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Preface

The finite element method is a numerical method that can be used for the accurate solution of complex engineering
problems. Although the origins of the method can be traced to several centuries ago, the method as currently used was
originally presented by Turner, Clough, Martin, and Topp in 1956 in the context of the analysis of aircraft structures.
Thereafter, within a decade, the potential of the method to solve different types of applied science and engineering
problems was recognized. Over the years, the finite element technique has been so well established that today, it is
considered one of the best methods to solve a wide variety of practical problems efficiently. In addition, the method has
become an active research area not only for engineers but also for applied mathematicians. In fact, the finite element
method appears to be the only technique developed by engineers and pursued by applied mathematicians. A main reason
for the popularity of the method in different fields of engineering is that once a general computer program is written, it can
be used to solve a variety of problems simply by changing the input data.

APPROACH OF THE BOOK

The objective of this book is to introduce the various aspects of the finite element method as applied to the solution of
engineering problems in a systematic and simple manner. It develops each technique and idea from basic principles. New
concepts are illustrated with simple examples whenever possible. An introduction to commercial software systems,
ABAQUS and ANSYS, including some sample applications with images and output, is also presented in two separate
chapters. In addition, several MATLAB programs are given along with examples to illustrate the use of the programs in a
separate chapter. After studying the material presented in the book, the reader will not only be able to understand the
current literature on the finite element method but will also be in a position to solve finite element problems using
commercial software such as ABAQUS and ANSYS, use the MATLAB programs given in the book to solve a variety of
finite element problems from different areas, and, if needed, be able to develop short programs to solve engineering
problems.

FEATURES OF THIS EDITION

In this edition, some topics are modified and rewritten, and some new topics are added.
Most modifications and additions were suggested by users of the book and by reviewers. Some important features of

the current edition are:

l 157 illustrative examples are given to illustrate the concepts, compared with 151 in the previous edition.
l 708 problems are included, compared with 680 in the previous edition. The solution to most problems is given in the

Solutions Manual, which is available to instructors who use the book as a textbook.
l Expanded coverage is given of finite element applications to different areas of engineering.
l Answers to selected problems are given at the web site of the book.
l Solutions to most problems are available at the Web site of the book to instructors who use the book as a textbook.
l A comparison of the performance of the finite element method with those of other approximate analytical and numer-

ical methods for a beam vibration problem is given in an Appendix.
l A total of 544 review questions are included at the end of chapters, with answers made available at the Web site of the

book. These can be used by readers to review and test their understanding of the text material. The review questions are
in the form of questions requiring brief answers, trueefalse questions, fill in the blanketype questions, multiple-choice
questions, and matching-type questions.

xv

www.konkur.in

Telegram: @uni_k



l Ten MATLAB programs are given for the finite element analysis problems related to stress analysis, heat transfer, and
fluid flow. The listings or codes of these programs are available at the Web site of the book for readers. These programs,
with instructions given in the book (Chapter 23), can be used to solve a variety of finite element analysis problems.

l All of the concepts of the finite element method are explained with the help of illustrative examples. More than 200
references are given in the book.

ORGANIZATION

The book is divided into 23 chapters and two appendixes. Chapter 1 gives an introduction and overview of the finite
element method. The basic approach and the generality of the method are illustrated through several simple examples.
Chapters 2e7 describe the basic finite element procedure and the solution to the resulting equations. Finite element
discretization and modeling, including considerations in selecting the number and types of elements, is discussed in
Chapter 2. Interpolation models in terms of Cartesian and natural coordinate systems are given in Chapter 3. Chapter 4
discusses higher-order and isoparametric elements. The use of Lagrange and Hermite polynomials is also discussed in this
chapter. The derivation of element characteristic matrices and vectors using variational and weighted residual approaches is
given in Chapter 5. The assembly of element characteristic matrices and vectors and the derivation of system equations,
including the various methods to incorporate boundary conditions, are indicated in Chapter 6. The solutions to finite
element equations arising in equilibrium, eigenvalue, and propagation (transient or unsteady) problems are briefly outlined
in Chapter 7.

Application of the finite element method to solid and structural mechanics problems is considered in Chapters 8e12.
The basic equations of solid mechanicsdnamely, internal and external equilibrium equations, stressestrain relations,
strainedisplacement relations, and compatibility conditionsdare summarized in Chapter 8. The analysis of trusses, beams,
and frames is the topic of Chapter 9. The development of in-plane and bending plate elements is discussed in Chapter 10.
The analysis of axisymmetric and three-dimensional solid bodies is considered in Chapter 11. Dynamic analysis, including
free and forced vibration, of solid and structural mechanics problems is outlined in Chapter 12.

Chapters 13e16 are devoted to heat transfer applications. The basic equations of conduction, convection, and radiation
heat transfer are summarized and finite element equations are formulated in Chapter 13. The solutions to one-, two-, and
three-dimensional heat transfer problems are discussed in Chapters 14e16, respectively. Both steady-state and transient
problems are considered. Application of the finite element method to fluid mechanics problems is discussed in Chapters
17e19. Chapter 17 gives a brief outline of the basic equations of fluid mechanics. The analysis of inviscid incompressible
flows is considered in Chapter 18. The solution to incompressible viscous flows as well as non-Newtonian fluid flows is
considered in Chapter 19. Chapter 20 presents the solution to the quasi-harmonic (Poisson) equation. Finally, the solution
to engineering problems using the commercial finite element software systems ABAQUS and ANSYS, and also MATLAB
programs is described in Chapters 21e23, respectively. A comparison of the finite element method with the exact solution,
analytical approximation methods of Rayleigh, Rayleigh-Ritz, and Galerkin methods, and the finite difference method is
given, with an illustrative example, for a typical eigenvalue problem (the natural frequency analysis of a beam) in
Appendix A. The GreeneGauss theorem, which deals with integration by parts in two and three dimensions, is given in
Appendix B.

The book is based on the author’s experience in teaching the course to engineering students during the past several
years. A basic knowledge of matrix theory is required in understanding the various topics presented in the book. More than
enough material is included for a first course on the subject. Different parts of the book can be covered depending on the
background of students and also on the emphasis to be given on specific areas, such as solid mechanics, heat transfer, and
fluid mechanics. The student can be assigned a term project in which he or she is required to modify some of the
established elements or to develop new finite elements and use them to solve a problem of his or her choice. The material
of the book is also useful for self-study by practicing engineers who would like to learn the method.

RESOURCES FOR INSTRUCTORS

For instructors using this book as a textbook for their course, please visit textbooks.elsevier.com to register for the
Instructor’s Solutions Manual, Electronic Images from the text, MATLAB files, and other updated resources related to
material presented in the text. Also available for readers of this book: m-files, answers to review questions, and other
related resources, can also be accessed at textbooks.elsevier.com.
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1.1 BASIC CONCEPT

The basic idea in the finite element method is to find the solution of a complicated problem by replacing it with a simpler
one. Since the actual problem is replaced by a simpler one in finding the solution, we will be able to find only an
approximate solution rather than the exact solution. The existing mathematical tools will not be sufficient to find the exact
solution (and sometimes, even an approximate solution) of most of the practical problems. Thus, in the absence of any
other convenient method to find even the approximate solution of a given problem, we have to prefer the finite element
method. Moreover, in the finite element method, it will often be possible to improve or refine the approximate solution by
spending more computational effort.

In the finite element method, the solution region is considered to be built of many small, interconnected subregions
called elements. As an example of how a finite element model might be used to represent a complex geometrical shape,
consider the milling machine structure shown in Fig. 1.1A. Since it is very difficult to find the exact response (like stresses
and displacements) of the machine under any specified cutting (loading) condition, this structure is approximated as
composed of several pieces as shown in Fig. 1.1B in the finite element method. In each piece or element, a convenient
approximate solution is assumed and the conditions of overall equilibrium of the structure are derived. The satisfaction of
these conditions will yield an approximate solution for the displacements and stresses. Fig. 1.2 shows the finite element
idealization of a fighter aircraft.

1.2 HISTORICAL BACKGROUND

Although the name of the finite element method was introduced in 1960 by Clough [1.42], the concept dates back several
centuries. For example, ancient mathematicians found the circumference of a circle by approximating it by the perimeter of
a polygon as shown in Fig. 1.3. In terms of the present-day notation, each side of the polygon can be called an element. By
considering the approximating polygon inscribed or circumscribed, we can obtain a lower bound S(l) or an upper bound S(u)

for the true circumference S. Furthermore, as the number of sides of the polygon is increased, the approximate values

The Finite Element Method in Engineering. http://dx.doi.org/10.1016/B978-0-12-811768-2.00001-8
Copyright © 2018 Elsevier Inc. All rights reserved.
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converge to the true value. These characteristics, as will be seen later, will hold true in any general finite element
application.

To find the differential equation of a surface of minimum area bounded by a specified closed curve, in 1851 Schellback
discretized the surface into several triangles and used a finite difference expression to find the total discretized area [1.35].
In the current finite element method, a differential equation is solved by replacing it by a set of algebraic equations. Since
the early 1900s, the behavior of structural frameworks, composed of several bars arranged in a regular pattern, has been
approximated by that of an isotropic elastic body [1.36]. In 1943, Courant presented a method of determining the torsional
rigidity of a hollow shaft by dividing the cross section into several triangles and using a linear variation of the stress
function f over each triangle in terms of the values of f at net points (called nodes in present-day finite element termi-
nology) [1.1]. This work is considered by some to be the origin of the present-day finite element method. Since the

Finite element idealizationMilling machine structure

Arbor
support

Arbor

Cutter

Table

Column

Overarm

(A) (B) 

FIGURE 1.1 Representation of a milling machine structure by finite elements.

FIGURE 1.2 Finite element mesh of a fighter aircraft. Reprinted with permission from Anamet Laboratories, Inc.
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mid-1950s, engineers in the aircraft industry have worked on developing approximate methods for the prediction of
stresses induced in aircraft wings. In 1956, Turner et al. [1.2] presented a method for modeling the wing skin using three-
node triangles. At about the same time, Argyris and Kelsey presented several papers outlining matrix procedures, which
contained some of the finite element ideas, for the solution of structural analysis problems [1.3]. The study by Turner et al.
[1.2] is considered one of the key contributions in the development of the finite element method.

The name finite element was coined, for the first time, by Clough in 1960 [1.42]. Although the finite element method
was originally developed based mostly on intuition and physical argument, the method was recognized as a form of the
classic Rayleigh-Ritz method in the early 1960s. Once the mathematical basis of the method was recognized, the de-
velopments of new finite elements for different types of problems and the popularity of the method started to grow almost
exponentially [1.37e1.40]. The digital computer provided a rapid means of performing the many calculations involved in
the finite element analysis (FEA) and made the method practically viable. Along with the development of high-speed digital
computers, the application of the finite element method also progressed at a very impressive rate. Zienkiewicz and his
associates [1.4,1.6] presented the broad interpretation of the method and its applicability to any general field problem. The
book by Przemieniecki [1.5] presents the finite element method as applied to the solution of stress analysis problems.

With this broad interpretation of the finite element method, it has been found that the finite element equations can also
be derived by using a weighted residual method such as the Galerkin method or the least squares approach. This led to
widespread interest among applied mathematicians in applying the finite element method for the solution of linear and
nonlinear differential equations. Traditionally, mathematicians developed techniques such as matrix theory and solution
methods for differential equations, and engineers used those methods to solve engineering analysis problems. Only in the
case of the finite element method, engineers developed and perfected the technique; applied mathematicians use the
method for the solution of complex ordinary and partial differential equations. Today, it has become an industry standard to
solve practical engineering problems using the finite element method. Millions of degrees of freedom (dof) are being used
in the solution of some important practical problems.

A brief history of the beginning of the finite element method was presented by Gupta and Meek [1.7]. Books that deal
with the basic theory, mathematical foundations, mechanical design, structural, fluid flow, heat transfer, electromagnetic
and manufacturing applications, and computer programming aspects are given at the end of the chapter [1.8e1.30]. The
rapid progress of the finite element method can be seen by noting that annually about 3800 papers were being published; a
total of about 56,000 papers, 380 books, and 400 conference proceedings have been published as estimated in 1995 [1.40].
With all the progress, today the finite element method is considered one of the well-established and convenient analysis
tools by engineers and applied scientists.

EXAMPLE 1.1
The circumference of a circle (S) is approximated by the perimeters of inscribed and circumscribed n-sided polygons as shown in

Fig. 1.3. Prove the following:

lim
n/N

SðlÞ ¼ S and lim
n/N

SðuÞ ¼ S

where S(l) and S(u) denote the perimeters of the inscribed and circumscribed polygons, respectively.

Solution

Approach: Express the perimeters of polygons in terms of the radius of the circle R and the number of sides of the polygons n and

find their limiting values as n/N.

If the radius of the circle is R, each side of the inscribed and the circumscribed polygon (Fig. 1.4) can be expressed as

Continued

S (u)

S (  )

S

FIGURE 1.3 Lower and upper bounds to the circumference of a circle.
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EXAMPLE 1.1 dcont’d

r ¼ 2R sin
p

n
; s ¼ 2R tan

p

n
(E.1)

Thus, the perimeters of the inscribed and circumscribed polygons are given by

SðlÞ ¼ nr ¼ 2nR sin
p

n
; SðuÞ ¼ ns ¼ 2nR tan

p

n
(E.2)

which can be rewritten as

SðlÞ ¼ 2pR

264sinpnp
n

375; SðuÞ ¼ 2pR

264tanpnp
n

375 (E.3)

As n/N; pn/0; and hence

SðlÞ/2pR ¼ S; SðuÞ/2pR ¼ S (E.4)

1.3 GENERAL APPLICABILITY OF THE METHOD

Although the method has been extensively used in the field of structural mechanics, it has been successfully applied to
solve several other types of engineering problems, such as heat conduction, fluid dynamics, seepage flow, and electric and
magnetic fields. These applications prompted mathematicians to use this technique for the solution of complicated
boundary value and other problems. In fact, it has been established that the method can be used for the numerical solution
of ordinary and partial differential equations. The general applicability of the finite element method can be seen by
observing the strong similarities that exist between various types of engineering problems. For illustration, let us consider
the following phenomena.

1.3.1 One-Dimensional Heat Transfer

Consider the thermal equilibrium of an element of a heated one-dimensional body as shown in Fig. 1.5A. The rate at which
heat enters the left face can be written as

qx ¼ �kA
vT

vx
(1.1)

where k is the thermal conductivity of the material, A is the area of cross section through which heat flows (measured perpen-
dicular to the direction of heat flow), and vT/vx is the rate of change of temperature T with respect to the axial direction [1.30].

R

R
O s

r

θ

θ

θθ

2

2

22

FIGURE 1.4 Sides of inscribed and circumscribed polygons.
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The rate at which heat leaves the right face can be expressed as (by retaining only two terms in the Taylor’s series
expansion)

qxþdx ¼ qx þ vqx
vx

dx ¼ �kA
vT

vx
þ v

vx

�
� kA

vT

vx

�
dx (1.2)

The energy balance for the element for a small time dt is given by

Heat inflow
in time dt

þ Heat generated by internal
sources in time dt

¼ Heat outflow
in time dt

þ Change in internal energy
during time dt

That is,

qxdt þ _qA dx dt ¼ qxþdxdt þ cr
vT

vt
dx dt (1.3)

where _q is the rate of heat generation per unit volume (by the heat source), c is the specific heat, r is the density, and
vT
vt dt ¼ dT is the temperature change of the element in time dt. Eq. (1.3) can be simplified to obtain

v

vx

�
kA

vT

vx

�
þ _qA ¼ cr

vT

vt
(1.4)

SPECIAL CASES
If the heat source _q ¼ 0; we get the Fourier equation

v

vx

�
kA

vT

vx

�
¼ cr

vT

vt
(1.5)

If the system is in a steady state, we obtain the Poisson equation

v

vx

�
kA

vT

vx

�
þ _qA ¼ 0 (1.6)

If the heat source is zero and the system is in steady state, we get the Laplace equation

v

vx

�
kA

vT

vx

�
¼ 0 (1.7)

(C)

Cross-sectional area = A(x)

P

x

(A)

x

Cross-sectional area = A

qx qx+dx

dxdx

(B)

Cross-sectional area = A(x)
x

u

FIGURE 1.5 One-dimensional problems.
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If the thermal conductivity and area of cross section are constant, Eq. (1.7) reduces to

v2T

vx2
¼ 0 (1.8)

1.3.2 One-Dimensional Fluid Flow

In the case of one-dimensional fluid flow [Fig. 1.5B], we have the net mass flow the same at every cross section; that is,

rAu ¼ constant (1.9)

where r is the density, A is the cross-sectional area, and u is the flow velocity. Eq. (1.9) can also be written as

d
dx

ðrAuÞ ¼ 0 (1.10)

If the fluid is inviscid, there exists a potential function f(x) such that [1.31].

u ¼ df
dx

(1.11)

and hence Eq. (1.10) becomes

d
dx

�
rA

df
dx

�
¼ 0 (1.12)

1.3.3 Solid Bar Under Axial Load

For the solid rod shown in Fig. 1.5C, we have at any section x,

Reaction force ¼ ðareaÞðstressÞ ¼ ðareaÞðEÞðstrainÞ

¼ AE
vu

vx
¼ applied force

(1.13)

where E is the Young’s modulus, u is the axial displacement, and A is the cross-sectional area. If the applied load is con-
stant, we can write Eq. (1.13) as

v

vx

�
AE

vu

vx

�
¼ 0 (1.14)

COMMONALITY OF EQUATIONS
A comparison of Eqs. (1.7), (1.12), and (1.14) indicates that a solution procedure applicable to any one of the problems can
be used to solve the others also. We shall see how the finite element method can be used to solve Eqs. (1.7), (1.12), and
(1.14) with appropriate boundary conditions in Section 1.5 and also in subsequent chapters.

1.4 ENGINEERING APPLICATIONS OF THE FINITE ELEMENT METHOD

As stated earlier, the finite element method was developed originally for the analysis of aircraft structures. However, the
general nature of its theory makes it applicable to a wide variety of boundary and initial value problems in engineering. A
boundary value problem is one in which a solution is sought in the domain (or region) of a body subject to the satisfaction
of prescribed boundary (edge) conditions on the dependent variables or their derivatives. Table 1.1 gives specific appli-
cations of the finite element in the three major categories of boundary value problems, namely (1) equilibrium or steady-
state or time-independent problems, (2) eigenvalue problems, and (3) propagation or transient problems.

In an equilibrium problem, we need to find the steady-state displacement or stress distribution if it is a solid mechanics
problem, temperature or heat flux distribution if it is a heat transfer problem, and pressure or velocity distribution if it is a
fluid mechanics problem.

In eigenvalue problems also, time will not appear explicitly. They may be considered as extensions of equilibrium
problems in which critical values of certain parameters are to be determined in addition to the corresponding steady-state
configurations. In these problems, we need to find the natural frequencies or buckling loads and mode shapes if it is a solid
mechanics or structures problem, stability of laminar flows if it is a fluid mechanics problem, and resonance characteristics
if it is an electrical circuit problem.

8 PART j I Introduction
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TABLE 1.1 Engineering Applications of the Finite Element Method

Area of Study Equilibrium Problems Eigenvalue Problems Propagation Problems

1. Civil engineering structures Static analysis of trusses, frames, folded
plates, shell roofs, shear walls, bridges, and
prestressed concrete structures

Natural frequencies and modes of struc-
tures; stability of structures

Propagation of stress waves; response of
structures to aperiodic loads

2. Aircraft structures Static analysis of aircraft wings, fuselages,
fins, rockets, spacecraft, and missile
structures

Natural frequencies, flutter, and stability of
aircraft, rocket, spacecraft, and missile
structures

Response of aircraft structures to random
loads, and dynamic response of aircraft and
spacecraft to aperiodic loads

3. Heat conduction Steady-state temperature distribution in
solids and fluids

d Transient heat flow in rocket nozzles, inter-
nal combustion engines, turbine blades,
fins, and building structures

4. Geomechanics Analysis of excavations, retaining walls,
underground openings, rock joints, and
soilestructure interaction problems; stress
analysis in soils, dams, layered piles, and
machine foundations

Natural frequencies and modes of dame

reservoir systems and soilestructure
interaction problems

Time-dependent soilestructure interaction
problems; transient seepage in soils and
rocks; stress wave propagation in soils and
rocks

5. Hydraulic and water
resources engineering;
hydrodynamics

Analysis of potential flows, free surface
flows, boundary layer flows, viscous flows,
transonic aerodynamic problems; analysis
of hydraulic structures and dams

Natural periods and modes of shallow ba-
sins, lakes, and harbors; sloshing of liquids
in rigid and flexible containers

Analysis of unsteady fluid flow and wave
propagation problems; transient seepage in
aquifers and porous media; rarefied gas dy-
namics; magnetohydrodynamic flows

6. Nuclear engineering Analysis of nuclear pressure vessels and
containment structures; steady-state temper-
ature distribution in reactor components

Natural frequencies and stability of contain-
ment structures; neutron flux distribution

Response of reactor containment structures
to dynamic loads; unsteady temperature dis-
tribution in reactor components; thermal
and viscoelastic analysis of reactor
structures

7. Biomedical engineering Stress analysis of eyeballs, bones, and teeth;
load-bearing capacity of implant and pros-
thetic systems; mechanics of heart valves

d Impact analysis of skull; dynamics of
anatomical structures

8. Mechanical design Stress concentration problems; stress anal-
ysis of pressure vessels, pistons, composite
materials, linkages, and gears

Natural frequencies and stability of link-
ages, gears, and machine tools

Crack and fracture problems under dynamic
loads

9. Electrical machines and
electromagnetics

Steady-state analysis of synchronous and in-
duction machines, eddy current, and core
losses in electric machines, magnetostatics

d Transient behavior of electromechanical de-
vices such as motors and actuators,
magnetodynamics
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The propagation or transient problems are time-dependent problems. This type of problem arises, for example,
whenever we are interested in finding the response of a body under time-varying force in the area of solid mechanics and
under sudden heating or cooling in the field of heat transfer.

1.5 GENERAL DESCRIPTION OF THE FINITE ELEMENT METHOD

In the finite element method, the actual continuum or body of matter, such as a solid, liquid, or gas, is represented as an
assemblage of subdivisions called elements. These elements are considered to be interconnected at specified joints called
nodes or nodal points. The nodes usually lie on the element boundaries where adjacent elements are considered to be
connected. Since the actual variation of the field variable (e.g., displacement, stress, temperature, pressure, or velocity)
inside the continuum is not known, we assume that the variation of the field variables inside a finite element can be
approximated by a simple function. These approximating functions (also called interpolation models) are defined in terms
of the values of the field variables at the nodes. When field equations (like equilibrium equations) for the whole continuum
are written, the new unknowns will be the nodal values of the field variable. By solving the finite element equations, which
are generally in the form of matrix equations, the nodal values of the field variable will be known. Once these are known,
the approximating functions define the field variable throughout the assemblage of elements.

The solution of a general continuum problem by the finite element method always follows an orderly step-by-step
process. With reference to static structural problems, the step-by-step procedure can be stated as follows:

Step 1: Divide the structure into discrete elements (discretization).
The first step in the finite element method is to divide the structure or solution region into subdivisions or elements. Hence,
the structure is to be modeled with suitable finite elements. The number, type, size, and arrangement of the elements are to
be decided.

Step 2: Select a proper interpolation or displacement model.
Since the displacement solution of a complex structure under any specified load conditions cannot be predicted exactly, we
assume some suitable solution within an element to approximate the unknown solution. The assumed solution must be
simple from a computational standpoint, but it should satisfy certain convergence requirements. In general, the solution
or the interpolation model is taken in the form of a polynomial.

Step 3: Derive element stiffness matrices and load vectors.
From the assumed displacement model, the stiffness matrix [K (e)] and the load vector P

!ðeÞ
of element e are to be derived by

using a suitable variational principle, a weighted residual approach (such as the Galerkin method), or equilibrium conditions.
The method of deriving the stiffness matrix and load vector using a suitable variational principle is illustrated in Section 1.6,
while the derivation based on equilibrium conditions (also called the direct method) is illustrated in Section 1.8. The
derivation of the element stiffness matrix and load vector using a weighted residual approach (such as the Galerkin method)
is presented in Chapter 5.

Step 4: Assemble element equations to obtain the overall equilibrium equations.
Since the structure is composed of several finite elements, the individual element stiffness matrices and load vectors are to
be assembled in a suitable manner and the overall equilibrium equations have to be formulated as�

Ke� F!e ¼ P
!e (1.15)

where
�
Ke� is the assembled stiffness matrix, F is the vector of nodal displacements, and P

!e is the vector of nodal forces for
the complete structure.

Step 5: Solve for the unknown nodal displacements.
The overall equilibrium equations have to be modified to account for the boundary conditions of the problem. After the
incorporation of the boundary conditions, the equilibrium equations can be expressed as

½K�F! ¼ P
!

(1.16)

For linear problems, the vector F
!

can be solved very easily. However, for nonlinear problems, the solution has to be ob-
tained in a sequence of steps, with each step involving the modification of the stiffness matrix [K] and/or the load vector P

!
:

Step 6: Compute element strains and stresses.
From the known nodal displacements F

!
; if required, the element strains and stresses can be computed by using the neces-

sary equations of solid or structural mechanics.

The terminology used in the previous six steps has to be modified if we want to extend the concept to other fields. For
example, we have to use the term continuum or domain in place of structure, field variable in place of displacement,
characteristic matrix in place of stiffness matrix, and element resultants in place of element strains.

10 PART j I Introduction

www.konkur.in

Telegram: @uni_k



1.6 ONE-DIMENSIONAL PROBLEMS WITH LINEAR INTERPOLATION MODEL

The application of the six steps of the FEA is illustrated with the help of the following one-dimensional examples based on
linear interpolation models.

EXAMPLE 1.2
Find the stresses induced in the axially loaded stepped bar subjected to an axial load P ¼ 1 N at the right end as shown in

Fig. 1.6A. The cross-sectional areas of the two steps of the bar are 2 cm2 and 1 cm2 over the lengths l1 and l2, respectively, with

li ¼ l(i) ¼ 10 cm, i ¼ 1, 2. The Young’s modulus of the material is given by E ¼ 2 � 107 N/cm2.

Solution

Approach: Apply the six steps of the finite element method (using the minimization of the potential energy of the bar to derive the

finite element equations).

Step 1: Idealize bar.

The bar is idealized as an assemblage of two elements, one element for each step of the bar as shown in Fig. 1.6B. Each element is

assumed to have nodes at the ends so that the stepped bar will have a total of three nodes. Since the load is applied in the axial

direction, the axial displacements of the three nodes are considered as the nodal unknown dof of the system, and are denoted

as F1,F2, and F3 as shown in Fig. 1.6B.

Step 2: Develop interpolation or displacement model.

Since the two end displacements of element e, F
ðeÞ
1 and F

ðeÞ
2 ; are considered the dof, the axial displacement, f(x),within the

element e is assumed to vary linearly as (Fig. 1.6C):

fðxÞ ¼ aþ bx (E.1)

where a and b are constants that can be expressed in terms of the end (nodal) displacements of the element F
ðeÞ
1 and F

ðeÞ
2 ; as

follows. Since f(x) must be equal to F
ðeÞ
1 at x ¼ 0 and F

ðeÞ
2 ; at x ¼ l(e), we obtain

fðx ¼ 0Þ ¼ ahF
ðeÞ
1 ;f

�
x ¼ lðeÞ

� ¼ aþ blðeÞ ¼ F
ðeÞ
2 (E.2)

Eq. (E.2) yields the solution

a ¼ F
ðeÞ
1 ; b ¼

 
F

ðeÞ
2 �F

ðeÞ
1

lðeÞ

!
(E.3)

Thus the axial displacement of the element e, Eq. (E.1), can be expressed as

fðxÞ ¼ F
ðeÞ
1 þ

 
F

ðeÞ
2 �F

ðeÞ
1

lðeÞ

!
x (E.4)

Step 3: Derive element stiffness matrix and element load vector.1

The element stiffness matrices can be derived from the principle of minimum potential energy. For this, we write the potential

energy of the bar (I) under axial deformation

I ¼ strain energyework done by external forces

¼ pð1Þ þ pð2Þ �Wp

(E.5)

where p(e) represents the strain energy of element e, and Wp denotes the work done by external forces acting on the bar. For the

element shown in Fig. 1.6C, the strain energy p(e) can be written as

pðeÞ ¼
ZZZ

V ðeÞ
p
ðeÞ
0 dV (E.6)

where V(e) is the volume of element e and p
ðeÞ
0 is the strain energy density given by the area under the stressestrain curve shown in

Fig. 1.6D:

p
ðeÞ
0 ¼ 1

2
sðeÞ

ε
ðeÞ

Continued

1. The element load vector need not be found if loads applied to the stepped bar (structure or system) are in the form of concentrated forces applied
only at the nodes of the system.
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EXAMPLE 1.2 dcont’d

where s(e) is the stress in element e and ε
(e) is the strain in element e. Using dV ¼ A(e)dx and s(e) ¼ ε

(e)E(e), the strain energy of

element e, given by Eq. (E.6) can be expressed as

pðeÞ ¼ AðeÞ
Z lðeÞ

0

1

2
sðeÞ$εðeÞ$ dx ¼ AðeÞE ðeÞ

2

Z lðeÞ

0

ε
ðeÞ2 dx (E.7)

where A(e) is the cross-sectional area of element e, l(e) is the length of element e, s(e) is the stress in element e, ε(e) is the strain in

element e, and E(e) is the Young’s modulus of element e. From the expression of f(x), we can write

ε
ðeÞ ¼ vf

vx
¼ F

ðeÞ
2 �F

ðeÞ
1

lðeÞ

Area under the stress-strain diagram

Displacements and loads for element e

 Element degrees of freedom

Area = Strain energy density

σ (e)

σ

O ε (e)
ε

 Element characteristics

2
Φ2Φ1

2 3
Φ2 Φ31

Element 1 Element 2

Element “e ”

A(e), E (e)
Φ1

(e)

(e)

Φ1
Φ2

Φ
(e)

=φ (x )P1
(e)

P2
(e)

Φ2
(e)

Node 1 Node 2x

→
P

(e)
=

→
(e)

P1
P2

(e)

,

(e)

A(1), E (1) A(2), E (2)

2
31

P3

Φ3Φ2Φ1

x

(1) (2)

(A)

(B)

(C)

(D)

FIGURE 1.6 A stepped bar under axial load.
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EXAMPLE 1.2 dcont’d

and hence

pðeÞ ¼ AðeÞE ðeÞ

2

Z lðeÞ

0

(
F

ðeÞ2
2 þ F

ðeÞ2
1 � 2F

ðeÞ
1 F

ðeÞ
2

lðeÞ2

)
dx

¼ AðeÞE ðeÞ

2lðeÞ

�
F

ðeÞ2
1 þF

ðeÞ2
2 � 2FðeÞ

1 F
ðeÞ
2

	 (E.8)

This expression for p(e) can always be written in matrix form as

pðeÞ ¼ 1

2
F
!ðeÞT �

K ðeÞ�F!ðeÞ
(E.9)

where F
!ðeÞ ¼

(
F

ðeÞ
1

F
ðeÞ
2

)
is the vector of nodal displacements of element e

h



F1

F2

�
for e ¼ 1 and



F2

F3

�
for e ¼ 2; and

�
K ðeÞ� ¼ AðeÞE ðeÞ

lðeÞ

�
1 �1

�1 1


is called the stiffness matrix of element e. (E.10)2

Since there are only concentrated loads acting at the nodes of the bar (and no distributed load acts on the bar), the work done by

external forces can be expressed as

Wp ¼ F1P1 þF2P2 þ F3P3hF
!e T

P
!e (E.11)

where F ¼

8><>:
F1

F2

F3

9>=>; is the vector of nodal dof and P
!e ¼

8><>:
P1

P2

P3

9>=>; is the vector of nodal loads of the complete system. A tilde below

a symbol indicates that the boundary conditions have not been incorporated yet. In the present case, F1 ¼ 0 since node 1 is fixed

while the loads applied externally at the nodes 1, 2, and 3 in the directions of F1, F2, and F3, respectively, are P1 ¼ unknown

(denotes the reaction at the fixed node 1 where the displacement F1 is zero), P2 ¼ 0, and P3 ¼ 1 N.

If the bar as a whole is in equilibrium under the loads P
!e ¼

8><>:
P1

P2

P3

9>=>;; the principle of minimum potential energy gives

Continued

2. The element and system stiffness matrices in solid/structural mechanics are always symmetric because of Maxwell’s theorem of reciprocal dis-

placements, also known as the MaxwelleBetti reciprocity theorem [1.41]. Thus noting that F
!ðeÞ ¼

(
F

ðeÞ
1

F
ðeÞ
2

)
is a 2 � 1 matrix (or a two-component

column vector) and
�
KðeÞ� ¼

�
K11 K12

K12 K22


is a symmetric matrix of order 2 � 2, the right-hand side of Eq. (E.9) can be expanded as

1
2

�
F

ðeÞ
1 F

ðeÞ
2

�264K11 K12

K12 K22

375
8><>:

F
ðeÞ
1

F
ðeÞ
2

9>=>; ¼ 1
2

�
F

ðeÞ
1 F

ðeÞ
2

�8><>:
K11F

ðeÞ
1 þ K12F

ðeÞ
2

K12F
ðeÞ
1 þ K22F

ðeÞ
2

9>=>;
¼ 1

2

n
K11F

ðeÞ2
1 þ 2K12F

ðeÞ
1 F

ðeÞ
2 þ K22F

ðeÞ2
2

o
(a)

By comparing the coefficients of the terms involving F
ðeÞ2
1 ; F

ðeÞ
1 F

ðeÞ
2 , and F

ðeÞ2
2 in Eq. (a) with the corresponding terms on the right-hand side of Eq.

(E.8), we identify the elements of the matrix [K (e)] as

K11 ¼ AðeÞEðeÞ

lðeÞ
; K12 ¼ �AðeÞEðeÞ

lðeÞ
; and K22 ¼ AðeÞEðeÞ

lðeÞ
(b)
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EXAMPLE 1.2 dcont’d

vI

vFi

¼ 0; i ¼ 1; 2; 3 (E.12)

This equation can be rewritten as

vI

vFi

¼ v

vFi

 X2
e¼ 1

pðeÞ �Wp

!
¼ 0; i ¼ 1;2;3 (E.13)

where the summation sign indicates the addition of the strain energies (scalars) of the elements. In general, when Wp is composed

of work done by the externally applied distributed forces, Eq. (E.13) can be written asX2
e¼ 1

��
K ðeÞ�F!ðeÞ � P

!ðeÞ	 ¼ 0
!

(E.14)

where the summation sign indicates the assembly of vectors (not the addition of vectors) in which only the elements corresponding

to a particular dof in different vectors are added.

Step 4: Assemble element stiffness matrices and element load vectors, and derive system equations.

This step includes the assembly of element stiffness matrices [K (e)] and element load vectors P
!ðeÞ

to obtain the overall or global

equilibrium equations. Eq. (E.14) can be rewritten as �
Ke� F!e � P

!e ¼ 0
!

(E.15)

where
�
Ke� is the assembled or global stiffness matrix ¼ P2

e¼ 1

�
K ðeÞ�; and F ¼

8><>:
F1

F2

F3

9>=>; is the vector of global displacements. For

the data given, the element matrices would be

1 2

(1) (1)
1(1) 6

(1)
2

1 4
[ ] 10

1 4
A EK

l

Φ Φ

Φ−1 −4⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ Φ−1 −4⎣ ⎦ ⎣ ⎦

(E.16)

2 3

(2) (2)
2(2) 6

(2)
3

1 2
[ ] 10

1 2
A EK

l

Φ Φ

Φ−1 −2⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ Φ−1 −2⎣ ⎦ ⎣ ⎦

(E.17)

Since the displacements of the left and right nodes of the first element are F1 and F2 the rows and columns of the stiffness matrix

corresponding to these unknowns are identified as indicated in Eq. (E.16). Similarly, the rows and columns of the stiffness matrix of

the second element corresponding to its nodal unknowns F2 and F3 are also identified as indicated in Eq. (E.17).

The overall stiffness matrix of the bar can be obtained by assembling the two element stiffness matrices. Since there are three nodal

displacement unknowns (F1, F2,and F3), the global stiffness matrix,
�
Ke�; will be of order three. To obtain

�
Ke�; the elements of

[K(1)] and [K(2)] corresponding to the unknowns F1, F2, and F3 are added as shown below:

3

K

1 2 3

1
6

2

4 0
[ ] 10 4 + 2

0 2

Φ Φ Φ

Φ−4⎡ ⎤
⎢ ⎥ Φ= −4 −2⎢ ⎥
⎢ ⎥−2 Φ⎣ ⎦

6

2 0
2 10 3

0 1

−2⎡ ⎤
⎢ ⎥= × −2 −1⎢ ⎥
⎢ ⎥−1⎣ ⎦

∼
(E.18)

In the present case, external loads act only at the node points; as such, there is no need to assemble the element load vectors. The

overall or global load vector can be written as

P
!e ¼

8><>:
P1

P2

P3

9>=>; ¼

8><>:
P1

0

1

9>=>;
where P1 denotes the reaction at node 1 (considered to be unknown). Thus, the overall equilibrium equations (E.15) become

2� 106

264 2 �2 0

�2 3 �1

0 �1 1

375
8><>:

F1

F2

F3

9>=>; ¼

8><>:
P1

0

1

9>=>; (E.19)

Note that a systematic step-by-step finite element procedure has been used to derive Eq. (E.19). If a step-by-step procedure is not

followed, Eq. (E.19) can be derived in a much simpler way, in this example, as follows.
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EXAMPLE 1.2 dcont’d

The potential energy of the stepped bar, Eq. (E.5), can be expressed using Eqs. (E.9) and (E.11) as

I ¼ pð1Þ þ pð2Þ �Wp

¼ 1

2

Að1ÞE ð1Þ

lð1Þ
�
F2

1 þF2
2 � 2F1F2

�þ 1

2

Að2ÞE ð2Þ

lð2Þ
�
F2

2 þF2
3 � 2F2F3

�� P1F1 � P2F2 � P3F3

(E.20)

Eqs. (E.12) and (E.20) yield

vI

vF1

¼ Að1ÞE ð1Þ

lð1Þ
ðF1 �F2Þ � P1 ¼ 0 (E.21)

vI

vF2

¼ Að1ÞE ð1Þ

lð1Þ
ðF2 �F1Þ þ Að2ÞE ð2Þ

lð2Þ
ðF2 � F3Þ � P2 ¼ 0 (E.22)

vI

vF3

¼ Að2ÞE ð2Þ

lð2Þ
ðF3 �F2Þ � P3 ¼ 0 (E.23)

For the given data, Eqs. (E.21)e(E.23), in matrix form, are identical to Eq. (E.19).

Step 5: Solve for displacements after incorporating the boundary conditions.

If we try to solve Eq. (E.19) for the unknowns F1, F2, and F3, we will not be able to do it since the matrix
�
Ke�; given by Eq. (E.18), is

singular. This isbecausewehavenot incorporated theknowngeometricboundarycondition, namelyF1 ¼ 0.Wecan incorporate this by

settingF1 ¼ 0 or by deleting the row and column corresponding to F1 in Eq. (E.19). The final equilibrium equations can be written as

½K � F! ¼ P
!

or

2� 106

�
3 �1

�1 1



F2

F3

�
¼


0

1

�
(E.24)

The solution of Eq. (E.24) gives

F2 ¼ 0:25� 10�6 cm and F3 ¼ 0:75� 10�6 cm

Step 6: Derive element strains and stresses.

Once the displacements are computed, the strains in the elements can be found as

ε
ð1Þ ¼ vf

vx
for element 1 ¼ F

ð1Þ
2 �F

ð1Þ
1

lð1Þ
h

F2 � F1

lð1Þ
¼ 0:25� 10�7

and

ε
ð2Þ ¼ vf

vx
for element 2 ¼ F

ð2Þ
2 �F

ð2Þ
1

lð2Þ
h

F3 � F2

lð2Þ
¼ 0:50� 10�7

The stresses in the elements are given by

sð1Þ ¼ E ð1Þ
ε
ð1Þ ¼ �

2� 107
��
0:25� 10�7

� ¼ 0:5 N
�
cm2

and

sð2Þ ¼ E ð2Þ
ε
ð2Þ ¼ �

2� 107
��
0:50� 10�7

� ¼ 1:0 N
�
cm2

EXAMPLE 1.3
Find the distribution of temperature in the one-dimensional fin shown in Fig. 1.7A.

The differential equation governing the steady-state temperature distribution T(x) along a uniform fin is given by

kA
d2T

dx2 � hpðT � TNÞ ¼ 0

or
d2T

dx2 �
hp

kA
ðT � TNÞ ¼ 0

with the boundary condition T ðx ¼ 0Þ ¼ T0

9>>>>>>>=>>>>>>>;
(E.1)

Continued
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EXAMPLE 1.3 dcont’d

where h is the convection heat transfer coefficient, p is the perimeter, k is the thermal conductivity, A is the cross-sectional area,

TN is the surrounding temperature, and T0 is the temperature at the root of the fin [1.30]. The derivation of Eq. (E.1) is similar to

that of Eq. (1.4) except that convection term is also included in the derivation of Eq. (E.1) along with the assumption of

_q ¼ vT=vt ¼ 0: The problem stated in Eq. (E.1) is equivalent to [1.8].

Minimize I ¼ 1

2

Z L

x¼0

"�
dT

dx

�2

þ hp

kA

�
T 2 � 2TTN

�#
with the boundary condition T ðx ¼ 0Þ ¼ T0:

9>>>=>>>; (E.2)

Assume the following data: h ¼ 10 W/cm2 �C, k ¼ 70 W/cm �C, TN ¼ 40�C, T0 ¼ 140�C, and L ¼ 5 cm, and the cross-section of

fin is circular with a radius of 1 cm.

Note

The temperature distribution in the fin (i.e., the solution of the problem) can be found either by solving the governing

differential Eq. (E.1) using the given boundary condition, or by minimizing or extremizing the functional I (a function of

another function is called a functional) using the given boundary condition. The functional I is used in this example to illustrate

the method of deriving the element matrices and element load vectors using a variational principle. Although the functional I

has no physical meaning, it is similar to the potential energy functional used for stress analysis (in Example 1.2).

Solution

Approach: Apply the six steps of the finite element method (using the minimization of the functional of Eq. (E.2) to derive the finite

element equations).

Terminology: Since the present problem is a heat transfer problem, the terms used in the case of solid mechanics problems,

such as solid body, displacement, strain, stiffness matrix, load vector, and equilibrium equations, have to be replaced by terms

such as body, temperature, gradient of temperature, characteristic matrix, characteristic vector, and governing equations,

respectively.

Step 1: Idealize into a finite number of elements.

Let the fin be idealized into two finite elements as shown in Fig. 1.7B. If the temperatures of the nodes are taken as the unknowns,

there will be three nodal temperature unknowns, namely T1, T2, and T3, in the problem.

Step 2: Select the interpolation (temperature distribution) model.

In each element e (e ¼ 1, 2), the temperature (T) is assumed to vary linearly as

T ðxÞ ¼ a þ bx (E.3)

where a and b are constants. If the nodal temperatures T
ðeÞ
1 ðT at x ¼ 0Þ and T

ðeÞ
2

�
T at x ¼ lðeÞ

	
of element e are taken as un-

knowns, the constants a and b can be expressed as a ¼ T
ðeÞ
1 and b ¼

�
T
ðeÞ
2 � T

ðeÞ
1

	.
lðeÞ, where l(e) is the length of element e. Thus,

x

L

Surrounding temperature T∞

T0

T(x ) Area A, perimeter p
(A)

(B)

T1 T2 T3

Element 1 Element 2

(1) (2)

FIGURE 1.7 A one-dimensional fin.
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EXAMPLE 1.3 dcont’d

T ðxÞ ¼ T
ðeÞ
1 þ

�
T

ðeÞ
2 � T

ðeÞ
1

	 x

lðeÞ
(E.4)

Step 3: Identify element characteristic matrices and vectors.

The element characteristic matrices and vectors can be identified by expressing the functional I in matrix form. When the integral

in I is evaluated over the length of element e, we obtain

IðeÞ ¼ 1

2

Z lðeÞ

x¼0

"�
dT

dx

�2

þ hp

kA

�
T 2 � 2TNT

�#
dx (E.5)

Substitution of Eq. (E.4) into (E.5) leads to

IðeÞ ¼ 1

2

Z lðeÞ

x¼0

" 
T

ðeÞ
2 � T

ðeÞ
1

lðeÞ

!2

þ hp

kA

n
T ðeÞ
1 þ

�
T ðeÞ
2 � T ðeÞ

1

	 x

lðeÞ

o2

� 2hpTN

kA

n
T ðeÞ
1 þ

�
T ðeÞ
1 � T ðeÞ

l

	 x

lðeÞ

o#
dx (E.6)

Eq. (E.6) can be expressed, after evaluating the integral, in matrix notation as

IðeÞ ¼ 1

2
T
!ðeÞT �

K ðeÞ�T!ðeÞ � T
!ðeÞT

P
!ðeÞ

(E.7)

where T
!ðeÞ ¼

(
T
ðeÞ
1

T
ðeÞ
2

)
is the vector of nodal temperatures of element e ¼



T1

T2

�
for e ¼ 1 and



T2

T3

�
for e ¼ 2, [K (e)] is the

characteristic matrix of element e

¼ 1

lðeÞ

�
1 �1

�1 1


þ hplðeÞ

6kA

�
2 1

1 2


(E.8)

and P
!ðeÞ ¼

(
P
ðeÞ
1

P
ðeÞ
2

)
is the characteristic vector of element e

¼
8<:

P1

P2

9=;for e ¼ 1 and

8<:
P2

P3

9=;for e ¼ 2

¼ hpTNlðeÞ

2kA

8<:
1

1

9=;
(E.9)

Step 4: Assemble element matrices and vectors and derive governing equations.

As stated in Eq. (E.2), the nodal temperatures can be determined by minimizing the functional I. The conditions for the minimum of

I are given by

vI

vTi

¼

� P2
e¼ 1

IðeÞ
�

vTi

¼
X2
e¼ 1

vIðeÞ

vTi

¼ 0; i ¼ 1; 2; 3 (E.10)

where I has been replaced by the sum of elemental contributions, I(e). Eq. (E.10) can also be stated as

X2
e¼ 1

vIðeÞ

vT
!ðeÞ ¼

X2
e¼ 1

��
K ðeÞ�T!ðeÞ � P

!ðeÞ	 ¼ �
Ke� T!e � P

!e ¼ 0
!e (E.11)

where
�
Ke� ¼ P2

e¼ 1

�
K ðeÞ� is the assembled characteristic matrix, P

!e ¼ P2
e¼ 1

P
!ðeÞ

is the assembled characteristic vector, and Te is the

assembled or overall nodal temperature vector ¼

8><>:
T1

T2

T3

9>=>;. Eq. (E.11) gives the governing matrix equations as

�
Ke� T!e ¼ P

!e (E.12)

Continued
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EXAMPLE 1.3 dcont’d

From the given data we can obtain

(1)

1 2

1

2

1 2 11 10 2 2.5[ ]
1 1 22.5 6 70

0.6382
0.6382

K

T T

T
T

π
π

−1⎡ ⎤ ⎡ ⎤× ×
= +⎢ ⎥ ⎢ ⎥−1 × ×⎣ ⎦ ⎣ ⎦

−0.2809⎡ ⎤
= ⎢ ⎥−0.2809⎣ ⎦ (E.13)

2 3

2(2)

3

0.6382
[ ]

0.6382

T T

T
K

T

−0.2809⎡ ⎤
= ⎢ ⎥−0.2809⎣ ⎦

(E.14)

P
!ð1Þ ¼ 10� 2p� 40� 2:5

2� 70� p



1

1

�
¼ 14:29



1

1

�
T1

T2

(E.15)

P
!ð2Þ ¼ 14:29



1

1

�
T2

T3

(E.16)

where the nodal unknowns associated with each row and column of the element matrices and vectors are also indicated in Eqs.

(E.13)e(E.16). The overall characteristic matrix of the fin can be obtained by adding the elements of [K(1)] and [K(2)] corresponding

to the unknowns T1, T2, and T3:

1 2 3

1

2

3

0.6382 0
[ ] (0.6382 + 0.6382)

0 0.6382

T T T
T

K T
T

−0.2809⎡ ⎤
⎢ ⎥= −0.2809 −0.2809⎢ ⎥
⎢ ⎥−0.2809⎣ ⎦

∼
(E.17)

Similarly, the overall characteristic vector of the fin can be obtained as

P
!e ¼

8><>:
14:29

ð14:29þ 14:29Þ
14:29

9>=>;
T1

T2

T3

(E.18)

Thus, the governing finite element equation of the fin, Eq. (E.12), becomes

264 0:6382 �0:2809 0

�0:2809 1:2764 �0:2809

0 �0:2809 0:6382

375
8><>:

T1

T2

T3

9>=>; ¼

8><>:
14:29

28:58

14:29

9>=>; (E.19)

Step 5. Solve for nodal temperatures after incorporating boundary conditions.

Eq. (E.19) has to be solved after applying the boundary condition, namely, T (at node 1) ¼ T1 ¼ T0 ¼ 140�C. For this, the first

equation of (E.19) is replaced by T1 ¼ T0 ¼ 140 and the remaining two equations are written in scalar form as

�0:2809T1 þ1:2764T2 � 0:2809T3 ¼ 28:58

�0:2809T2 þ 0:6382T3 ¼ 14:29

or

1:2764T2 � 0:2809T3 ¼ 28:58þ 0:2809� 140 ¼ 67:906

�0:2809T2 þ 0:6382T3 ¼ 14:29

�
(E.20)

The solution of Eq. (E.20) gives the nodal temperatures as T2 ¼ 64.39�C and T3 ¼ 50.76�C.
Note

There is no need to use Step 6 in this example. Step 6 is required if information such as temperature gradient (similar to strains and

stresses in a stress analysis problem) in the fin is to be computed.
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EXAMPLE 1.4
Find the velocity distribution of an inviscid fluid flowing through the tube shown in Fig. 1.8A. The differential equation governing

the velocity distribution u(x) is given by Eq. (1.12) with the boundary condition u(x ¼ 0) ¼ u0. This problem is equivalent to

Minimize I ¼ 1

2

Z L

x¼0

rA

�
df

dx

�2

$ dx

with the boundary condition uðx ¼ 0Þ ¼ u0

9>>>=>>>; (E.1)

where f(x) is the potential function that gives the velocity of the fluid, u(x), as u(x) ¼ df(x)/dx. Assume the area of cross section of

the tube as A(x) ¼ A0,e
�(x/L).

Note

The variation of the potential function along the tube (i.e., the solution of the problem) can be found either by solving the

governing differential Eq. (1.12) using the given boundary condition, or by minimizing or extremizing the functional I using the

given boundary condition. The functional I is used in this example to illustrate the method of deriving the element matrices and

element load vectors using a variational principle. Although the functional I has no physical meaning, it is similar to the potential

energy functional used for stress analysis (in Example 1.2).

Solution

Approach: Apply the six steps of the finite element method (using the minimization of the functional of Eq. (E.1) to derive the finite

element equations).

Terminology: In this case the terminology of solid mechanics, such as solid body, displacement, stiffness matrix, load vector,

and equilibrium equations, has to be replaced by the terms continuum, potential function, characteristic matrix, characteristic

vector, and governing equations.

Step 1: Idealize into a finite number of elements.

Divide the continuum into two elements as shown in Fig. 1.8B. If the values of the potential function at the various nodes are taken

as the unknowns, there will be three quantities, namely F1, F2, and F3, to be determined in the problem.

Step 2: Select the interpolation (potential function) model.

The potential function, f(x), is assumed to vary linearly within an element e (e ¼ 1, 2) as (see Fig. 1.8C):

fðxÞ ¼ aþ bx (E.2)

Continued

Area A1

Area A2
Area A3

1 2 3

Φ2

Φ1

Φ3

Element 1
Element 2

(B)

φ (x = 0) = Φ1
(e)(C)

Area = A0
Area = A(x ) = A0e −(x /L)

x

L

(A)

u0

Node 2Node 1

O

Element e

x
x

φ (x)

(1)

(e)

(2)

φ (x =      ) = Φ2
(e)(e)

FIGURE 1.8 A one-dimensional tube of varying cross section.
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EXAMPLE 1.4 dcont’d

where the constants a and b can be evaluated using the nodal conditions fðx ¼ 0Þ ¼ F
ðeÞ
1 and f

�
x ¼ lðeÞ

� ¼ F
ðeÞ
2 to obtain

fðxÞ ¼ F
ðeÞ
1 þ

�
F

ðeÞ
2 �F

ðeÞ
1

	 x

lðeÞ
(E.3)

where l(e) is the length of element e.

Step 3: Derive element characteristic matrices.

The functional I corresponding to element e can be expressed as

IðeÞ ¼ 1

2

Z lðeÞ

x¼0

rA

�
df

dx

�2

dx ¼ 1

2

Z lðeÞ

x¼0

rA

 
F

ðeÞ
2 � F

ðeÞ
1

lðeÞ

!2

dx

¼ 1

2
F
!ðeÞT �

K ðeÞ�F!ðeÞ

(E.4)

where [K (e)] is the characteristic matrix of element e.

¼ rAðeÞ

lðeÞ

�
1 �1

�1 1


; (E.5)

A(e) is the cross-sectional area of element e (which can be taken as (A1 þ A2)/2 for e ¼ 1 and (A2 þ A3)/2 for e ¼ 2 for simplicity),

and F
!ðeÞ

is the vector of nodal unknowns of element e.

¼
(

F
!ðeÞ

1

F
!ðeÞ

2

)
¼


F1

F2

�
for e ¼ 1 and



F2

F3

�
for e ¼ 2:

Step 4: Assemble element matrices and derivation of system equations.

The overall equations can be written as26666666664

rAð1Þ

lð1Þ
�rAð1Þ

lð1Þ
0

�rAð1Þ

lð1Þ

�
rAð1Þ

lð1Þ
þ rAð2Þ

lð2Þ

�
�rAð2Þ

lð2Þ

0 �rAð2Þ

lð2Þ
rAð2Þ

lð2Þ

37777777775

8><>:
F1

F2

F3

9>=>; ¼

8><>:
Q1 ¼ �rA1u0

Q2 ¼ 0

Q3 ¼ rA3u3

9>=>; (E.6)

whereQi is the mass flow rate across section i (i ¼ 1, 2, 3) and is nonzero when fluid is either added to or subtracted from the tube

with Q1 ¼ �rA1u1 (negative since u1 is opposite to the outward normal to Section 1), Q2 ¼ 0, and Q3 ¼ rA3u3. Since u1 ¼ u0 is

given, Q1 is known, whereas Q3 is unknown.

Step 5: Solve system equations after incorporating boundary conditions.

In the third equation of (E.6), both F3 and Q3 are unknowns and thus the given system of equations cannot be solved. Hence, we

set F3 ¼ 0 as a reference value and try to find the values of F1 and F2 with respect to this value. The first two equations of (E.6) can

be expressed in scalar form as

rAð1Þ

lð1Þ
F1 � rAð1Þ

lð1Þ
F2 ¼ Q1 ¼ �rA1u0 (E.7)

and

�rAð1Þ

lð1Þ
F1 þ

�
rAð1Þ

lð1Þ
þ rAð2Þ

lð2Þ

�
F2 ¼ rAð2Þ

lð2Þ
F3 ¼ 0 (E.8)

By substituting Að1ÞxðA1 þ A2Þ
�
2 ¼ 0:8032A0, A

ð2ÞxðA2 þ A3Þ
�
2 ¼ 0:4872A0, and l(1) ¼ l(2) ¼ L/2, Eqs. (E.7) and (E.8) can be

written as

0:8032F1 � 0:8032F2 ¼ �u0L=2 (E.9)

and

�0:8032F1 þ 1:2904F2 ¼ 0 (E.10)
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EXAMPLE 1.4 dcont’d

The solution of Eqs. (E.9) and (E.10) is given by

F1 ¼ �1:650 u0L and F2 ¼ �1:027 u0L

Step 6: Computation of fluid velocities.

The velocities of the fluid in elements 1 and 2 can be found as

u in element 1 ¼ uð1Þ ¼ df

dx
ðelement 1Þ

¼ F2 � F1

lð1Þ
¼ 1:246u0

and

u in element 2 ¼ uð2Þ ¼ df

dx
ðelement 2Þ

¼ F3 � F2

lð2Þ
¼ 2:054u0

These velocities will be constant along the elements in view of the linear relationship assumed for f(x) within each element. The

velocity of the fluid at node 2 can be approximated as

u2 ¼ �
uð1Þ þ uð2Þ��2 ¼ 1:660u0.

The third equation of (E.6) can be written as

�rAð2Þ

lð2Þ
F2 þ rAð2Þ

lð2Þ
F3 ¼ Q3

or

rð0:4872A0Þ
ðL=2Þ ð�F2 þF3Þ ¼ Q3

or

Q3 ¼ rA0u0.

This shows that the mass flow rate is the same at nodes 1 and 3, which proves the principle of conservation of mass.

1.7 ONE-DIMENSIONAL PROBLEMS WITH A CUBIC INTERPOLATION MODEL

The application of the six steps of the FEA is illustrated with the help of a one-dimensional (beam) example based on a
cubic interpolation or displacement model.

A beam is a one-dimensional member that is subjected to forces applied in a transverse direction (perpendicular to the
length direction). For any type of end supports, the deflection of the beam will be a curve (not linear). Hence, both the
deflection and the rate of change of deflection in the length direction (slope or rotation) become important. As such, for a
beam element with two end nodes as shown in Fig. 1.9, both the transverse displacement and its derivative (or slope or

W 1
(e) W 3

(e)

W 2
(e)

W 4
(e)

Node 1
Node 2w (x)

x
x

O

=(e)

FIGURE 1.9 A beam element.
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rotation) are taken as the unknown dof at each node. Because there are a total of four unknown dof at the two nodes, a
displacement model for the deflection of the beam element is assumed to be a cubic polynomial (which has four unknown
constants). These four constants can be expressed in terms of the four nodal dof shown in Fig. 1.9 so that the displacement
model of the element can be expressed as (see Problem 1.42)

wðxÞ ¼ W ðeÞ
1 N1ðxÞ þW ðeÞ

2 N2ðxÞ þW ðeÞ
3 N3ðxÞ þW ðeÞ

4 N4ðxÞ

hW ðeÞ
1

1

l3
�
2x3 � 3lx2 þ l3

�þW ðeÞ
2

1

l2
�
x3 � 2lx2 þ l2x

�þW ðeÞ
3

1

l3
�
3lx2 � 2x3

�þW ðeÞ
4

1

l2
�
x3 � lx2

� (1.17)

where W ðeÞ
1 to W ðeÞ

4 denote the displacements at the ends of the element e.
The stiffness matrix of any finite element (in structural analysis) can be identified by expressing the strain energy of the

element in matrix form. The strain energy of a beam element in bending (p(e)) can be expressed in matrix form [1.32] as

pðeÞ ¼ 1
2

Z lðeÞ

0
EðeÞIðeÞ

�
v2w

vx2

�2

dx ¼ 1
2
W
!ðeÞT �

KðeÞ�W!ðeÞ
(1.18)

where E(e) is the Young’s modulus, I(e) is the area moment of inertia of the cross section, l(e) is the length, and W
!ðeÞ

is the
vector of nodal degrees of the beam element e:

W
!ðeÞ ¼

8>>>><>>>>:
W ðeÞ

1

W ðeÞ
2

W ðeÞ
3

W ðeÞ
4

9>>>>=>>>>;
By substituting Eq. (1.17) into Eq. (1.18), the stiffness matrix of the beam element can be derived as

2 2

3

2 2

( ) ( ) ( ) ( )
1 2 3 4

( ) ( ) ( )
1
( )( ) ( ) ( ) ( )( ) ( )

( ) 2
( )( ) ( )( )

3
( )( ) ( ) ( ) ( )

4

6 3 3

3 22
6

3 2

e e e e

e e e

ee e e ee e
e

ee ee

ee e e e

W W W W

l l W
Wl l l lE IK
Wl ll
Wl l l l

⎡ ⎤−6
⎢ ⎥

−3⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥−6 −3 −3⎢ ⎥
⎢ ⎥−3⎣ ⎦

(1.19)

The use of the displacement model, Eq. (1.17), and the stiffness matrix, Eq. (1.19), in the deflection and stress analysis
of a beam is illustrated through the following example.

EXAMPLE 1.5
A beam of uniform rectangular cross section with width 1 cm and depth 2 cm and length 60 cm is subjected to a vertical

concentrated load of 1000 N as shown in Fig. 1.10A. If the beam is fixed at both the ends, find the stresses in the beam using a two-

element idealization. Assume the Young’s modulus of the beam as E ¼ 107 N/cm2.

Solution

Approach: Apply the six steps of the finite element method. For the stress analysis, use the stressestrain and strainedisplacement

relations of a beam.

Step 1: Idealize using finite elements.

By assuming the two fixed ends of the beam as the end nodes and introducing an additional node at the point of application of the

load, the beam can be replaced by a two-element idealization as shown in Fig. 1.10A and B. The global dof of the beam are

indicated in Fig. 1.10A so that the vector of displacement dof of the system (beam) is given by

W
�!e ¼

8>>>>>>>><>>>>>>>>:

W1

W2

W3

W4

W5

W6

9>>>>>>>>=>>>>>>>>;
(E.1)
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EXAMPLE 1.5 dcont’d

The element nodal dof can be identified from Fig. 1.10B as

W
�!ð1Þ ¼

8>>>><>>>>:
W

ð1Þ
1

W ð1Þ
2

W
ð1Þ
3

W
ð1Þ
4

9>>>>=>>>>; ¼

8>>><>>>:
W1

W2

W3

W4

9>>>=>>>;; W
�!ð2Þ ¼

8>>>><>>>>:
W

ð2Þ
1

W ð2Þ
2

W
ð2Þ
3

W
ð2Þ
4

9>>>>=>>>>; ¼

8>>><>>>:
W3

W4

W5

W6

9>>>=>>>; (E.2)

Step 2: Select interpolation or displacement model.

In each of the beam elements, a cubic displacement model is assumed as shown in Eq. (1.17).

Step 3: Derive element stiffness matrix.

The element stiffness matrix given by Eq. (1.19) can be derived by expressing the strain energy of the element in matrix form. Using

E (1) ¼ E (2) ¼ 107 N/cm2, I (1) ¼ I (2) ¼ (1) (23)/12 ¼ 2/3 cm4, l (1) ¼ 20 cm, and l (2) ¼ 40 cm in Eq. (1.19), we obtain

1 2 3 4

1

(1) 4 2

3

4

1 10 10
400 200

10[ ] 10 3 3
1

200 400
10

3 3

W W W W

W

WK
W

W

−1⎡ ⎤
⎢ ⎥
⎢ ⎥−10= ⎢ ⎥
⎢ ⎥−1 −10 −10
⎢ ⎥
⎢ ⎥−10⎢ ⎥⎣ ⎦

(E.3)

3 4 5 6

3

4(2) 4

5

6

1 5 5
8 2 8 2
5 200 100

[ ] 10 2 3 2 3
1

8 2 8 2
5 100 200
2 3 2 3

W W W W

W

W
K

W

W

−1⎡ ⎤
⎢ ⎥
⎢ ⎥

−5⎢ ⎥
= ⎢ ⎥

⎢ ⎥−1 −5 −5⎢ ⎥
⎢ ⎥
⎢ ⎥−5
⎢ ⎥
⎣ ⎦

(E.4)

Note that the nodal dof associated with the various rows and columns of the matrices [K (e)] are also indicated in Eqs. (1.19), (E.3),

and (E.4).

Continued

 Beam subjected to load
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FIGURE 1.10 Finite element idealization of a beam subjected to load.
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EXAMPLE 1.5 dcont’d

Step 4: Assemble element stiffness matrices and derive system equations.

The assembled stiffness matrix of the beam can be obtained as

1 2 3 4 5 6

1

2

3

4

4

5

6

1 10 10
400 200

10
3 3

1 5 1 5
1

8 2 8 2
[ ] 10 200 5 400 200 5 100

10
3 2 3 3 2 3

1 5 1 5
8 2 8 2

5 100 5 200
2 3 2 3

W W W W W W

W

W

W

K W

W

W

−1⎡ ⎤
⎢ ⎥
⎢ ⎥−10
⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛ ⎞⎢ ⎥−1 −10 + −10 + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥
⎢ ⎥= ⎛ ⎞ ⎛ ⎞⎢ ⎥−10 + + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥

−⎢ ⎥

∼
(E.5)

The equilibrium equations of the system can be expressed as�
Ke�W�!e ¼ P

!e (E.6)

where
�
Ke� is given by Eq. (E.5), the system nodal displacement vector by Eq. (E.1), and the system nodal load vector by

P
!e ¼

8>>>>>>>><>>>>>>>>:

P1

P2

P3

P4

P5

P6

9>>>>>>>>=>>>>>>>>;
(E.7)

where a tilde below a symbol indicates that the boundary conditions have not been incorporated yet. In Eq. (E.7), the loads P1, P2,

P5, and P6 denote the reactions at the fixed ends of the beam and P3 ¼ �1000 ¼ external load applied along the dof W3 and

P4 ¼ 0 ¼ external moment applied along the dof W4.

Step 5: Solve for displacements.

Noting that nodes 1 and 3 are fixed, we have W1 ¼W2 ¼W5 ¼W6 ¼ 0 and hence by deleting the rows and columns corre-

sponding to these dof in Eq. (E.5), we obtain the final stiffness matrix of the beam as

3 4

3

4

4

9 15
8 2[ ] 10
15

200
2

W W

W

K
W

⎡ ⎤−⎢ ⎥
= ⎢ ⎥

⎢ ⎥−⎢ ⎥⎣ ⎦

(E.8)

Since the externally applied vertical load at node 2 (in the direction of W3) is �1000 N and the rotational load (bending moment)

at node 2 (in the direction of W4) is 0, the load vector of the beam corresponding to the dof W3 and W4 can be expressed as

P
! ¼



P3

P4

�
¼

�1000

0

�
(E.9)

Thus, the equilibrium equations of the beam are given by

½K �W�! ¼ P
!

or

104

2664
9

8
�15

2

�15

2
200

3775
W3

W4

�
¼

�1000

0

�
(E.10)
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EXAMPLE 1.5 dcont’d

The solution of Eq. (E.10) gives

W3 ¼ �0:1185 cm; W4 ¼ �0:0044 rad (E.11)

Step 6: Compute stresses.

The bending stress, s
ðeÞ
xx ðx; yÞ, induced at a point (fiber) located at a distance x from node 1 (left-side node) in a horizontal direction

and y from the neutral axis in a vertical direction in element e is given by (see Section 9.3):

sðeÞ
xx ¼ sðeÞ

xx ðx; yÞ ¼ ½E �εðeÞxx ðx; yÞh½E �½B�W�!ðeÞ
h� yE ðeÞd

2w ðeÞðxÞ
dx2

(E.12)

where w(e) (x) is given by Eq. (1.17) so that

d2w ðeÞðxÞ
dx2

¼ 1

lðeÞ
3

�
12x � 6lðeÞ

�
W

ðeÞ
1 þ 1

lðeÞ
2

�
6x � 4lðeÞ

�
W

ðeÞ
2 þ 1

lðeÞ
3

�
6lðeÞ � 12x

�
W

ðeÞ
3 þ 1

lðeÞ
2

�
6x � 2lðeÞ

�
W

ðeÞ
4 (E.13)

Thus, the stresses in the elements can be determined as follows:

Element 1: Using E ð1Þ ¼ 107; lð1Þ ¼ 20; W
ð1Þ
1 ¼ W1 ¼ 0; W

ð1Þ
2 ¼ W2 ¼ 0; W

ð1Þ
3 ¼ W3 ¼ �0:11851852; and W

ð1Þ
4 ¼

W4 ¼ �0:00444444; Eq. (E.12) gives

sð1Þ
xx ðx; yÞ ¼ 1777:7778ð10� xÞy þ 222:2222ð3x � 20Þy (E.14)

The stress induced in the top fibers of element 1 is given by (with y ¼ þ1 cm)

sð1Þ
xx ðxÞ ¼ 1777:7778ð10� xÞ � 222:2222ð20� 2xÞ (E.15)

For instance, the maximum stresses induced at x ¼ 0 (fixed end) and x ¼ 20 cm (point of load application) will be

sð1Þ
xx ð0Þ ¼ 13;333:334 N

�
cm2 and sð1Þ

xx ð20Þ ¼ �8; 888:890 N
�
cm2

Element 2: Using

E ð2Þ ¼ 107; lð2Þ ¼ 40;W
ð2Þ
1 ¼ W3 ¼ �0:11851852;W

ð2Þ
2 ¼ W4 ¼ �0:00444444;W

ð2Þ
3 ¼ W5 ¼ 0;

and

W
ð2Þ
4 ¼ W6 ¼ 0; (E.12)

gives

sð2Þ
xx ðx; yÞ ¼ 222:2222ðx � 20Þy þ 55:5550ð3x � 80Þy (E.16)

The stress induced in the top fibers of element 2 is given by (with y ¼ þ1 cm)

sð2Þ
xx ðx; yÞ ¼ 222:2222ðx � 20Þ þ 55:5550ð3x � 80Þ (E.17)

For instance, the maximum stresses induced at x ¼ 0 (point of load application) and x ¼ 40 cm (fixed end) will be

sð2Þ
xx ð0Þ ¼ �8;888:844 N

�
cm2 and sð2Þ

xx ð40Þ ¼ 6;666:644 N
�
cm2

1.8 DERIVATION OF FINITE ELEMENT EQUATIONS USING A DIRECT APPROACH

The element stiffness (or characteristic) matrices and load (characteristic) vectors and the finite element equations can be
derived by using a direct approach. In this method, direct physical reasoning relevant to the problem (such as consideration
of equilibrium of the system) is used to establish the element properties (characteristic matrices and vectors) in terms of
pertinent variables. The direct approach is applicable only to problems involving simple types of elements; hence most
practical (complex) problems cannot be solved using this approach. However, a study of direct methods enhances our
understanding of the physical interpretation of the finite element method. The direct approach is presented in this section by
considering simple problems from the areas of elastic systems, fluid flow, heat transfer, and electrical circuits.
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1.8.1 Bar Element Under Axial Load

Consider a stepped bar as shown in Fig. 1.11A. The different steps are assumed to have different lengths, areas of cross
section, and Young’s moduli. The way to discretize this system into finite elements is immediately obvious. If we define
each step as an element, the system consists of three elements and four nodes (Fig. 1.11B).

The force-displacement equations of a step constitute the required element equations. To derive these equations for a
typical element e, we isolate the element as shown in Fig. 1.11C. In this figure, a force (P) and a displacement (u) are
defined at each of the two nodes in the positive direction of the x axis. The field variable f is the deflection u. The element
equations can be expressed in matrix form as �

KðeÞ� u! ¼ P
!

(1.20)

or �
k11 k12
k21 k22



u1
u2

�
¼


P1

P2

�
(1.21)

where [K(e] is called the stiffness or characteristic matrix, u! is the vector of nodal displacements, and P
!

is the vector of
nodal forces of the element. We shall derive the element stiffness matrix from the basic definition of the stiffness coeffi-
cient, and for this no assumed interpolation polynomials are needed. In structural mechanics [1.33], the stiffness influence
coefficient kij is defined as the force needed at node i (in the direction of ui) to produce a unit displacement at node j
(uj ¼ 1) while all other nodes are restrained. This definition can be used to generate the matrix [K (e)]. For example,
when we apply a unit displacement to node 1 and restrain node 2 as shown in Fig. 1.11D, we induce a force (k11) equal
to3 k11 ¼ (AeEe/le) at node 1 and a force (k21) equal to �(AeEe/le) at node 2. Similarly, we can obtain the values of k22 and

 Physical system

 One element of the system

 Finding k11 and k21

u1= 1 u2= 0

Force = k11

Node 1 Node 2

Force = k21= −k11

Reaction = k11

 Finite element discretization

Node 1 Node 2 Node 3 Node 4

Node 1P1, u1 P2, u2Node 2

Element 1
(   , A1, E1)1

Element 2
(   , A2, E2)2

Element 3
(   , A3, E3)3

Element e
(   , Ae, Ee)e

E1, A1 E2, A2 E3, A3
P0x

1 2 3

(A)

(B)

(D)

(C)

FIGURE 1.11 A stepped bar under axial load.

3. Force ¼ stress � area of cross section ¼ strain � Young’s modulus � area of cross section ¼ (change in length/original length) � Young’s mod-
ulus � area of cross section ¼ (1/le)$Ee$Ae ¼ (AeEe/le).
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k12 as (AeEe/le) and �(AeEe/le), respectively, by giving a unit displacement to node 2 and restraining node 1. Thus, the
characteristic (stiffness) matrix of the element is given by�

KðeÞ� ¼
�
k11 k12
k21 k22


¼
� ðAeEe=leÞ �ðAeEe=leÞ
�ðAeEe=leÞ ðAeEe=leÞ


¼ AeEe

le

�
1 �1

�1 1


(1.22)

Notes

1. Eq. (1.20) denotes the element equations regardless of the type of problem, the complexity of the element, or the way in which

the element, characteristic matrix or [K (e)], is derived.

2. The stiffness matrix [K (e)] obeys the MaxwelleBetti reciprocal theorem [1.33], which states that all stiffness matrices of linear

structures are symmetric.

1.8.2 Spring Element

Consider a system of springs connected in series as shown in Fig. 1.12A. The analysis of the system (to find the nodal
displacements under a prescribed set of loads) can be conducted using the finite element method. For this, the equilibrium
relations of a typical spring element are to be derived first. Let the stiffnesses of the springs be denoted k1, k2,., kn. Let Fi

and Fj be the forces applied at nodes i and j, and ui and uj be the displacements of nodes i and j, respectively (Fig. 1.12B).
The relations between the nodal forces and nodal displacements of a typical spring element e can be derived using the
relation:

Force ¼ Spring stiffness� Net deformation of the spring

Thus, the forces at nodes i and j can be expressed as

Fi ¼ keðui � ujÞ (1.23)

(where ui is assumed to be larger than uj so that the compressive force Fi leads to a decrease in the length of the spring), and

Fj ¼ keðuj � uiÞ (1.24)

(where uj is assumed to be larger than ui so that the tensile force Fj leads to an increase in the length of the spring). Eqs.
(1.23) and (1.24) can be expressed in matrix form as

ke

�
1 �1

�1 1



ui
uj

�
¼


Fi

Fj

�
(1.25)

From Eq. (1.25), the characteristic (stiffness) matrix of the element can be identified as

( ) 1 −1
[ ]

1
e

e

i
K k

j
i j

⎡ ⎤
= ⎢ ⎥−1⎣ ⎦ (1.26)

u1

F1 k1

1

u2

F2 k2

ui

 Springs connected in series

Fi ke

uj

Fj

un

Fn kn

un+1

Fn+1

2 3 i j n n +1e = 1 e = 2 e = ne

ui

ke

Fi Fj

Spring element e

i j

uj

(A)

(B)

FIGURE 1.12 A system of n springs.
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where the dof numbers corresponding to the rows and columns of the stiffness matrix
�
KðeÞ� are also indicated. Eq. (1.25)

can be expressed as �
KðeÞ� u! ¼ F

!
(1.27)

where u! and F
!

denote the vectors of nodal displacements and nodal forces, respectively.

1.8.3 Line Element for Heat Flow

Consider a composite (layered) wall through which heat flows in only the x direction (Fig. 1.13A). The left face is assumed
to be at a uniform temperature higher than that of the right face. Each layer is assumed to be a nonhomogeneous material
whose thermal conductivity is a known function of x. Since heat flows only in the x direction, the problem can be treated as
one-dimensional, with each layer considered a finite element. The nodes for any element will be the bounding planes of the
layer. Thus, there are four elements and five nodes in the system. The field variable f is temperature T in this problem.
Thus, the nodal unknowns denote the temperatures that are uniform over the bounding planes.

We can derive the element equations by considering the basic relation between the heat flow and the temperature
gradient without using any interpolation polynomials. The quantity of heat crossing a unit area per unit time in the x
direction (q) is given by Eq. (1.1) as

q ¼ �kðxÞ$dT
dx

(1.28)

where k(x) is the thermal conductivity of the material and (dT/dx) is the temperature gradient.
Eq. (1.28) can be integrated over the thickness of any element to obtain a relation between the nodal heat fluxes and the

nodal temperatures. The integration can be avoided if we assume the thermal conductivity of a typical element e to be a
constant as kðxÞ ¼ k0e. The temperature gradient at node 1 can be written as (dT/dx) (at node 1) ¼ (T2 � T1)/
(x2 � x1) ¼ (T2 � T1)/te and the temperature gradient at node 2 as (dT/dx) (at node 2) ¼ e(dT/dx) (at node 1) ¼
e(T2 � T1)/te. Thus, the heat fluxes entering nodes 1 and 2 can be written as (see Fig. 1.13B)

F1 ¼ qðat node 1Þ ¼ �k0eðT2 � T1Þ
�
te

F2 ¼ qðat node 2Þ ¼ �k0eðT2 � T1Þ
�
te

)
(1.29)

By defining ke ¼ k'e

.
te Eq. (1.29) can be rewritten as

F1 ¼ �keðT2 � T1Þ
F2 ¼ �keðT1 � T2Þ

�
(1.30)

Eq. (1.30) can be expressed in matrix notation as �
KðeÞ�T! ¼ F

!
(1.31)

tet1 t4t2 t3

k1 k2 k3
k4

x x

TlowThigh

x1 x2

ke(x)

1 2 3 4 5 x

(A) (B)

FIGURE 1.13 Heat flow through a composite (layered) wall.
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where

�
KðeÞ� ¼

"
ke �ke

�ke ke

#
¼ element conductivityðcharacteristicÞmatrix

T
! ¼

(
T1

T2

)
¼ vector of nodal temperatures

and

F
! ¼



F1

F2

�
¼ vector of nodal heat fluxes

Note that Eq. (1.31) has the same form as Eq. (1.20).

1.8.4 Pipe Element (Fluid Flow)

Consider a network of pipes for fluid flow as shown in Fig. 1.14A. Usually, there is a source such as a pump at some point
in the network and when the inflow rate of the fluid is known, along with the fluid pressures at inlet and outlet(s), the
problem involves the determination of the fluid flow rates through the various segments of the pipe network. The finite
element method can be used for this purpose. For this, first we discretize the network into several finite elements, each
element representing the flow path between any two connected nodes or junctions. Thus, the network shown in Fig. 1.14A
has seven nodes and seven finite elements. In this case, the pressure losseflow rate relations constitute the element
equations and can be derived from the basic principles of fluid mechanics without any need for interpolation models.

To develop a relationship between the fluid flow rates and fluid pressures at the nodes of a typical pipe element, we start
from the fluid flow rate Q (volume per unit time) in a pipe that is proportional to the pressure gradient, dp

dx [1.34],

Q ¼ �p d 4

128m
dp
dx

(1.32)

where the pressure gradient at node i (Fig. 1.14B) can be expressed as

dp
dx

����
i

¼ pj � pi
lðeÞ

(1.33)

where pi and pj denote the fluid pressures at nodes i and j, respectively, and l(e) is the length of the pipe element. Note that
dp
dx needs to be negative in order for the fluid to flow from node i to node j. Note that Eq. (1.32) assumes that the flow is
laminar, which implies that the Reynolds number, Re, is less than 2000:

Re ¼ rnd

m
< 2000 (1.34)

where r is the density, v is the velocity, m is the viscosity of the fluid, and d is the diameter of the pipe. The fluid inflow rate
at node i can be expressed using Eqs. (1.32) and (1.33) as

Qi ¼ � p d4

128mlðeÞ
ðpi � pjÞ (1.35)

Similarly, the fluid outflow rate at node j can be expressed as

Qj ¼ � p d4

128mlðeÞ
ð�pi þ pjÞ (1.36)

Eqs. (1.35) and (1.36) can be used to express the fluid flow rateepressure relationship for pipe element e as

Qi

Qj

�
¼ pdðeÞ

4

128mðeÞlðeÞ

�
1 �1

�1 1



pi
pj

�
(1.37)

Eq. (1.37) can be written as
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�
KðeÞ� p! ¼ Q

!
(1.38)

where p! is the vector of nodal pressures, Q
!

is the vector of nodal flows, and [K (e)] is the element characteristic (fluidity)
matrix given by

4(e)
( )

( ) ( )

1
1128

e
e e

idK
jl

i j

π
μ

−1⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ −1⎣ ⎦ (1.39)

where the dof numbers corresponding to the rows and columns of the characteristic matrix [K (e)] are also indicated.

1.8.5 Electrical Resistor Element (Line Element for Current Flow)

Consider an electrical circuit, consisting of several resistors and a voltage source (battery) as shown in Fig. 1.15A. The
analysis of the circuit can be conducted using the finite element method similar to that used for the analysis of networks of
springs and pipes. For this, the governing equations (Ohm’s law) for a typical resistor element e shown in Fig. 1.15B are to
be developed. Using the relation

Network of pipes for fluid flow

e = 2

e = 1

1

2

3

4

5 6

7

e = 3

e = 5

e = 4

e = 6

e = 7

Pipe element e

Fluid
pressure pi

Fluid
pressure pj

Diameter
de

Fluid
inflow

Fluid
outflow

Qi Qj

i j

(A)

(B)

Length, e

FIGURE 1.14 A network of pipes.
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I ¼ V

R
(1.40)

where I is the current (amperes), R is the resistance of the resistor (ohms), and V is the voltage drop (volts), we obtain, at
node i,

Ii ¼ 1
RðeÞ ðVi � VjÞ (1.41)

where Vi � Vj denotes the voltage drop across the resistor (difference in the voltage between the nodes i and j) and R(e) is
the resistance of element e. Similarly, Eq. (1.40) can be expressed for node j as

Ij ¼ 1
RðeÞ ðVj � ViÞ (1.42)

Thus, the currentevoltage relationship of element e can be obtained from Eqs. (1.41) and (1.42) as

I
! ¼ �

KðeÞ�V! or



Ii
Ij

�
¼ 1

RðeÞ

�
1 �1

�1 1



Vi

Vj

�
(1.43)

Equation (1.43) shows that the element characteristic matrix is given by

( )
( )

11
1

e
e

i
K

iR
i j

−1⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ −1⎣ ⎦ (1.44)

where the dof numbers corresponding to the rows and columns of the characteristic matrix [K (e)] are also indicated.

EXAMPLE 1.6
Five springs, having stiffnesses k1 ¼ 105 N/m, k2 ¼ 2 � 105 N/m, k3 ¼ 3 � 105 N/m, k4 ¼ 4 � 105 N/m, and k5 ¼ 5 � 105 N/m are

connected as a parallel-series system, which is subjected to a load P ¼ 1000 N at node 4 as shown in Fig. 1.16. Determine the

displacements of nodes 2, 3, and 4 using the finite element method. State the assumptions made in your solution.

Solution

Assumption: The vertical bars with nodes 2, 3, and 4 are rigid and massless and move horizontally.

Using a spring finite element for each of the five springs, the element stiffness matrices can be obtained as follows:

1 2

1 1 1(1)

1 1 2

U U
k k U

K
k k U

−⎡ ⎤
⎡ ⎤ = ⎢ ⎥⎣ ⎦ −⎣ ⎦

(corresponding degrees of freedom: U1  and U2 )

 1 2

2 2 1(2)

2 2 2

U U
k k U

K
k k U

−⎡ ⎤
⎡ ⎤ = ⎢ ⎥⎣ ⎦ −⎣ ⎦

(corresponding degrees of freedom: U1 and U2)

Continued

Current
inflow

Current
outflow

1

3

4

2

1
(I1, V1)

2
(I2, V2)

1

2

65

7

4
9

5

6

8

73

10

Re

(A) (B)

FIGURE 1.15 An electrical network.
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EXAMPLE 1.6 dcont’d

2 3

3 3 2(3)

3 3 3

U U
k k U

K
k k U

−⎡ ⎤
⎡ ⎤ = ⎢ ⎥⎣ ⎦ −⎣ ⎦

(corresponding degrees of freedom: U2 and U3)

3 4

4 4 3(4)

4 4 4

U U
k k U

K
k k U

−⎡ ⎤
⎡ ⎤ = ⎢ ⎥⎣ ⎦ −⎣ ⎦

(corresponding degrees of freedom: U3  and U4 )

3 4

5 5 3(5)

5 5 4

U U
k k U

K
k k U

−⎡ ⎤
⎡ ⎤ = ⎢ ⎥⎣ ⎦ −⎣ ⎦

(corresponding degrees of freedom: U3  and U4 )

The assembled stiffness matrix of the system, including all the dof, can be determined as

[ ]

( )
( )

( )
( )

1 2 3 4

1 2 1 2 1

1 2 1 2 3 3 2

3 3 4 5 4 5 3

4 5 4 5 4

0 0
0

0
0 0

U U U U

k k k k U
k k k k k k U

K
k k k k k k U

k k k k U

+ − +⎡ ⎤
⎢ ⎥− + + + −⎢ ⎥=
⎢ ⎥− + + − +
⎢ ⎥

− + +⎢ ⎥⎣ ⎦

(E.1)

where the dof corresponding to the different rows and columns are also indicated. The nodal load vector and the vector of

displacement dof of the system, considering all the dof, can be expressed as

P
! ¼

8>>><>>>:
P1

0

0

P

9>>>=>>>;;U
! ¼

8>>><>>>:
U1

U2

U3

U4

9>>>=>>>; (E.2)

where P1 denotes the reaction (considered as unknown) at node 1 with zero displacement. The equilibrium equations of the

system, before applying the boundary conditions, can be written as�
Ke�U!e ¼ P

!e (E.3)

Using the given data, k1 ¼ 1� 105 N=m; k2 ¼ 2� 105 N=m; k3 ¼ 3� 105 N=m; k4 ¼ 4� 105 N=m; k5 ¼ 5� 105N=m,

and P ¼ 1000 N, Eq. (E.3) can be expressed as

105

26664
3 �3 0 0

�3 6 �3 0

0 �3 12 �9

0 0 �9 9

37775
8>>><>>>:

U1

U2

U3

U4

9>>>=>>>; ¼

8>>><>>>:
P1

0

0

1000

9>>>=>>>; (E.4)

Node 1

Node 1

Node 2 Node 3 Node 4

U2 U3 U4

P

k1

k2

k3

k4

k5

FIGURE 1.16 Springs in combination.
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EXAMPLE 1.6 dcont’d

After applying the known boundary condition (U1 ¼ 0), by deleting the row and column corresponding to U1 in Eq. (E.4), we

obtain the final system equations as

105

264 6 �3 0

�3 12 �9

0 �9 9

375
8><>:

U2

U3

U4

9>=>; ¼

8><>:
0

0

1000

9>=>; (E.5)

The solution of Eq. (E.5) gives the desired displacements:8><>:
U2

U3

U4

9>=>; ¼

8><>:
3:33

6:67

7:78

9>=>;� 10�3m (E.6)

Note

The deletion of row and column corresponding to U1in the matrix Eq. (E.4) is possible because the value of U1is specified as

zero. When a nonzero value is specified for a nodal value, a different procedure is to be used for incorporating the condition (as

indicated in the following examples).

EXAMPLE 1.7
Consider a network of four pipes with five nodes as shown in Fig. 1.17. A fluid of viscosity m ¼ 2.0 � 10�6 lb-sec/in2 and density

r ¼ 2.2 slug/ft3 flows through the network. If the pressures at the four exterior nodes are given by

p1 ¼ 30 psi, p3 ¼ 22 psi, p4 ¼ 20 psi, and p5 ¼ 25 psi, determine the flow rates through the various pipe segments.

Approach: Use the finite element approach, Eq. (1.38).

Solution

The element characteristic matrix of a pipe element is given by Eq. (1.39):

�
K ðeÞ� ¼ p d4

e

128me le

�
1 �1

�1 1


(E.1)

where

c1 ¼ p d4
1

128m1l1
¼ pð3Þ4

128ð2:0x10�6Þð50;000Þ ¼ 19:88 in5=lb� sec for e ¼ 1

Continued

1 2

4

5

3

p1= 30 psi

p5= 25 psi

p4= 20 psi

p3= 22 psi

e = 1

e = 4

e = 3

e = 2
d1= 3 in,
   = 50,000 in1

d2= 2.5 in,
   = 60,000 in2

d4= 1.5 in,
   = 40,000 in4

d3= 2 in,
   = 70,000 in3

FIGURE 1.17 A network of four pipes.
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EXAMPLE 1.7 dcont’d

c2 ¼ p d4
2

128m2l2
¼ pð2:5Þ4

128ð2:0x10�6Þð60; 000Þ ¼ 7:99 in5=lb� sec for e ¼ 2

c3 ¼ p d4
3

128m3l3
¼ pð2:0Þ4

128ð2:0x10�6Þð70;000Þ ¼ 2:803 in5=lb� sec for e ¼ 3

c4 ¼ p d4
4

128m4l4
¼ pð1:5Þ4

128ð2:0x10�6Þð40;000Þ ¼ 1:553 in5=lb� sec for e ¼ 4

Thus, the element characteristic matrices are given by

(1) (2)

1 2 2 3

1 1 1 2
[ ] 19.88 , [ ] 7.99

1 2 1 3
K K

−1 −1⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−1 −1⎣ ⎦ ⎣ ⎦

(3) (4)

2 4 2 5

1 2 1 2
[ ] 2.803 , [ ] 1.553

1 4 1 5
K K

−1 −1⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−1 −1⎣ ⎦ ⎣ ⎦

where the numbers identified with the columns and rows of the element characteristic matrices denote the numbers corresponding

to nodal unknowns (pressures). The system or assembled characteristic matrix can be obtained as

19.88 0 0 0 1

(19.88 + 7.99 +
2.803 + 1.553) 2

[ ]

0 7.99 0 0 3
0 0 2.803 0 4
0 0 0 1.553 5
1 2 3 4 5

K

⎡ ⎤−19.88
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−19.88 −7.99 −2.803 −1.553⎢ ⎥= ⎢ ⎥
⎢ ⎥

−7.99⎢ ⎥
⎢ ⎥−2.803⎢ ⎥
⎢ ⎥−1.553⎣ ⎦

19.88 0 0 0
32.226

0 7.99 0 0
0

−19.88
−19.88 −7.99 −2.803 −1.553

= −7.99
−2.803

1
2
3

0 2.803 0 4
0 0 0 1.553 5
1 2 3 4 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−1.553⎣ ⎦

(E.2)

Thus, the system equations can be expressed as

½K � p! ¼ Q
!

(E.3)

where [K] is given by Eq. (E.2) with

P
! ¼

8>>>>>><>>>>>>:

p1

p2

p3

p4

p5

9>>>>>>=>>>>>>;
and Q

! ¼

8>>>>>><>>>>>>:

Q1

Q2

Q3

Q4

Q5

9>>>>>>=>>>>>>;
where Qi denotes the external flow rate at node i (Qi, i ¼ 1, 3, 4, 5 are not known). Since the pressure at nodes i ¼ 1, 3, 4, 5 are

known, we retain the diagonal coefficients in [K] corresponding to the unknown pressure p2 (i.e., k22 ¼ 32.226 is retained) and

move all other coefficients of the second row of [K] multiplied by their respective known pressures to the second term of the right-

hand side vector. This leads to the modified form of Eq. (E.3) as

26666664
19:88 0 0 0 0

0 32:226 0 0 0

0 0 7:99 0 0

0 0 0 2:803 0

0 0 0 0 1:553

37777775

8>>>>>><>>>>>>:

p1

p2

p3

p4

p5

9>>>>>>=>>>>>>;
¼

8>>>>>><>>>>>>:

19:88p1 ¼ 596:4

19:88p1 þ 7:99p3 þ 2:803p4 þ 1:553p5 ¼ 867:065

7:99p3 ¼ 175:78

2:803p4 ¼ 56:06

1:553p5 ¼ 38:825

9>>>>>>=>>>>>>;
(E.4)
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EXAMPLE 1.7 dcont’d

The solution of Eq. (E.4) gives p2 ¼ 26.9057 psi along with the known values, p1 ¼ 30 psi, p3 ¼ 22 psi, p4 ¼ 20 psi, and

p5 ¼ 25 psi. The flow rates through each of the pipe elements can be determined as

Q1 ¼ c1ðp1 � p2Þ ¼ 19:88ð30:0� 26:9057Þ ¼ 61:5147 in3= sec

Q2 ¼ c2ðp2 � p3Þ ¼ 7:99ð26:9057� 22:0Þ ¼ 39:1965 in3= sec

Q3 ¼ c3ðp2 � p4Þ ¼ 2:803ð26:9057� 20:0Þ ¼ 19:3567 in3= sec

Q4 ¼ c4ðp2 � p5Þ ¼ 1:553ð26:9057� 25:0Þ ¼ 2:9595 in3= sec

It can be seen that the inflow rate (Q1) is equal to the total outflow rate (Q2 þ Q3 þ Q4).

EXAMPLE 1.8
An electrical circuit is composed of six resistors and a battery as shown in Fig. 1.18. Determine the following: (a) voltages at the

node points, and (b) current flows in the resistors.

Approach: Use the finite element Eq. (1.43) and the principle: the sum of currents meeting at any node i must be equal to zero.

Solution

Using Eq. (1.43), the element characteristic matrices of the various resistor elements can be found as

(1) 1 1 1 11[ ] 0.1
1 2 1 210

1 2 1 2

K
−1 −1⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−1 −1⎣ ⎦ ⎣ ⎦

(2) 1 1 1 11[ ] 0.04
1 3 1 325

1 3 1 3

K
−1 −1⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−1 −1⎣ ⎦ ⎣ ⎦

(3) 1 2 1 21[ ] 0.05
1 4 1 420

2 4 2 4

K
−1 −1⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−1 −1⎣ ⎦ ⎣ ⎦

(4) 1 3 1 31[ ] 0.0667
1 5 1 515

3 5 3 5

K
−1 −1⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−1 −1⎣ ⎦ ⎣ ⎦

(5) 1 4 1 41[ ] 0.0333
1 6 1 630

4 6 4 6

K
−1 −1⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−1 −1⎣ ⎦ ⎣ ⎦

Continued

1

2 4 6

53
R2 = 25 Ω

R1= 10 Ω

R3 = 20 Ω R5 = 30 Ω

R6 = 5 Ω

R4 = 15 Ω

e = 1

e = 4

e = 5

e = 6

e = 3

e = 2

Battery
(50 volts)

FIGURE 1.18 An electrical circuit.
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EXAMPLE 1.8 dcont’d

(6) 1 5 1 51[ ] 0.02
1 6 1 65

5 6 5 6

K
−1 −1⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−1 −1⎣ ⎦ ⎣ ⎦

where the numbers identified with the columns and rows of the element characteristic matrices denote the corresponding nodal

unknowns (voltages). The system or assembled characteristic matrix can be obtained as

(0.1 + 0.04) 0 0 0 1
(0.1 + 0.05) 0 0 0 2

(0.04 + 0.0667)0 0 0 3[ ]
(0.05 + 0.0333)0 0 0 4

(0.0667 + 0.2)0 0 0.0667 0 5
(0.0333 + 0.2)0 0 0 0.2 6

1 2 3 4 5 6

0.14

K

⎡ ⎤−0.1 −0.04
⎢ ⎥

−0.1 −0.05⎢ ⎥
⎢ ⎥−0.04 −0.0667= ⎢ ⎥

−0.05 −0.0333⎢ ⎥
⎢ ⎥− −0.2⎢ ⎥

−0.0333 −⎣ ⎦

−0.1 −0.04

=

0 0 0 1
0.15 0 0 0 2

0 0.1067 0 0 3
0 0 0.0833 0 4
0 0 0 0.2667 5
0 0 0 0.2333 6

1 2 3 4 5 6

⎡ ⎤
⎢ ⎥

−0.1 −0.05⎢ ⎥
⎢ ⎥−0.04 −0.0667
⎢ ⎥

−0.05 −0.0333⎢ ⎥
⎢ ⎥−0.0667 −0.2⎢ ⎥

−0.0333 −0.2⎣ ⎦

(E.1)

Thus, the system equations can be written in matrix form as

½K � V! ¼ I
!

(E.2)

where [K] is given by Eq. (E.1),

V
! ¼

8>>>>>>>><>>>>>>>>:

V1

V2

V3

V4

V5

V6

9>>>>>>>>=>>>>>>>>;
; and I

! ¼

8>>>>>>>><>>>>>>>>:

I1

I2

I3

I4

I5

I6

9>>>>>>>>=>>>>>>>>;
with Vi denoting the voltage at node i and Ii representing the current flow through the resistor element i, i ¼ 1, 2, ., 6.

1. To incorporate the known values V4 ¼ 50 V andV3 ¼ 0, the system Eq. (E.2) is modified as follows. Since no value of Ij in the

vector I
!

is known, it can be assumed to be a zero vector to start with. All the nonzero elements in column 3 of the matrix[K],

except the diagonal element, are multiplied by zero (specified value of V3) and moved to the third element of the vector I
!

by

changing their signs. Similarly, all the nonzero elements in column 4 of the matrix[K], except the diagonal element, are

multiplied by 60 (specified value of V4) and moved to the fourth element of the vector I
!

by changing their signs. This results in

the following system of equations.

(Note: The procedure used for incorporating the specified values of Vj is also explained in Section 6.3.2.)2666666664

0:14 �0:1 �0:04 0 0 0

�0:1 0:15 0 0 0 0

0 0 0:1067 0 0 0

0 0 0 0:0833 0 0

0 0 0 0 0:2667 �0:2

0 0 0 0 �0:2 0:2333

3777777775

8>>>>>>>><>>>>>>>>:

V1

V2

V3

V4

V5

V6

9>>>>>>>>=>>>>>>>>;
¼

8>>>>>>>><>>>>>>>>:

0

2:5

0

4:165

0

1:665

9>>>>>>>>=>>>>>>>>;
(E.3)

The solution of Eq. (E.3) is given by V1 ¼ 22.7273 volts, V2 ¼ 31.8182 volts, V3 ¼ 0, V4 ¼ 50 volts, V5 ¼ 14.9865 volts, and

V6 ¼ 19.9845 volts.
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EXAMPLE 1.8 dcont’d

2. The current flows in the various resistors can be computed as

I1 ¼ V1 � V2

R1

¼ 22:7273� 31:8182

10
¼ �0:9091 ampere

I2 ¼ V1 � V3

R2

¼ 22:7273� 0

25
¼ 0:9091 ampere

I3 ¼ V2 � V4

R3

¼ 31:8182� 50

20
¼ �0:9091 ampere

I4 ¼ V3 � V5

R4

¼ 0� 14:9865

15
¼ �0:9991 ampere

I5 ¼ V4 � V6

R5

¼ 50� 19:9845

30
¼ 1:0005 ampere

I6 ¼ V5 � V6

R6

¼ 14:9865� 19:9845

5
¼ �0:9996 ampere

Note

A negative sign for Ie denotes that current flows from node j to node i instead of from node i to node j.

EXAMPLE 1.9
The wall of an industrial furnace is composed of a 6 cm thick inner layer made of silica brick and a 3 cm outer layer made of

masonry brick as shown in Fig. 1.19A. The temperature of the inside surface of the wall (silica brick surface) is 30�C and the

temperature of the air surrounding the brick surface of the wall is �2�C. The thermal conductivities of silica and masonry bricks

are 0.08 W/(cm �C) and 0.25 W/(cm �C), respectively. If the heat transfer coefficient at the outer (masonry brick) surface is

Continued

k1 = 0.25 ───W
cm–°C

h = 0.12

T∞ = –2°C

T3 = 30°CT2T1

───W
cm2–°C

k2 = 0.08 ───W
cm–°C

Industrial
chamber
To = 30°C

(A)

(B)

3
cm

6 cm

Masonry brick

e = 1

ℓ1 = 3 cm ℓ2 = 6 cm
1 2 3

e = 2

Silica brick

x

FIGURE 1.19 Heat flow through two bricks.
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EXAMPLE 1.9 dcont’d

0.12 W/(cm2 �C), determine the temperatures at the interface of the two brick surfaces and the outside surface of the masonry

wall.

Solution

By assuming the heat transfer through the wall to be one-dimensional (along the x-direction), the system is modeled by two finite

elements, one for each material, as shown in Fig. 1.19B. By using the notation ke ¼ k 0
e

�
lðeÞ, the conductivity matrices of elements

1 (masonry brick) and 2 (silica brick) are given by

�
k ð1Þ� ¼ k1

�
1 �1

�1 1


¼ k 0

1A1

lð1Þ

�
1 �1

�1 1


¼ ð0:25Þð1Þ

3

�
1 �1

�1 1


¼ 0:08333

�
1 �1

�1 1


W=

�
C (E.1)

�
k ð2Þ� ¼ k2

�
1 �1

�1 1


¼ k 0

2A2

lð2Þ

�
1 �1

�1 1


¼ ð0:08Þð1Þ

6

�
1 �1

�1 1


¼ 0:01333

�
1 �1

�1 1


W=

�
C (E.2)

where the areas of wall surfaces through which heat flows are assumed to be 1 cm2ðA1 ¼ A2 ¼ 1Þ. The right-hand side vectors

(heat flux vectors) of the elements in a heat transfer problem (similar to the nodal force vectors in a solid mechanics problem) are

given by

F
!ð1Þ ¼



hATN

0

�
¼

 ð0:12Þð1Þð� 2Þ

0

�
¼

�0:24

0

�
W (E.3)

F
!ð2Þ ¼



0

Q3

�
W (E.4)

These nodal force vectors use the known information that node 1 (of element 1) is exposed to TN ¼ � 2�C, has a heat flux of

h A TN (area A is assumed to be 1 cm2), and no heat transfer coefficient is specified (h ¼ 0) at node 2. At node 3, there will be an

unknown heat flux Q3 to satisfy the heat flow equation or thermal equilibrium of the system (similar to the reaction at a fixed end

in a solid mechanics problem). The assembled matrix and assembled right-hand side vector of the system (before applying the

boundary condition) are given by

[ ]
3

2

1

321

0.013330
(0,08333 + 0.01333)

00.08333

T
T
T

K

TTT

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−0.01333
−0.01333−0.08333

−0.08333
= C

W
0

(E.5)

F
! ¼

8><>:
�0:24

0þ 0

Q3

9>=>;W (E.6)

To incorporate the boundary condition (T3 is specified as 30�C), we delete the third row in Eqs. (E.5) and (E.6), and move the

coefficient K23 ¼ � 0.01333 multiplied by the known temperature (T3 ¼ 30) to the right-hand side element F2 as

(þ0.01333 � 30 ¼ 0.3999). This process is similar to transferring a term to the right-hand side from the left-hand side in a linear

equation. Then we delete the third column of the matrix [K] to obtain the matrix equations, after applying the known boundary

condition, as �
0:08333 � 0:08333

� 0:08333 0:09666

 

T1

T2

�
¼


 � 0:24

0:03999

�
(E.7)

The solution of Eq. (E.7) gives the temperatures of nodes 1 and 2 as T1 ¼ 9.1154�C and T2 ¼ 11.9955�C.

1.9 COMMERCIAL FINITE ELEMENT PROGRAM PACKAGES

The general applicability of the finite element method makes it a powerful and versatile tool for a wide range of problems.
Hence, a number of computer program packages have been developed for the solution of a variety of structural and solid
mechanics problems. Some of the programs have been developed in such a general manner that the same program can be
used for the solution of problems belonging to different branches of engineering with little or no modification.

Many of these packages represent large programs that can be used for solving real complex problems. For example, the
NASTRAN (National Aeronautics and Space Administration Structural Analysis) program package contains approxi-
mately 150,000 FORTRAN statements and can be used to analyze physical problems of practically any size, including a
complete aircraft, an automobile, and a space shuttle.
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The availability of supercomputers has made a strong impact on the finite element technology. In order to realize the
full potential of these supercomputers in finite element computation, special parallel numerical algorithms, programming
strategies, and programming languages are being developed. The use of personal computers and workstations in engi-
neering analysis and design is becoming increasingly popular as the price of hardware is decreasing dramatically. Many
finite element programs, especially suitable for the personal computer and workstation environment, have been developed.
Among the main advantages are a user-friendly environment and inexpensive graphics.

1.10 SOLUTIONS USING FINITE ELEMENT SOFTWARE

Three Steps of Finite Element Solution
The solution of any engineering analysis problem using commercial FEA software involves the following three steps:

Preprocessing:
In this step, the geometry, material properties, loads (actions), and boundary conditions are given as input data. In-built
automatic mesh generation modules develop the finite element mesh with minimal input from the analyst on the type of
elements and mesh density to be used. The analyst can display the data as well as the finite element mesh generated for
visual inspection and verification for correctness.
Numerical analysis:
The software automatically generates the element characteristic (stiffness) matrices and characteristic (load) vectors,
assembles them to generate the system equations, implements the specified boundary conditions, solves the equations
to find the nodal values of the field variable (displacements), and computes the element resultants (stresses and strains).
Postprocessing:
The solution of the problem, such as nodal displacements and element stresses, can be displayed either numerically in
tabular form or graphically (two- or three-dimensional plots of deformed shape or stress variation). The analyst can
choose the mode of display for the results.

Checking the Results of FEA
It is extremely important to check the results given by the FEA software. Usually a simpler version of the actual

problem is to be solved using the software so that the results can be compared with known solutions (obtained by other
methods such as a simplified analysis technique). In addition, the analyst must ensure that the results agree with engi-
neering intuition and behavior. Also, we need to verify whether the solution satisfies the specified boundary and symmetry
conditions. If necessary, the problem needs to be solved by changing the boundary conditions, loads, or materials to find
whether the resulting FEA solutions behave as per engineering intuition and expectations.

Software Applications
This book presents the applications of two commercial/computer program packages, ANSYS and ABAQUS, for the

solution of engineering analysis problems. In addition, several MATLAB programs are given for the solution of solid and
structural mechanics, heat transfer and fluid flow problems, along with illustrative examples to demonstrate their use.

ANSYS is general-purpose FEA software; ANSYS Mechanical is for mechanical and structural systems and ANSYS
Multiphysics is for general field problems. The ANSYS software includes modules for the creation of geometry and finite
element mesh; solution and postprocessing in a unified graphical user interface. The FEA can be performed either in batch
or interactive modes. In the batch mode, an input file of commands will be executed from the command line. In the
interactive mode, user actions (to be picked from a menu or typed as commands) are required in a graphics window. The
use of ANSYS for the finite element solution of several problems is illustrated using the interactive mode in this book.

ABAQUS finite element system includes ABAQUS/Standard, a general-purpose finite element program; ABAQUS/
Explicit, an explicit dynamics finite element program; and ABAQUS/CAE, an interactive environment for constructing,
analyzing, and visualizing results. In ABAQUS, two methods can be used to construct the models d one is to use
ABAQUS/CAE interactive environment and the other is to write script files. The ABAQUS examples presented in this
book are based on writing script files. An input (script) file can be written in any text editor tool such as WordPad. The
input file contains information including the kind of problem, the geometry of the structure, the properties of the structure,
the analysis parameters, and the output requirements.

MATLAB is popular software that can be used for the solution of a variety of scientific and engineering problems. It
contains a library of programs or m-files that can be used for the solution of finite element equations (in Step 5 of the six-
step FEA procedure). For example, the programs/commands for the solution of simultaneous linear algebraic equations can
be used in the solution of static or steady-state problems. The programs/commands for matrix manipulation, such as
decomposition, inversion, multiplication, and eigenvalue solution can be used in the formulation and solution of matrix
eigenvalue problems related to engineering systems. Similarly, the programs/commands for the solution of ordinary and
partial differential equations can be used in the solution of dynamic or transient or unsteady state problems related to a
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variety of field problems. The MATLAB finite element programs given in the book include the development of the model,
and formulation and solution of structural, heat transfer, and fluid flow problems.

This book presents several MATLAB finite element programs for the solution of typical analysis problems from the
areas of solid/structural mechanics, heat transfer, and fluid flow. These programs are written in the MATLAB programming
language and are self-contained in the sense that they do not use any of the MATLAB library of programs or m-files. The
listings of all these programs are available at the website of the book. The use of each program is illustrated with an
example along with the input data required, output/results given by the program, and the development of the main program
or m-file required for the solution.

REVIEW QUESTIONS

1.1 Give brief answers to the following questions.

1. What is discretization?
2. What is the purpose of the interpolation model in the finite element method?
3. Define the potential energy of a body subjected to loads.
4. What is strain energy?
5. Why is the stiffness matrix always symmetric?
6. Why is a cubic interpolation model assumed for a beam element?
7. Give names of two popular commercial finite element software packages.
8. Who coined the term finite element?
9. Who published the first finite element paper for application to aircraft structures?

10. State two reasons for the widespread use of the finite element method.
11. State the equation for the strain energy of a solid body of volume V.
12. Define Reynolds number for fluid flow in a pipe.
13. How can you use the finite element method for the analysis of mechanisms used in industry?

1.2 Fill in the blank with a suitable word.

1. The stiffness matrix of a bar element under axial load, [k(e)], is given by ————————.
2. The stiffness matrix of a bar or beam element denotes the relation between nodal forces and nodal

—————————————————.
3. The composite wall of a building having brick, insulation, and plaster layers can be represented by three heat flow

elements, one for each layer using their respective thermal ——————————————.
4. The linear finite elements used for the analysis of electrical circuits use ——————————————

———— law.

1.3 Indicate whether each of the following statements is true or false.

1. The finite element method can be used to obtain both lower and upper bounds on the exact solution of an engineering
mechanics problem.

2. We can use a quadratic interpolation model for a two-noded beam element.
3. In a fluid flow (in a pipe) element, the fluidity matrix relates velocity of the fluid to the pressure gradient.

1.4 Select the most appropriate answer from the multiple choices given.

1. The direct approach of deriving the finite element equations for a structural problem requires the application of
(a) Equilibrium equations (b) Variational equations (c) Energy equations

2. The stiffness matrix of a bar element of length l with cross-sectional area A and Young’s modulus E is given by

�
kðeÞ
� ¼ c

"
1 � 1

� 1 1

#
with c equal to

(a) A E
l (b) l

A E (c) A l
E

3. The element conductivity matrix in heat transfer indicates the relation between
(a) nodal conductivities and nodal temperatures
(b) nodal heat fluxes and nodal temperatures
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(c) nodal heat fluxes and nodal conductivities
4. In an electrical circuit, the element characteristic matrix, [k(e)], denotes the relation between

(a) nodal currents and nodal resistances
(b) nodal resistances and nodal voltages
(c) nodal currents and nodal voltages

5. The element fluidity (characteristic) matrix derived in this chapter is valid for
(a) any fluid flow (b) laminar flow (c) turbulent flow

PROBLEMS

1.1 If S(l) and S(u) denote the perimeters of the inscribed and circumscribed polygons, respectively, as shown in Fig. 1.3,
prove that

SðlÞ � S � SðuÞ

where S is the circumference of the circle.
1.2 Find the values of the perimeters of the inscribed and circumscribed polygons (S(l) and S(u)) of a circle of radius 1 for

polygons with the number of sides ranging from n ¼ 3 to 12.
1.3 Suggest a procedure, similar to the one described in Example 1.1 for the circumference of a circle, for finding (a) the

bounds on the area of a circle, and (b) the exact area of a circle.
1.4 Using a one-beam element idealization, find the stress distribution under a load of P for the uniform cantilever beam

shown in Fig. 1.20.
1.5 Find the stress distribution in the cantilever beam shown in Fig. 1.21 using one beam element.

L

P

A, E, I constant

FIGURE 1.20 A uniform cantilever beam.

L

M0
A, E, I constant

FIGURE 1.21 A cantilever beam subjected to an end moment.

P

L
2

L
2

A, E, I constant

FIGURE 1.22 A fixed-pinned beam.
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1.6 Find the stress distribution in the beam shown in Fig. 1.22 using two beam elements.
1.7 Find the stress distribution in the beam shown in Fig. 1.23 using two beam elements.
1.8 Find the stress distribution in the beam shown in Fig. 1.24 using two beam elements.
1.9 For the tapered bar shown in Fig. 1.25, the area of cross section changes along the length as AðxÞ ¼ A0e�ðx=lÞ,

where A0 is the cross-sectional area at x ¼ 0, and l is the length of the bar. By expressing the strain and kinetic en-
ergies of the bar in matrix forms, identify the stiffness and mass matrices of a typical element. Assume a linear model
for the axial displacement of the bar element.

L
2

L
2

M0

A, E, I constant

FIGURE 1.23 A fixed-pinned beam subjected to a moment.

P

L
4

L
3
4

E, I constant

FIGURE 1.24 A fixed-fixed beam.

 (e)

O

Area A0

Element e

A(x) = A0e

xΦ1

(e)
Φ2

(e)

− x

FIGURE 1.25 A tapered bar.

10 cm

P = 1

Cross-sectional area at root = 2 cm2

Cross-sectional area at end = 1 cm2

Young’s modulus = 2 × 107 N/cm2

FIGURE 1.26 A tapered bar subjected to axial load.
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1.10 Find the stress distribution in the tapered bar shown in Fig. 1.26 using two finite elements under an axial load of
P ¼ 1 N.

1.11 Consider the flow of an incompressible fluid through the network of three pipes as shown in Fig. 1.27. The viscosity
of the fluid is m ¼ 1.6 � 10�6lbf-sec/in

2 and the density is r ¼ 1.9 slugs/ft3. Determine the following:
a. Fluid pressure at node 2.
b. Volume flow rate in each of the pipes.
c. Reynolds number in each of the pipes.
d. Whether the flow is laminar or turbulent in each of the pipes.

1.12 Show that the stiffness matrix of a spring element, with a spring constant k, shown in Fig. 1.28, is given by

UðeÞ
1 UðeÞ

2�
KðeÞ� ¼ k

�
1 �1

�1 1


U2

ðeÞ

U1
ðeÞ

Hint: Express the strain energy of the spring in matrix form.
1.13 Two springs, having stiffnesses k1 ¼ 105 N/m and k2 ¼ 5 � 105 N/m, are connected in series as shown in Fig. 1.29.

Determine the displacements of nodes 2 and 3 when an axial load of P ¼ 1000 N is applied at node 3 using the finite
element method.

1.14 Three springs, having stiffnesses k1 ¼ 105 N/m, k2 ¼ 2 � 105 N/m, and k3 ¼ 3 � 105 N/m, are connected in series as
shown in Fig. 1.30. Determine the displacements of nodes 2, 3, and 4 when an axial load of P ¼ 1000 N is applied at
node 4 using the finite element method.

1

p2p1= 20 psi

p3= 15 psi

p4= 15 psi

2

4

3

Diameter 5 in,
length 1000 in

Diameter 4 in,
length 2000 in

Diameter 2 in,
length 1500 in

FIGURE 1.27 A network of three pipes.

k
Node 1

U 1
(e)

U 2
(e)

Node 2

Element e

FIGURE 1.28 A spring element.

1 2 3
P

k2k1

FIGURE 1.29 Two springs in series.
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1.15 Three springs, having stiffnesses k1 ¼ 105 N/m, k2 ¼ 2 � 105 N/m, and k3 ¼ 3 � 105 N/m, are connected in series as
shown in Fig. 1.31. Determine the displacements of nodes 2, 3, and 4 when an axial load of P ¼ 1000 N is applied at
node 2 using the finite element method.

1.16 Three springs, having stiffnesses k1 ¼ 105 N/m, k2 ¼ 2 � 105 N/m, and k3 ¼ 3 � 105 N/m, are connected in series as
shown in Fig. 1.32. Determine the displacements of nodes 2, 3, and 4 when an axial load of P ¼ 1000 N is applied at
node 2 using the finite element method.

1.17 Five springs, having stiffnesses k1 ¼ 105 N/m, k2 ¼ 2 � 105 N/m, k3 ¼ 3 � 105 N/m, k4 ¼ 4 � 105 N/m, and
k5 ¼ 5 � 105 N/m, are connected as a parallel-series system and are subjected to a load P ¼ 1000 N at node 4 as
shown in Fig. 1.33. Determine the displacements of nodes 2, 3, and 4 using the finite element method. State the
assumptions made in your solution.

1.18 Two links, made up of aluminum and steel, are connected by a hinge joint and an axial load P ¼ 1000 N is applied at
node 3 as shown in Fig. 1.34. Determine the stresses developed in the two links using the finite element method.

P
1 2 3 4

k2 k3k1

FIGURE 1.30 Three springs in series.

k1 k2 k3

P

U2U1 U3

1 2 3 4

FIGURE 1.31 Three springs in series with fixed ends.

k1 k2 k3P

U2U1 U3 U4

1 2 3 4

FIGURE 1.32 Three springs in series with one end fixed.

k5k3k1

k2 k4

P

U5

U2

U4

Node 5

Node 1

Node 1

Node 2

Node 3

Node 4

FIGURE 1.33 Parallel-series system of springs.

40 cm

1 2 3 P

60 cm

Link 1, Steel

E = 207 GPa; A = 4cm2 Link 2, Aluminum

E =71 GPa; A = 2 cm2

FIGURE 1.34 Two links subjected to an axial load.
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1.19 A stepped bar is subjected to an axial load of P ¼ 2000 N as shown in Fig. 1.35. If the material of the stepped bar is
steel with a Young’s modulus of 207 � 109 Pa, find the stresses developed in each of the steps.

1.20 Suggest a method of finding the stresses in the frame shown in Fig. 1.36 using the finite element method.
1.21 Derive the stiffness matrix of a beam element, given by Eq. (1.19), using Eqs. (1.17) and (1.18).
1.22 A typical stiffness coefficient, kij, in the stiffness matrix, [K], denotes the force along the dof i that results in a unit

displacement along the dof j when the displacements along all other dof are zero. Using this definition, beam deflec-
tion relations, and static equilibrium equations generate expressions for k11, k21, k31, and k41 for the uniform beam
element shown in Fig. 1.37. The Young’s modulus, area moment of inertia, and length of the element are given by E,
I, and l, respectively.

1.23 For the beam element considered in Problem 1.22, generate expressions for the stiffness coefficients k12, k22, k32, and
k42.

1.24 For the beam element considered in Problem 1.22, generate expressions for the stiffness coefficients k13, k23, k33, and
k43.

1.25 For the beam element considered in Problem 1.22, generate expressions for the stiffness coefficients k14, k24, k34, and
k44.

1.26 Derive the stiffness matrix of a tapered bar, with linearly varying area of cross section (Fig. 1.38), using a direct
approach.

1.27 The heat transfer in the tapered fin shown in Fig. 1.39 can be assumed to be one-dimensional due to the large value
of W compared to L. Derive the element characteristic matrix of the fin using the direct approach.

20 cm 30 cm 40 cm

1
2O 3 4 x

 A = 5 cm2
 A = 3 cm2

 A = 1 cm2

P

FIGURE 1.35 A stepped bar with fixed ends.

P1

P2

L2

L1

FIGURE 1.36 A frame.
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1.28 Two springs, with stiffnesses 500 N/mm and 800 N/mm, are connected in series. The ends of the system are fixed
and an axial load of magnitude 1000 N is applied at the middle node as shown in Fig. 1.40. Determine the displace-
ment of the middle node and the reactions at the fixed ends.

1.29 Two springs, of stiffnesses 400 N/mm and 600 N/mm, are connected in series. One end of the system is fixed and the
middle point is subjected to an axial load of 800 N as shown in Fig. 1.41. Determine the nodal displacements and the
reaction at the fixed end.

q1= v(x =0)

q2 =        (x = 0)dv
dx

xO

q4 =        (x =  )dv
dx

q3= v (x =  )

FIGURE 1.37 A beam element with nodal displacement.

q1
q2

A(x ), E

FIGURE 1.38 A tapered bar.

x

L

w

FIGURE 1.39 A tapered fin.
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1.30 Fig. 1.42 shows a system of three springs in series subjected to two axial loads. The stiffnesses of the springs and the
axial loads applied are given by k1 ¼ 40 N/mm, k2 ¼ 20 N/mm, k3 ¼ 60 N/mm, P2 ¼ �100 N, and P3 ¼ 50 N.
Determine the displacements of the nodes of the system.

1.31 A fluid of viscosity m ¼ 2 � 10�6 lbf-sec/in2 and density r ¼ 2.0 slugs/ft3 flows through the pipe network shown in
Fig. 1.43. The diameters and lengths of the various pipe segments and the pressures at the exterior nodes are as indi-
cated in Fig. 1.43. Determine the following:
a. Whether the flow is laminar in each pipe segment.
b. Pressure at the interior node 3.
c. Volume flow rates in each pipe segment.

1.32 Water, with viscosity m ¼ 1.5 � 10�6 lbf-sec/in2 and density r ¼ 1.93 slugs/ft3, flows through the pipe network
shown in Fig. 1.44. The pipe segments data are shown in the following table:

Pipe Segment or Element e Diameter (inch) Length (inch)

1 3 5000

2 2 7000

3 1.5 4000

4 2 6000

5 2.5 8000

6 1 5000

7 2 3000

8 3 2000

9 2.5 6000

10 3 4000

Determine the following:
a. Whether the flow is laminar in each pipe segment.
b. Pressure at the interior node 3.
c. Volume flow rates in each pipe segment.

1.33 The electrical circuit shown in Fig. 1.45 consists of four resistors and a battery. Determine the voltages at various
node points and the current flows through the various resistors.

1.34 The electrical circuit shown in Fig. 1.46 consists of five resistors and two batteries. Determine the voltages at various
node points and the current flows through the various resistors.

1

2

3
k1 = 500 N/mm k2 = 800 N/mm

1000 N

FIGURE 1.40 Two springs in series.

1

2 3k1 = 400 N/mm k2 = 600 N/mm

800 N

FIGURE 1.41 A system of two springs with one end fixed.

P2 = −100 N

k1= 40 N/mm k2 = 20 N/mm k3 = 60 N/mm

P3 = 50 N

1

2 3 4

FIGURE 1.42 A system of three springs with one end fixed.
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d1= 2"
 1= 10,000"
e = 1

d3= 2.5"
 3= 20,000"
e = 3

e = 2

p4= 22 psi

p1= 28 psi

p2= 28 psi

p5= 24 psi

4

1

53

2

d2= 1.5"

  2= 15,000"

e = 4
d4= 3"

  4= 25,000"

FIGURE 1.43 A pipe network with four segments.

e = 10

e = 5

e = 9
e = 7

e = 8

e = 6

e = 4

e = 3

e = 1

e = 2

p10= 17 psi

p9 = 14 psi

p6 = 18 psi

p2 = 20 psi

p1= 22 psi

10

9

75
3

4

1

2

6

8

FIGURE 1.44 A pipe network with nine segments.

Battery
40 volts

4 3
R2 = 4 Ω

R4 = 8 Ω

R3 = 6 Ω

R1= 10 Ω

2

1

FIGURE 1.45 An electrical circuit with four resistors and one battery.
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1.35 A stepped bar has a linearly varying area of cross section between the nodes 1 and 2 and a constant area of cross
section between the nodes 2 and 3 as shown in Fig. 1.47. If the Young’s modulus of the stepped bar is 30 � 106 psi,
determine the nodal displacements and stresses induced in the two steps of the bar when an axial load of magnitude
P ¼ 100 lb is applied at node 3. Use a two-element idealization.

1.36 Three bars, made up of different materials, are connected to carry axial loads of P2 ¼ 1000 N and P4 ¼ �500 N as
shown in Fig. 1.48. Determine the displacements of nodes 2, 3, and 4 and the stresses in the three bars.

1.37 A composite wall, made up of two materials, is shown in Fig. 1.49. The temperatures on the left and right faces are
maintained at constant values of 100 �F and 70 �F, respectively. Find the temperature distribution in the wall using a
linear finite element for each of the two materials.

1.38 A composite wall, made up of four materials, is shown in Fig. 1.13. The temperatures on the left and right faces are
maintained at constant values of T1 ¼ Thigh ¼ 200�C and T5 ¼ Tlow ¼ 50�C. Find the temperature distribution in the
various materials of the wall using a linear finite element for each of the four materials
Data: t1 ¼ 5 mm, t2 ¼ 10 mm, t3 ¼ 15 mm, t4 ¼ 8 mm, k1 ¼ 0.4 W/mm �C, k2 ¼ 0.3 W/mm �C, k3 ¼ 0.2 W/
mm �C, k4 ¼ 0.1 W/mm �C.

R4= 10 Ω

R1= 20 Ω

R2= 25 Ω

R3 = 15 Ω R5 = 30 Ω

Battery 2
15 V

Battery 1
20 V

FIGURE 1.46 An electrical circuit with five resistors and two batteries.

A1= 4 in2

A2= 2 in2 A3= 2 in2

P = 100 lb

e = 2e = 1

 2 = 30" 1 = 40"

1 x 2 3

FIGURE 1.47 A stepped bar.

P4= −500 N

A1= 15 cm2

 1= 0.6 m

E1= 207 GPa

e = 1
Steel

A2= 10 cm2

P2= 1000 N

E2= 71 GPa

 2= 0.8 m

e = 2

Aluminum

E3 = 119 GPa

 3= 0.4 m

A3= 5 cm2

e = 3

Copper

FIGURE 1.48 Three bars in series.
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1.39 Find the temperature distribution in the stepped fin shown in Fig. 1.50 using two finite elements.
1.40 An irrigation system consists of a source (water pumped from a well) and four branch pipes as shown in Fig. 1.51.

The pressures at different points, and the lengths and diameters of pipes are:
pi ¼ 40, 20, 30, 25 psi for i ¼ 1, 2, 3, 4; li ¼ 300, 400, 200, 100 ft for i ¼ 1, 2, 3, 4; di ¼ 5, 2.5, 3, 3 in for
i ¼ 1, 2, 3, 4.

T1 = 100 °C T3 = 70 °C

e = 1 e = 2

Material 1 Material 2

0.4
W

mm-°C

k1=

0.2
W

mm-°C

k2=

t1 = 15 mm t2 = 15 mm

T2

FIGURE 1.49 A composite wall.

2 cm 3 cm

T0 = 140 °C

T∞ = 40 °Ch = 10

Circular section
(radius = 1 cm) Circular section

(radius = 0.5 cm)

k = 70
Watts
cm-°C

Watts
cm2-°C

FIGURE 1.50 A stepped fin.

Pipe 2

400 ft.

Pipe 4

100 ft.

200 ft.

Pipe 3

300 ft.

Pipe 1

FIGURE 1.51 An irrigation pipe system.
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If the viscosity and density of water are 2.034 lb-s/ft2 and 62.3 lb/ft3, respectively, determine the flow rates of water
through the various pipe segments.

1.41 Crude oil flows through a pipeline to a refinery, where the crude oil flows through three pipes to different refining
stations to produce three grades of gasoline as shown in Fig. 1.52. The pressures at various points and the lengths
and diameters of the different pipes are:
pi ¼ 50, 25, 30, 20 psi for i ¼ 1, 2, 3, 4; li ¼ 1000, 250, 200, 300 ft for i ¼ 1, 2, 3, 4; di ¼ 4, 2, 2.5, 3 in for
i ¼ 1, 2, 3, 4.
If the viscosity and density of crude oil are 2.5 � 10�6�lb-s/in2 and 2.5 slug/ft3, respectively, determine the flow
rates of crude oil through the various pipe segments.

1.42 Assuming a cubic polynomial for the transverse deflection of a beam element shown in
Fig. 1.9 as w(x) ¼ a þ bx þ cx2 þ dx3, evaluate the constants a, b, c, and d in terms of the nodal dof shown at the
two nodes, W ðeÞ

i ; i ¼ 1 ; 2 ; 3 ; 4, and derive the expression shown on the right-hand side of Eq. (1.17).
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2.1 INTRODUCTION

In most engineering problems, we need to find the values of a field variable such as displacement, stress, temperature,
pressure, and velocity as a function of spatial coordinates (x, y, z). In the case of transient or unsteady-state problems, the
field variable has to be found as a function of not only the spatial coordinates (x, y, z) but also time (t). The geometry
(domain or solution region) of the problem is often irregular. The first step of the finite element analysis
involves the discretization of the irregular domain into smaller and regular subdomains, known as elements. This is
equivalent to replacing the domain having an infinite number of degrees of freedom (dof) by a system having a finite
number of dof.

A variety of methods can be used to model a domain with finite elements. Different methods of dividing the domain
into finite elements involve varying amounts of computational time and often lead to different approximations to the
solution of the physical problem. The process of discretization is essentially an exercise of engineering judgment. Efficient
methods of finite element idealization require some experience and knowledge of simple guidelines. For large problems
involving complex geometries, finite element idealization based on manual procedures requires considerable effort and
time on the part of the analyst. Some automatic mesh generation programs have been developed for the efficient ideali-
zation of complex domains requiring minimal interface with the analyst.

2.2 BASIC ELEMENT SHAPES

The shapes, sizes, number, and configurations of the elements have to be chosen carefully such that the original body or
domain is simulated as closely as possible without increasing the computational effort needed for the solution. Mostly
the choice of the type of element is dictated by the geometry of the body and the number of independent coordinates
necessary to describe the system. If the geometry, material properties, and field variable of the problem can be described
in terms of a single spatial coordinate, we can use the one-dimensional or line elements shown in Fig. 2.1A. The
temperature distribution in a rod (or fin), the pressure distribution in a pipe flow, and the deformation of a bar under axial
load, for example, can be determined using these elements. Although these elements have a cross-sectional area, they are
generally shown schematically as a line element (Fig. 2.1B). In some cases, the cross-sectional area of the element may
be nonuniform.

The Finite Element Method in Engineering. http://dx.doi.org/10.1016/B978-0-12-811768-2.00002-X
Copyright © 2018 Elsevier Inc. All rights reserved.
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For a simple analysis, one-dimensional elements are assumed to have two nodes, one at each end, with the corre-
sponding value of the field variable chosen as the unknown (dof). However, for the analysis of beams, the values of the
field variable (transverse displacement) and its derivative (slope) are chosen as the unknowns (dof) at each node as shown
in Fig. 2.1C.

When the configuration and other details of the problem can be described in terms of two independent spatial co-
ordinates, we can use the two-dimensional elements shown in Fig. 2.2. The basic element useful for two-dimensional
analysis is the triangular element. Although a quadrilateral element (or its special forms, the rectangle and parallelo-
gram) can be obtained by assembling two or four triangular elements, as shown in Fig. 2.3; in some cases the use of
quadrilateral (or rectangle or parallelogram) elements proves to be advantageous. For the bending analysis of plates,
multiple dof (transverse displacement and its derivatives) are used at each node.

Node Node

Node Node

Node 1 Node 2

1 2

(A)

(B)

(C)

21

FIGURE 2.1 One-dimensional elements.

Triangle Rectangle

Quadrilateral Parallelogram

1

2

3

1 4

2 3

1

4

2

3

1 4

2 3

FIGURE 2.2 Two-dimensional elements.
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If the geometry, material properties, and other parameters of the body can be described by three independent spatial
coordinates, we can idealize the body by using the three-dimensional elements shown in Fig. 2.4. The basic three-
dimensional element, analogous to the triangular element in the case of two-dimensional problems, is the tetrahedron
element. In some cases the hexahedron element, which can be obtained by assembling five tetrahedrons as indicated in
Fig. 2.5, can be used advantageously. Some problems, which are actually three-dimensional, can be described by only one
or two independent coordinates. Such problems can be idealized by using an axisymmetric or ring type of elements shown
in Fig. 2.6. The problems that possess axial symmetry, such as pistons, storage tanks, valves, rocket nozzles, and reentry
vehicle heat shields, fall into this category.

Node 4 4

3

2

2

1
1

4

3

2

1

Node 3

Element number

Node 2

Node 1

1

3
4

2

i

FIGURE 2.3 A quadrilateral element as an assemblage of two or four triangular elements.
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8

4
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FIGURE 2.4 Three-dimensional finite elements.
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For the discretization of problems involving curved geometries, finite elements with curved sides are useful. Typical
elements having curved boundaries are shown in Fig. 2.7. The ability to model curved boundaries has been made possible
by the addition of mid-side nodes. Finite elements with straight sides are known as linear elements, whereas those with
curved sides are called higher-order elements.
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FIGURE 2.5 A hexahedron element as an assemblage of five tetrahedron elements.
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FIGURE 2.6 Axisymmetric elements.
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2.3 DISCRETIZATION PROCESS

Various considerations to be taken in the discretization process [2.1] are discussed in the following sections.

2.3.1 Type of Elements

Often, the type of elements to be used will be evident from the physical problem. For example, if the problem involves the
analysis of a truss structure under a given set of load conditions (Fig. 2.8A), the type of elements to be used for idealization
is obviously the bar or line elements as shown in Fig. 2.8B. Similarly, in the case of stress analysis of the short beam shown
in Fig. 2.9A, the finite element idealization can be done using three-dimensional solid elements as shown in Fig. 2.9B.
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FIGURE 2.7 Finite elements with curved boundaries.
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FIGURE 2.8 A truss structure.
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However, the type of elements to be used for idealization may not be apparent, and in such cases we have to choose the
type of elements judicially. As an example, consider the problem of analysis of the thin-walled shell shown in Fig. 2.10A.
In this case, the shell can be idealized by several types of elements as shown in Fig. 2.10B. Here, the number of dof needed,
the expected accuracy, the ease with which the necessary equations can be derived, and the degree to which the physical
structure can be modeled without approximation will dictate the choice of the element type to be used for idealization. In
certain problems, the given body cannot be represented as an assemblage of only one type of elements. In such cases, we
may have to use two or more types of elements for idealization. An example of this would be the analysis of an aircraft
wing. Since the wing consists of top and bottom covers, stiffening webs, and flanges, three types of elementdtriangular
plate elements (for covers), rectangular shear panels (for webs), and frame elements (for flanges)dhave been used in the
idealization shown in Fig. 2.11.
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 Original beam
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 Idealization using three-dimensional elements
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FIGURE 2.9 A short beam.
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FIGURE 2.10 A thin-walled shell under pressure.
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EXAMPLE 2.1
A helical spring is subjected to a compressive load as shown in Fig. 2.12A. Suggest different methods of modeling the spring using

one-dimensional elements.

Continued

F

F

j

i

i i

j j

Helical spring in compression Spatial truss element Spatial frame element Curved frame element

j

i

e

Element e Element e Element e

jj

i i

e e

(A) (B) (C) (D)

FIGURE 2.12 Modeling of a helical spring.

Rib elements

Spar elements

Cover plate elements

Flange areas

FIGURE 2.11 Idealization of an aircraft wing using different types of elements.
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EXAMPLE 2.1dcont’d

Solution

Approach: Use various one-dimensional or line elements.

The helical spring (in the form of curved wire) can be divided into several lines or one-dimensional segments. These segments

can be straight or curved. Each of the straight line segments (or elements) can be assumed to be a spatial truss element with each of

its endpoints (or nodes) having three displacement dof (parallel to the x, y, and z axes) as shown in Fig. 2.12B. Since this element

has only translational dof (with no rotational dof), it will not be able to carry any moment. As such, the element may not be able to

represent the behavior of the helical spring accurately.

Alternately, each of the straight line segments (or elements) can be assumed to be a spatial frame element with each of its

endpoints (or nodes) having three displacement dof (parallel to the x, y, and z axes) and three rotational dof (about the x, y, and z

axes) as shown in Fig. 2.12C. In the case of the curved line segments (elements), each element can be treated as a curved frame

element with three displacement dof (parallel to the x, y, and z axes) and three rotational dof (about the x, y, and z axes) at each

end as shown in Fig. 2.12D. Because of the inclusion of rotational dof, the models shown in Fig. 2.12C and D will be able to

simulate the behavior of the helical spring more accurately.

2.3.2 Size of Elements

The size of elements influences the convergence of the solution directly, and hence it has to be chosen with care. If the size
of the elements is small, the final solution is expected to be more accurate. However, we have to remember that the use of
smaller-sized elements will also mean more computation time. Sometimes, we may have to use elements of different sizes
in the same body. For example, in the case of stress analysis of the box beam shown in Fig. 2.13A, the size of all the
elements can be approximately the same, as shown in Fig. 2.13B.

However, in the case of stress analysis of a plate with a hole shown in Fig. 2.14A, elements of different sizes have to be
used, as shown in Fig. 2.14B. The size of elements has to be very small near the hole (where stress concentration is
expected) compared to distant places. In general, whenever steep gradients of the field variable are expected, we have to

Original structure

P1

P2

Finite element idealization

(A) (B)

FIGURE 2.13 A box beam.

Original structure Idealization using elements of
      different sizes

(A) (B)

FIGURE 2.14 A plate with a hole.
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use a finer mesh in those regions. Another characteristic related to the size of elements that affects the finite element
solution is the aspect ratio of the elements. The aspect ratio describes the shape of the element in the assemblage of el-
ements. For two-dimensional elements, the aspect ratio is taken as the ratio of the largest dimension of the element to the
smallest dimension. Elements with an aspect ratio of nearly unity generally yield the best results [2.2].

2.3.3 Location of Nodes

If the body has no abrupt changes in geometry, material properties, and external conditions (e.g., load and temperature), the
body can be divided into equal subdivisions and hence the spacing of the nodes can be uniform. On the other hand, if there
are any discontinuities in the problem, nodes have to be introduced at these discontinuities, as shown in Fig. 2.15.

2.3.4 Number of Elements

The number of elements to be chosen for idealization is related to the accuracy desired, size of elements, and the number of
dof involved. Although an increase in the number of elements generally means more accurate results, for any given
problem, there will be a certain number of elements beyond which the accuracy cannot be significantly improved. This
behavior is shown graphically in Fig. 2.16. Moreover, since the use of a large number of elements involves a large number
of dof, we may not be able to store the resulting matrices in the available computer memory.

P
Node

Concentrated load
on a beam

Node
Abrupt change in the
distributed load

Discontinuity in loading

Node

Abrupt change in cross-
section of beam 

Discontinuity in geometry

Cracked plate under loading

Nodes

Steel
Aluminum Nodal line

Discontinuity in material properties

A bimetallic beam

Discontinuity in material

(A)

(B)

(C)

(D)

FIGURE 2.15 Location of nodes at discontinuities.

Solution given by
finite element method

Number of
elements

No significant improvement beyond N0

Exact
solution

N0

FIGURE 2.16 Effect of varying the number of elements.
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2.3.5 Simplifications Afforded by the Physical Configuration of the Body

If the configuration of the body as well as the external conditions are symmetric, we may consider only half of the body for
finite element idealization. The symmetry conditions, however, have to be incorporated in the solution procedure. This is
illustrated in Fig. 2.17, where only half of the plate with a hole, having symmetry in both geometry and loading, is
considered for analysis.1 Since there cannot be a horizontal displacement along the line of symmetry AA, the condition that
u ¼ 0 has to be incorporated while finding the solution.

2.3.6 Finite Representation of Infinite Bodies

In most of the problems, like in the analysis of beams, plates, and shells, the boundaries of the body or continuum are
clearly defined. Hence, the entire body can be considered for element idealization. However, in some cases, as in the
analysis of dams, foundations, and semi-infinite bodies, the boundaries are not clearly defined. In the case of dams
(Fig. 2.18), since the geometry is uniform and the loading does not change in the length direction, a unit slice of the dam
can be considered for idealization and analyzed as a plane strain problem.

However, in the case of the foundation problem shown in Fig. 2.19A, we cannot idealize the complete semi-infinite soil
by finite elements. Fortunately, it is not really necessary to idealize the infinite body. Since the effect of loading decreases
gradually with increasing distance from the point of loading, we can consider only that much of the continuum in which the
loading is expected to have a significant effect, as shown in Fig. 2.19B. Once the significant extent of the infinite body is
identified as shown in Fig. 2.19B, the boundary conditions for this finite body have to be incorporated in the solution. For
example, if the horizontal movement only has to be restrained for sides AB and CD (i.e., u ¼ 0), these sides are supposed to
be on rollers as shown in Fig. 2.19B. In this case, the bottom boundary can be either completely fixed (u ¼ v ¼ 0) or
constrained only against vertical movement (v ¼ 0). The fixed conditions (u ¼ v ¼ 0 along BC) are often used if the lower
boundary is taken at the known location of a bedrock surface.

Symmetry condition
u = 0 along this nodal
line

A

A

A

A

y (v)

x (u)

Plate with hole Only half of plate
can be considered for
analysis

(A) (B)

FIGURE 2.17 A plate with a hole with symmetric geometry and loading.

1. In this example, even one-fourth of the plate can be considered for analysis due to symmetry about both horizontal and vertical center lines.
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In Fig. 2.19, the semi-infinite soil has been simulated by considering only a finite portion of the soil. In some appli-
cations, the determination of the size of the finite domain may pose a problem. In such cases, we can use infinite elements
for modeling [2.3e2.5]. As an example, Fig. 2.20 shows a four-node element that is infinitely long in the x direction. The
coordinates of the nodes of this infinite element can be transformed to the natural coordinate system (s, t) as follows:

s ¼ 1� 2

(
1
x
$
ðy3 � yÞx1 þ ðy� y1Þx4

ðy3 � y1Þ

)m

; m � 1

t ¼ 1� 2

�
y3 � y

y3 � y1

�
See Section 4.3.3 for the definition of the natural coordinate system.

Footing

Semi-infinite soil

Original foundation Idealization of semi-infinite medium

DA

CB

(A) (B)

FIGURE 2.19 A foundation under concentrated load.

Unit slice considered for
plane strain analysis

FIGURE 2.18 A dam with uniform geometry and loading.
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2.4 NODE NUMBERING SCHEME

As seen in Chapter 1, the finite element analysis of practical problems often leads to matrix equations in which the matrices
involved will be banded. The advances in the finite element analysis of large practical systems have been made possible
largely due to the banded nature of the matrices. Furthermore, since most of the matrices involved (e.g., stiffness matrices)
are symmetric, the demands on the computer storage can be substantially reduced by storing only the elements involved in
half bandwidth instead of storing the entire matrix.

The bandwidth of the overall or global characteristic matrix depends on the node numbering scheme and the number of
dof considered per node [2.6]. If we can minimize the bandwidth, the storage requirements as well as solution time can also
be minimized. Since the number of dof per node is generally fixed for any given type of problem, the bandwidth can be
minimized by using a proper node numbering scheme. As an example, consider a three-bay frame with rigid joints, 20
stories high, shown in Fig. 2.21. Assuming that there are three dof per node, there are 252 unknowns in the final equations

4

1 2

3
(x4, y4= y3)

(x2= ∞, y2= y1)

(x3= ∞, y3)

(x1, y1)

x

y

FIGURE 2.20 A four-node infinite element.
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FIGURE 2.21 A three-bay frame.
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(including the dof corresponding to the fixed nodes), and if the entire stiffness matrix is stored in the computer, it will
require 2522 ¼ 63,504 locations. The bandwidth (strictly speaking, half-bandwidth) of the overall stiffness matrix can be
shown to be 15, and thus the storage required for the upper half-band is only 15 � 252 ¼ 3780 locations.

Before we attempt to minimize the bandwidth, we discuss the method of calculating the bandwidth. For this, we consider
again the rigid jointed frame shown in Fig. 2.21. By applying constraints to all the nodal dof except number 1 at node 1 (joint
A), it is clear that an imposed unit displacement in the direction of 1 will require constraining forces at the nodes directly
connected to node Adthat is, B and C. These constraining forces are nothing but the cross-stiffnesses appearing in the
stiffness matrix, and these forces are confined to the nodes B and C. Thus, the nonzero terms in the first row of the global
stiffness matrix (Fig. 2.22) will be confined to the first 15 positions. This defines the bandwidth (B) as

Bandwidth ðBÞ ¼ ðmaximum difference between the numbered dof at the ends of any member þ 1Þ
This definition can be generalized so as to be applicable for any type of finite element as

Bandwidth ðBÞ ¼ ðDþ 1Þ$f (2.1)

where D is the maximum largest difference in the node numbers occurring for all elements of the assemblage, and f is the
number of dof at each node.

The previous equation indicates that D has to be minimized in order to minimize the bandwidth. Thus, a shorter
bandwidth can be obtained simply by numbering the nodes across the shortest dimension of the body. This is clear from
Fig. 2.23 also, where the numbering of nodes along the shorter dimension produces a bandwidth of B ¼ 15 (D ¼ 4),
whereas the numbering along the longer dimension produces a bandwidth of B ¼ 66 (D ¼ 21).

As observed previously, the bandwidth of the overall system matrix depends on the manner in which the nodes are
numbered. For simple systems or regions, it is easy to label the nodes so as to minimize the bandwidth. But for large
systems, the procedure becomes nearly impossible. Hence, automatic mesh generation algorithms, capable of discretizing
any geometry into an efficient finite element mesh without user intervention, have been developed [2.7,2.8]. Most com-
mercial finite element software has built-in automatic mesh generation codes. An automatic mesh generation program
generates the locations of the node points and elements, labels the nodes and elements, and provides the elementenode
connectivity relationships.

B =Bandwidth=15

240
Equations

FIGURE 2.22 Banded nature of the stiffness matrix for the frame of Fig. 2.21.

Discretization of the Domain Chapter | 2 67

www.konkur.in

Telegram: @uni_k



EXAMPLE 2.2
A drilling machine is modeled using one-dimensional beam elements as shown in Fig. 2.24A. If two dof are associated with each

node, label the node numbers for minimizing the bandwidth of the stiffness matrix of the system.

Solution

Approach: Number the nodes along the shorter side of the machine first.

Because the column (vertical member) of the machine has five nodes and the arm (horizontal member) has only four nodes, we

number the nodes along the shorter side as shown in Fig. 2.24B. Noting that the maximum difference between the numbers of the

end nodes among all the elements is 2, the bandwidth of the resulting stiffness matrix of the system is given by

B ¼ ðD þ 1Þf ¼ ð2þ 1Þ2 ¼ 6

Note that the nodes can also be numbered as shown in Fig. 2.24C, which also yields the same bandwidth of B ¼ 6.
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6241 3802

634221 84

1 22 43 64

2 23 44 65

3 24 45 66
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 along the longer dimension
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FIGURE 2.23 Different node numbering schemes.
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FIGURE 2.24 A drilling machine.
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2.5 AUTOMATIC MESH GENERATION2

Mesh generation is the process of dividing a physical domain into smaller subdomains (called elements) to facilitate an
approximate solution of the governing ordinary or partial differential equation. For this, one-dimensional domains (straight
or curved lines) are subdivided into smaller line segments, two-dimensional domains (planes or surfaces) are subdivided
into triangle or quadrilateral shapes, and three-dimensional domains (volumes) are subdivided into tetrahedron and
hexahedron shapes. If the physical domain is simple and the number of elements used is small, mesh generation can be
done manually. However, most practical problems, such as those encountered in aerospace, automobile, and construction
industries have complex geometries that require the use of thousands and sometimes millions of elements. In such cases,
the manual process of mesh generation is impossible and we have to use automatic mesh generation schemes based on the
use of a CAD or solid modeling package.

Automatic mesh generation involves the subdivision of a given domain, which may be in the form of a curve, surface,
or solid (described by a CAD or solid modeling package) into a set of nodes (or vertices) and elements (subdomains) to
represent the domain as closely as possible subject to the specified element shape and size restrictions. Many automatic
mesh generation schemes use a bottom-up approach in that nodes (or vertices or corners of the domain) are meshed first,
followed by curves (boundaries), then surfaces, and finally solids. Thus, for a given geometric domain of the problem,
nodes are first placed at the corner points of the domain, and then nodes are distributed along the geometric curves that
define the boundaries. Next, the boundary nodes are used to develop nodes in the surface(s), and finally the nodes on the
various surfaces are used to develop nodes within the given volume (or domain). The nodes or mesh points are used to
define line elements if the domain is one-dimensional; triangular or quadrilateral elements if the domain is two-
dimensional; and tetrahedral or hexahedral elements if the domain is three-dimensional.

The automatic mesh generation schemes are usually tied to solid modeling and computer-aided design schemes. When
the user supplies information on the surfaces and volumes of the material domains that make up the object or system, an
automatic mesh generator generates the nodes and elements in the object. The user can also specify minimum permissible
element sizes for different regions of the object. Many mesh generation schemes first create all the nodes and then produce
a mesh of triangles by connecting the nodes to form triangles (in a plane region). In a particular scheme, known as
Delaunay triangulation, the triangular elements are generated by maximizing the sum of the smallest angles of the triangles;
thus the procedure avoids generation of thin elements.

The most common methods used in the development of automatic mesh generators are the tesselation and octree
methods [2.9,2.10]. In the tesselation method, the user gives a collection of node points and also an arbitrary starting
node. The method then creates the first simplex element using the neighboring nodes. Then a subsequent or neighboring
element is generated by selecting the node point that gives the least distorted element shape. The procedure is continued
until all the elements are generated. The step-by-step procedure involved in this method is illustrated in Fig. 2.25 for a
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FIGURE 2.25 Mesh generation using the tesselation method.

2. This section may be omitted without loss of continuity in the text material.
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two-dimensional example. Alternately, the user can define the boundary of the object by a series of nodes. Then the
tesselation method connects selected boundary nodes to generate simplex elements. The stepwise procedure used3 in this
approach is shown in Fig. 2.26.

The octree methods belong to a class of mesh generation schemes known as tree structure methods, which are
extensively used in solid modeling and computer graphics display methods. In the octree method, the object is first
considered enclosed in a three-dimensional cube. If the object does not completely (uniformly) cover the cube, the cube is
subdivided into eight equal parts. In the two-dimensional analog of the octree method, known as the quadtree method, the
object is first considered enclosed in a square region. If the object does not completely cover the square, the square is
subdivided into four equal quadrants. If any one of the resulting quadrants is full (completely occupied by the object) or
empty (not occupied by the object), then it is not subdivided further. On the other hand, if any one of the resulting
quadrants is partially full (partially occupied by the object), it is subdivided into four quadrants. This procedure of sub-
dividing partially full quadrants is continued until all the resulting regions are either full or empty, or until some pre-
determined level of resolution is achieved. At the final stage, the partially full quadrants are assumed to be either full or
empty arbitrarily based on a prespecified criterion.

The approaches indicated in this section can be extended naturally to three and higher dimensional spaces.

EXAMPLE 2.3
Generate the finite element mesh for the two-dimensional object (region) shown by the crossed lines in Fig. 2.27A using the

quadtree method.

Solution

Approach: Use the quadtree method.

First, the object is enclosed in a square region as shown by the dotted lines in Fig. 2.27A. Since the object does not occupy the

complete square, the square is divided into four parts as shown in Fig. 2.27B. Since none of these parts are fully occupied by the

object, each part is subdivided into four parts as shown in Fig. 2.27C. It can be seen that parts 1, 3, and 4 of A, part 3 of B, parts

2e4 of C, and parts 1e3 of D are completely occupied by the object, whereas parts 1, 2, and 4 of B and part 1 of C are empty (not

occupied by the object). In addition, part 2 of A and part 4 of D are partially occupied by the object; hence, they are further

subdivided into four parts each as shown in Fig. 2.27D. It can be noted that parts a and g of part 2 (of A) and parts a and b of part 4

(of D) are completely occupied while the remaining parts, namely b and d of part 2 (of A) and g and d of part 4 (of D), are empty.

Since all the parts at this stage are either completely occupied or completely empty, no further subdivision is necessary.

The corresponding quadtree representation is shown in Fig. 2.27E. Note that the shape of the finite elements is assumed to be

square in this example.

Nodes on the boundary of the object or region Geometry of the object or region
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4
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Complete set of nodes and elements

(A) (B) (C)

FIGURE 2.26 The tesselation method with nodes defined on the boundary.

3. A simplex in an n-dimensional space is defined as a geometric figure having n þ 1 nodes or corners. Thus, the simplex will be a triangle in
two-dimensional space and a tetrahedron in three-dimensional space.
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EXAMPLE 2.3dcont’d

A B

C D

Given object enclosed by a square Division into four parts

Division of each partially occupied part
     into four parts

Division of each partially occupied part
 into four parts

Quadtree representation
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FIGURE 2.27 Mesh generation using the quadtree method.
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REVIEW QUESTIONS

2.1 Give brief answers to the following questions.

1. State two factors that influence the selection of a specific finite element in the modeling process.
2. When can we use a one-dimensional element for modeling?
3. Give two examples of physical problems that can be modeled using one-dimensional or line elements.
4. What is the reason for using two degrees of freedom at each node of a one-dimensional beam element?
5. Give an example of a practical problem where the type of element to be used is unique.
6. Give two practical problems that require different types of elements for modeling.
7. Define the aspect ratio of an element.
8. Can we always expect improved accuracy of the finite element solution by increasing the number of elements?
9. How do you model the semi-infinite soil under a column subjected to a large compressive load?

10. Define the bandwidth of a matrix.
11. What is the purpose of the tessellation method?
12. Indicate three practical problems that can be modeled using axisymmetric elements.

2.2 Fill in the blank(s) with suitable word(s).

1. Several methods can be used to ———————————————— any domain in the finite element method.
2. The finite element mesh generation of complex domains, with minimal interface with the analyst, can be done using

an————————————————————————————————————— program or software.
3. The basic shape of the element for three-dimensional problems is ———————————————.
4. A hexahedron element can be formed using ————————— tetrahedron elements.
5. Elements with curved sides are considered —————————— order elements.
6. A —————————————————— element can be obtained using two triangular elements.
7. An aspect ratio of ——————— is desirable for best results.
8. —————————— are to be located at points of abrupt change in geometry, material properties, or loads.
9. If the geometry and load conditions have double symmetry in a problem, the finite element model needs to consider

only for —————————————————— of the problem.
10. Formodeling a longdam,weneed to consider only a———————————————————————————

of the dam in the axial direction.
11. ———————————— elements are available for modeling infinite regions.
12. It is desirable to —————————————————— the bandwidth of the stiffness matrix for efficient

solution.
13. A shorter bandwidth can be obtained simply by numbering the nodes across the ————————— dimension of

the body.
14. The octree method can be used for automatic—————————————————————————————.

2.3 Indicate whether the following statement is true or false.

1. The finite element method is used to find an approximate solution of an infinite number of degrees of freedom system
using only a finite number of degrees of freedom.

2.4 Select the most appropriate answer from the multiple choices given.

1. The basic shape of the element for two-dimensional problems is:
(a) Rectangle (b) Triangle (c) Quadrilateral

PROBLEMS

2.1 A thick-walled pressure vessel is subjected to an internal pressure as shown in Fig. 2.28. Model the cross section of the
pressure vessel by taking advantage of the symmetry of the geometry and load condition.
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2.2 A rectangular plate with a V-notch is shown in Fig. 2.29. Model the plate using triangular elements by taking advan-
tage of the symmetry of the system.

2.3 The plate shown in Fig. 2.30 is modeled using 13 triangular and 2 quadrilateral elements. Label the nodes such that the
bandwidth of the system matrix is minimal. Compute the resulting bandwidth assuming 1 dof at each node.

FIGURE 2.29 A rectangular plate with a notch.

FIGURE 2.30 A plate modeled with triangular and quadrilateral elements.

p

y

x

FIGURE 2.28 A thick-walled pressure vessel.
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2.4e2.8 Label the elements and nodes for each of the systems shown in Figs. 2.31 through 2.35 to produce a minimum
bandwidth. In addition, find the resulting bandwidth in each case.

3 dof per node

FIGURE 2.31 A planar frame.

2 dof per node

FIGURE 2.32 A planar truss.

3 dof per node

FIGURE 2.33 An aircraft wing.
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2.9 Consider the collection of node points shown in Fig. 2.36 for a two-dimensional object. Generate the finite element
mesh using the tesselation method.

2.10 Generate the finite element mesh for the two-dimensional object shown in Fig. 2.37 using the quadtree method.
2.11 State the reasons for the desirability of elements with an aspect ratio close to 1 in finite element modeling.
2.12 Give two practical examples, each of which can be modeled using one-, two-, and three-dimensional finite elements

to achieve different levels of accuracy.
2.13 The transmission lines (wires) carrying electricity are supported by electric transmission towers and are subjected to

axial tension and gravity, and wind and snow loads. Discuss possible types of finite elements/models that can be used
for the stress analysis of transmission lines.

2 dof per node

FIGURE 2.34 A planar truss.

2 dof per node

FIGURE 2.35 A planar truss.

1

FIGURE 2.36 Node points for a two-dimensional object.
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2.14 Water at pressure pi flows through an underground cast iron pipe. The outer surface of the pipe is subjected to a uni-
form axisymmetric pressure along its length by the surrounding soil (Fig. 2.38). The pipe has an inner diameter of
0.7 m, outer diameter of 1.0 m, and a length of 1000 m. Indicate a suitable finite element idealization for the defor-
mation and stress analysis of the water pipe.

2.15 Label the nodes of the planar truss shown in Fig. 2.39 to minimize the bandwidth of the resulting stiffness matrix.
Assume that each node has two dof (components of the displacement of the node parallel to the x and y axes). Also
determine the resulting bandwidth of the stiffness matrix.

FIGURE 2.37 A two-dimensional object.

p0

pi

FIGURE 2.38 An underground pipe.

x

Bar elements

y

FIGURE 2.39 A planar truss.
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2.16 Label the nodes of the truncated conical shell shown in Fig. 2.40. Assume that each node has three dof (components
of the displacement of the node parallel to the x, y, and z axes). Also determine the resulting bandwidth of the stiff-
ness matrix.

2.17 A semicircular plate is subjected to loads P1 and P2 as shown in Fig. 2.41. Using straight-sided triangular elements to
model the plate is proposed. Show a sequence of three finite element meshes with increasing number of elements
ensuring that each finer mesh includes the previous coarse mesh(es).

2.18 The data for the uniform beam shown in Fig. 2.42 are given by L ¼ 100 cm, P ¼ 1000 N, E ¼ 70 � 109 Pa, and
I ¼ 2 cm4. Determine the deflection of the beam at the center using a single beam element.
Hint: Use the symmetry of the geometry and load of the beam.

x

y

z

FIGURE 2.40 A truncated conical shell.

P2

P1

FIGURE 2.41 A semicircular plate.

P

L
2

L
2

E, I

FIGURE 2.42 A uniform fixedefixed beam.
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2.19 A mechanical link is subjected to a symmetric distributed load p and concentrated loads P as shown in Fig. 2.43.
Indicate the boundary conditions to be incorporated if only a quarter of the link is to be modeled using suitable finite
elements to determine the stresses induced in the link.

2.20 Generate the finite element mesh for the two-dimensional plate shown in Fig. 2.44 using the quadtree method.
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3.1 INTRODUCTION

As stated earlier, the basic idea of the finite element method is piecewise approximationdthat is, the solution of a
complicated problem is obtained by dividing the region of interest into small regions (finite elements) and approximating
the solution over each subregion by a simple function. Thus, a necessary and important step is that of choosing a simple
function for the solution in each element. The functions used to represent the behavior of the solution within an element are
called interpolation functions, approximating functions, or interpolation models. Polynomial-type interpolation functions
have been most widely used in the literature due to the following reasons:

1. It is easier to formulate and computerize the finite element equations with polynomial-type interpolation functions. Spe-
cifically, it is easier to perform differentiation or integration with polynomials.

2. It is possible to improve the accuracy of the results by increasing the order of the polynomial, as shown in Fig. 3.1.
Theoretically, a polynomial of infinite order corresponds to the exact solution. But in practice we use polynomials
of finite order only as an approximation.

Although trigonometric functions also possess some of these properties, they are seldom used in the finite element
analysis [3.1]. We shall consider only polynomial-type interpolation functions in this book.

When the interpolation polynomial is of order one, the element is termed a linear element. A linear element is called a
simplex element if the number of nodes in the element is 2, 3, and 4 in one, two, and three dimensions, respectively. If the
interpolation polynomial is of order two or more, the element is known as a higher order element. In higher order elements,
some secondary (mid-side and/or interior) nodes are introduced in addition to the primary (corner) nodes in order to match
the number of nodal degrees of freedom with the number of constants (generalized coordinates) in the interpolation
polynomial.

In general, fewer higher order elements are needed to achieve the same degree of accuracy in the final results. Although
it does not reduce the computational time, the reduction in the number of elements generally reduces the effort needed in
the preparation of data and hence the chances of errors in the input data. The higher order elements are especially useful in
cases in which the gradient of the field variable is expected to vary rapidly. In these cases the simplex elements, which
approximate the gradient by a set of constant values, do not yield good results. The combination of greater accuracy and a

The Finite Element Method in Engineering. https://doi.org/10.1016/B978-0-12-811768-2.00003-1
Copyright © 2018 Elsevier Inc. All rights reserved.
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reduction in the data preparation effort has resulted in the widespread use of higher order elements in several practical
applications. We shall consider mostly linear elements in this chapter.

If the order of the interpolation polynomial is fixed, the discretization of the region (or domain) can be improved by two
methods. In the first method, known as the r-method, the locations of the nodes are altered without changing the total
number of elements. In the second method, known as the h-method, the number of elements is increased. On the other
hand, if improvement in accuracy is sought by increasing the order of the interpolation of polynomial, the method is known
as the p-method.

Problems involving curved boundaries cannot be modeled satisfactorily by using straight-sided elements. The family of
elements known as isoparametric elements has been developed for this purpose. The basic idea underlying the iso-
parametric elements is to use the same interpolation functions to define the element shape or geometry as well as the
variation of the field variable within the element. To derive the isoparametric element equations, we first introduce a local
or natural coordinate system for each element shape. Then the interpolation or shape functions are expressed in terms of the
natural coordinates. The representation of geometry in terms of (nonlinear) shape functions can be considered a mapping
procedure that transforms a regular shape, such as a straight-sided triangle or rectangle in the local coordinate system, into
a distorted shape, such as a curved-sided triangle or rectangle in the global Cartesian coordinate system. This concept can
be used in representing problems with curved boundaries with the help of curved-sided isoparametric elements. Today,
isoparametric elements are extensively used in three-dimensional and shell-analysis problems. The formulation of iso-
parametric elements, along with the aspect of numerical integration that is essential for computations with isoparametric
elements, is considered in the next chapter.

3.2 POLYNOMIAL FORM OF INTERPOLATION FUNCTIONS

If a polynomial type of variation is assumed for the field variable f (x) in a one-dimensional element, f (x) can be
expressed as

fðxÞ ¼ a1 þ a2xþ a3x
2 þ/þ amx

n (3.1)

Similarly, in two- and three-dimensional finite elements the polynomial form of interpolation functions can be
expressed as

fðx; yÞ ¼ a1 þ a2xþ a3yþ a4x
2 þ a5y

2 þ a6xyþ/þ amy
n (3.2)

Exact solution

(x)

= a0= constant 

Approximation by a constant

Subregion or
element

x

(x)

Linear approximation Quadratic approximation

= a0+ a1x + a2x 2

Exact solution
Exact solution

= a0+ a1x

Subregion or
element

Subregion or
element

x x

φ

φ (x)φ

(x)φ

(x)φ
(x)φ

(B)

(A)

(C)

FIGURE 3.1 Polynomial approximation in one dimension.
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fðx; y; zÞ ¼ a1 þ a2xþ a3yþ a4zþ a5x
2 þ a6y

2 þ a7z
2

þa8xyþ a9yzþ a10zxþ/þ amz
n

(3.3)

where a1, a2, ., am are the coefficients of the polynomial, also known as generalized coordinates; n is the degree of the
polynomial; and the number of polynomial coefficients m is given by

m ¼ nþ 1for one-dimensional elementsðEq: 3:1Þ (3.4)

m ¼
Xnþ1

j¼ 1

j for two-dimensional elementsðEq: 3:2Þ (3.5)

m ¼
Xnþ1

j¼ 1

jðnþ 2� jÞfor three-dimensional elementsðEq: 3:3Þ (3.6)

In most practical applications, the order of the polynomial in the interpolation functions is taken as one, two, or three.
Thus, Eqs. (3.1) to (3.3) reduce to the following equations for various cases of practical interest.

For n [ 1 (linear model)
One-dimensional case:

fðxÞ ¼ a1 þ a2x (3.7)

Two-dimensional case:

fðx; yÞ ¼ a1 þ a2xþ a3y (3.8)

Three-dimensional case:

fðx; y; zÞ ¼ a1 þ a2xþ a3yþ a4z (3.9)

For n[ 2 (quadratic model)
One-dimensional case:

fðxÞ ¼ a1 þ a2xþ a3x
2 (3.10)

Two-dimensional case:

fðx; yÞ ¼ a1 þ a2xþ a3yþ a4x
2 þ a5y

2 þ a6xy (3.11)

Three-dimensional case:

fðx; y; zÞ ¼ a1 þ a2xþ a3yþ a4zþ a5x
2 þ a6y

2 þ a7z
2 þ a8xyþ a9yzþ a10xz (3.12)

For n[ 3 (cubic model)
One-dimensional case:

fðxÞ ¼ a1 þ a2xþ a3x
2 þ a4x

3 (3.13)

Two-dimensional case:

fðx; yÞ ¼ a1 þ a2xþ a3yþ a4x
2 þ a5y

2 þ a6xyþ a7x
3 þ a8y

3 þ a9x
2yþ a10xy

2 (3.14)

Three-dimensional case:

fðx; y; zÞ ¼ a1 þ a2xþ a3yþ a4zþ a5x
2 þ a6y

2 þ a7z
2 þ a8xyþ a9yzþ a10xzþ a11x

3 þ a12y
3 þ a13z

3

þ a14x
2yþ a15x

2zþ a16y
2zþ a17xy

2 þ a18xz
2 þ a19yz

2 þ a20xyz
(3.15)

3.3 SIMPLEX, COMPLEX, AND MULTIPLEX ELEMENTS

Finite elements can be classified into three categoriesdsimplex, complex, and multiplex elementsddepending on the
geometry of the element and the order of the polynomial used in the interpolation function [3.2]. The simplex elements are
those for which the approximating polynomial consists of constant and linear terms. Thus, the polynomials given by
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Eqs. (3.7) to (3.9) represent the simplex functions for one-, two-, and three-dimensional elements. Noting that a simplex is
defined as a geometric figure obtained by joining n þ 1 joints (nodes) in an n-dimensional space, we can consider the
corners of the elements as nodes in simplex elements. For example, the simplex element in two dimensions is a triangle
with three nodes (corners). The three polynomial coefficients a1, a2, and a3 of Eq. (3.8) can thus be expressed in terms of
the nodal values of the field variable f. The complex elements are those for which the approximating polynomial consists
of quadratic, cubic, and higher order terms, according to the need, in addition to the constant and linear terms. Thus, the
polynomials given by Eqs. (3.10) to (3.15) denote complex functions.

The complex elements may have the same shapes as the simplex elements but will have additional boundary nodes and,
sometimes, internal nodes. For example, the interpolating polynomial for a two-dimensional complex element (including
terms up to quadratic terms) is given by Eq. (3.11). Since this equation has six unknown coefficients ai, the corresponding
complex element must have six nodes. Thus, a triangular element with three corner nodes and three mid-side nodes
satisfies this requirement. The multiplex elements are those whose boundaries are parallel to the coordinate axes to achieve
interelement continuity, and whose approximating polynomials contain higher order terms. The rectangular element shown
in Fig. 3.2 is an example of a multiplex element in two dimensions. Note that the boundaries of the simplex and complex
elements need not be parallel to the coordinate axes.

3.4 INTERPOLATION POLYNOMIAL IN TERMS OF NODAL DEGREES OF FREEDOM

The basic idea of the finite element method is to consider a body as composed of several elements (or subdivisions) that are
connected at specified node points. The unknown solution or the field variable (e.g., displacement, pressure, or temper-
ature) inside any finite element is assumed to be given by a simple function in terms of the nodal values of that element.
The nodal values of the solution, also known as nodal degrees of freedom, are treated as unknowns in formulating the
system or overall equations. The solution of the system equations (e.g., force equilibrium equations or thermal equilibrium
equations or continuity equations) gives the values of the unknown nodal degrees of freedom. Once the nodal degrees of
freedom are known, the solution within any finite element (and hence within the complete body) will also be known to us.

Thus, we need to express the approximating polynomial in terms of the nodal degrees of freedom of a typical finite
element e. For this, let the finite element have M nodes. We can evaluate the values of the field variable at the nodes by
substituting the nodal coordinates into the polynomial equation given by Eqs. (3.1) to (3.3). For example, Eq. (3.1) can be
expressed as

fðxÞ ¼ h!T
a! (3.16)

where

h!T ¼ �
1 x x2 . xn

�
;

and

a! ¼

a1

a2

«

anþ1

8>>><>>>:
9>>>=>>>;

x

y

0

FIGURE 3.2 Example of a multiplex element.
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The evaluation of Eq. (3.16) at the various nodes of element e gives8>>><>>>:
fðat node 1Þ
fðat node 2Þ

«

fðat node MÞ

9>>>=>>>;
ðeÞ

¼ F
!ðeÞ ¼

26664
h!Tðat node 1Þ
h!Tðat node 2Þ

«

h!Tðat node MÞ

37775 a!h
h
he
i
a! (3.17)

where F
!ðeÞ

is the vector of nodal values of the field variable corresponding to element e, and the square matrix
h
he
i
can be

identified from Eq. (3.17). By inverting Eq. (3.17), we obtain

a! ¼
h
he
i�1

F
!ðeÞ

(3.18)

Substitution of Eq. (3.18) into Eqs. (3.1) to (3.3) gives

f ¼ h!T
a! ¼ h!T

h
he
i�1

F
!ðeÞ ¼ ½N�F!ðeÞ

(3.19)

where

½N� ¼ h!T
h
he
i�1

(3.20)

Eq. (3.19) now expresses the interpolating polynomial inside any finite element in terms of the nodal unknowns of that

element, F
!ðeÞ

.

Note

A major limitation of polynomial-type interpolation functions is that we have to invert the matrix
h
he
i
to find f, and

h
he
i�1

may

become singular in some cases [3.3]. The latter difficulty can be avoided by using other types of interpolation functions discussed

in Chapter 4.

The following example illustrates the use of Eq. (3.20) in finding the shape functions of an element.

EXAMPLE 3.1
The nodes of a one-dimensional element are located at x1 ¼ 20 in and x2 ¼ 25 in. The values of the field variable at the two nodes

(nodal unknowns) of the element are denoted F1 and F2. Assuming a linear interpolation model for the field variable as

fðxÞ ¼ f1 x g
�
a1

a2

�
h h!T

a! (E.1)

where

h!T ¼ f 1 x g and a! ¼
�
a1

a2

�
determine the matrix of shape functions [N(x)] using Eq. (3.20).

Solution

Approach: Use a linear interpolation model in the form of Eq. (E.1).

The nodal values of the field variable can be expressed, using Eq. (E.1), as

F1 ¼ fðx ¼ x1Þ ¼ f 1 20 g a!

F2 ¼ fðx ¼ x2Þ ¼ f 1 25 g a!

so that

FðeÞ ¼
�
F1

F2

�
¼

�
1 20

1 25

�
a!h

"
he
#
a!

Continued

Interpolation Models Chapter | 3 85

www.konkur.in

Telegram: @uni_k



EXAMPLE 3.1 dcont’d

The inverse of the matrix
h
he
i
is given by

h
he
i�1

¼
�
1 20

1 25

��1

¼
24 5 �4

�1

5

1

5

35
Thus, the matrix of shape functions of the element is given by Eq. (3.20):

h
NðxÞ

i
¼ h!T

h
he
i�1

¼ f 1 x g

2664
5 �4

�1

5

1

5

3775 ¼
n�

5� x

5

	 �
�4þ x

5

	o
hfN1ðxÞ N2ðxÞ g

where the shape functions associated with nodes 1 and 2, N1(x) and N2(x), can be identified as

N1ðxÞ ¼ 5� x

5
; N2ðxÞ ¼ �4þ x

5

3.5 SELECTION OF THE ORDER OF THE INTERPOLATION POLYNOMIAL

While choosing the order of the polynomial in a polynomial-type interpolation function, the following considerations have
to be taken into account:

1. The interpolation polynomial should satisfy, as far as possible, the convergence requirements stated in Section 3.6.
2. The pattern of variation of the field variable resulting from the polynomial model should be independent of the local

coordinate system.
3. The number of generalized coordinates (ai) should be equal to the number of nodal degrees of freedom of the element (Fi).

A discussion on the first consideration, namely, the convergence requirements to be satisfied by the interpolation
polynomial, is given in the next section. According to the second consideration, as can be felt intuitively also, it is un-
desirable to have a preferential coordinate direction. That is, the field variable representation within an element, and hence
the polynomial, should not change with a change in the local coordinate system (when a linear transformation is made from
one Cartesian coordinate system to another). This property is called geometric isotropy or geometric invariance or spatial
isotropy [3.4]. In order to achieve geometric isotropy, the polynomial should contain terms that do not violate symmetry in
Fig. 3.3, which is known as Pascal triangle in the case of two dimensions, and Pascal tetrahedron or pyramid in the case
of three dimensions.

Thus, in the case of a two-dimensional simplex element (triangle), the interpolation polynomial should include terms
containing both x and y, but not only one of them, in addition to the constant term. In the case of a two-dimensional
complex element (triangle), if we neglect the term x3 (or x2y) for any reason, we should not include y3 (or xy2) also in
order to maintain geometric isotropy of the model. Similarly, in the case of a three-dimensional simplex element (tetra-
hedron), the approximating polynomial should contain terms involving x, y, and z in addition to the constant term.

The final consideration in selecting the order of the interpolation polynomial is to make the total number of terms involved
in the polynomial equal to the number of nodal degrees of freedom of the element. The satisfaction of this requirement enables
us to express the polynomial coefficients in terms of the nodal unknowns of the element as indicated in Section 3.4.

3.6 CONVERGENCE REQUIREMENTS

Since the finite element method is a numerical technique, we obtain a sequence of approximate solutions as the element
size is reduced successively. This sequence will converge to the exact solution if the interpolation polynomial satisfies the
following convergence requirements [3.5e3.8]:

1. The field variable must be continuous within the elements. This requirement is easily satisfied by choosing continuous
functions as interpolation models. Since polynomials are inherently continuous, the polynomial type of interpolation
models discussed in Section 3.2 satisfy this requirement.
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2. All uniform states of the field variable f and its partial derivatives up to the highest order appearing in the functional
I(f) must have representation in the interpolation polynomial when, in the limit, the element size reduces to zero.
The necessity of this requirement can be explained physically. The uniform or constant value of the field variable is the
most elementary type of variation. Thus, the interpolation polynomial must be able to give a constant value of the field
variable within the element when the nodal values are numerically identical. Similarly, when the body is subdivided

In two dimensions (Pascal triangle)

Total number of 
terms involved

Constant model 1

Linear model 3

Quadratic model 6

Cubic model 10

Quartic model 15

Quintic model 21

Total number of
terms involved

Constant model 1

Linear model 4

1

1

Quadratic model 10

Cubic model 20

Quartic model 35

In three dimensions (Pascal tetrahedron or pyramid)

x 4 y 4

y 3

y 2

z 2

x 3

x 2

x 4

x 3

x 2

x 2y

x 3y

xy 2

xy 3

y 3

y 2

y 4

y 5

yx

x 5 x 4y x 3y 2 x 2y 3 xy 4

x y

z

xy

yzxz

x 3z

x 3y

x 2y

x 2z

z 3y
z 2y 2

zy 3

xy 3

xy 2

x 2z 2

xz 3
z 4

z 3
z 2y

z y 2

xz 2
xyz

xyz 2

x 2y 2

xy

x 2y 2

x 2yz xy 2z

(A)

(B)

FIGURE 3.3 Array of terms in complete polynomials of various orders.
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into smaller and smaller elements, the partial derivatives of the field variable up to the highest order appearing in the
functional1 I(f) approach a constant value within each element. Thus, we cannot hope to obtain convergence to the
exact solution unless the interpolation polynomial permits this constant derivative state.
In the case of solid mechanics and structural problems, this requirement states that the assumed displacement model
must permit the rigid body (zero strain) and the constant strain states of the element.

3. The field variable f and its partial derivatives up to one order less than the highest order derivative appearing in the
functional I(f) must be continuous at element boundaries or interfaces.

We know that in the finite element method the discrete model for the continuous function f is taken as a set of
piecewise continuous functions, each defined over a single element. As seen in Examples 1.2 to 1.4, we need to evaluate
integrals of the form Z

drf
dxr

dx

to derive the element characteristic matrices and vectors. We know that the integral of a stepwise continuous function, say
f(x), is defined if f(x) remains bounded in the interval of integration. Thus, for the integralZ

drf
dxr

dx

to be defined, f must be continuous to the order (r � 1) to ensure that only finite jump discontinuities occur in the r-th
derivative of f. This is precisely the requirement stated previously.

The elements whose interpolation polynomials satisfy the requirements (1) and (3) are called compatible or conforming
elements and those satisfying condition (2) are called complete elements. If r-th derivative of the field variable f is
continuous, then f is said to have Cr continuity. In terms of this notation, the completeness requirement implies that f
must have Cr continuity within an element, whereas the compatibility requirement implies that f must have Cr�1

continuity at element interfaces.2

In the case of general solid and structural mechanics problems, this requirement implies that the element must deform
without causing openings, overlaps, or discontinuities between adjacent elements. In the case of beam, plate, and shell
elements, the first derivative of the displacement (slope) across interelement boundaries also must be continuous.

Although it is desirable to satisfy all the convergence requirements, several interpolation polynomials that do not
meet all the requirements have been used in the finite element literature. In some cases, acceptable convergence or
convergence to an incorrect solution has been obtained. In particular, the interpolation polynomials that are complete but
not conforming have been found to give satisfactory results.

If the interpolation polynomial satisfies all three requirements, the approximate solution converges to the correct so-
lution when we refine the mesh and use an increasing number of smaller elements. In order to prove the convergence
mathematically, the mesh refinement has to be made in a regular fashion so as to satisfy the following conditions:

1. All previous (coarse) meshes must be contained in the refined meshes.
2. The elements must be made smaller in such a way that every point of the solution region can always be within an

element.
3. The form of the interpolation polynomial must remain unchanged during the process of mesh refinement.

Conditions (1) and (2) are illustrated in Fig. 3.4, in which a two-dimensional region (in the form of a parallelogram) is
discretized with an increasing number of triangular elements. From Fig. 3.5, in which the solution region is assumed to
have a curved boundary, it can be seen that conditions (1) and (2) are not satisfied if we use elements with straight
boundaries. In structural problems, interpolation polynomials satisfying all the convergence requirements always lead to
the convergence of the displacement solution from below while nonconforming elements may converge either from below
or from above.

1. Finite element method can be considered as an approximate method of minimizing a functional I(f) in the form of an integral of the type

IðfÞ ¼ I



f;

df
dx

;
d2f
dx2

;/;
drf
dxr

�
The functionals for simple one-dimensional problems were given in Examples 1.2e1.4.
2. This statement assumes that the functional (I) corresponding to the problem contains derivatives of f up to the r-th order.
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Notes

1. For any physical problem, the selection of finite elements and interpolation polynomials to achieve C 0 continuity is not very

difficult. However, the difficulty increases rapidly when higher order continuity is required. In general, the construction of

finite elements to achieve specified continuity of order C 0, C1, C2, ., requires skill, ingenuity, and experience. Fortunately,

most of the time, we would be able to use the elements already developed in an established area such as stress analysis for

solving new problems.

2. The construction of an efficient finite element model involves (a) representing the geometry of the problem accurately,

(b) developing a finite element mesh to reduce the bandwidth, and (c) choosing a proper interpolation model to obtain the

desired accuracy in the solution. Unfortunately, there is no a priori method of creating a reasonably efficient finite element

Continued

Idealization with 2 elements Idealization with 8 elements

Idealization with 32 elements
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(A) (B)
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FIGURE 3.4 All previous meshes contained in refined meshes.

Idealization with 6 elements Idealization with 12 elements

(A) (B)

FIGURE 3.5 Previous mesh is not contained in the refined mesh.
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Notesdcont’d

model that can ensure a specified degree of accuracy. Several numerical tests are available for assessing the convergence of a

finite element model [3.9,3.10].

Some adaptive finite element methods have been developed to employ the results from previous meshes to estimate the

magnitude and distribution of solution errors and to adaptively improve the finite element model [3.11e3.15]. There are four

basic approaches to adaptively improve a finite element model:

a. Subdivide selected elements (called h-method).

b. Increase the order of the polynomial of selected elements (called p-refinement).

c. Move node points in fixed element topology (called r-refinement).

d. Define a new mesh having a better distribution of elements.

Various combinations of these approaches are also possible. Determining which of these approaches is the best for a particular

class of problems is a complex problem that must consider the cost of the entire solution process.

3.7 LINEAR INTERPOLATION POLYNOMIALS IN TERMS OF GLOBAL COORDINATES

The linear interpolation polynomials correspond to simplex elements. In this section, we derive the linear interpolation
polynomials for the basic one-, two-, and three-dimensional elements in terms of the global coordinates that are defined for
the entire domain or body.

3.7.1 One-Dimensional Simplex Element

Consider a one-dimensional element (line segment) of length l with two nodes, one at each end, as shown in Fig. 3.6. Let
the nodes be denoted as i and j and the nodal values of the field variable f as Fi and Fj. The variation of f inside the
element is assumed to be linear as

fðxÞ ¼ a1 þ a2x (3.21)

where a1 and a2 are the unknown coefficients. By using the nodal conditions

fðxÞ ¼ Fi at x ¼ xi

fðxÞ ¼ Fj at x ¼ xj

i j
x

=

(x)

0

x

xi

xj

Φj

Φi

 = (xj − xi)

φ

(x)φ

(x)φ

α α1+ 2x

FIGURE 3.6 One-dimensional simplex element.
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and Eq. (3.21), we obtain

Fi ¼ a1 þ a2xi

Fj ¼ a1 þ a2xj

The solution of these equations gives

a1 ¼ Fixj � Fjxi
l

a2 ¼ Fj � Fi

l

9>>>=>>>; (3.22)

where xi and xj denote the global coordinates of nodes i and j, respectively. By substituting Eq. (3.22) into Eq. (3.21), we
obtain

fðxÞ ¼


Fixj � Fjxi

l

�
þ


Fj � Fi

l

�
x (3.23)

This equation can be written, after rearrangement of terms, as

fðxÞ ¼ NiðxÞFi þ NjðxÞFj ¼ ½NðxÞ�F!ðeÞ
(3.24)

where

½NðxÞ� ¼ ½NiðxÞ NjðxÞ� (3.25)

NiðxÞ ¼ xj � x

l

NjðxÞ ¼ x� xi
l

9>>=>>; (3.26)

and

F
!ðeÞ ¼

�
Fi

Fj

�
¼ vector of nodal unknowns of elements e (3.27)

Note that the superscript e is not used for Fi and Fj for simplicity.
The linear functions of x defined in Eq. (3.26) are called interpolation or shape functions.3 Note that each interpolation

function has a subscript to denote the node to which it is associated. Furthermore, the value of Ni(x) can be seen to be 1 at
node i (x ¼ xi) and 0 at node j (x ¼ xj). Likewise, the value of Nj(x) will be 0 at node i and 1 at node j. These represent the
common characteristics of interpolation functions. They will be equal to 1 at one node and 0 at each of the other nodes of
the element.

EXAMPLE 3.2
The nodal temperatures of nodes i and j (same as local nodes 1 and 2) of an element in a one-dimensional fin are known to be

Ti ¼ 120�C and Tj ¼ 80�C with the x-coordinates xi ¼ 30 cm and xj ¼ 50 cm. Find the following:

a. Shape functions associated with the nodal values Ti and Tj.

b. Interpolation model for the temperature inside the element, T(x).

c. Temperature in the element at x ¼ 45 cm.

Continued

3. The original polynomial type of interpolation model f ¼ h!T
a! (which is often called the interpolation polynomial or interpolation model of

the element) should not be confused with the interpolation functions Ni associated with the nodal degrees of freedom. There is a clear difference between
the two. The expression h!T

a! denotes an interpolation polynomial that applies to the entire element and expresses the variation of the field variable
inside the element in terms of the generalized coordinates ai. The interpolation function Ni corresponds to the i-th nodal degree of freedom F

ðeÞ
i and only

the sum
P
i
NiFiðeÞ represents the variation of the field variable inside the element in terms of the nodal degrees of freedom F

ðeÞ
i . In fact, the interpolation

function corresponding to the i-th nodal degree of freedom (Ni) assumes a value of 1 at node i, and 0 at all the other nodes of the element.
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EXAMPLE 3.2 dcont’d

Solution

1. The shape functions Ni(x) and Nj(x) are given by Eq. (3.26):

NiðxÞ ¼ xj � x

l
¼ 50� x

50� 30
¼ 2:5� 0:05 x (E.1)

NjðxÞ ¼ x � xi
l

¼ x � 30

50� 30
¼ 0:05 x � 1:5 (E.2)

2. The interpolation model for the temperature inside the element can be expressed, using Eq. (3.24), as

T ðxÞ ¼ NiðxÞTi þNjðxÞTj ¼ ð2:5� 0:05 xÞ120þ ð0:05 x � 1:5Þ80�C (E.3)

3. The temperature at x ¼ 45 cm can be determined from Eq. (E.3) as

T ðx ¼ 45Þ ¼ ð2:5� 0:05ð45ÞÞ120þ ð0:05ð45Þ � 1:5Þ 80 ¼ 90�C (E.4)

EXAMPLE 3.3
A one-dimensional tapered fin element has the nodal coordinates xi ¼ 20 mm and xj ¼ 60 mm with the area of cross section

changing linearly from a value of Ai ¼ 20 mm2 at xi to a value of Aj ¼ 10 mm2 at xj as shown in Fig. 3.7. (1) Determine the matrix

of shape functions, and (2) express the area of cross section of the fin element in terms of the shape functions.

Approach: (1) Use the shape functions corresponding to linear variation of the field variable. (2) Express linear variation of

cross-sectional area in terms of shape functions similar to the variation of the field variable.

Solution

1. The linear variation of the field variable f(x) can be expressed by Eq. (3.21) or, equivalently, by Eq. (3.24):

fðxÞ ¼ a1 þ a2x ¼ NiðxÞFi þNjðxÞFj ¼ ½NðxÞ�F!ðeÞ
(E.1)

where the matrix of shape functions [N(x)] is given by Eq. (3.25):

�
NðxÞ ¼

�
NiðxÞNjðxÞ

�
h

�
xj � x

xj � xi

x � xi
xj � xi

�

¼
�
60� x

60� 20

x � 20

60� 20

�
¼

�
60� x

40

x � 20

40

� (E.2)

2. The linear variation of the cross-sectional area of the element can be expressed as

AðxÞ ¼ b1 þ b2x (E.3)

where the values of the constants b1 and b2 can be found by using the known areas of cross section at the two nodes:

Aðx ¼ xi ¼ 20Þ ¼ Ai ¼ 20 mm2 and Aðx ¼ xj ¼ 60Þ ¼ Aj ¼ 10 mm2

This gives

b1 ¼ Aixj � Ajxi
xj � xi

¼ 20ð60Þ � 10ð20Þ
60� 20

¼ 25; b2 ¼ Aj � Ai

xj � xi
¼ 10� 20

60� 20
¼ �0:25 (E.4)

x (mm)

A (x )
Ai = 20 mm2

Aj = 10 mm2

xi = 20
xj = 60

x0

FIGURE 3.7 A tapered fin element.
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EXAMPLE 3.3 dcont’d

Using Eq. (E.4), Eq. (E.3) can be expressed in terms of the shape functions as

AðxÞ ¼ AiNiðxÞ þ AjNjðxÞh½NðxÞ�A!ðeÞ
(E.5)

where the matrix of shape functions, [N(x)], is given by Eq. (E.2) and A
!ðeÞ

is the vector of nodal areas of cross section of the

element:

A
!ðeÞ ¼

�
Ai

Aj

�
¼

�
20

10

�
mm2 (E.6)

Note

Eq. (E.4) gives b1 ¼ 25 and b2 ¼ �0.25 so that the variation of A(x) can also be expressed as

AðxÞ ¼ 25� 0:25x (E.7)

3.7.2 Two-Dimensional Simplex Element

The two-dimensional simplex element is a straight-sided triangle with three nodes, one at each corner, as indicated in
Fig. 3.8. Let the nodes be labeled as i, j, and k by proceeding counterclockwise from node i, which is arbitrarily specified.
Let the global coordinates of the nodes i, j, and k be given by (xi, yi), (xj, yj), and (xk, yk), and the nodal values of the field
variable f (x, y) by Fi, Fj, and Fk, respectively. The variation of f inside the element is assumed to be linear as

fðx; yÞ ¼ a1 þ a2xþ a3y (3.28)

The nodal conditions

fðx; yÞ ¼ Fi at ðx ¼ xi; y ¼ yiÞ
fðx; yÞ ¼ Fj at ðx ¼ xj; y ¼ yjÞ
fðx; yÞ ¼ Fk at ðx ¼ xk; y ¼ ykÞ

y

x (x, y)

k
(xk, yk)

i
(xi, yi)

j
(xj, yj)

Φi

(x, y)

Φj

Φk

φ

(x, y)φ

(x, y)φ

α α α= 1+ 2x + 3y

FIGURE 3.8 Two-dimensional simplex element.
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lead to the system of equations

Fi ¼ a1 þ a2xi þ a3yi

Fj ¼ a1 þ a2xj þ a3yj

Fk ¼ a1 þ a2xk þ a3yk

(3.29)

The solution of Eq. (3.29) yields

a1 ¼ 1
2A

ðaiFi þ ajFj þ akFkÞ

a2 ¼ 1
2A

ðbiFi þ bjFj þ bkFkÞ

a3 ¼ 1
2A

ðciFi þ cjFj þ ckFkÞ

(3.30)

where A is the area of the triangle ijk given by

A ¼ 1
2

�������
1 xi yi
1 xj yj

1 xk yk

������� ¼ 1
2
ðxiyj þ xjyk þ xkyi � xiyk � xjyi � xkyjÞ (3.31)

ai ¼ xjyk � xkyj

aj ¼ xk
$
yi � xiyk

ak ¼ xiyj � xjyi

bi ¼ yj � yk

bj ¼ yk � yi

bk ¼ yi � yj

ci ¼ xk � xj

cj ¼ xi � xk

ck ¼ xj � xi

(3.32)

Substitution of Eq. (3.30) into Eq. (3.28) and rearrangement yields the equation

fðx; yÞ ¼ Niðx; yÞFi þ Njðx; yÞFj þ Nkðx; yÞFk ¼ ½Nðx; yÞ�F!ðeÞ
(3.33)

where

½Nðx; yÞ� ¼ ½Niðx; yÞ Njðx; yÞ Nkðx; yÞ� (3.34)

Niðx; yÞ ¼ 1
2A

ðai þ bixþ ciyÞ

Njðx; yÞ ¼ 1
2A

ðaj þ bjxþ cjyÞ

Nkðx; yÞ ¼ 1
2A

ðak þ bkxþ ckyÞ

(3.35)
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and

F
!ðeÞ ¼

8><>:
Fi

Fj

Fk

9>=>; ¼ vector of nodal unknowns of element e (3.36)

Notes

1. The shape function Ni(x, y) when evaluated at node i (xi, yi) gives

Niðxi ; yiÞ ¼ 1

2A
ðai þ bixi þ ciyiÞ

¼ 1

2A
ðxjyk � xkyj þ xiyj � xiyk þ xkyi � xjyiÞ ¼ 1

(3.37)

It can be shown that Ni(x, y) ¼ 0 at nodes j and k, and at all points on the line passing through these nodes. Similarly, the shape

functions Nj and Nk have a value of 1 at nodes j and k, respectively, and 0 at other nodes.

2. Since the interpolation functions are linear in x and y, the gradient of the field variable in x or y direction will be a constant. For

example,

vfðx; yÞ
vx

¼ v

vx
½Nðx; yÞ�F!ðeÞ ¼ ðbiFi þ bjFj þ bkFk Þ=2A (3.38)

Since Vi,Vj, and Vk are the nodal values of f (independent of x and y), and bi, bj, and bk are constants whose values are fixed

once the nodal coordinates are specified, (vf/vx) will be a constant. A constant value of the gradient of f within an element

means that many small elements have to be used in locations where rapid changes are expected in the value of f.

EXAMPLE 3.4
The temperatures at the nodes of a triangular element are given by Ti ¼ 210 �F, Tj ¼ 270 �F, and Tk ¼ 250 �F. If the nodal co-

ordinates are (xi, yi) ¼ (50, 30) in, (xj, yj) ¼ (70, 50) in, and (xk, yk) ¼ (55, 60) in, determine (a) the shape functions of the element

and (b) temperature at the point (x, y) ¼ (60, 40) in the element.

Solution

1. From the known nodal coordinates, the area of the triangular element and the constants ai, bi, ci, . involved in the shape

functions can be determined as

A ¼ 1

2
ðxiyj þ xjyk þ xkyi � xiyk � xjyi � xkyjÞ

¼ 1

2
ð50� 50þ 70� 60þ 55� 30� 50� 60� 70� 30� 55� 50Þ ¼ 250 in2

ai ¼ xjyk � xkyj ¼ 70� 60� 55� 50 ¼ 1450

aj ¼ xkyi � xiyk ¼ 55� 30� 50� 60 ¼ �1350

ak ¼ xiyj � xjyi ¼ 50� 50� 70� 30 ¼ 400

bi ¼ yj � yk ¼ 50� 60 ¼ �10

bj ¼ yk � yi ¼ 60� 30 ¼ 30

bk ¼ yi � yj ¼ 30� 50 ¼ �20

ci ¼ xk � xj ¼ 55� 70 ¼ �15

cj ¼ xi � xk ¼ 50� 55 ¼ �5

ck ¼ xj � xi ¼ 70� 50 ¼ 20

Continued
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EXAMPLE 3.4 dcont’d

The shape functions can be found as

Niðx; yÞ ¼ 1

2A
ðai þ bix þ ciyÞ ¼ 1

500
ð1450� 10x � 15yÞ ¼ 2:9� 0:02x � 0:03y

Njðx; yÞ ¼ 1

2A
ðaj þ bjx þ cjyÞ ¼ 1

500
ð�1350þ 30x � 5yÞ ¼ �2:7þ 0:06x � 0:01y

Nkðx; yÞ ¼ 1

2A
ðak þ bkx þ ckyÞ ¼ 1

500
ð400� 20x þ 20yÞ ¼ 0:8� 0:04x þ 0:04y

2. The temperature distribution in the element can be expressed as

T ðx; yÞ ¼ Niðx; yÞTi þNjðx; yÞTj þNk ðx; yÞTk

¼ 210ð2:9� 0:02x � 0:03yÞ þ 270ð�2:7þ 0:06x � 0:01yÞ þ 250ð0:8� 0:04x þ 0:04yÞ
The temperature at the point (x, y) ¼ (60, 40) in can be found as

T ð60;40Þ ¼ 210ð2:9� 1:2� 1:2Þ þ 270ð�2:7þ 3:6� 0:4Þ þ 250ð0:8� 2:4þ 1:6Þ ¼ 240�F

3.7.3 Three-Dimensional Simplex Element

The three-dimensional simplex element is a flat-faced tetrahedron with four nodes, one at each corner, as shown in Fig. 3.9.
Let the nodes be labeled as i, j, k, and l, where i, j, and k are labeled in a counterclockwise sequence on any face as viewed
from the vertex opposite this face, which is labeled as l. Let the values of the field variable be Vi, Vj, Vk, and Vl and the
global coordinates be (xi, yi, zi), (xj, yj, zj), (xk, yk, zk), and (xl, yl, zl) at nodes i, j, k, and l, respectively. If the variation of f
(x, y, z) is assumed to be linear,

fðx; y; zÞ ¼ a1 þ a2xþ a3yþ a4z (3.39)

x

z

y

0

j
(xj, yj, zj)

i

k
(xk, yk, zk)

(xi, yi, zi)

  (x , y , z )

FIGURE 3.9 A three-dimensional simplex element.
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the nodal conditions f ¼Vi at (xi, yi, zi), f ¼Vj at (xj, yj, zj), f ¼Vk at (xk, yk, zk), and f ¼Vl at (xl, yl, zl) produce the
system of equations

Fi ¼ a1 þ a2xi þ a3yi þ a4zi

Fj ¼ a1 þ a2xj þ a3yj þ a4zj

Fk ¼ a1 þ a2xk þ a3yk þ a4zk

Fl ¼ a1 þ a2xl þ a3yl þ a4zl

(3.40)

Eq. (3.40) can be solved and the coefficients a1, a2, a3, and a4 can be expressed as

a1 ¼ 1
6V

ðaiFi þ ajFj þ akFk þ alFlÞ

a2 ¼ 1
6V

ðbiFi þ bjFj þ bkFk þ blFlÞ

a3 ¼ 1
6V

ðciFi þ cjFj þ ckFk þ clFlÞ

a4 ¼ 1
6V

ðdiFi þ djFj þ dkFk þ dlFlÞ

(3.41)

where V is the volume of the tetrahedron i j k l given by

V ¼ 1
6

���������
1 xi yi zi
1 xj yj zj
1 xk yk zk

1 xl yl zl

��������� (3.42)

ai ¼

�������
xj yj zj
xk yk zk
xl yl zl

������� (3.43)

bi ¼ �

�������
1 yj zj
1 yk zk

1 yl zl

������� (3.44)

ci ¼ �

�������
xj 1 zj
xk 1 zk
xl 1 zl

������� (3.45)

and

di ¼ �

�������
xj yj 1

xk yk 1

xl yl 1

������� (3.46)

with the other constants defined by cyclic interchange of the subscripts in the order l, i, j, and k. The signs in front of the
determinants in Eqs. (3.43) to (3.46) are to be reversed when generating aj, bj, cj, dj and al, bl, cl, dl. By substituting Eq.
(3.41) into Eq. (3.39), we obtain

fðx; y; zÞ ¼ Niðx; y; zÞFi þ Njðx; y; zÞFj þ Nkðx; y; zÞFk þ Nlðx; y; zÞFl

¼ ½Nðx; y; zÞ�F!ðeÞ (3.47)
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where

½Nðx; y; zÞ� ¼ ½Niðx; y; zÞ Njðx; y; zÞ Nkðx; y; zÞ Nlðx; y; zÞ�

Niðx; y; zÞ ¼ 1
6V

ðai þ bixþ ciyþ dizÞ

Njðx; y; zÞ ¼ 1
6V

ðaj þ bjxþ cjyþ djzÞ

Nkðx; y; zÞ ¼ 1
6V

ðak þ bkxþ ckyþ dkzÞ

Nlðx; y; zÞ ¼ 1
6V

ðal þ blxþ clyþ dlzÞ

(3.48)

and

F
!ðeÞ ¼

8>>><>>>:
Fi

Fj

Fk

Fl

9>>>=>>>; (3.49)

EXAMPLE 3.5
Consider a tetrahedron element with node numbers i, j, k, and l as shown in Fig. 3.9. Noting that any of the nodes can be

considered as the first (local) node, and the next three (local) nodes must follow a counterclockwise direction as viewed from the

first node, enumerate the 12 different ways in which the node (local) numbers of the element can be assigned.

Solution

If node i is labeled as the first (local) node, the other nodes j, k, and l can be numbered as j, k, l, or k, l, j or l, j, k to satisfy the

counterclockwise requirement (as viewed from node i). Similar considerations when node j (or k or l) is labeled as the first (local)

node lead to the permissible numbering schemes as indicated in Table 3.1.

TABLE 3.1 Proper Node Numbering Schemes for Tetrahedron Element

Local Node 1 Local Node 2 Local Node 3 Local Node 4

i j k l

i k l j

i l j k

j k i l

j i l k

j l k i

k i j l

k j l i

k l i j

l i k j

l k j i

l j i k
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EXAMPLE 3.6
A tetrahedron element with global node numbers 7, 8, 12, and 17 is shown in Fig. 3.10. Determine which of the following (local)

numbering sequences satisfy the node numbering convention.

8;12; 7; 17;17;7;8; 12;12;7;8;17

Solution

The numbering scheme 8, 12, 7, 17 (also the scheme 12, 7, 8, 17) does not satisfy the node numbering convention because the

nodes 12, 7, and 17 (7, 8, and 17) correspond to a clockwise order as seen from node 8 (12). Only the numbering scheme 17, 7, 8,

12 satisfies the node numbering convention because the nodes 7, 8, and 12 correspond to a counterclockwise order as viewed

from node 17.

EXAMPLE 3.7
The nodal coordinates and nodal temperatures of a tetrahedron simplex element are given by

Node i: (xi, yi, zi) ¼ (0,0,0) mm, Ti ¼ 100�C
Node j: (xj, yj, zj) ¼ (20,0,0) mm, Tj ¼ 80�C
Node k: (xk, yk, zk) ¼ (0,30,0) mm, Tk ¼ 120�C
Node l: (xl, yl, zl) ¼ (0,0,40) mm, Tl ¼ 50�C
Express the temperature variation in the element T(x, y, z), in terms of the shape functions.

Approach: Express the linear variation of temperature in the element using Eq. (3.47).

Solution

The volume of the tetrahedron element is given by Eq. (3.42):

V ¼ 1

6

���������
1 xi yi zi

1 xj yj zj

1 xk yk zk

1 xl yl zl

��������� ¼ 1

6

���������
1 0 0 0

1 20 0 0

1 0 30 0

1 0 0 40

��������� ¼ 1

6

�������
20 0 0

0 30 0

0 0 40

������� ¼ 4000 mm3

Continued

7

17

12

8

FIGURE 3.10 A tetrahedron element.
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EXAMPLE 3.7 dcont’d

The constants defined by Eqs. (3.43)e(3.46) can be computed as

ai ¼

�����������

xj yj zj

xk yk zk

xl yl zl

�����������
¼

�����������

20 0 0

0 30 0

0 0 40

�����������
¼ 24;000

aj ¼ �

�����������

xk yk zk

xl yl zl

xi yi zi

�����������
¼ �

�����������

0 30 0

0 0 40

0 0 0

�����������
¼ 0

ak ¼

�����������

xl yl zl

xi yi zi

xj yj zj

�����������
¼

�����������

0 0 40

0 0 0

20 0 0

�����������
¼ 0

al ¼ �

�����������

xi yi zi

xj yj zj

xk yk zk

�����������
¼ �

�����������

0 0 0

20 0 0

0 30 0

�����������
¼ 0

bi ¼ �

�����������

1 yj zj

1 yk zk

1 yl zl

�����������
¼ �

�����������

1 0 0

1 30 0

1 0 40

�����������
¼ �1ð1200Þ ¼ �1200

bj ¼

�����������

1 yk zk

1 yl zl

1 yi zi

�����������
¼

�����������

1 30 0

1 0 40

1 0 0

�����������
¼ 1200

bk ¼ �

�����������

1 yl zl

1 yi zi

1 yj zj

�����������
¼ �

�����������

1 0 40

1 0 0

1 0 0

�����������
¼ 0

bl ¼

�����������

1 yi zi

1 yj zj

1 yk zk

�����������
¼

�����������

1 0 0

1 0 0

1 30 0

�����������
¼ 0
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EXAMPLE 3.7 dcont’d

ci ¼ �

�����������

xj 1 zj

xk 1 zk

xl 1 zl

�����������
¼ �

�����������

20 1 0

0 1 0

0 1 40

�����������
¼ �f20ð40Þg ¼ �800

cj ¼

�����������

xk 1 zk

xl 1 zl

xi 1 zi

�����������
¼

�����������

0 1 0

0 1 40

0 1 0

�����������
¼ 0

ck ¼ �

�����������

xl 1 zl

xi 1 zi

xj 1 zj

�����������
¼ �

�����������

0 1 40

0 1 0

20 1 0

�����������
¼ �f40ð�20Þg ¼ 800

cl ¼

�����������

xi 1 zi

xj 1 zj

xk 1 zk

�����������
¼ �

�����������

0 1 0

20 1 0

0 1 0

�����������
¼ 0

di ¼ �

�����������

xj yj 1

xk yk 1

xl yl 1

�����������
¼ �

�����������

20 0 1

0 30 1

0 0 1

�����������
¼ �f20ð30Þg ¼ �600

dj ¼

�����������

xk yk 1

xl yl 1

xi yi 1

�����������
¼

�����������

0 20 1

0 0 1

0 0 1

�����������
¼ 0

dk ¼ �

�����������

xl yl 1

xi yi 1

xj yj 1

�����������
¼ �

�����������

0 0 1

0 0 1

20 0 1

�����������
¼ 0

dl ¼

�����������

xi yi 1

xj yj 1

xk yk 1

�����������
¼

�����������

0 0 1

20 0 1

0 30 1

�����������
¼ 600

Thus, the shape functions of the element can be expressed, using Eq. (3.48), as

½Nðx; y; zÞ� ¼ ½Niðx; y; zÞ Njðx; y; zÞ Nkðx; y; zÞ Nlðx; y; zÞ � (E.1)

Continued
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EXAMPLE 3.7 dcont’d

where

Niðx; y; zÞ ¼ 1

6V
ðai þ bix þ ciy þ dizÞ ¼ 1

6ð4000Þ ð24;000� 1200x � 800y � 600zÞ

¼ 1� 0:05x � 0:0333y � 0:025z

Njðx; y; zÞ ¼ 1

6V
ðaj þ bjx þ cjy þ djzÞ ¼ 1

6ð4000Þ ð1200xÞ ¼ 0:05x

Nkðx; y; zÞ ¼ 1

6V
ðak þ bkx þ cky þ dkzÞ ¼ 1

6ð4000Þ ð800yÞ ¼ 0:0333y

Nlðx; y; zÞ ¼ 1

6V
ðal þ blx þ cly þ dlzÞ ¼ 1

6ð4000Þ ð600zÞ ¼ 0:025z

Thus, the temperature distribution inside the element is given by Eq. (3.47):

T ðx; y; zÞ ¼ NiTi þNjTj þNkTk þNlTl

¼ ð1� 0:05x � 0:0333y � 0:025zÞ100þ ð0:05xÞ80þ ð0:0333yÞ120þ ð0:025zÞ50

¼ 100� x þ 0:6667y � 1:25z�C

3.7.4 C 0 Continuity

The one-, two-, and three-dimensional simplex elements considered in this section satisfy the following two properties that
imply C0 continuity:

1. The shape function corresponding to any specific node, such as node i, varies linearly from a value of 1 at that node i to
a value of 0 at each of the remaining nodes of the element. Thus, the shape function Ni will have a value of 1 at node i
and a value of 0 at each of the remaining nodes of the element.

2. The sum of all the shape functions at any point within the element, including its boundaries, will be equal to 1.

EXAMPLE 3.8
Show that the sum of the shape functions of a three-noded triangular element is equal to one at any point in the element.

Approach: Find the sum of the expressions of the shape functions.

Solution

Using Eq. (3.35), the sum of the shape functions of the triangular element ijk can be expressed as

Niðx; yÞ þNjðx; yÞ þNkðx; yÞ ¼ 1

2A
ðai þ bix þ ciyÞ þ 1

2A
ðaj þ bjx þ cjyÞ þ 1

2A
ðak þ bkx þ ckyÞ

¼ 1

2A
ðai þ aj þ ak þ fbi þ bj þ bkgx þ fci þ cj þ ckgyÞ

(E.1)

Using the expressions given in Eq. (3.32), Eq. (E.1) can be rewritten as

Niðx; yÞ þNjðx; yÞ þNk ðx; yÞ ¼ 1

2A

8><>:
ðxjyk � xkyj þ xkyi � xiyk þ xiyj � xjyiÞ
þðyj � yk þ yk � yi þ yi � yjÞx
þðxk � xj þ xi � xk þ xj � xiÞy

9>=>; (E.2)
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EXAMPLE 3.8 dcont’d

Niðx; yÞ þNjðx; yÞ þNk ðx; yÞ ¼ 1

2A

�ðxjyk � xkyj þ xkyi � xiyk þ xiyj � xjyiÞ
�

(E.3)

Noting that the expression in the parenthesis is equal to 2A (see Eq. 3.31), the sum of the shape functions can be seen to be

equal to 1:

Niðx; yÞ þNjðx; yÞ þNkðx; yÞ ¼ 1

2A
f2Ag ¼ 1 (E.4)

3.8 INTERPOLATION POLYNOMIALS FOR VECTOR QUANTITIES

In Eqs. (3.21), (3.28), and (3.39), the field variable f has been assumed to be a scalar quantity. In some problems the field
variable may be a vector quantity having both magnitude and direction (e.g., displacement in solid mechanics problems). In
such cases, the usual procedure is to resolve the vector into components parallel to the coordinate axes and treat these
components as the unknown quantities. Thus, there will be more than one unknown (degree of freedom) at a node in such
problems. The number of degrees of freedom at a node will be one, two, or three depending on whether the problem is one-,
two-, or three-dimensional. The notation used in this book for the vector components is shown in Fig. 3.11. All the

Φ3i = wi

Φ3  = w

Φ3j  = wj

Φ3i −1= vi

Φ3 −1= v

Φ3 −2 = u

Φ3k −1= vk

Φ3k −2 = uk

Φ3j −2= uj

Φ3i −2 = ui

x

i

xi xj

Φi = ui
Φj  = uj

j

Three-dimensional problem

One-dimensional problem

(x , y , z )

(xk, yk, zk)

(xj, yj, zj) j

(xi, yi, zi) i

Φ2i  = vi

Φ2k = vk

Φ2j  = vj

Φ2i −1= ui

Φ2k −1 = uk

Φ2j −1= uj

i
(xi, yi)

j
k
(xk, yk)

(xj, yj)
y

x

Two-dimensional problem

k
z

y

x

Φ3j −1= vj
Φ3k = wk

0

0

0

(A) (B)

(C)

FIGURE 3.11 Nodal degrees of freedom when the field variable is a vector.
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components are designated by the same symbol, V, with a subscript denoting the individual components. The subscripts, at
any node, are ordered in the sequence x, y, z starting with the x component. The x, y, and z components of the vector quantity
(field variable) f are denoted by u, v, and w, respectively.

The interpolation function for a vector quantity in a one-dimensional element will be the same as that of a scalar
quantity since there is only one unknown at each node. Thus,

uðxÞ ¼ NiðxÞFi þ NjðxÞFj ¼ ½NðxÞ�F!ðeÞ
(3.50)

where

½NðxÞ� ¼ ½NiðxÞNjðxÞ�;

F
!ðeÞ ¼

(
Fi

Fj

)
;

and u is the component of f (e.g., displacement) parallel to the axis of the element that is assumed to coincide with the x
axis. The shape functions Ni(x) and Nj(x) are the same as those given in Eq. (3.26).

For a two-dimensional triangular (simplex) element, the linear interpolation model of Eq. (3.33) will be valid for each
of the components of f, namely, u and v. Thus,

uðx; yÞ ¼ Niðx; yÞF2i�1 þ Njðx; yÞF2j�1 þ Nkðx; yÞF2k�1 (3.51)

and

vðx; yÞ ¼ Niðx; yÞF2i þ Njðx; yÞF2j þ Nkðx; yÞF2k (3.52)

where Ni, Nj, and Nk are the same as those defined in Eq. (3.35);V2ie1,V2je1, andV2ke1 are the nodal values of u (compo-
nent of f parallel to the x axis); andV2i, F2j, andV2k are the nodal values of v (component of f parallel to the y axis). Eqs.
(3.51) and (3.52) can be written in matrix form as

f
!ðx; yÞ ¼

�
uðx; yÞ
vðx; yÞ

�
¼ ½Nðx; yÞ�F!ðeÞ

(3.53)

where

½Nðx; yÞ� ¼
�
Niðx; yÞ 0 Njðx; yÞ 0 Nkðx; yÞ 0

0 Niðx; yÞ 0 Njðx; yÞ 0 Nkðx; yÞ
�

(3.54)

and

F
!ðeÞ ¼

8>>>>>>>><>>>>>>>>:

F2i�1

F2i

F2j�1

F2j

F2k�1

F2k

9>>>>>>>>=>>>>>>>>;
¼ vector of nodal degrees of freedom (3.55)

Extending this procedure to three dimensions, we obtain for a tetrahedron (simplex) element,

f
!ðx; y; zÞ ¼

8><>:
uðx; y; zÞ
vðx; y; zÞ
wðx; y; zÞ

9>=>; ¼ ½Nðx; y; zÞ�F!ðeÞ
(3.56)
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where

½Nðx; y; zÞ� ¼

2666664
Niðx; y; zÞ 0 0 Njðx; y; zÞ

0 Niðx; y; zÞ 0 0

0 0 Niðx; y; zÞ 0

0 0 Nkðx; y; zÞ 0

Njðx; y; zÞ 0 0 Nkðx; y; zÞ

0 Njðx; y; zÞ 0 0

0 Nlðx; y; zÞ 0 0

0 0 Nlðx; y; zÞ 0

Nkðx; y; zÞ 0 0 Nlðx; y; zÞ

3777775

(3.57)

F
!ðeÞ ¼

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

F3i�2

F3i�1

F3i

F3j�2

F3j�1

F3j

F3k�2

F3k�1

F3k

F3l�2

F3l�1

F3l

9>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>;

(3.58)

and the shape functions Ni, Nj, Nk, and Nl are the same as those defined in Eq. (3.48).

EXAMPLE 3.9
The nodal coordinates of a triangular plate element subjected to in-plane loads follow:

Node i: (xi, yi) ¼ (10, 10) mm

Node j: (xj, yj) ¼ (20, 50) mm

Node k: (xk, yk) ¼ (�10, 30) mm

The in-plane displacement components of the nodes are given by

ðuiviÞ ¼ ð1;�1Þ mm; ðuj ; vjÞ ¼ ð� 2;1Þ mm; ðuk ; vk Þ ¼ ð0:5;�0:5Þ mm

Express the variations of u(x, y) and v(x, y) in the element in terms of the shape functions.

Approach: Express the linear variations of u(x, y) and v(x, y) in the element using Eqs. (3.51) and (3.52).

Solution

The shape functions of the element can be derived as (see Problem 3.56)

Niðx; yÞ ¼ 1:1þ 0:02xe0:03y (E.1)

Njðx; yÞ ¼ �0:4þ 0:02x þ 0:02y (E.2)

Continued
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EXAMPLE 3.9 dcont’d

Nkðx; yÞ ¼ 0:3� 0:04x þ 0:01y (E.3)

The variation of the u-displacement inside the element can be expressed, using Eq. (3.51), as:

uðx; yÞ ¼ ð1:1þ 0:02x � 0:03yÞui þ ð� 0:4þ 0:02x þ 0:02yÞuj þ ð0:3� 0:04x þ 0:01yÞuk

¼ ð1:1þ 0:02x � 0:03yÞð1Þ þ ð� 0:4þ 0:02x þ 0:2yÞð� 2Þ þ ð0:3� 0:04x þ 0:01yÞð0:5Þ

¼ 2:05� 0:04x � 0:065y

(E.4)

Similarly, the variation of the v-displacement inside the element can be expressed, using Eq. (3.52), as:

vðx; yÞ ¼ ð1:1þ 0:02x � 0:03yÞvi þ ð� 0:4þ 0:02x þ 0:02yÞvj þ ð0:3� 0:04x þ 0:01yÞvk

¼ ð1:1þ 0:02x � 0:03yÞð� 1Þ þ ð� 0:4þ 0:02x þ 0:02yÞð1Þ þ ð0:3� 0:04x þ 0:01yÞð� 0:5Þ

¼ �1:65þ 0:02x þ 0:045y

(E.5)

EXAMPLE 3.10
The global nodal coordinates of a triangular plate element used in the stress analysis of a plate subjected to in-plane loads are

given by (xi, yi) ¼ (50, 30) in, (xj, yj) ¼ (70, 50) in, and (xk, yk) ¼ (55, 60) in. If u(x, y) and v(x, y) are the field variables with nodal

unknowns given by (V2i�1, V2i) ¼ (ui, vi), (V2j�1, V2j) ¼ (uj, vj) and (V2k�1, V2k) ¼ (uk, vk), find the matrix of shape functions of

the element.

Solution

The matrix of shape functions, [N(x, y)], is given by Eq. (3.54) with Ni(x, y), Nj(x, y), and Nk(x, y) defined by Eq. (3.35). Using the

given nodal coordinates, the shape functions are given by (see Example 3.4):

Niðx; yÞ ¼ 2:9� 0:02x � 0:03y

Njðx; yÞ ¼ �2:7þ 0:06x � 0:01y

Nkðx; yÞ ¼ 0:8� 0:04x þ 0:04y

3.9 LINEAR INTERPOLATION POLYNOMIALS IN TERMS OF LOCAL COORDINATES

The derivation of element characteristic matrices and vectors involves the integration of the shape functions or their de-
rivatives or both over the element. These integrals can be evaluated easily if the interpolation functions are written in terms
of a local coordinate system that is defined separately for each element.

In this section, we derive the interpolation functions of simplex elements in terms of a particular type of local coor-
dinate systems, known as natural coordinate systems. A natural coordinate system is a local coordinate system that permits
the specification of any point inside the element by a set of nondimensional numbers whose magnitude lies between 0 and
1. Usually, natural coordinate systems are chosen such that some of the natural coordinates will have unit magnitude at
primary4 or corner nodes of the element.

3.9.1 One-Dimensional Element

The natural coordinates for a one-dimensional (line) element are shown in Fig. 3.12. Any point P inside the element is
identified by two natural coordinates, L1 and L2, which are defined as

4. The nodes located at places other than at corners (e.g., mid-side nodes and interior nodes) are called secondary nodes.
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L1 ¼ l1
l
¼ x2 � x

x2 � x1

L2 ¼ l2
l
¼ x� x1

x2 � x1

(3.59)

where l1 and l2 are the distances shown in Fig. 3.12, and l is the length of the element. Since it is a one-dimensional
element, there should be only one independent coordinate to define any point P. This is true even with natural coordinates
because the two natural coordinates L1 and L2 are not independent but are related as

L1 þ L2 ¼ l1
l
þ l2

l
¼ 1 (3.60)

A study of the properties of L1 and L2 reveals something quite interesting. The natural coordinates L1 and L2 are also the
shape functions for the line element (compare Eq. (3.59) with Eq. (3.26)). Thus,

Ni ¼ L1; Nj ¼ L2 (3.61)

Any point x within the element can be expressed as a linear combination of the nodal coordinates of nodes 1 and 2 as

x ¼ x1L1 þ x2L2 (3.62)

where L1 and L2 may be interpreted as weighting functions. Thus, the relationship between the natural and the Cartesian
coordinates of any point P can be written in matrix form as�

1

x

�
¼

�
1 1

x1 x2

��
L1

L2

�
(3.63)

or �
L1

L2

�
¼ 1

ðx2 � x1Þ
�

x2 �1

�x1 1

��
1

x

�
¼ 1

l

�
x2 �1

�x1 1

��
1

x

�
(3.64)

If f is a function of L1 and L2, differentiation of f with respect to x can be performed, using the chain rule, as

df

dx
¼ vf

vL1

vL1

vx
þ vf

vL2

vL2

vx
(3.65)

where, from Eq. (3.59),

vL1

vx
¼ � 1

x2 � x1
and

vL2

vx
¼ 1

x2 � x1
(3.66)

Integration of polynomial terms in natural coordinates can be performed by using the simple formulaZ x2

x1

La
1L

b
2 dx ¼ a!b!

ðaþ bþ 1Þ! l (3.67)

where a! is the factorial of a given by a! ¼ a (a � l) (a � 2) . [1]. The value of the integral in Eq. (3.67) is given for
certain combinations of a and b in Table 3.2.

Node 1 Node 2P
xx1 x2

(L1, L2) (0, 1)(1, 0)

x

2 1

0

FIGURE 3.12 Natural coordinates for a line element.
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3.9.1.1 Two-Dimensional (Triangular) Element

A natural coordinate system for a triangular element (also known as the triangular coordinate system) is shown in
Fig. 3.13A. Although three coordinates L1, L2, and L3 are used to define a point P, only two of them are independent. The
natural coordinates are defined as

L1 ¼ A1

A
; L2 ¼ A2

A
; L3 ¼ A3

A
(3.68)

where A1 is the area of the triangle formed by the points P, 2 and 3; A2 is the area of the triangle formed by the points P, 1
and 3; A3 is the area of the triangle formed by the points P, 1 and 2; and A is the area of the triangle 123 in Fig. 3.13.
Because Li are defined in terms of areas, they are also known as area coordinates. Since

A1 þ A2 þ A3 ¼ A

we have

A1

A
þ A2

A
þ A3

A
¼ L1 þ L2 þ L3 ¼ 1 (3.69)

A study of the properties of L1, L2, and L3 shows that they are also the shape functions for the two-dimensional simplex
(triangular) element:

Ni ¼ L1; Nj ¼ L2; NK ¼ L3 (3.70)

The relation between the natural and Cartesian coordinates is given by (see Problem 3.8)

x ¼ x1L1 þ x2L2 þ x3L3

y ¼ y1L1 þ y2L2 þ y3L3

�
(3.71)

To every set of natural coordinates (L1, L2, L3) (which are not independent but are related by Eq. 3.69), there corre-
sponds a unique set of Cartesian coordinates (x, y). At node 1, L1 ¼ l and L2 ¼ L3 ¼ 0, and so on. The linear relationship
between Li (i ¼ 1, 2, 3) and (x, y) implies that the contours of L1 are equally placed straight lines parallel to the side 2, 3 of
the triangle (on which L1 ¼ 0), and so on as shown in Fig. 3.13B.

TABLE 3.2 Value of the Integral in Eq. (3.67)

Value of

Value of the Integral in Eq. (3.67)/la b

0 0 1

1 0 1/2

1 1 1/6

2 0 1/3

1 2 1/12

3 0 1/4

4 0 1/5

2 2 1/30

3 1 1/20

1 4 1/30

3 2 1/60

5 0 1/6
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Eqs. (3.69) and (3.71) can be expressed in matrix form as8><>:
1

x

y

9>=>; ¼

264 1 1 1

x1 x2 x3
y1 y2 y3

375
8><>:

L1

L2

L3

9>=>; (3.72)

Eq. (3.72) can be inverted to obtain8><>:
L1

L2

L3

9>=>; ¼ 1
2A

264 ðx2y3 � x3y2Þ ðy2 � y3Þ ðx3 � x2Þ
ðx3y1 � x1y3Þ ðy3 � y1Þ ðx1 � x3Þ
ðx1y2 � x2y1Þ ðy1 � y2Þ ðx2 � x1Þ

375
8><>:

1

x

y

9>=>; (3.73)

where A is the area of the triangle 1, 2, 3 given by

A ¼ 1
2

�������
1 x1 y1
1 x2 y2

1 x3 y3

������� (3.74)

y

x

3

1
(x1, y1)
(1, 0, 0)

(x3, y3)
(0, 0, 1)

2
(x2, y2)
(0, 1, 0)

L2 = 0
L1= 0

L3 = 0

P(x, y)

(L1, L2, L3)

(A)

L1= 1.0

L1= 0.8
L1= 0.6

L1= 0.4
L1= 0.2

L1= 0.0

1

3

2

(B)

Cartesian and area coordinates

Variation of the area coordinate L1

FIGURE 3.13 Area coordinates for a triangular element.
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Note that Eq. (3.73) is identical to Eq. (3.35).
If f is a function of L1, L2, and L3, the differentiation with respect to x and y can be performed as

vf

vx
¼

X3

i¼ 1

vf

vLi

vLi

vx

vf

vy
¼

X3

i¼ 1

vf

vLi

vLi

vy

9>>>>>=>>>>>;
(3.75)

where

vL1

vx
¼ y2 � y3

2A
;

vL1

vy
¼ x3 � x2

2A

vL2

vx
¼ y3 � y1

2A
;

vL2

vy
¼ x1 � x3

2A

vL3

vx
¼ y1 � y2

2A
;

vL3

vy
¼ x2 � x1

2A

9>>>>>>>>>=>>>>>>>>>;
(3.76)

For integrating polynomial terms in natural coordinates, we can use the relationsZ
L

La
1L

b
2$dL ¼ a!b!

ðaþ bþ 1Þ!L (3.77)

and ZZ
A

La
1L

b
2L

g
3$dA ¼ a!b!g!

ðaþ bþ gþ 2Þ! 2A (3.78)

Eq. (3.77) is used to evaluate an integral that is a function of the length along an edge of the element. Thus, the quantity L
denotes the distance between the two nodes that define the edge under consideration. Eq. (3.78) is used to evaluate area
integrals. Table 3.3 gives the values of the integral for various combinations of a, b, and g.

TABLE 3.3 Values of the Integrals in Eqs. (3.77) and (3.78)

Value of
Value of the Integral

in Eq. (3.77)/L

Value of the Integral

in Eq. (3.78)/Aa b g

0 0 0 1 1

1 0 0 1/2 1/3

2 0 0 1/3 1/6

1 1 0 1/6 1/12

3 0 0 1/4 1/10

2 1 0 1/12 1/30

1 1 1 d 1/60

4 0 0 1/5 1/15

3 1 0 1/20 1/60

2 2 0 1/30 1/90

2 1 1 d 1/180

5 0 0 1/6 1/21

4 1 0 1/30 1/105

3 2 0 1/60 1/210

3 1 1 d 1/420

2 2 1 d 1/630
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EXAMPLE 3.11
Show that the natural (area) coordinate Li (i ¼ 1, 2, 3) is the same as the shape function Ni given by Eq. (3.35).

Solution

The area coordinate L1, defined as the ratio of the area of the shaded triangle to the total area of the triangle ijk shown in Fig. 3.14,

can be expressed as

L1 ¼ A1

A
¼

1

2
b d

1

2
b h

¼ d

h
(E.1)

where d and h denote the distances of the perpendiculars from the points P and i to the base jk of the triangle. The area A1 of the

triangle Pjk can be determined in terms of the coordinates of P, j, and k as

2A1 ¼

�������
1 x y

1 xj yj

1 xk yk

������� ¼ xjyk � xkyj þ xðyj � yk Þ þ yðxk � xjÞ (E.2)

Eqs. (E.1) and (E.2) lead to

L1 ¼ 2A1

2A
¼ 1

2A

�
xjyk � xkyj þ xðyj � yk Þ þ yðxk � xjÞ

�
(E.3)

which can be seen to be identical to the shape function Ni given by Eq. (3.35). This shows that the area coordinates of a linear

triangular element are identical to the shape functions.

3.9.3 Three-Dimensional (Tetrahedron) Element

The natural coordinates for a tetrahedron element can be defined analogous to those of a triangular element. Thus, four
coordinates L1, L2, L3, and L4 will be used to define a point P, although only three of them are independent. These natural
coordinates are defined as

L1 ¼ V1

V
; L2 ¼ V2

V
; L3 ¼ V3

V
; L4 ¼ V4

V
(3.79)

where Vi is the volume of the tetrahedron formed by the points P and the vertices other than the vertex i (i ¼ 1, 2, 3, 4), and
V is the volume of the tetrahedron element defined by the vertices 1, 2, 3, and 4 (Fig. 3.15). Because the natural coordinates
are defined in terms of volumes, they are also known as volume or tetrahedral coordinates. Since

i  (xi, yi)

(xj, yj)

(xk, yk)

h

P
(x, y )

j b

k

d

A1

FIGURE 3.14 Area coordinates.
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V1 þ V2 þ V3 þ V4 ¼ V

we obtain

V1

V
þ V2

V
þ V3

V
þ V4

V
¼ L1 þ L2 þ L3 þ L4 ¼ 1 (3.80)

The volume coordinates L1, L2, L3, and L4 are also the shape functions for a three-dimensional simplex element:

Ni ¼ L1; Nj ¼ L2; Nk ¼ L3; Nl ¼ L4 (3.81)

The Cartesian and natural coordinates are related as

x ¼ L1x1 þ L2x2 þ L3x3 þ L4x4
y ¼ L1y1 þ L2y2 þ L3y3 þ L4y4

z ¼ L1z1 þ L2z2 þ L3z3 þ L4z4

9>=>; (3.82)

Eqs. (3.80) and (3.82) can be expressed in matrix form as8>>><>>>:
1

x

y

z

9>>>=>>>; ¼

26664
1 1 1 1

x1 x2 x3 x4
y1 y2 y3 y4

z1 z2 z3 z4

37775
8>>><>>>:

L1

L2

L3

L4

9>>>=>>>; (3.83)

The inverse relations can be expressed as8>>><>>>:
L1

L2

L3

L4

9>>>=>>>; ¼ 1
6V

26664
a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

37775
8>>><>>>:

1

x

y

z

9>>>=>>>; (3.84)

1
(x1, y1, z1)
(1, 0, 0, 0)

2
(x2, y2, z2)
(0, 1, 0, 0)

3
(x3, y3, z3)
(0, 0, 1, 0)

4

(x, y, z)
(L1, L2, L3, L4)

P

Li  =       ; i = 1, 2, 3, 4

V = Volume of 1 2 3 4
V1= Volume of P 2 3 4
V2= Volume of P 1 3 4
V3= Volume of P 1 2 4
V4= Volume of P 1 2 3

vi

v

z

x

y

(x4, y4, z4)
(0, 0, 0, 1)

FIGURE 3.15 Volume coordinates for a tetrahedron element.
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where

V ¼ 1
6

���������
1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3

1 x4 y4 z4

��������� ¼ volume of the tetrahedron 1; 2; 3; 4 (3.85)

a1 ¼

�������
x2 y2 z2
x3 y3 z3
x4 y4 z4

������� (3.86)

b1 ¼ �

�������
1 y2 z2
1 y3 z3

1 y4 z4

������� (3.87)

c1 ¼ �

�������
x2 1 z2
x3 1 z3
x4 1 z4

������� (3.88)

d1 ¼ �

�������
x2 y2 1

x3 y3 1

x4 y4 1

������� (3.89)

and the other constants are obtained through a cyclic permutation of subscripts 1, 2, 3, and 4. These constants are the co-
factors of the terms in the determinant of Eq. (3.85) and hence it is necessary to give proper signs to them. If the tetrahedron
element is defined in a right-handed Cartesian coordinate system as shown in Fig. 3.15, Eqs. (3.86) to (3.89) are valid only
when the nodes 1, 2, and 3 are numbered in a counterclockwise manner when viewed from node 4.

An alternate method of showing the equivalency of Li and Ni is indicated in the following example.

EXAMPLE 3.12
Show that the natural coordinate Li is same as the shape function Ni given by Eq. (3.48).

Approach: Use the definition of the volume of a tetrahedron.

Solution

Using the definition of Li given in Eq. (3.79), we have

Li ¼ Volume of tetrahedron pjkl

Volume of tetrahedron ijkl
¼ Vi

V
(E.1)

where the volume Vi can be expressed as (from Fig. 3.16):

Vi ¼ 1

6

�����������������

1 x y z

1 xj yj zj

1 xk yk zk

1 xl yl zl

�����������������

¼ 1

6

8>>>>>>>>><>>>>>>>>>:
1

������������

xj yj zj

xk yk zk

xl yl zl

������������
� x

������������

1 yj zj

1 yk zk

1 yl zl

������������
þ y

������������

1 xj zj

1 xk zk

1 xl zl

������������
� z

������������

1 xj yj

1 xk yk

1 xl yl

������������

9>>>>>>>>>=>>>>>>>>>;

(E.2)

Continued
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EXAMPLE 3.12 dcont’d

Using Eqs. (3.43) to (3.46), Eq. (E.2) can be rewritten as

Vi ¼ 1

6
ðai þ bix þ ciy þ dizÞ (E.3)

Thus, Li, defined by Eq. (E.1), can be expressed as

Li ¼ 1

6V
ðai þ bix þ ciy þ dizÞ (E.4)

which can be seen to be identical to the expression of Ni given in Eq. (3.48).

If f is a function of the natural coordinates, it can be differentiated with respect to Cartesian coordinates as

vf

vx
¼

X4

i¼ 1

vf

vLi

vLi

vx

vf

vy
¼

X4

i¼ 1

vf

vLi

vLi

vy

vf

vz
¼

X4

i¼ 1

vf

vLi

vLi

vz

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(3.90)

where

vLi

vx
¼ bi

6V
;

vLi

vy
¼ ci

6V
;

vLi

vz
¼ di

6V
(3.91)

The integration of polynomial terms in natural coordinates can be performed using the relationZZZ
V

La
1L

b
2L

g
3L

d
4dV ¼ a!b!g!d!

ðaþ bþ gþ dþ 3Þ! 6V (3.92)

The values of this integral for different values of a, b, g, and d are given in Table 3.4.

j

P

k

i

FIGURE 3.16 Tetrahedron element.
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3.10 INTEGRATION OF FUNCTIONS OF NATURAL COORDINATES

The integration of polynomial terms defined in terms of natural coordinates is considered in this section. For illustration,
the formula for a one-dimensional element is presented. Let the integral to be evaluated be given by

I ¼
Z x2

x1

La
1ðxÞLb

2ðxÞdx (3.93)

where L1 and L2 can be expressed in terms of s as (see Fig. 3.17):

L1 ¼ l� s

l
¼ 1� s

l
; L2 ¼ s

l
(3.94)

Using

L1 ¼ 1� s

l
¼ 1� L2 (3.95)

s ¼ lL2 (3.96)

and

ds
dL2

¼ l or ds ¼ l dL2 (3.97)

Eq. (3.93) can be rewritten as

I ¼
Z l

s¼0
La
1ðsÞLb

2ðsÞds ¼
Z 1

L2¼0
La
1L

b
2 l dL2 (3.98)

TABLE 3.4 Value of the Integral in Eq. (3.92)

Value of

Value of the Integral in Eq. (3.92)/Va b g d

0 0 0 0 1

1 0 0 0 1/4

2 0 0 0 1/10

1 1 0 0 1/20

3 0 0 0 1/20

2 1 0 0 1/60

1 1 1 0 1/120

4 0 0 0 1/35

3 1 0 0 1/140

2 2 0 0 1/210

2 1 1 0 1/420

1 1 1 1 1/840

5 0 0 0 1/56

4 1 0 0 1/280

3 2 0 0 1/560

3 1 1 0 1/1120

2 2 1 0 1/1680

2 1 1 1 1/3360
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Using L1 ¼ 1 � L2, Eq. (3.98) can be written as

I ¼ l

Z 1

0
ð1� L2ÞaLb

2dL2 (3.99)

Noting that the integral of Eq. (3.99) is in the form of the known integral [3.16]Z 1

0
ð1� tÞa�1tb�1 dt ¼ GðaÞGðbÞ

Gðaþ bÞ (3.100)

where G(i þ l) ¼ i!. Thus, the integral of Eq. (3.99) becomes

I ¼ l

Z 1

0
ð1� L2ÞaLb

2 dL2 ¼ l
Gðaþ 1ÞGðbþ 1Þ
Gðaþ bþ 1þ 1Þ ¼ l

a!b!

ðaþ bþ 1Þ! (3.101)

Eq. (3.101) can be seen to be same as Eq. (3.67).

3.11 PATCH TEST

When a given problem is solved repeatedly using a finer mesh (smaller-size elements) each time, the convergence of the
results to the exact solution (such as displacements, strains, and/or stresses) is not guaranteed unless the elements pass a test
known as the patch test. In a standard patch test, a small domain of the problem is modeled with a number of finite el-
ements, known as patch of elements, such that there is at least one interior node and just enough supports to prevent rigid
body motion of the patch. A typical patch of quadrilateral elements is shown in Fig. 3.18. Note that the shape of the
elements and the mesh is not regular or uniform because some errors in the formulation of elements may not be evident
with a regular mesh. The following example illustrates the patch test for bar elements undergoing axial deformation.

x1 x2x

(1, 0) (0, 1)(L1, L2)

s

FIGURE 3.17 One-dimensional element.

y

(0, 1)

(0, 0.5)

(0, 0) (0.4, 0) (1, 0)
x

(0.6, 0.4)

(1, 0.6)

(1, 1)(0.5, 1)

FIGURE 3.18 A patch of quadrilateral elements.
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EXAMPLE 3.13
Consider a patch of two bar elements as shown in Fig. 3.19. The stiffness matrices of the elements are given by (see Eq. (E.10) of

Example 1.2):

�
K ð1Þ ¼ 106

�
4 �4

�4 4

�
;

�
K ð2Þ ¼ 106

�
1 �1

�1 1

�
The system or assembled equilibrium equations can be expressed as

106

264 4 �4 0

�4 5 �1

0 �1 1

375
8><>:

u1

u2

u3

9>=>; ¼

8><>:
P1

P2

P3

9>=>; (E.1)

Determine whether the element, with the shape functions N1ðxÞ ¼ 1� x
l ¼ xiþ1�x

xiþ1�xi
and N2ðxÞ ¼ x

l ¼ x � xi
xiþ1 � xi passes the patch

test for rigid body motion and constant strain.

Solution

To test the bar element for rigid body motion, first the displacements of the end nodes are specified to have the same value and

then solve Eq. (E.1) and see whether the middle node has the same value of displacement. Let the end nodal displacements be

specified as u1 ¼ u3 ¼ 1. Then Eq. (E.1) takes the form

106

264 4 �4 0

�4 5 �1

0 �1 1

375
8><>:

1

u2

1

9>=>; ¼

8><>:
R1

0

R3

9>=>; (E.2)

where R1 and R3 denote the reactions (unknown) at nodes 1 and 3, respectively. The solution of the second equation of (E.2) yields

106ðe4þ 5u2 � 1Þ ¼ 0 or u2 ¼ 1 (E.3)

Because u2 ¼ 1, the element passes the patch test for rigid body motion. To test the bar element for constant strain, the bar el-

ements must undergo a linear displacement. For this, we specify the values of the displacements of end nodes as u1 ¼ 0 and

u3 ¼ 5. If the displacement variation is linear (or if the strain is constant), the displacement of node 2 must be equal to 1. When the

values u1 ¼ 0 and u3 ¼ 5 are specified, Eq. (E.1) takes the form

106

264 4 �4 0

�4 5 �1

0 �1 1

375
8><>:

0

u2

5

9>=>; ¼

8><>:
R1

0

R3

9>=>; (E.4)

where R1 and R3 denote the reactions (unknown) at nodes 1 and 3, respectively. The solution of the second equation of (E.4) yields

106ð0þ 5u2e5Þ ¼ 0 or u2 ¼ 1 (E.5)

Because u2 ¼ 1, the element passes the patch test for constant strain state.

1 2 3

e = 2e = 1

A(1)= 1 cm2, E (1)= 2 × 107N/cm2 A(2)= 1 cm2, E (2)= 2 × 107N/cm2

u1
P1

u2
P2

u3
P3

(1) = 5 cm (2)= 20 cm

FIGURE 3.19 A patch of two bar elements.
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Patch Test for Two-Dimensional Elements
To illustrate the patch test for two-dimensional elements, consider the patch shown in Fig. 3.20 with four quadrilateral-

shaped elements. If the patch is subjected to a uniform stress in the x-direction, p, on the right edge, the equivalent
concentrated loads applied at the nodes can be taken as

P3 ¼ P9 ¼ at p

2
; P6 ¼ at p

where t is the thickness of the patch (in the z-direction). The nodes 1 and 2 are assumed to be pin-connected or simply
supported to prevent the patch from having rigid body motion in the xy plane. If the patch test is successful, the finite
element solution of the patch should give the stresses as sx ¼ p, sy ¼ 0, and sxy ¼ 0 at node 5 as well as at all other points
where the stresses are computed.

Note that we just have described the patch test for the stress state sx. If the patch is subjected to a general plane stress
condition (sx, sy, and sxy nonzero), we need to conduct patch tests for constant values of each of the stresses sx, sy, and sxy
separately. If an element passes the required patch tests, we can be assured that the finite element model that uses this type
of element will yield exact results as the mesh size is refined repeatedly.

REVIEW QUESTIONS

3.1 Give brief answers to the following questions.

1. What is an interpolation function?
2. What are primary nodes of a finite element?
3. What is p-method?
4. What is the name of the element that can be used to model curved boundaries?
5. What type of coordinate system is usually used to derive isoparametric element equations?
6. State the polynomial type of interpolation function for a one-dimensional problem.
7. What is a nodal degree of freedom?
8. What is the field variable in a thermal problem?
9. What is the field variable in a stress analysis problem?

10. What type of equations are used for finding the nodal displacements in a stress analysis problem?
11. What is Pascal triangle?
12. What is C2 continuity within an element?
13. What is the primary purpose of using local coordinates in defining the interpolation functions?

14. Why do we need two local coordinates, L1 ¼ x2� x
x2�x1 and L2 ¼ x� x1

x2�x1 , for a one-dimensional (line) element?

15. Which local coordinates of a triangular element among L1; L2, and L3 are zero along the edge 23?

3.2 Fill in the blank with a suitable word.

1. Theoretically a polynomial of order ———————————— corresponds to the exact solution of any problem.
2. A linear element is one whose interpolation polynomial is of order ——————.

2

5

1 4

3 6 9

8

7
P7  = a t p /2

P8  = a t p

P9 = a t p /2

a a

a a

2b
a t p

2
P3 =

FIGURE 3.20 A patch of two-dimensional elements.
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3. The number of secondary nodes introduced plus the number of primary nodes must match the number of
————————— degrees of freedom.

4. When the order of interpolation polynomial is fixed, the discretization of the domain can be improved using the r-
method ————————————— h-method.

5. When the locations of the nodes are altered without changing the total number of elements, the method is known as
——— method.

6. Curved boundaries cannot be modeled using straight-sided elements for good ———————————————.
7. The basic idea of isoparametric elements is to use the same interpolation to ——————— the element shape as

well as the variation of the field variable.
8. The quadratic interpolation function for a one-dimensional problem is —————————————————.
9. A ————————————— element is one for which the interpolation polynomial consists of a constant and

linear terms.
10. A multiplex element is one whose boundaries are ———————————— to the coordinate axes.
11. Geometric isotropy is the same as ————————————————— invariance.
12. The requirement of continuity of the field variable within the element is automatically————————— by poly-

nomial interpolation functions.
13. The field variable f and its partial derivatives up to the highest order appearing in the functional I(f) must have

————————————————— in the interpolation polynomial.
14. The field variable f and its partial derivatives up to one order less than the highest derivative appearing in the func-

tional I(f) must be ———————————— at element boundaries.
15. For a systematic mesh refinement, all coarse meshes must be ——————————— in the finer meshes.
16. The shape function NiðxÞ ¼ xJ�x

l corresponds to a one-dimensional ————————————— element.
17. Natural coordinates permit representation of the coordinates of any point within an element between 0 and

——————.
18. The sum of all the local coordinates at any point in a simplex element must be equal to ——————————.
19. The natural coordinates of a tetrahedron element are also known as——————————————— coordinates.
20. The convergence of a finite element to exact solution is guaranteed only if the element passes the

——————————————————— test.

3.3 Indicate whether each of the following statements is true or false.

1. Trigonometric functions are more frequently used as interpolation functions.
2. In general, fewer higher order elements achieve the same accuracy compared to larger numbers of linear elements for

the same computational effort.
3. The quartic type of polynomial interpolation function is commonly used.
4. The complex element is one that has a complex boundary.
5. The shapes of simplex elements and complex elements can be the same.
6. The boundaries of complex elements will not be parallel to the coordinate axes.
7. The number of generalized coordinates used in the interpolation polynomial can be different from the number of de-

grees of freedom of the element.
8. The field variable representation within an element can change with the local coordinates used.
9. Geometric isotropy and spatial isotropy are the same.

10. The interpolation function fðx; yÞ ¼ a1xþ a2yþ a3xy satisfies geometric isotropy.
11. The interpolation function fðx; yÞ ¼ a0 þ a1xþ a2x2 þ a3y satisfies geometric isotropy.
12. The interpolation function fðx; yÞ ¼ a0 þ a1x2 þ a2y2 þ a3xyÞ satisfies geometric isotropy.
13. If the interpolation polynomial does not satisfy all the convergence requirements, the results may converge to an

incorrect solution.
14. Interpolation polynomials that satisfy completeness but not compatibility requirement cannot give satisfactory results.
15. To prove convergence of an interpolation polynomial, the mesh refinement can be done any convenient way.
16. The form of the interpolation polynomial can be changed during the mesh refinement process.
17. The shape function Niðx; yÞ ¼ 1

2A ðai ¼ bixþ ciyÞ corresponds to a two-dimensional complex element.
18. Linear interpolation polynomials can be stated using global or local coordinates.
19. The natural coordinates are local coordinates.
20. The natural coordinates of a triangular element can be called area coordinates.

Interpolation Models Chapter | 3 119

www.konkur.in

Telegram: @uni_k



3.4 Select the most appropriate answer from the multiple choices given.

1. Polynomial type of interpolation functions are commonly used because they permit:
(a) More accurate solutions
(b) Easier computerization of finite element equations
(c) Quicker solutions

2. An element with interpolation polynomial of order 2 or more is called:
(a) Quadratic element (b) More accurate element (c) Higher order element

3. Secondary nodes are those whose locations are:
(a) Along the sides of the element
(b) At the corner points of the element
(c) Mid-side and/or interior of the element

4. Higher order elements are desirable when:
(a) Gradients of the field variable varies rapidly
(b) Use of linear elements is not possible
(c) Reduced computational effort is required

5. When locations of nodes are changed by fixing the number of elements, the method is known as:
(a) h-method (b) p-method (c) mixed method

6. Isoparametric elements are extensively used for the analysis of:
(a) Plates (b) Shells (c) Beams

7. The shape of a simplex element in two dimensions is:
(a) Rectangle (b) Triangle (c) Quadrilateral

8. The number of nodes of a complex element compared to ac simplex element is:
(a) Same (b) Less (c) More

9. Pascal pyramid can be defined for:
(a) One-dimensional problems (b) Two-dimensional problems (c) Three-dimensional problems

10. If f has Cr continuity within the element and Cr�1 continuity at element interfaces, the element is considered to satisfy
the following requirement:
(a) Compatibility (b) Continuity (c) Both compatibility and continuity

3.5 Match the following.

1. h-method (a) move node points in fixed element topology

2. p-method (b) subdivide selected elements

3. r-method (c) change order of polynomial

3.6 Match the function to the corresponding element type.

1. f ðx; yÞ ¼ a 0 þ a1 x þ a2 y þ a3 x y (a) complex element

2. f ðxÞ ¼ a 0 þ a1 x þ a2 x
2 þ a3 x

3 (b) simplex element

3. f ðx; y; zÞ ¼ a 0 þ a1 x þ a2 y þ a3 z (c) multiplex element

3.7 Match the following for a three-dimensional tetrahedron element with nodes 1, 2, 3, and 4.

1. L1 ¼ L3 ¼ L4 ¼ 0; L2 ¼ 1 (a) on face 124

2. L3 ¼ 0 (b) along edge 24

3. L1 ¼ L3 ¼ 0; L2 ; L4 s 0 (c) along edge 13

4. L1 þ L3 ¼ 1; L2 ¼ L4 ¼ 0 (d) node 2
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PROBLEMS

3.1 What kind of interpolation model would you propose for the field variable f for the six-node rectangular element
shown in Fig. 3.21? Discuss how the various considerations given in Section 3.5 are satisfied.

3.2 A one-dimensional simplex element has been used to find the temperature distribution in a straight fin. It is found that
the nodal temperatures of the element are 140�C and 100�C at nodes i and j, respectively. If the nodes i and j are
located 2 cm and 8 cm from the origin, find the temperature at a point 5 cm from the origin. Also find the temperature
gradient inside the element.

3.3 Two-dimensional simplex elements have been used for modeling a heated flat plate. The (x, y) coordinates of nodes i,
j, and k of an interior element are given by (5, 4) cm, (8, 6) cm, and (4, 8) cm, respectively. If the nodal temperatures
are found to be Ti ¼ 100�C, Tj ¼ 80�C, and Tk ¼ 110�C, find (a) the temperature gradients inside the element and
(b) the temperature at point P located at (xp, yp) ¼ (6, 5) cm.

3.4 Three-dimensional simplex elements are used to find the pressure distribution in a fluid medium. The (x, y, z) coor-
dinates of nodes i, j, k, and l of an element are given by (2, 4, 2) in, (0, 0, 0) in, (4, 0, 0) in, and (2, 0, 6) in. Find the
shape functions Ni, Nj, Nk, and Nl of the element.

3.5 Show that the condition to be satisfied for constant value of the field variable is
Pr
i¼ 1

Ni ¼ 1, where Ni denotes the

shape function corresponding to node i and r represents the number of nodes in the element.
3.6 Triangular elements are used for the stress analysis of a plate subjected to in-plane loads. The components of displace-

ment parallel to (x, y) axes at the nodes i, j, and k of an element are found to be (�0.001, 0.01) cm, (�0.002, 0.01) cm,
and (�0.002, 0.02) cm, respectively. If the (x,y) coordinates of the nodes shown in Fig. 3.22 are in centimeters, find
(a) the distribution of the (x,y) displacement components inside the element and (b) the components of displacement of
the point (xp, yp) ¼ (30, 25) cm.

3.7 The temperatures at the corner nodes of a rectangular element, in degrees centigrade, are Ti ¼ 90, Tj ¼ 84, Tk ¼ 75,
and Tl ¼ 85. If the length and width of the element are xij ¼ 15 mm, and yil ¼ 10 mm, and the conduction coefficient
of the material is k ¼ 42.5 W/m-�C, determine the following:
a. Temperature distribution in the element
b. Heat flow rates in x and y directions (qx and qy) using the relation

�
qx
qy

�
¼ �k

8>>><>>>:
vT

vx

vT

vy

9>>>=>>>;
3.8 Derive the relationship between the natural (area) and Cartesian coordinates of a triangular element (Eq. 3.71).

6 5 4

321

y

x

b

a /2 a /2

FIGURE 3.21 A six-node rectangular element.
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3.9 The quadratic interpolation function of a one-dimensional element with three nodes is given by

fðxÞ ¼ a1 þ a2xþ a3x
2

If the x coordinates of nodes 1, 2, and 3 are given by 1, 3, and 5 in, respectively, determine the matrices
h
he
i
,
h
he
i
�1,

and [N] of Eqs. (3.17), (3.18), and (3.20).
3.10 The cubic interpolation function for the displacement of a beam element is expressed as

fðxÞ ¼ a1 þ a2xþ a3x
2 þ a4x

3

with the nodal degrees of freedom defined as f1 ¼ f(x ¼ x1), f2 ¼ (df/dx) (x ¼ x1), f3 ¼ f(x ¼ x2), and f4 ¼ (df/dx)
(x ¼ x2), where x1 and x2 denote the x coordinates of nodes 1 and 2 of the element. If x1 ¼ 1.0 in and x2 ¼ 6 in,

determine the matrices
h
he
i
,
h
he
i
�1, and [N] of Eqs. (3.17), (3.18), and (3.20).

3.11 The transverse displacement of a triangular bending element (w) is expressed as

wðx; yÞ ¼ a1 þ a2xþ a3yþ a4x
2 þ a5xyþ a6y

2 þ a7x
3 þ a8

�
x2yþ xy2

�þ a9y
3

The nodal degrees of freedom are defined as fi ¼ w(xi, yi), fiþ3 ¼ (fw/fy) (xi, yi), fiþ6 ¼ (fw/fx) (xi, yi); i ¼ 1, 2,
3, where (xi, yi) denote the coordinates of node i. If the (x, y) coordinates of nodes 1, 2, and 3 are given by (0, 0), (0,

5), and (10, 0), respectively, determine the matrices
h
he
i
,
h
he
i
�1 and [N] of Eqs. (3.17), (3.18), and (3.20).

3.12 Consider the displacement model of a triangular bending element given in Problem 3.11. Determine whether the
convergence requirements of Section 3.6 are satisfied by this model.

Note

The expression for the functional I (potential energy) of a plate in bending is given by

I ¼ 1

2

ZZ
A

D

��
v2w

vx2
þ v2w

vy2

�2
� 2ð1� yÞ

�
v2w

vx2

v2w

vy2
�
�
v2w

vxvy

�2��
dx dy �

Z
A

ðpwÞ dx dy

where p is the distributed transverse load per unit area, D is the flexural rigidity, v is the Poisson’s ratio, and A is the surface

area of the plate.

1
(20, 20)

2
(40, 20)

3
(40, 40)

y

x

FIGURE 3.22 A triangular element.
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3.13 The coordinates of the nodes of a three-dimensional simplex element are given below:

Node Number

Coordinates of the Node

x y Z

i 0 0 0

j 10 0 0

k 0 15 0

l 0 0 20

Determine the shape functions of the element.
3.14 The shape function matrix of a uniform one-dimensional simplex element is given by [N] ¼ [Ni Nj], with

Ni ¼ 1 � (x/l) and Nj ¼ (x/l). Evaluate the integral
RRR

V ½N�T ½N�dV ; where V ¼ A dx, A is the cross-sectional area,
and l is the length of the element.

3.15 Evaluate the integral
R
Lij

N
!

N
!T

dL along the edge ij of a simplex triangle, where Lij denotes the distance between

the nodes i and j, and the vector of shape functions N
!

is given by N
!T ¼ ðNiNjNkÞ.

3.16 Evaluate the integral
R
sijk
N
!

N
!T

dS on the face ijk of a simplex tetrahedron, where Sijk denotes the surface area

bounded by the nodes i, j, and k, and the vector of shape functions is given by N
!T ¼ ðNiNjNkNlÞ.

3.17 The nodes of a one-dimensional simplex element are located at x1 ¼ 30 mm and x2 ¼ 50 mm. The values of the field
variable at the two nodes are U1 and U2. Determine the matrix of shape functions, [N(x)], using Eq. (3.20) assuming
a linear interpolation model for the field variable as

fðxÞ ¼ h!T
a! where h! ¼

�
1

x

�
and a! ¼

�
a1

a2

�
3.18 The temperatures of a one-dimensional element at nodes i and j are given by 130 �F and 80 �F, respectively. If

the nodes i and j are located at a distance of 30 in and 70 in, respectively, from the origin, express the matrix of
shape functions using Eq. (3.20).

3.19 The u-components of displacement at nodes i, j, and k of a triangular element are denoted Ui, Uj, and Uk, respec-
tively. The nodal coordinates are given by (xi, yi) ¼ (5, 0) in, (xj, yj) ¼ (0, 4) in, and (xk, yk) ¼ (0, 0) in. Assuming
a linear variation of u(x, y) inside the element, determine the shape functions of the element using Eq. (3.20).

3.20 The (x, y) coordinates of the nodes of a triangular element in the temperature analysis of a rectangular plate are given
by (xi, yi) ¼ (30, 40) mm, (xj, yj) ¼ (60, 80) mm, and (xk, yk) ¼ (50, 70) mm. If the nodal temperatures are given by
Ti ¼ 130�C, Tj ¼ 70�C, and Tk ¼ 150�C, find the following:
a. Matrix of shape functions using Eq. (3.20)
b. Expression for the temperature distribution inside the element
c. Temperature gradient inside the element

3.21 The horizontal component of fluid velocity, u(x), in a tube is known to be Ui ¼ 3 m/s and Uj ¼ 2 m/s at nodes i and j
located at xi ¼ 10 cm and xj ¼ 15 cm, respectively, in a finite element. Determine the following:
a. Matrix of shape functions using Eq. (3.20)
b. Expression for the velocity distribution, u(x), in the element
c. Velocity gradient in the element

3.22 The temperatures at the nodes of a triangular simplex element are given by
Node i: T ¼ 110�C, (x, y) ¼ (2, 2) cm
Node j: T ¼ 38�C, (x, y) ¼ (5, 3) cm
Node k: T ¼ 125�C, (x, y) ¼ (�1, 4) cm
Find the shape functions associated with nodes i, j, and k using Eq. (3.20). Also, determine the temperature variation,
T(x, y), in the element.

3.23 The (x, y, z) coordinates of the nodes i, j, k, and l of a tetrahedron element are given by (30, 20, 50), (10, 10, 0), (50,
40, 0), and (20, 60, 0) mm, respectively. Determine the shape functions corresponding to the various nodes using
Eq. (3.20).
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3.24 The temperatures at the nodes of a tetrahedron simplex element are given by:
Node i: T ¼ 150� F, (x, y, z) ¼ (4, 5, 7) in
Node j: T ¼ 125 �F, (x, y, z) ¼ (2, 2, 2) in
Node k: T ¼ 85 F, (x, y, z) ¼ (8, 5, 3) in
Node l: T ¼ 115 �F, (x, y, z) ¼ (3, 6, 4) in
Find the shape functions associated with the nodes using Eq. (3.20). Also, determine the temperature variation,
T(x, y, z), in the element.

3.25 The displacement components parallel to the x axis of the nodes of a tetrahedron element are:
Node i: u ¼ 0.005 mm, (x, y, z) ¼ (30, 40, 20) mm
Node j: u ¼ �0.002 mm, (x, y, z) ¼ (10, 60, �20) mm
Node k: u ¼ 0.003 mm, (x, y, z) ¼ (30, 80, �40) mm
Node l: u ¼ �0.004 mm, (x, y, z) ¼ (50, 50, �30) mm
Find the shape functions associated with the nodes using Eq. (3.20). Also, determine the displacement variation,
u(x, y, z), in the element.

3.26 The nodal coordinates of a tetrahedron element, in mm, are given by (0, 0, 0), (10, 0, 30), (20, 0, 0), and (10, 20, 10).
Find the shape functions of the element using Eq. (3.20).

3.27 A two-dimensional simplex element has the nodal coordinates (10, 10) mm, (40, 30) mm, and (10, 30) mm. The
element undergoes in-plane displacement with components u and v. Determine the shape functions of the element
and express the variations u(x, y) and v(x, y) in terms of the nodal components of displacement, (Ua, Va), a ¼ i, j, k.

3.28 Solve Problem 3.1 using the relations of Section 3.7.1.
3.29 Solve Problem 3.2 using the relations of Section 3.7.1.
3.30 Solve Problem 3.3 using the relations of Section 3.7.2.
3.31 Solve Problem 3.4 using the relations of Section 3.7.2.
3.32 Solve Problem 3.5 using the relations of Section 3.7.1.
3.33 Solve Problem 3.6 using the relations of Section 3.7.2.
3.34 Solve Problem 3.7 using the relations of Section 3.7.3.
3.35 Solve Problem 3.8 using the relations of Section 3.7.3.
3.36 Solve Problem 3.9 using the relations of Section 3.7.3.
3.37 Solve Problem 3.10 using the relations of Section 3.7.3.
3.38 Consider the nodal coordinates of a tetrahedron element as given in Problem 3.7. If the (u, v, w) displacements at the

nodes i, j, k, and l are given by (0.001, �0.002, 0.003) mm, (�0.002, 0.001, 0.002) mm, (0.0015, 0.002, �0.002)
mm, and (0.003, �0.001, 0.001) mm, respectively, determine the variations of u(x, y, z), v(x, y, z), and w(x, y, z) in
the element.

3.39 The nodal coordinates of a triangular plate element subject to in-plane loads are (xi, yi) ¼ (10, 20) mm, (xj, yj)
¼ (50, 30) mm, and (xk, yk) ¼ (40, 60) mm.
The in-plane displacement components, (u, v), of the nodes i, j, and k are given by (1.5, �0.5) mm, (�1.0, 2.0) mm,
and (1.5, �1.0) mm, respectively. Express the variations of u(x, y) and v(x, y) in the element.

3.40 Evaluate the line integral
R
L½N�T dL along the side ij of a linear triangular element ijk using natural coordinates.

3.41 Evaluate the line integral
R
L½N�TdL along the side jk of a linear triangular element ijk using natural coordinates.

3.42 Evaluate the line integral
R
L½N�TdL along the side ki of a linear triangular element ijk using natural coordinates.

3.43 Show that the area coordinates L1, L2, and L3 along the edge ij of the triangular element ijk shown in Fig. 3.23 can be
expressed as

L1 ¼ 1� s

lij
; L2 ¼ s

lij
; L3 ¼ 0

where lij is the length of the side ij.
3.44 Show that the area coordinates L1, L2, and L3 along the edge jk of the triangular element ijk shown in Fig. 3.23 can be

expressed as

L1 ¼ 0; L2 ¼ 1� s

ljk
; L3 ¼ s

ljk

where lik is the length of the side jk.
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3.45 Show that the area coordinates L1, L2, and L3 along the edge ki of the triangular element ijk shown in Fig. 3.23 can be
expressed as

L1 ¼ s

lki
; L2 ¼ 0; L3 ¼ 1� s

lki

where lki is the length of the side ki.
3.46 Evaluate the integral

R
LL

a
1L

b
2L

g
3 dL along the side ij of a triangular element ijk.

3.47 Show that the shape functions of a triangular simplex element (with three nodes) satisfy the two properties of C 0

continuity stated in Section 3.7.4.
3.48 Show that the value of the shape function Ni is equal to 1 at node i and 0 at the other nodes j, k, and l for a four-noded

tetrahedron element.
3.49 The nodal temperatures of a triangular element, Ti, Tj, and Tk, are assumed to be the unknowns in the heat transfer

analysis of a two-dimensional (plate) fin. Assuming a linear temperature model for the temperature inside the
element is

fðx; yÞ ¼ f1 x yg

8><>:
T1

T2

T3

9>=>;h h!T
a! (P1)

determine the shape function matrix [N(x, y)] and the shape functions associated with the three nodes of the element.
Assume the nodal coordinates as (xi, yi) ¼ (�5, 10) in, (xj, yj) ¼ (2, 5) in, and (xk, yk) ¼ (0, 11) in.

3.50 Consider a tetrahedron element with global nodes 3, 7, 11, and 25 as shown in Fig. 3.24. Indicate the 12 acceptable
ways in which the four nodes can be labeled (as local 1, 2, 3, 4) to satisfy the ordering convention.

25

7

11

3

FIGURE 3.24 A tetrahedron element.

i

k

x

y

j

L2

L1

L3

s

ij

FIGURE 3.23 Area coordinates of a triangular element.
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3.51 The nodal coordinates x1 and x2 of an element in a heat transfer problem are given by 10 in and 15 in with the cor-
responding nodal unknowns (temperatures) as T ðeÞ

1 and T ðeÞ
2 , respectively. Express the linear interpolation model of

the element, T(x) ¼ a1 þ a2x, in terms of the nodal unknowns using Eq. (3.19).
3.52 The axial displacements at the two end nodes (nodes 1 and 2) of a bar element are known to be u1 ¼ 0.2 mm and

u2 ¼ 0.4 mm. If the x-coordinates of nodes 1 and 2 are x1 ¼ 100 mm and x2 ¼ 150 mm, express the linear displace-
ment model of the element, u(x) ¼ a1 þ a2x, in terms of the nodal values u1 and u2 using Eq. (3.19).

3.53 The nodal temperatures of nodes i and j of a line element in a one-dimensional heat transfer problem are given
by Ti ¼ 230�C and Tj ¼ 180�C with the x-coordinates of the nodes i and j given by xi ¼ 25 cm and xj ¼ 45 cm.
Determine the following:
a. Shape functions associated with the nodal temperatures Ti and Tj
b. Interpolation model for the temperature in the element
c. Temperature in the element at x ¼ 40 cm

3.54 The axial displacements of the end nodes i and j of a bar element are known to be ui ¼ 0.22 in and uj ¼ 0.27 in. If the
x-coordinates of the nodes are xi ¼ 8.0 in and xj ¼ 10.0 in, find the following:
a. Shape functions associated with the nodal displacements ui and uj
b. Interpolation model for the axial displacement in the element
c. Axial displacement at x ¼ 8.5 in in the element

3.55 The global nodal coordinates of a triangular plate element used in the stress analysis of a plate subjected to in-plane
loads are given by (xi, yi) ¼ (50, 30) in, (xj, yj) ¼ (70, 50) in, and (xk, yk) ¼ (55, 60) in. If u(x, y) and v(x, y) are the
field variables with nodal unknowns given by

ðF2i�1;F2iÞ ¼ ðui; viÞ; ðF2j�1;F2jÞ ¼ ðuj; vjÞ; and ðF2k�1;F2kÞ ¼ ðuk; vkÞ

find the shape function matrix of the element.
3.56 The nodal coordinates and nodal temperatures of a triangular simplex element follow:

Node i: (xi, yi) ¼ (10, 10) mm, Ti ¼ 100�C
Node j: (xj, yj) ¼ (20, 50) mm, Tj ¼ 80�C
Node k: (xk, yk) ¼ (�10, 30) mm, Tk ¼ 130�C
Express the temperature variation in the element, T(x, y), in terms of the shape functions.

3.57 The global X-coordinates of the nodes of a one-dimensional element e, shown in Fig. 3.3, are

XðeÞ
1 ¼ 12 cm and XðeÞ

2 ¼ 18 cm

If the nodal values of the field variable are denoted as FðeÞ
1 and F

ðeÞ
2 , express the linear interpolation model of the

element in terms of the nodal unknowns FðeÞ
1 and F

ðeÞ
2 .

3.58 Check whether the patch tests for rigid body motion and constant strain state are satisfied for a bar element with the

shape functions N1ðxÞ ¼ xiþ1 � x
xiþ1 � xi and N2ðxÞ ¼ x� xi

xiþ1 � xi by considering the patch shown in Fig. 3.25.

3.59 Check whether the patch test for rigid body motion is satisfied for the element with the shape functions Ni(x) given in
Eq. (1.17) by considering the patch of elements shown in Fig. 3.26.

3

A(i )= 1 cm2, E (i )= 106 N/cm2; i = 1, 2

(1) = 20 cm (2)= 10 cm

1 2 e = 2e = 1

u1 u2 u3

P1 P2 P3

FIGURE 3.25 A patch of two bar elements.
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FIGURE 3.26 A patch of two beam elements.
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4.1 INTRODUCTION

As stated earlier, if the interpolation polynomial is of order two or more, the element is known as a higher order element. A
higher order element can be either complex or multiplex. In higher order elements, some secondary (mid-side and/or
interior) nodes are introduced in addition to the primary (corner) nodes in order to match the number of nodal degrees of
freedom with the number of constants (also known as generalized coordinates) in the interpolation polynomial.

For problems involving curved boundaries, a family of elements known as isoparametric elements can be used. In
isoparametric elements, the same interpolation functions used to define the element geometry are also used to describe the
variation of the field variable within the element. Both higher order and isoparametric elements are considered in this chapter.

4.2 HIGHER ORDER ONE-DIMENSIONAL ELEMENTS

4.2.1 Quadratic Element

The quadratic interpolation model for a one-dimensional element can be expressed as

fðxÞ ¼ a1 þ a2xþ a3x
2 (4.1)

The Finite Element Method in Engineering. https://doi.org/10.1016/B978-0-12-811768-2.00004-3
Copyright © 2018 Elsevier Inc. All rights reserved.
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Since there are three constants (a1, a2, and a3) in Eq. (4.1), the element is assumed to have three degrees of freedom,
one at each of the ends and one at the middle point as shown in Fig. 4.1B. By requiring that

fðxÞ ¼ Fi at x ¼ 0

fðxÞ ¼ Fj at x ¼ l=2

fðxÞ ¼ Fk at x ¼ l

(4.2)

we can evaluate the constants a1, a2, and a3 as

a1 ¼ Fi

a2 ¼ ð4Fj � 3Fi �FkÞ=l
a3 ¼ 2ðFi � 2Fj þFkÞ

�
l2

(4.3)

With the help of Eq. (4.2), Eq. (4.1) can be expressed after rearrangement as

fðxÞ ¼ ½NðxÞ�F!ðeÞ
(4.4)

where

½NðxÞ� ¼ ½NiðxÞ NjðxÞ NkðxÞ �

NiðxÞ ¼
�
1� 2

x

l

��
1� x

l

�
NjðxÞ ¼ 4

x

l

�
1� x

l

�
NkðxÞ ¼ �x

l

�
1� 2

x

l

�
(4.5)

and

F
!ðeÞ ¼

8><>:
Fi

Fj

Fk

9>=>; (4.6)

Node i Node j

Node i Node kNode j

Node i Node kNode j

Linear element

Quadratic element

Cubic element

/2

/3 /3 /3

/2

Node

(A)

(B)

(C)

FIGURE 4.1 Location of nodes in one-dimensional element (global node numbers indicated).

130 PART j II Basic Procedure

www.konkur.in

Telegram: @uni_k



4.2.2 Cubic Element

The cubic interpolation model can be expressed as

fðxÞ ¼ a1 þ a2xþ a3x
2 þ a4x

3 (4.7)

Because there are four unknown coefficients a1, a2, a3, and a4, the element is assumed to have four degrees of freedom,
one at each of the four nodes shown in Fig. 4.1C. By requiring that

fðxÞ ¼ Fi at x ¼ 0

fðxÞ ¼ Fj at x ¼ l=3

fðxÞ ¼ Fk at x ¼ 2l=3

fðxÞ ¼ Fl at x ¼ l

(4.8)

the constants a1, a2, a3, and a4 can be evaluated. The substitution of values of these constants into Eq. (4.7) leads to

fðxÞ ¼ ½NðxÞ�F!ðeÞ
(4.9)

where

½NðxÞ� ¼ ½NiðxÞ NjðxÞ NkðxÞ NlðxÞ �

NiðxÞ ¼
�
1� 3x

l

��
1� 3x

2l

��
1� x

l

�

NjðxÞ ¼ 9
x

l

�
1� 3x

2l

��
1� x

l

�

NkðxÞ ¼ �9
2
x

l

�
1� 3x

l

��
1� x

l

�

NlðxÞ ¼ x

l

�
1� 3x

l

��
1� 3x

2l

�

(4.10)

and

F
!ðeÞ ¼

8>>><>>>:
Fi

Fj

Fk

Fl

9>>>=>>>; (4.11)

It can be observed that the application of the previous procedure for determining the coefficients ai and the nodal
interpolation functions Ni(x) becomes more tedious as the order of the interpolation polynomial increases. The
nodal interpolation functions Ni(x) can be constructed in a simpler manner by employing either natural coordinates or
classical interpolation polynomials.

4.3 HIGHER ORDER ELEMENTS IN TERMS OF NATURAL COORDINATES

4.3.1 One-Dimensional Element

QUADRATIC ELEMENT
The normalized or natural coordinates L1 and L2 for a one-dimensional element were shown in Fig. 3.12. If the values

of f at three stations, x1,(x1 þ x2)/2, and x2 are taken as nodal unknowns, the quadratic model for f (x) can be expressed as

fðxÞ ¼ ½N�F!ðeÞ ¼ ½N1 N2 N3 �F!
ðeÞ

(4.12)
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where

F
!ðeÞ ¼

8><>:
F1

F2

F3

9>=>;
ðeÞ

¼

8><>:
fðx1Þ
fðx2Þ
fðx3Þ

9>=>;
ðeÞ

¼

8>>>>><>>>>>:
fðat L1 ¼ 1; L2 ¼ 0Þ

f

�
at L1 ¼ 1

2
; L2 ¼ 1

2

�
fðat L1 ¼ 0; L2 ¼ 1Þ

9>>>>>=>>>>>;

ðeÞ

(4.13)

and the quadratic nodal interpolation functions Ni can be expressed in general form as

Ni ¼ a
ðiÞ
1 L1 þ a

ðiÞ
2 L2 þ a

ðiÞ
3 L1L2; i ¼ 1; 2; 3 (4.14)

where aðiÞ
1 ;a

ðiÞ
2 ; and a

ðiÞ
3 are constants (to be determined) with the superscript (i) identifying the ith interpolation function,

Ni. By imposing on Ni, the three requirements

N1 ¼

8>>>>><>>>>>:
1 at node 1 ðL1 ¼ 1; L2 ¼ 0Þ

0 at node 2

�
L1 ¼ L2 ¼ 1

2

�
0 at node 3 ðL1 ¼ 0; L2 ¼ 1Þ

and find the values of the constants að1Þ
1 ;a

ð1Þ
2 ; and a

ð1Þ
3 as

að1Þ1 ¼ 1; að1Þ2 ¼ 0; að1Þ3 ¼ �2

so that Eq. (4.14) becomes

N1 ¼ L1 � 2L1 L2

By using the condition L1 þ L2 ¼ 1, we obtain

N1 ¼ L1ð2L1 � 1Þ (4.15)

Similarly, the other two nodal interpolation functions can be derived as

N2 ¼ 4L1L2 (4.16)

and

N3 ¼ L2ð2L2 � 1Þ (4.17)

The nodal interpolation functions Ni appearing in Eqs. (4.15) to (4.17) are shown in Fig. 4.2.

CUBIC ELEMENT
For a cubic element, we consider four nodal degrees of freedom, one at each of the nodes shown in Fig. 4.1C. The cubic

interpolation model can be written as

fðxÞ ¼ ½N�F!ðeÞ ¼ ½N1 N2 N3 N4 �F!
ðeÞ

(4.18)

1

1

Quadratic interpolation functions
(three nodes) used in Eq. (4.12)

L1(2L1− 1)

L2(2L2− 1)

4L1L2

1

FIGURE 4.2 Nodal interpolation (or shape) functions for a line element.
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where

F
!ðeÞ ¼

8>>><>>>:
F1

F2

F3

F4

9>>>=>>>;
ðeÞ

¼

8>>><>>>:
fðx1Þ
fðx2Þ
fðx3Þ
fðx4Þ

9>>>=>>>;
ðeÞ

¼

8>>><>>>:
fðat L1 ¼ 1; L2 ¼ 0Þ

fðat L1 ¼ 2=3; L2 ¼ 1=3Þ
fðat L1 ¼ 1=3; L2 ¼ 2=3Þ

fðat L1 ¼ 0; L2 ¼ 1Þ

9>>>=>>>;
ðeÞ

and the nodal interpolation functions Ni appearing in Eq. (4.18) can be expressed in terms of the natural coordinates as

Ni ¼ aðiÞ1 L1 þ aðiÞ2 L2 þ aðiÞ3 L1L2 þ aðiÞ4 L2
1L2 (4.19)

By requiring that Ni be equal to 1 at node i and 0 at each of the other nodes, we find that

N1 ¼ L1

�
1� 9

2
L1L2

�
(4.20)

N2 ¼ �9
2
L1L2ð1� 3L1Þ (4.21)

N3 ¼ 9L1L2

�
1� 3

2
L1

�
(4.22)

N4 ¼ L2 � 9
2
L1L2ð1� L1Þ (4.23)

EXAMPLE 4.1
A bar, subjected to an axial force, is divided into a number of quadratic elements. For a particular element, the nodes i, j, and k are

located at 15 mm, 18 mm, and 21 mm, respectively, from the origin. If the axial displacements of the three nodes are given by

ui ¼ 0.0015 mm, uj ¼ 0.0024 mm, and uk ¼ 0.0033 mm, determine the following:

a. Shape functions

b. Variation of the displacement, u(x), in the element

c. Axial strain, εxx, in the element

Solution

Approach: Use Eqs. (4.5) and (4.4) and the relation εxx ¼ du
dx.

a. The length of the element is l ¼ xk � xi ¼ 21e15 ¼ 6 mm, and the shape functions are given by Eq. (4.5):

NiðxÞ ¼
�
1� 2x

6

��
1� x

6

�
¼ 1

18
ð3� xÞð6� xÞ (E.1)

NjðxÞ ¼ 4x

6

�
1� x

6

�
¼ 1

9
xð6� xÞ (E.2)

Nk ðxÞ ¼ �x

6

�
1� 2x

6

�
¼ � x

18
ð3� xÞ (E.3)

b. The variation of the axial displacement can be expressed using Eq. (4.4):

uðxÞ ¼ NiðxÞui þNjðxÞuj þNk ðxÞuk

¼ 1

18
ð3� xÞð6� xÞð0:0015Þ þ 1

9
xð6� xÞð0:0024Þ � x

18
ð3� xÞð0:0033Þ

¼ �
18� 9x þ x2

�ð0:00008333Þ þ �6x � x2
�ð0:00026667Þ þ �x2 � 3x

�ð0:00018333Þ
c. The axial strain in the element is given by

εxx ¼ du

dx
¼ ð�9þ 2xÞð0:00008333Þ þ ð6� 2xÞð0:00026667Þ þ ð2x � 3Þð0:00018333Þ; 0 � x � 6 mm
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EXAMPLE 4.2
The nodal temperatures in a one-dimensional cubic element used in heat transfer analysis are given by Ti ¼ 80 �F, Tj ¼ 90 �F,
Tk ¼ 110 �F, and Tl ¼ 140 �F. If the length of the element is 6 in, determine (a) the temperature variation and (b) the rate of change

of temperature along the axial distance of the element.

Solution

Approach: Use Eqs. (4.9) and (4.10).

a. Here the length of the element is l ¼ 6 in, and hence the shape functions associated with the nodes are as follows:

NiðxÞ ¼
�
1� 3x

6

��
1� 3x

12

��
1� x

6

�
¼ 1

48
ð2� xÞð4� xÞð6� xÞ

NjðxÞ ¼ 9
x

6

�
1� 3x

12

��
1� x

6

�
¼ x

16
ð4� xÞð6� xÞ

NkðxÞ ¼ �9

2

x

6

�
1� 3x

6

��
1� x

6

�
¼ �3x

48
ð2� xÞð6� xÞ

NlðxÞ ¼ x

6

�
1� 3x

6

��
1� 3x

12

�
¼ x

48
ð2� xÞð4� xÞ

Variation of temperature in the element:

T ðxÞ ¼ NiðxÞTi þNjðxÞTj þNkðxÞTk þNlðxÞTl

¼ 1

48
ð2� xÞð4� xÞð6� xÞð80Þ þ x

16
ð4� xÞð6� xÞð90Þ � 3x

48
ð2� xÞð6� xÞð110Þ þ x

48
ð2� xÞð4� xÞð140Þ

¼ 5

3

�
48� 44x þ 12x2 � x3

�þ 45

8

�
24x � 10x2 þ x3

�� 55

8

�
12x � 8x2 þ x3

�þ 35

12

�
8x � 6x2 þ x3

� �F

b. Rate of change of temperature in the element:

dT

dx
¼ 5

3

�� 44þ 24x � 3x2
�þ 45

8

�
24� 20x þ 3x2

�� 55

8

�
12� 16x þ 3x2

�þ 35

12

�
8� 12x þ 3x2

��
F=in

4.3.2 Two-Dimensional (Triangular) Element

QUADRATIC ELEMENT
The natural or triangular coordinates L1, L2, and L3 of a triangular element were shown in Fig. 3.13. For a quadratic

interpolation model, the values of the field variable at three corner nodes and three mid-side nodes (Fig. 4.3A) are taken as
the nodal unknowns and f (x, y) is expressed as

fðx; yÞ ¼ ½N�F!ðeÞ ¼ ½N1 N2 / N6 �F!
ðeÞ

(4.24)

where Ni can be derived from the general quadratic relationship

Ni ¼ aðiÞ1 L1 þ aðiÞ2 L2 þ aðiÞ3 L3 þ aðiÞ4 L1L2 þ aðiÞ5 L2L3 þ aðiÞ6 L1L3 (4.25)

as

Ni ¼ Lið2 Li � 1Þ; i ¼ 1; 2; 3

N4 ¼ 4 L1L2

N5 ¼ 4 L2L3

N6 ¼ 4 L1L3

(4.26)
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Φ1

Φ6

Φ3

Φ4

1 4

6

3

5

2

Φ5

Φ2

3

6

1 4 2

5

L1(2L1− 1)

3

56

1 24

L2(2L2− 1)

3

6

1
4

2

5

4L1L2

3

6

1
4

2

5

4L3L1

1

1

Shape functions

Node locations

1

6

3

5
2

4

(A)

(B) φ (x, y)

FIGURE 4.3 Nodes and shape functions of a quadratic triangular element.
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and

F
!ðeÞ ¼

8>>><>>>:
F1

F2

«

F6

9>>>=>>>;
ðeÞ

¼

8>>>><>>>>:
fðx1; y1Þ
fðx2; y2Þ

«

fðx6; y6Þ

9>>>>=>>>>;

ðeÞ

¼

8>>>>>>>>>><>>>>>>>>>>:

fðat L1 ¼ 1; L2 ¼ L3 ¼ 0Þ
fðat L2 ¼ 1; L1 ¼ L3 ¼ 0Þ

«

f

�
at L1 ¼ L3 ¼ 1

2
; L2 ¼ 0

�

9>>>>>>>>>>=>>>>>>>>>>;

ðeÞ

(4.27)

The nodal interpolation or shape functions of Eq. (4.26) are shown in Fig. 4.3B.

CUBIC ELEMENT

If a cubic interpolation model is used, 10 nodal unknowns are required. The location of the nodes is shown in Fig. 4.4,
in which the nodes 4 and 5 are located at one-third points along the edge 12 with similar locations for the nodes 6 and 7,
and 8 and 9 along the edges 23 and 31, respectively. The node 10 is located at the centroid of the triangle 123. In this case,
the interpolation model is given by

fðx; yÞ ¼ ½N�F!ðeÞ ¼ ½N1 N2 / N10 �F!
ðeÞ

(4.28)

where the general form of the nodal interpolation function can be assumed as

Ni ¼ aðiÞ1 L1 þ aðiÞ2 L2 þ aðiÞ3 L3 þ aðiÞ4 L1L2 þ aðiÞ5 L2L3 þ aðiÞ6 L1L3 þ aðiÞ7 L2
1L2 þ aðiÞ8 L2

2L3 þ aðiÞ9 L2
3L1 þ aðiÞ10L1L2L3 (4.29)

By imposing the conditions that Ni be equal to 1 at node i and 0 at each of the remaining nine nodes, we can obtain

Ni ¼ 1
2
Lið3Li � 1Þð3Li � 2Þ; i ¼ 1; 2; 3

N4 ¼ 9
2
L1L2ð3L1 � 1Þ

N5 ¼ 9
2
L1L2ð3L2 � 1Þ

N6 ¼ 9
2
L2L3ð3L2 � 1Þ

N7 ¼ 9
2
L2L3ð3L3 � 1Þ

N8 ¼ 9
2
L1L3ð3L3 � 1Þ

N9 ¼ 9
2
L1L3ð3L1 � 1Þ

N10 ¼ 27 L1L2L3

(4.30)

4

1

9

10 8

3
762

5

FIGURE 4.4 Location of nodes of a cubic triangular element.
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and

F
!ðeÞ ¼

8>>><>>>:
F1

F2

«

F10

9>>>=>>>;
ðeÞ

¼

8>>>><>>>>:
fðx1; y1Þ
fðx2; y2Þ

«

fðx10; y10Þ

9>>>>=>>>>;

ðeÞ

¼

8>>>>>>>><>>>>>>>>:

fðat L1 ¼ 1; L2 ¼ L3 ¼ 0Þ
fðat L2 ¼ 1; L1 ¼ L3 ¼ 0Þ

«

f

�
at L1 ¼ L2 ¼ L3 ¼ 1

3

�

9>>>>>>>>=>>>>>>>>;

ðeÞ

(4.31)

4.3.3 Two-Dimensional (Quadrilateral) Element

NATURAL COORDINATES
A different type of natural coordinate system can be established for a quadrilateral element in two dimensions as shown

in Fig. 4.5. For the local r, s (natural) coordinate system, the origin is taken as the intersection of lines joining the midpoints
of opposite sides and the sides are defined by r ¼ �1 and s ¼ �1. The natural and Cartesian coordinates are related by the
following equation:

	
x

y



¼
�
N1 N2 N3 N4 0 0 0 0

0 0 0 0 N1 N2 N3 N4

�
8>>>>>>>>>>>>><>>>>>>>>>>>>>:

x1
x2
x3
x4
y1

y2
y3
y4

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
(4.32)

where (xi, yi) are the (x, y) coordinates of node i (i ¼ 1, 2, 3, 4),

Ni ¼ 1
4
ð1þ rriÞð1þ ssiÞ; i ¼ 1; 2; 3; 4 (4.33)

and the natural coordinates of the four nodes of the quadrilateral are given by

ðr1; s1Þ ¼ ð�1;�1Þ; ðr2; s2Þ ¼ ð1;�1Þ;
ðr3; s3Þ ¼ ð1; 1Þ; and ðr4; s4Þ ¼ ð�1; 1Þ

(4.34)

P
(x, y)
(r, s)

r

s

y

x

4
3

(x4, y4)
(−1, 1)

1
(x1, y1)
(−1, −1)

2
(x2, y2)
(1, −1)

(x3, y3)
(1, 1)

FIGURE 4.5 Natural coordinates for a quadrilateral element.
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The Jacobian matrix, [J], is defined as a matrix containing the derivatives of the global coordinates with respect to the
natural coordinates of the element. Thus, the 2 � 2 Jacobian matrix of the element can be expressed as

½J� ¼

264 vx=vr vy=vr

vx=vs vy=vs

375

¼ 1
4

264�ð1� sÞ ð1� sÞ ð1þ sÞ �ð1þ sÞ

�ð1� rÞ �ð1þ rÞ ð1þ rÞ ð1� rÞ

375

2666666666664

x1 y1

x2 y2

x3 y3

x4 y4

3777777777775

(4.35)

If f is a function of the natural coordinates r and s, its derivatives with respect to x and y can be obtained as

vf

vr
¼ vf

vx

vx

vr
þ vf

vy

vy

vr
;

vf

vs
¼ vf

vx

vx

vs
þ vf

vy

vy

vs

or 8>><>>:
vf

vr

vf

vs

9>>=>>; ¼

26664
vx

vr

vy

vr

vx

vs

vy

vs

37775
8>>><>>>:

vf

vx

vf

vy

9>>>=>>>;h½J�

8>>><>>>:
vf

vx

vf

vy

9>>>=>>>;
This equation can be inverted to obtain 8>>><>>>:

vf

vx

vf

vy

9>>>=>>>; ¼ ½J��1

8>><>>:
vf

vr

vf

vs

9>>=>>; (4.36)

The integration of functions of r and s has to be performed numerically with

dA ¼ dxdy ¼ det½J�$ drds (4.37)

and the limits of both r and s will be �1 and 1.
LINEAR ELEMENT

For a quadrilateral element, it is not possible to have linear variation of the field variable (in terms of two independent
coordinates) if one degree of freedom is chosen at each of the four corner nodes. Hence, we take the interpolation model as

fðx; yÞ ¼ ½N�F!ðeÞ ¼ ½N1 N2 N3 N4 �F!
ðeÞ

(4.38)

where

Ni ¼ ð1þ rriÞð1þ ssiÞ=4; i ¼ 1; 2; 3; 4 (4.39)

and

F
!ðeÞ ¼

8>>><>>>:
F1

F2

F3

F4

9>>>=>>>;
ðeÞ

¼

8>>>><>>>>:
fðx1; y1Þ
fðx2; y2Þ
fðx3; y3Þ
fðx4; y4Þ

9>>>>=>>>>;

ðeÞ

h

8>>>><>>>>:
fðat r ¼ �1; s ¼ �1Þ
fðat r ¼ 1; s ¼ �1Þ
fðat r ¼ 1; s ¼ 1Þ
fðat r ¼ �1; s ¼ 1Þ

9>>>>=>>>>;

ðeÞ

(4.40)
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The nodal shape functions represented by Eq. (4.39) are shown in Fig. 4.6A. It can be seen that the variation of the field
variable along the edges of the quadrilateral is linear. Hence, this element is often called a linear element.

EXAMPLE 4.3
The global coordinates of the four corners of a linear quadratic element are given by

ðx1; y1Þ ¼ ð6;9Þ in; ðx2; y2Þ ¼ ð2;7Þ in; ðx3; y3Þ ¼ ð3; 10Þ in; andðx4; y4Þ ¼ ð10; 6Þ in (E.1)

Find the global coordinates corresponding to the natural coordinates r ¼ e0.75 and s ¼ 0.5.

Solution

Eq. (4.32) gives

x ¼
X4
i¼ 1

Nixi (E.2)

y ¼
X4
i¼ 1

Niyi (E.3)

Continued

Linear interpolation
functions (4 nodes)

1

1

5

8
4

3

7

62

s

r

8

7

3
62

5

1

4N1

s

r

Quadratic interpolation
functions (8 nodes)

2
6

1

r

3

7

5

8
4

N6

s

N1= (1 − r )(1 − s)/4

1

4

32

1

N2= (1 + r )(1 − s)/4

1

2 3

4

1

1

(A) (B)

FIGURE 4.6 Interpolation functions for a quadrilateral element.
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EXAMPLE 4.3 dcont’d

where Ni can be expressed using Eqs. (4.33) and (4.34) as

N1 ¼ 1

4
ð1þ rr1Þð1þ ss1Þ ¼ 1

4
ð1� rÞð1� sÞ (E.4)

N2 ¼ 1

4
ð1þ rr2Þð1þ ss2Þ ¼ 1

4
ð1þ rÞð1� sÞ (E.5)

N3 ¼ 1

4
ð1þ rr3Þð1þ ss3Þ ¼ 1

4
ð1þ rÞð1þ sÞ (E.6)

N4 ¼ 1

4
ð1þ rr4Þð1þ ss4Þ ¼ 1

4
ð1� rÞð1þ sÞ (E.7)

Substitution of Eqs. (E.4)e(E.7), along with the data in Eq. (E.1), into Eqs. (E.2) and (E.3) gives

x ¼ 1

4
½ð1� rÞð1� sÞ6þ ð1þ rÞð1� sÞ2þ ð1þ rÞð1þ sÞ3þ ð1� rÞð1þ sÞ10� (E.8)

y ¼ 1

4
½ð1� rÞð1� sÞ9þ ð1þ rÞð1� sÞ7þ ð1þ rÞð1þ sÞ10þ ð1� rÞð1þ sÞ6� (E.9)

For the given values of r ¼ e0.75 and s ¼ 0.5, Eqs. (E.8) and (E.9) yield

x ¼ 1

4
½ð1þ 0:75Þð1� 0:5Þ6þ ð1� 0:75Þð1� 0:5Þ2þ ð1� 0:75Þð1þ 0:5Þ3þ ð1þ 0:75Þð1þ 0:5Þ10Þ� ¼ 8:21875 in.

y ¼ 1

4
½ð1þ 0:75Þð1� 0:5Þ9þ ð1� 0:75Þð1� 0:5Þ7þ ð1� 0:75Þð1þ 0:5Þ10þ ð1þ 0:75Þð1þ 0:5Þ6Þ� ¼ 7:0625 in.

QUADRATIC ELEMENT
If the values of f(x, y) at the four corner nodes and four mid-side nodes are taken as the nodal unknowns, we get a

quadratic element for which the variation of the field variable along any edge is given by a quadratic equation. In this case,
the interpolation model can be expressed as

fðx; yÞ ¼ ½N�F!ðeÞ ¼ ½N1 N2 / N8 �F!
ðeÞ

(4.41)

where

Ni ¼ 1
4
ð1þ rriÞð1þ ssiÞðrri þ ssi � 1Þ; i ¼ 1; 2; 3 ; 4

N5 ¼ 1
2

�
1� r2

�ð1þ ss5Þ

N6 ¼ 1
2
ð1þ rr6Þ

�
1� s2

�
N7 ¼ 1

2

�
1� r2

�ð1þ ss7Þ

N8 ¼ 1
2
ð1þ rr8Þ

�
1� s2

�

(4.42)
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(ri, si) are the natural coordinates of node i (i ¼ 1, 2, ., 8), and

F
!ðeÞ ¼

8>>><>>>:
F1

F2

«

F8

9>>>=>>>;
ðeÞ

¼

8>>>><>>>>:
fðx1; y1Þ
fðx2; y2Þ

«

fðx8; y8Þ

9>>>>=>>>>;

ðeÞ

h

8>>>><>>>>:
fðat r ¼ �1; s ¼ �1Þ
fðat r ¼ 1; s ¼ �1Þ

«

fðat r ¼ �1; s ¼ 0Þ

9>>>>=>>>>;

ðeÞ

(4.43)

Typical quadratic interpolation or shape functions used in Eq. (4.41) are shown in Fig. 4.6B.

4.3.4 Three-Dimensional (Tetrahedron) Element

QUADRATIC ELEMENT
The natural or tetrahedral coordinates L1, L2, L3, and L4 of a tetrahedron element were shown in Fig. 3.15. For a

quadratic interpolation model, there will be 10 nodal unknowns, one at each of the nodes indicated in Fig. 4.7A. Here, the
nodes 1, 2, 3, and 4 correspond to the corners, whereas the nodes 5 to 10 are located at the midpoints of the edges of the
tetrahedron. The variation of the field variable is given by

fðx; y; zÞ ¼ ½N�F!ðeÞ ¼ ½N1 N2 / N10 �F!
ðeÞ

(4.44)

where Ni can be found as
Ni ¼ Lið2Li � 1Þ; i ¼ 1; 2; 3; 4

N5 ¼ 4L1L2

N6 ¼ 4L2L3

N7 ¼ 4L1L3

N8 ¼ 4L1L4

N9 ¼ 4L2L4

N10 ¼ 4L3L4

(4.45)

8

4

10

9

7

1
5

2

6

3

Quadratic element Cubic element

12

11 17

19

14

16

4

15
18

13

20

10

1
5 6 2

7

8

3
9

(A) (B)

FIGURE 4.7 Location of nodes in tetrahedron element.
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and

F
!ðeÞ ¼

8>>><>>>:
F1

F2

«

F10

9>>>=>>>;
ðeÞ

¼

8>>>><>>>>:
fðx1; y1; z1Þ
fðx2; y2; z2Þ

«

fðx10; y10; z10Þ

9>>>>=>>>>;

ðeÞ

¼

8>>>>>>>>><>>>>>>>>>:

fðat L1 ¼ 1; L2 ¼ L3 ¼ L4 ¼ 0Þ
fðat L2 ¼ 1; L1 ¼ L3 ¼ L4 ¼ 0Þ

«

f

�
at L3 ¼ L4 ¼ 1

2
; L1 ¼ L2 ¼ 0

�

9>>>>>>>>>=>>>>>>>>>;

ðeÞ

(4.46)

CUBIC ELEMENT
The cubic interpolation model involves 20 nodal unknowns (nodes are shown in Fig. 4.7B) and can be expressed as

fðx; y; zÞ ¼ ½N�F!ðeÞ ¼ ½N1 N2 / N20 �F!
ðeÞ

(4.47)

where the nodal shape functions can be determined as follows:

For corner nodes : Ni ¼ 1
2
Lið3Li � 1Þð3Li � 2Þ; i ¼ 1; 2; 3; 4 (4.48)

For one-third points of edges : N5 ¼ 9
2
L1L2ð3L1 � 1Þ

N6 ¼ 9
2
L1L2ð3L2 � 1Þ

N7 ¼ 9
2
L2L3ð3L2 � 1Þ

N8 ¼ 9
2
L2L3ð3L3 � 1Þ; and so on

(4.49)

For midface nodes : N17 ¼ 27L1L2L4

N18 ¼ 27L2L3L4

N19 ¼ 27L1L3L4

N20 ¼ 27L1L2L3

(4.50)

and

F
!ðeÞ ¼

8>>><>>>:
F1

F2

«

F20

9>>>=>>>;
ðeÞ

¼

8>>>><>>>>:
fðx1; y1; z1Þ
fðx2; y2; z2Þ

«

fðx20; y20; z20Þ

9>>>>=>>>>;

ðeÞ

h

8>>>>>>>>>><>>>>>>>>>>:

fðat L1 ¼ 1; L2 ¼ 0; L3 ¼ 0; L4 ¼ 0Þ
fðat L1 ¼ 0; L2 ¼ 1; L3 ¼ 0; L4 ¼ 0Þ

«

f

�
at L1 ¼ L2 ¼ L3 ¼ L4 ¼ 1

3

�

9>>>>>>>>>>=>>>>>>>>>>;

ðeÞ

(4.51)

4.4 HIGHER ORDER ELEMENTS IN TERMS OF CLASSICAL INTERPOLATION
POLYNOMIALS

It is possible to construct the nodal interpolation functions Ni by employing classical interpolation polynomials (instead of
natural coordinates). We consider the use of Lagrange and Hermite interpolation polynomials in this section.

4.4.1 Classical Interpolation Functions

In numerical mathematics, an approximation polynomial that is equal to the function it approximates at a number of
specified stations or points is called an interpolation function. A generalization of the interpolation function is obtained by
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requiring agreement with not only the function value f(x) but also the first N derivatives of f(x) at any number of distinct
points xi, i ¼ 1, 2, ., n þ 1. When N ¼ 0dthat is, when only the function values are required to match (agree) at each
point of interpolationdthe (classical) interpolation polynomial is called the Lagrange interpolation formula. For the case
of N ¼ 1dthat is, when the function and its first derivative are to be assigned at each point of interpolationdthe (classical)
interpolation polynomial is called the Hermite or osculatory interpolation formula. If higher derivatives of f(x) are
assigned (i.e., when N > 1), we obtain the hyperosculatory interpolation formula [4.6e4.8].

4.4.2 Lagrange Interpolation Functions for n Stations

The Lagrange interpolation polynomials are defined as [4.1]

LkðxÞ ¼ P
n

i¼ 0;
isk

ðx� xiÞ
ðxk � xiÞ ¼ ðx� x0Þðx� x1Þ/ðx� xk�1Þðx� xkþ1Þ/ðx� xnÞ

ðxk � x0Þðxk � x1Þ/ðxk � xk�1Þðxk � xkþ1Þ/ðxk � xnÞ (4.52)

Lk(x) is an n-th degree polynomial because it is given by the product of n linear factors. If x ¼ xk, the numerator would be
equal to the denominator in Eq. (4.52), and hence Lk(x) will have a value of 1. On the other hand, if x ¼ xi and is k, the
numerator and hence Lk(x) will be 0. This property of Lk(x) can be used to approximately represent any arbitrary function
f(x) over an interval on the x axis.
For example, if the values of f (x) are known only at the discrete points x0, x1, x2, and x3, the approximating polynomial
fe ðxÞ can be written as

fðxÞ ¼ fe ðxÞ ¼
X3
i¼ 0

FiLiðxÞ (4.53)

where Fi is the value of f at x ¼ xi, i ¼ 0, 1, 2, 3. Fig. 4.8 shows the typical shape of Li(x). Here, the function fe ðxÞ is calledthe Lagrange interpolation formula. Thus, Lagrange interpolation functions can be used if the matching of only the func-
tion values (not derivatives) is involved for a line element.

4.4.3 General Two-Station Interpolation Functions

We denote a general one-dimensional interpolation polynomial as HðNÞ
ki ðxÞ, where N is the number of derivatives to be

interpolated, k is an index varying from 0 to N, and i corresponds to the station index (i.e., the i-th point of the discrete set
of points of interpolation). For simplicity we consider the case in which there are only two points of interpolation (as in the

x0

L0(x) =

x1 x2 x3
x

x0 x1 x2 x3
x

1 at x = x0
0 at x = x1, x2, x3

L2(x) = 1 at x = x2
0 at x = x0, x1, x3

1 1

x0

L1(x) =

x1 x2 x3
x

x0 x1 x2 x3
x

1 at x = x1
0 at x = x0, x2, x3 L3(x) =

Approximating polynomial 

Lagrange polynomials 

1 at x = x3
0 at x = x0, x1, x2

1 1

∼

x0 x1 x2 x3
x

φ

φ

(x)

∼φ
(x)

(x)

(A)

(B)

FIGURE 4.8 Lagrange interpolation formula using Lagrange polynomials.
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case of one-dimensional elements). We denote the first point of interpolation as i ¼ 1(x1 ¼ 0) and the second point as
i ¼ 2(x2 ¼ l), where l is the distance between the two points. Any function f(x) shown in Fig. 4.9 can be approximated by
using the Hermite functions as

fðxÞ ¼
X2
i¼ 1

XN
k¼ 0

HðNÞ
ki ðxÞFk

i

¼
X2
i¼ 1

h
HðNÞ

0i ðxÞFð0Þ
i þ HðNÞ

1i ðxÞFð1Þ
i þ HðNÞ

2i ðxÞFð2Þ
i þ/þ HðNÞ

Ni ðxÞFðNÞ
i

i (4.54)

where F
ðkÞ
i are undetermined parameters. The Hermite polynomials have the following property:

drHðNÞ
ki

dxr
ðxpÞ ¼ dipdkr for i; p ¼ 1; 2; and

k; r ¼ 0; 1; 2;.;N

9>=>; (4.55)

where xp is the value of x at p-th station, and dmn is the Kronecker delta having the property

dmn ¼
	
0 if msn

1 if m ¼ n
(4.56)

By using the property of Eq. (4.55) the undetermined parameters Fi
(k) appearing in Eq. (4.54) can be shown to have certain

physical meaning. The r-th derivative of f (x) at x ¼ xp can be written as, from Eq. (4.54),

drf
dxr

ðxpÞ ¼
X2
i¼ 1

XN
k¼ 0

drHðNÞ
ki

dxr
ðxpÞFðkÞ

i (4.57)

Using Eq. (4.55), Eq. (4.57) can be reduced to

drf
dxr

ðxpÞ ¼
X2
i¼ 1

XN
k¼ 0

dipdkrF
ðkÞ
i ¼ FðrÞ

p (4.58)

Thus, FðrÞ
p indicates the value of r-th derivative of f (x) at station p. For r ¼ 0 and 1, the parameters FðrÞ

p are shown in
Fig. 4.10. From Eqs. (4.58) and (4.54) the function f (x) can be expressed as

fðxÞ ¼
X2
i¼ 1

XN
k¼ 0

HðNÞ
ki ðxÞ d

kf

dxk
ðxiÞ (4.59)

Hermite interpolation functions find application in certain one- and two-dimensional (structural beam- and plate-bending)
problems in which continuity of derivatives across element interfaces is important.

x10 x x2
x

i = 2

i = 1

φ (x)

φ (x)

FIGURE 4.9 A one-dimensional function to be interpolated between stations x1 and x2.

144 PART j II Basic Procedure

www.konkur.in

Telegram: @uni_k



4.4.4 Zeroth-Order Hermite Interpolation Function

The general expression given in Eq. (4.54) can be specialized to the case of the two-station zeroth-order Hermite
(Lagrange) interpolation formula as

fðxÞ ¼
X2
i¼ 1

Hð0Þ
0i F

ð0Þ
i ¼

X2
i¼ 1

Hð0Þ
0i ðxÞfðxiÞ (4.60)

To find the polynomials Hð0Þ
01 ðxÞ and Hð0Þ

02 ðxÞ, we use the property given by Eq. (4.55). For the polynomial Hð0Þ
01 ðxÞ, we have

dð0ÞHð0Þ
01 ðxpÞ

dxð0Þ
¼ d1pd00 ¼ d1phHð0Þ

01 ðxpÞ

or

Hð0Þ
01 ðx1Þ ¼ 1 and Hð0Þ

01 ðx2Þ ¼ 0 (4.61)

Since two conditions are known (Eq. 4.61), we assume Hð0Þ
01 ðxÞ as a polynomial involving two unknown coefficients as

Hð0Þ
01 ðxÞ ¼ a1 þ a2x (4.62)

By using Eq. (4.61), we find that

a1 ¼ 1 and a2 ¼ �1=l

by assuming that x1 ¼ 0 and x2 ¼ l. Thus, we have

Hð0Þ
01 ðxÞ ¼ 1� x

l
(4.63)

Similarly, the polynomial Hð0Þ
02 ðxÞ can be found by using the conditions

Hð0Þ
02 ðx1Þ ¼ 0 and Hð0Þ

02 ðx2Þ ¼ 1 (4.64)

as

Hð0Þ
02 ðxÞ ¼ x

l
(4.65)

The shape of the Lagrange polynomials Hð0Þ
01 ðxÞ and Hð0Þ

02 ðxÞ and the variation of the function f (x) approximated by
Eq. (4.60) between the two stations are shown in Fig. 4.11 and 4.12, respectively. Note that the Lagrange polynomials
given by Eqs. (4.63) and (4.65) are special cases (two-station formulas) of the more general (n-station) polynomial given
by Eq. (4.52).

x1
i =1

0 x2
i = 2

(x)

(x)

x

Φ1
(0)

Φ1
(1)

Φ2
(0)

Φ2
(1)

φ

FIGURE 4.10 Physical meaning of the parameter FðrÞ
p .
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4.4.5 First-Order Hermite Interpolation Function

If the function values as well as the first derivatives of the function are required to match with their true values, the two-
station interpolation function is known as first-order Hermite (or osculatory) interpolation and is given by

fðxÞ ¼
X2
i¼ 1

X1
k¼ 0

Hð1Þ
ki ðxÞFk

i ¼
X2
i¼ 1

X1
k¼ 0

Hð1Þ
ki ðxÞ

dkf
dxk

ðxiÞ (4.66)

To determine the polynomials Hð1Þ
01 ðxÞ;Hð1Þ

02 ðxÞ;Hð1Þ
11 ðxÞ, and Hð1Þ

12 ðxÞ, four conditions are known from Eq. (4.55) for
each of the polynomials. Thus, to find Hð1Þ

01 ðxÞ, we have

Hð1Þ
01 ðx1Þ ¼ 1; Hð1Þ

01 ðx2Þ ¼ 0;
dHð1Þ

01

dx
ðx1Þ ¼ 0; and

dHð1Þ
01

dx
ðx2Þ ¼ 0 (4.67)

Since four conditions are known, we assume a cubic equation, which involves four unknown coefficients, for Hð1Þ
01 ðxÞ as

Hð1Þ
01 ðxÞ ¼ a1 þ a2xþ a3x

2 þ a4x
3 (4.68)

By using Eq. (4.67), the constants can be found as

a1 ¼ 1; a2 ¼ 0; a3 ¼ �3
l2
; and a4 ¼ 2

l3

Thus, the Hermite polynomial Hð1Þ
01 ðxÞ becomes

Hð1Þ
01 ðxÞ ¼ 1

l3
�
2x3 � 3lx2 þ l3

�
(4.69)

Similarly, the other first-order Hermite polynomials can be obtained as

Hð1Þ
02 ðxÞ ¼ �1

l3
�
2x3 � 3lx2

�
(4.70)

Hð1Þ
11 ðxÞ ¼ 1

l2
�
x3 � 2lx2 þ l2x

�
(4.71)

Hð1Þ
12 ðxÞ ¼ 1

l2
�
x3 � lx2

�
(4.72)

x1= 0 x2=

H
01
(0)

(x) H
02
(0)

(x)

1 1

FIGURE 4.11 Variation of Lagrange polynomials between the two stations.

x1= 0

=        (x)   (0) +       (x)   ( ) 

x2=

(0)

Φ( )

H
(0)
01 H

(0)
02(x)φ φφ

φ

(x)φ

FIGURE 4.12 Variation of f (x) approximated by Lagrange polynomials between the two stations.
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The variations of the first-order Hermite polynomials between the two stations are shown in Fig. 4.13. The variation of the
function approximated by these polynomials, namely,

fðxÞ ¼ Hð1Þ
01 ðxÞfð0Þ þ Hð1Þ

02 ðxÞfðlÞ þ Hð1Þ
11 ðxÞ

df
dx

ð0Þ þ Hð1Þ
12 ðxÞ

df
dx

ðlÞ (4.73)

is shown in Fig. 4.14.

x1 = 0

x1= 0

x1= 0 x2 =

x1= 0

x

H (x)
(1)
01

x

H (x)
(1)
12

1

x

1

H (x)
(1)
02

x

1

H (x)
(1)
11

1

x2 = 

x2=

x2 =

FIGURE 4.13 Variation of first-order Hermite polynomials between the two stations.

x1= 0

=Σ   Σ  Hki
(1)(x).

d
dx (0)

x2=

d
dx ( )

dk

dx k
(xi)

2 1

i = 1 k = 0

(0)

(  )

(x)φ
(x)φ φ

φ

φ

φ

φ

FIGURE 4.14 Variation of f (x) given by Eq. (4.73) between the two stations.
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4.5 ONE-DIMENSIONAL ELEMENTS USING CLASSICAL INTERPOLATION
POLYNOMIALS

4.5.1 Linear Element

If the field variable f (x) varies linearly along the length of a one-dimensional element and if the nodal values of the field
variable, namely F1 ¼ f (x ¼ x1 ¼ 0) and F2 ¼ f (x ¼ x2 ¼ l), are taken as the nodal unknowns, we can use zeroth-order
Hermite polynomials to express f(x) as

fðxÞ ¼ ½N�F!ðeÞ ¼ ½N1 N2 �F!
ðeÞ

(4.74)

where

N1 ¼ Hð0Þ
01 ðxÞ ¼ 1� x

l

N2 ¼ Hð0Þ
02 ðxÞ ¼ x

l

F
!ðeÞ ¼

8<:
F1

F2

9=;
ðeÞ

and l is the length of the element e.

4.5.2 Quadratic Element

If f(x) is assumed to vary quadratically along x and the values of f (x) at three points x1, x2, and x3 are taken as nodal
unknowns, f(x) can be expressed in terms of three-station Lagrange interpolation polynomials as

fðxÞ ¼ ½N�F!ðeÞ ¼ ½N1 N2 N3 �F!
ðeÞ

(4.75)

where

N1 ¼ L1ðxÞ ¼ ðx� x2Þðx� x3Þ
ðx1 � x2Þðx1 � x3Þ

N2 ¼ L2ðxÞ ¼ ðx� x1Þðx� x3Þ
ðx2 � x1Þðx2 � x3Þ

N3 ¼ L3ðxÞ ¼ ðx� x1Þðx� x2Þ
ðx3 � x1Þðx3 � x2Þ

and

F
!ðeÞ ¼

8><>:
F1

F2

F3

9>=>;
ðeÞ

¼

8><>:
fðx ¼ x1Þ
fðx ¼ x2Þ
fðx ¼ x3Þ

9>=>;
ðeÞ

4.5.3 Cubic Element

If f (x) is to be taken as a cubic polynomial and if the values of f (x) and (df/dx) (x) at two nodes are taken as nodal
unknowns, the first-order Hermite polynomials can be used to express f (x) as

fðxÞ ¼ ½N�F!ðeÞ ¼ ½N1 N2 N3 N4 �F!
ðeÞ

(4.76)
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where

N1ðxÞ ¼ Hð1Þ
01 ðxÞ; N2ðxÞ ¼ Hð1Þ

11 ðxÞ; N3ðxÞ ¼ Hð1Þ
02 ðxÞ; N4ðxÞ ¼ Hð1Þ

12 ðxÞ
and

F
!ðeÞ ¼

8>>><>>>:
F1

F2

F3

F4

9>>>=>>>;
ðeÞ

h

8>>>>>>>>><>>>>>>>>>:

fðx ¼ x1Þ
df
dx

ðx ¼ x1Þ
fðx ¼ x2Þ
df
dx

ðx ¼ x2Þ

9>>>>>>>>>=>>>>>>>>>;

ðeÞ

4.6 TWO-DIMENSIONAL (RECTANGULAR) ELEMENTS USING CLASSICAL
INTERPOLATION POLYNOMIALS

4.6.1 Using Lagrange Interpolation Polynomials

The Lagrange interpolation polynomials defined in Eq. (4.52) for one-dimensional problems can be used to construct
interpolation functions for two-dimensional or higher dimensional problems. For example, in two dimensions (see
Fig. 4.15A), the product of Lagrange interpolation polynomials in x and y directions can be used to represent the inter-
polation functions of a rectangular element as

fðr; sÞ ¼ ½N�F!ðeÞ ¼ ½N1 N2 N3 N4 �F!
ðeÞ

(4.77)

where

Niðr; sÞ ¼ LiðrÞ$LiðsÞ; i ¼ 1; 2; 3; 4 (4.78)

and

F
!ðeÞ ¼

8>>><>>>:
F1

F2

F3

F4

9>>>=>>>;
ðeÞ

¼

8>>><>>>:
fðr ¼ �1; s ¼ �1Þ
fðr ¼ 1; s ¼ �1Þ
fðr ¼ 1; s ¼ 1Þ
fðr ¼ �1; s ¼ 1Þ

9>>>=>>>;
ðeÞ

(4.79)

Bilinear element Biquadratic element Bicubic element
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FIGURE 4.15 Location of nodes in rectangular elements.
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Li(r) and Li(s) denote Lagrange interpolation polynomials in r and s directions corresponding to node i and are defined,
with reference to Fig. 4.15A, as

L1ðrÞ ¼ r � r2
r1 � r2

; L2ðrÞ ¼ r � r1
r2 � r1

; L3ðrÞ ¼ r � r4
r3 � r4

; L4ðrÞ ¼ r � r3
r4 � r3

L1ðsÞ ¼ s� s4
s1 � s4

; L2ðsÞ ¼ s� s3
s2 � s3

; L3ðsÞ ¼ s� s2
s3 � s2

; L4ðsÞ ¼ s� s1
s4 � s1

(4.80)

The nodal interpolation functions Ni given by Eq. (4.78) are called bilinear since they are defined as products of two linear
functions.

The higher order elements, such as biquadratic and bicubic elements, can be formulated precisely the same way by
taking products of Lagrange interpolation polynomials of degree two and three, respectively, as

Niðr; sÞ ¼ LiðrÞ$LiðsÞ (4.81)

where Li(r) and Li(s) can be obtained with the help of Eq. (4.52) and Fig. 4.15B and C. For example, in the case of the
biquadratic element shown in Fig. 4.15B, the Lagrange interpolation polynomials are defined as follows:

L1ðrÞ ¼ ðr � r2Þðr � r3Þ
ðr1 � r2Þðr1 � r3Þ; L1ðsÞ ¼ ðs� s4Þðs� s7Þ

ðs1 � s4Þðs1 � s7Þ (4.82)

L2ðrÞ ¼ ðr � r1Þðr � r3Þ
ðr2 � r1Þðr2 � r3Þ; L2ðsÞ ¼ ðs� s5Þðs� s8Þ

ðs2 � s5Þðs2 � s8Þ (4.83)

and so on. In this case, node 5 represents an interior node. It can be observed that the higher order Lagrangian elements
contain a large number of interior nodes and this limits the usefulness of these elements. Of course, a technique known as
static condensation can be used to suppress the degrees of freedom associated with the internal nodes in the final compu-
tation (see Problem 12.7).

4.6.2 Using Hermite Interpolation Polynomials

Just as we have done with Lagrange interpolation polynomials, we can form products of one-dimensional Hermite
polynomials and derive the nodal interpolation functions Ni for rectangular elements. If we use first-order Hermite
polynomials for this purpose, we have to take the values of f, (vf/vx), (vf/vy), and (v2f/vxvy) as nodal degrees of freedom
at each of the four corner nodes. Thus, by using a two-number scheme for identifying the nodes of the rectangle as shown
in Fig. 4.16, the interpolation model for f(x,y) can be expressed as

fðx; yÞ ¼
X2
i¼ 1

X2
j¼ 1

"
Hð1Þ

0i ðxÞ$Hð1Þ
0j ðyÞ$fij þ Hð1Þ

1i ðxÞ$Hð1Þ
0j ðyÞ$

�
vf

vx

�
ij

þ Hð1Þ
0i ðxÞ$Hð1Þ

1j ðyÞ$
�
vf

vy

�
ij

þ Hð1Þ
1i ðxÞ$Hð1Þ

1j ðyÞ$
�
v2f

vxvy

�
ij

#
(4.84)

(1, 2)

(1, 1) (2, 1)

specified at nodes

(2, 2)

x

y

,
∂
∂x

∂
∂y ∂x ∂y

∂2
, ,
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FIGURE 4.16 Rectangular element with 16 degrees of freedom.
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where fij, (vf/vx)ij, (vf/vy)ij, and
�
v2f=vxvy

�
ij denote the values of f, (vf/vx), (vf/vy), and (v2f/vxvy), respectively, at

node (i, j). Eq. (4.84) can be rewritten in the familiar form as

fðx; yÞ ¼ ½Nðx; yÞ�F!ðeÞ ¼ ½N1ðx; yÞ.N16ðx; yÞ�F!
ðeÞ

(4.85)

where

N1ðx; yÞ ¼ Hð1Þ
01 ðxÞHð1Þ

01 ðyÞ

N2ðx; yÞ ¼ Hð1Þ
11 ðxÞHð1Þ

01 ðyÞ

N3ðx; yÞ ¼ Hð1Þ
01 ðxÞHð1Þ

11 ðyÞ

N4ðx; yÞ ¼ Hð1Þ
11 ðxÞHð1Þ

11 ðyÞ

N5ðx; yÞ ¼ Hð1Þ
02 ðxÞHð1Þ

01 ðyÞ
«

N16ðx; yÞ ¼ Hð1Þ
12 ðxÞHð1Þ

12 ðyÞ

(4.86)

and

F
!ðeÞ ¼

8>>>>>>>>>>><>>>>>>>>>>>:

F1

F2

F3

F4

F5

«

F16

9>>>>>>>>>>>=>>>>>>>>>>>;

ðeÞ

¼

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

f11�
vf

vx

�
11�

vf

vy

�
11�

v2f

vxvy

�
11

f21

«�
v2f

vxvy

�
22

9>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>;

ðeÞ

(4.87)

4.7 CONTINUITY CONDITIONS

As seen in Section 3.6, the interpolation model assumed for the field variable f has to satisfy the following conditions:

1. It has to be continuous inside and between the elements up to order r � 1, where r is the order of the highest derivative in
the functional I. For example, if the governing differential equation is quasi-harmonic as in the case of Example 1.3, f
have to be continuous (i.e., C 0 continuity is required). On the other hand, if the governing differential equation is bihar-
monic (V4f ¼ 0), f as well as its derivative (vf/vn) have to be continuous inside and between elements (i.e., C1 conti-
nuity is required). The continuity of the higher order derivatives associated with the free or natural boundary conditions
need not be imposed because their eventual satisfaction is implied in the variational statement of the problem.

2. As the size of the elements decreases, the derivatives appearing in the functional of the variational statement will tend
to have constant values. Thus, it is necessary to include terms that represent these conditions in the interpolation
model of f.

For elements requiring C 0 continuity (i.e., continuity of only the field variable f at element interfaces), we usually take
the nodal values of f only as the degrees of freedom. To satisfy the interelement continuity condition, we have to take the
number of nodes along a side of the element (and hence the number of nodal values of f) to be sufficient to determine the
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variation of f along that side uniquely. Thus, if a cubic interpolation model is assumed within the element and retains its
cubic behavior along the element sides, then we have to take four nodes (and hence four nodal values of f) along each side.

It can be observed that the number of elements (of a given shape) capable of satisfying C 0 continuity is infinite. This is
because we can continue to add nodes and degrees of freedom to the elements to form ever-increasing higher order elements.
All such elements will satisfy the C 0 continuity. In general, higher order elements can be derived by increasing the number of
nodes, and hence the nodal degrees of freedom, and assuming a higher order interpolation model for the field variable f. As
stated earlier, in general, smaller numbers of higher order elements yield more accurate results compared to larger numbers of
simpler elements for the same overall effort. But this does not mean that we should always favor elements of very high order.
Although there are no general guidelines available for choosing the order of the element for a given problem, elements that
require polynomials of order greater than three have seldom been used for problems requiring C 0 continuity. The main reason
for this is that the computational effort saved with fewer numbers of higher order elements will become overshadowed by the
increased effort required in formulating and evaluating the element characteristic matrices and vectors.

4.7.1 Elements With C 0 Continuity

All simplex elements considered in Section 3.7 satisfy C 0 continuity because their interpolation models are linear.
Furthermore, all higher order one-, two-, and three-dimensional elements considered in this chapter also satisfy the C 0

continuity. For example, each of the triangular elements shown in Fig. 4.3 has a sufficient number of nodes (and hence the
nodal degrees of freedom) to uniquely specify a complete polynomial of the order necessary to give C 0 continuity. Thus,
the corresponding interpolation models satisfy the requirements of compatibility, completeness, and geometric isotropy. In
general, for a triangular element, a complete polynomial of order n requires (1/2) (n þ 1) (n þ 2) nodes for its specification.
Similarly, a tetrahedron element requires (1/6) (n þ 1) (n þ 2) (n þ 3) nodes in order to have the interpolation model in the
form of a complete polynomial of order n. For such elements, if the nodal values of f only are taken as degrees of freedom,
the conditions of compatibility, completeness, and geometric isotropy will be satisfied.

The quadrilateral element discussed in Section 4.3.3 considers only the nodal values of f as the degrees of freedom and
satisfies C 0 continuity. For rectangular elements, if the nodal interpolation functions are defined by-products of Lagrange
interpolation polynomials (Fig. 4.15), then the C 0 continuity is satisfied.

4.7.2 Elements With C1 Continuity

The construction of elements that satisfy C1 continuity of the field variable f is much more difficult than constructing
elements for C 0 continuity. To satisfy the C1 continuity, we have to ensure continuity of f as well as its normal derivative
vf/vn along the element boundaries. The one-dimensional cubic element considered in Section 4.5.3 guarantees the
continuity of both f and df/dn at the nodes and hence it satisfies the C1 continuity.

For two-dimensional elements, we have to ensure that f and vf/vn are specified uniquely along an element boundary
by the nodal degrees of freedom associated with the nodes of that particular boundary. The rectangular element considered
in Fig. 4.16 (Eq. 4.84) considers f, vf/vx, vf/vy, and v2f/vxvy as nodal degrees of freedom and satisfies the C1 continuity.
In the case of a triangular element, some authors have treated the values of f; ðvf=vxÞ; ðvf=vyÞ; �v2f�vxvy�; �v2f�vx2�;
and (v2f/vy2) at the three corner nodes and the values of (vf/vn) at the three mid-side nodes (Fig. 4.17) as degrees of
freedom, and represented the interpolation model of f by a complete quintic polynomial.
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,
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FIGURE 4.17 Triangular element with C1 continuity.
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If s denotes the linear coordinate along any boundary of the element, then f varies along s as a fifth-degree polynomial.
This fifth-degree polynomial is uniquely determined by the six nodal degrees of freedom, namely f, (vf/vs), and (v2f/vs2)
at each of the two end nodes. Hence, f will be continuous along the element boundaries. Similarly, the normal slope (vf/vn)
can be seen to vary as a fourth-degree polynomial in s along the element boundary. There are five nodal degrees of freedom
to determine this quartic polynomial uniquely. These are the values of (vf/vn) and (v2f/vn2) at each of the end nodes and
(vf/vn) at the mid-side node. Hence, the normal slope (vf/vn) will also be continuous along the element boundaries. In the
case of three-dimensional elements, the satisfaction of C1 continuity is quite difficult and practically no such element has
been used in the literature.

Note

Since the satisfaction of C1 continuity is difficult to achieve, many investigators have used finite elements that satisfy slope

continuity at the nodes and other requirements but violate slope continuity along the element boundaries. Such elements are

known as incompatible or nonconforming elements and have been used with surprising success in plate-bending (two-

dimensional structural) problems.

4.8 COMPARATIVE STUDY OF ELEMENTS

The relative accuracy of the results obtained by using interpolation polynomials of different orders was studied by Emery
and Carson [4.2]. They considered the solution of a one-dimensional steady-state diffusion equation as a test case. The
governing equation is

d2f
dx2

¼ jðxÞ; 0 � x � 1 (4.88)

with j (x) ¼ x5; the boundary conditions are

fðx ¼ 0Þ ¼ 0 and
df
dx

ðx ¼ 1Þ ¼ 0 (4.89)

By dividing the region (x ¼ 0 to 1) into different numbers of finite elements, they obtained the results using linear,
quadratic, and cubic interpolation models. The results are shown in Fig. 4.18 along with those given by the finite difference
method. The ordinate in Fig. 4.18 denotes the error in the temperature (f) at the point x ¼ 1. The exact solution obtained by
integrating Eq. (4.88) with the boundary conditions, Eq. (4.89), gives the value of f at x ¼ 1 as 0.1429. The results indicate
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FIGURE 4.18 Solution of steady-state diffusion equation [4.2].
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that the higher order models yield better results in this case. This characteristic has been found to be true even for higher
dimensional problems. If the overall computational effort involved and the accuracy achieved are compared, we might find
the quadratic model to be the most efficient one for use in complex practical problems.

4.9 ISOPARAMETRIC ELEMENTS

4.9.1 Definitions

In the case of one-dimensional elements, Eqs. (3.62) and (3.24) give

x ¼ ½N1 N2�
	
x1

x2



(4.90)

and

f ¼ ½N1 N2�
(
F1

F2

)ðeÞ
(4.91)

where N1 ¼ L1 and N2 ¼ L2. In the case of a triangular element, if we consider f as a vector quantity with components
u(x, y) and v(x, y), Eqs. (3.71) and (3.33) give

	
x

y



¼
�
N1 N2 N3 0 0 0

0 0 0 N1 N2 N3

�
8>>>>>>>><>>>>>>>>:

x1
x2
x3

y1
y2

y3

9>>>>>>>>=>>>>>>>>;
(4.92)

and

	
u

v



¼
�
N1 N2 N3 0 0 0

0 0 0 N1 N2 N3

�
8>>>>>>>><>>>>>>>>:

u1
u2

u3
v1

v2
v3

9>>>>>>>>=>>>>>>>>;
(4.93)

where N1 ¼ L1, N2 ¼ L2, N3 ¼ L3, and (xi, yi) are the Cartesian coordinates of node i, and ui and vi are the values of u and v,
respectively, at node i (i ¼ 1, 2, 3). Similarly, for a quadrilateral element, the geometry and field variable are given by
Eqs. (4.32) and (4.38) as (assuming f to be a vector with components u and v)

	
x

y



¼
�
N1 N2 N3 N4 0 0 0 0

0 0 0 0 N1 N2 N3 N4

�
8>>>>>>>>>>>>><>>>>>>>>>>>>>:

x1
x2
x3
x4
y1

y2
y3
y4

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
(4.94)
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and

	
u

v



¼
�
N1 N2 N3 N4 0 0 0 0

0 0 0 0 N1 N2 N3 N4

�
8>>>>>>>>>>>>><>>>>>>>>>>>>>:

u1
u2
u3

u4
v1
v2
v3
v4

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
(4.95)

where Ni (i ¼ 1, 2, 3, 4) are given by Eq. (4.33), (xi, yi) are the Cartesian coordinates of node i, and (ui, vi) are the com-
ponents of f(u, v) at node i. A comparison of Eqs. (4.90) and (4.91), or (4.92) and (4.93), or (4.94) and (4.95) shows that
the geometry and field variables of these elements are described in terms of the same parameters and of the same order.

Such elements whose shape (or geometry) and field variables are described by the same interpolation functions of the
same order are known as isoparametric elements. These elements have been used with great success in solving two- and
three-dimensional elasticity problems, including those involving plates and shells [4.3]. These elements have become
popular for the following reasons:

1. If one element is understood, the same concepts can be extended for understanding all isoparametric elements.
2. Although linear elements have straight sides, quadratic and higher order isoparametric elements may have either

straight or curved sides. Hence, these elements can be used for idealizing regions having curved boundaries.

It is not necessary to use interpolation functions of the same order for describing both geometry and the field variable of
an element. If geometry is described by a lower order model compared to the field variable, the element is called a
subparametric element. On the other hand, if the geometry is described by a higher order interpolation model than the field
variable, the element is termed a superparametric element.

4.9.2 Shape Functions in Coordinate Transformation

The equations that describe the geometry of the element, namely,

8><>:
x

y

z

9>=>; ¼

264N1 N2.Np 0 0.0 0 0.0

0 0.0 N1 N2.Np 0 0.0

0 0.0 0 0.0 N1 N2.Np

375

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

x1
x2
«

xp

y1
y2
«

yp
z1

z2
«

zp

9>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>;

(4.96)

( p ¼ number of nodes of the element) can be considered a transformation relation between the Cartesian (x, y, z)
coordinates and curvilinear (r, s, t or L1, L2, L3, L4) coordinates if the shape functions Ni are nonlinear in terms of the
natural coordinates of the element. Eq. (4.96) can also be considered as the mapping of a straight-sided element in local
coordinates into a curved-sided element in the global Cartesian coordinate system. Thus, for any set of coordinates L1, L2,
L3, and L4, or r, s, and t, there corresponds a set of x, y, and z. Such mapping permits elements of one-, two-, and three-
dimensional types to be mapped into distorted forms in the manner illustrated in Fig. 4.19.
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To each set of local coordinates, there will be, in general, only one set of Cartesian coordinates. However, in some
cases, a nonuniqueness may arise with violent distortion. In order to have unique mapping of elements, the number of
coordinates (L1, L2, L3, L4) or (r, s, t) and (x, y, z) must be identical and the Jacobian, defined by

j½J�j ¼ vðx; y;.Þ
vðL1; L2;.Þ ¼



26666664
vx

vL1

vx

vL2
/

vy

vL1

vy

vL2
/

« « «

37777775


(4.97)

must not change sign in the domain.

4.9.3 Curved-Sided Elements

The main idea underlying the development of curved-sided elements centers on mapping or transforming simple geometric
shapes (with straight edges or flat surfaces) in some local coordinate system into distorted shapes (with curved edges or
surfaces) in the global Cartesian coordinate system and then evaluating the element equations for the resulting curved-sided
elements.

To clarify the idea, we shall consider a two-dimensional example. The extension of the idea to one- and three-
dimensional problems will be straightforward. Let the problem to be analyzed in a two-dimensional (x, y) space be as
shown in Fig. 4.20A and let the finite element mesh consist of curved-sided quadrilateral elements as indicated in
Fig. 4.20A. Let the field variable f (e.g., displacement) be taken to vary quadratically within each element. According to
the discussion of Section 4.3.3, if we want to take only the nodal values of f (but not the derivatives of f) as degrees of
freedom of the element, we need to take three nodes on each side of the quadrilateral element. In order to derive the finite
element equations, we consider one typical element in the assemblage of Fig. 4.20A and focus our attention on the simpler
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FIGURE 4.19 Mapping of elements.
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parent element in the local (r, s) coordinate system as shown in Fig. 4.20B. We find from Section 4.3.3 that the quadratic
variation of f within this parent element can be expressed as

fðr; sÞ ¼
X8
i¼ 1

Niðr; sÞFi (4.98)

where Ni are the quadratic shape or interpolation functions used in Eq. (4.41). The eight nodes in the (r, s) plane may be
mapped into corresponding nodes in the (x, y) plane by defining the relations

x ¼
X8
i¼ 1

fiðr; sÞxi

y ¼
X8
i¼ 1

fiðr; sÞyi

9>>>=>>>; (4.99)

where fi(r, s) are the mapping functions. These functions, in this case, must be at least quadratic since the curved bound-
aries of the element in the (x, y) plane need at least three points for their specification and the f i should take the proper
values of 0 and 1 when evaluated at the corner nodes in the (r, s) plane.

If we take the quadratic shape functions Ni given in Eq. (4.41) for this purpose, we can write

x ¼
X8
i¼ 1

Niðr; sÞxi

y ¼
X8
i¼ 1

Niðr; sÞyi

9>>>=>>>; (4.100)

The mapping defined by Eq. (4.100) results in a curved-sided quadrilateral element as shown in Fig. 4.20C. Thus, for this
element, the functional description of the field variable f as well as its curved boundaries are expressed by interpolation
functions of the same order. According to the definition, this element is an isoparametric element. Similarly, the element is
called subparametric or superparametric if the functional representation of geometry of the element [ fi(r, s)] is expressed in
terms of a lower or a higher order polynomial than the one used for representing the field variable f.

Idealization Typical element in local
coordinate system

Curved-sided element in xy plane

y
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FIGURE 4.20 Curved-sided elements.
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4.9.4 Continuity and Compatibility

We need to preserve the continuity and compatibility conditions in the global (x, y) coordinate system while constructing
isoparametric elements using the following observations [4.4]:

1. If the interpolation functions in natural (local) coordinates satisfy continuity of geometry and field variable both within
the element and between adjacent elements, the compatibility requirement will be satisfied in the global coordinates.
The polynomial interpolation models discussed in Section 4.3 are inherently continuous within the element. Further-
more, we can notice that the field variable along any edge of the element depends only on the nodal degrees of freedom
occurring on that edge when interpolation functions in natural coordinates are used. This can also be seen from
Figs. 4.4 and 4.6, where, for example, the field variable along the edge 2-6-3 of Fig. 4.6B depends only on the values
of the field variable at nodes 2, 6, and 3.

2. If the interpolation model provides constant values of f in the local coordinate system, the conditions of both constant
values of f and its derivatives will be satisfied in the global coordinates.

Let the functional relation for the components of the vector-valued field variable in an isoparametric element be given
by

8><>:
u

v

w

9>=>; ¼ ½N�

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

u1
«

up

v1
«

vp
w1

«

wp

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

(4.101)

where

½N� ¼

264N1.Np 0.0 0.0

0.0 N1.Np 0.0

0.0 0.0 N1.Np

375 (4.102)

and p is the number of nodes in the element. Thus, the u component of f is given by

u ¼
Xp
i¼ 1

Niui (4.103)

Let the geometry be given by

8><>:
x

y

z

9>=>; ¼ ½N�

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

x1
«

xp

y1
«

yp
z1
«

zp

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

(4.104)

where (xi, yi, zi) are the coordinates of node i(i ¼ 1, 2, .). For constant u, all points on the element must have the same
value of udfor example, u0. Hence, Eq. (4.103) becomes

u0 ¼
 Xp

i¼ 1

Ni

!
u0 (4.105)
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Thus, we obtain the following necessary condition to be satisfied for constant values of f in local coordinates:Xp
i¼ 1

Ni ¼ 1 (4.106)

4.9.5 Derivation of Element Equations

In the case of structural and solid mechanics problems, the element characteristic (stiffness) matrix is given by1�
KðeÞ� ¼

ZZZ
VðeÞ

½B�T ½D�½B�$ dV (4.107)

and the element characteristic (load) vector by

p!ðeÞ ¼
ZZZ

V ðeÞ
½B�T ½D� ε!0$ dV þ

ZZZ
V ðeÞ

½N�T f!$ dV þ
ZZ

SðeÞ1

½N�T F!$ dS1 (4.108)

where [B] is the matrix relating strains and nodal displacements, [D] is the elasticity matrix, F
!

is the vector of distributed
surface forces, f

!
is the vector of body forces, and ε

!
0 is the initial strain vector.

For a plane stress or plane strain problem, we have

	
uðx; yÞ
uðx; yÞ



¼ ½N�F!ðeÞ

h

�
N1 N2.Np 0 0.0

0 0.0 N1 N2.Np

�
8>>>>>>>>>>>>><>>>>>>>>>>>>>:

u1

u2
«

up
v1
v2

«

vp

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
(4.109)

ε
! ¼

8><>:
εxx

εyy

εxy

9>=>; ¼ ½B� Q!ðeÞ
(4.110)

and

½B� ¼

26666666664

vN1

vx

vN2

vx
/

vNp

vx
0 0/0

0 0/0
vN1

vy

vN2

vy
/

vNp

vy

vN1

vy

vN2

vy
/

vNp

vy

vN1

vx

vN2

vx
/

vNp

vx

37777777775
(4.111)

where p denotes the number of nodes of the element, (ui, vi) denote the values of (u, v) at node i, and Ni is the shape func-
tion associated with node i expressed in terms of natural coordinates (r, s) or (L1, L2, L3). Thus, in order to evaluate [K(e)]
and p!ðeÞ

, two transformations are necessary. First, the shape functions Ni are defined in terms of local curvilinear coor-
dinates (e.g., r and s), and hence the derivatives of Ni with respect to the global coordinates x and y must be expressed
in terms of derivatives of Ni with respect to the local coordinates. Second, the volume and surface integrals needed in
Eqs. (4.107) and (4.108) have to be expressed in terms of local coordinates with appropriate change of limits of integration.

For the first transformation, let us consider the differential of Ni with respect to the local coordinate r. Then, by the
chain rule of differentiation, we have

1. Eqs. (4.107) and (4.108) are derived in Chapter 8.
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vNi

vr
¼ vNi

vx
$
vx

vr
þ vNi

vy
$
vy

vr
(4.112)

Similarly,

vNi

vs
¼ vNi

vx
$
vx

vs
þ vNi

vy
$
vy

vs

Thus, we can express 	
vNi=vr

vNi=vs



¼
"
vx=vr

vx=vs

vy=vr

vy=vs

#	
vNi=vx

vNi=vy



¼ ½J�

	
vNi=vx

vNi=vy



(4.113)

where the matrix [J], called the Jacobian matrix, is given by

½J� ¼
�
vx=vr vy=vr

vx=vs vy=vs

�
(4.114)

Since x and y (geometry) are expressed as

	
x

y



¼ ½N�

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

x1

x2
«

xp
y1
y2

«

yp

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
(4.115)

we can obtain the derivatives of x and y with respect to the local coordinates directly, and hence the Jacobian matrix can be
expressed as

½J� ¼

266664
Xp
i¼ 1

�
vNi

vr
$xi

� Xp
i¼ 1

�
vNi

vr
$yi

�
Xp
i¼ 1

�
vNi

vs
$xi

� Xp
i¼ 1

�
vNi

vs
$yi

�
377775 (4.116)

Thus, we can find the global derivatives needed in Eq. (4.111) as	
vNi=vx

vNi=vy



¼ ½J��1

	
vNi=vr

vNi=vs



(4.117)

For the second transformation, we use the relation dV ¼ t dx dy ¼ t det [J] dr ds (for plane problems), where t is the
thickness of the plate element, and dV ¼ dx dy dz ¼ det [J] dr ds dt2 (for three-dimensional problems). Assuming that the
inverse of [J] can be found, the volume integration implied in Eq. (4.107) can be performed as�

KðeÞ� ¼ t

Z 1

�1

Z 1

�1
½B�T ½D�½B�$ det½J� dr ds (4.118)

and a similar expression can be written for Eq. (4.108).

2. For carrying out the volume integration, we assume that r, s, and t are the local coordinates and x, y, and z are the global coordinates so that the Jacobian

matrix is given by ½J� ¼

264 vx=vr vy=vr vz=vr

vx=vs vy=vs vz=vs

vx=vt vy=vt vz=vt

375

160 PART j II Basic Procedure

www.konkur.in

Telegram: @uni_k



Notes

1. Although a two-dimensional (plane) problem is considered for explanation, a similar procedure can be adopted in the case of

one- and three-dimensional isoparametric elements.

2. If the order of the shape functions used is different in describing the geometry of the element compared to the displacements

(i.e., for subparametric or superparametric elements), the shape functions used for describing the geometry would be used in

Eqs. (4.115) and (4.116), whereas the shape functions used for describing the displacements would be used in Eq. (4.112).

3. Although the limits of integration in Eq. (4.118) appear to be very simple, unfortunately, the explicit form of the matrix product

[B]T [D][B] is not very easy to express in closed form. Hence, it is necessary to resort to numerical integration. However, this is

not a severe restriction because general computer programs, not tied to a particular element, can be written for carrying out

the numerical integration.

4.10 NUMERICAL INTEGRATION

4.10.1 In One Dimension

There are several schemes available for the numerical evaluation of definite integrals. Because the Gauss quadrature
method has proven to be most useful in finite element applications, we shall consider only this method in this section.

Let the one-dimensional integral to be evaluated be

I ¼
Z 1

�1
f ðrÞ dr (4.119)

The simplest and crudest way of evaluating I is to sample (evaluate) f at the middle point and multiply by the length of the
interval as shown in Fig. 4.21A to obtain

I ¼ 2f1 (4.120)

This result would be exact only if the curve happens to be a straight line. Generalization of this relation gives

I ¼
Z 1

�1
f ðrÞ drx

Xn
i¼ 1

wi fi ¼
Xn
i¼ 1

wi fiðriÞ (4.121)

where wi is called the weight associated with the i-th point, and n is the number of sampling points. This means that in
order to evaluate the integral, we evaluate the function at several sampling points, multiply each value f i by an appropriate
weight wi, and add. Fig. 4.21 illustrates sampling at one, two, and three points.

In the Gauss method, the location of sampling points is such that for a given number of points, greatest accuracy is
obtained. The sampling points are located symmetrically about the center of the interval. The weight would be the same for

−1 0

Using one point

1

1

f

r

f(r)

f1

−1 0

Using two points

1

1

2

f

r

f(r)

f1
f2

−1 0

Using three points

1

1
2

3

f

r

f(r)

f1
f2

f3

(A) (B) (C)

FIGURE 4.21 Gauss integration.
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symmetrically located points. Table 4.1 shows the locations and weights for Gaussian integration up to six points. Thus, for
example, if we use the three-point Gaussian formula, we get

Ix0:555556 f1 þ 0:888889 f2 þ 0:555556 f3

which is the exact result if f (r) is a polynomial of order less than or equal to 5. In general, Gaussian quadrature using n
points is exact if the integrand is a polynomial of degree 2n � 1 or less.

The principle involved in deriving the Gauss quadrature formula can be illustrated by considering a simple function,

f ðrÞ ¼ a1 þ a2r þ a3r
2 þ a4r

3

If f (r) is integrated between �1 and 1, the area under the curve f (r) is

I ¼ 2a1 þ 2
3
a3

By using two symmetrically located points r ¼ �ri, we propose to calculate the area as

Ie ¼ w$f ð�riÞ þ w$f ðriÞ ¼ 2w
�
a1 þ a3r

2
i

�
If we want to minimize the error e ¼ I � Ie for any values of a1 and a3, we must have

ve

va1
¼ ve

va3
¼ 0

These equations give
w ¼ 1

and

ri ¼ 1ffiffiffi
3

p ¼ 0:577350 .

TABLE 4.1 Locations (ri) and Weights (wi) in Gaussian Integration (Eq. 4.121)

Number of Points (n) Location (ri) Weight (wi)

1 r1 ¼ 0.00000 00000 00000 2.00000 00000 00000

2 r1, r2 ¼ �0.57735 02691 89626 1.00000 00000 00000

3 r1, r3 ¼ �0.77459 66692 41483 0.55555 55555 55555

r2 ¼ 0.00000 00000 00000 0.88888 88888 88889

4 r1, r4 ¼ �0.86113 63115 94053 0.34785 48451 47454

r2, r3 ¼ �0.33998 10435 84856 0.65214 51548 62546

5 r1, r5 ¼ �0.90617 98459 38664 0.23692 68850 56189

r2, r4 ¼ �0.53846 93101 05683 0.47862 86704 99366

r3 ¼ 0.00000 00000 00000 0.56888 88888 88889

6 r1, r6 ¼ �0.93246 95142 03152 0.17132 44923 79170

r2, r5 ¼ �0.66120 93864 66265 0.36076 15730 48139

r3, r4 ¼ �0.23861 91860 83197 0.46791 39345 72691
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4.10.2 In Two Dimensions

IN RECTANGULAR REGIONS
In two-dimensional (rectangular) regions, we obtain the Gauss quadrature formula by integrating first with respect to

one coordinate and then with respect to the second as

I ¼
Z 1

�1

Z 1

�1
f ðr; sÞ dr ds ¼

Z 1

�1

"Xn
i¼ 1

wif ðri; sÞ
#
ds

¼
Xn
j¼ 1

wj

"Xn
i¼ 1

wif ðri; sjÞ
#

¼
Xn
i¼ 1

Xn
j¼ 1

wiwjf ðri; sjÞ
(4.122)

Thus, for example, a four-point Gaussian rule (Fig. 4.22) gives

Ixð1:000000Þð1:000000Þ½ f ðr1; s1Þ þ f ðr2; s2Þ þ f ðr3; s3Þ þ f ðr4; s4Þ� (4.123)

where the four sampling points are located at ri, si ¼ �0.577350. In Eq. (4.122), the number of integration points in each
direction was assumed to be the same. Clearly, it is not necessary and sometimes it may be advantageous to use different
numbers in each direction.
IN TRIANGULAR REGIONS

The integrals involved for triangular elements would be in terms of triangular or area coordinates. The following Gauss-
type formula has been developed by Hammer and Stroud [4.5]:

I ¼
ZZ

A

f ðL1; L2; L3Þ dAx
Xn
i¼ 1

wi f ðLðiÞ
1 ;LðiÞ

2 ; LðiÞ
3 Þ (4.124)

where for n ¼ 1 (linear triangle):

w1 ¼ 1; Lð1Þ
1 ¼ Lð1Þ

2 ¼ Lð1Þ
3 ¼ 1

3

for n ¼ 3 (quadratic triangle):

w1 ¼ 1
3
; Lð1Þ

1 ¼ Lð1Þ
2 ¼ 1

2
;Lð1Þ

3 ¼ 0

w2 ¼ 1
3
; Lð2Þ

1 ¼ 0; Lð2Þ
2 ¼ Lð2Þ

3 ¼ 1
2

w3 ¼ 1
3
; Lð3Þ

1 ¼ Lð3Þ
3 ¼ 1

2
; Lð3Þ

2 ¼ 0

1

2 3

4

r

s

FIGURE 4.22 Four-point Gaussian quadrature rule.
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for n ¼ 7 (cubic triangle):

w1 ¼ 27
60

; Lð1Þ
1 ¼ Lð1Þ

2 ¼ Lð1Þ
3 ¼ 1

3

w2 ¼ 8
60

; Lð2Þ
1 ¼ Lð2Þ

2 ¼ 1
2
; Lð2Þ

3 ¼ 0

w3 ¼ 8
60

; Lð3Þ
1 ¼ 0; Lð3Þ

2 ¼ Lð3Þ
3 ¼ 1

2

w4 ¼ 8
60

; Lð4Þ
1 ¼ Lð4Þ

3 ¼ 1
2
; Lð4Þ

2 ¼ 0

w5 ¼ 3
60

; Lð5Þ
1 ¼ 1; Lð5Þ

2 ¼ Lð5Þ
3 ¼ 0

w6 ¼ 3
60

; Lð6Þ
1 ¼ Lð6Þ

3 ¼ 0; Lð6Þ
2 ¼ 1

w7 ¼ 3
60

; Lð7Þ
1 ¼ Lð7Þ

2 ¼ 0; Lð7Þ
3 ¼ 1

The locations of the integration points are shown in Fig. 4.23.

4.10.3 In Three Dimensions

IN RECTANGULAR PRISM-TYPE REGIONS
For a right prism, we can obtain an integration formula similar to Eq. (4.122) as

I ¼
Z 1

�1

Z 1

�1

Z 1

�1
f ðr; s; tÞ dr ds dt

¼
Xn
i¼ 1

Xn
j¼ 1

Xn
k¼ 1

wiwjwkf ðri; sj; tkÞ
(4.125)

where an equal number of integration points (n) in each direction is taken only for convenience.
IN TETRAHEDRAL REGIONS

For tetrahedral regions, four volume coordinates are involved and the integral can be evaluated as in Eq. (4.124):

Ix
Xn
i¼ 1

wif
�
LðiÞ
1 ; LðiÞ

2 ; LðiÞ
3 ; LðiÞ

4

�
(4.126)

1

1

3

2

6

2

5

4
1

3
7

Cubic triangle
n = 7

Quadratic triangle
n = 3

Linear triangle
n = 1

FIGURE 4.23 Integration points within a triangular region according to Eq. (4.124).
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where for n ¼ 1 (linear tetrahedron):

w1 ¼ 1; Lð1Þ
1 ¼ Lð1Þ

2 ¼ Lð1Þ
3 ¼ Lð1Þ

4 ¼ 1
4

for n ¼ 4 (quadratic tetrahedron):

w1 ¼ 1
4
; Lð1Þ

1 ¼ a; Lð1Þ
2 ¼ Lð1Þ

3 ¼ Lð1Þ
4 ¼ b

w2 ¼ 1
4
; Lð2Þ

2 ¼ a; Lð2Þ
1 ¼ Lð2Þ

3 ¼ Lð2Þ
4 ¼ b

w3 ¼ 1
4
; Lð3Þ

3 ¼ a; Lð3Þ
1 ¼ Lð3Þ

2 ¼ Lð3Þ
4 ¼ b

w4 ¼ 1
4
; Lð4Þ

4 ¼ a; Lð4Þ
1 ¼ Lð4Þ

2 ¼ Lð4Þ
3 ¼ b

with

a ¼ 0:58541020

and

b ¼ 0:13819660

for n ¼ 4 (cubic tetrahedron):

w1 ¼ �4
5
; Lð1Þ

1 ¼ Lð1Þ
2 ¼ Lð1Þ

3 ¼ Lð1Þ
4 ¼ 1

4

w2 ¼ 9
20

; Lð2Þ
1 ¼ 1

3
; Lð2Þ

2 ¼ Lð2Þ
3 ¼ Lð2Þ

4 ¼ 1
6

w3 ¼ 9
20

; Lð3Þ
2 ¼ 1

3
; Lð3Þ

1 ¼ Lð3Þ
3 ¼ Lð3Þ

4 ¼ 1
6

w4 ¼ 9
20

; Lð4Þ
3 ¼ 1

3
; Lð4Þ

1 ¼ Lð4Þ
2 ¼ Lð4Þ

4 ¼ 1
6

w5 ¼ 9
20

; Lð5Þ
4 ¼ 1

3
; Lð5Þ

1 ¼ Lð5Þ
2 ¼ Lð5Þ

3 ¼ 1
6

The locations of the integration points used in Eq. (4.126) are shown in Fig. 4.24.

1
1

2

4

3

2 1

5

3

4

n = 5n = 4n = 1

FIGURE 4.24 Location of integration points within a tetrahedron according to Eq. (4.126).
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REVIEW QUESTIONS

4.1 Give brief answers to the following questions.

1. What is a higher order element?
2. State the cubic interpolation model for a one-dimensional element.
3. Show the locations of nodes for a one-dimensional element with a cubic interpolation model.
4. Show the locations of nodes of a triangular element with a quadratic interpolation model.
5. Show the natural coordinates for a quadrilateral element.
6. How many primary nodes are there for a tetrahedral quadratic element?
7. Name two types of classical interpolation polynomials.
8. Show the locations of nodes in a biquadratic rectangular element.

4.2 Fill in the blank with a suitable word.

1. A higher order element can be either a complex or a ————————————————— element.
2. Higher order elements will have ———————————— nodes in addition to primary nodes.
3. Isoparametric elements can be used for problems involving ———————————————— boundaries.
4. Elements whose shape and field variables are described by the same interpolation functions of the same order are

known as ——————————————— elements.
5. ———————————— quadrature is most useful in finite element applications.

4.3 Indicate whether each of the following statements is true or false.

1. C1 continuity means that the field variable f is continuous inside as well as between the elements.
2. The number of elements of a given shape capable of satisfying C 0 continuity is infinite.
3. In general, a smaller number of higher order elements yields somewhat less accurate results compared to a larger

number of simpler elements for the same computational effort.
4. An incompatible element can be called a nonconforming element.
5. Satisfying C1 continuity is more difficult for a rectangular element compared to a triangular element.
6. Linear isoparametric elements can have curved edges.
7. Quadratic isoparametric elements can have straight or curved edges.

4.4 Match the following two-station first-order interpolation functions with their corresponding polynomials.

1. Hð1Þ
01 ðxÞ ðaÞ � 1

l3 ð2x3 � 3lx2Þ
2. Hð1Þ

02 ðxÞ ðbÞ 1l ðx3 � 2lx2 þ l2xÞ
3. Hð1Þ

11 ðxÞ ðcÞ 12 ðx3 � lx2Þ
4. Hð1Þ

12 ðxÞ ðdÞ 1l ð2x3 � 3lx2 þ l3Þ
4.5 Match the following.

1. Quadratic interpolation model of a 1D element in terms of natural coordinates (a) fðxÞ ¼ P2
i¼0

LiðxÞFi

2. Quadratic interpolation model of a 1D element in terms of Cartesian coordinates (b) f(x) ¼ a1 þ a2x þ a3x
2

3. Quadratic interpolation model of a 1D element in terms of Lagrange interpolation functions (c) f(x) ¼ a1 þ a2x þ a3 y

PROBLEMS

4.1 Consider the shape functions, Ni(x), Nj(x), and Nk(x), corresponding to the nodes i, j, and k, of the one-dimensional
quadratic element described in Section 4.2.1. Show that the shape function corresponding to a particular node i ( j or k)
has a value of 1 at node i ( j or k) and 0 at the other two nodes j (k or i) and k (i or j).

4.2 Consider the shape functions described in Eq. (4.10) for a one-dimensional cubic element. Show that the shape func-
tion corresponding to a particular node i, Ni(x), has a value of 1 at node i and 0 at the other three nodes j, k, and l.
Repeat the procedure for the shape functions Nj(x), Nk(x), and Nl(x).

4.3 The Cartesian (global) coordinates of the corner nodes of a quadrilateral element are given by (0, �1), (�2, 3), (2, 4),
and (5, 3). Find the coordinate transformation between the global and local (natural) coordinates. Using this, deter-
mine the Cartesian coordinates of the point defined by (r, s) ¼ (0.5, 0.5) in the global coordinate system.
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4.4 Determine the Jacobian matrix for the quadrilateral element defined in Problem 4.3. Evaluate the Jacobian matrix at
the point (r, s) ¼ (0.5, 0.5).

4.5 The Cartesian (global) coordinates of the corners of a triangular element are given by (�2, �1), (2, 4), and (4, 1).
Find expressions for the natural (triangular) coordinates L1, L2, and L3. Determine the values of L1, L2, and L3 at the
point (x, y) ¼ (0, 0).

4.6 Consider a triangular element with the corner nodes defined by the Cartesian coordinates (�2, �1), (2, 4), and (4, 1).
Using the expressions derived in Problem 4.5 for L1, L2, and L3, evaluate the following in terms of the Cartesian
coordinates x and y:
a. Shape functions N1, N2, and N3 corresponding to a linear interpolation model
b. Shape functions N1, N2, ., N6 corresponding to a quadratic interpolation model
c. Shape functions N1, N2, ., N10 corresponding to a cubic interpolation model

4.7 The interpolation functions corresponding to node i of a triangular element can be expressed in terms of natural co-
ordinates L1, L2, and L3 using the relationship

Ni ¼ f ðiÞðL1Þf ðiÞðL2Þf ðiÞðL3Þ (P.1)

where

f ðiÞðLjÞ ¼

8><>:
Yp
k¼ 1

1
k
ðmLj � k þ 1Þ if p � 1

1 if p ¼ 0

(P.2)

with i ¼ 1, 2,., n; n ¼ total number of nodes in the element; p ¼ mLðiÞj ; m ¼ order of the interpolation model (2 for
quadratic, 3 for cubic, etc.); and LðiÞj ¼ value of the coordinate Lj at node i.
Using Eq. (P.1), find the interpolation function corresponding to node 1 of a quadratic triangular element.

4.8 Using Eq. (P.1) given in Problem 4.7, find the interpolation function corresponding to node 4 of a cubic triangular
element.

4.9 Using Eq. (P.1) given in Problem 4.7, find the interpolation function corresponding to node 10 of a cubic triangular
element.

4.10 Using Eq. (P.1) given in Problem 4.7, find the interpolation function corresponding to node 4 of a quadratic trian-
gular element.

4.11 Using Eq. (P.1) given in Problem 4.7, find the interpolation function corresponding to node 1 of a cubic triangular
element.

4.12 The interpolation functions corresponding to node i of a tetrahedron element can be expressed in terms of the natural
coordinates L1, L2, L3, and L4 using the relationship

Ni ¼ f ðiÞðL1Þf ðiÞðL2Þf ðiÞðL3Þf ðiÞðL4Þ (P.3)

where f (i) (Lj) is defined by Eq. (P.2) of Problem 4.7. Using this relation, find the interpolation function corre-
sponding to node 1 of a quadratic tetrahedron element.

4.13 Using Eq. (P.3) given in Problem 4.12, find the interpolation function corresponding to node 5 of a quadratic tet-
rahedron element.

4.14 Using Eq. (P.3) given in Problem 4.12, find the interpolation function corresponding to node 1 of a cubic tetrahedron
element.

4.15 Using Eq. (P.3) given in Problem 4.12, find the interpolation function corresponding to node 5 of a cubic tetrahedron
element.

4.16 Using Eq. (P.3) given in Problem 4.12, find the interpolation function corresponding to node 17 of a cubic tetrahe-
dron element.

4.17 The Cartesian (global) coordinates of the corners of a tetrahedron element are given by (0, 0, 0), (1, 0, 0), (0, 1, 0),
and (0, 0, 1). Find expressions for the natural (tetrahedral) coordinates, L1, L2, L3, and L4. Determine the values of
L1, L2, L3, and L4 at the point (x, y, z) ¼ (0.25, 0.25, 0.25).

4.18 The nodes of a quadratic one-dimensional element are located at x ¼ 0, x ¼ l/2, and x ¼ l. Express the shape func-
tions using Lagrange interpolation polynomials.

4.19 Derive expressions for the shape functions of the rectangular element shown in Fig. 4.25 using Lagrange interpo-
lation polynomials.
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4.20 The Cartesian coordinates of the nodes of a quadratic quadrilateral isoparametric element are shown in Fig. 4.26.
Determine the coordinate transformation relation between the local and global coordinates. Using this relation,
find the global coordinates corresponding to the point (r, s) ¼ (0, 0).

4.21 A boundary value problem, governed by the Laplace equation, is stated as

v2f

vx2
þ v2f

vy2
¼ 0 in A

f ¼ f0 on C

1 3 5

2 4 6

x1

y1

y2

y

x2 x3
x

FIGURE 4.25 Rectangular element.

(−1.2, 3.2)

y

x

(−2.0, 1.0)

(−2.2, −1.7)

(0.8, −2.4)

(3.3, −1.9)

(3.9, 0.2)

(3.8, 2.2)(1.4, 2.1)

FIGURE 4.26 Quadrilateral isoparametric element.
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The characteristic (stiffness) matrix of an element corresponding to this problem can be expressed as�
KðeÞ� ¼

Z Z
AðeÞ

½B�T ½D�½B� dA

where

½D� ¼
�
1 0

0 1

�

½B� ¼

26664
vN1

vx

vN2

vx
/

vNp

vx

vN1

vy

vN2

vy
/

vNp

vy

37775
and A(e) is the area of the element. Derive the matrix [B] for a quadratic quadrilateral isoparametric element whose
nodal coordinates are shown in Fig. 4.26.

4.22 Evaluate the integral

I ¼
Z 1

�1

�
a0 þ a1xþ a2x

2 þ a3x
3 þ a4x

4
�
dx

using the following methods and compare the results:
a. Two-point Gauss integration
b. Analytical integration

4.23 Evaluate the integral

I ¼
Z 1

�1

�
a0 þ a1xþ a2x

2 þ a3x
3
�
dx

using the following methods and compare the results:
a. Three-point Gauss integration
b. Analytical integration

4.24 Evaluate the integral

I ¼
Z 1

�1

Z 1

�1

�
r2s3 þ rs4Þ dr ds

using the following methods and compare the results:
a. Gauss integration
b. Analytical integration

4.25 Determine the Jacobian matrix for the quadratic isoparametric triangular element shown in Fig. 4.27.
4.26 How do you generate an isoparametric quadrilateral element for C1 continuity? (Hint: In this case we need to trans-

form the second-order partial derivatives and the Jacobian will be a variable matrix.)
4.27 Consider a ring element with triangular cross section as shown in Fig. 4.28. If the field variable f does not change

with respect to q, propose linear, quadratic, and cubic interpolation models for C 0 continuity. Develop the necessary
element equations for the linear case for solving the Laplace’s equation:

v2f

vr2
þ 1

r

vf

vr
þ v2f

vz2
¼ 0

4.28 Evaluate vN4/vx and vN4/vy at the point (1.5, 2.0) for the quadratic triangular element shown in Fig. 4.29. Hint:
Since the sides of the element are straight, define the geometry of the element using Eq. (3.71). Evaluate the
Jacobian matrix,
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x

r

θ

FIGURE 4.28 Ring element.

y

x

(2, 7)

(6, 6)

(4, 5)

(5, 2) (7, 3)

(10, 5)

FIGURE 4.27 Isoparametric triangular element.

y

x

3 (1, 5)

(1.5, 2.0)
2

(3, 2)

1
(0, 0)

Element geometry defined
by 3 nodes

y

x

3

6

4

2

5

1

Interpolation polynomial
with 6 nodes

FIGURE 4.29 Quadratic triangular element.
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½J� ¼

26664
vx

vL1

vy

vL1

vx

vL2

vy

vL2

37775
Differentiate the quadratic shape function N4 given by Eq. (4.26) with respect to x and y. Use the relation8>>><>>>:

vN4

vx

vN4

vy

9>>>=>>>; ¼ ½J��1

8>>><>>>:
vN4

vL1

vN4

vL2

9>>>=>>>;
to obtain the desired result.

4.29 Evaluate the partial derivatives (vN1/vx) and (vN1/vy) of the quadrilateral element shown in Fig. 4.30 at the point
(r ¼ 1/2, s ¼ 1/2), assuming that the scalar field variable f is approximated by a quadratic interpolation model.

4.30 Derive Eqs. (4.16) and (4.17) for a one-dimensional quadratic element.
4.31 Derive Eqs. (4.20) to (4.23) for a one-dimensional cubic element.
4.32 Derive Eq. (4.26) for a quadratic triangular element.
4.33 Derive Eq. (4.30) for a cubic triangular element.
4.34 Derive Eq. (4.36) for a quadrilateral element.
4.35 Derive the Hermite polynomials indicated in Eqs. (4.70) to (4.72).
4.36 A column, subjected to an axial load, is modeled with quadratic elements. The nodes 1, 2, and 3 of one of the el-

ements are located at x ¼ 5 cm, 8 cm, and 11 cm. If the axial displacements of nodes 1, 2, and 3 are 0.005 cm,
0.009 cm, and 0.016 cm, respectively, determine the shape functions of the element, strain in the element, and
the stress in the element. Assume the Young’s modulus of the material as 207 GPa.

4.37 In the heat transfer analysis of a one-dimensional fin, the rod (or fin) is modeled with quadratic finite elements. For
an interior element, the nodes 1, 2, and 3 are located at x ¼ 12 cm, 15 cm, and 18 cm with the nodal temperatures as
180 �F, 170 �F, and 155 �F, respectively. Determine the shape functions of the element and the temperature gradient�
dT
dx

�
in the element.

4.38 The global coordinates of the four corners of a linear quadratic element are given by (x1, y1) ¼ (4, 3) cm,
(x2, y2) ¼ (10, 1) cm, (x3, y3) ¼ (8, 8) cm, and (x4, y4) ¼ (2, 6) cm. Find the global coordinates corresponding to
the natural coordinates r ¼ 0.5 and s ¼ 1.0.

4.39 The global coordinates of the four corners of a linear quadratic element are given by (x1, y1) ¼ (2, 4) in, (x2, y2) ¼
(4, 1) in, (x3, y3) ¼ (10, 3) in, and (x4, y4) ¼ (6, 8) in. Find the global coordinates corresponding to the natural coor-
dinates r ¼ 1.0 and s ¼ �0.5.

(15, 50)

(20, 20)

(40, 30)

(50, 60)

r

y

x

1
2

1
2(   ,    )

s

FIGURE 4.30 Quadrilateral element.
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4.40 The global coordinates of the four corners of a linear quadratic element are given by (x1, y1) ¼ (13, 3) cm,
(x2, y2) ¼ (6, 9) cm, (x3, y3) ¼ (1, 4) cm, and (x4, y4) ¼ (4, �3) cm. Find the global coordinates corresponding to
the natural coordinates r ¼ 0.5 and s ¼ 1.0.
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5.1 INTRODUCTION

The characteristic matrices and characteristic vectors (also termed vectors of nodal actions) of finite elements can be
derived by using any of the following approaches.

1. Direct approach
The direct method was presented along with several examples from different areas of engineering in Section 1.6. As can
be seen from these examples, the direct method is based on using direct physical reasoning to establish the element
properties (i.e., the characteristic matrices and vectors) in terms of pertinent variables. Because the approach uses
the basic principles of engineering science, it aids in understanding the physical basis of the finite element method
[5.1,5.2]. However, the method is applicable only for simple problems, and insurmountable difficulties arise when
we try to apply the method to complex problems involving two- and three-dimensional finite elements. As such, the
direct method is not used in the finite element analysis of most practical problems.

2. Variational approach
In this method, the finite element analysis is interpreted as an approximate means for solving variational problems.
Since most physical and engineering problems can be formulated in variational form, the finite element method can
be readily applied for finding their approximate solutions. The variational approach has been most widely used in

The Finite Element Method in Engineering. https://doi.org/10.1016/B978-0-12-811768-2.00005-5
Copyright © 2018 Elsevier Inc. All rights reserved.
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the literature in formulating finite element equations. A major limitation of the method is that it requires the physical or
engineering problem to be stated in variational form, which may not be possible in all cases.

3. Weighted residual approach
In this method, the element matrices and vectors are derived directly from the governing differential equations of the
problem without reliance on the variational statement of the problem. This method offers the most general procedure
for deriving finite element equations and can be applied to almost all practical problems of science and engineering.
Again, within the weighted residual approach, different procedures, such as the Galerkin method and the least squares
method, can be used in deriving the element equations.

The variational and weighted residual approaches are presented for deriving element characteristic matrices and vectors
in this chapter.

5.2 VARIATIONAL APPROACH

The variational approach is based on the application of variational calculus, which deals with the extremization of
functionals in the form of integrals. In this section, we interpret the finite element method as an approximate method of
solving variational problems. Most of the solutions reported in the literature for physical and engineering problems have
been based on this approach. Finite element equations are derived using the variational approach.

5.2.1 Specification of Continuum Problems

Most continuum problems can be specified in one of two ways. In the first, a variational principle valid over the entire
domain of the problem is postulated and an integral I is defined in terms of the unknown parameters and their derivatives.
The correct solution of the problem is one that minimizes the integral I subject to specified boundary conditions. In the
second, differential equations governing the behavior of a typical infinitesimal domain are given along with the boundary
conditions. These two approaches are mathematically equivalent, an exact solution of one being the solution of the other.
The final equations of the finite element method can be derived by proceeding either from the differential equations or from
the variational principle of the problem.

Although the differential equation approach is more popular, the variational approach will be of special interest in
studying the finite element method. This is due to the fact that the consideration of the finite element method as a vari-
ational approach has contributed significantly in formulating and solving problems of different branches of engineering in a
unified manner. Thus, a knowledge of the basic concepts of calculus of variations is useful in understanding the general
finite element method.

5.2.2 Approximate Methods of Solving Continuum Problems

If the physical problem is specified as a variational problem and the exact solution, which minimizes the integral I, cannot
be found easily, we would like to find an approximate solution that approximately minimizes the integral I. Similarly, if the
problem is specified in terms of differential equations and boundary conditions, and if the correct solution, which satisfies
all the equations exactly, cannot be obtained easily, we would like to find an approximate solution that satisfies the
boundary conditions exactly but not the governing differential equations. Of the various approximate methods available,
the methods using trial functions have been more popular. Depending on the manner in which the problem is specified, two
types of approximate methods, namely variational methods (e.g., RayleigheRitz method) and weighted residual methods
(e.g., Galerkin method), are available. The finite element method can be considered as a variational (RayleigheRitz)
method and also as a weighted residual (Galerkin) method. The consideration of the finite element method as a variational
approach (which minimizes the integral I approximately) is discussed in this section. The consideration of the finite
element method as a weighted residual approach (which satisfies the governing differential equations approximately) is
discussed in the next section.

5.2.3 Calculus of Variations

The calculus of variations is concerned with the determination of extrema (maxima and minima) or stationary values of
functionals. A functional can be defined as a function of several other functions. The basic problem in variational calculus
is to find the function f(x) that makes the functional (integral)
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I ¼
Z x2

x1

Fðx;f;fx;fxxÞ$ dx (5.1)

stationary. Here, x is the independent variable, fx ¼ df/dx, fxx ¼ d2f/dx2, and I and F can be called functionals. The func-
tional I usually possesses a clear physical meaning in most applications. For example, in structural and solid mechanics, the
potential energy (p) plays the role of the functional (p is a function of the displacement vector f

!
, whose components are u,

v, and w, which is a function of the coordinates x, y, and z). The integral in Eq. (5.1) is defined in the region or domain [x1,
x2]. Let the value of f be prescribed on the boundaries as f (x1) ¼ f1 and f (x2) ¼ f2. These are called the boundary con-
ditions of the problem.

One of the procedures that can be used to solve the problem in Eq. (5.1) is as follows:

1. Select a series of trial or tentative solutions f (x) for the given problem and express the functional I in terms of each of
the tentative solutions.

2. Compare the values of I given by the different tentative solutions.
3. Find the correct solution to the problem as that particular tentative solution that makes the functional I assume an

extreme or stationary value.

The mathematical procedure used to select the correct solution from a number of tentative solutions is called the calculus
of variations.
STATIONARY VALUES OF FUNCTIONALS

Any tentative solution fðxÞ in the neighborhood of the exact solution f (x) may be expressed as

fðxÞ
tentative solution

¼ fðxÞ
exact solution

þ d fðxÞ
variation of f

(5.2)

(see Fig. 5.1). The variation in f (i.e., df) is defined as an infinitesimal, arbitrary change in f for a fixed value of the
variable x (i.e., for dx ¼ 0). Here, d is called the variational operator (similar to the differential operator d). The operation of
variation is commutative with respect to both integration and differentiation:

d

�Z
F$ dx

�
¼
Z

ðdFÞ dx (5.3)

and

d

�
df
dx

�
¼ d

dx
ðdfÞ (5.4)

Tentative solution, φ (x )

Exact solution

φ (x )

φ (x )

x1 x xx2

δφ (x )

φ2

φ1

FIGURE 5.1 Tentative and exact solutions.
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Also, we define the variation of a functional or a function of several variables in a manner similar to the calculus definition
of a total differential as

x xx
x xx

F F F FF
0 

xφ φ φ
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

xδ δφ δφ δφ δ (5.5)

(since we are finding variation of f for a fixed value of x, dx ¼ 0).
Now, let us consider the variation in I(dI) corresponding to variations in the solution (df). If we want the condition for

the stationariness of I, we take the necessary condition as the vanishing of the first derivative of I (similar to maximization
or minimization of simple functions in calculus):

dI ¼
Z x2

x1

dF dx ¼ 0 (5.6)

¼
Z x2

x1

�
vF

vf
dfþ vF

vfx

dfx þ
vF

vfxx

dfxx

�
dx ¼ 0 (5.7)

Integrate the second and third terms by parts to obtainZ x2

x1

vF

vfx

dfxdx ¼
Z x2

x1

vF

vfx

d

�
vf

vx

�
dx ¼

Z x2

x1

vF

vfx

v

vx
ðdfÞ dx (5.8)

¼ vF

vfx

df

����x2
x1

�
Z x2

x1

d
dx

�
vF

vfx

�
df dx (5.9)

and Z x2

x1

vF

vfxx

dfxx dx ¼
Z x2

x1

vF

vfxx

v

vx
ðdfxÞ dx (5.10)

¼ vF

vfxx

dfx

����x2
x1

�
Z x2

x1

d
dx

�
vF

vfxx

�
dfx dx (5.11)

¼ vF

vfxx

dfx

����x2
x1

� d
dx

�
vF

vfxx

�
df

����x2
x1

þ
Z x2

x1

d2

dx2

�
vF

vfxx

�
df dx (5.12)

rdI ¼
Z x2

x1

�
vF

vf
� d
dx

�
vF

vfx

�
þ d2

dx2

�
vF

vfxx

��
df dxþ

�
vF

vfx

� d
dx

�
vF

vfxx

��
df

����x2
x1

þ
��

vF

vfxx

�
dfx

�����x2
x1

¼ 0 (5.13)

Since df is arbitrary, each term must vanish individually so that

vF

vf
� d
dx

�
vF

vfx

�
þ d
dx2

�
vF

vfxx

�
¼ 0 (5.14)

�
vF

vfx

� d
dx

�
vF

vfxx

��
df

����x2
x1

¼ 0 (5.15)

vF

vfxx

dfx

����x2
x1

¼ 0 (5.16)

Eq. (5.14) will be the governing differential equation for the given problem and is called the Euler equation or Eulere
Lagrange equation. Eqs. (5.15) and (5.16) give the boundary conditions. The conditions�

vF

vfx

� d
dx

�
vF

vfxx

������x2
x1

¼ 0 (5.17)

and

vF

vfxx

����x2
x1

¼ 0 (5.18)
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are called natural boundary conditions (if they are satisfied, they are called free boundary conditions). If the natural
boundary conditions are not satisfied, we should have

dfðx1Þ ¼ 0 (5.19)

dfðx2Þ ¼ 0 (5.20)

and

dfxðx1Þ ¼ 0 (5.21)

dfxðx2Þ ¼ 0 (5.22)

in order to satisfy Eqs. (5.15) and (5.16). These are called geometric or essential or forced boundary conditions. Thus, the
boundary conditions, Eqs. (5.15) and (5.16), can be satisfied by any combination of free and forced boundary conditions. If
the finite element equations are derived on the basis of a variational principle, the natural boundary conditions will be auto-
matically incorporated in the formulation; hence, only the geometric boundary conditions are to be enforced on the
solution.

5.2.4 Several Dependent Variables and One Independent Variable

Although Eqs. (5.14) to (5.16) were derived for a single dependent variable, the method can be extended to the case of
several dependent variables fi(x) to obtain the set of EulereLagrange equations:

d2

dx2

�
vF

vðfiÞxx

�
� d
dx

�
vF

vðfiÞx

�
þ vF

vðfiÞi
¼ 0; i ¼ 1; 2;.; n (5.23)

In general, the integrand F will involve derivatives of higher order than the second order so that

I ¼
Z x2

x1

F
h
x;fi;f

ð1Þ
i ;f

ð2Þ
i ;.;f

ðjÞ
i

i
dx; i ¼ 1; 2;.; n (5.24)

where f
ðjÞ
i indicates the j-th derivative of fi with respect to x. The corresponding EulereLagrange equations can be

expressed as [5.3]

Xn
j¼ 0

ð� 1Þn�j d
n�j

dxn�j

(
vF

vf
ðn�jÞ
i

)
¼ 0; i ¼ 1; 2;.; n (5.25)

5.2.5 Several Independent Variables and One Dependent Variable

Consider the following functional with three independent variables:

I ¼
Z
V

F
	
x; y; z;f;fx;fy;fz



dV (5.26)

where fx ¼ (vf/vx), fy ¼ (vf/vy), and fz ¼ (vf/vz). The variation of I due to an arbitrary small change in the solution f

can be expressed as

dI ¼
Z
V

 
vF

vf
dfþ vF

vfx

dfx þ
vF

vfy

dfy þ
vF

vfz

dfz

!
dV (5.27)

¼
Z
V

"
vF

vf
dfþ vF

vfx

v

vx
ðdfÞ þ vF

vfy

v

vy
ðdfÞ þ vF

vfz

v

vz
ðdfÞ

#
dV (5.28)

since dfx ¼ d (vf/vx) ¼ (v/vx) (df), and so on. Integrating the second term in Eq. (5.28) by parts and applying the Greene
Gauss theorem (given in the Appendix B) givesZ

V

vF

vfx

v

vx
ðdfÞ dV ¼

Z
V

v

vx

�
vF

vfx

df

�
dV �

Z
V

v

vx

�
vF

vfx

�
df dV (5.29)
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¼
Z
S

lx
vF

vfx

df dS�
Z
V

vF

vx

�
vF

vfx

�
df dV (5.30)

where lx is the direction cosine of the normal to the outer surface with respect to the x axis. Similarly, the third and fourth
terms in Eq. (5.28) can be integrated and dI can be expressed as

dI ¼
Z
V

"
vF

vf
� v

vx

�
vF

vfx

�
� v

vy

 
vF

vfy

!
� v

vz

�
vF

vfz

�#
df dV þ

Z
S

"
vF

vfx

lx þ vF

vfy

$ly þ vF

vfz

lz

#
df$ dS (5.31)

The functional I assumes a stationary value only if the bracketed terms within the integrals vanish. This requirement
gives the governing differential equation and the boundary conditions of the problem. Eq. (5.31) is the one that is
applicable to the finite element formulation of most field problems according to the variational approach.

5.2.6 Advantages of Variational Formulation

From the previous discussion it is evident that any continuum problem can be solved using a differential equation formulation
or a variational formulation. The equivalence of these formulations is apparent from the previous equations, which show that
the functional I is extremized or made stationary only when the corresponding EulereLagrange equations and boundary
conditions are satisfied. These equations are precisely the governing differential equations of the given problem.

The variational formulation of a continuum problem has the following advantages over differential equation
formulation:

1. The functional I usually possesses a clear physical meaning in most practical problems.
2. The functional I contains lower order derivatives of the field variable compared to the governing differential equation

and hence an approximate solution can be obtained using a larger class of functions.
3. Sometimes the problemmay possess a dual variational formulation, in which case the solution can be sought either bymini-

mizing (or maximizing) the functional I or by maximizing (or minimizing) its dual functional. In such cases, we can find an
upper and a lower bound to the solution and estimate the order of error in either of the approximate solutions obtained.

4. Using variational formulation, it is possible to prove the existence of solution in some cases.
5. The variational formulation permits us to treat complicated boundary conditions as natural or free boundary conditions.

Thus, we need to explicitly impose only the geometric or forced boundary conditions in the finite element method, and
the variational statement implicitly imposes the natural boundary conditions.

As stated in Section 1.4, the finite element method is applicable to all types of continuum problems, namely, equi-
librium, eigenvalue, and propagation problems. We first present the solution of all three categories of problems using the
variational approach and then derive the finite element equations using the variational approach.

5.3 SOLUTION OF EQUILIBRIUM PROBLEMS USING VARIATIONAL (RAYLEIGHeRITZ)
METHOD

The differential equation formulation of a general equilibrium problem leads to the following equations:

Af ¼ b in V (5.32)

Bjf ¼ gj; j ¼ 1; 2;.; p on S (5.33)

where f is the unknown field variable (assumed to be a scalar for simplicity), A and Bj are differential operators, b and gj
are functions of the independent variables, p is the number of boundary conditions, V is the domain, and S is the boundary
of the domain.

In variational formulation, a functional I(f), for which the conditions of stationariness or extremization give the
governing differential equation, Eq. (5.32), is identified and the problem is stated as follows:

Minimize IðfÞ in V (5.34)

subject to the essential or forced boundary conditions

Bjf ¼ gj; j ¼ 1; 2;.; p (5.35)

The functional I is some integral of f and its derivatives over the domain V and/or the boundary S. If the integrand of
the functional is denoted by F so that

I ¼
Z
V

Fðx;f;fxÞ$dx (5.36)
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it can be seen from the previous discussion that F satisfies the EulereLagrange equation, Eq. (5.14). This EulereLagrange
equation in f is the same as the original field equation, Eq. (5.32).

In the most widely used variational method, the RayleigheRitz method, an approximate solution of the following type
is assumed for the field variable f (x):

fe ðxÞ ¼
Xn
i¼ 1

CifiðxÞ (5.37)

where fi(x) are known linearly independent functions (also called trial functions) defined over V and S, and Ci are unknown
parameters to be determined. When fe ðxÞ of Eq. (5.37) is substituted, Eq. (5.36) becomes a function of the unknowns Ci.
The necessary conditions for the functional to be stationary are given by

vI
	
fe


vCi
¼ 0; i ¼ 1; 2;.; n (5.38)

which yields n equations in the n unknowns Ci. If I is a quadratic function of f and fx, Eq. (5.38) gives a set of n linear
simultaneous equations.

It can be seen that the accuracy of the assumed solution fe ðxÞ depends on the choice of the trial functions fi(x). The
functions fj(x), j ¼ 1, 2, ., n have to be continuous up to degree r � 1, where r denotes the highest degree of differ-
entiation in the functional I [r ¼ 1 in Eq. 5.36] and have to satisfy the essential boundary conditions, Eq. (5.35). In
addition, the functions fj(x) must be part of a complete set for the solution to converge to the correct solution. To assess the
convergence of the process, we need to take two or more trial functions, fj(x). When the method is applied for the sta-
tionariness of a given functional I, we can study the convergence by comparing the results obtained with the following
sequence of assumed solutions:

feð1Þ ðxÞ ¼ Cð1Þ
1 f1ðxÞ

feð2ÞðxÞ ¼ Cð2Þ
1 f1ðxÞ þ Cð2Þ

2 f2ðxÞ

«

feðiÞðxÞ ¼ CðiÞ
1 f1ðxÞ þ CðiÞ

2 f2ðxÞ þ/þ CðiÞ
i fiðxÞ (5.39)

where the i-th assumed solution includes all the functions fj(x) included in the previous solutions. Usually, the functions
fj(x) are taken as polynomials or trigonometric functions. If I is a quadratic functional, the sequence of solutions given by
Eq. (5.39) leads to

Ið1Þ � Ið2Þ � / � IðiÞ (5.40)

This behavior is called monotonic convergence to the minimum of I.

EXAMPLE 5.1
Find the approximate deflection of a simply supported beam under a uniformly distributed load p (Fig. 5.2) using the Rayleigh

eRitz method.

Continued

x

p per unit length

FIGURE 5.2 A simply supported beam under uniformly distributed load.
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EXAMPLE 5.1 dcont’d

Approach: Find the functional I whose extremization yields the differential equation governing the deflection of the beam.

Assume an approximate solution satisfying the boundary conditions in terms of two unknown constants and evaluate the constants

using the conditions of extremization of I.

Solution

Let w(x) denote the deflection of the beam (field variable). The differential equation formulation leads to the following statement of

the problem.

Find w(x) that satisfies the governing equation (with constant p and EI), given by:

EI
d4w

dx4
� p ¼ 0; 0 � x � l (E.1)

and the boundary conditions

wðx ¼ 0Þ ¼ wðx ¼ lÞ ¼ 0 ðdeflection zero at endsÞ

EI
d2w

dx2 ðx ¼ 0Þ ¼ EI
d2w

dx2 ðx ¼ lÞ ¼ 0 ðbending moment zero at endsÞ

9>=>; (E.2)

where E is Young’s modulus, and I is the area moment of inertia of the beam. The variational formulation gives the following

statement of the problem.

Find w(x) that minimizes the integral 1

A ¼
Z l

x¼0

F$dx ¼ 1

2

Z l

0

"
EI

�
d2w

dx2

�2

� 2p$w

#
dx (E.3)

and satisfies the boundary conditions stated in Eq. (E.2).

We shall approximate the solution w(x) by orthogonal functions of the sinusoidal type. For example,

we ðxÞ ¼ C1 sin
�px

l

�
þ C2 sin

�
3px

l

�
¼ C1f1ðxÞ þ C2f2ðxÞ (E.4)

where the functions f1(x) ¼ sin(px/l) and f2(x) ¼ sin (3px/l) satisfy the boundary conditions, Eq. (E.2). The substitution of Eq. (E.4)

into Eq. (E.3) gives

A ¼
Z l

0

"
EI

2

(
C1

�p
l

�2
sin
�px

l

�
þ C2

�
3p

l

�2

sin

�
3px

l

�)2

� p

�
C1 sin

�px
l

�
þ C2 sin

�
3px

l

���
dx

¼
Z l

0

"
EI

2

(
C2

1

�p
l

�4
sin2

�px
l

�
þ C2

2

�
3p

l

�4

sin2

�
3px

l

�
þ 2C1C2

�p
l

�2�3p
l

�2

,sin
�px

l

�
sin

�
3px

l

��

�p

�
C1 sin

�px
l

�
þ C2 sin

�
3px

l

���
dx (E.5)

By using the relations Z l

0

sin
�mpx

l

�
sin
�npx

l

�
dx ¼

�
0 if m s n

l=2 if m ¼ n
(E.6)

and Z l

0

sin
�mpx

l

�
dx ¼ 2l

mp
if m is an odd integer (E.7)

Eq. (E.5) can be written as

A ¼ EI

2

(
C2

1

�p
l

�4 l
2
þ C2

2

�
3p

l

�4
l

2

)
� p

�
C1

2l

p
þ C2

2l

3p

�
(E.8)

180 PART j II Basic Procedure

www.konkur.in

Telegram: @uni_k



EXAMPLE 5.1 dcont’d

where C1 and C2 are independent constants. For the minimum of A, we have

vA

vC1

¼ EI

2

�
2C1

�p
l

�4 l
2

�
� p

2l

p
¼ 0

vA

vC2

¼ EI

2

(
2C2

�
3p

l

�4
l

2

)
� p

2l

3p
¼ 0

9>>>>=>>>>; (E.9)

The solution of Eq. (E.9) gives

C1 ¼ 4pl4

p5EI
and C2 ¼ 4pl4

243p5EI
(E.10)

Thus, the deflection of the beam is given by

we ðxÞ ¼ 4pl4

p5EI

�
sin
�px

l

�
þ 1

243
sin

�
3px

l

��
(E.11)

Thus, the deflection of the beam at the middle point is given by

we ðx ¼ l=2Þ ¼ 968

243p5

pl4

EI
¼ 1

76:5

pl4

EI
(E.12)

which compares well with the exact solution

wðx ¼ l=2Þ ¼ 5

384

pl4

EI
¼ 1

76:8

pl4

EI
(E.13)

We can find a more accurate solution by including more terms in Eq. (E.4). The n-term solution converges to the exact solution

as n / N.

1. It can be verified that the EulereLagrange equation corresponding to the functional A is the same as Eq. (E.1). The functional A represents the potential
energy of the beam.

EXAMPLE 5.2
Find the solution of the differential equation

d2
f

dx2
þ fþ x ¼ 0; 0 � x � 1 (E.1)

subject to the boundary conditions f(0) ¼ f(1) ¼ 0 using the RayleigheRitz method.

Approach: Find the functional Iwhose extremization yields the differential Eq. (E.1). Assume an approximate solution satisfying

the boundary conditions in terms of two unknown constants and evaluate the constants using the conditions of extremization of I.

Solution

The functional I corresponding to Eq. (E.1) is given by

I ¼ 1

2

Z 1

0

(
�
�
df

dx

�2

þ f2 þ 2 f x

)
dx (E.2)

with the boundary conditions f(0) ¼ f(1) ¼ 0. We assume a two-term approximate solution as

fðxÞ ¼ c1xð1� xÞ þ c2x
2ð1� xÞ (E.3)

where c1 and c2 are unknown constants and each term is chosen to satisfy the specified boundary conditions,

fðx ¼ 0Þ ¼ fðx ¼ 1Þ ¼ 0. Using�
df

dx

�2

¼ 
c1ð1� 2xÞ þ c2

	
2x � 3x2


�2
¼ c2

1

	
1� 4x þ 4x2


þ c2
2

	
4x2 þ 9x4 � 12x3


þ 2c1c2
	
2x � 7x2 þ 6x3


 (E.4)

Continued
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EXAMPLE 5.2 dcont’d

Eq. (E.2) can be rewritten as

2I ¼
Z 1

0

� c2
1ð1� 4x þ 4x2Þ � c2

2ð4x2 � 12x3 þ 9x4Þ � 2c1c2ð2x � 7x2 þ 6x3



þc2
1ðx2 � 2x3 þ x4Þ þ c2

2ðx4 � 2x5 þ x6Þ þ 2c1c2ðx3 � 2x4 þ x5



þc1ð2x2 � 2x3Þ þ c2ð2x3 � 2x4Þ�dx
¼ � 9

30
c2
1 �

13

105
c2
2 �

126

420
c1c2 þ 1

6
c1 þ 1

10
c2

(E.5)

Using the conditions for the extremization of I, we obtain

vI

vc1
¼ �3

5
c1 � 3

10
c2 þ 1

6
¼ 0 (E.6)

vI

vc2
¼ � 3

10
c1 � 26

105
c2 þ 1

10
¼ 0 (E.7)

The solution of Eqs. (E.6) and (E.7) gives c1 ¼ 1988
10332 ¼ 0:1924 and c2 ¼ 7

41 ¼ 0:1707. Thus, the solution becomes

fðxÞ ¼ 0:1924 xð1� xÞ þ 0:1707 x2ð1� xÞ (E.8)

Note

The exact solution of the problem is given by

fðxÞ ¼ sin x

sin 1
� x (E.9)

5.4 SOLUTION OF EIGENVALUE PROBLEMS USING THE VARIATIONAL
(RAYLEIGHeRITZ) METHOD

An eigenvalue problem, according to the differential equation formulation, can be stated as

Af ¼ lBf in V (5.41)

subject to the boundary conditions

Ejf ¼ lFjf; j ¼ 1; 2;.; p on S (5.42)

where A, B, Ej, and Fj are differential operators, and l is the eigenvalue. Although the methods discussed for the solution of
equilibrium problems can be extended to the case in which the boundary conditions are of the type shown in Eq. (5.42),
only the special case in which Fj ¼ 0 is considered here so that Eq. (5.42) becomes

Ejf ¼ 0; j ¼ 1; 2;.; p on S (5.43)

It is assumed that the solution of the problem defined by Eqs. (5.41) and (5.43) gives real eigenvalues l.
In the variational formulation corresponding to Eq. (5.41), a functional I(f, l) to be made stationary is identified as

Iðf; lÞ ¼ IAðfÞ � IBðfÞ (5.44)

where the subscripts of the functionals IA and IB indicate that they are derived from A and B, respectively. It can be shown
[5.4] that the stationary value of a function lR, called the Rayleigh quotient, defined by

lR ¼ IA
	
fe
IB
	
fe

 (5.45)
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gives the eigenvalue, and the corresponding fe gives the eigenfunction. The trial solution fe ðxÞ is chosen as

fe ðxÞ ¼
Xn
i¼ 1

Ci fiðxÞ (5.46)

where fi(x) satisfy only the essential boundary conditions. In this case, the conditions for the stationariness of lR can be
expressed as

vlR

vCi
¼ v

vCi

8>><>>:
IA

�Pn
i¼ 1

Ci fi

�
IB

�Pn
i¼ 1

Ci fi

�
9>>=>>; ¼ 1

I2B

�
IB
vIA
vCi

� IA
vIB
vCi

�
¼ 0; i ¼ 1; 2;.; n (5.47)

which shows that

vIA
vCi

¼ l
vIB
vCi

; i ¼ 1; 2;.; n (5.48)

Eq. (5.48) yields a set of n simultaneous linear equations. Moreover, if the functions fi(x) also satisfy the natural (free)
boundary conditions, then the RayleigheRitz method gives the same equations as the Galerkin method discussed in
Section 5.8.

5.5 SOLUTION OF PROPAGATION PROBLEMS USING THE VARIATIONAL
(RAYLEIGHeRITZ) METHOD

The differential equation formulation of a general propagation problem leads to the following equations:
Field equation:

Af ¼ e in V for t > t0 (5.49)

Boundary conditions:

Bif ¼ gi; i ¼ 1; 2;.; k on S for t � t0 (5.50)

Initial conditions:

Ejf ¼ hj; j ¼ 1; 2;.; l in V for t ¼ t0 (5.51)

where A, Bi, and Ej are differential operators; e, gi, and hj are functions of the independent variable; and t0 is the initial time.
In variational methods, the functionals associated with specific types of propagation problems have been developed by
several authors, such as Gurtin [5.5].
In the case of propagation problems, the trial solution fe ðx; tÞ is taken as

fe ðx; tÞ ¼
Xn
i¼ 1

CiðtÞfiðxÞ (5.52)

where Ci is now a function of time t. Alternatively, Ci can be taken as a constant and fi as a function of both x and t as

fe ðx; tÞ ¼
Xn
i¼ 1

Ci fiðx; tÞ (5.53)

As in the case of equilibrium and eigenvalue problems, the functions fi have to satisfy the forced boundary conditions.
The solution given by Eq. (5.52) or Eq. (5.53) is substituted into the functional, and the necessary conditions for the
stationariness are applied to derive a set of equations in the unknowns Ci(t) or Ci. These equations can then be solved to
find the functions Ci(t) or the constants Ci.

5.6 EQUIVALENCE OF FINITE ELEMENT AND VARIATIONAL (RAYLEIGHeRITZ)
METHODS

If we compare the basic steps of the finite element method described in Section 1.5 with the RayleigheRitz method
discussed in this section, we find that both are essentially equivalent. In both methods, a set of trial functions are used for
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obtaining an approximate solution. Both methods seek a linear combination of trial functions that extremizes (or makes
stationary) a given functional. The main difference between the methods is that in the finite element method, the assumed
trial functions are not defined over the entire solution domain and they need not satisfy any boundary conditions. Since the
trial functions have to be defined over the entire solution domain, the RayleigheRitz method can be used only for domains
of simple geometric shape. Similar geometric restrictions also exist in the finite element method, except for the elements.
Since elements with simple geometric shape can be assembled to approximate even complex domains, the finite element
method proves to be a more versatile technique than the RayleigheRitz method. The only limitation of the finite element
method is that the trial functions have to satisfy the convergence (continuity and completeness) conditions stated in
Section 3.6.

5.7 DERIVATION OF FINITE ELEMENT EQUATIONS USING THE VARIATIONAL
(RAYLEIGHeRITZ) APPROACH

Let the general problem (either physical or purely mathematical), when formulated according to variational approach,
require the extremization of a functional I over a domain V. Let the functional I be defined as

I ¼
ZZZ

v

F

�
f
!
;
v

vx

	
f
!


;. dV

�
þ
ZZ

s

g

�
f
!
;
v

vx

	
f
!


;.dS

�
(5.54)

where, in general, the field variable or the unknown function f
!

is a vector. The finite element procedure for solving this
problem can be stated by the following steps:

Step 1: The solution domain V is divided into E smaller parts called subdomains that we call finite elements.
Step 2: The field variable f

!
, which we are trying to find, is assumed to vary in each element in a suitable manner as

f
! ¼ ½N�F!ðeÞ

(5.55)

where [N] is a matrix of shape functions ([N] will be a function of the coordinates), and F
!ðeÞ

is a vector representing the
nodal values of the function f

!
associated with the element.

Step 3: To derive the elemental equations, we use the conditions of extremization of the functional I with respect to the
nodal unknowns F

!e associated with the entire domain.
These are

vI

v F
!e

¼

8>>><>>>:
vI=vF1

vI=vF2

«

vI=vFM

9>>>=>>>; ¼ 0
!

(5.56)

where M denotes the total number of nodal unknowns in the problem. If the functional I can be expressed as a sum-
mation of elemental contributions as

I ¼
XE
e¼ 1

IðeÞ (5.57)

where e indicates the element number, then Eq. (5.56) can be expressed as

vI

vFi
¼
XE
e¼ 1

vIðeÞ

vFi
¼ 0; i ¼ 1; 2;.;M (5.58)

In the special case in which I is a quadratic functional of f
!

and its derivatives, we can obtain the element equations as

vIðeÞ

vF
!ðeÞ ¼ �

KðeÞ�F!ðeÞ � P
!ðeÞ

(5.59)

where [K(e)] and P
!ðeÞ

are the element characteristic matrix and characteristic vector (or vector of nodal actions),
respectively.
Step 4: To obtain the overall equations of the system, we rewrite Eq. (5.56) as

vI

v F
!e

¼
�
Ke
�
F
!e � P

!e ¼ 0
!

(5.60)
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where �
Ke� ¼

XE
e¼ 1

�
KðeÞ� (5.61)

P
!e ¼

XE
e¼ 1

P
!ðeÞ

(5.62)

and the summation sign indicates assembly over all finite elements. The assembly procedure is described in Chapter 6.
Step 5: The linear simultaneous equations (5.60) can be solved, after applying the boundary conditions, to find the
nodal unknowns F

!e .Step 6: The function (or field variable) f
!

in each element is found by using Eq. (5.55).
If necessary, the derivatives of f

!
are found by differentiating the function f

!
in a suitable manner.

5.7.1 Convergence Requirements

As stated in Section 3.6, the following conditions have to be satisfied in order to achieve convergence of results as the
subdivision is made finer:

1. As the element size decreases, the functions F and g of Eq. (5.54) must tend to be single valued and well behaved.

Thus, the shape functions [N] and nodal unknowns F
!ðeÞ

chosen must be able to represent any constant value of f
!

or its derivatives present in the functional I in the limit as the element size decreases to zero.

2. In order to make the summation I ¼ PE
e¼ 1

IðeÞ valid, we must ensure that terms such as F and g remain finite at

interelement boundaries. This can be achieved if the highest derivatives of the field variable f
!

that occur in F and g are

finite. Thus, the element shape functions [N] are to be selected such that at element interface, f
!

and its derivatives, of
one order less than that occurring in F and g, are continuous.

The step-by-step procedure outlined previously can be used to solve any problem provided that the variational principle
valid over the domain is known to us. This is illustrated by the following example.

EXAMPLE 5.3
Solve the differential equation

d2
f

dx2
þ fþ x ¼ 0; 0 � x � 1 (E.1)

subject to the boundary conditions F(0) ¼ F(1) ¼ 0 using the variational finite element method.

Approach: Identify the functional I corresponding to the given differential equation. Divide the domain of the equation using

line elements with linear interpolation model and apply the various steps of the finite element method to find the solution.

Solution

The functional I corresponding to Eq. (E.1) is given by2

I ¼ 1

2

Z 1

0

"
�
�
df

dx

�2

þ f2 þ 2fx

#
dx (E.2)

Step 1: We discretize the domain (x ¼ 0 to 1) using three nodes and two elements of equal length as shown in Fig. 5.3B.

Step 2: We assume a linear interpolation model within element e as

fðxÞ ¼ ½NðxÞ�F!ðeÞ ¼ NiðxÞ$FðeÞ
i þNjðxÞ$FðeÞ

j (E.3)

where, from Eq. (3.26),

NiðxÞ ¼ ðxj � xÞ�lðeÞ (E.4)

Continued

2. The EulereLagrange equation corresponding to Eq. (E.2) can be verified to be the same as Eq. (E.1).
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EXAMPLE 5.3 dcont’d

NjðxÞ ¼ ðx � xiÞ
�
lðeÞ (E.5)

F
!ðeÞ ¼

8<:F
ðeÞ
i

F
ðeÞ
j

9=; is the vector of nodal degrees of freedom; l (e) is the length; F
ðeÞ
i and F

ðeÞ
j are the values of f(x) at nodes

i(x ¼ xi) and j(x ¼ xj), respectively; and i and j are the first and the second (global) nodes of the element e.

Step 3: We express the functional I as a sum of E elemental quantities I(e) as

I ¼
XE
e¼ 1

IðeÞ (E.6)

where

IðeÞ ¼ 1

2

Z xj

xi

"
�
�
df

dx

�2

þ f2 þ 2xf

#
$ dx (E.7)

By substituting Eq. (E.3) into Eq. (E.7), we obtain

IðeÞ ¼ 1

2

Z xj

xi

�
� F
!ðeÞT

�
dN

dx

�T�
dN

dx

�
F
!ðeÞ þ F

!ðeÞT ½N�T ½N�F!ðeÞ þ 2x½N�F!ðeÞ
�
$ dx (E.8)

For the stationariness of I, we use the necessary conditions

vI

vFi

¼
XE
e¼ 1

vIðeÞ

vFi

¼ 0; i ¼ 1; 2;.;M (E.9)

where E is the number of elements, and M is the number of nodal degrees of freedom. Eq. (E.9) can also be expressed as

XE
e¼ 1

vIðeÞ

vF
!ðeÞ ¼

XE
e¼ 1

Z xj

xi

�
�
�
dN

dx

�T�
dN

dx

�
F
!ðeÞ þ ½N�T ½N�F!ðeÞ þ x½N�T

�
dx ¼ 0

!

or

0

21 3

1

x
Solution region

Two element idealization

Three element idealization

Φ1 Φ2 Φ3
xi for e = 1 xj

(1)= 0.5 (2)= 0.5

xi for e = 2 xj

Φ
(1)

=
→

Φ
(1)

=
→

Φ
(2)

=
→

Φ
(3)

=
→

Φ (1)
i

Φ (1)
j

=
Φ1

Φ2

Φ
(2)

=
→ Φ (2)

i

Φ (2)
j

=
Φ2

Φ3

21 3 4

Φ1 Φ2xi for e = 1 xj Φ3 Φ4xi for e = 2 xj xi for e = 3 xj

Φ (1)
i

Φ (1)
j

=
Φ1

Φ2

Φ (2)
i

Φ (2)
j

=
Φ2

Φ3

Φ (3)
i

Φ (3)
j

=
Φ3

Φ4

(1)= 1
3

(2)= 1
3

(3)= 1
3

(A)

(B)

(C)

FIGURE 5.3 Discretization for Example 5.3.
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EXAMPLE 5.3 dcont’d

XE
e¼ 1

�
K ðeÞ�F!ðeÞ ¼

XE
e¼ 1

P
!ðeÞ

(E.10)

where

�
K ðeÞ� ¼ element characteristic matrix ¼

Z xj

xi

��
dN

dx

�T�
dN

dx

�
� ½N�T ½N�

�
dx (E.11)

and

P
!ðeÞ ¼ element characteristic vector ¼

Z xj

xi

x½N�Tdx (E.12)

By substituting ½NðxÞ� ¼ ½NiðxÞ NjðxÞ�h
h
xj�x

lðeÞ
x�xi
lðeÞ

i
into Eqs. (E.11) and (E.12), we obtain

h
K ðeÞ

i
¼
Z xj

xi

2666666664

8>>>>><>>>>>:
� 1

lðeÞ

1

lðeÞ

9>>>>>=>>>>>;
�
� 1

lðeÞ
1

lðeÞ

�
�

8>>>><>>>>:
xj � x

lðeÞ

x � xi

lðeÞ

9>>>>=>>>>;
�
xj � x

lðeÞ
x � xi

lðeÞ

�
3777775 dx

¼ 1

lðeÞ

264 1 �1

�1 1

375� lðeÞ

6

264 2 1

1 2

375

(E.13)

and

p!ðeÞ ¼
Z xj

xi

x

8>><>>:
xj � x

lðeÞ

x � xi

lðeÞ

9>>=>>; dx ¼ 1

6

8><>:
�
x2
j þ xixj � 2x2

i

�
�
2x2

j � xixj � x2
i

�
9>=>; (E.14)

We shall compute the results for the cases of two and three elements.

For E[ 2

Assuming the elements to be of equal length, we have l(1) ¼ l(2) ¼ 0.5, xi ¼ 0.0 and xj ¼ 0.5 for e ¼ 1, and xi ¼ 0.5 and xj ¼ 1.0

for e ¼ 2. Eqs. (E.13) and (E.14) yield

h
K ð1Þ

i
¼
h
K ð2Þ

i
¼ 1

0:5

24 1 �1

�1 1

35� 0:5

6

24 2 1

1 2

35 ¼ 1

12

24 22 �25

�25 22

35

P
!ð1Þ ¼ 1

24

8<:
1

2

9=;
P
!ð2Þ ¼ 1

24

8<:
4

5

9=;
For E[ 3

Assuming the elements to be of equal length, we have l(1) ¼ l(2) ¼ l(3) ¼ 1/3; xi ¼ 0.0 and xj ¼ 1/3 for e ¼ 1; xi ¼ 1/3 and xj ¼ 2/

3 for e ¼ 2; and xi ¼ 2/3 and xj ¼ 1 for e ¼ 3. Eqs. (E.13) and (E.14) give

Continued
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EXAMPLE 5.3 dcont’d

�
K ð1Þ� ¼ �

K ð2Þ� ¼ �
K ð3Þ� ¼ 3

24 1 �1

�1 1

35� 1

18

24 2 1

1 2

35 ¼ 1

18

24 52 �55

�55 52

35

P
!ð1Þ ¼ 1

54

8<:
1

2

9=;
P
!ð2Þ ¼ 1

54

8<:
4

5

9=;
P
!ð3Þ ¼ 1

54

8<:
7

8

9=;
Step 4: We assemble the element characteristic matrices and vectors and obtain the overall equations as�

Ke� F!e ¼ P
!e (E.15)

where

�
Ke � ¼ 1

12

2666664
22 �25 0

�25 ð22þ 22Þ �25

0 �25 22

3777775 ¼ 1

12

2666664
22 �25 0

�25 44 �25

0 �25 22

3777775

Fe! ¼

8><>:
F1

F2

F3

9>=>;
and

P
!e ¼ 1

24

8><>:
1

2þ 4

5

9>=>; ¼ 1

24

8><>:
1

6

5

9>=>;for E ¼ 2

and

h
Ke
i
¼ 1

18

26666664

52 �55 0 0

�55 ð52þ 52Þ �55 0

0 �55 ð52þ 52Þ �55

0 0 �55 52

37777775 ¼ 1

18

26666664

52 �55 0 0

�55 104 �55 0

0 �55 104 �55

0 0 �55 52

37777775

Fe! ¼

8>>><>>>:
F1

F2

F3

F4

9>>>=>>>;
and

P
!e ¼ 1

54

8>>><>>>:
1

2þ 4

5þ 7

8

9>>>=>>>; ¼ 1

54

8>>><>>>:
1

6

12

8

9>>>=>>>;for E ¼ 3

Step 5: We can solve the system equations (E.15) after incorporating the boundary conditions.

For E ¼ 2, the boundary conditions are F1 ¼ F3 ¼ 0.
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EXAMPLE 5.3 dcont’d

The incorporation of these boundary conditions in Eq. (E.15) leads to (after deleting the rows and columns corresponding to F1

and F3 in
h
Ke
i
, F
!e , and P

!e )
1

12
ð44Þ F2 ¼ 1

24
ð6Þ

or F2 ¼ 3

44
¼ 0:06817

(E.16)

For E ¼ 3, the boundary conditions are F1 ¼ F4 ¼ 0.

After incorporating these boundary conditions, Eq. (E.15) reduces to

1

18

�
104 �55

�55 104

��
F2

F3

�
¼ 1

54

�
6

12

�
the solution of which is given by �

F2

F3

�
¼
�
0:05493

0:06751

�
(E.17)

There is no need for Step 6 in this example.

The exact solution of this problem is

fðxÞ ¼
�
sin x

sin 1
� x

�
which gives

fð0:5Þ ¼ 0:0697 (E.18)

and

f

�
1

3

�
¼ 0:0536; f

�
2

3

�
¼ 0:0649 (E.19)

Thus, the accuracy of the two- and three-element discretizations can be seen by comparing Eqs. (E.16) and (E.18), and

Eqs. (E.17) and (E.19), respectively.

5.8 WEIGHTED RESIDUAL APPROACH

The weighted residual method is a technique that can be used to obtain approximate solutions to linear and nonlinear
differential equations. If we use this method the finite element equations can be derived directly from the governing
differential equations of the problem without any need of knowing the functional. We first consider the solution of
equilibrium, eigenvalue, and propagation problems using the weighted residual method and then derive the finite element
equations using the weighted residual approach.

5.8.1 Solution of Equilibrium Problems Using the Weighted Residual Method

A general equilibrium problem has been stated in Section 5.3 as

Af ¼ b in V (5.63)

Bjf ¼ gj ; j ¼ 1; 2;.; p on S (5.64)

Eq. (5.63) can be expressed in a more general form as

FðfÞ ¼ GðfÞ in V (5.65)
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where F and G are functions of the field variable f. In fact, Eqs. (5.41), (5.42), (5.49e5.51), (5.63), and (5.64) can be seen
to be special cases of Eq. (5.65). In the weighted residual method, the field variable is approximated as

fe ðxÞ ¼
Xn
i¼ 1

Ci fiðxÞ (5.66)

where Ci are constants and fi(x) are linearly independent functions chosen such that all boundary conditions are satisfied. A
quantity R, known as the residual or error, is defined as

R ¼ G
	
fe

� F

	
fe



(5.67)

which is required to satisfy certain conditions that make this error R a minimum or maintain it small in some specified
sense. More generally, a weighted function of the residual, w f(R), where w is a weight or weighting function and f(R)
is a function of R, is taken to satisfy the smallness criterion. The function f(R) is chosen so that f(R) ¼ 0 when R ¼ 0dthat
is, when fe ðxÞ equals the exact solution f(x). As stated, the trial function fe is chosen so as to satisfy the boundary con-
ditions but not the governing equation in the domain V, and the smallness criterion is taken asZ

V

w f ðRÞ$dV ¼ 0 (5.68)

where the integration is taken over the domain of the problem. In the following subsections, four different methods, based
on a weighted residual criterion, are given.

5.8.2 Collocation (or Point Collocation) Method

In this method, the residual R is set equal to zero at n points in the domain V, thereby implying that the parameters Ci are to
be selected such that the trial function fe ðxÞ represents f(x) at these n points exactly. This procedure yields n simultaneous
algebraic equations in the unknowns Ci (i ¼ 1, 2, ..., n). The collocation points xj at which fe ðxjÞ ¼ fðxjÞ, j ¼ 1, 2, ..., n are
usually chosen to cover the domain V more or less uniformly in some simple pattern. This approach is equivalent to taking,
in Eq. (5.68),

f ðRÞ ¼ R and w ¼ dðxj � xÞ (5.69)

where d indicates the Dirac delta function, xj denotes the position of the j-th point, and x gives the position of a general
point in the domain V. Thus, w ¼ 1 at point x ¼ xj and zero elsewhere in the domain V(j ¼ 1, 2, ..., n).

EXAMPLE 5.4
Find the solution of the differential equation

d2
f

dx2
þ fþ x ¼ 0; 0 � x � 1

subject to the boundary conditions f(0) ¼ f (1) ¼ 0 using the point collocation method. Use x ¼ 1
4 and x ¼ 1

2 as the collocation

points.

Approach: Assume an approximate solution satisfying the boundary conditions with two unknown constants. Set the residue

equal to zero at the collocation points to evaluate the constants.

Solution

The approximate solution satisfying the boundary conditions is taken as

fðxÞ ¼ c1xð1� xÞ þ c2x
2ð1� xÞ (E.1)

where c1 and c2 are unknown constants. Using this solution, the residue can be expressed as

R ¼ d2
f

dx2
þ fþ x ¼ c1

	� 2þ x � x2

þ c2

	
2� 6x þ x2 � x3


þ x (E.2)

The residue is set equal to zero at each of the collocation points:
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EXAMPLE 5.4 dcont’d

R

�
x ¼ 1

4

�
¼ c1

�
� 2þ 1

4
� 1

16

�
þ c2

�
2� 3

2
þ 1

16
� 1

64

�
þ 1

4

¼ �29

16
c1 þ 35

64
c2 þ 1

4
¼ 0

(E.3)

R

�
x ¼ 1

2

�
¼ c1

�
� 2þ 1

2
� 1

4

�
þ c2

�
2� 3þ 1

4
� 1

8

�
þ 1

2

¼ �7

4
c1 þ 7

8
c2 þ 1

2
¼ 0

(E.4)

Eqs. (E.3) and (E.4) can be rewritten as

�116c1 þ 35c2 ¼ �16 (E.5)

�14c1 � 7c2 ¼ �4 (E.6)

The solution of Eqs. (E.5) and (E.6) yields c1 ¼ 18
93 ¼ 0:1935 and c2 ¼ 40

217 ¼ 0:1843.

Thus, the solution given by the point collocation method is

fðxÞ ¼ 0:1935xð1� xÞ þ 0:1843x2ð1� xÞ (E.7)

Note

The exact solution of the problem is given by

fðxÞ ¼ sin x

sin 1
� x (E.8)

5.8.3 Subdomain Collocation Method

Here, the domain V is first subdivided into n subdomains Vi, i ¼ 1, 2, ..., n, and the integral of the residual over each
subdomain is then required to be zero: Z

Vi

R dVi ¼ 0; i ¼ 1; 2;.; n (5.70)

This yields n simultaneous algebraic equations for the n unknowns Ci, i ¼ 1, 2, ..., n. It can be seen that the method is
equivalent to choosing

f ðRÞ ¼ R and w ¼
�
1 if x is in Vi

0 if x is not in Vi; i ¼ 1; 2;.; n
(5.71)

EXAMPLE 5.5
Find the solution of the differential equation

d2
f

dx2
þ fþ x ¼ 0; 0 � x � 1

subject to the boundary conditions f(0) ¼ f (1) ¼ 0 using the subdomain collocation method. Use the subdomains as V1 ¼ (0, ¼)

and V2 ¼ (¼, ½).

Approach: Assume an approximate solution satisfying the boundary conditions with unknown constants.

Set the integral of the residue in each subdomain equal to zero to evaluate the constants.

Solution

The approximate solution satisfying the boundary conditions is taken as

Continued
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EXAMPLE 5.5 dcont’d

fðxÞ ¼ c1xð1� xÞ þ c2x
2ð1� xÞ (E.1)

where c1 and c2 are unknown constants. Using this solution, the residue can be expressed as

R ¼ d2
f

dx2
þ fþ x ¼ c1

	� 2þ x � x2

þ c2

	
2� 6x þ x2 � x3


þ x (E.2)

The integrals of the residue, R(x), over the subdomains can be expressed asZ 1
4

x¼0

RðxÞ dx ¼
����c1�� 2x þ x2

2
� x3

3

�
þ c2

�
2x � 3x2 þ x3

3
� x4

4

�
þ x2

2

����14
0

¼ c1

�
� 1

2
þ 1

32
� 1

192

�
þ c2

�
1

2
� 3

16
þ 1

192
� 1

1024

�
þ 1

32
¼ � 91

192
c1 þ 973

3072
c2 þ 1

32
¼ 0

(E.3)

Z 1
2

x¼1
4

RðxÞdx ¼
����c1�� 2x þ x2

2
� x3

3

�
þ c2

�
2x � 3x2 þ x3

3
� x4

4

�
þ x2

2

����12
1
4

¼ c1

�
� 1þ 1

8
� 1

24

�
þ c2

�
1� 3

4
þ 1

24
� 1

64

�
þ 1

8
�
�
c1

�
� 1

2
þ 1

32
� 1

192

�
þ c2

�
1

2
� 1

16
þ 1

192
� 1

1024

�
þ 1

32

�

¼ � 85

192
c1 � 1661

3072
c2 þ 3

32
¼ 0

(E.4)

Eqs. (E.3) and (E.4) can be rewritten as

�1456c1 þ 973c2 ¼ �96 (E.5)

�1360c1 � 1661c2 ¼ �288 (E.6)

The solution of Eqs. (E.5) and (E.6) yields c1 ¼ 0.1175 and c2 ¼ 0.0772.

Thus, the solution given by of the subdomain collocation method is

fðxÞ ¼ 0:1175xð1� xÞ þ 0:0772x2ð1� xÞ (E.7)

Note

The exact solution of the problem is given by

fðxÞ ¼ sin x

sin 1
� x (E.8)

5.8.4 Galerkin Method

Here the weights wi are chosen to be the known functions fi (x) of the trial solution and the following n integrals of the
weighted residual are set equal to zero: Z

V

fiRdV ¼ 0; i ¼ 1; 2;.; n (5.72)

Eq. (5.72) represent n simultaneous equations in the n unknowns, C1, C2, ., Cn. This method generally gives the best
approximate solution.

EXAMPLE 5.6
Find the approximate deflection of a simply supported beam under a uniformly distributed load p (Fig. 5.2) using the Galerkin

method.

Approach: Assume a two-term trial (approximate) solution with each term involving an unknown constant and a trial function

satisfying the boundary conditions. Evaluate the constants by setting the integral of product of each of the trial functions and the

residue equal to zero.
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EXAMPLE 5.6 dcont’d

Solution

The differential equation governing the deflection of the beam (w) is given by (see Example 5.1)

EI
d4w

dx4
� p ¼ 0; 0 � x � l (E.1)

The boundary conditions to be satisfied are

wðx ¼ 0Þ ¼ wðx ¼ lÞ ¼ 0 ðdeflection zero at endsÞ

EI
d2w

dx2 ðx ¼ 0Þ ¼ EI
d2w

dx2 ðx ¼ lÞ ¼ 0 ðbending moment zero at endsÞ

9>=>; (E.2)

where E is Young’s modulus, and I is the area moment of inertia of the beam.

We shall assume the trial solution as

we ðxÞ ¼ C1 sin
�px

l

�
þ C2 sin

�
3px

l

�
hC1f1ðxÞ þ C2f2ðxÞ (E.3)

where f1(x) and f2(x) satisfy the boundary conditions, Eq. (E.2), and C1 and C2 are the unknown constants. By substituting the trial

solution of Eq. (E.3) into Eq. (E.1), we obtain the residual, R, as

R ¼ EIC1

�p
l

�4
sin
�px

l

�
þ EIC2

�
3p

l

�4

sin

�
3px

l

�
� p (E.4)

By applying the Galerkin procedure, we obtainZ l

0

f1ðxÞRdx ¼ EIC1

�p
l

�4 l
2
� p

2l

p
¼ 0

Z l

0

f2ðxÞRdx ¼ EIC2

�
3p

l

�4
l

2
� p

2l

3p
¼ 0

9>>>>=>>>>; (E.5)

The solution of Eq. (E.5) is

C1 ¼ 4pl4

p5EI
and C2 ¼ 4pl4

243p5EI
(E.6)

which is the same as the one obtained in Example 5.1.

EXAMPLE 5.7
Find the solution of the differential equation

d2
f

dx2
þ fþ x ¼ 0; 0 � x � 1 (E.1)

subject to the boundary conditions f(0) ¼ f(1) ¼ 0 using the Galerkin method.

Approach: Assume a two-term trial (approximate) solution with each term involving an unknown constant and a trial function

satisfying the boundary conditions. Evaluate the constants by setting the integral of product of each of the trial functions and the

residue equal to zero.

Solution

We assume a two-term trial or approximate solution as

fðxÞ ¼ c1f1ðxÞ þ c2f2ðxÞhc1xð1� xÞ þ c2x
2ð1� xÞ (E.2)

where c1 and c2 are unknown constants and each of the trial functions f1(x) and f2(x) is chosen to satisfy the specified boundary

conditions, fi(x ¼ 0) ¼ fi(x ¼ 1) ¼ 0, i ¼ 1, 2. By substituting the trial solution, Eq. (E.2) in Eq. (E.1), we obtain the residue R(x) as

R ¼ d2
f

dx2
þ fþ x ¼ c1

	� 2þ x � x2

þ c2

	
2� 6x þ x2 � x3


þ x (E.3)

Continued
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EXAMPLE 5.7 dcont’d

According to the Galerkin procedure, Z 1

0

f1ðxÞRðxÞ dx ¼
Z 1

0

	
x � x2



RðxÞ dx ¼ 0 (E.4)Z 1

0

f2ðxÞRðxÞ dx ¼
Z 1

0

	
x2 � x3



RðxÞ dx ¼ 0 (E.5)

Using the relations Z 1

0

RðxÞdx ¼ 1

2
� 11

6
c1 � 11

12
c2 (E.6)Z 1

0

xRðxÞ dx ¼ 1

3
� 11

12
c1 � 19

20
c2 (E.7)Z 1

0

x2RðxÞdx ¼ 1

4
� 37

60
c1 � 4

5
c2 (E.8)Z 1

0

x3RðxÞ dx ¼ 1

5
� 7

15
c1 � 71

105
c2 (E.9)

in Eqs. (E.4) and (E.5), we obtain

�0:3c1 � 0:15c2 ¼ �0:0833 (E.10)

�0:15c1 � 0:1238c2 ¼ �0:05 (E.11)

The solution of Eqs. (E.10) and (E.11) is c1 ¼ 0.1924 and c2 ¼ 0.1708. Thus, the approximate solution given by the Galerkin

method is

f
!ðxÞ ¼ 0:1924 xð1� xÞ þ 0:1708 x2ð1� xÞ (E.12)

Note

The exact solution of the problem is given by

fðxÞ ¼ sin x

sin 1
� x (E.13)

5.8.5 Least Squares Method

In this method, the integral of the weighted square of the residual over the domain is required to be a minimum; that is,Z
V

wR2 dV ¼ minimum (5.73)

By using Eqs. (5.66) and (5.63), Eq. (5.73) can be written asZ
V

w

"
b� A

 Xn
i¼ 1

CifiðxÞ
!#2

dV ¼ minimum (5.74)

where the unknowns in the integral are only Ci. The necessary conditions for minimizing the integral can be expressed as

v

vCi

"Z
V

w

(
b� A

 Xn
i¼ 1

CifiðxÞ
!)2

dV

#
¼ 0; i ¼ 1; 2;.; n

or Z
V

wAðfiðxÞÞ
"
b� A

 Xn
i¼ 1

CifiðxÞ
!#

dV ¼ 0; i ¼ 1; 2;.; n (5.75)
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The weighting function w is usually taken as unity in this method. Eq. (5.75) leads to n simultaneous linear algebraic
equations in terms of the unknowns C1, C2, ..., Cn.

EXAMPLE 5.8
Find the approximate deflection of a simply supported beam under a uniformly distributed load p (Fig. 5.2) using the least squares

method.

Approach: Assume an approximate solution satisfying the boundary conditions with two unknown constants. Use the con-

ditions to minimize the integral of the square of the residue over the length of the beam to evaluate the constants.

Solution

The governing differential equation and the boundary conditions are the same as those given in Eqs. (E.1) and (E.2), respectively, of

Example 5.6. By assuming the trial solution as

we ðxÞ ¼ C1f1ðxÞ þ C2f2ðxÞ (E.1)

where

f1ðxÞ ¼ sin
�px

l

�
and f2ðxÞ ¼ sin

�
3px

l

�
(E.2)

the residual, R, becomes

R ¼ EI
d4w

dx4
� p ¼ EIC1

�p
l

�4
sin
�px

l

�
þ EIC2

�
3p

l

�4

sin

�
3px

l

�
� p (E.3)

The application of the least squares method gives the following equations:

v

vC1

0@Z l

0

R2dx

1A ¼ v

vC1

8<:
Z l

0

�
ðEIÞ2C2

1

�p
l

�8
sin2

�px
l

�
þ ðEIÞ2C2

2

�
3p

l

�8

sin2

�
3px

l

�
þ p2 þ 2ðEIÞ2C1C2

�p
l

�8
sin
�px

l

�
,sin

�
3px

l

�

� 2EIpC1

�p
l

�4
sin
�px

l

�
� 2EIpC2

�
3p

l

�4

sin

�
3px

l

��
dx

)
¼ 0

or

ðEIÞ2C1

�p
l

�8
l � 4EIp

l

p

�p
l

�4
¼ 0

(E.4)

v

vC2

0@Z l

0

R2$dx

1A ¼ v

vC2

8<:
Z l

0

�
ðEIÞ2C2

1

�p
l

�8
sin2

�px
l

�
þ ðEIÞ2C2

�
3p

l

�8

$sin2

�
3px

l

�
þ p2 þ 2ðEIÞ2C1C2

�p
l

�8
sin
�px

l

�
sin

�
3px

l

�

� 2EIp$C1

�p
l

�4
sin
�px

l

�
� 2EIpC2

�
3p

l

�4

sin

�
3px

l

��
dx

)
¼ 0

or

ðEIÞ2C2

�
3p

l

�8

l � 4EIp
l

3p

�
3p

l

�4

¼ 0 (E.5)

The solution of Eqs. (E.4) to (E.5) leads to

C1 ¼ 4pl4

p5EI
and C2 ¼ 4pl4

243p5EI
(E.6)

which can be seen to be identical to the solutions obtained in Examples 5.1 and 5.6 3.

3. Although the solutions given by the RayleigheRitz, Galerkin, and least squares methods happen to be the same for the example considered, in general they
lead to different solutions.
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EXAMPLE 5.9
Find the solution of the differential equation

d2
f

dx2
þ fþ x ¼ 0; 0 � x � 1

subject to the boundary conditions f(0) ¼ f (1) ¼ 0 using the least squares method.

Approach: Assume an approximate solution satisfying the boundary conditions with two unknown constants. Use the con-

ditions to minimize the integral of the square of the residue over the domain of the problem to evaluate the constants.

Solution

The approximate solution satisfying the boundary conditions is taken as

fðxÞ ¼ c1xð1� xÞ þ c2x
2ð1� xÞ (E.1)

where c1 and c2 are unknown constants. Using this solution, the residue can be expressed as

R ¼ d2
f

dx2
þ fþ x ¼ c1

	� 2þ x � x2

þ c2

	
2� 6x þ x2 � x3


þ x (E.2)

The integrals of the square of the residue, R(x), over the domain of the problem is given by

I ¼
Z 1

x¼0

wðxÞR2ðxÞdx (E.3)

By assuming the weighting function to be unity, w(x) ¼ 1, we obtain

I ¼
Z 1

x¼0

R2ðxÞdx (E.4)

For the minimum value of the integral I, we get

vI

vc1
¼
Z 1

0

2R
vR

vc1
dx ¼ 0 (E.5)

vI

vc2
¼
Z 1

0

2R
vR

vc2
dx ¼ 0 (E.6)

Eqs. (E.5) and (E.6) can be evaluated asZ 1

0

R
vR

vc1
dx ¼

Z 1

0

�
c1
	� 2þ x � x2


þ c2
	
2� 6x þ x2 � x3


þ x
�	� 2þ x � x2



dx

¼ 101

30
c1 þ 101

60
c2 � 11

12
¼ 0

(E.7)

Z 1

0

R
vR

vc2
dx ¼

Z 1

0

�
c1
	� 2þ x � x2


þ c2
	
2� 6x þ x2 � x3


þ x
�	
2� 6x þ x2 � x3



dx

¼ 707

420
c1 þ 1572

420
c2 � 399

420
¼ 0

(E.8)

The solution of Eqs. (E.7) and (E.8) gives c1 ¼ 0.1875 and c2 ¼ 0.1695. Thus, the solution given by the least squares method is

fðxÞ ¼ 0:1875xð1� xÞ þ 0:1695x2ð1� xÞ (E.9)

Note

The exact solution of the problem is given by

fðxÞ ¼ sin x

sin 1
� x (E.10)
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5.9 SOLUTION OF EIGENVALUE PROBLEMS USING WEIGHTED RESIDUAL METHOD

An eigenvalue problem can be stated as

Af ¼ lBf in V (5.76)

Ejf ¼ 0; j ¼ 1; 2;.; p on S (5.77)

where A, B, and Ej are differential operators. By using Eqs. (5.66) and (5.76), the residual R can be expressed as4

R ¼ lBfe�Afe ¼
Xn
i¼ 1

CiðlBfi � AfiÞ (5.78)

If the trial solution of Eq. (5.66) contains any true eigenfunctions, then there exists sets of Ci and values of l for which
the residual R vanishes identically over the domain V. If fe ðxÞ does not contain any eigenfunctions, then only approximate
solutions will be obtained.

All four residual methods discussed in the case of equilibrium problems are also applicable to eigenvalue problems. For
example, if we use the Galerkin method, we set the integral of the weighted residual equal to zero asZ

V

fiðxÞ$R dV ¼ 0; i ¼ 1; 2;.; n (5.79)

Eq. (5.79) gives the following algebraic (matrix) eigenvalue problem:

½A�C! ¼ l½B�C! (5.80)

where [A] and [B] denote square symmetric matrices of size n � n given by

½A� ¼ ½Aij� ¼
�Z

V

fiAfjdV

�
(5.81)

½B� ¼ ½Bij� ¼
�Z

V

fiBfjdV

�
(5.82)

and C
!

denotes the vector of unknowns Ci, i ¼ 1, 2, ., n. Now the solution of Eq. (5.80) can be obtained by any of the
methods discussed in Section 7.3.

5.10 SOLUTION OF PROPAGATION PROBLEMS USING WEIGHTED
RESIDUAL METHOD

A propagation problem has been stated earlier as

Af ¼ e in V for t > t0 (5.83)

Bif ¼ gi; i ¼ 1; 2;.; k in S for t � t0 (5.84)

Ejf ¼ hj; j ¼ 1; 2;.; l in V for t ¼ t0 (5.85)

The trial solution of the problem is taken as

fe ðx; tÞ ¼
Xn
i¼ 1

CiðtÞfiðxÞ (5.86)

where fi(x) are chosen to satisfy the boundary conditions, Eq. (5.84). Since Eqs. (5.83) and (5.85) are not satisfied by
fe ðx; tÞ, there will be two residuals, one corresponding to each of these equations. For simplicity, we will assume that
Eq. (5.85) gives the initial conditions explicitly as

fðx; tÞ ¼ f0 at t ¼ 0 (5.87)

4. The trial functions fi(x) are assumed to satisfy the boundary conditions of Eq. (5.77).
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Thus, the residual corresponding to the initial conditions (R1) can be formulated as

R1 ¼ f0 � fe ðx; t ¼ 0Þ for all x in V (5.88)

where

fe ðx; t ¼ 0Þ ¼
Xn
i¼ 1

Cið0ÞfiðxÞ (5.89)

Similarly, the residual corresponding to the field equation (R2) is defined as

R2 ¼ e� Afe ðx; tÞ for all x in V (5.90)

Now any of the four residual methods discussed in the case of equilibrium problems can be applied to find the unknown
functions Ci(t). For example, if we apply the Galerkin procedure to each of the residuals R1 and R2, we obtainZ

V

fiðxÞR1$ dV ¼ 0; i ¼ 1; 2;.; n (5.91)

Z
V

fiðxÞR2$dV ¼ 0; i ¼ 1; 2;.; n (5.92)

Eqs. (5.91) and (5.92) lead to 2n equations in the 2n unknowns Ci(0) and Ci(t), i ¼ 1, 2, ., n, which can be solved either
analytically or numerically.

5.11 DERIVATION OF FINITE ELEMENT EQUATIONS USING WEIGHTED RESIDUAL
(GALERKIN) APPROACH

Let the governing differential equation of the (equilibrium) problem be given by

AðfÞ ¼ b in V (5.93)

and the boundary conditions by

BjðfÞ ¼ gj; j ¼ 1; 2;.; p on S (5.94)

The Galerkin method requires that Z
V

"
A

 
fe
!

� b

#
fidV ¼ 0; i ¼ 1; 2;.; n (5.95)

where the trial functions fi in the approximate solution

fe ¼
Xn
i¼ 1

Ci fi (5.96)

are assumed to satisfy the boundary conditions, Eq. (5.94). Note that fi are defined over the entire domain of the problem.
Since the field equation (5.93) holds for every point in the domain V, it also holds for any set of points lying in an

arbitrary subdomain or finite element in V. This permits us to consider any one element and define a local approximation
similar to Eq. (5.96). Thus, we immediately notice that the familiar interpolation model for the field variable of the finite
element will be applicable here also. If Eq. (5.96) is interpreted to be valid for a typical element e, the unknowns Ci can be
recognized as the nodal unknowns FðeÞ

i (nodal values of the field variable or its derivatives) and the functions fi as the shape
functions NðeÞ

i . Eq. (5.95) can be made to be valid for element e asZ
V ðeÞ

�
A
	
fðeÞ
� bðeÞ

�
NðeÞ

i $ dV ðeÞ ¼ 0; i ¼ 1; 2;.; n (5.97)

where the interpolation model is taken in the standard form as
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fðeÞ ¼ �
NðeÞ�F!ðeÞ ¼

X
i

NðeÞ
i F

ðeÞ
i (5.98)

Eq. (5.97) gives the required finite element equations for a typical element. These element equations have to be
assembled to obtain the system or overall equations as outlined in Section 6.2.

Notes

The shape functions of individual elements N
ðeÞ
i need not satisfy any boundary conditions, but they have to satisfy the interelement

continuity conditions necessary for the assembly of the element equations. As stated earlier, to avoid any spurious contributions in

the assembly process, we have to ensure that the (assumed) field variable f and its derivatives up to one order less than the highest

order derivative appearing under the integral in Eq. (5.97) are continuous along element boundaries. Since the differential operator

A in the integrand usually contains higher order derivatives than the ones that appear in the integrand of the functional I in the

variational formulation, we notice that the Galerkin method places more restrictions on the shape functions The boundary

conditions of the problem have to be incorporated after assembling the element equations as outlined in Chapter 6.

EXAMPLE 5.10
Solve the differential equation

d2
f

dx2
þ fþ x ¼ 0; 0 � x � 1

subject to the boundary conditions f(0) ¼ f(1) ¼ 0 using the Galerkin finite element method.

Approach: Divide the domain of the equation using a suitable number of finite elements. Using a linear interpolation model,

derive the system equations by setting the integral of product of each of the shape functions and the residue equal to zero over the

domain of the equation.

Solution

In this case the residual is given by

R ¼
�
d2
f

dx2
þ fþ x

�
(E.1)

Eq. (5.95) can be expressed as Z 1

0

�
d2
f

dx2
þ fþ x

�
Nk ðxÞdx ¼ 0; k ¼ i; j

or

XE
e¼ 1

Z xj

xi

�
NðeÞ�T�d2

fðeÞ

dx2
þ fðeÞ þ x

�
dx ¼ 0 (E.2)

where E is the number of elements, and xi and xj are the values of x at the first and the second nodes of element e, respectively.

We shall assume a linear interpolation model for f(e) so that

fðeÞðxÞ ¼ NiðxÞFðeÞ
i þNjðxÞFðeÞ

j (E.3)

and hence �
NðeÞ� ¼ ½NiðxÞ NjðxÞ� (E.4)

where

NiðxÞ ¼ xj � x

lðeÞ
and NjðxÞ ¼ x � xi

lðeÞ
(E.5)

The term
R xj
xi

�
NðeÞ�T 	d2fðeÞ�dx2



dx can be written, after substitution of Eqs. (E.3) and (E.4) and integration by parts, asZ xj

xi

�
NðeÞ�Td2

fðeÞ

dx2
dx ¼ �

NðeÞ�TdfðeÞ

dx

����xj
xi

�
Z xj

xi

d
�
NðeÞ�T
dx

dfðeÞ

dx
dx (E.6)

Substitution of Eq. (E.6) into Eq. (E.2) yields, for element e,

Continued
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EXAMPLE 5.10 dcont’d

�
NðeÞ�T dfðeÞ

dx

����xj
xi

�
Z xj

xi

(
d
�
NðeÞ�T
dx

dfðeÞ

dx
� �NðeÞ�TfðeÞ � �NðeÞ�T x)dx ¼ 0 (E.7)

as the governing equation.

The first two terms in the integral of Eq. (E.7) yield the element characteristic matrix [K(e)] and the last term in the integral

produces the element characteristic vector P
!ðeÞ

in the equation�
K ðeÞ�F!ðeÞ ¼ P

!ðeÞ
(E.8)

The left-most term in Eq. (E.7) contributes to the assembled vector P
!

provided the derivative (df/dx) is specified at either end of the

element e. This term is neglected if nothing is known about the value of (df/dx) at the nodal points. The evaluation of the integrals

in Eq. (E.7) proceeds as follows:

d

dx

�
NðeÞ�T ¼ d

dx

(
ðxj � xÞ�lðeÞ
ðx � xiÞ

�
lðeÞ

)
¼ 1

lðeÞ

��1

1

�
(E.9)

dfðeÞ

dx
¼ d

dx

�
NðeÞ�F!ðeÞ ¼ 1

lðeÞ
½ �1 1 �

(
F

ðeÞ
i

F
ðeÞ
j

)
(E.10)

Z xj

xi

d

dx

�
NðeÞ�T dFðeÞ

dx
dx ¼ 1

lðeÞ

�
1 �1

�1 1

�(
F

ðeÞ
i

f
ðeÞ
j

)
(E.11)

Z xj

xi

�
NðeÞ�TFðeÞdx ¼ lðeÞ

6

�
2 1

1 2

�(
F

ðeÞ
i

F
ðeÞ
j

)
(E.12)

Z xj

xi

�
NðeÞ�T xdx ¼ 1

6

8><>:
�
x2
j þ xixj þ 2x2

i

�
�
2x2

j � xixj � x2
i

�
9>=>; (E.13)

Since the value of (df/dx) is not specified at any node, we neglect the left-most term in Eq. (E.7). Thus, we obtain from Eq. (E.7)

XE
e¼ 1

�
K ðeÞ�F!ðeÞ ¼

XE
e¼ 1

P
!ðeÞ

(E.14)

where

�
K ðeÞ� ¼ 1

lðeÞ

�
1 �1

�1 1

�
� lðeÞ

6

�
2 1

1 2

�
(E.15)

P
!ðeÞ ¼ 1

6

8><>:
�
x2
j þ xixj � 2x2

i

�
�
2x2

j � xixj � x2
i

�
9>=>; (E.16)

It can be seen that Eqs. (E.14) to (E.16) are identical to those obtained in Example 5.3, and hence the solution will also be the

same.

5.12 DERIVATION OF FINITE ELEMENT EQUATIONS USING WEIGHTED RESIDUAL
(LEAST SQUARES) APPROACH

Let the differential equation to be solved be stated as

AðfÞ ¼ f ðx; y; zÞ in V (5.99)

subject to the boundary conditions

f ¼ f0 on S0 (5.100)
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Bj

�
f;

vf

vx
;
vf

vy
;
vf

vz
;.

�
¼ gjðx; y; zÞ on Sj (5.101)

with X
j¼ 0; 1;.

Sj ¼ S (5.102)

where AðfÞ and B

�
f; vf

vx;
vf
vy;

vf
vz;.

�
are linear differential operators involving the (unknown) field variable and its deriv-

atives with respect to x, y, and z; f and gj are known functions of x, y, and z; and V is the solution domain with boundary S.

Step 1: Divide the solution domain into E finite elements, each having n nodal points with m unknowns (degrees of
freedom) per node. Thus, m denotes the number of parameters, such as f, ðvf=vxÞ, ðvf=vyÞ, ., taken as unknowns at
each node.
Step 2: Assume an interpolation model for the field variable inside an element e as

fðeÞðx; y; zÞ ¼
X
i

Niðx; y; zÞFðeÞ
i ¼ ½Nðx; y; zÞ�F!ðeÞ

(5.103)

where Ni is the shape function corresponding to the i-th degree of freedom of element of e, FðeÞ
i .

Step 3: Derive the element characteristic matrices and vectors. Substitution of the approximate solution of Eq. (5.103)
into Eqs. (5.99) and (5.101) yields the residual errors as

RðeÞðx; y; zÞ ¼ A
�
½N�F!ðeÞ�� f ðeÞhAðeÞ � f ðeÞ (5.104)

rðeÞj ðx; y; zÞ ¼ Bj

�
½N�F!ðeÞ�� gðeÞj hBðeÞ

j � gðeÞj (5.105)

where R(e) and rðeÞj represent the residual errors due to differential equation and j-th boundary condition, respectively,
and A(e) and BðeÞ

j can be expressed in terms of the vector of nodal unknowns as

AðeÞh
�
CðeÞðx; y; zÞ�F!ðeÞ

(5.106)

BðeÞ
j ¼

h
DðeÞ

j ðx; y; zÞ
i
F
!ðeÞ

(5.107)

In the least squares method we minimize the weighted square of the residual error over the domain; that is,

I ¼ a

ZZZ
V

R2dV þ
X
j

bj

ZZ
Sj

r2j dSj ¼ minimum (5.108)

where a and b1, b2, . are the weighting factors, all of which can be taken to be unity for simplicity; and the errors R
and rj can be expressed as the sum of element contributions as

R ¼
XE
e¼ 1

RðeÞ; rj ¼
XE
j¼ 1

rðeÞj (5.109)

The conditions for the minimum of I are

vI

v F
!e

¼

8>>><>>>:
vI=vF1

vI=vF2

«

vI=vFM

9>>>=>>>; ¼
XE
e¼ 1

vIðeÞ

vF
!ðeÞ ¼ 0

!
(5.110)

where M denotes the total number of nodal unknowns in the problem (M ¼ m � total number of nodes), and I(e) rep-
resents the contribution of element e to the functional I:
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IðeÞ ¼
ZZZ

V ðeÞ
RðeÞ2dV þ

X
j

ZZ
S
ðeÞ
j

rðeÞ
2

j dSj (5.111)

The squares of the residues R(e) and rðeÞj can be expressed as

RðeÞ2
j ¼ AðeÞ2 � 2AðeÞf ðeÞ þ f ðeÞ

2

¼ F
!ðeÞT �

CðeÞ�T�CðeÞ�F!ðeÞ � 2
�
CðeÞ�F!ðeÞ

f ðeÞ þ f ðeÞ
2

(5.112)

rðeÞ
2

j ¼ BðeÞ2
j � 2BðeÞ

j gðeÞj þ gðeÞ
2

j

¼ F
!ðeÞT h

DðeÞ
j

iTh
DðeÞ

j

i
F
!ðeÞ � 2

h
DðeÞ

j

i
F
!ðeÞ

gðeÞj þ gðeÞ
2

j

(5.113)

Eqs. (5.110) and (5.111) lead to

XE
e¼ 1

"
v

vF
!ðeÞ

ZZZ
V ðeÞ

RðeÞdV þ v

vF
!ðeÞ

 X
j

ZZ
S
ðeÞ
j

rðeÞ
2

j dSj

!#
¼ 0

!
(5.114)

with

v

vF
!ðeÞ

�
RðeÞ2

�
¼ 2

�
CðeÞ�T�CðeÞ�F!ðeÞ � 2

�
CðeÞ�T f ðeÞ (5.115)

and

v

vF
!ðeÞ

�
rðeÞ

2

j

�
¼ 2

h
DðeÞ

j

iTh
DðeÞ

j

i
F
!ðeÞ � 2

h
DðeÞ

j

i
gðeÞj (5.116)

By defining h
KðeÞ

1

i
¼
ZZZ

VðeÞ

�
CðeÞ�T�CðeÞ� dV (5.117)

h
KðeÞ

2

i
¼
X
j

ZZ
SðeÞj

h
DðeÞ

j

iTh
DðeÞ

j

i
dsj (5.118)

P
!ðeÞ

1 ¼
ZZZ

VðeÞ
f ðeÞ
�
CðeÞ�TdV (5.119)

P
!ðeÞ

2 ¼
X
j

ZZ
S
ðeÞ
j

gðeÞj

h
DðeÞ

j

iT
dSj (5.120)

Eq. (5.114) becomes XE
e¼ 1

��
KðeÞ�F!ðeÞ � P

!ðeÞ� ¼ 0
!

(5.121)

where the summation sign indicates the familiar assembly over all the finite elements,�
KðeÞ� ¼

h
KðeÞ

1

i
þ
h
KðeÞ

2

i
¼ element characteristic matrix (5.122)

and

P
!ðeÞ ¼ P

!ðeÞ
1 þ P

!ðeÞ
2 ¼ element characteristic vector (5.123)
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Step 4: Derive the overall system equations. The assembled set of equations (5.121) can be expressed in the standard form�
Ke� F!e ¼ P

!e (5.124)

where

�
Ke� ¼

XE
e¼ 1

�
KðeÞ� and P

!e ¼
XE
e¼ 1

P
!ðeÞ

(5.125)

Step 5: Solve for the nodal unknowns. After incorporating the boundary conditions prescribed on S0, Eq. (5.124)
can be solved to find the vector F

!e .Step 6: Compute the element resultants. Once the nodal unknown vector F
!e , and hence F

!ðeÞ
, is determined the element

resultants can be found, if required, by using Eq. (5.103).

EXAMPLE 5.11
Find the solution of the differential equation (d2f/dx2) � f ¼ x subject to the boundary conditions f (0) ¼ 0 and f (1) ¼ 1 using the

least squares finite element method.

Approach: Divide the domain of the equation into finite elements. Assume a suitable interpolation model for each finite

element. Substitute the assumed solution into the differential equation to find the residue. Use the conditions to minimize the

integral of the square of the residue over the domain of the problem to derive the system equations.

Solution

Here, the solution domain is given by 0 � x � 1. Five one-dimensional elements, each having two nodes with two unknowns (f

and (df/dx)) per node, are used for the idealization. Thus, the total number of degrees of freedom is M ¼ 12. Since there are four

nodal degrees of freedom per element, the first-order Hermite polynomials are used as interpolation functions (as in the case of a

beam element). The exact solution of this problem is given by f (x) ¼ (2 sinh x/sinh 1) � x. The finite element solution obtained by

Akin and Sen Gupta [5.6] is compared with the exact solution at the six nodes in Table 5.1.

5.13 STRONG AND WEAK FORM FORMULATIONS

The partial differential equations governing the equilibrium of a solid body are said to be of a strong form. The strong form
of equations, as opposed to a weak form, requires strong continuity of the associated field variables, namely the
displacement components u, v, and w in the case of a solid mechanics problem. Any function that defines any of these field
variables needs to be differentiable up to the order of the governing partial differential equation. Usually, it is very difficult
to find an exact solution of the strong form of partial differential equation.

The equations derived using an energy principle, such as the principle of minimum potential energy, or a weighted
residual method, such as the Galerkin method, are usually of a weak form. The equations of weak form are usually in

TABLE 5.1 Results of Example 5.11

Value of x

Value of f Value of (df/dx)

Finite Element Exact Finite Element Exact

0.0 0.000,000 0.000,000 0.701,837 0.701,837

0.2 0.142,641 0.142,641 0.735,988 0.735,987

0.4 0.299,034 0.299,034 0.839,809 0.839,808

0.6 0.483,481 0.483,480 1.017,47 1.017,47

0.8 0.711,411 0.711,412 1.276,09 1.276,10

1.0 1.000,000 1.000,000 1.626,07 1.626,07
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integral form and require a weaker continuity on the field variables. Because of the weaker requirement on the field
variables and the integral form of the governing expression, a formulation based on a weak form is expected to lead to a set
of equations for the discretized system that yield a more accurate result, particularly for systems involving complex ge-
ometry. Hence, a weak form type of formulation is preferred for obtaining an approximate solution. Thus, the finite element
method, based on a weak form of formulation such as an energy principle or a weighted residual approach, has become
quite popular. The weak form type of formulation yields a set of well-behaved algebraic system equations. The following
example shows the advantages of a weak form formulation.

EXAMPLE 5.12
The equation governing the deflection of a beam, w(x), is given by

EI
d4w

dx4
¼ pðxÞ (E.1)

where p(x) is the distributed force along the beam. For a cantilever beam subjected to an end load and an end moment as shown in

Fig. 5.4, find the deflection of the beam using the Galerkin method with the assumed solution

ewðxÞ ¼ C f ðxÞhC
	
3x2l � x3



(E.2)

where f(x) is a trial function and C is a constant. Also, indicate the advantage of the weak formulation.

Solution

Because the distributed load p(x) ¼ 0 for the beam shown in Fig. 5.4, the governing equation becomes

EI
d4w

dx4
¼ 0 (E.3)

In the Galerkin method, the constant C in the assumed solution is found using the relationZ l

0

RðxÞf ðxÞdx ¼ 0 (E.4)

where R(x) is the residual and f(x) ¼ (3x2 l � x3) is the weighting function given by Eq. (E.2). Eq. (E.4) can be rewritten asZ l

0

�
EI
d4 ew
dx4

�
f ðxÞdx ¼ 0 (E.5)

Because the fourth derivative of ewðxÞ is zero, we reduce the order of the highest derivative of ewðxÞ by integrating Eq. (E.5) by

parts:

EI f ðxÞd
3 ew
dx3

����l
0

�
Z l

0

EI
df

dx

d3 ew
dx3

dx ¼ 0 (E.6)

Integration of the second term on the left side of Eq. (E.6) by parts results in the equationZ l

0

EI
d2f

dx2

d2 ew
dx2

dx ¼
"
� EIf ðxÞ d

3 ew
dx3

����l
0

þ EI
df

dx

d2 ew
dx2

����l
0

#
(E.7)

x

P0

M0
E, I

FIGURE 5.4 Cantilever beam subjected to end load and moment.
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EXAMPLE 5.12 dcont’d

The boundary conditions yield

f ðx ¼ 0Þ ¼ 0;
df

dx
ðx ¼ 0Þ ¼ 0; EI

d2 ew
dx2

ðx ¼ 1Þ ¼ M0; EI
d3 ew
dx3

ðx ¼ lÞ ¼ P0 (E.8)

Using the first two conditions of Eq. (E.8), Eq. (E.7) can be expressed asZ l

0

EI
d2f

dx2

d2 ew
dx2

dx ¼ EIf ðxÞd
3 ew
dx3

����
l

� EI
df

dx

d2 ew
dx2

����
l

(E.9)

From Eq. (E.2) and Fig. 5.4, we have

f ðlÞ ¼ 2l3;
df

dx
ðlÞ ¼ 3l2; EI

d2 ew
dx2

ðlÞ ¼ M0; EI
d3 ew
dx3

ðlÞ ¼ P0 (E.10)

The integral in Eq. (E.9) can be evaluated using the relations in Eq. (E.2) asZ l

0

EI
d2f

dx2

d2 ew
dx2

dx ¼
Z l

0

EIð6l � 6xÞCð6l � 6xÞdx ¼ 	
12EI l3



C (E.11)

Using Eqs. (E.10) and (E.11) in Eq. (E.9), the constant C can be found as follows:

C ¼ P0

6EI
þ M0

4EIl
(E.12)

Thus, the approximate solution for the deflection of the beam becomes

ewðxÞ ¼
�
P0

6EI
þ M0

4EIl

�	
3x2l � x3



(E.13)

which yields the deflection at the free end (x ¼ l) as

ewðxÞ ¼ P0l
3

3EI
þM0l

2

2EI
(E.14)

Advantages of weak formulation:

The original differential equation in w(x) is of order four whereas the application of the weighted residual (Galerkin) method

resulted in the integral form of equation (E.7) involving derivatives of w(x) and f(x) of order two only. Eq. (E.1) represents the strong

form formulation while Eq. (E.7) denotes the weak form formulation of the beam deflection problem. Note that the solution of Eq.

(E.1) requires the fourth derivative of any assumed (approximate) solution, while Eq. (E.7) requires only the second derivative of the

assumed solution. Thus the function w(x) in Eq. (E.1) is required to have C4 continuity while the functions w(x) and f(x) in Eq. (E.7)

are required to have C2 continuity only. Thus, a relaxed continuity requirement can be used in the weak formulation.

REVIEW QUESTIONS

5.1 Give brief answers to the following questions.

1. What is a direct approach for deriving finite element equations?
2. What is variational calculus?
3. What is a functional?
4. What is a residual?
5. What is the difference between point collocation and subdomain collocation?

5.2 Fill in the blank with a suitable word.

1. In the direct method, the element matrices and element vectors are derived using ——————— principles.
2. The variational operator d is ————————————————— with respect to both differentiation and

integration.
3. The differential equation derived by setting the variation of the integral (dI) equal to zero is known as

————————————— equation.
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4. When finite element equations are derived from the variational principles, the —————————— boundary
conditions are automatically satisfied.

5. In the RayleigheRitz method, an approximate solution, in the form of a——————— of several known functions
of the field variable, is assumed.

6. In the point collocation method, the residual is set equal to ——————— at the same selected points in the
————————————————.

5.3 Indicate whether each of the following statements is true or false.

1. The direct method can be used to derive the finite element equations of all types of problems.
2. The solutions obtained from the governing differential equations and those obtained from the variational principle of

the problem represent exact and approximate solutions, respectively.
3. The RayleigheRitz method can be considered as a variational method.
4. Variational formulation involves lower order derivatives compared to those in the governing differential equation.
5. The weighted residual methods can be used to find approximate solutions of even nonlinear differential equations.
6. The weighted residual method is applicable to eigenvalue problems.
7. The least squares method can be considered a residual method.
8. Usually it is easy to find an exact solution for the strong form of a partial differential equation.
9. Equations derived using an energy principle such as the principle of minimum potential energy are usually of weak

form.
10. Equations derived from a strong form formulation are preferred to find an approximate solution.

5.4 Select the most appropriate answer from the multiple choices given.

1. Finite element equations cannot be derived using the following approach:
(a) Least squares (b) Galerkin (c) Rayleigh

5.5 Match the indicated terms to the method to which they are associated.

1. Residual function (a) Least squares method

2. Functional (b) Galerkin method

3. Weighted residual (c) Subdomain collocation

4. Weighted square of the residual (d) Point collocation

5. Integral of the residual (e) RayleigheRitz method

PROBLEMS

5.1 Derive the EulereLagrange equation corresponding to the functional

I ¼ 1
2

ZZZ
V

"�
vf

vx

�2

þ
�
vf

vy

�2

þ
�
vf

vz

�2

� 2Cf

#
$dV

What considerations would you take while selecting the interpolation polynomial for this problem?
5.2 Show that the equilibrium equations ½K�X! ¼ P

!
where [K] is a symmetric matrix, can be interpreted as the stationary

requirement for the functional

I ¼ 1
2
X
!T ½K�X!� X

!T
P
!

5.3 The deflection of a beam on an elastic foundation is governed by the equation (d4w/dx4) þ w ¼ 1, where x and w
are dimensionless quantities. The boundary conditions for a simply supported beam are given by transverse
deflection ¼ w ¼ 0 and bending moment ¼ (d2w/dx2) ¼ 0. By taking a two-term trial solution as w(x) ¼ C1f1(x) þ
C2f2(x) with f1(x) ¼ sin px and f2(x) ¼ sin 3px, find the solution of the problem using the Galerkin method.

5.4 Solve Problem 5.3 using the collocation method with collocation points at x ¼ 1/4 and x ¼ 1/2.
5.5 Solve Problem 5.3 using the least squares method.
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5.6 Derive the finite element equations for a simplex element in two dimensions using a variational approach for the
biharmonic equation V4f ¼ C. Discuss the continuity requirements of the interpolation model.

5.7 Derive the finite element equations for a simplex element in two dimensions using a residual method for the bihar-
monic equation.

5.8 The Rayleigh quotient (lR) for the vibrating tapered beam shown in Fig. 5.5 [5.7] is given by

lR ¼ IAðfÞ
IBðfÞ

where

IAðfÞ ¼ 1
2

Z l

0
EI

�
d2fðxÞ
dx2

�2
dx

IBðfÞ ¼ 1
2

Z l

0
rA½fðxÞ�2dx

f is the assumed solution for the deflection of the beam, E is Young’s modulus, I is the area moment of inertia of the
cross section ¼ (1/12) b[d x/l]3, r is the density, and A is the cross-sectional area ¼ b[d x/l]. Find the eigenvalues (lR)
of the beam using the RayleigheRitz method with the assumed solution

fðxÞ ¼ C1

�
1� x

l

�2
þ C2

�
x

l

��
1� x

l

�2
5.9 The differential equation governing the free transverse vibration of a string (Fig. 5.6) is given by

d2f

dx2
þ lf ¼ 0; 0 � x � l

with the boundary conditions

d

b

x

z y

FIGURE 5.5 A tapered beam.

Z

x
φ (x )

FIGURE 5.6 Transverse vibration of a string.
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fðxÞ ¼ 0 at x ¼ 0; x ¼ l

where l ¼ ðru2l2
�
TÞ is the eigenvalue, r is the mass per unit length, l is the length, T is the tension in string, u is

the natural frequency of vibration, and x ¼ (y/l). Using the trial solution

fðxÞ ¼ C1xðl� xÞ þ C2x
2ðl� xÞ

where C1 and C2 are constants, determine the eigenvalues of the string using the Galerkin method.
5.10 Solve Problem 5.9 using the collocation method with x ¼ l/4 and x ¼ 3 l/4 as the collocation points.
5.11 The cantilever beam shown in Fig. 5.7 is subjected to a uniform load of w per unit length. Assuming the deflection as

fðxÞ ¼ c1 sin
px

2l
þ c2 sin

3px
2l

determine the constants c1 and c2 using the RayleigheRitz method.
5.12 Solve Problem 5.11 using the Galerkin method.
5.13 Solve Problem 5.11 using the least squares method.
5.14 The transverse deflection (w) of a beam is governed by the equation

EI
d2w
dx2

¼ MðxÞ (P.1)

where E is Young’s modulus, I is the area moment of inertia of the cross section, and M(x) is the applied bending
moment. If a simply supported beam, with the boundary conditions

wðx ¼ 0Þ ¼ 0;wðx ¼ lÞ ¼ 0 (P.2)

is subjected to a constant bending moment, M(x) ¼ M0, as shown in Fig. 5.8, find the approximate solution of the
problem using the RayleigheRitz method by assuming a one-term solution as

wðxÞ ¼ C sin
px

l
(P.3)

where C is a constant (to be determined).
Hint: The functional I corresponding to Eq. (P.1) is given by

I ¼
Z l

0

(
EI

2

�
dw
dx

�2

þM0w

)
dx (P.4)

5.15 Find the approximate deflection of the simply supported beam described in Problem 5.14 by assuming the solu-
tion given by Eq. (P.3) using the collocation method. Take the collocation point as x ¼ l/2.

x

Load: w per unit length

FIGURE 5.7 A cantilever beam subjected to a distributed load.

x

M0 M0

FIGURE 5.8 A beam subjected to constant bending moment.
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5.16 Find the approximate deflection of the simply supported beam described in Problem 5.14 by assuming the solution
given by Eq. (P.3) using the subdomain collocation method. Use the subdomain as (0, l).

5.17 Find the approximate deflection of the simply supported beam described in Problem 5.14 by assuming the solution
given by Eq. (P.3) using the Galerkin method.

5.18 Find the approximate deflection of the simply supported beam described in Problem 5.14 by assuming the solution
given by Eq. (P.3) using the least squares method.

5.19 Find the solution of the simply supported beam subjected to uniformly distributed load, described by Eqs. (E.1) to
(E.3) of Example 5.1, by assuming a one-term solution

wðxÞ ¼ C1 sin
px

l

using the RayleigheRitz method.
5.20 Find the solution of the simply supported beam subjected to uniformly distributed load, described by Eqs. (E.1) and

(E.2) of Example 5.1, by assuming a one-term solution

wðxÞ ¼ C1 sin
px

l

using the point collocation method. Take the collocation point as x ¼ l/2.
5.21 Find the solution of the simply supported beam subjected to uniformly distributed load, described by Eqs. (E.1) and

(E.2) of Example 5.1, by assuming a one-term solution

wðxÞ ¼ C1 sin
px

l

using the subdomain collocation method. Take the subdomain as (0, l).
5.22 Find the solution of the simply supported beam subjected to uniformly distributed load, described by Eqs. (E.1) and

(E.2) of Example 5.1, by assuming a one-term solution

wðxÞ ¼ C1 sin
px

l

using the Galerkin method.
5.23 Find the solution of the simply supported beam subjected to uniformly distributed load, described by Eqs. (E.1) and

(E.2) of Example 5.1, by assuming a one-term solution

wðxÞ ¼ C1 sin
px

l

using the least squares method.
5.24 Consider a simply supported beam subjected to a uniformly distributed load as shown in Fig. 5.2. The governing

differential equation can also be expressed, in terms of the bending moment, M(x), as

EI
d2w
dx2

¼ MðxÞ ¼ 1
2
pxðl� xÞ (P.5)

where E is Young’s modulus, I is the area moment of inertia of the cross section, and MðxÞ ¼ 1
2 pxðl� xÞ is the

applied bending moment. The boundary conditions are

wðx ¼ 0Þ ¼ 0; wðx ¼ lÞ ¼ 0 (P.6)

Find the approximate solution of the problem using the RayleigheRitz method by assuming a one-term solution as

wðxÞ ¼ C sin
px

l
(P.7)

where C is a constant (to be determined).
Hint: The functional I corresponding to Eq. (P.5) is given by

I ¼
Z l

0

(
EI

2

�
dw
dx

�2

þ pxðl� xÞ
2

w

)
dx (P.8)

5.25 Find the approximate deflection of the simply supported beam described in Problem 5.24 by assuming the solu-
tion given by Eq. (P.7) using the collocation method. Take the collocation point x ¼ l/2.
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5.26 Find the approximate deflection of the simply supported beam described in Problem 5.24 by assuming the solution
given by Eq. (P.7) using the subdomain collocation method. Use the subdomain (0, l).

5.27 Find the approximate deflection of the simply supported beam described in Problem 5.24 by assuming the solution
given by Eq. (P.7) using the Galerkin method.

5.28 Find the approximate deflection of the simply supported beam described in Problem 5.24 by assuming the solution
given by Eq. (P.7) using the least squares method.

5.29 Consider a simply supported beam subjected to a concentrated load, P, acting at x ¼ l/2 as shown in Fig. 5.9. The
governing differential equation is

EI
d2w

dx2
¼ MðxÞ ¼ Px

2
; 0 � x � l

2

¼ Pðl� xÞ
2

;
l

2
� x � l

(P.9)

where E is Young’s modulus and I is the area moment of inertia of the cross section. The boundary conditions are

wðx ¼ 0Þ ¼ 0; wðx ¼ lÞ ¼ 0 (P.10)

Find the approximate solution of the problem using the RayleigheRitz method by assuming a one-term solution as

wðxÞ ¼ C sin
px

l
(P.11)

where C is a constant (to be determined).
Hint: The functional I corresponding to Eq. (P.9) is given by

I ¼
Z l

0

8><>:EI

2

�
dw
dx

�2

dxþ
Z l

2

0

Px

2
wdxþ

Z l

l
2

Pðl� xÞ
2

w

9>=>; dx (P.12)

5.30 Find the approximate deflection of the simply supported beam described in Problem 5.29 by assuming the solu-
tion given by Eq. (P.11) using the collocation method. Take the collocation point as x ¼ l/2.

5.31 Find the approximate deflection of the simply supported beam described in Problem 5.29 by assuming the solution
given by Eq. (P.11) using the subdomain collocation method. Use the subdomain as (0, l).

5.32 Find the approximate deflection of the simply supported beam described in Problem 5.29 by assuming the solution
given by Eq. (P.11) using the Galerkin method.

5.33 Find the approximate deflection of the simply supported beam described in Problem 5.29 by assuming the solution
given by Eq. (P.11) using the least squares method.

5.34 Solve Problem 5.29 using the RayleigheRitz method by assuming a two-term solution as

wðxÞ ¼ C1 sin
px

l
þ C2 sin

3px
l

5.35 Solve Problem 5.29 using the collocation method by assuming a two-term solution as

x

P

FIGURE 5.9 A simply supported beam subjected to a concentrated load.
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wðxÞ ¼ C1 sin
px

l
þ C2 sin

3px
l

5.36 Solve Problem 5.29 using the subdomain collocation method by assuming a two-term solution as

wðxÞ ¼ C1 sin
px

l
þ C2 sin

3px
l

Take the subdomains as x ¼ (0, l/4) and x ¼ (l/4, l/2).
5.37 Solve Problem 5.29 using the Galerkin method by assuming a two-term solution as

wðxÞ ¼ C1 sin
px

l
þ C2 sin

3px
l

5.38 Solve Problem 5.29 using the least squares method by assuming a two-term solution as

wðxÞ ¼ C1 sin
px

l
þ C2 sin

3px
l

5.39 Consider the differential equation

d2f
dx2

þ 400x2 ¼ 0; 0 � x � 1

with the boundary conditions

fð0Þ ¼ 0; fð1Þ ¼ 0

The functional corresponding to this problem to be extremized is given by

I ¼
Z 1

0

�
� 1
2

�
df
dx

�2
þ 400x2f

�
dx

Find the solution of the problem using the RayleigheRitz method using a one-term solution f(x) ¼ c1x (1ex).
5.40 Find the solution of Problem 5.39 using the RayleigheRitz method using a two-term solution

f (x) ¼ c1x (1 � x) þ c2 x
2(1 e x)

5.41 Find the solution of Problem 5.39 using the Galerkin method using the solution

fðxÞ ¼ c1xð1� xÞ þ c2x
2ð1� xÞ

5.42 Find the solution of Problem 5.39 using the two-point collocation method with the trial solution

fðxÞ ¼ c1xð1� xÞ þ c2x
2ð1� xÞ

Assume the collocation points as x ¼ 1/4 and x ¼ 3/4.
5.43 Find the solution of Problem 5.39 using the least squares approach with the trial solution

fðxÞ ¼ c1xð1� xÞ þ c2x
2ð1� xÞ

5.44 Find the solution of Problem 5.39 using subdomain collocation with the trial solution

fðxÞ ¼ c1xð1� xÞ þ c2x
2ð1� xÞ

Assume two subdomains as x ¼ 0 to 1/4 and x ¼ 3/4 to 1.
5.45 Consider the coaxial cable shown in Fig. 5.10 with inside radius ri ¼ 7 mm, interface radius rm ¼ 15 mm, and outer

radius r0 ¼ 22 mm. The permittivities of the inside and outside layers are ε1 ¼ 1 and ε2 ¼ 2, respectively, and the
charge densities of the inside and outside layers are si ¼ 50 and s0 ¼ 0, respectively. If the electric potential is spec-
ified at the inner and outer surfaces as fi ¼ 400 and f0 ¼ 0, determine the variation of f (r) using the finite element
method based on the variational (RayleigheRitz) approach. Use two linear finite elements in each layer.
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Hint: The equation governing axisymmetric electrostatics is given by

c
d2f
dr2

þ c

r

df
dr

þ p ¼ 0 (P.13)

where c is the permittivity of the material, f the electric potential, p is the charge density, and r is the radial distance.
The variational function, I, corresponding to Eq. (P.13) is given by

IðfÞ ¼
Z r2

r1

�
prc

�
df
dr

�2
� 2prpf

�
dr (P.14)

where the relation dV ¼ 2pr dr has been used.
5.46 Solve Problem 5.45 using the finite element method by adopting the Galerkin approach.
5.47 Solve Problem 5.45 using the finite element method by adopting the least squares approach.
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FIGURE 5.10 A coaxial cable.
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6.1 COORDINATE TRANSFORMATION

The various methods of deriving element characteristic matrices and vectors have been discussed in Chapter 5. Before
considering how these element matrices and vectors are assembled to obtain the characteristic equations of the entire
system of elements, we need to discuss the aspect of coordinate transformation. The coordinate transformation is necessary
when the field variable is a vector quantity such as displacement and velocity. Sometimes, the element matrices and vectors
are computed in local coordinate systems suitably oriented for minimizing the computational effort. The local coordinate
system may be different for different elements. When a local coordinate system is used, the directions of the nodal degrees
of freedom (dof) will also be taken in a convenient manner. In such a case, before the element equations can be assembled,
it is necessary to transform the element matrices and vectors derived in local coordinate systems so that all the elemental
equations are referred to a common global coordinate system. The choice of the global coordinate system is arbitrary, and
in practice it is generally taken to be the same as the coordinate system used in the engineering drawings, from which the
coordinates of the different node points of the body can easily be found.

In general, for an equilibrium problem, the element equations in a local coordinate system can be expressed in the
standard form �

kðeÞ
�
f
!ðeÞ ¼ p!ðeÞ

(6.1)

where [k(e)] and p!ðeÞ
are the element characteristic matrix and vector, respectively, and f

!ðeÞ
is the vector of nodal un-

knowns of element e. If the field variable is a directional quantity such as displacement, velocity, or force, a coordinate
transformation exists between the local and global dof (unknowns) of the element e. We shall use lowercase and capital
letters to denote the characteristics pertaining to the local and global coordinate systems, respectively. Let a transformation
matrix [l(e)] exist between the local and global coordinate systems such that [6.3]

f
!ðeÞ ¼ �

lðeÞ
�
F
!ðeÞ

(6.2)

The Finite Element Method in Engineering. https://doi.org/10.1016/B978-0-12-811768-2.00006-7
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and

p!ðeÞ ¼ �
lðeÞ

�
P
!ðeÞ

(6.3)

The strain energy of the element, being a scalar quantity, will have the same value in both the local and global
coordinate systems. Thus,

1
2
f
!ðeÞT �

kðeÞ
�
f
!ðeÞ ¼ 1

2
F
!ðeÞT �

KðeÞ�F!ðeÞ
(6.4)

where [K (e)] denotes the stiffness matrix and F
!ðeÞ

the vector of nodal displacements of element e in the global coordinate
system. By substituting Eq. (6.2) on the left-hand side of Eq. (6.4), we obtain

1
2
F
!ðeÞT �

lðeÞ
�T�

kðeÞ
��
lðeÞ

�
F
!ðeÞ ¼ 1

2
F
!ðeÞT �

KðeÞ�F!ðeÞ
(6.5)

from which the stiffness matrix of the element in the global coordinate system can be expressed as�
KðeÞ� ¼ �

lðeÞ
�T�

kðeÞ
��
lðeÞ

�
(6.6)

Note

If the vectors f
!ðeÞ

and F
!ðeÞ

have the same size (i.e., the number of nodal displacement dof of the element is the same in both local

and global systems), then the transformation matrix [l(e)] will be a square matrix of direction cosines relating the two coordinate

systems. In this case, the transformation matrix will be orthogonal and hence,�
lðeÞ

��1 ¼ �
lðeÞ

�T
(6.7)

so that the stiffness matrix in the global coordinate system can also be expressed as�
K ðeÞ� ¼ �

lðeÞ
��1�

k ðeÞ��lðeÞ� (6.8)

EXAMPLE 6.1
Show that the transformation matrix between two coordinate systems (x, y) and (X, Y) shown in Fig. 6.1 is orthogonal.

Approach: Show that the inverse of [l] is the same as the transpose of [l].

Y

V

O

v

y

P

X

U

u
x

θ

FIGURE 6.1 Two coordinate systems.
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EXAMPLE 6.1 dcont’d

Solution

Consider a vector (such as the position of a point P or a displacement vector) in the two coordinate systems (x, y) and (X, Y ) as

shown in Fig. 6.1. The components of the vector are assumed to be (u, v) in the (x, y)-coordinate system and (U, V ) in the (X, Y )-

coordinate system. The relationships between the components (u, v) and (U, V ) can be expressed in terms of a transformation

matrix, [l], as �
U

V

�
¼ ½l�

�
u

v

�
h

�
cos q sin q

�sin q cos q

��
u

v

�
(E.1)

with

½l� ¼
�
cos q sin q

�sin q cos q

�
(E.2)

The inverse of the transformation matrix, [l]�1, is given by

½l��1 ¼
�
cos q �sin q

sin q cos q

�
(E.3)

which can be seen to be same as the transpose, [l]T, of the matrix [l]. Thus, the coordinate transformation matrix is orthogonal.

EXAMPLE 6.2
Consider the two-bar truss shown in Fig. 6.2A with the following properties:

Element 1: A(1) ¼ 1 in2, E (1) ¼ 30 � l06 psi; Element 2: A(2) ¼ 0.5 in2, E (2) ¼ 20 � l06 psi

a. Find the coordinate transformation matrices of the elements.

b. If the element stiffness matrices in the local coordinate system are given by

�
k ðeÞ� ¼ AðeÞE ðeÞ

lðeÞ

�
1 �1

�1 1

�
; e ¼ 1; 2

where A(e), E (e), and l(e) denote, respectively, the area of cross section, Young’s modulus, and length of element e, derive the

stiffness matrices of the elements in the global (X, Y ) coordinate system.

Approach: Use Eq. (6.8) after finding [l(e)].

Solution

The assumed local coordinate systems (x-axes), the nodal displacement dof in the local system (q1 and q2), and the global

displacement dof (Q
ðeÞ
i , i ¼ 1, 2, 3, 4) of the two elements (e ¼ 1, 2) are shown in Fig. 6.2B.

a. To derive the coordinate transformation matrix for element 1, we note that local nodes 1 and 2 of the element are the same as

global nodes 3 and 1, respectively. Thus, the local and global displacement dof at local node 1 are related as

q1 ¼ Q5cos q1 þQ6 sin q1 (E.1)

and at local node 2 as

q2 ¼ Q1cos q1 þQ2sin q1 (E.2)

Noting that the length of element 1, l(1), is given by

lð1Þ ¼ lij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0� ð� 20ÞÞ2 þ ð50� 0Þ2

q
¼ 53:8516 in

the direction cosines of the x axis (or element 1) are given by

cos q1 ¼ Xj � Xi

lij
¼ X1 � X3

lð1Þ
¼ 0� ð� 20Þ

53:8516
¼ 0:3714

sin q1 ¼ Yj � Yi

lij
¼ Y1 � Y3

lð1Þ
¼ 50� 0

53:8516
¼ 0:9285

Eqs. (E.1) and (E.2) can be written in matrix form as

q!ð1Þ ¼ �
lð1Þ

�
Q
!ð1Þ

(E.3)

Continued
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EXAMPLE 6.2 dcont’d

Y

P2

P1A

Element 2

(A)

Element 1

X

50"

20" 20"

q2 q2

q1

q

q1

θ1

θ2

=

Q2

Q2

Q4

Q3

Q1

x

(1)
(1)

x
Q6

O OQ5

Q1
(1)

Q2
(1)

Q3
(1)

Q4
(1)

Q1
Node 2

Node 1 Node 1

Element  1

Node 2
1 j

=

=

Q
(1)

= =

3 i 2=i

=j 1

Element  2

q1
q2

Q5

Q6

Q1

Q2

q
→

→
Q

(2)→

→ (2)
(2)

=
q1
q2

Q1
(2)

Q2
(2)

Q3
(2)

Q4
(2)

= =

Q3

Q4

Q1

Q2

(B)

FIGURE 6.2 A two-bar truss.
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EXAMPLE 6.2 dcont’d

where

q!ð1Þ ¼
�
q1

q2

�ð1Þ
;Q
!ð1Þ ¼

8>>>>><>>>>>:
Q

ð1Þ
1

Q
ð1Þ
2

Qð1Þ
3

Q
ð1Þ
4

9>>>>>=>>>>>;
¼

8>>>><>>>>:
Q5

Q6

Q1

Q2

9>>>>=>>>>;
and [l (1)] is the coordinate transformation matrix of element 1 given by

�
lð1Þ

� ¼
�
cos q1 sin q1 0 0

0 0 cos q1 sin q1

�
By proceeding in a similar manner, the coordinate transformation matrix of element 2 can be derived as

�
lð2Þ

� ¼
�
cos q2 sin q2 0 0

0 0 cos q2 sin q2

�
where

cos q2 ¼ Xj � Xi

lij
¼ X1 � X2

lð2Þ
¼ 0� 20

53:8516
¼ �0:3714

sin q2 ¼ Yj � Yi

lij
¼ Y1 � Y2

lð2Þ
¼ 50� 0

53:8516
¼ 0:9285

with the length of element 2 equal to

lð2Þ ¼ lij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0� 20Þ2 þ ð50� 0Þ2

q
¼ 53:8516 in

b. The stiffness matrix of element 1 in the global coordinate system is given by Eq. (6.8):�
K ð1Þ� ¼ �

lð1Þ
�T �

k ð1Þ��lð1Þ�

¼ Að1ÞE ð1Þ

lð1Þ

2666666666664

cos2 q1 sin q1 cos q1 �cos2 q1 �sin q1 cos q1

sin q1 cos q1 sin2 q1 �sin q1 cos q1 �sin2 q1

�cos2 q1 �sin q1 cos q1 cos2 q1 sin q1 cos q1

�sin q1 cos q1 �sin2 q1 sin q1 cos q1 sin2 q1

3777777777775
(E.4)

The known data yields

Að1ÞE ð1Þ

lð1Þ
¼ ð1Þð30� 106Þ

53:8516
¼ 5:5709� 105 lb=in;

cos2 q1 ¼ ð0:3714Þ2 ¼ 0:1379

sin q1cos q1 ¼ ð0:3714Þð0:9285Þ ¼ 0:3448;

sin2 q1 ¼ ð0:9285Þ2 ¼ 0:8621

and hence [K(1)] becomes

�
K ð1Þ� ¼ 5:5709� 105

26664
0:1379 0:3448 �0:1379 �0:3448

0:3448 0:8621 �0:3448 �0:8621

�0:1379 �0:3448 0:1379 0:3448

�0:3448 �0:8621 0:3448 0:8621

37775 lb=in (E.5)

Continued
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EXAMPLE 6.2 dcont’d

The stiffness matrix of element 2 in the global coordinate system is given by Eq. (6.8):�
K ð2Þ� ¼ �

lð2Þ
�T �

k ð2Þ��lð2Þ�

¼ Að2ÞE ð2Þ

lð2Þ

2666666666664

cos2 q2 sin q2 cos q2 �cos2 q2 �sin q2 cos q2

sin q2 cos q2 sin2 q2 �sin q2 cos q2 �sin2 q2

�cos2 q2 �sin q2 cos q2 cos2 q2 sin q2 cos q2

�sin q2 cos q2 �sin2 q2 sin q2 cos q2 sin2 q2

3777777777775
(E.6)

The known data yields

Að2ÞE ð2Þ

lð2Þ
¼ ð0:5Þð20� 106Þ

53:8516
¼ 1:8569� 105lb=in;

cos2 q2 ¼ ð�0:3714Þ2 ¼ 0:1379

sin q2 cos q2 ¼ ð�0:3714Þð0:9285Þ ¼ �0:3448;

sin2 q2 ¼ ð0:9285Þ2 ¼ 0:8621

and hence [K (2)] becomes

�
K ð2Þ� ¼ 1:8569� 105

266664
0:1379 �0:3448 �0:1379 0:3448

�0:3448 0:8621 0:3448 �0:8621

�0:1379 0:3448 0:1379 �0:3448

0:3448 �0:8621 �0:3448 0:8621

377775 lb=in (E.7)

6.2 ASSEMBLAGE OF ELEMENT EQUATIONS

Once the element characteristics, namely, the element matrices and element vectors, are found in a common global
coordinate system, the next step is to construct the overall or system equations. The procedure for constructing the system
equations from the element characteristics is the same regardless of the type of problem and the number and type of
elements used.

The procedure of assembling the element matrices and vectors is based on the requirement of compatibility at the
element nodes. This means that at the nodes where elements are connected, the value(s) of the unknown nodal dof or
variable(s) is the same for all the elements joining at that node. In solid mechanics and structural problems, the nodal
variables are usually generalized displacements, which can be translations, rotations, curvatures, or other spatial derivatives
of translations: When the generalized displacements are matched at a common node, the nodal stiffnesses and nodal loads
of each of the elements sharing the node are added to obtain the net stiffness and the net load at that node.

Let E and M denote the total number of elements and nodal dof (including the boundary and restrained dof),

respectively. Let F
!e denote the vector of M nodal dof and ½Ke � the assembled system characteristic matrix of order M � M.

Since the element characteristic matrix [K(e)] and the element characteristic vector P
!ðeÞ

are of the order n � n and n � 1,
respectively (with n indicating the number of element dof), they can be expanded to the order M � M and M � 1,
respectively, by including zeros in the remaining locations. Thus, the global characteristic matrix and the global charac-
teristic vector can be obtained by algebraic addition as

�
Ke� ¼

XE
e¼ 1

�
KðeÞ� (6.9)

and

P
!e ¼

XE
e¼ 1

h
P
!ðeÞi

(6.10)
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where
�
KðeÞ� is the expanded characteristic matrix of element e (of order M � M), and P

!ðeÞ
is the expanded characteristic

vector of element e (of order M � 1). Even if the assemblage contains many different types of elements, Eqs. (6.9) and
(6.10) will be valid, although the number of element dof, n, changes from element to element.

In actual computations, the expansion of the element matrix
�
KðeÞ� and the vector P

!ðeÞ
to the sizes of the overall ½Ke �

and P
!e is not necessary. ½Ke � and P

!e can be generated by identifying the locations of the elements of
�
KðeÞ� and P

!ðeÞ
in ½Ke �

and P
!e , respectively, and by adding them to the existing values as e changes from 1 to E [6.2]. This procedure is illustrated

with reference to the assemblage of four one-dimensional elements for the planar truss structure shown in Fig. 6.3A. Since
the elements lie in the XY plane, each element has four dof as shown in Fig. 6.3B. It is assumed that a proper coordinate

transformation (Section 6.1) was used and
�
KðeÞ� of order 4 � 4 and P

!ðeÞ
of order 4 � 1 of element e (e ¼ 1 to 4) were

obtained in the global coordinate system.

For assembling
�
KðeÞ� and P

!ðeÞ
, we consider the elements one after another. For e ¼ 1, the element stiffness matrix�

Kð1Þ� and the element load vector P
!ð1Þ

can be written as shown in Table 6.1. The location (row l and column m) of any

component Kð1Þ
ij in the global stiffness matrix ½Ke � is identified by the global dof Fl and Fm corresponding to the local dof

F
ð1Þ
i and F

ð1Þ
j ; respectively, for i ¼ 1 to 4 and j ¼ 1 to 4. The correspondence between Fl and F

ð1Þ
i ; and that between Fm

and F
ð1Þ
j ; is also shown in Table 6.1. Thus, the locations of the components Kð1Þ

ij in ½Ke � will be as shown in Table 6.2(a).

Similarly, the location of the components of the element load vector P
!ð1Þ

in P
!e will also be as shown in Table 6.2(b). For

e ¼ 2, the element stiffness matrix
�
Kð2Þ� and the element load vector P

!ð2Þ
can be written as shown in Table 6.3. As in the

Φ8

Φ6

Φ5

Φ4
Φ3

Φ2
Φ1

(2)Φ2  = Φ6

(2)
Φ1  = Φ5

(2)Φ4  = Φ4

(2)Φ3  = Φ3

(1)Φ3  = Φ5

(1)Φ1  = Φ1

(1)Φ2  = Φ2

(1)Φ4  = Φ6

(3)Φ3  = Φ7

(3)Φ4  = Φ8

(3)Φ1  = Φ5

(3)Φ2  = Φ6

(4)Φ4  = Φ8

(4)Φ3  = Φ7

(4)Φ2  = Φ4

(4)
Φ1  = Φ3

Φ7

3

1

Y

X

3 1

3
3

1

2

2
1

2

4

4

2

4
2

1

2

3

3

1
2

1

2

Local and corresponding global dof of different elements

1

2

4

4

i = element number i
j = global node number j
k = local node number k

Geometry of truss (assembly of
four one-dimensional elements)

x

Y

X0

x

x
x

(A)

(B)

FIGURE 6.3 A planar truss as an assembly of one-dimensional elements.
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TABLE 6.1 Stiffness Matrix and Load Vector of Element 1

TABLE 6.2 Location of the Elements of
�
Kð1Þ� and P

!ð1Þ
in ½Ke � and P

!e
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TABLE 6.3 Stiffness Matrix and Load Vector of Element 2

TABLE 6.4 Assembly of [K (1)], P
!ð1Þ

, [K (2)], and P
!ð2Þ
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case of e ¼ 1, the locations of the elements Kð2Þ
ij for i ¼ 1 to 4 and j ¼ 1 to 4 in the global stiffness matrix ½Ke � and Pð2Þ

i for

i ¼ 1 to 4 in the global load vector P
!e can be identified. Hence, these elements would be placed in ½Ke � and P

!e at

appropriate locations as shown in Table 6.4. It can be seen that if more than one element contributes to the stiffness Klm of

½Ke �, then the stiffnesses KðeÞ
ij for all the elements e contributing to Klm are added together to obtain Klm. A similar pro-

cedure is followed in obtaining Pl of P
!e .

For e ¼ 3 and 4, the element stiffness matrices
�
Kð3Þ� and �Kð4Þ� and the element load vectors P

!ð3Þ
and P

!ð4Þ
are shown

in Table 6.5. By proceeding with e ¼ 3 and e ¼ 4 as in the cases of e ¼ 1 and e ¼ 2, the final global stiffness matrix ½Ke �
and load vector P

!e can be obtained as shown in Table 6.6. If there is no contribution from any element to any Klm in ½Ke �,
then the coefficient Klm will be zero. Thus, each of the blank locations of the matrix ½Ke � in Table 6.6 is to be taken as zero.

A similar argument applies to the blank locations, if any, of the vector P
!e . It is important to note that although a structure

consisting of only four elements is considered in Fig. 6.3 for illustration, the same procedure is applicable for any structure
having any number of finite elements. In fact, the procedure is applicable equally well to all types of problems. The general
assembly procedure is shown as a flow diagram in Fig. 6.4.

TABLE 6.5 Element Stiffness Matrices and Load Vectors for e [ 3 and 4
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TABLE 6.6 Assembled Stiffness Matrix and Load Vector
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EXAMPLE 6.3
Find the global stiffness matrix of the two-bar truss considered in Example 6.2.

Approach: Assemble the global element stiffness matrices of the two elements.

Solution

The global stiffness matrices of the two elements, given by Eqs. (E.5) and (E.7) of Example 6.2, can be rewritten as

(E.1)

and

Set element number e = 1

Set e = e + 1

Is e > E ?

Are the local and global coordinates same for this element?

YES

→ →
Set [K (e)] ≡ [k (e)]
and P (e)≡ p (e)

NOYES

NO

→

→

Transform [k (e)] and p (e) to a
common (global) coordinate system

and obtain [K (e)]  and P (e)

→

→
Compute [k (e)] and p (e) in local coordinate system

Note: p (e) should not include externally applied
concentrated actions (loads)

From a knowledge of the global degrees of freedom Φ
and Φm that correspond to the local degrees of freedom

φi and φj, add the element Kij   of [K (e)] to the
current value of K  m of [K ] and Pi

(e) of P (e) to the
current value of P  of P

→

→

(e)

~
~

Desired [K ] and P in global system are obtained
→

~ ~

Add the externally applied concentrated actions
(loads) to P at appropriate locations and obtain

the final P
→

→
~

~

Initialize the system characteristic matrix [K ] and
characteristic vector P, i.e., set [K ] = [0] and P = 0

→→→
~ ~ ~

~

FIGURE 6.4 Assembly procedure.
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EXAMPLE 6.3 dcont’d

(E.2)

where the displacement dof corresponding to the various rows and columns of [K (1)] and [K (2)] are also identified. To assemble

these matrices to generate the global stiffness matrix, of order 6 � 6, of the system, we first open a 6 � 6 matrix with the rows and

columns identified by the corresponding dof Q1, Q2, ., Q6 in sequence. Then each of the elements of the matrix [K (1)] is entered

at the location of the global stiffness matrix whose row and column dof correspond to those of the element in the matrix [K (1)]. A

similar procedure is used to assemble the matrix [K (2)] in the global stiffness matrix ½Ke � of the two-bar truss. The resulting global

stiffness matrix of the truss is given in Eq. (E.3).

(E.3)

6.3 INCORPORATION OF BOUNDARY CONDITIONS

After assembling the element characteristic matrices [K (e)] and the element characteristic vectors P
!ðeÞ

, the overall or
system equations of the entire domain or body can be written (for an equilibrium problem) as�

Ke�
M�M

�
F
!e �
M�1

¼
�
P
!e �
M�1

(6.11)

These equations cannot be solved for F
!e since the matrix ½Ke � will be singular and hence its inverse does not exist. The

physical significance of this, in the case of solid mechanics problems, is that the loaded body or structure is free to undergo
unlimited rigid body motion unless some support constraints are imposed to keep the body or structure in equilibrium

under the loads. Hence, some boundary or support conditions have to be applied to Eq. (6.11) before solving for F
!e . In

nonstructural problems, we have to specify the value of at least one and sometimes more than one nodal dof. The number
of dof to be specified is dictated by the physics of the problem.

As seen in Eqs. (5.15) and (5.16), there are two types of boundary conditions: forced or geometric, or essential and free
or natural. If we use a variational approach for deriving the system equations, we need to specify only the essential
boundary conditions and the natural boundary conditions will be implicitly satisfied in the solution procedure. Thus, we
need to apply only the geometric boundary conditions to Eq. (6.11). In the geometric boundary conditions, usually a
displacement dof Fj, for example, is required to have a specified value F�

j (F
�
j ¼ 0 in many cases):

Fj ¼ F�
j (6.11a)

The geometric boundary conditions can be incorporated into Eq. (6.11) by several methods as outlined in the following
paragraphs. A boundary condition involving more than one nodal dof is known as a multipoint constraint. Several methods
are available to incorporate linear multipoint constraints (see Section 6.5 and Problems 6.5 and 6.6). The processing of
nonlinear multipoint constraints is described by Narayanaswamy [6.1].
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6.3.1 Method 1

To understand this method, we partition Eq. (6.11) as"
½K11� ½K12�
½K21� ½K22�

#(
F
!

1

F
!

2

)
¼

(
P
!

1

P
!

2

)
(6.12)

where F
!

2 is assumed to be the vector of specified nodal dof and F
!

1 as the vector of unrestricted (free) nodal dof. Then P
!

1

will be the vector of known nodal actions, and P
!

2 will be the vector of unknown nodal actions.1 Eq. (6.12) can be written
as

½K11�F!1 þ ½K12�F!2 ¼ P
!

1

or

½K11�F!1 ¼ P
!

1 � ½K12�F!2 (6.13)

and

½K12�T F!1 þ ½K22�F!2 ¼ P
!

2 (6.14)

Here, [K11] will not be singular and hence Eq. (6.13) can be solved to obtain

F
!

1 ¼ ½K11��1	P!1 � ½K12�F!2



(6.15)

Once F
!

1 is known, the vector of unknown nodal actions P
!

2 can be found from Eq. (6.14). In the special case in which
all the prescribed nodal dof are equal to zero, we can delete the rows and columns corresponding to F

!
2 and state the

equations simply as

½K11�F!1 ¼ P
!

1 (6.16)

6.3.2 Method 2

Since all the prescribed nodal dof usually do not come at the end of the vector F
!e , the procedure of Method 1 involves an

awkward renumbering scheme. Even when the prescribed nodal dof are not zero, it can be seen that the rearrangement of
Eq. (6.11) and solution of Eqs. (6.13) and (6.14) are time-consuming and require tedious bookkeeping. Hence, the
following equivalent method can be used for incorporating the prescribed boundary conditions F

!
2. Eqs. (6.13) and (6.14)

can be written together as "
½K11� ½0�
½0� ½I�

#8<:F
!

1

F
!

2

9=; ¼
8<:P
!

1 � ½K12�F!2

F
!

2

9=; (6.17)

In actual computations, the process indicated in Eq. (6.17) can be performed without reordering the equations implied
by the partitioning as follows.

Step 1: If Fj is prescribed as F�
j , the characteristic vector P

!e is modified as

Pi ¼ Pi � KijF
�
j for i ¼ 1; 2;.;M

Step 2: The row and column of
�
Ke� corresponding to Fj are made zero except the diagonal element, which is

made unity; that is,

Kji ¼ Kij ¼ 0 for i ¼ 1; 2;.;M

Kjj ¼ 1

1. In the case of the solid mechanics problem, F
!

2 denotes the vector of nodal displacements that avoids the rigid body motion of the body, P
!

1 the vector
of known nodal loads, and P

!
2 the unknown reactions at points at which the displacements F

!
2 are prescribed.
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Step 3: The prescribed value of Fj is inserted in the characteristic vector as

Pj ¼ F�
j

This procedure (Steps 1e3) is repeated for all prescribed nodal dof, Fj. This procedure retains the symmetry of the
equations and the matrix

�
Ke� can be stored in the band format with little extra programming effort.

6.3.3 Method 3

Another method of incorporating the prescribed condition Fj ¼ F�
j is as follows.

Step 1: Multiply the diagonal term Kjj by a large number, such as 1010, so that the new Kjj ¼ old Kjj � 1010.
Step 2: Make the corresponding load Pj as

Pj ¼ new Kjj � F�
j ¼ old Kjj � 1010 �F�

j

Step 3: Keep all other elements of the characteristic matrix and the characteristic vector unaltered so that

new Kik ¼ old Kikfor all i and k except i ¼ k ¼ j

and

new Pi ¼ old Pi for all i except i ¼ j

This procedure (Steps 1e3) is repeated for all prescribed nodal dof, Fj. This procedure will yield a solution in which Fj

is very nearly equal to F�
j . This method can also be used when the characteristic matrix is stored in banded form. We

represent the equations that result from the application of the boundary conditions to Eq. (6.11) as

½K�F! ¼ P
!

(6.18)

where [K], F
!
; and P

!
denote the final (modified) characteristic matrix, vector of nodal dof, and vector of nodal actions,

respectively, of the complete body or system.

EXAMPLE 6.4
The cantilever beam shown in Fig. 6.5A is modeled using one beam element with four dof as shown in Fig. 6.5B. The resulting

equilibrium equations of the system are given by �
Ke� W

�!e ¼ P
!e (E.1)

where

(E.2)

W
�!e ¼

8>>><>>>:
W1

W2

W3

W4

9>>>=>>>; (E.3)

P
!e ¼

8>>><>>>:
P1

P2

P3

P4

9>>>=>>>; (E.4)

Continued
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EXAMPLE 6.4 dcont’d

Using the known boundary conditions, the displacements W1 ¼ 0, W2 ¼ 0 and the known external load values P3 ¼ �50 N,

P4 ¼ 20 N-cm, determine the displacement componentsW3 (cm) andW4 (rad) of node 2 and the reactions P1 (N) and P2 (N-cm) at

node 1.

Approach: Solve the system equations of (E.1) using Method 1.

Solution

Group the unknown and known displacement dof as components of the vectors W
�!

1 and W
�!

2, respectively, and the known and

unknown loads as components of the vectors P
!

1, and P
!

2, respectively, as

W
�!

1 ¼
(
W3

W4

)
¼ vector of unknown displacements

W
�!

2 ¼
(
W1

W2

)
¼

(
0

0

)
¼ vector of known displacements

P
!

1 ¼
(
P3

P4

)
¼

(�50

20

)
¼ vector of known loads

P
!

2 ¼
(
P1

P2

)
¼ vector of unknown loads ðreactionsÞ

Rearrange and partition the system stiffness matrix
�
Ke� by defining submatrices corresponding to the known and unknown

displacement dof as

(E.5)

I = 1 cm4, E = 106 N/cm2

M0 
= 20 N-cm

P0 = 50 N

P3 = P0 = − 50 N

P4= M0= 20 N-cm

L = 1 m

(A)

1 2

1 2

(B)

(C)

W1

W2 W4

W3

P1= 50 N

P2= 4980 N-cm

FIGURE 6.5 Cantilever beam.
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EXAMPLE 6.4 dcont’d

so that

(E.6)

(E.7)

(E.8)

(E.9)

Noting that

½K11��1 ¼
�
0:3333 0:0050

0:0050 0:0001

�
(E.10)

the solution vector W
�!

1 can be found using Eq. (6.15):

W
�!

1 ¼ ½K11��1	P!1 � ½K12�W�!2


 ¼ ½K11��1 P
!

1 ¼
�
0:3333 0:0050

0:0050 0:0001

���50

20

�
¼

��16:5667

�0:2480

�
(E.11)

The vector of reactions can be found using Eq. (6.14) as

P
!

2 ¼ ½K12�T W�!1 þ ½K22�W�!2 ¼ ½K12�T W�!1 ¼
� �12 600

�600 20;000

���1:5667

�0:2480

�
¼

�
50:0

4;980:0

�
(E.12)

The actions (applied loads) and the reactions are shown in the free body diagram of the beam in Fig. 6.5C.

EXAMPLE 6.5
Find the displacement components of the cantilever beam problem stated in Example 6.4 using Method 2 of Section 6.3.

Approach: Method 2 of Section 6.3.

Solution

The equilibrium equations of the cantilever beam are given by Eq. (E.1) of Example 6.4:�
Ke� W

�!e ¼ P
!e (E.1)

or 26664
12 600 �12 600

600 40; 000 �600 20; 000

�12 �600 12 �600

600 20; 000 �600 40; 000

37775
8>>><>>>:

W1

W2

W3

W4

9>>>=>>>; ¼

8>>><>>>:
P1

P2

�50

20

9>>>=>>>; (E.2)

where P1 and P2 are the reactions at node 1 along the directions of W1 and W2, respectively.

Continued
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EXAMPLE 6.5 dcont’d

To incorporate the first known boundary condition W1 ¼ W �
1 ¼ 0 according to Method 2 of Section 6.3, we modify the load

components as Pi ¼ Pi � K1iW
�
1 ; i ¼ 1, 2, 3, 4 and set K1i ¼ Ki1 ¼ 0; i ¼ 2, 3, 4 and K11 ¼ 1. Thus, Eq. (E.2) is modified as26664

1 0 0 0

0 40;000 �600 20;000

0 �600 12 �600

0 20;000 �600 40;000

37775
8>>><>>>:

W1

W2

W3

W4

9>>>=>>>; ¼

8>>><>>>:
W �

1 ¼ 0

P2 � 600ð0Þ
�50� ð�12Þð0Þ
20� 600ð0Þ

9>>>=>>>; ¼

8>>><>>>:
0

P2

�50

20

9>>>=>>>; (E.3)

Similarly, to incorporate the second known boundary condition W2 ¼ W �
2 ¼ 0, we modify the load components as

Pi ¼ Pi � K2i W
�
2 ; i ¼ 1, 2, 3, 4 and set K2i ¼ Ki2 ¼ 0; i ¼ 1, 3, 4 and K22 ¼ 1. Thus Eq. (E.3) is modified as26664

1 0 0 0

0 1 0 0

0 0 12 �600

0 0 �600 40;000

37775
8>>><>>>:

W1

W2

W3

W4

9>>>=>>>; ¼

8>>><>>>:
0

W �
2 ¼ 0

�50� ð�600Þð0Þ
20� 20;000ð0Þ

9>>>=>>>; ¼

8>>><>>>:
0

0

�50

20

9>>>=>>>; (E.4)

The solution of Eq. (E.4) gives the desired solution:8>>><>>>:
W1

W2

W3

W4

9>>>=>>>; ¼

8>>><>>>:
0

0

�16:5667

�0:2480

9>>>=>>>; (E.5)

EXAMPLE 6.6
Find the displacement components of the cantilever beam problem stated in Example 6.4 using Method 3 of Section 6.3.

Approach: Method 3 of Section 6.3.

Solution

The equilibrium equations of the cantilever beam are given by Eq. (E.1) of Example 6.4:�
Ke� W

�!e ¼ P
!e (E.1)

or 26664
12 600 �12 600

600 40;000 �600 20;000

�12 �600 12 �600

600 20;000 �600 40;000

37775
8>>><>>>:

W1

W2

W3

W4

9>>>=>>>; ¼

8>>><>>>:
P1

P2

�50

20

9>>>=>>>; (E.2)

where P1 and P2 are the reactions at node 1 along the directions of W1 and W2, respectively. To incorporate the first known

boundary condition W1 ¼W �
1 ¼ 0 according to Method 3, we multiply the diagonal term K11 by a large number (1010) and

change the corresponding load component Pi to K11 � 1010 �W �
2 ¼ 0. Thus, Eq. (E.2) is modified as26664

12� 1010 600 �12 600

600 40;000 �600 20;000

�12 �600 12 �600

600 20;000 �600 40;000

37775
8>>><>>>:

W1

W2

W3

W4

9>>>=>>>; ¼

8>>><>>>:
12� 1010 � 0

P2

�50

20

9>>>=>>>; ¼

8>>><>>>:
0

P2

�50

20

9>>>=>>>; (E.3)
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EXAMPLE 6.6 dcont’d

Similarly, to incorporate the second known boundary condition W2 ¼W �
2 ¼ 0 according to Method 3, we multiply the di-

agonal term K22 by a large number (1010) and change the corresponding load component P2 to K22 � 1010 � W �
2 ¼ 0. Thus, Eq.

(E.3) is modified as26664
12� 1010 600 �12 600

600 40;000� 1010 �600 20;000

�12 �600 12 �600

600 20;000 �600 40;000

37775
8>>><>>>:

W1

W2

W3

W4

9>>>=>>>; ¼

8>>><>>>:
0

40;000� 1010 � 0

�50

20

9>>>=>>>; ¼

8>>><>>>:
0

0

�50

20

9>>>=>>>; (E.4)

The solution of Eq. (E.4) gives the desired solution:8>>><>>>:
W1

W2

W3

W4

9>>>=>>>; ¼

8>>><>>>:
0

0

�16:5667

�0:2480

9>>>=>>>; (E.5)

EXAMPLE 6.7
The finite element analysis of heat transfer along a one-dimensional fin using two elements and three nodes leads to the equations�

Ke� T!e ¼ P
!e (E.1)

or 264 0:50893 �0:49951 0

�0:49951 1:01786 �0:49951

0 �0:49951 0:55919

375
8><>:

T1

T2

T3

9>=>; ¼

8><>:
0:23561

0:47122

0:73825

9>=>; (E.2)

If the temperature of node 1, T1, is specified as 100 �C, find the temperatures of nodes 2 and 3 by solving Eq. (E.2) using Method

1 of Section 6.3.

Approach: Use Method 1 of Section 6.3.

Solution

Group the unknown and known temperatures as components of the vectors T
!

1 and T
!

2, respectively, and the corresponding

components of P
!

as the vectors P
!

1 and P
!

2, respectively, as

T
!

1 ¼
�
T2

T3

�
¼ vector of unknown temperatures

T
!

2 ¼ fT1g ¼ f100g ¼ vector of known temperaturess

P
!

1 ¼
�
P2

P3

�
¼

�
0:47122

0:73825

�
¼ vector of right-hand side components corresponding to T

!
1

P
!

2 ¼ fP1g ¼ vector of right-hand side components corresponding to T
!

2

Rearrange and partition the system characteristic matrix
�
Ke� by defining submatrices corresponding to the known and un-

known nodal temperatures as

(E.3)

so that

Continued
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EXAMPLE 6.7 dcont’d

Noting that

½K11��1 ¼
�
1:7493 1:5626

1:5626 3:1841

�
the solution vector T

!
1 can be found using Eq. (6.15):

T
!

1 ¼ ½K11��1	P!1 �
�
K12

�
T
!

2


 ¼ ½K11��1

0@8<:
0:47122

0:73825

9=;�
8<:

�0:49951

0

9=;f100g
1A

¼
24 1:7493 1:5626

1:5626 3:1841

358<:
50:4222

0:7382

9=; ¼
8<:

89:3567

81:1402

9=;�C

(E.4)

EXAMPLE 6.8
The finite element analysis of heat transfer along a one-dimensional fin using two elements and three nodes leads to the equations�

Ke� T!e ¼ P
!e (E.1)

or 264 0:50893 �0:49951 0

�0:49951 1:01786 �0:49951

0 �0:49951 0:55919

375
8><>:

T1

T2

T3

9>=>; ¼

8><>:
0:23561

0:47122

0:73825

9>=>; (E.2)

If the temperature of node 1, T1, is specified as 100 �C, find the temperatures of nodes 2 and 3 by solving Eq. (E.2) using Method

2 of Section 6.3.

Approach: Use Method 2 of Section 6.3.
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EXAMPLE 6.8 dcont’d

Solution

To incorporate the known condition T1 ¼ T �
1 ¼ 100 according to Method 2 of Section 6.3, we modify the right-hand side

components as Pi ¼ Pi�K1i T
�
1 ; i ¼ 1, 2, 3, set K1i ¼ Ki1 ¼ 0; i ¼ 2, 3 and K11 ¼ 1, and change the value of P1 equal to T �

1 ¼ 100 so

that Eq. (E.2) becomes266664
1 0 0

0 1:01786 �0:49951

0 �0:49951 0:55919

377775
8>>>><>>>>:

T1

T2

T3

9>>>>=>>>>; ¼

8>>>><>>>>:
100

0:47122� ð� 0:49951Þð100Þ

0:73825� ð0Þð100Þ

9>>>>=>>>>; ¼

8>>>><>>>>:
100:0

50:42222

0:73825

9>>>>=>>>>; (E.3)

The solution of Eq. (E.3) gives the desired solution8><>:
T1

T2

T3

9>=>; ¼

8><>:
100:0

89:3567

81:1402

9>=>;�C (E.4)

EXAMPLE 6.9
Find the solution of Eq. (E.2) of Example 6.7 using Method 3 of Section 6.3 when the temperature of node 1, T1, is specified as

100 �C.
Approach: Use Method 3 of Section 6.3.

Solution

The equations to be solved are given by264 0:50893 �0:49951 0

�0:49951 1:01786 �0:49951

0 �0:49951 0:55919

375
8><>:

T1

T2

T3

9>=>; ¼

8><>:
0:23561

0:47122

0:73825

9>=>; (E.1)

To incorporate the known condition T1 ¼ T �
1 ¼ 100 according to Method 3, we multiply the diagonal term K11 by a large

number (106) and change the corresponding right-hand side element P1 to K11 � 106 � T �
2 ¼ 0.50893 � 106 �

100 ¼ 50.893 � 106. Thus, Eq. (E.1) is modified as264 0:50893� 106 �0:49951 0

�0:49951 1:01786 �0:49951

0 �0:49951 0:55919

375
8><>:

T1

T2

T3

9>=>; ¼

8><>:
50:893 � 106

0:47122

0:73825

9>=>; (E.2)

The solution of Eq. (E.2) gives the desired solution8><>:
T1

T2

T3

9>=>; ¼

264 100:0

89:3567

81:1403

375�C (E.3)

6.4 PENALTY METHOD

The penalty method can be used to implement the boundary conditions in a unified and simple manner. First, we consider
the method for implementing a single point boundary condition:

Fp ¼ F�
p (6.19)
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where F�
p is a constant denoting the specified value of the displacement dof Fp. Imagine a spring with large stiffness C

oriented in the direction of the dof Fp with one end attached to the structure at point A, which undergoes a displacement
Fp, and the other end fixed at point O as shown in Fig. 6.6.

When the point A of the structure undergoes a displacementFp, assume that the other end of the spring, pointO, moves by

a distance F�
p so that the net deformation of the spring is

�
Fp �F�

p


. The strain energy of the spring due to this net

deformation will be 1
2C

�
Fp � F�

p

2
. The total potential energy of the system, including the strain energy of the spring, will be

Im ¼ 1
2
F
!T ½K�F!� F

!T
P
!þ 1

2
C
�
Fp � F�

p

2
(6.20)

where F
!

and P
!

represent the vectors of nodal displacements and the corresponding nodal loads of the system. The equi-
librium equations of the system can be found by minimizing the total potential energy:

vIm
vFi

¼ 0; i ¼ 1; 2;.; n

or

½K�F!� P
!þ

n
0 0 . 0

�
CF�

p


0 . 0

oT

(6.21)

or 2666666666664

K1;1 . K1;p�1 K1;p K1;pþ1 . Ki;M

«

Kp�1;1 . Kp�1;p�1 Kp�1;p Kp�1;pþ1 . Kp�1;M

Kp;1 . Kp;p�1 Kp;p Kp;pþ1 . Kp;M

Kpþ1;1 . Kpþ1;p�1 Kpþ1;p Kpþ1;pþ1 . Kpþ1;M

«

KM;1 . KM;p�1 KM;p KM;pþ1 . KM;M

3777777777775

8>>>>>>>>>>><>>>>>>>>>>>:

F1

«

Fp�1

Fp

Fpþ1

«

FM

9>>>>>>>>>>>=>>>>>>>>>>>;
¼

8>>>>>>>>>>><>>>>>>>>>>>:

P1

«

Pp�1

Pp þ CF�
p

Ppþ1

«

PM

9>>>>>>>>>>>=>>>>>>>>>>>;
(6.22)

C

O

A

Φp

Φp
∗

Structure

FIGURE 6.6 Spring connected to point A.
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where Pp is the load applied along the dof Vp (if any). If the value of C is sufficiently large compared to the stiffness co-
efficients Kij, the solution of Eq. (6.22) yields a value ofVp approximately equal to F�

p. This can be seen by writing the pth
row of Eq. (6.22) in scalar form:

Kp;1F1 þ.þ Kp;p�1Fp�1 þ Kp;pFp þ Kp;pþ1Fpþ1 þ.þ Kp;MFM ¼ Pp þ CF�
p (6.23)

By dividing Eq. (6.23) throughout by C, we obtain

Kp;1

C
F1 þ.þ Kp;p�1

C
Fp�1 þ Kp;p

C
Fp þ Kp;pþ1

C
Fpþ1 þ.þ Kp;M

C
FM ¼ Pp

C
þ F�

p (6.24)

If C is chosen to be large compared the stiffness coefficients Kp;i; i ¼ 1; 2;.;M;Eq. (6.24) yields

FpzF�
p (6.25)

which is the desired result. In practice, the value of C can be chosen as

C ¼ max

i ¼ 1; 2;.;M; j ¼ 1; 2;.;M
jKi;jj3106 (6.26)

Notes

1. The spring with stiffness C is introduced only to facilitate the derivation of Eq. (6.22). In practice, the system equations are

modified by adding C to the diagonal stiffness coefficient Kp,p and
�
C F�

p


to the corresponding element of the load, Pp.

2. If several boundary conditions of the type shown in Eq. (6.18) are to be incorporated, the preceding procedure is repeated for

each boundary condition separately.

3. As can be seen in Eq. (6.25), the penalty method is an approximate method. The method can be seen to be similar to Method

3, presented in Section 6.3.

EXAMPLE 6.10
A stepped bar is subjected to an axial (vertical) force P ¼ 108 N at node 2 as shown in Fig. 6.7. If the areas of the cross section of

the steps are given by A1 ¼ 0.1 m2 and A2 ¼ 0.05 m2 and Young’s moduli E1 ¼ 200 GPa and E2 ¼ 70 GPa, determine the

following:

a. The displacement of node 3.

b. The displacements of nodes and the stresses in the two steps.

Continued

2 mm

Rigid floor

P

A1, E1

A2, E2

u3

u2

u1

2

1

3

1= 0.50 m

2= 0.25 m

FIGURE 6.7 Stepped bar under axial force.
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EXAMPLE 6.10 dcont’d

Solution

a. Using an axial bar element to model each step, the stiffness matrices of the elements can be found as

(E.1)

(E.2)

The system (assembled) stiffness matrix is

(E.3)

The displacement and load vectors of the system are

u! ¼

8><>:
u1

u2

u3

9>=>;; P
! ¼

8><>:
P1

108

0

9>=>; (E.4)

where P1 indicates the reaction at the fixed node 1. The solution of the system equations,

½k � u! ¼ P
!

(E.5)

using the boundary condition u1 ¼ 0, is given by

u1 ¼ 0; u2 ¼ u3 ¼ 0:0025 m ¼ 2:5 mm (E.6)

Since the displacement u3 is larger than the space (gap) available, the node contacts the floor and hence the maximum

displacement of node 3 will be 2 mm.

b. Now we seek the solution of system Eq. (E.5) using the new boundary conditions

u1 ¼ 0 and u3 ¼ u�
3 ¼ 0:002 m (E.7)

In order to incorporate the boundary conditions of Eq. (E.7) using the penalty method, we find a large number C that is larger

than the stiffness coefficients. The value of C is selected as

C ¼ max

i; j

��ki;j��� 106 ¼ 	
54� 109



106 ¼ 54� 1015 (E.8)

This value of C is added to the diagonal elements k [1,1] and k [3,3]. In addition, the value of u�
3 ¼ 0:002 C is added to the

third element of the load vector so that p (3) ¼ 0.002 (54 � 1015) ¼ 0.108 � 1015. Thus, the modified system equations are

given by 264
	
40� 109 þ 54� 1015


 �40� 109 0

�40� 109 54� 109 �14� 109

0 �14� 109 ð14� 109 þ 54� 1015


375
8><>:

u1

u2

u3

9>=>; ¼

8><>:
0

108

0:108� 1015

9>=>;
or 264

	
40þ 54� 106


 �40 0

�40 54 �14

0 �14 ð14þ 54� 106


375
8><>:

u1

u2

u3

9>=>; ¼

8><>:
0

0:1

0:108� 106

9>=>; (E.9)
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EXAMPLE 6.10 dcont’d

The solution of Eq. (E.9) gives the nodal displacements:

u! ¼

8><>:
u1

u2

u3

9>=>; ¼

8><>:
0:0000

0:0024

0:0020

9>=>;mm (E.10)

The stresses in the elements can be computed as

s1 ¼ E1ε1 ¼ E1

�
Dl1
l1

�
¼ E1

�
u2 � u1

l1

�
¼ 	

200� 109

�0:0024� 0:0000

0:5

�
¼ 0:96� 109 Pa ¼ 0.96 GPa

s2 ¼ E2ε2 ¼ E2

�
Dl2
l2

�
¼ E2

�
u3 � u2

l2

�
¼ 	

70� 109

�0:0020� 0:0024

0:25

�
¼ �0:112� 109 Pa ¼ �0:112 GPa

6.5 MULTIPOINT CONSTRAINTS: PENALTY METHOD

The boundary conditions of the type indicated by Eq. (6.18) are also known as single point constraints. A multipoint
constraint involves satisfying a relationship among multiple displacement dof. Thus, a multipoint constraint can be stated
as

a1F1 þ a2F2 þ.þ amFm ¼ a0 (6.27)

where ai, i ¼ 0, 1, 2, ., m are known constants and Vi, i ¼ 1, 2, ., m are the displacement dof. To illustrate
the procedure of incorporating a multipoint constraint in the solution of the problem, we consider a simple form of
Eq. (6.27) as

apFp þ aqFq ¼ a0 (6.28)

Let the original potential energy of the system, without a consideration of Eq. (6.28), be

I0 ¼ 1
2
F
!T ½K�F!� F

!T
P
!

(6.29)

When Eq. (6.28) is to be considered, a penalty term is added to Eq. (6.29) and the modified potential energy of the
system is defined as

Im ¼ 1
2
F
!T ½K�F!þ 1

2
CðapFp þ aqFq � a0Þ2 � F

!T
P
!

(6.30)

where C is a large number. If C ¼ 0, the penalty term will be zero and the constraint is ignored. As the value of C increases,
the value of the penalty term increases and the value of Im also increases. Since the potential energy (Im) assumes a min-
imum value only when the constraint, Eq. (6.28) is satisfied, we minimize the modified potential energy, Im. By using the
conditions for the minimum of Im, we obtain

vIm
vFi

¼ 0; i ¼ 1; 2.m (6.31)
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The elements of the original stiffness matrix and the original load vector get modified because of the consideration of
Eq. (6.28) as �

Kpp Kpq

Kqp Kqq

�
0

"
Kpp þ Ca2

p Kpq þ Capaq

Kqp þ Capaq Kqq þ Ca2
q

#
(6.32)

�
Pp

Pq

�
0

�
Pp þ Ca0ap

Pq þ Ca0aq

�
(6.33)

The equations for the equilibrium of forces along the directions of Vp and Vq are given by

vIm
vFp

¼ 0

or

Pp ¼ � v

vFp

"Xm
i¼ 1

KpiF
2
i þ

1
2
CðapFp þ aqFq � a0Þ2

#

¼ �
Xm
i¼ 1

KpiFi � CapðapFp þ aqFq � a0Þ

(6.34)

vIm
vFq

¼ 0

or

Pq ¼ � v

vFq

"Xm
i¼ 1

KqiF
2
i þ

1
2
CðapFp þ aqFq � a0Þ2

#

¼ �
Xm
i¼ 1

KqiFi � CaqðapFp þ aqFq � a0Þ

(6.35)

where Pp and Pq denote the reactions along the dof Vp and Vq, respectively. If the constant C is chosen to be substantially
larger than the elements of the stiffness matrix, the reactions can be found as

Ppz� CapðapFp þ aqFq � a0Þ (6.36)

Pqz� CaqðapFp þ aqFq � a0Þ (6.37)

EXAMPLE 6.11
Two springs with stiffnesses k1 ¼ 1000 lb/in and k2 ¼ 2000 lb/in are connected to a rigid bar OA of negligible mass, and a load

P ¼ 500 lb is applied at point B as shown in Fig. 6.8A.

a. By modeling the system using two spring elements, identify the boundary conditions of the system.

b. Find the displacements of the springs, v2 and v4.

Solution

a. When the springs are modeled as linear spring elements, the element stiffness matrices are given by

(E.1)
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EXAMPLE 6.11 dcont’d

(E.2)

By introducing the displacement of the load-application point as an additional dof, v5, the assembled stiffness matrix of the

system can be expressed as

(E.3)

Continued

(A)

(B)

100"

90"

70"
30"

O A
v2

v5

vA
v4

2 4

3

1

30" 40" 20" 10"

O

P

A

k1

k2

v2

v1

v3

v5

v4

B = 5

θ

FIGURE 6.8 System involving a multipoint constraint.
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EXAMPLE 6.11 dcont’d

The system load vector is given by

P
! ¼

8>>>>>><>>>>>>:

0

0

0

0

P

9>>>>>>=>>>>>>;
¼

8>>>>>><>>>>>>:

0

0

0

0

500

9>>>>>>=>>>>>>;
(E.4)

Boundary conditions of the system:

Since nodes 1 and 3 are fixed,

v1 ¼ 0; v3 ¼ 0 (E.5)

Since the rigid bar remains straight (with rigid body rotation about the hinge point O), the nodal displacements are related as

follows:

tan q ¼ v2
30

¼ v5
70

¼ v4
90

or

v2
30

� v5
70

¼ 0;
v4
90

� v5
70

¼ 0

or

v2 � 3

7
v5 ¼ 0; v4 � 9

7
v5 ¼ 0; (E.6)

b. To incorporate the boundary conditions of Eq. (E.5), we multiply the stiffness elements K(1, 1) and K(3, 3) by a number

C ¼ 106, large in comparison to the values of the elements of the stiffness matrix, so that

(E.7)

To apply the multipoint constraints of Eq. (E.6), we use Eq. (6.33). For the first constraint of (E.6), we note that a2 ¼ 1, a5 ¼ �3
7;

and a0 ¼ 0. This modifies the corresponding stiffness elements as

(E.8)

The corresponding elements of the load vector,

�
P2

P5

�
, remain unaltered due to the first multipoint constraint of Eq. (E.6)

because a0 ¼ 0. Similarly, for the second constraint of Eq. (E.6), we note that a4 ¼ 1, a5 ¼ �9
7; and a0 ¼ 0. This modifies the

corresponding stiffness elements as

(E.9)
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EXAMPLE 6.11 dcont’d

The corresponding elements of the load vector,

�
P4

P5

�
, remain unaltered due to the second multipoint constraint of Eq. (E.6)

because a0 ¼ 0. By incorporating the boundary conditions and the multipoint constraints as indicated in Eqs. (E.7) to (E.9), the

final (modified) system equations can be expressed as

½K � V! ¼ P
!

(E.10)

where

½K � ¼

26666664

	
1000þ 106


 �1000 0 0 0

�1000 1:001� 106 0 0 �428:57� 103

0 0 ð2000þ 106

 �2000 0

0 0 �2000 1:002� 106 �1285:71� 103

0 �428:57� 103 0 �1285:71� 103 ð183:67� 103 þ 1653:06� 103



37777775 (E.11)

V
! ¼

8>>>>>><>>>>>>:

v1

v2

v3

v4

v5

9>>>>>>=>>>>>>;
(E.12)

and

P
! ¼

8>>>>>><>>>>>>:

0

0

0

0

500:0

9>>>>>>=>>>>>>;
(E.13)

The solution of Eq. (E.10) gives

V
! ¼

8>>>>>><>>>>>>:

v1

v2

v3

v4

v5

9>>>>>>=>>>>>>;
¼

8>>>>>><>>>>>>:

0:0001

0:0614

0:0004

0:1842

0:1435

9>>>>>>=>>>>>>;
(E.14)

6.6 SYMMETRY CONDITIONS: PENALTY METHOD

To model a hexagonal pipe subjected to internal pressure shown in Fig. 6.9A, a 30� segment (one-twelfth of the cross
section of the pipe) shown in Fig. 6.9B is used for finite element idealization. In order to maintain the symmetry of the
pipe, the node points lying on the lines AB and CD should have zero displacement perpendicular to the lines AB and CD,
respectively. For example, a typical point P lying on the line CD should have zero displacement along the line PN. If u2p�1
and u2p denote the components of displacement of node P parallel to the x and y axes, respectively, the displacement of
node P along the normal direction PN is constrained to be zero:

�u2p�1 sin qþ u2p cos q ¼ 0 (6.38)

Eq. (6.38) can be seen to be a multipoint constraint. To incorporate Eq. (6.38) using the penalty method, we formulate a
modified potential energy function as

Im ¼ 1
2
u!e T�

ke� u!e � u!e T
P
!e þ 1

2
Cð� u2p�1 sin qþ u2p cos qÞ2 (6.39)
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6.6.1 Directional Constraint

Let a node p be constrained to move along a specified direction d
!

in three-dimensional space as shown in Fig. 6.10. If the

direction cosines of d
!

are l ¼ cos
�
d
!
; x

;m ¼ cos

�
d
!
; y

; and n ¼ cos

�
d
!
; z

, the plane perpendicular to the direction

d
!

is defined by the direction cosines (l, m, n). By using the penalty method, the elements of the stiffness matrix corre-
sponding to the dof u3p�2, u3p�1, and u3p will be modified by adding the following terms:

(6.40)

(A) Y

D

30°C

A
p

B
X

(B)

A

C

D

P

n

N

u2p −1

u2p

B

Y

X

θ

FIGURE 6.9 Symmetry conditions for hexagonal pipe.
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On the other hand, if a node p is constrained to move in a plane, defined by the direction cosines l, m, and n of its
normal, the application of the penalty method leads to the addition of the following terms to the stiffness elements cor-
responding to the dof u3p�2, u3p�1, and u3p:

(6.41)

6.7 RIGID ELEMENTS

Rigid elements are artificial or hypothetical elements that can be used to connect finite elements when (1) different
elements have different types of dof and (2) the nodes of an element do not coincide with the nodes of another connecting
element. The situation is shown in Fig. 6.11A in which a beam element, 4, is connected to a constant strain triangle
(CST) element, 2, at node 6. The beam element 4 has the dof u6, v6, q6, u7, v7, and q7 as shown in Fig. 6.11B while the CST
element 2 has the dof u2, v2, u4, v4, u5, and v5 as shown in Fig. 6.11C. Because node 6 does not coincide with any of the
nodes 2, 4, and 5 of the CST element, the description of the complete set of dof associated with the nodes lying on element
2 should include u4, v4, u5, v5, u6, v6, and q6. It is possible to express the dof u6, v6, and q6 of node 6 in terms of the dof of
the nodes 4 and 5 (u4, v4, u5, v5) lying on the edge 45 of the triangular element on which node 6 lies. The details of the
procedure are given below.

Assuming that the u-component of displacement varies linearly between nodes 4 and 5 as

uðsÞ ¼ c1 þ c2s; c1; c2 ¼ constants (6.42)

y

x

z

d

p

FIGURE 6.10 Directional constraint.
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FIGURE 6.11 Connecting finite elements with different types of degrees of freedom.
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where s is the distance from node 4 along the line 45, the u-component of displacement at node 6, u6, can be expressed in
terms of u4 and u5 as

u6 ¼ uðs ¼ aÞ ¼ b

aþ b
u4 þ a

aþ b
u5 (6.43)

where a and b are the distances of node 6 from nodes 4 and 5, respectively. Similarly, assuming a linear variation for the
v-component of displacement between the nodes 4 and 5, the v-component of displacement at node 6, v6, can be expressed
in terms of v4 and v5 as

v6 ¼ vðs ¼ aÞ ¼ b

aþ b
v4 þ a

aþ b
v5 (6.44)

To relate the angular displacement q6 in terms of u4, v4, u5, and v5, we use the relation

q6 ¼ ðmoment due to u4 and v4 about 6Þ=aþ ðmoment due to u5 and v5 about 6Þ=b

¼ ðu4a cos aþ v4a sin aÞ
a

� ðu5b cos aþ v5b sin aÞ
b

¼ u4 cos aþ v4 sin a� u5 cos a� v5 sin a

(6.45)

Thus, the dof u6, v6, and q6 can be expressed in terms of u4, v4, u5, and v5 in matrix form as

8><>:
u6
v6
q6

9>=>; ¼

2666666664

b

aþ b
0

a

aþ b
0

0
b

aþ b
0

a

aþ b

cos a sin a �cos a �sin a

3777777775

8>>>>>>>>>>><>>>>>>>>>>>:

u4

v4

u5

v5

9>>>>>>>>>>>=>>>>>>>>>>>;
h½T0�

8>>><>>>:
u4

v4
u5
v5

9>>>=>>>; (6.46)

One method of incorporating Eq. (6.47) is to treat the dof as multipoint constraints:

u6 � b

aþ b
u4 � a

aþ b
u5 ¼ 0 (6.47)

v6 � b

aþ b
v4 � a

aþ b
v5 ¼ 0 (6.48)

q6 � u4 cos a� v4 sin aþ u5 cos aþ v5 sin a ¼ 0 (6.49)

Another method is to imagine the presence of a rigid link or rigid element that contains the dof to be related so that the
transformation of the stiffness matrix [k] of the rigid element can be expressed as

½k� ¼ ½T �T ½kb�½T� (6.50)

where [kb] is the stiffness matrix of the beam element with dof {u6, v6, q6, u7, v7, q7}
T, [k] is the stiffness matrix corre-

sponding to the dof { u4, v4, u5, v5, u6, v6, q6}
T, and [T] is the transformation matrix given by

½T � ¼

26664
½T0� ½0�
3� 4 3� 3

½0� ½I�
3� 4 3� 3

37775 (6.51)
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with

½T0� ¼

26666664
b

aþ b
0

a

aþ b
0

0
b

aþ b
0

a

aþ b

cos a sin a �cos a �sin a

37777775 (6.52)

and

½I� ¼

264 1 0 0

0 1 0

0 0 1

375 (6.53)

6.7.1 Stiffened Plates and Shells

Often, one-dimensional elements are used to stiffen plates and shells. Fig. 6.12 shows an axial load carrying (bar) element
2 attached to a quadrilateral element 1 undergoing translational deformation (with no bending). In this case, the dof of the
bar element, in the (x, y) coordinate system, will be u5, v5, u6, and v6. The associated 4 � 4 stiffness matrix, [kb], can be
transformed to the 8 � 8 stiffness matrix of the quadrilateral element [k] with dof ui, vi, i ¼ 1, 2, 3, 4 as

½k�
8�8

¼ ½T �T
8�4

½kb�
4�4

½T �
4�8

(6.54)

where the transformation matrix [T] can be generated using equations similar to Eqs. (6.43) and (6.44). Eq. (6.54) can be
considered to be associated with a rigid element.

2

v2

v5

v3

v4

v6

v1

y

x

u2

u5

u3

u4

u6

u1

5

3

4

6

Element 2

Element 1

1

FIGURE 6.12 Stiffening element.
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Notes

Rigid elements are available in many commercial finite element software packages. The user needs to create an element at the

desired location and assign it as a rigid element. An alternate procedure is to treat the equations associated with the rigid element

as multipoint constraint equations. When rigid elements are used, the analyst need not formulate the multipoint constraint

equations.

Rigid elements can be used in other applications as in the case of spot welds used to connect two bodies (such as overlapping

plates).

A limitation of the rigid elements is that they cannot expand or contract with temperature change.

REVIEW QUESTIONS

6.1 Give brief answers to the following questions.

1. What is the coordinate transformation matrix in two dimensions?

2. What is the relation between
�
lðeÞ

�
;
h
lðeÞ

iT
, and

h
lðeÞ

i�1
?

3. What is meant by compatibility at element nodes in the assembly of element matrices and element vectors?
4. What is a multipoint constraint?
5. What is the purpose of the penalty method?
6. What type of condition is to be satisfied to maintain symmetry on a surface in a two-dimensional problem?
7. Why is a local coordinate used to derive the element matrices?
8. Why is coordinate transformation required in finite element analysis?

6.2 Fill in the blank with a suitable word.

1. The number of dof to be specified at boundaries depends on the ————————— of the problem.
2. If the equations are derived using a variational method, the ———————— boundary conditions are implicitly

satisfied.
3. To incorporate the dof Fi as zero, we can delete the ——————————— and

——————————————in the global stiffness matrix of the system.
4. Rigid elements are used to connect two elements when the nodes of one element do not .... with the nodes of

another connecting element.

6.3 Indicate whether each of the following statements is true or false.

1. Coordinate transformation of element matrices is not required when the field variable is temperature in a thermal
problem.

2. Coordinate transformation of element matrices is not required when the field variable is displacement in a stress anal-
ysis problem.

3. In general, the local coordinates will have different directions for different elements.
4. The coordinate transformation matrix of element e,

�
lðeÞ

�
, is always a square matrix of direction cosines.

5. The coordinate transformation matrix is orthogonal.
6. Nodal unknowns are always displacements in a solid/structural mechanics problem.
7. The penalty method implements the boundary conditions exactly.
8. Rigid elements are hypothetical elements.
9. Rigid elements can expand or contract with temperature change.

6.4 Match the following.

1. Rigid element (a) Multipoint constraint

2. Equation in terms of several dof (b) Symmetry condition

3. Perpendicular displacement zero (c) Stiffening of a plate

4. Implements all types of constraints (d) Single-point constraint

5. Increase diagonal stiffness element and the right side elements (e) Penalty method
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PROBLEMS

6.1 Modify and solve the following system of equations using each of the methods described in Section 6.3 for the
conditions V1 ¼ V2 ¼ V3 ¼ 2, V4 ¼ 1, V8 ¼ V9 ¼ V10 ¼ 10:

1:45F1 � 0:2F2 � 1:25F4 ¼ 0

�0:2F1 þ 2:45F2 � 1:25F5 �F6 ¼ 0

F3 � 0:5F6 � 0:5F7 ¼ 0

�1:25F1 þ 2:90F4 � 0:4F5 � 1:25F8 ¼ 0

�1:25F2 � 0:4F4 þ 4:90F5 �F6 � 1:75F9 � 0:5F10 ¼ 0

�F2 � 0:5F3 � F5 þ 4F6 � F7 � 0:5F10 ¼ 0

�0:5F3 � F6 þ 2F7 � 0:5F10 ¼ 0

�1:25F4 þ 1:45F8 � 0:2F9 ¼ 0

�1:75F5 � 0:2F8 þ 1:95F9 ¼ 0

�0:5F5 � 0:5F6 � 0:5F7 þ 1:5F10 ¼ 0

6.2 Derive the coordinate transformation matrix for the one-dimensional element shown in Fig. 6.13, where qi and
Qi denote, respectively, the local (x, y) and the global (X, Y) nodal displacements of the element.

6.3 If the element characteristic matrix of an element in the finite element grid shown in Fig. 6.14 is given by

�
KðeÞ� ¼

26664
3 1 1 1

1 3 1 1

1 1 3 1

1 1 1 3

37775
find the overall or system characteristic matrix after applying the boundary conditions Vi ¼ 0, i ¼ 11 to 15. Can the
bandwidth be reduced by renumbering the nodes?

y
Y

X

x

Q1

Q2

Q3 q1

q2

q5

q4

Q5

Q6

Q4

q3

q6

i

j

θ

FIGURE 6.13 One-dimensional element in two coordinate systems.
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6.4 Incorporate the boundary conditions f1 ¼ 3:0 and f3 ¼ �2:0 using each of the methods described in Section 6.3
to the following system of equations:26664

1:5 �0:5 2:0 0:0

�0:5 2:5 �1:0 �1:5

2:0 �1:0 3:0 0:5

0:0 �1:5 0:5 1:0

37775
8>>><>>>:

f1

f2

f3

f4

9>>>=>>>; ¼

8>>><>>>:
3:0

�1:0

1:5

�0:5

9>>>=>>>;
6.5 Consider a node that is supported by rollers as indicated in Fig. 6.15A. In this case, the displacement normal to

the roller surface XY must be zero:

Q ¼ Q5 cos aþ Q6 sin a ¼ 0 (P.1)

where a denotes the angle between the normal direction to the roller surface and the horizontal (Fig. 6.15B). Con-
straints, in the form of linear equations, involving multiple variables are known as multipoint constraints. Indicate
two methods of incorporating the boundary condition of Eq. (P.1) in the solution of equations.

6.6 As stated in Problem 6.5, the displacement normal to the roller support (surface) is zero. To incorporate the bound-
ary condition, sometimes a stiff spring element is assumed perpendicular to the roller support surface as shown in
Fig. 6.15C. In this case, the system will have four elements and eight dof. The boundary conditions
Q1 ¼ Q2 ¼ Q7 ¼ Q8 ¼ 0 are incorporated in this method. Show the structure of the assembled equations for this
case and discuss the advantages and disadvantages of the approach.

6.7 The stiffness matrix of a planar frame element in the local coordinate system is given as follows (see Fig. 6.16):

½k� ¼

2666666666666666666666664

EA

L
0 0

�EA

L
0 0

0
12EI

L3

6EI

L2 0
�12EI

L3

6EI

L2

0
6EI

L2

4EI
L

0
�6EI

L2

2EI
L

�EA

L
0 0

EA

L
0 0

0
�12EI

L3

�6EI

L2 0
12EI

L3

�6EI

L2

0
6EI

L2

2EI
L

0
�6EI

L2

4EI
L

3777777777777777777777775
where E is Young’s modulus, A is the area of cross section, I is the moment of inertia, and L is the length. Using this,
generate the stiffness matrices of the three elements shown in Fig. 6.17 in the local coordinate system and indicate
the respective local dof.

15

14 9

13

12 7 4 2

11 6 3 1

8 5

10

FIGURE 6.14 A finite element grid.
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FIGURE 6.15 Node supported by a roller.
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6.8 The transformation matrix between the local dof qi and the global dof Qi for the planar frame element shown in
Fig. 6.16 is given by

½l� ¼

2666666664

lox mox 0 0 0 0

loz moz 0 0 0 0

0 0 1 0 0 0

0 0 0 lox mox 0

0 0 0 loz moz 0

0 0 0 0 0 1

3777777775
where lox ¼ cos q, mox ¼ sin q, loz ¼ cos (90 þ q) ¼ �sin q, and moz ¼ sin (90 þ q) ¼ cos q. Using this, generate
the transformation matrices for the three elements shown in Fig. 6.17.

L

Z

90° +

z

X

x

q1

q2

q6

q5

q4

q3
Q1

Q5

Q4

Q2

Q3

Q6

θθ

FIGURE 6.16 Planar frame element.

Z

X

300 Ib-in

500 Ib

1

2

3

36"

60"

200 Ib

E = 30 × 106 psi, I = 2 in4, A = 6 in2

FIGURE 6.17 A planar frame.
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6.9 Consider the coordinate transformation matrix, [l], of element 1 of Fig. 6.17 in Problem 6.7. Show that it is
orthogonaldthat is, show that [l]�1 ¼ [l]T.

6.10 Consider the coordinate transformation matrix, [l], of element 2 of Fig. 6.17 in Problem 6.7. Show that it is
orthogonaldthat is, show that [l]�1 ¼ [l]T.

6.11 Consider the coordinate transformation matrix, [l], of element 3 of Fig. 6.17 in Problem 6.7. Show that it is
orthogonaldthat is, show that [l]�1 ¼ [l]T.

6.12 Using the results of Problems 6.7 and 6.8, generate the stiffness matrices of the three elements shown in Fig. 6.17 in
the global coordinate system. Derive the assembled stiffness matrix of the system.

6.13 For the assembled stiffness matrix derived in Problem 6.12, apply the boundary conditions, derive the final equi-
librium equations, and solve the resulting equations.

6.14 The local stiffness matrix, [k], and the corresponding coordinate transformation matrix, [l], of a planar truss element
(see Fig. 6.18A) are given by

½k� ¼ AE

L

�
1 �1

�1 1

�
; ½l� ¼

�
lox mox 0 0

0 0 lox mox

�
where A is the cross-sectional area, E is Young’s modulus, L is the length, lox ¼ cos q, and mox ¼ sin q.

Y

X

Q2

q1

q2

x

L

Y

x

X

Q1

Q4

Q3

x

1

2

P

40"

30"

E = 30 × 106 psi, A = 1 in2

100 Ib

(A)

(B)

θ

FIGURE 6.18 Planar truss.
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a. Generate the global stiffness matrices of the two elements shown in Fig. 6.18B.
b. Find the assembled stiffness matrix, apply the boundary conditions, and find the displacement of node P of the

two-bar truss shown in Fig. 6.18B.
6.15 To incorporate a specified displacement boundary condition, the penalty method can be used. To indicate the step-

by-step approach used in the penalty approach, let the boundary condition to be enforced be of the form
Wi ¼ a ¼ specified value of the displacement Wi, and let the system equations be of the form [K] W

!¼ P
!
.

a. Set the value of Pi in the load vector P
!

as zero.
b. Modify the stiffness matrix [K] by adding a large number C to the diagonal coefficient Kii. Usually, the value of

C is taken as 104 times the maximum stiffness coefficient in the matrix [K]; that is, C ¼ maximum (Kij) � 104.
c. Modify the load vector P

!
by adding the number Ca to Pi.

d. Solve the resulting (modified) system of equations, [K]W
!¼ P

!
to find nodal displacement vector of the system,

W
!
. This will yield a value of Wi ¼ a (approximately).

e. The reaction Pi corresponding to the specified displacement Wi ¼ a can be found as

Pi ¼ eCWi ¼ eCa

Using the penalty method, solve the equilibrium equations of Example 1.2:

106

264 4 �4 0

�4 6 �2

0 �2 2

375
8><>:

F1

F2

F3

9>=>; ¼

8><>:
P1 ¼ 0ðset to zeroÞ

0

1

9>=>;
by enforcing the boundary condition, V1 ¼ 0. Also find the reaction at the fixed end, P1.

6.16 The finite element analysis of a fixed-fixed beam using two elements results in the following system equation:�
Ke�W!e ¼ P

!e
where

and

W
!e ¼

8>>>>>>>><>>>>>>>>:

W1 ¼ 0

W2 ¼ 0

W3

W4

W5 ¼ 0

W6 ¼ 0

9>>>>>>>>=>>>>>>>>;
; P
!e ¼

8>>>>>>>><>>>>>>>>:

P1

P2

P3 ¼ �1000

P4 ¼ 0

P5

P6

9>>>>>>>>=>>>>>>>>;
The end nodes 1 and 3 of the finite element model are fixed (with dof Wi ¼ 0, i ¼ 1, 2, 5, 6) while the middle node
(with dof W3 and W4) is subjected to loads of �1000 lb and 0 lb-in along the directions of W3 and W4, respectively.
Find the values of the displacement components at node 2 and reactions at the fixed nodes 1 and 3 using Method 1
of Section 6.3.

6.17 Find the displacement solution of the fixed-fixed beam described in Problem 6.16 using Method 2 of Section 6.3.
6.18 Find the displacement solution of the fixed-fixed beam problem described in Problem 6.16 using Method 3 of

Section 6.3.
6.19 The finite element analysis of a planar truss, with six elements or bars and four nodes, resulted in the following

equilibrium equations:
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2666666666666664

5 1 0 0 �4 0 �1 �1

1 5 0 �4 0 0 �1 �1

0 0 5 �1 �1 1 �4 0

0 �4 �1 5 1 �1 0 0

�4 0 �1 1 5 �1 0 0

0 0 1 1 �1 5 0 �4

�1 �1 �4 0 0 0 5 1

�1 �1 0 0 0 �4 1 5

3777777777777775

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

U1

U2

U3

U4

U5

U6

U7

U8

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

¼

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

P1

P2

P3

P4

P5

P6

P7

P8

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
The dof Ui, i ¼ 5, 6, 7, 8 are zero (fixed) and loads of magnitude 0, 1000, 0, 0 lb are applied along the dof U1, U2,
U3, U4, respectively. Determine the unknown nodal displacements and the reactions at the fixed nodes of the truss
using Method 1 of Section 6.3.

6.20 Find the nodal displacements of the truss described in Problem 6.19 using Method 2 of Section 6.3.
6.21 Find the nodal displacements of the truss described in Problem 6.19 using Method 3 of Section 6.3.
6.22. The heat transfer analysis of a plate fin using four triangular simplex elements and six nodes lead to the following

thermal equilibrium equations:2666666664

29:606 �8:5475 �13:521 0 0 0

�8:5475 27:0935 0 �14:777 0 0

�13:521 0 114:679 �27:314 �61:009 0

0 �14:777 �27:314 110:4005 0 �61:892

0 0 �61:009 0 134:778 �68:471

0 0 0 �61:892 �68:471 133:012

3777777775

8>>>>>>>><>>>>>>>>:

T1

T2

T3

T4

T5

T6

9>>>>>>>>=>>>>>>>>;
¼

8>>>>>>>><>>>>>>>>:

680:9

1060:65

1233:05

656:0

127:15

95:35

9>>>>>>>>=>>>>>>>>;
If each of the nodal temperatures T5 and T6 is specified as 50 �C, determine the other nodal temperatures using
Method 1 of Section 6.3.

6.23 Find the nodal temperatures of the heat transfer problem stated in Problem 6.22 using Method 2 of Section 6.3.
6.24 Find the nodal temperatures of the heat transfer problem stated in Problem 6.22 using Method 3 of Section 6.3.
6.25 Consider the following equilibrium equations of a structure:�

ke� u!e ¼ p!e (P.2)

where

u!e ¼

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

u1
u2

u3
u4
u5
u6
u7

u8

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

; p!e ¼

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

p1
p2

p3
p4
p5
p6
p7

p8

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

¼

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

�0:5

�0:866

0

0

P5

0

P7

P8

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
and
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½k� ¼

266666666666664

57:5 0 0 0 �57:5 0 0 0

0 491:0 0 �491:0 0 0 0 0

0 0 225:0 71:5 �175:5 �88:0 �49:0 16:5

0 �491:0 71:5 540:0 �88:0 �44:0 165:0 �5:5

�57:5 0 �175:5 �88:0 233:0 86:0 0 0

0 0 �88:0 �44:0 88:0 338:5 0 �294:5

0 0 �49:0 16:5 0 0 49:0 �16:5

0 0 16:5 �5:5 0 �294:5 �16:5 300:0

377777777777775
If the value of each of the displacement variables u5, u7, and u8 is known to be zero, determine the values of the
remaining displacement components and the reactions along the fixed dof using Method 1 of Section 6.3.

6.26 Find the displacements of the structural problem stated in Problem 6.25 using Method 2 of Section 6.3.
6.27 Find the displacements of the structural problem stated in Problem 6.25 using Method 3 of Section 6.3.
6.28 Consider a bar element in three-dimensional space with nodal coordinates as indicated in Fig. 6.19. The displace-

ment components of the ends in the local (x) and global (X, Y, Z) coordinate systems are also indicated in Fig. 6.19.
Derive the coordinate transformation matrix of the element.

6.29 For the space frame element shown in Fig. 6.20, indicate the procedure for deriving the coordinate transformation
matrix between the local displacement components qj, and the global displacement components Qi.

6.30 For the planar four-bar truss shown in Fig. 6.3A, the global (X, Y)-coordinates of nodes 1, 2, 3, and 4 are given by
(0, 0), (200, 0), (100, 100), and (400, 300) in, respectively. Determine the coordinate transformation matrices of the
four elements.

6.31 In Problem 6.30, if the cross-sectional areas of elements 1, 2, 3, and 4 are given by 2, 2, 3, and 3 in2, respectively,
and Young’s modulus of all the elements is 30 � 106 psi, find the global stiffness matrices of the four elements.

6.32 Find the global stiffness matrix of the truss using the global stiffness matrices of the four elements determined in
Problem 6.31.

Z

local node 1
global node i

global node j
local node 2

(25, 10, −10)

(10, −5, 15)

X

O

O

Y

Q3j

Q3i

Q3j−1

Q3j−2

Q3i−2

Q3i−1

q 2

q 1

u(x)

x

FIGURE 6.19 A space truss element.
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7.1 INTRODUCTION

Most problems in engineering mechanics can be stated as continuous or discrete problems. Continuous problems involve
an infinite number of degrees of freedom, whereas discrete problems involve a finite number of degrees of freedom. All
discrete and continuous problems can be classified as equilibrium (static), eigenvalue, and propagation (transient) prob-
lems. The finite element method is applicable for the solution of all three categories. As stated in Chapter 1, the finite
element method is a numerical procedure that replaces a continuous problem by an equivalent discrete one. It will be quite
convenient to use matrix notation in formulating and solving problems using the finite element procedure. When matrix
notation is used in finite element analysis, the organizational properties of matrices allow for systematic compilation of the
required data and the finite element analysis can then be defined as a sequence of matrix operations that can be pro-
grammed directly for a digital computer.

The governing finite element equations for various types of field problems can be expressed in matrix form as follows:

1. Equilibrium problems

½A�X! ¼ b
!

(7.1a)

subject to the boundary conditions

½B�X! ¼ g! (7.1b)

The Finite Element Method in Engineering. https://doi.org/10.1016/B978-0-12-811768-2.00007-9
Copyright © 2018 Elsevier Inc. All rights reserved.
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2. Eigenvalue problems

½A�X! ¼ l½B�X! (7.2a)

subject to the boundary conditions

½C�X. ¼ g! (7.2b)

3. Propagation problems

½A� d
2 X
!

dt2
þ ½B� dX

!
dt

þ ½C�X! ¼ F
!�

X
!
; t
�
; t > 0 (7.3a)

subject to the boundary conditions

½D�X! ¼ g!; t � 0 (7.3b)

and the initial conditions

X
! ¼ X

!
0; t ¼ 0 (7.3c)

dX
!
dt

¼ Y
!

0; t ¼ 0 (7.3d)

where [A], [B], [C], and [D] are square matrices whose elements are known; X
!

is the vector of unknowns (or field
variables) in the problem b

!
; g!; X

!
0; and Y

!
0 are vectors of known constants; l is the eigenvalue; t is the time param-

eter; and F
!

is a vector whose elements are known functions of X
!

and t.

This chapter provides an introduction to matrix techniques that are useful for the solution of Eqs. (7.1) to (7.3).

7.2 SOLUTION OF EQUILIBRIUM PROBLEMS

When the finite element method is used for the solution of equilibrium, steady-state, or static problems, we get a set of
simultaneous linear equations that can be stated in the form of Eq. (7.1). We shall consider the solution of Eq. (7.1a) in this
section by assuming that the boundary conditions of Eq. (7.1b) have been incorporated already.

Eq. (7.1a) can be expressed in scalar form as

a11x1 þ a12x2 þ/þ a1nxn ¼ b1

a21x1 þ a22x2 þ/þ a2nxn ¼ b2

«

an1x1 þ an2x2 þ/þ annxn ¼ bn

(7.4)

where the coefficients aij and the constants bi are either given or can be generated. The problem is to find the values of xi
(i ¼ 1, 2, ., n), if they exist, which satisfy Eq. (7.4). A comparison of Eqs. (7.1a) and (7.4) shows that

½A�
n�n

¼

26664
a11 a12 . a1n
a21 a22 . a2n

«

an1 an2 ann

37775; X
!
n�1

¼

8>>><>>>:
x1
x2
«

xn

9>>>=>>>;; b
!
n�1

¼

8>>><>>>:
b1
b2
«

bn

9>>>=>>>;
In finite element analysis, the order of the matrix [A] will be very large. The solution of some of the practical problems

involves matrices of order 10,000 or more.
The methods available for solving systems of linear equations can be divided into two types: direct and iterative. Direct

methods are those that, in the absence of round-off and other errors, will yield the exact solution in a finite number of
elementary arithmetic operations. In practice, because a computer works with a finite word length, sometimes the direct
methods do not give good solutions. Indeed, the errors arising from round-off and truncation may lead to extremely poor or
even useless results. Hence, many researchers working in the field of finite element method are concerned with why and
how the errors arise and with the search for methods that minimize the totality of such errors. The fundamental method
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used for direct solutions is Gaussian elimination, but even within this class there are a variety of choices of methods that
vary in computational efficiency and accuracy.

Iterative methods are those that start with an initial approximation and that by applying a suitably chosen algorithm
lead to successively better approximations. When the process converges, we can expect to get a good approximate
solution to Eq. (7.1a). The accuracy and the rate of convergence of iterative methods vary with the algorithm chosen.
The main advantages of iterative methods are the simplicity and uniformity of the operations to be performed,
which make them well suited for use on digital computers, and their relative insensitivity to the growth of round-off
errors.

Matrices associated with linear systems are also classified as dense or sparse. Dense matrices have very few zero
elements, whereas sparse matrices have very few nonzero elements. Fortunately, in most finite element applications, the
matrices involved are sparse (thinly populated) and symmetric. Hence, solution techniques that take advantage of the
special character of such systems of equations have been developed.

7.2.1 Gaussian Elimination Method

The basic procedure available for the solution of Eq. (7.1) is the Gaussian elimination method, in which the given system
of equations is transformed into an equivalent triangular system for which the solution can be easily found. The following
example illustrates the procedure.

EXAMPLE 7.1
Solve the following system of equations using the Gaussian elimination method:

x1ex2 þ 3x3 ¼ 10 (E.1)

2x1 þ 3x2 þ x3 ¼ 15 (E.2)

4x1 þ 2x2ex3 ¼ 6 (E.3)

Solution

To eliminate the x1 terms from Eqs. (E.2) and (E.3), we multiply Eq. (E.1) by �2 and �4 and add, respectively, to Eqs. (E.2) and (E.3)

leaving the first equation unchanged. We will then have

x1ex2 þ 3x3 ¼ 10 (E.4)

5x2e5x3 ¼ e5 (E.5)

6x2e13x3 ¼ e34 (E.6)

To eliminate the x2 term from Eq. (E.6), multiply Eq. (E.5) by �6/5 and add to Eq. (E.6). We will now have the triangular system

x1ex2 þ 3x3 ¼ 10 (E.7)

5x2e5x3 ¼ e5 (E.8)

�7x3 ¼ �28 (E.9)

This triangular system can now be solved by back substitution. From Eq. (E.9) we find x3 ¼ 4. Substituting this value for x3 into

Eq. (E.8) and solving for x2, we obtain x2 ¼ 3. Finally, knowing x3 and x2, we can solve Eq. (E.1) for x1, obtaining x1 ¼ 1. This

solution can also be obtained by adopting the following equivalent procedure.

Eq. (E.1) can be solved for x1 to obtain

x1 ¼ 10þ x2e3x3 (E.10)

Substitution of this expression for x1 into Eqs. (E.2) and (E.3) gives

5x2 � 5x3 ¼ �5 (E.11)

6x2 � 13x3 ¼ �34 (E.12)

The solution of Eq. (E.11) for x2 leads to

x2 ¼ �1þ x3 (E.13)

By substituting Eq. (E.13) into Eq. (E.12) we obtain

�7x3 ¼ �28 (E.14)

It can be seen that Eqs. (E.10), (E.11), and (E.14) are the same as Eqs. (E.7eE.9), respectively. Hence, we can obtain x3 ¼ 4 from

Eq. (E.14), x2 ¼ 3 from Eq. (E.13), and x1 ¼ 1 from Eq. (E.10).
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GENERALIZATION OF THE METHOD
Let the given system of equations be written as

að0Þ11 x1 þ að0Þ12 x2 þ/þ að0Þ1n xn ¼ bð0Þ1

að0Þ21 x1 þ að0Þ22 x2 þ/þ að0Þ2n xn ¼ bð0Þ2

«

að0Þn1 x1 þ að0Þn2 x2 þ/þ að0Þnn xn ¼ bð0Þn

(7.5)

where the superscript (0) has been used to denote the original values. By solving the first equation of Eq. (7.5) for x1, we
obtain

x1 ¼ bð0Þ1

að0Þ11

� að0Þ12

að0Þ11

x2 � að0Þ13

að0Þ11

x3 �/� að0Þ1n

að0Þ11

xn

Substitution of this x1 into the remaining equations of Eq. (7.5) leads to

að1Þ22 x2 þ að1Þ23 x3 þ/þ að1Þ2n xn ¼ bð1Þ2

«

að1Þn2 x2 þ að1Þn3 x3 þ/þ að1Þnn xn ¼ bð1Þn

(7.6)

where

að1Þij ¼ að0Þij �
h
að0Þi1 a

ð0Þ
1j

.
að0Þ11

i
bð1Þi ¼ bð0Þi �

h
að0Þi1 b

ð0Þ
1

.
að0Þ11

i
9>>=>>; i; j ¼ 2; 3;.; n

Next, we eliminate x2 from Eq. (7.6), and so on. In general, when xk is eliminated we obtain

xk ¼ bðk�1Þ
k

aðk�1Þ
kk

�
Xn
j¼ kþ1

aðk�1Þ
kj

aðk�1Þ
kk

xj (7.7)

where

aðkÞij ¼ aðk�1Þ
ij �

h
aðk�1Þ
ik aðk�1Þ

kj

.
aðk�1Þ
kk

i
bðkÞi ¼ bðk�1Þ

i �
h
aðk�1Þ
ik bðk�1Þ

k

.
aðk�1Þ
kk

i
9>>=>>; i; j ¼ k þ 1;.; n

After applying the previous procedure n � 1 times, the original system of equations reduces to the following single
equation:

aðn�1Þ
nn xn ¼ bðn�1Þ

n

from which we can obtain

xn ¼
h
bðn�1Þ
n

.
aðn�1Þ
nn

i
The values of the remaining unknowns can be found in reverse order (xn�1, xn�2, ., x1) by using Eq. (7.7).

Note

In the elimination process, if at any stage one of the pivot (diagonal) elements a
ð0Þ
11 ; a

ð1Þ
22 ; a

ð2Þ
33 , . vanishes, we attempt to rearrange

the remaining rows so as to obtain a nonvanishing pivot. If this is impossible, then the matrix [A] is singular and the system has no

solution.
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7.2.2 Choleski Method

The Choleski method is a direct method for solving a linear system that makes use of the fact that any square matrix [A] can
be expressed as the product of an upper and a lower triangular matrix. The method of expressing any square matrix as a
product of two triangular matrices and the subsequent solution procedure are given next.

DECOMPOSITION OF [A] INTO LOWER AND UPPER TRIANGULAR MATRICES
The given system of equations is

½A�X! ¼ b
!

(7.1a)

The matrix [A] can be written as

½A� ¼ ½aij� ¼ ½L�½U� (7.8)

where [L] ¼ [lij] is a lower triangular matrix, and [U] ¼ [uij] is a unit upper triangular matrix, with

½A� ¼

26664
a11 a12 / a1n

a21 a22 / a2n
«

an1 an2 / ann

37775 ¼ ½L�½U� (7.9)

½L� ¼

26664
l11 0 0 / 0

l21 l22 0 / 0

«

ln1 ln2 ln3 / lnn

37775 ¼ a lower triangular matrix (7.10)

and

½U� ¼

26666664
1 u12 u13 / u1n

0 1 u23 / u2n
0 0 1 / u3n

« « « «

0 0 0 / 1

37777775 ¼ a unit upper triangular matrix (7.11)

The elements of [L] and [U] satisfying the unique factorization [A] ¼ [L][U] can be determined from the recurrence
formulas

lij ¼ aij �
Xj�1

k¼ 1

likukj; i � j

uij ¼
aij �

Xi�1

k¼ 1

likukj

lii
; i < j

uii ¼ 1

(7.12)

For the relevant indices i and j, these elements are computed in the order

li1; u1j; li2; u2j; li3; u3j; .; li;n�1; un�1;j; lnn

SOLUTION OF EQUATIONS
Once the given system of equations ½A�X! ¼ b

!
is expressed in the form [L][U] X

! ¼ b
!
; the solution can be obtained

as follows:
By letting

½U�X! ¼ Z
!

(7.13)
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the equations become [L] Z
! ¼ b

!
; which in expanded form can be written as

l11z1 ¼ b1

l21z1 þ l22z2 ¼ b2

l31z1 þ l32z2þ l33z3 ¼ b3

/

/

/

ln1z1 þ ln2z2 þ ln3z3 þ/þ lnnzn ¼ bn

(7.14)

The first of these equations can be solved for z1, after which the second can be solved for z2, the third for z3, and so on.
We can thus determine in succession z1, z2,., zn, provided that none of the diagonal elements lii (i ¼ 1, 2,., n) vanishes.
Once zi is obtained the value of xi can be found by writing Eq. (7.13) as

x1 þ u12x2 þ u13x3 þ/þ u1nxn ¼ z1

x2 þ u23x3 þ/þ u2nxn ¼ z2

x3 þ/þ u3nxn ¼ z3

/

/

/

xn�1 þ un�1;nxn ¼ zn�1

xn ¼ zn

(7.15)

Just as in the Gaussian elimination process, this system can now be solved by back substitution for xn, xne1, ., x1 in
that order.
CHOLESKI DECOMPOSITION OF SYMMETRIC MATRICES
In most applications of finite element theory, the matrices involved will be symmetric, banded, and positive definite. In
such cases, the symmetric positive definite matrix [A] can be decomposed uniquely as1

½A� ¼ ½U�T ½U� (7.16)

where

½U� ¼

26666664
u11 u12 u13 / u1n
0 u22 u23 / u2n
0 0 u33 / u3n
« « « «

0 0 0 unn

37777775 (7.17)

is an upper triangular matrix including the diagonal. The elements of [U] ¼ [uij] are given by

1. The matrix [A] can also be decomposed as [A] ¼ [L][L]T, where [L] represents a lower triangular matrix. The elements of [L] can be found in Rao [7.1]
and also in Problem 7.2.
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u11 ¼ ða11Þð1=2Þ

u1j ¼ a1j=u11; j ¼ 2; 3;.; n

uii ¼
 
aii �

Xi�1

k¼ 1

u2ki

!ð1=2Þ

; i ¼ 2; 3;.; n

uij ¼ 1
uii

 
aij �

Xi�1

k¼ 1

ukiukj

!
;

i ¼ 2; 3;.; n; and

j ¼ iþ 1; iþ 2;.n

uij ¼ 0; i > j:

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
(7.18)

INVERSE OF A SYMMETRIC MATRIX
If the inverse of the symmetric matrix [A] is needed, we first decompose it as [A] ¼ [U]T[U] using Eq. (7.18), and then find
[A]�1 as

½A�e1 ¼ �½U�T ½U���1 ¼ ½U��1�½U�T��1
(7.19)

The elements lij of [U]
�1 can be determined from [U][U]�1 ¼ [I], which leads to

lii ¼ 1
uii

lij ¼
�
� Pj

k¼ iþ1
uiklkj

!
uii

; i < j

lij ¼ 0; i > j

9>>>>>>>>>=>>>>>>>>>;
(7.20)

Hence, the inverse of [U] is also an upper triangular matrix. The inverse of [U]T can be obtained from the relation�½U�T�e1 ¼ �½U�e1�T (7.21)

Finally, the inverse of the symmetric matrix [A] can be calculated as

½A�e1 ¼ ½U�e1�½U�e1�T (7.22)

EXAMPLE 7.2
Express the following matrix as a product of lower and upper triangular matrices using the Choleski method.

½A� ¼

264 4 2 14

2 17 �5

14 �5 83

375 (E.1)

Solution

Since the matrix [A] is symmetric, it can be expressed as

½A� ¼ ½U�T ½U� (E.2)

where the elements of [U] are denoted as

½U� ¼

264 u11 u12 u13

0 u22 u23

0 0 u33

375 (E.3)

Continued
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EXAMPLE 7.2 dcont’d

with

u11 ¼ ffiffiffiffiffiffiffi
a11

p ¼
ffiffiffi
4

p
¼ 2; u12 ¼ a12

u11

¼ 2

2
¼ 1; u13 ¼ a13

u11

¼ 14

2
¼ 7

u22 ¼ �
a22 � u2

12

�1
2 ¼ ð17� 1Þ12 ¼ 4;

u23 ¼ 1

u22

ða23 � u12 u13Þ ¼ 1

4
ð� 5� 1ð7ÞÞ ¼ �3

u33 ¼ �
a33 � u2

13 � u2
23

�1
2 ¼ ð83� 49� 9Þ12 ¼ 5

This yields the desired result:

½A� ¼

264 4 2 14

2 17 �5

14 �5 83

375 ¼

264 2 0 0

1 4 0

7 �3 5

375
264 2 1 7

0 4 �3

0 0 5

375 (E.4)

EXAMPLE 7.3
Find the inverse of the matrix

½A� ¼

264 4 2 14

2 17 �5

14 �5 83

375 (E.1)

Solution

The inverse of the symmetric matrix [A] is given by Eq. (7.22):

½A��1 ¼ ½U��1
�
½U��1

	T
(E.2)

where [U] is the upper triangular matrix (given in Eq. (E.4) in Example 7.2):

½U� ¼

264 2 1 7

0 4 �3

0 0 5

375 (E.3)

The elements of ½U��1 ¼ ½l� are given by

l11 ¼ 1

u11

¼ 1

2
; l22 ¼ 1

u22

¼ 1

4
; l33 ¼ 1

u33

¼ 1

5

l12 ¼ �u12l22

u11

¼
�ð1Þ

�
1

4



2

¼ �1

8
; l23 ¼ �u23 l33

u22

¼
�ð� 3Þ

�
1

5



4

¼ 3

20

l13 ¼ �u12 l23 � u13 l33

u11

¼
�ð1Þ

�
3

20



� 7

�
1

5



2

¼ �31

40

Thus,

½U��1 ¼ ½l� ¼

2666666664

1

2
�1

8
�31

40

0
1

4

3

20

0 0
1

5

3777777775
(E.4)
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EXAMPLE 7.3 dcont’d

Eq. (E.2) can be used to find the inverse of the matrix [A] as

½A��1 ¼ ½U��1
�
½U��1

	T

¼

266666666664

1

2
�1

8
�31

40

0
1

4

3

20

0 0
1

5

377777777775

266666666664

1

2
0 0

�1

8

1

4
0

�31

40

3

20

1

5

377777777775

¼ 1

800

266664
1386 �118 �124

�118 68 24

�124 24 32

377775

(E.5)

EXAMPLE 7.4
Find the solution of the equations 264 4 2 14

2 17 �5

14 �5 83

375
8><>:

x1

x2

x3

9>=>; ¼

8><>:
14

�101

155

9>=>; (E.1)

using the Choleski decomposition of the matrix [A].

Solution

Using the result of Example 7.2, Eq. (E.1) can be rewritten as264 2 0 0

1 4 0

7 �3 5

375
264 2 1 7

0 4 �3

0 0 5

375
8><>:

x1

x2

x3

9>=>; ¼

8><>:
14

�101

155

9>=>; (E.2)

By denoting 264 2 1 7

0 4 �3

0 0 5

375
8><>:

x1

x2

x3

9>=>; ¼

8><>:
y1

y2

y3

9>=>; (E.3)

Eq. (E.2) can be expressed as 264 2 0 0

1 4 0

7 �3 5

375
8><>:

y1

y2

y3

9>=>; ¼

8><>:
14

�101

155

9>=>; (E.4)

or, equivalently,

2y1 ¼ 14; y1 þ 4y2 ¼ �101; 7y1 � 3 y2 þ 5y3 ¼ 155 (E.5)

Eq. (E.5) yield, sequentially,

y1 ¼ 7; 4y2 ¼ �101� 1ð7Þ or y2 ¼ �27

and

5y3 ¼ 155� 7ð7Þ þ 3ð� 27Þ ¼ 25 or y3 ¼ 5

Continued
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EXAMPLE 7.4 dcont’d

Using the values of y1, y2, and y3, Eq. (E.3) can be rewritten as264 2 1 7

0 4 �3

0 0 5

375
8><>:

x1

x2

x3

9>=>; ¼

8><>:
7

�27

5

9>=>; (E.6)

Eq. (E.6) can be written, from the bottom to the top, as

5x3 ¼ 5

4x2 � 3x3 ¼ �27

2x1 þ x2 þ 7x3 ¼ 7

or

x3 ¼ 1

x2 ¼ 1

4
ð�27þ 3ð1ÞÞ ¼ �6

x1 ¼ 1

2
ð7� 1ð� 6Þ � 7ð1ÞÞ ¼ 3

Thus, the desired solution is 8><>:
x1

x2

x3

9>=>; ¼

8><>:
3

�6

1

9>=>; (E.7)

7.2.3 Other Methods

Most computer programs that implement the finite element method take advantage of the properties of symmetry and band
form in storing the matrix [A]. In fact, the obvious advantage of small bandwidth has prompted engineers involved in finite
element analysis to develop schemes to model systems so as to minimize the bandwidth of resulting matrices. Despite the
relative compactness of band form storage, computer core space may be inadequate for the band form storage of matrices
of extremely large systems. In such a case, the matrix is partitioned as shown in Fig. 7.1, and only a few of the triangular

NB

N

Symmetric

I
II

III
IV

V
VI

VII
VIII

IX

NB (typical)

FIGURE 7.1 Partitioning of a large matrix.
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submatrices are stored in the computer core at a given time; the remaining ones are kept in auxiliary storage, for example,
on a disk. Several other schemes, such as the frontal or wavefront solution methods, have been developed for handling
large matrices [7.2e7.5].

The Gauss elimination and Choleski decomposition schemes fall under the category of direct methods. In the class of
iterative methods, the GausseSeidel method is well known [7.6]. The conjugate gradient and Newton’s methods are other
iterative methods based on the principle of unconstrained minimization of a function [7.7,7.8]. Note that the indirect
methods are less popular than the direct methods in solving large systems of linear equations [7.9]. Special computer
programs have been developed for the solution of finite element equations on small computers [7.10].

7.3 SOLUTION OF EIGENVALUE PROBLEMS

When the finite element method is applied for the solution of eigenvalue problems, we obtain an algebraic eigenvalue
problem as stated in Eq. (7.2). We consider the solution of Eq. (7.2a) in this section, assuming that the boundary con-
ditions, Eq. (7.2b), have been incorporated already. For most engineering problems, [A] and [B] will be symmetric matrices
of order n. l is a scalar (called the eigenvalue), and X

!
is a column vector with n components (called the eigenvector). If the

physical problem is the free vibration analysis of a structure, [A] will be the stiffness matrix, [B] will be the mass matrix, l
is the square of natural frequency, and X

!
is the mode shape of the vibrating structure.

The eigenvalue problem given by Eq. (7.2a) can be rewritten as

ð½A� � l½B�ÞX! ¼ 0
!

(7.23)

which can have solutions for

X
! ¼

8>>><>>>:
x1

x2
«

xn

9>>>=>>>;
other than zero only if the determinant of the coefficient matrix vanishes; that is,���������

a11 � lb11 a12 � lb12 . a1n � lb1n
a21 � lb21 a22 � lb22 . a2n � lb2n

« « «

an1 � lbn1 an2 � lbn2 . ann � lbnn

��������� ¼ 0 (7.24)

If the determinant in Eq. (7.24) is expanded, we obtain an algebraic equation of n-th degree for l. This equation is
called the characteristic equation of the system. The n roots of this equation are the n eigenvalues of Eq. (7.2a). The
eigenvector corresponding to any lj, namely X

!
j, can be found by inserting lj in Eq. (7.23) and solving for the ratios of the

elements in X
!

j. A practical way to do this is to set xn, for example, equal to unity and solve the first n � 1 equations for x1,
x2, ., xn�1. The last equation may be used as a check.

From Eq. (7.2a), it is evident that if X
!

is a solution, then k X
!

will also be a solution for any nonzero value of the scalar
k. Thus, the eigenvector corresponding to any eigenvalue is arbitrary to the extent of a scalar multiplier. It is convenient to
choose this multiplier so that the eigenvector has some desirable numerical property, and such vectors are called
normalized vectors. One method of normalization is to make the component of the vector X

!
i having the largest magnitude

equal to unity; that is,

max
j¼ 1;2;.;n

ðxijÞ ¼ 1 (7.25)

where xij is the j-th component of the vector X
!

i. Another method of normalization commonly used in structural dynamics
is as follows:

X
!T

i ½B�X
!

i ¼ 1 (7.26)
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EXAMPLE 7.5
Find the eigenvalues of the matrix

½A� ¼

264 2 1 �1

3 2 �3

3 1 �2

375 (E.1)

Solution

The eigenvalues are given by the roots of the determinantal Eq. (7.24):�������
2� l 1 �1

3 2� l �3

3 1 �2� l

������� ¼ 0 (E.2)

which can be expanded as

ð2� lÞ
���� 2� l �3

1 �2� l

����� 1

���� 3 �3

3 �2� l

����� 1

���� 3 2� l

3 1

���� ¼ 0

that is,

ð2elÞ�e�4el2
�
eðe3Þ�e1ðe3lþ 3Þe1ð3le3Þ ¼ 0

that is,

l3e2l2elþ 2 ¼ 0 (E.3)

By inspection, the roots of Eq. (E.1) can be found as (can be verified by substitution):

l1 ¼ e1; l2 ¼ 1; l3 ¼ 2 (E.4)

These roots denote the eigenvalues of the matrix [A].

7.3.1 Standard Eigenvalue Problem

Although the procedure given previously for solving the eigenvalue problem appears to be simple, the roots of an n-th
degree polynomial cannot be obtained easily for matrices of high order. Hence, in most of the computer-based methods
used for the solution of Eq. (7.2a), the eigenvalue problem is first converted into the form of a standard eigenvalue
problem, which can be stated as

½H�X! ¼ lX
!

or
�
½H� � l½I�

	
X
! ¼ 0

!
(7.27)

By premultiplying Eq. (7.2a) by ½B��1; we obtain Eq. (7.27), where

½H� ¼ ½B��1½A� (7.28)

However, in this form the matrix [H] is in general nonsymmetric, although [B] and [A] are both symmetric. Since a
symmetric matrix is desirable from the standpoint of storage and computer time, we adopt the following procedure to
derive a standard eigenvalue problem with symmetric [H] matrix.

Assuming that [B] is symmetric and positive definite, we use Choleski decomposition and express [B] as [B] ¼ [U]T[U].
By substituting for [B] in Eq. (7.2a), we obtain

½A�X. ¼ l½U�T ½U�X!

and hence �½U�T��1½A�½U��1½U�X! ¼ l½U�X! (7.29)

By defining a new vector Y
!

as Y
!¼ [U] X

!
, Eq. (7.29) can be written as a standard eigenvalue problem as

ð½H� � l½I�ÞY! ¼ 0
!

(7.30)
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where the matrix [H] is now symmetric and is given by

½H� ¼ �½U�T��1½A�½U��1 (7.31)

To formulate [H] according to Eq. (7.31), we decompose the symmetric matrix [B] as [B] ¼ [U]T[U], as indicated in
Section 7.2.2 on Choleski decomposition. Find ½U��1 and

�½U�T��1
as shown in Section 7.2.2, “Inverse of a Symmetric

Matrix,” and then carry out the matrix multiplication as stated in Eq. (7.31). The solution of the eigenvalue problem
stated in Eq. (7.30) yields li and Y

!
i. Then we apply the inverse transformation to obtain the desired eigenvectors as

X
!

i ¼ ½U��1 Y
!

i (7.32)

We now discuss some of the methods of solving the special eigenvalue problem stated in Eq. (7.27).

EXAMPLE 7.6
Convert the following eigenvalue problem into the form of a standard eigenvalue problem:

½A�X! ¼ l½B�X! (E.1)

where

½A� ¼

264 2 �1 0

�1 2 �1

0 �1 3

375; ½B� ¼

264 1 0 0

0 1 0

0 0 2

375 (E.2)

Solution

Noting that the matrix [B] is diagonal, it can be written as

½B� ¼ ½B�12½B�12 (E.3)

where the square root of the diagonal matrix [B] and its inverse can be found as

½B�12 ¼

2641 0 0

0 1 0

0 0
ffiffiffi
2

p

375; ½B��1
2 ¼

266664
1 0 0

0 1 0

0 0
1ffiffiffi
2

p

377775 (E.4)

Eq. (E.1) can be written as

½A�½B��1
2½B�12 X! ¼ l½B�12½B�12 X! (E.5)

By premultiplying Eq. (E.5) by ½B��1
2, we obtain

½B��1
2½A�½B��1

2½B�12 X! ¼ l½B�12 X! (E.6)

or

½H�Y! ¼ lY
!

(E.7)

where

½H� ¼ ½B��1
2½A�½B��1

2 (E.8)

and

Y
! ¼ ½B�12 X! (E.9)

It can be seen that Eq. (E.7) is in the form of a standard eigenvalue problem. Once the solution of Eq. (E.7) is found, the original

eigenvector can be generated, from Eq. (E.9), as

X
! ¼ ½B��1

2Y
!

(E.10)

Continued
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EXAMPLE 7.6 dcont’d

In the present case,

½H� ¼

266664
1 0 0

0 1 0

0 0
1ffiffiffi
2

p

377775
264 2 �1 0

�1 2 �1

0 �1 3

375
266664
1 0 0

0 1 0

0 0
1ffiffiffi
2

p

377775 ¼

264 2 �1 0

�1 2 �0:7071

0 �0:7071 1.5

375 (E.11)

and hence the desired standard form of the eigenvalue problem is given by264 2 �1 0

�1 2 �0:7071

0 �0:7071 1:5

375
8><>:

y1

y2

y3

9>=>; ¼ l

8><>:
y1

y2

y3

9>=>; (E.12)

7.3.2 Methods of Solving Eigenvalue Problems

Two general types of methods, namely transformation methods and iterative methods, are available for solving eigenvalue
problems. The transformation methods, such as Jacobi, Givens, and Householder schemes, are preferable when all the
eigenvalues and eigenvectors are required. The iterative methods, such as the power method, are preferable when few
eigenvalues and eigenvectors are required [7.11e7.13].

7.3.3 Jacobi Method

In this section, we present the Jacobi method for solving the standard eigenvalue problem:

½H�X! ¼ lX
!

(7.33)

where [H] is a symmetric matrix.
METHOD
The method is based on a theorem in linear algebra that states that a real symmetric matrix [H] has only real eigenvalues
and that there exists a real orthogonal matrix [P] such that [P]T[H][P] is diagonal. The diagonal elements are the eigen-
values and the columns of the matrix [P] are the eigenvectors.

In the Jacobi method, the matrix [P] is obtained as a product of several rotation matrices of the form

1

1 0
0 1

th[ ]

th row

1

n n

iP

j

×

−−=

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

th th column

cos sin

sin cos

i j

θ θ

θ θ

− −

(7.34)

where all elements other than those appearing in columns and rows i and j are identical with those of the identity matrix [I].
If the sine and cosine entries appear in positions (i, i) (i, j), (j, i), and (j, j), then the corresponding elements of [P1]

T[H] [P1]
can be computed as

hii ¼ hii cos
2 qþ 2hij sin q cos qþ hjj sin

2 q

hij ¼ hji ¼ ðhjj � hiiÞsin q cos qþ hij
�
cos2 q� sin2 q

�
hjj ¼ hii sin

2 q� 2hij sin q cos qþ hjj cos
2 q

(7.35)
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If q is chosen as

tan 2q ¼ 2hij=ðhii � hjjÞ (7.36)

then it makes hij ¼ hji ¼ 0. Thus, each step of the Jacobi method reduces a pair of off-diagonal elements to zero. Unfor-
tunately, in the next step, although the method reduces a new pair of zeros, it introduces nonzero contributions to formerly
zero positions. However, successive matrices of the form

½P2�T ½P1�T ½H�½P1�½P2�; ½P3�T ½P2�T ½P1�T ½H�½P1�½P2�½P3�;.
converge to the required diagonal form and the desired matrix [P] (whose columns give the eigenvectors) would then be
given by

½P� ¼ ½P1�½P2�½P3�;. (7.37)

EXAMPLE 7.7
Find the solution of the standard eigenvalue problem

½H�Y! ¼ lY
!

(E.1)

where

½H� ¼

264 2 �1 0

�1 2 �0:7071

0 �0:7071 1:5

375 (E.2)

using the Jacobi method.

Solution

To decompose the matrix [H], we start by eliminating the term h12 so that i ¼ 1 and j ¼ 2. The angle q1 for the first rotation matrix

[P1] is given by

tan 2q1 ¼ 2h12

h12 � h22

¼ 2ð� 1Þ
2� 2

¼ HN or q1 ¼ 135�

so that the first rotation matrix becomes

½P1� ¼

264�0:7071 �0:7071 0

0:7071 �0:7071 0

0 0 1

375
This gives

½H1� ¼ ½P1�T½H�½P1� ¼

264 3 0 �0:5

0 1 0:5

�0:5 0:5 1:5

375
Next, we select h13 in [H1] for elimination (i ¼ 1 and j ¼ 3) so that the angle q2 for the second rotation matrix [P2] is

tan 2q2 ¼ 2h13

h11 � h33

¼ 2ð � 0:5Þ
3� 1:5

¼ �0:6667 or q2 ¼ 163:15�

Thus, the second rotation matrix is given by

½P2� ¼

264�0:9571 0 �0:2899

0 1 0

0:2899 0 �0:9571

375
which yields

½H2� ¼ ½P2�T ½H1�½P2� ¼

264 3:1516 0:1450 0

0:1450 1 �0:4786

0 �0:4786 1:3485

375
Continued
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EXAMPLE 7.7 dcont’d

By proceeding in a similar manner, the next sequence of rotation matrices can be generated as

½P3� ¼

264 1 0 0

0 �0:5736 �0:8192

0 0:8192 �0:5736

375;.½P6� ¼

264 1 0 0

0 1 �0:0039

0 0:0039 1

375
It is found that the sequence of matrices [Hi] converged at this stage with

½H6� ¼ ½P6�T ½H5�½P6� ¼

264 3:1619 0 0

0 1:6789 0

0 0 0:6594

375z
264 l1 0 0

0 l2 0

0 0 l3

375
and the product of the matrices [Pi] converged to the matrix of eigenvectors:

½P1�½P2�.½P6� ¼

264�0:6209 0:6074 �0:4959

0:7215 0:1949 �0:6646

�0:3070 �0:7702 �0:5592

375z� Y!1 Y
!

2 Y
!

3

�
where Y

!
i denotes the eigenvector corresponding to the eigenvalue li , i ¼ 1, 2, 3.

7.3.4 Power Method

COMPUTING THE LARGEST EIGENVALUE BY THE POWER METHOD
The power method is the simplest iterative procedure for finding the largest or principal eigenvalue (l1) and the corre-

sponding eigenvector of a matrix (X
!

1). We assume that the n�n matrix [H] is symmetric and real with n independent

eigenvectors X
!

1; X
!

2; .; X
!

n. In this method, we choose an initial vector Z
!

0 and generate a sequence of vectors Z
!

1;

Z
!

2; .; as

Z
!

i ¼ ½H� Z!i�1 (7.38)

so that, in general, the p-th vector is given by

Z
!

P ¼ ½H� Z!P�1 ¼ ½H�2 Z!P�2 ¼ / ¼ ½H�p Z!0 (7.39)

The iterative process of Eq. (7.38) is continued until the following relation is satisfied:

zp;1
zp�1;1

;
zp;2
zp�1;2

;/;
zp;n
zp�1;n

¼ l1 (7.40)

where zp,j and zpe1,j are the j-th components of vectors Z
!

p and Z
!

p�1, respectively. Here, l1 will be the desired eigenvalue.

The convergence of the method can be explained as follows. Since the initial (any arbitrary) vector Z
!

0 can be
expressed as a linear combination of the eigenvectors, we can write

Z
!

0 ¼ a1 X
!

1 þ a2 X
!

2 þ/þ an X
!

n (7.41)

where a1; a2;.; an are constants. If li is the eigenvalue of ½H� corresponding to X
!

i, then

½H� Z!0 ¼ a1½H�X!1 þ a2½H�X!2 þ/þ an½H�X!n

¼ a1l1 X
!

1 þ a2l2 X
!

2 þ/þ anln X
!

n

(7.42)

and

½H�p Z!0 ¼ a1l
p
1 X
!

1 þ a2l
p
2 X
!

2 þ/þ anl
p
n X
!

n

¼ l
p
1

�
a1 X
!

1 þ
�
l2

l1


p

a2 X
!

2 þ/þ
�
ln

l1


p

an X
!

n

 (7.43)
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If l1 is the largest (dominant) eigenvalue,

jl1j > jl2j > / > jlnj;
����lil1
���� < 1 (7.44)

and hence
�
li
l1

	p
/0 as p/N.

Thus, Eq. (7.43) can be written, in the limit as p/N, as

½H�p�1 Z
!

0 ¼ l
p�1
1 a1 X

!
1 (7.45)

and

½H�p Z!0 ¼ l
p
1a1 X

!
1 (7.46)

Therefore, if we take the ratio of any corresponding components of the vectors
�
½H�p Z!0

	
and

�
½H�p�1 Z

!
0

	
, it should

have the same limiting value, l1. This property can be used to stop the iterative process. Moreover, 
½H�p Z!0

l
p
1

!
will converge to the eigenvector a1 X

!
1 as p/N.

EXAMPLE 7.8
Find the dominant eigenvalue and the corresponding eigenvector of the matrix

½H� ¼

264 2 �1 0

�1 2 �1

0 �1 2

375
Solution

By choosing the initial vector as

Z
!

0 ¼

8><>:
1

1

1

9>=>;
we have

Z
!

1 ¼ ½H� Z0
�! ¼

8>>><>>>:
1

0

1

9>>>=>>>;
Z
!

2 ¼ ½H�Z!1 ¼ ½H�2Z!0 ¼

8>>><>>>:
2

�2

2

9>>>=>>>;
and

Z
!

3 ¼ ½H�Z!2 ¼ ½H�3Z!0 ¼

8><>:
6

�8

6

9>=>;
It is convenient here to divide the components of Z

!
3 by 8 to obtain

Z3
�! ¼ k

8><>:
3=4

�1

3=4

9>=>;
Continued
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EXAMPLE 7.8 dcont’d

where k ¼ 8.

In the future, we continue to divide by some suitable factor to keep the magnitude of the numbers reasonable. Continuing the

procedure, we find

Z
!

7 ¼ ½H�7Z!0 ¼ c

8><>:
99

�140

99

9>=>; and Z
!

8 ¼ ½H�8Z!0 ¼ c

8><>:
338

�478

338

9>=>;
where c is a constant factor. The ratios of the corresponding components of Z

!
8 and Z

!
7 are 338/99 ¼ 3.41,414

and 478/140 ¼ 3.41,429, which can be assumed to be the same for our purpose. The eigenvalue given by this method is thus

l1 ¼ 3.41,414 or 3.41,429, whereas the exact solution is l1 ¼ 2þ ffiffiffi
2

p ¼ 3:41421: By dividing the last vector Z
!

8 by the

magnitude of the largest component (478), we obtain the eigenvector as

X1
�! ¼

8>>>><>>>>:
1=1:4142

�1:0

1=1:4142

9>>>>=>>>>;; which is very close to the correct solution

X
!

1 ¼

8>>>>>><>>>>>>:

1
. ffiffiffi

2
p

�1

1
. ffiffiffi

2
p

9>>>>>>=>>>>>>;

The eigenvalue l1 can also be obtained by using the Rayleigh quotient (R) defined as

R ¼ X
!T ½H�X!

X
!T

X
! (7.47)

If ½H�X! ¼ lX
!
; R will be equal to l. Thus, we can compute the Rayleigh quotient at i-th iteration as

Ri ¼ X
!T

i ½H�Xi
!

X
!T

i Xi
! ; i ¼ 1; 2;. (7.48)

Whenever Ri is observed to be essentially the same for two consecutive iterations i � 1 and i, we take l1 ¼ Ri.
COMPUTING THE SMALLEST EIGENVALUE BY THE POWER METHOD
If we wish to solve

½H�X! ¼ lX
!

(7.49)

to find the smallest eigenvalue and the associated eigenvector, we premultiply Eq. (7.49) by [H]�1 and obtain

½H��1 X
! ¼

�
1
l



X
!

(7.50)

Eq. (7.50) can be written as �
He�X! ¼ le X

!
(7.51)

where �
He� ¼ ½H��1 and le ¼ l�1 (7.52)
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This means that the absolutely smallest eigenvalue of [H] can be found by solving the problem stated in Eq. (7.51) for
the largest eigenvalue according to the procedure outlined in Section 7.3.4 on computing the largest eigenvalue. Note that�
He� ¼ ½H��1 has to be found before finding lsmallest. Although this involves additional computations (in finding [H]�1), it

may prove to be the best approach in some cases.
COMPUTING INTERMEDIATE EIGENVALUES
Let the dominant eigenvector X1

�!
be normalized so that its first component is 1. Let

X1
�! ¼

8>>>>>><>>>>>>:

1

x2
x3
«

xn

9>>>>>>=>>>>>>;
Let r!T

denote the first row of the matrix [H]dthat is, r!T ¼ {h11 h12 . h1n}. Then form a matrix
�
He� as

�
He� ¼ X

!
1 r
!T ¼

8>>>>>><>>>>>>:

1

x2

x3
«

xn

9>>>>>>=>>>>>>;
f h11 h12 . h1n g ¼

26664
h11 h12 / h1n
x2h11 x2h12 / x2h1n
«

xnh11 xnh12 / xnh1n

37775 (7.53)

Let the next dominant eigenvalue be l2 and normalize its eigenvector
�
X
!

2

�
so that its first component is 1.

If X
!

1 or X
!

2 has a zero first element, then a different element may be normalized and the corresponding row r!T
of

matrix [H] is used. Since ½H�X!1 ¼ l1 X
!

1 and ½H�X!2 ¼ l2 X
!

2, we obtain, by considering only the row r!T
of these

products,

r!T
X
!

1 ¼ l1 and r!T
X
!

2 ¼ l2

This is a consequence of the normalizations. We can also obtain�
He�X!1 ¼ �

X
!

1 r
!T�

X
!

1 ¼ X
!

1

�
r!T

X
!

1

� ¼ l1 X
!

1 (7.54)

and �
He�X!2 ¼ �

X
!

1 r
!T�

X
!

2 ¼ X
!

1

�
r!T

X
!

2

� ¼ l2 X
!

1 (7.55)

so that �
½H� � �He�


�
X
!

2 � X
!

1

� ¼ l2 X
!

2 � l1 X
!

1 � l2 X
!

1 þ l1 X
!

1 ¼ l2
�
X
!

2 � X
!

1

�
(7.56)

Eq. (7.56) shows that l2 is an eigenvalue and X
!

2 � X
!

1 is an eigenvector of the matrix ½H� � �He�. Since ½H� � �He� has
all zeros in its first row, whereas X

!
2 � X

!
1 has a zero as its first component, both the first row and first column of ½H� � �He�

may be deleted to obtain the matrix [H2]. We then determine the dominant eigenvalue and the corresponding eigenvector of

[H2], and by attaching a zero first component, obtain a vector Z
!

1. Finally, X
!

2 � X
!

1 must be a multiple of Z
!

1 so that we can
write

X
!

2 ¼ X
!

1 þ a Z
!

1 (7.57)

The multiplication factor a can be found by multiplying Eq. (7.57) by the row vector r!T
so that

a ¼ l2 � l1

r!T
Z
!

1

(7.58)
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A similar procedure can be adopted to obtain the other eigenvalues and eigenvectors. A procedure to accelerate the
convergence of the power method has been suggested by Roberti [7.14].

EXAMPLE 7.9
Find the second and third eigenvalues of the matrix

½H� ¼

264 2 �1 0

�1 2 �1

0 �1 2

375
once

X
!

1 ¼

8><>:
1:0

�1:4142

1:0

9>=>;
and

l1 ¼ 3:4142

are known.

Solution

The first row of the matrix [H] is given by r!T

1 ¼ f 2 �1 0 g and hence

�
He

¼ X

!
1 r
!T

1 ¼

8>>><>>>:
1:0

�1:4142

1:0

9>>>=>>>;f2 �1 0 g ¼

26664
2:0 �1:0 0:0

�2:8284 1:4142 0:0

2:0 �1:0 0:0

37775

½H� �
�
He

¼

264 2 �1 0

�1 2 �1

0 �1 2

375�

264 2 �1 0

�2:8284 1:4142 0

2 �1 0

375 ¼

264 0 0 0

�1:8284 0:5858 �1

�2 0 2

375

½H2� ¼
�
0:5858 �1

0 2


We apply the power method to obtain the dominant eigenvalue of [H2] by taking the starting vector as X

! ¼
�
1

1

�
and

compute upto ½H2�10 X! ¼ c

��0:7071

1:0000

�
; after which there is no significant change. As usual, c is some constant of no interest to

us. Thus, the eigenvector of [H2] can be taken as

��0:7071

1:0000

�
.

The Rayleigh quotient corresponding to this vector gives R10 ¼ l2 ¼ 2:0000. By attaching a zero first element to the present

vector

��0:7071

1:0000

�
, we obtain

Z
!

2 ¼

8><>:
0:0

�0:7071

1:0

9>=>;
We then compute

a ¼ l2 � l1

r!T

1 Z
!

2

¼ 2:0000� 3:4142

ð0:0þ 0:7071þ 0:0Þ ¼ �2:00002

Thus, we obtain the eigenvector X
!

2 as
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EXAMPLE 7.9 dcont’d

X
!

2 ¼ X
!

1 þ aZ
!

2 ¼

8><>:
1:0

�1:4142

1:0

9>=>;� 2:00002

8><>:
0:0

�0:7071

1:0

9>=>; ¼

8><>:
1:0

0:00001

�1:00002

9>=>;
Next, to find X

!
3, we take l2 ¼ 2 and normalize the vector

��0:7071

1:0

�
to obtain the vector Y

!
2 ¼

�
1:0

�1:4142

�
.

The matrix [H2] is reduced as follows.

The first row of [H2] is given by r!T

2 ¼ {0.5858 �1.0}, and

½H2� �
�
He� ¼ ½H2� � Y

!
2 r
!T

2 ¼
24 0:5858 �1:0

0 2:0

35�
8<: 1:0

�1:4142

9=;f0:5858 � 1:0g

¼
24 0 0

0:08284 0:5858

35
By deleting the first row and first column, we obtain the new reduced matrix [H3] as [H3] ¼ [0.5858]. The eigenvalue of [H3] is

obviously l3 ¼ 0.5858, and we can choose its eigenvector as {1}. By attaching a leading zero, we obtain U
!

2 ¼
�
0

1

�
. The value

of a can be computed as

l3 � l2

r!T

2 U
!

2

¼ 0:5858� 2:000

ð0� 1Þ ¼ 1:4142

and the corresponding eigenvector of [H2] can be obtained as

Y
!

3 ¼ Y
!

2 þ aU
!

2 ¼
�

1:0

�1:4142

�
þ 1:4142

�
0

1

�
¼
�
1:0

0:0

�
The eigenvector of [H] corresponding to l3 can be obtained by adding a leading zero to Y

!
3 to obtain Z

!
3 as

Z
!

3 ¼

8>>><>>>:
0:0

1:0

0:0

9>>>=>>>; and computing a as
l3 � l1

r!T

1 Z
!

3

¼ 0:5858� 3:4142

ð0� 1þ 0Þ ¼ 2:8284

Finally, the eigenvector X
!

3 corresponding to [H] can be found as

X
!

3 ¼ X
!

1 þ aZ
!

3 ¼

8><>:
1:0

�1:4142

1:0

9>=>;þ 2:8284

8><>:
0:0

1:0

0:0

9>=>; ¼

8><>:
1:0

1:4142

1:0

9>=>;

7.3.5 RayleigheRitz Subspace Iteration Method

Another iterative method that can be used to find the lowest eigenvalues and the associated eigenvectors of the general
eigenvalue problem, Eq. (7.2a), is the RayleigheRitz subspace iteration method [7.15,7.16]. This method is very effective
in finding the first few eigenvalues and the corresponding eigenvectors of large eigenvalue problems whose stiffness ([A])
and mass ([B]) matrices have large bandwidths. The various steps of this method are given here briefly. A detailed
description of the method can be found in Bathe and Wilson [7.15].

ALGORITHM

Step 1: Start with q initial iteration vectors X
!

1; X
!

2;.; X
!

q; q > p, where p is the number of eigenvalues and eigen-
vectors to be calculated. Bathe and Wilson [7.15] suggested a value of q ¼ min (2p, p þ 8) for good convergence.
Define the initial modal matrix [X0] as

½X0� ¼
�
X
!

1 X
!

2.X
!

q

�
(7.59)
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and set the iteration number as k ¼ 0. A computer algorithm for calculating efficient initial vectors for subspace iter-
ation method was given in Cheu et al. [7.17].
Step 2: Use the following subspace iteration procedure to generate an improved modal matrix ½Xkþ1� :
a. Find

�
Xkþ1

�
from the relation

½A��Xkþ1

� ¼ ½B�½Xk� (7.60)

b. Compute

½Akþ1� ¼
�
Xkþ1

�T ½A��Xkþ1

�
(7.61)

½Bkþ1� ¼
�
Xkþ1

�T ½B��Xkþ1

�
(7.62)

c. Solve for the eigenvalues and eigenvectors of the reduced system

½Akþ1�½Qkþ1� ¼ ½Bkþ1�½Qkþ1�½Lkþ1� (7.63)

and obtain ½Lkþ1� and ½Qkþ1�.
d. Find an improved approximation to the eigenvectors of the original system as

½Xkþ1� ¼
�
Xkþ1

�½Qkþ1�. (7.64)

Note

1. It is assumed that the iteration vectors converging to the exact eigenvectors X
!ðexactÞ

1 ; X
!ðexactÞ

2 ;.; are stored as the first,

second, ..., columns of the matrix ½Xkþ1�.
2. It is assumed that the vectors in [X0] are not orthogonal to one of the required eigenvectors.

Step 3: If lðkÞi and lðkþ1Þ
i denote the approximations to the i-th eigenvalue in the iterations k � 1 and k, respectively, we

assume convergence of the process whenever the following criteria are satisfied:

l
ðkþ1Þ
i � l

ðkÞ
i

l
ðkþ1Þ
i

� ε; i ¼ 1; 2;.; p (7.65)

where ε ¼ 10�6. Note that although the iteration is performed with q vectors (q > p), the convergence is measured
only on the approximations predicted for the p smallest eigenvalues.

7.4 SOLUTION OF PROPAGATION PROBLEMS

When the finite element method is applied for the solution of initial value problems (relating to an unsteady or transient
state of phenomena), we obtain propagation problems involving a set of simultaneous linear differential equations.

Propagation problems involve time as one of the independent variables, and initial conditions on the dependent var-
iables are given in addition to the boundary conditions. A general propagation problem can be expressed (after incor-
porating the boundary conditions) in standard form as

dX
!
dt

¼ F
!�

X
!
; t
�
; t > 0

X
! ¼ X

!
0; t ¼ 0

9>=>; (7.66)

where the vectors of propagation variables, forcing functions, and initial conditions are given by

X
! ¼

8>>><>>>:
x1ðtÞ
x2ðtÞ
«

xnðtÞ

9>>>=>>>;; F
! ¼

8>>>><>>>>:
f1
�
X
!
; t
�

f2
�
X
!
; t
�

«

fn
�
X
!
; t
�
9>>>>=>>>>;; X

!
0 ¼

8>>><>>>:
x1ð0Þ
x2ð0Þ
«

xnð0Þ

9>>>=>>>; (7.67)
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It can be seen that Eq. (7.66) represents a system of n simultaneous ordinary differential equations with n initial conditions.
In certain propagation problems, as in the case of damped mechanical and electrical systems, the governing equations

are usually stated as

�
A
�d2 X!
dt2

þ �B�dX!
dt

þ �C�X! ¼ F
!�

X
!
; t
�

t > 0

X
! ¼ X

!
0 and

dX
!
dt

¼ Y
!

0 t ¼ 0

9>>>=>>>; (7.68)

where [A], [B], and [C] denote known matrices of order n � n. In the case of mechanical and structural systems, the
matrices [A], [B], and [C] denote mass, damping, and stiffness matrices, respectively, and the vector F

!
represents the

known spatial and time history of the external loads. It can be seen that Eq. (7.68) denotes a system of n coupled
second-order (or equivalently, 2 n coupled first-order) ordinary differential equations with necessary initial conditions.
Eq. (7.66) can be used to represent any n-th order differential equation.

7.4.1 Solution of a Set of First-Order Differential Equations

Eq. (7.66) can be written in scalar form as

dx1
dt

¼ f1ðt; x1; x2;.; xnÞ

dx2
dt

¼ f2ðt; x1; x2;.; xnÞ

«

dxn
dt

¼ fnðt; x1; x2;.; xnÞ

(7.69)

with the initial conditions

x1ðt ¼ 0Þ ¼ x01

x2ðt ¼ 0Þ ¼ x02

«

xnðt ¼ 0Þ ¼ x0n

(7.70)

Eqs. (7.69) and (7.70) can be expressed in matrix form as

dX
!
dt

¼ F
!�

t; X
!�

X
!ðt ¼ 0Þ ¼ X

!
0

where

X
! ¼

8>>><>>>:
x1

x2
«

xn

9>>>=>>>; and F
! ¼

8>>><>>>:
f1

f2
«

fn

9>>>=>>>;
These equations can be solved by any of the numerical integration methods, such as RungeeKutta, AdamseBashforth,

AdamseMoulton, and Hamming [7.18]. In the fourth-order RungeeKutta method, starting from the known initial vector
X
!

0 at t ¼ 0, we compute the vector X
!

after time Dt as
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X
!ðt þ DtÞ ¼ X

!ðtÞ þ 1
6

�
K
!

1 þ 2K
!

2 þ 2K
!

3 þ K
!

4

�
(7.71)

where

K
!

1 ¼ Dt F
!�

X
!ðtÞ; t�

K
!

2 ¼ Dt F
!�

X
!ðtÞ þ K

!
1

2
; t þ Dt

2



(7.72)

K
!

3 ¼ Dt F
!�

X
!ðtÞ þ K

!
2

2
; t þ Dt

2



K
!

4 ¼ Dt F
!�

X
!ðtÞ þ K

!
3; t þ Dt

�

EXAMPLE 7.10
Solve the following second-order differential equation using the fourth-order Runge method (also known as the classical fourth-

order RungeeKutta method):

d2y

dt2
¼ ty (E.1)

with the initial conditions

yðt ¼ t0 ¼ 0Þ ¼ 0:3550

and

dy

dt
ðt ¼ t0 ¼ 0Þ ¼ �0:2588 (E.2)

Solution

Eq. (E.1) can be expressed as a set of two first-order differential equations

dy1
dt

¼ y2;
dy2
dt

¼ ty1 (E.3)

which can be expressed in vector form as

d y!
dt

¼ d

dt

�
y1

y2

�
¼ f

! ¼
�
f1ðt; y1; y2Þ
f2ðt; y1; y2Þ

�
¼
�

y2

t$y1

�
(E.4)

The initial conditions of Eq. (E.2) can be expressed in vector form as

y!ðt ¼ 0Þ ¼ y!0 ¼
�
y0;1

y0;2

�
¼
�

0:3550

�0:2588

�
(E.5)

The iterative process of the RungeeKutta method, given by Eqs. (7.71) and (7.72), can be used with X
!

and F
!

replaced by the

two-component vectors y! and f
!
, respectively. Starting from y!0, using a step size of h ¼ 0.2, the vector

y!1 ¼ y!ðt ¼ t1 ¼ h ¼ 0:2Þ can be generated from Eq. (7.71):

y!1 ¼ y!0 þ
h

6

�
k
!

1 þ 2 k
!

2 þ 2 k
!

3 þ k
!

4

	
(E.6)

where
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EXAMPLE 7.10 dcont’d

k
!

1 ¼ f
!�

t0; y
!

0

� ¼

8><>:
y0;2

t0 y0;1

9>=>; ¼

8><>:
�0:2588

0

9>=>;

k
.

2 ¼ f
.
�
t0 þ h

2
; y!0 þ

h

2
k
!

1



¼ f

!
0BBB@t ¼ 0:1;

8><>:
0:3550

�0:2588

9>=>;þ 0:1

8><>:
�0:2588

0

9>=>;
1CCCA

¼ f
!
0BB@0:1;

8><>:
0:32912

�0:2588

9>=>;
1CCA ¼

8><>:
�0:2588

0:1ð0:32912Þ

9>=>; ¼

8><>:
�0:2588

0:032912

9>=>;

k
.

3 ¼ f
.
�
t0 þ h

2
; y!0 þ

h

2
k
!

2



¼ f

!
0BBB@t ¼ 0:1;

8><>:
0:3550

�0:2588

9>=>;þ 0:1

8><>:
�0:2588

0:032912

9>=>;
1CCCA

¼ f
!
0BB@0:1;

8><>:
0:32912

�0:255509

9>=>;
1CCA ¼

8><>:
�0:255509

0:1ð0:32912Þ

9>=>; ¼

8><>:
�0:255509

0:032912

9>=>;

k
.

4 ¼ f
.�

t0 þ h; y!0 þ h k
!

3

	
¼ f

!
0BBB@t ¼ 0:2;

8><>:
0:3550

�0:2588

9>=>;þ 0:2

8><>:
�0:255509

0:032912

9>=>;
1CCCA

¼ f
!
0BB@0:2;

8><>:
0:303898

�0:252218

9>=>;
1CCA ¼

8><>:
�0:252218

0:2ð0:303898Þ

9>=>; ¼

8><>:
�0:252218

0:060780

9>=>;
With these values, Eq. (E.6) can be used to generate y!1 as follows:

y!1 ¼ y!0 þ
h

6

�
k
!

1 þ 2 k
!

2 þ 2 k
!

3 þ k
!

4

	

¼

8><>:
0:3550

�0:2588

9>=>;þ 0:2

6

0BB@
8><>:

�0:2588

0

9>=>;þ 2

8><>:
�0:2588

0:032912

9>=>;þ 2

8><>:
�0:255509

0:032912

9>=>;þ

8><>:
�0:252218

0:060780

9>=>;
1CCA

¼

8><>:
0:303679

�0:252386

9>=>;

(E.6)

With the value of y!1 known, the procedure can be continued to generate y!2, y!3, ... at t ¼ 0.4, 0.6, ... .
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7.4.2 Numerical Solution of Eq. (7.68)

Several methods are available for the solution of Eq. (7.68). All of these methods can be divided into two classes: direct
integration methods and the mode superposition method.
DIRECT INTEGRATION METHODS
In these methods, Eq. (7.68), or the special case, Eq. (7.66), is integrated numerically by using a step-by-step procedure
[7.19]. The term direct denotes that no transformation of the equations into a different form is used prior to numerical
integration. The direct integration methods are based on the following ideas:

a. Instead of trying to find a solution X
!ðtÞ that satisfies Eq. (7.68) for any time t, we can try to satisfy Eq. (7.68) only at

discrete time intervals Dt apart.
b. Within any time interval, the nature of variation of X

!
(displacement),

_
X
!
(velocity), and

€
X
!

(acceleration) can be
assumed in a suitable manner.

Here, the time interval Dt and the nature of variation of X
!
,
_
X
!
, and

€
X
!

within any Dt are chosen by considering factors
such as accuracy, stability, and cost of solution. The finite difference, Houbolt, Wilson, and Newmark methods fall under
the category of direct methods [7.20e7.22]. The finite difference method (a direct integration method) is outlined next.
FINITE DIFFERENCE METHOD
By using central difference formulas [7.23], the velocity and acceleration at any time t can be expressed as

_
X
!

t ¼ 1
2Dt

�� X
!

t�Dt þ X
!

tþDt

�
(7.73)

€
X
!

t ¼ 1

ðDtÞ2
�
X
!

t�Dt � 2X
!

t þ X
!

tþDt

�
(7.74)

If Eq. (7.68) is satisfied at time t, we have

½A� €X!t þ ½B� _X!t þ ½C�X!t ¼ F
!

t (7.75)

By substituting Eqs. (7.73) and (7.74) in Eq. (7.75), we obtain 
1

ðDtÞ2 ½A� þ
1
2Dt

½B�
!
X
!

tþDt ¼ F
!

t �
 
½C� � 2

ðDtÞ2 ½A�
!
X
!

t �
 

1

ðDtÞ2 ½A� �
1
2Dt

½B�
!
X
!

t�Dx (7.76)

Eq. (7.76) can now be solved for X
!

tþDt. Thus, the solution X
!

tþDt is based on the equilibrium conditions at time t. Since

the solution of X
!

tþDt involves X
!

t and X
!

t�Dt, we need to know X
!

�Dt for finding X
!

Dt. For this we first use the initial

conditions X
!

0 and
_
X
!

0 to find
€
X
!

0 using Eq. (7.75) for t ¼ 0. Then we compute X
!

�Dt using Eqs. (7.73) to (7.75) as

X
!

�Dt ¼ X
!

o � Dt
_
X
!

0 þ ðDtÞ2
2

€
X
!

0 (7.77)

A disadvantage of the finite difference method is that it is conditionally stabledthat is, the time step Dt has to be
smaller than a critical time step ðDtÞcri. If the time step Dt is larger than ðDtÞcri, the integration is unstable in the sense that
any errors resulting from the numerical integration or round-off in the computations grow and make the calculation of X

!
meaningless in most cases.
NEWMARK METHOD
The basic equations of the Newmark method (or Newmark’s b method) [7.20] follow:

_
X
!

tþDt ¼ _
X
!

t þ ð1� gÞDt €X!t þ Dtg
€
X
!

tþDt (7.78)

X
!

tþDt ¼ X
!

t þ Dt
_
X
!

t þ
�
1
2
� b



ðDtÞ2 €X!t þ bðDtÞ2 €X!tþDt (7.79)

where g and b are parameters that can be determined depending on the desired accuracy and stability. Newmark suggested

a value of g ¼ 1=2 for avoiding artificial damping. The value of b depends on the way in which the acceleration,
€
X
!
, is
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assumed to vary during the time interval t and t þ Dt. The values of b to be taken for different types of variation of
€
X
!

are
shown in Fig. 7.2.

In addition to Eqs. (7.78) and (7.79), Eq. (7.68) is also assumed to be satisfied at time t þ Dt so that

½A� €X!tþDt þ ½B� _X!tþDt þ ½C�X!tþDt ¼ F
!

tþDt (7.80)

To find the solution at the t þ Dt, we solve Eq. (7.79) to obtain
€
X
!

tþDt in terms of X
!

tþDt, substitute this
€
X
!

tþDt into

Eq. (7.78) to obtain
_
X
!

tþDt in terms of X
!

tþDt, and then use Eq. (7.80) to find X
!

tþDt. Once X
!

tþDt is known,
_
X
!

tþDt and
€
X
!

tþDt can be calculated from Eqs. (7.78) and (7.79).
MODE SUPERPOSITION METHOD
It can be seen that the computational work involved in the direct integration methods is proportional to the number of time
steps used in the analysis. Hence, in general, the use of direct integration methods is expected to be effective when the
response over only a relatively short duration (involving few time steps) is required. On the other hand, if the integration
has to be carried for many time steps, it may be more effective to transform Eq. (7.68) into a form in which the step-by-step
solution is less costly. The mode superposition or normal mode method is a technique wherein Eq. (7.68) is first trans-
formed into a convenient form before integration is carried. Thus, the vector X

.
is transformed as

X
!ðtÞ
n� 1

¼ ½T � Y
!ðtÞ

n� r r � 1
(7.81)

where [T] is a rectangular matrix of order n� r, and Y
!ðtÞ is a time-dependent vector of order rðr � nÞ: The transformation

matrix [T] is still unknown and will have to be determined. Although the components of X
!

have physical meaning (like
displacements), the components of Y

!
need not have any physical meaning and hence are called generalized displacements.

By substituting Eq. (7.81) into Eq. (7.68), and premultiplying throughout by [T]T, we obtain�
Ae� €Y!þ �Be� _Y!þ �Ce�Y! ¼ F

!e (7.82)

where �
Ae� ¼ ½T�T ½A�½T � (7.83)

Acceleration

t t + Δt

X

Time (t)

= 0 only if Xt = Xt + Δt = constant in between t and t + Δt

Xt

Xt + Δt

β = 16 (Linear)

β = 14 (Constant)

β 

β 

= 18 (Stepped)

FIGURE 7.2 Values of b for different types of variation of
€
X
!
.
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�
Be� ¼ ½T �T ½B�½T � (7.84)

�
Ce� ¼ ½T �T ½C�½T� (7.85)

and

F
!e ¼ ½T �T F! (7.86)

The basic idea behind using the transformation of Eq. (7.81) is to obtain the new system of Eq. (7.82) in which the
matrices

�
Ae�; �Be�, and �Ce� will be of much smaller order than the original matrices [A], [B], and [C]. Furthermore, the

matrix [T] can be chosen so as to obtain the matrices
�
Ae�; �Be�; and �Ce� in diagonal form, in which case Eq. (7.82)

represents a system of r uncoupled second-order differential equations. The solution of these independent equations can be
found by standard techniques, and the solution of the original problem can be found with the help of Eq. (7.81).

In the case of structural mechanics problems, the matrix [T] denotes the modal matrix and Eq. (7.82) can be expressed
in scalar form as (see Section 12.5)

€YiðtÞ þ 2ziui
_YiðtÞ þ u2

i YiðtÞ ¼ NiðtÞ; i ¼ 1; 2;.; r (7.87)

where the matrices
�
Ae�; �Be�, and �Ce� have been expressed in diagonal form (assuming proportional damping) as [7.20].

[ ] [ ] [ ] [ ] 2,\ \
\ \

i i iζ ω ω
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

, 2A I B C= = = (7.88)

and the vector F
!e as

F
!e ¼

8><>:
N1ðtÞ
«

NrðtÞ

9>=>; (7.89)

Here, ui is the rotational frequency (square root of the eigenvalue) corresponding to the i-th natural mode (eigenvector),
and zi is the modal damping ratio in the i-th natural mode.

7.5 PARALLEL PROCESSING IN FINITE ELEMENT ANALYSIS

Parallel processing is defined as the exploitation of parallel or concurrent events in the computing process [7.24]. Parallel
processing techniques are being investigated because of the high degree of sophistication of the computational models
required for future aerospace, transportation, nuclear, and microelectronic systems. Efforts have been devoted to the
development of vectorized numerical algorithms for performing the matrix operations, solution of algebraic equations, and
extraction of eigenvalues [7.25,7.26]. However, the progress has been slow, and no effective computational strategy exists
that performs the entire finite element solution in the parallel processing mode.

The various phases of the finite element analysis can be identified as (1) input of problem characteristics, element and
nodal data, and geometry of the system; (2) data preprocessing; (3) evaluation of element characteristics; (4) assembly of
elemental contributions; (5) incorporation of boundary conditions; (6) solution of system equations; and (7) postprocessing
of the solution and evaluation of secondary fields.

The input and preprocessing phases can be parallelized. Since the element characteristics require only information
pertaining to the elements in question, they can be evaluated in parallel. The assembly cannot utilize the parallel operation
efficiently since the element and global variables are related through a Boolean transformation. The incorporation of
boundary conditions, although usually not time consuming, can be done in parallel.

The solution of system equations is the most critical phase. For static linear problems, the numerical algorithm should
be selected to take advantage of the symmetric banded structure of the equations and the type of hardware used. A variety
of efficient direct iterative and noniterative solution techniques have been developed for different computers by exploiting
the parallelism, pipeline (or vector), and chaining capabilities [7.27]. For nonlinear steady-state problems, the data structure
is essentially the same as for linear problems. The major difference lies in the algorithms for evaluating the nonlinear terms
and solving the nonlinear algebraic equations. For transient problems, several parallel integration techniques have been
proposed [7.28].
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The parallel processing techniques are still evolving and are expected to be the dominant methodologies in the
computing industry in the near future. Hence, it can be hoped that the full potentialities of parallel processing in finite
element analysis will be realized in the next decade.

REVIEW QUESTIONS

7.1 Give brief answers to the following questions.

1. What is the difference between continuous and discrete problems?
2. State the general form of the governing finite element equations for a typical equilibrium problem with boundary

conditions.
3. State the general form of the governing finite element equations for a typical eigenvalue problem with boundary

conditions.
4. State the general form of the governing finite element equations for a typical propagation problem with boundary and

initial conditions.
5. What is the important characteristic of direct methods of solving simultaneous linear algebraic equations?
6. What is the purpose of the RayleigheRitz subspace iteration method?
7. What type of problem can be solved using the fourth-order RungeeKutta method?
8. Indicate two methods of solving damped mechanical/structural dynamics problem using numerical integration

methods.
9. Which method can be used to find an approximate solution of a propagation problem involving large size matrices by

using only small size matrices?

7.2 Fill in the blank with a suitable word.

1. The basic procedure for solving a system of linear algebraic equations is called —————————————

elimination method.
2. A sparse matrix is a thinly populated matrix having very few ——————————— elements.
3. Gaussian elimination method transforms a given sent of linear equations into a ——————— form of equations.
4. If a pivot operation becomes impossible, it implies that the matrix [A] is ————————————— in the

Gaussian elimination method.
5. The basic idea in the Choleski method is the ———————————————— of a square symmetric matrix

into lower and upper triangular matrices.
6. A propagation problem can be expressed as asset of first order ————————— equations.

7.3 Indicate whether each of the following statements is true or false.

1. The static and steady-state problems are similar.
2. Finite element equations cannot be solved using parallel processing techniques.
3. Any square symmetric matrix can be expressed in terms of only upper triangular matrix or only lower triangular

matrix.
4. If [A] ¼ [U]T[U] where [U] is an upper triangular matrix, then ½A��1 ¼ �½U�T��1½U��1.
5. Eigenvectors of a matrix are orthogonal.
6. If [A] and [B] are symmetric matrices, then the matrix defined as ½B�� 1 ½A� is symmetric.
7. Jacobi method finds one eigenvalue at a time.
8. Any arbitrary vector can be expressed as a linear combination of the eigenvectors.
9. Unsteady state problems are same as propagation problems.

10. Any nth order differential equation can be expressed as a set of n first-order differential equations.

7.4 Select the most appropriate answer from the multiple choices given.

1. Jacobi method of solving eigenvalue problems is:
(a) Indirect method (b) Transformation method (c) Iterative method

7.5 Match the following:

1. Static problem (a) Propagation problem

2. Transient problem (b) Eigenvalue problem

3. Characteristic value problem (c) Equilibrium problem
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7.6 Match the following:

1. Gaussian elimination method (a) Solution of propagation problems

2. Cheloski method (b) Lowest eigenvalues and eigenvectors

3. GausseSeidel method (c) Largest eigenvalue

4. Jacobi method (d) Direct method for solving linear equations

5. Power method (e) Decomposing a matrix

6. RayleigheRitz subspace iteration method (f) Iterative solution of linear equations

7. Newmark method (g) Finding all eigenvalues

PROBLEMS

7.1 Find the inverse of the following matrix using the decomposition [A] ¼ [U]T[U]:

½A� ¼

264 5 �1 1

�1 6 �4

1 �4 3

375
7.2 Find the inverse of the matrix [A] given in Problem 7.1 using the decomposition [A] ¼ [L][L]T, where [L] is a

lower triangular matrix.
Hint: If a symmetric matrix [A] of order n is decomposed as [A] ¼ [L][L]T, the elements of [L] are given by

lii ¼
"
aii �

Xi�1

k¼ 1

l2ik

#ð1=2Þ
; i ¼ 1; 2;.; n

lmi ¼ 1
lii

"
ami �

Xi�1

k¼ 1

liklmk

#
; m ¼ iþ 1;.; n and i ¼ 1; 2;.; n

lij ¼ 0; i < j

The elements of [L]el ¼ [lij] can be obtained from the relation [L][L]�1 ¼ [lij][lij] ¼ [I] as

lii ¼ 1
lii
; i ¼ 1; 2;.; n

lij ¼ �
 Xi�1

k¼ j

liklkj

!�
lii; i > j

lij ¼ 0; i < j

7.3 Express the following functions in matrix form as f ¼ (1/2) X
!T ½A�X! and identify the matrix [A]:

f ¼ 6x21 þ 49x22 þ 51x23 � 82x2x3 þ 20x1x3 � 4x1x2

f ¼ 6x21 þ 3x22 þ 3x23 � 4x1x2 � 2x2x3 þ 4x1x3

7.4 Find the eigenvalues and eigenvectors of the following problem by solving the characteristic polynomial equation:264 2 �1 0

�1 2 �1

0 �1 3

375
8><>:

x1
x2

x3

9>=>; ¼ l

264 1 0 0

0 1 0

0 0 2

375
8><>:

x1
x2

x3

9>=>;
7.5 Find the eigenvalues and eigenvectors of the following matrix by solving the characteristic equation:

½A� ¼

264 1 2 0

2 2 0

0 0 �1

375
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7.6 Find the eigenvalues and eigenvectors of the following matrix using the Jacobi method:

½A� ¼

264 3 2 1

2 2 1

1 1 1

375
7.7 Find the eigenvalues and eigenvectors of the matrix [A] given in Problem 7.6 using the power method.
7.8 Solve the following system of equations using the finite difference method:

½A� €X!þ ½C�X! ¼ F
!

where

½A� ¼
�
2 0

0 1


; ½C� ¼

�
6 �2

�2 4


; and F

! ¼
�

0

10

�
with the initial conditions

X
!ðt ¼ 0Þ ¼ _

X
!ðt ¼ 0Þ ¼

�
0

0

�
Take the time step Dt as 0.28 and find the solution at t ¼ 4.2.

7.9 Find the solution of the following equations using the Gaussian elimination method:26664
4 2 4 5

3 9 12 15

2 4 11 10

1 2 4 10

37775
8>>><>>>:

x1
x2

x3
x4

9>>>=>>>; ¼

8>>><>>>:
1

1

1

1

9>>>=>>>;
7.10 Find the solution of the following equations using the Gaussian elimination method:26664

5 �4 1 0

�4 6 �4 1

1 �4 6 �4

0 1 �4 5

37775
8>>><>>>:

x1
x2
x3

x4

9>>>=>>>; ¼

8>>><>>>:
0

1

1

0

9>>>=>>>;
7.11 Find the inverse of the following matrix, for n ¼ 4, using the Choleski decomposition method:26666666666666666666664

nþ 2
2nþ 2

�1
2

0 0 / 0 0
1

2nþ 2

�1
2

1 �1
2

0 / 0 0 0

0 �1
2

1 �1
2

/ 0 0 0

«

0 0 0 0 / �1
2

1 �1
2

1
2nþ 2

0 0 0 / 0 �1
2

nþ 2
2nþ 2

37777777777777777777775
Hint: The first, second, ., nth columns of [A]�1 are nothing but the solutions X

!
1; X
!

2;.; X
!

n corresponding to the
right-hand-side vectors b

!
1; b
!

2;.; b
!

n, respectively, where
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b
!

1 ¼

8>>>>>><>>>>>>:

1

0

0

«

0

9>>>>>>=>>>>>>;
; b
!

2 ¼

8>>>>>><>>>>>>:

0

1

0

«

0

9>>>>>>=>>>>>>;
;.; b

!
n ¼

8>>>>>><>>>>>>:

0

0

0

«

1

9>>>>>>=>>>>>>;
7.12 Find the inverse of the following matrix, for n ¼ 4, using the Gaussian elimination method:

½A�
n� n

¼

2666666664

n n� 1 n� 2 / 2 1

n� 1 n� 1 n� 2 2 1

n� 2 n� 2 n� 2 2 1

«

2 2 2 2 1

1 1 1 1 1

3777777775
7.13 a. Convert the following eigenvalue problem into a standard form:26664

4 �6 2 0

�6 24 0 6

2 0 8 2

0 6 2 4

37775X! ¼ l

420

26664
4 13 �3 0

13 312 0 �13

�3 0 8 �3

0 �13 �3 4

37775X!

b. Find the eigenvalues of the system by finding the roots of the determinantal equation.
7.14 Find the eigenvalues and eigenvectors of the matrix [A] given in Problem 7.12 (with n ¼ 3) using the Jacobi

method.
7.15 Solve the following system of equations using the Choleski decomposition method using [L][L]T decomposition and

[U]T[U] decomposition:

5x1 þ 3x2 þ x3 ¼ 14

3x1 þ 6x2 þ 2x3 ¼ 21

x1 þ 2x2 þ 3x3 ¼ 14

7.16 Express the following set of equations as a system of first-order equations:

d2x

dt2
¼ x2 � yþ et

d2y

dt2
¼ xþ y2 � et

At t ¼ 0 : xð0Þ ¼ dx
dt

ð0Þ ¼ 0; yð0Þ ¼ 1;
dy
dt

ð0Þ ¼ �2

Obtain the solution of these equations using the fourth-order RungeeKutta method.
7.17 Solve the following equations using the Gauss elimination method:

2x1 þ 3x2 þ x3 ¼ 9

x1 þ 2x2 þ 3x3 ¼ 6

3x1 þ x2 þ 2x3 ¼ 8

288 PART j II Basic Procedure

www.konkur.in

Telegram: @uni_k



7.18 The finite element analysis of certain systems leads to a tridiagonal system of equations, ½A� x! ¼ b
!
; where

½A� ¼

2666666666666666664

a11 a12 0 0 . 0 0 0

a21 a22 a23 0 . 0 0 0

0 a32 a33 a34 . 0 0 0

, , , , . , , ,

, , , , . , , ,

, , , , . , , ,

0 0 0 0 . an�1;n�2 an�1;n�1 an�1;n

0 0 0 0 . 0 an;n�1 an;n

3777777777777777775

x! ¼

8>>>>><>>>>>:

x1

x2

«

xn

9>>>>>=>>>>>;
; b

! ¼

8>>>>><>>>>>:

b1

b2

«

bn

9>>>>>=>>>>>;
Indicate a method of solving these equations.

7.19 Solve the following system of equations using a suitable procedure:

½A� x! ¼ b
!

with

½A� ¼

2666666664

5 �5 0 0 0

�5 10 �5 0 0

0 �5 10 �5 0

0 0 �5 10 �5

0 0 0 �5 10

3777777775

x! ¼

8>>>>><>>>>>:

x1

x2

«

x5

9>>>>>=>>>>>;
and b

! ¼

8>>>>><>>>>>:

b1

b2

«

b5

9>>>>>=>>>>>;
7.20 The elements of the Hillbert matrix, [A] ¼ [aij], are given by

aij ¼ 1
iþ j� 1

; i; j ¼ 1; 2;.; n

Find the inverse of the matrix, [A]�1 ¼ [bij], with n ¼ 4 using the Gaussian elimination method, and compare the
result with the exact solution given by

bij ¼ ð� 1Þiþjðnþ i� 1Þ!ðnþ j� 1Þ!
ðiþ j� 1Þfði� 1Þ!ðj� 1Þ!g2ðn� iÞ!ðn� jÞ!; i; j ¼ 1; 2;.; n

7.21 Express the n-th-order differential equation

dnx
dtn

¼ f

�
t; x;

dx
dt
;
d2x
dt2

;.;
dn�1x

dtn�1



as a set of n first-order differential equations.
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7.22 Express the matrix

½A� ¼

26664
15 �5 0 �5

�5 12 �2 0

0 �2 6 �2

�5 0 �2 9

37775 (P.1)

as a product of lower and upper triangular matrices using the Choleski decomposition method.
7.23 Solve the following equations using the Choleski decomposition method:

½A�X! ¼ b
!

with the matrix [A] given by Eq. (P.1) of Problem 7.22 and

X
! ¼

8>>><>>>:
x1
x2
x3

x4

9>>>=>>>; and b
! ¼

8>>><>>>:
�6:90

19:92

0

0

9>>>=>>>;
7.24 Solve the following equations using the Gauss elimination method:

15x1 � 5x2 � 5x4 ¼ �6:90

�5x1 þ 12x2 � 2x3 ¼ 19:92

�2x2 þ 6x3 � 2x4 ¼ 0

�5x1 � 2x3 þ 9x4 ¼ 0

7.25 Find the inverse of the matrix [A] given in Eq. (P.1) of Problem 7.22 based on LU decomposition.
7.26 Solve the equations 264 5 �1 0

�1 5 �1

0 �1 5

375
8><>:

x1
x2

x3

9>=>; ¼

8><>:
9

4

�6

9>=>;
using the Gauss elimination method.

7.27 Solve the equations given in Problem 7.26 using the Choleski decomposition method.
7.28 Find the inverse of the matrix 264 5 �1 0

�1 5 �1

0 �1 5

375
using the Choleski decomposition.

7.29 Express the matrix [A] in the form [A] ¼ [L][U] using the Choleski decomposition method when

½A� ¼

264 10 �4 5

�4 7 6

5 6 �3

375 (P.2)

7.30 Find the inverse of the matrix [A] given by Eq. (P.2) of Problem 7.29 using Choleski decomposition.
7.31 Solve the equations [A] X

! ¼ b
!

when [A] is given by Eq. (P.2) of Problem 7.29 and

b
! ¼

8><>:
17

28

2

9>=>;
using Choleski decomposition.
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7.32 Find the eigenvalues of the matrix

½A� ¼

264 10 0 0

1 �3 �7

0 2 6

375
by finding the roots of the determinantal equation.

7.33 Find the eigenvectors of the matrix [A] given in Problem 7.32.
7.34 Find the largest eigenvalue and the corresponding eigenvector of the matrix [A] given in Problem 7.32 using the po-

wer method.
7.35 Find the second and third eigenvalues and the corresponding eigenvectors of the matrix [A] given in Problem 7.32

using the power method.
7.36 Find the eigenvalues and eigenvectors of the matrix [A] given in Problem 7.28 using the Jacobi method.
7.37 Find the eigenvalues of the matrix

½A� ¼

264 1 0:5 0:3333

0:5 0:3333 0:25

0:3333 0:25 0:2

375
using the Jacobi method.

7.38 Find the eigenvalues of the matrix [A] given in Problem 7.37 by finding the roots of the determinantal equation.
7.39 Find the solution of the differential equation,

dy
dx

¼ yþ 2x� 1; 0 � x � 1

yðx ¼ 0Þ ¼ 1

using the fourth-order RungeeKutta method.
7.40 Find the solution of the differential equation

dy
dx

¼ �2x3 þ 12x2 � 20xþ 8:5; 0 � x � 4

yðx ¼ 0Þ ¼ 1

using the fourth-order RungeeKutta method.
7.41 The equation of motion of a simple pendulum, subjected to damping and external torque Mt(t), is given by

ml2
d2q
dt2

þ c
dq
dt

þ mgl sin q ¼ MtðtÞ

wherem is themass of the bob, l is the length, c is the damping constant, g is the acceleration due to gravity, q is the angular
displacement, and t is the time. Express this equation as a system of two linear first-order differential equations.
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8.1 INTRODUCTION

As stated in Chapter 1, the finite element method has been most extensively used in the field of solid and structural
mechanics. The various types of problems solved by the finite element method in this field include elastic, elastoplastic,
and viscoelastic analysis of trusses, frames, plates, shells, and solid bodies. Both static and dynamic analyses have been
conducted using the finite element method. We consider the finite element elastic analysis of one-, two-, and three-
dimensional problems as well as axisymmetric problems in this book.

In this chapter, the general equations of solid and structural mechanics are presented. The displacement method (or
equivalently the principle of minimum potential energy) is used in deriving the finite element equations. The application of
these equations to several specific cases is considered in subsequent chapters.

8.2 BASIC EQUATIONS OF SOLID MECHANICS

8.2.1 Introduction

The primary aim of any stress analysis or solid mechanics problem is to find the distribution of displacements and stresses
under the stated loading and boundary conditions. If an analytical solution of the problem is to be found, we must satisfy
the following basic or fundamental equations of solid mechanics.

Type of Equations

Number of Equations

In Three-Dimensional

Problems

In Two-Dimensional

Problems

In One-Dimensional

Problems

Equilibrium equations 3 2 1

Stressestrain relations 6 3 1

Strainedisplacement
relations

6 3 1

Total number of
equations

15 8 3

The Finite Element Method in Engineering. https://doi.org/10.1016/B978-0-12-811768-2.00008-0
Copyright © 2018 Elsevier Inc. All rights reserved.
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Unknowns

In Three-Dimensional

Problems

In Two-Dimensional

Problems

In One-Dimensional

Problems

Displacements u, v, w u, v u

Stresses sxx, syy, szz, sxx, syy, sxy sxx

sxy, syz, szx

Strains εxx, εyy, εzz, εxy εxx, εyy, εxy εxx

εyz, εzx

Total number of
unknowns

15 8 3

Thus, we have as many equations as there are unknowns to find the solution of any stress analysis problem. In practice,
we will also have to satisfy some additional equations, such as external equilibrium equations (which pertain to the overall
equilibrium of the body under external loads), compatibility equations (which pertain to the continuity of strains and
displacements), and boundary conditions (which pertain to the prescribed conditions on displacements and/or forces at the
boundary of the body).

Although any analytical (exact) solution has to satisfy all the equations stated previously, the numerical (approxi-
mate) solutions, like the ones obtained by using the finite element method, generally do not satisfy all the equations.
However, a sound understanding of all the basic equations of solid mechanics is essential in deriving the finite element
relations and also in estimating the order of error involved in the finite element solution by knowing the extent to which
the approximate solution violates the basic equations, including the compatibility and boundary conditions. Hence, the
basic equations of solid mechanics are summarized in the following section for ready reference in the formulation of
finite element equations.

8.2.2 Equations

EXTERNAL EQUILIBRIUM EQUATIONS
If a body is in equilibrium under specified static loads, the reactive forces and moments developed at the support

points must balance the externally applied forces and moments. In other words, the force and moment equilibrium
equations for the overall body (overall or external equilibrium equations) have to be satisfied. If fx, fy, and fz are the
body forces; Fx;Fy; and Fz are the surface (distributed) forces; Px, Py, and Pz are the external concentrated loads
(including reactions at support points such as B, C, and D in Fig. 8.1); and Qx, Qy, and Qz are the external concentrated

A
B

C
D

y

x

z

Qz

Qx

QyPy

Pz

Px

z

x

y
Φz

Φx

Φy

φ

φ

φ

FIGURE 8.1 Force system for macroequilibrium of a body.
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moments (including reactions at support points such as B, C, and D in Fig. 8.1); the external equilibrium equations can be
stated as follows [8.1]: Z

S

Fxdsþ
Z
V

fxdVþ
X

Px ¼ 0Z
S

Fydsþ
Z
V

fydVþ
X

Py ¼ 0Z
S

Fzdsþ
Z
V

fzdVþ
X

Px ¼ 0

9>=>; (8.1)

For moment equilibrium: Z
S

ðFzy� FyzÞdsþ
Z
V

�
fzy� fyz

�
dVþ

X
Qx ¼ 0Z

S

ðFxz� FzxÞdsþ
Z
V

ðfxz� fzxÞdVþ
X

Qy ¼ 0Z
S

ðFyx� FxyÞdsþ
Z
V

�
fyx� fxy

�
dVþ

X
Qz ¼ 0

9>=>; (8.2)

where S is the surface and V is the volume of the solid body.
EQUATIONS OF INTERNAL EQUILIBRIUM

Due to the application of loads, stresses will be developed inside the body. If we consider an element of material inside
the body, it must be in equilibrium due to the internal stresses developed. This leads to equations known as internal
equilibrium equations.

Theoretically, the state of stress at any point in a loaded body is completely defined in terms of the nine compo-
nents of stress sxx, syy, szz, sxy, syx, syz, szy, szx, and sxz, where the first three are the normal components and the
latter six are the components of shear stress. The equations of internal equilibrium relating the nine components of
stress can be derived by considering the equilibrium of moments and forces acting on the elemental volume shown in
Fig. 8.2. The equilibrium of moments about the x, y, and z axes, assuming that there are no body moments, leads to the
relations

syx ¼ sxy; szy ¼ syz; sxz ¼ szx (8.3)

y

x

z

dx

dz

dy

xx

xy

xz

zx +
∂  zx

∂x

xx +
∂  xx

∂x
x

yx +
∂  yx

∂x

0

⋅ dx

⋅ dx

⋅ dx

σ
σσ

σ

σ
σ

σ

σ
σ

φ

FIGURE 8.2 Elemental volume considered for internal equilibrium. (Only the components of stress acting on a typical pair of faces are shown for
simplicity.)
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These equations show that the state of stress at any point can be completely defined by the six components sxx, syy,
szz, sxy, syz, and szx. The equilibrium of forces in the x, y, and z directions gives the following differential equilibrium
equations:

vsxx

vx
þ vsxy

vy
þ vszx

vz
þ fx ¼ 0

vsxy

vx
þ vsyy

vy
þ vsyz

vz
þ fy ¼ 0

vszx

vx
þ vsyz

vy
þ vszz

vz
þ fz ¼ 0

9>>>>>>>>>=>>>>>>>>>;
(8.4)

where fx, fy, and fz are the body forces per unit volume acting along the directions x, y, and z, respectively.
For a two-dimensional problem, there will be only three independent stress components (sxx, syy, sxy) and the

equilibrium equations of Eq. (8.4) reduce to

vsxx

vx
þ vsxy

vy
þ fx ¼ 0

vsxy

vx
þ vsyy

vy
þ fy ¼ 0

9>>>=>>>; (8.5)

In one-dimensional (axial) problems, only one component of stress, namely sxx, will be present and hence Eq. (8.4)
reduces to

vsxx

vx
þ fx ¼ 0 (8.6)

STRESSeSTRAIN RELATIONS (CONSTITUTIVE RELATIONS) FOR ISOTROPIC MATERIALS
Three-dimensional case: In the case of a linear, elastic, isotropic three-dimensional solid, the stressestrain relations

are given by Hooke’s law as follows:

ε
! ¼

8>>>>>>>><>>>>>>>>:

εxx

εyy

εzz

εxy

εyz

εzx

9>>>>>>>>=>>>>>>>>;
¼ ½C� s!þ ε

!
0h½C�

8>>>>>>>><>>>>>>>>:

sxx

syy

szz

sxy

syz

szx

9>>>>>>>>=>>>>>>>>;
þ

8>>>>>>>><>>>>>>>>:

εxx0

εyy0

εzz0

εxy0

εyz0

εzx0

9>>>>>>>>=>>>>>>>>;
(8.7)

where [C] is a matrix of elastic coefficients given by

½C� ¼ 1
E

2666666664

1 �v �v 0 0 0

�v 1 �v 0 0 0

�v �v 1 0 0 0

0 0 0 2ð1þ vÞ 0 0

0 0 0 0 2ð1þ vÞ 0

0 0 0 0 0 2ð1þ vÞ

3777777775
(8.8)
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ε
!

0 is the vector of initial strains, E is Young’s modules, and v is Poisson’s ratio of the material. In the case of heating an
isotropic material, the initial strain vector is given by

ε
!

0 ¼

8>>>>>>>>>>><>>>>>>>>>>>:

εxx0

εyy0

εzz0

εxy0

εyz0

εzx0

9>>>>>>>>>>>=>>>>>>>>>>>;
¼ aT

8>>>>>>>>>><>>>>>>>>>>:

1

1

1

0

0

0

9>>>>>>>>>>=>>>>>>>>>>;
(8.9)

where a is the coefficient of thermal expansion and T is the temperature charge. Sometimes, the expressions for stresses in
terms of strains will be needed. By including thermal strains, Eq. (8.7) can be inverted to obtain

s! ¼

8>>>>>>>>>>><>>>>>>>>>>>:

sxx

syy

szz

sxy

syz

szx

9>>>>>>>>>>>=>>>>>>>>>>>;
¼ ½D�ð ε!� ε

!
0Þ h ½D�

8>>>>>>>>>>>><>>>>>>>>>>>>:

εxx

εyy

εzz

εxy

εyz

εzx

9>>>>>>>>>>>>=>>>>>>>>>>>>;
� EaT

1� 2y

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

1

1

1

0

0

0

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
(8.10)

where the matrix [D] is given by

½D� ¼ E

ð1þ vÞð1� 2vÞ

26666666666666666664

1� v v v 0 0 0

v 1� v v 0 0 0

v v 1� v 0 0 0

0 0 0
1� 2v

2
0 0

0 0 0 0
1� 2v

2
0

0 0 0 0 0
1� 2v

2

37777777777777777775

(8.11)

In the case of two-dimensional problems, two types of stress distributions, namely plane stress and plane strain, are
possible.

Two-dimensional case (plane stress): The assumption of plane stress is applicable for bodies whose dimension is very
small in one of the coordinate directions. Thus, the analysis of thin plates loaded in the plane of the plate can be made using
the assumption of plane stress. In plane stress distribution, it is assumed that

szz ¼ szx ¼ syz ¼ 0 (8.12)

where z represents the direction perpendicular to the plane of the plate as shown in Fig. 8.3, and the stress components do
not vary through the thickness of the plate (i.e., in the z direction). Although these assumptions violate some of the
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compatibility conditions, they are sufficiently accurate for all practical purposes provided the plate is thin. In this case, the
stressestrain relations, Eqs. (8.7) and (8.10), reduce to

ε
! ¼ ½C� s!þ ε

!
0 (8.13)

where

ε
! ¼

8><>:
εxx

εyy

εxy

9>=>;; s! ¼

8><>:
sxx

syy

sxy

9>=>;

½C� ¼ 1
E

264 1 �v 0

�v 1 0

0 0 2ð1þ vÞ

375 (8.14)

ε
!

0 ¼

8><>:
εxx0

εyy0

εxy0

9>=>; ¼ aT

8><>:
1

1

0

9>=>; (8.15)

in the case of thermal strains, and

s! ¼ ½D�ð ε!� ε
!

0Þ ¼ ½D� ε!� EaT

1� v

8><>:
1

1

0

9>=>; (8.16)

with

½D� ¼ E

1� v2

266664
1 v 0

v 1 0

0 0
1� v

2

377775 (8.17)

y

y

zx

FIGURE 8.3 Example of a plane stress problem: thin plate under in-plane loading.
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In the case of plane stress, the component of strain in the z direction, because of Poisson ratio effect, will be nonzero
and is given by (from Eq. 8.7)

εzz ¼ �v

E
ðsxx þ syyÞ þ aT ¼ �v

1� v
ðεxx þ εyyÞ þ 1þ v

1� v
aT (8.18)

while

εyz ¼ εzx ¼ 0 (8.19)

EXAMPLE 8.1
The following stresses are developed in a plate under plane stress: sxx ¼ 10 MPa, syy ¼ �15 MPa, and sxy ¼ 5 MPa. Determine the

strains induced in the plate, assuming that E ¼ 209 GPa and v ¼ 0.3.

Solution

Since the plate is in a state of plane stress, the strains εxx, εyy, and εxy are given by Eq. (8.13):8>>>>><>>>>>:

εxx

εyy

εxy

9>>>>>=>>>>>;
¼ 1

E

2666664
1 �v 0

�v 1 0

0 0 2ð1þ vÞ

3777775

8>>>>><>>>>>:

sxx

syy

sxy

9>>>>>=>>>>>;

¼ 1

209ð109
�
2666664

1 �0:3 0

�0:3 1 0

0 0 2:6

3777775

8>>>>><>>>>>:

10

�15

5

9>>>>>=>>>>>;
¼

8>>>>><>>>>>:

70:0483

�86:9565

62:8019

9>>>>>=>>>>>;
� 10�6

The shear strains εyz and εzx will be zero. The normal strain εzz can be computed using Eq. (8.18) as

εzz ¼ �v

E
ðsxx þ syyÞ ¼ � 0:3

209ð109Þ ð10� 15Þ�106
� ¼ 7:2464

�
10�6

�

Two-dimensional case (plane strain): The assumption of plane strain is applicable for bodies that are long and whose
geometry and loading do not vary significantly in the longitudinal direction. Thus, the analysis of dams, cylinders, and
retaining walls shown in Fig. 8.4 can be made using the assumption of plane strain. In plane strain distribution, it is
assumed that w ¼ 0 and (vw/vz) ¼ 0 at every cross section.

Here, the dependent variables are assumed to be functions of only the x and y coordinates provided we consider a
cross section of the body away from the ends. In this case, the three-dimensional stressestrain relations given by Eqs. (8.7)
and (8.10) reduce to

ε
! ¼ ½C� s!þ ε

!
0 (8.20)

where

ε
! ¼

8><>:
εxx

εyy

εxy

9>=>;; s! ¼

8><>:
sxx

syy

sxy

9>=>;
½C� ¼ 1þ v

E

264 1� v �v 0

�v 1� v 0

0 0 2

375 (8.21)
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ε
!

0 ¼

8><>:
εxx0

εyy0

εxy0

9>=>; ¼ ð1þ vÞaT

8><>:
1

1

0

9>=>; (8.22)

in the case of thermal strains, and

s! ¼ ½D�ð ε!� ε
!

0Þ ¼ ½D� ε!� EaT

1� 2v

8><>:
1

1

0

9>=>; (8.23)

with

½D� ¼ E

ð1þ vÞð1� 2vÞ

266664
1� v v 0

v 1� v 0

0 0
1� 2v

2

377775 (8.24)

The component of stress in the z direction will be nonzero because of the Poisson ratio effect and is given by

szz ¼ vðsxx þ syyÞ � EaT (8.25)

and

syz ¼ szx ¼ 0 (8.26)

x

z

y

y

y

x

x

z

z

Dam

Long cylinder

Retaining wall

(A)

(B) (C)

FIGURE 8.4 Examples of plane strain problems.
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EXAMPLE 8.2
The strains developed in a dam, considered to be in a state of plane strain, are given by εxx ¼ 0.00025, εyy ¼ 0.0001, and εxy ¼
�0.00015. Determine the stresses developed in the dam. Assume that E ¼ 207 GPa and v ¼ 0.3.

Solution

Since the dam is in a state of plane strain, the stresses sxx, syy, and sxy are given by Eq. (8.23):

8>>>>><>>>>>:

sxx

syy

sxy

9>>>>>=>>>>>;
¼ E

ð1þ vÞð1� 2vÞ

2666666664

1� v v 0

v 1� v 0

0 0
1� 2v

2

3777777775

8>>>>><>>>>>:

εxx

εyy

εxy

9>>>>>=>>>>>;

¼ 207ð109
�

1:3ð0:4Þ

2666664
0:7 0:3 0

0:3 0:7 0

0 0 0:2

3777775

8>>>>><>>>>>:

0:00025

0:00010

�0:00015

9>>>>>=>>>>>;
¼

8>>>>><>>>>>:

81:6058

57:7811

�11:9423

9>>>>>=>>>>>;
MPa

The shear stresses syz and szx will be zero. The normal stress szz can be computed using Eq. (8.25) as

szz ¼ vðsxx þ syyÞ ¼ 0:3ð81:6058þ 57:7811Þ ¼ 41:7981 MPa

One-dimensional case: In the case of one-dimensional axial stress problems, all stress components except for one
normal stress are zero and the stressestrain relations degenerate to

ε
! ¼ ½C� s!þ ε

!
0 (8.27)

where

ε
! ¼ fεxxgg; s! ¼ fsxxg

½C� ¼
�
1
E

� (8.28)

ε
!

0 ¼ fεxx0g ¼ aT (8.29)

in the case of thermal strains, and

s! ¼ ½D�ð ε!� ε
!

0Þ ¼ ½D� ε!� EaTf1g (8.30)

with

½D� ¼ ½E� (8.31)

Axisymmetric case: In the case of solids of revolution (axisymmetric solids under axisymmetric loads), the stresse
strain relations are given by

ε
! ¼ ½C� s!þ ε

!
0 (8.32)

where

ε
! ¼

8>>><>>>:
εrr

εqq

εzz

εrz

9>>>=>>>;; s! ¼

8>>><>>>:
srr

sqq

szz

srz

9>>>=>>>;
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½C� ¼ 1
E

266664
1 �v �v 0

�v 1 �v 0

�v �v 1 0

0 0 0 2ð1þ vÞ

377775 (8.33)

ε
!

0 ¼

8>>>><>>>>:
εrr0

εqq0

εzz0

εrz0

9>>>>=>>>>; ¼ aT

8>>>><>>>>:
1

1

1

0

9>>>>=>>>>; (8.34)

in the case of thermal strains, and

s! ¼ ½D�ð ε!� ε
!

oÞ ¼ ½D� ε!� EaT

1� 2v

8>>><>>>:
1

1

1

0

9>>>=>>>; (8.35)

with

½D� ¼ E

ð1þ vÞð1� 2vÞ

2666666664

1� v v v 0

v 1� v v 0

v v 1� v 0

0 0 0

�
1� 2v

2

�

3777777775
(8.36)

In these equations, the subscripts r, q, and z denote the radial, tangential, and axial directions, respectively.
STRESSeSTRAIN RELATIONS FOR ANISOTROPIC MATERIALS

The stressestrain relations given earlier are valid for isotropic elastic materials. The term isotropic indicates that
the material properties at a point in the body are not a function of orientation. In other words, the material properties
are constant in any plane passing through a point in the material. There are certain materials (e.g., reinforced concrete,
fiber-reinforced composites, brick, and wood) for which the material properties at any point depend on the orientation
also. In general, such materials are called anisotropic materials. The generalized Hooke’s law valid for anisotropic
materials is given in this section. The special cases of the Hooke’s law for orthotropic and isotropic materials will also be
indicated.

For a linearly elastic anisotropic material, the strainestress relations are given by the generalized Hooke’s law as
[8.2,8.3] follows: 8>>>>>>>><>>>>>>>>:

ε1

ε2

ε3

ε23

ε13

ε12

9>>>>>>>>=>>>>>>>>;
¼

26664
C11 C12 / C16

C12 C22 / C26

«

C16 C26 / C66

37775

8>>>>>>>><>>>>>>>>:

s1

s2

s3

s23

s13

s12

9>>>>>>>>=>>>>>>>>;
(8.37)

where the matrix [C] is symmetric and is called the compliance matrix. Thus, 21 independent elastic constants
(equal to the number of independent components of [C]) are needed to describe an anisotropic material. Note that
subscripts 1, 2, and 3 are used instead of x, y, and z in Eq. (8.37) for convenience.
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Certain materials exhibit symmetry with respect to certain planes within the body. In such cases, the number of elastic
constants will be reduced from 21. For an orthotropic material, which has three planes of material property symmetry,
Eq. (8.37) reduces to 8>>>>>>>><>>>>>>>>:

ε1

ε2

ε3

ε23

ε13

ε12

9>>>>>>>>=>>>>>>>>;
¼

2666666664

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

3777777775

8>>>>>>>><>>>>>>>>:

s1

s2

s3

s23

s13

s12

9>>>>>>>>=>>>>>>>>;
(8.38)

where the elements Cij are given by

C11 ¼ 1
E11

; C12 ¼ �v21
E22

; C13 ¼ �v31
E33

;

C22 ¼ 1
E22

; C23 ¼ �v32
E33

; C33 ¼ 1
E33

;

C44 ¼ 1
G23

; C55 ¼ 1
G13

; C66 ¼ 1
G12

;

9>>>>>>>>=>>>>>>>>;
(8.39)

Here, E11, E22, and E33 denote the Young’s modulus in the planes defined by axes 1, 2, and 3, respectively; G12, G23,
and G13 represent the shear modulus in the planes 12, 23, and 13, respectively; and v12, v13, and v23 indicate the major
Poisson’s ratios. Thus, nine independent elastic constants are needed to describe an orthotropic material under three-
dimensional state of stress. For the specially orthotropic material that is in a state of plane stress, s3 ¼ s23 ¼ s13 ¼ 0
and Eq. (8.38) reduces to 8><>:

ε1

ε2

ε12

9>=>; ¼

264C11 C12 0

C12 C22 0

0 0 C66

375
8><>:

s1

s2

s12

9>=>; (8.40)

which involves four independent elastic constants. The elements of the compliance matrix, in this case, can be
expressed as

C11 ¼ 1
E11

C22 ¼ 1
E22

C12 ¼ �v12
E11

¼ �v21
E22

C66 ¼ 1
G12

(8.41)

The stressestrain relations can be obtained by inverting the relations given by Eqs. (8.37), (8.38), and (8.40).
Specifically, the stressestrain relations for a specially orthotropic material (under plane stress) can be expressed as8><>:

s1

s2

s12

9>=>; ¼

264Q11 Q12 0

Q12 Q22 0

0 0 Q66

375
8><>:

ε1

ε2

ε12

9>=>;h ½Q� ε! (8.42)
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where the elements of the matrix [Q] are given by

Q11 ¼ E11

1� v12v21
; Q22 ¼ E22

1� v12v21

Q12 ¼ v21E11

1� v12v21
¼ v12E22

1� v12v21

Q66 ¼ 2G12

9>>>=>>>; (8.43)

If the material is linearly elastic and isotropic, only two elastic constants are needed to describe the behavior and the
stressestrain relations are given by Eq. (8.7) or Eq. (8.10).
STRAINeDISPLACEMENT RELATIONS

The deformed shape of an elastic body under any given system of loads and temperature distribution conditions can be
completely described by the three components of displacement u, v, and w parallel to the directions x, y, and z, respectively.
In general, each of these components u, v, and w is a function of the coordinates x, y, and z. The strains induced in the body
can be expressed in terms of the displacements u, v, and w. In this section, we assume the deformations to be small so that
the strainedisplacement relations remain linear.

To derive expressions for the normal strain components εxx and εyy and the shear strain component εxy, consider a
small rectangular element OACB whose sides (of lengths dx and dy) lie parallel to the coordinate axes before deformation.
When the body undergoes deformation under the action of external load and temperature distributions, the element
OACB also deforms to the shape O0A0C0B0 as shown in Fig. 8.5. We can observe that the element OACB has two basic
types of deformation, one of change in size and the other of angular distortion.

Since the normal strain is defined as change in length divided by original length, the strain components εxx and εyy can
be found as

εxx ¼

change in length of the fiber OA that lies

in the x directon before deformation
original length of the fiber OA

¼

�
dxþ

�
uþ vu

vx
$dx

�
� u

�
� dx

dx
¼ vu

vx

(8.44)

and

εyy ¼

change in length of the fiber OB that lies

in the y direction before deformation
original length of the fiber OB

¼

�
dyþ

�
vþ vv

vy
$dy

�
� v

�
� dy

dy
¼ vv

vy

(8.45)

u +       ⋅ dy
u
y

v +       ⋅ dx
v
xu +       ⋅ dxu

x
y

x

B

A

C

O

O ′

B ′
C′

A′
dy

dx
u

v

2

1

v +      ⋅ dy
v
y

∂
∂

∂

∂
∂∂

∂

∂

θ

θ

FIGURE 8.5 Deformation of a small element OACB.
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The shear strain is defined as the decrease in the right angle between the fibers OA and OB, which were at right angles
to each other before deformation. Thus, the expression for the shear strain εxy can be obtained as

εxy ¼ q1 þ q2x tan q1 þ tan q2 x

�
vþ vv

vx
$ dx

�
� v�

dxþ
�
uþ vu

vx
$ dx

�
� u

�þ
�
uþ vu

vy
$ dy

�
� u�

dyþ
�
vþ vv

vy
$ dy

�
� v

�
If the displacements are assumed to be small, εxy can be expressed as

εxy ¼ vu

vy
þ vv

vx
(8.46)

The expressions for the remaining normal strain component εzz and shear strain components εyz and ε zx can be derived
in a similar manner as

εzz ¼ vw

vz
(8.47)

εyz ¼ vw

vy
þ vv

vz
(8.48)

and

εzx ¼ vu

vz
þ vw

vx
(8.49)

In the case of two-dimensional problems, Eqs. (8.44) to (8.46) are applicable, whereas Eq. (8.44) is applicable in the
case of one-dimensional problems.

In the case of an axisymmetric solid, the strainedisplacement relations can be derived as

εrr ¼ vu

vr

εqq ¼ u

r

εzz ¼ vw

vz

εrz ¼ vu

vz
þ vw

vr

(8.50)

where u and w are the radial and the axial displacements, respectively.

EXAMPLE 8.3
For a planar deformation, find the most general displacement solution by integrating the following strain equations:

εxx ¼ vu

vx
¼ 0 (E.1)

εyy ¼ vv

vy
¼ 0 (E.2)

εxy ¼ vu

vy
þ vv

vx
¼ 0 (E.3)

Give a physical interpretation of the resulting solution.

Solution

Integrate Eqs. (E.1) and (E.2) with respect to x and y, respectively, to obtain

u ¼ f1ðyÞ; v ¼ f2ðxÞ (E.4)

Differentiate the functions f 1(y) and f2(x) with respect to y and x, respectively, and substitute in Eq. (E.3):

df1
dy

þ df2
dx

¼ 0 (E.5)

Continued
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EXAMPLE 8.3 dcont’d

Because, in Eq. (E.5), the first term is a function of y alone and the second term is a function of x alone, we can express

df1
dy

¼ �df2
dx

¼ C (E.6)

where C is a constant (to be determined). By integrating the equations

df1
dy

¼ C ; �df2
dx

¼ C

with respect to y and x, respectively, we find

u ¼ f1ðyÞ ¼ Cy þD; v ¼ f2ðxÞ ¼ �Cx þ E (E.8)

whereD and E are constants (to be determined). Thus, the most general displacement solution corresponding to Eqs. (E.1) to (E.3) is

indicated in Eq. (E.8). The constants D and E can be seen to represent rigid body translations along x and y directions, respectively.

The constant C can be seen to denote an infinitesimal rigid body rotation. These rigid body motions are shown in Fig. 8.6.

EXAMPLE 8.4
The undeformed and deformed configurations of a rectangular plate are shown in Fig. 8.7. Determine the strains εxx, εyy, and εxy

induced in the plate.

Solution

From the undeformed and deformed configurations of the plate shown in Fig. 8.7, the strains induced at the location (x, y) ¼ (0, 0)

can be determined as:

εxx ¼ vu

vx
y

Du

Dx
¼ 4:0030� 4

4
¼ 0:00075

εyy ¼ vv

vy
y

Dv

Dy
¼ 3:015� 3

3
¼ 0:005

εxy ¼ vu

vy
þ vv

vx
y

Du

Dy
þ Dv

Dx
¼ 0:001

3
þ 0:002

4
¼ 0:0008333

u = D

y, v

x, u

Rigid body translation
along x direction

v = E

Rigid body translation
along y direction

C

Rigid body rotation in xy-plane

FIGURE 8.6 Rigid body motions in xy-plane.
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EXAMPLE 8.4 dcont’d

BOUNDARY CONDITIONS
Boundary conditions can be either on displacements or on surface forces (tractions). The boundary conditions on

displacements require certain displacements to prevail at certain points on the boundary of the body, whereas the boundary
conditions on stresses require that the stresses induced must be in equilibrium with the external forces applied at certain
points on the boundary of the body. As an example, consider the flat plate under in-plane loading shown in Fig. 8.8.

In this case, the boundary conditions can be expressed as

u ¼ v ¼ 0 along the edge AB

ðdisplacement boundary conditionsÞ
and

syy ¼ sxy ¼ 0 along the edges BC and AD

sxx ¼ �p; sxy ¼ 0 along the edge CD

ðsurface forces or traction boundary conditionsÞ
It can be observed that the displacements are unknown and are free to assume any values dictated by the solution

wherever stresses are prescribed and vice versa. This is true of all solid mechanics problems.

y

x
(4, 0)

(0.001, 3.015) (4.006, 3.020)

(4.003, 0.002)

(0, 0)

(0, 3) (4, 3)

Deformed
configurationUndeformed

configuration

FIGURE 8.7 Deformation of a rectangular plate.

y

B

A
D

a

b

C

p

x

FIGURE 8.8 A flat plate under in-plane loading.
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For the equilibrium of induced stresses and applied surface forces at point A of Fig. 8.9, the following equations must
be satisfied:

‘xsxx þ ‘ysxy þ ‘zszx ¼ Fx

‘xsxy þ ‘ysyy þ ‘zsyz ¼ Fy

‘xsxz þ ‘ysyz þ ‘zszz ¼ Fz

(8.51)

where lx, ly, and lz are the direction cosines of the outward drawn normal (AN) at point A; and Fx, Fy, and Fz are the
components of surface forces (tractions) acting at point A in the directions x, y, and z, respectively. The surface (distributed)
forces Fx, Fy, and Fz have dimensions of force per unit area. Eq. (8.51) can be specialized to two- and one-dimensional
problems without much difficulty.
COMPATIBILITY EQUATIONS

When a body is continuous before deformation, it should remain continuous after deformation. In other words, no
cracks or gaps should appear in the body and no part should overlap another due to deformation. Thus, the displacement
field must be continuous as well as single-valued. This is known as the condition of compatibility. The condition
of compatibility can also be seen from another point of view. For example, we can see from Eqs. (8.44) to (8.49)
that the three strains εxx, εyy, and εxy can be derived from only two displacements, u and v. This implies that a definite
relation must exist between εxx, εyy, and εxy if these strains correspond to a compatible deformation. This definite
relation is called the compatibility equation. Thus, in three-dimensional elasticity problems, there are six compatibility
equations [8.4]:

v2εxx

vy2
þ v2εyy

vx2
¼ v2εxy

vxvy
(8.52)

v2εyy

vz2
þ v2εzz

vy2
¼ v2εyz

vyvz
(8.53)

y

A

Normal

Surface area, dS

Equilibrium of internal stresses and surface forces around point A

Components of the surface force

N (Normal)

x

z

y

x

z

Φz

Φx

x
.dS

z
.dS

y
.dS

Φx

Φy

xz

xx

xy

σ

σ

σ

(A)

(B)

FIGURE 8.9 Forces acting at the surface of a body.
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v2εzz

vx2
þ v2εxx

vz2
¼ v2εzx

vxvz
(8.54)

1
2

v

vx

�
vεxy

vz
� vεyz

vx
þ vεzx

vy

�
¼ v2εxx

vyvz
(8.55)

1
2

v

vy

�
vεxy

vz
þ vεyz

vx
� vεzx

vy

�
¼ v2εyy

vzvx
(8.56)

1
2

v

vx

�
� vεxy

vz
þ vεyz

vx
þ vεzx

vy

�
¼ v2εzz

vxvy
(8.57)

In the case of two-dimensional plane strain problems, Eqs. (8.52) to (8.57) reduce to a single equation as

v2εxx

vy2
þ v2εyy

vx2
¼ v2εxy

vxvy
(8.58)

For plane stress problems, Eqs. (8.52) to (8.57) reduce to the following equations:

v2εxx

vy2
þ v2εyy

vx2
¼ v2εxy

vxvy
;

v2εzz

vy2
¼ v2εzz

vx2
¼ v2εzz

vxvy
¼ 0 (8.59a ed)

In the case of one-dimensional problems, the conditions of compatibility will be automatically satisfied.

EXAMPLE 8.5
In the theory of elasticity, a stress function F(x, y) is defined in two-dimensional stress analysis problems with no body forces. The

stress function can be used to determine the stresses as

sxx ¼ v2F

vy2
; syy ¼ v2F

vx2
; sxy ¼ � v2F

vxvy

Determine the stress field corresponding to the following stress function:

Fðx; yÞ ¼ c1x
3 þ c2x

2y þ c3xy
2 þ c4y

3

where ci, i ¼ 1, 2, 3, 4 are constants. Indicate the conditions under which the stress field corresponds to that of a beam in pure

bending.

Approach: The stress condition for a beam in pure bending is given by

sxx ¼ linear in y; syy ¼ 0; and sxy ¼ 0:

Solution

Using the given stress function, the stresses can be determined as

sxx ¼ v2F

vy2
¼ 2c3x þ 6c4y

syy ¼ v2F

vx2 ¼ 6c1x þ 2c2y

sxy ¼ v2F

vxvy
¼ �2c2x � 2c3y

For a beam in pure bending, the normal stress in the y-direction (syy) and the shear stress in the xy-plane (sxy) must be zero. This

requires that c1, c2, and c3 be zero. These conditions yield a linear variation of the stress sxx with respect to the vertical (y) di-

rection, which is a valid variation for a beam in pure bending.
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EXAMPLE 8.6
The displacement field in a cantilever beam of length l, fixed at x ¼ 0, and subjected to a uniformly distributed load of

magnitude �p0 is given by

vðx; yÞ ¼ � po

24EI
x2
�
x2 � 4lx þ 6l2

�
; uðx; yÞ ¼ �y

dv

dx

Determine whether this displacement field satisfies the compatibility equations.

Approach: Find the strains in the beam and check the compatibility conditions.

Solution

From the given displacement field, the strains can be determined as follows:

εxx ¼ vu

vx
¼ �y

v2v

vx2
¼ y

p0

24EI

�
12x2 � 24lx þ 12l2

�
(E.1)

εyy ¼ vv

vy
¼ 0 (E.2)

εxy ¼ vu

vy
þ vv

vx
¼ 0 or

vu

vy
¼ �vv

vx
(E.3)

The satisfaction of the compatibility conditions for a plane stress problem, given by Eq. (8.59a), can be verified as follows:

v2εxx

vy2
þ v2εyy

vx2
¼ v2εxy

vxvy
(E.4)

where

v2εxx

vy2
¼ 0;

v2εyy

vx2
¼ 0

and

v2εxy

vxvy
¼ 0:

This shows that Eq. (E.4) is satisfied.

The normal strain in the z-direction for a plane stress problem can be found using Eq. (8.18):

εzz ¼ � v

1� v
ðεxx þ εyyÞ ¼ � v

1� v

�
p0y

24EI
ð12x2 � 24lx þ 12l2

�
(E.5)

The compatibility conditions related to εzz in Eq. (8.59) can be verified as follows:

v2εzz

vy2 ¼ 0;
v2εzz

vx2 ¼ � v

1� v

�
p0y

24EI
ð24Þ

�
s0

v2εzz

vxvy
¼ � v

1� v

�
p0

24EI
ð24x � 24lÞ

�
s0

This shows that two of the compatibility conditions related to εzz are not satisfied.

PRINCIPAL STRESSES
Many finite element structural analyses involve the computation of principal stresses. In a three-dimensional solid body,

the three principal stresses (s1, s2, s3) can be determined as the roots of the following cubic equation:�������
sxx � s sxy szx

sxy syy � s syz

szx syz szz � s

������� ¼ s3 � I1s
2 þ I2s� I3 ¼ 0 (8.60)

where

I1 ¼ sxx þ syy þ szz (8.61)
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I2 ¼ sxxsyy þ syyszz þ szzsxx � s2
xy � s2

yz � s2
zx (8.62)

I3 ¼ sxxsyyszz þ 2sxysyzszx � sxxs
2
yz � syys

2
zx � szzs

2
xy (8.63)

For a two-dimensional body (plane stress problem), the two in-plane principal stresses (s1, s2) can be found as

s1;2 ¼ sxx þ syy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sxx � syy

2

�2

þ s2
xy

s
(8.64)

EXAMPLE 8.7
The stresses induced in a rectangular plate are given by sxx ¼ 6 MPa, syy ¼ 18 MPa, and sxy ¼ 18 MPa. Find the principal stresses.

Solution

Eq. (8.64) gives the principal stresses as

s1;2 ¼ 6þ 18

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
6� 18

2

�2

þ ð� 8Þ2
s

¼ 22 MPa; 2 MPa

EXAMPLE 8.8
By defining the principal strains ε1, ε2, and ε3 as the strains in the directions of the principal stresses s1, s2, and s3, respectively,

express the stressestrain relations and strainestress relations in a biaxial state of stress.

Solution

Let the principal stresses in a biaxial state of stress be denoted as s1 and s2 with the corresponding principal strains denoted as ε1,

ε2, and ε3. Then the strainestress relations can be expressed as

ε1 ¼ s1

E
� vs2

E
; ε2 ¼ s2

E
� vs1

E
; ε3 ¼ �vs1

E
� vs2

E

The corresponding stressestrain relations can be expressed as

s1 ¼ E

1� v2
ðε1 þ vε2Þ; s2 ¼ E

1� v2
ðε2 þ vε1Þ; s3 ¼ 0

8.3 FORMULATIONS OF SOLID AND STRUCTURAL MECHANICS

As stated in Section 5.3, most continuum problems, including solid and structural mechanics problems, can be formulated
according to one of two methodsddifferential equation and variational. Hence, the finite element equations can also be
derived by using either a differential equation formulation method (e.g., Galerkin approach) or variational formulation
method (e.g., RayleigheRitz approach). In the case of solid and structural mechanics problems, each of the differential
equation and variational formulation methods can be classified into three categories as shown in Table 8.1.

TABLE 8.1 Methods of Formulating Solid and Structural Mechanics Problems

Differential Equation Formulation Methods Variational Formulation Methods

Displacement
method

Force
method

Displacement-force method
(mixed method)

Principle of
minimum po-
tential energy

Principle of minimum com-
plementary energy

Principle of
stationary
Reissner energy
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The displacement, force, and displacementeforce methods of differential equation formulation are closely related to the
principles of minimum potential energy, minimum complementary energy, and stationary Reissner energy formulations,
respectively. We use the displacement method or the principle of minimum potential energy for presenting the various
concepts of the finite element method because they have been extensively used in the literature.

8.3.1 Differential Equation Formulation Methods

DISPLACEMENT METHOD
As stated in Section 8.2.1, for a three-dimensional continuum or elasticity problem, there are six stressestrain relations

(Eq. 8.10), six strainedisplacement relations (Eqs. 8.44e8.49), and three equilibrium equations (Eq. 8.4), and the
unknowns are six stresses (sij), six strains (εij), and three displacements (u, v, and w). By substituting Eqs. (8.44) to (8.49)
into Eq. (8.10), we obtain the stresses in terms of the displacements. By substituting these stressedisplacement relations
into Eq. (8.4), we obtain three equilibrium equations in terms of the three unknown displacement components u, v, and w.
Now these equilibrium equations can be solved for u, v, and w. Of course, the additional requirements such as boundary
and compatibility conditions also have to be satisfied while finding the solution for u, v, and w. Since the displacements u,
v, and w are made the final unknowns, the method is known as the displacement method.
FORCE METHOD

For a three-dimensional elasticity problem, there are three equilibrium equations, Eq. (8.4), in terms of six unknown
stresses sij. At the same time, there are six compatibility equations, Eqs. (8.52) to (8.57), in terms of the six strain
components, εij. Now we take any three strain components, for example, εxy, εyz, and εzx, as independent strains and write
the compatibility equations in terms of εxy, εyz, and εzx only. By substituting the known stressestrain relations, Eq. (8.10),
we express the three independent compatibility equations in terms of the stresses sij. By using these three equations, three
of the stresses out of sxx, syy, szz, sxy, syz, and szx can be eliminated from the original equilibrium equations. Thus, we get
three equilibrium equations in terms of three stress components only, and hence the problem can be solved. Since the final
equations are in terms of stresses (or forces), the method is known as the force method.
DISPLACEMENTeFORCE METHOD

In this method, we use the strainedisplacement relations to eliminate strains from the stressestrain relations. These six
equations, in addition to the three equilibrium equations, will give us nine equations in the nine unknowns, sxx, syy, szz,
sxy, syz, szx, u, v, and w. Thus, the solution of the problem can be found by using the additional conditions such as
compatibility and boundary conditions. Since both the displacements and the stresses (or forces) are taken as the final
unknowns, the method is known as the displacementeforce method.

8.3.2 Variational Formulation Methods

PRINCIPLE OF MINIMUM POTENTIAL ENERGY
The potential energy of an elastic body pp is defined as

pp ¼ p�Wp (8.65)

where p is the strain energy, and Wp is the work done on the body by the external forces. The principle of minimum
potential energy can be stated as follows: Of all possible displacement states (u, v, and w) a body can assume that satisfy
compatibility and given kinematic or displacement boundary conditions, the state that satisfies the equilibrium equations
makes the potential energy assume a minimum value. If the potential energy, pp, is expressed in terms of the displacements
u, v, and w, the principle of minimum potential energy gives, at the equilibrium state,

dppðu; v;wÞ ¼ dpðu; v;wÞ � dWpðu; v;wÞ ¼ 0 (8.66)

It is important to note that the variation is taken with respect to the displacements in Eq. (8.66), whereas the forces and
stresses are assumed constant. The strain energy of a linear elastic body is defined as

p ¼ 1
2

ZZZ
V

ε
!T s! dV (8.67)
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where V is the volume of the body. By using the stressestrain relations of Eq. (8.10), the strain energy, in the presence of
initial strains ε

!
0, can be expressed as

p ¼ 1
2

ZZZ
V

ε
!T ½D� ε! dV �

ZZZ
V

ε
!T ½D� ε!0 dV (8.68)

The work done by the external forces can be expressed as

Wp ¼
ZZZ

V

f
!

T U
!
$ dV þ

ZZ
S1

F
!

T U
!
$ dS1 (8.69)

where f
! ¼

8><>:
fx

fy

fz

9>=>; ¼ known body force vector, F
! ¼

8><>:
Fx

Fy

Fz

9>=>; ¼ vector of prescribed surface forces (tractions),

U
! ¼

8><>:
u

v

w

9>=>; ¼ vector of displacements, and S1 is the surface of the body on which surface forces are prescribed. Using

Eqs. (8.68) and (8.69), the potential energy of the body can be expressed as

ppðu; v;wÞ ¼ 1
2

ZZZ
V

ε
!T ½D�ð ε!� 2 ε

!
0Þ dV �

ZZZ
V

f
!

T U
!
$ dV �

ZZ
S1

F
!

T U
!
$ dS1 (8.70)

If we use the principle of minimum potential energy to derive the finite element equations, we assume a simple form
of variation for the displacement field within each element and derive conditions that will minimize the functional I
(same as pp in this case). The resulting equations are the approximate equilibrium equations, whereas the compatibility
conditions are identically satisfied. This approach is called the displacement or stiffness method of finite element
analysis.

EXAMPLE 8.9
Find the axial deformation of a uniform bar fixed at one end and subjected to an axial load at the other end as shown in Fig. 8.10

using the principle of minimum potential energy.

Solution

Let d be the axial deformation of the bar under the applied axial load. The potential energy of an elastic body is defined as

Potential energyðIÞ ¼ Strain energyðpÞ �Work done by the applied load (E.1)

The strain energy of the bar can be found as

p ¼
ZZZ

V

ðStrain energy densityÞ dV ¼
ZZZ

V

1

2
sε dV (E.2)

For a bar, the stress (s) and strain (ε) are constant and hence Eq. (E.2) can be written as

p ¼ 1

2
sεðV Þ ¼ 1

2
sεAl ¼ 1

2
AElε2 ¼ 1

2
AEl

�
d

l

�2

¼ 1

2

AE

l
d2 (E.3)

Continued

x

A, E

δ

P

FIGURE 8.10 Bar under axial load.
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EXAMPLE 8.9 dcont’d

where A is the cross-sectional area, E is the Young’s modulus, and l is the length of the bar. The work done by the applied load (P)

due to deformation d is given by

W ¼ Pd (E.4)

Using Eqs. (E.3) and (E.4), the potential energy of the bar under axial load, Eq. (E.1), can be expressed as

I ¼ 1

2

AE

l
d2 � Pd (E.5)

By minimizing the potential energy, we can find the axial deformation of the bar (d) as

dI

dd
¼ AE

l
d� P ¼ 0 or d ¼ Pl

AE
(E.6)

PRINCIPLE OF MINIMUM COMPLEMENTARY ENERGY
The complementary energy of an elastic body (pc) is defined as

pc ¼ Complementary strain energy in terms of stresses ðepÞ
�Work done by the applied loads during stress changes

� eWp

�
The principle of minimum complementary energy can be stated as follows: Of all possible stress states that satisfy the

equilibrium equations and the stress boundary conditions, the state that satisfies the compatibility conditions will make the
complementary energy assume a minimum value.

If the complementary energy pc is expressed in terms of the stresses sij, the principle of minimum complementary
energy gives, for compatibility,

dpcðsxx; syy;.szxÞ ¼ depðsxx; syy;.szxÞ � d eWpðsxx; syy;.szxÞ ¼ 0 (8.71)

It is important to note that the variation is taken with respect to the stress components in Eq. (8.71), whereas the
displacements are assumed constant. The complementary strain energy of a linear elastic body is defined as

ep ¼ 1
2

ZZZ
V

s!T
ε
!dV (8.72)

By using the strainestress relations of Eq. (8.7), the complementary strain energy, in the presence of known initial
strain ε

!
0, can be expressed as1

ep ¼ 1
2

ZZZ
V

s!Tð½C� s!þ 2 ε
!

0ÞdV (8.73)

The work done by applied loads during stress change (also known as complementary work) is given by

eWp ¼
ZZ

S2

�
Fxuþ Fyvþ Fzw

�
dS2 ¼

ZZ
S2

F
!T U

!
dS2 (8.74)

where S2 is the part of the surface of the body on which the values of the displacements are prescribed as U
! ¼

8><>:
u
v
w

9>=>;.

Eqs. (8.73) and (8.74) can be used to express the complementary energy of the body as

pcðsxx; syy;.; szxÞ ¼ 1
2

ZZZ
V

s!Tð½C� s!þ 2 ε
!

0Þ$dV �
ZZ

S2

F
!T U

!
$dS2 (8.75)

1. The correctness of this expression can be verified from the fact that the partial derivative of ep with respect to the stresses should yield the strainestress
relations of Eq. (8.7).
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If we use the principle of minimum complementary energy in the finite element analysis, we assume a simple form of
variation for the stress field within each element and derive conditions that will minimize the functional I (same as pc in
this case). The resulting equations are the approximate compatibility equations, whereas the equilibrium equations are
identically satisfied. This approach is called the force or flexibility method of finite element analysis.
PRINCIPLE OF STATIONARY REISSNER ENERGY

In the case of the principle of minimum potential energy, we expressed pp in terms of displacements and permitted
variations of u, v, and w. Similarly, in the case of the principle of minimum complementary energy, we expressed pc in
terms of stresses and permitted variations of sxx, . szx. In the present case, the Reissner energy (pr) is expressed in terms
of both displacements and stresses and variations are permitted in U

!
and s!. The Reissner energy for a linearly elastic

material is defined as

pR ¼
ZZZ

V

½ðinternal stressesÞ � ðstrains expressed in terms of displacementsÞ

�complementary energy in terms of stresses�$ dV � work done by applied forces

¼
ZZZ

V

�

sxx,

vu

vx
þ syy,

vv

vy
þ/þ szx

�
vw

vx
þ vu

vz

�
� ep��$ dV

�
ZZZ

V

�
fx$uþ fy$vþ fz$w


$ dV �

ZZ
S1

�
Fx$uþ Fy$vþ Fz$w

�
$ dS1

�
Z Z

S2

�ðu� uÞFx þ ðv� vÞFy þ ðw� wÞFz

�
$ dS2

¼
ZZZ

V

�
s!T

ε
!� 1

2
s!T ½C� s!� f

!
T U
!�

$ dV �
ZZ

S1

U
!T F

!
dS1 �

ZZ
S2

�
U
!� U

!�T
F
!
$ dS2 (8.76)

The variation of pR is set equal to zero by considering variations in both displacements and stresses:

dpR ¼
X vpR

vsij|{z}
Gives stresse
displacement
equations

dsij þ
�
vpR

vu
duþ vpR

vv
dvþ vpR

vw
dw

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Gives equilibrium equations
and boundary conditions

¼ 0

(8.77)

The principle of stationary Reissner energy can be stated as follows: Of all possible stress and displacement states the
body can have, the particular set that makes the Reissner energy stationary gives the correct stressedisplacement and
equilibrium equations along with the boundary conditions. To derive the finite element equations using the principle of
stationary Reissner energy, we must assume the form of variation for both displacement and stress fields within an element.
HAMILTON’S PRINCIPLE

The variational principle that can be used for dynamic problems is called the Hamilton’s principle. In this principle, the
variation of the functional is taken with respect to time. The functional (similar to pp, pc, and pR) for this principle is
the Lagrangian (L) defined as

L ¼ T � pp ¼ kinetic energy� potential energy (8.78)

The kinetic energy (T ) of a body is given by

T ¼ 1
2

ZZZ
V

r
_
U
!T _

U
!
dV (8.79)
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where r is the density of the material, and
_
U
! ¼

8><>:
_u
_v
_w

9>=>; is the vector of velocity components at any point inside the body.

Thus, the Lagrangian can be expressed as

L ¼ 1
2

ZZZ
V

�
r
_
U
!T _

U
!� ε

!T ½D� ε!þ 2U
!T f

!�
dV þ

ZZ
S1

U
!T F

!
dS1 (8.80)

Hamilton’s principle can be stated as follows: Of all possible time histories of displacement states that satisfy the
compatibility equations and the constraints or the kinematic boundary conditions and that also satisfy the conditions at
initial and final times (t1 and t2), the history corresponding to the actual solution makes the Lagrangian functional a
minimum. Thus, Hamilton’s principle can be stated as

d

Z t2

t1

L dt ¼ 0 (8.81)

8.4 FORMULATION OF FINITE ELEMENT EQUATIONS (STATIC ANALYSIS)

We use the principle of minimum potential energy for deriving the equilibrium equations for a three-dimensional problem
in this section. Since the nodal degrees of freedom are treated as unknowns in the present (displacement) formulation, the
potential energy pp has to be first expressed in terms of nodal degrees of freedom. Then the necessary equilibrium
equations can be obtained by setting the first partial derivatives of pp with respect to each of the nodal degrees of freedom
equal to zero. The various steps involved in the derivation of equilibrium equations are:

Step 1: The solid body is divided into E finite elements.
Step 2: The displacement model within an element e is assumed as

U
! ¼

8><>:
uðx; y; zÞ
vðx; y; zÞ
wðx; y; zÞ

9>=>; ¼ ½N�Q!ðeÞ
(8.82)

where Q
!ðeÞ

is the vector of nodal displacement degrees of freedom of the element, and [N] is the matrix of shape
functions.

Step 3: The element characteristic (stiffness) matrices and characteristic (load) vectors are to be derived from the prin-
ciple of minimum potential energy. For this, the potential energy functional of the body pp is written as (by considering
only the body and surface forces)

pp ¼
XE
e¼ 1

pðeÞ
p

where pðeÞ
p is the potential energy of element e given by (see Eq. 8.65)

pðeÞ
p ¼ 1

2

ZZZ
V ðeÞ

ε
!T ½D�ð ε!� 2 ε

!
0ÞdV �

ZZ
SðeÞ1

U
!T F

!
dS1 �

ZZZ
VðeÞ

U
!T f

!
dV (8.83)

where V(e) is the volume of the element, SðeÞ1 is the portion of the surface of the element over which distributed surface

forces or tractions, F
!
, are prescribed, and f

!
is the vector of body forces per unit volume.
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The strain vector ε
! appearing in Eq. (8.83) can be expressed in terms of the nodal displacement vector Q

!ðeÞ
by differ-

entiating Eq. (8.82) suitably as

ε
! ¼

8>>>>>>>><>>>>>>>>:

εxx

εyy

εzz

εxy

εyz

εzx

9>>>>>>>>=>>>>>>>>;
¼

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

vu

vx

vv

vy

vw

vz

vu

vy
þ vv

vx

vv

vz
þ vw

vy

vw

vx
þ vu

vz

9>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>;

¼

266666666666666666666666664

v

vx
0 0

0
v

vy
0

0 0
v

vz

v

vy

v

vx
0

0
v

vz

v

vy

v

vz
0

v

vx

377777777777777777777777775

8><>:
u

v

w

9>=>; ¼ ½B�Q!ðeÞ
(8.84)

where

½B� ¼

266666666666666666666666664

v

vx
0 0

0
v

vy
0

0 0
v

vz

v

vy

v

vx
0

0
v

vz

v

vy

v

vz
0

v

vx

377777777777777777777777775

½N� (8.85)

The stresses s! can be obtained from the strains ε
! using Eq. (8.10) as

s! ¼ ½D�ð ε!� ε
!

0Þ ¼ ½D�½B�Q!ðeÞ � ½D� ε!0 (8.86)

Substitution of Eqs. (8.82) and (8.84) into Eq. (8.83) yields the potential energy of the element as

pðeÞ
p ¼ 1

2

ZZZ
V ðeÞ

Q
!ðeÞT ½B�T ½D�½B�Q!ðeÞ

dV �
ZZZ

VðeÞ
Q
!ðeÞT ½B�T ½D� ε!0dV �

ZZ
SðeÞ1

Q
!ðeÞT ½N�T F!dS1

�
ZZZ

V ðeÞ
Q
!ðeÞT ½N�T f!dV (8.87)

In Eqs. (8.83) and (8.87), only the body and surface forces are considered. However, generally some external concen-
trated forces will also be acting at various nodes. If P

!e c denotes the vector of nodal forces (acting in the directions of the
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nodal displacement vector Q
!e of the total structure or body), the total potential energy of the structure or body can be

expressed as

pp ¼
XE
e¼ 1

pðeÞ
p � Q

!e T P
!e c

(8.88)

where Q
!e ¼

8>>><>>>:
Q1

Q2

«

QM

9>>>=>>>; is the vector of nodal displacements of the entire structure or body, and M is the total number of

nodal displacements or degrees of freedom.

Note that each component of the vector Q
!ðeÞ

, e ¼ 1, 2, ., E, appears in the global nodal displacement vector of the

structure or body, Q
!e . Accordingly, Q

!ðeÞ
for each element may be replaced by Q

!e if the remaining element matrices

and vectors (e.g., [B], [N], F
!
, and f

!
) in the expression for pðeÞ

p are enlarged by adding the required number of zero
elements and, where necessary, by rearranging their elements. In other words, the summation of Eq. (8.88) implies
the expansion of element matrices to structure or body size followed by summation of overlapping terms. Thus,
Eqs. (8.87) and (8.88) give

pp ¼ 1
2
Q
!e

T

"XE
e¼ 1

ZZZ
V ðeÞ

½B�T ½D�½B�dV
#
Q
!e �Q

!e
TXE

e¼ 1

 ZZZ
VðeÞ

½B�T ½D�!̨0dV

þ
ZZ

SðeÞ1

½N�T F!dS1 þ
ZZZ

V ðeÞ
½N�T f!dV

!
� Q
!e T P

!e c

(8.89)

Eq. (8.89) expresses the total potential energy of the structure or body in terms of the nodal degrees of freedom, Q
!e . Thestatic equilibrium configuration of the structures can be found by solving the following necessary conditions (for the mini-

mization of potential energy):

vpp

v Q
!e

¼ 0
!

or
vpp

vQ1
¼ vpp

vQ2
¼ / ¼ vpp

vQM
¼ 0 (8.90)

With the help of Eq. (8.89), Eq. (8.90) can be expressed as0BB@XE
e¼ 1

ZZZ
V ðeÞ

½B�T ½D�dV

1CCA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Element stiffness

matrix;½KðeÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Global or overall stiffness
matrix of the structure or

body;
�
Ke�

Qe!|{z}
Global vector of
nodal displacements

¼ P
!e c|{z}

Vector of
concentrated
loads

þ
XE
e¼ 1

�ZZZ
V ðeÞ

½B�T ½D� ε!0 dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Vector of element
nodal forces produced
by initial strains;

P
!ðeÞ

i

þ
ZZ

SðeÞ1

½N�T F! dS1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Vector of element
nodal forces produced

by surface forces; P
!ðeÞ

s

þ
ZZ

V ðeÞ
½N�T f!dV

�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Vector of element
nodal forces
produced by body
forces;

P
!ðeÞ

b|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Vector of element nodal forces; P

!ðeÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Total vector of nodal forces; P

!e
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That is,  XE
e¼ 1

�
KðeÞ�! Q

!e ¼ P
!e c þ

XE
e¼ 1

�
P
!ðeÞ

i þ P
!ðeÞ

s þ P
!ðeÞ

b


¼ P

!e (8.91)

where �
KðeÞ� ¼

ZZZ
V ðeÞ

½B�T ½D�½B� dV ¼ element stiffness matrix (8.92)

P
!ðeÞ

i ¼
ZZZ

V ðeÞ
½B�T ½D�ε0! dV ¼ element load vector due to intial strains (8.93)

P
!ðeÞ

s ¼
ZZ

SðeÞ1

½N�T F! dS1 ¼ element load vector due to surface forces (8.94)

P
!ðeÞ

b ¼
ZZZ

VðeÞ
½N�T f! dV ¼ element load vector due to body forces (8.95)

Some of the contributions to the load vector P
!e may be zero in a particular problem. In particular, the contribution of

surface forces will be nonzero only for those element boundaries that are also part of the boundary of the structure or
body that is subjected to externally applied distributed loading.

The load vectors P
!ðeÞ

i ; P
!ðeÞ

s , and P
!ðeÞ

b given in Eqs. (8.93) to (8.95) are called kinematically consistent nodal load vectors

[8.5]. Some of the components of P
!ðeÞ

i ; P
!ðeÞ

s , and P
!ðeÞ

b may be moments or even higher-order quantities if the correspond-
ing nodal displacements represent rotations or curvatures. These load vectors are called kinematically consistent because
they satisfy the virtual work (or energy) equation. That is, the virtual work done by a particular generalized load Pj when
the corresponding displacement dQj is permitted (while all other nodal displacements are prohibited) is equal to the work
done by the distributed (nonnodal) loads in moving through the displacements dictated by dQj and the assumed displace-
ment field.

Step 4: The desired equilibrium equations of the overall structure or body can now be expressed, using Eq. (8.91), as�
Ke
�
Q
!e ¼ P

!e (8.96)

where �
Ke
�
¼
XE
e¼ 1

�
KðeÞ� ¼ assembled ðglobalÞ stiffness matrix (8.97)

and

P
!e ¼ P

!e c þ
XE
e¼ 1

P
!ðeÞ

i þ
XE
e¼ 1

P
!ðeÞ

s þ
XE
e¼ 1

P
!ðeÞ

b ¼ assembled ðglobalÞ nodal load vector (8.98)

Steps 5 and 6: The required solution for the nodal displacements and element stresses can be obtained after solving
Eq. (8.96).

The following observations can be made from the previous derivation:
1. The formulation of element stiffness matrices, [K(e)], and element load vectors, P

!ðeÞ
i , P

!ðeÞ
s , and P

!ðeÞ
b , which is basic to

the development of finite element Eq. (8.96), requires integrations as indicated in Eqs. (8.92) to (8.95). For some ele-
ments, the evaluation of these integrals is simple. However, in certain cases, it is often convenient to perform the in-
tegrations numerically [8.6].

2. The formulas for the element stiffness and load vector in Eqs. (8.92) to (8.95) remain the same irrespective of the type of
element. However, the orders of the stiffness matrix and load vector will change for different types of elements. For

example, in the case of a triangular element under plane stress, the order of [K(e)] is 6 � 6 and of Q
!ðeÞ

is 6 � 1. For

a rectangular element under plane stress, the orders of [K(e)] and Q
!ðeÞ

are 8 � 8 and 8 � 1, respectively. It is assumed
that the displacement model is linear in both these cases.
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3. The element stiffness matrix given by Eq. (8.92) and the assembled stiffness matrix given by Eq. (8.97) are always
symmetric. In fact, the matrix [D] and the product [B]T [D] [B] appearing in Eq. (8.92) are also symmetric.

4. In the analysis of certain problems, it is generally more convenient to compute the element stiffness matrices [k(e)]

and element load vectors p!ðeÞ
i , p!ðeÞ

s , and p!ðeÞ
b in local coordinate systems2 suitably set up (differently for different

elements) for minimizing the computational effort. In such cases, the matrices [k(e)] and vectors p!ðeÞ
i ; p!ðeÞ

s ; and

p!ðeÞ
b have to be transformed to a common global coordinate system before using them in Eqs. (8.97) and (8.98).

5. The equilibrium equations given by Eq. (8.96) cannot be solved since the stiffness matrices [K(e)] and [Ke] are singular,and hence their inverses do not exist.
The physical significance of this is that a loaded structure or body is free to undergo unlimited rigid body motion
(translation and/or rotation) unless some support or boundary constraints are imposed on the structure or body to
suppress the rigid body motion. These constraints are called boundary conditions. The methods of incorporating bound-
ary conditions were considered in Chapter 6.

6. To obtain the (displacement) solution of the problem, we have to solve Eq. (8.96) after incorporating the prescribed
boundary conditions. The methods of solving the resulting equations were discussed in Chapter 7.

8.5 NATURE OF FINITE ELEMENT SOLUTIONS

In an exact elasticity solution of a solid or structural mechanics problem, the differential equations of equilibrium are
satisfied by every infinitesimally small element, the compatibility equations are satisfied throughout, and all the stress and
displacement boundary conditions are met. The finite element solution of the same problem, on the other hand, will be
approximate and will not satisfy all the relations of elasticity. The nature of displacement-based finite element solution for
static problems from the point of view of an exact elastic solution can be stated as follows.

Equilibrium conditions
Internal equilibrium: For most cases, the internal (differential) equilibrium equations are not satisfied within

the elements. They are only satisfied on the average within the elements. Thus, with mesh refinement using smaller size
elements, the internal equilibrium equations will be satisfied to a larger extent. In some cases, such as in the case of the
constant strain triangle (CST) element (Section 10.2), the internal equilibrium equations are satisfied.

Equilibrium across interelement boundaries: For most problems, the equilibrium of forces is not satisfied across
element boundaries. This is true even in the case of the CST element. In addition, the equilibrium of induced stresses and
the applied forces on the surface of the body, Eq. (8.51), are not satisfied exactly. These equations will be satisfied to a
greater extent with the refinement of the finite element mesh.

Equilibrium at node points: All displacement-based finite element solutions satisfy the equilibrium of forces and
moments at the node points. The nodal displacement vector (solution) Q

!
satisfies the nodal equilibrium equations

½K� Q! ¼ P
!
where each component of P

!
denotes either the external force applied or an elastically generated internal

reaction force.
Compatibility conditions
Internal compatibility: In all finite element solutions, the internal compatibility (within the finite elements) is satisfied

because internal compatibility requires the variation of the displacement to be continuous, single-valued, and hence any
polynomial model used in the finite element analysis will satisfy the required conditions.

Compatibility across interelement boundaries: Depending on the elements used, compatibility across interelement
boundaries may or may not be satisfied. When the variation of the displacement along a side of the element depends only
on the degrees of freedom of the nodes lying on that side and the adjacent elements share these nodes and the degrees of
freedom, then the compatibility is satisfied across the common side of the adjacent elements. The CST element, for
example, satisfies compatibility across interelement boundaries.

Compatibility at node points: In most finite element solutions, compatibility is satisfied at all the nodes because
adjacent elements share the same nodal displacement components. In some situations, the adjacent elements may be having
translational and rotational degrees of freedom at each node. But only the translational degrees of freedom may be con-
nected at a particular node. In such a case, the node acts like a ball-and-socket joint and hence compatibility is not fully
satisfied at the node.

2. When a local coordinate system is used, the resulting quantities are denoted by lowercase letters as [k(e)], p!ðeÞ
i , p!ðeÞ

s , and p!ðeÞ
b instead of [K(e)], P

!ðeÞ
i ,

P
!ðeÞ

s , and P
!ðeÞ

b .
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REVIEW QUESTIONS

8.1 Give brief answers to the following questions.

1. What are the basic types of equations for a solid mechanics problem?
2. State the types of unknown quantities and their number for a one-dimensional solid mechanics problem.
3. State the additional types of equations to be satisfied in a solid mechanics problem.
4. How many independent internal equilibrium equations are there for a one-dimensional solid mechanics problem?
5. How are body forces defined?
6. Name the possible types of stress states for a two-dimensional body.
7. What are the nonzero stress components in a plane stress problem?
8. Give an example of a plane stress problem.
9. Give an example of a plane strain problem.

10. Under what circumstances does an axisymmetric state of stress exist?
11. State the boundary conditions of a three-dimensional solid body fixed at one point.
12. State the significance of compatibility conditions.
13. State the number of principal stresses for a three-dimensional body subjected to loads.
14. Define the potential energy of an elastic body.
15. Define the Lagrangian.

8.2 Fill in the blank with a suitable word.

1. External equilibrium equations ensure the force and —————————— equilibrium along or about the x, y, and
z axes.

2. Internal ————————————————— equilibrium equations lead to symmetry of shear stresses in the
absence of body moments.

3. The number of internal force equilibrium equations for a two-dimensional body is ——————.
4. For a linear elastic isotropic body, the stressestrain relations are also known as ———————— law.
5. The nonzero strains in a plane strain problem are εxx; εyy; εxy, and ——————————.
6. The nonzero stresses in a plane strain problem are sxx; syy; sxy, and ——————————.
7. The nonzero quantities (unknowns) in a one-dimensional solid body are ————, ————, and εx.
8. The linear strains along x, y, and z directions can be expressed in terms of u, v, and w as —————————.
9. Shear strain in xy-plane can be expressed in terms of u and v as ———————————————.

10. The application of the principle of minimum potential energy in the finite element method yields ————————

equations while ——————————— equations are automatically satisfied.
11. The variational principle that can be used for dynamic problems is called the —————————————

principle.
12. Displacement-based finite element solution satisfies compatibility at ————————.

8.3 Indicate whether each of the following statements is true or false.

1. The finite element method satisfies all the basic and additional equations for a solid mechanics problem.
2. The constitutive relations are same as the stressestrain relations.
3. Heating a solid body can induce both normal and shear strains.
4. The nonzero stresses in an axisymmetric problem are srr; sqq; szz;and srz.
5. The displacement method is also known as the stiffness method.
6. The application of the principle of minimum complimentary energy method yields compatibility equations while the

equilibrium equations are automatically satisfied.
7. The displacement-based finite element satisfies internal equilibrium equations within each element.
8. The displacement-based finite element solution does not satisfy the equilibrium across interelement boundaries.
9. The displacement-based finite element satisfies equilibrium equations at node points.

10. The displacement-based finite element satisfies internal compatibility within each element.

8.4 Select the most appropriate answer from the multiple choices given.

1. The number of basic equations for a three-dimensional problem is:
(a) 3 (b) 15 (c) 12
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2. The number of basic equations for a two-dimensional problem is:
(a) 8 (b) 15 (c) 2

3. The number of basic equations for a one-dimensional problem is:
(a) 1 (b) 2 (c) 1

4. The number of independent elastic constants involved in the compliance matrix of an anisotropic solid body is
(a) 9 (b) 3 (c) 6

5. The number of strain displacement relations that exist for an axisymmetric problem is:
(a) 3 (b) 4 (c) 6

6. The number of displacement components in an axisymmetric problem is:
(a) 1 (b) 3 (c) 2

7. The number of compatibility conditions for a three-dimensional solid body is:
(a) 3 (b) 6 (c) 4

8. The number of compatibility conditions for a plane stress problem is:
(a) 4 (b) 3 (c) 1

9. The number of compatibility conditions for a plane strain problem is:
(a) 4 (b) 3 (c) 1

10. The number of compatibility conditions for a one-dimensional solid body is:
(a) 1 (b) 0 (c) 2

8.5 Match the following formulations of solid mechanics problems.

1. Displacement method of differential equation formulation (a) Reissner stationary energy formulation

2. Force method of differential equation formulation (b) Minimum potential energy formulation

3. Force-displacement method of differential equation formulation (c) Complementary energy formulation

PROBLEMS

8.1 Consider an infinitesimal element of a solid body in the form of a rectangular parallelepiped as shown in Fig. 8.2.
In this figure, the components of stress acting on one pair of faces only are shown for simplicity. Apply the
moment equilibrium equations about the x, y, and z axes and show that the shear stresses are symmetric; that
is, syx ¼ sxy, szy ¼ syz, and sxz ¼ szx.

8.2 Determine whether the following state of strain is physically realizable:

εxx ¼ c
�
x2 þ y2

�
; εyy ¼ cy2; εxy ¼ 2cxy; εzz ¼ εyz ¼ εzx ¼ 0

where c is a constant.
8.3 When a body is heated nonuniformly and each element of the body is allowed to expand nonuniformly, the strains

are given by

εxx ¼ εyy ¼ εzz ¼ aT ; εxy ¼ εyz ¼ εzx ¼ 0 (P.1)

where a is the coefficient of thermal expansion (constant), and T ¼ T(x, y, z) is the temperature. Determine the
nature of variation of T(x, y, z) for which the equations of Eq. (P.1) are valid.

8.4 Consider the following state of stress and strain:

sxx ¼ x2; syy ¼ y2; εxy ¼ �2xy; szz ¼ εxz ¼ εyz ¼ 0

Determine whether the equilibrium equations are satisfied.
8.5 Consider the following condition:

sxx ¼ x2; syy ¼ y2; εxy ¼ �2xy; szz ¼ εxz ¼ εyz ¼ 0

Determine whether the compatibility equations are satisfied.
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8.6 Consider the following state of strain:

εxx ¼ c1x; εyy ¼ c2; εzz ¼ c3xþ c4yþ c5; εyz ¼ c6y; εxy ¼ εzx ¼ 0

where ci, i ¼ 1, 2, ., 6 are constants. Determine whether the compatibility equations are satisfied.
8.7 The internal equilibrium equations of a two-dimensional solid body, in polar coordinates, are given by

vsrr

vr
þ 1

r

vsrq

vq
þ srr � sqq

r
þ fr ¼ 0

1
r

vsqq

vq
þ vsrq

vr
þ 2

srq

r
þ fq ¼ 0

where fr and fq are the body forces per unit volume in the radial (r) and circumferential (q) directions,
respectively.
If the state of stress in a loaded, thick-walled cylinder is given by

srr ¼ a2p

b2 � a2

�
1� b2

r2

�

sqq ¼ a2p

b2 � a2

�
1þ b2

r2

�
srq ¼ 0

where a, b, and p denote the inner radius, outer radius, and internal pressure, respectively, determine whether this
state of stress satisfies the equilibrium equations.

8.8 Determine whether the following displacement represents a feasible deformation state in a solid body:

u ¼ ax; v ¼ ay; w ¼ az

where a is a constant.
8.9 Consider a plate with a hole of radius a subjected to an axial stress p. The state of stress around the hole [8.7]

follows:

srr ¼ 1
2
p

�
1� a2

r2

�
þ 1
2
p

�
1þ 3

a4

r4
� 4

a2

r2

�
cos 2q

sqq ¼ 1
2
p

�
1þ a2

r2

�
� 1
2
p

�
1þ 3

a4

r4

�
cos 2q

srq ¼ � 1
2
p

�
1� 3

a4

r4
þ 2

a2

r2

�
sin 2q

Determine whether these stresses satisfy the equilibrium equations stated in Problem 8.7.
8.10 Consider a uniform bar of length l and cross-sectional area A rotating about a pivot point O as shown in Fig. 8.11.

Using the centrifugal force as the body force, determine the stiffness matrix and load vector of the element using a
linear displacement model:

uðxÞ ¼ N1ðxÞq1 þ N2ðxÞq2
where N1(x) ¼ 1 � (x/l), N2(x) ¼ (x/l) and the stressestrain relation, sxx ¼ Eεxx, where E is the Young’s modulus.

8.11 A stress function F(r) can be defined for an axisymmetric (planar) problem so that the stresses can be determined as

sr ¼ 1
r

vF

vr
; sq ¼ v2F

vr2
; srq ¼ 0

where r and q denote the radial and tangential directions, respectively. If the stress function of a thick-walled cylindrical
pressure vessel of inner radius ri and outer radius ro, subjected to both internal and external pressures, is given by

FðrÞ ¼ c1 þ c2 ln r þ c3r
2 þ c4r

2 ln r

determine the radial and tangential stresses in the pressure vessels. Also indicate the conditions to be used to deter-
mine the constants ci, i ¼ 1, 2, 3, 4.
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8.12 Consider the stress function for a two-dimensional state of stress, with no body forces:

Fðx; yÞ ¼ c1x
4 þ c2x

3yþ c3x
2y2 þ c4xy

3 þ c5y
4

Determine the relationship between the constants c1, c2, ., c5 for satisfying the compatibility conditions.
8.13 A simple stress function for a planar problem corresponding to a concentrated force acting on a flat boundary

(shown in Fig. 8.12) is given by

Fðr; qÞ ¼ c r q sin q; c ¼ constant

with the stress components given by

sr ¼ 1
r2

v2F

vq2
þ 1

r

vF

vr
; sq ¼ v2F

vr2
; sxy ¼ 1

r2
vF

vq
� 1

r

v2F

vrvq

Determine the resulting stresses at point P and find the value of the constant c.
8.14 Express the differential equations of equilibrium of a planar elasticity problem in terms of the displacement

components.
8.15 Consider the following displacement field in a plane elasticity problem (with negligible value of the Poisson’s

ratio):

uðx; yÞ ¼ cxy2; vðx; yÞ ¼ ecx2y; c ¼ constant

O

q1

q2

Node

Node

1

2

ω

FIGURE 8.11 Rotating uniform bar.

x

P

r

F

y

θ

FIGURE 8.12 Concentrated force on flat boundary.
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Determine whether this displacement field is a valid solution. If not, state the condition that is not satisfied.
8.16 Consider the displacement variations

uðx; yÞ ¼ c1
�
x2 þ y2

�� c2yþ c3; vðx; yÞ ¼ 2c1xyþ c4; ci ¼ constants; i ¼ 1; 2; 3; 4

Determine whether this displacement field corresponds to a valid solution of a plane stress problem.
8.17 Consider the displacement variations in a planar problem:

uðx; yÞ ¼ �c
�
vx2y2

�
; vðx; yÞ ¼ 2cxy; c ¼ constant

Find the stresses corresponding to this displacement field.
8.18 Derive Eq. (8.50).
8.19 Consider the following displacement field in a plane elasticity problem (with negligible value of the Poisson’s

ratio):

uðx; yÞ ¼ 4c
�
x2yþ y3

�
; vðx; yÞ ¼ 2cy3; c ¼ constant

Determine whether this displacement field is a valid solution. If not, state the condition that is not satisfied.
8.20 The stress field in a plane elasticity problem is given by

sxx ¼ c1xþ c2y; syy ¼ c3xþ c4y; sxy ¼ �c1yec4x; ci ¼ constants; i ¼ 1; 2; 3; 4

Determine whether this stress field is a valid solution. If not, state the condition that is not satisfied.
8.21 Determine the type of problem for which the following stress function is valid:

FðrÞ ¼ c ln r þ pr2i r
2

2ðr20 � r2i Þ
; ri � r � r0

where c is a constant and ri and r0 are inner and outer radii of an annular region. Evaluate the constant c by using
the boundary condition sr ¼ 0 at r ¼ r0.

8.22 Prove that the equilibrium of moments about the x, y, and z axes for the element shown in Fig. 8.2 gives syx ¼ sxy,
szy ¼ syz, and sxz ¼ szx. State the assumptions involved.

8.23 a. Show the various stresses acting on a rectangular element of size dx � dy in a two-dimensional state of stress.
b. Show that the equilibrium of moments about the z direction leads to syx ¼ sxy.
c. Prove that the equilibrium of forces along the x and y directions leads to Eq. (8.5).

8.24 Derive the strainedisplacement relations for an axisymmetric problem (Eq. 8.50). Assume the displacements to be
small.

8.25 Consider an element of size rDq Dr Dz of a solid body in cylindrical coordinates (Dz is the thickness of the
element in the z direction) and derive the differential equations for the equilibrium of forces in the radial and
tangential directions as

vsr

vr
þ sr � sq

r
þ 1

r

vsrq

vq
þ fr ¼ 0

1
r

vsq

vq
þ vsrq

vr
þ 2

srq

r
þ fq ¼ 0

where fr and fq are, respectively, the body forces in the radial and tangential directions.
8.26 Consider a solid circular of length l ¼ 5 m and radius r0 ¼ 15 mm. Use r,q,z - coordinate system with origin at the

centroid of the shaft at one end with the z axis along the centroidal axis towards the other end of the shaft. The
shaft is subjected to both tensile and torsional forces that resulted in an elongation of Dl ¼ 15 mm and a rotation
of 45� at one end relative to the other end of the shaft. Assume that the deformations occur while the volume of the
shaft remains unchanged. If the end of the shaft at z ¼ 0 is constrained so that it undergoes only radical displace-
ment (Dr), determine the following: (a) Displacement components at a general point in the shaft, and (b) Com-
ponents of strain at the outer radius of the shaft.

8.27 A state of plane stress exists at a point where εxx ¼ 200 m, εyy ¼ �100 m, and εxy ¼ 300 m. If E ¼ 150 MPa and
v ¼ 0.3, determine the complete strain and stress vectors.
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8.28 The strains in a plane stress problem are given by εxx ¼ �120 m, εyy ¼ �90 m, and εxy ¼ 150 m. If E ¼ 207 GPa
and v ¼ 0.3, determine the complete strain and stress vectors.

8.29 Find the stress vector if the modulus of elasticity is 200 MPa, the Poisson’s ratio is 0.3, and the strain vector is
ε
!T ¼ f εxx εyy εzz εxy εyz εzx g ¼ f 10 �6 4 �4 2 6 gm.

8.30 If the stress vector is given by

s!T ¼ f sxx syy szz sxy syz szx g ¼ f�24 10 �16 9 3 �12 g MPa;

and the elastic constants by E ¼ 207 GPa and v ¼ 0.3, determine the strain vector.
8.31 The stress components in a plane stress problem are given by sxx ¼ 15 MPa, syy ¼ 10 MPa, and sxy ¼ �20 MPa.

Determine all the strain components.
8.32 The strain components in a plane strain problem are given by εxx ¼ 0.002, εyy ¼ 0.015, and εxy ¼ 0.005.

Assuming that E ¼ 70 GPa and v ¼ 0.33, determine all the stress components.
8.33 The undeformed and deformed configurations of a rectangular plate are shown in Fig. 8.13. Determine the strains

εxx, εyy, and εxy induced in the plate.
8.34 Find the most general displacement solution by integrating the following strain equations:

εrr ¼ vu

vr
¼ 0

εqq ¼ 1
r

vv

vq
þ u

r
¼ 0

εrq ¼ 1
r

vu

vq
þ vv

vr
� v

r
¼ 0

Give a physical interpretation of the resulting solution.
8.35 A solid body, in the form of a rectangular parallelepiped (length l, width w, and height h), is subjected to a uniform

normal stress so that the stress state is given by sxx ¼ s0 ¼ constant, syy ¼ szz ¼ sxy ¼ syz ¼ szx ¼ 0. Express the
change in the volume of the solid body in terms of s0, E, and v.

8.36 A solid body in the form of a rectangular parallelepiped (length l along the x direction, width w along the y
direction, and height h along the z direction), is heated uniformly by a temperature DT. If the motion of the
body is completely constrained in the y and z directions and is free to move in the x direction, determine the
following: (a) change in the length l and (b) stresses developed in the y and z directions.

(0, 3)

y

0.002, 3.006

(0, 0) (2.5, 0)
x

(0.001, 0.002)

Deformed
configuration

Undeformed
configuration

(2.5, 3)

(2.504, 0.005)

(2.509, 3.014)

FIGURE 8.13 Deformation of a rectangular plate.
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8.37 A solid body, in the form of a rectangular parallelepiped (length l along the x direction, width w along the y di-
rection, and height h along the z direction), is heated uniformly by a temperature DT. If the body is completely free
to deform, find the change in the volume of the solid body.

8.38 A solid body, in the form of a rectangular parallelepiped (length l along the x direction, width w along the y di-
rection, and height h along the z direction), is heated uniformly by a temperature DT. If the motion of the body is
completely constrained in the x direction and is free to move in the y and z directions, determine the following:
(a) change in the volume of the body and (b) stress developed in the body in the x direction.

8.39 A 0.02-m thick rectangular plate of length l ¼ 1 m and width w ¼ 0.5 m is subjected to the stresses
sxx ¼ 200 MPa and syy ¼ �100 MPa as shown in Fig. 8.14. If E ¼ 209 GPa and v ¼ 0.3, determine the
following: (a) deformations Dl and Dw and (b) change in the volume of the plate.

8.40 If a two-dimensional solid body is subjected to the distributed forces Vx andVy along its curved edge, express the
boundary conditions for the equilibrium of the induced stresses sxx, syy, and sxy and the applied forces.
Hint: Use the two-dimensional version of Eq. (8.51).

8.41 The stresses applied along the curved boundary (edge) of a plate are given by s
! ¼ sxx i

!þ syy j
!

(see Fig. 8.15).
Express the boundary conditions (for the equilibrium of the applied stresses and the induced stresses) in terms of
the displacement components u and v.

8.42 Derive Eq. (8.59aed) from Eqs. (8.55) through (8.58).
8.43 The stresses developed in a solid body under applied loads are given by s!T ¼ f sxx syy szz sxy

syz szxg ¼ f 6 0 0 2 4 2 g MPa. Determine the principal stresses.

y

O x

Boundary (edge), S

(External pressure)Induced
stresses
  xx ,   yy ,   xy 

Normal, n =   i + m j

   =   x i +   y j 

j

i

σ

σ σ σ

σ σ

FIGURE 8.15 A plate in xy-plane.

xx

yy

xx

yy

= 1 m

w = 0.5 m

σ

σ

σ

σ

FIGURE 8.14 Plate subjected to in-plane normal stresses.
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8.44 The state of stress at a point in a solid body is given by the stress vector s!T ¼ f�4 12 �8 64� 10g MPa.
Determine the principal stresses.

8.45 The stresses in a plane stress problem are given by sxx ¼ 10 MPa, syy ¼ �10 MPa, and sxy ¼ 10 MPa. Determine
the principal stresses.

8.46 The stresses developed in a thin plate are known to be sxx ¼ 0, syy ¼ 0, and sxy ¼ 20 MPa. Determine the
principal stresses in the plate.

8.47 Express the stressestrain relations and the strainestress relations in terms of the principal stresses (s1, s2, s3) and
the principal strains (ε1, ε2, ε3) for a uniaxial state of stress.
Hint: The principal strains are defined as the strains in the directions of the principal stresses.

8.48 Express the stressestrain relations and the strainestress relations in terms of the principal stresses (s1, s2, s3) and
the principal strains (ε1, ε2, ε3) for a triaxial state of stress.
Hint: The principal strains are defined as the strains in the directions of the principal stresses.

8.49 Express the stressestrain relations and the strainestress relations in terms of the principal stresses (s1, s2, s3) and
the principal strains (ε1, ε2, ε3) for a biaxial state of stress.
Hint: The principal strains are defined as the strains in the directions of the principal stresses.

8.50 Three springs, with stiffnesses k1, k2, and k3, are connected to a rigid massless cart as shown in Fig. 8.16. The free
end of the spring of stiffness k2 is subjected to a force P. If the cart is constrained to move horizontally, determine
the displacements d1 and d2 by applying the principle of minimum potential energy.
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Chapter 9

Analysis of Trusses, Beams, and Frames
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9.1 INTRODUCTION

The derivation of element equations for one-dimensional structural elements is considered in this chapter. These elements
can be used for the analysis of skeletal-type systems such as planar trusses, space trusses, beams, continuous beams, planar
frames, grid systems, and space frames. Pin-jointed bar elements are used in the analysis of trusses. A truss element is a bar
that can resist only axial forces (compressive or tensile) and can deform only in the axial direction. It will not be able to
carry transverse loads or bending moments. In planar truss analysis, each of the two nodes can have components of
displacement parallel to X and Y axes. In three-dimensional truss analysis, each node can have displacement components in
X, Y, and Z directions. Rigidly jointed bar (beam) elements are used in the analysis of frames. Thus, a frame or a beam
element is a bar that can resist not only axial forces but also transverse loads and bending moments. In the analysis of
planar frames, each of the two nodes of an element will have two translational displacement components (parallel to X and
Y axes) and a rotational displacement (in the plane XY). For a space frame element, each of the two ends is assumed to have
three translational displacement components (parallel to X, Y, and Z axes) and three rotational displacement components
(one in each of the three planes XY, YZ, and ZX). In the present development, we assume the members to be uniform and
linearly elastic.

9.2 SPACE TRUSS ELEMENT

Consider the pin-jointed bar element shown in Fig. 9.1, in which the local x axis is taken in the axial direction of the
element with origin at corner (or local node) 1. A linear displacement model is assumed as

uðxÞ ¼ q1 þ ðq2 � q1Þ xl
or

fuðxÞg
1�1

¼ ½N�
1�2

q!ðeÞ
2�1

(9.1)
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where

½N� ¼
h�

1� x

l

� x

l

i
(9.2)

q!ðeÞ ¼
�
q1
q2

�
(9.3)

where q1 and q2 represent the nodal degrees of freedom in the local coordinate system (unknowns), l denotes the length of
the element, and the superscript e denotes the element number. The axial strain can be expressed as

εxx ¼ vuðxÞ
vx

¼ q2 � q1
l

or

fεxxg
1�1

¼ ½B�
1�2

q!ðeÞ
2�1

(9.4)

where

½B� ¼
�
� 1

l

1
l

�
(9.5)

The stressestrain relation is given by

sxx ¼ Eðεxx � εxx0Þ
which can be expressed in matrix form as

fsxxg
1�1

¼ ½D�
1�1

�
fεxxg
1�1

�fεxx0g
1�1

	
(9.6)

Z

Y

x

X

0

Local node 1
Global node i

Global node j
Local node 2

Q3i−2

Q3i−1

Q3j−1

Q3j−2

Q3i

Q3j 

q 2

q 1

u(x)

FIGURE 9.1 A space truss element.
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where [D] ¼ [E], εxx0 ¼ aT , E ¼ Young’s modulus, a ¼ coefficient of thermal expansion, and T ¼ temperature change.
The stiffness matrix of the element (in the local coordinate system) can be obtained, from Eq. (8.87), as



kðeÞ

�
2�2

¼
ZZZ

V ðeÞ
½B�T ½D�½B� dV ¼ A

Z l

x¼0

8>>>>><>>>>>:
�1
l

1
l

9>>>>>=>>>>>;
E

�
�1
l

1
l

�
dx

¼ AE

l

264 1 �1

�1 1

375
(9.7)

where A is the area of cross section of the bar. To find the stiffness matrix of the bar in the global coordinate system,
we need to find the transformation matrix. In general, the element under consideration will be one of the elements of
a space truss. Let the (local) nodes 1 and 2 of the element correspond to nodes i and j, respectively, of the global
system as shown in Fig. 9.1. The local displacements q1 and q2 can be resolved into components Q3i�2, Q3i�1, Q3i;
and Q3j�2, Q3j�1; and Q3j parallel to the global X, Y, Z axes, respectively. Then the two sets of displacements are
related as

q!ðeÞ ¼ ½l�Q!ðeÞ
(9.8)

where the transformation matrix [l] and the vector of nodal displacements of element e in the global coordinate system,

Q
!ðeÞ

, are given by

½l� ¼
�
lij mij nij 0 0 0

0 0 0 lij mij nij

�
(9.9)

Q
!ðeÞ ¼

8>>>>>>>><>>>>>>>>:

Q3i�2

Q3i�1

Q3i

Q3j�2

Q3j�1

Q3j

9>>>>>>>>=>>>>>>>>;
(9.10)

and lij, mij, and nij denote the direction cosines of angles between the line ij and the directions OX, OY, and OZ, respec-
tively. The direction cosines can be computed in terms of the global coordinates of nodes i and j as

lij ¼ Xj � Xi

l
; mij ¼ Yj � Yi

l
; nij ¼ Zj � Zi

l
(9.11)

where (Xi, Yi, Zi) and (Xj, Yj, Zj) are the global coordinates of nodes i and j, respectively, and l is the length of the element ij
given by

l ¼ �ðXj � XiÞ2 þ ðYj � YiÞ2 þ ðZj � ZiÞ2
1=2

(9.12)
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Thus, the stiffness matrix of the element in the global coordinate system can be obtained, using Eq. (6.6), as



KðeÞ�
6�6

¼ ½l�T
6�2



kðeÞ

�
2�2

½l�
2�6

¼ AE

l

2666666666666666666666664

l2ij lijmij lijnij �l2ij �lijmij �lijnij

lijmij m2
ij mijnij �lijmij �m2

ij �mijnij

lijnij mijnij n2ij �lijnij �mijnij �n2ij

�l2ij �lijmij �lijnij l2ij lijmij lijnij

�lijmij �m2
ij �mijnij lijmij m2

ij mijnij

�lijnij �mijnij �n2ij lijnij mijnij n2ij

3777777777777777777777775

(9.13)

9.2.1 Consistent Load Vector

The consistent load vectors can be computed using Eqs. (8.88) to (8.90):

p!ðeÞ
i ¼ load vector due to initial ðthermalÞ strains ¼

ZZZ
VðeÞ

½B�T ½D� ε!0 dV (9.14)

¼ A

Z l

0

��1=l

1=l

�
½E�faTg$ dx ¼ AEaT

��1

1

�
(9.15)

p!ðeÞ
b ¼ load vector due to constant body force ðf0Þ ¼

ZZZ
V ðeÞ

½N�T f! dV (9.16)

¼ A

Z l

0

8<:
�
1� x

l

�
ðx=lÞ

9=;ff0g dx ¼ f0Al

2

�
1

1

�
(9.17)

The total consistent load vector in the local coordinate system is given by

p!ðeÞ ¼ p!ðeÞ
i þ p!ðeÞ

b (9.18)

This load vector, when referred to the global coordinate system, will be

P
ðeÞ ¼ ½l�T p!ðeÞ

(9.19)

where [l] is given by Eq. (9.9).

9.2.2 Computation of Stresses

After finding the displacement solution of the system, the nodal displacement vector Q
!ðeÞ

of element e can be identified.
The stress induced in element e can be determined using Eqs. (9.6), (9.4), and (9.8) as

sxx ¼ E
�
½B�½l�Q!ðeÞ � aT

�
(9.20)

where [B] and [l] are given by Eqs. (9.5) and (9.9), respectively.
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EXAMPLE 9.1
A bar element, with cross-sectional area 2 in2 and Young’s modulus 30 � 106 psi, is shown in Fig. 9.2. The coordinates of the two

nodes of the element in the global coordinate system (X, Y, Z) are also indicated in Fig. 9.2. Find (a) the stiffness matrix of the bar in

the local coordinate system (x, y, z), (b) the coordinate transformation matrix [l] of the element, and (c) the global stiffness matrix

of the element.

Approach: Use Eqs. (9.7), (9.9), and (9.13).

Solution

The length of the bar element can be computed as

lðeÞ ¼ �ðXj � XiÞ2 þ ðYj � YiÞ2 þ ðZj � ZiÞ2
1

2 ¼ �ð30� 10Þ2 þ ð25� ð�5ÞÞ2 þ ð�15� 20Þ21
2

¼ 50:2494 in.

The direction cosines of the x-axis with respect to the X, Y, and Z axes are given by

lij ¼ Xj � Xi

lðeÞ
¼ 30� 10

50:2494
¼ 0:3980; mij ¼ Yj � Yi

lðeÞ
¼ 25� ð�5Þ

50:2494
¼ 0:5970

nij ¼ Zj � Zi

lðeÞ
¼ �15� 20

50:2494
¼ �0:6965

a. The local stiffness matrix of the element is given by Eq. (9.7):



k ðeÞ� ¼ AðeÞE ðeÞ

lðeÞ

264 1 �1

�1 1

375 ¼ ð2Þð30� 106
�

50:2494

264 1 �1

�1 1

375

¼ 106

264 1:1940 �1:1940

�1:1940 1:1940

375lb=in.

Continued

Q3i−2

(Xi, Yi, Zi) = (10, −5, 20)

(Xj, Yj, Zj) =
(30,  25, −15)

Q3i−1

Z

0

Y
X

i

Q3j−1

Q3j−2

Q3j

j

x

q2

q1

Q3i

FIGURE 9.2 Bar element with global degrees of freedom.
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EXAMPLE 9.1 dcont’d

b. The coordinate transformation matrix of the element is given by Eq. (9.9):



lðeÞ

� ¼
24 lij mij nij 0 0 0

0 0 0 lij mij nij

35

¼
24 0:3980 0:5970 �0:6965 0 0 0

0 0 0 0:3980 0:5970 �0:6965

35
c. The global stiffness matrix of the element is given by Eq. (9.13): Using

AðeÞE ðeÞ

lðeÞ
¼ 1:1940� 106

and

26666664
l2ij lijmij lijnij

mij lij m2
ij mijnij

nij lij nijmij n2
ij

37777775 ¼

2666664
ð0:3980Þ2 ð0:3980Þð0:5970Þ ð0:3980Þð�0:6965Þ

ð0:5970Þð0:3980Þ ð0:5970Þ2 ð0:5970Þð�0:6965Þ

ð�0:6965Þð0:3980Þ ð�0:6965Þð0:5970Þ ð�0:6965Þ2

3777775

¼

2666664
0:1584 0:2376 �0:2772

0:2376 0:3564 �0:4158

�0:2772 �0:4158 0:4851

3777775
the global stiffness matrix of the element can be written as



K ðeÞ� ¼ 1:1940� 106

26666666666666666664

0:1584 0:2376 �0:2772 �0:1584 �0:2376 0:2772

0:2376 0:3564 �0:4158 �0:2376 �0:3564 0:4158

�0:2772 �0:4158 0:4851 0:2772 0:4158 �0:4851

�0:1584 �0:2376 0:2772 0:1584 0:2376 �0:2772

�0:2376 �0:3564 0:4158 0:2376 0:3564 �0:4158

0:2772 0:4158 �0:4851 �0:2772 �0:4158 0:4851

37777777777777777775

¼ 106

26666666666666666664

0:1891 0:2837 �0:3310 �0:1891 �0:2837 0:3310

0:2837 0:4255 �0:4965 �0:2837 �0:4255 0:4965

�0:3310 �0:4965 0:5792 0:3310 0:4965 �0:5792

�0:1891 �0:2837 0:3310 0:1891 0:2837 �0:3310

�0:2837 �0:4255 0:4965 0:2837 0:4255 �0:4965

0:3310 0:4965 �0:5792 �0:3310 �0:4965 0:5792

37777777777777777775

lb=in.
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EXAMPLE 9.2
The bar element considered in Example 9.1 has a coefficient of thermal expansion of a ¼ 5.5 � 10�6 in/in �F. If the temperature of

the bar increases by T ¼ 100�F, determine the load vectors of the element in the local and global coordinate systems.

Approach: Use Eq. (9.14).

Solution

a. The load vector in the local coordinate system due to a temperature rise is given by Eq. (9.14):

p!ðeÞ
i ¼ AðeÞE ðeÞaðeÞT

��1

1

�
¼ ð2Þ�30� 106

��
5:5� 10�6

�ð100Þ��1

1

�
¼ 33;000

��1

1

�
lb

where the coefficient of thermal expansion of element e, a(e), is the same as a.

b. Using the coordinate transformation matrix [l] determined in Example 9.1, the load vector of the element in the global

coordinate system can be found from Eq. (9.19):

P
!ðeÞ

i ¼ ½l�T p!ðeÞ
i ¼

24 lij mij nij 0 0 0

0 0 0 lij mij nij

35T

p!ðeÞ
i

¼
24 0:3980 0:5970 �0:6965 0 0 0

0 0 0 0:3980 0:5970 �0:6965

35T

ð33;000Þ
8<:

�1

1

9=;

¼

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

�13;134:0

�19;701:0

22;984:5

13;134:0

19;701:0

�22;984:5

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

lb

EXAMPLE 9.3
Two bars made of different materials are connected as shown in Fig. 9.3. The properties of the two bars are given by:

A(1) ¼ 500 mm2, E(1) ¼ 75 GPa, a(1) ¼ 20 � 10�6 per �C
A(2) ¼ 1000 mm2, E(2) ¼ 200 GPa, a(2) ¼ 15 � 10�6 per �C

If the temperature of the two-bar system is raised by 50�C, determine the displacement of the middle node and the stresses

developed in the two bars.

Approach: Solve the system equilibrium equations using load vector due to a temperature rise.

Solution

Since both the bars lie along the same axis, there is no need to modify the local element stiffness matrices and load vectors. The

stiffness matrices of the elements are given by

Continued

2 31

Bar 2
(Element 2)

Bar 1
(Element 1)

100 mm 200 mm

FIGURE 9.3 Two bars made of different materials.
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EXAMPLE 9.3 dcont’d

The assembled stiffness matrix can be found as

The load vectors of the elements can be determined as

p!ð1Þ ¼ Að1ÞE ð1Það1ÞT

8<:
�1

1

9=; ¼ ð500Þ�75� 103
��
20� 10�6

�ð50Þ
8<:

�1

1

9=;
¼ 37; 500

8<:
�1

1

9=;
u1

u2

N

p!ð2Þ ¼ Að2ÞE ð2Það2ÞT

8<:
�1

1

9=; ¼ ð1000Þ�200� 103
��
15� 10�6

�ð50Þ
8<:

�1

1

9=;
¼ 150; 000

8<:
�1

1

9=;
u2

u3

N

The assembled load vector can be found as

P
! ¼

8><>:
�37; 500

37;500� 150;000

150;000

9>=>;
u1

u2

u3

N

The equilibrium equations of the system can be expressed as

½K �U! ¼ P
!

or

103

264 375 �375 0

�375 1;375 �1000

0 �1000 1000

375
8><>:

u1

u2

u3

9>=>; ¼

8><>:
�37; 500

�112;500

150;000

9>=>; (E.1)

Because the end nodes 1 and 3 are fixed, u1 ¼ u3 ¼ 0 and hence the rows and columns corresponding to the degrees of

freedom u1 and u3 are deleted in Eq. (E.1) to obtain the equation

103ð1375Þu2 ¼ �112; 500 or u2 ¼ �0:0818181 mm

Stress in Element 1

The strain in element 1 can be found as

ε
ð1Þ ¼ u2 � u1

lð1Þ
¼ �0:0818181� 0

100
¼ �81:8181� 10�5

and the stress is related to strain as

sð1Þ ¼ E ð1Þ
�
ε
ð1Þ � ε

ð1Þ
0

�
¼ E ð1Þ�

ε
ð1Þ � að1Þ T

�
¼ 75� 103

�� 81:8181� 10�5 � 20� 10�6ð50Þ
¼ �136:3636 N

�
mm2 ¼ �136:3636 MPa
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EXAMPLE 9.3 dcont’d

Stress in Element 2

The strain in element 2 can be found as

ε
ð2Þ ¼ u3 � u2

lð2Þ
¼ 0� ð�0:0818181Þ

200
¼ 40:9090� 10�5

and the stress is related to strain as

sð2Þ ¼ E ð2Þ
�
ε
ð2Þ � ε

ð2Þ
0

�
¼ E ð2Þ�

ε
ð2Þ � að2ÞT

�
¼ 200� 103

�
40:9090� 10�5 � 15� 10�6ð50Þ

¼ 70:0 N
�
mm2 ¼ 70:0 MPa

EXAMPLE 9.4
Find the nodal displacements developed in the planar truss shown in Fig. 9.4 when a vertically downward load of 1000 N is

applied at node 4. The pertinent data are given in Table 9.1.

Continued

1000 N

2

2
3

4

1

Q5

Q6

2

2

2
2

4

Q1

x

Y

Q2

Q7

Q8

Q3

Q4

3 1

1

1
1

1

100

50

50 50 100

FIGURE 9.4 Geometry of the planar truss of Example 9.4 (dimensions in cm).

TABLE 9.1 Data of Members of Truss

Member Number “e” Cross-Sectional Area A(e) cm2 Length l(e) cm Young’s Modulus E(e) N/cm2

1 2.0
ffiffiffi
2

p
50 2 � 106

2 2.0
ffiffiffi
2

p
50 2 � 106

3 1.0
ffiffiffiffiffiffiffi
2:5

p
100 2 � 106

4 1.0
ffiffiffi
2

p
100 2 � 106
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EXAMPLE 9.4 dcont’d

Solution

The numbering system for the nodes, members, and global displacements is indicated in Fig. 9.4. The nodes 1 and 2 in the local

system and the local x direction assumed for each of the four elements are shown in Fig. 9.5. For convenience, the global node

numbers i and j corresponding to the local nodes 1 and 2 for each element and the direction cosines of the line ij (x axis) with

respect to the global X and Y axes are given in Table 9.2.

The stiffness matrix of element e in the global coordinate system can be computed from the following (obtained by deleting the

rows and columns corresponding to the Z degrees of freedom from Eq. (9.13)):

3

4

2

x

x
x

x

3

4

2

2

2

2

1

1

1

2
1

1

1

FIGURE 9.5 Finite element idealization.

TABLE 9.2 Direction Cosines of Members

Member Number

Global Node Corresponding to
Coordinates of Local Nodes 1 (i)

and 2 (j) in Global System

Direction Cosines of

Line ijLocal Node 1 Local Node 2

“e” (i) (j) Xi Yi Xj Yj lij mij

1 1 3 0.0 0.0 50.0 50.0 1
� ffiffiffi

2
p

1
� ffiffiffi

2
p

2 3 2 50.0 50.0 100.0 0.0 1
� ffiffiffi

2
p �1

� ffiffiffi
2

p

3 3 4 50.0 50.0 200.0 100.0 1:5
� ffiffiffiffiffiffiffi

2:5
p

0:5
� ffiffiffiffiffiffiffi

2:5
p

4 2 4 100.0 0.0 200.0 100.0 1
� ffiffiffi

2
p

1
� ffiffiffi

2
p
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EXAMPLE 9.4 dcont’d

Hence,

Continued
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EXAMPLE 9.4 dcont’d

These element matrices can be assembled to obtain the global stiffness matrix,


Ke�, as

Thus, the global equations of equilibrium can be expressed as

Ke�Q!e ¼ P

!e (E.1)

where

Q
!e ¼

8>>>><>>>>:
Q1

Q2

«

Q8

9>>>>=>>>>; and P
!e ¼

8>>>><>>>>:
P1

P2

«

P8

9>>>>=>>>>;
By deleting the rows and columns corresponding to the restrained degrees of freedom (Q1 ¼Q2 ¼Q3 ¼Q4 ¼ 0), Eq. (E.1) can

be written as

½K �Q! ¼ P
!

(E.2)

where

½K � ¼ 103

26664
40

ffiffiffi
2

p
þ 7:2

ffiffiffiffiffiffiffi
2:5

p
2:4

ffiffiffiffiffiffiffi
2:5

p �7:2
ffiffiffiffiffiffiffi
2:5

p �2:4
ffiffiffiffiffiffiffi
2:5

p

2:4
ffiffiffiffiffiffiffi
2:5

p
40

ffiffiffi
2

p þ 0:8
ffiffiffiffiffiffiffi
2:5

p �2:4
ffiffiffiffiffiffiffi
2:5

p �0:8
ffiffiffiffiffiffiffi
2:5

p

�7:2
ffiffiffiffiffiffiffi
2:5

p
�2:4

ffiffiffiffiffiffiffi
2:5

p
5

ffiffiffi
2

p þ 7:2
ffiffiffiffiffiffiffi
2:5

p
5

ffiffiffi
2

p þ 2:4
ffiffiffiffiffiffiffi
2:5

p

�2:4
ffiffiffiffiffiffiffi
2:5

p
�0:8

ffiffiffiffiffiffiffi
2:5

p
5

ffiffiffi
2

p þ 2:4
ffiffiffiffiffiffiffi
2:5

p
5

ffiffiffi
2

p þ 0:8
ffiffiffiffiffiffiffi
2:5

p

37775 N=cm

Q
! ¼

8>>><>>>:
Q5

Q6

Q7

Q8

9>>>=>>>; and P
! ¼

8>>><>>>:
P5

P6

P7

P8

9>>>=>>>;h

8>>><>>>:
0

0

0

�1000

9>>>=>>>; N

The solution of Eq. (E.2) gives the displacements as

Q5 ¼ 0:026517 cm

Q6 ¼ 0:008839 cm

Q7 ¼ 0:347903 cm

Q8 ¼ �0:560035 cm
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EXAMPLE 9.5
Find the stresses developed in the various elements of the truss considered in Example 9.4.

Solution

The nodal displacements of the truss in the global coordinate system (including the fixed degrees of freedom) are given by

Q
!e ¼

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

¼

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

0

0

0

0

0:026517

0:008839

0:347903

�0:560035

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

cm (E.1)

The nodal degrees of freedom of various elements, in the global coordinate system, can be identified from Figs. 9.4 and 9.5 and

Eq. (E.1) as

Q
!ð1Þ ¼

8>>>><>>>>:
Q

ð1Þ
1

Qð1Þ
2

Q
ð1Þ
3

Q
ð1Þ
4

9>>>>=>>>>;h

8>>><>>>:
Q1

Q2

Q5

Q6

9>>>=>>>; ¼

8>>><>>>:
0

0

0:026517

0:008839

9>>>=>>>; cm (E.2)

Q
!ð2Þ ¼

8>>>><>>>>:
Q

ð2Þ
1

Q
ð2Þ
2

Q
ð2Þ
3

Q
ð2Þ
4

9>>>>=>>>>;h

8>>><>>>:
Q5

Q6

Q3

Q4

9>>>=>>>; ¼

8>>><>>>:
0:026517

0:008839

0

0

9>>>=>>>; cm (E.3)

Q
!ð3Þ ¼

8>>>><>>>>:
Q

ð3Þ
1

Q
ð3Þ
2

Q
ð3Þ
3

Q
ð3Þ
4

9>>>>=>>>>;h

8>>><>>>:
Q5

Q6

Q7

Q8

9>>>=>>>; ¼

8>>><>>>:
0:026517

0:008839

0:347903

�0:560035

9>>>=>>>; cm (E.4)

Q
!ð4Þ ¼

8>>>><>>>>:
Qð4Þ

1

Q
ð4Þ
2

Q
ð4Þ
3

Qð4Þ
4

9>>>>=>>>>;h

8>>><>>>:
Q3

Q4

Q7

Q8

9>>>=>>>; ¼

8>>><>>>:
0

0

0:347903

�0:560035

9>>>=>>>; cm (E.5)

As indicated in Eq. (9.20), the axial stress developed in element e is given by

sðeÞ
xx ¼ E ðeÞ
BðeÞ�
lðeÞ�Q!ðeÞ

¼ E ðeÞ
�
� 1

lðeÞ
1

lðeÞ

�264 lðeÞij mðeÞ
ij

0 0

0 0

l
ðeÞ
ij m

ðeÞ
ij

375

8>>>>>>>>>><>>>>>>>>>>:

Q
ðeÞ
1

Q
ðeÞ
2

Q
ðeÞ
3

QðeÞ
4

9>>>>>>>>>>=>>>>>>>>>>;

(E.6)

Eq. (E.6) can be simplified as

sðeÞ
xx ¼ E ðeÞ

�
� 1

lðeÞ

�
l
ðeÞ
ij Q

ðeÞ
1 þm

ðeÞ
ij Q

ðeÞ
2

�
þ 1

lðeÞ

�
l
ðeÞ
ij Q

ðeÞ
3 þm

ðeÞ
ij Q

ðeÞ
4

��
(E.7)

Continued
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EXAMPLE 9.5 dcont’d

which yields the following results:

Element 1: E(1) ¼ 2 � 106 N/cm2, l(1) ¼ 70.7107 cm, l
ð1Þ
ij ¼ m

ð1Þ
ij ¼ 0:707;107, Q

ð1Þ
i , i ¼ 1, 2, 3, 4, are given by Eq. (E.2) so

that s
ð1Þ
xx ¼ 707:1200 N=cm2.

Element 2: E(2) ¼ 2 � 106 N/cm2, l(2) ¼ 70.7107 cm, l
ð2Þ
ij ¼ 0:707; 107, m

ð1Þ
ij ¼ �0:707;107, Q

ð2Þ
i , i ¼ 1, 2, 3, 4, are given by

Eq. (E.3) so that s
ð2Þ
xx ¼ �353.560 N=cm2.

Element 3: E(3) ¼ 2 � 106 N/cm2, l(3) ¼ 158.114 cm, l
ð3Þ
ij ¼ 0:948;683, m

ð2Þ
ij ¼ 0:316;228, Q

ð3Þ
i , i ¼ 1, 2, 3, 4, are given by

Eq. (E.4) so that s
ð3Þ
xx ¼ 1581:132 N=cm2.

Element 4: E(4) ¼ 2 � 106 N/cm2, l(4) ¼ 141.421 cm, l
ð4Þ
ij ¼ m

ð4Þ
ij ¼ 0:707;107, Q

ð4Þ
i , i ¼ 1, 2, 3, 4, are given by Eq. (E.5) so

that s
ð4Þ
xx ¼ �2121.326 N=cm2.

9.3 BEAM ELEMENT

A beam is a straight bar element that is primarily subjected to transverse loads. Assuming that the beam is symmetric about
y and z axes (with Iyz ¼ 0), the deformed shape of a beam is described by the transverse displacement and slope (rotation)
of the beam. Hence, the transverse displacement and rotation at each end of the beam element are treated as the unknown
degrees of freedom. For a beam element of length l lying in the xy plane, as shown in Fig. 9.6, the 4 degrees of freedom in
the local (xy) coordinate system are indicated as q1, q2, q3, and q4. Note that the counterclockwise rotational degree of
freedom is considered positive (i.e., rotation as vector points along the z axis). Because there are four nodal displacements,
we assume a cubic displacement model for v(x) as (Fig. 9.6)

vðxÞ ¼ a1 þ a2xþ a3x
2 þ a4x

3 (9.21)

where the constants a1 to a4 can be found by using the conditions

vðxÞ ¼ q1 and
dv
dx

ðxÞ ¼ q2 at x ¼ 0

and

vðxÞ ¼ q3 and
dv
dx

ðxÞ ¼ q4 at x ¼ l

Eq. (9.21) can thus be expressed as

vðxÞ
1�1

¼ ½N�
1�4

q!
4�1

(9.22)

where [N] is given by

½N� ¼ ½N1 N2 N3 N4 �

x

q1=v (x = 0) q3= v (x =  )

(x =  )q4= dv
dx(x = 0)q2= dv

dx

0

FIGURE 9.6 Beam element with degrees of freedom.
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with

N1ðxÞ ¼ �
2x3 � 3lx2 þ l3

��
l3

N2ðxÞ ¼ �
x3 � 2lx2 þ l2x

��
l2

N3ðxÞ ¼ ��
2x3 � 3lx2

��
l3

N4ðxÞ ¼ �
x3 � lx2

��
l2

(9.23)

and

q! ¼

8>>><>>>:
q1
q2
q3
q4

9>>>=>>>; (9.24)

According to simple beam theory, plane sections of the beam remain plane after deformation and hence the axial
displacement u due to the transverse displacement v can be expressed as (from Fig. 9.7)

u ¼ �y
vv

vx

where y is the distance from the neutral axis. The axial strain, in the absence of thermal effects, is given by1

εxx ¼ vu

vx
¼ �y

v2v

vx2
¼ ½B� q! (9.25)

where

½B� ¼ �y

l3
fð12x� 6lÞ lð6x� 4lÞ � ð12x� 6lÞ lð6x� 2lÞg (9.26)

B

u = −y

A

A′

B ′

y

y

v

∂v
∂x

∂v
∂x

∂v
∂x

FIGURE 9.7 Deformation of an element of a beam in an xy plane.

1. If the nodal displacements of the elements q1, q2, q3, and q4 are known, the stress distribution in the element, sxx can be found as

sxx ¼ sxxðx; yÞ ¼ Eεxx ¼ ½E�½B� q!

where sxx(x, y) denotes the stress in the element at a point located at distance x from the origin (in the horizontal direction from the left node) and y from
the neutral axis (in the vertical direction).
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Using Eqs. (9.26) and (8.87) with [D] ¼ [E], the stiffness matrix can be found as

(9.27)

where Izz ¼ RR
Ay

2$dA is the area moment of inertia of the cross section about the z axis. Note that the nodal interpolation
functions Ni(x) of Eq. (9.23) are the same as the first-order Hermite polynomials defined in Section 4.4.5.

The consistent load vector of a beam element can be found using different approaches as indicated in the following
examples.

EXAMPLE 9.6
A beam element is subjected to a uniformly distributed transverse load along its length as shown in Fig. 9.8A. Determine the

consistent load vector using the basic concepts of solid mechanics.

Solution

When a uniform beam is subjected to a uniformly distributed load of intensity p0 along its length l, the reactions at the ends given

by the simple beam theory, when both the ends are fixed, are shown in Fig. 9.8A. The negative values of the reactions can be taken

as the nodal loads corresponding to a uniform beam element as shown in Fig. 9.8B so that the element load vector due to a

uniform distributed load can be taken as

P
!ðeÞ ¼

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

p0l

2

p0l
2

12

p0l

2

�p0l
2

12

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
(E.1)

The element load vectors of a fixed-fixed beam for other types of loads such as a linearly varying distributed load or a

concentrated load or moment acting at any point along the length of the beam element can be generated in a similar manner using

results from the simple beam theory [9.4].

The consistent load vector of a beam element corresponding to a specified load distribution can be generated, in a simpler way,

using Eq. (8.89) as shown in the following examples.

p0 per unit length(A)

V1

V2

V3

V4

(B)

2
p0

2
p0

12

2p0

12

2p0−

FIGURE 9.8 Consistent load vector.
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EXAMPLE 9.7
A uniformly distributed load of magnitude p0 per unit length is applied along the length of a beam element. Derive the corre-

sponding consistent load vector in the local coordinate system.

Solution

The consistent load vector, P
!ðeÞ

s , for a uniformly distributed load, F(x) ¼ p0, can be found using Eq. (8.89):

P
!ðeÞ

s ¼
ZZ

S
ðeÞ
1

½N�T F! dS1 ¼
Z lðeÞ

x¼0

p0½N�Tdx ¼
Z lðeÞ

x¼0

p0

8>>>>>>>>>>><>>>>>>>>>>>:

N1ðxÞ

N2ðxÞ

N3ðxÞ

N4ðxÞ

9>>>>>>>>>>>=>>>>>>>>>>>;
dx

¼
Z lðeÞ

x¼0

p0

8>>>>>>>>>>><>>>>>>>>>>>:

�
2x3 � 3lx2 þ l3

��
l3

�
x3 � 2lx2 þ l2x

��
l2

��
2x3 � 3lx2

��
l3

�
x3 � lx2

��
l2

9>>>>>>>>>>>=>>>>>>>>>>>;
dx ¼

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

p0l

2

p0l
2

12

p0l

2

�p0l
2

12

9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>;

(E.1)

which can be seen to be identical to Eq. (E.1) of Example 9.6.

EXAMPLE 9.8
A concentrated transverse load P0 is applied at the point x ¼ a of a beam element of length l. Derive the corresponding consistent

load vector.

Solution

The consistent load vectorP
!ðeÞ

c , can be determined from the expression of the work done by the load (W) as follows:

W ¼
Z lðeÞ

x¼0

pðxÞvðxÞ dx ¼
Z lðeÞ

x¼0

P0dða� xÞ½NðxÞ�T q!ðeÞ
dx ¼ P0½Nðx ¼ aÞ�T q!ðeÞ

¼ P
!ðeÞT

c q!ðeÞ
(E.1)

where p(x) denotes the distributed load applied along the beam and vðxÞ ¼ ½NðxÞ�T q!ðeÞ
is the deflection of the beam and

dðx � aÞ ¼
�
1 if x ¼ a

0 if xsa
is the Dirac delta function. From Eq. (E.1), the consistent load vector can be identified as

P
!ðeÞ

c ¼

8>>><>>>:
N1ðx ¼ aÞ
N2ðx ¼ aÞ
N3ðx ¼ aÞ
N4ðx ¼ aÞ

9>>>=>>>;P0 ¼

8>>><>>>:
2a3 � 3la2 þ l3

a3l � 2l2a2 þ l3a

�2a3 þ 3la2

a3l � l2a2

9>>>=>>>;
P0

l3
(E.2)
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EXAMPLE 9.9
Find the consistent load vector of a beam element when a concentrated transverse load of magnitude P0 acts at x ¼ lðeÞ

�
4.

Solution

The consistent load vector of the beam element corresponding to the given concentrated load can be determined from Eq. (E.2) of

Example 9.8:

P
!ðeÞ

c ¼

8>>><>>>:
N1ðx ¼ lðeÞ

�
4
�

N2ðx ¼ lðeÞ
�
4
�

N3ðx ¼ lðeÞ
�
4
�

N4ðx ¼ lðeÞ
�
4
�
9>>>=>>>;P0 ¼ P0

64

8>>><>>>:
54

9l

10

�3l

9>>>=>>>; (E.1)

EXAMPLE 9.10
A pinned-pinned uniform beam of length 1 m is subjected to a uniformly distributed load of p0 ¼ 100 N/cm along its length as

shown in Fig. 9.8A. If the material of the beam is steel with E ¼ 207 GPa and the cross section of the beam is rectangular with

width 1 cm (in z direction) and depth 2 cm (in y direction), determine the following using a one-beam-element model:

a. The maximum deflection (at the middle) of the beam

b. The variation of the stress induced in the beam

Solution

a. The equilibrium equations of the beam, using a one-element model, can be expressed as (Fig. 9.8B):

Ke� V!w ¼ P

!e (E.1)

where



Ke� ¼ 


K ðeÞ� ¼ EIzz
l3

26664
12 6l �12 6l

6l 4l2 �6l 2l2

�12 �6l 12 �6l

6l 2l2 �6l 4l2

37775

V
!
w

¼ V
!ðeÞ ¼

8>>><>>>:
V1

V2

V3

V4

9>>>=>>>;; P
!e ¼ P

!ðeÞ ¼

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

p0l

2

p0l
2

12

p0l

2

�p0l
2

12

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
After incorporating the boundary conditions of the pinned-pinned beam (V1 ¼ V3 ¼ 0), the equilibrium equations of the beam

take the form

½K �V! ¼ P
!

(E.2)

where

½K � ¼ EIzz
l3

�
4l2 2l2

2l2 4l2

�
; V

! ¼
�
V2

V4

�
; P

! ¼
�
P2

P4

�
¼ p0l

2

12

�
1

�1

�

From the known data, EIzzl3 ¼
ð207�109Þ

�
2
3 � 10�8

�
ð1Þ3 ¼ 1380 N=m, p0 l

2

12 ¼ ð10;000Þð12Þ
12 ¼ 833:3333 N-m, Eq. (E.2) can be solved to

find V2 ¼ 0.3019 rad and V4 ¼ �0.3019 rad. The deflection along the beam is given by

vðxÞ ¼ ½NðxÞ�V!ðeÞ ¼ N1ðxÞV1 þN2ðxÞV2 þN3ðxÞV3 þN4ðxÞV4 (E.3)
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EXAMPLE 9.10 dcont’d

Since V1 ¼ V3 ¼ 0, V2 ¼ 0.3019 and V4 ¼ �0.3019, Eq. (E.3) reduces to

vðxÞ ¼ N2ðxÞð0:3019Þ þN4ðxÞð�0:3019Þ m (E.4)

where N2(x) and N4(x) are given by Eq. (9.23). The maximum deflection of the beam at the middle (x ¼ l/2 ¼ 0.5 m) can be

found as vmax ¼ 0.075475 m ¼ 7.5475 cm.

This value can be compared with the value of 9.4354 cm given by the simple beam theory.

b. The variation of the normal stress, sxx , along the beam can be determined as

sxxðxÞ ¼ �yE
d2v

dx2
¼ �yE

�
d2N2ðxÞ
dx2

V2 þ d2N4ðxÞ
dx2

V4

�

¼ �y Eð� 0:6038Þ ¼ y
�
207� 109

�ð0:6038Þ ¼ 124:9866� 109y

The maximum induced stress (at the top and bottom of the beam cross section) occurs when y ¼ � 1 cm ¼ � 0.01 m:

sxx jmax ¼ 1:25� 109 N=m2 ¼ 1:25 GPa

9.4 SPACE FRAME ELEMENT

A space frame element is a straight bar of uniform cross section that is capable of resisting axial forces, bending moments
about the two principal axes in the plane of its cross section, and twisting moment about its centroidal axis. The corre-
sponding displacement degrees of freedom are shown in Fig. 9.9A. It can be seen that the stiffness matrix of a frame
element will be of order 12 � 12. If the local axes (xyz system) are chosen to coincide with the principal axes of the cross-
section, it is possible to construct the 12 � 12 stiffness matrix from 2 � 2 and 4 � 4 submatrices. According to the
engineering theory of bending and torsion of beams, the axial displacements q1 and q7 depend only on the axial forces, and
the torsional displacements q4 and q10 depend only on the torsional moments. However, for arbitrary choice of xyz co-
ordinate system, the bending displacements in xy plane, namely q2, q6, q8, and q12, depend not only on the bending forces
acting in that plane (i.e., shear forces acting in the y direction and the bending moments acting in the xy plane) but also on
the bending forces acting in the plane xz. On the other hand, if the xy and xz planes coincide with the principal axes of the
cross section, the bending displacements and forces in the two planes can be considered to be independent of each other.

In this section, we choose the local xyz coordinate system to coincide with the principal axes of the cross section with
the x axis representing the centroidal axis of the frame element. Thus, the displacements can be separated into four groups,
each of which can be considered independently of the others. We first consider the stiffness matrices corresponding to
different independent sets of displacements and then obtain the total stiffness matrix of the element by superposition.

9.4.1 Axial Displacements

The nodal displacements are q1 and q7 (Fig. 9.9B) and a linear displacement model leads to the stiffness matrix (corre-
sponding to the axial displacement) as

(9.28)

where A, E, and l are the area of cross section, Young’s modulus, and length of the element, respectively. Note that the

elements of the matrix
h
kðeÞa

i
are identified by the degrees of freedom indicated at the top and right-hand side of the matrix

in Eq. (9.28).
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FIGURE 9.9 A space frame element.
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9.4.2 Torsional Displacements

Here the degrees of freedom (torsional displacements) are given by q4 and q10 as indicated in Fig. 9.9C. By assuming a
linear variation of the torsional displacement or rotation angle (about the x axis), the displacement model can be expressed as

qðxÞ ¼ ½N� q!t (9.29)

where

½N� ¼
h�

1� x

l

��x
l

�i
(9.30)

and

q!t ¼
�

q4

q10

�
(9.31)

Assuming the cross-section of the frame element is circular, the shear strain induced in the element can be expressed as [9.1]

εqx ¼ r
dq
dx

(9.32)

where r is the distance of the fiber from the centroidal axis of the element. Thus, the strainedisplacement relation can be
expressed, in the absence of thermal effects, as

ε
! ¼ ½B� q!t (9.33)

where

ε
! ¼ fεqxg and ½B� ¼

h
�r

l

r

l

i
From Hooke’s law, the stressestrain relation can be expressed as

s! ¼ ½D� ε! (9.34)

where

s! ¼ fsqxg; ½D� ¼ ½G�
and G is the shear modulus of the material. The stiffness matrix of the element corresponding to torsional displacement
degrees of freedom can be derived as h

kðeÞt

i
¼

ZZZ
V ðeÞ

½B�T ½D�½B� dV

¼ G

Z l

x¼0
dx
ZZ

A

r2dA

8>>>><>>>>:
�1
l

1
l

9>>>>=>>>>;
�
�1
l

1
l

� (9.35)

Since
RR

Ar
2 dA ¼ J ¼ polar moment of inertia of the cross section, Eq. (9.35) can be rewritten, assuming the cross

section of the element to be uniform, as

(9.36)

Note that the quantity GJ/l is called the torsional stiffness of the frame element [9.1]. If the cross section of the frame
element is rectangular as shown in Fig. 9.10, the torsional stiffness is given by (GJ/L) ¼ cG(ab3/l), where the value of the
constant c is given as shown here [9.3]:

Value of a/b 1.0 1.5 2.0 3.0 5.0 10.0

Value of c 0.141 0.196 0.229 0.263 0.291 0.312
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9.4.3 Bending Displacements in the Plane xy

The four bending degrees of freedom are q2, q6, q8, and q12 (Fig. 9.9D) and the corresponding stiffness matrix can be
derived as (see Section 9.3)

(9.37)

where Izz ¼ RR
Ar

2 dA is the area moment of inertia of the cross section about the z axis.

9.4.4 Bending Displacements in the Plane xz

Here bending of the element takes place in the xz plane instead of the xy plane. Thus, we have the degrees of freedom q3,
q5, q9, and q11 (Fig. 9.9E) in place of q2, q6, q8, and q12 (Fig. 9.9D), respectively. By proceeding as in the case of bending
in the plane xy, we can derive the stiffness matrix as

(9.38)

where Iyy denotes the area moment of inertia of the cross-section of the element about the y axis.

y

z

a

b

x

θ (x)

FIGURE 9.10 Rectangular section of a frame element.
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9.4.5 Total Element Stiffness Matrix

The stiffness matrices derived for different sets of independent displacements can now be compiled (superposed) to obtain
the overall stiffness matrix of the frame element as

(9.39)

9.4.6 Global Stiffness Matrix

It can be seen that the 12 � 12 stiffness matrix given in Eq. (9.39) is with respect to the local xyz coordinate system. Since
the nodal displacements in the local and global coordinate systems are related by the relation (from Fig. 9.11)8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

q1

q2
q3
q4
q5
q6

q7
q8
q9
q10
q11

q12

9>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>;

¼

2666666666666666666666664

lox mox nox 0 0 0 0 0 0 0 0 0

loy moy noy 0 0 0 0 0 0 0 0 0

loz moz noz 0 0 0 0 0 0 0 0 0

0 0 0 lox mox nox 0 0 0 0 0 0

0 0 0 loy moy noy 0 0 0 0 0 0

0 0 0 loz moz noz 0 0 0 0 0 0

0 0 0 0 0 0 lox mox nox 0 0 0

0 0 0 0 0 0 loy moy noy 0 0 0

0 0 0 0 0 0 loz moz noz 0 0 0

0 0 0 0 0 0 0 0 0 lox mox nox
0 0 0 0 0 0 0 0 0 loy moy noy

0 0 0 0 0 0 0 0 0 loz moz noz

3777777777777777777777775

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

Q6i�5

Q6i�4

Q6i�3

Q6i�2

Q6i�1

Q6i

Q6j�5

Q6j�4

Q6j�3

Q6j�2

Q6j�1

Q6j

9>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>;

(9.40)
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the transformation matrix, [l], can be identified as

½l�
12�12

¼

26664
½l� ½0� ½0� ½0�
½0� ½l� ½0� ½0�
½0� ½0� ½l� ½0�
½0� ½0� ½0� ½l�

37775 (9.41)

where

½l�
3�3

¼

264 lox mox nox
loy moy noy
loz moz noz

375 (9.42)

and

½0�
3�3

¼

264 0 0 0

0 0 0

0 0 0

375 (9.43)

Here lox, mox, and nox denote the direction cosines of the x axis (line ij in Fig. 9.11); loy, moy, and noy represent the
direction cosines of the y axis; and loz, moz, and noz indicate the direction cosines of the z axis with respect to the global X,
Y, Z axes. It can be seen that finding the direction cosines of the x axis is a straightforward computation since

Y
y

x

X

Q6i−3

Q6i−2

Q6j−3

Q6j−2

Q6j−5

Q6j−1

Q6j−4

Q6j

q12
q9

q10

q7
q11

q8

Q6i−5

Q6i−1

Q6i−4

Q6i

q6

i
q3

q4

q5

q2
q1

Z

z

j

0

FIGURE 9.11 Local and global degrees of freedom of a space frame element.
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lox ¼ Xj � Xi

l
; mox ¼ Yj � Yi

l
; nox ¼ Zj � Zi

l
(9.44)

where Xk, Yk, and Zk indicate the coordinates of node k (k ¼ i, j) in the global system. However, the computation of the
direction cosines of the y and z axes requires some special effort. Finally, the stiffness matrix of the element with reference
to the global coordinate system can be obtained as


KðeÞ� ¼ ½l�T
kðeÞ�½l� (9.45)

TRANSFORMATION MATRIX
We shall derive the transformation matrix ½l� between the local and global coordinate systems in two stages. In the first

stage, we derive a transformation matrix ½l1� between the global coordinates XYZ and the coordinates x y z by assuming the
z axis to be parallel to the XZ plane (Fig. 9.12A):8><>:

x
y
z

9>=>; ¼ ½l1�

8><>:
X

Y

Z

9>=>; (9.46)

In the second stage, we derive a transformation matrix [l2] between the local coordinates xyz (principal member axes)
and the coordinates x y z as 8><>:

x

y

z

9>=>; ¼ ½l2�

8><>:
x
y
z

9>=>; (9.47)

General case (y and z do not coincide with y and z )

z

z

y

y

α

α

Z

x (x)

y

z-axis parallel to XZ plane (principal cross-sectional
axis y and z are assumed to coincide with y and z )

Element e
K

Y

J

I
X

iNode 1

j Node 2

z

k

i

j

(A)

(B)

FIGURE 9.12 Local and global coordinate systems.
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by assuming that the local coordinate system (xyz) can be obtained by rotating the x y z system about the x axis by an angle
a as shown in Fig. 9.12B. Thus, the desired transformation between the xyz system and the XYZ system can be obtained as

½l� ¼ ½l2�½l1� (9.48)

where 8><>:
x

y

z

9>=>; ¼ ½l�

8><>:
X

Y

Z

9>=>; (9.49)

EXPRESSION FOR [l1]
From Fig. 9.12A, the direction cosines of the longitudinal axis of the frame element (x or x or first local axis) can be

obtained as

lox ¼ lox ¼ Xj � Xi

l

mox ¼ mox ¼ Yj � Yi

l

nox ¼ nox ¼ Zj � Zi

l

(9.50)

where i and j denote the first and second nodes of the element e in the global system, and l represents the length of the
element e:

l ¼ �ðXj � XiÞ2 þ ðYj � YiÞ2 þ ðZj � ZiÞ2
1=2

(9.51)

Since the unit vector k
!

(which is parallel to the z axis) is normal to both the unit vectors J
!

(parallel to Y axis) and i
!

(parallel to x axis), we have, from vector analysis [9.2],

k
! ¼ i

!� J
!

k i
!� J

! k
¼ 1

d

264 I
!

J
!

K
!

lox mox nox
0 1 0

375 ¼ 1
d

�� I
!
nox þ K

!
lox
�

(9.52)

where

d ¼ �
l2ox þ n2ox

�1=2
(9.53)

Thus, the direction cosines of the z axis with respect to the global XYZ system are given by

loz ¼ �nox
d
; moz ¼ 0; noz ¼ lox

d
(9.54)

To find the direction cosines of the y axis, we use the condition that the y axis (unit vector j
!
) is normal to the x axis�

i
!	

and z axis

�
k
!	

. Hence, we can express j
!

as

j
! ¼ k

!� i
! ¼

������������

I
!

J
!

K
!

loz �moz noz

lox mox nox

������������
¼ 1

d



I
!ð�loxmoxÞ � J

!��n2ox � l2ox
�þ K

!ð�moxnoxÞ
�

(9.55)
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Thus, the direction cosines of the y axis are given by

loy ¼ �loxmox

d

moy ¼ n2ox þ l2ox
d

noy ¼ �moxnox
d

9>>>>>>>>=>>>>>>>>;
(9.56)

Thus, the [l1] matrix is given by

½l1� ¼

266664
lox mox nox

loy moy noy

loz moz noz

377775

¼

266664
lox mox nox

�ðloxmoxÞ=d
�
l2ox þ n2ox

��
d �ðmoxnoxÞ=d

�nox=d 0 lox=d

377775
(9.57)

where lox, mox, and nox are given by Eq. (9.50) and d by Eq. (9.53).

EXPRESSION FOR [l2]
When the principal cross-sectional axes of the frame element (xyz axes) are arbitrary, making an angle a with the x y z

axes (x axis is same as x axis), the transformation between the two systems can be expressed as8><>:
x

y

z

9>=>; ¼

264 1 0 0

0 cos a sin a

0 �sin a cos a

375
8><>:

x
y
z

9>=>;h½l2�

8><>:
x
y
z

9>=>; (9.58)

so that

½l2� ¼

264 1 0 0

0 cos a sin a

0 �sin a cos a

375 (9.59)

Thus, the transformation between the coordinate axes XYZ and xyz can be found using Eq. (9.48).

Notes

a. When a ¼ 0, the matrix [l2] degenerates to a unit matrix.

b. When the element e lies vertical (i.e., when the x [or x] axis coincides with the Y axis), lox ¼ nox ¼ 0 and hence d in Eq. (9.53)

becomes zero. This makes some of the terms in the [l2] matrix indeterminate. Thus, the previous procedure breaks down.

In this case, we can redefine the angle a as the angle in the horizontal (XZ) plane between the axes Z and z, positive when

turning from Z to the X axis as shown in Fig. 9.13. In this case, the ½l� matrix can be derived, by going through the same procedure

as before, as

½l� ¼

264 0 mox 0

�mox cos a 0 mox sin a

sin a 0 cos a

375 (9.60)

where mox ¼ 1 for this case.

Continued
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Notesdcont’d

[l] MATRIX
Finally, the transformation matrix, [l], that relates the degrees of freedom in the local and global coordinate systems is

given by Eq. (9.41).

9.4.7 Planar Frame Element (as a Special Case of Space Frame Element)

In the case of two-dimensional (planar) frame analysis, we need to use an element having 6 degrees of freedom as shown in
Fig. 9.14. This element is assumed to lie in the XZ plane and has two axial and four bending degrees of freedom. By using a
linear interpolation model for axial displacement and a cubic model for the transverse displacement, and superimposing the

resulting two stiffness matrices, the following stiffness matrix can be obtained (the vector q!ðeÞ
is taken as

q!ðeÞT ¼ f q1 q2 . q6 g):



kðeÞ

� ¼ EIyy
l3

2666666666666666664

Al2

Iyy
Symmetric

0 12

0 6l 4l2

�Al2

Iyy
0 0

Al2

Iyy

0 �12 �6l 0 12

0 6l 2l2 0 �6l 4l2

3777777777777777775

(9.61)

Note that the bending and axial deformation effects are uncoupled while deriving Eq. (9.61). Eq. (9.61) can also be
obtained as a special case of Eq. (9.39) by deleting rows and columns 2, 4, 6, 8, 10, and 12. In this case the stiffness matrix
of the element in the global XZ coordinate system can be found as


KðeÞ� ¼ ½l�T
kðeÞ�½l� (9.62)

y

Z

z

X

Y(x)

α

FIGURE 9.13 Transformation for a vertical element.
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where

½l� ¼

2666666664

lox mox 0 0 0 0

loz moz 0 0 0 0

0 0 1 0 0 0

0 0 0 lox mox 0

0 0 0 loz moz 0

0 0 0 0 0 1

3777777775
(9.63)

with (lox, mox) denoting the direction cosines of the x axis and (loz, moz) indicating the direction cosines of the z axis with
respect to the global XZ system.

9.4.8 Beam Element (as a Special Case of Space Frame Element)

For a beam element lying in the local xy plane, the stiffness matrix is given by



kðeÞ

� ¼ EIzz
l3

26664
12 6l �12 6l

6l 4l2 �6l 2l2

�12 �6l 12 �6l

6l 2l2 �6l 4l2

37775 (9.64)
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X
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FIGURE 9.14 Planar frame element.
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The stiffness matrix in the global XY plane (Fig. 9.15) can be found as

KðeÞ�
6�6

¼ ½l�T
6�4



kðeÞ

�
4�4

½l�
4�6

(9.65)

where the transformation matrix [l] is given by

½l� ¼

26664
loy noy 0 0 0 0

0 0 1 0 0 0

0 0 0 loy noy 0

0 0 0 0 0 1

37775 (9.66)

where (loy, noy) are the direction cosines of the y axis with respect to the XY system.

9.5 CHARACTERISTICS OF STIFFNESS MATRICES

The stiffness matrices have the following characteristics and properties:

1. The element and system stiffness matrices are symmetric. This property satisfies the MaxwelleBetti reciprocity theo-
rem of solid and structural mechanics. According to this theorem, when two sets of loads act on a solid body, the work
done by the first set of loads due to the displacements produced by the second set of loads is equal to the work done by
the second set of loads due to the displacements produced by the first set of loads. For example, if loads P

!
1 and

P
!

2 produce the displacements U
!

1and U
!

2, respectively, in the structure or body, then the work done (W1) by the first
load vector P

!
1 acting through the displacement vector U

!
2 produced by the second load is given by

W1 ¼ 1
2
P
!T

1 U
!

2 (9.67)

Using the relation

U
!

2 ¼ ½K��1 P
!

2 (9.68)

in Eq. (9.67), we obtain

W1 ¼ 1
2
P
!T

1 ½K��1 P
!

2 (9.69)

Because the work done is a scalar quantity, Eq. (9.69) can be rewritten by taking the transpose of the right-hand side
quantity of Eq. (9.69), as

W1 ¼ 1
2
P
!T

2

�½K��1�T P!1 (9.70)

y
Y

X

x

x

y

dv
dx 1

= q2

q1 = (v )1
q3 = (v )2

dv
dx 2

= q4

0

0

FIGURE 9.15 Degrees of freedom of a beam element.
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Eq. (9.70) can be expressed, if [K] is symmetric, as

W1 ¼ 1
2
P
!T

2

�½K��1� P!1 ¼ 1
2
P
!T

2 U
!

1 ¼ W2 (9.71)

whereW2 denotes the work done by the second load vector P
!

2 acting through the displacement vector U
!

1 produced by
the first load vector P

!
1. Thus, Eq. (9.71) shows that the MaxwelleBetti reciprocity theorem will be satisfied for

symmetric stiffness matrices.
2. The diagonal terms of stiffness matrices, Kii, are positive. The equilibrium equations of a system, composed of one or

more finite elements, can be expressed as

½K�U! ¼ P
!

(9.72)

Assume that all the displacement degrees of freedom of the system, except the ith degree of freedom (Ui), are fixed. For
such a system, Eq. (9.72) reduces to

KiiUi ¼ Pi (9.73)

where Pi denotes the external load applied along the direction of Ui. For positive values of the load (Pi > 0), positive
displacement (Ui > 0) is expected. For example, when a bar is subjected to a tensile load, we expect the bar to undergo
elongation, not contraction. This implies that Kii >0.

3. The element and assembled (system) stiffness matrices are singular; that is, det [K] ¼ 0. An individual finite element or
the assembly of finite elements (structure or system) is a free body in space and can float. It can undergo rigid-body
translation or rotation. Consider a bar with displacement degrees of freedom along the x (axial) direction, and an
element/system undergoes rigid body translation along the x axis so that all the linear displacement degrees of freedom
will have the same value (constant, c). Since no external loads are applied, the load vector is zero and hence the finite
element equations become

½k� u! ¼ ½k�

8>>><>>>:
c

c

«

c

9>>>=>>>; ¼ 0
!

(9.74)

Eq. (9.74) needs to be satisfied for infinite possible values of c (even in small displacement theory). The only way to
satisfy Eq. (9.74) for arbitrary value of c is to have the matrix [k] singular.

REVIEW QUESTIONS

9.1 Give brief answers to the following questions.

1. Can a truss carry bending moments?
2. How many independent displacement components can a node in a three-dimensional truss have?
3. How many independent displacement components can a node in a three-dimensional frame have?
4. What is the most important difference between a truss and a frame?
5. What is the number of nodal degrees of freedom for a truss element?
6. What is the element stiffness matrix of a truss element in a local (x) coordinate system?
7. Define the direction cosines of a truss element whose nodal coordinates are given by ðXi; Yi; ZiÞ and ðXj; Yj; ZjÞ.
8. What is a l matrix?
9. What is the general expression, in integral form, for generating the element stiffness matrix?

10. What is the difference between a beam element and a planar frame element?
11. How many degrees of freedom are there for a space frame element?

9.2 Fill in the blank with a suitable word.

1. When a structural element is subjected to uniform temperature, only ——————————— strains will be
developed.

2. The displacement model is a ——————— degree polynomial for a beam element.
3. A space frame element considers bending in two perpendicular planes, axial deformation, and —————————

moment.
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9.3 Indicate whether each of the following statements is true or false.

1. Trusses can be considered skeletal types of structures.
2. The finite element method requires all loads to be applied only at node points.
3. All stiffness matrices are symmetric.
4. The diagonal elements of a stiffness matrix can be negative.
5. The assembled stiffness matrix of any structure will be singular.

9.4 Select the most appropriate answer from the multiple choices given.

1. The ends of a truss element are:
(a) free (b) welded (c) pin-jointed

2. The deformation of a truss element is:
(a) axial (b) bending (c) twisting

3. The number of nodal displacement components of a planar frame element is:
(a) 3 (b) 2 (c) 4

4. The number of nodal displacement components for a space frame element is:
(a) 4 (b) 6 (c) 3

5. The size of the coordinate transformation matrix of an axial bar element lying in the xy plane is:
(a) 2 � 2 (b) 2 � 4 (c) 4 � 4

6. The size of the coordinate transformation matrix of an axial bar element lying in the xyz space is:
(a) 2 � 6 (b) 4 � 6 (c) 6 � 6

7. The size of the coordinate transformation matrix of a beam element lying in the xy plane is:
(a) 4 � 6 (b) 6 � 6 (c) 6 � 4

8. The size of the coordinate transformation matrix of beam element lying in the xyz space is:
(a) 6 � 6 (b) 6 � 12 (c) 12 � 12

PROBLEMS

9.1 Derive the transformation matrices for the members of the frame shown in Fig. 9.16. Indicate clearly the local and
global degrees of freedom for each member separately.

3

3

20

20

2

2

20

1

1

Y

X

Z

1

4

21

2

0

FIGURE 9.16 Space frame.
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9.2 Find the deflections of nodes 2 and 3 of the frame shown in Fig. 9.16 under the following load conditions:
Assume the material properties as E ¼ 2 � 107 N/cm2 and G ¼ 0.8 � 107 N/cm2.
a. When a load of 100 N acts in the direction of �Y at node 2
b. When a load of 100 N acts at node 3 in the direction of Z
c. When a distributed load of magnitude 1 N per unit length acts on member 2 in the direction of �Y

9.3 Derive the stiffness matrix and load vector of a three-dimensional truss element whose area of cross-section varies
linearly along its length.

9.4 Derive the transformation relation [K(e)] ¼ [l]T[k(e)][l] from the equivalence of potential energy in the local and
global coordinate systems.

9.5 Find the nodal displacements in the tapered one-dimensional member subjected to an end load of 4000 N (shown in
Fig. 9.17). The cross-sectional area decreases linearly from 10 cm2 at the left end to 5 cm2 at the right end. Further-
more, the member experiences a temperature increase of 25 �C. Use three 25-cm elements to idealize the member.
Assume E ¼ 2 � 107 N/cm2, v ¼ 0.3, and a ¼ 6 � 10�6 cm/cm �C.

9.6 Derive the equilibrium equations for the beam-spring system shown in Fig. 9.18. Start from the principle of
minimum potential energy and indicate briefly the various steps involved in your finite element derivation.

9.7 Write a program called TRUSS for the displacement and stress analysis of three-dimensional truss structures. Using
this subroutine, find the stresses developed in the members of the truss shown in Fig. 9.19 using hand computations.

9.8 Find the stresses developed in the members of the truss shown in Fig. 9.19.

4000 N

75 cm

FIGURE 9.17 Tapered bar.

Beam with 2EI

Beam with 3EI
2 3

6

5

34

1 1 2

k1

k2

X

Z

Beam with EI

Load = p per unit length

/ 2

FIGURE 9.18 Beam-spring system.
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9.9 The stiffness matrix of a spring, of stiffness c, in the local (x) coordinate system is given by (see Fig. 9.20):

½k� ¼ c

�
1 �1

�1 1

�
Derive the stiffness matrix of the element in the global (XY) coordinate system.

(0, 0, 20) (20, 0, 20)

(20, 0, 0)(0, 0, 0)

(10, 40, 10)
2000 N

Data:
E = 2 × 107N/cm2

A = 2 cm2 for all members
All dimensions in cm

1000 N

Y

X

Z

FIGURE 9.19 Three-dimensional truss.

X

x

Y

1

2
c

Q4

q2

q1

θ

Q3

Q1

Q2

FIGURE 9.20 Spring element.
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9.10 Explain why the stiffness matrix given by Eq. (9.7) or Eq. (9.13) is symmetric.
9.11 Explain why the stiffness matrix given by Eq. (9.7) or Eq. (9.13) is singular.
9.12 Explain why the sum of elements in any row of the stiffness matrix given by Eq. (9.7) or Eq. (9.13) is zero.
9.13 The members 1 and 2 of Fig. 9.21 are circular with diameters of 1 and 2 in, respectively. Determine the displacement

of node P by assuming the joints to be pin connected.

9.14 The members 1 and 2 of Fig. 9.21 are circular with diameters of 1 and 2 in, respectively. Determine the displacement
of node P by assuming the joints to be welded.

9.15 The stepped bar shown in Fig. 9.22 is subjected to an axial load of 100 lb at node 2. The Young’s moduli of elements
1, 2, and 3 are given by 30 � 106, 20 � 106, and 10 � 106 psi, respectively. If the cross-sectional areas of elements
1, 2, and 3 are given by 3 � 3, 2 � 2, and 1 � 1 in, respectively, determine the following:
a. Displacements of nodes 2 and 3
b. Stresses in elements 1, 2, and 3
c. Reactions at nodes 1 and 4

Member 1

Member 2

5"

10"

P � 100 Ib

E � 30 � 106 psi

FIGURE 9.21 Two-bar structure.

Element 1 Element 2 Element 3

1 2 x3
4

100 lb

10" 15" 20"

FIGURE 9.22 Stepped bar.
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9.16 Loads of magnitude 100 and 200 lb are applied at points C and D of a rigid bar AB that is supported by two cables as
shown in Fig. 9.23. If cables 1 and 2 have cross-sectional areas of 1 and 2 in2 and Young’s moduli of 30 � 106 and
20 � 106 psi, respectively, determine the following:
a. The finite element equilibrium equations of the system by modeling each cable as a bar element
b. The boundary conditions of the system
c. The nodal displacements of the system
Hint: A boundary condition involving the degrees of freedom Qi and Qj in the form of a linear equation:

aiQi þ ajQj ¼ a0

where ai, aj, and ao are known constants (also known as a multipoint boundary condition), can be incorporated as
follows (see Section 6.5).
Add the quantities, ca2i ,caiaj, caiaj, and ca2j to the elements located at (i, i), (i, j), (j, i), and (j, j), respectively, in the
assembled stiffness matrix and add the quantities ca0ai and ca0aj to the elements in rows i and j of the load vector.
Here c is a large number compared to the magnitude of the elements of the stiffness matrix and the load vector.

9.17 The stepped bar shown in Fig. 9.24 is heated by 100 �F. The cross-sectional areas of elements 1 and 2 are given by 2
and 1 in2 and the Young’s moduli by 30 � 106 and 20 � 106 psi, respectively.
a. Derive the stiffness matrices and the load vectors of the two elements.
b. Derive the assembled equilibrium equations of the system and find the displacement of node C.
c. Find the stresses induced in elements 1 and 2.
Assume the value of a for elements 1 and 2 to be 15 � 10�6 and 10 � 10�6 per �F, respectively.

Cable 1

C
A

E D
B

Cable 2

100 lb 200 lb

10"

15"

3"5"5"10"

FIGURE 9.23 Rigid bar supported by cables.

Element 1
Element 2

CA Bx

5" 10"

FIGURE 9.24 Stepped bar.
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9.18 Consider the two-bar truss shown in Fig. 9.25. The element properties are:
Element 1: E1 ¼ 30 � 106 psi, A1 ¼ 1 in2

Element 2: E2 ¼ 20 � 106 psi, A2 ¼ 0.5 in2

The loads acting at node A are given by P1 ¼ 100 and P2 ¼ 200 lb.
a. Derive the assembled equilibrium equations of the truss.
b. Find the displacement of node A.
c. Find the stresses in elements 1 and 2.

9.19 A beam is fixed at one end, supported by a cable at the other end, and subjected to a uniformly distributed load of
50 lb/in as shown in Fig. 9.26.
a. Derive the finite element equilibrium equations of the system by using one finite element for the beam and one

finite element for the cable.
b. Find the displacement of node 2.

Element 2Element 1

Y

X

A

P2

P1

20" 20"

50"

FIGURE 9.25 Two-bar truss.

50 lb/in

1

Cable, cross-sectional area: 1 in2

Beam, cross-section: 2" × 2", E = 30 × 106 psi 

2

10"

30"

E = 30 × 106 psi

FIGURE 9.26 Beam supported by a cable.
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c. Find the stress distribution in the beam.
d. Find the stress distribution in the cable.

9.20 A beam is fixed at one end and is subjected to three forces and three moments at the other end as shown in Fig. 9.27
(Px ¼ 100 N, Mx ¼ 20 N-m, Py ¼ 200 N, My ¼ 30 N-m, Pz ¼ 300 N, Mz ¼ 40 N-m, E ¼ 205 GPa). Find the stress
distribution in the beam using a one-beam element idealization.

9.21 Determine the stress distribution in the two members of the frame shown in Fig. 9.28. Use one finite element for each
member of the frame.

X

Pz

Py

My

Mz

Mx

Px

Y

Z

1 m

1mm

20
m

m

18
m

m

10 mm

12 mm

1mm

(A) (B)

FIGURE 9.27 Beam subjected to loads and moments.

Member 2
Cross section: 20 mm × 20 mm

E = 205 GPa

Member 1
Cross section: 10 mm × 10 mm

E = 70 GPa

Y

X

M0 = 500 N − m

Px = 2000 N

Py = 3000 N

2 m

1 m

FIGURE 9.28 Two-member planar frame.
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9.22 Find the displacement of node 3 and the stresses in the two members of the truss shown in Fig. 9.29. Assume the
Young’s modulus and the cross-sectional areas of the two members are the same, with E ¼ 30 � 106 psi and
A ¼ 1 in2.

9.23 A simple model of a radial drilling machine structure is shown in Fig. 9.30. Using two beam elements for the column
and one beam element for the arm, derive the stiffness matrix of the system. Assume the material of the structure is
steel and the foundation is a rigid block. The cross section of the column is tubular with inside diameter 350 mm and
outside diameter 400 mm. The cross-section of the arm is hollow rectangular with an overall depth of 400 mm and
overall width of 300 mm, with a wall thickness of 10 mm.

9.24 If a vertical force of 4000 N along the z direction and a bending moment of 1000 N-m in the xz plane are developed
at point A during a metal-cutting operation, find the stresses developed in the machine tool structure shown in
Fig. 9.30.

9.25 The crank in the sliderecrank mechanism shown in Fig. 9.31 rotates at a constant angular speed of 1500 rpm. Find
the stresses in the connecting rod and the crank when the pressure acting on the piston is 100 psi and q ¼ 30�. The
diameter of the piston is 10 in, and the material of the mechanism is steel. Model the connecting rod and the crank by
one beam element each. The lengths of the crank and the connecting rod are 10 and 45 in, respectively.

1

2

2

1
3

12 in

24 in

10 lb

FIGURE 9.29 Two-member truss.

Column

0.5 m
Arm

A

z

Foundation (rigid)

1.5 m

x

2.5 m

FIGURE 9.30 Drilling machine.
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9.26 A water tank of weight W is supported by a hollow circular steel column of inner diameter d, wall thickness t, and
height h. The wind pressure acting on the column can be assumed to vary linearly from 0 to pmax, as shown in
Fig. 9.32. Find the bending stress induced in the column under the loads using a one-beam element idealization
with the following data:

W ¼ 15; 000 lb; h ¼ 30 ft; d ¼ 2 ft; t ¼ 2 in; pmax ¼ 200 psi

Section XX

1.0 in

0.8 in

1.0 in

1.2 in

X

X

X
p

X

θ

FIGURE 9.31 Slider-crank mechanism.

Column

Water tankW

pmax

h

FIGURE 9.32 Water tank.
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9.27 Find the nodal displacements and stresses in elements 1, 2, and 3 of the system shown in Fig. 9.33. Use three bar
elements and one spring element for modeling.
Data: A1 ¼ 3 in2, A2 ¼ 2 in2, A3 ¼ 1 in2, E1 ¼ 30 � 106 psi, E2 ¼ 10 � 106 psi, E3 ¼ 15 � 106 psi, l1 ¼ 10 in,
l2 ¼ 20 in, l3 ¼ 30 in, k ¼ 105 lb/in.

9.28 A truss element of length l and cross-sectional area A is subjected to a linearly varying load acting on the surface in
the axial direction as shown in Fig. 9.34 (load per unit length varies from 0 to p0). Derive the consistent load vector
of the element using a linear interpolation model. Also indicate the lumped load vector of the element.

9.29 A beam of flexural rigidity EI, fixed at the left end, is supported on a spring of stiffness k at the right end as shown in
Fig. 9.35, where Qi, i ¼ 1, 2, ., 6 denote the global degrees of freedom.
a. Derive the stiffness matrix of the system before applying the boundary conditions.
b. Find the stiffness matrix of the system after applying the boundary conditions.
c. Find the displacement and slope of the beam at point A for the following data: EI ¼ 25 � 106 lb-in2, l1 ¼ 20 in,

l2 ¼ 10 in, k ¼ 104 lb/in, load at A (acting in a vertically downward direction) ¼ 100 lb.

A1, E1,

X

2

Steel Aluminum Brass Helical
spring

1000 lb
k

1
A2, E2, 2

A3, E3, 3 4

3
500 lb

4
5

1

1 32

1
2

3

FIGURE 9.33 Stepped-beam-spring system.

i j

O
ui uj

po

FIGURE 9.34 Bar subjected to linearly varying load.

1 k

Q5

Q6

Q4

Q3Q1

Q2

EI

A

2

FIGURE 9.35 Beam supported on spring.
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9.30 Find the stress in the bar shown in Fig. 9.36 using the finite element method with one bar and one spring element.
Data: Cross-sectional area of bar (A) ¼ 2 in2, Young’s modulus of the bar (E) ¼ 30 � 106 psi, spring constant of the
spring (k) ¼ 105 lb/in.

9.31 A two-dimensional frame is shown in Fig. 9.37. Using three degrees of freedom per node, derive the following:
a. Global stiffness and mass matrices of order 9 � 9 before applying the boundary conditions
b. Global stiffness and mass matrices of order 3 � 3 after applying the boundary conditions
c. Nodal displacement vector under the given load
d. Natural frequencies and mode shapes of the frame
Data: E ¼ 30 � 106 psi, I ¼ 2 in4, A ¼ 1 in2, l ¼ 30 in, r ¼ 0.283 lb/in3 (weight density), g ¼ 384 in/s2

(gravitational constant), P1 ¼ 1000 lb, P2 ¼ 500 lb.

120"

u1

u2 k

u3

P = 1000 lb

FIGURE 9.36 Bar connected to a spring.

Y

X

P2

P1

30°

ρ, E, 2I, 3 , A

ρ , E, I, , A

FIGURE 9.37 Two-dimensional frame.
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9.32 Derive the stiffness matrix of a beam element in bending using trigonometric functions (instead of a cubic equation)
for the interpolation model. Discuss the convergence of the resulting element.

9.33 The beam shown in Fig. 9.38 is subjected to a uniformly distributed load of 50 lb/in. The beam has a rectangular
cross section with a depth of 2 in (in y direction) and width 1 in (in z direction). The Young’s modulus of the
beam is 30 � 106 psi. Determine the stress distribution in the beam using a two-beam element model.

9.34 The beam shown in Fig. 9.39 is subjected to a uniformly distributed load of 50 lb/in. The beam has a rectangular
cross section with a depth of 2 in (in y direction) and width 1 in (in z direction). The Young’s modulus of the
beam is 30 � 106 psi. Determine the stress distribution in the beam using a two-beam element model.

9.35 The beam shown in Fig. 9.40 is subjected to a uniformly distributed load of 50 lb/in. The beam has a rectangular
cross section with a depth of 2 in (in y direction) and width 1 in (in z direction). The Young’s modulus of the
beam is 30 � 106 psi. Determine the stress distribution in the beam using a two-beam element model.

9.36 A fixed-fixed beam is subjected to two concentrated loads as shown in Fig. 9.41. The beam has a rectangular cross
section with a depth of 2 in (in y direction) and width 1 in (in z direction). The Young’s modulus of the beam is
30 � 106 psi. Using three beam elements to model the beam, find the displacement and stress distributions in the
beam.

60 in 60 in

y

x
50 lb/in

FIGURE 9.38 Fixed beam with simple support at the middle.

60 in 60 in

y

x
50 lb/in

FIGURE 9.39 Beam on three simple supports.

60 in 60 in

y

x

50 lb/in

FIGURE 9.40 Fixed-fixed beam with simple support at the middle.

40 in 40 in 40 in

y

x

1000 lb 1000 lb

FIGURE 9.41 Fixed-fixed beam.
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9.37 The beam shown in Fig. 9.42 is subjected to a uniformly distributed load of 50 lb/in. The beam has a rectangular
cross section with a depth of 2 in (in y direction) and width 1 in (in z direction). The Young’s modulus of the
beam is 30 � 106 psi. Determine the stress distribution in the beam using a two-beam element model.

9.38 A beam is simply supported at its left end and the middle point and subjected to a concentrated vertical load at its
free end as shown in Fig. 9.43. The beam has a rectangular cross section with a depth of 2 in (in y direction) and
width 1 in (in z direction). The Young’s modulus of the beam is 30 � 106 psi. Find the stress distribution in the
beam.

9.39 A stepped shaft of length L ¼ 120 in has a circular cross section of diameter d1 over 0 � x � L
2 and a circular cross

section of diameter d2 over L
2 � x � L as shown in Fig. 9.44. The shear modulus of the shaft is 12 � 106 psi.

Determine the shear stress distribution in the shaft when a torque T ¼ 2000 lb-in is applied at the free end using
two finite elements.

9.40 A stepped shaft of length L ¼ 120 in has a circular cross section of diameter d1 over 0 � x � L
3, a circular cross

section of diameter d2 over L
3 � x � 2L

3 , and a circular cross section of diameter d3 over 2L
3 � x � L as shown in

Fig. 9.45. The shear modulus of the shaft is 12 � 106 psi. Determine the shear stress distribution in the shaft
when a torque T is applied at the free end using three finite elements. Assume T ¼ 2000 lb-in.

60 in 60 in

y

x

50 lb/in

FIGURE 9.42 Fixed beam on two simple supports.

60 in 60 in

2000 lb
y

x

FIGURE 9.43 Beam with simple supports at the end and middle.

60 in

d1 = 2" d2 = 1"

T

60 in

x

FIGURE 9.44 Two stepped shaft.

40 in

d2 = 2 in d3 = 1 in

T

40 in40 in

x

d1 = 3 in

FIGURE 9.45 Three stepped shaft.
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9.41 A cantilever beam is subjected to two concentrated loads, P1 ¼ 2000 lb and P2 ¼ 1000 lb, in two different directions
at the free end as shown in Fig. 9.46. Find the deflection of the free end and the stress distribution in the beam using
one finite element. Assume that the Young’s modulus of the beam is 30 � 106 psi.

9.42 The cantilever beam shown in Fig. 9.47 has two different cross-sections: a 2 in � 2 in square cross section over the
length 0 � x � L

2 and a circular cross section of diameter 1 in over the length L
2 � x � L. It is subjected to two concen-

trated loads Py and Pz and a bending moment Mz as indicated in Fig. 9.47. If the Young’s modulus of the beam is
30 � 106 psi, find the deflections and stresses induced in the beam using two finite elements.

9.43 A three-bar planar truss with its support conditions and loads is shown in Fig. 9.48. The cross-sectional areas of the
bars 1, 2, and 3 are 1 in2, 2 in2, and 3 in2, respectively. The material of the bars has a Young’s modulus of
30 � 106 psi. Determine the stresses in the various members of the truss.

9.44 A four-bar planar truss with its support conditions and loads is shown in Fig. 9.49. Assume that the cross-sectional
area of each bar is 1 in2 and Young’s modulus is 30 � 106 psi. Determine the stresses in the various members of the
truss.

1000 lb = P2

P1= 2000 lb

50 in

2 in

1in

FIGURE 9.46 Cantilever beam with loads in two directions.

Pz = 1000 lb

Py = 2000 lb
Mz = 500lb-in

60 in 60 in

x

y

z

0

FIGURE 9.47 Cantilever beam with two different sections.

100 in

40 in 1
3

2

2000 lb

1000 lb

FIGURE 9.48 Three-bar planar truss.
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9.45 A six-bar planar truss with its support conditions and loads is shown in Fig. 9.50. Assume that the cross-sectional area
of each bar is 1 in2 and Young’s modulus is 30 � 106 psi. Determine the stresses in the various members of the truss.

9.46 Consider the planar frame shown in Fig. 9.51. The segments 1, 2, and 3 of the frame have rectangular cross sections
with cross-sectional dimensions 2 in � 1 in (in x � z directions), 3 in � 2 in (in y � z directions) and 2 in � 1 in (in
x � z directions), respectively. The Young’s modulus of the material is 30 � 106 psi. Determine the stresses in the
three members of the frame using a three-element idealization.

50 in

4

1

3

2

1000 lb

50 in

100 in

1000 lb

2000 lb

FIGURE 9.49 Four-bar planar truss.

1000 lb

60 in

1

3

6

4 2

5

2000 lb

80 in

FIGURE 9.50 Six-bar planar truss.

1

2000 lb

3

2

x

60 in

y

100 in

FIGURE 9.51 Three-member planar frame.
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9.47 Consider a beam with two perpendicular segments subjected to a concentrated load as shown in Fig. 9.52. Using two
beam elements, determine the deflection and stresses in the two segments of the beam. Assume that Young’s
modulus of the beam is 30 � 106 psi.

9.48 A space frame is composed of three segments and is subjected to three loads in different directions as shown in
Fig. 9.53. Each of the three segments of the frame has a circular cross section with diameter 1 in. The material
of the frame has a Young’s modulus of 30 � 106 psi. All the joints are assumed to be welded. Using three frame
elements, determine the deflections and the stresses in the frame.

9.49 A space frame is composed of three segments and is subjected to three loads in different directions as shown in
Fig. 9.54. Each of the three segments of the frame has a circular cross section with diameter 1 in. The material
of the frame has a Young’s modulus of 30 � 106 psi. All the joints are assumed to be welded. Using three frame
elements, determine the deflections and stresses in the frame.

60 in

2 in

1 in

2 in

1 in

2000 lb

60
 in

FIGURE 9.52 Two-segmented beam.

(0, 10, 0) in

(20, 10, 0) in

(30, 0, 10) in

Py = 3000 lb

(0, 0, 0) in

xO

1

z

1000 lb = Px

2000 lb = Pz

y

2
3

4

3

1

2

FIGURE 9.53 Three-member space frame.
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9.50 By treating the structure shown in Fig. 9.54 as a space truss (each of the four joints is assumed to be a pin joint),
determine the stresses in the truss using a three-truss element model.
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10.1 INTRODUCTION

When a flat plate is subjected to both in-plane and transverse or normal loads as shown in Fig. 10.1A any point inside the
plate can have displacement components u, v, and w parallel to x, y, and z axes, respectively. In the small deflection (or
linear) theory of thin plates, the transverse deflection w is uncoupled from the in-plane deflections u and v. Consequently,
the stiffness matrices for the in-plane and transverse deflections are also uncoupled and they can be calculated indepen-
dently. Thus, if a plate is subjected to in-plane loads only, it will undergo deformation in its plane only. In this case, the
plate is said to be under the action of membrane forces. Similarly, if the plate is subjected to transverse loads (and/or
bending moments), any point inside the plate experiences essentially a lateral displacement w (in-plane displacements u
and v are also experienced because of the rotation of the plate element). In this case, the plate is said to be under the action
of bending forces. The in-plane and bending analysis of plates is considered in this chapter. If the plate elements are used
for the analysis of three-dimensional structures, such as folded plate structures, both in-plane and bending actions have to
be considered in the development of element properties. This aspect of coupling the membrane and bending actions of a
plate element is also considered in this chapter.

10.2 TRIANGULAR MEMBRANE ELEMENT

The triangular membrane element is considered to lie in the xy plane of a local xy coordinate system as shown in
Fig. 10.1B. By assuming a linear displacement variation inside the element, the displacement model can be expressed as

uðx; yÞ ¼ a1 þ a2xþ a3y

vðx; yÞ ¼ a4 þ a5xþ a6y
(10.1)

By considering the displacements ui and vi as the local degrees of freedom of node i (i ¼ 1, 2, 3), the constants a1,., a6
can be evaluated. Thus, by using the conditions

uðx; yÞ ¼ u1 ¼ q1 and vðx; yÞ ¼ v1 ¼ q2 at ðx1; y1Þ
uðx; yÞ ¼ u2 ¼ q3 and vðx; yÞ ¼ v2 ¼ q4 at ðx2; y2Þ
uðx; yÞ ¼ u3 ¼ q5 and vðx; yÞ ¼ v3 ¼ q6 at ðx3; y3Þ

9>=>; (10.2)

The Finite Element Method in Engineering. https://doi.org/10.1016/B978-0-12-811768-2.00010-9
Copyright © 2018 Elsevier Inc. All rights reserved.
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we can express the constants a1, ., a6 in terms of the nodal degrees of freedom as outlined in Section 3.4. This leads to
the displacement model:

U
! ¼

�
uðx; yÞ
vðx; yÞ

�
¼ ½N� q!ðeÞ

(10.3)

where

½Nðx; yÞ� ¼
�
N1ðx; yÞ 0 N2ðx; yÞ 0 N3ðx; yÞ 0

0 N1ðx; yÞ 0 N2ðx; yÞ 0 N3ðx; yÞ

�
(10.4)

N1ðx; yÞ ¼ 1
2A

½y32ðx� x2Þ � x32ðy� y2Þ�

N2ðx; yÞ ¼ 1
2A

½ � y31ðx� x3Þ þ x31ðy� y3Þ�

N3ðx; yÞ ¼ 1
2A

½y21ðx� x1Þ � x21ðy� y1Þ�

9>>>>>>>=>>>>>>>;
(10.5)

In-plane loads

A plate subjected to both
 in-plane and transverse loads

y

z

x

O

Transverse
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w

u

v

(A)

 A triangular membrane element 
 undergoing only in-plane deformation
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x
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q6= v3
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(x2, y2)

(x1, y1)

v(x, y)

u(x, y)(x, y)

q3= u22

1 (x3, y3)
3

O
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FIGURE 10.1 Loads acting on a plate.
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A ¼ 1
2
ðx32y21 � x21y32Þ ¼ area of the triangle 1 2 3 (10.6)

xij ¼ xi � xj
yij ¼ yi � yj

�
(10.7)

U
! ¼

�
uðx; yÞ
vðx; yÞ

�
(10.8)

q!ðeÞ ¼

8>>>>>>>><>>>>>>>>:

q1
q2
q3
q4

q5
q6

9>>>>>>>>=>>>>>>>>;

ðeÞ

¼

8>>>>>>>><>>>>>>>>:

u1
v1
u2
v2

u3
v3

9>>>>>>>>=>>>>>>>>;

ðeÞ

(10.9)

By using the relations

ε
! ¼

8><>:
εxx

εyy

εxy

9>=>; ¼

8>>>>><>>>>>:

vu=vx

vv=vy

vu

vy
þ vv

vx

9>>>>>=>>>>>;
(10.10)

and Eq. (10.3), the components of strain can be expressed in terms of nodal displacements as

ε
! ¼ ½B� q!ðeÞ

(10.11)

where

½B� ¼ 1
2A

264 y32 0 �y31 0 y21 0

0 �x32 0 x31 0 �x21
�x32 y32 x31 �y31 �x21 y21

375 (10.12)

If the element is in a state of plane stress, the stressestrain relations are given by (Eq. 8.35)

s! ¼ ½D� ε! (10.13)

where

s! ¼

8><>:
sxx

syy

sxy

9>=>; (10.14)

and

½D� ¼ E

1� v2

266664
1 v 0

v 1 0

0 0
1� v

2

377775 (10.15)

The stiffness matrix of the element [k(e)] can be found by using Eq. (8.87):

�
kðeÞ
� ¼

ZZZ
V ðeÞ

½B�T ½D�½B�dV (10.16)
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where V(e) denotes the volume of the element. If the plate thickness is taken as a constant (t), the evaluation of the integral in
Eq. (10.16) presents no difficulty since the elements of the matrices [B] and [D] are all constants (not functions of x and y).
Hence, Eq. (10.16) can be rewritten as�

kðeÞ
� ¼ ½B�T ½D�½B�t

ZZ
A

dA ¼ tA½B�T ½D�½B� (10.17)

Although the matrix products involved in Eq. (10.17) can be performed conveniently on a computer, the explicit form
of the stiffness matrix is given here for convenience:�

kðeÞ
� ¼ �

kðeÞn

�þ �kðeÞs

�
(10.18)

where the matrix
�
kðeÞ
�
is separated into two partsdone due to normal stresses,

�
kðeÞn

�
, and the other due to shear stresses,�

kðeÞs

�
. The components of the matrices

�
kðeÞn

�
and

�
kðeÞs

�
are given by

h
kðeÞn

i
¼ Et

4Að1� v2Þ

2666666664

y232
�vy32x32 x232 Symmetric

�y32y31 vx32y31 y231
vy32x31 �x32x31 �vy31x31 x231
y32y21 �vx32y21 �y31y21 vx31y21 y221

�vy32x21 x32x21 vy31x21 �x31x21 �vy21x21 x221

3777777775
(10.19)

and

h
kðeÞs

i
¼ Et

8Að1þ vÞ

2666666664

x232
�x32y32 y232 Symmetric

�x32x31 y32x31 x231
x32y31 �y32y31 �x31y31 y231
x32x21 �y32x21 �x31x21 y31x21 x221
�x32y21 y32y21 x31y21 �y31y21 �x21y21 y221

3777777775
(10.20)

TRANSFORMATION MATRIX
In actual computations, it is convenient, from the standpoint of calculating the transformation matrix [l], to select

the local xy coordinate system as follows. Assuming that the triangular element under consideration is an interior
element of a large structure, let node numbers 1, 2, and 3 of the element correspond to node numbers i, j, and k,
respectively, of the global system. Then place the origin of the local xy system at node 1 (node i), and take the y axis
along the edge 1 2 (edge ij) and the x axis perpendicular to the y axis directed toward node 3 (node k) as shown in
Fig. 10.2.

To generate the transformation matrix [l], the direction cosines of lines ox and oy with respect to the global X, Y, and Z
axes are required. Since the direction cosines of the line oy are the same as those of line ij, we obtain

lij ¼ Xj � Xi

dij
; mij ¼ Yj � Yi

dij
; nij ¼ Zj � Zi

dij
(10.21)

where the distance between the points i and j (dij) is given by

dij ¼
�ðXj � XiÞ2 þ ðYj � YiÞ2 þ ðZj � ZiÞ2

�1=2
(10.22)

and (Xi, Yi, Zi) and (Xj, Yj, Zj) denote the (X, Y, Z) coordinates of points i and j, respectively. Since the direction cosines of
the line ox cannot be computed unless we know the coordinates of a second point on the line ox (in addition to those of
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point i), we draw a perpendicular line kp from node k onto the line ij as shown in Fig. 10.2. Then the direction cosines of
the line ox will be the same as those of the line pk:

lpk ¼ Xk � Xp

dpk
; mpk ¼ Yk � Yp

dpk
; npk ¼ Zk � Zp

dpk
(10.23)

where dpk is the distance between the points p and k. The coordinates (Xp, Yp, Zp) of the point p in the global coordinate
system can be computed as

Xp ¼ Xi þ lijdip

Yp ¼ Yi þ mijdip

Zp ¼ Zi þ nijdip

(10.24)

where dip is the distance between the points i and p. To find the distance dip, we use the condition that the lines ij and pk are
perpendicular to each other:

lijlpk þ mijmpk þ nijnpk ¼ 0 (10.25)

Using Eqs. (10.23) and (10.24), Eq. (10.25) can be rewritten as

1
dpk

½lijðXk � Xi � lijdipÞ þ mijðYk � Yi � mijdipÞ þ nijðZk � Zi � nijdipÞ� ¼ 0 (10.26)

Eq. (10.26) can be solved for dip as

dip ¼ lijðXk � XiÞ þ mijðYk � YiÞ þ nijðZk � ZiÞ (10.27)

where the condition l2ij þ m2
ij þ n2ij ¼ 1 has been used. Finally, the distance dpk can be found by considering the right-angle

triangle ikp as

dpk ¼
�
d2ik � d2ip

	1=2
¼
h
ðXk � XiÞ2 þ ðYk � YiÞ2 þ ðZk � ZiÞ2 � d2ip

i1=2
(10.28)

Y

Z
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x

90°
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Q3j

Q3k

Q3i

Q3j−1

Q3k−1

Q3i−1

Q3i−2
q1

Q3k−2

Q3j−2

q4

q6

q5

q2 k

q3

j

p

y

0

0

FIGURE 10.2 Local and global coordinates.
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The transformation matrix [l] can now be constructed by using the direction cosines of lines ij and pk as

½l� ¼

26666666664

l
!

pk 0
!

0
!

l
!

ij 0
!

0
!

0
!

l
!

pk 0
!

0
!

l
!

ij 0
!

0
!

0
!

l
!

pk

0
!

0
!

l
!

ij

37777777775
(10.29)

where

l
!

pk
1�3

¼ ð lpk mpk npk Þ (10.30)

l
!

ij
1�3

¼ ð lij mij nij Þ (10.31)

0
!
1�3

¼ ð 0 0 0 Þ (10.32)

Finally, the stiffness matrix of the element in the global XYZ coordinate system can be computed as�
KðeÞ� ¼ ½l�T�kðeÞ�½l� (10.33)

CONSISTENT LOAD VECTOR
The consistent load vectors can be evaluated using Eqs. (8.88) to (8.90):

pðeÞi ¼ load vector due to initial strains ¼
ZZZ

V ðeÞ
½B�T ½D� ε!0 dV (10.34)

In the case of thermal loading, Eq. (10.34) becomes

p!ðeÞ
i ¼ ½B�T ½D� ε!0tA ¼ EatT

2ð1� vÞ

2666666664

y32
�x32
�y31

x31
y21
�x21

3777777775
(10.35)

p!ðeÞ
b ¼ load vector due to constant body forces fx0 and fy0 ¼

ZZZ
V ðeÞ

½N�T f!0 dV (10.36)

By using Eq. (10.4), Eq. (10.36) can be rewritten as

p!ðeÞ
b ¼

ZZZ
V ðeÞ

8>>>>>>>>><>>>>>>>>>:

N1fx0

N1fy0

N2fx0

N2fy0

N3fx0

N3fy0

9>>>>>>>>>=>>>>>>>>>;
dV (10.37)
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Substituting the expressions for N1, N2, and N3 from Eq. (10.5) into Eq. (10.37) and carrying out the integration yields

p!ðeÞ
b ¼ At

3

8>>>>>>>><>>>>>>>>:

fx0

fy0

fx0

fy0

fx0

fy0

9>>>>>>>>=>>>>>>>>;
(10.38)

The following relations have been used in deriving Eq. (10.38):ZZ
A

x$ dA ¼ xcA and
ZZ

A

y$ dA ¼ ycA (10.39)

where xc and yc are the coordinates of the centroid of the triangle 1 2 3 given by

xc ¼ ðx1 þ x2 þ x3Þ=3 and yc ¼ ðy1 þ y2 þ y3Þ=3 (10.40)

The load vector due to the surface stresses f
! ¼

�
pxo
pyo

�
, where pxo and pyo are constants, can be evaluated as

p!ðeÞ
s ¼

ZZ
S
ðeÞ
1

½N�T
�
px0
py0

�
dS1 (10.41)

There are three different vectors p!ðeÞ
s corresponding to the three sides of the element. Let the side between nodes 1 and

2 be subjected to surface stresses of magnitude pxo and pyo. Then

p!ðeÞ
s ¼

ZZ
SðeÞ1

2666666664

N1 0

0 N1

N2 0

0 N2

N3 0

0 N3

3777777775
�
px0
py0

�
dS1 ¼ S12

2

8>>>>>>>><>>>>>>>>:

px0
pyo
px0
py0
0

0

9>>>>>>>>=>>>>>>>>;
(10.42)

where S12 is the surface area between nodes 1 and 2 given by

S12 ¼ t$d12 (10.43)

with d12 denoting the length of side 12. Since the stress components pxo and pyo are parallel to the x and y coordinate di-
rections, Eq. (10.42) shows that the total force in either coordinate direction is (px0,S12) and (pyo,S12), respectively. Thus,
one-half of the total force in each direction is allotted to each node on the side under consideration. The total load vector in
the local coordinate system is thus given by

p!ðeÞ ¼ p!ðeÞ
i þ p!ðeÞ

b þ p!ðeÞ
s (10.44)

This load vector, when referred to the global system, becomes

P
!ðeÞ ¼ ½l�T p!ðeÞ

(10.45)

CHARACTERISTICS OF THE ELEMENT

1. The constant strain triangle (CST) element was the first finite element developed for the analysis of plane stress prob-
lems [1.7]. Because the displacement model is linear (Eq. 10.1), the element is called a linear triangular element. From
Eqs. (10.11) and (10.12), we find that the [B] matrix is independent of the position within the element and hence the
strains are constant throughout the element. This is the reason why this element is often referred to as a CST element.
Obviously, the criterion of constant strain mentioned in the convergence requirements in Section 3.6 is satisfied by the
displacement model.

2. The displacement model chosen (Eq. 10.1) guarantees continuity of displacements with adjacent elements because the
displacements vary linearly along any side of the triangle (due to linear model).
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3. From Eq. (10.13), we can notice that the stresses are also constant inside an element. Hence, the element is also called a
CST element. Since the stresses are independent of x and y, the equilibrium equations (Eq. 8.1) are identically satisfied
inside the element since there are no body forces.

4. If the complete plate structure being analyzed lies in a single (e.g., XY) plane, the vector Q
!ðeÞ

will also contain six
components. In such a case, the matrices [l] and [K(e)] will each be of the order 6 � 6.

5. In problems involving bending, this element overestimates the bending stiffness (normal stresses). More accurate
normal stresses can be obtained by using smaller size elements. However, the convergence to the correct solution
will be very slow. To illustrate the numerical performance of the element, a uniform beam with rectangular cross sec-
tion subjected to nodal forces at the free end shown in Fig. 10.3 is considered [10.2]. The nodal forces indicated will
produce bending in the beam. If the beam is modeled using CST elements as indicated in Fig. 10.4A, each element
gives a constant value of sx in the depth or y direction instead of a linear variation predicted by the exact solution.
In fact, the exact solution along the x axis would be sx ¼ 0 while the CST model would predict a constant value of
sx with alternate signs as we move along the x axis from one element to the next as shown in Fig. 10.4.

In addition, the CST element predicts a spurious shear stress. The element predicts a constant, nonzero, value of the
shear stress sxy in each element. This means that the shear strain εxy is constant in the beam while it should be zero. Also,
in some cases, the CST element can exhibit a phenomenon known as locking. The term locking denotes excessive stiffness
in one or more deformation modes. The numerical results obtained with the CST element are given in Table 10.1. The
results indicate that even 512 elements could not predict the bending behavior of the beam (deflection and stress) very
accurately.

h

y

h

Q

P
x

4 h

FIGURE 10.3 A uniform plate under tensile load.

h

h

h h h

P

P

x

Finite element model of a beam

σx

x

 Axial stress σx

(A)

(B)

FIGURE 10.4 A cantilever beam modeled with constant strain triangle elements.
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EXAMPLE 10.1
A triangular membrane element of thickness t ¼ 0.1 cm, with the (x, y) coordinates of nodes indicated besides the node numbers,

is shown in Fig. 10.5. If the material of the element is steel with Young’s modulus E ¼ 207 GPa and Poisson ratio v ¼ 0.3,

determine the following:

1. Shape functions of the element, Ni(x, y), Nj(x, y), and Nk(x, y).

2. Matrix [B] that relates the strains to the nodal displacements.

3. Elasticity matrix [D].

4. Element stiffness matrix,
�
k ðeÞ�.

Solution

Noting that x1 ¼ 1 cm, x2 ¼ 4 cm, x3 ¼ 5 cm, y1 ¼ 3 cm, y2 ¼ 7 cm, and y3 ¼ 4 cm, we find x32 ¼ x3 � x2 ¼ 5 � 4 ¼ 1 cm,

x21 ¼ x2 � x1 ¼ 4 � 1 ¼ 3 cm, x31 ¼ x3 ‒ x1 ¼ 5 � 1 ¼ 4 cm, y32 ¼ y3 � y2 ¼ 4 � 7 ¼ �3 cm, y21 ¼ y2 � y1 ¼ 7 � 3 ¼ 4 cm, and

y31 ¼ y3 � y1 ¼ 4 � 3 ¼ 1 cm. The area of the element (A) can be computed as

A ¼ 1

2
fx32y21 � x21y32g ¼ 1

2
f1ð4Þ � 3ð�3Þg ¼ 6:5 cm2 ¼ 6:5� 10�4 m2

a. Shape functions of the element:

Niðx; yÞ ¼ 1

2A
½y32ðx � x2Þ � x32ðy � y2Þ� ¼ 1

2ð6:5Þ ½ð�3Þðx � 4Þ � 1ðy � 7Þ�

¼ 1

13
ð�3x � y þ 19Þ

(E.1)

Continued

TABLE 10.1 Finite Element Results of the Cantilever Beam

Element

Number of

Elements

Number of

Degrees of Freedom Tip deflection,* vP Stress,* sxQ

CST 128 160 0.859 0.854

CST 512 576 0.961 0.956

LST 32 160 0.998 0.986

*Ratio of finite element result and exact result.

x (cm)

y (cm) (1, 3)

(5, 4)

(4, 7)

Element “e”

Piy

Pix

Pkx

Pjx

Pjy

vj

uj

uk

vk

Pky

ui

i

vi
k

j

FIGURE 10.5 A triangular membrane element.
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EXAMPLE 10.1 dcont’d

Njðx; yÞ ¼ 1

2A
½ � y31ðx � x3Þ þ x31ðy � y3Þ� ¼ 1

2ð6:5Þ ½ð�1Þðx � 5Þ þ 1ðy � 4Þ�

¼ 1

13
ð�x þ 4y � 11Þ

(E.2)

Nkðx; yÞ ¼ 1

2A
½y21ðx � x1Þ � x21ðy � y1Þ� ¼ 1

2ð6:5Þ ½4ðx � 1Þ � 3ðy � 3Þ�

¼ 1

13
ð4x � 3y þ 5Þ

(E.3)

b. Matrix [B]:

½B� ¼ 1

2A

26666664
y32 0 �y31 0 y21 0

0 �x32 0 x31 0 �x21

�x32 y32 x31 �y31 �x21 y21

37777775

¼ 100

13

26666664
�3 0 �1 0 4 0

0 �1 0 4 0 �3

�1 �3 4 �1 �3 4

37777775l=m
(E.4)

c. Elasticity matrix [D]:

½D� ¼ E

1� v2

26666666664

1 v 0

v 1 0

0 0
1� v

2

37777777775
¼ 207� 109

1� 0:09

26666664
1 0:3 0

0:3 1 0

0 0 0:35

37777775

¼ 1011

26666664
2:2747 0:6824 0

0:6824 2:2747 0

0 0 0:7961

37777775N


m2

(E.5)

d. Stiffness matrix of the element [K(e)]: �
K ðeÞ� ¼ t A½B�T ½D�½B� (E.6)

where t ¼ 0.001 m and A ¼ 6.5 � 10�4 m2. The evaluation of Eq. (E.6) using the known values of t, A, [B], and [D] gives the

stiffness matrix as

�
K ðeÞ� ¼ 108

2666666664

0:8180 0:1706 0:1400 �0:2843 �0:9580 0:1137

0:1706 0:3631 �0:3412 �0:2581 0:1706 �0:1050

0:1400 �0:3412 0:5774 �0:2275 �0:7174 0:5686

�0:2843 �0:2581 �0:2275 1:4304 0:5118 �1:1723

�0:9580 0:1706 �0:7174 0:5118 1:6754 �0:6824

0:1137 �0:1050 0:5686 �1:1723 �0:6824 1:2773

3777777775
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EXAMPLE 10.2
If the element described in Example 10.1 undergoes a temperature increase of 80 �C and the coefficient of thermal expansion of

the material is 10.8 � 10�6 m/m �C, find the nodal load vector due to thermal loading.

Solution

Eq. (10.35) gives the load vector due to initial strain (thermal loading) as

P
!ðeÞ

i ¼ EatT

2ð1� vÞ

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

y32

�x32

�y31

x31

y21

�x21

9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>;

¼ ð207� 109Þð10:8� 10�6Þð0:001Þð80Þ
2ð1� 0:3Þ

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

�3� 10�2

�1� 10�2

�1� 10�2

4� 10�2

4� 10�2

�3� 10�2

9>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>;

¼

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

�3:8324

�1:2775

�1:2775

5:1099

5:1099

�3:8324

9>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>;

N

EXAMPLE 10.3
If distributed body forces of magnitude f0x ¼ 20 N/m2 and f0y ¼ 30 N/m2 act along x and y directions throughout the element

described in Example 10.1, determine the corresponding nodal load vector of the element.

Solution

From Eq. (10.36), we obtain the nodal load vector due to body forces as

P
!ðeÞ

b ¼ At

3

8>>>>>>>>>><>>>>>>>>>>:

f0x

f0y

f0x

f0y

f0x

f0y

9>>>>>>>>>>=>>>>>>>>>>;
¼ ð6:5� 10�4Þð0:001Þ

3

8>>>>>>>>><>>>>>>>>>:

20

30

20

30

20

30

9>>>>>>>>>=>>>>>>>>>;
¼ 10�6

8>>>>>>>>><>>>>>>>>>:

4:3333

6:5

4:3333

6:5

4:3333

6:5

9>>>>>>>>>=>>>>>>>>>;
N
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EXAMPLE 10.4
For the triangular membrane element considered in Example 10.1, distributed surface tractions of magnitude Vx ¼ p0x ¼ 50 N/m2

and Vy ¼ p0y ¼ e30 N/m2 act on the edge (face) connecting nodes 1 and 3. Find the resulting nodal load vector of the element.

Solution

Using an equation similar to Eq. (10.42), we obtain the load vector of the element due to the specified distributed surface tractions as

P
!ðeÞ

s ¼ S13
2

8>>>>>>>><>>>>>>>>:

p0x

p0y

0

0

p0x

p0y

9>>>>>>>>=>>>>>>>>;
(E.1)

where S13 is the surface area of the edge (face) 13 ¼ td13 with d13 denoting the distance between nodes 1 and 3:

d13 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx3 � x1Þ2 þ ðy3 � y1Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5� 1Þ2 þ ð4� 3Þ2

q
¼ 4.1231 cm ¼ 4.1231� 10�2 m

Thus,

S13 ¼ t d13 ¼ 10�3
�
4:1231� 10�2

 ¼ 4:1231� 10�5 m2

Hence, Eq. (E.1) gives

P
!ðeÞ

s ¼ 4:1231� 10�5

2

8>>>>>>>><>>>>>>>>:

50

�30

0

0

50

�30

9>>>>>>>>=>>>>>>>>;
¼ 10�5

8>>>>>>>><>>>>>>>>:

103:0776

�61:8466

0

0

103:0776

�61:8466

9>>>>>>>>=>>>>>>>>;
N (E.2)

EXAMPLE 10.5
A concentrated load, with components P0x ¼ 1000 N and P0y ¼ �500 N, acts at the point (x0, y0) ¼ (3, 5) cm of the plate

described in Example 10.1. Determine the corresponding nodal load vector of the element.

Solution

The equivalent nodal load vector of the element corresponding to the point load, p!0 ¼
�
p0x

p0y

�
, can be expressed as

P
!ðeÞ

point ¼ ½N�T p!0 ¼

2666666664

Ni 0

0 Ni

Nj 0

0 Nj

Nk 0

0 Nk

3777777775
ðx0 ;y0Þ

�
p0x

p0y

�
¼

8>>>>>>>><>>>>>>>>:

Niðx0; y0Þp0x

Niðx0; y0Þp0y

Njðx0; y0Þp0x

Njðx0; y0Þp0y

Nk ðx0; y0Þp0x

Nk ðx0; y0Þp0y

9>>>>>>>>=>>>>>>>>;
(E.1)

At the given point (x0 ¼ 3 cm, y0 ¼ 5 cm), the shape functions, given by Eqs. (E.1) to (E.3) in Example 10.1, assume the values

Nið3;5Þ ¼ 1

13
½ � 3ð3Þ � 5þ 19� ¼ 5

13

Njð3;5Þ ¼ 1

13
½ � 3þ 4ð5Þ � 11� ¼ 6

13

Nkð3; 5Þ ¼ 1

13
½4ð3Þ � 3ð5Þ þ 5� ¼ 2

13
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EXAMPLE 10.5 dcont’d

Thus, the nodal load vector of Eq. (E.l) becomes

P
!ðeÞ

point ¼
1

13

8>>>>>>>><>>>>>>>>:

5ð1000Þ
5ð�500Þ
6ð1000Þ
6ð�500Þ
2ð1000Þ
2ð� 500Þ

9>>>>>>>>=>>>>>>>>;
¼

8>>>>>>>><>>>>>>>>:

384:6154

�192:3077

461:5385

�230:7692

153:8461

�76:9231

9>>>>>>>>=>>>>>>>>;
N (E.2)

10.3 NUMERICAL RESULTS WITH MEMBRANE ELEMENT

The following examples are considered to illustrate the application of the membrane element in solving selected problems
of linear elasticity.

10.3.1 A Plate Under Tension

The uniform plate under tension, shown in Fig. 10.6A, is analyzed by using the CST elements. Due to symmetry of
geometry and loading, only a quadrant is considered for analysis. The finite element modeling is done with eight triangular
elements as shown in Fig. 10.6B. The total number of nodes is nine and the displacement unknowns are 18. However, the x
components of displacement of nodes 3, 4, and 5 (namely Q5, Q7, and Q9) and the y components of displacement of nodes

40 cm

40 cm X

Y Y

X

Loading = 200 N /cm 1000 N

3

1000 N

Element numbers

Global node 
numbers

2000 N

 Uniform plate under tension
      (thickness = 0.1 cm, E = 2 × 106N/cm2,
      μ = 0.1)

 Finite element idealization

Local and global coordinates of a typical element “e ”

4

5 6 7

9
8

2
1

1

1
1

1

11 3 3 2
1

1

2

2

2

2

2

2 3

3

3

3 1
2

3
3

3 2

1

8

7

4

5

6

Y

X

x

y

p

X

Y k

i

j

2 3

1

e

Vertex or corner
numbers of the
element in local
system

(A) (B)

(C)

FIGURE 10.6 A uniform plate under tensile load.
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5, 6, and 7 (namely Q10, Q12, and Q14) are set equal to zero for maintaining symmetry conditions. After solving the
equilibrium equations, the global displacement components can be obtained as

Qi ¼

8>>>>>><>>>>>>:

0:020; i ¼ 2; 4; 6

0:010; i ¼ 8; 16; 18

�0:002; i ¼ 1; 13; 15

�0:001; i ¼ 3; 11; 17

0:000; i ¼ 5; 7; 9; 10; 12; 14

COMPUTATION OF STRESSES
For finding the stresses inside any element e, shown in Fig. 10.6C, the following procedure can be adopted:

Step 1: Convert the global displacements of the nodes of element e into local displacements as

q!ðeÞ

6�1
¼ ½l�

6�6
Q
!ðeÞ

6�1

where

q!ðeÞ ¼

8>>>>>>>><>>>>>>>>:

u1
v1
u2
v2

u3
v3

9>>>>>>>>=>>>>>>>>;
; Q

!ðeÞ ¼

8>>>>>>>><>>>>>>>>:

Q2i�1

Q2i

Q2j�1

Q2j

Q2k�1

Q2k

9>>>>>>>>=>>>>>>>>;
and [l] is the transformation matrix of the element given by (two-dimensional specialization of Eq. 10.29)

½l� ¼

2666666664

lpk mpk 0 0 0 0

lij mij 0 0 0 0

0 0 lpk mpk 0 0

0 0 lij mij 0 0

0 0 0 0 lpk mpk

0 0 0 0 lij mij

3777777775
(10.46)

Here (lpk, mpk) and (lij, mij) denote the direction cosines of lines pk (x axis) and ij (y axis) with respect to the global
(X, Y) system.
Step 2: Using the local displacement vector q!ðeÞ

of element e, find the stresses inside the element in the local system by
using Eqs. (10.13) and (10.11) as

s! ¼

8><>:
sxx

syy

sxy

9>=>; ¼ ½D�½B� q!ðeÞ
(10.47)

where [D] and [B] are given by Eqs. (10.15) and (10.12), respectively.
Step 3: Convert the local stresses sxx, syy, and sxy of the element into global stresses sXX, sYY, and sXY by using the
stress transformation relations [10.1]:

sXX ¼ sxxl
2
pk þ syyl

2
ij þ 2sxylpklij

sYY ¼ sxxm
2
pk þ syym

2
ij þ 2sxympkmij

sXY ¼ sxxlpkmpk þ syylijmij þ sxyðlpkmij þ mpklijÞ

The results of computation are shown in Table 10.2. It can be noted that the stresses in the global system exactly match
the correct solution given by

sYY ¼ Total tensile load
Area of cross� section

¼ ð200� 40Þ
ð40� 0:1Þ ¼ 2000 N



cm2
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TABLE 10.2 Computation of Stresses Inside the Elements

Element e

Displacements (cm) Stress Vector in

Local System8><>:
sxx

syy

sxy

9>=>;N


cm2

Stress Vector in

Global System8><>:
sXX

sYY

sXY

9>=>;N


cm2

In Global

System Q
!ðeÞ In Local

System q!ðeÞ

1 �0.001 0.01556 1000 0

0.010 �0.01273 1000 2000

�0.002 0.00778 �1000 0

0.020 �0.00636

�0.002 0.01485

0.010 �0.01344

2 �0.002 0.00636 1000 0

0.020 0.00778 1000 2000

�0.001 0.01414 1000 0

0.010 0.01414

�0.001 0.01344

0.020 0.01485

3 �0.001 �0.01414 1000 0

0.010 �0.01414 1000 2000

0.000 �0.00636 1000 0

0.020 �0.00778

�0.001 �0.00707

0.020 �0.00707

4 0.000 0.00778 1000 0

0.020 �0.00636 1000 2000

�0.001 0.0 �1000 0

0.010 0.0

0.000 0.00707

0.010 �0.00707

5 �0.001 0.0 1000 0

0.010 0.0 1000 2000

0.000 �0.00778 �1000 0

0.000 0.00636

0.000 �0.00071

0.010 �0.00071

6 0.000 �0.00636 1000 0

0.000 �0.00778 1000 2000

�0.001 0.00141 1000 0

0.010 �0.00141

�0.001 0.00071

0.000 �0.00071

Continued
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10.3.2 A Plate With a Circular Hole

The performance of membrane elements for problems of stress concentration due to geometry is studied by considering a
tension plate with a circular hole (see Fig. 10.7) [10.2]. Due to the symmetry of geometry and loading, only a quadrant was
analyzed using four different finite element idealizations as shown in Fig. 10.8. The results are shown in Table 10.3. The
results indicate that the stress concentration is predicted to be smaller than the exact value consistently.

X

A

B

Y

p = 8 ksi

1"
12"

10"

FIGURE 10.7 Plate with a circular hole under uniaxial tension (E ¼ 30 � 106 psi, n ¼ 0.25, t ¼ plate thickness ¼ 100).

TABLE 10.2 Computation of Stresses Inside the Elementsdcont’d

Element e

Displacements (cm) Stress Vector in

Local System8><>:
sxx

syy

sxy

9>=>;N


cm2

Stress Vector in

Global System8><>:
sXX

sYY

sXY

9>=>;N


cm2

In Global

System Q
!ðeÞ In Local

System q!ðeÞ

7 �0.001 �0.00141 1000 0

0.010 0.00141 1000 2000

�0.002 0.00636 1000 0

0.000 0.00778

�0.001 0.00566

0.000 0.00849

8 �0.002 �0.00778 1000 0

0.000 0.00636 1000 2000

�0.001 �0.01556 �1000 0

0.010 0.01273

�0.002 �0.00849

0.010 0.00566
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10.3.3 A Cantilevered Box Beam

The cantilevered box beam shown in Fig. 10.9 is analyzed by using CST elements. The finite element idealization consists
of 24 nodes, 72 degrees of freedom (in the global XYZ system), and 40 elements as shown in Fig. 10.10. The displacement
results obtained for two different load conditions are compared with those given by simple beam theory in Table 10.4. It
can be seen that the finite element results compare well with those of simple beam theory.

Idealization I (N = 2)  Idealization II (N = 4)

 Idealization III (N = 6)  Idealization IV (N = 8)

(A) (B)

(C) (D)

FIGURE 10.8 Finite element idealization of the plate with a circular hole [10.2] (N ¼ number of subdivisions of 1
4 hole).

TABLE 10.3 Stress Concentration Factors Given by Finite Element Method

Idealization (Fig. 10.7) Value of (sxx/p) at A Value of (syy/p) at B

I �0.229 1.902

II �0.610 2.585

III �0.892 2.903

IV �1.050 3.049

Exact (theory) �1.250 3.181
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FIGURE 10.10 Finite element idealization of the box beam.

12"

18"

60"
tw

P1 P2

tc tw

tc = 1.0"
tw = 0.5"

E = 30 × 106 psi
ν = 0.3

FIGURE 10.9 A cantilevered box beam.
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10.4 QUADRATIC TRIANGLE ELEMENT

A triangle element with a quadratic displacement model has six nodesdthree at the vertices and three at the mid-points of
the sides, as shown in Fig. 10.11. The displacement components of a point in the element parallel to the x and y axes are
assumed as

uðx; yÞ ¼ a1 þ a2xþ a3yþ a4x
2 þ a5xyþ a6y

2 (10.48)

vðx; yÞ ¼ a7 þ a8xþ a9yþ a10x
2 þ a11xyþ a12y

2 (10.49)

where the constants or generalized degrees of freedom ai, i ¼ 1, 2,., 12 can be expressed in terms of the vector of nodal
displacements of the element

U
! ¼ f u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6 v6 gT (10.50)

The strains in the element are given by

εxx ¼ vu

vx
¼ a2 þ 2a4xþ a5y (10.51)

εyy ¼ vv

vy
¼ a9 þ a11xþ a12y (10.52)

εxy ¼ vu

vy
þ vv

vx
¼ a3 þ a5xþ 2a6yþ a8 þ 2a10xþ a11y

¼ ða3 þ a8Þ þ ða5 þ 2a10Þxþ ð2a6 þ a11Þx
(10.53)

It can be seen, from Eqs. (10.51) to (10.53), that the strains vary linearly in the element. Hence, the element is called a
linear strain triangle (LST).

x

(x1, y1)

(x6, y6)

(x4, y4)

(x5, y5)

(x2, y2)

v (x, y)

u (x, y)
(x, y)

(x3, y3)

y

v1

v6

v4

v5

u5 v2

u2

u4

v3

u3
3

5

2

1

4

u6

6

u1

FIGURE 10.11 A quadratic triangular element.

TABLE 10.4 Tip Deflection of Box Beam in Direction of Load

Load Condition (lb) Finite Element Method (in.) Simple Beam Theory

P1 ¼ P2 ¼ 5000 0.0195 0.0204 in

P1 ¼ �P2 ¼ 5000 0.0175 d
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Numerical Accuracy: To study the accuracy of the LST element, Felippa [10.2] considered a cantilever beam of
constant thickness (rectangular cross section of the beam) subjected to an end load as shown in Fig. 10.3. The end load is
parabolically distributed over the depth of the beam. Both CST and LST elements are used to model the beam. The results
of the finite element analysis are shown in Table 10.1. It can be seen that the LST element yielded the values of
displacement and axial stress that are more accurate, even with a smaller number of elements, than the CST element. This
shows that the LST element is far superior than the CST element. The only limitation of the LST element, when applied to
the beam analysis, is that the shear stress εxy varies linearly within the element while it varies quadratically (parabolically)
in the y direction according to the simple beam theory.

10.5 RECTANGULAR PLATE ELEMENT (IN-PLANE FORCES)

Consider a rectangular plate undergoing in-plane displacements due to in-plane forces as shown in Fig. 10.12. The var-
iations of displacements inside the element are assumed as

uðx; yÞ ¼ a1 þ a2xþ a3yþ a4xy

vðx; yÞ ¼ a5 þ a6xþ a7yþ a8xy (10.54)

It can be seen that although the displacement distribution is represented by a second-degree surface, the displacement
u(x, y), for example, varies linearly along the x (or y) direction for any constant value of y (or x) as shown in Fig. 10.13. By
using the nodal values, u(x1 ¼ �a, y1 ¼ �b) ¼ u1, u(x2 ¼ a, y2 ¼ �b) ¼ u2,., v(x4 ¼ �a, y4 ¼ b) ¼ v4, Eq. (10.54) can
be expressed as

U
!ðx; yÞ ¼

�
uðx; yÞ
vðx; yÞ

�
¼ ½Nðx; yÞ� q! (10.55)

where q! is the vector of nodal displacements given by

q! ¼ f u1 v1 u2 v2 u3 v3 u4 v4 gT (10.56)

1
u1

v1

u4

v4

4

a

b

b

a

y

3

2

x

u3

v3

u2

v2

FIGURE 10.12 A rectangular element under in-plane loads.

u2= 0

u2= 1

0.2
0.4

0.6
0.8

FIGURE 10.13 Distribution of u(x, y) in a rectangular plate.
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and [N(x, y)] is the matrix of shape functions given by

½Nðx; yÞ� ¼
�
N1ðx; yÞ 0 N2ðx; yÞ 0 N3ðx; yÞ 0 N4ðx; yÞ 0

0 N1ðx; yÞ 0 N2ðx; yÞ 0 N3ðx; yÞ 0 N4ðx; yÞ
�

(10.57)

where

N1ðx; yÞ ¼ ðaþ xÞðbþ yÞ
4ab

; N2ðx; yÞ ¼ ðaþ xÞðb� yÞ
4ab

;

N3ðx; yÞ ¼ ðaþ xÞðbþ yÞ
4ab

; N4ðx; yÞ ¼ ða� xÞðbþ yÞ
4ab

(10.58)

The local element stiffness matrix, [k], can be generated using Eq. (8.87) as

½k� ¼
Z a

�a

Z b

�b

½B�T ½D�½B�t dx dy (10.59)

where t is the thickness of the plate, [D] is the elasticity matrix given by Eq. (10.15), and [B] is the matrix relating the
strains to the nodal displacements that can be obtained by differentiating u(x, y) and v(x, y) of Eq. (10.54) as indicated
in Eq. (10.10). The global stiffness matrix of the element

�
KðeÞ� in three-dimensional space can be generated as�

KðeÞ� ¼ ½l�T ½k�½l� (10.60)

where the coordinate transformation matrix [l] of size 8 � 12 is given by (see Fig. 10.14)

½l� ¼

26664
½lxy� ½0� ½0� ½0�
½0� ½lxy� ½0� ½0�
½0� ½0� ½lxy� ½0�
½0� ½0� ½0� ½lxy�

37775 (10.61)

½lxy� ¼
�
lpq mpq npq
lps mps nps

�
(10.62)

and [0] is a zero matrix of size 2 � 3. In Eq. (10.62), lpq,mpq, npq and lps,mps, nps denote, respectively, the direction cosines
of the lines pq (x axis) and ps (y axis).
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U3rv3

U3p−1

s U3s−1
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FIGURE 10.14 Rectangular plate element (in-plane forces).
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Notes

1. The rectangular element described in this section is called the Q4 element. It can be observed from the assumed displacement

field that the strain εxx is constant in the x direction and varies linearly in the y direction. Similarly, the strain εyy is constant in

the y direction, but varies linearly in the x direction. On the other hand, the shear strain εxy varies linearly in both x and y

directions.

2. If the element undergoes a constant temperature change, T, the stresses in the element are given by

s! ¼

8><>:
sxx

syy

sxy

9>=>; ¼ ½B� q!� EaT

1� n

8><>:
1

1

0

9>=>; (10.63)

Eq. (10.63) implies that each stress component varies linearly with x and y, which, in general, violates the stress equilibrium

equations within the element.

3. This element, as in the case of CST element, cannot exhibit pure bending. In problems involving bending, this Q4 element

displays not only the expected bending (normal) strain, but also spurious shear strain. Thus, the element exhibits shear locking

behavior under bending deformation.

10.6 BENDING BEHAVIOR OF PLATES

The following assumptions are made in the classical theory of thin plates [10.3]:

1. The thickness of the plate is small compared to its other dimensions.
2. The deflections are small.
3. The middle plane of the plate does not undergo in-plane deformation.
4. The transverse shear deformation is zero.

The stresses induced in an element of a flat plate subjected to bending forces (transverse load and bending moments) are
shown in Fig. 10.15A. These stresses are shear stresses syz, sxz, and sxy, and normal stresses sxx and syy. It can be noted
that in beams, which can be considered one-dimensional analogs of plates, the shear stress sxy will not be present. As in
beam theory, the stresses sxx (and syy) and sxz (and syz) are assumed to vary linearly and parabolically, respectively, over
the thickness of the plate. The shear stress sxy is assumed to vary linearly. The stresses sxx, syy, sxy, sxz, and syz lead to the
following force and moment resultants per unit length:

Mx ¼
Z t=2

�t=2
sxxzdz; My ¼

Z t=2

�t=2
syyzdz;

Mxy ¼
Z t=2

�t=2
sxyzdz; Qx ¼

Z t=2

�t=2
sxzdz; Qy ¼

Z t=2

�t=2
syzdz

9>>>>=>>>>; (10.64)

These forces and moments are indicated in Fig. 10.15B. By considering an element of the plate, the differential
equations of equilibrium in terms of force resultants can be derived. For this, we consider the bending moments and shear
forces to be functions of x and y so that ifMx acts on one side of the element, M0

x ¼ Mx þ vMx
vx $ dx acts on the opposite side.

The resulting equations can be written as

vQx

vx
þ vQy

vy
þ p ¼ 0

vMx

vx
þ vMxy

vy
¼ Qx

vMxy

vx
þ vMy

vy
¼ Qy

9>>>>>>>>>=>>>>>>>>>;
(10.65)

where p is the distributed surface load. Because the plate is thin in comparison to its length and width, any body force may
be converted to an equivalent load p and hence no body force is considered separately in Eq. (10.65).
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To derive the strainedisplacement relations for a plate, consider the bending deformation of a small element (by
neglecting shear deformation). Any point A in this element experiences both transverse (w) and in-plane (u and v) dis-
placements. The strains can be expressed as

εxx ¼ vu

vx
¼ �z

v2w

vx2

εyy ¼ vv

vy
¼ �z

v2w

vy2

εxy ¼ vu

vy
þ vv

vx
¼ �2z

v2w

vxvy

9>>>>>>>>>=>>>>>>>>>;
(10.66)

 Forces and moments in a plate

 Stresses in a plate

x

z

Qx

Qy

Mx

Myx

My

M ′x
M ′xy

Mxy

M ′yx

M ′y

Q ′x

Q ′y

dy

dx

y0

t

p

z

σxz

σyz

σyx

σyy

y

σxy

σxx

x

0

(A)

(B)

FIGURE 10.15 Plate subjected to bending loads.
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Eq. (10.66) show that the transverse displacement w, which is a function of x and y only, completely describes the
deformation state.

The momentedisplacement relations can also be derived for plates. For this, we assume the plate to be in a state of
plane stress by considering the transverse stress szz to be negligible in comparison to sxx and syy. Thus, the stressestrain
relations are given by (Eq. 8.35)

s! ¼

8><>:
sxx

syy

sxy

9>=>; ¼ ½D� ε! ¼ ½D�

8><>:
εxx

εyy

εxy

9>=>; (10.67)

where

½D� ¼ E

ð1� v2Þ

266664
1 v 0

v 1 0

0 0
1� v

2

377775 (10.68)

By substituting Eq. (10.66) into Eq. (10.67) and the resulting stresses into Eq. (10.64), we obtain the following after
integration:

Mx ¼ �D

�
v2w

vx2
þ n

v2w

vy2

�

My ¼ �D

�
v2w

vy2
þ n

v2w

vx2

�

Myx ¼ Mxy ¼ �ð1� nÞD v2w

vxvy
¼ �Gt3

6
$
v2w

vxvy

9>>>>>>>>>>=>>>>>>>>>>;
(10.69)

where D is called the flexural rigidity of the plate and is given by

D ¼ Et3

12ð1� v2Þ (10.70)

The flexural rigidity D corresponds to the bending stiffness of a beam (EI). In fact, D ¼ EI for a plate of unit width
when v is taken as zero. Eqs. (10.65) and (10.69) give

Qx ¼ �D$
v

vx

�
v2w

vx2
þ v2w

vy2

�

Qy ¼ �D$
v

vy

�
v2w

vx2
þ v2w

vy2

�
9>>>>=>>>>; (10.71)

The following boundary conditions have to be satisfied for plates (Fig. 10.16):

1. Simply supported edge (along y ¼ constant):

wðx; yÞ ¼ 0

My ¼ �D

�
v2w

vy2
þ v

v2w

vx2

�
¼ 0

9>=>; for y ¼ constant; and 0 � x � a (10.72)

2. Clamped edge (along y ¼ constant):

wðx; yÞ ¼ 0

vw

vy
ðx; yÞ ¼ 0

9>=>; for y ¼ constant; and 0 � x � a (10.73)
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3. Free edge (along y ¼ constant):

My ¼ �D

�
v2w

vy2
þ v

v2w

vx2

�
¼ 0

Qy þ vMyx

vx
¼ vertical shear

¼ �ð2� vÞD v3w

vx2vy
� D

v3w

vy3
¼ 0

9>>>>>>>>>=>>>>>>>>>;
for y ¼ constant; � x � a (10.74)

In the classical theory of plates, first the displacement w(x, y) is found by solving the equilibrium Eq. (10.65) under the
prescribed loading condition p(x, y). By substituting Eq. (10.71) into Eq. (10.65), we notice that the second and third
equilibrium equations are automatically satisfied and the first one gives

v4w

vx4
þ 2

v4w

vx2vy2
þ v4w

vy4
¼ p

D
(10.75)

Thus, the problem is to solve the fourth-order partial differential Eq. (10.75) by using appropriate boundary conditions.
Once w(x,y) is found, the strains, stresses, and moments developed in the plate can be determined by using Eqs. (10.66),
(10.67), and (10.69), respectively. Note that the closed-form solution of Eq. (10.75) cannot be obtained except for plates
having simple configuration (e.g., rectangular and circular plates) and simple loading and boundary conditions. However,
the finite element method can be used for analyzing problems involving plates of arbitrary plane form and loading con-
ditions that may sometimes have cutouts or cracks.

10.7 FINITE ELEMENT ANALYSIS OF PLATES IN BENDING

A large number of plate bending elements have been developed and reported in the literature [10.4,10.5]. In the classical
theory of thin plates discussed in this section, certain simplifying approximations are made. One of the important as-
sumptions made is that shear deformation is negligible. Some elements have also been developed by including the effect of
transverse shear deformation.

According to thin plate theory, the deformation is completely described by the transverse deflection of the middle
surface of the plate (w) only. Thus, if a displacement model is assumed for w, the continuity of not only w but also its
derivatives has to be maintained between adjacent elements. According to the convergence requirements stated in Section
3.6, the polynomial for w must be able to represent constant strain states. This means, from Eq. (10.66), that the assumed
displacement model must contain constant curvature states (v2w/vx2) and (v2w/vy2) and constant twist (v2w/vxvy). Also, the
polynomial for w should have geometric isotropy.

Thus, it becomes evident that choosing a displacement model to satisfy all these requirements is much more difficult. In
surmounting these difficulties, especially for triangular and general quadrilateral elements, different investigators have
developed different elements, some of them quite complicated. In the following section, a simple triangular plate bending
element is described along with its characteristics.

x

y

b

a
0

FIGURE 10.16 A rectangular plate.
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10.8 TRIANGULAR PLATE BENDING ELEMENT

At each node of the triangular plate element shown in Fig. 10.17, the transverse displacement w and slopes (rotations)
about the x and y axes ((vw/vy) and e(vw/vx)) are taken as the degrees of freedom. The minus sign for the third degree of
freedom indicates that if we take a positive displacement dw at a distance dx from node 1, the rotation (dw/dx) about the y
axis at node 1 will be opposite to the direction of the degree of freedom q3 indicated in Fig. 10.17. Since there are nine
displacement degrees of freedom in the element, the assumed polynomial for w (x, y) must also contain nine constant terms.
To maintain geometric isotropy, the displacement model is taken as

wðx; yÞ ¼ a1 þ a2xþ a3yþ a4x
2 þ a5xyþ a6y

2 þ a7x
3 þ a8

�
x2yþ xy2

þ a9y
3

¼ ½h� a!
(10.76)

where

½h� ¼ �
1 x y x2 xy y2 x3

�
x2yþ xy2


y3
�

(10.77)

and

a! ¼

8>>>>><>>>>>:

a1

a2

«

a9

9>>>>>=>>>>>;
(10.78)

The constants a1, a2, ., a9 have to be determined from the nodal conditions

wðx; yÞ ¼ q1;
vw

vy
ðx; yÞ ¼ q2; �vw

vx
ðx; yÞ ¼ q3 at ðx1; y1Þ ¼ ð0; 0Þ

wðx; yÞ ¼ q4;
vw

vy
ðx; yÞ ¼ q5; �vw

vx
ðx; yÞ ¼ q6 at ðx2; y2Þ ¼ ð0; y2Þ

wðx; yÞ ¼ q7;
vw

vy
ðx; yÞ ¼ q8; �vw

vx
ðx; yÞ ¼ q9 at ðx3; y3Þ

9>>>>>>>>>=>>>>>>>>>;
(10.79)

y

x

q6= Q3j

q4= Q3j −2

q7 = Q3k −2

q8= Q3k −1

q1=w (x1, y1) = Q3i −2

q2 =      (x1, y1) = Q3i −1

3 = k

q9= Q3k

q5= Q3j −1

2 = j

1= i

w (x, y)

(x, y)

t

∂w
∂y

q3= −     (x1, y1) = Q 3i
∂w
∂x

FIGURE 10.17 Nodal degrees of freedom of a triangular plate in bending.
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Note that the local y axis is taken to be the same as the line connecting nodes 1 and 2 with the origin placed at node 1. The
local x axis is taken toward node 3 as shown in Fig. 10.17. The local node numbers 1, 2, and 3 are assumed to correspond
to nodes i, j, and k, respectively, in the global system. By using Eq. (10.76), Eq. (10.79) can be stated in matrix form as

q!ðeÞ ¼

8>>><>>>:
q1
q2
«

q9

9>>>=>>>;
ðeÞ

¼
h
he
i
a! (10.80)

where

h
he
i
¼

266666666666666664

1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 �1 0 0 0 0 0 0 0

1 0 y2 0 0 y22 0 0 y32
0 0 1 0 0 2y2 0 0 3y22
0 �1 0 0 �y2 0 0 �y22 0

1 x3 y3 x23 x3y3 y23 x33
�
x23y3 þ x3y

2
3


y33

0 0 1 0 x3 2y3 0
�
2x3y3 þ x23


3y23

0 �1 0 �2x3 �y3 0 �3x23
�� y23 þ 2x3y3


0

377777777777777775
(10.81)

By using Eqs. (10.76) and (10.80), Eq. (10.66) can be expressed as

ε
! ¼ �

Be� a! ¼ ½B� q!ðeÞ
(10.82)

where

�
Be� ¼ �z

264 0 0 0 2 0 0 6x 2y 0

0 0 0 0 0 2 0 2x 6y

0 0 0 0 2 0 0 4ðxþ yÞ 0

375 (10.83)

and

½B� ¼ �
Be�
h
he
i�1

(10.84)

Finally, the element stiffness matrix in the local (xy) coordinate system can be derived as�
kðeÞ
� ¼

ZZZ
V ðeÞ

½B�T ½D�½B�dV (10.85)

where V(e) indicates the volume of the element, and the matrix [D] is given by Eq. (10.68). By substituting for [B] from
Eq. (10.84), Eq. (10.85) can be expressed as

�
kðeÞ
� ¼

 h
he
i�1
!T
8><>:
ZZ

area
dA

0B@Z t=2

�t=2

�
Be�T ½D��Be�dz

1CA
9>=>;
h
he
i�1

(10.86)
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where t denotes the thickness of the plate. The integrals within the curved brackets of Eq. (10.86) can be rewritten asZZ
area

dA
Z t=2

�t=2

�
Be�T ½D��Be�dz ¼ Et3

ð12ð1� v2ÞÞ
ZZ

area
dxdy

�

266666666666666664

0

0 0

0 0 0 Symmetric

0 0 0 4

0 0 0 0 2ð1� vÞ
0 0 0 4v 0 4

0 0 0 12x 0 12vx 36x2

0 0 0 4ðvxþ yÞ 4ð1� vÞðxþ yÞ 4ðxþ vyÞ 12xðvxþ yÞ �ð12� 8vÞðxþ yÞ2 � 8ð1� vÞxy�
0 0 0 12vy 0 12y 36vxy 12ðxþ vyÞy 36y2

377777777777777775
(10.87)

The area integrals appearing on the right-hand side of Eq. (10.87) can be evaluated in the general XY coordinate system
as well as in the particular local xy system chosen in Fig. 10.17 using the following relations:ZZ

area
dx dy ¼ A ¼ 1

2
x3y2 (10.88)

ZZ
area

x dx dy ¼ XcA ¼ 1
6
x23y2 (10.89)ZZ

area
y dx dy ¼ YcA ¼ 1

6
x3y2ðy2 þ y3Þ (10.90)

ZZ
area

x2dx dy ¼ X2
c Aþ A

12

�ðXi � XcÞ2 þ ðXj � XcÞ2 þ ðXk � XcÞ2
�

¼ 1
12

x33y2

(10.91)

ZZ
area

xy dx$ dy ¼ XcYcAþ A

12
½ðXi � XcÞðYi � YcÞ þ ðXj � XcÞðYj � YcÞ þ ðXk � XcÞðYk � YcÞ�

¼ 1
24

x23y2ðy2 þ 2y3Þ
(10.92)

ZZ
area

y2dx$ dy ¼ Y2
c Aþ A

12

�ðYi � YcÞ2 þ ðYj � YcÞ2 þ ðYk � YcÞ2
�

¼ 1
12

x3y2
�
y22 þ y2y3 þ y23

 (10.93)

where

Xc ¼ ðXi þ Xj þ XkÞ=3 (10.94)

and

Yc ¼ ðYi þ Yj þ YkÞ=3 (10.95)
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It can be seen that the evaluation of the element stiffness matrix from Eqs. (10.86) and (10.87) involves the numerical

determination of the inverse of the 9 � 9 matrix,
h
he
i
, for each element separately. Finally, the element stiffness matrix in

the global coordinate system (whose XY plane is assumed to be the same as the local xy plane) can be obtained from�
KðeÞ� ¼ ½l�T�kðeÞ�½l� (10.96)

where the transformation matrix [l] is given by

½l�
9�9

¼

266666666666666664

1 0 0 0 0 0 0 0 0

0 l0x m0x 0 0 0 0 0 0

0 l0y m0y 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 l0x m0x 0 0 0

0 0 0 0 l0y m0y 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 l0x m0x

0 0 0 0 0 0 0 l0y m0y

377777777777777775
(10.97)

where (l0x, m0x) and (l0y, m0y) represent the direction cosines of the lines 0x and 0y, respectively (Fig. 10.18).

10.9 NUMERICAL RESULTS WITH BENDING ELEMENTS

The triangular plate bending element considered in Section 10.8 is one of the simplest elements. Several other elements
were developed for the analysis of plates. Since the strains developed in a plate under bending involve second derivatives
of the transverse displacement w, the expression for w must contain a complete second-degree polynomial in x and y.
Furthermore, the interelement compatibility requires the continuity of w as well as of the normal derivative (vw/vn) across
the boundaries of two elements.

For a rectangular element (Fig. 10.16), the simplest thing to do is to take the values of w, (vw/vx), and (vw/vy) at each of
the four corners as nodal degrees of freedom. This gives a total of 12 degrees of freedom for the element. Thus, the
polynomial for w must also contain 12 constants ai. Since a complete polynomial of degree three in x and y contains 10
terms, we need to include two additional terms. These terms can be selected arbitrarily, but we should preserve the
symmetry of the expansion to ensure geometric isotropy. Thus, we have three possibilities, namely to take x3y and xy3, x3y2

Q3i−2 = q1

Q3j − 2 = q4 Q3k−2 = q7

Q3j−1

Z

Y
i

X
x

y

q5

q6

j

q8

q9

k

Q3j

Q3k−1

Q3k

Q3i

Q3i−1

q3

q2
0

FIGURE 10.18 Local and global degrees of freedom.
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and x2y3, or x2y2 and x3y3 in the expression of w. All these choices satisfy the condition that along any edge of the element
w varies as a cubic. This can be verified by setting x ¼ 0 or a (or y ¼ 0 or b) in the expression of w. Since there are four
nodal unknowns for any edge (e.g., along the edge x ¼ 0, we have w and (vw/vy) at the two corners as degrees of freedom),
w is uniquely specified along that edge. This satisfies the continuity condition of w across the boundaries. For the con-
tinuity of (vw/vn), we need to have (vw/vn) vary linearly on a side since it is specified only at the node points. Irrespective
of what combination of 12 polynomial terms we choose for w, we cannot avoid ending up with a cubic variation for (vw/
vn) (n ¼ x for the sides defined by x ¼ 0 and a and n ¼ y for the edges defined by y ¼ 0 and b). Therefore, it is not possible
to satisfy the interelement compatibility conditions (continuity of both w and (vw/vn)) with 12 degrees of freedom only. A
similar reasoning will reveal that the triangular element considered in Section 10.8 is also nonconforming.

The displacement models of some of the plate bending elements available in the literature are given next.

10.9.1 Rectangular Elements

1. Nonconforming element due to AdinieClougheMelosh (ACM):

wðx; yÞ ¼ a1 þ a2xþ a3yþ a4x
2 þ a5y

2 þ a6xyþ a7x
3 þ a3y

3 þ a9x
2yþ a10xy

2 þ a11x
3yþ a12xy

3 (10.98)

Degrees of freedom at each node: w, (vw/vx), (vw/vy) [10.6].
2. Conforming element due to BognereFoxeSchmit (BFS)-16:

wðx; yÞ ¼
X2
i¼ 1

X2
j¼ 1

"
Hð1Þ

0i ðxÞHð1Þ
0j ðyÞwij þ Hð1Þ

1i ðxÞHð1Þ
0j ðyÞ

�
vw

vx

�
ij

þHð1Þ
0i ðxÞHð1Þ

1j ðyÞ
�
vw

vy

�
ij

þ Hð1Þ
1i ðxÞHð1Þ

1j ðyÞ
�
v2w

vxvy

�
ij

#
(10.99)

Degrees of freedom at each node: wij, (vw/vx)ij, (vw/vy)ij, (v
2w/vxvy)ij (node numbering scheme shown in Fig. 4.16)

[10.7].
3. More accurate conforming element due to BFS-24:

ptwðx; yÞ ¼
X2
i¼ 1

X2
j¼ 1

"
Hð2Þ

0i ðxÞHð2Þ
0j ðyÞwij þ Hð2Þ

1i ðxÞHð2Þ
0j ðyÞ

�
vw

vx

�
ij

þHð2Þ
0i ðxÞHð2Þ

1j ðyÞ
�
vw

vy

�
ij

þ Hð2Þ
2i ðxÞHð2Þ

0j ðyÞ
�
v2w

vx2

�
ij

þHð2Þ
0i ðxÞHð2Þ

2j ðyÞ
�
v2w

vy2

�
ij

þ Hð2Þ
1i ðxÞHð2Þ

1j ðyÞ
�
v2w

vxvy

�
ij

#
(10.100)

Degrees of freedom at each node: wij, (vw/vx)ij, (vw/vy)ij,

�
v2w
vx2

�
ij

;

�
v2w
vy2

�
ij

;

�
v2w
vxvy

�
ij

(node numbering scheme shown in Fig. 4.16) [10.7].

10.9.2 Triangular Elements

1. Nonconforming element due to Tocher (T-9):

wðx; yÞ ¼ same as Eq:ð10:76Þ

Degrees of freedom at each node: w, vw/vx, vw/vy [10.8].
2. Nonconforming element due to Tocher (T-10):

wðy; xÞ ¼ a1 þ a2xþ a3yþ a4x
2 þ a5y

2 þ a6xyþ a7x
3 þ a3y

3 þ a9x
2yþ x10xy

2 (10.101)
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Degrees of freedom at each node: w, vw/vx, vw/vy. (The 10th constant was suppressed using the Ritz method [10.8].)
3. Nonconforming element due to Adini (A):

wðx; yÞ ¼ a1 þ a2xþ a3yþ a4x
2 þ a5y

2 þ a6x
3 þ a7y

3 þ a8x
2yþ a9xy

2 (10.102)

(The uniform twist term xy was neglected.)
Degrees of freedom at each node: w, vw/vx, vw/vy [10.9].

4. Conforming element due to Cowper et al. (C) [10.10]:

wðx; yÞ ¼ a1 þ a2xþ a3yþ a4x
2 þ a5y

2 þ a6xyþ a7x
3 þ a8y

3 þ a9x
2y

þa10xy
2 þ a11x

4 þ a12y
4 þ a13x

3yþ a14xy
3 þ a15x

2y2

þa16x
5 þ a17y

5 þ a18x
4yþ a19xy

4 þ a20x
3y2 þ a21x

2y3 (10.103)

(Three constraints are imposed to reduce the number of unknowns from 21 to 18. These determine that the normal
slope vw/vn along any edge must have a cubic variation.) Degrees of freedom at each node: w, vw/vx, vw/vy,
v2w/vx2, v2w/vy2, v2w/vxvy [10.10].

10.9.3 Numerical Results

Typical numerical results obtained for a clamped square plate subjected to uniformly distributed load with nonconforming
and conforming bending elements are shown in Fig. 10.19 and Table 10.5, respectively. The finite element idealizations
considered are shown in Fig. 10.20. Due to symmetry of geometry and load condition, only a quarter of the plate is
considered for analysis. Of course, the symmetry conditions have to be imposed before solving the problem. For example, if
the quarter plate 1, 2, 3, 4 shown in Fig. 10.20 is to be analyzed, vw/vx has to be set equal to zero along line 2, 4, and vw/vy
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FIGURE 10.19 Central deflection of a clamped plate under uniformly distributed load.

Analysis of Plates Chapter | 10 409

www.konkur.in

Telegram: @uni_k



has to be set equal to zero along line 3, 4. The deflection of the center of the clamped plate (wc) is taken as the measure of
the quality of the approximation, and the deflection coefficient a of Fig. 10.19 is defined by

wc ¼ aqa4

D

where q denotes the intensity of the uniformly distributed load, a is the side of the plate, and D is the flexural rigidity. An
important conclusion that can be drawn from the results of Fig. 10.19 is that monotonic convergence of deflection cannot
always be expected from any of the nonconforming elements considered.

10.10 ANALYSIS OF THREE-DIMENSIONAL STRUCTURES USING PLATE ELEMENTS

If three-dimensional structures under arbitrary load conditions are to be analyzed using plate elements, we have to provide
both in-plane and bending load-carrying capacity for the elements. The procedure to be adopted will be illustrated with
reference to a triangular element. If a linear displacement field is assumed under in-plane loads (as in Eq. 10.1), the
resulting 6 � 6 in-plane stiffness matrix (in local coordinate system) can be expressed as

TABLE 10.5 Central Deflection of a Square Clamped Plate Under Uniformly Distributed Load (n[ 0.3)

Results Given by the Triangular Element in Cowper et al. [10.10]:

Idealization (Fig. 10.20) Number of dof for One-Quarter Plate Value of wc (10
3 D/qa4)

n ¼ 1 5 1.14850

n ¼ 2 21 1.26431

n ¼ 3 (not shown in Fig. 10.20) 49 1.26530

Exact [10.3] d 1.26

Results Given by the Rectangular Elements in Bogner et al. [10.7]:

Number of Elements in a Quadrant

16 dof Element (BFS-16) 24 dof Element (BFS-24)

Number of dof Value of wc* Number of dof Value of wc*

1 1 0.04239300 5 0.040500

4 (2 � 2 grid) 9 0.04047500 21 0.040200

9 (3 � 3 grid) 25 0.04048200 d d

16 (4 � 4 grid) 49 0.04048700 d d

Exact [10.3] d 0.040300 d 0.040300

dof, degrees of freedom.
*For a ¼ 20 00, q ¼ 0.2 psi, E ¼ 10.92 � 106 psi, t ¼ 0.100.

n = 1 n = 2 n = 8

3

1 2

4

y

x

n = 4

FIGURE 10.20 Typical finite element idealizations considered in analysis of square plate.
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�
kðeÞ
�
m

6�6

¼

266664
½k11�m
2�2

½k12�m
2�2

½k13�m
2�2

½k21�m
2�2

½k22�m
2�2

½k23�m
2�2

½k31�m
2�2

½k32�m
2�2

½k33�m
2�2

377775 (10.104)

where the submatrices [kij]m correspond to the stiffness coefficients associated with nodes i and j, and the subscript m is
used to indicate membrane action. In this case, the relationship between the nodal displacements and nodal forces can be
written as 8>>>>>>>>><>>>>>>>>>:

Px1

Py1

Px2

Py2

Px3

Py3

9>>>>>>>>>=>>>>>>>>>;
¼ �

kðeÞ
�
m

8>>>>>>>><>>>>>>>>:

u1
v1
u2
v2
u3

v3

9>>>>>>>>=>>>>>>>>;
(10.105)

where ui and vi denote the components of displacement of node i(i ¼ 1, 2, 3) parallel to the local x and y axes, respec-
tively. Similarly, Pxi and Pyi indicate the components of force at node i(i ¼ 1, 2, 3) parallel to the x and y axes,
respectively.

Similarly, the relation between the forces and displacements corresponding to the bending of the plate (obtained from
Eq. 10.76) can be written as 8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

Pz1

My1

�Mx1

pz2
My2

�Mx2

Pz3

My3

�Mx3

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

¼ �
kðeÞ
�
b

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

w1

wy1

�wx1

w2

wy2

�wx2

w3

wy3

�wx3

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

(10.106)

where wi and Pzi indicate the components of displacement and force parallel to the z axis at node i,Myi andMxi represent the
generalized forces corresponding to the rotations (generalized displacements) wyi(qxi) and wxi (qyi) at node i (i ¼ 1, 2, 3),
respectively, and the subscript b has been used to denote the bending stiffness matrix. The 9 � 9 bending stiffness matrix
(in the local coordinate system) can be written as

�
kðeÞ
�
b
¼

266664
½k11�b
3�3

½k12�b
3�3

½k13�b
3�3

½k21�b
3�3

½k22�b
3�3

½k23�b
3�3

½k31�b
3�3

½k32�b
3�3

½k33�b
3�3

377775 (10.107)

In the analysis of three-dimensional structures, the in-plane and bending stiffnesses have to be combined in accordance
with the following observations:

1. For small displacements, the in-plane (membrane) and bending stiffnesses are uncoupled.
2. The in-plane rotation qZ (rotation about the local z axis) is not necessary for a single element. However, qZ and its con-

jugate force Mz have to be considered in the analysis by including the appropriate number of zeroes to obtain the
element stiffness matrix for the purpose of assembling several elements.
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Therefore, to obtain the total element stiffness matrix
�
KðeÞ�, the in-plane and bending stiffnesses are combined as shown next.

�
kðeÞ
�

18�18

¼

26666666666666666666666666666666666664

½k11�m
2�2

0 0 0

0 0 0

0

0
½k12�m
2�2

0 0 0

0 0 0

0

0
½k13�m
2�2

0 0 0

0 0 0

0

0
0 0

0 0

0 0

½k11�b
3�3

0

0

0

0 0

0 0

0 0

½k12�b
3�3

0

0

0

0 0

0 0

0 0

½k13�b
3�3

0

0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

½k21�m
2�2

0 0 0

0 0 0

0

0
½k22�m
2�2

0 0 0

0 0 0

0

0
½k23�m
2�2

0 0 0

0 0 0

0

0
0 0

0 0

0 0

½k21�b
3�3

0

0

0

0 0

0 0

0 0

½k22�b
3�3

0

0

0

0 0

0 0

0 0

½k23�b
3�3

0

0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

½k31�m
2�2

0 0 0

0 0 0

0

0
½k32�m
2�2

0 0 0

0 0 0

0

0
½k33�m
2�2

0 0 0

0 0 0

0

0
0 0

0 0

0 0

½k31�b
3�3

0

0

0

0 0

0 0

0 0

½k32�b
3�3

0

0

0

0 0

0 0

0 0

½k33�b
0

0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

37777777777777777777777777777777777775

(10.108)

The stiffness matrix given by Eq. (10.108) is with reference to the local xyz coordinate system shown in Fig. 10.21. In
the analysis of three-dimensional structures in which different finite elements have different orientations, it is necessary to
transform the local stiffness matrices to a common set of global coordinates. In this case, the global stiffness matrix of the
element can be obtained as �

KðeÞ� ¼ ½l�T�kðeÞ�½l� (10.109)

Y

Z

X

1

w2

v3

w3

u3

v2

u2

v1

u1

−θx1

−θx2

−θx3

θy3 θz3

θy2 θz2

θy1

θz1

2

3

t

x

z

y

w1

FIGURE 10.21 In-plane and bending displacements in a local xyz coordinate system.
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where the transformation matrix, [l], is given by

½l�
18� 18

¼

264 ½l� ½0� ½0�
½0� ½l� ½0�
½0� ½0� ½l�

375 (10.110)

and

½l�
6�6

¼

26666666664

l0x m0x n0x 0 0 0

l0y m0y n0y 0 0 0

l0z m0z n0z 0 0 0

0 0 0 l0x m0x n0x
0 0 0 l0y m0y n0y

0 0 0 l0z m0z n0z

37777777775
(10.111)

Here, (l0x, m0x, n0x), for example, denotes the set of direction cosines of the x axis, and [0] represents a null square matrix of
order six.

REVIEW QUESTIONS

10.1. Give brief answers to the following questions.

1. What is the difference between a membrane and a plate?
2. Why is the transverse displacement uncoupled from the in-plane displacements for a plate?
3. What is a CST element?
4. What is a quadratic triangular membrane element?
5. What is an LST element?
6. What is the order of the coordinate transformation matrix of a rectangular plate element under in-plane forces lying

in three-dimensional space?
7. What is a conforming element?

10.2 Fill in the blank space with a suitable word.

1. For plates used in three-dimensional applications such as folded plates, both ———————— and bending ac-
tions are to be considered.

2. The triangular membrane element assumes a ————————————— model for each of the in-plane
displacement components.

3. The order of the coordinate transformation matrix of a triangular membrane element is
————————————.

4. The number of degrees of freedom of the simplest triangular bending element is ————————.
5. The order of the coordinate transformation matrix of the simple triangular bending element in its own plane is

—————————

10.3 Indicate whether each of the following statements is true or false.

1. A triangular membrane element has nine degrees of freedom in the local xy-coordinate system.
2. For a constant thickness triangular membrane element, the computation of the element stiffness matrix does not need

any integration.
3. The displacement model of a CST element ensures displacement continuity along element boundaries.
4. The stresses vary linearly in a triangular membrane element.
5. The triangular membrane element can be used to find the stresses in a gear tooth.

10.4 Select the most appropriate answer among the multiple choices given.

1. The state of stress in a planar membrane element is:
(a) plane strain (b) plane stress (c) three-dimensional

2. The order of the coordinate transformation matrix within the plane of the triangular membrane element is:
(a) 2 � 6 (b) 5 � 6 (c) 5 � 9
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3. The number of nodal degrees of freedom for a quadratic triangular element is:
(a) 6 (b) 9 (c) 12

4. The nature of the displacement model for a rectangular plate under in-plane forces is:
(a) linear (b) quadratic (c) cubic

5. The size of a triangular element that considers both the in-plane and bending displacements in three-dimensional space is:
(a) 18 � 18 (b) 9 � 9 (c) 12 � 12

10.5 Match the elements given with their corresponding displacement models.

1. CST element (a) Triangular element with cubic displacement
model

2. LST element (b) Triangular element with linear displacement
model

3. Q4 element (c) Triangular element with quadratic
displacement model

4. Simple bending element (d) Rectangular element with quadratic
displacement model

PROBLEMS

10.1 Find the stresses in the plate shown in Fig. 10.22 using one triangular membrane element.
10.2 Find the stresses in the plate shown in Fig. 10.23 using two triangular membrane elements.
10.3 Find the coordinate transformation matrix for the triangular membrane element shown in Fig. 10.24.
10.4 The plate shown in Fig. 10.22 is heated by 50 �C. Determine the load vector. Assume the coefficient of expansion of

the material as a ¼ 12 � 10�6 per �C.
10.5 The nodal coordinates and the nodal displacements of a triangular element, under a specific load condition, are:

Xi ¼ 0, Yi ¼ 0, Xj ¼ 1 in, Yj ¼ 3 in, Xk ¼ 4 in, Yk ¼ 1 in
Q2i�1 ¼ 0.001 in, Q2i ¼ 0.0005 in, Q2jei ¼ �0.0005 in, Q2j ¼ 0.0015 in
Q2k�1 ¼ 0.002 in, Q2k ¼ �0.001 in
If E ¼ 30 � 106 psi and v ¼ 0.3, find the stresses in the element.

10.6 For a triangular element in a state of plane stress, it is proposed to consider three corner and three mid-side nodes.
Suggest a suitable displacement model and discuss its convergence and other properties.

20 mm
2

Y

X

1000 N

500 N3

1
−20 mm

E = 205 GPa, ν = 0.3, t = 10 mm

50 mm

FIGURE 10.22 Triangular plate.
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10.7 Explain why the sum of coefficients of the stiffness matrix in any row for triangular plates with only in-plane loads
is equal to zero; that is, Sjkij ¼ 0 for any row i.

10.8 Consider two rectangular plate elements joined as shown in Fig. 10.25. If both in-plane and bending actions are
considered, what conditions do you impose on the nodal displacements of the two elements if the edge AB is
(a) hinged and (b) welded?

10.9 A triangular plate is subjected to a transverse load of 1000 N as shown in Fig. 10.26. Find the transverse displace-
ment and the stresses induced in the plate using a one-element idealization. Assume E ¼ 205 GPa, v ¼ 0.33, and
t ¼ 10 mm.

1000 N

500 N

E = 205 GPa, ν = 0.3, t = 10 mm

40 mm

50 mm

FIGURE 10.23 Rectangular plate.

Y

X

y

x
q1

q3

q4

q6

q5q2

1
(10, 10) mm

2
(15, 30) mm

(30, 20) mm

3

FIGURE 10.24 Membrane element in two dimensions.
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10.10 A rectangular plate, simply supported on all the edges, is subjected to a distributed transverse load of

pðx; yÞ ¼ p0 sin
px

a
sin

py

b

where a and b are the dimensions of the plate (Fig. 10.27).
a. Verify that the displacement solution

wðx; yÞ ¼ c sin
px

a
sin

py

b
(P.1)

where

c ¼ � p0

p4D

�
1
a2

þ 1
b2

�2
satisfies the equilibrium equation and the boundary conditions.

b. Using the solution of Eq. (P.1), find expressions for the moments and reactions in the plate.
10.11 A gear tooth is shown in Fig. 10.28. Show a suitable finite element mesh of this gear tooth using approximately 50

CST elements. Label the nodes to minimize the bandwidth of the resulting stiffness matrix of the assembly (system).
10.12 For the rectangular plane stress element described in Section 10.5, show that the strains can be expressed as

ε
! ¼ ½B�U! (P.2)

b1

1 2

D

B

F

E

A

C

z1 y1

z2

y2

x2

x1

b2

a1 a2

θ

FIGURE 10.25 Two plates joined at an angle.

P = 1000 N

20 mm

50 mm

20 mm

FIGURE 10.26 Triangular plate.
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y

x

p0
b

a

FIGURE 10.27 Rectangular plate under distributed load.

1000 lb

Y
(inch)

X
(inch)

8

7

6

5

4

3

2

1

−3 −2 −1 0 1 2 3
Material: Steel, E = 30 ×106psi, ν = 0.3, face width = 1 in

Dedendum
circle

Base circle

Pitch circle

FIGURE 10.28 Gear tooth.
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where

ε
! ¼

8><>:
εxx

εyy

εxy

9>=>; ¼

8>>>>>>>>><>>>>>>>>>:

vu

vx

vv

vy

vu

vy
þ vv

vx

9>>>>>>>>>=>>>>>>>>>;
and

½B� ¼

26666666664

�1
a

�
1� y

b

	
0

1
a

�
1� y

b

	
0

0 �1
b

�
1� x

a

	
0 � x

ab

�1
b

�
1� x

a

	
�1
a

�
1� y

b

	
� x

ab

1
a

�
1� y

b

	

y

a b
0 � y

a b
0

0
x

a b
0

1
b

�
1� x

a

	
x

a b

y

a b

1
b

�
1� x

a

	
� y

a b

37777777775
(P.3)

10.13 The stiffness matrix of the rectangular plane stress element considered in Problem 10.12 can be derived as�
kðeÞ
� ¼ t

ZZ
AðeÞ

½B�T ½D�½B� dA (P.4)

where A(e) is the area of the rectangular element, [B] is given by Eq. (P.3) of Problem 10.12, and [D] is given by Eq.
(10.15). Show that the elements of the 8 � 8 element stiffness matrix, kij, can be expressed as

k11 ¼ k33 ¼ k55 ¼ k77 ¼ c

�
b

3a
þ 1� v

6
a

b

�

k12 ¼ �k34 ¼ �k25 ¼ �k16 ¼ k56 ¼ k47 ¼ k38 ¼ k78 ¼ c

�
v

4
þ 1� v

8

�

k22 ¼ k44 ¼ k66 ¼ k88 ¼ c

�
a

3b
þ 1� v

6
b

a

�

k13 ¼ k57 ¼ c

�
� b

3a
þ 1� v

12
a

b

�

k23 ¼ �k14 ¼ k45 ¼ �k36 ¼ �k27 ¼ k67 ¼ k18 ¼ �k58 ¼ �c

�
v

4
� 1� v

8

�

k24 ¼ k68 ¼ c

�
a

6b
� 1� v

6
b

a

�

k35 ¼ k17 ¼ c

�
b

6a
� 1� v

6
a

b

�

k46 ¼ k28 ¼ c

�
� a

3b
þ 1� v

12
b

a

�

c ¼ Et

1� v2
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10.14 Consider a rectangular steel plate subjected to in-plane loads as shown in Fig. 10.29A. Using a single rectangular
plane stress element model (with the stiffness matrix given in Problem 10.13), find the stresses induced in the plate.

10.15 Find the stresses induced in the rectangular plate described in Problem 10.14 using two constant stress triangular
elements (described in Section 10.2) as shown in Fig. 10.29B.

10.16 Find the stresses induced in the rectangular plate described in Problem 10.14 using two constant stress triangular
elements (described in Section 10.2) as shown in Fig. 10.29C.

10.17 Consider a rectangular plate element under plane stress with nodal displacement degrees of freedom in the local (x, y)
and global (X, Y, Z) coordinate systems as indicated in Fig. 10.30. Find the coordinate transformation matrix [l] that
relates the two sets of degrees of freedom,

u!
8�1

¼ ½l�
8�12

U
!
12�1

in terms of the global coordinates of the four nodes of the element.
10.18 Find the stresses induced in the steel plate shown in Fig. 10.31 using a single triangular membrane element.
10.19 Consider a rectangular element in plane stress with four nodes and eight displacement degrees of freedom as shown

in Fig. 10.12. Instead of assuming a displacement variation model directly, the variations of stresses inside the
element can be assumed as

sxx ¼ a1 þ a2y; syy ¼ a3 þ a4x; axy ¼ a5

s

p
q

r

4
(0, b)

u7

u1

u8

u2
u4

u6

u5

u3

U3s−2

U3p−2
U3q−2

U3r −2

U3s−1

U3p−1
U3q −1

U3r −1

U3s

U3p U3q

U3r

1 2
(0, 0) (a, 0)

3
(a, b)

Z

X

Y
0

FIGURE 10.30 Rectangular plate element in global XYZ system.

100 lb

100 lb

20 in 100 lb

100 lb

20 in 100 lb

100 lb

20 in

10 in 10 in 10 in

(A) (B) (C)

FIGURE 10.29 Rectangular plate.

Analysis of Plates Chapter | 10 419

www.konkur.in

Telegram: @uni_k



where ai, i ¼ 1, 2, ., 5 are constants. Find the corresponding displacement distributions, u(x, y) and v(x, y), inside
the element by integrating the strainedisplacement relations.

10.20 The triangular membrane element shown in Fig. 10.32 has a thickness of t ¼ 0.2 cm. The (x, y) coordinates of the
nodes of the element are indicated next to the nodes in Fig. 10.32. The material of the element is aluminum with
E ¼ 71.0 GPa and v ¼ 0.33. If the element is in a state of plane stress, determine the following:
a. Shape functions of the element, Ni (x, y), Nj(x, y), and Nk(x, y)
b. Matrix [B] that relates the strains to the nodal displacements
c. Elasticity matrix [D] for plane stress condition
d. Element stiffness matrix

�
KðeÞ�

10.21 Assuming that the triangular membrane element described in Problem 10.20 is in a state of plane strain, determine
the following:
a. Shape functions of the element, Ni (x, y), Nj(x, y), and Nk(x, y)
b. Matrix [B] that relates the strains to the nodal displacements
c. Elasticity matrix [D] for plane strain condition (see Eq. (8.24))
d. Element stiffness matrix

�
KðeÞ�

j

(1, 5) cm

k (8, 7) cm

i (2, 2) cm

Element
“e ”

FIGURE 10.32 Triangular plate.

100 lb
20 in

25 in

10 in

FIGURE 10.31 Triangular plate.
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10.22 For the element considered in Problem 10.20, determine the element nodal force vector due to a temperature in-
crease of 50 �C. Assume that the element is in a state of plane stress.

10.23 For the element considered in Problem 10.20, determine the element nodal force vector due to a temperature in-
crease of 50 �C. Assume that the element is in a state of plane strain.

10.24 For the element described in Problem 10.20, determine the element nodal force vector as a result of the following
prestress: sxx0 ¼ 1000 N/m2, syy0 ¼ �1500 N/m2, and sxy0 ¼ 500 N/m2. Assume the element to be in a state of
plane stress.

10.25 For the element described in Problem 10.20, determine the element nodal force vector as a result of the following
prestress: sxx0 ¼ 1000 N/m2, syy0 ¼ �1500 N/m2, and sxy0 ¼ 500 N/m2. Assume the element to be in a state of
plane strain.

10.26 If the element described in Problem 10.20 is subjected to the distributed body forces fx0 ¼ 1000 N/m3 and
fy0 ¼ 2000 N/m3, determine the corresponding nodal force vector of the element.

10.27 For the element described in Problem 10.20, uniform surface tractions with magnitudes Fx0 ¼ 500 N/m2 and
Fy0 ¼ �1000 N/m2 act on the edge (face) ij. Determine the resulting nodal force vector of the element.

10.28 For the element described in Problem 10.20, uniform surface tractions with magnitudes Fx0 ¼ 500 N/m2 and
Fy0 ¼ �1000 N/m2 act on the edge (face) jk. Determine the resulting nodal force vector of the element.

10.29 For the element described in Problem 10.20, uniform surface tractions with magnitudes Fx0 ¼ 500 N/m2 and
Fy0 ¼ �1000 N/m2 act on the edge (face) ki. Determine the resulting nodal force vector of the element.

10.30 For the element considered in Problem 10.20, find the nodal force vector when a concentrated or point load

P
!

0 ¼
�
Px0

Py0

�
¼
�
1000

�500

�
N acts at a point located at (x0 ¼ 4 cm, y0 ¼ 4 cm) in the element.

10.31 For the element considered in Problem 10.20, linearly varying surface tractions act on the edge (face) ij. The magni-
tude of Fx0 varies linearly from Fx0i ¼ 500 Pa at node i to Fx0j ¼ 1500 Pa at node j while the magnitude of Fy0
varies linearly from Fy0i ¼ 500 Pa at node i to Fy0j ¼ 2000 Pa at node j as shown in Fig. 10.33. Determine the
corresponding nodal force vector of the element.
Hint: The magnitudes of the components of the surface tractions at any point on the edge ij can be expressed as
Fx0 ¼ Fx0i Ni þ Fx0j Nj and Fy0 ¼ Fy0i Ni þ Fy0j Nj.

10.32 For the element considered in Problem 10.20, linearly varying surface tractions act on the edge (face) jk. The
magnitude of Fx0 varies linearly from Fx0j ¼ 500 Pa at node j to Fx0k ¼ 1500 Pa at node k while the magnitude
of Fy0 varies linearly from Fy0j ¼ 500 Pa at node j to Fy0k ¼ 2000 Pa at node k. Determine the corresponding nodal
force vector of the element.

j

k

i

Φx 0j = 1500 Pa

Φy 0j = 2000 Pa

Φx 0i = 500 Pa

Φy 0i = 500 Pa

y

x

FIGURE 10.33 Surface traction on edge ij.
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Hint: The magnitudes of the components of the surface tractions at any point on the edge jk can be expressed as
Fx0 ¼ Fx0jNj þ Fx0kNk and Fy0 ¼ Fy0jNj þ Fy0kNk.

10.33 For the element considered in Problem 10.20, linearly varying surface tractions act on the edge (face) ki. The
magnitude of Fx0 varies linearly from Fx0k ¼ 500 Pa at node k to Fx0i ¼ 1500 Pa at node i while the magnitude
of Fy0 varies linearly from Fy0k ¼ 500 Pa at node k to Fy0i ¼ 2000 Pa at node i. Determine the corresponding nodal
force vector of the element.
Hint: The magnitudes of the components of the surface tractions at any point on the edge ki can be expressed as
Fx0 ¼ Fx0kNk þ Fx0iNi and Fy0 ¼ Fy0kNk þ Fy0iNi.

10.34 Under a specific set of applied loads, the nodes of the element considered in Problem 10.20 undergo the following
displacements:
ui ¼ 0.00225 cm, vi ¼ �0.00350 cm, uj ¼ 0.00050 cm, vj ¼ 0.00200 cm, uk ¼ e0.00550 cm, and
vk ¼ 0.00600 cm
Find the strains and stresses induced in the element due to this displacement field. Assume the element to be in a
state of plane stress.

10.35 Under a specific set of applied loads, the nodes of the element considered in Problem 10.20 undergo the following
displacements:
ui ¼ 0.00225 cm, vi ¼ e0.00350 cm, uj ¼ 0.00050 cm, vj ¼ 0.00200 cm, uk ¼ �0.00550 cm, and
vk ¼ 0.00600 cm
Find the strains and stresses induced in the element due to this displacement field. Assume the element to be in a
state of plane strain.

10.36 The triangular membrane element shown in Fig. 10.34 has a thickness of t ¼ 0.1 in. The (x, y) coordinates of the
nodes of the element are indicated next to the nodes in Fig. 10.34. The material of the element is brass with
E ¼ 15.4 � 106 psi and v ¼ 0.32. If the element is in a state of plane stress, determine the following:
a. Shape functions of the element, Ni (x, y), Nj(x, y), and Nk(x, y)
b. Matrix [B] that relates the strains to the nodal displacements
c. Elasticity matrix [D] for plane stress condition
d. Element stiffness matrix

�
KðeÞ�

10.37 Assuming that the triangular membrane element described in Problem 10.36 is in a state of plane strain, determine
the following:
a. Shape functions of the element, Ni (x, y), Nj(x, y), and Nk(x, y)
b. Matrix [B] that relates the strains to the nodal displacements
c. Elasticity matrix [D] for plane strain condition (see Eq. (8.24))
d. Element stiffness matrix

�
KðeÞ�

k

j

(1.0, 3.5) in

(3.5, 2.0) in

(2.5, 5.0) in

i

Element
“e ”

FIGURE 10.34 Triangular membrane element.
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10.38 For the element considered in Problem 10.36, determine the element nodal force vector due to a temperature in-
crease of 100 �F. Assume that the element is in a state of plane stress.

10.39 For the element considered in Problem 10.36, determine the element nodal force vector due to a temperature in-
crease of 100 �F. Assume that the element is in a state of plane strain.

10.40 For the element described in Problem 10.36, determine the element nodal force vector as a result of the following
prestress: sxx0 ¼ �800 psi, syy0 ¼ 500 psi, and sxy0 ¼ 750 psi. Assume the element to be in a state of plane stress.

10.41 For the element described in Problem 10.36, determine the element nodal force vector as a result of the following
prestress: sxx0 ¼ �800 psi, syy0 ¼ 500 psi, and sxy0 ¼ 750 psi. Assume the element to be in a state of plane strain.

10.42 If the element described in Problem 10.36 is subjected to the distributed body forces fx0 ¼ 200 lbf/in
3 and

fy0 ¼ �100 lbf/in
3, determine the corresponding nodal force vector of the element.

10.43 For the element described in Problem 10.36, uniform surface tractions with magnitudes Fx0 ¼ 750 psi and
Fy0 ¼ �750 psi act on the edge (face) ij. Determine the resulting nodal force vector of the element.

10.44 For the element described in Problem 10.36, uniform surface tractions with magnitudes Fx0 ¼ 750 psi and
Fy0 ¼ �750 psi act on the edge (face) jk. Determine the resulting nodal force vector of the element.

10.45 For the element described in Problem 10.36, uniform surface tractions with magnitudes Fx0 ¼ 750 psi and
Fy0 ¼ �750 psi act on the edge (face) ki. Determine the resulting nodal force vector of the element.

10.46 For the element considered in Problem 10.36, find the nodal force vector when a concentrated or point load

P
!

0 ¼
�
Px0

Py0

�
¼
�
250

�750

�
lbf acts at a point located at (x0 ¼ 20in, y0 ¼ 4 in) in the element.

10.47 For the element considered in Problem 10.36, linearly varying surface tractions act on the edge (face) ij. The magni-
tude of Fx0 varies linearly from Fx0i ¼ 200 psi at node i to Fx0j ¼ 1000 psi at node j while the magnitude of Fy0
varies from Fy0i ¼ �500 psi at node i to Fy0j ¼ 500 psi at node j. Determine the corresponding nodal force vector
of the element.
Hint: The magnitudes of the components of the surface tractions at any point on the edge ij can be expressed as
Fx0 ¼ Fx0iNi þ Fx0jNj and Fy0 ¼ Fy0iNi þ Fy0jNj.

10.48 For the element considered in Problem 10.36, linearly varying surface tractions act on the edge (face) jk. The
magnitude of Fx0 varies from Fx0j ¼ 200 psi at node j to Fx0k ¼ 1000 psi at node k while the magnitude of Fy0

varies from Fy0j ¼ �500 psi at node j to Fy0k ¼ 500 psi at node k. Determine the corresponding nodal force vector
of the element.
Hint: The magnitudes of the components of the surface tractions at any point on the edge jk can be expressed as
Fx0 ¼ Fx0jNj þ Fx0kNk and Fy0 ¼ Fy0jNj þ Fy0kNk.

10.49 For the element considered in Problem 10.36, linearly varying surface tractions act on the edge (face) ki. The
magnitude of Fx0 varies linearly from Fx0k ¼ 200 psi at node k to Fx0i ¼ 1000 psi at node i while the magnitude
of Fy0 varies from Fy0k ¼ �500 psi at node k to Fy0i ¼ 500 psi at node i. Determine the corresponding nodal force
vector of the element.
Hint: The magnitudes of the components of the surface tractions at any point on the edge ki can be expressed as
Fx0 ¼ Fx0kNk þ Fx0iNi and Fy0 ¼ Fy0kNk þ Fy0iNi..

10.50 Under a specific set of applied loads, the nodes of the element considered in Problem 10.36 undergo the following
displacements:
ui ¼ 0.00125 in, vi ¼ �0.00250 in, uj ¼ �0.00050 in, vj ¼ 0.00100 in, uk ¼ e0.00450 in, and vk ¼ 0.00500 in
Find the strains and stresses induced in the element due to this displacement field. Assume the element to be in a
state of plane stress.

10.51 Under a specific set of applied loads, the nodes of the element considered in Problem 10.36 undergo the following
displacements:
ui ¼ 0.00125 in, vi ¼ e0.00250 in, uj ¼ e0.00050 in, vj ¼ 0.00100 in, uk ¼ �0.00450 in, and vk ¼ 0.00500 in
Find the strains and stresses induced in the element due to this displacement field. Assume the element to be in a
state of plane strain.

10.52 Consider a rectangular element in plane stress state with the geometry shown in Fig. 10.35. The element is made of
aluminum with E ¼ 71.0 GPa and v ¼ 0.33 and has a thickness of 0.2 cm. Using the [B] matrix given in Problem
10.12 and the [D] matrix given in Eq. (10.15), find the element stiffness matrix using the relation�

KðeÞ� ¼
ZZZ

V ðeÞ
½B�T ½D�½B�dV (P.5)

Analysis of Plates Chapter | 10 423

www.konkur.in

Telegram: @uni_k



Note

Perform the integration indicated in Eq. (P.5) by evaluating the integrand at the centroid of the element and treating the integrand

as a constant throughout the element.

10.53 Consider a rectangular element in plane strain state with the geometry shown in Fig. 10.35. The element is made of
aluminum with E ¼ 71.0 GPa and v ¼ 0.33 and has a thickness of 0.2 cm. Using the [B] matrix given in Problem
10.12 and the [D] matrix given in Eq. (8.24), find the element stiffness matrix using the relation�

KðeÞ� ¼
ZZZ

VðeÞ
½B�T ½D�½B�dV (P.6)

Note

Perform the integration indicated in Eq. (P.6) by evaluating the integrand at the centroid of the element and treating the integrand

as a constant throughout the element.

10.54 For the rectangular element considered in Problem 10.52 and Fig. 10.35, find the element nodal force vector due to
an increase in the temperature of the element by 50 �C. Perform the needed integration by evaluating the integrand
at the centroid of the element and treating the integrand as a constant throughout the element. Assume a plane stress
condition for the element.

10.55 For the rectangular element considered in Problem 10.52 and Fig. 10.35, find the element nodal force vector due to
an increase in the temperature of the element by 50 �C. Perform the needed integration by evaluating the integrand
at the centroid of the element and treating the integrand as a constant throughout the element. Assume a plane strain
condition for the element.

10.56 For the rectangular element considered in Problem 10.52 and Fig. 10.35, find the element nodal force vector due to
distributed body force given by fx0 ¼ 0 and fy0 ¼ erg where r is the density of the material and g is the acceleration
due to gravity. Assume the value of r as 2800 kg/m3 and g ¼ 981 m/s2. Perform the needed integration by evaluating
the integrand at the centroid of the element and treating the integrand as a constant throughout the element.

10.57 For the rectangular element considered in Problem 10.52 and Fig. 10.35, find the element nodal force vector due to
uniform surface tractions, with Fx0 ¼ 1000 Pa and Fy0 ¼ �500 Pa, applied on the edge (face) ij. Perform the
needed integration by evaluating the integrand at the centroid of the element and treating the integrand as a constant
throughout the element.

10.58 For the rectangular element considered in Problem 10.52 and Fig. 10.35, find the element nodal force vector when a
concentrated (point) load, with Px0 ¼ 100 N and Py0 ¼ 500 N, act at the point (x0 ¼ 4 cm, y0 ¼ 5 cm). Perform the
needed integration by evaluating the integrand at the centroid of the element and treating the integrand as a constant
throughout the element.

p q

rs (4, 7) cm

(4, 3) cm (10, 3) cm

(10, 7) cm

FIGURE 10.35 Rectangular plate element.
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10.59 Consider a rectangular element in plane stress state with geometry shown in Fig. 10.36. The element is made of
brass with E ¼ 15.4 � 106 psi and v ¼ 0.32 and has a thickness of t ¼ 0.1 in. Using the [B] matrix given in Prob-
lem 10.12 and the [D] matrix given in Eq. (10.15), find the element stiffness matrix using the relation�

KðeÞ� ¼
ZZZ

V ðeÞ
½B�T ½D�½B�dV (P.7)

Note

Perform the integration indicated in Eq. (P.7) by evaluating the integrand at the centroid of the element and treating the integrand

as a constant throughout the element.
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11.1 INTRODUCTION

For the realistic analysis of certain problems such as thick short beams, thick pressure vessels, elastic half space acted on by a
concentrated load, and machine foundations, we have to use three-dimensional finite elements. Just like a triangular element
is a basic element for analyzing two-dimensional problems, the tetrahedron element, with four corner nodes, is the basic
element for modeling three-dimensional problems. One of the major difficulties associated with the use of three-dimensional
elements (e.g., tetrahedra, hexahedra, and rectangular parallelepiped elements) is that a large number of elements have to be
used for obtaining reasonably accurate results. This will result in a very large number of simultaneous equations to be solved
in static analyses. Despite this difficulty, we may not have any choice except to use three-dimensional elements in certain
situations. Hence, the tetrahedron and hexahedron elements are considered in this chapter [11.1e11.3].

11.2 TETRAHEDRON ELEMENT

The tetrahedron element, with three translational degrees of freedom per node, is shown in the global xyz coordinate system
in Fig. 11.1 (the global coordinates are denoted as x, y, z instead of X, Y, Z, for simplicity). For this element, there will be no
advantage in setting up a local coordinate system, and hence we shall derive all the elemental equations in the global
system. Since there are 12 nodal degrees of freedom Q3ie2, Q3ie1, Q3i, Q3je2 ., Q3l and three displacement components u,
v, and w, we choose the displacement variation to be linear as

uðx; y; zÞ ¼ a1 þ a2xþ a3yþ a4z

vðx; y; zÞ ¼ a5 þ a6xþ a7yþ a8z

wðx; y; zÞ ¼ a9 þ a10xþ a11yþ a12z

9>=>; (11.1)

where a1, a2, ., a12 are constants. By using the nodal conditions

u ¼ Q3i�2; v ¼ Q3i�1; w ¼ Q3i at ðxi; yi; ziÞ
u ¼ Q3j�2; v ¼ Q3j�1; w ¼ Q3j at ðxj; yj; zjÞ
u ¼ Q3k�2; v ¼ Q3k�1; w ¼ Q3k at ðxk; yk; zkÞ
u ¼ Q3l�2; v ¼ Q3l�1; w ¼ Q3l at ðxl; yl; zlÞ

(11.2)

we can obtain

The Finite Element Method in Engineering. https://doi.org/10.1016/B978-0-12-811768-2.00011-0
Copyright © 2018 Elsevier Inc. All rights reserved.
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uðx; y; zÞ ¼ Niðx; y; zÞQ3i�2 þ Njðx; y; zÞQ3j�2 þ Nkðx; y; zÞQ3k�2 þ Nlðx; y; zÞQ3l�2 (11.3)

where Ni, Nj, Nk, and Nl are given by Eq. (3.48), and similar expressions for v(x, y, z) and w(x, y, z). Thus, the displacement
field can be expressed in matrix form as

U
!
3�1

¼

8><>:
uðx; y; zÞ
vðx; y; zÞ
wðx; y; zÞ

9>=>; ¼ ½N�
3�12

Q
!ðeÞ

12�1
(11.4)

where

½N� ¼

264Ni 0 0 Nj 0 0 Nk 0 0 Nl 0 0

0 Ni 0 0 Nj 0 0 Nk 0 0 Nl 0

0 0 Ni 0 0 Nj 0 0 Nk 0 0 Nl

375 (11.5)

and

Q
!ðeÞ ¼

8>>>>>><>>>>>>:

Q3i�2

Q3i�1

Q3i

«

Q3l

9>>>>>>=>>>>>>;
(11.6)

Noting that all six strain components are relevant in three-dimensional analysis, the strainedisplacement relations can
be expressed using Eq. (11.4) as follows:

ε
!
6�1

¼

8>>>>>>>><>>>>>>>>:

εxx

εyy

εzz

εxy

εyz

εzx

9>>>>>>>>=>>>>>>>>;
¼

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

vu=vx

vv=vy

vw=vz

vu

vy
þ vv

vx

vv

vz
þ vw

vy

vw

vx
þ vu

vz

9>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>;

¼ ½B�
6�12

Q
!ðeÞ

12�1
(11.7)

Q3k

Q3k−1

Q3k−2
Q3

Q3 −1

Q3j

Q3j−1

Q3j−2

Q3i

Q3i −1

Q3i−2

1=

3 =

4 =

2 =

i

k

j

x = X

y = Y

z = Z

0

Q3 −2

FIGURE 11.1 A Tetrahedron element in a global xyz system.
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where

½B� ¼ 1
6V

2666666664

bi 0 0 bj 0 0 bk 0 0 bl 0 0

0 ci 0 0 cj 0 0 ck 0 0 cl 0

0 0 di 0 0 dj 0 0 dk 0 0 dl

ci bi 0 cj bj 0 ck bk 0 cl bl 0

0 di ci 0 dj cj 0 dk ck 0 dl cl

di 0 bi dj 0 bj dk 0 bk dl 0 bl

3777777775
(11.8)

The stressestrain relations, in the case of three-dimensional analysis, are given by Eq. (8.10) as

s! ¼ ½D� ε! (11.9)

where

s!T ¼ fsxx syy szz sxy syz szxg
and

½D� ¼ E

ð1þ vÞð1� 2vÞ

2666666666666666666664

ð1� vÞ v v 0 0 0

v ð1� vÞ v 0 0 0

v v ð1� vÞ 0 0 0

0 0 0

�
1� 2v

2

�
0 0

0 0 0 0

�
1� 2v

2

�
0

0 0 0 0 0

�
1� 2v

2

�

3777777777777777777775

(11.10)

The stiffness matrix of the element (in the global system) can be obtained as�
KðeÞ� ¼

ZZZ
VðeÞ

½B�T ½D�½B�dV (11.11)

Since the matrices [B] and [D] are independent of x, y, and z, the stiffness matrix can be obtained by carrying out matrix
multiplications as �

KðeÞ� ¼ V ðeÞ½B�T ½D�½B� (11.12)

In this case, since the assumed displacement model is linear, the continuity of displacement along the interface between
neighboring elements will be satisfied automatically.

11.2.1 Consistent Load Vector

The total load vector due to initial (thermal) strains, body forces f
! ¼

8><>:
fx

fy

fz

9>=>;, and surface (distributed) forces

F
! ¼

8><>:
px0
py0

pz0

9>=>; can be computed using Eqs. (8.88), (8.90), and (8.89) as

Analysis of Three-Dimensional Problems Chapter | 11 429

www.konkur.in

Telegram: @uni_k



P
!ðeÞ ¼

ZZZ
V ðeÞ

½B�T ½D�$aT

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

1

1

1

0

0

0

9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>;

dV þ
ZZZ

V ðeÞ
½N�T

8>>>>>><>>>>>>:

fx

fy

fz

9>>>>>>=>>>>>>;
$ dV þ

ZZ
S
ðeÞ
1

½N�T

8>>>>>><>>>>>>:

px0

py0

pz0

9>>>>>>=>>>>>>;
$ dS1

¼ E$a$T$V ðeÞ

ð1� 2vÞ ½B�T

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

1

1

1

0

0

0

9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>;

þ V ðeÞ

4

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

fx

fy

fz

fx

fy

fz

fx

fy

fz

fx

fy

fz

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

þ SðeÞijk

3

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

px0

py0

pz0

px0

py0

pz0

px0

py0

pz0

0

0

0

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(11.13)

Eq. (11.13) shows that the body force is distributed equally between the four nodes of the element. It is assumed in
deriving Eq. (11.13) that the surface forces are distributed only on the face ijk of the element e. These surface forces
can be seen to be equally distributed between the three nodes i, j, and k, which define the loaded face. SðeÞijk denotes
the area of the face ijk of element e. The last three components of the surface load vector are zero since they are
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related to the term
RR

Nl$ dS1 and Nl is zero on the face ijk. Note that the location of the zero terms changes in the
last column of Eq. (11.13), and their location depends upon which face the surface forces are acting. If more than
one face of the element e is subjected to the surface forces, then there will be additional surface load vectors in
Eq. (11.13).

EXAMPLE 11.1
Consider a tetrahedron element with the (x, y, z) coordinates as indicated in Fig. 11.2. If the Young’s modulus (E) and Poisson’s

ratio (v) are given by E ¼ 207 GPa and v ¼ 0.3, find the stiffness matrix of the element.

Solution

Using the nodal coordinates indicated in Fig. 11.2, the volume (V) and the shape functions of the element as well as the constants

in the shape functions can be determined as follows (see Problem 3.13):

V ¼ 500 cm3 ¼ 5� 10�4 m3

Niðx; y; zÞ ¼ 1

60
ð60� 5x � 4y � 5zÞ

Njðx; y; zÞ ¼ x

10
; Nk ðx; y; zÞ ¼ y

15
; Nlðx; y; zÞ ¼ z

20

bi ¼ �300; bj ¼ 300;bk ¼ 0; bl ¼ 0; ci ¼ �200; cj ¼ 0; ck ¼ 200; cl ¼ 0;

di ¼ �150; dj ¼ 0;dk ¼ 0; dl ¼ 150

The matrix [B] given by Eq. (11.8) becomes

Continued

(0, 15, 0) cm

(10, 0, 0) cm(0, 0, 0)

(0, 0, 20) cm

z

x

y

k

i
j

FIGURE 11.2 Tetrahedron element.
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EXAMPLE 11.1 dcont’d

½B� ¼ 1

6V

26666666666666666666664

�300 0 0 300 0 0 0 0 0 0 0 0

0 �200 0 0 0 0 0 200 0 0 0 0

0 0 �150 0 0 0 0 0 0 0 0 150

�200 �300 0 0 300 0 200 0 0 0 0 0

0 �150 �200 0 0 0 0 0 200 0 150 0

�150 0 �300 0 0 300 0 0 0 150 0 0

37777777777777777777775

¼

26666666666666666666664

�10:0000 0 0 10:0000 0 0 0 0 0 0 0 0

0 �6:6667 0 0 0 0 0 6:6667 0 0 0 0

0 0 �5:0000 0 0 0 0 0 0 0 0 5:0000

�6:6667 �10:0000 0 0 10:0000 0 6:6667 0 0 0 0 0

0 �5:0000 �6:6667 0 0 0 0 0 6:6667 0 5:0000 0

�5:0000 0 �10:0000 0 0 10:0000 0 0 0 5:0000 0 0

37777777777777777777775

1

m

(E.1)

Noting that E
ð1þvÞð1�2vÞ ¼ 207ð109Þ

ð1þ0:3Þð1�2�0:3Þ ¼ 3:9808
�
1011

�
Pa, the elasticity matrix [D] of Eq. (11.10) can be expressed as

½D� ¼ 1011

2666666664

2:7865 1:1942 1:1942 0 0 0

1:1942 2:7865 1:1942 0 0 0

1:1942 1:1942 2:7865 0 0 0

0 0 0 0:7962 0 0

0 0 0 0 0:7962 0

0 0 0 0 0 0:7962

3777777775
Pa (E.2)

The stiffness matrix of the element can be found, using Eq. (11.12), as
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EXAMPLE 11.1 dcont’d �
K ðeÞ� ¼ V ðeÞ½B�T ½D�½B�

¼ 1010

266666666666666666666666666666666666666666666664

1:6697 0:6635 0:4976 �1:3933 �0:2654 �0:1990

0:6635 1:1168 0:3317 �0:3981 �0:3981 0

0:4976 0:3317 0:9233 �0:2986 0 �0:3981

�1:3933 �0:3981 �0:2986 1:3933 0 0

�0:2654 �0:3981 0 0 0:3981 0

�0:1990 0 �0:3981 0 0 0:3981

�0:1769 �0:2654 0 0 0:2654 0

�0:3981 �0:6192 �0:1990 0:3981 0 0

0 �0:1327 �0:1769 0 0 0

�0:0995 0 �0:1990 0 0 0:1990

0 �0:0995 �0:1327 0 0 0

�0:2986 �0:1990 �0:3483 0:2986 0 0

�0:1769 �0:3981 0 �0:0995 0 �0:2986

�0:2654 �0:6192 �0:1327 0 �0:0995 �0:1990

0 �0:1990 �0:1769 �0:1990 �0:1327 �0:3483

0 0:3981 0 0 0 0:2986

0:2654 0 0 0 0 0

0 0 0 0:1990 0 0

0:1769 0 0 0 0 0

0 0:6192 0 0 0 0:1990

0 0 0:1769 0 0:1327 0

0 0 0 0:0995 0 0

0 0 0:1327 0 0:0995 0

0 0:1990 0 0 0 0:3483

377777777777777777777777777777777777777777777775

N

m

(E.3)
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EXAMPLE 11.2
Determine the nodal load vector of the tetrahedron element described in Example 11.1 corresponding to the gravity force acting in

the negative y direction. Assume the density of the material as r ¼ 7850 kg/m3.

Solution

The body forces, distributed uniformly throughout the volume of the element, are given by the vector

f
! ¼

8><>:
fx

fy

fz

9>=>; ¼

8><>:
0

�rg

0

9>=>; ¼

8><>:
0

�7850ð9:81Þ
0

9>=>; ¼

8><>:
0

�77008:5

0

9>=>;N
�
m3

The nodal load vector of the tetrahedron element is given by (middle term on the right-hand side of Eq. 11.13):

P
!ðeÞ ¼ V ðeÞ

4

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

0

fy

0

0

fy

0

0

fy

0

0

fy

0

9>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>;

¼ 5ð10�4Þ
4

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

0

�77008:5

0

0

�77008:5

0

0

�77008:5

0

0

�77008:5

0

9>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>;

¼ �

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

0

9:6261

0

0

9:6261

0

0

9:6261

0

0

9:6261

0

9>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>;

N

EXAMPLE 11.3
If uniformly distributed surface tractions of magnitude

F
! ¼

8><>:
px0

py0

pz0

9>=>; ¼

8><>:
10

�
104

�
5
�
104

�
�5

�
104

�
9>=>;N

�
m2 (E.1)

act on the face jkl of the tetrahedron element considered in Example 11.1, determine the corresponding nodal load vector of the

element.

Solution

The nodal load vector corresponding to the surface tractions acting on the surface jkl of the tetrahedron element is given by (see

Problem 11.12):

P
!ðeÞ ¼ S

ðeÞ
jkl

3

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

0

0

0

px0

py0

pz0

px0

py0

pz0

px0

py0

pz0

9>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>;

(E.2)
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EXAMPLE 11.3 dcont’d

where S
ðeÞ
jkl is the area of the triangular surface jkl. The area of the triangle with known nodal coordinates

�
xj ; yj ; zj

�
; ðxk ; yk ; zk Þ;

and (xl, yl, zl) is the Pythagorean sum of the areas of the respective projections on the three principal planes (i.e., x ¼ 0, y ¼ 0,

and z ¼ 0):

A ¼ S
ðeÞ
jkl ¼ 1

2

264
0B@det

							
xj xk xl

yj yk yl

1 1 1

							
1CA

2

þ

0B@det

							
yj yk yl

zj zk zl

1 1 1

							
1CA

2

þ

0B@det

							
zj zk zl

xj xk xl

1 1 1

							
1CA

2375
1
2

(E.3)

Using the known coordinates (shown in Fig. 11.2 of Example 11.1), the determinants in Eq. (E.3) can be evaluated as

det

										
xj xk xl

yj yk yl

1 1 1

										
¼ det

										
10 0 0

0 15 0

1 1 1

										
¼ 150

det

										
yj yk yl

zj zk zl

1 1 1

										
¼ det

										
0 15 0

0 0 20

1 1 1

										
¼ 300

det

										
zj zk zl

xj xk xl

1 1 1

										
¼ det

										
0 0 20

10 0 0

1 1 1

										
¼ 200

Thus, the area S
ðeÞ
jkl can be computed as

SðeÞ
jkl ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð150Þ2 þ ð300Þ2 þ ð200Þ2

q
¼ 195:2562 cm2

¼ 195:2562� 10�4 m2

The nodal load vector of the element, then, is given by Eq. (E.2) as

P
!ðeÞ ¼ 195:2562ð10�4Þ

3

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

0

0

0

10

5

�5

10

5

�5

10

5

�5

9>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>;

�
104

� ¼

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

0

0

0

650:854

325:427

�325:427

650:854

325:427

�325:427

650:854

325:427

�325:427

9>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>;

N (E.4)
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EXAMPLE 11.4
Assuming the coefficient of thermal expansion of the material to be a ¼ 10.8 � 10�6 m/m �C, find the nodal load vector of the

tetrahedron element considered in Example 11.1 if the element experiences a temperature rise of T ¼ 50 �C.

Solution

The nodal load vector of the element, resulting from a temperature rise, is given by (see Eq. 11.13):

P
!ðeÞ ¼ Ea TV ðeÞ

1e2v
½B�T

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

1

1

1

0

0

0

9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>;

¼ ð207� 109
��
10:8� 10e6

�ð50Þ�500� 10�6
�

1e2ð0:3Þ ½B�T

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

1

1

1

0

0

0

9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>;

¼ 139:725� 103½B�T

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

1

1

1

0

0

0

9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>;

N

(E.1)

Using the [B] matrix given by Eq. (E.1) of Example 11.1, the load vector can be found as

P
!ðeÞ ¼

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

�1397250

�931500

�698625

1397250

0

0

0

931500

0

0

0

698625

9>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>;

N (E.2)

11.3 HEXAHEDRON ELEMENT

In this section, we consider the simplest hexahedron element having eight corner nodes with three degrees of freedom per
node. For convenience, we derive the element matrices by treating the element as isoparametric. This element is also
known as ZienkiewiczeIronseBrick with eight nodes (ZIB 8) and is shown in Fig. 11.3A.
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11.3.1 Natural Coordinate System

As shown in Fig. 11.3A, the natural coordinates are r, s, and t with the origin of the system taken at the centroid of the
element. It can be seen that each of the coordinate axes r, s, and t is associated with a pair of opposite faces, which are
given by the coordinate values �1. Thus, in the local (natural) coordinates, the element is a cube as shown in Fig. 11.3B,
although in the global Cartesian coordinate system it may be an arbitrarily warped and distorted six-sided solid as shown in
Fig. 11.3A. The relationship between the local and global coordinates can be expressed as

8><>:
x

y

z

9>=>; ¼ ½N�

8>>>>>>>><>>>>>>>>:

x1
y1
z1
x2

«

z8

9>>>>>>>>=>>>>>>>>;
(11.14)

where

½N� ¼

264N1 0 0 N2 . 0

0 N1 0 0 . 0

0 0 N1 0 . N8

375 (11.15)

and

Niðr; s; tÞ ¼ 1
8
ð1þ rriÞð1þ ssiÞð1þ ttiÞ; i ¼ 1; 2;.; 8 (11.16)

or

8><>:
x

y

z

9>=>; ¼

8>>>>>>>><>>>>>>>>:

X8

i¼ 1

Nixi

X8

i¼ 1

Niyi

X8

i¼ 1

Nizi

9>>>>>>>>=>>>>>>>>;
(11.17)

5 8

4
6

2
3

1

7

r r

s

s

t

t

z = Z

y =Y

x = X

 In global xyz system

(−1, −1, 1)5

(1, −1, 1)6

(1, −1, −1)2
3(1, 1, −1)

4(−1, 1, −1)

8(−1, 1, 1)

 In local rst system

(−1, −1, −1)1
7(1, 1, 1)

0

(A) (B)

FIGURE 11.3 A hexahedron element with eight nodes.
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11.3.2 Displacement Model

By assuming the variations of the displacements in between the nodes to be linear, the displacements can be expressed by
the same interpolation functions used to describe the geometry as (analogous to Eq. 11.14)

8><>:
u

v

w

9>=>; ¼ ½N�

8>>>>>>>><>>>>>>>>:

u1
v1
w1

u2

«

w8

9>>>>>>>>=>>>>>>>>;
¼ ½N�Q!ðeÞ

(11.18)

where Q
!ðeÞ

is the vector of nodal displacement degrees of freedom, and (ui, vi, wi) denote the displacements of node i,
i ¼ 1e8.

11.3.3 StraineDisplacement and StresseStrain Relations

Using Eq. (11.18), the three-dimensional strainedisplacement relations can be expressed as

ε
! ¼

8>>>>>>>><>>>>>>>>:

εxx

εyy

εzz

εxy

εyz

εzx

9>>>>>>>>=>>>>>>>>;
¼

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

vu

vx

vv

vy

vw

vz

vu

vy
þ vv

vx

vv

vz
þ vw

vy

vw

vx
þ vu

vz

9>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>;

¼ ½B�
6�24

Q
!ðeÞ

24�1
(11.19)

where

½B�
6�24

¼ ½½B1�½B2�.½B8�� (11.20)

and

½Bi�
6�3

¼

266666666666666666666666664

vNi

vx
0 0

0
vNi

vy
0

0 0
vNi

vz

vNi

vy

vNi

vx
0

0
vNi

vz

vNi

vy

vNi

vz
0

vNi

vx

377777777777777777777777775

; i ¼ 1e8 (11.21)
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The derivatives in the matrix [Bi] may be evaluated by applying the chain rule of differentiation as follows:8>>>>>>>>>>>>><>>>>>>>>>>>>>:

vNi

vr

vNi

vs

vNi

vt

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
¼

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

vNi

vx

vx

vr
þ vNi

vy

vy

vr
þ vNi

vz

vz

vr

vNi

vx

vx

vs
þ vNi

vy

vy

vs
þ vNi

vz

vz

vs

vNi

vx

vx

vt
þ vNi

vy

vy

vt
þ vNi

vz

vz

vt

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

¼

266666666666664

vx

vr

vy

vr

vz

vr

vx

vs

vy

vs

vz

vs

vx

vt

vy

vt

vz

vt

377777777777775

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

vNi

vx

vNi

vy

vNi

vz

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
¼ ½J�

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

vNi

vx

vNi

vy

vNi

vz

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;

(11.22)

where [J] is the Jacobian matrix, which can be expressed using Eq. (11.17) as

½J�
3�3

¼

2666666664

vx

vr

vy

vr

vz

vr

vx

vs

vy

vs

vz

vs

vx

vt

vy

vt

vz

vt

3777777775
¼

2666666666664

X8

i¼ 1

�
vNi

vr
xi

� X8

i¼ 1

�
vNi

vr
yi

� X8

i¼ 1

�
vNi

vr
zi

�
X8

i¼ 1

�
vNi

vs
xi

� X8

i¼ 1

�
vNi

vs
yi

� X8

i¼ 1

�
vNi

vs
zi

�
X8

i¼ 1

�
vNi

vt
xi

� X8

i¼ 1

�
vNi

vt
yi

� X8

i¼ 1

�
vNi

vt
zi

�

3777777777775
(11.23)

The derivatives of the interpolation functions can be obtained from Eq. (11.16) as

vNi

vr
¼ 1

8
rið1þ ssiÞð1þ ttiÞ

vNi

vs
¼ 1

8
sið1þ rriÞð1þ ttiÞ

vNi

vt
¼ 1

8
tið1þ rriÞð1þ ssiÞ

9>>>>>>>>=>>>>>>>>;
; i ¼ 1� 8 (11.24)

and the coordinates of the nodes in the local system (ri, si, ti) are shown in Fig. 11.3. By inverting Eq. (11.22), we obtain8>>>>>>>><>>>>>>>>:

vNi

vx

vNi

vy

vNi

vz

9>>>>>>>>=>>>>>>>>;
¼ ½J��1

8>>>>>>>><>>>>>>>>:

vNi

vr

vNi

vs

vNi

vt

9>>>>>>>>=>>>>>>>>;
(11.25)

from which the matrix [Bi] can be evaluated. The stressestrain relations are the same as those given in Eqs. (11.9)
and (11.10).
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11.3.4 Element Stiffness Matrix

The element stiffness matrix is given by �
KðeÞ� ¼

ZZZ
VðeÞ

½B�T ½D�½B�dV (11.26)

Since the matrix [B] is expressed in natural coordinates (evident from Eqs. 11.20, 11.21, and 11.25), it is necessary to carry
out the integration in Eq. (11.26) in natural coordinates too, using the relationship

dV ¼ dx dy dz ¼ det½J�$ dr ds dt (11.27)

Thus, Eq. (11.26) can be rewritten as�
KðeÞ� ¼

Z 1

�1

Z 1

�1

Z 1

�1
½B�T ½D�½B�det½J� dr ds dt (11.28)

11.3.5 Numerical Computation

Since the matrix [B] is an implicit (not explicit!) function of r, s, and t, a numerical method has to be used to evaluate the
multiple integral of Eq. (11.28). The Gaussian quadrature has been proven to be the most efficient method of numerical
integration for this class of problems. By using the two-point Gaussian quadrature, which yields sufficiently accurate
results, Eq. (11.28) can be evaluated [11.4] as follows:

�
KðeÞ� ¼

XR2

r¼Ri ¼R1

XS2
s¼ Sj ¼ S1

XT2
t¼ Tk ¼ T1

h�½B�T ½D�½B�$ det½J��jðRi ;Sj;TkÞi (11.29)

where h�½B�T ½D�½B�$ det½J��jðRi ;Sj;TkÞi (11.30)

indicates the value of �½B�T�D��B�det�J��
evaluated at r ¼ Ri, s ¼ Sj, and t ¼ Tk, and R1 ¼ S1 ¼ T1 ¼ e0.57735 and R2 ¼ S2 ¼ T2 ¼ þ0.57735.

11.3.6 Numerical Results

The performance of the three-dimensional elements considered in Sections 11.2 and 11.3, namely the tetrahedron and
hexahedron elements, is studied by taking the short cantilever beam shown in Fig. 11.4 as the test case. This cantilever is

800 Ib-in
moment

7@3"

2"

2"

2"

2"

2"

z

x

y

FIGURE 11.4 A cantilever beam subjected to tip moment.
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modeled as an assemblage of 42 identical hexahedra, each 2 � 2 � 3 in. In the case of the tetrahedron element, each of the
42 hexahedra is considered to be composed of 5 tetrahedron elements. The cantilever beam is subjected to a tip moment of
800 lb-in as indicated in Fig. 11.4. The numerical results obtained are indicated in the following table [11.4]:

Element Type

Maximum Stress
Maximum Deflection at

Center of Gravity of Tip (in)sxx szz

Tetrahedron d d 0.606 � 10�4

ZIB 8 31.6 psi 1.4 psi 0.734 � 10�4

Beam theory 33.3 psi 0.0 psi 0.817 � 10�4

It can be seen that ZIB 8 is superior to the tetrahedron element.

11.4 ANALYSIS OF SOLIDS OF REVOLUTION

11.4.1 Introduction

The problem of stress analysis of solids of revolution (axisymmetric solids) under axisymmetric loads is of considerable
practical interest. This problem is similar to those of plane stress and plane strain since the displacements are confined to
only two directions (radial and axial) [11.5,11.6]. The basic element that can be used for modeling solids of revolution is
the axisymmetric ring element having triangular cross section. This element was originally developed by Wilson [11.7].
This element is useful for analyzing thick axisymmetric shells, solid bodies of revolution, turbine disks (Fig. 11.5), and
circular footings on a soil mass. In this section, the derivation of the element stiffness matrix and load vectors for the
axisymmetric ring element is presented.

11.4.2 Formulation of Elemental Equations for an Axisymmetric Ring Element

An axisymmetric ring element with a triangular cross section is shown in cylindrical coordinates in Fig. 11.6. For
axisymmetric deformation, since the displacement v along q direction is zero (due to symmetry), the relevant displacement
components are only u and w in the r and z directions, respectively. By taking the nodal values of u and w as the degrees of
freedom, a linear displacement model can be assumed in terms of triangular coordinates Li, Lj, and Lk as

U
! ¼

�
uðr; zÞ
wðr; zÞ

�
¼ ½N�Q!ðeÞ

(11.31)

FIGURE 11.5 Turbine disk modeled by triangular ring elements.
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where

½N� ¼

Ni O Nj O Nk O

O Ni O Nj O Nk

�
(11.32)

Q
!ðeÞ ¼

8>>>>>>>><>>>>>>>>:

Q2i�1

Q2i

Q2j�1

Q2j

Q2k�1

Q2k

9>>>>>>>>=>>>>>>>>;

ðeÞ

h

8>>>>>>>><>>>>>>>>:

ui

wi

uj
wj

uk
wk

9>>>>>>>>=>>>>>>>>;

ðeÞ

(11.33)

8><>:
Ni

Nj

Nk

9>=>; ¼

8><>:
Li

Lj

Lk

9>=>; ¼ 1
2A

8><>:
ai þ bir þ ciz

aj þ bjr þ cjz

ak þ bkr þ ckz

9>=>; (11.34)

A ¼ 1
2
ðrizj þ rjzk þ rkzi � rizk � rjzi � rkzjÞ (11.35)

(ri, zi) are the (r, z) coordinates of node i, and ai, aj, ak,., ck can be obtained from Eq. (3.32) by substituting r and z in
place of x and y, respectively. In this case, there are four relevant strains, namely εrr; εqq; εzz; and εrz, for the axisymmetric
case.

The strainedisplacement relations can be expressed as

ε
! ¼

8>>><>>>:
εrr

εqq

εzz

εrz

9>>>=>>>; ¼

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

vu

vr
u

r

vw

vz

vu

vz
þ vw

vr

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
¼ ½B�Q!ðeÞ

(11.36)

where

½B� ¼ 1
2A

26664
bi 0 bj 0 bk 0

ðNi=rÞ 0 ðNj=rÞ 0 ðNk=rÞ 0

0 ci 0 cj 0 ck

ci bi cj bj ck bk

37775 (11.37)

The stressestrain relations are given by

s! ¼ ½D� ε! (11.38)

where s! ¼ fsrr sqq szz srzgT and

z

0

r
i

j
wi

wj

ui

uj

uk

wk

k

FIGURE 11.6 An axisymmetric ring element with triangular cross section.
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½D� ¼ E

ð1þ vÞð1� 2vÞ

2666666664

1� v v v 0

v 1� v v 0

v v 1� v 0

0 0 0

�
1� 2v

2

�

3777777775
(11.39)

Since the matrix [B] contains terms that are functions of the coordinates r and z, the product [B]T [D] [B] cannot be
removed from under the integral sign in the expression of the element stiffness matrix [K(e)], Eq. (8.87). However, we can
adopt an approximate procedure for evaluating the integral involved in the expression of [K(e)]. If we evaluate the matrix
[B] using the r and z values at the centroid of the element, the product [B]T[D][B] can be removed from under the integral
sign as �

KðeÞ�x½B�T ½D�½B�
ZZZ

V ðeÞ
dV (11.40)

where the bar below [B] denotes that the matrix [B] is evaluated at the point ðr; zÞ with
r ¼ ðri þ rj þ rkÞ=3 and z ¼ ðzi þ zj þ zkÞ=3 (11.41)

By using the relation ZZZ
V ðeÞ

dV ¼ V ðeÞ ¼ 2prA (11.42)

Eq. (11.40) can be expressed as �
KðeÞ� ¼ ½B�T ½D�½B�2prA (11.43)

Although Eq. (11.43) is approximate, it yields reasonably accurate results. The components of the load vector of the
element are given by Eqs. (8.88) to (8.90). The load vector due to initial strains (caused by the temperature change T) can
be handled as in the case of [K(e)] since [B] occurs in the integral. Thus,

P
!ðeÞ

i ¼
ZZZ

V ðeÞ
½B�T

h
D
i
ε
!

0dV ¼
ZZZ

VðeÞ
½B�T ½D�EaT

8>>>>>>>>>>><>>>>>>>>>>>:

1

1

1

0

9>>>>>>>>>>>=>>>>>>>>>>>;
dV

x
EaT

ð1� 2vÞ½B�
T

8>>>>>>>>>>><>>>>>>>>>>>:

1

1

1

0

9>>>>>>>>>>>=>>>>>>>>>>>;
2prA

(11.44)

If fr and fz denote the components of the body force in the directions of r and z, respectively, the load vector P
!ðeÞ

b can be
evaluated either exactly using the area coordinates or approximately using the procedure adopted earlier. If we use the area
coordinates, Eq. (8.90) can be expressed as
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P
!ðeÞ

b ¼
ZZZ

VðeÞ
½N�T f!dV ¼

ZZ
A

2666666664

Li 0

0 Li

Lj 0

0 Lj

Lk 0

0 Lk

3777777775
(
fr

fz

)
2pr dA (11.45)

The radial distance r can be written in terms of the area coordinates as

r ¼ riLi þ rjLj þ rkLk (11.46)

By substituting Eq. (11.46) into Eq. (11.45) and evaluating the resulting area integrals using Eq. (3.78), we obtain

P
!ðeÞ

b ¼ 2pA
12

8>>>>>>>>><>>>>>>>>>:

ð2ri þ rj þ rkÞfr

ð2ri þ rj þ rkÞfz

ðri þ 2rj þ rkÞfr

ðri þ 2rj þ rkÞfz

ðri þ rj þ 2rkÞfr

ðri þ rj þ 2rkÞfz

9>>>>>>>>>=>>>>>>>>>;
(11.47)

It can be seen from Eq. (11.47) that the body forces are not distributed equally between the three nodes i, j, and k.
If Fr and Fz denote the applied stresses in the r and z directions, the load vector P

!ðeÞ
s can be evaluated using the area

coordinates as in the case of P
!ðeÞ

b . If we assume that only the edge ij lies on the surface SðeÞ1 on which the stresses fr and Fz

are acting (this implies that Lk ¼ 0), we can write

P
!ðeÞ

s ¼
ZZ

SðeÞ1

½N�T
(
Fr

Fz

)
dS1 ¼

Z
sij

2666666664

Li 0

0 Li

Lj 0

0 Lj

Lk 0

0 Lk

3777777775
(
Fr

Fz

)
2pr$ ds (11.48)

where dS1 ¼ 2pr ds, and sij denotes the length of the edge ij. By substituting Eq. (11.46) into Eq. (11.48), Eq. (3.77) can be
used to evaluate the line integral of Eq. (11.48). This results in

P
!ðeÞ

s ¼ psij
3

26666664
ð2ri þ rjÞFr

ð2ri þ rjÞFz

ðri þ 2rjÞFr

ðri þ 2rjÞFz

0
0

37777775 (11.49)

Note

If the edge, for example, ij, is vertical, we have r ¼ ri ¼ rj along this edge, and hence Eq. (11.48) leads to

P
!ðeÞ

s ¼ prisij

8>>>>>>>><>>>>>>>>:

Fr

Fz

Fr

Fz

0
0

9>>>>>>>>=>>>>>>>>;
(11.50)
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11.4.3 Numerical Results

An infinite cylinder subjected to an internal pressure, for which an exact solution is known, is selected as a means of demon-
strating the accuracy of the finite element considered. Fig. 11.7A shows three finite element meshes [11.7]. The resulting radial
and hoop stresses are plotted inFig. 11.7B.Except for the very coarsemesh, agreementwith the exact solution is excellent. In this
figure, stresses are plotted at the center of the quadrilaterals and are obtained by averaging the stresses in the four connecting
triangles. Ingeneral, goodboundary stresses are estimatedbyplotting the interior stresses and extrapolating to the boundary. This
type of engineering judgment is always necessary in evaluating results from a finite element analysis.

EXAMPLE 11.5
A triangular axisymmetric ring element with nodes i, j, and k is shown in Fig. 11.8. The (r, z) coordinates of the nodes in cen-

timeters are also indicated in Fig. 11.8. Find the shape functions corresponding to the nodal degrees of freedom of the element.

Solution

The matrix of shape functions corresponding to the six degrees of freedom of the element is given by Eq. (11.32) with the shape

functions defined in Eq. (11.34). The constants ai, aj, ak, ., ck of Eq. (11.34) can be found by replacing x and y by r and z,

respectively, in Eq. (3.32):

ai ¼ rjzk � rkzj ¼ 70ð20Þ � 50ð60Þ ¼ �1600

aj ¼ rkzi � rizk ¼ 50ð40Þ � 80ð20Þ ¼ 400

ak ¼ rizj � rjzi ¼ 80ð60Þ � 70ð40Þ ¼ 2000

bi ¼ zj � zk ¼ 60� 20 ¼ 40

bj ¼ zk � zi ¼ 20� 40 ¼ �20

bk ¼ zi � zj ¼ 40� 60 ¼ �20

ci ¼ rk � rj ¼ 50� 70 ¼ �20

cj ¼ ri � rk ¼ 80� 50 ¼ 30

ck ¼ rj � ri ¼ 70� 80 ¼ �10
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FIGURE 11.7 Infinite cylinder under internal pressure.
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EXAMPLE 11.5 dcont’d

The area of the triangle ijk is given by Eq. (11.35):

A ¼ 1

2
ðrizj þ rjzk þ rkzi � rizk � rjzi � rkzjÞ

¼ 1

2
½80ð60Þ þ 70ð20Þ þ 50ð40Þe80ð20Þe70ð40Þe50ð60Þ� ¼ 400 cm2 ¼ 0:04 m2

Thus, the shape functions are defined as

Niðr ; zÞ ¼ 1

2A
ðai þ bir þ cizÞ ¼ �2:0þ 0:05r � 0:025z

Njðr ; zÞ ¼ 1

2A
ðaj þ bjr þ cjzÞ ¼ 0:5� 0:025r þ 0:0375z

Nk ðr ; zÞ ¼ 1

2A
ðak þbk r þ ckzÞ ¼ 2:5� 0:025r þ 0:0125z

EXAMPLE 11.6
Find the matrix ½B� for the triangular ring element considered in Example 11.5.

Solution

The matrix [B] is given by Eq. (11.37). Using the solution of Example 11.5, the [B] matrix can be expressed as

½B� ¼

266666664

40 0 �20 0 �20 0

1

r
ð�2þ 0:05r � 0:025zÞ 0

1

r
ð0:5� 0:025r þ 0:0375zÞ 0

1

r
ð2:5� 0:025r � 0:0125zÞ 0

0 �20 0 30 0 �10

�20 40 30 �20 �10 �20

377777775
(E.1)

w2 = Q2j

w3 = Q2k

w

u

w1= Q2i

r

z

u1= Q2i − 1

u3= Q2k − 1

(rj, zj) = (70, 60)

(ri, zi) = (80, 40)

u2= Q2j − 1

(r, z)
i

k

j

(rk, zk) = (50, 20)

FIGURE 11.8 Triangular axisymmetric ring element.
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EXAMPLE 11.6 dcont’d

The centroid of the element is given by

fr ; zg ¼
�
1

3
ðri þ rj þ rk Þ; 1

3
ðzi þ zj þ zkÞ

�
¼

�
1

3
ð80þ 70þ 50Þ;1

3
ð40þ 60þ 20Þ

�
¼ f66:6667; 40:0g cm (E.2)

The matrix ½B� can be determined by evaluating [B] at the centroid, ðr ; zÞ ¼ ðr ; zÞ. Noting that

1

r
ð�2þ 0:05r � 0:0125zÞ ¼ 1

66:6667
f�2þ 0:05ð66:6667Þ � 0:025ð40Þg ¼ 0:005 (E.3)

1

r
ð0:5� 0:025r þ 0:0375zÞ ¼ 1

66:6667
f0:5� 0:025ð66:6667Þ þ 0:0375ð40Þg ¼ 0:005 (E.4)

1

r
ð2:5� 0:025r � 0:0125zÞ ¼ 1

66:6667
f2:5� 0:025ð66:6667Þ � 0:0125ð40Þg ¼ 0:005 (E.5)

the matrix ½B� can be found as

½B� ¼ ½Bðr ; zÞ� ¼

26664
0:05 0 �0:025 0 �0:025 0

0:005 0 0:005 0 0:005 0

0 �0:025 0 0:0375 0 �0:0125

�0:025 0:05 0:0375 �0:025 �0:0125 �0:025

37775 (E.6)

EXAMPLE 11.7
If the Young’s modulus and the Poisson’s ratio of the material of the triangular ring element ijk considered in Example 11.5 are

given by 207 GPa and 0.3, respectively, find the stiffness matrix of the element.

Solution

The stiffness matrix of the element is given by Eq. (11.43):�
K ðeÞ� ¼ ½B�T ½D�½B�2prA (E.1)

where ½B� is given by Eq. (E.6) of Example 11.6 and [D] by Eq. (11.39). For the given values of E and v, the matrix [D] becomes

½D� ¼ 207ð109Þ
ð1:3Þð0:4Þ

26664
0:7 0:3 0:3 0

0:3 0:7 0:3 0

0:3 0:3 0:7 0

0 0 0 0:2

37775 ¼ 1011

26664
2:7865 1:1942 1:1942 0

1:1942 2:7865 1:1942 0

1:1942 1:1942 2:7865 0

0 0 0 0:7962

37775N=m2 (E.2)

Noting that

2prA ¼ 2pð66:6667Þð400Þ ¼ 1675:5208
�
102

�
cm3 ¼ 0:167552 m3 (E.3)

the stiffness matrix of the triangular ring element ijk can be found from Eq. (E.1) as

�
K ðeÞ� ¼ 108

2666666664

1:3623 �0:4419 �0:6720 0:4961 �0:5052 �0:0542

�0:4419 0:6253 0:3502 �0:6045 0:0167 �0:0208

�0:6720 0:3502 0:4410 �0:2751 0:1909 �0:0750

0:4961 �0:6045 �0:2751 0:7399 �0:1084 �0:1355

�0:5052 0:0167 0:1909 �0:1084 0:2743 0:0917

�0:0542 �0:0208 �0:0750 �0:1355 0:0917 0:1563

3777777775
N

m
(E.4)
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EXAMPLE 11.8
If the triangular ring element ijk considered in Examples 11.5 to 11.7 is heated by 20 �C, determine the resulting nodal load vector

of the element. Assume the coefficient of thermal expansion of the material as a ¼ 10:8� 10�6 m=m �C.

Solution

The nodal load vector of the element ijk due to a temperature change T (initial strain) is given by Eq. (11.44):

P
!ðeÞ

initial ¼
EaT

1� 2v
½B�T

8>>><>>>:
1

1

1

0

9>>>=>>>;2prA (E.1)

Using the values of E ¼ 207 � 109 Pa, v ¼ 0.3, a ¼ 10.8 � 10�6 m/m �C, T ¼ 20 �C, 2prA ¼ 0.167552 m3 (from Eq. (E.3) of

Example 11.7), and the matrix ½B� given by Eq. (E.3) of Example 11.6, the nodal load vector of Eq. (E.1) can be found as

P
!ðeÞ

initial ¼ 106

8>>>>>>>><>>>>>>>>:

1:0301

�0:4682

�0:3746

0:7023

�0:3746

�0:2341

9>>>>>>>>=>>>>>>>>;
N (E.2)

EXAMPLE 11.9
Find the nodal load vector of the triangular ring element ijk considered in Example 11.5 corresponding to the gravity force acting

in the negative z direction. Assume the density of the material as r ¼ 7850 kg
�
m3.

Solution

The body forces, distributed uniformly over the volume of the element, are given by

fr ¼ 0; fz ¼ �rg ¼ �7850ð9:81Þ ¼ �77;008:5 N
�
m3 (E.1)

Noting that the area of the triangle ijk is equal to A ¼ 0.04 m2 (from Example 11.5), ri ¼ 0.8 m, rj ¼ 0.7 m, rk ¼ 0.5 m,

2 ri þ rj þ rk ¼ 2.8 m, ri þ 2 rj þ rk ¼ 2.7 m, ri þ rj þ 2 rk ¼ 2.5 m, the nodal load vector of the element, given by Eq. (11.47), can

be evaluated as

P
!ðeÞ

b ¼ 2pð0:04Þ
12

8>>>>>>>><>>>>>>>>:

0

2:8ð�77; 008:5Þ
0

2:7ð�77; 008:5Þ
0

2:5ð�77; 008:5Þ

9>>>>>>>>=>>>>>>>>;
¼

8>>>>>>>><>>>>>>>>:

0

4516:0249

0

4354:7383

0

4032:1651

9>>>>>>>>=>>>>>>>>;
N (E.2)

EXAMPLE 11.10
If uniformly distributed surface tractions (pressure loads) of magnitudes

Fr ¼ 10000 N
�
m2; Fz ¼ 2000 N

�
m2 (E.1)

act on the surface ij of the triangular ring element considered in Example 11.5, determine the corresponding nodal load vector of

the element.
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EXAMPLE 11.10 dcont’d

Solution

The nodal load vector corresponding to the surface tractions acting on the surface ij of the triangular ring element is given by Eq. (11.49):

P
!ðeÞ

s ¼ p sij
3

8>>>>>>>>><>>>>>>>>>:

ð2 ri þ rjÞ Fr

ð2 ri þ rjÞ Fz

ðri þ 2 rjÞ Fr

ðri þ 2 rjÞ Fz

0
0

9>>>>>>>>>=>>>>>>>>>;
(E.2)

where ri ¼ 0.8 m, rj ¼ 0.7 m, zi ¼ 0.4 m, zj ¼ 0.6 m, 2 ri þ rj ¼ 2.3 m, ri þ 2 rj ¼ 2.2 m, and the length of the edge ij can be

computed as

sij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrj � riÞ2 þ ðzj � ziÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:7� 0:8Þ2 þ ð0:6� 0:4Þ2

q
¼ 0:22361 m (E.3)

Using the values of the surface tractions in Eq. (E.1), the nodal load vector can be found as

P
!ðeÞ

s ¼ pð0:22361Þ
3

8>>>>>>>><>>>>>>>>:

2:3ð10; 000Þ
2:3ð2000Þ
2:2ð10; 000Þ
2:2ð2000Þ

0

0

9>>>>>>>>=>>>>>>>>;
¼

8>>>>>>>><>>>>>>>>:

5385:781

1077:154

5151:608

1030:322

0

0

9>>>>>>>>=>>>>>>>>;
N (E.4)

REVIEW QUESTIONS

11.1 Give brief answers to the following questions.

1. State two practical problems that require three-dimensional finite element modeling.
2. What is the basic or simplest element for three-dimensional problems?
3. Show a typical hexahedron element through a sketch.
4. What are the directions of displacements in axisymmetric solid body subjected to axisymmetric loads?
5. What is the basic element that can be used for the analysis of axisymmetric problems?
6. Show the nodal degrees of freedom for an axisymmetric ring element with triangular cross section.

11.2 Fill in the blank with a suitable word.

1. For the stress analysis of a three-dimensional problem using a four-noded tetrahedron element, the displacement com-
ponents u, v, and w are assumed to vary ——————————— inside the element.

2. ZIB 8 is the abbreviation of —————————— ————————— Brick with 8 nodes.
3. The value of each of the natural coordinates r, s, and t at every node in a hexahedron element is either — one or

—————————— one.
4. The triple integrals involved in the generation of the stiffness matrix of a hexahedron element are usually evaluated

using ———————————— quadrature.
5. The size of the stiffness matrix of an axisymmetric element with triangular cross section is —————————.

11.3 Indicate whether the following statement is true or false.

1. Two coordinate systemsda local one and a global onedare necessary for a tetrahedron element.
2. The evaluation of the stiffness matrix of a four-noded tetrahedron does not require any integrations.
3. A solid of revolution can be called an axisymmetric solid.
4. The ZIB 8 and the eight-noded hexahedron element are two different elements.
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11.4 Select the most appropriate answer among the multiple choices given.

1. The number of strain/stress components need to be considered in a four-noded tetrahedron element is:
(a) 3 (b) 6 (c) 4

2. The size of the stiffness matrix of a four-noded tetrahedron element is:
(a) 4 � 4 (b) 8 � 8 (c) 12 � 12

3. The natural coordinates r, s, and t for a hexahedron element is more convenient because these coordinates are associ-
ated with pairs of opposite:
(a) n faces (b) nodes (c) diagonals

4. The size of the stiffness matrix of the ZIB 8 element is:
(a) 8 � 8 (b) 24 � 24 (c) 12 � 12

5. The coordinates that are convenient for modeling axisymmetric problems are:
(a) Cartesian (b) cylindrical (c) spherical

6. The number of nonzero strains in an axisymmetric problem is:
(a) 3 (b) 4 (c) 6

PROBLEMS

11.1 The X, Y, Z coordinates of the nodes of a tetrahedron element, in inches, are shown in Fig. 11.9.
a. Derive the matrix [B].
b. Derive the stiffness matrix of the element assuming that E ¼ 30 � 106 psi and v ¼ 0.32.

11.2 Find the nodal displacements and the stress distribution in the element shown in Fig. 11.9 by fixing the face 123.
Assume the loads applied at node 4 as PX ¼ 50 lb, PY ¼ 100 lb, and PZ ¼ �150 lb.

11.3 A uniform pressure of 100 psi is applied on the face 234 of the tetrahedron element shown in Fig. 11.9. Determine
the corresponding load vector of the element.

11.4 If the temperature of the element shown in Fig. 11.9 is increased by 50 �F while all the nodes are constrained, deter-
mine the corresponding load vector. Assume the coefficient of thermal expansion as a ¼ 6.5 � 10�6 per �F.

11.5 The X, Y, Z coordinates of a hexahedron element are shown in Fig. 11.10. Derive the matrix [J].
11.6 An axisymmetric ring element is shown in Fig. 11.11.

a. Derive the matrix [B].
b. Derive the matrix [D], for steel with E ¼ 30 � 106 psi and v ¼ 0.33.
c. Derive the element stiffness matrix, [K].

Z

Y

X

Pz

Py

Px

3 (0, 0, 10) in

2 (0, 5, 0) in

(10, 10, 5) in(15, 0, 0) in

E = 30 × 106 psi
= 0.3
= 0.283 lbf/in3

1 4

ν
ρ

FIGURE 11.9 Tetrahedron element.
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11.7 If the element shown in Fig. 11.11 is subjected to an initial strain due to an increase in temperature of 50 �F, deter-
mine the corresponding load vector. Assume a value of a ¼ 6.5 � 10�6 per �F.

11.8 If the face 23 of the element shown in Fig. 11.11 is subjected to a uniform pressure of 200 psi, determine the cor-
responding load vector.

11.9 A hexagonal plate with a circular hole is subjected to a uniform pressure on the inside surface as shown in
Fig. 11.12A. Due to the symmetry of the geometry and the load, only a 30� segment of the plate can be considered
for the finite element analysis [Fig. 11.12B]. Indicate a procedure for incorporating the boundary conditions along
the X and s axes.
Hint: The symmetry conditions require that the nodes along the X and s axes should have zero displacement in a
direction normal to the X and s axes, respectively. If the global degrees of freedom at node are denoted as Q2ie1 and
Q2i, then the boundary condition becomes a multipoint constraint that can be expressed as [11.8]

�Q2i�1 sin qþ Q2i cos q ¼ 0

A method of incorporating this type of constraint was indicated in Section 6.5.
11.10 Write a program called SØLID for the analysis of three-dimensional solid bodies using tetrahedron elements. Find

the tip deflection of the short cantilever beam discussed in Section 11.3.6 using this SØLID subroutine.

(0, 0, 30) in

(0, 20, 0) in

(10, 0, 0) in

Z

Y

X

FIGURE 11.10 Hexahedron element.

2 2

3 3
11

2"

2" 20"

FIGURE 11.11 Axisymmetric ring element.
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11.11 For a tetrahedron element with nodes i, j, k, and l in the global coordinate system (shown in Fig. 11.13), magnetic
forces of varying intensity

f
! ¼

8><>:
fxðx; y; zÞ
fyðx; y; zÞ
fzðx; y; zÞ

9>=>;
act throughout the element. Derive an expression for the corresponding nodal load vector of the element.

11.12 For a tetrahedron element with nodes i, j, k, and l in the global coordinate system (shown in Fig. 11.13), surface
tractions

F
! ¼

8><>:
px0
py0
pz0

9>=>;
act on the face jkl of the element. Derive the expression for the corresponding nodal load vector of the element.

X

Y(A)

(B)

Q2i

Q2i−1

s

X

= 30°

Y

i

θ

FIGURE 11.12 Hexagonal plate with circular hole.
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11.13 For a tetrahedron element with nodes i, j, k, and l in the global coordinate system (shown in Fig. 11.13), surface
tractions

F
! ¼

8><>:
px0

py0
pz0

9>=>;
act on the face kli of the element. Derive the expression for the corresponding nodal load vector of the element.

11.14 For a tetrahedron element with nodes i, j, k, and l in the global coordinate system (shown in Fig. 11.13), surface
tractions

F
! ¼

8><>:
px0
py0
pz0

9>=>;
act on the face lij of the element. Derive the expression for the corresponding nodal load vector of the element.

11.15 In a three-dimensional problem modeled with tetrahedron elements, external concentrated forces of magnitude

P
!

A ¼

8><>:
PAx

PAy

PAz

9>=>;
act at point A, which happens to lie somewhere on the face ijk of a tetrahedron element e with nodes i, j, k, and l in
the global coordinate system (as shown in Fig. 11.13). Derive the corresponding nodal load vector of the element e.

11.16 In a three-dimensional problem modeled with tetrahedron elements, external concentrated forces of magnitude

P
!

A ¼

8><>:
PAx

PAy

PAz

9>=>;
act at point A, which happens to lie somewhere on the face jkl of a tetrahedron element e with nodes i, j, k, and l in
the global coordinate system. Derive the corresponding nodal load vector of the element e.

11.17 In a three-dimensional problem modeled with tetrahedron elements, external concentrated forces of magnitude

P
!

A ¼

8><>:
PAx

PAy

PAz

9>=>;

(x , y , z )
(xj, yj, zj)

(xA, yA, zA)

(xi, yi, zi)

Py

Px

A

Pz

z

y

x

j

(xk, yk, zk)k

i

FIGURE 11.13 Tetrahedron element.
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act at point A, which happens to lie somewhere on the face kli of a tetrahedron element e with nodes i, j, k, and l in
the global coordinate system. Derive the corresponding nodal load vector of the element e.

11.18 In a three-dimensional problem modeled with tetrahedron elements, external concentrated forces of magnitude

P
!

A ¼

8><>:
PAx

PAy

PAz

9>=>;
act at point A, which happens to lie somewhere on the face lij of a tetrahedron element e with nodes i, j, k, and l in
the global coordinate system. Derive the corresponding nodal load vector of the element e.

11.19 A uniformly distributed pressure of magnitude F ¼ 1 MPa acts normal to the face ij as shown in Fig. 11.14 (all
around the ring) of a triangular ring element. Determine the equivalent nodal load vector of the element.

11.20 A distributed pressure varies linearly from 1 MPa at node i to 2 MPa at node j of the face ij as shown in Fig. 11.15
(all around the ring) of a triangular ring element. Determine the equivalent nodal load vector of the element.
Hint: Find the r and z components of the normal pressures at points i and j as

�
Fri; Fzi

�
and

�
Frj;Fzj

�
, respectively.

Use Fr ¼ N1Fri þ N2Frj and Fz ¼ N1Fzi þ N2Fzj and the relations
R
sij
N2
1 ds ¼ 1

3sij;
R
sij
N2
2 ds ¼ 1

3sij;R
sij
N1N2 ds ¼ 1

6sij with sij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrj � riÞ2 þ ðzj � ziÞ2

q
.

w

(r, z)

Normal pressure
Φ = 1 MPa

u

k

i

j

FIGURE 11.14 Triangular ring element under uniform pressure.

w

(r, z)

Linearly varying
normal pressure

u

k

i

j

Φj = 2 MPa

Φi = 1 MPa

FIGURE 11.15 Triangular ring element under varying pressure.
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11.21 A long thick-walled cylindrical pressure vessel of inner radius 0.75 m and outer radius 1.0 m is subjected to an
internal pressure of 5 MPa. Considering an axial length of 0.2 m, determine the radial displacement of the inner
surface of the pressure vessel. The material properties of the pressure vessel are given by E ¼ 207 GPa and
v ¼ 0.3. Assume that the outer surface of the pressure vessel is constrained from any displacement. Use two trian-
gular ring elements for idealization as shown in Fig. 11.16.

11.22 Solve Example 11.9 by using the approximate values Li ¼ Li; Lj ¼ Lj, and Lk ¼ Lk, evaluated at the centroid
ðr; zÞ of the element cross section, in the integral of Eq. (11.45).

11.23 Find the nodal load vector of a triangular ring element if surface tractions Fr and Fz act on the surface jk.
11.24 Find the nodal load vector of a triangular ring element if surface tractions Fr and Fz act on the surface ki.
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FIGURE 11.16 Thick-walled cylindrical pressure vessel.
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12.1 DYNAMIC EQUATIONS OF MOTION

In dynamic problems the displacements, velocities, strains, stresses, and loads are all time dependent. The procedure
involved in deriving the finite element equations of a dynamic problem can be stated by the following steps:

Step 1: Idealize the body into E finite elements.
Step 2: Assume the displacement model of element e as

U
!ðx; y; z; tÞ ¼

8><>:
uðx; y; z; tÞ
vðx; y; z; tÞ
wðx; y; z; tÞ

9>=>; ¼ ½Nðx; y; zÞ�Q!ðeÞðtÞ (12.1)

where U
!

is the vector of displacements, [N] is the matrix of shape functions, and Q
!ðeÞ

is the vector of nodal displacements
that is assumed to be a function of time t.

Step 3: Derive the element characteristic (stiffness and mass) matrices and characteristic (load) vector.
From Eq. (12.1), the strains can be expressed as

ε
! ¼ ½B�Q!ðeÞ

(12.2)

and the stresses as

s! ¼ ½D� ε! ¼ ½D�½B�Q!ðeÞ
(12.3)

By differentiating Eq. (12.1) with respect to time, the velocity field can be obtained as

_
U
!ðx; y; z; tÞ ¼ ½Nðx; y; zÞ� _Q!

ðeÞ
ðtÞ (12.4)
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where
_
Q
!ðeÞ

is the vector of nodal velocities. To derive the dynamic equations of motion of a structure, we can use either
Lagrange equations [12.1] or Hamilton’s principle stated in Section 8.3.2. The Lagrange equations are given by

d
dt

�
vL

v _Q

�
�
�
vL

vQ

�
þ
�
vR

v _Q

�
¼ f0g (12.5)

where

L ¼ T � pp (12.6)

is called the Lagrangian function, T is the kinetic energy, pp is the potential energy, R is the dissipation function, Q is the
nodal displacement, and _Q is the nodal velocity. The kinetic and potential energies of an element e can be expressed as

T ðeÞ ¼ 1
2

ZZZ
V ðeÞ

r
_
U
!T _

U
!

dV (12.7)

and

p
ðeÞ
P ¼ 1

2

ZZZ
V ðeÞ

ε
!T s! dV �

ZZ
SðeÞ1

U
!T

F
!

dS1 �
ZZZ

V ðeÞ
U
!T

f
!

dV (12.8)

where V (e) is the volume, r is the density, and
_
U
!

is the vector of velocities of element e. By assuming the existence of
dissipative forces proportional to the relative velocities, the dissipation function of the element e can be expressed as

RðeÞ ¼ 1
2

ZZZ
V ðeÞ

m
_
U
!T _

U
!

dV (12.9)

where m can be called the damping coefficient. In Eqs. (12.7) to (12.9), the volume integral has to be taken over the volume
of the element, and in Eq. (12.8) the surface integral has to be taken over that portion of the surface of the element on which
distributed surface forces are prescribed.
By using Eqs. (12.1) to (12.3), the expressions for T, pp, and R can be written as

T ¼
XE
e¼ 1

T ðeÞ ¼ 1
2
_
Q
!e

T
"XE

e¼ 1

ZZZ
V ðeÞ

r½N�T ½N�dV
#

_
Q
!e (12.10)

pp ¼
XE
e¼ 1

pðeÞ
p ¼ 1

2
Q
!e

T

"XE
e¼ 1

ZZZ
V ðeÞ

½B�T ½D�½B�dV
#
Q
!e �

Q
!e

T

 XE
e¼ 1

ZZ
SðeÞ1

½N�T F!ðtÞdS1 þ
ZZZ

VðeÞ
½N�T f!ðtÞdV

!
� Q
!e T P

!e cðtÞ (12.11)

R ¼
XE
e¼ 1

RðeÞ ¼ 1
2
_
Q
!e T

"XE
e¼ 1

ZZZ
V ðeÞ

m½N�T ½N�dV
#
_
Q
!e (12.12)

where Q
!e is the global nodal displacement vector,

_
Q
!e is the global nodal velocity vector, and P

!e c is the vector of concen-
trated nodal forces of the structure or body. The matrices involving the integrals can be defined as follows:�

MðeÞ� ¼ element mass matrix ¼
ZZZ

V ðeÞ
r½N�T ½N�dV (12.13)

�
KðeÞ� ¼ element stiffness matrix ¼

ZZZ
V ðeÞ

½B�T ½D�½B�dV (12.14)

�
CðeÞ� ¼ element damping matrix ¼

ZZZ
V ðeÞ

m½N�T ½N�dV (12.15)

P
!ðeÞ

s ¼ vector of element nodal forces produced by surface forces ¼
ZZ

S
ðeÞ
1

½N�T F!$ dS1 (12.16)
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P
!ðeÞ

b ¼ vector of element nodal forces produced by body forces ¼
ZZZ

VðeÞ
½N�T f!$ dV (12.17)

Step 4: Assemble the element matrices and vectors and derive the overall system equations of motion.
Eqs. (12.10) to (12.12) can be written as

T ¼ 1
2
_
Q
!e

Th
Me
i _
Q
!e (12.18)

pP ¼ 1
2
Q
!e

Th
Ke
i
Q
!e �Q

!e
T
P
!

(12.19)

R ¼ 1
2
_
Q
!e

Th
Ce
i _
Q
!e (12.20)

where h
Me
i
¼ master mass matrix of the structure ¼

XE
e¼ 1

�
MðeÞ�

h
Ke
i
¼ master stiffness matrix of the structure ¼

XE
e¼ 1

�
KðeÞ�

h
Ce
i
¼ master damping matrix of the structure ¼

XE
e¼ 1

�
CðeÞ�

P
!e ðtÞ ¼ total load vector ¼

XE
e¼ 1

�
PðeÞ
s ðtÞ þ PðeÞ

b ðtÞ
�
þ P
!e cðtÞ

By substituting Eqs. (12.18) to (12.20) into Eq. (12.5), we obtain the desired dynamic equations of motion of the structure
or body as h

Me
i €
Qe!ðtÞ þ

h
Ce
i _
Qe!ðtÞ þ

h
Ke
i
Qe!ðtÞ ¼ Pe!ðtÞ (12.21)

where
€
Q
!e is the vector of nodal accelerations in the global system. If damping is neglected, the equations of motion can be

written as h
Me
i €
Qe!þ

h
Ke
i
Qe! ¼ Pe! (12.22)

Step 5: Solve the equations of motion by applying the boundary and initial conditions. Eq. (12.21) or (12.22) can
be solved by using any of the techniques discussed in Section 7.4 for propagation problems.
Step 6: Once the time history of nodal displacements, Q

!e ðtÞ, is known, the time histories of stresses and strains in the
elements can be found as in the case of static problems
Special spaceetime finite elements have also been developed for the solution of dynamic solid and structural mechanics
problems [12.2,12.3].

12.2 CONSISTENT AND LUMPED MASS MATRICES

Eq. (12.13) for the mass matrix was first derived by Archer [12.4] and is called the consistent mass matrix of the element. It
is called consistent because the same displacement model that is used for deriving the element stiffness matrix is used for
the derivation of mass matrix. It is of interest to note that several dynamic problems have been and are being solved with
simpler forms of mass matrices. The simplest form of mass matrix that can be used is that obtained by placing point
(concentrated) masses mi at node points i in the directions of the assumed displacement degrees of freedom. The
concentrated masses refer to translational and rotational inertia of the element and are calculated by assuming that the
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material within the mean locations on either side of the particular displacement behaves like a rigid body while the
remainder of the element does not participate in the motion. Thus, this assumption excludes the dynamic coupling that
exists between the element displacements, and hence the resulting element mass matrix is purely diagonal, and is called the
lumped mass matrix.

The lumped mass matrices will lead to nearly exact results if small but massive objects are placed at the nodes of a
lightweight structure. The consistent mass matrices will be exact if the actual deformed shape (under dynamic conditions)
is contained in the displacement shape functions [N]. Since the deformed shape under dynamic conditions is not known,
frequently the static displacement distribution is used for [N]. Hence, the resulting mass distribution will only be
approximate; however, the accuracy is generally adequate for most practical purposes. Since lumped element matrices are
diagonal, the assembled or overall mass matrix of the structure requires less storage space than the consistent mass matrix.
Moreover, the diagonal lumped mass matrices greatly facilitate the desired computations.

12.2.1 Consistent and Lumped Mass Matrices of a Bar Element

The displacement model (linear) of the bar element shown in Fig. 12.1A is given by

uðxÞ ¼ ½N� q!ðeÞ
(12.23)

where

½N� ¼
h�

1� x

l

��x
l

�i
(12.24)

q!ðeÞ ¼
�
q1
q2

�ðeÞ
¼
�
uðx ¼ 0Þ
uðx ¼ lÞ

�ðeÞ
(12.25)

and u is the axial displacement parallel to the x axis. The consistent mass matrix of the element is given by

(12.26)

where A is the uniform cross-sectional area, and l is the length of the element. Thus, the consistent mass matrices, in
general, are fully populated. On the other hand, the lumped mass matrix of the element can be obtained (by dividing the
total mass of the element equally between the two nodes) as

(12.27)

 A bar element

u2
u1

A, E

A fixed-free bar

u2
u1= 0 A, E

(A)

(B)

FIGURE 12.1 Bar element.
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12.2.2 Consistent and Lumped Mass Matrices of a Space Truss Element

In a space truss element, a point located at a distance x from the left end (origin of local x axis) undergoes an axial
displacement with components u(x), v(x), and w(x) along the global X, Y, and Z directions, respectively. Since the
displacement variation is linear, we can express u(x), v(x), and w(x) (see Fig. 12.2) as

U
!
3�1

ðxÞ ¼

8><>:
uðxÞ
vðxÞ
wðxÞ

9>=>; ¼ ½N�
3�6

Q
!ðeÞ

6�1
(12.28)

where

½N� ¼

26666664

�
1� x

l

�
0 0

x

l
0 0

0
�
1� x

l

�
0 0

x

l
0

0 0
�
1� x

l

�
0 0

x

l

37777775
and

Q
!ðeÞ ¼

8>>>>>>>><>>>>>>>>:

Q3i�2

Q3i�1

Q3i

Q3j�2

Q3j�1

Q3j

9>>>>>>>>=>>>>>>>>;
(12.29)

where Q3i�2, Q3i�1, and Q3i are the components of displacement of node i (local node 1), and Q3j�2, Q3j�1, and Q3j are the
components of displacement of node j (local node 2) in the global XYZ system. If the density (r) and cross-sectional area
(A) of the bar are constant, the consistent mass matrix of the element can be obtained as

Z

Y

X

0

u (x )

v (x )

1 = i

2 = j

Q3 i

Q3 j

Q3 i−2

Q3 i −1

Q3 j−2

Q3 j−1

w (x )

x

FIGURE 12.2 A truss element in space.
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�
mðeÞ� ¼ �

MðeÞ� ¼
ZZZ

VðeÞ
r½N�T ½N�$ dV

¼ rAl

6

266666666666666666664

2 0 0 1 0 0

0 2 0 0 1 0

0 0 2 0 0 1

1 0 0 2 0 0

0 1 0 0 2 0

0 0 1 0 0 2

377777777777777777775

(12.30)

To find the lumped mass matrix of the element, as in the case of the bar element, the total element mass in each di-
rection is distributed equally to the nodes of the element and the masses are associated with translational degrees of
freedom in each of the X, Y, and Z directions. Thus, the lumped mass matrix of a space truss element is given by

�
mðeÞ�

l
¼ rAl

2

26666666664

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

37777777775
(12.31)

EXAMPLE 12.1
Derive the consistent and lumped mass matrices of a planar truss element shown in Fig. 12.3.

Y

X

0 u (o ) = q1

v (o ) = q2

u (x )

v (x )

x

u (  ) = q3

v (  ) = q4

FIGURE 12.3 A planar truss element.
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EXAMPLE 12.1 dcont’d

Solution

In a planar truss element, a point located at a distance x from the left end (origin of the local x axis) undergoes an axial

displacement with components u(x) and v(x) along the global X and Y directions, respectively. Since the displacement variation is

linear, we can express u(x) and v(x) as

U
!ðxÞ ¼ ½N� q!ðeÞ

(E.1)

where

U
!ðxÞ ¼

�
uðxÞ
vðxÞ

�
; ½NðxÞ� ¼

�
N1ðxÞ 0 N2ðxÞ 0

0 N1ðxÞ 0 N2ðxÞ
	
; q!ðeÞ ¼

8>>><>>>:
q1

q2

q3

q4

9>>>=>>>; (E.2)

with

N1ðxÞ ¼ 1� x

l
and N2ðxÞ ¼ x

l
(E.3)

The consistent mass matrix of the element, [m(e)], can be evaluated as�
mðeÞ� ¼

ZZZ
V ðeÞ

r½N�T ½N� dV

¼
Z l

x¼0

r

2666666664

N1ðxÞ 0

0 N1ðxÞ

N2ðxÞ 0

0 N2ðxÞ

3777777775
24N1ðxÞ 0 N2ðxÞ 0

0 N1ðxÞ 0 N2ðxÞ

35A dx

(E.4)

By carrying out the integrations in Eq. (E.4), we obtain the consistent mass matrix of the element as

�
mðeÞ� ¼ rAl

6

266664
2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2

377775 (E.5)

To find the lumped mass matrix of the element, as in the case of the bar element, the total element mass in each direction is

distributed equally to the nodes of the element and the masses are associated with translational degrees of freedom in both X and Y

directions. Thus, the lumped mass matrix of a planar truss element is given by

�
mðeÞ�

l
¼ rAl

2

266664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

377775 (E.6)

12.2.3 Consistent and Lumped Mass Matrices of a Uniform Beam Element

The transverse displacement w(x) at a distance x from the origin can be expressed as (see Fig. 12.4)

wðxÞ ¼ ½NðxÞ�W!ðeÞ
(12.32)
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where [N(x)] is given by Eq. (9.23) and

W
!ðeÞ ¼ fW1 W2 W3 W4 gT (12.33)

The consistent mass matrix of the element can be found as�
mðeÞ� ¼

ZZZ
V ðeÞ

r½N�T ½N�dV ¼ r

Z l

x¼0
½N�T ½N�dx

ZZ
A

dA

¼ rAl

420

266666666664

156 22l 54 �13l

22l 4l2 13l �3l2

54 13l 156 �22l

�13l �3l2 �22l 4l2

377777777775

(12.34)

For the lumped mass matrix of a uniform beam element, the total mass of the element is distributed equally to the
translational degrees of freedom at the two nodes. If rotatory inertia of the element is neglected, the rotational inertias
(masses) associated with the rotational degrees of freedom will be zero. Thus, the lumped mass matrix of a beam element is
given by

�
mðeÞ�

l
¼ rAl

2

266664
1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

377775 (12.35)

12.2.4 Consistent Mass Matrix of a Space Frame Element

A space frame element will have 12 degrees of freedom, 6 deflections, and 6 rotations, as shown in Fig. 9.9A. By taking
the origin of the local coordinate system at node 1, the x axis along the length of the element, and the y and z axes along the
principal axes of the element cross section, the displacement model can be expressed as

W1
W3

W4W2

O

w (x )

x

FIGURE 12.4 A beam element.
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U
!ðxÞ ¼

8><>:
uðxÞ
vðxÞ
wðxÞ

9>=>; ¼ ½NðxÞ� q! ðeÞ (12.36)

where

�
NðxÞ� ¼

2666666666664

1� x

l
0 0 0

0
1

l3


2x3 � 3lx2 þ l3

�
0 0

0 0
1

l3


2x3 � 3lx2 þ l3

�
0

0 0
x

l
0

0
1

l2


x3 � 2lx2 þ l2x

�
0 �1

l3

�1

l2


x3 � 2lx2 þ l2x

�
0 0 0



2x3 � 3lx2

�

0 0 0 0

0 0 0
1

l2


x3 � lx2

�

�1

l3


2x3 � 3lx2

�
0

1

l2


lx2 � x3

�
0

37777777775

(12.37)

and

q!ðeÞ ¼

8>>><>>>:
q1
q2
«

q12

9>>>=>>>;
ðeÞ

(12.38)
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The consistent mass matrix of the element in the local xyz system can be derived as�
mðeÞ� ¼

ZZZ
V ðeÞ

r½N�T ½N� dV

¼ rAl

266666666666666666666666666666666666666666666666666666664

1
3

0
13
35

Symmetric

0 0
13
35

0 0 0
J

3A

0 0 � 11
210

l 0
l2

105

0
11
210

l 0 0 0
l2

105
1
6

0 0 0 0 0
1
3

0
9
70

0 0 0
13
420

l 0
13
35

0 0
9
70

0 � 13
420

l 0 0 0
13
35

0 0 0
J

6A
0 0 0 0 0

J

3A

0 0
13l
420

0 � l2

140
0 0 0

11
210

l 0
l2

105

0 � 13
420

l 0 0 0 � l2

140
0 � 11

210
l 0 0 0

l2

105

377777777777777777777777777777777777777777777777777777775

(12.39)

where r is the density, A is the cross-sectional area, l is the length, and J is the polar moment of inertia of the element.

12.2.5 Consistent Mass Matrix of a Planar Frame Element

For the planar frame element shown in Figure 9.14, only axial and in-plane bending degrees of freedom will be there and
the consistent mass matrix will be

�
mðeÞ� ¼ rAl

26666666664

1=3 Symmetric

0 13=35

0 11l=210 l2
�
105

1=6 0 0 1=3

0 9=70 13l=420 0 13=35

0 �13l=420 �l2
�
140 0 �11l=210 l2

�
105

37777777775
(12.40)

Note

If the cross section of the frame (or beam) element is not small, the effects of rotatory inertia and shear deformation become

important in the dynamic analysis. The derivation of stiffness and mass matrices of beam elements, including the effects of rotatory

inertia and shear deformation, can be found in [12.5,12.6].
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12.2.6 Consistent Mass Matrix of a Triangular Membrane Element

By considering all nine degrees of freedom of the element (shown in Figure 10.2), linear shape functions in terms of the
local coordinates x and y can be used to express the displacement field as

U
! ¼

8><>:
uðx; yÞ
vðx; yÞ
wðx; yÞ

9>=>; ¼ ½N�Q!ðeÞ
(12.41)

where

½Nðx; yÞ� ¼

264N1 0 0 N2 0 0 N3 0 0

0 N1 0 0 N2 0 0 N3 0

0 0 N1 0 0 N2 0 0 N3

375 (12.42)

with N1(x, y), N2(x, y), and N3(x, y) given by Eq. (10.5), and

Q
!ðeÞ ¼ fQ3i�2 Q3i�1 Q3i Q3j�2 Q3j�1 Q3j Q3k�2 Q3k�1 Q3kgT (12.43)

The consistent mass matrix of the element (applicable in any coordinate system) can be obtained as�
mðeÞ� ¼

ZZZ
VðeÞ

r½N�T ½N� dV (12.44)

By carrying out the necessary integration (in the local xy coordinate system, for simplicity), the mass matrix can be
derived as

�
MðeÞ� ¼ �

mðeÞ� ¼ rAt

12

2666666666666666664

2 0 0 1 0 0 1 0 0

0 2 0 0 1 0 0 1 0

0 0 2 0 0 1 0 0 1

1 0 0 2 0 0 1 0 0

0 1 0 0 2 0 0 1 0

0 0 1 0 0 2 0 0 1

1 0 0 1 0 0 2 0 0

0 1 0 0 1 0 0 2 0

0 0 1 0 0 1 0 0 2

3777777777777777775

(12.45)

where t is the thickness of the element.

12.2.7 Consistent Mass Matrix of a Triangular Bending Element

For the triangular plate bending element shown in Figure 10.17, the stiffness matrix has been derived in Section 10.8 by
assuming the displacement model

wðx; yÞ ¼ ½h� a! (12.46)

where [h] and a! are given by Eqs. (10.77) and (10.78), respectively. By using Eqs. (12.46) and (10.80), the transverse
displacement w can be expressed as

wðx; yÞ ¼

½h�
h
he
i�1
�
q!ðeÞ

(12.47)

where
h
he
i
is given by Eq. (10.81). Due to rotation of normals to the middle plane about the x and y axes, any point located

at a distance of z from the middle plane will have in-plane displacement components given by

u ¼ �z$
vw

vx

v ¼ �z$
vw

vy

9>>>=>>>; (12.48)
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Thus, the three translational displacements can be expressed, using Eqs. (12.47) and (12.48), as

U
!
3�1

ðx; yÞ ¼

8>>>>><>>>>>:

uðx; yÞ

vðx; yÞ

wðx; yÞ

9>>>>>=>>>>>;
¼

266666666664

�z
v½h�
vx

�z
v½h�
vy

½h�

377777777775
h
he
i�1

q!ðeÞ ¼ ½N1�
3�9

h
he
i�1

9�9

q!ðeÞ
9�1

h½N� q!ðeÞ
(12.49)

where

½N1� ¼

264 0 �z 0 �2xz �yz 0 �3x2z �zðy2 þ 2xy
�

0

0 0 �z 0 �xz �2yz 0 �zð2xyþ x2
� �3y2z

1 x y x2 xy y2 x3 ðx2yþ xy2
�

y3

375 (12.50)

and

½N� ¼ ½N1�
h
he
i�1

(12.51)

The consistent mass matrix of the element can now be evaluated as�
mðeÞ� ¼

ZZZ
V ðeÞ

r½N�T ½N� dV

¼
ZZZ

V ðeÞ
r

h
he
i�1
�T

½N1�T ½N1�
h
he
i�1

dV

(12.52)

Eq. (12.52) denotes the mass matrix obtained by considering both translational (due to w) and rotatory (due to u and v)
inertia of the element. If rotatory inertia is neglected, as is done in most practical computations, the consistent mass matrix
can be obtained by setting simply [N1] h [h] in Eq. (12.52). In this case we have

�
mðeÞ� ¼

ZZZ
V ðeÞ

r

h
he
i�1
�T

½h�T ½h�
h
he
i�1

dV

¼ rt

h
he
i�1
�TZZ

A

½h�T ½h�dx dy
�h

he
i�1

¼ rt

h
he
i�1
�TZ

area

�

266666666666666664

1

x x2

y xy y2 Symmetric

x2 x3 x2y x4

xy x2y xy2 x3y x2y2

y2 xy2 y3 x2y2 xy3 y4

x3 x4 x3y x5 x4y x3y2 x6

x2yþ xy2

� ðx2y2 þ x3y
� ðxy3 þ x2y2

� ðx3y2 þ x4y
� ðx2y3 þ x3y2

� ðxy4 þ x2y3
� ðx4y2 þ x5y

� 

xy2 þ x2y

�2
y3 xy3 y4 x2y3 xy4 y5 x2y3 ðxy5 þ x2y4

�
y6

377777777777777775
dx dy

"
he
#�1

(12.53)
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Thus, the determination of the mass matrix [m(e)] involves the evaluation of integrals of the formZZ
area

xiyj dx dy; i ¼ 0� 6 and j ¼ 0� 6 (12.54)

Note that the highest powers of x and y appearing in the integrand of Eq. (12.54) are larger than the highest powers
involved in the derivation of the stiffness matrix of the same element; see Eq. (10.87). This characteristic is true for all
finite elements.

12.2.8 Consistent Mass Matrix of a Tetrahedron Element

For the solid tetrahedron element shown in Figure 11.1, the displacement field is given by Eq. (11.4). The element mass
matrix in the global coordinate system can be found from the relation�

MðeÞ� ¼
ZZZ

V ðeÞ
r½N�T ½N� dV

After carrying out the lengthy volume integrations (using tetrahedral coordinates, for simplicity), the mass matrix can be
obtained as

�
MðeÞ� ¼ rV ðeÞ

20

266666666666666666666666664

2 0 0 1 0 0 1 0 0 1 0 0

0 2 0 0 1 0 0 1 0 0 1 0

0 0 2 0 0 1 0 0 1 0 0 1

1 0 0 2 0 0 1 0 0 1 0 0

0 1 0 0 2 0 0 1 0 0 1 0

0 0 1 0 0 2 0 0 1 0 0 1

1 0 0 1 0 0 2 0 0 1 0 0

0 1 0 0 1 0 0 2 0 0 1 0

0 0 1 0 0 1 0 0 2 0 0 1

1 0 0 1 0 0 1 0 0 2 0 0

0 1 0 0 1 0 0 1 0 0 2 0

0 0 1 0 0 1 0 0 1 0 0 2

377777777777777777777777775

(12.55)

12.3 CONSISTENT MASS MATRICES IN A GLOBAL COORDINATE SYSTEM

To reduce the computational effort, generally the consistent mass matrices of unassembled elements are derived in suitable

local coordinate systems and then transformed into the global system selected for the assembled structure. If
�
mðeÞ�; q!ðeÞ

,

and _q!ðeÞ
denote the mass matrix, nodal displacement vector, and nodal velocity vector in the local coordinate system,

respectively, the kinetic energy associated with the motion of the element can be expressed as

T ¼ 1
2
_q!ðeÞT�

mðeÞ� _q!ðeÞ
(12.56)

If the element nodal displacements and nodal velocities are denoted as Q
!ðeÞ

and
_
Q
!ðeÞ

in the global system, we have the
transformation relations

q!ðeÞ ¼ ½l�Q!ðeÞ

and

_q!ðeÞ ¼ ½l� _Q!
ðeÞ

(12.57)
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By substituting Eq. (12.57) into Eq. (12.56), we obtain

T ¼ 1
2
_
Q
!ðeÞT

½l�T�mðeÞ�½l� _Q!ðeÞ
(12.58)

By denoting the mass matrix of the element in the global coordinate system as [M(e)], the kinetic energy associated with the
motion of the element can be expressed as

Te ¼ 1
2
_
Q
!ðeÞT�

MðeÞ� _Q!ðeÞ
(12.59)

Since kinetic energy is a scalar quantity, it must be independent of the coordinate system. By equating Eqs. (12.58) and
(12.59), we obtain the consistent mass matrix of the element in the global system as�

MðeÞ� ¼ ½l�T�mðeÞ�½l� (12.60)

Note that this transformation relation is similar to the one used in the case of the element stiffness matrix.

Notes

1. In deriving the element mass matrix from the relation

�
mðeÞ� ¼

ZZZ
V ðeÞ

r½N�T ½N�$ dV

the matrix [N] must refer to all nodal displacements even in the local coordinate system. Thus, for thin plates subjected to in-

plane forces only (membrane elements), the transverse deflection must also be considered (in addition to the in-plane dis-

placements considered in the derivation of element stiffness matrices) in formulating the matrix [N].

2. For elements whose nodal degrees of freedom correspond to translational displacements only, the consistent mass matrix is

invariant with respect to the orientation and position of the coordinate axes. Thus, the matrices [m(e)] and [M(e)] will be the

same for pin-jointed bars, membrane elements, and three-dimensional elements such as solid tetrahedra having only trans-

lational degrees of freedom. On the other hand, for elements such as frame elements and plate bending elements, which have

bending stiffness, the consistent mass matrices [m(e)] and [M(e)] will be different. For example, the transformation matrices

needed for the derivation of element mass matrices in the global coordinate system from those given by Eqs. (12.39), (12.40),

and Eq. (E.3) of Example 12.3 are given by Eqs. (9.41), (9.63), and (9.66), respectively.

12.4 FREE VIBRATION ANALYSIS

If we disturb any elastic structure in an appropriate manner initially at time t ¼ 0 (i.e., by imposing properly selected initial
displacements and then releasing these constraints), the structure can be made to oscillate harmonically. This oscillatory
motion is a characteristic property of the structure and it depends on the distribution of mass and stiffness in the structure. If
damping is present, the amplitudes of oscillations will decay progressively and if the magnitude of damping exceeds a
certain critical value, the oscillatory character of the motion will cease altogether. On the other hand, if damping is absent,
the oscillatory motion will continue indefinitely, with the amplitudes of oscillations depending on the initially imposed
disturbance or displacement. The oscillatory motion occurs at certain frequencies known as natural frequencies or char-
acteristic values, and it follows well-defined deformation patterns known as mode shapes or characteristic modes. The
study of such free vibrations (free because the structure vibrates with no external forces after t ¼ 0) is very important in
finding the dynamic response of the elastic structure.

By assuming the external force vector P
!

to be zero and the displacements to be harmonic as in

Q
! ¼ Q

!
$eiut (12.61)

Eq. (12.22) gives the following free vibration equation:�½K� � u2½M��Q! ¼ O
!

(12.62)
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where Q
!

represents the amplitudes of the displacements Q
!

(called the mode shape or eigenvector) and u denotes the nat-
ural frequency of vibration. Eq. (12.62) is called a linear algebraic eigenvalue problem since neither [K] nor [M] is a func-

tion of the circular frequency u, and it will have a nonzero solution for Q
!

provided that the determinant of the coefficient
matrix ([K] � u2 [M]) is zerodthat is, �½K� � u2½M�� ¼ 0 (12.63)

The various methods of finding the natural frequencies and mode shapes were discussed in Section 7.3. In general, all
the eigenvalues of Eq. (12.63) will be different, and hence the structure will have n different natural frequencies. Only for

these natural frequencies, a nonzero solution can be obtained for Q
!

from Eq. (12.62). We designate the eigenvector (mode

shape) corresponding to the j-th natural frequency (uj) as Q
!

j.
It was assumed that the rigid body degrees of freedom were eliminated in deriving Eq. (12.62). If rigid body degrees of

freedom are not eliminated in deriving the matrices [K] and [M], some of the natural frequencies u would be zero. In such
a case, for a general three-dimensional structure, there will be six rigid body degrees of freedom and hence six zero
frequencies. It can be easily seen why u ¼ 0 is a solution of Eq. (12.62). For u ¼ 0, Q

!¼ Q
! ¼ constant vector in

Eq. (12.61), and Eq. (12.62) gives

½K�Q! rigid body ¼ 0
!

(12.64)

which is obviously satisfied due to the fact that rigid body displacements alone do not produce any elastic restoring forces
in the structure. The rigid body degrees of freedom in dynamic analysis can be eliminated by deleting the rows and col-
umns corresponding to these degrees of freedom from the matrices [K] and [M] and by deleting the corresponding elements

from displacement
�
Q
!�

and load
�
P
!�

vectors.

EXAMPLE 12.2
Find the natural frequency of vibration of a fixed-free bar in axial motion based on a one-element model using (a) consistent mass

matrix and (b) lumped mass matrix.

Solution

a. The stiffness and consistent mass matrices of the bar, with a one-element model, are given by

(E.1)

When the left end of the bar is fixed as shown in Fig. 12.1B, the system stiffness and consistent mass matrices take the form

(E.2)

In this case, the eigenvalue problem is defined by the scalar equation:
AE

l
� rAl

3
u2

�
u2 ¼ 0 (E.3)

From Eq. (E.3), the natural frequency of vibration of the bar can be found as
AE

l
� rAl

3
u2

�
¼ 0

or

u ¼
ffiffiffi
3

p
ffiffiffiffiffiffiffi
E

rl2

s
¼ 1:7320

ffiffiffiffiffiffiffi
E

rl2

s
(E.4)

Continued
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EXAMPLE 12.2 dcont’d

b. The lumped mass matrix of the bar, with a one-element model is given by

(E.5)

When the left end of the bar is fixed as shown in Fig. 12.1B, the system lumped mass matrix takes the form

(E.6)

The eigenvalue problem is given by the scalar equation:
AE

l
� rAl

2
u2

�
u2 ¼ 0 (E.7)

From Eq. (E.7), the natural frequency of vibration of the bar can be found as
AE

l
� rAl

2
u2

�
¼ 0

or

u ¼
ffiffiffi
2

p
ffiffiffiffiffiffiffi
E

rl2

s
¼ 1:4142

ffiffiffiffiffiffiffi
E

rl2

s
(E.8)

EXAMPLE 12.3
Find the natural frequencies and mode shapes of a uniform cantilever beam using one beam element and consistent mass matrix.

Solution

The natural frequencies and mode shapes of the cantilever beam, shown in Fig. 12.4, are given by the solution of the eigenvalue

problem: h�
Ke�� u2

�
Me �
i
W
�!e ¼ 0

!
(E.1)

where, for one element idealization, W
�!e ¼ fW1 W2 W3 W4 gT ;

�
Ke� ¼ �

K ðeÞ� ¼ 2EI

l3

266664
6 3l �6 3l

3l 2l2 �3l l2

�6 �3l 6 �3l

3l l2 �3l 2l2

377775 (E.2)

�
Me � ¼ �

MðeÞ� ¼ rAl

420

266664
156 22l 54 �13l

22l 4l2 13l �3l2

54 13l 156 �22l

�13l �3l2 �22l 4l2

377775 (E.3)

Applying the boundary conditions, W1 ¼W2 ¼ 0, Eq. (E.1) reduces to�½K � � u2½M��W�! ¼ 0
!

(E.4)

with

W
�! ¼ fW3 W4 gT
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EXAMPLE 12.3 dcont’d

½K � ¼ 2EI

l3

�
6 �3l

�3l 2l2

	
(E.5)

and

½M� ¼ rAl

420

�
156 �22l

�22l 4l2

	
(E.6)

By setting ��½K � � u2½M��� ¼ 0 (E.7)

we obtain ����������


12EI

l3
� 39rAlu2

105

� 
� 6EI

l2
þ 11rAl2u2

210

�

� 6EI

l2
þ 11rAl2u2

210

� 
4EI

l
� rAl3u2

105

�
����������
¼ 0

or

12


EI

l2

�2

� 34

35
ðrA E IÞu2 þ 35

44;100



ra l2

�2
u4 ¼ 0 (E.8)

Using the notation

ðb lÞ4 ¼ rA l4u2

E I
(E.9)

Eq. (E.3) can be rewritten as

35

44;100
ðb lÞ8 � 34

35
ðb lÞ4 þ 12 ¼ 0 (E.10)

which yields

ðb lÞ4 ¼ 12:48; 1211:5

Thus, the two natural frequencies of the beam are given by

u1 ¼ 3:533

ffiffiffiffiffiffiffiffiffiffiffi
E I

rA l4

s
; u2 ¼ 34:81

ffiffiffiffiffiffiffiffiffiffiffi
E I

rA l4

s
(E.11)

The mode shapes of the beam, W
�! ¼ fW3 W4 gT , can be determined by substituting u1 and u2 separately into Eq. (E.4) and

solving for W
�! ¼ fW3 W4 gT. When u1, given by Eq. (E.11), is substituted, the first equation of Eq. (E.4) yields

EI

l3

�
12� 39

105
ð12:48Þ

�
W3 þ


� 6l þ 11 l

210
ð12:48Þ

�
W4

	
¼ 0 (E.12)

If the value of W3 is assumed to be 1 (arbitrarily), Eq. (E.12) gives the value of W4 as 1.3775/l.

Thus, the mode shape corresponding to u1 is

W
�!��

u1
¼
�
W3

W4

�����
u1

¼
�

1

1:3775=l

�
(E.13)

Similarly, by substituting the value of u2, given by Eq. (E.11), into Eq. (E.4), we find

EI

l3

�
12� 39

105
ð1211:5Þ

�
W3 þ


� 6l þ 11 l

210
ð1211:5Þ

�
W4

	
¼ 0 (E.14)

If the value of W3 is assumed to be 1 (arbitrarily), Eq. (E.14) gives the value of W4 as 7.6225/l.

Thus, the mode shape corresponding to u2 is

Continued
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EXAMPLE 12.3 dcont’d

W
�!��

u2
¼
�
W3

W4

�����
u2

¼
�

1

7:6225=l

�
(E.15)

EXAMPLE 12.4
Find the natural frequencies and mode shapes of a uniform cantilever beam shown in Fig. 12.4 using one beam element and a

lumped mass matrix.

Solution

In this case, the lumped mass matrix of the beam, without considering the rotatory inertia, is given by

(E.1)

After applying the boundary conditions, Eq. (E.1) reduces to

(E.2)

The eigenvalue problem to determine the natural frequencies and mode shapes of the beam (see Eq. (E.4) of Example 12.3)

takes the following form: �½K � � u2½M�l
�
W
�! ¼ 0

!
(E.3)

with

W
�! ¼ fW3 W4 gT

½K � ¼ 2E I

l3

�
6 �3l

�3l 2l2

	
(E.4)

and [M]l is given by Eq. (E.2). By setting ��½K � � u2½M��� ¼ 0 (E.5)

we obtain ���������

12E I

l3
� rA lu2

2

�
�6 E I

l2

�6 E I

l2
4 E I

l

��������� ¼ 0

or 
48

E2 I2

l4
� 2E I rA u2

�
� 36


E I

l2

�2

¼ 0 (E.6)

which yields

u1 ¼ 2:4495

ffiffiffiffiffiffiffiffiffiffiffi
E I

rA l4

s
(E.7)
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EXAMPLE 12.4 dcont’d

Note that with the lumped mass matrix, we obtain only one natural frequency because the rotatory inertia associated with the

degrees of freedom W2 and W4 is not considered in [M(e)]l.

The mode shape corresponding to u1 ¼ 2:4495
ffiffiffiffiffiffiffiffi
E I

rA l4

q
can be found from the first equation of (E.3) as

E I

l3
½ð12� 3ÞW 3þð� 6ÞW4� ¼ 0 (E.8)

If the value of W3 is assumed as 1 (arbitrarily), Eq. (E.8) gives the value of W4 as 1.5/l. Thus, the mode shape corresponding to

u1 is

W
�!��

u2
¼
�
W3

W4

�����
u2

¼
�

1

1:5=l

�
(E.9)

EXAMPLE 12.5
Find the natural frequencies of vibration of the two-bar truss shown in Fig. 12.5A using consistent mass matrices. Assume the

Young’s modulus (E) to be 2 � 106 N/cm2 and density (r) as 0.0078 kg/cm3.

Continued

50 cm

50 cm50 cm

A = 2 cm2

Element 2
Element 1

X

Y

U2

U1

U4

U5

U6

U3

(0, 0)

(50, 50)

(100, 0)

1 2

3

(A)

(B)

FIGURE 12.5 A two-bar truss.
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EXAMPLE 12.5 dcont’d

Solution

The finite element model of the truss, along with the degrees of freedom, is shown in Fig. 12.5B. It can be seen that the degrees of

freedom Ui, i ¼ 1, 2, 3, 4 are zero (fixed) while U5 and U6 are free. The element stiffness matrices in the global XY-system (see

Example 9.4) can be generated as follows:

(E.1)

(E.2)

The assembled stiffness matrix of the truss, after incorporating the boundary conditions, can be expressed as

(E.3)

Noting that the length of elements is l ¼ 50
ffiffiffi
2

p ¼ 70.7107 cm and rAl/6 ¼ (0.0078) (2) (70.7107)/6 ¼ 0.1838 kg, the element

mass matrices (consistent) (see Eq. (E.5) of Example 12.1) are given by:

(E.4)

(E.5)

The assembled mass matrix of the truss, after eliminating the fixed degrees of freedom, can be expressed as

(E.6)

The eigenvalue problem is given by �½K � � u2½M��U! ¼ 0
!

(E.7)
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EXAMPLE 12.5 dcont’d

where u is the natural frequency and U
! ¼

n
U5 U6g T is the mode shape. The natural frequencies of the truss are given by the

positive roots of the equation:

��½K � � u2½M��� ¼ �����5:6568
�
1 0

0 1

	
� 0:7352u2

�
1 0

0 1

	����� ¼ 0

that is, ����


5:6568� 0:7352 u2

�
0

0 ð5:6568� 0:7352 u2Þ

���� ¼ 

5:6568� 0:7352 u2

�2 ¼ 0 (E.8)

that is,

u ¼ 2.7738 rad=s ðrepeated natural frequencyÞ (E.9)

EXAMPLE 12.6
Find the natural frequencies of vibration of the two-bar truss shown in Fig. 12.5A using lumped mass matrices. Assume that

Young’s modulus (E ) is 2 � 106 N/cm2 and density (r) is 0.0078 kg/cm3.

Solution

The finite element model of the truss, along with the degrees of freedom, is shown in Fig. 12.5B. It can be seen that the degrees of

freedom Ui , i ¼ 1, 2, 3, 4 are zero (fixed) while U5 and U6 are free. The assembled stiffness matrix of the truss, after incorporating

the boundary conditions, is given by Eq. (E.3) of Example 12.5:

(E.1)

Noting that r Al/2 ¼ (0.0078) (2) (70.7107)/2 ¼ 1.1031 kg, the element mass matrices (lumped) (see Eq. (E.6) of Example 12.1)

are given by

(E.2)

(E.3)

The assembled mass matrix of the truss, after eliminating the fixed degrees of freedom, can be expressed as

(E.4)

Continued
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EXAMPLE 12.6 dcont’d

The eigenvalue problem is given by �½K � � u2½M��U! ¼ 0
!

(E.5)

where u is the natural frequency and U
! ¼

n
U5 U6g T is the mode shape. The natural frequencies of the truss are given by the

positive roots of the equation:

��½K � � u2½M��� ¼ �����5:6568
�
1 0

0 1

	
� 2:2062 u2

�
1 0

0 1

	����� ¼ 0 (E.6)

that is, ����


5:6568� 2:2062 u2

�
0

0 ð5:6568� 2:2062 u2
� ���� ¼ 


5:6568� 2:2062 u2
�2 ¼ 0 (E.7)

that is,

u ¼ 1.6013 rad=s ðrepeated natural frequencyÞ (E.8)

EXAMPLE 12.7
Find the natural frequencies of longitudinal vibration of the unconstrained stepped bar shown in Fig. 12.6A.

Solution

We shall idealize the bar with two elements as shown in Fig. 12.6A. The stiffness and mass matrices of the two elements are given by

h
K ð1Þ

i
¼ Að1ÞE ð1Þ

lð1Þ

264 1 �1

�1 1

375 ¼ 4AE

L

264 1 �1

�1 1

375
h
K ð2Þ

i
¼ Að2ÞE ð2Þ

lð2Þ

264 1 �1

�1 1

375 ¼ 2AE

L

264 1 �1

�1 1

375
h
Mð1Þ

i
¼ rð1ÞAð1Þlð1Þ

6

264 2 1

1 2

375 ¼ rAL

6

264 2 1

1 2

375
h
Mð2Þ

i
¼ rð2ÞAð2Þlð2Þ

6

264 2 1

1 2

375 ¼ rAL

12

264 2 1

1 2

375
The assembled stiffness and mass matrices are given by

h
Ke
i
¼ 2AE

L

2664
2 �2 0

�2 3 �1

0 �1 1

3775 (E.1)

h
Me
i
¼ rAL

12

2664
4 2 0

2 6 1

0 1 2

3775 (E.2)

Since the bar is unconstrained (no degree of freedom is fixed), the frequency Eq. (12.63) becomes��������
2AE

L

264 2 �2 0

�2 3 �1

0 �1 1

375� u2rAL

12

264 4 2 0

2 6 1

0 1 2

375
�������� ¼ 0 (E.3)
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EXAMPLE 12.7 dcont’d

By defining

b2 ¼ rL2u2

24E
(E.4)

Eq. (E.3) can be rewritten as �������
2


1� 2b2

� �2


1þ b2

�
0

�2


1þ b2

�
3


1� 2b2

� �
1þ b2
�

0 �
1þ b2
� 


1� 2b2
�
������� ¼ 0 (E.5)

The expansion of this determinantal equation leads to

18b2


1� 2b2

�

b2 � 2

� ¼ 0 (E.6)

The roots of Eq. (E.6) give the natural frequencies of the bar as

Continued

A stepped bar with axial degrees of freedom

First mode shape (rigid-body mode)

Second mode shape (elastic deformation mode)

Third mode shape (elastic deformation mode)

Longitudinal vibration modes

Q1 Q2 Q3

x

Element 1
A(1) = 2A Element 2

A(2) = A

 (1) = L /2  (2) = L /2 

1

0
L

x
L /2

Q1 Q2 Q3

1

0

−1

Q2= 0

L
x

L /2

Q1

Q3

1

0

−1

L
x

L/2

Q1

Q2

Q3

(A)

(B)

FIGURE 12.6 An unconstrained stepped bar and its mode shapes.
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EXAMPLE 12.7 dcont’d

When b2 ¼ 0 : u2
1 ¼ 0 or u1 ¼ 0

When b2 ¼ 1

2
: u2

2 ¼ 12E

rL2
or u2 ¼ 3:46

�
E
�


rL2
��1=2

When b2 ¼ 2 : u2
3 ¼ 48E

rL2
or u3 ¼ 6:92

�
E
�


rL2
��1=2

9>>>>>>>=>>>>>>>;
(E.7)

The first frequency, u1 ¼ 0, corresponds to the rigid-body mode, whereas the second and third frequencies correspond to

elastic deformation modes. To find the mode shape Q
!

i corresponding to the natural frequency ui, we solve Eq. (12.62). Since

Eq. (12.62) represents a system of homogeneous equations, we will be able to find only the relative magnitudes of the components

of Q
!

i .

For u2
1 ¼ 0, Eq. (12.62) gives Q

!
1 ¼

8><>:
1

1

1

9>=>;, whereas for u2
2 ¼ 12E

�ðrL2Þ and u2
3 ¼ 48E

�ðrL2Þ, it gives Q
!

2 ¼

8><>:
1

0

�1

9>=>;
and Q

!
3 ¼

8><>:
1

�1

1

9>=>;, respectively. These mode shapes are plotted in Fig. 12.6A, where the variation of displacement between the

nodes has been assumed to be linear in accordance with the assumed displacement distribution of Eqs. (9.1) and (12.23).

[M]-Orthogonalization of Modes
Since only the relative magnitudes of the components of the mode shapes Q

!
i; i ¼ 1; 2; 3; are known, the mode shapes

can also be written as ai Q
!

i; where ai is an arbitrary nonzero constant. In most of the dynamic response calculations, it is
usual to choose the values of ai so as to make the mode shapes orthogonal with respect to the mass matrix [M] used in

obtaining the modes Q
!

i. This requires that

ai Q
!T

i ½M�aj Q!j ¼
�
1 if i ¼ j

0 if isj
(12.65)

for all i and j. In the current example, the mass matrix is given by Eq. (E.2) of Example 12.7 and it can be verified that the

condition ai Q
!T

i ½M�aj Q!j ¼ 0 for i s j is automatically satisfied for any ai and aj. To satisfy the condition

ai Q
!T

i ½M�aj Q!j ¼ 1 for i ¼ j, we impose the conditions

a2i Q
!T

i ½M�Q!i ¼ rALa2i
12

Q
!T

i

264 4 2 0

2 6 1

0 1 2

375Q!i ¼ 1

for i ¼ 1, 2, 3, and obtain

a2i ¼ 12
rAL

1

Q
!T

i

264 4 2 0

2 6 1

0 1 2

375Q!i

; i ¼ 1; 2; 3 (12.66)

Eq. (12.66) gives

a1 ¼


2
3rAL

�1=2

a2 ¼


2
rAL

�1=2

a3 ¼


2
rAL

�1=2

9>>>>>>>>>=>>>>>>>>>;
(12.67)
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Thus, the [M]-orthogonal mode shapes of the stepped bar corresponding to the natural frequencies u1, u2, and u3 are
given, respectively, by


2

3rAL

�1=2

8>>><>>>:
1

1

1

9>>>=>>>;;


2

rAL

�1=2

8>>><>>>:
1

0

�1

9>>>=>>>;
and


2

rAL

�1=2

8><>:
1

�1

1

9>=>;
EXAMPLE 12.8
Find the natural frequencies of longitudinal vibration of the constrained stepped bar shown in Fig. 12.7.

Solution

Since the left end of the bar is fixed,Q1 ¼ 0 and this degree of freedom has to be eliminated from the stiffness and mass matrices of

Eqs. (E.1) and (E.2) of Example 12.7 to find the natural frequencies. This amounts to eliminating the rigid-body mode of the

structure. For this, we delete the row and column corresponding to Q1 from Eqs. (E.1) and (E.2) of Example 12.7 and write the

frequency equation as

Continued

Q2 Q3

Element 1
A(1) = 2A Element 2

A(2) = A

Q1= 0

First mode shape (elastic deformation mode)

Second mode shape (elastic deformation mode)

L /2
x

L
0

0.5

1.0

Q2= 0.5775
Q3= 1.0

L /2
x

L

1.0

0.5

0

−0.5
Q2 = −0.5775

Q3= 1.0

 (1) = L /2  (2) = L /2

FIGURE 12.7 A constrained stepped bar and its mode shapes.
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EXAMPLE 12.8 dcont’d �����2AEL
�

3 �1

�1 1

	
� rALu2

12

�
6 1

1 2

	����� ¼ 0 (E.1)

Eq. (E.1) can be rewritten as ����� 3


1� 2b2

� �
1þ b2
�

�
1þ b2
� 


1� 2b2
� ����� ¼ 0 (E.2)

The solution of Eq. (E.2) is given by

b2
1 ¼ 7� 3

ffiffiffi
3

p

11
¼ 0:1640 and b2

2 ¼ 7þ 3
ffiffiffi
3

p

11
¼ 1:1087

or

u1 ¼ 1:985

ffiffiffiffiffiffiffi
E

rL2

s
and u2 ¼ 5:159

ffiffiffiffiffiffiffi
E

rL2

s
(E.3)

The mode shapes corresponding to these natural frequencies can be found by solving the equation"
2AE

L

�
3 �1

�1 1

	
� rALu2

i

12

�
6 1

1 2

	#
Q
!

i ¼ 0
!
; i ¼ 1;2 (E.4)

as

Q
!

1 ¼
�
0:5775

1:0

�
and Q

!
2 ¼

��0:5775

1:0

�
(E.5)

These mode shapes are plotted in Fig. 12.7. When orthogonalized with respect to the matrix [M], these mode shapes give

a21Q
!T

1 ½M�Q!1 ¼ 1

or

a21 ¼ 1

ð 0:5775 1:0 Þ rAL
12

�
6 1

1 2

	�
0:5775

1:0

�
or

a1 ¼ 1:526
.
ðrALÞ1=2 (E.6)

a22Q
!T

2 ½M�Q!2 ¼ 1

or

a22 ¼ 1

ð�0:5775 1:0 Þ rAL
12

�
6 1

1 2

	��0:5775

1:0

�
or

a2 ¼ 2:053
.
ðrALÞ1=2 (E.7)

Thus, the [M]-orthogonal mode shapes of the stepped bar corresponding to u1 and u2 are given, respectively, by

1:526

ðrALÞ1=2
�
0:5775

1:0

�
¼ 1

ðrALÞ1=2
�
0:8812

1:5260

�
(E.8)

and

2:053

ðrALÞ1=2
��0:5775

1:0

�
¼ 1

ðrALÞ1=2
��1:186

2:053

�
(E.9)
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12.5 DYNAMIC RESPONSE USING FINITE ELEMENT METHOD

When a structure is subjected to dynamic (time-dependent) loads, the displacements, strains, and stresses induced will also
vary with time. The dynamic loads arise for a variety of reasons, such as gust loads due to atmospheric turbulence and
impact forces due to landing on airplanes, wind and earthquake loads on buildings, and so on. The dynamic response
calculations include the determination of displacements and stresses as functions of time at each point of the body or
structure. The dynamic equations of motion for a damped elastic body have already been derived in Section 12.1 using the
finite element procedure. These equations of motion can be solved by using any of the methods presented in Section 7.4 for
solving propagation problems.

The direct integration approach considered in Section 7.4.2 involves the numerical integration of the equations of
motion by marching in a series of time steps Dt evaluating accelerations, velocities, and displacements at each step. The
basis of the mode superposition method discussed in Section 7.4.2 is that the modal matrix (i.e., the matrix formed by using
the modes of the system) can be used to diagonalize the mass, damping, and stiffness matrices, and thus to uncouple the
equations of motion. The solution of these independent equations, one corresponding to each degree of freedom, can be
found by standard techniques and, finally, the solution of the original problem can be found by the superposition of the
individual solutions. In this section, we consider the normal mode (or mode superposition or modal analysis) method of
finding the dynamic response of an elastic body in some detail.

12.5.1 Uncoupling the Equations of Motion of an Undamped System

The equations of motion of an undamped elastic system (derived in Section 12.1) are given by

½M� €Q!þ ½K� _Q! ¼ P
!

(12.68)

where Q
!

and P
!

are the time-dependent displacement and load vectors, respectively. Eq. (12.68) represents a system of n
coupled second-order differential equations, where n is the number of degrees of freedom of the structure. We now present
a method of uncoupling these equations.

Let the natural frequencies of the undamped eigenvalue problem

�u2½M� Q! þ ½K� Q! ¼ 0
!

(12.69)

be given by u1,u2,.,un with the corresponding eigenvectors given by Q
!

1; Q
!

2;.; Q
!

n; respectively. By arranging the

eigenvectors (normal modes) as columns, a matrix
h
Q
i
, known as the modal matrix, can be defined ash

Q
i
¼ �

Q
!

1 Q
!

2 / Q
!

n

�
(12.70)

Since the eigenvectors are [M]-orthogonal, we have

Q
!T

i

h
M
i
Q
!

j ¼
�
0 for isj

1 for i ¼ j
(12.71)

Eqs. (12.70) and (12.71) lead to h
Q
iT
½M�
h
Q
i
¼ ½I� (12.72)

where [I ] is the identity matrix of order n, and the eigenvalue problem, Eq. (12.69), can be restated as

(12.73)

where

(12.74)
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By premultiplying Eq. (12.73) by
h
Q
iT
, we obtain

(12.75)

which, in view of Eq. (12.72), becomes

(12.76)

Since any n-dimensional vector can be expressed by superposing the eigenvectors,1 we can express Q
!ðtÞ as

Q
!ðtÞ ¼

h
Q
i
h!ðtÞ (12.77)

where h!ðtÞ is a column vector consisting of a set of time-dependent generalized coordinates h1(t), h2(t), ., hn(t). By
substituting Eq. (12.77) in Eq. (12.68), we obtain

½M�
h
Q
i
€h!þ ½K�

h
Q
i
h! ¼ P

!
(12.78)

Premultiply both sides of Eq. (12.78) by
h
Q
iT

and writeh
Q
iT
½M�
h
Q
i
€h!þ

h
Q
iT
½K�
h
Q
i
h! ¼

h
Q
iT

P
!

(12.79)

However, the normal modes satisfy Eqs. (12.72) and (12.76), and hence Eq. (12.79) reduces to

(12.80)

where

N
! ¼

h
Q
iT

P
!ðtÞ (12.81)

Eq. (12.80) represents a set of n uncoupled second-order differential equations of the type

€hiðtÞ þ u2
i hiðtÞ ¼ NiðtÞ; i ¼ 1; 2;.; n (12.82)

The reason for uncoupling the original equations of motion, Eq. (12.68), into the form of Eq. (12.82) is that the solution
of n uncoupled differential equations is considerably easier than the solution of n coupled differential equations.

12.5.2 Uncoupling the Equations of Motion of a Damped System

The equations of motion of a damped elastic system are given by

½M� €Q!þ ½C� _Q!þ ½K�Q! ¼ P
!

(12.83)

Generally little is known about the evaluation of the damping coefficients that are the elements of the damping matrix
[C]. However, since the effect of damping is small compared to those of inertia and stiffness, the damping matrix [C] is
represented by simplified expressions. One simple way of expressing the damping matrix involves the representation of [C]
as a linear combination of mass and stiffness matrices as

½C� ¼ a½M� þ b½K� (12.84)

where the constants a and b must be chosen to suit the problem at hand. In this case, the equations of motion, Eq. (12.83),
will be uncoupled by the same transformation Eq. (12.77) as that for the undamped system. Thus, the use of Eqs. (12.77)
and (12.84) in Eq. (12.83) leads toh

Q
iT
½M�
h
Q
i
€h!þ


a
h
Q
iT
½M�
h
Q
i
þ b
h
Q
iT
½K�
h
Q
i
_h!þ

h
Q
iT
½K�
h
Q
i�

h! ¼
h
Q
iT

P
!

(12.85)

1. Because the eigenvectors are orthogonal, they will form an independent set of vectors, and hence they can be used as a basis for the decomposition of
any arbitrary n-dimensional vector Q

!
. A proof of this statement, also known as the expansion theorem, can be found in [12.7].
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In view of Eqs. (12.72) and (12.76), Eq. (12.85) can be expressed as

(12.86)

where N
!

is given by Eq. (12.81). Eq. (12.86) can be written in scalar form as

€hiðtÞ þ


aþ bu2

i

�
_hiðtÞ þ u2

i hiðtÞ ¼ NiðtÞ; i ¼ 1; 2;.; n (12.87)

The quantity


aþ bu2

i

�
is known as the modal damping constant in i-th normal mode, and it is common to define a

quantity zi known as modal damping ratio in i-th normal mode as

zi ¼
aþ bu2

i

2ui
(12.88)

so that the equations of motion in terms of generalized coordinates become

€hiðtÞ þ 2ziui _hiðtÞ þ u2
i hiðtÞ ¼ NiðtÞ; i ¼ 1; 2;.; n (12.89)

Thus, Eq. (12.89) denotes a set of n uncoupled second-order differential equations for the damped elastic system.

12.5.3 Solution of a General Second-Order Differential Equation

A general second-order differential equation (or one of the uncoupled equations of motion of a damped elastic system) can
be expressed as Eq. (12.89). The solution of Eq. (12.89) consists of two parts: one called the homogeneous solution and the
other known as the particular integral.
HOMOGENEOUS SOLUTION

The homogeneous solution can be obtained by solving the equation

€hiðtÞ þ 2ziui _hiðtÞ þ u2
i hiðtÞ ¼ 0 (12.90)

By assuming a solution of the type

hiðtÞ ¼ A$eat (12.91)

where A is a constant, Eq. (12.90) gives the following characteristic equation:

a2 þ 2ziuiaþ u2
i ¼ 0 (12.92)

The roots of Eq. (12.92) are given by

a1;2 ¼ �ziui � ui

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2i � 1

q
(12.93)

Thus, the homogeneous solution of Eq. (12.89) can be expressed as

hiðtÞ ¼ A1e
a1t þ A2e

a2t (12.94)

where A1 and A2 are constants to be determined from the known initial displacement and velocity. Depending on the
magnitude of zi, the system is classified as underdamped, critically damped, and overdamped as follows:

1. Underdamped case (when zi < 1): If zi < 1, the solution given in Eq. (12.94) can be rewritten as

hiðtÞ ¼ e�ziui t


A1e

iuid t þ A2e
�iuid t

�
¼ e�ziui tðB1 cos uidt þ B2 sin uidtÞ

¼ C1e
�ziui t cosðuidt � fÞ

(12.95)

where uid ¼ ui

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i

q
; and the constants B1 and B2 or C1 and f (f is also known as phase angle) can be found from the

initial conditions. Here, uid can be regarded as a natural frequency associated with the damped system.
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2. Critically damped case (zi [ 1): In this case, the roots a1 and a2 given by Eq. (12.90) will be equal:

a1 ¼ a2 ¼ �ui (12.96)

The solution of Eq. (12.90) is given by

hiðtÞ ¼ e�ui tðA1 þ A2tÞ (12.97)

where A1 and A2 are constants of integration to be determined from the known initial conditions.

3. Overdamped case (zi > 1):When zi > 1, both the roots given by Eq. (12.93) will be negative and the solution given by
Eq. (12.94) can be rewritten as

hiðtÞ ¼ e�ziui t
�
A1e

ffiffiffiffiffiffiffi
z2i �1

p
ui t þ A2e

�
ffiffiffiffiffiffiffi
z2i �1

p
ui t
�

¼ e�ziui t


B1 cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2i � 1

q
uit þ B2 sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2i � 1

q
uit

� (12.98)

The solutions given by Eqs. (12.95), (12.97), and (12.98) are shown graphically in Fig. 12.8. Note that in the case of an
underdamped system, the response oscillates within an envelope defined by hiðtÞ ¼ �C1eziui t and the response dies out as
time (t) increases. In the case of critical damping, the response is not periodic but dies out with time. Finally, in the case of
overdamping, the response decreases monotonically with increasing time.

PARTICULAR INTEGRAL
By solving Eq. (12.89), the particular integral in the case of an underdamped system [12.7] can be obtained as

hiðtÞ ¼ 1
uid

Z t

0
NiðsÞe�ziuiðt�sÞ sin uidðt � sÞds (12.99)

TOTAL SOLUTION
The total solution is given by the sum of homogeneous solution and the particular integral. If hi(0) and _hið0Þ denote the

initial conditions (i.e., values of hi(t) and (dhi/dt) (t) at t ¼ 0), the total solution can be expressed as

hiðtÞ ¼ 1
uid

Z t

0
NiðsÞ$e�ziuiðt�sÞ sin uidðt � sÞdsþ e�ziui t �

"
uidt þ zi


1� z2i
�1=2 sin uidt

#
hið0Þ

þ
�
1
uid

e�ziui t sin uidt

	
_hið0Þ

(12.100)

t

Critically
damped, ζ i =1

η i (t )

Overdamped, ζ i >1

Undamped, ζ i =0

Underdamped, ζ i <1

O

FIGURE 12.8 Response with different degrees of damping.
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SOLUTION WHEN THE FORCING FUNCTION IS AN ARBITRARY FUNCTION OF TIME
The numerical solution of Eq. (12.99) when the forcing function Ni(t) is an arbitrary function of time was disscussed in

Section 7.4.2. Thus, by using the uncoupling procedure outlined in Sections 12.5.1 and 12.5.2, the response of any
multiedegree of freedom system under any arbitrary loading conditions can be found.

EXAMPLE 12.9
Find the dynamic response of the stepped bar shown in Fig. 12.9A when an axial load of magnitude P0 is applied at node 3 for a

duration of time t0 as shown in Fig. 12.9B.

Solution

The free vibration characteristics of this bar have already been determined in Example 12.8 as

u1 ¼ 1:985
�
E
�


rL2
��1=2

(E.1)

u2 ¼ 5:159
�
E
�


rL2
��1=2

(E.2)

Q
!

1
¼ 1

ðrALÞ1=2
�
0:8812

1:5260

�
(E.3)

Q
!

2
¼ 1

ðrALÞ1=2
��1:186

2:053

�
(E.4)

h
Q
i
¼ 1

ðrALÞ1=2
�
0:8812 �1:1860

1:5260 2:0530

	
(E.5)

½M� ¼ rAL

12

�
6 1

1 2

	
(E.6)

½K � ¼ 2AE

L

�
3 �1

�1 1

	
(E.7)

Thus, it can be verified that h
Q
iT
½M�
h
Q
i
¼
�
1 0

0 1

	
(E.8)

Continued

Q2 Q3

L /2 L /2 

Q11 2 3

 Stepped bar

 Pulse loading

t
to

Po

P3(t )

O

(A)

(B)

FIGURE 12.9 A stepped bar subjected to pulse loading.
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EXAMPLE 12.9 dcont’d

and

h
Q
iT
½K �
h
Q
i
¼


E

rL2

�" ð1:985Þ2 0

0 ð5:159Þ2
#

(E.9)

The generalized load vector is given by

N
! ¼

h
Q
iT

P
!ðtÞ ¼ 1

ðrALÞ1=2

24 0:8812 1:5260

�1:1860 2:0530

358<:
0

P3

9=;
¼ 1

ðrALÞ1=2

8<:
1:526

2:053

9=;$P3

(E.10)

The undamped equations of motion, Eq. (12.80), are given by

€h!þ E

rL2

"
ð1:985Þ2 0

0 ð5:159Þ2
#
h! ¼ 1

ðrALÞ1=2
�
1:526

2:053

�
P3 (E.11)

which, in scalar form, represent

€h1 þ
3:941E

rL2
h1 ¼ 1:526P3

ðrALÞ1=2
(E.12)

and

€h2 þ
26:62E

rL2
h2 ¼ 2:063P3

ðrALÞ1=2
(E.13)

By assuming that all the initial displacements and velocities are zero, we obtain

Q
!ðt ¼ 0Þ ¼ 0

! ¼
h
Q
i
h!ð0Þ and

_
Q
!ðt ¼ 0Þ ¼ 0

! ¼
h
Q
i
_h!ð0Þ (E.14)

so that

h!ð0Þ ¼ 0
!

and _h!ð0Þ ¼ 0
!

(E.15)

Thus, the solutions of Eqs. (E.12) and (E.13) can be expressed (from Eq. 12.100) as follows:

h1ðtÞ ¼ 1

u1

Z t

0

N1ðsÞsin u1ðt � sÞ ds

that is,

h1ðtÞ ¼

rL2

E

�1=2
1

1:985

�Z t

0

(
1:526P3

ðrALÞ1=2
)
sin

(
E

rL2

�1=2

ð1:985Þ ðt � sÞ
)
ds

¼


L

AE

�1=2

ð0:7686Þ
Z t

0

P3ðsÞsin
(
1:985


E

rL2

�1=2

ðt � sÞ
)
ds

(E.16)

and

h2ðtÞ ¼ 1

u2

Z t

0

N2ðsÞsin u2ðt � sÞds
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EXAMPLE 12.9 dcont’d

that is,

h2ðtÞ ¼

rL2

E

�1=2
1

5:159

�Z t

0

(
2:053P3

ðrALÞ1=2
)
sin

(
E

rL2

�1=2

ð5:159Þ ðt � sÞ
)
ds

¼


L

AE

�1=2

ð0:3979Þ
Z t

0

P3ðsÞsin
(
0:159


E

rL2

�1=2

ðt � sÞ
)
ds

(E.17)

The solutions of Eqs. (E.16) and (E.17) for the given loading can be expressed as follows:

For t < t0:

h1ðtÞ ¼ 0:38720P0


rL3

AE2

�1=2
"
1� cos

(
1:985


E

rL2

�1=2

t

)#
(E.18)

and

h2ðtÞ ¼ 0:07713P0


rL3

AE2

�1=2
"
1� cos

(
5:159


E

rL2

�1=2

t

)#
(E.19)

For t > t0:

h1ðtÞ ¼ 0:38720P0


rL3

AE2

�1=2
"
cos

(
1:985


E

rL2

�1=2

ðt � t0Þ
)

� cos

(
1:985


E

rL2

�1=2

t

)#
(E.20)

and

h2ðtÞ ¼ 0:07713P0


rL3

AE2

�1=2
"
cos

(
5:159


E

rL2

�1=2

ðt � t0Þ
)

� cos

(
5:159


E

rL2

�1=2

t

)#
(E.21)

The physical displacements are given by

Q
!ðtÞ ¼

8<:
Q2ðtÞ

Q3ðtÞ

9=; ¼
h
Q
i
h!ðtÞ ¼ 1

ðrALÞ1=2

24 0:8812 �1:186

1:526 2:053

358<:
h1ðtÞ

h2ðtÞ

9=;
¼ 1

ðrALÞ1=2

8<:
0:8812 h1ðtÞ � 1:186 h1ðtÞ

1:526 h1ðtÞ þ 2:053 h2ðtÞ

9=;
(E.22)

Thus, for t < t0:

Q2ðtÞ ¼ P0L

AE

"
0:24991� 0:34140 cos

(
1:985


E

rL2

�1=2

t

)
þ 0:09149 cos

(
5:159


E

rL2

�1=2

t

)#
(E.23)

Q3ðtÞ ¼ P0L

AE

"
0:4324� 0:5907 cos

(
1:985


E

rL2

�1=2

t

)
þ 0:1583 cos

(
5:159


E

rL2

�1=2

t

)#
(E.24)

and for t > t0:

Q2ðtÞ ¼ P0L

AE

"
0:34140 cos

(
1:985


E

rL2

�1=2

ðt � t0Þ
)

� 0:34140 cos

(
1:985


E

rL2

�1=2

t

)
� 0:09149 cos

(
5:159


E

rL2

�1=2

ðt � t0Þ
)

þ 0:09149 cos

(
5:159


E

rL2

�1=2

t

)#
(E.25)

Continued

Dynamic Analysis Chapter | 12 489

www.konkur.in

Telegram: @uni_k



EXAMPLE 12.9 dcont’d

Q3ðtÞ ¼ P0L

AE

"
0:5907 cos

(
1:985


E

rL2

�1=2

ðt � t0Þ
)

� 0:5907 cos

(
1:985


E

rL2

�1=2

t

)
þ 0:1583 cos

(
5:159


E

rL2

�1=2

ðt � t0Þ
)

� 0:1583 cos

(
5:159


E

rL2

�1=2

t

)#
(E.26)

To determine the average dynamic stresses in the two elements, we use

sð1ÞðtÞ ¼ 2E


Q2 �Q1

L

�
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"
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(
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)
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(
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t

)#
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(E.27)

and

sð2ÞðtÞ ¼ 2E
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(E.28)

12.6 NONCONSERVATIVE STABILITY AND FLUTTER PROBLEMS

The stability of nonconservative systems was considered by the finite element method in Barsoum [12.8] and Mote and
Matsumoto [12.9]. The problem of panel flutter was treated by Olson [12.10] and Kariappa and Somashekar [12.11]. The
flutter analysis of three-dimensional structures (e.g., supersonic aircraft wing structures) that involve modeling by different
types of finite elements was presented by Rao [12.12,12.13]. Flutter analysis involves the solution of a double eigenvalue
problem that can be expressed as �½K� � u2½M� þ ½Q�� x! ¼ 0

!
(12.101)

where [K] and [M] are the usual stiffness and mass matrices, respectively, u is the flutter frequency, [Q] is the aerodynamic

matrix, and x
!

is the vector of generalized coordinates. The matrix [Q] is a function of flutter frequency u and flutter ve-

locity V, which are both unknown. For a nontrivial solution of x
!
, the determinant of the coefficient matrix of x

!
must

vanish. Thus, the flutter equation becomes
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��½K� � u2½M� þ ½Q��� ¼ 0 (12.102)

Since two unknowns, u and V, are in Eq. (12.102), the problem is called a double eigenvalue problem. The details of the
generation of aerodynamic matrix [Q] and the solution of Eq. (12.102) are given in Olson [12.10] and Rao [12.12].

12.7 SUBSTRUCTURES METHOD

In the finite element analysis of large systems, the number of equations to be solved for an accurate solution will be quite
large. In such cases, the substructures method can be used to reduce the number of equations to manageable size. The
system (or structure) is divided into a number of parts or segments, each called a substructure (see Fig. 12.10). Each
substructure, in turn, is divided into several finite elements. The element matrix equations of each substructure are
assembled to generate the substructure equations. By treating each substructure as a large element with many interior and
exterior (boundary) nodes, and using a procedure known as static condensation [12.14], the equations of the substructure
are reduced to a form involving only the exterior nodes of that particular substructure. The reduced substructure equations
can then be assembled to obtain the overall system equations involving only the boundary unknowns of the various
substructures. The number of these system equations is much less compared to the total number of unknowns. The solution
of the system equations gives values of the boundary unknowns of each substructure. The known boundary nodal values
can then be used as prescribed boundary conditions for each substructure to solve for the respective interior nodal
unknowns. The concept of substructuring has been used for the analysis of static, dynamic, as well as nonlinear analyses
[12.15,12.16].

REVIEW QUESTIONS

12.1 Give brief answers to the following questions.

1. What is the lumped mass matrix of a uniform bar element?
2. What is the consistent mass matrix of a uniform bar element?

k + 2

k+1

k −1

k

k − 2
9

8
7

6

2

3

1

4

5

Circled numbers indicate
boundaries of substructures

10

FIGURE 12.10 A large structure divided into substructures.
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3. What is the lumped mass matrix of a space truss element?
4. What is free vibration?
5. State the mathematical form of a linear algebraic eigenvalue problem.
6. How can we eliminate the possibility of rigid body motion(s) in the dynamic analysis of a structure?
7. What is meant by m-orthogonalization of natural modes?
8. How can we make a modal vector Q

!
i normal with respect to the mass matrix?

9. State two types of dynamic loads in real-life structures.

12.2 Fill in the blank with a suitable word.

1. In a dynamics problem, the displacements and stresses inside an element vary not only with position but also with
———.

2. The solution of the equations of motion of a structure requires both boundary conditions and
——————————————— conditions.

3. The time histories are important in a ———————————— problem.
4. When the same displacement model is used in the derivation of stiffness and mass matrices, the resulting mass ma-

trix is said to be ——————————.
5. The results given by the ———————————— mass matrices are expected to be more accurate.
6. The derivation of the mass matrix requires consideration of variations of all three

———————————————— components.
7. For thick beam elements, the effects of rotary inertia and ———————————— deformation are to be

considered.
8. The derivation of the consistent mass matrix of a triangular membrane element requires consideration of linear

————————————————— of u and v within the local coordinates of the element.
9. The consistent mass matrix is ————————————— with respect to orientation and position of the coor-

dinate axes for elements whose nodal degrees of freedom correspond to only translational displacements.
10. The vibratory motion at a —————————————— ——————————— follows a specific well-

defined deformation pattern known as a mode shape.
11. Direct integration approach involves ———————— integration of the equations of motion using small time

steps.
12. Mode superposition approach involves representation of the dynamic response as the

—————————————— of natural modes.

13. The coupled equations of motion ½M� €Q!þ ½K�Q! ¼ P
!

can be ———————— by assuming Q
!ðtÞ ¼

h
Q
i
h!ðtÞ

where h!ðtÞ denotes the vector of n generalized coordinates.
14. A system with 2i < 1is said to be ————————————.
15. Substructures method is useful for ———————————————— structures.

12.3 Indicate whether the following statement is true or false.

1. Lumped mass matrices do not consider the dynamic coupling between element displacements.
2. Lumped mass matrices are tridiagonal.
3. The mass matrix of a space truss element can be obtained from that of a bar element using coordinate transformation.
4. Some diagonal elements in the lumped mass matrix of a uniform beam element will be zero if the rotary inertia is not

considered.
5. The consistent mass matrix of a planar frame element can be assembled from the consistent mass matrices of bar and

beam elements.
6. The consistent mass matrix of a triangular plate bending element considers the variation of only the transverse

displacement directly.
7. For membrane type of plate elements, the global and local consistent mass matrices will be identical.
8. Damping does not influence the nature of free vibration of a structure.
9. The study of free vibration involves finding the dynamic response of a system.

10. The natural frequency corresponding to a rigid body motion is zero.
11. In the mode superposition approach, the mass, damping, and stiffness matrices are diagonalized.
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12. The solution of the undamped equations of motion €h!þ diag½u2� h! ¼ ½Q�T P!
�
t
�

¼ N
!�

t
�
can be found by solv-

ing a second-order ordinary differential equation.
13. An overdamped system can have 2i � 0.
14. Flutter analysis involves the solution of a double eigenvalue problem.

12.4 Select the most appropriate answer among the multiple choices given.

1. The dynamic equations of motion of a structure cannot be derived using the following:
(a) Lagrange equations (b) Hamilton’s principle (c) Rayleigh’s method

2. The consistent mass matrix is also considered to be somewhat inaccurate because it uses the following in its
derivation:
(a) Static displacement model
(b) Linear displacement model
(c) Linear stressestrain model

3. The order of the consistent mass matrix of a space frame element is:
(a) 6 � 6 (b) 12 � 12 (c) 9 � 9

4. In general, the consistent mass matrix of an element in the global coordinate system is:
(a) the same as the one in the local coordinate system
(b) [l]T [m(e)][l]
(c) m0 [I]where m0 is the mass of the element

5. The motion of a structure during free vibration:
(a) diminishes with time (b) varies harmonically (c) increases exponentially

6. The natural frequencies of a structure are given by

(a) ð½K� � u2½M�Þ ¼ 0 (b) ½½K� � u2½M��Q! ¼ 0
!

(c)
��½K� � u2½M��� ¼ 0

7. The number of natural frequencies of a system found from the eigenvalue problem ½½K� � u2½M��Q! ¼ 0
!

is:
(a) 6 (b) 1 (c) the same as the order of the matrices [K] and [M]

8. How many frequencies can be zero for a rigid body in space (such as an airplane with no flexibility)?
(a) 1 (b) 6 (c) 3

9. For an undamped system
h
Q
i
satisfies the relation

(a)
h
Q
iTh

M
ih
Q
i
¼
h
I
i

(b)
h
Q
iTh

Q
i
¼
h
I
i

(c)
h
Q
iTh

M
ih
Q
i
¼ diag

h
u2
i

10. The equations of motion of a damped system can be uncoupled:
(a) always
(b) only when damping matrix is a linear combination of mass and stiffness matrices
(c) only when [c] ¼ [0]

11. The solution of the second order homogenous differential equation €hiðtÞ þ 2 2 ui _hiðtÞ þ u2
i hi ðtÞ ¼ 0 is given by

hiðtÞ ¼ C1ea1t þ C2ea2t where
(a) a1, 2 ¼ �2iui

(b) a1;2 ¼ �ui

ffiffiffiffiffiffiffiffiffiffiffiffiffi
22i � 1

p
(c) a1;2 ¼ �2iui � ui

ffiffiffiffiffiffiffiffiffiffiffiffiffi
22i � 1

p
12. A critically damped system is one for which

(a) 2i ¼ 0 (b) 2i ¼ � 1 (c) 2i � 0
13. The damped response of a system is oscillatory only when:

(a) 2i < 0 (b) 2i ¼ 1 (c) 2i > 1

PROBLEMS

12.1 Find the solution of Example 12.7 using the lumped mass matrix.
12.2 Find the solution of Example 12.8 using the lumped mass matrix.
12.3 Find the natural frequencies and modes of vibration for a two-element fixedefixed beam.
12.4 Find the natural frequencies and modes of vibration for a one-element simply supported beam.
12.5 Find the natural frequencies and modes of vibration for a two-element simply supported beam by taking advantage

of the symmetry about the midpoint.
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12.6 Find the natural frequencies and mode shapes of the rod shown in Fig. 12.11 in axial vibration.
12.7 Sometimes it is desirable to suppress less important or unwanted degrees of freedom from the original system of

equations

½K�
n�n

X
!
n�1

¼ P
!
n�1

(P.1)

to reduce the size of the problem to be solved. This procedure, known as static condensation or condensation of unwanted
degrees of freedom, consists of partitioning Eq. (P.1) as follows:264K11

p�p
K12
p�q

K21
q�p

K22
q�q

375
8><>:

X
!

1
p�1

X
!

2
q�1

9>=>; ¼

8><>:
P
!

1
p�1

P
!

2
q�1

9>=>;; pþ q ¼ n (P.2)

where X
!

2 is the vector of unwanted degrees of freedom. Eq. (P.2) gives

½K11�X!1 þ ½K12�X!2 ¼ P
!

1 (P.3)

½K21�X!1 þ ½K22�X!2 ¼ P
!

2 (P.4)

Solving Eq. (P.4) for X
!

2 and substituting the result in Eq. (P.3) lead to the desired condensed set of equations�
K
�

p�p
X
!

1
p�1

¼ P
!

p�1 (P.5)

Derive the expressions of
h
K
i
and P

!
.

12.8 Modify the program CST3D.m (see Section 23.5) to find the displacements and the first two natural frequencies of a
box beam (similar to the one shown in Figure 10.9) with the following data:

Length ¼ 100 in, width ¼ 20 in, depth ¼ 10 in, tc ¼ 0.5 in, tw ¼ 1.0 in, E ¼ 30 � 106 psi, v ¼ 0.3,
P1 ¼ P2 ¼ 1000 lb

12.9 Find the natural frequencies of longitudinal vibration of the stepped bar shown in Fig. 12.12 using consistent mass
matrices.

Q2 Q3 Q4Q1

L /3 L /3 L /3 

FIGURE 12.11 Rod with multiple supports.

2"× 2"
1.5"×1.5"

1"×1"

E = 30×106 psi, ρ = 0.283 lbf/in3

5" 10" 15"

FIGURE 12.12 Three-stepped bar.
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12.10 Solve Problem 12.9 using lumped mass matrices.
12.11 Find the natural frequencies of longitudinal vibration of the stepped bar shown in Fig. 12.13 using consistent mass

matrices.
12.12 Solve Problem 12.11 using lumped mass matrices.
12.13 Find the mode shapes of the stepped bar shown in Fig. 12.12 corresponding to the natural frequencies found in

Problem 12.9.
12.14 Find the mode shapes of the stepped bar shown in Fig. 12.12 corresponding to the natural frequencies found in

Problem 12.10.
12.15 Orthogonalize the mode shapes found in Problem 12.13 with respect to the corresponding mass matrix.
12.16 Orthogonalize the mode shapes found in Problem 12.14 with respect to the corresponding mass matrix.
12.17 Find the consistent and lumped mass matrices of the bar element shown in Fig. 12.14 in the XYZ coordinate system.
12.18 a. Derive the stiffness and consistent mass matrices of the two-bar truss shown in Fig. 12.15.

b. Determine the natural frequencies of the truss (using the consistent mass matrix).
12.19 a. Derive the lumped mass matrix of the two-bar truss shown in Fig. 12.15.

b. Determine the natural frequencies of the truss (using the lumped mass matrix).
12.20 The properties of the two elements in the stepped beam shown in Fig. 12.16 are:

Element 1: E ¼ 30 � 106 psi, r ¼ 0.283 lbf/in3, cross-section ¼ circular, 2-in diameter.
Element 2: E ¼ 11 � 106 psi, r ¼ 0.1 lbf/in3, cross-section ¼ circular, 1-in diameter.
Find the natural frequencies of the stepped beam.

12.21 Find the mode shapes of the stepped beam considered in Problem 12.20.
12.22 Find the natural frequencies of the triangular plate shown in Fig. 12.17 using the consistent mass matrix. Use one

triangular membrane element for modeling.

Q1

1.5"×1.5"

2"×2"

5" 10"

E = 30×106 psi, ρ = 0.283 lbf/in3

FIGURE 12.13 Two-stepped bar.

X

Y

Z

x

i

j

(10, 5, 0) in

(5, 10, 15) in

E = 30×106psi
ρ = 0.283 lbf/in3

A = 2 in2

FIGURE 12.14 Bar element in three-dimensional space.
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12.23 Solve Problem 12.22 using the lumped mass matrix.
12.24 Consider the tetrahedron element shown in Fig. 12.18. Find the natural frequencies of the element by fixing the face

123.
12.25 Consider the stepped bar shown in Fig. 12.13. If the force shown in Fig. 12.19 is applied along Q1, determine the

dynamic response, Q1(t).
12.26 The cantilever beam shown in Fig. 12.20A is subjected to the force indicated in Fig. 12.20B along the direction of

Q1. Determine the responses Q1(t) and Q2(t).
12.27 a. Derive the consistent mass matrix of a bar element shown in Eq. (12.26) starting from the matrix of shape func-

tions, [N], given by Eq. (12.24).
b. Derive the consistent mass matrix of a space truss element shown in Eq. (12.30) starting from the matrix of shape

functions, [N], defined by Eq. (12.28).
12.28 Derive the consistent mass matrix of a uniform beam element shown in Fig. 12.4 by evaluating the integrals shown

in Eq. (12.34).
12.29 Derive the consistent mass matrix of a planar frame element shown in Fig. 9.14.
12.30 Derive the consistent mass matrix of a uniform rod (or bar) element under torsion shown in Fig. 9.9C.
12.31 Derive the consistent mass matrix given by Eq. (12.39) of a space frame element shown in Fig. 9.9A.

1" dia.1" dia.

Y

X

20" 20"

80"

E = 30×106 psi
ρ = 0.283 lbf/in3

FIGURE 12.15 Two-bar truss.

Q1

Q2
Element 2

Element 1

5" 10"

FIGURE 12.16 A stepped-bar.
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Y

E = 205 GPa
ν = 0.3
ρ = 76 kN / m3

Q2

X
Q1

50 mm

20 mm

20 mm

FIGURE 12.17 A triangular plate.

(15, 0, 0) in

X

Z

Y

Px

Py

PZ

(10, 10, 5) in

2 (0, 5, 0) in

3 (0, 0, 10) in

1 4

E = 30×106 psi
ν = 0.3
ρ = 0.283 lbf/in3

FIGURE 12.18 Tetrahedron element.
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12.32 Derive the consistent mass matrix given by Eq. (12.45), for a triangular membrane element with nine degrees of
freedom shown in Fig. 10.2.

12.33 Derive the consistent mass matrix given by Eq. (12.55) for a tetrahedron element.
12.34 Find the lumped mass matrix of a uniform beam element, shown in Fig. 12.4, by including its mass moment of

inertia.
12.35 Find the lumped mass matrix of a uniform membrane element shown in Fig. 10.2.
12.36 Derive the consistent mass matrix of a two-node tapered bar element (with an axial degree of freedom at each

node) with the area of cross section varying linearly along x as AðxÞ ¼ Ai

�
1� x

l

�
þ Aj

�
x
l

�
.

12.37 Find the lumped mass matrix of a two-node tapered bar element (with an axial degree of freedom at each node)

with the area of cross-section varying linearly along x as AðxÞ ¼ Ai

�
1� x

l

�
þ Aj

�
x
l

�
.

12.38 Derive the consistent mass matrix of a two-node beam element with two degrees of freedom at each node (as

shown in Fig. 12.4) when the area of cross section of the beam varies linearly as AðxÞ ¼ Ai

�
1� x

l

�
þ Aj

�
x
l

�
.

0

100

1

Force (lbf)

Time, t (s)

FIGURE 12.19 Force applied along Q1.

Q1

Q2

20"

Cross-section: 1"×1" 

E = 30×106 psi
ν = 0.3
ρ = 0.283 lbf/in3

Force (lbf)

0

100

1
Time, t (s)

(A)

(B)

FIGURE 12.20 Cantilever beam with force applied along Q1.
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12.39 Find the lumped mass matrix of a two-node beam element with two degrees of freedom at each node (as shown

in Fig. 12.4) when the area of cross section of the beam varies linearly as AðxÞ ¼ Ai

�
1� x

l

�
þ Aj

�
x
l

�
.

12.40 Find the natural frequencies of the free uniform bar shown in Fig. 12.1A using one finite element. Use the consis-
tent mass matrix of the element.

12.41 Find the natural frequencies of the free uniform bar shown in Fig. 12.1A using one finite element. Use the
lumped mass matrix of the element.

12.42 Find the natural frequencies of vibration of the constrained tapered bar element shown in Fig. 12.21 with the area

of cross section varying as AðxÞ ¼ 2 A
�
1� x

2l

�
using a one-bar element with the consistent mass matrix.

12.43 Find the natural frequencies of vibration of the constrained tapered bar element shown in Fig. 12.21 with the

cross-section area varying as AðxÞ ¼ 2 A
�
1� x

2l

�
using a one-bar element with the lumped mass matrix.

12.44 Find the natural frequencies of vibration of the free tapered bar element shown in Fig. 12.22 with the cross-

section area varying as AðxÞ ¼ 2A
�
1� x

2l

�
using a one-bar element with the consistent mass matrix.

12.45 Find the natural frequencies of vibration of the free tapered bar element shown in Fig. 12.22 with the cross-

section area varying as AðxÞ ¼ 2 A
�
1� x

2l

�
using a one-bar element with the lumped mass matrix.

12.46 Fig. 12.23 shows a uniform beam fixed at x ¼ 0 and simply supported at x ¼ l. Find the natural frequency of
vibration of the beam using a one-beam element with the consistent mass matrix.

12.47 Fig. 12.23 shows a uniform beam fixed at x ¼ 0 and simply supported at x ¼ l. Find the natural frequency of
vibration of the beam using a one-beam element with the lumped mass matrix.

Young’s modulus, E

O
q1

q2

A1

A2

x

FIGURE 12.21 Constrained tapered bar element.

Young’s modulus, E

O
q1

q2

A1
A2

x

FIGURE 12.22 Free tapered bar element.

O x

A, E, I, ρ

FIGURE 12.23 Fixed-simply supported beam.
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12.48 Consider a stepped beam fixed at both the ends as shown in Fig. 12.24 with the following data: r ¼ 7850 kg/m3,
E ¼ 207 GPa, A1 ¼ cross-sectional area of step 1 ¼ 10 cm � 10 cm, and A2 ¼ cross-sectional area of step
2 ¼ 5 cm � 5 cm. Using a one-beam element for each step of the beam, determine the following:
a. The stiffness matrix and the mass matrix, using consistent mass matrices of elements, of the stepped beam.
b. The natural frequencies of vibration of the stepped beam.

12.49 Consider a stepped beam fixed at both the ends as shown in Fig. 12.24 with the following data: r ¼ 7850 kg/m3,
E ¼ 207 GPa, A1 ¼ cross-sectional area of step 1 ¼ 10 cm � 10 cm, and A2 ¼ cross-sectional area of step
2 ¼ 5 cm � 5 cm. Using one beam element for each step of the beam, determine the following:
a. The stiffness matrix and the mass matrix, using lumped mass matrices of the stepped beam elements.
b. The natural frequencies of vibration for the stepped beam.

12.50 Using a one-beam element idealization of the beam column shown in Fig. 12.25, find the natural frequencies of
vibration. Use a lumped mass matrix of the beam column.

Data: E ¼ 207 GPa, r ¼ 7850 kg/m3, l ¼ 1 m, area of cross-section ¼ round with 10-cm diameter.

12.51 Using a one-beam element idealization of the beam column shown in Fig. 12.25, find the natural frequencies of
vibration. Use a consistent mass matrix of the beam column.

Data: E ¼ 207 GPa, r ¼ 7850 kg/m3, l ¼ 1 m, area of cross-section ¼ round with 10-cm diameter.

12.52 Consider a rectangular plate in plane stress shown in Fig. 12.26. Using two triangular-plane membrane elements
for idealization, derive the eigenvalue problem to find the natural frequencies of vibration of the plate. Use
lumped mass matrices.

12.53 Consider a rectangular plate in plane stress shown in Fig. 12.26. Using two triangular plane membrane elements
for idealization, derive the eigenvalue problem to find the natural frequencies of vibration of the plate. Use
consistent mass matrices.

W1 W3

W2
W4 W6

W5

A2A1

 1 = 1 m  2 = 2 m

FIGURE 12.24 Stepped-bar with fixed ends.

Q4

Q5

Q6

Q2

Q3

Q1

x

FIGURE 12.25 Beam-column.
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13.1 INTRODUCTION

Knowledge of the temperature distribution within a body is important in many engineering problems. This information will
be useful in computing the heat added to or removed from a body. Furthermore, if a heated body is not permitted to expand
freely in all the directions, some stresses will be developed inside the body. The magnitude of these thermal stresses will
influence the design of devices such as boilers, steam turbines, and jet engines. The first step in calculating the thermal
stresses is to determine the temperature distribution within the body.

The objective of this chapter is to derive the finite element equations for the determination of temperature distribution
within a conducting body. The basic unknown in heat transfer problems is temperature, similar to displacement in stress
analysis problems. As indicated in Chapter 5, the finite element equations can be derived either by minimizing a suitable
functional using a variational (RayleigheRitz) approach or from the governing differential equation using a weighted
residual (Galerkin) approach.

13.2 BASIC EQUATIONS OF HEAT TRANSFER

The basic equations of heat transfer, namely the energy balance and rate equations, are summarized in this section.

13.2.1 Energy Balance Equation

In the heat transfer analysis of any system, the following energy balance equation has to be satisfied because of
conservation of energy:

_Ein þ _Eg ¼ _Eout þ _Eie (13.1)

where the dot above a symbol signifies a time rate; _Ein is the energy inflow into the system, _Eg is the energy
generated inside the system, _Eout is the energy outflow from the system, and Eie is the change in internal energy of
the system.

The Finite Element Method in Engineering. https://doi.org/10.1016/B978-0-12-811768-2.00013-4
Copyright © 2018 Elsevier Inc. All rights reserved.
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13.2.2 Rate Equations

The rate equations, which describe the rates of energy flow, are given by the following equations.
FOR CONDUCTION

Definition: Conduction is the transfer of heat through materials without any net motion of the mass of the material.
The rate of heat flow in x direction by conduction (q) is given by

q ¼ kA
vT

vx
(13.2)

where k is the thermal conductivity of the material, A is the area normal to x direction through which heat flows, T is the
temperature, and x is the length parameter.

FOR CONVECTION
Definition: Convection is the process by which thermal energy is transferred between a solid and a fluid surrounding it.
The rate of heat flow by convection (q) can be expressed as

q ¼ hAðT � TNÞ (13.3)

where h is the heat transfer coefficient, A is the surface area of the body through which heat flows, T is the temperature
of the surface of the body, and TN is the temperature of the surrounding medium.

FOR RADIATION
Definition: Radiation heat transfer is the process by which the thermal energy is exchanged between two surfaces
obeying the laws of electromagnetics.
The rate of heat flow by radiation (q) is governed by the relation

q ¼ s εA
�
T4 � T4

N

�
(13.4)

where s is the StefaneBoltzmann constant, ε is the emissivity of the surface, A is the surface area of the body
through which heat flows, T is the absolute surface temperature of the body, and TN is the absolute surrounding
temperature.

ENERGY GENERATED IN A SOLID
Energy will be generated in a solid body whenever other forms of energy, such as chemical, nuclear, or electrical
energy, are converted into thermal energy. The rate of heat generated

�
_Eg

�
is governed by the equation

_Eg ¼ _qV (13.5)

where _q is the strength of the heat source (rate of heat generated per unit volume per unit time) and V is the volume of
the body.

ENERGY STORED IN A SOLID
Whenever the temperature of a solid body increases, thermal energy will be stored in it. The equation describing this
phenomenon is given by

_ES ¼ rcV
vT

vt
(13.6)

where _ES is the rate of energy storage in the body, r is the density of the material, c is the specific heat of the material, V
is the volume of the body, T is the temperature of the body, and t is the time parameter.

13.3 GOVERNING EQUATION FOR THREE-DIMENSIONAL BODIES

Consider a small element of material in a solid body as shown in Fig. 13.1. The element is in the shape of a rectangular
parallelepiped with sides dx, dy, and dz. The energy balance equation can be stated as follows [13.1]:

Heat inflow Heat generated Heat outflow Change in

during time dt þ by internal ¼ during dt þ internal

sources during dt energy during dt

(13.7)
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With the help of rate equations, Eq. (13.7) can be expressed as

ðqx þ qy þ qzÞdt þ _q dx dy dz dt ¼ ðqxþdx þ qyþdy þ qzþdzÞdt þ rc dT dx dy dz (13.8)

where

qx ¼ heat inflow rate into the face located at x

¼ �kxAx
vT

vx
¼ �kx

vT

vx
dy dz

(13.9)

qxþdx ¼ heat outflow rate from the face located at xþ dx

¼ qjxþdxzqx þ vqx
vx

dx

¼ �kxAx
vT

vx
� v

vx

�
kxAx

vT

vx

�
dx

¼ �kx
vT

vx
dy dz� v

vx

�
kx
vT

vx

�
dx dy dz

(13.10)

kx is the thermal conductivity of the material in x direction, Ax is the area normal to the x direction through which
heat flows ¼ dy dz, T is the temperature, _q is the rate of heat generated per unit volume (per unit time), r is the density

qz + dz

dz

dy

qy

qx

qz

y

z

x

dx

qx + dx

qy + dy

FIGURE 13.1 An element in Cartesian coordinates.
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of the material, and c is the specific heat of the material. By substituting Eqs. (13.9) and (13.10) and similar expressions for
qy, qyþdy, qz, and qzþdz into Eq. (13.8) and dividing each term by dx dy dz dt, we obtain

v

vx

�
kx
vT

vx

�
þ v

vy

�
ky
vT

vy

�
þ v

vz

�
kz
vT

vz

�
þ _q ¼ rc

vT

vt
(13.11)

Eq. (13.11) is the differential equation governing the heat conduction in an orthotropic solid body. If the thermal
conductivities in x, y, and z directions are assumed to be the same, kx ¼ ky ¼ kz ¼ k ¼ constant, Eq. (13.11) can be
written as

v2T

vx2
þ v2T

vy2
þ v2T

vz2
þ _q

k
¼ 1

a

vT

vt
(13.12)

where the constant a ¼ ðk=rcÞ is called the thermal diffusivity. Eq. (13.12) is the heat conduction equation that governs
the temperature distribution and the conduction heat flow in a solid having uniform material properties (isotropic body). If
heat sources are absent in the body, Eq. (13.12) reduces to the Fourier equation

v2T

vx2
þ v2T

vy2
þ v2T

vz2
¼ 1

a

vT

vt
(13.13)

If the body is in a steady state (with heat sources present), Eq. (13.12) becomes the Poisson’s equation

v2T

vx2
þ v2T

vy2
þ v2T

vz2
þ _q

k
¼ 0 (13.14)

If the body is in a steady state without any heat sources, Eq. (13.12) reduces to the Laplace equation

v2T

vx2
þ v2T

vy2
þ v2T

vz2
¼ 0 (13.15)

13.3.1 Governing Equation in Cylindrical Coordinate System

If a cylindrical coordinate system (with r, f, z coordinates) is used instead of the Cartesian x, y, z system, Eq. (13.12) takes
the form

v2T

vr2
þ 1

r

vT

vr
þ 1
r2

v2T

vf2 þ
v2T

vz2
þ _q

k
¼ 1

a

vT

vt
(13.16)

This equation can be derived by taking the element of the body as shown in Fig. 13.2.

r

z

φ

dφ

dφ dr
dz

φ

FIGURE 13.2 An element in cylindrical coordinates.
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13.3.2 Governing Equation in Spherical Coordinate System

By considering an element of the body in a spherical r, f, j coordinate system as indicated in Fig. 13.3, the general heat
conduction Eq. (13.12) becomes

1
r2

v

vr

�
r2
vT

vr

�
þ 1
r2$sin f

$
v

vf

�
sin f$

vT

vf

�
þ 1

r2$sin2 f
$
v2T

vj2 þ
_q

k
¼ 1

a

vT

vt
(13.17)

13.3.3 Boundary and Initial Conditions

Since the differential equationdEq. (13.11) or (13.12)dis second order, two boundary conditions need to be specified.
The possible boundary conditions are

Tðx; y; z; tÞ ¼ T0 for t > 0 on S1 (13.18)

kx$
vT

vx
$lx þ ky$

vT

vy
$ly þ kz$

vT

vz
$lz þ q0 ¼ 0 for t > 0 on S2 (13.19)

kx$
vT

vx
$lx þ ky$

vT

vy
$ly þ kz$

vT

vz
$lz þ hðT � TNÞ ¼ 0 for t > 0 on S3 (13.20)

where q0 is the boundary heat flux, h is the convection heat transfer coefficient, TN is the surrounding temperature, and lx,
ly, lz are the direction cosines of the outward drawn normal to the boundary.

Eq. (13.18) indicates that the temperature is specified as T0 (as T0(t) in an unsteady state problem) on the surface S1.
This boundary condition is applicable, for example, when the surface is in contact with a melting solid or a boiling
liquid. There will be heat transfer in both these cases and the surface remains at the temperature of the phase change
process. Eq. (13.19) represents the existence of a fixed or constant heat flux q0 at the surface S2. The equation basically
states that the heat flux q0 is related to the temperature gradient at the surface by Fourier’s law. This boundary condition
is realized when a thin film or patch electric heater is attached or bonded to the surface. A special case of this boundary
condition corresponds to the perfectly insulated or adiabatic surface for which the temperature gradient is zero.
Eq. (13.20) denotes the existence of convection heat transfer (heating or cooling of the body) at the surface S3 of the
body. Eq. (13.20) represents energy balance at the surface. This boundary condition is realized when cold (or hot) air
flows around the hot (or cold) surface. The air may be blown by a fan to increase the convection heat transfer. The
boundary condition stated in Eq. (13.18) is known as the Dirichlet condition and those stated in Eqs. (13.19) and (13.20)
are called Neumann conditions.

φ

dφ

dψ

ψ

dr
r

FIGURE 13.3 An element in spherical coordinates.
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Furthermore, the differential equation, Eq. (13.11) or (13.12), is first-order in time t, and hence it requires one initial
condition. The commonly used initial condition is

Tðx; y; z; t ¼ 0Þ ¼ T0ðx; y; zÞ in V (13.21)

where V is the domain (or volume) of the solid body and T0 is the specified temperature distribution at time zero.

EXAMPLE 13.1
A 20-cm thick wall of an industrial furnace is constructed using fireclay bricks that have a thermal conductivity of k ¼ 2 W/m �C.
During steady state operation, the furnace wall has a temperature of 800 �C on the inside and 300 �C on the outside. If one of

the walls of the furnace has a surface area of 2 m2 (with 20-cm thickness), find the rate of heat transfer and rate of heat loss through

the wall.

Solution

Assuming that the heat loss is due to conduction only, the rate of heat transfer (heat flowing through a unit surface area of the wall)

is given by

q ¼ k
dT

dx
z k

DT

Dx
¼ 2:0

�
800� 300

0:2

�
¼ 5000 W

�
m2

The rate of heat loss can be determined as follows:

Rate of heat loss ¼ Rate of heat transfer� Surface area of the wall through which heat flows

¼ ð5000Þð2Þ ¼ 10;000 W

EXAMPLE 13.2
A metal pipe of 10 cm outer diameter carrying steam passes through a room. The walls and the air in the room are at a temperature

of 20 �C while the outer surface of the pipe is at a temperature of 250 �C. If the heat transfer coefficient for free convection from the

pipe to the air is h ¼ 20 W/m2 �C find the rate of heat loss from the pipe.

Solution

The convection heat loss from the pipe of unit length (l ¼ 1 m) is given by

q ¼ h P l ðT � TNÞ (E.1)

where P is the perimeter of the pipe cross section, l is the length of the pipe, T is the temperature of the outer surface of the pipe,

and TN is the temperature of the air. Using the data given, Eq. (E.1) gives:

Heat loss per 1-m length of pipe (q) ¼ 20 {p (0.1)} (1) (250e20) ¼ 1445.1360 W.

EXAMPLE 13.3
A metal pipe of 10-cm outer diameter carrying steam passes through a room. The walls and the air in the room are at a temperature

of 20 �C while the outer surface of the pipe is at a temperature of 250 �C. If the emissivity of the outer surface of the pipe is 0.75,

determine the rate of heat loss from the pipe to the surrounding air and walls of the room by radiation.

Solution

The radiation heat loss (q) from the pipe, of unit length (l ¼ 1 m), is given by

q ¼ s ε A
�
T 4 � T 4

N

�
(E.1)

where s ¼ 5.7 � 10e8 W/m2 �K4, ε ¼ 0.75, A ¼ surface area from which radiation heat transfer occurs ¼ Pl ¼ p Dl ¼ p(0.1)

(1) ¼ 0.1 p m2, T ¼ 250 �C ¼ 523 �K, and TN ¼ 20 �C ¼ 293 �K. Thus, Eq. (E.1) gives

Heat loss per unit length of pipe ðqÞ ¼ 5:7� 10�8ð0:75Þ ð0:1pÞ�5234 � 2934
�

¼ 905:8496 W
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EXAMPLE 13.4
Compute the thermal diffusivity of the following building materials with given values of thermal conductivity (k), density (r), and

specific heat (cp):

Material

Thermal Conductivity,

k W/m 8C Density, r Kg/m3

Specific Heat,

cp J/kg 8C

Plywood 0.12 540 1215

Brick 0.70 1920 835

Gypsum or plaster board 0.15 900 1080

Solution

The thermal diffusivity (a) is defined as

a ¼ k

r cp
(E.1)

From the known data, the thermal diffusivities of the indicated materials can be determined from Eq. (E.1) as follows:

Playwood : a ¼ 0:12

ð540Þð1215Þ ¼ 183� 10�9 m2
�
s

Brick : a ¼ 0:70

ð1920Þð835Þ ¼ 437� 10�9 m2
�
s

Gypsum or plaster board : a ¼ 0:15

ð900Þð1080Þ ¼ 154� 10�9 m2
�
s

EXAMPLE 13.5
In an automobile radiator, the coolant (assumed to be water) enters at 170 �F and leaves at 130 �F with a flow rate of

10 gallons per minute. If the surrounding air is at 75 �F, determine the surface area of the radiator. Assume the following

data: Convection heat transfer coefficient ¼ 12 BTU/(ft2-hr �F), Specific heat of water at 140 �F ¼ 1.0245 BTU/lbm
�F, Density of

water at 140 �F: 61.1794 lbm/ft
3.

Solution

Assuming steady state, the heat lost through water must be equal to the heat gain by the surrounding air. Thus

mwcpðTin � ToutÞ ¼ hArad ðTw � TNÞ (E.1)

where mw denotes the mass flow rate of water given by

mw ¼ volume flow rate � density of water ¼ 10ð0:1337Þ
60

ð61.1794Þ ¼ 1:3631 lbm=s

Using the relation: 1 gallon ¼ 231 in3 ¼ 0.1337 ft3. Eq. (E.1) gives, for 1 h,

ð1:3631� 3600Þð1:0245Þð170� 130Þ ¼ 12Aradð150� 75Þ (E.2)

where the average temperature of water is used for Tw as

Tw ¼ TIN þ tOUT

2
¼ 170þ 130

2
¼ 150 �F (E.3)

The solution of Eq. (E.2) gives the surface area of the radiator as Arad ¼ 223:4393 ft2.

Note

The large area required for the radiator surface area is accommodated within the available space of the radiator by using a very

large number of fins, each fin designed to provide some of the heat exchanger surface area.

Formulation and Solution Procedure Chapter | 13 511

www.konkur.in

Telegram: @uni_k



13.4 STATEMENT OF THE PROBLEM

13.4.1 In Differential Equation Form

The problem of finding the temperature distribution inside a solid body involves the solution of Eq. (13.11) or
Eq. (13.12) subject to satisfaction of the boundary conditions of Eqs. (13.18) to (13.20) and the initial condition given by
Eq. (13.21).

13.4.2 In Variational Form

The three-dimensional heat conduction problem can be stated in an equivalent variational form [13.2] as follows:
Find the temperature distribution T(x, y, z, t) inside the solid body that minimizes the integral

I ¼ 1
2

ZZZ
V

24kx�vT
vx

�2

þ ky

�
vT

vy

�2

þ kz

�
vT

vz

�2

� 2

0@ _q� rc
vT

vt
w

1AT

35dV (13.22)

and satisfies the boundary conditions of Eqs. (13.18) to (13.20) and the initial condition of Eq. (13.21). Here, the term�
vT

.
vt
w

�
must be considered fixed while taking the variations. It can be verified that Eq. (13.11) is the EulereLagrange

equation corresponding to the functional of Eq. (13.22). Generally it is not difficult to satisfy the boundary condition of
Eq. (13.18), but Eqs. (13.19) and (13.20) present some difficulty. To overcome this difficulty, an integral pertaining to
the boundary conditions of Eqs. (13.19) and (13.20) is added to the functional of Eq. (13.22) so that when the combined
functional is minimized, the boundary conditions of Eqs. (13.19) and (13.20) would be automatically satisfied. The integral
pertaining to Eqs. (13.19) and (13.20) is given byZZ

S2

q0TdS2 þ
ZZ

S3

1
2
hðT � TNÞ2dS3

Thus, the combined functional to be minimized will be

I ¼ 1
2

ZZZ
V

24kx�vT
vx

�2

þ ky

�
vT

vy

�2

þ kz

�
vT

vz

�2

� 2

0@ _q� rc
vT

vt
w

1AT

35dV þ
ZZ

S2

q0TdS2 þ 1
2

ZZ
S3

hðT � TNÞ2dS3

(13.23)

13.5 DERIVATION OF FINITE ELEMENT EQUATIONS

The finite element equations for the heat conduction problem can be derived by using a variational approach or a Galerkin
approach. We shall derive the equations using both approaches in this section.

13.5.1 Variational Approach

In this approach, we consider the minimization of the functional I given by Eq. (13.23) subject to the satisfaction of
the boundary conditions of Eq. (13.18) and the initial conditions of Eq. (13.21). The step-by-step procedure involved in
the derivation of finite element equations is as follows.

Step 1: Divide the domain V into E finite elements of p nodes each.
Step 2: Assume a suitable form of variation of T in each finite element and express T(e) (x, y, z, t) in element e as

T ðeÞðx; y; z; tÞ ¼ ½Nðx; y; zÞ�T!ðeÞ
(13.24)

where

½Nðx; y; zÞ� ¼ ½N1ðx; y; zÞ N2ðx; y; zÞ . Npðx; y; zÞ�
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T
!ðeÞ ¼

8>>><>>>:
T1ðtÞ
T2ðtÞ
«

TpðtÞ

9>>>=>>>;
ðeÞ

Ti(t) is the temperature of node i, and Ni(x, y, z) is the interpolation function corresponding to node i of element e.
Step 3: Express the functional I as a sum of E elemental quantities I (e) as

I ¼
XE
e¼ 1

IðeÞ (13.25)

where

IðeÞ ¼ 1
2

ZZZ
VðeÞ

24kx�vT ðeÞ

vx

�2

þ ky

�
vT ðeÞ

vy

�2

þ kz

�
vT ðeÞ

vz

�2

� 2

0@ _q� rc
vT ðeÞ

vt
w

1AT ðeÞ

35dV
þ
ZZ

S
ðeÞ
2

q0T
ðeÞdS2 þ 1

2

ZZ
S
ðeÞ
3

h
�
T ðeÞ � TN

�2
dS3

(13.26)

For the minimization of the functional I, use the necessary conditions

vI

vTi
¼

XE
e¼ 1

vIðeÞ

vTi
¼ 0; i ¼ 1; 2;.;M

where M is the total number of nodal temperature unknowns. From Eq. (13.26), we have

vIðeÞ

vTi
¼
ZZZ

VðeÞ

24kxvT ðeÞ

vx

v

vTi

�
vT ðeÞ

vx

�
þ ky

vT ðeÞ

vy

v

vTi

�
vT ðeÞ

vy

�
þ kz

vT ðeÞ

vz

v

vTi

�
vT ðeÞ

vz

�

�
0@ _q� rc

vT ðeÞ

vt
w

1A vT ðeÞ

vTi

35dV þ
ZZ

S
ðeÞ
z

q0
vT ðeÞ

vTi
dS2 þ

ZZ
S
ðeÞ
3

h
�
T ðeÞ � TN

� vT ðeÞ

vTi
$dS3

(13.27)

Note that the surface integrals do not appear in Eq. (13.27) if node i does not lie on S2 and S3. Eq. (13.24) gives

vT ðeÞ

vx
¼

	
vN1

vx

vN2

vx
.

vNp

vx



T
!ðeÞ

v

vTi

�
vT ðeÞ

vx

�
¼ vNi

vx

vT ðeÞ

vTi
¼ Ni

vT ðeÞ

vt
w

¼ ½N� _T!
ðeÞ

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

(13.28)

where

_
T
!ðeÞ

¼

8><>:
vT1=vt

«

vTp=vt

9>=>;
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Thus, Eq. (13.27) can be expressed as

vIðeÞ

vT
!ðeÞ ¼

h
KðeÞ

1

i
T
!ðeÞ � P

!ðeÞ þ
h
KðeÞ

2

i
T
!ðeÞ þ

h
KðeÞ

3

i _
T
!ðeÞ

(13.29)

where the elements of
h
KðeÞ
1

i
,
h
KðeÞ
2

i
,
h
KðeÞ
3

i
, and P

!ðeÞ
are given by

KðeÞ
1ij ¼

ZZZ
V ðeÞ

�
kx
vNi

vx

vNj

vx
þ ky

vNi

vy

vNj

vy
þ kz

vNi

vz

vNj

vz

�
$ dV (13.30)

KðeÞ
2ij ¼

ZZ
SðeÞ3

hNiNj$ dS3 (13.31)

KðeÞ
3ij ¼

ZZZ
VðeÞ

rcNiNj$ dV (13.32)

and

PðeÞ
i ¼

ZZZ
V ðeÞ

_qNidv�
ZZ

SðeÞ2

q0NidS2 þ
ZZ

SðeÞ3

hTNNidS3 (13.33)

Step 4: Rewrite Eq. (13.29) in matrix form as

vI

v T
!e ¼

XE
e¼ 1

vIðeÞ

vT
!ðeÞ ¼

XE
e¼ 1

�hh
KðeÞ

1

i
þ
h
KðeÞ

2

ii
T ðeÞ � P

!ðeÞ þ
h
KðeÞ

3

i _
T
!ðeÞ�

¼ 0
!

(13.34)

where T
!e is the vector of nodal temperature unknowns of the system:

T
!e ¼

8><>:
T1

T2

«

9>=>;
By using the familiar assembly process, Eq. (13.34) can be expressed as

�
Ke3

� _
T
!e þ

	
Ke


T
!e ¼ P

!e (13.35)

where

�
Ke3

� ¼
XE
e¼ 1

h
KðeÞ

3

i
(13.36)

½K� ¼
XE
e¼ 1

hh
KðeÞ

1

i
þ
h
KðeÞ

2

ii
(13.37)

and

P
!e ¼

XE
e¼ 1

P
!ðeÞ

(13.38)

Step 5: Eq. (13.35) are the desired equations that have to be solved after incorporating the boundary conditions
specified over S1 (Eq. (13.18) and the initial conditions stated in Eq. (13.21)).
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13.5.2 Galerkin Approach

The finite element procedure using the Galerkin method can be described by the following steps.
Step 1: Divide the domain V into E finite elements of p nodes each.
Step 2: Assume a suitable form of variation of T in each finite element and express T(e) (x, y, z, t) in element e as

T ðeÞðx; y; z; tÞ ¼ ½Nðx; y; zÞ�T!ðeÞ
(13.39)

Step 3: In the Galerkin method, the integral of the weighted residue over the domain of the element is set equal to zero
by taking the weights same as the interpolation functions Ni. Since the solution in Eq. (13.39) is not exact, substitution of
Eq. (13.39) into the differential Eq. (13.11) gives a nonzero value instead of zero. This nonzero value will be the residue.
Hence, the criterion to be satisfied at any instant of time isZZZ

VðeÞ

	
Ni


v

vx

�
kx
vT ðeÞ

vx

�
þ v

vy

�
ky
vT ðeÞ

vy

�
þ v

vz

�
kz
vT ðeÞ

vz

�
þ _q� rc

vT ðeÞ

vt

�

dV ¼ 0; i ¼ 1; 2;.; p (13.40)

By noting that the first integral term of Eq. (13.40) can be written asZZZ
VðeÞ

Ni
v

vx

�
kx
vT ðeÞ

vx

�
dV ¼ �

ZZZ
V ðeÞ

vNi

vx
kx
vT ðeÞ

vx
dV þ

ZZ
SðeÞ

Nikx
vT ðeÞ

vx
lx dS (13.41)

where lx is the x-direction cosine of the outward drawn normal, and with similar expressions for the second and third in-
tegral terms, Eq. (13.40) can be stated as

�
ZZZ

V ðeÞ

	
kx
vNi

vx

vT ðeÞ

vx
þ ky

vNi

vy

vT ðeÞ

vy
þ kz

vNi

vz

vT ðeÞ

vz



dV

þ
ZZ

SðeÞ
Ni

	
kx
vT ðeÞ

vx
lx þ ky

vT ðeÞ

vy
ly þ kz

vT ðeÞ

vz
lz



dS

þ
ZZZ

V ðeÞ
Ni

�
_q� rc

vT ðeÞ

vt

�
dV ¼ 0; i ¼ 1; 2;.; p

(13.42)

Since the boundary of the element S(e) is composed of SðeÞ1 ; SðeÞ2 , and SðeÞ3 , the surface integral of Eq. (13.42) over SðeÞ1

would be zero (since T ðeÞ is prescribed to be a constant T0 on S
ðeÞ
1 , the derivatives of T(e) with respect to x, y, and z would be

zero). On the surfaces SðeÞ2 and SðeÞ3 , the boundary conditions given by Eqs. (13.19) and (13.20) are to be satisfied. For this,

the surface integral in Eq. (13.42) over SðeÞ2 and SðeÞ3 is written in equivalent form asZZ
SðeÞ2 þSðeÞ3

Ni

	
kx
vT ðeÞ

vx
lx þ ky

vT ðeÞ

vy
ly þ kz

vT ðeÞ

vz
lz



dS ¼ �

ZZ
SðeÞ2

Niq0 dS2 �
ZZ

SðeÞ3

h
�
T ðeÞ � TN

�
dS3 (13.43)

By using Eqs. (13.39) and (13.43), Eq. (13.42) can be expressed in matrix form ash
KðeÞ

1

i
T
!ðeÞ þ

h
KðeÞ

2

i
T
!ðeÞ þ

h
KðeÞ

3

i _
T
!ðeÞ

� P
!ðeÞ ¼ 0

!
(13.44)

where the elements of the matrices
h
KðeÞ
1

i
,
h
KðeÞ
2

i
,
h
KðeÞ
3

i
, and P

!ðeÞ
are the same as those given in Eqs. (13.30) to (13.33).

Step 4: The element Eq. (13.44) can be assembled in the usual manner to obtain the overall equations as�
Ke3

� _
T
!e þ�

Ke� T!e ¼ P
!e (13.45)

where
�
Ke3

�
,
�
Ke�, and P

!e are the same as those defined by Eqs. (13.36) to (13.38). It can be seen that the same final

equations, Eq. (13.35), are obtained in both the approaches.
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Step 5: Eq. (13.35) have to be solved after incorporating the boundary conditions specified over S1 and the initial
conditions.

Notes

1. The expressions for
h
K

ðeÞ
1

i
,
h
K

ðeÞ
2

i
,
h
K

ðeÞ
3

i
, and P

!ðeÞ
can be stated using matrix notation as

h
K

ðeÞ
1

i
¼

ZZZ
V ðeÞ

½B�T ½D�½B� dV (13.46)

h
K

ðeÞ
2

i
¼

ZZ
S
ðeÞ
3

h½N�T ½N�dS3 (13.47)

h
K

ðeÞ
3

i
¼

ZZ
V ðeÞ

rc½N�T ½N� dV (13.48)

P
!ðeÞ ¼ P

!ðeÞ
1 � P

!ðeÞ
2 þ P

!ðeÞ
3 (13.49)

where

P
!ðeÞ

1 ¼
ZZZ

V ðeÞ
_q½N�TdV (13.50)

P
!ðeÞ

2 ¼
ZZ

S
ðeÞ
2

q0½N�TdS2 (13.51)

P
!ðeÞ

3 ¼
ZZ

S
ðeÞ
3

hTN½N�TdS3 (13.52)

½D� ¼

264 kx 0 0

0 ky 0

0 0 kz

375 (13.53)

½B� ¼

2666666664

vN1

vx

vN2

vx
.

vNp

vx

vN1

vy

vN2

vy
.

vNp

vy

vN1

vz

vN2

vz
.

vNp

vz

3777777775
(13.54)

2. When all three modes of heat transfer are considered, the governing differential equation becomes nonlinear (due to the

inclusion of radiation term). An iterative procedure is presented in Section 14.7 for the solution of heat transfer problems

involving radiation.

REVIEW QUESTIONS

13.1 Give brief answers to the following questions.

1. Give two practical systems for which thermal stress analysis is very important.
2. What is the basic idea used in energy balance equations?
3. What are rate equations?
4. How is thermal diffusivity (a) defined?

13.2 Fill in the blank with a suitable word.

1. The basic unknown parameter in most thermal problems is ———————————.
2. The rate of heat flow by conduction (q) is ———————————————.
3. The rate of heat flow by convection (q) is ——————————————.
4. The rate of heat flow by radiation (q) is ———————————————.
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5. When the temperature is specified on part of the surface for an unsteady state problem, the boundary condition is
known as ——————————— condition.

6. When energy balance is enforced on a surface due to a flow of cold (or hot) air on a hot (or cold) surface, the condition
is called ——————————— condition.

7. The reason for using initial condition in the solution of an unsteady state problem is that the differential equation has
———————— derivative of order one.

8. A heat transfer problem can be stated either in ——————————————————— equation form or in
—————————————————— form.

9. In the finite element equations of a general heat transfer problem, there will be three square matrices corresponding to
conduction, convection, and ———————— ——————————————.

10. In the finite element equations of a thermal problem, the right-hand side vector (similar to the load vector in structural
problems) is composed of three vectors, associated with heat ——————————————, convection, and
boundary —————————— ——————————————.

11. Radiation heat transfer obeys the laws of —————————————————————.
12. The consideration of radiation heat transfer introduces nonlinearity to the system due to the presence of the

————————— power of temperature.
13. Thermal —————————————— is defined as a ¼ k=ðrcÞ.
13.3 Indicate whether the following statement is true or false.

1. In the variational approach, the functional to be minimized includes contributions corresponding to the Dirichlet
conditions.

2. The Galerkin method also minimizes the functional considered in the variational approach.

13.4 Select the most appropriate answer from the multiple choices given.

1. The energy generated in a solid body is:
(a) k V (b) _q V (c) h V

2. The energy absorbed in a solid body is given by
(a) k A vT

vx (b) h A vT
vt (c) r c V vT

vt

13.5 Match the nature of following equations for an isotropic body.

1. Fourier equation (a) Steady state (with no heat source)

2. Poisson equation (b) Unsteady state (no heat generation)

3. Laplace equation (c) Steady state

13.6 Match the nature of the following types of heat transfer.

1. Conduction (a) Heat flows from one surface to another even
with no medium

2. Convection (b) Heat transfers through the material

3. Radiation (c) Heat transfers from solid to fluid

PROBLEMS

13.1 Derive the heat conduction equation in cylindrical coordinates, Eq. (13.16), from Eq. (13.12).
Hint: Use the relations x ¼ r cos q, y ¼ r sin q, and z ¼ z in Eq. (13.12).

13.2 Derive the heat conduction equation in spherical coordinates, Eq. (13.17), from Eq. (13.12).
Hint: Use the relations x ¼ r sinf cos j, y ¼ r sinfsin j, and z ¼ r cosf in Eq. (13.12).

13.3 The steady-state one-dimensional heat conduction equation is given by:

In Cartesian coordinate system: d
dx

h
k dT

dx

i
¼ 0

In cylindrical coordinate system: d
dr

h
rk dT

dr

i
¼ 0
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In spherical coordinate system: d
dr

h
kr2dTdr

i
¼ 0

Suggest a suitable temperature distribution model in each case for use in the finite element analysis.
13.4 Express the boundary conditions of Fig. 13.4 in the form of equations.
13.5 The thermal equilibrium equation for a one-dimensional problem, including conduction, convection, and radiation,

can be expressed as

d
dx

	
kA

dT
dx



� hPðT � TNÞ � εsP

�
T4 � T4

N

�þ _qA ¼ 0; 0 � x � L (P.1)

where k is the conductivity coefficient, h is the convection coefficient, ε is the emissivity of the surface, s is the
StefaneBoltzman constant, _q is the heat generated per unit volume, A is the cross-sectional area, P is the perimeter,
T(x) is the temperature at location x, TN is the ambient temperature, and L is the length of the body. Show that the
variational functional I corresponding to Eq. (P.1) is given by

I ¼
Z L

x¼0


_qAT � 1

2
hPT2 þ hPTNT � 1

5
εsPT5 þ εsPT4

NT � 1
2
kA

	
dT
dx


2�
dx (P.2)

13.6 Derive the finite element equations corresponding to Eq. (P.1) of Problem 13.5 using the Galerkin approach.
13.7 Derive the finite element equations corresponding to Eqs. (P.1) and (P.2) of Problem 13.5 using a variational

approach.
13.8 Heat transfer takes place by convection and radiation from the inner and outer surfaces of a hollow sphere.

If the radii are Ri and Ro, the fluid (ambient) temperatures are Ti and To, convection heat transfer coefficients
are hi and ho, and emissivities are εi and εo at the inner (i) and outer (o) surfaces of the hollow sphere, state the
governing differential equation and the boundary conditions to be satisfied in finding the temperature distribution
in the sphere, T(r).

Insulated

H
ea

t f
lu

x
=

10
 B

T
U

/h
r−

ft2

h = 5 BTU/hr − ft2− °F, T∞ = 70 °F

X

Y

Convection loss

T = 100 °F

T = 120 °F

FIGURE 13.4 Heat transfer in a hollow rectangular section.
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13.9 Compute the thermal diffusivity of the following metals with given values of thermal conductivity (k), density (r),
and specific heat (cp):

Metal

Thermal Conductivity,

k W/m 8C

Density,

r kg/m3

Specific Heat,

cp J/kg 8C

Aluminum 235 2700 900

Copper 400 8930 385

Carbon
steel

60.2 7855 432

13.10 Heat flows by conduction at a rate of 5 kW through the insulated board of a wall. The insulating board has a
thickness of 2 cm, surface area of 5 m2, and thermal conductivity of 0.4 W/m �C. If the temperature of the inner
(hot) surface of the board is 350 �C, find the temperature of the outer surface of the board.

13.11 The glass window of a room has an area of 4 m2, a thickness of 0.75 cm, and a thermal conductivity of 1.8 W/m �C.
If the inside and outside surfaces of the window are 20 �C and �2 �C, respectively, determine the heat loss through
the window.

13.12 A cast iron casting of dimensions 10 � 15 � 25 cm, shown in Fig. 13.5, is at a temperature of 500 �C. Cold air at a
temperature of 20 �C is blown around and on the top of the casting. The convection coefficient between the casting
and air is h ¼ 120 W/m2 �C. Determine the rate of heat transfer from the casting to the air.

13.13 A rectangular chip of surface area 0.3 m2 is maintained at 200 �C. It is placed in an evacuated chamber whose walls
are maintained at 20 �C. If the emissivity of the surface of the chip is 0.9, find the rate at which heat is transferred
by radiation between the chip and the chamber walls.

13.14 A pipe with an outer diameter of 12 cm and length 5 m runs through a room. The pipe carries superheated steam
that causes the temperature of the outer surface of the pipe to be 180 �C. The temperature of the air and the walls of
the room is 20 �C. If the emissivity of the pipe surface is 0.85 and the convection heat transfer coefficient between
the pipe and the surrounding air is h ¼ 15 W/m2 �C, determine the following:
a. Rate of heat loss from the pipe due to convection.
b. Rate of heat loss from the pipe due to radiation.

13.15 A uniform fin of length L and cross-sectional area A (shown in Fig. 13.6) has a thermal conductivity k. The
temperature at the root of the fin, T(x ¼ 0), is maintained at a high temperature T0 and the fin is surrounded by
cold air at temperature TN. The convection heat transfer between the fin and air is h. The temperature distribution,

25 cm

10 cm

15 cm

C

DA

B

FIGURE 13.5 A cast iron casting.

T0 0 x

L

FIGURE 13.6 Uniform fin.
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T ¼ T(x), along the fin, with convection loss occurring along the peripheral surface of the fin from x ¼ 0 to x ¼ L
and the right edge of the fin (at x ¼ L) insulated, is given by [13.3]:

T � TN

T0 � TN

¼ cosh m ðL� xÞ
cosh mL

(P.3)

where

m ¼
ffiffiffiffiffiffiffi
h P

k A

r
(P.4)

and P is the perimeter of the cross section of the fin. Plot Eq. (P.3) for an aluminum fin with k ¼ 235 W/m �C,
h ¼ 20 W/m2 �C, A ¼ 2 cm2, P ¼ 6 cm, T0 ¼ 200 �C, TN ¼ 20 �C, and L ¼ 10 cm.

13.16 A uniform fin of length L and cross-sectional area A (shown in Fig. 13.6) has a thermal conductivity k. The
temperature at the root of the fin, T(x ¼ 0), is maintained at a high temperature T0 and the fin is surrounded by
cold air at a temperature TN. The convection heat transfer between the fin and air is h. The temperature distribution,
T ¼ T(x), along the fin, with convection loss occurring along the peripheral surface of the fin from x ¼ 0 to x ¼ L as
well as at the right edge of the fin (at x ¼ L), is given by

T � TN

T0 � TN

¼
cosh m ðL� xÞ þ h

m k
sinh m ðL� xÞ

cosh mLþ h

m k
sinh mL

(P.5)

where m is given by Eq. (P.4) of Problem 13.15, and P is the perimeter of the cross section of the fin. Plot
Eq. (P.5) for an aluminum fin with k ¼ 235 W/m �C, h ¼ 20 W/m2 �C, A ¼ 2 cm2, P ¼ 6 cm, T0 ¼ 200 �C,
TN ¼ 20 �C, and L ¼ 10 cm.

13.17 A uniform fin of length L and cross-sectional area A (shown in Fig. 13.6) has a thermal conductivity k. The
temperature at the root of the fin, T(x ¼ 0), is maintained at a high temperature T0 and the fin is surrounded by
cold air at a temperature TN. The convection heat transfer between the fin and air is h. The temperature distribution,
T ¼ T(x), along the fin, with convection loss occurring along the peripheral surface of the fin from x ¼ 0 to x ¼ L
and the right edge of the fin (at x ¼ L) maintained at a temperature TL, is given by

T � TN

T0 � TN

¼

�
TL � TN

T0 � TN

�
sinh mxþ sinh m ðL� xÞ
sinh mL

(P.6)

where m is given by Eq. (P.4) of Problem 13.15, and P is the perimeter of the cross section of the fin. Plot Eq. (P.6)
for an aluminum fin with k ¼ 235 W/m �C, h ¼ 20 W/m2 �C, A ¼ 2 cm2, P ¼ 6 cm, T0 ¼ 200 �C, TN ¼ 20 �C,
TL ¼ 40 �C, and L ¼ 10 cm.

13.18 A uniform fin of length L and cross-sectional area A (shown in Fig. 13.6) has a thermal conductivity k. The
temperature at the root of the fin, T(x ¼ 0), is maintained at a high temperature T0 and the fin is surrounded by
cold air at a temperature TN. If the fin is very long (L /N), the temperature distribution, T ¼ T(x), along the
fin with convection loss occurring along the peripheral surface of the fin is given by

T � TN

T0 � TN

¼ e�mx (P.7)

where m is given by Eq. (P.4) of Problem 13.15, P is the perimeter of the cross section of the fin, and h is
the convection heat transfer coefficient between the fin and air. Plot Eq. (P.7) for an aluminum fin with
k ¼ 235 W/m �C, h ¼ 20 W/m2 �C, A ¼ 2 cm2, P ¼ 6 cm, T0 ¼ 200 �C, and TN ¼ 20 �C.

13.19 Fig. 13.7 shows a hollow sphere of inner radius Ri and outer radius Ro. The inner and outer surfaces of the sphere
are maintained at the steady temperatures of Ti and To, respectively. Consider the thermal equilibrium of a small
hollow spherical element of inner radius r and outer radius r þ dr with no heat generation. Derive an expression for
the rate of heat transfer through the hollow sphere by conduction using the Fourier law.
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13.20 Consider a hollow cylinder of inner radius Ri and outer radius Ro as shown in Fig. 13.8. The temperatures of
the inside and outside surfaces of the cylinder are maintained at the steady values Ti and To, respectively.
If heat transfer occurs only by conduction with no heat generation, the temperature distribution in the cylinder
in the radial direction is given by

TðrÞ ¼ Ti � To

ln

�
Ri

Ro

� ln

�
r

Ro

�
þ To (P.8)

and the rate of heat transfer in a cylinder of length L is given by

q ¼ 2p L k ðTi � ToÞ
ln

�
Ro

Ri

� (P.9)

Plot Eqs. (P.8) and (P.9) for the following data: Ri ¼ 0.1 m, Ro ¼ 0.2 m, L ¼ 1 m, k ¼ 401 W/m �C, Ti ¼ 120 �C
and To ¼ 20 �C.

13.21 Fig. 13.9 shows a slab of thickness 5 cm in the x direction is maintained at 500 �C on the surface at x ¼ 0 while the
surface at x ¼ 5 cm is exposed to a large wall maintained at 20 �C. Assuming a vacuum between the slab and the
wall, find the temperature of the slab on the surface PQRS located at x ¼ 5 cm. Assume the wall as a black body,
the emissivity of the surface of the wall (PQRS) as ε ¼ 0, and the wall to be in a steady state.

13.22 In Problem 13.21, assume that a stream of air flows between the slab and the wall (instead of vacuum). Assume that
the temperature of the air is 25 �C that provides a heat transfer coefficient of 80 W/m2 K for the right-hand surface
of the slab and the thermal conductivity of the slab is k ¼ 5 Watts/(m-K). Determine (a) the surface temperature,
and (b) the heat transfer rate.

T0

Ti

Ri

R 0

L

FIGURE 13.8 A hollow cylinder.

dr

r

Ti

T0

Ri

R0

FIGURE 13.7 A hollow sphere.

Formulation and Solution Procedure Chapter | 13 521

www.konkur.in

Telegram: @uni_k



REFERENCES

[13.1] F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, sixth ed., Wiley, New York, 2011.
[13.2] G.E. Myers, Analytical Methods in Conduction Heat Transfer, McGraw-Hill, New York, 1971.

[13.3] F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, Introduction to Heat Transfer, fifth ed., Wiley, Hoboken, NJ, 2007.

Wall

k = 5

 = 0.7

───W
m–°K

T1 = 500°C
(773°K)

T∞ = 20°C
(293°K)

y

qconduction

qradiation

x

z
P

t = 5 cm

Q

R

O

S
D

A

B

C

T2

FIGURE 13.9 Radiation heat transfer between a slab and a wall.

522 PART j IV Application to Heat Transfer Problems

www.konkur.in

Telegram: @uni_k



Chapter 14

One-Dimensional Problems

Chapter Outline

14.1 Introduction 523

14.2 Straight Uniform Fin Analysis 523

14.3 Convection Loss From End Surface of Fin 527

14.4 Tapered Fin Analysis 530

14.5 Analysis of Uniform Fins Using Quadratic Elements 533

14.6 Unsteady State Problems 536

14.6.1 Derivation of Element Capacitance Matrices 536

14.6.2 Finite Difference Solution in Time Domain 539

14.7 Heat Transfer Problems With Radiation 541

Review Questions 545

Problems 546

References 551

14.1 INTRODUCTION

For a one-dimensional heat transfer problem, the governing differential equation is given by

k
d2T
dx2

þ _q ¼ 0 (14.1)

The boundary conditions are

Tðx ¼ 0Þ ¼ T0ðtemperature specifiedÞ (14.2)

k
dT
dx

lx þ hðT � TNÞ þ q0 ¼ 0 on the surface

ðcombined heat flux and convection specifiedÞ
(14.3)

A fin is a common example of a one-dimensional heat transfer problem. One end of the fin is connected to a heat source
(whose temperature is known) and heat will be lost to the surroundings through the perimeter surface and the end. We now
consider the analysis of uniform and tapered fins.

14.2 STRAIGHT UNIFORM FIN ANALYSIS

Step 1: Idealize the rod into several finite elements as shown in Fig. 14.1B.
Step 2: Assume a linear temperature variation inside any element e as

T ðeÞðxÞ ¼ a1 þ a2x ¼ ½NðxÞ� q!ðeÞ
(14.4)

where

½NðxÞ� ¼ ½NiðxÞNjðxÞ� (14.5)

NiðxÞhN1ðxÞ ¼ 1� x

lðeÞ
(14.6)

NjðxÞhN2ðxÞ ¼ x

lðeÞ
(14.7)

The Finite Element Method in Engineering. https://doi.org/10.1016/B978-0-12-811768-2.00014-6
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q!ðeÞ ¼
�
q1
q2

�
h

�
Ti

Tj

�
(14.8)

i and j indicate the global node numbers corresponding to the left- and right-hand side nodes, and l(e) is the length of
element e.
Step 3: Derivation of element matrices:
Since this is a one-dimensional problem, Eqs. (13.53) and (13.54) reduce to

½D� ¼ ½k�and½B� ¼
�
vNi

vx

vNj

vx

�
¼
�
� 1
lðeÞ

1
lðeÞ

�
(14.9)

Eqs. (13.46) to (13.49) become

h
KðeÞ

1

i
¼
ZZZ

V ðeÞ
½B�T ½D�½B�dV ¼

Z lðeÞ

x¼0

8>>><>>>:
� 1

lðeÞ

1

lðeÞ

9>>>=>>>;
�
k
��� 1

lðeÞ
1

lðeÞ

�
A dx

¼ Ak

lðeÞ

24 1 �1

�1 1

35
(14.10)

h
KðeÞ

2

i
¼
Z
S
ðeÞ
3

h½N�T
h
N
i
dSðeÞ3 ¼

Z lðeÞ

x¼0
h

8><>:
1� x

�
lðeÞ

x
�
lðeÞ

9>=>;
�	

1� x

lðeÞ


 x

lðeÞ

�
P dx

¼ hPlðeÞ
6

24 2 1

1 2

35
(14.11)
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FIGURE 14.1 A one-dimensional fin.
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since dS3 ¼ P dx, where P is the perimeter. h
KðeÞ

3

i
¼ ½0� (14.12)

since this is a steady-state problem.

P
!ðeÞ ¼

Z lðeÞ

x¼0

_q

8>>>><>>>>:
1� x

lðeÞ

x

lðeÞ

9>>>>=>>>>;A dx�
Z lðeÞ

x¼0
q0

8>>>><>>>>:
1� x

lðeÞ

x

lðeÞ

9>>>>=>>>>;P dxþ
Z lðeÞ

x¼0
hTN

8>>>><>>>>:
1� x

lðeÞ

x

lðeÞ

9>>>>=>>>>;P dx

¼ _qAlðeÞ

2

8<:
1

1

9=;� q0Pl
ðeÞ

2

8<:
1

1

9=;þ hTNPl
ðeÞ

2

8<:
1

1

9=;
(14.13)

Step 4: Assembled equations: The element matrices can be assembled to obtain the overall equations as (Eq. (13.45))�
Ke � T!e ¼ P

!e (14.14)

where

�
Ke � ¼

XE
e¼ 1

 
Ak

lðeÞ

�
1 �1

�1 1

�
þ hPlðeÞ

6

�
2 1

1 2

�!
(14.15)

and

P
!e ¼

XE
e¼ 1

P
!ðeÞ ¼

XE
e¼ 1

1
2

�
_qAlðeÞ � q0Pl

ðeÞ þ hTNPl
ðeÞ� � 1

1

�
(14.16)

Step 5: The assembled equations (14.14) are to be solved, after incorporating the boundary conditions stated in Eq. (14.2),
to find the nodal temperatures.

EXAMPLE 14.1
Find the temperature distribution in the one-dimensional fin shown in Fig. 14.1A using one finite element.

Solution

Here, _q ¼ q0 ¼ 0; and hence, for E ¼ 1, Eq. (14.14) gives266664

Ak

L
þ 2hPL

6

� 
� Ak

L
þ hPL

6

�

� Ak

L
þ hPL

6

� 
Ak

L
þ 2hPL

6

�
377775
�
T1

T2

�
¼ hPTNL

2

�
1

1

�
(E.1)

By dividing throughout by (Ak/L), Eq. (E.1) can be written as266664

1þ 2hPL2

6kA

� 
� 1þ hPL2

6kA

�

� 1þ hPL2

6kA

� 
1þ 2hPL2

6kA

�
377775
�
T1

T2

�
¼ hPTNL2

2kA

�
1

1

�
(E.2)

For the data given, P ¼ 2p cm and A ¼ p cm2, and hence

hPL2

kA
¼ ð5Þð2pÞð52Þ

ð70ÞðpÞ ¼ 25

7
and

hPTNL2

2kA
¼ ð5Þð2pÞð40Þð52Þ

2ð70ÞðpÞ ¼ 500

7

Continued
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EXAMPLE 14.1 dcont’d

Thus, Eq. (E.1) becomes �
92 �17

�17 92

��
T1

T2

�
¼
�
3000

3000

�
(E.3)

In order to incorporate the boundary condition T1 ¼ 140�C, we replace the first equation of (E.3) by T1 ¼ 140 and rewrite the

second equation of (E.3) as

92T2 ¼ 3000þ 17T1 ¼ 3000þ 17ð140Þ ¼ 5380

from which the unknown temperature T2 can be found as T2 ¼ 58.48�C.
While solving Eq. (E.3) on a computer, the boundary condition T1 ¼ 140 can be incorporated by modifying Eq. (E.3) as�

1 0

0 92

��
T1

T2

�
¼
�

140

3000þ 17� 140

�
¼
�

140

5380

�
(E.4)

Note

Once the nodal temperatures are known, the temperature distribution in the fin (finite elements) can be found from the assumed

interpolation model, Eq. (14.4).

EXAMPLE 14.2
Find the temperature distribution in the one-dimensional fin shown in Fig. 14.1A using two finite elements.

Solution

In this case, Eq. (14.14) represents the assembly of two element equations and leads to264 a1 a2 0

a2 2a1 a2

0 a2 a1

375
8><>:

T1

T2

T3

9>=>; ¼

8><>:
b

2b

b

9>=>; (E.1)

where

a1 ¼ 1þ 2hPl2

24kA
¼ 1þ 2

24


25

7

�
¼ 109

84

a2 ¼ �1þ hPl2

24kA
¼ �1þ 1

24


25

7

�
¼ �143

168

b ¼ hPTNl
2

8kA
¼ 500

28

As before, we modify Eq. (E.1) to incorporate the boundary condition T1 ¼ 140 as follows:264 1 0 0

0 2a1 a2

0 a2 a1

375
8><>:

T1

T2

T3

9>=>; ¼

8><>:
140

2b�a2 � T1

b�0� T1

9>=>; ¼

8><>:
140

2b �140a2

b

9>=>;
or 2666664

1 0 0

0
218

84
�143

168

0 �143

168

109

84

3777775
8><>:

T1

T2

T3

9>=>; ¼

8>>>>><>>>>>:

140

13;010

84

1500

84

9>>>>>=>>>>>;
(E.2)

The solution of Eq. (E.2) gives

T1 ¼ 140�C; T2 ¼ 81:77�C; and T3 ¼ 67:39�C (E.3)
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14.3 CONVECTION LOSS FROM END SURFACE OF FIN

In Examples 14.1 and 14.2, it is assumed that the convection heat loss occurs only from the perimeter surface and not from
the end surface A (Fig. 14.1A). If the convection loss from the end surface is also to be considered, the following method
can be adopted. Let the convection heat loss occur from the surface at the right-side node of element e. Then the surface
integral of Eq. (13.47) or Eq. (14.11) should extend over this surface also. Thus, in Eq. (14.11), the following term should
also be included: ZZ

SðeÞ3

h½N�T ½N�dS3 ¼
ZZ

A

h

�
N1

N2

�
fN1 N2 gdS3 (14.17)

corresponding to the surface at the right-side node 2.
Since we are interested in the surface at node 2 (right-side node), we substitute N1(x ¼ l(e)) ¼ 0 and N2(x ¼ l(e)) ¼ 1 in

Eq. (14.17) to obtain ZZ
A

h

�
0

1

�
f 0 1 gdS3 ¼

ZZ
A

h

�
0 0

0 1

�
dS3 ¼ hA

�
0 0

0 1

�
(14.18)

Similarly, the surface integral over S3 in Eq. (13.52) or Eq. (14.13) should extend over the free end surface also. Thus,
the additional term to be included in the vector P

!ðeÞ
is given byZZ

S
ðeÞ
3

hTN½N�TdS3 ¼ hTN

ZZ
A

�
0

1

�
dS3 ¼ hTNA

�
0

1

�
(14.19)

EXAMPLE 14.3
Find the temperature distribution in the fin shown in Fig. 14.1A by including the effect of convection from the end surface A using

one finite element.

Solution

In this case, Eq. (E.1) of Example 14.1 will be modified as266664

Ak

L
þ 2hPL

6
þ 0

� 
� Ak

L
þ hPL

6
þ 0

�

� Ak

L
þ hPL

6
þ 0

� 
Ak

L
þ hPL

6
þ hA

�
377775
�
T1

T2

�
¼

8>>><>>>:
hPTNL

2
þ 0

hPTNL

2
þ hATN

9>>>=>>>; (E.1)

For the given data, Eq. (E.1) reduces to (after multiplying throughout by (L/Ak))266664

1þ 25

21

� 
�1þ 25

42

�

�1þ 25

42

� 
1þ 25

21
þ 5

14

�
377775
�
T1

T2

�
¼

8>><>>:
500

7

500

7
þ 100

7

9>>=>>;
or �

92 �17

�17 107

��
T1

T2

�
¼
�
3000

3600

�
(E.2)

After incorporating the boundary condition, T1 ¼ 140, Eq. (E.2) becomes�
1 0

0 107

��
T1

T2

�
¼
�

T1

3600þ 17T1

�
¼
�

140

5980

�
(E.3)

from which the solution can be obtained as

T1 ¼ 140�C and T2 ¼ 55:89�C

This result indicates that the convection loss from the end surface causes the temperature at the end to reduce from 58.48�C to

55.89�C.
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EXAMPLE 14.4
Find the temperature distribution in the fin shown in Fig. 14.1A by including the effect of convection from the end surface A using

two finite elements.

Solution

In this case, the element matrices and vectors are given by

h
K ð1Þ
1

i
¼ ðpÞð70Þ

ð2:5Þ

24 1 �1

�1 1

35 ¼ 28p

24 1 �1

�1 1

35
h
K

ð1Þ
2

i
¼ ð5Þð2pÞð2:5Þ

6

24 2 1

1 2

35 ¼ 4:1667p

24 2 1

1 2

35

P
!ð1Þ ¼ 1

2
ð5Þð40Þð2pÞð2:5Þ

8<:
1

1

9=; ¼ 500p

8<:
1

1

9=;
h
K

ð2Þ
1

i
¼ ðpÞð70Þ

2:5

24 1 �1

�1 1

35 ¼ 28p

24 1 �1

�1 1

35
h
K

ð2Þ
2

i
¼ ð5Þð2pÞð2:5Þ

6

24 2 1

1 2

35þ ð5ÞðpÞ
24 0 0

0 1

35 ¼
24 8:3334p 4:1667p

4:1667p 13:3334p

35

P
!ð2Þ ¼ 1

2
ð5Þð40Þð2pÞð2:5Þ

8<:
1

1

9=;þ ð5Þð40Þp
8<:

0

1

9=; ¼
8<:

500p

700p

9=;
The assembled equations can be written as264 36:3334p �23:8333p 0

�23:8333p 72:6668p �23:8333p

0 �23:8333p 41:3334p

375
8><>:

T1

T2

T3

9>=>; ¼

8><>:
500p

1000p

700p

9>=>; (E.1)

After incorporating the boundary condition T1 ¼ 140, Eq. (E.1) becomes264 1 0 0

0 72:6668 �23:8333

0 �23:8333 41:3334

375
8><>:

T1

T2

T3

9>=>; ¼

8><>:
T1

1000þ 23:8333T1

700

9>=>; ¼

8><>:
140

4336

700

9>=>; (E.2)

The solution of Eq. (E.2) gives

T1 ¼ 140�C; T2 ¼ 80:44�C; and T3 ¼ 63:36�C (E.3)

The temperatures at nodes 2 and 3 can be seen to be lower compared to the corresponding values given in Eq. (E.3) of Example

14.2 due to convection loss from the end surface.

EXAMPLE 14.5
For the fin shown in Fig. 14.1A, a colder body (an ice pack) is in contact at the right end (at x ¼ L) so that heat flux (loss) occurs at

the rate of q0 ¼ 300 W/cm2. Find the temperature distribution in the fin by considering convection loss along the lateral (cylin-

drical) surface of the fin and the stated heat flux condition at x ¼ L. Use one finite element for modeling the fin.
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Notes

1. The vector P
!ðeÞ

due to heat flux q0 is given by

P
!ðeÞ ¼

ZZ
S
ðeÞ
2

q0½N�TdS2 ¼
ZZ

S
ðeÞ
2

q0

�
N1

N2

�
dS2 (E.1)

As in the case of convection loss from the right end of the fin, where N1 ¼ 0 and N2 ¼ 1, Eq. (E.1) becomes

P
!ðeÞ ¼ q0A

�
1

1

�
(E.2)

2. q0 is considered positive (negative) when heat gain (loss) occurs to the body.

3. If no heat transfer takes place from any surface, that particular surface is said to be insulated.

Solution

Here _q ¼ 0 and q0 s 0; hence for E ¼ 1, Eq. (14.14) gives266664

Ak

L
þ 2hPL

6

� 
� Ak

L
þ hPL

6

�

� Ak

L
þ hPL

6

� 
Ak

L
þ 2hPL

6

�
377775
�
T1

T2

�
¼

8>>><>>>:
hPTNL

2
þ 0

hPTNL

2
þ q0A

9>>>=>>>; (E.3)

By dividing throughout by (Ak/L), Eq. (E.3) can be written as266664

1þ 2hPL2

6kA

� 
� 1þ hPL2

6kA

�

� 1þ hPL2

6kA

� 
1þ 2hPL2

6kA

�
377775
�
T1

T2

�
¼

8>>><>>>:
hPTNL

2

2kA
þ 0

hPTNL2

2kA
þ q0L

k

9>>>=>>>; (E.4)

For the data given, P ¼ 2p cm, A ¼ p cm2, and q0 ¼ �300 W/cm2, and hence

hPL2

kA
¼ ð5Þð2pÞð52Þ

ð70ÞðpÞ ¼ 25

7
;
hPTNL2

2kA
¼ ð5Þð2pÞð40Þð52Þ

2ð70ÞðpÞ ¼ 500

7

and

q0L

k
¼ ð� 300Þð5Þ

70
¼ �150

7

Thus, Eq. (E.3) becomes �
92 �17

�17 92

��
T1

T2

�
¼
�
3000

2100

�
(E.5)

In order to incorporate the boundary condition T1 ¼ 140�C, we replace the first equation of (E.5) by T1 ¼ 140 and rewrite the

second equation of (E.5) as

92T2 ¼ 2100þ 17T1 ¼ 2100þ 17ð140Þ ¼ 4480

from which the unknown temperature T2 can be found as T2 ¼ 48.69�C.
While solving Eq. (E.5) on a computer, the boundary condition T1 ¼ 140 can be incorporated by modifying Eq. (E.5) as�

1 0

0 92

��
T1

T2

�
¼
�

140

2100þ 17� 140

�
¼
�

140

4480

�
(E.6)

Note

Once the nodal temperatures are known, the temperature distribution in the fin (finite elements) can be found from the assumed

interpolation model, Eq. (14.4).
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EXAMPLE 14.6
Find the temperature distribution in the one-dimensional fin described in Example 14.5 using two finite elements for modeling the

fin.

Solution

In this case, the element matrices and vectors are given by

h
K

ð1Þ
1

i
¼ ðpÞð70Þ

ð2:5Þ

24 1 �1

�1 1

35 ¼ 28p

24 1 �1

�1 1

35
24K ð1Þ

2

35 ¼ ð5Þð2pÞð2:5Þ
6

24 2 1

1 2

35 ¼ 4:1667p

24 2 1

1 2

35

P
!ð1Þ ¼ 1

2
ð5Þð40Þð2pÞð2:5Þ

8<:
1

1

9=; ¼ 500p

8<:
1

1

9=;
24K ð2Þ

1

35 ¼ ðpÞð70Þ
ð2:5Þ

24 1 �1

�1 1

35 ¼ 28p

24 1 �1

�1 1

35
24K ð2Þ

2

35 ¼ ð5Þð2pÞð2:5Þ
6

24 2 1

1 2

35 ¼
24 8:3334p 4:1667p

4:1667p 8:3334p

35

P
!ð2Þ ¼ 1

2
ð5Þð40Þð2pÞð2:5Þ

8<:
1

1

9=;þ ð� 300Þp
8<:

0

1

9=; ¼
8<:

500p

200p

9=;
The assembled equations can be written as264 36:3334p �23:8333p 0

�23:8333p 72:6668p �23:8333p

0 �23:8333p 36:3334p

375
8><>:

T1

T2

T3

9>=>; ¼

8><>:
500p

1000p

200p

9>=>; (E.1)

After incorporating the boundary condition T1 ¼ 140, Eq. (E.1) becomes264 1 0 0

0 72:6668 �23:8333

0 �23:8333 36:3334

375
8><>:

T1

T2

T3

9>=>; ¼

8><>:
T1

1000þ 23:8333 T1

200

9>=>; ¼

8><>:
140

4336

200

9>=>; (E.2)

The solution of Eq. (E.2) gives

T1 ¼ 140�C; T2 ¼ 78:33�C; and T3 ¼ 56:88�C (E.3)

The temperatures at nodes 2 and 3 are lower compared to the corresponding values given in Eq. (E.3) of Example 14.2 due to

heat flux loss from the end surface.

14.4 TAPERED FIN ANALYSIS

In a tapered fin, the area of cross section A varies with x. By assuming a linear variation of area from node i (local node 1)
to node j (local node 2) of element e, the area of cross section at a distance x from node i can be expressed as

AðxÞ ¼ Ai þ ðAj � AiÞx
lðeÞ

¼ AiNiðxÞ þ AjNjðxÞ (14.20)

where Ni and Nj are the linear shape functions defined in Eq. (14.5), and Ai and Aj are the cross-sectional areas of element e
at nodes i and j, respectively.

The matrices
h
KðeÞ
1

i
;
h
KðeÞ
2

i
;
h
KðeÞ
3

i
, and P

!ðeÞ
can be obtained as (from Eqs. (13.46) to (13.49))
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h
KðeÞ

1

i
¼
ZZZ

V ðeÞ
½B�T�D��B� dV ¼

Z lðeÞ

x¼0

8>>>>>><>>>>>>:


� 1

lðeÞ

�


1

lðeÞ

�
9>>>>>>=>>>>>>;
½k�
�

� 1

lðeÞ

�
1

lðeÞ

��
AðxÞdx

¼ k

lðeÞ


Ai þ Aj

2

�24 1 �1

�1 1

35 ¼ kA
ðeÞ

lðeÞ

24 1 �1

�1 1

35
(14.21)

where A
ðeÞ

is the average area of the element e. Since the evaluation of the integral in
h
KðeÞ
2

i
involves the perimeter P, we

can use a similar procedure by writing P as

PðxÞ ¼ PiNiðxÞ þ PjNjðxÞ (14.22)

where Pi and Pj are the perimeters of element e at nodes i and j, respectively, we obtainh
KðeÞ

2

i
¼ h

ZZ
SðeÞ3

½N�T ½N�dS3 ¼ h

Z lðeÞ

x¼0

"
N2

1 N1N2

N1N2 N2
2

#
PðxÞdx (14.23)

The integrals of Eq. (14.23) can be evaluated asZ lðeÞ

x¼0
N2

i ðxÞPðxÞdx ¼ lðeÞ

12
ð3Pi þ PjÞ (14.24)

Z lðeÞ

x¼0
NiðxÞNjðxÞPðxÞdx ¼ lðeÞ

12
ðPi þ PjÞ (14.25)

Z lðeÞ

x¼0
N2

j ðxÞPðxÞdx ¼ lðeÞ

12
ðPi þ 3PjÞ (14.26)

h
KðeÞ

2

i
¼ hlðeÞ

12

� ð3Pi þ PjÞ ðPi þ PjÞ
ðPi þ PjÞ ðPi þ 3PjÞ

�ðeÞ
(14.27)

Since this is a steady-state problem with _q ¼ q0 ¼ 0, we haveh
KðeÞ

3

i
¼ ½0� (14.28)

P
!ðeÞ ¼

ZZ
S
ðeÞ
3

hTN½N�TdS3 ¼ hTNlðeÞ

6

�
2Pi þ Pj

Pi þ 2Pj

�ðeÞ
(14.29)

Once the element matrices are available, the overall equations can be obtained using Eq. (13.35).

EXAMPLE 14.7
Find the temperature distribution in the tapered fin shown in Fig. 14.2 using one finite element.

Continued

5 cm

1 cm

T0 = 140°C

2 cm

h = 5
cm2 -°K
watts

k = 70
cm -°K
watts

T∞ = 40°C1 cm

FIGURE 14.2 A tapered fin.
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EXAMPLE 14.7 dcont’d

Solution

For E ¼ 1, l(1) ¼ 5 cm, Ai ¼ 2 cm2, Aj ¼ 1 cm2, A ¼ 1.5 cm2, Pi ¼ 6 cm, and Pj ¼ 4 cm. Thus, Eqs. (14.21), (14.27), and (14.29)

give

h
K

ðeÞ
1

i
¼ ð70Þð1:5Þ

5

24 1 �1

�1 1

35 ¼
24 21 �21

�21 21

35
h
K

ðeÞ
2

i
¼ ð5Þð5Þ

12

24 ð3� 6þ 4Þ ð6þ 4Þ

ð6þ 4Þ ð6þ 3� 4Þ

35 ¼ 1

6

24 275 125

125 225

35

P
!ðeÞ ¼ ð5Þð40Þð5Þ

6

8<:
2� 6þ 4

6þ 2� 4

9=; ¼ 1

3

8<:
8000

7000

9=;
Hence, Eq. (13.35) gives �

401 �1

�1 351

��
T1

T2

�
¼
�
16;000

14;000

�
(E.1)

When the boundary condition, T1 ¼ 140�C, is incorporated, Eq. (E.1) gets modified to�
1 0

0 351

��
T1

T2

�
¼
�

T1

14;000þ T1

�
¼
�

140

14;140

�
(E.2)

The solution of Eq. (E.2) gives

T1 ¼ 140�C and T2 ¼ 40:28�C (E.3)

EXAMPLE 14.8
Find the temperature distribution in the tapered fin shown in Fig. 14.2 using two finite elements.

Solution

For the first element (e ¼ 1), we have l(1) ¼ 2.5 cm, Ai ¼ 2 cm2, Aj ¼ 1.5 cm2, A ¼ 1.75 cm2, Pi ¼ 6 cm, and Pj ¼ 5 cm.

h
K

ð1Þ
1

i
¼ ð70Þð1:75Þ

ð2:5Þ

24 1 �1

�1 1

35 ¼
24 49 �49

�49 49

35
h
K

ð1Þ
2

i
¼ ð5Þð2:5Þ

ð12Þ

264 ð3� 6þ 5Þ ð6þ 5Þ

ð6þ 5Þ ð6þ 3� 5Þ

375 ¼
24 23:95 11:45

11:45 21:90

35

P
!ð1Þ ¼ ð5Þð40Þð2:5Þ

6

8<:
2� 6þ 5

6þ 2� 5

9=; ¼ 1

6

8<:
8500

8000

9=;
For the second element (e ¼ 2), we have l(2) ¼ 2.5 cm, Ai ¼ 1.5 cm2, Aj ¼ 1 cm2, A ¼ 1.25 cm2, Pi ¼ 5 cm, and Pj ¼ 4 cm.

h
K

ð2Þ
1

i
¼ ð70Þð1:25Þ

ð2:5Þ

24 1 �1

�1 1

35 ¼
24 35 �35

�35 35

35
h
K

ð2Þ
2

i
¼ ð5Þð2:5Þ

12

24 ð3� 5þ 4Þ ð5þ 4Þ

ð5þ 4Þ ð5þ 3� 4Þ

35 ¼
24 19:8 9:4

9:4 17:7

35

P
!ð2Þ ¼ ð5Þð40Þð2:5Þ

6

8<:
2� 5þ 4

5þ 2� 4

9=; ¼ 1

6

8<:
7000

6500

9=;
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EXAMPLE 14.8 dcont’d

The overall or assembled system equations (13.35) will be

264 72:95 �37:55 0

�37:55 125:70 �25:60

0 �25:60 52:70

375
8><>:

T1

T2

T3

9>=>; ¼

8>>>>>>>><>>>>>>>>:

8500

6

15;000

6

6500

6

9>>>>>>>>=>>>>>>>>;
(E.1)

Eq. (E.1), when modified to incorporate the boundary condition T1 ¼ 140�C, appears as

264 1 0 0

0 125:70 �25:60

0 �25:60 52:70

375
8><>:

T1

T2

T3

9>=>; ¼

8>>>>>><>>>>>>:

T1

15;000

6
þ 37:55T1

6500

6

9>>>>>>=>>>>>>;
¼

8><>:
140:0

7757:0

1083:3

9>=>; (E.2)

The solution of Eq. (E.2) gives the nodal temperatures

T1 ¼ 140�C; T2 ¼ 73:13�C; and T3 ¼ 56:07�C (E.3)

14.5 ANALYSIS OF UNIFORM FINS USING QUADRATIC ELEMENTS

The solution of uniform one-dimensional heat transfer problems is considered using a quadratic model for the variation of
temperature in the element. The step-by-step procedure is as follows.

Step 1: Idealize the fin into E finite elements as shown in Fig. 14.3.
Step 2: Assume a quadratic variation of temperature inside any element e as

T ðeÞðxÞ ¼ a1 þ a2xþ a3x
2 ¼ ½NðxÞ� q!ðeÞ

(14.30)

where

½NðxÞ� ¼ ½NiðxÞ NjðxÞ NkðxÞ� (14.31)

1 2

1 2 3

1 2 3

x
1 2 3

Ti Tj Tk

e

 (e)

E

i j k

i j k

Element number

Local node numbers of element e

Element e

Nodal temperatures

Global node numbers corresponding
to local node numbers 1 2 3 of
element e

2
 (e)

2
 (e)

FIGURE 14.3 A quadratic element.
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NiðxÞ ¼

1� 2x

lðeÞ

�	
1� x

lðeÞ



(14.32)

NjðxÞ ¼ 4x
lðeÞ

	
1� x

lðeÞ



(14.33)

NkðxÞ ¼ � x

lðeÞ


1� 2x

lðeÞ

�
(14.34)

and

q!ðeÞ ¼

8><>:
q1
q2

q3

9>=>; ¼

8><>:
Ti

Tj

Tk

9>=>;
where i, j, and k denote the global node numbers corresponding to local nodes 1 (left end), 2 (middle), and 3 (right end),
respectively.

Step 3: Derivation of element matrices:
For the quadratic element, we have

½D� ¼ ½k� (14.35)

½B� ¼
�
vNi

vx

vNj

vx

vNk

vx

�
¼
�
4x

lðeÞ2
� 3

lðeÞ
4

lðeÞ
� 8x

lðeÞ2
4x

lðeÞ2
� 1

lðeÞ

�
(14.36)

The definitions of
h
KðeÞ
1

i
;
h
KðeÞ
2

i
;
h
KðeÞ
3

i
, and P

!ðeÞ
remain the same as those given in Eqs. (13.46) to (13.49), but the

integrals have to be reevaluated using the quadratic displacement model of Eq. (14.30). This gives

h
KðeÞ

1

i
¼ kA

Z lðeÞ

x¼0
dx

2666666666666664


4x

lðeÞ
2 �

3
lðeÞ

�2 
4x

lðeÞ
2 �

3

lðeÞ

�
4

lðeÞ
� 8x

lðeÞ
2

� 
4x

lðeÞ
2 �

3

lðeÞ

�
4x

lðeÞ
2 �

1

lðeÞ

�


4
lðeÞ

� 8x

lðeÞ
2

�2 
4

lðeÞ
� 8x

lðeÞ
2

�
4x

lðeÞ
2 �

1

lðeÞ

�

Symmetric


4x

lðeÞ
2 �

1
lðeÞ

�2

3777777777777775

¼ kA

3lðeÞ

2666664
7 �8 1

�8 16 �8

1 �8 7

3777775

(14.37)

where A is the cross-sectional area of the element, and

h
KðeÞ

2

i
¼ h$P

Z lðeÞ

x¼0

2666664
N2

i ðxÞ NiðxÞ$NjðxÞ NiðxÞ$NkðxÞ

NiðxÞ$NjðxÞ N2
j ðxÞ NjðxÞ$NkðxÞ

NiðxÞ$NkðxÞ NjðxÞ$NkðxÞ N2
k ðxÞ

3777775dx

¼ hPlðeÞ

30

2666664
4 2 �1

2 16 2

�1 2 4

3777775

(14.38)

534 PART j IV Application to Heat Transfer Problems

www.konkur.in

Telegram: @uni_k



where P is the perimeter of the element. For steady-state problems,h
KðeÞ

3

i
¼ ½0� (14.39)

P
!ðeÞ ¼ _qA

Z lðeÞ

x¼0

8><>:
NiðxÞ
NjðxÞ
NkðxÞ

9>=>;dx� q0P

Z lðeÞ

x¼0

8><>:
NiðxÞ
NjðxÞ
NkðxÞ

9>=>;dxþ hTNP

Z lðeÞ

x¼0

8><>:
NiðxÞ
NjðxÞ
NkðxÞ

9>=>;dx (14.40)

where dV ðeÞ; dSðeÞ2 , and dSðeÞ3 were replaced by A dx, P dx, and P dx, respectively. With the help of Eqs. (14.32) to (14.34),
Eq. (14.40) can be expressed as

P
!ðeÞ ¼ _qAlðeÞ

6

8><>:
1

4

1

9>=>;� q0PlðeÞ

6

8><>:
1

4

1

9>=>;þ kTNPlðeÞ

6

8><>:
1

4

1

9>=>; (14.41)

If convection occurs from the free end of the element, such as node i, then Ni(x ¼ 0) ¼ 1, Nj(x ¼ 0) ¼ Nk(x ¼ 0) ¼ 0,

and hence the additional surface integral term to be added to the matrix
h
KðeÞ
2

i
will be

ZZ
SðeÞ3

h½N�T�N�dS3 ¼ h

ZZ
SðeÞ3

266664
N2

i ðx ¼ 0Þ Niðx ¼ 0Þ$Njðx ¼ 0Þ Niðx ¼ 0Þ$Nkðx ¼ 0Þ

Niðx ¼ 0Þ$Njðx ¼ 0Þ N2
j ðx ¼ 0Þ Njðx ¼ 0Þ$Nkðx ¼ 0Þ

Niðx ¼ 0Þ$Nkðx ¼ 0Þ Njðx ¼ 0Þ$Nkðx ¼ 0Þ N2
k ðx ¼ 0Þ

377775dS3

¼ hAi

26664
1 0 0

0 0 0

0 0 0

37775
(14.42)

where Ai is the cross-sectional area of the rod at node i. Similarly, the additional surface integral term to be added to P
!ðeÞ

due to convection from the free end (e.g., node i) will be

ZZ
S
ðeÞ
3

hTN½N�TdS3 ¼ hTN

ZZ
S
ðeÞ
3

8><>:
Niðx ¼ 0Þ
Njðx ¼ 0Þ
Nkðx ¼ 0Þ

9>=>;dS3 ¼ hTNAi

8><>:
1

0

0

9>=>; (14.43)

EXAMPLE 14.9
Find the temperature distribution in the fin shown in Fig. 14.1A using one quadratic element.

Solution

For simplicity, we neglect convection from the free end. Then, Eqs. (14.37), (14.38), and (14.41) become

h
K

ð1Þ
1

i
¼ ð70ÞðpÞ

3ð5Þ

266664
7 �8 1

�8 16 �8

1 �8 7

377775 ¼ p

3

266664
98 �112 14

�112 224 �112

14 �112 98

377775

h
K ð1Þ
2

i
¼ ð5Þð2pÞð5Þ

30

266664
4 2 �1

2 16 2

�1 2 4

377775 ¼ p

3

266664
20 10 �5

10 80 10

�5 10 20

377775

P
!ð1Þ ¼ ð5Þð40Þð2pÞð5Þ

6

8>>>><>>>>:
1

4

1

9>>>>=>>>>; ¼ p

3

8>>>><>>>>:
1000

4000

1000

9>>>>=>>>>;
Continued
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EXAMPLE 14.9 dcont’d

The system equations can be expressed as264 118 �102 9

�102 304 �102

9 �102 118

375
8><>:

T1

T2

T3

9>=>; ¼

8><>:
1000

4000

1000

9>=>; (E.1)

where T1 ¼ T(x ¼ 0), T2 ¼ T(x ¼ 2.5), and T3 ¼ T(x ¼ 5.0). By incorporating the boundary condition T1 ¼ 140, Eq. (E.1) can be

modified as 264 1 0 0

0 304 �102

0 �102 118

375
8><>:

T1

T2

T3

9>=>; ¼

8><>:
140

4000þ 102T1

1000� 9T1

9>=>; ¼

8><>:
140

18;280

�260

9>=>; (E.2)

The solution of Eq. (E.2) gives

T1 ¼ 140:0�C; T2 ¼ 83:64�C; and T3 ¼ 70:09�C (E.3)

This shows that the quadratic element yields a temperature of 70.09�C at the end node, while the linear finite element yielded a

temperature of 58.48�C (for E ¼ 1, in Example 14.1) and 67.39�C (for E ¼ 2 in Example 14.2).

14.6 UNSTEADY STATE PROBLEMS

Time-dependent or unsteady state problems are very common in heat transfer. For some of these time-dependent problems,
the transient period occurs between the starting of the physical process and the reaching of the steady-state condition. For
some problems, the steady-state condition is never obtained, and in these cases the transient period includes the entire life
of the process. Several finite element procedures have been suggested for the solution of transient heat transfer problems
[14.1,14.2]. We consider the finite element solution of time-dependent heat transfer problems briefly in this section. The
governing differential equation for an unsteady state heat transfer problem is given by Eq. (13.11) and the associated
boundary and initial conditions are given by Eqs. (13.18) to (13.21). In general all the parameters kx, ky, kz, _q, and rc will be
time dependent. The finite element solution of this problem leads to a set of first-order linear differential equations, Eq.
(13.35). It can be seen that the term

�
Ke3
� _
T
!e is the additional term that appears because of the unsteady state. The associated

element matrix is defined as (see Eqs. (13.32) and (13.48)):�
Ke ðeÞ

3

�
¼
ZZZ

VðeÞ
rc½N�T ½N� dV (14.44)

which is also known as the element capacitance matrix.

14.6.1 Derivation of Element Capacitance Matrices

For the straight uniform one-dimensional element considered in Section 14.2, the shape function matrix is given by Eq.
(14.5). By writing the element volume as dV ¼ A(e)dx, where A(e) is the cross-sectional area of the element e, Eq. (14.44)
can be expressed as

h
KðeÞ

3

i
¼ ðrcÞðeÞ

Z lðeÞ

x¼0

8>>>><>>>>:

	
1� x

lðeÞ



x

lðeÞ

9>>>>=>>>>;
�	

1� x

lðeÞ


 x

lðeÞ

�
AðeÞdx

¼ ðrcÞðeÞAðeÞlðeÞ

6

24 2 1

1 2

35
(14.45)
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where (rc)(e) A(e) is assumed to be a constant for the element e. For the linearly tapered fin element considered in Section
14.4, dV ¼ AðxÞdx ¼ �

Ai þ
�ðAj � AiÞ

�
lðeÞ
�
x
�
dx, and hence Eq. (14.44), becomes

h
KðeÞ

3

i
¼ ðrcÞðeÞ

ZlðeÞ
x¼ 0

8>>>>><>>>>>:


� 1

lðeÞ

�


1

lðeÞ

�
9>>>>>=>>>>>;
�
� 1

lðeÞ
1

lðeÞ

�
:

�
Ai þ


Aj � Ai

lðeÞ

�
x

�
dx

¼ ðrcÞðeÞAðeÞ

le

"
1 �1

�1 1

#
(14.46)

where A
ðeÞ

is the average cross-sectional area of the element e. For the straight uniform fin considered in Section 14.5,
using a quadratic model (defined by Eq. 14.30), Eq. (14.44) becomes

h
KðeÞ

3

i
¼ ðr cÞðeÞAðeÞ

Z lðeÞ

x¼0

2666664
N2

i NiNj NiNk

NiNj N2
j NjNk

NiNk NjNk N2
k

3777775dx

¼ ðr cÞðeÞAðeÞlðeÞ

30

2666664
4 2 �1

2 16 2

�1 2 4

3777775

(14.47)

where A(e) is the cross-sectional area of the element.

EXAMPLE 14.10
Find the time-dependent temperature distribution in a plane wall that is insulated on one face and is subjected to a step change in

surface temperature on the other face as shown in Fig. 14.4A using one finite element.

Solution

The finite element equations for this one-dimensional transient problem are given by (Eq. 13.35)

�
Ke3

� _
T
!e þ

�
Ke
�
T
!e ¼ P

!e (E.1)

where the element matrices, with the assumption of linear temperature variation, are given byh
K

ðeÞ
1

i
¼ AðeÞk ðeÞ

lðeÞ

�
1 �1

�1 1

�
(E.2)

Continued

L
x0

T = T0

 Plane wall  Finite element idealization

E = 1

E = 2

1

321

2

L

2
L

2
L

(A) (B)

FIGURE 14.4 Plane wall subjected to a step-change in temperature.
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EXAMPLE 14.10 dcont’d

h
K

ðeÞ
2

i
¼
�
0 0

0 0

�
since no convection condition is specified (E.3)

h
K

ðeÞ
3

i
¼ ðrcÞðeÞAðeÞlðeÞ

6

�
2 1

1 2

�
(E.4)

P
!ðeÞ ¼

�
0

0

�
since no _q; q0; and h are specified in the problem (E.5)

For E ¼ 1, T1 and T2 denote the temperatures of nodes 1 and 2, and Eq. (E.1) becomes

rcAL

6

�
2 1

1 2

�8>>><>>>:
dT1

dt

dT2

dt

9>>>=>>>;þ Ak

L

�
1 �1

�1 1

��
T1

T2

�
¼
�
0

0

�
(E.6)

Eq. (E.6) is to be modified to satisfy the boundary condition at x ¼ 0. Since T2 is the only unknown in the problem, we can

delete the first equation of (E.6) and set T1 ¼ T0 and (dT1/dt) ¼ 0 in Eq. (E.6) to obtain

dT2

dt
¼ � 3k

rcL2
ðT2 � T0Þ (E.7)

By defining q ¼ T2� T0, Eq. (E.7) can be written as

dq

dt
þ aq ¼ 0 (E.8)

where a ¼ (3k/rcL2). The solution of Eq. (E.8) is given by

qðtÞ ¼ a1e
�at (E.9)

where a1 is a constant whose value can be determined from the known initial condition, T2ðt ¼ 0Þ ¼ T 0 :

qðt ¼ 0Þ ¼ T 0 � T0 ¼ a1$e
�að0Þ ¼ a1 (E.10)

Thus, the solution of Eq. (E.7) is

T2ðtÞ ¼ T0 þ
�
T 0 � T0

�
$e�ð3k=rcL2Þt (E.11)

EXAMPLE 14.11
Find the time-dependent temperature distribution in a plane wall that is insulated on one face and is subjected to a step change in

surface temperature on the other face as shown in Fig. 14.4A using two finite elements.

Solution

For E ¼ 2, T1, T2, and T3 indicate the temperatures of nodes 1, 2, and 3 and Eq. (E.1) of Example 14.8 can be derived as (see

Problem 14.33) 264 2 1 0

1 4 1

0 1 2

375
8><>:

dT1=dt

dT2=dt

dT3=dt

9>=>;þ 24k

rcL2

264 1 �1 0

�1 2 �1

0 �1 1

375
8><>:

T1

T2

T3

9>=>; ¼

8><>:
0

0

0

9>=>; (E.1)

As before, we delete the first equation from Eq. (E.1) and substitute the boundary condition T1 ¼ T0 (and hence (dT1/dt) ¼ 0) in the

remaining two equations to obtain

4
dT2

dt
þ dT3

dt
þ 24k

rcL2
ð� T0 þ 2T2 � T3Þ ¼ 0

dT2

dt
þ 2

dT3

dt
þ 24k

rcL2
ð� T2 þ T3Þ ¼ 0

9>>>=>>>; (E.2)
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EXAMPLE 14.11 dcont’d

By defining q2 ¼ T2 � T0 and q3 ¼ T3 � T0, Eq. (E.2) can be expressed as

4
dq2
dt

þ dq3
dt

þ 24k

rcL2
ð2q2 � q3Þ ¼ 0

dq2
dt

þ 2
dq3
dt

þ 24k

rcL2
ð� q2 þ q3Þ ¼ 0

9>>>=>>>; (E.3)

These equations can be solved using the initial conditions on q2(t) and q3(t) (from the known or specified initial conditions on

T2 and T3).

14.6.2 Finite Difference Solution in Time Domain

The solution of the unsteady state equations, namely Eq. (13.35), based on the fourth-order RungeeKutta integration
procedure was given in Chapter 7. We now present an alternative approach using the finite difference scheme for solving
these equations. This scheme is based on approximating the first-time derivative of T as

dT
dt

����
t

¼ T1 � T0

Dt
(14.48)

where T1 ¼ T(t þ (Dt/2)), T0 ¼ T(t � (Dt/2)), and Dt is a small time step. Thus,
_
T
!e ¼


d T
!e
�

dt

�
can be replaced by

d T
!e
dt

�����
t

¼ 1
Dt

	
T
!e 1 � T

!e 0



(14.49)

Since
_
T
!e is evaluated at the middle point of the time interval Dt, the quantities T

!e and P
!e involved in Eq. (13.35) are also

to be evaluated at this point. These quantities can be approximated as

T
!e
���
t
¼ 1

2

	
T
!e 1 � T

!e 0



(14.50)

and

P
!e
���
t
¼ 1

2

	
P
!e 1 � P

!e 0



(14.51)

where

P
!e 1 ¼ P

!e

t þ Dt

2

�
and P

!e 0 ¼ P
!e

t � Dt

2

�
(14.52)

By substituting Eqs. (14.49) to (14.51) into Eq. (13.35), we obtain

1
Dt

h
Ke3

i�
T
!e 1 � T

!e 0

�þ 1
2

h
Ke
i�

T
!e 1 þ T

!e 0

� ¼ P
!e
���
t

or h
Ke
i
þ 2
Dt

h
Ke3

i�
T
!e 1 ¼


�
h
Ke
i
þ 2
Dt

h
Ke3

i�
T
!e 0 þ

�
P
!e 1 þ P

!e 0

�
(14.53)

This equation shows that the nodal temperatures T
!e at time t þ Dt can be computed once the nodal temperatures at time

t are known since P
!e 1 can be computed before solving Eq. (14.53). Thus, the known initial conditions (on nodal tem-

peratures) can be used to find the solution at subsequent time steps.
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Note

Eq. (14.53) has been derived by evaluating the derivative at the middle point of the time interval. The nodal values (i.e., at time t) of

T
!e can be computed after solving Eq. (14.53) using Eq. (14.50). In fact, by using Eq. (14.50), Eq. (14.53) can be rewritten ash

Ke
i
þ 2

Dt

h
Ke3

i�
T
!e
����
t

¼ 2

Dt

h
Ke3

i
T
!e 0

� P
!e
����
t

(14.54)

where the nodal temperatures T
!e
����
t

can be directly obtained.

EXAMPLE 14.12
Derive the recursive relations, Eq. (14.53), for the one-dimensional fin shown in Fig. 14.5 with the following data:

k ¼ 70
watts

cm�� K
; h ¼ 10

watts

cm2 �� K
; TN ¼ 40�C; T0 ¼ 140�C;

rc ¼ 20
Joules

cm�� K
; Dt ¼ 2 minutes

Solution

We divide the fin into four finite elements (E ¼ 4) so that the element matrices and vectors become

h
K

ðeÞ
1

i
¼ ðpÞð70Þ

ð1:25Þ

24 1 �1

�1 1

35 ¼
24 175:93 �175:93

�175:93 175:93

35
h
K

ðeÞ
2

i
¼ ð10Þð2pÞð1:25Þ

ð6Þ

24 2 1

1 2

35 ¼
24 39:26 19:63

19:63 39:26

35
h
K ðeÞ
3

i
¼ ð20ÞðpÞð1:25Þ

ð6Þ

24 2 1

1 2

35 ¼
2439:26 19:63

19:63 39:26

35

P
!ðeÞ ¼ P

!ðeÞ
3 � P

!ðeÞ
3 þ P

!ðeÞ
3 ¼ P

!ðeÞ
3 ¼ ð10Þð40Þð2pÞð1:25Þ

2

8<:
1

1

9=; ¼
8<:

1570:80

1570:80

9=;
The assembled matrices and vectors are

h
Ke1

i
¼

26666664
175:93 �175:93 0 0 0

�175:93 351:86 �175:93 0 0

0 �175:93 351:86 �175:93 0

0 0 �175:93 351:86 �175:93

0 0 0 �175:93 175:93

37777775 (E.1)

1 2 3

5 cm

4 5
Circular

(radius: 1 cm)

k,   cT∞ = 40°C, h

T0 = 140°C

FIGURE 14.5 Transient heat transfer in a one-dimensional fin.
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EXAMPLE 14.12 dcont’d

h
Ke3

i
¼
h
Ke2

i
¼

26666664
39:26 19:93 0 0 0

19:63 78:52 19:63 0 0

0 19:63 78:52 19:63 0

0 0 19:63 78:52 19:63

0 0 0 19:63 39:26

37777775 (E.2)

P
!e ¼

8>>>>>><>>>>>>:

1570:80

3141:60

3141:60

3141:60

1570:80

9>>>>>>=>>>>>>;
(E.3)

Since Dt ¼ 1=30 h, we have

½A� ¼
h
Ke
i
þ 2

Dt

h
Ke3

i
¼
h
Ke1

i
þ
h
Ke2

i
þ 60

h
Ke3

i
¼

2666666666666664

2570:79 1021:50 0 0 0

1021:50 5141:58 1021:50 0 0

0 1021:50 5141:58 1021:50 0

0 0 1021:50 5141:58 1021:50

0 0 0 1021:50 2570:79

3777777777777775
(E.4)

and

½B� ¼ �
h
Ke
i
þ 2

Dt

h
Ke3

i
¼ �

h
Ke1

i
�
h
Ke2

i
þ 60

h
Ke3

i
¼

2666666666666664

2140:41 1334:10 0 0 0

1334:10 4280:82 1334:10 0 0

0 1334:10 4280:82 1334:10 0

0 0 1334:10 4280:82 1334:10

0 0 0 1334:10 2140:41

3777777777777775
(E.5)

Hence, the desired recursive relation is

½A�T!e 1

¼ ½B�T!e 0

þ P
!e (E.6)

where [A], [B], and P
!e are given by Eqs. (E.4), (E.5), and (E.3), respectively.

14.7 HEAT TRANSFER PROBLEMS WITH RADIATION

The rate of heat flow by radiation (q) is governed by the relation

q ¼ sεA
�
T4 � T4

N

�
(14.55)

where s is the StefaneBoltzmann constant, ε is the emissivity of the surface, A is the surface area of the body through
which heat flows, T is the absolute surface temperature of the body, and TN is the absolute surrounding temperature.
Thus, the inclusion of the radiation boundary condition makes a heat transfer problem nonlinear due to the nonlinear rela-
tion of Eq. (14.55). Hence, an iterative procedure is to be adopted to find the finite element solution of the problem. For
example, for a one-dimensional problem, the governing differential equation is

k
v2T

vx2
þ _q ¼ rc

vT

vt
(14.56)
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If heat flux is specified on the surface of the rod and if both convection and radiation losses take place from the surface,
the boundary conditions of the problem can be expressed as

Tðx ¼ 0; tÞ ¼ T0 (14.57)

and

k
vT

vx
lx þ hðT � TNÞ þ qo þ sε

�
T4 � T4

N

� ¼ 0

on the surface

9>=>; (14.58)

The initial conditions can be specified as

Tðx; t ¼ 0Þ ¼ T0 (14.59)

For convenience, we define a radiation heat transfer coefficient (hr) as

hr ¼ sε
�
T2 þ T2

N

�ðT þ TNÞ (14.60)

so that Eq. (14.58) can be expressed as

k
vT

vx
lx þ hðT � TNÞ þ qo þ hrðT � TNÞ ¼ 0

on the surface

9>=>; (14.61)

The inclusion of the convection term hðT � TNÞ in the finite element analysis resulted in the matrix (Eq. 13.31)h
KðeÞ

2

i
¼
ZZ

SðeÞ3

h½N�T ½N�dS3 (14.62)

and the vector (Eq. 13.33)

P
!ðeÞ

3 ¼
ZZ

SðeÞ3

hTN½N�TdS3 (14.63)

Assuming, for the time being, that hr is independent of the temperature T, and proceeding as in the case of the term
hðT � TNÞ, we obtain the additional matrix h

KðeÞ
4

i
¼
ZZ

S
ðeÞ
4

hr½N�T ½N�dS4 (14.64)

and the additional vector

P
!ðeÞ

4 ¼
ZZ

SðeÞ4

hrTN½N�TdS4 (14.65)

to be assembled in generating the matrix
h
Ke
i
and the vector P

!e , respectively. In Eqs. (14.64) and (14.65), SðeÞ4 denotes the

surface of the element e from which radiation loss takes place. Since hr was assumed to be a constant in deriving Eqs.

(14.64) and (14.65), its value needs to be changed subsequently. Since the correct solution


T
!e
�

cannot be found unless

the correct value of hr is used in Eqs. (14.64) and (14.65), the following iterative procedure can be adopted:

1. Set the iteration number as n ¼ 1 and assume hðeÞr ¼ 0.

2. Generate
h
KðeÞ
4

i
and P

!ðeÞ
4 using Eqs. (14.64) and (14.65) using the latest values of hðeÞr .

3. Assemble the element matrices and vectors to obtain the overall Eq. (13.35) with

�
Ke
�
¼ P

e
¼ 1E

hh
KðeÞ
1

i
þ
h
KðeÞ
2

i
þh

KðeÞ
4

ii
and P

!e ¼ PE
e¼ 1

�
P
!ðeÞ

1 � P
!ðeÞ

2 þ P
!ðeÞ

3 þ P
!ðeÞ

4

�
.

542 PART j IV Application to Heat Transfer Problems

www.konkur.in

Telegram: @uni_k



4. Solve Eq. (13.35) and find T
!e:5. From the known nodal temperatures T

!e , find the new value of hðeÞr using Eq. (14.60) (the average of the two nodal
temperatures of the element, (Ti þ Tj)/2, can be used as TðeÞ

av in place of T):

hðeÞr ¼ sε
	
T ðeÞ2
av þ T2

N


�
T ðeÞ
av þ TN

�
(14.66)

If n > 1, test for the convergence of the method. If�����
h
hðeÞr

i
n
�
h
hðeÞr

i
n�1h

hðeÞr

i
n�1

����� � d1 (14.67)

and ���	T!e ðtotalÞ

n
�
	
T
!e ðtotalÞ


n�1

��� � d2 (14.68)

where d1 and d2 are specified small numbers, the method is assumed to have converged. Hence, stop the method by taking

T
!e
����
correct

¼


T
!e
�

n

. On the other hand, if either of the inequalities of Eqs. (14.67) and (14.68) is not satisfied, set the new

iteration number as n ¼ n þ 1, and go to step 2.

EXAMPLE 14.13
Find the steady-state temperature distribution in the one-dimensional fin shown in Fig. 14.1A by considering both convection and

radiation losses from its perimeter surface using a one-element idealization. Assume ε ¼ 0:1 and s ¼ 5:7� 10�8W
�
cm2�K4.

Solution

For linear temperature variation inside the element, the matrix
h
K

ðeÞ
4

i
and the vector P

!ðeÞ
4 can be obtained as

h
K

ðeÞ
4

i
¼ hrP l

ðeÞ

6

24 2 1

1 2

35

P
!ðeÞ

4 ¼ hrTNPl
ðeÞ

2

8<:
1

1

9=;
For a one-element idealization (E ¼ 1), the matrices

h
K

ðeÞ
1

i
;
h
K

ðeÞ
2

i
, and P

!ðeÞ
3 can be derived as

h
K

ð1Þ
1

i
¼ ðpÞð70Þ

ð5Þ

24 1 �1

�1 1

35 ¼ p

24 14 �14

�14 14

35
h
K

ð1Þ
2

i
¼ ð5Þð2pÞð5Þ

6

24 2 1

1 2

35 ¼ p

24 16:67 8:33

8:33 16:67

35

P
!ð1Þ

3 ¼ ð5Þð40Þð2pÞð5Þ
2

8<:
1

1

9=; ¼ p

8<:
1000

1000

9=;

ITERATION 1
By using h

ð1Þ
r ¼ 0, the matrices

h
K

ð1Þ
4

i
and P

!ð1Þ
4 can be obtained as

h
K

ð1Þ
4

i
¼
�
0 0

0 0

�
and P

!ð1Þ
4 ¼

�
0

0

�
. The overall Eq. (13.35)

becomes �
30:67 �5:67

�5:67 30:67

��
T1

T2

�
¼
�
1000

1000

�
(E.1)

Continued
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ITERATION 1 dcont’d

After incorporating the boundary condition T1 ¼ 140, Eq. (E.1) becomes�
1 0

0 30:67

��
T1

T2

�
¼
�

T1

1000þ 5:67T1

�
¼
�

140:0

1793:8

�
(E.2)

from which the solution can be obtained as

T
!e ¼

�
T1

T2

�
¼
�
140:00

58:48

�
(E.3)

The average temperature of the nodes of the element can be computed as

T ð1Þ
av ¼ T1 þ T2

2
¼ 99:24�C

Thus, the values of T
ð1Þ
av and TN to be used in the computation of h

ð1Þ
r are 372.24 �K and 313 �K, respectively. The solution of

Eq. (14.66) gives the value of

hð1Þ
r ¼ �

5:7� 10�8
� ð0:1Þ �372:242 þ 3132

� ð372:24þ 313Þ ¼ 0:9234

ITERATION 2
By using the current value of h

ð1Þ
r , we can derive

h
K

ð1Þ
4

i
¼ ð0:9234Þð2pÞð5Þ

6

24 2 1

1 2

35 ¼ p

24 3:078 1:539

1:539 3:078

35

P
!ð1Þ

4 ¼ ð0:9234Þð40Þð2pÞð5Þ
2

8<:
1

1

9=; ¼ p

8<:
184:68

184:68

9=;
Thus, the overall Eq. (13.35) can be written as�

33:745 �4:128

�4:128 33:745

��
T1

T2

�
¼
�
1184:68

1184:68

�
(E.4)

The application of the boundary condition (T1 ¼ 140) leads to�
1 0

0 33:745

��
T1

T2

�
¼
�

140:00

1762:00

�
(E.5)

Eq. (E.5) gives the solution

T
!e ¼

�
T1

T2

�
¼
�
140:00

52:25

�
(E.6)

Thus, T
ð1Þ
av ¼ 96:125�C ¼ 369:125�K and the new value of h

ð1Þ
r can be obtained as

hð1Þ
r ¼ �

5:7� 10�8
�ð0:1Þ�369:1252 þ 3132

�ð369:125þ 313Þ ¼ 0:9103

ITERATION 3
With the present value h

ð1Þ
r , we can obtainh

K
ð1Þ
4

i
¼ ð0:9103Þð2pÞð5Þ

6

�
2 1

1 2

�
¼ p

�
3:034 1:517

1:517 3:034

�
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ITERATION 3 dcont’d

and

P
!ðeÞ

4 ¼ ð0:9103Þð40Þð2pÞð5Þ
2

�
1

1

�
¼ p

�
182:06

182:06

�
Thus, the overall Eq. (13.35) can be expressed as�

33:701 �4:150

�4:150 33:701

��
T1

T2

�
¼
�
1182:06

1182:06

�
(E.7)

After incorporating the known condition, T1 ¼ 140, Eq. (E.7) gives�
1 0

0 33:701

��
T1

T2

�
¼
�

140:00

1763:06

�
(E.8)

from which the solution can be obtained as

T
!e ¼

�
T1

T2

�
¼
�
140:00

52:31

�
(E.9)

This solution gives T
ð1Þ
av ¼ (T1 þ T2)/2 ¼ 96.155�C ¼ 369.155�K and h

ð1Þ
r ¼ (5.7 � 10�8) (0.1) (369.1552 þ 3132)

(369.155 þ 313) ¼ 0.9104.

Since the difference between this value of h
ð1Þ
r and the previous value is very small, we assume convergence, and hence the

solution of Eq. (E.9) can be taken as the correct solution of the problem.

REVIEW QUESTIONS

14.1 Give brief answers to the following questions.

1. State the governing differential equation of a one-dimensional heat transfer problem.
2. Give a practical example of a one-dimensional heat transfer.
3. What is the finite difference expression for the first derivative vT

vt at t ¼ t0?
4. What are element capacitance matrices?
5. State the temperature variation for a quadratic element.
6. State a simple method of modeling a one-dimensional fin whose cross section varies exponentially.

14.2 Fill in the blank with a suitable word.

1. For a one-dimensional fin of length l and circular cross section with area A and perimeter P, the convection heat
transfer occurs over a total area of ————————.

2. The radiation term introduces nonlinearity because of the presence of the term —————————.
3. A transient heat transfer problem involves boundary conditions as well as ——————————— condition.
4. In general, the boundary conditions of a one-dimensional heat transfer problem involves ——————————

and combined heat —————————— and specification of ——————————— loss.

14.3 Indicate whether the following statement is true or false.

1. The solution of a radiation heat transfer problem requires an iterative process.
2. It is more convenient to solve a transient heat transfer problem using only finite differences.
3. The convection term in heat transfer analysis gives rise to an element matrix and an element vector.
4. The conduction coefficient appears on the right-hand side vector in a heat transfer problem.

14.4 Select the most appropriate answer from the multiple choices given.

1. The following term is defined as the radiation heat transfer coefficient (hr):
(a) s ε

�
T4 � T4

N

�
(b) s ε

�
T4 þ T4

N

�
(c) s ε

�
T2 þ T2

N

�ðT þ TNÞ

One-Dimensional Problems Chapter | 14 545

www.konkur.in

Telegram: @uni_k



PROBLEMS

14.1 A composite wall, made up of two materials, is shown in Fig. 14.6. The temperature on the left side of the wall is
specified as 80 �F while convection takes place on the right side of the wall. Find the temperature distribution in the
wall using two linear elements.

14.2 A fin, of size 1� 10� 50 in, extends from a wall as shown in Fig. 14.7. If the wall temperature is maintained at 500
�F and the ambient temperature is 70 �F, determine the temperature distribution in the fin using three one-dimensional
elements in the x direction. Assume k ¼ 40 BTU/hr-ft �F and h ¼ 120 BTU/hr-ft2 �F.

14.3 Determine the amount of heat transferred from the fin considered in Problem 14.2.

0.75 ft 0.25 ft

Element 1

Element 2

k1

T3T2T1

k2

h = 100 BTU/hr-ft2-°F
k1 = 1.5 BTU/hr-ft-°F
k2 = 120 BTU/hr-ft-°F

T∞ = 500°F

FIGURE 14.6 A composite wall.

Fin

T∞ = 70 °F
Wall,

T0 = 500 °F 50"

x

10"

1"

FIGURE 14.7 Fin extending from a wall.
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14.4 One side of a brick wall, of width 5 m, height 4 m, and thickness 0.5 m, is exposed to a temperature of �30�C,
while the other side is maintained at 30�C. If the thermal conductivity (k) is 0.75 W/m�C and the heat transfer co-
efficient on the colder side of the wall (h) is 5 W/m2�C, determine the following:
a. Temperature distribution in the wall using two one-dimensional elements in the thickness.
b. Heat loss from the wall.

14.5 Fig. 14.8 shows a uniform aluminum fin of diameter 2 cm. The root (left end) of the fin is maintained at a temper-
ature of T0 ¼ 100�C while convection takes place from the lateral (circular) surface and the right (flat) edge of the
fin. Assuming k ¼ 200 W/m�C, h ¼ 1000 W/m2�C, and TN ¼ 20�C, determine the temperature distribution in the
fin using a two-element idealization.

14.6 Solve Problem 14.5 by neglecting heat convection from the right-hand edge of the fin.
14.7 Solve Problem 14.5 by assuming the fin diameter to be varying linearly from 4 cm at the root to 1 cm at the right end.
14.8 A uniform steel fin of length 10 in, with a rectangular cross section 2 � 1 in, is shown in Fig. 14.9. If heat transfer

takes place by convection from all the surfaces while the left side (root) of the fin is maintained at T0 ¼ 500 �F,
determine the temperature distribution in the fin. Assume that k ¼ 9 BTU/hr-ft �F, h ¼ 2500 BTU/hr-ft2 �F, and
TN ¼ 50 �F. Use two finite elements.

14.9 Solve Problem 14.8 using three finite elements.
14.10 Derive the finite element equations corresponding to Eqs. (14.56) to (14.59) without assuming the radiation heat

transfer coefficient (hr) to be a constant.
14.11 A wall consists of 4-cm-thick wood, 10-cm-thick fiber glass insulation, and 1-cm-thick plaster. If the temperatures

on the wood and plaster faces are 20 and �20�C, respectively, determine the temperature distribution in the wall.
Assume thermal conductivities of wood, glass fiber, and plaster as 0.17, 0.035, and 0.5 W/m�C, respectively, and
the heat transfer coefficient on the colder side of the wall as 25 W/m2�C.

14.12 The radial temperature distribution in an annular fin (Fig. 14.10) is governed by the equation

d
dr

�
ktr

dT
dr

�
� 2hrðT � TNÞ ¼ 0

with boundary conditions

TðriÞ ¼ T0ðtemperature specifiedÞ
dT
dr

ðr0Þ ¼ 0 ðinsulatedÞ

Derive the finite element equations corresponding to this problem.

2 cm dia.

xT0

h, T∞

h, T∞

h, T∞

10 cm

FIGURE 14.8 Uniform aluminum fin.

T0

h, T∞

h, T∞

h, T∞

x

10"

FIGURE 14.9 Uniform fin with a rectangular section.
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14.13 Derive the element matrix [K(e)] and the vector P
!ðeÞ

for a one-dimensional element for which the thermal conduc-
tivity k varies linearly between the two nodes.

14.14 Using the finite element method, find the tip temperature and the heat loss from the tapered fin shown in Fig. 14.11.
Assume that (a) the temperature is uniform in the y direction, (b) the heat transfer from the fin edges (one is shown
hatched) is negligible, and (c) there is no temperature variation in the z direction.

14.15 A plane wall of thickness 15 cm has an initial temperature distribution given by T(x, t ¼ 0) ¼ 500 sin(px/L), where
x ¼ 0 and x ¼ L denote the two faces of the wall. The temperature of each face is kept at zero and the wall is
allowed to approach thermal equilibrium as time increases. Find the time variation of temperature distribution in
the wall for a ¼ ðk=rcÞ ¼ 10 cm2/hr using the finite element method.

14.16 Derive the matrix
h
KðeÞ
4

i
corresponding to radiation heat transfer for a tapered one-dimensional element.

t

ri

Root of fin

Annular fin

h, T∞h, T∞

h, T∞h, T∞

ro

FIGURE 14.10 An annular fin.

T0

T∞

L

x

y

L = 2"
t = 0.125"
To = 200°F
T∞ = 70°F

z

t
t

BTU
hr -ft -°Fk = 117

h = 10 BTU
hr -ft2 -°F

FIGURE 14.11 A tapered fin.
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14.17 Derive the matrix
h
KðeÞ
4

i
corresponding to radiation heat transfer for a one-dimensional element using quadratic

temperature variation within the element.
14.18 Find the steady-state temperature distribution in the tapered fin shown in Fig. 14.2 by considering both convection

and radiation from its perimeter surface. Take ε ¼ 0.1 and s ¼ 5.7 � 10�8 W/m2 �K4.
14.19 A composite wall, made up of three different materials as shown in Fig. 14.12, is used in the enclosure of a furnace.

The inner (furnace side) surface of the wall is exposed to the furnace temperature of TN ¼ 600�C and convection
heat transfer occurs on the inner surface of the wall. The outer surface of the wall is maintained at the atmospheric
temperature of 20�C. Determine the temperature distribution in the wall for the following data: w1 ¼ 0.4 m,
w2 ¼ 0.2 m, w3 ¼ 0.1 m, k1 ¼ 10 W/m�C, k2 ¼ 25 W/m�C, k3 ¼ 60 W/m�C, h ¼ 50 W/m2�C.

14.20 A thick metal plate, with a thermal conductivity coefficient of k ¼ 1500 W/m�C, has a thickness of 0.25 m in the x
direction and infinite (very large) dimensions in the y and z directions as shown in Fig. 14.13. Because the dimen-
sions of the plate in the y and z directions are very large, it can be considered an infinite slab and can be modeled as
a one-dimensional heat transfer problem (in the x direction). One side of a plate (the left face, at x ¼ 0) is

20°CT∞

k1 k2 k3

w3 = 0.1m w1 = 0.4 m w2 = 0.2 m 

FIGURE 14.12 A composite wall consisting of three materials.

0

z

x

∞

∞
∞

y

250 °C

w = 0.25 m

FIGURE 14.13 A thick metal plate.
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maintained at 250�C and the other side (the right face, at x ¼ w ¼ 0.25 m) is exposed to the room temperature of
20�C. Determine the temperature distribution in the thickness of the plate using two finite elements.

14.21 For the plate described in Problem 14.20, one side of a plate (the left face, at x ¼ 0) is maintained at 250�C and the
other side (the right face, at x ¼ w ¼ 0.25 m) is insulated. Determine the temperature distribution along the thick-
ness or x direction of the plate using two finite elements.

14.22 For the plate described in Problem 14.20, one side of a plate (the left face, at x ¼ 0) is maintained at 250�C and the
other side (the right face, at x ¼ w ¼ 0.25 m) is subject to a heat flux boundary condition with q0 ¼ 20 W. Deter-
mine the temperature distribution along the thickness or x direction of the plate using two one-dimensional
elements.

14.23 An aluminum plate fin of length L ¼ 20 cm, width W ¼ 30 cm, and thickness h ¼ 0.2 cm is shown in Fig. 14.14.
Because the thickness of the fin is very small compared to its length and width, it can be modeled as a one-
dimensional fin with heat flowing only in the length (x) direction. Heat is transferred from the top and bottom sur-
faces of the fin to the surrounding air by convection. Find the temperature distribution along the fin and the heat
transferred from the fin to the surrounding air by convection for the following data:

k ¼ 250 W=m�� C; h ¼ 400 W=m2 �� C; T0 ¼ Tðx ¼ 0Þ ¼ 300�C; and TN ¼ 30�C

Assume that the temperature of the end surface (S) is maintained at 30�C.

14.24 For the plate fin described in Problem 14.23 and shown in Fig. 14.14, find the temperature distribution in the fin and
the heat transferred from the fin by convection if convection heat transfer takes place from the end surface (S) also
(in addition to the top and bottom surfaces of the fin).

14.25 For the plate fin described in Problem 14.23 and shown in Fig. 14.14, find the temperature distribution in the fin and
the heat transferred from the fin by convection if the end surface (S) is insulated.

14.26 In a one-dimensional heat transfer problem, the system equations, before applying the boundary conditions, are
given by

264 0:15 �0:15 0

�0:15 0:30 �0:15

0 �0:15 0:15

375
8><>:

T1

T2

T3

9>=>; ¼

8><>:
0

0

0

9>=>;

Wall

Top surface

End
surface

Bottom surface

(S )

h

x0
W

L

FIGURE 14.14 A plate fin.
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where T1, T2, and T3 are the temperatures at nodes 1, 2, and 3, respectively. If the boundary conditions of the prob-
lem are specified as T1 ¼ 250�C and T3 ¼ 100�C, derive the final system equations after applying the boundary
conditions. Find the solution of the resulting equations.

14.27 Find the temperature distribution in the aluminum fin described in Problem 14.5 under the following conditions:
a. The convection heat transfer from the right (flat) edge is negligible.
b. Heat flux of q0 ¼ 200 W/cm2 (due to an electric heating pad in contact) at the right (flat) edge.
Use one finite element for idealization.

14.28 Find the temperature distribution in the aluminum fin described in Problem 14.5 under the following conditions:
a. The convection heat transfer from the right (flat) edge is negligible.
b. Heat flux of q0 ¼ 200 W/cm2 (due to an electric heating pad in contact) at the right (flat) edge.
Use two finite elements for idealization.

14.29 Find the temperature distribution in the steel rectangular fin described in Problem 14.8 under the following
conditions:
a. The convection heat transfer from the right (flat) edge is negligible.
b. Heat flux of q0 ¼ 100 W/cm2 (due to an electric heating pad in contact) at the right (flat) edge.
Use one finite element for idealization.

14.30 Find the temperature distribution in the steel rectangular fin described in Problem 14.8 under the following
conditions:
a. The convection heat transfer from the right (flat) edge is negligible.
b. Heat flux of q0 ¼ 100 W/cm2 (due to an electric heating pad in contact) at the right (flat) edge.
Use two finite elements for idealization.

14.31 Carry out the integrations required and derive Eqs. (14.37), (14.38), and (14.41) for a quadratic element.
14.32 Carry out the integrations required and derive the element capacitance matrices given by Eqs. (14.45) to (14.47).
14.33 Derive Eq. (E.1) of Example 14.11.
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15.1 INTRODUCTION

For a two-dimensional steady-state problem, the governing differential equation is (Fig. 15.1A)

v

vx

�
kx
vT

vx

�
þ v

vy

�
ky
vT

vy

�
þ _q ¼ 0 (15.1)

and the boundary conditions are

T ¼ Toðx; yÞ on S1 (15.2)

y

Region of
interest

x

S1= Boundary on which temperature is specified
S2= Heat flux specified
S3= Convection takes place

Region of interest

Idealization

2

S2

S3

S1

S2

S3

S1

3

Global node number

1
k

k

i
j

Edge lying on boundary S3

“e”

“e”

i
k

e

j

Local node
number

j(xj, yj)

i(xi, yi)

(xk, yk)

(A)

(C)

(B)

FIGURE 15.1 Two-dimensional problem.
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kx
vT

vx
lx þ ky

vT

vy
ly þ q ¼ 0 on S2 (15.3)

kx
vT

vx
lx þ ky

vT

vy
ly þ hðT � TNÞ ¼ 0 on S3 (15.4)

where kx and ky are thermal conductivities in the principal (x and y) directions, _q is the strength of heat source, q is the
magnitude of boundary heat flux, h(T � TN) is the surface heat flow due to convection, and lx and ly are the direction co-
sines of the outward normal to the surface.

15.2 SOLUTION

The finite element solution of this problem can be obtained as
Step 1: Idealize the solution region with triangular elements as shown in Fig. 15.1B.
Step 2: Assuming a linear variation of temperature T (e) inside the finite element e,

T ðeÞðx; yÞ ¼ a1 þ a2xþ a3y ¼ ½Nðx; yÞ� q!ðeÞ
(15.5)

where

½Nðx; yÞ� ¼

8><>:
Niðx; yÞ
Njðx; yÞ
Nkðx; yÞ

9>=>;
T

¼

8><>:
ðai þ xbi þ yciÞ

�
2AðeÞ

ðaj þ xbj þ ycjÞ
�
2AðeÞ

ðak þ xbk þ yckÞ
�
2AðeÞ

9>=>;
T

(15.6)

q!ðeÞ ¼

8><>:
q1

q2
q3

9>=>;h

8><>:
Ti

Tj

Tk

9>=>; (15.7)

and A(e) is the area and Ti, Tj, and Tk are the nodal temperatures of element e. The expressions for ai, bi, ci, and A(e) are
given by Eqs. (3.32) and (3.31), respectively.

Step 3: Derivation of element matrices. Once the matrix [N(x, y)] is defined, Eq. (15.6), the matrix [B] of Eq. (13.54)
can be computed as

½B� ¼

26664
vNi

vx

vNj

vx

vNk

vx

vNi

vy

vNj

vy

vNk

vy

37775 ¼ 1
2AðeÞ

�
bi bj bk
ci cj ck

�
(15.8)

Using

½D� ¼
�
kx 0

0 ky

�
(15.9)

Eq. (13.46) gives

h
KðeÞ

1

i
¼ 1

4AðeÞ2

ZZZ
V ðeÞ

264 bi ci

bj cj
bk ck

375� kx 0

0 ky

��
bi bj bk
ci cj ck

�
$ dV (15.10)

Assuming a unit thickness, the elemental volume can be expressed as dV ¼ dA. Thus, Eq. (15.10) becomes

h
KðeÞ

1

i
¼ kx

4AðeÞ

2664
b2i bibj bibk
bibj b2j bjbk

bibk bjbk b2k

3775þ ky
4AðeÞ

264 c2i cicj cick
cicj c2j cjck

cick cjck c2k

375 (15.11)
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For an isotropic material with kx ¼ ky ¼ k, Eq. (15.11) reduces to

h
KðeÞ

1

i
¼ k

4AðeÞ

2664
�
b2i þ c2i

� ðbibj þ cicjÞ ðbibk þ cickÞ	
b2j þ c2j



ðbjbk þ cjckÞ

Symmetric
�
b2k þ c2k

�
3775 (15.12)

To determine the matrix
h
KðeÞ
2

i
, integration over the surface

h
SðeÞ3

i
is to be performed:

h
KðeÞ

2

i
¼ h

ZZ
SðeÞ3

264 N2
i NiNj NiNk

NiNj N2
j NjNk

NiNk NjNk N2
k

375dS3 (15.13)

Thus, the surface SðeÞ3 that experiences the convection phenomenon must be known for evaluating the integrals of
Eq. (15.13). Let the edge ij of element e lie on the boundary S3 as shown in Fig. 15.1C so that Nk ¼ 0 along this edge. Then
Eq. (15.13) becomes

h
KðeÞ

2

i
¼ h

ZZ
S
ðeÞ
3

264 N2
i NiNj 0

NiNj N2
j 0

0 0 0

375$ dS3 (15.14)

Note that if the edge ik (or jk) is subjected to convection instead of the edge ij, Nj ¼ 0 (or Ni ¼ 0) in Eq. (15.13). To
evaluate the integrals of Eq. (15.14) conveniently, we can use the triangular or area coordinates introduced in Section 3.9.2.
Because the temperature is assumed to vary linearly inside the element, we have Ni ¼ L1, Nj ¼ L2, Nk ¼ L3. Along the edge
ij, Nk ¼ L3 ¼ 0, and hence Eq. (15.14) becomes

h
KðeÞ

2

i
¼ h

Z sj

s¼si

264 L2
1 L1L2 0

L1L2 L2
2 0

0 0 0

375ds (15.15)

where s denotes the direction along the edge ij, and dS3 was replaced by t$ds ¼ ds since a unit thickness has been assumed
for the element e. The integrals of Eq. (15.15) can be evaluated using Eq. (3.77) to find

h
KðeÞ

2

i
¼ hsji

6

264 2 1 0

1 2 0

0 0 0

375 (15.16)

The integrals involved in Eq. (13.49) can be evaluated using triangular coordinates as follows:

P
!ðeÞ

1 ¼
ZZZ

V ðeÞ
_q½N�TdV ¼ _qo

ZZ
AðeÞ

8><>:
L1

L2

L3

9>=>;dA ¼ _qoA
ðeÞ

3

8><>:
1

1

1

9>=>; (15.17)

The integral in

P
!ðeÞ

2 ¼
ZZ

SðeÞ2

q½N�TdS2 (15.18)

depends on the edge that lies on the heat flux boundary S2. If the edge ij lies on S2, Nk ¼ L3 ¼ 0 and dS2 ¼ tds ¼ ds as in
Eq. (15.15) and hence

P
!ðeÞ

2 ¼ q

Z sj

s¼si

8><>:
L1

L2

0

9>=>;ds ¼ qsji
2

8><>:
1

1

0

9>=>; (15.19)

Similarly, the vector P
!ðeÞ

3 can be obtained as

P
!ðeÞ

3 ¼
ZZ

SðeÞ3

hTN½N�TdS3 ¼ hTNSji

2

8><>:
1

1

0

9>=>;if the edge ij lies on S3 (15.20)
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Note that if the heat flux (q) or the convection heat transfer (h) occurs from two sides of the element e, then the surface
integral becomes a sum of the integral for each side.

Step 4: The assembled equations (13.35) can be expressed as�
Ke� T!e ¼ P

!e (15.21)

where �
Ke� ¼

XE
e¼ 1

	h
KðeÞ

1

i
þ
h
KðeÞ

2

i

(15.22)

and

P
!e ¼

XE
e¼ 1

	
P
!ðeÞ

1 � P
!ðeÞ

2 þ P
!ðeÞ

3



(15.23)

Step 5: The overall equations (15.21) are to be solved, after incorporating the boundary conditions, to obtain the values
of nodal temperatures.

EXAMPLE 15.1
Compute the element matrices and vectors for the element shown in Fig. 15.2 when the edges jk and ki experience convection

heat loss.

Solution

From the data given in Fig. 15.2, we can compute the required quantities as

bi ¼ ðyj � ykÞ ¼ ð10� 8Þ ¼ 2

bj ¼ ðyk � yiÞ ¼ ð8� 6Þ ¼ 2

bk ¼ ðyi�yjÞ ¼ ð6� 10Þ ¼ �4

ci ¼ xk � xj ¼ 12� 8 ¼ 4

cj ¼ xi � xk ¼ 4� 12 ¼ �8

ck ¼ xj � xi ¼ 8� 4 ¼ 4

AðeÞ ¼ 1
2
j½ð� 4Þð2Þ � ð� 4Þð� 4Þ�j ¼ 1

2
jð� 8� 16Þj ¼ 12

skj ¼ sk � sj ¼ length of edge jk ¼ �ðxk � xjÞ2 þ ðyk � yjÞ2
�1=2 ¼ 4:47

sik ¼ si � sk ¼ length of edge ki ¼ �ðxi � xk Þ2 þ ðyi � ykÞ2
�1=2 ¼ 8:25

y

j

x

i(4, 6) k (12, 8)

(8, 10)

cm-°Kk = 60

T∞ = 40°C

qo = 50 W/cm3

W

h =15
watts

T∞ = 40°C

cm2-°K

cm2-°K

h =10 watts

.

FIGURE 15.2 A triangular element.
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EXAMPLE 15.1 dcont’d

Substitution of these values in Eqs. (15.12) and (15.16) to (15.20) gives

h
K

ðeÞ
1

i
¼ 60

4� 12

26664
ð4þ 16Þ ð4� 32Þ ð�8þ 16Þ

ð4þ 64Þ ð�8� 32Þ

Symmetric ð16þ 16Þ

37775 ¼

26664
25 �35 10

�35 85 �50

10 �50 40

37775
h
K

ðeÞ
2

i
¼ hiksik

6

26664
2 0 1

0 0 0

1 0 2

37775þ hkjskj
6

26664
0 0 0

0 2 1

0 1 2

37775

¼ ð15Þð8:25Þ
6

26664
2 0 1

0 0 0

1 0 2

37775þ ð10Þð4:47Þ
6

26664
0 0 0

0 2 1

0 1 2

37775

¼

26664
41:250 0 20:625

0 14:900 7:450

20:625 7:450 56:150

37775

P
!ðeÞ

1 ¼ _qoA
ðeÞ

3

8>>><>>>:
1

1

1

9>>>=>>>; ¼ ð50Þð12Þ
3

8>>><>>>:
1

1

1

9>>>=>>>; ¼

8>>><>>>:
200

200

200

9>>>=>>>;
P
!ðeÞ

2 ¼ 0
!

since no boundary heat flux is specified

P
ðeÞ
3 ¼ ðhTNÞkjskj

2

8>>><>>>:
0

1

1

9>>>=>>>;þ ðhTNÞiksik
2

8>>><>>>:
1

0

1

9>>>=>>>;

¼ ð10Þð40Þð4:47Þ
2

8>>><>>>:
0

1

1

9>>>=>>>;þ ð15Þð40Þð8:25Þ
2

8>>><>>>:
1

0

1

9>>>=>>>; ¼

8>>><>>>:
2475

894

3369

9>>>=>>>;

EXAMPLE 15.2
Find the temperature distribution in a square region with uniform energy generation as shown in Fig. 15.3A. Assume that there is

no temperature variation in the z direction. Take k ¼ 30 W/cm �K, L ¼ 10 cm, TN ¼ 50 �C, and _q ¼ _q0 ¼ 100 W/cm3.

Solution

Step 1: Divide the solution region into eight triangular elements as shown in Fig. 15.3B. Label the local corner numbers of the

elements counterclockwise starting from the lower left corner (only for convenience). The information needed for subsequent

calculations is given here:

Node Number (i) 1 2 3 4 5 6 7 8 9

Coordinates of node i (xi, yi) (0,0)
	
L
2; 0



(L, 0)

	
0; L2


 	
L
2;

L
2


 	
L; L2



(0, L)

	
L
2; L



(L, L)

Element Number (e) 1 2 3 4 5 6 7 8

Global node numbers i, j, and k corresponding to local nodes 1, 2, and 3 i 1 4 2 5 4 7 5 8

j 2 2 3 3 5 5 6 6

k 4 5 5 6 7 8 8 9

Continued
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EXAMPLE 15.2 dcont’d

Step 2: Computation of [N(x, y)] of Eq. (15.6) for various elements:

The information needed for the computation of [N(x, y)] is given next (ai, aj, and ak are not computed because they are not

needed in the computations).

Step 3: Derivation of element matrices and vectors:

a.
h
K

ðeÞ
1

i
matrices (Eq. 15.12):

L

qo

T = T∞

T = T∞

0

A square region with uniform energy
generation

Finite element idealization

y y

L
x

7
8

9

64

1
1

1

1
3

3 5
2

3

3 31

4

2
2

1 2
2

6
5

3
1 3

3
3

1 2
2

1 2
2

7
8

1

2 3
x

∂T
∂x = 0

∂T
∂y= 0

.

(A) (B)

FIGURE 15.3 Square region with uniform heat generation.
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Element

Number e xi xj xk yi yj yk ck [ xj e xi ci [ xk e xj cj [ xi e xk bk [ yi e yj bi [ yj e yk bj [ yk e yj AðeÞ [ 1
2

�xijyjk-xjkyij�
1 0 L

2
0 0 0 L

2
L
2 �L

2
0 0 �L

2
L
2 1

2

L24 � 0

 ¼ L2

8

2 0 L
2

L
2

L
2

0 L
2

L
2

0 �L
2

L
2 �L

2
0

1
2

L24 � 0

 ¼ L2

8

3 L
2

L L
2

0 0 L
2

L
2 �L

2
0 0 �L

2
L
2 1

2

L24 � 0

 ¼ L2

8

4 L
2

L L L
2

0 L
2

L
2

0 �L
2

L
2 �L

2
0

1
2

L24 � 0

 ¼ L2

8

5 0 L
2

0 L
2

L
2

L L
2 �L

2
0 0 �L

2
L
2 1

2

L24 � 0

 ¼ L2

8

6 0 L
2

L
2

L L
2

L L
2

0 �L
2

L
2 �L

2
0

1
2

L24 � 0

 ¼ L2

8

7 L
2

L L
2

L
2

L
2

L L
2 �L

2
0 0 �L

2
L
2 1

2

L24 � 0

 ¼ L2

8

8 L
2

L L L L
2

L L
2

0 �L
2

L
2 �L

2
0

1
2

L24 � 0

 ¼ L2

8

Tw
o
-D

im
en

sio
n
al

P
ro
b
lem

s
C
h
a
p
te
r
|
1
5

5
5
9
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EXAMPLE 15.2 dcont’d

b.
h
K

ðeÞ
2

i
matrices (Eq. 15.16) and P

!ðeÞ
3 vectors (Eq. 15.20):

Because no convective boundary condition is specified in the problem, we have

h
K

ðeÞ
2

i
¼

264 0 0 0

0 0 0

0 0 0

375; P
!ðeÞ

3 ¼

8><>:
0

0

0

9>=>; for e ¼ 1;2;.;8
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EXAMPLE 15.2 dcont’d

c. P
!ðeÞ

1 vectors (Eq. 15.17):

Since A(e) is the same for e ¼ 1e8, we obtain

P
!ðeÞ

1 ¼ _q0L
2

24

8>>><>>>:
1

1

1

9>>>=>>>;; e ¼ 1;2;.;8

d. P
!ðeÞ

2 vectors (Eq. 15.19):

Since no boundary heat flux is specified in the problem, we have

P
!ðeÞ

2 ¼

8><>:
0

0

0

9>=>;; e ¼ 1;2;.;8

Step 4: The element matrices and vectors derived in step 3 are assembled to obtain the overall system matrices and vectors as

follows:

h
Ke
i
¼

h
Ke1

i
¼

X8

e¼ 1

h
K

ðeÞ
1

i
¼ k

2

T1

T1

T2

T2

T3

T3

T4

T4

T5

T5

T6

T6

T7

T7

T8

T8

T9

T9

2
–1

–1 –1

–1
–1

–1

0 + 0

1 + 1

–1

–1 – 1

–1 – 1 –1 – 1
–1

–1
2

2 + 1 + 1
–1

–1

0 + 02 + 1 + 1

0 + 0–1 – 1

–1 – 1

–1 – 1
2 + 1 + 1 + 1 + 1 + 2

–1

–1

–1

–1

–1 – 1 –1 – 1
–1

1 + 1 + 2

1 + 1 + 2
1 + 1 

0 + 0

0 + 0
0 + 0

0 + 0

0 + 0×

(E.1)

Continued
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EXAMPLE 15.2 dcont’d

P
!e ¼ P

!e 1 ¼
X8

e¼ 1

P
!ðeÞ

1 ¼ _qoL
2

24

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

1

1þ 1þ 1

1þ 1

1þ 1þ 1

1þ 1þ 1þ 1þ 1þ 1

1þ 1þ 1

1þ 1

1þ 1þ 1

1

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

T1

T2

T3

T4

T5

T6

T7

T8

T9

¼ _qoL
2

24

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

1

3

2

3

6

3

2

3

1

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

(E.2)

Thus, the overall system equations are given by Eq. (15.21), where
�
Ke� and P

!e are given by Eqs. (E.1) and (E.2), and

T
!e ¼ fT1 T2. T9gT (E.3)

Step 5: The boundary conditions to be incorporated are T3 ¼ T6 ¼ T7 ¼ T8 ¼ T9 ¼ TN. The following procedure can be adopted

to incorporate these boundary conditions in Eq. (15.21) without destroying the symmetry of the matrix. To incorporate the

condition T3 ¼ TN, for example, transfer all the off-diagonal elements of the third column (that get multiplied by T3) to the right-

hand side of the equation. These elements are then set equal to zero on the left-hand side. Then, in the third row of
�
Ke�, the off-

diagonal elements are set equal to 0 and the diagonal element is set equal to 1. Replace the third component of the new right-hand

side by TN(value of T3). Thus, after the incorporation of the boundary condition T3 ¼ TN, Eq. (15.21) will appear as follows:266666666666666664

2 �1 0 �1 0 0 0 0 0

�1 4 0 0 �2 0 0 0 0

0 0 1 0 0 0 0 0 0

�1 0 0 4 �2 0 �1 0 0

0 �2 0 �2 8 �2 0 �2 0

0 0 0 0 �2 4 0 0 �1

0 0 0 �1 0 0 2 �1 0

0 0 0 0 �2 0 �1 4 �1

0 0 0 0 0 �1 0 �1 2

377777777777777775

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

T1

T2

T3

T4

T5

T6

T7

T8

T9

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

¼ _qoL
2

12k

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

1

3

0

3

6

3

2

3

1

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

� TN

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

0

�1

�1

0

0

�1

0

0

0

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

(E.4)

It can be observed that the third equation of (E.4) is now decoupled from the remaining equations and has the desired solution

T3 ¼ TN as specified by the boundary condition. After incorporating the remaining boundary conditions, namely

T6 ¼ T7 ¼ T8 ¼ T9 ¼ TN, the final equations will appear as follows:266666666666666664

2 �1 0 �1 0 0 0 0 0

�1 4 0 0 �2 0 0 0 0

0 0 1 0 0 0 0 0 0

�1 0 0 4 �2 0 0 0 0

0 �2 0 �2 8 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

377777777777777775

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

T1

T2

T3

T4

T5

T6

T7

T8

T9

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

¼ _qoL
2

12k

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

1

3

0

3

6

0

0

0

0

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

þ TN

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

0

1

1

1

4

1

1

1

1

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

(E.5)

The solution of Eq. (E.5) gives the following result:

T1 ¼ 133:3�C; T2 ¼ 119:4�C; T3 ¼ 50:0�C; T4 ¼ 119:4�C; T5 ¼ 105:6�C;

T6 ¼ 50:0�C; T7 ¼ 50:0�C; T8 ¼ 50:0�C; T9 ¼ 50:0�C
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15.3 UNSTEADY STATE PROBLEMS

The finite element equations governing the unsteady state problem are given by Eq. (13.35). It can be seen that the termh
Ke3

i _
T
!e represents the unsteady state part. The element matrix

h
KðeÞ
3

i
can be evaluated using the definition given in Eq.

(13.48). Since the shape function matrix used for the triangular element (in terms of natural coordinates) is

½Nðx; yÞ� ¼ ½ L1 L2 L3 � (15.24)

for unit thickness of the element, we obtain [15.1e15.3]:

h
KðeÞ

3

i
¼ ðrcÞðeÞ

ZZ
AðeÞ

2666664
L2
1 L1L2 L1L3

L1L2 L2
2 L2L3

L1L3 L2L3 L2
3

3777775$ dA

¼ ðrcÞðeÞAðeÞ

12

2666664
2 1 1

1 2 1

1 1 2

3777775

(15.25)

REVIEW QUESTIONS

15.1 Give brief answers to the following questions.

1. State the governing differential equation for a two-dimensional steady-state heat transfer problem for an isotropic
conducting material.

2. Indicate the nature of boundary conditions for a two-dimensional steady-state heat transfer problem.

15.2 Fill in the blank with a suitable word.

1. The temperature variation is assumed to be ——————————— in a triangular element with three nodes.

15.3 Indicate whether the following statement is true or false.

1. The unsteady state contributes the matrices
h
KðeÞ
3

i
in a two-dimensional heat transfer problem.

2. The triangular coordinates and area coordinates are different for a triangular element.

15.4 Select the most appropriate answer from the multiple choices given.

1. For a triangular element with nodes i, j, and k, the following area coordinate is zero along the edge ij:
(a) L1 (b) L2 (c) L3

PROBLEMS

15.1 Find the temperature distribution in the square plate shown in Fig. 15.4.
15.2 If convection takes place from the triangular faces rather than the edges for the element ijk shown in Fig. 15.5, eval-

uate the surface integrals that contribute to the matrix [K(e)] and the vector P
!ðeÞ

.
15.3 The temperature distribution in an isotropic plate of thickness t is given by the equation

v

vx

�
kt
vT

vx

�
þ v

vy

�
kt
vT

vy

�
þ _q ¼ 0 (P.1)
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with the following boundary conditions (including radiation heat transfer):

T ¼ T0ðx; yÞ on S1 (P.2)

k
vT

vx
lx þ k

vT

vy
ly þ q ¼ 0 on S2 (P.3)

k
vT

vx
lx þ k

vT

vy
ly þ hðT � TNÞ ¼ 0 on S3 (P.4)

k
vT

vx
lx þ k

vT

vy
ly þ ε s

�
T4 � T4

N

� ¼ 0 on S4 (P.5)

where S4 denotes the surface from which radiation heat transfer takes place. Derive the variational functional I correspond-
ing to Eqs. (P.1) to (P.5).

15.4 Derive the finite element equations corresponding to Eqs. (P.1) to (P.5) of Problem 15.3 using the Galerkin method.

15.5 Evaluate the integrals in Eq. (15.13) and derive the matrix
h
KðeÞ
2

i
assuming that convection takes place along the

edge jk of element e.
15.6 Evaluate the integrals in Eq. (15.13) and derive the matrix

h
KðeÞ
2

i
assuming that convection takes place along the

edge ki of element e.
15.7 If heat flux and convection heat transfer take place from the edge jk of element e, derive the corresponding vectors

P
!ðeÞ

2 and P
!ðeÞ

3 .
15.8 If heat flux and convection heat transfer take place from the edge ki of element e, derive the corresponding vectors

P
!ðeÞ

2 and P
!ðeÞ

3 .
15.9 Explain why the element matrices resulting from conduction and boundary convection,

h
KðeÞ
1

i
and

h
KðeÞ
2

i
, are

always symmetric.

L

L

0

y

x

T = 0

T = 0 T = 0

T = T0 sin πx
L

FIGURE 15.4 A square plate.

k

j

i

FIGURE 15.5 A triangular plate.
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15.10 Evaluate the conduction matrix,
h
KðeÞ
1

i
, for an isotropic rectangular element with four nodes. Use linear tempera-

ture variation in x and y directions.
15.11 A three-noded triangular plate element from a finite element grid is shown in Fig. 15.6. The element has a thickness

of 0.2 in and is made of aluminum with k ¼ 115 BTU/hr-ft �F. Convection heat transfer takes place from all three
edges and the two triangular faces of the element to an ambient temperature of 70 �F with a convection coefficient

of 100 BTU/hr-ft2 �F. Determine the characteristic matrices
h
KðeÞ
1

i
and

h
KðeÞ
2

i
of the element.

15.12 If an internal heat source of _q ¼ 1000 BTU/hr-ft3 is present at the centroid and a heat flux of 50 BTU/hr-ft2 is
imposed on each of the three faces of the triangular element considered in Problem 15.11, determine the charac-

teristic vectors P
!ðeÞ

1 , P
!ðeÞ

2 , and P
!ðeÞ

3 of the element.
15.13 Consider the trapezoidal plate discretized into four elements and five nodes as shown in Fig. 15.7. Ifh

KðeÞ
ij

i
h

h
KðeÞ
1

i
denotes the characteristic (conduction) matrix of element e (e ¼ 1, 2, 3, 4), express the global

(assembled) characteristic matrix. Can the bandwidth of the global matrix be reduced by renumbering the nodes?
If so, give the details.

15.14 Consider a rectangular element of sides a and b and thickness t idealized as two triangular elements and one rect-
angular element as shown in Figs. 15.8A and 15.8B, respectively.

3
8

15

y

x

(2, 3) in

(3, 4) in

0.2 in

(4, 3) in

FIGURE 15.6 Triangular element with convection from all edges.

5

e = 2

e = 3

e = 4

2

3

4

e = 1

1

FIGURE 15.7 Trapezoidal plate.

Two-Dimensional Problems Chapter | 15 565

www.konkur.in

Telegram: @uni_k



a. Derive the assembled characteristic (conduction) matrix, [K1], for the rectangle.
b. Compare the result of (a) with the characteristic (conduction) matrix of a rectangular element given by

½K1�rect ¼
ktb

4a

26664
1 1 �1 �1

1 1 �1 �1

�1 �1 1 1

�1 �1 1 1

37775

15.15 The (X, Y) coordinates of the nodes of a triangular element of thickness 0.2 cm are shown in Fig. 15.9. Convection
takes place from all three edges of the element. If _q ¼ 200 W/cm3, k ¼ 100 W/m �C, h ¼ 150 W/cm2 �C, and
TN ¼ 30 �C, determine the following:

a. Element matrices
h
KðeÞ
1

i
and

h
KðeÞ
2

i
.

b. Element vectors P
!ðeÞ

1 and P
!ðeÞ

3 .
15.16 Derive the element matrices and vectors for the element shown in Fig. 15.10 for the following data: kx ¼ 40 W/�C-cm,

ky ¼ 60 W/�C-cm, h ¼ 5 W/cm2 �C, _q ¼ 5 W/cm3, and TN ¼ 10 �C. Assume t ¼ 1 cm.
15.17 Derive the element matrices and vectors for the element shown in Fig. 15.11 for the following data: kx ¼ 40 W/�C-cm,

ky ¼ 60 W/�C-cm, h ¼ 5 W/cm2 �C, _q ¼ 5 W/cm3, and TN ¼ 10 �C. Assume t ¼ 1 cm.
15.18 Derive the element matrices and vectors for the element shown in Fig. 15.12 for the following data: kx ¼ 40 W/�C-cm,

ky ¼ 60 W/�C-cm, h ¼ 5 W/cm2 �C, _q ¼ 5 W/cm3, and TN ¼ 10 �C. Assume t ¼ 1 cm.

e = 1

e = 2

4

1 2

3

a

b

4

1 2

3

a

b

(A)

(B)

FIGURE 15.8 Rectangular element with two different idealizations.
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j

i

k (8, 5)

(12, 1)

(6, 3)

ky

kx

q

0

h, T∞

y (cm)

x (cm)

FIGURE 15.10 Triangular element with convection along edge jk.

0

y (cm)

x (cm) ik

j

h, T∞

ky

kx

(2, 3) (7, 3)

(4, 6)

q

FIGURE 15.11 Triangular element with convection along edge ki.

i

k

j

ky

kx

h, T∞

(1, 4)

(3, 1)

(5, 5)

0

y

x

q

FIGURE 15.12 Triangular element with convection along edge jk.

y (cm)

x (cm)

j

i

k

(3, 6)

h, T∞

h, T∞

h, T∞

(5, 2)

(1, 4)
q

FIGURE 15.9 Triangular element with heat generation and convection.
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15.19 Find the temperature distribution in a square region with uniform energy generation as shown in Fig. 15.13.
Assume that there is no temperature variation in the z direction. Take k ¼ 30 W/cm �C, L ¼ 10 cm, TN ¼ 50
�C, and _q ¼ _q0 ¼ 5 W=cm3. Use four triangular elements as indicated by the dotted lines in Fig. 15.13. Compare
the nodal temperatures with those found in Example 15.2.

15.20 Solve Problem 15.19 using the four element idealization indicated by the dotted lines in Fig. 15.14.
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FIGURE 15.13 Idealization of a square region.
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FIGURE 15.14 Square region using a different idealization.
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16.1 INTRODUCTION

Equations governing heat transfer in three-dimensional bodies were given in Section 13.3. Certain types of three-
dimensional problems, namely axisymmetric ones, can be modeled and solved using ring elements. The solution of
axisymmetric problems using triangular ring elements and three-dimensional problems using tetrahedron elements is
considered in this chapter. For simplicity, linear interpolation functions, in terms of natural coordinates, are used in the
analysis.

16.2 AXISYMMETRIC PROBLEMS

The differential equation of heat conduction for an axisymmetric case, in cylindrical coordinates, is given by (see
Eq. 13.16):

v

vr

�
rkr

vT

vr

�
þ v

vz

�
rkz

vT

vz

�
þ r _q ¼ 0 (16.1)

The boundary conditions associated with the problem are

1. T ¼ T0ðr; zÞ on S1

ðtemperature specified on surface S1Þ
(16.2)

2.
vT

vn
¼ on S2

ðinsulated boundary condition on surface S2Þ
(16.3)

3. krr
vT

vr
lr þ kzr

vT

vz
lz þ rhðT � TNÞ ¼ 0 on S3

ðconvective boundary condition on surface S3Þ
(16.4)

4. krr
vT

vr
lr þ kzr

vT

vz
lz þ rq ¼ 0 on S4

ðheat flux input specified on surface S4Þ
(16.5)

The Finite Element Method in Engineering. https://doi.org/10.1016/B978-0-12-811768-2.00016-X
Copyright © 2018 Elsevier Inc. All rights reserved.
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Here, kr and kz indicate the thermal conductivities of the solid in r and z directions, n represents the normal direction to
the surface, lr and lz denote the direction cosines of the outward drawn normal (n), and h (T � TN) is the surface heat
flow owing to convection.

The problem defined by Eqs. (16.1) e (16.5) can be stated in variational form as follows: Find the temperature
distribution T(r, z) that minimizes the functional:

I ¼ 1
2

ZZZ
V

"
krr

�
vT

vr

�2

þ kzr

�
vT

vz

�2

� 2 _qrT

#
dV þ 1

2

ZZ
S3

hr
�
T2 � 2TNT

�
dS3 þ

ZZ
S4

rqT dS4 (16.6)

and satisfies the boundary conditions specified by Eqs. (16.2) and (16.3). The finite element solution of the problem is
given by the following steps.

Step 1: Replace the solid body of revolution by an assembly of triangular ring elements as shown in Fig. 16.1.
Step 2: We use a natural coordinate system and assume linear variation of temperature inside an element e so that
the temperature T (e) can be expressed as:

T ðeÞ ¼ ½N� q!ðeÞ
(16.7)

where

½N� ¼ ½Ni Nj Nk �h½ L1 L2 L3 � (16.8)

and

q!ðeÞ ¼

8><>:
Ti

Tj

Tk

9>=>; (16.9)

Element e

z

r

k

i
j

e

FIGURE 16.1 Idealization of an axisymmetric body with triangular ring elements.
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The natural coordinates L1, L2, and L3 are related to the global cylindrical coordinates (r, z) of nodes i, j, and k as:8><>:
1

r

z

9>=>; ¼

264 1 1 1

ri rj rk
zi zj zk

375
8><>:

L1

L2

L3

9>=>; (16.10)

or, equivalently, 8><>:
L1

L2

L3

9>=>; ¼ 1
2AðeÞ

264 a1 b1 c1

a2 b2 c2
a3 b3 c3

375
8><>:

1

r

z

9>=>; (16.11)

where

a1 ¼ rjzk � rkzj

a2 ¼ rkzi � rizk

a3 ¼ rizj � rjzi

b1 ¼ zj � zk

b2 ¼ zk � zi

b3 ¼ zi � zj

c1 ¼ rk � rj

c2 ¼ ri � rk

c3 ¼ rj � ri

(16.12)

and A(e) is the area of triangle ijk given by:

AðeÞ ¼ 1
2
½riðzj � zkÞ þ rjðzk � ziÞ þ rkðzi � zjÞ� (16.13)

Step 3: The element matrices and vectors can be derived using Eqs. (13.46) e (13.49) as follows: Noting that:

½D� ¼
�
rkr 0

0 rkz

�
(16.14)

and

½B� ¼

26664
vNi

vr

vNj

vr

vNk

vr

vNi

vz

vNj

vz

vNk

vz

37775 ¼ 1
2AðeÞ

�
b1 b2 b3
c1 c2 c3

�
(16.15)

and by writing dV(e) as 2pr$dA, where dA is the differential area of the triangle ijk, Eq. (13.46) gives:h
KðeÞ

1

i
¼ 2p

ZZ
AðeÞ

r½B�T ½D�½B�dA

¼ 2pkr
4AðeÞ2

2666664
b21 b1b2 b1b3

b1b2 b22 b2b3

b1b3 b2b3 b23

3777775
ZZ

AðeÞ
r2dAþ 2pkz

4AðeÞ2

2666664
c21 c1c2 c1c3

c1c2 c22 c2c3

c1c3 c2c3 c23

3777775
ZZ

AðeÞ
r2dA

(16.16)
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The radial distance r can be expressed in terms of the natural coordinates L1, L2, and L3 as:

r ¼ riL1 þ rjL2 þ rkL3 (16.17)

Thus, the integral term in Eq. (16.16) can be expressed as:

R
2
h

ZZ
AðeÞ

r2dA ¼
ZZ

AðeÞ
ðri rj rkÞ

264 L2
1 L1L2 L1L3

L1L2 L2
2 L2L3

L1L3 L2L3 L2
3

375
8><>:

ri
rj
rk

9>=>;dA (16.18)

By using the integration formula for natural coordinates, Eq. (3.78), Eq. (16.18) can be written as:

R
2 ¼

ZZ
AðeÞ

r2dA ¼ 1
12

ðri rj rkÞ

264 2 1 1

1 2 1

1 1 2

375
8><>:

ri
rj
rk

9>=>; (16.19)

and hence:

h
KðeÞ

1

i
¼ pkrR

2

2AðeÞ

264 b21 b1b2 b1b3
b1b2 b22 b2b3

b1b3 b2b3 b23

375þ pkzR
2

2AðeÞ

264 c21 c1c2 c1c3
c1c2 c22 c2c3

c1c3 c2c3 c23

375 (16.20)

For isotropic materials with kr ¼ kz ¼ k, Eq. (16.20) becomes:

h
KðeÞ

1

i
¼ pkR

2

2AðeÞ

2664
�
b21 þ c21

� ðb1b2 þ c1c2Þ ðb1b3 þ c1c3Þ
ðb1b2 þ c1c2Þ

�
b22 þ c22

� ðb2b3 þ c2c3Þ
ðb1b3 þ c1c3Þ ðb2b3 þ c2c3Þ

�
b23 þ c23

�
3775 (16.21)

To evaluate the surface integral of Eq. (13.47), we assume that the edge ij lies on the surface S3 from which heat convection
takes place. Along this edge, L3 ¼ 0 and dS3 ¼ 2pr ds, so that Eq. (13.47) gives:

h
KðeÞ

2

i
¼ 2ph

Z sj

s¼si

8><>:
L1

L2

0

9>=>;f L1 L2 0 grds ¼ 2ph
Z sj

s¼si

264 rL2
1 rL1L2 0

rL1L2 rL2
2 0

0 0 0

375ds (16.22)

By substituting Eq. (16.17) for r and by using the relation:Z sj

s¼si

Lp
1L

q
2ds ¼ sji

p!q!

ðpþ qþ 1Þ! (16.23)

where sji ¼ sj � si ¼ length of the edge ij, Eq. (16.22) gives:

h
KðeÞ

2

i
¼ phsji

6

264 ð3ri þ rjÞ ðri þ rjÞ 0

ðri þ rjÞ ðri þ 3rjÞ 0

0 0 0

375 (16.24)
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To evaluate the volume integral for P
!ðeÞ

1 as:

P
!ðeÞ

1 ¼
ZZZ

V ðeÞ
r _q½N�TdV (16.25)

we use the approximation r _q ¼ rc _q ¼ constant, where rc ¼ (ri þ rj þ rk)/3, and the relation dV ¼ 2pr$dA to obtain:

P
!ðeÞ

1 ¼ 2prc _q
ZZ

AðeÞ

8><>:
rL1

rL2

rL3

9>=>;dA (16.26)

With the help of Eq. (16.17), Eq. (16.26) can be evaluated to obtain:

P
!ðeÞ

1 ¼ prc _qAðeÞ

6

8><>:
ð2ri þ rj þ rkÞ
ðri þ 2rj þ rkÞ
ðri þ rj þ 2rkÞ

9>=>; (16.27)

The surface integral involved in the definition of P
!ðeÞ

3 can be evaluated as in the case of Eq. (16.24). Thus, if the edge ij lies
on the surface S3,

P
!ðeÞ

3 ¼
ZZ

S
ðeÞ
3

hTN½N�TdS3 ¼ 2phTN

Z sj

s¼si

8><>:
rL1

rL2

0

9>=>;ds ¼ phTNsji
3

8><>:
ð2ri þ rjÞ
ðri þ 2rjÞ

0

9>=>; (16.28)

Similarly, expressions for P
!ðeÞ

2 can be obtained as:

P
!ðeÞ

2 ¼
ZZ

S
ðeÞ
2

q½N�TdS2 ¼ pqsji
3

8><>:
ð2ri þ rjÞ
ðri þ 2rjÞ

0

9>=>; if the edge ij lies on S2 (16.29)

Step 4: Once the element matrices and vectors are available, the overall or system equations can be derived as:�
Ke	 T!e ¼ P

!e (16.30)

where

�
Ke	 ¼

XE
e¼ 1

�h
KðeÞ

1

i
þ
h
KðeÞ

2

i�
(16.31)

and

P
!e ¼

XE
e¼ 1



P
!ðeÞ

1 � P
!ðeÞ

2 þ P
!ðeÞ

3

�
(16.32)

Step 5: The solution of the problem can be obtained by solving Eq. (16.30) after incorporating the known boundary
conditions.
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EXAMPLE 16.1
Derive the element matrices and vectors for the element shown in Fig. 16.2.

Solution

From the data shown in Fig. 16.2, the required element properties can be computed as:

b1 ¼ zj � zk ¼ 2� 6 ¼ �4

b2 ¼ zk � zi ¼ 6� 2 ¼ 4

b3 ¼ zi � zj ¼ 2� 2 ¼ 0

c1 ¼ rk � rj ¼ 7� 7 ¼ 0

c2 ¼ ri � rk ¼ 4� 7 ¼ �3

c3 ¼ rj � ri ¼ 7� 4 ¼ 3

AðeÞ ¼ 1

2
½4ð2� 6Þ þ 7ð6� 2Þ þ 7ð2� 2Þ� ¼ 6

�R
2 ¼ 1

12
ð4 7 7 Þ

2666664
2 1 1

1 2 1

1 1 2

3777775

8>>>>><>>>>>:

4

7

7

9>>>>>=>>>>>;
¼ 438

12
¼ 36:5

rc ¼ ðri þ rj þ rkÞ=3 ¼ ð4þ 7þ 7Þ=3 ¼ 6

skj ¼ �ðrk � rjÞ2 þ ðzk � zjÞ2
	1=2 ¼ �ð7� 7Þ2 þ ð6� 2Þ2	1=2 ¼ 4

sji ¼ �ðrj � riÞ2 þ ðzj � ziÞ2
	1=2 ¼ �ð7� 4Þ2 þ ð2� 2Þ2	1=2 ¼ 3

From Eq. (16.21),
h
K

ðeÞ
1

i
can be obtained as:

h
K

ðeÞ
1

i
¼

264 9175 �9175 0

�9175 14330 �5160

0 �5160 5160

375
Because convection occurs along the two edges ij and jk, the

h
K

ðeÞ
2

i
matrix can be written as:

h
K

ðeÞ
2

i
¼ pðhÞijsji

6

2666664
ð3ri þ rjÞ ðri þ rjÞ 0

ðri þ rjÞ ðri þ 3rjÞ 0

0 0 0

3777775þ pðhÞjk skj
6

2666664
0 0 0

0 ð3rj þ rk Þ ðrj þ rkÞ

0 ðrj þ rk Þ ðrj þ 3rkÞ

3777775

¼ pð15Þð3Þ
6

2666664
ð12þ 7Þ ð4þ 7Þ 0

ð4þ 7Þ ð4þ 21Þ 0

0 0 0

3777775þ pð10Þð4Þ
6

2666664
0 0 0

0 ð21þ 7Þ ð7þ 7Þ

0 ð7þ 7Þ ð7þ 21Þ

3777775

¼

2666664
447:7 259:2 0

259:2 1176:0 293:2

0 293:2 586:4

3777775
Eq. (16.27) gives:

P
!ðeÞ

1 ¼ pð60Þð50Þð6Þ
6

8><>:
ð8þ 7þ 7Þ
ð4þ 14þ 7Þ
ð4þ 7þ 14Þ

9>=>; ¼

8><>:
20734:5

23561:9

23561:9

9>=>;
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EXAMPLE 16.1 dcont’d

Because no boundary heat flux is specified, P
!ðeÞ

2 ¼ 0
!
. From Eq. (16.28) and a similar equation for the edge jk, we obtain:

P
!ðeÞ

3 ¼ pðhTNÞijsji
3

8>>>>><>>>>>:

ð2ri þ rjÞ

ðri þ 2rjÞ

0

9>>>>>=>>>>>;
þ pðhTNÞjkskj

3

8>>>>><>>>>>:

0

ð2rj þ rkÞ

ðrj þ 2rkÞ

9>>>>>=>>>>>;

¼ pð15Þð40Þð3Þ
3

8>>>>><>>>>>:

ð8þ 7Þ

ð4þ 14Þ

0

9>>>>>=>>>>>;
þ pð10Þð40Þð4Þ

3

8>>>>><>>>>>:

0

ð14þ 7Þ

ð7þ 14Þ

9>>>>>=>>>>>;

¼

8>>>>><>>>>>:

28;274:3

69;115:0

35;185:8

9>>>>>=>>>>>;
Thus,

�
K ðeÞ	 ¼

h
K ðeÞ
1

i
þ
h
K ðeÞ
2

i
¼

264 9622:7 �8915:8 0

�8915:8 15; 506:0 �4866:8

0 �4866:8 5746:4

375
and

P
!ðeÞ ¼ P

!ðeÞ
1 � P

!ðeÞ
2 þ P

!ðeÞ
3 ¼

8><>:
49; 008:8

92; 676:9

58; 747:7

9>=>;

j

k

i

z

0
r

qo = 50 W/cm3

k = 60 W

(4, 2) (7, 2)

(7, 6)

h = 10

T∞ = 40°C

watts
cm2-°K

cm2-°K

h = 15

T∞ = 40°C

watts
cm2-°K

Element
“e”

.

FIGURE 16.2 Axisymmetric Triangular Element.
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16.3 THREE-DIMENSIONAL HEAT TRANSFER PROBLEMS

The governing differential equation for steady-state heat conduction in a solid body is given by Eq. (13.11) with the
right handeside term as zero and the boundary conditions as in Eqs. (13.18)e(13.20). The finite element solution of these
equations can be obtained by using the following procedure.

Step 1: Divide the solid body into E tetrahedron elements.
Step 2: We use a natural coordinate system and assume linear variation of temperature inside an element e so that tem-
perature T(e) can be expressed as:

T ðeÞ ¼ ½N� q!ðeÞ
(16.33)

where

½N� ¼ ½Ni Nj Nk Nl �h½ L1 L2 L3 L4 � (16.34)

and

q!ðeÞ ¼

8>>><>>>:
Ti

Tj

Tk

Tl

9>>>=>>>; (16.35)

The natural coordinates L1, L2, L3, and L4 are related to the global Cartesian coordinates of nodes i, j, k, and l by Eq. (3.84).
Step 3: The element matrices and vectors can be derived using Eqs. (13.46)e(13.49) as:

½D� ¼

264 kx 0 0

0 ky 0

0 0 kz

375 (16.36)

½B� ¼

2666666664

vNi

vx

vNj

vx

vNk

vx

vNl

vx

vNi

vy

vNj

vy

vNk

vy

vNl

vy

vNi

vz

vNj

vz

vNk

vz

vNl

vz

3777777775
¼ 1

6V ðeÞ

264 b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4

375 (16.37)

h
KðeÞ

1

i
¼
ZZZ

V ðeÞ
½B�T ½D�½B�dV ¼ kx

36V ðeÞ

2666664
b21 b1b2 b1b3 b1b4

b1b2 b22 b2b3 b2b4

b1b3 b2b3 b23 b3b4

b1b4 b2b4 b3b4 b24

3777775

þ ky
36V ðeÞ

2666664
c21 c1c2 c1c3 c1c4

c1c2 c22 c2c3 c2c4

c1c3 c2c3 c23 c3c4

c1c4 c2c4 c3c4 c24

3777775þ kz
36V ðeÞ

2666664
d2
1 d1d2 d1d3 d1d4

d1d2 d2
2 d2d3 d2d4

d1d3 d2d3 d23 d3d4

d1d4 d2d4 d3d4 d24

3777775

(16.38)
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For an isotropic material with kx ¼ ky ¼ kz ¼ k, Eq. (16.38) becomes:

h
KðeÞ

1

i
¼ k

36V ðeÞ �

26666664

�
b21 þ c21 þ d21

� ðb1b2 þ c1c2 þ d1d2Þ ðb1b3 þ c1c3 þ d1d3Þ ðb1b4 þ c1c4 þ d1d4Þ�
b22 þ c22 þ d2

2

� ðb2b3 þ c2c3 þ d2d3Þ ðb2b4 þ c2c4 þ d2d4Þ�
b23 þ c23 þ d23

� ðb3b4 þ c3c4 þ d3d4Þ
Symmetric

�
b24 þ c24 þ d24

�

37777775 (16.39)

The matrix
h
KðeÞ
2

i
is given by:

h
KðeÞ

2

i
¼

ZZ
S
ðeÞ
3

h

266664
N2

i NiNj NiNk NiNl

N2
j NjNk NjNl

N2
k NkNl

Symmetric N2
l

377775dS3 (16.40)

If the face ijk of the element experiences convection, Nl ¼ 0 along this face, and hence Eq. (16.40) gives:

h
KðeÞ

2

i
¼ hAijk

12

26664
2 1 1 0

1 2 1 0

1 1 2 0

0 0 0 0

37775 (16.41)

where Aijk is the surface area of face ijk. There are three other forms of Eq. (16.41): one for each of the other faces, jkl, kli,
and lij. In each case, the value of the diagonal terms will be 2 and the values of the nonzero off-diagonal terms will be 1.
The coefficients in the row and the column associated with the node not lying on the surface will be zero.

P
!ðeÞ

1 ¼
ZZZ

V ðeÞ
_q

8>>><>>>:
Ni

Nj

Nk

Nl

9>>>=>>>;dV ¼ _q0V
ðeÞ

4

8>>><>>>:
1

1

1

1

9>>>=>>>; (16.42)

If the face ijk lies on the surface S2 on which heat flux is specified,

P
!ðeÞ

2 ¼
ZZ

S
ðeÞ
2

q

8>>><>>>:
Ni

Nj

Nk

Nl

9>>>=>>>;dS2 ¼ q

ZZ
S
ðeÞ
2

8>>><>>>:
L1

L2

L3

0

9>>>=>>>;dS2 ¼ qAijk

3

8>>><>>>:
1

1

1

0

9>>>=>>>; (16.43)

and similarly, if convection loss occurs from the face ijk,

P
!ðeÞ

3 ¼
ZZ

S
ðeÞ
2

hTN

8>>><>>>:
Ni

Nj

Nk

Nl

9>>>=>>>;dS3 ¼ hTN

ZZ
S
ðeÞ
2

8>>><>>>:
L1

L2

L3

0

9>>>=>>>;dS3 ¼ hTNAijk

3

8>>><>>>:
1

1

1

0

9>>>=>>>; (16.44)

There are three other forms of Eqs. (16.43) and (16.44). In these equations, the zero coefficient will be located in the row
corresponding to the node not lying on the face.
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EXAMPLE 16.2
Derive the element equations for the element shown in Fig. 16.3.

Solution

From the given data, the required element properties can be computed as:

V ðeÞ ¼ 1

6

���������������

1 0 1 2

1 4 3 1

1 �1 0 0

1 2 2 4

���������������
¼ 5

6

b1 ¼ �

�����������

1 3 1

1 0 0

1 2 4

�����������
¼ 10; c1 ¼ �

�����������

4 1 1

�1 1 0

2 1 4

�����������
¼ �17

d1 ¼ �

�����������

4 3 1

�1 0 1

2 2 1

�����������
¼ 1

b2 ¼ �

�����������

1 0 0

1 2 4

1 1 2

�����������
¼ 0; c2 ¼ �

�����������

�1 1 0

2 1 4

0 1 2

�����������
¼ 2

d2 ¼ �

�����������

�1 0 1

2 2 1

0 1 1

�����������
¼ �1

b3 ¼ �

�������
1 2 4

1 1 2

1 3 1

������� ¼ �5; c3 ¼ �

�������
2 1 4

0 1 2

4 1 1

������� ¼ 10

d3 ¼ �

��������
2 2 1

0 1 1

4 3 1

�������� ¼ 0;

b4 ¼ �

��������
1 1 2

1 3 1

1 0 0

�������� ¼ 5; c4 ¼ �

��������
0 1 2

4 1 1

�1 1 0

�������� ¼ �11;

d4 ¼ �

��������
0 1 1

4 3 1

�1 0 1

�������� ¼ 2

To compute area Ajkl, we use the formula:

Ajkl ¼ ½sðs � aÞðs � bÞðs � gÞ�1=2
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EXAMPLE 16.2 dcont’d

where a, b, and g are the lengths of the sides of the triangle:

a ¼ length jk ¼ �ðxk � xjÞ2 þ ðyk � yjÞ2 þ ðzk � zjÞ2
	1=2

¼ ð25þ 9þ 1Þð1=2Þ ¼ 5:916

b ¼ length kl ¼ �ðxl � xkÞ2 þ ðyl � yk Þ2 þ ðzl � zkÞ2
	1=2

¼ ð9þ 4þ 16Þð1=2Þ ¼ 5:385

g ¼ length lj ¼ �ðxj � xlÞ2 þ ðyj � ylÞ2 þ ðzj � zlÞ2
	1=2

¼ ð4þ 1þ 9Þð1=2Þ ¼ 3:742

s ¼ 1

2
ðaþ bþ gÞ ¼ 1

2
ð5:916þ 5:385þ 3:742Þ ¼ 7:522

Ajkl ¼ ½7:522ð7:522� 5:916Þð7:522� 5:385Þð7:522� 3:742Þ�ð1=2Þ ¼ 9:877

Eq. (16.39) gives:

h
K

ðeÞ
1

i
¼ 60� 6

36� 5

2666666666664

ð100þ 289þ 1Þ ð0� 34� 1Þ ð�50� 170þ 0Þ ð50þ 187þ 2Þ

ð0þ 4þ 1Þ ð0þ 20þ 0Þ ð0� 22� 2Þ

ð25þ 100þ 0Þ ð�25� 110þ 0Þ

Symmetric ð25þ 121þ 4Þ

3777777777775

¼

26666666664

780 �70 �440 478

10 40 �48

250 �270

Symmetric 300

37777777775
Continued

T∞ = 40°C
z

y

x

(−1, 0, 0)

(2, 2, 4)

(4, 3, 1)

(0, 1, 2)

h = 10
cm2-°K

W

i

j

k

qo = 50 W/cm3

k = 60 W
cm2-°K

.

FIGURE 16.3 Tetrahedron element.
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EXAMPLE 16.2 dcont’d

Matrix
h
K

ðeÞ
2

i
will be a modification of Eq. (16.41):

h
K ðeÞ
2

i
¼ h$Ajkl

12
¼

26666666664

0 0 0 0

0 2 1 1

0 1 2 1

0 1 1 2

37777777775
¼ ð10Þð9:877Þ

12

26666666664

0 0 0 0

0 2 1 1

0 1 2 1

0 1 1 2

37777777775

¼

26666666664

0 0 0 0

0 16:462 8:231 8:231

0 8:231 16:462 8:231

0 8:231 8:231 16:462

37777777775

P
!ðeÞ

1 ¼ 50� 5

6� 4

8>>>>>>>>><>>>>>>>>>:

1

1

1

1

9>>>>>>>>>=>>>>>>>>>;
¼

8>>>>>>>>><>>>>>>>>>:

10:42

10:42

10:42

10:42

9>>>>>>>>>=>>>>>>>>>;

P
!ðeÞ

2 ¼

8>>>>>>>>><>>>>>>>>>:

0

0

0

0

9>>>>>>>>>=>>>>>>>>>;
since no boundary heat flux is specified

P
!ðeÞ

3 ¼ 10� 40� 9:877

3

8>>>>>>>>><>>>>>>>>>:

0

1

1

1

9>>>>>>>>>=>>>>>>>>>;
¼

8>>>>>>>>><>>>>>>>>>:

0

1316:92

1316:92

1316:92

9>>>>>>>>>=>>>>>>>>>;

�
K ðeÞ	 ¼

h
K

ðeÞ
1

i
þ
h
K

ðeÞ
2

i
¼

26664
780:000 �70:000 �440:000 478:000

26:462 48:231 �39:769

266:462 �261:769

Symmetric 316.462

37775 (E.1)

P
!ðeÞ ¼ P

!ðeÞ
1 � P

!ðeÞ
2 þ P

!ðeÞ
3 ¼

8>>><>>>:
10:42

1327:34

1327:34

1327:34

9>>>=>>>; (E.2)
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EXAMPLE 16.2 dcont’d

The element equations are: �
K ðeÞ	 q!ðeÞ ¼ P

!ðeÞ

where [K(e)] and P
!ðeÞ

are given by Eqs. (E.1) and (E.2), respectively, and

q!ðeÞ ¼

8>>><>>>:
Ti

Tj

Tk

Tl

9>>>=>>>;

16.4 UNSTEADY-STATE PROBLEMS

The finite element equations governing unsteady-state problems are given by Eq. (13.35). It can be seen that the term�
Ke3

	 _
T
.e represents the unsteady-state part [16.1e16.3]. Element matrix

h
KðeÞ
3

i
can be evaluated using the definition given in

Eq. (13.48).

16.4.1 Axisymmetric Problems

For a triangular ring element, in terms of natural coordinates, matrix [N(r, z)] is given by:

½N� ¼ ½L1 L2 L3 � (16.45)

By expressing dV ¼ 2pr dA, Eq. (13.48) can be written as:

h
KðeÞ

3

i
¼

ZZZ
V ðeÞ

rc½N�T ½N�dV

¼ ðrcÞðeÞ2p
ZZ

AðeÞ

2666664
L2
1 L1L2 L1L3

L1L2 L2
2 L2L3

L1L3 L2L3 L2
3

3777775ðriL1 þ rjL2 þ rkL3ÞdA

(16.46)

where Eq. (16.17) has been substituted for r. By carrying out the area integrations indicated in Eq. (16.46), we obtain:

h
KðeÞ

3

i
¼ pðrcÞðeÞAðeÞ

30

264 ð6ri þ 2rj þ 2rkÞ ð2ri þ 2rj þ rkÞ ð2ri þ rj þ 2rkÞ
ð2ri þ 6rj þ 2rkÞ ðri þ 2rj þ 2rkÞ

Symmetric ð2ri þ 2rj þ 6rkÞ

375 (16.47)

16.4.2 Three-Dimensional Problems

The shape function matrix for the tetrahedron element is given by:

½Nðx; y; zÞ� ¼ ½ L1 L2 L3 L4 � (16.48)
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With this, the
h
KðeÞ
3

i
matrix can be derived as:

h
KðeÞ

3

i
¼ ðrcÞðeÞ

ZZZ
V ðeÞ

2666666666664

L2
1 L1L2 L1L3 L1L4

L1L2 L2
2 L2L3 L2L4

L1L3 L2L3 L2
3 L3L4

L1L4 L2L4 L3L4 L2
4

3777777777775
dV

¼ ðrcÞðeÞ$V ðeÞ

20

2666666666664

2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

3777777777775

(16.49)

REVIEW QUESTIONS

16.1 Give brief answers to the following questions.

1. State the differential equation of heat conduction for an axisymmetric problem in cylindrical coordinates.
2. What type of boundary condition needs to be enforced for an insulated surface?
3. State the governing differential equation of steady-state heat transfer for a three-dimensional problem (assuming an

isotropic material).

16.2 Fill in the blank with a suitable word.

1. For the analysis of heat transfer using linear temperature variation for three-dimensional problem, the simplest
element type that can be used is _______.

2. Consideration of unsteady-state heat transfer requires the generation of _______ matrices involving the term r c.
3. The size of element matrices in an axisymmetric heat transfer problem is _______ whereas that of a three-

dimensional heat transfer problem is 4 � 4 when linear temperature variation is assumed.

16.3 Select the most appropriate answer from the multiple choices given.

1. For an axisymmetric heat transfer problem stated in cylindrical coordinates (r, q, z), the temperature does not vary
along the coordinate:
(a) r (b) q (c) z

2. For an axisymmetric problem, the following type of finite element can be used:
(a) Triangular ring type of element about the z-axis
(b) Triangular ring type of element about the r-axis
(c) Triangular ring type of element about the q axis

3. The steady-state heat transfer problem with no heat generation is given by
(a) Poisson equation (b) Fourier equation (c) Laplace equation
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PROBLEMS

16.1 If radiation takes place on surface S5 of an axisymmetric problem, state the boundary condition and indicate a
method for deriving the corresponding finite element equations.

16.2 Derive the finite element equations corresponding to Eqs. (16.1)e(16.5) using the Galerkin approach.
16.3 If convection heat transfer takes place from the face corresponding to edge jk of a triangular ring element, derive

matrix
h
KðeÞ
2

i
and vector P

!ðeÞ
3 .

16.4 If convection heat transfer takes place from the face corresponding to edge ki of a triangular ring element, derive

matrix
h
KðeÞ
2

i
and vector P

!ðeÞ
3 .

16.5 Evaluate the conduction matrix,
h
KðeÞ
1

i
, for an isotropic, axisymmetric ring element of a rectangular cross-section

with four nodes. Use linear temperature variation in the r and z directions.
16.6 A three-node axisymmetric aluminum triangular ring element from a finite element grid is shown in Fig. 16.4.

Convection heat transfer takes place from all of the faces (edges) of the triangle with a convection coefficient of

100 BTU/hr-ft2-�F. If k ¼ 115 BTU/hr-ft-�F, determine the characteristic matrices
h
KðeÞ
1

i
and

h
KðeÞ
2

i
of the element.

16.7 If convection takes place from face ijl of a tetrahedron element in a solid body, derive matrix
h
KðeÞ
2

i
and vector

P
!ðeÞ

3 .
16.8 If convection takes place from face jkl of a tetrahedron element in a solid body, derive matrix

h
KðeÞ
2

i
and vector

P
!ðeÞ

3 .
16.9 If convection takes place from face ikl of a tetrahedron element in a solid body, derive matrix

h
KðeÞ
2

i
and vector

P
!ðeÞ

3 .
16.10 Derive the element equations for the tetrahedron element of a three-dimensional body shown in Fig. 16.5. Assume

k ¼ 100 BTU/hr-ft-�F, h ¼ 150 BTU/hr-ft2-�F from face ijk, and _q ¼ 500 BTU/hr-ft3.

16.11 Evaluate matrix
h
KðeÞ
3

i
for the triangular ring element shown in Fig. 16.2. Assume that rc ¼ 20 J/cm �C.

16.12 Consider the axisymmetric triangular element shown in Fig. 16.6. The material of the element is copper with a
thermal conductivity of k ¼ 401 W/m �C. Determine the following:
a. The element characteristic matrix corresponding to conduction in the r and z directions.
b. The element characteristic matrix corresponding to convection if the side (face) ij of the element undergoes

convection to air at 30�C with h ¼ 50 W/m2 �C.

(3, 5) in

z

r

15

(4, 4) in8

(2, 3) in3

FIGURE 16.4 Triangular ring element.
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16.13 Consider the axisymmetric triangular element described in Problem 16.12 and Fig. 16.6. Determine the character-
istic vector of the element as a result of the following:
a. An internal source of 75 W/cm3

b. Convection along boundary (face) ij
c. Boundary heat flux of 50 W/cm2 occurring on face ij

16.14 Consider the axisymmetric triangular element shown in Fig. 16.7. The material of the element is aluminum with a
thermal conductivity of k ¼ 124 BTU/hr-ft-�F. Determine the following:
a. The element characteristic matrix corresponding to conduction in the r and z directions.
b. The element characteristic matrix corresponding to convection if the side (face) ki of the element undergoes

convection to air at 65�F with h ¼ 70 Btu/hr-ft2-�F.
16.15 Consider the axisymmetric triangular element described in Problem 16.14 and Fig. 16.7. Determine the character-

istic vector of the element resulting from:
a. An internal source of 50 BTU/hr-ft3

b. Convection along the boundary (face) ki
c. Boundary heat flux of 100 BTU/hr-ft2 occurring on the face ki

16.16 The nodal temperatures of the axisymmetric triangular element described in Problem 16.12 are Ti ¼ 200�C,
Tj ¼ 170�C, and Tk ¼ 220�C. Determine the average heat flow rates (heat fluxes) in the element by conduction
in the r and z directions. To which point in the element are these heat flow rates usually associated?

16.17 The nodal temperatures of the axisymmetric triangular element described in Problem 16.14 are Ti ¼ 350�F,
Tj ¼ 390�F, and Tk ¼ 460�F. Determine the average heat flow rates (heat fluxes) in the element by conduction
in the r and z directions. To which point in the element are these heat flow rates usually associated?

(1, 2, 3) in

(0, 3, 2) in

(3, 2, 1) in

(2, 1, 1) in

Z

Y

X

T∞ = 70°F

i

j

k

FIGURE 16.5 Tetrahedron element.

(4, 6)

(10, 1)

(9, 8)

z

r

i

k

j

FIGURE 16.6 Axisymmetric triangular element (copper).
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16.18 Derive the differential equation and the boundary conditions, if any, corresponding to the functional given by
Eq. (16.6) using the EulereLagrange equation.

16.19 Derive the finite element equations for an axisymmetric triangular element if radiation heat transfer takes place on
the edge (face) ij.

16.20 The nodal coordinates of a tetrahedron element (in centimeters) are given by:8><>:
x

y

z

9>=>;
i

¼

8><>:
15

0

0

9>=>;;

8><>:
x

y

z

9>=>;
j

¼

8><>:
0

5

0

9>=>;;

8><>:
x

y

z

9>=>;
k

¼

8><>:
0

0

10

9>=>;;

8><>:
x

y

z

9>=>;
l

¼

8><>:
10

10

5

9>=>;
The material of the element is aluminum with a thermal conductivity of 250 W/m-�C. Find the matrices correspond-

ing to heat conduction along the x, y, and z directions and the conductivity matrix of the element,
h
KðeÞ
1

i
.

16.21 If the material of the tetrahedron element considered in Problem 16.20 is copper with a thermal conductivity of
401 W/m �C, find the matrices corresponding to heat conduction along the x, y, and z directions and the conduc-

tivity matrix of the element,
h
KðeÞ
1

i
.

16.22 The nodal coordinates of a tetrahedron element (in centimeters) are given by:8><>:
x

y

z

9>=>;
i

¼

8><>:
5

4

0

9>=>;;

8><>:
x

y

z

9>=>;
j

¼

8><>:
5

6

0

9>=>;;

8><>:
x

y

z

9>=>;
k

¼

8><>:
5

5

4

9>=>;;

8><>:
x

y

z

9>=>;
l

¼

8><>:
8

4

2

9>=>;
The material of the element is carbon steel with a thermal conductivity of 54 W/m-�C. Find the matrices

corresponding to heat conduction along the x, y, and z directions and the conductivity matrix of the element,
h
KðeÞ
1

i
.

16.23 If face ijk of the tetrahedron element described in Problem 16.20 is part of the boundary of the thermal system that
is exposed to heat convection with h ¼ 100 W/m2 �C and TN ¼ 20�C, find the element characteristic matrix and
the characteristic vector corresponding to heat convection.

16.24 If face kli of the tetrahedron element described in Problem 16.22 is part of the boundary of the thermal system that
is exposed to heat convection with h ¼ 50 W/m2 �C and TN ¼ 30�C, find the element characteristic matrix and the
characteristic vector corresponding to heat convection.

16.25 The tetrahedron element described in Problem 16.20 has a 50-W/cm3n internal heat source. Determine the corre-
sponding element characteristic vector.

16.26 If the tetrahedron element described in Problem 16.22 has a 100-W/cm3n internal heat source, find the correspond-
ing element characteristic vector.

z

r

(10, 8)k

(13, 1)j(7, 1) i

FIGURE 16.7 Axisymmetric triangular element (aluminum).
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16.27 If face ijk of the tetrahedron element described in Problem 16.20 is part of the boundary of the thermal system
that is subjected to a 100-W/m2 heat flux, determine the element characteristic vector corresponding to the specified
heat flux.

16.28 If face kli of the tetrahedron element described in Problem 16.22 is part of the boundary of the thermal system
that is subjected to a 50-W/m2 heat flux, determine the element characteristic vector corresponding to the specified
heat flux.

16.29 For the tetrahedron element described in Problem 16.20, determine the element characteristic vector owing from a

point source of 100 W located at

8><>:
x

y

z

9>=>;
0

¼

8><>:
5

5

2

9>=>;.

16.30 For the tetrahedron element described in Problem 16.22, determine the element characteristic vector owing to a

point source of 50 W located at

8><>:
x

y

z

9>=>;
0

¼

8><>:
6

4

2

9>=>;.

16.31 Derive the finite element equations for a tetrahedron element if radiation heat transfer takes place on face ijk.
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17.1 INTRODUCTION

Although the finite element method was extensively developed for structural and solid mechanics problems, it was not
considered a powerful tool for the solution of fluid mechanics problems until recently. One of the reasons is the success
achieved with the more traditional finite difference procedures in solving fluid flow problems. In recent years, significant
contributions have been made in the solution of different types of fluid flow problems using the finite element method. This
chapter presents a summary of the basic concepts and equations of fluid mechanics.

17.2 BASIC CHARACTERISTICS OF FLUIDS

A fluid is a substance (gas or liquid) that will deform continuously under the action of applied surface (shearing) stresses.
The magnitude of the stress depends on the rate of angular deformation. On the other hand, a solid can be defined as a
substance that will deform by an amount proportional to the stress applied after which static equilibrium will result. Here,
the magnitude of the shear stress depends on the magnitude of angular deformation.

Different fluids show different relations between stress and the rate of deformation. Depending on the nature of relation
followed between stress and rate of deformation, fluids can be classified as Newtonian and non-Newtonian fluids. A
Newtonian fluid is one in which the shear stress is directly proportional to the rate of deformation starting with zero stress
and zero deformation. The constant of proportionality is defined as m, the absolute or dynamic viscosity. Common
examples of Newtonian fluids are air and water. A non-Newtonian fluid is one that has a variable proportionality between
stress and rate of deformation. Common examples of non-Newtonian fluids are some plastics, colloidal suspensions, and
emulsions. Fluids can also be classified as compressible and incompressible. Usually, liquids are treated as incompressible,
whereas gases and vapors are assumed to be compressible.

A flow field is described in terms of the velocities and accelerations of fluid particles at different times and at different
points throughout the fluid-filled space. For the graphical representation of fluid motion, it is convenient to introduce the
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concepts of streamlines and path lines. A streamline is an imaginary line that connects a series of points in space at a given
instant in such a manner that all particles falling on the line at that instant have velocities whose vectors are tangent to the
line. Thus, the streamlines represent the direction of motion at each point along the line at the given instant. A path line is
the locus of points through which a fluid particle of fixed identity passes as it moves in space. For a steady flow the
streamlines and path lines are identical, whereas they are, in general, different for an unsteady flow.

A flow may be termed as inviscid or viscous depending on the importance of consideration of viscosity of the fluid in
the analysis. An inviscid flow is a frictionless flow characterized by zero viscosity. A viscous flow is one in which the fluid
is assumed to have nonzero viscosity. Although no real fluid is inviscid, there are several flow situations in which the effect
of viscosity of the fluid can be neglected. For example, in the analysis of a flow over a body surface, the viscosity effects
are considered in a thin region close to the flow boundary (known as boundary layer), whereas the viscosity effect is
neglected in the rest of the flow.

Depending on the dynamic macroscopic behavior of the fluid flow, we have laminar, transition, and turbulent motion. A
laminar flow is an orderly state of flow in which macroscopic fluid particles move in layers. A turbulent flow is one in
which the fluid particles have irregular, fluctuating motions and erratic paths. In this case, macroscopic mixing occurs both
lateral to and in the direction of the main flow. A transition flow occurs whenever a laminar flow becomes unstable and
approaches a turbulent flow.

17.3 METHODS OF DESCRIBING THE MOTION OF A FLUID

The motion of a group of particles in a fluid can be described by either the Lagrangian method or the Eulerian method.
In the Lagrangian method, the coordinates of the moving particles are represented as functions of time. This means
that at some arbitrary time t0, the coordinates of a particle (x0, y0, z0) are identified and that thereafter we follow that
particle through the fluid flow. Thus, the position of the particle at any other instant is given by a set of equations of the
form

x ¼ f1ðx0; y0; z0; tÞ; y ¼ f2ðx0; y0; z0; tÞ; z ¼ f3ðx0; y0; z0; tÞ
The Lagrangian approach is not generally used in fluid mechanics because it leads to more cumbersome equations.

In the Eulerian method, we observe the flow characteristics in the vicinity of a fixed point as the particles pass by. Thus, in
this approach the velocities at various points are expressed as functions of time as

u ¼ f1ðx; y; z; tÞ; v ¼ f2ðx; y; z; tÞ; w ¼ f3ðx; y; z; tÞ
where u, v, and w are the components of velocity in x, y, and z directions, respectively.

The velocity change in the vicinity of a point in the x direction is given by

du ¼ vu

vt
dt þ vu

vx
dxþ vu

vy
dyþ vu

vz
dz (17.1)

(total derivative expressed in terms of partial derivatives).
The small distances moved by a particle in time dt can be expressed as

dx ¼ u dt; dy ¼ v dt; dz ¼ w dt (17.2)

Thus, dividing Eq. (17.1) by dt and using Eq. (17.2) leads to the total or substantial derivative of the velocity u (x
component of acceleration) as

ax ¼ du
dt

h
Du
Dt

¼ vu

vt
þ u

vu

vx
þ v

vu

vy
þ w

vu

vz
(17.3a)

The other components of acceleration can be expressed in a similar manner as

ay ¼ dv
dt

h
Dv
Dt

¼ vv

vt
þ u

vv

vx
þ v

vv

vy
þ w

vv

vz
(17.3b)

az ¼ dw
dt

h
Dw
Dt

¼ vw

vt
þ u

vw

vx
þ v

vw

vy
þ w

vw

vz
(17.3c)
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17.4 CONTINUITY EQUATION

To derive the continuity equation, consider a differential control volume of size dx dy dz as shown in Fig. 17.1. Assuming
that the density and the velocity are functions of space and time, we obtain the flux of mass per second for the
three directions x, y, and z, respectively, as � v

vx ðruÞ$ dy dz;� v
vy ðrvÞ$ dx dz, and � v

vz ðrwÞ$ dx dy. From the principle of

conservation of matter, the sum of these must be equal to the time rate of change of mass, v
vt ðrdx dy dzÞ.

Since the control volume is independent of time, we can cancel dx dy dz from all the terms and obtain

vr

vt
þ v

vx
ðruÞ þ v

vy
ðrvÞ þ v

vz
ðrwÞ ¼ 0 (17.4a)

where r is the mass density; u, v, and w are the x, y, and z components of velocity, respectively; and t is time. By using
the vector notation

V
! ¼ u i

!þ v j
!þ w k

! ¼ velocity vector

and

V
! ¼ v

vx
i
!þ v

vy
j
!þ v

vz
k
! ¼ gradient vector

where i
!
; j
!
, and k

!
represent the unit vectors in x, y, and z directions, respectively. Eq. (17.4a) can be expressed as

vr

vt
þ V
!
$rV
! ¼ 0 (17.4b)

This equation can also be written as

vu

vx
þ vv

vy
þ vw

vz
¼ �1

r

DðrÞ
Dt

(17.4c)

where (D/Dt) represents the total or substantial derivative with respect to time. Eq. (17.4) represents the general
three-dimensional continuity equation for a fluid in unsteady flow. If the fluid is incompressible, the time rate of

dy

dz

dx

x

y

z

[ρu] dy dz dy dz
∂x

(ρu ) dxρu+ ∂

FIGURE 17.1 Differential control volume for conservation of mass.
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volume expansion of a fluid element will be zero and hence the continuity equation, for both steady and unsteady flows,
becomes

V
!
$V
! ¼ vu

vx
þ vv

vy
þ vw

vz
¼ 0 (17.5)

17.5 EQUATIONS OF MOTION OR MOMENTUM EQUATIONS

17.5.1 State of Stress in a Fluid

The state of stress in a fluid is characterized, as in the case of a solid, by the six stress components sxx, syy, szz, sxy, syz,
and szx. However, if the fluid is at rest, the shear stress components sxy, syz, and szx will be zero and all the normal stress
components will be the same and equal to the negative of the hydrostatic pressure, pd that is, sxx ¼ syy ¼ szz ¼ �p.

17.5.2 Relation Between Stress and Rate of Strain for Newtonian Fluids

STRESSeSTRAIN RELATIONS FOR SOLIDS
In solids the stresses sij are related to the strains εij according to Hooke’s law, Eq. (8.7):

εxx ¼ 1
E
½sxx � yðsyy þ szzÞ�;.

εxy ¼ sxy

G
;.

9>>=>>; (17.6)

If an element of solid having sides dx, dy, and dz is deformed into an element having sides (1 þ εxx)dx, (1 þ εyy)dy, and
(1 þ εzz)dz, the volume dilation of the element (e) is defined as

e ¼ change in volume of the element
original volume of the element

¼ ð1þ εxxÞð1þ εyyÞð1þ εzzÞdx dy dz� dx dy dz
dx dy dz

¼ εxx þ εyy þ εzz (17.7)

Using Eq. (17.6), Eq. (17.7) can be expressed as

e ¼ 1� 2v
E

ðsxx þ syy þ szzÞ ¼ 1� 2v
e

3s (17.8)

where s is the arithmetic mean of the three normal stresses defined as

s ¼ ðsxx þ syy þ szzÞ=3 (17.9)

Young’s modulus and Poisson’s ratio are related as

G ¼ E

2ð1þ vÞ or 2G ¼ E

1þ v
(17.10)

The first equation of Eq. (17.6) can be rewritten as

εxx ¼ 1
E
½sxx � vðsxx þ syy þ szzÞ þ vsxx� ¼ E

1þ v
εxx þ 3v

1þ v
s (17.11)

Substituting for 3s from Eq. (17.9) into Eq. (17.11) and using the relation (17.10), we obtain

sxx ¼ E

1þ v
εxx þ v

1þ v

E$e

1� 2v
¼ 2Gεxx þ 2Gv

1� 2v
$e (17.12)
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By subtracting s from both sides of Eq. (17.12) we obtain

sxx � s ¼ 2Gεxx þ 2Gv
1� 2v

e� s (17.13)

Using Eq. (17.8), Eq. (17.13) can be expressed as

sxx � s ¼ 2Gεxx þ 2Gv
1� 2v

e� E

3ð1� 2vÞ e

that is,

sxx � s ¼
�
2Gεxx � e

3

�
(17.14)

In a similar manner, the following relations can be derived:

syy � s ¼ 2G
�
εyy � e

3

�
(17.15)

szz � s ¼ 2G
�
εzz � e

3

�
(17.16)

The shear stresseshear strain relations can be written, from Eq. (17.6), as

sxy ¼ Gεxy (17.17)

syz ¼ Gεyz (17.18)

szx ¼ Gεzx (17.19)

STRESSeRATE OF STRAIN RELATIONS FOR NEWTONIAN FLUIDS
Experimental results indicate that the stresses in a fluid are related to the time rate of strain instead of strain itself. Thus,

the stresserate of strain relations can be derived by analogy from Eqs. (17.14) to (17.19). As an example, consider
Eq. (17.14). By replacing the shear modulus (G) by a quantity expressing its dimensions, we obtain

sxx � s ¼ 2

�
F

L2

��
εxx � e

3

�
(17.20)

where F is the force, and L is the length. Since the stresses are related to the time rates of strain for a fluid, Eq. (17.20) can
be used to obtain the following relation valid for a Newtonian fluid:

sxx � s ¼ 2

�
FT

L2

�
v

vt

�
εxx � e

3

�
(17.21)

In Eq. (17.21), the dimension of time (T ) is added to the proportionality constant in order to preserve the dimensions.
The proportionality constant in Eq. (17.21) is taken as the dynamic viscosity m having dimensions FT/L2. Thus, Eq. (17.21)
can be expressed as

sxx � s ¼ 2m
vεxx

vt
� 2
3
ve

vt
(17.22)

syy � s ¼ 2m
vεyy

vt
� 2
3
ve

vt
(17.23)

szz � s ¼ 2m
vεzz

vt
� 2
3
ve

vt
(17.24)

sxy ¼ mεxy (17.25)

syz ¼ mεyz (17.26)

szx ¼ mεzx (17.27)
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If the coordinates of a point before deformation are given by x, y, z and after deformation by x þ x, y þ h, z þ z,
the strains are given by

εxx ¼ vx

vx
; εyy ¼ vh

vy
; εzz ¼ vz

vz

εxy ¼ vx

vy
þ vh

vx
; εyz ¼ vh

vz
þ vz

vy
; εzx ¼ vz

vx
þ vx

vz

9>>>=>>>; (17.28)

The rate of strain involved in Eq. (17.22) can be expressed as

vεxx

vt
¼ v

vt

�
vx

vx

�
¼ v

vx

�
vx

vt

�
¼ vu

vx
(17.29)

where u is the component of velocity in x direction, and

ve

vt
¼ v

vt
ðεxx þ εyy þ εzzÞ ¼ vu

vx
þ vv

vy
þ vw

vz
¼ V

!
$V
!

(17.30)

The mean stress s is generally taken as �p, where p is the mean fluid pressure. Thus, Eqs. (17.22) to (17.27) can also
be expressed as

sxx ¼ �pþ 2m
vu

vx
� 2
3
mV
!
$V
!

(17.31)

syy ¼ �pþ 2m
vv

vy
� 2
3
mV
!
$V
!

(17.32)

szz ¼ �pþ 2m
vw

vz
� 2
3
mV
!
$V
!

(17.33)

sxy ¼ m

�
vv

vx
þ vu

vy

�
(17.34)

syz ¼ m

�
vw

vy
þ vv

vz

�
(17.35)

szx ¼ m

�
vu

vz
þ vw

vx

�
(17.36)

17.5.3 Equations of Motion

The equations of motion can be derived by applying Newton’s second law to a differential volume (dx dy dz) of a fixed
mass dm [17.1]. If the body forces acting on the fluid per unit mass are given by the vector

B
! ¼ Bx i

!þ By j
!þ Bz k

!
(17.37)

the application of Newton’s law in x direction gives

dFx ¼ dm ax ¼ ðr dx dy dzÞax (17.38)

where dFx is the differential force acting in x direction, and ax is the acceleration of the fluid in x direction. Using a figure
similar to that of Fig. 8.2, Eq. (17.38) can be rewritten as

dFx ¼ðrdx dy dzÞBx � sxxdy dzþ
�
sxx þ vsxx

vx
dx

�
dy dz� syxdx dz

þ
�
syx þ vsyx

vy
dy

�
dx dz� szxdx dyþ

�
szx þ vszx

vz
dz

�
dx dy
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Dividing this equation throughout by the volume of the element gives

rBx þ vsxx

vx
þ vsyx

vy
þ vszx

vz
¼ rax (17.39a)

Similarly, we can obtain for the y and z directions,

rBy þ vsxy

vx
þ vsyy

vy
þ vszy

vz
¼ ray (17.39b)

rBz þ vsxz

vx
þ vsyz

vy
þ vszz

vz
¼ raz (17.39c)

Eqs. (17.39a, b, c) are general and are applicable to any fluid with gravitational-type body forces. For Newtonian
fluids with a single viscosity coefficient, we substitute Eqs. (17.31) to (17.36) into Eq. (17.39) and obtain the equations of
motion in x, y, and z directions as

rax ¼ rBx � vp

vx
þ v

vx

�
2m

vu

vx
� 2
3
mV
!
$V
!�

þ v

vy

�
m

�
vv

vx
þ vu

vy

��
þ v

vz

�
m

�
vu

vz
þ vw

vx

��
(17.40a)

ray ¼ rBy � vp

vy
þ v

vx

�
m

�
vu

vy
þ vv

vx

��
þ v

vy

�
2m

vv

vy
� 2
3
mV
!
$V
!�

þ v

vz

�
m

�
vv

vz
þ vw

vy

��
(17.40b)

raz|{z}
Inertia force

¼ rBz|{z}
Body force

� vp

vz|{z}
Pressure force

þ v

vx

�
m

�
vw

vx
þ vu

vz

��
þ v

vy

�
m

�
vv

vz
þ vw

vy

��
þ v

vz

��
2m

vw

vz
� 2
3
mV
!
$V
!��

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Viscous force

(17.40c)

Eq. (17.40) are called the NaviereStokes equations for compressible Newtonian fluids in Cartesian form. For
incompressible fluids, the NaviereStokes equations of motion, Eq. (17.40), become

ax ¼ vu

vt
þ u

vu

vx
þ v

vu

vy
þ w

vu

vz
¼ Bx � 1

r

vp

vx
þ m

r

�
v2u

vx2
þ v2u

vy2
þ v2u

vz2

�
(17.41a)

ay ¼ vv

vt
þ u

vv

vx
þ v

vv

vy
þ w

vv

vz
¼ By � 1

r

vp

vy
þ m

r

�
v2v

vx2
þ v2v

vy2
þ v2v

vz2

�
(17.41b)

az ¼ vw

vt
þ u

vw

vx
þ v

vw

vy
þ w

vw

vz
¼ Bz � 1

r

vp

vz
þ m

r

�
v2w

vx2
þ v2w

vy2
þ v2w

vz2

�
(17.41c)

Furthermore, when viscosity m is zero, Eqs. (17.41a, b, c) reduce to the Euler equations:

ax ¼ Bx � 1
r

vp

vx
(17.42a)

ay ¼ By � 1
r

vp

vy
(17.42b)

az ¼ Bz � 1
r

vp

vz
(17.42c)

For steady flow, all derivatives with respect to time will be zero in Eqs. (17.40) to (17.42).

17.6 ENERGY, STATE, AND VISCOSITY EQUATIONS

17.6.1 Energy Equation

When the flow is nonisothermal, the temperature of the fluid will be a function of x, y, z, and t. Just as the continuity
equation represents the law of conservation of mass and gives the velocity distribution in space, the energy equation
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represents the conservation of energy and gives the temperature distribution in space. To derive the energy equation, we
consider a differential control volume of fluid of size dx dy dz and write the energy balance equation as

Energy input ¼ energy outputþ energy accumulation (17.43)

The energy input to the element per unit time is given by*	
ruE � v

vx
ðruEÞ$dx

2



|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Internal energy

þ1
2

	
ru

�
u2 þ v2 þ w2

�� v

vx


ru

�
u2 þ v2 þ w2

��
$
dx
2



|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Kinetic energy

þ
	
pu� v

vx
ðpuÞ dx

2



|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pressureevolume work

�
	
k
vT

vx
� v

vx

�
k
vT

vx

�
$
dx
2



|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Heat conduction

+
$ dy dz

þ similar terms for y and z directionsþ vQ

vt
dx dy dzþF dx dy dz

where T is the temperature, k is the thermal conductivity, Q is the heat generated in the fluid per unit volume, and F is
the dissipation functiondthat is, time rate of energy dissipated per unit volume due to the action of viscosity.

Similarly, the energy output per unit time is given by*�
ruE þ v

vx
ðruEÞ$dx

2

�
þ 1
2

	
ru

�
u2 þ v2 þ w2

�þ v

vx


ru

�
u2 þ v2 þ w2

��
$
dx
2




þ
�
puþ v

vx
ðpuÞ dx

2

�
�
	
k
vT

vx
þ v

vx

�
k
vT

vx

�
$
dx
2


+
$dy dz

þ similar terms for y and z directions

The energy accumulated in the element is given by�
v

vx
ðrEÞ þ 1

2
v

vt

n
r
�
u2 þ v2 þ w2

�o�
dx dy dz (17.44)

By making the energy balance as per Eq. (17.43), we obtain, after some manipulation,

v

vx

�
k
vT

vx

�
þ v

vy

�
k
vT

vy

�
þ v

vz

�
k
vT

vz

�
þ vQ

vt
þ F

¼ v

vx
ðpuÞ þ v

vy
ðpvÞ þ v

vz
ðpwÞ þ r

2
D
Dt

�
u2 þ v2 þ w2

�þ r
DðEÞ
Dt

(17.45)

By using the relation

cv ¼ vE

vT

����
at constant volume

¼ specific heat at constant volume

we can substitute cv$DTDt in place of DðEÞ
Dt in Eq. (17.45).

For inviscid and incompressible fluids, V
!
$V
! ¼ 0, and the application of Eq. (17.43) leads to

rcv
DT
Dt

¼ kV2T þ vQ

vt
þF (17.46)
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where cv is the specific heat at constant volume, T is the temperature, k is the thermal conductivity, Q is the heat generated
in the fluid per unit volume, and F is the dissipation function (i.e., time rate of energy dissipated per unit volume due to the
action of viscosity) [17.2] given by

F ¼ � 2
3
m

�
vu

vx
þ vv

vy
þ vw

vz

�2

þ 2m

"�
vu

vx

�2

þ
�
vv

vy

�2

þ
�
vw

vz

�2
#

þ m

"�
vw

vy
þ vv

vz

�2

þ
�
vu

vz
þ vw

vx

�2

þ
�
vv

vx
þ vu

vy

�2
# (17.47)

It can be seen that F has a value of zero for inviscid fluids.

17.6.2 State and Viscosity Equations

The variations of density and viscosity with pressure and temperature can be stated in the form of equations of state
and viscosity as

r ¼ rðp; TÞ (17.48)

m ¼ mðp; TÞ (17.49)

17.7 SOLUTION PROCEDURE

For a general three-dimensional flow problem, the continuity equation, the equations of motion, the energy equation,
the equation of state, and the viscosity equation are to be satisfied. The unknowns are the velocity components (u, v, w),
pressure (p), density (r), viscosity (m), and the temperature (T). Thus, there are seven governing equations in seven
unknowns, and hence the problem can be solved once the flow boundaries and the boundary and initial conditions for the
governing equations are known. The general governing equations are valid at any instant of time and are applicable to
laminar, transition, and turbulent flows. Note that the solution of the complete set of equations has not been obtained even
for laminar flows. However, in many practical situations, the governing equations get simplified considerably, and hence
the mathematical solution would not be very difficult. In a turbulent flow, the unknown variables fluctuate about their mean
values randomly and the solution of the problem becomes extremely complex.

For a three-dimensional inviscid fluid flow, five unknowns, namely, u, v, w, p, and r, will be there. In this case,
Eqs. (17.4) and (17.40) are used along with the equation of state (expressing r in terms of pressure p only) to find the
unknowns. In the solution of these equations, constants of integration appear that must be evaluated from the boundary
conditions of the specific problem.

EXAMPLE 17.1
Express the NaviereStokes equations for the flow of an incompressible Newtonian fluid.

Solution

For an incompressible Newtonian fluid, the stresses vary linearly with the rate of deformation so that the normal stresses are given

by

sxx ¼ �p þ 2m
vu

vx
; syy ¼ �p þ 2m

vv

vy
; szz ¼ �p þ 2m

vw

vz
(E.1)

and the shear stresses by

sxy ¼ syx ¼ m

�
vu

vy
þ vv

vx

�
; syz ¼ szy ¼ m

�
vv

vz
þ vw

vy

�
; szx ¼ sxz ¼ m

�
vw

vx
þ vu

vz

�
(E.2)

By substituting Eqs. (E.1) and (E.2) and the expressions for the acceleration components of the fluid given by Eq. (17.3) into the

equations of motion (obtained by considering the dynamic equilibrium of a small cube-type of element) given by Eq. (17.39), we

Continued
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EXAMPLE 17.1 dcont’d

obtain the equations of motion (NaviereStokes equations) in the x, y, and z directions (for incompressible flow of a Newtonian

fluid) as

r

�
vu

vt
þ u

vu

vx
þ v

vu

vy
þw

vu

vz

�
¼ �vp

vx
þ rBx þ m

�
v2u

vx2
þ v2u

vy2
þ v2u

vz2

�
(E.3)

r

�
vv

vt
þ u

vv

vx
þ v

vv

vy
þw

vv

vz

�
¼ �vp

vy
þ rBy þ m

�
v2v

vx2
þ v2v

vy2
þ v2v

vz2

�
(E.4)

r

�
vw

vt
þ u

vw

vx
þ v

vw

vy
þw

vw

vz

�
¼ �vp

vz
þ rBz þ m

�
v2w

vx2
þ v2w

vy2
þ v2w

vz2

�
(E.5)

EXAMPLE 17.2
Find an expression for the velocity of the fluid in a steady laminar flow between two fixed parallel plates.

Solution

Let the fluid flow between the parallel plates shown in Fig. 17.2A. Here a fluid particle moves in the x direction parallel to

the plate, and hence it has no velocity in the y or z direction so that v ¼ w ¼ 0. Thus, the continuity equation, Eq. (17.5), becomes

vu

vx
¼ 0 (E.1)

In addition, there is no variation of u in the z direction by assuming the plates to be infinite in the z direction. For steady flow,

vu

vt
¼ 0

Thus, u can be expressed as

u ¼ uðyÞ (E.2)

Using these conditions, the NaviereStokes equations given by Eqs. (E.3) to (E.5) of Example 17.1 reduce to

�vp

vx
þ m

v2u

vy2
¼ 0 (E.3)

�vp

vy
� r g ¼ 0 (E.4)

�vp

vz
¼ 0 (E.5)

Viscous fluid flow between parallel plates  Velocity distribution in y direction

y

x

u
h

h

y

x0

u(y )

(A) (B) 

FIGURE 17.2 Viscous fluid flow between parallel plates.
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EXAMPLE 17.2 dcont’d

where Bx ¼ 0, By ¼ �g, Bz ¼ 0 have been assumed (g ¼ acceleration due to gravity). Eqs. (E.4) and (E.5) can be integrated to

obtain

p ¼ �r g y þ f ðxÞ (E.6)

where f(x) is some function of x. By rewriting Eq. (E.3) as

v2u

vy2
¼ 1

m

vp

vx
(E.7)

and assuming vp
vx to be a constant, Eq. (E.7) can be integrated to obtain

vu

vy
¼ 1

m

vp

vx
y þ c1 (E.8)

where c1 is a constant of integration. Integration of Eq. (E.8) yields

u ¼ 1

2m

�
vp

vx

�
y2 þ c1y þ c2 (E.9)

where c2 is another constant of integration. Because the plates are fixed, u ¼ 0 at y ¼ þh and �h. Using these boundary con-

ditions in Eq. (E.9), we find the values of the constants as

c1 ¼ 0; c2 ¼ � 1

2m

�
vp

vx

�
h2 (E.10)

Thus, the velocity of the fluid flowing between the parallel plates is given by

u ¼ 1

2m

�
vp

vx

��
y2 � h2

�
(E.11)

The variation of the velocity u in the y direction is shown in Fig. 17.2B.

17.8 INVISCID FLUID FLOW

In a large number of fluid flow problems (especially those with low-viscosity fluids, such as water and the common gases),
the effect of viscosity will be small compared to other quantities such as pressure, inertia force, and field force; hence, the
fluid can be treated as an inviscid fluid. Typical problems in which the effect of viscosity of the fluid can be neglected are
flow through orifices, flow over weirs, flow in channel and duct entrances, and flow in converging and diverging nozzles.
In these problems, the conditions very near the solid boundary, where the viscosity has a significant effect, are not of much
interest; we would normally be interested in the movement of the main mass of the fluid. In any fluid flow problem, we
would be interested in determining the fluid velocity and fluid pressure as a function of spatial coordinates and time. This
solution will be greatly simplified if the viscosity of the fluid is assumed to be zero.

The equations of motion (Euler’s equations) for this case are

Du
Dt

¼ vu

vt
þ u

vu

vx
þ v

vu

vy
þ w

vu

vz
¼ Bx � 1

r

vp

vx

Dv
Dt

¼ vv

vt
þ u

vv

vx
þ v

vv

vy
þ w

vv

vz
¼ By � 1

r

vp

vy

Dw
Dt

¼ vw

vt
þ u

vw

vx
þ v

vw

vy
þ w

vw

vz
¼ Bz � 1

r

vp

vz

9>>>>>>>>>=>>>>>>>>>;
(17.50)

The continuity equation is given by Eq. (17.4). Thus, the unknowns in Eqs. (17.50) and (17.4) are u, v, w, p, and r.
Since the density r can be expressed in terms of the pressure p by using the equation of state, the four equations represented
by Eqs. (17.50) and (17.4) are sufficient to solve for the four unknowns u, v, w, and p. While solving these equations, the
constants of integration that appear are to be evaluated from the boundary conditions of the specific problem.
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17.9 IRROTATIONAL FLOW

Let a point A and two perpendicular lines AB and AC be considered in a two-dimensional fluid flow. These lines, which
are fixed to the fluid, are assumed to move with the fluid and assume the positions AʹBʹ and AʹCʹ after time Dt as shown
in Fig. 17.3. If the original lines AB and AC are taken parallel to the x and y axes, the angular rotation of the fluid
immediately adjacent to point A is given by 1

2 ðb1 þ b2Þ, and hence the rate of rotation of the fluid about the z axis (uz) is
defined as

uz ¼ 1
2
b1 þ b2

Dt
(17.51)

If the velocities of the fluid at the point A in x and y directions are u and v, respectively, the velocity components of the
point C are uþ ðvu=vyÞ$Dy and vþ ðvv=vyÞ$Dy in x and y directions, respectively, where Dy ¼ AC. Since b2 is small,

tan b2 ¼ b2 ¼ C0C2

A0C2
¼ A1A0 � CC1

A0C2
¼

uDt �
�
uþ vu

vy
Dy

�
Dt

Dy
¼ �vu

vy
Dt (17.52)

where it was assumed that AʹC2 z AC ¼ Dy. Similarly,

tan b1 ¼ b1 ¼ B1B0

A0B1
¼

�
vþ vv

vx
Dx

�
Dt � vDt

Dx
¼ vv

vx
Dt (17.53)

Thus, the rate of rotation (also called rotation) can be expressed as

uz ¼ 1
2

0BBB@
vv

vx
Dt � vu

vy
Dt

Dt

1CCCA ¼ 1
2

�
vv

vx
� vu

vy

�
(17.54)

By proceeding in a similar manner, the rates of rotation about the x, y, and z axes in a three-dimensional fluid flow can
be derived as

ux ¼ 1
2

�
vw

vy
� vv

vz

�
(17.55a)

uy ¼ 1
2

�
vu

vz
� vw

vx

�
(17.55b)

uz ¼ 1
2

�
vv

vx
� vu

vy

�
(17.55c)

When the particles of the fluid are not rotating, the rotation is zero and the fluid is called irrotational. The physical
meaning of irrotational flow can be seen in Fig. 17.4. In Fig. 17.4A, the particle maintains the same orientation everywhere
along the streamline without rotation. Hence, it is called irrotational flow. On the other hand, in Fig. 17.4B, the particle

A′

B ′

A

y

x

C ′

C

C2

B1

B

C1

A1

Δy

β2

β1

B2

Δx

FIGURE 17.3 Angular rotation of fluid.
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rotates with respect to fixed axes and maintains the same orientation with respect to the streamline. Hence, this flow is not
irrotational. The vorticity or fluid rotation vector

�
u!�

is defined as the average angular velocity of any two mutually
perpendicular line segments of the fluid whose x, y, and z components are given by Eq. (17.55).

Note

In both Fig. 17.4A and B, the particles can undergo deformation without affecting the analysis. For example, in the flow of a

nonviscous fluid between convergent boundaries, the elements of the fluid deform as they pass through the channel, but there is

no rotation about the z axis as shown in Fig. 17.5.

17.10 VELOCITY POTENTIAL

It is convenient to introduce a function f, called the potential function or velocity potential, in integrating Eq. (17.50). This
function f is defined in such a way that its partial derivative in any direction gives the velocity in that direction; that is,

vf

vx
¼ u;

vf

vy
¼ v;

vf

vz
¼ w (17.56)

Substitution of Eq. (17.56) into Eq. (17.4) gives

�r

�
v2f

vx2
þ v2f

vy2
þ v2f

vz2

�
¼ u

vr

vx
þ v

vr

vy
þ w

vr

vz
þ vr

vt
¼ Dr

Dt
(17.57)

For incompressible fluids, Eq. (17.57) becomes

V2f ¼ v2f

vx2
þ v2f

vy2
þ v2f

vz2
¼ 0 (17.58)

By differentiating u and v with respect to y and x, respectively, we obtain

vu

vy
¼ v2f

vyvx
;

vv

vx
¼ v2f

vxvy
(17.59)

from which we can obtain

vu

vy
� vv

vx
¼ 0 (17.60)

vu

vz
� vw

vx
¼ 0 (17.61)

A StreamlinesA′

FIGURE 17.5 Irrotational flow between convergent boundaries.

(A) (B)

FIGURE 17.4 Irrotational and rotational flows.
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vw

vy
� vv

vz
¼ 0 (17.62)

The terms on the left-hand side of Eqs. (17.60) to (17.62) are equal to twice the rates of rotation of the fluid element.
Thus, the assumption of a velocity potential defined by Eq. (17.56) requires the flow to be irrotational.

17.11 STREAM FUNCTION

The motion of the fluid, at every point in space, can be represented by means of a velocity vector showing the direction and
magnitude of the velocity. Since representation by vectors is unwieldy, we can use streamlines, which are the lines drawn
tangent to the velocity vector at every point in space. Since the velocity vectors meet the streamlines tangentially for all
points on a streamline, no fluid can cross the streamline.

For a two-dimensional flow, the streamlines can be represented in a two-dimensional plane. A stream function j may
be defined (which is related to the velocity of the fluid) on the basis of the continuity equation and the nature of the
streamlines. Let the streamlines AB and CD denote the stream functions j1 and j2, respectively, in Fig. 17.6. If a unit
thickness of the fluid is considered, j2 � j1 is defined as the volume rate of fluid flow between the streamlines AB and CD.
Let the streamline CʹDʹ lie at a small distance away from CD and let the flow between the streamlines CD and CʹDʹ be dj.
At a point P on CD, the distance between CD and CʹDʹ is denoted by the components of distance edx and dy. Let the
velocity of the fluid at point P be u and v in x and y directions, respectively. Since no fluid crosses the streamlines, the
volume rate of flow across the element dy is u dy and the volume rate of flow across the element edx is ev dx. If the flow is
assumed to be incompressible, this volume rate of flow must be equal to dj:

rdj ¼ u dy ¼ �v dx (17.63)

Because j is a function of both x and y, we use partial derivatives and rewrite Eq. (17.63) as

vj

vy
¼ u;

vj

vx
¼ �v (17.64)

Eq. (17.64) defines the stream function j for a two-dimensional incompressible flow. Physically, the stream
function denotes the volume rate of flow per unit distance normal to the plane of motion between a streamline in the fluid
and an arbitrary reference or base streamline. Hence, the volume rate of flow between any two adjacent streamlines is
given by

Q ¼ j2 � j1 (17.65)

where j1 and j2 are the values of the adjacent streamlines, and Q is the flow rate per unit depth in the z direction.
The streamlines also possess the property that there is no flow perpendicular to their direction. For a two-dimensional
incompressible flow, the continuity equation is given by

vu

vx
þ vv

vy
¼ 0 (17.66)

which is automatically satisfied by the stream function jdthat is, by Eq. (17.64). If the flow is irrotational, the equation to
be satisfied is

vu

vy
� vv

vx
¼ 0 (17.67)

D ′

C ′
C

A

D
Pdx

v

ψ

ψ
2

1

u dy

B

FIGURE 17.6 Streamlines corresponding to stream functions j1and j2.
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By substituting Eq. (17.64) into Eq. (17.67), we obtain

v2j

vx2
þ v2j

vy2
¼ 0 (17.68)

We can see that in a two-dimensional irrotational and incompressible flow, the solution of the Laplace equation gives
either stream functions or velocity potentials depending on the choice.

EXAMPLE 17.3
Fig. 17.7A shows a uniform fluid flow with velocity 3 m/s. In this flow, the fluid particles move horizontally, hence the streamlines

will be straight parallel lines. Find the stream and potential functions and show a few contours of the stream and potential

functions.

Solution

Because the velocity components along the x and y directions are known to be u ¼ 3 m/s and v ¼ 0, the stream function (J) can

be found as

u ¼ vJ

vy
¼ 3 m=s (E.1)

which after integration yields

J ¼ 3 y m2=s (E.2)

The potential function can be determined from the relation

u ¼ vF

vx
¼ 3 m=s (E.3)

By integrating (E.3), we find

F ¼ 3x m2=s (E.4)

Three typical stream functions Ji ¼ iy, and three typical potential functions, Vi ¼ ix, i ¼ 1, 2, 3, are shown in Fig. 17.7B.

y
Φ1 =3 m2/s Φ2 =6 m2/s Φ3 =9 m2/s

Ψ3 =9 m2/s

Ψ2 =4 m2/s

Ψ1 =3 m2/s

x

 Plots of stream and potential functions

y

x

Uniform flow

u =3 m/s

0

(A) (B) 

FIGURE 17.7 Stream and potential functions in uniform flow.
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17.12 BERNOULLI EQUATION

The Bernoulli equation can be derived by integrating Euler’s equations (17.50) with the help of Eqs. (17.56) and (17.60)
to (17.62). By substituting the relations vv/vx and vw/vx for vu/vy and vu/vz, respectively (from Eqs. 17.60 and 17.61),
and vf/vx for u (from Eq. 17.56) into the first equation of (17.50), and assuming that a body force potential (U) such
as gravity exists, we have Bx ¼ e(vU/vx), By ¼ e(vU/vy), and Bz ¼ e(vU/vz); hence

v2f

vxvt
þ u

vu

vx
þ v

vv

vx
þ w

vw

vx
þ vU

vx
þ 1
r

vp

vx
¼ 0 (17.69)

By integrating Eq. (17.69) with respect to x, we obtain

vf

vt
þ u2

2
þ v2

2
þ w2

2
þ Uþ p

r
¼ f1ðy; z; tÞ (17.70)

where f1 cannot be a function of x because its partial derivative with respect to x must be zero. Similarly, the second
and third equations of (17.50) lead to

vf

vt
þ u2

2
þ v2

2
þ w2

2
þ Uþ p

r
¼ f2ðx; z; tÞ (17.71)

vf

vt
þ u2

2
þ v2

2
þ w2

2
þ Uþ p

r
¼ f3ðx; y; tÞ (17.72)

Since the left-hand sides of Eqs. (17.70) to (17.72) are the same, we have

f1ðy; z; tÞ ¼ f2ðx; z; tÞ ¼ f3ðx; y; tÞ ¼ f ðtÞ (17.73)

where f(t) is a function of t alone. Since the magnitude of the velocity vector V
!

is given by��V!�� ¼ �
u2 þ v2 þ w2

�1=2
(17.74)

Eqs. (17.70) to (17.72) can be expressed as

vf

vt
þ
��V!��2
2

þ Uþ p

r
¼ f ðtÞ (17.75)

where f(t) is a function of time. For a steady flow, Eq. (17.75) reduces to��V!��2
2

þ Uþ p

r
¼ constant (17.76)

If the body force is due to gravity, U ¼ gz, where g is the acceleration due to gravity and z is the elevation. By
substituting this expression of U into Eq. (17.76) and dividing throughout by g, we obtain a more familiar form of the
Bernoulli equation for steady flows as

V
!2

2g|{z}
Velocity
head

þ z|{z}
Elevation
head

þ p

g|{z}
Pressure
head

¼ constant (17.77)

where g ¼ rg.
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EXAMPLE 17.4
Air flowing from a tank to the atmosphere through the nozzle of a hose is shown in Fig. 17.8. The diameters of the hose and the

nozzle are 0.04 m and 0.01 m, respectively. If the pressure of air in the tank is 4.0 kPa (gage), which remains essentially constant,

and the atmospheric conditions are standard with pressure equal to 14.696 psi (absolute) and temperature equal to 59 �F,
determine the rate of flow and the pressure in the hose.

Solution

Assuming the flow to be steady, inviscid, and incompressible, we can apply the Bernoulli equation to points (1), (2), and (3) of a

streamline shown in Fig. 17.8 as

p1 þ 1

2
rv2

1 þ gz1 ¼ p2 þ 1

2
rv2

2 þ gz2 ¼ p3 þ 1

2
rv2

3 þ gz3 (E.1)

Because the tank is large, we can assume v1 ¼ 0 and also p3 ¼ 0 for a free jet. In addition, z1 ¼ z2 ¼ z3 ¼ 0 for a horizontal

hose. Thus, considering the first and third terms in Eq. (E.1) to be equal, we obtain

v3 ¼
�
2 p1

r

�1
2

(E.2)

By considering the first and second terms in Eq. (E.1) to be equal, we obtain

p2 ¼ p1 � 1

2
r v2

2 (E.3)

Assuming standard absolute pressure and temperature conditions, the perfect gas law can be used to find the density of air in

the tank as

r ¼ p1

R T1

¼ ð4:0þ 101Þð103Þ
ð286:9Þð15þ 273Þ ¼ 1:2708 kg

�
m3 (E.4)

Using this value in Eq. (E.2), we find

v3 ¼
�
2ð4:0� 103Þ

1:2708

�1
2

¼ 79:3426 m=s (E.5)

Thus, the flow rate can be found as

Q ¼ Q3 ¼ A3v3 ¼ pd2

4
v3 ¼ p

4
ð0:01Þ2ð79:3426Þ ¼ 0:006231 m3

�
s (E.6)

The pressure in the hose can be determined using the continuity equation

A2v2 ¼ A3v3 or v2 ¼ A3v3
A2

¼
�
d

D

�2

v3 ¼
�
0:01

0:04

�2

ð79:3426Þ ¼ 4:9589 m=s (E.7)

The pressure p2 can be determined from Eq. (E.3) as

p2 ¼ 4:0� 103 � 1

2
ð1:2708Þð4:9589Þ2 ¼ 3984:3751 N=m2

(1)

Tank

Hose
(2) (3)

Q

Diameter of hose,
D = 0.04 m

Diameter of
nozzle,
d = 0.01 m

Air
p1 = 4.0 kPa

FIGURE 17.8 Flow through a nozzle.
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EXAMPLE 17.5
A bent tube is used to siphon water from a water tank as shown in Fig. 17.9. The bent tube is located 2 m above the water level and

the discharge from the tube occurs 4 m below the water level of the tank. Assuming the flow to be frictionless, determine the

velocity of the fluid at discharge.

Solution

The Bernoulli equation can be applied between points 1 and 2:

p1

r
þ v2

1

2
þ g z1 ¼ p2

r
þ v2

2

2
þ g z2 (E.1)

where v1 ¼ 0 and p1 ¼ p2 ¼ patm. Thus Eq. (E.1) gives, by taking z2 as datum (0),

patm

r
þ 0þ gðz1 � z2Þ ¼ patm

r
þ v2

2

2
þ gðz2 � z2Þ (E.2)

or

v2
2 ¼ 2gðz1 � z2Þ ¼ 2ð9:81Þð4Þ ¼ 78:48 m2=s2

Thus v2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
78:48

p ¼ 8:8589 m=s.

REVIEW QUESTIONS

17.1 Give brief answers to the following questions.

1. Give two examples of non-Newtonian fluids.
2. What is an inviscid flow?
3. How is the position of a particle in a fluid flow represented in the Lagrangian method?
4. What is the Eulerian method?
5. How many stress components are needed in fluids?
6. What is the energy equation?
7. What are the equations of state?
8. How is stream function defined in terms of velocity components?
9. Define an irrotational flow.

1 m

Water
level

in tank

Tank

Bent tube

(Datum) z2 = 0

z1 = 4
1

2

5 m

FIGURE 17.9 Siphoning water from a water tank.

606 PART j V Application to Fluid Mechanics Problems

www.konkur.in

Telegram: @uni_k



17.2 Fill in the blank with a suitable word.

1. A Newtonian fluid is one in which ———————————— stress is directly proportional to the rate of
deformation.

2. The ratio of shear stress and the rate of deformation for a Newtonian fluid is called ——————

————————————————.
3. A fluid for which the stress is not proportional to the rate of deformation is called a———————————————

fluid.
4. An example of a compressible fluid is —————.
5. A viscous flow is one in which the fluid has nonzero ———————————————.
6. The motion of a fluid can be described either using the Lagrangian or ——————————— method.
7. Equations of motion are same as ——————————— equations.
8. For a fluid at rest, all the normal stresses are ————————————————.
9. Bernoulli equation for a steady flow states that the sum of velocity, elevation, and —————— heads is a constant.

17.3 Indicate whether the following statement is true or false.

1. In general, liquids are incompressible fluids.
2. A vapor can be considered an incompressible fluid.
3. A streamline is an imaginary line that connects all fluid particles whose velocity vectors are tangential to the imaginary

line.
4. The Lagrangian approach is more commonly used compared to the Eulerian approach in fluid mechanics.
5. The continuity equation is same as the principle of conservation of matter.
6. For a fluid at rest, all the shear stresses are zero.
7. For a two-dimensional irrotational and incompressible flow, the governing equation is the Laplace equation in terms of

stream function only.

17.4 Select the most appropriate answer from the multiple choices given.

1. A fluid is a gas or liquid that deforms continuously under the action of:
(a) normal stress (b) shear stress (c) hydrostatic stress
2. The magnitude of surface stress in a fluid depends on
(a) angular deformation (b) linear deformation (c) both linear and angular deformations

17.5 Define the following terms.

1. Laminar flow
2. Turbulent flow
3. Transition flow

PROBLEMS

17.1 Derive the continuity equation in polar coordinates for an ideal fluid by equating the flow into and out of the polar
element of area r dr dq.

17.2 If the x component of velocity in a two-dimensional flow is given by u ¼ x2 þ 2x � y2, find the y component of
velocity that satisfies the continuity equation.

17.3 The potential function for a two-dimensional flow is given by f ¼ a1 þ a2x þ a3y þ a4x
2 þ a5xy þ a6y

2, where ai
(i ¼ 1e6) are constants. Find the expression for the stream function.

17.4 The velocity components in a two-dimensional flow are u ¼ �2x2 þ 3y and v ¼ 3x þ 2y. Determine whether the
flow is incompressible or irrotational or both.

17.5 The potential function for a two-dimensional fluid flow is f ¼ 8xy þ 6. Determine whether the flow is incompress-
ible or irrotational or both. Find the paths of some of the particles and plot them.

17.6 In the steady irrotational flow of a fluid at point P, the pressure is 15 kg/m2 and the velocity is 10 m/s. At point Q,
which is located 5 m vertically above P, the velocity is 5 m/s. If r of the fluid is 0.001 kg/cm3, find the pressure at Q.

17.7 A nozzle has an inlet diameter of d1 ¼ 4 in, and an outlet diameter of d2 ¼ 2 in (Fig. 17.10). Determine the gage
pressure of water required at the inlet of the nozzle in order to have a steady flow rate of 2 ft3/s. Assume the density
of water as 1.94 slug/ft3.
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17.8 The x and y components of velocity of a fluid in a steady, incompressible flow are given by u ¼ 4x and v ¼ e 4y.
Find the stream function corresponding to this flow.

17.9 The velocity components of a three-dimensional fluid flow are given by

u ¼ a1xþ a2yþ a3z; v ¼ a4xþ a5yþ a6z; w ¼ a7xþ a8yþ a9z.

Determine the relationship between the constants a1, a2, ., a9 in order for the flow to be an incompressible flow.
17.10 The stream function corresponding to a fluid flow is given by J(x, y) ¼ 10(x2 � y2).

a. Determine whether the flow is irrotational.
b. Find the velocity potential of the flow.
c. Find the velocity components of the flow.

17.11 Liquid from a tap is added steadily into a large tub of diameter D ¼ 0.25 m while the liquid flows out of a nozzle of
diameter d ¼ 0.01 m as shown in Fig. 17.11. Find the flow rate of the liquid, Q, from the tap in order to maintain
the depth of the liquid in the tub above the nozzle at a constant value of h ¼ 0.4 m.

17.12 Find the volume rate of flow, Q, flowing between the parallel plates considered in Example 17.2 for unit width of
plates in the z direction.

17.13 Fig. 17.7 shows a uniform fluid flow with velocity of 6 m/s. In this flow, the fluid particles move horizontally and
hence the streamlines will be straight parallel lines. Find the stream and potential functions and plot a few contours
of the stream and potential functions.

Inlet Outlet

v1, p1 v2, p2

FIGURE 17.10 Tub with inflow and outflow of water.

Large
tub

D = 0.25 m d = 0.01 m

3

h = 0.4 m

2

1

Tap

FIGURE 17.11 An orifice or Venturi meter.
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17.14 The variation of velocity (v) of a Newtonian fluid flowing between two wide parallel plates is given by

v ¼ 3v0
2

	
1�

�y
h

�2



where v0 is the mean velocity. For a fluid with viscosity, m ¼ 0.05 lb-s/ft2, v0 ¼ 4 ft/s, and h ¼ 0.3 in, determine the
following:
a. Shear stress in the fluid adjacent to the plate.
b. Shear stress in the fluid at the middle point (y ¼ 0) in a plane parallel to that of the top and bottom plates.

17.15 The values of shear stress (s) corresponding to six different values of the rate of shear strain ( _g) of a non-Newtonian
fluid are observed experimentally and the following data are obtained:

s (lb/ft2) 0 20 40 60 80 100

_g
�
s�1

�
0 0.8 2.1 3.7 5.9 8.4

Plot the relation between s and _g and find a quadratic relation of the form s ¼ aþ b _gþ c _g2 using a least squares fit.
17.16 An orifice or Venturi meter, shown in Fig. 17.12, is used to measure the fluid flow rate in a pipe. In this device,

the pressure difference between the high-pressure section (1) and the low-pressure section (2), p1 � p2, is measured
to find the flow rate. If A1 and A2 denote the areas of cross section at sections (1) and (2) and r is the density of
the fluid flowing through the device, find an expression for the fluid flow rate (Q) in terms of A1, A2, r, and (p1 � p2).

17.17 A fluid of density r ¼ 900 kg/m3
flows through the Venturi meter shown in Fig. 17.12. If the diameters of the pipe

sections (1) and (2) are 0.2 m and 0.05 m, respectively, and the flow rate varies between 0.015 m3/s to 0.200 m3/s,
find the required range of the pressure difference, p1 � p2 for measuring all the possible flow rates in the stated range.

17.18 The equation of motion of the flow of a viscous fluid through a circular tube of radius R in the z direction
(see Fig. 17.13) is given by

1
r

v

vr

�
r
vw

vr

�
¼ 1

m

vp

vz

where w is the velocity of the fluid in the z direction and m is the dynamic viscosity of the fluid. Derive an expres-
sion for the velocity distribution in the radial direction, w(r), in terms of m, R, and vp

vz, where
vp
vz is the pressure

gradient in the z direction (assumed to be a constant).
17.19 The components of velocity u, v, and w, respectively in the x, y, and z directions, of a flow field are given by

u ¼ 1
2

�
x2 þ y2 þ z2

�
; v ¼ xyþ yzþ zx; w ¼ �6xz� z2 þ 10

Find the volumetric dilation rate of the fluid.
17.20 The components of rotation ux, uy, and uz, respectively about the x, y, and z directions, of a fluid particle in a flow

field are defined as

ux ¼ 1
2

�
vw

vy
� vv

vz

�
; uy ¼ 1

2

�
vu

vz
� vw

vx

�
; uz ¼ 1

2

�
vv

vx
� vu

vy

�
If the velocity components of a flow field in two dimensions are given by u ¼ x2 � y2 and v ¼ �2 xy, determine the
components of rotation about the x, y, and z axes. In addition, find whether the flow is irrotational.

(1) (2)

Pressure gage

FIGURE 17.12 Flow in a horizontal circular tube.
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17.21 The x and y components of velocity in a steady incompressible flow field are given by u ¼ 1
2 ðx2 þ y2 þ z2Þ and

v ¼ xy þ yz þ zx. Determine the component of velocity in the z direction, which satisfies the continuity equation.
17.22 The components of velocity in a two-dimensional flow are given by u ¼ y2 � x2 � x and v ¼ 2 xy þ y.

a. Find whether the flow field satisfies the continuity equation.
b. Find whether the flow is irrotational.

17.23 The flow of water from a canal under a sluice gate is shown in Fig. 17.14. The water in the canal (upstream side)
has a depth of 3 ft and the velocity of water is assumed to be zero. On the downstream side, the flow is laminar with
negligible friction. Determine the flow velocity on the downstream side per unit width of the sluice gate.

REFERENCES

[17.1] J.W. Daily, D.R.F. Harleman, Fluid Dynamics, Addison-Wesley, Reading, MA, 1966.
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y

w

x

z

(A)

(B)

dr

r

y

x

R

θ

FIGURE 17.13 Siphoning water from a tank.

d1 = 3 ft

1 2

d2 = 3 in.

ν1= 0

FIGURE 17.14 Water flow through a sluice gate.

610 PART j V Application to Fluid Mechanics Problems

www.konkur.in

Telegram: @uni_k



Chapter 18

Inviscid and Incompressible Flows
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18.1 INTRODUCTION

In this chapter, we consider the finite element solution of ideal flow (inviscid incompressible flow) problems. Typical
examples that may be found in this category are flow around a cylinder, flow out of an orifice, and flow around an airfoil.
Two-dimensional potential flow (irrotational flow) problems can be formulated in terms of a velocity potential function (f)
or a stream function (j). In terms of the velocity potential, the governing equation for a two-dimensional problem is given
by (obtained by substituting Eq. 17.56 into Eq. 17.5):

v2f

vx2
þ v2f

vy2
¼ 0 (18.1)

where the velocity components are given by:

u ¼ vf

vx
; v ¼ vf

vy
(18.2)

In terms of the stream function, the governing equation is (Eq. 17.68):

v2j

vx2
þ v2j

vy2
¼ 0 (18.3)

and the flow velocities can be determined as:

u ¼ vj

vy
; v ¼ �vj

vx
(18.4)

In general, the choice between velocity and stream function formulations in finite element analysis depends on the
boundary conditions, whichever is easier to specify. If the geometry is simple, there is no advantage of one over the other.

If the fluid is ideal, its motion does not penetrate into the surrounding body or separate from the surface of the body and
leave empty space. This gives the boundary condition that the component of the fluid velocity normal to the surface must
be equal to the component of the velocity of the surface in the same direction. Hence,

V
!
$ n! ¼ V

!
B$ n
!

or

ulx þ vly ¼ uBlx þ vBly (18.5)

The Finite Element Method in Engineering. https://doi.org/10.1016/B978-0-12-811768-2.00018-3
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where V
!

is the velocity of the fluid, V
!

B is the velocity of the boundary, and n! is the outward drawn normal to the bound-

ary whose components (direction cosines) are lx and ly. If the boundary is fixed
�
V
!

B ¼ 0
!�

, there will be no flow and

hence no velocity perpendicular to the boundary. This implies that all fixed boundaries can be considered streamlines
because there will be no fluid velocity perpendicular to a streamline. If there is a line of symmetry parallel to the direction

of flow, it will also be a streamline. If V
!

B ¼ 0
!
, Eqs. (18.2), (18.4), and (18.5) give the conditions:

vj

vs
¼ vj

vy
lx � vj

vx
ly ¼ 0 (18.6)

vf

vn
¼ vf

vx
lx þ vf

vy
ly ¼ 0 (18.7)

Eq. (18.6) states that the tangential derivative of the stream function along a fixed boundary is zero, whereas Eq. (18.7)
indicates that the normal derivative of the potential function (i.e., velocity normal to the fixed boundary) is zero.

The finite element solution of potential flow problems is illustrated in this chapter with reference to the problem of flow
over a circular cylinder between two parallel plates, as shown in Fig. 18.1. Both potential and stream function formulations
are considered.

18.2 POTENTIAL FUNCTION FORMULATION

The boundary value problem for potential flows can be stated as follows.

18.2.1 Differential Equation Form

Find the velocity potential f(x, y) in a given region S surrounded by curve C such that:

V2f ¼ v2f

vx2
þ v2f

vy2
¼ 0 in S (18.8)

with the boundary conditions:

Dirichlet condition: f ¼ f0 on C1 (18.9)

Neumann condition: Vn ¼ vf

vn
¼ vf

vx
lx þ vf

vy
ly ¼ V0 on C2 (18.10)

where C ¼ C1 þ C2, and V0 is the prescribed value of the velocity normal to the boundary surface.

y

x

B

A Eu = u0 = 1

C

D

4

1212

8

8

FIGURE 18.1 Confined flow around a cylinder.
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18.2.2 Variational Form

Find the velocity potential f(x, y) that minimizes the functional:

I ¼ 1
2

ZZ
S

"�
vf

vx

�2

þ
�
vf

vy

�2
#
$dS�

Z
C2

V0f dC2 (18.11)

with the boundary condition:

f ¼ f0 on C1 (18.12)

18.3 FINITE ELEMENT SOLUTION USING THE GALERKIN APPROACH

The finite element procedure using the Galerkin method can be stated by the following steps:

Step 1: Divide Region S into E finite elements of p nodes each.
Step 2: Assume a suitable interpolation model for f(e) in Element e as

fðeÞðx; yÞ ¼ ½Nðx; yÞ�F!ðeÞ ¼
Xp

i¼ 1

Niðx; yÞFðeÞ
i (18.13)

Step 3: Set the integral of the weighted residue over the region of the element equal to zero by taking the weights
to be the same as the interpolation functions Ni. This yields:ZZ

SðeÞ
Ni

�
v2fðeÞ

vx2
þ v2fðeÞ

vy2

�
dS ¼ 0; i ¼ 1; 2;.; p (18.14)

The integrals in Eq. (18.14) can be written as (see Appendix):ZZ
SðeÞ

Ni
v2fðeÞ

vx2
dS ¼ �

ZZ
SðeÞ

vNi

vx

vfðeÞ

vx
dSþ

Z
CðeÞ

Ni
vfðeÞ

vx
lx dC (18.15)

Similarly, ZZ
SðeÞ

Ni
v2fðeÞ

vy2
dS ¼ �

ZZ
SðeÞ

vNi

vy

vfðeÞ

vy
dSþ

Z
CðeÞ

Ni
vfðeÞ

vy
ly dC (18.16)

Thus, Eq. (18.14) can be expressed as:

�
ZZ

SðeÞ

�
vNi

vx

vfðeÞ

vx
þ vNi

vy

vfðeÞ

vy

�
dSþ

Z
CðeÞ

�
vfðeÞ

vx
lx þ vfðeÞ

vy
ly

�
dC ¼ 0; i ¼ 1; 2;.; p (18.17)

Because the boundary of Element C (e) is composed of C1
(e) and C2

(e), the line integral of Eq. (18.17) would be zero on
C1

(e) (because f(e) is prescribed to be a constant f0 on C1
(e), the derivatives of f(e) with respect to x and y would be zero).

On the boundary CðeÞ
2 ; Eq. (18.10) needs to be satisfied. For this, the line integral of Eq. (18.17) can be rewritten as:Z

C
ðeÞ
1 þC

ðeÞ
2

Ni

�
vfðeÞ

vx
lx þ vfðeÞ

vy
ly

�
dC ¼

Z
C
ðeÞ
2

V0Ni dC2 (18.18)

By using Eqs. (18.13) and (18.18), Eq. (18.17) can be expressed in matrix form as:�
KðeÞ	F!ðeÞ ¼ P

!ðeÞ
(18.19)

where: �
KðeÞ	 ¼

ZZ
SðeÞ

½B�T ½D�½B�$dS (18.20)
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P
!ðeÞ ¼ �

Z
CðeÞ
2

V0½N�TdC2 (18.21)

½B� ¼

26664
vN1

vx

vN2

vx
/

vNp

vx

vN1

vy

vN2

vy
/

vNp

vy

37775 (18.22)

and

½D� ¼
�
1 0

0 1

�
(18.23)

Step 4: Assemble the element Eq. (18.19) to obtain the overall equations as:

½Ke � F!e ¼ P
!e (18.24)

Step 5: Incorporate the boundary conditions specified over C1 and solve Eq. (18.24).

Note

Computation of the characteristic vector P
!ðeÞ

using Eq. (18.21) requires the velocity of the fluid V0 to be normal to the boundary

C
ðeÞ
2 . For an arbitrary orientation of the boundary C

ðeÞ
2 , the computation of V0 requires knowledge of the normal vector n! to the

boundary. The computational details are illustrated in Examples 18.1e18.3.

EXAMPLE 18.1
Find the direction cosines nx and ny of the outward normal n! of the edge ij of the triangular element ijk shown in Fig. 18.2.

(xk, yk)

(xj, yj)

(xi, yi)

y

x n
→

sij
→

k

i

j

FIGURE 18.2 Outward normal to edge ij of a triangular element.
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EXAMPLE 18.1 dcont’d

Solution

Let s!ij denote the line joining the node i to node j (position vector ij). The vector s!ij can be expressed in terms of the (x, y)

coordinates of node i, (xi, yi), and node j, (xj, yj), as:

s!ij ¼ ðxj � xiÞ i!þ ðyj � yiÞ j!þ 0 k
!

(E.1)

where i
!
, j
!
, and k

!
are the unit vectors along the x, y, and z directions, respectively. The outward normal n! to the edge ij can be

expressed in terms of its direction cosines nx and ny as:

n! ¼ nx i
!þ ny j

!þ 0 k
!

(E.2)

The normal vector n! can be determined by noting that the cross-product of two vectors a! ¼ ax i
!þ ay j

!þ az k
!

and

b
! ¼ bx i

!þ by j
!þ bz k

!
denotes another vector c! ¼ cx i

!þ cy j
!þ cz k

!
given by:

c! ¼ a!� b
!


 a!� b
!


 (E.3)

where:

a!� b
! ¼ det

264 i
!

j
!

k
!

ax ay az
bx by bz

375 ¼ ðaybz � azbyÞ i!þ ðazbx � axbzÞ j!þ ðaxby � aybxÞ k
!

(E.4)

The direction of c! is defined by the right-hand screw rule while moving from vector a! to vector b
!
. When vectors a! and b

!

are chosen to be s!ij and k
!
, respectively, we recognize that c! denotes normal vector n!. Thus, Eqs. (E.1)e(E.3) yield the com-

ponents of the outward normal to the edge ij, n!, as:

nx ¼ yj � yi
sij

; ny ¼ �xj � xi
sij

; nz ¼ 0 (E.5)

where Sij is the distance between nodes i and j (length of the edge ij):

Sij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xiÞ2 þ ðyj � yiÞ2

q
(E.6)

EXAMPLE 18.2
If the (x, y) coordinates of nodes i, j, and k of a triangular element are given by (xi, yi) ¼ (2, 4) cm, (xj, yj) ¼ (9, 3) cm, and (xk,

yk) ¼ (6, 7) cm, find vector n
.

that denotes the outward normal to the edge ij.

Solution

Eq. (E.6) of Example 18.1 gives the length of edge ij as:

Sij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9� 2Þ2 þ ð3� 4Þ2

q
¼ 7:0711 cm (E.1)

The direction cosines of the outward normal to the edge ij are given by Eq. (E.5) of Example 18.1:

nx ¼ yj � yi
Sij

¼ 3� 4

7:0711
¼ �0:1414; ny ¼ �xj � xi

Sij
¼ 9� 2

7:0711
¼ �0:9899; nz ¼ 0 (E.2)

EXAMPLE 18.3
The (x, y) components of velocity of a fluid on the edge ij of a triangular element ijk vary linearly from (ui, vi) at node i to (uj, vj) at

node j, as shown in Fig. 18.3. If the (x, y) coordinates of nodes i and j are (xi, yi) and (xj, yj), respectively, determine the char-

acteristic vector P
!ðeÞ

of the element.

Continued
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EXAMPLE 18.3 dcont’d

Solution

The shape function Nk (the area coordinate Lk) is zero on the edge ij; hence, the linearly varying x and y velocity components on

the edge ij can be expressed as:

u ¼ Liui þ Ljuj ; v ¼ Livi þ Ljvj (E.1)

The characteristic vector P
!ðeÞ

of the element given by Eq. (18.21) can be rewritten as:

P
!ðeÞ ¼

Z
C

ðeÞ
2

V0½N�dC2 ¼
Z
Sij

V0

8><>:
Li

Lj

0

9>=>;ds (E.2)

where V0 is the known or specified value of velocity of the fluid normal to the edge or boundary ij. Because the velocity of the

fluid normal to the edge ij is not knowndirectly (only the x and y components of velocity, u and v, are known),wewrite the unit vector

along the outward normal to the edge ij, n!; as a vector with x and y components (direction cosines) as nx and ny, respectively, so that:

n! ¼ nx i
!þ ny j

!
(E.3)

where i
!

and j
!

are the unit vectors along the x and y directions, respectively. The velocity vector on the edge ij, V
!
; can be

expressed as:

V
! ¼ u i

!þ v j
!

(E.4)

The normal velocity of the fluid V0 can be found as the projection of the velocity vector V
!

along the normal n! so that:

V0 ¼ V
!T

n! ¼ ðu vÞ
�
nx

ny


¼ u nx þ v ny (E.5)

k

i
ui

u

vi

v

vj

x

y

juj

FIGURE 18.3 Velocity of fluid along edge ij.
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EXAMPLE 18.3 dcont’d

In view of Eq. (E.5), Eq. (E.2) becomes:

P
!ðeÞ ¼

Z
sij

V0

8><>:
Li

Lj

0

9>=>;ds ¼
Z
sij

ðu nx þ v nyÞ

8><>:
Li

Lj

0

9>=>;ds (E.6)

Using Eq. (E.1), Eq. (E.6) can be rewritten as:

P
!ðeÞ ¼

Z
sij

fðuiLi þ ujLjÞnx þ ðviLi þ vjLjÞnyg

8>>>><>>>>:
Li

Lj

0

9>>>>=>>>>;ds

¼

8>>>>>>>>><>>>>>>>>>:

Z
sij

�
uinxL

2
i þ ujnxLiLj þ vinyL

2
i þ vjnyL

2
j

�
ds

Z
sij

�
uinxLiLj þ ujnxL

2
j þ vinyLiLj þ vjnyL

2
j

�
ds

0

9>>>>>>>>>=>>>>>>>>>;

(E.7)

The integrals in Eq. (E.7) can be evaluated using Eq. (3.67):Z
sij

Lai L
b
j ds ¼ a!b!

ðaþ bþ 1Þ!sij (E.8)

so that P
.ðeÞ

in Eq. (E.7) can be expressed as:

P
!ðeÞ ¼ sijnx

6

8><>:
2ui þ uj

ui þ 2uj

0

9>=>;þ sijny

6

8><>:
2vi þ vj

vi þ 2vj

0

9>=>; (E.9)

EXAMPLE 18.4
Find the velocity distribution along the vertical center line CD in Fig. 18.1.

Solution

Owing to symmetry, we can consider only the portion ABCDEA in the finite element analysis. The boundary condition is that f is

constant along CD. This constant can be taken as zero for convenience.

Step 1: Idealize the solution region using triangular elements. In the current case, 13 elements are used to model the region, as

shown in Fig. 18.4. Although it is crude in representing the cylindrical boundary, this idealization is considered for simplicity.

The local corner numbers of the elements are labeled in an arbitrary manner. The information needed for subsequent cal-

culations is given in Table 18.1.

Continued
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FIGURE 18.4 Finite element idealization of flow around a cylinder.
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TABLE 18.1 Characteristics of Finite Elements

Node Number (i) 1 2 3 4 5 6 7 8 9 10 11 12 13

Global coordinates of
node i (xi, yi)

(0, 8) (5, 8) (9.17, 8) (12,8) (0, 4) (5, 4) (9.17, 5.5) (12, 5.5) (0, 0) (5, 0) (8, 0) (9.17, 2.83) (12, 4)

Element

Number (e) 1 2 3 4 5 6 7 8 9 10 11 12 13

Global node
numbers i, j,
and k corre-
sponding to
local
nodes 1, 2,
and 3

i 5 6 6 7 7 7 5 9 10 11 6 7 7

j 1 1 2 2 3 4 6 6 6 6 7 12 8

k 6 2 7 3 4 8 9 10 11 12 12 13 13

Element

Number (e) xi xj xk yi yj yk

ck [

xj L xi

ci [

xk L xj

cj [

xi L xk

bi [

yj L yk

bj [

yk L yi

bk [

yi L yj AðeÞ [ 1
2

�
xijyjkLxjkyij

	
1 0 0 5 4 8 4 0 5 �5 4 0 �4 1

2 j0� ð�4Þ � 5� 4j ¼ 10

2 5 0 5 4 8 8 �5 5 0 0 4 �4 1
2 j�5� 0� 5� 4j ¼ 10

3 5 5 9.17 4 8 5.5 0 4.17 �4.17 2.5 1.5 �4 1
2 j0� ð�2:5Þ � 4:17� 4j

¼ 8:34

4 9.17 5 9.17 5.5 8 8 �4.17 4.17 0 0 2.5 �2.5 1
2 j�4:17� 0� 4:17� 2:5j

¼ 5:2125

5 9.17 9.17 12 5.5 8 8 0 2.83 �2.83 0 2.5 �2.5 1
2 j0� 0� 2:83� 2:5j

¼ 3:5375

6 9.17 12 12 5.5 8 5.5 2.83 0 �2.83 2.5 0 �2.5 1
2 j2:83� ð�2:5Þ � 0� 2:5j

¼ 3:5375
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7 0 5 0 4 4 0 5 �5 0 4 �4 0 1
2 j5� ð�4Þ � ð�5Þ � 0j ¼ 10

8 0 5 5 0 4 0 5 0 �5 4 0 �4 1
2 j5� ð�4Þ � 0� 4j ¼ 10

9 5 5 8 0 4 0 0 3 �3 4 0 �4 1
2 j0� ð�4Þ � 3� 4j ¼ 6

10 8 5 9.17 0 4 2.83 �3 4.17 �1.17 1.17 2.83 �4 1
2 j � 3� ð�1:17Þ � 4:17� 4j

¼ 6:585

11 5 9.17 9.17 4 5.5 2.83 4.17 0 �4.17 2.67 �1.17 �1.5 1
2 j4:17� ð�2:67Þ � 0� 1:5j

¼ 5:56695

12 9.17 9.17 12 5.5 2.83 4 0 2.83 �2.83 �1.17 �1.5 2.67 1
2 j0� 1:17� 2:83� ð�2:67Þj

¼ 3:77805

13 9.17 12 12 5.5 5.5 4 2.83 0 �2.83 1.5 �1.5 0 1
2 j2:83� ð�1:5Þ � 0� 0j

¼ 2:1225
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EXAMPLE 18.4 dcont’d

Step 2: Determine the nodal interpolation functions. The variation of f(e) inside the element e is assumed to be linear as:

fðeÞðx; yÞ ¼ ½Nðx; yÞ�F!ðeÞ
(E.1)

where

½Nðx; yÞ� ¼

8>>>>><>>>>>:
Ni

Nj

Nk

ðx; yÞ

ðx; yÞ

ðx; yÞ

9>>>>>=>>>>>;

T

¼

8>>>><>>>>:
ðai þ xbi þ yciÞ

�
2AðeÞ

ðaj þ xbj þ ycjÞ
�
2AðeÞ

ðak þ xbk þ yckÞ
�
2AðeÞ

9>>>>=>>>>;

ðeÞ

F
!ðeÞ ¼

8>>>><>>>>:
Fi

Fj

Fk

9>>>>=>>>>;
and the constants ai, aj, ., ck are defined by Eq. (3.32). The information needed to compute [N(x, y)] is given in Table 18.1 (the

constants ai, aj, and ak are not given because they are not required in the computations).

Step 3: Derive the element matrices using the known values of A(e), bi, bj, ., ck. The element characteristic matrix is given by:

�
K ðeÞ	 ¼

ZZ
AðeÞ

½B�T ½D�½B�$ dx dy

¼ 1

4AðeÞ

266666664

�
b2
i þ c2

i

� ðbibj þ cicjÞ ðbibk þ cickÞ

�
b2
j þ c2

j

�
ðbjbk þ cjckÞ

Symmetric
�
b2
k þ c2

k

�

377777775

(E.2)

Thus, we obtain in this case,
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EXAMPLE 18.4 dcont’d

Continued
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EXAMPLE 18.4 dcont’d

To compute the element characteristic vectors, we use Eq. (18.21) and obtain:

P
!ðeÞ ¼ �

Z
C2

V0½N�T $dC2 ¼ �V0

Z sj

si

8><>:
N1

N2

0

9>=>; ds ¼ �V0sji
2

8><>:
1

1

0

9>=>; (E.3)

if the velocity of the fluid leaving the edge ij is specified as V0. Similarly, we obtain:

P
!ðeÞ ¼ �V0skj

2

8><>:
0

1

1

9>=>; if the velocity of the fluid leaving the edge jk is specified as V0; and (E.4)

P
!ðeÞ ¼ �V0sik

2

8><>:
1

0

1

9>=>;if the velocity of the fluid leaving the edge ki is specified as V0. (E.5)

In Eqs. (E.3)e(E.5), sji, skj, and sik denote the lengths of the edges ij, jk, and ki, respectively.

In the current case, the velocity entering the boundary AB is prescribed as u0 ¼ 1 (or V0 ¼ �1), and hence the vectors P
!ðeÞ

will be

nonzero only for elements 1 and 7. These nonzero vectors can be computed as follows:

P
!ð1Þ ¼ �1� 4

2

8><>:
1

1

0

9>=>; ¼

8><>:
2

2

0

9>=>;
5) global node number

1

6

(For element 1, the specified velocity is along the edge ij, i.e., 12.)

P
!ð7Þ ¼ �1� 4

2

8><>:
1

0

1

9>=>; ¼

8><>:
2

0

2

9>=>;
5) global node number

6

9

(For element 7, the specified velocity is along the edge ik, i.e., 13.)

Step 4: Assemble the element matrices and vectors to obtain the overall system matrix and vector as follows:
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EX
A
M
P
LE

1
8
.4

d
co

n
t’d

C
o
n
tin

u
ed

�
Ke
�
¼

26666666666666666666666666666664

1 2 3 4 5 6 7 8 9 10 11 12 13

1:0250 �0:4000 0 0 �0:6250 0 0 0 0 0 0 0 0

�0:4000 1:9135 �0:2998 0 0 �1:0338 �0:1799 0 0 0 0 0 0

0 �0:2998 2:1415 �0:4417 0 0 �1:4000 0 0 0 0 0 0

0 0 �0:4417 1:0077 0 0 0 �0:5660 0 0 0 0 0

�0:6250 0 0 0 2:0500 �0:800 0 0 �0:6250 0 0 0 0

0 �1:0338 0 0 �0:800 3:8097 �0:4401 0 0 �1:0000 �0:0595 �0:4765 0

0 �0:1799 �1:4000 0 0 �0:4401 4:0492 �0:7067 0 0 0 �1:1159 �0:2067

0 0 0 �0:5660 0 0 �0:7067 2:2161 0 0 0 0 �0:9433

0 0 0 0 �0:6250 0 0 0 1:0250 �0:4000 0 0 0

0 0 0 0 0 �1:0000 0 0 �0:4000 2:0667 �0:6667 0 0

0 0 0 0 0 �0:0595 0 0 0 �0:6667 1:3788 �0:6526 0

0 0 0 0 0 �0:4764 �1:1159 0 0 0 �0:6526 2:5098 �0:2650

0 0 0 0 0 0 �0:2067 �0:9433 0 0 0 �0:2650 1:4150

37777777777777777777777777777775

1

2

3

4

5

6

7

8

9

10

11

12

13

In
viscid

an
d
In
co

m
p
ressib

le
Flo

w
s
C
h
a
p
te
r
|
1
8

6
2
3
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EXAMPLE 18.4 dcont’d

P
!e ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

2

0

0

0

4

0

0

0

2

0

0

0

0

9>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>;
Step 5: Solve the assembled equations:

½Ke � F!e ¼ P
!e (E.6)

after incorporating the boundary conditions specified on C1. In the current case, the value of f is set equal to zero along CD. Thus,

the boundary conditions to be satisfied are F4 ¼ F8 ¼ F13 ¼ 0. One way to incorporate these boundary conditions is to delete the

rows and columns corresponding to these degrees of freedom from Eq. (E.6). Another method is to modify the matrix
�
Ke	 and

vector P
!e , as indicated in Section 6.5.

The solution to the resulting equations is given by:

F
!e ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

9>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>;

¼

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

14:900

9:675

4:482

0:000

15:044

10:011

4:784

0:000

15:231

10:524

8:469

6:229

0:000

9>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>;
From these nodal values of f, the average value of the u component of velocity between nodes 7 and 8 can be computed as:

ðuÞ7�8 ¼ vf

vx
z

F8 �F7

x8 � x7
¼ 0:000� 4:784

9:17� 12:00
¼ 1:690
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18.4 STREAM FUNCTION FORMULATION

In the stream function formulation, the problem can be stated as follows.

18.4.1 Differential Equation Form

Find the stream function j (x, y) in the given region S surrounded by the curve C such that:

V2j ¼ v2j

vx2
þ v2j

vy2
¼ 0 in S (18.25)

with the following boundary conditions:

Dirichlet condition;j ¼ j0 on C1 (18.26)

Neumann condition;Vs ¼ �vj

vn
¼ V0 on C2 (18.27)

where V0 is the velocity of the fluid parallel to boundary C2.

18.4.2 Variational Form

Find the stream function j(x, y) that minimizes the functional:

I ¼ 1
2

ZZ
S

"�
vj

vx

�2

þ
�
vj

vy

�2
#
dS�

Z
C2

V0jdC2 (18.28)

with the boundary condition:

j ¼ j0 on C1 (18.29)

18.4.3 Finite Element Solution

Because the governing equations (18.25) e (18.27) and (18.28, 18.29) are similar to Eqs. (18.8) e (18.10) and (18.11,
18.12), the finite element equations will also be similar. These can be expressed as:�

KðeÞ	J!ðeÞ ¼ P
!ðeÞ

(18.30)

where [K(e)] and P
!ðeÞ

are given by Eqs. (18.20) and (18.21), respectively, and:

J
!ðeÞ ¼

8>>><>>>:
J1

J2

«

Jp

9>>>=>>>; (18.31)

EXAMPLE 18.5
Find the velocity distribution along the vertical center line CD in Fig. 18.1.

Solution

Here also, we consider only quadrant ABCDEA for analysis. Boundaries AED and BC can be seen to be streamlines. We assume

the value of the streamline along AED to be zero as a reference value. Because the velocity component entering the face AB is

constant, we obtain: Z jB

jA

dj ¼ jB � jAh

Z y¼yB

y¼yA

u0 dy ¼ u0ðyB � yAÞ (E.1)

Continued
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EXAMPLE 18.5 dcont’d

Because u0 ¼ 1 and the streamline passing through A, namely jA, is taken as 0, Eq. (E.1) gives:

jB � 0 ¼ 1ð4� 0Þ or jB ¼ 4 (E.2)

Because u0 is constant along AB, the value of j varies linearly along AB, and hence the value of j at node 5 (J5) will be equal

to 2. Thus, the Dirichlet boundary conditions are given by:

J1 ¼ J2 ¼ J3 ¼ J4 ¼ 4; J5 ¼ 2; J9 ¼ J10 ¼ J11 ¼ J12 ¼ J13 ¼ 0 (E.3)

Because no velocity is specified parallel to any boundary, the element characteristic vectors P
!ðeÞ

will be 0
!

for all elements.

The element characteristic matrices [K(e)] and the assembled matrix
h
Ke
i
will be same as those derived in Example 18.4. Thus, the

final matrix equations to be solved are given by: �
Ke	13�13

J
!e13�1

¼ P
!e13�1

(E.4)

where
h
Ke
i
is the same as the one derived in Example 18.4, J

!e T ¼ ðJ1 J2 J3 . J13Þ ¼ vector of nodal unknowns, and

P
!eT ¼ ð0 0 0.0Þ ¼ vector of nodal actions. The boundary conditions to be satisfied are given by Eq. (E.3). The solution of this

problem can be obtained as:

J
!e ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

J11

J12

J13

9>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>;

¼

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

4:0

4:0

4:0

4:0

2:0

1:741

2:042

1:673

0:0

0:0

0:0

0:0

0:0

9>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>;

(E.5)

Because the stream function has been assumed to vary linearly within each element, the velocity will be a constant in each

element. Thus, the u component of velocity, for example, can be computed between any two nodes i and j as:

u ¼ vJ

vy
z

Jj �Ji

yj � yi

where yi and yj denote the y coordinates of nodes i and j, respectively. By using this formula, we can obtain the value of u along

the line 4e8e13 as:

ðuÞ4�8 ¼ J8 �J4

y8 � y4
¼ 1:673� 4:0

5:5� 8:0
¼ 0:9308

ðuÞ8�13 ¼ J13 �J8

y13 � y8
¼ 0� 1:673

4:0� 5:5
¼ 1:1153
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REVIEW QUESTIONS

18.1 Give brief answers to the following questions.

1. Give two examples of ideal flow.
2. State the potential equation in two dimensions.
3. Express the velocity components in terms of potential function.
4. State the two-dimensional ideal flow problem in terms of stream function.
5. Express the velocity components in terms of the stream function.
6. What is the Dirichlet condition in a potential function formulation?
7. What is the Dirichlet condition in a stream function formulation?
8. What is the Neumann condition in a stream function formulation?

18.2 Fill in the blank with a suitable word.

1. Inviscid incompressible flow is also called ________ ideal flow.
2. Two-dimensional potential flow problems can be formulated in terms of velocity potential function or a ________

function.
3. The Neumann condition in a potential function formulation is ________.

18.3 Indicate whether the following statement is true or false.

1. Potential flow is the same as irrotational flow.
2. The Galerkin method is a type of weighted residual method.
3. The least squares method is not applicable for deriving finite element equations.
4. It is necessary to incorporate the Neumann condition in the finite element solution of a two-dimensional potential flow

problem.

PROBLEMS

18.1 Unsteady fluid flow through a porous medium (seepage flow) is governed by the equation:

v

vx

�
kx
vf

vx

�
þ v

vy

�
ky
vf

vy

�
þ v

vz

�
kz
vf

vz

�
þ _q ¼ a

vf

vt
(P.1)

with boundary conditions:

f ¼ f0 on S1 (P.2)

kx
vf

vx
lx þ ky

vf

vy
ly þ kz

vf

vz
lz þ qðtÞ ¼ 0 on S2 (P.3)

where kx, ky, and kz are the coefficients of permeability in the x, y, and z directions; _q is the quantity of fluid added
(recharge) per unit time; a is the specific storage (for a confined flow); f is the fluid potential; lx, ly, lz are the di-
rection cosines of the outward normal to surface S2; f0 is the specified value of f on the boundary S1; and q(t) is the
specified value of velocity of the fluid normal to the surfaces S2. Derive the finite element equations of the flow
using the Galerkin approach.

18.2 Consider the steady-state confined seepage through a rectangular soil mass subject to a specified fluid pressure head
on the left side, as indicated in Fig. 18.5. Assuming the permeabilities of the soil in the horizontal and vertical di-
rections to be kx ¼ ky ¼ 2 in/s, determine the distribution of the potential in the soil mass.
Hint: The governing equation is given by:

kx
v2f

vx2
þ ky

v2f

vy2
¼ 0

subject to f1 ¼ f4 ¼ 6 in.
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18.3 Determine the velocity components of the fluid for the seepage flow considered in Problem 18.2 using the nodal
values of f and Darcy’s law:

u ¼ �kx
vf

vx
; v ¼ �ky

vf

vy

18.4 The dam shown in Fig. 18.6 retains water at a height of 12 ft on the upstream side and 2 ft on the downstream
side. If the permeability of the soil, considered isotropic, is k ¼ 10 ft/h, indicate a procedure to determine the
following:
a. Equipotential lines
b. The quantity of water seeping into the soil per hour per 1-ft thickness of the dam (in the z direction)

54

1

Fluid pressure
head = 6 in

2

15"

10"

2

1

4

3

3

Impervious surface

Impervious surface

y

x

4

1

y

x

FIGURE 18.5 Seepage through a rectangular soil mass.

Soil

Impervious surface

8'

8'

12'

8'

8' 8'

2'

WaterWater

yy

xx

Impervious surface

FIGURE 18.6 Dam retaining water.
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18.5 In the finite element analysis of a two-dimensional flow using triangular elements, the velocity components u and v
are assumed to vary linearly within an element (e) as:

uðx; yÞ ¼ a1U
ðeÞ
i þ a2U

ðeÞ
j þ a3U

ðeÞ
k

vðx; yÞ ¼ a1V
ðeÞ
i þ a2V

ðeÞ
j þ a3V

ðeÞ
k

where
�
UðeÞ

i ;V ðeÞ
i

�
denote the values of (u, v) at node i. Find the relationship between UðeÞ

i ;V ðeÞ
i ;.;V ðeÞ

k that is to

be satisfied for the flow to be incompressible.
18.6 Develop the necessary finite element equations for the analysis of two-dimensional steady flow (seepage) toward a

well using linear rectangular isoparametric elements.
18.7 The fluid flow in a duct is governed by the equation:

v2W

vx2
þ v2W

vy2
þ 1 ¼ 0

with W ¼ 0 on the boundary, and W(x, y) is the nondimensional velocity of the fluid in the axial direction given by:

Wðx; yÞ ¼ wðx; yÞ
2w0 f Re

where w(x, y) is the axial velocity of the fluid, w0 is the mean value of w(x, y), f is the Fanning friction factor, Re is
the Reynolds number [Re ¼ (w0 dh/v)], v is the kinematic viscosity of the fluid, and dh is the hydraulic diameter of
the cross-section [dh ¼ (4 times the area divided by perimeter)].
a. Determine the distribution of W(x, y) in a rectangular duct using four linear triangles for idealization as shown in

Fig. 18.7.
b. Suggest a method for finding the value of the Fanning friction factor f in each triangular element using the

known nodal values of W.
c. Find the Fanning friction factor f for a flow with Re ¼ 200.

3" 3"

2"

2"

yy

xx

4

2

31

FIGURE 18.7 Fluid flow in a rectangular duct.
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18.8 Find the velocity distribution along the vertical center line CD in Fig. 18.1 and 18.4 using a different finite element
grid.

18.9 Find the direction cosines of the outward normal n! of the edge jk of the triangular element shown in Fig. 18.2.
18.10 Find the direction cosines of the outward normal n! of the edge ki of the triangular element shown in Fig. 18.2.
18.11 Find the direction cosines nx and ny of the outward normal n! of the edge ij of a triangular element ijk with nodal

coordinates given by (xi, yi) ¼ (4, 4) cm, (xj, yj) ¼ (10, 4) cm, and (xk, yk) ¼ (8, 10) cm.
18.12 Find the direction cosines nx and ny of the outward normal n! of the edge jk of a triangular element ijk with nodal

coordinates given by (xi, yi) ¼ (4, 4) cm, (xj, yj) ¼ (10, 4) cm, and (xk, yk) ¼ (8, 10) cm.
18.13 Find the direction cosines nx and ny of the outward normal n! of the edge ki of a triangular element ijk with nodal

coordinates given by (xi, yi) ¼ (4, 4) cm, (xj, yj) ¼ (10, 4) cm, and (xk, yk) ¼ (8, 10) cm.
18.14 Find the direction cosines nx and ny of the outward normal n! of the edge ij of a triangular element ijk with nodal

coordinates given by (xi, yi) ¼ (2, 4) cm, (xj, yj) ¼ (6, 7) cm, and (xk, yk) ¼ (�3, 9) cm.
18.15 Find the direction cosines nx and ny of the outward normal n! of the edge jk of a triangular element ijk with nodal

coordinates given by (xi, yi) ¼ (2, 4) cm, (xj, yj) ¼ (6, 7) cm, and (xk, yk) ¼ (�3, 9) cm.
18.16 Find the direction cosines nx and ny of the outward normal n! of the edge ki of a triangular element ijk with nodal

coordinates given by (xi, yi) ¼ (2, 4) cm, (xj, yj) ¼ (6, 7) cm, and (xk, yk) ¼ (�3, 9) cm.
18.17 The (x, y) components of velocity of a fluid on the edge jk of a triangular element ijk vary linearly from (uj, vj) at

node j to (uk, vk) at node k. If the (x, y) coordinates of nodes j and k are (xj, yj) and (xk, yk), respectively, determine

the characteristic vector P
!ðeÞ

of the element.
18.18 The (x, y) components of velocity of a fluid on the edge ki of a triangular element ijk vary linearly from (uk, vk) at

node k to (ui, vi) at node i. If the (x, y) coordinates of nodes k and i are (xk, yk) and (xi, yi), respectively, determine the

characteristic vector P
!ðeÞ

of the element.
18.19 The (x, y) components of velocity of a fluid on the edge ij of a triangular element ijk vary linearly from

(ui, vi) ¼ (12, 8) cm/s at node i to (uj, vj) ¼ (17, 13) cm/s at node j. If the (x, y) coordinates of nodes i and j are

(xi, yi) ¼ (4, 4) cm and (xj, yj) ¼ (10, 4) cm, determine the characteristic vector P
!ðeÞ

of the element.
18.20 The (x, y) components of velocity of a fluid on the edge jk of a triangular element ijk vary linearly from (uj, vj) ¼ (5,

10) cm/s at node j to (uk, vk) ¼ (2, 4) cm/s at node k. If the (x, y) coordinates of nodes j and k are (xj, yj) ¼ (10, 4) cm

and (xk, yk) ¼ (8, 10) cm, determine the characteristic vector P
.ðeÞ

of the element.
18.21 The (x, y) components of velocity of a fluid on the edge ki of a triangular element ijk vary linearly from

(uk, vk) ¼ (1, 5) cm/s at node k to (ui, vi) ¼ (5, 2) cm/s at node i. If the (x, y) coordinates of nodes i and k are

(xi, yi) ¼ (4, 4) cm and (xk, yk) ¼ (8, 10) cm, determine the characteristic vector P
.ðeÞ

of the element.
18.22 Derive finite element equations for solving inviscid and incompressible flow problems in terms of the potential

function using a variational approach.
18.23 Derive finite element equations for solving inviscid and incompressible flow problems in terms of the stream func-

tion using a variational approach.
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19.1 INTRODUCTION

The basic equations governing two-dimensional steady incompressible Newtonian flow can be obtained from Eqs. (17.41)
and (17.5):

Conservation of momentum in x direction :
vp

vx
þ r

�
u
vu

vx
þ v

vu

vy

�
¼ X þ m

�
v2u

vx2
þ v2u

vy2

�
(19.1)

Conservation of momentum in y direction :
vp

vy
þ r

�
u
vv

vx
þ v

vv

vy

�
¼ Y þ m

�
v2v

vx2
þ v2v

vy2

�
(19.2)

Continuity equation :
vu

vx
þ vv

vy
¼ 0 (19.3)

where X and Y denote, respectively, the x and y components of the body force per unit volume (X ¼ rBx, Y ¼ rBy). When
the convective terms (terms involving r) in Eqs. (19.1) and (19.2) are neglected, we obtain:

m

�
v2u

vx2
þ v2u

vy2

�
� vp

vx
þ X ¼ 0 (19.4)

m

�
v2v

vx2
þ v2v

vy2

�
� vp

vx
þ Y ¼ 0 (19.5)

which are known as Stokes equations. The boundary conditions for the problem may be specified in terms of the pressure,
velocity, and velocity gradient. Three different formulations can be used to solve Eqs. (19.1)e(19.3): (1) the stream
function formulation, in which stream function (j) is treated as the unknown function [19.1]; (2) the velocityepressure
formulation, in which u, v, and p are treated as unknowns [19.2]; and (3) the stream functionevorticity formulation,
in which the stream function (j) and vorticity (u) are taken as unknown field variables [19.3]. We consider all of these
formulations in this chapter.

The Finite Element Method in Engineering. https://doi.org/10.1016/B978-0-12-811768-2.00019-5
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19.2 STREAM FUNCTION FORMULATION (USING THE VARIATIONAL APPROACH)

By introducing the stream function j defined by Eq. (17.64), the continuity equation (19.3) can be satisfied exactly and
the momentum equations can be combined to obtain a single equation in terms of j as (assuming the body forces to be
zero):

nV4jþ vj

vx
V2

�
vj

vy

�
� vj

vy
V2

�
vj

vx

�
¼ 0 (19.6)

where n ¼ m
�
r;V2 ¼ �

v2
�
vx2
�þ �v2�vy2� ¼ harmonic operator, and V4 ¼ �

v4
�
vx4
�þ 2

�
v4
�
vx2vy2

�þ �v4�vy4� ¼
biharmonic operator. The nonlinear terms in Eq. (19.6), which come from the convective terms of Eqs. (19.1) and (19.2),
are the ones that make this equation difficult to solve. However, approximate numerical solutions may be obtained using
the finite element method if Eq. (19.6) is recast as an equivalent variational problem.

Although no universally accepted variational principle is available for NaviereStokes equations or for Eq. (19.6),
Olson [19.1] developed a pseudovariational principle to solve Eq. (19.6) using Cowper’s 18edegrees of freedom triangular
element (conforming bending element stated in Section 10.8). For a typical triangular element shown in Fig. 19.1, if the
edge 1e2 is a boundary, the boundary conditions along the edge 1e2 will be

j ¼ constant or
vp

vx
¼ 0 (19.7)

and

vj

vh
¼ constant or sxh ¼ m

�
vu

vh
þ vv

vx

�
¼ 0 (19.8)

where (x, h) represent the local coordinate system and sxh denotes the shear stress (for a Newtonian fluid). The functional I,
which on minimization gives the governing differential Eq. (19.6) and the boundary conditions of Eqs. (19.7) and (19.8), is
given by:

IðjÞ ¼
ZZ

AðeÞ

24n
2

�
V2j

�2 þ
0@vj

vh
V2j

1A vj

vx
�
0@vj

vx
V2j

1A vj

vh

35dxdhþ
Z a

�b

242nv2j
vx2

vj

vh
�
0@vj

vx

v2j

vx2
þ vj

vh

v2j

vxvh

1Aj

35
h¼0

dx

(19.9)

x

y

3(x3, y3)

(x2, y2)
2

(x1, y1)
1

b

c

a

ξ

η

θ

FIGURE 19.1 Triangular element.
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where A(e) is the area of the triangular element and the underlined terms are to be taken as constants while taking the
variation of I. Note that the boundary integral appears in Eq. (19.9) only when the triangular element (edge 1e2) lies
on a boundary where some of the conditions of Eqs. (19.7) and (19.8) are to be satisfied.

Because the functional I(j) contains derivatives up to an order of two, the continuity of j and its first derivatives
between elements is to be maintained to guarantee convergence to the correct solution as the number of elements
is increased. The triangular bending element owing to Cowper et al. [19.4] provides this continuity. This element
employs the values of j, (vj/vx), (vj/vy), (v2j/vx2), (v2j/vxvy), and (v2j/vy2) at each of the three vertices as nodal
variables. The interpolation function is taken as a full fifth-degree polynomial with 21 parameters as:

jðx; hÞ ¼ a1 þ a2xþ a3hþ a4x
2 þ a5xhþ a6h

2 þ a7x
3 þ a8x

2hþ a9xh
2 þ a10h

3 þ a11x
4 þ a12x

3h

þa13x
2h2 þ a14xh

3 þ a15h
4 þ a16x

5 þ a17x
3h2 þ a18x

2h3 þ a19xh
4 þ a20h

5 þ a21x
4h

¼
X21
i¼ 1

aix
mihni (19.10)

Because the element has only 18 degrees of freedom (six at each node), the 21 constants (ai) of Eq. (19.10) are
evaluated by using 18 nodal conditions and three additional conditions. The additional conditions are chosen to ensure
that the variation of the derivative of j normal to an edge (called normal slope) is a cubic function of the edgewise
coordinate. The condition in which the normal slope (vj/vh) is a cubic equation in x along the edge h ¼ 0 (edge 12) can
be satisfied if we set a21 ¼ 0 in Eq. (19.10). With this, Eq. (19.10) can be expressed as:

j
1�1

ðx; hÞ ¼ ½b�
1�20

a!
20�1

(19.11)

where

½b� ¼ �
1 x h x2.h5

�
(19.12)

and

a!T ¼ fa1 a2.a20g (19.13)

The following conditions for the cubic variation of a normal slope along the remaining two edges are more
complicated [19.4].

For the cubic variation of a normal slope along edge 13:

5b4ca16 þ
�
3b2c3 � 2b4c

�
a17 þ

�
2bc4 � 3b3c2

�
a18 þ

�
c5 � 4b2c3

�
a19 � 5bc4a20 ¼ 0 (19.14)

For the cubic variation of a normal slope along edge 23:

5a4ca16 þ
�
3a2c3 � 2a4c

�
a17 þ

�� 2ac4 þ 3a3c2
�
a18 þ

�
c5 � 4a2c3

�
a19 þ 5ac4a20 ¼ 0 (19.15)

where dimensions a, b, and c (indicated in Fig. 19.1) are given by:

a ¼ ½ðx2 � x3Þðx2 � x1Þ þ ðy2 � y3Þðy2 � y1Þ�=r
b ¼ ½ðx3 � x1Þðx2 � x1Þ þ ðy3 � y1Þðy2 � y1Þ�=r
c ¼ ½ðx2 � x1Þðy3 � y1Þ � ðx3 � x1Þðy2 � y1Þ�=r

9>=>; (19.16)

where

r ¼ �ðx2 � x1Þ2 þ ðy2 � y1Þ2
�1=2

(19.17)
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and (xi, yi) are the global (x, y) coordinates of node i(i ¼ 1, 2, 3). The 18 nodal unknowns of the element are given by:

j
!ðeÞT ¼ 	

j1 jx1
jh1

jxx1
jxh1

jhh1
j2 jx2

jh2
jxx2

jxh2
jhh2

j3 jx3
jh3

jxx3
jxh3

jhh3



(19.18)

where ji ¼ j at node i;jxhi
¼ �

v2j
�
vxvh

�
at node i, and so on. Using Eqs. (19.11) and (19.18), we can obtain:

j
!ðeÞ

18�1
¼ �

b
�

18�20

� a!
20�1

(19.19)

where
�
b
�
can be derived without much difficulty. By using Eqs. (19.14), (19.15), and (19.19), we get 20 equations in 20

unknown coefficients ai, i ¼ 1, 2, ., 20. These equations can be expressed in matrix form as:8><>:
j
!ðeÞ

0
0

9>=>;
20�1

¼ �
b
w

�
20�20

a!
20�1

(19.20)

where
�
be
�
can be identified without much difficulty.

Eq. (19.20) can be inverted to obtain:

a!
20�1

¼ �
b
w

��1

20�20

8><>:
j
!ðeÞ

0
0

9>=>;
20�1

(19.21)

and

a!
20�1

¼ ½R�
20�18

j
!ðeÞ

18�1
(19.22)

where the 20 � 18 matrix [R] consists of the first 18 columns of
�
b
w

��1
. The element properties can be obtained first with

respect to the polynomial coefficients ai by substituting Eq. (19.10) into Eq. (19.9). For an interior element, this gives:

I ¼
X21
i¼ 1

X21
j¼ 1

kijaiaj þ
X21
i¼ 1

X21
j¼ 1

X21
l¼ 1

fijlaiajal (19.23)

where

kij ¼ n

2
fmimjðmj � 1Þðmi � 1Þgðmi þ mj � 4; ni þ nj � 1Þ

þ ½minjðmi � 1Þðni � 2Þ þ mjniðmj � 1Þðnj � 2Þ�$gðmi þ mj � 2; ni þ nj � 3Þ
þ ninjðni � 2Þðnj � 2Þ$gðmi þ mj; ni þ nj � 5Þg

(19.24)

fijl ¼ðniml � minlÞ½mjðmj � 1Þ$gðmi þ mj þ ml � 3; ni þ nj þ nl � 3Þ
þ njðnj � 2Þgðmi þ mj þ ml � 1; ni þ nj þ nl � 5Þ� (19.25)

gðm; nÞ ¼
ZZ

AðeÞ
xmyndx dy (19.26)
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and the bars over ai in Eq. (19.23) indicate that those terms are not varied when the variation of I is taken. The element
properties are transformed into the global coordinate system by using the basic transformation relation:

j
!ðeÞ

i ¼ ½li�J!
ðeÞ
i (19.27)

where

j
!ðeÞ

i ¼

8>>>>>>>><>>>>>>>>:

ji

jxi

jhi

jxxi

jxhi

jhhi

9>>>>>>>>=>>>>>>>>;
; J

!ðeÞ
i ¼

8>>>>>>>><>>>>>>>>:

ji

jxi

jyi

jxxi

jxyi

jyyi

9>>>>>>>>=>>>>>>>>;
and

½li� ¼

2666666664

1 0 0 0 0 0

0 cos q sin q 0 0 0

0 �sin q cos q 0 0 0

0 0 0 cos2 q 2 sin q cos q sin2 q

0 0 0 �sin q cos q ðcos2 q� sin2 q
�

sin q cos q

0 0 0 sin2 q �2 sin q cos q cos2 q

3777777775
(19.28)

The final element equations can be expressed in the familiar form as:

�
KðeÞ�J!ðeÞ þ

h
FðeÞ
�
J
!ðeÞ�i

J
!ðeÞ ¼ 0

!
(19.29)

where the elements of matrix [F(e)] are nonlinear functions of the nodal unknowns J
!ðeÞ

with

J
!ðeÞ ¼

8>>>><>>>>:
J
!ðeÞ

1

J
!ðeÞ

2

J
!ðeÞ

3

9>>>>=>>>>; (19.30)

The overall or assembled equations can be obtained as:

�
K
w

�
J
!
w
þ
h
F
w

�
J
!
w

�i
J
!
w

¼ 0
!

(19.31)

These equations represent a set of N nonlinear algebraic equations in the N global variables Ji; i ¼ 1; 2;.;N. Olson
[19.1] solved these equations using the NewtoneRaphson method.

EXAMPLE 19.1
The finite element formulation presented previously is applied to solve for the flow over a circular cylinder, as shown in

Fig. 19.2A [19.1]. The following boundary conditions are imposed on the problem:

along the upstream edge: j ¼ y; vj
vx ¼ 0

along the x axis: j ¼ 0

along the upper edge: vj
vy ¼ 1

along the downstream edge: vj
vx ¼ 0

on the surface of the cylinder: j ¼ 0; vj
vn ¼ 0 ðn denotes the normal to the cylinderÞ

Continued
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EXAMPLE 19.1 dcont’d

The natural boundary conditions of zero shear stress along the symmetry line (bottom edge) and the zero-pressure gradient along

the top and downstream edges are not imposed but are left for the program to approximate. The pattern of streamlines obtained

from the solution for a Reynolds number of 20 is shown in Fig. 19.2B. These results compare well with those given by an accurate

finite difference solution (shown in Fig. 19.2C). It can be seen that even the separation phenomenon behind the cylinder is

predicted accurately.

19.3 VELOCITYePRESSURE FORMULATION (USING THE GALERKIN APPROACH)

First, we consider the solution to the Stokes equations, Eqs. (19.4) and (19.5), and the continuity equation (19.3). We
consider the pressure (p), the velocity component parallel to the x axis (u), and the velocity component parallel to the y axis
(v) to be unknowns in the formulation. For a typical finite element inside the region S, the unknowns p, u, and v are
assumed to vary as:

pðeÞðx; yÞ ¼
X
i

Np
i ðx; yÞPðeÞ

i ¼ ½Npðx; yÞ�P!ðeÞ

uðeÞðx; yÞ ¼
X
i

Nu
i ðx; yÞUðeÞ

i ¼ ½Nuðx; yÞ�U!ðeÞ

vðeÞðx; yÞ ¼
X
i

Nv
i ðx; yÞV ðeÞ

i ¼ ½Nvðx; yÞ�V!ðeÞ

(19.32)

u
+

 Finite element idealization

Streamlines given by finite element method

0.728
0.291

0.1437

Streamlines given by finite difference method

u

+

A

B C

D
10+

Grid in region ABCD

A D

B C

+

10

y

x

6

(A)

(B)

(C)

FIGURE 19.2 Flow over a circular cylinder (Re ¼ 20) [19.1].
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where Np
i ;N

u
i , and Nv

i are the interpolation functions, which need not necessarily be of the same order, and P
!ðeÞ

; U
!ðeÞ

, and

V
!ðeÞ

are the vectors of nodal unknowns of element e. For simplicity, we assume Nu
i ¼ Nv

i hNi in the following
development.

By using Galerkin’s weighted residual method, we can write three sets of equations at any node i of element e. The first
is given by: ZZ

AðeÞ
Niðx; yÞ


X � vpðeÞ

vx
þ m

�
v2uðeÞ

vx2
þ v2uðeÞ

vy2

��
dAðeÞ ¼ 0 (19.33)

where the shape function corresponding to node i, Ni(x, y), is used as the weighting function. Integrating Eq. (19.33) by
parts, we obtain:ZZ

AðeÞ


� NiX � vNi

vx
pðeÞ þ m

vNi

vx

vuðeÞ

vx
þ m

vNi

vy

vuðeÞ

vy

�
dAþ

Z
CðeÞ

Nip
ðeÞlx$ dC �

Z
CðeÞ

mNi

�
vuðeÞ

vx
lx þ vuðeÞ

vy
ly

�
dC ¼ 0

(19.34)

where lx and ly indicate the direction cosines of the outward-drawn normal at the boundary of the element e, C(e). By
substituting Eq. (19.32) into Eq. (19.34), we obtain:ZZ

AðeÞ


� NiX � vNi

vx
½Np�P!ðeÞ þ

�
m
vNi

vx

v½N�
vx

þ m
vNi

vy

v½N�
vy

�
U
!ðeÞ

�
dA

�
Z
CðeÞ

mNi

�
v½N�
vx

lx þ v½N�
vy

ly

�
U
!ðeÞ

dC þ
Z
CðcÞ

Ni½Np�P!ðeÞ
lxdC ¼ 0

(19.35)

The second equation is similar to Eq. (19.35) and can be obtained by interchanging x and y, U and V, and X and Y in
Eq. (19.35). By using Np

i as the weighting function, the third equation arising from Eq. (19.3) is:ZZ
AðeÞ

Np
i

v½N�
vx

U
!ðeÞ

dAþ
ZZ

AðeÞ
Np

i

v½N�
vy

V
!ðeÞ

dA ¼ 0 (19.36)

By assuming a quadratic variation for the velocity components u and v and a linear variation for the pressure inside a
triangular element, the element equations can be written in matrix form as:

�
KðeÞ�F!ðeÞ ¼ P

!ðeÞ
(19.37)

where

�
KðeÞ�
15�15

¼

2666666664

h
KðeÞ

1

i
6�6

½0�
6�6

h
KðeÞ

2

i
6�3

½0�
6�6

h
KðeÞ

1

i
6�6

h
KðeÞ

3

i
6�3

�
h
KðeÞ

2

iT
3�6

�
h
KðeÞ

3

iT
3�6

½0�
3�3

3777777775
(19.38)

F
!ðeÞ

15�1
¼ 	

UðeÞ
1 UðeÞ

2 .UðeÞ
6

���V ðeÞ
1 V ðeÞ

2 .V ðeÞ
6

���� PðeÞ
1 �PðeÞ

2 �PðeÞ
3


T
(19.39)

P
!ðeÞ

15�1
¼ 	

PðeÞ
1 PðeÞ

2 .PðeÞ
6

���PðeÞ
7 PðeÞ

8 .PðeÞ
12

��0 0 0

T

(19.40)

KðeÞ
1ij ¼

ZZ
AðeÞ

m

�
vNi

vx

vNj

vx
þ vNi

vy

vNj

vy

�
dA (19.41)

KðeÞ
2ij ¼ �

ZZ
AðeÞ

vNi

vx
Np

j dA (19.42)
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KðeÞ
3ij ¼ �

ZZ
AðeÞ

vNi

vy
Np

j dA (19.43)

PðeÞ
i ¼

Z
CðeÞ

Ni

�
m
vuðeÞ

vn
� pðeÞ

�
lx dC �

ZZ
AðeÞ

NiX dA; i ¼ 1; 2;.; 6 (19.44)

PðeÞ
i ¼

Z
CðeÞ

Ni

�
m
vvðeÞ

vn
� pðeÞ

�
ly dC �

ZZ
AðeÞ

NiY dA; i ¼ 7; 8;.; 12 (19.45)

The element Eq. (19.37) can be assembled to obtain the overall equations as:�
Ke� F!e ¼ P

!e (19.46)

where

�
Ke� ¼

XE
e¼ 1

�
KðeÞ�; Fw ¼

XE
e¼ 1

F
!ðeÞ

; Pw ¼
XE
e¼ 1

P
!ðeÞ

(19.47)

and E the number of elements.

19.4 SOLUTION TO NAVIEReSTOKES EQUATIONS

To extend the solution of Stokes equations to the full NaviereStokes equations, the following iterative procedure can be
adopted. Let un, vn, and pn be an approximate solution (in n-th iteration) to the flow problem. Then we introduce this
solution into the coefficients of convective terms of Eqs. (19.1) and (19.2) and write the set of equations as:

m

�
v2u

vx2
þ v2u

vy2

�
� r

�
un
vu

vx
þ vn

vu

vy

�
� vp

vx
þ X ¼ 0

m

�
v2v

vx2
þ v2v

vy2

�
� r

�
un
vv

vx
þ vn

vv

vy

�
� vp

vy
þ Y ¼ 0

vu

vx
þ vv

vy
¼ 0

9>>>>>>>>>>=>>>>>>>>>>;
(19.48)

To start the iterative process, un, vn, and pn may be the solution to the Stokes equations. When the Galerkin procedure is
applied to Eq. (19.48), we get:ZZ

AðeÞ


m

�
Ni
v2uðeÞ

vx2
þ Ni

v2uðeÞ

vy2

�
� r

�
uðeÞn Ni

vuðeÞ

vx
þ vðeÞn Ni

vuðeÞ

vy

�
� Ni

vpðeÞ

vx
þ NiX

�
dA ¼ 0

ZZ
AðeÞ


m

�
Ni
v2vðeÞ

vx2
þ Ni

v2vðeÞ

vy2

�
� r

�
uðeÞn Ni

vvðeÞ

vx
þ vðeÞn Ni

vvðeÞ

vy

�
� Ni

vpðeÞ

vy
þ NiY

�
dA ¼ 0

ZZ
AðeÞ

�
Ni
vuðeÞ

vx
þ Ni

vvðeÞ

vy

�
dA ¼ 0

9>>>>>>>>>>=>>>>>>>>>>;
(19.49)

We next integrate by parts all terms in Eq. (19.49) except those involving uðeÞn and vðeÞn . In this manner, the natural
boundary conditions are kept identical to those for the Stokes equations. This leads to element equations of the same form

as Eq. (19.37) except that submatrix
h
KðeÞ
1

i
will be different in the current case. The elements of matrix

h
KðeÞ
1

i
in the

current case are given by:

KðeÞ
1ij ¼

ZZ
AðeÞ


m

�
vNi

vx

vNj

vx
þ vNi

vy

vNj

vy

�
� ruðeÞn Ni

vNj

vx
� rvðeÞn Ni

vNj

vy

�
dA (19.50)
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Note that the total elemental matrix [K(e)] will be unsymmetrical because of the presence of the convective terms. The
overall system equations can be expressed as:

Ke ðun; vnÞF!e nþ1 ¼ P
!e nþ1 (19.51)

where the subscripts n and n þ 1 indicate the successive stages of iteration. Thus, Eq. (19.51) is to be solved successively

for F
!e nþ1 using the nodal values of u and v obtained in the previous iteration. This process is continued until the two vec-

tors F
!e n and F

!e nþ1 are sufficiently close.

EXAMPLE 19.2
Yamada et al. [19.5] considered the problem of flow past a circular cylinder, to illustrate the previous procedure. As indicated in

Fig. 19.3, the infinite field of flow is confined by a circle of radius r/a ¼ 8.0 (or 20.0) and the region is divided into finite elements.

The boundary conditions at these radii are specified as u ¼ 5.0, v ¼ 0, and p ¼ 0 for a Reynolds number of 30.0. The boundary

conditions on the surface of the cylinder (r ¼ a) are taken as u ¼ 0 and v ¼ 0. The velocity distribution obtained by solving Stokes

equations is given by Fig. 19.4. For the NaviereStokes equations, the velocity distribution becomes unsymmetrical owing to the

inclusion of convective terms, as shown in Fig. 19.5. The convergence of NaviereStokes equations has been obtained in eight

iterations starting from the Stokes solution.

Continued

a =0.75 cm

u =1.0 or 5.0 cm/s

u

u

a

b =8.0a
c =20.0a

b
c

FIGURE 19.3 Boundary conditions and finite element mesh for the analysis of the flow past a circular cylinder [19.5].

a

V

Velocity
scale

1.0 cm/s
c

FIGURE 19.4 Velocity solution of Stokes equations [19.5].
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EXAMPLE 19.2 dcont’d

19.5 STREAM FUNCTIONeVORTICITY FORMULATION

19.5.1 Governing Equations

In the stream function formulation, the final equation governing the incompressible viscous flows is of the fourth order
(see Eq. 19.6). If we choose the stream function (j) and vorticity (u) as the unknowns, the governing equations will be
two second-order equations coupled in j and u,as shown subsequently [19.6]. From the definition of vorticity in two
dimensions (see Eq. 17.54c),

u ¼ uz ¼ 1
2

�
vv

vx
� vu

vy

�
(19.52)

By substituting the expressions of u and v from Eq. (17.64), Eq. (19.52) gives:

u ¼ �1
2
V2j (19.53)

Eq. (19.6) can be rewritten as:

nV2
�
V2j

�þ vj

vx

v

vy

�
V2j

�� vj

vy

v

vx

�
V2j

� ¼ 0 (19.54)

By substituting Eq. (19.53) into Eq. (19.54), we obtain:

vV2uþ vj

vx

vu

vy
� vj

vy

vu

vx
¼ 0 (19.55)

For unsteady-state problems, Eq. (19.55) will be modified as:

nV2uþ vj

vx

vu

vy
� vj

vy

vu

vx
� vu

vt
¼ 0 (19.56)

Thus, Eqs. (19.53) and (19.56) represent two coupled second-order equations (Eq. 19.56 is nonlinear) governing the
transient incompressible viscous flows.

a 0.0 cm/s

V

Velocity
scale

5.0 cm/s
c

FIGURE 19.5 Velocity solution of NaviereStokes equations (Re ¼ 30) [19.5].
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19.5.2 Finite Element Solution (Using a Variational Approach)

Cheng [19.3] presented an iterative procedure based on a quasivariational approach to the solution of the differential
Eqs. (19.53) and (19.56). In this method, the solution at the n-th time step (jn, un) is assumed to be known and the solution
at the n þ 1-th time step is determined by solving the following set of linear differential equations:

�V2jnþ1 ¼ un (19.57)

nV2unþ1 þ vjnþ1

vx

vun

vy
� vjnþ1

vy

vun

vx
� vun

vt
¼ 0 (19.58)

The functionals I1 and I2, whose EulereLagrange equations yield Eqs. (19.57) and (19.58), respectively, are
given by:

I1 ¼ 1
2

ZZ
S

"�
vjnþ1

vx

�2

þ
�
vjnþ1

vy

�2

� 2unjnþ1

#
dS (19.59)

I2 ¼ 1
2

ZZ
S

24n(�vunþ1

vx

�2

þ
�
vunþ1

vy

�2
)

þ 2

0@� vjnþ1

vx

vun

vy
þ vjnþ1

vy

vun

vx
þ vun

vt

1Aunþ1

35dS (19.60)

where the underlined term in Eq. (19.60) is to be taken as a constant while taking the variation of I2. Because the
functions I1 and I2 involve only the first derivatives of j and u, the interpolation functions need to satisfy only the C0

continuity. By assuming the variations of j and u inside an element e at the time step n þ 1 as:

j
ðeÞ
nþ1ðx; y; tÞ ¼ ½Nðx; yÞ�J!ðeÞ

nþ1ðtÞ (19.61)

u
ðeÞ
nþ1ðx; y; tÞ ¼ ½Nðx; yÞ�U!ðeÞ

nþ1ðtÞ (19.62)

the element equations can be derived from the conditions dI1 ¼ 0 and dI2 ¼ 0 as:h
KðeÞ

1

i
J
!ðeÞ

nþ1 þ P
!ðeÞ

1n ¼ 0
!

(19.63)

h
KðeÞ

2

i _
U
!ðeÞ

nþ1 þ
h
KðeÞ

3

i
U
!ðeÞ

nþ1 þ P
!ðeÞ

2n ¼ 0
!

(19.64)

where

KðeÞ
1ij ¼

ZZ
AðeÞ

�
vNi

vx

vNj

vx
þ vNi

vy

vNj

vy

�
dA (19.65)

KðeÞ
2ij ¼

ZZ
AðeÞ

NiNj$ dA (19.66)

KðeÞ
3ij ¼ nKðeÞ

1ij (19.67)

P1ni ¼ �
ZZ

AðeÞ
uðeÞ

n Ni dA (19.68)

PðeÞ
2ni ¼

ZZ
AðeÞ

Ni

 
vj

ðeÞ
nþ1

vy

vuðeÞ
n

vx
� vj

ðeÞ
nþ1

vx

vun

vy

!
$ dA (19.69)
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and A(e) denotes the area of element e. Eqs. (19.63) and (19.64) can be assembled in the usual manner to obtain the overall
system equations as: h

K
w

1

i
J
!
w

nþ1 þ P
!
w

1n ¼ 0
!

(19.70)

h
K
w

2

i _
U
!
w

nþ1 þ
h
K
w

3

i
U
!
w

nþ1 þ P
!
w

2n ¼ 0
!

(19.71)

By approximating the vector of time derivatives
_
U
!
w

nþ1 in Eq. (19.71) as:

_
U
!
w

nþ1 ¼

8>>>>>><>>>>>>:

vu

vt
ðat node 1Þ

vu

vt
ðat node 2Þ

«

9>>>>>>=>>>>>>;
nþ1

¼ 1
Dt

�
U
!
w

nþ1 � U
!
w

n

�
(19.72)

where the time interval Dt is given by Dt ¼ tnþ1 � tn, Eq. (19.71) can be expressed as:�h
K
w

3

i
þ 1
Dt

h
K
w

2

i�
U
!
w

nþ1 ¼ 1
Dt

h
K
w

2

i
U
!

n � P
!
w

2n (19.73)

Eqs. (19.70) and (19.73) represent the final matrix equations to be solved after applying the known boundary

conditions. The solution procedure starts with known initial values of U
!
w

n (for n ¼ 0). Once U
!
w

n is known, P
!
w

1n can be

evaluated using Eq. (19.68), and then Eq. (19.70) can be solved for J
!
w

nþ1. From the known values of U
!
w

n and J
!

nþ1 the

vector P
!
w

2n can be determined from Eq. (19.69), and hence Eq. (19.73) can be solved for U
!
w

nþ1. This recursive procedure is

continued until the solution at the specified final time is found.

19.6 FLOW OF NON-NEWTONIAN FLUIDS

19.6.1 Governing Equations

FLOW CURVE CHARACTERISTIC
Many practical fluid flows do not follow Newton’s law of viscosity and the assumption of a constant viscosity

independent of temperature, density, and shear rate does not hold. Such types of fluids are called non-Newtonian fluids.
The flow of many crude oils, especially at low temperatures, as well as industrial wastes, slurries, and suspensions of all
kinds fall under the category of non-Newtonian fluids. The shear stress s of a Newtonian fluid in uniaxial flow is given by
(Fig. 19.6):

s ¼ �m

g

du
dy

(19.74)

where m is the coefficient of viscosity [units ¼ mass/(length � time)], g is the acceleration owing to gravity, and (du/dy) is
the velocity gradient that is equivalent to the shear rate. Here, the quantity (m/g) is a constant and is independent of the
shear rate. Eq. (19.74) is represented as a linear curve in Fig. 19.7. Certain fluids, known as Bingham plastic fluids, behave
as a rigid solid until a certain level of shear stress (s0) is attained; they behave as a Newtonian fluid afterward.

Movable plate

Velocity
profile

Velocity(du)

Fluid

Fixed plate (area = A)

F

F

A
μ
g

du
dy

=

dy

FIGURE 19.6 Definition of viscosity for a Newtonian fluid.
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Thus, they can be described by:

s ¼

8><>:�m

g

du
dy

þ s0 for jsj > s0

0 for jsj < s0

(19.75)

True Bingham fluids, which follow Eq. (19.75), are not encountered in practice, but most fluids exhibit pseudoplastic
characteristics. Hence, many empirical equations have been developed to represent their behavior. One widely used such
equation, known as the power law, is given by:

s ¼ �k

g

����dudy
����n�1du

dy
(19.76)

where k is the consistency index and n is the flow behavior index (n < 1). Eqs. (19.75) and (19.76) are also plotted in
Fig. 19.7.
EQUATION OF MOTION

By assuming fluid flow to be incompressible and time independent but possessing a variable viscosity, the steady-state
equation of motion for flow through a parallel-sided conduit can be stated in the form of a nonlinear Poisson equation as
[19.7,19.8]:

v

vx

�
m

g

vu

vx

�
þ v

vy

�
m

g

vu

vy

�
þ rg� vp

vz
¼ 0 (19.77)

where u is the velocity, r is the density, and vp=vz is the pressure gradient. If the pressure gradient is known, the solution of
Eq. (19.77) enables us to find the velocity distribution, u(x, y), and the quantity of flow.

19.6.2 Finite Element Equations Using the Galerkin Method

In the Galerkin method, the weighted residue must be zero over the region of flow, S. Thus,ZZ
S


v

vx

�
m

g

vu

vx

�
þ v

vy

�
m

g

vu

vy

�
þ Q

�
W$ dS ¼ 0 (19.78)

Newtonian fluid

Shear rate
0 γ

Shear
stress

Bingham plastic fluid

Power law
pseudoplastic fluid

μ
=2g μ

=1g

A

τo

tan−1ξ

FIGURE 19.7 Flow curves for uniaxial flow.
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where

Q ¼ rg� vp

vz
(19.79)

and W is the weighting function. By applying the GreeneGauss theorem provided in Appendix B, Eq. (19.78) can be
expressed as:

�
ZZ

S

m

g


vu

vx

vW

vx
þ vu

vy

vW

vy

�
$dSþ

ZZ
S

WQ$dSþ
Z
C

W
m

g

�
vu

vx
lx þ vu

vy
ly

�
$ dC (19.80)

where C denotes the boundary of the region S, and lx and ly represent the direction cosines of the normal to this boundary at
any point. The velocity u is assumed to vary within an element e as:

uðx; yÞ ¼
X
i

NiU
ðeÞ
i ¼ ½N�U!ðeÞ

(19.81)

where Ni is the shape function corresponding to the i-th nodal degree of freedom Ui
(e) of element e. It can be seen from

Eq. (19.80) that the shape functions Ni need to satisfy only the C1 continuity. By substituting Eq. (19.81) into Eq. (19.80)
and by taking W ¼ Ni, we obtain:

�
ZZ

AðeÞ

m

g

�
vNi

vx

v

vx
½N�$U!ðeÞ þ vNi

vy

v

vy
½N�$U!ðeÞ

�
dAþ

ZZ
AðeÞ

NiQdA

þ
Z
CðeÞ

m

g
Ni

v½N�
vn

U
!ðeÞ

$ dC ¼ 0

(19.82)

The applicable boundary conditions are:

ð1Þ u ¼ u0 on C1 (19.83)

(known value of velocity on boundary C1):

ð2Þ au ¼ �m

g

vu

vn
on C2 (19.84)

where a is the coefficient of “sliding friction” between the fluid and the boundary (fluid slippage at the boundary is
proportional to the velocity gradient normal to the boundary C2). With the help of Eq. (19.84), the last term on the
left-hand side of Eq. (19.82) can be replaced by �RC2

aNi½N�$ dC. Using Eq. (19.82), the element equations can be stated

in matrix form as: �h
KðeÞ

1

i
þ
h
KðeÞ

2

i�
U
!ðeÞ ¼ P

!ðeÞ
(19.85)

where the elements of matrices
h
KðeÞ
1

i
and

h
KðeÞ
2

i
and vector P

!ðeÞ
are given by:

KðeÞ
1ij ¼

ZZ
AðeÞ

m

g


vNi

vx

vNj

vx
þ vNi

vy

vNj

vy

�
dA (19.86)

KðeÞ
2ij ¼

Z
C
ðeÞ
2

aNi½N�$ dC (19.87)

PðeÞ
i ¼

Z
AðeÞ

QNi$ dA (19.88)

Note that matrix
h
KðeÞ
2

i
denotes the contribution of slippage at the boundary and is applicable only to elements with

such a boundary condition. Assembly of the element in Eq. (19.85) leads to the overall equations:�
K
w

�
U
!
w
h
h�

K
w

1

�þ �K
w

2

�i
U
!
w

¼ P
!
w

(19.89)
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19.6.3 Solution Procedure

The elements of matrix
�
K
w

1
�
are functions of viscosity m and hence are functions of the derivatives of the unknown

velocity u(x, y). The viscosityevelocity relationship is nonlinear and is given by Eq. (19.75) or Eq. (19.76). Hence,
Eq. (19.89) represents a set of simultaneous nonlinear equations. These equations can be solved by using an iterative
procedure. The procedure starts with the assumption of an apparent viscosity and Eqs. (19.75) and (19.76) are written in
the form:

s ¼ �½xð _gÞ� _g (19.90)

This apparent viscosity at any point A shown in Fig. 19.7 will be the slope of the secant OA and can be expressed as:

xA

g
¼ sA

_gA
(19.91)

Thus, for Bingham plastic fluids, apparent viscosity can be expressed as:

xð _gÞ ¼
m

g
_gþ s0

_g
¼ s0

_g
þ m

g
(19.92)

and for pseudoplastic fluid as:

s ¼ �k

g
j _gjn�1 _g (19.93)

or:

xð _gÞ ¼ k

g
j _gjn�1 (19.94)

Then Eq. (19.92) or Eq. (19.94) is substituted into Eq. (19.86) to obtain:

KðeÞ
1ij ¼

ZZ
AðeÞ

xð _gÞ
�
vNi

vx

vNj

vx
þ vNi

vy

vNj

vy

�
dA (19.95)

where:

_g ¼
"�

vu

vx

�2

þ
�
vu

vy

�2
#1

2

¼
"�

v½N�
vx

U
!ðeÞ

�2

þ
�
v½N�
vy

U
!ðeÞ

�2
#1

2

(19.96)

Usually, the initial approximation to the solution of Eq. (19.89) is based on the Newtonian velocity distribution. Eq.
(19.89) can be written as:

U
!
w

nþ1 ¼ �
h
K
w

�
U
!
w

n

�i�1
P
!
w

(19.97)

where U
!
w

n and U
!
w

nþ1 denote the solutions of U
!
w

in the n-th and n þ l-th iterations. The solution procedure can be sum-

marized thus [19.9]:

1. Solve Eq. (19.89) for the Newtonian velocity distribution after applying the boundary conditions of Eq. (19.83).
2. Compute the shear rate and apparent viscosity.
3. Calculate the matrix [Kn].

4. Solve Eq. (19.89) for U
!
w

nþ1 after applying the boundary conditions of Eq. (19.83).
5. Test for the convergence of the process using the criterion

����ðUiÞn � ðUiÞn�1

ðUiÞn

���� < ε; i ¼ 1; 2;. (19.98)

where εz0:01 for each nodal velocity Ui.
If convergence of Eq. (19.98) is not satisfied, repeat Steps 2e5.
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EXAMPLE 19.3
The problem of Bingham flow between parallel plates was considered by Lyness et al. [19.7]. The problem is shown in Fig. 19.8,

where the plug dimensions are given by:

hp ¼ s0

�
dp

dz
(E.1)

where hp defines the extent of the solid plug. For this problem, the exact solution for the velocity is given by:

up ¼ 1

m


1

2

dp

dz

�
H2

4
� h2

p

�
� s0

�
H

2
� hp

��
for h < hp (E.2)

u ¼ 1

m


1

2

dp

dz

�
H2

4
� h2

�
� s0

�
H

2
� h

��
for h > hp (E.3)

The problem was solved for different values of true viscosity and plug sizes. Five quadratic rectangular elements were used for

the idealization, as shown in Fig. 19.8. The finite element (velocity) solution is compared with the exact solution given by Eqs. (E.2)

and (E.3) in Fig. 19.8. It can be seen that the finite element solution compares well with the exact solution. The flow rate through

the section can be computed by numerically integrating the velocity over an element and summing over all of the elements.

The error in the flow rates predicted by the finite element method was less than 1% compared with those obtained by explicit

integration of Eqs. (E.2) and (E.3).

0.0
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0.3

0.5

0.7(U
/U
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e)

0.9
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1.3

1.5

0.1 0.2 0.3
(x /H )

0.4 0.5 0.6

x

h
hp

u

up

dp/dz =10.0

dp/dz =5.0

dp/dz =2.5

dp/dz =1.667

Exact solution

F.E.M. nodal values

H =1.6

τo =1.0

μ/g =1.0

H

FIGURE 19.8 Bingham flow between parallel plates [19.7]. F.E.M., finite element method.
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19.7 OTHER DEVELOPMENTS

As can be observed in this chapter and Chapter 18, most finite element applications to fluid mechanics problems employed
one of the weighted residual criteria to derive the equations. Lynn [19.10] studied the problem of laminar boundary layer
flow using the least squares criterion and Popinski and Baker [19.11] used the Galerkin approach. Transient compressible
flow in pipelines was studied by Bisgaard et al. [19.12]. A study of penalty elements for incompressible laminar flow was
conducted by Dhatt and Hubert [19.13]. An optimal control finite element approximation for a penalty variational
formulation of three-dimensional NaviereStokes problem was presented by Li et al. [19.14]. Numerical experiments with
several finite elements were conducted to study viscous incompressible flow [19.15]. The problems of finite element mesh
generation for arbitrary geometry, an efficient solution to equations, the derivation of new elements, and the development
of efficient codes for fluid flow problems have also been investigated [19.16]. An overview of the application of finite
elements in computational fluid dynamics was presented by Lohner [19.17].

REVIEW QUESTIONS

19.1. Give brief answers to the following questions.

1. State the names of equations that govern two-dimensional steady incompressible Newtonian flow.
2. What are Stokes equations?
3. What are NaviereStokes equations?
4. What is vorticity?
5. What is a Bingham plastic fluid?
6. What is the significance of the GreeneGauss theorem?

19.2. Indicate whether the following statement is true or false.

1. Vorticity can be expressed in terms of stream function.
2. Vorticity ðuÞ in a two-dimensional problem is defined as u ¼ 1

2

�
vv
vx þ vu

vy

�
.

3. Bingham fluids are encountered in several practical applications.

PROBLEMS

19.1 Consider an incompressible viscous flow using the stream functionevorticity formulation of Section 19.5.1. Derive
the corresponding finite element equations using the Galerkin method.

19.2 A fully developed laminar forced flow of a Newtonian, incompressible fluid between two parallel plates is shown in
Fig. 19.9. Consider the energy balance of an infinitesimal element, dx dy, including the energy transported by the
fluid motion, and derive the equation governing the temperature distribution in the fluid, T(x, y), as:

rcuðyÞ vT
vx

¼ v

vx


k
vT

vx

�
þ v

vy


k
vT

vy

�
(P.1)

where r is the density, c is the specific heat at constant pressure, u is the x component of velocity, and k is the thermal
conductivity.

19.3 Using the Galerkin method, derive the finite element equations corresponding to Eq. (P.1) of Problem 19.2 by
assuming the temperature variation in an element as:

Tðx; yÞ ¼ ½Nðx; yÞ�T!ðeÞ
(P.2)

Note that the components of velocity of the fluid parallel to the y and x axes are given by 0 and u(y) ¼ (3/2)
u0{1 � [y/d]2}, respectively, where u0 is the average velocity.
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19.4 Consider a fully developed laminar forced flow of a Newtonian, incompressible fluid in a circular duct. Axisym-
metric temperature and heat fluxes are prescribed on different parts of the boundary (walls) of the duct. Consider
the energy balance of an annular element of volume 2pr dr dz, including the energy transported by the fluid motion
along the axial (z) direction, and derive the equation governing the temperature distribution of the fluid, T(r, z), as:

rcvðrÞ vT
vz

¼ 1
r

v

vr


kr

vT

vr

�
þ v

vz


k
vT

vz

�
(P.3)

where r is the density, c is the specific heat at constant pressure, v is the z component of velocity, and k is the thermal
conductivity.

19.5 Using the Galerkin method, derive the finite element equations corresponding to Eq. (P.3) of Problem 19.4 by
assuming the temperature variation in an element as:

Tðr; zÞ ¼ ½Nðr; zÞ�T!ðeÞ
(P.4)

Note that the components of velocity of the fluid parallel to the r and z axes are given by 0 and v (r) ¼ 2v0 (1 �
[r/d]2), respectively, where v0 is the average velocity and d is the radius of the duct.
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20.1 INTRODUCTION

A significant class of physical problems representing phenomena such as heat conduction, the torsion of shafts, and the
distribution of electric potential are known as field problems. These field problems have common characteristics in that
they are all governed by similar partial differential equations in terms of the field variable of concern. This permits us to
discuss the solution of the governing partial differential equation without identifying the field variable f as a particular
physical quantity. The steady-state (time-independent) field problems are governed by the quasi-harmonic equation:

v

vx

�
kx
vf

vx

�
þ v

vy

�
ky
vf

vy

�
þ v

vz

�
kz
vf

vz

�
þ c ¼ 0 (20.1)

where f is an unknown function or field variable (assumed to be single valued in the domain), and kx, ky, kz, and c are
known functions of x, y, and z.

The physical interpretation of kx, ky, kz, c, and f depends on the particular physical problem. Table 20.1 lists some
typical field problems along with the significance of f and other parameters for each problem. Eq. (20.1) assumes that the
medium is inhomogeneous and/or anisotropic, and coordinates x, y, and z coincide with the principal coordinates. If the
medium is homogeneous, kx, ky, and kz will be constants, and if it is isotropic, kx ¼ ky ¼ kz ¼ k constant. The general
boundary conditions for Eq. (20.1) are given by:

f ¼ f; value of f prescribed on part of the boundary; S1 ðDirichlet conditionÞ (20.2)

and

kx
vf

vx
lx þ ky

vf

vy
ly þ kz

vf

vz
lz þ qþ rf ¼ 0

on the remaining part of the boundary; for example; S2 ðCauchy conditionÞ
(20.3)
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where lx, ly, and lz are direction cosines of the outward drawn normal to the surface. If q ¼ r ¼ 0, the Cauchy boundary
condition becomes a Neumann condition. The field problem stated in Eqs. (20.1) e (20.3) is called an elliptic1 mixed
boundary value problem. It is mixed because some portion of boundary S has Dirichlet conditions, whereas the remaining
one has Cauchy conditions.

If kx ¼ ky ¼ kz ¼ k ¼ constant and q ¼ r ¼ 0, Eq. (20.1) reduces to:

V2f ¼ �cðx; y; zÞ
k

(20.4)

which is called Poisson’s equation. In this case, the boundary condition of Eq. (20.3) reduces to:

vf

vn
¼ 0 ðnonconducting boundary on S2Þ (20.5)

where n indicates the direction of outward drawn normal to the surface. Furthermore, if c ¼ 0, Eq. (20.4) becomes:

V2f ¼ 0 (20.6)

which is known as Laplace equation.

TABLE 20.1 Typical Steady-State Field Problems Governed by Eq. (20.1)

Serial

Number

Physical

Problem Field Variable, f

Significance of kx, ky,

kz C Remarks

1 Heat conduction Temperature Thermal conductivities Rate of internal heat
generation

q ¼ boundary heat
generation
r ¼ convective heat
transfer coefficient

2 Seepage flow Pressure Permeability coefficients Internal flow source d

3 Torsion of
prismatic shafts

Stress function 1/G, where G is shear
modulus

c ¼ 2q, where q is
angle of twist per
unit length

d

4 Irrotational flow
of ideal fluids

Velocity potential
or stream function

d c ¼ 0 q ¼ boundary
velocity, r ¼ 0

5 Fluid film
lubrication

Pressure kx and ky are functions
of film thickness and
viscosity, kz ¼ 0

Net flow owing to
various actions

q ¼ boundary flow

6 Distribution of
electric potential

Electric potential
(voltage)

Specific conductivities Internal current
source

q ¼ externally
applied boundary
current

7 Electrostatic field Electric force field
intensity

Permittivities Internal current
source

d

8 Magnetostatics Magnetomotive
force

Magnetic permeabilities Internal magnetic
field source

q ¼ externally
applied magnetic
field

1. Partial differential equations (of the second order) can be classified as parabolic, elliptic, hyperbolic, or some combination of these three categories, such
as elliptically parabolic, hyperbolically parabolic, and so on. To indicate the method of classification, consider the following general partial differential
equation in two independent variables:

A
v2f

vx2
þ 2B

v2f

vxvy
þ C

v2f

vy2
¼ D

�
f;

vf

vx
;
vf

vy
; x; y

�
where A, B, and C are functions of x and y, and D is a function of x, y, f, (vf/vx), and (vf/vy). The nature of expression for D will decide whether the
partial differential equation is linear or nonlinear. Irrespective of the form of D, the partial differential equation is called parabolic if B2 � AC ¼ 0,
elliptic if B2 � AC < 0, and hyperbolic if B2 � AC > 0. Usually, the solution domains are defined by closed boundaries for elliptic problems and by
open domains for parabolic and hyperbolic problems. Most finite element applications so far have been directed toward solving elliptic boundary value
problems with irregular solution domains.
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20.2 FINITE ELEMENT EQUATIONS FOR STEADY-STATE PROBLEMS

The finite element solution of differential Eq. (20.1) subject to boundary conditions Eqs. (20.2) and (20.3) was presented in
Sections 13.5.1 and 13.5.2 using the variational and Galerkin methods, respectively, in connection with the solution of heat
transfer problems. The overall system equations can be stated as:h

K
w

i
F
!e ¼ P

!e (20.7)

where the element characteristic matrices [K(e)] and characteristic vectors P
!ðeÞ

, whose assembly yields Eq. (20.7), can be
obtained similar to Eqs. (13.30), (13.31), and (13.33) as:

KðeÞ
1ij ¼

ZZZ
V ðeÞ

�
kx
vNi

vx

vNj

vx
þ ky

vNi

vy

vNj

vy
þ kz

vNi

vz

vNj

vz

�
dV (20.8)

KðeÞ
2ij ¼

ZZ
SðeÞ2

rNiNjdS2 (20.9)

PðeÞ
i ¼

ZZZ
SðeÞ

cNidV �
ZZ

S
ðeÞ
2

qNidS2 (20.10)

KðeÞ
ij ¼ KðeÞ

1ij þ KðeÞ
2ij (20.11)

The vector of nodal unknowns of element e is denoted by F
!ðeÞ ¼

n
F

ðeÞ
1 F

ðeÞ
2 ,,,

oT
and the vector F

!e is given by the

assemblage of F
!ðeÞ

. After incorporating the boundary conditions given by Eq. (20.2), the solution of Eq. (20.7) gives the
nodal values of the field variable f. Once the nodal values Fi are known, if required, the element resultants can be
evaluated without much difficulty.

20.3 SOLUTION OF POISSON’S EQUATION

Poisson’s equation (Eq. 20.4) is a special case of the general field Eq. (20.1). We consider the solution of Poisson’s
equation in the context of the torsion of prismatic shafts in this section.

20.3.1 Derivation of the Governing Equation for the Torsion Problem

Consider a solid prismatic shaft with any arbitrary cross-section, as shown in Fig. 20.1. When this shaft is subjected to a
twisting moment, Mz, it is usual to assume that all stresses except shear stresses sxz and syz are zero [20.1]. Thus,

sxx ¼ syy ¼ szz ¼ sxy ¼ 0 (20.12)

For this case, the equilibrium equations given by Eq. (8.4) reduce, in the absence of body forces, to:

vsxz

vx
þ vsyz

vy
¼ 0 (20.13)

vsxz

vz
¼ 0 (20.14)

vsyz

vz
¼ 0 (20.15)

Eqs. (20.14) and (20.15) indicate that stresses sxz and syz do not vary with coordinate z (i.e., along a line taken parallel
to the axis of the shaft). Now a stress function f, known as Prandtl’s stress function, is defined as:

sxz ¼ vf

vy

syz ¼ �vf

vx

9>>>=>>>; (20.16)
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so that Eq. (20.13) is satisfied automatically. If we consider strains, Hooke’s law (Eq. 8.7) indicates that only εxz and εyz

will be nonzero. Thus,

εxz ¼ sxz

G

εyz ¼ syz

G

9>>=>>; (20.17)

where G is the modulus of rigidity. Clearly, these shear strains must be independent of coordinate z. If the displacement
components are taken as [20.2]:

u ¼ �qyz (20.18a)

v ¼ qxz (20.18b)

vw

vx
¼ 1

G

vf

vy
þ qy (20.18c)

vw

vy
¼ �1

G

vf

vx
� qx (20.18d)

where q denotes the angle of twist per unit length, the stressestrain relations, Eq. (20.17), can be satisfied. To ensure con-
tinuity of axial displacement w, we have, by differentiating Eqs. (20.18c) and (20.18d),

v

vx

�
1
G

vf

vx

�
þ v

vy

�
1
G

vf

vy

�
¼ �2q (20.19)

(A)

y

0
x

xz

yz

y

x

z

Mz

(B)

FIGURE 20.1 Prismatic shaft under torsion.
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If G is a constant, Eq. (20.19) reduces to the Poisson equation:

V2f ¼ v2f

vx2
þ v2f

vy2
¼ �2Gq (20.20)

Because the shear stress normal to the external boundary must be zero, it follows from Eq. (20.16) that the stress
function on this boundary must have a constant value. This constant can be arbitrarily fixed as zero. Thus, a sufficient and
necessary boundary condition on the external boundary becomes:

f ¼ 0 (20.21)

To find the torque acting on section (Mz), we integrate the moment owing to shear stresses as:

Mz ¼
ZZ

S

ðxsyz � ysxzÞ dx dy (20.22)

where S denotes the cross-section of the shaft. By substituting Eqs. (20.16) and (20.21), Eq. (20.22) becomes:

Mz ¼ 2
ZZ

S

f dx dy (20.23)

By defining a set of nondimensional quantities as:

x0 ¼ x

l
; y0 ¼ y

l
; f0 ¼ f

Gql2
(20.24)

where l is the length of the shaft, Eqs. (20.20) and (20.21) reduce to:

V2f0 ¼ �2h� c (20.25)

with

f0 ¼ 0 on external boundary (20.26)

Note

The torsion problem can be formulated using a different approach. In this approach, the warping function j(x, y), which represents

the movement of the cross-section in the z direction per unit twist, is treated as the unknown function. Finally, a Laplace equation

needs to be solved to determine j(x, y). This approach was used by Herrmann [20.3] for the torsion analysis of irregular shapes.

20.3.2 Finite Element Solution

The functional corresponding to Eq. (20.25) can be written as:

Iðf0Þ ¼ 1
2

ZZ
S

"�
vf0

vx0

�2

þ
�
vf0

vy0

�2
#
dx0 dy0 þ

ZZ
S

cf0 dx0 dy0 (20.27)

Let the cross-section S be idealized by using triangular elements and let the nodal values of f0, namely F0
1;F

0
2;.;F0

M ,
be taken as unknowns. By choosing a suitable form of variation of f0 within each element as:

f0ðx0; y0Þ ¼ ½Nðx0; y0Þ�F!0ðeÞ
(20.28)

the element matrices and vectors can be obtained, as indicated in Eqs. (20.8)e(20.11). The resulting element equations are
then assembled to obtain the overall system equations as in Eq. (20.7) and are solved to obtain F

!e . It will be necessary to
apply the boundary conditions f

0 ¼ 0 on the outer periphery of S before solving Eq. (20.7).
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Once F
!e 0

and hence F
!e 0ðeÞ

and f0(x, y) within all of the elements are known, we can find q by using Eq. (20.23), as:

Mz ¼ 2
ZZ

S

f dx dy ¼ 2Gql2
ZZ

S

f0ðx0; y0Þdx0dy0 (20.29)

or

q ¼ Mz

2Gl2
ZZ

S

f0 dx0 dy0

¼ Mz

2Gl2
XE
e¼ 1

ðarea of triangle e� average of three nodal values of f0 of element eÞ

(20.30)

Finally, the shear stresses within any element can be computed as:

�
sxz

syz

�
¼ Gql2

8>>><>>>:
vf0

vy0

�vf0

vx0

9>>>=>>>; (20.31)

where the derivatives of f0 can be obtained by differentiating Eq. (20.28).

EXAMPLE 20.1
Find the stresses developed in a 4 � 4-cm square shaft when the angle of twist is 2 degrees in a length of 100 cm. The value of G is

0.8 � 106 N/cm2.

Solution

Step 1: Idealize the region by finite elements. Because the shaft has four axes of symmetry, we consider only one-eighth of the total

cross-section for analysis. The idealization using four elements is shown in Fig. 20.2. The information needed for subsequent

computations is given in Table 20.2.

4

2

2 3

4
3

5 6

1

G = 0.8 × 106 N/cm2

θ = 2° per 100 cm

1

Y

X

1 cm1 cm

1 cm

1 cm

FIGURE 20.2 Rectangular shaft under torsion.
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EXAMPLE 20.1 dcont’d

Step 2: Assume a suitable interpolation model for field variable f (to solve Eq. 20.20). By assuming linear variation within any

element, f(e)(x, y) can be expressed as:

fðeÞðx; yÞ ¼ a1 þ a2x þ a3yhNiFi þNjFj þNkFk (E.1)

where a1, a2, and a3 are given by Eq. (3.30), and Ni, Nj, and Nk by Eq. (3.35):

a1 ¼ ðaiFi þ ajFj þ akFk Þ
��

2AðeÞ�
a2 ¼ ðbiFi þ bjFj þ bkFkÞ

��
2AðeÞ�

a3 ¼ ðciFi þ cjFj þ ckFk Þ
��

2AðeÞ�
9>=>; (E.2)

Ni ¼ ðai þ bix þ ciyÞ
��

2AðeÞ�
Nj ¼ ðaj þ bjx þ cjyÞ

��
2AðeÞ�

Nk ¼ ðak þ bkx þ ckyÞ
��

2AðeÞ�
9>=>; (E.3)

and Fi, Fj, and Fk denote the values of f at nodes i, j, and k of element e, respectively.

Continued

TABLE 20.2 Information on Elements

Node 1 2 3 4 5 6

X(x) coordinate (cm) 2.0 1.0 2.0 0.0 1.0 2.0

Y(y) coordinate (cm) 2.0 1.0 1.0 0.0 0.0 0.0

Element number e 1 2 3 4

Global nodes corresponding
to local nodes

i 2 4 5 6

j 3 5 6 3

k 1 2 2 2

Element

Number e xi xj xk yi yj yk ck [ (xj L xi) ci [ (xk L xj) cj [ (xi L xk)

1 1.0 2.0 2.0 1.0 1.0 2.0 1.0 0.0 �1.0

2 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 �1.0

3 1.0 2.0 1.0 0.0 0.0 1.0 1.0 �1.0 0.0

4 2.0 2.0 1.0 0.0 1.0 1.0 0.0 �1.0 1.0

Element

Number e bi [ (yj L yk) bj [ (yk L yi) bk [ (yi L yj) AðeÞ[ 1
2

		xijyjkLxjkyij
		

1 �1.0 1.0 0.0 0.5

2 �1.0 1.0 0.0 0.5

3 �1.0 1.0 0.0 0.5

4 0.0 1.0 �1.0 0.5
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EXAMPLE 20.1 dcont’d

Step 3: Derive element characteristic matrices and vectors. The finite element equations corresponding to Eq. (20.20) can be

derived as a special case of Eq. (20.7) with:

K
ðeÞ
ij ¼

ZZ
AðeÞ



vNi

vx

vNj

vx
þ vNi

vy

vNj

vy

�
dA ¼ 1

4AðeÞ

2666664
�
b2
i þ c2

i

� ðbibj þ cicjÞ ðbibk þ cickÞ�
b2
j þ c2

j


ðbjbk þ cjckÞ

Symmetric
�
b2
k þ c2

k

�

3777775 (E.4)

and

P
ðeÞ
i ¼

ZZ
AðeÞ

cNidA ¼ cAðeÞ

3
(E.5)

where c ¼ 2Gq. Thus, we can compute the element matrices and vectors as:

�
K ð1Þ� ¼ �

K ð2Þ� ¼ �
K ð4Þ� ¼ 1

2

264 1:0 �1:0 0:0

�1:0 2:0 �1:0

0:0 �1:0 1:0

375 (E.6)

�
K ð3Þ� ¼ 1

2

264 2:0 �1:0 �1:0

�1:0 1:0 0:0

�1:0 0:0 1:0

375 (E.7)

P
!ð1Þ ¼ P

!ð2Þ ¼ P
!ð3Þ ¼ P

!ð4Þ ¼ Gq

3

8><>:
1

1

1

9>=>; (E.8)

Step 4: Derive the overall equations. By using the nodal connectivity information of Step 1, the overall matrix
�
Ke� and vector

P
!
w

can be derived as:



Ke
�
¼ 1

2

2666666664

1:0 0:0 �1:0 0:0 0:0 0:0

0:0 4:0 �2:0 0:0 �2:0 0:0

�1:0 �2:0 4:0 0:0 0:0 �1:0

0:0 0:0 0:0 1:0 �1:0 0:0

0:0 �2:0 0:0 �1:0 4:0 �1:0

0:0 0:0 �1:0 0:0 �1:0 2:0

3777777775
(E.9)

P
!
w

¼ Gq

3

8>>>>>>>><>>>>>>>>:

1

4

2

1

2

2

9>>>>>>>>=>>>>>>>>;
(E.10)

Step 5: Solve the system equations after applying the boundary conditions. The boundary conditions are given by f ¼ 0 on the

external boundary; that is, F1 ¼ F3 ¼ F6 ¼ 0. By eliminating these variables, F1, F3, and F6, the system equations can be written

as:

½K �F! ¼ P
!

(E.11)

where

½K � ¼ 1

2

26664
4:0 0:0 �2:0

0:0 1:0 �1:0

�2:0 �1:0 4:0

37775; P
! ¼ Gq

3

8>>><>>>:
4

1

2

9>>>=>>>;; and F
! ¼

8>>><>>>:
F2

F4

F5

9>>>=>>>;

660 PART j VI Solution and Applications of Quasi-Harmonic Equations

www.konkur.in

Telegram: @uni_k



EXAMPLE 20.1 dcont’d

The solution of Eq. (E.11) gives:

F1 ¼ F3 ¼ F6 ¼ 0; F2 ¼ 3Gq=2 ¼ 418:8; F4 ¼ 7Gq=3 ¼ 651:5;

F5 ¼ 5Gq=3 ¼ 465:3

Step 6: Compute the element resultants.

The shear stresses induced are given by Eq. (20.16):

sxz ¼ vf

vy
¼ a3 ¼ ðciFi þ cjFj þ ckFk Þ

��
2AðeÞ� (E.12)

syz ¼ �vf

vx
¼ �a2 ¼ �ðbiFi þ bjFj þ bkFkÞ

��
2AðeÞ� (E.13)

For e ¼ 1: i ¼ 2, j ¼ 3, and k ¼ 1:

sxz ¼ �F3 þ F1 ¼ 0; syz ¼ F2 � F3 ¼ 418:8 N
�
cm2

For e ¼ 2: i ¼ 4, j ¼ 5, and k ¼ 2:

sxz ¼ �F5 þ F2 ¼ �46:5 N
�
cm2; syz ¼ F4 � F5 ¼ 186:2 N

�
cm2

For e ¼ 3: i ¼ 5, j ¼ 6, and k ¼ 2:

sxz ¼ �F5 þ F2 ¼ �46:5 N
�
cm2; syz ¼ F5 � F6 ¼ 465:3 N

�
cm2

For e ¼ 4: i ¼ 6, j ¼ 3, and k ¼ 2:

sxz ¼ �F6 þ F3 ¼ 0:0; syz ¼ �F3 þ F2 ¼ 418:8 N
�
cm2

COMPUTATION OF THE TWISTING MOMENT (MZ)
The twisting moment acting on the shaft can be computed, using Eq. (20.23), as:

Twisting moment ¼ 2
ZZ

S

f dx dyx
X4

e¼ 1

ZZ
AðeÞ

2fðeÞdx dy (20.32)

Because f(e) is given by Eq. (E.1) of Example 20.1, the integral in Eq. (20.32) can be evaluated to obtain:

Twisting moment ¼
X4

e¼ 1

2AðeÞ

3
ðFi þ Fj þ FkÞðeÞ

¼ 1
3
½ð418:8þ 0:0þ 0:0Þ þ ð651:5þ 465:3þ 418:8Þ þ ð465:3þ 0:0þ 418:8Þ þ ð0:0þ 0:0þ 418:8Þ�

¼ 1085:67 N cm

Because the region of finite elements is only one-eighth the total cross-section, the total twisting moment (Mz) is given
by:

Mz ¼ 8ð1085:67Þ ¼ 8685:36 N cm

The exact solution for a square shaft (2a � 2a) [20.1] is given by:

Mz ¼ 0:1406 Gqð2aÞ4

¼ 0:1406
�
0:8� 106

�� 2
100� 57:3

�
ð4Þ4 ¼ 10; 046:0 N cm

Thus, the finite element solution can be seen to be in error by 13.54%. This error can be reduced either by increasing the
number of elements or by using higher-order elements for idealization.
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20.4 TRANSIENT FIELD PROBLEMS

20.4.1 Governing Equations

Whenever a field problem involves time as an independent parameter, it is called a propagation, transient, dynamic, or
time-dependent problem. Transient field problems are governed by the quasi-harmonic equation with time differentials. For
example, in three dimensions, we have:

v

vx

�
kx
vf

vx

�
þ v

vy

�
ky
vf

vy

�
þ v

vz

�
kz
vf

vz

�
� c� a

vf

vt
� b

v2f

vt2
¼ 0 (20.33)

where kx, ky, kz, c, a, and b will be, in general, functions of x, y, z, and time t. If time is not considered a variable, Eq.
(20.33) can be seen to reduce to the steady-state quasi-harmonic equation considered in the previous section. The boundary
conditions associated with Eq. (20.33) are:

f ¼ f for t > 0 on S1 (20.34)

and

kx
vf

vx
lx þ ky

vf

vy
ly þ kz

vf

vz
lz þ qþ rf ¼ 0 for t > 0 on S2 (20.35)

Because this is a time-dependent problem, the initial conditions also have to be specified as

fðx; y; z; t ¼ 0Þ ¼ f0ðx; y; zÞ in V (20.36)

and

df
dt

ðx; y; z; t ¼ 0Þ ¼ _f0ðx; y; zÞ in V (20.37)

Eq. (20.33) represents a general damped wave equation and has application in phenomena such as electromagnetic,
acoustic, and surface waves. No variational principle (functional I) exists for the problem stated by Eqs. (20.33)e(20.37).

20.4.2 Finite Element Solution

We present the finite element solution of the problem according to the weighted residual (Galerkin) method in this section.
Step 1: Discretize the domain V into E three-dimensional finite elements with p nodes each.
Step 2: Assume the variation of the field variable in a typical element e as:

fðx; y; z; tÞ ¼
Xp

i¼ 1

Niðx; y; zÞFðeÞ
i ¼ ½N� F!ðeÞ

(20.38)

where Ni is the interpolation function corresponding to the nodal unknown FðeÞ
i of element e. The nodal unknowns FðeÞ

i are
assumed to be functions of time.

Step 3: Derive the finite element equations using the Galerkin method.
In this method, the criterion to be satisfied at any instant in time is given by:ZZZ

V ðeÞ
Ni



v

vx

�
kx
vf

vx

�
þ v

vy

�
ky
vf

vy

�
þ v

vz

�
kz
vf

vz

�
� c� a

vf

vt
� b

v2f

vt2

�
dV ¼ 0

i ¼ 1; 2;.; p

(20.39)

Each of the first three terms in the brackets in Eq. (20.39) can be integrated by parts using the GreeneGauss theorem of
the Appendix: ZZZ

V ðeÞ
Ni

v

vx

�
kx
vf

vx

�
dV ¼ �

ZZZ
VðeÞ

vNi

vx
kx
vf

vx
dV þ

ZZ
SðeÞ

Nikx
vf

vx
dy dz

¼ �
ZZZ

V ðeÞ

vNi

vx
kx
vf

vx
dV þ

ZZ
SðeÞ

Nikx
vf

vx
lx dS (20.40)
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where lx is the x-direction cosine of the outward normal. Thus, Eq. (20.39) can be written as:

�
ZZZ

VðeÞ



kx
vNi

vx

vf

vx
þ ky

vNi

vy

vf

vy
þ kz

vNi

vz

vf

vz

�
dV þ

ZZ
SðeÞ

Ni



kx
vf

vx
lx þ ky

vf

vy
ly þ kz

vf

vz
lz

�
dS

�
ZZZ

V ðeÞ
Ni

�
cþ a

vf

vt
þ b

v2f

vt2

�
dV ¼ 0; i ¼ 1; 2;.; p

(20.41)

Because the boundary of the elements, S(e), is composed of SðeÞ1 and SðeÞ2 , the surface integral in Eq. (20.41) over SðeÞ1

would be zero (because f is prescribed to be a constant f on SðeÞ1 , the derivative of f would be zero). On the surface SðeÞ2 ,
the boundary condition given by Eq. (20.35) has to be satisfied. For this, we express the surface integral in Eq. (20.41) over

SðeÞ2 in equivalent form as:

ZZ
S
ðeÞ
2

Ni



kx
vf

vx
lx þ ky

vf

vy
ly þ kz

vf

vz
lz

�
dS2 ¼

ZZ
S
ðeÞ
2

Ni½�q� rf� dS2 (20.42)

By using Eqs. (20.38) and (20.42), Eq. (20.41) can be expressed in matrix form as:�
KðeÞ�F!ðeÞ þ

h
KðeÞ

1

i _
F
!ðeÞ

þ
h
KðeÞ

2

i €
F
!ðeÞ

þ
h
KðeÞ

3

i
F
!ðeÞ þ P

!ðeÞ ¼ 0
!

(20.43)

where the elements of the various matrices in Eq. (20.43) are given by:

KðeÞ
ij ¼

ZZZ
V ðeÞ

�
kx
vNi

vx

vNj

vx
þ ky

vNi

vy

vNj

vy
þ kz

vNi

vz

vNj

vz

�
dV (20.44)

KðeÞ
1ij ¼

ZZZ
V ðeÞ

aNiNjdV (20.45)

KðeÞ
2ij ¼

ZZZ
V ðeÞ

bNiNj dV (20.46)

KðeÞ
3ij ¼

ZZ
SðeÞ2

rNiNj dS2 (20.47)

Pi
ðeÞðtÞ ¼

ZZZ
V ðeÞ

cNi dV þ
ZZ

SðeÞ2

qNi dS2 (20.48)

Step 4: Assemble the element equations and obtain the overall equations. Eq. (20.43) represents the element equations,
and the assembly of these equations leads to the following type of ordinary differential equations:�

Ke� F!e þ�
Ke1

�
F
!�e þ�

Ke2

�
F
!��e þ�

Ke3

�
F
!e þ P

!e ¼ 0
!

(20.49)

where a dot over Fe represents the time derivative.
Step 5: Solve the assembled equations. The system of Eq. (20.49) can be solved for Fe!(t) with the discretized form of

initial conditions stated in Eqs. (20.36) and (20.37) and by incorporating the boundary conditions of Eq. (20.34). The
solution procedures outlined in Sections 7.4 and 12.5 can be used to solve Eq. (20.49).

Step 6: Find the element resultants. From the known values of the nodal values of f, the required element resultants can
be computed with the help of Eq. (20.38).

20.4.3 SpaceeTime Finite Elements

In a general time-dependent or propagation problem, one time and three spatial parameters will be involved. Usually, we
first use the finite element method to formulate the solution in physical space. Next, we use a different method such as finite
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differences to find the solution over a period of time. Thus, this procedure involves idealization of the field variable f (x, y,
z, t) in any element e (in three-dimensional space) as:

fðx; y; z; tÞ ¼ ½N1ðx; y; zÞ�F!
ðeÞðtÞ (20.50)

where [N1] is the matrix of interpolation or shape functions in space and F
!ðeÞ

is the vector of time-dependent nodal vari-
ables. By using Eq. (20.50) and the specified initial conditions, we use a finite difference scheme such as:

F
!ðeÞðtÞ ¼ ½N2ðt;DtÞ�F!

ðeÞðt � DtÞ (20.51)

where [N2] indicates the matrix of interpolation functions in the time domain.
Instead of solving the problem using Eqs. (20.50) and (20.51), finite elements can be constructed in four dimensions (x,

y, z, and t) and the field variable can be expressed as follows [20.4e20.6]:

fðx; y; z; tÞ ¼ ½Nðx; y; z; tÞ�F!ðeÞ
(20.52)

where [N] represents the matrix of shape functions in x, y, z, and t, and F
!ðeÞ

is the vector of nodal values of element e. In
this case, the time-dependent problem can be solved directly without using special techniques.

REVIEW QUESTIONS

20.1 Give brief answers to the following questions.

1. What is the difference between harmonic and quasi-harmonic equations?
2. What is the difference between Laplace and Poisson equations?
3. What is a transient field problem?
4. What is a spaceetime finite element?
5. State two approaches that can be used to derive the finite element equations of a transient field problem.

20.2 Fill in the blank with a suitable word.

1. Solution domains of parabolic and hyperbolic problems are usually defined by _______ domains.
2. Second-order partial differential equations are classified as parabolic, elliptic, and _______ equations.

20.3 Indicate whether the following statement is true or false.

1. Solution domains of elliptic problems are usually defined by an open boundary.

20.4 Match the given physical problems with their corresponding significance associated with kx, ky, and kz:

1. Heat conduction a. Reciprocal of shear modulus

2. Seepage flow b. Permittivities

3. Torsion of a shaft c. Thermal conductivities

4. Electrostatic field d. Specific conductivities

5. Distribution of electric potential e. Permeability coefficients

PROBLEMS

Identify whether the given partial differential equation is parabolic, elliptic, or hyperbolic in Problems 20.1e20.6:

20.1 Steady-state fluid (seepage) flow under a dam:

kx
v2h

vx2
þ ky

v2h

vy2
¼ 0
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20.2 Laminar flow heat exchanger equation:

v2T

vr2
þ 1

r

vT

vr
þ v2T

vz2
¼ ruc

k

vT

vz

20.3 Ion exchange equation (for flow of a solution through a packed column containing an ion exchange resin):

vu

vt
þ aðx; tÞ vu

vx
¼ pðx; tÞ

20.4 Transient heat conduction in two dimensions:

rc
vT

vt
¼ k

v2T

vx2
þ k

v2T

vy2
þ Qðx; yÞ

20.5 Torsion of a prismatic shaft (Poisson’s equation):

v2f

vx2
þ v2f

vy2
þ pðx; yÞ ¼ 0

20.6 Vibration of a membrane:

v2u

vx2
þ v2u

vy2
¼ v2u

vt2

20.7 A steel shaft with an elliptic cross-section and length of 1 m is twisted by an angle of q ¼ 2 degrees (Fig. 20.3).
Assuming the shear modulus to be G ¼ 80 GPa, determine the maximum shear stress and the torque (Mz) in the
shaft by modeling one-quarter of the ellipse using linear triangular finite elements. Compare the finite element
solution with the following exact solution:

smax ¼ 2Mz

pab2
at x ¼ 0; y ¼ �b

Mz ¼ Gqpa3b3

ða2 þ b2Þ
20.8 Consider the torsion of a uniform shaft with an I section (Fig. 20.4). Using the finite element method, determine

the stresses in the elements and the torque on the shaft for the following data:

Length ¼ 1 m; G ¼ 80 GPa; q ¼ 1�

x

y

x 2

a 2

y 2

b 2
+ = 1

a = 5 cm, b = 3 cm

b

b

a a

FIGURE 20.3 Elliptic cross-section.
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20.9 The torsion of a prismatic shaft is governed by the equation:

v2j

vx2
þ v2j

vy2
þ 2 ¼ 0

in the interior cross-section of the shaft subject to j ¼ 0 on the boundary of the cross-section. Derive the corre-
sponding finite element equations using the Galerkin method.

20.10 In the electrostatic problem, the electric potential (f) is governed by the equation (Fig. 20.5):

v2f

vx2
þ v2f

vy2
þ r

ε

¼ 0

with the boundary conditions:

f ¼ c1 on S1; f ¼ c2 on S2

where r is the charge density (Coulomb/m3) and ε is the permittivity of the dielectric medium (Farad/m). Derive the
finite element equations using a variational approach.

20.11 Determine the distribution of voltage in the circular coaxial cable shown in Fig. 20.6 if a voltage of 200 V is applied
at the inner surface of the dielectric insulator. Assume the voltage at the outer surface to be zero.

20.12 Consider the following transient field problem:

c1
v2f

vx2
þ c2

vf

vt
¼ 0; 0 � x � L; 0 � t � T (P.1)

where f ¼ fx0 or (df/dx) ¼ 0 at x ¼ 0 and x ¼ L, and f ¼ ft0(x) at t ¼ 0. Using (vf/vt) ¼ (fiþ1 � fi)/Dt with
fi ¼ f(ti) and fiþ1 ¼ f(tiþ1 ¼ ti þ Dt), derive the finite element equations using the Galerkin approach.

20.13 Consider the transient field problem described in Problem 20.12. Using linear triangular elements in a spaceetime
coordinate system, derive the finite element equations using the Galerkin method.

2 cm

2 cm

2 cm

1 cm

5 cm 5 cm

y

x

8 cm

8 cm

FIGURE 20.4 I Section.
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20.14 Find the stresses induced in a shaft subjected to torsion. The cross-section of the shaft is in the form of an equi-
lateral triangle, as shown in Fig. 20.7. The data follow: a ¼ 10 in, length (L) ¼ 100 in, shear modulus (G) ¼
11.5 � 106 psi, and angle of twist (q) ¼ 0.01 degrees/in ¼ 1.7453 � 10�4 rad/in.
Compare your solution with the exact solution given by:

fðx; yÞ ¼ �G q

�
1
2

�
x2 þ y2

�� 1
2a

�
x3 � 3 xy2

�� 2
27

a2
�

where the origin of the (x, y) coordinates is at the centroid of the triangle and smax ¼ G q a
2 at the middle of each side

of the triangle.

y

x

φ = 0

= 25 × 10 −12, = 1

1 cm

3 cm

φ  = 100 V

FIGURE 20.6 Circular coaxial cable.

Dielectric medium (  ,   )

S2

S1

y

x

FIGURE 20.5 Electrostatic problem.
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FIGURE 20.7 Equilateral triangle section.
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Chapter 21

Finite Element Analysis Using ABAQUS*

Chapter Outline

21.1 Introduction 671

21.2 Examples 671

Problems 701

21.1 INTRODUCTION

ABAQUS finite element software has strong capabilities for solving specifically nonlinear problems and was developed by
Hibbitt, Karlsson, and Sorenson, Inc. The solution to a general problem by ABAQUS involves three stages: an ABAQUS
preprocessor, an ABAQUS solver, and an ABAQUS postprocessor. ABAQUS/CAE or another suitable preprocessor
provides a compatible input file to ABAQUS. ABAQUS/Standard or ABAQUS/Explicit can be used as an ABAQUS
solver to solve problems. ABAQUS/Standard, which is based on implicit algorithms, is good for static, strongly nonlinear
problems. ABAQUS/Explicit, which is based on explicit algorithms, is intended for dynamic problems. Both ABAQUS/
Standard and ABAQUS/Explicit can be executed under ABAQUS/CAE. ABAQUS/CAE or another suitable postprocessor
can be used to display the output (results) of the problem.

ABAQUS/CAE provides a complete ABAQUS environment that offers a simple, consistent interface for creating,
submitting, monitoring, and evaluating results from ABAQUS/Standard and ABAQUS/Explicit simulations. ABAQUS/
CAE is divided into modules in which each one defines a logical aspect of the modeling process: for example, to define the
geometry, define the material properties, and generate a mesh. As we move from one module to another, we build the
model from which ABAQUS/CAE generates an input file that we can submit to ABAQUS/Standard or ABAQUS/Explicit
to carry the analysis. After completing the analysis, the unit (ABAQUS/Standard or ABAQUS/Explicit) sends the in-
formation to ABAQUS/CAE to allow us to monitor the progress of the job and generates an output database. Finally, we
use the visualization module of ABAQUS/CAE (also licensed separately as ABAQUS/Viewer) to read the output database
and view the results of analysis. ABAQUS/Viewer provides graphical displays of ABAQUS finite element models and
results. It obtains information about the model and results from the output database. We can control the output information
displayed. For example, we can obtain plots such as the undeformed shape, deformed shape, contours, x-y data, and time
history animation from ABAQUS/Viewer.

21.2 EXAMPLES

EXAMPLE 21.1

Input File (Fig. 21.1)

*HEADING
FINITE ELEMENT ANALYSIS OF FIXED-FIXED BEAM
*NODE, NSET¼NODE_ALL

Continued

* Abaqus Finite Element Method software is marketed by SIMULIA, Rising Sun Mills, 166 Valley Street, Providence, RI 02909-2499.

The Finite Element Method in Engineering. https://doi.org/10.1016/B978-0-12-811768-2.00021-3
Copyright © 2018 Elsevier Inc. All rights reserved.
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EXAMPLE 21.1 dcont’d

1 0:0; 0:0

2 250:00; 0:0

3 500:00; 0:0

4 750:00; 0:0

5 1000:00; 0:0

9>>>>>>=>>>>>>;
/Five nodes and their coordinates

*ELEMENT, TYPE¼B23, ELSET¼ELE_ALL
1; 1; 2

2; 2; 3

3; 3; 4

4; 4; 5

9>>>=>>>;/Four beam elements and their end node numbers

*BEAM SECTION, ELSET¼ELE_ALL, MATERIAL¼MAT_A, SECTION¼RECT
10:; 20:

0:; 0:; �1:

�
/Beam cross-section dimensions

*MATERIAL, NAME¼MAT_A
*ELASTIC

70: 0e3; 0:0/Young’s modulus and Poisson’s ratio ðset to zero as it is not required for beamsÞ
*BOUNDARY

1; 1; 2

1; 6; 6

5; 1; 2

5; 6; 6

9>>>=>>>;/Boundary conditions ðend nodes 1; 5 fixed dof 1; 2; 6 zeroÞ

*STEP
*Static

1:; 1:; 1e� 05; 1:

*CLOAD
4; 2; 1000:00/Load applied in direction 2 to node 4

*output, field, variable¼all
*EL PRINT, ELSET¼ELE_ALL
SM1
*NODE PRINT, NSET¼NODE_ALL
U
*END STEP

Output

The following table is printed at the integration points for Element Type B23 and Element Set

ELE_ ALL.

1000 mm

1 2 3 4 5

20 mm P = 1000 N 10
mm

20 mm

Cross-section

FIGURE 21.1 A fixedefixed beam.
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EXAMPLE 21.1 dcont’d

Element PT Footnote SM1

1 1 �4.2473E+04

1 2 �2.7344E+04

1 3 �1.2215E+04

2 1 �3410.

2 2 1.1719E+04

2 3 2.6848E+04

3 1 3.5652E+04

3 2 5.0781E+04

3 3 6.5910E+04

4 1 4.6539E+04

4 2 �3.5156E+04

4 3 �1.1685E+05

Maximum 6.5910E+04

Element 3

Minimum �1.1685E+05

Element 4

Node Output

The following table is printed for nodes belonging to Node Set NODE_ALL.

Node Footnote U1 U2 UR3

2 0.000 2.267 1.4648E-02

3 0.000 5.580 8.3705E-03

4 0.000 4.708 �1.8834E02

Maximum 0.000 5.580 1.4648E-02

At node 1 3 2

Minimum 0.000 0.000 �1.8834E02

At node 1 1 4

The analysis has been completed (Figs. 21.2 and 21.3).

Continued

[x1.E-12]

0.0

−0.5

−1.0

−1.5
0 200 400

True distance along path

600 800 1000

SF – SF1: True Dist. along ‘Path-2’

F
or

ce

FIGURE 21.2 Shear force distribution along the beam.
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EXAMPLE 21.1 dcont’d

EXAMPLE 21.2
Data (Fig. 21.4):

E ¼ 104 ksi, Ai ¼ 2 in2; i ¼ 1, 2, . , 10, P4 ¼ P8 ¼ 100 kip

Input File

*HEADING
FINITE ELEMENT ANALYSIS OF A 10-BAR PLANAR TRUSS
** UNIT SYSTEM
** LENGTH: in
** FORCE: klb
** Modulus: ksi
*NODE

1; 720; 360;

2; 720; 0;

3; 360; 360;

4; 360; 0;

5; 0; 360;

6; 0; 0;

[x1.E6]

0.05

0.00

−0.05

−0.10

−0.15
0 200 400 600 800 1000

M
om

en
t

True distance along path SM – SM1: True Dist. along ‘Path-1’

FIGURE 21.3 Bending moment distribution along the beam.

6 4 2

5 3 11 2

Y

X

8

3

5

9

6

4

10
P8 P4

7

360 in 360 in

360
in

FIGURE 21.4 A 10-bar planar truss.
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EXAMPLE 21.2 dcont’d

* NSET, NSET¼NODE_LOAD
2, 4
*NSET,
NSET¼NODE_FREE
1, 2, 3, 4
*ELEMENT,TYPE¼T2D2,ELSET¼ELE_ALL

1, 5, 3,
2, 3, 1,
3, 6, 4,
4, 4, 2,
5, 4, 3,
6, 2, 1,
7, 5, 4,
8, 6, 3,
9, 3, 2,
10, 4, 1,

*MATERIAL, NAME ¼ MAT_1
*ELASTIC
1.0E4
*SOLID SECTION, ELSET¼ELE_ALL, MATERIAL¼MAT_1
2.0
*BOUNDARY

5; 1; 2

6; 1; 2

*STEP
*STATIC
*CLOAD
NODE_LOAD, 2, 100
*NODE PRINT, NSET¼NODE_FREE
U
*EL PRINT, ELSET¼ELE_ALL
S
*END STEP

Output

Element Output

The following table is printed at the integration points for Element Type T2D2 and Element Set

TRUSS

Element PT Footnote S11

1 1 e97.68

2 1 e20.06

3 1 102.3

4 1 29.94

5 1 e17.74

6 1 e20.06

7 1 e73.99

8 1 67.43

9 1 e42.34

10 1 28.37

Maximum 102.3

Element 3

Minimum e97.68

Element 1

Continued
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EXAMPLE 21.2 dcont’d

Node Output

The following table is printed for nodes belonging to Node Set NODE_FREE (Fig. 21.5).

Node Footnote U1 U2

1 e4.239 18.98

2 4.761 19.70

3 e3.517 8.372

4 3.683 9.011

Maximum 4.761 19.70

At node 2 2

Minimum e4.239 8.372

At node 1 3

2

23 1

6

100 kip 100 kip

5

4

1

5 6

7 9

108

43

y

xz

ODB: HW3P2.odb  ABAQUS/Standard Version 6.7-5

Step: Step-1
Increment 1: Step Time = 1.000

Undeformed

5
1

4
2

10

9

2
3

1

6
3

100 kip 100 kip

6

7

8

5

y

xz ODB: HW3P2.odb  ABAQUS/Standard Version 6.7-5  

Step: Step-1
Increment 1: Step Time = 1.000
Primary Var: S, Mises
Deformed Var:  U Deformation Scale Factor: +3.655e+00

9

S, Mises
(Avg: 75%)

+ 1.023e + 02
+ 9.527e + 01
+ 8.822e + 01
+ 8.117e + 01
+ 7.413e + 01
+ 6.708e + 01
+ 6.003e + 01
+ 5.298e + 01
+ 4.594e + 01
+ 3.889e + 01
+ 3.184e + 01
+ 2.479e + 01
+ 1.774e + 01

Deformed

FIGURE 21.5 Undeformed and deformed plots. Avg, average; Var, variable.
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EXAMPLE 21.3
Data (Fig. 21.6):

E ¼ 2 � 107 N/cm2, A ¼ 2 cm2 for all members

All dimensions are in centimeters; all base nodes are fixed.

Input File

*HEADING
FINITE ELEMENT ANALYSIS OF A 4-BAR SPACE TRUSS
** UNIT SYSTEM
** LENGTH: cm
** FORCE: N
** Modulus: N/cm^2
*NODE

1, 0.0, 0.0, 0.0,
2, 0.0, 0.0, 20.0,
3, 20.0, 0.0, 20.0,
4, 20.0, 0.0, 0.0,
5, 10.0, 40.0, 10.0,

*NSET, NSET¼NODE_FREE
5,
*ELEMENT, TYPE¼T3D2, ELSET¼ELE_1

1, 1, 5,
2, 2, 5,
3, 3, 5,
4, 4, 5,

*ELSET, ELSET¼ELE_ALL
ELE_1
*MATERIAL, NAME¼MAT_1
*ELASTIC
2.0E7
*SOLID SECTION, ELSET¼ELE_ALL,MATERIAL¼MAT_1
2.0
*BOUNDARY

Continued

y

x

z

2

1

3

5

1000 N

2000 N
(10, 40, 10)

(0, 0, 0) (20, 0, 0)

(20, 0, 20)(0, 0, 20)

4

FIGURE 21.6 A four-bar space truss.
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EXAMPLE 21.3 dcont’d

1, 1, 3
2, 1, 3
3, 1, 3
4, 1, 3

*STEP
*STATIC
*CLOAD
5, 1, 2000
5, 2, 1000
*NODE PRINT, NSET¼NODE_FREE
U
*EL PRINT, ELSET¼ELE_ALL
S11
*END STEP

Output

The following table us printed at the integration points for Element Type T3D2 and Element Set

ELE_ALL.

Element PT Footnote S11

1 1 1193.

2 1 1193.

3 1 e928.1

4 1 e928.1

Maximum 1193.

Element 1

Minimum e928.1

Element 3

Node Output

The following table is printed for nodes belonging to Node Set NODE_FREE.

Node Footnote U1 U2 U3

5 9.5459E-03 2.9831E-04 0.000

Maximum 9.5459E-03 2.9831E-04 0.000

At node 5 5 5

Minimum 9.5459E-03 2.9831E-04 0.000

At node 5 5 5

The analysis has been completed.

ANALYSIS COMPLETE (Fig. 21.7)

S.S11 at Loc 1 Node Label U.Magnitude at Loc 1 U.U1 at Loc 1 U.U2 at Loc 1 U.U3 at Loc 1

1.19324Eþ03 1 2.38649E-33 562.5E-36 2.25E-33 562.5E-36

1.19324Eþ03 2 2.38649E-33 562.5E-36 2.25E-33 e562-5E- 36

e928.078 3 1.85616E-33 437.5E-36 e1.75E-33 437.5E-36

e928.078 4 1.85616E-33 437-5E-36 e1.75E-33 e437.5E-36

132.583 5 9.5506E-03 9.54594E-03 298.311E-06 0.

Minimum e928.078 1.85616E-33 437.5E-36 e1.75E-33 e562.5E-36

At Node 3 4 4 4 2

Maximum 1.19324Eþ03 9.5506E-03 9.54594E-03 298.311E-06 562.5E-36

At Node 2 5 5 5 1

Total 662.913 9.55060E-03 9.54594E-03 298.311E-06 0.
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EXAMPLE 21.3 dcont’d

EXAMPLE 21.4
Data (Fig. 21.8):

Finite element to be used: T3D2 ¼ three-dimensional (3D) two-node truss element

Dimensions in figure are in millimeters; area of cross-section of each bar: 3225.8 mm2

Material: Aluminum; E ¼ 69 GPa

Load applied: Vertical load of 10,000 N at Node 1

Input File

** UNIT
** FORCE: N
** LENGTH: m
*HEADING:
FINITE ELEMENT ANALYSIS OF A 25-BAR SPACE TRUSS
*********** The coordinates of nodes
*NODE, NSET¼NODE_ALL

Continued

y

xz

ODB: hw3p2.odb  ABAQUS/Standard Version 6.7-5

Step: Step-1
Increment 1: Step Time =1.000

ODB: hw3p2.odb  ABAQUS/Standard Version 6.7-5

Step: Step-1
Increment 1: Step Time = 1.000
Primary Var: S, Mises
Deformed Var: U Deformation Scale Factor: +4.190e + 02

S, Mises
(Avg: 75%)

+ 1.193e + 03
+ 1.171e + 03
+ 1.149e + 03
+ 1.127e + 03
+ 1.105e + 03
+ 1.083e + 03
+ 1.061e + 03
+ 1.039e + 03
+ 1.016e + 03
+ 9.944e + 02
+ 9.723e + 02
+ 9.502e + 02
+ 9.281e + 02

2

4

5

3

3

4

2

4

5

3
1

4

1

3 2

1
2

y

xz

Undeformed

Deformed

FIGURE 21.7 Undeformed and deformed plots.
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EXAMPLE 21.4 dcont’d

1, e0.9525, 0.0, 5.0800
2, 0.9525, 0.0, 5.0800
3, e0.9525, .9525, 2.5400
4, .9525, .9525, 2.5400
5, .9525, e.9525, 2.5400
6, e.9525, e.9525, 2.5400
7, e2.5400, 2.5400, 0.0
8, 2.5400, 2.5400, 0.0
9, 2.5400, e2.5400, 0.0
10, e2.5400, e2.5400, 0.0

********** The connectivity of elements
********** The first term in each data line is the number of the element
********** The last two terms in each data line are the numbers of nodes
*ELEMENT, TYPE¼T3D2, ELSET¼ELE_ALL

1, 1, 2,
2, 1, 4,
3, 2, 3,
4, 1, 5,
5, 2, 6,
6, 2, 4,
7, 2, 5,
8, 1, 3,
9, 1, 6,
10, 3, 6,
11, 4, 5,
12, 3, 4,
13, 6, 5,
14, 3, 10,
15, 6, 7,
16, 4, 9,
17, 5, 8,
18, 4, 7,
19, 3, 8,
20, 5, 10,
21, 6, 9,
22, 6, 10,
23, 3, 7,
24, 4, 8,
25, 5, 9,

********** Elements are grouped into several element sets, which facilitates assigning element
attributes

*ELSET, ELSET¼SET1
1
*ELSET, ELSET¼ SET2, GENERATE
2,5,1
*ELSET, ELSET¼SET3, GENERATE
6,9,1
*ELSET, ELSET¼SET4, GENERATE
10,11,1
*ELSET, ELSET¼SET5, GENERATE
12,13,1
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EXAMPLE 21.4 dcont’d

*ELSET, ELSET¼SET6, GENERATE
14,17,1
*ELSET, ELSET¼SET7, GENERATE
18,21,1
*ELSET, ELSET¼SET8, GENERATE
22,25,1*
************* Assign cross-section area to members of each element set
*SOLID SECTION, ELSET¼SET1, MATERIAL¼BAR_MAT
0.0032258
*SOLID SECTION, ELSET¼SET2, MATERIAL¼BAR_MAT
0.0032258
*SOLID SECTION, ELSET¼SET3, MATERIAL¼BAR_MAT
0.0032258
*SOLID SECTION, ELSET¼SET4, MATERIAL¼BAR_MAT
0.0032258
*SOLID SECTION, ELSET¼SET5, MATERIAL¼BAR_MAT
0.0032258
*SOLID SECTION, ELSET¼SET6, MATERIAL¼BAR_MAT
0.0032258
*SOLID SECTION, ELSET¼SET7, MATERIAL¼BAR_MAT
0.0032258
*SOLID SECTION, ELSET¼SET8, MATERIAL¼BAR_MAT
0.0032258
************* Material properties definition
*MATERIAL, NAME¼BAR_MAT
************ Young’s modulus
*ELASTIC
6.9E10
************ Density
*DENSITY
2.77E3
************ Constrain the displacement boundary conditions
*NSET, NSET¼FIXED
7, 8, 9, 10
************ Define the force boundary conditions
*NSET, NSET¼LOAD_NODE
1
*BOUNDARY
FIXED, 1, 3
************ The comment lines are a static analysis of the structure
*STEP
*STATIC
1, 1.0, 1.0E-5, 1.0
*CLOAD
LOAD_NODE, 3, 10,000.0
*NODE. PRINT, NSET¼NODE_ALL
U, RF
*EL PRINT, ELSET¼ELE_ALL
S
*END STEP

Continued
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EXAMPLE 21.4 dcont’d

Output

Element Output

The following table is printed at the integration points for Element Type T3D2 and Element Set

ELE_ALL.

Element PT Footnote S11

1 1 e3.6221Eþ05

2 1 3.1513Eþ05

3 1 3.1513Eþ05

4 1 3.1513Eþ05

5 1 3.1513Eþ05

6 1 e2.5789Eþ05

7 1 e2.5789Eþ05

8 1 1.3975Eþ06

9 1 1.3975Eþ06

10 1 e2.2164Eþ05

11 1 e3.4060Eþ04

12 1 e4.0399Eþ04

13 1 e4.0399Eþ04

14 1 5.5171Eþ05

15 1 5.5171Eþ05

16 1 3.0848Eþ04

17 1 3.0848Eþ04

18 1 e1.2744Eþ05

19 1 7.4997Eþ05

20 1 e1.2744Eþ05

21 1 7.4997Eþ05

22 1 1.1096Eþ06

23 1 1.1096Eþ06

24 1 7.1166Eþ04

25 1 7.1166Eþ04

Maximum 1.3975Eþ06

Element 8

Minimum e3.6221Eþ05

Element 1

Node Output

The following table is printed for nodes belonging to Node Set NODE_ALL.

Node Footnote U1 U2 U3 RF1 RF2 RF3

1 1.4758E-04 0.000 1.3624E-04 0.000 0.000 0.000

2 1.3758E-04 0.000 e1.2548E-5 0.000 0.000 0.000

3 e8.9143E-06 e3.0596E.06 7.6418E-05 0.000 0.000 0.000

4 e1.0030E-05 e4.7017E-07 e1.8960E-06 0.000 0.000 0.000

5 e1.0030E-05 4.7017E-07 e1.8960E-06 0.000 0.000 0.000

6 e8.9143E-06 3.0596E-06 7.6418E-05 0.000 0.000 0.000

7 0.000 0.000 0.000 e1978. 2885. e3438.

8 0.000 0.000 0.000 1978. 1018. e1562.

9 0.000 0.000 0.000 1978. e1018. e1562.

10 0.000 0.000 0.000 e1978. e2885. e3438.

Maximum 1.4758E-04 3.0596E-06 1.3624E-04 1978. 2885. 0.000

At node 1 6 1 8 7 1

Minimum e1.0030E-05 e3.0596E-06 e1.2548E-05 e1978. e2885. e3438.

At node 4 3 2 10 10 10
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EXAMPLE 21.4 dcont’d

EXAMPLE 21.5
Data (Fig. 21.9):

Plate is fixed at one edge and supported by rollers at the opposite edge

Other two edges are free (no support)

A concentrated transverse force of 100 N is applied at center

Material: E ¼103 N/mm2, Poisson ratio ¼ 0.3

Continued

1

2

3 4

5

6 9 8

10

1905

13

12
25

16

21

17

24

22

20

19

14

15

18

23

7

17

z

2
1

5

3

10

7

9

8

4

10

5080

2540

1905

5080

6

2540

FIGURE 21.8 A 25-bar space truss.

P = 100.0 N

b = 1000.0

Length unit: mm
a = 1000.0

t = 5.0

FIGURE 21.9 Plate subjected to transverse load.
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EXAMPLE 21.5 dcont’d

Input File

*Heading
** Job name: plate model name: Model-1
*Preprint, echo¼NO, model¼NO, history¼NO, contact¼NO
**
**PARTS
**
*Part, name¼Part-1
*End Part
**
**
** ASSEMBLY
**
*Assembly, name¼Assembly
**
*Instance, name ¼ Part-1-1, part ¼ Part-1
*Node

1, 0., �500., 0.
2, 0., 0., 0.
3, e500., 0., 0.
4, e500., e500., 0.
5, 0., 500., 0.
6, 500., 0., 0.
7, 500., 500., 0.
8, e500., 500., 0.
9, 500., e500., 0.
10, 0., e250., 0.
11, e250., 0., 0.
12, e500., e250., 0.
13, e250., e500., 0.
14, 0., 250., 0.
15, 250., 0., 0.
16, 500., 250., 0.
17, 250., 500., 0.
18, e250., 500., 0.
19, e500., 250., 0.
20, 250., e500., 0.
21, 500., e250., 0.
22, e250., e250., 0.
23, 250., 250., 0.
24, e250., 250., 0.
25, 250., e250., 0.

Node definition and coordinates
Format: Node label i, xi, yi, zi
*Element, type¼S4R
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EXAMPLE 21.5 dcont’d

1, 12, 22, 11, 3
2, 11, 22, 10, 2
3, 4, 13, 22, 12
4, 1, 10, 22, 13
5, 16, 23, 15, 6
6, 15, 23, 14, 2
7, 7, 17, 23, 16
8, 5, 14, 23, 17
9, 19, 24, 18, 8
10, 18, 24, 14, 5
11, 3, 11, 24, 19
12, 2, 14, 24, 11
13, 21, 25, 20, 9
14, 20, 25, 10, 1
15, 6, 15, 25, 21
16, 2, 10, 25, 15

Element definition and connectivity
Format: Element label, node label i, node label j, node label k, node label l
*Nset, nset¼_PickedSet2, internal, generate
1, 25, 1
*Elset, elset¼_PickedSet2, internal, generate
1, 16, 1
Node set definition
Format: The first node label, the last node label, label number increment
Element set definition
Format: The first element label, the last element label, label increment
** Section: Section-1
*Shell Section, elset¼_PickedSet2, material¼Material-1
5., 5
Plate thickness, Number of integration points
*End Instance
**
*Nset, nset¼_PickedSet2, internal, generate, instance¼Part-1-1
1, 25, 1
*Elset, elset¼_PickedSet2, internal, generate, instance¼Part-1-1
1, 16, 1
*Nset, nset¼_PickedSet7, internal, instance¼Part-1-1
2,
*Nset, nset¼_PickedSet11, internal, instance¼Part-1-1
3, 4, 8, 12, 19
*Elset, elset¼_PickedSet11, internal, instance¼Part-1-1
1, 3, 9, 11
*Nset, nset¼_PickedSet12, internal, instance¼Part-1-1
6, 7, 9, 16, 21
*Elset, elset¼_PickedSet12, internal, instance¼Part-1-1
5, 7, 13, 15
*End Assembly
**
** MATERIALS
**

Continued
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EXAMPLE 21.5 dcont’d

Material definition
Format: Young’s modulus, Poisson ratio
*Material, name¼Material-1
*Elastic
10,000., 0.3
**
**
** STEP: Step-1
**
*Step, name¼Step-1
*Static
1., 1., 1e-05, 1.
**
** BOUNDARY CONDITIONS
**
** Name: BC-1 Type: Displacement/Rotation
*Boundary
Boundary condition (BC) definition
Format: Node set applied BCs., the first degree of freedom (dof), the last dof, the magnitude (default is

zero)
_PickedSet11, 1, 1
_PickedSet11, 2, 2
_PickedSet11, 3, 3
_PickedSet11, 4, 4
_PickedSet11, 5, 5
_PickedSet11, 6, 6
** Name: BC-2 Type: Displacement/Rotation
*Boundary
_PickedSetl2, 3, 3
**
** LOADS
**
** Name: Load-1 Type: Concentrated force
Concentrated load definition
Format: Node set applied load, dof, the magnitude
*Cload
_PickedSet7, 3, �100.
**
** OUTPUT REQUESTS
**
*Restart, write, frequency¼0
**
**FIELD OUTPUT: F-Output-1
**
*Output, field, variable¼ALL
**
** HISTORY OUTPUT: H-Output-1
**
*Output, history, variable¼PRESELECT
*NODE PRINT, NSET¼_PickedSet2
U
*EL PRINT, ELSET¼_PickedSet2
SF
*End Step
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EXAMPLE 21.5 dcont’d

Output

Element Output

The following table is printed at the integration points for Element Type S4R and Element Set

ASSEMBLY_PICKEDSET2.

Element

PT

Footnote SF1 SF2 SF3 SF4 SF5 SF6 SM1 SM2 SM3

1 1 0.000 0.000 0.000 �9.0928E-02 �2.1040E-02 0.000 12.25 2.649 0.7926

2 1 0.000 1.1102E-16 �5.5511E-17 -0.1123 �5.7767E-02 0.000 �10.76 �8.031 2.114

3 1 0.000 1.3878E-17 5.5511E-17 �4.5811E-02 2.3770E-02 0.000 7.399 0.9524 2.547

4 1 �1.1102E-16 �6.9389E-18 �1.3878E-17 �2.4416E-02 �7.0566E-03 0.000 �3.778 0.3697 1.132

5 1 0.000 �2.7756E-17 2.7756E-17 3.4932E-02 �2.2192E-02 0.000 �3.033 �2.439 1.176

6 1 �2.2204E-16 0.000 5.5511E-17 7.8370E-02 9.5066E-02 0.000 �14.98 9.796 1.730

7 1 0.000 0.000 0.000 2.8329E-02 4.9182E-03 0.000 �4.874 �1.830 2.631

8 1 0.000 �9.7145E-17 0.000 �1.5109E-02 1.2125E-02 0.000 �8.743 �0.2302 1.048

9 1 0.000 1.3878E-17 �5.5511E-17 �4.5811E-02 �2.3770E-02 0.000 7.399 0.9524 �2.547

10 1 �1.1102E-16 6.9389E-18 0.000 �2.4416E-02 7.0566E-03 0.000 �3.778 0.3697 �1.132

11 1 0.000 0.000 0.000 �9.0928E-02 2.1040E-02 0.000 12.25 2.649 �0.7926

12 1 0.000 0.000 5.5511E-17 �0.1123 5.7767E-02 0.000 �10.76 �8.031 �2.114

13 1 0.000 �5.5511E-17 0.000 2.8329E-02 �4.9182E-03 0.000 �4.874 �1.830 �2.631

14 1 0.000 �1.0755E-16 0.000 �1.5109E-02 �1.2125E-02 0.000 �8.743 �0.2302 �1.048

15 1 0.000 �2.7756E-17 �2.7756E-17 3.4932E-02 2.2192E-02 0.000 �3.033 �2.439 �1.176

16 1 �2.2204E-16 0.000 2.7756E-17 7.8370E-02 �9.5066E-02 0.000 �14.98 �9.796 �1.730

Node Output

The following table is printed for nodes belonging to Node Set

ASSEMBLY_PICKEDSET2 (Fig. 21.10).

Node Footnote U1 U2 U3 UR1 UR2 UR3

1 4.0947E-19 1.0701E-18 �3.800 �4.8347E-03 1.2127E-02 0.000

2 3.6196E-19 0.000 �8.940 0.000 1.1545E-02 0.000

5 4.0947E-19 �1.0701E-18 �3.800 4.8347E-03 1.2127E-02 0.000

6 1.5953E-18. 0.000 0.000 0.000 �2.1182E-02 0.000

7 2.1991E-18 �1.6027E-19 0.000 �2.7621E-05 �1.4155E-02 0.000

9 2.1991E-18 1.6027E-19 0.000 2.7621E-05 �1.4155E-02 0.000

10 �1.0011E-18 �8.9511E-20 �6.672 �1.8132E-02 3.3478E-03 0.000

11 1.1197E-18 0.000 �3.745 0.000 2.9973E-02 0.000

13 �9.6191E-19 �5.4061E-19 �1.140 �1.1003E-02 9.1408E-03 0.000

14 �1.0011E-18 8.9511E-20 �6.672 1.8132E-02 3.3478E-03 0.000

15 �4.4973E-19 0.000 �6.512 0.000 �3.0934E-02 0.000

16 �1.9575E-19 1.1251E-19 0.000 2.1357E-05 �3.2770E-02 0.000

17 �2.9004E-19 �1.8432E-19 �3.541 9.1281E-03 �1.4193E-02 0.000

18 9.6191E-19 5.4061E-19 �1.140 1.1003E-02 9.1408E-03 0.000

20 �2.9004E-19 1.8432E-19 �3.541 �9.1281E-03 �1.4193E-02 0.000

21 �1.9575E-19 �1.1251E-19 0.000 �2.1357E-05 �3.2770E-02 0.000

22 �5.6097E-19 �2.2925E-20 �3.130 �4.9207E-03 2.5002E-02 0.000

23 1.5307E-18 �1.0232E-19 �5.596 7.3157E-03 �1.1969E-02 0.000

24 �5.6097E-19 2.2925E-20 �3.130 4.9207E-03 2.5002E-02 0.000

25 1.5307E-18 1.0232E-19 �5.596 �7.3157E-03 �1.1969E-02 0.000

Continued
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EXAMPLE 21.5 dcont’d

EXAMPLE 21.6
Problem Description

The thin “L-shaped” part shown is exposed to 20�C on the two surfaces of the inner corner and 120�C on the two surfaces of the

outer corner (Fig. 21.11). A heat flux of 10 W/m2 is applied to the top surface. Treat the remaining surfaces as insulated.

y

x

z

Deformation

Stresses

+ 1.612e + 00
+ 5.751e  01
 4.620e 01
 1.499e + 00
 2.536e + 00
 3.573e + 00
 4.610e + 00
 5.647e + 00
 6.684e + 00
 7.721e + 00
 8.758e + 00
 9.796e + 00

ODB: plate_coarse.odb ABAQUS/Standard Version 6.7-3

Step: Step-1
Increment 1: Step Time = 1.000
Primary Var: SM, SM2
Deformed Var: U Deformation Scale Factor: +1.119e + 01

FIGURE 21.10 Deformation of and stresses in the plate.

100

100

r

50
50

FIGURE 21.11 An L-shaped plate.
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EXAMPLE 21.6 dcont’d

Analysis Steps

1. Start ABAQUS and choose to create a new model database.

2. In the model tree, double-click on the Parts node (or right-click on Parts and select Create) (Fig. 21.12).

3. In the Create Part dialog box (shown in Fig. 21.12), name the part and proceed as follows:

a. Select 3D.

b. Select Deformable.

c. Select Shell.

d. Select Planar.

e. Set approximate size ¼ 20.

f. Click Continue .
4. Create the geometry shown in Fig. 21.13.

5. Double-click on the Materials node in the model tree (Fig. 21.14).

a. Name the new material and give it a description.

b. Click on the Thermal tab / Conductivity.

c. Define the thermal conductivity (use International System of Units).

Warning:

There is no predefined system of units within ABAQUS, so the user is responsible for ensuring that the correct values are

specified.

d. Click OK (Fig. 21.15).

Continued

FIGURE 21.12 Screen display for Start ABAQUS and Create Part.

Finite Element Analysis Using ABAQUS Chapter | 21 689

www.konkur.in

Telegram: @uni_k



EXAMPLE 21.6 dcont’d

6. Double-click on the Sections node in the model tree.

a. Name the section ShellProperties and select Shell for the category and Homogeneous for the type.

b. Click Continue .
c. Select the material created above (Steel) and set the thickness to 1.

d. Click OK (Fig. 21.16).

V

V

V

H

H

50

100

50

H

100

FIGURE 21.13 Screen for Create Geometry.

FIGURE 21.14 Materials node in the model database.
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EXAMPLE 21.6 dcont’d

7. Expand the Parts node in the model tree, expand the node of the part just created, and double-click on Section Assignments.

a. Select the surface geometry in the viewport and press Done in the prompt area.

b. Select the section just created (ShellProperties).

c. Click OK (Fig. 21.17).

Continued

FIGURE 21.15 Specification of conductivity in material dialogue box.

FIGURE 21.16 Specification of section properties in model dialogue box.
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EXAMPLE 21.6 dcont’d

8. Expand the Assembly node in the model tree and then double-click on Instances.

a. Select Dependent for the instance type.

b. Click OK (Fig. 21.18).

9. In the model tree, under the expanded Assembly node, double-click on Sets.

a. Name the set OutsideTemp.

b. Click Continue .
c. On the selection toolbar, from the drop-down menu select Edges.

d. Select the two surfaces on the outside of the corner (left and bottom edges) in the viewport and press Done in the prompt

area (Fig. 21.19).

e. Create another set named InsideTemp.

f. Select the two surfaces on the inside of the corner in the viewport and press Done in the prompt area.

FIGURE 21.17 Section assignment in model dialogue box.

FIGURE 21.18 Selection of instance type in model dialogue box.
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EXAMPLE 21.6 dcont’d

10. In the model tree, under the expanded Assembly node, double-click on Surfaces.

a. Name the surface HeatFlux.

b. Click Continue .
c. Select the surface in the viewport and press Done in the prompt area.

d. Choose the Brown side (Fig. 21.20).

11. Double-click on the Steps node in the model tree.

a. Name the step, set the procedure to General, and select Heat Transfer.

b. Click Continue .
c. Give the step a description.

d. Set the response to Steady state.

e. Click OK (Fig. 21.21).

Continued

FIGURE 21.19 Selection of outside temperature and edges.

FIGURE 21.20 Specification of surfaces for heat flux.
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EXAMPLE 21.6 dcont’d

12. Double-click on the BCs node in the model tree.

a. Name the boundary condition OutsideTemp and select Temperature for the type.

b. Click Continue . (Fig. 21.22)

c. In the prompt area click on the Sets button.

d. Select the set named OutsideTemp.

e. Click Continue .
f. Set the magnitude to 293.

g. Click OK (Fig. 21.23).

h. Repeat the procedure for the inside temperature using the set named InsideTemp, setting the magnitude to 393 (120�C).
13. Double-click on the Loads node in the model tree.

a. Name the load HeatFlux and select Surface heat flux as the type.

b. Click OK (Fig. 21.24).

c. Select the surface named HeatFlux.

FIGURE 21.22 Creation of boundary conditions (BCs) as outside temperature.

FIGURE 21.21 Specification of heat transfer analysis as steady state.
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EXAMPLE 21.6 dcont’d

d. For the magnitude enter 10.

e. Click OK (Fig. 21.25).

f. Note that any edge or surface without a boundary condition or load is treated as insulated.

14. Expand the Parts node in the model tree, expand the node of the Bracket part, and double-click on Mesh.

15. In the toolbox area, click on the Assign Element Type icon.

a. Select Standard for the element type.

b. Select Linear for the geometric order.

c. Select HeatTransfer for the family.

d. Note that the name of the element (DS4) and its description are given below the element controls.

e. Click OK (Fig. 21.26).

Continued

FIGURE 21.24 Selection of load as surface heat flux.

FIGURE 21.23 Specification of outside temperature as 293 (20�C).
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EXAMPLE 21.6 dcont’d

16. In the toolbox area, click on the Assign Mesh Controls icon.

a. Change the element shape to Quad.

b. Change the algorithm to Medial axis to produce a more uniform mesh for this geometry.

17. In the toolbox area, click on the Seed Part icon.

a. Set the approximate global size to 5.

b. Click OK.

18. In the toolbox area, click on the Mesh Part icon.

FIGURE 21.26 Assigning mesh with Element Type DS4.

FIGURE 21.25 Specification of heat flux magnitude as 10.
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EXAMPLE 21.6 dcont’d

19. In the model tree, double-click on the Job node.

a. Name the job HeatFlux.

b. Click Continue .
c. Give the job a description and accept all default parameters.

d. Click OK (Fig. 21.27).

20. In the model tree, right-click on the job just created (HeatFlux) and select Submit.

a. While ABAQUS is solving the problem, right-click on the job submitted (HeatFlux), and select Monitor (Fig. 21.28).

b. In the Monitor window, check to confirm that there are no errors or warnings.

i. If there are errors, investigate the cause(s) before resolving.

ii. If there are warnings, determine whether the warnings are relevant; some warnings can be safely ignored (Fig. 21.29).

Continued

FIGURE 21.27 Specification of job name as heat flux with all default parameters.

FIGURE 21.28 Submit the job and monitor it.
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EXAMPLE 21.6 dcont’d

21. In the model tree, right-click on the submitted and successfully completed job (HeatFlux), and select Results.

22. In the menu bar, click on Viewport/ Viewport Annotations Options.

a. Uncheck the Show compass option.

b. Click OK.

23. To change the output being displayed, in the menu bar click on Results / Field Output.

a. Select NT11 Nodal temperature at nodes.

b. Click OK (Fig. 21.30).

24. Display the contour of the temperatures.

a. In the toolbox area, click on the Plot Contours on Deformed Shape icon (Fig. 21.31).

25. To determine the temperature values, from the menu bar click Tools /Query.

a. Change the probe option to Nodes.

b. Check the boxes labeled Node ID and NT11.

c. In the viewport, mouse over the node of interest.

d. When done, click Cancel (Fig. 21.32).

26. To create a text file containing the nodal temperatures, in the menu bar click on Report / Field Output.

a. Change the position to Unique Nodal.

b. For the output variable, select NT11: Nodal temperature.

c. On the Setup tab, specify the name and the location for the text file.

d. Uncheck the Column totals option.

e. Click OK (Fig. 21.33).

27. Open the .rpt file with any text editor (Fig. 21.34).

FIGURE 21.29 Monitor window.
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EXAMPLE 21.6 dcont’d

Continued

FIGURE 21.30 Selection of field output and NT11 nodal temperature at nodes.

+ 4.299e + 02
+ 4.185e + 02
+ 4.071e + 02
+ 3.957e + 02
+ 3.843e + 02
+ 3.729e + 02
+ 3.615e + 02
+ 3.501e + 02
+ 3.386e + 02
+ 3.272e + 02
+ 3.158e + 02
+ 3.044e + 02
+ 2.930e + 02

NT11

FIGURE 21.31 Display of contours of temperature.
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EXAMPLE 21.6 dcont’d

FIGURE 21.32 Operations to determine temperature values.

FIGURE 21.33 Creation of text file of nodal temperatures.
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EXAMPLE 21.6 dcont’d

PROBLEMS

Find the deflections and stresses in the beams described in the following problems using the finite element method with the
following data:

P ¼ 1000 N, L ¼ 1 m, E ¼ 70 � 109 Pa, M0 ¼ 50,000 N cm, cross-section of the beam: rectangular with a depth of
2 cm and width (perpendicular to the page) of 1 cm.

Use ABAQUS to solve the problems.

21.1 A uniform cantilever beam of length L subject to a concentrated transverse load P at the free end as shown in
Fig. 1.20.

21.2 A uniform cantilever beam of length L subject to a concentrated bending moment M0 at the free end as shown in
Fig. 1.21.

21.3 A uniform fixedesimply supported beam of length L subject to a concentrated transverse load P at the middle as
shown in Fig. 1.22.

21.4 A uniform fixedesimply supported beam of length L subject to a concentrated bending moment M0 at the middle as
shown in Fig. 1.23.

21.5 A uniform fixedefixed beam of length L subject to a concentrated transverse load P at a distance of (3 L/4) from the
left end as shown in Fig. 1.24.

FIGURE 21.34 Display of nodal temperatures.
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Chapter 22

Finite Element Analysis Using ANSYS*
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22.1 INTRODUCTION

ANSYS is a general-purpose finite element software that includes preprocessing (to create the geometry and generating
mesh), solver, and postprocessing modules in a unified graphical user interface (GUI) environment. ANSYS commonly
refers to ANSYS Mechanical or ANSYS Multiphysics. In ANSYS, a problem can be solved in either a batch or interactive
mode. In batch mode, an input file is to be created and executed from the command line. In interactive mode, GUI is used
and the operations to be performed are either chosen from a menu or typed in a graphics window. Examples are presented
to illustrate both modes in this chapter.

22.2 GRAPHICAL USER INTERFACE LAYOUT IN ANSYS

(See Fig. 22.1)

22.3 TERMINOLOGY

22.3.1 Database and Files

The database refers to the data ANSYS maintains in memory as users build, solve, and postprocess models. The database
stores both input data and ANSYS results data:

input data: information that users must enter, such as dimensions, material properties, and loads
results data: quantities that ANSYS calculates, such as displacements, stresses, and temperatures

22.3.2 Defining the Jobname

Utility Menu > File > Change Jobname

* ANSYS FEM software is marketed by ANSYS, Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317.

The Finite Element Method in Engineering. https://doi.org/10.1016/B978-0-12-811768-2.00022-5
Copyright © 2018 Elsevier Inc. All rights reserved.
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The jobname is a name up to 32 characters that identifies the ANSYS job. When we define a jobname for analysis, the
jobname becomes the first part of the name of all files the analysis creates. (The extension or suffix for these file names is a
file identifier such as .DB.) By using a jobname for each analysis, we ensure that no files are overwritten.

22.3.3 File Management Tips

l Run each analysis in a separate working directory.
l Use different jobnames to differentiate analysis runs.
l We should keep the following files after any ANSYS analysis:

log file (log); database file (.db); results files (.rst, .rth, .); load step files, if any (.s01, .s02, .)

22.3.4 Defining an Analysis Title

Utility Menu > File > Change Title
This will define a title for the analysis. ANSYS includes the title on all graphics displays and on the solution output.

22.3.5 Save and Resume

Because the database is stored in the computer’s memory (random access memory), it is a good practice to save it to a disk
frequently so that we can restore the information in the event of a computer crash or power failure. The SAVE operation
copies the database from memory to a file called the database file (db file).

The easiest way to save is to click on: Toolbar > SAVE_DB
or use:

l Utility Menu > File > Save as Jobname.db
l Utility Menu > File > Save as.

FIGURE 22.1 ANSYS graphical user interface.

704 PART j VII ABAQUS and ANSYS Software and MATLAB� Programs for Finite Element Analysis

www.konkur.in

Telegram: @uni_k



To restore the database from the db file back into memory, use the RESUME operation.
Toolbar > RESUME_ DB (Fig. 22.2), or use:

l Utility Menu > File > Resume Jobname.db
l Utility Menu > File > Resume from.

22.3.6 Tips on SAVE and RESUME

l Periodically, we need to save the database as we progress through an analysis. ANSYS does not do automatic saves.
l We should definitely SAVE the database before attempting an unfamiliar operation (such as a Boolean or meshing) or

an operation that may cause major changes (such as a delete).
l RESUME can then be used as an “undo” if we do not like the results of that operation.
l SAVE is also recommended before doing a solver.

22.4 FINITE ELEMENT DISCRETIZATION

Finite element discretization or meshing is the process used to “fill” the solid model with nodes and elements: that is, to
create the finite element analysis model. Remember, we need nodes and elements for the finite element solution, not just
the solid model. The solid model in computer-aided design does not participate in the finite element solution.

22.4.1 Element Type

The element type is an important choice that determines the following element characteristics:

l Degrees of freedom (dof) set. A thermal element type, for example, has 1 dof: TEMP, whereas a structural element type
may have up to 6 dof: UX, UY, UZ, ROTX, ROTY, and ROTZ

l Element shape: brick, tetrahedron, quadrilateral, triangle, and so on
l Dimensionality: two-dimensional (2D) solid (XeY plane only), or three-dimensional (3D) solid
l Assumed displacement shape: linear versus quadratic

22.4.2 To Define an Element

Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add

22.4.3 Meshing Methods

Free and Mapped Meshing Methods (Fig. 22.3)

The free mesh

l has no element shape restrictions
l does not follow a pattern
l is suitable for complex-shaped areas and volumes
Volume meshes consist of high-order tetrahedral (10 nodes) and a large number of degrees of freedom

FIGURE 22.2 Solving database (DB) file.
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The mapped mesh

l restricts element shapes to quadrilaterals (areas) and hexahedra (volume)
l typically has a regular pattern with obvious rows of elements
l is suitable only for “regular” shapes such as rectangles and bricks

22.4.4 Mesh Density Control

ANSYS provides many tools to control mesh density on both global and local levels:

l Global controls: SmartSizing; Global element sizing; Default sizing 6
l Local controls: Keypoint sizing; Line sizing; Area sizing

To access the MeshTool:

l Main Menu > Preprocessor > Meshing > MeshTool
l SmartSizing: Turn on SmartSizing and set the desired size level. Size level ranges from 1 (fine) to 10 (coarse), and

defaults to 6. Then mesh all volumes (or all areas) at once rather than one by one.
l Advanced SmartSize controls such as mesh expansion and transition factors are available via Main Menu > Preproces-

sor > Meshing > Size Cntrls > SmartSize > Adv Opts.
l Global Element Sizing: Allows you to specify a maximum element edge length for the entire model (or number of

divisions per line): Go to Size Controls, Global, and click [Set] or Main Menu > Preprocessor > Meshing > Size
Cntrls > ManualSize > Global > Size.

22.4.5 Material Properties

Every analysis requires material property input: Young’s modulus (EX), Poisson’s ratio (PRXY) for structural elements,
thermal conductivity (KXX) for thermal elements, and so on.

To define the material properties: Main Menu > Preprocessor >Material Props > Material Models.
More than one set of material properties can be defined when needed (Fig. 22.4).

22.5 SYSTEM OF UNITS

The ANSYS program does not assume a system of units for the analysis (except in magnetic field analyses). We can use
any system of units as long as we make sure that we use that system for all of the data we enter (units must be consistent for
all input data).

It is suggested to use the International system of Units whenever possible to avoid confusion.

1. ANSYS has no built-in unit system.
2. The units must be consistent, as indicated in the table.

FIGURE 22.3 Specification of element type.
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Quantity International Unit International Unit (mm) US Unit (ft) US Unit (in)

Length m mm ft in

Force N N lbf lbf

Mass kg ton (103 kg) slug lbf S2/in

Time s s s s

Stress Pa (N/m2) MPa (N/mm2) lbf/ft2 psi (lbf/in2)

Energy J MJ (10�3 J) ft lbf in lbf

Density kg/m3 ton/mm3 slug/ft3 lbf s2/in4

22.6 STAGES IN SOLUTION

ANSYS is a general-purpose finite element modeling package for numerically solving a wide variety of mechanical
problems. These problems include static/dynamic structural analysis (both linear and nonlinear), heat transfer and fluid
problems, as well as acoustic and electromagnetic problems.

In general, a finite element solution may be divided into the following three stages. This is a general guideline that can
be used to set up any finite element analysis.

Preprocessing

Preprocessing consists of defining the problem. Major steps include:

l Define keypoints/lines/areas/volumes.

l Define element type and material/geometric properties.

l Define mesh lines/areas/volumes as required.

The amount of detail required will depend on the dimensionality of the analysis (i.e., 1D, 2D, axisymmetric, 3D).

Solution

The solution stage is composed of assigning loads, constraints, and solving.

l Specify the loads (point or pressure).

l Specify the constraints (translational and rotational).

l Solve the resulting set of equations.

FIGURE 22.4 Specification of material properties.
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Postprocessing

This stage includes additional processing and viewing of results, such as:

l lists of nodal displacements

l element forces and moments
l deflection plots

l stress contour diagrams

EXAMPLE 22.1
Analysis of a 2D Truss

ANSYS 7.0 is used to solve the following 2D Truss problem.

Problem Description

Determine the nodal deflections, reaction forces, and stresses for the truss shown in Fig. 22.5 (E ¼ 200 GPa, A ¼ 3250 mm2).

Preprocessing: Defining the Problem

1. Input a Title (such as Bridge Truss Tutorial).

In the Utility menu bar select File > Change Title:

The following window will appear (Fig. 22.6):

Enter the title and click OK. This title will appear in the bottom left corner of the Graphics window once we begin. Note: to get

the title to appear immediately, select Utility Menu > Plot > Replot.

2. Enter Keypoints.

The overall geometry is defined in ANSYS using keypoints, which specify various principal coordinates to define the body. For

this example, these keypoints are the ends of each truss.

l We define seven keypoints for the simplified structure as given in the table.

Keypoint

Coordinate

x y

1 0 0

2 1800 3118

3 3600 0

4 5400 3118

5 7200 0

6 9000 3118

7 10,800 0

280 kN

2

1

3

260° 60°
1

3

4

210 kN

4

75

6

8

280 kN

6

9

10

11
360 kN

R

5 7

3.6 m3.6 m3.6 m

3.118 m

FIGURE 22.5 Two-dimensional truss.

FIGURE 22.6 Giving a title to the problem.
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EXAMPLE 22.1 dcont’d

l These keypoints are depicted as node numbers in Fig. 22.5.

l From the ANSYS Main Menu, select:

Preprocessor > Modeling > Create > Keypoints > In Active CS

The window in Fig. 22.7 will then appear.

l To define the first keypoint, which has the coordinates x ¼ 0 and y ¼ 0, enter keypoint 1 in the appropriate box, and enter

the x,y coordinates 0, 0 in their appropriate boxes (as shown in Fig. 22.7). Click Apply to accept what we have typed.
l Enter the remaining keypoints using the same method.

Note

When entering the final data point, click on OK to indicate that we are finished entering keypoints. If we first press Apply and

then OK for the final keypoint, we will have defined it twice.

If we did press Apply for the final point, simply press Cancel to close this dialog box.

Units

Note that the units of measure (i.e., millimeters) were not specified. It is the responsibility of the user to ensure that a consistent

set of units is used for the problem; make conversions where necessary.

Correcting Mistakes

When defining keypoints, lines, areas, volumes, elements, constraints, and loads, we are bound to make mistakes. Fortunately,

these are easily corrected so that we do not need to begin from scratch every time an error is made. Every Create menu for

generating these various entities also has a corresponding Delete menu for fixing things.

3. Form Lines

The keypoints must now be connected.

We will use the mouse to select the keypoints to form the lines.

l In the main menu, select: Preprocessor >Modeling > Create > Lines > Lines > In Active Coord

l Use the mouse to pick keypoint 1 (i.e., click on it). It will now be marked by a small yellow box.

l Now move the mouse toward keypoint 2. A line will now show up on the screen joining these two points. Left click and a

permanent line will appear.

l Connect the remaining keypoints using the same method.

l When you are done, click on OK in the Lines in Active Coord window; minimize the Lines menu and the Create menu.

Your ANSYS Graphics window should look similar to Fig. 22.8.

Disappearing Lines

Please note that any lines we have created may disappear throughout our analysis. However, most likely they have not been

deleted. If this occurs at any time, from the Utility Menu select:

Plot > Lines

4. Define the Type of Element

It is now necessary to create elements. This is called meshing. ANSYS first needs to know what kind of elements to use:

l From the Preprocessor Menu, select: Element Type > Add/Edit/Delete.

l Click on the Add . button. The window in Fig. 22.9 will appear.

l For this example, we will use the 2D spar element as selected in the figure. Select the element shown and click OK. We

should see Type 1 LINK1 in the Element Types window.

l Click on Close in the Element Types dialog box.

Continued

FIGURE 22.7 Specifying coordinates of Keypoint (Node) 1.
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EXAMPLE 22.1 dcont’d

5. Define Geometric Properties

We now need to specify geometric properties for our elements:

l In the Preprocessor menu, select Real Constants > Add/Edit/Delete.
l Click Add . and select Type 1 LINK1 (actually it is already selected). Click on OK. Fig. 22.10 will appear.

l As shown in the window, enter the cross-sectional area (3250 mm).

l Click on OK.

l Set 1 now appears in the dialog box. Click on Close in the Real Constants window.

6. Element Material Properties

We then need to specify material properties. In the Preprocessor menu, select Material Props >Material Models.

Double-click on Structural > Linear > Elastic > Isotropic (Fig. 22.11).

We are going to give the properties of steel. Enter the following field:

EX 200,000

FIGURE 22.8 Connecting lines between keypoints (nodes).

FIGURE 22.9 Window for library of element types.
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EXAMPLE 22.1 dcont’d

l Set these properties and click on OK. (Note: We may obtain the note that PRXY will be set to 0.0. This is Poisson’s ratio and

is not required for this element type. Click OK on the window to continue. Close Define Material Model Behavior by

clicking on the X box in the upper right corner.)

7. Mesh Size

The last step before meshing is to tell ANSYS what size the elements should be. There are a variety of ways to do this, but we

will deal with just one method for now.

l In the Preprocessor menu, select Meshing > Size Cntrls >ManualSize > Lines > All Lines.

l In the size NDIV field, enter the desired number of divisions per line. For this example, we want only one division per line;

therefore, enter 1 and then click OK. Note that we have not yet meshed the geometry; we have simply defined the element

sizes.

8. Mesh

Now the frame can be meshed.

l In the Preprocessor menu, select Meshing >Mesh > Lines and click Pick All in the Mesh Lines Window.

Your model should now appear similar to the one shown in Fig. 22.8.

Plot Numbering

To show the line numbers, keypoint numbers, node numbers:

l From the Utility Menu (top of screen) select PlotCtrls > Numbering .
l Fill in the window as shown in Fig. 22.12 and click OK.

Continued

FIGURE 22.10 Specification of area of cross-section of members.

FIGURE 22.11 Specification of value of Young’s modulus.
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EXAMPLE 22.1 dcont’d

Now we can turn numbering on or off at our discretion.

Saving Our Work

Save the model at this time, so that if we make some mistakes later on, at least we will be able to come back to this point. To do

this, on the Utility Menu select File > Save as . Select the name and location where we want to save your file.

It is a good idea to save your job at different times throughout the building and analysis of the model to back up your work in

case of a system crash.

Solution Phase: Assigning Loads and Solving

We have now defined our model. It is time to apply the load(s) and constraint(s) and solve the resulting system of equations.

Open up the Solution menu (from the same ANSYS Main Menu).

1. Define Analysis Type

First, we must tell ANSYS how we want it to solve this problem:

l From the Solution Menu, select Analysis Type > New Analysis.

l Ensure that Static is selected; that is, we are going to do a static analysis on the truss, as opposed to a dynamic analysis, for

example.

l Click OK.

2. Apply Constraints

It is necessary to apply constraints to the model; otherwise the model is not tied down or grounded and a singular solution will

result. In mechanical structures, these constraints will typically be fixed, pinned, and roller-type connections. As shown earlier, the

left end of the truss bridge is pinned whereas the right end has a roller connection.

l In the Solution menu, select Define Loads > Apply > Structural > Displacement > On Keypoints
l Select the left end of the bridge (Keypoint 1) by clicking on it in the Graphics Window and click on OK in the Apply U,ROTon

KPs window (Fig. 22.13).

l This location is fixed, which means that all translational and rotational dofs are constrained. Therefore, select All DOF by

clicking on it, enter 0 in the Value field, and click OK.

We will see some blue triangles in the graphics window indicating the displacement constraints.

l Using the same method, apply the roller connection to the right end (UY constrained). Note that more than one dof constraint

can be selected at a time in the Apply U,ROTon KPs window. Therefore, we may need to deselect the All DOF option to select

just the UY option.

FIGURE 22.12 Showing line and keypoint (node) numbers.
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EXAMPLE 22.1 dcont’d

3. Apply Loads

As shown in the diagram, there are four downward loads of 280, 210, 280, and 360 kN at keypoints 1, 3, 5, and 7, respectively.

l Select Define Loads > Apply > Structural > Force/Moment > on Keypoints.
l Select the first Keypoint (left end of the truss) and click OK in the Apply F/M on KPs window.

l Select FY in the Direction of force/mom. This indicates that we will be applying the load in the y direction

l Enter a value of �280,000 in the Force/moment value box and click OK. Note that we are using units of N here, which is

consistent with the previous values input.

l The force will appear in the graphics window as a red arrow.

l Apply the remaining loads in the same manner (Fig. 22.14).

The applied loads and constraints should now appear as shown in Fig. 22.15.

4. Solving the System

We now tell ANSYS to find the solution:

l In the Solution menu select Solve > Current LS. This indicates that we desire the solution under the current Load Step (LS).

l The windows in Fig. 22.16 will appear. Ensure that our solution options are the same as shown earlier and click OK.

l Once the solution is done, a window will pop up displaying “Solution is done” (Fig. 22.16).

Continued

FIGURE 22.14 Specifying the values of loads at nodes.

FIGURE 22.13 Specifying UX and UY as displacement degrees of freedom at keypoints (nodes).
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EXAMPLE 22.1 dcont’d

Postprocessing: Viewing the Results

1. Hand Calculations

We will first calculate the forces and stress in element 1 (as labeled in the problem description).

X
M1 ¼ 0 ¼ :210 kNð3:6 mÞ � 280 kNð7:2 mÞ � 360 kNð10:8 mÞ þ F7ð10:8 mÞ

F7 ¼ 210 kNð3:6 mÞ þ 280 kNð7:2 mÞ þ 360 kNð10:8 mÞ
10:8 m

¼ 617 kN

FIGURE 22.16 Display of solution options.

FIGURE 22.15 Display of loads and constraints.
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EXAMPLE 22.1 dcont’d

[
X

Fy ¼ 0 ¼ �280 kN� 210 kN� 280 kN� 360 kNþ 617 kNþ F1

F1 ¼ 280 kNþ 210 kNþ 280 kNþ 360 kN� 617 kN ¼ 513 kN

Element 1 Forces/Stress

FE1 ¼ 513 kN� 280 kN

cosð30Þ ¼ 269 kN

sE1 ¼ FE1
A

¼ 269 kN

3250 mm2
¼ 82:8 MPa

2. Results Using ANSYS

Reaction Forces

A list of the resulting reaction forces can be obtained for this element:

l From the Main Menu, select General Postproc > List Results > Reaction Solu.

l Select All struc forc F and click OK (Fig. 22.17).

These values agree with the reaction forces calculated by hand previously.

Deformation

In the General Postproc menu, select Plot Results > Deformed Shape.

l Select Def þ undef edge and click OK to view both the undeformed and the deformed object (Fig. 22.18).

l Observe the value of the maximum deflection in the upper left corner (DMX ¼ 7.409). One should also observe that the

constrained dofs appear to have a deflection of 0 (as expected).

Continued

FIGURE 22.18 Display of undeformed system.

FIGURE 22.17 Display of reaction forces.
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EXAMPLE 22.1 dcont’d

Deflection

For a more detailed version of the deflection of the beam:

l From the General Postproc menu select Plot results > Contour Plot > Nodal Solution.

l Select DOF solution and USUM in the display window. Leave the other selections as the default values. Click OK (Fig. 22.19).

l The deflection can also be obtained as a list as shown below. General Postproc > List Results > Nodal Solution select DOF

Solution and ALL DOFs from the lists in the List Nodal Solution window and click OK. This means that we want to see a listing

of all degrees of freedom from the solution (Fig. 22.20).

l Are these results what we expected? Note that all dofs were constrained to zero at node 1 whereas UY was constrained to zero

at node 7.

l If we want to save these results to a file, select File within the results window (at the upper left corner of this list window) and

select Save as.

Axial Stress

For line elements (i.e., links, beams, spars, and pipes), you will often need to use the Element Table to gain access to derived

data (i.e., stresses, strains). For this example, we should obtain axial stress to compare with the hand calculations.

FIGURE 22.19 Display of deformed system.

FIGURE 22.20 Window with nodal displacements.
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EXAMPLE 22.1 dcont’d

l From the General Postprocessor menu select Element Table > Define Table.

l Click on Add .
l Enter SAXL in the Lab box. This specifies the name of the item that we are defining. Next, in the Item, Comp boxes, select By

sequence number and LS. Then enter 1 after LS in the selection box.

l Click on OK and close the Element Table Data window.
l Plot the Stresses by selecting Element Table > Plot Elem Table.

l A window will appear. Ensure that SAXL is selected and click OK.

l Because we changed the contour intervals for the Displacement plot to User Specified, we need to switch this back to Auto

Calculated to obtain new values for VMIN/VMAX.

Utility Menu > PlotCtrls > Style > Contours > Uniform Contours . (Fig. 22.21)

Again, we may wish to select more appropriate intervals for the contour plot.

l List the Stresses

l From the Element Table menu, select List Elem Table.
l From the List Element Table Data window that appears, ensure that SAXL is highlighted.

l Click OK (Fig. 22.22).

FIGURE 22.21 Display of stresses (contours).

FIGURE 22.22 Table of element stresses.
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EXAMPLE 22.2
Heat Transfer in a Steel Rod (Link)

A steel link with no internal stresses is pinned between two solid structures at a reference temperature of 0�C (273K)

(Fig. 22.23). One of the solid structures is heated to 75�C (348K). As heat is transferred from the solid structure into the link, the

link will attempt to expand. However, because it is pinned this cannot occur; as such, stress is created in the link. A steady-state

solution of the resulting stress will be found to simplify the analysis. Loads will not be applied to the link, only a temperature

change of 75�C. The link is steel with a modulus of elasticity of 200 GPa, a thermal conductivity of 60.5 W/m K, and a thermal

expansion coefficient of 12e-6/K.

As in the case of Example 22.1, the following steps are used in the solution process:

Preprocessing: Construct geometry by defining key points and lines, Specify element type and element constants, Specify the

material, Generate the mesh, Apply the boundary conditions.

Solution: Solve with current LS (load step), Display solution.

Postprocessing: Plot the solution, List the nodal/element solution (Figs. 22.24e22.27).

75 °C

FIGURE 22.23 Heat transfer in a steel rod (link).

FIGURE 22.24 Begin to solve with current load step.

718 PART j VII ABAQUS and ANSYS Software and MATLAB� Programs for Finite Element Analysis

www.konkur.in

Telegram: @uni_k



EXAMPLE 22.2 dcont’d

Continued

FIGURE 22.25 Completion of solution.

FIGURE 22.26 Listing of thermal stresses in elements.
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EXAMPLE 22.2 dcont’d

Comparison

Expansion caused by thermal stress in a link can be calculated using:

d ¼ aDTL

Expansion owing to structural forces can be determined using:

d ¼ PL

EA

Solving for the structural forces caused by thermal expansion:

P ¼ aDTEA

or

s ¼ F

A
¼ aDTE

Therefore, in this example,

s ¼ ð0:000012=KÞð348K� 273KÞð200e3 MPaÞ ¼ 180 MPa

PROBLEMS

Find the deflections and stresses in the beams described in the following problems using the finite element method with the
following data:

P ¼ 1000 N, L ¼ 1 m, E ¼ 70 � 109 Pa, M0 ¼ 50,000 N cm, cross-section of the beam: rectangular with a depth of
2 cm and width (perpendicular to the page) of 1 cm.

FIGURE 22.27 Display of deformation shape.
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Use ANSYS to solve the problems.

22.1 A uniform cantilever beam of length L subject to a concentrated transverse load P at the free end as shown in
Fig. 1.20.

22.2 A uniform cantilever beam of length L subject to a concentrated bending moment M0 at the free end as shown in
Fig. 1.21.

22.3 A uniform fixed, simply supported beam of length L subject to a concentrated transverse load P at the middle as
shown in Fig. 1.22.

22.4 A uniform fixed-simply supported beam of length L subject to a concentrated bending moment M0 at the middle as
shown in Fig. 1.23.

22.5 A uniform fixed-fixed beam of length L subject to a concentrated transverse load P at a distance of (3 L/4) from the
left end as shown in Fig. 1.24.
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Chapter 23

MATLAB Programs for Finite
Element Analysis

Chapter Outline

23.1 Solution of Linear System of Equations Using Choleski

Method 724

23.2 Incorporation of Boundary Conditions 725

23.3 Analysis of Space Trusses 727

23.4 Analysis of Plates Subjected to In-Plane Loads Using

CST Elements 731

23.5 Analysis of Three-Dimensional Structures Using CST

Elements 734

23.6 Temperature Distribution in One-Dimensional Fins 737

23.7 Temperature Distribution in One-Dimensional Fins

Including Radiation Heat Transfer 738

23.8 Two-Dimensional Heat Transfer Analysis 739

23.9 Confined Fluid Flow Around a Cylinder Using the

Potential Function Approach 741

23.10 Torsion Analysis of Shafts 742

Problems 743

MATLAB1 is popular software used to solve a variety of engineering analysis problems. This chapter presents 10
MATLAB programs for the finite element analysis of different types of problems discussed in Chapters 1e20. The
programs are given in the form of m-files. Each program requires subprograms, which are also in the form of m-files, to
solve a problem. In addition, depending on the problem to be solved, the user needs to create a main program in the form of
an m-file to specify the input data, call the relevant program (m-file), and display the results. Sample main programs are
given for all 10 programs described in this chapter. The m-files of the programs and all of the subprograms needed to
execute the programs are available on the website for the book. The programs and purpose or use of the programs are given
in the subsequent table.

Program

Number

Program

Name

Relevant Location in the

Book (Section Number) Use of the Program

1 choleski.m 7.2.2 To solve a symmetric system of algebraic equations with

several right-side vectors, ½A�X! ¼
h
b
!

1; b
!

2; :::; b
!

M

i
; ½A�

can be stored in banded form

2 adjust.m 6.3 To incorporate boundary conditions (specified values to
boundary degrees of freedom) in matrix equations,

½A�X! ¼ b
!

where the matrix ½A� can be stored in banded
form

3 truss3D.m 9.2 Analysis of three-dimensional (3D) trusses (to find dis-
placements of nodes and stresses in bar elements)

4 cst.m 10.3.1 Displacement and stress analysis of plates lying in XY
plane subjected to in-plane loads using linear triangular
(CST) elements

(Continued)

1. MATLAB is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098.

The Finite Element Method in Engineering. https://doi.org/10.1016/B978-0-12-811768-2.00023-7
Copyright © 2018 Elsevier Inc. All rights reserved.
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5 CST3D.m 10.3.3 Displacement and stress analysis of three-dimensional
box-type of structures subjected to nodal loads using
linear triangular (CST) elements

6 heat1.m 14.2 Temperature distribution in 1D fins (by considering con-
duction and convection)

7 radiat.m 14.6 Temperature distribution in 1D fins by considering radia-
tion heat transfer (along with conduction and convection)

8 heat2.m 15.2 Temperature distribution in 2D plates with arbitrary geom-
etry using linear triangular elements (by considering con-
duction and convection)

9 phiflo.m 18.3 Confined fluid flow around a cylinder (or any shaped
body) for inviscid and incompressible fluids using poten-
tial function approach using linear triangular elements

10 torson.m 20.3 Stress function variation in a cross-section of a solid pris-
matic shaft subjected to twisting moment using linear
triangular elements

23.1 SOLUTION OF LINEAR SYSTEM OF EQUATIONS USING CHOLESKI METHOD

Two MATLAB subprograms called decomp.m and solve.m were developed to solve linear algebraic equations using the
Choleski decomposition method (details are given in Section 7.2.2):

½A�X! ¼ b
!

(23.1)

where [A] is a symmetric banded matrix of order N. It is assumed that the elements of the matrix [A] are stored in band form
in the first N rows and NB columns of the array A, where NB denotes the semibandwidth of the matrix [A]. Thus, the di-
agonal terms aii of [A] occupy the locations A(I, 1).

The subprogram decomp.m decomposes the matrix [A] (stored in the form of an array A) into ½A� ¼ ½U�T ½U� and the
elements of the upper triangular matrix [U] are stored in the array A. The subprogram solve.m solves Eq. (23.1) by using

the decomposed coefficient matrix [A]. This subprogram can solve Eq. (23.1) for several right handeside vectors b
!
: If

b
!

1; b
!

2;.; b
!

M indicate the right handeside vectors2 for which the corresponding solutions X
!

1; X
!

2;.; X
!

M are to be

found, all vectors b
!

1; b
!

2;.; b
!

M are stored column-wise in the array B. Thus, the j-th element of b
!

i will be stored as

B(J, I), J ¼ 1, 2, ., N. The equations to be solved for any right handeside vector b
!

can be expressed as

½A�X! ¼ ½U�T ½U�X! ¼ b
!
. These equations can be solved as:

½U�X! ¼ �½U�T�e1
b
!
h Z

!
(23.2)

and

X
! ¼ ½U�e1 Z

!

In the subprogram, solve.m, the vectors Z
!

i for different b
!

i are found in the forward pass and are stored in the array B.
The solutions X

!
i corresponding to different b

!
i are found in the backward pass and are stored in the array B. Thus, the

columns of the array B returned from solve.m will give the desired solutions X
!

i, i ¼ 1, 2,., M. A main program named
main_choleski.m is created to provide the input data, call the subprograms decomp.m and solve.m, and obtain the results.
The procedure is illustrated in the following example.

2. The right-hand-side vectors b
!

1; b
!

2;.; represent different load vectors (corresponding to different load conditions) in a static structural or solid
mechanics problem.
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EXAMPLE 23.1
Solve the following system of equations: 26666664

1 �1 0 0 0

�1 2 �1 0 0

0 �1 2 �1 0

0 0 �1 2 �1

0 0 0 �1 2

37777775X
!

i ¼ b
!

i (E.1)

where

X
!

i ¼

8>>>>>><>>>>>>:

x1

x2

x3

x4

x5

9>>>>>>=>>>>>>;
i

; b
!

1 ¼

8>>>>>><>>>>>>:

1

0

0

0

0

9>>>>>>=>>>>>>;
; b

!
2 ¼

8>>>>>><>>>>>>:

0

0

0

0

1

9>>>>>>=>>>>>>;
; and b

!
3 ¼

8>>>>>><>>>>>>:

1

1

1

1

1

9>>>>>>=>>>>>>;
Here the number of equations ¼ N ¼ 5, the semibandwidth of [A] ¼ NB ¼ 2, and the number of vectors b

!
i ¼ M ¼ 3.

Solution

The program main_choleski.m created to solve the system of Eq. (E.1) and the results obtained are shown:

clear all; close all; clc;
% -----------------------------------------
% Written by Singiresu S. Rao
% The Finite Element Method in Engineering
% -----------------------------------------
% Input data
A ¼ [1 2 2 2 2; �1 �1 �1 �1 0]’;
B ¼ [1 0 0 0 0; 0 0 0 0 1; 1 1 1 1 1]’;
N ¼ 5; NB ¼ 2; M ¼ 3;
% End of input data
[A, DIFF] ¼ decomp (N, NB, A);
P ¼ solve (N, NB, M, A, B, DIFF);

for j ¼ 1:M
fprintf (‘%s’, ‘solution’)
fprintf (‘%2. 0f’, j’)
fprintf (‘%s\n’,‘:’)
fprintf (‘%8. 0f %8. 0f %8. 0f %8. 0f %8. 0f\n’, P(: , j)’)
end
Solution 1:

5 4 3 2 1

Solution 2:

1 1 1 1 1

Solution 3:

15 14 12 9 5

23.2 INCORPORATION OF BOUNDARY CONDITIONS

To incorporate the boundary conditions for solving the equations ½A�X! ¼ B
!
, a MATLAB program called adjust.m was

created. This program assumes that the global characteristic or stiffness matrix [A] is stored in a band form. If the degree of
freedom or the component “II” of the vector X

!
is specified as a constant value CONST, the following statement modifies

matrix A and vector B to incorporate the stated boundary condition:
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function [A, B] ¼ adjust [A,B,NN,NB,II,CONST]

where NN is the total number of degrees of freedom, NB is the bandwidth of A, B is the global vector of nodal actions or
load (size: NN), and A is the global characteristic or stiffness matrix (size: NN � NB).

Notes

1. If the prescribed values of several degrees of freedom are to be incorporated, the program adjust.m is to be used once for each

prescribed degree of freedom.

2. The program adjust.m incorporates the boundary conditions using the procedure described in Method 2 of Section 6.3.

3. The program works even when matrix [A] is not stored in band form. If [A] is not stored in band form, the bandwidth of A can

be defined as NB ¼ NN and the full original matrix [A] can be treated as if it were in band form.

The following example illustrates the use of the program adjust.m.

EXAMPLE 23.2
Consider the following system of equations:26666664

1:9 2:1 e5:7 0:0 0:0

2:1 3:4 1:5 3:3 0:0

e5:7 1:5 2:2 4:5 2:8

0:0 3:3 4:5 5:6 e1:8

0:0 0:0 2:8 e1:8 4:7

37777775

8>>>>>><>>>>>>:

F1

F2

F3

F4

F5

9>>>>>>=>>>>>>;
¼

8>>>>>><>>>>>>:

0

0

0

0

0

9>>>>>>=>>>>>>;
(E.1)

By renaming the characteristic matrix [A] as [GK] and the characteristic vector B
!

as P
!
, arrays [GK] and P

!
can be identified

from Eq. (E.1) as:

½GK � ¼

26666664
1:9 2:1 e5:7

3:4 1:5 3:3

2:2 4:5 2:8

5:6 e1:8 0:0

4:7 0:0 0:0

37777775; P
! ¼

8>>>>>><>>>>>>:

0

0

0

0

0

9>>>>>>=>>>>>>;
with NN ¼ 5 and NB ¼ 3.

Modify the arrays GK and P to incorporate the boundary condition F3 ¼ F�
3 ¼ 2:0.

Solution

The stated boundary condition gives II ¼ 3 and CONST ¼ 2.0. The main program named main_adjust.m in which the sub-

program is called adjust.m, as well as the results (modified arrays GK and P), are shown subsequently:

clear all; close all; clc;
% -----------------------------------------
% Written by Singiresu S. Rao
% The Finite Element Method in Engineering
% -----------------------------------------
GK ¼ [1.9 2.1 5.7; 3.4 1.5 3.3; 2.2 4.5 2.8; 5.6 �1.8 0.0; 4.7 0.0 0.0];
P ¼ [0 0 0 0 0]’;
NN ¼ 5;
NB ¼ 3;
M ¼ 3;
CONST ¼ 2;
[GK, P] ¼ Adjust (GK, P, NN, NB, M, CONST);

fprintf(‘ Modified characteristic matrix (GK) \n’)
for i ¼ 1:NN
fprintf (‘% 12.4f % 12.4f %12.4f\n’, GK (i, 1), GK(i, 2), GK(i, 3))
end
fprintf(‘ Modified characteristic vector (P) \n’)
for j ¼ 1:NN
fprintf (‘% 12.4f\n’, P(j))
end
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EXAMPLE 23.2 dcont’d

Modified characteristic matrix (GK)

1.9000 2.1000 0.0000
3.4000 0.0000 3.3000
1.0000 0.0000 0.0000
5.6000 �1.8000 0.0000
4.7000 0.0000 0.0000

Modified characteristic vector (P)

�11.4000
�3.0000
2.0000

�9.0000
�5.6000

23.3 ANALYSIS OF SPACE TRUSSES

A MATLAB program called truss3D.m was developed to analyze space trusses (details are given in Section 9.2). The
program requires the data in the subsequent table.

nn Number of nodes

ne Number of bar elements

nd Number of degrees of freedom of the truss, including the fixed degrees of freedom

nb Bandwidth of the system stiffness matrix

nfix Number of fixed degrees of freedom

e Young’s modulus

ifix Degree of freedom numbers that are fixed

ifree Number of free degrees of freedom; nfree ¼ nd � nfix

loc Nodal connectivity array of size ne � 2; loc (i, j) denotes the node number of end j (j ¼ 1, 2) of
bar element i (i ¼ 1, 2, ., ne)

x Array of size nn; x(i) is the x-coordinate of node i

y Array of size nn; y(i) is the y-coordinate of node i

z Array of size nn; z(i) is the z-coordinate of node i

A Array of size ne; A(i) is the cross-sectional area of bar element i

p Array of size nfree; p(i,1) is the load applied at i-th degree of freedom in load condition 1

p1 Array of size nfree; p1(i,1) is the load applied i-th degree of freedom in load condition 2

Note: The fixed nodes are to be numbered after the free nodes. Thus, the last nfix degrees of freedom of the nd degrees of freedom of the
system represent fixed degrees of freedom.

The following example illustrates the application of the program truss3D.m.

EXAMPLE 23.3
Find the deflections of nodes and the axial stresses developed in the space truss shown in Fig. 21.8 under the following two load

conditions:

Load condition 1: Nonzero components of the load vector are p(2,1) ¼ 88,960 N, p(3,1) ¼ �22,240 N, p(5,1) ¼
�88,960 N, p(6,1) ¼ �22,240 N

Continued
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EXAMPLE 23.3 dcont’d

Load condition 2: Nonzero components of the load vector are p1(1,1) ¼ 4448 N, p1(2,1) ¼ 44,480 N, p1(3,1) ¼
�22,240 N, p1(5,1) ¼ 44,480 N, p1(6,1) ¼ �22,240 N, p1(7,1) ¼ 2224 N, p1(16,1) ¼ 2224 N

Other data are E ¼ 6.9 � 1010 Pa, and area of cross-section ¼ 1 mm2 for every bar element.

Solution

Each bar of the truss shown in Fig. 21.8 is modeled as a bar element in 3D space. A main program called main_truss3D.m is

created to define the input data, call the program truss3D.m, and display the results. The program main_truss3D.m and the results

given by the program are shown subsequently:

% FEM analysis of space truss 25-bar truss
% -----------------------------------------
% Written by Singiresu S. Rao
% The Finite Element Method in Engineering
% -----------------------------------------

clear all; close all; clc;
% ****************
% Input Parameters
% ****************
% units (MKS meter (distance), Newton (load))
nn¼10; % number of nodes
ne¼25; % number of elements (bars)
nd¼30; % total number of system degrees of freedom
nb¼30;
nfix¼12; % number of fixed degrees of freedom
e¼6.9*10̂10;% Young’s modulus of elasticity (Pa)
rho¼2770; % density of the material (kg/m3)
ifix¼[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]; % fixed degrees of freedom
loc¼[1 2; 1 4; 2 3; 1 5; 2 6; 2 4; 2 5 ; 1 3 ; 1 6 ;.
3 6; 4 5; 3 4 ;6 5 ;3 10 ;6 7 ;4 9 ;5 8 ;4 7 ;3 8 ;.
5 10; 6 9 ;6 10 ;3 7 ;4 8 ;5 9];% nodal connectivity matrix
x¼[�952.5 952.5 �952.5 952.5 952.5 �952.5 �2540 2540 �2540]*le�3;
% nodal coordinates
y¼[0 0 952.5 952.5 �952.5 �952.5 2540 2540 �2540 �2540]*le�3;
z¼[5080 5080 2540 2540 2540 2540 0 0 0 0]*le�3;
A¼ones (1, ne); % areas of cross-section
% ***************
% load vector (p)
% condition 1
% ***************
p¼zeros (18, 1);
p(2, 1)¼88,960;
p(3, 1)¼�22,240;
p(5, 1)¼�88,960;
p(6, 1)¼�22,240;
p;
% *************
% condition 2
% *************
p1¼zeros (18, 1);
p1(1, 1)¼4448;
p1(2, 1)¼44,480;
p1(3, 1)¼�22,240;
p1(5, 1)¼44,480;
p1(6, 1)¼�22,240;
p1(7, 1)¼2224;
p1(16, 1)¼2224;
p1;
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EXAMPLE 23.3 dcont’d

[D,D1, st, st1]¼truss3D (nn, ne, nd, nb, nfix, e, ifix, loc, x, y, z, A, p, p1) ;
fprintf ( ‘ Load condition 1: \n ’) ;
fprintf ( ‘ Nodal displacements: \n ’) ;
fprintf ( ‘ Node X-disp Y-disp Z-disp\n ’) ;
for i¼1 : 6
fprintf ( ‘%1d%4.4e%4.4e%4.4e\n ’, i, D (3*i�2), D
(3*i�1), D(3*i) ) ;
end
for i¼7: nn
fprintf ( ‘%1d%4.4e%4.4e%4.4e\n ’, i, 0, 0, 0) ;
end
fprintf ( ‘ \n ’ ) ;
fprintf ( ‘ Load condition 2: \n ’ ) ;
fprintf ( ‘ Nodal displacements:\n ’ ) ;
fprintf ( ‘Node X-disp Y-disp Z-disp\n’) ;
for i¼1 : 6
fprintf ( ‘% 1d% 4.4e % 4.4e % 4.4e\n’,i,D1 (3*i�
2), D1 (3*i�1), D1 (3*i�1)) ;
end
for i¼7 : nn
fprintf ( ‘% 1d % 4.4e % 4.4e % 4.4e\n ’, i, 0, 0, 0) ;
end
fprintf ( ‘ \n ’ ) ;
fprintf ( ‘ Load condition 1: \n ’ ) ;
fprintf ( ‘ Element Stress: \n ’ ) ;
fprintf ( ‘Element Axial stress \n ’ ) ;
for i¼1 : ne
fprintf ( ‘% 1d % 4.4e \n’, i, st (i)) ;
end
fprintf ( ‘ \n ’ ) ;
fprintf ( ‘ Load condition 2: \n ’ ) ;
fprintf ( ‘ Element Stress: \n ’ ) ;
fprintf ( ‘Element Axial stress \n ’ ) ;
for i¼1 : ne
fprintf ( ‘ %1d %4.4e \n ’, i, st1 (i) ) ;
end
Load condition 1:
Nodal displacements:

Node X Displacement Y Displacement Z Displacement
1 �7.1742e�008 1.2450e�005 �8.8742e�007
2 7.1745e�008 �1.2450e�005 �8.8742e�007
3 2.9731e�006 �5.2279e�007 �2.2515e�006
4 2.9891e�006 5.7343e�007 1.1822e�006
5 �2.9731e�006 5.2279e�007 �2.2515e�006
6 �2.9891e�006 �5.7343e�007 1.1822e�006
7 0.0000eþ000 0.0000eþ000 0.0000eþ000
8 0.0000eþ000 0.0000eþ000 0.0000eþ000
9 0.0000eþ000 0.0000eþ000 0.0000eþ000
10 0.0000eþ000 0.0000eþ000 0.0000eþ000
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EXAMPLE 23.3 dcont’d

Load condition 2:
Nodal displacements:

Node X Displacement Y Displacement Z Displacement
1 6.5910e�007 1.2726e�005 �6.8846e�007
2 7.5028e�007 1.2726e�005 �1.0704e�006
3 3.2594e�008 8.4982e�007 �3.1324e�006
4 2.1198e�007 8.7459e�007 �3.3721e�006
5 2.6689e�008 8.0020e�007 2.0590e�006
6 2.1789e�007 8.2497e�007 2.2987e�006
7 0.0000eþ000 0.0000eþ000 0.0000eþ000
8 0.0000eþ000 0.0000eþ000 0.0000eþ000
9 0.0000eþ000 0.0000eþ000 0.0000eþ000
10 0.0000eþ000 0.0000eþ000 0.0000eþ000

Load condition 1:
Element Stress:

Element Axial stress
1 5.1971eþ003
2 �6.7431eþ004
3 5.8388eþ004
4 5.8388eþ004
5 �6.7431eþ004
6 6.7020eþ004
7 �8.3372eþ004
8 �8.3372eþ004
9 6.7020eþ004
10 1.8344eþ003
11 1.8344eþ003
12 5.7966eþ002
13 5.7966eþ002
14 �9.2069eþ003
15 8.4817eþ002
16 8.4817eþ002
17 �9.2069eþ003
18 4.0847eþ004
19 �4.9780eþ004
20 �4.9780eþ004
21 4.0847eþ004
22 �1.5928eþ004
23 �1.0143eþ003
24 �1.5928eþ004
25 �1.0143eþ003
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EXAMPLE 23.3 dcont’d

Load condition 2:
Element Stress:

Element Axial stress
1 3.3027eþ003
2 �3.3429eþ004
3 �2.9559eþ004
4 1.9943eþ004
5 2.3812eþ004
6 �5.1025eþ004
7 3.1976eþ004
8 �4.7858eþ004
9 3.5143eþ004
10 9.0003eþ002
11 2.6945eþ003
12 6.4976eþ003
13 �6.9254eþ003
14 �1.6090eþ004
15 1.0767eþ004
16 �1.9058eþ004
17 7.7990eþ003
18 �3.0030eþ004
19 �3.0701eþ004
20 2.1491eþ004
21 2.0819eþ004
22 4.4997eþ004
23 �5.5561eþ004
24 �6.1784eþ004
25 3.8774eþ004

EDU>>

23.4 ANALYSIS OF PLATES SUBJECTED TO IN-PLANE LOADS USING CST ELEMENTS

A program called cst.m was developed for the deflection and stress analysis of plates (in the XeY plane) using CST
elements. The program requires the following data:

NN ¼ the total number of nodes (including the fixed nodes)
NE ¼ the number of triangular elements
ND ¼ the total number of degrees of freedom (including the fixed degrees of freedom). Two degrees of freedom (one
parallel to the X axis and the other parallel to the Y axis) are considered at each node
NB ¼ the bandwidth of the overall stiffness matrix
M ¼ the number of load conditions
LOC ¼ an array of size NE � 3. LOC(I, J) denotes the global node number corresponding to the J-th corner of
element I
CX,CY ¼ vector arrays of size NN each. CX (I) and CY (I) denote the global X and Y coordinates of node I
E ¼ Young’s modulus of the material
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ANU ¼ Poisson’s ratio of the material
T ¼ the thickness of the plate
NFIX ¼ the number of fixed degrees of freedom (zero displacements)
IFIX ¼ a vector array of size NFIX. IFIX (I) denotes the I-th fixed degree of freedom number
P ¼ an array of size ND � M representing the global load vectors

The array P returned from the program cst.m to the main program represents the global displacement vectors, with
P(I, J) denoting the I-th component of global load in input (or displacement in output) vector in the J-th load condition.

The program cst.m requires the following subprograms: lambda.m, decomp.m, and solve.m. The following example
illustrates the application of the program cst.m.

EXAMPLE 23.4
Find the nodal deflections and element stresses in the plate under tension described in Section 10.3.1 and shown in Fig. 10.4A

using CST elements.

Solution

Because of the double symmetry of the plate and the loading, only a quadrant of the plate is used for idealization. The finite

element idealization and the node numbers used are indicated in Fig. 10.4B. Two degrees of freedom are considered at each node,

as shown in Fig. 10.4C.

The boundary (symmetry) conditions are:

Q5 ¼ Q7 ¼ Q9 ¼ 0 (the X component of displacement of nodes 3, 4, and 5 is zero)

Q10 ¼ Q12 ¼ Q14 ¼ 0 (the Y component of displacement of nodes 5, 6, and 7 is zero)

The only load condition is:

P(6, 1) ¼ 1000.0 N
P(4, 1) ¼ 2000.0 N
P(2, 1) ¼ 1000.0 N

Note

The node numbering scheme used in Fig. 10.4B leads to a high bandwidth (NB ¼ 18). We can reduce NB to 10 by relabeling the

nodes 8, 9, 4, 7, 6, and 5 of Fig. 10.4B as 4, 5, 6, 7, 8, and 9, respectively.

A main program called main_cst.m was created to define the input data, call the program cst.m, and display the results. The

program, main_cst.m, and the results of the analysis are shown subsequently:

% Main_CST
% -----------------------------------------
% Written by Singiresu S. Rao
% The Finite Element Method in Engineering
% -----------------------------------------
clear all; close all; clc;
format short
NN ¼ 9; % Input data
NE ¼ 8;
ND ¼ 18;
NB ¼ 18;
NFIX ¼ 6;
M ¼ 1;
E ¼ 2e6;
ANU ¼ 0.1;

LOC ¼ [9, 1, 9, 3, 9, 5, 9, 7; 1, 9, 3, 9, 5, 9, 7, 9; 8, 2, 2, 4, 4, 6, 6, 8]’;
CX ¼ [20 10 0 0 0 10 20 20 10]’;
CY ¼ [20 20 20 10 0 0 0 10 10]’;
T ¼ 0.1;
IFIX ¼ [5 7 9 10 12 14]’;
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EXAMPLE 23.4 dcont’d

P ¼ zeros (18, 1);
P(6, 1) ¼ 1000;
P(4, 1) ¼ 2000;
P(2, 1) ¼ 1000;

% End of input data
[P, DIFF, SLOC, STRES] ¼ CST (NN, NE, ND, NB, M, LOC, CX, CY, E, ANU, T, NFIX, IFIX, P);

% output results
fprintf(‘ Nodal displacements: \n’);
fprintf(‘NodeXecomponent Yecomponent \n’);
for i¼1: NN
fprintf(‘%1d %6.4f%6.4f\n’, i, P(2*ie1), P(2*i));
end
fprintf(‘\n’);
fprintf(‘Stresses in elements:\n’);
fprintf(‘Element sigma xx sigma yy sigma xy\n’);
for i ¼ 1:NE
fprintf(‘%1d %6.4f %6.4f % 6.4f\n’, i, STRES
(i, 1), STRES (i, 2), STRES (i, 3));
end
Nodal displacements:

Node X Component Y Component
1 e0.0020 0.0200
2 e0.0010 0.0200
3 e0.0000 0.0200
4 e0.0000 0.0100
5 e0.0000 0.0000
6 e0.0010 0.0000
7 e0.0020 0.0000
8 e0.0020 0.0100
9 e0.0010 0.0100

Stresses on elements:

Element Sigma xx Sigma yy Sigma xy
1 0.0000 2000.0000 e0.0000
2 0.0000 2000.0000 e0.0000
3 e0.0000 2000.0000 0.0000
4 e0.0000 2000.0000 0.0000
5 e0.0000 2000.0000 0.0000
6 e0.0000 2000.0000 e0.0000
7 e0.0000 2000.0000 e0.0000
8 0.0000 2000.0000 e0.0000

The results given by the program cst.m are identical to the results obtained by hand computations (shown in Table 10.1).
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23.5 ANALYSIS OF THREE-DIMENSIONAL STRUCTURES USING CST ELEMENTS

A program called CST3D.m was developed for the deflection and stress analysis of 3D box-type structures using CST
elements. The program requires the data in the table.

neltot Total number of triangular elements

nelm Number of membrane elements (used in top and bottom surfaces)

nels Number of shear elements (used in vertical side panels)

nnel Number of nodes per element

ndof Number of degrees of freedom per node

nnode Total number of nodes in the structure

sdof Total number of degrees of freedom in the structure (¼nnode * ndof)

effdof Total number of free degrees of freedom (excluding fixed dof.)

topdof Number of free dof. on top surface

edof Number of degrees of freedom per element (¼nnel * ndof)

emodule Young’s modulus

poisson Poisson’s ratio

NB Number of elements near root (in which stresses are required)

FF Applied loads; FF(I, J) ¼ load applied along the I-th degree of freedom in the
J-th load condition

CX, CY, CZ Global X, Y, Z coordinates of nodes; CX(I), CY(I), CZ(I) ¼ global X, Y, Z coordi-
nates of node I

gcoord Global X, Y, Z coordinates of nodes 1, 2, ., nnode

nodes Nodal connectivity array; nodes(i, j) ¼ global node number of the j-th local node
(corner) of element i

ISTRES ISTRES(I) ¼ I-th element number in which stress is required

bcdof Fixed degrees of freedom numbers

nmode Number of eigenvalues required (not computed in this program)

CST elements with three degrees of freedom per node as shown in Fig. 10.2 are considered in the model. To illustrate
the application of the program CST3D.m, the following example is considered.

EXAMPLE 23.5
Find the nodal deflections and element stresses in the box beam described in Section 10.3.3 and shown in Fig. 10.7 using CST

elements.

Solution

The finite element idealization using CST elements is shown in Fig. 10.8. A main program called main_cst3D.m was created to

define the input data, call the program cst3D.m, and display the results. The program main_CST3D.m and the results of the

analysis are shown subsequently:

% FEM analysis of 3_D STRUCTURE USING CST ELEMENT
% MAIN_CST3D.m
% SUBPART: CST3D.m
% ------------------------------------------------------------------
% WRITTEN BY SINGIRESU S. RAO
% THE FINITE ELEMENT METHOD IN ENGINEERING
% ------------------------------------------------------------------
% dof. ARE 3 PER NODE
% INPUT PARAMETER DATA
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EXAMPLE 23.5 dcont’d

clear all; close all; clc;

%units: inch (distance) and Ib (force)
nelotot ¼ 40;% total no. of elements
nelm¼20; % no. of membrane elements
nemp¼10; % element of top plane surfaces
nels¼20; % no. of shear elements
nnel¼ 3; % no. of nodes per element
ndof¼3; % no. of dofs per node
nnode¼24; % total number of nodes in system
sdof¼nnode*ndof; % total system dofs
effdof¼60; % total no. of free dofs
topdof¼30; % no. of free dofs on top surface
edof¼nnel*ndof; % dof per element
emodule¼30e6; % Young’s modulus
poisson¼0.3;% Poisson’s ratio

for ii¼1: nelm;
tt (ii) ¼1; % thickness

end
for ii¼ (nelmþ1) :neltot;

tt (ii) ¼1; % thickness
end
rho¼0.28/384; % weight density (unit weight/gravitational constant)
nmode¼3;
NB¼4;% No. of elements near root (for stress)

FF¼zeros (effdof, 1); % applied forces along free dofs
FF (3, 1) ¼ e5000;
FF (6, 1) ¼ e5000;
%
% FF (i, 1) ¼ Load applied along dof i (1 ¼ load condition number)

%
% ------------------------------------
% input data for nodal coordinates (only CST elements)
% ------------------------------------
% model 1
% CX ¼ X coordinates of all nodes
% CY ¼ Y coordinates of all nodes
% CZ ¼ Z coordinates of all nodes
CX¼
[60, 60, 48, 48, 36, 36, 24, 24, 12, 12, 0, 0, 60, 60, 48, 48, 36, 36, 24, 24, 12, 12, 0, 0];
CY¼ [18, 0, 18, 0, 18, 0, 18, 0, 18, 0, 18, 0, 18, 0, 18, 0, 18, 0, 18, 0, 18, 0, 18, 0];
CZ¼ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12];
%
% -------------------------------------------------------
% input data for nodal coordinates in vector from-------
% gcood ¼ (X, Y, Z) coordinates of nodes 1, 2..., nnode
% ------------------------------------------------------------------
gcoord¼[60 18 0;60 0 0;48 18 0;48 0 0;36 18 0;36 0 0;24 18 0;24 0 0;12
18 0;12 0 0;0 18 0;0 0 0;...

Continued
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EXAMPLE 23.5 dcont’d

60 18 12; 60 0 12; 48 18 12; 48 0 12;36 18 12;36 0 12;24 18 12;24 0
12; ...
12 18 12;12 0 12;0 18 12;0 0 12];
% ------------------------------------------------------------------
% input data for nodal connectivity for each element
% nodes (i, j), i¼element no., j¼global nodes of local corners 1, 2, 3 of
% elements 1, 2, ..., neltot
% ------------------------------------------------------------------
nodes ¼ [3 2 1; 2 3 4; 5 4 3;4 5 6;7 6 5; 6 7 8; 9 8 7;8 9 10; 11 10 9; 10
11 12; ...
15 14 13; 14 15 16;17 16 15; 16 17 18; 19 18 17; 18 19 20; 21 20
19; 20 21 22; 23 22 21;22 23 24; ...
4 14 2;14 4 16; 6 16 4;16 6 18; 8 18 6; 18 8 20; 10 20 8; 20 10
22;12 22 10;22 12 24; ...
3 13 1;13 3 15;5 15 3;15 5 17;7 17 5;17 7 19;9 19 7; 19 9 21;
11 21 9; 21 11 23];
% ISTRES¼array of element numbers in which stresses are to be found
ISTRES¼[10 20 30 40];
% --------------------------------------------
% input data for boundary conditions
% --------------------------------------------
bcdof¼ [31 32 33 34 35 36 67 68 69 70 71 72];
% bedof ¼ fixed dof numbers------
% end of data--------------------------

[disp, STRESS] ¼CST3D
(neltot, nelm, nemp, nels, nnel, ndof, nnode, sdof, effdof, topdof, edof, emodule, p
oisson, tt, ...
rho, nmode, NB, FF, CX, CY, CZ, gcoord, nodes, ISTRES, bcdof) ;
% ************************
% OUTPUT:¼
fprintf (‘ Nodal displacements \n’);
fprintf (‘NodeX-dispY-dispZ-disp\n’);
for i¼1:1:20
fprintf (‘%1d %6.8f %6.8f %6.8f\n’,
i, disp (3* (ie1)þ1), disp (3*(ie1)þ2), disp (3* (ie1)þ3));
end
fprintf(‘ \n’);

fprintf (‘ Stress in the structure \n’);
fprintf (‘Element Principal Stress 1 Principal Stress 2
\n’);
for IJK¼1:1:NB;
ii ¼ ISTRES (IJK); %%% ISTRES is the array of element numbers in which
stresses are to be found
for jj¼1:1:3;
stressp (IJK, jj) ¼ STRESS (jj, IJK);
end
A1¼ (STRESS (1, IJK) þ STRESS (2, IJK) ) /2;
A2¼ sqrt (((STRESS (1, IJK) �STRESS (2, IJK))/2) 2̂þSTRESS (3, IJK) 2̂);
boxbeam_stress (IJK, 1) ¼ A1þA2;
boxbeam_stress (IJK, 2) ¼ A1�A2;
boxbeam_stress;
fprintf (‘ %1d % 6.8f% 6.8f\n’, ii,
boxbeam_stress (IJK, 1) , boxbeam_stress (IJK, 2));
end
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EXAMPLE 23.5 dcont’d

Nodal displacements

Node X Displacement Y Displacement Z Displacement
1 �0.00143909 0.00009891 �0.01149128
2 �0.00142851 0.00005433 �0.01128080
3 �0.00135326 0.00009942 �0.00824795
4 �0.00133865 0.00003701 �0.00805697
5 �0.00118348 0.00010738 �0.00530461
6 �0.00115996 0.00000364 �0.00514629
7 �0.00090429 0.00011121 �0.00280302
8 �0.00087101 �0.00003803 �0.00269616
9 �0.00051266 0.00009874 �0.00096246
10 �0.00047439 �0.00007322 �0.00091898
11 0.00137522 �0.00008099 �0.01131236
12 0.00136999 �0.00004809 �0.01109938
13 0.00131777 �0.00008645 �0.00820368
14 0.00130824 �0.00003279 �0.00801115
15 0.00115913 �0.00009939 �0.00526670
16 0.00114000 �0.00000073 �0.00510831
17 0.00088969 �0.00010641 �0.00276502
18 0.00086045 0.00003853 �0.00266030
19 0.00050770 �0.00009675 �0.00092457
20 0.00047142 0.00007256 �0.00089349

Stress in the structure

Element Principal Stress 1 Principal Stress 2
10 �799.42490921 �1313.09508435
20 1304.82999848 794.41165622
30 1295.10699450 850.47289482
40 1394.79009474 897.81264906

The results given by the program CST3D.m are identical to those shown in Table 10.3.

23.6 TEMPERATURE DISTRIBUTION IN ONE-DIMENSIONAL FINS

To find the temperature distribution in a 1D fin (details are given in Section 14.2), a program called heat1.m was
developed. The program requires the following quantities:

NN ¼ number of nodes (input)
NE ¼ number of elements (input)
NB ¼ semibandwidth of the overall matrix GK (input)
IEND ¼ 0: means no heat convection from the free end
IEND ¼ any nonzero integer: means that heat convection occurs from the free end (input)
CC ¼ thermal conductivity of the material, k (input)
H ¼ convection heat transfer coefficient, h (input)
TINF ¼ atmospheric temperature, TN (input)
QD ¼ strength of heat source, q (input)
Q ¼ boundary heat flux, q (input)
NODE ¼ array of size NE � 2; NODE (I, J) ¼ global node number corresponding to the J-th (right handeside)
end of element I (input)
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XC ¼ array of size NN; XC(I) ¼ x coordinate of node I (input)
A ¼ array of size NE; A(I) ¼ area of cross-section of element I (input)
PERI ¼ array of size NE; PERI (I) ¼ perimeter of element I (input)
TS ¼ array of size NN; TS (I) ¼ prescribed value of temperature of node I (input). If the temperature of node I is
not specified, the value of TS (I) is given as 0.0

The program heat1.m requires the following subprograms: adjust.m, decomp.m, and solve.m.
The following example illustrates the use of the program heat1.f.

EXAMPLE 23.6
Find the temperature distribution in the 1D fin considered in Example 14.4 and shown in Fig. 14.1 with two finite elements.

Solution

A main program called main_heat1.m was created to solve the problem. The listing of the program main_heat1.m and the nodal

temperatures given by the program are shown below. The results can be seen to agree with the results obtained in Example 14.4

with hand computations.

clc; clear all;
% ----------------------------------------------------
% Written by Singiresu S. Rao
% The Finite Element Method in Engineering
% ----------------------------------------------------
NN¼3;
NE¼2;
NB¼2;
IEND¼1;
CC¼70;
H¼5;
TINF¼40;
QD¼0;
Q¼0;
NODE¼[1 2; 2 3] ;
XC¼ [0; 2.5; 5];
A¼[3.1416; 3.1416];
PERI¼[6.2832; 6.2832] ;
TS¼[140; 0; 0];
PLOAD ¼ HEAT1 (NN, NE, NB, IEND, CC, H, TINF, QD, Q, NODE, XC, A, PERI, TS);

fprintf (‘%s\n’, ‘Node Temperature’)
for i ¼ 1:NN
fprintf (‘%2.0f %15.4f\n’, i, PLOAD (i))
end

Node Temperature
1 140.0000
2 80.4475
3 63.3226

23.7 TEMPERATURE DISTRIBUTION IN ONE-DIMENSIONAL FINS INCLUDING
RADIATION HEAT TRANSFER

To find the temperature distribution in a 1D fin including radiation heat transfer (details given in Section 14.6), a program
called radiat.m is developed. The program requires the following quantities:

EPSIL ¼ emissivity of the surface (input)
EPS ¼ a small number of the order of 10�6 for testing the convergence of the method (input)
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SIG ¼ StefaneBoltzmann constant ¼ 5.7 � 10e8 W/m2 K4 (input)
ITER ¼ number of iterations used for obtaining convergence of the solution (output)

The other quantities NN, NE, NB, IEND, CC, H, TINF, QD, NODE, P, PLOAD, XC, A, PERI, and TS have the same
meaning as in the case of the subprogram heat1.m. The program radiat.m requires the following subprograms: adjust.m,
decomp.m, and solve.m.

The following example illustrates the use of the program radiat.f.

EXAMPLE 23.7
Find the temperature distribution in the 1D fin considered in Example 14.13 using one finite element.

Solution

A main program called main_radiat.m is created to solve the problem. The program main_radiat.m and the nodal temperatures

given by the program are given subsequently. The results agree with those obtained in Example 14.13 using hand computations.

clear all; clc; close all;
% -----------------------------------------
% Written by Singiresu S. Rao
% The Finite Element Method in Engineering
% -----------------------------------------
fprintf(‘%s\n’, ‘Iteration Error Nodal Temperature’)
P ¼ zeros (2, 1);
PLOAD ¼ zeros (2, 1);
GK ¼ zeros (2, 2);
EL ¼ zeros (1, 1);
PERI ¼ zeros (1, 1);
NN ¼ 2; NE ¼ 1; NB ¼ 2; IEND ¼ 0; CC ¼ 70; H ¼ 5; TINF ¼ 40; QD ¼ 0; Q¼0;EPSIL ¼ 0.1; EPS ¼ 0.0001;
SIG ¼ 5.7ee8;
NODE ¼ [1, 2];
XC ¼ [0;5];
A ¼ 3.1416;
PERI ¼ 6.2832;
TS ¼ [140;0];
PLOAD ¼ radiat
(NN, NE, NB, IEND, CC, H, TINF, QD, Q, EPSIL, EPS, SIG, NODE, XC, A, PERI, TS, P, PLOAD, GK,EL);

Iteration Error Nodal Temperature
1 1.0000 140.0000 58.4783
2 0.0145 140.0000 52.2292
3 0.0002 140.0000 52.3106
4 0.0000 140.0000 52.3095

23.8 TWO-DIMENSIONAL HEAT TRANSFER ANALYSIS

To find the solution of a 2D heat transfer problem such as the temperature distribution in a plate (details are given in
Section 15.2), a program called heat2.m was developed using linear triangular elements. The program requires the
following quantities:

NN ¼ number of nodes (input)
NE ¼ number of triangular elements (input)
NB ¼ semibandwidth of the overall matrix (input)
NODE ¼ array of size NE � 3; NODE (I, J) ¼ global node number corresponding to the J-th corner of element
I (input)
XC, YC ¼ array of size NN, XC(I), YC(I) ¼ x and y coordinates of node I (input)
CC ¼ thermal conductivity of the material, k (input)
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QD ¼ array of size NE; QD (I) ¼ value of q for element I (input)
ICON ¼ array of size NE; ICON ¼ 1 if element I lies on the convection boundary and ¼ 0 otherwise (input)
NCON ¼ array of size NE � 2; NCON (I, J) ¼ the J-th node of element I that lies on the convection boundary
(input); it does not need to be given if ICON (I) ¼ 0 for all I
Q ¼ array of size NE; Q(I) ¼ magnitude of heat flux for element I (input)
TS ¼ array of size NN; TS(I) ¼ specified temperature for node I (input). If the temperature of node I is not spec-
ified, the value of TS (I) is to be set equal to 0.0
H ¼ array of size NE; H(I) ¼ convective heat transfer coefficient for element I (input)
TINF ¼ array of size NE; TINF (I) ¼ ambient temperature for element I (input).

The program heat2.m requires the following subprograms: adjust.m, decomp.m, and solve.m. The following example
illustrates the use of the program heat2.f.

EXAMPLE 23.8
Find the temperature distribution in the square plate with uniform heat generation considered in Example 15.2 using triangular

finite elements.

Solution

A main program called main_heat2.m was created to solve the problem. The program main_ heat2.m and the nodal temperatures

given by the program are shown subsequently:

clear all; clc;
% ------------------------------------------------------------
% Written by Singiresu S. Rao
% The Finite Element Method in Engineering
% ------------------------------------------------------------
NN ¼ 9;
NE ¼ 8;
NB ¼ 4;
CC ¼ 30;
Node ¼ [1, 4, 2, 5,4,7,5,8;2,2,3,3,5,5,6,6;4,5,5,6,7,8,8,9]’;
XC ¼ [0.0, 5.0, 10.0, 0.0, 5.0, 10.0, 0.0, 5.0, 10.0]’;
YC ¼ [0.0, 0.0, 0.0, 5.0, 5.0, 5.0, 10.0, 10.0, 10.0]’;
QD ¼ [100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0]’;
ICON ¼ [0, 0, 0, 0, 0, 0, 0, 0]’;
Q ¼ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]’;
TS ¼ [0.0, 0.0, 50.0, 0.0, 0.0, 50.0, 50.0, 50.0, 50.0]’;
H ¼ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]’;
TINF ¼ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]’;
PLOAD ¼ HEAT2(NN, NE, NB, NODE, XC, YC, CC, QD, ICON, Q, TS, H, TINF);
fprintf(‘ Nodal No. Nodal temperature\n’)
for i¼1:length (PLOAD)
fprintf(‘%8.0f %20.4f\n’, i, PLOAD(i))
end

Nodal No. Nodal temperature
1 133.3333
2 119.4444
3 50.0000
4 119.4444
5 105.5556
6 50.0000
7 50.0000
8 50.0000
9 50.0000

The results are identical to those obtained in Example 15.2 using hand computations.
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23.9 CONFINED FLUID FLOW AROUND A CYLINDER USING THE POTENTIAL
FUNCTION APPROACH

To find the potential function distribution for confined inviscid and incompressible fluid flow around a cylinder (details are
given in Section 18.3), a program called phiflo.m was developed. The potential function approach with linear triangular
elements is used. The program requires the following quantities:

NN ¼ number of nodes (input)
NE ¼ number of elements (input)
NB ¼ semibandwidth of the overall matrix GK (input)
XC, YC ¼ array of size NN; XC(I), YC(I) ¼ x and y coordinates of node I (input)
NODE ¼ array of size NE � 3; NODE (I, J) ¼ the global node number corresponding to the J-th corner of element
I (input)
GK ¼ array of size NN � NB used to store the matrix

�
Ke
�

P ¼ array of size NN used to store vector P
!eQ ¼ array of size NE; Q(I) ¼ velocity of the fluid leaving element I through one of its edges (input)

A ¼ array of size NE; A(I) ¼ area of element I
PS ¼ array of size NN; PS(I) ¼ specified value of f at node I. If the value of f is not specified at node I, the value
of PS(I) is to be set equal to �1000.0 (input)
ICON ¼ array of size NE; ICON(I) ¼ 1 if element lies along the boundary on which the velocity is specified,
and ¼ 0 otherwise (input)
NCON ¼ array of size NE � 2; NCON(I, J) ¼ the J-th node of element I that lies on the boundary on which the
velocity is specified; it does not need to be given if ICON(I) ¼ 0 for all I (input)
PLOAD ¼ array of size NN � 1 used to store the final right handeside vector. It represents the solution vector
(nodal values of f) upon return from the subroutine PHIFLO

The program phiflo.m requires the following subprograms: adjust.m, decomp.m, and solve.m. The following example
illustrates the use of the program phiflo.f.

EXAMPLE 23.9
Find the potential function distribution in the confined flow around a cylinder considered in Example 18.4 using triangular finite

elements.

Solution

A main program called main_phiflo.m was created to solve the problem. The program main_phiflo.m and the nodal values of

potential function given by the program are shown subsequently:

clear all; clc; close all;
% -------------------------------------------------
% Written by Singiresu S. Rao
% The Finite Element Method in Engineering
% -------------------------------------------------
A ¼ zeros (13, 1) ;
PLOAD ¼ zeros (13, 1) ;
P ¼ zeros (13, 1) ;
NN ¼ 13; NE ¼ 13; NB ¼ 7;
XC ¼ [0.0, 5.0, 9.17, 12.0, 0.0, 5.0, 9.17, 12.0, 0.0, 5.0, 8.0, 9.17, 12.0] ;
YC ¼ [8.0, 8.0, 8.0, 8.0, 4.0, 4.0, 5.5, 5.5, 0.0, 0.0, 0.0, 2.83, 4.0] ;
ICON ¼ [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] ;
NODE ¼ [5, 6, 6, 7, 7, 7, 5, 9, 10, 11, 6, 7, 7; . . .
1, 1, 2, 2, 3, 4, 6, 6, 6, 6, 7, 12, 8; . . .
6, 2, 7, 3, 4, 8, 9, 10, 11, 12, 12, 13, 13] ’ ;
NCON ¼ [5, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0; . . .
1, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0; . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0] ’ ;
GK ¼ zeros (NN, NB) ;
for I ¼ 1:NN

Continued
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EXAMPLE 23.9 dcont’d

PS (I) ¼ e1000.0;
end

PS (4) ¼0.0;
PS (8) ¼0.0;
PS (13) ¼0.0;
Q ¼ [e1.0, 0.0, 0.0, 0.0, 0.0, 0.0, e1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ;
PLOAD ¼ Phiflo (XC, YC, NODE, ICON, NCON, GK, A, PS, PLOAD, Q, P, NN, NE, NB) ;

fprintf (‘%s\n’, ‘Node Potential function’)
for i ¼ 1:NN
fprintf (‘%4.0f %15.4f\n’, i, PLOAD (i))
end

Node Potential Function
1 14.9004
2 9.6754
3 4.4818
4 0.0000
5 15.0443
6 10.0107
7 4.7838
8 0.0000
9 15.2314
10 10.5237
11 8.4687
12 6.2288
13 0.0000

23.10 TORSION ANALYSIS OF SHAFTS

To find the stress function distribution in a solid prismatic shaft subjected to a twisting moment (details are given in Section
20.3), a program called torson.m was developed. Linear triangular elements are used to model the cross-section of the
shaft. The program requires the following quantities:

NN ¼ number of nodes
NE ¼ number of elements
NB ¼ semibandwidth of the overall matrix GK
XC, YC ¼ array of size NN; XC(I), YC(I) ¼ x and y coordinates of node I
NFIX ¼ number of nodes lying on the outer boundary (number of nodes at which f ¼ 0)
NODE ¼ array of size NE � 3; NODE(I, J) ¼ global node number corresponding to the J-th corner of element I
G ¼ shear modulus of the material
THETA ¼ angle of twist in degrees per 100-cm length
IFIX ¼ array of size NFIX; IFIX(I) ¼ the I-th node number at which f ¼ 0
A ¼ array of size NE denoting the areas of elements; A(I) ¼ area of the I-th triangular element

The program torson.m requires the following subprograms: adjust.m, decomp.m, and solve.m. The following program
illustrates the use of the program torson.f.

EXAMPLE 23.10
Find the stresses developed in a prismatic shaft with a 4 � 4-cm cross-section that is subjected to a twist of 2 degrees per meter

length using triangular finite elements. This example is the same as Example 20.1.
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EXAMPLE 23.10 dcont’d

Solution

A main program called main_torson.m was created to solve the problem. The program main_torson.m, the nodal values of stress

function, and the shear stresses developed in the elements given by the program are shown subsequently:

clear all; clc; close all;
% -------------------------------------------------
% Written by Singiresu S. Rao
% The Finite Element Method in Engineering
% -------------------------------------------------
NN ¼ 6; NE ¼ 4; NB ¼ 5; NFIX ¼ 3; G ¼ 0.8e6; THETA ¼ 2.0;
NODE ¼ [2 4 5 6;3 5 6 3;1 2 2 2]’ ;
XC ¼ [2 1 2 0 1 2] ;
YC ¼ [2 1 1 0 0 0] ;
IFIX ¼ [1 3 6] ;
A ¼ zeros (4, 1) ;
PLOAD ¼ Torson (NN, NE, NB, NFIX, G, THETA, NODE, XC, YC, IFIX, A) ;

fprintf (‘%s\n’, ‘Node Value of stress function’)
for i ¼ 1:NN
fprintf (‘%4.0f %15.4f\n’, i, PLOAD (i))
end

Node Value of Stress Function
1 0.0000
2 418.8482
3 0.0000
4 651.5416
5 465.3869
6 0.0000

PROBLEMS

23.1 Solve Problem 7.11 using the MATLAB program choleski.m.
23.2 Modify the matrix and the right handeside vector considered in Problem 6.22 to incorporate the boundary condi-

tions T5 ¼ T6 ¼ 50�C. Use the MATLAB program adjust.m.
23.3 Find the nodal displacements and element stresses in the truss considered in Problem 9.7 and Fig. 9.19 using the

MATLAB program truss3D.m.
23.4 Find the stresses developed in the plate shown in Fig. 10.16 using at least 10 CST elements. Use the MATLAB

program cst.m.
23.5 Find the nodal displacements and element stresses developed in the box beam described in Section 10.3.3 and

Fig. 10.7 using the finite element model shown in Fig. 10.8. Use the MATLAB program CST3D.m.
23.6 Solve Problem 14.8 using the MATLAB program heat1.m.
23.7 Solve Problem 14.8 by including radiation heat transfer from the lateral and end surfaces of the fin using the MAT-

LAB program radiat.m. Assume ε ¼ 0.1.
23.8 Find the temperature distribution in the plate considered in Example 15.2 using 16 triangular finite elements. Use

the MATLAB program heat2.m.
23.9 Determine the velocity distribution in the region ABCDEA shown in Fig. 18.1 using at least 25 triangular elements.

Use the MATLAB program phiflo.m.
23.10 Find the stress distribution in the elliptic shaft subjected to a torsional moment described in Problem 20.7 and

Fig. 20.3 using the MATLAB program torson.m. Use at least 10 triangular elements in a quarter of the cross-
section.
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Appendix A

Comparison of the Finite Element
Method With Other Methods of Analysis

The analysis problems, particularly those in the broad area of engineering mechanics, can be solved using several methods.
The problems, also known as field problems, are governed by ordinary or partial differential equations. The common
methods available for the solution of a general field problem are shown in Fig. A.1. The finite element method of solution
is compared to some of the other methods of analysis by considering the problem of free vibration (natural frequencies) of a
uniform beam. This is known as an eigenvalue problem.

A.1 DERIVATION OF THE EQUATION OF MOTION FOR THE VIBRATION
OF A BEAM [A.1]

By considering the dynamic equilibrium of an element of the beam, shown in Fig. A.2, the following equations can be
derived.

Vertical force equilibrium equation: F � (F þ dF) � pdx ¼ 0
or

�dF
dx

¼ p (A.1)

where F denotes the shear force at a distance x, dF indicates its increment over an elemental distance dx, and p represents
the external force acting on the beam per unit length.

Moment equilibrium about the point A:

M � ðM þ dMÞ þ F dx� p dx
dx
2

¼ 0

which can be written, by neglecting the term involving (dx)2, as

dM
dx

¼ F (A.2)

where M is the bending moment at x and dM is its increment over dx.

Exact methods
(e.g., separation
of variables and
Laplace trans-
formation methods)

Approximate
methods (e.g.,
Rayleigh-Ritz
and Galerkin
methods

Numerical
solution of
differential
equations

Numerical methods

Finite or
discrete
element method

Finite
differences

Numerical
integration

Analytical Methods

Methods of analysis (Solution of differential equations)

FIGURE A.1 Different methods of analysis.

The Finite Element Method in Engineering. http://dx.doi.org/10.1016/B978-0-12-811768-2.15001-1
Copyright © 2018 Elsevier Inc. All rights reserved.
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Combining Eqs. (A.1) and (A.2), we obtain

� d2M
dx2

¼ � dF
dx

¼ pðxÞ (A.3)

The curvature of the deflected center line of the beam, w(x), is given by [A.2]

1
R

¼ �
d2w
dx2 

1þ
�
dw
dx

�2
!3

2

(A.4)

For small deflections, Eq. (A.4) can be approximated as

1
R

¼ � d2w
dx2

(A.5)

From strength of materials, the following relation is available [A.2]:

1
R

¼ � M

E IðxÞ (A.6)

where R is the radius of curvature, I is the second area moment of the cross section of the beam, and E is the Young’s
modulus of the material of the beam. By combining Eqs. (A.3), (A.5), and (A.6), we obtain

MðxÞ ¼ �E IðxÞ d
2w

dx2
(A.7)

and

pðxÞ ¼ d2

dx2

�
E IðxÞ d

2w

dx2

�
(A.8)

According to D’Alembert’s principle, for free vibration, we have

pðxÞ ¼ inertia force ¼ �m
d2w
dt2

(A.9)

where m is the mass of the beam per unit length. If the cross section of the beam is constant throughout its length, the final
beam vibration equation takes the form

E I
v4w

vx4
þ m

v2w

vt2
¼ 0 (A.10)

w(x)

M

p.dx

dx

M+dM

F+dF

F

A

x

Distributed load, p(x)

x

FIGURE A.2 Free body diagram of an element of beam.
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Eq. (A.10) is solved by satisfying the specified boundary conditions. For example, for a fixed-fixed beam, the boundary
conditions are given by

w ¼ 0

vw

vx
¼ 0

9=; at x ¼ 0 and x ¼ L (A.11)

where L is the length of the beam.

A.2 EXACT ANALYTICAL SOLUTION (USING SEPARATION OF VARIABLES
TECHNIQUE)

For free vibration, we assume harmonic motion and hence

wðx; tÞ ¼ WðxÞei u t (A.12)

where W(x) is purely a function of x and u is the circular natural frequency of vibration. Substituting Eq. (A.12) into
Eq. (A.10) we obtain

d4W
dx4

� lW ¼ 0 (A.13)

where

l ¼ m u2

E I
h b4ðassumedÞ (A.14)

The general solution of Eq. (A.13) can be expressed as

WðxÞ ¼ C1 sin b xþ C2 cos b xþ C3 sinh b xþ C4 cosh b x (A.15)

where C1, C2, C3, and C4 are constants to be determined from the boundary conditions. In view of Eq. (A.12), the boundary
conditions for a fixed-fixed beam can be written as

Wðx ¼ 0Þ ¼ Wðx ¼ LÞ ¼ 0

dW
dx

ðx ¼ 0Þ ¼ dW
dx

ðx ¼ LÞ ¼ 0

9>=>; (A.16)

If we substitute Eq. (A.15) into Eq. (A.16), we get four linear homogeneous equations in the unknowns C1, C2, C3, and
C4. For a nontrivial solution, the determinant of the coefficient matrix must be zero. This leads to condition [A.1]

cos b L cosh b L ¼ 1 (A.17)

Eq. (A.17) is called the frequency equation, and there will be an infinite number of solutions to it. Let the nth root of
Eq. (A.17) be bnL. By using this solution in Eqs. (A.14) and (A.15), we obtain the natural frequencies as

u2
n ¼ b4

nE I

m
(A.18)

where b1L ¼ 4.73, b2L ¼ 7.85, b3L ¼ 11.00, and so on, and mode shapes as

WnðxÞ ¼ Bn

�
cosh bnx� cos bnx�

�
cos bnL� cosh bnL

sin bnL� sinh bnL

�
ðsinh bnx� sin bnxÞ

�
(A.19)

where Bn is a constant. Finally, the solution of w is given by

wnðxÞ ¼ WnðxÞei unt ; n ¼ 1; 2; 3;. (A.20)
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A.3 APPROXIMATE ANALYTICAL SOLUTION (RAYLEIGH METHOD)

To find an approximate value of the first (or fundamental) natural frequency and the corresponding mode shape, the
Rayleigh energy method can be used. In this method, the maximum kinetic energy of the system during motion is equated
to the maximum potential energy. For a uniform beam, the potential (or strain) energy, p, is given by [A.1]

p ¼ 1
2

Z L

0
E I

�
v2w

vx2

�2

dx (A.21)

and the kinetic energy, T, by

T ¼ 1
2

Z L

0
mðxÞ

�
vw

vt

�2

dx (A.22)

By assuming harmonic variation of w(x, t) as

wðx; tÞ ¼ WðxÞcos ut (A.23)

the maximum values of p and T can be found as

ðpÞmax ¼ 1
2

Z L

0
E I

�
d2W
dx2

�2

dx (A.24)

and

ðTÞmax ¼ u2

2

Z L

0
mðxÞW2ðxÞ dx (A.25)

By equating (p)max and (T)max, we obtain

u2 ¼

Z L

0
EI

�
d2W
dx2

�2

dxZ L

0
mðxÞW2dx

(A.26)

To find the value of u2 using Eq. (A.26), we assume an approximate deflection or mode shape W(x), known as ad-
missible deflection, which satisfies the geometric boundary conditions but not necessarily the governing differential
equation, Eq. (A.13), of the beam and substitute it in Eq. (A.26). For example, we can choose

WðxÞ ¼ 1� cos
2px
L

(A.27)

to satisfy the boundary conditions stated in Eq. (A.16) and not the equation of motion, Eq. (A.13). By substituting
Eq. (A.27) into Eq. (A.26), we can find the approximate value of the first natural frequency ðeu1Þ as

ðeu1Þ ¼ 22:792
L2

ffiffiffiffiffiffiffi
E I

m

r
(A.28)

which can be seen to be 1.87% larger than the exact value of

u1 ¼ 22:3729
L2

ffiffiffiffiffiffiffi
E I

m

r
(A.29)

A.4 APPROXIMATE ANALYTICAL SOLUTION (RAYLEIGHeRITZ METHOD)

If we want to find the approximate values of many natural frequencies, we need to substitute an assumed solution made up
of a series of admissible functions that satisfy the forced (or geometric) boundary conditions of the beam in Eq. (A.16).
This method is an extension of the Rayleigh method known as the RayleigheRitz method. In the RayleigheRitz method, if
we want to find n natural frequencies, we use the deflection function

WðxÞ ¼ C1 f1ðxÞ þ C2 f2ðxÞ þ.þ Cn fnðxÞ (A.30)
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where C1, C2, ., Cn are constants and f1, f2, ., fn are admissible functions. By substituting Eq. (A.30) in Eq. (A.26), we
obtain u2 as a function of C1, C2, ., Cn. Since the actual frequency u will be smaller than eu [A.1], we want to choose C1,
C2,., Cn such that they make eu a minimum. For this, we set the derivative of eu2, given by Eq. (A.26) after substitution of
Eq. (A.30), with respect to C1, C2, ., Cn, to zero:

vðeu2Þ
vC1

¼ vðeu2Þ
vC2

¼ / ¼ vðeu2Þ
vCn

¼ 0 (A.31)

A typical jth term in Eq. (A.31) gives the following equation:

v

vCj

Z L

0
EI

�
d2W
dx2

�2

dx� u2
j

v

vCj

Z L

0
mðxÞW2ðxÞ dx ¼ 0 (A.32)

Eq. (A.31) represents a set of n homogeneous algebraic equations in terms of the n unknown constants C1, C2, ., Cn

(as given by Eq. A.32 for j ¼ 1, 2,., n). As such, for a nontrivial solution of the constants C1, C2,., Cn, the determinant
of their coefficient matrix must be set equal to zero. The process enables us to find the desired n approximate natural
frequencies of the beam (or system). The process is illustrated by using a two-term solution for the vibration of the uniform
fixed-fixed beam considered in Section A.3.

Let the two-term solution of the beam be given by

WðxÞ ¼ C1

�
1� cos

2px
L

�
þ C2

�
1� cos

4px
L

�
(A.33)

Substitution of Eq. (A.33) into Eq. (A.26) gives

eu2 ¼
8p4

L3
E I
	
C2

1 þ 16C2
2



m L

2

	
2C2

1 þ 3C2
2 þ 4C1C2


 (A.34)

The conditions for the minimum of eu2, namely,

vðeu2Þ
vC1

¼ vðeu2Þ
vC2

¼ 0 (A.35)

lead to the following algebraic eigenvalue problem:

16p4E I

L3

�
1 0

0 10

��
C1

C2

�
¼ eu2m L

�
3 2

2 3

��
C1

C2

�
(A.36)

The solution of Eq. (A.36) gives two natural frequencies as

eu1 ¼ 22:35
L2

ffiffiffiffiffiffiffi
E I

m

r
with

�
C1

C2

�
¼
�

1:0

0:5750

�
(A.37)

and

eu2 ¼ 124:0
L2

ffiffiffiffiffiffiffi
E I

m

r
with

�
C1

C2

�
¼
�

1:0

�1:4488

�
(A.38)

The first and second natural frequencies shown in Eqs. (A.37) and (A.38) can be compared with the correct values
(given by the exact solution) for which the constants in the numerators on the right-hand side of the expressions of the
natural frequencies are 22.3729 and 61.6727, respectively.

A.5 APPROXIMATE ANALYTICAL SOLUTION (GALERKIN METHOD)

To find an approximate solution of the free vibration equation of the beam, Eq. (A.13), with the boundary conditions stated
in Eq. (A.16), we can use the Galerlin method. In this method, we assume the solution to be of the form

WðxÞ ¼ C1 f1ðxÞ þ C2 f2ðxÞ þ.þ Cn fnðxÞ (A.39)
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where C1, C2, ., Cn are constants and f1, f2, ., fn are functions that satisfy all the specified boundary conditions (not just
the geometric boundary conditions, but free boundary conditions also, if applicable). Since the solution assumed,
Eq. (A.39), is not the exact solution, it will not satisfy the governing differential equation, Eq. (A.13). Thus when the
assumed solution, Eq. (A.39), is substituted into the left-hand side expression of Eq. (A.13), we obtain a quantity different
from zero (known as the residual, R). The values of the unknown constants C1, C2, ., Cn are obtained by setting the in-
tegral of the residual multiplied by each of the functions fi(x), also termed the weighting functions, over the length of the
beam equal to zero; that is, Z L

0
fiðxÞRðxÞ dx ¼ 0; i ¼ 1; 2;.; n (A.40)

Because the method uses the integrals of residual multiplied by the weighting functions, the Galerkin method is also
known as a weighted residual method. Eq. (A.40) represents a system of linear homogeneous equations (since the problem
is an eigenvalue problem) in the unknowns C1, C2, ., Cn. These equations can be solved to find the natural frequencies
and mode shapes of the problem.

For illustration of the procedure, consider a two-term solution as

WðxÞ ¼ C1 f1ðxÞ þ C2 f2ðxÞ (A.41)

where

f1ðxÞ ¼ cos
2px
L

� 1 (A.42)

f2ðxÞ ¼ cos
4px
L

� 1 (A.43)

Substitution of Eq. (A.41) into Eq. (A.13) gives the residual R as

R ¼ C1

(�
2p
L

�4

� b4

)
cos

2px
L

þ C1b
4 þ C2

(�
4p
L

�4

� b4

)
cos

4px
L

þ C2b
4 (A.44)

Thus, the application of Eq. (A.40) leads toZ L

x¼0

�
cos

2px
L

� 1

�"
C1

(�
2p
L

�4

� b4

)
cos

2px
L

þ C1b
4 þ C2

(�
4p
L

�4

� b4

)
cos

4px
L

þ C2b
4

#
dx ¼ 0 (A.45)

Z L

x¼0

�
cos

4px
L

� 1

�"
C1

(�
2p
L

�4

� b4

)
cos

2px
L

þ C1b
4 þ C2

(�
4p
L

�4

� b4

)
cos

4px
L

þ C2b
4

#
dx ¼ 0 (A.46)

Upon carrying out the indicated integrations, Eqs. (A.45) and (A.46) yield

C1

"
1
2

(�
2p
L

�4

� b4

)
� b4

#
� C2b

4 ¼ 0 (A.47)

�C1b
4 þ C2

"
1
2

(�
4p
L

�4

� b4

)
� b4

#
¼ 0 (A.48)

For a nontrivial solution of the homogeneous equations in C1 and C2, Eqs. (A.47) and (A.48), the determinant of the
coefficient matrix of C1 and C2 must be zero. This gives�������������

1
2

(�
2p
L

�4

� b4

)
� b4 �b4

�b4 1
2

(�
4p
L

�4

� b4

)
� b4

�������������
¼ 0 (A.49)
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which can be simplified as

ðbLÞ8 � 15900ðbLÞ4 þ 7771000 ¼ 0 (A.50)

The solution of Eq. (A.50) gives bL ¼ 4.741 and 11.140. Thus, the first two natural frequencies of the beam are given
by

u1 ¼ 22:48
L2

ffiffiffiffiffiffiffi
E I

m

r
with

�
C1

C2

�
¼
�
21:0

1

�
(A.51)

u2 ¼ 124:1
L2

ffiffiffiffiffiffiffi
E I

m

r
and with

�
C1

C2

�
¼
��0:69

1:00

�
(A.52)

The first and second natural frequencies shown in Eqs. (A.51) and (A.52) can be compared with the correct values
(given by the exact solution) for which the constants in the numerators on the right-hand side of the expressions of the
natural frequencies are 22.3729 and 61.6727, respectively.

A.6 FINITE DIFFERENCE METHOD OF NUMERICAL SOLUTION

The main idea in the finite difference method is to use approximations to derivatives. We can derive finite difference
approximations to various order derivatives (similar to central difference method). Let f ¼ f(x) be any given function of x.
The Taylor’s series expansion of f around any point x gives

f ðxþ DxÞ z f ðxÞ þ df
dx

����
x

Dxþ d2f
dx2

����
x

ðDxÞ2
2!

þ d3f
dx3

����
x

ðDxÞ3
3!

þ d4f
dx4

����
x

ðDxÞ4
4!

(A.53)

f ðx� DxÞ z f ðxÞ � df
dx

����
x

Dxþ d2f
dx2

����
x

ðDxÞ2
2!

� d3f
dx3

����
x

ðDxÞ3
3!

þ d4f
dx4

����
x

ðDxÞ4
4!

(A.54)

By taking the first two terms only on the right-hand side and subtracting Eq. (A.54) from Eq. (A.53), we obtain [A.3]

f ðxþ DxÞ � f ðx� DxÞ ¼ df
dx

����
x

Dxþ df
dx

����
x

Dx

or

df
dx

����
x

z
f ðxþ DxÞ � f ðx� DxÞ

2Dx
(A.55)

Considering the first three terms only on the right-hand side and adding Eqs. (A.54) and (A.53) gives

f ðxþ DxÞ þ f ðx� DxÞ ¼ f ðxÞ þ df
dx

����
x

Dxþ d2f
dx2

����
x

ðDxÞ2
2!

þ f ðxÞ � df
dx

����
x

Dxþ d2f
dx2

����
x

ðDxÞ2
2!

or

d2f
dx2

����
x

¼ f ðxþ DxÞ � 2f ðxÞ þ f ðx� DxÞ
ðDxÞ2 (A.56)

Using
d2f
dx2

����
x

in place of f(x), Eq. (A.56) gives [A.3]

d4f
dx4

����
x

¼
d2f
dx2

����
xþDx

� 2
d2f
dx2

����
x

þ d2f
dx2

����
x�Dx

ðDxÞ2 (A.57)
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By substituting Eq. (A.56) on the right-hand side of Eq. (A.57), we obtain [A.3]

d4f
dx4

����
x

¼
"(

f ðxþ 2DxÞ � 2f ðxþ DxÞ þ f ðxÞ
ðDxÞ2

)

� 2

(
f ðxþ DxÞ � 2f ðxÞ þ f ðx� DxÞ

ðDxÞ2
)

þ
(
f ðxÞ � 2f ðx� DxÞ þ f ðx� 2DxÞ

ðDxÞ2
)#,

ðDxÞ2

(A.58)

Eq. (A.58) can be simplified to obtain the central difference formula for the fourth derivative as

d4f
dx4

����
x

¼ 1

ðDxÞ4
�
f ðxþ 2DxÞ � 4f ðxþ DxÞ þ 6f ðxÞ � 4f ðx� DxÞ þ f ðx� 2DxÞ (A.59)

To find the approximate solution of

d4W
dx4

� b4W ¼ 0 (A.60)

we first divide the length of the beam (or solution region) into a suitable number of segments and establish the grid or node
points as indicated in Fig. A.3 and then approximate the governing differential equation around points 1 and 2 in Fig. A.3
by using a central finite difference formula for the fourth derivative. For this, we need two fictitious or hypothetical node
points, 1 and 4, as shown in Fig. A.3.

By approximating Eq. (A.60) at points 1 and 2, we obtain

ðW�1 � 4W0 þ 6W1 � 4W2 þW3Þ � b4
1W1 ¼ 0 (A.61)

ðW0 � 4W1 þ 6W2 � 4W3 þW4Þ � b4
2W2 ¼ 0 (A.62)

where

b4
i ¼

�
L

3

�2

b4; i ¼ 1; 2 (A.63)

The boundary conditions of the beam can be expressed as

W0 ¼ W3 ¼ 0

dW
dx

����
0

¼ dW
dx

����
3

¼ 0 or W�1 ¼ W1;W3 ¼ W4

(A.64)

By substituting the conditions of Eq. (A.64), Eqs. (A.61) and (A.62) reduce to

7W1 � 4W2 ¼ b4
1W1 (A.65)

�4W1 þ 7W2 ¼ b4
2W2 (A.66)

which can be expressed in matrix form as

–1 0 1 2 3 4

W3 W4W2W1W0W–1

L
3

L
3

L
3

L
3

L
3

FIGURE A.3 Introduction of hypothethical nodes in finite differences method of solution.
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�
7 �4

�4 7

��
W1

W2

�
¼ b4

1

�
1 0

0 1

��
W1

W2

�
(A.67)

By solving the standard eigenvalue problem shown in Eq. (A.67), we can obtain the approximate first two natural
frequencies and mode shapes of the beam as

u1 ¼ 15:59
L2

ffiffiffiffiffiffiffi
E I

m

r
;

�
W1

W2

�
¼
�
1

1

�
(A.68)

u2 ¼ 29:85
L2

ffiffiffiffiffiffiffi
E I

m

r
;

�
W1

W2

�
¼
�

1

�1

�
(A.69)

The first and second natural frequencies given by Eqs. (A.68) and (A.69) can be compared with the correct values
(given by the exact solution) for which the constants in the numerators on the right-hand side of the expressions of the
natural frequencies are 22.3729 and 61.6727, respectively.

A.7 FINITE ELEMENT METHOD OF NUMERICAL SOLUTION (DISPLACEMENT
APPROACH)

In the finite element method, we divide the given beam (or structure) into several elements and assume a suitable solution
within each of the elements. From this we formulate the necessary equations from which the approximate solution can be
obtained easily. Fig. A.4 shows the beam divided into two elements of equal length. Within each element, the solution for
the transverse displacement is assumed to be a cubic equation as

wðxÞ ¼W ðeÞ
1 $

1
l3
	
2x3 � 3lx2 þ l3


þW ðeÞ
3 $

1
l3
	
3lx2 � 2x3



þW ðeÞ

2 $
1
l2
	
x3 � 2lx2 þ l2x


þW ðeÞ
4 $

1
l2
	
x3 � lx2


 (A.70)

where W ðeÞ
1 to W ðeÞ

4 denote the displacements at the ends of the element e (to be determined), and l indicates the length of
the element.

Global node
number

Element 1 Element 2

W1
(1)

W1

w(x) W2

W3

W4

W5

W6

W3
(1) W1

(2)

W2
(2)

W3
(2)

W4
(2)W2

(1) W4
(1)

Local node
number

3

3

2

2

1

2

21

1

1 2

L

x

x x
I= L2 I= L2

FIGURE A.4 Finite element idealization of the beam.
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The strain and kinetic energies of the element can be expressed as

pðeÞ ¼ 1
2

Z l

0
E I

�
v2w

vx2

�2

dx ¼ 1
2
W
!ðeÞT �

KðeÞ�W!ðeÞ
(A.71)

and

T ðeÞ ¼ 1
2

Z l

0
rA

�
vw

vt

�2

dx ¼ 1
2
_
W
!ðeÞT �

MðeÞ� _W!ðeÞ
(A.72)

where r is the mass density, A is the cross-sectional area of the element, and a dot over W
!ðeÞ

represents the time derivative

of the nodal displacement vector of element e, W
!ðeÞ

. We can obtain, after substituting Eq. (A.70) into Eqs. (A.71) and
(A.72), the stiffness matrix [K(e)] and the mass matrix [M(e)] as

�
KðeÞ� ¼ 2E I

l3

26664
6 3l �6 3l

3l 2l2 �3l l2

�6 �3l 6 �3l

3l l2 �3l 2l2

37775 (A.73)

�
MðeÞ� ¼ rAl

420

26664
156 22l 54 �13l

22l 4l2 13l �3l2

54 13l 156 �22l

�13l �3l2 �22l 4l2

37775 (A.74)

Fig. A.4 shows that

W
!ð1Þ ¼ vector of unknown nodal displacements of element 1 ¼

8>>>><>>>>:
W ð1Þ

1

W ð1Þ
2

W ð1Þ
3

W ð1Þ
4

9>>>>=>>>>; ¼

8>>><>>>:
W1

W2

W3

W4

9>>>=>>>;
and

W
!ð2Þ ¼ vector of unknown nodal displacements of element 2 ¼

8>>>><>>>>:
W ð2Þ

1

W ð2Þ
2

W ð2Þ
3

W ð2Þ
4

9>>>>=>>>>; ¼

8>>><>>>:
W3

W4

W5

W6

9>>>=>>>;
By assembling the stiffness and mass matrices of the two elements (details are given in Chapter 6), we obtain the

assembled stiffness and mass matrices as

W1 = W1
(1) W2 = W2

(1)
W1 = W1

(1)

W2 = W2
(1)

W5 = W3
(2)

W5 = W3
(2)

W6 = W4
(2)

W6 = W4
(2)

 = W1
(2)W3 = W3

(1)

 = W1
(2)W3 = W3

(1)

 = W2
(2)W4 = W4

(1)

 = W2
(2)W4 = W4

(1)

6

6 + 6

–6

–6

6–6

–6
3l

–3l

3l

2l2 + 2l2

l2

l2

l2

–3l + 3l
–3l + 3l

3l
–3l

–3l

–3l

3l

3l

–3l –3l

2l2

2l2
l23l

0 0

0 0
00

0 0

[K] = 
l3
2EI (A.75)
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M ] = ] ρ
420
Al

W1 = W1
(1) W2 = W2

(1) W5 = W3
(2) W6 = W4

(2) = W1
(2)W3 = W3

(1)  = W2
(2)W4 = W4

(1)

156

156 + 156

54

54

54

22l
54 13l

–13l

4l2 + 4l2
–3l2

–22l + 22l
–22l + 22l

22l
13l

13l

–22l
–22l

–13l

–13l

13l

4l2

4l2
–3l2

–3l2

W1 = W1
(1)

W2 = W2
(1)

W5 = W3
(2)

W6 = W4
(2)

 = W1
(2)W3 = W3

(1)

 = W2
(2)W4 = W4

(1)–3l2–13l
0 0

0 0
00

0 0
156

(A.76)

After deleting the rows and columns corresponding to the degrees of freedom W1, W2, W5, and W6 (since
W1 ¼ W2 ¼ W5 ¼ W6 ¼ 0 are the boundary conditions), in Eqs. (A.75) and (A.76), we obtain the stiffness and mass
matrices of the beam as

½K� ¼ 2E I

l3

�
12 0

0 4l2

�
¼ 16E I

L3

�
12 0

0 L2

�
(A.77)

½M� ¼ rAl

420

�
312 0

0 8l2

�
¼ rAL

840

�
312 0

0 2L2

�
(A.78)

Once the stiffness and mass matrices of the complete beam are available, we can formulate the eigenvalue problem as

½K�W! ¼ l½M�W! (A.79)

where W
! ¼

�
W3

W4

�
is the eigenvector or mode shape and l is the eigenvalue, with l ¼ u2. The solution of Eq. (A.79)

gives two natural frequencies and the corresponding mode shapes of the beam as

u1 ¼ 22:7
L2

ffiffiffiffiffiffiffi
E I

m

r
;

�
W3

W4

�
¼
�
1

0

�
(A.80)

and

u2 ¼ 82:0
L2

ffiffiffiffiffiffiffi
E I

m

r
;

�
W3

W4

�
¼
�
0

1

�
(A.81)

It can be seen that the two natural frequencies are 1.4680% and 32.96% larger than the correct values (of the constants
in the numerators on the right-hand side of the expressions of the natural frequencies) 22.3729 and 61.6727 corresponding
to the exact solution.
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Appendix B

GreeneGauss Theorem
(Integration by Parts in Two
and Three Dimensions)

In the derivation of finite element equations for two-dimensional problems, we need to evaluate integrals of the type:ðð
S

j
vf

vx
dx dy (B.1)

where S is the area or region of integration and C is its bounding curve. We can integrate Eq. (B.l) by parts, first with
respect to x, using the basic relation: ðxr

xl

u dv ¼ �
ðxr
xl

v duþ uv

������
xr

xl

(B.2)

to obtain ðð
S

j
vf

vx
dx dy ¼ �

ðð
S

vj

vx
f dx dyþ

ðy2
y¼ y1

ðjfÞjxrxl $ dy (B.3)

0

y

n

S

C

n

x

dC
dC

dy

xr

xI

y1 y2

FIGURE B.1 Limits of integration for x and y.
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where (xl, xr) and (y1, y2) denote the limits of integration for x and y, as shown in Fig. B.1. However, dy can be expressed
as:

dy ¼ �dC$lx (B.4)

where dC is an element of the boundary curve, lx is the cosine of the angle between the normal n and the x direction, and
the pluseminus sign is applicable to the right and left handeside boundary curves (Fig. B.1). Thus, the last term of
Eq. (B.3) can be expressed in integral form as:ðy2

y1

ðjfÞjxrxl $ dy ¼
þ
C

jf dC lx (B.5)

Thus, the integral of Eq. (B.1) can be evaluated as:ðð
S

j
vf

vx
dx dy ¼ �

ðð
S

vj

vx
f dx dyþ

þ
C

jflx dC (B.6)

Similarly, if integral (B.1) contains the term ðvf=vyÞ instead of ðvf=vxÞ, it can be evaluated as:ðð
S

j
vf

vy
dx dy ¼ �

ðð
S

vj

vy
f dx dyþ

þ
C

jfly dC (B.7)

where ly is the cosine of the angle between the normal n and the y direction.
Eqs. (B.6) and (B.7) can be generalized to the case of three dimensions as:ððð

V

j
vf

vx
dx dy dz ¼ �

ððð
V

vj

vx
f dx dy dzþ

þ
S

jflx dS (B.8)

where V is the volume or domain of integration and S is the surface bounding the domain V. Expressions similar to
Eq. (B.8) can be written if the quantity ðvf=vyÞ or ðvf=vzÞ appears instead of ðvf=vxÞ in the original integral.
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Element characteristic matrix, 31e38, 218,

617b
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346e349
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Field problem, 257e258, 653
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737e738
Finite difference method, 282, 751e753
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