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A comprehensive workbook containing a variety of examples 
and exercises, complete with model answers, designed to support 
your learning and revision.

Fully cross-referenced to Medical Statistics at a Glance, this 
workbook includes:
•	 Over 80 MCQs, each testing knowledge of a single statistical 
concept or aspect of study interpretation
•	 29 structured questions to explore in greater depth several sta-
tistical techniques or principles

•	 Full appraisals of two published papers to demonstrate the use 
of templates for clinical trials and observational studies
•	 Detailed step-by-step analyses of two substantial data sets (also 
available at www.medstatsaag.com) to demonstrate the applica-
tion of statistical procedures to real-life research

Medical Statistics at a Glance Workbook is the ideal resource to 
improve statistical knowledge together with your analytical and 
interpretational skills.

Also available to buy!
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Preface

Medical Statistics at a Glance is directed at undergraduate  
medical students, medical researchers, postgraduates in the  
biomedical disciplines and at pharmaceutical industry person-
nel. All of these individuals will, at some time in their profes-
sional lives, be faced with quantitative results (their own or those 
of others) which will need to be critically evaluated and inter-
preted, and some, of course, will have to pass that dreaded sta-
tistics exam! A proper understanding of statistical concepts and 
methodology is invaluable for these needs. Much as we should 
like to fire the reader with an enthusiasm for the subject of statis-
tics, we are pragmatic. Our aim in this new edition, as it was in 
the earlier editions, is to provide the student and the researcher, 
as well as the clinician encountering statistical concepts in the 
medical literature, with a book which is sound, easy to read, 
comprehensive, relevant, and of useful practical application.

We believe Medical Statistics at a Glance will be particularly 
helpful as an adjunct to statistics lectures and as a reference 
guide. The structure of this fourth edition is the same as that 
of the first three editions. In line with other books in the At a 
Glance series, we lead the reader through a number of self-
contained two-, three- or occasionally four-page chapters, each 
covering a different aspect of medical statistics. There is extensive 
cross-referencing throughout the text to help the reader link the 
various procedures. We have learned from our own teaching 
experiences and have taken account of the difficulties that our 
students have encountered when studying medical statistics. For 
this reason, we have chosen to limit the theoretical content of the 
book to a level that is sufficient for understanding the procedures 
involved, yet which does not overshadow the practicalities of 
their execution.

Medical statistics is a wide-ranging subject covering a large 
number of topics. We have provided a basic introduction to the 
underlying concepts of medical statistics and a guide to the most 
commonly used statistical procedures. Epidemiology, concerned 
with the distribution and determinants of disease in specified 
populations, is closely allied to medical statistics. Hence some 
of the main issues in epidemiology, relating to study design and 
interpretation, are discussed. Also included are chapters that 
the reader may find useful only occasionally, but which are, 
nevertheless, fundamental to many areas of medical research; 
for example, evidence-based medicine, systematic reviews 
and meta-analysis, survival analysis, Bayesian methods and 
the development of prognostic scores. We have explained the 
principles underlying these topics so that the reader will be able 
to understand and interpret the results from them when they are 
presented in the literature.

A basic set of statistical tables is contained in Appendix A. 
Neave, H.R. (1995) Elementary Statistical Tables, Routledge: 

London, and Diem, K. Lenter, C. and Seldrup (1981) Geigy 
Scientific Tables, 8th rev. and enl. edition, Basle: Ciba-Geigy, 
amongst others, provide fuller versions if the reader requires 
more precise results for hand calculations. We have included 
a new appendix, Appendix D, in this fourth edition. This 
appendix contains guidelines for randomized controlled trials 
(the CONSORT checklist and flow chart) and observational 
studies (the STROBE checklist). The CONSORT and STROBE 
checklists are produced by the EQUATOR Network, initiated 
with the objectives of providing resources and training for the 
reporting of health research. Guidelines for the presentation of 
study results are now available for many other types of study 
and we provide website addresses in a table in Appendix D for 
some of these designs. Appendix D also contains templates 
that we hope you will find useful when you critically appraise 
or evaluate the evidence in randomized controlled trials and 
observational studies. The use of these templates to critically 
appraise two published papers is demonstrated in our Medical 
Statistics at a Glance Workbook. Due to the inclusion of the new 
Appendix D, the labeling of the final two appendices differs from 
that of the third edition: Appendix E now contains the Glossary 
of terms with readily accessible explanations of commonly used 
terminology, and Appendix F provides cross-referencing of 
multiple choice and structured questions from Medical Statistics 
at a Glance Workbook.

The chapter titles of this fourth edition are identical to 
those of the third edition. Some of the first 46 chapters remain 
unaltered in this new edition and some have relatively minor 
changes which accommodate recent advances, cross-referencing 
or re-organization of the new material. In particular, where 
appropriate, we have provided references to the relevant 
EQUATOR guidelines.

As in the third edition, we provide a set of learning objectives 
for each chapter. Each set provides a framework for evaluating 
understanding and progress. If you are able to complete all the 
bulleted tasks in a chapter satisfactorily, you will have mastered 
the concepts in that chapter.

Most of the statistical techniques described in the book 
are accompanied by examples illustrating their use. We have 
replaced many of the older examples that were in previous 
editions by those that are commensurate with current clinical 
research. We have generally obtained the data for our examples 
from collaborative studies in which we or colleagues have 
been involved; in some instances, we have used real data from 
published papers. Where possible, we have used the same data 
set in more than one chapter to reflect the reality of data analysis, 
which is rarely restricted to a single technique or approach. 
Although we believe that formulae should be provided and the 
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logic of the approach explained as an aid to understanding, we 
have avoided showing the details of complex calculations – most 
readers will have access to computers and are unlikely to perform 
any but the simplest calculations by hand.

We consider that it is particularly important for the reader to 
be able to interpret output from a computer package. We have 
therefore chosen, where applicable, to show results using extracts 
from computer output. In some instances, where we believe 
individuals may have difficulty with its interpretation, we have 
included (Appendix C) and annotated the complete computer 
output from an analysis of a data set. There are many statistical 
packages in common use; to give the reader an indication of how 
output can vary, we have not restricted the output to a particular 
package and have, instead, used four well-known ones – SAS, 
SPSS, Stata and R.

We know that one of the greatest difficulties facing non-
statisticians is choosing the appropriate technique. We have 
therefore produced two flow charts which can be used both to 
aid the decision as to what method to use in a given situation and 
to locate a particular technique in the book easily. These flow 
charts are displayed prominently on the inside back cover for 
easy access.

The reader may find it helpful to assess his/her progress in 
self-directed learning by attempting the interactive exercises on 
our website (www.medstatsaag.com) or the multiple choice and 
structured questions, all with model answers, in our Medical 
Statistics at a Glance Workbook. The website also contains a full 
set of references (some of which are linked directly to Medline) 

x

to supplement the references quoted in the text and provide 
useful background information for the examples. For those 
readers who wish to gain a greater insight into particular areas of 
medical statistics, we can recommend the following books:
•	 Altman, D.G. (1991) Practical Statistics for Medical Research. 
London: Chapman and Hall/CRC.
•	 Armitage, P., Berry, G. and Matthews, J.F.N. (2001) Statisti-
cal Methods in Medical Research. 4th edition. Oxford: Blackwell  
Science.
•	 Kirkwood, B.R. and Sterne, J.A.C. (2003) Essential Medical Sta-
tistics. 2nd edition. Oxford: Blackwell Publishing.
•	 Pocock, S.J. (1983) Clinical Trials: A Practical Approach. 
Chichester: Wiley.

We are extremely grateful to Mark Gilthorpe and Jonathan 
Sterne who made invaluable comments and suggestions on aspects 
of the second edition, and to Richard Morris, Fiona Lampe, Shak 
Hajat and Abul Basar for their counsel on the first edition. We 
wish to thank everyone who has helped us by providing data for 
the examples. Naturally, we take full responsibility for any errors 
that remain in the text or examples. We should also like to thank 
Mike, Gerald, Nina, Andrew and Karen who tolerated, with 
equanimity, our preoccupation with the first three editions and 
for their unconditional support, patience and encouragement as 
we laboured to produce this fourth edition.

� Aviva Petrie
� Caroline Sabin
� London
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Medical Statistics at a Glance, Fourth Edition. Aviva Petrie and Caroline Sabin. © 2020 Aviva Petrie and Caroline Sabin. Published 2020 by John Wiley & Sons Ltd. 
Companion Website: www.medstatsaag.com

Part 1  Handling data Learning objectives
By the end of this chapter, you should be able to:
•	 Distinguish between a sample and a population
•	 Distinguish between categorical and numerical data
•	 Describe different types of categorical and numerical data
•	 Explain the meaning of the terms: variable, percentage, 

ratio, quotient, rate, score
•	 Explain what is meant by censored data

Relevant Workbook questions: MCQs 1, 2 and 16; and  
SQ 1 available online

Data and statistics
The purpose of most studies is to collect data to obtain information 
about a particular area of research. Our data comprise observa-
tions on one or more variables; any quantity that varies is termed 
a variable. For example, we may collect basic clinical and demo-
graphic information on patients with a particular illness. The vari-
ables of interest may include the sex, age and height of the patients.

Our data are usually obtained from a sample of individuals 
that represents the population of interest. Our aim is to condense 
these data in a meaningful way and extract useful information 
from them. Statistics encompasses the methods of collecting, 
summarizing, analysing and drawing conclusions from the data: 
we use statistical techniques to achieve our aim.

Data may take many different forms. We need to know what 
form every variable takes before we can make a decision regarding 
the most appropriate statistical methods to use. Each variable 
and the resulting data will be one of two types: categorical or 
numerical (Fig. 1.1).

Categorical (qualitative) data
These occur when each individual can only belong to one of a 
number of distinct categories of the variable.
•	 Nominal data – the categories are not ordered but simply have 
names. Examples include blood group (A, B, AB and O) and 
marital status (married/widowed/single, etc.). In this case, there 
is no reason to suspect that being married is any better (or worse) 
than being single!
•	 Ordinal data – the categories are ordered in some way. Exam-
ples include disease staging systems (advanced, moderate, mild, 
none) and degree of pain (severe, moderate, mild, none).

A categorical variable is binary or dichotomous when there 
are only two possible categories. Examples include ‘Yes/No’, ‘Dead/
Alive’ or ‘Patient has disease/Patient does not have disease’.

Numerical (quantitative) data
These occur when the variable takes some numerical value. We 
can subdivide numerical data into two types.
•	 Discrete data – occur when the variable can only take certain 
whole numerical values. These are often counts of numbers of 
events, such as the number of visits to a GP in a particular year or the 
number of episodes of illness in an individual over the last 5 years.
•	 Continuous data – occur when there is no limitation on the 
values that the variable can take, e.g. weight or height, other than 
that which restricts us when we make the measurement.

Distinguishing between data types
We often use very different statistical methods depending on 
whether the data are categorical or numerical. Although the 
distinction between categorical and numerical data is usually 
clear, in some situations it may become blurred. For example, 
when we have a variable with a large number of ordered cat-
egories (e.g. a pain scale with seven categories), it may be dif-
ficult to distinguish it from a discrete numerical variable. The 
distinction between discrete and continuous numerical data 
may be even less clear, although in general this will have little 
impact on the results of most analyses. Age is an example of a 
variable that is often treated as discrete even though it is truly 
continuous. We usually refer to ‘age at last birthday’ rather than 
‘age’, and therefore, a woman who reports being 30 may have 
just had her 30th birthday, or may be just about to have her 
31st birthday.

Do not be tempted to record numerical data as categorical at 
the outset (e.g. by recording only the range within which each 
patient’s age falls rather than his/her actual age) as important 
information is often lost. It is simple to convert numerical data to 
categorical data once they have been collected.

Derived data
We may encounter a number of other types of data in the medi-
cal field. These include:
•	 Percentages – these may arise when considering improve-
ments in patients following treatment, e.g. a patient’s lung 

Types of data1

Figure 1.1   Diagram showing the different types of variable.

Variable

Numerical
(quantitative)

Categorical
(qualitative)

Nominal Ordinal Discrete Continuous

Categories
are mutually
exclusive and
unordered

e.g.
Sex (male/
female)
Blood group
(A/B/AB/O)

Categories
are mutually
exclusive and
ordered

e.g.
Disease stage
(mild/moderate/
severe)

Integer values,
typically
counts

e.g.
Days sick
last year

Takes any value
in a range of
values

e.g.
Weight in kg
Height in cm
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Chapter 1  Types of data
3function (forced expiratory volume in 1 second, FEV1) may 

increase by 24% following treatment with a new drug. In this 
case, it is the level of improvement, rather than the absolute 
value, which is of interest.
•	 Ratios or quotients – occasionally you may encounter the 
ratio or quotient of two variables. For example, body mass index 
(BMI), calculated as an individual’s weight (kg) divided by her/
his height squared (m2), is often used to assess whether s/he is 
over- or underweight.
•	 Rates – disease rates, in which the number of disease events 
occurring among individuals in a study is divided by the total 
number of years of follow-up of all individuals in that study  
(Chapter 31), are common in epidemiological studies (Chapter 12).
•	 Scores – we sometimes use an arbitrary value, such as a score, 
when we cannot measure a quantity. For example, a series of 
responses to questions on quality of life may be summed to give 
some overall quality of life score on each individual.

All these variables can be treated as numerical variables for most 
analyses. Where the variable is derived using more than one value 
(e.g. the numerator and denominator of a percentage), it is important 
to record all of the values used. For example, a 10% improvement in 

a marker following treatment may have different clinical relevance 
depending on the level of the marker before treatment.

Censored data
We may come across censored data in situations illustrated by 
the following examples.
•	 If we measure laboratory values using a tool that can only detect 
levels above a certain cut-off value, then any values below this cut-
off will not be detected, i.e. they are censored. For example, when 
measuring virus levels, those below the limit of detectability will 
often be reported as ‘undetectable’ or ‘unquantifiable’ even though 
there may be some virus in the sample. In this situation, if the lower 
cut-off of a tool is x, say, the results may be reported as ‘ < x’. Simi-
larly, some tools may only be able to reliably quantify levels below a 
certain cut-off value, say y; any measurements above that value will 
also be censored and the test result may be reported as ‘ > y’.
•	 We may encounter censored data when following patients in 
a trial in which, for example, some patients withdraw from the 
trial before the trial has ended. This type of data is discussed in 
more detail in Chapter 44.
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Medical Statistics at a Glance, Fourth Edition. Aviva Petrie and Caroline Sabin. © 2020 Aviva Petrie and Caroline Sabin. Published 2020 by John Wiley & Sons Ltd. 
Companion Website: www.medstatsaag.com

Data entry2

Learning objectives
By the end of this chapter, you should be able to:
•	 Describe different formats for entering data on to a computer
•	 Outline the principles of questionnaire design
•	 Distinguish between single-coded and multi-coded variables
•	 Describe how to code missing values

Relevant Workbook questions: MCQs 1, 3 and 4; and  
SQ 1 available online

When you carry out any study you will almost always need to 
enter the data into a computer package. Computers are invalu-
able for improving the accuracy and speed of data collection and 
analysis, making it easy to check for errors, produce graphical 
summaries of the data and generate new variables. It is worth 
spending some time planning data entry – this may save consid-
erable effort at later stages.

Formats for data entry
There are a number of ways in which data can be entered and 
stored on a computer. Most statistical packages allow you to 
enter data directly. However, the limitation of this approach is 
that often you cannot move the data to another package. A sim-
ple alternative is to store the data in either a spreadsheet or data-
base package. Unfortunately, their statistical procedures are often 
limited, and it will usually be necessary to output the data into a 
specialist statistical package to carry out analyses.

A more flexible approach is to have your data available as an 
ASCII or text file. Once in an ASCII format, the data can be read 
by most packages. ASCII format simply consists of rows of text 
that you can view on a computer screen. Usually, each variable 
in the file is separated from the next by some delimiter, often a 
space or a comma. This is known as free format.

The simplest way of entering data in ASCII format is to type 
the data directly in this format using either a word processing 
or editing package. Alternatively, data stored in spreadsheet 
packages can be saved in ASCII format. Using either approach, 
it is customary for each row of data to correspond to a different 
individual in the study, and each column to correspond to a 
different variable, although it may be necessary to go on to 
subsequent rows if data from a large number of variables are 
collected on each individual.

Planning data entry
When collecting data in a study you will often need to use a form 
or questionnaire for recording the data. If these forms are designed 
carefully, they can reduce the amount of work that has to be done 
when entering the data. Generally, these forms/questionnaires 
include a series of boxes in which the data are recorded – it is usual 
to have a separate box for each possible digit of the response.

Categorical data
Some statistical packages have problems dealing with non-
numerical data. Therefore, you may need to assign numerical 
codes to categorical data before entering the data into the com-
puter. For example, you may choose to assign the codes of 1, 2, 
3 and 4 to categories of ‘no pain’, ‘mild pain’, ‘moderate pain’ and 
‘severe pain’, respectively. These codes can be added to the forms 
when collecting the data. For binary data, e.g. yes/no answers, 
it is often convenient to assign the codes 1 (e.g. for ‘yes’) and 0 
(for ‘no’).
•	 Single-coded variables – there is only one possible answer to 
a question, e.g. ‘Is the patient dead?’ It is not possible to answer 
both ‘yes’ and ‘no’ to this question.
•	 Multi-coded variables – more than one answer is possible for 
each respondent. For example, ‘What symptoms has this patient 
experienced?’ In this case, an individual may have experienced 
any of a number of symptoms. There are two ways to deal with 
this type of data depending upon which of the two following 
situations applies.

■■ There are only a few possible symptoms, and individuals 
may have experienced many of them. A number of different 
binary variables can be created that correspond to whether the 
patient has answered yes or no to the presence of each possible 
symptom. For example, ‘Did the patient have a cough?’, ‘Did 
the patient have a sore throat?’
■■ There are a very large number of possible symptoms 

but each patient is expected to suffer from only a few of 
them. A number of different nominal variables can be cre-
ated; each successive variable allows you to name a symp-
tom suffered by the patient. For example, ‘What was the 
first symptom the patient suffered?’, ‘What was the second 
symptom?’ You will need to decide in advance the maxi-
mum number of symptoms you think a patient is likely to 
have suffered.

Numerical data
Numerical data should be entered with the same precision as 
they are measured, and the unit of measurement should be con-
sistent for all observations on a variable. For example, weight 
should be recorded in kilograms or in pounds, but not both 
interchangeably.

Multiple forms per patient
Sometimes, information is collected on the same patient on 
more than one occasion. It is important that there is some 
unique identifier (e.g. a serial number) relating to the individual 
that will enable you to link all of the data from an individual in 
the study.
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Chapter 2  Data entry
5Problems with dates and times

Dates and times should be entered in a consistent manner, e.g. either 
as day/month/year or month/day/year, but not interchangeably. It is 
important to find out what format the statistical package can read.

Coding missing values
You should consider what you will do with missing values before 
you enter the data. In most cases you will need to use some sym-
bol to represent a missing value. Statistical packages deal with 

Example

As part of a study on the effect of inherited bleeding disorders 
on pregnancy and childbirth, data were collected on a sample of 
64 women registered at a single haemophilia centre in London. 
The women were asked questions relating to their bleeding 
disorder and their first pregnancy (or their current pregnancy 
if they were pregnant for the first time on the date of interview). 
Figure 2.1 shows the data from a small selection of the women 
after the data have been entered onto a spreadsheet, but 

before they have been checked for errors. The coding schemes 
for the categorical variables are shown at the bottom of Fig. 2.1. 
Each row of the spreadsheet represents a separate individual 
in the study; each column represents a different variable. Where 
the woman is still pregnant, the age of the woman at the time of 
birth has been calculated from the estimated date of the baby’s 
delivery. Data relating to the live births are summarized in  
Table 37.1 in Chapter 37.
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4=Still pregnant

1=Haemophilia A
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Figure 2.1   Portion of a spreadsheet showing data collected on a sample of 64 women with inherited bleeding disorders.

missing values in different ways. Some use special characters 
(e.g. a full stop or asterisk) to indicate missing values, whereas 
others require you to define your own code for a missing value 
(commonly used values are 9, 999 or − 99). The value that is cho-
sen should be one that is not possible for that variable. For exam-
ple, when entering a categorical variable with four categories 
(coded 1, 2, 3 and 4), you may choose the value 9 to represent 
missing values. However, if the variable is ‘age of child’ then a 
different code should be chosen. Missing data are discussed in 
more detail in Chapter 3.

Data kindly provided by Dr R.A. Kadir, University Department of Obstetrics and Gynaecology, and Professor C.A. Lee, Haemophilia Centre and 
Haemostasis Unit, Royal Free Hospital, London.
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Part 1  Handling data Learning objectives
By the end of this chapter, you should be able to:
•	 Describe how to check for errors in data
•	 Distinguish between data that are missing completely at 

random, missing at random and missing not at random
•	 Outline the methods of dealing with missing data, distin-

guishing between single and multiple imputation
•	 Define an outlier
•	 Explain how to check for and handle outliers

Relevant Workbook questions: MCQs 5 and 6; and SQs 1 
and 28 available online

In any study there is always the potential for errors to occur in a 
data set, either at the outset when taking measurements, or when 
collecting, transcribing and entering the data into a computer. It 
is hard to eliminate all of these errors. However, you can reduce 
the number of typing and transcribing errors by checking the 
data carefully once they have been entered. Simply scanning the 
data by eye will often identify values that are obviously wrong. In 
this chapter we suggest a number of other approaches that you 
can use when checking data.

Typing errors
Typing mistakes are the most frequent source of errors when 
entering data. If the amount of data is small, then you can check 
the typed data set against the original forms/questionnaires to 
see whether there are any typing mistakes. However, this is time-
consuming if the amount of data is large. It is possible to type the 
data in twice and compare the two data sets using a computer 
program. Any differences between the two data sets will reveal 
typing mistakes. Although this approach does not rule out the 
possibility that the same error has been incorrectly entered on 
both occasions, or that the value on the form/questionnaire is 
incorrect, it does at least minimize the number of errors. The 
disadvantage of this method is that it takes twice as long to enter 
the data, which may have major cost or time implications.

Error checking
•	 Categorical data – it is relatively easy to check categorical 
data, as the responses for each variable can only take one of a 
number of limited values. Therefore, values that are not allowable 
must be errors.
•	 Numerical data – numerical data are often difficult to check 
but are prone to errors. For example, it is simple to transpose dig-
its or to misplace a decimal point when entering numerical data. 
Numerical data can be range checked – that is, upper and lower 
limits can be specified for each variable. If a value lies outside this 
range then it is flagged up for further investigation.
•	 Dates – it is often difficult to check the accuracy of dates, 
although sometimes you may know that dates must fall within 
certain time periods. Dates can be checked to make sure that 

they are valid. For example, 30th February must be incorrect, 
as must any day of the month greater than 31, and any month 
greater than 12. Certain logical checks can also be applied. For 
example, a patient’s date of birth should correspond to his/her 
age, and patients should usually have been born before enter-
ing the study (at least in most studies). In addition, patients who 
have died should not appear for subsequent follow-up visits!

With all error checks, a value should only be corrected if there 
is evidence that a mistake has been made. You should not change 
values simply because they look unusual.

Handling missing data
There is always a chance that some data will be missing. 
If a large proportion of the data is missing, then the results 
are unlikely to be reliable. The reasons why data are missing 
should always be investigated – if missing data tend to clus-
ter on a particular variable and/or in a particular subgroup of 
individuals, then it may indicate that the variable is not appli-
cable or has never been measured for that group of individuals. 
If this is the case, it may be necessary to exclude that variable 
or group of individuals from the analysis. There are different 
types of missing data1:
•	 Missing completely at random (MCAR) – the missing values 
are truly randomly distributed in the data set and the fact that 
they are missing is unrelated to any study variable. The resulting 
parameter estimates are unlikely to be biased (Chapter 34). An 
example is when a patient fails to attend a hospital appointment 
because he is in a car accident.
•	 Missing at random (MAR) – the missing values of a variable 
do not depend on that variable but can be completely explained 
by non-missing values of one or more of the other variables. For 
example, suppose that individuals are asked to keep a diet diary if 
their BMI is above 30 kg/m2: the missing diet diary data are MAR 
because missingness is completely determined by BMI (those with 
a BMI below the cut-off do not complete the diet diary).
•	 Missing not at random (MNAR) – the chance that data on a 
particular variable are missing is strongly related to that variable. 
In this situation, our results may be severely biased For exam-
ple, suppose we are interested in a measurement that reflects the 
health status of patients and this information is missing for some 
patients because they were not well enough to attend their clinic 
appointments: we are likely to get an overly optimistic overall 
view of the patients’ health if we take no account of the missing 
data in the analysis.

Provided the missing data are not MNAR, we may be able 
to estimate (impute) the missing data2. A simple approach is 
to replace a missing observation by the mean of the existing 
observations for that variable or, if the data are longitudinal, by 
the last observed value. These are examples of single imputation. 
In multiple imputation, we create a number (generally up to five) 
of imputed data sets from the original data set, with the missing 
values replaced by imputed values which are derived from an 
appropriate model that incorporates random variation. We then 

Error checking and outliers3

www.konkur.in

Telegram: @medical_k

http://www.medstatsaag.com


Chapter 3  Error checking and outliers
7use standard statistical procedures on each complete imputed 

data set and finally combine the results from these analyses. 
Alternative statistical approaches to dealing with missing data 
are available2, but the best option is to minimize the amount of 
missing data at the outset.

Outliers
What are outliers?
Outliers are observations that are distinct from the main body 
of the data, and are incompatible with the rest of the data. These 
values may be genuine observations from individuals with very 
extreme levels of the variable. However, they may also result 
from typing errors or the incorrect choice of units, and so any 
suspicious values should be checked. It is important to detect 
whether there are outliers in the data set, as they may have a 
considerable impact on the results from some types of analyses 
(Chapter 29).

For example, a woman who is 7 feet tall would probably 
appear as an outlier in most data sets. However, although this 
value is clearly very high, compared with the usual heights 
of women, it may be genuine and the woman may simply be 
very tall. In this case, you should investigate this value further, 
possibly checking other variables such as her age and weight, 
before making any decisions about the validity of the result. 
The value should only be changed if there really is evidence that 
it is incorrect.

Checking for outliers
A simple approach is to print the data and visually check them by 
eye. This is suitable if the number of observations is not too large and 
if the potential outlier is much lower or higher than the rest of the 
data. Range checking should also identify possible outliers. Alterna-
tively, the data can be plotted in some way (Chapter 4) – outliers can 
be clearly identified on histograms and scatter plots (see also Chap-
ter 29 for a discussion of outliers in regression analysis).

Handling outliers
It is important not to remove an individual from an analysis 
simply because his/her values are higher or lower than might be 
expected. However, the inclusion of outliers may affect the results 
when some statistical techniques are used. A simple approach is 
to repeat the analysis both including and excluding the value – 
this is a type of sensitivity analysis (Chapter 35). If the results 
are similar, then the outlier does not have a great influence on 
the result. However, if the results change drastically, it is impor-
tant to use appropriate methods that are not affected by outli-
ers to analyse the data. These include the use of transformations 
(Chapter 9) and non-parametric tests (Chapter 17).

References
1	 Bland, M. (2015) An Introduction to Medical Statistics. 4th edition. 

Oxford University Press.
2	 Horton, N.J. and Kleinman, K.P. (2007) Much ado about nothing: 

a comparison of missing data methods and software to fit incom-
plete data regression models. American Statistician, 61(1), 71–90.
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Figure 3.1   Checking for errors in a data set.

After entering the data described in Chapter 2, the data set 
is checked for errors (Fig. 3.1). Some of the inconsistencies 
highlighted are simple data entry errors. For example, the 
code of ‘41’ in the ‘Sex of baby’ column is incorrect as a result 
of the sex information being missing for patient 20; the rest 
of the data for patient 20 had been entered in the incorrect 
columns. Others (e.g. unusual values in the gestational age 

and weight columns) are likely to be errors, but the notes 
should be checked before any decision is made, as these 
may reflect genuine outliers. In this case, the gestational age 
of patient number 27 was 41 weeks, and it was decided that 
a weight of 11.19 kg was incorrect. As it was not possible to 
find the correct weight for this baby, the value was entered 
as missing.
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Displaying data diagrammatically 4

Learning objectives

By the end of this chapter, you should be able to:
•	 Explain what is meant by a frequency distribution
•	 Describe the shape of a frequency distribution
•	 Describe the following diagrams: (segmented) bar or 

column chart, pie chart, histogram, dot plot, stem-and-leaf 
plot, box-and-whisker plot, scatter diagram

•	 Explain how to identify outliers from a diagram in various 
circumstances

•	 Describe the situations when it is appropriate to use 
connecting lines in a diagram

Relevant Workbook questions: MCQs 7, 8, 9, 37 and 50; 
and SQs 1 and 9 available online

One of the first things that you may wish to do when you have 
entered your data into a computer is to summarize them in some 
way so that you can get a ‘feel’ for the data. This can be done by pro-
ducing diagrams, tables or summary statistics (Chapters 5 and 6). 
Diagrams are often powerful tools for conveying information about 
the data, for providing simple summary pictures, and for spotting 
outliers and trends before any formal analyses are performed.

One variable
Frequency distributions
An empirical frequency distribution of a variable relates each 
possible observation, class of observations (i.e. range of values) 
or category, as appropriate, to its observed frequency of occur-
rence. If we replace each frequency by a relative frequency (the 
percentage of the total frequency), we can compare frequency 
distributions in two or more groups of individuals.

Displaying frequency distributions
Once the frequencies (or relative frequencies) have been obtained 
for categorical or some discrete numerical data, these can be dis-
played visually.
•	 Bar or column chart – a separate horizontal or vertical bar 
is drawn for each category, its length being proportional to the 
frequency in that category. The bars are separated by small gaps 
to indicate that the data are categorical or discrete (Fig. 4.1a).
•	 Pie chart – a circular ‘pie’ is split into sectors, one for each 
category, so that the area of each sector is proportional to the 
frequency in that category (Fig. 4.1b).

It is often more difficult to display continuous numerical data, 
as the data may need to be summarized before being drawn. 
Commonly used diagrams include the following:
•	 Histogram – this is similar to a bar chart, but there should be 
no gaps between the bars as the data are continuous (Fig. 4.1d). 
The width of each bar of the histogram relates to a range of values 
for the variable. For example, the baby’s weight (Fig. 4.1d) may 
be categorized into 1.75–1.99 kg, 2.00–2.24 kg, …, 4.25–4.49 kg. 
The area of the bar is proportional to the frequency in that range. 
Therefore, if one of the groups covers a wider range than the oth-
ers, its base will be wider and height shorter to compensate. Usu-
ally, between five and 20 groups are chosen; the ranges should be 

narrow enough to illustrate patterns in the data, but should not 
be so narrow that they are the raw data. The histogram should be 
labelled carefully to make it clear where the boundaries lie.
•	 Dot plot – each observation is represented by one dot on a 
horizontal (or vertical) line (Fig. 4.1e). This type of plot is very 
simple to draw, but can be cumbersome with large data sets. 
Often a summary measure of the data, such as the mean or 
median (Chapter 5), is shown on the diagram. This plot may also 
be used for discrete data.
•	 Stem-and-leaf plot – this is a mixture of a diagram and a 
table; it looks similar to a histogram turned on its side, and is 
effectively the data values written in increasing order of size. 
It is usually drawn with a vertical stem, consisting of the first 
few digits of the values, arranged in order. Protruding from this 
stem are the leaves – i.e. the final digit of each of the ordered 
values, which are written horizontally (Fig. 4.2) in increasing 
numerical order.
•	 Box plot (often called a box-and-whisker plot) – this is a ver-
tical or horizontal rectangle, with the ends of the rectangle cor-
responding to the upper and lower quartiles of the data values 
(Chapter 6). A line drawn through the rectangle corresponds to 
the median value (Chapter 5). Whiskers, starting at the ends of 
the rectangle, usually indicate minimum and maximum values 
but sometimes relate to particular percentiles, e.g. the 5th and 
95th percentiles (Fig. 6.1). Outliers may be marked.

The ‘shape’ of the frequency distribution
The choice of the most appropriate statistical method will often 
depend on the shape of the distribution. The distribution of the 
data is usually unimodal in that it has a single ‘peak’. Sometimes 
the distribution is bimodal (two peaks) or uniform (each value 
is equally likely and there are no peaks). When the distribution 
is unimodal, the main aim is to see where the majority of the 
data values lie, relative to the maximum and minimum values. 
In particular, it is important to assess whether the distribution is:
•	 symmetrical – centred around some mid-point, with one side 
being a mirror-image of the other (Fig. 5.1);
•	 skewed to the right (positively skewed) – a long tail to the 
right with one or a few high values. Such data are common in 
medical research (Fig. 5.2);
•	 skewed to the left (negatively skewed) – a long tail to the left 
with one or a few low values (Fig. 4.1d).

Two variables
If one variable is categorical, then separate diagrams showing the 
distribution of the second variable can be drawn for each of the 
categories. Other plots suitable for such data include clustered or 
segmented bar or column charts (Fig. 4.1c).

If both of the variables are numerical or ordinal, then the 
relationship between the two can be illustrated using a scatter 
diagram (Fig. 4.1f). This plots one variable against the other in a 
two-way diagram. One variable is usually termed the x variable 
and is represented on the horizontal axis. The second variable, 
known as the y variable, is plotted on the vertical axis.
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Figure 4.1   A selection of diagrammatic output which may be produced when summarizing the obstetric data in women with bleeding
disorders (Chapter 2). (a) Bar chart showing the percentage of women in the study who required pain relief from any of the listed
interventions during labour. (b) Pie chart showing the percentage of women in the study with each bleeding disorder. (c) Segmented
column chart showing the frequency with which women with different bleeding disorders experience bleeding gums. (d) Histogram
showing the weight of the baby at birth. (e) Dot plot showing the mother’s age at the time of delivery, with the median age marked as
a horizontal line. (f) Scatter diagram showing the relationship between the mother’s age at delivery (on the horizontal or x-axis) and
the weight of the baby (on the vertical or y-axis).
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Figure 4.2   Stem-and-leaf plot showing the FEV1 (litres) in children
receiving inhaled beclomethasone dipropionate or placebo
(Chapter 21).
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Identifying outliers using graphical 
methods
We can often use single-variable data displays to identify outliers. 
For example, a very long tail on one side of a histogram may indi-
cate an outlying value. However, outliers may sometimes only 
become apparent when considering the relationship between 
two variables. For example, a weight of 55 kg would not be unu-
sual for a woman who was 1.6 m tall, but would be unusually low 
if the woman’s height was 1.9 m.

The use of connecting lines in diagrams
The use of connecting lines in scatter diagrams may be mislead-
ing. Connecting lines suggest that the values on the x-axis are 
ordered in some way – this might be the case if, for example, the 
x-axis reflects some measure of time or dose. Where this is not 
the case, the points should not be joined with a line. Conversely, 
if there is a dependency between different points (e.g. because 
they relate to results from the same individual at two different 
time points, such as before and after treatment), it is helpful to 
connect the relevant points by a straight line (Fig. 20.1) and 
important information may be lost if these lines are omitted.
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Part 1  Handling data

Describing data: the ‘average’ 5

Learning objectives
By the end of this chapter, you should be able to:
•	 Explain what is meant by an average
•	 Describe the appropriate use of each of the following types 

of average: arithmetic mean, mode, median, geometric 
mean, weighted mean

•	 Explain how to calculate each type of average
•	 List the advantages and disadvantages of each type of 

average

Relevant Workbook questions: MCQs 1, 10, 11, 12, 13, 19 
and 39; and SQs 2, 3, 4 and 9 available online

Summarizing data
It is very difficult to have any ‘feeling’ for a set of numerical 
measurements unless we can summarize the data in a meaningful 
way. A diagram (Chapter 4) is often a useful starting point. We can 
also condense the information by providing measures that describe 
the important characteristics of the data. In particular, if we have 
some perception of what constitutes a representative value, and if 
we know how widely scattered the observations are around it, then 
we can formulate an image of the data. The average is a general 
term for a measure of location; it describes a typical measurement. 
We devote this chapter to averages, the most common being the 
mean and median (Table 5.1). We introduce measures that describe 
the scatter or spread of the observations in Chapter 6.

The arithmetic mean
The arithmetic mean, often simply called the mean, of a set of 
values is calculated by adding up all the values and dividing this 
sum by the number of values in the set.

It is useful to be able to summarize this verbal description 
by an algebraic formula. Using mathematical notation, we write 
our set of n observations of a variable, x, as x1, x2, x3, …, xn. For 

Table 5.1  Advantages and disadvantages of averages.

Type of average Advantages Disadvantages
Mean •	 Uses all the data values

•	 Algebraically defined and so mathematically manageable
•	 Known sampling distribution (Chapter 9)

•	 Distorted by outliers
•	 Distorted by skewed data

Median •	 Not distorted by outliers
•	 Not distorted by skewed data

•	 Ignores most of the information
•	 Not algebraically defined
•	 Complicated sampling distribution

Mode •	 Easily determined for categorical data •	 Ignores most of the information
•	 Not algebraically defined
•	 Unknown sampling distribution

Geometric mean •	 Before back-transformation, it has the same advantages  
as the mean

•	 Appropriate for right-skewed data

•	 Only appropriate if the log transformation produces 
a symmetrical distribution

Weighted mean •	 Same advantages as the mean
•	 Ascribes relative importance to each observation
•	 Algebraically defined

•	 Weights must be known or estimated

example, x might represent an individual’s height (cm), so that x1 
represents the height of the first individual, and xi the height of 
the ith individual, etc. We can write the formula for the arithmetic 
mean of the observations, written x  and pronounced ‘x bar’, as

x x x x x
n

n= + + +…+1 2 3

Using mathematical notation, we can shorten this to

x
x

n

i
i

n

= =
∑

1

where Σ (the Greek uppercase ‘sigma’) means ‘the sum of ’, and 
the sub- and superscripts on the Σ indicate that we sum the val-
ues from i = 1 to i = n. This is often further abbreviated to

x
x

n
x

x

n
i

= =∑ ∑or to

The median
If we arrange our data in order of magnitude, starting with the 
smallest value and ending with the largest value, then the median 
is the middle value of this ordered set. The median divides the 
ordered values into two halves, with an equal number of values 
both above and below it.

It is easy to calculate the median if the number of 
observations, n, is odd. It is the (n + 1)/2th observation in the 
ordered set. So, for example, if n = 11, then the median is the 
(11 + 1)/2 = 12/2 = 6th observation in the ordered set. If n is even 
then, strictly, there is no median. However, we usually calculate 
it as the arithmetic mean of the two middle observations in the 
ordered set (i.e. the n/2th and the (n/2 + 1)th). So, for example, if 
n = 20, the median is the arithmetic mean of the 20/2 = 10th and 
the (20/2 + 1) = (10 + 1) = 11th observations in the ordered set.
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11The median is similar to the mean if the data are symmetrical 

(Fig. 5.1), less than the mean if the data are skewed to the right 
(Fig. 5.2), and greater than the mean if the data are skewed to the 
left (Fig. 4.1d).

The mode
The mode is the value that occurs most frequently in a data set;  
if the data are continuous, we usually group the data and calculate 
the modal group. Some data sets do not have a mode because 
each value only occurs once. Sometimes, there is more than 
one mode; this is when two or more values occur the same num-
ber of times, and the frequency of occurrence of each of these 
values is greater than that of any other value. We rarely use the 
mode as a summary measure.

The geometric mean
The arithmetic mean is an inappropriate summary measure of 
location if our data are skewed. If the data are skewed to the right, 
we can produce a distribution that is more symmetrical if we take 
the logarithm (typically to base 10 or to base e) of each value of 
the variable in this data set (Chapter 9). The arithmetic mean 
of the log values is a measure of location for the transformed 
data. To obtain a measure that has the same units as the original 
observations, we have to back-transform (i.e. take the antilog 
of) the mean of the log data; we call this the geometric mean. 
Provided the distribution of the log data is approximately sym-
metrical, the geometric mean is similar to the median and less 
than the mean of the raw data (Fig. 5.2).

The weighted mean
We use a weighted mean when certain values of the variable 
of interest, x, are more important than others. We attach a 
weight, wi, to each of the values, xi, in our sample, to reflect 
this importance. If the values x1, x2, x3, …, xn have corre-
sponding weights w1, w2, w3, …, wn, the weighted arithmetic 
mean is

w x w x w x
w w w

w x

w
n n

n

i i

i

1 1 2 2

1 2

+ +…+
+ +…+

= ∑
∑

For example, suppose we are interested in determining the aver-
age length of stay of hospitalized patients in a district, and we 
know the average discharge time for patients in every hospital. 
To take account of the amount of information provided, one 
approach might be to take each weight as the number of patients 
in the associated hospital.

The weighted mean and the arithmetic mean are identical if 
each weight is equal to one.

Figure 5.1   The mean, median and geometric mean age of the
women in the study described in Chapter 2 at the time of the baby’s
birth. As the distribution of age appears reasonably symmetrical, the
three measures of the ‘average’ all give similar values, as indicated
by the dashed line.
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Figure 5.2   The mean, median and geometric mean triglyceride level
in a sample of 232 men who developed heart disease (Chapter 19).
As the distribution of triglyceride levels is skewed to the right, the
mean gives a higher ‘average’ than either the median or geometric
mean.
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Part 1  Handling data Learning objectives
By the end of this chapter, you should be able to:
•	 Define the terms: percentile, decile, quartile, median, and 

explain their inter-relationship
•	 Explain what is meant by a reference interval/range, also 

called the normal range
•	 Define the following measures of spread: range, interdecile 

range, variance, standard deviation (SD), coefficient of 
variation

•	 List the advantages and disadvantages of the various 
measures of spread

•	 Distinguish between intra- and inter-subject variation

Relevant Workbook questions: MCQs 10, 12, 13 and 19; 
and SQs 2, 3, 4 and 16 available online

Summarizing data
If we are able to provide two summary measures of a continuous 
variable, one that gives an indication of the ‘average’ value and 
the other that describes the ‘spread’ of the observations, then we 
have condensed the data in a meaningful way. We explained how 
to choose an appropriate average in Chapter 5. We devote this 
chapter to a discussion of the most common measures of spread  
(dispersion or variability) which are compared in Table 6.1.

The range
The range is the difference between the largest and smallest 
observations in the data set; you may find these two values 
quoted instead of their difference. Note that the range pro-
vides a misleading measure of spread if there are outliers 
(Chapter 3).

Ranges derived from percentiles
What are percentiles?
Suppose we arrange our data in order of magnitude, starting 
with the smallest value of the variable, x, and ending with the 
largest value. The value of x that has 1% of the observations in 
the ordered set lying below it (and 99% of the observations lying 
above it) is called the 1st percentile. The value of x that has 2% 
of the observations lying below it is called the 2nd percentile, 
and so on. The values of x that divide the ordered set into 
10 equally sized groups, that is the 10th, 20th, 30th, …, 90th 
percentiles, are called deciles. The values of x that divide the 
ordered set into four equally sized groups, that is the 25th, 50th 
and 75th percentiles, are called quartiles. The 50th percentile is 
the median (Chapter 5).

Using percentiles
We can obtain a measure of spread that is not influenced by 
outliers by excluding the extreme values in the data set, and 
then determining the range of the remaining observations. 
The interquartile range is the difference between the 1st and 
the 3rd quartiles, i.e. between the 25th and 75th percentiles 
(Fig. 6.1). It contains the central 50% of the observations in 
the ordered set, with 25% of the observations lying below its 
lower limit, and 25% of them lying above its upper limit. The 
interdecile range contains the central 80% of the observa-
tions, i.e. those lying between the 10th and 90th percentiles. 
Often we use the range that contains the central 95% of the 
observations, i.e. it excludes 2.5% of the observations above its 
upper limit and 2.5% below its lower limit (Fig. 6.1). We may 

Describing data: the ‘spread’6

Table 6.1  Advantages and disadvantages of measures of spread.

Measure of spread Advantages Disadvantages

Range •	 Easily determined •	 Uses only two observations
•	 Distorted by outliers
•	 Tends to increase with increasing sample size

Ranges based on 
percentiles

•	 Usually unaffected by outliers
•	 Independent of sample size
•	 Appropriate for skewed data

•	 Clumsy to calculate
•	 Cannot be calculated for small samples
•	 Uses only two observations
•	 Not algebraically defined

Variance •	 Uses every observation
•	 Algebraically defined

•	 Units of measurement are the square of the units of 
the raw data

•	 Sensitive to outliers
•	 Inappropriate for skewed data

Standard deviation •	 Same advantages as the variance
•	 Units of measurement are the same as those of the raw data
•	 Easily interpreted

•	 Sensitive to outliers
•	 Inappropriate for skewed data
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The standard deviation
The standard deviation is the square root of the variance. In a 
sample of n observations, it is

s
x x

n
i

=
−( )

−
∑ 2

1

We can think of the standard deviation as a sort of average of the 
deviations of the observations from the mean. It is evaluated in 
the same units as the raw data.

If we divide the standard deviation by the mean and express 
this quotient as a percentage, we obtain the coefficient of 
variation. It is a measure of spread that is independent of the 
unit of measurement, but it has theoretical disadvantages and 
thus is not favoured by statisticians.

Variation within- and between-subjects
If we take repeated measurements of a continuous variable on an 
individual, then we expect to observe some variation (intra- or 
within-subject variability) in the responses on that individual. 
This may be because a given individual does not always respond 
in exactly the same way and/or because of measurement error 
(Chapter 39). However, the variation within an individual is 
usually less than the variation obtained when we take a single 
measurement on every individual in a group (inter- or between-
subject variability). For example, a 17-year-old boy has a lung 
vital capacity that ranges between 3.60 and 3.87 litres when the 
measurement is repeated 10 times; the values for single measure-
ments on 10 boys of the same age lie between 2.98 and 4.33 litres. 
These concepts are important in study design (Chapter 13).

Figure 6.1   A box-and-whisker plot of the baby’s weight at birth
(Chapter 2). This �gure illustrates the median, the interquartile range,
the range that contains the central 95% of the observations and the
maximum and minimum values.
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use this interval, provided it is calculated from enough values 
of the variable in healthy individuals, to diagnose disease. It is 
then called the reference interval, reference range or normal 
range (Chapter 38).

The variance
One way of measuring the spread of the data is to determine the 
extent to which each observation deviates from the arithmetic 
mean. Clearly, the larger the deviations, the greater the variability 
of the observations. However, we cannot use the mean of these 
deviations as a measure of spread because the positive differ-
ences exactly cancel out the negative differences. We overcome 
this problem by squaring each deviation, and finding the mean 
of these squared deviations (Fig. 6.2); we call this the variance. If 
we have a sample of n observations, x1, x2, x3, …, xn, whose mean 
is x x ni= ∑ / , we calculate the variance, usually denoted by s2, 
of these observations as

s
x x

n
i2

2

1
=

−( )

−
∑

We can see that this is not quite the same as the arithmetic mean 
of the squared deviations because we have divided by (n  –  1) 
instead of n. The reason for this is that we almost always rely on 
sample data in our investigations (Chapter 10). It can be shown 
theoretically that we obtain a better sample estimate of the popu-
lation variance if we divide by (n − 1).

The units of the variance are the square of the units of the 
original observations, e.g. if the variable is weight measured in 
kg, the units of the variance are kg2.

Figure 6.2   Diagram showing the spread of selected values of the
mother’s age at the time of the baby’s birth (Chapter 2) around the
mean value. The variance is calculated by adding up the squared
distances between each point and the mean, and dividing by (n − 1).
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Part 1  Handling data

Theoretical distributions: 
the Normal distribution 7

Learning objectives
By the end of this chapter, you should be able to:
•	 Define the terms: probability, conditional probability
•	 Distinguish between the subjective, frequentist and a priori 

approaches to calculating a probability
•	 Define the addition and multiplication rules of probability
•	 Define the terms: random variable, probability distribution, 

parameter, statistic, probability density function
•	 Distinguish between a discrete and continuous probability 

distribution and list the properties of each
•	 List the properties of the Normal and the Standard Normal 

distributions
•	 Define a Standardized Normal Deviate (SND)

Relevant Workbook questions: MCQs 8, 14, 16, 19 and 44 
available online

In Chapter 4 we showed how to create an empirical frequency 
distribution of the observed data. This contrasts with a theoretical 
probability distribution which is described by a mathematical 
model. When our empirical distribution approximates a 
particular probability distribution, we can use our theoretical 
knowledge of that distribution to answer questions about the 
data. This often requires the evaluation of probabilities.

Understanding probability
Probability measures uncertainty; it lies at the heart of statisti-
cal theory. A probability measures the chance of a given event 
occurring. It is a number that takes a value from zero to one. If it 
is equal to zero, then the event cannot occur. If it is equal to one, 
then the event must occur. The probability of the complementary 
event (the event not occurring) is one minus the probability of 
the event occurring. We discuss conditional probability, the 
probability of an event, given that another event has occurred, 
in Chapter 45.

We can calculate a probability using various approaches.
•	 Subjective – our personal degree of belief that the event will 
occur (e.g. that the world will come to an end in the year 2050).
•	 Frequentist – the proportion of times the event would occur 
if we were to repeat the experiment a large number of times (e.g. 
the number of times we would get a ‘head’ if we tossed a fair coin 
1000 times).
•	 A priori – this requires knowledge of the theoretical model, 
called the probability distribution, which describes the prob-
abilities of all possible outcomes of the ‘experiment’. For example, 
genetic theory allows us to describe the probability distribution 
for eye colour in a baby born to a blue-eyed woman and brown-
eyed man by specifying all possible genotypes of eye colour in 
the baby and their probabilities.

The rules of probability
We can use the rules of probability to add and multiply 
probabilities.

•	 The addition rule – if two events, A and B, are mutually exclu-
sive (i.e. each event precludes the other), then the probability that 
either one or the other occurs is equal to the sum of their prob-
abilities.

Prob A B Prob A Prob Bor( ) = ( ) + ( )

For example, if the probabilities that an adult patient in a 
particular dental practice has no missing teeth, some missing 
teeth or is edentulous (i.e. has no teeth) are 0.67, 0.24 and 0.09, 
respectively, then the probability that a patient has some teeth is 
0.67 + 0.24 = 0.91.
•	 The multiplication rule – if two events, A and B, are 
independent (i.e. the occurrence of one event is not contingent 
on the other), then the probability that both events occur is equal 
to the product of the probability of each.

Prob A B Prob A Prob Band( ) = ( )× ( )

For example, if two unrelated patients are waiting in the 
dentist’s surgery, the probability that both of them have no 
missing teeth is 0.67 × 0.67 = 0.45.

Probability distributions: the theory
A random variable is a quantity that can take any one of a 
set of mutually exclusive values with a given probability. A 
probability distribution shows the probabilities of all possible 
values of the random variable. It is a theoretical distribution 
that is expressed mathematically, and has a mean and variance 
that are analogous to those of an empirical distribution. Each 
probability distribution is defined by certain parameters which 
are summary measures (e.g. mean, variance) characterizing that 
distribution (i.e. knowledge of them allows the distribution to be 
fully described). These parameters are estimated in the sample by 
relevant statistics. Depending on whether the random variable is 
discrete or continuous, the probability distribution can be either 
discrete or continuous.
•	 Discrete (e.g. Binomial and Poisson) – we can derive the prob-
abilities corresponding to every possible value of the random 
variable. The sum of all such probabilities is one.
•	 Continuous (e.g. Normal, Chi-squared, t and F) – we can 
only derive the probability of the random variable, x, taking val-
ues in certain ranges (because there are infinitely many values 
of x). If the horizontal axis represents the values of x, we can 
draw a curve from the equation of the distribution (the prob-
ability density function); it resembles an empirical relative 
frequency distribution (Chapter 4). The total area under the 
curve is one; this area represents the probability of all possible 
events. The probability that x lies between two limits is equal 
to the area under the curve between these values (Fig. 7.1). For 
convenience, tables have been produced to enable us to evaluate 
probabilities of interest for commonly used continuous prob-
ability distributions (Appendix A). These are particularly useful 
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in the context of confidence intervals (Chapter 11) and hypoth-
esis testing (Chapter 17).

The Normal (Gaussian) distribution
One of the most important distributions in statistics is the  
Normal distribution. Its probability density function (Fig. 7.2) is:
•	 completely described by two parameters, the mean (μ) and the 
variance (σ2);
•	 bell-shaped (unimodal);
•	 symmetrical about its mean;
•	 shifted to the right if the mean is increased and to the left if the 
mean is decreased (assuming constant variance);
•	 flattened as the variance is increased but becomes more peaked 
as the variance is decreased (for a fixed mean).
Additional properties are that:
•	 the mean and median of a Normal distribution are equal;
•	 the probability (Fig. 7.3a) that a Normally distributed random 
variable, x, with mean, μ, and standard deviation, σ, lies between

(μ - σ) and (μ + σ) is 0.68
(μ - 1.96σ) and (μ + 1.96σ) is 0.95
(μ - 2.58σ) and (μ + 2.58σ) is 0.99

These intervals may be used to define reference intervals 
(Chapters 6 and 38).

We show how to assess Normality in Chapter 35.

Shaded area
represents
Prob {x > x2}

Shaded area represents
Prob {x0 < x < x1}

x2x1x0 x

Total area under curve = 1 (or 100%)

pdf

Figure 7.1   The probability density function, pdf, of x.

Figure 7.2   The probability density function of the Normal distribution of the variable x.
(a) Symmetrical about mean = � : variance = �2. (b) Effect of changing mean (�2 > �1). (c) Effect
of changing variance (� 21 < � 22).
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Figure 7.3   Areas (percentages of total probability) under the curve
for (a) Normal distribution of x, with mean � and variance �2, and (b)
Standard Normal distribution of z.
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The Standard Normal distribution
There are infinitely many Normal distributions depending on the 
values of μ and σ. The Standard Normal distribution (Fig. 7.3b) 
is a particular Normal distribution for which probabilities have 
been tabulated (Appendices A1 and A4).
•	 The Standard Normal distribution has a mean of zero and a 
variance of one.
•	 If the random variable x has a Normal distribution with mean 
μ and variance σ2, then the Standardized Normal Deviate 

(SND), z
x

=
− µ
σ

, is a random variable that has a Standard 

Normal distribution.
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Part 1  Handling data

Theoretical distributions: other 
distributions8

Learning objectives
By the end of this chapter, you should be able to:
•	 List the important properties of the t-, Chi-squared, F- and 

Lognormal distributions
•	 Explain when each of these distributions is particularly 

useful
•	 List the important properties of the Binomial and Poisson 

distributions
•	 Explain when the Binomial and Poisson distributions are 

each particularly useful

Relevant Workbook questions: MCQs 15 and 44 available 
online

Some words of comfort
Do not worry if you find the theory underlying probability dis-
tributions complex. Our experience demonstrates that you want 
to know only when and how to use these distributions. We have 
therefore outlined the essentials and omitted the equations that 
define the probability distributions. You will find that you only 
need to be familiar with the basic ideas, the terminology and, 
perhaps (although infrequently in this computer age), know how 
to refer to the tables.

More continuous probability distributions
These distributions are based on continuous random variables. 
Often it is not a measurable variable that follows such a distribu-
tion but a statistic derived from the variable. The total area under 
the probability density function represents the probability of all 
possible outcomes, and is equal to one (Chapter 7). We discussed 
the Normal distribution in Chapter 7; other common distribu-
tions are described in this chapter.

The t-distribution (Appendix A2, Fig. 8.1)
•	 Derived by W.S. Gossett, who published under the pseudonym 
‘Student’; it is often called Student’s t-distribution.

Figure 8.1   t-distributions with degrees of freedom (df) = 1, 5,
50 and 500.
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•	 The parameter that characterizes the t-distribution is the 
degrees of freedom (df ), so we can draw the probability den-
sity function if we know the equation of the t-distribution 
and its degrees of freedom. We discuss degrees of freedom  
in Chapter 11; note that they are often closely affiliated to 
sample size.
•	 Its shape is similar to that of the Standard Normal distribution, 
but it is more spread out, with longer tails. Its shape approaches 
Normality as the degrees of freedom increase.
•	 It is particularly useful for calculating confidence intervals 
for and testing hypotheses about one or two means (Chapters 
19–21).

The Chi-squared (χ2) distribution (Appendix A3, 
Fig. 8.2)
•	 It is a right-skewed distribution taking positive values.
•	 It is characterized by its degrees of freedom (Chapter 11).
•	 Its shape depends on the degrees of freedom; it becomes more 
symmetrical and approaches Normality as the degrees of free-
dom increase.
•	 It is particularly useful for analysing categorical data (Chapters 
23–25).

The F-distribution (Appendix A5)
•	 It is skewed to the right.
•	 It is defined by a ratio. The distribution of a ratio of two esti-
mated variances calculated from Normal data approximates the 
F-distribution.
•	 The two parameters that characterize it are the degrees of 
freedom (Chapter 11) of the numerator and the denominator 
of the ratio.
•	 The F-distribution is particularly useful for comparing two 
variances (Chapter 35), and more than two means using the 
analysis of variance (ANOVA) (Chapter 22).

Figure 8.2   Chi-squared distributions with degrees of freedom
(df) = 1, 2, 5 and 10.
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Figure 8.3   (a) The Lognormal distribution of triglyceride levels (mmol/L) in 232 men who developed heart disease
(Chapter 19). (b) The approximately Normal distribution of log10 (triglyceride level) in log10 (mmol/L).
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Figure 8.4   Binomial distribution showing the number of successes, r, when the probability of success is � = 0.20 for sample sizes
(a) n = 5, (b) n = 10 and (c) n = 50. (NB in Chapter 23, the observed seroprevalence of HHV-8 was p = 0.185 ≈ 0.2, and the sample size
was 271: the proportion was assumed to follow a Normal distribution.)
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The Lognormal distribution
•	 It is the probability distribution of a random variable whose 
log (e.g. to base 10 or e) follows the Normal distribution.
•	 It is highly skewed to the right (Fig. 8.3a).
•	 If, when we take logs of our raw data that are skewed to the 
right, we produce an empirical distribution that is nearly Normal 
(Fig. 8.3b), our data approximate the Lognormal distribution.
•	 Many variables in medicine follow a Lognormal distribution. 
We can use the properties of the Normal distribution (Chapter 7) 
to make inferences about these variables after transforming the 
data by taking logs.
•	 If a data set has a Lognormal distribution, we can use the geo-
metric mean (Chapter 5) as a summary measure of location.

Discrete probability distributions
The random variable that defines the probability distribution 
is discrete. The sum of the probabilities of all possible mutually 
exclusive events is one.

The Binomial distribution
•	 Suppose, in a given situation, there are only two outcomes, ‘suc-
cess’ and ‘failure’. For example, we may be interested in whether 
a woman conceives (a success) or does not conceive (a failure) 
after in vitro fertilization (IVF). If we look at n = 100 unrelated 
women undergoing IVF (each with the same probability of con-
ceiving), the Binomial random variable is the observed number 
of conceptions (successes). Often this concept is explained in 
terms of n independent repetitions of a trial (e.g. 100 tosses of a 
coin) in which the outcome is either success (e.g. head) or failure.

•	 The two parameters that describe the Binomial distribution 
are n, the number of individuals in the sample (or repetitions of 
a trial), and π, the true probability of success for each individual 
(or in each trial).
•	 Its mean (the value for the random variable that we expect if 
we look at n individuals, or repeat the trial n times) is nπ. Its vari-
ance is nπ(1 − π).
•	 When n is small, the distribution is skewed to the right if π < 0.5 
and to the left if π > 0.5. The distribution becomes more symmet-
rical as the sample size increases (Fig. 8.4) and approximates the 
Normal distribution if both nπ and n(1 − π) are greater than 5.
•	 We can use the properties of the Binomial distribution when 
making inferences about proportions. In particular, we often use 
the Normal approximation to the Binomial distribution when 
analysing proportions.

The Poisson distribution
•	 The Poisson random variable is the count of the number of 
events that occur independently and randomly in time or space 
at some average rate, μ. For example, the number of hospital 
admissions per day typically follows the Poisson distribution. We 
can use our knowledge of the Poisson distribution to calculate 
the probability of a certain number of admissions on any par-
ticular day.
•	 The parameter that describes the Poisson distribution is the 
mean, i.e. the average rate, μ.
•	 The mean equals the variance in the Poisson distribution.
•	 It is a right-skewed distribution if the mean is small, but 
becomes more symmetrical as the mean increases, when it 
approximates a Normal distribution.
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Part 1  Handling data

Transformations9

Learning objectives
By the end of this chapter, you should be able to:
•	 Describe situations in which transforming data may be useful
•	 Explain how to transform a data set
•	 Explain when to apply and what is achieved by the 

logarithmic, square root, reciprocal, square and logit 
transformations

•	 Describe how to interpret summary measures derived from 
log transformed data after they have been back-trans-
formed to the original scale

Relevant Workbook questions: MCQs 11, 16, 17 and 61; 
and SQ 3 available online

Why transform?
The observations in our investigation may not comply with the 
requirements of the intended statistical analysis (Chapter 35).
•	 A variable may not be Normally distributed, a distributional 
requirement for many different analyses.
•	 The spread of the observations in each of a number of groups 
may be different (constant variance is an assumption about a 
parameter in the comparison of means using the unpaired t-test 
and analysis of variance – Chapters 21 and 22).
•	 Two variables may not be linearly related (linearity is an assump-
tion in many regression analyses – Chapters 27–33 and 42).

It is often helpful to transform our data to satisfy the 
assumptions underlying the proposed statistical techniques.

How do we transform?
We convert our raw data into transformed data by taking the 
same mathematical transformation of each observation. Suppose 
we have n observations (y1, y2, …, yn) on a variable, y, and we 
decide that the log transformation is suitable. We take the log of 
each observation to produce (log y1, log y2, …, log yn). If we call 
the transformed variable z, then zi = log yi for each i (i = 1, 2, …, 
n), and our transformed data may be written (z1, z2, …, zn).

Figure 9.1   The effects of the logarithmic transformation: (a) Normalizing, (b) linearizing, (c) variance stabilizing.
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We check that the transformation has achieved its purpose of 
producing a data set that satisfies the assumptions of the planned 
statistical analysis (e.g. by plotting a histogram of the transformed 
data – Chapter 35), and proceed to analyse the transformed data 
(z1, z2, …, zn). We may back-transform any summary measures 
(such as the mean) to the original scale of measurement; we then 
rely on the conclusions we draw from hypothesis tests (Chapter 
17) on the transformed data.

Typical transformations
The logarithmic transformation, z = log y
When log transforming data, we can choose to take logs to base 
10 (log10 y, the ‘common’ log) or to base e (loge y or ln y, the 
‘natural’ or Naperian log where e = 2.718), or to any other base, 
but must be consistent for a particular variable in a data set. Note 
that we cannot take the log of a negative number or of zero. The 
back-transformation of a log is called the antilog; the antilog of a 
Naperian log is the exponential, e.
•	 If y is skewed to the right, z = log y is often approximately 
Normally distributed (Fig. 9.1a). Then y has a Lognormal 
distribution (Chapter 8).
•	 If there is an exponential relationship between y and another 
variable, x, so that the resulting curve bends upward when y (on 
the vertical axis) is plotted against x (on the horizontal axis), then 
the relationship between z = log y and x is approximately linear 
(Fig. 9.1b).
•	 Suppose we have different groups of observations, each com-
prising measurements of a continuous variable, y. We may find 
that the groups that have the higher values of y also have larger 
variances. In particular, if the coefficient of variation (the stand-
ard deviation divided by the mean) of y is constant for all the 
groups, the log transformation, z = log y, produces groups that 
have similar variances (Fig. 9.1c).

In medicine, the log transformation is frequently used 
because many variables have right-skewed distributions and 
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because the results have a logical interpretation. For example, 
if the raw data are log transformed, then the difference in two 
means on the log scale is equal to the ratio of the two means 
on the original scale. Taking the antilog of the 95% confidence 
limits (Chapter 11) for the mean of log transformed data gives 
a 95% confidence interval for the geometric mean (Chapter 5). 
If we take a log10 transformation of an explanatory variable in 
regression analysis (Chapter 29), a unit increase in the variable 
on the log scale represents a 10-fold increase in the variable on 
the original scale. Note that a log transformation of the outcome 
variable in a regression analysis allows for back-transformation 
of the regression coefficients, but the effect is multiplicative 
rather than additive on the original scale (Chapters 30 and 31).

The square root transformation, z y=
This transformation has properties that are similar to those of 
the log transformation, although the results after they have been 
back-transformed are more complicated to interpret. In addi-
tion to its Normalizing and linearizing abilities, it is effective 
at stabilizing variance if the variance increases with increasing 
values of y, i.e. if the variance divided by the mean is constant. 
We often apply the square root transformation if y is the count of 
a rare event occurring in time or space, i.e. it is a Poisson variable 
(Chapter 8). Remember, we cannot take the square root of a 
negative number.

The reciprocal transformation, z = 1/y
We often apply the reciprocal transformation to survival times 
unless we are using special techniques for survival analysis 
(Chapter 41). The reciprocal transformation has properties that 
are similar to those of the log transformation. In addition to  
its Normalizing and linearizing abilities, it is more effective at 
stabilizing variance than the log transformation if the variance 
increases very markedly with increasing values of y, i.e. if the 
variance divided by the (mean)4 is constant. Note that we cannot 
take the reciprocal of zero.

The square transformation, z = y2

The square transformation achieves the reverse of the log trans-
formation.

•	 If y is skewed to the left, the distribution of z = y2 is often 
approximately Normal (Fig. 9.2a).
•	 If the relationship between two variables, x and y, is such that 
a line curving downward is produced when we plot y against x, 
then the relationship between z = y2 and x is approximately linear 
(Fig. 9.2b).
•	 If the variance of a continuous variable, y, tends to decrease as 
the value of y increases, then the square transformation, z = y2, 
stabilizes the variance (Fig. 9.2c).

The logit (logistic) transformation, z p
p= −ln

1
This is the transformation we apply most often to each proportion, 
p, in a set of proportions. We cannot take the logit transforma-
tion if either p = 0 or p = 1 because the corresponding logit values 
are − ∞ and + ∞. One solution is to take p as 1/(2n) instead of 0, 
and as {1 − 1/(2n)} instead of 1, where n is the sample size.

The logit transformation linearizes a sigmoid curve  
(Fig. 9.3). See Chapter 30 for the use of the logit transformation 
in regression analysis.

Figure 9.2   The effect of the square transformation: (a) Normalizing, (b) linearizing, (c) variance stabilizing.
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Figure 9.3   The effect of the logit transformation on a
sigmoid curve.
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Part 2  Sam
pling and estim

ation

Sampling and sampling distributions
Learning objectives
By the end of this chapter, you should be able to:
•	 Explain what is meant by statistical inference and sampling 

error
•	 Explain how to obtain a representative sample
•	 Distinguish between point and interval estimates of a 

parameter
•	 List the properties of the sampling distribution of the mean
•	 List the properties of the sampling distribution of the 

proportion
•	 Explain what is meant by a standard error
•	 State the relationship between the standard error of the 

mean (SEM) and the standard deviation (SD)
•	 Distinguish between the uses of the SEM and the SD

Relevant Workbook questions: MCQs 18 and 19 available 
online

Point estimates
We are often interested in the value of a parameter in the popu-
lation (Chapter 7), such as a mean or a proportion. Parameters 
are usually denoted by letters of the Greek alphabet. For example, 
we usually refer to the population mean as μ and the popula-
tion standard deviation as σ. We estimate the value of the param-
eter using the data collected from the sample. This estimate is 
referred to as the sample statistic and is a point estimate of the 
parameter (i.e. it takes a single value) as opposed to an interval 
estimate (Chapter 11) which takes a range of values.

Sampling variation
If we were to take repeated samples of the same size from a popu-
lation, it is unlikely that the estimates of the population param-
eter would be exactly the same in every sample. However, our 
estimates should all be close to the true value of the parameter in 
the population, and the estimates themselves should be similar 
to each other. By quantifying the variability of these estimates, 
we obtain information on the precision of our estimate and can 
thereby assess the sampling error. In reality, we usually only take 
one sample from the population. However, we still make use of 
our knowledge of the theoretical distribution of sample estimates 
to draw inferences about the population parameter.

Sampling distribution of the mean
Suppose we are interested in estimating the population mean; we 
could take many repeated samples of size n from the population, 
and estimate the mean in each sample. A histogram of the esti-
mates of these means would show their distribution (Fig. 10.1); 
this is the sampling distribution of the mean. We can show the 
following:
•	 If the sample size is reasonably large, the estimates of the mean 
follow a Normal distribution, whatever the distribution of the 
original data in the population (this comes from a theorem 
known as the Central Limit Theorem).
•	 If the sample size is small, the estimates of the mean follow a 
Normal distribution provided the data in the population follow 
a Normal distribution.
•	 The mean of the estimates is an unbiased estimate of the true 
mean in the population, i.e. the mean of the estimates equals the 
true population mean.
•	 The variability of the distribution is measured by the standard 
deviation of the estimates; this is known as the standard error 
of the mean (often denoted by SEM). If we know the population 
standard deviation (σ), then the standard error of the mean is 
given by

SEM = σ / n

10

Why do we sample?
In statistics, a population represents the entire group of individ-
uals in whom we are interested. Generally it is costly and labour-
intensive to study the entire population and, in some cases, may 
be impossible because the population may be hypothetical (e.g. 
patients who may receive a treatment in the future). Therefore we 
collect data on a sample of individuals who we believe are repre-
sentative of this population (i.e. they have similar characteristics 
to the individuals in the population), and use them to draw con-
clusions (i.e. make inferences) about the population.

When we take a sample of the population, we have to recognize 
that the information in the sample may not fully reflect what is 
true in the population. We have introduced sampling error by 
studying only some of the population. In this chapter we show 
how to use theoretical probability distributions (Chapters 7 and 
8) to quantify this error.

Obtaining a representative sample
Ideally, we aim for a random sample. A list of all individuals from 
the population is drawn up (the sampling frame), and individu-
als are selected randomly from this list, i.e. every possible sample 
of a given size in the population has an equal probability of being 
chosen. Sometimes, we may have difficulty in constructing this 
list or the costs involved may be prohibitive, and then we take a 
convenience sample. For example, when studying patients with 
a particular clinical condition, we may choose a single hospital, 
and investigate some or all of the patients with the condition 
in that hospital. Very occasionally, non-random schemes, such as 
quota sampling or systematic sampling, may be used. Although 
the statistical tests described in this book assume that individuals are 
selected for the sample randomly, the methods are generally reason-
able as long as the sample is representative of the population.
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23When we only have one sample, as is customary, our best 

estimate of the population mean is the sample mean, and because 
we rarely know the standard deviation in the population, we 
estimate the standard error of the mean by

SEM = s n/

where s is the standard deviation of the observations in the sam-
ple (Chapter 6). The SEM provides a measure of the precision of 
our estimate.

Interpreting standard errors
•	 A large standard error indicates that the estimate is imprecise.
•	 A small standard error indicates that the estimate is precise.

The standard error is reduced, i.e. we obtain a more precise 
estimate, if:
•	 the size of the sample is increased (Fig. 10.1);
•	 the data are less variable.

SD or SEM?
Although these two parameters seem to be similar, they are used 
for different purposes. The standard deviation (SD) describes the 
variation in the data values and should be quoted if you wish 
to illustrate variability in the data. In contrast, the standard 

error describes the precision of the sample mean, and should be 
quoted if you are interested in the mean of a set of data values.

Sampling distribution of the proportion
We may be interested in the proportion of individuals in a popu-
lation who possess some characteristic. Having taken a sample of 
size n from the population, our best estimate, p, of the population 
proportion, π, is given by

p r n= /

where r is the number of individuals in the sample with the char-
acteristic. If we were to take repeated samples of size n from our 
population and plot the estimates of the proportion as a histo-
gram, the resulting sampling distribution of the proportion 
would approximate a Normal distribution with mean value π. 
The standard deviation of this distribution of estimated propor-
tions is the standard error of the proportion. When we take 
only a single sample, it is estimated by

SE( ) ( )p p p
n

= −1

This provides a measure of the precision of our estimate of π; 
a small standard error indicates a precise estimate.
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Figure 10.1   (a) Theoretical Normal distribution of log10 (triglyceride levels) in log10 (mmol/L) with mean = 0.31log10 (mmol/L) and standard
deviation = 0.24log10 (mmol/L), and the observed distributions of the means of 100 random samples of size (b) 10, (c) 20 and (d) 50 taken from
this theoretical distribution. 
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Confidence intervals
Learning objectives
By the end of this chapter, you should be able to:
•	 Interpret a confidence interval (CI)
•	 Calculate a confidence interval for a mean
•	 Calculate a confidence interval for a proportion
•	 Explain the term ‘degrees of freedom’
•	 Explain what is meant by bootstrapping and jackknifing

Relevant Workbook questions: MCQs 19, 20, 21, 34 and 
45; and SQ 2 available online

distributed, and/or we do not know the population variance but 
estimate it by s2, the sample mean follows a t-distribution (Chap-
ter 8). We calculate the 95% confidence interval for the mean as

( ( ) ( )). .Sample mean SEM to Sample mean SEM− × + ×t t0 05 0 05

i.e. it is Sample mean ± ×t s
n0 05.

where t0.05 is the percentage point (percentile) of the t-
distribution with (n − 1) degrees of freedom which gives a two-
tailed probability (Chapter 17) of 0.05 (Appendix A2). This 
generally provides a slightly wider confidence interval than that 
using the Normal distribution to allow for the extra uncertainty 
that we have introduced by estimating the population standard 
deviation and/or because of the small sample size. When the 
sample size is large, the difference between the two distributions 
is negligible. Therefore, we always use the t-distribution when 
calculating a confidence interval for the mean even if the sample 
size is large.

By convention we usually quote 95% confidence intervals. 
We could calculate other confidence intervals, e.g. a 99% 
confidence interval for the mean. Instead of multiplying the 
standard error by the tabulated value of the t-distribution 
corresponding to a two-tailed probability of 0.05, we multiply 
it by that corresponding to a two-tailed probability of 0.01. 
The 99% confidence interval is wider than a 95% confidence 
interval, to reflect our increased confidence that the range 
includes the true population mean.

Confidence interval for the proportion
The sampling distribution of a proportion follows a Binomial 
distribution (Chapter 8). However, if the sample size, n, is rea-
sonably large, then the sampling distribution of the proportion 
is approximately Normal with mean π. We estimate π by the pro-
portion in the sample, p = r/n (where r is the number of indi-
viduals in the sample with the characteristic of interest), and its 

standard error is estimated by p p
n

( )1−  (Chapter 10).

The 95% confidence interval for the proportion is estimated 
by  

p p p
n

p p p
n

− × −







 + × −

















1 96 1 1 96 1. ( ) . ( )to

If the sample size is small (usually when np or n(1 − p) is 
less than 5) then we have to use the Binomial distribution to 
calculate exact confidence intervals1. Note that if p is expressed 
as a percentage, we replace (1 − p) by (100 − p).

Interpretation of confidence intervals
When interpreting a confidence interval we are interested in a 
number of issues.
•	 How wide is it? A wide interval indicates that the estimate is 
imprecise; a narrow one indicates a precise estimate. The width 

11

Once we have taken a sample from our population, we obtain 
a point estimate (Chapter 10) of the parameter of interest, and 
calculate its standard error to indicate the precision of the esti-
mate. However, to most people the standard error is not, by itself, 
particularly useful. It is more helpful to incorporate this measure 
of precision into an interval estimate for the population param-
eter. We do this by making use of our knowledge of the theoreti-
cal probability distribution of the sample statistic to calculate a 
confidence interval for the parameter. Generally the confidence 
interval extends either side of the estimate by some multiple of 
the standard error; the two values (the confidence limits) which 
define the interval are generally separated by a comma, a dash or 
the word ‘to’ and are contained in brackets.

Confidence interval for the mean
Using the Normal distribution
In Chapter 10 we stated that, if we take repeated samples of a 
given size taken from a population, the sample means follow a 
Normal distribution if the sample size is large. Therefore we can 
make use of the properties of the Normal distribution when con-
sidering the sample mean. In particular, 95% of the distribution 
of sample means lies within 1.96 standard deviations (SD) of the 
population mean. We call this SD the standard error of the mean 
(SEM), and when we have a single sample, the 95% confidence 
interval (CI) for the mean is

( ( . ) ( . )Sample mean SEM to Sample mean SEM− × + ×1 96 1 96 )

If we were to repeat the experiment many times, the range of 
values determined in this way would contain the true population 
mean on 95% of occasions. This range is known as the 95% 
confidence interval for the mean. We usually interpret this confidence 
interval as the range of values within which we are 95% confident 
that the true population mean lies. Although not strictly correct 
(the population mean is a fixed value and therefore cannot have a 
probability attached to it), we will interpret the confidence interval 
in this way as it is conceptually easier to understand.

Using the t-distribution
Strictly, we should only use the Normal distribution in the cal-
culation if we know the value of the variance, σ2, in the popula-
tion. Furthermore, if the sample size is small, the sample mean 
only follows a Normal distribution if the underlying population 
data are Normally distributed. Where the data are not Normally 
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error, which in turn depends on the sample size and, when con-
sidering a numerical variable, the variability of the data. There-
fore, small studies on variable data give wider confidence inter-
vals than larger studies on less variable data.
•	 What clinical implications can be derived from it? The upper 
and lower limits provide a way of assessing whether the results 
are clinically important (see Example).
•	 Does it include any values of particular interest? We can 
check whether a hypothesized value for the population param-
eter falls within the confidence interval. If so, then our results are 
consistent with this hypothesized value. If not, then it is unlikely 
(for a 95% confidence interval, the chance is at most 5%) that the 
parameter has this value.

Degrees of freedom
You will come across the term ‘degrees of freedom’ in statis-
tics. In general they can be calculated as the sample size minus 
the number of constraints in a particular calculation; these 
constraints may be the parameters that have to be estimated. 
As a simple illustration, consider a set of three numbers that 
add up to a particular total (T). Two of the numbers are ‘free’ 
to take any value but the remaining number is fixed by the 
constraint imposed by T. Therefore the numbers have two 
degrees of freedom. Similarly, the degrees of freedom of the 

sample variance, s
x x

n
2

2

1
=

−
−

∑( )  (Chapter 6), are the sample 

size minus one, because we have to calculate the sample mean  
( x ), an estimate of the population mean, in order to evaluate s2.

Bootstrapping and jackknifing
Bootstrapping is a computer-intensive simulation process 
which we can use to derive a confidence interval for a param-
eter if we do not want to make assumptions about the sam-
pling distribution of its estimate (e.g. the Normal distribution 
for the sample mean). From the original sample, we create a 
large number of random samples (usually at least 1000), each of 
the same size as the original sample, by sampling with replace-
ment, i.e. by allowing an individual who has been selected to be 
‘replaced’ so that, potentially, this individual can be included 
more than once in a given sample. Every sample provides an 
estimate of the parameter, and we use the variability of the dis-
tribution of these estimates to obtain a confidence interval for 
the parameter, for example, by considering relevant percentiles 
(e.g. the 2.5th and 97.5th percentiles to provide a 95% confi-
dence interval).

Jackknifing is a similar technique to bootstrapping. However, 
rather than creating random samples of the original sample, 
we remove one observation from the original sample of size n 
and then compute the estimated parameter on the remaining 
(n − 1) observations. This process is repeated, removing each 
observation in turn, giving us n estimates of the parameter. As 
with bootstrapping, we use the variability of the estimates to 
obtain the confidence interval.

Bootstrapping and jackknifing may both be used when 
generating and validating prognostic scores (Chapter 46).

Reference
1	 Lentner, C (ed.) (1982) Geigy Scientific Tables. 8th edition, 

Volume 2. Basle: Ciba-Geigy.Confidence interval for the mean

Example

Confidence interval for the mean
We are interested in determining the mean age at first birth in 
women who have bleeding disorders. In a sample of 49 such 
women who had given birth by the end of 1997 (Chapter 2):

Mean age at birth of child years
Standard deviation

, .
, .

x
s

=
=

27 01
5 12882

0 7326

years

Standard error SEM
5 1282

49
years,

.
.= =

The variable is approximately Normally distributed but, 
because the population variance is unknown, we use the 
t-distribution to calculate the confidence interval. The 95% 
confidence interval for the mean is:

27 01 2 011 0 7326 25 54 28 48. ( . . ) ( . , . )± × = years

where 2.011 is the percentage point of the t-distribution with 
(49 − 1) = 48 degrees of freedom giving a two-tailed probability 
of 0.05 (Appendix A2).

We are 95% certain that the true mean age at first birth in 
women with bleeding disorders in the population lies between 
25.54 and 28.48 years. This range is fairly narrow, reflecting a 
precise estimate. In the general population, the mean age at first 
birth in 1997 was 26.8 years. As 26.8 falls into our confidence 
interval, there is no evidence that women with bleeding disorders 
tend to give birth at an older age than other women.

Note that the 99% confidence interval (25.05, 28.97 years) 
is slightly wider than the 95% confidence interval, reflecting 

our increased confidence that the population mean lies in the 
interval.

Confidence interval for the proportion
Of the 64 women included in the study, 27 (42.2%) reported 
that they experienced bleeding gums at least once a week. 
This is a relatively high percentage, and may provide a way 
of identifying undiagnosed women with bleeding disorders 
in the general population. We calculate a 95% confidence 
interval for the proportion with bleeding gums in the 
population.

Sample proportion

Standard error of proportion

= =

=

27 64 0 422

0 42

/ .

. 22 1 0 422
64

0 0617

95 0 422 1 96 0 06

( . )
.

% . ( . .

− =

= ± ×confidence interval 117 0 301 0 543) ( . , . )=

We are 95% certain that the true percentage of women with 
bleeding disorders in the population who experience bleeding 
gums this frequently lies between 30.1% and 54.3%. This is a 
fairly wide confidence interval, suggesting poor precision; a larger 
sample size would enable us to obtain a more precise estimate. 
However, the upper and lower limits of this confidence interval 
both indicate that a substantial percentage of these women are 
likely to experience bleeding gums. We would need to obtain 
an estimate of the frequency of this complaint in the general 
population before drawing any conclusions about its value for 
identifying undiagnosed women with bleeding disorders.
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Study design I12

Learning objectives
By the end of this chapter, you should be able to:
•	 Distinguish between experimental and observational stud-

ies, and between cross-sectional and longitudinal studies
•	 Explain what is meant by the unit of observation
•	 Explain the terms: control group, epidemiological study, 

cluster randomized trial, ecological study, multicentre 
study, survey, census

•	 List the criteria for assessing causality in observational 
studies

•	 Describe the time course of cross-sectional, repeated cross-
sectional, cohort, case–control and experimental studies

•	 List the typical uses of these various types of study
•	 Distinguish between prevalence and incidence

Relevant Workbook questions: MCQs 22, 23, 27, 31, 32, 33 
and 39 available online

Study design is vitally important as poorly designed studies may 
give misleading results. Large amounts of data from a poor study 
will not compensate for problems in its design. In this chapter and 
in Chapter 13 we discuss some of the main aspects of study design. 
In Chapters 14–16 we discuss specific types of study: clinical trials, 
cohort studies and case–control studies.

The aims of any study should be clearly stated at the outset. 
We may wish to estimate a parameter in the population such 
as the risk of some event (Chapter 15), to consider associations 

between a particular aetiological factor and an outcome of 
interest, or to evaluate the effect of an intervention such as a 
new treatment. There may be a number of possible designs for 
any such study. The ultimate choice of design will depend not 
only on the aims but also on the resources available and ethical 
considerations (Table 12.1).

Experimental or observational studies
•	 Experimental studies involve the investigator intervening 
in some way to affect the outcome. The clinical trial (Chap-
ter 14) is an example of an experimental study in which the 
investigator introduces some form of treatment. Other exam-
ples include animal studies or laboratory studies that are car-
ried out under experimental conditions. Experimental studies 
provide the most convincing evidence for any hypothesis as it 
is generally possible to control for factors that may affect the 
outcome (see also Chapter 40). However, these studies are not 
always feasible or, if they involve humans or animals, may be 
unethical.
•	 Observational studies, e.g. cohort (Chapter 15) or case–
control (Chapter 16) studies, are those in which the investi-
gator does nothing to affect the outcome but simply observes 
what happens. These studies may provide poorer information 
than experimental studies because it is often impossible to 
control for all factors that affect the outcome. However, in some 

Table 12.1  Study designs.

Type of study Timing Form
Action in 
past time

Action in present  
time (starting point)

Action in 
future time Typical uses

Cross-sectional Cross-sectional Observational •	 Prevalence estimates
•	 �Reference ranges and diagnostic 

tests
•	 �Current health status of a group

Collect  
all  

information

▼ ▼ ▼

Repeated cross-
sectional

Cross-sectional Observational Collect  
all  

information

Collect  
all  

information

•	 Changes over time

Cohort  
(Chapter 15)

Longitudinal 
(usually 
prospective)

Observational Define cohort 
and assess  
risk factors follow

•	 �Prognosis and natural history 
(what will happen to someone 
with disease)

•	 Aetiology

Case–control 
(Chapter 16)

Longitudinal 
(retrospective)

Observational Assess  
risk  

factors
trace

•	 �Aetiology (particularly for rare 
diseases)

Experiment Longitudinal 
(prospective)

Experimental

follow

•	 �Clinical trial to assess therapy 
(Chapter 14)

•	 �Trial to assess preventative 
measure, e.g. large-scale vaccine 
trial

•	 Laboratory experiment

Observe  
outcomes

Define cases 
and controls 

(i.e. outcome)

Apply 
intervention

Observe  
outcomes
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Chapter 12  Study design I
29situations, they may be the only types of study that are helpful 

or possible. Epidemiological studies, which assess the relation-
ship between factors of interest and disease in the population, 
are observational.

Defining the unit of observation
The unit of observation is the ‘individual’ or smallest group 
of ‘individuals’ that can be regarded as independent for the 
purposes of analysis, i.e. its response of interest is unaffected 
by those of the other units of observation. In medical studies, 
whether experimental or observational, investigators are usually 
interested in the outcomes of an individual person. For example, 
in a clinical trial (Chapter 14), the unit of observation is usu-
ally the individual patient as his/her response to treatment is 
believed not to be affected by the responses to treatment experi-
enced by other patients in the trial. However, for some studies, 
it may be appropriate to consider different units of observation. 
For example:
•	 In dental studies, the unit of observation may be the patient's 
mouth rather than an individual tooth, as the teeth within a 
patient's mouth are not independent of each other.
•	 In some experimental studies, particularly laboratory studies, 
it may be necessary to pool material from different individuals 
(e.g. mice). It is then impossible to assess each individual sepa-
rately and the pooled material (e.g. that in the well of a tissue 
culture plate) becomes the unit of observation.
•	 A cluster randomized trial (Chapter 14) is an example of an 
experimental study where the unit of observation is a group of 
individuals, such as all the children in a class.
•	 An ecological study is a particular type of epidemiologi-
cal study in which the unit of observation is a community or 
group of individuals rather than the individual. For example, 
we may compare national mortality rates from breast cancer 
across a number of different countries to see whether mortal-
ity rates appear to be higher in some countries than others, 
or whether mortality rates are correlated with other national 
characteristics. While any associations identified in this way 
may provide interesting hypotheses for further research, care 
should always be taken when interpreting the results from 
such studies owing to the potential for bias (see the ecological 
fallacy in Chapter 34). 

Multicentre studies
A multicentre study, which may be experimental or observa-
tional, enrols a number of individuals from each of two or more 
centres (e.g. hospital clinic, general practice). While these cen-
tres may be of a different type and/or size, the same study pro-
tocol will be used in all centres. If management practices vary 
across centres, it is likely that the outcomes experienced by two 
individuals within the same centre will be more similar than 
those experienced by two individuals in different centres. The 
analysis of a multicentre study, which is usually performed in 
a single coordinating centre, should always take account of any 
centre ‘effects’, either through an analysis suitable for clustered 
data (Chapter 42), or by adjustment for the centre in a multivari-
able regression analysis (Chapter 33).

Assessing causality
In medical research we are generally interested in whether expo-
sure to a factor causes an effect (e.g. whether smoking causes 

lung cancer). Although the most convincing evidence for the 
causal role of a factor in disease usually comes from randomized 
controlled trials (Chapter 14), information from observational 
studies may be used provided a number of criteria are met. The 
most well-known criteria for assessing causation were proposed 
by Hill1.
1	 The cause must precede the effect.
2	 The association should be plausible, i.e. the results should be 
biologically sensible.
3	 There should be consistent results from a number of studies.
4	 The association between the cause and the effect should be 
strong.
5	 There should be a dose–response relationship with the effect, 
i.e. higher levels of the effect should lead to more severe disease 
or more rapid disease onset.
6	 Removing the factor of interest should reduce the risk of 
disease.

Cross-sectional or longitudinal studies
•	 A cross-sectional study is carried out at a single point in time. 
A survey is a type of cross-sectional study where, usually, the 
aim is to describe individuals’ beliefs in or attitudes towards a 
particular issue in a large sample of the population. A census 
is a particular type of survey in which the entire target popula-
tion is investigated. In a medical setting, a cross-sectional study 
is particularly suitable for estimating the point prevalence of a 
condition in the population.

Point prevalence
Number with the disease at a single time point
Tota

=
ll number studied at the same time point

As we do not know when the events occurred prior to the 
study, we can only say that there is an association between 
the factor of interest and disease, and not that the factor is 
likely to have caused disease (i.e. we have not demonstrated 
that Hill's criterion 1 has been satisfied). Furthermore, 
we cannot estimate the incidence of the disease, i.e. the 
rate of new events in a particular period (Chapter 31). In 
addition, because cross-sectional studies are only carried 
out at one point in time, we cannot consider trends over 
time. However, these studies are generally quick and cheap 
to perform.
•	 A repeated cross-sectional study may be carried out at dif-
ferent time points to assess trends over time. However, as this 
study is likely to include different groups of individuals at each 
time point, it can be difficult to assess whether apparent changes 
over time simply reflect differences in the groups of individuals 
studied.
•	 A longitudinal study follows a sample of individuals over 
time. This type of study is usually prospective in that individu-
als are followed forward from some point in time (Chapters 14  
and 15). Sometimes a retrospective study, in which individu-
als are selected and factors that have occurred in their past 
are identified (Chapter 16), are also perceived as longitudinal. 
Longitudinal studies generally take longer to carry out than 
cross-sectional studies, thus requiring more resources, and, if 
they rely on patient memory or medical records, may be sub-
ject to bias (Chapter 34).

Experimental studies are prospective as they consider the 
impact of an intervention on an outcome that will happen in the 
future. However, observational studies may be either prospective 
or retrospective.
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Controls
The use of a comparison group, or control group, is important 
when designing a study and interpreting any research findings. 
For example, when assessing the causal role of a particular 
factor for a disease, the risk (Chapter 15) or odds (Chapter 16) 
should be compared in those who are exposed and in those 
who are unexposed to the factor of interest. See also ‘Treatment 
comparisons’ in Chapter 14.

Bias
When there is a systematic difference between the results from a 
study and the true state of affairs, bias is said to have occurred. 
Bias and methods to reduce its impact are described in detail in 
Chapter 34.

Reference
1	 Hill, A.B. (1965) The environment and disease: association or 

causation? Proceedings of the Royal Society of Medicine, 58, 295.
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Study design II13

Learning objectives
By the end of this chapter, you should be able to:
•	 Describe how to increase the precision of an estimate
•	 Explain the principles of blocking (stratification)
•	 Distinguish between parallel and cross-over designs
•	 Describe the features of a factorial experiment
•	 Explain what is meant by an interaction between factors
•	 Explain the terms: study endpoint, surrogate marker, com-

posite endpoint

Relevant Workbook questions: MCQs 24, 25, 26, 29 and 60 
available online

Variation
Variation in data may be caused by biological factors (e.g. sex, 
age) or measurement ‘errors’ (e.g. observer variation), or it may 
be unexplainable random variation (see also Chapter 39). We 
measure the impact of variation in the data on the estimation of 
a population parameter by using the standard error (Chapter 10). 
When the measurement of a variable is subject to considerable 
variation, estimates relating to that variable will be imprecise, 
with large standard errors. Clearly, it is desirable to reduce the 
impact of variation as far as possible, and thereby increase the 
precision of our estimates. There are various ways in which we 
can do this, as described in this chapter.

Replication
Our estimates are more precise if we take replicates (e.g. two 
or three measurements of a given variable for every individual 
on each occasion). However, as replicate measurements are not 
independent, we must take care when analysing these data. A 
simple approach is to use the mean of each set of replicates in the 
analysis in place of the original measurements. Alternatively, we 
can use methods that specifically deal with replicated measure-
ments (Chapters 41 and 42).

Sample size
The choice of an appropriate size for a study is a crucial aspect of 
study design. With an increased sample size, the standard error 
of an estimate will be reduced, leading to increased precision and 
study power (Chapter 18). Sample size calculations (Chapter 36) 
should be carried out before starting the study.

In any type of study, it is important that the sample size 
included in the final study analysis is as close as possible to 
the planned sample size to ensure that the study is sufficiently 
powered (Chapter 18). This means that response rates should 
be as high as possible in cross-sectional studies and surveys. In 
clinical trials and cohort studies, attempts should be made to 
minimize any loss to follow-up; this will also help attenuate any 
biases (Chapter 34) that may be introduced if non-responders 
or cohort drop-outs differ in any respect to responders or those 
remaining in the trial or cohort.

Particular study designs
Modifications of simple study designs can lead to more precise 
estimates. Essentially, we are comparing the effect of one or 
more ‘treatments’ on experimental units. The experimental 
unit (i.e. the unit of observation in an experiment – Chapter 
12) is the ‘individual’ or the smallest group of ‘individu-
als’ whose response of interest is not affected by that of any 
other units, such as an individual patient, volume of blood or 
skin patch. If experimental units are assigned randomly (i.e. 
by chance) to treatments (Chapter 14) and there are no other 
refinements to the design, we have a complete randomized 
design. Although this design is straightforward to analyse, it is 
inefficient if there is substantial variation between the experi-
mental units. In this situation, we can incorporate blocking 
and/or use a cross-over design to reduce the impact of this 
variation.

Blocking (stratification)
It is often possible to group experimental units that share 
similar characteristics into a homogeneous block or stratum  
(e.g. the blocks may represent different age groups). The 
variation between units in a block is less than that between 
units in different blocks. The individuals within each block 
are randomly assigned to treatments; we compare treatments 
within each block rather than making an overall comparison 
between the individuals in different blocks. We can therefore 
assess the effects of treatment more precisely than if there was 
no blocking.

Parallel and cross-over designs (Fig. 13.1)
Generally, we make comparisons between individuals in differ-
ent groups. For example, most clinical trials (Chapter 14) are 
parallel trials, in which each patient receives one of the two (or 
occasionally more) treatments that are being compared, i.e. they 
result in between-individual comparisons.

Because there is usually less variation in a measurement 
within an individual than between different individuals 
(Chapter 6), in some situations it may be preferable to consider 
using each individual as his/her own control. These within-
individual comparisons provide more precise comparisons 
than those from between-individual designs, and fewer 
individuals are required for the study to achieve the same level 
of precision. In a clinical trial setting, the cross-over design1 
is an example of a within-individual comparison; if there are 
two treatments, each individual gets both treatments, one after 
the other in a random order to eliminate any effect of calendar 
time. The treatment periods are separated by a washout 
period, which allows any residual effects (carry-over) of the 
previous treatment to dissipate. We analyse the difference 
in the responses on the two treatments for each individual. 
This design can only be used when the treatment temporarily 
alleviates symptoms rather than provides a cure, and the 
response time is not prolonged.
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Factorial experiments
When we are interested in more than one factor, separate stud-
ies that assess the effect of varying one factor at a time may be 
inefficient and costly. Factorial designs allow the simultane-
ous analysis of any number of factors of interest. The simplest 
design, a 2 × 2 factorial experiment, considers two factors (e.g. 
two different treatments), each at two levels (e.g. either active 
or inactive treatment). As an example, consider the US Lantus 
for C-reactive Protein Reduction in Early Treatment of Type 2 
Diabetes (LANCET) trial2, designed to assess the importance of 
insulin glargine and metformin for achieving glycaemic control 
in patients who have type 2 diabetes with suboptimal glycaemic 
control and elevated levels of high sensitivity C-reactive protein 
(hsCRP). A 2 × 2 factorial design was used, with the two factors 
being the different compounds. For metformin, the two levels 
indicated whether the patient received the active compound or 
its placebo (Chapter 14); as the insulin glargine was provided in 
an open-label manner, the two levels for this compound were 
whether the patient received the active compound or no com-
pound. Table 13.1 shows the possible treatment combinations.

Table 13.1  Active treatment combinations.

Active metformin

Insulin  
glargine No Yes

No Metformin placebo Metformin
Yes Insulin glargine +  

metformin placebo
Insulin glargine +  
metformin

We assess the effect of the level of metformin by comparing 
patients in the left-hand column with those in the right-hand 
column. Similarly, we assess the effect of the level of insulin 
glargine by comparing patients in the top row with those in the 
bottom row. In addition, we can test whether the two factors are 
interactive, i.e. when the effect of metformin is different for the 
two levels of insulin glargine. If the effects differ, we then say that 
there is an interaction between the two factors (Chapter 33). In 
this example, an interaction would suggest that the combination 

Population

Sample
Baseline

assessment

Administer
therapy

Administer
control

Assess
response

Assess
response

Compare
responses
(between
patients)

(a) Parallel

Population

Sample
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Administer
therapy

Administer
therapy

Administer
control

Administer
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Assess
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Assess
response

Assess
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Compare responses
(within patients)

Compare responses
(within patients)

Ran
domize
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ize

Ran
domize
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(b) Cross-over

Wash-
out

Wash-
out

Figure 13.1   (a) Parallel, and (b) cross-over designs.
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33of insulin glargine and metformin together is more (or less) 

effective than would be expected by simply adding the separate 
effects of each drug. This design, therefore, provides additional 
information to two separate studies and is a more efficient use 
of resources, requiring a smaller sample size to obtain estimates 
with a given degree of precision.

Choosing an appropriate study endpoint
A study endpoint, which must be specified before the data 
are collected, is a clearly defined outcome for an individual. It 
should relate to the relevant hypothesis under study and have 
clinical/biological relevance. Study endpoints may be clinical 
(e.g. death, onset of fever) or may be based on surrogate 
markers (e.g. the presence of the tumour marker CA125 for 
ovarian cancer, measurement of HIV viral load for AIDS). Sur-
rogate marker endpoints are often biomarkers that are used as 
a substitute for a clinical endpoint when it is difficult, expen-
sive or time-consuming to measure the clinical endpoint. 
Occasionally, a composite endpoint may be defined – this 

usually requires the participant to experience one or more of a 
number of possible endpoints. For example, a cardiovascular 
endpoint may be defined if any of the following events occur: 
a myocardial infarction, death due to cardiovascular disease 
or stroke. However, analyses involving composite endpoints 
may be difficult to interpret, particularly if the components 
of the endpoint are associated with different prognoses, and 
care should be taken when choosing and analysing this type 
of endpoint.

Further issues surrounding the choice of an appropriate study 
endpoint for a clinical trial are described in Chapter 14.

References
1	 Senn, S. (2003) Cross-over Trials in Clinical Research. 2nd edition. 

Chichester: Wiley.
2	 Pradhan, A.D., Everett, B.M., Cook, N.R., Rifai, N. and Ridker, 

P.M. (2009) Effects of initiating insulin and metformin on gly-
cemic control and inflammatory biomarkers among patients 
with type 2 diabetes. The LANCET Randomized Trial. JAMA, 
302, 1186–1196.

www.konkur.in

Telegram: @medical_k



﻿  �﻿﻿

34

Medical Statistics at a Glance, Fourth Edition. Aviva Petrie and Caroline Sabin. © 2020 Aviva Petrie and Caroline Sabin. Published 2020 by John Wiley & Sons Ltd. 
Companion Website: www.medstatsaag.com

34

Clinical trials14

Learning objectives
By the end of this chapter, you should be able to:
•	 Define ‘clinical trial’ and distinguish between Phase I/II and 

Phase III clinical trials
•	 Explain the importance of a control treatment and distin-

guish between positive and negative controls
•	 Explain what is meant by a placebo
•	 Distinguish between primary and secondary endpoints
•	 Explain why it is important to randomly allocate individuals 

to treatment groups and describe different forms of 
randomization

•	 Explain why it is important to incorporate blinding (masking)
•	 Distinguish between double- and single-blind trials
•	 Discuss the ethical issues arising from a randomized con-

trolled trial (RCT)
•	 Explain the principles of a sequential trial
•	 Distinguish between on-treatment analysis and analysis by 

intention-to-treat (ITT)
•	 Describe the contents of a protocol
•	 Apply the CONSORT Statement guidelines

Relevant Workbook questions: MCQs 24, 25, 27 and 28; 
and SQ 5 available online

A clinical trial1 is any form of planned experimental study 
designed, in general, to evaluate the effect of a new treatment 
on a clinical outcome in humans. Clinical trials may either be 
pre-clinical studies, small clinical studies to investigate effect and 
safety (Phase I/II trials) or full evaluations of the new treatment 
(Phase III trials). In this chapter we discuss the main aspects of 
Phase III trials, all of which should be reported in any publica-
tion. Guidance for reporting randomized controlled trials may be 
found in the CONSORT guidelines – we provide its checklist and 
recommended flow chart in Appendix D (Table D2 and Fig. D1). 
(See Fig 14.1 for an example of a flow chart.) Further relevant 
information and any updates may be obtained from the CON-
SORT website (www.equator-network.org/reporting-guidelines/
consort/ and www.consort-statement.org). CONSORT is one 
component of the EQUATOR initiative (Appendix D), pro-
moting the responsible reporting of health research studies  
(www.equator-network.org).

Treatment comparisons
Clinical trials are prospective studies in that we are interested in 
measuring the impact of a treatment given now on a future pos-
sible outcome. In general, clinical trials evaluate new interven-
tions (e.g. type or dose of drug; surgical procedure). Throughout 
this chapter we assume, for simplicity, that only one new treat-
ment is being evaluated in a trial.

An important feature of a clinical trial is that it should 
be comparative (Chapter 12). Without a control treatment, 
it is impossible to be sure that any response is due solely to 
the effect of the treatment, and the importance of the new 
treatment can be overstated. The control may be the standard 
treatment (a positive control) or, if one does not exist, it may 
be a negative control, which can be a placebo (a treatment that 

looks and tastes like the new therapy but that does not contain 
any active compound) or the absence of treatment if ethical 
considerations permit.

Primary and secondary endpoints
When choosing the endpoint at the planning stage of a study 
(Chapter 13), we must decide which outcome most accurately 
reflects the benefit of the new therapy. This is known as the 
primary endpoint of the study and usually relates to treatment 
efficacy. Secondary endpoints, which often relate to toxicity, 
are of interest and should also be considered at the outset. Gen-
erally, all these endpoints are analysed at the end of the study. 
However, we may wish to carry out some pre-planned interim 
analyses (for example, to ensure that no major toxicities have 
occurred requiring the trial to be stopped). Care should be 
taken when comparing treatments at these times owing to the 
problems of multiple hypothesis testing (Chapter 18). An inde-
pendent Data Safety and Monitoring Committee (DSMC) 
often takes responsibility for the interpretation of interim anal-
yses, the results of which should generally be treated confiden-
tially and not circulated to other trial investigators unless the 
trial is stopped.

Subgroup analyses
There is often a temptation to assess the effect of a new treatment 
in various subgroups of patients in the trial (e.g. in men and 
women separately; in older and younger individuals). Owing 
to the problems with multiple hypothesis testing and reduced 
study power (Chapter 18), these should be avoided unless they 
are pre-planned, the study sample size has been calculated 
accordingly, and appropriate statistical methods have been used 
for analysis.

Treatment allocation
Once a patient has been formally entered into a clinical trial, 
she or he is allocated to a treatment group. In general, patients 
are allocated in a random manner (i.e. based on chance), using 
a process known as random allocation or randomization. 
This is often performed using a computer-generated list of ran-
dom numbers or by using a table of random numbers (Appen-
dix A12). For example, to allocate patients to two treatments, 
we might follow a sequence of random numbers and allocate 
the patient to treatment A if the number is even (treating zero 
as even) and to treatment B if it is odd. This process promotes 
similarity between the treatment groups in terms of baseline 
characteristics at entry to the trial (i.e. it avoids allocation 
bias and, consequently, confounding (Chapter 34)), maximiz-
ing the efficiency of the trial. If a baseline characteristic is not 
evenly distributed in the treatment groups (evaluated by exam-
ining the appropriate summary measures, e.g. the means and 
standard deviations), the discrepancy must be due to chance if 
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Figure 14.1   Trial pro�le example (based on Fig. D1). Adapted from Chow, C.K., Redfern, J., Hillis, G.S., et al. (2015) Effect of
lifestyle-focused text messaging on risk factor modi�cation in patients with coronary heart disease. A randomized clinical trial. JAMA,
314(12), 1255–1263 (see the example in Chapter 40). Reproduced with permission of American Medical Association.

Assessed for eligibility (n = 1301)

Excluded (n = 591)
•  Did not own mobile phone (n = 265)
•  Not proficient in English (n = 205)
•  Declined to participate (n = 70)
•  Baseline assessment not completed (n = 10)
•  Other reasons (n = 41 )

Randomized (n = 710)

Enrollment

Allocated to text messages and usual care (n = 352)
(LDL-C measures at baseline (n = 336))

•  Lost to follow-up (n = 13)
      Unable to contact (n = 9)
      Died prior to 6 month visit (n = 4)
•  Discontinued text messages (n = 7)
      Did not like messages (n = 4)
      Comorbidities (n = 1)
      Moved to another country (n = 1)
      On holiday (n = 1)

Allocated to usual care (n = 358)
(LDL-C measures at baseline (n = 348))

•  Lost to follow-up (n = 4)
      Unable to contact (n = 3)
      Died prior to 6 month visit (n = 1)

Analysed (n = 333)
•  Excluded from analysis (n = 21)
      Missing LDL-C measures at baseline, 6 months or both

Analysed (n = 319)
•  Excluded from analysis (n = 20)
      Missing LDL-C measures at baseline, 6 months or both

Allocation

Follow-up

Analysis

randomization has been used. Therefore, it is inappropriate to 
perform a formal statistical hypothesis test (such as the t-test, 
Chapter 21) to compare the parameters of any baseline char-
acteristic in the treatment groups because the hypothesis test 
assesses whether the difference between the groups is due to 
chance.

Trials in which patients are randomized to receive either the 
new treatment or a control treatment are known as randomized 
controlled trials (often referred to as RCTs), and are regarded as 
optimal. Systematic allocation, whereby patients are allocated to 
treatment groups systematically rather than randomly, possibly 
by day of visit or date of birth, should be avoided where possible; 
the clinician may be able to determine the proposed treatment 
for a particular patient before he or she is entered into the trial, 
and this may influence his/her decision as to whether to include 
a patient in the trial.

Refinements of simple randomization include the following:
•	 Stratified randomization, which controls for the effects of 
important factors (e.g. age, sex) by helping to ensure that each 
factor is equally distributed across treatment groups. The patients 
are stratified by one or more of these factors and a separate ran-
domization list is used in each stratum.
•	 Blocked or restricted randomization, which ensures 
roughly equal-sized treatment groups at the end of patient 

recruitment. This is achieved by choosing relatively small 
block sizes (e.g. 6 or 9) that are multiples of the number of 
treatments, and allocating equal numbers of patients to the 
different treatments in each block, using some modified form 
of randomization.
•	 Cluster randomization, whereby we randomly allocate a 
group or cluster of individuals, rather than each individual, to a 
treatment. This may be necessary when it is infeasible to rand-
omize individuals separately within each cluster (e.g. fluoride in 
drinking water) or when the response to treatment of one indi-
vidual may affect that of other individuals in the same cluster. 
For example, suppose we wish to evaluate the effects of a GP-led 
health education programme to improve the diet and lifestyle of 
people at high risk of heart disease. To achieve this, we could 
compare relevant outcomes (e.g. the average change in weight 
and blood pressure at the end of 1 year) in individuals who are 
randomized either to receive the programme (the new ‘treat-
ment’) or not to receive the programme (the control ‘treatment’). 
Unfortunately, it may be difficult in this situation to randomize 
individual patients to the two ‘treatments’ as it may be impractical 
for a doctor to switch randomly between the type of care that he/
she provides in the same clinic. Furthermore, even if individual 
randomization were feasible, there is likely to be dissemination 
of the information about the programme to those individuals 
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36 who were randomized not to receive it, and responses will not 
be independent of each other in the two treatment groups. Thus 
all patients, even the controls, may benefit from the programme 
and any comparison of outcomes between those on and not on 
the programme is likely to be diluted. In these instances, it is usu-
ally the doctor who is randomized to the treatment group rather 
than the individual patients in his/her care. We should take care 
when planning the sample size, because the unit of investigation 
(Chapter 12) is the group and not the individual in the group, 
and when analysing the data in these cluster randomized studies 
(see also Chapters 36, 41 and 42)2.

Sequential trials
Most clinical trials have sample sizes that are predetermined at the 
outset (Chapter 36), i.e. they are fixed-size designs. A sequential 
design may be used occasionally when the time interval between 
a treatment and an outcome is expected to be short. In the simple 
situation where we are comparing two treatments (e.g. a novel 
and a control treatment), individuals are randomized to treat-
ment in ‘pairs’, one to each of the treatments. Once the treatment 
outcomes of both members of the pair are known, all the data 
currently available are analysed. A formal statistical rule is then 
used to determine whether the trial should stop (if there is a 
clear difference between the treatments or it becomes obvious 
that a difference between them will not be detected) or whether 
another pair of individuals should be recruited and randomized. 
The main benefit of this type of design is that, when there is a 
large treatment effect, the trial will require fewer patients than 
a standard fixed-size parallel design (Chapter 13). However, 
mainly because of the requirement for the time interval between 
the treatment and outcome to be short, and other practical dif-
ficulties, these designs are used infrequently.

Blinding or masking
There may be assessment bias when patients and/or clini-
cians are aware of the treatment allocation, particularly if the 
response is subjective. An awareness of the treatment allocation 
may influence the recording of signs of improvement or adverse 
events. Therefore, where possible, all participants (clinicians, 
patients, assessors) in a trial should be blinded or masked to 
the treatment allocation and to the randomization list. A trial in 
which the patient, the treatment team and the assessor are una-
ware of the treatment allocation is a double-blind trial. Trials in 
which it is impossible to blind the patient may be single-blind 
providing the clinician and/or assessor is blind to the treatment 
allocation.

Patient issues
As clinical trials involve humans, patient issues are of impor-
tance. In particular, any clinical trial must be passed by an ethics 
committee who judge that the trial does not contravene the Dec-
laration of Helsinki. Informed patient consent must be obtained 
from each patient (or from the legal guardian or parent if the 
patient is a minor) before she or he is entered into a trial.

The protocol
Before any clinical trial is carried out, a written description of all 
aspects of the trial, known as the protocol, should be prepared. 
This includes information on the aims and objectives of the trial, 
along with a definition of which patients are to be recruited (inclu-
sion and exclusion criteria), treatment schedules, data collection 
and analysis, contingency plans should problems arise, and study 
personnel. It is important to recruit enough patients into a trial 
so that the chance of correctly detecting a true treatment effect is 
sufficiently high. Therefore, before carrying out any clinical trial, 
the optimal trial size should be calculated (Chapter 36).

Protocol deviations occur when patients who enter the trial 
but do not conform to the protocol criteria, e.g. patients who were 
incorrectly recruited into or who withdrew from the study, and 
patients who switched treatments. To avoid bias, the study should 
be analysed on an intention-to-treat (ITT) basis, in which all 
patients on whom we have information are analysed in the groups 
to which they were originally allocated, irrespective of whether 
they followed the treatment regimen. Where possible, attempts 
should be made to collect information on patients who withdraw 
from the trial. On-treatment (also called per-protocol) analyses, 
in which patients are only included in the analysis if they complete 
a full course of treatment as prescribed in the protocol, are not 
recommended as they often lead to biased treatment comparisons.

SPIRIT, another component of the EQUATOR network 
(Appendix D and Chapter 37), is an international initiative 
that aims to improve the quality of clinical trial protocols by 
providing evidence-based recommendations for a minimum 
set of scientific, ethical and administrative elements that should 
be addressed in a clinical trial protocol. Details may be found at 
www.spirit-statement.org and http://www.equator-network.org/
reporting-guidelines/spirit-2013-statement-defining-standard-
protocol-items-for-clinical-trials/.
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Cohort studies15

Learning objectives
By the end of this chapter, you should be able to:
•	 Describe the aspects of a cohort study
•	 Distinguish between fixed and dynamic cohorts
•	 Explain the terms: historical cohort, risk factor, healthy 

entrant effect, clinical cohort
•	 List the advantages and disadvantages of a cohort study
•	 Describe the important aspects of cohort study manage-

ment
•	 Calculate and interpret a relative risk

Relevant Workbook questions: MCQs 20, 22, 29, 30, 31 
and 48; and SQ 16 available online

A cohort study takes a group of individuals and usually follows 
them forward in time, the aim being to study whether exposure 
to a particular aetiological factor will affect the incidence of a 
disease outcome in the future (Fig. 15.1). If so, the factor is gen-
erally known as a risk factor for the disease outcome. For exam-
ple, a number of cohort studies have investigated the relation-
ship between dietary factors and cancer. Although most cohort 
studies are prospective, historical cohorts are occasionally used: 
these are identified retrospectively and relevant information 
relating to outcomes and exposures of interest up to the present 
day ascertained using medical records and memory. However, 
while these studies are often quicker and cheaper to perform 
than prospective cohort studies, the quality of historical studies 
may be poor as the information collected may be unreliable.

Cohort studies can either be fixed or dynamic. If individuals 
leave a fixed cohort, they are not replaced. In dynamic cohorts, 
individuals may drop out of the cohort, and new individuals may 
join as they become eligible.

In this chapter we discuss the main aspects of cohort 
studies. The STROBE statement, another component of the 
EQUATOR network (Appendix D and Chapter 14), is a set of 
recommendations to improve the reporting of observational 
studies, with particular reference to cohort, case–control (Chapter 
16) and cross-sectional (Chapter 12) studies. We provide the 
STROBE checklist in Table D2 (Appendix D). Further relevant 
information and any updates may be obtained from the STROBE 
website (www.equator-network.org/reporting-guidelines/strobe/  
and www.strobe-statement.org).

Selection of cohorts
The cohort should be representative of the population to 
which the results will be generalized. It is often advantageous 
if the individuals can be recruited from a similar source, such 
as a particular occupational group (e.g. civil servants, medi-
cal practitioners), as information on mortality and morbid-
ity can be easily obtained from records held at the place of 
work, and individuals can be re-contacted when necessary. 
However, such a cohort may not be truly representative of the 
general population, and may be healthier. Cohorts can also be 
recruited from GP lists, ensuring that a group of individuals 
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Figure 15.1   Diagrammatic representation of a cohort study (frequencies in parentheses,
see Table 15.1).
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38 with different health states is included in the study. However, 
these patients tend to be of similar social backgrounds because 
they live in the same area.

When trying to assess the aetiological effect of a risk factor, 
individuals recruited to cohorts should be disease-free at the 
start of the study. This is to ensure that any exposure to the risk 
factor occurs before the outcome, thus enabling a causal role for 
the factor to be postulated. Because individuals are disease-free 
at the start of the study, we often see a healthy entrant effect. 
Mortality rates in the first period of the study are then often 
lower than would be expected in the general population. This 
will be apparent when mortality rates start to increase suddenly 
a few years into the study.

Follow-up of individuals
When following individuals over time, there is always the prob-
lem that they may be lost to follow-up. Individuals may move 
without leaving a forwarding address, or they may decide that 
they wish to leave the study. The benefits of a cohort study are 
reduced if a large number of individuals is lost to follow-up. We 
should thus find ways to minimize these drop-outs, e.g. by main-
taining regular contact with the individuals.

Information on outcomes and exposures
It is important to obtain full and accurate information on disease 
outcomes, e.g. mortality and illness from different causes. This 
may entail searching through disease registries, mortality statis-
tics and GP and hospital records.

Exposure to the risks of interest may change over the study 
period. For example, when assessing the relationship between 
alcohol consumption and heart disease, an individual’s typical 
alcohol consumption is likely to change over time. Therefore it 
is important to re-interview individuals in the study on repeated 
occasions to examine changes in exposure over time.

Analysis of cohort studies
Table 15.1 shows observed frequencies. Because patients are fol-
lowed longitudinally over time, it is possible to estimate the risk 
of developing the disease in the population, by calculating the 
risk in the sample studied.
Estimated risk of disease

Number developing disease over study per
=

iiod
Total number in the cohort

= +a b
n

The risk of disease in the individuals exposed and unexposed 
to the factor of interest in the population can be estimated in the 
same way.

Estimated risk of disease in the exposed group:
riskexp /= +( )a a c

Estimated risk of disease in the unexposed group:

riskunexp = +( )b b d/

Then,
risk

riskunexp
estimated relative risk =

= +
+

exp

/( )
/( )

a a c
b b d

The relative risk (RR) indicates the increased (or decreased) 
risk of disease associated with exposure to the factor of interest. 
A relative risk of one indicates that the risk is the same in the 
exposed and unexposed groups. A relative risk greater than one 
indicates that there is an increased risk in the exposed group 
compared with the unexposed group; a relative risk less than one 
indicates a reduction in the risk of disease in the exposed group. 
For example, a relative risk of two would indicate that individuals 
in the exposed group had twice the risk of disease of those in the 
unexposed group.

A relative risk should always be interpreted alongside the 
underlying risk of the disease. Even a large relative risk may have 
limited clinical implications when the underlying risk of disease 
is very small.

A confidence interval for the relative risk should be calculated, 
and we can use it, or determine a test statistic, to test the null 
hypothesis that the true RR = 1. These calculations are easily 
performed on a computer and therefore we omit details.

Advantages of cohort studies
•	 The time sequence of events can be assessed.
•	 They can provide information on a wide range of disease 
outcomes.
•	 The incidence/risk of disease can be measured directly.
•	 Very detailed information on exposure to a wide range of 
factors can be collected.
•	 They can be used to study exposure to factors that are rare.
•	 Exposure can be measured at a number of time points in each 
study, so that changes in exposure over time can be studied.
•	 There is reduced recall and selection bias compared with 
case–control studies (Chapter 16).

Disadvantages of cohort studies
•	 In general, a cohort study follows individuals for long periods 
of time, and it is therefore costly to perform.
•	 Where the outcome of interest is rare, a very large sample size 
is required.
•	 As follow-up increases, there is often increased loss of patients 
as they migrate or leave the study, leading to biased results.
•	 As a consequence of the long time-scale, it is often difficult to 
maintain consistency of measurements and outcomes over time. 
Furthermore, individuals may modify their behaviour after an 
initial interview.
•	 It is possible that disease outcomes and their probabilities, or 
the aetiology of disease itself, may change over time.

Study management
Although cohort studies are usually less regulated than clinical 
trials (Chapter 14), it is still helpful to prepare a study protocol 
at the outset of any cohort study. It is important to pay particu-
lar attention to the following aspects of study management when 
preparing this document.

Table 15.1  Observed frequencies in a cohort study (see Fig. 15.1).

Disease of interest
Exposed to factor
Yes No Total

  Yes a b a + b
  No c d c + d
Total a + c b + d n = a + b + c + d
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39•	 The outcome of interest – specify the outcome (e.g. obesity) 

and provide an unambiguous definition of it (e.g. body mass 
index > 30 kg/m2). How will it be ascertained (e.g. through direct 
contact with patients, through access to hospital records or 
through linkage with national registries)?
•	 The exposures of interest – specify which exposure variables 
will be considered and give unambiguous definitions of them. 
How will the exposures be ascertained?
•	 Monitoring of participants – how will participants be moni-
tored (e.g. by direct face-to-face visits, through postal question-
naires, through access to hospital records)? How frequently will 
participants be followed up? What information will be collected 
at each time point? Will any biological samples (e.g. blood, urine, 
biopsy samples) be collected?
•	 The size of cohort and length of follow-up – how fre-
quently is the outcome likely to occur in those with and with-
out the exposures of interest? How ‘big’ should the study be to 
ensure that the study is sufficiently large to demonstrate asso-
ciations of interest? Note that in a cohort setting, the power 
of a study (Chapters 18 and 36) is largely determined by the 
number of events that occur; this can be increased either by 
increasing the size of the cohort or by lengthening the period 
of follow-up.
•	 The definition and ascertainment of any potential con-
founders (Chapter 34) and/or effect modifiers – specify which 
other important variables should be investigated and provide an 
unambiguous definition for each.
•	 The plans for statistical analysis – when is it anticipated that 
the statistical analysis of the cohort will be undertaken (e.g. after 
5 years)?
•	 The steps taken to reduce bias (Chapter 34) – what steps will 
be taken to minimize drop-out from the cohort? What steps 
will be taken to ensure that the definition and ascertainment 
of outcomes, exposures and other key variables do not change 
over time?

•	 The plans for quality control – describe any statistical analy-
ses that will be conducted at interim time points (Chapter 18) to 
ensure that:

■■ loss to follow-up is not substantial;
■■ the way in which exposures, outcomes and other key data 

are measured or ascertained has not changed over time; and
■■ outcomes are occurring at the rate expected at the outset 

such that the study is ‘on target’ for the planned analyses.
•	 The need for ethics committee approval and/or patient con-
sent – will these be required? If patient consent is required, how 
will this be collected?

Clinical cohorts
Sometimes we select a cohort of patients with the same clini-
cal condition attending one or more hospitals and follow them 
(either as inpatients or outpatients) to see how many patients 
experience a resolution (in the case of a positive outcome of the 
condition) or some indication of disease progression such as 
death or relapse. The information we collect on each patient is 
usually that which is collected as part of routine clinical care. 
The aims of clinical cohorts (sometimes called disease regis-
ters or observational databases) may include describing the 
outcomes of individuals with the condition and assessing the 
effects of different approaches to treatment (e.g. different drugs 
or different treatment modalities). In contrast to randomized 
controlled trials (Chapter 14), which often include a highly 
selective sample of individuals who are willing to participate in 
the trial, clinical cohorts often include all patients with the con-
dition at the hospitals in the study. Thus, outcomes from these 
cohorts are thought to more accurately reflect the outcomes 
that would be seen in clinical practice. However, as allocation 
to treatment in these studies is not randomized (Chapter 14), 
clinical cohorts are particularly prone to confounding bias 
(Chapter 34).

Example

The Avon Longitudinal Study of Parents and Children (ALSPAC) 
is a large cohort study that aims to investigate a wide range 
of influences on the health and development of children. The 
aim of this particular analysis was to determine whether there 
was an association between peer victimization at the age of 13 
years and depression at 18 years. Whilst information on peer 
victimization was captured on the children at several ages, 
the present analysis comprised 6719 children who provided 
information on peer victimization at age 13 years. Information 
on depression was determined through a self-administered 
computerized clinical interview at 18 years of age. Of the 6719 
children who provided information on peer victimization, 3898 
completed the clinical interview at age 18 years, of whom 1446 
(37.1%) reported occasional victimization and 683 (17.5%) 
reported frequent victimization. By the age of 18 years, 302 
(7.7%) of these 3898 children had self-reported depression. 
The results, displayed in Table  15.2, show the number (and 
percentage) of those in the different peer victimization groups 
who did and did not have depression at age 18.

The estimated relative risk for depression in those reporting 
frequent victimization at age 13 years compared with those 
reporting no victimization at that age

= =( / )
( / )

.
101 683
98 1769

2 67

Data extracted from Bowes, L., Joinson, C., Wolke, D. and Lewis, G. (2015) Peer victimization during adolescence and its impact on depression in 
early adulthood: prospective cohort study in the United Kingdom. British Medical Journal, 350, h2469.

Table 15.2  Observed frequencies (percentages) in the peer 
victimization study.

Peer victimization at age 
13 years

Depression at age 18 years
Yes No Total

No victimization 98 (5.5%) 1671 (94.5%) 1769
Occasional victimization 103 (7.1%) 1343 (92.9%) 1446
Frequent victimization 101 (14.8%) 582 (85.2%) 683
Total 302 (7.7%) 3596 (92.3%) 3898

It can be shown that the 95% confidence interval for the true 
relative risk is (2.05, 3.47).

We can interpret the relative risk to mean that an 18-year-
old who reported frequent victimization at age 13 years is 2.67 
times more likely to suffer from depression at age 18 years than 
an 18-year-old who reported no victimization at age 13 years. 
Alternatively, the risk of depression for an 18-year-old who 
reported frequent victimization at age 13 years is 167% greater 
than that of an 18-year-old who reported no victimization at age 
13 years.
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Case–control studies16

Learning objectives
By the end of this chapter, you should be able to:
•	 Describe the features of a case–control study
•	 Distinguish between incident and prevalent cases
•	 Describe how controls may be selected for a case–control 

study
•	 Explain how to analyse an unmatched case–control study 

by calculating and interpreting an odds ratio
•	 Describe the features of a matched case–control study
•	 Distinguish between frequency matching and pairwise 

matching
•	 Explain when an odds ratio can be used as an estimate of 

the relative risk
•	 List the advantages and disadvantages of a case–control 

study

Relevant Workbook questions: MCQs 29, 31, 32 and 33; 
and SQs 4 and 27 available online

A case–control study compares the characteristics of a group 
of patients with a particular disease outcome (the cases) 
to a group of individuals without the disease outcome (the 
controls), to see whether exposure to any factor occurred more 
or less frequently in the cases than the controls (Fig. 16.1). 
Such retrospective studies do not provide information on the 
prevalence or incidence of disease but may give clues as to 
which factors elevate or reduce the risk of disease. We discuss 
the main aspects of case–control studies in this chapter. The 
STROBE guidelines (see Chapter 15, www.equator-network.
org/reporting-guidelines/strobe/ and www.strobe-statement.
org) provide a checklist (Appendix D, Table D2) for the 
reporting of case–control studies.

Selection of cases
The eligibility criteria for cases should be precise and unambigu-
ous (e.g. diabetes mellitus [World Health Organization criteria]: 
single fasting glucose concentration ≥ 7 mmol/L or venous plasma 
glucose measured 2 hours after ingestion of 75  g oral glucose 
load ≥ 11 mmol/L). In particular, it is important to define whether 
incident cases (patients who are recruited at the time of diagnosis) 
or prevalent cases (patients who were already diagnosed before 
entering the study) should be recruited. Prevalent cases may have 
had time to reflect on their history of exposure to known risk 
factors, especially if the disease is a well-publicized one such as 
cancer, and may have altered their behaviour after diagnosis. It is 
important to identify as many cases as possible so that the results 
carry more weight and the conclusions can be generalized to future 
populations. To this end, it may be necessary to access hospital lists 
and disease registries, and to include cases who died during the 
time period when cases and controls were recruited, because their 
exclusion may lead to a biased sample of cases.

Selection of controls
As with cases, the eligibility criteria for controls should also be 
precise and unambiguous. Controls should be screened at entry 
to the study to ensure that they do not have the disease of inter-
est. Where possible, controls should be selected from the same 
source as cases. Controls are often selected from hospitals. How-
ever, as risk factors related to one disease outcome may also be 
related to other disease outcomes, the selection of hospital-based 
controls may over-select individuals who have been exposed 
to the risk factor of interest, and may, therefore, not always be 
appropriate. It is often acceptable to select controls from the 
general population, although they may not be as motivated to 
take part in such a study, and response rates may therefore be 
poorer in controls than cases. The use of neighbourhood controls 
may ensure that cases and controls are from similar social back-
grounds. Of note, it is important to avoid the temptation to relax 
the criteria for eligibility of controls part-way through a study 
simply to speed up the process of recruitment.

Although most case–control studies include only a single 
control for each case (often referred to as a 1:1 case–control 
study), it is possible to include multiple controls for each case (a 
1:n case–control study). Increased numbers of controls per case 
will provide the study with greater power (Chapter 18), although 
any such gains in power are likely to be fairly small beyond four 
controls per case1. Where a greater number of individuals are 
eligible to be selected as controls than is required, it is important 
to document how the controls should be selected (e.g. by random 
selection from all eligible individuals).

Identification of risk factors
As in any epidemiological study, the potential risk factors 
should be defined before conducting the study. The definition 
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Figure 16.1   Diagrammatic representation of a case–control study
(frequencies in parentheses, see Table 16.1).
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of these factors of interest should be clear and unambiguous 
(e.g. in a case–control study for the development of diabetes 
mellitus, where ‘exercise’ is the factor of interest, there should 
be a clear explanation of how exercise is to be measured and 
categorized). A pilot study may help to ensure that the defini-
tion will be feasible given the need to rely on retrospectively 
collected data and/or memory. Other factors that may have an 
impact on the outcome (i.e. case–control status), either as con-
founders (Chapter 34) and/or effect modifiers, should also be 
listed and defined.

Matching
Many case–control studies are matched in order to select 
cases and controls who are as similar as possible. We may have 
frequency matching on a group basis (i.e. the average value of 
each of the relevant potential risk factors of the whole group of 
cases should be similar to that of the whole group of controls) 
or we may have pairwise matching on an individual basis (i.e. 
each case is matched individually to a control who has similar 
potential risk factors). In general, when performing individual 
matching, it is useful to sex-match individuals (i.e. if the case is 
male, the control should also be male), and, sometimes, patients 
will be age-matched. However, it is important not to match on 
the basis of the risk factor of interest, or on any factor that falls 
on the causal pathway of the disease (Chapter 34), as this will 
remove the ability of the study to assess any relationship between 
the risk factor and the disease. Furthermore, it is important not 
to match on too many factors, as this may restrict the availability 
of suitable controls. Unfortunately, matching does mean that the 
effect on disease of the variables that have been used for match-
ing cannot be studied.

Analysis of unmatched or group-matched 
case–control studies
Table 16.1 shows observed frequencies. Because patients are 
selected on the basis of their disease status, it is not possible to 
estimate the absolute risk of disease. We can calculate the odds 
ratio (OR), which is given by

Odds ratio
Odds of being a case in exposed group

Odds of being a case in
=

uunexposed group

where, for example, the odds of being a case in the exposed group 
is equal to

Probability of being a case in the exposed group
Probability of not beiing a case in the exposed group

The odds of being a case in the exposed and unexposed 
samples are

odds oddsexp unexp= +( )
+( )

= = +( )
+( )

=

a
a c

c
a c

a
c

b
b d

d
b d

b
d

and therefore the estimated odds ratio = = ×
×

a c
b d

a d
b c

/
/

When a disease is rare, the odds ratio is an estimate of the 
relative risk. It is interpreted in a similar way to the relative 
risk, i.e. it gives an indication of the increased (or decreased) 
odds associated with exposure to the factor of interest. An 
odds ratio of one indicates that the odds of disease is the same 
in the exposed and unexposed groups; an odds ratio greater 
than one indicates that the odds of disease is greater in the 
exposed group than in the unexposed group, etc. Confidence 
intervals and hypothesis tests can also be generated for the 
odds ratio.

Analysis of individually matched  
case–control studies
Where possible, the analysis of individually matched case–
control studies should allow for the fact that cases and con-
trols are linked to each other as a result of the matching. Fur-
ther details of methods of analysis for matched studies can be 
found in Chapter 30 (‘Conditional logistic regression’) and in 
Breslow and Day2.

Advantages of case–control studies
•	 They are generally relatively quick, cheap and easy to  
perform.
•	 They are particularly suitable for rare diseases.
•	 A wide range of risk factors can be investigated in each 
study.
•	 There is no loss to follow-up.

Disadvantages of case–control studies
•	 Recall bias, when cases have a differential ability to remem-
ber certain details about their histories, is a potential problem. 
For example, a lung cancer patient may well remember the occa-
sional period when she or he smoked, whereas a control may not 
remember a similar period. When preparing the protocol for a 
case–control study, it is important to describe any attempts that 
will be made to reduce the possibility of recall bias by ensuring 
that exposure data are collected in an identical manner from 
cases and controls.
•	 If the onset of disease preceded exposure to the risk factor, 
causation cannot be inferred.
•	 Case–control studies are not suitable when exposures to the 
risk factor are rare.

References
1	 Grimes, D.A. and Schulz, K.F. (2005) Compared to what? Finding 

controls for case–control studies. Lancet, 365, 1429–1433.
2	 Breslow, N.E. and Day, N.E. (1980) Statistical Methods in Cancer 

Research. Volume I – The Analysis of Case–Control Studies. Lyon: 
International Agency for Cancer Research.

Table 16.1  Observed frequencies (see Fig. 16.1).

Disease status
Exposed to factor
Yes No Total

  Case a b a + b
  Control c d c + d
Total a + c b + d n = a + b + c + d
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Example

A total of 171 patients who had started a long-term oxygen 
therapy for pulmonary fibrosis (PF) in Sweden between February 
1997 and April 2000 were investigated in this unmatched case–
control study. They were compared with 719 control participants 
randomly selected from the general population of the same age 
range as the patients with PF. Interest was centred on whether 
cumulative smoking exposure (measured up to 10 years before 
the diagnosis of PF in the cases) was associated with the risk of 
PF. The results in Table 16.2 show the number of ever smokers 
and never smokers in the case and control groups.

The observed odds ratio = (119 × 344)/(52 × 375) = 2.10.
It can be shown that the 95% confidence interval for the 

odds ratio is (1.47, 3.00).
Thus the odds of having PF in the Swedish population 

who had ever smoked was 2.10 times greater than that of 

Table 16.2  Observed frequencies in the pulmonary fibrosis study.

Current/
ex-smoker

Never 
smoked Total

Pulmonary fibrosis (cases) 119 52 171
No pulmonary fibrosis 
(controls)

375 344 719

Total 494 396 890

never smokers, i.e. having ever smoked increased the odds 
of PF by 110%.

Data extracted from Ekstrom, M., Gustafson, T., Boman, K., et al. (2014) Effects of smoking, gender and occupational exposure on the risk of severe 
pulmonary fibrosis: a population-based case-control study. BMJ Open, 4, e004018.
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Hypothesis testing17

Learning objectives
By the end of this chapter, you should be able to:
•	 Define the terms: null hypothesis, alternative hypothesis, one- 

and two-tailed test, test statistic, P-value, significance level
•	 List the five steps in hypothesis testing
•	 Explain how to use the P-value to make a decision about 

rejecting or not rejecting the null hypothesis
•	 Explain what is meant by a non-parametric (distribution-

free) test and explain when such a test should be used
•	 Explain how a confidence interval can be used to test a 

hypothesis
•	 Distinguish between superiority, equivalence and non-

inferiority studies
•	 Describe the approach used in equivalence and non-

inferiority tests

Relevant Workbook questions: MCQs 16 and 24; and SQ 
3 available online

We often gather sample data in order to assess how much evidence 
there is against a specific hypothesis about the population. When 
performing descriptive analyses (Chapters 4–6) we may see trends 
that appear to support or refute this hypothesis. However, we do not 
know if these trends reflect real associations or are simply a result 
of random fluctuations caused by the variability present in any data 
set. We use a process known as hypothesis testing (or significance 
testing) to quantify our belief against a particular hypothesis.

This chapter describes the format of hypothesis testing in 
general; details of specific hypothesis tests are given in subsequent 
chapters. For easy reference, each hypothesis test is contained in 
a similarly formatted box.

Hypothesis testing – a general overview

We define five stages when carrying out a hypothesis test:
1	 Define the null and alternative hypotheses under study.
2	 Collect relevant data from a sample of individuals.
3	 Calculate the value of the test statistic specific to the null 
hypothesis.
4	 Compare the value of the test statistic to values from a 
known probability distribution.
5	 Interpret the P-value and results.

H1: smoking rates are different in men and women in the 
population

We have not specified any direction for the difference in 
smoking rates, i.e. we have not stated whether men have higher 
or lower rates than women in the population. This leads to 
what is known as a two-tailed test because we allow for either 
eventuality, and is recommended as we are rarely certain, 
in advance, of the direction of any difference, if one exists. In 
some, very rare, circumstances, we may carry out a one-tailed 
test in which a direction of effect is specified in H1. This might 
apply if we are considering a disease from which all untreated 
individuals die (a new drug cannot make things worse) or if we 
are conducting a trial of equivalence or non-inferiority (see last 
section in this chapter).

Obtaining the test statistic
After collecting the data, we substitute values from our sample 
into a formula, specific to the test we are using, to determine a 
value for the test statistic. This reflects the amount of evidence in 
the data against the null hypothesis – usually, the larger the value, 
ignoring its sign, the stronger the evidence.

Obtaining the P-value
All test statistics follow known theoretical probability distribu-
tions (Chapters 7 and 8). We relate the value of the test statistic 
obtained from the sample to the known distribution to obtain the 
P-value, the area in both (or occasionally one) tails of the prob-
ability distribution. Most computer packages provide the two-
tailed P-value automatically. The P-value is the probability of 
obtaining our results, or something more extreme, if the null 
hypothesis is true. The null hypothesis relates to the population 
of interest, rather than the sample. Therefore, the null hypothesis 
is either true or false and we cannot interpret the P-value as the 
probability that the null hypothesis is true.

Using the P-value
We must make a decision about how much evidence we require 
to enable us to decide to reject the null hypothesis in favour of 
the alternative. The smaller the P-value, the greater the evidence 
against the null hypothesis.
•	 Conventionally, we consider that if the P-value is less than 
0.05, there is sufficient evidence to reject the null hypothesis, as 
there is only a small chance of the results occurring if the null 
hypothesis were true. We then reject the null hypothesis and say 
that the results are significant at the 5% level (Fig. 17.1).
•	 In contrast, if the P-value is equal to or greater than 0.05, we 
usually conclude that there is insufficient evidence to reject the 
null hypothesis. We do not reject the null hypothesis, and we say 
that the results are not significant at the 5% level (Fig. 17.1). This 
does not mean that the null hypothesis is true; simply that we do 
not have enough evidence to reject it.

Defining the null and alternative 
hypotheses
We usually test the null hypothesis (H0) which assumes no effect 
(e.g. the difference in means equals zero) in the population. For 
example, if we are interested in comparing smoking rates in men 
and women in the population, the null hypothesis would be:

H0: smoking rates are the same in men and women in the 
population

We then define the alternative hypothesis (H1) which holds 
if the null hypothesis is not true. The alternative hypothesis 
relates more directly to the theory we wish to investigate. So, in 
the example, we might have:
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45Hypothesis tests versus confidence 

intervals
Confidence intervals (Chapter 11) and hypothesis tests are 
closely linked. The primary aim of a hypothesis test is to make 
a decision and provide an exact P-value. A confidence interval 
quantifies the effect of interest (e.g. the difference in means) and 
enables us to assess the clinical implications of the results. How-
ever, because it provides a range of plausible values for the true 
effect, it can also be used to make a decision although an exact 
P-value is not provided. For example, if the hypothesized value 
for the effect (e.g. zero) lies outside the 95% confidence interval 
then we believe the hypothesized value is implausible and would 
reject H0. In this instance, we know that the P-value is less than 
0.05 but do not know its exact value.

Equivalence and non-inferiority trials
In most randomized controlled trials (Chapter 14) of two or 
more different treatment strategies, we are usually interested in 
demonstrating the superiority of at least one treatment over the 
other(s). However, in some situations we may believe that a new 
treatment (e.g. drug) may be no more effective clinically than an 
existing treatment but will have other important benefits, per-
haps in terms of reduced side effects, pill burden or costs. Then, 
we may wish to show simply that the efficacy of the new treat-
ment is similar to (in an equivalence trial) or not substantially 
worse than (in a non-inferiority trial) that of the existing treat-
ment. A bioequivalence trial is a particular type of randomized 
trial in which we are interested in showing that the rate and 
extent of absorption of a new formulation of a drug is the same 
as that of an old formulation, when the two drugs are given at 
the same dose.

When carrying out an equivalence or non-inferiority trial, the 
hypothesis testing procedure used in the usual superiority trial, 
testing the null hypothesis that the two treatments are the same, 
is irrelevant. This is because (i) a non-significant result does not 
imply non-inferiority or equivalence, and (ii) even if a statistically 
significant effect is detected, it may be clinically unimportant. 
Instead, we essentially reverse the null and alternative hypotheses 
in an equivalence trial, so that the null hypothesis expresses a 
difference and the alternative hypothesis expresses equivalence.

Rather than calculating test statistics, we generally approach 
the problem of assessing equivalence and non-inferiority1 by 
determining whether the confidence interval for the effect of 
interest (e.g. the difference in means between two treatment 
groups) lies wholly or partly within a predefined equivalence 
range (i.e. the range of values, determined by clinical experts, 
that corresponds to an effect of no clinical importance). If the 
whole of the confidence interval for the effect of interest lies 
within the equivalence range, then we conclude that the two 
treatments are equivalent; in this situation, even if the upper and 
lower limits of the confidence interval suggest there is benefit of 
one treatment over the other, it is unlikely to have any clinical 
importance. In a non-inferiority trial, we want to show that the 
new treatment is not substantially worse than the standard one. 
(If the new treatment turns out to be better than the standard, 
this would be an added bonus!) In this situation, if the lower 
limit of the appropriate confidence interval does not fall below 
the lower limit of the equivalence range, we conclude that the 
new treatment is not inferior.

Unless otherwise specified, the hypothesis tests in subsequent 
chapters are tests of superiority. Note that the methods for 

Figure 17.1   Probability distribution of the test statistic showing a
two-tailed probability, P = 0.05. 

Probability density
function

Probability
P= 0.025
2

Probability
P = 0.025  
2

Test statistic

A value of the
test statistic which
gives P < 0.05

A value of the
test statistic which
gives P > 0.05

The choice of 5% is arbitrary. On 5% of occasions we will 
incorrectly reject the null hypothesis when it is true. In situations 
in which the clinical implications of incorrectly rejecting the null 
hypothesis are severe, we may require stronger evidence before 
rejecting the null hypothesis (e.g. we may decide to reject the null 
hypothesis if the P-value is less than 0.01 or 0.001). The selected 
cut-off for the P-value (e.g. 0.05 or 0.01) is called the significance 
level of the test; it must be chosen before the data are collected.

Quoting a result only as significant at a certain cut-off level 
(e.g. stating only that P < 0.05) can be misleading. For example, 
if P = 0.04 we would reject H0; however, if P = 0.06 we would not 
reject it. Are these really different? Therefore, we recommend 
quoting the exact P-value, often obtained from the computer 
output.

Non-parametric tests
Hypothesis tests which are based on knowledge of the probabil-
ity distributions that the data follow are known as parametric 
tests. Often data do not conform to the assumptions that under-
lie these methods (Chapter 35). In these instances we can use 
non-parametric tests (sometimes referred to as distribution-
free tests or rank methods). These tests generally replace the 
data with their ranks (i.e. the numbers 1, 2, 3, etc., describing 
their position in the ordered data set) and make no assumptions 
about the probability distribution that the data follow.

Non-parametric tests are particularly useful when the sample 
size is small (so that it is impossible to assess the distribution of 
the data), and/or when the data are measured on a categorical 
scale. However, non-parametric tests are generally wasteful of 
information; consequently they have less power (Chapter 18) 
to detect a real effect than the equivalent parametric test if all 
the assumptions underlying the parametric test are satisfied. 
Furthermore, they are primarily significance tests that often 
do not provide estimates of the effects of interest; they lead to 
decisions rather than an appreciation or understanding of the 
data.

Which test?
Deciding which statistical test to use depends on the design of 
the study, the type of variable and the distribution that the data 
being studied follow. The flow chart on the inside back cover will 
aid your decision.
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46 determining sample size described in Chapter 36 do not 
apply to equivalence or non-inferiority trials. The sample 
size required for an equivalence or non-inferiority trial2 is 
generally greater than that of the comparable superiority trial 
if all factors that affect sample size (e.g. significance level, 
power) are the same.

References
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assess equivalence: the importance of rigorous methods. British 
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Learning objectives
By the end of this chapter, you should be able to:
•	 Explain what is meant by an effect of interest
•	 Distinguish between Type I and Type II errors
•	 State the relationship between the Type II error and power
•	 List the factors that affect the power of a test and describe 

their effects on power
•	 Explain why it is inappropriate to perform many hypothesis 

tests in a study
•	 Describe different situations which involve multiple 

comparisons within a data set and explain how the difficul-
ties associated with multiple comparisons may be resolved 
in each situation

•	 Explain what is achieved by a post hoc test
•	 Outline the Bonferroni approach to multiple hypothesis 

testing

Relevant Workbook questions: MCQs 35 and 36; and SQs 
6, 28 and 29 available online

Making a decision
Most hypothesis tests in medical statistics compare groups of peo-
ple who are exposed to a variety of experiences. We may, for exam-
ple, be interested in comparing the effectiveness of two forms of 
treatment for reducing 5-year mortality from breast cancer. For a 
given outcome (e.g. death), we call the comparison of interest (e.g. 
the difference in 5-year mortality rates) the effect of interest or, if 
relevant, the treatment effect. We express the null hypothesis in 
terms of no effect (e.g. the 5-year mortality from breast cancer is the 
same in two treatment groups); the two-sided alternative hypoth-
esis is that the effect is not zero. We perform a hypothesis test that 
enables us to decide whether we have enough evidence to reject the 
null hypothesis (Chapter 17). We can make one of two decisions; 
either we reject the null hypothesis, or we do not reject it.

Making the wrong decision
Although we hope we will draw the correct conclusion about the 
null hypothesis, we have to recognize that, because we only have 
a sample of information, we may make the wrong decision when 
we reject/do not reject the null hypothesis. The possible mistakes 
we can make are shown in Table 18.1.
•	 Type I error – we reject the null hypothesis when it is true, and 
conclude that there is an effect when, in reality, there is none. 
The maximum chance (probability) of making a Type I error 
is denoted by α (alpha). This is the significance level of the test 
(Chapter 17); we reject the null hypothesis if our P-value is less 
than the significance level, i.e. if P < α.

Table 18.1  The consequences of hypothesis testing.

Reject H0 Do not reject H0

H0 true Type I error No error
H0 false No error Type II error

We must decide on the value of α before we collect our data. 
We usually assign a conventional value of 0.05 to it, although 
we might choose a more restrictive value such as 0.01 (if we are 
particularly concerned about the consequences of incorrectly 
rejecting the null hypothesis) or a less restrictive value such 
as 0.10 (if we do not want to miss a real effect). Our chance of 
making a Type I error will never exceed our chosen significance 
level, say α = 0.05, because we will only reject the null hypothesis 
if P < 0.05. If we find that P ≥ 0.05, we will not reject the null 
hypothesis, and, consequently, not make a Type I error.
•	 Type II error – we do not reject the null hypothesis when it is 
false, and conclude that there is no evidence of an effect when one 
really exists. The chance (probability) of making a Type II error is 
denoted by β (beta); its complement, (1 − β), is the power of the 
test. The power, therefore, is the probability of rejecting the null 
hypothesis when it is false; i.e. it is the chance (usually expressed 
as a percentage) of detecting, as statistically significant, a real 
treatment effect of a given size.

Ideally, we should like the power of our test to be 100%; we 
must recognize, however, that this is impossible because there is 
always a chance, albeit slim, that we could make a Type II error. 
Fortunately, however, we know which factors affect power, and 
thus we can control the power of a test by giving consideration 
to them.

Power and related factors
It is essential that we know the power of a proposed test at the 
planning stage of our investigation. Clearly, we should only 
embark on a study if we believe that it has a ‘good’ chance of 
detecting a clinically relevant effect, if one exists (by ‘good’ we 
mean that the power should be at least 80%). It is ethically irre-
sponsible, and wasteful of time and resources, to undertake a 
clinical trial that has, say, only a 40% chance of detecting a real 
treatment effect.

A number of factors have a direct bearing on power for a 
given test.
•	 The sample size – power increases with increasing sample size. 
This means that a large sample has a greater ability than a small 
sample to detect a clinically important effect if it exists. When the 
sample size is very small, the test may have an inadequate power 
to detect a particular effect. We explain how to choose sample 
size, with power considerations, in Chapter 36. The methods can 
also be used to evaluate the power of the test for a specified sam-
ple size.
•	 The variability of the observations: – power increases as the 
variability of the observations decreases (Fig. 18.1).
•	 The effect of interest – the power of the test is greater for larger 
effects. A hypothesis test thus has a greater chance of detecting a 
large real effect than a small one.
•	 The significance level – the power is greater if the significance 
level is larger (this is equivalent to the probability of the Type I 
error (α) increasing as the probability of the Type II error (β) 
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decreases). So, we are more likely to detect a real effect if we 
decide at the planning stage that we will regard our P-value as 
significant if it is less than 0.05 rather than less than 0.01. We can 
see this relationship between power and the significance level in 
Fig. 18.2.

Note that an inspection of the confidence interval (Chapter 
11) for the effect of interest gives an indication of whether the 
power of the test was adequate. A wide confidence interval results 
from a small sample and/or data with substantial variability, and 
is a suggestion of low power.

Multiple hypothesis testing
The problem
Often, we want to carry out a number of significance tests on a 
data set. Unfortunately, the Type I error rate increases dramati-
cally as the number of comparisons made increases, leading to 
spurious conclusions. In particular, if the significance level for a 
test is 0.05, the test has a 5% chance of erroneously rejecting the 
null hypothesis. However, if we perform 20 such tests, the prob-
ability that at least one of them will give a false positive result is 
64%. In the situation where some of our multiple comparison 
findings are significant, a problem arises in that we cannot iden-
tify which, if any, are falsely positive.

Examples
Situations that involve multiple comparisons within a data set 
include:
•	 Subgroup analyses – these should be avoided as spurious 
results may arise because:

■■ the power of the treatment comparison within a subgroup 
may be low (due to a small sample size) so that a real treatment 
effect is not detected as statistically significant;

Figure 18.1   Power curves showing the relationship between power
and the sample size in each of two groups for the comparison of two
means using the unpaired t-test (Chapter 21). Each power curve
relates to a two-sided test for which the signi�cance level is 0.05, and
the effect of interest (e.g. the difference between the treatment
means) is 7 (e.g. 34 – 27). The assumed equal standard deviation of
the measurements in the two groups is different for each power curve
(see Example 1, Chapter 36).
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Figure 18.2   Power curves showing the relationship between power
and the sample size in each of two groups for the comparison of two
proportions using the Chi-squared test (Chapter 24). Curves are drawn
when the effect of interest (e.g. the difference in the proportions with
the characteristic of interest in the two treatment groups is either 0.4
(the upper two curves, e.g. 0.5 - 0.1) or 0.3 (the lower two curves,
e.g. 0.5 - 0.2); the signi�cance level of the two-sided test is either 0.05
or 0.01 (see Example 2, Chapter 36).
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■■ often, the subgroups are not identified for biological or clini-
cal reasons at the design stage of the study but are selected only 
after the data have been analysed; or
■■ in a randomized clinical trial, bias may occur because the 

individuals have not been randomized to the different treat-
ments within a subgroup (Chapters 14 and 34).

•	 Multiple comparisons for a single outcome variable – typi-
cal examples include making all pairwise comparisons between:

■■ three or more treatment groups (such as A vs B, A vs C and 
B vs C for treatment groups A, B and C); or
■■ three or more time points when each individual has the 

response variable measured at multiple time points.
•	 Multiple outcome variables – when different endpoints can 
be used to evaluate a treatment effect (Chapter 14).
•	 Interim analyses – when treatment comparisons are made at 
predetermined intermediate stages of a study (Chapter 14).
•	 Data dredging – to make comparisons and look for relation-
ships in a ‘fishing expedition’, with no specification of the rela-
tionships of specific interest a priori.

Solutions
Ideally we should only perform a small number of tests, chosen to 
relate to the primary aims of the study and specified at the design 
stage of the study. We may also consider the following (as relevant).
•	 Use a method to adjust (i.e. increase) the P-value obtained 
from each test to take account of the number of tests performed 
and then relate this adjusted P-value to the conventional cut-off 
for significance of 0.05 (Chapter 22). For example, the simple 
Bonferroni approach (often regarded as rather conservative) 
multiplies each P-value by the number of tests carried out. Note 
that the value of performing this type of adjustment for multiple 
testing remains a subject of debate for cohort studies.
•	 Use a more stringent significance level for each test (e.g. 0.01 
instead of the conventional 0.05).
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action (Chapters 13 and 33) between the treatment and the 
factor defining the subgroups (e.g. sex) produces a signifi-
cant result. Previously planned subgroup analysis may be a 
prerequisite to ensure that these tests are suitably powered  
(Chapter 18).
•	 Undertake multiple pairwise treatment comparisons only 
if the overall treatment effect is significant (e.g. in an analysis 
of variance) and then adjust the P-values by using a post hoc 
multiple comparison method, limiting the procedure to those 
comparisons that are of interest (Chapter 22).
•	 Use special methods for clustered data if each individual 
has repeated measurements, such as at multiple time points 
(Chapters 41 and 42).

•	 If there are multiple outcomes, combine them, appropriately, into 
a single composite endpoint (Chapter 13) or perform a multivari-
ate analysis1 in which we consider simultaneously the effects of one 
or more explanatory variables on more than one outcome variable.
•	 Choose a lower significance level (the significance level for 
each repeated test is called the nominal significance level) for 
interim analyses in a trial to ensure that the required overall sig-
nificance level (typically 0.05) is maintained2.

References
1	 Tabachnick, B.G. and Fidell, L.S. (2013) Using Multivariate 

Statistics. 6th edition. Harlow: Pearson.
2	 Pocock, S.J. (1983) Clinical Trials: A Practical Approach. 

Chichester: John Wiley & Sons.
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Numerical data: a single group
Learning objectives
By the end of this chapter, you should be able to:
•	 Explain the rationale of the one-sample t-test
•	 Explain how to perform the one-sample t-test
•	 State the assumption underlying the one-sample before the 

test and explain how to proceed if it is not satisfied
•	 Explain how to use an appropriate confidence interval to 

test a hypothesis about the mean
•	 Explain the rationale of the sign test
•	 Explain how to perform the sign test

Relevant Workbook questions: MCQs 37, 38 and 40 available 
online

The problem
We have a sample from a single group of individuals and one 
numerical or ordinal variable of interest. We are interested in 
whether the average of this variable takes a particular value. For 
example, we may have a sample of patients with a specific medical 
condition. We have been monitoring triglyceride levels in the blood 
of healthy individuals and know that they have a geometric mean 
of 1.74 mmol/L. We wish to know whether the average level in the 
population from which our patients come is the same as this value.

The one-sample t-test
Assumptions
In the population of interest, the variable is Normally distributed 
with a given (usually unknown) variance. In addition, we have 
taken a reasonable sample size so that we can check the assump-
tion of Normality (Chapter 35).

Rationale
We are interested in whether the mean, μ, of the variable in the 
population of interest differs from some hypothesized value, μ1. 
We use a test statistic that is based on the difference between 
the sample mean, x , and μ1. Assuming that we do not know 
the population variance, then this test statistic, often referred 
to as t, follows the t-distribution. If we do know the population 
variance, or the sample size is very large, then an alternative test 
(often called a z-test), based on the Normal distribution, may 
be used. However, in these situations, results from both tests 
are virtually identical.

Additional notation
Our sample is of size n and the estimated standard deviation is s.

3	 Calculate the value of the test statistic specific to H0

t
x
s n

= −( )µ1

which follows the t-distribution with (n − 1) degrees of freedom.

4	 Compare the value of the test statistic to values from a 
known probability distribution

Refer t to Appendix A2.

5	 Interpret the P-value and results

Interpret the P-value and calculate a confidence interval for 
the true mean in the population (Chapter 11).

The 95% confidence interval is given by

x t s n± × ( )0 05. /

where t0.05 is the percentage point of the t-distribution with 
(n − 1) degrees of freedom which gives a two-tailed probability 
of 0.05.

19

1	 Define the null and alternative hypotheses under study
H0: the mean in the population, μ, equals μ1

H1: the mean in the population does not equal μ1.

2	 Collect relevant data from a sample of individuals

continued

Interpretation and use of the confidence  
interval
The 95% confidence interval provides a range of values in which 
we are 95% certain that the true population mean lies. If the 95% 
confidence interval does not include the hypothesized value 
for the mean, μ1, we reject the null hypothesis at the 5% level. 
If, however, the confidence interval includes μ1, then we fail to 
reject the null hypothesis at that level.

If the assumptions are not satisfied
We may be concerned that the variable does not follow a Normal 
distribution in the population. Whereas the t-test is relatively 
robust (Chapter 35) to some degree of non-Normality, extreme 
skewness may be a concern. We can either transform the data, 
so that the variable is Normally distributed (Chapter 9), or use 
a non-parametric test such as the sign test or Wilcoxon signed 
ranks test (Chapter 20).

The sign test
Rationale
The sign test is a simple test based on the median of the distri-
bution. We have some hypothesized value, λ, for the median in 
the population. If our sample comes from this population, then 
approximately half of the values in our sample should be greater 
than λ and half should be less than λ (after excluding any values 
which equal λ). The sign test considers the number of values in 
our sample that are greater (or less) than λ.

The sign test is a simple test; we can use a more powerful test, 
the Wilcoxon signed ranks test (Chapter 20), which takes into 
account the ranks of the data as well as their signs when carrying 
out such an analysis.
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1	 Define the null and alternative hypotheses under study

H0: the median in the population equals λ
H1: the median in the population does not equal λ.

2	 Collect relevant data from a sample of individuals

3	 Calculate the value of the test statistic specific to H0

Ignore all values that are equal to λ, leaving n′ values. Count 
the values that are greater than λ. Similarly, count the values 
that are less than λ. (In practice this will often involve calculat-
ing the difference between each value in the sample and λ, and 
noting its sign.) Consider r, the smaller of these two counts.

•	 If n′ ≤ 10, the test statistic is r

•	 If n′ > 10, calculate z
r n

n
=

−
′

−

′
2

1
2

2
where n′/2 is the number of values above (or below) the median 
that we would expect if the null hypothesis were true. The 

vertical bars indicate that we take the absolute (i.e. the posi-
tive) value of the number inside the bars. The distribution of z is 
approximately Normal. The subtraction of ½ in the formula for z 
is a continuity correction, which we have to include to allow for 
the fact that we are relating a discrete value (r) to a continuous 
distribution (the Normal distribution).

4	 Compare the value of the test statistic to values from a 
known probability distribution
•	 If n′ ≤ 10, refer r to Appendix A6
•	 If n′ > 10, refer z to Appendix A1.

5	 Interpret the P-value and results

Interpret the P-value and calculate a confidence interval for 
the median – some statistical packages provide this automati-
cally; if not, we can rank the values in order of size and refer to 
Appendix A7 to identify the ranks of the values that are to be 
used to define the limits of the confidence interval. In general, 
confidence intervals for the median will be wider than those for 
the mean.

Example

There is some evidence that high blood triglyceride levels are 
associated with heart disease. As part of a large cohort study 
on heart disease, triglyceride levels were available in 232 men 
who developed heart disease over the 5 years after recruitment. 
We are interested in whether the average triglyceride level in the 
population of men from which this sample is chosen is the same 
as that in the general population. A one-sample t-test was 

performed to investigate this. Triglyceride levels are skewed to 
the right (Fig. 8.3a) but log triglyceride levels are approximately 
Normally distributed (Fig. 8.3b), so we performed our analysis 
on the log values. In the men in the general population, 
previous studies have shown that the mean of the log values 
equals 0.24log10 (mmol/L), equivalent to a geometric mean of 
1.74 mmol/L.

1	 H0: the mean log10 (triglyceride level) in the population of 
men who develop heart disease equals 0.24log10 (mmol/L)

H1: the mean log10 (triglyceride level) in the population of 
men who develop heart disease does not equal 0.24log10 
(mmol/L).

2	 Sample size, n = 232

Mean of log values, x = 0 31 10. log ( )mmol/L

Standard deviation of log values, s = 0.23log10 (mmol/L).

3	 Test statistic, t = − =0 31 0 24
0 23 232

4 64
. .
.

.

4	 We refer t to Appendix A2 with 231 degrees of freedom: 
P < 0.001.
5	 There is strong evidence to reject the null hypothesis that the 
geometric mean triglyceride level in the population of men who 
develop heart disease equals 1.74  mmol/L. The geometric 
mean triglyceride level in the population of men who develop 
heart disease is estimated as antilog10 (0.31) = 100.31, which 
equals 2.04 mmol/L. The 95% confidence interval for the geo-
metric mean triglyceride level ranges from 1.90 to 2.19 mmol/L 
(i.e. antilog10 [ . . . ]0 31 1 96 0 23 232± × ). Therefore, in this 
population of patients, the geometric mean triglyceride level is 
significantly higher than that in the general population.

We can use the sign test to carry out a similar analysis on 
the untransformed triglyceride levels as this does not make any 

distributional assumptions. We assume that the median and 
geometric mean triglyceride level in the male population are similar.

1	 H0: the median triglyceride level in the population of men 
who develop heart disease equals 1.74 mmol/L

H1: the median triglyceride level in the population of men 
who develop heart disease does not equal 1.74 mmol/L.
2	 In this data set, the median value equals 1.94 mmol/L.
3	 We investigate the differences between each value and 
1.74. There are 231 non-zero differences, of which 135 are 
positive and 96 are negative. Therefore, r = 96. As the number 
of non-zero differences is greater than 10, we calculate

z =
− −

=
96

231
2

1
2

231
2

2 50.

4	 We refer z to Appendix A1: P = 0.012.
5	 There is evidence to reject the null hypothesis that the 
median triglyceride level in the population of men who 
develop heart disease equals 1.74 mmol/L. Therefore, in this 
population of patients, the median triglyceride level is signifi-
cantly higher than that in the general population. The formula 
in Appendix A7 indicates that the 95% confidence interval 
for the population median is given by the 101st and 132nd 
ranked values; these are 1.77 and 2.16 mmol/L.

Data kindly provided by Dr F.C. Lampe, Ms M. Walker and Dr P. Whincup, Department of Primary Care and Population Sciences, Royal Free and 
University College Medical School, London, UK.
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Numerical data: two related groups
Learning objectives
By the end of this chapter, you should be able to:
•	 Describe different circumstances in which two groups of 

data are related
•	 Explain the rationale of the paired t-test
•	 Explain how to perform the paired t-test
•	 State the assumption underlying the paired t-test and 

explain how to proceed if it is not satisfied
•	 Explain the rationale of the Wilcoxon signed ranks test
•	 Explain how to perform the Wilcoxon signed ranks test

Relevant Workbook questions: MCQs 35, 39, 40, 41 and 
42; and SQs 7 and 8 available online

The problem
We have two samples that are related to each other and one 
numerical or ordinal variable of interest.
•	 The variable may be measured on each individual in two cir-
cumstances. For example, in a cross-over trial (Chapter 13), each 
patient has two measurements on the variable, one while taking 
active treatment and one while taking placebo.
•	 The individuals in each sample may be different, but are linked 
to each other in some way. For example, patients in one group 
may be individually matched to patients in the other group in a 
case–control study (Chapter 16).

Such data are known as paired data. It is important to 
take account of the dependence between the two samples 
when analysing the data, otherwise the advantages of pairing 
(Chapter 13) are lost. We do this by considering the difference 
between the values for each pair, thereby reducing our two 
samples to a single sample of differences.

The paired t-test
Assumption
In the population of interest, the individual differences are Nor-
mally distributed with a given (usually unknown) variance. We 
have a reasonable sample size so that we can check the assump-
tion of Normality.

Rationale
If the two sets of measurements were the same, then we would 
expect the mean of the differences between each pair of measure-
ments to be zero in the population of interest. Therefore, our test 
statistic simplifies to a one-sample t-test (Chapter 19) on the dif-
ferences, where the hypothesized value for the mean difference 
in the population is zero.

Additional notation
Because of the paired nature of the data, our two samples must be 
of the same size, n. We have n differences, d1, d2, d3, ..., dn: their 
sample mean is d  and estimated standard deviation sd.

20

1	 Define the null and alternative hypotheses under study

H0: the mean difference in the population equals zero

H1: the mean difference in the population does not  
equal zero.

2	 Collect relevant data from two related samples

3	 Calculate the value of the test statistic specific to H0

t
d

d
d

s n
= − =( )

( ) /
0

SE d

which follows the t-distribution with (n − 1) degrees of freedom.

4	 Compare the value of the test statistic to values from a 
known probability distribution

Refer t to Appendix A2.

5	 Interpret the P-value and results

Interpret the P-value and calculate a confidence interval for 
the true mean difference in the population. The 95% confi-
dence interval is given by

d t s n± ×0 05. ( )d/

where t0.05 is the percentage point of the t-distribution with 
(n − 1) degrees of freedom, which gives a two-tailed probabil-
ity of 0.05.

Part 5  Basic techniques for analysing data

If the assumption is not satisfied
If the differences do not follow a Normal distribution, the 
assumption underlying the t-test is not satisfied. We can either 
transform the data (Chapter 9) or use a non-parametric test such 
as the sign test (Chapter 19) or Wilcoxon signed ranks test to 
assess whether the differences are centred around zero.

The Wilcoxon signed ranks test
Rationale
In Chapter 19 we explained how to use the sign test on a single 
sample of numerical measurements to test the null hypothesis 
that the population median equals a particular value. We can 
also use the sign test when we have paired observations, the pair 
representing matched individuals (e.g. in a case–control study, 
Chapter 16) or measurements made on the same individual in 
different circumstances (as in a cross-over trial of two treat-
ments, A and B, Chapter 13). For each pair, we evaluate the dif-
ference in the measurements. The sign test can be used to assess 
whether the median difference in the population equals zero by 
considering the differences in the sample and observing how 
many are greater (or less) than zero. However, the sign test does 
not incorporate information on the sizes of these differences.

The Wilcoxon signed ranks test takes account not only of the 
signs of the differences but also their magnitude, and therefore is 
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calculated for each pair of results. Ignoring zero differences, these 
are then classed as being either positive or negative. In addition, 
the differences are placed in order of size, ignoring their signs, 
and are ranked accordingly. The smallest difference thus gets the 
value 1, the second smallest gets the value 2, etc., up to the largest 

difference, which is assigned the value n′, if there are n′ non-
zero differences. If two or more of the differences are the same, 
they each receive the mean of the ranks these values would have 
received if they had not been tied. Under the null hypothesis of 
no difference, the sums of the ranks relating to the positive and 
negative differences should be the same (see following box).

Wilcoxon signed ranks test
1	 Define the null and alternative hypotheses under study

H0: the median difference in the population equals zero

H1: the median difference in the population does not equal 
zero.

2	 Collect relevant data from two related samples

3	 Calculate the value of the test statistic specific to H0

Calculate the difference for each pair of results. Ignoring 
their signs, rank all n′ non-zero differences, assigning the 
value 1 to the smallest difference and the value n′ to the 
largest. Sum the ranks of the positive (T+) and negative dif-
ferences (T−).
•	 If n′ ≤ 25, the test statistic, T, takes the value T+ or T−, 
whichever is smaller
•	 If n′ > 25, calculate the test statistic z, where

z
T n n

n n n
=

−
′ ′ + −

′ ′ + ′ +

( )

( )( )

1
4

1
2

1 2 1
24

z follows a Normal distribution (its value has to be adjusted if 
there are many tied values1).

4	 Compare the value of the test statistic to values from a 
known probability distribution

•	 If n′ ≤ 25, refer T to Appendix A8
•	 If n′ > 25, refer z to Appendix A1.

5	 Interpret the P-value and results

Interpret the P-value and calculate a confidence interval for the 
median difference (Chapter 19) using all n differences in the 
sample.

Reference
1	 Siegel, S. and Castellan, N.J. (1988) Nonparametric Statistics for 

the Behavioural Sciences. 2nd edition. New York: McGraw-Hill.

Example 1

It has been shown that a Palaeolithic diet (P) consisting of 
the typical food (lean meat, fish, fruits, vegetables, eggs 
and nuts) that our ancestors ate during the Palaeolithic era 
improves cardiovascular disease risk factors and glucose 
control compared with the currently recommended diabetes 
diet (D: a healthy eating plan rich in fruit, vegetables, whole-
grain cereal products, fish and nuts, and low in dairy produce, 
fat, carbohydrates and calories) in patients with type 2 
diabetes. To elucidate the mechanisms behind these effects, 
researchers evaluated fasting plasma concentrations of leptin 
(which plays a key role in the regulation of energy balance, 
is believed to be critical for glycaemic control, and tends to 

have higher values in individuals with type 2 diabetes) in a 
randomized cross-over pilot study of 14 patients with type 
2 diabetes. Seven patients, chosen randomly, followed the 
Palaeolithic diet for 3 months and then switched to the usual 
diabetic diet for a further 3 months, and the remaining seven 
patients followed the diets in the reverse order. Baseline 
variables were similar in the two groups and no patient was 
treated with insulin. As the difference (D – P, at the end of each 
3-month period) in fasting plasma leptin was approximately 
Normally distributed in this group of patients, a paired t-test 
was performed to compare the results. Full computer output 
is shown in Appendix C.

1	 H0: the mean difference in fasting plasma leptin in type 2 
diabetic patients whilst on the diabetic diet and whilst on the 
Palaeolithic diet equals zero in the population

H1: the mean difference in fasting plasma leptin in type 
2 diabetic patients whilst on the diabetic and whilst on the 
Palaeolithic diet does not equal zero in the population.
2	 Sample size, n = 14. The mean difference in fasting plasma 
leptin (D – P), d  = 0.71 ng/mL. Standard deviation of differ-
ences, sd = 0.83 ng/mL.

3	 Test statistic, t = =0 71
0 83 14

3 2
.

.
.

4	 We refer t to Appendix A2 with (14  –  1) = 13 degrees of 
freedom: 0.001 < P < 0.01 (computer output gives P = 0.007).

5	 There is evidence to reject the null hypothesis. The 95% con-
fidence interval for the true mean difference in fasting plasma  
leptin is 0.23 to 1.19 ng/mL (i.e. 0.71 ± 2.16 × 0.83/ 14).

The fasting plasma leptin levels in patients on the 
Palaeolithic diet were significantly lower, on average, than the 
levels when these patients followed the standard diabetic diet. 
However, the sample size of this pilot study was small: long-
term adequately powered (Chapter 18) trials investigating 
the effect of the Palaeolithic diet on fasting plasma levels of 
leptin are recommended.

Adapted from Fontes-Villalba, M., Lindeberg, S., Granfeldt, Y., et al. (2016) Palaeolithic diet decreases fasting plasma leptin concentrations more 
than a diabetes diet in patients with type 2 diabetes: a randomised cross-over trial. Cardiovascular Diabetolology 15, 80.
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Example 2

Ten children with congenital hemiparesis aged between 8 and 
17 years of age were given five treatments of 6 Hz primed, low-
frequency, repetitive transcranial magnetic stimulation (rTMS) 
and five treatments of constraint-induced movement therapy 
(CIMT) on alternate weekdays for 2 weeks to assess the effect of 
rTMS combined with CIMT on promoting recovery of the paretic 
hand. The primary outcome of the study was the Assisting Hand 
Assessment (AHA) score which is derived from a test for children 
with unilateral limb dysfunction that assesses total body function 

and activity. Each of the 22 AHA test items was assessed by an 
ordinal score (from 1 to 4): the sum of these scores therefore ranges 
from 22 to 88 points, with higher scores indicating better ability. 
The data in Table 20.1 show the AHA scores of these children, 
pre- and post-treatment, and Fig. 20.1 shows the linked pairs of 
results. As there were only 10 children in this group and because 
the differences were clearly not Normally distributed, a Wilcoxon 
signed ranks test was performed to investigate whether there 
was a difference in the AHA scores pre- and post-treatment.

Table 20.1  AHA scores pre- and post-treatment with rTMS and CIMT.

Child 1 2 3 4 5 6 7 8 9 10
AHA pre-treatment 84 49 38 65 47 54 58 55 69 71
AHA post-treatment 87 56 42 74 53 58 66 62 69 79
Difference (post-minus pre-treatment) 3 7 4 9 6 4 8 7 0 8

Gillick, B.T., Krach, L.E., Rich, T.L., et al (2014) Primed low-frequency repetitive transcranial magnetic stimulation and constraint-induced movement 
therapy in pediatric hemiparesis: a randomized trial. Developmental Medicine and Child Neurology 56(1), 44–52. Data kindly provided by Professor 
Gillick.

Figure 20.1   Change in AHA scores in 10 patients before and after
treatment with rTMS and CIMT.
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1	 H0: the median of the AHA score differences (post- minus 
pre-treatment) equals zero in the population of children with 
congenital hemiparesis receiving rTMS with CIMT

H1: the median of the AHA score differences (post- minus 
pre-treatment) does not equal zero in the population of chil-
dren with congenital hemiparesis receiving rTMS with CIMT.
2	 The AHA scores pre- and post-treatment in each child 
receiving rTMS with CIMT are shown in Table 20.1.

3	 There is one zero difference; of the remaining n′ = 9 differ-
ences, all are positive. The sum of the ranks of the positive 
differences, T+ = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45.

4	 As n′ < 25, we refer T+ to Appendix A8: P < 0.01 (computer 
output gives P = 0.004).

5	 There is strong evidence to reject the null hypothesis of no 
change in AHA scores after treatment. The median AHA score 
difference (post- minus pre-treatment values, including the zero 

difference) is 6.5 (the arithmetic mean of 6 and 7). As the median 
is positive, this indicates that, on average, the AHA score is 
greater after treatment. Appendix A7 shows that the approxi-
mate 95% confidence interval for the median AHA score differ-
ence in the population is given by the 2nd and the 9th ranked 
differences (including the zero difference); these are 3 and 8.

N.b. the analysis, as described, is open to criticism as 
there was no control group (Chapter 14) of children who did 
not receive rTMS. However, this group of 10 treated children 
comprised only one component of a randomized controlled 
trial in which children with congenital hemiparesis were 
randomized to receive either 6  Hz primed, low-frequency, 
repetitive rTMS (10 children) or a sham rTMS treatment (9 
children), each alternated daily with CIMT. We provide the 
analysis of the changes in AHA score pre- and post-treatment 
in the two groups in Chapter 21 (Example 2).
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Numerical data: two unrelated groups21
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Learning objectives
By the end of this chapter, you should be able to:
•	 Explain the rationale of the unpaired (two-sample) t-test
•	 Explain how to perform the unpaired t-test
•	 List the assumptions underlying this test and explain how 

to check them and proceed if they are not satisfied
•	 Use an appropriate confidence interval to test a hypothesis 

about the difference between two means
•	 Explain the rationale of the Wilcoxon rank sum test
•	 Explain how to perform the Wilcoxon rank sum test
•	 Explain the relationship between the Wilcoxon rank sum 

test and the Mann–Whitney U test

Relevant Workbook questions: MCQs 40, 41 and 42; and 
SQs 3, 9, 21 and 22 available online

The problem
We have samples from two independent (unrelated) groups of 
individuals and one numerical or ordinal variable of interest. 
We are interested in whether the mean or distribution of the 
variable is the same in the two groups. For example, we may 
wish to compare the weights in two groups of children, each 
child being randomly allocated to receive either a dietary sup-
plement or placebo.

The unpaired (two-sample) t-test
Assumptions
In the population, the variable is Normally distributed in each 
group and the variances of the two groups are the same. In addi-
tion, we have reasonable sample sizes so that we can check the 
assumptions of Normality and equal variances.

Rationale
We consider the difference in the means of the two groups. 
Under the null hypothesis that the population means in the two 
groups are the same, this difference will equal zero. Therefore, 
we use a test statistic that is based on the difference in the two 
sample means, and on the value of the difference in population 
means under the null hypothesis (i.e. zero). This test statistic, 
often referred to as t, follows the t-distribution.

Notation
Our two samples are of size n1 and n2. Their means are x1 and x2; 
their standard deviations are s1 and s2.

If s is an estimate of the pooled standard deviation of the two 
groups,

s
n s n s

n n
= − + −

+ −
( ) ( )1 1

2
2 2

2

1 2

1 1
2

then the test statistic is given by t, where

t
x x

x x
x x

s
n n

= − −
−

= −

+

( )
( )

( )1 2

1 2

1 2

1 2

0
1 1SE

which follows the t-distribution with (n1 + n2 − 2) degrees of 
freedom.

4	 Compare the value of the test statistic to values from a 
known probability distribution
Refer t to Appendix A2. When the sample sizes in the two 
groups are large, the t-distribution approximates a Normal 
distribution, and then we reject the null hypothesis at the 5% 
level if the absolute value (i.e. ignoring the sign) of t is greater 
than 1.96.

5	 Interpret the P-value and results
Interpret the P-value and calculate a confidence interval for 
the difference in the two means. The 95% confidence interval, 
assuming equal variances, is given by

( ) ( ).x x t x x1 2 0 05 1 2− ± × −SE

where t0.05 is the percentage point of the t-distribution with 
(n1 + n2 − 2) degrees of freedom, which gives a two-tailed 
probability of 0.05.

1	 Define the null and alternative hypotheses under study

H0: the population means in the two groups are equal

H1: the population means in the two groups are not equal.

2	 Collect relevant data from two samples of individuals

3	 Calculate the value of the test statistic specific to H0

continued

Interpretation of the confidence interval
The upper and lower limits of the confidence interval can be used 
to assess whether the difference between the two mean values is 
clinically important. For example, if the upper and/or lower limit 
is close to zero, this indicates that the true difference may be very 
small and clinically meaningless, even if the test is statistically 
significant.

If the assumptions are not satisfied
When the sample sizes are reasonably large, the t-test is fairly 
robust (Chapter 35) to departures from Normality. However, it 
is less robust to unequal variances. There is a modification of 
the unpaired t-test that allows for unequal variances, and results 
from it are often provided in computer output. However, if there 
are concerns that the assumptions are not satisfied, then the data 
can either be transformed (Chapter 9) to achieve approximate 
Normality and/or equal variances, or a non-parametric test such 
as the Wilcoxon rank sum test can be used.
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The Wilcoxon rank sum (two-sample) test
Rationale
The Wilcoxon rank sum test makes no distributional assump-
tions and is the non-parametric equivalent to the unpaired t-test. 
The test is based on the sum of the ranks of the values in each of 
the two groups; these should be comparable after allowing for 
differences in sample size if the groups have similar distributions. 

An equivalent test, known as the Mann–Whitney U test, gives 
identical results although it is slightly more complicated to carry 
out by hand.

1	 Define the null and alternative hypotheses under study

H0: the two groups have the same distribution in the population

H1: the two groups have different distributions in the population.

2	 Collect relevant data from two samples of individuals

3	 Calculate the value of the test statistic specific to H0
All observations are ranked as if they were from a single 
sample. Tied observations are given the mean of the ranks the 
values would have received if they had not been tied. The sum 
of the ranks, T, is then calculated in the group with the smaller 
sample size.
•	 If the sample size in each group is 15 or less, T is the test 
statistic
•	 If at least one of the groups has a sample size of more 
than 15, calculate the test statistic

z
T r

T

= −( )µ
σ

which follows a Normal distribution, where

µ σT T T
n n n

n= + + =S S L
L

( )
/

1
2

6µ

and nS and nL are the sample sizes of the smaller and larger 
groups, respectively. z must be adjusted if there are many tied 
values1.

4	 Compare the value of the test statistic to values from a 
known probability distribution
•	 If the sample size in each group is 15 or less, refer T to 
Appendix A9
•	 If at least one of the groups has a sample size of more 
than 15, refer z to Appendix A1.

5	 Interpret the P-value and results
Interpret the P-value and obtain a confidence interval for 
the difference in the two medians. This is time-consuming to 
calculate by hand so details have not been included; some 
statistical packages will provide the confidence interval. If 
this confidence interval is not included in the package, a 
confidence interval for the median in each of the two groups 
can be quoted.

Example 1

In order to determine the effect of regular prophylactic inhaled 
corticosteroids on wheezing episodes associated with viral 
infection in school-age children, a randomized double-
blind controlled trial was carried out comparing inhaled 
beclomethasone dipropionate with placebo. In this investigation, 

the primary endpoint was the mean forced expiratory volume 
in 1 second (FEV1) over a 6-month period. After checking the 
assumptions of Normality and constant variance (see Fig. 4.2), 
we performed an unpaired t-test to compare the means in the 
two groups. The full computer output is shown in Appendix C.

1	 H0: the mean FEV1 in the population of school-age children 
is the same in the two treatment groups

H1: the mean FEV1 in the population of school-age children 
is not the same in the two treatment groups.
2	 Treated group: sample size, n1 = 50; mean, x1 1 64= .  litres, 
standard deviation, s1 = 0.29 litres

Placebo group: sample size, n2 = 48; mean, x2 1 54= .  litres; 
standard deviation, s2 = 0.25 litres.

3	 Pooled standard deviation,

s = × + ×
+ −

=( . ) ( . )
( )

.
49 0 29 47 0 25

50 48 2
0 2670

2 2

litres

Test statistic,
. .

.
.t = −

× +
=1 64 1 54

0 2670
1

50
1

48

1 9145

4	 We refer t to Appendix A2 with 50 + 48  –  2 = 96 degrees 
of freedom. Because Appendix A2 is restricted to certain 

degrees of freedom, we have to interpolate (estimate the 
required value that lies between two known values). We 
therefore interpolate between the values relating to 50 and 
100 degrees of freedom. Hence, P > 0.05 (computer output 
gives P = 0.06).

5	 We have insufficient evidence to reject the null hypothesis 
at the 5% level. However, as the P-value is only just greater 
than 0.05, there may be an indication that the two population 
means are different. The estimated difference between the 
two means is 1.64 − 1.54 = 0.10 litres. The 95% confidence 
interval for the true difference in the two means ranges 
from − 0.007 to 0.207 litres

= ± × × +


















0 10 1 99 0 2670

1
50

1
48

. . .

Data kindly provided by Dr I. Doull, Cystic Fibrosis/Respiratory Unit, Department of Child Health, University Hospital of Wales, Cardiff, UK, and Dr 
F.C. Lampe, Department of Primary Care and Population Sciences, Royal Free and University College Medical School, London, UK.

Reference
1	 Siegel, S. and Castellan, N.J. (1988) Nonparametric Statistics for 

the Behavioural Sciences. 2nd edition. New York: McGraw-Hill.
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Example 2

Nineteen children with congenital hemiparesis aged between 
8 and 17 years of age were randomized to receive either 
five treatments of 6  Hz primed, low-frequency, repetitive 
transcranial magnetic stimulation (rTMS) or five sham rTMS 
treatments, each alternated with five treatments of constraint-
induced movement therapy (CIMT) on alternate weekdays for 
2 weeks to assess the effect of rTMS on promoting recovery 
of the paretic hand. The primary outcome of the study was 
the Assisting Hand Assessment (AHA) score, as described 
in Chapter 20, Example  2. In that chapter, we compared the 

pre- and post-treatment AHA scores in the 10 children receiving 
rTMS with CIMT but were unable to draw conclusions about the 
effectiveness of rTMS because we had not included the sham 
treatment data. In this chapter, we assess the effectiveness 
of rTMS by comparing the distributions of the AHA score pre- 
and post-treatment differences in children receiving CIMT with 
either rTMS or the sham rTMS. Because of the small sample 
sizes and obviously skewed differences in AHA scores pre- and 
post-treatment (Fig. 21.1), we performed a Wilcoxon rank sum 
test to compare the distributions of the AHA score differences.

1	 H0: the distributions of AHA score differences (post- 
minus pre-treatment) in the two groups (test and sham 
rTMS) in the population of children with congenital hemipa-
resis are the same

H1: the distributions of AHA score differences (post- minus 
pre-treatment) in the two groups (test and sham rTMS) in the 
population of children with congenital hemiparesis are not 
the same.

2	 rTMS group: sample size, nL = 10, AHA scores were 3, 7, 
4, 9, 6, 4, 8, 7, 0, 8

Sham rTMS group: sample size, nS = 9, AHA scores were 
0, 2, 2, 1, 0, 4, 2, 6, 0

The ranked data are shown in Table 21.1 where tied values 
received the mean of the ranks they would have received 
had they not been tied.

3	 Sum of the ranks in the rTMS group = 2.5 + 9 + 11 + 11 +  
13.5 + 15.5 + 15.5 + 17.5 + 17.5 + 19 = 132

Sum of the ranks in the sham rTMS group = 2.5 + 2.5 + 2.5 + 
5 + 7 + 7 + 7 + 11 + 13.5 = 58

4	 Because there are 10 or fewer children in each group, we 
obtain the P-value from Appendix A9: P < 0.01 (computer 
output gives P = 0.007).

5	 There is evidence to reject the null hypothesis that the 
distributions of the change in AHA score pre- and post-
treatment are the same in the two groups. The median 
difference in AHA score in the rTMS group and the sham 
rTMS group is 6.5 (95% confidence interval 3.3 to 8) and 
2 (95% confidence interval 0 to 3.8), respectively. We thus 
believe that primed low-frequency rTMS combined with 
CIMT is efficacious in paediatric hemiparesis.

Gillick, B.T., Krach, L.E., Rich, T.L., et al. (2014) Primed low-frequency repetitive transcranial magnetic stimulation and constraint-induced 
movement therapy in pediatric hemiparesis: a randomized trial. Developmental Medicine and Child Neurology, 56(1), 44–52. Data kindly provided 
by Professor Gillick.

Table 21.1  AHA score differences (post- minus pre-treatment) and their ranks in two groups of children with congenital hemiparesis.

rTMS 0 3 4 4 6 7 7 8 8 9
Sham rTMS 0 0 0 1 2 2 2 4 6
Rank 2.5 2.5 2.5 2.5 5 7 7 7 9 11 11 11 13.5 13.5 15.5 15.5 17.5 17.5 19

Figure 21.1   Box plot of AHA score differences (post- minus
pre-treatment) in children with congenital hemiparesis receiving
CIMT with either rTMS or sham rTMS.
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Numerical data: more than two groups 22

Learning objectives
By the end of this chapter, you should be able to:
•	 Explain the rationale of the one-way analysis of variance 

(ANOVA)
•	 Explain how to perform a one-way ANOVA
•	 Explain why a post hoc comparison method should be 

used if a one-way ANOVA produces a significant result and 
name some different post hoc methods

•	 List the assumptions underlying the one-way ANOVA and 
explain how to check them and proceed if they are not 
satisfied

•	 Explain the rationale of the Kruskal–Wallis test
•	 Explain how to perform the Kruskal–Wallis test

Relevant Workbook questions: MCQ 43; and SQ 10 available 
online

The problem
We have samples from a number of independent groups. We 
have a single numerical or ordinal variable and are interested in 
whether the average value of the variable varies in the different 
groups, e.g. whether the average platelet count varies in groups 
of women with different ethnic backgrounds. Although we could 
perform tests to compare the averages in each pair of groups, 
the high Type I error rate, resulting from the large number of 
comparisons, means that we may draw incorrect conclusions 
(Chapter 18). Therefore, we carry out a single global test to 
determine whether the averages differ in any groups.

One-way analysis of variance
Assumptions
The groups are defined by the levels of a single factor (e.g. differ-
ent ethnic backgrounds). In the population of interest, the vari-
able is Normally distributed in each group and the variance in 
every group is the same. We have a reasonable sample size so that 
we can check these assumptions.

Rationale
The one-way analysis of variance separates the total variability in the 
data into that which can be attributed to differences between the indi-
viduals from the different groups (the between-group variation) 
and to the random variation between the individuals within each 
group (the within-group variation, sometimes called unexplained 
or residual variation). These components of variation are measured 
using variances, hence the name analysis of variance (ANOVA). 
Under the null hypothesis that the group means are the same, the 
between-group variance will be similar to the within-group vari-
ance. If, however, there are differences between the groups, then the 
between-group variance will be larger than the within-group vari-
ance. The test is based on the ratio of these two variances.

Notation
We have k independent samples, each derived from a differ-
ent group. The sample sizes, means and standard deviations in 
each group are ni, xi and si, respectively (i = 1, 2, …, k). The total 
sample size is n = n1 + n2 + … + nk.

1	 Define the null and alternative hypotheses under study
H0: all group means in the population are equal

H1: at least one group mean in the population differs from 
the others.

2	 Collect relevant data from samples of individuals

3	 Calculate the value of the test statistic specific to H0
The test statistic for ANOVA is a ratio, F, of the between-group 
variance to the within-group variance. This F-statistic follows 
the F-distribution (Chapter 8) with (k − 1, n − k) degrees of 
freedom in the numerator and denominator, respectively.

The calculations involved in ANOVA are complex and are 
not shown here. Most computer packages will output the 
values directly in an ANOVA table, which usually includes the 
F-ratio and P-value (see Example 1).

4	 Compare the value of the test statistic to values from a 
known probability distribution
Refer the F-ratio to Appendix A5. Because the between-group 
variation is greater than or equal to the within-group variation, 
we look at the one-sided P-values.

5	 Interpret the P-value and results
If we obtain a significant result at this initial stage, we may consider 
performing specific pairwise post hoc comparisons. We can use 
one of a number of special tests devised for this purpose (e.g. 
Duncan’s, Scheffé’s) or we can use the unpaired t-test (Chapter 
21) adjusted for multiple hypothesis testing (Chapter 18). We 
can also calculate a confidence interval for each individual 
group mean (Chapter 11). Note that we use a pooled estimate 
of the variance of the values from all groups when calculating 
confidence intervals and performing t-tests. Most packages 
refer to this estimate of the variance as the residual variance or 
residual mean square; it is found in the ANOVA table.

Although the two tests appear to be different, the unpaired 
t-test and ANOVA give equivalent results when there are only 
two groups of individuals.

If the assumptions are not satisfied
Although ANOVA is relatively robust (Chapter 35) to moderate 
departures from Normality, it is not robust to unequal variances. 
Therefore, before carrying out the analysis, we check for Normal-
ity, and test whether the variances are similar in the groups either 
by ‘eyeballing’ them, or by using Levene’s test or Bartlett’s test 
(Chapter 35). If the assumptions are not satisfied, we can either 
transform the data (Chapter 9) or use the non-parametric equiv-
alent of one-way ANOVA, the Kruskal–Wallis test.
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Example 1

A total of 150 women of different ethnic backgrounds were 
included in a cross-sectional study of factors related to blood 
clotting. We compared mean platelet levels in the four groups 

using a one-way ANOVA. It was reasonable to assume 
Normality and constant variance, as shown in the computer 
output (Appendix C).

1	 H0: there are no differences in the mean platelet levels in 
the four groups in the population

H1: at least one group mean platelet level differs from the 
others in the population.

2	 The following table summarizes the data in each group.

Group Sample size, n (%) Mean (× 109), x Standard deviation (× 109), s
95% CI for mean (using pooled 
standard deviation – see point 3)

Caucasian 90 (60.0) 268.1 77.08 252.7 to 283.5
Afro-Caribbean 21 (14.0) 254.3 67.50 220.9 to 287.7
Mediterranean 19 (12.7) 281.1 71.09 245.7 to 316.5
Other 20 (13.3) 273.3 63.42 238.9 to 307.7

3	 The following ANOVA table is extracted from the computer output:

Source Sum of squares df Mean square F-ratio P-value
Between ethnic group 7711.967 3 2570.656 0.477 0.699
Within ethnic group 787289.533 146 5392.394

Pooled standard deviation 5392 394= × = ×. . .10 73 43 109 9

4	 The ANOVA table gives P = 0.70. (We could have referred 
F to Appendix A5 with (3, 146) degrees of freedom (df ) to 
determine the P-value.)

5	 There is insufficient evidence to reject the null hypothesis 
that the mean levels in the four groups in the population are 
the same.

Data kindly provided by Dr R.A. Kadir, University Department of Obstetrics and Gynaecology, and Professor C.A. Lee, Haemophilia Centre and 
Haemostasis Unit, Royal Free Hospital, London, UK.

References
1	 Siegel, S. and Castellan, N.J. (1988) Nonparametric Statistics for 

the Behavioural Sciences. 2nd edition. New York: McGraw-Hill.
2	 Mickey, R.M., Dunn, O.J. and Clark, V.A. (2004) Applied Statistics: 

Analysis of Variance and Regression. 3rd edition. Chichester: 
Wiley.

The Kruskal–Wallis test
Rationale
This non-parametric test is an extension of the Wilcoxon rank 
sum test (Chapter 21). Under the null hypothesis of no differences 
in the distributions between the groups, the sums of the ranks in 
each of the k groups should be comparable after allowing for any 
differences in sample size.  

1	 Define the null and alternative hypotheses under study
H0: each group has the same distribution of values in the 

population

H1: at least one group does not have the same distribution of 
values in the population.

2	 Collect relevant data from samples of individuals

3	 Calculate the value of the test statistic specific to H0

Rank all n values and calculate the sum of the ranks in each of 
the groups: these sums are R1, … Rk. The test statistic (which 
should be modified if there are many tied values1) is given by

H
n n

R
n

ni

i

=
+

− +∑12
1

3 1
2

( )
( )

which follows a Chi-squared distribution with (k − 1) degrees 
of freedom.

4	 Compare the value of the test statistic to values from a 
known probability distribution
Refer H to Appendix A3.

5	 Interpret the P-value and results
Interpret the P-value and, if significant, perform two-sample 
non-parametric tests between pairs of groups, adjusting for 
multiple testing. Calculate a confidence interval for the median 
in each group.

We use one-way ANOVA or its non-parametric equivalent 
when the groups relate to a single factor and are independent. We 
can use other forms of ANOVA when the study design is more 
complex2.

continued
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Figure 22.1   Dot plot showing physical functioning scores (from
the SF-36 questionnaire) in individuals with severe and mild/
moderate haemophilia and in normal controls. The horizontal
bars are the medians.

Group
Sample size, n

Median (95% Cl)
Range

Severe
20

47.5 (30 to 80)
0–100

Mild/moderate
20

87.5 (75 to 95)
0–100
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20

100 (90 to 100)
0–100
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Data kindly provided by Dr A. Miners, Department of Primary Care and Population Sciences, Royal Free and University College Medical School, 
London, UK, and Dr C. Jenkinson, Health Services Research Unit, University of Oxford, Oxford, UK.

Quality-of-life scores, measured using the SF-36 questionnaire, 
were obtained in three groups of individuals: those with severe 
haemophilia, those with mild/moderate haemophilia, and normal 
controls. Each group comprised a sample of 20 individuals. 
Scores on the physical functioning scale (PFS), which can take 
values from 0 to 100, were compared in the three groups. As 
visual inspection of Fig. 22.1 showed that the data were not 
Normally distributed, we performed a Kruskal–Wallis test.

1	 H0: each group has the same distribution of PFS scores in 
the population

H1: at least one of the groups has a different distribution of 
PFS scores in the population.
2	 The data are shown in Fig. 22.1.
3	 Sum of ranks in severe haemophilia group = 372

Sum of ranks in mild/moderate haemophilia group = 599
Sum of ranks in normal control group = 859

H =
+

+ +





− + =12
60 60 1

372
20

599
20

859
20

3 60 1 19 47
2 2 2

( )
( ) .

4	 We refer H to Appendix A3: P < 0.001.
5	 There is substantial evidence to reject the null hypothesis 
that the distribution of PFS scores is the same in the three 
groups. Pairwise comparisons were carried out using Wil-
coxon rank sum tests, adjusting the P-values for the number 
of tests performed using the Bonferroni correction (Chapter 
18). The individuals with severe and mild/moderate hae-
mophilia both had significantly lower PFS scores than the 
controls (P = 0.0003 and P = 0.03, respectively) but the dis-
tributions of the scores in the haemophilia groups were not 
significantly different from each other (P = 0.09).
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Learning objectives
By the end of this chapter, you should be able to:
•	 Explain the rationale of a test, based on the Normal 

distribution, which can be used to investigate whether a 
proportion takes a particular value

•	 Explain how to perform this test
•	 Explain why a continuity correction should be used in this 

test
•	 Explain how the sign test can be used to test a hypothesis 

about a proportion
•	 Explain how to perform the sign test to test a hypothesis 

about a proportion

Relevant Workbook questions: MCQs 44 and 45 available 
online

The problem
We have a single sample of n individuals; each individual either 
‘possesses’ a characteristic of interest (e.g. is male, is pregnant, 
has died) or does not possess that characteristic (e.g. is female, is 
not pregnant, is still alive). A useful summary of the data is pro-
vided by the proportion of individuals with the characteristic. 
We are interested in determining whether the true proportion in 
the population of interest takes a particular value.

The test of a single proportion
Assumptions
Our sample of individuals is selected from the population of 
interest. Each individual either has or does not have the particu-
lar characteristic.

Notation
r individuals in our sample of size n have the characteristic. The 
estimated proportion with the characteristic is p = r/n. The pro-
portion of individuals with the characteristic in the population is 
π. We are interested in determining whether π takes a particular 
value, π1.

Rationale
The number of individuals with the characteristic follows the 
Binomial distribution (Chapter 8), but this can be approximated 

1	 Define the null and alternative hypotheses under study

H0: the population proportion, π, is equal to a particular 
value, π1

H1: the population proportion, π, is not equal to π1.

2	 Collect relevant data from a sample of individuals

3	 Calculate the value of the test statistic specific to H0

z
p

n

n

=
− −

−

π

π π

1

1 1

1
2

1( )

which follows a Normal distribution.
The 1/2n in the numerator is a continuity correction: it 

is included to make an allowance for the fact that we are 
approximating the discrete Binomial distribution by the 
continuous Normal distribution.

4	 Compare the value of the test statistic to values from a 
known probability distribution
Refer z to Appendix A1.

5	 Interpret the P-value and results
Interpret the P-value and calculate a confidence interval 
for the true population proportion, π. The 95% confidence 
interval for π is approximated by

p
p p

n
± −

1 96
1

.
( )

We can use this confidence interval to assess the clinical 
or biological importance of the results. A wide confidence 
interval is an indication that our estimate has poor precision.

by the Normal distribution, providing np and n(1 − p) are each 
greater than 5.

Then p is approximately Normally distributed with:

anestimated mean and= p

an estimated standard deviation = −p p
n

( )1

Therefore, our test statistic, which is based on p, also follows 
the Normal distribution.
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1	 Define the null and alternative hypotheses under study
H0: the proportion, π, of preferences for A in the population 

is equal to ½
H1: the proportion of preferences for A in the population is 

not equal to ½.
2	 Collect relevant data from a sample of individuals

3	 Calculate the value of the test statistic specific to H0

Ignore any individuals who have no preference and reduce the 
sample size from n to n′ accordingly. Then p = r/n′, where r is 
the number of preferences for A.
•	 If n′ ≤ 10, count r, the number of preferences for A
•	 If n′ > 10, calculate the test statistic

′ =
− −

′
−
′

z
p

n

n

1
2

1
2

0 5 1 0 5. ( . )

z′ follows the Normal distribution. Note that this formula is 
based on the test statistic, z, used in the previous box to test 
the null hypothesis that the population proportion equals π1; 
here we replace n by n′, and π1 by ½.

4	 Compare the value of the test statistic to values from a 
known probability distribution
•	 If n′ ≤ 10, refer r to Appendix A6
•	 If n′ > 10, refer z′ to Appendix A1.

5	 Interpret the P-value and results

Interpret the P-value and calculate a confidence interval for the 
proportion of preferences for A (sample size = n) or for the pro-
portion of preferences for A in those with a preference (sample 
size = n′).

Example 1

Human herpesvirus 8 (HHV-8) has been linked to Kaposi’s 
sarcoma, primary effusion lymphoma and certain types of 
multicentric Castleman’s disease. It has been suggested that 
HHV-8 can be transmitted sexually. In order to assess the 
relationship between sexual behaviour and HHV-8 infection, the 
prevalence of antibodies to HHV-8 was determined in a group 

of 271 homosexual/bisexual men attending a London sexually 
transmitted disease clinic. In the blood donor population in the 
UK, the seroprevalence of HHV-8 has been documented to be 
2.7%. Initially, the seroprevalence from this study was compared 
to 2.7% using a single proportion test.

1	 H0: the seroprevalence of HHV-8 in the population of homo-
sexual/bisexual men equals 2.7%

H1: the seroprevalence of HHV-8 in the population of 
homosexual/bisexual men does not equal 2.7%.

2	 Sample size, n = 271; number who are seropositive to  
HHV-8, r = 50

Seroprevalence, p = 50/271 = 0.185 (i.e. 18.5%)

3	 Test statistic is z =
− −

×
−

=
0 185 0 027

1
2 271

0 027 1 0 027
271

15 86
. .

. ( . )
.

4	 We refer z to Appendix A1: P < 0.0001.

5	 There is substantial evidence that the seroprevalence of 
HHV-8 in homosexual/bisexual men attending sexually trans-
mitted disease clinics in the UK is higher than that in the 
blood donor population. The 95% confidence interval for the 
seroprevalence of HHV-8 in the population of homosexual/
bisexual men is 13.9% to 23.1%, calculated as

0 185 1 96
0 185 1 0 185

271
100. .

. ( . )
%± × × −








×

Data kindly provided by Dr N.A. Smith, Dr D. Barlow and Dr B.S. Peters, Department of Genitourinary Medicine, Guy’s and St Thomas’ NHS Trust, 
London, and Dr J. Best, Department of Virology, Guy’s, King’s College and St Thomas’ School of Medicine, King’s College, London, UK.

The sign test applied to a proportion
Rationale
The sign test (Chapter 19) may be used if the response of interest 
can be expressed as a preference (e.g. in a cross-over trial, patients 
may have a preference for either treatment A or treatment B). If 

there is no preference overall, then we would expect the propor-
tion preferring A, say, to equal ½. We use the sign test to assess 
whether this is so.

Although this formulation of the problem and its test statistic 
appear to be different from those of Chapter 19, both approaches 
to the sign test produce the same result.
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Example 2

A randomized controlled, double-blind, cross-over trial was 
undertaken to assess treatment preference for pazopanib 
versus sunitinib in patients with metastatic renal cell carcinoma 
(RCC). A group of 169 patients with RCC, aged over 18 
years and with no prior systemic therapy for their RCC, were 
randomly assigned to receive either pazopanib during period 1 
followed by sunitinib in period 2 or the reverse. Each treatment 

period was 10 weeks and the two treatments were separated 
by a 2-week washout. Patient preference was assessed by 
questionnaire at the end of the two treatment periods. Of the 
169 randomly assigned patients, 114 met the pre-specified 
intention-to-treat criteria for the analysis: exposure to both 
treatments, no disease progression before cross-over and 
completion of the preference questionnaire.

1	 H0: the proportion preferring pazopanib in the population 
equals 0.5

H1: the proportion preferring pazopanib in the population 
does not equal 0.5

2	 Of the 114 patients, 105 expressed a preference: 80 
preferred pazopanib and 25 preferred sunitinib. Of those 
with a preference, the proportion preferring pazopanib, 
p = 80/105 = 0.762.

3	 Test statistic is ′ =
− −

×
−( )

=z
| . . |

. .
.

0 762 0 5
1

2 105
0 5 1 0 5

105

5 27

4	 We refer ′z  to Appendix A1: P < 0.001.

5	 There is strong evidence to reject the null hypothesis that 
there is no preference for pazopanib in the population. The 
95% confidence interval for the true proportion with a prefer-
ence is estimated as 0.68 to 0.84, i.e. it is

0 762 1 96
0 762 1 0 762

105
. .

. ( . )± × × −

Therefore, at the very least, over two-thirds of the patients in 
the population with a preference prefer pazopanib to sunitinib.

Escudier, B., Porta, C., Bono, P., et al. (2014) Randomized, controlled, double-blind, cross-over trial assessing treatment preference for pazopanib 
versus sunitinib in patients with metastatic renal cell carcinoma: PISCES study. Journal of Clinical Oncology, 22(14), 1412–1421.
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Part 5  Basic techniques for analysing data

Categorical data: two proportions
Learning objectives
By the end of this chapter, you should be able to:
•	 Explain the terms: contingency table, cell frequency, mar-

ginal total, overall total, observed frequency, expected 
frequency

•	 Explain the rationale of the Chi-squared test to compare 
proportions in two unrelated groups

•	 Explain how to perform the Chi-squared test to compare 
two independent proportions

•	 Calculate the confidence interval for the difference in the pro-
portions in two unrelated groups and use it to compare them

•	 State the assumption underlying the Chi-squared test to 
compare proportions and explain how to proceed if this 
assumption is not satisfied

•	 Describe the circumstances under which Simpson’s para-
dox may occur and explain what can be done to avoid it

•	 Explain the rationale of McNemar’s test to compare the 
proportions in two related groups

•	 Explain how to perform McNemar’s test
•	 Calculate the confidence interval for the difference in 

two proportions in paired groups and use the confidence 
interval to compare them

Relevant Workbook questions: MCQs 44, 46, 47, 48 and 49; 
and SQs 3, 8, 11 and 21 available online

The problems
•	 We have two independent groups of individuals (e.g. homo-
sexual men with and without a history of gonorrhoea). We want 
to know whether the proportions of individuals with a charac-
teristic (e.g. infected with human herpesvirus 8, HHV-8) are the 
same in the two groups.
•	 We have two related groups, e.g. individuals may be matched, 
or measured twice in different circumstances (say, before and 
after treatment). We want to know whether the proportions with 
a characteristic (e.g. raised test result) are the same in the two 
groups.

Independent groups: the Chi-squared test
Terminology
The data are obtained, initially, as frequencies, i.e. the num-
bers with and without the characteristic in each sample. A 
table in which the entries are frequencies is called a contin-
gency table; when this table has two rows and two columns it is 
called a 2 × 2 table. Table 24.1 shows the observed frequencies 
in the four cells corresponding to each row/column combina-
tion, the four marginal totals (the frequency in a specific row 
or column, e.g. a + b), and the overall total, n. We can calculate 

24
(see ‘Rationale’ below) the frequency that we would expect in 
each of the four cells of the table if H0 were true (the expected  
frequencies).

Table 24.1  Observed frequencies.

Characteristic Group 1 Group 2 Total

Present a b a + b
Absent c d c + d
Total n1 = a + c n2 = b + d n = a + b + c + d
Proportion with 
characteristic p a

n1
1

= p b
n2

2
= p a b

n
= +

Assumptions
We have samples of sizes n1 and n2 from two independent groups 
of individuals. We are interested in whether the proportions of 
individuals who possess the characteristic are the same in the two 
groups. Each individual is represented only once in the study. The 
rows (and columns) of the table are mutually exclusive, imply-
ing that each individual can belong in only one row and only one 
column. The usual, albeit conservative, approach requires that the 
expected frequency in each of the four cells is at least five.

Rationale
If the proportions with the characteristic in the two groups are 
equal, we can estimate the overall proportion of individuals with 
the characteristic by p = (a + b)/n; we expect n1 × p of them to be 
in Group 1 and n2 × p to be in Group 2. We evaluate expected 
numbers without the characteristic similarly. Therefore, each 
expected frequency is the product of the two relevant marginal 
totals divided by the overall total. A large discrepancy between 
the observed (O) and the corresponding expected (E) frequen-
cies is an indication that the proportions in the two groups differ. 
The test statistic is based on this discrepancy.

1	 Define the null and alternative hypotheses under study

H0: the proportions of individuals with the characteristic 
are equal in the two groups in the population

H1: these population proportions are not equal.

2	 Collect relevant data from samples of individuals

continued
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3	 Calculate the value of the test statistic specific to H0

χ2

21
2

=
− −



∑

| |O E

E

where O and E are the observed and expected frequencies, 
respectively, in each of the four cells of the table. The vertical 
lines around O − E indicate that we ignore its sign. The ½ 
in the numerator is the continuity correction (Chapter 19). 
The test statistic follows the Chi-squared distribution with 1 
degree of freedom.

4	 Compare the value of the test statistic to values from a 
known probability distribution
Refer χ2 to Appendix A3.

5	 Interpret the P-value and results
Interpret the P-value and calculate the confidence interval for 
the difference in the true population proportions. The 95% 
confidence interval is approximated by

( ) .
( ) ( )

p p
p p

n
p p

n
1 2

1 1

1

2 2

2

1 96
1 1− ± − + −

single group. For example, from the analysis of two 2 × 2 tables, 
we may find that untreated males and untreated females each 
have a lower recovery rate than their treated counterparts, but 
when we analyse the combined 2 × 2 table for the whole group, 
there is a higher recovery rate for untreated patients compared 
with those on treatment. This paradox generally occurs because 
of an inappropriate weighting of the different subgroups when 
the data are pooled. There are a number of correct approaches 
to an analysis of such data, e.g. the Mantel–Haenszel procedure1, 
logistic regression (Chapter 30) and meta-analysis (Chapter 43).

Related groups: McNemar’s test
Assumptions
The two groups are related or dependent, e.g. each individual 
may be measured in two different circumstances. Every indi-
vidual is classified according to whether the characteristic is pre-
sent in both circumstances, one circumstance only, or in neither 
(Table 24.2).

Rationale
The observed proportions with the characteristic in the two cir-
cumstances are (w + y)/m and (w + x)/m. They will differ if x and 
y differ. Therefore, to compare the proportions with the charac-
teristic, we ignore those individuals who agree in the two cir-
cumstances, and concentrate on the discordant pairs, x and y.  

1	 Define the null and alternative hypotheses under study

H0: the proportions with the characteristic are equal in the 
two groups in the population

H1: these population proportions are not equal.

2	 Collect relevant data from two samples

3	 Calculate the value of the test statistic specific to H0

χ2
21= − −

+
(| | )x y

x y

which follows the Chi-squared distribution with 1 degree of 
freedom. The 1 in the numerator is a continuity correction 
(Chapter 19).

4	 Compare the value of the test statistic to values from a 
known probability distribution

Refer χ2 to Appendix A3.

5	 Interpret the P-value and results

Interpret the P-value and calculate the confidence interval 
for the difference in the true population proportions. The 
approximate 95% confidence interval is

x y
m m

x y
x y

m
− ± + − −1 96 2. ( )

Table 24.2  Observed frequencies of pairs in which the 
characteristic is present or absent.

Circumstance 1
Circumstance 2 Present Absent Total no. of pairs

Present w x w + x
Absent y z y + z
Total w + y x + z m = w + x + y + z

If the assumptions are not satisfied
If E < 5 in any one cell, we use Fisher’s exact test to obtain 
a P-value that does not rely on the approximation to the Chi-
squared distribution. This is best left to a computer program as 
the calculations are tedious to perform by hand.

Combining 2 × 2 tables
We should never combine contingency tables from separate 
studies (e.g. from different subgroups of the population, such as 
males/females, or from different populations, such as from the 
UK and USA) simply by adding the frequencies in the analo-
gous cells of the two or more tables. If we were to do so and 
perform a Chi-squared test on the pooled data, this might lead 
to Simpson’s (reverse) paradox when the direction of an asso-
ciation is reversed if data from subgroups are combined into a 

Reference
1	 Fleiss, J.L., Levin, B. and Paik, M.C. (2003) Statistical Methods for 

Rates and Proportions. 3rd edition. New York: John Wiley & Sons.
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Example 2

Example 1

In order to assess the relationship between sexual risk 
factors and HHV-8 infection (study described in Chapter 
23), the prevalence of seropositivity to HHV-8 was compared 
in homosexual/bisexual men who had a previous history 

of gonorrhoea and in those who had not previously had 
gonorrhoea, using the Chi-squared test. A typical computer 
output is shown in Appendix C.

1	 H0: the seroprevalence of HHV-8 is the same in  
those with and without a history of gonorrhoea in the 
population

H1: the seroprevalence is not the same in the two groups 
in the population.

2	 The observed frequencies are shown in the following con-
tingency table: 14/43 (32.6%) and 36/228 (15.8%) of those 
with and without a previous history of gonorrhoea are sero-
positive for HHV-8, respectively.

3	 The expected frequencies are shown in the four cells of the 
contingency table.

The test statistic is

χ2
1
2

2 1
2

214 7 93
7 93

36 42 07
42 07

29 35 07

= − − + − −



+ −

(| . | )
.

(| . | )
.

(| . || )
.

(| . | )
.

.
− + − − 




= 1
2

2 1
2

2

35 07
192 185 93

185 93
5 70

4	 We refer χ2 to Appendix A3 with 1 degree of freedom: 
0.01 < P < 0.05 (computer output gives P = 0.017).
5	 There is evidence of a real difference in the seroprevalence 
in the two groups in the population. We estimate this difference 
as 32.6% − 15.8% = 16.8%. The 95% confidence interval for 
the true difference in the two percentages is 2.0% to 31.6%, 

i.e. 16 8 1 96 32 6 67 4 43 15 8 84 2 228. . ( . . ) / ( . . ) / .± × × + ×

Previous history of gonorrhoea

Yes No

HHV-8 Observed Expected Observed Expected Total observed

Seropositive 14 (43 × 50/271) = 7.93 36 (228 × 50/271) = 42.07 50
Seronegative 29 (43 × 221/271) = 35.07 192 (228 × 221/271) = 185.93 221
Total 43 228 271

In order to evaluate emergency department (ED) patients’ 
willingness to disclose substance use via either a computer 
kiosk or an in-person interview, Hankin et al conducted a cross-
sectional study of 154 patients who attended an ED in Georgia, 
USA. Participants were asked about drug use using the Drug 
and Alcohol Screening Test (DAST-10) survey; reported 
drug use was classified as high risk in those scoring ≥ 3 on 

this survey. Participants undertook the survey firstly using a 
kiosk computer in the ED, and secondly as part of a face-to-
face survey with a researcher in a private section of the ED 
or a private room. McNemar’s test was used to compare the 
percentages of participants deemed at high risk using each of 
the two modalities.

Adapted from Hankin, A., Haley, L., Baugher, A., Colbert, K. and Houry, D. (2015) Kiosk versus in-person screening for alcohol and drug use in 
emergency department: patient preferences and disclosure. Western Journal of Emergency Medicine, XVI, 220–228.

1	 H0: the two modalities of assessment identify the same 
percentage of ED attendees exhibiting high-risk drug use in 
the population

H1: these percentages are not equal.

2	 The frequencies for the matched pairs are displayed in the 
table:

Kiosk
Face-to-face interview High risk Low risk Total

High risk 5 3 8
Low risk 12 134 146
Total 17 137 154

3	 Test statistic, χ2
212 3 1

12 3
4 27= − −( )

+
= .

4	 We refer χ2 to Appendix A3 with 1 degree of freedom: 
0.001 < P < 0.01 (computer output gives P = 0.009).

5	 There is evidence to reject the null hypothesis that the 
same percentage of ED attendees are detected as reporting 
high-risk drug use using the two modalities of assessment. 
The face-to-face interview has a tendency to fail to detect 
high-risk drug use. We estimate the difference in percent-
ages of ED attendees detected as having high-risk drug use 
as 11.0% − 5.2% = 5.8%. An approximate confidence interval 
for the true difference in the percentages is given by 1.0% to 
10.7%,

i.e. 
12 3
154

1 96
154

12 3
12 3

154
100

2− ± × +( ) − −( )










×.

%
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Categorical data: more than 
two categories

Learning objectives
By the end of this chapter, you should be able to:
•	 Describe an r × c contingency table
•	 Explain the rationale of the Chi-squared test to assess the 

association between one variable with r categories and 
another variable with c categories

•	 Explain how to perform the Chi-squared test to assess the 
association between two variables using data displayed in 
an r × c contingency table

•	 State the assumption underlying this Chi-squared test and 
explain how to proceed if this assumption is not satisfied

•	 Explain the rationale of the Chi-squared test for trend in a 
2 × k contingency table

•	 Explain how to perform the Chi-squared test for trend in a 
2 × k contingency table

Relevant Workbook questions: MCQs 48 and 49; and SQs 
8 and 12 available online

Chi-squared test: large contingency tables
The problem
Individuals can be classified by two factors. For example, one fac-
tor may represent disease severity (mild, moderate, severe) and 
the other factor may represent blood group (A, B, O, AB). We are 
interested in whether the two factors are associated. Are indi-
viduals of a particular blood group likely to be more severely ill?

Assumptions
The data may be presented in an r × c contingency table with r 
rows and c columns (Table 25.1). The entries in the table are fre-
quencies; each cell contains the number of individuals in a par-
ticular row and a particular column. Every individual is repre-
sented once, and can only belong in one row and in one column, 
i.e. the categories of each factor are mutually exclusive. At least 
80% of the expected frequencies are greater than or equal to 5.

Rationale
The null hypothesis is that there is no association between the 
two factors. Note that if there are only two rows and two col-
umns, then this test of no association is the same as that of two 
proportions (Chapter 24). We calculate the frequency that we 
expect in each cell of the contingency table if the null hypothesis 
is true. As explained in Chapter 24, the expected frequency in a 
particular cell is the product of the relevant row total and rele-
vant column total, divided by the overall total. We calculate a test 
statistic that focuses on the discrepancy between the observed 
and expected frequencies in every cell of the table. If the overall 
discrepancy is large, then it is unlikely the null hypothesis is true.

25

2	 Collect relevant data from a sample of individuals

3	 Calculate the value of the test statistic specific to H0

χ2
2

= −∑ ( )O E
E

where O and E are the observed and expected frequencies 
in each cell of the table. The test statistic follows the Chi-
squared distribution with degrees of freedom equal to 
(r − 1) × (c − 1).

Because the approximation to the Chi-squared distribution 
is reasonable if the degrees of freedom are greater than 1, we 
do not need to include a continuity correction (as we did in 
Chapter 24).

4	 Compare the value of the test statistic to values from a 
known probability distribution
Refer χ2 to Appendix A3.

5	 Interpret the P-value and results

1	 Define the null and alternative hypotheses under study

H0: there is no association between the categories of one 
factor and the categories of the other factor in the population

H1: the two factors are associated in the population.

If the assumptions are not satisfied
If more than 20% of the expected frequencies are less than 5, 
we try to combine, appropriately (i.e. so that it makes scientific 
sense), two or more rows and/or two or more columns of the 
contingency table. We then recalculate the expected frequencies 
of this reduced table, and carry on reducing the table, if neces-
sary, to ensure that the E ≥ 5 condition is satisfied. If we have 
reduced our table to a 2 × 2 table so that it can be reduced no fur-
ther and we still have small expected frequencies, we use Fisher’s 
exact test (Chapter 24) to evaluate the exact P-value. Some com-
puter packages will compute the Fisher–Freeman–Halton exact 
P-values for larger contingency tables.

Chi-squared test for trend
The problem
Sometimes we investigate relationships in categorical data 
when one of the two factors has only two categories (e.g. the 
presence or absence of a characteristic) and the second fac-
tor can be categorized into k, say, mutually exclusive catego-
ries that are ordered in some sense. For example, one factor 
might be whether or not an individual responds to treatment, 
and the ordered categories of the other factor may represent 
four different age (in years) categories 65–69, 70–74, 75–79 
and ≥ 80. We can then assess whether there is a trend in the 
proportions with the characteristic over the categories of the 
second factor. For example, we may wish to know whether the 
proportion responding to treatment tends to increase (say) 
with increasing age.

Note that we may obtain a significant result from this test 
even when a general test of association gives a non-significant 
result.

continued
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Example

A cross-sectional survey was carried out among schoolchildren 
aged 13–14 years living in southern Brazil, with the objective of 
investigating the relationship between body mass index (BMI; 
equal to the child’s weight divided by his/her height2, kg/m2) and 
the prevalence of a number of asthma-related symptoms. A total of 
4010 children (1933 males and 2077 females) were grouped into 

four BMI categories, defined by the percentiles of BMI (underweight 
(BMI < 5th percentile), normal weight (5th ≤ BMI < 85th), overweight 
(85th ≤ BMI < 95th) and obese (BMI ≥ 95th)) at the time of interview. 
We used the Chi-squared test to determine whether the prevalence 
of wheezing after exercise (an asthma-related symptom) differed 
in the four BMI groups.

1	 H0: there is no association between BMI and wheezing 
after exercise in the population of 13- and 14-year-old school-
children

H1: there is an association between BMI and wheezing 
after exercise in the population of 13- and 14-year-old 
schoolchildren.

2	 The observed frequencies (%) and expected frequencies 
are shown in the following contingency table.

3	 Test statistic is

χ2
2 223 32 0

32 0
197 208 6

208 6
7 27= − + …+ −





=( . )
.

( . )
.

.

4	 We refer χ2 to Appendix A3 with 3 degrees of freedom: 
0.05 < P < 0.10 (computer output gives P = 0.06).

5	 There is insufficient evidence to reject the null hypothesis 
of no association between BMI and wheezing after exercise 
in the population of 13- and 14-year-old teenagers. The esti-
mated percentages (95% confidence intervals) with wheez-
ing after exercise for the four successive BMI groups, starting 
with the underweight, are: 14% (9% to 19%), 19% (18% to 
20%), 21% (17% to 25%) and 24% (19% to 29%).

continued

Table 25.1  Observed frequencies in an r × c table.

Row 
categories Col 1 Col 2 Col 3 … Col c Total

Row 1 f11 f12 f13 … f1c R1

Row 2 f21 f22 f23 … f2c R2

Row 3 f31 f32 f33 … f3c R3

… … … … … … …
Row r fr1 fr2 fr3 … frc Rr

Total C1 C2 C3 … Cc n

1	 Define the null and alternative hypotheses under study

H0: there is no trend in the proportions with the characteristic 
in the population

H1: there is a trend in the proportions in the population.

2	 Collect relevant data from a sample of individuals

We estimate the proportion with the characteristic in each of 
the k categories. We assign a score to each of the column 
categories (Table 25.2). Typically, these are the successive 
values, 1, 2, 3, …, k, but, depending on how we have classified 
the column factor, they could be numbers that in some way 
suggest the relative values of the ordered categories (e.g. 
the mid-point of the age range defining each category) or the 
trend we wish to investigate (e.g. linear or quadratic). The use 
of any equally spaced numbers (e.g. 1, 2, 3, …, k) allows us to 
investigate a linear trend.

3	 Calculate the value of the test statistic specific to H0

χ2
1 1

2

1 1 21
=

−





−





− 





∑∑
∑

w f R w C
n

R
n

R
n

Cw n w C
n

i i
i i

i i
i i

22

∑









using the notation of Table 25.2, and where the sums extend 
over all the k categories. The test statistic follows the Chi-
squared distribution with 1 degree of freedom.

4	 Compare the value of the test statistic to values from a 
known probability distribution

Refer χ2 to Appendix A3.

5	 Interpret the P-value and results

Interpret the P-value and calculate a confidence interval for 
each of the k proportions (Chapter 11).

Note: an alternative approach to testing for a linear trend in proportions is to perform a logistic regression analysis (Chapters 30 and 33).

Table 25.2  Observed frequencies and assigned scores in a 2 × k table.

Characteristic Col 1 Col 2 Col 3 … Col k Total

Present f11 f12 f13 … f1k R1

Absent f21 f22 f23 … f2k R2

Total C1 C2 C3 … Ck n
Score w1 w2 w3 … wk
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As the four BMI groups in this study are ordered, it is also 
possible to analyse these data using a Chi-squared test for 
trend, which takes into account the ordering of the groups. 

We assign the scores of 1, 2, 3 and 4 to each of the four BMI 
groups, respectively, and test for a linear trend.

Adapted from Cassol, V., Rizzato, T., Teche, S.P., et al. (2005) [Prevalence and severity of asthma among adolescents and their relationship with the 
body mass index]. Jornal de Pediatria (Rio J), 81, 305–309.

1	 H0: there is no linear association between BMI and wheez-
ing after exercise in the 13- and 14-year-old population

H1: there is a linear association between BMI and wheezing 
after exercise in the 13- and 14-year-old population.

2	 The data are displayed in the previous table. We assign 
scores of 1, 2, 3 and 4 to the four successive BMI groups.

3	 Test statistic is χ2.

χ2
1 23 4 61 768

1 167
4010

4 258
4010=

× + …+ × − × ×



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+ …+ ×
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
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[( ) ( )] 
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
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
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2
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6 512
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= .

4	 We refer χ2 to Appendix A3 with 1 degree of freedom: 
0.01 < P < 0.05 (computer output gives P = 0.011).

5	 In contrast to the previous analysis that does not take 
ordering into account, when BMI is considered as an ordinal 
variable there is evidence to reject the null hypothesis of no 
linear association between BMI and wheezing after exercise 
in the percentage of 13- and 14-year-old schoolchildren. We 
can therefore infer that the percentages of 13- and 14-year-
old schoolchildren with wheezing after exercise in southern 
Brazil increases significantly with increasing BMI. The 
estimated percentages (95% confidence interval) are 13.8% 
(8.6% to 19.0%), 18.9% (17.5% to 20.3%), 20.7% (16.8% 
to 24.6%) and 23.6% (18.4% to 28.8%) in the underweight, 
normal, overweight and obese schoolchildren, respectively.

BMI group

Wheezing after exercise Underweight Normal Overweight Obese Total

Yes
  Observed 23 (13.8%) 598 (18.9%) 86 (20.7%) 61 (23.6%) 768
  Expected 32.0 606.9 79.7 49.4
No
  Observed 144 (86.2%) 2571 (81.1%) 330 (79.3%) 197 (76.4%) 3242
  Expected 135.0 2562.1 336.3 208.6
Total 167 3169 416 258 4010
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Part 5  Basic techniques for analysing data

Correlation26

Learning objectives
By the end of this chapter, you should be able to:
•	 Describe a scatter diagram
•	 Define and calculate the Pearson correlation coefficient 

and list its properties
•	 Explain when it is inappropriate to calculate the Pear-

son correlation coefficient if investigating the relationship 
between two variables

•	 Explain how to test the null hypothesis that the true Pearson 
correlation coefficient is zero

•	 Calculate the 95% confidence interval for the Pearson  
correlation coefficient

•	 Describe the use of the square of the Pearson correlation 
coefficient

•	 Explain when and how to calculate the Spearman rank  
correlation coefficient

•	 List the properties of the Spearman rank correlation 
coefficient

Relevant Workbook questions: MCQs 50, 51 and 74; and 
SQs 3, 13 and 26 available online

Correlation analysis is concerned with measuring the degree of 
association between two variables, x and y. Initially, we assume 
that both x and y are numerical, e.g. height and weight.

Suppose we have a pair of values, (x, y), measured on each 
of the n individuals in our sample. We can mark the point 
corresponding to each individual’s pair of values on a two-
dimensional scatter diagram (Chapter 4). Conventionally, we 
put the x variable on the horizontal axis, and the y variable on 
the vertical axis in this diagram. By plotting the points for all 
n individuals, we obtain a scatter of points that may suggest a 
relationship between the two variables.

Pearson correlation coefficient
We say that we have a linear relationship between x and y if a 
straight line drawn through the midst of the points provides the 
most appropriate approximation to the observed relationship. We 
measure how close the observations are to the straight line that 
best describes their linear relationship by calculating the Pearson 
product moment correlation coefficient, usually simply called 
the correlation coefficient. Its true value in the population, ρ (the 
Greek letter rho), is estimated in the sample by r, where

r
x x x y

x x x y
=

− −

− −

∑
∑∑

( )( )

( ) ( )2 2

which is usually obtained from computer output.

Properties
•	 r ranges from –1 to + 1.
•	 Its sign indicates whether, in general, one variable increases as 
the other variable increases (positive r) or whether one variable 
decreases as the other increases (negative r) (Fig. 26.1).
•	 Its magnitude indicates how close the points are to the straight 
line. In particular if r = + 1 or –1, then there is perfect correlation 

with all the points lying on the line (this is most unusual, in prac-
tice); if r = 0, then there is no linear correlation (although there 
may be a non-linear relationship). The closer r is to the extremes, 
the greater the degree of linear association (Fig. 26.1).
•	 It is dimensionless, i.e. it has no units of measurement.
•	 Its value is valid only within the range of values of x and y in the 
sample. Its absolute value (ignoring sign) tends to increase as  
the range of values of x and/or y increases. Therefore, restricting the 
sample by imposing an upper or lower limit on the range of values 
of x or y or adding individuals to the sample who have values of  
x or y that are more extreme than those in the original sample will 
affect the magnitude of the correlation coefficient; furthermore, 
correlation coefficients should not be compared in populations 
which have a different range of values of x or of y.
•	 x and y can be interchanged without affecting the value of r.
•	 A correlation between x and y does not necessarily imply a 
‘cause and effect’ relationship.
•	 r2 represents the proportion of the variability of y that can be 
attributed to its linear relationship with x (Chapter 28).

Figure 26.1   Five diagrams indicating values of r in different situations.

r = +1 r = +0.5

r = 0

r = –0.5r = –1
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It may be misleading to calculate r when:
•	 there is a non-linear relationship between the two variables 
(Fig. 26.2a), e.g. a quadratic relationship (Chapter 33);
•	 the data include more than one observation on each individual;
•	 one or more outliers are present (Fig. 26.2b);
•	 the data comprise subgroups of individuals for which the 
mean levels of the observations on at least one of the variables 
are different (Fig. 26.2c).

Hypothesis test for the Pearson 
correlation coefficient
We want to know whether there is any linear correlation between 
two numerical variables. Our sample consists of n independent 
pairs of values of x and y. We assume that at least one of the two 
variables is Normally distributed.  

Figure 26.2   Diagrams showing when it is inappropriate to calculate
the correlation coef�cient. (a) Relationship not linear, r = 0. (b) In the
presence of outlier(s). (c) Data comprise subgroups.

(b)(a)

(c)

1	 Define the null and alternative hypotheses under study
H0: ρ = 0
H1: ρ ≠ 0.

2	 Collect relevant data from a sample of individuals

3	 Calculate the value of the test statistic specific to H0
Calculate r.
•	 If n ≤ 150, r is the test statistic

•	 If n > 150, calculate T r
n

r
= −

−
( )
( )

2
1 2

which follows a t-distribution with n − 2 degrees of freedom.

4	 Compare the value of the test statistic to values from a 
known probability distribution
•	 If n ≤ 150, refer r to Appendix A10
•	 If n > 150, refer T to Appendix A2.

5	 Interpret the P-value and results
Calculate a confidence interval for ρ. Provided both variables 
are approximately Normally distributed, the approximate 
95% confidence interval for ρ is

e
e

e
e

z

z

z
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2

2
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Note that, if the sample size is large, H0 may be rejected even 
if r is quite close to zero. Alternatively, even if r is large, H0 may 
not be rejected if the sample size is small. For this reason, it 
is particularly helpful to calculate r2, the proportion of the total 
variance of one variable explained by its linear relationship 
with the other. For example, if r = 0.40 then P < 0.05 for a 
sample size of 25, but the relationship is only explaining 16% 
(= 0.402 × 100) of the variability of one variable. 

Spearman’s rank correlation coefficient
We calculate Spearman’s rank correlation coefficient, a non-
parametric equivalent to Pearson’s correlation coefficient, if one 
or more of the following points is true:
•	 at least one of the variables, x or y, is measured on an ordinal scale;
•	 neither x nor y is Normally distributed;
•	 the sample size is small;
•	 we require a measure of the association between two variables 
when their relationship is non-linear.

Calculation
To estimate the population value of Spearman’s rank correlation 
coefficient, ρs, by its sample value, rs:
1	 Arrange the values of x in increasing order, starting with 
the smallest value, and assign successive ranks (the numbers 
1, 2, 3, …, n) to them. Tied values receive the mean of the 
ranks these values would have received had there been no 
ties.
2	 Assign ranks to the values of y in a similar manner.
3	 rs is the Pearson correlation coefficient between the ranks of x 
and y.

Properties and hypothesis tests
These are the same as for Pearson’s correlation coefficient, replac-
ing r by rs, except that:
•	 rs provides a measure of association (not necessarily linear) 
between x and y;
•	 when testing the null hypothesis that ρs = 0, refer to Appendix 
A11 if the sample size is less than or equal to 10;
•	 we do not calculate rs

2 (it does not represent the proportion 
of the total variation in one variable that can be attributed to its 
linear relationship with the other).
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Example

As part of a study to investigate the factors associated with 
changes in blood pressure in children, information was 
collected on demographic and lifestyle factors, and clinical and 
anthropometric measures in 4245 children aged from 5 to 7 
years. The relationship between height (cm) and systolic blood 
pressure (SBP, measured in mmHg) in a sample of 100 of these 

children is shown in the scatter diagram in Fig. 28.1; there is a 
tendency for taller children in the sample to have higher blood 
pressures. Pearson’s correlation coefficient between these 
two variables was investigated. Appendix C contains a computer 
output from the analysis and Fig. 37.1 shows histograms of 
systolic blood pressure and height in this sample of children.

Data kindly provided by Ms O. Papacosta and Dr P. Whincup, Department of Primary Care and Population Sciences, Royal Free and University 
College Medical School, London, UK.

As we might expect, given that each variable is Normally 
distributed, Spearman’s rank correlation coefficient between 
these variables gave a comparable estimate of 0.32. To test 

1	 H0: the population value of the Pearson correlation coef-
ficient, ρ, is zero

H1: the population value of the Pearson correlation 
coefficient, ρ, is not zero.

2	 We can show (Fig. 37.1) that the sample values of both 
height and SBP are approximately Normally distributed.

3	 We calculate r as 0.33. This is the test statistic since 
n ≤ 150.

4	 We refer r to Appendix A10 with a sample size of 100: 
P < 0.001.

5	 There is strong evidence to reject the null hypothesis; we 
conclude that there is a linear relationship between SBP 
and height in the population of such children. However, 
r2 = 0.33 × 0.33 = 0.11. Therefore, despite the highly signifi-
cant result, the relationship between height and SBP explains 
only a small percentage, 11%, of the variation in SBP.

In order to determine the 95% confidence interval for the 
true correlation coefficient, we calculate

z

z

z
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We are thus 95% certain that ρ lies between 0.14 and 0.49.

H0: ρs = 0, we refer this value to Appendix A10 and again find 
P < 0.001.
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The theory of linear regression27
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Learning objectives
By the end of this chapter, you should be able to:
•	 Explain the terms commonly used in regression analysis: 

dependent variable, explanatory variable, regression coef-
ficient, intercept, gradient, residual

•	 Define the simple (univariable) regression line and inter-
pret its coefficients

•	 Explain the principles of the method of least squares
•	 List the assumptions underlying a simple linear regression 

analysis
•	 Describe the features of an analysis of variance (ANOVA) 

table produced by a linear regression analysis
•	 Explain how to use the ANOVA table to assess how well the 

regression line fits the data (goodness of fit) and test the null 
hypothesis that the true slope of the regression line is zero.

•	 Explain what is meant by regression to the mean

Relevant Workbook questions: MCQ 52; and SQ 13 
available online

What is linear regression?
To investigate the relationship between two numerical variables, x 
and y, we measure the values of x and y on each of the n individu-
als in our sample. We plot the points on a scatter diagram (Chap-
ters 4 and 26), and say that we have a linear relationship if the 
data approximate a straight line. If we believe y is dependent on 
x, with a change in y being attributed to a change in x, rather than 
the other way round, we can determine the linear regression line 
(the regression of y on x) that best describes the straight line rela-
tionship between the two variables. In general, we describe the 
regression as univariable because we are concerned with only 
one x variable in the analysis; this contrasts with multivariable 
regression which involves two or more x’s (see Chapters 29–31).

The regression line
The mathematical equation that estimates the simple linear 
regression line is

Y a bx= +
•	 x is called the independent, predictor or explanatory  
variable.
•	 For a given value of x, Y is the value of y (called the dependent, 
outcome or response variable) that lies on the estimated line. 
It is an estimate of the value we expect for y (i.e. its mean) if we 
know the value of x, and is called the fitted value of y.
•	 a is the intercept of the estimated line; it is the value of Y when 
x = 0 (Fig. 27.1).
•	 b is the slope or gradient of the estimated line; it represents 
the amount by which Y increases on average if we increase x by 
one unit (Fig. 27.1).

a and b are called the regression coefficients of the estimated 
line, although this term is often reserved only for b. We show 
how to evaluate these coefficients in Chapter 28. Simple linear 
regression can be extended to include more than one explanatory 
variable; in this case, it is known as multivariable or multiple 
linear regression (Chapter 29).

Figure 27.1   Estimated linear regression line showing the intercept,
a, and the slope, b (the mean increase in Y for a unit increase in x).
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Method of least squares
We perform regression analysis using a sample of observations. 
a and b are the sample estimates of the true parameters, α and β, 
which define the linear regression line in the population. a and 
b are determined by the method of least squares (often called 
ordinary least squares, OLS) in such a way that the ‘fit’ of the 
line Y = a + bx to the points in the scatter diagram is optimal. We 
assess this by considering the residuals (the vertical distance 
of each point from the line, i.e. residual = observed y − fitted Y 
(Fig. 27.2). The line of best fit is chosen so that the sum of the 
squared residuals is a minimum.

Assumptions
1	 There is a linear relationship between x and y.
2	 The observations in the sample are independent. The obser-
vations are independent if there is no more than one pair of 
observations on each individual.
3	 For each value of x, there is a distribution of values of y 
in the population; this distribution is Normal. The mean 
of this distribution of y values lies on the true regression line 
(Fig. 27.3).
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4	 The variability of the distribution of the y values in the pop-
ulation is the same for all values of x, i.e. the variance, σ2, is 
constant (Fig. 27.3).
5	 The x variable can be measured without error. Note that we 
do not make any assumptions about the distribution of the x 
variable.

Many of the assumptions that underlie regression analysis 
relate to the distribution of the y population for a specified value 
of x, but they may be framed in terms of the residuals. It is easier 
to check the assumptions (Chapter 28) by studying the residuals 
rather than the values of y.

Analysis of variance table
Description
Usually the computer output in a regression analysis contains an 
analysis of variance table (Table 28.1). In analysis of variance 
(Chapter 22), the total variation of the variable of interest, in this 
case ‘y’, is partitioned into its two component parts. Because of 
the linear relationship of y on x, we expect y to vary as x var-
ies; we call this the variation that is due to or explained by the 
regression (sometimes called simply the model or regression 
variation). The remaining variability is called the residual error 
or unexplained variation (sometimes called simply the residual 
or error variation). The residual variation should be as small as 
possible; if so, most of the variation in y will be explained by the 
regression, and the points will lie close to or on the line; i.e. the 
line is a good fit.

Purposes
The analysis of variance table enables us to do the following.
1	 Assess how well the line fits the data points. From the informa-
tion provided in the table, we can calculate the proportion of the 
total variation in y that is explained by the regression. This pro-
portion, usually expressed as a percentage and denoted by R2 (in 
simple linear regression it is r2, the square of the correlation coef-
ficient; Chapter 26), allows us to assess subjectively the goodness 
of fit of the regression equation.
2	 Test the null hypothesis that the true slope of the line, β, is 
zero; a significant result indicates that there is evidence of a lin-
ear relationship between x and y.
3	 Obtain an estimate of the residual variance. We need this 
for testing hypotheses about the slope or the intercept, and for  

Figure 27.3   Illustration of assumptions made in linear regression.

True linear
regression line
Y = α + βx

xx2x1

Y1

Y2

y

Normal
distribution
mean = Y1
variance = σ2

Normal distribution
mean = Y2
variance = σ2

calculating confidence intervals for these parameters and for 
predicted values of y.

We provide details of the more common procedures in 
Chapter 28, both in the main body of the text and in the Example.

Regression to the mean
The statistical use of the word ‘regression’ derives from a phenom-
enon known as regression to the mean, attributed to Sir Francis 
Galton in 1889. He demonstrated that although tall fathers tend 
to have tall sons, the average height of the sons is less than that 
of their tall fathers. The average height of the sons has ‘regressed’ 
or ‘gone back’ towards the mean height of all the fathers in the 
population. So, on average, tall fathers have shorter (but still tall) 
sons and short fathers have taller (but still short) sons.

We observe regression to the mean in screening (Chapter 
38) and in clinical trials (Chapter 14), when a subgroup of 
patients may be selected for treatment because their levels of a 
certain variable, say cholesterol, are extremely high (or low). If 
the measurement is repeated some time later, the average value 
for the second reading for the subgroup is usually less than 
that of the first reading, tending towards (i.e. regressing to) the 
average of the age- and sex-matched population, irrespective of 
any treatment they may have received. Patients recruited into a 
clinical trial on the basis of a high cholesterol level on their first 
examination are thus likely to show a drop in cholesterol levels 
on average at their second examination, even if they remain 
untreated during this period.
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Performing a linear 
regression analysis28

Medical Statistics at a Glance, Fourth Edition. Aviva Petrie and Caroline Sabin. © 2020 Aviva Petrie and Caroline Sabin. Published 2020 by John Wiley & Sons Ltd. 
Companion Website: www.medstatsaag.com

Learning objectives
By the end of this chapter, you should be able to:
•	 Explain how to use residuals to check the assumptions 

underlying a linear regression analysis
•	 Explain how to proceed in a regression analysis if one or 

more of the assumptions are not satisfied
•	 Define the terms ‘outlier’ and ‘influential point’ and explain 

how to deal with each of them
•	 Explain how to assess the goodness of fit of a regression 

model
•	 Calculate the 95% confidence interval for the slope of a 

regression line
•	 Describe two methods for testing the null hypothesis that 

the true slope is zero
•	 Explain how to use the regression line for prediction
•	 Explain how to (1) centre and (2) scale an explanatory vari-

able in a regression analysis
•	 Explain what is achieved by centring and scaling

Relevant Workbook questions: MCQs 53 and 54; and SQs 
13 and 16 available online

The linear regression line
After selecting a sample of size n from our population and draw-
ing a scatter diagram to confirm that the data approximate a 
straight line, we estimate the regression of y on x as

Y a bx= +

where Y is the estimated fitted or predicted value of y, a is the 
estimated intercept and b is the estimated slope that represents 
the mean change in Y for a unit change in x (Chapter 27).

Drawing the line
To draw the line Y = a + bx on the scatter diagram, we choose three 
values of x (i.e. x1, x2 and x3) along its range. We substitute x1 in the 
equation to obtain the corresponding value of Y, namely Y1 = a + bx1; 
Y1 is our estimated fitted value for x1 which corresponds to the 
observed value, y1. We repeat the procedure for x2 and x3 to obtain 
the corresponding values of Y2 and Y3. We plot these points on the 
scatter diagram and join them to produce a straight line.

Checking the assumptions
For each observed value of x, the residual is the observed y 
minus the corresponding fitted Y. Each residual may be either 
positive or negative. We can use the residuals to check the follow-
ing assumptions underlying linear regression.
1	 There is a linear relationship between x and y – either plot y 
against x (the data should approximate a straight line) or plot the 
residuals against x (we should observe a random scatter of points 
rather than any systematic pattern).
2	 The observations are independent – the observations are 
independent if there is no more than one pair of observations on 
each individual.
3	 The residuals are Normally distributed with a mean of  
zero – draw a histogram, stem-and-leaf plot, box-and-whisker 

plot (Chapter 4) or Normal plot (Chapter 35) of the residuals and 
‘eyeball’ the result.
4	 The residuals have the same variability (constant variance) 
for all the fitted values of y – plot the residuals against the fitted 
values, Y, of y; we should observe a random scatter of points. If 
the scatter of residuals progressively increases or decreases as Y 
increases, then this assumption is not satisfied.
5	 The x variable can be measured without error.

Failure to satisfy the assumptions
If the linearity, Normality and/or constant variance assump-
tions are in doubt, we may be able to transform x or y (Chapter 
9) and calculate a new regression line for which these assump-
tions are satisfied. It is not always possible to find a satisfactory 
transformation. The linearity and independence assumptions 
are the most important. If you are dubious about the Normal-
ity and/or constant variance assumptions, you may proceed, 
but the P-values in your hypothesis tests, and the estimates of 
the standard errors, may be affected. Note that the x variable is 
rarely measured without any error; provided the error is small, 
this is usually acceptable because the effect on the conclusions 
is minimal.

Outliers and influential points
•	 An influential observation will, if omitted, alter one or both 
of the parameter estimates (i.e. the slope and/or the intercept) in 
the model. Formal methods of detection are discussed briefly in 
Chapter 29. If these methods are not available, you may have to 
rely on intuition.
•	 An outlier (an observation that is inconsistent with most of 
the values in the data set (Chapter 3)) may or may not be an 
influential point, and can often be detected by looking at the 
scatter diagram or the residual plots (see also Chapter 29).

For both outliers and influential points, we fit the model with 
and without the suspect individual’s data and note the effect 
on the estimate(s). Do not discard outliers or influential points 
routinely because their omission may affect the conclusions. 
Always investigate the reasons for their presence and report 
them.

Assessing goodness of fit
We can judge how well the line fits the data by calculat-
ing R2 (usually expressed as a percentage), which is equal 
to the square of the correlation coefficient (Chapters 26 and 
27). This represents the percentage of the variability of y that 
can be explained by its relationship with x. Its complement, 
(100 − R2), represents the percentage of the variation in y that 
is unexplained by the relationship. There is no formal test to 
assess R2; we have to rely on subjective judgement to evaluate 
the fit of the regression line.
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Investigating the slope
If the slope of the line is zero, there is no linear relationship 
between x and y: changing x has no effect on y. There are two 
approaches, with identical results, to testing the null hypothesis 
that the true slope, β, is zero.
•	 Examine the F-ratio (equal to the ratio of the ‘explained’ to the 
‘unexplained’ mean squares) in the analysis of variance table. It 
follows the F-distribution and has (1, n − 2) degrees of freedom 
in the numerator and denominator, respectively.
•	 Calculate the test statistic b

b
=

SE( )
 which follows the t-distri-

bution on n – 2 degrees of freedom, where SE(b) is the standard 
error of b.

In either case, a significant result, usually if P < 0.05, leads to 
rejection of the null hypothesis.

We calculate the 95% confidence interval for β as 
b ± t0.05 × SE(b), where t0.05 is the percentage point of the 
t-distribution with n − 2 degrees of freedom which gives a two-
tailed probability of 0.05. This interval contains the true slope 
with 95% certainty. For large samples, say n ≥ 100, we can 
approximate t0.05 by 1.96.

Regression analysis is rarely performed by hand; computer 
output from most statistical packages will provide all of this 
information.

Using the line for prediction
We can use the regression line for predicting values of y for 
specific values of x within the observed range (never extrapo-
late beyond these limits). We predict the mean value of y for 
individuals who have a certain value of x by substituting that 
value of x into the equation of the line. So, if x = x0, we predict 

y as Y0 = a + bx0. We use this estimated predicted value, and 
its standard error, to evaluate the confidence interval for the 
true mean value of y in the population. Repeating this proce-
dure for various values of x allows us to construct confidence 
limits for the line. This is a band or region that contains the 
true line with, say, 95% certainty. Similarly, we can calculate a 
wider region within which we expect most (usually 95%) of the 
observations to lie.

Improving the interpretation of the model
In some situations the interpretation of the parameters in a 
regression model may be improved by centring or scaling (or 
rescaling) an explanatory variable, i.e. by subtraction of or divi-
sion by a suitable constant.
•	 Centring – we generally choose to centre an explanatory vari-
able when the intercept of the model does not provide a pre-
dicted value of the dependent variable for a meaningful individ-
ual (for example, when systolic blood pressure (SBP) in mmHg is 
regressed on height in cm as in the Example, the intercept repre-
sents the mean SBP when the height of a child is zero). We centre 
an explanatory variable by subtracting a fixed number from the 
value of the explanatory variable for each individual in the sam-
ple. This fixed number might be, for example, the lowest value 
of the explanatory variable observed in the sample; the intercept 
of the revised model then represents the predicted value of the 
outcome variable at this lowest value of the explanatory variable. 
Often, however, we centre by subtracting the sample mean of the 
explanatory variable from each value; the intercept of a regres-
sion model with the explanatory variable centred in this way is 
equal to the predicted or mean value of the outcome variable 
when the explanatory variable takes its mean value.
•	 Scaling – we may scale an explanatory variable if the interpre-
tation of the coefficient for that variable does not reflect a clini-
cally meaningful change in the measurement (e.g. if height were 
measured in mm rather than cm in the example, the regression 
coefficient would be a very small number representing the aver-
age change in SBP for a mm change in height). In this situation, 
a more meaningful regression coefficient is obtained by scaling 
the explanatory variable by dividing it by a suitable constant (e.g. 
height/10, so the rescaled variable is now measuring cm).

Note that centring only affects the intercept but does not affect 
the estimated regression coefficient for the explanatory variable; 
in contrast, scaling affects the estimated regression coefficient for 
the explanatory variable but not the intercept. Neither centring 
nor scaling affects the significance of the regression coefficient or 
the fit of the model.

Useful formulae for hand calculations

x x n y y n

a y bx

b
x x y y

x x

s
y Y

n

= =

= −

=
− −

−

=
−

−

∑ ∑

∑
∑
∑
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/

( )( )
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2

2
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Example

The relationship between height (measured in cm) and systolic 
blood pressure (SBP, measured in mmHg) in the 100 children 
described in Chapter 26 is shown in Fig. 28.1. We performed 
a simple linear regression analysis of SBP (the dependent 
variable) on height (the explanatory variable). Assumptions 
underlying this analysis are verified in Figs 28.2–28.4. A 
typical full computer output is shown in Appendix C. There is a 
significant linear relationship between height and SBP, as can 
be seen by the significant F-ratio in the analysis of variance table 
(Table 28.1). The R 2 of the model is 10.9% = 100 × (962.714)/
(8808.306), the sum of squares due to regression expressed 
as a percentage of the total sum of squares (it is also equal to 
the square of the correlation coefficient which is estimated as 
0.33066 (Chapter 26 and Appendix C)). Thus the regression 
line is a poor fit since only approximately one-tenth of the 
variability in the SBP can be explained by the model; that is, by 
differences in the heights of the children.

The parameter estimate for ‘Intercept’ corresponds to a, and 
that for ‘Height’ corresponds to b (the slope of the regression 
line). So, the equation of the estimated regression line is

SBP height= + ×46 28 0 48. .

In this example, the intercept is of no interest in its own right 
(it relates to the predicted blood pressure for a child who 

has a height of 0 cm – a nonsensical value and, in any case, 
clearly out of the range of values seen in the study). However, 
we can interpret the slope coefficient; in these children, SBP is 
predicted to increase by 0.48 mmHg, on average, for each cm 
increase in height.

P = 0.0008 (Table 28.2) for the hypothesis test for 
height (i.e. H0: true slope equals zero) is identical to that 
obtained from the analysis of variance table (Table 28.1), 
as expected.

Since the sample size is large (it is 100), we can approximate 
t0.05 by 1.96 and calculate the 95% confidence interval for the 
true slope as

b b± × = ± ×1 96 0 48 1 96 0 14. ( ) . ( . . )SE

Therefore, the 95% confidence interval for the slope 
ranges from 0.21 to 0.75 mmHg per cm increase in height. 
This confidence interval does not include zero, confirming 
the finding that the slope is significantly different from 
zero.

We can use the regression equation to predict the SBP 
we expect a child of a given height to have. For example, a 
child who is 115 cm tall has an estimated predicted SBP of 
46.28 + (0.48 × 115) = 101.48 mmHg; a child who is 130 cm 
tall has an estimated predicted SBP of 46.28 + (0.48 × 130) =  
108.68 mmHg.

Table 28.1  Analysis of variance table.

Source Sum of squares df Mean square F-ratio P-value

Due to regression
Residual error
Total

962.714
7842.592
8805.306

1
98
99

962.714
80.026

12.030 0.0008

Note: the estimated residual variance is 80.026 mmHg, the residual mean square.

Table 28.2  Parameter estimates.

Variable Parameter estimate Standard error Test statistic P-value

Intercept
Height

46.2817
0.4842

16.7845
0.1396

2.7574
3.4684

0.0070
0.0008

continued
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Figure 28.1   Scatter plot showing the relationship between systolic
blood pressure (SBP) and height. The estimated regression line,
SBP = 46.28 + 0.48 × height, is marked on the scatter plot.
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Figure 28.2   No relationship is apparent between the residuals and
height, indicating that a linear relationship between height and
systolic blood pressure is appropriate.
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Figure 28.3   The distribution of the residuals is approximately Normal.
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Figure 28.4   There is no tendency for the residuals to increase or
decrease systematically with the �tted values. Hence the constant
variance assumption is satis�ed.

11511010510095

Fitted values (mmHg)

R
es

id
ua

ls
 (m

m
H

g)

30

20

10

0

–10

–20

–30

www.konkur.in

Telegram: @medical_k



Chapter 29  M
ultiple linear regression

81

Multiple linear regression29
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Learning objectives
By the end of this chapter, you should be able to:
•	 Explain the terms: covariate, partial regression coefficient, 

collinearity
•	 Define the multiple (multivariable) linear regression equa-

tion and interpret its coefficients
•	 Give three reasons for performing a multiple regression 

analysis
•	 Explain how to create dummy variables to allow nominal and 

ordinal categorical explanatory variables with more than two 
categories of response to be incorporated in the model

•	 Explain what is meant by the reference category when fit-
ting models that include categorical explanatory variables

•	 Describe how multiple regression analysis can be used as 
a form of analysis of covariance

•	 Give a rule of thumb for deciding on the maximum number 
of explanatory variables in a multiple regression equation

•	 Use computer output from a regression analysis to assess 
the goodness of fit of the model, and test the null hypoth-
eses that all the partial regression coefficients are zero and 
that each partial regression coefficient is zero

•	 Explain the relevance of residuals, leverage and Cook’s 
distance in identifying outliers and influential points

Relevant Workbook questions: MCQs 33, 55, 56, 57 and 
81; and SQ 14 available online

What is it?
We may be interested in the effect of several explanatory vari-
ables, x1, x2, …, xk, on a response variable, y. If we believe that 
these x’s may be interrelated, we should not look, in isolation, 
at the effect on y of changing the value of a single x, but should 
simultaneously take into account the values of the other x’s. 
For example, as there is a strong relationship between a child’s 
height and weight, we may want to know whether the rela-
tionship between height and systolic blood pressure (Chapter 
28) is changed when we take the child’s weight into account. 
Multiple linear regression allows us to investigate the joint 
effect of these explanatory variables on y; it is an example of a 
multivariable analysis where we relate a single outcome vari-
able to two or more explanatory variables simultaneously. Note 
that, although the explanatory variables are sometimes called 
independent variables, this is a misnomer because they may be 
related.

We take a sample of n individuals, and measure the value of each 
of the variables on every individual. The multiple linear regression 
equation that estimates the relationships in the population is

Y a b x b x b xk k= + + +…+1 1 2 2

•	 xi is the ith explanatory variable or covariate (i = 1, 2, 3, …, k);
•	 Y is the estimated predicted, expected, mean or fitted value of 
y, which corresponds to a particular set of values of x1, x2, …, xk;
•	 a is a constant term, the estimated intercept; it is the value of Y 
when all the x’s are zero;
•	 b1, b2, …, bk are the estimated partial regression coefficients; 
b1 represents the amount by which Y increases on average if we 
increase x1 by one unit but keep all the other x’s constant (i.e. 

adjust or control for them). If there is a relationship between x1 
and the other x’s, b1 differs from the estimate of the regression 
coefficient obtained by regressing y on only x1, because the latter 
approach does not adjust for the other variables. b1 represents the 
effect of x1 on y that is independent of the other x’s.

Multiple linear regression analyses are invariably performed 
on the computer, and so we omit the formulae for these estimated 
parameters.

Why do it?
We perform a multiple regression analysis to be able to:
•	 identify explanatory variables that are associated with the 
dependent variable in order to promote understanding of the 
underlying process;
•	 determine the extent to which one or more of the explanatory 
variables is/are linearly related to the dependent variable, after 
adjusting for other variables that may be related to it; and
•	 possibly, predict the value of the dependent variable as accu-
rately as possible from the explanatory variables.

Assumptions
The assumptions in multiple linear regression are the same (if we 
replace ‘x’ by ‘each of the x’s’) as those in simple linear regression 
(Chapter 27), and they are checked in the same way. Failure to 
satisfy the linearity or independence assumptions is particularly 
important. We can transform (Chapter 9) the y variable and/or 
some or all of the x variables if the assumptions are in doubt, and 
then repeat the analysis (including checking the assumptions) on 
the transformed data.

Categorical explanatory variables
We can perform a multiple linear regression analysis using 
categorical explanatory variables. In particular, if we have a 
binary variable, x1 (e.g. male = 0, female = 1), and we increase x1 
by one unit, we are ‘changing’ from males to females. b1 thus rep-
resents the difference in the estimated mean values of y between 
females and males, after adjusting for the other x’s.

If we have a nominal explanatory variable (Chapter 1) that 
has more than two categories of response, we have to create a 
number of dummy or indicator variables1. In general, for 
a nominal variable with k categories, we create k − 1 binary 
dummy variables. We choose one of the categories to represent 
our reference category, and each dummy variable allows us to 
compare one of the remaining k − 1 categories of the variable 
with the reference category. For example, we may be interested 
in comparing mean systolic blood pressure levels in individuals 
living in four countries in Europe (the Netherlands, UK, Spain 
and France). Suppose we choose our reference category to be 
the Netherlands. We generate one binary variable to identify 
those living in the UK; this variable takes the value 1 if the 
individual lives in the UK and 0 otherwise. We then generate 
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binary variables to identify those living in Spain and France in 
a similar way. By default, those living in the Netherlands can 
then be identified since these individuals will have the value 
0 for each of the three binary variables. In a multiple linear 
regression analysis, the regression coefficient for each of the 
other three countries represents the amount by which Y (systolic 
blood pressure) differs, on average, among those living in the 
relevant country compared with those living in the Netherlands. 
The intercept provides an estimate of the mean systolic blood 
pressure for those living in the Netherlands (when all of the 
other explanatory variables take the value zero). Some computer 
packages will create dummy variables automatically once it is 
specified that the variable is categorical.

If we have an ordinal explanatory variable and its three or 
more categories can be assigned values on a meaningful linear 
scale (e.g. social classes 1–5), then we can either use these values 
directly in the multiple linear regression equation (see also 
Chapter 33), or generate a series of dummy variables as for a 
nominal variable (but this does not make use of the ordering of 
the categories).

Analysis of covariance
An extension of analysis of variance (ANOVA, Chapter 22) is 
the analysis of covariance (ANCOVA), in which we compare 
the response of interest between groups of individuals (e.g. two 
or more treatment groups) when other variables measured on 
each individual are taken into account. Such data can be ana-
lysed using multiple linear regression techniques by creating one 
or more dummy binary variables to differentiate between the 
groups. So, if we wish to compare the mean values of y in two 
treatment groups, while controlling for the effect of variables x2, 
x3, …, xk (e.g. age, weight, etc.), we create a binary variable, x1, to 
represent ‘treatment’ (e.g. x1 = 0 for treatment A, x1 = 1 for treat-
ment B). In the multiple linear regression equation, b1 is the esti-
mated difference in the mean responses on y between treatments 
B and A, adjusting for the other x’s.

Analysis of covariance is the preferred analysis for a 
randomized controlled trial comparing treatments when each 
individual in the study has a baseline and post-treatment 
follow-up measurement. In this instance, the response variable, 
y, is the follow-up measurement and two of the explanatory 
variables in the regression model are a binary variable 
representing treatment, x1, and the individual’s baseline level at 
the start of the study, x2. This approach is generally better (i.e. has 
a greater power (Chapter 36)) than using either the change from 
baseline or the percentage change from baseline as the response 
variable.

Choice of explanatory variables
As a rule of thumb, we should not perform a multiple linear 
regression analysis if the number of variables is greater than 
the number of individuals divided by 10. Most computer pack-
ages have automatic procedures for selecting variables, e.g. 
stepwise selection (Chapter 33). These are particularly useful 
when many of the explanatory variables are related. A par-
ticular problem arises when collinearity is present, i.e. when 
pairs of explanatory variables are extremely highly correlated 
(Chapter 33).

Analysis
Most computer output contains the following items.
1	 An assessment of goodness of fit

The adjusted R2 represents the proportion (often expressed 
as a percentage) of the variability of y that can be explained by 
its relationship with the x’s. R2 is adjusted so that models with 
different numbers of explanatory variables can be compared. 
If it has a low value (judged subjectively), the model is a poor 
fit. Goodness of fit is particularly important when we use the 
multiple linear regression equation for prediction.
2	 The F-test in the ANOVA table

This tests the null hypothesis that all the partial regression 
coefficients in the population, β1, β2, …, βk, are zero. A significant 
result indicates that there is a linear relationship between y and 
at least one of the x’s.
3	 The t-test of each partial regression coefficient, βi (i = 1,  
2, …, k)

Each t-test relates to one explanatory variable, and is relevant 
if we want to determine whether that explanatory variable affects 
the response variable, while controlling for the effects of the other 

covariates. To test H0: βi = 0, we calculate the test statistic = 
b

b
i

iSE( )
,  

which follows the t-distribution with (n − number of explanatory 
variables − 1) degrees of freedom. Computer output includes 
the values of each bi, SE(bi) and the related test statistic with 
its P-value. Sometimes the 95% confidence interval for βi is 
included; if not, it can be calculated as bi ± t0.05 × SE(bi).

Outliers and influential points
As discussed briefly in Chapter 28, an outlier (an observation 
that is inconsistent with most of the values in the data set (Chap-
ter 3)) may or may not be influential (i.e. affect the parameter 
estimate(s) of the model if omitted). An outlier and/or influential 
observation may have one or both of the following:
•	 A large residual (a residual is the difference between the 
observed and predicted values of the outcome variable, y, for that 
individual’s value(s) of the explanatory variable(s)).
•	 High leverage when the individual’s value of x (or set of x’s) is 
a long way from the mean value of x (or set of x’s). High leverage 
values may be taken as those greater than 2(k + 1)/n where k is 
the number of explanatory variables in the model and n is the 
number of individuals in the study.

We can determine suspect influential observations by, for 
example:
•	 investigating those individuals having large residuals, high 
leverage and/or values of Cook’s distance (an overall measure 
of influence incorporating both residual and leverage values) 
greater than one or 4/n or very extreme relative to the others; or
•	 examining special diagnostic plots in which influential points 
may become apparent.

All influential points and outliers should be investigated 
thoroughly and checked for measurement and transcription 
errors.

Various methods are available for investigating model sensitivity 
– the extent to which estimates are affected by subsets of the data. 
Typically, we might fit the model with and without an influential 
point to assess the effect on the regression coefficients. However, we 
are rarely justified in removing influential observations or outliers 
from the data set providing the final model.
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Example

In Chapter 28 we studied the relationship between systolic 
blood pressure (SBP) and height in 100 children. It is known 
that height and weight are positively correlated. We therefore 
performed a multiple linear regression analysis to investigate 
the effects of height (cm), weight (kg) and sex (0 = boy, 1 = girl) 
on SBP (mmHg) in these children. Assumptions underlying this 
analysis are verified in Figs 29.1–29.4.

A typical output from a computer analysis of these data is 
contained in Appendix C. The analysis of variance table indicates 

that at least one of the explanatory variables is related to SBP 
(F = 14.95 with 3 and 96 degrees of freedom in the numerator 
and denominator, respectively, P = 0.0001). The adjusted R2 
value of 0.2972 indicates that 29.7% of the variability in SBP can 
be explained by the model – that is, by differences in the height, 
weight and sex of the children. Thus this provides a much better fit 
to the data than the simple linear regression in Chapter 28 in which 
R2 = 0.11. Typical computer output contains the information in the 
following table about the explanatory variables in the model.

Variable
Parameter  
estimate

Standard  
error

95% CI for  
parameter

Test  
statistic P-value

Intercept 79.4395 17.1182 (45.89 to 112.99) 4.6406 0.0001
Height –0.0310 0.1717 (–0.37 to 0.31) –0.1807 0.8570
Weight 1.1795 0.2614 (0.67 to 1.69) 4.5123 0.0001
Sex 4.2295 1.6105 (1.07 to 7.39) 2.6261 0.0101

The multiple linear regression equation is estimated by:

SBP height weight sex= − ×( ) + ×( ) + ×( )79 44 0 03 1 18 4 23. . . .

The relationship between weight and SBP is highly 
significant (P < 0.0001), with a 1  kg increase in weight being 
associated with a mean increase of 1.18 mmHg in SBP, after 
adjusting for height and sex. However, after adjusting for the 
weight and sex of the child, the relationship between height 
and SBP becomes non-significant (P = 0.86). This suggests 
that the significant relationship between height and SBP in the 
simple regression analysis reflects the fact that taller children 
tend to be heavier than shorter children. There is a significant 
relationship (P = 0.01) between sex and SBP; SBP in girls tends 

to be 4.23 mmHg higher, on average, than that in boys, even 
after taking account of possible differences in height and 
weight. Hence, both weight and sex are independent predictors 
of a child’s SBP.

We can calculate the SBPs we would expect for 
children of given heights and weights. If the first child 
mentioned in Chapter 28 who is 115  cm tall is a girl 
and weighs 37  kg, she now has an estimated predicted  
SBP of 79.44 − (0.03 × 115) + (1.18 × 37) + (4.23 × 1) = 123.88 
mmHg (higher than the 101.48  mmHg predicted in 
Chapter 28); if the second child who is 130  cm tall is a boy  
and weighs 30  kg, he now has an estimated predicted SBP 
of 79.44 − (0.03 × 130) + (1.18 × 30) + (4.23 × 0) = 110.94 mmHg 
(higher than the 108.68 mmHg predicted in Chapter 28).

continued

Reference
1	 Armitage, P., Berry, G. and Matthews, J.N.S. (2001) Statistical Meth-

ods in Medical Research. 4th edition. Oxford: Blackwell Science.
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Part 5  Basic techniques for analysing data Figure 29.1   There is no systematic pattern to the residuals when
plotted against weight. (Note that, similarly to Fig. 28.2, a plot of the
residuals from this model against height also shows no systematic
pattern.)
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Figure 29.2   The distribution of the residuals is approximately
Normal and the variance is slightly less than that from the simple
regression model (Chapter 28), re�ecting the improved �t of the
multiple linear regression model over the simple model.
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Figure 29.3   As with the univariable model, there is no tendency for
the residuals to increase or decrease systematically with �tted
values. Hence the constant variance assumption is satis�ed.
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Figure 29.4   The distribution of the residuals is similar in boys and
girls, suggesting that the model �ts equally well in the two groups. 
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Learning objectives
By the end of this chapter, you should be able to:
•	 Explain why multiple linear regression analysis cannot be 

used for a binary outcome variable
•	 Define the logit of a proportion
•	 Define the multiple logistic regression equation
•	 Interpret the exponential of a logistic regression coefficient
•	 Calculate, from a logistic regression equation, the probability 

that a particular individual will have the outcome of interest
•	 Describe two ways of assessing whether a logistic regres-

sion coefficient is statistically significant
•	 Describe various ways of testing the overall model fit, 

assessing predictive efficiency and investigating the 
underlying assumptions of a logistic regression analysis

•	 Explain when the odds ratio is greater than and when it is 
less than the relative risk

•	 Explain the use of the following types of logistic regression: 
multinomial, ordinal, conditional

Relevant Workbook questions: MCQs 33, 46, 57 and 58; 
and SQs 4, 12 and 15 available online

Logistic regression is very similar to linear regression; we use it 
when we have a binary outcome of interest (e.g. the presence/
absence of a symptom, or an individual who does/does not have 
a disease) and a number of explanatory variables. We perform 
a logistic regression analysis in order to do one or more of the 
following:
•	 Determine which explanatory variables influence the outcome.
•	 Evaluate the probability that an individual with a particular 
covariate pattern (i.e. a unique combination of values for the 
explanatory variables) will have the outcome of interest.
•	 Use this probability to assign the individual to an outcome 
group that reflects the individual’s risk of the outcome (we usu-
ally use a cut-off of 0.5 for the probability for this purpose but 
we may choose a different cut-off if this better discriminates 
between the outcomes).
•	 Analyse an unmatched case–control study (Chapter 16) when 
the two outcomes are ‘case’ and ‘control’.

Reasoning
We start by creating a binary variable to represent the two out-
comes (e.g. ‘has disease’ = 1, ‘does not have disease’ = 0). However, 
we cannot use this as the dependent variable in a linear regres-
sion analysis since the Normality assumption is violated, and we 
cannot interpret predicted values that are not equal to zero or 
one. So, instead, we take the probability, p, that an individual is 
classified into the highest coded category (i.e. has disease) as the 
dependent variable, and, to overcome mathematical difficulties, 
use the logistic or logit transformation (Chapter 9) of it in the 
regression equation. The logit of this probability is the natural 
logarithm (i.e. to base e) of the odds of ‘disease’, i.e.

logit ln( )p p
p

=
−1

The logistic regression equation
An iterative process, called maximum likelihood (Chapter 32), 
rather than ordinary least squares regression (so we cannot use 
linear regression software), produces, from the sample data, an 
estimated logistic regression equation of the form

logit ( )p a b x b x b xk k= + + +…+1 1 2 2

where:
•	 xi is the ith explanatory variable (i = 1, 2, 3, …, k);
•	 p is the estimated value of the true probability that an individ-
ual with a particular set of values for x1, …, xk has the disease. p 
corresponds to the proportion with the disease; it has an under-
lying Binomial distribution (Chapter 8);
•	 a is the estimated constant term;
•	 b1, b2, …, bk are the estimated logistic regression coefficients.

The exponential of a particular coefficient, for example, eb1, is 
an estimate of the odds ratio (Chapter 16). For a particular value 
of x1, it is the estimated odds of disease for (x1 + 1) relative to the 
estimated odds of disease for x1, while adjusting for all other x’s 
in the equation (it is therefore often referred to as an adjusted 
odds ratio). If the odds ratio is equal to one (unity), then these 
two odds are the same, i.e. increasing the value of x1 has no 
impact on the odds of disease. A value of the odds ratio above 
one indicates an increased odds of having the disease, and a value 
below one indicates a decreased odds of having the disease, as x1 
increases by one unit. When the disease is rare, the odds ratio can 
be interpreted as a relative risk.

We can manipulate the logistic regression equation to 
estimate the probability that an individual has the disease. For 
each individual, with a set of covariate values for x1, …, xk, we 
calculate

z a b x b x b xk k= + + +…+1 1 2 2

Then, the probability that the individual has the disease is esti-
mated as

p e
e

z

z
=

+1

Generating a series of plots of these probabilities against the val-
ues of each of a number of covariates is often useful as an aid to 
interpreting the findings.

As the logistic regression model is fitted on a log scale, the 
effects of the xi’s are multiplicative on the odds of disease. This 
means that their combined effect is the product of their separate 
effects. Suppose, for example, x1 and x2 are two binary variables 
(each coded as 0 or 1) with estimated logistic coefficients b1 
and b2, respectively, so that the corresponding estimated odds 
of disease for category 1 compared with category 0 for each 
variable is OR1

1= eb  and OR2
2= eb . To obtain the estimated odds 

of disease for an individual who has x1 = 1 and x2 = 1, compared 
with an individual who has x1 = 0 and x2 = 0, we multiply OR1 
by OR2 (see Example). This concept is extended for numerical 
explanatory variables. The multiplicative effect on the odds scale 
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is unlike the situation in linear regression where the effects of the 
xi’s on the dependent variable are additive.

Note that some statistical packages will, by default, model the 
probability that p = 0 (does not have disease) rather than p = 1. 
This will lead to the estimates from the logistic regression model 
being inverted (i.e. the estimate provided will be 1/OR). If this is 
the case, it is usually straightforward to modify these settings to 
ensure that the correct estimates are displayed.

The explanatory variables
Computer output for a logistic regression analysis generally 
includes, for each explanatory variable, the estimated logistic 
regression coefficient with standard error, the estimated odds 
ratio (i.e. the exponential of the coefficient) and a confidence 
interval for its true value. We can determine whether each vari-
able is related to the outcome of interest (e.g. disease) by testing 
the null hypothesis that the relevant logistic regression coeffi-
cient is zero, which is equivalent to testing the hypothesis that 
the odds ratio of ‘disease’ associated with this variable is unity. 
This is usually achieved by performing one of the following tests.
•	 The Wald test – the test statistic, which follows the Standard 
Normal distribution, is equal to the estimated logistic regression 
coefficient divided by its standard error. Its square approximates 
the Chi-squared distribution with 1 degree of freedom.
•	 The likelihood ratio test (Chapter 32) – the test statistic is the 
deviance (also referred to as the likelihood ratio statistic (LRS) 
or –2log likelihood) for the full model minus the deviance for 
the full model excluding the relevant explanatory variable – this 
test statistic follows a Chi-squared distribution with 1 degree of 
freedom.

These tests give similar results if the sample size is large. 
Although the Wald test is less powerful (Chapter 18) and may 
produce biased results if there are insufficient data for each value 
of the explanatory variable, it is usually preferred because it is 
generally included in the computer output (which is not usually 
the case for the likelihood ratio test).

As in multiple linear regression, automatic selection 
procedures (Chapter 33) can be used to select the best 
combination of explanatory variables. As a rule of thumb, we 
should not perform a multiple logistic regression analysis if the 
number of responses in each of the two outcome categories (e.g. 
has disease/does not have disease) is fewer than 10 times the 
number of explanatory variables1.

Assessing the adequacy of the model
Usually, interest is centred on examining the explanatory vari-
ables and their effect on the outcome. This information is rou-
tinely available in all advanced statistical computer packages. 
However, there are inconsistencies between the packages in the 
way in which the adequacy of the model is assessed, and in the 
way it is described. The following provides an indication of what 
your computer output may contain (in one guise or another) for 
a logistic model with k covariates and a sample size of n (full 
details may be obtained from more advanced texts2 and exam-
ples are also shown in Appendix C).

Evaluating the model and its fit
•	 The value of the deviance (or LRS or − 2log likelihood) – on 
its own (i.e. without subtracting the deviance from that of an 
alternative model), this compares the likelihood of the model 

with k covariates to that of a saturated (i.e. a perfectly fitting) 
model. This test statistic approximately follows a Chi-squared 
distribution with (n  –  k − 1) degrees of freedom: a significant 
result suggests the model does not fit the data well. Thus the devi-
ance is a measure of poorness of fit.
•	 The model Chi-square, the Chi-square for covariates or  
G – this tests the null hypothesis that all k regression coefficients 
in the model are zero by subtracting the deviance of the model 
from that of the null model which contains no explanatory vari-
ables (Chapter 32). G approximately follows a Chi-squared dis-
tribution with k degrees of freedom; a significant result suggests 
that at least one covariate is significantly associated with the 
dependent variable.
•	 The Hosmer–Lemeshow test (recommended only if n is large, 
say > 400) – this assesses goodness of fit (Chapter 46).

Indices of goodness of fit, such as RL
2 and the Pseudo R2, similar 

to R2 in linear regression (Chapter 27), may also be determined 
although they are more difficult to interpret in logistic regression 
analysis.

Assessing predictive efficiency
•	 A 2 × 2 classification table – this illustrates the ability of the 
model to correctly discriminate between those who do and do 
not have the outcome of interest (e.g. disease): the rows often 
represent the predicted outcomes from the model (where an 
individual is predicted to have or not have the disease accord-
ing to whether his/her predicted probability is greater or less 
than the (usual) cut-off of 0.5) and the columns represent the 
observed outcomes. The entries in all cells of the table are fre-
quencies. If the logistic model is able to classify patients per-
fectly (i.e. there is no misclassification of patients), the only 
cells of the table that contain non-zero entries are those lying 
on the diagonal and the overall percent correct is 100%. Note 
that it is possible to have a high percent correctly predicted 
(say 70%) when, at its most extreme, 100% of the individu-
als are predicted to belong to the more frequently occurring 
outcome group (e.g. diseased) and 0% to the other group. 
Terms associated with the classification table are as follows  
(Chapter 38):

■■ Sensitivity – the percent correctly predicted to have the 
disease.
■■ Specificity – the percent correctly predicted to be disease-

free.
■■ False positive rate – the percent incorrectly predicted to 

have the disease.
■■ False negative rate – the percent incorrectly predicted to be 

disease-free.
•	 A histogram – this illustrates the observed outcomes (e.g. 
disease or no disease) of patients according to their predicted 
probability (p) of belonging to the outcome category of interest, 
e.g. has disease. The horizontal axis, with a scale from 0 to 1, 
represents the predicted probability that an individual has the 
disease. The column (or bar) for a particular predicted probabil-
ity comprises 1’s and/or 0’s, each entry representing the observed 
outcome for one individual (the codes 1 and 0 indicate whether 
the individual does or does not have the disease, respectively). 
A good model will separate the symbols into two groups with 
little or no overlap – i.e. most or all of the 0’s will lie on the far 
left of the histogram and most or all of the 1’s will lie on the far 
right. Any 1’s on the left of the histogram (where p < 0.5) or 0’s on 
the right (where p > 0.5) will indicate individuals who have been 
misclassified.
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87•	 A receiver operating characteristic (ROC) curve – this 
plots the sensitivity of the model against 1 minus the specificity 
(Chapter 38) for different cut-offs of the predicted probability, p. 
Lowering the cut-off increases the sensitivity and raising the cut-
off increases the specificity of the model. The closer the curve is 
to the upper left corner of the diagram, the better the predictive 
ability of the model. The greater the area under the curve (upper 
limit = 1), the better the model is at discriminating between 
outcomes.

Investigating the assumptions
We explain how to assess the linearity assumption in Chapter 33.

A logistic regression coefficient with a large standard error 
may indicate:
•	 collinearity (Chapter 33) – the explanatory variables are 
highly correlated; or
•	 a zero cell count – this occurs when all of the individuals 
within a particular category for a qualitative explanatory variable 
have the same outcome (e.g. all have the disease), so that none of 
them has the other outcome (disease-free). In this situation, we 
should consider combining categories if the covariate has more 
than two categories or, if this is not possible, removing the covar-
iate from the model. Similar procedures should be adopted when 
the data are ‘sparse’ (e.g. when the expected frequency is < 5) in 
any category.

Deviance divided by the degrees of freedom (df = n – k – 1) 
is a ratio that has an expected value of 1 when the residual 
variance corresponds to that expected under a Binomial model. 
There is extra-Binomial variation indicating overdispersion 
if the ratio is substantially greater than 1 (the regression 
coefficients have standard errors which are underestimated, 
perhaps because of lack of independence – Chapters 41 and 42) 
and underdispersion if the ratio is substantially less than 1 (see 
also Chapters 31 and 42).

Logistic regression diagnostics
Outliers and influential points in logistic regression are usually 
identified by constructing appropriate diagrams and looking 
for points in them that appear to lie apart from the main body 
of the data. Note that a ‘point’ in these circumstances relates to 
individuals with the same covariate pattern, not to a particular 
individual as in multiple regression (Chapter 29). For example, 
outliers may be detected by plotting the logistic residual (e.g. 
the Pearson or deviance residual) against the predicted prob-
ability, and influential points may be detected by plotting an 
influence statistic (e.g. the change in the deviance attributable 
to deleting an individual from the analysis) against the pre-
dicted probability2.

Comparing the odds ratio  
and the relative risk
Although the odds ratio is often taken as an estimate of the rela-
tive risk, it will only give a similar value if the outcome is rare. 
Where the outcome is not rare, the odds ratio will be greater than 
the relative risk if the relative risk is greater than one, and it will 

be less than the relative risk otherwise. Although the odds ratio 
is less easily interpreted than the relative risk, it does have attrac-
tive statistical properties and thus is usually preferred (and must 
be used in a case–control study when the relative risk cannot be 
estimated directly (Chapter 16)).

Multinomial and ordinal logistic 
regression
Multinomial (also called polychotomous) and ordinal logis-
tic regression are extensions of logistic regression; we use them 
when we have a categorical dependent variable with more than 
two categories. When the dependent variable is nominal (Chap-
ter 1) (e.g. the patient has one of three back disorders: lumbar 
disc hernia, chronic low-back pain or acute low-back pain) we 
use multinomial logistic regression. When the dependent vari-
able is ordinal or ranked (e.g. mild, moderate or severe pain) 
we use ordinal logistic regression. These methods are complex 
and so you should refer to more advanced texts3 and/or seek 
specialist advice if you want to use them. As a simple alternative, 
we can combine the categories in some appropriate way to create 
a new binary outcome variable, and then perform the usual 
two-category logistic regression analysis (recognizing that this 
approach may be wasteful of information). The decision on how 
to combine the categories should be made in advance, before 
looking at the data, in order to avoid bias.

Conditional logistic regression
We can use conditional logistic regression when we have 
matched individuals (as in a matched case–control study (Chap-
ter 16)) and we wish to adjust for possible confounding factors. 
Analysis of a matched case–control study using ordinary logistic 
regression or the methods described in Chapter 16 is inefficient, 
may produce biased results and lacks power because neither 
acknowledges that cases and controls are linked to each other. 
Conditional logistic regression allows us to compare cases with 
controls in the same matched ‘set’ (i.e. each pair in the case of 
one-to-one matching). In this situation, the ‘outcome’ is defined 
by the patient being a case (usually coded 1) or a control (usually 
coded 0). While advanced statistical packages may sometimes 
allow us to perform conditional logistic regression directly, it 
may be necessary to use the Cox proportional hazards regres-
sion model (Chapter 44).
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Example

In a study of the relationship between human herpesvirus 
type 8 (HHV-8) infection (described in Chapter 23) and 
sexual behaviour, 271 homosexual/bisexual men were asked 
questions relating to their past histories of a number of 
sexually transmitted diseases (gonorrhoea, syphilis, herpes 
simplex type 2 (HSV-2) and HIV). In Chapter 24 we showed 
that men who had a history of gonorrhoea had a higher 
seroprevalence of HHV-8 than those without a previous history 
of gonorrhoea. A multivariable logistic regression analysis 
was performed to investigate whether this effect was simply 
a reflection of the relationships between HHV-8 and the other 

infections and/or the man’s age. The explanatory variables 
were the presence of each of the four infections, each coded 
as ‘0’ if the patient had no history of the particular infection 
or ‘1’ if he had a history of that infection, and the patient’s 
age in years.

A typical computer output is displayed in Appendix C. It 
shows that the Chi-square for covariates equals 24.60 on 5 
degrees of freedom (P = 0.0002), indicating that at least one of 
the covariates is significantly associated with HHV-8 serostatus. 
The following table summarizes the information about each 
variable in the model.

Variable
Parameter  
estimate

Standard  
error Wald test statistic P-value

Estimated  
odds ratio

95% CI for  
odds ratio

Intercept –2.2242 0.6512 –3.416 0.0006 – –
Gonorrhoea 0.5093 0.4363 1.167 0.2431 1.664 (0.71–3.91)
Syphilis 1.1924 0.7111 1.677 0.0935 3.295 (0.82–13.28)
HSV-2 positivity 0.7910 0.3871 2.043 0.0410 2.206 (1.03–4.71)
HIV 1.6357 0.6028 2.713 0.0067 5.133 (1.57–16.73)
Age 0.0062 0.0204 0.302 0.7628 1.006 (0.97–1.05)

These results indicate that HSV-2 positivity (P = 0.04) and 
HIV status (P = 0.007) are independently associated with HHV-8 
infection; individuals who are HSV-2 seropositive have 2.21 
times (= exp[0.7910]) the odds of being HHV-8 seropositive 
as those who are HSV-2 seronegative, after adjusting for the 
other infections and age. In other words, the odds of HHV-8 
seropositivity in these individuals is increased by 121%. The 
upper limit of the confidence interval for this odds ratio shows 
that this increased odds could be as much as 371%. HSV-2 
infection is a well-documented marker of sexual activity. 
Thus, rather than HSV-2 being a cause of HHV-8 infection, the 
association may be a reflection of the sexual activity of the 
individual.

Furthermore, the multiplicative effect of the model suggests 
that a man who is both HSV-2 and HIV seropositive is estimated 
to have 2.206 × 5.133 = 11.3 times the odds of HHV-8 infection 
compared with a man who is seronegative for both, after 
adjusting for the other infections.

In addition, there is a tendency for a history of syphilis to be 
associated with HHV-8 serostatus. Although this is marginally 
nonsignificant (P = 0.09), we should note that the confidence 
interval does include values for the odds ratio as high as 13.28. 
In contrast, there is no indication of an independent relationship 

between a history of gonorrhoea and HHV-8 seropositivity, 
suggesting that this variable appeared, by the univariable 
Chi-squared test (Chapter 24), to be associated with HHV-8 
serostatus because of the fact that many men who had a history 
of one of the other sexually transmitted diseases in the past also 
had a history of gonorrhoea. There is no significant relationship 
between HHV-8 seropositivity and age; the odds ratio indicates 
that the estimated odds of HHV-8 seropositivity increases by 
0.6% for each additional year of age.

The probability that a 51-year-old man has HHV-8 
infection if he has gonorrhoea and is HSV-2 positive 
(but does not have syphilis and is not HIV positive) is 
estimated as 0.35, i.e. it is exp[− 0.6077]/[1 + exp(− 0.6077)] 
where − 0.6077 = − 2.2242 + 0.5093 + 0.7910 + (0.0062 × 51).

The area under the ROC curve shown in Appendix C is 
0.6868, indicating that the model fits moderately well and has 
reasonably good discriminatory ability. Two different cut-offs for 
the predictive probability are chosen by examining the ROC 
curve. It can be seen from the relevant 2 × 2 classification tables 
in Appendix C that a cut-off of 0.5 leads to very poor sensitivity 
(19.15%) and extremely high specificity (97.65%) whereas a 
cut-off of 0.2 increases the sensitivity to 51.06% but lowers the 
specificity to 79.81%.
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Learning objectives
By the end of this chapter, you should be able to:
•	 Define a rate and describe its features
•	 Distinguish between a rate and a risk, and between an inci-

dence rate and a mortality rate
•	 Define a relative rate and explain when it is preferred to a 

relative risk
•	 Explain when it is appropriate to use Poisson regression
•	 Define the Poisson regression equation and interpret the 

exponential of a Poisson regression coefficient
•	 Calculate, from the Poisson regression equation, the event 

rate for a particular individual
•	 Explain the use of an offset in a Poisson regression  

analysis
•	 Explain how to perform a Poisson regression analysis with 

(1) grouped data and (2) variables that change over time
•	 Explain the meaning and the consequences of extra-Pois-

son dispersion
•	 Explain how to identify extra-Poisson dispersion in a Pois-

son regression analysis

Relevant Workbook questions: MCQs 59, 60, 61, 62 and 
63; SQs 16, 17, 18 and 29 available online

Rates
In any longitudinal study (Chapter 12) investigating the occur-
rence of an event (such as death), we should take into account the 
fact that individuals are usually followed for different lengths of 
time. This may be because some individuals drop out of the study 
or because individuals are entered into the study at different times, 
and therefore follow-up times from different people may vary at 
the close of the study. As those with a longer follow-up time are 
more likely to experience the event than those with shorter follow-
up, we consider the rate at which the event occurs per person per 
period of time. Often the unit which represents a convenient period 
of time is a year (but it could be a minute, day, week, etc.). Then the 
event rate per person per year (i.e. per person-year of follow-up) is  
estimated by

Rate =
Number of events occurring

Total number of years of follow-up foor all individuals
Number of events occurring

Person-years of fol
=

llow-up

Each individual’s length of follow-up is usually defined as the 
time from when he or she enters the study until the time when 
the event occurs or the study draws to a close if the event does 
not occur. The total follow-up time is the sum of all the individu-
als’ follow-up times.

The rate is called an incidence rate when the event is a new 
case (e.g. of disease) or the mortality rate when the event is 
death. When the rate is very small, it is often multiplied by a 
convenience factor such as 1000 and re-expressed as the rate per 
1000 person-years of follow-up.

Features of the rate
•	 When calculating the rate, we do not distinguish between 
person-years of follow-up that occur in the same individual 
and those that occur in different individuals. For example, the 
person-years of follow-up contributed by 10 individuals, each of 
whom is followed for 1 year, will be the same as that contributed 
by one person followed for 10 years.
•	 Whether we also include multiple events from each individual 
(i.e. when the event occurs on more than one occasion) depends 
on the hypothesis of interest. If we are only interested in first 
events, then follow-up must cease at the point at which an individ-
ual experiences his or her first event as the individual is no longer 
at risk of a first event after this time. Where multiple events from 
the same individual are included in the calculation of the rate, we 
have a special form of clustered data (Chapter 41), and appropri-
ate statistical methods must be used (Chapters 41 and 42).
•	 A rate cannot be calculated in a cross-sectional study  
(Chapter 12) since this type of study does not involve time.

Comparing the rate and the risk
The risk of an event (Chapter 15) is simply the total number 
of events divided by the number of individuals included in the 
study at the start of the investigation, with no allowance for 
the length of follow-up. As a result, the risk of the event will be 
greater when individuals are followed for longer, since they will 
have more opportunity to experience the event. In contrast, the 
rate of the event should remain relatively stable in these circum-
stances, as the rate takes account of the duration of follow-up.

Relative rates
We may be interested in comparing the rate of disease in a group 
of individuals exposed to some factor of interest (Rateexposed) 
with that in a group of individuals not exposed to the factor 
(Rateunexposed).

Relative rate
Rate

Rate
exposed

unexposed
=

The relative rate (or rate ratio, sometimes referred to as the inci-
dence rate ratio) is interpreted in a similar way to the relative 
risk (Chapter 15) and to the odds ratio (Chapters 16 and 30); 
a relative rate of 1 (unity) indicates that the rate of disease is the 
same in the two groups, a relative rate greater than 1 indicates 
that the rate is higher in those exposed to the factor than in those 
who are unexposed, and a relative rate less than 1 indicates that 
the rate is lower in the group exposed to the factor.

Although the relative rate is often taken as an estimate of the 
relative risk, the relative rate and the relative risk will only be 
similar if the event (e.g. disease) is rare. When the event is not 
rare and individuals are followed for varying lengths of time, the 
rate, and therefore the relative rate, will not be affected by the 
different follow-up times. This is not the case for the relative risk 
as the risk, and thus the relative risk, will change as individuals 
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are followed for longer periods. Hence, the relative rate is always 
preferred when follow-up times vary between individuals in  
the study.

Poisson regression
What is it?
The Poisson distribution (named after a French mathematician) 
is a probability distribution (Chapter 8) of the count of the num-
ber of rare events that occur randomly over an interval of time 
(or space) at a constant average rate. This forms the basis of Pois-
son regression, which is used to analyse the rate of some event 
(e.g. disease) when individuals have different follow-up times. 
This contrasts with logistic regression (Chapter 30) which is con-
cerned only with whether or not the event occurs and is used 
to estimate odds ratios. In Poisson regression, we assume that 
the rate of the event among individuals with the same explana-
tory variables (e.g. age and sex) is constant over the whole study 
period. We generally want to know which explanatory variables 
influence the rate at which the event occurs, and may wish to 
compare this rate in different exposure groups and/or predict the 
rate for groups of individuals with particular characteristics.

The equation and its interpretation
The Poisson regression model takes a very similar form to the 
logistic regression model (Chapter 30), each having a (usually) 
linear combination of explanatory variables on the right-hand 
side of the equation. Poisson regression analysis also mirrors 
logistic regression analysis in that we transform the outcome 
variable in order to overcome mathematical difficulties. We use 
the natural log transformation (ln) of the rate and an iterative 
process (maximum likelihood, Chapter 32) to produce an esti-
mated regression equation from the sample data of the form

ln( )r a b x b x b xk k= + + +…+1 1 2 2

where:
•	 xi is the ith explanatory variable (i = 1, 2, 3, …, k);
•	 r is the estimated value of the mean or expected rate for an 
individual with a particular set of values for x1, …, xk;
•	 a is the estimated constant term providing an estimate of the 
log rate when all xi’s in the equation take the value zero (the log 
of the baseline rate);
•	 b1, b2, …, bk are the estimated Poisson regression coefficients.

The exponential of a particular coefficient, for example, eb1, is 
the estimated relative rate associated with the relevant variable. 
For a particular value of x1, it is the estimated rate of disease 
for (x1 + 1) relative to the estimated rate of disease for x1, while 
adjusting for all other xi’s in the equation. If the relative rate is 
equal to 1 (unity), then the event rates are the same when x1 
increases by one unit. A value of the relative rate above 1 indicates 
an increased event rate, and a value below 1 indicates a decreased 
event rate, as x1 increases by one unit.

As with logistic regression, Poisson regression models are 
fitted on the log scale. Thus, the effects of the xi’s are multiplicative 
on the rate of disease.

We can manipulate the Poisson regression equation to estimate 
the event rate for an individual with a particular combination of 
values of x1, …, xk. For each set of covariate values for x1, …, xk, 
we calculate

z a b x b x b xk k= + + +…+1 1 2 2

Then, the event rate for that individual is estimated as ez.

Use of an offset
Although we model the rate at which the event occurs (i.e. the 
number of events divided by the person-years of follow-up), 
most statistical packages require the number of events occur-
ring to be specified as the dependent variable rather than the rate 
itself. The log of each individual’s person-years of follow-up is 
then included as an offset in the model. Assuming that we are 
only interested in including a single event per person, the num-
ber of events occurring in each individual will either take the 
value 0 (if the event did not occur) or 1 (if the event did occur). 
This provides a slightly different formulation of the model which 
allows the estimates to be generated in a less computationally 
intensive way. The results from the model, however, are exactly 
the same as they would be if the rate were modelled.

Entering data for groups
Note that when all of the explanatory variables are categorical, we 
can simplify the data entry process by making use of the fact that 
the calculation of the rate does not distinguish between person-
years of follow-up that occur in the same individual and those 
that occur in different individuals. For example, we may be inter-
ested in the effect of only two explanatory variables, sex (male 
or female) and age (< 16, 16–20 and 21–25 years), on the rate of 
some event. Between them, these two variables define six groups 
(i.e. males aged < 16 years, females aged < 16 years, …, females 
aged 21–25 years). We can simplify the entry of these data by 
determining the total number of events for all individuals within 
the same sex/age group and the total person-years of follow-up 
for these individuals. The estimated rate in each group is then 
calculated as the total number of events divided by the person-
years of follow-up in that group. Using this approach, rather than 
entering data for the n individuals one by one, we enter the data 
for each of the six groups, and do so by creating a model in which 
the explanatory variables are the binary and dummy variables 
(Chapter 29) for sex and age. Note that when entering data in this 
way, it is not possible to accommodate numerical covariates to 
define the groups or include an additional covariate in the model 
that takes different values for the individuals in a group.

Incorporating variables that change over time
By splitting the follow-up period into shorter intervals, it is pos-
sible to incorporate variables that change over time into the 
model. For example, we may be interested in relating the smok-
ing history of middle-aged men to the rate at which they experi-
ence lung cancer. Over a long follow-up period, many of these 
men may give up smoking and their rates of lung cancer may be 
lowered as a result. Thus, categorizing men according to their 
smoking status at the start of the study may give a poor represen-
tation of the impact of smoking status on lung cancer. Instead, we 
split each man’s follow-up into short time intervals in such a way 
that his smoking status remains constant in each interval. We 
then perform a Poisson regression analysis, treating the relevant 
information in each short time interval for each man (i.e. the 
occurrence/non-occurrence of the event, his follow-up time and 
smoking status) as if it came from a different man.

Computer output
Comprehensive computer output for a Poisson regression 
analysis includes, for each explanatory variable, the estimated 
Poisson regression coefficient with standard error, the esti-
mated relative rate (i.e. the exponential of the coefficient) with 
a confidence interval for its true value, and a Wald test statistic 
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zero or, equivalently, that the relative rate of ‘disease’ associ-
ated with this variable is unity) and associated P-value. As with 
the output from logistic regression (Chapter 30), we can assess 
the adequacy of the model using − 2log likelihood (LRS or devi-
ance) and the model Chi-square or the Chi-square for covari-
ates (see also Chapter 32).

Extra-Poisson variation
One concern when fitting a Poisson regression model is the pos-
sibility of extra-Poisson variation, which usually implies overdis-
persion. This occurs when the residual variance is greater than 
would be expected from a Poisson model, perhaps because an 
outlier is present (Chapter 3), because an important explana-
tory variable has not been included in the model, or because the 
data are clustered (Chapters 41 and 42) and the clustering has 
not adequately been taken into account. Then the standard errors 
are usually underestimated and, consequently, the confidence 
intervals for the parameters are too narrow and the P-values 
too small. A way to investigate the possibility of extra-Poisson 
variation is to divide − 2log likelihood (LRS or deviance) by the 
degrees of freedom, n – k − 1, where n is the number of individu-
als in the data set and k is the number of explanatory variables 
in the model. This quotient should be approximately equal to 1 

if there is no extra-Poisson variation; values substantially above 
1 may indicate overdispersion. If there is overdispersion, then it 
is possible to use the scale parameter (which is usually assumed 
to equal 1 when there is no extra-Poisson variation) to fit a Pois-
son regression model that is appropriate for overdispersed data. 
Alternatively, it may be advisable to fit a regression model based 
on the negative Binomial distribution (another type of probabil-
ity distribution that can be used for counts) instead of the Pois-
son distribution. Underdispersion, where the residual variance is 
less than would be expected from a Poisson model and where 
the ratio of − 2log likelihood to n – k − 1 is substantially less than 
1, may also occur (e.g. if high counts cannot be recorded accu-
rately). Underdispersion and overdispersion may also be a con-
cern when performing logistic regression (Chapter 30), when 
they are referred to as extra-Binomial variation.

Alternative to Poisson analysis
When a group of individuals is followed from a natural ‘starting 
point’ (e.g. an operation) until the time that the person devel-
ops an endpoint of interest, we may use an alternative approach 
known as survival analysis, which, in contrast to Poisson regres-
sion, does not assume that the ‘hazard’ (the rate of the event in a 
small interval) is constant over time. This approach is described 
in detail in Chapter 44.

Example

Individuals with HIV infection treated with highly active 
antiretroviral therapy (HAART) usually experience a decline in 
HIV viral load to levels below the limit of detection of the assay 
(an initial response). However, some of these individuals may 
experience virological failure after this stage; this occurs when 
an individual’s viral load becomes detectable again while on 
therapy. Identification of factors that are associated with an 
increased rate of virological failure may allow steps to be taken 
to prevent this occurring. As patients are followed for different 
lengths of time, a Poisson regression analysis is appropriate.

A group of 516 patients who experienced an initial 
response to therapy were identified and followed until the time 
of virological failure, or until their last date of follow-up if their 
viral load remained suppressed at this time. Follow-up started 
on the first date that their viral load became undetectable. 
The explanatory variable of primary interest was the duration 
of time on treatment since an initial response but this was a 
variable whose values were constantly changing for each 
patient during the study period. Therefore, to investigate 
whether the virological failure rate did change over time, the 
duration of time on treatment since an initial response was split 
into three time intervals: < 1, 1–2 and > 2 years (this created 
988 sets of observations), with the broad assumption that 
the virological failure rate was approximately constant within 
each period. Failure rates in the three time periods were then 
compared. The data (the length of follow-up in that interval, 
whether or not virological failure was experienced in that 
interval, and relevant explanatory variables) were entered on 
to a spreadsheet for each patient in every interval in which he 
or she was followed up. The explanatory variables considered 
included demographics, the stage of disease at the time of 
starting therapy, the year of starting HAART and whether or not 
the patient had received treatment in the past.

In order to limit the number of covariates in the 
multivariable Poisson regression model, a separate 

univariable Poisson regression model for each covariate 
was used to identify the covariates associated with 
virological failure (see Chapter 33).

Over a total follow-up of 718 person-years, 61 patients 
experienced virological failure, an unadjusted event rate of  
8.50 per 100 person-years (95% confidence interval: 6.61, 10.92). 
Unadjusted virological failure rates were 8.13 (6.31, 10.95) in the 
first year after initial response to therapy, 12.22 (7.33, 17.12) in 
the second year and 3.99 (1.30, 9.31) in later years. Results from 
a Poisson regression model that incorporated only two dummy 
variables (Chapter 29) to reflect the categories of 1–2 and > 2 
years, each compared with < 1 year, since an initial response to 
therapy, suggested that time since initial virological response 
was significantly associated with virological failure (P = 0.04). 
In addition, the patient’s sex (P = 0.03), his or her baseline CD8 
count (P = 0.01) and treatment status at the time of starting 
the current regimen (previously received treatment, never 
received treatment; P = 0.008) were all significantly associated 
with virological failure in univariable Poisson models. Thus, a 
multivariable Poisson regression analysis was performed to 
assess the relationship between virological failure and duration 
of time on therapy, after adjusting for these other variables. The 
results are summarized in Table 31.1; full computer output is 
shown in Appendix C.

The results from this multivariable model suggested that 
there was a trend towards a higher virological failure rate in 
the period 1–2 years after initial response compared with that 
seen in the first year (virological failure rate was increased by 
53% in the period 1–2 years), but a lower rate after the second 
year (failure rate was reduced by 44% in this period compared 
with that seen in the first year after initial response), although 
neither of these effects was statistically significant. After 
adjusting for all other variables in the model, patients who 
were receiving their first treatment had an estimated virological 
failure rate that was 44% lower than that of patients who had 

continued
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Table 31.1  Results from multivariable Poisson regression analysis of factors associated with virological failure.

Variable*
Parameter  
estimate

Standard  
error

Estimated  
relative rate

95% confidence interval  
for relative rate Wald P-value†

Time since initial response to  
therapy (years)

<1 reference − 1 − −
1–2 0.4256 0.2702 1.53 0.90–2.60 0.12
>2 −0.5835 0.4825 0.56 0.22–1.44 0.23

Treatment status
Previously received treatment (0) reference – 1 –

Never received treatment (1) −0.5871 0.2587 0.56 0.33–0.92 0.02
Sex

Female (0) reference − 1 −
Male (1) −0.4868 0.2664 0.61 0.36–1.04 0.07

CD8 count (per 100 cells/mm3) –0.0558 0.0267 0.95 0.90–1.00 0.04

* Codes for binary variables (sex and treatment status) are shown in parentheses. Time since initial response to therapy was included by 
incorporating dummy variables to reflect the periods 1–2 years and > 2 years after initial response.
† An alternative method of assessing the significance of categorical variables with more than two categories is described in Chapters 32 and 33.

Adapted from work carried out by Ms Colette Smith, Department of Primary Care and Population Sciences, Royal Free and University College 
Medical School, London, UK.

previously received treatment, the estimated virological 
failure rate in men was 39% less than that seen in women (this 
was not statistically significant), and the estimated virological 
failure rate was reduced by 5% if the CD8 count at baseline 

was 100 cells/mm3 higher. See also the Examples in Chapters 
32 and 33 for additional analyses relating to this Poisson 
model, including assessments of overdispersion, goodness 
of fit and linearity of the covariates.
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Generalized linear models32
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Learning objectives
By the end of this chapter, you should be able to:
•	 Define the equation of the generalized linear model (GLM)
•	 Explain the terms ‘link function’ and ‘identity link’
•	 Specify the link functions for the logistic and Poisson 

regression models
•	 Explain the term ‘likelihood’ and the process of maximum 

likelihood estimation (MLE)
•	 Explain the terms: saturated model, likelihood ratio
•	 Explain how the likelihood ratio statistic (LRS), i.e. the devi-

ance or − 2log likelihood, can be used to:
■■ assess the adequacy of fit of a model
■■ compare two models when one is nested within 

the other
■■ assess whether all the parameters associated with  the 

covariates of a model are zero (i.e. the model Chi-square)

Relevant Workbook question: MCQ 64 available online

Statistical modelling includes the use of simple and multiple lin-
ear regression (Chapters 27–29), logistic regression (Chapter 30), 
Poisson regression (Chapter 31) and some methods that deal with 
survival data (Chapter 44). All these methods rely on generating a 
mathematical model that best describes the relationship between 
an outcome and one or more explanatory variables. Generation 
of such a model allows us to determine the extent to which each 
explanatory variable is related to the outcome after adjusting for all 
other explanatory variables in the model and, if desired, to predict 
the value of the outcome from these explanatory variables.

The generalized linear model (GLM) can be expressed in 
the form

g Y a b x b x b xk k( ) = + + +…+1 1 2 2

where:
•	 Y is the estimated value of the predicted, mean or expected 
value of the dependent variable which follows a known probabil-
ity distribution (e.g. Normal, Binomial, Poisson);

•	 g(Y), called the link function, is a transformation of Y which 
produces a linear relationship with x1, …, xk, the predictor or 
explanatory variables;
•	 b1, …, bk are estimated regression coefficients that relate to 
these explanatory variables; and
•	 a is a constant term.

Each of the regression models described in earlier chapters can 
be expressed as a particular type of GLM (Table 32.1). The link 
function is the logit of the proportion (i.e. the loge of the odds) in 
logistic regression and the loge of the rate in Poisson regression. 
No transformation of the dependent variable is required in 
simple and multiple linear regression; the link function is then 
referred to as the identity link. Once we have specified which 
type of regression we wish to perform, most statistical packages 
incorporate the link function into the calculations automatically 
without any need for further specification.

Which type of model do we choose?
The choice of an appropriate statistical model will depend 
on the outcome of interest (Table 32.1). For example, if our 
dependent variable is a continuous numerical variable, we 
may use simple or multiple linear regression to identify factors 
associated with this variable. If we have a binary outcome (e.g. 
patient died or did not die) and all patients are followed for the 
same amount of time, then a logistic regression model would be 
the appropriate choice.

Note that we may be able to choose a different type of 
model by modifying the format of our dependent variable. In 
particular, if we have a continuous numerical outcome but one 
or more of the assumptions of linear regression are not met, we 
may choose to categorize our outcome variable into two groups 
to generate a new binary outcome variable. For example, if our 
dependent variable is systolic blood pressure (a continuous 
numerical variable) after a 6-month period of anti-hypertensive 
therapy, we may choose to dichotomize the systolic blood 

Table 32.1  Choice of appropriate types of GLM for use with different types of outcome.

Type of outcome Type of GLM commonly used See Chapter

Continuous numerical Simple or multiple linear 28, 29
Binary

Incidence of disease in longitudinal study Logistic 30
(patients followed for equal periods of time)

Binary outcome in cross-sectional study Logistic 30
Unmatched case–control study Logistic 30

Matched case–control study Conditional logistic 30
Categorical outcome with more than two categories Multinomial or ordinal logistic regression 30
Event rate or count Poisson 31
Time to event* Exponential, Weibull or Gompertz models 44

*Time to event data may also be analysed using a Cox proportional hazards regression model (Chapter 44).
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pressure as high or low using a particular cut-off, and then use 
logistic regression to identify factors associated with this binary 
outcome. While dichotomizing the dependent variable in this 
way may simplify the fitting and interpretation of the statistical 
model, some information about the dependent variable will 
usually be discarded. Thus the advantages and disadvantages of 
this approach should always be considered carefully.

Likelihood and maximum likelihood 
estimation
When fitting a GLM, we generally use the concept of likelihood 
to estimate the parameters of the model. For any GLM charac-
terized by a known probability distribution, a set of explanatory 
variables and some potential values for each of their regression 
coefficients, the likelihood of the model (L) is the probability that 
we would have obtained the observed results had the regression 
coefficients taken those values. We estimate the coefficients of 
the model by selecting the values for the regression coefficients 
that maximize L (i.e. they are those values that are most likely to 
have produced our observed results); the process is maximum 
likelihood estimation (MLE) and the estimates are maximum 
likelihood estimates. MLE is an iterative process and thus spe-
cialized computer software is required. One exception to MLE is 
in the case of simple and multiple linear regression models (with 
the identity link function) where we usually estimate the param-
eters using the method of least squares (the estimates are often 
referred to as ordinary least squares (OLS) estimates (Chapter 
27)); the OLS and MLE estimates are identical in this situation.

Assessing adequacy of fit
Although MLE maximizes L for a given set of explanatory vari-
ables, we can always improve L further by including additional 
explanatory variables. At its most extreme, a saturated model is 
one that includes a separate variable for each observation (i.e. 
individual) in the data set. While such a model would explain 
the data perfectly, it is of limited use in practice as the prediction 
of future observations from this model is likely to be poor. The 
saturated model does, however, allow us to calculate the value of 
L that would be obtained if we could model the data perfectly. 
Comparison of this value of L with the value obtained after fit-
ting our simpler model with fewer variables provides a way of 
assessing the adequacy of the fit of our model. We consider the 
likelihood ratio, the ratio of the value of L obtained from the 

saturated model to that obtained from the fitted model, in order 
to compare these two models. More specifically, we calculate the 
likelihood ratio statistic (LRS) as

LRS saturated

fitted

saturated

= − ×

= − × −

2

2

log( )
log( )

[log( ) log

L
L

L (( )]Lfitted

The LRS, often referred to as − 2log likelihood (Chapters 30 
and 31) or as the deviance, approximately follows a Chi-squared 
distribution with degrees of freedom equal to the difference in 
the number of parameters fitted in the two models (i.e. n – k − 1, 
where n is the number of observations in the data set and k is the 
number of parameters, apart from the intercept, in the simpler 
model). The null hypothesis is that the extra parameters in the 
larger saturated model are all zero; a high value of the LRS will 
give a significant result indicating that the goodness of fit of the 
model is poor.

The LRS can also be used in other situations. In particular, 
the LRS can be used to compare two models, neither of which 
is saturated, when one model is nested within another (i.e. the 
larger model includes all of the explanatory variables that are 
included in the smaller model, in addition to extra variables). In 
this situation, the test statistic is the difference between the value 
of the LRS from the model which includes the extra variables and 
that from the model which excludes these extra variables. The 
test statistic follows a Chi-squared distribution with degrees of 
freedom equal to the number of additional parameters included 
in the larger model, and is used to test the null hypothesis that 
the extra parameters in the larger model are all zero. The LRS can 
also be used to test the null hypothesis that all the parameters 
associated with the covariates of a model are zero by comparing 
the LRS of the model which includes the covariates with that of 
the model which excludes them. This is often referred to as the 
model Chi-square or the Chi-square for covariates (Chapters 
30 and 31).

Regression diagnostics
When performing any form of regression analysis, it is impor-
tant to consider a series of regression diagnostics. These allow 
us to examine our fitted regression model and look for flaws that 
may affect our parameter estimates and their standard errors. In 
particular, we must consider whether the assumptions underly-
ing the model are violated and whether our results are heavily 
affected by influential observations (Chapter 28).
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Example

In the Example in Chapter 31, we used Wald tests to identify 
individual factors associated with virological rebound in a group 
of 516 HIV-positive patients (with 988 sets of observations) 
who had been treated with highly active antiretroviral therapy 
(HAART). In particular, we were interested in whether the rate 
of virological failure increased over time, after controlling for 
other potentially confounding variables that were related to 
virological failure. Although the outcome of primary interest 
was binary (patient experienced virological failure, patient did 
not experience virological failure), a Poisson regression model 
rather than a logistic model was chosen as individual patients 
were followed for different lengths of time. Thus, the outcome 
variable for the analysis performed was an event rate. In this 
chapter, P-values for the variables have been calculated using 
likelihood ratio statistics. In particular, to calculate the single 
P-value associated with both dummy variables representing the 
time since initial response to therapy, two models were fitted. 
The first included the variables relating to treatment status 
(previously received treatment, never received treatment), sex 
and baseline CD8 count (Model 1); the second included these 
variables as well as the two time dummy variables (Model 2). The 
difference between the values obtained for − 2log likelihood 

(i.e. the LRS or deviance) from each of the models was then 
considered (Table 32.2). A full computer output is shown in 
Appendix C.

The inclusion of the two dummy variables was associated 
with a reduction in the value of − 2log likelihood of 5.53 
(= 393.12 − 387.59). This test statistic follows the Chi-squared 
distribution with 2 degrees of freedom (as two additional 
parameters were included in the larger model); the P-value 
associated with this test statistic was 0.06 indicating that the 
relationship between virological failure and time since initial 
response is marginally non-significant. The value of − 2log 
likelihood for Model 2 also allowed us to assess the adequacy 
of fit of this model by comparing its value of − 2log likelihood to 
a Chi-squared distribution with 982 degrees of freedom. The 
P-value obtained for this comparison was > 0.99, suggesting 
that the goodness of fit of the model is acceptable. However, 
it should be noted that after including these five variables in 
the model, there was some evidence of underdispersion, as 
the ratio of − 2log likelihood to its degrees of freedom was 0.39, 
which is substantially less than 1, suggesting that the amount 
of residual variation was less than would be expected from a 
Poisson model (Chapter 31).

Table 32.2   − 2log likelihood values, degrees of freedom and number of parameters fitted in models that exclude and include the time 
since initial response to therapy.

Model Variables included −2log likelihood
Degrees of freedom  
for the model

Number of parameters fitted in the 
model, including the intercept

1

2

Treatment status, sex and baseline CD8 count
Treatment status, sex, baseline CD8 count and 
two dummy variables for time since initial 
response to therapy

393.12

387.59

984

982

4

6

www.konkur.in

Telegram: @medical_k



96

Medical Statistics at a Glance, Fourth Edition. Aviva Petrie and Caroline Sabin. © 2020 Aviva Petrie and Caroline Sabin. Published 2020 by John Wiley & Sons Ltd. 
Companion Website: www.medstatsaag.com

Part 5  Basic techniques for analysing data

Explanatory variables in 
statistical models33

Learning objectives
By the end of this chapter, you should be able to:
•	 Explain how to test the significance of a nominal explana-

tory variable in a statistical model when the variable has 
more than two categories

•	 Describe two ways of incorporating an ordinal explanatory 
variable into a model when the variable has more than two 
categories, and:
■■ state the advantages and disadvantages of each 

approach
■■ explain how each approach can be used to test for a 

linear trend
•	 Explain how to check the linearity assumption in multiple, 

Poisson and logistic regression analyses
•	 Describe three ways of dealing with non-linearity in a 

regression model
•	 Explain why a model should not be over-fitted and how to 

avoid it
•	 Explain when it is appropriate to use automatic selection 

procedures to select the optimal explanatory variables
•	 Describe the principles underlying various automatic 

selection procedures
•	 Explain why automatic selection procedures should be 

used with caution
•	 Explain the meaning of interaction and collinearity
•	 Explain how to test for an interaction in a regression  

analysis
•	 Explain how to detect collinearity

Relevant Workbook questions: MCQs 26, 60, 61 and 65; 
and SQs 14, 16, 17, 18 and 28 available online

Whichever type of statistical model we choose, we have to make 
decisions about which explanatory variables to include in the 
model and the most appropriate way in which they should be 
incorporated. These decisions will depend on the type of explan-
atory variable (either nominal categorical, ordinal categorical or 
numerical) and the relationship between these variables and the 
dependent variable.

Nominal explanatory variables
It is usually necessary to create dummy or indicator variables 
(Chapter 29) to investigate the effect of a nominal categorical 
explanatory variable in a regression analysis. Note that when 
assessing the adequacy of fit of a model that includes a nominal 
variable with more than two categories, or when assessing the 
significance of that variable, it is important to include all of the 
dummy variables in the model at the same time; if we do not 
do this (i.e. if we only include one of the dummy variables for a 
particular level of the categorical variable), then we would only 
partially assess the impact of that variable on the outcome. For 
this reason, it is preferable to judge the significance of the vari-
able using the likelihood ratio test statistic (LRS – Chapter 32), 
rather than by considering individual P-values for each of the 
dummy variables.

Ordinal explanatory variables
In the situation where we have an ordinal variable with more 
than two categories, we may take one of two approaches.
•	 Treat the categorical variable as a continuous numerical 
measurement by allocating a numerical value to each category 
of the variable. This approach makes full use of the ordering of 
the categories but it usually assumes a linear relationship (when 
the numerical values are equally spaced) between the explanatory 
variable and the dependent variable (or a transformation of it) 
and this should be validated.
•	 Treat the categorical variable as a nominal explanatory variable 
and create a series of dummy or indicator variables for it (Chap-
ter 29). This approach does not take account of the ordering of 
the categories and is therefore wasteful of information. However, 
it does not assume a linear relationship with the dependent vari-
able and so may be preferred.

The difference in the values of the LRS from these two 
models provides a test statistic for a test of linear trend 
(i.e. an assessment of whether the model assuming a linear 
relationship gives a better fitting model than one for which 
no linear relationship is assumed). This test statistic follows a 
Chi-squared distribution with degrees of freedom equal to the 
difference in the number of parameters in the two models; a 
significant result suggests non-linearity. See also Chapter 25 for 
a test of a linear trend in proportions.

Numerical explanatory variables
When we include a numerical explanatory variable in the model, 
the estimate of its regression coefficient provides an indication 
of the impact of a one-unit increase in the explanatory variable 
on the outcome. Thus, for simple and multiple linear regres-
sion, the relationship between each explanatory variable and 
the dependent variable is assumed to be linear. For Poisson and 
logistic regression, the parameter estimate provides a measure 
of the impact of a one-unit increase in the explanatory variable 
on the loge of the dependent variable (i.e. the model assumes 
an exponential relationship with the actual rate or odds). It is 
important to check the appropriateness of the assumption of lin-
earity (see next section) before including numerical explanatory 
variables in regression models.

Assessing the assumption of linearity
To check the linearity assumption in a simple or multiple linear 
regression model, we plot the numerical dependent variable, y, 
against the numerical explanatory variable, x, or plot the resid-
uals of the model against x (Chapter 28). The raw data should 
approximate a straight line and there should be no discernible 
pattern in the residuals. We may assess the assumption of lin-
earity in logistic regression (Chapter 30) or Poisson regression 
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(5–10) of equally sized subgroups according to their values of 
x. In Poisson regression, we calculate the log (to any base) of the 
rate of the outcome in each subgroup and plot this against the 
mid-point of the range of values for x for the corresponding sub-
group (Fig. 33.1). For logistic regression, we similarly calculate 
the log odds for each subgroup and plot this against the mid-
point. In each case, if the assumption of linearity is reasonable, 
we would expect to see a similarly sized step-wise increase (or 
decrease) in the log of the rate or odds when moving between 
adjacent categories of x. Another approach to checking for lin-
earity in a regression model is to give consideration to higher 
order models (see polynomial regression in the next section).

Dealing with non-linearity
If non-linearity is detected in any of these plots, there are a num-
ber of approaches that can be taken.
•	 Replace x by a set of dummy variables created by categoriz-
ing the individuals into three or four subgroups according to the 
magnitude of x (often defined using the tertiles or quartiles of the 
distribution). This set of dummy variables can be incorporated 
into the multivariable regression model as categorical explana-
tory variables (see Example).
•	 Transform the x variable in some way (e.g. by taking a loga-
rithmic or square root transformation of x; Chapter 9) so that the 
resulting relationship between the transformed value of x and the 
dependent variable (or its loge for Poisson or its logit for logistic 
regression) is linear.
•	 Find some algebraic description that approximates the non-
linear relationship using higher orders of x (e.g. a quadratic or 
cubic relationship). This is known as polynomial regression. 
We just introduce terms that represent the relevant higher orders 
of x into the equation. So, for example, if we have a cubic rela-
tionship, our estimated multiple linear regression equation is 
Y = a + b1x + b2x2 + b3x3. We fit this model, and proceed with the 
analysis in exactly the same way as if the quadratic and cubic 
terms represented different variables (x2 and x3, say) in a multiple 
regression analysis. For example, we may fit a quadratic model 
that comprises the explanatory ‘variables’ height and height2. We 
can test for linearity by comparing the LRS in the linear and 
quadratic models (Chapter 32), or by testing the coefficient of 
the quadratic term.

Selecting explanatory variables
Even if not saturated (Chapter 32), there is always the danger of 
overfitting models by including a very large number of explana-
tory variables; this may lead to spurious results that are incon-
sistent with expectations, especially if the variables are highly 
correlated. For a multiple linear regression model, a usual rule of 
thumb is to ensure that there are at least 10 times as many indi-
viduals as explanatory variables. For logistic and Poisson regres-
sion, there should be at least 10 times as many responses or events 
in each of the two outcome categories as explanatory variables.

Often, we have a large number of explanatory variables 
that we believe may be related to the dependent variable. For 
example, many factors may appear to be related to systolic blood 
pressure, including age, dietary and other lifestyle factors. We 
should only include explanatory variables in a model if there is 
reason to suppose, from a biological or clinical standpoint, that 
they are related to the dependent variable. We can eliminate 
some variables by performing a univariable analysis (perhaps 
with a less stringent significance level of 0.10 rather than the 
more conventional 0.05) for each explanatory variable to assess 
whether it is likely to be related to the dependent variable, e.g. 
if we have a numerical dependent variable, we may perform a 
simple regression analysis if the explanatory variable is numerical 
or an unpaired t-test if it is binary. We then consider only those 
explanatory variables that were significant at this first stage for 
our multivariable model (see Example in Chapter 31).

Automatic selection procedures
When we have a large number of potential explanatory variables 
and are particularly interested in using the model for prediction, 
rather than in gaining insight into whether an explanatory variable 
influences the outcome or in estimating its effect, computer-
intensive automatic selection procedures provide a means of 
identifying the optimal model by selecting some of these variables.
•	 All subsets – every combination of explanatory variables is 
considered; that which provides the best fit, as described by the 
model R2 (Chapter 27) or LRS (Chapter 32), is selected.
•	 Backward selection – all possible variables are included; those 
that are judged by the model to be least important (where this 
decision is based on the change in R2 or the LRS) are progres-
sively removed until none of the remaining variables can be 
removed without significantly affecting the fit of the model.
•	 Forward selection – variables that contribute most to the fit 
of the model (based on the change in R2 or the LRS) are progres-
sively added until no further variable significantly improves the 
fit of the model.
•	 Stepwise selection – a combination of forward and backward 
selection that starts by progressing forward and then, at the end 
of each ‘step’, checks backward to ensure that all of the included 
variables are still required.

Disadvantages
Although these automatic procedures remove much of the man-
ual aspect of model selection, they have some disadvantages.
•	 It is possible that two or more models will fit the data equally 
well, or that changes in the data set will produce different models.
•	 Because of the multiple testing that occurs when repeatedly 
comparing one model to another within an automatic selection 
procedure, the Type I error rate (Chapter 18) is particularly high. 
Thus, some significant findings may arise by chance. This prob-
lem may be alleviated by choosing a more stringent significance 
level (say 0.01 rather than 0.05).
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exhibits linearity.
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•	 If the model is refitted to the data set using the m, say, variables 
remaining in the final automatic selection model, its estimated 
parameters may differ from those of the automatic selection 
model. This is because the automatic selection procedure uses in 
its analysis only those individuals who have complete informa-
tion on all the explanatory variables, but the sample size may be 
greater when individuals are included if they have no missing 
values only for the relevant m variables.
•	 The resulting models, although mathematically justifiable, may 
not be sensible. In particular, when including a series of dummy 
variables to represent a single categorical variable (Chapter 29), 
automatic models may include only some of the dummy vari-
ables, leading to problems in interpretation.

Therefore, a combination of these procedures and common sense 
should be applied when selecting the best-fitting model. Models 
that are generated using automatic selection procedures should be 
validated on other external data sets where possible (Chapter 46).

Interaction
What is it?
Statistical interaction (also known as effect modification, 
Chapter 13) between two explanatory variables in a regres-
sion analysis occurs where the relationship between one of the 
explanatory variables and the dependent variable is not the same 
for different levels of the other explanatory variables, i.e. the two 
explanatory variables do not act independently on the depend-
ent variable. For example, suppose that we want to assess the 
association between an individual’s body weight (the explana-
tory variable) and the amount of a particular drug in his or her 
blood (the dependent variable). If we believe that this association 
is different for men and women in the study, we may wish to 
investigate whether there is an interaction between body weight 
and sex. If statistical testing reveals that there is evidence of a 
significant interaction, we may be advised to describe the asso-
ciation between body weight and the amount of the drug in the 
blood separately in men and women.

Testing for interaction
Testing for statistical interaction in a regression model is usu-
ally straightforward and many statistical packages allow you to 
request the inclusion of interaction terms. If the package does 
not provide this facility then an interaction term may be created 
manually by including the product of the relevant variables as 
an additional explanatory variable. Thus, to obtain the value of 
the variable that represents the interaction between two variables 

(both binary, both numerical or one binary and one numerical), 
we multiply the individual’s values of these two variables. If both 
variables are numerical, interpretation may be easier if we create 
an interaction term from the two binary variables obtained by 
dichotomizing each numerical variable. If one of the two vari-
ables is categorical with more than two categories, we create a 
series of dummy variables from it (Chapter 29) and use each of 
them, together with the second binary or numerical variable of 
interest, to generate a series of interaction terms. This procedure 
can be extended if both variables are categorical and each has 
more than two categories.

Interaction terms should only be included in the regression 
model after the main effects (the effects of the variables without 
any interaction) have been included. Note that statistical tests 
of interaction are usually of low power (Chapter 18). This is 
of particular concern when both explanatory variables are 
categorical and few events occur in the subgroups formed by 
combining each level of one variable with every level of the other, 
or if these subgroups include very few individuals.

Collinearity
When two explanatory variables are highly correlated, it may 
be difficult to evaluate their individual effects in a multivariable 
regression model. As a consequence, while each variable may be 
significantly associated with the dependent variable in a univari-
able model (i.e. when there is a single explanatory variable), nei-
ther may be significantly associated with it when both explanatory 
variables are included in a multivariable model. This collinearity 
(also called multi-collinearity) can be detected by examining the 
correlation coefficients between each pair of explanatory varia-
bles (commonly displayed in a correlation matrix and of particu-
lar concern if the coefficient, ignoring its sign, is greater than 0.8) 
or by visual impression of the standard errors of the regression 
coefficients in the multivariable model (these will be substantially 
larger than those in the separate univariable models if collinearity 
is present). The easiest solution, if collinearity is detected between 
two variables, is to include only one of the variables in the model. 
In situations where many of the variables are highly correlated, it 
may be necessary to seek statistical advice.

Confounding
When two explanatory variables are both related to the outcome and 
to each other so that it is difficult to assess the independent effect of 
each one on the outcome, we say that the explanatory variables are 
confounded. We discuss confounding in detail in Chapter 34.

Example

In Chapters 31 and 32 we studied the factors associated with 
virological failure in HIV-positive patients receiving highly active 
antiretroviral therapy (HAART). In this multivariable Poisson 
regression analysis, the individual’s CD8 count at baseline 
was included as a continuous explanatory variable (it was 
divided by 100 so that each unit increase in the scaled variable 
reflected a 100 cell/mm3 increase in the CD8 count); the results 
indicated that a higher baseline CD8 count was associated 
with a significantly reduced rate of virological failure. In order 
to assess the validity of the linearity assumption associated 
with this variable, five groups were defined on the basis of 
the quintiles of the CD8 distribution, and the failure rate was 

calculated in each of the five groups. A plot of the log10 (rate) 
in each of these groups revealed that the relationship was not 
linear as there was no stepwise progression (see Fig. 33.1). In 
particular, while the log10 (rate) was broadly similar in the four 
lowest groups, no events occurred at all in the highest group 
(> 1495 cells/mm3), giving a value of minus infinity for the log10 
(rate). For this reason, the two upper groups were combined 
for the subsequent analysis. Furthermore, it was noted that a 
substantial number of patients had to be excluded from this 
analysis as there was no record of their CD8 counts at baseline.

Thus, because of the lack of linearity between the log of the 
virological failure rate and the actual CD8 count, the continuous 

continued
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Table 33.1  Results from multivariable Poisson regression analysis of factors associated with virological failure, after including the CD8 
count as a categorical variable in the model.

Variable*
Parameter  
estimate

Standard  
error

Estimated  
relative rate

95% confidence interval for 
relative rate P-value†

Time since initial response to therapy  
(years)

<1 reference − 1 −
1–2 0.4550 0.2715 1.58 0.93–2.68
>2 −0.5386 0.4849 0.58 0.23–1.51 0.06

Treatment status
Previously received treatment (0) reference − 1 −

Never received treatment (1) −0.5580 0.2600 0.57 0.34–0.95 0.03
Sex

Female (0) reference − 1 −
Male (1) −0.4970 0.2675 0.61 0.36–1.03 0.07

CD8 count (cells/mm3)
<625 −0.2150 0.6221 0.81 0.24–2.73

≥625, < 825 −0.3646 0.7648 0.63 0.16–3.11
≥825, < 1100 reference − 1 −

≥1100 −0.3270 1.1595 0.78 0.07–7.00
Missing −0.8264 0.6057 0.44 0.13–1.43 0.25

* Codes for binary variables (sex and treatment status) are shown in parentheses. Time since initial response to therapy was included by 
incorporating two dummy variables to reflect the periods 1–2 years and > 2 years after initial response. The baseline CD8 count was incorporated 
as described in the text.
† P-values were obtained using LRS (Chapter 32); where dummy variables were used to incorporate more than two categories of the variable, the 
P-value reflects the combined effect of these dummies.

explanatory variable representing the CD8 count in the Poisson 
regression model was replaced by a series of four dummy 
variables (Chapter 29). Individuals with baseline CD8 counts 
in the range 825 < CD8 <1100  cells/mm3 were treated as the 
reference group for these indicator variables. Each of three 
dummy variables provided a comparison of one of the remaining 
CD8 groups with the reference group, and the fourth dummy 
provided a comparison of those with missing CD8 counts with 
the reference group. The results are summarized in Table 33.1; 
a full computer output is shown in Appendix C. A comparison 
of the value for − 2log likelihood (i.e. the LRS or deviance) from 

the model that included the four dummy variables for the CD8 
count (387.15) with that from the model that included the same 
variables apart from these dummy variables (392.50) gave a 
P-value of 0.25 (test statistic of 5.35 on 4 degrees of freedom). 
Thus, after incorporating it in this way, the CD8 count no longer 
had a statistically significant relationship with virological failure 
in contrast to the model which, inappropriately, incorporated 
the CD8 count as a continuous explanatory variable. The 
relationships between virological failure and treatment status, 
sex and time since initial response to therapy, however, 
remained similar.
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Part 5  Basic techniques for analysing data

Bias and confounding
Learning objectives
By the end of this chapter, you should be able to:
•	 Explain what is meant by bias
•	 Explain what is meant by selection bias, information bias, 

funding bias and publication bias
•	 Describe different forms of bias that comprise either selec-

tion bias or information bias
•	 Explain what is meant by the ecological fallacy
•	 Explain what is meant by confounding and what steps may be 

taken to deal with confounding at the design stage of a study
•	 Describe various methods of dealing with confounding at 

the analysis stage of a study
•	 Explain the meaning of a propensity score
•	 Discuss the advantages and disadvantages of the various 

methods of dealing with confounding at the analysis stage
•	 Explain why confounding is a particular issue in a non-

randomized study
•	 Explain the following terms: causal pathway, intermediate 

variable, time-varying confounding

Relevant Workbook questions: MCQs 57, 60, 62 and 66; and 
SQs 4, 8, 9, 10, 12, 17, 18, 19, 20, 28 and 29 available online

In many cases, despite all of our efforts to design a robust study 
and perform appropriate statistical analyses, the results from our 
study may not accurately reflect the true situation. This may be 
due to the presence of bias which can be introduced at any stage 
of the study, perhaps resulting from a failure to take account of 
important exposure (explanatory) variables.

Bias
What is it?
Bias is said to have occurred when there is a systematic differ-
ence between the results from a study and the true state of affairs. 
Bias may be introduced at all stages of the research process, from 
study design, through to analysis and publication. Bias can create 
a spurious association (i.e. overestimation of an effect) or mask a 
real one (underestimation of an effect). While appropriate statis-
tical methods can reduce the effect of bias, they may not be able 
to eliminate it entirely. It is thus preferable to design a study so 
that bias is minimized (e.g. by taking steps to reduce recall bias in 
a case–control study, or by attempting to minimize loss to follow-
up in a longitudinal study). It should be noted that increasing 
the sample size does not reduce bias – if anything, increasing the 
sample size might actually increase the impact of bias.

We have already described the biases that are most commonly 
encountered in clinical trials (Chapter 14), case–control studies 
(Chapter 15) and cohort studies (Chapter 16). However, there are 
many forms of bias1 which may broadly be categorized as forms of 
either selection or information bias. A third type of bias, caused 
by confounding, is discussed in the next section. Even if obvious 
sources of bias have been addressed, funding bias, whereby 
there is a tendency to report findings in the direction favoured 
by the funding body (such as a pharmaceutical company), and 
publication bias, whereby there is a tendency to publish only 
those papers that report positive or topical results, may mean that 
the results from publicly available studies are still misleading.

Selection bias
Selection bias occurs when patients included in the study are not rep-
resentative of the population to which the results will be applied, e.g. 
patients who agree to participate in a study may differ from those 
who do not agree to participate (this form of bias is a particular prob-
lem in retrospective studies when patients who have died are not 
included in the study). Selection bias includes the following:
•	 Ascertainment bias may occur when the sample included in 
a study is not randomly selected from the population and differs 
in some important respects from that population, e.g. when doc-
tors interested in the genetics of a particular medical condition 
collect information on the patients in their clinic, rather than 
using a random sample from the population.
•	 Attrition bias arises when those who are lost to follow-up in a 
longitudinal study (Chapter 12) differ in a systematic way from 
those who are not lost to follow-up.
•	 The healthy entrant effect occurs where mortality and mor-
bidity rates are lower in the initial stages of a longitudinal study 
than in the general population because the individuals included 
in the study are disease-free at its outset (Chapter 15).
•	 Response bias is caused by differences in characteristics 
between those who choose or volunteer to participate in a study 
and those who do not.
•	 Survivorship bias occurs when survival is compared in 
patients who do or who do not receive a particular intervention 
where this intervention only became available at some point after 
the start of the study so that patients have to survive long enough 
to be eligible to receive the intervention.

Information bias
Information bias occurs during data collection when meas-
urements on exposure and/or disease outcome are incorrectly 
recorded in a systematic manner. Information bias includes the 
following:
•	 Central tendency bias often arises when using a Likert scale 
(comprising a small number of graded alternative responses such 
as very poor, poor, no opinion, good, excellent) where respond-
ers tend to move towards the mid-point of the scale (usually ‘no 
opinion’ or ‘just right’).
•	 Lead-time bias occurs particularly in studies assess-
ing changes in survival over time where the development of 
more accurate diagnostic procedures may mean that patients 
entered later into the study are diagnosed at an earlier stage in 
their disease, resulting in an apparent increase in survival from 
the time of diagnosis.
•	 Measurement bias arises when a systematic error is intro-
duced by an inaccurate measurement tool (e.g. a set of poorly 
calibrated scales); it may also be introduced by digit preference 
or rounding error.
•	 Misclassification bias occurs when we incorrectly classify a 
categorical exposure and/or outcome variable. This may dilute 
or exaggerate the effect of interest, depending on whether the 
misclassification occurs equally in all groups or varies according 
to exposure group.
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101•	 Observer bias occurs when one observer tends to under-report 

(or over-report) a particular variable; also called assessment bias.
•	 Regression dilution bias may occur when fitting a regression 
model to describe the association between an outcome variable 
and one or more exposure variable(s). If there is substantial 
measurement error (Chapter 39) around one of the exposure 
variables, the associated regression parameter from the model 
may be attenuated.
•	 Reporting bias occurs when participants give answers in 
the direction they perceive are of interest to the researcher or 
under-report socially unacceptable or embarrassing behaviours 
or disorders (e.g. alcohol consumption or sexually transmitted 
disease).
•	 Regression to the mean occurs where measurements that fol-
low particularly low measurements tend to be higher than those 
recorded previously, and those that follow particularly high 
measurements tend to be lower (Chapter 27).

The ecological fallacy results in a bias which sometimes occurs 
when we reach conclusions based solely on aggregate statistics 
for groups within a population. We believe mistakenly that an 
association that we observe between variables at an aggregate 
level reflects the corresponding association at an individual level 
in the same population. This is particularly relevant when we 
do not have the necessary information about a variable at the 
patient level but only at the study level (e.g. in a meta-analysis, 
Chapter 43), and is common in ecological studies where we note 
associations between the level of disease in a population (often 
an entire country) which are not apparent when we consider 
the association at the individual level. For example, living in a 
more deprived area has been shown2 to be associated with an 
increased likelihood of being diagnosed with Stage III or IV 
breast cancer, but since the study used an area-based measure of 
low socioeconomic background, these results cannot be extended 
to individual women living in the area. The ecological fallacy is 
particularly true in meta-regression (Chapter 43).

Confounding
What is it?
Confounding occurs when we find a spurious association 
between a potential risk factor and a disease outcome or miss a 
real association between them because we have failed to adjust 
for any confounding variables. A confounding variable or 
confounder is an exposure variable that is related to both the 
outcome variable (e.g. disease) and to one or more of the other 
exposure variables. For example, we may be interested in study-
ing the effect of smoking status on the incidence of coronary 
heart disease (CHD) in a cohort of middle-aged men. However, 
we know that alcohol consumption is associated with the devel-
opment of CHD, and that alcohol consumption and smoking 
are also related to each other (i.e. men who consume alcohol are 
more likely to smoke than men who do not consume alcohol). 
Thus, in this study, unless we adjust for it, the effect of alcohol 
consumption may confound an apparent relationship between 
smoking and the incidence of CHD. Any analysis that considers 
the effect of an exposure variable on the outcome but does not 
take into account the confounder may misrepresent the true role 
of the exposure variable. Failure to adjust for confounding fac-
tors in a regression analysis will lead to biased estimates of the 
parameters of the model.

We should be aware that Simpson’s paradox (Chapter 24) 
may arise when the effect of confounding is very strong.

Dealing with confounding
Confounding may be dealt with at the design stage of an 
experimental study (e.g. by matching or randomization) or at 
the analysis stage of an observational study in one of a number 
of ways. A brief description of each approach follows and their 
advantages and disadvantages are summarized in Table 34.1.
•	 Create subgroups by stratifying the data set by the levels of 
the confounding variable (e.g. create two subgroups, drinkers 
and non-drinkers) and then perform an analysis separately in 
each subgroup. While this approach is simple and has much to 
recommend it when there are few confounders,

■■ the subgroups may be small, and thus the analyses will have 
reduced power to detect a significant effect;
■■ spurious significant results may arise because of multiple 

testing (Chapter 18) if a hypothesis test is performed in each 
subgroup; and
■■ it may be difficult to combine the separate estimates of the 

effect of interest for each subgroup (although this is sometimes 
achieved by the Mantel–Haenszel method3).

•	 Identify pairs of individuals, one of whom falls into each 
category of the exposure variable (e.g. a smoker and a non-
smoker), who are matched on the basis of all confounding 
variables. By performing an appropriate paired analysis (e.g. 
McNemar’s test or a paired t-test) of the association between 
the exposure variable and the dependent variable, the effects of 
any potential confounding variables will be removed. However, 
if there are many confounders, it may be difficult to identify 
sufficient pairs of matched individuals to ensure an adequately 
powered analysis.
•	 Adjust for each confounding variable by including it as an 
explanatory variable in a multivariable regression model, e.g. 
multiple linear (Chapter 29), logistic (Chapter 30) or Poisson 
(Chapter 31) regression models. This approach, which is par-
ticularly useful when there are many confounders in the study, 
provides an estimate of the relationship between the explanatory 
and dependent variables that cannot be explained by the relation-
ship between the dependent variable and the confounding vari-
ables. In order to obtain meaningful results, however, there must 
be reasonable overlap between the distributions of the confound-
ing variables in the groups defined by the exposure variable (i.e. 
smokers and non-smokers should have fairly similar demo-
graphic profiles if these comprise the confounding variables).
•	 Use a propensity score4 approach. This method is most useful 
when the exposure variable of interest (smoking status) has two 
levels (categories) and is specified at the start of the study, and 
where there are many potential confounders. A score is calcu-
lated for each individual, often using a logistic regression model 
(Chapter 30) that describes his/her propensity (or probability) 
to fall into one particular category of the exposure variable as 
opposed to the other (i.e. to be a smoker or a non-smoker). This 
propensity score is generated using the data on all variables that 
may be associated with smoking, some of which may also be 
associated with the outcome and will therefore be confounders 
(e.g. alcohol status). We then use this propensity score in one of 
the following ways:

■■ Adjust for this propensity score, rather than the variables 
used to generate the score (including the confounders), in a 
multivariable regression analysis that aims to investigate the 
association between the exposure variable (smoking) and the 
dependent variable (CHD). As well as distributional advan-
tages, this approach has the advantage of reducing the number 
of covariates in the model.
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■■ Use the propensity score as a stratification variable, with the 
effect of the exposure variable on which it was based (smok-
ing) estimated separately for those in different propensity 
score strata (often using a multivariable regression analysis) 
– the argument being that individuals in the same propensity 
score stratum should have similar levels of the potential con-
founding variables. We can use Mantel–Haenszel methods to 
obtain a combined estimate of the effect of interest from the 
different strata.
■■ Identify pairs of individuals, one of whom falls into each 

category of the exposure variable (e.g. a smoker and a non-
smoker) but who are matched on the basis of the propensity 
scores (i.e. the likelihood of being a smoker is similar in the two 
members of a pair, even though one of them is not a smoker). 
As when matching on the confounding variables, this matched 
analysis of the association between the exposure variable and 
the dependent variable will remove the effects of any potential 
confounding variables without the need to adjust for these var-
iables in the analysis. The disadvantage of this approach is that 
some individuals may have to be excluded from the analysis if a 

suitable matched pair cannot be identified, although matching 
on the propensity scores should result in exclusion of a smaller 
number of individuals than a similar analysis that matches on 
the confounding variables.
■■ Use double-robust estimation (beyond the scope of this book).

Note that neither a multivariable regression model nor a 
propensity score approach can remove the effects of unmeasured 
or unknown confounders.

Confounding in non-randomized studies
Confounding is a particular concern in cohort studies (Chap-
ter 15) when risk factors are not distributed randomly in the 
population. In particular, when we are interested in the effect of a 
specific intervention (e.g. a treatment) on an outcome in a cohort 
study, we have to be aware that individuals may be selected for 
this intervention on the basis of disease history or demographic 
or lifestyle factors, some of which may also be related to the 
outcome. If the characteristics of patients receiving this inter-
vention differ from those of patients receiving other types of 

Table 34.1  Advantages and disadvantages of various methods to remove confounding during the analytical stage of a study.

Method Advantages Disadvantages

Stratification by confounding variable •	 Simple to visualize findings and interpret 
results

•	 Straightforward
•	 Provides a means of checking that there is 

sufficient overlap in the confounders between 
the different exposure groups

•	 Results are not affected by any assumptions 
about the form of the relationship between the 
confounder and the outcome (e.g. linearity)

•	 Only suitable if there are a small number of 
confounders

•	 May result in very small strata and hence a 
low power within specific strata (Chapter 18)

•	 Multiple testing may lead to spurious sig-
nificant findings (Chapter 18)

•	 May be difficult to provide a single estimate 
of the treatment effect

Direct matching confounders •	 Intuitively simple and simple to interpret 
findings

•	 Can deal with more than one confounder
•	 Results are not affected by any assumptions 

about the form of the relationship between 
the confounder and the outcome (e.g. 
linearity)

•	 May not be possible to find a match for each 
patient; exclusion of unmatched patients 
from the analysis may result in loss of power

•	 Cannot estimate the effects of the confound-
ers on the outcome

•	 May be computationally difficult to match 
patients if there are many confounders

Statistical adjustment in multivariable 
regression model

•	 Suitable if there are many confounders, pro-
vided the sample size is adequate

•	 Can estimate the effects of the confounders 
on the outcome

•	 Computationally straightforward

•	 If there are a large number of confounders, 
study power may be reduced

•	 Only provides meaningful results if the 
groups defined by the exposure variable are 
reasonably well balanced in terms of the 
confounders

•	 Can only adjust for confounders for which 
data have been collected

Calculation of propensity scores •	 Relatively easy to calculate when the  
exposure variable has two levels

•	 Even if there is insufficient overlap of  
specific confounders across exposure groups, 
the distribution of propensity scores should 
be similar across the groups

•	 Difficult to calculate when the exposure 
variable has more than two levels

•	 Only suitable when the exposure variable 
does not change over time

•	 Most efficient when the sample size is large

Use of propensity scores
•	 Statistical adjustment for propensity  

score in multivariable regression model
•	 Reduces the number of covariates in the 

model
•	 If confounders are also included in the 

model (i.e. there is interest in their asso-
ciations with the outcome), there may be 
collinearity (Chapter 33) between them and 
the propensity score

•	 Stratification by propensity score •	 Removes the effect of potential confounding 
variables in each stratum

•	 May be difficult to combine estimates from 
the different propensity score strata

•	 Matching on propensity score •	 Removes the effect of potential confounding 
variables without the need to adjust for them 
in the analysis

•	 May be difficult to match patients

www.konkur.in

Telegram: @medical_k



Chapter 34  Bias and confounding
103interventions, then allocation or channelling bias has occurred. 

Suppose, for example, we are interested in comparing the effect 
of treatment on the incidence of cardiovascular disease in a 
cohort of middle-aged men, when the men are receiving either 
statins or fibrates at the time of cohort enrolment. The choice of 
whether a man receives a statin or a fibrate will be based on a 
number of factors (e.g. their lipid measurements), many of which 
will also be associated with the development of cardiovascular 
disease. While multivariable regression models and/or propen-
sity score methods (using the choice of treatment as the exposure 
variable of interest for which a propensity score is determined) 
can be used to adjust for any differences in the distribution of the 
factors in the different treatment groups, this is only possible if 
the study investigators are aware of the confounding factors and 
have recorded them in the data set. Randomized controlled tri-
als (Chapter 14) rarely suffer from confounding as patients are 
randomly allocated to treatment groups and therefore all covari-
ates, both confounders and other explanatory variables, should 
be evenly distributed in the different treatment groups.

The causal pathway and confounding
The causal pathway is the chain of events or factors leading 
in sequence to an outcome when the effect of any step in the 
sequence is caused by the event at the previous step(s). The causal 
pathway is particularly useful in helping us consider opportu-
nities for disease prevention and is sometimes represented by 
a path diagram on which the causal relationship is shown by 
arrows (e.g. multiple birth → preterm delivery → neonatal cer-
ebral damage in cerebral palsy). Where a variable (B) is known 
to lie on the causal pathway between an exposure (A) and the 
outcome of interest (C), it is known as an intermediate variable 
and it should not be treated as a confounder.

Consider the situation where we are conducting a randomized 
placebo-controlled trial of the effect of a new cholesterol-
lowering drug on the incidence of CHD (the outcome, C) and 
our exposure variable (A) is a binary variable that indicates 
whether or not each individual is receiving the new drug. An 
elevated cholesterol is one of the known risk factors for CHD, 
and we expect levels to decline in treated individuals but remain 
unchanged or increase in untreated individuals. Although we 
may adjust for any discrepancies between the cholesterol levels 
of patients in the two treatment groups at the start of the trial 
(although this should not be necessary if randomization has been 
successful), we should be careful about adjusting for any changes 
in cholesterol (B) that occur during the trial period. If we were 
to do so, the observed treatment effect would only estimate any 
residual benefit that remains after effects of cholesterol have been 
removed; it would not estimate the total benefit of the new drug. 
Indeed, if the drug acts solely through changes in cholesterol, it 

is likely that there will be no residual effects – this does not mean 
that the drug does not work, simply that it does not have any 
effects over and above those it has on cholesterol.

Time-varying confounding
A particular problem arises if a variable is both a potential con-
founder for an exposure of interest and also lies on the causal 
pathway between that exposure and the study outcome. Where 
the exposure itself may change over time, the confounder is 
known as a time-varying confounder. Suppose, for example, that 
we wish to use data from a cohort study to describe the effect of 
antiretroviral treatment on survival in individuals infected with 
HIV. HIV acts by gradually depressing an individual’s immune 
system; this is measured through the CD4 cell count, which will 
decline over time in an HIV-positive person. Currently, antiret-
roviral treatment in the developed world is generally offered to 
an HIV-positive individual whose CD4 cell count has already 
fallen to a low level (usually below 350  cells/mm3). However, 
once treatment is initiated, most individuals will experience a 
rapid increase in their CD4 cell count and this increase is associ-
ated with prolonged survival. In this situation, the CD4 count 
(which may be measured regularly over the period of infection) 
is a time-varying confounder, as it is both a predictor of the ini-
tiation of treatment and it lies on the causal pathway between 
initiation of antiretroviral treatment and death. In such circum-
stances, the usual approach to analysing the data using standard 
regression models with time-dependent covariates (Chapter 31) 
will not provide a meaningful estimate of the effect of treatment. 
Complex analytical methods (causal modelling, marginal struc-
tural models, G-estimation) provide a more appropriate estimate 
of this treatment effect5 but they should only be used in discus-
sion with a statistician.
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Checking assumptions
Learning objectives
By the end of this chapter, you should be able to:
•	 Name two tests and describe two diagrams that can be 

used to assess whether data are Normally distributed
•	 Explain the terms homogeneity and heterogeneity of variance
•	 Name two tests that can be used to assess the equality  

of two or more variances
•	 Explain how to perform the variance ratio F-test to compare 

two variances
•	 Explain how to proceed if the assumptions under a pro-

posed analysis are not satisfied
•	 Explain what is meant by a robust analysis
•	 Explain what is meant by a sensitivity analysis
•	 Provide examples of different sensitivity analyses

Relevant Workbook questions: MCQs 67 and 69; and SQ 21 
available online

Why bother?
Computer analysis of data offers the opportunity of handling large 
data sets that might otherwise be beyond our capabilities. However, 
do not be tempted to ‘have a go’ at statistical analyses simply because 
they are available on the computer. The validity of the conclusions 
drawn relies on the appropriate analysis being conducted in any 
given circumstance, and a requirement that the underlying assump-
tions inherent in the proposed statistical analysis are satisfied.

Are the data Normally distributed?
Many analyses make assumptions about the underlying distri-
bution of the data. The following procedures verify approximate 
Normality, the most common of the distributional assumptions.
•	 We produce a dot plot (for small samples) or a histogram, 
stem-and-leaf plot (Fig. 4.2) or box plot (Fig. 6.1) to show the 
empirical frequency distribution of the data (Chapter 4). We 
conclude that the distribution is approximately Normal if it is 
bell-shaped and symmetrical. The median in a box plot should 
cut the rectangle defining the first and third quartiles in half, 
and the two whiskers should be of equal length if the data are 
Normally distributed.
•	 Alternatively, we can produce a Normal plot (preferably on 
the computer) which plots the Standard Normal deviate for the 
cumulative distribution against the sample values. Lack of Nor-
mality is indicated by the resulting plot producing a curve that 
deviates from a straight line (Fig. 35.1).

Although both approaches are subjective, the Normal plot is 
more effective for smaller samples. The Kolmogorov–Smirnov 
and Shapiro–Wilk tests, both performed on the computer, can 
be used to assess Normality more objectively.

Are two or more variances equal?
We explained how to use the t-test (Chapter 21) to compare two 
means and ANOVA (Chapter 22) to compare more than two 

35

Figure 35.1   (a) Normal plot of untransformed triglyceride levels
described in Chapter 19. These are skewed and the resulting
Normal plot shows a distinct curve. (b) Normal plot of log10
(triglyceride levels). The approximately straight line indicates that
the log transformation has been successful at removing the
skewness in the data.
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means. Underlying these analyses is the assumption that the 
variability of the observations in each group is the same, i.e. we 
require equal variances, described as homogeneity of variance 
or homoscedasticity. We have heterogeneity of variance if the 
variances are unequal.
•	 We can use Levene’s test, using a computer program, to test 
for homogeneity of variance in two or more groups. The null 
hypothesis is that all the variances are equal. Levene’s test has the 
advantage that it is not strongly dependent on the assumption of 
Normality. Bartlett’s test can also be used to compare more than 
two variances, but it is non-robust to departures from Normality.
•	 We can use the F-test (variance ratio test) described in the 
following box to compare two variances, provided the data in 
each group are approximately Normally distributed (the test is 
non-robust to a violation of this assumption). The two estimated 
variances are s1

2 and s2
2, calculated from n1 and n2 observations, 

respectively. By convention, we choose s1
2 to be the larger of the 

two variances, if they differ.
•	 We also assume homogeneity of variance of the residuals in 
simple and multiple regression (Chapters 28 and 29) and in ran-
dom effects models (Chapter 42). We explained how to check 
this assumption in Chapters 28 and 29. 
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1051	 Define the null and alternative hypotheses under study
H0: the two population variances are equal
H1: the two population variances are unequal.

2	 Collect relevant data from a sample of individuals
3	 Calculate the value of the test statistic specific to H0

F s s= 1
2

2
2/

which follows an F-distribution with n1 − 1 df in the numerator, 
and n2 − 1 df in the denominator. Since s s1

2
2
2≥ , the F-ratio 

≥1. This allows us to use the tables of the F-distribution that 
are tabulated only for values ≥1.
4	 Compare the value of the test statistic to values from a 
known probability distribution
Refer F to Appendix A5. Our two-sided alternative hypothesis 
leads to a two-tailed test.
5	 Interpret the P-value and results
Note that we are rarely interested in the variances per se, so 
we do not usually calculate confidence intervals for them1.

Are variables linearly related?
Most of the techniques discussed in Chapters 26–31 and 
described in Chapter 42 assume that there is a linear (straight 
line) relationship between two variables. We explained how to 
check for linearity and how to deal with non-linearity in regres-
sion analysis in Chapters 28 and 29 (for simple and multiple 
regression) and in Chapter 33 (for other generalized linear mod-
els, e.g. logistic and Poisson).

What if the assumptions are not 
satisfied?
We have various options.
•	 Proceed as planned, recognizing that this may result in a non-
robust analysis. Be aware of the implications if you do this. Do 
not be fooled into an inappropriate analysis just because others, 
in similar circumstances, have done one in the past!
•	 Take an appropriate transformation of the raw data so that the 
transformed data satisfy the assumptions of the proposed analysis 
(Chapter 9). In regression analysis, this usually means trans-
forming an x variable although other approaches are possible  
(Chapter 32).
•	 If feasible, perform a non-parametric test (Chapter 17) that 
does not make any assumptions about the distribution of the data 
(e.g. Normality). You may also come across the term non-para-
metric regression analysis2; its purpose is to estimate the functional 
form (rather than the parameters) of the relationship between a 
response variable and one or more explanatory variables. Using 
non-parametric regression, we relax the linearity assumption of 
the model and fit a smooth curve to the data so that we can visual-
ize trends without specifying a parametric model.

Sensitivity analysis
An analysis is robust if it is not very sensitive to a departure from 
its assumptions, i.e. the P-value and power (Chapter 18) and, if 
relevant, parameter estimates are not appreciably affected by vio-
lations of the assumptions. Thus, the conclusions drawn from the 
study are likely to be correct even though the assumptions are 
violated. However, a non-robust analysis could result in mislead-
ing conclusions being drawn. After any analysis, it is thus always 
wise to consider performing one or more sensitivity analyses 
to investigate the robustness of the findings. To do this, we use 
a slightly different approach to analysing the data (e.g. by omit-
ting data, varying the assumptions or using a different method of 
analysis) and measure the impact of any changes on our estimates 
and conclusions. Note that sensitivity analyses should always be 
described as such when presenting results – it is inappropriate, for 
example, to perform multiple different statistical tests that essen-
tially investigate the same or similar hypotheses and display all 
their results without identifying which was the primary analysis 
and which were sensitivity analyses. Furthermore, if sensitivity 
analyses are to be presented, it is inappropriate to show only the 
most favourable results (i.e. those that most strongly support the 
primary aims). The following are examples of different sensitivity 
analyses:
•	 Rather than assuming a linear relationship between the 
dependent variable and a continuous explanatory variable in a 
regression analysis (Chapter 29), we re-fit the regression model 
after creating a new nominal explanatory variable based on cat-
egories of the original explanatory variable (Chapter 33). If there 
are two categories of interest then we have one binary nominal 
variable but if there are more than two categories we would cre-
ate dummy binary variables (Chapter 29).
•	 Having performed a parametric analysis of the data (e.g. an 
unpaired t-test), we repeat the analysis using a non-parametric 
approach (e.g. the Mann–Whitney U test).
•	 After identifying influential points (Chapter 29) in a multiple 
regression analysis, we re-fit the model excluding these points.
•	 Having performed a meta-analysis (Chapter 43) using the 
data from all studies, we repeat it but exclude poorer quality 
studies.
•	 We undertake both a fixed and a random effects meta-analysis 
to assess how robust the results are to the method used.
•	 We assess the effect of the approach taken to deal with any 
missing data (Chapter 3) by repeating the analysis after using a 
different approach.
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Example

In Example 1 in Chapter 21, 98 school-age children were 
randomly assigned to receive either inhaled beclomethasone 
dipropionate or a placebo to determine their effects on 
wheezing. We used the unpaired t-test to compare the mean 
forced expiratory volume in 1 second (FEV1) in each group 

over the 6 months, but need assurance that the underlying 
assumptions (Normality and constant variance) are satisfied. 
The stem-and-leaf plot in Fig. 4.2 shows that the data in each 
group are approximately Normally distributed. We performed 
the F-test to investigate the assumption of equal variances.

1	 H0: the variance of FEV1 measurements in the population 
of school-age children is the same in the two groups

H1: the variance of FEV1 measurements in the population 
of school-age children is not the same in the two groups.
2	 Treated group: sample size, n1 = 50, standard deviation,  
s1 = 0.29 litres

Placebo group: sample size, n2 = 48, standard deviation,  
s2 = 0.25 litres.
3	 The test statistic F

s
s

= = = =1
2

2
2

2

2

0 29
0 25

0 0841
0 0625

1 346
.
.

.
.

.

follows an F-distribution with 50 − 1 = 49 and 48 − 1 = 47 df 
in the numerator and denominator, respectively.

4	 We refer F = 1.35 to Appendix A5 for a two-sided test at the 
5% level of significance. Because Appendix A5 is restricted to 
entries of 25 and infinity df in the numerator, and 30 and 50 df 
in the denominator, we have to interpolate (Chapter 21). The 
required tabulated value at the 5% level of significance lies 
between 1.57 and 2.12; thus P > 0.05 because 1.35 is less than 
the minimum of these values (computer output gives P = 0.31).
5	 There is insufficient evidence to reject the null 
hypothesis that the variances are equal. It is reasonable 
to use the unpaired t-test, which assumes Normality and 
homogeneity of variance, to compare the mean FEV1 in 
the two groups.
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Chapter 36  Sam
ple size calculations

Sample size calculations36

Learning objectives
By the end of this chapter, you should be able to:
•	 Explain why it is necessary to choose an optimal sample 

size for a proposed study
•	 Specify the quantities that affect sample size and describe 

their effects on it
•	 Name five approaches to calculating the optimal sample 

size of a study
•	 Explain how information from an internal pilot study may 

be used to revise calculations of the optimal sample size
•	 Explain how to use Altman’s nomogram to determine the 

optimal sample size for a proposed t-test (unpaired and 
paired) and Chi-squared test

•	 Explain how to use Lehr’s formula for sample size 
calculations for the comparison of two means and of two 
proportions in independent groups

•	 Write an appropriate power statement
•	 Explain how to adjust the sample size for losses to follow-

up and/or if groups of different sizes are required
•	 Explain how to increase the power of a study for a fixed 

sample size

Relevant Workbook questions: MCQs 68 and 69; and SQs 
6 and 22 available online

The importance of sample size
If the number of patients in our study is small, we may have inad-
equate power (Chapter 18) to detect an important existing effect, 
and we shall have wasted all our resources. On the other hand, if 
the sample size is unduly large, the study may be unnecessarily 
time-consuming, expensive and unethical, depriving some of the 
patients of the superior treatment. We therefore have to choose 
the optimal sample size that strikes a balance between the impli-
cations of making a Type I or Type II error (Chapter 18). Unfor-
tunately, in order to calculate the sample size required, we have to 
have some idea of the results we expect in the study.

Requirements
We shall explain how to calculate the optimal sample size in simple 
situations; often more complex designs can be simplified for the 
purpose of calculating the sample size. If our investigation involves 
a number of tests, we concentrate on the most important or evalu-
ate the sample size required for each and choose the largest.

Our focus is the calculation of the optimal sample size in 
relation to a proposed hypothesis test. However, it is possible to 
base the sample size calculation on other aspects of the study, 
such as on the precision of an estimate or on the width of a 
confidence interval (the process usually adopted in equivalence 
and non-inferiority studies, Chapter 17).

To calculate the optimal sample size for a test, we need 
to specify the following quantities at the design stage of the 
investigation.
•	 Power (Chapter 18) – the chance of detecting, as statistically 
significant, a specified effect if it exists. We usually choose a 
power of at least 80%.
•	 Significance level, α (Chapter 17) – the cut-off level below 
which we will reject the null hypothesis, i.e. it is the maximum 

probability of incorrectly concluding that there is an effect. We 
usually fix this as 0.05 or, occasionally, as 0.01, and reject the null 
hypothesis if the P-value is less than this value.
•	 Variability of the observations, e.g. the standard deviation, if 
we have a numerical variable.
•	 Smallest effect of interest – the magnitude of the effect that is 
clinically important and which we do not want to overlook. This 
is often a difference (e.g. difference in means or proportions). 
Sometimes it is expressed as a multiple of the standard deviation 
of the observations (the standardized difference).

It is relatively simple to choose the power and significance 
level of the test that suit the requirements of our study. The 
choice is usually governed by the implications of a Type I 
and a Type II error, but may be specified by the regulatory 
bodies in some drug licensing studies. Given a particular 
clinical scenario, it is possible to specify the effect we regard 
as clinically important. The real difficulty lies in providing an 
estimate of the variation in a numerical variable before we have 
collected the data. We may be able to obtain this information 
from published studies with similar outcomes or we may need 
to carry out a pilot study. Although a pilot study is usually a 
distinct preliminary investigation, we may incorporate the 
data gathered in the pilot study into the main study using an 
internal pilot study1, provided all details of it are documented 
in the protocol. We determine the optimal sample size on the 
best, although perhaps limited, information available at the 
design stage of the study. We then use the relevant information 
from a pilot study (the size of which is pre-specified, may be 
relatively large and is usually determined through practical 
considerations) to revise our estimated sample size for the main 
study. (Note: the calculation must be based on the originally 
defined smallest effect of interest, not on the effect observed 
in the pilot study, and the revised sample size estimate utilized 
only if it exceeds the original estimate.) In such situations, the 
information gathered in the internal pilot study may be used in 
the final analysis of the data.

Methodology
We can calculate sample size in a number of ways, each of 
which requires essentially the same information (described in 
‘Requirements’) in order to proceed:
•	 General formulae2– these can be complex but may be 
necessary in some situations (e.g. to retain power in a cluster 
randomized trial (Chapters 14 and 41), we multiply the sample 
size that would be required if we were carrying out individual 
randomization by the design effect equal to [1 + (m − 1)ρ], where 
m is the average cluster size and ρ is the intraclass correlation 
coefficient (Chapter 42)).
•	 Quick formulae – these exist for particular power values and 
significance levels for some hypothesis tests (e.g. Lehr’s formu-
lae3, see later in this chapter).
•	 Special tables2– these exist for different situations (e.g. for 
t-tests, Chi-squared tests, tests of the correlation coefficient, 
comparing two survival curves, and equivalence studies).
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108 •	 Altman’s nomogram – this is an easy-to-use diagram which 
is appropriate for various tests. Details are given in the next 
section.
•	 Computer software – this has the advantage that results can 
be presented graphically or in tables to show the effect of chang-
ing the factors (e.g. power, size of effect) on the required sample 
size.

Altman’s nomogram
Notation
We show in Table 36.1 the notation for using Altman’s nomo-
gram (Appendix B) to estimate the sample size of two equally 
sized groups of observations for three frequently used hypothesis 
tests of means and proportions.

Method
For each test, we calculate the standardized difference and join 
its value on the left-hand axis of the nomogram to the power 
we have specified on the right-hand vertical axis. The required 
sample size is indicated at the point at which the resulting line 
and sample size axis meet.

Note that we can also use the nomogram to evaluate the 
power of a hypothesis test for a given sample size. Occasionally, 
this is useful if we wish to know, retrospectively, whether we can 
attribute lack of significance in a hypothesis test to an inadequately 
sized sample. In such post hoc power calculations, the clinically 
important treatment difference must be that which was decided 
a priori; it is not the observed treatment effect. Remember, also, 
that a wide confidence interval for the effect of interest indicates 
an imprecise estimate, often due to an insufficiently sized study 
(Chapter 11).

Quick formulae
For the unpaired t-test and Chi-squared test, we can use Lehr’s 
formula3 for calculating the sample size for a power of 80% and 

Table 36.1  Information for using Altman’s nomogram

Hypothesis test
Standardized 
difference

Explanation of N in 
nomogram Terminology

Unpaired t-test  
(Chapter 21)

δ
σ

N/2 observations in each 
group

δ: the smallest difference in means thatis clinically important
σ: �the assumed equal standard deviation of the observations in each of 

the two groups. You can estimate it using results from a similar study 
conducted previously or from published information. Alternatively, 
you could perform a pilot study to estimate it. Another approach is 
to express δ as a multiple of the standard deviation (e.g. the ability to 
detect a difference of two standard deviations)

Paired t-test  
(Chapter 20)

2δ
σ d

N pairs of observations δ: the smallest mean difference that is clinically important
σd: �the standard deviation of the differences in response, usually 

estimated from a pilot study

Chi-squared test 
(Chapter 24)

p p
p p

1 2

1
−

−( )
N/2 observations in each 
group

p1 – p2: �the smallest difference in the proportions of ‘success’ in the two 
groups that is clinically important. One of these proportions 
is often known, and the relevant difference evaluated by 
considering what value the other proportion must take in order 
to constitute a noteworthy change

p p p= +1 2

2

a two-sided significance level of 0.05. The required sample size 
in each group is

16
2( )Standardized difference

If the standardized difference is small, this formula 
overestimates the sample size. Note that a numerator of 21 
(instead of 16) relates to a power of 90%.

Power statement
It is often essential and always useful to include a power state-
ment in a study protocol or in the methods section of a paper 
(see Appendix D, Table D1) to show that careful thought has 
been given to sample size at the design stage of the investigation. 
A typical statement might be ‘110 patients in the early physical 
therapy and 110 patients in the usual care group are required, 
using the unpaired t-test, to have a 90% chance of detecting a 
difference of 7 points in the mean change in ODI at 3 months 
between the two groups (SD = 16 points) at the 5% level of sig-
nificance’ (see Example 1).

Adjustments
We may wish to adjust the sample size:
•	 to allow for losses to follow-up by recruiting more patients 
into the study at the outset. If we believe that the drop-out rate 
will be r%, then the adjusted sample size is obtained by multiply-
ing the unadjusted sample size by 100/(100 − r);
•	 to have independent groups of different sizes. This may be 
desirable when one group is restricted in size, perhaps because 
the disease is rare in a case–control study (Chapter 16) or 
because the novel drug treatment is in short supply. Note, how-
ever, that the imbalance in numbers usually results in a larger 
overall sample size when compared with a balanced design if 
a similar level of power is to be maintained. If the ratio of the 
sample sizes in the two groups is k (e.g. k = 3 if we require one 
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Example 1

group to be three times the size of the other), then the adjusted 
overall sample size is

′ = +N N k k( ) /( )1 42

where N is the unadjusted overall sample size calculated for 
equally sized groups. Then N´/(1 + k) of these patients will be 
in the smaller group and the remaining patients will be in the 
larger group.

Increasing the power for a fixed  
sample size
If we regard the significance level and important treatment 
difference defined by a particular variable as fixed (we can 
rarely justify increasing either of them) and assume that our 
test is two-tailed (a one-tailed test has greater power but is 
usually inappropriate (Chapter 17)), we can increase the 
power for a fixed sample size in a number of ways. For exam-
ple we might:

•	 use a more informative response variable (e.g. a numerical 
variable such as systolic blood pressure instead of the binary 
responses normal/hypertensive);
•	 perform a different form of analysis (e.g. parametric instead of 
non-parametric);
•	 reduce the random variation when collecting the data (e.g. by 
standardizing conditions or training observers (Chapter 39));
•	 modify the original study design in such a way that the vari-
ability in measurements is reduced (e.g. by incorporating stratifi-
cation or using matched pairs instead of two independent groups 
(Chapter 13)).
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Objective – to examine the effectiveness of early physical 
therapy compared with usual care in improving disability for 
patients with lower back pain (LBP). At baseline, all eligible 
participants were advised to remain as active as possible 
and were given documentation which provided messages 
consistent with LBP guidelines, and these were reviewed 
with the researcher. Those receiving early physical therapy 
(manipulation and an exercise regimen) had four timetabled 
sessions given by a physical therapist within the first 4 weeks 
after enrolment. Usual care involved no additional interventions 
during the first 4 weeks.

Design – randomized single-blind parallel group clinical 
trial.

Main outcome measure for the determination of sample 
size – change from baseline in the Oswestry Disability Index 
(ODI) score (range: 0–100; higher scores indicate greater 
disability) at 3 months.

Sample size question – how many patients are required in 
order to have a 90% power, at the 5% level of significance, 
of detecting a difference of 7 points in the change in ODI 
at 3 months between the early physical therapy and the 
usual care groups? This is with a view to performing a two-
tailed unpaired t-test to compare the mean changes in ODI 
if we believe that the standard deviation of the change is 
approximately 16 points.

Using the nomogram
δ = 7 and σ = 16. Thus the standardized difference equals 

δ
σ

= 7
16

0 44= .

The line connecting a standardized difference of 0.44 and a 
power of 90% cuts the sample size axis at approximately 220. 
Therefore about 110 patients are required in each group. (Note: 
(i) if δ were lowered to 6, then the standardized difference 
equals 0.38 and the required sample size would increase to 
approximately 300 in total, i.e. 150 in each group; and (ii) if, 
using the original specification, the investigators wanted twice 
as many patients receiving early physical therapy compared 
with those with usual care (i.e. k = 2), then the adjusted sample 
size would be

′ = +( ) = +( )
×

=N
N k

k
1
4

220
1 2
4 2

247 5
2 2

.

Thus there would be 247.5/3  ≅  83 patients receiving early 
physical therapy and the remaining 137 patients would receive 
usual care. Fig. 18.1 shows power curves for this example.

Quick formula
If the power is 90%, then the required sample size in each 
group, assuming the original specification, is

21 21
0 44

1092 2standardized difference( )
=

( )
=

.
 �(rounded up from 

108.5)

Comparing means in independent groups using the unpaired t-test

Based on Fritz, J.M., Magel, J.S., McFadden, M., et al. (2015) Early physical therapy vs usual care in patients with recent-onset low 
back pain: a randomized clinical trial. JAMA, 314(14), 1459–1467.
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110 Example 2

Objective – to compare strategies of peanut consumption 
and avoidance to determine which strategy is most effective 
in preventing the development of peanut allergy in infants at 
high risk for the allergy.

Design – randomized controlled trial (RCT) in which infants 
aged between 4 and 11 months at randomization with severe 
eczema, egg allergy or both, and a wheal measuring 1–4 mm 
in diameter after testing, are randomly allocated to consume 
or avoid peanuts until 60 months of age.

Main outcome measure for determining sample – the 
proportion of infants with peanut allergy at 60 months of age, 
determined by an oral food challenge.

Sample size question – how many infants are required in 
order to have, using a two-tailed Chi-squared test, an 80% 
power of detecting a clinically important difference of 30 
percentage points (50% in the consumption group vs 20% in 
the avoidance group) in the proportion with peanut allergy at 
60 months of age if the significance level is 5%?

Using the nomogram

p1 = 0.5 and p2 = 0.2 so p  = 0 5 0 2
2

0 35
. .

.
+ =

Comparing two proportions in independent groups using the Chi-squared test

Therefore the standardized difference

= 
p p
p p

1 2

1
−
−( )

 = 
0 5 0 2
0 35 0 65

. .
. .

−
×

 = 0.63

The line connecting a standardized difference of 0.63 and a 
power of 80% cuts the sample sizes axis at about 80. Hence 
approximately 40 infants are required in each group. (Note: 
(i) if the power were increased to 90%, then the required 
sample size would increase to approximately 102 in total, 
i.e. 51 infants would be required in each group; and (ii) if the 
drop-out rate was expected to be around 10%, the adjusted 
overall sample size (with a power of 80%) would be 80 × 100/
(100 – 10) = 90 (rounded from 88.9), with 45 infants in each 
group.) Figure 18.2 shows power curves for this example.

Quick formula
If the power is 80%, then the required sample size in each 
group is

16 16
0 63

40 32 2standardized difference( )
= =

.
.

which, when rounded up, indicates that each group should 
comprise 41 infants.

Du Toit, G., Roberts, G., Sayre, P.H., et al. (2015) Randomised trial of peanut consumption in infants at risk for peanut allergy. New 
England Journal of Medicine, 372(8), 803–812.
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Presenting results37

Learning objectives
By the end of this chapter, you should be able to:
•	 Explain how the EQUATOR network may be used to 

enhance the reporting of health-related research and list 
its component guidelines for randomized controlled trials, 
observational studies, meta-analysis, diagnostic accuracy, 
model development and agreement studies

•	 Explain how to report numerical results
•	 Describe the important features of good tables and  

diagrams
•	 Explain how to report the results of a hypothesis test
•	 Explain how to report the results of a regression analysis
•	 Indicate how complex statistical analyses should be 

reported

Relevant Workbook question: MCQ 70 available online

An essential facet of statistics is the ability to summarize the 
important attributes of the analysis. We must know what to 
include and how to display our results in a manner that enables 
others to obtain relevant and important information easily and 
draw correct conclusions1. This chapter describes the key fea-
tures of presentation.

Numerical results
•	 Give figures only to the degree of accuracy that is appropriate 
(as a guideline, one significant figure more than the raw data). If 
analysing the data by hand, only round up or down at the end of 
the calculations.
•	 Give the number of items on which any summary measure 
(e.g. a percentage) is based.
•	 Report total sample and group sizes for each analysis.
•	 Describe any outliers and explain how they are handled 
(Chapter 3).
•	 Include the units of measurement.
•	 When interest is focused on a parameter (e.g. the mean, regres-
sion coefficient), always indicate the precision of its estimate. 
We recommend using a confidence interval. Avoid using the ± 
symbol, as in mean ± SEM (Chapter 10), because by adding and 
subtracting the SEM, we create a 67% confidence interval that 
can be misleading for those used to 95% confidence intervals. 
If absolutely necessary, it is better to show the standard error in 
brackets (making it clear that this is the SEM) after the parameter 
estimate, e.g. mean = 16.6 g (SEM 0.5 g).
•	 When interest is focused on the distribution of observations, 
always indicate a measure of the ‘spread’ of the data. The range of 
values that excludes outliers (typically, the range of values contain-
ing the central 95% of the observations (Chapter 6)) is a useful 
descriptor provided the minimum and maximum values of the 
range are provided. If the data are Normally distributed, this range 
is approximated by the sample mean ± 1.96 × SD (Chapter 7). The 
mean and SD can be quoted instead, e.g. mean = 35.9 mm (SD 
2.8 mm), but this leaves the reader to evaluate the range.

Tables
•	 Do not give too much information in a table.
•	 Include a concise, informative and unambiguous title.
•	 Label each row and column.
•	 Remember that it is easier to scan information down columns 
rather than across rows.

Diagrams
•	 Keep a diagram simple and avoid unnecessary frills (e.g. mak-
ing a pie chart three-dimensional).
•	 Include a concise, informative and unambiguous title.
•	 Label all axes, segments and bars, and explain the meaning of 
symbols.
•	 Avoid distorting results by exaggerating the scale on an axis.
•	 Indicate where two or more observations lie in the same posi-
tion on a scatter diagram, e.g. by using a different symbol.
•	 Ensure that all the relevant information is contained in the dia-
gram (e.g. link paired observations).

Presenting results in a paper
When presenting results in a paper, we should ensure that the 
paper contains enough information for the reader to understand 
what has been done. He or she should be able to reproduce the 
results, given the data. All aspects of the design of the study 
and the statistical methodology must be fully described. This 
implies stating the primary aim of the study, summarizing each 
of the variables used in the analysis with descriptive statistics, 
fully describing the statistical methods for the primary and any 
secondary analyses (rather than listing all the methods in one 
place), indicating, if relevant, how any allowances were made for 
multiple comparisons, reporting the significance level used for 
hypothesis tests and naming the statistical package used for the 
analysis.

The EQUATOR Network (Appendix D) provides resources 
and training for the reporting of health research. Its website 
(www.equator-network.org) provides links to guidelines 
for the presentation of study results: these are available for 
many types of study design2, including randomized trials 
(CONSORT, Chapter 14), clinical trial protocols (SPIRIT, 
Chapter 14), observational studies (STROBE, Chapters 15 and 
16), diagnostic accuracy (STARD, Chapter 38), reliability and 
agreement studies (GRRAS, Chapter 39), systematic reviews 
and meta-analyses (PRISMA and MOOSE, Chapter 43) and 
model development and validation (TRIPOD, Chapter 46). 
In addition, the SAMPL guidelines (www.equator-network.
org/reporting-guidelines/sampl/) explain how to report basic 
statistical methods and results.

In the sections that follow, we provide a summary of how to 
report common types of statistical analysis. 
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112 Results of a hypothesis test
•	 Include a relevant diagram, if appropriate.
•	 Indicate the hypotheses of interest.
•	 Name the test and state whether it is one- or two-tailed.
•	 Justify the assumptions (if any) underlying the test (e.g. Nor-
mality, constant variance (Chapter 35)), and describe any trans-
formations (Chapter 9) required to meet these assumptions (e.g. 
taking logarithms).
•	 Specify the observed value of the test statistic, its distribution 
(and degrees of freedom, if relevant) and, if possible, the exact 
P-value (e.g. P = 0.03) rather than an interval estimate of it (e.g. 
0.01 < P < 0.05) or a star system (e.g. *, **, *** for increasing lev-
els of significance). Avoid writing ‘n.s.’ when P > 0.05; an exact 
P-value is preferable even when the result is non-significant.
•	 Include an estimate of the relevant effect of interest (e.g. the 
difference in means for the two-sample t-test, or the mean differ-
ence for the paired t-test) with a confidence interval (preferably) 
or standard error.
•	 Draw conclusions from the results (e.g. reject the null hypothesis), 
interpret any confidence intervals and explain their implications.

Results of a regression analysis
Here we include simple (Chapters 27 and 28) and multiple linear 
regression (Chapter 29), logistic regression (Chapter 30), Pois-
son regression (Chapter 31), Cox proportional hazards regres-
sion (Chapter 44) and regression methods for clustered data 
(Chapter 42). Full details of these analyses are explained in the 
associated chapters.
•	 Include relevant diagrams (e.g. a scatter plot with the fitted line 
for simple regression taking care not to extend the regression line 
beyond the minimum and maximum values of the data).
•	 Describe the purpose of the analysis, clearly stating which 
is the dependent variable and which is (are) the explanatory 
variable(s).
•	 Justify underlying assumptions and explain the results of 
regression diagnostics, if appropriate.
•	 Describe any transformations, and explain their purpose.
•	 Report how outlying values and missing values were treated 
in the analysis
•	 Where appropriate, describe the possible numerical values 
taken by any categorical variable (e.g. male = 0, female = 1), how 

dummy variables were created (Chapter 29), and the units of 
numerical variables.
•	 Give an indication of the goodness of fit of the model (e.g. 
quote R2 (Chapter 29) or likelihood ratio statistic (Chapter 32)).
•	 If appropriate (e.g. in multiple regression), give the results of 
the overall F-test from the analysis of variance table.
•	 For multivariable regression, report whether the variables 
were assessed for collinearity and interaction, and describe the 
variable selection process by which the final model was devel-
oped (e.g. forward stepwise).
•	 Provide estimates of all the coefficients in the model (includ-
ing those that are not significant, if applicable) together with the 
confidence intervals for the coefficients or standard errors of their 
estimates. In logistic regression (Chapter 30), Poisson regression 
(Chapter 31) and Cox proportional hazards regression (Chap-
ter 44), convert the coefficients to estimated odds ratios, relative 
rates or relative hazards (with confidence intervals). Interpret the 
relevant coefficients.
•	 Show the results of the hypothesis tests on the coefficients (i.e. 
include the test statistics and the P-values). Draw appropriate 
conclusions from these tests.

Complex analyses
There are no simple rules for the presentation of the more 
complex forms of statistical analysis. Be sure to describe the 
design of the study fully (e.g. the factors in the analysis of 
variance and whether there is a hierarchical arrangement), 
and include a validation of underlying assumptions, relevant 
descriptive statistics (with confidence intervals), test statis-
tics and P-values. A brief description of what the analysis is 
doing helps the uninitiated; this should be accompanied by a 
reference for further details.

References
1	 Lang, T.A. and Secic, M. (2006) How to Report Statistics in 

Medicine: Annotated Guidelines for Authors, Editors and 
Reviewers. 2nd edition. Philadelphia: American College of 
Physicians.

2	 Moher, D., Altman, D.G., Schulz, K., Simera, I. and Wager, E. 
(eds) (2014) Guidelines for Reporting Health Research: A User’s 
Manual. Oxford: Wiley-Blackwell.
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Table 37.1 and Fig. 37.1 provide examples indicating how important features of the relevant data sets may be displayed.  

Figure 37.1   Histograms showing the distribution of (a) systolic blood pressure and (b) height in a sample of 100 children (Chapter 26).
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Table 37.1: Information relating to �rst births in women with bleeding disorders†,
strati�ed by bleeding disorder

FXI
deficiency

vWDHaem BHaem ATotal 

101951448Number of women with live births

Mother’s age at birth of baby (years)

Bleeding disorder

Median
range

27.0

(16.7–37.9)

24.9

(16.7–33.0)

28.5

(25.6–34.9)

27.5

(18.8–36.6)

27.1

(22.3–37.9)

Gestational age of baby (weeks)

Median
(range)

40

(37–42)

39

(38–42)

40

(39–41)

40

(38–42)

40.5

(37–42)

Weight of baby   

Median
(range)

3.64

(1.96–4.46)

3.62

(1.96–4.46)

3.78

(3.15–3.94)

3.64

(2.01–4.35)

3.62

(2.90–3.84)

Sex of baby*

Boy
Girl

Not stated

20 (41.7%)
20 (41.7%)
 8 (16.7%)

8 (57.1%)
4 (28.6%)
2 (14.3%)

4 (40.0%)
4 (40.0%)
2 (20.0%)

Interventions received during labour*

Inhaled gas
Intramuscular pethidine
Intravenous pethidine

Epidural

25 (52.1%)
22 (45.8%)
 2 (4.2%)
10 (20.8%)

6 (42.9%)
9 (64.3%)
0 (0.0%)
3 (21.4%)

2 (40.0%)
1 (20.0%)
0 (0.0%)
2 (40.0%)

11 (57.9%)
 4 (21.1%)
 1 (5.3%)
 4 (21.1%)

6 (60.0%)
8 (80.0%)
1 (10.0%)
1 (10.0%)

*Entries are frequencies (%).
†The study is described in Chapter 2.

Informative and
unambiguous title

Rows and
columns fully

labelled

Estimates of location
and spread

Numerical
results quoted
to appropriate

degree of
accuracy

Numbers on which
percentages are

based

Units of measurement

(kg)

0 (–)
2 (40.0%)
3 (60.0%)

 8 (42.1%)
10 (52.6%)
  1 (5.3%)
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38 Diagnostic tools
Learning objectives

By the end of this chapter, you should be able to:
•	 Distinguish between a diagnostic test and a screening test 

and explain when each is appropriate
•	 Define ‘reference range’ and explain how it is used
•	 Describe two ways in which a reference range can be 

calculated
•	 Define the terms: true positive, false positive, true negative, 

false negative
•	 Estimate (with a 95% confidence interval) and interpret 

each of the following: prevalence, sensitivity, specificity, 
positive predictive value, negative predictive value

•	 Construct a receiver operating characteristic (ROC) curve
•	 Explain how the ROC curve can be used to choose an opti-

mal cut-off for a diagnostic test
•	 Explain how the area under the ROC curve can be used 

to assess the ability of a diagnostic test to discriminate 
between individuals with and without a disease and to 
compare two diagnostic tests

•	 Calculate and interpret the likelihood ratio for a positive 
and for a negative test result if the sensitivity and specific-
ity of the test are known

Relevant Workbook questions: MCQs 71 and 72; and SQs 
23 and 24 available online

An individual’s state of health is often characterized by a number 
of numerical or categorical measures. In this context, an appro-
priate reference interval (Chapters 6 and 7) and/or diagnostic 
test may be used:
•	 by the clinician, together with a clinical examination, to diag-
nose or exclude a particular disorder in his or her patient;
•	 as a screening device to ascertain which individuals in an appar-
ently healthy population are likely to have (or sometimes, not have) 
the disease of interest. Individuals flagged in this way will then usu-
ally be subjected to more rigorous investigations in order to have 
their diagnosis confirmed. It is only sensible to screen for a disease if 
there are adequate facilities for treating the disease at the pre-symp-
tomatic stages, this treatment being less costly and/or more effective 
than when given at a later stage (or, occasionally, if it is believed that 
individuals who are diagnosed with the disease will modify their 
behaviour to prevent the disease spreading).

A diagnostic test may also be used:
•	 as one of an array of routine tests (e.g. blood tests) that 
may identify a disorder unrelated to the condition under 
investigation;
•	 as a staging test (e.g. for cancer);
•	 as a monitoring test to track a patient’s progress over time (e.g. 
blood pressure).

This chapter describes some of the methods that are used to 
develop these diagnostic tools for clinical use and explains how 
to interpret their results. STARD, another component of the 
EQUATOR network (see Appendix D and Chapter 37), provides 
reporting guidelines for studies of diagnostic accuracy (www.
equator-network.org/reporting-guidelines/stard/ and http://
www.equator-network.org/reporting-guidelines/stard/).

Reference intervals
A reference interval (often referred to as a normal range) for a 
single numerical variable, calculated from a very large sample, 
provides a range of values that are typically seen in healthy indi-
viduals. If an individual’s value is above the upper limit, or below 
the lower limit, we consider it to be unusually high (or low) rela-
tive to healthy individuals.

Calculating reference intervals
Two approaches can be taken.
•	 We make the assumption that the data are Normally 
distributed. Approximately 95% of the data values lie within 
1.96 standard deviations of the mean (Chapter 7). We use our 
data to calculate these two limits (mean ± 1.96 × standard 
deviation).
•	 An alternative approach, which does not make any assump-
tions about the distribution of the measurement, is to use a cen-
tral range that encompasses 95% of the data values (Chapter 6). 
We put our values in order of magnitude and use the 2.5th and 
97.5th percentiles as our limits.

The effect of other factors on reference 
intervals
Sometimes the values of a numerical variable depend on other 
factors, such as age or sex. It is important to interpret a particular 
value only after considering these other factors. For example, we 
generate reference intervals for systolic blood pressure separately 
for men and women.

Diagnostic tests
The gold standard test that provides a definitive diagnosis of a 
particular condition may sometimes be impractical or not rou-
tinely available. We would like a simple test, depending on the 
presence or absence of some marker, which provides a reason-
able guide to whether or not the patient has the condition.

To evaluate a diagnostic test, we apply this test to a group of 
individuals whose true disease status is known from the gold 
standard test. We can draw up the 2  ×  2 table of frequencies 
(Table 38.1).

Table 38.1  Table of frequencies.

Gold standard test
Test result Disease No disease Total

Positive a b a + b
Negative c d c + d
Total a + c b + d n = a + b + c + d
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117Of the n individuals studied, a + c individuals have the disease. 

The prevalence (Chapter 12) of the disease in this sample is

( )a c
n
+

Of the a + c individuals who have the disease, a have positive 
test results (true positives) and c have negative test results (false 
negatives). Of the b + d individuals who do not have the disease, 
d have negative test results (true negatives) and b have positive 
test results (false positives).

Assessing the effectiveness of the test: 
sensitivity and specificity
Sensitivity = �proportion of individuals with the disease who are 

correctly identified by the test

=
+
a

a c( )

Specificity = �proportion of individuals without the disease who 
are correctly identified by the test

=
+
d

b d( )

These are usually expressed as percentages. As with all estimates, 
we should calculate confidence intervals for these measures 
(Chapter 11).

We would like our test to have a sensitivity and specificity that 
are both as close to 1 (or 100%) as possible. However, in practice, 
we may gain sensitivity at the expense of specificity, and vice versa. 
Whether we aim for a high sensitivity or high specificity depends 
on the condition we are trying to detect, along with the implications 
for the patient and/or the population of either a false negative or 
false positive test result. For conditions that are easily treatable, we 
prefer a high sensitivity; for those that are serious and untreatable, 
we prefer a high specificity in order to avoid making a false positive 
diagnosis. It is important that, before screening is undertaken, 
subjects should understand the implications of a positive diagnosis, 
as well as having an appreciation of the false positive and false 
negative rates of the test.

Using the test result for diagnosis: predictive 
values
Positive predictive value = �proportion of individuals with a pos-

itive test result who have the disease, 
calculated as

=
+
a

a b( )

Negative predictive value = �proportion of individuals with a 
negative test result who do not have 
the disease, calculated as

=
+
d

c d( )

We calculate confidence intervals for these predictive values, 
often expressed as percentages, using the methods described in 
Chapter 11.

The sensitivity and specificity quantify the diagnostic ability 
of the test but it is the predictive values that indicate how 
likely it is that the individual has or does not have the disease, 
given his or her test result. Predictive values are dependent on 
the prevalence of the disease in the population being studied. 

In populations where the disease is common, the positive 
predictive value of a given test will be much higher than in 
populations where the disease is rare. The converse is true for 
negative predictive values. Therefore, predictive values can 
rarely be generalized beyond the study.

The use of a cut-off value
Sometimes we wish to make a diagnosis on the basis of a numeri-
cal or ordinal measurement. Often there is no threshold above 
(or below) which disease definitely occurs. In these situations, we 
need to define a cut-off value ourselves above (or below) which 
we believe an individual has a very high chance of having the 
disease.

A useful approach is to use the upper (or lower) limit of 
the reference interval. We can evaluate this cut-off value by 
calculating its associated sensitivity, specificity and predictive 
values. If we choose a different cut-off, these values may change 
as we become more or less stringent. We choose the cut-off to 
optimize these measures as desired.

The receiver operating characteristic  
(ROC) curve
This provides a way of assessing whether a particular type of test 
provides useful information, and can be used to compare two 
different tests, and to select an optimal cut-off value for a test.

To draw the receiver operating characteristic (ROC) 
curve for a given test, we consider all cut-off points that give a 
unique pair of values for sensitivity and specificity, and plot the 
sensitivity against one minus the specificity (thus comparing the 
probabilities of a positive test result in those with and without 
disease) and connect these points by lines (Fig. 38.1).

The ROC curve for a test that has some use will lie to the left 
of the diagonal (i.e. the 45° line) of the graph. Depending on the 
implications of false positive and false negative results, and the 
prevalence of the condition, we can choose the optimal cut-off 
for a test from this graph. The overall accuracy of two or more 
tests for the same condition can be compared by considering 
the area under each curve (sometimes referred to as AUROC); 

Figure 38.1   Receiver operating characteristic (ROC) curve,
highlighting the results with two cut-off values of ceruloplasmin
level: 16.6 and 20 mg/dL.
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118 this area can be calculated manually or is given by the c statistic. 
c can be interpreted as the probability that a randomly chosen 
subject from the disease group has a higher predicted probability 
of having the disease than a randomly chosen subject from the 
disease-free group. The test with the greater area (i.e. the higher 
c statistic) is better at discriminating between disease outcomes. 
A test that is perfect at discriminating between the disease 
outcomes has c = 1 and a non-discriminating test that performs 
no better than chance has c = 0.5.

We also discuss the area under the ROC curve in Chapter 46 
in the context of prognostic scores.

Is a test useful?
The likelihood ratio (LR) for a positive test result is the ratio of 
the chance of a positive result if the patient has the disease to the 

chance of a positive result if he or she does not have the disease 
(see also Chapter 32). For example, a LR of 2 for a positive result 
indicates that a positive result is twice as likely to occur in an 
individual with disease than in one without it.

It can be shown that

LR for a positive result sensitivity
specificity

=
−( )1

A LR can also be generated for a negative test result and is 
most easily calculated as (1 – sensitivity)/specificity. A high LR 
(e.g. >10) for a positive test result suggests that the test is useful 
and provides evidence to support the diagnosis. Similarly, a LR 
close to 0 (e.g. <0.01) for a negative result allows us to rule out 
the diagnosis. We discuss the LR in the context of diagnostic tests 
in a Bayesian framework in Chapter 45.

Example

Wilson’s disease (WD) is a genetic disorder with copper 
metabolism disturbances leading to copper accumulation in 
many organs, inducing secondary damage. Early diagnosis 
and treatment are important to prevent permanent damage 
to the liver and to avoid disease progression in the brain. In 
addition, WD can progress to severe haemolytic anaemia 
or fulminant hepatic failure, which can lead to death if 
diagnosis is delayed. For the initial screening of WD in the 
general population, measurement of serum ceruloplasmin 
levels is the first-line diagnostic test due to its rapidity and 
low cost. Although it is conventional to use a ceruloplasmin 
concentration <20  mg/dL as the cut-off, this level may not 
be optimal for children and young adults with hepatitis who 
tend to have lower ceruloplasmin concentrations than older 
patients. Jung Ah Kim et al. evaluated the diagnostic value of 
ceruloplasmin concentration for the diagnosis of WD among 
children and young adults with hepatitis in a medical centre in 
Korea. All 2834 patients, reviewed retrospectively, were under 
20 years of age, and 181 of them were diagnosed as having 
WD, confirmed by the identification of pathogenic variants in 
the ATP7B gene. No differences were seen in the distributions 
of the basic characteristics of those with and without WD, 
including age. The table of frequencies shows the results the 
investigators obtained using a ceruloplasmin concentration 
<20 mg/dL as their cut-off; the box contains calculations of 
estimates of measures of interest for this cut-off.

Ceruloplasmin (mg/dL)
Wilson’s disease
Yes No Total

<20 169 418 587

≥20 12 2235 2247

Total 181 2653 2834

Therefore for a cut-off of <20 mg/dL, there is high sensitivity 
and relatively high specificity. The false positive rate is (418)/
(2653) ×  100 =  15.8% (95% CI 14.4% to 17.1%). The LR of a 

positive test result of 5.9 indicates that this test could be useful, 
in that a ceruloplasmin concentration <20  mg/dL is nearly six 
times more likely in an individual (i.e. a child or young adult with 
hepatitis) with WD than in one without WD. However, in order  
to investigate other cut-off values, a ROC curve was plotted  
(Fig 38.1). The area under the ROC curve is 0.96 (95% CI 0.94 
to 0.98), indicating that using ceruloplasmin concentration as a 
diagnostic tool is very accurate at discriminating between those 
who do and do not have WD. Further investigation of the ROC 
curve shows that the most useful cut-off is 16.6 mg/dL, which gives 
a sensitivity of 91.2% (95% CI 87.0% to 95.3%), a specificity of 
94.9% (95% CI 94.1% to 95.8%), a false positive rate of 5.1% (95% 
CI 4.2% to 5.9%) and a LR of 17.9 (95% CI 15.0 to 21.0). Thus, if 
clinicians were to use the test with the lower cut-off value in those 
aged <20 years with hepatitis, a ceruloplasmin concentration 
<16.6  mg/dL would indicate that the individual would be very 
likely to have WD. Clearly, the diagnostic value of ceruloplasmin 
concentration appears to be strengthened by using the revised 
cut-off value in those with hepatitis aged <20 years.

Prevalence = (181/2834) × 100 = 6.4% (95% CI 5.5%  
to 7.3%)

Sensitivity = (169/181) × 100 = 93.4% (95% CI 89.7%  
to 97.0%)

Specificity = (2235/2653) × 100 = 84.2% (95% CI 82.9% to 
85.6%)

Positive predictive value = (169/587) × 100 = 28.8% (95% 
CI 25.1% to 32.5%)

Negative predictive value = (2235/2247) × 100 = 99.5% 
(95% CI 99.2% to 99.8%)

Likelihood ratio for positive result = (0.934)/(1 – 0.842)  
= 5.9 (95% CI 5.4 to 6.5, obtained from computer output)

Likelihood ratio for negative result = (1 – 0.934)/(0.842)  
= 0.08 (95% CI 0.05 to 0.14, obtained from computer output)

Jung Ah Kim, Hyun Jin Kim, Jin Min Cho, et al. (2015) Diagnostic value of ceruloplasmin in the diagnosis of pediatric Wilson’s disease. Pediatric 
Gastroenterology, Hepatology and Nutrition, 18(3), 187–192.
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39 Assessing agreement
Learning objectives
By the end of this chapter, you should be able to:
•	 Distinguish between measurement variability and meas-

urement error
•	 Distinguish between systematic and random error
•	 Distinguish between reproducibility and repeatability
•	 Calculate and interpret Cohen’s kappa for assessing the 

agreement between paired categorical responses
•	 Explain what a weighted kappa is and when it can be 

determined
•	 Explain how to test for a systematic effect when comparing 

pairs of numerical responses
•	 Explain how to perform a Bland and Altman analysis 

to assess the agreement between paired numerical 
responses and interpret the limits of agreement

•	 Explain how to calculate and interpret the British Stand-
ards Institution reproducibility/repeatability coefficient

•	 Explain how to calculate and interpret the intraclass corre-
lation coefficient and Lin’s concordance correlation coef-
ficient in a method comparison study

•	 Explain why it is inappropriate to calculate the Pearson 
correlation coefficient to assess the agreement between 
paired numerical responses

Relevant Workbook questions: MCQs 73 and 74; and SQs 
25 and 26 available online

Measurement variability and error
A biological variable measured on each of a number of indi-
viduals will always exhibit a certain amount of variability.  
The measurements are likely to vary between individuals  
(inter-individual variation) as well as within the same indi-
vidual (intra-individual variation) if the measurement on that 
individual is repeated, either immediately or some time later. 
Much of this variability arises because of differences in asso-
ciated factors, e.g. genetic, environmental or lifestyle factors. 
For example, blood pressure measurements may vary between 
individuals if these individuals differ in terms of their sex, age, 
weight or smoking status and within an individual at different 
times of the day. We refer to this type of variability as measurement  
variability. We define measurement error as that which arises 
when there is a difference between the observed (or ‘measured’) 
values and true values of a variable (note that although we refer 
to the ‘true’ measurement here, it is rarely possible to obtain this 
value). Measurement error may be:
•	 Systematic – the observed values tend to be too high (or too 
low) because of some known or unknown extraneous factor 
affecting the measurements in the same way (e.g. an observer 
overestimating the values). Systematic errors lead to biased esti-
mates, raising concerns about validity, and should be reduced as 
far as possible by, for example, standardizing conditions, training 
observers and/or calibrating the instrument (i.e. verification by 
comparison with a known standard).
•	 Random – the observed values are sometimes greater and 
sometimes less than the true values but they tend to balance out 
on average. For example, random errors may occur because of a 
lack of sensitivity of the measuring instrument. Random error is 
governed by chance although the degree of error may be affected 

by external factors (e.g. the pH in fresh blood samples may 
exhibit greater random error when these samples are at room 
temperature rather than on ice).

Both measurement variability and error are important when 
assessing a measurement technique. Although the description of 
error in this section has focused on laboratory measurements, 
the same concepts apply even if we are interested in other forms 
of measurement, such as an individual’s state of health on a 
particular day, as assessed by a questionnaire.

Reliability
There are many occasions when we wish to compare results that 
should concur. In particular, we may want to assess and, if possi-
ble, quantify the following two types of agreement or reliability.
•	 Reproducibility (method/observer agreement) – do two 
techniques used to measure a particular variable, in otherwise 
identical circumstances, produce the same result? Do two or 
more observers using the same method of measurement obtain 
the same results?
•	 Repeatability – does a single observer obtain the same results 
when she or he takes repeated measurements in identical cir-
cumstances?

Reproducibility and repeatability can be approached in the 
same way. In each case, the method of analysis depends on 
whether the variable is categorical (e.g. poor/average/good) or 
numerical (e.g. systolic blood pressure). For simplicity, we shall 
restrict the problem to that of comparing only paired results (e.g. 
two methods/two observers/duplicate measurements).

Categorical variables
Suppose we wish to gauge the extent to which there is agreement 
between two methods of assessing a disease using a categorical 
scale of measurement, after previously showing each method to 
be repeatable.

Is there a systematic effect?
If there is a systematic effect then one of the two methods pro-
duces a greater proportion of patients in one disease category 
than the other method. We may assess this if there are only two 
disease categories by using McNemar’s test comparing propor-
tions in related groups (Chapter 24). If there are more than two 
disease categories, the McNemar–Bowker test may be used, but 
this is beyond the scope of this book. A non-significant result 
suggests that there is no evidence of a systematic effect. If one set 
of results represents the ‘gold standard’, as is likely in a method 
comparison study, this implies that bias is not indicated.

The kappa measure of agreement
We present the results in a two-way contingency table of fre-
quencies with the rows and columns indicating the catego-
ries of response for each method (see Table 39.1, which shows 
the assessments of two different methods of testing for human 
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120 papillomavirus (HPV) DNA). The frequencies with which there 
is agreement between the methods are shown along the diagonal 
of the table. We calculate the corresponding frequencies that would 
be expected if the categorizations were made at random, in the 
same way as we calculated expected frequencies in the Chi-squared 
test of association (Chapter 24), i.e. each expected frequency is the 
product of the relevant row and column totals divided by the over-
all total. Then we measure agreement by

Cohen’s kappa
d d

d
, κ =

−( )
−( )

O
m

E
m

E
m

1

which represents the chance corrected proportional agreement, 
where:
•	 m = total observed frequency (e.g. total number of patients)
•	 Od= sum of observed frequencies along the diagonal
•	 Ed= sum of expected frequencies along the diagonal
•	 1 in the denominator represents maximum agreement.

κ = 1 implies perfect agreement and κ = 0 suggests that the 
agreement is no better than that which would be obtained by 
chance. There are no objective criteria for judging intermediate 
values. However, kappa is often judged as providing agreement1 
which is:
•	 poor if κ < 0.00
•	 slight if 0.00 ≤ κ ≤ 0.20
•	 fair if 0.21 ≤ κ ≤ 0.40
•	 moderate if 0.41 ≤ κ ≤ 0.60
•	 substantial if 0.61 ≤ κ ≤ 0.80
•	 almost perfect if κ > 0.80.

Although it is possible to estimate a standard error and 
confidence interval2 for kappa, we do not usually test the 
hypothesis that kappa is zero since this is not really pertinent or 
realistic in a reliability study.

Note that kappa is dependent both on the number of 
categories (i.e. its value is greater if there are fewer categories) 
and the prevalence of the condition, so care must be taken when 
comparing kappas from different studies. For ordinal data, we 
can also calculate a weighted kappa3 which takes into account 
the extent to which the methods disagree (the non-diagonal 
frequencies) as well as the frequencies of agreement (along the 
diagonal). The weighted kappa is very similar to the intraclass 
correlation coefficient (see next section and Chapter 42).

Numerical variables
Suppose an observer takes duplicate measurements of a numeri-
cal variable on n individuals (just replace the word ‘repeatability’ 
by ‘reproducibility’ in the text which follows if considering the 
similar problem of method agreement, but remember to assess 
the repeatability of each method before carrying out the method 
agreement study).

Is there a systematic effect?
If we calculate the difference between each pair of measure-
ments and find that the average difference is zero (this is usually 
assessed by the paired t-test but we might use the sign test or 
signed ranks test (Chapters 19 and 20)), then we can infer that 
there is no systematic difference between the pairs of results, i.e 
on average, the duplicate readings agree. If one set of readings 
represents the true values, as is likely in a method comparison 
study, this means that there is no evidence of bias.

Measures of repeatability and the Bland and 
Altman diagram
The estimated standard deviation of the differences (sd) provides 
a measure of agreement for an individual. However, it is more 
usual to calculate the British Standards Institution repeat-
ability coefficient = 2sd. This is the maximum difference that is 
likely to occur between two measurements. Assuming a Normal 
distribution of differences, we expect approximately 95% of the 
differences in the population to lie between d s± 2 d where d  is 
the mean of the observed differences. The upper and lower limits 
of this interval are called the limits of agreement; from them, 
we can decide (subjectively) whether the agreement between 
pairs of readings in a given situation is acceptable. The limits 
are usually indicated on a Bland and Altman diagram which is 
obtained by calculating the mean of and the difference between 
each pair of readings, and plotting the n differences against their 
corresponding means4 (Fig. 39.1). The diagram can also be used 
to detect outliers (Chapter 3).

It makes no sense to calculate a single measure of repeatability 
if the extent to which the observations in a pair disagree 
depends on the magnitude of the measurement. We can check 
this using the Bland and Altman diagram (Fig 39.1). If we 
observe a random scatter of points (evenly distributed above 
and below zero if there is no systematic difference between 
the pairs), then a single measure of repeatability is acceptable. 
If, however, we observe a funnel effect, with the variation in 
the differences being greater (say) for larger mean values, 
then we must reassess the problem. We may be able to find an 
appropriate transformation of the raw data (Chapter 9) so that, 
when we repeat the process on the transformed observations, 
the required condition is satisfied.

Indices of reliability
Intraclass correlation coefficient
An index of reliability commonly used to measure repeatabil-
ity and reproducibility is the intraclass correlation coefficient 
(ICC, Chapter 42), which takes a value from 0 (no agreement) to 
1 (perfect agreement). When measuring the agreement between 
pairs of observations, the ICC is the proportion of the variability 
in the observations that is due to the differences between pairs, 
i.e. it is the between-pair variance expressed as a proportion of 
the total variance of the observations.

When there is no evidence of a systematic difference 
between the pairs, we may calculate the ICC as the Pearson 
correlation coefficient (Chapter 26) between the 2n pairs 
of observations obtained by including each pair twice, once 
when its values are as observed and once when they are 
interchanged (see Example 2).

If we wish to take the systematic difference between the 
observations in a pair into account, we estimate the ICC as

s s

s s
n

nd s
a d

a d d

2 2

2 2 2 22
−

+ + −( )

where we determine the difference between and the sum of the 
observations in each of the n pairs and:
•	 sa

2  is the estimated variance of the n sums
•	 sd

2  is the estimated variance of the n differences
•	 d  is the estimated mean of the differences (an estimate of the 
systematic difference).
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121We usually carry out a reliability study as part of a larger 
investigative study. The sample used for the reliability study 
should be a reflection of that used for the investigative study. We 
should not compare values of the ICC in different data sets as the 
ICC is influenced by features of the data, such as its variability (the 
ICC will be greater if the observations are more variable). Note 
that the ICC is not related to the actual scale of measurement nor 
to the size of error which is clinically acceptable.

Lin’s concordance correlation coefficient
It is inappropriate to calculate the Pearson correlation coeffi-
cient (Chapter 26) between the n pairs of readings (e.g. from the 
first and second occasions or from two methods/observers) as 
a measure of reliability. We are not really interested in whether 
the points in the scatter diagram (e.g. of the results from the first 
occasion plotted against those from the second occasion) lie on 
a straight line; we want to know whether they conform to the 
line of equality (i.e. the 45° line through the origin when the two 
scales are the same). This will not be established by testing the 
null hypothesis that the true Pearson correlation coefficient is 
0. It would, in any case, be very surprising if the pairs of meas-
urements were not related, given the nature of the investigation. 
Instead, we may calculate Lin’s concordance correlation coef-
ficient5 as an index of reliability which is almost identical to the 
ICC. Lin’s coefficient modifies the Pearson correlation coefficient 
which assesses the closeness of the data about the line of best fit 
(Chapters 28 and 29) in the scatter plot by taking into account 
how far the line of best fit is from the 45° line through the origin. 
The maximum value of Lin’s coefficient is 1, achieved when there 
is perfect concordance, with all the points lying on the 45° line 
drawn through the origin. The coefficient can be calculated as

r
rs s

s s x yc
x y

x y
=

+ + −
2

2 2 ( )

where r is the estimated Pearson correlation coefficient (Chapter 
26) between the n pairs of results (xi, yi), and x  and y are the 
sample means of x and y, respectively.
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times the estimated variance of
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y= −1 times the estimated variance of

More complex situations
Sometimes you may come across more complex problems when 
assessing agreement. For example, there may be more than two 
replicates, or more than two observers, or each of a number of 
observers may have replicate observations. You can find details 
of the analysis of such problems in Streiner and Norman6.

Reporting guidelines
GRRAS, another component of the EQUATOR network (Appen-
dix D and Chapter 37), proposes a checklist for the reporting 
of reliability and agreement studies (www.equator-network.org/
reporting-guidelines/guidelines-for-reporting-reliability-and-
agreement-studies-grras-were-proposed/).
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Example 1 

Assessing agreement – categorical variable

Investigators studied whether a dry cervical sample taken with a 
flocked swab is a valid alternative for human papillomavirus (HPV) 
DNA testing compared with the standard practice of a wet sample 
taken with a cyto-broom placed directly into liquid media. Samples 
from 209 women attending a dysplasia clinic in Melbourne were 
compared; the order of the sampling method (wet or dry) had been 
randomized. HPV results were classified as being HPV16 positive 

(HPV16+), HPV18 positive (HPV18+), positive for another HPV type 
(Other HPV+) or negative (HPV–). The observed frequencies are 
shown in Table 39.1. The bold figures along the diagonal show the 
observed frequencies of agreement; the corresponding expected 
frequencies are in brackets. We calculated Cohen’s kappa to 
assess the agreement between the two observers.

We estimate Cohen’s kappa as

κ = + + +( )[ ] − + + +( )[ ]
− +

19 2 56 117 209 1 73 0 04 18 66 74 13 209
1 1 73

/ . . . . /
. 00 04 18 66 74 13 209

0 9282 0 4524
1 0 4524

0 87

. . . /
. .

.
.

+ +( )[ ]

= −( )
−

=

Since κ = 0.87 (95% CI 0.80 to 0.93, from computer output) 
there appears to be almost perfect agreement between the 
two collection methods for the detection of different HPV types. 

Thus, it is reasonable to use the dry sampling method as a valid 
alternative to the wet sampling method for HPV DNA testing.

continued 
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Example 2

Assessing agreement – numerical variables

In order to plan facial jaw surgery (orthognathic surgery), 
vertical measurements of plaster models of the patient’s upper 
jaw are measured in millimetres using an electronic caliper set 
into a granite platform known as an Erickson model platform. 
These measurements are usually carried out by the Chief 
Orthodontic Technician, very experienced in using this piece of 
measuring equipment. A clinician (Operator 1), inexperienced 
in the Erickson model platform, wished to test whether, using 
the Erickson technique on the same plaster models under 
identical conditions, her 50 readings agreed with those of the 
experienced technician (Operator 2) whose measurements 
could be taken as the ‘gold standard’. The results are shown 
in Table 39.2. The differences (Operator 1  – Operator 2) can 
be shown to be approximately Normally distributed: they 
have a mean of d   =  0.0112  mm and a standard deviation 
sd = 0.0498 mm. The test statistic for the paired t-test is equal 
to 1.59 (degrees of freedom = 49), giving P = 0.119. This non-
significant result indicates that there is no evidence of any 
systematic difference (i.e. bias) between the results measured 
by the two operators.

The British Standards Institution repeatability coefficient 
is 2sd  = 2 × 0.0498 =  0.0996  mm. Approximately 95% of 
the differences in the population of such patients would be 

expected to lie between d s± 2 d, i.e. between –0.089 and 
0.111 mm. These limits are indicated by the red lines in Fig. 39.1, 
which shows that the differences are randomly scattered around 
a mean of approximately zero.

The index of reliability is estimated as

16 1532 0 00248

16 1532 0 00248
2

50
50 0 0012 0 00248

0
2

. .

. . . .
.

−

+ + ( ) −( )
= 99997

Because the systematic difference is negligible, this value 
for the ICC is the same as the one we get by calculating the 
Pearson correlation coefficient for the 50 pairs of results 
obtained by using each pair of results twice, once with the 
order reversed. As an illustration of the technique, consider the 
first five pairs of pre-treatment values: (92.38, 92.39), (91.79, 
91.84), (88.84, 88.82), (86.84, 86.78) and (92.80, 92.70). If we 
reverse the order of each pair, we obtain a second set of five 
pairs: (92.39, 92.38), (91.84, 91.79), (88.82, 88.84), (86.78, 
86.84) and (92.70, 92.80). By repeating this process for the 
remaining 45 pairs, and combining the second set of pairs with 
the first set, we obtain a total of 100 pairs, which we use to 
calculate the correlation coefficient, an estimate of the ICC. The 

Table 39.2  Vertical measurements (mm) of the plaster models of 50 jaws taken by Operator 1 (clinician) 
and Operator 2 (experienced technician).

1  2 1 2 1 2 1 2 1 2
92.38 92.39 93.36 93.40 92.01 91.90 93.60 93.63 91.58 91.57
91.79 91.84 93.37 93.31 91.37 91.32 91.46 91.44 92.73 92.75
88.84 88.82 94.91 94.87 90.57 90.54 89.76 89.69 92.57 92.64
86.84 86.78 94.79 94.80 92.09 92.03 93.32 93.32 90.04 90.07
92.80 92.70 92.22 92.17 92.07 92.15 93.28 93.29 88.12 88.06
92.69 92.67 89.83 89.85 90.06 90.00 95.09 95.09 90.59 90.58
94.80 94.73 93.77 93.71 88.76 88.63 95.19 95.23 89.71 89.70
95.05 95.11 93.56 93.52 92.42 92.43 93.44 93.44 90.88 90.88
93.22 93.14 95.38 95.38 92.25 92.29 91.91 91.94 90.73 90.81
91.49 91.57 93.60 93.57 93.75 93.75 92.23 92.21 88.38 88.38

Table 39.1  Observed (and expected) frequencies of HPV detection from dry and wet collection methods.

Dry collection
Wet collection HPV16+ HPV18+ Other HPV+ HPV– Total
HPV16+ 19

(1.73)
0 0 0 19

HPV18+ 0 2
(0.04)

0 1 3

Other HPV+ 0 0 56
(18.66)

9 65

HPV- 0 1 4 117
(74.13)

122

Total 19 3 60 127 209

Data extracted from Sultana, F., Gertig, D.M., Wrede, C.D., et al. (2015) A pilot study to compare dry cervical sample collection with standard practice of wet cervical samples for 
human papillomavirus testing. Journal of Clinical Virology, 69, 210–213.

continued
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concordance correlation coefficient, which is calculated as

2 0 9997 2 0047 2 0147
4 0188 4 0590 92 0930 92 0818 2

. . .
. . . .

( )( )( )
+ + −( )

= 00 9997.

Since the maximum likely difference between measurements 
taken by the clinician and the experienced technician is around 

0.0996 mm, which is clinically acceptable, and since virtually all (i.e. 
99.97%) of the variability in the results can be attributed to differences 
between patients, the clinician (Operator 1) felt that her results were 
reproducible when compared to those of the experienced technician 
(Operator 2). Having previously confirmed that her results were 
repeatable (by investigating duplicate measurements, taken 1 week 
apart, of each model), the clinician was confident to use her own 
vertical measurements when planning orthognathic surgery.

Data kindly provided by Dr Helen Moss of the UCL Eastman Dental Institute, London, UK.

Figure 39.1   Difference between vertical measurements (mm) of plaster models of 50 jaws
taken by Operator 1 and Operator 2 plotted against their mean.
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40 Evidence-based medicine
Learning objectives

By the end of this chapter, you should be able to:
•	 Define evidence-based medicine (EBM)
•	 Describe the hierarchy of evidence associated with various 

study designs
•	 Explain each of the elements of the acronym PICO
•	 List the six steps involved in performing EBM to assess the 

efficacy of a new treatment, and describe the important 
features of each step

•	 Explain the term number needed to treat (NNT)
•	 Explain how to calculate the NNT
•	 Explain how to assess the effect of interest if the main 

outcome variable is binary
•	 Explain how to assess the effect of interest if the main 

outcome variable is numerical
•	 Explain how to decide whether the results of an investigation 

are important

Relevant Workbook questions: MCQ 75; and SQ 29 
available online

Straus et al.1 describe evidence-based medicine (EBM) as ‘the 
conscientious, explicit and judicious use of current best evidence 
in making decisions about the care of individual patients’. To 
practice EBM, you must be able to locate the research relevant to 
the care of your patients, and judge its quality. Only then can you 
think about applying the findings in clinical practice.

In order to assess the strength of the findings about any 
particular topic, it is important to recognize that different 
study designs provide varying levels of evidence relating to the 
answers obtained from the question posed. These levels may be 
specified in the following hierarchy (starting with the strongest 
and leading to the weakest evidence): systematic review or meta-
analysis of a randomized controlled trial (RCT) → RCT → cohort 
study → case–control study → cross-sectional survey → case 
reports → expert opinion → anecdotal information. Note that the 
hierarchy is not set in stone, as its arrangement depends partly on 
the problem at hand and partly on the quality of the individual 
studies themselves. For example, we would choose to perform an 
RCT to investigate a novel treatment; if, on the other hand, we 
wish to identify risk factors for a disease outcome, an RCT would 
not necessarily be appropriate and a cohort or case–control study 
would provide stronger evidence.

In Appendix D, in addition to the CONSORT checklist and 
flow chart (Table D1 and Fig. D1) for reporting RCTs (Chapter 14) 
and the STROBE checklist (Table D2) for reporting observational 
studies (Chapters 15 and 16), we also include templates that 
you may find helpful when critically appraising or evaluating 
the evidence in published papers on RCTs (Template D1) and 
observational studies (Template D2). You may find it useful to 
refer to AMSTAR 22 when critically appraising systematic reviews 
containing randomized and non-randomized studies.

Straus et al. suggest the following approach to EBM that 
provides more generic instructions than those in the templates, 
which focus on two particular types of study. However, for 
convenience, we have phrased the third and fourth points below 

in terms of clinical trials and observational studies; they can be 
modified to suit other forms of investigations (e.g. diagnostic 
tests, Chapter 38).

1 Formulate the clinical question (PICO)
The four main elements of a clinical question may be remem-
bered by the mnemonic PICO:
•	 P (Patient population) – what are the important characteristics 
of the patient population about which you are asking the clinical 
question? In the example in this chapter, the population com-
prises English speaking patients aged over 18 years with proven 
coronary heart disease (CHD) in Sydney, Australia.
•	 I (Intervention) – which main diagnostic or therapeutic inter-
vention, prognostic factor or exposure are you considering? In 
the example, the therapeutic intervention is that of mobile phone 
text messages (four per week for 6 months) in addition to usual 
care.
•	 C (Comparison) – what is the alternative to compare to the 
intervention? This is an optional component of PICO as there 
may be no alternative or it is not required. In the example, the 
alternative is usual care alone.
•	 O (Outcome) – what do you hope to accomplish in a specified 
time frame in terms of a measureable effect? In the example, it 
is a greater mean reduction in the text messaging group in low-
density lipoprotein cholesterol (LDL-C) at 6 months.

2 Locate the relevant information (e.g. on 
diagnosis, prognosis or therapy)
Often the relevant information will be found in published papers, 
but you should also consider other possibilities, such as conference 
abstracts. You must know what databases (e.g. Medline) and other 
sources of evidence are available, how they are organized, which 
search terms to use, and how to operate the searching software.

3 Critically appraise the methods in 
order to assess the validity (closeness  
to the truth) of the evidence
The following questions should be asked.
•	 Have all important outcomes been considered?
•	 Was the study conducted using an appropriate spectrum of 
patients?
•	 Do the results make biological sense?
•	 Was the study designed to eliminate bias (Chapter 34)?  
For example, in a clinical trial, was the study controlled, was 
randomization used in the assignment of patients, was the 
assessment of response ‘blind’, were any patients lost to follow-
up, were the groups treated in a similar fashion aside from the 
fact that they received different treatments, and was an ‘intention-
to-treat’ (ITT) analysis performed (Chapter 14)?
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125•	 Are the statistical methods appropriate (e.g. have underlying 
assumptions been verified, have dependencies in the data such as 
pairing been taken into account in the analysis)?

4 Extract the most useful results and 
determine whether they are important
Extracting the most useful results
You should ask the following questions.
(a)	 What is the main outcome variable (i.e. that which relates to 

the major objective)?
(b)	 How large is the effect of interest, expressed in terms of the 

main outcome variable? If this variable is:
•	 Binary (e.g. died/survived):

(i)	 What are the rates/risks/odds of occurrence of this 
event (e.g. death) in the (two) comparison groups?
(ii)	The effect of interest may be the difference in rates or 
risks (the absolute reduction) or a ratio (the relative rate or 
risk or odds ratio) – what is its magnitude?

•	 Numerical (e.g. systolic blood pressure):
(i)	 What is the mean (or median) value of the variable in 
each of the comparison groups?
(ii)	What is the effect of interest, i.e. the difference in means 
(medians)?

•	 How precise is the effect of interest? Ideally, the research 
being scrutinized should include the confidence interval for 
the true effect (a wide confidence interval is an indication of 
poor precision). Is this confidence interval quoted? If not, is 
sufficient information (e.g. the standard error of the effect 
of interest) provided so that the confidence interval can be 
determined?

Deciding whether the results are important
•	 Consider the confidence interval for the effect of interest (e.g. 
the difference in treatment means):

(i)	 Would you regard the observed effect to be clinically 
important (irrespective of whether or not the result of the 
relevant hypothesis test is statistically significant) if the lower 
limit of the confidence interval represented the true value of 
the effect?

(ii)	 Would you regard the observed effect to be clinically 
important if the upper limit of the confidence interval repre-
sented the true value of the effect?
(iii)	 Are your answers to the above two points sufficiently 
similar to declare the results of the study unambiguous and 
important?

•	 To assess therapy in a randomized controlled trial, evaluate the 
number of patients you need to treat (NNT) with the experi-
mental treatment rather than the control treatment in order to 
prevent one of them developing the ‘bad’ outcome. The NNT can 
be determined in various ways depending on the information 
available. It is, for example, the reciprocal of the difference in the 
proportions of individuals with the bad outcome in the control 
and experimental groups.

5 Apply the results in clinical practice
If the results are to help you in caring for your patients, you must 
ensure that:
•	 your patient is similar to those on whom the results were 
obtained;
•	 the results can be applied to your patient;
•	 all clinically important outcomes have been considered;
•	 the likely benefits are worth the potential harms and costs.

6 Evaluate your performance
Self-evaluation involves questioning your abilities to complete 
tasks 1 to 5 successfully. Are you then able to integrate the critical 
appraisal into clinical practice, and have you audited your per-
formance? You should also ask yourself whether you have learnt 
from past experience so that you are now more efficient and are 
finding the whole process of EBM easier.

References
1	 Straus, S.E., Richardson, W.S., Glasziou, P. and Haynes, R.B. 

(2005) Evidence-based Medicine: How to Practice and Teach EBM. 
3rd edition. London: Churchill-Livingstone.

2	 Shea, B.J., Reeves, B.C., Wells, G., et al (2017) AMSTAR 2: a criti-
cal appraisal tool for systematic reviews that include randomised 
or non-randomised studies of healthcare interventions, or both. 
BMJ, 358, j4008.
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Adapted from Chow, C.K., Redfern, J., Hills, G.S., et al. (2015) Effect of lifestyle-focused text messaging on risk factor modification in patients with 
coronary heart disease. A randomized clinical trial. JAMA, 314(12), 1255–1263.

Objective To examine the effect of a mobile phone text message-based intervention to

encourage lifestyle change on objective measures of cardiovascular risk in individuals

with coronary heart disease (CHD). The primary end point was low-density lipoprotein

cholesterol (LDL-C) level at 6 months. The secondary end points were systolic blood

pressure, body mass index (BMI), total cholesterol level, waist circumference, heart rate,

total physical activity, smoking status and the proportion achieving at least 3, at least 4

or all 5 guideline levels of modi�able risk factors ((LDL- C < 77mg/dL, blood pressure

< 140/90 mm Hg, exercising regularly [≥ 5 d/wk x 30 minutes exercise per session],

non-smoker status and BMI < 25 kg/m2).

Subjects  710 patients with proven coronary heart disease (prior myocardial infarction or

proven angiographically) were recruited between September 2011 and November 2013

from a large tertiary hospital in Sydney, Australia. Patients were eligible if they were older

than 18 years and were able to provide informed consent. Patients were excluded if they

did not have an active mobile phone or suf�cient English language pro�ciency to read text

messages.

Design A parallel group, single-blind, randomized clinical trial. The random allocation

sequence was in a uniform 1:1 allocation ratio with a block size of 8 and was concealed

from study personnel. Patients in the control group (n=358) received usual care which

generally involved community follow-up, with the majority referred to inpatient cardiac

rehabilitation. Patients in the intervention group (n = 352) received 4 text messages per

week for 6 months in addition to usual care. Text messages provided advice, motivational

reminders, and support to change lifestyle behaviours. Messages for each participant were

selected from a bank of messages according to baseline characteristics (e.g., smoking) and

delivered via an automated computerized message management system. The program was

not interactive. All statistical tests were 2-tailed at the 5% level of signi�cance and

intervention evaluations were performed on the principle of intention to treat. Analyses were

conducted using SAS version 9.3 (SAS Institute Inc.)

Findings At 6 months, levels of LDL-C were signi�cantly lower in intervention participants.

The estimated mean LDL-C was 79 (95% Cl 76 to 82)mg/dL and 84 (95%CI 76 to 82)

mg/dL in the intervention and control groups, respectively. The estimated difference in

means was-5 (95% Cl-9 to 0) mg/dL, P = 0.04. All individual secondary endpoints were

signi�cantly better (P ≤ 0.01) at 6 months in the intervention group compared to the control

group, apart from mean HDL-C levels which were not signi�cantly different. A signi�cantly

greater proportion (P < 0.001) in the intervention group achieved at least 3, as well as at

least 4, of the guideline levels of risk factors. The majority reported the text messages to be

useful (91%), easy to understand (97%), and appropriate in frequency (86%).

Conclusion and relevance Among patients with coronary heart disease, the use of a

lifestyle-focused text messaging service compared with usual care resulted in a modest

improvement in LDL-C level and greater improvement in other cardiovascular disease risk

factors. The duration of these effects and hence whether they result in improved clinical

outcomes remains to be determined.

Trial registration anzctr.org.au Identi�er: ACTRN12611000161921
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41 Methods for clustered data
Learning objectives

By the end of this chapter, you should be able to:
•	 Describe, with examples, clustered data in a two-level 

structure
•	 Describe how such data may be displayed graphically
•	 Describe the effect of ignoring repeated measures in a sta-

tistical analysis
•	 Explain how summary measures may be used to compare 

groups of repeated measures data
•	 Name two other methods which are appropriate for com-

paring groups of repeated measures data
•	 Explain why a series of two-sample t-tests is inappropriate 

for analysing such data

Relevant Workbook questions: MCQs 76 and 77; and SQ 20 
available online

Clustered data conform to a hierarchical or nested structure in 
which, in its simplest form (the univariable two-level structure), 
the value of a single response variable is measured on a number 
of level 1 units contained in different groups or clusters (level 
2 units). For example, the level 1 and level 2 units, respectively, 
may be teeth in a mouth, knees in a patient, patients in a hospital, 
clinics in a region, children in a class, successive visit times for a 
patient (i.e. longitudinal data, Fig. 41.1), etc. The statistical analysis 
of such repeated measures data should take into account the fact 
that the observations in a cluster tend to be correlated, i.e. they 
are not independent. Failure to acknowledge this usually results in 
underestimation of the standard errors of the estimates of interest 
and, consequently, confidence intervals that are too narrow and 
P-values that are too small, leading to increased Type I error rates.

For the purposes of illustration, we shall assume, in this chapter, 
that we have longitudinal data and our repeated measures data 
comprise each patient’s values of the variable at different time points, 
i.e. the patient is the cluster. We summarize the data by describing 
the patterns in individual patients, and, if relevant, assess whether 
these patterns differ between two or more groups of patients.

Displaying the data
A plot of the measurement against time for each patient in the 
study provides a visual impression of the pattern over time. 
When we are studying only a small group of patients, it may be 

possible to show all the individual plots in one diagram. How-
ever, when we are studying large groups this becomes difficult, 
and we may illustrate just a selection of ‘representative’ indi-
vidual plots (see Fig. 41.3), perhaps in a grid for each treatment 
group. Note that the average pattern generated by plotting the 
means over all patients at each time point may be very different 
from the patterns seen in individual patients.

Comparing groups: inappropriate 
analyses
Suppose we are interested in comparing treatments that have 
been randomly assigned to patients, each of whom provides 
measurements at successive time points. It is inappropriate to use 
all the values in a treatment group to fit a single linear regres-
sion line (Chapters 27 and 28) or to perform a one-way analysis 
of variance (ANOVA, Chapter 22) to compare treatment groups 
because these methods do not take account of the repeated meas-
urements on the same patient. Furthermore, it is also incorrect to 
compare the means in the groups at each time point separately 
using unpaired t-tests if there are two treatment groups (Chapter 
21) or one-way ANOVA if there are more than two groups for a 
number of reasons:
•	 The measurements in a patient from one time point to the next 
are not independent, so interpretation of the results is difficult. 
For example, if a comparison is significant at one time point, 
then it is likely to be significant at other time points, irrespective 
of any changes in the values in the interim period.
•	 The large number of tests carried out implies that we are likely 
to obtain significant results purely by chance (Chapter 18).
•	 We lose information about within-patient changes.

Comparing groups: appropriate analyses
Using summary measures
We can base our analysis on a summary measure that captures 
the important aspects of the data, and calculate this summary 
measure for each patient. Typical summary measures are:
•	 change from baseline at a predetermined time point;
•	 maximum (peak) or minimum (nadir) value reached;

Figure 41.1   Diagrammatic representation of a two-level hierarchical structure for
longitudinal data.
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•	 time to reach the maximum (or minimum) value;
•	 time to reach some other pre-specified value;
•	 average value (e.g. mean);
•	 area under the curve (AUC, see Fig. 41.4);
•	 slope or intercept of the patient’s regression line (describing 
the relationship between the measurement and time).

If the parameter (e.g. the mean or slope) is estimated more 
precisely in some patients than others (perhaps because there are 
more observations for these patients), we should take account of 
this in the analysis by giving more weight to those measures that 
are estimated more precisely.

The choice of summary measure depends on the main 
question of interest and should be made in advance of collecting 
the data. For example, if we are considering drug concentrations 
following treatment with two therapies, we may consider time to 
maximum drug concentration (Cmax) or AUC. However, if we are 
interested in antibody titres following vaccination, then we may 
be interested in the time it takes the antibody titre to drop below 
a particular protective level.

We compare the values of the summary measure in the 
different groups using standard hypothesis tests, such as the 
Wilcoxon rank sum (Chapter 21) or Kruskal–Wallis tests 
(Chapter 22). Because we have reduced a number of dependent 
measurements on each individual to a single quantity, the values 
included in the analysis are now independent.

While analyses based on summary measures are simple to 
perform, it may be difficult to find a suitable measure that 
adequately describes the data, and we may need to use two 
or more summary measures. In addition, these approaches 
suffer from the disadvantage that they do not use all data 
values fully.

Hierarchical repeated measures ANOVA
We can perform a particular type of ANOVA (Chapter 22) 
called a hierarchical or nested repeated measures ANOVA. 
A repeated measures ANOVA (an extension of the paired t-test 
when we have more than two related observations) may be per-
formed when every patient provides measurements at three or 

more successive visits (these are the repeated measures). If, in 
addition, each patient belongs to (i.e. is nested in) one of two 
or more treatment groups (Fig. 41.2), then hierarchical repeated 
measures ANOVA allows us to investigate whether the group 
means are equal and whether the visit means are equal. In addi-
tion, we can assess any interactions (Chapter 33), e.g. the inter-
action between treatment groups and visits, where a significant 
interaction would imply that any differences between the group 
means is not the same for all visits, and vice versa. If the ANOVA 
indicates that there is a significant difference between the treat-
ment groups, provided there is no significant interaction and 
there are more than two groups, post hoc tests, which have P-val-
ues adjusted for multiple testing (Chapter 18), can be performed 
to identify where the differences lie1.

However, hierarchical repeated measures ANOVA has several 
disadvantages:
•	 It may be difficult to perform.
•	 The results may be difficult to interpret.
•	 It generally assumes that values are measured at regular time 
intervals and that there are no missing data, i.e. the design of 
the study is assumed to be balanced. In reality, values are rarely 
measured at all time points because patients often miss appoint-
ments or come at different times to those planned.

Regression methods
Various regression methods, such as those that provide param-
eter estimates with robust standard errors or use generalized esti-
mating equations (GEE) or random effects models, may be used 
to analyse clustered data (Chapter 42).

Caution
We must take care to avoid the ecological fallacy when interpret-
ing the results of studies that involve clustered data (Chapter 34).

Reference
1	 Mickey, R.M., Dunn, O.J. and Clark, V.A. (2004) Applied Statis-

tics: Analysis of Variance and Regression. 3rd edition. Chichester: 
Wiley.

Figure 41.2   Diagrammatic representation of the structure of a hierarchical repeated measures ANOVA.
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As part of a practical class designed to assess the effects of 
two inhaled bronchodilator drugs, fenoterol hydrobromide and 
ipratropium bromide, 99 medical students were randomized to 
receive one of these drugs (n = 33 for each drug) or placebo (n = 33).  
Each student inhaled four times in quick succession. Tremor was 
assessed by measuring the total time (in seconds) taken to thread 
five sewing needles mounted on a cork; measurements were made 
at baseline before inhalation and at 5, 15, 30, 45 and 60 minutes 
afterwards. The measurements of a representative sample of the 
students in each treatment group are shown in Fig. 41.3.

It was decided to compare the values in the three groups 
using the ‘area under the curve’ (AUC) as a summary measure. 
The calculation of AUC for one student is illustrated in Fig. 41.4.

The median (range) AUC was 1552.5 (417.5–3875), 
1215 (457.5–2500) and 1130 (547.5–2625) seconds2 
in those receiving fenoterol hydrobromide, ipratropium 
bromide and placebo, respectively. The values in the three 
groups were compared using the Kruskal–Wallis test, which 
gave P  =  0.008. There was thus strong evidence that the 
distribution of AUC measures was not the same in all three 
groups. Non-parametric post hoc comparisons, adjusted 
for multiple testing, indicated that values were significantly 
greater in the group receiving fenoterol hydrobromide, 
confirming pharmacological knowledge that this drug, as a 
β2-adrenoceptor agonist, induces tremor by the stimulation 
of β2-adrenoceptors in skeletal muscle.
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Figure 41.3   Time taken to thread �ve sewing needles for three representative students in each treatment group.

Figure 41.4   Calculation of the AUC for a single student. The total area under the line
can be divided into a number of rectangles and triangles (marked a to j). The area of
each can easily be calculated. Total AUC = Area (a) + Area (b) + … + Area (j).
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Data kindly provided by Dr R. Morris, Department of Primary Care and Population Sciences, and were collected as part of a student practical class 
organized by Dr T.J. Allen, Department of Pharmacology, Royal Free and University College Medical School, London, UK.
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42 Regression methods for clustered data
Learning objectives

By the end of this chapter, you should be able to:
•	 Outline the following approaches to analysing clustered 

data in a two-level structure: aggregate level analysis, anal-
ysis using robust standard errors, random effects (hierar-
chical, multilevel, mixed, cluster-specific, cross-sectional) 
model, generalized estimating equations (GEE)

•	 List the advantages and disadvantages of each approach
•	 Distinguish between a random intercepts and a random 

slopes random effects model
•	 Explain how to calculate and interpret the intraclass cor-

relation coefficient (ICC) to assess the effect of clustering 
in a random effects model

•	 Explain how to use the likelihood ratio test to assess the 
effect of clustering

Relevant Workbook questions: MCQ 78; and SQs 18 and 20 
available online

Various regression methods can be used for the analysis of 
the two-level hierarchical structure described in Chapter 41, in 
which each cluster (level 2 unit) contains a number of individual 
level 1 units. For example, in a study of rheumatoid arthritis, we 
may measure the flexion angle on both the left and right knees 
(level 1) of every patient (level 2). Alternatively, we may have a 
longitudinal data set with a measurement (e.g. total cholesterol) 
observed at successive times (level 1) on each patient (level 2). 
The main advantages and disadvantages of each method are 
summarized in Table 42.1. Most of these methods are unreliable 
unless there are sufficient clusters, and they can be complicated 
to perform and interpret correctly; we therefore suggest you con-
sult a specialist statistician for advice.

Aggregate level analysis
A very simple approach is to aggregate the data and perform an 
analysis using an appropriate numerical summary measure (e.g. 
the mean) for each cluster (e.g. the patient) (Chapter 41). The 
choice of this summary measure will depend on features of the 
data and on the hypotheses being studied. We perform an ordi-
nary least squares (OLS) multiple regression analysis using the 
cluster as the unit of investigation and the summary measure as the 
outcome variable. If each cluster has been allocated a particular 
treatment (in the knee example, the patient may be randomly allo-
cated one of two treatments – an exercise regimen or no exercise), 
then, together with other cluster level covariates (e.g. sex, age), we 
can incorporate ‘treatment’ in the regression model as a dummy 
variable using codes such as 0 and 1 (or as a series of dummy vari-
ables if we have more than two treatments (Chapter 29)).

Robust standard errors
If the clustering is ignored in the regression analysis of a two-
level structure, an important assumption underlying the linear 
regression model – that of independence between the observa-
tions (Chapters 27 and 28) – is violated. As a consequence, the 
standard errors of the parameter estimates are likely to be too 
small and, hence, results may be spuriously significant.

To overcome this problem, we may determine robust standard 
errors of the parameter estimates, basing our calculation of 
them on the variability in the data (evaluated by appropriate 
residuals) rather than on that assumed by the regression model. 
In a multiple regression analysis with robust standard errors, the 
estimates of the regression coefficients are the same as in OLS 
linear regression but the standard errors are more robust to 
violations of the underlying assumptions, our particular concern 
being lack of independence when we have clustered data.

Random effects models
Random effects models1 are also known as (for example)  
hierarchical, multilevel, mixed or cluster-specific models, and 
as cross-sectional time series, panel or repeated measures models 
when the data are longitudinal. They can be fitted using various 
comprehensive statistical computer packages, such as R, SAS and 
Stata, or specialist software such as MLwiN (www.cmm.bristol.
ac.uk), all of which use a version of maximum likelihood estima-
tion. The estimate of the effect for each cluster is derived using 
both the individual cluster information as well as that of the other 
clusters so that it benefits from the ‘shared’ information. In par-
ticular, shrinkage estimates are commonly determined whereby, 
using an appropriate shrinkage factor, each cluster’s estimate 
of the effect of interest is ‘shrunk’ towards the estimated over-
all mean. The amount of shrinkage depends on the cluster size 
(smaller clusters have greater shrinkage) and on the variation in 
the data (shrinkage is greater for estimates where the variation 
within clusters is large when compared to that between clusters).

A random effects model regards the clusters as a sample from 
a real or hypothetical population of clusters. The individual 
clusters are not of primary interest; they are assumed to be 
broadly similar with differences between them attributed to 
random variation or to other ‘fixed’ factors such as sex, age, etc. 
The two-level random effects model differs from the model which 
takes no account of clustering in that, although both incorporate 
random or unexplained error due to the variation between level 
1 units (the within-cluster variance, σ 2), the random effects 
model also includes random error which is due to the variation 
between clusters, σ c

2. The variance of an individual observation 
in this random effects model is therefore the sum of the two 
components of variance, i.e. it is σ σ2

c+ 2 .

Particular models
When the outcome variable, y, is numerical and there is a single 
explanatory variable, x, of interest, the simple random intercepts 
linear two-level model assumes that there is a linear relationship 
between y and x in each cluster, with all the cluster regression 
lines having a common slope, β, but different intercepts (Fig. 
42.1a). The mean regression line has a slope equal to β and an 
intercept equal to α, which is the mean intercept averaged over 
all the clusters. The random error (residual) for each cluster is 
the amount by which the intercept for that cluster regression line 
differs, in the vertical direction, from the overall mean intercept, 
α (Fig. 42.1a). The cluster residuals are assumed to follow a Nor-
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131Table 42.1  Main advantages and disadvantages of regression methods for analysing clustered data.

Method Advantages Disadvantages

Aggregate level analysis •	 Simple
•	 Easy to perform with basic software

•	 Does not allow for effects of covariates for level 1 units
•	 Ignores differences in cluster sizes and in precision of 

the estimate of each cluster summary measure
•	 May not be able to find an appropriate summary  

measure
Robust standard errors 
that allow for clustering

•	 Relatively simple
•	 Can include covariates that vary for level 1 units
•	 Adjusts standard errors, confidence intervals and 

P-values to take account of clustering
•	 Allows for different numbers of level 1 units per 

cluster

•	 Unreliable unless number of clusters large, say >30
•	 Does not adjust parameter estimates for clustering

Random effects model •	 Explicitly allows for clustering by including both 
inter- and intra-cluster variation in model

•	 Cluster estimates benefit from shared informa-
tion from all clusters

•	 Adjusts parameter estimates, standard errors, 
confidence intervals and P-values to take account 
of clustering

•	 Can include covariates that vary for level 1 units
•	 Allows for different numbers of level 1 units per 

cluster
•	 Can extend hierarchy from two levels to multi-

levels
•	 Can accommodate various forms of a generalized 

linear model (GLM), e.g. Poisson

•	 Unreliable unless there are sufficient clusters
•	 Parameter estimates often biased
•	 Complex modelling skills required for extended mod-

els
•	 Estimation and interpretation of random effects logis-

tic model not straightforward

Generalized estimating 
equations (GEE)

•	 Relatively simple
•	 No distributional assumptions of random effects 

(due to clusters) required
•	 Can include covariates that vary for level 1 units
•	 Allows for different numbers of level 1 units per 

cluster
•	 Adjusts parameter estimates, standard errors, 

confidence intervals and P-values to take account 
of clustering

•	 Unreliable unless number of clusters large, say >30
•	 Treats clustering as a nuisance of no intrinsic  

interest*
•	 Requires specification of working correlation  

structure*
•	 Parameter estimates are cluster averages and do not 

relate to individuals in population*

*These points may sometimes be regarded as advantages, depending on the question of interest.

mal distribution with zero mean and variance = σ c
2. Within each 

cluster, the residuals for the level 1 units are assumed to follow 
a Normal distribution with zero mean and the same variance, 
σ2. If the cluster sizes are similar, a simple approach to checking 
for Normality and constant variance of the residuals for both the 
level 1 units and clusters is to look for Normality in a histogram 
of the residuals, and to plot the residuals against the predicted 
values (Chapter 28).

The random effects model can be modified in a number of 
ways (see also Table 42.1), e.g. by allowing the slope, β, to vary 
randomly between clusters. The model is then called a random 
slopes model, in which case the cluster-specific regression lines 
are not parallel to the mean regression line (Fig. 42.1b). See also 
meta-regression in Chapter 43.

Assessing the clustering effect
The effect of clustering can be assessed by:
•	 Calculating the intraclass correlation coefficient (ICC, some-
times denoted by ρ – see also Chapter 39), which, in the two-
level structure, represents the correlation between two randomly 
chosen level 1 units in one randomly chosen cluster.

ICC c
2

c
=

+
σ

σ σ

2

2

The ICC expresses the variation between the clusters as 
a proportion of the total variation; it is often presented as a 
percentage. ICC = 1 when there is no variation within the clusters 
and all the variation is attributed to differences between clusters; 
ICC = 0 when there is no variation between the clusters. We can 
use the ICC to make a subjective decision about the importance 
of clustering.
•	 Comparing two models where one model is the full random 
effects model and the other is a regression model with the same 
explanatory variable(s) but which does not take clustering into 
account. The relevant likelihood ratio test has a test statistic equal 
to the difference in the likelihood ratio statistics of the two mod-
els (Chapter 32) and it follows the Chi-squared distribution with 
1 degree of freedom.

Generalized estimating equations (GEE)
In the GEE approach2 to estimation, we adjust both the parameter 
estimates of a generalized linear model (GLM) and their stand-
ard errors to take into account the clustering of the data in a two-
level structure. We make distributional assumptions about the 
dependent variable but, in contrast to the random effects model, 
do not assume that the between-cluster residuals are Normally 
distributed. We regard the clustering as a nuisance rather than of 
intrinsic interest, and proceed by postulating a ‘working’ structure 
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Example

Data relating to periodontal disease were obtained on 96 white 
male trainee engineers aged between 16 and 20 years entering 
the apprentice training school at Royal Air Force Halton, 
England. Each of the possible 28 teeth (excluding wisdom 
teeth) in every trainee’s mouth was examined at four sites (the 
mesiobuccal, mesiolingual, distobuccal and distolingual). To 
simplify the analysis, we have considered a subset of the data, 
namely: (i) the mesiobuccal site in each tooth – this leads to 
a two-level structure of teeth within subjects (each subject 
corresponds to a cluster); and (ii) two variables of interest – 
loss of attachment (LOA, measured in mm) between the tooth 
and the jawbone evaluated at the mesiobuccal site, and the 
current cigarette smoking status of the trainee (yes =  1, no 
= 0). We wish to assess whether smoking is a risk factor for 
gum disease (where greater loss of attachment indicates 
worse disease).

Table 42.2 shows extracts of the results from various regression 
analyses in which the outcome variable is loss of attachment 
(mm) and the covariate is smoking. Full computer output is given 
in Appendix C. The estimates of the regression coefficients for 

smoking and/or their standard errors vary according to the type 
of analysis performed. The two OLS analyses have identical 
estimated regression coefficients (which are larger than those of 
the other three analyses) but their standard errors are different. 
The standard error of the estimated regression coefficient in 
the OLS analysis that ignores clustering is substantially smaller 
than the standard errors in the other four analyses, i.e. ignoring 
clustering results in an underestimation of the standard error 
of the regression coefficient and, consequently, a confidence 
interval that is too narrow and a P-value that is too small. The 
intracluster correlation coefficient from the random effects model 
is estimated as 0.224. Thus approximately 22% of the variation in 
loss of attachment, after taking account of smoking, was between 
trainees rather than within trainees.

In this particular example, we conclude from all five 
analyses that smoking is not significantly associated with 
loss of attachment. This lack of significance for smoking is an 
unexpected finding and may be explained by the fact that these 
trainees were very young and so the smokers amongst them 
would not have smoked for a long period.

Figure 42.1   Two-level random effects linear regression models with a single covariate, x.

(a) (b)

i th cluster regression line
with intercept = αi
and slope = β

i th cluster regression line
with intercept = αi
and slope = βimean regression line

with intercept = α
and slope = β

mean regression line
with intercept = α

and slope = β

yy

x x00

α

αi

α

(a) Random intercepts model The black line represents the mean
regression line for all the clusters and each of the orange lines
represents the regression line for a different cluster. The intercept
of the i th cluster-speci�c regression line differs from that of the
mean line by a residual = αi – α, where these residuals are
Normally distributed with zero mean and variance, σc

2. Every line
has a slope = β.

(b) Random slopes model The black line represents the mean regression
line for all the clusters and each of the orange lines represents the
regression line for a different cluster. The intercept of the i th cluster-
speci�c regression line differs from that of the mean line by a residual
= αi – α, and the slope of the i th speci�c regression line differs from that
of the mean line by a residual = βi – β, where the residuals are Normally
distributed with zero mean and variances σc

2 and σd
2, respectively.

for the correlation between the observations within each cluster. 
This does not have to be correct since, provided there are enough 
clusters, the robust standard errors and parameter estimates will 
be acceptable. However, we will obtain better parameter estimates 
if the structure is plausible. We commonly adopt an exchangeable 
correlation structure which assumes that exchanging two level 1 
units within a cluster will not affect the estimation.

The GEE approach is sometimes called population-averaged 
(referring to the population of clusters) or marginal because the 
parameter estimates represent the effects averaged across the 
clusters (even though all level 1 unit information is included in 

the analysis). The GEE approach is often preferred to the more 
complex random effects model analysis for logistic (Chapter 30) 
and, sometimes, Poisson (Chapter 31) regression, even though 
the exchangeable correlation structure is known to be incorrect 
in these situations.

References
1	 Goldstein, H. (2010) Multilevel Statistical Models. 4th edition. 

Wiley Series in Probability and Statistics. Chichester: Wiley.
2	 Liang, K.-Y. and Zeger, S.L. (1986) Longitudinal data analysis 

using generalized linear models. Biometrika, 73, 13–22.
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Table 42.2  Summary of results of regression analyses in which LOA (mm) is the outcome variable.

Analysis
Estimated coefficient 
(smoking)

Standard 
error (SE)

95% CI for 
coefficient Test statistic* P-value

OLS regression ignoring clustering −0.0105 0.0235 −0.057 to 0.036 t = −0.45 0.655
OLS regression with robust SEs −0.0105 0.0526 −0.115 to 0.094 t = −0.20 0.842
Aggregate analysis (OLS regression on group means) −0.0046 0.0612 −0.126 to 0.117 t = −0.07 0.941
Random effects model −0.0053 0.0607 −0.124 to 0.114 z = −0.09 0.930
GEE with robust SEs and exchangeable correlation 
structure

−0.0053 0.0527 −0.108 to 0.098 z = −0.10 0.920

*t = test statistic following t-distribution; z = Wald test statistic following Standard Normal distribution.

Data kindly provided by Dr Gareth Griffiths, Department of Periodontology, UCL Eastman Dental Institute, UK.
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43 Systematic reviews and meta-analysis
Learning objectives

By the end of this chapter, you should be able to:
•	 Define a systematic review and explain what it achieves
•	 Describe the Cochrane Collaboration
•	 Define a meta-analysis and list its advantages and  

disadvantages
•	 List the four steps involved in performing a meta-analysis
•	 Distinguish between statistical and clinical heterogeneity
•	 Explain how to test for statistical homogeneity
•	 Explain how to estimate the average effect of interest in a 

meta-analysis if there is evidence of statistical heterogeneity
•	 Explain the terms: fixed effects meta-analysis, random 

effects meta-analysis, meta-regression
•	 Distinguish between a forest plot and a funnel plot
•	 Describe ways of performing a sensitivity analysis after 

performing a meta-analysis

Relevant Workbook questions: MCQs 79 and 80; and SQ 27 
available online

The systematic review
What is it?
A systematic review1 is a formalized and stringent process of com-
bining the information from all relevant studies (both published 
and unpublished) of the same health condition; these studies are 
usually clinical trials (Chapter 14) of the same or similar treat-
ments but may be observational studies (Chapters 15 and 16). A 
systematic review is an integral part of evidence-based medicine 
(EBM, Chapter 40) which applies the results of the best available 
evidence, together with clinical expertise, to the care of patients. 
So important is its role in EBM that it has become the focus of 
an international network of clinicians, methodologists and con-
sumers who have formed the Cochrane Collaboration. This has 
produced the Cochrane Library containing regularly updated  
evidence-based healthcare databases including the Cochrane 
Database of Systematic Reviews; full access to these reviews 
requires subscription but the abstracts are freely available on the 
internet (community-archive.cochrane.org/Cochrane-reviews).

PRISMA, another component of the EQUATOR network 
(Chapter 37), provides reporting guidelines for systematic 
reviews and meta-analyses of healthcare interventions (www.
equator-network.org/reporting-guidelines/prisma/ and www.
prisma-statement.org); the MOOSE checklist is specifically 
for the meta-analysis of observational studies in epidemiology 
(Appendix D).

What does it achieve?
•	 Refinement and reduction – large quantities of information 
are refined and reduced to a manageable size.
•	 Efficiency – the systematic review is usually quicker and 
less costly to perform than a new study. It may prevent others 
embarking on unnecessary studies, and can shorten the time lag 
between medical developments and their implementation.
•	 Generalizability and consistency – results can often be gen-
eralized to a wider patient population in a broader setting than 

would be possible from a single study. Consistencies in the 
results from different studies can be assessed, and any inconsist-
encies determined.
•	 Reliability – the systematic review aims to reduce errors, and 
so tends to improve the reliability and accuracy of recommenda-
tions when compared with haphazard reviews or single studies.
•	 Power and precision – the quantitative systematic review (see 
meta-analysis below) has greater power (Chapter 18) to detect 
effects of interest and provides more precise estimates of them 
than a single study.

Meta-analysis
What is it?
A meta-analysis or overview is a particular type of systematic 
review that focuses on the numerical results. The main aim of a 
meta-analysis is to combine the results from several independ-
ent studies to produce, if appropriate, an estimate of the overall 
or average effect of interest (e.g. the relative risk, RR; Chapter 
15). The direction and magnitude of this average effect, together 
with a consideration of the associated confidence interval and 
hypothesis test result, may be used to make decisions about the 
therapy under investigation, the management of patients and/or 
the role of the factor of interest, as appropriate.

Statistical approach
1	 Decide on the effect of interest and, if the raw data are avail-
able, evaluate it for each study. However, in practice, we may 
have to extract these effects from published results. If the out-
come in a clinical trial comparing two treatments is:
•	 numerical, the effect may be the difference in treatment 
means. A zero difference implies no treatment effect;
•	 binary (e.g. died/survived), we consider the risks, say, of the 
outcome (e.g. death) in the treatment groups. The effect may 
be the difference in risks or their ratio, the RR. If the difference 
in risks equals zero or RR = 1, then there is no treatment effect.

2	 Check for statistical homogeneity and obtain an estimate 
of statistical heterogeneity – we have statistical heterogeneity 
when there is genuine variation between the effects of interest 
from the different studies.
•	 We can perform a hypothesis test of homogeneity to inves-
tigate whether the variation in the individual effects is com-
patible with chance alone. However, this test has low power 
(Chapter 18) to detect heterogeneity if there are few studies in 
the meta-analysis and may, conversely, give a highly significant 
result if it comprises many large studies, even when the hetero-
geneity is unlikely to affect the conclusions.
•	 An index, I2, which does not depend on the number of 
studies, the type of outcome data or the choice of treatment 
effect (e.g. RR), can be used to quantify the impact of hetero-
geneity and assess inconsistency2 (see Example). The index, I2, 
represents the percentage of the total variation across studies 
due to heterogeneity; it takes values from 0% to 100%, with a 
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135value of 0% indicating no observed heterogeneity. If there is 
evidence of statistical heterogeneity, we should proceed cau-
tiously, investigate the reasons for its presence and modify our 
approach accordingly (see Point 3).

3	 Estimate the average effect of interest (with a confidence 
interval), and perform the appropriate hypothesis test on the 
effect (e.g. that the true RR = 1).The average estimate is usually a 
weighted mean (Chapter 5) of the estimated effects from all the 
studies, where the weight for each study is the inverse of the vari-
ance of the estimate. If there is no evidence of statistical hetero-
geneity, we generally perform a fixed effects meta-analysis which 
assumes the true treatment effect is the same in every study and 
any observed variation in the estimates from different studies is 
solely due to sampling error. In this case, the within-study vari-
ability is the only component of the variance of the average effect 
of interest. If there is evidence of statistical heterogeneity, it may 
not be sensible to provide an average effect of interest. However, 
if one is required, there are various approaches to obtaining it:
•	 Perform a random effects meta-analysis. This assumes that 
the separate studies represent a random sample from a popu-
lation of studies that has a mean treatment effect about which 
the individual study effects vary. The variance of the average 
effect of interest incorporates both within- and between-study 
variability and therefore the standard error of the estimate 
is greater, the confidence interval for the true average effect 
wider and its P-value larger (i.e. it is less likely to be statistically 
significant) than the comparable quantities obtained from a 
fixed effects meta-analysis.
•	 Stratify the studies into subgroups of those with similar 
characteristics and perform a separate (usually fixed effects) 
meta-analysis in each stratum.
•	 Perform a meta-regression3 that aims to estimate the effect 
of interest, after adjusting for differences between studies, and 
to determine which covariates account for the heterogeneity. 
The dependent variable is the estimated effect of interest for 
a study (e.g. the RR) and the explanatory variables are one or 
more study-level characteristics (e.g. the average age of the 
population, the average duration of treatment, whether the 
hospital is in an urban or rural setting). The most usual form 
of meta-regression is a random effects meta-regression which 
takes account of the between-study variability by including it 
as a component of error in the model (this is a form of ran-
dom effects model – see Chapter 42). Unfortunately, because 
the ‘sample size’ for the meta-regression is the number of stud-
ies (rather than the number of patients in each study), many 
analyses are insufficiently powered to detect important effects. 
Furthermore, it may be impossible to separate the effects of 
different covariates if collinearity is present (Chapter 34), as is 
often the case, resulting in misleading conclusions. We should 
also be aware of the ecological fallacy (Chapter 34) which 
may lead us to believe mistakenly that an association that we 
observe between variables at an aggregate level reflects the 
corresponding association at an individual level in the same 
population.

4	 Interpret the results and present the findings. It is helpful 
to summarize the results from each trial (e.g. the sample size, 
baseline characteristics, effect of interest such as the RR, and 
related confidence interval, CI) in a table (see Example). The 
most common graphical display is a forest plot (see Fig. 43.2) in 
which the estimated effect (with CI) for each trial and their aver-
age are marked along the length of a vertical line that represents 

‘no treatment effect’ (e.g. this line corresponds to the value ‘one’ 
if the effect is a RR). The plotting symbol for the estimated effect 
for each study is often a box which has an area proportional to 
the size of that study. Initially, we examine whether the esti-
mated effects from the different studies are on the same side of 
the line. Then we can use the CIs to judge whether the results are 
compatible (if the CIs overlap), to determine whether incompat-
ible results can be explained by small sample sizes (if CIs are 
wide) and to assess the significance of the individual and overall 
effects (by observing whether the vertical line crosses some or 
all of the CIs).

Advantages and disadvantages
As a meta-analysis is a particular form of systematic review, it 
offers all the advantages of the latter (see ‘What does it achieve?’). 
In particular, a meta-analysis, because of its inflated sample size, 
is able to detect treatment effects with greater power and esti-
mate these effects with greater precision than any single study. Its 
advantages, together with the introduction of meta-analysis soft-
ware, have led meta-analyses to proliferate. However, improper 
use can lead to erroneous conclusions regarding treatment effi-
cacy. The following principal problems should be thoroughly 
investigated and resolved before a meta-analysis is performed.
•	 Publication bias – the tendency to include in the analysis only 
the results from published papers; these favour statistically sig-
nificant findings. We may be able to decide whether publication 
bias is an issue by drawing a funnel plot (Fig 43.1), a scatter dia-
gram that usually has some measure of study size on the verti-
cal axis and the treatment effect (e.g. odds ratio) on the horizontal 
axis. In the absence of publication bias, the scatter of points (each 
point representing one study) in the funnel plot will be substan-
tial at the bottom where the study size is small, and will narrow 
(in the shape of a funnel) towards the top where the study size is 
large. If publication bias is present, the funnel plot will probably 
be skewed and asymmetrical, with a gap towards the bottom left-
hand corner where both the treatment effect and study size are 
small (i.e. when the study has low power to detect a small effect).
•	 Clinical heterogeneity – in which differences in the patient 
population, outcome measures, definition of variables, and/or 
duration of follow-up of the studies included in the analysis cre-
ate problems of non-compatibility.
•	 Quality differences – the design and conduct of the studies 
may vary in their quality. Although giving more weight to the 
better studies is one solution to this dilemma, any weighting sys-
tem can be criticized on the grounds that it is arbitrary.
•	 Dependence – the results from studies included in the analysis 
may not be independent, e.g. when results from a study are pub-
lished on more than one occasion.

Sensitivity analysis
Sensitivity analysis in a meta-analysis assesses the robustness 
(Chapter 35) of the common estimate. As in regression analy-
sis, it is important to determine whether any particular study in 
a meta-analysis strongly influences the average measure of the 
effect of interest. This may be achieved by deleting each of the 
k studies in turn, using a meta-analysis to estimate the effect of 
interest from the remaining k − 1 studies, and plotting these esti-
mates with their confidence intervals in an influence plot. This 
is similar to a forest plot but the different studies on the verti-
cal axis are replaced by the revised meta-analyses, one for each 
study omitted. Any estimate that appears on visual inspection to  
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136 differ substantially from the others may enable the omitted 
study to be flagged as influential. An alternative approach to 
assessing the impact of each study is to perform a cumulative 
meta-analysis in which we add the studies one by one in a 
specified order (usually according to date of publication) and 
perform a separate meta-analysis on the accumulated studies 
after each addition. We generally present the results in a cumu-
lative meta-analysis diagram: this looks similar to a forest plot 
but each of the time-ordered entries on it indicates the overall 
average estimated effect of interest at the relevant point in time 
rather than the estimated effect from a single study. An exami-
nation of this diagram can help determine whether the pooled 
estimate has been robust over time.
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Example

Anxiety disorders are the most prevalent mental disorders 
worldwide and are associated with immense healthcare costs 
and a high burden of disease. Stroke is the second most 
common cause of death and the third most common cause of 
reduced disability-adjusted life-years. A better understanding 
of the association between anxiety disorders and stroke would 
strengthen the evidence for causality and, since anxiety 
disorders are modifiable conditions, it could also inform the 
development of clinical and public health interventions for 
the management of anxiety and the prevention of stroke. To 
this end, a meta-analysis of eight observational studies was 
undertaken to obtain a pooled estimate of the risk of stroke 
amongst patients with anxiety disorders. All studies were 
considered to be of high quality and were population-based. 
The total sample comprised 950,759 patients. The main 
features of the included studies are shown in Table 43.1 – 
the effect of interest was the hazard ratio (HR). A funnel plot 
(Fig. 43.1) demonstrated reasonable symmetry, suggesting 
that publication bias was unlikely. The estimated HR obtained 
from each study was graphically presented in a forest plot 
(Fig. 43.2). Although the individual estimates of the HR vary 
quite considerably, from demonstrating a reduction in the 

Figure 43.1   Funnel plot showing the pseudo con�dence interval,
indicating the region within which we would expect 95% of studies
to lie if the studies are all estimating the same underlying effect. The
vertical line is the line of no effect. Source: Pérez-Piñar, et al. (2017).
Reproduced with permission of Elsevier.
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Figure 43.2   Forest plot of the hazard ratio (HR), with 95% con�dence interval, of stroke in patients with anxiety
disorders. Source: Pérez-Piñar et al. (2017). Reproduced with permission of Elsevier.
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137risk of stroke in those with anxiety disorders in two studies to 
increases in risk in the other studies, all confidence intervals 
overlap to some extent.

A more formal assessment of heterogeneity was provided by 
Cochran’s Chi-squared test for homogeneity, which gave a 
non-significant result (test statistic Q = 9.55, degrees of freedom 
= 8 − 1 = 7, P = 0.216). However, I 2 = 100 × (Q − df)/Q = 100 × 
0.267  =  26.7%, suggesting moderate inconsistency across the 
studies and advocating a cautious approach to interpreting the 
combined estimate of HR for all trials. In view of this and the fact 

that the Chi-squared test has low power to detect heterogeneity 
when the number of studies is small, the authors adopted the 
more conservative random effects approach to the analysis. The 
combined estimated HR was 1.24 (95% CI 1.09 to 1.41), indicating 
that there was evidence of an association between anxiety and 
stroke, with a pooled risk of stroke increased by 24% amongst 
patients suffering anxiety disorders. However, with the available 
evidence, it was not possible to differentiate between disparate 
anxiety disorders, and further research is required to determine 
the impact of specific anxiety disorders on different types of stroke.

Table 43.1  Characteristics of the eight observational studies included in the review.*

Vogt
1994

Bowen
2000

Surtees
2008

Chou
2012

Lambiase
2014

Mathur 
2015

Portegies
2016

Stewart
2016

Country USA Canada UK Taiwan USA UK Netherlands USA

Data source E MR E MR E MR E E

n 1529 2657 20627 390309 6019 524952 2625 2041

Age (years) >15 >15 41-80 <20 25-74 >20 >45 >60

Female (%) 54 59 57 46 54 47 55 73

Follow-up 
(years)

15 12 12 10 22 10 20 9

Anxiety, n (%) 817
(53.4%)

866 
(32.6%)

NR 1725
(0.4%)

1953 
(31.9%)

22,128 
(4.2%)

343
(13.1%)

849
(41.6%)

Stroke, n (%) NR 44
(1.6%)

595
(2.9%)

19148
(4.9%)

419
(7.0%)

987
(0.2%)

332
(12.6%)

235
(11.5%)

Stroke 
assessment

ICD-7 ICD-9 ICD-9,
ICD-10

ICD-9 ICD-9 MR MR ICD-9, 
ICD-10

Anxiety 
assessment

Bradburn worries 
index

ICD-9
DSM-III
DSM-IIIR

Health and life 
experience (GAD)

ICD-9
DSM-IV
TR (PD)

General 
wellbeing scale

Primary 
care scale

Hospital 
anxiety 
depression 
scale

Patient 
question-
naire

Adjustment for 
covariates

A, S, smoking, 
health status, SES, 
duration of health 
plan membership

A, S A, S, CV risk 
factors, SES, PMH: 
MI, FH stroke, 
antidepressant use

A, S, 
comorbidities, 
regular 
medication

A, S, ethnicity, 
education, 
marital status

A, S, 
ethnicity

A, S A, S, 
ethnicity, 
CV risk 
factors

*Only first author named in table.
A, age; CV risk factors: blood pressure, cholesterol, diabetes, smoking and obesity; E, epidemiological; FH, family history; GAD, generalized anxiety disorder; MI, myocardial 
infarction; MR, medical records; NR, not reported; PD, panic disorder; PMH, past medical history; S, sex; SES, socioeconomic status.

Source: Pérez-Piñar et al. (2017). Reproduced with permission of Elsevier.
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44 Survival analysis
Learning objectives

By the end of this chapter, you should be able to:
•	 Explain why it is necessary to use special methods for ana-

lysing survival data
•	 Distinguish between the terms ‘right-censored data’ and 

‘left-censored data’
•	 Describe a survival curve
•	 Distinguish between the Kaplan–Meier method and lifeta-

ble approaches to calculating survival probabilities
•	 Explain what the log-rank test is used for in survival analysis
•	 Explain the principles of the Cox proportional hazards 

regression model
•	 Explain how to obtain a hazard ratio (relative hazard) from a 

Cox proportional hazards regression model and interpret it
•	 List other regression models that may also be used to 

describe survival data
•	 Explain the problems associated with informative censor-

ing and competing risks

Relevant Workbook questions: MCQs 81 and 82; and SQs 
15, 28 and 29 available online

Survival data are concerned with the time it takes an individual 
to reach an endpoint of interest (often, but not always, death) and 
are characterized by the following two features.
•	 It is the length of time for the patient to reach the endpoint, 
rather than whether or not she or he reaches the endpoint, that 
is of primary importance. For example, we may be interested in 
length of survival in patients admitted with cirrhosis.
•	 Data may often be censored (see below).

Standard methods of analysis, such as logistic regression or a 
comparison of the mean time to reach the endpoint in patients 
with and without a new treatment, can give misleading results 
because of the censored data. Therefore, a number of statistical 
techniques, known as survival methods1, have been developed 
to deal with these situations.

Censored data
Survival times are calculated from some baseline date that reflects 
a natural ‘starting point’ for the study (e.g. time of surgery or 
diagnosis of a condition) until the time that a patient reaches an 
endpoint of interest (e.g. death from the condition or a relapse). 
Often, however, we may not know when the patient reached the 
endpoint, only that she or he remained free of the endpoint while 
in the study. For example, patients in a trial of a new drug for the 
treatment of cancer, in which progression of cancer is the endpoint 
of interest, may be in cancer remission when they leave the study. 
This may either be because the trial ended while they were still in 
remission, because these individuals withdrew from the trial early 
before their cancer returned, or because they died of other non-
cancer causes before the end of follow-up. Such data are described 
as right-censored. These patients were known not to have reached 
the endpoint when they were last under follow-up, and this infor-
mation should be incorporated into the analysis.

Where follow-up does not begin until after the baseline date, 
survival times can also be left-censored.

Displaying survival data
A separate horizontal line can be drawn for each patient, its 
length indicating the survival time. Lines are drawn from left to 
right, and patients who reach the endpoint and those who are 
censored can be distinguished by the use of different symbols 
at the end of the line (Fig. 44.1). However, these plots do not 
summarize the data and it is difficult to get a feel for the survival 
experience overall.

A survival curve, usually calculated by the Kaplan–Meier 
method, displays the cumulative probability (the survival 
probability) of an individual remaining free of the endpoint at any 
time after baseline (Fig. 44.2). The survival probability will only 
change when an endpoint occurs, and thus the resulting ‘curve’ 
is drawn as a series of steps, starting at a survival probability of 
1 (or 100%) at baseline (time 0) and dropping towards 0 as time 
increases. We may also display the cumulative incidence of the 
endpoint; this is calculated as (1 − survival probability) at each time 
point and the resulting curve is the inverse of the survival curve 
(i.e. it starts at a survival probability of 0 and moves up towards 1 
as time increases). Although the information contained in both 
displays is the same, the cumulative incidence curve is generally 
preferred to the cumulative survival curve when the endpoint is 
rare (and so the survival probability remains high throughout 
the study) as this allows maximum detail to be shown without a 
break in the scale. An alternative method of calculating survival 
probabilities, using a lifetable approach, can be used when the 
time to reach the endpoint is only known to within a particular 
time interval (e.g. within a year). The survival probabilities using 
either the Kaplan–Meier or lifetable approaches may be obtained 
easily from most statistical packages.

Figure 44.1   Survival experience of a random sample of 50 of 1358
patients with advanced pancreatic cancer who underwent either
pancreaticoduodenectomy with portal vein resection, standard
pancreaticoduodenectomy or surgical bypass. Filled orange circles
indicate patients who died, open circles indicate those who
remained alive at the end of follow-up.
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Summarizing survival
We often summarize survival by quoting survival probabilities 
(with confidence intervals) at certain time points on the curve, 
for example the 5-year survival rates in patients after treat-
ment for breast cancer. Alternatively, the median time to reach 
the endpoint (the time at which 50% of the individuals have  
progressed) can be quoted.

Comparing survival
We may wish to assess the impact of a number of factors of inter-
est on survival, e.g. treatment or disease severity. Survival curves 
can be plotted separately for subgroups of patients; they provide 
a means of assessing visually whether different groups of patients 
reach the endpoint at different rates (Fig. 44.2). We can test for-
mally whether there are any significant differences in progres-
sion rates between the different groups by, for example, using the 
log-rank test or regression models.

The log-rank test
This non-parametric test addresses the null hypothesis that there 
are no differences in survival times in the groups being studied, 
and compares events occurring at all time points on the survival 
curve. We cannot assess the independent roles of more than one 
factor on the time to the endpoint using the log-rank test.

Regression models
We can generate a regression model to quantify the relation-
ships between one or more factors of interest and survival. At 
any point in time, t, an individual, i, has an instantaneous risk of 
reaching the endpoint, often known as the hazard or λi(t), given 
that she or he has not reached it up to that point in time. For 
example, if death is the endpoint, the hazard is the risk of dying 
at time t. This instantaneous hazard is usually very small and is 
of limited interest. However, we may want to know whether there 
are any systematic differences between the hazards, over all time 
points, of individuals with different characteristics. For example, 

is the hazard generally reduced in individuals treated with a new 
therapy compared with those treated with a placebo, when we 
take into account other factors, such as age or disease severity?

We can use the Cox proportional hazards model to test 
the independent effects of a number of explanatory variables 
(factors) on the hazard. It is of the form

λi(t) = λ0(t) exp{β1x1 + β2x2 +. . .+ βkxk }

where λi(t) is the hazard for individual i at time t, λ0(t) is an arbi-
trary baseline hazard (in which we are not interested), x1, …, xk 
are explanatory variables in the model and β1, …, βk are the cor-
responding coefficients. We obtain estimates, b1, …, bk, of these 
parameters using a form of maximum likelihood known as partial 
likelihood. The exponential of these values (i.e. exp{ }b eb

1
1= ) are the 

estimated relative hazards or hazard ratios. For a particular value 
of x1, the hazard ratio is the estimated hazard of disease for (x1 + 1) 
relative to the estimated hazard of disease for x1, while adjusting 
for all other x’s in the equation. The relative hazard is interpreted in 
a similar manner to the odds ratio in logistic regression (Chapter 
30) or the relative rate in Poisson regression (Chapter 31); therefore 
values above one indicate a raised hazard, values below one indicate 
a decreased hazard and values equal to one indicate that there is no 
increased or decreased hazard of the endpoint. A confidence inter-
val can be calculated for the relative hazard and a significance test 
performed to assess its departure from one.

The relative hazard is assumed to be constant over time in 
this model (i.e. the hazards for the groups to be compared 
are assumed to be proportional). It is important to check this 
assumption1: we can, for example:
•	 use graphical methods – the simplest approach is to check 
that the two or more curves corresponding to the categories of 
a single covariate in a Kaplan–Meier survival plot move apart 
progressively over time. Alternatively, a plot of ln[−ln(survival 
probability)] versus ln(time) for each category of the covariate 
(sometimes referred to as a log log plot, and available in most 
statistical packages) should exhibit roughly parallel lines. In par-
ticular, lines that cross indicate a serious deviation from propor-
tional hazards;

Figure 44.2   Kaplan–Meier curves showing the survival probability, expressed as a percentage,
among patients with advanced pancreatic cancer undergoing pancreaticoduodenectomy with vein
resection (PDVR), standard pancreaticoduodenectomy (PD) or surgical bypass (SB) – see Example.
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140 •	 incorporate an interaction between the covariate and ln(time) 
in the model and ensure that it is non-significant;
•	 perform a formal test, such as the global Chi-squared test based 
on Schoenfeld residuals, usually available in statistical packages.

If the proportional hazards assumption is violated, it may be 
possible to split the follow-up time into two or more intervals 
over which the hazards are known to be proportional. We can 
then perform a separate Cox regression analysis in each interval 
and report the results from each.

Other models can be used to describe survival data, e.g. the 
Exponential, Weibull or Gompertz models, each of which 
assumes a specific probability distribution for the hazard 
function. Frailty models are used when the observations on 
survival are not independent (i.e. there is correlation within 
clusters, such as within geographical areas because of shared 
environmental factors). However, all these models are beyond 
the scope of this book1.

Problems encountered in survival 
analysis
Informative censoring
In any survival analysis we make the assumption that the prob-
ability that an individual’s follow-up is censored is independ-
ent of (i.e. unrelated to) the probability that the individual 
will develop the outcome of interest (e.g. death). For example, 
an individual’s follow-up may be censored because she or he 
moved from the area and was lost to follow-up; at the time 
of censoring, this person has the same chance of developing 
the outcome of interest as individuals who had been followed 
for the same period of time but whose follow-up was not  

censored. Where this assumption is violated, we say that we 
have informative censoring (and we must accommodate this 
in our statistical analysis). For example, in a study of the sur-
vival of patients with acute liver failure, patients who undergo 
liver transplantation may be withdrawn from the study early 
and their follow-up censored. As these individuals are likely 
to have a different prognosis to those who did not undergo 
transplantation, their follow-up will have been informatively 
censored. Administrative censoring, whereby patient follow-
up is censored simply because the study ends on a particular 
date, is generally non-informative.

Competing risks
Occasionally, a study may have a number of different outcomes 
of interest. If the development of one or more of these out-
comes precludes the development (or measurement) of any 
of the others, the outcomes are termed competing risks. For 
example, individuals with chronic kidney disease are known 
to be at higher risk of several other clinical events, including 
cardiovascular disease. If we are interested in assessing the risk 
factors for dying from end-stage renal disease after a diagnosis 
of chronic kidney disease, then an individual who dies from 
any cause other than end-stage renal disease after his/her diag-
nosis (e.g. if she or he experiences a fatal myocardial infarc-
tion) will no longer be at risk of death from end-stage renal 
disease. In this instance, the fatal myocardial infarction acts as 
a competing risk (as this event precludes the development of 
end-stage renal disease).

Reference
1	 Collett, D. (2015) Modelling Survival Data in Medical Research. 

3rd edition. London: Chapman and Hall/CRC.

Example

Pancreatic cancer is a common form of cancer in many resource-
rich settings. However, survival after a diagnosis of pancreatic 
cancer remains poor. Over the last 15 years, improvements 
in surgical technique have enabled more aggressive surgical 
methods that may offer a better survival prognosis. In particular, 
there have been reports that pancreaticoduodenectomy with 
portal vein resection (PDVR) may offer survival advantages over 
standard pancreaticoduodenectomy (PD) or standard surgical 
bypass (SB). Ravikumar et al. undertook a retrospective data 
analysis to assess the post-surgical outcomes of 1588 patients 
with advanced pancreatic cancer. Of the 1358 patients with 
mortality information available, 218 had undergone PDVR, 719 
had undergone PD and 418 had undergone SB. The patients 
were followed for a median of 1.1 (interquartile range 0.5, 1.9) 
years after surgery. The experience of a random sample of 50 
of these patients is illustrated in Fig. 44.1. Over the follow-up 
period (the patients were followed for a maximum of 11 
years), 1058 patients died. Kaplan–Meier curves showing the 
cumulative survival percentage at any time point after baseline 
are displayed separately for individuals in the three surgical 
groups (Fig. 44.2).

The computer output for the log-rank test contained the 
following information:

Test Chi-square df P-value
Log-rank 222.5875 2 <0.0001

Thus there is a significant difference (P < 0.0001) between 
survival times in the three groups. By 1 year after surgery, 67.3% 

of those undergoing PDVR and 67.1% of those undergoing PD 
remained alive, compared to only 34.0% of those undergoing 
SB (Fig. 44.2).

A Cox proportional hazards regression model was used 
to investigate whether these differences in survival could be 
explained by differences in the sex of the patient (there may be 
differences in mortality outcomes between men and women), 
his/her age at the time of surgery (older people are likely to 
have a poorer prognosis) or the date on which the surgery was 
performed (outcomes are known to have improved over time). 
Graphical methods suggested that the proportional hazards 
assumption was reasonable for these variables. The results of 
this model are shown in Table 44.1.

The results in Table 44.1 indicate that individuals who have 
undergone pancreaticoduodenectomy have a lower hazard 
of mortality after surgery than those undergoing a standard 
surgical bypass, regardless of whether the surgery involved 
portal vein resection, even after adjusting for other factors known 
to be associated with a poorer outcome. In particular, individuals 
undergoing PDVR had a mortality hazard that was 0.41 (= exp{–
0.89}) times that of individuals undergoing a SB (i.e. the mortality 
hazard was reduced by 59%, P < 0.0001) after adjusting for other 
factors, and individuals undergoing PD had a mortality hazard 
that was 0.40 (= exp{–0.92}) times that of individuals undergoing 
a SB (i.e. the mortality hazard was reduced by 60%, P < 0.0001) 
after adjustment. In addition, older age (hazard increases by 
4% per additional 5 years of age) and surgery in 2003 or earlier 
(hazard increases by 31%) were both associated with a higher 
mortality hazard after surgery.
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Table 44.1  Results of Cox proportional hazards regression analysis.

Variable* Coding df
Parameter 
estimate

Standard 
error P-value

Estimated 
relative hazard

95% confidence interval 
for relative hazard

Type of surgery SB reference -
PDVR 1 –0.89 0.10 <0.0001 0.41 (0.34–0.50)
PD 1 –0.92 0.07 <0.0001 0.40 (0.35–0.46)

Sex of patient Male (0) reference
Female (1) 1 0.02 0.06 0.76 1.02 (0.90–1.15)

Age of patient at time of surgery (/5 years older) 1 0.04 0.02 0.02 1.04 (1.01–1.08)
Year of surgery 2003 or earlier 1 0.27 0.09 0.004 1.31 (1.09–1.58)

2004–2005 1 0.08 0.10 0.40 1.08 (0.90–1.31)
2006–2007 reference
2008–2009 1 –0.06 0.09 0.52 0.94 (0.79–1.13)
2010 and later 1 0.01 0.11 0.93 1.01 (0.81–1.26)

*Codes for the binary variable, sex of patient, are shown in parentheses. Type of surgery and year of surgery were included by incorporating dummy variables to reflect the two 
types of surgery (PDVR and PD) and the four calendar periods (before 2004, 2004–2005, 2008–2009, 2010 and later) which were compared to the reference categories of SB and 
2006–2007, respectively.

Data kindly provided by Miss R. Ravikumar, Royal Free Hospital, London, UK, and adapted from: Ravikumar, R., Sabin, C., Hilal, M.A., et al. 
(2014) Portal vein resection in borderline resectable pancreatic cancer: a United Kingdom Multicenter study. Journal of the American College of 
Surgeons, 218, 401-411.
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45 Bayesian methods
Learning objectives

By the end of this chapter, you should be able to:
•	 Explain what is meant by the frequentist approach to prob-

ability
•	 Explain the shortcomings of the frequentist approach to 

probability
•	 Explain the principles of Bayesian analysis
•	 List the disadvantages of the Bayesian approach
•	 Explain the terms: conditional probability, prior probability, 

posterior probability, likelihood ratio
•	 Express Bayes theorem in terms of odds
•	 Explain how to use Fagan’s nomogram to interpret a diag-

nostic test result in a Bayesian framework

Relevant Workbook question: MCQ 83 available online

The frequentist approach
The hypothesis tests described in this book are based on the fre-
quentist approach to probability (Chapter 7) and inference that 
considers the number of times an event would occur if we were 
to repeat the experiment a large number of times. This approach 
is sometimes criticized for the following reasons.
•	 It uses only information obtained from the current study, and 
does not incorporate into the inferential process any other infor-
mation we might have about the effect of interest, e.g. a clinician’s 
views about the relative effectiveness of two therapies before a 
clinical trial is undertaken.
•	 It does not directly address the issues of greatest interest. In 
a drug comparison, we are usually really interested in knowing 
whether one drug is more effective than the other. However, the 
frequentist approach tests the hypothesis that the two drugs are 
equally effective. Although we conclude that one drug is supe-
rior to the other if the P-value is small, this probability (i.e. the 
P-value) describes the chance of getting the observed results if 
the drugs are equally effective, rather than the chance that one 
drug is more effective than the other (our real interest).
•	 It tends to over-emphasize the role of hypothesis testing and 
whether or not a result is significant, rather than the implications 
of the results.

The Bayesian approach
An alternative, Bayesian1, approach to inference reflects an indi-
vidual’s personal degree of belief in a hypothesis, possibly based 
on information already available. Individuals usually differ in 
their degrees of belief in a hypothesis; in addition, these beliefs 
may change as new information becomes available. The Bayesian 
approach calculates the probability that a hypothesis is true (our 
focus of interest) by updating prior opinions about the hypoth-
esis as new data become available.

Conditional probability
A particular type of probability, known as conditional probability, 
is fundamental to Bayesian analyses. This is the probability of an 
event, given that another event has already occurred. As an illus-
tration, consider an example. The incidence of haemophilia A in 

the general population is approximately 1 in 10,000 male births. 
However, if we know that a woman is a carrier for haemophilia, 
this incidence increases to around 1 in 2 male births. Therefore, the 
probability that a male child has haemophilia, given that his mother 
is a carrier, is very different to the unconditional probability that he 
has haemophilia if his mother’s carrier status is unknown.

Bayes theorem
Suppose we are investigating a hypothesis (e.g. that a treatment 
effect equals some value). Bayes theorem converts a prior prob-
ability, describing an individual’s belief in the hypothesis before 
the study is carried out, into a posterior probability, describing 
his/her belief afterwards. The posterior probability is, in fact, the 
conditional probability of the hypothesis, given the results from 
the study. Bayes theorem states that the posterior probability is 
proportional to the prior probability multiplied by a value, the 
likelihood of the observed results which describes the plausibil-
ity of the observed results if the hypothesis is true (Chapter 32).

Diagnostic tests in a Bayesian framework
Almost all clinicians intuitively use a Bayesian approach in their 
reasoning when making a diagnosis. They build a picture of the 
patient based on clinical history and/or the presence of symp-
toms and signs. From this, they decide on the most likely diag-
nosis, having eliminated other diagnoses on the presumption 
that they are unlikely to be true, given what they know about the 
patient. They may subsequently confirm or amend this diagnosis 
in the light of new evidence, e.g. if the patient responds to treat-
ment or a new symptom develops.

When an individual attends a clinic, the clinician usually has 
some idea of the probability that the individual has the disease –  
the prior or pre-test probability. If nothing else is known 
about the patient, this is simply the prevalence (Chapters 12 
and 38) of the disease in the population. We can use Bayes 
theorem to change the prior probability into a posterior 
probability. This is most easily achieved if we incorporate the 
likelihood ratio (Chapter 32), based on information obtained 
from the most recent investigation (e.g. a diagnostic test result), 
into Bayes theorem. The likelihood ratio of a positive test result 
is the chance of a positive test result if the patient has disease, 
divided by that if he or she is disease-free. We discussed  
the likelihood ratio in this context in Chapter 38 and showed 
that it could be used to indicate the usefulness of a diagnostic 
test. We now use it to express Bayes theorem in terms of odds 
(Chapter 16)

Posterior odds of disease prior odds likelihood ratio
of a positiv

= ×
ee test result

where

Prior odds
prior probability

prior probability
=

−( )1
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143The posterior odds is simple to calculate but, for easier inter-
pretation, we convert the odds back into a probability using the 
relationship

Posterior probability
posterior odds

posterior odds
=

+( )1

This posterior or post-test probability is the probability that the 
patient has the disease, given a positive test result. It is similar to 
the positive predictive value (PPV, Chapter 38) but the clinician will 
not be able to determine the PPV unless he or she has access to the 
test results from a sample of patients, each of whom has a definitive 
diagnosis from a gold standard test (Table 38.1). Furthermore, the 
main factor that affects the PPV is the prevalence, and there may be 
reasons why an individual’s underlying risk of disease is known to  
be higher or lower than the overall population prevalence. Thus, in 
this situation, even if the clinician could calculate the PPV, it may 
not give a reasonable indication of his or her belief, after the test 
result is known, that the patient has the disease. Therefore, it is pref-
erable to calculate the post-test probability in this situation.

A simpler way to calculate the post-test probability is to 
use Fagan’s nomogram (Fig. 45.1); by connecting the pre-test 
probability (expressed as a percentage) to the likelihood ratio 
and extending the line, we can evaluate the post-test probability.

Disadvantages of Bayesian methods
As part of any Bayesian analysis, it is necessary to specify the prior 
probability of the hypothesis (e.g. the pre-test probability that a 
patient has disease). Because of the subjective nature of these pri-
ors, individual researchers and clinicians may choose different 
values for them. For this reason, Bayesian methods are often criti-
cized as being arbitrary. Where the most recent evidence from the 
study (i.e. the likelihood) is very strong, however, the influence of 
the prior information is minimized (at its extreme, the results will 
be completely uninfluenced by the prior information).

The calculations involved in many Bayesian analyses are 
complex, usually requiring sophisticated statistical packages 
that are highly computer intensive. Therefore, despite being 
intuitively appealing, Bayesian methods have not been used 
widely. However, the availability of powerful personal computers 
means that their use is becoming more common.

Example

In the example in Chapter 38 we showed that, in patients with 
hepatitis aged under 20 years, a ceruloplasmin concentration 
<16.6 mg/dL had a sensitivity of 91.2% and specificity of 94.9% 
to predict Wilson’s disease (WD). The likelihood ratio for a 
positive test for this cut-off was 17.9.

If we believe that the prevalence of WD in those patients 
with hepatitis under 20 years of age is 6.4% (as observed in 
the Korean sample), the prior probability of periodontitis in such 
patients equals 0.064.

Prior odds

Posterior odd likelihood ra

= =

= ×

0 064
0 936

0 068

0 068

.

.
.

.s ttio

Posterior probability

= ×
=

=
+( )

=

0 068 17 9
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1 22
1 1 22
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. .

.
.

.
. 00

Therefore, if the patient has a ceruloplasmin concentration 
<16.6 mg/dL, and we assume a pre-test probability of 0.064, 
then we believe that the patient has a 55% chance of having 
WD. This can also be estimated directly from Fagan’s nomogram 
(Fig 45.1) by connecting the pre-test probability of 6.4% to a 
likelihood ratio of 17.9 and extending the line to cut the post-test 
probability axis. In contrast, if we believe the probability that a 
patient has WD is as low as 2% then the post-test probability 
will equal 27%.

In both cases, the post-test probability is substantially higher 
than the pre-test probability, indicating the usefulness of using 
ceruloplasmin concentration <16.6  mg/dL as an indicator of 
WD in young children and young adults with hepatitis.

Figure 45.1   Fagan’s nomogram for interpreting a diagnostic test result.
Source: Sackett et al. (1997). Reproduced with permission of Elsevier.
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1	 Freedman, L. (1996) Bayesian statistical methods. A natural way 

to assess clinical evidence. British Medical Journal, 313, 569–570.
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46 Developing prognostic scores
Learning objectives

By the end of this chapter, you should be able to:
•	 Define the term ‘prognostic score’
•	 Distinguish between a prognostic index and a risk score
•	 Outline different ways of deriving a prognostic score
•	 List the desirable features of a good prognostic score
•	 Explain what is meant by assessing overall score accuracy
•	 Describe how a classification table and the mean Brier 

score can be used to assess overall score accuracy
•	 Explain what is meant by assessing the ability of a prog-

nostic score to discriminate between those that do and do 
not experience the event

•	 Describe how classifying individuals by their score, drawing 
a ROC curve and calculating Harrell’s c statistic can each be 
used to assess the ability of a prognostic score to discrimi-
nate between those that do and do not experience the event

•	 Explain what is meant by correct calibration of a prognostic 
score

•	 Describe how the Hosmer–Lemeshow goodness of fit test 
can be used to assess whether a prognostic score is cor-
rectly calibrated

•	 Explain what is meant by transportability of a prognostic 
score

•	 Describe various methods of internal and external valida-
tion of a prognostic score

Relevant Workbook questions: MCQs 84 and 85; and SQ 24 
available online

Why do we do it?
Given a large number of demographic or clinical features of an 
individual, we may want to predict whether that individual is 
likely to experience an event of interest. This event may either 
reflect a positive outcome for the individual (e.g. a good response 
to treatment, a cure) or a negative outcome (e.g. disease, death). 
We generate a prognostic score (often referred to as a prognos-
tic index or, when predicting a negative outcome, a risk score) 
for each individual that provides a graded measure of the likeli-
hood that the individual will experience the event.
•	 At its simplest, if considering an event with well-established risk 
factors (e.g. cardiovascular disease), a score can be generated by 
counting the number of risk factors possessed by each individual 
(e.g. male sex, older age, current smoker, family history of cardio-
vascular disease, diabetes mellitus, dyslipidaemia, hypertension) 
– this score should provide a crude indication of an individual’s 
risk of the event (with a higher number indicating a higher risk of 
cardiovascular disease). However, this approach assumes that each 
factor contributes equally to the chance of experiencing the event.
•	 A preferred alternative is to use a formal statistical analysis 
(often a logistic regression (Chapter 30) or a similar method 
known as discriminant analysis) which identifies factors that 
are significantly associated with the event and provides an 
assessment of the relative importance of each of these fac-
tors in determining the chance of experiencing the event. 
The prognostic score can then be calculated for an individual, 
using the coefficients from the model to provide a weighted 
sum of its components (i.e. z in Chapter 30). Although the 
range of values of this score depends on how the score is 

derived, a higher score generally indicates a greater chance of 
experiencing the event.

Sometimes patients are categorized by their scores, e.g. into 
those at low, moderate or high risk of experiencing the event. 
Alternatively, if a logistic regression has been performed, we 
can use the generated score for an individual to obtain a direct 
estimate of his or her predicted probability of the event (Chapter 
30); as this is a probability, it takes a value from 0 to 1.

However, when using a regression model to generate a 
prognostic score, a model that explains a large proportion of the 
variability in the data may not necessarily be good at predicting 
which patients will develop the event. Furthermore, any score, 
even if based on known risk factors for the event, may provide 
misleading information on an individual’s prognosis. Therefore, 
once we have derived a predictive score based on a model, we 
should assess the validity of that score.

Assessing the performance of a 
prognostic score
In order to demonstrate that our score will be useful, we should 
assess its performance by investigating whether it is accurate, 
able to discriminate between those who do and do not experi-
ence the event, correctly calibrated and transportable to other 
populations; we describe each of these qualities in the sections 
that follow (where we assume that a higher score indicates a 
greater chance of experiencing the event). In addition to good 
performance, a score should also demonstrate clinical value, i.e. 
it should lead to an improvement in the clinical management of 
patients. In other words, the score should provide prognostic 
information and demonstrate better performance than exist-
ing risk scores or the raw data. For example, a score based on 
a patient’s age, sex and blood pressure must demonstrate that it 
leads to clinical decisions that are different to (and more effective 
than) those that would have been made based on knowledge of 
these factors on their own.

1 How accurate is the score?
We wish to describe the extent to which the score is able to pre-
dict the event correctly.
•	 We produce a classification table (Chapter 30 and Appendix 
C) showing the number of individuals in whom we correctly and 
incorrectly predict the event (similar to the table in Chapter 38) 
and calculate relevant measures such as:

■■ the sensitivity and specificity;
■■ the total accuracy of the score. This is equal to the number 

of individuals correctly predicted to experience or not experi-
ence the event, divided by the total number of individuals – 
the closer the value is to one, the better the accuracy (a perfect 
score would correctly predict 100% of individuals).

•	 When we have used logistic regression to generate the score, 
we can calculate the mean Brier score for all n individuals in 
the sample. The Brier score for the ith individual is the squared 
difference between the predicted probability of that individual 
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(Xi  =  1 or 0 if he or she did or did not experience the event, 
respectively); the mean Brier score is Σ(Pi − Xi)2/n. It gives an 
indication of model accuracy, taking a value from 0 (able to pre-
dict the event perfectly) to 0.25 (of no value). The mean Brier 
score is closely related to the model R2 (Chapter 27).

2 How well can the score discriminate between 
those who do and do not experience the event?
We wish to assess the ability of the score to rank individuals 
according to their chance of experiencing the event.
•	 We categorize individuals according to their scores (e.g. into 
5–10 equally sized groups determined by the relevant percen-
tiles) and consider the event rates in each category (see Exam-
ple). We should observe a trend towards increased event rates in 
those with higher scores.
•	 We draw a receiver operating characteristic (ROC) curve, 
which is a plot of the sensitivity of the score against (1 − specificity). 
 The curve for a score that has good discriminative ability lies in 
the upper left-hand quadrant of the plot and that for a score that 
is no better than chance at discriminating will lie along the 45° 
diagonal (Fig. 38.1, see also Chapters 30 and 38). The area under 
the ROC curve (sometimes referred to as AUROC) gives an indi-
cation of the ability of the score to discriminate between those 
who do and do not experience the event. If we randomly select 
two individuals from our sample, one of whom experiences the 
event and one of whom does not, AUROC gives the probability 
that the individual with the event has a higher score than the indi-
vidual without the event; AUROC will equal 1 for a score that 
discriminates perfectly, but will equal 0.5 for a score that performs 
no better than chance.
•	 We calculate Harrell’s c statistic, which is a measure of dis-
crimination that is equivalent to AUROC. We select all ‘pairs’ of 
individuals in the sample with discordant events (i.e. we match 
every individual who experiences the event to every individual 
who does not experience the event) – the number of such pairs 
is our denominator – and calculate the percentage of these pairs 
in whom the predicted score is higher in the individuals with 
the event. Where the predicted score in the two individuals is 
equal, the numerator is increased by 0.5. The c statistic depends 
on the distribution of the score and/or predicted probabilities – if 
the sample is relatively homogeneous (i.e. the scores or predicted 
probabilities are all fairly similar to each other), then c will be 
close to 0.5. The D statistic is an alternative measure of discrimi-
nation that can be used for survival data when censoring is pre-
sent. When comparing two or more prognostic scores, the score 
with the higher D statistic has greater discriminative ability.

3 Is the score correctly calibrated?
Where we have used logistic regression to generate the predicted 
probabilities of the event, we may wish to know whether there is 
good agreement between these predicted probabilities and the 
observed probabilities (either 0 or 1) of the event occurring. It is 
possible for a prognostic score to discriminate well between indi-
viduals who do and do not experience the event (i.e. scores may 
be higher in those who experience the event) while still provid-
ing a poor estimate of the risk of the event occurring. This may 
occur when a prognostic score is applied in a different popula-
tion to the one from which it was originally derived (e.g. when 
applying a cardiovascular risk score derived from a population in 
northern Europe to a population in southern Europe where the 

underlying risk of cardiovascular disease is much lower). This 
is of importance if clinical decisions are based on the predicted 
probability of the event, as poor calibration may result in patients 
receiving inappropriate care.

To determine model calibration we calculate the Hosmer–
Lemeshow goodness of fit statistic which assesses the 
agreement between the observed event probabilities and those 
predicted by the score. Individuals in the sample are stratified 
into g groups (we usually take g = 10 and base the groups on 
the deciles of the distribution of predicted probabilities from 
the score; other classifications, e.g. using eight groups, may 
result in different conclusions being drawn). The expected 
frequency of the event in each group is the sum of the predicted 
probabilities of the event for the individuals in that group. This 
is compared with the observed frequency of those with the 
event in the corresponding group by calculating a test statistic 
that follows a Chi-squared distribution with (g − 2) degrees of 
freedom (Chapter 8). A P-value < 0.05 suggests that the model 
is not well calibrated.

4 Is the score transportable or generalizable?
We wish to know whether the score will work well in popula-
tions that are different from the one from which it was derived. 
Any prognostic score will always perform well on the data set 
that was used to derive the score and estimates of model per-
formance (i.e. measures of accuracy, discrimination and cali-
bration) from this data set (internal validation) will be overly 
optimistic. Thus, we generally require validation on at least 
one independent data set (external validation) to give a true 
assessment of the performance of the score; good performance 
on this independent data set provides evidence that the score is 
transportable or generalizable.

Where external validation is impractical, a number of 
alternative methods of internal validation may be used.
•	 We separate the data into two subsamples – the training sam-
ple, used to derive the score, and the validation sample, used to 
validate the score. Generally, the training sample, chosen ran-
domly, is larger than the validation sample (e.g. the training sam-
ple may contain 70% of the individuals in the original sample).
•	 We perform cross-validation where we partition the data set 
into subsets; we derive the risk score on a single subset initially and 
then validate it on the remaining subsets. When performing k-fold 
cross-validation, we split the data set into k subsets; we derive the 
score using one of the subsets and validate it on the remaining 
(k − 1) subsets. After repeating this process for each of the k sub-
sets, we average the resulting risk score estimates and measures 
of model performance (e.g. AUROC) over all the subsets. Leave-
one-out cross-validation (analogous to jackknifing – Chapter 11) 
is similar, but we remove each individual from the data set one at a 
time, and develop and validate the score on the remaining (n − 1) 
individuals in the sample. Again, we then average the estimates 
from the subsets.
•	 We can use bootstrapping (Chapter 11) to estimate the prog-
nostic score and assess its performance.
•	 When the score is derived from a multicentre study (Chapter 
12), we can perform an internal–external cross-validation that 
excludes a different centre from the data set for each analysis. 
Although the participating studies in a multicentre study gener-
ally follow the same study protocol, this approach will provide 
some evidence of model transportability as the centres are often 
in different settings.
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scores for other types of data
While many of the methods that we have described are most 
suitable for a binary outcome, using logistic regression or discri-
minant analysis to estimate the model and produce a risk score, 
it is possible to generate prognostic scores based on other types 
of data (e.g. survival data with censoring (Chapter 44), Poisson 
regression models (Chapter 31)). Many of the tests have been 
modified to deal with these other types of data although some 

tests (e.g. the Hosmer–Lemeshow test) are inappropriate when 
using different models.

Reporting guidelines
TRIPOD, another component of the EQUATOR network 
(Appendix D and Chapter 37), provides a checklist for improving  
the quality of prediction model development and validation 
(www.equator-network.org/reporting-guidelines/tripod-
statement/).

Example

Given the short supply of donor organs for liver transplantation, 
there is a need to allocate organs to individuals on the transplant 
waiting list in a fair and transparent manner that optimizes the 
outcomes of those who receive a transplant. One way to achieve 
this is through the development of a validated score that indicates 
an individual’s short-term (i.e. 3-month) risk of mortality following 
transplant based on donor and recipient characteristics. This 
score can then be used to identify the most suitable recipient on 
the waiting list when a donor organ becomes available. In order to 
generate such a score, information on both donor and recipient 
characteristics at the time of transplant was obtained for 31,094 
individuals who had received a first liver transplantation in one of 
23 European countries from 1988 to 2003.

A group of 21,605 individuals from the data set were 
selected at random for inclusion into the training set, of whom 
2540 (12%) had died by 3 months. A logistic regression model 
was used to identify factors associated with 3-month mortality 
and the coefficients from this model were used to generate a 
prognostic score for each individual, which could then be used 
to estimate an individual’s probability of dying in the first 3 
months after transplant (Chapter 30).

The final model used to generate the score comprised 
nine covariates: year of transplant (1988–1991, 1992–1995, 
1996–1999 or 2000–2003); cause of liver failure (acute liver 
failure, hepatocellular carcinoma, alcoholic cirrhosis, hepatitis 
C virus cirrhosis, primary biliary cirrhosis or other); age of donor 
(categorized as ≤40, 41–60 or >60 years); donor–recipient 
blood group status (identical, compatible or incompatible); 
hepatitis B surface antigen positivity of recipient; whether the 
patient had received a split or reduced organ graft; the patient’s 
health status (classified using the United Network of Organ 
Sharing (UNOS) score with values ranging from 1 (patient in 
intensive care) to 4 (patient at home with normal function)) at the 
time of surgery; the total ischaemia time (categorized as ≤13 or 
>13 hours); and the experience of the centre where the surgery 
was performed, based on the number of transplants performed 
at that centre in the year of the transplant (categorized as ≤36, 
37–69 or ≥70 transplants).

We show measures of accuracy, discrimination and 
calibration of the score for the training sample in Table 46.1. 
Overall, the score ranged from −4.13 (corresponding to a 
3-month mortality probability of 1.6%) to 1.34 (79.3%). Using 
a ROC curve (Fig. 46.1), a cut-off of −2.1 was identified as an 
optimal threshold for the score, with individuals who had scores 
that were higher than this being predicted to die within 3 months 
of transplant. Using this cut-off, the model correctly predicted 
the outcomes of 64.4% of patients in the training sample; 

the sensitivity and specificity of the score were 62.5% and 
64.7%, respectively. The mean Brier score of the model was 
0.1, indicating reasonable model accuracy. Harrell’s c statistic 
and the P-value from the Hosmer–Lemeshow test suggested a 
reasonable ability of the score to discriminate between those 
who died and those who remained alive at 3 months and good 
calibration (i.e. no evidence of lack of fit).

Figure 46.1   ROC curve for the predicted score (based on the
training sample) with the 45° line (dashed line) indicating a score
that would be no better than chance.
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Table 46.1  Estimates of model accuracy, discrimination and 
calibration from the training and validation samples.

Training 
sample

Validation 
sample

Sample size 21605 9489
Number of deaths observed 2540 1138
Score range −4.13 to 1.34 −4.06 to 0.87
3-month predicted mortality 
probability; range

1.6% to 79.3% 1.7% to 70.5%

Model accuracy (using a cut-off  
of −2.1)

Total model accuracy 64.4% 64.5%
Sensitivity 62.5% 60.0%
Specificity 64.7% 65.1%

Mean Brier score 0.1 0.1
Harrell’s c statistic 0.691 0.688
Hosmer–Lemeshow P-value 0.95 0.83

Burroughs, A.K., Sabin, C.A., Rolles, K., et al. (2006) 3-month and 12-month mortality after first liver transplant in adults in Europe: predictive models 
for outcome. Lancet, 367, 225–232. Reproduced with permission of Elsevier.
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Appendix A: Statistical tables

This appendix contains statistical tables discussed in the text. 
We have provided only limited P-values because data are usually 
analysed using a computer, and P-values are included in its out-
put. Other texts, such as that by Fisher and Yates1, contain more 
comprehensive tables. You can also obtain the P-value directly 
from some computer packages, given a value of the test statistic. 
Empty cells in a table are an indication that values do not exist.

Table A1 contains the probability in the two tails of the distribu-
tion of a variable, z, which follows the Standard Normal distribu-
tion. The P-values in Table A1 relate to the absolute values of z, 
so if z is negative, we ignore its sign. For example, if a test statistic 
that follows the Standard Normal distribution has the value 1.1, 
P = 0.271.

Table A2 and Table A3 contain the probability in the two tails 
of a distribution of a variable that follows the t-distribution 
(Table A2) or the Chi-squared distribution (Table A3) with given 
degrees of freedom (df). To use Table A2 or Table A3, if the abso-
lute value of the test statistic (with given df) lies between the 
tabulated values in two columns, then the two-tailed P-value lies 
between the P-values specified at the top of these columns. If the 
test statistic is to the right of the final column, then P < 0.001; if 
it is to the left of the second column, then P > 0.10. For example, 
(i) Table A2: if the test statistic is 2.62 with df = 17, then 0.01 < P 
< 0.05; (ii) Table A3: if the test statistic is 2.62 with df = 17, then 
P < 0.001.

Table A4 contains often used P-values and their correspond-
ing values for z, a variable with a Standard Normal distribution. 
This table may be used to obtain multipliers for the calculation 
of confidence intervals (CI) for Normally distributed variables. 
For example, for a 95% confidence interval, the multiplier is 1.96.

Table A5 contains P-values for a variable that follows the F-dis-
tribution with specified degrees of freedom in the numerator and 
denominator. When comparing variances (Chapter 35), we usu-
ally use a two-tailed P-value. For the analysis of variance (Chap-
ter 22), we use a one-tailed P-value. For given degrees of freedom 
in the numerator and denominator, the test is significant at the 
level of P quoted in the table if the test statistic is greater than the 
tabulated value. For example, if the test statistic is 2.99 with df = 5 
in the numerator and df = 15 in the denominator, then P < 0.05 
for a one-tailed test.

Table A6 contains two-tailed P-values of the sign test of r 
responses of a particular type out of a total of n′ responses. For a 
one-sample test, r equals the number of values above (or below) 
the median (Chapter 19). For a paired test, r equals the number 
of positive (or negative) differences (Chapter 20) or the num-
ber of preferences for a particular treatment (Chapter 23). n′ 
equals the number of values not equal to the median, non-zero 

differences or actual preferences, as relevant. For example, if we 
observed three positive differences out of eight non-zero differ-
ences, then P = 0.726.

Table A7 contains the ranks of the values that determine the 
upper and lower limits of the approximate 90%, 95% and 99% 
confidence intervals (CI) for the median. For example, if the 
sample size is 23, then the limits of the 95% confidence interval 
are defined by the 7th and 17th ordered values.

For sample sizes greater than 50, find the observations that 
correspond to the ranks (to the nearest integer) equal to: (i) 
n z n/2 2− / ; and (ii) 1 2 2+ −n z n/ / ; where n is the sample size 
and z = 1.64 for a 90% CI, z = 1.96 for a 95% CI, and z = 2.58 
for a 99% CI (the values of z being obtained from the Standard 
Normal distribution, Table A4). These observations define (i) the 
lower, and (ii) the upper confidence limits for the median.

Table A8 contains the range of values for the sum of the ranks 
(T+ or T−) that determines significance in the Wilcoxon signed 
ranks test (Chapter 20). If the sum of the ranks of the positive 
(T+) or negative (T−) differences, out of n′ non-zero differences, 
is equal to or outside the tabulated limits, the test is significant at 
the P-value quoted. For example, if there are 16 non-zero differ-
ences and T+ = 21, then 0.01 < P < 0.05.

Table A9 contains the range of values for the sum of the ranks 
(T) that determines significance for the Wilcoxon rank sum test 
(Chapter 21) at (a) the 5% level, and (b) the 1% level. Suppose we 
have two samples of sizes nS and nL, where nS ≤ nL. If the sum of 
the ranks of the group with the smaller sample size, nS, is equal 
to or outside the tabulated limits, the test is significant at (a) the 
5% level, or (b) the 1% level. For example, if nS = 6 and nL = 8, 
and the sum of the ranks in the group of six observations equals 
39, then P > 0.05.

Table A10 and Table A11 contain two-tailed P-values for 
Pearson’s (Table A10) and Spearman’s (Table A11) correlation 
coefficients when testing the null hypothesis that the relevant 
correlation coefficient is zero (Chapter 26). Significance is 
achieved, for a given sample size, at the stated P-value if the 
absolute value (i.e. ignoring its sign) of the sample value of the 
correlation coefficient exceeds the tabulated value. For exam-
ple, if the sample size equals 24 and Pearson’s r  =  0.58, then 
0.001 < P < 0.01. If the sample size equals 7 and Spearman’s 
rs = −0.63, then P > 0.05.

Table A12 contains the digits 0–9 arranged in random order.

Reference
1	 Fisher, R.A. and Yates, F. (1963) Statistical Tables for Biological, 

Agricultural and Medical Research. 6th edition. Edinburgh: Oli-
ver and Boyd.

www.konkur.in

Telegram: @medical_k

http://www.medstatsaag.com


149

Table A1  Standard 
Normal distribution.

z 2-tailed  
P-value

0.0 1.000
0.1 0.920
0.2 0.841
0.3 0.764
0.4 0.689
0.5 0.617
0.6 0.549
0.7 0.484
0.8 0.424
0.9 0.368

1.0 0.317
1.1 0.271
1.2 0.230
1.3 0.194
1.4 0.162
1.5 0.134
1.6 0.110
1.7 0.089
1.8 0.072
1.9 0.057

2.0 0.046
2.1 0.036
2.2 0.028
2.3 0.021
2.4 0.016
2.5 0.012
2.6 0.009
2.7 0.007
2.8 0.005
2.9 0.004
3.0 0.003
3.1 0.002
3.2 0.001
3.3 0.001
3.4 0.001
3.5 0.000

Derived using Microsoft Excel 
Version 5.0.

Table A2  t-distribution.

Two-tailed P-value

df 0.10 0.05 0.01 0.001
1 6.314 12.706 63.656 636.58
2 2.920 4.303 9.925 31.600
3 2.353 3.182 5.841 12.924
4 2.132 2.776 4.604 8.610
5 2.015 2.571 4.032 6.869
6 1.943 2.447 3.707 5.959
7 1.895 2.365 3.499 5.408
8 1.860 2.306 3.355 5.041
9 1.833 2.262 3.250 4.781

10 1.812 2.228 3.169 4.587

11 1.796 2.201 3.106 4.437
12 1.782 2.179 3.055 4.318
13 1.771 2.160 3.012 4.221
14 1.761 2.145 2.977 4.140
15 1.753 2.131 2.947 4.073
16 1.746 2.120 2.921 4.015
17 1.740 2.110 2.898 3.965
18 1.734 2.101 2.878 3.922
19 1.729 2.093 2.861 3.883
20 1.725 2.086 2.845 3.850

21 1.721 2.080 2.831 3.819
22 1.717 2.074 2.819 3.792
23 1.714 2.069 2.807 3.768
24 1.711 2.064 2.797 3.745
25 1.708 2.060 2.787 3.725
26 1.706 2.056 2.779 3.707
27 1.703 2.052 2.771 3.689
28 1.701 2.048 2.763 3.674
29 1.699 2.045 2.756 3.660
30 1.697 2.042 2.750 3.646
40 1.684 2.021 2.704 3.551
50 1.676 2.009 2.678 3.496

100 1.660 1.984 2.626 3.390
200 1.653 1.972 2.601 3.340

5000 1.645 1.960 2.577 3.293

Derived using Microsoft Excel Version 5.0.

Table A3  Chi-squared distribution.

Two-tailed P-value

df 0.10 0.05 0.01 0.001
1 2.706 3.841 6.635 10.827
2 4.605 5.991 9.210 13.815
3 6.251 7.815 11.345 16.266
4 7.779 9.488 13.277 18.466
5 9.236 11.070 15.086 20.515
6 10.645 12.592 16.812 22.457
7 12.017 14.067 18.475 24.321
8 13.362 15.507 20.090 26.124
9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264
12 18.549 21.026 26.217 32.909
13 19.812 22.362 27.688 34.527
14 21.064 23.685 29.141 36.124
15 22.307 24.996 30.578 37.698
16 23.542 26.296 32.000 39.252
17 24.769 27.587 33.409 40.791
18 25.989 28.869 34.805 42.312
19 27.204 30.144 36.191 43.819
20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796
22 30.813 33.924 40.289 48.268
23 32.007 35.172 41.638 49.728
24 33.196 36.415 42.980 51.179
25 34.382 37.652 44.314 52.619
26 35.563 38.885 45.642 54.051
27 36.741 40.113 46.963 55.475
28 37.916 41.337 48.278 56.892
29 39.087 42.557 49.588 58.301
30 40.256 43.773 50.892 59.702
40 51.805 55.758 63.691 73.403
50 63.167 67.505 76.154 86.660
60 74.397 79.082 88.379 99.608
70 85.527 90.531 100.43 112.32
80 96.578 101.88 112.33 124.84
90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45

Derived using Microsoft Excel Version 5.0.
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Table A6  Two-tailed P-values for the sign test.

r = number of ‘positive differences’ (see explanation)

n′ 0 1 2 3 4 5

4 0.125 0.624 1.000
5 0.062 0.376 1.000
6 0.032 0.218 0.688 1.000
7 0.016 0.124 0.454 1.000
8 0.008 0.070 0.290 0.726 1.000
9 0.004 0.040 0.180 0.508 1.000

10 0.001 0.022 0.110 0.344 0.754 1.000

Derived using Microsoft Excel Version 5.0.

Table A4  Standard Normal distribution.

Two-tailed P-value
0.50 0.10 0.05 0.01 0.001

Relevant CI 50% 90% 95% 99% 99.9%

z (i.e. CI multiplier) 0.67 1.64 1.96 2.58 3.29

Derived using Microsoft Excel Version 5.0.

Table A5  The F-distribution.

df of 
denominator

2-tailed 
P-value

1-tailed 
P-value

Degrees of freedom (df ) of the numerator
1 2 3 4 5 6 7 8 9 10 15 25 500

1 0.05 0.025 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.6 963.3 968.6 984.9 998.1 1017.0
1 0.10 0.05 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 245.9 249.3 254.1

2 0.05 0.025 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.43 39.46 39.50
2 0.10 0.05 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.43 19.46 19.49

3 0.05 0.025 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.25 14.12 13.91
3 0.10 0.05 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.70 8.63 8.53

4 0.05 0.025 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.66 8.50 8.27
4 0.10 0.05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.86 5.77 5.64

5 0.05 0.025 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.43 6.27 6.03
5 0.10 0.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.62 4.52 4.37

6 0.05 0.025 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.27 5.11 4.86
6 0.10 0.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.94 3.83 3.68

7 0.05 0.025 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.57 4.40 4.16
7 0.10 0.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.51 3.40 3.24

8 0.05 0.025 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.10 3.94 3.68
8 0.10 0.05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.22 3.11 2.94

9 0.05 0.025 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.77 3.60 3.35
9 0.10 0.05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.01 2.89 2.72

10 0.05 0.025 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.52 3.35 3.09
10 0.10 0.05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.85 2.73 2.55

15 0.05 0.025 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.86 2.69 2.41
15 0.10 0.05 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.40 2.28 2.08

20 0.05 0.025 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.57 2.40 2.10
20 0.10 0.05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.20 2.07 1.86

30 0.05 0.025 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.31 2.12 1.81
30 0.10 0.05 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.01 1.88 1.64

50 0.05 0.025 5.34 3.97 3.39 3.05 2.83 2.67 2.55 2.46 2.38 2.32 2.11 1.92 1.57
50 0.10 0.05 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.87 1.73 1.46

100 0.05 0.025 5.18 3.83 3.25 2.92 2.70 2.54 2.42 2.32 2.24 2.18 1.97 1.77 1.38
100 0.10 0.05 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.77 1.62 1.31

1000 0.05 0.025 5.04 3.70 3.13 2.80 2.58 2.42 2.30 2.20 2.13 2.06 1.85 1.64 1.16
1000 0.10 0.05 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84 1.68 1.52 1.13

Derived using Microsoft Excel Version 5.0.
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Table A7  Ranks for confidence intervals for the median.

Approximate
Sample size 90% CI 95% CI 99% CI

6 1,6 1,6 —
7 1,7 1,7 —
8 2,7 1,8 —
9 2,8 2,8 1,9

10 2,9 2,9 1,10

11 3,9 2,10 1,11
12 3,10 3,10 2,11
13 4,10 3,11 2,12
14 4,11 3,12 2,13
15 4,12 4,12 3,13
16 5,12 4,13 3,14
17 5,13 4,14 3,15
18 6,13 5,14 4,15
19 6,14 5,15 4,16
20 6,15 6,15 4,17

21 7,15 6,16 5,17
22 7,16 6,17 5,18
23 8,16 7,17 5,19
24 8,17 7,18 6,19
25 8,18 8,18 6,20
26 9,18 8,19 6,21
27 9,19 8,20 7,21
28 10,19 9,20 7,22
29 10,20 9,21 8,22
30 11,20 10,21 8,23

31 11,21 10,22 8,24
32 11,22 10,23 9,24
33 12,22 11,23 9,25
34 12,23 11,24 9,26
35 13,23 12,24 10,26
36 13,24 12,25 10,27
37 14,24 13,25 11,27
38 14,25 13,26 11,28
39 14,26 13,27 11,29
40 15,26 14,27 12,29

41 15,27 14,28 12,30
42 16,27 15,28 13,30
43 16,28 15,29 13,31
44 17,28 15,30 13,32
45 17,29 16,30 14,32
46 17,30 16,31 14,33
47 18,30 17,31 15,33
48 18,31 17,32 15,34
49 19,31 18,32 15,35
50 19,32 18,33 16,35

Derived using Microsoft Excel Version 5.0.

Table A8  Critical ranges for the Wilcoxon signed ranks test.

Two-tailed P-value

n′ 0.05 0.01 0.001

6 0–21 — —
7 2–26 — —
8 3–33 0–36 —
9 5–40 1–44 —
10 8–47 3–52 —

11 10–56 5–61 0–66
12 13–65 7–71 1–77
13 17–74 9–82 2–89
14 21–84 12–93 4–101
15 25–95 15–105 6–114
16 29–107 19–117 9–127
17 34–119 23–130 11–142
18 40–131 27–144 14–157
19 46–144 32–158 18–172
20 52–158 37–173 21–189

21 58–173 42–189 26–205
22 66–187 48–205 30–223
23 73–203 54–222 35–241
24 81–219 61–239 40–260
25 89–236 68–257 45–280

Adapted from Altman, D.G. (1991) Practical Statistics for Medical Research.  
Copyright CRC Press, Boca Raton.
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Table A9(a)  Critical ranges for the Wilcoxon rank sum test for a two-tailed P = 0.05.

nL

nS (the number of observations in the smaller sample)
4 5 6 7 8 9 10 11 12 13 14 15

4 10–26 16–34 23–43 31–53 40–64 49–77 60–90 72–104 85–119 99–135 114–152 130–170
5 11–29 17–38 24–48 33–58 42–70 52–83 63–97 75–112 89–127 103–144 118–162 134–181
6 12–32 18–42 26–52 34–64 44–76 55–89 66–104 79–119 92–136 107–153 122–172 139–191
7 13–35 20–45 27–57 36–69 46–82 57–96 69–111 82–127 96–144 111–162 127–181 144–201
8 14–38 21–49 29–61 38–74 49–87 60–102 72–118 85–135 100–152 115–171 131–191 149–211
9 14–42 22–53 31–65 40–79 51–93 62–109 75–125 89–142 104–160 119–180 136–200 154–221

10 15–45 23–57 32–70 42–84 53–99 65–115 78–132 92–150 107–169 124–188 141–209 159–231

11 16–48 24–61 34–74 44–89 55–105 68–121 81–139 96–157 111–177 128–197 145–219 164–241
12 17–51 26–64 35–79 46–94 58–110 71–127 84–146 99–165 115–185 132–206 150–228 169–251
13 18–54 27–68 37–83 48–99 60–116 73–134 88–152 103–172 119–193 136–215 155–237 174–261
14 19–57 28–72 38–88 50–104 62–122 76–140 91–159 106–180 123–201 141–223 160–246 179–271
15 20–60 29–76 40–92 52–109 65–127 79–146 94–166 110–187 127–209 145–232 164–256 184–281

Table A9(b)  Critical ranges for the Wilcoxon rank sum test for a two-tailed P = 0.01.

nS (the number of observations in the smaller sample)

nL 4 5 6 7 8 9 10 11 12 13 14 15
4 — — 21–45 28–56 37–67 46–80 57–93 68–108 81–123 94–140 109–157 125–175
5 — 15–40 22–50 29–62 38–74 48–87 59–101 71–116 84–132 98–149 112–168 128–187
6 10–34 16–44 23–55 31–67 40–80 50–94 61–109 73–125 87–141 101–159 116–178 132–198
7 10–38 16–49 24–60 32–73 42–86 52–101 64–116 76–133 90–150 104–169 120–188 136–209
8 11–48 17–53 25–65 34–78 43–93 54–108 66–124 79–141 93–159 108–178 123–199 140–220
9 11–45 18–57 26–70 35–84 45–99 56–115 68–132 82–149 96–168 111–188 127–209 144–231

10 12–48 19–61 27–75 37–89 47–105 58–122 71–139 84–158 99–177 115–197 131–219 149–241

11 12–52 20–65 28–80 38–95 49–111 61–128 73–147 87–166 102–186 118–207 135–229 153–252
12 13–55 21–69 30–84 40–100 51–117 63–135 76–154 90–174 105–195 122–216 139–239 157–263
13 13–59 22–73 31–89 41–106 53–123 65–142 79–161 93–182 109–203 125–226 143–249 162–273
14 14–62 22–78 32–94 43–111 54–130 67–149 81–169 96–190 112–212 129–235 147–259 166–284
15 15–65 23–82 33–99 44–117 56–136 69–156 84–176 99–198 115–221 133–244 151–269 171–294

Source: Diem (1970). Reproduced with permission of John Wiley & Sons.
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Table A10  Pearson’s correlation coefficient.

Two-tailed P-value
Sample size 0.05 0.01 0.001

5 0.878 0.959 0.991
6 0.811 0.917 0.974
7 0.755 0.875 0.951
8 0.707 0.834 0.925
9 0.666 0.798 0.898

10 0.632 0.765 0.872

11 0.602 0.735 0.847
12 0.576 0.708 0.823
13 0.553 0.684 0.801
14 0.532 0.661 0.780
15 0.514 0.641 0.760
16 0.497 0.623 0.742
17 0.482 0.606 0.725
18 0.468 0.590 0.708
19 0.456 0.575 0.693
20 0.444 0.561 0.679

21 0.433 0.549 0.665
22 0.423 0.537 0.652
23 0.413 0.526 0.640
24 0.404 0.515 0.629
25 0.396 0.505 0.618
26 0.388 0.496 0.607
27 0.381 0.487 0.597
28 0.374 0.479 0.588
29 0.367 0.471 0.579
30 0.361 0.463 0.570

35 0.334 0.430 0.532
40 0.312 0.403 0.501
45 0.294 0.380 0.474
50 0.279 0.361 0.451
55 0.266 0.345 0.432
60 0.254 0.330 0.414
70 0.235 0.306 0.385
80 0.220 0.286 0.361
90 0.207 0.270 0.341

100 0.197 0.257 0.324
150 0.160 0.210 0.266

Source: Diem (1970). Reproduced with permission of John Wiley & Sons.

Table A11  Spearman’s correlation coefficient.

Two tailed P-value
Sample size 0.05 0.01 0.001

5 1.000
6 0.886 1.000
7 0.786 0.929 1.000
8 0.738 0.881 0.976
9 0.700 0.833 0.933

10 0.648 0.794 0.903

Adapted from Siegel, S. & Castellan, N.J. (1988) Nonparametric Statistics for the Behav-
ioural Sciences. 2nd edition. New York: McGraw-Hill.
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Table A12  Random numbers.

3 4 8 1 4 6 8 0 2 0 2 8 9 9 8 5 1 6 8 7 4 0 0 8 8 3 5 4 5 8 2 4 7 0 8 0 1 8 1 5 5 3 7 7 6
9 9 1 0 6 5 0 8 9 9 0 7 3 9 4 9 1 0 7 1 2 2 4 1 1 6 1 6 4 3 6 4 4 3 5 6 2 5 5 2 6 4 3 1 6
4 7 1 8 5 3 1 7 8 2 4 8 8 9 4 6 8 7 9 0 5 1 8 5 2 3 6 9 1 8 0 5 7 3 7 9 0 6 5 3 6 1 1 2 3
8 1 3 5 4 5 7 2 9 6 3 9 3 2 9 5 2 2 6 3 4 3 1 9 4 5 1 6 2 4 4 2 4 2 9 6 1 3 6 7 4 1 2 0 7
8 3 4 6 7 8 5 6 2 2 9 5 7 7 8 0 5 3 4 7 0 0 4 4 5 5 1 3 3 4 2 9 4 4 5 9 9 1 7 6 3 0 0 9 1
2 7 9 2 4 3 4 1 6 7 5 7 0 6 0 5 7 5 3 5 3 2 2 7 8 1 6 9 4 9 0 4 9 6 0 0 4 1 1 6 9 1 4 6 7
5 8 3 1 9 8 8 1 6 4 9 4 1 3 0 0 7 7 4 3 1 6 9 1 7 1 5 6 8 1 9 3 5 7 2 9 9 7 5 3 4 9 1 1 7
4 9 7 3 2 6 6 7 0 2 7 2 4 2 5 9 9 1 1 7 4 9 2 9 8 8 7 2 6 5 1 4 1 9 5 8 3 3 9 1 1 9 7 9 4
6 9 5 9 4 2 6 7 4 9 6 8 7 4 3 3 9 1 3 9 4 4 4 9 5 1 1 9 4 4 1 2 9 7 0 5 6 5 2 3 6 2 4 1 1
3 0 0 7 4 9 7 5 1 7 9 7 4 5 0 5 4 2 5 1 5 1 7 7 7 2 1 0 7 3 0 3 9 0 9 2 6 5 1 9 3 9 5 7 8
8 1 1 4 7 5 7 5 0 8 9 3 4 7 9 8 7 8 2 6 2 8 9 6 5 7 4 4 7 4 9 7 4 6 8 8 0 1 4 9 1 7 8 3 4
7 4 6 8 9 2 8 9 3 3 5 9 8 1 9 9 3 0 5 2 6 1 3 2 5 8 3 1 4 5 4 4 6 8 4 7 2 9 5 8 9 1 8 2 4
1 4 8 0 2 2 5 9 8 2 4 8 0 2 4 1 5 4 6 1 3 7 5 7 0 4 4 6 8 5 4 7 3 8 6 0 9 5 0 4 7 7 8 3 1
6 8 5 0 1 3 4 1 9 4 8 5 3 5 5 3 8 4 1 1 4 6 5 5 9 4 1 6 9 4 9 9 6 7 8 8 8 2 6 8 8 6 6 7 4
4 8 7 3 4 9 2 6 7 1 8 5 2 5 2 8 5 9 8 5 3 4 2 2 8 9 1 2 8 9 5 6 3 3 1 1 4 6 8 3 3 6 4 9 3
8 4 1 0 2 8 1 6 9 9 9 7 3 5 2 5 4 5 0 9 9 3 1 9 6 5 1 2 0 4 4 3 3 5 1 1 1 8 1 8 4 1 1 7 9
2 8 4 3 2 3 2 8 7 3 8 3 8 3 4 0 9 8 6 2 1 2 7 2 0 6 4 5 6 9 4 2 2 1 8 2 6 7 2 6 8 0 8 6 6
9 1 4 5 8 8 2 5 2 4 7 5 5 2 3 0 1 2 7 6 1 9 5 9 1 4 7 4 7 3 9 0 2 5 1 9 9 1 0 3 7 2 9 4 7
4 5 4 3 5 3 0 3 8 9 6 9 7 3 2 8 1 9 6 2 3 0 2 4 3 9 6 1 9 9 3 3 5 4 6 3 9 6 7 2 8 3 7 6 0
2 3 5 5 7 7 8 4 3 7 4 4 9 5 7 9 8 7 2 8 6 5 6 7 4 3 4 7 0 1 8 3 3 9 8 5 4 1 0 2 6 5 8 4 5
3 0 3 9 5 9 1 8 5 0 5 2 0 0 4 0 4 8 4 4 2 8 8 4 8 1 9 7 2 8 9 6 5 7 1 1 3 3 1 7 7 0 8 5 9
6 9 9 9 1 1 2 7 5 5 9 7 9 1 6 5 7 6 3 9 4 3 4 4 5 9 0 4 6 3 8 5 5 5 6 3 5 4 6 9 1 9 7 4 9
3 2 9 8 0 4 3 6 0 8 2 0 5 9 2 7 2 5 2 7 6 3 5 8 3 4 6 4 4 3 5 3 9 2 9 8 7 2 1 9 5 5 1 9 8
5 9 7 7 6 3 7 0 3 5 5 3 7 6 5 5 5 1 9 6 6 8 6 5 9 7 1 4 2 9 2 5 2 2 5 9 1 9 4 2 5 1 1 3 2
7 3 7 1 4 7 9 8 6 8 2 3 8 8 0 9 2 2 5 4 7 2 9 8 4 0 7 7 9 2 8 1 3 0 6 2 4 2 7 7 8 2 3 6 6
6 1 5 4 7 1 6 5 7 5 6 8 5 2 0 5 9 8 6 9 6 7 2 9 9 7 3 5 6 5 7 7 3 1 6 9 6 6 8 2 1 8 0 3 1
8 7 7 3 7 0 1 0 5 8 7 6 0 1 2 7 6 2 4 7 7 5 6 1 6 5 1 3 3 5 7 0 3 6 4 7 8 9 4 2 4 0 5 6 4
9 8 6 6 9 0 8 3 3 4 4 0 5 2 0 7 8 3 8 9 5 6 4 9 8 7 4 3 3 6 0 2 4 3 4 4 8 5 9 9 6 7 5 7 9
8 1 5 3 5 4 6 6 9 0 9 2 8 1 4 4 4 4 5 6 2 9 2 2 7 4 8 1 2 2 3 0 5 2 2 1 3 8 5 2 4 8 4 3 6
0 5 9 7 5 4 7 1 1 0 3 2 7 3 3 4 6 9 2 9 9 8 2 6 1 5 2 1 9 3 8 3 2 1 5 5 3 1 9 2 8 3 1 0 9

Derived using Microsoft Excel Version 5.0.
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Appendix B: Altman’s nomogram 
for sample size calculations 
(Chapter 36)

Source: Altman (1982). Reproduced with permission from John Wiley & Sons.
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Appendix C: Typical computer output

Results of paired t-test
show that d = 0.71429,
95% CI of differences = 0.23448
to 1.19409, t = 3.2161 and
P-value = 0.007

Chapter 20

> length(Data$Difference)
[1] 14
> summary (Data$Difference)

Analysis of plasma leptin data described in Chapter 20, generated by R

Summary measures
for the differences
(Diabetic – Palaeolithic)
in plasma leptin
(ng/mL)

Summary measures
separately for
Palaeolithic and
Diabetic diets

Stem-and-leaf plot

> sd (Data$Difference)
[1] 0.8310023
> var(Data$Difference)
[1] 0.6905648
> semDifference <- 0.8310023/sqrt(14)
> semDifference
[1] 0.2220947

> mean (Data$Palaeolithic)
[1] 5.508571
> mean(Data$Diabetic)
[1] 6.222857
> sd(Data$Palaeolithic)
[1] 2.95612
> sd(Data$Diabetic)
[1] 3.033732
> semPalaeolithic <- 2.95612/sqrt(14)
> semPalaeolithic
[1] 0.7900563
> semDiabetic<-3.033732/sqrt(14)
> semDiabetic
[1] 0.810799

> t.test (Data$Difference)

t = 3.2161, df = 13, p-value = 0.006755
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 0.2344793 1.1940922
sample estimates:
mean of x
0.7142857

> stem(Data$Difference, scale = 1)
 The decimal point is at the |

> boxplot.default(Data$Difference)

–0 | 555
 0 | 14599
 1 | 01466
 2 | 1

Min.
–0.5100

1st Qu.
0.1375

3rd Qu.
1.3250

Max.
2.1000

Median
0.9000

Mean
0.7143

One Sample t-test
data: Data$Difference

2.0

1.5

1.0

0.5

0.0

–0.5

syntax in italics
number of pairs

this is sd

Box-and-whisker plot shows that the
differences in plasma leptim (ng/mL)
are very approximately Normally distributed
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Chapter 22

EXAMINE VARIABLES=Platelet BY Group
 /PLOT=BOXPLOT
 /STATISTICS=NONE
 /NOTOTAL.

ONEWAY Platelet BY Group
 /STATISTICS DESCRIPTIVES HOMOGENEITY
 /MISSING ANALYSIS.

Analysis of platelet data described in Chapter 22, generated by SPSS

Case Processing Summary

Explore Group

Cases

Valid

Group

Caucasian

Afro-Caribbean

Mediterranean

Other

90

21

19

20

0

0

0

0

100.0%

100.0%

100.0%

100.0%

NN

Platelet count (x10^9/L) 90

21

19

20

NPercent

100.0%

100.0%

100.0%

100.0%

Percent

0.0%

0.0%

0.0%

0.0%

Percent

Missing Total

Table with information
on the number of
patients in each group
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L
)

Platelet count (x10^9/L)

300.00

200.00

100.00

Caucasian MediterraneanAfro-caribean

Group

Other

Box plot
showing
distributions
of platelet
counts in the
four ethnic
groups

Patient 27 is
an outlier

Patient 134 is an
extreme outlier

134

109
7

127
12690

*

38
27

Descriptives

Oneway

95% Confidence
Interval for Mean

Std.
Deviation

Std.
Error

Lower
BoundN Minimum MaximumMean

Upper
Bound

Summary measures for
each of the four groups

Caucasian

Afro-Caribbean

Mediterranean

Other

Total

90

21

19

20

150

268.10

254.29

281.05

273.30

268.50

77.078

67.500

71.093

63.424

73.045

8.125

14.730

16.310

14.182

5.964

251.96

223.56

246.79

243.62

256.71

284.24

285.01

315.32

302.98

280.29

156.00

148.00

165.00

170.00

148.00

651.00

414.00

449.00

414.00

651.00

Test of Homogeneity of Variances

ANOVA

df2df1 Sig.

Sig.F

This is the ANOVA table

P-value

df Mean SquareSum of Squares

Levene
Statistic

Platelet count (x10^9/L)

Platelet count (x10^9/L)

Based on Mean

Based on Median

Based on Median and with

adjusted df

Based on trimmed mean

Between Groups

Within Groups

Total

7711.967

787289.533

795001.500

.041

.025

.025

.027

3

146

149

2570.656

5392.394

.477 .699

3

3

3

3

146

146

136.4

146

.989

.995

.995

.994

Platelet count (x10^9/L)

‘Sig’ is the P-value in SPSS.
All approaches give P     0.99,
indicating that there is no
evidence that the variances
are different in the four groups
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Analysis of FEV1 data described in Chapter 21 (Example 1), generated by SAS

OBS GRP

................Treatment Group=Placebo................

Univariate Procedure

Moments

Quantiles (Def=5)

Extremes

Lowest Obs

Placebo
Placebo
Placebo
Placebo
Placebo
Treated
Treated
Treated
Treated
Treated

1.28571
1.31250
1.60000
1.41250
1.60000
1.60000
1.80000
1.94286
1.84286
1.90000

FEV
Print out of first
five observations in
each group

Univariate summary
statistics showing
that the mean and
median are fairly
similar in the placebo
group. Thus we
believe that the
values are approximately
Normally distributed

Chapter 21

Variable=FEV

N

Median

Mean
Std Dev
Skewness
USS
CV
T:Mean=0
Num ^=0
M (Sign)
Sgn Rank

Sum Wgts
Sum
Variance
Kurtosis
CSS
Std Mean
Pr> |T|
Num > 0
Pr>=|M|
Pr>=|S|

48
1.536759
0.245819
0.272608
116.1981
15.99592
43.31232

48
24

588

48
73.76441
0.060427
0.500457
2.840059
0.035481
0.0001

48
0.0001
0.0001

100%
75%
50%
25%
0%

1(
1.04(

1.12857(
1.18571(
1.28571(

21)
33)
45)
12)
1)

Obs
47)
26)
46)
27)
20)

Highest
1.85714(

1.9(
1.91429(
2.1125(
2.1875(

2.1875
1.7

1.551785
1.36905

1

1.1875
0.33095
1.3875

99%
95%
90%
10%
5%
1%

2.1875
1.91429
1.85714
1.28571
1.12857

1

Max
Q3
Med
Q1
Min

Range
Q3−Q1
Mode

The SAS System

1
2
3
4
5
49
50
51
52
53

Continued
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................ Treatment Group=Treated ................

Univariate Procedure

N
Mean
Std Dev
Skewness
USS
CV
T:Mean=0
Num ^=0
M (Sign)
Sgn Rank

50
1.640048
0.285816
-0.02879
138.4097
17.42732
40.57462

50
25

637.5

50
82.00239
0.081691
-0.51153
4.002858
0.040421
0.0001

50
0.0001
0.0001

Sum Wgts
Sum
Variance
Kurtosis
CSS
Std Mean
Pr>|T|
Num > 0
Pr>=|M|
Pr>=|S|

100% Max
75% Q3
50% Med
25% Q1
0%

99%
95%
90%
10%
5%
1%

2.2125
2.17143

1.195625
1.2375
1.1625
1.025

2.2125
1.875

1.6125
1.4373
1.025Min

Range
Q3-Q1
Mode

1.1875
0.4375
1.1625

Moments
Variable=FEV

Quantiles (Def=5)

Summary statistics for the
treated group. Again, the
mean and median are fairly
similar, suggesting Normally
distributed data

Lowest
1.025(
1.15(

1.1625(
1.1625(
1.225(

13)
36)
35)
16)
34)

1.9625(
2.0625(

2.171143(
2.2(

2.2125(

Extremes
Obs

20)
9)
8)

30)
27)

ObsHighest
Chapter 21

A test of the equality of
two variances. As P>0.05
we have insufficient
evidence to reject H0

Variable=FEV

Veriances

Unequal -1.9204 94.9 0.0578
Equal -1.9145 96.0 0.0585

T DF Prob>|T|

Placebo 48 1.53675854 0.24581862 0.03548086
Treated 50 1.64004780 0.28581635 0.04042054

GRP N Mean Std Dev Std Error

T Test procedure

........................ ........................

...................................
Results of the unpaired t-test
As we believe the variances
are equal, we quote the P-value
from the equal variances row
(=0.0585)

For HO: Variances are equal, F' = 1.35 Df = (49,47)
                              Prob>F' = 0.3012 
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OBS SBP Height Weight Sex

SBP Height Weight Age

Correlation Analysis

Simple Statistics

Simple Statistics

4  'VAR' Variables: SBP   Height    Weight    Age

Sum

Print out of data
from first 10
children

Summary statistics
for each variable

Pearson’s correlation
coefficient between
SBP and age

Associated P-value

P-value

Chapter 26

Spearman’s correlation
coefficient between
height and age

Std DevMeanN

SBP
Height
Weight
Age

SBP
Height
Weight
Age

SBP

100
100
100
100

104.414700
120.054000
22.826000
6.696900

81.500000
107.1000000
15.900000
5.130000

1.00000
0.0

0.33066
0.0008

0.51774
0.0001

0.16373
0.1036

0.33066
0.0008

1.00000
0.0

0.69151
0.0001

0.64486
0.0001

0.51774
0.0001

0.69151
0.0001

1.00000
0.0

0.38935
0.0001

0.16373
0.1036

0.64486
0.0001

0.38935
0.0001

1.00000
0.0

128.850000
136.800000
42.500000
8.840000

9.430933
6.439986
4.223303
0.731717

10441
12005

2282.600000
669.690000

Variable

Variable

Pearson Correlation Coefficients/Prob>|R| under Ho:Rho=0
/N=100

Spearman Correlation Coefficients/Prob>|R| under Ho:Rho=0
/N=100

Minimum Maximum

Analysis of anthropometric data described in Chapters 26, 28 and
29, generated by SAS

1
2
3
4
5
6
7
8
9
10

91.00
122.50
109.50
100.50
99.00

103.50
101.00
103.00
106.50
102.50

119.7
124.6
111.3
110.3
112.5
115.1
116.3
111.1
117.2
113.2

20.0
42.5
19.8
18.9
19.0
19.3
19.6
17.1
20.7
22.1

0
0
0
0
0
0
0
1
1
1

Height

Weight

Age

SBP Height Weight Age

SBP 1.00000
0.0

0.31519
0.0014

0.45453
0.0001

0.14778
0.1423

0.31519
0.0014

1.00000
0.0

0.82298
0.0001

0.61491
0.0001

0.45453
0.0001

0.82298
0.0001

1.00000
0.0

0.51260
0.0001

0.14778
0.1423

0.61491
0.0001

0.51260
0.0001

1.00000
0.0

Height

Weight

Age
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Model:MODEL1
Dependent Variable:SBP

Model:MODEL1
Dependent Variable:SBP

Analysis of Variance

Analysis of Variance

Parameter Estimates

Slope, b

Variable

Variable DF Prob>|T|

Intercept, a

Source

Model
Error
C Total

Intercep
Height

Intercep
Height

1
98
99

1
1

1
1

16.78450788
0.13960927

2.757
3.468

46.281684
0.484224

0.0070
0.0008

962.71441
7842.59208
8805.30649

8.94575
104.41470
8.56752

962.71441
80.02645

R-square
Adj R-sq

12.030

0.1093
0.1002

0.0008
ANOVA table

Results from
simple linear regression
of SBP (systolic blood
pressure) on height
Chapter 28

Results from
multiple linear
regression of
SBP on height
weight and gender
Chapter 29

DF

DF
Parameter
Estimate

Standard
Error

T for HO:
Parameter=0

Sum of
Squares

Root MSE
Dep Mean

C.V.

Mean
Square

F Value Prob>F

Source

Model
Error
C Total

3
96
99

2804.04514
6001.26135
8805.30649

7.90653
104.41470
7.57223

934.68171
62.51314

R–square
Adj R–sq

14.952

0.3184
0.2972

0.0001

DF Sum of
Squares

Root MSE
Dep Mean
C.V.

Mean
Square

F Value Prob>F

Parameter Estimates

Variable

Variable DF Prob>|T|

Intercep
Height
Weight
Sex

Intercep
Height
weight
Sex

1
1
1
1

1
1
1
1

17.11822110
0.17170250
0.26139400
1.61054848

4.641
–0.181
4.512
2.626

Estimated partial
regression
coefficients

79.439541
–0.031023
1.179495
4.229540

0.0001
0.8570
0.0001
0.0101

DF Parameter
Estimate

Standard
Error

T for HO:
Parameter=0
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. lroc 

Logistic model for hhv8

number of observations = 260
area under ROC curve   =   0.6868

. list  hhv8 gonorrho syphilis hsv2 hiv age in 1/10 

Analysis of HHV-8 data described in Chapters 23, 24 and 30, generated by Stata

agehivhsv2syphilisgonorrhohhv8
 1.
 2.
 3.
 4.
 5.
 6.
 7.
 8.
 9.
10.

28
40
26
42
30
33
27
32
35
35

. tabulate hhv8 gonorrho, chi2 row col 

gonorrhoe 

hhv8 Totalhistoryno histor

221 29192negative
100.0013.12 86.88
 81.5567.44 84.21

 50 1436positive 
100.0028.00 72.00
 18.4532.56 15.79

Total 271 43228
100.0015.87 84.13
100.00100.00100.00

Pearson chi2(1) = 6.7609 Pr = 0.009

. logit  hhv8 gonorrho syphilis hsv2 hiv age, or tab 

Iteration 0:  Log Likelihood =–122.86506
Iteration 1:  Log Likelihood =–111.87072
Iteration 2:  Log Likelihood =–110.58712
Iteration 3:  Log Likelihood =–110.56596
Iteration 4:  Log Likelihood =–110.56595

Logit Estimates
Number of obs =  
chi2(5)       =
Prob > chi2   =
Pseudo R2     =Log Likelihood = –110.56595

hhv8 |

gonorrho |
syphilis |
    hsv2 |

hiv |
age |

constant |

.5093263
1.192442
.7910041
1.635669
.0061609

–2.224164

.4363219

.7110707

.3871114

.6028147

.0204152

.6511603

1.167
1.677
2.043
2.713
0.302

–3.416

0.243
0.094
0.041
0.007
0.763
0.001

–.345849   1.364502
–.201231   2.586115
.0322798   1.549728
.4541736   2.817164

–.0338521    .046174
–3.500415  –.9479135

Coef.
+

+

+

Std. Err. P>|z| [95% Conf. Interval]z

hhv8 |

gonorrho |
syphilis |
    hsv2 |

hiv |
age |

1.66417
3.295118
2.20561

5.132889
1.00618

.7261137
2.343062
.8538167
3.094181
.0205413

1.167
1.677
2.043
2.713
0.302

0.243
0.094
0.041
0.007
0.763

.7076193   3.913772

.8177235   13.27808
1.032806   4.710191
1.574871   16.72934
.9667145   1.047257

Odds Ratio Std. Err. P>|z| [95% Conf. Interval]z

Print out of data
from first 10 men

CI’s
exclude 1

Significant findings, P < 0.05

Chapter 24

Results
from
multivariable
logistic
regression
Chapter 30

Contingency table

Row marginal total

Observed frequency

Column marginal total

Overall total

Chi-square for
covariates
and its P-value

P-value

Wald
test
statistic

Number of men with complete
information on all variables

Chi-squared test results

Row %

Start of
logistic
regression
output

Deviance = –2 log likelihood
                    = 221.13

Deviance

No evidence of
extra-Binomial
variation

221.13
=

= 0.87

260–6df

Column %

negative
negative
negative
negative
negative
negative
negative
negative
negative
negative

history
history
history
history
history
nohistory
history
history
history
history

0
0
0
0
0
0
0
0
1
0

0
0
0
1
0
0
1
0
0
0

0
0
0
0
0
0
0
0
0
0

260
24.60

0.0002
0.1001
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1.00

1.00

0.75

0.75

0.50

0.50

1 - Specificity

Area under ROC curve = 0.6868

. estat classification, cutoff (0.5)

Classified

Classified + if predicted Pr(D) >= .5

Sensitivity
Specificity
Positive predictive value
Negative predictive value

Pr( +| D)
Pr( –|–D)
Pr( D| +)
Pr(–D| –)

19.15%
97.65%
64.29%
84.55%

False + rate for true –D
False – rate for true D
False + rate for classified +
False – rate for classified –

Correctly classified

Pr( +|–D)
Pr( –| D)
Pr(–D| +)
Pr( D| –)

2.35%
80.85%
35.71%
15.45%

83.46%

D
+

+
–

9
38

47

5
208

215

14
246

260

Poor sensitivity

Assessing
predictive
efficiency,
cut-off 0.5
Chapter 30

Good specificity

+
–D Total

Total

True

0.25

0.25

0.00

0.00

Cut-off for
predicted
probability
is 0.2

S
en

si
ti

vit
y

ROC curve

Cut-off for
predicted
probability
is 0.5

Assessing
predictive
efficiency,
cut-off 0.2
Chapter 30

ROC curve
with two
cut-offs
Chapter 30

+ +

. estat classification, cutoff (0.2)

Classified

Classified + if predicted pr(D) >= .2

Sensitivity
Specificity
Positive predictive value
Negative predictive value

Pr( +| D)
Pr( –|–D)
Pr( D| +)
Pr(–D| –)

51.06%
79.81%
35.82%
88.08%

False + rate for true –D
False – rate for true D
False + rate for classified +
False – rate for classified –

Correctly classified

Pr( +|–D)
Pr( –| D)
Pr(–D| +)
Pr( D| –)

20.19%
48.94%
64.18%
11.92%

74.62%

D
+

+
–

24
23

47

43
170

213

67
193

260

Sensitivity increased
Specificity decreased

+
–D Total

Total

True

+ +

Lower cut-off

Total correctly classified decreased
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Analysis of virological failure data described in Chapters 31-33, generated by SAS 

Print out
of data from
first10 patients
(each patient
has a row of
data for each
time period) 

Time since initial response
(<1 yr = 1,  1 – 2 yrs = 2, >2 yrs = 3)

Virological failure
(No = 0, Yes = 1)

Length of follow-up (days) Female = 0

The GENMOD Procedure
Model Information

Male = 1

Treatment status
(Previously

received treatment = 0,
No previous treatment = 1)

 

OBS

1
2
3
4
5
7
8
9
10
13
14
15
16
17
18

1
1
2
2
2
4
5
5
5
6
7
8
8
9
10

1
2
1
2
3
1
1
2
3
1
1
1
2
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
1
1
1
0
1
1
1
1
1
1
1
1
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

665
665
2053
2053
2053
327
931
931
931
1754
665
297
297
455
736

365.25
48.75
365.25
365.25
592.50
30.00
365.25
365.25
732.50
166.00
84.00
365.25
152.75
142.00
230.00

PATIENT PERIOD EVENT PDAYS SEX BASECD8 TRTSTATUS

Data Set
Distribution
Link Function
Dependent Variable
Offset Variable
Observations Used

Criteria For Assessing Goodness Of Fit

Analysis of Parameter Estimates

LR Statistics For Type 3 Analysis

Deviance

Criterion

Parameter

Intercept 1 -1.1698 0.3228 -1.8024 -0.5372 13.14 0.0003
TRTSTATUS 1 -0.6096 0.2583 -1.1159 -0.1033 5.57 0.0183
BASECD8_100 1 -0.0587 0.0268 -0.1112 -0.0063 4.82 0.0281
SEX 1 -0.4923 0.2660 -1.0136 0.0290 3.43 0.0642
Scale 0 1.0000 0.0000 1.0000 1.0000

DF

DF Pr > ChiSqSource

1 5.40 0.0201TRTSTATUS
1 5.46 0.0194BASECD8_100
1 3.27 0.0707SEX

Estimate Error Confidence Limits Square Pr > ChiSq
Standard Wald 95% Chi-

Chi-
Square

Baseline CD8 count
divided by 100

Wald test
statistics

DF Value Value/DF

Scaled Deviance
Pearson Chi-Square
Scaled Pearson X2
Log Likelihood

984
984
984
984

0.3995
0.3995
7.6974
7.6974

393.1203
393.1203

7574.2725
7574.2725
-257.5601

WORK.APPENDIX_POISSON
Poisson

Log
EVENT
LTIME = Log(PDAYS) 
988

Model 1
excluding 2
dummy
variables
for time
since initial
response.
Chapter 32

Scale parameter
used to adjust for
extra-Poisson
dispersion P-value for significance

of each variable in model
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Chi-
Square  Pr > ChiSq

Pr > ChiSq
Chi-

Square

 Wald 95%
Confidence Limits

Standard
ErrorEstimateDF

DF

1
1
1
2

Source

1
1
1
1
0
1
1
0

Parameter

0.0002
0.0233
0.0369
0.0676
.     
0.1152
0.2265

14.30
5.15
4.36
3.34

    .   
2.48
1.46

–0.6192
–0.0800
–0.0034
0.0353
0.0000
0.9552
0.3622
1.0000

–1.9518
–1.0942
–0.1083
–1.0089
0.0000

–0.1039
–1.5292
1.0000

0.3400
0.2587
0.0267
0.2664
0.0000
0.2702
0.4825
0.0000

–1.2855
–0.5871
–0.0558
–0.4868
0.0000
0.4256
–0.5835
1.0000

Intercept
TRTSTATUS
BASECD8_100
SEX
PERIOD
PERIOD
PERIOD
Scale  

1
2
3

 Chi-
Square  Pr > ChiSq

 Wald 95%
Confidence Limits

Standard
ErrorEstimateDF

1
1
1
0
1
1
0

Parameter

<.0001
0.0146
0.0399
.    
0.1207
0.1782

41.85
5.96
4.22
.  
2.41
1.81

–1.2232
–0.1240
–0.0252
0.0000
0.9485
0.2955
1.0000

–2.2866
–1.1340
–1.0637
0.0000

–0.1103
–1.5918
1.0000

0.2713
0.2577
0.2649
0.0000
0.2701
0.4814
0.0000

–1.7549
–0.6290
–0.5444
0.0000
0.4191

–0.6481
1.0000

Intercept
TRTSTATUS
SEX
PERIOD
PERIOD
PERIOD
Scale  

1
2
3

LR Statistics For Type 3 Analysis

0.0253
0.0267
0.0742
0.0630

5.00
4.91
3.19
5.53

TRTSTATUS
BASECD8_100
SEX
PERIOD 

Pr > ChiSq
Chi-

SquareDF

1
1
2

Source

LR Statistics For Type 3 Analysis

0.0163
0.0455
0.0478

5.77
4.00
6.08

TRTSTATUS
SEX
PERIOD 

Model Information 
Data Set
Distribution
Link Function
Dependent Variable
Offset Variable
Observations Used 

Estimates of model parameters
shown in Table 31.1.—Relative
rates obtained by antilogging estimates

CI for model coefficients

Model
excluding
baseline
CD8 count.
Chapter 33

Zeros in this row indicate
that Period 1 is reference
category

Test statistic
= difference in
deviances of 2 models
= 393.1203  – 387.5904

Degrees of freedom =
difference in number
of parameters in Models
1 and 2

P-value for test
of difference in deviancies
from models with and
without dummy variables
for time since initial response

Model Information

WORK.APPENDIX_POISSON
Poisson

Log
EVENT
LTIME
988

WORK.APPENDIX_POISSON
Poisson

Log
EVENT
LTIME
988

Data Set
Distribution
Link Function
Dependent Variable
Offset Variable
Observations Used 

Class Level Information 

Values
1 2 3

Levels
3

982
982
982
982

387.5904
387.5904
5890.6342
5890.6342
–254.7952

0.3947
0.3947
5.9986
5.9986

Class
PERIOD3

Class Level Information 
Values
1 2 3

Levels
3

Class
PERIOD

Criteria For Assessing Goodness Of Fit 

Criteria For Assessing Goodness Of Fit 

Value/DFValueDFCriterion

Deviance
Scaled Deviance
Pearson Chi-Square
Scaled Pearson X2
Log Likelihood

983
983
983
983

392.5001
392.5001

5580.2152
5580.2152
–257.2501

0.3993
0.3993
5.6767
5.6767

Value/DFValueDFCriterion

Deviance
Scaled Deviance
Pearson Chi-Square
Scaled Pearson X2
Log Likelihood

Model 2
including
2 dummy
variables
for time since
initial
response
and CD8
count as a
numerical
variable.
Chapters 31
and 32

LRS or deviance gives
P > 0.99
for
evaluating
goodness
of fit

Degrees of freedom

This is
substantially
<1, indicating
underdispersion

Analysis Of Parameter Estimates 

Analysis Of Parameter Estimates 
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Criteria For Assessing Goodness Of Fit 
DF

Analysis Of Parameter Estimates 

Parameter

LR Statistics For Type 3 Analysis 

Number of
additional
variables in
larger model

Test statistic
= 392.5001  – 387.1458

P-value for
test of significance
of baseline CD8 count
when incorporated
as a categorical
variable

Model Information

Class Level Information 

Data Set
Distribution
Link Function
Dependent Variable
Offset Variable
Observations Used

WORK.APPENDIX_POISSON
Poisson

Log
EVENT
LTIME
988

Class Levels Values

PERIOD 3

979
979
979
979

387.1458
387.1458
5852.1596
5852.1596
-254.5729

0.3955
0.3955
5.9777
5.9777

1  2  3 
5 1  2  3  4  5CD8GRP

Criterion Value Value/DF

Deviance
Scaled Deviance
Pearson Chi-Square
Scaled Pearson X2
Log Likelihood

DF Estimate
Standard

Error
Wald 95% Chi-

Square

Chi-
Square

Confidence Limits Pr > ChiSq

Pr > ChiSq

Intercept
TRTSTATUS
SEX
PERIOD
PERIOD
PERIOD
CD8GRP
CD8GRP
CD8GRP
CD8GRP
CD8GRP
Scale

1
2
3
1
2
3
4
5

1
1
1
0
1
1
1
1
0
1
1
0

-1.2451
-0.5580
-0.4971
0.0000
0.4550

-0.5386
-0.2150
-0.3646
0.0000

-0.3270
-0.8264
1.0000

0.6116
0.2600
0.2675
0.0000
0.2715
0.4849
0.6221
0.7648
0.0000
1.1595
0.6057
0.0000

-2.4439
-1.0677
-1.0214
0.0000
-0.0771
-1.4890
-1.4343
-1.8636
0.0000
-2.5996
-2.0136
1.0000

-0.0463
-0.0483
0.0272
0.0000
0.9871
0.4119
1.0044
1.1345
0.0000
1.9455
0.3608
1.0000

4.14
4.60
3.45
.  

2.81
1.23
0.12
0.23
.  

0.08
1.86

0.0418
0.0319
0.0631
.    

0.0937
0.2667
0.7297
0.6336
.    

0.7779
0.1725

Parameter estimates
for dummy variables
for baseline CD8 count
where category 3 (≥825, <1100)
is reference category

Source

TRTSTATUS
SEX
PERIOD
CD8GRP

1
1
2
4

4.48
3.30
5.54
5.35

0.0342
0.0695
0.0628
0.2528

DF

Model including
baseline CD8
count as a
series of
dummy variables.
Chapter 33
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. regress loa smoke

Source

Model .056714546
721.589651

721.646365

1
2543

2544

.056714546
.28375527

.283666024

Coef. Std.Err. t P>|t| [95% Conf. Interval]

-.0105165 .0235231 -0.45 0.655 -.0566429 .0356099
1.01473 .012442 81.56 0.000 .9903324 1.039127

Residual

Total

loa

Coef. Std. Err. t P>|t| [95% Conf. Interval]loa

smoke
_cons

-.0105165 .0525946 -0.20 0.842 -.114916 .0938831
1.01473 .0352714 28.77 0.000 .9447168 1.084743

smoke
_cons

------------+-------+--------------------

------------+-------+--------------------

------------+-------+----------------------------------------------------

-------------------------------------------------------------------------

-------------------------------------------------------------------------

-------------------------------------------------------------------------

-------------------------------------------------------------------------

-------------------------------------------------------------------------

|

|
|

|

|

|
|

------------+------------------------------------------------------------
|
|

|
|

SS df MS Number of obs
F(  1, 2543)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

= 0.04F ( 1,    96)
= 0.8419Prob > F
= 0.0001R-squared
= .53269Root MSE

2545
0.20

0.6549
0.0001
-0.0003
.53269

Analysis of periodontal data used in Chapter 42, generated by Stata

-------------------------------------------------------------------------

OLS
regression 
ignoring 
clustering 

Test statistic and P-value
to test significance of
coefficient(s) in model  

P-value for smoking

Constant term

. regress loa smoke, robust

Regression with robust standard errors Number of obs = 2545

Robust

OLS
regression 
with robust 
standard errors 
adjusted for 
clustering 

Robust SE
is larger than when
clustering
ignored
so P-value is
larger   

Number of clusters(subj) = 97

. xtreg loa smoke, be

Between regression (regression on group means)

-------------+-------+----------------------------------------------------

Aggregate
analysis
(OLS regression 
on group
means)

Subject identified
as group (cluster) 

P-value for
significance of 
smoking coefficient

2545Number of obs =
97Number of groups =

21
26.2
28

Obs per group: min =
=
=

0.01=
0.9409=

Group variable (i): subj

R-sq: within 0.0000
between 0.0001

0.0001overall 

loa Coef.

-.004559

Std. Err.

.0612848

t

-0.07

P>|t| 

0.941

[95% Conf.

-.1262246

Interval]

.1171066
1.013717 .0323332 31.35 0.000 .9495273 1.077906

smoke
_cons

avg
max

=
=
=

F(1,95)
Prob > Fsd(u_i + avg(e_i.)) = .2705189

|

|
|
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GEE population-averaged model                               
Group variable:       
Link: 
Family:
Correlation:

Scale parameter:

(standard errors adjusted for clustering on subj)

|

. xtreg loa smoke, mle

Fitting constant-only model:
Iteration 0:   log likelihood = –1785.7026
Iteration 1:   log likelihood = –1785.7004

Fitting full model:
Iteration 0:   log likelihood = –1785.7027
Iteration 1:   log likelihood = –1785.6966
Iteration 2:   log likelihood = –1785.6966

Random-effects ML regression
Group variable (i): subj

Random effects u_i – Gaussian

Log likelihood  = –1785.6966

[95% Conf. Interval]

Likelihood-ratio test of sigma_u=0: chibar2(01)=  443.21 Prob>=chibar2 = 0.000

GEE with
robust
standard
errors and
exchangeable
correlation
structure

Random
effects
model

Correlation structure
identified as
exchangeable

Model Chi-square to test 
significance of coefficient 
in model

P-value
for model
Chi-square

Wald test statistic

final
iteration
provides
stable
estimates

difference =  – 0.0038 so
– 2 log likelihood ratio
= 2 × 0.0038
= 0.0076
≃ 0.01

LRS =  –2 log likelihood ratio

min
avg
max

LR chi2(1)
Prob > chi2

P-value

Intracluster
correlation
coefficient

0.25192262

0.25192262 + 0.46849542=

σc
σ

. iis subj

. xtreg loa smoke, pa robust corr(exchangeable)

Iteration 1: tolerance = .00516018
Iteration 2: tolerance = 2.204e-07 

2545
97
21

26.2
28

0.01
0.9198

Number of obs
Number of groups
Obs per group: min

=
=
=
=
=
=
=

avg
max

Wald chi2(1)
Prob > chi2

subj
identity
Gaussian

exchangeable

.2835381

Semi-robust
Std. Err. [95% Conf. Interval]loa | Coef.

+
z P>|z|

smoke |
_cons |

–.0053018
1.013841

.0526501

.0347063
–0.10
29.21

0.920
0.000

–.1084941
.9458185

.0978905
1.081865

2545
97

21
26.2
28

0.01
0.9302

=
=

=
=
=

=
=

Number of obs
Number of groups

Obs per group:

loa | Coef.
+

+

+

Std. Err. z P>|z|

–.1243265
.951035

.1136928
1.076653

 smoke |
 _cons |

–.0053168
1.013844

.0607203
.032046

0.930
0.000

–0.09
31.64

.2118251

.4553731
.2920201
.4816176

 /sigma_u |
 /sigma_e |

.2519226

.4684954
.0204583
.0066952

0.000
0.000

12.31
69.98

.1719879 .2846119rho | .2242953 .0288039

Degrees of
freedom
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Appendix D: Checklists and trial 
profile from the EQUATOR network 
and critical appraisal templates

In 2008, the EQUATOR (Enhancing the QUAlity and Trans-
parency Of Health Research) Network was initiated with the 
objectives of providing resources and training for the report-
ing of health research, as well as assistance in the development, 
dissemination and implementation of reporting guidelines. 
The international collaboration is led by experts in the area of 
research methodology, reporting and editorial work. Its web-
site (www.equator-network.org) provides links to a substantial 
number of guidelines which are often updated in the light of 
new evidence. In view of this evolving process, we present the 

guidelines (correct at the time of printing) only for randomized 
controlled trials (the CONSORT checklist (Table D1) and flow 
chart (Fig. D1)) and observational studies (the STROBE check-
list (Table D2)), two common study designs. Guidelines for the 
presentation of study results are now available for many other 
types of study1. We provide website addresses (the guidelines 
may also be accessed from the EQUATOR website) in the fol-
lowing table for some of these designs, all relevant to the con-
tent of this book, so that you can find them online in the most 
up to date versions.

Name Derivation Use Website or reference Chapter

CONSORT CONsolidated Standards Of 
Reporting Trials

Randomized controlled 
trials

www.consort-statement.org 14

SPIRIT Standard Protocol Items: 
Recommendations for 
Interventional Trials

Clinical trial protocols www.spirit-statement.org 14

STROBE STrengthening the Reporting 
of OBservational studies in 
Epidemiology

Observational studies www.strobe-statement.org 15, 16

SAMPL Statistical Analyses and Methods  
in the Published Literature

Basic statistical methods 
and results

www.equator-network.org/reporting-
guidelines/sampl/

37

STARD STAndards for Reporting 
Diagnostic accuracy studies

Diagnostic accuracy www.stard-statement.org 38

GRRAS Guidelines for Reporting Reliability 
and Agreement Studies

Reliability and agreement www.equator-network.org/reporting-
guidelines/guidelines-for-reporting-reliability-
and-agreement-studies-grras-were-proposed/

39

PRISMA Preferred Reporting Items for 
Systematic reviews and Meta-
Analyses

Systematic reviews and 
meta-analysis of healthcare 
interventions

www. prisma-statement.org 43

MOOSE Meta-analysis Of Observational 
Studies in Epidemiology

Meta-analysis of 
observational studies

Stroup, D.F., Berlin, J.A., Morton, S.C., et al. 
(2000) Meta-analysis of observational studies 
in epidemiology: a proposal for reporting. 
Meta-analysis Of Observational Studies in 
Epidemiology (MOOSE) group. JAMA, 283, 
2008–2012.

43

TRIPOD Transparent Reporting of a 
multivariable prediction model for 
Individual Prognosis Or Diagnosis

Model development and 
validation

www.tripod-statement.org 46

Reference
1	 Moher, D., Altman, D.G., Schulz, K., Simera, I and Wager, E. 

(eds) (2014) Guidelines for Reporting Health Research: A User’s 
Manual. Oxford: Wiley-Blackwell.
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Table D1  CONSORT (Consolidation of Standards for Reporting Trials) 2010 Statement* – checklist of information to include when 
reporting a randomized trial.

Section/topic Item no Checklist item Reported on page no.

Title and abstract
1a Identification as a randomised trial in the title
1b Structured summary of trial design, methods, results, and conclusions (for 

specific guidance see CONSORT for abstracts)
Introduction
Background and 
objectives

2a Scientific background and explanation of rationale
2b Specific objectives or hypotheses

Methods
Trial design 3a Description of trial design (such as parallel, factorial) including allocation 

ratio
3b Important changes to methods after trial commencement (such as eligibility 

criteria), with reasons
Participants 4a Eligibility criteria for participants

4b Settings and locations where the data were collected
Interventions 5 The interventions for each group with sufficient details to allow replication, 

including how and when they were actually administered
Outcomes 6a Completely defined pre-specified primary and secondary outcome measures, 

including how and when they were assessed
6b Any changes to trial outcomes after the trial commenced, with reasons

Sample size 7a How sample size was determined
7b When applicable, explanation of any interim analyses and stopping guidelines

Randomisation:
Sequence generation 8a Method used to generate the random allocation sequence

8b Type of randomisation; details of any restriction (such as blocking and block size)
Allocation concealment 
mechanism

9 Mechanism used to implement the random allocation sequence (such as 
sequentially numbered containers), describing any steps taken to conceal the 
sequence until interventions were assigned

Implementation 10 Who generated the random allocation sequence, who enrolled participants, 
and who assigned participants to interventions

Blinding 11a If done, who was blinded after assignment to interventions (for example, 
participants, care providers, those assessing outcomes) and how

11b If relevant, description of the similarity of interventions
Statistical methods 12a Statistical methods used to compare groups for primary and secondary outcomes

12b Methods for additional analyses, such as subgroup analyses and adjusted 
analyses

Results
Participant flow (a 
diagram is strongly 
recommended)

13a For each group, the numbers of participants who were randomly assigned, 
received intended treatment, and were analysed for the primary outcome

13b For each group, losses and exclusions after randomisation, together with reasons
Recruitment 14a Dates defining the periods of recruitment and follow-up

14b Why the trial ended or was stopped
Baseline data 15 A table showing baseline demographic and clinical characteristics for each group
Numbers analysed 16 For each group, number of participants (denominator) included in each 

analysis and whether the analysis was by original assigned groups

  continued
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Section/topic Item no Checklist item Reported on page no.
Outcomes and 
estimation

17a For each primary and secondary outcome, results for each group, and the 
estimated effect size and its precision (such as 95% confidence interval)

17b For binary outcomes, presentation of both absolute and relative effect sizes is 
recommended

Ancillary analyses 18 Results of any other analyses performed, including subgroup analyses and 
adjusted analyses, distinguishing pre-specified from exploratory

Harms 19 All important harms or unintended effects in each group (for specific 
guidance see CONSORT for harms)

Discussion
Limitations 20 Trial limitations, addressing sources of potential bias, imprecision, and, if 

relevant, multiplicity of analyses
Generalisability 21 Generalisability (external validity, applicability) of the trial findings
Interpretation 22 Interpretation consistent with results, balancing benefits and harms, and 

considering other relevant evidence
Other information
Registration 23 Registration number and name of trial registry
Protocol 24 Where the full trial protocol can be accessed, if available
Funding 25 Sources of funding and other support (such as supply of drugs), role of funders

*It is strongly recommend that this statement is read in conjunction with the CONSORT 2010 Explanation and Elaboration for important clarifications on all the items. If relevant, it 
is also recommended that the CONSORT extensions for cluster randomised trials, non-inferiority and equivalence trials, non-pharmacological treatments, herbal interventions, and 
pragmatic trials are also read. For up to date references relevant to this checklist, see www.consort-statement.org.

Source: Schulz (2010). Reproduced with permission of BMJ Publishing Group Ltd.

Figure D1   The CONSORT Statement’s 2010 trial pro�le of a randomized controlled trial’s progress. Source: Schulz (2010).
Reproduced with permission of BMJ Publishing Group Ltd.

Assessed for eligibility (n =  )

Excluded (n =  )
•  Not meeting inclusion criteria (n =  )
•  Declined to participate (n =  )
•  Other reasons (n =  )

Randomized (n =  )

Enrolment

Allocated to intervention (n =  )
• Received allocated intervention (n =  )
• Did not received allocated intervention (give
 reasons) (n =  )

Lost to follow-up give reason (n =  )

Discontinued intervention give reasons (n = )

Allocated to intervention (n =  )
• Received allocated intervention (n =  )
• Did not received allocated intervention (give
 reasons) (n =  )

Lost to follow-up give reason (n =  )

Discontinued intervention give reasons (n = )

Analysed (n =  )
•  Excluded from analysis give reasons (n =  )

Analysed (n =  )
•  Excluded from analysis give reasons (n =  )

Allocation

Follow-up

Analysis
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Table D.2  STROBE Statement – checklist of items that should be included in reports of observational studies.

Item no. Recommendation

Title and abstract 1 (a) Indicate the study’s design with a commonly used term in the title or the abstract
(b) Provide in the abstract an informative and balanced summary of what was done and what 
was found

Introduction
Background/rationale 2 Explain the scientific background and rationale for the investigation being reported
Objectives 3 State specific objectives, including any prespecified hypotheses
Methods
Study design 4 Present key elements of study design early in the paper
Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, 

follow-up, and data collection
Participants 6 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of 

participants. Describe methods of follow-up
Case-control study—Give the eligibility criteria, and the sources and methods of case 
ascertainment and control selection. Give the rationale for the choice of cases and controls
Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of 
participants
(b) Cohort study—For matched studies, give matching criteria and number of exposed and 
unexposed
Case-control study—For matched studies, give matching criteria and the number of controls per 
case

Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. 
Give diagnostic criteria, if applicable

Data sources/ 
measurement

8* For each variable of interest, give sources of data and details of methods of assessment 
(measurement). Describe comparability of assessment methods if there is more than one group

Bias 9 Describe any efforts to address potential sources of bias
Study size 10 Explain how the study size was arrived at
Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which 

groupings were chosen and why
Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding

(b) Describe any methods used to examine subgroups and interactions
(c) Explain how missing data were addressed
(d) Cohort study—If applicable, explain how loss to follow-up was addressed
Case-control study—If applicable, explain how matching of cases and controls was addressed
Cross-sectional study—If applicable, describe analytical methods taking account of sampling 
strategy
(e) Describe any sensitivity analyses

Results
Participants 13* (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, 

examined for eligibility, confirmed eligible, included in the study, completing follow-up, and 
analysed
(b) Give reasons for non-participation at each stage
(c) Consider use of a flow diagram

Descriptive data 14* (a) Give characteristics of study participants (eg demographic, clinical, social) and information 
on exposures and potential confounders
(b) Indicate number of participants with missing data for each variable of interest
(c) Cohort study—Summarise follow-up time (eg, average and total amount)

Outcome data 15* Cohort study—Report numbers of outcome events or summary measures over time
Case-control study—Report numbers in each exposure category, or summary measures of 
exposure
Cross-sectional study—Report numbers of outcome events or summary measures

  continued
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Item no. Recommendation

Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their 
precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and 
why they were included
(b) Report category boundaries when continuous variables were categorized
(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful 
time period

Other analyses 17 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses
Discussion
Key results 18 Summarise key results with reference to study objectives
Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. 

Discuss both direction and magnitude of any potential bias
Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of 

analyses, results from similar studies, and other relevant evidence
Generalisability 21 Discuss the generalisability (external validity) of the study results
Other information
Funding 22 Give the source of funding and the role of the funders for the present study and, if applicable, for 

the original study on which the present article is based

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE check-
list is best used in conjunction with this article (freely available on the websites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.
org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

Source: von Elm (2007). Reproduced with permission of Elsevier. 
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Critical Appraisal Templates

Template D1  Critical appraisal and evaluating the evidence in published papers reporting randomized controlled trials (RCTs)

1.	Title and abstract

a.	Is the trial identified as a RCT in the title?

b.	Does the abstract summarize the trial primary objective, design, methods, results and conclusions?

2.	Introduction

a.	�Is a proper description provided of the scientific background and is the rationale for the trial explained sufficiently? Has all the 
relevant information from previous studies and other available evidence been included?

b.	�Is the primary aim of the trial indicated, preferably in relation to a relevant hypothesis based on the outcome of interest, and are 
secondary objectives described?

3.	Methods

a.	Trial design
	 Is the trial design described adequately? Are any aspects of the design utilized to avoid bias fully described? For example:

i.	 �Randomization Are full details of the randomization process provided, including the method used to generate the random 
allocation sequence, the type of randomization, steps taken to conceal the allocation sequence and details of the implemen-
tation of the randomization (e.g. who enrolled the participants and who assigned the participants to the interventions)?

ii.	 Blinding To what extent was the study blind? If relevant, is a description provided of the similarity of the interventions?
iii.	 Allocation concealment Was the allocation sequence concealed from the staff recruiting patients for the trial?

b.	Participants
i.	 Is there a complete description of the eligibility (inclusion and exclusion) criteria for the participants?

ii.	 Was the study conducted using an appropriate spectrum of patients?

c.	Interventions
i.	 Is the intervention (treatment and/or placebo if appropriate) for each group described in sufficient detail?

ii.	 Were the groups treated in similar fashion, aside from the fact that they received different interventions?

d.	Outcomes
i.	 Is consideration given to all the important outcomes?

ii.	 Are the primary and secondary outcomes defined precisely?
iii.	 Were there any changes to the outcomes after the trial started?

e.	Sample size
i.	 �Is there a power statement to justify the overall sample size? Does this power statement indicate the form of the statistical 

analysis on which it is based and does it include a specification of the values of all the factors that affect sample size for this 
calculation?

ii.	 If relevant, is there a full explanation of any interim analysis, including the steps taken to reduce the Type I error rate?
iii.	 �If subgroup analyses have been performed, is there a justification for the subgroup sample sizes, based on power calcula-

tions, and a description of the steps taken to reduce the Type I error rate? Alternatively, are these subgroup analyses speci-
fied as being exploratory in nature, with an indication that they may be underpowered?

f.	 Statistical methods
i.	 Are all the statistical methods used to compare groups for primary and secondary outcomes identified?

ii.	 �Are the statistical methods appropriate (e.g. have underlying assumptions been verified; have dependencies in the data (e.g. 
pairing) been taken into account in the analysis?)?

iii.	 �Is there a description of additional analyses, such as subgroup analyses? Were any additional analyses undertaken specified 
a priori or were they post hoc analyses?

4.	Results

a.	Participant numbers and dates
i.	 �Is there a full explanation (preferably in a participant flow chart), for each treatment group, of the numbers of participants 

who were randomly assigned, received the intended treatment and were analysed for the primary outcome?
ii.	 If relevant, are numbers of and reasons for losses to follow-up and exclusions after randomization documented?

iii.	 Are dates provided which define the periods of recruitment and follow-up?

  continued
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b.	Baseline data
i.	 Is there a table which shows the baseline demographic and clinical characteristics for each group?

ii.	 Are the groups comparable?

c.	Numbers analysed
i.	 �Is there a specification of whether an ‘intention-to-treat’ (ITT) analysis was performed? Is a justification given for the choice 

of analysis (ITT or other) and is this appropriate?
ii.	 �If there were protocol deviations, was a sensitivity analysis performed (e.g. a per protocol analysis or an analysis with 

imputed data for missing observations)?

d.	Outcomes of interest
i.	 �Main outcome of interest Is an appropriate summary measure given for the main outcome variable (i.e. that which relates 

to the primary aim of the study) for each comparison group? For example, the rate/risk/odds of occurrence of the outcome 
(e.g. death) if the outcome variable is binary, stating results in absolute numbers when feasible; or the mean (median) if the 
outcome variable is numerical?

ii.	 �Magnitude of the effect of interest Is there an indication of the magnitude of the effect of interest? For example, a ratio 
such as the relative rate/risk/odds or a difference such as the absolute difference in risk if the outcome variable is binary; or 
a difference in means (medians) if the main outcome variable is numerical?

iii.	 �Precision of the effect of interest Is there an indication of the precision of the effect of interest (e.g. a 95% confidence inter-
val or standard error)?

e.	�Additional analyses If additional (e.g. subgroup) analyses were performed, are their results provided, and are any exploratory 
analyses distinguished from those that were pre-specified?

f.	 Harms Are all important harms in each group documented?

5.	Discussion

a.	Deciding whether the results are important
i.	 Are the key findings summarized with reference to the trial objectives?

ii.	 Do the results make biological sense?
iii.	If a confidence interval for the effect of interest (e.g. the difference in treatment means) has been provided:

–– Would you regard the observed effect clinically important (irrespective of whether or not the result of the relevant hypoth-
esis test is statistically significant) if the lower limit of the confidence interval represented the true value of the effect?

–– Would you regard the observed effect clinically important if the upper limit of the confidence interval represented the 
true value of the effect?

–– Are your answers to the above two points sufficiently similar to declare the results of the study unambiguous and impor-
tant?

iv.	 �Is there an evaluation of the number of patients needed to treat (NNT) with the experimental treatment rather than the 
control treatment in order to prevent one of them developing the ‘bad’ outcome?

b.	Limitations Is there a discussion of all the trial limitations, including sources of potential bias and imprecision?

c.	�Generalizability Is there a discussion of the generalizability (external validity) of the trial findings (i.e. the extent to which the 
participants are representative of the wider population)?

d.	�Interpretation Taking the benefits and harms into consideration, as well as the limitations of the trial, any multiple testing and 
subgroup analyses, is the interpretation of the trial findings consistent with the results?

6.	Other information

a.	Registration Are the trial registration number and the name of the trial registry provided?

b.	Protocol Is there information about where the protocol can be accessed?

c.	Funding Are sources of funding documented and is there a conflict of interest statement for each of the investigators?
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Template D2  Critical appraisal and evaluating the evidence in published papers reporting observational studies

1.	Title and abstract

a.	Is the study design (i.e. cohort, case–control or cross-sectional study) clearly identified in the title?

b.	Does the abstract provide a balanced summary of the study design, methods, results, conclusions and any major limitations?

2.	Introduction

a.	�Is there a proper description of the scientific background and rationale for the current investigation? Has all the relevant infor-
mation from any previous studies and other available evidence been included?

b.	�Is the primary objective of the current investigation indicated and are secondary objectives described? Were all the objectives 
pre-specified? If a cohort study, were there any modifications to the original study protocol, including the formulation of addi-
tional objectives, following the publication of new evidence after the cohort study was initiated?

3.	Methods

a.	�Study design Is the study design described adequately? In particular, is the type of study identified and a description provided 
of the study setting, location and any relevant dates (including periods of recruitment, exposure, follow-up and data collection)?

b.	Participants
i.	 �Are eligibility criteria (inclusion and exclusion) provided for the study participants? Are the source and methods of selection 

of participants described?
ii.	 If a case–control study, is the rationale for the choice of cases and controls explained?

iii.	 If a cohort study, is the method of follow-up described?
iv.	 Was the study conducted using an appropriate spectrum of participants?
v.	 �If the study was matched, is information provided on the matching criteria and number of exposed/unexposed participants 

(cohort study) or controls per case (case–control study)?
c.	Variables

i.	 �Is there a clear description of outcomes, exposures, predictors, potential confounders, and effect modifiers (with details of 
methods of assessment and diagnostic criteria, if applicable)?

ii.	 Are details provided on the comparability of assessment methods if there is more than one group?

d.	Bias Have any efforts been made to address potential sources of bias? Are these fully described?

e.	Sample size Is there a full explanation of how the study size was determined?

f.	 Statistical methods
i.	 Is there a description of how quantitative variables were handled in the analysis, including any choice of groupings?

ii.	 Are all the statistical methods used, including those adopted to control for confounding, fully described?
iii.	 If relevant, are the methods used to examine subgroups and interactions described?
iv.	 Is there a description of how missing data have been dealt with in all relevant analyses?
v.	 �Is there a description of how losses to follow-up (cohort studies), matching (case–control studies) or sampling strategy 

(cross-sectional studies) have been dealt with?
vi.	 Are all sensitivity analyses fully described?

4.	Results

a.	Participant numbers and dates
i.	 �Is there a report of the number of individuals included at each stage of the study (e.g. the numbers potentially eligible, exam-

ined for eligibility, confirmed eligible, included in study, completed follow-up, included in the analysis), preferably through 
the use of a flow chart?

ii.	 If relevant, are reasons for non-participation at any stage documented?

  continued
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b.	Descriptive data
i.	 �Are the characteristics of study participants (demographic, clinical and social) and information on exposures and potential 

confounders provided?
ii.	 Is there an indication of the number of participants with missing data for each variable of interest?

iii.	 If a cohort study, is the follow-up time summarized (e.g. average and total amount)?

c.	Main results
i.	 �Main outcome measures Is there full information on outcomes, e.g. the number of outcome events or summary measures 

over time (cohort studies), numbers in each exposure category or summary measures of exposure (case–control studies) or 
number of outcome events or summary measures (cross-sectional studies)?

ii.	 Magnitude of effects of interest Are unadjusted estimates and, if applicable, confounder-adjusted estimates provided?
iii.	 Precision of effects of interest Is there an indication of the precision (e.g. 95% confidence intervals) of the estimates?
iv.	 If applicable, is there a clear indication of which confounders were adjusted for in the analysis and why they were selected?

d.	�Other analyses Are the results reported of all other analyses performed, including analyses of subgroups and interactions and 
any sensitivity analyses?

5.	Discussion

a.	Summary of key results
i.	 Is there a summary of the key findings with reference to the study objectives?

ii.	 Do the results make biological sense?
iii.	 Consider the confidence interval for the any effect of interest:

–– Would you regard the observed effect clinically important (irrespective of whether or not the result of the relevant hypoth-
esis test is statistically significant) if the lower limit of the confidence interval represented the true value of the effect?

–– Would you regard the observed effect clinically important if the upper limit of the confidence interval represented the 
true value of the effect?

–– Are your answers to the above two points sufficiently similar to declare the results of the study unambiguous and  
important?

iv.	 �If feasible, have any estimates of relative ‘risk’ (e.g. relative risk, odds ratio) been translated into absolute ‘risks’ for a mean-
ingful time period?

b.	�Limitations Is there a discussion of all the study limitations, including the sources of imprecision and the sources and effect (i.e. 
direction and magnitude) of any potential bias?

c.	�Generalizability Is there a discussion of the generalizability (external validity) of the study findings (i.e. the extent to which the 
participants are representative of the wider population)?

d.	�Interpretation Are the study findings interpreted in a cautious way, taking full consideration of the study objectives, the limita-
tions of the study, any multiple testing, the results from other similar studies and any other relevant evidence?

6.	Other information

a.	�Funding sources Are the sources of funding documented, both for the original study on which the article is based, if relevant, 
and for the present study, and is the role of the funders described?

b.	Conflict of interest Is there a clear and transparent conflict of interest statement for each of the investigators?
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Appendix E: Glossary of terms

2 × 2 table: A contingency table of frequencies with two rows and 
two columns

−2log likelihood: See likelihood ratio statistic

Accuracy: Refers to the way in which an observed value of a quantity 
agrees with the true value

Adjusted odds ratio: The odds ratio for a factor (explanatory vari-
able) in a multivariable logistic regression model which is con-
trolled for the effects of other covariates

Administrative censoring: Follow-up is censored because of 
administrative reasons (e.g. the study ends on a particular date) 
and is generally non-informative

All subsets model selection: See automatic model selection
Allocation bias: A systematic distortion of the data resulting from 

the way in which individuals are assigned to treatment groups. 
Sometimes called channelling bias

Alternative hypothesis: The hypothesis about the effect of inter-
est that disagrees with the null hypothesis and is true if the null 
hypothesis is false

Altman’s nomogram: A diagram that relates the sample size of a 
statistical test to the power, significance level and standardized 
difference

AMSTAR 2. A critical appraisal tool for systematic reviews that 
include randomized and non-randomized studies

Analysis of covariance (ANCOVA): A special form of analysis of 
variance that compares mean values of a dependent variable 
between groups of individuals after adjusting for the effect of one 
or more explanatory variables

Analysis of variance (ANOVA): A general term for analyses that 
compare the population means of groups of observations by 
splitting the total variance of a variable into its component parts, 
each attributed to a particular factor

ANCOVA: See analysis of covariance
ANOVA: See analysis of variance
Arithmetic mean: A measure of location obtained by dividing the 

sum of the observations by the number of observations. Often 
called the mean

Ascertainment bias: May occur when the sample included in a 
study is not randomly selected from the population and differs in 
some important respects from that population

ASCII or text file format: A data file in plain text format that can 
be read/imported by most software packages. The data values in 
each row are typically delimited by spaces or commas

Assessment bias: See observer bias
Attrition bias: When those who are lost to follow-up in a longitudi-

nal study differ in a systematic way from those who are not lost 
to follow-up

AUROC: Area under a ROC curve
Automatic model selection: A method of selecting explanatory 

variables to be included in a mathematical model, e.g. forward, 
backward, stepwise, all subsets

Average: A general term for a measure of location

Backward selection: See automatic model selection
Bar or column chart: A diagram that illustrates the distribution of a 

categorical or discrete variable by showing a separate horizontal 
or vertical bar for each ‘category’, its length being proportional to 
the (relative) frequency in that ‘category’

Bartlett’s test: Used to compare variances

Bayes theorem: The posterior probability of an event/hypothesis is 
proportional to the product of its prior probability and the likeli-
hood

Bayesian approach to inference: Uses not only current information 
(e.g. from a trial) but also an individual’s previous belief (often 
subjective) about a hypothesis to evaluate the posterior belief in 
the hypothesis

Bias: A systematic difference between the results obtained from a 
study and the true state of affairs

Bimodal distribution: Data whose distribution has two ‘peaks’
Binary variable: A categorical variable with two categories. Also 

called a dichotomous variable
Binomial distribution: A discrete probability distribution of a 

binary random variable; useful for inferences about proportions
Bioequivalence trial: A type of trial in which we are interested in 

showing that the rate and extent of absorption of a new formula-
tion of a drug is the same as that of an old formulation, when the 
drugs are given at the same dose

Blinding: When the patients, clinicians and the assessors of response 
to treatment in a clinical trial are unaware of the treatment allo-
cation (double-blind), or when the patient is aware of the treat-
ment received but the assessor of response is not (single-blind). 
Also called masking

Block: A homogeneous group of experimental units that share simi-
lar characteristics. Sometimes called a stratum

Bonferroni correction (adjustment): A post hoc adjustment to the 
P-value to take account of the number of tests performed in mul-
tiple hypothesis testing

Bootstrapping: A simulation process that can be used to derive a 
confidence interval for a parameter. It involves estimating the 
parameter from each of many random samples of size n obtained 
by sampling with replacement from the original sample of size n; 
the confidence interval is derived by considering the variability 
of the distribution of these estimates

Box (box-and-whisker) plot: A diagram illustrating the distribution 
of a variable; it indicates the median, upper and lower quartiles, 
and, often, the maximum and minimum values

Brier score: Measures the squared difference between an individu-
al’s predicted probability of an event and his/her observed out-
come. The mean Brier score is used to assess the accuracy of a 
prognostic score

British Standards Institution repeatability coefficient: The maxi-
mum difference that is likely to occur between two repeated 
measurements

c statistic: Measures the area under a ROC curve and may be used 
to assess the ability of a prognostic score or diagnostic test to 
discriminate between those with and without a particular con-
dition; can be used to compare two or more such scores or tests. 
c = 1 when the discriminatory ability is perfect and c = 0.5 when 
the procedure performs no better than chance. See also Har-
rell’s c statistic

Carry-over effect: The residual effect of the previous treatment in a 
cross-over trial

Case: An individual with the outcome of interest (e.g. disease) in an 
investigation

Case–control study: Groups of individuals with the disease (the 
cases) and without the disease (the controls) are identified, and 
exposures to risk factors in these groups are compared
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Categorical (qualitative) variable: Each individual belongs to one 
of a number of distinct categories of the variable

Causal modelling: Statistical methods that describe and test the 
underlying causal relationships between an exposure of interest 
and an outcome

Causal pathway: The chain of events or factors leading in sequence 
to an outcome, when the effect of any step in the sequence is 
dependent on the event in the previous step(s)

Cell of a contingency table: The designation of a particular row and 
a particular column of the table

Censored data: Occur in survival analysis because there is incomplete 
information on outcome. See also left- and right-censored data

Census: A cross-sectional study that collects information from 
every individual in a population

Central tendency bias: Responders tend to move towards the mid-
point of the scale of measurement

Centring: A process used to improve the interpretation of a 
parameter in a regression model; achieved by subtracting a con-
stant (often the sample mean of the explanatory variable) from 
the value of the explanatory variable for each individual

Channelling bias: See allocation bias
Chi-squared (χ2) distribution: A right-skewed continuous distribu-

tion characterized by its degrees of freedom; useful for analysing 
categorical data

Chi-squared test: Used on frequency data, it tests the null hypoth-
esis that there is no association between the factors that define a 
contingency table. Also used to test differences in proportions

CI: See confidence interval for a parameter
Clinical cohort: A group of patients with the same clinical condition 

whose outcomes are observed over time
Clinical heterogeneity: Exists when the trials included in a meta-

analysis have differences in the patient population, definition of 
variables, etc., which create problems of non-compatibility

Clinical trial: Any form of planned experiment on humans that is 
used to evaluate a new ‘treatment’ on a clinical outcome

Cluster randomization: Groups of individuals, rather than separate 
individuals, are randomly (by chance) allocated to treatments

Cluster randomized trial: Each group or cluster of individuals, 
rather than each individual, is randomly (using a method based 
on chance) allocated to a treatment

Cochrane Collaboration: An international network of clinicians, 
methodologists and consumers who continually update system-
atic reviews and make them available to others

Coefficient of variation: The standard deviation divided by the 
mean (often expressed as a percentage)

Cohen’s kappa (κ): A measure of agreement between two sets of cat-
egorical measurements on the same individuals. If κ  =  1, then 
there is perfect agreement; if κ = 0, then there is no better than 
chance agreement

Cohort study: A group of individuals, all without the outcome of 
interest (e.g. disease), is followed (usually prospectively) to study 
the effect on future outcomes of exposure to a risk factor

Collinearity: Pairs of explanatory variables in a regression analysis 
are very highly correlated, i.e. with correlation coefficients very 
close to ±1

Competing risks: The development of one or more of the outcomes 
of interest precludes the development (or measurement) of any 
of the others

Complete randomized design: Experimental units assigned ran-
domly to treatment groups

Composite endpoint: An outcome that is considered to have 
occurred if any of several different events is observed

Conditional logistic regression: A form of logistic regression used 
when individuals in a study are matched

Conditional probability: The probability of an event, given that 
another event has occurred

Confidence interval (CI) for a parameter: Broadly interpreted as 
the range of values within which we are (usually) 95% confident 
that the true population parameter lies. Strictly, after repeated 
sampling, 95% of confidence limits so determined will contain 
the parameter

Confidence limits: The upper and lower values of a confidence 
interval

Confounding: When one or more explanatory variables are related 
to the outcome and each other so that it is difficult to assess the 
independent effect of each one on the outcome variable

CONSORT Statement: Facilitates critical appraisal and interpreta-
tion of RCTs by providing guidance, in the form of a checklist 
and flowchart, to authors about how to report their trials

Contingency table: A (usually) two-way table in which the entries 
are frequencies

Continuity correction: A correction applied to a test statistic to 
adjust for the approximation of a discrete distribution by a con-
tinuous distribution

Continuous probability distribution: The random variable defin-
ing the distribution is continuous

Continuous variable: A numerical variable in which there is no 
limitation on the values that the variable can take other than that 
restricted by the degree of accuracy of the measuring technique

Control: An individual without the disease under investigation in a 
case–control study, or not receiving the new treatment in a clini-
cal trial

Control group: A term used in comparative studies, e.g. clinical trials, to 
denote a comparison group. See also negative and positive controls

Convenience sample: A group of individuals believed to be repre-
sentative of the population from which it is selected, but chosen 
because it is close at hand rather than being randomly selected

Correlation coefficient (Pearson’s): A quantitative measure, rang-
ing from −1 to +1, of the extent to which points in a scatter dia-
gram conform to a straight line. See also Spearman’s rank cor-
relation coefficient

Covariate: See explanatory variable
Covariate pattern: A particular set of values for the explanatory 

variables in a regression model held by one or more individuals 
in the study

Cox proportional hazards regression model: See proportional haz-
ards regression model

Cross-over design: Each individual receives more than one treat-
ment under investigation, one after the other in random order

Cross-sectional study: Carried out at a single point in time
Cross-sectional time series model: See panel model
Cross-validation: We partition the data set into subsets, derive the 

measure of interest or model on a single subset initially and then 
validate it on the remaining subsets

Cumulative frequency: The number of individuals who have values 
below and including the specified value of a variable

Cumulative meta-analysis: The studies are added one by one in a 
specified order (usually according to date of publication) and a 
separate meta-analysis is performed on the accumulated studies 
after each addition

Data: Observations on one or more variables
Data dredging: The results of a study are analysed in many different 

ways, with a view to obtaining a significant finding, without prior 
specification of the hypothesis of interest

Deciles: Those values that divide the ordered observations into 10 
equal parts

Degrees of freedom (df) of a statistic: The sample size minus the num-
ber of parameters that have to be estimated to calculate the statistic; 
they indicate the extent to which the observations are ‘free’ to vary

Dependent variable: A variable (usually denoted by y) that is pre-
dicted by the explanatory variable in regression analysis. Also 
called the response or outcome variable

Deviance: See likelihood ratio statistic
df: See degrees of freedom of a statistic
Diagnostic test: Used to aid or make a diagnosis of a particular 

condition
Dichotomous variable: See binary variable
Discrete probability distribution: The random variable defining 

the distribution takes discrete values
Discrete variable: A numerical variable that can only take integer 

values
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Discriminant analysis: A method, similar to logistic regression, 
which can be used to identify factors that are significantly associ-
ated with a binary response

Disease register: See clinical cohort
Distribution-free tests: See non-parametric tests
Dot plot: A diagram in which each observation on a variable is rep-

resented by one dot on a horizontal (or vertical) line
Double-blind: See blinding
Dummy variables: The k − 1 binary variables that are created from a 

nominal or ordinal categorical variable with k > 2 categories, afford-
ing a comparison of each of the k − 1 categories with a reference 
category in a regression analysis. Also called indicator variables

Ecological fallacy: We believe mistakenly that an association that 
we observe between variables at the group or aggregate level (e.g. 
region) reflects the corresponding association at an individual 
level (the individuals in the regions) in the same population

Ecological study: A particular type of epidemiological study in 
which the unit of observation is a community or group of indi-
viduals rather than the individual

Effect modifier: See interaction
Effect of interest: The value of the response variable that reflects the 

comparison of interest, e.g. the difference in means
Empirical distribution: The observed distribution of a variable
Endpoint: A clearly defined outcome for an individual; it must be 

specified before the data are collected
Epidemiological studies: Concerned with the distribution and 

determinants of disease in specified populations
EQUATOR Network: Initiated to provide resources and train-

ing for the reporting of health research and assistance in the 
development, dissemination and implementation of reporting 
guidelines

Equivalence trial: Used to show that two treatments are clinically 
equivalent

Error: The difference between the observed and true value. Meas-
urement error has random (due to chance) and possibly system-
atic (non-random) components; sampling error arises because 
only a sample of the population is investigated

Error variation: See residual variation
Estimate: A quantity obtained from a sample that is used to repre-

sent a population parameter
Evidence-based medicine (EBM): The use of current best evidence 

in making decisions about the care of individual patients
Exchangeable model: Assumes the estimation procedure is not 

affected if two observations within a cluster are interchanged
Expected frequency: The frequency that is expected under the null 

hypothesis
Experimental study: The investigator intervenes in some way to 

affect the outcome
Experimental unit: The smallest group of individuals who can be 

regarded as independent for analysis purposes
Explanatory variable: A variable (usually denoted by x) that is used to 

predict the dependent variable in a regression analysis. Also called 
the independent, exposure or predictor variable or a covariate

Exposure variable: See explanatory variable
External validation: A substantiation of the findings (e.g. a prog-

nostic index) obtained from one data set using at least one other 
independent data set

Extra-Binomial variation: The variation in the data, after adjusting 
for covariates, is greater (overdispersion) or less (underdisper-
sion) than that expected in a Binomial model

Extra-Poisson variation: Occurs when the residual variance is 
greater (overdispersion) or less (underdispersion) than that 
expected in a Poisson model

F-distribution: A right-skewed continuous distribution character-
ized by the degrees of freedom of the numerator and denomina-
tor of the ratio that defines it; useful for comparing two variances, 
and more than two means using the analysis of variance

F-test: See variance ratio test
Factorial experiment: Allows the simultaneous analysis of a num-

ber of factors of interest

Fagan’s nomogram: A diagram relating the pre-test probability of a 
diagnostic test result to the likelihood and the post-test probabil-
ity. It is usually used to convert the former into the latter

False negative: An individual who has the disease but is diagnosed 
as disease-free

False positive: An individual who is free of the disease but is diag-
nosed as having the disease

Fisher–Freeman–Halton test: A test evaluating exact probabilities 
in a contingency table that has more than two rows and/or col-
umns

Fisher’s exact test: A test that evaluates exact probabilities (i.e. does 
not rely on approximations to the Chi-squared distribution) in a 
contingency table (often a 2 × 2 table); recommended when the 
expected frequencies are small

Fitted value: The predicted value of the response variable in a 
regression analysis corresponding to the particular value(s) of 
the explanatory variable(s)

Fixed effect: One where the levels of the factor make up the entire 
population of interest (e.g. the factor ‘treatment’ whose levels 
are drug, surgery and radiotherapy). It contrasts with a random 
effect where the levels represent a sample from the population 
(e.g. the factor ‘patient’ whose levels are the 20 patients in a RCT)

Fixed effect model: Contains only fixed effects; used in a meta-anal-
ysis when there is no evidence of statistical heterogeneity

Follow-up: The time that an individual is in a study, from entry until 
she or he experiences the outcome (e.g. develops the disease) or 
leaves the study or until the conclusion of the study

Forest plot: A diagram used in a meta-analysis showing the esti-
mated effect in each trial and their average (with confidence 
intervals)

Forward selection: See automatic model selection
Frailty model: Used in survival analysis when there are random 

effects (clustered data)
Free-format data: Each variable in the computer file is separated 

from the next by some delimiter, often a space or comma
Frequency: The number of times an event occurs
Frequency distribution: Shows the frequency of occurrence of each 

possible observation, class of observations or category, as appro-
priate

Frequency matching: The individuals in two or more comparative 
groups are matched on a group basis so that the average value of 
each of the relevant potential risk factors of each group is similar 
to that in every other group. Also called group matching

Frequentist probability: Proportion of times an event would occur 
if we were to repeat the experiment a large number of times

Funding bias: A tendency to report findings in the direction 
favoured by the funding body

Funnel plot: A scatter diagram, used in a meta-analysis, with some 
measure of study size (usually) on the vertical axis and the treat-
ment effect (usually) on the horizontal axis. The plot will be 
asymmetrical with a gap towards the bottom left-hand corner if 
publication bias is present

G-estimation: A form of causal modelling that is used to adjust for 
time-varying confounding

Gaussian distribution: See Normal distribution
GEE: See generalized estimating equation
Generalizability: See transportability
Generalized estimating equation (GEE): Used in a two-level hierar-

chical structure to estimate parameters and their standard errors 
to take into account the clustering of the data without referring to 
a parametric model for the random effects; sometimes referred to 
as population-averaged or marginal models

Generalized linear model (GLM): A regression model that is 
expressed in a general form via a link function which relates the 
mean value of the dependent variable (with a known probabil-
ity distribution such as Normal, Binomial or Poisson) to a linear 
function of covariates

Geometric mean: A measure of location for data whose distribution 
is skewed to the right; it is the antilog of the arithmetic mean of 
the log data

GLM: See generalized linear model
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Gold standard test: Provides a definitive diagnosis of a particular 
condition

Goodness of fit: A measure of the extent to which the values 
obtained from a model agree with the observed data

Group matching: See frequency matching
GRRAS guidelines: For reporting reliability and agreement studies

Harrell’s c statistic: A measure of discrimination equivalent to the 
area under the ROC curve

Hazard: The instantaneous risk of reaching the endpoint in survival 
analysis

Hazard ratio: See relative hazard
Healthy entrant effect: By choosing disease-free individuals to par-

ticipate in a study, the response of interest (typically mortality) is 
lower in the first period of the study than would be expected in 
the general population

Heterogeneity of variance: Unequal variances
Hierarchical model: See multilevel model
Hierarchical repeated measures ANOVA: An extension of 

repeated measures analysis of variance; individuals are nested 
within groups and each individual has repeated measures (e.g. 
over time). Also called nested repeated measures ANOVA

Histogram: A diagram that illustrates the (relative) frequency dis-
tribution of a continuous variable by using connected bars. The 
bar’s area is proportional to the (relative) frequency in the range 
specified by the boundaries of the bar

Historical controls: Individuals who are not assigned to a treatment 
group at the start of the study but who received treatment some 
time in the past and are used as a comparison group

Homoscedasticity: Equal variances; also described as homogeneity 
of variance

Hosmer–Lemeshow goodness of fit statistic: Assesses the agree-
ment between the observed event probabilities and those pre-
dicted by a logistic model or prognostic score

Hypothesis test: The process of using a sample to assess how much 
evidence there is against a null hypothesis about the population. 
Also called a significance test

I2: An index that can be used to quantify the impact of statistical 
heterogeneity between the studies in a meta-analysis

ICC: See intraclass correlation coefficient
Imputation: The process of replacing missing data with substituted 

values
Incidence: The number of new cases of a disease in a defined period
Incidence rate: The number of new cases of a disease in a defined 

period divided by the person-years of follow-up of individuals 
susceptible at the start of the period

Incidence rate ratio (IRR): A relative rate defined as the ratio of two 
incidence rates

Incident cases: Patients who have just been diagnosed
Independent samples: Every unit in each sample is unrelated to the 

units in the other samples
Independent variable: See explanatory variable
Indicator variables: See dummy variables
Inference: The process of drawing conclusions about the population 

using sample data
Influence plot: In meta-analysis it is used to assess the influence of 

each of k studies: every one of the k studies is deleted in turn, a 
meta-analysis is used to estimate the effect of interest from the 
remaining k  −  1 studies, and these estimates, with confidence 
intervals, are drawn in a diagram similar to a forest plot

Influential point: An observation which, if omitted from a regres-
sion analysis, will lead to a change in one or more of the param-
eter estimates of the model

Information bias: Occurs during data collection when measure-
ments on exposure and/or disease outcome are incorrectly 
recorded in a systematic manner

Informative censoring: The probability that an individual will 
develop the outcome of interest if he or she has survived to a 
particular time is different in an individual whose follow-up is 
censored at that time (e.g. if he or she is withdrawn from the 

study because of a deterioration in his or her condition) from an 
individual who remains under follow-up

Intention-to-treat (ITT) analysis: All patients in the clinical trial 
are analysed in the groups to which they were originally assigned

Interaction: Occurs between two explanatory variables in a regres-
sion analysis when the effect of one of the variables on the 
dependent variable varies according to the level of the other. In 
the context of ANOVA, an interaction exists between two fac-
tors when the difference between the levels of one factor is differ-
ent for two or more levels of the second factor. Also called effect 
modification

Intercept: The value of the dependent variable in a regression 
equation when the value(s) of the explanatory variable(s) is 
(are) zero

Interdecile range: The difference between the 10th and 90th per-
centiles; it contains the central 80% of the ordered observations

Interim analyses: Pre-planned analyses at intermediate stages of a 
study

Intermediate variable: A variable that lies on the causal pathway 
between the explanatory variable and the outcome of interest

Internal–external cross-validation: Used in a multicentre study 
where we exclude a different centre from the data set for each 
analysis, and develop and validate the measure of interest on the 
remaining centres

Internal pilot study: A small-scale preliminary investigation whose 
data are included in the main study results; usually used to evalu-
ate the variability of observations which then enables the initial 
overall sample size estimate to be revised

Internal validation: A substantiation of the findings (e.g. the value 
of a prognostic index) using the data set from which they were 
derived

Interpolate: Estimate the required value that lies between two 
known values

Interquartile range: The difference between the 25th and 75th per-
centiles; it contains the central 50% of the ordered observations

Interval estimate: A range of values within which we believe the 
population parameter lies

Intraclass correlation coefficient (ICC): In a two-level structure, it 
expresses the variation between clusters as a proportion of the 
total variation; it represents the correlation between any two ran-
domly chosen level 1 units in one randomly chosen cluster

IRR: See incidence rate ratio
ITT: See intention-to-treat analysis

Jackknifing: A method of estimating parameters and confidence inter-
vals; each of n individuals is successively removed from the sample, 
the parameters are estimated from the remaining n − 1 individuals, 
and finally the estimates of each parameter are averaged

k-fold cross-validation: We split the data set into k subsets, derive 
the measure of interest or model on one of the subsets, and vali-
date it on the remaining k − 1 subsets, repeating the procedure 
for each subset

Kaplan–Meier plot: A survival curve in which the survival prob-
ability (or 1  − survival probability) is plotted against the time 
from baseline. It is used when exact times to reach the endpoint 
are known

Kolmogorov–Smirnov test: Determines whether data are Normally 
distributed

Kruskal–Wallis test: A non-parametric alternative to the one-way 
ANOVA; used to compare the distributions of more than two 
independent groups of observations

Lead-time bias: Occurs particularly in studies assessing changes in 
survival over time where the development of more accurate diag-
nostic procedures may mean that patients entered later into the 
study are diagnosed at an earlier stage in their disease, resulting 
in an apparent increase in survival from the time of diagnosis

Leave-one-out cross-validation: We remove each individual from 
the data set one at a time, and develop and validate the measure 
of interest on the remaining n − 1 individuals in the sample
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Left-censored data: Come from patients in whom follow-up did not 
begin until after the baseline date

Lehr’s formulae: Can be used to calculate the optimal sample sizes 
required for some hypothesis tests when the power is specified as 
80% or 90% and the significance level as 0.05

Level: A particular category of a categorical variable or factor
Level 1 unit: The ‘individual’ at the lowest level of a hierarchical 

structure; individual level 1 units (e.g. patients) are nested within 
a level 2 unit (e.g. ward)

Level 2 unit: The ‘individual’ at the second lowest level in a hierar-
chical structure; each level 2 unit (e.g. ward) comprises a cluster 
of level 1 units (e.g. patients)

Level of evidence: A measure of the strength of findings from any 
particular study design; studies are often ranked in terms of the 
levels of evidence they provide, starting with the strongest and 
leading to the weakest evidence

Levene’s test: Tests the null hypothesis that two or more variances 
are equal

Leverage: A measure of the extent to which the value of the explana-
tory variable(s) for an individual differs from the mean of the 
explanatory variable(s) in a regression analysis

Lifetable approach to survival analysis: A way of determining sur-
vival probabilities when the time to reach the endpoint is only 
known to within a particular time interval

Likelihood: The probability of the data, given the model. In the 
context of a diagnostic test, it describes the plausibility of the 
observed test result if the disease is present (or absent)

Likelihood ratio (LR): A ratio of two likelihoods; for diagnostic 
tests, the LR is the ratio of the chances of getting a particular test 
result in those having and not having the disease

Likelihood ratio statistic (LRS): Equal to −2 times the ratio of 
the log likelihood of a saturated model to that of the model of 
interest. It is used to assess adequacy of fit and may be called 
the deviance or, commonly, −2log likelihood. The difference 
in the LRS in two nested models can be used to compare the 
models

Likelihood ratio test: Uses the likelihood ratio statistic to compare 
the fit of two regression models or to test the significance of one 
or a set of parameters in a regression model

Likert scale: A scale with a small number of graded responses, such 
as very poor, poor, no opinion, good and excellent

Limits of agreement: In an assessment of repeatability, it is the 
range of values between which we expect 95% of the differences 
between repeated measurements in the population to lie

Linear regression line: The straight line that is defined by an alge-
braic expression linking two variables

Linear relationship: Implies a straight-line relationship between 
two variables

Link function: In a generalized linear model, it is a transformation 
of the mean value of the dependent variable which is modelled as 
a linear combination of the covariates

Lin’s concordance correlation coefficient: A measure of agree-
ment between pairs of observations measured on the same scale. 
It modifies the Pearson correlation coefficient that assesses the 
tightness of the data about the line of best fit (precision) when 
one member of the pair of observations is plotted against the 
other using the same scale. It includes a bias correction factor 
that measures how far the line of best fit is from the 45° line 
through the origin (accuracy)

Log-rank test: A non-parametric approach to comparing two sur-
vival curves

Logistic regression: A form of generalized linear model used 
to relate one or more explanatory variables to the logit of the 
expected proportion of individuals with a particular outcome 
when the response is binary

Logistic regression coefficient: The partial regression coefficient in 
a logistic regression equation

Logit (logistic) transformation: A transformation applied to a 
proportion or probability, p, such that logit(p) = ln[p/(1 − p)] = 
ln(odds)

Lognormal distribution: A right-skewed probability distribution of a 
random variable whose logarithm follows the Normal distribution

Longitudinal study: Follows individuals over a period of time
LRS: See likelihood ratio statistic

Main outcome variable: That which relates to the major objective 
of the study

Mann–Whitney U test: See Wilcoxon rank sum (two-sample) test
MAR: See missing at random
Marginal model: See generalized estimating equation
Marginal structural model: A form of causal modelling designed to 

adjust for time-dependent confounding in observational studies
Marginal total in a contingency table: The sum of the frequencies 

in a given row (or column) of the table
Masking: See blinding
Matching: A process of creating (usually) pairs of individuals who 

are similar with respect to variables that may influence the 
response of interest

Maximum likelihood estimation (MLE): An iterative process of 
estimation of a parameter that maximizes the likelihood

MCAR: See missing completely at random
McNemar–Bowker test: A test of symmetry in a k × k contingency 

table; it is an extension of the McNemar test for two related 
groups (e.g. two raters both assessing each of a number of indi-
viduals) when the outcome has k > 2 categories

McNemar’s test: Compares proportions in two related groups using 
a Chi-squared test statistic

Mean: See arithmetic mean
Measurement bias: A systematic error is introduced by an inaccu-

rate measurement tool
Median: A measure of location that is the middle value of the 

ordered observations
Meta-analysis (overview): A quantitative systematic review that 

combines the results of relevant studies to produce, and investi-
gate, an estimate of the overall effect of interest

Meta-regression: An extension of meta-analysis that can be used 
to investigate heterogeneity of effects across studies. The esti-
mated effect of interest (e.g. the relative risk) at the study level is 
regressed on one or more study-level characteristics (the explan-
atory variables)

Method of least squares: A method of estimating the parameters 
in a regression analysis, based on minimizing the sum of the 
squared residuals. Also called ordinary least squares (OLS)

Misclassification bias: Occurs when we incorrectly classify a cat-
egorical exposure and/or outcome variable

Missing at random (MAR): Missing values of a variable can be 
completely explained by non-missing values of one or more of 
the other variables

Missing completely at random (MCAR): Missing values are truly 
randomly distributed in the data set and the fact that they are 
missing is unrelated to any study variable

Missing not at random (MNAR): The chance that data on a particu-
lar variable are missing is strongly related to that variable

Mixed model: A model in which some of the variables have random 
effects and others have fixed effects. See also multilevel model 
and random effects model

MLE: See maximum likelihood estimation
MNAR: See missing not at random
Mode: The value of a single variable that occurs most frequently in 

a data set
Model: Describes, in algebraic terms, the relationship between two 

or more variables
Model Chi-squared test: Usually refers to a hypothesis test in a 

regression analysis that tests the null hypothesis that all the 
parameters associated with the covariates are zero; it is based on 
the difference in two likelihood ratio statistics

Model sensitivity: The extent to which estimates in a regression 
model are affected by one or more individuals in the data set or 
misspecification of the model

Mortality rate: The death rate
Multicentre study: A study conducted concurrently in more than 

one centre (e.g. hospital), each following the same protocol
Multilevel model: Used for the analysis of hierarchical data in 

which level 1 units (e.g. patients) are nested within level 2 units  
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(e.g. wards) which may be nested within level 3 units (e.g. hospi-
tals), etc. Also called a hierarchical model. See also mixed model 
and random effects model

Multinomial logistic regression: A form of logistic regression used 
when the nominal outcome variable has more than two catego-
ries. Also called polychotomous logistic regression

Multiple imputation: A number (generally up to 5) of imputed data 
sets are created from the original data set, with missing values 
replaced by imputed values. Standard statistical procedures are 
used on each complete imputed data set and, finally, the results 
from these analyses are combined

Multiple linear regression: A linear regression model in which 
there is a single numerical dependent variable and two or 
more explanatory variables. Also called multivariable linear 
regression

Multivariable regression model: Any regression model that has a 
single outcome variable and two or more explanatory variables

Multivariate analysis: Two or more outcomes of interest (response 
variables) are investigated simultaneously, e.g. multivariate 
ANOVA, cluster analysis, factor analysis

Multivariate regression model: Has two or more outcome variables 
and two or more explanatory variables

Mutually exclusive categories: Each individual can belong to only 
one category

Negative controls: Those patients in a comparative study (usually a 
RCT) who do not receive active treatment

Negative predictive value: The proportion of individuals with a 
negative test result who do not have the disease

Nested models: Two regression models, the larger of which includes 
the covariates in the smaller model, plus additional covariate(s)

Nested repeated measures ANOVA: See hierarchical repeated 
measures ANOVA

NNT: See number of patients needed to treat
Nominal significance level: The significance level chosen for each of 

a number of repeated hypothesis tests so that the overall signifi-
cance level is kept at some specified value, typically 0.05

Nominal variable: A categorical variable whose categories have no 
natural ordering

Non-inferiority trial: Used to demonstrate that a given treatment is 
clinically not inferior to another

Non-parametric tests: Hypothesis tests that do not make assump-
tions about the distribution of the data. Sometimes called distri-
bution-free tests or rank methods

Normal (Gaussian) distribution: A continuous probability distri-
bution that is bell-shaped and symmetrical; its parameters are the 
mean and variance

Normal plot: A diagram for assessing, visually, the Normality of 
data; an appropriate straight line on the Normal plot implies 
Normality

Normal range: See reference interval
Null hypothesis, H0: The statement that assumes no effect in the 

population
Number of patients needed to treat (NNT): The number of patients 

we need to treat with the experimental rather than the control 
treatment to prevent one of them developing the ‘bad’ outcome

Numerical (quantitative) variable: A variable that takes either dis-
crete or continuous values

Observational study: The investigator does nothing to affect the 
outcome

Observer bias: One observer tends to under-report (or over-report) 
a particular variable. Also called assessment bias

Odds: The ratio of the probabilities of two complementary events, 
typically the probability of having a disease divided by the prob-
ability of not having the disease

Odds ratio: The ratio of two odds (e.g. the odds of disease in indi-
viduals exposed and unexposed to a factor). Sometimes taken as 
an estimate of the relative risk in a case–control study

Offset: An explanatory variable whose regression coefficient is fixed 
at unity in a generalized linear model. It is the log of the total per-
son-years (or months/days, etc.) of follow-up in a Poisson model 

when the dependent variable is defined as the number of events 
occurring instead of a rate

OLS: Ordinary least squares. See method of least squares
On-treatment analysis: Patients in a clinical trial are only included in 

the analysis if they complete a full course of the treatment to which 
they were (randomly) assigned. Also called per protocol analysis

One-sample t-test: Investigates whether the population mean of a 
variable differs from some hypothesized value

One-tailed test: The alternative hypothesis specifies the direction of 
the effect of interest

One-way analysis of variance: A particular form of ANOVA used 
to compare the means of more than two independent groups of 
observations

Ordinal logistic regression: A form of logistic regression used 
when the ordinal outcome variable has more than two ordered 
categories

Ordinal variable: A categorical variable whose categories are 
ordered in some way

Ordinary least squares (OLS): See method of least squares
Outlier: An observation that is distinct from the main body of the 

data and is incompatible with the rest of the data
Overdispersion: Occurs when the residual variance is greater than that 

expected by the defined regression model (e.g. Binomial, Poisson)
Over-fitted model: A model containing too many variables, e.g. 

more than 1/10th of the number of individuals in a multiple lin-
ear regression model

Overview: See meta-analysis

P-value: The probability of obtaining our results, or something more 
extreme, if the null hypothesis is true

Paired observations: Relate to responses from matched individuals 
or the same individual in two different circumstances

Paired t-test: Tests the null hypothesis that the mean of a set of dif-
ferences of paired observations in a population is equal to zero

Pairwise matching: The individuals in two or more comparative 
groups are matched on an individual basis, e.g. in a case–con-
trol study, each case is matched individually to a control who has 
similar potential risk factors

Panel model: Regression model used when each individual has 
repeated measurements over time. Also called cross-sectional 
time series model

Parallel trial: Each patient receives only one treatment when two or 
more treatments are being compared

Parameter: A summary measure (e.g. the mean, proportion) that 
characterizes a probability distribution. Its value relates to the 
population

Parametric test: Hypothesis test that makes certain distributional 
assumptions about the data

Partial regression coefficients: The parameters, other than the 
intercept, that describe a multivariable regression model

Pearson’s correlation coefficient: See correlation coefficient
Per protocol analysis: See on-treatment analysis
Percentage point: The percentile of a distribution; it indicates the 

proportion of the distribution that lies to its right (i.e. in the 
right-hand tail), to its left (i.e. in the left-hand tail) or in both the 
right- and left-hand tails

Percentiles: Those values that divide the ordered observations into 
100 equal parts

Person-years of follow-up: The sum, over all individuals, of the 
number of years that each individual is followed-up in a study.

Pie chart: A diagram showing the frequency distribution of a cat-
egorical or discrete variable. A circular ‘pie’ is split into sectors, 
one for each ‘category’; the area of each sector is proportional to 
the frequency in that category

Pilot study: Small-scale preliminary investigation
Placebo: An inert ‘treatment’, identical in appearance to the active 

treatment, that is compared with the active treatment in a nega-
tively controlled clinical trial to assess the therapeutic effect of 
the active treatment by separating from it the effect of receiving 
treatment; also used to accommodate blinding

Point estimate: A single value, obtained from a sample, that esti-
mates a population parameter
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Point prevalence: The number of individuals with a disease (or per-
centage of those susceptible) at a particular point in time

Poisson distribution: A discrete probability distribution of a ran-
dom variable representing the number of events occurring ran-
domly and independently at a fixed average rate

Poisson regression model: A form of generalized linear model 
used to relate one or more explanatory variables to the log of the 
expected rate of an event (e.g. of disease) when the follow-up of 
the individuals varies but the rate is assumed constant over the 
study period

Polynomial regression: A non-linear (e.g. quadratic, cubic, quar-
tic) relationship between a dependent variable and one or more 
explanatory variables

Population: The entire group of individuals in whom we are  
interested

Population-averaged model: See genereralized estimating equation
Positive controls: Those patients in a comparative study (usually a 

RCT) who receive some form of active treatment as a basis of 
comparison wi the novel treatment

Positive predictive value: The proportion of individuals with a posi-
tive diagnostic test result who have the disease

Post hoc comparison adjustments: Made to adjust the P-values 
when multiple comparisons are performed, e.g. Bonferroni

Posterior probability: An individual’s belief, based on prior belief 
and new information (e.g. a test result), that an event will occur

Post-test probability: The posterior probability, determined from 
previous information and the diagnostic test result, that an indi-
vidual has a disease

Power: The probability of rejecting the null hypothesis when it is 
false

Precision: A measure of sampling error. Refers to how well repeated 
observations agree with one another

Predictor variable: See explanatory variable
Pre-test probability: The prior probability, evaluated before a diag-

nostic test result is available, that an individual has a disease
Prevalence: The number (proportion) of individuals with a disease 

at a given point in time (point prevalence) or within a defined 
interval (period prevalence)

Prevalent cases: Patients who have the disease at a given point in 
time or within a defined interval but who were diagnosed at a 
previous time

Primary endpoint: The outcome that most accurately reflects the 
benefit of a new therapy in a clinical trial

Prior probability: An individual’s belief, based on subjective views 
and/or retrospective observations, that an event will occur

PRISMA Statement: An evidence-based minimum set of items for 
reporting systematic reviews and meta-analyses

Probability: Measures the chance of an event occurring; it ranges 
from 0 to 1. See also conditional, posterior and prior probability

Probability density function: The equation that defines a probabil-
ity distribution

Probability distribution: A theoretical distribution that is described 
by a mathematical model. It shows the probabilities of all possible 
values of a random variable

Prognostic index: See prognostic score
Prognostic score: A graded measure of the likelihood that an indi-

vidual will experience an event. Also called a risk score or prog-
nostic index

Propensity score methods: Used to remove the effects of confound-
ing in an observational study or non-randomized clinical trial. 
Particularly useful when there are many potential confounders

Proportion: The ratio of the number of events of interest to the total 
number in the sample or population

Proportional hazards assumption: The requirement in a propor-
tional hazards regression model that the relative hazard is con-
stant over time

Proportional hazards regression model (Cox): Used in survival 
analysis to study the simultaneous effect of a number of explana-
tory variables on survival

Prospective study: Individuals are followed forward from some 
point in time

Protocol: A full written description of all aspects of a study

Protocol deviations: Patients who enter a clinical trial but do not 
fulfil the protocol criteria

Pseudo R2: A logistic regression measure, taking a value from 0 to 1, 
which is similar to R2 used in multiple regression analysis but it 
cannot be interpreted in exactly the same way. It is better suited 
to comparing models than for assessing the goodness of fit of a 
model

Publication bias: A tendency for journals to publish only papers 
that contain statistically significant results

Qualitative variable: See categorical variable
Quantitative variable: See numerical variable
Quartiles: Those values that divide the ordered observations into 

four equal parts
Quota sampling: Non-random sampling in which the investigator 

chooses sample members to fulfil a specified ‘quota’

R2: The proportion of the total variation in the dependent variable in 
a simple or multiple regression analysis that is explained by the 
model. It is a subjective measure of goodness of fit

R2
L: An index of goodness of fit of a logistic regression model

Random effect: The effect of a factor whose levels are assumed to 
represent a random sample from the population

Random effects model: A model, used for the analysis of longitu-
dinal or hierarchical data, containing at least one random effect 
in addition to the residual. For example, in a two-level struc-
ture, level 1 units are nested within level 2 units (clusters), and 
the model includes a random effect term that varies randomly 
between clusters to allow for the clustering. See also mixed 
model and multilevel model

Random error: The differences between the corresponding observed 
(or measured) and true values of a variable are due to chance

Random intercepts model: A random effects hierarchical model 
that assumes, for the two-level structure, that the linear relation-
ship between the mean value of the dependent variable and a sin-
gle covariate for every level 2 unit has the same slope for all level 
2 units and an intercept that varies randomly about the mean 
intercept

Random sampling: Every possible sample of a given size in the pop-
ulation has an equal probability of being chosen

Random slopes model: A random effects hierarchical model that 
assumes, for the two-level structure, that the linear relationship 
between the mean value of the dependent variable and a single 
covariate for each level 2 unit has a slope that varies randomly 
about the mean slope and an intercept that varies randomly 
about the mean intercept

Random variable: A quantity that can take any one of a set of mutu-
ally exclusive values with a given probability

Random variation: Variability that cannot be attributed to any 
explained sources

Randomization: Patients are allocated to treatment groups in a ran-
dom (based on chance) manner. May be stratified (controlling 
for the effect of important factors) or blocked (ensuring approxi-
mately equally sized treatment groups)

Randomized controlled trial (RCT): A comparative clinical trial in 
which there is random allocation of patients to treatments

Range: The difference between the smallest and largest observations
Rank correlation coefficient: See Spearman’s rank correlation coef-

ficient
Rank methods: See non-parametric tests
Rate: The number of events occurring expressed as a proportion of 

the total follow-up time of all individuals in the study
RCT: See randomized controlled trial
Recall bias: A systematic distortion of the data resulting from the 

way in which individuals remember past events
Receiver operating characteristic (ROC) curve: A two-way plot of 

the sensitivity against one minus the specificity for different cut-
off values for a continuous variable. It affords an assessment of 
the ability of a prognostic score or diagnostic test to discriminate 
between those with and without a particular condition; may be 
used to select the optimal cut-off value or to compare procedures. 
See also c statistic and Harrell’s c statistic
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Reference interval: The range of values (usually the central 95%) 
of a variable that are typically seen in healthy individuals. Also 
called the normal or reference range

Regression coefficients: The parameters (i.e. the slope and intercept 
in simple regression) that describe a regression equation

Regression dilution bias: May occur when fitting a regression 
model to describe the association between an outcome variable 
and one or more exposure variable(s) if there is substantial meas-
urement error around one of these exposure variables

Regression to the mean: A phenomenon whereby a subset of 
extreme results is followed by results that are less extreme on 
average, e.g. tall fathers having shorter (but still tall) sons

Relative frequency: The frequency expressed as a percentage or pro-
portion of the total frequency

Relative hazard: The ratio of two hazards, interpreted in a similar 
way to the relative risk. Also called the hazard ratio

Relative rate: The ratio of two rates (often the rate of disease in those 
exposed to a factor divided by the disease rate in those unex-
posed to the factor)

Relative risk (RR): The ratio of two risks, usually the risk of a disease 
in a group of individuals exposed to some factor divided by the 
risk in unexposed individuals

Reliability: A general term that encompasses repeatability, repro-
ducibility and agreement

Repeatability: The extent to which repeated measurements made by 
the same observer in identical conditions agree

Repeated measures: The variable of interest is measured on the 
same individual in more than one set of circumstances (e.g. on 
different occasions)

Repeated measures ANOVA: A special form of analysis of variance 
used when a numerical variable is measured on each individual 
more than once (e.g. on different occasions). It is an extension of 
the paired t-test when there are more than two repeated measures

Replication: The individual has more than one measurement of the 
variable on a given occasion

Reporting bias: When participants give answers in the direction 
they perceive are of interest to the researcher or under-report 
socially unacceptable or embarrassing behaviours or disorders

Reproducibility: The extent to which the same results can be 
obtained in different circumstances, e.g. by two methods of 
measurement, or by two observers

Rescaling: See scaling
Residual: The difference between the observed and fitted values of 

the dependent variable in a regression analysis
Residual variation: The variance of a variable that remains after the 

variability attributable to factors of interest has been removed. 
It is the variance unexplained by the model, and is the residual 
mean square in an ANOVA table. Also called error variation or 
unexplained variation

Response bias: Caused by differences in characteristics between 
those who choose or volunteer to participate in a study and those 
who do not

Response variable: See dependent variable
Retrospective studies: Individuals are selected and factors that have 

occurred in their past are studied
Right-censored data: Come from patients who were known not to 

have reached the endpoint of interest when they were last under 
follow-up

Risk factor: A determinant that affects the incidence of a particular 
outcome, e.g. a disease

Risk of disease: The probability of developing the disease in the 
stated time period; it is estimated by the number of new cases 
of disease in the period divided by the number of individuals 
disease-free at the start of the period

Risk score: See prognostic score
Robust: A test is robust to violations of its assumptions if its P-value 

and power and, if relevant, parameter estimates are not appreci-
ably affected by the violations

Robust standard error: Based on the variability in the data rather 
than on that assumed by the regression model; more robust to 
violations of the underlying assumptions of the regression model 
than estimates from ordinary least squares

ROC: See receiver operating characteristic curve
RR: See relative risk

SAMPL guidelines: Provide guidance to authors, journal editors 
and reviewers on how to optimally report basic statistical meth-
ods and results

Sample: A subgroup of the population
Sampling distribution of the mean: The distribution of the sample 

means obtained after taking repeated samples of a fixed size from 
the population

Sampling distribution of the proportion: The distribution of the 
sample proportions obtained after taking repeated samples of a 
fixed size from the population

Sampling error: The difference, attributed to taking only a sample of 
values, between a population parameter and its sample estimate

Sampling frame: A list of all the individuals in the population
Saturated model: One in which the number of variables equals or is 

greater than the number of individuals
Scale parameter: A measure of over- or underdispersion in Pois-

son (and, sometimes, Binomial) regression. It is equal to one 
when there is no extra-Poisson dispersion and is used to correct  
for over or under Poisson dispersion if substantially different 
from one

Scaling: A process used to improve the interpretation of the param-
eters in a regression model; achieved by dividing the explanatory 
variable by a relevant constant. Also called rescaling

Scatter diagram: A two-dimensional plot of one variable against 
another, with each pair of observations marked by a point

Screening: A process to ascertain which individuals in an apparently 
healthy population are likely to have (or, sometimes, not have) 
the disease of interest

SD: See standard deviation
Secondary endpoints: The outcomes in a clinical trial that are not of 

primary importance
Selection bias: A systematic distortion of the data resulting from the 

fact that individuals included in the study are not representative 
of the population from which they were selected

SEM: See standard error of the mean
Sensitivity: The proportion of individuals with the disease who are 

correctly diagnosed by the test
Sensitivity analysis: Used to assess how robust or sensitive the results 

of a study or meta-analysis are to the methods and assumptions 
of the analysis and/or to the data values

Sequential trial: The patients enter the trial serially in time, and the 
cumulative data are analysed as they become available by per-
forming repeated significance tests. A decision is made after each 
test on whether to continue sampling or stop the trial by rejecting 
or not rejecting the null hypothesis

Shapiro–Wilk test: Determines whether data are Normally 
distributed

Shrinkage: A process used in estimation of parameters in a random 
effects model to bring each cluster’s estimate of the effect of inter-
est closer to the mean effect from all the clusters

Sign test: A non-parametric test that investigates whether differ-
ences tend to be positive (or negative); whether observations 
tend to be greater (or less) than the median; and whether the 
proportion of observations with a characteristic is greater (or 
less) than one half

Significance level: The probability, chosen at the outset of an investi-
gation, that will lead us to reject the null hypothesis if our P-value 
lies below it. It is often chosen as 0.05

Significance test: See hypothesis test
Simple linear regression: The straight-line relationship between a 

single dependent variable and a single explanatory variable. Also 
called univariable linear regression

Simpson’s (reverse) paradox: Occurs when the direction of a com-
parison or an association is reversed when data from a single 
group is split into subgroups

Single-blind: See blinding
Single imputation: A single estimate is derived for each missing value
Skewed distribution: The distribution of the data is asymmetrical; 

it has a long tail to the right with a few high values (positively 
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skewed) or a long tail to the left with a few low values (negatively 
skewed)

Slope: The gradient of the regression line, showing the mean change in 
the dependent variable for a unit change in the explanatory variable

SND: See Standardized Normal Deviate
Spearman’s rank correlation coefficient: A non-parametric alter-

native to the Pearson correlation coefficient; it provides a meas-
ure of association between two variables

Specificity: The proportion of individuals without the disease who 
are correctly identified by a diagnostic test

SPIRIT Statement: Aims to improve the quality of clinical trial pro-
tocols by defining an evidence-based set of items to address in a 
protocol

Standard deviation (SD): A measure of spread equal to the square 
root of the variance

Standard error of the mean (SEM): A measure of precision of the 
sample mean. It is the standard deviation of the sampling distri-
bution of the mean

Standard error of the proportion: A measure of precision of the 
sample proportion. It is the standard deviation of the sampling 
distribution of the proportion

Standard Normal distribution: A particular Normal distribution 
with a mean of zero and a variance of one

Standardized difference: A ratio, used in Altman’s nomogram and 
Lehr’s formulae, which expresses the clinically important treat-
ment difference as a multiple of the standard deviation

Standardized Normal Deviate (SND): A random variable whose 
distribution is Normal with zero mean and unit variance

STARD Statement: An initiative to improve the completeness and 
transparency of reporting of studies of diagnostic accuracy

Statistic: The sample estimate of a population parameter
Statistical heterogeneity: Present in a meta-analysis when there 

is considerable variation between the separate estimates of the 
effect of interest

Statistically significant: The result of a hypothesis test is statistically 
significant at a particular level (say 1%) if we have sufficient evi-
dence to reject the null hypothesis at that level (i.e. when P < 0.01)

Statistics: Encompasses the methods of collecting, summarizing, 
analysing and drawing conclusions from data

Stem-and-leaf plot: A mixture of a diagram and a table used to illus-
trate the distribution of data. It is similar to a histogram, and is 
effectively the data values displayed in increasing order of size

Stepwise selection: See automatic model selection
Stratification: Creation of strata where each stratum comprises 

a group of homogeneous experimental units that share similar 
characteristics; also called blocking

Stratum: A subgroup of individuals; usually, the individuals within 
a stratum share similar characteristics. Sometimes called a block

STROBE Statement: Facilitates critical appraisal and interpretation 
of observational studies by providing guidance, in the form of a 
checklist, to authors about how to report their studies

Student’s t-distribution: See t-distribution
Subgroup analyses: The data are analysed separately in defined sub-

sets (e.g. sex) which are components of the whole study group
Subjective probability: Personal degree of belief that an event will 

occur
Superiority trial: Used to demonstrate that two or more treatments 

are clinically different
Surrogate endpoint: An outcome measure that is highly correlated 

with the endpoint of interest but which can be measured more 
easily, quickly or cheaply than that endpoint

Survey: A cross-sectional study that collects detailed information 
(e.g. opinions, demographic and lifestyle data) from a sample of 
individuals

Survival analysis: Examines the time taken for an individual to 
reach an endpoint of interest (e.g. death) when some data are 
censored

Survivorship bias: Occurs when survival is compared in patients 
who do or who do not receive a particular intervention where 
this intervention only becomes available at some point after the 
start of the study so that patients have to survive long enough to 
be eligible to receive the intervention

Symmetrical distribution: The data are centred around some mid-
point, and the shape of the distribution to the left of the mid-
point is a mirror image of that to the right of it

Systematic allocation: Patients in a clinical trial are allocated treat-
ments in a systematized, non-random manner

Systematic error: There is a tendency for the observed (or meas-
ured) value to be greater (or less) than the true value of a variable, 
leading to bias

Systematic review: A formalized and stringent approach to combin-
ing the results from all relevant studies of similar investigations 
of the same health condition

Systematic sampling: The sample is selected from the population 
using some systematic method rather than that based on chance

t-distribution: A continuous distribution, whose shape is similar to 
the Normal distribution, characterized by its degrees of freedom. 
It is particularly useful for inferences about the mean. Also called 
Student’s t-distribution

Test statistic: A quantity, derived from sample data, used to test a 
statistical hypothesis; its value is compared with a known prob-
ability distribution to obtain a P-value

Time-dependent variable: An explanatory variable in a regression 
analysis (e.g. in Poisson regression or Cox survival analysis) that 
takes different values for a given individual at various times in 
the study

Time-varying confounder: A variable that is both a potential con-
founder for a time-varying exposure variable and also lies on the 
causal pathway between that exposure and the outcome

Training sample: The first sample used to generate the model (e.g. 
in logistic regression or discriminant analysis). The results are 
authenticated by a second (validation) sample

Transformed data: Obtained by taking the same mathematical 
transformation (e.g. log) of each observation

Transportability: The extent to which a model or prognostic score 
works in populations other than that used to derive it. Also called 
generalizability

Treatment effect: The effect of interest (e.g. the difference between 
means or the relative risk) that affords a treatment comparison

Trend: Values of the variable show a tendency to increase or decrease 
progressively over time

TRIPOD Statement: An evidence-based minimum set of recommen-
dations for reporting prediction modelling studies, aiding their criti-
cal appraisal, interpretation and uptake by potential users

Two-sample t-test: See unpaired t-test
Two-tailed test: The direction of the effect of interest is not specified 

in the alternative hypothesis
Type I error: Rejection of the null hypothesis when it is true
Type II error: Non-rejection of the null hypothesis when it is false

Unbiased: Free from bias
Underdispersion: Occurs when the residual variance is less than 

that expected by the defined regression model (e.g. Binomial, 
Poisson)

Unexplained variation: See residual variation
Uniform distribution: Has no ‘peaks’ because each value is equally 

likely
Unimodal distribution: Has a single ‘peak’
Unit of observation: The ‘individual’ or smallest group of ‘individu-

als’ which can be regarded as independent for the purposes of 
analysis, i.e. its response of interest is unaffected by those of the 
other units of observation

Univariable regression model: Has one outcome variable and one 
explanatory variable. Also called simple linear regression

Unpaired (two-sample) t-test: Tests the null hypothesis that the 
means from two independent populations are equal

Validation sample: A second sample, used to authenticate the 
results from the training sample

Validity: Closeness to the truth
Variable: Any quantity that varies
Variance: A measure of spread equal to the square of the standard 

deviation
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Variance ratio (F-) test: Used to compare two population vari-
ances by relating the ratio of their sample estimates to the 
F-distribution

Wald test statistic: Used to test the significance of a parameter in 
a regression model; it follows the Standard Normal distribution 
and its square follows the Chi-squared distribution

Washout period: The interval between the end of one treatment period 
and the start of the second treatment period in a cross-over trial. It 
allows the residual effects of the first treatment to dissipate

Weighted kappa: A refinement of Cohen’s kappa, measuring agree-
ment, that takes into account the extent to which two sets of 
paired ordinal categorical measurements disagree

Weighted mean: A modification of the arithmetic mean, obtained 
by attaching weights to each value of the variable in the data set

Wilcoxon rank sum (two-sample) test: A non-parametric test com-
paring the distributions of two independent groups of observations. 
It produces the same P-value as the Mann–Whitney U test

Wilcoxon signed ranks test: A non-parametric test comparing 
paired observations
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Appendix F: Chapter numbers with 
relevant multiple-choice questions 
and structured questions from 
Medical Statistics at a Glance 
Workbook

Chapter Multiple-choice question(s) Structured question(s)

1. Types of data 1, 2, 16 1
2. Data entry 1, 3, 4 1
3. Error checking and outliers 5, 6 1, 28
4. Displaying data diagrammatically 7, 8, 9, 37, 50 1, 9
5. Describing data: the ‘average’ 1, 10, 11, 12, 13, 19, 39 2, 3, 4, 9
6. Describing data: the ‘spread’ 10, 12, 13, 19 2, 3, 4, 16
7. Theoretical distributions: the Normal distribution 8, 14, 16, 19, 44 –
8. Theoretical distributions: other distributions 15, 44 –
9. Transformations 11, 16, 17, 61 3

10. Sampling and sampling distributions 18, 19 –
11. Confidence intervals 19, 20, 21, 34, 45 2
12. Study design I 22, 23, 27, 31, 32, 33, 39 –
13. Study design II 24, 25, 26, 29, 60 –
14. Clinical trials 24, 25, 27, 28 5
15. Cohort studies 20, 22, 29, 30, 31, 48 16
16. Case–control studies 29, 31, 32, 33 4, 27
17. Hypothesis testing 16, 24 3
18. Errors in hypothesis testing 35, 36 6, 28, 29
19. Numerical data: a single group 37, 38, 40 –
20. Numerical data: two related groups 35, 39, 40, 41, 42 7, 8
21. Numerical data: two unrelated groups 40, 41, 42 3, 9, 21, 22
22. Numerical data: more than two groups 43 10
23. Categorical data: a single proportion 44, 45 –
24. Categorical data: two proportions 44, 46, 47, 48, 49 3, 8, 11, 21

continued
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Chapter Multiple-choice question(s) Structured question(s)

25. Categorical data: more than two categories 48, 49 8, 12
26. Correlation 50, 51, 74 3, 13, 26
27. The theory of linear regression 52 13
28. Performing a linear regression analysis 53, 54 13, 16
29. Multiple linear regression 33, 55, 56, 57, 81 14
30. Binary outcomes and logistic regression 33, 46, 57, 58 4, 12, 15
31. Rates and Poisson regression 59, 60, 61, 62, 63 16, 17, 18, 29
32. Generalized linear models 64 –
33. Explanatory variables in statistical models 26, 60, 61, 65 14, 16, 17, 18, 28
34. Bias and confounding 57, 60, 62, 66 4, 8, 9, 10, 12, 17, 18, 19, 

20, 28, 29
35. Checking assumptions 67, 69 21
36. Sample size calculations 68, 69 6, 22
37. Presenting results 70 –
38. Diagnostic tools 71, 72 23, 24
39. Assessing agreement 73, 74 25, 26
40. Evidence-based medicine 75 29
41. Methods for clustered data 76, 77 20
42. Regression models for clustered data 78 18, 20
43. Systematic reviews and meta-analysis 79, 80 27
44. Survival analysis 81, 82 15, 28, 29
45. Bayesian methods 83 –
46. Developing prognostic scores 84, 85 24
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Index

a priori calculation, probabilities  14
accuracy, prognostic scores  144
addition rule  14
adequacy of fit  94, 96
adjusted odds ratios  85, 178
adjusted R2, multiple linear regression  82
administrative censoring  140, 178
age, data type  2
aggregate level analysis  130, 131
aggregate statistics, ecological fallacy  101
agreement  119–123

limits of  120, 182
agreement, assessing, 119–121
allocation

bias  36
clinical trials  34–36
random see randomization
systematic  35
treatment  34, 103, 178

alpha (α), Type I errors  47
alternative hypothesis  44, 178
Altman’s nomogram  108, 109, 155, 178
analysis of covariance (ANCOVA)  82, 178
analysis of variance (ANOVA)  178

F-test  82
Kruskal-Wallis test  60
comparing groups  127, 128
one-way see one-way analysis of variance
repeated measures
table  76, 83

ANCOVA see analysis of covariance
ANOVA see analysis of variance
antilog  19
area under the curve (AUC)  129

probability density function  14, 15
ROC curves  87, 117–118, 145

arithmetic mean see mean
ascertainment bias  100, 178
ASCII files  4–5, 178
assessment bias (observer bias)  101, 183

clinical trials  36
association

in contingency table  66
in correlation  29

assumptions, checking
linearity  96–99
Normal distribution  15
reasons for  57
sensitivity analysis  105
variances, equality of  57
when assumptions are not satisfied  57

attrition bias  100, 178
AUC see area under the curve
AUROC (area under ROC curve)  87, 117–118, 145
automatic selection procedures  98, 178
average effect of interest  134, 135
average  10–11

back-transformations  11, 18
backward selection, explanatory variables  97

bar charts  8, 9, 178
Bartlett’s test

one-way ANOVA  104
baseline characteristics  34, 35
Bayes theorem  142
Bayesian methods  142–143, 178
beta (β), Type II errors  47
between-group variance, ANOVA  60
between-individual comparisons  31
between-subject/group variabilities  13
bias  30, 100–101, 178

allocation  34, 103, 178
cohort studies  37–39
confounding see confounding
evidence-based medicine  124–126
data missing not at random  6
information  38
missing data  128
on-treatment analysis  34
publication  100, 135, 184
recall  41
selection  41, 184

bimodal distributions  8, 178
binary (dichotomous) variables  2, 93

codes for  92, 99, 114
explanatory  4
in logistic regression  85
in meta-analyses  134
in multiple linear regression  81, 82

binary outcomes  85–88, 125
Binomial distribution  17, 178

confidence interval for the proportion  24
Normal approximation to  17
single proportion test  64

bioequivalence trials  45, 178
biomarkers  33
Bland and Altman diagram  120
Blinding/masking  36, 178

clinical trials  36
evidence-based medicine  36

blocked randomization  35
blocking (stratification)  31, 101,  

102, 186
Bonferroni correction  48–49, 178
bootstrapping  25, 178

prognostic scores  145
box (box-and-whisker) plot  8, 13, 104, 178
Brier score  144–145, 178
British Standards Institution repeatability  

coefficient  120, 122, 178

c statistic  118, 145, 178
Normal distribution  116

calibration, prognostic scores  145
carry-over effect  178

washout period to eliminate  31
case, defined  178
case-control studies  28, 40–42, 178

matched  41
conditional logistic regression  87

categorical data
agreement, assessing  119–120
collection  4
data entry  4
dependent variable
logistic regression, 85
multinomial and ordinal logistic  

regression  87
error checking  6
more than two categories  69–71
multiple linear regression  75
single proportion test  63–65
two proportion comparison  66–68

categorical explanatory variable  81–82
coding  5

causal modelling  179
causal pathway and confounding  103, 179
causality, assessing  29
censored data  3, 138, 140, 179
censuses  29, 179
Central Limit Theorem  22
central tendency bias  100, 179
centring  78, 179
change over time  90
channelling bias (allocation bias)  34,  

103, 178
checking assumptions see assumptions, checking
Chi-square for covariates (model Chi-squared test)  

86, 94, 182
in 2 × 2 table  116
for covariates (model Chi-square)  86
distribution  16, 94, 148, 149, 179
meta-analyses  137
in r × c contingency table  69
test  66–67, 68, 179
for trend in proportions  69, 71
for two proportions  109–110

independent data  109–110
paired data  109–110

classification tables
for prognostic scores  144
2 × 2  86
r × c  69–70

clinical cohorts  39
clinical heterogeneity  135, 179
clinical question formulation  124
clinical trials  34–36, 179

critical appraisal template  169–173
regression to the mean  76
see also randomized controlled trials

cluster randomization  35–36, 179
cluster randomized trials  29
clustered data  127–133

presenting results  112, 127
regression methods  130–133

cluster-specific models (random effects models)  
130–131, 184

Cochrane Collaboration  134, 179
Cochran’s Chi-squared test for  

homogeneity  137

Note: Page numbers in italic refer to figures
Page numbers in bold refer to tables.

www.konkur.in

Telegram: @medical_k

http://www.medstatsaag.com


191Index  191

codes
data entry  4
missing values  5, 7

coefficient
intra-class correlation  131
presenting results  112
regression coefficients  75, 185

logistic regression  85, 86, 87, 182
partial  81, 82, 183
Poisson regression  139, 146

repeatability/reproducibility  119
of variation  13, 18, 179
see also correlation coefficients

Cohen’s kappa  120, 179
cohort studies  28, 37–39, 179

confounding  102–103
collinearity  82, 87, 98, 179

logistic fregression  85
multiple linear regression  75

column charts (bar charts)  8, 9, 178
communities, as units of observation  29
comparisons of interest  47
competing risks  140, 179
complementary events  14
composite endpoints  33, 179
computer output  156–168

logistic regression  86
multiple linear regression model  82
Poisson regression  90–91

conditional logistic regression  87, 179
conditional probability  142, 179
confidence intervals  24–25, 125, 148, 179

for correlation coefficient  72–74
for difference in two means  19
for difference in two medians  19
for difference in two proportions, 109–110

independent groups, 109–110
paired groups, 109–110

interpretation of, 109–110
forest plots  135
hypothesis testing and  45
for mean  134
for median  148, 151
for median difference  54
in meta analysis  134
multiplier for calculation of  148
non-inferiority trials  45
presenting results  111
for proportion  24, 25
for regression coefficient  81
for relative risk  38
for slope of regression line  75
versus hypothesis testing  44
width  24–25
see also 95% confidence intervals

confidence limits,  24
confounding  98, 101–103, 179

and causal pathway  103
in cohort studies  102
dealing with  101–103
in non-randomized studies  102–103

connecting lines  9
consent  36

in clinical trials  37
in cohort studies  37

CONSORT guidelines  34, 169, 170–171, 179
constraints, degrees of freedom  25
contingency tables  66, 67, 179

r × c  69, 70
2 × 2  86
2 × k  70

continuity correction  53, 63, 179
single proportion test  64
sign test  52–53

continuous data  2, 93
display  8
probability distributions  14–15, 16

controls  30, 179
case-control studies  40
clinical trials  34

convenience factor  89
convenience sample  22, 179
Cook’s distance  82
correlation analysis  72–74, 98
correlation coefficient

intraclass  120–121, 131, 181
Lin’s concordance  121
non-parametric  105
Pearson  72–73, 74, 148, 153, 179

intraclass correlation coefficient as  120
Lin’s concordance correlation coefficient and  121
misuse of,  121
squared  77, 79, 184

Spearman’s rank  73–74, 148, 153, 186
counts  91
covariance, analysis of,  82
covariate patterns  179

binary outcomes  85
covariate  81

Chi-square for (model Chi-squared test)  86, 
94, 182

Poisson regression  91
Cox proportional hazards regression model  140

presenting results  112
survival analysis  139, 140, 141

critical appraisal templates  174–177
cross-over designs  31, 32, 179
cross-sectional studies  28, 29
cross-sectional time series models, clustered data  29
cross-validation  179

prognostic scores  145
cumulative frequency, defined  179
cumulative incidence of endpoints, survival  

analysis  138
cumulative meta-analyses  136, 179
cut-off values  3

diagnostic tests  117, 118
receiver operating characteristic curves  87

d bar  54, 120
D statistic  145
data

averages  10–11
categorical vs numerical  2
censored  3
coding  5
derived  2–3
describing  2
diagrams  8–9, 111
dredging  48, 179
entry on computer  4–5, 90
error checking  6
missing  6–7
paired  54
percentages  2–3
spread  12–13
summarizing  10
transformation  18–19
types  2–3

Data Safety and Monitoring Committees  34
databases

Cochrane Collaboration  134, 179
data entry to  4–5

dates
entry  5
error checking  6

deciles  12, 179
decision making in hypothesis testing  44–46

Declaration of Helsinki  36
degrees of freedom  16, 25, 179

Chi-squared distribution  86, 94
deviance divided by  87, 91
F-distribution  16
t-distribution  16

delimiters  16
dependent groups (related groups)  54–56

McNemar’s test  67–68
paired t-test  54
Wilcoxon signed ranks test  52, 54–56

dependent variables  75, 179
binary, logistic regression  85–88
categorical, multinomial and ordinal logistic 

regression  87
choice of model for  93–94
derived data  2–3

design see study design
detectability  3
deviance  86, 94, 95

see likelihood ratio statistic
divided by degrees of freedom  87, 91

diagnostic tests  116–118
in Bayesian framework  142–143

diagrammatic display of data  8–9
dichotomous data see binary data
differences

standardized  107, 186
systematic  120

discrete data  2
probability distributions  14, 17, 179

discrete variable, defined  179
discriminant analysis  144, 146, 180
disease register (clinical cohort)  39
dispersion (spread)  12–13, 47

presenting results  111
distribution

bimodal and unimodal  8
continuous probability  16–17
discrete probability  17
empirical frequency  8
frequency  8
probability  8
sampling  22
skewed  8
Standard Normal  15
Symmetrical  8
distribution-free tests (non-parametric tests)  45, 

105, 183
dot plots  8, 9, 180
double-blind trials  36
dredging of data  48, 179
drugs, bioequivalence trials  45
dummy (indicator) variables  81, 82, 96, 180

multiple linear regression  81
for non-linearity  97, 99
sensitivity analysis  105

Duncan’s test  60
duplication, for typing errors  6
dynamic cohort studies  37

ecological fallacy  101, 128, 135, 180
clustered data89,  127, 130
meta-regression  135

ecological studies  29, 180
effect modification  98
effect of interest  47, 125, 134, 135, 136–137, 142, 180

in evidence based medicine  124–126
importance of  45, 134
in meta-analysis  134
power of test and  47–48
in sample size calculations  107–109

efficacy  34
eligibility criteria, case-control studies  40
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empirical distribution, defined  180
empirical frequency distributions  8
endpoints  33, 180

choosing  33
clinical trials  34
survival analysis  138

entry of data  4–5, 90
epidemiological studies  29, 180

ecological studies  29
EQUATOR Network  34, 111, 169–177, 180

GRRAS (guidelines)  121, 169
PRISMA Statement  134, 169, 184
SAMPL  169, 185
SPIRIT Statement  36
STARD  116, 169, 186
STROBE statement  37
TRIPOD (guidelines)  145, 169, 186

equivalence ranges  45
equivalence trials  45–46, 180
error  47–49, 180

checking  6–7
of measurement  119
residual  60
Types I and II  47

estimated odds ratios  41
estimated relative risk  38
estimated risk of disease  38
estimation of missing data  6–7, 181
ethical issues

clinical trials  34–36
cohort studies  37–39
power of a test  47

ethics committees  36
clinical trials  34–36
cohort studies  37–39

even numbers of observations, medians  10
evidence, levels of  124
evidence-based medicine (EBM)  124–126, 180

systematic reviews  134
exchangeable model, defined  180
exclusion criteria, clinical trials  36
expected frequencies  66, 69
experimental studies  28, 29

see also clinical trials; randomized controlled trials
experimental units  31, 180
explanatory (independent, predictor) variables  75, 

96–99, 180
choosing  97–98
logistic regression  86, 96
multiple linear regression  81–82, 83, 96
nominal  96
ordinal  96
in regression models  78

Exponential model  140
exponential relationships  18
exposure variables, cohort studies  39
external validation  180

prognostic scores  145
extra-Binomial variation  87, 91, 180
extra-Poisson variation  91, 180

factorial experiments  31, 32–33
Fagan’s nomogram  143, 180
failures, Binomial distribution  17
false negative rates, logistic regression models  86
false positive

defined  180
rates, logistic regression models  86

F-distribution  16, 60, 78, 148, 150, 180
One-way ANOVA  60, 61

files, data entry  4
Fisher–Freeman–Halton test, defined  180
Fisher’s exact test   67, 69, 180
fitted values  75, 77, 80, 84, 180
fitted Y  75, 77
fixed cohort studies  37

fixed effect, defined  180
fixed effect model, defined  180
fixed effects meta-analysis  135
follow-up  180

cohort studies  38, 39
longitudinal studies  89
loss to  38, 39, 108
person-years of  183
Poisson regression  90

forest plots  135, 136, 180
forms, data entry  4
forward selection, explanatory variables  97
frailty models  140, 180
F-ratio  78, 79
free format files  4, 180
frequencies

Chi-squared test  66
displaying  8
observed and expected  69
table of  116

frequency distributions  8–9, 180
frequency matching  180

case-control studies  41
frequentist approach to probability  14, 142, 180
F-test  104, 106, 187

ANOVA tables  82
funding bias  100, 180
funnel plots  135, 136, 180

G (model Chi-squared test)  86, 94, 182
Galton, Sir Francis, regression to  

the mean  76
Gaussian distribution see Normal distribution
GEE see generalized estimating equations
generalization, prognostic scores  145
generalized estimating equations  131–132, 180
generalized linear models  93–95, 180
geometric mean10, 11, 180
G-estimation, defined  180
glossary  178–187
gold standard tests  116, 122, 181
Gompertz model  140
goodness of fit  76, 77, 181

linear regression  75–76
logistic regression  86, 145
multiple linear regression  82

Gossett, W.S. (‘Student’) seet-distribution
Gradientof regression line (slope)  75, 78, 186
group

comparison  127–129
matching in case-control studies  41
more than two  60–62
Poisson regression  90
single  52–53
two related  54–56
two unrelated  57–59
as units of observation  29

GRRAS (guidelines)  121, 169

Harrell’s c statistic  116, 118, 145, 181
hazard  139–140, 181
hazard ratios  139

meta-analyses  136–137
healthy entrant effect  38, 100, 181

cohort study  37–39
heterogeneity

clinical  135, 179
statistical  134, 186
of variance  104, 181

hierarchical models (random effects models)  
130–131, 184

hierarchical repeated measures ANOVA  128, 181
hierarchy of evidence  124
Hill, Sir Austin Bradford, criteria for causality  29
histograms  8, 9, 18, 86, 181

logistic regression  85–88

historical cohorts  37
historical controls  181
homogeneity

Cochran’s Chi-squared test for  137
statistical  134
of variance (homoscedasticity)  104

Hosmer–Lemeshow test  86, 145, 181
logistic regression  85–86
hospital-based controls, case-control studies  40
hypothesis, null and alternative  44
hypothesis testing  44–49, 181

categorical data  66
errors  47–49
frequentist approaches  142
likelihood ratio  86, 94, 118, 131
meta-analyses  134, 135
more than two categories  69–71
more than two means  16
multiple  48–49
non-parametric  45
for Pearson’s correlation coefficient  73
presenting results  111
in regression  78
single mean  54
two means

related groups  54–56
unrelated groups  57–59

two proportions
independent groups  108
related groups  54

for Spearman’s rank correlation coefficient  73
two variances  104
versus confidence intervals  45

I2 (index), meta-analyses  134–135, 181
ICC see intraclass correlation coefficient
identifiers (of patients)  4
identity links  93
imputation of missing data  6–7, 181
inappropriate analyses  127
incidence  29, 181
incidence rate ratios  181

see also relative rates
incidence rates  89, 181
incident cases

case-control studies  40
defined  181

inclusion criteria  171
independent events, probabilities  14
independent samples, defined  181
independent variables see explanatory variables
indicator variables see dummy variables
individuals, as units of observation  29
inferences  22
influence plots  135–136, 181
influential observations  77, 181

linear regression  75
logistic regression  87
multiple linear regression  82

information bias  100–101, 181
informative censoring  140, 181
informed consent  36

clinical trials  38
cohort studies  37

intention-to-treat (ITT)  36, 181
clinical trials  36
evidence-based medicine  124–125

interactions  49, 98, 181
interactive factors  32–33
intercept  75, 181

centring for  78
random effects models  130–131

interdecile ranges  12, 181
interim analyses  34, 48, 49, 181

clinical trials  48
hypothesis testing  48–49
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intermediate variables and confounding  103, 181
internal pilot studies  107, 181
internal validation  181

prognostic scores  145
internal–external cross-validation  181

prognostic scores  145
interquartile ranges  12, 13, 181
inter-subject/group variation  13
interval estimates  22, 24, 181
intraclass correlation coefficient (ICC)  120–121, 

131, 181
clustered data  131

intra-subject/group variation  13
ITT see intention-to-treat

jackknifing  25, 181

Kaplan-Meier curves  138, 139, 140, 181
kappa measure of agreement  119–120
k-fold cross-validation  181

prognostic scores  145
Kolmogorov–Smirnov test  104, 181
Kruskal–Wallis test  61, 181

clustered data  130

lead-time bias  100, 181
least squares, method of  75–76, 94, 130,  

132, 182
leave-one-out cross-validation  181

prognostic scores  145
left-censored data  138, 182
Lehr’s formula  108, 182
level 1 units  127, 130, 131, 182
level 2 units  127, 182
level of evidence, defined  182
Levene’s test  104, 182

One-way ANOVA  60
leverage  82, 182
lifetable approach, survival curves  138, 182
likelihood  94, 182

-2log  86, 91
Bayesian methods  142
partial  139

see also maximum likelihood
likelihood ratio  94, 95, 118, 142, 182

Bayes theorem  142
diagnostic tests  142–143

likelihood ratio statistic  182
logistic regression  85
Poisson regression  85
see also deviance

likelihood ratio tests  86, 96, 131, 182
clustered data  89
logistic regression  87

Likert scales  100, 182
limits of agreement  120, 182
line of best fit  75
linear regression  75–84

ANOVA  104
Assumptions  104
binary outcomes and  85
and clustered data  89
explanatory variables  96
goodness of fit, assessing  77
method of least squares  94
multiple  112
multivariable  112
outliers and influential points  77
presenting results  112
regression to the mean  101
for prediction  78
simple  185
theory  75–76
see also multinomial logistic regression; multiple 

linear regression
linear regression line  182

linearity  72, 105
absence  18
assessing assumptions  96–97, 98–99
transformations  18

lines
connecting points  9
see also regression lines

link functions  93, 182
Lin’s concordance correlation coefficient   

121, 182
location, measures of  10
log log plots  139
logarithms  11

transformations by  18–19
see also natural (Naperian) logarithms

logistic regression  85–88, 182
assessing adequacy  86–87
assessing assumption of linearity  96–97
coefficients  85, 86, 87, 182
conditional  87
diagnostics  87
equation  85–86
explanatory variables  86, 96
multinomial (polycotomous)  87
ordinal  87
Poisson regression vs  90
presenting results  112
prognostic scores  145

logit transformation  19, 85, 182
logit, link function as  93
Lognormal distribution  17, 18, 182
log-rank test  139, 140, 182
longitudinal studies  29, 89, 182

clustered data  127, 130
loss to follow-up  38, 39, 108

bias  100
cohort studies  37
sample size adjustment  31

Mann–Whitney U test  58
Mantel-Haenszel procedure  67
MAR see missing at random
marginal structural model  182
marginal totals  66, 182
markers (biomarkers)  33
masking (blinding)  36, 178
matching  182

case-control studies  41
conditional logistic regression  87
confounders  101
see also frequency matching; pairwise matching

mathematical models  93
maximum likelihood  85

clustered data  127
estimation (MLE)  94, 182
Poisson regression  90

MCAR see missing completely at random
McNemar–Bowker test  182
McNemar’s test  67–68, 101, 119, 182

confounding  102–103
mean Brier score  144–145
mean  10

in Binomial distribution  17
confidence intervals for  24, 25
difference  54
geometric  10, 11, 180
Normal distribution  15
one-sample t-test  52
in Poisson distribution  17
presenting results  111
sampling distributions of  22–23, 185
weighted  10, 11, 187

meta-analyses  135
measurement bias  100, 182
measurement error  119
measurement variability  119

measures
of location  10
of spread  12

median  10–11, 12, 13, 182
confidence intervals  148, 151
difference between two  57
Normal distribution  15, 104
sign test  53
survival time  138

Medline  124
meta-analyses  134–137, 182

cumulative  136, 179
sensitivity analysis  105

meta-regression  135, 182
ecological fallacy  101

method agreement  120
method of least squares  75–76, 94, 130, 132, 182

clustered data  89
linear regression  75

misclassification bias  100, 182
missing at random (MAR)  6, 182
missing completely at random (MCAR)  6, 182
missing data  6–7

codes  5
missing not at random (MNAR)  6, 182
mixed models  182

see also random effects models
MNAR see missing not at random
model Chi-squared test  86, 94, 182

logistic regression  85
Poisson regression  90

models
Cox proportional hazards regression   

87, 140
exponential  140
fixed effect  134
generalized linear  93
Gompertz  140
hierarchical  130
logistic regression  85
multi-level
multivariable  75
over-fitted  96
Poisson regression  90
random effects  128, 133
random intercepts  130
random slope  131
regression  78, 82, 85, 86
statistical  96
univariable  75

model sensitivity  82
defined  182

modes  10, 11, 182
monitoring see follow-up
MOOSE checklist  134, 169
mortality hazard  140
mortality rates  89

healthy entrant effect  38
μ (mean) see means
μ (Poisson random variable)  17
multicentre studies  29, 182
multi-coded variables  4
multi-collinearity  82, 87, 98, 179
multilevel models  182

see also random effects models
multinomial logistic regression  87, 183
multiple forms per patient  4
multiple hypothesis testing  48–49
multiple imputation  6–7, 183
multiple linear regression  75, 81–84, 183

assumptions  81
analysis of covariance  82
confounding variables in models  101
explanatory variables  81–82, 83, 96
outliers and influential points  77
presenting results  112
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multiplication rule  14
multiplicative effects  85, 88, 90
multivariable logistic regression  88
multivariable Poisson regression  91–92
multivariable regression models  183

confounding variables in  101, 102
presenting results  112
robust standard errors  130
see also multiple linear regression; Poisson 

regression
multivariate analysis  49, 183
multivariate regression model  183
mutually exclusive categories  69, 183
mutually exclusive events  14

n, in Binomial distributions  17
natural (Naperian) logarithms  18

link function as  93
Poisson regression  90

negative controls  34
negative predictive value (NPV)  34
negatively skewed distribution  8

square transformation  19
neighbourhood controls, case-control  

studies  40
nested models  94, 183
nested repeated measures ANOVA  128, 181
95% confidence intervals  24, 25, 45, 111, 117

for difference in two proportions  67
log transformed data and,  19
for mean  24
for odds ratio  41
for mean difference in paired t-test  54
for Pearson correlation coefficient  73
for proportion  24, 63
for relative hazard  139, 141
for slope of regression line  78
for difference in two means  57

99% confidence intervals  24, 25
NNT (number needed to treat)  125, 183
nominal data  2

multiple linear regression  81
nominal explanatory variables  81, 96
nominal significance level  49, 183
nominal variables  4, 5, 81, 96, 183
non-inferiority trials  45–46, 183
non-linearity  97, 98–99
non-parametric regression analysis  105
non-parametric (distribution-free, rank)  

tests  45, 105, 183
more than two independent groups  60–62
single median  10
Spearman correlation coefficient  160
two independent groups
two paired groups  54–55

Normal (Gaussian) distribution  15, 183
approximations  17
c statistic  116
in calculation of confidence interval  148
sampling distribution of mean  22
test of single proportion  63–65
verification  104
see also Standard Normal distribution

Normal plots  104, 183
normal ranges (reference intervals)  13,  

116, 185
NPV see negative predictive value
null hypothesis  44–45, 183

errors and  47
non-inferiority trials and  45

number needed to treat (NNT)  125, 183
numerical (quantitative) data

agreement, assessing  120–121, 122–123
assessing evidence  125
display  8

entry  4
error checking  6
meta-analyses  134
more than two groups  60–62
presenting results  111
single group  52–53
two related groups  54, 56
two unrelated groups  57–59
variables  2, 96–97, 183

observation
defining the unit of, 2

observational databases (clinical cohorts)  39
observational studies  28–29, 183

critical appraisal template  176–177
observed frequencies  66
observed y, linear regression  75
observer bias  101, 183
odd numbers of observations, medians  10
odds  183

adjusted  82
Bayes theorem  142
case-control studies  40
posterior  143
prior  142

odds ratio (OR)  41, 85, 87, 88, 183
offsets  183

Poisson regression  90
one-sample t-test  52, 53, 183
one-tailed tests  44, 183
1:n case-control studies  40
1:1 case-control studies  40
one-way analysis of variance  60, 183

and clustered data  60
on-treatment analyses  36, 183
opinions, Bayesian methods  142
OR see odds ratio
ordinal data  2

multiple regression  81
ordinal logistic regression  87, 183
ordinal variables

defined  183
explanatory  82, 96

ordinary least squares (method of least squares)  
75–76, 94, 130, 132, 182

outcome variables see dependent variables
outcomes

binary  85–88, 125
cohort studies  39

outliers  7, 9, 183
checking for  7
handling  7
linear regression analysis  77
logistic regression  87
multiple linear regression  82

overall totals  66
overdispersion  87, 91, 183

logistic regression  85–88
Poisson regression  89–91

over-fitted model  183
overfitting  97
overviews see meta-analyses

paired data  54
categorical  66
numerical  57–59

paired observations, defined  183
paired t-test  54, 101, 183

Altman’s nomogram  108
confidence intervals  57
confounding  98–99
repeated measures ANOVA  128–129

pairs, randomization in  36
pairwise matching  101, 102, 183

case-control studies  41
multiple hypothesis testing  49

panel model
defined  183
see also random effects models

papers, presenting results  111–112
parallel trials  32, 183
parameters  14, 15, 16, 22, 183

point estimates  22
probability distributions  14–15

see also scale parameters
parametric tests  45, 183
partial likelihood  139
partial regression coefficients  81, 183

t-tests  82
Pearson’s correlation coefficient  72–73, 74,  

148, 153, 179
intraclass correlation coefficient as  120
Lin’s concordance correlation coefficient  

and  121
percentage points

defined  183
see also percentiles

percentages  2–3
percentiles  12–13, 183

box plots  8
ranges derived from  12
of t-distributions  24

per-protocol analyses (on-treatment  
analyses)  36, 183

person-years of follow-up  183
Phase I/II clinical trials  34
Phase III clinical trials  34
π

in Binomial distribution  17
confidence intervals for the proportion  24
standard error of the proportion  23

PICO (clinical question formulation)  124
pie charts  8, 9, 183
pilot studies  41, 107

internal  107, 181
placebos  34, 183
plus or minus symbol (±)  111
point estimates  22, 183
point prevalence  29, 184
Poisson distribution  17, 184

transformations  18–19
Poisson random variable  17
Poisson regression  90–92, 184

assessing assumption of linearity  96–97
coefficients  75
computer output  82
confounding variables in models  101
explanatory variables  96, 99
presenting results  112

polychotomous linear regression  87
polynomial regression  97, 184
pooled material, as units of observation  29
populations, sampling  22–23
post hoc comparison adjustments  184
positive controls  34
positive predictive value (PPV)  117
positively skewed distributions  8

logarithmic transformation  18
posterior odds  143
posterior probabilities  142, 143, 184
post hoc comparisons  60, 129
post-test probabilities  143, 184
power of studies  31, 47–48, 184

curves  48
cohort studies  39
sample size  47, 48, 107, 109
statements  108

PPV see positive predictive value
precision, defined  184

in systematic reviews  124
predictive efficiency, logistic regression models  86, 87
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predictive scores (prognostic scores)  144–145, 184
predictive values  117, 143
predictor variables see explanatory variables
presenting results  111–113

clustered data  112, 127
meta-analyses  135

prevalence  117, 143, 184
see also point prevalence

prevalent cases
case-control studies  40
defined  184

primary endpoint  34, 184
prior odds  142
prior (pre-test) probability  142, 143, 184
PRISMA Statement  111, 134, 169, 184
probability  14, 184

addition rule  14
a priori  14
Bayesian methods  142–143
binary outcomes  85
conditional  87
frequentist  14
multiplication rule  14
posterior (post-test)  143
prior (pre-test)  142
subjective  14
survival  91
two-tailed  24, 45, 78, 148, 150
see also P-values; survival probabilities

probability density function  14, 15, 16, 184
probability distributions  14–17, 45, 90, 184
prognostic scores  144–145, 184
propensity scores  101–102, 184
proportional hazards assumption  139–140, 184
proportional hazards regression model see Cox 

proportional hazards regression model
proportions  66–68, 184

Binomial distributions for  17
confidence interval for  24, 25
confidence interval for difference in two  24
logit transformation  19
sampling distribution of  23, 185
standard error of  23
test of single  63–65
test for trend in  69–70
test for two  69–70

independent groups  66
related groups  54, 66

prospective studies  29, 184
clinical trials as  34
cohort studies  37–39
longitudinal studies  28–30

protocols  184
clinical trials  36
cohort studies  38–39
deviations  36, 184

pseudo R2  184
publication bias  100, 135, 184
meta analysis  134
P-values  44–45, 183

frequentist approach  142
multiple hypothesis testing  48–49
post hoc adjustment  108
presenting results  112

qualitative data – see categorical (qualitative) data
quality of studies, in meta-analysis  134
quality control, cohort studies  39
quantitative data – see numerical (quantitative) data
quartiles  12, 184
questionnaires  4
quick formulae in sample size estimation  108
quota sampling, defined  184
quotients (ratios)  3

F-distribution  16

r see Pearson’s correlation coefficient
r × c contingency tables  69, 70
R2  77, 79, 184
Aadjusted  82

linear regression  75
random allocation, clinical trials  34–36
random effects 
meta-analysis  135
meta-regression  135
models, clustered data  130–131, 184
random error  184
random intercepts linear two-level model  130–131, 

132, 184
random measurement error  119
random numbers table  154
random samples  22, 184
random slopes models  131, 132, 184

standard errors  130
random variables  14, 184
random variation  184
randomization  184

blocked  35
stratified  35

see also cluster randomization
randomized controlled trials  35, 124, 184

and confounding  102
analysis of covariance  82
critical appraisal template  174–175
evidence-based medicine  124

range checking  6
ranges  12–13

derived from percentiles  12
interdecile  12
interquartile  12
normal see reference intervals
presenting results  111–112

rank correlation coefficient see Spearman’s 
correlation coefficient

rank (non-parametric) tests  45, 105, 183
see non-parametric (distribution-free, rank) tests

ranks for confidence intervals for the median
rate ratios (relative rates)  89–90, 185

Poisson regression  90
rates  3, 89–90, 184

relative  89
and risk, comparison between, 31

ratio  3
F-distribution  16
hazard  136, 138
incidence  29, 37
likelihood  86
odds  40
rate  3

recall bias  41, 184
case-control studies  40
cohort studies  37

receiver operating characteristic (ROC) curve  87, 
117–118, 145, 184

area under the (AUROC),  14
logistic regression  85
prognostic scores  144

reciprocal transformation  19
recording (entry of data)  4–5, 90
reference categories, multiple linear regression  81–82
reference interval (normal range)  13, 116, 185

calculation  116
Normal distribution  15

regression analysis
clustered data

Cox proportional hazards  87
diagnostics  94
dilution bias  101
linear  97
log transformations for  19
logistic,  94, 96

methods  75
non-parametric  105
Poisson  92, 93
polynomial  97
presenting results in  111
prognostic scores  144
survival analysis  139–140
see also linear regression analysis

regression coefficients  75, 185
linear  75
logistic  85, 86, 87, 182
partial  81, 183
Poisson  17

regression lines  75
goodness of fit  76, 77
prediction from  78–79

regression of y on x  77
regression to the mean  76, 101, 185
regression variation  76
related groups  54–56

McNemar’s test  67–68
relative frequencies  8, 185
relative frequency distribution  14
relative hazards  185

see also hazard ratios
relative rates  89–90, 185

Poisson regression  90
relative risk (RR)  38, 41, 85, 87, 185

cohort studies  37–38
meta-analyses  134
logistic regression  85
odds ratio, an estimate of  41

reliability  119, 120–121, 185
repeatability  119, 120, 185
repeated cross-sectional studies  28, 29
repeated measures  127, 128, 185

ANOVA  128, 185
data  4
models (random effects models)  130–131, 184

replication of measurements  31
reporting bias  101, 185
reproducibility  119, 123, 185
rescaling, independent variables  78
residual error  76
residual variation  185

ANOVA  60
residuals  75, 77, 80, 185

linear regression  75
multiple linear regression  82, 84
random effects models  130–131

response bias  100, 185
response rates  31
response variables see dependent variables
restricted (blocked) randomization  35
results, presenting  111–112
retrospective studies  29, 185

cohort studies  37
longitudinal studies  29
selection bias  100
see also case-control studies

reverse paradox (Simpson)  67, 185
ρ see intraclass correlation coefficient; Pearson’s 

correlation coefficient
right-censored data  138, 185
risk(s)

competing  140, 179
rates vs  89
see also relative risk

risk factors  37, 38, 185
case-control studies  40–41
cohort studies  37
identifying  40–41

risk of disease  185
estimated  38

risk scores  144–145
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robust standard errors  130, 131, 185
robust test  185
ROC (receiver operating characteristic) curves  87, 

117–118, 145, 184
rounding  111

SAMPL (EQUATOR Network)  169, 185
sample  22–23, 52–53

convenience   22
random  22
representative  22
statistic  22
training  146
validation  145
variance, degrees of freedom  25

sample size,  109
Altman’s nomogram  108
adjustments  108–109
and bias  100
calculations  31
importance  107
optimizing  31, 107–110
power of test  47, 48, 107, 109
quick formulae  107, 108
requirements  107
study design  28

sampling
error  22
distribution  23
frame  22
point estimates  22
quota  22
reasons for,  22–23
standard deviation vs standard error of the 

mean  23
standard errors  23
systematic  22
variation  22

sampling distribution(s)  22–23
of the mean  22–23, 185
of the proportion  23, 185

saturated models  94, 185
scale parameters  91, 185
scaling  78, 185
scatter diagrams  8, 9, 72, 185

connecting lines in  9
correlation analysis  72
funnel plots  135
linear regression analysis  77

Scheffé’s test  60
scores  3

see also prognostic scores; propensity  
scores

screening  116, 118, 185
regression to the mean  76

secondary endpoints  34
segmented column charts  9
selection bias  100, 185
sensitivity analysis

diagnostic tests  117, 185
logistic regression  86, 87
meta-analysis  134
multiple linear regression  82
outliers  6

sensitivity of a diagnostic test,  117
sequential trials  36, 185
serial numbers see identifiers (of patients)
sex-matching, case-control studies  41
Shapiro–Wilk test  104, 185
shrinkage  130, 185
sigma, uppercase  10
sigmoid curves, logit transformation on  19
sign test  52–53, 54, 150, 185

paired data  54
for a proportion  63–64

significance level  45, 47–48, 107, 185
multiple hypothesis testing  48, 49
and power  45
and sample size  16, 22

significance testing see hypothesis testing
significant result  60
simple linear regression  185
Simpson’s (reverse) paradox  67, 185
confounding  87
simulations  25
single group, numerical data  52–53
single imputation  6, 185
single proportion, test for  63–65
single-blind trials  36
single-coded variables  4
skewed distributions  8, 16, 17, 18–19, 185

averages  11
logarithmic transformation  18–19
one-sample t-test  52, 53
square transformation  19

slope  75, 78, 186
software, data entry  85
Spearman’s rank correlation coefficient  73–74, 148, 

153, 186
specificity

defined  186
diagnostic tests  117
logistic regression models  86, 87

SPIRIT Statement  36, 169, 186
spread  12–13, 47

presenting results  111
range  24

spreadsheets  4, 5
square root transformation  19
square transformation  19
squared residuals  75
standard deviation (SD)12, 13, 22–23

Altman’s nomogram  108
and sample size  22
SD vs SEM  23

standard error  25
of the mean (SEM)  22–23, 186
presenting results  111
of the proportion  23, 186
random slopes models  130
robust  130, 131, 185

Standard Normal distribution  15, 148, 149, 150, 186
standardized difference  107, 186
Standardized Normal Deviate  15, 186
STARD, reporting guidelines  116, 169, 186
statistic 

sample  2
test  2

statistical heterogeneity  134, 186
statistical homogeneity  134
statistical packages, data entry  4
statistics, probability distributions  14–15
stem-and-leaf plots  8, 9, 186
stepwise selection, explanatory variables  97
stratification  31, 101, 102, 186
stratified randomization  35
STROBE statement  37, 40, 169, 172–173, 186
Student’s t-distribution see t-distribution
study designs  28–42

bias,  30
blocking (stratification),  31
causality, assessing,  29
controls,  30
cross-over,  29
cross-sectional studies,  29
endpoints, choosing,  33
experimental studies,  29
factorial experiments,  32
longitudinal studies,  29
multicentre studies,  29
observational studies,  28

parallel,  31
replication,  31
sample size,  31
unit of observation, defining the,  29
variation,  31

subgroup analyses  34, 48, 49, 186
clinical trials,  44
confounding,  44
hypothesis testing,  44–46

subjective approach to probabilities  14, 186
successes, Binomial distribution  17
summary measures  127–128, 129

aggregate level analysis  130
of location,  17
of spread,  12

superiority trials  186
surrogate endpoints  186
surrogate markers  33
surveys  29, 186
survival analysis  91, 138–141, 186

censored data  3
comparing survival data  139–140
Cox proportional hazards regression  87
displaying survival data  138
Kaplan-Meier log-rank test  138
problems  140
summarizing survival data  139

survival curves  138
survival probabilities  138, 139
survivorship bias  100, 186
symmetrical distributions  8, 186
symptoms, recording  4
systematic allocation  35, 186
systematic differences  120
systematic error  119, 186
systematic reviews  134, 186
systematic sampling  186

tables  148–154
ANOVA tables  76, 82, 83
data entry  4, 5
data in wrong columns  7
presenting results  111, 113
statistical  148–154
r × c contingency tables  69, 70
2 ×k tables  70
2 × 2 tables  66, 67, 178
see also classification tables; contingency tables

t-distribution  16, 148, 149, 186
confidence interval for the mean  24, 25
one-sample t-test  52
paired t-test  54

templates
assessment of evidence  124
see also critical appraisal templates

test statistics  44, 54, 57, 186
text files  4–5, 178
time-dependent variable  186
times, entry  5
time-varying confounding  103, 186
toxicities  34
training sample  145, 186
transformations  18–19, 105, 186

back-transformations  11, 18
linear regression analysis  77
logit transformation  19, 85, 182
method  18
for non-linearity  97
reasons for  18

transportability  186
treatment allocation, clinical trials  34–36
treatment effect  47, 186
trends  44, 186

Chi-squared test for  69, 71
repeated cross-sectional studies  29
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TRIPOD (guidelines)  145, 169, 186
t-tests  108, 109

one-sample  52, 53, 183
paired  54
partial regression coefficients  82
unpaired (two-sample)  57, 108, 109, 186

2 × k tables  70
2 × 2 classification table  86
2 × 2 factorial experiments  32–33
2 × 2 tables  66, 67, 178
two-level structures  127, 130
two-sample test (Wilcoxon rank sum test)  57–59, 

148, 152, 187
two-sample t-test  57, 108, 109, 186
two-tailed tests  24, 45, 78, 148, 150
two-tailed tests  44, 186
Type I errors  47, 186

clustered data  89
sample size 107–109

Type II errors  47, 186
sample size  107–109

typing errors  6, 7

unbiased estimate, 22
underdispersion  91, 95, 186

likelihood ratio statistic, 86, 94
logistic regression, 85
Poisson regression, 90–92

unexplained variation (residual error)  76
uniform distribution  8, 186
unimodal distributions  8, 15, 186
unit of observation  29, 186

see also experimental units
unit of measurement  4, 5

univariable Poisson regression  91
univariable regression  75, 97, 186
unmatched case-control studies  41
unpaired (two-sample) t-test  57, 108, 109, 186
unrelated groups

numerical data  57–59
proportions  66–68

validation, prognostic scores,  144–145
validation sample  145, 186
variability  119

between-subject  13
sample size calculation and,  107–110
within-subject  13

see also spread
variables, defined  2

random  14
variance ratio test (F-test)  104, 106, 187

ANOVA tables  82
variance  13, 186

in Binomial distribution  17
equality of two  104
heterogeneity of  104, 181
Normal distribution  15
one-way analysis  60, 183
in Poisson distribution  17
residual  60
stabilizing  18, 19
see also sample variance

variation  13, 31
between-subject/group  13
coefficient of  13, 18, 179
explained  13
extra-Binomial  87, 91, 180

over time  38
extra-Poisson  91, 180
intra-subject/group  13
random  184
use in multiple imputation  6–7
residual  185
ANOVA  60
unexplained (residual error)  76
see also regression variation

Wald test  86, 187
logistic regression,  85–86
Poisson regression,  90–92

washout periods  31, 187
Weibull model  140
weighted kappa  120, 187
weighted mean  10, 11, 187

meta-analysis  135
whiskers, box plots  8
Wilcoxon rank sum test  57–59, 148, 152, 187
Wilcoxon signed ranks test  52, 54–56, 148,  

151, 187
within-group variance, ANOVA  60
within-individual comparisons  31
within-subject variation  13 

x bar  10, 52, 57
x variable  8

y variable  8

zero cell counts, logistic regression  87
z-test  52
z (standard Normal variable)  15, 53, 148 and 149
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Flow chart for hypothesis tests

Numerical data Categorical data

1 group 2 groups > 2 groups

One-sample
t-test (19)

Sign test (19)
Paired Independent

Paired t-test (20)
Sign test (19)

Wilcoxon signed
ranks test (20)

Unpaired
t-test (21)

Wilcoxon rank
sum test (21) 

Independent

One-way
ANOVA (22)

Kruskal–Wallis
test (22)

2 categories
(investigating
proportions)

> 2 categories

1 group 2 groups > 2 groups

z test for a
proportion (23)
Sign test (23)

Paired Independent

McNemar’s
test (24)

Chi-squared
test (24)

Fisher’s exact
test (24)

Chi-squared
test (25)

Chi-squared
trend test (25)

Chi-squared
test (25) 

Flow chart for further analyses

Regression
methods

Longitudinal
studies

Assessing
evidence

Additional
topics

Correlation Regression

Correlation coef�cients
Pearson’s (26)

Spearman’s (26)

Simple (27, 28)
Multiple (29)
Logistic (30)
Poisson (31)

Modelling (32, 33)
Cluster (42) 

Logistic (30)
Poisson (31)

Repeated measures (41, 42)
Survival analysis (44)

Evidence-based medicine (40)
Systematic reviews and

meta-analyses (43)

Bias and confounding (34)
Sample size (36)

Diagnostic tools (38)
Agreement – kappa (39)
Bayesian methods (45)
Prognostic scores (46)

CONSORT (Appendix D)
STROBE (Appendix D)

Critical appraisal
checklists (Appendix D)
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