vector functions, 735–736,  

740
Differential formula for arc length, 

402–403
Differentials

arc length, 638–639
area change substituting, 916
Chain Rule in, 219, 221–222
definition of, 218, 820
error in approximation of, 

220–221
estimating with, 219–220
forms of, 943, 958–959
geometric meaning of, 218
of integration by parts formula, 

479–482
linearization and, 218–223
for a parametrized surface, 976
in partial derivatives, 820–821
surface area, for a parametrized 

surface, 976
tangent plane, 820–821
total, 820–822

Differentiation
Chain Rule for implicit, 979
coefficients determined by, 502
definition of, 143
implicit, 184–189
integration and, relationship 

between, 349
logarithmic, 195
in related rates equations, 209
rules, 151–160, 729–731

Chain Rule, 176–184, 731
choice of, in solving a 

differentiation problem, 
157–158

for constant function 
derivatives, 151

Cross Product Rule, proof of, 
730–731

Derivative Constant Multiple 
Rule, 152–153, 155

Derivative Power Rule (See 
Derivative Power Rule)

Derivative Product Rule, 
155–156, 171, 172, 174

Derivative Quotient Rule, 
157–158, 173, 180

Derivative Sum Rule, 
153–154, 171

Difference Rule, 153–154, 171
Dot Product Rule, proof of, 730
for exponential function 

derivatives, 154–155
for second-and higher-order 

derivatives, 158
for vector functions, 729–731

Diocles, 188
Direct Comparison Test, 526–528, 

568–569, 583
Directed line segment to represent 

vectors, 680
Direction

along a path, 931
cosines, 697
downhill, 806
estimating change in a specific, 

818
field, 1026–1027
forward, 939
rate of change in, 806
scalar component in, 694–695
of vectors, 684–685

Directional derivatives, 806–814
calculations of, 808–810
definition of, 806
as a dot product, 808–809
estimating change in a specific 

direction, 818
gradient vectors in, 808–814
interpretation of, 807–808
in a plane, 806–807
properties of, 809–810
zero, 814

Directrices
for ellipses, 664–665
for hyperbolas, 664–665
of parabolas, 656–657

Dirichlet, Lejeune, 522
Dirichlet ruler function, 136
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 Subject Index I-7

Discontinuity, 146, 402
Discontinuous functions, 122–123
Discriminant of local (relative) 

maxima or minima extrema, 
827–829

Disk method, 382–385
Displacement, 162

definition of, 317
versus distance traveled, 317–318
work by force through, 696

Distance
formula for points in a plane, 

AP-18
in a plane, AP-17–AP-19
from a point to a line, 708
from a point to a plane, 711
spheres in space and, 677–678
squares of, 897
traveled, 315–318

displacement versus, 317–318
total distance traveled, 

317–318, 348
velocity function, 315–318

between two functions, 19-13
between two points in the xy-

plane, formula for, 677–679
Distributive law for cross products, 

AP-30–AP-31
Divergence

curl and, 1009–1010
Divergence Theorem, 1006–1014
form of Green’s Theorem, 

967–968, 1006
partial sums in, 555–556
of series, 552, 555–556
tests to determine

for alternating series, 579–583
Alternating Series Estimation 

Theorem, 581
Alternating Series Test, 

579–580
Direct Comparison Test, 

568–569, 583
geometric series, 553–555, 583
Limit Comparison Test, 

569–571, 583
nth-Term Test, 555–556, 583
p-Series Test, 563, 583
Ratio Test, 574–575, 583
Root Test, 576–577, 583
for series with some negative 

terms, 573, 581–583
summary of, 583
in three dimensions, 

1006–1007
of a vector field, 964–966, 

1006–1007
Divergence Theorem, 1006–1014

corollary, 1007
Green’s Theorem compared to, 

1006–1007, 1014
for other regions, 1011–1012
proof of, for special regions, 

1010–1011
for special regions, 1010–1011
statement of, 1007

Divergent improper integrals, 523, 
526–528

Division
of complex numbers, 18-4
of functions, 34–35

Domain
assumptions on, 951
connected, 951
of differentiable functions, 810
of functions, 21–22, 34
of functions of several variables, 

767, 768
natural, 22
parameter, 973
restrictions, applied to 

trigonometric functions, 
60–61

simply connected, 951
Dominant terms, 116–117
Domination Rule

for definite integrals, 334
for double and triple integrals, 869

Dot Product Rule, 730
Dot products, 691–697

Angle Between Two Vectors, 
691–693

angles and, 692–693
definition of, 691
directional derivatives as, 808–809
Dot Product Rule, 730
of gradient vectors, 808–809
inner product of functions, 19-12, 

19-14–19-15, 19-24
orthogonal vectors and, 693
properties of, 693–696
of three-dimensional vectors,  

19-6
of two n-dimensional vectors, 

696–697
work by force through 

displacement, 696
Double-angle formulas, 45
Double integrals

area by, 873–875
definitions of, 860, 865
Fubini’s Theorem for calculating

first form, 861–863
stronger form, 865–868

iterated or repeated, 861
limits of integration, finding 

(See Limits of integration, 
finding)

over general regions, 864–870
over rectangles, 859–863
partitions formed by, 859–860
in polar form, 876–881
properties of, 869–870
Riemann sums for, 859–861, 

869, 873
substitutions in, 915–919
volumes

over general regions, 865–868
over rectangles, 860–861
of a solid region in space, 

883–884
Downhill direction, 806
Drag coefficient, 742
Drag force, 741–742
D-tuple of numbers, 19-9
Dummy variable, 331

Eccentricity, 663–665
definition of, 664
of ellipses, 663–667
of hyperbolas, 663–667
of parabolas, 663–667

Economics, derivatives in, 165–167
Electric circuits, 17-18–17-19
Electric field, 1013
Electromagnetic theory, 1013
Elements of sets, AP-2
Elevation, angle of, 737
Ellipse, AP-20–AP-21, 657–658

axis of, AP-21
center of, AP-21, 657
center-to-focus distance of, 658
definition of, 657
directrices for, 664–665
eccentricity of, 663–667
equations for, 658
focal axis of, 657
law (Kepler’s first law), 760
major axis of, 658
minor axis of, 658
polar equations for, 665–667
semimajor axis of, 658
semiminor axis of, 658,  

666–667
standard equation of, AP-21
tangent line to, 810–811, 817
vertices of, 657

Ellipsoid of revolution, 715
Ellipsoids, 714–718
Elliptical cones, 714–717
Elliptical paraboloid, 714–717
Elliptic integrals, 519
Empty set, AP-2
Endpoints

of an interval, limits at, 100–101
continuity at, 120
extreme values and, 239

Energy, approximations in converting 
mass to, 223

Engineering, vectors in, 686
E, 91, 93–95
Equal area law (Kepler’s second 

law), 760–761
Equality

in complex numbers, 18-3
of vectors, 680, 681

Equations
Bernoulli differential, 1038
differential (See Differential 

equations)
for ellipses, 658
homogeneous, 1061
for hyperbolas, 659–660
ideal projectile motion, 737
inverse (See Inverse equations)
for parabolas, 656–657
parametric (See Parametric 

equations)
parametric, for lines, 706–707
for a plane, 708–709
predator-prey, 1058–1059
separable, 448–450
solution of, 449
for the sphere of radius and 

center, 678–679

for the tangent line to a level 
curve, 810

vector
for lines, 706
for planes, 709

Equilibria, stable and unstable, 
1046–1047

Equilibrium value
in graphical solutions of 

autonomous equations, 
1044–1046

in systems of differential 
equations, 1054–1055

Error
analysis, in numerical integration, 

514–517
estimation, in approximating  

the sum of a series,  
564–565

formula for linear approximations, 
845

function, 530
in standard linear approximation, 

820
term (or remainder of order n), 

603–604
Euler, Leonhard, 1029
Euler equations, 17-22–17-23
Euler’s constant, 567
Euler’s Formula, 18-5, 18-27– 

18-28, 19-5, 19-22
Euler’s gamma function, 536
Euler’s identity, 614–615
Euler’s method, 1027–1030
Euler’s solution, 1029–1030
Evaluation Theorem, 346–347

Net Change Theorem, 347–348
proof of, 346–348

Even functions, symmetry properties 
of, 26–27

Exact differential forms, 958–959
Expected values

in multiple integrals, 900
Exponential change, 447–454

definition of, 448
heat transfer and, 453–454
radioactive decay and, 452–453
separable differential equations 

and, 448–450
unlimited population growth and, 

450–452
Exponential decay, 52–53, 448
Exponential functions, 30, 49–54

algebraic properties of, 442–443
with base a, 30, 50
behavior of, 49–51
Chain Rule and, 438, 441–443
definition of, 49–50
derivatives of, 154–155, 194, 

440–441
exponential decay, 52–53
exponential growth, 52–53
general, 443–444
graphs of, 30
integral of, 440–441
natural (See Natural exponential 

functions)
Exponential growth, 52–53, 448
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I-8 Subject Index

Exponential population growth 
model, inaccuracy of, 
1039–1040

Exponents
growth in, 448
irrational, Derivative Power Rule 

and, 195–197
laws of, 441–443
rules for, 51

Exterior regions of circle, AP-19
Extrema, 237–240

absolute (global) maxima or 
minima, 235–240

critical points and, 239
finding, 238–240
First Derivative Test for Local 

Extrema Values, 238–239
local (relative) maxima or 

minima, 237–240
Extreme values. See also Extrema

absolute maxima and minima on 
closed bounded regions, 
829–832

of continuous functions on 
closed, bounded sets, 781

critical points and, 239
definition of, 235
endpoints and, 239
Extreme Value Theorem, 236–237
finding extrema, 238–240
of functions of two variables, 

B-6–B-11
of functions on closed intervals, 

235–243
inflection points and, 239
Lagrange multipliers for finding, 

834–841
local, for functions of two 

variables, 825–829
local (relative) extreme values, 

237–238
local extreme values for functions 

of two variables, 825–829
relative, 826
saddle points, 825–832

Extreme Value Theorem, 236–237

Falling body encountering 
resistance, 1047–1049

Faraday’s law, 1021
Fermat, Pierre de, 75
Fermat’s principle in optics, 279–280
Fibonacci numbers in sequences,  

545
Fields

in algebraic properties, AP-28
conservative

component test for, 955–957
line integrals in, 952–955
potentials for, finding,  

955–957
properties of, 951
Stokes’ Theorem and, 

1003–1004
curl vector, 993–995
electric, 1013
gradient, 938–939
gravitational, 950
ordered, AP-28

Finite approximations
for area, 315–320, 437
theory of limits of (Riemann 

sums), 326–328, 331
Finite intervals, AP-3
Finite limits as x  ±∞, 107–108
Finite sums, 322–328

algebra rules for, 324
for estimating area, 312–320
estimating area with, 312–320
limits of, 325–326
Riemann sums and, 326–328
sigma notation and, 322–325

Firing angle, 737
First Derivative Test for Local 

Extreme Values, B-8, 
238–239, 251–253, 826, 836

First moments
about coordinate planes, 934, 990
about the coordinate planes, 894
definition of, 893–894
formulas for, 894–895
of a line integral, 934, 990
masses and, 893–895
for three-dimensional solid, 894
for two-dimensional plate, 894

First octant, 675
First-order differential equations. 

See under Differential 
equations

First-order initial value problem, 
1025–1026

First-order linear equations, 
1032–1036

definition of, 1032–1033
integrating factor for, 1033–1035
RL circuits, 1036
solving, 1033–1035

Fixed costs, 166
Fixed point, 132
Flight time, for ideal projectile 

motion, 738
Flow integrals, 944–945
Fluid

flow rates, 965
force

centroids and, 427
on a constant-depth surface, 

414–415
integral for, against a vertical 

flat plate, 415
pressure and, 414–415

pressures, force and, 414–415
weight-density, 414

Flux
across a plane curve, 945–946
across a rectangle boundary, 965
calculation of, 945, 987
circulation differentiated from, 

945
definition of, 945, 987
density, 964–966, 1006–1007
in Divergence Theorem, 

1006–1010
evaluating the integral for, 

945–946
in Green’s Theorem, 967–968
magnetic, 1021
surface integrals for, 987–988

Focal axis
of ellipses, 657
of hyperbolas, 658

Focal length of parabolas, 656
Focus of parabolas, 656–657
Folium, 184, 188
Force

constant, work done by, 410–411
drag, 741–742
fluid

centroids and, 427
on a constant-depth surface, 

414–415
pressure and, 414–415

work and, 410–415
done by constant force, 

410–411
done by variable force along a 

line, 411
Hooke’s Law, 411–412
lifting objects and pumping 

liquids from containers, 
412–413

work done by, through 
displacement, 696

Force constant, 412
Formula for Implicit Differentiation, 

801–803
Forward direction, 939
Fourier, Jean-Baptiste Joseph, 19-1
Fourier coefficients, 19-18–19-19
Fourier series, 19-1

coefficients in, 19-18–19-19
convergence of, 19-19–19-21
Parseval Equality for, 19-21–19-22

Fractions
method of partial, 497–502
partial, definition of, 497

Free fall, 72
Frenet, Jean-Frédéric, 753
Frenet frame, 753
Frequency

in periodic functions, 19-2
Frequency zero, 19-2
Fubini, Guido, 862
Fubini’s Theorem

for calculating double  
integrals over general 
regions (stronger form), 
865–868

for calculating double integrals 
over rectangles (first form), 
861–863

Functions, 21–71
absolute value, 25
adding, 34–35
approximation of, 19-16–19-19
arc length, 402–403, 744
arcsine and arccosine, 61–64
area under the graph of 

nonnegative, 336–337
arrow diagram of, 22
average value of

for approximating area of 
rectangles, 319–320

continuous, 337–338
nonnegative continuous, 

318–320
in space, 890

bounded, 81, 136
box, 19-25
circular, 458
on closed intervals, extreme 

values of, 235–243
combining, 34–41
common, 27–31 (See also 

individual functions)
algebraic, 29–30
exponential, 30, 49–54
inverse, 31, 55–57, 60–61
linear, 27
logarithmic, 31, 57–60
polynomials, 29
power, 27–28
rational, 29
transcendental, 31
trigonometric, 30, 41–49

complex differentiable,  
18-18–18-19

of complex variables, 18-12– 
18-15

component, 725, 937
compositions of, 35–36, 125–126
constant, 27, 81
continuity and, 779–781

of compositions, 781
continuous, definition of, 779
continuous at the point, 

779–780
continuous extension, 

128–129, 783, 853
partial derivatives and, 

789–790
continuously differentiable, 635
critical points of (See Critical 

points)
cube root, 28
cubic, 29
Daubechies scaling, 19-33–19-34
decreasing, 25–26, 250–251
defined by formulas, 34
defined on surfaces, 799–801
definition of, 21
dependent variable of, 21
derivative of, 139, 142–151
differentiable, 786, 792–793
discontinuous, 122–123
distance between two, 19-13
dividing, 34–35
domain of, 21–22, 34, 768
dominant terms in, 116–117
error, 530
even, symmetry properties of, 

26–27
exponential (See Exponential 

functions)
extreme values

on closed intervals, 235–243
of continuous functions on 

closed, bounded sets, 781
saddle points and, 825–832

finitely many, sums of,  
AP-12–AP-13

Fourier series
convergence of, 19-19–19-21
Parseval Equality for,  

19-21–19-22
general sine, 47
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 Subject Index I-9

gradient of, 811–813
graphing with software, 772
graphs of, 23

of arcsine and arccosine 
functions, 62–63

of catenary, 31
exponential functions, 30
logarithmic functions, 31
reflecting, 36–38
scaling, 36–38
shifting, 36
symmetric, 26–27
transformations of 

trigonometric, 46–47
trigonometric functions, 30, 

44, 46–47, 62–63
greatest integer, 25
growth rates of, 465–469
Hessian of, 827–829
hyperbolic (See Hyperbolic 

functions)
identity, 27, 57, 59, 80–81, 1003
Implicit Function Theorem, 

802–803
implicitly defined, 184–186
increasing, 25–26, 250–251
Increment Theorem of,  

AP-33–AP-35
independent variable of, 21
infinitely many orthonormal, 

19-20
inner product of, 19-12,  

19-14–19-15, 19-24
input variable of, 21, 36
integer ceiling, 25
integer floor, 25
integrable, 19-12–19-13,  

331–332
joint probability density, 899
least integer, 25
limits of, 72–137
linearization of, 819–820

definition of, 819
function of two variables, 

818–820
functions of more than two 

variables, 821–822
standard linear approximation 

and, 819–820
logarithmic, 18-28–18-29
as a machine, diagram of, 22
of many variables, 803
marginal cost, 165–166, 280–281
maximum and minimum values 

of, 825–837
monotonic, 250–255
of more than two variables

differential, 821–822
linearization of, 821–822
in tangent planes, 821–822

multiplying, 34–35
natural domain of, 22
natural exponential, 52
natural logarithm, 58
nonintegrable, 331–332
nonnegative area under graph of, 

337–338
norm of, 19-12–19-14
numerical representation of, 24

odd, symmetry properties of, 
26–27

one-to-one, 54–55
orthogonal, 19-15, 19-24
orthogonality of the trigonometric 

system, 19-15–19-16
orthonormal, 19-12, 19-15–19-16,  

19-20, 19-24, 19-27
output variable of, 21, 36
of partial derivatives, 784–793
periodic, 19-1–19-2
piecewise continuous, 331, 376
piecewise-defined, 25
piecewise-smooth, 728
position, 25
positive, area under graph of,  

319
potential, 951
probability density (See 

Probability density 
functions)

proportional relationship of, 27
Pythagorean Theorem for, 19-15
quadratic, 29
range of, 21–22, 768
real-valued, 22, 725–726, 

767–768
reciprocal, derivative of, 143
representation as power series, 

586–594
root of, 289
scalar, 725–726, 930–935, 943, 

984
scaling of, 36–38
scatterplot of, 24
of several variables, 767–772

definitions of, 767
dependent/independent 

variables, 767
differentiability for, 792–793
domain of, 767, 768
input/output variables, 767
partial derivatives of, 767–772
range of, 767, 768
real-valued function, 767

shift formulas for, 36
sine-integral, 530
smooth, 399
square root, 28
subtracting, 34–35
symmetric, 26–27, 363–364
of three variables, 770–772

boundary of, 771
boundary points of, 771
bounded/unbounded regions 

of, 771
Chain Rule for, 798–799
definitions of, 770–772
gradient vectors in, 811–812
interior points of, 771
interior regions of, 771
level surface of, 770
open/closed regions of, 

771–772
torsion, of a smooth curve, 755
total area under graph of, 

349–350
total cost, 166
transcendental, 31, 445

trigonometric (See Trigonometric 
functions)

twice-differentiable, 633–634
of two variables

boundary of, 769
boundary point of, 769
Chain Rule for, 796–798
Composition Rule for, 777
Constant Multiple Rule for, 

777
contours of, 770
definitions of, 769
extreme values of, B-6–B-11
graphs, level curves, and 

contours of, 770
graphs/graphing, 770
Increment Theorem for 

Functions of Two Variables, 
AP-33–AP-35, 793

interior of the region of, 769
interior point of, 769
level curves of, 770
limits for, 775–779
linearization of, 818–820
more than, 781, 788–789
open/closed regions of, 769
partial derivatives of, 784–786
properties of limits of, 777
saddle points of, B-6–B-11
Sandwich Theorem for, 783
Taylor’s formula for, 846–847
values of local extreme for, 

825–829
unit, 19-13, 19-24
unit step, 81–82
values, 22

limits of, 79–80
zero, 127

vector (See Vector functions)
velocity, 315–318, 738–739
vertical line test for, 24

Fundamental period, 19-1
Fundamental Theorem of Algebra, 

18-9
Fundamental Theorem of Calculus, 

342–350
for arc length differential, 

638–639
for continuous vector functions, 

735–736
to define the natural logarithm 

function ln x as an integral, 
436–438

differential formula for arc length, 
402–403

Divergence Theorem and, 1014
double integrals evaluated with, 

862
Fundamental Theorem of Line 

Integrals, 952–954
Green’s Theorem and, 967
integration and differentiation  

in, relationship between, 
349

for line integrals, 930, 931, 
952–954

Part 1 (Mean Value Theorem), 
342–345, 438

proof of, 345

Part 2 (Evaluation Theorem), 
346–347

Net Change Theorem, 347–348
proof of, 346–348

path independence and, 951
total area and, 349–350

Fundamental Theorem of Line 
Integrals, 952–954

Galileo Galilei, 72
free fall formula, 72, 164, 168
law of, 72

Gauss, Carl Friedrich, 324, 681
Gauss’s Law, 1013
General exponential function, 

443–444
General linear equation, AP-17
General quadric surfaces, 716, 718
General sine function, 47
General solution, 449
General solution of differential 

equations, 297
Generating curve, 714
Genetic data and sensitivity to 

change, 167
Geometric series, 553–555, 583
Geometry of space, 675–724

angles between planes, 711–712
cross products, 699–704
cylinders, 714
distance and spheres in space, 

677–678
distance from a point to a line, 708
distance from a point to a plane, 711
dot products, 691–697
equation for a plane, 708–709
line of intersection, 709–710
lines and line segments, 706–708
quadric surfaces, 714–716

general, 716, 718
graphs of, 717

three-dimensional coordinate 
systems, 675–678

vectors, 680–688
Gibbs, Josiah Willard, 744
Gibbs phenomenon, 19-21
Global (absolute) maxima or minima 

extrema. See Absolute 
(global) maxima or minima 
extrema

Gradient ascent, method of, B-14
Gradient descent, method of, 

B-12–B-14
Gradient fields, 938–939
Gradient vectors

algebra rules for, 811
in Chain Rule for paths, 813–814
curl of, 1003
definition of, 808
in directional derivatives, 808–814
dot product of, 808–809
in functions of more than three 

variables, 812–813
in functions of three variables, 

811–812
to level curves, 810–811
nonzero, 810–811
Orthogonal Gradient Theorem, 

837–838
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I-10 Subject Index

Graphs/graphing
of an equation or inequality, 

AP-14
asymptotes of

horizontal, 109–111
oblique, 111–112
slant line, 111
vertical, 115–116

of autonomous differential 
equations, 1044–1051

equilibrium values or rest 
points in, 1044–1046

falling body encountering 
resistance, 1047–1049

Logistic Equation in Neural 
Networks and Machine 
Learning, 1050–1051

logistic model for population 
growth, 1049–1050

Newton’s Law of Cooling, 
1047, 1048

phase lines, 1044–1046
stable and unstable equilibria, 

1046–1047
terminal velocity, 355, 1049

connectedness and, 127
curve sketching, 255–264
of functions, 23

arcsine and arccosine, 62–63
catenary, 31
continuous, 127–128
exponential, 30
logarithmic, 31
reflecting, 36–38
scaling, 36–38
shifting, 36
symmetric, 26–27
trigonometric f, 30, 44, 46–47, 

49, 62–63
to verify limit statements for, 

91–93
of functions of two variables, 770
of polar equations, 643–644, 

646–649
of quadric surfaces, 717
secant lines on, 74–77
with software, 772
surface area of, formula for, 981
tangent lines on, 74–77

Grassmann, Hermann, 684
Gravitational fields, 950

definition of, 950
vectors in, 938

Greatest integer, 25
Greatest integer function, 122, 127
Greatest lower bound sequence,  

546
Greek letters to describe prescribed 

errors, 91
Green’s first formula, 1016
Green’s second formula, 1016
Green’s Theorem

area formula, 972
divergence form of, 967–968, 

1006
Divergence Theorem compared 

to, 1006–1007, 1014
to evaluate line integrals, 968–969

generalizations in three 
dimensions, 1014

generalization to three 
dimensions, 1014

normal form of, 1013, 1014
in a plane, 961–970
for special regions, 969–970
Stokes’ Theorem compared to, 

995–996, 1002–1003, 1014
tangential form of, 966–967, 1014

Growth, exponential, 52–53
Growth models, exponential 

population, 1039–1040
Growth rates of functions, 465–469

definition of, 465–467
order and oh-notation, 467–468
sequential vs. binary search, 

468–469

Haar coefficients, 19-27–19-29
Haar scaling function, 19-24– 

19-29
Haar system, 19-27, 19-29–19-31

adding details at resolution level 
zero, 19-30–19-31

approximations using, 19-27,  
19-29–19-31

box function in, 19-25
coefficients in, 19-27–19-29
definition of, 19-27
multiresolution recursion,  

19-31–19-32
scaling function in, 19-24–19-29
theorems for, 19-27, 19-29,  

19-32
wavelets in, 19-24–19-26, 19-31, 

19-33–19-34
Haar wavelet, 19-24–19-26, 19-31, 

19-33–19-34
Half-angle formulas, 45
Half-life, 60, 452
Half-open intervals, AP-3
Harmonic analysis, 19-1
Harmonic series, 563, 579–583

alternating, 579–583
definition of, 579–583
p-Series Test and, 563

Heat equation, 796
Heat transfer, 453–454
Heaviside, Oliver, 501
Height, for ideal projectile motion, 

738
Helix, 726
Hessian matrix, B-9–B-11, 828
Hessian of a function, 827–829
Higher dimension vectors,  

19-9–19-11
definition of, 19-9–19-10
orthonormal bases and 

approximation in,  
19-10–19-11

theorems, 19-10–19-11
Homogeneous equations, 1061
Homogeneous linear equations,  

17-1
Hooke’s Law, 17-15–17-16, 172, 

411–412
Horizontal asymptotes, 108–111

Horizontal cross-sections, for finding 
limits of integration, 868

Horizontal line test, for one-to-one 
functions, 55

Horizontal scaling and reflecting 
formulas, 37

Horizontal shifts, 36
Huygens, Christiaan, 628
Huygens’ pendulum clock, 628, 629
Hyperbolas, 658–660

asymptotes of, 659
branches of, 655
Cartesian equation for, 665
center of, 658
definition of, 658
directrices for, 664–665
eccentricity of, 663–667
equations for, 659–660
focal axis of, 658
polar equations for, 665–667
vertices of, 658

Hyperbolic cylinder, 835–836
Hyperbolic functions, 457–462

definition of, 457–458
derivatives of, 458–459

inverse hyperbolic functions, 
460–462

identities of, 457–458, 460
integrals of, 458–459
inverse, 459–460

derivatives of, 460–462
Hyperbolic paraboloid, 715–717
Hyperboloids, 714–717
Hypocycloids, 632

i-component of vectors, 684–685
Ideal projectile motion. See under 

Projectile motion
Identity

Euler’s Formula and, 18-5
function, 27, 57, 59, 80–81,  

1003
of hyperbolic functions, 457–458, 

460
in inverse trigonometric 

functions, 204
involving arcsine and arccosine 

functions, 63–64
trigonometric, 44–46

Image, 915
Imaginary axis, 18-4
Imaginary parts of complex 

numbers, 18-3–18-4
Implicit differentiation, 184–189, 

801–803
Formula for Implicit 

Differentiation, 801–803
Implicit differentiation, Chain Rule 

for, 979
Implicit Function Theorem, 

802–803, 978
Implicitly defined functions, 185–186
Implicit surfaces, 978–981
Improper integrals

with CAS, 525–526
convergent and divergent, 523

tests for, 526–528
infinite limits in, 521–523

integrands with vertical 
asymptotes, 524–525

in integration, 520–528
of Type I, 521–524
of Type II, 524–525

Increasing functions, 25–26
Increments, AP-14–AP-17
Increment Theorem for Functions of 

Two Variables,  
AP-33–AP-35

Indefinite integrals, 299–300, 
354–359

definition of, 299–300, 354
of exponential function, 441
of natural exponential function, 

441
substitution for, 354–359
of vector functions, 734

Independence, path, 951
Independent constrained variables, 

848–849
Independent variables

definition of, 21
for functions

of one independent variable 
and three intermediate 
variables, 798

of one independent variable 
and two intermediate 
variables, 796

of several variables, 767
for two independent variables and 

three intermediate variables, 
799

Indeterminate forms
∞/∞,∞ . 0, ∞–∞, 270–272
0/0, 268–270

Indeterminate forms, in Taylor 
series, 613–614

Indeterminate powers, 272–273
Index

of sequences, 539–540
of summation, 323–324

Inductance, 17-19
Induction, mathematical, AP-10–

AP-13
Inequality

graphs/graphing of, AP-14
rules for, AP-1
solving, AP-3–AP-4
in trigonometric functions, 46

Inertia, moments of, 895–898, 934, 
990

Infinite area, 521–523
Infinite discontinuity, 123
Infinite intervals, AP-3
Infinite limits, 521–523
Infinitely many orthonormal 

functions, 19-20
Infinite right-hand limit, 120
Infinite sequences, 539–540
Infinite series, 538, 551–558
Infinity

divergence of sequences to,  
542

limits involved in, 107–132
finite limits as, 107–108
finite sums and, 325–326
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 Subject Index I-11

horizontal asymptotes, 
108–111

infinite limits, 111–114
limits at infinity of rational 

functions, 108
oblique asymptotes, 111
vertical asymptotes, 115–117

negative, 107, 114
Inflection points, 239, 256–259
Initial conditions, 17-5
Initial point of vectors, 680
Initial ray, in polar coordinates, 642
Initial speed in ideal projectile 

motion, 737
Initial value problems

boundary value and, 17-5–17-6
definition of, 297
first-order, 1025–1026

Inner products. See Dot products
Input variable, 21, 36, 767
Instantaneous rates of change,  

76–77, 79, 102, 140, 161–162. 
See also Rates of change

Instantaneous speed, 73
Integer ceiling, 25
Integer floor, 25
Integers, 18-1–18-2

function, greatest, 122, 127
greatest, 25, 122, 127
least, 25
negative, Derivative Power Rule 

for, 160
starting, AP-12

Integrable functions, 331–332
Integrals

area, 312–315
Brief Table of Integrals, 504
complete elliptic, of the second 

kind, 637
definite (See Definite integrals)
distance traveled, 315–318
elliptic, 519
exponential change and, 447–448
of exponential function, 440–441
finite sums, 322–328
flow, 944–945
for fluid force against a vertical 

plate, 415
Fundamental Theorem of 

Calculus, 342–350
of hyperbolic functions, 458–459
indefinite (See Indefinite integrals)
inside integral (functions), 866, 

885
iterated (See Iterated integrals)
logarithm defined as, 436–445
of lower sums, 313–314
Midpoint Rule, 314, 332–333,  

510
multiple (See Multiple integrals)
nonelementary, 508, 611–612
nonnegative continuous function, 

average value of, 318–320
outside (constants), 866, 885
in polar coordinates, 876–878
Product Rule in integral form, 

442–482
of a rate, 347–348

repeated (See Iterated integrals)
sine-integral function, 530
substitution in, 354–367

for definite integrals, 361–367
for indefinite integrals, 

354–359
surface, 983–991, 1003
trigonometric (See Trigonometric 

integrals)
of upper sums, 313–314
of vector functions, 734–739
work, 942–944

Integral sign, 299
Integral tables, 504–505
Integral Test, 18-24, 561–565
Integrands, 299, 524–525
Integrate command, in CAS, 506–507
Integrating factor, for first-order 

linear equations, 1033–1035
Integration

basic formulas in, 473–477
with CAS, 506–507
in cylindrical coordinates, 903–907
definition of, 312
differential version, 479–482
differentiation and, relationship 

between, 349
formulas, 300
improper integrals in, 520–528

with CAS, 525–526
convergent and divergent, 523
tests for, 526–528
infinite limits in integration, 

521–523
integrands with vertical 

asymptotes, 524–525
integral tables, 504–505
limits of, finding (See Limits of 

integration, finding)
limits of, for multiple integrals 

(See Multiple integrals)
nonelementary integrals in, 508
numerical, 510–517

error analysis in, 514–517
Midpoint Rule for 

approximating integrals, 510
parabolas used for 

approximations, Simpson’s 
Rule and, 512–514

trapezoidal approximations, 
511–512

by parts, 478–483
evaluating definite integrals, 

482–483
formula, 479–482
Product Rule in integral form, 

442–482
by parts formula, 479
of rational functions by partial 

fractions, 497–502
coefficients, determining by 

differentiating, 502
method used in, general 

description of, 497–501
reduction formulas, 505–506
with respect to y, area between 

curves
in spherical coordinates, 907–911

with substitution (See Substitution, 
in integrals)

techniques of, 473–537
term-by-term for power series, 

592–594
by trigonometric substitutions, 

492–495
variable of, 299, 330–331
in vector fields, 930–1021
of vector function, 734–739

Interest, compounding continuously, 
52–53

Interior
definition of, B-7
intervals, AP-3
region of a circle, AP-19

Interior points
of absolute (global) maxima or 

minima extrema, 830–831
closed bounded, absolute maxima 

and minima on, 829–832
definition of, B-7
of intervals, AP-3
in a plane, 769
in space, 771

Intermediate Value Property, 126
Intermediate Value Theorem, 

126–128
Intermediate Value Theorem for 

Continuous Functions, 342
Intermediate variables

for functions
of one independent variable 

and three intermediate 
variables, 798

of one independent variable 
and two intermediate 
variables, 796

for two independent variables and 
three intermediate variables, 
799

Intersection of sets, AP-2
Intervals

closed, continuous functions over, 
122, 127

closed, extreme values of 
functions on, 235–243

continuity on, 124
of convergence, 591
definition of, AP-3
differentiability on, 145–146
limits at endpoints of, 100–101

Inverse
finding, 56–57
of hyperbolic functions, 460–462
of ln x and the number e, 439–440
in logarithmic functions,  

18-29–18-29
properties of logarithms, 59

Inverse equations, 440
definition of, 440
for ln x, 440
for natural exponential functions, 

440
for ax and logax, 444

Inverse functions, 31, 55–57
Chain Rule in differentiable 

functions, 191

continuity and, 124–125
definition of, 55
trigonometric, 60–61

arccosecant, 200–201
arccosine, 201
arccotangent, 200–201
arcsecant, 200–201, 203
arcsine, 189, 201, 202
arctangent, 200–203
derivatives of, 200–206
identities involving, 204

Inversely proportional, 27
Irrational exponents, 195–197
Irrational numbers, AP-2
Irreducible quadratic polynomial, 

498
Isolated singularity, 18-25
Iterated integrals, 884–890

definition of, 861
finding, 884–890
volume of a solid region in space, 

883–884

Jacobi, Carl Gustav Jacob, 915
Jacobian determinant, 916, 920
Jacobian of the transformation, 

917–919, 922
j-component of vectors, 684–685
Jerk, in acceleration, 163–164, 173
Joint probability density function, 

899
Joule (J), 410–411
Joule, James Prescott, 411
Jump discontinuity, 121, 123

k-component of, 961–964
k-component of vectors, 684–685
Kepler, Johannes, 761
Kepler’s first law (ellipse law), 760
Kepler’s second law (equal area 

law), 760–761
Kepler’s third law (time-distance 

law), 761–762
Kinetic energy, 33

converting mass to, 
approximations in, 223

Kirchhoff, Gustav R., 17-19
Kirchhoff’s law, 17-19
Koch, Helge von, 560
Korteweg-de Vries equation, 796
Kovalevsky, Sonya, 461, 825
Kth subinterval, 327

Lagrange, Joseph-Louis, 245
Lagrange, Joseph Louis, 834
Lagrange multipliers, 834–841

constrained maxima and minima, 
834–837

definition of, 837
geometry of the solution, 839–840
method of, 837–840
Orthogonal Gradient Theorem 

and, 837–838
partial derivatives and, 834–841
with two constraints, 840–841

Laplace, Pierre-Simon, 790
Laplace equations, 795, 805
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I-12 Subject Index

Laws
of cosines, 45–46
of exponents, 441–443
Law of Exponential Change, 

1039–1040
Law of Refraction, 280
Limit Laws, 82–83

Learning rate, B-13
Least integer, 25
Least squares line, 834
Least squares solution,  

19-10–19-11
Least upper bound for a sequence, 

546
Least upper bound for a set of 

numbers, AP-28
Left-continuous function (or 

continuous from the left), 
121–122

Left-hand derivatives, 145–146
Left-hand limit (or limit from the 

left), AP-25, 99–104, 121, 
122

Legendre, Adrien-Marie, 1034
Leibniz, Gottfried, 330, 342
Leibniz’s formula, 613
Leibniz’s notation, 144, 330

in Chain Rule, 177
for definite integral, 330
in differentials, 214, 218
in outside-inside rule, 178–179
for writing the formula for arc 

length, 635
Leibniz’s Rule, 233–234, 377
Leibniz’s substitution method, 

354–359
Length

arc, in space, 743–745
arc length differential, 638–639
constant, vector functions of,  

731
focal, of parabolas, 656
of parametrically defined curves, 

635–638
in polar coordinates, 650–653
of a polar curve, 652–653
of a smooth curve, 743
of three-dimensional vectors, 19-
of vectors, 680, 681

Level curves of functions of two 
variables, 770

Level surface of functions of three 
variables, 770–771

Level surfaces, 770
L’Hôpital, Guillaume François 

Antoine de, 268
L’Hôpital’s Rule, 268–274

Cauchy’s Mean Value Theorem, 
273–274

indeterminate forms, 268–274
indeterminate powers, 272–273
proof of, 273–274
for sequences, 543–544

Limaçons, graphing, 650
Limit Comparison Test, 569–571, 583
Limit Product Rule, AP-23–AP-24
Limit Quotient Rule, AP-24–AP-25
Limits, 72–137

commonly occurring, AP-26– 
AP-27, 545

complex, 18-2–18-3
Constant Multiple Rule for, 82–83
continuity and, 120–132
of continuous functions, 126
for cylindrical coordinates, 

905–907
for definite integrals, 331
definition of

general, 137
informal, 79–82
precise, 90–95
to prove theorems, 95
testing, 91–93

deltas for given epsilons, finding 
algebraically, 93–95

of difference quotient, 139–140
Difference Rule for, 82–83
estimating, by using calculators 

and computers, 84–85
finding

by eliminating common factors 
from zero denominators, 
83–84

for multiple integrals, 868
process of, 80–82

for functions of two variables, 
775–779

definition of, 775–776
properties of, 777–779
two-path test for nonexistence 

of a limit, 780
of function values, 79
graphs to verify limit statements 

for functions, 91–93
history of, 79
indeterminate forms of, 268–275
infinite, in improper integrals, 

521–523
infinity involved in, 106–132

finite limits as x  ± , 
106–108

finite sums and, 325–326
horizontal asymptotes, 108–111
infinite limits, 112–113
infinite right-hand limit, 120
limits at infinity of rational 

functions, 108
oblique asymptotes, 111–112
vertical asymptotes, 115–117

laws, AP-23
left-hand (or limit from the left), 

99–104, 121, 122
Limit Comparison Test, 527–528
Limit Laws, 82–83
number e as, 197
one-sided, 99–104

approaching, 99–100
at endpoints of an interval, 

100–101
involving sine, 102–104
precise definitions of, 101–102

of polynomials, evaluating, 83
Power Rule for, 82–83
precise definitions of, 90–95
Product Rule for, 82–83
Quotient Rule for, 82–83

of rational functions, evaluating, 
83

for rectangular coordinates, 
884–890

of Riemann sums, 326–328, 331, 
394

right-hand (or limit from right), 
99–104, 121, 122

r-limits of integration, finding of, 
878, 904, 906

Root Rule for, AP-23, 82–83, 
777

Sandwich Theorem for 
calculating, 85–87

of sequences, 540
calculating, 542–543
commonly occurring, 545
definition of, 540

of sine, 102–104
for spherical coordinates, 

909–910
Sum Rule for, 82–83, 95
theorems, proofs of, AP-23–AP-

25
Left-Hand Limits, AP-25
Limit Product Rule,  

AP-23–AP-24
Limit Quotient Rule,  

AP-24–AP-25
Right-Hand Limits, AP-25
Sandwich Theorem, AP-25
Two-Sided Limits, AP-25

theory of (Riemann sums), 
326–328, 331

two-sided, 99, 103, 116, 122, 126
of vector-valued functions, 

726–727
Limits of integration, finding

for double integrals, 859, 861, 
864, 866, 868

in polar form, 878–879
in Fubini’s Theorem, 861, 867
in iterated integrals, 884–890
for iterated triple integrals, 

884–890
lemniscate for, 879
for multiple integrals (See 

Multiple integrals)
F-limits, 909, 910
in polar coordinates, 878–879
in rectangular coordinates, 

878–879
r-limits, 909, 910
r-limits, 878, 904, 906
by sketching, 868, 878, 884, 905, 

909
u-limits, 878, 905, 906, 909, 910
for triple integrals

in cylindrical coordinates, 
905–907

in rectangular coordinates, 
884–890

in spherical coordinates, 
909–911

using horizontal cross-sections, 
868

using vertical cross-sections, 868
x-limits, 868, 885, 886, 889

y-limits, 868, 885–889
z-limits, 885–889, 904–906

Linear algebra, B-4
Linear approximation, 215–217

center of, 215, 217
error formula for, 845
for roots and powers, 217
standard, 819–820

Linear combination, 17-1, 19-7
Linear drag, 742
Linear equations, AP-17, 1032–1033
Linear functions, 27
Linearization, 214–217

definition of, 215, 819
differentials and, 218–223
of a function of two variables, 

818–820
of functions of more than two 

variables, 821–822
linear approximation and, 

215–217
standard linear approximation 

and, 819–820
Linearly independent solutions,  

17-2
Linear regression, 1051
Linear second-order constant-

coefficient models, 17-20
Linear transformations, 916
Line integrals

additivity and, 932
in conservative fields, 952–955
definitions of, 931, 940
evaluating, 931, 940
formulas for, 941
Fundamental Theorem of, 

952–954
mass calculations and, 933–934
moment calculations, 933–934
in a plane, 934–935
with respect to dx, dy, or dz, 

940–941
of scalar functions, 930–935
of vector fields, 939–941
work done by a force over a curve 

in space, 942–944
Lines

center of mass along, 420–421
of intersection, 709–710
least squares, 834
line segments and, 706–708
normal, tangent planes and, 

815–817
parallel, AP-17
parametric equation for, 706–707
perpendicular, AP-17
regression, 834
slope of a nonvertical, AP-15
straight, increments, AP-14–AP-17
tangent, 633–634
trend, 834
vector equation for, 706
work done by variable force 

along, 411
Line search, B-13
Line segments, 706–708

directed, to represent vectors, 680
midpoint of, 685
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 Subject Index I-13

Line through u1, 19-11
Lissajous figures, 642
ln x

algebraic properties of, 438
derivative of, 438
graph and range of, 438–439
integral of, 439
inverse equation for, 440
inverse function of, 439–440
number e and, 439–440
2-place values of, 437

Local (relative) maxima or minima 
extrema

critical points in, 826–829
definitions of, 237, 825
discriminant or Hessian of, 

827–829
finding, 238–240
finding the absolute extrema of 

a continuous function f 
on a finite closed interval, 
239–240

First Derivative Test for Local 
Extrema Values, 238–239, 
251–253, 826

Second Derivative Test for  
Local Extreme Values, 
259–261, 827, 829, 831, 
835, 844–845

values for functions of two 
variables, 825–829

Local maximum, B-7, 825–829,  
831

Local minimum, B-7, 825–829, 831
Logarithmic differentiation, 195
Logarithmic functions, 31, 57–60

algebraic properties of, 58–59
applications, 59–60
with base a, 57
common, 58
of complex numbers, 18-28–18-29
definition of, 57
graphs of, 31
inverses in, 18-29–18-29
natural, 58–59
principal branch of, 18-29

Logarithms
base a, 444
defined as integrals, 436–445
laws of exponents and, 441–443
properties of, 58–59

algebraic, 58–59
change-of-base formula, 59
inverse, 59

Logax
derivatives and integrals in, 

444–445
inverse equation for, 444

Logistic Equation in Neural 
Networks and Machine 
Learning, 1050–1051

Logistic growth, 1049
Logistic model for population 

growth, 1049–1050
Loops, 945
Lotka-Volterra equations, 1058
Lower bound sequence, 546
Lower sums, 313–314

Machine Learning, Logistic 
Equation in, 1050–1051

Maclaurin, Colin, 598
Maclaurin series, 598–600, 604
Magnetic flux, 1021
Magnitude, 680, 681
Main diagonal, B-4
Major axis, AP-21
Major axis of ellipses, 658
Marginal costs, 165–166, 280–281
Marginal profit, 280–281
Marginal revenue, 280–281
Marginals, 165–167
Mass

along a line, 420–421
calculations, line integrals and, 

933–934
center of, 894–895
centers of, moments and, 420–429
centroids, 426–427

definition of, 426
fluid forces and, 427

converting to energy, 
approximations in, 223

definition of, 893
density, of surface integrals, 983, 

985
distributed over a plane region, 

422
first moments and, 893–895
formulas, 894–895
in multiple integrals, 893–895
plates

bounded by two curves, 
425–426

thin, flat, 422–425
of surface integrals, 983, 985
theorems of Pappus

Pappus’s Theorem for Surface 
Areas, 429

Pappus’s Theorem for Volumes, 
427–428

of thin shells, 989–991
thin wires, 421

Mathematical induction,  
AP-10–AP-13

Mathematics, applied optimization 
in, 279–282

Matrix, B-1–B-6
cofactor in, B-2–B-5
definition of, B-1
Hessian, B-9–B-11
main diagonal of, B-4
minor defined in, B-1–B-2

Maximum
absolute, 825–826, 829–932
constrained, 834–837
local, 825–829, 831

Max-Min Inequality Rule, 334–335
Max-Min Tests, 831
Mean. See also Average value

definition of, 338
in multiple integrals, 900

Mean Value Theorem, 245–249, 
342–345, 438

arbitrary constants, 295
Cauchy’s, 273–274
in defining surface area, 407

definition of, 245
for derivatives, 245–249
to find velocity and position from 

acceleration, 247
mathematical consequences of, 

246–247
for parametrically defined curves, 

635
physical interpretation of, 246
proof of, 245–246
Rolle’s Theorem, 243–246
Taylor’s Theorem and, 602

Mendel, Gregor Johann, 167
Mercator Projection, 18-32
Mesh size, 511
Meter (m), 410
Method of determinants, 17-12
Method of gradient ascent, B-14
Method of gradient descent, 

B-12–B-14
Method of Lagrange multipliers, 

837–840
Method of partial fractions, 497–502
Method of slicing

with cylinders, 391–393
definition of, 380–381
by parallel planes, 381–382
volume and, 381–382

Midpoint, 685
Midpoint Rule, 314, 332–333

for approximating area, 314, 
332–333

for approximating definite 
integrals, 510

for approximating integrals, 510
error analysis and, 514–517

Minimum
absolute, 825–826, 829–932
constrained, 834–837
local, 825–829, 831

Minor axis, AP-21, 658
Mixed Derivative Theorem, AP-31–

AP-32, 790–791
Mixture problems, 1041–1043
Moments

calculations of, 933–934
center of mass and, 420–429
definition of, 420
first, 893–895
of inertia, 895–898, 934, 990
polar, 897
of the system about the origin, 

420–421
of thin shells, 989–991

Monotonic functions, 250–255
Monotonic sequences, 546–547
Monotonic Sequence Theorem, 547, 

561
Motion

along a line, 162–165
acceleration, 163–164
average velocity, 162
displacement, 162
simple harmonic motion, 

172–173
speed, 162–163
velocity, 162–165

antiderivatives and, 297–298

in cylindrical coordinates, 759
damped, 17-17–17-18
direction of, 728–729
Kepler’s first law (ellipse law), 

760
Kepler’s second law (equal area 

law), 760–761
Kepler’s third law (time-distance 

law), 761–762
Newton’s second law of, 736, 

1038, 1048
of planets in planes, 760
in polar coordinates, 759
projectile (See Projectile motion)
with resistance proportional to 

velocity, 1038–1039
simple harmonic, 17-16–17-17, 

172–173
vibrations, 17-15–17-16

Multiple integrals, 859–929
applications, 893–900

masses and first moments, 
893–895

means and expected values, 900
moments of inertia, 895–898
probability, 898–900

double integrals
area by, 873–875
over general regions, 864–870
over rectangles, 859–863
in polar form, 876–881

substitutions in, 915–922
triple integrals

in cylindrical coordinates, 
903–907

iterated integrals, 884–890
in rectangular coordinates, 

883–890
in spherical coordinates, 

907–911
Multiplication

of complex numbers, 18-3–18-4
of functions, 34–35
positive definite, 698
scalar, of vectors, 682–683, 

694–695
Multiplication property of real 

numbers, AP-27

Napier, John, 58
Natural domain of functions, 22
Natural exponential functions, 52, 

59, 155
algebraic properties of, 442–443
definition of, 440
derivative of, 155, 440–441
indefinite integral of, 441
integral of, 440–441
inverse equation for, 440
laws of, 441–443

Natural logarithm function
algebraic properties of, 58–59, 

441–442
Chain Rule in, 192–193
definition of, 436–437
derivative and integral of ex in, 

440–441
derivative of, 192–193
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I-14 Subject Index

Natural logarithm function  
(continued )

derivative of y  ln x in, 438
derivatives and integrals involving 

logax in, 444–445
general exponential function ax 

in, 443
graph and range of ln x in, 

438–439
integral ∫ 1/x dx in, 439
inverse of ln x and the number e 

in, 439–440
laws of exponents for ex in, 442–443
logarithms with base a, 444
number e in, 437

Natural logarithms
algebraic properties of, 441–442
definition of, 436–437

Natural parametrization, 626
Navigation, vectors in, 686
N dimensional vectors, 687–688, 

696–697
Negative infinity, 107, 114, 542
Negative of differentiable functions, 

153
Negative reciprocal of a slope, AP-17
Net Change Theorem, 347–348
Neural Networks, Logistic Equation 

in, 1050–1051
Newton (N), 410
Newton, Sir Isaac, 342
Newton-meter (N · m), 410–411
Newton’s Law of Cooling, 453–454, 

1047, 1048
Newton’s method, 289–292

applying, 290–291
convergence of the 

approximations, 291–292
procedure for, 289–290
sequences generated by, 538, 546, 

549, 550
Newton’s second law of motion, 

223, 736, 1038, 1048
Newton’s second law, 223
Newton’s serpentine, 159, 206
Nicole Oresme’s Theorem, 540, 622
Nondecreasing partial sums, 561
Nondecreasing sequences, 546–547
Nonelementary integrals, 508
Nonhomogeneous linear equations, 

17-1, 17-7–17-14
form of the general solution, 

17-7–17-8
method of undetermined 

coefficients, 17-8–27-31
method of variation of parameters, 

17-12–27-34
Nonincreasing sequences, 546–547
Nonintegrable functions, 331–332
Nonlinear transformations, 918–919
Nonzero gradient vectors, 810–811
Nonzero vectors, 691–694, 699–700, 

706, 709–710
Norm

of functions, 19-12–19-14, 19-24
of partitions, 328

Normal components of acceleration, 
753–754

Normal form of Green’s Theorem, 
967–968, 1013, 1014

Normalized trigonometric system, 
19-16

Normal line, 186, 815–817
Normal probability density function, 

530
Norm of partitions, 860
Notation

average value of a continuous 
function, 337

for constrained variables, 850–851
definite integrals, 330
Evaluation Theorem, 346
indefinite integrals, 354
for intervals, AP-3
Leibniz’s, 330
for partial derivatives, 785
sigma, 19-5, 322–325
for vectors, 694

Nth derivative, 158
Nth partial sums, 551–553
Nth term of a series, 552
Nth term of sequences, 539, 544, 

551–553
Nth-Term Test, 555–556, 583
Numbers

algebraic, 445
completeness property of real, 547
complex (See Complex numbers)
counting (natural), 18-1
d-tuple of, 19-9
e

definition of, 437
inverse of ln x and, 439–440
as a limit, 197

Fibonacci in sequences, 545
hierarchy of, 18-1–18-3
integers in, AP-2, 18-1–18-2
irrational, AP-2
rational, AP-2, 18-2
real (See Real numbers)
systems of, successive stages of 

invented, 18-1–18-2
transcendental, 445

Numerical integration, 510–517
error analysis in, 514–517
Midpoint Rule for approximating 

integrals, 510
parabolas used for approximations, 

Simpson’s Rule and, 
512–514

trapezoidal approximations, 
511–512

Numerical method, 1027–1030
Numerical solution of the problem, 

1027–1030

Oblique asymptotes, 112
Octants, 675–676
Odd functions, symmetry properties 

of, 26–27
Oh-notation, 467–468
One-dimensional heat equation, 

796, 858
One-dimensional wave equation, 795
One-sided continuity, 122
One-sided derivatives, 145–146

One-sided limits, 99–104
approaching, 99–100
at endpoints of an interval, 

100–101
involving sine, 102–104
precise definitions of, 101–102

One-to-one functions, 54–55
horizontal line test for, 55
trigonometric, 60–61

Open intervals, AP-3
Open region

definition of, B-7
in a plane, 769
in space, 771–772

Optimization problem, 19-9
Or abscissa (x-coordinate), AP-14
Order, oh-notation and, 467–468
Ordered field, AP-28
Order of Integration Rule, 334
Order properties of real numbers, 

AP-1, AP-28
Oresme, Nicole, 540, 622
Oriented surface, 987
Origin, AP-14

graph of an odd function as 
symmetric about, 26–27

of planes, 675–676
Taylor’s formula at, 847

Origin (pole), in polar coordinates, 
642

Or ordinate (y-coordinate), AP-14
Orthogonal functions, 19-15, 19-24
Orthogonal Gradient Theorem, 

837–838
Orthogonality of the trigonometric 

system, 19-15–19-16
Orthogonal projections, 19-11
Orthogonal trajectories, 1038, 

1040–1041
Orthogonal vectors, 693
Orthonormal basis for three-

dimensional space,  
19-8–19-9

Orthonormal functions, 19-12,  
19-15–19-16, 19-20, 19-24, 
19-27

Oscillating discontinuity, 123
Osculating circle, 232, 749–750
Output variables, 767
Outside-inside rule, 178–179, 814
Overdamping, 17-18

Paddle wheel interpretation, 
999–1002

Pairs, polar coordinate, 642–643
Pairwise cross products, 700
Pappus, 427
Pappus’s Theorem for Surface 

Areas, 429
Pappus’s Theorem for Volumes, 

427–428
Parabolas, 656–657

areas between curves, 365, 367
axis of, AP-19–AP-20
definition of, 656–657
directrix of, 656–657
eccentricity of, 663–667
equations for, 656–657

focal length of, 656
focus of, 656–657
as graphs of equations,  

AP-19–AP-20
normal lines to, 188
polar equations for, 665–667
reflective property of, 663
semicubical, 189
used for approximations, 

Simpson’s Rule and, 
512–514

vertex of, 656
y-axis of, 656

Paraboloids
definition of, 714
elliptical, 714–717
hyperbolic, 715–717
region enclosed by, 889

Parallel Axis Theorem, 902
Parallel lines, AP-17
Parallelograms

area of, cross product in, 700–701
law of addition, 682

Parallel vectors, 699, 700
Parameter

definition of, 973
domain, 973
interval in parametric equations, 

624
method of variation of, 17-7,  

17-12–27-34, 17-12–17-14
Parametric curves, 743–745, 1054
Parametric equations, 624–628

Cartesian, 627
of cycloids, 628–629
definition of, 624
examples of, 624–628
for ideal projectile motion, 

736–738
for lines, 706–707
for natural parametrization, 626
parameter interval in, 624
parametrization of the curve, 

624–628
terminal point in, 624
values of, 625, 627

Parametric formulas, 633–634
Parametrization

arc length, 744
of surfaces, 973–981

of cones, 974
of cylinders, 974
by cylindrical coordinates,  

974
of implicit surfaces, 978–981
of a sphere, 974
of surface area, 974–978

Parametrization, natural, 626
Parametrizations of plane curves, 

624–629
area in a plane, 650–652
areas and lengths in polar 

coordinates, 650–653
calculus with (See Calculus with 

parametric curves)
conic sections, 655–660
conics in polar coordinates, 

663–668
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 Subject Index I-15

equations for (See Parametric 
equations)

length of a polar curve, 652–653
Parseval Equality, 19-21–19-22
Partial derivatives, 784–793

calculations of, 787–788
Chain Rule for, 796–803
with constrained variables, 

848–851
continuity and, 779–781, 789–790
continuous, identity function 

with, 1003
definitions of, 785–786
differentiability and, 792–793
Differentiable Implies Continuous 

Theorem, 793
differentials in, 820–821
directional derivatives and, 

806–814
extreme values and, 781, 825–832
of a function of two variables, 

784–786
of functions of more than two 

variables, 788–789,  
821–822

of functions of several variables, 
767–772

gradient vectors and, 806–814
Increment Theorem for Functions 

of Two Variables, 793
Lagrange multipliers, 834–841
limits for functions of two 

variables, 775–779
linearization of a function of two 

variables, 818–820
Mixed Derivative Theorem, 

790–791
normal lines and, 815–817
notation for, 785
second-order, 790
of still higher order, 791
tangent planes and, 815–822

Partial fractions
definition of, 497
integration of rational functions 

by, 497–502
method of, 497–502

Partial sums
in divergent series, 555–556
nondecreasing, 561
nth, 551–553
of sequences, 551–552
sequences of, 551–552

Particles
path of, 725
position vector of, 725

Particular solution, 17-8, 297, 
1025–1026

Partitions
formed by double integrals over 

rectangles, 859–860
kth subinterval of, 327
norm of, 328, 860
for Riemann sums, 326–328

Parts, integration by, 478–483
evaluating definite integrals, 

482–483
formula, 479–482

Product Rule in integral form, 
442–482

Pascal, Blaise, 552
Paths

Chain Rule for, 813–814
derivative along, 814
direction along, 931
independence, 951
of particles, 725

Percentage change, 222
Perihelion, 669
Period

definition of, 19-1
fundamental, 19-1

Periodic functions, 19-1–19-2, 44
Periodic trigonometric  

functions, 44
Periods, of trigonometric functions, 

44
Perpendicular lines, AP-17, 186
Perpendicular vectors, 693
Phase angle, 17-17
Phase lines, 1044–1046
Phase-plane analysis method, 

limitations of, 1056
Phase planes, 1053–1054
F, 907

F-limits of integration, 909, 910
Physics

applied optimization in, 279–282
vectors in, 686

Piecewise continuous functions, 
331, 376

Piecewise-defined functions, 25
Piecewise smooth curves, 728
Pinching Theorem. See Sandwich 

Theorem
Plane

angles between, 711–712
area in, 650–652
Cartesian coordinates in,  

AP-13–AP-14
circle of curvature for plane 

curves, 749–750
circles in, AP-17–AP-19
coordinate, 675–676
curvature of, 747–749
curve, flux across, 945–946
determined by coordinate  

axes, 675
determined by or spanned by r 

and s, 19-9
distance from a point to, 711
distance in, AP-17–AP-19
equation for, 708–709
flux across, 946
line integrals in, 934–935
origin of, 675–676
points in, AP-18
tangent (See Tangent planes)
vector equation for, 709

Plane region
boundary of, 769
boundary point of, 769
bounded, 769
closed, 769
definitions of, 769
interior of, 769

interior point of, 769
mass distributed over, 422
open, 769
unbounded, 769

Planetary motion
Kepler’s first law (ellipse law), 

760
Kepler’s second law (equal area 

law), 760–761
Kepler’s third law (time-distance 

law), 761–762
Plates

bounded by two curves, 425–426
density of, 422
integral for fluid force against a 

vertical, 415
thin, flat, 422–425
two-dimensional, formulas for, 

894
Points

boundary, of a region
closed bounded, absolute 

maxima and minima on, 
829–832

in Max-Min Tests, 831
in a plane, 769
in space, 771

continuity at, 120–123
continuous extension to, 128–129
continuous functions at, 779–780
critical (See Critical points)
of differentiable functions, 827
distance between two, in the xy-

plane, formula for, 677–679
distance from a line to, 708
distance from a plane to, 711
fixed, 106
functions that are continuous at, 

779
of inflection, 239, 256–259
initial, of vectors, 680
interior, of a region

closed bounded, absolute 
maxima and minima on, 
829–832

in a plane, 769
in space, 771

in a plane, distance formula for, 
AP-18

saddle, 716, 825–832
standard position for, 681
Taylor’s formula at, 846
terminal, of vectors, 680

Point-slope equation, AP-16–AP-17
Poisson, Siméon-Denis, 825
Polar coordinates

acceleration in, 759–762
area in, 878–879
area of polar region, 650–652
areas and lengths in, 650–653
Cartesian coordinates related to, 

643–645
conic sections, 655–660
conics in, 663–668
definition of, 642–643
equations (See Polar equations)
initial ray in, 642
integrals in, 876–878

length of polar curve, 652–653
of lines, 667
motion in, 759
pairs in, 642–643
polar equations of, 643
pole (origin) in, 642
slope of polar curve, 647–648
symmetry tests for, 647
velocity in, 759–762

Polar curve, length of, 652–653
Polar equations

for circles, 667–668
for conics, 665–667
for ellipses, 665–667
graphs/graphing, 643–644, 

646–649
Archimedes spiral in, 672
converting a graph from the 

rq-plane to the xy-plane, 
647–648

lemniscate curves, 649
limaçons, 650
slope, 647–648
symmetry, 647
technology for, 647–648

for hyperbolas, 665–667
for lines, 667
for parabolas, 665–667
relating polar and cartesian 

coordinates, 644–645
Polar form, double integrals in, 

876–881
Polar moment, 897
Polar rectangles, 876
Pole (origin), in polar coordinates, 

642
Polyhedral surfaces, 1002–1003
Polynomials, 29

coefficients of, 29
degrees of, 29
irreducible quadratic, 498
limits of, evaluating, 83
Taylor, 19-1, 599–601
trigonometric, 19-3–19-5

of degree n, 19-18–19-19
Population growth

logistic model for, 1049–1050
unlimited, 450–452

Position, acceleration for finding,  
247

Position vector, 725
Positive definite multiplication,  

698
Potential function, 951
Potentials for conservative fields, 

finding, 955–957
Power Chain Rule, 179–181
Power functions, 27–28, 179–181
Power Rule, 58, 82–83

for base a logarithm, 444
for derivatives (See Derivative 

Power Rule)
for finding complex derivatives, 

18-19
for limits, AP-23
for limits for functions of two 

variables, 777
for natural logarithms, 441–442
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Powers
binomial series for, 609–611
of complex numbers, 18-7
linear approximation for, 217
of sines and cosines, products of, 

486–487
of tan x and sec x, 488–489

Power series, 586–594
convergence of, 586–591

Convergence Theorem for 
Power Series, 589–591

interval of, 591
radius of, 589–591
testing for, 591

definition of, 586
method, 17-24–17-29
operations on, 591–594

convergence of power series, 
592

Series Multiplication for Power 
Series, 591

Term-by-Term Differentiation, 
592–593

Term-by-Term Integration, 
593–594

solutions, 17-24–17-29
Predator-prey model, 1058–1059
Preimage, 915
Prescribed errors, constants to 

describe, 91
Pressure-depth equation, 414
Pressure of fluid, force and, 414–415
Principal branch of logarithmic 

functions, 18-29
Principal minor determinants, 

B-9–B-11
Principal nth root, 18-8
Principal unit normal vector, 748, 

757
Principal value, 18-25, 18-29
Probability

density functions (See Probability 
density functions)

joint probability density function, 
899

in multiple integrals, 898–900
Probability density functions

normal, 530
Production, costs of, 165–166
Product Rule, 58, 82–83

for base a logarithm, 444
to calculate limits of sequences, 

542
for derivatives (See Derivative 

Product Rule)
for finding complex derivatives, 

18-19
for gradients, 811
in integral form, 442–482
for limits, AP-23
for limits for functions of two 

variables, 777
for natural logarithms, 441–442

Products
of complex numbers, 18-5–18-6
derivatives of, 155–156
of trigonometric integrals, 490

powers of, 486–487

triple scalar, 703–704
vectors of, 700

Projectile motion, 734–739
ideal

equation for, 737
height, flight time, and range 

for, 738
vector and parametric equations 

for, 736–738
integrals of vector functions, 

734–736
with wind gusts, 738–739

Projections of vectors, 693–696
Proof by mathematical induction, 

AP-10–AP-13
Proportional relationship, of 

functions, 27
P-series, 563–565
P-Series Test, 563, 583
Pythagorean Theorem, 19-6–19-7, 

19-15, 44, 46, 63
Pythagorean triples, 549

Quadrants, AP-14
Quadratic approximation, 601
Quadratic functions, 29
Quadratic polynomial, irreducible, 

498
Quadric surfaces, 714–717

definition of, 714
ellipsoids, 714–718
elliptical cones, 714–717
general, 716, 718
graphs of, 717
hyperboloids, 714–717
saddle point of, 716

Quotient Rule, 58, 82–83
for base a logarithm, 444
to calculate limits of sequences, 

542
for derivatives (See Derivative 

Quotient Rule)
for finding complex derivatives, 

18-19
for gradients, 811
for limits, AP-23
for limits for functions of two 

variables, 777
for natural logarithms, 441–442

Quotients
in complex numbers, 18-6– 

18-7
derivatives of, 157–158

Radians, 41–43
Radioactive decay, 452–453
Radioactive elements, half-life of, 

60, 452
Radioactivity, 452–453
Radius

of convergence, 589–591
of curvature, 749

Range
of functions, 21–22
of functions of several variables, 

767, 768
for ideal projectile motion, 738

Rate constant, 448

Rates
of decay, 53
fluid flow, 965
growth, 465–469
integrals of, 347–348

Rates of change, 72–77, 161–170
average, 74, 76–77
instantaneous, 76–77, 79, 102, 

161–162
marginals, 165–167
secant lines and, 74
sensitivity to, 167
slope of a curve and, defining, 

74–76
in speed, 72–74
tangent lines and, 76–77
in velocity, 162–165

Ratio, in geometric series, 553
Rational functions, 29

coefficients in, determining by 
differentiating, 502

integration of, by partial fractions, 
497–502

method used in, general 
description of, 497–501

limits at infinity of, 108
limits of, evaluating, 83

Rational numbers, AP-2, 18-2
Ratio Test, 18-24, 574–575, 583
Real Analysis, 19-13
Real axis, 18-4
Real line, AP-1
Real numbers

addition property of, AP-27
algebraic properties of, AP-1, 

AP-27
associative laws of, AP-28
commutativity laws of, AP-28
completeness property of, AP-1–

AP-2, AP-27, AP-28, 547
construction of reals and, AP-29–

AP-30
definition of, AP-1, AP-2
irrational, AP-2
multiplication property of, AP-27
order properties of, AP-1, AP-28
real line and, AP-1
sets of, AP-2
subsets of, AP-2
theory of, AP-27–AP-30

Real parts of complex numbers, 
18-3–18-4

Reals, construction of, AP-29–AP-30
Real-valued function, 22, 725–726, 

767–768
Rearrangement Theorem for 

Absolutely Convergent 
Series, 582, 583

Reciprocal
computing, 18-6
derivative of, 143
of sine function, 61

Reciprocal Rule, 58, 160
for base a logarithm, 444
for natural logarithms, 441–442

Rectangles, area of
average value of the function for 

approximating, 319–320

between curves, 364–367
finite approximations, 315–320, 

437
finite sums for estimating, 

313–315, 325–326
Fundamental Theorem of 

Calculus, 343
under the graph of a nonnegative 

function, 336
integration with respect to y, 

366–367
Mean Value Theorem, 342
Riemann sums for approximating, 

327–328, 349
Riemann sums in defining,  

328
total, 349–350

Rectangles, polar, 876
Rectangular coordinates, 675, 

883–890
average value of a function in 

space, 890
definition of, 883
equations relating cylindrical 

coordinates to, 903–905
iterated integrals, 884–890
properties of, 890
volume of a solid region in space, 

883–884
Rectangular coordinates, triple 

integrals in, 883–890
average value of a function in 

space, 890
in cylindrical coordinates, 

903–907
definition of, 883
iterated integrals, 884–890
properties of, 890
Riemann sums for, 904, 908
in spherical coordinates, 907–911
volume of a solid region in space, 

883–884
Rectangular coordinate system, 

AP-10
Recursion formula, in sequences, 545
Recursive definitions, of sequences, 

545–546
Reduction formula, 482, 505–506
Reflection of a graph, 36–38
Reflective property of parabolas, 663
Region

connected, 951
Divergence Theorem

for other regions, 1011–1012
for special regions, 1010–1011

exterior, of a circle, AP-19
Green’s Theorem for special, 

969–970
interior, of a circle, AP-19
open, 1003–1004
simply connected, 951

Regression lines, 834
Reindexing series, 557–558
Related rates equations, 206–210. 

See also Related rates 
problem

Chain Rule in, 206, 208
differentiation in, 209
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 Subject Index I-17

Related rates problem
consistent units in solving, 210
definition of, 206
strategy, 207

Relative change, 222
Relative extrema, 826
Relative (local) maxima or minima 

extrema. See Local 
(relative) maxima or 
minima extrema

Remainder
in Integral Test, 564–565
of order n (or error term), 

603–604
Remainder Estimation Theorem, 604
Remainder Formula, 564
Removable discontinuity, 120, 123
Representations, series, 597–598
Resistance

definition of, 17-19
falling body encountering, 

1047–1049
proportional to velocity, 

1038–1039
Resolution level zero

adding details at, 19-30–19-31
approximation at, 19-29

Rest points, 1044–1046
in graphical solutions of 

autonomous equations, 
1044–1046

in systems of differential 
equations, 1054–1055

unstable, 1055
Resultant vectors, 682
Revolution

solids of, 382–387
disk method, 382–385
washer method, 385–387

surface area of, 405–408
Revolution, areas of surfaces of, 

639–640
Riemann, Georg Friedrich Bernhard, 

326
Riemann sums, 326–328

for approximating area of 
rectangles, 327–328, 349

for arc length, 400
in calculus with parametric 

curves, 635
convergence of, 331
in defining area of rectangles, 328
in defining the definite integral, 

329–330
for double integrals, 859–861

over area, 873
over general regions, 869
over rectangles, 860–861

for integrals, 380, 422
limits of, 326–328, 331, 394
for mass of thin, flat plates, 422
for mass of thin wires, 421
notion of, 326–328
for parametrically defined curves, 

635
partitions for, 326–328
in shell method, 394
slicing by parallel lines, 381

slicing with cylinders, 392–393
for spherical coordinates, 904, 908
total area of rectangles, 349–350
for triple integrals, 904, 908
for work done by a variable force, 

411, 413, 415
Right-continuous function (or 

continuous from the right), 
120–122

Right-hand derivatives, 145–146
Right-hand limit (or limit from 

right), AP-25, 99–104,  
120, 122

Right-hand rule for vectors, 699
Rise, AP-15
RL circuits, 1036
R-limits of integration, 878, 904, 906
Rolle, Michel, 236, 244
Rolle’s Theorem, 243–244
Root finding, 127
Root Rule, AP-23, 82–83, 777
Roots

binomial series for, 609–611
in complex numbers, 18-7–18-9
finding, 127
Intermediate Value Theorem and, 

127–128
linear approximation for, 217
nth, 18-7–18-8
principal nth, 18-8

Root Test, 576–577, 583
Rule of 70, 71
Run, AP-15

Saddle point, 825–832
definition of, B-9
of functions of two variables, 

B-6–B-11
St. Vincent, Gregory, 655
Sandwich Theorem, AP-25, 543
Scalar, definition of, 682
Scalar components of acceleration, 

753–754
Scalar differential form, 943
Scalar functions, 725–726

line integrals of, 930–935
surface integrals of, formulas 

for, 984
Scalar Multiple Rules, 730
Scalar multiplication of vectors, 

682–683, 694–695
Scalar products. See Dot products
Scaling of a graph, 36–38
Scatterplot, of functions, 24
Secant function, 42–43

derivatives of, 173–174
even, 44
graphs of, 44, 62
integrals of, 359
integrals of powers of, 488–489
inverse of, 200–201
periodicity of, 44

Secant lines, 74–77
Second derivative, 158
Second Derivative Test

for concavity, 256
for differentiable functions, 256, 

259–263

for local (relative) maxima or 
minima extrema, 259–261, 
827, 829, 831, 835, 844–845

Taylor’s formula to derive, 
844–845

Second Derivative Test for Local 
Extreme Values (General 
Version), B-9

Second-order differential equations. 
See under Differential 
equations

Second-order partial derivatives, 790
Semicubical parabola, 189
Semimajor axis of ellipses, 658
Semiminor axis of ellipses, 658, 

666–667
Separable differential equations, 

448–450
Separable equation, 448–450
Sequences, 538–547

bounded, 546–547
Continuous Function Theorem 

for, 543
convergence of, 540–73
converging to a complex number, 

18-23
divergence of, 540–542
diverging to a complex number, 

18-23
diverging to infinity, 542
diverging to negative infinity, 542
essay on, 538
Fibonacci numbers in, 545
generated by Newton’s method, 

538, 546, 549, 550
history of, 538
index of, 539–540
infinite, 539–540
L’Hôpital’s Rule for, 543–544
limits of, 542–543

calculating, 542–543
commonly occurring, 545
definition of, 540

monotonic, 546–547
Monotonic Sequence Theorem, 

547
nondecreasing, 546–547
nonincreasing, 546–547
nth term of, 539, 544, 551–553
of partial sums, 551–552
recursion formula in, 545
recursive definitions of, 545–546
representing, 539–540
Sandwich Theorem for, 543
terms of, 539
zipper theorem for, 550

Sequential search, 468–469
Series

absolute convergence, 572–577
adding or deleting terms to/from, 

557
alternating, 579–583
binomial, 609–611
combining, 556–557
comparison tests for convergence 

of, 567–571
complex, 18-23–18-24
conditionally convergent, 581–582

Constant Multiple Rule for, 
556–557

convergent, 552
converging absolutely, 18-23– 

18-24
Difference Rule for, 556–557
divergent, 552, 555–556
error estimation, 564–565
essay on, 538
Fourier, 565
geometric, 553–555, 583
harmonic, 563, 579–583
history of, 538
infinite, 538, 551–558
Integral Test, 561–565
Maclaurin, 598–600, 604
Monotonic Sequence Theorem, 

547, 561
nth partial sums in, 551–552
nth term of, 552
nth-Term Test for divergent, 

555–556, 583
p-, 563–565
of partial sums, 551–553, 

555–556, 561
power, 586–594
p-Series Test, 563, 583
rearranging, 582–583
reindexing, 557–558
representations, 597–598
sigma notation to write, 552
sum of, 552
Sum Rule for, 556–557
Taylor, 598–615
test to verify convergence, 18-24

Series Multiplication for Power 
Series, 591

Sets of real numbers, AP-2, AP-28
Shell method, 393–396
Shift formulas, for functions, 36
Shifting of a graph, 36
Shift property for definite integrals, 

371
Sigma notation, 322–325

in trigonometric polynomials, 
19-5

to write series, 552
, 323

Sigmoid shape of curves, 1050
Simple harmonic motion,  

17-16–17-17, 172–173
derivatives of, 172–173

Simply connected domains and 
regions, 951

Simpson, Thomas, 501
Simpson’s Rule, 512–517

approximations by, 512–514
error analysis and, 514–517

Sine
limits involving, 102–104
summing, 19-3–19-5
values of, 43

Sine function, 19-2, 42–43
arcsine function and, 61–62
derivatives of, 170–171
general, 47
graphs of, 30, 44, 62
inequalities and, 46
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I-18 Subject Index

Sine function (continued )
odd, 44
one-to-one, 55, 60–61
periodicity of, 44
product of, 490
products of powers of, 486–487
reciprocal of, 61

Sine-integral function, 530
Sinusoid, 642
Sinusoid formula, 47
SI units (Système International 

or International System), 
410–411

Slant line asymptote, 111
Slicing. See Method of slicing
Slope fields, 1026–1027
Slope-intercept equation, AP-17
Slopes

of the curve, definition of, 138
negative reciprocal of, AP-17
of a nonvertical line, AP-15
of polar curve, 647–648
on sine curves, 182
of tangent lines, 138–139, 144

Smooth curves, 728–729
curvature of, 747–749
length of, 743
principal unit normal vector for, 

748
speed on, 729
torsion of a, 755

Smooth function, 399
Smooth surface, 975–976, 984, 987
Snell’s Law, 280
Snell van Royen, Willebrord, 279
Snowflake curve, 560
Solids, formulas for three-

dimensional, 894
Solids of revolution, 382–387

Cavalieri’s principle, 382
definition of, 382
disk method, 382–385
washer method, 385–387

Solution curves, 1026–1027
Solutions

of differential equations, 449
of first-order differential 

equations, 1024–1026
of first-order linear equations, 

1033–1035
general, 449
for inequalities, AP-3–AP-4
particular, 1025–1026
steady-state, 1053

Space
arc length in, 743–745
average value of a function in, 890
curves, 725–731, 750–751
motion in, 734–739

Space regions
boundary of, 771–772
boundary point of, 771
bounded, 771
closed, 771–772
interior point of a, 771
open, 771–772
unbounded, 771

Speed, 162–163
along smooth curves, 729

average, 72–74
initial, in ideal projectile motion, 

737
instantaneous, 73

Spheres
parametrization of, 974
of radius and center, equations 

for, 678–679
in space, 677–678
surface area of, 977

Spherical coordinates, 907–911
algebra for finding, 908
definition of, 907
equations relating Cartesian and 

cylindrical coordinates to, 
907–909

geometry for finding, 908
integration in, 907–911
limits of integration in, finding, 

909–911
Riemann sums for, 904, 908

Spin around axis, 961–964
Spring constant, 412
Square

completing, AP-18–AP-19
conformal maps of, 18-33–18-34
of the distance, 897

Square root functions
definition of, 28
derivatives of, 144, 146, 191
linearization and, 216

Square roots, eliminating, 488
Square wavelet, 19-24–19-26,  

19-31, 19-33–19-34
Squeeze Theorem. See Sandwich 

Theorem
Stable equilibria, 1046–1047
Standard equation

of an ellipse, AP-21
of a circle, AP-18

Standard form of linear equations, 
1032–1033

Standard linear approximations
definition of, 215, 819
error in, 820
line, 215, 819
linearization and, 215–217
tangent-plane/tangent-line 

approximation, 819–820
Standard position

angles in, 42
for a point, 681

Standard unit vectors, 19-7, 684
Starting integers, AP-12
Steady-state solution, 1053
Steady-state values, 1036
Steepest descent, method of, 

B-12–B-14
Step size, 511
Still higher order, partial derivatives 

of, 791
Stirling, James, 536–537
Stirling’s formula, 536–537
Stokes’ Theorem, 993–1004

conservative fields and, 
1003–1004

definition of, 995
Green’s Theorem compared to, 

995–996, 1002–1003, 1014

identity arising in mathematics 
and physical sciences, 1003

paddle wheel interpretation, 
999–1002

for polyhedral surfaces, proof 
outline of, 1002–1003

for surfaces with holes, 1003
Subsets of real numbers, AP-2
Subspace, 19-11
Substitution

boundaries in, 917–919, 922
differential area change, 916
in double integrals, 915–919
trigonometric, 492–495
trigonometric, integration by, 

492–495
in triple integrals, 920–922

Substitution, in integrals
for definite integrals, 361–367

areas between curves, 364–366
integration with respect to y, 

366–367
Substitution Formula, 361–363

for indefinite integrals, 354–359
Chain Rule, 354–359
Substitution Rule, 334, 

355–356, 358
of tangent, cotangent, secant, 

and cosecant functions, 359
trying different substitutions, 

359
Substitution Formula, 361–363
Substitution Rule

for definite integrals, 334
definition of, 916
for indefinite integrals, 355–356, 

358
use of the variable u in, 356

Subtraction
derivatives of, 153–154
of functions, 34–35
of terms from series, 557
of vectors, 683

Sum Rule
for antiderivatives, 296–297, 299
to calculate limits of sequences, 

542
for definite integrals, 334
derivative, AP-12–AP-13
for derivatives, 153–154, 171
for double and triple integrals,  

869
for finding complex derivatives, 

18-19
for finite sums, 324
for gradients, 811
for limits, AP-23, 82–83, 95
for limits for functions of two 

variables, 777
for series, 556–557
for vector functions, 730

Sums
derivatives of, 153
of series, 552

Superposition principle, 17-1
Surface area, 405–408, 973–981

of an implicit surface, formula 
for, 979

definition of, 405–407

differential for a parametrized 
surface, 976

element, 976
of a graph, formula for, 981
parametrization of, 974–978
of revolution, 405–408
for revolution about the x-axis, 

407
for revolution about the y-axis, 

408
of a smooth surface, 975–976
of a sphere, 977

Surface integrals, 983–991
definitions of, 984
for a level surface, computing, 989
mass density of, 983, 985
orientation of a surface, 987
for a parametrized surface, 

computing, 988–989
of a scalar function, formulas 

for, 984
in Stokes’ Theorem, 1003
thin shells, moments and masses 

of, 989–991
of vector fields, 987

Surfaces
area (See Surface area)
functions defined on, 799–801
with holes, in Stokes’ Theorem, 

1003
integrals of (See Surface integrals)
level, 770
orientation of, 987
parametrization of, 973–981

of cones, 974
of cylinders, 974
by cylindrical coordinates,  

974
of implicit surfaces, 978–981
of a sphere, 974
of surface area, 974–978

plane tangent to, 815–817
polyhedral, 1002–1003
saddle points of, 825–832
smooth, 975–976, 984, 987
of two-variable functions, 770

Symmetric functions, definite 
integrals of, 363–364

Symmetry tests for polar 
coordinates, 647

Synchronous curves, 764
System of first-order differential 

equations, 1053–1056
System torque, 420–421

Tangent function, 42–43
derivatives of, 173–174
graphs of, 44, 62
integrals of, 359
integrals of powers of, 488–489
inverse of, 200–201
odd, 44
periodicity of, 44

Tangential components of 
acceleration, 753–754

Tangential form of Green’s 
Theorem, 966–967, 1014

Tangent lines
to an ellipse, 810–811, 817
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approximating functions based on, 
214 (See also Linearization)

approximation, 819–820
areas and, 633–634
to a curve, 74–75
to a level curve, 810
to a parabola, 75–76
rates of change and, 76–77
vertical, 141–142, 146

Tangent planes, 815–822
approximation, 792, 819–820
definition of, 815, 816
differentials, 820–821
estimating change in a specific 

direction, 818
functions of more than two 

variables, 821–822
linearization of a function of two 

variables, 818–820
normal lines and, 815–817
to a surface, 815–817

Tangents
area, 633–634
to curves, 745
of curves in space, 725–731
definition of, 42–43
unit vectors, 745, 757
values of, 43

Tautochrones, 628–629
Taylor, Brook, 598
Taylor polynomial, 19-1, 599–601
Taylor series, 598–615

applications of, 609–615
arctangents, 612–613
binomial series for powers and 

roots, 609–611
Euler’s identity, 614–615
evaluating indeterminate 

forms, 613–614
evaluating nonelementary 

integrals, 611–612
Leibniz’s formula, 613

convergence of, 18-18, 602–607
Remainder Estimation 

Theorem, 604
remainder of order n (or error 

term), 603–604
Taylor’s Formula, 602–603
Taylor’s Theorem, 602, 607
using Taylor series in, 605–606

definition of, 598–599
frequently used, 615
Taylor polynomials in, 599–601

Taylor’s Formula, 844–847
definition of, 602, 603
to derive the Second Derivative 

Test, 844–845
error formula for linear 

approximations, 845
for functions of two variables, 

846–847
at the origin, 847
at the point, 846

Taylor’s Theorem, 514–515
definition of, 602
Mean Value Theorem and, 602
proof of, 607
Remainder Estimation Theorem 

and, 604

Term-by-Term Differentiation, 
592–593

Term-by-Term Integration, 593–594
Terminal point in parametric 

equations, 624
Terminal point of vectors, 680
Terminal velocity, 355, 1049
Terms, of sequences, 539
Theorems

absolute convergence of series, 
18-24

Absolute Convergence Test, 573
Algebraic Properties of the Natural 

Logarithm, 58, 441–442
Alternating Series Estimation 

Theorem, 581
Alternating Series Test, 579–580, 

583
Angle Between Two Vectors, 

691–693
approximations of functions,  

19-17, 19-18
approximations using the Haar 

system, 19-27, 19-29– 
19-30

Area of Surface of Revolution for 
Parametrized Curves, 640

for calculating limits of sequences, 
542

Cauchy’s Mean Value Theorem, 
273–274

Chain Rule, 177
Chain Rule for Two Independent 

Variables and Three 
Intermediate Variables,  
799

Formula for Implicit 
Differentiation, 801

Functions of One Independent 
Variable and Three 
Intermediate Variables, 798

Functions of One Independent 
Variable and Two 
Intermediate Variables,  
796

Implicit Function Theorem, 
802–803

Clairaut’s Theorem, 790–791
Cofactor Expansion, B-4
of commonly occurring limits, 

545
of complex functions, 18-25
composition of continuous 

functions, 125
conformal maps, 18-32–18-33
constant-coefficient homogeneous 

equations, 17-2–17-5
Constant Multiple Rule, 556– 

557
Convergence Theorem for 

Complex Power Series, 
18-25

Convergence Theorem for Power 
Series, AP-23–AP-25, 
589–592

corollary to, 590
for convergent series, 556–557
curl F  0 related to the closed-

loop property, 1003

De Moivre’s Theorem, 18-7
derivative rule for inverses, 190
Differentiable Implies Continuous 

Theorem, 147, 793
Direct Comparison Test, 526–528, 

568–569, 583
Directional Derivative Is a Dot 

Product, 808
divergence and the curl, 1009–

1010
Divergence Theorem, 1006–1014
Extreme Value Theorem, 236–237
for finding antiderivatives, 295
First Derivative Test for Local 

Extreme Values, B-8, 
238–239, 251–253, 826, 836

Formula for Implicit 
Differentiation, 801–803

Fourier coefficients, 19-18
Fourier series, convergence of, 

19-19–19-21
Fubini’s Theorem

for calculating double integrals 
over general regions 
(stronger form), 865–868

for calculating double integrals 
over rectangles (first form), 
861–863

Fundamental Theorem of 
Algebra, 18-9

Fundamental Theorem of 
Calculus, 299

Fundamental Theorem of Line 
Integrals, 952–954

Green’s Theorem, 961–970, 972
Haar system, 19-27, 19-29,  

19-32
Implicit Function Theorem, 

802–803
Increment Theorem for Functions 

of Two Variables, AP-33–
AP-35

initial value and boundary value 
problems, 17-5

Integral Test, 562
interior points of a function’s 

domain, 100
Intermediate Value Theorem for 

continuous functions, 127
Laws of Exponents for ex, 

442–443
l’Hôpital’s Rule, 268–274, 

543–544
for limits

of continuous functions, 126
Limit Comparison Test, 

527–528, 569–571, 583
Limit Laws, 82, 108
of polynomials, 83
to prove definition of, 95
of rational functions, 83
of the ratio sin u u as u  0, 

102
linearly independent solutions, 

17-2
Mean Value Theorem, 245–249, 

602
Mixed Derivative Theorem,  

AP-31–AP-32, 790–791

Monotonic Sequence Theorem, 
547, 561

Nicole Oresme’s, 540, 622
nonhomogeneous linear 

equations, 17-8
nth-Term Test for Divergence, 

555–556
number e as a limit, 197
one-sided limits, 100
Orthogonal Gradient Theorem, 

837–838
orthonormal bases and 

approximation in higher 
dimensions, 19-10–19-11

orthonormal basis for three-
dimensional vectors, 19-9

Pappus’s
Theorem for Surface Areas, 

429
Theorem for Volumes, 427–428

Parallel Axis Theorem, 902
Parseval Equality, 19-21–19-22
properties of continuous 

functions, 124
Properties of Determinants, B-5
Properties of Limits of Functions 

of Two Variables, 777
Pythagorean Theorem, 19-6–19-7, 

19-15, 44, 46, 63
Ratio Test, 574–575, 583
Rearrangement Theorem for 

Absolutely Convergent 
Series, 582, 583

Remainder Estimation Theorem, 
604

Rolle’s Theorem, 243–244
Root Test, 576–577, 583
Sandwich Theorem, 85, 543
Second Derivative Test

for concavity, 256
for local extreme values, B-9, 

259–261, 827, 829, 831, 
835, 844–845

Substitution for Double Integrals, 
916

Taylor’s Formula, 602, 603
Taylor’s Theorem, 514–515, 602, 

604, 607
Unifying Fundamental Theorem 

of Vector Integral Calculus, 
1014

zipper theorem, 550
Theory of real numbers,  

AP-27–AP-30
-limits of integration, 878, 905, 

906, 909, 910
Thickness variable, 394–395
Thin shells, moments and masses of, 

989–991
Third derivative, 158
Three-dimensional coordinate 

systems, 675–678
Cartesian coordinates in, 675
coordinate planes in, 675
planes determined by coordinate 

axes in, 675
rectangular coordinates in, 675

Three-dimensional Laplace 
equation, 795

Z05_HASS5901_15_GE_Subject Index.indd   19 13/04/23   6:21 PM

www.konkur.in

Telegram: @uni_k



I-20 Subject Index

Three-dimensional solid, formulas 
for, 894

Three-dimensional vectors,  
19-5–19-9, 681

definitions of, 19-6, 19-7
distance between, 19-6
dot product of, 19-6
length of, 19-6
linear combination of, 19-7
orthogonal (or orthonormal)  

set of, 19-6, 19-7–19-8
orthonormal basis for, 19-8–19-9
Pythagorean Theorem for,  

19-6–19-7
standard unit vectors in, 19-7
theorem, 19-9
unit vectors, 19-6

Time constant, 1037
Time-distance law (Kepler’s  

third law), 761–762
Time measurement, fixed error in, 

222
TNB frame, 753
Torque, 420–421
Torque vectors, 702–703
Torsion

along the curve, 755
definition of, 755
formulas for computing, 756–757
function of a smooth curve, 755

Total area, 349–350
Total differentials, 820–822
Total distance traveled, 317–318, 348
Training set, 1051
Trajectories

orthogonal, 1038, 1040–1041
systems of differential equations, 

1053–1054
Transcendental functions, 31, 445

catenary, 31
Transcendental numbers, 445
Transformations

Jacobian of, 917–919, 922
linear, 916
nonlinear, 918–919
rules applied to sine function, 47
of trigonometric graphs, 46–47

Trapezoidal approximations, 511–512
Trapezoidal Rule, 511–512

approximations by, 511–512
error analysis and, 514–517

Trend lines, 834
Trigonometric functions, 30, 41–49

addition formulas in, 45
angles in, 41–42
arcsine and arccosine, 61–64
ASTC rule for remembering, 43
Chain Rule in, 202–203
cosecant, 42–43
cosine, 42–43
cotangent, 42–43
derivatives of, 170–176

cosecant function, 173–174
cosine function, 171–172
cotangent function, 173–174
secant function, 173–174
simple harmonic motion, 

172–173
sine function, 170–171

tangent function, 173–174
double-angle formulas in, 45
half-angle formulas in, 45
inequalities in, 46
integrals of, 359
inverse, 60–61
law of cosines, 45–46
one-to-one, 60–61
periodic, 44
periods of, 44
secant, 42–43
sine, 42–43
tangent, 42–43

Trigonometric graphs
of functions, 44
of transformations, 46–47

Trigonometric identities, 44–45
Trigonometric integrals, 486–490

graphed as functions, 492
of powers of tan x and sec x, 

488–489
products of powers of sines and 

cosines, 486–487
products of sines and cosines, 490
square roots, eliminating, 488

Trigonometric polynomials,  
19-3–19-5

amplitude in, 19-4
definition of, 19-3
of degree n, 19-18–19-19
sigma notation in, 19-5

Trigonometric substitutions, 492–495
Trigonometric system, 19-2,  

19-15–19-16
Triple integrals

in cylindrical coordinates, 903–907
iterated integrals, 884–890
properties of, 869, 891
in rectangular coordinates, 

883–890
in spherical coordinates, 907–911
substitutions in, 920–922

Triple scalar product, 703–704
Trivial solution, 17-2
Trochoids, 632
Twice-differentiable functions, 

633–634
Two-dimensional Laplace equation, 

795
Two-dimensional plate, formulas 

for, 894
Two-dimensional vectors, 681, 

696–697
Two-path test for nonexistence of a 

limit, 780
Two-sided continuity, 122
Two-sided limits, AP-25, 99, 103, 

116, 122, 126
Type I, improper integrals of, 

521–524
Type II, improper integrals of, 

524–525

Unbounded region
definition of, B-7
in a plane, 769
in space, 771

Unbounded sequence, 546
Underdamping, 17-18

Undetermined coefficients, 497
Undetermined coefficients, method 

of, 17-8–27-31
Unified theory of vector field 

integrals, 1013–1014
Union of sets, AP-2
Unit circle, AP-18
Unit functions, 19-13, 19-24
Unit normal vectors, 699
Units of measurement

for fluid’s weight-density, 414
in work, 410–411

Unit step function, 81–82
Unit tangent vector, 745, 757
Unit vectors, 19-6, 684–685

definition of, 684
tangent, 745, 757
writing vectors in terms of, 

684–685
Universal gravitational constant,  

760
Unstable equilibria, 1046–1047
Upper bound

for a sequence, 546
for a set of numbers, AP-28

Upper sums, 313–314

Values
absolute, 18-5
absolute maximum, 825–826, 

829–932
absolute minimum, 825–826, 

829–932
boundary, 17-6
equilibrium, 1044–1046
extreme (See Extreme values)
of functions, 22, 127

average, in space, 890
limits of, 79–80
of two variables, B-6–B-11
zero, 127

initial value and boundary value 
problems, 17-5–17-6

Intermediate Value Theorem and, 
127–128

of a line integral, 933
local maximum, 825–829, 831
local minimum, 825–829, 831
of logarithmic functions, 18-29
needed by the Second Derivative 

Test, 829
of parametric equations, 625, 627
principal, 18-25, 18-29
steady-state, 1036
of trigonometric ratios, 43

Variable costs, 166
Variables

complex, complex variables
dependent, 21
dummy, 331
force along a line, work done 

by, 411
functions of many, 803
functions of more than two

differential, 821–822
linearization of, 821–822
in tangent planes, 821–822

functions of several, 767–772
definitions of, 767

dependent/independent 
variables, 767

differentiability for, 792–793
domain of, 767, 768
input/output variables, 767
partial derivatives of, 767–772
range of, 767, 768
real-valued function, 767

functions of three, 770–772
boundary of, 771
boundary points of, 771
bounded/unbounded regions 

of, 771
Chain Rule for, 798–799
definitions of, 770–772
gradient vectors in, 811–812
interior points of, 771
interior regions of, 771
level surface of, 770
open/closed regions of, 

771–772
functions of two

boundary of, 769
boundary point of, 769
Chain Rule for, 796–798
Composition Rule for, 777
Constant Multiple Rule for, 777
contours of, 770
definitions of, 769
graphs/graphing, 770
Increment Theorem for 

Functions of Two Variables, 
793

interior of the region of, 769
interior point of, 769
level curves of, 770
limits for, 775–779
linearization of, 818–820
more than, 781, 788–789
open/closed regions of, 769
partial derivatives of, 784–786
properties of limits of, 777
Sandwich Theorem for, 783
Taylor’s formula for, 846–847
values of local extreme for, 

825–829
independent, 21
input, 21, 36
of integration, 299, 330–331
output, 21, 36
proportional relationship of, 27
in related rates problem, 207
thickness, 394–395
u, in Substitution Rule, 356

Vector fields
assumptions on, 951
circulation for, 944–945
continuous, 937
curl, 993–995
definition of, 937–938
differentiable, 937
divergence of, 964–966, 

1006–1007
flux across a simple closed plane 

curve, 945–946
gradient fields, 938–939
gravitational, 950
integrals

flow, 944–945
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 Subject Index I-21

line, 930–935, 939–941
surface, 987
unified theory of, 1013–1014

integration in, 930–1021
potential function for, 951
work done by a force over a curve 

in space, 942–944
Vector functions, 725–766

antiderivatives of, 734–735
arc length in space, 743–745
circle of curvature for plane 

curves, 749–750
of constant length, 731
continuity of, 726–727
curvature and normal vectors for 

space curves, 750–751
curvature and normal vectors of a 

curve, 747–751
curvature of a plane curve, 747–749
curves in space and their tangents, 

725–731
definite integrals of, 735
derivatives and motion, 727–729
differentiable, 728
differential equations for, 

735–736, 740
differentiation rules for, 729–731
equations for

differential, 735–736, 740
of the path for ideal projectile 

motion, 737
formula for calculating curvature, 

747–749
formulas for computing curvature 

and torsion, 756–757
Fundamental Theorem of Calculus 

for continuous, 735–736
indefinite integrals of, 734
initial value problems for, 

736–737, 740
integrals of, 734–739
limits of, 726–727
motion in space and, 734–739
tangential and normal components 

of acceleration, 753–754
TNB frame, 753
torsion, 754–757
vector functions of constant 

length, 731
velocity and acceleration in polar 

coordinates, 759–762
Vectors, 680–688

acceleration, 729, 753
addition of, 682–683
in algebra operations, 682–683, 

687
Angle Between Two Vectors, 

691–693
angles between, 711–712
applications of, 686–687
binormal vector, 753, 757
component form of, 680–682
coplanar, 683
cross product as area of 

parallelogram, 700–701
cross product of two, 699–700
curl, 961–964, 966–968, 

1009–1010

of a curve
binormal, 753, 757
normal, 747–751
tangent, 725–731

definition of, 680
derivative in direction of, 728–729
as determinant, 703–704
difference (subtraction) of, 683
differential form, 943
directed line segment to represent, 

680
direction of, 684–685
in engineering, 686
equality of, 680, 681
fields, 725
formula for curvature, 756
geometry in space and, 675–724
in gravitational field, 938
in higher dimensions (See Higher 

dimension vectors)
i-component of, 684–685
initial point of, 680
j-component of, 684–685
k-component of, 684–685
length (magnitude) of, 680, 681
midpoint of line segments, 685
in navigation, 686
n dimensional, 687–688
nonzero, 691–694, 699–700, 706, 

709–710
notation for, 694
orthogonal (perpendicular), 693
parallel, 699, 700
parallelogram law of addition, 682
in physics, 686
position, 725
principal unit normal, 748, 757
product, 700
projections of, 693–696
resultant, 682
right-hand rule for, 699
scalar component in direction of, 

694–695
scalar multiplication of, 682–683, 

694–695
standard position, for a point, 681
standard unit, 19-7, 684
terminal point of, 680
three-dimensional, 681
in three dimensions (See Three-

dimensional vectors)
torque, 702–703
triple scalar product of, 703–704
two-dimensional, 681, 696–697
unit, 19-6, 684–685
unit normal, 699, 753
unit tangent, 745, 757
velocity, 680
writing, 681
zero vector, 681

Velocity
in acceleration, 163–165
acceleration for finding, 247
angular, 1000
average, 162
definition of, 162
displacement and, 162
distance traveled, 315–318, 348

fields, circulation for, 944–945
motion with resistance 

proportional to, 1038–1039
in polar coordinates, 759–762
rates of change in, 162–165
resistance proportional to, 

1038–1039
in speed, 162–163
terminal, 355, 1049
vector, 680

Vertical asymptotes, 115–116, 
524–525

Vertical cross-sections, for finding 
limits of integration, 868

Vertical line test, for functions, 24
Vertical scaling and reflecting 

formulas, 37
Vertical shifts, 36
Vertical tangent lines, 141–142, 146
Vertices

of ellipses, 657
of hyperbolas, 658
of parabolas, AP-19–AP-20, 656

Vibrations, 17-15–17-16
Volts (V), 17-19
Volumes

of double integrals
over general regions, 865–868
over rectangles, 860–861
of a solid region in space, 

883–884
of solids

definition of, 381
Pappus’s Theorem for Volumes, 

427–428
of revolution, 382–387

of solids, calculating
Cavalieri’s principle, 382
by disks for rotation about the 

x-axis, 383–384
by disks for rotation about the 

y-axis, 384–385
shell formula for revolution 

about a vertical line, 
394–395

shell method, 393–396
using cross-sections, 380–387
using cylindrical shells, 

391–396
using disk method, 382–385
using washer method, 385–387
by washers for rotation about 

the x-axis, 386–387
by washers for rotation about 

the y-axis, 387

Washer method, 385–387
Wave equation, 795
Wavelets, 19-24

Daubechies, 19-33–19-34
definition of, 19-26
Haar, 19-24–19-26, 19-31,  

19-33–19-34
Weierstrass, Karl, 526
Weierstrass function, 150
Weight-density, of fluid, 414
Wild oscillation, 146
Wilson lot size formula, 288, 794, 824

Wires, thin, 421
Witch of Agnesi, 159, 632
Work

definition of, 410
done by a force over a curve in 

space, 942–944
force and, 410–415

constant force, 410–411
fluid force on a constant-depth 

surface, 414–415
fluid pressures, 414–415
force constant or spring 

constant, 412
Hooke’s Law, 411–412
integral for fluid force against 

a vertical plate, 415
lifting objects and pumping 

liquids from containers, 
412–413

pressure-depth equation, 414
variable force along a line, 411

by force through displacement, 
696

integrals, 942–944
units of measurement in, 410–411

Writing vectors, 681

x-axis
curve as symmetric about, 33
by disks for rotation about, 

383–384
moment about, 422–425
revolution about, 407, 640

x-coordinate (or abscissa), AP-14
x-intercept, AP-17
x-limits of integration, 868, 885, 

886, 889
xy-plane, 675, 677
xz-plane, 675

y, integration with respect to, 
366–367

y-axis
by disks for rotation about, 

384–385
graph of an even function as 

symmetric about, 26–27
moment about, 422–425
of the parabola, 656
revolution about, 408, 640

y-coordinate (or ordinate), AP-14
y-intercept, AP-17
y-limits of integration, 868, 885–889
yz-plane, 675

z-axis, 675–676, 714, 716
Zero, frequency, 19-2
Zero denominators, eliminating 

common factors from, 83–84
Zero derivatives in constant 

functions, 246
Zero directional derivatives, 814
Zero value of a function, 127
Zero vectors, 681
Zero Width Interval Rule, 334
Zipper theorem, 550
z-limits of integration, 885–889, 

904–906
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T-1

Basic Forms

1. ∫ = +k dx kx C, k any number 2. ∫ =
+

+ ≠ −
+

x dx x
n

C n
1

, 1n
n 1

3. ∫ = +dx
x

x Cln 4. ∫ = +e dx e Cx x

5. ∫ ( )= + > ≠a dx a
a

C a a
ln

0,  1x
x

6. ∫ = − +x dx x Csin cos

7. ∫ = +x dx x Ccos sin 8. ∫ = +x dx x Csec tan2

9. ∫ = − +x dx x Ccsc cot2 10. ∫ = +x x dx x Csec tan sec

11. ∫ = − +x x dx x Ccsc cot csc 12. ∫ = +x dx x Ctan ln sec

13. ∫ = +x dx x Ccot ln sin 14. ∫ = +x dx x Csinh cosh

15. ∫ = +x dx x Ccosh sinh 16. ∫ −
= +dx

a x
x
a

Carcsin
2 2

17. ∫ +
= +dx

a x a
x
a

C1 arctan
2 2

18. ∫ −
= +dx

x x a a
x
a

C1 arcsec
2 2

19. ∫ ( )
+

= + >−dx
a x

x
a

C asinh 0
2 2

1 20. ∫ ( )
−

= + > >−dx
x a

x
a

C x acosh 0
2 2

1

Forms Involving ax b+

21. ∫ ( )
( )

( )
+ = +

+
+ ≠ −

+
ax b dx ax b

a n
C n

1
, 1n

n 1

22. ∫ ( )
( )+ = + +

+
−

+
⎡
⎣⎢

⎤
⎦⎥

+ ≠ − −
+

x ax b dx ax b
a

ax b
n

b
n

C n
2 1

, 1,  2n
n 1

2

23. ∫ ( )+ = + +−ax b dx
a

ax b C1 ln1 24. ∫ ( )+ = − + +−x ax b dx x
a

b
a

ax b Cln1
2

25. ∫ ( )+ = + +
+

⎡
⎣⎢

⎤
⎦⎥

+−x ax b dx
a

ax b b
ax b

C1 ln2
2

26. ∫ ( )+
=

+
+dx

x ax b b
x

ax b
C1 ln

27. ∫ ( ) ( )
+ =

+
+

+ ≠ −
+

ax b dx
a

ax b

n
C n2

2
, 2

n
n 2

28. ∫ ∫+ = + +
+

ax b
x

dx ax b b dx
x ax b

2

A Brief Table of Integrals
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 A Brief Table of Integrals T-2

29.  (a) ∫ +
= + −

+ +
+dx

x ax b b
ax b b
ax b b

C1 ln  (b) ∫ −
= − +dx

x ax b b
ax b

b
C2 arctan

30. ∫ ∫+ = − + +
+

+ax b
x

dx ax b
x

a dx
x ax b

C
22

31. ∫ ∫+
= − + −

+
+dx

x ax b
ax b

bx
a
b

dx
x ax b

C
22

Forms Involving a x2 2+

32. ∫ +
= +dx

a x a
x
a

C1 arctan
2 2

33. ∫ ( ) ( )+
=

+
+ +dx

a x
x

a a x a
x
a

C
2

1
2

arctan
2 2 2 2 2 2 3

34. ∫ ( )
+

= + = + + +−dx
a x

x
a

C x a x Csinh ln
2 2

1 2 2

35. ∫ ( )+ = + + + + +a x dx x a x a x a x C
2 2

ln2 2 2 2
2

2 2

36. ∫ ( )( )+ = + + − + + +x a x dx x a x a x a x a x C
8

2
8

ln2 2 2 2 2 2 2
4

2 2

37. ∫ + = + − + + +a x
x

dx a x a a a x
x

Cln
2 2

2 2
2 2

38. ∫ ( )+ = + + − + +a x
x

dx x a x a x
x

Cln  
2 2

2
2 2

2 2

39. ∫ ( )
+

= − + + + + +x
a x

dx a x a x x a x C
2

ln
2

2

2 2

2
2 2

2 2

40. ∫ +
= − + + +dx

x a x a
a a x

x
C1 ln

2 2

2 2

41. ∫ +
= − + +dx

x a x
a x

a x
C

2 2 2

2 2

2

Forms Involving a x2 2−

42. ∫ −
= +

−
+dx

a x a
x a
x a

C1
2

ln
2 2

43. ∫ ( ) ( )−
=

−
+ +

−
+dx

a x
x

a a x a
x a
x a

C
2

1
4

ln
2 2 2 2 2 2 3

44. ∫ −
= +dx

a x
x
a

Carcsin
2 2

45. ∫ − = − + +a x dx x a x a x
a

C
2 2

arcsin2 2 2 2
2

46. ∫ ( )− = − − − +x a x dx a x
a

x a x a x C
8

arcsin 1
8

22 2 2
4

2 2 2 2

47. a x
x

dx a x a
a a x

x
Cln

2 2
2 2

2 2

∫ − = − −
+ −

+ 48. ∫ − = − − − +a x
x

dx x
a

a x
x

Carcsin
2 2

2

2 2

49. ∫ −
= − − +x

a x
dx a x

a
x a x C

2
arcsin 1

2

2

2 2

2
2 2 50. ∫ −

= − + − +dx
x a x a

a a x
x

C1 ln
2 2

2 2

51. ∫ −
= − − +dx

x a x
a x

a x
C

2 2 2

2 2

2

Forms Involving −x a2 2

52. ∫ −
= + − +dx

x a
x x a Cln

2 2
2 2

53. ∫ − = − − + − +x a dx x x a a x x a C
2 2

ln2 2 2 2
2

2 2
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T-3 A Brief Table of Integrals

54. ∫ ∫( ) ( ) ( )− =
−

+
−

+
− ≠ −

−
x a dx

x x a

n
na

n
x a dx n

1 1
, 1

n
n

n
2 2

2 2 2
2 2

2

55. ∫ ∫( )
( )

( )( ) ( )−
=

−
−

−
−

− −
≠

−

−
dx

x a

x x a

n a
n

n a
dx

x a
n

2
3

2
, 2n

n

n
2 2

2 2
2

2 2 2 2
2

56. ∫ ( ) ( )
− =

−
+

+ ≠ −
+

x x a dx
x a

n
C n

2
, 2

n
n

2 2
2 2

2

57. ∫ ( )− = − − − + − +x x a dx x x a x a a x x a C
8

2
8

ln2 2 2 2 2 2 2
4

2 2

58. ∫ − = − − +x a
x

dx x a a x
a

Carcsec
2 2

2 2

59. ∫ − = + − − − +x a
x

dx x x a x a
x

Cln
2 2

2
2 2

2 2

60. ∫ −
= + − + − +x

x a
dx a x x a x x a C

2
ln

2

2

2 2

2
2 2 2 2

61. ∫ −
= + = +dx

x x a a
x
a

C
a

a
x

C1 arcsec 1 arccos
2 2

62. ∫ −
= − +dx

x x a
x a

a x
C

2 2 2

2 2

2

Trigonometric Forms

63. ∫ = − +ax dx
a

ax Csin 1 cos 64. ∫ = +ax dx
a

ax Ccos 1 sin

65. ∫ = − +ax dx x ax
a

Csin
2

sin 2
4

2 66. ∫ = + +ax dx x ax
a

Ccos
2

sin 2
4

2

67. ∫ ∫= − + −−
−ax dx

ax ax
na

n
n

ax dxsin
sin cos 1 sinn

n
n

1
2

68. ∫ ∫= + −−
−ax dx

ax ax
na

n
n

ax dxcos
cos sin 1 cosn

n
n

1
2

69.  (a) ∫
( )

( )

( )

( )
= − +

+
− −

−
+ ≠ax bx dx a b x

a b
a b x
a b

C a bsin cos cos
2

cos
2

, 2 2

 (b) ∫
( )

( )

( )

( )
= −

−
− +

+
+ ≠ax bx dx a b x

a b
a b x
a b

C a bsin sin sin
2

sin
2

, 2 2

 (c) ∫
( )

( )

( )

( )
= −

−
+ +

+
+ ≠ax bx dx a b x

a b
a b x
a b

C a bcos cos sin
2

sin
2

, 2 2

70. ∫ = − +ax ax dx
ax

a
Csin cos

cos 2
4

71. ∫ ( )
=

+
+ ≠ −

+
ax ax dx ax

n a
C nsin cos sin

1
, 1n

n 1

72. ∫ = +
ax
ax

dx
a

ax C
cos
sin

1 ln sin 73. ∫ ( )
= −

+
+ ≠ −

+
ax ax dx ax

n a
C ncos sin cos

1
, 1n

n 1

74. ∫ = − +
ax
ax

dx
a

ax C
sin
cos

1 ln cos

75. ∫ ∫ ( )
( )

= −
+

+ −
+

≠ −
− +

−ax ax dx
ax ax

a m n
n
m n

ax ax dx n m axsin cos
sin cos 1 sin cos , reduces sinn m

n m
n m n

1 1
2

76. ∫ ∫ ( )
( )

=
+

+ −
+

≠ −
+ −

−ax ax dx
ax ax

a m n
m
m n

ax ax dx m n axsin cos
sin cos 1 sin cos , reduces cosn m

n m
n m m

1 1
2
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 A Brief Table of Integrals T-4

77. ∫ π( )+
= −

−
−
+

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ >dx
b c ax a b c

b c
b c

ax C b c
sin

2 arctan tan
4 2

,
2 2

2 2

78. ∫ +
= −

−

+ + −
+

+ <dx
b c ax a c b

c b ax c b ax
b c ax

C b c
sin

1 ln
sin cos

sin
,

2 2

2 2
2 2

79. ∫ π( )+
= − − +dx

ax a
ax C

1 sin
1 tan

4 2
80. ∫ π( )−

= + +dx
ax a

ax C
1 sin

1 tan
4 2

81. ∫ +
=

−
−
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ >dx
b c ax a b c

b c
b c

ax C b c
cos

2 arctan tan
2

,
2 2

2 2

82. ∫ +
=

−

+ + −
+

+ <dx
b c ax a c b

c b ax c b ax
b c ax

C b c
cos

1 ln
cos sin

cos
,

2 2

2 2
2 2

83. ∫ +
= +dx

ax a
ax C

1 cos
1 tan

2
84. ∫ −

= − +dx
ax a

ax C
1 cos

1 cot
2

85. ∫ = − +x ax dx
a

ax x
a

ax Csin 1 sin cos
2

86. ∫ = + +x ax dx
a

ax x
a

ax Ccos 1 cos sin
2

87. ∫ ∫= − + −x ax dx x
a

ax n
a

x ax dxsin cos cosn
n

n 1 88. ∫ ∫= − −x ax dx x
a

ax n
a

x ax dxcos sin sinn
n

n 1

89. ∫ = +ax dx
a

ax Ctan 1 ln sec 90. ∫ = +ax dx
a

ax Ccot 1 ln sin

91. ∫ = − +ax dx
a

ax x Ctan 1 tan2 92. ∫ = − − +ax dx
a

ax x Ccot 1 cot2

93. ∫ ∫( )
=

−
− ≠

−
−ax dx ax

a n
ax dx ntan tan

1
tan , 1n

n
n

1
2 94. ∫ ∫( )

= −
−

− ≠
−

−ax dx ax
a n

ax dx ncot cot
1

cot , 1n
n

n
1

2

95. ∫ = + +ax dx
a

ax ax Csec 1 ln sec tan 96. ∫ = − + +ax dx
a

ax ax Ccsc 1 ln csc cot

97. ∫ = +ax dx
a

ax Csec 1 tan2 98. ∫ = − +ax dx
a

ax Ccsc 1 cot2

99. ∫ ∫( )
=

−
+ −

−
≠

−
−ax dx

ax ax
a n

n
n

ax dx nsec
sec tan

1
2
1

sec , 1n
n

n
2

2

100. ∫ ∫( )
= −

−
+ −

−
≠

−
−ax dx

ax ax
a n

n
n

ax dx ncsc
csc cot

1
2
1

csc , 1n
n

n
2

2

101. ∫ = + ≠ax ax dx
ax

na
C nsec tan

sec
, 0n

n

102. ∫ = − + ≠ax ax dx
ax

na
C ncsc cot

csc
, 0n

n

Inverse Trigonometric Forms

103. ∫ = + − +ax dx x ax
a

a x Carcsin arcsin 1 1 2 2 104. ∫ = − − +ax dx x ax
a

a x Carccos arccos 1 1 2 2

105. ∫ ( )= − + +ax dx x ax
a

a x Carctan arctan 1
2

ln 1 2 2

106. ∫ ∫=
+

−
+ −

≠ −
+ +

x ax dx
x

n
ax a

n
x dx

a x
narcsin

1
arcsin

1 1
, 1n

n n1 1

2 2
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T-5 A Brief Table of Integrals

107. ∫ ∫=
+

+
+ −

≠ −
+ +

x ax dx
x

n
ax a

n
x dx

a x
narccos

1
arccos

1 1
, 1n

n n1 1

2 2

108. ∫ ∫=
+

−
+ +

≠ −
+ +

x ax dx
x

n
ax a

n
x dx

a x
narctan

1
arctan

1 1
, 1n

n n1 1

2 2

Exponential and Logarithmic Forms

109. ∫ = +e dx
a

e C1ax ax 110. ∫ = + > ≠b dx
a

b
b

C b b1
ln

, 0,  1ax
ax

111. ∫ ( )= − +xe dx e
a

ax C1ax
ax

2
112. ∫ ∫= − −x e dx

a
x e n

a
x e dx1n ax n ax n ax1

113. ∫ ∫= − > ≠−x b dx x b
a b

n
a b

x b dx b b
ln ln

, 0,  1n ax
n ax

n ax1

114. ∫ ( )=
+

− +e bx dx e
a b

a bx b bx Csin sin cosax
ax

2 2

115. ∫ ( )=
+

+ +e bx dx e
a b

a bx b bx Ccos cos sinax
ax

2 2
116. ax dx x ax x Cln ln∫ = − +

117. x ax dx
x ax

n
m

n
x ax dx nln

ln
1 1

ln , 1n m
n m

n m
1

1∫ ∫( )
( )

( )=
+

−
+

≠ −
+

−

118. x ax dx
ax

m
C mln

ln
1

, 1m
m

1
1

∫ ( )
( )

=
+

+ ≠ −−
+

119. dx
x ax

ax C
ln

ln ln∫ = +

Forms Involving ax x a2 ,  02− >

120. dx
ax x

x a
a

C
2

arcsin
2∫ ( )

−
= − +

121. ax x dx x a ax x a x a
a

C2
2

2
2

arcsin2 2
2

∫ ( )− = − − + − +

122. ax x dx
x a ax x

n
na

n
ax x dx2

2

1 1
2

n
n

n
2

2 2
2

2

∫ ∫( ) ( ) ( )
( )

− =
− −

+
+

+
−

−

123. dx

ax x

x a ax x

n a
n

n a
dx

ax x2

2

2
3

2 2
n

n

n
2

2
2

2 2 2
2∫ ∫( )

( )
( )( ) ( )

( )

−
=

− −
−

+ −
− −

−

−

124. x ax x dx x a x a ax x a x a
a

C2 2 3 2
6 2

arcsin2
2 3

∫ ( )( )( )
− = + − − + − +

125. ax x
x

dx ax x a x a
a

C2 2 arcsin
2

2∫ ( )− = − + − +

126. ax x
x

dx a x
x

x a
a

C2 2 2 arcsin
2

2∫ ( )− = − − − − +

127. 
x dx

ax x
a x a

a
ax x C

2
arcsin 2

2
2∫ ( )

−
= − − − + 128. dx

x ax x a
a x

x
C

2
1 2

2∫ −
= − − +

Hyperbolic Forms

129. ax dx
a

ax Csinh 1 cosh∫ = + 130. ax dx
a

ax Ccosh 1 sinh∫ = +

131. ax dx
ax

a
x Csinh

sinh 2
4 2

2∫ = − + 132. ax dx
ax

a
x Ccosh

sinh 2
4 2

2∫ = + +
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 A Brief Table of Integrals T-6

133. ax dx
ax ax
na

n
n

ax dx nsinh
sinh cosh 1 sinh , 0n

n
n

1
2∫ ∫= − − ≠

−
−

134. ∫ ∫= + − ≠
−

−ax dx
ax ax
na

n
n

ax dx ncosh
cosh sinh 1 cosh , 0n

n
n

1
2

135. x ax dx x
a

ax
a

ax Csinh cosh 1 sinh
2∫ = − + 136. x ax dx x

a
ax

a
ax Ccosh sinh 1 cosh

2∫ = − +

137. x ax dx x
a

ax n
a

x ax dxsinh cosh coshn
n

n 1∫ ∫= − − 138. x ax dx x
a

ax n
a

x ax dxcosh sinh sinhn
n

n 1∫ ∫= − −

139. ax dx
a

ax Ctanh 1 ln cosh∫ ( )= + 140. ax dx
a

ax Ccoth 1 ln sinh∫ = +

141. ax dx x
a

ax Ctanh 1 tanh2∫ = − + 142. ax dx x
a

ax Ccoth 1 coth2∫ = − +

143. ax dx ax
n a

ax dx ntanh tanh
1

tanh , 1n
n

n
1

2∫ ∫( )
= −

−
+ ≠

−
−

144. ax dx ax
n a

ax dx ncoth coth
1

coth , 1n
n

n
1

2∫ ∫( )
= −

−
+ ≠

−
−

145. ax dx
a

ax Csech 1 arcsin tanh∫ ( )= + 146. ax dx
a

ax Ccsch 1 ln tanh
2∫ = +

147. ax dx
a

ax Csech 1 tanh2∫ = + 148. ax dx
a

ax Ccsch 1 coth2∫ = − +

149. ax dx
ax ax

n a
n
n

ax dx nsech
sech tanh

1
2
1

sech , 1n
n

n
2

2∫ ∫( )
=

−
+ −

−
≠

−
−

150. ax dx
ax ax

n a
n
n

ax dx ncsch
csch coth

1
2
1

csch , 1n
n

n
2

2∫ ∫( )
= −

−
− −

−
≠

−
−

151. ax ax dx
ax

na
C nsech tanh

sech
, 0n

n

∫ = − + ≠ 152. ax ax dx
ax

na
C ncsch coth

csch
, 0n

n

∫ = − + ≠

153. e bx dx e e
a b

e
a b

C a bsinh
2

,ax
ax bx bx

2 2∫ =
+

−
−

⎡
⎣⎢

⎤
⎦⎥

+ ≠
−

154. e bx dx e e
a b

e
a b

C a bcosh
2

,ax
ax bx bx

2 2∫ =
+

+
−

⎡
⎣⎢

⎤
⎦⎥

+ ≠
−

Some Definite Integrals

155. ∫ ( )= Γ = − >− −
∞

x e dx n n n( ) 1 !, 0n x1

0
156. e dx

a
a1

2
, 0ax

0

2∫ π= >−
∞

157. ∫ ∫
π( )

( )
= =

⋅ ⋅ ⋅ ⋅ −
⋅ ⋅ ⋅ ⋅

⋅ ≥

⋅ ⋅ ⋅ ⋅ −
⋅ ⋅ ⋅ ⋅

≥

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

π π
�
�

�
�

x dx x dx

n
n

n

n
n

n
sin cos

1 3 5 1
2 4 6 2

, if   is an even integer 2

2 4 6 1
3 5 7

, if   is an odd integer 3

n n

0

2

0

2
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Arithmetic Operations

( )+ = + ⋅ =a b c ab ac a
b

c
d

ac
bd

,

+ = + = ⋅a
b

c
d

ad bc
bd

a b
c d

a
b

d
c

,

Laws of Signs

( )− − = − = − =
−

a a a
b

a
b

a
b

,

Zero Division by zero is not defined.

≠ = = =a
a

aIf 0: 0 0, 1, 0 0a0

⋅ = ⋅ =a a aFor any number : 0 0 0

Laws of Exponents

( )( )= = = = =+a a a ab a b a a a a a, , ( ) ,m n m n m m m m n mn m n mn n m

If ≠a 0, then

= = =− −a
a

a a a
a

, 1, 1 .
m

n
m n m

m
0

The Binomial Theorem For any positive integer n,

( )
( )+ = + + −

⋅
− −a b a na b n n a b1

1 2
n n n n1 2 2

�( )( )+ − −
⋅ ⋅

+ + +− −n n n a b nab b1 2
1 2 3

.n n n3 3 1

For instance,

( ) ( )

( ) ( )

+ = + + − = − +

+ = + + + − = − + −

a b a ab b a b a ab b

a b a a b ab b a b a a b ab b

2 , 2

3 3 , 3 3 .

2 2 2 2 2 2

3 3 2 2 3 3 3 2 2 3

Factoring the Difference of Like Integer Powers, >n 1

�( )( )− = − + + + + +− − − − −a b a b a a b a b ab bn n n n n n n1 2 3 2 2 1

For instance,

( )

( )

( )( )

( )

( )

− = − +
− = − + +
− = − + + +

a b a b a b

a b a b a ab b

a b a b a a b ab b

,

,

.

2 2

3 3 2 2

4 4 3 2 2 3

Completing the Square If ≠a 0, then

( )( )+ + = + = + = −ax bx c au C u x b a C c b
a

2 ,
4

.2 2
2

The Quadratic Formula

If ≠a 0 and + + =ax bx c 0,2  then

= − ± −x b b ac
a

4
2

.
2

Basic Algebra Formulas
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Parallelogram

h

b

A = bh

Trapezoid

h

a

b

A =    (a + b)h1
2

Circle

r A = pr2,
C = 2pr

=A area, =B area of base, =C circumference, =S surface area, =V volume

Triangle

b

h

A =    bh1
2

Similar Triangles

b

b′

c′ a′ ac

a′
a

= b′
b

= c′
c

Pythagorean Theorem

c
b

a

a2 + b2 = c2

Geometry Formulas

Any Cylinder or Prism with Parallel Bases

h

B

h

B
V = Bh

Right Circular Cylinder

h

r

V = pr2h
S = 2prh = Area of side

Any Cone or Pyramid

V =   Bh
3
1

h

B

h

B

Right Circular Cone

V =    pr2h1
3

S = prs = Area of side

Sphere

V =    pr3, S = 4pr24
3
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Trigonometry Formulas

Definitions and Fundamental Identities
y
r

Sine: sin 1
csc

θ
θ

= =

x
r

Cosine: cos 1
sec

θ
θ

= =

y
x

Tangent: tan 1
cot

θ
θ

= =

r

0 x

y
u

P(x, y)

y

x

Identities

sin ( ) sin , cos( ) cosθ θ θ θ− = − − =

sin cos 1, sec 1 tan , csc 1 cot2 2 2 2 2 2θ θ θ θ θ θ+ = = + = +

sin 2 2 sin cos , cos 2 cos sin2 2θ θ θ θ θ θ= = −

cos
1 cos 2

2
, sin

1 cos 2
2

2 2θ
θ

θ
θ

=
+

=
−

A B A B A Bsin sin cos cos sin( )+ = +
A B A B A Bsin sin cos cos sin( )− = −
A B A B A Bcos cos cos sin sin( )+ = −
A B A B A Bcos cos cos sin sin( )− = +

A B
A B

A B
tan

tan tan
1 tan tan

( )+ =
+

−

A B
A B

A B
tan

tan tan
1 tan tan

( )− =
−

+

A A A Asin
2

cos , cos
2

sinπ π( ) ( )− = − − =

A A A Asin
2

cos , cos
2

sinπ π( ) ( )+ = + = −

( ) ( )= − − +A B A B A Bsin sin 1
2

cos 1
2

cos

A B A B A Bcos cos 1
2

cos 1
2

cos( ) ( )= − + +

A B A B A Bsin cos 1
2

sin 1
2

sin( ) ( )= − + +

A B A B A Bsin sin 2 sin 1
2

cos 1
2

( ) ( )+ = + −

A B A B A Bsin sin 2 cos 1
2

sin 1
2

( ) ( )− = + −

A B A B A Bcos cos 2 cos 1
2

cos 1
2

( ) ( )+ = + −

A B A B A Bcos cos 2 sin 1
2

sin 1
2

( ) ( )− = − + −

Trigonometric Functions

Radian Measure

s

r

1

Circle of radius r
 

U nit circle
 

u

s
r

s
r1

or ,θ θ θ= = =

180 radians.π° =

"

2

45

45 90
1

1

1

1 1

1

p
2

p
4

p
3

p
2

p
6

p
4

2 2

30

9060

Degrees Radians

"

2

"

3
"

3

The angles of two common triangles, in  
degrees and radians.

x

y

y = cos x

Domain: (−∞, ∞)
Range:    [−1, 1]

0–p p 2p–p
2

p
2

3p
2

x

y

0–p p 2p–p
2

p
2

3p
2

y = sin x

Domain: (−∞, ∞)
Range:    [−1, 1]

y

x

y = tan x

3p
2

– –p –p
2

0 p
2
p 3p

2

Domain: All real numbers except odd
               integer multiples of p�2 

Domain: All real numbers except odd
               integer multiples of p�2 

Range:    (−∞, ∞)

x

y
y = csc x

0

1

–p p 2p–p
2

p
2

3p
2

Domain: x ≠ 0, ±p, ±2p, . . .
Range:    (−∞, −1] ´ [1, ∞)

y

x

y = cot x

0

1

–p p 2p–p
2

p
2

3p
2

Domain: x ≠ 0, ±p, ±2p, . . .
Range:    (−∞, ∞)

x

y
y = sec x

3p
2

– –p –p
2

0

1

p
2
p 3p

2

Range:    (−∞, −1] ´ [1, ∞)
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Series

Tests for Convergence of Infinite Series

1. The nth-Term Test: Unless a 0,n →  the series diverges.

2. Geometric series: ar n∑  converges if r 1;<  otherwise 
it diverges.

3. p-series: n1 p∑  converges if p 1;>  otherwise it diverges.

4. Series with nonnegative terms: Try the Integral Test, 
Ratio Test, or Root Test. Try comparing to a known series 
with the Comparison Test or the Limit Comparison Test.

5. Series with some negative terms: Does an∑  converge? 
If yes, so does an∑  because absolute convergence implies 
convergence.

6. Alternating series: an∑  converges if the series satisfies 
the conditions of the Alternating Series Test.

Taylor Series

x
x x x x x1

1
1 , 1n

n

n2

0

� � ∑−
= + + + + + = <

=

∞

x
x x x x x1

1
1 ( ) 1 , 1n

n

n n2

0

� � ∑ ( )
+

= − + − + − + = − <
=

∞

e x x x
n

x
n

x1
2! ! !

,x
n

n

n2

0

� � ∑= + + + + + = < ∞
=

∞

x x x x x
n

x
n

xsin
3! 5!

1
2 1 !

1
2 1 !

,n
n

n

n n3 5 2 1

0

2 1
� � ∑( )

( )

( )

( )
= − + − + −

+
+ = −

+
< ∞

+

=

∞ +

∑( )
( )= − + − + − + = − < ∞

=

∞

� �x x x x
n

x
n

xcos 1
2! 4!

1
(2 )!

1
(2 )!

,n
n

n

n n2 4 2

0

2

∑( ) ( )
( )+ = − + − + − + = − − < ≤−

=

∞ −
� �x x x x x

n
x

n
xln 1

2 3
1 1 , 1 1n

n

n

n n2 3
1

1

1

∑( )+
−

= = + + + +
+

+ =
+

<−
+

=

∞ +
� �x

x
x x x x x

n
x
n

xln 1
1

2 tanh 2
3 5 2 1

2
2 1

, 1
n

n

n
1

3 5 2 1

0

2 1

∑( )
( )= − + − + −

+
+ = −

+
≤

+

=

∞ +
� �x x x x x

n
x

n
xarctan

3 5
1

2 1
1
2 1

, 1n
n

n

n n3 5 2 1

0

2 1

Binomial Series

∑( )

( )
( )

( ) ( )( ) ( )( )
+ = + + − + − − + +

− − − +
+

= + <
=

∞

�
�

�x mx m m x m m m x m m m m k x
k

m
k

x x

1 1 1
2!

1 2
3!

1 2 1
!

1 , 1,

m
k

k

k

2 3

1

where

( )( ) ( ) ( )( ) ( )
= = − =

− − +
≥

�m m m m m m
k

m m m k
k

k
1

,
2

1
2!

,
1 1

!
for  3.
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Vector Operator Formulas (Cartesian Form)

Formulas for Grad, Div, Curl, and the Laplacian

Cartesian x y z, ,( ) i, j, and k  
are unit vectors in the direc-
tions of increasing x y,  , and 
z. M N,  , and P  are the scalar 
components of x y zF , ,( ) in 
these directions.

Gradient
f

f
x

f
y

f
z

i j k∇ = ∂
∂

+ ∂
∂

+ ∂
∂

Divergence M
x

N
y

P
z

F∇ ⋅ = ∂
∂

+ ∂
∂

+ ∂
∂

Curl

∇ × = ∂
∂

∂
∂

∂
∂x y z

M N P

F

i j k

Laplacian
f

f
x

f
y

f
z

2
2

2

2

2

2

2
∇ = ∂

∂
+ ∂

∂
+ ∂

∂

Vector Triple Products

u v w v w u w u v( ) ( ) ( )× ⋅ = × ⋅ = × ⋅
u v w u w v u v w( ) ( ) ( )× × = ⋅ − ⋅

The Fundamental Theorem of Line Integrals

Part 1  Let M N PF i j k= + +  be a vector field whose components 
are continuous throughout an open connected region D in space. 
Then there exists a differentiable function f such that

f
f
x

f
y

f
z

F i j k= ∇ = ∂
∂

+ ∂
∂

+ ∂
∂

if and only if, for all points A and B in D, the value of dF r
A

B
∫ ⋅  

is independent of the path joining A to B in D.
Part 2  If the integral is independent of the path from A to B, its value is

d f B f AF r ( ) ( ).
A

B

∫ ⋅ = −

Green’s Theorem and Its Generalization to Three Dimensions

Tangential form of Green’s Theorem: ds k dAF T F
C R

�∫ ∫∫ ( )⋅ = ∇ × ⋅

Stokes’ Theorem: ds dF T F n
C S

�∫ ∫∫ σ( )⋅ = ∇ × ⋅

Normal form of Green’s Theorem: ds dAF n F
C R

�∫ ∫∫ ( )⋅ = ∇ ⋅

Divergence Theorem: d dVF n F
S D

∫∫ ∫∫∫σ⋅ = ∇ ⋅

f 0( )∇ × ∇ =

fg f g g f( )∇ = ∇ + ∇

∇ ⋅ = ∇ ⋅ + ∇ ⋅g g gF F F( )

∇ × = ∇ × + ∇ ×g g gF F F( )

a b a bF F F F1 2 1 2( )∇ ⋅ + = ∇ ⋅ + ∇ ⋅

a b a bF F F F1 2 1 2( )∇ × + = ∇ × + ∇ ×

F F F F F F1 2 1 2 2 1( ) ( ) ( )∇ ⋅ = ⋅ ∇ + ⋅ ∇ +

F F F F1 2 2 1( ) ( )× ∇ × + × ∇ ×

F F F F F F1 2 2 1 1 2( ) ( ) ( )∇ ⋅ × = ⋅ ∇ × − ⋅ ∇ ×

( ) ( ) ( )

( ) ( )

∇ × × = ⋅ ∇ − ⋅ ∇ +

∇ ⋅ − ∇ ⋅

F F F F F F

F F F F
1 2 2 1 1 2

2 1 1 2

F F F F F2( ) ( ) ( ) ( )∇ × ∇ × = ∇ ∇ ⋅ − ∇ ⋅ ∇ = ∇ ∇ ⋅ − ∇

F F F F F F1
2

( ) ( ) ( )∇ × × = ⋅ ∇ − ∇ ⋅

Vector Identities

In the identities here, f  and g are differentiable scalar functions; F F,   ,1  and F2 are differentiable vector fields; and a and b are real 
constants.
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Limits

General Laws

If L, M, c, and k are real numbers and

f x L g x Mlim ( ) and lim ( ) , then
x c x c

= =
→ →

Sum Rule: f x g x L Mlim ( ) ( )
x c

( )+ = +
→

Difference Rule: f x g x L Mlim ( ) ( )
x c

( )− = −
→

Product Rule: f x g x L Mlim ( ) ( )
x c

( )⋅ = ⋅
→

Constant Multiple Rule: k f x k Llim ( )
x c

( )⋅ = ⋅
→

Quotient Rule: f x
g x

L
M

Mlim
( )
( )

, 0
x c

= ≠
→

The Sandwich Theorem

If g x f x h x( ) ( ) ( )≤ ≤  in an open interval containing c, except 
possibly at x c,=  and if

g x h x Llim ( ) lim ( ) ,
x c x c

= =
→ →

then f x Llim ( ) .
x c

=
→

Inequalities

If f x g x( ) ( )≤  in an open interval containing c, except possibly 
at x c,=  and both limits exist, then

f x g xlim ( ) lim ( ).
x c x c

≤
→ →

Continuity

If g is continuous at L and f x Llim ( ) ,
x c

=
→

 then

g f x g Llim ( ( )) ( ).
x c

=
→

Specific Formulas

If P x a x a x a( ) ,n
n

n
n

1
1

0�= + + +−
−  then

P x P c a c a c alim ( ) ( ) .
x c

n
n

n
n

1
1

0�= = + + +
→

−
−

If P x( ) and Q x( ) are polynomials and Q c( ) 0,≠  then

P x
Q x

P c
Q c

lim ( )
( )

( )
( )

.
x c

=
→

If f x( ) is continuous at x c,=  then

f x f clim ( ) ( ).
x c

=
→

x
x

x
x

lim
sin

1 and lim
1 cos

0
x x0 0

=
−

=
→ →

L’Hôpital’s Rule

If f a g a( ) ( ) 0,= =  both f ′ and g′ exist in an open interval I 
containing a, and g x( ) 0′ ≠  on I if x a,≠  then

f x
g x

f x
g x

lim
( )
( )

lim
( )
( )

,
x a x a

= ′
′→ →

assuming the limit on the right side exists.
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Differentiation Rules

General Formulas

Assume u and υ are differentiable functions of x.

Constant: d
dx

c( ) 0=

Sum: d
dx

u du
dx

d
dx

υ υ
( )+ = +

Difference: d
dx

u du
dx

d
dx

υ υ
( )− = −

Constant Multiple: d
dx

cu c du
dx

( ) =

Product: d
dx

u u d
dx

du
dx

( )υ υ υ= +

Quotient: d
dx

u
du
dx

u d
dx

2υ

υ υ

υ( ) =
−

Power: d
dx

x nxn n 1= −

Chain Rule: = ′ ⋅ ′d
dx

f g x f g x g x( ( ( )) ( ( )) ( )

Trigonometric Functions

d
dx

x x d
dx

x x

d
dx

x x d
dx

x x x

d
dx

x x d
dx

x x x

sin cos cos sin

tan sec sec sec tan

cot csc csc csc cot

2

2

( ) ( )

( ) ( )

( ) ( )

= = −

= =

= − = −

Exponential and Logarithmic Functions

d
dx

e e d
dx

x
x

d
dx

a a a d
dx

x
x a

ln 1

ln log 1
ln

x x

x x
a( )

= =

= =

Inverse Trigonometric Functions

d
dx

x
x

d
dx

x
x

d
dx

x
x

d
dx

x
x x

d
dx

x
x

d
dx

x
x x

arcsin 1
1

arccos 1
1

arctan 1
1

arcsec 1
1

arccot 1
1

arccsc 1
1

2 2

2 2

2 2

( ) ( )

( ) ( )

( ) ( )

=
−

= −
−

=
+

=
−

= −
+

= −
−

Hyperbolic Functions

( ) ( )

( ) ( )

( ) ( )

= =

= = −

= − = −

d
dx

x x d
dx

x x

d
dx

x x d
dx

x x x

d
dx

x x d
dx

x x x

sinh cosh cosh sinh

tanh sech sech sech tanh

coth csch csch csch coth

2

2

Inverse Hyperbolic Functions

d
dx

x
x

d
dx

x
x

d
dx

x
x

d
dx

x
x x

d
dx

x
x

d
dx

x
x x

sinh 1
1

cosh 1
1

tanh 1
1

sech 1
1

coth 1
1

csch 1
1

1
2

1
2

1
2

1
2

1
2

1
2

( ) ( )

( ) ( )

( ) ( )

=
+

=
−

=
−

= −
−

=
−

= −
+

− −

− −

− −

Parametric Equations

If x f t( )=  and y g t( )=  are differentiable, then

y
dy
dx

dy dt
dx dt

d y
dx

dy dt
dx dt

and .
2

2
′ = = =

′
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Zero: f x dx
a

a

∫

Order of Integration: f x dx f x dx
b

a

a

b

∫ ∫= −

Constant Multiples: k f x dx k f x dx k,   ny numbe
a

b

a

b

∫ ∫

f x dx f x dx k
a

b

a

b

∫ ∫− − −

Sums and Differences: f x g x dx f x dx g x dx
a

b

a

b

a

b

∫ ∫ ∫

Additivity: f x dx f x dx f x dx
a

b

b

c

a

c

∫∫ ∫

Max-Min Inequality: f f f a b

∫⋅ − ≤ ≤ ⋅ −f b a f x dx f b a
a

b

Domination: ∫ ∫≥ ≥f x g x a b f x dx g x dx
a

b

a

b

∫≥ ≥f x a b f x dx
a

b

Part 1 f a b F x f t dta

x

a b a b f x

F x d
dx

f t dt f x
a

x

∫

Part 2 f a b F f
a b

f x dx F b F a
a

b

∫ = −

f g x g x dx f u du
a

b

g a

g b

∫ ∫⋅ ′ u x x dx u x x x u x dx
a

b

a

b

a

b

∫ ∫υ υ υ⎤
⎦⎥

− ′
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