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Preface

Thermodynamics, a key component of many fields of science and engineering, is based on 
laws of universal applicability. However, the most important applications of those laws, and 
the materials and processes of greatest concern, differ from one branch of science or engineer-
ing to another. Thus, we believe there is value in presenting this material from a chemical 
engineering perspective, focusing on the application of thermodynamic principles to materials 
and processes most likely to be encountered by chemical engineers.

Although introductory in nature, the material of this text should not be considered sim-
ple. Indeed, there is no way to make it simple. A student new to the subject will find that a 
demanding task of discovery lies ahead. New concepts, words, and symbols appear at a bewil-
dering rate, and a degree of memorization and mental organization is required. A far greater 
challenge is to develop the capacity to reason in the context of thermodynamics so that one can 
apply thermodynamic principles in the solution of practical problems. While maintaining the 
rigor characteristic of sound thermodynamic analysis, we have made every effort to avoid 
unnecessary mathematical complexity. Moreover, we aim to encourage understanding by writ-
ing in simple active-voice, present-tense prose. We can hardly supply the required motivation, 
but our objective, as it has been for all previous editions, is a treatment that may be understood 
by any student willing to put forth the required effort.

The text is structured to alternate between the development of thermodynamic princi-
ples and the correlation and use of thermodynamic properties as well as between theory and 
applications. The first two chapters of the book present basic definitions and a development of 
the first law of thermodynamics. Chapters 3 and 4 then treat the pressure/volume/ temperature 
behavior of fluids and heat effects associated with temperature change, phase change, and 
chemical reaction, allowing early application of the first law to realistic problems. The second 
law is developed in Chapter 5, where its most basic applications are also introduced. A full 
treatment of the thermodynamic properties of pure fluids in Chapter 6 allows general applica-
tion of the first and second laws, and provides for an expanded treatment of flow processes in 
Chapter 7. Chapters 8 and 9 deal with power production and refrigeration processes. The 
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remainder of the book, concerned with fluid mixtures, treats topics in the unique domain of 
chemical engineering thermodynamics. Chapter 10 introduces the framework of solution ther-
modynamics, which underlies the applications in the following chapters. Chapter 11 applies 
this to mixing processes. Chapter 12 then describes the analysis of phase equilibria, in a mostly 
qualitative manner. Chapter 13 provides full treatment of vapor/liquid equilibrium. Chemical- 
reaction equilibrium is covered at length in Chapter 14. Chapter 15 deals with topics in phase 
equilibria, including liquid/liquid, solid/liquid, solid/vapor, gas adsorption, and osmotic equi-
libria. Chapter 16 treats the thermodynamic analysis of real processes, affording a review of 
much of the practical subject matter of thermodynamics.

The material of these 16 chapters is more than adequate for an academic-year under-
graduate course, and discretion, conditioned by the content of other courses, is required in the 
choice of what is covered. The first 14 chapters include material considered necessary to any 
chemical engineer’s education. Where only a single-semester course in chemical engineering 
thermodynamics is provided, these chapters may represent sufficient content.

The book is comprehensive enough to make it a useful reference both in graduate 
courses and for professional practice. However, length considerations have required a prudent 
selectivity. Thus, we do not include certain topics that are worthy of attention but are of a 
 specialized nature. These include applications to polymers, electrolytes, and biomaterials.

We are indebted to many people—students, professors, reviewers—who have contrib-
uted in various ways to the quality of this ninth edition, directly and indirectly, through ques-
tion and comment, praise and criticism, through eight previous editions spanning more than 
70 years.

We would like to thank McGraw Hill Education and all of the teams that contributed to 
the development and support of this project. In particular, we would like to thank the following 
editorial and production staff for their essential contributions to this ninth edition: Beth  Bettcher, 
Mary Hurley, and Jane Mohr. 

To all we extend our thanks.

J. M. Smith
H. C. Van Ness

M. M. Abbott
M. T. Swihart

A brief explanation of the authorship of the eighth and ninth editions

In December 2003, I received an unexpected e-mail from Hank Van Ness that began as follows: 
“I’m sure this message comes as a surprise to you; so let me state immediately its purpose. We 
would like to invite you to discuss the possibility that you join us as the fourth author . . . of 
Introduction to Chemical Engineering Thermodynamics.” I met with Hank and with Mike 
Abbott in summer 2004, and began working with them on the eighth edition in earnest almost 
immediately after the seventh edition was published in 2005. Unfortunately, the following 
years witnessed the deaths of Michael Abbott (2006), Hank Van Ness (2008), and Joe Smith 
(2009) in close succession. In the months preceding his death, Hank Van Ness worked 
 diligently on revisions to this textbook. The reordering of content and overall structure of the 
eighth edition reflected his vision for the book.
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New to the ninth edition

The ninth edition maintains the order of presentation and structure of the eighth edition with 
minor changes in wording throughout the book to improve readability for today’s students. 
Where points of confusion were identified, we have expanded and modified the explana-
tions. Example problems have been expanded, or new examples added in Chapters 3, 5, 6, 
10, 13, and 14. Several new end-of-chapter problems have also been added, even as the 
expanded use of algorithmic problems in Connect improves the effectiveness of many of the 
existing end-of-chapter problems by providing a unique set of parameters and solutions for 
each attempt of a problem. 

I am both humbled and honored to have been entrusted with the task of revising this 
classic textbook, which by the time I was born had already been used by a generation of chem-
ical engineering students. I hope that the changes we have made, from content revision and 
re ordering to the addition of more structured chapter introductions and a concise synopsis at 
the end of each chapter, will improve the experience of using this text for the next generation 
of students, while maintaining the essential character of the text, which has made it the most-
used chemical engineering textbook of all time. I look forward to receiving your feedback on 
the changes that have been made and those that you would like to see in the future, as well as 
what additional resources would be of most value in supporting your use of the text.

Digital Learning Tools 

Connect 
McGraw Hill Connect® is a highly reliable, easy-to-use homework and learning management 
solution that utilizes learning science and award winning adaptive tools to improve student 
results. 

Homework and Adaptive Learning

 ∙ Connect’s assignments help students contextualize what they’ve learned through 
 application so they can better understand the material and think critically.

 ∙ Connect will create a personalized study path customized to individual student needs 
through SmartBook®. 

 ∙ SmartBook helps students study more efficiently by delivering an interactive reading 
experience through adaptive highlighting and review.

Robust Analytics and Reporting

Connect Insight® generates easy-to-read reports on individual students, the class as a whole, 
and specific assignments.

 ∙ The Connect Insight dashboard delivers data on performance, study behavior, and effort. 
Instructors can quickly identify students who struggle and focus on material that the 
class has yet to master. 

 ∙ Connect automatically grades assignments and quizzes, providing easy-to-read reports 
on individual and class performance.

www.konkur.in

Telegram: @uni_k



Preface xi

Remote Proctoring and Browser-Locking Capabilities

 ∙ New remote proctoring and browser-locking capabilities, hosted by Proctorio within 
Connect, provide control of the assessment environment by enabling security options 
and verifying the identity of the student. 

 ∙ Seamlessly integrated within Connect, these services allow instructors to control stu-
dents’ assessment experience by restricting browser activity, recording students’ activ-
ity, and verifying students are doing their own work.

 ∙ Instant and detailed reporting gives instructors an at-a-glance view of potential aca-
demic integrity concerns, thereby avoiding personal bias and supporting evidence-based 
claims.

Trusted Service and Support 

Connect integrates with your Leaning Management System (LMS) to provide single sign-on 
and automatic syncing of grades. Integration with Blackboard®, D2L®, Moodle, and Canvas 
also provides automatic syncing of the course calendar and assignment-level linking.

 ∙ Connect offers comprehensive service, support, and training throughout every phase of 
your implementation.

 ∙ If you’re looking for some guidance on how to use Connect, or want to learn tips and 
tricks from super users, you can find tutorials as you work. Our Digital Faculty Consul-
tants and Student Ambassadors offer insight into how to achieve the results you want 
with Connect.

I am sure Joe, Hank, and Michael would all be delighted to see this ninth edition in print 
and in a fully electronic version including Connect and SmartBook.

Mark T. Swihart, January 2021
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fi° Standard-state fugacity
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G Molar or specific Gibbs energy ≡ H − T S
Gi° Standard-state Gibbs energy, species i
Ḡi Partial Gibbs energy, species i in solution
GE Excess Gibbs energy ≡ G − Gid

GR Residual Gibbs energy ≡ G − Gig

ΔG Gibbs-energy change of mixing
ΔG° Standard Gibbs-energy change of reaction
ΔG°f Standard Gibbs-energy change of formation
g Local acceleration of gravity
gc Dimensional constant = 32.1740(lbm)(ft)(lbf)−1(s)−2

H Molar or specific enthalpy ≡ U + P V

i Henry’s constant, species i in solution
Hi° Standard-state enthalpy, pure species i
H̄i Partial enthalpy, species i in solution
HE Excess enthalpy ≡ H − Hid

HR Residual enthalpy ≡ H − Hig

(HR)0, (HR)1 Functions, generalized residual-enthalpy correlation
ΔH Enthalpy change (“heat”) of mixing; also, latent heat of phase transition
ΔH Heat of solution
ΔH° Standard enthalpy change (“heat”) of reaction
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ΔH°f Standard enthalpy change of formation
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K Equilibrium constant
K0, K1, K2 Factors comprising equilibrium constant, Eq. (14.20)
Kj Equilibrium constant, chemical reaction j
Ki Vapor/liquid equilibrium ratio, species i ≡ yi / xi

k Boltzmann’s constant
  k  ij    Empirical interaction parameter, Eq. (10.71)

 Molar fraction of system that is liquid
l Length
lij Equation-of-state interaction parameter, Eq. (15.31)
M Mach number
ℳ Molar mass (molecular weight)
M Molar or specific value, extensive thermodynamic property
M̄i Partial property, species i in solution
ME Excess property ≡ M − Mid

MR Residual property ≡ M − Mig

ΔM Property change of mixing
ΔM° Standard property change of reaction
ΔM°f Standard property change of formation
m Mass
ṁ Mass flow rate
N Number of chemical species, phase rule

͠
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NA Avogadro’s number
n Number of moles
  n ∙
    Molar flow rate
ñ Moles of solvent per mole of solute
ni Number of moles, species i
P Absolute pressure
P° Standard-state pressure
Pc Critical pressure
Pr Reduced pressure
Pr

0, Pr
1 Functions, generalized vapor-pressure correlation, Eq. (6.92)

P0 Reference pressure
pi Partial pressure, species i
Pi

sat Saturation vapor pressure, species i
Q Heat
  Q 

∙

    Rate of heat transfer
q Volumetric flow rate
q Parameter, cubic equations of state
q Electric charge
q̄i Partial parameter, cubic equations of state
R Universal gas constant (Table A.2)
r Compression ratio
r Number of independent chemical reactions, phase rule
S Molar or specific entropy
S̄i Partial entropy, species i in solution
SE Excess entropy ≡ S − Sid

SR Residual entropy ≡ S − Sig

(SR)0, (SR)1 Functions, generalized residual-entropy correlation
SG Entropy generation per unit amount of fluid
ṠG Rate of entropy generation
ΔS Entropy change of mixing
ΔS° Standard entropy change of reaction
ΔS°f Standard entropy change of formation
T Absolute temperature, kelvins or rankines
Tc Critical temperature
Tn Normal-boiling-point temperature
Tr Reduced temperature
T0 Reference temperature
Tσ Absolute temperature of surroundings
Ti

sat Saturation temperature, species i
t Temperature, °C or (°F)
t Time
U Molar or specific internal energy
u Velocity
V Molar or specific volume

 Molar fraction of system that is vapor
V̄i Partial volume, species i in solution
Vc Critical volume
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VE Excess volume ≡ V − Vid

VR Residual volume ≡ V − Vig

ΔV Volume change of mixing; also, volume change of phase transition
W Work
Ẇ Work rate (power)
Wideal Ideal work
Ẇideal Ideal-work rate
Wlost Lost work
Ẇlost Lost-work rate
Ws Shaft work for flow process
Ẇs Shaft power for flow process
xi Mole fraction, species i, liquid phase or general
xv Quality, i.e., vapor fraction
yi Mole fraction, species i, vapor phase
Z Compressibility factor ≡ PV/RT
Zc Critical compressibility factor ≡ PcVc/RTc

Z0, Z1 Functions, generalized compressibility-factor correlation
z Adsorbed phase compressibility factor, defined by Eq. (15.38)
z Elevation above a datum level
zi Overall mole fraction or mole fraction in a solid phase

Superscripts 
E Denotes excess thermodynamic property
av Denotes phase transition from adsorbed phase to vapor
id Denotes value for an ideal solution
ig Denotes value for an ideal gas
l Denotes liquid phase
lv Denotes phase transition from liquid to vapor
R Denotes residual thermodynamic property
s Denotes solid phase
sl Denotes phase transition from solid to liquid
t Denotes a total value of an extensive thermodynamic property
v Denotes vapor phase
∞ Denotes a value at infinite dilution

Greek letters 
α Function, cubic equations of state (Table 3.1)
α,β As superscripts, identify phases
αβ As superscript, denotes phase transition from phase α to phase β
β Volume expansivity
β Parameter, cubic equations of state
Γi Integration constant
γ Ratio of heat capacities CP/CV

γi Activity coefficient, species i in solution
δ Polytropic exponent
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ε Constant, cubic equations of state
ε Reaction coordinate
η Efficiency
κ Isothermal compressibility
Π Spreading pressure, adsorbed phase
Π Osmotic pressure
π Number of phases, phase rule
μ Joule/Thomson coefficient
μi Chemical potential, species i
νi Stoichiometric number, species i
ρ Molar or specific density ≡ 1/V
ρc Critical density
ρr Reduced density
σ Constant, cubic equations of state
Φi Ratio of fugacity coefficients, defined by Eq. (13.14)
ϕi Fugacity coefficient, pure species i
ϕ̂i Fugacity coefficient, species i in solution
ϕ0, ϕ1 Functions, generalized fugacity-coefficient correlation, Eq. 10.66
Ψ, Ω Constants, cubic equations of state
ω Acentric factor

Notes 
cv As a subscript, denotes a control volume
fs As a subscript, denotes flowing streams
° As a superscript, denotes the standard state
- Overbar denotes a partial property
. Overdot denotes a time rate
ˆ Circumflex denotes a property in solution
Δ Difference operator
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Chapter 1

Introduction

By way of introduction, in this chapter we outline the origin of thermodynamics and its pres-
ent scope. We also review a number of familiar, but basic, scientific concepts essential to the 
subject:

 ∙ Dimensions and units of measure
 ∙ Force and pressure
 ∙ Temperature
 ∙ Work and heat
 ∙ Mechanical energy and its conservation

1.1 THE SCOPE OF THERMODYNAMICS

The science of thermodynamics was developed in the nineteenth century as a result of the 
need to describe the basic operating principles of the newly invented steam engine and to 
 provide a basis for relating the work produced to the heat supplied. Thus the name itself 
denotes power generated from heat. From the study of steam engines, there emerged two of the 
primary generalizations of science: the First and Second Laws of Thermodynamics. All of 
classical thermodynamics is implicit in these laws. Their statements are very simple, but their 
implications are profound.

The First Law simply says that energy is conserved, meaning that it is neither created 
nor destroyed. It provides no definition of energy that is both general and precise. No help 
comes from its common informal use where the word has imprecise meanings. However, in 
scientific and engineering contexts, energy is recognized as appearing in various forms, useful 
because each form has mathematical definition as a function of some recognizable and 
 measurable characteristics of the real world. Thus kinetic energy is defined as a function of 
velocity and mass, and gravitational potential energy as a function of elevation and mass.

Conservation implies the transformation of one form of energy into another. Windmills 
were historically used to transform the kinetic energy of the wind into work used to raise water 
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2 CHAPTER 1. Introduction

from land lying below sea level. The overall effect was to convert the kinetic energy of the wind 
into potential energy of water. Wind energy is now more widely converted to electrical energy. 
Similarly, the potential energy of water was historically transformed into work used to grind 
grain or saw lumber. Hydroelectric plants are now a significant source of electrical power.

The Second Law is more difficult to comprehend because it depends on entropy, a word 
and concept not in everyday use. Its consequences in daily life are significant with respect to 
environmental conservation and efficient use of energy. Formal treatment is postponed until 
we have laid the necessary foundation.

The two laws of thermodynamics have no proof in a mathematical sense. However, they 
are universally observed to be obeyed. An enormous volume of experimental evidence demon-
strates their validity. Thus, thermodynamics shares with mechanics and electromagnetism a 
basis in primitive laws.

These laws lead, through mathematical deduction, to a network of equations that are 
applied across all branches of science and engineering. Included are calculation of heat and 
work requirements for physical, chemical, and biological processes and the determination of 
equilibrium conditions for chemical reactions and for the transfer of chemical species between 
phases. Practical application of these equations almost always requires information on the 
properties of materials. Thus, the study and application of thermodynamics is inextricably 
linked with the tabulation, correlation, and prediction of properties of substances. Figure 1.1 
illustrates schematically how the two laws of thermodynamics are combined with information 
on material properties to yield useful analyses of, and predictions about, physical, chemical, 
and biological systems. It also notes the chapters of this text that treat each component.

Figure 1.1: Schematic illustrating the combination of the laws of thermodynamics with data on material 
properties to produce useful predictions and analyses.

Useful predictions
of the equilibrium state

and properties
of physical, chemical,

and biological systems
(Chapters 12, 13, 14, 15)

Engineering analysis
of the e�ciencies and
performance limits of

physical, chemical, and
biological processes
(Chapters 7, 8, 9, 16)

Systematic and
generalized

understanding
Laws of Thermodynamics

The First Law:
Total energy is 

conserved
(Chapter 2)

The Second Law:
Total entropy only 

increases
(Chapter 5)

+
Property Data, Correlations, and Models

Pressure-Volume-
Temperature
relationships
(Chapter 3)

Energy needed to
change temperature,
phase, or composition

(Chapters 4, 11)

Mathematical 
formalism and
generalization

(Chapters 6, 10)

Examples of questions that can be answered on the basis of the laws of thermodynamics 
combined with property information include the following:

 ∙ How much energy is released when a liter of ethanol is burned (or metabolized) by reac-
tion with oxygen in air to produce water and carbon dioxide?

 ∙ What maximum flame temperature can be reached when ethanol is burned in air?

www.konkur.in

Telegram: @uni_k



1.1. The Scope of Thermodynamics 3

 ∙ What maximum fraction of the heat released in an ethanol flame can be converted to 
electrical energy or work?

 ∙ How do the answers to the preceding two questions change if the ethanol is burned with 
pure oxygen, rather than air?

 ∙ What is the maximum amount of electrical energy that can be produced when a liter of 
ethanol is reacted with O2 to produce CO2 and water in a fuel cell?

 ∙ In the distillation of an ethanol/water mixture, how are the vapor and liquid composi-
tions related?

 ∙ How much energy must be removed from (or added to) a fermenter in which yeast con-
verts glucose to ethanol and carbon dioxide?

 ∙ When water and ethylene react at high pressure and temperature to produce ethanol, 
what are the compositions of the phases that result?

 ∙ How much ethylene is contained in a high-pressure gas cylinder for given temperature, 
pressure, and volume?

 ∙ When ethanol is added to a two-phase system comprising toluene and water, how much 
ethanol goes into each phase?

 ∙ If a water/ethanol mixture is partially frozen, what are the compositions of the liquid and 
solid phases?

 ∙ What volume of solution results from mixing one liter of ethanol with one liter of water? 
(It is not exactly 2 liters!)

The application of thermodynamics to any real problem starts with the specification of 
a particular region of space or body of matter designated as the system. Everything outside the 
system is called the surroundings. The system and surroundings interact through transfer of 
material and energy across the system boundaries, but the system is the focus of attention. 
Many different thermodynamic systems are of interest. A pure vapor such as steam is the 
working medium of a power plant. A reacting mixture of fuel and air powers an internal- 
combustion engine. A vaporizing liquid provides refrigeration. Expanding gases in a nozzle 
propel a rocket. The metabolism of food provides the nourishment for life. Photosynthesis in 
plants converts solar energy into stored chemical energy.

Once a system has been selected, we must describe its state. There are two possible 
points of view, the macroscopic and the microscopic. The former relates to quantities such as 
composition, density, temperature, and pressure. These macroscopic coordinates require no 
assumptions regarding the structure of matter. They are few in number, are suggested by our 
sense perceptions, and are measured with relative ease. A macroscopic description thus 
requires specification of a few fundamental measurable properties. The macroscopic point of 
view, as adopted in classical thermodynamics, reveals nothing of the microscopic (molecular) 
mechanisms of physical, chemical, or biological processes.

A microscopic description depends on the existence and behavior of molecules, is not 
directly related to our sense perceptions, and treats quantities that cannot routinely be directly 
measured. Nevertheless, it offers insight into material behavior and contributes to evaluation of 
thermodynamic properties. Bridging the length and time scales between the microscopic behav-
ior of molecules and the macroscopic world is the subject of statistical mechanics or statistical 

www.konkur.in

Telegram: @uni_k
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thermodynamics, which applies the laws of quantum mechanics and classical mechanics to large 
ensembles of atoms, molecules, or other elementary objects to predict and interpret macroscopic 
behavior. Although we make occasional reference to the molecular basis for observed material 
properties, the subject of statistical thermodynamics is not treated in this book.1

1.2 INTERNATIONAL SYSTEM OF UNITS

Descriptions of thermodynamic states depend on the fundamental dimensions of science, of 
which length, time, mass, temperature, and amount of substance are of greatest interest here. 
These dimensions are primitives, recognized through our sensory perceptions, and are not 
definable in terms of anything simpler. Their use, however, requires the definition of arbitrary 
scales of measure, divided into specific units of size. Primary units have been set by interna-
tional agreement, and are codified as the International System of Units (abbreviated SI, for 
Système International).2 This is the primary system of units used throughout this book.

The second, symbol s, the SI unit of time, is the duration of 9,192,631,770 cycles of 
radiation associated with a specified transition of the cesium atom. The meter, symbol m, is 
the fundamental unit of length, defined as the distance light travels in a vacuum during 
1/299,792,458 of a second. The kilogram, symbol kg, is the basic unit of mass, previously 
defined as the mass of a platinum/iridium cylinder kept at the International Bureau of Weights 
and Measures at Sèvres, France. (The gram, symbol g, is 0.001 kg.) In 2018, the SI was revised 
to define the kilogram in terms of fundamental constants of nature, by setting an exact value 
for the Planck constant, h = 6.62607015 × 10−34 kg·m2·s−1. Temperature is a characteristic 
dimension of thermodynamics, and is measured on the Kelvin scale, as described in Sec. 1.4. 
The mole, symbol mol, is defined as the amount of a substance represented by as many ele-
mentary entities (e.g., molecules) as there are atoms in 0.012 kg of carbon-12.

The SI unit of force is the newton, symbol N, derived from Newton’s second law, which 
expresses force F as the product of mass m and acceleration a: F = ma. Thus, a newton is the 
force that, when applied to a mass of 1 kg, produces an acceleration of 1 m·s−2, and is there-
fore a unit representing 1 kg·m·s−2. This illustrates a key feature of the SI system, namely, that 
derived units always reduce to combinations of primary units. Pressure P (Sec. 1.5), defined 
as  the normal force exerted by a fluid on a unit area of surface, is expressed in pascals, 
 symbol Pa. With force in newtons and area in square meters, 1 Pa is equivalent to 1 N·m−2  
or 1 kg·m−1·s−2. Essential to thermodynamics is the derived unit for energy, the joule, symbol 
J, defined as 1 N·m or 1 kg·m2·s−2.

Multiples and decimal fractions of SI units are designated by prefixes, with symbol abbre-
viations, as listed in Table 1.1. Common examples of their use are the centimeter, 1 cm = 10−2 m,  
the kilopascal, 1 kPa = 103 Pa, and the kilojoule, 1 kJ = 103 J.

1Many introductory texts on statistical thermodynamics are available. The interested reader is referred to Mole
cular Driving Forces: Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience, 2nd ed. by 
K. A. Dill and S. Bromberg, Garland Science, 2010, and many books referenced therein.

2In-depth information on the SI is provided by the National Institute of Standards and Technology (NIST) online at 
http://physics.nist.gov/cuu/Units/index.html.
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Two widely used units in engineering that are not part of SI, but are acceptable for use 
with it, are the bar, a pressure unit equal to 102 kPa, and the liter, a volume unit equal to 103 cm3.  
The bar closely approximates atmospheric pressure. Other acceptable units are the minute, 
symbol min; hour, symbol h; day, symbol d; and the metric ton, symbol t, equal to 103 kg.

Weight properly refers to the force of gravity on a body, expressed in newtons, and not 
to its mass, expressed in kilograms. Force and mass are, of course, directly related through 
Newton’s law, with a body’s weight defined as its mass times the local acceleration of gravity. 
The comparison of masses by a balance is called “weighing” because it also compares gravi-
tational forces. A spring scale (or a digital scale based on a strain gauge) provides correct mass 
readings only when used in the gravitational field of its calibration.

Although the SI is well established throughout most of the world, use of the U.S. 
 Customary system of units persists in daily commerce in the United States. Even in science 
and engineering, conversion to SI is incomplete, though globalization is a major incentive. 
U.S. Customary units are related to SI units by fixed conversion factors. Those units most 
likely to be useful are defined in Appendix A. Conversion factors are listed in Table A.1.

Example 1.1
An astronaut weighs 730 N in Houston, Texas, where the local acceleration of gravity 
is g = 9.792 m·s−2. What are the astronaut’s mass and weight on the moon, where  
g = 1.67 m·s−2?

Solution 1.1
By Newton’s law, with acceleration equal to the acceleration of gravity, g,

  m =   
F

 __ 
g
   =   

730 N
 __________ 

9.792  m·s   −2 
   = 74.55  N·m   −1 · s   2   

Multiple Prefix Symbol

10−15 femto f
10−12 pico p
10−9 nano n
10−6 micro μ
10−3 milli m
10−2 centi c
102 hecto h
103 kilo k
106 mega M
109 giga G
1012 tera T
1015 peta P

Table 1.1: Prefixes for SI Units
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6 CHAPTER 1. Introduction

Because 1 N = 1 kg·m·s−2,

  m = 74.55 kg  

This mass of the astronaut is independent of location, but weight depends on the 
local acceleration of gravity. Thus on the moon the astronaut’s weight is:

  F(moon) = m × g(moon) = 74.55 kg ×  1.67 m·s   −2   

or

    F (  moon )     = 124.5  kg·m·s   −2   = 124.5 N   

1.3 MEASURES OF AMOUNT OR SIZE

Three measures of amount or size of a homogeneous material are in common use:

∙ Mass, m    ∙ Number of moles, n    ∙ Total volume, Vt

These measures for a specific system are in direct proportion to one another. Mass 
can be divided by the molar mass ℳ (formerly called molecular weight) to yield number of 
moles:

  n =   
m

 __ ℳ      or    m = ℳn  

Total volume, representing the size of a system, is a defined quantity given as the prod-
uct of three lengths. It can be divided by the mass or number of moles of the system to yield 
specific or molar volume:

 ∙ Specific volume:  V ≡   
 V   t 

 __ 
m

     or    V   t  = mV  

 ∙ Molar volume:  V ≡   
 V   t 

 __ 
n
     or    V   t  = nV  

Specific or molar density is defined as the reciprocal of specific or molar volume: ρ ≡ V−1.
These quantities (V and ρ) are independent of the size of a system, and are examples of 

intensive thermodynamic variables. For a given state of matter (solid, liquid, or gas) they are 
functions of temperature, pressure, and composition, additional quantities independent of sys-
tem size. Throughout this text, the same symbols will generally be used for both molar and 
specific quantities. Most equations of thermodynamics apply to both, and when distinction is 
necessary, it can be made based on the context. The alternative of introducing separate nota-
tion for each leads to an even greater proliferation of variables than is already inherent in the 
study of chemical thermodynamics.
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1.4. Temperature 7

1.4 TEMPERATURE

The notion of temperature, based on sensory perception of heat and cold, needs no explana-
tion. It is a matter of common experience. However, giving temperature a scientific role 
requires a scale that affixes numbers to the perception of hot and cold. This scale must also 
extend far beyond the range of temperatures of everyday experience and perception. Establish-
ing such a scale and devising measuring instruments based on this scale has a long and intrigu-
ing history. A simple instrument is the common liquid-in-glass thermometer, wherein the 
liquid expands when heated. Thus a uniform tube, partially filled with mercury, alcohol, or 
some other fluid, and connected to a bulb containing a larger amount of fluid, indicates degree 
of hotness by the length of the fluid column.

The scale requires definition and the instrument requires calibration. The Celsius3 scale 
was established early and remains in common use throughout most of the world. Its scale is 
defined by fixing zero as the ice point (freezing point of water saturated with air at standard 
atmospheric pressure) and 100 as the steam point (boiling point of pure water at standard 
atmospheric pressure). Thus a thermometer when immersed in an ice bath is marked zero and 
when immersed in boiling water is marked 100. Dividing the length between these marks into 
100 equal spaces, called degrees, provides a scale, which may be extended with equal spaces 
below zero and above 100.

Scientific and industrial practice depends on the International Temperature Scale of 
1990 (ITS−90).4 This is the Kelvin scale, based on assigned values of temperature for a num-
ber of reproducible fixed points, that is, states of pure substances like the ice and steam points, 
and on standard instruments calibrated at these temperatures. Interpolation between the fixed-
point temperatures is provided by formulas that establish the relation between readings of the 
standard instruments and values on ITS-90. The platinum-resistance thermometer is an exam-
ple of a standard instrument; it is used for temperatures from −259.35°C (the triple point of 
hydrogen) to 961.78°C (the freezing point of silver).

The Kelvin scale, which we indicate with the symbol T, provides SI temperatures. An 
absolute scale, it is based on the concept of a lower limit of temperature, called absolute zero. 
Its unit is the kelvin, symbol K. Celsius temperatures, indicated in this text by the symbol t, are 
defined in relation to Kelvin temperatures:

  t° C = T  K − 273.15  

The unit of Celsius temperature is the degree Celsius, °C, which is equal in size to 
the  kelvin.5 However, temperatures on the Celsius scale are 273.15 degrees lower than on 
the  Kelvin scale. Thus absolute zero on the Celsius scale occurs at −273.15°C. Kelvin 

3Anders Celsius, Swedish astronomer (1701–1744). See: http://en.wikipedia.org/wiki/Anders_Celsius.

4The English-language text describing ITS-90 is given by H. Preston-Thomas, Metrologia, vol. 27, pp. 3–10, 1990. 
It is also available at http://www.its-90.com/its-90.html.

5Note that neither the word degree nor the degree sign is used for temperatures in kelvins, and that the word kelvin 
as a unit is not capitalized.
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8 CHAPTER 1. Introduction

temperatures are used in thermodynamic calculations. Celsius temperatures can only be used 
in thermodynamic calculations involving temperature differences, which are of course the 
same in both degrees Celsius and kelvins.

1.5 PRESSURE

The primary standard for pressure measurement is the dead-weight gauge in which a known force 
is balanced by fluid pressure acting on a piston of known area: P ≡ F/A. The basic design is 
shown in Fig. 1.2. Objects of known mass (“weights”) are placed on the pan until the pressure of 
the oil, which tends to make the piston rise, is just balanced by the force of gravity on the piston 
and all that it supports. With this force given by Newton’s law, the pressure exerted by the oil is:

  P =   
F

 __ 
A

   =   
mg

 ___ 
A

    

where m is the mass of the piston, pan, and “weights”; g is the local acceleration of gravity; 
and A is the cross-sectional area of the piston. This formula yields gauge pressures, the differ-
ence between the pressure of interest and the pressure of the surrounding atmosphere. They 
are converted to absolute pressures by addition of the local barometric pressure. Gauges in 
common use, such as Bourdon gauges, are calibrated by comparison with dead-weight gauges. 
Absolute pressures are used in thermodynamic calculations.

Figure 1.2:  
Dead-weight gauge.

Weight

Pan

Piston

Cylinder

Oil

To pressure
source

Because a vertical column of fluid under the influence of gravity exerts a pressure at its 
base in direct proportion to its height, pressure can be expressed as the equivalent height of a 
fluid column. This is the basis for the use of manometers for pressure measurement. Conver-
sion of height to force per unit area follows from Newton’s law applied to the force of gravity 
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1.5. Pressure 9

acting on the mass of fluid in the column. The mass is given by: m = Ahρ, where A is the 
cross-sectional area of the column, h is its height, and ρ is the fluid density. Therefore,

  P =   
F

 __ 
A

   =   
mg

 ___ 
A

   =   
Ahρg

 _____ 
A

    

Thus,

  P = hρg  (1.1)

The pressure to which a fluid height corresponds is determined by the density of the fluid 
(which depends on its identity and temperature) and the local acceleration of gravity.

A unit of pressure in common use (but not an SI unit) is the standard atmosphere, repre-
senting the average pressure exerted by the earth’s atmosphere at sea level, and defined as 
101.325 kPa.

Example 1.2
A dead-weight gauge with a piston diameter of 1 cm is used for the accurate measure-
ment of pressure. If a mass of 6.14 kg (including piston and pan) brings it into balance, 
and if g = 9.82 m·s−2, what is the gauge pressure being measured? For a barometric 
pressure of 0.997 bar, what is the absolute pressure?

Solution 1.2
The force exerted by gravity on the piston, pan, and “weights” is:

  F = mg = 6.14 kg × 9.82  m·s   −2  = 60.295 N  

  Gauge pressure =   
F

 __ 
A

   =   
60.295
 __________  

 ( 1 ⁄ 4 )  (π)   (  0.01 )     2 
   = 7.677 ×  10   5  N· m   −2  = 767.7 kPa  

The absolute pressure is therefore:

  P = 7.677 ×  10   5  + 0.997 ×  10   5  = 8.674 ×  10   5   N·m   −2   

or

  P = 867.4 kPa  

Example 1.3
At 27°C the reading on a manometer filled with mercury is 60.5 cm. The local 
 acceleration of gravity is 9.784 m·s−2. To what pressure does this height of mercury 
correspond?
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10 CHAPTER 1. Introduction

Solution 1.3
As discussed above, and summarized in Eq. (1.1): P = hρg. At 27°C the density of 
mercury is 13.53 g·cm−3. Then,

  
P

  
= 60.5 cm × 13.53  g·cm   −3  × 9.784  m·s   −2  = 8009  g·m·s   −2 · cm   −2 

          = 8.009  kg·m·s   −2 · cm   −2  = 8.009  N·cm   −2      

 

  

= 0.8009 ×  10   5   N·m   −2  = 0.8009 bar = 80.09 kPa

   

1.6 WORK

Work, W, is performed whenever a force acts through a distance. By its definition, the quantity 
of work is given by the equation:

  dW = F dl  (1.2)

where F is the component of force acting along the line of the displacement dl. The SI unit 
of work is the newton·meter or joule, symbol J. When integrated, Eq. (1.2) yields the 
work of a finite process. By convention, work is regarded as positive when the displace-
ment is in the same direction as the applied force and negative when they are in opposite  
directions.

Work is done when pressure acts on a surface and displaces a volume of fluid. An 
example is the movement of a piston in a cylinder so as to cause compression or expansion of 
a fluid contained in the cylinder. The force exerted by the piston on the fluid is equal to the 
product of the piston area and the pressure of the fluid. The displacement of the piston is 
equal to the total volume change of the fluid divided by the area of the piston. Equation (1.2) 
therefore becomes:

  dW = −PA d   
 V   t 

 __ 
A

   = −P d V   t   (1.3)

Integration yields:

  W = − ∫ 
 V 1  t  

  
 V 2  t  

 P   d V   t   (1.4)

The minus signs in these equations are made necessary by the sign convention adopted for 
work. When the piston moves into the cylinder so as to compress the fluid, the applied force 
and its displacement are in the same direction; the work is therefore positive. The minus sign 
is required because the volume change is negative. For an expansion process, the applied force 
and its displacement are in opposite directions. The volume change in this case is positive, and 
the minus sign is again required to make the work negative.
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1.7. Energy 11

Equation (1.4) expresses the work done by a finite compression or expansion process.6 
Figure 1.3 shows a path for compression of a gas from point 1, initial volume   V 1  t    at pressure P1,  
to point 2, volume   V 2  t    at pressure P2. This path relates the pressure at any point of the process 
to the volume. The work required is given by Eq. (1.4) and is proportional to the area under the 
curve of Fig. 1.3.

1.7 ENERGY

The general principle of conservation of energy was established about 1850. The germ of this 
principle as it applies to mechanics was implicit in the work of Galileo (1564–1642) and Isaac 
Newton (1642–1726). Indeed, it follows directly from Newton’s second law of motion once 
work is defined as the product of force and displacement.

Kinetic Energy
When a body of mass m, acted upon by a force F, is displaced a distance dl during a differen-
tial interval of time dt, the work done is given by Eq. (1.2). In combination with Newton’s 
second law this equation becomes:

  dW = ma dl  

By definition the acceleration is a ≡ du/dt, where u is the velocity of the body. Thus,

  dW = m   
du

 ___ 
dt

   dl = m   
dl

 __ 
dt

   du  

Because the definition of velocity is u ≡ dl/dt, this expression for work reduces to:

  dW = mu du  
6However, as explained in Sec. 2.6, its use is subject to important limitations.

Figure 1.3: Diagram showing a P vs. Vt path.
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12 CHAPTER 1. Introduction

Integration for a finite change in velocity from u1 to u2 gives:

  W = m ∫ 
 u  1  

  
 u  2  

 u   du = m  (    
 u  2  2 

 ___ 2   −   
 u  1  2 

 ___ 2   )     

or

  W =   
m u  2  2 

 _____ 2   −   
m u  1  2 

 ____ 2   = Δ  (    
m u   2 

 _ 2   )     (1.5)

Each of the quantities    1 _ 2   m u   2   in Eq. (1.5) is a kinetic energy, a term introduced by Lord Kelvin7 
in 1856. Thus, by definition,

   E  K   ≡   
1
 __ 2  m u   2   (1.6)

Equation (1.5) shows that the work done on a body in accelerating it from an initial velocity u1 to 
a final velocity u2 is equal to the change in kinetic energy of the body. Conversely, if a moving 
body is decelerated by the action of a resisting force, the work done by the body is equal to its 
change in kinetic energy. With mass in kilograms and velocity in meters/second, kinetic energy 
EK is in joules, where 1 J = 1 kg⋅m2⋅s−2 = 1 N⋅m. In accord with Eq. (1.5), this is the unit of work.

Potential Energy
When a body of mass m is raised from an initial elevation z1 to a final elevation z2, an upward 
force at least equal to the weight of the body is exerted on it, and this force moves through the 
distance z2 − z1. Because the weight of the body is the force of gravity on it, the minimum 
force required is given by Newton’s law:

  F = ma = mg  

where g is the local acceleration of gravity. The minimum work required to raise the body is 
the product of this force and the change in elevation:

  W = F( z  2   −  z  1  ) = mg( z  2   −  z  1  )  

or

  W = m z  2  g − m z  1  g = mgΔz  (1.7)

We see from Eq. (1.7) that work done on a body in raising it is equal to the change in the quan-
tity mzg. Conversely, if a body is lowered against a resisting force equal to its weight, the work 
done by the body is equal to the change in the quantity mzg. Each of the quantities mzg in 
Eq. (1.7) is a potential energy.8 Thus, by definition,

   E  P   = mzg  (1.8)

7Lord Kelvin, or William Thomson (1824–1907), was an English physicist who, along with the German physicist 
Rudolf Clausius (1822–1888), laid the foundations for the modern science of thermodynamics. See http://en 
. wikipedia.org/wiki/William_Thomson,_1st_Baron_Kelvin. See also http://en.wikipedia.org/wiki/Rudolf_Clausius.

8This term was proposed in 1853 by the Scottish engineer William Rankine (1820–1872). See http://en.wikipedia 
.org/wiki/William_John_Macquorn_Rankine.
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1.7. Energy 13

With mass in kg, elevation in m, and the acceleration of gravity in m·s−2, EP is in joules, 
where 1 J = 1 kg⋅m2⋅s−2 = 1 N⋅m. In accord with Eq. (1.7), this is the unit of work.

Energy Conservation
The utility of the energy-conservation principle was alluded to in Sec. 1.1. The definitions of 
kinetic energy and gravitational potential energy of the preceding section provide for limited 
quantitative applications. Equation (1.5) shows that the work done on an accelerating body 
produces a change in its kinetic energy:

  W = Δ E  K   = Δ  (    
m u   2 

 _ 2   )     

Similarly, Eq. (1.7) shows that the work done on a body in elevating it produces a change 
in its potential energy:

  W =  E  P   = Δ  (  mzg )     

One simple consequence of these definitions is that an elevated body, allowed to fall 
freely (i.e., without friction or other resistance), gains in kinetic energy what it loses in poten-
tial energy. Mathematically,

  Δ E  K   + Δ E  P   = 0  

or

    
m u  2  2 

 ____ 2   −   
m u  1  2 

 ____ 2   + m z  2  g − m z  1  g = 0  

The validity of this equation has been confirmed by countless experiments. Thus the develop-
ment of the concept of energy led logically to the principle of its conservation for all purely 
mechanical processes, that is, processes without friction or heat transfer.

Other forms of mechanical energy are recognized. Among the most obvious is potential 
energy of configuration. When a spring is compressed, work is done by an external force. 
Because the spring can later perform this work against a resisting force, it possesses potential 
energy of configuration. Energy of the same form exists in a stretched rubber band or in a bar 
of metal deformed in the elastic region.

The generality of the principle of conservation of energy in mechanics is increased if we 
look upon work itself as a form of energy. This is clearly permissible because both kinetic- and 
potential-energy changes are equal to the work done in producing them [Eqs. (1.5) and (1.7)]. 
However, work is energy in transit and is never regarded as residing in a body. When work is done 
and does not appear simultaneously as work elsewhere, it is converted into another form of energy.

With the body or assemblage on which attention is focused as the system and all else as 
the surroundings, work represents energy transferred from the surroundings to the system, or 
the reverse. It is only during this transfer that the form of energy known as work exists. In 
contrast, kinetic and potential energy reside with the system. Their values, however, are 
measured with reference to the surroundings; that is, kinetic energy depends on velocity with 
respect to the surroundings, and gravitational potential energy depends on elevation with 
respect to a datum level. Changes in kinetic and potential energy do not depend on these 
reference conditions, provided they are fixed.
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14 CHAPTER 1. Introduction

Example 1.4
An elevator with a mass of 2500 kg rests at a level 10 m above the base of an elevator 
shaft. It is raised to 100 m above the base of the shaft, where the cable holding it 
breaks. The elevator falls freely to the base of the shaft and strikes a strong spring. The 
spring is designed to bring the elevator to rest and, by means of a catch arrangement, 
to hold the elevator at the position of maximum spring compression. Assuming the 
entire process to be frictionless, and taking g = 9.8 m⋅s−2, calculate:

 (a) The potential energy of the elevator in its initial position relative to its base.

 (b) The work done in raising the elevator.

 (c) The potential energy of the elevator in its highest position.

 (d) The velocity and kinetic energy of the elevator just before it strikes the spring.

 (e) The potential energy of the compressed spring.

 (f) The energy of the system consisting of the elevator and spring (1) at the start 
of the process, (2) when the elevator reaches its maximum height, (3) just before 
the elevator strikes the spring, and (4) after the elevator has come to rest.

Solution 1.4
Let subscript 1 denote the initial state; subscript 2, the state when the elevator is at 
its greatest elevation; and subscript 3, the state just before the elevator strikes the 
spring, as indicated in the figure.

10 m 

100 m

State 1

State 2

State 3

(a) Potential energy is defined by Eq. (1.8):

   
  E   P  1     = m z  1  g = 2500 kg × 10 m × 9.8  m·s   −2 

    
= 245,000  kg·m   2 ⋅ s   −2  = 245,000 J
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1.7. Energy 15

(b) Work is computed by Eq. (1.7). Units are as in the preceding calculation:

   
 W = mg (   z  2   −  z  1   )   =  (  2500 )   (  9.8 )   (  100 − 10 )   

    
      = 2,205,000 J

    

(c) Again by Eq. (1.8),

    E   P  2     = m z  2  g =  (  2500 )   (  100 )   (  9.8 )   = 2,450,000 J   

Note that W     =    E  P2         −    E  P1      .

(d) The sum of the kinetic- and potential-energy changes during the process from 
state 2 to state 3 is zero; that is,

   Δ E   K  2→3     + Δ E   P  2→3     = 0   or    E   K  3     −  E   K  2     +  E   P  3     −  E   P  2     = 0   

However,   E   K  2      and   E   P  3      are zero; hence   E   K  3      =   E   P  2      = 2,450,000 J.

 With   E   K  3     =   1 _ 2   m u  3  2  

   u  3  2  =   
2 E   K  3     ____ 

m
   =   

2 × 2,450,000 J
  _____________ 2500 kg   =   

2 × 2,450,000  kg·m   2 ⋅ s   −2 
  _____________________  2500 kg   = 1960   m    2 ·  s    −2   

and
   u  3   = 44.272  m·s   −1   

(e) The changes in the potential energy of the spring and the kinetic energy of the 
elevator must sum to zero:

   Δ E  P    (  spring )   + Δ E  K   (  elevator )   = 0   

The initial potential energy of the spring and the final kinetic energy of the eleva-
tor are zero; therefore, the final potential energy of the spring equals the kinetic 
energy of the elevator just before it strikes the spring. Thus the final potential 
energy of the spring is 2,450,000 J.

( f ) With the elevator and spring as the system, the initial energy is the potential 
energy of the elevator, or 245,000 J. The only energy change of the system occurs 
when work is done in raising the elevator. This amounts to 2,205,000 J,  
and the energy of the system when the elevator is at maximum height is 245,000 +  
2,205,000 = 2,450,000 J. Subsequent changes occur entirely within the system, 
without interaction with the surroundings, and the total energy of the system 
remains constant at 2,450,000 J. It merely changes from potential energy of posi-
tion (elevation) of the elevator to kinetic energy of the elevator to potential energy 
of configuration of the spring.

 This example illustrates the conservation of mechanical energy. However, the 
entire process is assumed to occur without friction, and the results obtained are 
exact only for such an idealized process.
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Example 1.5
A team from Engineers Without Borders constructs a system to supply water to a 
mountainside village located 1800 m above sea level from a spring in the valley below 
at 1500 m above sea level.

 (a) When the pipe from the spring to the village is full of water, but no water is flow-
ing, what is the pressure difference between the end of the pipe at the spring 
and the end of the pipe in the village?

 (b) What is the change in gravitational potential energy of a liter of water when it is 
pumped from the spring to the village?

 (c) What is the minimum amount of work required to pump a liter of water from the 
spring to the village?

Solution 1.5
(a) Take the density of water as 1000 kg⋅m−3 and the acceleration of gravity as  
9.8 m⋅s−2. By Eq. (1.1):

  P = hρg = 300 m × 1000  kg·m   −3  × 9.8  m·s   −2  = 29.4 ×  10   5   kg·m   −1 ⋅ s   −2   

Thus,   P = 29.4 bar  or   2940 kPa   

(b) The mass of a liter of water is approximately 1 kg, and its potential-energy 
change is:

  Δ E  P   = Δ(mzg) = mgΔz = 1 kg × 9.8  m·s   −2  × 300 m = 2940 N·m = 2940 J  

(c) The minimum amount of work required to lift each liter of water through an ele-
vation change of 300 m equals the potential-energy change of the water. It is a mini-
mum value because it takes no account of fluid friction that results from finite-velocity 
pipe flow.

1.8 HEAT

At the time when the principle of conservation of mechanical energy emerged, heat was con-
sidered an indestructible fluid called caloric. This concept was firmly entrenched, and it lim-
ited the application of energy conservation to frictionless mechanical processes. Such a 
limitation is now long gone. Heat, like work, is recognized as energy in transit. A simple 
example is the braking of an automobile. When its speed is reduced by the application of 
brakes, heat generated by friction is transferred to the surroundings in an amount equal to the 
change in kinetic energy of the vehicle.9

9Modern electric or hybrid cars employ regenerative braking, a process through which some of the kinetic energy 
of the vehicle is converted to electrical energy and stored in a battery or capacitor for later use, rather than simply 
being transferred to the surroundings as heat.
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We know from experience that a hot object brought into contact with a cold object 
becomes cooler, whereas the cold object becomes warmer. A reasonable view is that some-
thing is transferred from the hot object to the cold one, and we call that something heat Q.10 
Thus we say that heat always flows spontaneously from a higher temperature to a lower 
one. This leads to the concept of temperature as the driving force for the transfer of energy 
as heat. When no temperature difference exists, no spontaneous heat transfer occurs, a con-
dition of thermal equilibrium. In the thermodynamic sense, heat is never regarded as being 
stored within a body. Like work, it exists only as energy in transit from one body to another; 
in thermodynamics, from a system to or from its surroundings. When energy in the form of 
heat is added to a system, it is stored not as heat but as kinetic and potential energy of the 
atoms and molecules making up the system.

A kitchen refrigerator running on electrical energy must transfer this energy to the sur-
roundings as heat. This may seem counterintuitive, as the interior of the refrigerator is main-
tained at temperatures below that of the surroundings, resulting in heat transfer into the 
refrigerator. But hidden from view (usually) is a heat exchanger that transfers heat to the sur-
roundings in an amount equal to the sum of the electrical energy supplied to the refrigerator 
and the heat transfer into the refrigerator. Thus the net result is heating of the kitchen. A room 
air conditioner, operating in the same way, extracts heat from the room, but the heat exchanger 
is external, exhausting heat to the outside air, thus cooling the room.

In spite of the transient nature of heat, it is often viewed in relation to its effect on the 
system from which or to which it is transferred. Until about 1930 the definitions of units of 
heat were based on temperature changes of a unit mass of water. Thus the calorie was defined 
as that quantity of heat which, when transferred to one gram of water, raised its temperature 
one degree Celsius.11 With heat now understood to be a form of energy, its SI unit is the joule. 
The SI unit of power is the watt, symbol W, defined as an energy transfer rate of one joule per 
second. The tables of Appendix A provide relevant conversion factors.

1.9 SYNOPSIS

After studying this chapter, including the end-of-chapter problems, one should be able to:

 ∙ Describe qualitatively the scope and structure of thermodynamics
 ∙ Solve problems involving the pressure exerted by a column of fluid
 ∙ Solve problems involving conservation of mechanical energy
 ∙ Use SI units and convert between U.S. Customary and SI units
 ∙ Apply the concept of work as the transfer of energy accompanying the action of a force 

through a distance, and by extension to the action of pressure (force per area) acting 
through a volume (distance times area)

10An equally reasonable view would regard something called cool as being transferred from the cold object to the 
hot one.

11A unit reflecting the caloric theory of heat, but not in use with the SI system. The calorie commonly used to 
measure the energy content of food is 1000 times larger.
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18 CHAPTER 1. Introduction

1.10 PROBLEMS

 1.1. Electric current is the fundamental SI electrical dimension, with the ampere (A) as  
its unit. Determine units for the following quantities as combinations of fundamental 
SI units.

 (a) Electric power
 (b) Electric charge
 (c) Electric potential difference
 (d) Electric resistance
 (e) Electric capacitance

 1.2. Liquid/vapor saturation pressure Psat is often represented as a function of temperature 
by the Antoine equation, which can be written in the form:

   log  10   P   sat  /  (  torr )    = a −   
b
 ______ 

t∕°C + c    

Here, parameters a, b, and c are substance-specific constants. Suppose this equation is 
to be rewritten in the equivalent form:

  ln  P   sat  /kPa = A −   
B
 ______ 

T∕K + C    

Show how the parameters in the two equations are related.

 1.3. Table B.2 in Appendix B provides parameters for computing the vapor pressure of many 
substances by the Antoine equation (see Prob. 1.2). For one of these substances, prepare 
two plots of Psat versus T over the range of temperature for which the parameters are valid.  
One plot should present Psat on a linear scale and the other should present Psat on a  
log scale.

 1.4. At what absolute temperature do the Celsius and Fahrenheit temperature scales give 
the same numerical value? What is the value?

 1.5. The SI unit of luminous intensity is the candela (abbreviated cd), which is a primary 
unit. The derived SI unit of luminous flux is the lumen (abbreviated lm). These are 
based on the sensitivity of the human eye to light. Light sources are often evaluated 
based on their luminous efficacy, which is defined as the luminous flux divided by the 
power consumed and is measured in lm⋅W−1. In a physical or online store, find manu-
facturer’s specifications for representative incandescent, halogen, high-temperature- 
discharge, LED, and fluorescent lamps of similar luminous flux and compare their 
luminous efficacy.

 1.6. Pressures up to 3000 bar are measured with a dead-weight gauge. The piston diameter 
is 4 mm. What is the approximate mass in kg of the weights required?

 1.7. Pressures up to 3000(atm) are measured with a dead-weight gauge. The piston diame-
ter is 0.17(in). What is the approximate mass in (lbm) of the weights required?
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1.10. Problems 19

 1.8. The reading on a mercury manometer at 25°C (open to the atmosphere at one end) is 
56.38 cm. The local acceleration of gravity is 9.832 m·s−2. Atmospheric pressure is 
101.78 kPa. What is the absolute pressure in kPa being measured? The density of 
mercury at 25°C is 13.534 g·cm−3.

 1.9. The reading on a mercury manometer at 70(°F) (open to the atmosphere at one end) is 
25.62(in). The local acceleration of gravity is 32.243(ft)·(s)−2. Atmospheric pressure 
is 29.86(in Hg). What is the absolute pressure in (psia) being measured? The density 
of mercury at 70(°F) is 13.543 g·cm−3.

 1.10. An absolute pressure gauge is submerged 50 m (1979 inches) below the surface of 
the ocean and reads P = 6.064 bar. This is P = 2434(inches of H2O), according to the 
unit conversions built into a particular calculator. Explain the apparent discrepancy 
between the pressure measurement and the actual depth of submersion.

 1.11. Substances that boil at relatively low temperatures are often stored as liquids under 
their vapor pressures, which at ambient temperature can be quite large. Thus, n-butane 
stored as a liquid/vapor system is at a pressure of 2.581 bar for a temperature of 300 K.  
Large-scale storage (>50 m3) of this kind often employs spherical tanks. Suggest two 
reasons why.

 1.12. The first accurate measurements of the properties of high-pressure gases were made by 
E. H. Amagat in France between 1869 and 1893. Before developing the dead-weight 
gauge, he worked in a mineshaft and used a mercury manometer for measurements of 
pressure to more than 400 bar. Estimate the height of manometer required.

 1.13. An instrument to measure the acceleration of gravity on Mars is constructed of a 
spring from which is suspended a mass of 0.40 kg. At a place on earth where the local 
acceleration of gravity is 9.81 m·s−2, the spring extends 1.08 cm. When the instrument 
 package is landed on Mars, it radios the information that the spring is extended 0.40 cm.  
What is the Martian acceleration of gravity?

 1.14. The variation of fluid pressure with height is described by the differential equation:

    
dP

 ___ 
dz

   = −ρg  

Here, ρ is specific density and g is the local acceleration of gravity. For an ideal gas, ρ =  
ℳP/RT, where ℳ is molar mass and R is the universal gas constant. Modeling the 
atmosphere as an isothermal column of ideal gas at 10°C, estimate the ambient pres-
sure in Denver, where z = 1(mile) relative to sea level. For air, take ℳ = 29 g·mol−1; 
values of R are given in Appendix A.

 1.15. A group of engineers has landed on the moon, and they wish to determine the mass of 
some rocks. They have a spring scale calibrated to read pounds mass at a location 
where the acceleration of gravity is 32.186(ft)(s)−2. One of the moon rocks gives a 
reading of 18.76 on this scale. What is its mass? What is its weight on the moon? Take 
g(moon) = 5.32(ft)(s)−2.
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20 CHAPTER 1. Introduction

 1.16. In medical contexts, blood pressure is often given simply as numbers without units.

 (a) In taking blood pressure, what physical quantity is actually being measured?
 (b) What are the units in which blood pressure is typically reported?
 (c) Is the reported blood pressure an absolute pressure or a gauge pressure?
 (d) Suppose an ambitious zookeeper measures the blood pressure of a standing adult 

male giraffe (18 feet tall) in its front leg, just above the hoof, and in its neck, just 
below the jaw. By about how much are the two readings expected to differ?

 (e) What happens to the blood pressure in a giraffe’s neck when it stoops to drink?
 ( f ) What adaptations do giraffes have that allow them to accommodate pressure dif-

ferences related to their height?

 1.17. A 70 W outdoor security light is illuminate, on average, 10 hours a day. A new bulb 
costs $5.00, and the lifetime is about 1000 hours. If electricity costs $0.10 per kW·h, 
what is the yearly price of “security,” per light?

 1.18. A gas is confined in a 1.25(ft) diameter cylinder by a piston, on which rests a weight. 
The mass of the piston and weight together is 250(lbm). The local acceleration of grav-
ity is 32.169(ft)(s)−2, and atmospheric pressure is 30.12(in Hg).

 (a) What is the force in (lbf) exerted on the gas by the atmosphere, the piston, and the 
weight, assuming no friction between the piston and cylinder?

 (b) What is the pressure of the gas in (psia)?
 (c) If the gas in the cylinder is heated, it expands, pushing the piston and weight 

upward. If the piston and weight are raised 1.7(ft), what is the work done by the 
gas in (ft)(lbf)? What is the change in potential energy of the piston and weight?

 1.19. A gas is confined in a 0.47 m diameter cylinder by a piston, on which rests a weight. 
The mass of the piston and weight together is 150 kg. The local acceleration of gravity 
is 9.813 m·s−2, and atmospheric pressure is 101.57 kPa.

 (a) What is the force in newtons exerted on the gas by the atmosphere, the piston, and 
the weight, assuming no friction between the piston and cylinder?

 (b) What is the pressure of the gas in kPa?
 (c) If the gas in the cylinder is heated, it expands, pushing the piston and weight 

upward. If the piston and weight are raised 0.83 m, what is the work done by the 
gas in kJ? What is the change in potential energy of the piston and weight?

 1.20. Verify that the SI unit of kinetic and potential energy is the joule.

 1.21. An automobile having a mass of 1250 kg is traveling at 40 m·s−1. What is its kinetic 
energy in kJ? How much work must be done to bring it to a stop?

 1.22. The turbines in a hydroelectric plant are fed by water falling from a 50 m height. 
Assuming 91% efficiency for conversion of potential to electrical energy, and 8% loss 
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of the resulting power in transmission, what is the mass flow rate of water required to 
power a 200 W light bulb?

 1.23. A wind turbine with a rotor diameter of 77 m produces 1.5 MW of electrical power at 
a wind speed of 12 m⋅s−1. What fraction of the kinetic energy of the air passing 
through the turbine is converted to electrical power? You may assume a density of 
1.25 kg⋅m−3 for air at the operating conditions.

 1.24. The annual average insolation (energy of sunlight per unit area) striking a fixed 
solar panel in Buffalo, New York, is 200 W⋅m−2, while in Phoenix, Arizona, it is  
270 W⋅m−2. In each location, the solar panel converts 15% of the incident energy into 
 electricity. Average annual electricity use in Buffalo is 6000 kW⋅h at an average cost of  
$0.15 kW⋅h, while in Phoenix it is 11,000 kW⋅h at a cost of $0.09 kW⋅h.

 (a) In each city, what area of solar panel is needed to meet the average electrical needs 
of a residence?

 (b) In each city, what is the current average annual cost of electricity?
 (c) If the solar panel has a lifetime of 20 years, what price per square meter of solar 

panel can be justified in each location? Assume that future increases in electricity 
prices offset the cost of borrowing funds for the initial purchase, so that you need 
not consider the time value of money in this analysis.

 1.25. Following is a list of approximate conversion factors, useful for “back-of-the- envelope” 
estimates. None of them is exact, but most are accurate to within about ±10%. Use 
Table A.1 (App. A) to establish the exact conversions.

 ∙ 1(atm) ≈ 1 bar
 ∙ 1(Btu) ≈ 1 kJ
 ∙ 1(hp) ≈ 0.75 kW
 ∙ 1(inch) ≈ 2.5 cm
 ∙ 1(lbm) ≈ 0.5 kg
 ∙ 1(mile) ≈ 1.6 km
 ∙ 1(quart) ≈ 1 liter
 ∙ 1(yard) ≈ 1 m

Add your own items to the list. The idea is to keep the conversion factors simple and 
easy to remember.

 1.26. Consider the following proposal for a decimal calendar. The fundamental unit is the 
decimal year (Yr), equal to the number of conventional (SI) seconds required for the 
earth to complete a circuit of the sun. Other units are defined in the following table. 
Develop, where possible, factors for converting decimal calendar units to conventional 
calendar units. Discuss pros and cons of the proposal.
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22 CHAPTER 1. Introduction

 1.27. Energy costs vary greatly with energy source: coal @ $35.00/ton, gasoline @ a pump 
price of $2.75/gal, and electricity @ $0.100/kW·h. Conventional practice is to put these 
on a common basis by expressing them in $⋅GJ−1. For this purpose, assume gross heat-
ing values of 29 MJ⋅kg−1 for coal and 37 GJ⋅m−3 for gasoline.

 (a) Rank order the three energy sources with respect to energy cost in $⋅GJ−1.
 (b) Explain the large disparity in the numerical results of part (a). Discuss the advan-

tages and disadvantages of the three energy sources.

 1.28. Chemical-plant equipment costs rarely vary in proportion to size. In the simplest case, 
cost C varies with size S according to the allometric equation

  C = α Sβ  

The size exponent β is typically between 0 and 1. For a wide variety of equipment 
types it is approximately 0.6.

 (a) For 0 < β < 1, show that cost per unit size decreases with increasing size. (“Econ-
omy of scale.”)

 (b) Consider the case of a spherical storage tank. The size is commonly measured by 
internal volume   V i  t  . Show why one might expect that β = 2/3. On what parameters 
or properties would you expect quantity α to depend?

 1.29. A laboratory reports the following vapor-pressure (Psat) data for a particular organic 
chemical:

Decimal Calendar Unit Symbol Definition

Second Sc 10−6 Yr
Minute Mn 10−5 Yr
Hour Hr 10−4 Yr
Day Dy 10−3 Yr
Week Wk 10−2 Yr
Month Mo 10−1 Yr
Year Yr

t∕°C Psat∕kPa

−18.5 3.18
−9.5 5.48

0.2 9.45
11.8 16.9
23.1 28.2
32.7 41.9
44.4 66.6
52.1 89.5
63.3 129.
75.5 187.
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Correlate the data by fitting them to the Antoine equation:

  ln   P   sat ∕kPa = A −   
B
 ______ 

T∕K + C    

That is, find numerical values of parameters A, B, and C by an appropriate regression 
procedure. Discuss the comparison of correlated with experimental values. What is 
the predicted normal boiling point [i.e., temperature at which the vapor pressure is 
1(atm)] of this chemical?
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Chapter 2

The First Law and Other  
Basic Concepts

In this chapter, we introduce and apply the first law of thermodynamics, one of the two funda-
mental laws upon which all of thermodynamics rests. Thus, in this chapter we:

 ∙ Introduce the concept of internal energy; i.e., energy stored within a substance
 ∙ Present the first law of thermodynamics, which reflects the observation that energy is 

neither created nor destroyed
 ∙ Develop the concepts of thermodynamic equilibrium, state functions, and the thermody-

namic state of a system
 ∙ Develop the concept of reversible processes connecting equilibrium states
 ∙ Introduce enthalpy, another measure of energy stored within a substance, particularly 

useful in analyzing open systems
 ∙ Use heat capacities to relate changes in the internal energy and enthalpy of a substance 

to changes in its temperature
 ∙ Illustrate the construction of energy balances for open systems

2.1 JOULE’S EXPERIMENTS

The present-day concept of heat developed following crucial experiments carried out in the 
1840s by James P. Joule.1 In the most famous series of measurements, he placed known amounts 
of water, oil, or mercury in an insulated container and agitated the fluid with a rotating stirrer. 
The amounts of work done on the fluid by the stirrer and the resulting temperature changes of the 
fluid were accurately and precisely measured. Joule showed that for each fluid a fixed amount 
of work per unit mass was required for each degree of temperature rise caused by the stirring, 
and that the original temperature of the fluid was restored by the transfer of heat through simple 

1http://en.wikipedia.org/wiki/James_Prescott_Joule. See also: Encyclopaedia Britannica, 1992, Vol. 28, p. 612.
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2.3. The First Law of Thermodynamics 25

contact with a cooler object. These experiments demonstrated the existence of a quantitative 
relationship between work and heat, and thereby showed that heat is a form of energy.

2.2 INTERNAL ENERGY

In experiments like those of Joule, energy added to a substance as work is later transferred 
from the substance as heat. Where does this energy reside after its addition to, and before its 
transfer from, the substance? A rational answer to this question is that it is contained within 
the substance in another form, which we call internal energy.

The internal energy of a substance does not include kinetic or potential energy that it may 
possess as a result of its elevation or velocity. Rather it refers to energy associated with the 
motions and positions of the molecules comprising the substance. Because of their ceaseless 
motion, all molecules possess kinetic energy of translation (motion through space); except for 
monatomic substances, they also possess kinetic energy of rotation and of internal vibration. The 
addition of heat to a substance increases molecular motion, and thus increases the internal energy 
of the substance. Work done on the substance can have the same effect, as was shown by Joule. 
The internal energy of a substance also includes the potential energy associated with intermolec-
ular forces. Molecules attract or repel one another, and potential energy is stored through these 
interactions, just as potential energy of configuration is stored in a compressed or stretched 
spring. On a submolecular scale, energy is associated with the interactions of electrons and nuclei 
of atoms, which includes the energy of chemical bonds that hold atoms together as molecules.

This energy is named internal to distinguish it from the kinetic and potential energy 
associated with a substance because of its macroscopic position, configuration, or motion, 
which can be thought of as external forms of energy.

Internal energy has no concise thermodynamic definition. It is a thermodynamic primi-
tive. It cannot be directly measured; there are no internal-energy meters. As a result, absolute 
values are unknown. However, this is not a disadvantage in thermodynamic analysis because 
only changes in internal energy are required. These changes in internal energy are directly 
related to heat and work flows and are reflected in observable quantities like the temperature 
and phase of a substance. In the context of classical thermodynamics, the details of how inter-
nal energy is stored are immaterial. This is the province of statistical thermodynamics, which 
relates macroscopic properties such as internal energy to molecular motions and interactions.

2.3 THE FIRST LAW OF THERMODYNAMICS

Recognition of heat and internal energy as forms of energy makes possible the generalization 
of the principle of conservation of mechanical energy (Sec. 1.7) to include heat and internal 
energy in addition to work and external potential and kinetic energy. Indeed, the generalization 
can be extended to still other forms, such as surface energy, electrical energy, and magnetic 
energy. Overwhelming evidence of the validity of this generalization has raised its stature to 
that of a law of nature, known as the first law of thermodynamics. One formal statement is:

Although energy assumes many forms, the total quantity of energy is 
constant, and when energy disappears in one form it appears 
 simultaneously in other forms.
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In application of this law to a given process, the sphere of influence of the process is 
divided into two parts, the system and its surroundings. The region in which the process occurs 
is set apart as the system; everything with which the system interacts is its surroundings. 
A  system may be of any size; its boundaries may be real or imaginary, rigid or flexible. 
 Frequently a system consists of a single substance; in other cases it may be complex. In any 
event, the equations of thermodynamics are written with reference to a well-defined system. 
This focuses attention on the particular process of interest and on the equipment and material 
directly involved in the process. However, the first law applies to the system and its surround-
ings, not to the system alone. For any process, the first law requires:

   Δ (  Energy of the system )   + Δ (  Energy of surroundings )   = 0   (2.1)

where the difference operator “Δ” signifies finite changes in the quantities enclosed in paren-
theses. The system may change in its internal energy, in its potential or kinetic energy, and in 
the potential or kinetic energy of its finite parts.

In the context of thermodynamics, heat and work represent energy in transit across 
the boundary dividing the system from its surroundings, and are never stored or contained 
in the system. Potential, kinetic, and internal energy, on the other hand, reside with and are 
stored with matter. Heat and work represent energy flows to or from a system, while potential, 
kinetic, and internal energy represent quantities of energy associated with a system. In practice, 
Eq. (2.1) assumes special forms suitable to specific applications. The development of these 
forms and their subsequent application are the subject of the remainder of this chapter.

2.4 ENERGY BALANCE FOR CLOSED SYSTEMS

If the boundary of a system does not permit the transfer of matter between the system and its 
surroundings, the system is said to be closed, and its mass is necessarily constant. The devel-
opment of basic concepts in thermodynamics is facilitated by a careful examination of closed 
systems. For this reason they are treated in detail here. Far more important for industrial prac-
tice are processes in which matter crosses the system boundary as streams that enter and leave 
process equipment. Such systems are said to be open, and they are treated later in this chapter, 
once the necessary foundation material has been presented.

Because no streams enter or leave a closed system, no energy associated with matter is 
transported across the boundary that divides the system from its surroundings. All energy 
exchange between a closed system and its surroundings is in the form of heat or work, and the 
total energy change of the surroundings equals the net energy transferred to or from it as heat 
and work. The second term of Eq. (2.1) can therefore be replaced by variables representing 
heat and work, to yield

  Δ(Energy of surroundings) = ±Q ± W  

Heat Q and work W always refer to the system, and the choice of sign for numerical values of 
these quantities depends on which direction of energy transfer with respect to the system is 
regarded as positive. We adopt the convention that makes the numerical values of both quanti-
ties positive for transfer into the system from the surroundings. The corresponding quantities 
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taken with reference to the surroundings, Qsurr and Wsurr, have the opposite sign, i.e., Qsurr = −Q  
and Wsurr = −W. With this understanding:

  Δ(Energy of surroundings) =  Q  surr   +  W  surr   = − Q − W  

Equation (2.1) now becomes:2

   Δ (  Energy of the system )   = Q + W   (2.2)

This equation states that the total energy change of a closed system equals the net energy 
transferred into it as heat and work.

Closed systems often undergo processes during which only the internal energy of the 
system changes. For such processes, Eq. (2.2) reduces to:

   Δ U   t  = Q + W   (2.3)

where Ut is the total internal energy of the system. Equation (2.3) applies to processes of finite 
change in the internal energy of the system. For differential changes in Ut:

   d U   t  = dQ + dW   (2.4)

In Eqs. (2.3) and (2.4) the symbols Q, W, and Ut pertain to the entire system, which may be of 
any size, but must be clearly defined. All terms require expression in the same energy units. In 
the SI system the unit is the joule.

Total volume Vt and total internal energy Ut depend on the quantity of material in a 
 system, and are called extensive properties. In contrast, temperature and pressure, the principal 
thermodynamic coordinates for pure homogeneous substances, are independent of the quantity 
of material, and are known as intensive properties. For a homogeneous system, an alternative 
means of expression for the extensive properties, such as Vt and Ut, is:

   V   t  = mV or   V   t  = nV  and    U   t  = mU or   U   t  = nU  

where the plain symbols V and U represent the volume and internal energy of a unit amount of 
material, either a unit mass or a mole. These are specific or molar properties, respectively, and 
they are intensive, independent of the quantity of material actually present.

Although Vt and Ut for a homogeneous system of arbitrary size are exten-
sive properties, specific and molar volume V  and specific and molar 
internal energy U are intensive.

Note that the intensive coordinates T and P have no extensive counterparts.
For a closed system of n moles, Eqs. (2.3) and (2.4) can now be written:

   Δ(nU ) = n ΔU = Q + W     (2.5)

   d(nU ) = n dU = dQ + dW   (2.6)

2The sign convention used here is recommended by the International Union of Pure and Applied Chemistry. How-
ever, the original choice of sign for work and the one used in the first four editions of this text was the opposite, and 
the right side of Eq. (2.2) was then written Q − W.
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In this form, these equations show explicitly the amount of substance comprising the system.
The equations of thermodynamics are often written for a representative unit amount of 

material, either a unit mass or a mole. Thus, for n = 1, Eqs. (2.5) and (2.6) become:

  ΔU = Q + W   and   dU = dQ + dW  

The basis for Q and W is always implied by the mass or number of moles associated with the 
left side of the energy equation. That is, Q and W may be expressed as total values for a system 
undergoing a particular change or for that process applied to a unit mass or mole of a sub-
stance. The basis of the calculation is set by the number of moles or mass associated with 
properties of the system. These energy flows are then expressed on that basis.

These equations do not provide a definition of internal energy. Indeed, they presume 
prior affirmation of the existence of internal energy, as expressed in the following axiom:

Axiom 1: There exists a form of energy, known as internal energy U, which 
is an intrinsic property of a system, functionally related to the measurable 
coordinates that characterize the system. For a closed system, not in 
motion, changes in this property are given by Eqs. (2.5) and (2.6).

Equations (2.5) and (2.6) not only supply the means of calculating changes in  internal 
energy from experimental measurements, but they also enable us to derive further property 
relations that supply connections to readily measurable characteristics (e.g., temperature and 
pressure). Moreover, they have a dual purpose, because once internal-energy values are 
known, they enable the calculation of heat and work quantities for practical processes. Having 
accepted the preceding axiom and associated definitions of a system and its surroundings, one 
may state the first law of thermodynamics concisely as a second axiom:

Axiom 2: (The First Law of Thermodynamics) The total energy of any 
 system and its surroundings is conserved.

These two axioms cannot be proven, nor can they be expressed in a simpler way. When 
changes in internal energy are computed in accord with Axiom 1, then Axiom 2 is universally 
observed to be true. The profound importance of these axioms is that they are the basis for 
formulation of energy balances applicable to a vast number of processes. Without exception, 
they predict the behavior of real systems.3

Example 2.1
The Niagara river, separating the United States from Canada, flows from Lake Erie to 
Lake Ontario. These lakes differ in elevation by about 100 m. Most of this drop occurs 
over Niagara Falls and in the rapids just above and below the falls, creating a natural 
opportunity for hydroelectric power generation. The Robert Moses hydroelectric 
power plant draws water from the river well above the falls and discharges it well 
below them. It has a peak capacity of 2,300,000 kW at a maximum water flow of 
3,100,000 kg·s−1. In the following, take 1 kg of water as the system.

3For a down-to-earth treatment designed to help the student over the very difficult early stages of an introduction to 
thermodynamics, see a short paperback by H. C. Van Ness, Understanding Thermodynamics; DoverPublications.com.
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2.4. Energy Balance for Closed Systems 29

 (a) What is the potential energy of the water flowing out of Lake Erie, relative to 
the surface of Lake Ontario?

 (b) At peak capacity, what fraction of this potential energy is converted to electri-
cal energy in the Robert Moses power plant?

 (c) If the temperature of the water is unchanged in the overall process, how much 
heat flows to or from it?

Solution 2.1

 (a) Gravitational potential energy is related to height by Eq. (1.8). With g equal to its 
standard value, this equation yields:

   
 E  P   = mzg

  
= 1 kg × 100 m × 9.81 m⋅  s   −2 

     
 
  

= 981 kg⋅ m   2  ⋅s   −2  = 981 N⋅m = 981 J
   

 (b)  Recalling that 1 kW = 1000 J⋅s−1, we find the electrical energy generated per kg 
water is:

    
2.3 ×  10   6   kW

  _____________  
3.1 ×  10   6   kg⋅ s   −1 

    = 0.742 kW⋅s⋅ kg   −1  = 742 J⋅ kg   −1    

The fraction of the potential energy converted to electrical energy is 742/981 = 0.76.

This conversion efficiency would be higher but for the dissipation of potential 
energy in the flow upstream and downstream of the power plant.

 (c) If the water leaves the process at the same temperature at which it enters, then its 
internal energy is unchanged. Neglecting also any change in kinetic energy, we 
write the first law, in the form of Eq. (2.2), as

   Δ (  Energy of the system )   = Δ E  p   = Q + W   

For each kilogram of water, W = −742 J and ΔEP = −981 J. Then

  Q = Δ E  p   − W = − 981 + 742 = − 239 J  

This is heat lost from the system.

Example 2.2
A typical industrial-scale wind turbine has a peak efficiency of about 0.44 for a wind 
speed of 9 m·s−1. That is, it converts about 44% of the kinetic energy of the wind 
approaching it into usable electrical energy. The total air flow impinging on such a tur-
bine with a rotor diameter of 43 m is about 15,000 kg·s−1 for the given wind speed.
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30 CHAPTER 2. The First Law and Other Basic Concepts 

 (a) How much electrical energy is produced when 1 kg of air passes through the 
turbine?

 (b) What is the power output of the turbine?

 (c) If there is no heat transferred to the air, and if its temperature remains 
unchanged, what is its change in speed upon passing through the turbine?

Solution 2.2

 (a) The kinetic energy of the wind on the basis of 1 kg of air is:

  E   K  1     =   
1
 __ 2   m u   2  =   

(1 kg)  (9   m·s   −1 )   2 
  _____________ 2   = 40.5 kg· m   2  ·s   −2  = 40.5 J 

Thus, the electrical energy produced per kilogram of air is 0.44 × 40.5 = 17.8 J.

 (b) The power output is:

  17.8   J·kg   −1  × 15,000 kg· s   −1  = 267,000   J·s   −1  = 267 kW  

 (c) If the temperature and pressure of the air are unchanged, then its internal energy is 
unchanged. Changes in gravitational potential energy can also be neglected. Thus, 
with no heat transfer, the first law becomes

  Δ(Energy of the system) = Δ E  K   =  E   K  2     −  E   K  1     = W = −17.8 J⋅ kg   −1  
 
   E   K  2     = 40.5 − 17.8 = 22.7 J⋅ kg   −1  = 22.7 N⋅m⋅ kg   −1  = 22.7   m   2  ⋅s   −2  
 
   E   K  2     =   

 u  2  2 
 __ 2   = 22.7  m   2  ⋅s   −2    and    u  2   = 6.74 m ⋅s   −1  

 
The decrease in air speed is: 9.00 − 6.74 = 2.26 m·s−1.

2.5 EQUILIBRIUM AND THE THERMODYNAMIC STATE

Equilibrium is a word denoting a static condition, the absence of change. In thermodynamics 
it means not only the absence of change but the absence of any tendency toward change on a 
macroscopic scale. Because any tendency toward change is caused by a driving force of one 
kind or another, the absence of such a tendency indicates also the absence of any driving force. 
Hence, for a system at equilibrium all forces are in exact balance.

Different kinds of driving forces tend to bring about different kinds of change. For 
example, imbalance of mechanical forces such as pressure on a piston tend to cause energy 
transfer as work; temperature differences tend to cause the flow of heat; differences in  chemical 
 potential4 tend to cause substances to be transferred from one phase to another. At equilibrium 
all such forces are in balance.

4Chemical potential is a thermodynamic property treated in Chapter 10.
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Whether a change actually occurs in a system not at equilibrium depends on resistance 
as well as on driving force. Systems subject to appreciable driving forces may change at a 
negligible rate if the resistance to change is very large. For example, a mixture of hydrogen 
and oxygen at ordinary conditions is not in chemical equilibrium, because of the large driving 
force for the formation of water. This reaction (hydrogen combustion) would occur rapidly and 
violently if initiated by a spark. However, if chemical reaction is not initiated, this system may 
exist in long-term thermal and mechanical equilibrium, and purely physical processes can be 
analyzed without regard to possible chemical reaction.

Likewise, living organisms are inherently far from overall thermodynamic equilibrium. 
They are constantly undergoing dynamic changes governed by the rates of competing bio-
chemical reactions, which are outside the scope of thermodynamic analysis. Nonetheless, 
many local equilibria within organisms are amenable to thermodynamic analysis. Examples 
include the denaturing (unfolding) of proteins and the binding of enzymes to their substrates.

The systems most commonly found in chemical technology are fluids, for which the 
primary characteristics (properties) are temperature T, pressure P, specific or molar volume V, 
and composition. Such systems are known as PVT systems. They exist at internal equilibrium 
when their properties are uniform throughout the system, and conform to the following axiom:

Axiom 3: The macroscopic properties of a homogeneous PVT system at 
internal equilibrium can be expressed as a function of its temperature, 
pressure, and composition.

This axiom prescribes an idealization, a model that excludes the influence of fields (e.g., 
electric, magnetic, and gravitational) as well as surface effects and other less common effects. 
It is entirely satisfactory in a multitude of practical applications.

A concept associated with internal equilibrium is a thermodynamic state for which a 
PVT system has a set of identifiable and reproducible properties, including not only P, V, and 
T, but also internal energy and other properties yet to be introduced. However, the notation of 
Eqs. (2.3) through (2.6) suggests that the internal energy terms on the left are different in kind 
from the quantities on the right. Those on the left reflect changes in the thermodynamic state 
of the system as reflected by its properties. For a homogeneous pure substance we know from 
experience that fixing two of these properties also fixes all the others, and thus determines its 
thermodynamic state. For example, nitrogen gas at a temperature of 300 K and a pressure of 
105 Pa (1 bar) has a fixed specific volume or density and a fixed molar internal energy. Indeed, 
it has a complete set of intensive thermodynamic properties. If this gas is heated or cooled, 
compressed or expanded, and then returned to its initial temperature and pressure, its intensive 
properties are restored to their initial values. They do not depend on the past history of the 
substance nor on the means by which it reaches a given state. They depend only on present 
conditions, however reached. Such quantities are known as state functions. For a homoge-
neous pure substance, if two state functions are held at fixed values the thermodynamic state 
of the substance is fully determined.5 This means that a state function, such as specific internal 
energy, is a property that always has a value; it can therefore be expressed mathematically as a 
function of coordinates such as temperature and pressure, or temperature and density, and its 
values can be identified with points on a graph.

5For systems of greater complexity, the number of state functions that must be specified in order to define the state 
of the system may be different from two. The method of determining this number is found in Sec. 3.1.
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On the other hand, the terms on the right sides of Eqs. (2.3) through (2.6), representing heat 
and work quantities, are not properties; they account for the energy changes that occur in the sur-
roundings. They depend on the nature of the process, and they may be associated with areas rather 
than points on a graph, as suggested by Fig. 1.3. Although time is not a thermodynamic coordinate, 
the passage of time is inevitable whenever heat is transferred or work is accomplished.

The differential of a state function represents an infinitesimal change in its value. Inte-
gration of such a differential results in a finite difference between two of its values, e.g.:

   ∫ 
V1

  
V2

 dV     =  V  2   −  V  1   = ΔV   and    ∫ 
U1

  
U2

 dU   =  U  2   −  U  1   = ΔU  

The differentials of heat and work are not changes, but are infinitesimal amounts. When inte-
grated, these differentials give not finite changes, but finite amounts. Thus,

    ∫   dQ = Q   and    ∫   dW = W  

For a closed system undergoing the same change in state by several 
processes, experiment shows that the amounts of heat and work required 
differ for different processes, but that the sum Q + W [Eqs. (2.3) and 
(2.5)] is the same for all processes.

This is the basis for the identification of internal energy as a state function. The same 
value of Δ  U   t   is given by Eq. (2.3) regardless of the process, provided only that the change in 
the system is between the same initial and final states.

Example 2.3
A gas is confined in a cylinder by a piston. The initial pressure of the gas is 7 bar, and 
the volume is 0.10 m3. The piston is held in place by latches.

 (a) The whole apparatus is placed in a total vacuum. What is the energy change of 
the apparatus if the restraining latches are removed so that the gas suddenly 
expands to double its initial volume, the piston striking other latches at the end 
of the process?

 (b) The process described in (a) is repeated, but in air at 101.3 kPa, rather than in 
a vacuum. What is the energy change of the apparatus? Assume the rate of 
heat exchange between the apparatus and the surrounding air is slow com-
pared with the rate at which the process occurs.

Solution 2.3
Because the question concerns the entire apparatus, the system is taken as the gas, piston,  
and cylinder.
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2.5. Equilibrium and the Thermodynamic State 33

 (a) No work is done during the process, because no force external to the system moves, 
and no heat is transferred through the vacuum surrounding the apparatus. Hence Q 
and W are zero, and the total energy of the system does not change. Without further 
information we can say nothing about the distribution of energy among the parts of 
the system. This may be different than the initial distribution.

 (b) Here, work is done by the system in pushing back the atmosphere. It is evaluated 
as the product of the force of atmospheric pressure on the back side of the piston, 
F = PatmA, and the displacement of the piston, Δl = ΔVt/A, where A is the area of 
the piston and ΔVt is the volume change of the gas. This is work done by the system 
on the surroundings, and is a negative quantity; thus,

  W = − F Δl = −  P  atm    Δ V   t  = − (101.3) (0.2 − 0.1)  kPa⋅ m   3  = − 10.13   
kN

 ___ 
 m   2 

    ⋅m   3   

or

  W = −10.13 kN·m = − 10.13 kJ  

Heat transfer between the system and surroundings is also possible in this case, 
but the problem is worked for the instant after the process has occurred and before 
appreciable heat transfer has had time to take place. Thus Q is assumed to be zero 
in Eq. (2.2), giving:

  Δ(Energy of the system) = Q + W = 0  − 10.13 = −10.13 kJ  

The total energy of the system has decreased by an amount equal to the work done 
on the surroundings.

Cylinder

Piston

Latch

Gas under
pressure

Latch

Before After
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Solution 2.4
Assume that the system changes only in its internal energy and thus that Eq. (2.3) 
is applicable. For path acb, and thus for any path leading from a to b,

  Δ U ab  t   =  Q  acb   +  W  acb   = 100 − 40 = 60 J  

 (a) For path aeb,

  Δ U ab  t   =  60  =  Q  aeb   +  W  aeb    =  Q  aeb    − 20  and    Q  aeb   = 80 J  

 (b) For path bda,

  Δ U ba  t   =  − Δ U ab  t   = − 60  =  Q  bda   +  W  bda    =  Q  bda   + 30  

and

   Q  bda    = − 60 − 30  = − 90 J  

Heat is therefore transferred from the system to the surroundings.

Example 2.4
When a system is taken from state a to state b in the accompanying figure along path 
acb, 100 J of heat flows into the system and the system does 40 J of work.

 (a) How much heat flows into the system along path aeb if the work done by the 
system is 20 J?

 (b) The system returns from b to a along path bda. If the work done on the system 
is 30 J, does the system absorb or liberate heat? How much?

P

V

a

b
c

d

e
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2.6 THE REVERSIBLE PROCESS

The development of thermodynamics is facilitated by the introduction of a special kind of 
closed-system process characterized as reversible:

A process is reversible when its direction can be reversed at any point by 
an infinitesimal change in external conditions.

The reversible process is ideal in that it produces a best possible result; it yields the min-
imum work input required or maximum work output attainable from a specified process. It 
represents a limit to the performance of an actual process that is never fully realized. Work is 
often calculated for hypothetical reversible processes, because the choice is between this cal-
culation and no calculation at all. The reversible work as the limiting value may then be com-
bined with an appropriate efficiency to yield a reasonable approximation to the work input 
required for or work output produced by an actual process.6

The concept of reversible processes also plays a key role in the derivation of thermody-
namic relationships. In this context, we often compute changes in thermodynamic state func-
tions along the path of a hypothetical reversible process. If the result is a relationship involving 
only state functions, then this relationship is valid for any process that results in the same 
change of state. Indeed, the primary use of the reversible process concept is for derivation of 
generally valid relationships among state functions.

Reversible Expansion of a Gas
The piston in Fig. 2.1 confines gas at a pressure just sufficient to balance the weight of the 
piston and all that it supports. In this equilibrium condition the system has no tendency to 
change. Imagine that mass m is slid from the piston to a shelf (at the same level). The piston 
assembly accelerates upward, reaching maximum velocity when the upward force on the pis-
ton just balances its weight. Momentum then carries it to a higher level, where it reverses 
direction. If the piston were held in the position of maximum elevation, its potential-energy 
increase would very nearly equal the expansion work done by the gas. However, when uncon-
strained, the piston assembly oscillates, with decreasing amplitude, ultimately coming to rest 
at a new equilibrium position Δl above the old. 

Oscillations are damped out because the viscous nature of the gas gradually converts 
gross directed motion of the molecules into chaotic molecular motion. This dissipative process 
transforms some of the work done by the gas in raising the piston into internal energy of the 
gas. Once the process is initiated, no infinitesimal change in external conditions can reverse it; 
the process is irreversible.

The dissipative effects of the process have their origin in the sudden removal of a finite 
mass from the piston. The resulting imbalance of forces acting on the piston causes its accel-
eration and leads to its subsequent oscillation. The sudden removal of smaller mass increments 
reduces, but does not eliminate, this dissipative effect. Even the removal of an infinitesimal 
mass leads to piston oscillations of infinitesimal amplitude and a consequent dissipative effect. 
However, one may imagine a process wherein small mass increments are removed one after 

6Quantitative analysis of the relationships between efficiency and irreversibility requires use of the second law of 
thermodynamics and is treated in Chapter 5.
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another at a rate such that the piston’s rise is continuous, with minute oscillation only at the 
end of the process.

The limiting case of removal of a succession of infinitesimal masses from the piston is 
approximated when the masses m in Fig. 2.1 are replaced by a pile of powder, blown in a very 
fine stream from the piston. During this process, the piston rises at a uniform but very slow 
rate, and the powder collects in storage at ever higher levels. The system is never more than 
differentially displaced from internal equilibrium or from equilibrium with its surroundings. If 
the removal of powder from the piston is stopped and the direction of transfer of powder is 
reversed, the process reverses direction and proceeds backwards along its original path. Both 
the system and its surroundings are ultimately restored to virtually their initial conditions. The 
original process approaches reversibility.

Without the assumption of a frictionless piston, we cannot imagine a reversible process. 
If the piston sticks, a finite mass must be removed before the piston breaks free. Thus the equi-
librium condition necessary to reversibility is not maintained. Moreover, friction between two 
sliding parts is a mechanism for the dissipation of mechanical energy into internal energy.

This discussion has centered on a single closed-system process, the expansion of a gas 
in a cylinder. The opposite process, compression of a gas in a cylinder, is described in exactly 
the same way. There are, however, many processes that are driven by an imbalance of other 
than mechanical forces. For example, heat flow occurs when a temperature difference exists, 
electricity flows under the influence of an electromotive force, and chemical reactions occur 
in response to driving forces that arise from differences in the strengths and configurations of 
chemical bonds in molecules. The driving forces for chemical reactions and for transfer of 
substances between phases are complex functions of temperature, pressure, and composition, 
as will be described in detail in later chapters. In general, a process is reversible when the net 
force driving it is infinitesimal in size. Thus heat is transferred reversibly when it flows from a 
finite object at temperature T to another such object at temperature T − dT.

Figure 2.1: Expansion of a gas. The nature of reversible 
processes is illustrated by the expansion of gas in an 
idealized piston/cylinder arrangement. The apparatus shown 
is imagined to exist in an evacuated space. The gas trapped 
inside the cylinder is chosen as the system; all else is the 
surroundings. Expansion results when mass is removed from 
the piston. For simplicity, assume that the piston slides 
within the cylinder without friction and that the piston and 
cylinder neither absorb nor transmit heat. Moreover, because 
the density of the gas in the cylinder is low and its mass is 
small, we ignore the effects of gravity on the contents of the 
cylinder. This means that gravity-induced pressure gradients 
in the gas are very small relative to its total pressure and that 
changes in potential energy of the gas are negligible in 
comparison with the potential-energy changes of the piston 
assembly.

m

∆l
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Some chemical reactions can be carried out in an electrolytic cell, and in this case they 
may be held in balance by an applied potential difference. For example, when a cell consisting 
of two electrodes, one of zinc and the other of platinum, is immersed in an aqueous solution of 
hydrochloric acid, the reaction that occurs is:

  Zn + 2HCl ⇌  H  2   +  ZnCl  2    

The cell is held under fixed conditions of temperature and pressure, and the electrodes are 
connected externally to a potentiometer. If the electromotive force (emf) produced by the cell 
is exactly balanced by the potential difference of the potentiometer, the reaction is held in 
equilibrium. The reaction can be made to proceed in the forward direction by a slight decrease 
in the opposing potential difference, and it can be reversed by a corresponding increase in  
the potential difference above the emf of the cell. For a real energy storage device, finite 

Reversible Chemical Reaction
The concept of a reversible chemical reaction is illustrated by the decomposition of solid cal-
cium carbonate to form solid calcium oxide and carbon dioxide gas. At equilibrium, this sys-
tem exerts a specific decomposition pressure of CO2 for a given temperature. The chemical 
reaction is held in balance (in equilibrium) by the pressure of the CO2. Any change of condi-
tions, however slight, upsets the equilibrium and causes the reaction to proceed in one direc-
tion or the other.

If the mass m in Fig. 2.2 is minutely increased, the CO2 pressure rises, and CO2 com-
bines with CaO to form CaCO3, allowing the weight to fall. The heat given off by this reaction 
raises the temperature in the cylinder, and heat flows to the bath. Decreasing the weight sets 
off the opposite chain of events. The same results are obtained if the temperature of the bath is 
raised or lowered. Raising the bath temperature slightly causes heat transfer into the cylinder, 
and calcium carbonate decomposes. The CO2 generated causes the pressure to rise, which in 
turn raises the piston and weight. This continues until the CaCO3 is completely decomposed. 
A lowering of the bath temperature causes the system to return to its initial state. The imposi-
tion of differential changes causes only minute displacements of the system from equilibrium, 
and the resulting process is exceedingly slow and reversible.

Figure 2.2: Reversibility of a chemical 
reaction. The cylinder is fitted with a 
frictionless piston and contains CaCO3, CaO, 
and CO2 in equilibrium. It is immersed in a 
constant-temperature bath, and thermal 
equilibrium assures equality of the system 
temperature with that of the bath. The 
temperature is adjusted to a value such that the 
decomposition pressure is just sufficient to 
balance the weight on the piston, a condition of 
mechanical equilibrium.

CO2T

CaCO3 + CaO 

Thermostat

m
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differences in emf are required to drive the electrochemical reactions. Thus, a charger may 
apply up to about 4.2 V to charge a familiar lithium ion battery, but that battery might then 
supply only 3.7 V to a device that it powers. The difference arises from irreversibilities in the 
charging and discharging processes within the battery.

Summary Remarks on Reversible Processes
A reversible process:

 ∙ Can be reversed at any point by an infinitesimal change in external conditions
 ∙ Is never more than minutely removed from equilibrium
 ∙ Traverses a succession of equilibrium states
 ∙ Is frictionless
 ∙ Is driven by forces whose imbalance is infinitesimal in magnitude
 ∙ Proceeds infinitely slowly
 ∙ When reversed, retraces its path, restoring the initial state of system and surroundings

Computing Work for Reversible Processes
Equation (1.3) gives the work of compression or expansion of a gas caused by the displace-
ment of a piston in a cylinder:

  dW = − P d V   t   (1.3)

The work done on the system is in fact given by this equation only when certain 
 characteristics of the reversible process are realized. The first requirement is that the system be 
no more than infinitesimally displaced from a state of internal equilibrium, characterized by 
uniformity of temperature and pressure. The system then has an identifiable set of properties, 
including pressure P. The second requirement is that the system be no more than infinitesi-
mally displaced from mechanical equilibrium with its surroundings. In this event, the internal 
pressure P is never more than minutely out of balance with the external force, and we can 
make the substitution F = PA that transforms Eq. (1.2) into Eq. (1.3). Processes for which 
these requirements are met are said to be mechanically reversible, and for such processes  
Eq. (1.3) can be integrated:

  W = − ∫ 
 V 1  t   

  
 V 2  t   

 P dVt      (1.4)

This equation gives the work for the mechanically reversible expansion or compression of a 
fluid in a piston/cylinder arrangement. Its evaluation clearly depends on the relation between 
P and Vt, i.e., on the “path” of the process, which must be specified. To find the work of an 
irreversible process for the same change in Vt, one must apply an efficiency, which relates the 
actual work to the reversible work.
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Example 2.5
A horizontal piston/cylinder arrangement is placed in a constant-temperature bath. 
The piston slides in the cylinder with negligible friction, and an external force holds it in 
place against an initial gas pressure of 14 bar. The initial gas volume is 0.03 m3. The 
external force on the piston is reduced gradually, and the gas expands isothermally as 
its volume doubles. If the volume of the gas is related to its pressure so that PVt is con-
stant, what is the work done by the gas in moving the external force?

Solution 2.5
The process as described is mechanically reversible, and Eq. (1.4) is applicable. If 
PVt = k, a constant, then P = k / Vt.7 This specifies the path of the process, and leads to

  W = −  ∫ 
 V 1  t   

  
 V 2  t   

 P dVt   = − k  ∫ 
 V 1  t   

  
 V 2  t   

       
d  V   t 

 ___  V   t    = − k ln    
 V 2  t  

 ___ 
 V 1  t  

    

The value of k is given by:

  k = P V   t  =  P  1   V 1  t   = 14 ×  10   5  Pa × 0.03  m   3  = 42,000 J  

With   V 1  t   = 0.03   m   3  and  V 2  t   = 0.06   m   3 , 

  W = − 42,000 ln  2 = −29,112 J  

The final pressure is

   P  2   =   
k
 ___ 

 V 2  t  
   =   

42,000
 _______ 0.06   = 700,000 Pa   or   7 bar  

Were the efficiency of such processes known to be about 80%, we could 
 multiply the reversible work by this figure to get an estimate of the irreversible 
work, namely −23,290 J.

2.7 CLOSED-SYSTEM REVERSIBLE PROCESSES; ENTHALPY

We present here the analysis of closed-system mechanically reversible processes—not that such 
processes are common. Indeed they are of little interest for practical application. Their value lies 
in the simplicity they provide for calculating changes in state functions for a specific change of 
state. For a complex industrial process that brings about a particular change of state, the calcula-
tion of changes in state functions are not made for the path of the actual process. Rather, they are 
made for a simple closed-system reversible process that brings about the same change of state. 
This is possible because changes in state functions are independent of process. The closed-system 
mechanically reversible process is useful and important for this purpose, even though close 
approximations to such hypothetical processes are not often encountered in practice.

7Those already familiar with the ideal gas equation of state (ideal gas law) will recognize that this equation with  
k = RT describes ideal gas state behavior.
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For 1 mole of a homogeneous fluid contained in a closed system, the energy balance of 
Eq. (2.6) is written:

  dU = dQ + dW  

The work for a mechanically reversible, closed-system process is given by Eq. (1.3), here 
 written: dW = −PdV. Substitution into the preceding equation yields:

  dU = dQ − PdV  (2.7)

This is the general energy balance for one mole or a unit mass of homogeneous fluid in a 
closed system undergoing a mechanically reversible process. 

For a constant-volume change of state, the only possible mechanical work is that associ-
ated with stirring or mixing, which is excluded because it is inherently irreversible. Thus,

  dU = dQ (const V )  (2.8)
Integration yields:
  ΔU = Q (const V )  (2.9)

The internal energy change for a mechanically reversible, constant-volume, closed-system 
process equals the amount of heat transferred into the system.

For a constant-pressure change of state:

   dU + PdV = d (  U + PV )   = dQ    

The group U + PV naturally arises here and in many other applications. This suggests the 
definition, for convenience, of this combination as a new thermodynamic property. Thus, the 
mathematical (and only) definition of enthalpy8 is:

   H ≡ U + PV   (2.10)

where H, U, and V are molar or unit-mass values. The preceding energy balance becomes:

  dH = dQ (const P)  (2.11)
Integration yields:
  ΔH = Q (const P)  (2.12)

The enthalpy change in a mechanically reversible, constant-pressure, closed-system pro-
cess equals the amount of heat transferred into the system. Comparison of Eqs. (2.11) and 
(2.12) with Eqs. (2.8) and (2.9) shows that the enthalpy plays a role in constant-pressure pro-
cesses analogous to the internal energy in constant-volume processes.

These equations suggest the usefulness of enthalpy, but its greatest use becomes fully 
apparent with its appearance in energy balances for flow processes as applied to heat exchang-
ers, chemical and biochemical reactors, distillation columns, pumps, compressors, turbines, 
engines, etc., for calculation of heat and work flows.

The tabulation of Q and W for the infinite array of conceivable processes is impossible. 
The intensive state functions, however, such as molar or specific volume, internal energy, and 

8Originally and most properly pronounced en-thal′-py to distinguish it clearly from entropy, a property introduced 
in Chapter 5, and pronounced en′-tro-py. The word enthalpy was proposed by H. Kamerlingh Onnes, who won the 
1913 Nobel Prize in physics (see: http://nobelprize.org/nobel_prizes/physics/laureates/1913/onnes-bio.html).
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enthalpy, are intrinsic properties of matter. Once determined for a particular substance, their 
values can be tabulated as functions of T and P for future use in the calculation of Q and W for 
any process involving that substance. The determination of numerical values for these state 
functions and their correlation and use are treated in later chapters.

All terms of Eq. (2.10) must be expressed in the same units. The product PV has units 
of energy per mole or per unit mass, as does U; therefore H also has units of energy per mole 
or per unit mass. In the SI system the basic unit of pressure is the pascal (=1 N·m−2), and that 
of molar volume is cubic meters per mol (=1 m3·mol−1). For the PV product we have 
1 N·m·mol−1 = 1 J·mol−1.

Because U, P, and V are all state functions, H as defined by Eq. (2.10) is also a state 
function. Like U and V, H is an intensive property of matter. The differential form of Eq. 
(2.10) is:
  dH = dU + d(PV )  (2.13)

This equation applies for any differential change of state. Upon integration, it becomes 
an equation for a finite change of state:

  ΔH = ΔU + Δ(PV)  (2.14)

Equations (2.10), (2.13), and (2.14) apply to a unit mass or mole of a substance.

Example 2.6
Calculate ΔU and ΔH for 1 kg of water when it is vaporized at a constant temperature 
of 100°C and a constant pressure of 101.33 kPa. The specific volumes of liquid and 
vapor water at these conditions are 0.00104 and 1.673 m3·kg−1, respectively. For this 
change, heat in the amount of 2256.9 kJ is added to the water.

Solution 2.6
We take the 1 kg of water as the system because it alone is of interest, and we 
imagine it contained in a cylinder by a frictionless piston that exerts a constant 
pressure of 101.33 kPa. As heat is added, the water evaporates, expanding from its 
initial to its final volume. Equation (2.12) as written for the 1 kg system is:

  ΔH = Q = 2256.9 kJ  

By Eq. (2.14),

  ΔU = ΔH − Δ(PV ) = ΔH − P ΔV  

For the final term:

   P ΔV  = 101.33 kPa × (1.673 − 0.001)  m   3      
 
  

= 169.4 kPa⋅ m   3  = 169.4 kN⋅ m   −2  ⋅m   3  = 169.4 kJ
   

Then

  ΔU = 2256.9 − 169.4 = 2087.5 kJ  
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2.8 HEAT CAPACITY

Our recognition of heat as energy in transit was preceded historically by the idea that gases, 
liquids, and solids have capacity for heat. The smaller the temperature change caused in a 
substance by the transfer of a given quantity of heat, the greater its capacity. Indeed, a heat 
capacity might be defined as C ≡ dQ/dT. The difficulty with this is that it makes C, like Q, a 
process-dependent quantity rather than a state function. However, it does suggest the defini-
tion of two quantities that, although they retain this outmoded name, are in fact state functions, 
unambiguously related to other state functions. The discussion here is preliminary to more 
complete treatment in Chapter 4.

Heat Capacity at Constant Volume
The constant-volume heat capacity of a substance is defined as:

   C  V   ≡   (  
∂ U

 ___ ∂ T  )   
V
    (2.15)

Observe carefully the notation used here with the partial derivative. The parentheses and sub-
script V indicate that the derivative is taken with volume held constant; i.e., U is considered a 
function of T and V. This notation is widely used in this text and more generally in thermody-
namics. It is needed because thermodynamic state functions, like U, can be written as func-
tions of different sets of independent variables. Thus, we can write U(T, V) and U(T, P). 
Ordinarily in multivariable calculus, a set of independent variables is unambiguous, and a 
partial derivative with respect to one variable implies constancy of the others. Because ther-
modynamics reflects physical reality, one may deal with alternative sets of independent vari-
ables, introducing ambiguity unless the variables being held constant are explicitly specified.

The definition of Eq. (2.15) accommodates both the molar heat capacity and the specific 
heat capacity (usually called specific heat), depending on whether U is the molar or specific 
internal energy. Although this definition makes no reference to any process, it relates in an 
especially simple way to a constant-volume process in a closed system, for which Eq. (2.15) 
can be written:

  dU =   C  V    dT (const V)  (2.16)

Integration yields:

  ΔU =  ∫ 
T1

  
T2

      C  V    dT   (  const V )     (2.17)

This result with Eq. (2.9) for a mechanically reversible, constant-volume process (condi-
tions that preclude stirring work) gives:

  Q = ΔU =  ∫ 
T1

  
T2

      C  V    dT (const V)  (2.18)

If the volume varies during the process but returns at the end of the process to its initial 
value, the process cannot rightly be called one of constant volume, even though V2 = V1 and 
ΔV = 0. However, changes in state functions are fixed by the initial and final conditions, 
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independent of path, and can therefore be calculated by equations for a truly constant- volume 
process regardless of the actual process. Equation (2.17) therefore has general validity, because 
U, CV, T, and V are all state functions. On the other hand, Q and W depend on path. Thus, 
Eq. (2.18) is a valid expression for Q, and W is in general zero, only for a constant- volume 
process. This is the reason for emphasizing the distinction between state functions and path- 
dependent quantities such as Q and W. The principle that state functions are path- and 
 process-independent is an essential concept in thermodynamics.

For the calculation of property changes, but not for Q and W, an actual 
process can be replaced by any other process that accomplishes the 
same change in state. The choice is made based on convenience, with 
simplicity a great advantage.

Heat Capacity at Constant Pressure
The constant-pressure heat capacity is defined as: 

   C  P   ≡   (  
∂ H

 ___ ∂ T  )   
P

    (2.19)

Again, the definition accommodates both molar and specific heat capacities, depending on 
whether H is the molar or specific enthalpy. This heat capacity relates in an especially simple 
way to a constant-pressure, closed-system process, for which Eq. (2.19) is equally well written:

  dH =   C  P   dT (const P)  (2.20)
which is integrated to yield:

  ΔH = ∫ 
T1

  
T2

      C  P   dT (const P)  (2.21)

For a mechanically reversible, constant-P process, this result can be combined with 
Eq. (2.12):

  Q = ΔH =  ∫ 
T1

  
T2

      C  P   dT (const P)  (2.22)

Because H, CP, T, and P are state functions, Eq. (2.21) applies to any process for which P2 = 
P1 whether or not it is actually carried out at constant pressure. However, only for the mechan-
ically reversible, constant-pressure process can the amount of heat transferred be calculated by 
Eq. (2.22) and work by Eq. (1.3), here written for 1 mole, W = −P ΔV.

Example 2.7
Air at 1 bar and 298.15 K is compressed to 3 bar and 298.15 K by two different 
closed-system mechanically reversible processes:

 (a) Cooling at constant pressure followed by heating at constant volume.

 (b) Heating at constant volume followed by cooling at constant pressure.
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Calculate the heat and work requirements and ΔU and ΔH of the air for each path. The 
following heat capacities for air may be assumed independent of temperature:

    C  V   = 20.785  and   C  P   = 29.100 J· mol   −1  ·K   −1    

Assume also that air remains a gas for which PV/T is a constant, regardless of the changes 
it undergoes. At 298.15 K and 1 bar the molar volume of air is 0.02479 m3· mol−1.

Solution 2.7
In each case take the system as 1 mol of air contained in an imaginary piston/ 
cylinder arrangement. Because the processes are mechanically reversible, the piston  
is imagined to move in the cylinder without friction. The final volume is:

   V  2   =  V  1     
  P  1   

 ___   P  2      = 0.02479  (     
1
 _ 3   )    = 0.008263   m   3   

The two paths are shown on the V vs. P diagram of Fig. 2.3(I) and on the T vs. P 
diagram of Fig. 2.3(II).

Figure 2.3: V  
vs. P and T vs.  
P  diagrams  
for  Ex. 2.7.
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 (a) During the first step of this path, air is cooled at a constant pressure of 1 bar until the 
final volume of 0.008263 m3 is reached. The temperature of the air at the end of this 
cooling step is:

  T′ =  T  1     
 V  2  

 ___  V  1     = 298.15  (    
0.008263

 _ 0.02479   )    = 99.38 K  

Thus, for the first step,

   
Q

  
= ΔH =  C  P   ΔT = (29.100) (99.38 − 298.15) = −5784 J

      W  = − P ΔV = − 1 ×  10   5   Pa × (0.008263 − 0.02479)   m   3  = 1653 J       
ΔU

  
= ΔH − Δ(PV) = ΔH − P ΔV = − 5784 + 1653 = − 4131 J
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The second step is at constant V2 with heating to the final state. Work W = 0, and 
for this step:

    
ΔU

  
= Q =   C  V   ΔT = (20.785) (298.15 − 99.38) = 4131 J

      V ΔP  = 0.008263   m   3  × (2 ×  10   5 ) Pa = 1653 J     
ΔH

  
= ΔU + Δ(PV ) = ΔU + V ΔP = 4131 + 1653 = 5784 J

   

For the overall process: 

    

Q

  

= −5784 + 4131 = −1653 J

    W  = 1653 + 0 = 1653 J   
ΔU

  
= − 4131 + 4131 = 0

   

ΔH

  

= − 5784 + 5784 = 0

    

Notice that the first law, ΔU = Q + W, applied to the overall process is satisfied.

 (b) Two different steps of this path produce the same final state of the air. In the first 
step air is heated at a constant volume equal to V1 until the final pressure of 3 bar is 
reached. The air temperature at the end of this step is:

  T′ =  T  1     
 P  2  

 ___  P  1     = 298.15  (    
3
 _ 1   )    = 894.45 K  

For this first constant-volume step, W = 0, and

    
Q

  
 =  ΔU =  C  V   ΔT =  (  20.785 )   (  894.45 − 298.15 )   = 12,394 J 

      V ΔP   =   (  0.02479 )   (  2 ×  10   5  )   = 4958 J     
ΔH

  
=  ΔU + V ΔP = 12,394 + 4958 = 17,352 J

    

 In the second step air is cooled at P = 3 bar to its final state:

    
Q

  
 = ΔH =  C  P    ΔT =  (  29.10 )   (  298.15 − 894.45 )   = − 17,352 J 

      W   = −P ΔV = −  (  3 ×  10   5  )   (  0.008263 − 0.02479 )   = 4958 J       
ΔU

  
 = ΔH − Δ (  PV )   = ΔH − P ΔV = − 17,352 + 4958 = − 12,394 J 

   

For the two steps combined,

    

Q

  

= 12,394 − 17,352 = − 4958 J

    W  = 0 + 4958 = 4958 J   ΔU
  = 12,394  − 12,394  = 0    

ΔH

  

= 17,352 − 17,352  = 0

    

This example illustrates that changes in state functions (ΔU and ΔH) are indepen-
dent of path for given initial and final states. On the other hand, Q and W depend 
on the path. Note also that the total changes in ΔU and ΔH are zero. This is 
because the input information provided makes U and H functions of temperature 
only, and T1 = T2. While the processes of this example are not of practical interest, 
state-function changes (ΔU and ΔH) for actual flow processes are calculated as 
illustrated in this example for processes that are of practical interest. This is possi-
ble because the state-function changes are the same for a reversible process, like 
the ones used here, as for a real process that connects the same states.
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Example 2.8
Calculate the internal energy and enthalpy changes resulting when air is taken from an 
initial state of 5°C and 10 bar, where its molar volume is 2.312 × 10−3 m3·mol−1, to a 
final state of 60°C and 1 bar. Assume also that air remains a gas for which PV/T is con-
stant and that CV = 20.785 and CP = 29.100 J·mol−1·K−1.

Solution 2.8
Because property changes are independent of process, calculations may be based 
on any process that accomplishes the change. Here, we choose a two-step, mechan-
ically reversible process wherein 1 mol of air is (a) cooled at constant volume to 
the final pressure, and (b) heated at constant pressure to the final temperature. Of 
course, other paths could be chosen, and would yield the same result.

   T  1   = 5 + 273.15 = 278.15 K     T  2   = 60 + 273.15 = 333.15 K  

With PV = kT, the ratio T/P is constant for step (a). The intermediate temperature 
between the two steps is therefore:

  T′ = (278.15) (1 / 10) = 27.82 K  
and the temperature changes for the two steps are:

   
 
  
Δ T  a   = 27.82 − 278.15 = −250.33 K

    
 
  
Δ T  b   = 333.15 − 27.82 = 305.33 K

    

For step (a), by Eqs. (2.17) and (2.14),

    
Δ U  a  

  
 =  C  V   Δ T  a   =  (  20.785 )   (  −250.33 )   = −5203.1 J 

     Δ  H  a    = Δ U  a   + V Δ P  a     
 
  
 = −5203.1 J + 2.312 ×  10   −3    m   3  ×  (  −9 ×  10   5  )   Pa = − 7283.9 J 

   

For step (b), the final volume of the air is:

   V  2   =  V  1     
 P  1    T  2  

 ____  P  2    T  1     = 2.312 ×  10   −3   (    
10 × 333.15

 _ 1 × 278.15   )    = 2.769 ×  10   −2    m   3   

By Eqs. (2.21) and (2.14),

   
Δ H  b  

  
=  C  P   Δ T  b   = (29.100) (305.33) = 8885.1 J

     Δ U  b    = Δ H  b   − P Δ V  b     
 
  
= 8885.1 − (1 ×  10   5  ) (0.02769 − 0.00231) = 6347.1 J

   

For the two steps together,

  ΔU  = − 5203.1 + 6347.1 = 1144.0 J    ΔH
  = − 7283.9 + 8885.1 = 1601.2 J  

These values would be the same for any process that results in the same change of state.9

9You might be concerned that the path selected here goes through an intermediate state where, in reality, air would 
not be a gas, but would condense. Paths for thermodynamic calculations often proceed through such hypothetical 
states that cannot be physically realized but are nonetheless useful and appropriate for the calculation. Additional such 
states will be encountered repeatedly in later chapters.
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2.9 MASS AND ENERGY BALANCES FOR OPEN SYSTEMS

Although the focus of the preceding sections has been on closed systems, the concepts pre-
sented find far more extensive application. The laws of mass and energy conservation apply to 
all processes, to open as well as to closed systems. Indeed, the open system includes the closed 
system as a special case. The remainder of this chapter is therefore devoted to the treatment of 
open systems and thus to the development of equations of wide practical application.

Measures of Flow
Open systems are characterized by flowing streams; there are four common measures of flow:

∙ Mass flow rate,   m ˙     ∙ Molar flow rate,   n ̇     ∙ Volumetric flow rate, q  ∙ Velocity, u

The measures of flow are interrelated:

   m ˙   = ℳ n ̇     and   q = uA  

where ℳ is molar mass and A is the cross-sectional area for flow. Importantly, mass and molar 
flow rates relate to velocity:

   ṁ    = uAρ  (2.23a)   n ̇   = uAρ  (2.23b)

The area for flow A is the cross-sectional area of a conduit, and ρ is specific or molar 
density. Although velocity is a vector quantity, its scalar magnitude u is used here as the aver-
age speed of a stream in the direction normal to A. Flow rates    ṁ  ,    ṅ   , and q represent measures 
of quantity per unit of time. Velocity u is quite different in nature, as it does not suggest the 
magnitude of flow. Nevertheless, it is an important design parameter.

Example 2.9
In a major human artery with an internal diameter of 5 mm, the flow of blood, averaged 
over the cardiac cycle, is 5 cm3·s−1. The artery bifurcates (splits) into two identical 
blood vessels that are each 3 mm in diameter. What are the average velocity and 
the mass flow rate upstream and downstream of the bifurcation? The density of blood 
is 1.06 g·cm−3.

Solution 2.9
The average velocity is given by the volumetric flow rate divided by the area for 
flow. Thus, upstream of the bifurcation, where the vessel diameter is 0.5 cm,

   u  up   =   
q
 __ 

A
   =   

5   cm   3  ⋅s   −1 
  _____________  

(π / 4) ( 0.5   2    cm   2 )
   = 25.5 cm⋅ s   −1   
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Downstream of the bifurcation, the volumetric flow rate in each vessel is  
2.5 cm3·s−1, and the vessel diameter is 0.3 cm. Thus,

   u  down   =   
2.5   cm   3  ⋅s   −1 

  _____________  
(π / 4) ( 0.3   2     cm   2  )

   = 35.4 cm ⋅s   −1   

The mass flow rate in the upstream vessel is given by the volumetric flow rate 
times the density:

   m ˙  up = 5  cm   3  ⋅s   −1  × 1.06 g⋅ cm   −3  = 5.30 g⋅ s   −1   

Similarly, for each downstream vessel:

   m ˙  down = 2.5  cm   3  ⋅s   −3  × 1.06 g⋅ cm   −3  = 2.65 g⋅ s   −1   

which is of course half the upstream value.

Mass Balance for Open Systems
The region of space identified for analysis of open systems is called a control volume; it  
is separated from its surroundings by a control surface. The material within the control vol-
ume is the thermodynamic system for which mass and energy balances are written. Because 
mass is conserved, the rate of change of mass within the control volume, dmcv /dt, equals the 
net rate of flow of mass into the control volume. The convention is that flow is positive when 
directed into the control volume and negative when directed out. The mass balance is expressed 
mathematically by:

     
d m  cv  

 _ 
dt

   + Δ  ( m ˙  )  fs   = 0   (2.24)

For the control volume of Fig. 2.4, the second term is:

 Δ  ( m ˙  )  fs   =   m ˙    3   −   m ˙    1   −   ṁ   2 

Figure 2.4: Schematic representation of a 
control volume. It is separated from its 
 surroundings by an extensible control sur-
face. Two streams with flow rates     ṁ   1 and    
ṁ   2 are shown directed into the control 
 volume, and one stream with flow rate    ṁ   3 
is directed out.

ṁ1

ṁ2

ṁ3

dmcv /dt

Control surface

Control volume
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The difference operator Δ here signifies the difference between exit and entrance flows, and 
the subscript “fs” indicates that the term applies to all flowing streams. Note that this is a dif-
ferent usage of this operator compared with previous sections, where the difference was 
between an initial state and a final state. Both usages of the difference operator are common, 
and care must be taken to ensure that the correct sense is understood.

When the mass flow rate   m ˙    is given by Eq. (2.23a), Eq. (2.24) becomes:

    
d m  cv  

 _____ 
dt

   + Δ  (ρuA)  fs   = 0  (2.25)

In this form the mass-balance equation is often called the continuity equation.
Steady-state flow processes are those for which conditions within the control volume do 

not change with time. These are an important class of flow processes often encountered in 
practice. In a steady-state process, the control volume contains a constant mass of fluid, and 
the first or accumulation term of Eq. (2.24) is zero, reducing Eq. (2.25) to:

  Δ  (ρuA)  fs   = 0  

The term “steady state” does not necessarily imply that flow rates are constant, merely that the 
inflow of mass is exactly matched by the outflow of mass.

When there is a single entrance and a single exit stream, the mass flow rate   m ˙       is the 
same for both streams; then,

      m ˙      = const =  ρ  2    u  2    A  2   =  ρ  1    u  1    A  1    

Because specific volume is the reciprocal of density,

    m ˙   =   
 u  1    A  1  

 _  V  1     =   
 u  2    A  2  

 _  V  2     =   
uA

 _ 
V

     (2.26)

This form of the continuity equation finds frequent use.

The General Energy Balance
Because energy, like mass, is conserved, the rate of change of energy within the control volume 
equals the net rate of energy transfer into the control volume. Streams flowing into and out of 
the control volume have associated with them energy in its internal, potential, and kinetic forms, 
and all may contribute to the energy change of the system. Each unit mass of a stream carries 
with it a total energy  U +   1 _ 2    u   2  + zg , where u is the average velocity of the stream, z is its eleva-
tion above a datum level, and g is the local acceleration of gravity. Thus, each stream transports  
energy at the rate    (  U +   1 _ 2    u   2  + zg )   m ˙    . The net energy transported into the system by the flow-
ing streams is therefore   −Δ [  (U +   1 _ 2    u   2  + zg)  m ˙   ]    

fs
   , where the effect of the minus sign with “Δ” is  

to make the term read in – out. The rate of energy accumulation within the control volume 
includes this quantity in addition to the heat transfer rate    Q̇     and work rate:

   
d   (mU)   cv  

 _______ 
dt

   = − Δ  [  (U +   
1
 __ 2    u   2  + zg)  m ˙   ]    

fs
   +  Q ˙    + work rate 
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The work rate may include work of several forms. First, work is associated with moving 
the flowing streams through entrances and exits. The fluid at any entrance or exit has a set of 
average properties, P, V, U, H, etc. Imagine that a unit mass of fluid with these properties 
exists at an entrance or exit, as shown in Fig. 2.5. This unit mass of fluid is acted upon by 
additional fluid, here replaced by a piston that exerts the constant pressure P. The work done 
by this piston in moving the unit mass through the entrance is PV, and the work rate is (PV)   m ˙   .  
Because Δ denotes the difference between exit and entrance quantities, the net work done on 
the system when all entrance and exit sections are taken into account is  −Δ [(PV)  m ˙   ]  fs   .

Another form of work is the shaft work10 indicated in Fig. 2.5 by rate   W ˙   s. In addition, 
work may be associated with expansion or contraction of the entire control volume. These 
forms of work are all included in a rate term represented by   W 

∙
   . The preceding equation may 

now be written:

    
d   (mU)   cv  

 _ 
dt

   = –Δ     [  (U +     
1

 __ 2    u  2  + zg)    ṁ  ]   
fs

     +  Q ˙   – Δ [ (PV) m ˙   ]  fs +  W ˙    

Combination of terms in accord with the definition of enthalpy, H = U + PV, leads to:

    
d   (mU)   cv  

 _ 
dt

   = –Δ    [  ( H +   
1
 __ 2     u2  + zg)    ṁ  ]   

fs
    =  Q ˙   +  W ˙    

which is usually written:

    
d   (mU)   cv  

 _ 
dt

   + Δ     [  (H +   
1
 __ 2    u2  + zg)   ṁ   ]   

fs
     =  Q ˙   +  W ˙    (2.27)

The velocity u in the kinetic-energy terms is the bulk-mean velocity as defined by the 
equation u =  m

  /(ρA). Fluids flowing in pipes exhibit a velocity profile that rises from zero at 
10Mechanical work added to or removed from the system without transfer of mass is called shaft work because it is 

often transferred by means of a rotating shaft, like that in a turbine or compressor. However, this term is used more 
broadly to include work transferred by other mechanical means as well.

Figure 2.5: 
Control volume 
with one entrance 
and one exit.

u2

u1
P1

Q̇

Ẇs

Control
volume

V1  U1  H1

V2  U2 H2
P2
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the wall (the no-slip condition) to a maximum at the center of the pipe. The kinetic energy of a 
fluid in a pipe depends on its velocity profile. For the case of laminar flow, the profile is para-
bolic, and integration across the pipe shows that the kinetic-energy term should properly be u2. 
In fully developed turbulent flow, the more common case in practice, the velocity across the 
major portion of the pipe is not far from uniform, and the expression u2/2, as used in the energy 
equations, is more nearly correct.

Although Eq. (2.27) is an energy balance of reasonable generality, it has limitations. In 
particular, it reflects the tacit assumption that the center of mass of the control volume is sta-
tionary. Thus no terms for kinetic- and potential-energy changes of the fluid in the control 
volume are included. For virtually all applications of interest to chemical engineers, Eq. (2.27) 
is adequate. For many (but not all) applications, kinetic- and potential- energy changes in the 
flowing streams are also negligible, and Eq. (2.27) then simplifies to:

    
d  (mU)  cv  

 _______ 
dt

   + Δ(H m ˙  )fs =   Q̇  +  W ˙    (2.28)

Example 2.10
Show that Eq. (2.28) reduces to Eq. (2.3) for the case of a closed system.

Solution 2.10
The second term of Eq. (2.28) is omitted in the absence of flowing streams:

    
d   (mU)   cv  

 _______ 
dt

   =      Q̇  +  W ˙    

Integration over time gives

    Δ (mU)   cv    =  ∫ 
t1

  
t2

          Q̇   dt +  ∫ 
t1

  
t2

      W ˙   dt  

or

  Δ U   t  = Q + W  

The Q and W terms are defined by the integrals of the preceding equation.
Note here that Δ indicates a change over time, not from an inlet to an outlet. 

One must be aware of its context to discern its meaning.

Example 2.11
An insulated, electrically heated tank for hot water contains 190 kg of liquid water at 
60°C. Imagine you are taking a shower using water from this tank when a power out-
age occurs. If water is withdrawn from the tank at a steady rate of   m ∙    = 0.2 kg·s−1, how 
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long will it take for the temperature of the water in the tank to drop from 60 to 35°C? 
Assume that cold water enters the tank at 10°C and that heat losses from the tank are 
negligible. Here, an excellent assumption for liquid water is that Cv = Cp = C, indepen-
dent of T and P.

Solution 2.11
This is an example of the application of Eq. (2.28) to a transient process for which 
  Q   ·   =  W ˙   = 0 . We assume perfect mixing of the contents of the tank; this implies 
that the properties of the water leaving the tank are those of the water in the tank. 
With the mass flow rate into the tank equal to the mass flow rate out, mcv is con-
stant; moreover, the differences between inlet and outlet kinetic and potential 
energies can be neglected. Equation (2.28) is therefore written:

  m   
dU

 ___ 
dt

   +  m ˙  (H −  H  1  ) = 0  

where unsubscripted quantities refer to the contents of the tank (and therefore the 
water leaving the tank) and H1 is the specific enthalpy of the water entering the 
tank. With CV = CP = C,

    
dU

 ___ 
dt

   = C   
dT

 ___ 
dt

      and   H −  H  1   = C(T −  T  1  )  

The energy balance then becomes, on rearrangement,

  dt = −     
m

 __  m ˙     ⋅   
dT
 ____ 

T −  T  1      

Integration from t = 0 (where T = T0) to arbitrary time t yields:

  t = −    
m

 __  m ˙     ln   (    
T −  T  1  

 _  T  0   −  T  1     )     

Substitution of numerical values into this equation gives, for the conditions of this 
problem,

  t = −   
190

 ____ 0.2   ln   (    
35 − 10

 _ 60 − 10   )    = 658.5 s  

Thus, the water temperature in the tank will drop from 60 to 35°C after about 
11 minutes.

Energy Balances for Steady-State Flow Processes
Flow processes for which the accumulation term of Eq. (2.27), d(mU)cv/dt, is zero are said to 
occur at steady state. As discussed with respect to the mass balance, this means that the mass 

www.konkur.in

Telegram: @uni_k



2.9. Mass and Energy Balances for Open Systems 53

of the system within the control volume is constant; it also means that no changes occur with 
time in the properties of the fluid within the control volume nor at its entrances and exits. No 
expansion of the control volume is possible under these circumstances. The only work of the 
process is shaft work, and the general energy balance, Eq. (2.27), becomes:

  Δ [  (H +   
1
 __ 2    u   2  + zg)   m ˙   ]  

fs
 =  Q   ·   +   W 

∙
    s      (2.29)

Although “steady state” does not necessarily imply “steady flow,” the usual application of this 
equation is to steady-state, steady-flow processes, because such processes represent the indus-
trial norm.11

A further specialization results when the control volume has one entrance and one exit. 
The same mass flow rate   m ˙    then applies to both streams, and Eq. (2.29) reduces to:

  Δ (H +   
1
 __ 2    u   2  + zg)   m ˙   =  Q   ·   +   W 

∙
    s    (2.30)

where subscript “fs” has been omitted in this simple case and Δ denotes the change from 
entrance to exit. Division by    ṁ     gives:

  Δ (H +   
1
 __ 2    u   2  + zg)  =    

  Q   ·  
 __ 

  m ˙      +    
 W ˙  s ___  m ˙     = Q +  W  s    

or

   ΔH +   
Δ u   2 

 _ 2   + gΔz = Q +  W  s     (2.31)

This equation is the mathematical expression of the first law for a steady-state, steady-flow 
process between one entrance and one exit. All terms represent energy per unit mass of fluid. 
The energy unit is usually the joule.

In many applications, kinetic- and potential-energy terms are omitted because they are 
negligible compared with other terms.12 For such cases, Eq. (2.31) reduces to:

  ΔH = Q +  W  s    (2.32)

This expression of the first law for a steady-state, steady-flow process is analogous to Eq. (2.3) 
for a nonflow process. However, in Eq. (2.32), enthalpy rather than internal energy is the 
 thermodynamic property of importance, and Δ refers to a change from inlet to outlet, rather 
than from before to after an event. Note that equations like (2.31) that include kinetic- and 
potential-energy terms must be applied on a mass basis because kinetic and potential energy 
are explicitly dependent upon mass. Equations like (2.32) that exclude kinetic- and potential- 
energy terms can be applied on a mass or molar basis.

11An example of a steady-state process that is not steady flow is a water heater, in which variations in flow rate are 
exactly compensated by changes in the rate of heat transfer, so that temperatures throughout remain constant.

12Notable exceptions include applications to nozzles, metering devices, wind tunnels, and hydroelectric power 
stations.
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A Flow Calorimeter for Enthalpy Measurements
The application of Eqs. (2.31) and (2.32) to the solution of practical problems requires enthalpy 
values. Because H is a state function, its values depend only on point conditions; once deter-
mined, they may be tabulated for subsequent use for the same sets of conditions. To this end, 
Eq. (2.32) may be applied to laboratory processes designed for enthalpy measurements.

Figure 2.6: Flow calorimeter.

Constant
temperature
bath

Discharge

Supply

Section 1

Section 2

Applied
emf

Heater Valve

T2 P2

A simple flow calorimeter is illustrated schematically in Fig. 2.6. Its essential feature is 
an electric resistance heater immersed in a flowing fluid. The design provides for minimal 
velocity and elevation changes from section 1 to section 2, making kinetic- and potential- energy 
changes of the fluid negligible. With no shaft work entering the system, Eq. (2.32) reduces to 
ΔH = H2 − H1 = Q. The rate of heat transfer to the fluid is determined from the resistance of 
the heater and the current passing through it. In practice a number of details require careful atten-
tion, but in principle the operation of the flow calorimeter is simple. Measurements of the heat 
transfer rate and flow rate allow calculation of the enthalpy change ΔH between sections 1 and 2.

For example, enthalpies of both liquid and vapor H2O are readily determined. The 
 constant-temperature bath is filled with a mixture of crushed ice and water to maintain a tem-
perature of 0°C. Liquid water is supplied to the apparatus, and the coil that carries it through 
the constant-temperature bath is long enough to bring it to an exit temperature of essentially 
0°C. The temperature and pressure at section 2 are measured by suitable instruments. Values 
of the enthalpy of H2O for various conditions at section 2 are given by:

   H  2   =  H  1   + Q   

where Q is the heat added per unit mass of water flowing.
The pressure may vary from run to run, but in the range encountered here it has a negli-

gible effect on the enthalpy of the entering water, and for practical purposes H1 is a constant. 
Absolute values of enthalpy, like absolute values of internal energy, are unknown. An 
 arbitrary value may therefore be assigned to H1 as the basis for all other enthalpy values. Setting 
H1 = 0 for liquid water at 0°C makes:

   H  2   =  H  1   + Q = 0 + Q = Q   
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Enthalpy values could be tabulated for different temperatures and pressures at section 2 
for a large number of runs. In addition, specific-volume measurements made for these same 
conditions could be added to the table, along with corresponding values of the internal energy 
calculated by Eq. (2.10), U = H − PV. In this way, tables of thermodynamic properties are 
compiled over the entire useful range of conditions. The most widely used such tabulation is 
for H2O and is known as the steam tables.13

The enthalpy could be taken as zero for some state other than liquid at 0°C. The choice 
is arbitrary. The equations of thermodynamics, such as Eqs. (2.31) and (2.32), apply to changes 
of state, for which the enthalpy differences are independent of the zero point. However, once 
an arbitrary zero point is selected for the enthalpy, an arbitrary choice cannot be made for the 
internal energy, because internal energy is related to enthalpy by Eq. (2.10).

Example 2.12
For the flow calorimeter just discussed, the following data were taken with water as 
the test fluid:

   Flow rate = 4.15 g⋅ s   −1     t  1   = 0° C    t  2   = 300° C    P  2   = 3 bar   
  Rate of heat addition from resistance heater = 12,740 W  

The water is completely vaporized in the process. Calculate the enthalpy of steam at 
300°C and 3 bar based on H = 0 for liquid water at 0°C.

Solution 2.12
If Δz and Δu2 are negligible and if Ws and H1 are zero, then H2 = Q, and

   H  2   =   
12,740 J⋅ s   −1 

 __________ 
4.15 g⋅ s   −1 

   = 3070 J⋅ g   −1    or  3070 kJ⋅ kg   −1   

Example 2.13
Air at 1 bar and 25°C enters a compressor at low velocity, discharges at 3 bar, and 
enters a nozzle in which it expands to a final velocity of 600 m·s−1 at the initial condi-
tions of pressure and temperature. If the work of compression is 240 kJ per kilogram 
of air, how much heat must be removed during compression?

13Steam tables adequate for many purposes are given in Appendix E. The NIST Chemistry WebBook includes 
a  fluid properties calculator with which one can generate such tables for water and some 75 other substances: 
 http:// webbook.nist.gov/chemistry/fluid/
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Solution 2.13
Because the air returns to its initial conditions of T and P, the overall process pro-
duces no change in enthalpy of the air. Moreover, the potential-energy change of 
the air is presumed negligible. Neglecting also the initial kinetic energy of the air, 
we write Eq. (2.31) as:

  ΔH +   
Δ u   2 

 ____ 2   + gΔz = 0 +   
 u  2  2 

 ___ 2   + 0 = Q +  W  s    

Then

 Q =   
 u 2  2 

 ___ 2   −  W  s   

The kinetic-energy term is evaluated as follows:

  
  
1
 __ 2    u  2  2  

  
=    

1
 __ 2     (600   

m
 __ s  )    

2
  = 180,000   

 m   2 
 ___ 

 s   2 
    = 180,000   

  m   2  
 ___ 

  s   2  
   ·   

kg
 ___ kg  
      

 
  

= 180,000 N⋅m⋅ kg   −1  = 180 kJ⋅ kg   −1 
   

 
Then

 Q  = 180 − 240 = − 60 kJ⋅ kg   −1  

Heat in the amount of 60 kJ must be removed per kilogram of air compressed.

Example 2.14
Water at 90°C is pumped from a storage tank at a rate of 3 L·s−1. The motor for the pump 
supplies work at a rate of 1.5 kJ·s−1. The water goes through a heat exchanger, giving up 
heat at a rate of 670 kJ·s−1, and is delivered to a second storage tank at an elevation 15 m  
above the first tank. What is the temperature of the water delivered to the second tank?

Solution 2.14
This is a steady-state, steady-flow process for which Eq. (2.31) applies. The initial 
and final velocities of water in the storage tanks are negligible, and the term Δu2/2 

1 bar, 25˚C

3 bar

Ws = 240 kJ·kg–1

1 bar, 25˚C

Compressor

u = 600 m·s–1

u = “low”

Q = ? kJ·kg–1
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can be omitted. All remaining terms are expressed in units of kJ·kg−1. At 90°C the 
density of water is 0.965 kg·L−1 and the mass flow rate is:

   m ˙   = (3) (0.965) = 2.895 kg⋅ s   −1   

∆z = 15 m

Q = –670 kJ s–1·

Ws = 1.5 kJ s–1·

m = 2.895 kg s–1·

For the heat exchanger,

  Q = − 670 / 2.895 = − 231.4 kJ⋅ kg   −1   

For the shaft work of the pump,

   W  s   = 1.5 / 2.895 = 0.52 kJ⋅ kg   −1   

If g is taken as the standard value of 9.8 m·s−2, the potential-energy term is:

   
gΔz = (9.8) (15) = 147   m   2  ⋅s   −2 

    
        = 147 J⋅ kg   −1  = 0.147 kJ⋅ kg   −1 

   

Equation (2.31) now yields:

  ΔH = Q +  W  s   − gΔz = − 231.4 + 0.52 − 0.15 = − 231.03 kJ⋅ kg   −1   

The steam-table value for the enthalpy of liquid water at 90°C is:

   H  1   = 376.9 kJ⋅ kg   −1   

Thus,

  ΔH =  H  2   −  H  1   =  H  2   − 376.9 = − 231.0  

and

   H  2   = 376.9 − 231.0 = 145.9 kJ⋅ kg   −1   
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The temperature of water having this enthalpy is found from the steam tables:

  t = 34.83° C  

In this example, Ws and gΔz are small compared with Q, and for practical  purposes 
could have been neglected.

Example 2.15
A steam turbine operates adiabatically with a power output of 4000 kW. Steam enters 
the turbine at 2100 kPa and 475°C. The exhaust is saturated steam at 10 kPa that 
enters a condenser, where it is condensed and cooled to 30°C. What is the mass flow 
rate of the steam, and at what rate must cooling water be supplied to the condenser, if 
the water enters at 15°C and is heated to 25°C?

Solution 2.15
The enthalpies of entering and exiting steam from the turbine are found from the 
steam tables:

   H  1   = 3411.3 kJ⋅ kg   −1     and     H  2   = 2584.8 kJ⋅ kg   −1   

For a properly designed turbine, kinetic- and potential-energy changes are negli-
gible, and for adiabatic operation Q = 0. Equation (2.32) becomes simply Ws = ΔH.  
Then    W 

∙
    s    =   m ˙     (ΔH), and

   m ˙  steam =   
 W ˙  s

 ____ ΔH
   =   

− 4000 kJ⋅ s   −1 
  _____________________   

 (  2584.8 − 3411.3 )   kJ⋅ kg   −1 
   = 4.840 kg⋅ s   −1   

For the condenser, the steam condensate leaving is subcooled water at 30°C, for 
which (from the steam tables) H3 = 125.7 kJ·kg−1. For the cooling water entering 
at 15°C and leaving at 25°C, the enthalpies are

   H  in   = 62.9 kJ⋅ kg   −1     and     H  out    = 104.8 kJ⋅ kg   −1   

Equation (2.29) here reduces to

   
   m ˙    steam   (   H  3   −  H  2   )   +   m ˙    water    (   H  out   −  H  in   )   = 0 

     
 4.840 (  125.7 − 2584.8 )   +   m ˙    water    (  104.8 − 62.9 )   = 0 

   

Solution gives,

   m ˙  water = 284.1 kg⋅ s   −1   
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2.10 SYNOPSIS

After studying this chapter, including the end-of-chapter problems, one should be able to:

 ∙ State and apply the first law of thermodynamics, making use of the appropriate sign 
conventions

 ∙ Explain and employ the concepts of internal energy, enthalpy, state function, equilib-
rium, and reversible process

 ∙ Explain the differences between state functions and path-dependent quantities such as 
heat and work

 ∙ Calculate changes in state variables for a real process by substituting a hypothetical 
reversible process connecting the same states

 ∙ Relate changes in the internal energy and enthalpy of a substance to changes in tempera-
ture, with calculations based on the appropriate heat capacity

 ∙ Construct and apply mass and energy balances for open systems

2.11 PROBLEMS

 2.1. A nonconducting container filled with 25 kg of water at 20°C is fitted with a stirrer, 
which is made to turn by gravity acting on a weight of mass 35 kg. The weight falls 
slowly through a distance of 5 m in driving the stirrer. Assuming that all work done 
on the weight is transferred to the water and that the local acceleration of gravity is 
9.8 m·s−2, determine:

 (a) The amount of work done on the water.
 (b) The internal energy change of the water.
 (c) The final temperature of the water, for which CP = 4.18 kJ·kg−1·°C−1.
 (d) The amount of heat that must be removed from the water to return it to its initial 

temperature.
 (e) The total energy change of the universe because of (1) the process of lowering the 

weight, (2) the process of cooling the water back to its initial temperature, and 
(3) both processes together.

 2.2. Rework Prob. 2.1 for an insulated container that changes in temperature along with the 
water and has a heat capacity equivalent to 5 kg of water. Work the problem with:

 (a) The water and container as the system. (b) The water alone as the system.

 2.3. An egg, initially at rest, is dropped onto a concrete surface and breaks. With the egg 
treated as the system,

 (a) What is the sign of W?
 (b) What is the sign of ΔEP?
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 (c) What is ΔEK?
 (d) What is ΔUt?
 (e) What is the sign of Q?

In modeling this process, assume the passage of sufficient time for the broken egg to 
return to its initial temperature. What is the origin of the heat transfer of part (e)?

 2.4. An electric motor under steady load draws 9.7 amperes at 110 volts, delivering 1.25(hp) 
of mechanical energy. What is the rate of heat transfer from the motor, in kW?

 2.5. An electric hand mixer draws 1.5 amperes at 110 volts. It is used to mix 1 kg of cookie 
dough for 5 minutes. After mixing, the temperature of the cookie dough is found to 
have increased by 5°C. If the heat capacity of the dough is 4.2 kJ⋅kg−1⋅K−1, what frac-
tion of the electrical energy used by the mixer is converted to internal energy of the 
dough? Discuss the fate of the remainder of the energy.

 2.6. One mole of gas in a closed system undergoes a four-step thermodynamic cycle. Use 
the data given in the following table to determine numerical values for the missing 
quantities indicated by question marks. 

Step ΔUt/J Q/J W/J

12 −200 ? −6000
23 ? −3800 ?
34 ? −800 300
41 4700 ? ?

12341 ? ? −1400

 2.7. Comment on the feasibility of cooling your kitchen in the summer by opening the door 
to the electrically powered refrigerator. 

 2.8. A tank containing 20 kg of water at 20°C is fitted with a stirrer that delivers work to 
the water at the rate of 0.25 kW. How long does it take for the temperature of the water 
to rise to 30°C if no heat is lost from the water? For water, CP = 4.18 kJ⋅kg−1⋅°C−1. 

 2.9. Heat in the amount of 7.5 kJ is added to a closed system while its internal energy 
decreases by 12 kJ. How much energy is transferred as work? For a process causing the 
same change of state but for which the work is zero, how much heat is transferred? 

 2.10. A steel casting weighing 2 kg has an initial temperature of 500°C; 40 kg of water ini-
tially at 25°C is contained in a perfectly insulated steel tank weighing 5 kg. The cast-
ing is immersed in the water and the system is allowed to come to equilibrium. What 
is its final temperature? Ignore the effects of expansion or contraction, and assume 
constant specific heats of 4.18 kJ⋅kg−1⋅K−1 for water and 0.50 kJ⋅kg−1⋅K−1 for steel. 
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 2.11. An incompressible fluid (ρ = constant) is contained in an insulated cylinder fitted 
with a frictionless piston. Can energy as work be transferred to the fluid? What is the 
change in internal energy of the fluid when the pressure is increased from P1 to P2? 

 2.12. One kg of liquid water at 25°C, for which CP = 4.18 kJ·kg−1·°C−1:

 (a) Experiences a temperature increase of 1 K. What is ΔUt, in kJ?
 (b) Experiences a change in elevation Δz. The change in potential energy ΔEP is the 

same as ΔUt for part (a). What is Δz, in meters?
 (c) Is accelerated from rest to final velocity u. The change in kinetic energy ΔEK is 

the same as ΔUt for part (a). What is u, in m·s−1?

Compare and discuss the results of the three preceding parts.

 2.13. An electric motor runs “hot” under load, owing to internal irreversibilities. It has been 
suggested that the associated energy loss be minimized by thermally insulating the 
motor casing. Comment critically on this suggestion.

 2.14. A hydroturbine operates with a head of 50 m of water. Inlet and outlet conduits are 
2 m in diameter. Estimate the mechanical power developed by the turbine for an outlet 
velocity of 5 m⋅s−1.

 2.15. A wind turbine with a rotor diameter of 40 m produces 90 kW of electrical power 
when the wind speed is 8 m⋅s−1. The density of air impinging on the turbine is 1.2 kg⋅m−3.  
What fraction of the kinetic energy of the wind impinging on the turbine is converted 
to electrical energy?

 2.16. The battery in a laptop computer supplies 11.1 V and has a capacity of 56 W⋅h. In 
ordinary use, it is discharged after 4 hours. What is the average current drawn by the 
laptop, and what is the average rate of heat dissipation from it? You may assume that 
the temperature of the computer remains constant.

 2.17. Suppose that the laptop of Prob. 2.16 is placed in an insulating briefcase with a fully 
charged battery, but it does not go into “sleep” mode, and the battery discharges as if 
the laptop were in use. If no heat leaves the briefcase, the heat capacity of the brief-
case itself is negligible, and the laptop has a mass of 2.3 kg and an average specific 
heat of 0.8 kJ⋅kg−1⋅°C−1, estimate the temperature of the laptop after the battery has 
fully discharged.

 2.18. In addition to heat and work flows, energy can be transferred as light, as in a photovol-
taic device (solar cell). The energy content of light depends on both its wavelength 
(color) and its intensity. When sunlight impinges on a solar cell, some is reflected, 
some is absorbed and converted to electrical work, and some is absorbed and con-
verted to heat. Consider an array of solar cells with an area of 3 m2. The power of 
sunlight impinging upon it is 1 kW⋅m−2. The array converts 17% of the incident power 
to electrical work, and it reflects 20% of the incident light. At steady state, what is the 
rate of heat removal from the solar cell array?
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 2.19. Liquid water at 180°C and 1002.7 kPa has an internal energy (on an arbitrary scale) of 
762.0 kJ⋅kg−1 and a specific volume of 1.128 cm3⋅g−1.

 (a) What is its enthalpy?
 (b) The water is brought to the vapor state at 300°C and 1500 kPa, where its internal 

energy is 2784.4 kJ⋅kg−1 and its specific volume is 169.7 cm3⋅g−1. Calculate ΔU 
and ΔH for the process.

 2.20. A solid body at initial temperature T0 is immersed in a bath of water at initial tempera-
ture Tw0. Heat is transferred from the solid to the water at a rate  Q


 = K ⋅ (  T  w   – T) , 

where K is a constant and Tw and T are instantaneous values of the temperatures of the 
water and solid. Develop an expression for T as a function of time τ. Check your result 
for the limiting cases, τ = 0 and τ = ∞. Ignore effects of expansion or contraction, and 
assume constant specific heats for both water and solid.

 2.21. A list of common unit operations follows:

 (a) Single-pipe heat exchanger
 (b) Double-pipe heat exchanger
 (c) Pump
 (d) Gas compressor
 (e) Gas turbine
 (f) Throttle valve
 (g) Nozzle

Develop a simplified form of the general steady-state energy balance appropriate for 
each operation. State carefully, and justify, any assumptions you make.

 2.22. The Reynolds number Re is a dimensionless group that characterizes the intensity of a 
flow. For large Re, a flow is turbulent; for small Re, it is laminar. For pipe flow, Re ≡ 
uρD/μ, where D is pipe diameter and μ is dynamic viscosity.

 (a) If D and μ are fixed, what is the effect of increasing mass flow rate   m ˙    on Re?
 (b) If   m ˙    and μ are fixed, what is the effect of increasing D on Re?

 2.23. An incompressible (ρ = constant) liquid flows steadily through a conduit of circular 
cross-section and increasing diameter. At location 1, the diameter is 2.5 cm and the 
velocity is 2 m⋅s−1; at location 2, the diameter is 5 cm.

 (a) What is the velocity at location 2?
 (b) What is the kinetic-energy change (J⋅kg−1) of the fluid between locations 1 and 2?

 2.24. A stream of warm water is produced in a steady-flow mixing process by combining 
1.0 kg⋅s−1 of cool water at 25°C with 0.8 kg⋅s−1 of hot water at 75°C. During mixing, 
heat is lost to the surroundings at the rate of 30 kJ⋅s−1. What is the temperature of the 
warm water stream? Assume the specific heat of water is constant at 4.18 kJ⋅kg−1⋅K−1.
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 2.25. Gas is bled from a tank. Neglecting heat transfer between the gas and the tank, show 
that mass and energy balances produce the differential equation:

    
dU
 ________ 

H′ − U   =   
dm

 ___ 
m

    

Here, U and m refer to the gas remaining in the tank; H′ is the specific enthalpy of the 
gas leaving the tank. Under what conditions can one assume H′ = H?

 2.26. Water at 28°C flows in a straight horizontal pipe in which there is no exchange of 
either heat or work with the surroundings. Its velocity is 14 m⋅s−1 in a pipe with an 
internal diameter of 2.5 cm until it flows into a section where the pipe diameter 
abruptly increases. What is the temperature change of the water if the downstream 
diameter is 3.8 cm? If it is 7.5 cm? What is the maximum temperature change for an 
enlargement in the pipe?

 2.27. Fifty (50) kmol per hour of air is compressed from P1 = 1.2 bar to P2 = 6.0 bar in a 
steady-flow compressor. Delivered mechanical power is 98.8 kW. Temperatures and 
velocities are:

  T1 = 300 K   T2 = 520 K
 u1 = 10 m⋅s−1    u2 = 3.5 m⋅s−1 

  Estimate the rate of heat transfer from the compressor. Assume for air that   C  P   =   7 _ 2   R  
and that enthalpy is independent of pressure.

 2.28. Nitrogen flows at steady state through a horizontal, insulated pipe with an inside diam-
eter of 1.5(in). A pressure drop results from flow through a partially opened valve. Just 
upstream from the valve the pressure is 100(psia), the temperature is 120(°F), and the 
average velocity is 20(ft)·s−1. If the pressure just downstream from the valve is 
20(psia), what is the temperature? Assume for air that PV/ T is constant, CV = (5/2)R, 
and CP = (7/2)R. (Values for R, the ideal gas constant, are given in App. A.)

 2.29. Air flows at steady state through a horizontal, insulated pipe with an inside diameter 
of 4  cm. A pressure drop results from flow through a partially opened valve. Just 
upstream from the valve, the pressure is 7 bar, the temperature is 45°C, and the average 
velocity is 20 m⋅s−1. If the pressure just downstream from the valve is 1.3 bar, what is 
the temperature? Assume for air that PV/T is constant, CV = (5/2)R, and CP = (7/2)R. 
(Values for R, the ideal gas constant, are given in App. A.) 

 2.30. Water flows through a horizontal coil heated from the outside by high-temperature 
flue gases. As it passes through the coil, the water changes state from liquid at 200 kPa 
and 80°C to vapor at 100 kPa and 125°C. Its entering velocity is 3 m⋅s−1 and its exit 
velocity is 200 m⋅s−1. Determine the heat transferred through the coil per unit mass of 
water. Enthalpies of the inlet and outlet streams are:

Inlet: 334.9 kJ⋅kg−1; Outlet: 2726.5 kJ⋅kg−1
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 2.31. Steam flows at steady state through a converging, insulated nozzle, 25 cm long and 
with an inlet diameter of 5 cm. At the nozzle entrance (state 1), the temperature and 
pressure are 325°C and 700 kPa and the velocity is 30 m⋅s−1. At the nozzle exit (state 2),  
the steam temperature and pressure are 240°C and 350 kPa. Property values are:
H1 = 3112.5 kJ⋅kg−1 V1 = 388.61 cm3⋅g−1

H2 = 2945.7 kJ⋅kg−1 V2 = 667.75 cm3⋅g−1

What is the velocity of the steam at the nozzle exit, and what is the exit diameter?

 2.32. In the following take CV = 20.8 and CP = 29.1 J⋅mol−1⋅°C−1 for nitrogen gas:

 (a) Three moles of nitrogen at 30°C, contained in a rigid vessel, is heated to 250°C. How 
much heat is required if the vessel has a negligible heat capacity? If the vessel weighs 
100 kg and has a heat capacity of 0.5 kJ⋅kg−1⋅°C−1, how much heat is required?

 (b) Four moles of nitrogen at 200°C is contained in a piston/cylinder arrangement. 
How much heat must be extracted from this system, which is kept at constant pres-
sure, to cool it to 40°C if the heat capacity of the piston and cylinder is neglected?

 2.33. In the following take CV = 5 and CP = 7(Btu)(lb mole)−1(°F)−1 for nitrogen gas:

 (a) Three pound moles of nitrogen at 70(°F), contained in a rigid vessel, is heated to 
350(°F). How much heat is required if the vessel has a negligible heat capacity? 
If it weighs 200(lbm) and has a heat capacity of 0.12(Btu)(lbm)−1(°F)−1, how much 
heat is required?

 (b) Four pound moles of nitrogen at 400(°F) is contained in a piston/cylinder arrangement. 
How much heat must be extracted from this system, which is kept at  constant pressure, 
to cool it to 150(°F) if the heat capacity of the piston and cylinder is neglected?

 2.34. Find an equation for the work of reversible, isothermal compression of 1 mol of gas in 
a piston/cylinder assembly if the molar volume of the gas is given by

  V =   
RT

 ___ 
P

   + b 

where b and R are positive constants.

 2.35. Steam at 200(psia) and 600(°F) [state 1] enters a turbine through a 3 inch diameter 
pipe with a velocity of 10(ft)⋅s−1. The exhaust from the turbine is carried through a  
10 inch diameter pipe and is at 5(psia) and 200(°F) [state 2]. What is the power output 
of the turbine?

H1 = 1322.6(Btu)(lbm)−1 V1 = 3.058(ft)3(lbm)−1

H2 = 1148.6(Btu)(lbm)−1 V2 = 78.14(ft)3(lbm)−1

 2.36. Steam at 1400 kPa and 350°C [state 1] enters a turbine through a pipe that is 8 cm in 
diameter, at a mass flow rate of 0.1 kg⋅s−1. The exhaust from the turbine is carried 
through a 25 cm diameter pipe and is at 50 kPa and 100°C [state 2]. What is the power 
output of the turbine?
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 2.37. Carbon dioxide gas enters a water-cooled compressor at conditions P1 = 1 bar and 
T1 = 10°C, and is discharged at conditions P2 = 36 bar and T2 = 90°C. The entering 
CO2 flows through a 10 cm diameter pipe with an average velocity of 10 m⋅s−1, and 
is discharged through a 3 cm diameter pipe. The power supplied to the compressor is 
12.5 kJ·mol−1. What is the heat-transfer rate from the compressor?

  

H1 = 21.71 kJ⋅mol−1 V1 = 23.40 L⋅mol−1

H2 = 23.78 kJ⋅mol−1 V2 = 0.7587 L⋅mol−1

 2.38. Carbon dioxide gas enters a water-cooled compressor at conditions P1 = 15(psia) and 
T1 = 50(°F), and is discharged at conditions P2 = 520(psia) and T2 = 200(°F). The 
entering CO2 flows through a 4 inch diameter pipe with a velocity of 20(ft)⋅s−1, and is 
discharged through a 1 inch diameter pipe. The shaft work supplied to the compressor 
is 5360(Btu)(lb mole)−1. What is the heat-transfer rate from the compressor in 
(Btu)·h−1?

  

H1 = 307(Btu)(lbm)−1 V1 = 9.25(ft)3(lbm)−1

H2 = 330(Btu)(lbm)−1 V2 = 0.28(ft)3(lbm)−1

 2.39. Show that W and Q for an arbitrary mechanically reversible nonflow process are given by:

   W =  ∫ 
 
  
 
  V dp   − Δ(PV )   Q = ΔH −  ∫ 

 
  
 
  V dp     

 2.40. One kilogram of air is heated reversibly at constant pressure from an initial state of 
300 K and 1 bar until its volume triples. Calculate W, Q, ΔU, and ΔH for the process. 
Assume for air that PV / T = 83.14 bar⋅cm3⋅mol−1⋅K−1 and CP = 29 J⋅mol−1⋅K−1.

 2.41. The conditions of a gas change in a steady-flow process from 20°C and 1000 kPa 
to  60°C and 100 kPa. Devise a reversible nonflow process (any number of steps) 
for accomplishing this change of state, and calculate ΔU and ΔH for the process on 
the basis of 1 mol of gas. Assume for the gas that PV/T is constant, CV = (5/2)R, and 
CP = (7/2)R.

 2.42. A flow calorimeter like that shown in Fig. 2.6 is used with a flow rate of 20 g⋅min−1 
of the fluid being tested and a constant temperature of 0°C leaving the constant- 
temperature bath. The steady-state temperature at section two (T2) is measured as a 
function of the power supplied to the heater (P), to obtain the data shown in the table 
below. What is the average specific heat of the substance tested over the temperature 
range from 0°C to 10°C? What is the average specific heat from 90°C to 100°C? What 
is the average specific heat over the entire range tested? Describe how you would use 
this data to derive an expression for the specific heat as a function of temperature.

H1 = 3150.7 kJ⋅kg−1 V1 = 0.20024 m3⋅kg−1

H2 = 2682.6 kJ⋅kg−1 V2 = 3.4181 m3⋅kg−1
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 2.43. Like the flow calorimeter of Fig. 2.6, a particular single-cup coffee maker uses an 
electric heating element to heat a steady flow of water from 22°C to 88°C. It heats  
8 fluid ounces of water (with a mass of 237 g) in 60 s. Estimate the power requirement 
of the heater during this process. You may assume the specific heat of water is con-
stant at 4.18 J⋅g−1⋅°C−1.

 2.44. (a)  An incompressible fluid (ρ = constant) flows through a pipe of constant cross- 
sectional area. If the flow is steady, show that velocity u and volumetric flow rate 
q are constant.

 (b) A chemically reactive gas stream flows steadily through a pipe of constant 
cross-sectional area. Temperature and pressure vary with pipe length. Which of 
the following quantities are necessarily constant:   m ˙   ,   n ̇   , q, u?

 2.45. The mechanical-energy balance provides a basis for estimating pressure drop owing 
to friction in fluid flow. For steady flow of an incompressible fluid in a horizontal 
pipe of constant cross-sectional area, it may be written,

    
ΔP

 ___ ΔL
   +   

2
 __ 

D
     f  F   ρ u   2  = 0 

where fF is the Fanning friction factor. Churchill14 gives the following expression for 
fF for turbulent flow:

   f  F   = 0.3305   {  ln   [  0.27   ∈ _ 
D

   +   (    7 _ Re   )     
0.9

  ]    }     
−2

  

Here, Re is the Reynolds number and  ∈ /D is the dimensionless pipe roughness. For 
pipe flow, Re ≡ uρD/μ, where D is pipe diameter and μ is dynamic viscosity. The flow 
is turbulent for Re > 3000.
 Consider the flow of liquid water at 25°C. For one of the sets of conditions given 
below, determine      m ˙       (in kg⋅s−1) and ΔP/ΔL (in kPa⋅m−1). Assume      ∈  /D = 0.0001. For 
liquid water at 25°C, ρ = 996 kg⋅m−3, and μ = 9.0 × 10−4 kg⋅m−1⋅s−1. Verify that the 
flow is turbulent.

 (a) D = 2 cm, u = 1 m·s−1

 (b) D = 5 cm, u = 1 m·s−1

 (c) D = 2 cm, u = 5 m·s−1

 (d) D = 5 cm, u = 5 m·s−1

 2.46. Ethylene enters a turbine at 10 bar and 450 K, and exhausts at 1(atm) and 325 K. For   
m ˙    = 4.5 kg⋅s−1, determine the cost C of the turbine. State any assumptions you make.

  Data :  H  1   = 761.1    H  2   = 536.9 kJ⋅ kg   −1     C / $ =  (15,200)    (    |   W ˙   |    / kW )     0.573    

14AIChE J., vol. 19, pp. 375–376, 1973.

T2 /°C 10 20 30 40 50 60 70 80 90 100
P/W 5.5 11.0 16.6 22.3 28.0 33.7 39.6 45.4 51.3 57.3
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 2.47. The heating of a home to increase its temperature must be modeled as an open system 
because expansion of the household air at constant pressure results in leakage of air to 
the outdoors. Assuming that the molar properties of air leaving the home are the same 
as those of the air in the home, show that energy and mole balances yield the follow-
ing differential equation:

    Q̇    = –PV   
dn

 ___ 
dt

   + n   
dU

 ___ 
dt

   

  Here,    Q̇ is the rate of heat transfer to the air in the home, and t is time. Quantities P, V, 
n, and U refer to the air in the home.

 2.48. (a)  Water flows through the nozzle of a garden hose. Find an expression for    ṁ     in 
terms of line pressure P1, ambient pressure P2, inside hose diameter D1, and 
 nozzle outlet diameter D2. Assume steady flow, and isothermal, adiabatic opera-
tion. For liquid water modeled as an incompressible fluid, H2 − H1 = (P2 − P1)/ρ 
for constant temperature.

 (b) In fact, the flow cannot be truly isothermal: we expect T2 > T1, owing to fluid 
friction. Hence, H2 − H1 = C(T2 − T1) + (P2 − P1)/ρ, where C is the specific heat 
of water. Directionally, how would inclusion of the temperature change affect the 
value of   m ˙    as found in part (a)?

 2.49 Consider the process of boiling water to make pasta. A particular cylindrical pasta pot 
has a diameter of 24 cm and is initially filled to a depth of 10 cm with water at 20°C. 
The water is brought to a boil, and just before adding pasta, the water level in the pot 
has decreased to 9.5 cm because some of the water has left as steam. Using data from 
the steam tables (App. E), estimate the following:

 (a) The initial mass of water in the pot.
 (b) The mass of water remaining in the pot just before pasta is added and the mass 

lost as vapor.
 (c) The total change in enthalpy of the water from the initial state to the final state. 

For simplicity, consider the water lost as vapor to be at 100°C.
 (d) The total amount of heat transferred to the water.

 2.50 Consider a microwave that is rated 1100 W and that at full power heats 250 mL of 
water from 20°C to 95°C in 2 minutes. 

 (a) What is the total change in internal energy of the water?
 (b) If the electrical power supplied to the microwave is really 1100 W, what is the 

total quantity of electrical work supplied to the microwave in 2 minutes?
 (c) What fraction of the electrical power supplied to the microwave is converted to 

internal energy of the water?
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Chapter 3

Volumetric Properties  
of Pure Fluids

The equations of the preceding chapter provide the means to calculate heat and work flows 
associated with various processes, but they are useless without knowledge of property values 
for internal energy or enthalpy. Such properties differ from one substance to another, and the 
laws of thermodynamics themselves do not provide any description or model of material 
behavior. Property values come from experiment, or from the correlated results of experiment, 
or from models grounded in and validated by experiment. Because there are no internal- energy 
or enthalpy meters, indirect measurement is necessary. For fluids, the most comprehensive 
procedure requires measurements of molar volume as functions of temperature and pressure. 
The resulting pressure/volume/temperature (PVT ) data are most usefully correlated by equa-
tions of state, through which molar volume (or density), temperature, and pressure are func-
tionally related.

In this chapter we:

 ∙ Present the phase rule, which relates the number of independent variables required to fix 
the thermodynamic state of a system to the number of chemical species and phases present

 ∙ Describe qualitatively the general nature of PVT behavior of pure substances
 ∙ Provide a detailed treatment of the ideal-gas state
 ∙ Treat equations of state, which are mathematical formulations of the PVT behavior of fluids
 ∙ Introduce generalized correlations that allow prediction of the PVT behavior of fluids 

for which experimental data are lacking

3.1 THE PHASE RULE

As indicated in Section 2.5, the state of a pure homogeneous fluid is fixed whenever two 
intensive thermodynamic properties are set at specific values. In contrast, when two phases of 
the same pure species are in equilibrium, the state of the system is fixed when only a single 
property is specified. For example, a system of steam and liquid water in equilibrium at  
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3.1. The Phase Rule 69

101.33 kPa can exist only at 100°C. It is impossible to change the temperature without also 
changing the pressure, if equilibrium between vapor and liquid phases is to be maintained. 
There is a single independent variable.

For a multiphase system at equilibrium, the number of independent variables that must be 
fixed to establish its intensive state is called the number of degrees of freedom of the system. 
This number is given by the phase rule of J. Willard Gibbs.1 It is presented here without proof 
in the form applicable to nonreacting systems:2

   F = 2 − π + N   (3.1)

where F is the number of degrees of freedom, π is the number of phases, and N is the number 
of chemical species present in the system.

The intensive state of a system at equilibrium is established when its temperature, pressure, 
and the compositions of all phases are fixed. These are the variables of the phase rule, but they 
are not all independent. The phase rule gives the number of variables from this set that must be 
specified to fix all remaining intensive variables, and thus the intensive state of the system.

A phase is a homogeneous region of matter. A gas or a mixture of gases, a liquid or a 
liquid solution, and a crystalline solid are examples of phases. An abrupt change in properties 
always occurs at the boundary between phases. Various phases can coexist, but they must be in 
equilibrium for the phase rule to apply. A phase need not be continuous; examples of discon-
tinuous phases are a gas dispersed as bubbles in a liquid, a liquid dispersed as droplets in 
another liquid with which it is immiscible, and solid crystals dispersed in either a gas or a 
liquid. In each case a dispersed phase is distributed throughout a continuous phase.

As an example, the phase rule may be applied to an aqueous solution of ethanol in equi-
librium with its vapor. Here N = 2, π = 2, and

  F = 2 − π + N = 2 − 2 + 2 = 2  

This is a system in vapor/liquid equilibrium, and it has two degrees of freedom. If the system 
exists at specified T and P (assuming this is possible), its liquid- and vapor-phase composi-
tions are fixed by these conditions. A more common specification is of T and the liquid-phase 
composition, in which case P and the vapor-phase composition are fixed.

Intensive variables are independent of the size of the system and of the amounts of 
 individual phases present. Thus, the phase rule gives the same information for a large system 
as for a small one and for different relative amounts of the phases. Moreover, the phase rule 
applies only to individual-phase compositions, and not to the overall composition of a multi-
phase system. Note also that for a phase only N − 1 compositions are independent, because the 
mole or mass fractions of a phase must sum to unity.

The minimum number of degrees of freedom for any system is zero. When F = 0, the 
system is invariant; Eq. (3.1) becomes π = 2 + N. This value of π is the maximum number of 
phases that can coexist at equilibrium for a system containing N chemical species. When  
N = 1, this limit is reached for π = 3, characteristic of a triple point (Sec. 3.2). For example, the 

1Josiah Willard Gibbs (1839–1903), American mathematical physicist, who deduced it in 1875. See http://en. 
wikipedia.org/wiki/Willard_Gibbs

2The theoretical justification of the phase rule for nonreacting systems is given in Sec. 12.2, and the phase rule for 
reacting systems is considered in Sec. 14.8.
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70 CHAPTER 3. Volumetric Properties of Pure Fluids 

triple point of H2O, where liquid, vapor, and the common form of ice exist together in equilib-
rium, occurs at 0.01°C and 0.0061 bar. Any change from these conditions causes at least one 
phase to disappear.

Example 3.1
How many phase-rule variables must be specified to fix the thermodynamic state of 
each of the following systems?

 (a) Liquid water in equilibrium with its vapor.

 (b) Liquid water in equilibrium with a mixture of water vapor and nitrogen.

 (c) A three-phase system of a saturated aqueous salt solution at its boiling point 
with excess salt crystals present.

Solution 3.1

(a) The system contains a single chemical species existing as two phases (one 
liquid and one vapor), and

  F = 2 − π + N = 2 − 2 + 1 = 1  

This result is in agreement with the fact that for a given pressure water has but one 
boiling point. Temperature or pressure, but not both, can be specified for a system 
comprised of water in equilibrium with its vapor.

(b) Two chemical species are present. Again there are two phases, and

  F = 2 − π + N = 2 − 2 + 2 = 2  
The addition of an inert gas to a system of water in equilibrium with its vapor 
changes the characteristics of the system. Now temperature and pressure may be 
independently varied, but once they are fixed the system described can exist in 
equilibrium only at a particular composition of the vapor phase. (If nitrogen is 
considered negligibly soluble in water, the liquid phase is pure water.)

(c) The three phases (π = 3) are crystalline salt, the saturated aqueous solution, 
and vapor generated at the boiling point. The two chemical species (N = 2) are 
water and salt. For this system,

F = 2 − 3 + 2 = 1

3.2 PVT BEHAVIOR OF PURE SUBSTANCES

Figure 3.1 displays an example of the equilibrium conditions of P and T at which solid, liquid, 
and gas phases of a pure substance might exist. Lines 1–2 and 2–C represent the conditions at 
which solid and liquid phases exist in equilibrium with a vapor phase. These vapor pressure 
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3.2. PVT Behavior of Pure Substances 71

versus temperature lines describe states of solid/vapor (line 1–2) and liquid/vapor (line 2–C) 
 equilibrium. As indicated in Ex. 3.1(a), such systems have but a single degree of freedom. 
 Similarly, solid/liquid  equilibrium is represented by line 2–3. The three lines display conditions 
of P and T at which two phases coexist, and they divide the diagram into single-phase regions. 
Line 1–2, the  sublimation curve, separates the solid and gas regions; line 2–3, the fusion curve, 
separates the solid and liquid regions; line 2–C, the vaporization curve, separates the liquid and 
gas regions. Point C is known as the critical point; its coordinates Pc and Tc are the highest 
pressure and highest temperature at which a pure chemical species is observed to exist in vapor/
liquid equilibrium.

The positive slope of the fusion line (2–3) represents the behavior of the vast majority of 
substances. Water, a very common substance, has some very uncommon properties, and 
exhibits a fusion line with negative slope.

The three lines meet at the triple point, where the three phases coexist in equilibrium. 
According to the phase rule the triple point is invariant (F = 0). If the system exists along any 
of the two-phase lines of Fig. 3.1, it is univariant (F = 1), whereas in the single-phase regions 
it is divariant (F = 2). Invariant, univariant, and divariant states appear as points, curves, and 
areas, respectively, on a PT diagram.

Changes of state can be represented by lines on the PT diagram: a constant-T change by 
a vertical line, and a constant-P change by a horizontal line. When such a line crosses a phase 
boundary, an abrupt change in properties of the fluid occurs at constant T and P; for example, 
vaporization, the transition from liquid to vapor.

Figure 3.1: PT diagram 
for a pure substance.
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Water in an open flask is obviously a liquid in contact with air. If the flask is sealed and 
the air is pumped out, water vaporizes to replace the air, and H2O fills the flask. Though the 
pressure in the flask is much reduced, everything appears unchanged. The liquid water resides 
at the bottom of the flask because its density is much greater than that of water vapor (steam), 
and the two phases are in equilibrium at conditions represented by a point on curve 2–C of  
Fig. 3.1. Far from point C, the properties of liquid and vapor are very different. However, if the 
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temperature is raised so that the equilibrium state progresses upward along curve 2–C, the 
properties of the two phases become more and more nearly alike; at point C they become iden-
tical, and the meniscus disappears. One consequence is that transitions from liquid to vapor 
may occur along paths that do not cross the vaporization curve 2–C, i.e., from A to B. The 
transition from liquid to gas is gradual and does not include the usual vaporization step.

The region existing at temperatures and pressures greater than Tc and Pc is marked off by 
dashed lines in Fig. 3.1; these do not represent phase boundaries, but rather are limits fixed by 
the meanings accorded the words liquid and gas. A phase is generally considered a liquid if 
vaporization results from pressure reduction at constant temperature. A phase is considered a 
gas if condensation results from temperature reduction at constant pressure. Since neither pro-
cess can be initiated in the region beyond the dashed lines, it is called the fluid region.

The gas region is sometimes divided into two parts, as indicated by the dotted vertical 
line of Fig. 3.1. A gas to the left of this line, which can be condensed either by compression at 
constant temperature or by cooling at constant pressure, is called a vapor. A fluid existing at a 
temperature greater than Tc is said to be supercritical. An example is atmospheric air.

PV Diagram
Figure 3.1 does not provide any information about volume; it merely displays the boundaries 
between single-phase regions. On a PV diagram [Fig. 3.2(a)] these boundaries in turn become 
regions where two phases—solid/liquid, solid/vapor, and liquid/vapor—coexist in equilib-
rium. The curves that outline these two-phase regions represent single phases that are in equi-
librium. Their relative amounts determine the molar (or specific) volumes within the two-phase 
regions. The triple point of Fig. 3.1 here becomes a triple line, where the three phases with 
different values of V coexist at a single temperature and pressure.

Figure 3.2(a), like Fig. 3.1, represents the behavior of the vast majority of substances 
wherein the transition from liquid to solid (freezing) is accompanied by a decrease in specific 
volume (increase in density), and the solid phase sinks in the liquid. Here again water displays 
unusual behavior in that freezing results in an increase in specific volume (decrease in den-
sity), and on Fig. 3.2(a) the lines labeled solid and liquid are interchanged for water. Ice there-
fore floats on liquid water. Were it not so, the conditions on the earth’s surface would be vastly 
different.

Figure 3.2(b) is an expanded view of the liquid, liquid/vapor, and vapor regions of the 
PV diagram, with four isotherms (paths of constant T) superimposed. Isotherms on Fig. 3.1  
are vertical lines, and at temperatures greater than Tc do not cross a phase boundary. On  
Fig. 3.2(b) the isotherm labeled T > Tc is therefore smooth.

The lines labeled T1 and T2 are for subcritical temperatures and consist of three seg-
ments. The horizontal segment of each isotherm represents all possible mixtures of liquid and 
vapor in equilibrium, ranging from 100% liquid at the left end to 100% vapor at the right end. 
The locus of these end points is the dome-shaped curve labeled BCD, the left half of which 
(from B to C) represents single-phase liquids at their vaporization (boiling) temperatures and 
the right half (from C to D) single-phase vapors at their condensation temperatures. Liquids 
and vapors represented by BCD are said to be saturated, and coexisting phases are connected 
by the horizontal segment of the isotherm at the saturation pressure specific to the isotherm. 
Also called the vapor pressure, it is given by a point on Fig. 3.1 where an isotherm (vertical 
line) crosses the vaporization curve.
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The two-phase liquid/vapor region lies under dome BCD; the subcooled-liquid region 
lies to the left of the saturated-liquid curve BC, and the superheated-vapor region lies to the 
right of the saturated-vapor curve CD. Subcooled liquid exists at temperatures below, and 
superheated vapor, at temperatures above the boiling point for the given pressure. Isotherms in 
the subcooled-liquid region are very steep because liquid volumes change little with large 
changes in pressure.

The horizontal segments of the isotherms in the two-phase region become progressively 
shorter at higher temperatures, being ultimately reduced to a point at C. Thus, the critical iso-
therm, labeled Tc, exhibits a horizontal inflection at the critical point C at the top of the dome, 
where the liquid and vapor phases become indistinguishable.

Critical Behavior
Insight into the nature of the critical point is gained from a description of the changes that 
occur when a pure substance is heated in a sealed upright tube of constant volume. The dotted 
vertical lines of Fig. 3.2(b) indicate such processes. They can also be traced on the PT  diagram 
of Fig. 3.3, where the solid line is the vaporization curve (Fig. 3.1), and the dashed lines are 
constant-volume paths in the single-phase regions. If the tube is filled with either liquid or 
vapor, the heating process produces changes that lie along the dashed lines of Fig. 3.3, for 
example, by the change from E to F (subcooled-liquid) and by the change from G to H (super-
heated-vapor). The corresponding vertical lines on Fig. 3.2(b) are not shown, but they lie to the 
left and right of BCD respectively.

If the tube is only partially filled with liquid (the remainder being vapor in equilibrium 
with the liquid), heating at first causes changes described by the vapor-pressure curve (solid 

Figure 3.2: PV diagrams for a pure substance. (a) Showing solid, liquid, and gas regions. (b) Showing 
liquid, liquid/vapor, and vapor regions with isotherms.
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line of Fig. 3.3). For the process indicated by line JQ on Fig. 3.2(b), the meniscus is initially 
near the top of the tube (point J), and the liquid expands sufficiently upon heating to fill the 
tube (point Q). On Fig. 3.3 the process traces a path from (J, K) to Q, and with further heating 
departs from the vapor-pressure curve along the line of constant molar volume   V 2  l   .

The process indicated by line KN on Fig. 3.2(b) starts with a meniscus level closer to the 
bottom of the tube (point K), and heating vaporizes liquid, causing the meniscus to recede to 
the bottom (point N). On Fig. 3.3 the process traces a path from (J, K) to N. With further heat-
ing the path continues along the line of constant molar volume   V  2  v  .

For a unique filling of the tube, with a particular intermediate meniscus level, the heating  
process follows a vertical line on Fig. 3.2(b) that passes through the critical point C.  
Physically, heating does not produce much change in the level of the meniscus. As the  critical 
point is approached, the meniscus becomes indistinct, then hazy, and finally disappears.  
On Fig. 3.3 the path first follows the vapor-pressure curve, proceeding from point (J, K) to the 
critical point C, where it enters the single-phase fluid region, and follows Vc, the line of con-
stant molar volume equal to the critical volume of the fluid.3

PVT Surfaces
For a pure substance, existing as a single phase, the phase rule tells us that two state variables 
must be specified to determine the intensive state of the substance. Any two, from among P, V, 
and T, can be selected as the specified, or independent, variables, and the third can then be 
regarded as a function of those two. Thus, the relationship among P, V, and T for a pure sub-
stance can be represented as a surface in three dimensions. PT and PV diagrams like those 
illustrated in Figs. 3.1, 3.2, and 3.3 represent slices or projections of the three-dimensional  
PVT surface. Figure 3.4 presents a view of the PVT surface for carbon dioxide over a region 
including liquid, vapor, and supercritical fluid states. Isotherms are superimposed on this 

3A video illustrating this behavior is available in the Connect eBook, if available, or contact your instructor for 
instructions on accessing this video.

Figure 3.3: PT diagram for a pure fluid showing 
the vapor-pressure curve and constant-volume 
lines in the single-phase regions.
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3.2. PVT Behavior of Pure Substances 75

surface. The vapor/liquid equilibrium curve is shown in white, with the vapor and liquid 
 portions of it connected by the vertical segments of the isotherms. Note that for ease of 
 visualization, the molar volume is given on a logarithmic scale, because the vapor volume at 
low pressure is several orders of magnitude larger than the liquid volume.

Figure 3.4: PVT surface for carbon dioxide, with isotherms shown in black and the vapor/liquid equi-
librium curve in white.
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Single-Phase Regions
For the regions of the diagram where a single phase exists, there is a unique relation connect-
ing P, V, and T. Expressed analytically, as f (P, V, T) = 0, such a relation is known as a PVT 
equation of state. It relates pressure, molar or specific volume, and temperature for a pure 
homogeneous fluid at equilibrium. The simplest example, the equation for the ideal-gas state, 
PV = RT, has approximate validity for the low-pressure gas region and is discussed in detail in 
the following section.

An equation of state can be solved for any one of the three quantities P, V, or T, given 
values for other two. For example, if V is considered a function of T and P, then V = V(T, P), and

  dV =   (    
∂ V

 ___ ∂ T   )    
P

  dT +   (    
∂ V

 ___ ∂ P   )    
T

  dP  (3.2)
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76 CHAPTER 3. Volumetric Properties of Pure Fluids 

The partial derivatives in this equation have definite physical meanings and are related to two 
properties, commonly tabulated for liquids, and defined as follows:

∙ Volume expansivity:

  β ≡   
1
 __ 

V
    (    

∂ V
 ___ ∂ T   )    

P

    (3.3)

∙ Isothermal compressibility:

  κ ≡ −   
1
 __ 

V
    (    

∂ V
 ___ ∂ P   )    

T

    (3.4)

Combining Eqs. (3.2) through (3.4) yields:

    
dV

 ___ 
V

   = β dT − κ dP  (3.5)

The isotherms for the liquid phase on the left side of Fig. 3.2(b) are very steep and closely 
spaced. Thus both    (  ∂ V / ∂ T )    P    and    (  ∂ V / ∂ P )    T    are small. Hence, both β and κ are small. This char-
acteristic behavior of liquids (outside the critical region) suggests an idealization, commonly 
employed in fluid mechanics and known as the incompressible fluid, for which both β and κ 
are zero. No real fluid is truly incompressible, but the idealization is useful, because it pro-
vides a sufficiently realistic model of liquid behavior for many practical purposes. No equation 
of state exists for an incompressible fluid, because V is independent of T and P.

For liquids, β is almost always positive (liquid water between 0°C and 4°C is an excep-
tion), and κ is necessarily positive. At conditions not close to the critical point, β and κ are 
weak functions of temperature and pressure. Thus for small changes in T and P little error is 
introduced if they are assumed constant. Integration of Eq. (3.5) then yields:

  ln   
 V  2  

 ___  V  1     = β  (   T  2   −  T  1   )    − κ  (    P  2   −  P  1   )      (3.6)

This is a less restrictive approximation than the assumption of an incompressible fluid.

Example 3.2
For liquid acetone at 20°C and 1 bar,

  β = 1.487 ×  10   −3  ° C   −1   κ = 62 ×  10   −6   bar   −1   V = 1.287  cm   3  ⋅g   −1   

For acetone, find:

 (a) The value of    (∂ P / ∂ T)   V    at 20°C and 1 bar.

 (b) The pressure after heating at constant V from 20°C and 1 bar to 30°C.

 (c) The volume change when T and P go from 20°C and 1 bar to 0°C and 10 bar.
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3.3. Ideal Gas and Ideal-Gas State 77

Solution 3.2

(a) The derivative    (  ∂ P / ∂ T )    V    is determined by application of Eq. (3.5) to the case 
for which V is constant and dV = 0:

  β dT − κ dP = 0   (  const V )     
or

    (  
∂ P

 ___ ∂ T  )   
V

   =   
β

 __ κ   =   
1.487 ×  10   −3 

  __________ 
62 ×  10   −6 

   = 24 bar ⋅ °  C   −1   

(b) If β and κ are assumed constant in the 10°C temperature interval, then for con-
stant volume Eq. (3.6) can be written:

   P  2   =  P  1   +   
β

 __ κ     (   T  2   −  T  1   )    = 1 bar + 24 bar ⋅ °  C   −1  × 10° C = 241 bar  

(c) Direct substitution into Eq. (3.6) gives:

   
ln   

 V  2  
 ___  V  1     =   (  1.487 ×  10   −3  )     (  −20 )    −   (  62 ×  10   −6  )     (  9 )    = −0.0303

      
  
 V  2  

 ___  V  1     = 0.9702 and  V  2   =   (  0.9702 )     (  1.287 )    = 1.249  cm   3  ⋅g   −1 
   

Then,
  ΔV =  V  2   −  V  1   = 1.249 − 1.287 = −0.038  cm   3  ⋅g   −1   

The preceding example illustrates the fact that heating a liquid that completely fills a closed 
vessel can cause a substantial rise in pressure. On the other hand, liquid volume decreases very 
slowly with rising pressure. Thus, the very high pressure generated by heating a subcooled 
liquid at constant volume can be relieved by a very small volume increase, or a very small leak 
in the constant volume container.

3.3 IDEAL GAS AND IDEAL-GAS STATE

In the nineteenth century, scientists developed a rough experimental knowledge of the PVT 
behavior of gases at moderate conditions of temperature and pressure, leading to the equation 
PV = RT, wherein V is molar volume and R is a universal constant. This equation adequately 
describes PVT behavior of gases for many practical purposes near ambient conditions of T and 
P. However, more precise measurements show that for pressures appreciably above, and tem-
peratures appreciably below, ambient conditions, deviations become pronounced. On the other 
hand, deviations become ever smaller as pressure decreases and temperature increases.

The equation PV = RT is now understood to define an ideal gas and to represent a model 
of behavior more or less approximating the behavior of real gases. It is called the ideal gas 
law, but is in fact valid only for pressures approaching zero and temperatures approaching 
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infinity. Thus, it is a law only at limiting conditions. As these limits are approached, the mol-
ecules making up a gas become more and more widely separated, and the volume of the mol-
ecules themselves becomes a smaller and smaller fraction of the total volume occupied by the 
gas. Furthermore, the forces of attraction between molecules become ever smaller because of 
the increasing distances between them. In the zero-pressure limit, molecules are separated by 
infinite distances. Their volumes become negligible compared with the total volume of the 
gas, and the intermolecular forces approach zero. The ideal gas concept extrapolates this 
behavior to all conditions of temperature and pressure.

The internal energy of a real gas depends on both pressure and temperature. Pressure 
dependence results from intermolecular forces. If such forces did not exist, no energy would 
be required to alter intermolecular distances, and no energy would be required to bring about 
pressure and volume changes in a gas at constant temperature. Thus, in the absence of inter-
molecular forces, internal energy would depend on temperature only.

These observations are the basis for the concept of a hypothetical state of matter 
designated the ideal-gas state. It is the state of a gas comprised of real molecules that have 
negligible molecular volume and no intermolecular forces at all temperatures and pressures. 
Although related to the ideal gas, it presents a different perspective. It is not the gas that is 
ideal, but the state, and this has practical advantages. Two equations are fundamental to this 
state, namely the “ideal-gas law” and an expression showing that internal energy depends on 
temperature alone:

 ∙ The equation of state:

   P V   ig  = RT   (3.7)

 ∙ Internal energy:

    U   ig  = U (  T )     (3.8)

The superscript ig denotes properties for the ideal-gas state.
The property relations for this state are very simple, and at appropriate conditions of T 

and P they may serve as suitable approximations for direct application to the real-gas state. 
However, they have far greater importance as part of a general three-step procedure for calcu-
lating property changes for real gases that includes a major step in the ideal-gas state. The 
three steps are as follows:

 1. Evaluate property changes for the mathematical transformation of an initial real-gas 
state into the ideal-gas state at the same T and P.

 2. Calculate property changes in the ideal-gas state for the T and P changes of the process.
 3. Evaluate property changes for the mathematical transformation of the ideal-gas state 

back to the real-gas state at the final T and P.

This procedure calculates the primary property-value changes resulting from T and P 
changes by simple, but exact, equations for the ideal-gas state. The property-value changes for 
transitions between real and ideal-gas states are usually relatively minor corrections. These 
transition calculations are treated in Chapter 6. Here, we develop property-value calculations 
for the ideal-gas state alone.
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3.3. Ideal Gas and Ideal-Gas State 79

Property Relations for the Ideal-Gas State
The definition of heat capacity at constant volume, Eq. (2.15), leads for the ideal-gas state to 
the conclusion that   C V  ig   is a function of temperature only:

   C V  ig  ≡    (  
∂  U   ig 

 ____ ∂ T  )   
V

   =   
d U   ig   (  T )   

 ______ 
dT

   =  C V  ig    (  T )     (3.9)

The defining equation for enthalpy, Eq. (2.10), applied to the ideal-gas state, leads to the 
 conclusion that   H   ig   is also a function only of temperature:

   H   ig  ≡  U   ig  + P V   ig  =  U   ig    (  T )    + RT =  H   ig    (  T )     (3.10)

The heat capacity at constant pressure   C P  ig  , defined by Eq. (2.19), like   C V  ig  , is a function of 
temperature only:

   C P  ig  ≡    (  
∂  H   ig 

 ____ ∂ T  )   
P

   =   
d H   ig    (  T )   

 ___________ 
dT

   =  C P  ig    (  T )     (3.11)

A useful relation between   C P  ig
   and   C V  ig   for the ideal-gas state comes from differentiation of Eq. (3.10):

   C P  ig  ≡    
d H   ig 

 _____ 
dT

    
 
   =   

d U   ig 
 ____ 

dT
   + R =  C V  ig  + R  (3.12)

This equation does not mean that   C P  ig   and   C V  ig   are themselves constant for the ideal-gas state, 
but only that they vary with temperature in such a way that their difference is equal to R. For 
any change in the ideal-gas state, Eqs. (3.9) and (3.11) lead to:

  dU   ig  =  C V  ig dT  (3.13a)  Δ U   ig  =  ∫ 
 
  
 

   C V  ig
 dT    (3.13b)

 d H   ig  =  C P  ig dT  (3.14a)  Δ H   ig  =  ∫ 
 
  
 

   C P  ig
 dT    (3.14b)

Because both   U   ig   and   C V  ig   for the ideal-gas state are functions of temperature only,  Δ U   ig   
for the ideal-gas state is always given by Eq. (3.13b), regardless of the kind of process causing 
the change. This is illustrated in Fig. 3.5, which shows a graph of internal energy as a function 
of   V   ig   at two different temperatures.

The dashed line connecting points a and b represents a constant-volume process for which 
the temperature increases from T1 to T2 and the internal energy changes by  Δ U   ig  =  U  2  ig  −  U  1  ig  .  
This change in internal energy is given by Eq. (3.13b) as  Δ U   ig  = ∫   C V  ig

 dT . The dashed lines 
connecting points a and c and points a and d represent other processes not occurring at constant 
volume but which also lead from an initial temperature T1 to a final temperature T2. The graph 
shows that the change in   U   ig   for these processes is the same as for the constant-volume process, 
and it is therefore given by the same equation, namely,  Δ U   ig  = ∫   C V  ig dT . However,  Δ U   ig   is not 
equal to Q for these processes, because Q depends not only on T1 and T2 but also on the path of 
the process. An entirely analogous discussion applies to the enthalpy   H   ig   in the ideal-gas state.
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80 CHAPTER 3. Volumetric Properties of Pure Fluids 

Process Calculations for the Ideal-Gas State
Process calculations provide work and heat quantities. The work of a mechanically reversible 
closed-system process is given by Eq. (1.3), here written:

  dW = −P d V   ig   (1.3)

For the ideal-gas state in any closed-system process, the first law as given by Eq. (2.6) written 
for a unit mass or a mole may be combined with Eq. (3.13a) to give:

  dQ + dW =  C V  ig  dT  

Substitution for dW by Eq. (1.3) and solution for dQ yields an equation valid for the ideal-gas 
state in any mechanically reversible closed-system process:

  dQ =  C V  ig dT + Pd V   ig   (3.15)

This equation contains the variables P, Vig, and T, only two of which are independent. 
Working equations for dQ and dW depend on which pair of these variables is selected as 
 independent; i.e., upon which variable is eliminated by Eq. (3.7). We consider two cases, 
 eliminating first P, and second, Vig. To eliminate P, we substitute  P = RT /  V   ig   into Eqs. (3.15) 
and (1.3) to obtain:

Figure 3.5: Internal energy changes for the 
 ideal-gas state. Because   U   ig   is independent of   
V   ig  , the plot of   U   ig   vs.   V   ig   at constant 
temperature is a horizontal line. For different 
temperatures,   U   ig   has different values, with a 
separate line for each temperature. Two such 
lines are shown, one for temperature   T  1    and  
one for a higher temperature   T  2   .

U2 T2

U1

U

Vig

T1

b

a

dc

 dQ =  C V  ig
 dT + RT   

d V   ig 
 ____ 

 V   ig 
    (3.16)  dW = −RT    

d V   ig 
 ____ 

 V   ig 
    (3.17)

To eliminate   dV   ig   we take a differential of  V   ig  = RT / P, obtaining dVig =    
R

 __ 
P

   (dT − T   
dP

 ___ 
P

  ).  
Substituting for  d V   ig   and for   C V  ig  =  C P  ig  − R  transforms Eqs. (3.15) and (1.3) into:

 dQ =  C P  ig
 dT − RT   

dP
 ___ 

P
    (3.18)  dW = −RdT + RT   

dP
 ___ 

P
    (3.19)

These equations apply to the ideal-gas state for various process calcula-
tions. The assumptions implicit in their derivation are that the system is 
closed and the process being considered is mechanically reversible.
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3.3. Ideal Gas and Ideal-Gas State 81

Isothermal Process
By Eqs. (3.13b) and (3.14b),

  Δ U   ig  =  Δ H   ig  = 0   (  const T )     

By Eqs. (3.16) and (3.18),   Q = RT ln   
 V 2  ig 

 ___ 
 V 1  ig 

   = RT ln   
 P  1  

 ___  P  2     

By Eqs. (3.17) and (3.19),   W = RT ln   
 V 1  ig 

 ___ 
 V 2  ig 

   = RT ln   
 P  2  

 ___  P  1     

Because  Q = −W , a result that also follows from Eq. (2.3), we can write in summary:

   Q = −W = RT ln   
 V 2  ig 

 _ 
 V 1  ig 

   = RT ln   
 P  1  

 _  P  2       (  const T )      (3.20)

Isobaric Process
By Eqs. (3.13b) and (3.19) with dP = 0,

  Δ U   ig  =    ∫ 
 
  
 

  C V  ig
 dT   and W = −R  (   T  2   −  T  1   )     

By Eqs. (3.14b) and (3.18),

   Q = Δ H   ig  =   ∫ 
 
  
 

   C P  ig
 dT     (  const P )      (3.21)

Isochoric (Constant-V) Process
With  d V   ig  = 0, W = 0 , and by Eqs. (3.13b) and (3.16),

   Q =  Δ U   ig  =   ∫ 
 
  
 

   C V  ig
 dT   (const  V   ig )   (3.22)

Adiabatic Process; Constant Heat Capacities
An adiabatic process is one for which there is no heat transfer between the system and its sur-
roundings; i.e., dQ = 0. Each of Eqs. (3.16) and (3.18) may therefore be set equal to zero. 
Integration with   C V  ig   and   C P  ig   constant then yields simple relations among the variables T, P, 
and   V   ig  , valid for mechanically reversible adiabatic compression or expansion in the ideal-gas 
state with constant heat capacities. For example, Eq. (3.16) becomes:

    
dT

 ___ 
T

   = −   
R
 ___ 

 C V  ig 
     
d V   ig 

 ____ 
 V   ig 
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Integration with   C V  ig   constant gives:

    
 T  2  

 ___  T  1     =   
(

    
 V 1  ig 

 ___ 
 V 2  ig 

   
)

     
R/ C V  ig 

   

Similarly, Eq. (3.18) leads to:

    
 T  2  

 ___  T  1     =   (    
 P  2  

 ___  P  1     )     
R/ C P  ig 

   

These equations may also be expressed as:

 T ( V   ig )   γ − 1  = const  (3.23a)  T P     (  1 − γ )   /γ  = const  (3.23b)  P ( V   ig )   γ  = const  (3.23c)

where Eq. (3.23c) results by combining Eqs. (3.23a) and (3.23b) and where by definition,4

   γ ≡   
 C P  ig 

 _ 
 C V  ig 

     (3.24)

Equations (3.23) apply for the ideal-gas state with constant heat capaci-
ties and are restricted to mechanically reversible adiabatic expansion or 
compression.

The first law for an adiabatic process in a closed system combined with Eq. (3.13a) 
yields:

  dW = dU =  C V  ig  dT  

For constant   C V  ig  ,

  W = Δ U   ig  =  C V  ig  ΔT  (3.25)

Alternative forms of Eq. (3.25) result if   C V  ig   is eliminated in favor of the heat-capacity ratio γ:

  γ ≡   
 C P  ig 

 ___ 
 C V  ig 

   =   
 C V  ig  + R

 _____ 
 C V  ig 

   = 1 +   
R
 ___ 

 C V  ig 
   or  C V  ig  =   

R
 ___ γ − 1    

and

 W =  C V  ig ΔT =   
RΔT

 ____ γ − 1   

4If   C p  
ig

   and   C v  
ig

   are constant, γ is necessarily constant. The assumption of constant γ is equivalent to the assumption 
that the heat capacities themselves are constant. This is the only way that the ratio   C p  

ig
  /  C v  

ig
    and the difference  

 C p  
ig

  –  C v  
ig

   = R can both be constant. Except for the monatomic gases, both  C p  
ig

  and  C v  
ig

  actually increase with 
temperature, but the ratio γ is less sensitive to temperature than the heat capacities themselves.
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Because  R T  1   =  P  1   V 1  ig   and  R T  2   =  P  2   V 2  ig  , this expression may be written:

  W =   
R T  2   − R T  1  

 _______ γ − 1   =   
 P  2   V 2  ig  −  P  1   V 1  ig 

  ___________ γ − 1    (3.26)

Equations (3.25) and (3.26) are general for adiabatic compression and expansion 
processes in a closed system, whether reversible or not, because P, Vig, and T are state 
functions, independent of path. However, T2 and   V 2  ig   are usually unknown. Elimination of   V  2  ig   
from Eq. (3.26) by Eq. (3.23c), valid only for mechanically reversible processes, leads to the 
expression:

  W =   
 P  1   V 1  ig 

 _____ γ − 1    [  (  
 P  2  

 ___  P  1    )    
(γ − 1)/γ

  − 1]  =   
R T  1  

 ___ γ − 1   [  (  
 P  2  

 ___  P  1    )    
(γ − 1)/γ

  − 1]   (3.27)

The same result is obtained when the relation between P and Vig given by Eq. (3.23c) is used 
for the integration,  W = −∫  Pd  V   ig . 

Equation (3.27) is valid only for the ideal-gas state, for constant heat 
capacities, and for adiabatic, mechanically reversible, closed-system 
processes.

When applied to real gases, Eqs. (3.23) through (3.27) often yield satisfactory approxi-
mations, provided the deviations from ideality are relatively small. For monatomic gases, γ = 
1.67; approximate values of γ are 1.4 for diatomic gases and 1.3 for simple polyatomic gases 
such as CO2, SO2, NH3, and CH4.

Irreversible Processes
All equations developed in this section have been derived for mechanically reversible, closed-sys-
tem processes for the ideal-gas state. However, the equations for property changes— dUig, dHig, 
ΔUig, and ΔHig—are valid for the ideal-gas state regardless of the process. They apply equally to 
reversible and irreversible processes in both closed and open systems, because changes in prop-
erties depend only on initial and final states of the system. On the other hand, an equation for Q 
or W, unless it is equal to a property change, is subject to the restrictions of its derivation.

The work of an irreversible process is usually calculated by a two-step procedure. 
First, W is determined for a mechanically reversible process that accomplishes the same 
change of state as the actual irreversible process. Second, this result is multiplied or divided 
by an efficiency to give the actual work. If the process produces work, the absolute value for 
the reversible process is larger than the value for the actual irreversible process and must be 
multiplied by an efficiency. If the process requires work, the value for the reversible process 
is smaller than the value for the actual irreversible process and must be divided by an effi-
ciency. In this approach, efficiencies are always less than 1, approaching 1 as a process 
approaches reversibility.

Applications of the concepts and equations of this section are illustrated in the examples 
that follow. In particular, the work of irreversible processes is treated in Ex. 3.5.
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Example 3.3
Air is compressed from an initial state of 1 bar and 298.15 K to a final state of 3 bar and 
298.15 K by three different mechanically reversible processes in a closed system:

 (a) Heating at constant volume followed by cooling at constant pressure.

 (b) Isothermal compression.

 (c) Adiabatic compression followed by cooling at constant volume.

These processes are shown in the figure. We assume air to be in its ideal-gas state, 
and assume constant heat capacities,   C V  ig  = 20.785  and   C P  ig  = 29.100   J·mol−1·K−1.  
Calculate the work required, heat transferred, and the changes in internal energy and 
enthalpy of the air for each process.

0 5 10 15 20 25

2

4

6

c

a

b

Vig  103 m3

P 
ba

r

2

1

Solution 3.3
Choose the system as 1 mol of air. The initial and final states of the air are identi-
cal with those of Ex. 2.7. The molar volumes given there are

    V 1  ig  = 0.02479  m   3     V 2  ig  = 0.008263  m   3    

Because T is the same at the beginning and end of the process, in all cases,

  Δ U   ig  = Δ H   ig  = 0  

(a) The process here is exactly that of Ex. 2.7(b), for which:

   Q = −4958 J  and  W = 4958 J   

(b) Equation (3.20) for isothermal compression applies. The appropriate value of 
R here (from Table A.2 of App. A) is  R = 8.314 J· mol   −1 · K   −1  .

  Q = −W = RT ln   
 P  1  

 ___  P  2     =   (  8.314 )     (  298.15 )    ln   
1
 __ 3   = −2723 J   

(c) The initial step of adiabatic compression takes the air to its final volume of 
0.008263 m3. By Eq. (3.23a), the temperature at this point is:
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  T′ =  T  1    
(

    
 V 1  ig 

 ___ 
 V 2  ig 

   
)

     
γ − 1

  =   (  298.15 )      (  
0.02479

 ________ 0.008263  )     
0.4

  = 462.69 K  

For this step, Q = 0, and by Eq. (3.25), the work of compression is:

  W =  C V  ig  ΔT =  C V  ig   (  T′ −  T  1   )    =   (  20.785 )      (  462.69 − 298.15 )    = 3420 J  

For the constant-volume step, no work is done; the heat transfer is:

  Q = Δ U   ig  =  C V  ig   (   T  2   −  T′      )    = 20.785   (  298.15 − 462.69 )    = −3420 J  

Thus for process (c),

   W = 3420 J  and  Q = −3420 J   

Although the property changes ΔUig and ΔHig are zero for each process, Q and 
W are path-dependent, and here Q = −W. The figure shows each process on a PVig 
diagram. Because the work for each of these mechanically reversible processes is 
given by  W = −∫ Pd  V   ig  , the work for each process is proportional to the total area 
below the paths on the PVig diagram from 1 to 2. The relative sizes of these areas 
correspond to the numerical values of W.

Example 3.4
A gas in its ideal-gas state undergoes the following sequence of mechanically 
 reversible processes in a closed system:

 (a) From an initial state of 70°C and 1 bar, it is compressed adiabatically to 150°C.

 (b) It is then cooled from 150 to 70°C at constant pressure.

 (c) Finally, it expands isothermally to its original state.

Calculate W, Q, ΔUig, and ΔHig for each of the three processes and for the entire cycle. 
Take   C V  ig  = 12.471  and   C P  ig  = 20.785 J· mol   −1  ·K   −1  .

Solution 3.4
Take as a basis 1 mol of gas.

(a) For adiabatic compression, Q = 0, and

   
Δ U   ig  = W =  C V  ig  ΔT =   (  12.471 )     (  150 − 70 )    = 998 J

     
Δ H   ig  =  C P  ig  ΔT =   (  20.785 )     (  150 − 70 )    = 1663 J

    

Pressure P2 is found from Eq. (3.23b):

   P  2   =  P  1    (    
 T  2  

 ___  T  1     )     
γ/  (  γ − 1 )   

  =   (  1 )     (    
150 + 273.15

  ___________ 70 + 273.15   )     
2.5

  = 1.689 bar 
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(b) For this constant-pressure process,

   
Q = Δ H   ig  =  C P  ig  ΔT =   (  20.785 )     (  70 − 150 )    = −1663 J

       ΔU =  C V  ig  ΔT =   (  12.471 )     (  70 − 150 )    = −998 J     

 W = Δ U   ig  − Q = −998 −   (  −1663 )    = 665 J

    

(c) For this isothermal process, ΔUig and ΔHig are zero; Eq. (3.20) yields:

  Q = −W = RT ln   
 P  3  

 ___  P  1     = RT ln   
 P  2  

 ___  P  1     =   (  8.314 )     (  343.15 )    ln   
1.689

 _____ 1   = 1495 J  

For the entire cycle,

    

Q

  

=

  

0 − 1663 + 1495 = −168 J

    W  =  998 + 665 − 1495 = 168 J    
Δ U   ig 

  
=

  
998 − 998 + 0 = 0

    

Δ H   ig 

  

=

  

1663 − 1663 + 0 = 0

    

The property changes ΔUig and ΔHig both are zero for the entire cycle because the 
initial and final states are identical. Note also that Q = −W for the cycle. This 
follows from the first law with ΔUig = 0.

Example 3.5
If the processes of Ex. 3.4 are carried out irreversibly but so as to accomplish exactly the 
same changes of state—the same changes in P, T, Uig, and Hig—then different values of  
Q and W result. Calculate Q and W if each step is carried out with a work efficiency of 80%.

Solution 3.5
If the same changes of state as in Ex. 3.4 are carried out by irreversible processes, 
the property changes for the steps are identical with those of Ex. 3.4. However, the 
values of Q and W change.

P

Vig

70°C

150 °C70°C

a

b

c

3 2

1
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3.3. Ideal Gas and Ideal-Gas State 87

(a) For mechanically reversible, adiabatic compression, the work is Wrev = 998 J. 
If the process is 80% efficient compared with this, the actual work is larger, and  
W = 998/0.80 = 1248 J. This step cannot here be adiabatic. By the first law,

  Q = Δ U   ig  − W = 998 − 1248 = −250 J  

(b) The work required for the mechanically reversible cooling process is 665 J. For 
the irreversible process, W = 665/0.80 = 831 J. From Ex. 3.4(b), ΔUig = −998 J, and

  Q = Δ U   ig  − W = −998 − 831 = −1829 J  

(c) As work is done by the system in this step, the irreversible work in absolute 
value is less than the reversible work of −1495 J, and the actual work done is:

   
 W =   (  0.80 )     (  −1495 )    = −1196 J

    
Q = Δ U   ig  − W = 0 + 1196 = 1196 J

   

For the entire cycle, ΔUig and ΔHig are zero, with

   Q = −250 − 1829 + 1196 = −883 J    
 W = 1248 + 831 − 1196 = 883 J

    

A summary of these results and those for Ex. 3.4 is given in the following table; 
values are in joules.

Mechanically reversible, Ex. 3.4 Irreversible, Ex. 3.5

ΔUig ΔHig Q W ΔUig ΔHig Q W

(a) 998 1663 0 998 998 1663 −250 1248
(b) −998 −1663 −1663 665 −998 −1663 −1829 831
(c) 0 0 1495 −1495 0 0 1196 −1196

Cycle 0 0 −168 168 0 0 −883 883

The cycle is one which requires work and produces an equal amount of heat. 
The striking feature of the comparison shown in the table is that the total work 
required when the cycle consists of three irreversible steps is more than five times 
the total work required when the steps are mechanically reversible, even though 
each irreversible step is assumed to be 80% efficient.

Example 3.6
Air flows at a steady rate through a horizontal pipe to a partly closed valve. The pipe 
leaving the valve is enough larger than the entrance pipe that the kinetic-energy 
change of the air as it flows through the valve is negligible. The valve and connecting 
pipes are well insulated. The conditions of the air upstream from the valve are 20°C 
and 6 bar, and the downstream pressure is 3 bar. If the air is in its ideal-gas state, what 
is the temperature of the air some distance downstream from the valve?
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Solution 3.6
Flow through a partly closed valve is known as a throttling process. The system is 
insulated, making Q negligible; moreover, the potential-energy and kinetic- energy 
changes are negligible. No shaft work is accomplished, and Ws = 0. Hence,  
Eq. (2.31) reduces to:

  ΔH   ig   =   H 2  ig   −   H 1  ig   = 0. Because Hig is a function of temperature only, this 
requires that T2 = T1. The result that ΔHig = 0 is general for a throttling 
process, because the assumptions of negligible heat transfer and potential- and kinetic- 
energy changes are usually valid. For a fluid in its ideal-gas state, no  temperature 
change occurs. The throttling process is inherently irreversible, but this is immaterial to 
the  calculation because Eq. (3.14b) is valid for the ideal-gas state whatever the process.5

Example 3.7
If in Ex. 3.6 the flow rate of air is 1 mol·s–1 and if both upstream and downstream pipes 
have an inner diameter of 5 cm, what is the kinetic-energy change of the air and  
what is its temperature change? For air,   C P  ig  = 29.100 J· mol   −1   and the molar mass is  
ℳ = 29 g·mol−1.

Solution 3.7
By Eq. (2.23b),

  u =   
 n 

∙  
 ___ 

Aρ   =   
 n 

∙   V   ig 
 ____ 

A
    

where

  A =   
π

 __ 4   D   2  =   (    
π

 _ 4   )     (  5 ×  10   −2  )     2  = 1.964 ×  10   −3   m   2   

The appropriate value of the gas constant for calculating the upstream molar volume 
is R = 83.14 × 10−6 bar·m3·mol−1·K−1. Then

   V 1  ig  =   
R T  1  

 ___  P  1     =   
  (  83.14 ×  10   −6  )     (  293.15 K )   

   ___________________  6 bar   = 4.062 ×  10   −3   m   3  ·mol   −1   

Then,

   u  1   =   
  (  1 mol· s   −1  )     (  4.062 ×  10   −3   m   3  ·mol   −1  )   

   ___________________________   
1.964 ×  10   −3   m   2 

   = 2.069 m· s   −1   

If the downstream temperature is little changed from the upstream temperature, 
then to a good approximation:

    V 2  ig  = 2 V 1  ig    and    u  2   = 2 u  1   = 4.138 m· s   −1    

5The throttling of real gases may result in a relatively small temperature increase or decrease, known as the Joule/
Thomson effect. A more detailed discussion is found in Chapter 7.
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The rate of change in kinetic energy is therefore:

   

 m  
∙  Δ  (    

1
 _ 2   u   2  )   

  

=

  

 n 
∙  ℳ Δ  (    

1
 _ 2   u   2  )   

    
 
  

=
  
  (  1 × 29 ×  10   −3  kg· s   −1  )     

  (   4.138   2  −  2.069   2  )    m   2  ·s   −2 
  ___________________  2  
      

 

  

=

  

0.186 kg· m   2  ·s   −3  = 0.186 J· s   −1 

    

In the absence of heat transfer and work, the energy balance, Eq. (2.30), becomes:

    
 Δ  (   H   ig  +   

1
 _ 2   u   2  )    m 

∙  
  
=  m 

∙  Δ  H   ig  +  m  
∙  Δ  (    

1
 _ 2   u   2  )    = 0

      
  (   m 

∙   / ℳ )    C P  ig ΔT +  m 
∙   Δ  (    

1
 _ 2   u   2  )   

  
=  n 

∙   C P  ig  ΔT +  m 
∙   Δ  (    

1
 _ 2   u   2  )    = 0

   

Then

    (  1 )     (  29.100 )   ΔT = − m 
∙   Δ  (    

1
 _ 2   u   2  )    = −0.186  

and

  ΔT = −0.0064 K  

Clearly, the assumption of negligible temperature change across the valve is jus-
tified. Even for an upstream pressure of 10 bar and a downstream pressure of 1 bar 
and for the same flow rate, the temperature change is only −0.076 K. We conclude 
that, except for very unusual conditions, ΔHig = 0 is a satisfactory energy balance.

3.4 VIRIAL EQUATIONS OF STATE

Volumetric data for fluids are useful for many purposes, from the metering of fluids to the 
sizing of tanks. Data for V as a function of T and P can of course be given as tables. However, 
expression of the functional relation f(P, V, T) = 0 by equations is much more compact and 
convenient. The virial equations of state for gases are uniquely suited to this purpose.

Isotherms for gases and vapors, lying to the right of the saturated-vapor curve CD in  
Fig. 3.2(b), are relatively simple curves for which V decreases as P increases. Here, the  product 
PV for a given T varies much more slowly than either of its members, and hence is more easily 
represented analytically as a function of P. This suggests expressing PV for an isotherm by a 
power series in P:

  PV = a + bP + c P   2  + . . .  

If we define, b ≡ aB′, c ≡ aC′, etc., then,

  PV = a  (  1 + B′P + C′ P   2  + D′ P   3  + . . . )     (3.28)

where B′, C′, etc., are constants for a given temperature and a given substance.
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Ideal-Gas Temperature; Universal Gas Constant
Parameters B′, C′, etc., in Eq. (3.28) are species-dependent functions of temperature, but param-
eter a is found by experiment to be the same function of temperature for all chemical species. 
This is shown by isothermal measurements of V as a function of P for various gases. Extrapola-
tions of the PV product to zero pressure, where Eq. (3.28) reduces to PV = a, show that a is the 
same function of T for all gases. Denoting this zero-pressure limit by an asterisk provides:

    (  PV )     *  = a = f   (  T )     

This property of gases serves as a basis for an absolute temperature scale. It is defined by  
arbitrary assignment of the functional relationship f (T) and the assignment of a specific value 
to a single point on the scale. The procedure adopted internationally to define the Kelvin  
scale (Sec. 1.4):

 ∙ Makes (PV)* directly proportional to T, with R as the proportionality constant:

    (  PV )     *  = a ≡ RT  (3.29)
 ∙ Assigns the value 273.16 K to the temperature of the triple point of water (denoted by 

subscript t):

    (  PV )    t  *  = R × 273.16 K  (3.30)

Division of Eq. (3.29) by Eq. (3.30) gives:

  T  K = 273.16  
  (  PV )     * 

 ______  (PV)  t  *     (3.31)

This equation provides the experimental basis for the ideal-gas temperature scale throughout 
the temperature range for which values of (PV)* are experimentally accessible. The Kelvin 
temperature scale is defined to agree as closely as possible with this scale.

The proportionality constant R in Eqs. (3.29) and (3.30) is the universal gas constant. Its 
numerical value is found from Eq. (3.30):

  R =   
  (  PV )    t  * 

 ________ 273.16 K    

The accepted experimental value of    (  PV )    t  *   is 22,711.8 bar·cm3·mol−1, from which6 

  R =   
22,711.8 bar· cm   3  ·mol   −1 

  ___________________  273.16 K   = 83.1446 bar· cm   3  ·mol   −1  ·K   −1   

Through the use of conversion factors, R may be expressed in various units. Commonly used 
values are given in Table A.2 of App. A.

Two Forms of the Virial Equation
A useful auxiliary thermodynamic property is defined by the equation:

   Z ≡   
PV

 _ 
RT

   =   
V
 _ 

 V   ig 
     (3.32)

6See http://physics.nist.gov/constants.
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3.4. Virial Equations of State 91

This dimensionless ratio is called the compressibility factor. It is a measure of the deviation of the 
real-gas molar volume from its ideal-gas value. For the ideal-gas state, Z = 1. At  moderate 
temperatures its value is usually <1, though at elevated temperatures it may be >1. Figure 3.6 
shows the compressibility factor of carbon dioxide as a function of T and P. This figure presents the 
same information as Fig. 3.4, except that it is plotted in terms of Z rather than V. It shows that at low 
pressure, Z approaches 1, and at moderate pressures, Z decreases roughly linearly with pressure.

Figure 3.6: PZT surface for carbon dioxide, with isotherms shown in black and the vapor/liquid 
 equilibrium curve in white.
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With Z defined by Eq. (3.32) and with a = RT [Eq. (3.29)], Eq. (3.28) becomes:

   Z = 1 + B′P + C′ P   2  + D′ P   3  + . . .   (3.33)

An alternative expression for Z is also in common use:7

   Z = 1 +   
B

 _ 
V

   +   
C

 _ 
 V   2 

   +   
D

 _ 
 V   3 

   + . . .   (3.34)

Both of these equations are known as virial expansions, and the parameters B′, C′, D′, etc., 
and B, C, D, etc., are called virial coefficients. Parameters B′ and B are second virial coeffi-
cients; C′ and C are third virial coefficients, and so on. For a given gas the virial coefficients 
are functions of temperature only.

7Proposed by H. Kamerlingh Onnes, “Expression of the Equation of State of Gases and Liquids by Means of 
Series,” Communications from the Physical Laboratory of the University of Leiden, no. 71, 1901.
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The two sets of coefficients in Eqs. (3.33) and (3.34) are related as follows:

 B′=   
B
 ___ 

RT
    (3.35a)  C′=   

C −  B   2 
 _____ 

  (  RT )     2 
    (3.35b)  D′=   

D − 3BC + 2 B   3 
  __________ 

  (  RT )     3 
    (3.35c)

To derive these relations, we set Z = PV/RT in Eq. (3.34) and solve for P. This allows elimina-
tion of P on the right side of Eq. (3.33). The resulting equation reduces to a power series in 1/V 
which is compared term by term with Eq. (3.34) to yield the given relations. They hold exactly 
only for the two virial expansions as infinite series, but they are acceptable approximations for 
the truncated forms used in practice.

Many other equations of state have been proposed for gases, but the virial equations 
are the only ones firmly rooted in statistical mechanics, which provides physical signifi-
cance to the virial coefficients. Thus, in the expansion in 1/V, the term B/V arises from 
interactions between pairs of molecules; the C/V2 term arises from three-body  interactions; 
etc. Because, at gas-like densities, two-body interactions are many times more common 
than three-body interactions, and three-body interactions are many times more numerous 
than four-body interactions, the contributions to Z of the successively higher-order terms 
decrease rapidly.

3.5 APPLICATION OF THE VIRIAL EQUATIONS

The two forms of the virial expansion given by Eqs. (3.33) and (3.34) are infinite series. For 
most engineering purposes, their use is practical only where convergence is very rapid, that is, 
where two or three terms suffice for reasonably close approximations to the values of the 
series. This is realized for gases and vapors at low to moderate pressures.

Figure 3.7 shows a compressibility-factor graph for methane. All isotherms originate at 
Z = 1 and P = 0, and are nearly straight lines at low pressures. Thus the tangent to an isotherm 
at P = 0 is a good approximation of the isotherm from P → 0 to some finite pressure. Differ-
entiation of Eq. (3.33) for a given temperature gives:

   (    
∂ Z

 ___ ∂ P   )    
T

   = B′ + 2C′P + 3D′ P   2  + . . . 

from which,

    (  
∂ Z

 ___ ∂ P  )   
T; P=0

   = B′  

Thus the equation of the tangent line is Z = 1 + B′P, a result also given by truncating  
Eq. (3.33) to two terms.

A more common form of this equation results from substitution for B′ by Eq. (3.35a):

   Z =   
PV

 _ 
RT

   = 1 +   
BP

 _ 
RT

     (3.36)
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This equation expresses direct linearity between Z and P and is often applied to vapors 
at subcritical temperatures up to their saturation pressures. At higher temperatures it often 
provides a reasonable approximation for gases up to a pressure of several bars, with the pres-
sure range increasing as the temperature increases.

Equation (3.34) can also be truncated to two terms for application at low pressures:

  Z =   
PV

 ___ 
RT

   = 1 +   
B

 __ 
V

    (3.37)

However, Eq. (3.36) is more convenient in application and is normally at least as accurate as 
Eq. (3.37). Thus when the virial equation is truncated to two terms, Eq. (3.36) is usually 
preferred.

The second virial coefficient B is substance dependent and a function of temperature. 
Experimental values are available for many common gases.8 Moreover, estimation of second 
virial coefficients is possible where no data are available, as discussed in Sec. 3.7.

For pressures above the range of applicability of Eq. (3.36) but below the critical pres-
sure, the virial equation truncated to three terms often provides excellent results. In this case 
Eq. (3.34), the expansion in 1/V, is far superior to Eq. (3.33). Thus when the virial equation is 
truncated to three terms, the appropriate form is:

   Z =   
PV

 _ 
RT

   = 1 +   
B

 _ 
V

   +   
C

 _ 
 V   2 

     (3.38)

This equation is explicit in pressure but is cubic in volume. Analytic solution for V is possible, 
but solution by an iterative scheme, as illustrated in Ex. 3.8, is often more convenient.

Values of C, like those of B, depend on the gas and on temperature. Much less is known 
about third virial coefficients than about second virial coefficients, though data for some gases are 
found in the literature. Because virial coefficients beyond the third are rarely known and because 
the virial expansion with more than three terms becomes unwieldy, its use is uncommon.

Figure 3.7: Compressibility-factor graph for 
methane. Shown are isotherms of the 
 compressibility factor Z, as calculated from 
PVT data for methane by the defining 
 equation Z = PV/RT. They are plotted vs. 
pressure for several constant temperatures, 
and they show graphically what the virial 
expansion in P represents analytically.
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8J. H. Dymond and R. C. Wilhoit, The Virial Coefficients of Pure Gases and Mixtures, Springer-Verlag, Berlin, 2003.
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Figure 3.8 illustrates the effect of temperature on the virial coefficients B and C for 
nitrogen; although numerical values are different for other gases, the trends are similar. The 
curve of Fig. 3.8 suggests that B increases monotonically with T; however, at temperatures 
much higher than those shown, B reaches a maximum and then slowly decreases. The tem-
perature dependence of C is more difficult to establish experimentally, but its main features 
are clear: C is negative at low temperatures, passes through a maximum at a temperature near 
the critical temperature, and thereafter decreases slowly with increasing T.

Example 3.8
Reported values for the virial coefficients of isopropanol vapor at 200°C are:

   B = − 388  cm   3   · mol   −1   C = − 26,000  cm   6   · mol   −2    

Calculate V and Z for isopropanol vapor at 200°C and 10 bar:

 (a) For the ideal-gas state; (b) By Eq. (3.36); (c) By Eq. (3.38).

Solution 3.8
The absolute temperature is T = 473.15 K, and the appropriate value of the gas 
constant for pressure in bar and volume in cm3·mol−1 is R = 83.14 bar·cm3·mol−1·K−1.

(a) For the ideal-gas state, Z = 1, and  

   V   ig  =   
RT

 ___ 
P

   =   
  (  83.14 )     (  473.15 )   

  ____________ 10   = 3934  cm   3 ·mol−1  

(b) From the second equality of Eq. (3.36), we have

  V =   
RT

 ___ 
P

   + B = 3934 − 388 = 3546  cm   3  ·mol   −1   

Figure 3.8: Virial 
coefficients B and C 
for nitrogen.
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and

  Z =   
PV

 ___ 
RT

   =   
V
 _____ 

RT / P   =   
V
 ___ 

 V   ig 
   =   

3546
 _____ 3934   = 0.9014  

(c) For convenient solution by iteration, Eq. (3.38) may be written:  

   V  i+1   =   
RT

 ___ 
P

    (  1 +   
B

 _  V  i  
   +   

C
 _ 

 V i  2 
   )     

where i is the iteration number. Iteration is initiated with the ideal-gas state value 
Vig. Iteration to convergence yields:

  V = 3488  cm   3  ·mol   −1   

from which Z = 0.8866. In comparison with this result, the ideal-gas-state value is 13% 
too high, and the two-term virial equation of state, Eq. (3.36), gives a value 1.7% 
too high.

3.6 CUBIC EQUATIONS OF STATE

If an equation of state is to represent the PVT behavior of both liquids and vapors, it must 
encompass a wide range of temperatures, pressures, and molar volumes. Yet it must not be so 
complex as to present excessive numerical or analytical difficulties in application. Polynomial 
equations that are cubic in molar volume offer a compromise between generality and simplic-
ity that is suitable to many purposes. Cubic equations are in fact the simplest equations capa-
ble of representing both liquid and vapor behavior.

The van der Waals Equation of State
The first practical cubic equation of state was proposed by J. D. van der Waals9 in 1873:

   P =   
RT

 _ 
V − b   −   

a
 _ 

 V   2 
     (3.39)

Here, a and b are positive constants, specific to a particular species; when they are zero, 
the equation for the ideal-gas state is recovered. The purpose of the term a/V2 is to account for 
the attractive forces between molecules, which make the pressure lower than that which would 
be exerted in the ideal-gas state. The purpose of constant b is to account for the finite size of 
molecules, which makes the volume larger than in the ideal-gas state.

Given values of a and b for a particular fluid, one can calculate P as a function of V for 
various values of T. Figure 3.9 is a schematic PV diagram showing three such isotherms. 

9Johannes Diderik van der Waals (1837–1923), Dutch physicist who won the 1910 Nobel Prize for physics. See: 
http://www.nobelprize.org/nobel_prizes/physics/laureates/1910/waals-bio.html.
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Superimposed is the “dome” representing states of saturated liquid and saturated vapor.10 For 
the isotherm T1 > Tc, pressure decreases with increasing molar volume. The critical  isotherm 
(labeled Tc) contains the horizontal inflection at C characteristic of the critical point. For the 
isotherm T2 < Tc, the pressure decreases rapidly in the subcooled-liquid region with  increasing 
V; after crossing the saturated-liquid line, it goes through a minimum, rises to a maximum, and 
then decreases, crossing the saturated-vapor line and continuing downward into the 
 superheated-vapor region.

10Though far from obvious, the equation of state also provides the basis for calculation of the saturated liquid- and 
vapor-phase volumes that determine the location of the “dome.” This is explained in Sec. 13.7.

Figure 3.9: PV isotherms as 
given by a cubic equation of 
state for T above, at, and below 
the critical temperature. The 
superimposed darker curve 
shows the locus of saturated 
vapor and liquid volumes.

T1 > Tc
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Experimental isotherms do not exhibit the smooth transition from saturated liquid to 
saturated vapor characteristic of equations of state; rather, they contain a horizontal segment 
within the two-phase region where saturated liquid and saturated vapor coexist in varying 
proportions at the saturation (or vapor) pressure. This behavior, shown by the dashed line in  
Fig. 3.9, cannot be represented by an equation of state, and we accept as inevitable the 
 unrealistic behavior of equations of state in the two-phase region.

Actually, the PV behavior predicted in the two-phase region by proper cubic equations 
of state is not wholly fictitious. If pressure is decreased on a saturated liquid devoid of vapor 
nucleation sites in a carefully controlled experiment, vaporization does not occur, and liquid 
persists alone to pressures well below its vapor pressure. Similarly, raising the pressure on a 
saturated vapor in a suitable experiment does not cause condensation, and vapor persists 
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alone to pressures well above the vapor pressure. These nonequilibrium or metastable states 
of superheated liquid and subcooled vapor are approximated by those portions of the PV 
isotherm which lie in the two-phase region adjacent to the states of saturated liquid and 
saturated vapor.11

Cubic equations of state have three volume roots, of which two may be complex, i.e., 
may have an imaginary component.  Physically meaningful values of V are always real, posi-
tive, and greater than b. For an isotherm at T > Tc, reference to Fig. 3.9 shows that solution for 
V at any value of P yields only one such root. For the critical isotherm (T = Tc), this is also 
true, except at the critical pressure, where there are three roots, all equal to Vc. For isotherms 
at T < Tc, the equation may exhibit one or three real roots, depending on the pressure. Although 
these roots are real and positive, they are not physically stable states for the portion of an iso-
therm lying between saturated liquid and saturated vapor (under the “dome”). Only for the 
saturation pressure Psat are the roots, V sat(liq) and V sat(vap), stable states, lying at the ends of 
the horizontal portion of the true isotherm. For any pressure other than P sat, there is only a 
single physically meaningful root, corresponding to either a liquid or a vapor molar volume.

A Generic Cubic Equation of State
A mid-twentieth-century development of cubic equations of state was initiated in 1949 by 
publication of the Redlich/Kwong (RK) equation:12

  P =   
RT

 ____ 
V − b   −   

a  (  T )   
 ______ 

V  (  V + b )       (3.40)

Subsequent enhancements have produced an important class of equations, represented by a 
generic cubic equation of state:

   P =   
RT

 _ 
V − b   −   

a  (  T )   
 ___________    (  V + εb )     (  V + σb )        (3.41)

The assignment of appropriate parameters leads not only to the van der Waals (vdW) 
equation and the Redlich/Kwong (RK) equation, but also to the Soave/Redlich/Kwong (SRK)13 
and the Peng/Robinson (PR) equations.14 For a given equation, ɛ and σ are pure numbers, the 
same for all substances, whereas parameters a(T) and b are substance dependent. The tempera-
ture dependence of a(T) is specific to each equation of state. The SRK equation is identical to 
the RK equation, except for the T dependence of a(T). The PR equation takes different values 
for ɛ and σ, as indicated in Table 3.1.

11The heating of liquids in a microwave oven can lead to a dangerous condition of superheated liquid, which can 
“flash” explosively.

12Otto Redlich and J. N. S. Kwong, Chem. Rev., vol. 44, pp. 233–244, 1949.

13G. Soave, Chem. Eng. Sci., vol. 27, pp. 1197–1203, 1972.

14D.-Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam., vol. 15, pp. 59–64, 1976.
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98 CHAPTER 3. Volumetric Properties of Pure Fluids 

Determination of Equation-of-State Parameters
The parameters b and a(T) of Eq. (3.41) can in principle be found from PVT data, but suffi-
cient data are rarely available. They are in fact usually found from values for the critical con-
stants Tc and Pc. Because the critical isotherm exhibits a horizontal inflection at the critical 
point, we can impose the mathematical conditions:

   (    
∂ P

 ___ ∂ V   )    
T;cr

   = 0  (3.42)    (    
 ∂   2 P

 ____ 
∂  V   2 

   )    
T;cr

   = 0  (3.43)         

Subscript “cr” denotes the critical point. Differentiation of Eq. (3.41) yields 
 expressions for both derivatives, which are set equal to zero for P = Pc, T = Tc, and V = Vc. 
The equation of state itself can also be written for the critical conditions. These three equations 
contain five constants: Pc, Vc, Tc, a(Tc), and b. Of the several ways to treat these equations, the 
most suitable is elimination of Vc to yield expressions relating a(Tc) and b to Pc and Tc. The 
reason is that Pc and Tc are more widely available and more accurately known than Vc.

The algebra is intricate, but it leads eventually to the following expressions for parame-
ters b and a(Tc):

   b = Ω  
R T  c   _  P  c  

     (3.44)

and

  a  (   T  c   )    = Ψ  
 R   2  T c  2 

 _____  P  c  
    

This result is extended to temperatures other than Tc by the introduction of a dimensionless 
function α(Tr; ω) that becomes unity at the critical temperature:

   a  (  T )    = Ψ  
α  (   T  r  ; ω )    R   2  T c  2 

  ___________  P  c  
     (3.45)

In these equations Ω and Ψ are pure numbers, independent of substance but specific to a 
particular equation of state. Function α(Tr; ω) is an empirical expression, wherein by defini-
tion Tr ≡ T/Tc, and ω is a parameter specific to a given chemical species, defined and discussed 
further below.

This analysis also shows that each equation of state implies a value of the critical com-
pressibility factor Zc that is the same for all substances. Different values are found for different 
equations. Unfortunately, Zc values calculated from experimental values of Tc, Pc, and Vc dif-
fer from one species to another, and they agree in general with none of the fixed values pre-
dicted by common cubic equations of state. Experimental values are almost all smaller than 
any of the predicted values.
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3.6. Cubic Equations of State 99

Roots of the Generic Cubic Equation of State
Equations of state are commonly transformed into expressions for the compressibility factor. 
An equation for Z equivalent to Eq. (3.41) is obtained by substituting V = ZRT/P. In addition, 
we define two dimensionless quantities that lead to simplification:

 β ≡   
bP

 ___ 
RT

    (3.46)  q ≡   
a  (  T )   

 ____ 
bRT

    (3.47)

With these substitutions, Eq. (3.41) assumes the dimensionless form:

  Z = 1 + β − qβ  
Z − β
 __________    (  Z + εβ )     (  Z + σβ )       (3.48)

Although the three roots of this equation can be found analytically, they are usually 
calculated by iterative procedures built into mathematical software packages or implemented 
on a hand calculator. Convergence problems are most likely avoided when the equation is 
arranged to a form suited to the solution for a particular root.

Equation (3.48) is particularly adapted to solving for vapor and vapor-like roots because 
it takes the form of Z = 1 plus other terms that will be small at gas-like densities, where Z is 
not far from 1. Iterative solution starts with the value Z = 1 substituted on the right side. The 
calculated value of Z is returned to the right side and the process continues to convergence. 
The final value of Z yields the volume root through V = ZRT/P = ZVig.

An alternative equation for Z is obtained when Eq. (3.48) is solved for the Z in the 
numerator of the final fraction, yielding:

  Z = β +   (  Z + εβ )     (  Z + σβ )     (    
1 + β − Z

 _ 
qβ   )     (3.49)

This equation is particularly suited to solving for liquid and liquid-like roots because it 
takes a form in which Z = β plus another small term that is always positive. Iterative solution 
starts with the value Z = β substituted on the right side. Once Z is known, the volume root is 
again V = ZRT/P = ZVig.

Experimental compressibility-factor data show that values of Z for different fluids 
exhibit similar behavior when correlated as a function of reduced temperature Tr and reduced 
pressure Pr, where by definition Tr ≡ T/Tc and Pr ≡ P/Pc. Equation-of-state parameters are 
therefore commonly computed in terms of these dimensionless variables. Thus, Eq. (3.46) and  
Eq. (3.47) in combination with Eqs. (3.44) and (3.45) yield:

 β = Ω  
 P  r   __  T  r  

    (3.50)  q =   
Ψα  (   T  r  ; ω )   

 _______ Ω T  r  
    (3.51)

With parameters β and q evaluated by these equations, Z becomes a function of Tr and Pr 
and the equation of state is said to be generalized because of its general applicability to all 
gases and liquids. The numerical assignments for parameters ε, σ, Ω, and Ψ for the equations 
of interest are summarized in Table 3.1. Expressions are also given for α(Tr; ω) for the SRK 
and PR equations. Many other expressions for α(Tr; ω) have been published over the years, but 
those in Table 3.1 are the original formulations for these equations.15

15See, for example, A. F. Young, F. L. P. Pessoa, and V. R. R. Ahón, Ind. Eng. Chem. Res., vol. 55, pp. 6506–6516, 
2016. This paper compares the performance of 20 different α(Tr; ω) functions.
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100 CHAPTER 3. Volumetric Properties of Pure Fluids 

Example 3.9
Given that the vapor pressure of n-butane at 350 K is 9.4573 bar, find the molar vol-
umes of (a) saturated-vapor and (b) saturated-liquid n-butane at these conditions as 
given by the Redlich/Kwong equation.

Solution 3.9
Values of Tc and Pc for n-butane from App. B yield:

   T  r   =   
350

 _____ 425.1   = 0.8233 and  P  r   =   
9.4573

 ______ 37.96   = 0.2491  

Parameter q is given by Eq. (3.51) with Ω, Ψ, and α(Tr) for the RK equation from 
Table 3.1:

  q =   
 ΨT r  −1/2 

 _______ Ω T  r  
   =   

Ψ
 __ Ω   T r  −3/2  =   

0.42748
 ________ 0.08664    (  0.8233 )     −3/2  = 6.6048  

Parameter β is found from Eq. (3.50):

  β = Ω  
 P  r   __  T  r  

   =   
  (  0.08664 )     (  0.2491 )   

  _______________ 0.8233   = 0.026214  

(a) For the saturated vapor, we write the RK form of Eq. (3.48) that results upon  
substitution of appropriate values for ε and σ from Table 3.1:

  Z = 1 + β − qβ  
 (  Z − β )  

 ______ 
Z  (  Z + β )       

or

  Z = 1 + 0.026214 −   (  6.6048 )     (  0.026214 )     
 (  Z − 0.026214 )  

  _____________  
Z   (  Z + 0.026214 )       

Eqn. of State α(Tr) σ ε Ω Ψ Zc

vdW (1873) 1 0 0 1/8 27/64 3/8
RK (1949)   T  r       −1/2  1 0 0.08664 0.42748 1/3
SRK (1972)   α  SRK    (   T  r  ; ω )     †  1 0 0.08664 0.42748 1/3

PR (1976)   α  PR    (   T  r  ; ω )     ‡   1 +  √ 
__

 2    1 −  √ 
__

 2   0.07780 0.45724 0.30740

      †  α  SRK    (   T  r  ; ω )    =   [  1 + (0.480 + 1.574 ω − 0.176  ω   2 )(  1 − T  r      1/2 ) ]     2  

      ‡  α  PR    (   T  r  ; ω )    =   [  1 +   (  0.37464 + 1.54226 ω − 0.26992  ω   2  )     (  1 −   T  r     1/2  )    ]     2  

Table 3.1: Parameter Assignments for Equations of State
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3.6. Cubic Equations of State 101

Solution by iteration starting from Z = 1 yields Z = 0.8305, and

   V   v  =   
ZRT

 ____ 
P

   =   
  (  0.8305 )     (  83.14 )     (  350 )   

  _________________  9.4573   = 2555  cm   3  ·mol   −1   

An experimental value is 2482 cm3·mol–1.

(b) For the saturated liquid, we apply Eq. (3.49) in its RK form:

  Z = β + Z  (  Z + β )     (    
1 + β − Z

 _ 
qβ   )     

or

  Z = 0.026214 + Z  (  Z + 0.026214 )      
 (  1.026214 − Z )  

  ________________    (  6.6048 )     (  0.026214 )       

Solution by iteration yields Z = 0.04331, and

   V   l  =   
ZRT

 ____ 
P

   =   
  (  0.04331 )     (  83.14 )     (  350 )   

  __________________  9.4573   = 133.3  cm   3  ·mol   −1   

An experimental value is 115.0 cm3·mol–1.

For comparison, values of Vv and Vl calculated for the conditions of Ex. 3.9 by all four 
of the cubic equations of state considered here are summarized as follows:

Vv/cm3·mol–l Vl/cm3·mol–l

Exp. vdW RK SRK PR Exp. vdW RK SRK PR

2482 2667 2555 2520 2486 115.0 191.0 133.3 127.8 112.6

Corresponding States; Acentric Factor
The dimensionless thermodynamic coordinates Tr and Pr provide the basis for the simplest 
corresponding-states correlations:

All fluids, when compared at the same reduced temperature and reduced 
pressure, have approximately the same compressibility factor, and all 
deviate from ideal-gas behavior to about the same degree.

Two-parameter corresponding-states correlations of Z require the use of only two reducing 
parameters Tc and Pc. Although these correlations are very nearly exact for the simple fluids 
(argon, krypton, and xenon), systematic deviations are observed for more complex fluids. 
Appreciable improvement results from the introduction of a third corresponding-states param-
eter (in addition to Tc and Pc), characteristic of molecular structure. The most popular such 
parameter is the acentric factor, ω, introduced by K. S. Pitzer and coworkers.16

16Fully described in K. S. Pitzer, Thermodynamics, 3rd ed., App. 3, McGraw-Hill, New York, 1995.
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102 CHAPTER 3. Volumetric Properties of Pure Fluids 

The acentric factor for a pure chemical species is defined with reference to its vapor 
pressure. The logarithm of the vapor pressure of a pure fluid is approximately linear in the 
reciprocal of absolute temperature. This linearity can be expressed as

    
d log  P  r       sat 

 _________ 
d  (  1 /  T  r   )   

   = S  

where   P  r       sat   is reduced vapor pressure, Tr is reduced temperature, and S is the slope of a plot of 
log  P  r       sat  vs. 1/Tr . Note that “log” here denotes the base 10 logarithm.

If two-parameter corresponding-states correlations were generally valid, the slope S 
would be the same for all pure fluids. This is observed not to be true; within a limited range, 
each fluid has its own characteristic value of S, which could in principle serve as a third 
 corresponding-states parameter. However, Pitzer noted that all vapor-pressure data for the sim-
ple fluids (Ar, Kr, Xe) lie on the same line when plotted as  log  P  r       sat   vs. 1/Tr and that the line 
passes through  log  P  r       sat  = −1.0  at Tr = 0.7. This is illustrated in Fig. 3.10. Data for other fluids 
define other lines whose locations can be fixed relative to the line for the simple fluids (SF) by 
the difference:

  log  P  r       sat   (  SF )    − log  P  r       sat   

The acentric factor is defined as this difference evaluated at Tr = 0.7:

   ω ≡ −1.0 − log  (    P  r     sat  )     T  r   = 0.7     (3.52)

Therefore ω can be determined for any fluid from Tc , Pc , and a single vapor-pressure 
measurement made at Tr = 0.7. Values of ω and the critical constants Tc , Pc , and Vc for a num-
ber of substances are listed in App. B.

Figure 3.10: Approximate 
temperature dependence of the 
reduced vapor pressure.
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The definition of ω makes its value zero for argon, krypton, and xenon, and experimen-
tal data yield compressibility factors for all three fluids that are correlated by the same curves 
when Z is plotted as a function of Tr and Pr. This is the basic premise of three-parameter 
 corresponding-states correlations:
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3.7. Generalized Correlations for Gases 103

All fluids having the same value of acentric factor, when compared at the 
same reduced temperature and reduced pressure, have about the same 
compressibility factor, and all deviate from ideal-gas behavior to about 
the same degree.

Equations of state that express Z as a function of only Tr and Pr yield  two-parameter 
corresponding-states correlations. The van der Waals and Redlich/Kwong equations are 
 examples. The Soave/Redlich/Kwong (SRK) and Peng/Robinson equations, in which the 
acentric factor enters through function α(Tr; ω) as an additional parameter, yield  three-parameter 
 corresponding-states correlations.

3.7 GENERALIZED CORRELATIONS FOR GASES

Generalized correlations find widespread use. Most popular are correlations of the kind 
 developed by Pitzer and coworkers for the compressibility factor Z and for the second virial 
coefficient B.17

Pitzer Correlations for the Compressibility Factor
The correlation for Z is:
  Z =  Z   0  + ω Z   1   (3.53)
where Z0 and Z1 are functions of both Tr and Pr. When ω = 0, as is the case for the simple fluids, 
the second term disappears, and Z0 becomes identical with Z. Thus a generalized correlation for 
Z as a function of Tr and Pr based only on data for argon, krypton, and xenon provides the 
relationship Z0 = F0(Tr , Pr). By itself, this represents a two-parameter corresponding-states 
correlation for Z.

Equation (3.53) is a simple linear relation between Z and ω for given values of Tr and Pr. 
Experimental data for Z for nonsimple fluids plotted vs. ω at constant Tr and Pr do indeed 
yield approximately straight lines, and their slopes provide values for Z1 from which the gen-
eralized function Z1 = F1(Tr, Pr) can be constructed.

Of the Pitzer-type correlations available, the one developed by Lee and Kesler18 is the 
most widely used. It takes the form of tables that present values of Z 0 and Z1 as functions of Tr 
and Pr. These are given in App. D as Tables D.1 through D.4. Use of these tables requires 
interpolation, as demonstrated at the beginning of App. E. The nature of the correlation is 
indicated by Fig. 3.11, a plot of Z0 vs. Pr for six isotherms.

Figure 3.12 shows Z0 vs. Pr and Tr as a three-dimensional surface with isotherms and 
isobars superimposed. The saturation curve, where there is a discontinuity in Z, is not pre-
cisely defined in this plot, which is based on the data of Tables D.1 and D.3. One should pro-
ceed with caution when applying the Lee/Kesler tables near the saturation curve. Although the 
tables contain values for liquid and vapor phases, the boundary between these will in general 
not be the same as the saturation curve for a given real substance. The tables should not be 
used to predict whether a substance is vapor or liquid at given conditions. Rather, one must 
know the phase of the substance, and then take care to interpolate or extrapolate only from 

17See Pitzer, op. cit.

18B. I. Lee and M. G. Kesler, AIChE J., vol. 21, pp. 510–527, 1975.
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points in the table that represent the appropriate phase. The related Lee/Kesler correlation for 
predicting the vapor pressure curve itself is presented and discussed in Sec. 6.5.

The Lee/Kesler correlation provides reliable results for gases that are nonpolar or only 
slightly polar; for these, errors of no more than 2 or 3 percent are typical. When applied to 
highly polar gases or to gases that associate, larger errors can be expected.

The quantum gases (e.g., hydrogen, helium, and neon) do not conform to the same 
 corresponding-states behavior as do normal fluids. Their treatment by the usual correlations is 
sometimes accommodated by use of temperature-dependent effective critical parameters.19 
For hydrogen, the quantum gas most commonly found in chemical processing, the recom-
mended equations are:

   T  c   / K =   
43.6
 __________ 

1 +   
21.8

 ______ 2.016T
  

     (   for H  2   )     (3.54)

   P  c   / bar =   
20.5
 __________ 

1 +   
44.2

 ______ 2.016T
  

     (   for H  2   )     (3.55)

Figure 3.11: The Lee/Kesler correlation for Z 0 = F0(Tr, Pr).

0

0.2

0.4

0.6

0.8

1.0

1.2

Pr

Tr = 0.7r

Z0

Compressed liquids  
(Tr < 1.0)

Two-phase
region

Gases

0.9

0.9

C

1.0

1.2

1.5

4.0

0.7

10.05.00.51.00.50.20.05 0.1

19J. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 
3rd ed., pp. 172–173, Prentice Hall PTR, Upper Saddle River, NJ, 1999.
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3.7. Generalized Correlations for Gases 105

   V  c   /  cm   3  ·mol   −1  =   
51.5
 __________ 

1 −   
9.91

 ______ 2.016T
  

     (   for H  2   )     (3.56)

where T is absolute temperature in kelvins. Use of these effective critical parameters for hydro-
gen requires the further specification that ω = 0.

Pitzer Correlations for the Second Virial Coefficient
The tabular nature of the generalized compressibility-factor correlation is a disadvantage, but 
the complexity of the functions Z 0 and Z1 precludes their accurate representation by simple 
equations. Nonetheless, we can give approximate analytical expression to these functions for a 
limited range of pressures. The basis for this is Eq. (3.36), the simplest form of the virial 
equation:

  Z = 1 +   
BP

 ___ 
RT

   = 1 +   (    
B P  c   _ 
R T  c  

   )     
 P  r   __  T  r  

   = 1 +  B ˆ     
 P  r   __  T  r  

    (3.57)

Figure 3.12: Three-dimensional plot of the Lee/Kesler correlation for Z 0 = F 0(Tr , Pr) as given in 
Tables D.1 and D.3.
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106 CHAPTER 3. Volumetric Properties of Pure Fluids 

The reduced (and dimensionless) second virial coefficient and the Pitzer correlation for it are:

  B ˆ   ≡   
B P  c   ____ 
R T  c  

    (3.58)   B ˆ   =  B   0  + ω B   1   (3.59)

Equations (3.57) and (3.59) together become:

  Z = 1 +  B   0     
 P  r   __  T  r  

   + ω B   1     
 P  r   __  T  r  

    

Comparison of this equation with Eq. (3.53) provides the following identifications:

   Z   0  = 1 +  B   0    
 P  r   __  T  r  

    (3.60)

and

   Z   1  =  B   1    
 P  r   __  T  r  

    

Second virial coefficients are functions of temperature only, and similarly B0 and B1 are 
functions of reduced temperature only. They are adequately represented by the Abbott 
equations:20

20These correlations first appeared in 1975 in the third edition of this book, attributed as a personal communication 
to M. M. Abbott, who developed them.

  B   0  = 0.083 −   
0.422

 _____  T  
r
  1.6     (3.61)   B   1  = 0.139 −   

0.172
 _____  T  

r
  4.2     (3.62)

The simplest form of the virial equation has validity only at low to moderate pressures 
where Z is linear in pressure. The generalized virial-coefficient correlation is therefore useful 
only where Z 0 and Z1 are at least approximately linear functions of reduced pressure. 
Figure 3.13 compares the linear relation of Z 0 to Pr as given by Eqs. (3.60) and (3.61) with 
values of Z 0 from the Lee/Kesler compressibility-factor correlation, Tables D.1 and D.3 of 
App. D. The two correlations differ by less than 2% in the region above the dashed line of the 
figure. For reduced temperatures greater than Tr ≈ 3, there appears to be no limitation on the 
pressure. For lower values of Tr the allowable pressure range decreases with decreasing 
temperature. A point is reached, however, at Tr ≈ 0.7 where the pressure range is limited by the 
saturation pressure. This is indicated approximately by the left-most segment of the dashed 
line. The minor contributions of Z1 to the correlations are here neglected. In view of the 
uncertainty associated with any generalized correlation, deviations of no more than 2% in Z 0 
are not significant.

The relative simplicity of the generalized second-virial-coefficient correlation does 
much to recommend it. Moreover, temperatures and pressures of many chemical-processing 
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3.7. Generalized Correlations for Gases 107

  C ˆ   ≡   
C P  c       2 

 ______ 
 R   2  T  c       2 

    (3.64)   C ˆ   =  C   0  + ω C   1   (3.65)

Figure 3.13: Comparison of correlations for Z0. The virial-coefficient correlation is represented 
by the straight lines; the full Lee/Kesler correlation, by the points. In the region above the dashed 
line the two correlations differ by less than 2%.
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operations lie within the region appropriate to the compressibility-factor correlation. Like the 
parent correlation, it is most accurate for nonpolar species and least accurate for highly polar 
and associating molecules.

Correlations for the Third Virial Coefficient
Accurate data for third virial coefficients are far less common than for second virial coeffi-
cients. Nevertheless, generalized correlations for third virial coefficients do appear in the 
literature.

Equation (3.38) may be written in reduced form as:

  Z = 1 +  B ˆ    
 P  r   ___  T  r   Z

   +  C ˆ    (    
 P  r   ___  T  r   Z

   )     
2
   (3.63)

where the reduced second virial coefficient   B ˆ    is defined by Eq. (3.58). The reduced (and 
dimensionless) third virial coefficient and the Pitzer correlation for it are:

www.konkur.in

Telegram: @uni_k



108 CHAPTER 3. Volumetric Properties of Pure Fluids 

An expression for C 0 as a function of reduced temperature is given by Orbey and Vera:21

   C    0  = 0.01407 +   
0.02432

 ________  T  r  
   −   

0.00313
 _______ 

 T  r       10.5 
    (3.66)

The expression for C 1 given by Orbey and Vera is replaced here by one that is algebraically 
simpler, but essentially equivalent numerically:

   C   1  = −0.02676 +   
0.05539

 ________ 
 T  r       2.7 

   −   
0.00242

 ________ 
 T  r       10.5 

    (3.67)

Equation (3.63) is cubic in Z, and it cannot be expressed in the form of Eq. (3.53). With 
Tr and Pr specified, Z can be found by iteration. An initial value of Z = 1 on the right side of 
Eq. (3.63) usually leads to rapid convergence.

The Ideal-Gas State as a Reasonable Approximation
The question often arises as to when the ideal-gas state may be a reasonable approximation to 
reality. Figure 3.14 can serve as a guide.

21H. Orbey and J. H. Vera, AIChE J., vol. 29, pp. 107–113, 1983.

Figure 3.14: In the region lying 
below the curves, where Z 0  
lies between 0.98 and 1.02, the 
ideal-gas state is a reasonable 
approximation.
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Example 3.10
Determine the molar volume of n-butane at 510 K and 25 bar based on each of the 
following:

 (a) The ideal-gas state.

 (b) The generalized compressibility-factor correlation.

 (c) Equation (3.57), with the generalized correlation for   B ˆ   .

 (d) Equation (3.63), with the generalized correlations for   B ˆ    and   C ˆ   .

Solution 3.10

(a) For the ideal-gas state,

 V =   
RT

 ___ 
P

   =   
  (  83.14 )     (  510 )   

 __________ 25   = 1696.1  cm   3  ·mol   −1  

(b) With values of Tc and Pc given in Table B.1 of App. B,

   T  r   =   
510

 _____ 425.1   = 1.200    P  r   =   
25
 _____ 37.96   = 0.659  

Interpolation in Tables D.1 and D.2 then provides:

   Z   0  = 0.865    Z   1  = 0.038  

By Eq. (3.53) with ω = 0.200,

   
Z =  Z    0  + ω Z   1  = 0.865 +   (  0.200 )     (  0.038 )    = 0.873

     
V =   

ZRT
 ____ 

P
   =   

  (  0.873 )     (  83.14 )     (  510 )   
  ________________ 25   = 1480.7  cm   3  ·mol   −1 

  

If Z1, the secondary term, is neglected,  Z =  Z   0  = 0.865.  This two-parameter 
 corresponding-states correlation yields  V = 1467.1  cm   3  ·mol   −1 ,  which is less than 
1% lower than the value given by the three-parameter correlation.

(c) Values of B0 and B1 are given by Eqs. (3.61) and (3.62):

   B   0  = −0.232    B   1  = 0.059  

Equations (3.59) and (3.57) then yield:

   
 B ˆ   =  B   0  + ω B   1  = −0.232 +   (  0.200 )     (  0.059 )    = −0.220

     
Z = 1 +   (  −0.220 )     

0.659
 _____ 1.200   = 0.879

    

from which  V = 1489.1  cm   3  ·mol   −1  , a value less than 1% higher than that given by 
the full Lee/Kesler compressibility-factor correlation.
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110 CHAPTER 3. Volumetric Properties of Pure Fluids 

(d) Values of C0 and C1 are given by Eqs. (3.66) and (3.67):
    C   0  = 0.0339    C   1  = 0.0067   
Equation (3.65) then yields:

   C ˆ   =  C   0  + ω C   1  = 0.0339 +   (  0.200 )     (  0.0067 )    = 0.0352  
With this value of   C ˆ    and the value of   B ˆ    from part (c), Eq. (3.63) becomes,

  Z = 1 +   (  −0.220 )     (    
0.659

 _ 1.200Z
   )    +   (  0.0352 )     (  

0.659
 ______ 1.200Z
  )    

2
   

 Solution for Z yields Z = 0.876 and V = 1485.8 cm3·mol–1. The value of V dif-
fers from that of part (c) by about 0.2%. An experimental value for V is  
1480.7 cm3·mol–1. Significantly, the results of parts (b), (c), and (d) are in excellent 
agreement. Mutual agreement at these conditions is suggested by Fig. 3.13.

Example 3.11
What pressure is generated when 500 mol of methane is stored in a volume of 0.06 m3 
at 50°C? Base calculations on each of the following:

 (a) The ideal-gas state.

 (b) The Redlich/Kwong equation.

 (c) A generalized correlation.

Solution 3.11
The molar volume of the methane is  V = 0.06 / 500 = 0.0012  m   3  ·mol   −1  .

(a) For the ideal-gas state, with  R = 8.314 ×  10   −5  bar· m   3  ·mol   −1  ·K   −1  :

  P =   
RT

 ___ 
V

   =   
  (  8.314 ×  10   −5  )     (  323.15 )   

  __________________  0.00012   = 223.9 bar  

(b) The pressure as given by the Redlich/Kwong equation is:

  P =   
RT

 ____ 
V − b   −   

a  (  T )   
 ______ 

V  (  V + b )       (3.40)

Values of b and a(T) come from Eqs. (3.44) and (3.45), with Ω, Ψ, and  
 α  (   T  r   )    =  T  r       −1/2   from Table 3.1. With values of Tc and Pc from Table B.1, we have:

    

 T  r   =   
323.15

 ______ 190.6   = 1.695

     b = 0.08664   
(8.314 ×  10   −5 )  (  190.6 )   

  _________________  45.99   = 2.985 ×  10   −5   m   3  ·mol   −1        

a = 0.42748   
  (  1.695 )     −0.5  (8.314 ×  10   −5 )   2   (  190.6 )     2 

   ___________________________  45.99   = 1.793 ×  10   −6  bar ·m   6  ·mol   −2 
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3.7. Generalized Correlations for Gases 111

Substitution of numerical values into the Redlich/Kwong equation now yields:

 P =   
(8.314 ×  10   −5 )  (  323.15 )   

  __________________  
0.00012 − 2.985 ×  10   −5 

   −   
1.793 ×  10   −6 

  __________________________   
0.00012(0.00012 + 2.985 ×  10   −5 )

   = 198.3 bar 

(c) Because the pressure here is high, the full Lee/Kesler generalized compressibility- 
factor correlation is the proper choice. In the absence of a known value for Pr , an 
iterative procedure is based on the following equation:

 P =   
ZRT

 ____ 
V

   =   
Z(8.314 ×  10   −5 )  (  323.15 )   

  ___________________  0.00012   = 223.9 Z 

Because  P =  P  c   P  r   = 45.99  P  r   , this equation becomes:

  Z =   
45.99  P  r   ________ 223.9   = 0.2054  P  r     or    P  r   =   

Z
 _______ 0.2054    

 One now assumes a starting value for Z, say Z = 1. This gives Pr = 4.68, and 
allows a new value of Z to be calculated by Eq. (3.53) from values interpolated in 
Tables D.3 and D.4 at the reduced temperature of Tr = 1.695. With this new value 
of Z, a new value of Pr is calculated, and the procedure continues until no signifi-
cant change occurs from one step to the next. The final value of Z so found is 
0.894 at Pr = 4.35. This is confirmed by substitution into Eq. (3.53) of values for 
Z0 and Z1 from Tables D.3 and D.4 interpolated at Pr = 4.35 and Tr = 1.695. With 
ω = 0.012,

   
Z =  Z   0  + ω Z   1  = 0.891 +   (  0.012 )     (  0.268 )    = 0.894

     
P =   

ZRT
 ____ 

V
   =   

  (  0.894 )    (8.314 ×  10   −5 )   (  323.15 )   
   __________________  0.00012   = 200.2  bar 

   

Because the acentric factor is small, the two- and three-parameter compressibility-
factor correlations are little different. The Redlich/Kwong equation and the generalized 
compressibility-factor correlation give answers within 2% of the experimental value of 
196.5 bar.

Example 3.12
A mass of 500 g of gaseous ammonia is contained in a vessel of 30,000 cm3 volume and 
immersed in a constant-temperature bath at 65°C. Calculate the pressure of the gas by:

 (a) The ideal-gas state;

 (b) A generalized correlation.

SOLUTION 3.12
The molar volume of ammonia in the vessel is:

  V =   
 V   t 

 __ 
n
   =   

 V   t 
 ____ 

m / ℳ   =   
30,000

 _________ 500 / 17.02   = 1021.2  cm   3  ·mol   −1   
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(a) For the ideal-gas state,

  P =   
RT

 ___ 
V

   =   
  (  83.14 )     (  65 + 273.15 )   

  ________________  1021.2   = 27.53 bar  

(b) Because the reduced pressure is low (Pr ≈ 27.53/112.8 = 0.244), the generalized 
virial-coefficient correlation should suffice. Values of B0 and B1 are given by  
Eqs. (3.61) and (3.62). With Tr = 338.15/405.7 = 0.834,

    B   0  = −0.482    B   1  = −0.232   

Substitution into Eq. (3.59) with ω = 0.253 yields:

   
 B ˆ   = − 0.482 +   (  0.253 )     (  −0.232 )    = −0.541

     
B =   

 B ˆ  R T  c   _____  P  c  
   =   

−  (  0.541 )     (  83.14 )     (  405.7 )   
  __________________  112.8   = −161.8  cm   3  ·mol   −1 

   

By the second equality of Eq. (3.36):

 P =   
RT
 ____ 

V − B   =   
  (  83.14 )     (  338.15 )   

  _____________  1021.2 + 161.8   = 23.76 bar 

An iterative solution is not necessary because B is independent of pressure. The c al-
culated P corresponds to a reduced pressure of Pr = 23.76/112.8 = 0.211. Reference 
to Fig. 3.13 confirms the suitability of the generalized virial-coefficient correlation.

Experimental data indicate that the pressure is 23.82 bar at the given condi-
tions. Thus the ideal-gas state yields an answer high by about 15%, whereas the 
virial-coefficient correlation gives an answer in substantial agreement with exper-
iment, even though ammonia is a polar molecule.

Example 3.13 
For n-butane at 470 K prepare a plot of compressibility factor Z as a function of pres-
sure in bar, for pressures up to 200 bar, comparing the results from:

 (a) The Redlich/Kwong equation of state.

 (b) The Peng/Robinson equation of state.

 (c) The 2-term virial equation, with the generalized correlation for   B ˆ   .

 (d) The 3-term virial equation, with the generalized correlations for   B ˆ    and   C ˆ   .

 (e) Data from the NIST Chemistry WebBook, which can be considered equivalent 
to accurate experimental results.

Solution 3.13
From App. B, Tc = 425.1 K, Pc = 37.96 bar, and ω = 0.200. Thus, Tr = 470/425.1 = 
1.1056
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(a) For the Redlich/Kwong equation of state, we compute:

 q =    
Ψ

 __ Ω      T  r  −3/2   =    
0.42748

 _______ 0.08664    1.105  6   −3/2   = 4.2442

β = Ω   
 P r  __  T r 

   = 0.08664    
P∕37.96

 _______ 1.1056    = 0.002064P with P in bar

Then, for each pressure, we must solve:

Z = 1 + β − qβ   
Z − β

 ________ 
Z(Z + β)   = 1 + 0.002064P − 0.008762P   

Z − 0.002064P
  _______________  

Z(Z + 0.002064P)  

One way to do this for a series of pressures all at once is to formulate it as a mini-
mization problem, minimizing the sum over all of the selected pressure values of

  (1 + 0.002064 P i  − 0.008762 P i    
 Z i  − 0.002064 P i   _________________   Z i ( Z i  + 0.002064 P i )

   −  Z i )  
2
 

This can be done in Microsoft Excel, for example, by computing the above expres-
sion for a list of pressures  P i , adding all of those cells, and then minimizing that 
sum by varying all of the  Z i . If, and only if, the equation that we were aiming to 
solve is satisfied at every pressure will this sum equal zero. Otherwise, it will be 
positive. The solver function in Excel is well suited to minimize the value in a 
single cell by varying values in many cells. Of course, many other approaches in 
many different software packages are possible. Doing the above produces the 
curve labeled R/K in the figure.

(b) For the Peng-Robinson equation of state, we compute:

 α PR ( T r ; ω) =  [1+ (0.37464 + 1.54226ω − 0.26992 ω 2 ) (1 −  T  r  −1/2 ) ] 2

 α PR ( T r ; ω) =  [1 + (0.37464 + 1.54226 × 0.200 − 0.26992 × 0.2002) (1 − 1.1056−1/2) ] 2

= 1.0669

q =   
ΨαPR(Tr; ω)

 ___________ ΩTr
   =   

0.45724 × 1.0669
  _______________  0.07780 × 1.1056   = 5.6714

β = Ω   
Pr

 __ 
Tr

   = 0.07780   
P∕37.96

 _______ 1.1056   = 0.001854P with P in bar.

In this case, for each pressure we must solve:

 Z = 1 + β − qβ   
Z − β
  ____________________________   

(Z + (1 +  √ 
__

 2  )β)(Z + (1 −  √ 
__

 2  )β)
  

 Z = 1 + 0.001854P − 0.010513P   
Z − 0.001854P

  ___________________________   (Z + 0.004475P)(Z − 0.007678P)  

The same solution strategies as in part (a) are applicable, and produce the curve 
labelled P/R in the figure.
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(c) For the 2-term virial equation with the generalized correlation for   B ˆ   , we 
compute:

 B0 = 0.083 −    
0.422

 _____  T  r  1.6     = 0.083 −    
0.422

 ________ 
1.10561.6    = −0.2764

 B1 = 0.139 −    
0.172

 _____  T  r  4.2     = 0.139 −    
0.172

 ________ 
1.10564.2    = 0.0262

And

 Z = 1 + (B0 + ωB1)    
Pr

 __ 
Tr

    = 1 + (−0.2764 + 0.200 × 0.0262)    
P∕37.96

 _______ 1.1056   

With P in bar. This gives the straight line in the figure labeled 2-term.

(d) For the 3-term virial equation, with the generalized correlations for   B ˆ    and   C ˆ   , 
we must compute:

 C 0 = 0.01407 +    
0.02432

 _______ 
Tr

    −    
0.00313

 _______  T  r  10.5    

 C 0 = 0.01407 +    
0.02432

 _______ 1.1056    −    
0.00313

 _________ 
1.105610.5    = 0.03498

 C1 = −0.02767 +    
0.05539

 _______  T  r  2.7     −    
0.00242

 _______  T  r  10.5    

 C1 = −0.02767 +    
0.05539

 ________ 
1.10562.7    −    

0.00242
 _________ 

1.105610.5    = 0.013724

   B ˆ    = B0 + ωB1 = −0.2764 + 0.200 × 0.0262 = −0.2711
   C ˆ    = C 0 + ωC1 = 0.03498 + 0.200 × 0.01372 = 0.03772

And the 3-term virial equation in reduced form (Eq. 3.63) is:

 Z = 1 +   B ˆ       
Pr

 ___ 
TrZ

    +   C ˆ       (  
Pr

 ___ 
TrZ

  )  
2
   = 1 − 0.2711    

P∕37.96
 _______ 1.1056Z
    + 0.03772   (  

P∕37.96
 _______ 1.1056Z
  )  

2
  

 Z = 1 − 0.00646    
P

 __ 
Z

    + 2.141 × 10−5    (  
P

 __ 
Z

  )  
2
  

A solution strategy similar to that used in (a) and (b) can be applied, yielding the 
curve labeled 3-term in the figure.

(e) Finally, for this part, we simply download the data from the NIST WebBook at 
the selected pressures. The values of Z computed from the molar density down-
loaded is plotted as the curve labelled NIST in the figure.

In this particular case, the Peng/Robinson equation gives excellent agreement with 
the NIST data. The Redlich/Kwong equation and the 3-term virial expansion also 
give reasonable results. Of course, the 2-term virial expansion can only work at 
relatively low pressures.
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3.8 GENERALIZED CORRELATIONS FOR LIQUIDS

Although the molar volumes of liquids can be calculated by means of generalized cubic equa-
tions of state, the results are often not of high accuracy. However, the Lee/Kesler correlation 
includes data for subcooled liquids, and Fig. 3.11 illustrates curves for both liquids and gases. 
Values for both phases are provided in Tables D.1 through D.4 of App. D. Recall, however, 
that this correlation is most suitable for nonpolar and slightly polar fluids.

In addition, generalized equations are available for the estimation of molar volumes of 
saturated liquids. The simplest equation, proposed by Rackett,22 is an example:

   V   sat  =  V  c    Z  c      ( 1−T  r  )   2/7    (3.68)

An alternative form of this equation is sometimes useful:

   Z   sat  =   
 P  r   __  T  r  

   Z c  
 [1+  (  1− T  r   )     2/7 ]    (3.69)

22H. G. Rackett, J. Chem. Eng. Data, vol. 15, pp. 514–517, 1970; see A. Mulero, I. Cachadiña, and M. I. Parra, Ind. 
Eng. Chem. Res., vol. 45, pp. 1840–1848 and pp. 6864–6873, 2006, for a detailed evaluation of available methods and 
their performance for different families of compounds.
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116 CHAPTER 3. Volumetric Properties of Pure Fluids 

The only data required are the critical constants, given in Table B.1 of App. B. Results are 
often accurate to 1 or 2% for light alkanes, with errors increasing for larger and more polar 
molecules.

Lydersen, Greenkorn, and Hougen23 developed a two-parameter corresponding-states 
correlation for estimation of liquid volumes. It provides a correlation of reduced density ρr as 
a function of reduced temperature and pressure. By definition,

   ρ  r   ≡   
ρ

 __  ρ  c  
   =   

 V  c   ___ 
V

    (3.70)

where ρc is the density at the critical point. The generalized correlation is shown by Fig. 3.15. 
This figure may be used directly with Eq. (3.70) for determination of liquid volumes if the 
value of the critical volume is known. A better procedure is to make use of a single known 
liquid volume (state 1) by the identity,

   V  2   =  V  1     
 ρ   r  1     ___  ρ   r  2    

    (3.71)

where

   
 V  2   =

  
required volume

    V  1   =  known volume   
 ρ   r  1    ,  ρ   r  2     =

  
reduced densities read from Fig. 3.15

  

23A. L. Lydersen, R. A. Greenkorn, and O. A. Hougen, “Generalized Thermodynamic Properties of Pure Fluids,” 
Univ. Wisconsin, Eng. Expt. Sta. Rept. 4, 1955.

Figure 3.15: Generalized density correlation for liquids.
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3.8. Generalized Correlations for Liquids 117

This method gives good results and requires only experimental data that are usually available. 
Figure 3.15 makes clear the increasing effects of both temperature and pressure on liquid den-
sity as the critical point is approached. Nasrifar et al. compared the performance several more 
recent correlations for compressed liquids, including their own.24 These provide somewhat 
improved performance at the expense of greater complexity.

Correlations for the molar densities as functions of temperature are given for many pure 
liquids by Daubert and coworkers.25

Example 3.14
For ammonia at 310 K, estimate the density of:

 (a) The saturated liquid;

 (b) The liquid at 100 bar.

Solution 3.14

(a) Apply the Rackett equation at the reduced temperature,    T  r   = 310 / 405.7 = 0.7641 . 
With   V  c   = 72.47  and   Z  c   = 0.242  (from Table B.1),

   V   sat  =  V  c    Z  c      (1− T  r  )   2/7   =   (  72.47 )     (  0.242 )       (  0.2359 )     2/7   = 28.33  cm   3  ·mol   −1   

For comparison, the experimental value is  29.14  cm   3  ·mol   −1  , a 2.7% difference.

(b) The reduced conditions are:

   T  r   = 0.764    P  r   =   
100

 _____ 112.8   = 0.887  

Substituting the value, ρr = 2.38 (from Fig. 3.15), and Vc into Eq. (3.70) gives:

 V =   
 V  c   ___  ρ  r  

   =   
72.47

 _____ 2.38   = 30.45  cm   3  ·mol   −1  

In comparison with the experimental value of 28.6 cm3·mol–1, this result is higher 
by 6.5%.

If we start with the experimental value of 29.14 cm3·mol–1 for saturated liquid 
at 310 K, Eq. (3.71) may be used. For the saturated liquid at   T  r   = 0.764,  ρ   r  1     = 2.34  
(from Fig. 3.15). Substitution of known values into Eq. (3.71) gives:

   V  2   =  V  1    
 ρ   r  1     ___  ρ   r  2    

   =   (  29.14 )     (    
2.34

 _ 2.38   )    = 28.65  cm   3  ·mol   −1   

This result is in essential agreement with the experimental value.
Direct application of the Lee/Kesler correlation with values of Z 0 and Z1  

interpolated from Tables D.1 and D.2 leads to a value of 33.87 cm3·mol–1, which 
is significantly in error, presumably due to the highly polar nature of ammonia.

24Kh. Nasrifar, Sh. Ayatollahi, and M. Moshfeghian, Fluid Phase Equilib., vol. 168, pp. 149–163, 2000.
25T. E. Daubert, R. P. Danner, H. M. Sibul, and C. C. Stebbins, Physical and Thermodynamic Properties of Pure 

Chemicals: Data Compilation, Taylor & Francis, Bristol, PA, extant 1995.
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118 CHAPTER 3. Volumetric Properties of Pure Fluids 

3.9 SYNOPSIS

After studying this chapter, including the end-of-chapter problems, one should be able to:

 ∙ State and apply the phase rule for nonreacting systems
 ∙ Interpret PT and PV diagrams for a pure substance, identifying the solid, liquid, gas, and 

fluid regions; the fusion (melting), sublimation, and vaporization curves; and the critical 
and triple points

 ∙ Draw isotherms on a PV diagram for temperatures above and below the critical 
temperature

 ∙ Define isothermal compressibility and volume expansivity and use them in calculations 
for liquids and solids

 ∙ Make use of the facts that for the ideal-gas state Uig and Hig depend only on T (not on P 
and Vig), and that   C P  ig  =  C V  ig  + R 

 ∙ Compute heat and work requirements and property changes for mechanically reversible 
isothermal, isobaric, isochoric, and adiabatic processes in the ideal-gas state

 ∙ Define and use the compressibility factor Z
 ∙ Intelligently select an appropriate equation of state or generalized correlation for appli-

cation in a given situation, as indicated by the following chart: 

(a) Ideal-gas state

(b) Two-term virial equation

(c) Cubic equation of state

(d) Lee/Kesler tables, Appendix D

(e) Incompressible liquid

(f) Rackett equation, Eq. (3.68)

(g) Constant β and κ

(h) Lydersen et al. chart, Fig. 3.15

Gas or 
liquid?

Gas

Liquid

 ∙ Apply the two-term virial equation of state, written in terms of pressure or molar 
density

 ∙ Relate the second and third virial coefficients to the slope and curvature of a plot of the 
compressibility factor versus molar density

 ∙ Write the van der Waals and generic cubic equations of state, and explain how the 
equation-of-state parameters are related to critical properties
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 ∙ Define and use Tr, Pr, and ω
 ∙ Explain the basis for the two- and three-parameter corresponding-states correlations
 ∙ Compute parameters for the Redlich/Kwong, Soave/Redlich/Kwong, and Peng/Robinson 

equations of state from critical properties
 ∙ Solve any of the cubic equations of state, where appropriate, for the vapor or vapor-like 

and/or liquid or liquid-like molar volumes at given T and P
 ∙ Apply the Lee/Kesler correlation by interpolation in the tables of Appendix D
 ∙ Determine whether the Pitzer correlation for the second virial coefficient is applicable 

for given T and P, and use it if appropriate
 ∙ Estimate liquid-phase molar volumes by generalized correlations

3.10 PROBLEMS

 3.1. How many phase rule variables must be specified to fix the thermodynamic state of 
each of the following systems?

 (a) A sealed flask containing a liquid ethanol-water mixture in equilibrium with its vapor.
 (b) A sealed flask containing a liquid ethanol-water mixture in equilibrium with its 

vapor and nitrogen.
 (c) A sealed flask containing ethanol, toluene, and water as two liquid phases plus vapor.

 3.2. A renowned laboratory reports quadruple-point coordinates of 10.2 Mbar and 24.1°C 
for four-phase equilibrium of allotropic solid forms of the exotic chemical β-miasmone. 
Evaluate the claim.

 3.3. A closed, nonreactive system contains species 1 and 2 in vapor/liquid equilibrium. 
Species 2 is a very light gas, essentially insoluble in the liquid phase. The vapor phase 
contains both species 1 and 2. Some additional moles of species 2 are added to the 
system, which is then restored to its initial T and P. As a result of the process, does the 
total number of moles of liquid increase, decrease, or remain unchanged?

 3.4. A system comprised of chloroform, 1,4-dioxane, and ethanol exists as a two-phase 
vapor/liquid system at 50°C and 55 kPa. After the addition of some pure ethanol, the 
system can be returned to two-phase equilibrium at the initial T and P. In what respect 
has the system changed, and in what respect has it not changed?

 3.5. For the system described in Prob. 3.4:

 (a) How many phase-rule variables in addition to T and P must be chosen so as to fix 
the compositions of both phases?

 (b) If the temperature and pressure are to remain the same, can the overall composi-
tion of the system be changed (by adding or removing material) without affecting 
the compositions of the liquid and vapor phases?
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 3.6. Express the volume expansivity and the isothermal compressibility as functions of 
density ρ and its partial derivatives. For water at 50°C and 1 bar,  κ = 44.18 ×  10   −6    
bar   −1  . To what pressure must water be compressed at 50°C to change its density by 
1%? Assume that κ is independent of P.

 3.7. Generally, volume expansivity β and isothermal compressibility κ depend on T and P. 
Prove that:

   (  
∂ β

 ___ ∂ P  )   
T

   = −  (  
∂ κ

 ___ ∂ T  )   
P

   

 3.8. The Tait equation for liquids is written for an isotherm as:

  V =  V  0    (  1 −   
AP

 _ 
B + P   )     

where V is molar or specific volume, V0 is the hypothetical molar or specific volume 
at zero pressure, and A and B are positive constants. Find an expression for the isother-
mal compressibility consistent with this equation.

 3.9. For liquid water the isothermal compressibility is given by:

  κ =   
c
 ______ 

V  (  P + b )       

where c and b are functions of temperature only. If 1 kg of water is compressed iso-
thermally and reversibly from 1 to 500 bar at 60°C, how much work is required? At 
60°C, b = 2700 bar and c = 0.125 cm3·g–1.

 3.10. Calculate the reversible work done in compressing 1(ft)3 of mercury at a constant 
temperature of 32(°F) from 1(atm) to 3000(atm). The isothermal compressibility of 
mercury at 32(°F) is:

  κ /   (  atm )     −1  = 3.9 ×  10   −6  − 0.1 ×  10   −9  P / (  atm )     

 3.11. Five kilograms of liquid carbon tetrachloride undergo a mechanically reversible, iso-
baric change of state at 1 bar during which the temperature changes from 0°C to 20°C. 
Determine ΔVt, W, Q, ΔHt, and ΔUt. The properties for liquid carbon tetrachloride at 
1 bar and 0°C may be assumed independent of temperature:  β = 1.2 ×  10   −3    K   −1  ,   
C  P   = 0.84  kJ·kg   −1  ·K   −1  , and  ρ = 1590  kg·m   −3  .

 3.12. Various species of hagfish, or slime eels, live on the ocean floor, where they burrow 
inside other fish, eating them from the inside out and secreting copious amounts of 
slime. Their skins are widely used to make eelskin wallets and accessories. Suppose a 
hagfish is caught in a trap at a depth of 200 m below the ocean surface, where the 
water temperature is 10°C, then brought to the surface where the temperature is 15°C. 
If the isothermal compressibility and volume expansivity are assumed constant and 
equal to the values for water,

   (  β =  10   −4   K   −1  and κ = 4.8 ×  10   −5   bar   −1  )    
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what is the fractional change in the volume of the hagfish when it is brought to the surface?

Table 3.2 provides the specific volume, isothermal compressibility, and volume expansivity of 
several liquids at 20°C and 1 bar26 for use in Probs. 3.13 to  3.15, where β and κ  may be 
assumed constant.

26CRC Handbook of Chemistry and Physics, 90th ed., pp. 6-140–6-141 and p. 15-25, CRC Press, Boca Raton, 
Florida, 2010.

Molecular  
Formula Chemical Name

Specific  
Volume  
V/L·kg–1

Isothermal  
Compressibility  

κ/10–5 bar–1

Volume  
Expansivity  
β/10–3·°C–1

C2H4O2 Acetic acid 0.951 9.08 1.08
C6H7N Aniline 0.976 4.53 0.81
CS2 Carbon disulfide 0.792 9.38 1.12
C6H5Cl Chlorobenzene 0.904 7.45 0.94
C6H12 Cyclohexane 1.285 11.3 1.15
C4H10O Diethyl ether 1.401 18.65 1.65
C2H5OH Ethanol 1.265 11.19 1.40
C4H8O2 Ethyl acetate 1.110 11.32 1.35
C8H10 m-Xylene 1.157 8.46 0.99
CH3OH Methanol 1.262 12.14 1.49
CCl4 Tetrachloromethane 0.628 10.5 1.14
C7H8 Toluene 1.154 8.96 1.05
CHCl3 Trichloromethane 0.672 9.96 1.21

Table 3.2: Volumetric Properties of Liquids at 20°C

 3.13. For one of the substances in Table 3.2, compute the change in volume and work done 
when one kilogram of the substance is heated from 15°C to 25°C at a constant pres-
sure of 1 bar.

 3.14. For one of the substances in Table 3.2, compute the change in volume and work done 
when one kilogram of the substance is compressed from 1 bar to 100 bar at a constant 
temperature of 20°C.

 3.15. For one of the substances in Table 3.2, compute the final pressure when the substance 
is heated from 15°C and 1 bar to 25°C at constant volume.

 3.16. A substance for which κ is a constant undergoes an isothermal, mechanically revers-
ible process from initial state (P1, V1) to final state (P2, V2), where V is molar 
volume.

 (a) Starting with the definition of κ, show that the path of the process is described by: 

   V = A  (  T )   exp (   −κP )     
 (b) Determine an exact expression which gives the isothermal work done on 1 mol of 

this constant-κ substance.
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 3.17. One mole of an ideal gas with CP = (7/2)R and CV = (5/2)R expands from P1 = 8 bar 
and T1 = 600 K to P2 = 1 bar by each of the following paths:

 (a) Constant volume
 (b) Constant temperature
 (c) Adiabatically

Assuming mechanical reversibility, calculate W, Q, ΔU, and ΔH for each process. 
Sketch each path on a single PV diagram.

 3.18. One mole of an ideal gas with CP = (5/2)R and CV = (3/2)R expands from P1 = 6 bar 
and T1 = 800 K to P2 = 1 bar by each of the following paths:

 (a) Constant volume
 (b) Constant temperature
 (c) Adiabatically

Assuming mechanical reversibility, calculate W, Q, ΔU, and ΔH for each process. 
Sketch each path on a single PV diagram.

 3.19. An ideal gas initially at 600 K and 10 bar undergoes a four-step mechanically revers-
ible cycle in a closed system. In step 12, pressure decreases isothermally to 3 bar; in 
step 23, pressure decreases at constant volume to 2 bar; in step 34, volume decreases 
at constant pressure; and in step 41, the gas returns adiabatically to its initial state. 
Take CP = (7/2)R and CV = (5/2)R.

 (a) Sketch the cycle on a PV diagram.
 (b) Determine (where unknown) both T and P for states 1, 2, 3, and 4.
 (c) Calculate Q, W, ΔU, and ΔH for each step of the cycle.

 3.20. An ideal gas initially at 300 K and 1 bar undergoes a three-step mechanically revers-
ible cycle in a closed system. In step 12, pressure increases isothermally to 5 bar; in 
step 23, pressure increases at constant volume; and in step 31, the gas returns adiabat-
ically to its initial state. Take CP = (7/2)R and CV = (5/2)R.

 (a) Sketch the cycle on a PV diagram.
 (b) Determine (where unknown) V, T, and P for states 1, 2, and 3.
 (c) Calculate Q, W, ΔU, and ΔH for each step of the cycle.

 3.21. The state of an ideal gas with CP = (5/2)R is changed from P = 1 bar and   V  1  t   = 12  m   3   
to P2 = 12 bar and   V  2  t   = 1  m   3   by the following mechanically reversible processes:

 (a) Isothermal compression.
 (b) Adiabatic compression followed by cooling at constant pressure.
 (c) Adiabatic compression followed by cooling at constant volume.
 (d) Heating at constant volume followed by cooling at constant pressure.
 (e) Cooling at constant pressure followed by heating at constant volume.

Calculate Q, W, ΔUt, and ΔHt for each of these processes, and sketch the paths of all 
processes on a single PV diagram.

www.konkur.in

Telegram: @uni_k



3.10. Problems 123

 3.22. The environmental lapse rate dT/dz characterizes the local variation of temperature 
with elevation in the earth’s atmosphere. Atmospheric pressure varies with elevation 
according to the hydrostatic formula, 

    
dP

 ___ 
dz

   = −ℳρg  

where ℳ is molar mass, ρ is molar density, and g is the local acceleration of gravity. 
Assume that the atmosphere is an ideal gas, with T related to P by the polytropic 
formula:

  T P     (1−δ) ⁄ δ   = constant  

 Develop an expression for the environmental lapse rate in relation to ℳ, g, R, and δ.

 3.23. An evacuated tank is filled with gas from a constant-pressure line. Develop an expres-
sion relating the temperature of the gas in the tank to the temperature T′ of the gas in 
the line. Assume the gas is ideal with constant heat capacities, and ignore heat transfer 
between the gas and the tank. 

 3.24. A tank of 0.1 m3 volume contains air at 25°C and 101.33 kPa. The tank is connected to 
a compressed-air line which supplies air at constant conditions of 45°C and 1500 kPa. A 
valve in the line is cracked so that air flows slowly into the tank until the pressure equals 
the line pressure. If the process occurs slowly enough that the temperature in the tank 
remains at 25°C, how much heat is lost from the tank? Assume air to be an ideal gas for 
which CP = (7/2)R and CV = (5/2)R.

 3.25. Gas at constant T and P is contained in a supply line connected through a valve to a 
closed tank containing the same gas at a lower pressure. The valve is opened to allow 
flow of gas into the tank, and then is shut again.

 (a) Develop a general equation relating n1 and n2, the moles (or mass) of gas in the 
tank at the beginning and end of the process, to the properties U1 and U2, the 
internal energy of the gas in the tank at the beginning and end of the process, and 
H′, the enthalpy of the gas in the supply line, and to Q, the heat transferred to the 
material in the tank during the process.

 (b) Reduce the general equation to its simplest form for the special case of an ideal 
gas with constant heat capacities.

 (c) Further reduce the equation of (b) for the case of n1 = 0.
 (d) Further reduce the equation of (c) for the case in which, in addition, Q = 0.
 (e) Treating nitrogen as an ideal gas for which CP = (7/2)R, apply the appropriate 

equation to the case in which a steady supply of nitrogen at 25°C and 3 bar flows 
into an evacuated tank of 4 m3 volume, and calculate the moles of nitrogen that 
flow into the tank to equalize the pressures for two cases:

 1. Assume that no heat flows from the gas to the tank or through the tank walls.
 2.  Assume that the tank weighs 400 kg, is perfectly insulated, has an initial tem-

perature of 25°C, has a specific heat of 0.46 kJ·kg−1·K−1, and is heated by the 
gas so as always to be at the temperature of the gas in the tank.

www.konkur.in

Telegram: @uni_k



124 CHAPTER 3. Volumetric Properties of Pure Fluids 

 3.26. Develop equations that can be solved to give the final temperature of the gas remaining 
in a tank after the tank has been bled from an initial pressure P1 to a final pressure P2. 
Known quantities are initial temperature, tank volume, heat capacity of the gas, total 
heat capacity of the containing tank, P1, and P2. Assume the tank to be always at the 
temperature of the gas remaining in the tank and the tank to be perfectly insulated.

 3.27. A rigid, nonconducting tank with a volume of 4 m3 is divided into two unequal parts 
by a thin membrane. One side of the membrane, representing 1/3 of the tank, contains 
nitrogen gas at 6 bar and 100°C, and the other side, representing 2/3 of the tank, is 
evacuated. The membrane ruptures and the gas fills the tank.

 (a) What is the final temperature of the gas? How much work is done? Is the process 
reversible?

 (b) Describe a reversible process by which the gas can be returned to its initial state. 
How much work is done?

Assume nitrogen is an ideal gas for which CP = (7/2)R and CV = (5/2)R.

 3.28. An ideal gas, initially at 30°C and 100 kPa, undergoes the following cyclic processes 
in a closed system:

 (a) In mechanically reversible processes, it is first compressed adiabatically to 
500  kPa, then cooled at a constant pressure of 500 kPa to 30°C, and finally 
expanded isothermally to its original state.

 (b) The cycle traverses exactly the same changes of state, but each step is irreversible 
with an efficiency of 80% compared with the corresponding mechanically revers-
ible process. Note: The initial step can no longer be adiabatic.

Calculate Q, W, ΔU, and ΔH for each step of the process and for the cycle. Take CP = 
(7/2)R and CV = (5/2)R.

 3.29. One cubic meter of an ideal gas at 600 K and 1000 kPa expands to five times its initial 
volume as follows:

 (a) By a mechanically reversible, isothermal process.
 (b) By a mechanically reversible, adiabatic process.
 (c) By an adiabatic, irreversible process in which expansion is against a restraining 

pressure of 100 kPa.

For each case calculate the final temperature, pressure, and the work done by the gas. 
Take CP = 21 J·mol−1·K−1.

 3.30. One mole of air, initially at 150°C and 8 bar, undergoes the following mechanically 
reversible changes. It expands isothermally to a pressure such that when it is cooled at 
constant volume to 50°C its final pressure is 3 bar. Assuming air is an ideal gas for 
which CP = (7/2)R and CV = (5/2)R, calculate W, Q, ΔU, and ΔH.
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 3.31. An ideal gas flows through a horizontal tube at steady state. No heat is added and no 
shaft work is done. The cross-sectional area of the tube changes with length, and this 
causes the velocity to change. Derive an equation relating the temperature to the 
velocity of the gas. If nitrogen at 150°C flows past one section of the tube at a velocity 
of 2.5 m·s−1, what is its temperature at another section where its velocity is 50 m·s−1? 
Assume CP = (7/2)R.

 3.32. One mole of an ideal gas, initially at 30°C and 1 bar, is changed to 130°C and 10 bar 
by three different mechanically reversible processes:

 ∙ The gas is first heated at constant volume until its temperature is 130°C; then it is 
compressed isothermally until its pressure is 10 bar.

 ∙ The gas is first heated at constant pressure until its temperature is 130°C; then it is 
compressed isothermally to 10 bar.

 ∙ The gas is first compressed isothermally to 10 bar; then it is heated at constant 
pressure to 130°C.

Calculate Q, W, ΔU, and ΔH in each case. Take CP = (7/2)R and CV = (5/2)R. Alter-
natively, take CP = (5/2)R and CV = (3/2)R.

 3.33. One mole of an ideal gas, initially at 30°C and 1 bar, undergoes the following mechan-
ically reversible changes. It is compressed isothermally to a point such that when it is 
heated at constant volume to 120°C its final pressure is 12 bar. Calculate Q, W, ΔU, 
and ΔH for the process.

 3.34. One mole of an ideal gas in a closed system, initially at 25°C and 10 bar, is first 
expanded adiabatically, then heated isochorically to reach a final state of 25°C and 
1 bar. Assuming these processes are mechanically reversible, compute T and P after 
the adiabatic expansion, and compute Q, W, ΔU, and ΔH for each step and for the 
overall process. Take CP = (7/2)R and CV = (5/2)R.

 3.35. A process consists of two steps: (1) One mole of air at T = 800 K and P = 4 bar is 
cooled at constant volume to T = 350 K. (2) The air is then heated at constant pressure 
until its temperature reaches 800 K. If this two-step process is replaced by a single 
isothermal expansion of the air from 800 K and 4 bar to some final pressure P, what is 
the value of P that makes the work of the two processes the same? Assume mechanical 
reversibility and treat air as an ideal gas with CP = (7/2)R and CV = (5/2)R.

 3.36. One cubic meter of argon is taken from 1 bar and 25°C to 10 bar and 300°C by each of 
the following two-step paths. For each path, compute Q, W, ΔU, and ΔH for each step 
and for the overall process. Assume mechanical reversibility and treat argon as an 
ideal gas with CP = (5/2)R and CV = (3/2)R.

 (a) Isothermal compression followed by isobaric heating.
 (b) Adiabatic compression followed by isobaric heating or cooling.
 (c) Adiabatic compression followed by isochoric heating or cooling.
 (d) Adiabatic compression followed by isothermal compression or expansion.
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 3.37. A scheme for finding the internal volume   V B  t    of a gas cylinder consists of the follow-
ing steps. The cylinder is filled with a gas to a low pressure P1, and connected through 
a small line and valve to an evacuated reference tank of known volume   V A  t   . The valve 
is opened, and gas flows through the line into the reference tank. After the system 
returns to its initial temperature, a sensitive pressure transducer provides a value for 
the pressure change ΔP in the cylinder. Determine the cylinder volume   V B  t    from the 
following data:

 ∙   V A  t   = 256  cm   3  

 ∙  ΔP /  P  1   = −0.0639 

 3.38. A closed, nonconducting, horizontal cylinder is fitted with a nonconducting, friction-
less, floating piston that divides the cylinder into Sections A and B. The two sections 
contain equal masses of air, initially at the same conditions, T1 = 300 K and P1 = 
1(atm). An electrical heating element in Section A is activated, and the air tempera-
tures slowly increase: TA in Section A because of heat transfer, and TB in Section B 
because of adiabatic compression by the slowly moving piston. Treat air as an ideal 
gas with   C  P   =   7 _ 2  R , and let nA be the number of moles of air in Section A. For the pro-
cess as described, evaluate one of the following sets of quantities:

 (a) TA, TB, and Q/nA, if P(final) = 1.25(atm)
 (b) TB, Q/nA, and P (final), if TA = 425 K
 (c) TA, Q/nA, and P (final), if TB = 325 K
 (d) TA, TB, and P (final), if Q/nA = 3 kJ·mol−1

 3.39. One mole of an ideal gas with constant heat capacities undergoes an arbitrary mechan-
ically reversible process. Show that:

  ΔU =   
1
 ___ γ − 1  Δ  (  PV )     

 3.40. Derive an equation for the work of mechanically reversible, isothermal compression 
of 1 mol of a gas from an initial pressure P1 to a final pressure P2 when the equation 
of state is the virial expansion [Eq. (3.33)] truncated to:

  Z = 1 + B′P  

How does the result compare with the corresponding equation for an ideal gas?

 3.41. A certain gas is described by the equation of state:

  PV = RT +   (  b −   
θ
 _ 

RT
   )   P  

Here, b is a constant and θ is a function of T only. For this gas, determine expressions 
for the isothermal compressibility κ and the thermal pressure coefficient    (  ∂ P / ∂ T )    V  .  
These expressions should contain only T, P, θ, dθ/dT, and constants.
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 3.42. For methyl chloride at 100°C the second and third virial coefficients are:

   B = −242.5  cm   3  ·mol   −1   C = 25,200  cm   6  ·mol   −2    

Calculate the work of mechanically reversible, isothermal compression of 1 mol of 
methyl chloride from 1 bar to 55 bar at 100°C. Base calculations on the following 
forms of the virial equation:

 (a)   Z = 1 +   
B

 __ 
V

   +   
C

 ___ 
 V   2 

   

 (b)   Z = 1 + B′P + C′ P   2  

where  B′ =   
B
 ___ 

RT
   and C′=   

C −  B   2 
 _____ 

  (  RT )     2 
    

Why don’t both equations give exactly the same result?

 3.43. Any equation of state valid for gases in the zero-pressure limit implies a full set of 
virial coefficients. Show that the second and third virial coefficients implied by the 
generic cubic equation of state, Eq. (3.41), are:

   B = b −   
a  (  T )   

 ____ 
RT

    C =  b   2  +   
  (  ε + σ )   ba  (  T )   

 ________ 
RT

     

Specialize the result for B to the Redlich/Kwong equation of state, express it in reduced 
form, and compare it numerically with the generalized correlation for B for simple 
fluids, Eq. (3.61). Discuss what you find.

 3.44. Calculate Z and V for ethylene at 25°C and 12 bar by the following equations:

 (a) The truncated virial equation [Eq. (3.38)] with the following experimental values 
of virial coefficients:

   B = −140  cm   3  ·mol   −1   C = 7200  cm   6  ·mol   −2    

 (b) The truncated virial equation [Eq. (3.36)], with a value of B from the generalized 
Pitzer correlation [Eqs. (3.58)–(3.62)]

 (c) The Redlich/Kwong equation
 (d) The Soave/Redlich/Kwong equation
 (e) The Peng/Robinson equation

 3.45. Calculate Z and V for ethane at 50°C and 15 bar by the following equations:

 (a) The truncated virial equation [Eq. (3.38)] with the following experimental values 
of virial coefficients:

   B = −156.7   cm   3  ·mol   −1   C = 9650   cm   6  ·mol   −2    

 (b) The truncated virial equation [Eq. (3.36)], with a value of B from the generalized 
Pitzer correlation [Eqs. (3.58)–(3.62)]

 (c) The Redlich/Kwong equation
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 (d) The Soave/Redlich/Kwong equation
 (e) The Peng/Robinson equation

 3.46. Calculate Z and V for sulfur hexafluoride at 75°C and 15 bar by the following 
equations:

 (a) The truncated virial equation [Eq. (3.38)] with the following experimental values 
of virial coefficients:

   B = −194  cm   3  ·mol   −1   C = 15,300  cm   6  ·mol   −2    

 (b) The truncated virial equation [Eq. (3.36)], with a value of B from the generalized 
Pitzer correlation [Eqs. (3.58)–(3.62)]

 (c) The Redlich/Kwong equation
 (d) The Soave/Redlich/Kwong equation
 (e) The Peng/Robinson equation

For sulfur hexafluoride, Tc = 318.7 K, Pc = 37.6 bar, Vc = 198 cm3·mol−1, and  
ω = 0.286.

 3.47. Calculate Z and V for ammonia at 320 K and 15 bar by the following equations:

 (a) The truncated virial equation [Eq. (3.38)] with the following values of virial 
 coefficients:  

   B = −208  cm   3  ·mol   −1   C = 4378  cm   6  ·mol   −2    

 (b) The truncated virial equation [Eq. (3.36)], with a value of B from the generalized 
Pitzer correlation [Eqs. (3.58)–(3.62)]

 (c) The Redlich/Kwong equation
 (d) The Soave/Redlich/Kwong equation
 (e) The Peng/Robinson equation

 3.48. Calculate Z and V for boron trichloride at 300 K and 1.5 bar by the following  
equations:

 (a) The truncated virial equation [Eq. (3.38)] with the following values of virial 
coefficients:

   B = −724  cm   3  ·mol   −1   C = −93,866  cm   6  ·mol   −2    

 (b) The truncated virial equation [Eq. (3.36)], with a value of B from the generalized 
Pitzer correlation [Eqs. (3.58)–(3.62)]

 (c) The Redlich/Kwong equation
 (d) The Soave/Redlich/Kwong equation
 (e) The Peng/Robinson equation

For BCl3, Tc = 452 K, Pc = 38.7 bar, and ω = 0.086.
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 3.49. Calculate Z and V for nitrogen trifluoride at 300 K and 95 bar by the following 
equations:

 (a) The truncated virial equation [Eq. (3.38)] with the following values of virial 
coefficients:

   B = −83.5  cm   3  ·mol   −1   C = −5592  cm   6  ·mol   −2    

 (b) The truncated virial equation [Eq. (3.36)], with a value of B from the generalized 
Pitzer correlation [Eqs. (3.58)–(3.62)]

 (c) The Redlich/Kwong equation
 (d) The Soave/Redlich/Kwong equation
 (e) The Peng/Robinson equation

For NF3, Tc = 234 K, Pc = 44.6 bar, and ω = 0.126.

 3.50. Determine Z and V for steam at 250°C and 1800 kPa by the following:

 (a) The truncated virial equation [Eq. (3.38)] with the following experimental values 
of virial coefficients:

   B = −152.5  cm   3  ·mol   −1   C = −5800  cm   6  ·mol   −2    

 (b) The truncated virial equation [Eq. (3.36)], with a value of B from the generalized 
Pitzer correlation [Eqs. (3.58)–(3.62)]

 (c) The steam tables (App. E)

 3.51. With respect to the virial expansions, Eqs. (3.33) and (3.34), show that:

  B′ =   (  
∂ Z

 ___ ∂ P  )   
T,P=0

   and B =   (  
∂ Z

 ___ ∂ ρ  )   
T,ρ=0

    

where ρ ≡ 1/V.

 3.52. Equation (3.34) when truncated to four terms accurately represents the volumetric 
data for methane gas at 0°C with:

   B = −53.4  cm   3  ·mol   −1   C = 2620  cm   6  ·mol   −2   D = 5000  cm   9  ·mol   −3    

 (a) Use these data to prepare a plot of Z vs. P for methane at 0°C from 0 to 200 bar.
 (b) To what pressures do Eqs. (3.36) and (3.37) provide good approximations?

 3.53. Calculate the molar volume of saturated liquid and the molar volume of saturated 
vapor by the Redlich/Kwong equation for one of the following and compare results 
with values found by suitable generalized correlations.

 (a) Propane at 40°C where Psat = 13.71 bar
 (b) Propane at 50°C where Psat = 17.16 bar
 (c) Propane at 60°C where Psat = 21.22 bar
 (d) Propane at 70°C where Psat = 25.94 bar
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 (e) n-Butane at 100°C where Psat = 15.41 bar
 ( f ) n-Butane at 110°C where Psat = 18.66 bar
 (g) n-Butane at 120°C where Psat = 22.38 bar
 (h) n-Butane at 130°C where Psat = 26.59 bar
 (i) Isobutane at 90°C where Psat = 16.54 bar
 (j) Isobutane at 100°C where Psat = 20.03 bar
 (k) Isobutane at 110°C where Psat = 24.01 bar
 (l) Isobutane at 120°C where Psat = 28.53 bar
 (m) Chlorine at 60°C where Psat = 18.21 bar
 (n) Chlorine at 70°C where Psat = 22.49 bar
 (o) Chlorine at 80°C where Psat = 27.43 bar
 (p) Chlorine at 90°C where Psat = 33.08 bar
 (q) Sulfur dioxide at 80°C where Psat = 18.66 bar
 (r) Sulfur dioxide at 90°C where Psat = 23.31 bar
 (s) Sulfur dioxide at 100°C where Psat = 28.74 bar
 (t) Sulfur dioxide at 110°C where Psat = 35.01 bar
 (u) Boron trichloride at 400 K where Psat = 17.19 bar
  For BCl3, Tc = 452 K, Pc = 38.7 bar, and ω = 0.086.
 (v) Boron trichloride at 420 K where Psat = 23.97 bar
 (w) Boron trichloride at 440 K where Psat = 32.64 bar
 (x) Trimethylgallium at 430 K where Psat = 13.09 bar
  For Ga(CH3)3, Tc = 510 K, Pc = 40.4 bar, and ω = 0.205.
 (y) Trimethylgallium at 450 K where Psat = 18.27 bar
 (z) Trimethylgallium at 470 K where Psat = 24.55 bar 

 3.54. Use the Soave/Redlich/Kwong equation to calculate the molar volumes of saturated 
liquid and saturated vapor for the substance and conditions given by one of the parts 
of Prob. 3.53 and compare results with values found by suitable generalized 
correlations.

 3.55. Use the Peng/Robinson equation to calculate the molar volumes of saturated liquid and 
saturated vapor for the substance and conditions given by one of the parts of  
Prob. 3.53 and compare results with values found by suitable generalized correlations.

 3.56. Estimate the following:

 (a) The volume occupied by 18 kg of ethylene at 55°C and 35 bar.
 (b) The mass of ethylene contained in a 0.25 m3 cylinder at 50°C and 115 bar.

 3.57. The vapor-phase molar volume of a particular compound is reported as 23,000 
cm3·mol–1 at 300 K and 1 bar. No other data are available. Without assuming ideal-gas 
behavior, determine a reasonable estimate of the molar volume of the vapor at 300 K 
and 5 bar.

 3.58. To a good approximation, what is the molar volume of ethanol vapor at 480°C and 
6000 kPa? How does this result compare with the ideal-gas value?
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 3.59. A 0.35 m3 vessel is used to store liquid propane at its vapor pressure. Safety considerations 
dictate that at a temperature of 320 K the liquid must occupy no more than 80% of the 
total volume of the vessel. For these conditions, determine the mass of vapor and the 
mass of liquid in the vessel. At 320 K the vapor pressure of propane is 16.0 bar.

 3.60. A 30 m3 tank contains 14 m3 of liquid n-butane in equilibrium with its vapor at 25°C. 
Estimate the mass of n-butane vapor in the tank. The vapor pressure of n-butane at the 
given temperature is 2.43 bar.

 3.61. Estimate:

 (a) The mass of ethane contained in a 0.15 m3 vessel at 60°C and 14,000 kPa.
 (b) The temperature at which 40 kg of ethane stored in a 0.15 m3 vessel exerts a pres-

sure 20,000 kPa.

 3.62. A size D compressed gas cylinder has an internal volume of 2.40 liters. Estimate the 
pressure in a size D cylinder if it contains 454 g of one of the following semiconductor 
process gases at 20°C:

 (a) Phosphine, PH3, for which Tc = 324.8 K, Pc = 65.4 bar, and ω = 0.045
 (b) Boron trifluoride, BF3, for which Tc = 260.9 K, Pc = 49.9 bar, and ω = 0.434
 (c) Silane, SiH4, for which Tc = 269.7 K, Pc = 48.4 bar, and ω = 0.094
 (d) Germane, GeH4, for which Tc = 312.2 K, Pc = 49.5 bar, and ω = 0.151
 (e) Arsine, AsH3, for which Tc = 373 K, Pc = 65.5 bar, and ω = 0.011
 ( f ) Nitrogen trifluoride, NF3, for which Tc = 234 K, Pc = 44.6 bar, and ω = 0.120

 3.63. For one of the substances in Prob. 3.62, estimate the mass of the substance contained 
in the size D cylinder at 20°C and 25 bar.

 3.64. Recreational scuba diving using air is limited to depths of 40 m. Technical divers use 
different gas mixes at different depths, allowing them to go much deeper. Assuming a 
lung volume of 6 liters, estimate the mass of air in the lungs of:

 (a) A person at atmospheric conditions.
 (b) A recreational diver breathing air at a depth of 40 m below the ocean surface.
 (c) A near-world-record technical diver at a depth of 300 m below the ocean surface, 

breathing 10 mol-% oxygen, 20 mol-% nitrogen, 70 mol-% helium.

 3.65. To what pressure does one fill a 0.15 m3 vessel at 25°C in order to store 40 kg of  
ethylene in it?

 3.66. If 15 kg of H2O in a 0.4 m3 container is heated to 400°C, what pressure is developed?

 3.67. A 0.35 m3 vessel holds ethane vapor at 25°C and 2200 kPa. If it is heated to 220°C, 
what pressure is developed?

 3.68. What is the pressure in a 0.5 m3 vessel when it is charged with 10 kg of carbon dioxide 
at 30°C?
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 3.69. A rigid vessel, filled to one-half its volume with liquid nitrogen at its normal boiling 
point, is allowed to warm to 25°C. What pressure is developed? The molar volume of 
liquid nitrogen at its normal boiling point is 34.7 cm3·mol–1.

 3.70. The specific volume of isobutane liquid at 300 K and 4 bar is 1.824 cm3·g–1. Estimate 
the specific volume at 415 K and 75 bar.

 3.71. The density of liquid n-pentane is 0.630 g·cm–3 at 18°C and 1 bar. Estimate its density 
at 140°C and 120 bar.

 3.72. Estimate the density of liquid ethanol at 180°C and 200 bar.

 3.73. Estimate the volume change of vaporization for ammonia at 20°C. At this temperature 
the vapor pressure of ammonia is 857 kPa.

 3.74. PVT data may be taken by the following procedure: A mass m of a substance of molar 
mass ℳ is introduced into a thermostated vessel of known total volume Vt. The sys-
tem is allowed to equilibrate, and the temperature T and pressure P are measured.

 (a) Approximately what percentage errors are allowable in the measured variables (m, 
ℳ, Vt, T, and P) if the maximum allowable error in the calculated compressibility 
factor Z is ±1%?

 (b) Approximately what percentage errors are allowable in the measured variables if 
the maximum allowable error in calculated values of the second virial coefficient 
B is ±1%? Assume that Z ≃ 0.9 and that values of B are calculated by Eq. (3.37).

 3.75. For a gas described by the Redlich/Kwong equation and for a temperature greater than 
Tc, develop expressions for the two limiting slopes,

     lim  
P→0

    (  
∂ Z

 ___ ∂ P  )   
T

       lim  
P→∞

    (  
∂ Z

 ___ ∂ P  )   
T

     

Note that in the limit as P → 0, V → ∞, and that in the limit as P → ∞, V → b.

 3.76. If 140(ft)3 of methane gas at 60(°F) and 1(atm) is equivalent to 1(gal) of gasoline as 
fuel for an automobile engine, what would be the volume of the tank required to hold 
methane at 3000(psia) and 60(°F) in an amount equivalent to 10(gal) of gasoline?

 3.77. Determine a good estimate for the compressibility factor Z of saturated hydrogen 
vapor at 25 K and 3.213 bar. For comparison, an experimental value is Z = 0.7757.

 3.78. The Boyle temperature is the temperature for which:

    lim  
P→0

    (  
∂ Z

 ___ ∂ P  )   
T

   = 0  

 (a) Show that the second virial coefficient B is zero at the Boyle temperature.
 (b) Use the generalized correlation for B, Eqs. (3.58)–(3.62), to estimate the reduced 

Boyle temperature for simple fluids.
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 3.79. Natural gas (assume pure methane) is delivered to a city via pipeline at a volumetric 
rate of 150 million standard cubic feet per day. Average delivery conditions are 50(°F) 
and 300(psia). Determine:

 (a) The volumetric delivery rate in actual cubic feet per day.
 (b) The molar delivery rate in kmol per hour.
 (c) The gas velocity at delivery conditions in m·s–1.

The pipe is 24(in) schedule-40 steel with an inside diameter of 22.624(in). Standard 
conditions are 60(°F) and 1(atm).

 3.80. Some corresponding-states correlations use the critical compressibility factor Zc, 
rather than the acentric factor ω, as a third parameter. The two types of correlation 
(one based on Tc, Pc, and Zc, the other on Tc, Pc, and ω) would be equivalent were 
there a one-to-one correspondence between Zc and ω. The data of App. B allow a test 
of this correspondence. Prepare a plot of Zc vs. ω to see how well Zc correlates with ω. 
Develop a linear correlation (Zc = a + bω) for nonpolar substances.

 3.81. Figure 3.3 suggests that the isochores (paths of constant volume) are approximately 
straight lines on a P-T diagram. Show that the following models imply linear isochores.

 (a) Constant-β, κ equation for liquids
 (b) Ideal-gas equation
 (c) Van der Waals equation

 3.82. An ideal gas, initially at 25°C and 1 bar, undergoes the following cyclic processes in a 
closed system:

 (a) In mechanically reversible processes, it is first compressed adiabatically to 5 bar, 
then cooled at a constant pressure of 5 bar to 25°C, and finally expanded isother-
mally to its original pressure.

 (b) The cycle is irreversible, and each step has an efficiency of 80% compared with the 
corresponding mechanically reversible process. The cycle still consists of an adia-
batic compression step, an isobaric cooling step, and an isothermal expansion.

Calculate Q, W, ΔU, and ΔH for each step of the process and for the cycle. Take CP = 
(7/2)R and CV = (5/2)R.

 3.83. Show that the density-series second virial coefficients can be derived from isothermal 
volumetric data via the expression:  

  B =   lim  
ρ→0

    (  Z − 1 )    / ρ   ρ(molar density) ≡ 1 / V  

 3.84. Use the equation of the preceding problem and data from Table E.2 of App. E to 
obtain a value of B for water at one of the following temperatures:

 (a) 300°C
 (b) 350°C
 (c) 400°C
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 3.85. Derive the values of Ω, Ψ, and Zc given in Table 3.1 for:

 (a) The Redlich/Kwong equation of state.
 (b) The Soave/Redlich/Kwong equation of state.
 (c) The Peng/Robinson equation of state.

 3.86. Suppose Z vs. Pr data are available at constant Tr . Show that the reduced density-series 
second virial coefficient can be derived from such data via the expression:

   B ˆ   =   lim  
 P  r  →0

    (  Z − 1 )   Z T  r   /  P  r    

Suggestion: Base the development on the full virial expansion in density, Eq. (3.34)

 3.87. Use the result of the preceding problem and data from Table D.1 of App. D to obtain a value 
of   B ˆ    for simple fluids at Tr = 1. Compare the result with the value implied by Eq. (3.61).

 3.88. The following conversation was overheard in the corridors of a large engineering firm.

New engineer: “Hi, boss. Why the big smile?”

Old-timer: “I finally won a wager with Harry Carey, from Research. He bet me that I 
couldn’t come up with a quick but accurate estimate for the molar volume of argon at 
30°C  and 300 bar. Nothing to it; I used the ideal-gas equation, and got about  
83 cm3·mol−1. Harry shook his head, but paid up. What do you think about that?”

New engineer (consulting his thermo text): “I think you must be living right.”

Argon at the stated conditions is not an ideal gas. Demonstrate numerically why the 
old-timer won his wager.

 3.89. Five mol of calcium carbide are combined with 10 mol of water in a closed, rigid, 
high-pressure vessel of 1800 cm3 internal empty volume. Acetylene gas is produced 
by the reaction:

   CaC  2    (  s )    + 2 H  2  O  (  l )    →  C  2   H  2    (  g )    + Ca  (  OH )    2    (  s )     

The vessel contains packing with a porosity of 40% to prevent explosive decomposi-
tion of the acetylene. Initial conditions are 25°C and 1 bar, and the reaction goes to 
completion. The reaction is exothermic, but owing to heat transfer, the final tempera-
ture is only 125°C. Determine the final pressure in the vessel.
Note: At 125°C, the molar volume of Ca(OH)2 is 33.0 cm3·mol−1. Ignore the effects of 
any gases (e.g., air) initially present in the vessel.

 3.90. Storage is required for 35,000 kg of propane, received as a gas at 10°C and 1(atm). 
Two proposals have been made:

 (a) Store it as a gas at 10°C and 1(atm).
 (b) Store it as a liquid in equilibrium with its vapor at 10°C and 6.294(atm). For this 

mode of storage, 90% of the tank volume is occupied by liquid.

Compare the two proposals, discussing pros and cons of each. Be quantitative where possible.
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 3.91. The definition of compressibility factor Z, Eq. (3.32), may be written in the more intu-
itive form:

  Z ≡   
V
 __________ 

V  (  ideal gas )       

where both volumes are at the same T and P. Recall that an ideal gas is a model sub-
stance comprising particles with no intermolecular forces. Use the intuitive definition 
of Z to argue that:

 (a) Intermolecular attractions promote values of Z < 1.
 (b) Intermolecular repulsions promote values of Z > 1.
 (c) A balance of attractions and repulsions implies that Z = 1. (Note that an ideal gas 

is a special case for which there are no attractions or repulsions.)

 3.92. Write the general form of an equation of state as:

  Z = 1 +  Z  rep    (  ρ )    −  Z  attr    (  T, ρ )     

where Zrep(ρ) represents contributions from repulsions, and Zattr(T, ρ) represents con-
tributions from attractions. What are the repulsive and attractive contributions to the 
van der Waals equation of state?

 3.93. Given below are four proposed modifications of the van der Waals equation of state. 
Are any of these modifications reasonable? Explain carefully; statements such as, “It 
isn’t cubic in volume” do not qualify.

 (a)  P =   
RT

 ____ 
V − b   −   

a
 __ 

V
   

 (b)  P =   
RT
 ______ 

  (  V − b )     2 
   −   

a
 __ 

V
   

 (c)  P =   
RT
 ______ 

V  (  V − b )      −   
a
 ___ 

 V   2 
   

 (d)  P =   
RT

 ___ 
V

   −   
a
 ___ 

 V   2 
   

 3.94. With reference to Prob. 2.47, assume air to be an ideal gas, and develop an expression 
giving the household air temperature as a function of time.

 3.95. A garden hose with the water valve shut and the nozzle closed sits in the sun, full of 
liquid water. Initially, the water is at 10°C and 6 bar. After some time the temperature 
of the water rises to 40°C. Owing to the increase in temperature and pressure and the 
elasticity of the hose, the internal diameter of the hose increases by 0.35%. Estimate 
the final pressure of the water in the hose.
Data: β(ave) = 250 × 10−6 K−1; κ(ave) = 45 × 10−6 bar−1
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 3.96. Prepare a plot like that in Ex. 3.13 comparing results from the Redlich/Kwong equa-
tion, Peng/Robinson equation, two-term virial equation, three-term virial equation, 
and NIST WebBook thermophysical properties of fluids data for one of the 
following:

 (a) Water at 770 K and pressures up to 1000 bar
 (b) Carbon monoxide at 160 K and pressures up to 200 bar
 (c) Propylene at 460 K and pressures up to 250 bar
 (d) Cyclohexane at 660 K and pressures up to 200 bar
 (e) Argon at 200 K and pressures up to 300 bar
 ( f ) Hydrogen sulfide at 450 K and pressures up to 450 bar
 (g) Carbon dioxide at 370 K and pressures up to 400 bar
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Chapter 4

Heat Effects

Heat effects refer to physical and chemical phenomena that are associated with heat transfer to or 
from a system, that result in temperature changes within a system, or both. The simplest example 
of a heat effect is the heating or cooling of a substance by the purely physical direct transfer of 
heat to or from the substance. The temperature changes that occur are known as sensible heat 
effects, because they can be detected by our sense perception of temperature. Phase changes, 
physical processes occurring for a pure substance at constant temperature and pressure, are 
accompanied by latent heats. Chemical reactions are characterized by heats of reaction, which 
for combustion reactions evolve heat. Every chemical or biochemical process is associated with 
one or more heat effects. The metabolism of the human body, for example, generates heat that is 
either transferred to its surroundings or used to maintain or increase body temperature.

Chemical manufacturing processes generally involve multiple heat effects. For example, 
ethylene  glycol (a coolant and antifreeze) is made by catalytic partial oxidation of ethylene to 
form ethylene oxide, followed by a hydration reaction:

 

  C  2    H  4   +   1 _ 2  O2 →  C  2    H  4  O

     C  2    H  4  O +  H  2  O →  C  2    H  4    (OH)  2  

 The oxidation reaction is carried out near 250°C, and the reactants must be heated to this 
temperature, a sensible heat effect. The oxidation reaction tends to raise the temperature, and the 
heat of reaction is removed from the reactor to keep the temperature near 250°C. The ethylene 
oxide is hydrated to glycol by absorption in water. Heat is evolved because of the phase change 
and dissolution, and also because of the hydration reaction. Finally, the glycol is purified by dis-
tillation, a process of vaporization and condensation, resulting in the separation of glycol from 
the other components of the solution. Virtually all of the important heat effects are included in 
this process. Most of these are treated in the present chapter, although heat effects related to 
mixing processes must be delayed until Chap. 11, after thermodynamics of solutions have been 
introduced in Chap. 10. The following important heat effects are considered in this chapter:

 ∙ Sensible heat effects, characterized by temperature changes
 ∙ Temperature dependence of internal energy, enthalpy, and heat capacity
 ∙ Heats of phase transition, i.e., latent heats of pure substances
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 ∙ Heats of reaction, combustion, and formation
 ∙ Temperature dependence of heats of reaction
 ∙ The calculation of heat effects for industrial processes that involve phase and tempera-

ture changes along with one or more chemical reactions

4.1 SENSIBLE HEAT EFFECTS

Heat transfer to or from a system in which there are no phase transitions, no chemical reac-
tions, and no changes in composition causes a sensible heat effect, i.e., the temperature of the 
system changes. The need here is for a relation between the quantity of heat transferred and the 
resulting temperature change.

When the system is a homogeneous substance of constant composition, the phase rule 
indicates that fixing the values of two intensive properties establishes its state. The molar or 
specific internal energy of a substance can therefore be expressed as a function of two other 
state variables. The key thermodynamic variable is temperature. With molar or specific vol-
ume chosen as the second independent variable, we have U = U(T, V). Then

 dU =   (    
∂ U

 ___ ∂ T   )    
V

   dT +   (    
∂ U

 ___ ∂ V   )    
T

   dV 

With the definition of CV provided by Eq. (2.15) this becomes:

 dU =  C  V   dT +   (    
∂ U

 ___ ∂ V   )    
T 

   dV 

The final term is zero in two circumstances:

 ∙ For any closed-system constant-volume process.
 ∙ Whenever the internal energy is independent of volume, as for the ideal-gas state or for 

an incompressible liquid.

In either case,  dU =  C  V   dT  

and  ΔU =  ∫ 
 T  1  

  
 T  2  

  C  V   dT    (4.1)

Although real liquids are to some degree compressible, far below their critical tempera-
ture they can usually be treated as incompressible fluids. The ideal-gas state is also of interest, 
because actual gases at low pressures approach ideality. The only possible mechanically 
reversible constant-volume process is simple heating (stirring work is inherently irreversible), 
for which Q = ΔU, and Eq. (2.18) written for a unit mass or a mole becomes:

 Q = ΔU =  ∫ 
 T  1  

  
 T  2  

    C  V   dT 
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Enthalpy can be treated similarly, with molar or specific enthalpy expressed most conve-
niently as a function of temperature and pressure. Then H = H(T, P), and

 dH =   (    
∂ H

 ___ ∂ T   )    
P

   dT +   (    
∂ H

 ___ ∂ P   )    
T

   dP 

With the definition of CP provided by Eq. (2.19),

 dH =  C  P   dT +   (    
∂ H

 ___ ∂ P   )    
T

   dP 

Again, the final term is zero for two situations:

 ∙ For any constant-pressure process.
 ∙ When the enthalpy is independent of pressure, regardless of process. This is exactly true 

for the ideal-gas state and approximately true for real gases at low pressure and high 
temperature.

For these situations,  dH =  C  P   dT  

and   ΔH =  ∫ 
 T  1  

  
 T  2  

  C  P   dT    (4.2)

Moreover, Q = ΔH for mechanically reversible, constant-pressure, closed-system processes 
[Eq. (2.22)] and for the transfer of heat in steady-flow processes where ΔEP and ΔEK are 
 negligible and Ws = 0 [Eq. (2.32)]. In these situations,

  Q = ΔH =  ∫ 
 T  1  

  
 T  2  

    C  P   dT  (4.3)

This equation is most often applied to flow processes that involve simple heating or cooling of 
gases, liquids, or solids.

Temperature Dependence of the Heat Capacity
Evaluation of the integral in Eq. (4.3) requires knowledge of the temperature dependence of 
the heat capacity. This is usually given by an empirical equation; the two simplest expressions 
of practical value are:

   
 C  P  

 ___ 
R

   = α + βT + γ T   2      and       
 C  P  

 ___ 
R

   = a + bT + c T   −2  

where α, β, and γ and a, b, and c are constants characteristic of the particular substance. With 
the exception of the last term, these equations are of the same form. We therefore combine 
them to provide a single expression:

    
 C  P  

 ___ 
R

   = A + BT + C T   2  + D T   −2   (4.4)
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where either C or D is usually zero, depending on the substance considered.1 Because the ratio 
CP/R is dimensionless, the units of CP are governed by the choice of R. The parameters are 
independent of temperature, but, at least in principle, depend on the value of the constant pres-
sure. However, for liquids and solids the effect of pressure is usually very small. Values of the 
constants for selected solids and liquids are given in Tables C.2 and C.3 of App. C. The heat 
capacities of solids and liquids are usually found by direct measurement. Correlations for the 
heat capacities of many solids and liquids are given by Perry and Green and in the DIPPR 
Project 801 collection.2

Heat Capacity in the Ideal-Gas State
We noted in Section 3.3 that as P → 0 a gas approaches the ideal-gas state, wherein molecular 
volumes and intermolecular forces are negligible. If these conditions are imagined to persist 
with increasing pressure, a hypothetical ideal-gas state continues to exist at finite pressures. 
The gas still has properties reflective of its internal molecular configuration, just as does a real 
gas, but without the influence of intermolecular interactions. Accordingly, ideal-gas-state heat 
capacities, designated by   C P  ig

   and   C V  ig
  , are functions of temperature, but independent of pres-

sure, facilitating their correlation. Figure 4.1 illustrates the temperature dependence of   C P  ig
   for 

several representative substances.
Statistical mechanics provides a basic equation for the temperature dependence of the 

ideal-gas-state internal energy:

  U   ig  =   
3
 __ 2    RT + f  (T)  

Equation (3.10), for the ideal-gas state,   H   ig  =  U   ig  + RT , becomes:

  H   ig  =   
5
 __ 2    RT + f  (T)  

In view of Eq. (2.19),

  C P  ig
  ≡   (     

∂  H   ig 
 ____ ∂ T   )    

P

   =   
5
 __ 2    R +   (     

∂ f  (  T )  
 _____ ∂ T   )    

P

   

The first term on the right represents translational kinetic energy of the molecule, whereas the 
second combines all energies associated with rotational and vibrational motions of the molecule. 
Because the molecules of a monatomic gas have no energies of rotation or vibration, f (T) in the 
preceding equation is zero. Thus, in Fig. 4.1 the value of   C P  ig

  / R  for argon is constant at a value 
of 5/2. For diatomic and polyatomic gases, f (T) contributes importantly at all temperatures of  
practical importance. Diatomic molecules have a contribution equal to RT from their two 
 rotational modes of motion. Thus, in Fig. 4.1,   C P  ig

  / R  for N2 is about 7/2 R at moderate tempera-
ture, and it increases at higher temperatures as intramolecular vibration begins to contribute. 
Nonlinear polyatomic molecules have a contribution of 3/2 R from their three rotational modes 

1The NIST Chemistry WebBook, http://webbook.nist.gov/, uses the Shomate equation for heat capacities, which 
includes a T3 term along with all four terms of Eq. (4.4).

2R. H. Perry and D. Green, Perry’s Chemical Engineers’ Handbook, 8th ed., Sec. 2, McGraw-Hill, New York, 
2008; Design Institute for Physical Properties, Project 801, http://www.aiche.org/dippr/projects/801.
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The temperature dependence of   C P  ig
   or   C V  ig

   is determined by experiment, most often 
from spectroscopic data and knowledge of molecular structure through calculations based on 
statistical mechanics.3 Increasingly, quantum chemistry calculations, rather than spectroscopy 
experiments, are used to provide the molecular structure, and they often permit the calculation 
of heat capacities with precision comparable to experimental measurement. Where experi-
mental data are not available, and quantum chemistry calculations are not warranted, methods 
of estimation are employed, as described by Prausnitz, Poling, and O’Connell.4

Figure 4.1: Ideal-gas-state heat 
capacities of argon, nitrogen, 
water, and carbon dioxide. Ideal-
gas-state heat capacities increase 
smoothly with increasing tem-
perature toward an upper limit, 
which is reached when all trans-
lational, rotational, and vibra-
tional modes of molecular 
motion are fully excited.
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3D. A. McQuarrie, Statistical Mechanics, pp. 136–137, HarperCollins, New York, 1973.
4B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and Liquids, 5th ed., chap. 3, McGraw-

Hill, New York, 2001.

of motion, and in addition usually have low-frequency vibrational modes that make an addi-
tional contribution at moderate temperature. The contribution becomes larger the more com-
plex the molecule and increases monotonically with temperature, as is evident from the curves 
in Fig. 4.1 for H2O and CO2. The trend with molecular size and complexity is illustrated by the 
values of   C P  ig

  / R  at 298 K in Table C.1 of App. C.

www.konkur.in

Telegram: @uni_k



142 CHAPTER 4. Heat Effects

Temperature dependence is expressed analytically by equations such as Eq. (4.4), here written:

    
 C P  ig

 
 ___ 

R
   = A + BT + C T   2  + D T   −2   (4.5)

Values of the constants are given in Table C.1 of App. C for a number of common 
organic and inorganic gases. More accurate but more complex equations are found in the liter-
ature.5 As a result of Eq. (3.12), the two ideal-gas-state heat capacities are related:

    
 C V  ig

 
 ___ 

R
   =   

 C P  ig
 
 ___ 

R
   − 1  (4.6)

The temperature dependence of   C V  ig
  / R  follows from the temperature dependence of   C P  ig

  / R .
Although ideal-gas-state heat capacities are exactly correct for real gases only at zero 

pressure, the departure of real gases from the ideal-gas state is seldom significant at pressures 
below several bar, and here   C P  ig

   and   C V  ig
   are usually good approximations to their true heat 

capacities. Reference to Fig. 3.14 indicates a vast range of conditions at Pr < 0.1 for which 
assumption of the ideal-gas state is usually a suitable approximation. For most substances Pc 
exceeds 30 bar, which means that ideal-gas state behavior is often closely approximated up to 
a pressure of at least 3 bar.

Example 4.1
The parameters listed in Table C.1 of Appendix C require use of Kelvin temperatures in 
Eq. (4.5). Equations of the same form may also be developed for use with tempera-
tures in °C, but the parameter values are different. The molar heat capacity of methane 
in the ideal-gas state is given as a function of temperature in kelvins by:

   
 C P  ig

 
 ___ 

R
   = 1.702 + 9.081 ×  10   −3  T − 2.164 ×  10   −6   T   2  

where the parameter values are from Table C.1. Develop an equation for   C P  ig
  / R  for use 

with temperatures in °C.

Solution 4.1
The relation between the two temperature scales is:  T K = t° C + 273.15 .

Therefore, as a function of t,

   
 C P  ig

 
 ___ 

R
   = 1.702 + 9.081 ×  10   −3 (t + 273.15) − 2.164 ×  10   −6   (t + 273.15)   2  

or    
 C P  ig

 
 ___ 

R
   = 4.021 + 7.899 ×  10   −3  t − 2.164 ×  10   −6   t   2  

5See F. A. Aly and L. L. Lee, Fluid Phase Equilibria, vol. 6, pp. 169–179, 1981, and its bibliography; see also 
Design Institute for Physical Properties, Project 801, http://www.aiche.org/dippr/projects/801, and the Shomate equa-
tion employed by the NIST Chemistry WebBook, http://webbook.nist.gov.
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4.1. Sensible Heat Effects 143

Gas mixtures of constant composition behave exactly as do pure gases. In the ideal-gas 
state, molecules in mixtures have no influence on one another, and each gas exists independent 
of the others. The ideal-gas-state heat capacity of a mixture is therefore the mole-fraction-
weighted sum of the heat capacities of the individual gases. Thus, for gases A, B, and C, the 
molar heat capacity of a mixture in the ideal-gas state is:

   C  P  mixture    
ig

   =  y  A   C  P  A    
ig

   +  y  B   C  P  B    
ig

   +  y  C   C  P  C    ig
    (4.7)

where   C  P  A    
ig

  ,  C  P  B    
ig

  , and  C  P  C    ig
    are the molar heat capacities of pure A, B, and C in the ideal-gas state, 

and yA, yB, and yC are mole fractions. Because the heat-capacity polynomial, Eq. (4.5), is lin-
ear in the coefficients, the coefficients A, B, C, and D for a gas mixture are similarly given by 
mole-fraction weighted sums of the coefficients for the pure species.

Evaluation of the Sensible-Heat Integral
To evaluate ∫ CPdT, we simply substitute the heat capacity polynomial (Eq. 4.5) for CP and 
formally integrate this polynomial. For temperature limits of T0 and T the result is:

   ∫ 
 T  0  

  
T

      
 C  P  

 ___ 
R

   dT = A(T −  T  0  ) +   
B

 __ 2   ( T   2  −  T 0  2 ) +   
C

 __ 3   ( T   3  −  T 0  3 ) + D  (    
T −  T  0  

 _ 
T  T  0     )     (4.8)

Given T0 and T, the calculation of Q or ΔH is straightforward. The calculation of T, 
given T0 and Q or ΔH is less direct. Here, an iteration scheme may be useful. Factoring (T − 
T0) from each term on the right side of Eq. (4.8) gives:

   ∫ 
 T  0  

  
T

      
 C  P  

 ___ 
R

   dT =   [  A +   
B

 _ 2    (T +  T  0  ) +    
C

 _ 3    ( T   2  +  T 0  2  + T  T  0  ) +    
D
 _ 

T  T  0     ]   (T −  T  0  ) 

We identify the quantity in square brackets as   〈 C  P  〉  H   / R , where   〈 C  P  〉  H    is defined as a mean heat 
capacity for the temperature range from T0 to T:

    
 〈 C  P  〉  H  

 ________ 
R

   = A +   
B

 __ 2   (T +  T  0  ) +   
C

 __ 3    ( T   2  +  T 0  2  + T  T  0  ) +    
D
 ____ 

T  T  0      (4.9)

Equation (4.2) can then be written:

  ΔH =  〈 C  P  〉  H   (T −  T  0  )  (4.10)

The angular brackets enclosing CP identify it as a mean value; subscript H denotes a mean 
value specific to enthalpy calculations and distinguishes this mean heat capacity from a simi-
lar quantity introduced in the next chapter.

Solution of Eq. (4.10) for T gives:

  T =   
ΔH

 ________  〈 C  P  〉  H     +  T  0    (4.11)

With a starting value for T, one can first evaluate    ⟨   C  P   ⟩    H    by Eq. (4.9). Substitution into  
Eq. (4.11) provides a new value of T from which to reevaluate    ⟨   C  P   ⟩    H   . Iteration continues to 
convergence on a final value of T. Of course, such iteration is readily automated with built-in 
functions in a spreadsheet or a numerical analysis software package.
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144 CHAPTER 4. Heat Effects

Example 4.2
Calculate the heat required to raise the temperature of 1 mol of methane from 260 to 
600°C in a steady-flow process at a pressure sufficiently low that the ideal-gas state is 
a suitable approximation for methane.

Solution 4.2
Equations (4.3) and (4.8) together provide the required result. Parameters for   C P  ig

  / R  
are from Table C.1; T0 = 533.15 K and T = 873.15 K.

Then
 Q = ΔH = R

 ∫ 533.15  

873.15

   
 
  

 C P  ig
 

 

___

 R
  
  dT 

 Q = (8.314) [1.702(T −  T  0  ) +   
9.081 ×  10   −3 

  ___________ 2   ( T   2  −  T 0  2 ) 

−   
2.164 ×  10   −6 

  ___________ 3  ( T   3  −  T 0  3 )]  = 19,778 J 

  

Use of Defined Functions
The integral ∫ (CP/R)dT appears often in thermodynamic calculations. As a matter of conve-
nience, we therefore define the right side of Eq. (4.8) as the function, ICPH(T0, T; A, B, C, 
D), and presume the availability of a computer routine for its evaluation.6 Equation (4.8) 
then becomes:

  ∫ 
 T  0  

  
T

      
 C  P  

 ___ 
R

   dT ≡ ICPH( T  0  , T; A, B, C, D) 

The function name is ICPH (I indicates an integral), and the quantities in parentheses are the 
variables T0 and T, followed by parameters A, B, C, and D. When these quantities are assigned 
numerical values, the notation represents a value for the integral. Thus, for the evaluation of Q 
in Ex. 4.2:

 Q = 8.314 × ICPH(533.15, 873.15; 1.702, 9 .081 × 10   −3 ,  −2 .164 × 10   −6 , 0.0) = 19,778 J 

Also useful is a defined function for the dimensionless mean value    ⟨    C  P   ⟩    H   / R  given by 
Eq. (4.9). The function name is MCPH (M indicates a mean). The right side defines the func-
tion, MCPH(T0, T; A, B, C, D). With this definition, Eq. (4.9) becomes:

   
 〈 C  P  〉  H  

 ________ 
R

   = MCPH( T  0  , T; A, B, C, D) 

6Examples of these defined functions implemented in Microsoft Excel, Matlab, Maple, Mathematica, and Mathcad are 
provided in the Connect online learning center. Please contact your instructor for instructions on accessing these items.
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4.2. Latent Heats of Pure Substances 145

A specific numerical value of this function is:

 MCPH(533.15, 873.15; 1.702, 9 .081×10   −3 , −2 .164 × 10   −6 , 0.0) = 6.9965 

representing    ⟨    C  P   ⟩    H   / R  for methane in the calculation of Ex. 4.2. By Eq. (4.10),

  ΔH =  (  8.314 )   (  6.9965 )   (  873.15 − 533.15 )   = 19,778 J  

Note that neither the particular polynomial used here to express the temperature dependence 
of heat capacity nor these defined functions has thermodynamic significance. In particular, 
these defined functions are simply convenient abstractions that reduce the need to write the 
details of the corresponding integrals.

Example 4.3
What is the final temperature when heat in the amount of 400 × 106 J is added to 11 × 103  
mol of ammonia initially at 530 K in a steady-flow process at 1 bar?

Solution 4.3
If ΔH is the enthalpy change for 1 mol, Q = n ΔH, and

 ΔH =   
Q

 __ 
n
   =   

400 ×  10   6 
 _________ 11,000   = 36,360 J· mol   −1  

Then for any value of T, with parameters from Table C.1 and R = 8.314 J·mol−1·K−1:

    
  ⟨    C  P   ⟩    H  

 _ 
R

   = MCPH (530, T; 3.578, 3.020 ×  10   −3 , 0.0, −0.186 ×  10   5 )   
This equation and Eq. (4.11) together can be solved for T, yielding T = 1234 K.

A trial procedure is an alternative approach to solution of this problem. One 
sets up an equation for Q by combining Eqs. (4.3) and (4.8), with T as an unknown 
on the right. With Q known, one merely substitutes a rational succession of values 
for T until the known value of Q is reproduced. Microsoft Excel’s Goal Seek func-
tion is an example of an automated version of this procedure.

4.2 LATENT HEATS OF PURE SUBSTANCES

When a pure substance is liquefied from the solid state or vaporized from the liquid or solid at 
constant pressure, no change in temperature occurs; however, these processes require the transfer 
of finite amounts of heat to the substance. These heat effects are called latent heats: of fusion, of 
vaporization, and of sublimation. Similarly, there are heats of transition accompanying the change 
of a substance from one allotropic solid state to another; for example, the heat absorbed when 
rhombic crystalline sulfur changes to the monoclinic structure at 95°C and 1 bar is 11.3 J⋅g−1.

The characteristic feature of all these processes is the coexistence of two phases. Accord-
ing to the phase rule, the intensive state of a two-phase system consisting of a single species is 
fixed by specification of just one intensive property. Thus the latent heat accompanying a 
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146 CHAPTER 4. Heat Effects

phase change can be regarded as a function only of temperature. It is related to other system 
properties by an exact thermodynamic equation:

   ΔH = TΔV   
d P   sat 

 _ 
dT

     (4.12)

where for a pure species at temperature T,

ΔH = latent heat = enthalpy change accompanying the phase change
ΔV  = volume change accompanying the phase change
Psat =  saturation pressure, i.e., the pressure at which the phase change occurs, which is a 

function only of T

The derivation of this equation, known as the Clapeyron equation, is given in Section 6.5.
When Eq. (4.12) is applied to the vaporization of a pure liquid, dPsat/dT is the slope of 

the vapor pressure-versus-temperature curve at the temperature of interest, ΔV is the differ-
ence between molar volumes of saturated vapor and saturated liquid, and ΔH is the latent heat 
of vaporization. Thus, ΔH can be calculated from vapor-pressure and volumetric data, yield-
ing an energy value with units of pressure times volume.

Latent heats are also measured calorimetrically. Experimental values are reported at 
selected temperatures for many substances.7 Empirical correlations for the latent heats of many 
compounds as a function of temperature are given by Perry and Green and in the DIPPR Project 
801 collection.8 When required data are not available, approximate methods can provide estimates 
of the heat effect accompanying a phase change. Because heats of vaporization are by far the most 
important in practice, they have received the most attention. Predictions are most often made by 
group-contribution methods.9 Alternative empirical methods serve one of two purposes:

 ∙ Prediction of the heat of vaporization at the normal boiling point, i.e., at a pressure of  
1 standard atmosphere, defined as 101,325 Pa.

 ∙ Estimation of the heat of vaporization at any temperature from the known value at a 
single temperature.

Rough estimates of latent heats of vaporization for pure liquids at their normal boiling 
points (indicated by subscript n) are given by Trouton’s rule:

   
Δ H  n  

 ____ 
R T  n     ~ 10 

where Tn is the absolute temperature of the normal boiling point. The units of ΔHn, R, and Tn 
are chosen so that ΔHn/RTn is dimensionless. Dating from 1884, this empirical rule provides a 
simple check on whether values calculated by other methods are reasonable. Representative 
experimental values for this ratio are Ar, 8.0; N2, 8.7; O2, 9.1; HCl, 10.4; C6H6, 10.5; H2S, 

7V. Majer and V. Svoboda, IUPAC Chemical Data Series No. 32, Blackwell, Oxford, 1985; R. H. Perry and D. 
Green, Perry’s Chemical Engineers’ Handbook, 8th ed., Sec. 2, McGraw-Hill, New York, 2008.

8R. H. Perry and D. Green, Perry’s Chemical Engineers’ Handbook, 8th ed., Sec. 2, McGraw-Hill, New York, 
2008; Design Institute for Physical Properties, Project 801, http://www.aiche.org/dippr/projects/801.

9See, for example, M. Klüppel, S. Schulz, and P. Ulbig, Fluid Phase Equilibria, vol. 102, pp. 1–15, 1994.
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4.2. Latent Heats of Pure Substances 147

10.6; and H2O, 13.1. The high value for water reflects the existence of intermolecular hydro-
gen bonds that rupture during vaporization.

Also for the normal boiling point, but not quite so simple, is the equation proposed by 
Riedel:10

    
Δ H  n  

 ____ 
R T  n     =   

1.092(ln  P  c   − 1.013)
  ________________  0.930 −  T   r  n    

    (4.13)

where Pc is the critical pressure in bars and   T   r  n          is the reduced temperature at Tn. Equation 
(4.13) is surprisingly accurate for an empirical expression; errors rarely exceed 5 percent. 
Applied to water it gives:

  
Δ H  n  

 ____ 
R  T  n     =   

1.092(ln 220.55 − 1.013)
  ____________________  0.930 − 0.577   = 13.56

from which  Δ H  n   = (13.56)(8.314)(373.15) = 42,065 J⋅ mol   −1   

This corresponds to 2334 J⋅g−1; the steam-table value of 2257 J⋅g−1 is lower by 3.4 percent.
Estimates of the latent heat of vaporization of a pure liquid at any temperature from the 

known value at a single temperature are given by the method of Watson.11 The basis can be a 
known experimental value or a value estimated by Eq. (4.13):

    
Δ H  2  

 ____ Δ H  1     =   (    
1 −  T   r  2     ______ 1 −  T   r  1    

   )     
0.38

   (4.14)

This empirical equation is simple and fairly accurate; its use is illustrated in the following example.

Example 4.4
Given that the latent heat of vaporization of water at 100°C is 2257 J ⋅ g−1, estimate the 
latent heat at 300°C.

Solution 4.4
Let

  

Δ H  1  

  

=

  

latent heat at 100° C = 2257 J⋅ g   −1 

     
Δ H  2  

  
=

  
latent heat at 300° C

    T   r  1    
  =  373.15 / 647.1 = 0.577    

 T   r  2    

  

=

  

573.15 / 647.1 = 0.886

   

Then by Eq. (4.14),

 Δ H  2   = (2257)   (     
1 − 0.886

 ________ 1 − 0.577   )     
0.38

  = (2257)  (  0.270 )     0.38  = 1371 J⋅ g   −1  

The value given in the steam tables is 1406 J⋅g−1.

10L. Riedel, Chem. Ing. Tech., vol. 26, pp. 679–683, 1954.

11K. M. Watson, Ind. Eng. Chem., vol. 35, pp. 398–406, 1943.
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148 CHAPTER 4. Heat Effects

4.3 STANDARD HEAT OF REACTION

Heat effects of chemical processes are just as important as those of physical processes. Chemical 
reactions are accompanied by the transfer of heat, by temperature changes during reaction, or 
by both. The ultimate cause lies in the difference between the chemical bonds in the products 
and reactants. For an adiabatic combustion reaction, reactants and products possess the same 
energy. However, the change in chemical bonding from reactants (fuel and oxygen) to products 
(water and CO2) releases energy, heating the products to an elevated temperature. For the cor-
responding isothermal reaction, heat must be transferred to the surroundings. Between these 
two extremes an infinite combination of effects is possible. Each reaction carried out in a 
particular way is accompanied by particular heat effects. Their complete tabulation is impossi-
ble. Our object is therefore to devise methods of calculating heat effects for reactions carried 
out in diverse ways from data for reactions carried out in an arbitrarily defined standard way, 
thus leading to standard heats of reaction. This reduces the required data to a minimum.

Heats of reaction are based on experimental measurements. Most easily measured are 
heats of combustion, because of the nature of such reactions. A simple procedure is provided 
by a flow calorimeter. Fuel is mixed with air at a temperature T, and the mixture flows into a 
combustion chamber where reaction occurs. The combustion products enter a water-jacketed 
section in which they are cooled to temperature T. Because no shaft work is produced and the 
calorimeter is designed to eliminate potential- and kinetic-energy changes, the overall energy 
balance, Eq. (2.32), reduces to

 ΔH = Q  

Thus the enthalpy change caused by the combustion reaction is equal in magnitude to the heat 
flowing from the reaction products to the water, and may be calculated from the temperature 
rise and flow rate of the water. The enthalpy change of reaction ΔH is called the heat of reaction. 
If the reactants and products are in their standard states, then the heat effect is the standard heat 
of reaction.

The definition of a standard state is straightforward. For a given temperature,

A standard state is defined as the state of a substance at specified pres-
sure, composition, and physical condition as, e.g., gas, liquid, or solid.

The standard states in use throughout the world have been established by general agree-
ment. They are based on a standard-state pressure of 1 bar (105 Pa). With respect to composi-
tion, the standard states used in this chapter are states of pure species. For liquids and solids it 
is the actual state of the pure species at the standard-state pressure. However, for gases there is 
a small complication, as the chosen physical state is the ideal-gas state, for which we have 
already established heat capacities. In summary, the standard states used in this chapter are:

 ∙ Gases: The pure substance in the ideal-gas state at 1 bar.
 ∙ Liquids and solids: The real pure liquid or solid at 1 bar.

One must understand that standard states apply at any temperature. 
There is no specification of temperature for any standard state. Refer-
ence temperatures, also in use with heats of reaction, are entirely inde-
pendent of standard states.
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4.3. Standard Heat of Reaction 149

With respect to the chemical reaction, aA + bB → lL + mM, the standard heat of reac-
tion at temperature T is defined as the enthalpy change when a moles of A and b moles of B in 
their standard states at temperature T react to form l moles of L and m moles of M in their 
standard states at the same temperature T. The mechanism of this change is immaterial to the 
calculation of the enthalpy change. One may view the process shown in Fig. 4.2 as occurring 
in a “box of tricks.” If the properties of reactants and products in their standard states are not 
significantly different from the properties of actual reactants and products, the standard heat of 
reaction is a reasonable approximation to the actual heat of reaction. If this is not the case, then 
additional steps must be incorporated into the calculation scheme to account for any differ-
ences. The most common difference is caused by pressures higher than appropriate to the 
ideal-gas state (as for the ammonia-synthesis reaction). In this case, enthalpy changes for 
transformation from real-gas states to ideal-gas states and the reverse are required. These are 
readily made, as shown in Chapter 6.

Figure 4.2: Schematic representation of the standard heat of reaction at temperature T.

nA = a mol·s-1 nL = l mol·s-1

nB = b mol·s-1 nM = m mol·s-1

In standard states, at T In standard states, at T

“Box of Tricks”

Q J·s-1
 = ΔH° JT

Property values in the standard state are denoted by the degree symbol. For example,   C  P  °   
is the standard-state heat capacity. Because the standard state for gases is the ideal-gas state,   
C  P  °   is identical with   C P  ig  , and the data of Table C.1 apply to the standard state for gases.

All conditions for a standard state are fixed except temperature, which is 
always the temperature of the system. Standard-state properties are 
therefore functions of temperature only.

The standard state chosen for gases is hypothetical or fictitious because at 1 bar actual 
gases deviate from the ideal-gas state. However, they seldom deviate much, and for most pur-
poses enthalpies for the real-gas state at 1 bar and the ideal-gas state are negligibly different.

When a heat of reaction is given for a particular reaction, it applies for the stoichiometric 
coefficients as written. If each stoichiometric coefficient is doubled, the heat of reaction is 
doubled. For example, two versions of the ammonia synthesis reaction are written:

  

 

  1 _ 2    N  2   +   3 _ 2    H  2   →  NH  3  

    N  2   + 3  H  2   → 2  NH  3   

  
  

Δ H  298  °   = − 46,110 J
   

Δ H  298  °   = − 92,220 J
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150 CHAPTER 4. Heat Effects

The symbol  Δ H  298  °    indicates that the heat of reaction is the standard value for a temperature of 
298.15 K (25°C) and for the reaction as written.

4.4 STANDARD HEAT OF FORMATION

Tabulating data even for just one temperature and for just the standard heats of reaction for all of 
the vast number of possible reactions would still be impractical. Fortunately, the standard heat of 
any reaction at temperature T can be calculated if the standard heats of formation at the same 
temperature are known for the compounds taking part in the reaction. A formation reaction is 
defined as a reaction that produces a single compound from its constituent elements. For example, 
the reaction  C +   1 _ 2  O2 + 2  H  2   →  CH  3  OH  is a formation reaction for methanol. The reaction  
  H  2  O +  SO  3   →  H  2    SO  4    is not a formation reaction, because it forms sulfuric acid not from the 
elements but from other compounds. Formation reactions are understood to produce 1 mol of 
product; the heat of formation is therefore based on 1 mol of the compound formed.

Heats of reaction at any temperature can be calculated from heat-capacity data if the 
value for one temperature is known; the tabulation of data can therefore be reduced to the 
compilation of standard heats of formation at a single temperature. The usual choice for this 
reference temperature is 298.15 K or 25°C. The standard heat of formation of a compound at 
this temperature is represented by the symbol  Δ H   f  298    °   . The degree symbol denotes the  standard-
state value, subscript f identifies a heat of formation, and the 298 is the rounded absolute 
temperature in kelvins. Tables of these values for common substances can be found in standard 
handbooks, but the most extensive compilations available are in specialized reference works.12 
An abridged list of values is given in Table C.4 of App. C, and values for many additional 
compounds are given in publicly available online databases.13

When chemical reactions are combined by addition, the standard heats of reaction are 
simply added to give the standard heat of the resulting reaction. This is possible because 
enthalpy is a state function, and its changes for given initial and final states are independent of 
path. In particular, formation reactions and standard heats of formation may be combined to 
produce any desired reaction (not itself a formation reaction) and its accompanying standard 
heat of reaction. One can imagine accomplishing any overall reaction by converting the reac-
tants to the elements in their standard states, by the reverse of their formation reactions, then 
converting those elements to the products, by their formation reactions. Summing the heats of 
reaction of these steps gives the heat of reaction for the overall reaction. Reactions written for 
this purpose often include an indication of the physical state of each reactant and product—that 
is, the letter g, l, or s is placed in parentheses after the chemical formula to show whether it is a 
gas, a liquid, or a solid. This might seem unnecessary because a pure chemical species at a 

12For example, see TRC Thermodynamic Tables—Hydrocarbons and TRC Thermodynamic Tables—Non-Hydrocarbons, 
serial publications of the Thermodynamics Research Center, Texas A & M Univ. System, College Station, Texas; 
“The NBS Tables of Chemical Thermodynamic Properties,” J. Physical and Chemical Reference Data, vol. 11,  
supp. 2, 1982; and the DIPPR Project 801 Database, http://www.aiche.org/dippr/projects/801. Where data are 
 unavailable, estimates based only on molecular structure may be found by the methods of S. W. Benson, 
 Thermochemical Kinetics, 2nd ed., John Wiley & Sons, New York, 1976. An improved version of this method is 
implemented online at http://webbook.nist.gov/chemistry/grp-add/.

13Values for more than 7000 compounds are available at http://webbook.nist.gov/.
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particular temperature and 1 bar can usually exist only in one physical state. However, fictitious 
states (e.g., the ideal-gas state) are often employed for convenience in such calculations.

The water-gas-shift reaction,   CO  2  (g) +  H  2  (g) → CO(g) +  H  2  O(g)  at 25°C, is commonly 
encountered in the chemical industry. Although it takes place only at temperatures well above 
25°C, the data are for 25°C, and the initial step in any calculation of heat effects for this reac-
tion is evaluation of the standard heat of reaction at 25°C. The pertinent formation reactions 
and the corresponding heats of formation from Table C.4 are:

   

  CO  2   (  g )   : 

  

  C (  s )   +  O  2   (  g )   →  CO  2   (  g )   

  

 Δ H   f  298    °   = − 393,509 J

       
  H  2   (  g )   : 

  
 Because hydrogen is an element

  
 Δ H   f  298    °   = 0

      
 CO (  g )   : 

  
 C(s) +   1 _ 2    O  2   (g) → CO(g)

  
 Δ H   f  298    °   = − 110,525 J

       

 H  2   O(g) :

  

  H  2   (g) +   1 _ 2    O  2   (g) →  H  2   O(g)

  

 Δ H   f  298    °   = − 241,818 J

  

Because the reaction is actually carried out entirely in the gas phase at high temperature, conve-
nience dictates that the standard states of all products and reactants at 25°C be taken as the  
ideal-gas state at 1 bar, even though water does not actually exist as a gas at these conditions.14

Writing the formation reactions so that their sum yields the desired reaction requires that 
the formation reaction for CO2 be written in reverse; the heat of reaction is then of opposite 
sign to its standard heat of formation:

  

   
  CO  2   (  g )   

  
 → C(s )   +  O  2   (  g )   

  
       Δ H  298  °   = 393,509 J

      C(s) +   1 _ 2    O  2   (g)   → CO (  g )            Δ H  298  °   = − 110,525 J      
 H  2   (g) +   1 _ 2    O  2   (g)

  
 →  H  2   O (  g )   

  
      Δ H  298  °   = − 241,818 J

      

_____

 

         CO  2   (  g )   +  H  2   (  g )       → CO (  g )   +  H  2   O (  g )        Δ H  298  °   = 41,166 J    

The meaning of this result is that the enthalpy of 1 mol of CO plus 1 mol of H2O is greater 
than the enthalpy of 1 mol of CO2 plus 1 mol of H2 by 41,166 J when each product and  
reactant is taken as the pure gas at 25°C in its ideal-gas state at 1 bar.

In this example the standard heat of formation of H2O is available for its hypothetical 
ideal-gas state at 25°C. One might expect the value of the heat of formation of water to be listed 
for its actual state as a liquid at 1 bar and 25°C. As a matter of fact, values for both states are given 
in Table C.4 because they are both often used. This is true for many compounds that normally 
exist as liquids at 25°C and 1 bar. Cases do arise, however, in which a value is given only for the 
standard state as a liquid or for the ideal-gas state when what is needed is the other value. Sup-
pose this were the case for the preceding example, with only the standard heat of formation of 
liquid H2O available. We would then include an equation for the physical change that transforms 
water from its standard state as a liquid into its ideal-gas state. The enthalpy change for this phys-
ical process is the difference between the heats of formation of water in its two standard states:

  − 241,818 −  (  −285,830 )   = 44,012 J  

14One might wonder about the origin of data for such hypothetical states, as it would appear difficult to make mea-
surements for states that cannot exist. For the case of water vapor in the ideal gas state at 25˚C and 1 bar, obtaining the 
enthalpy is straightforward. While water cannot exist as a gas at these conditions, it is a gas at 25˚C at sufficiently low 
pressure. In the ideal gas state, enthalpy is independent of pressure, so the enthalpy measured in the limit of low pres-
sure is exactly the enthalpy in the desired hypothetical state.
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This is approximately the latent heat of vaporization of water at 25°C. The sequence of steps 
is now:

  

   

 C O  2   (  g )   

  

 → C (  s )   +  O  2   (  g )   

  

      Δ H  298  °   = 393,509 J

      
C(s) +   1 _ 2    O  2   (g)

  
 → CO (  g )   

  
      Δ H  298  °   = − 110,525 J

      
 H  2   (g) +   1 _ 2    O  2   (g)

  
 →  H  2   O (  l )   

  
      Δ H  298  °   = − 285,830 J

     

  H  2   O (  l )   

  

 →  H  2   O (  g )   

  

      Δ H  298  °   = 44,012 J

       

_____

 

         C O  2   (  g )   +  H  2   (  g )      → CO (  g )   +  H  2   O (  g )       Δ H  298  °   = 41,166 J    
This result is of course in agreement with the previous answer.

Example 4.5
Calculate the standard heat of reaction at 25°C for the following reaction:

 4HCl(g) +  O  2  (g) → 2 H  2  O(g) + 2 Cl  2  (g) 

Solution 4.5
Standard heats of formation at 298.15 K from Table C.4 are:

 HCl(g) : − 92,307 J     H  2  O(g) : −241,818 J 

The following combination gives the desired result:

  

   
 4HCl (  g )   

  
    → 2 H  2   (  g )   + 2 Cl  2   (  g )   

  
     Δ H  298  °   =  (  4 )   (92,307)

      
 2 H  2   (  g )   +  O  2   (  g )   

  
    → 2 H  2  O (  g )   

  
     Δ H  298  °   =  (  2 )   (−241,818)

       
___________

 

         4HCl (  g )   +  O  2   (  g )      → 2  H  2  O (  g )   + 2 Cl  2   (  g )      Δ H  298  °   = −114,408 J    

4.5 STANDARD HEAT OF COMBUSTION

Only a few formation reactions can actually be carried out at the conditions of interest, and 
therefore data for these reactions are determined indirectly. One kind of reaction that readily 
lends itself to experiment is the combustion reaction, and many standard heats of formation 
come from standard heats of combustion, measured calorimetrically. A combustion reaction is 
defined as a reaction of an element or compound with oxygen to form specified combustion 
products. For organic compounds consisting only of carbon, hydrogen, and oxygen, the products 
are carbon dioxide and water, but the state of the water may be either vapor or liquid. The value 
for liquid water product is called the higher heat of combustion, while that with water vapor as 
product is the lower heat of combustion. Data are always based on 1 mol of the substance burned.

A reaction such as the formation of n-butane:

 4C(s) +5 H  2  (g) →  C  4   H  10  (g) 
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is not feasible in practice. However, this equation results from combination of the following 
combustion reactions, with the third written in the reverse direction:

  

   
 4C (  s )   + 4  O  2   (  g )   

  
 → 4  CO  2   (  g )   

  
  Δ H  298  °   =  (  4 )   (  −393,509 )   

       5  H  2   (g) + 2   1 _ 2    O  2   (g)   → 5  H  2   O (  l )       Δ H  298  °   =  (  5 )   (  −285,830 )          
 4C O  2   (  g )   + 5  H  2   O (  l )   

  
→  C  4    H  10   (g) + 6   1 _ 2    O  2   (g)

  
 Δ H  298  °   = 2,877,396

        

_______

 

             4C (  s )   + 5  H  2   (  g )      →  C  4    H  10   (  g )                   Δ H  298  °   = − 125,790 J    
This result is the standard heat of formation of n-butane listed in Table C.4 of App. C.

4.6 TEMPERATURE DEPENDENCE OF ΔH°

In the foregoing sections, standard heats of reaction were discussed for an arbitrary reference 
temperature of 298.15 K. In this section we treat the calculation of standard heats of reaction 
at other temperatures from knowledge of the value at the reference temperature.

A general chemical reaction can be written:

   |    ν  1   |    A  1   +  |    ν  2   |    A  2   + . . . →  |    ν  3   |    A  3   +  |    ν  4   |    A  4   + . . .  

where νi is a stoichiometric coefficient and Ai stands for a chemical formula. The species on 
the left are reactants; those on the right, products. The sign convention for νi is as follows:

  positive (+) for products   and   negative (− ) for reactants  

For example, when the ammonia synthesis reaction is written:

  N  2   + 3  H  2   → 2 NH  3   

then    ν   N  2     = − 1    ν   H  2     = − 3    ν   NH  3     = 2   

This sign convention allows the definition of a standard heat of reaction to be expressed 
mathematically by the simple equation:

  ΔH° ≡  ∑ 
i
      ν  i   H  i  °   (4.15)

where   H  i  °   is the enthalpy of species i in its standard state and the summation is over all prod-
ucts and reactants. The standard-state enthalpy of a chemical compound is equal to its heat of 
formation plus the standard-state enthalpies of its constituent elements. If the standard-state 
enthalpies of all elements are arbitrarily set equal to zero as the basis of calculation, then the 
standard-state enthalpy of each compound is simply its heat of formation. In this event,  H  i  °  =  
Δ H   f  i    °  and Eq. (4.15) becomes:

  ΔH° =  ∑ 
i
      ν  i  Δ H  fi  °   (4.16)

where the summation is over all products and reactants. This formalizes the procedure 
described in the preceding section for calculating standard heats of other reactions from stan-
dard heats of formation. Applied to the reaction,

 4HCl(g) +  O  2  (g) → 2 H  2  O(g) + 2 Cl  2  (g) 
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Eq. (4.16) is written:

 ΔH° = 2Δ H   f   H  2  O    °   − 4Δ H   f  HCl    °   

With data from Table C.4 of App. C for 298.15 K, this becomes:

  Δ H  298  °   =  (  2 )   (  −241,818 )   −  (  4 )   (  −92,307 )   = −114,408 J  

in agreement with the result of Ex. 4.5. Note that for pure elemental gases that normally exist 
as dimers (e.g., O2, N2, H2), it is the dimer form that is arbitrarily assigned a standard-state 
enthalpy of zero.

For standard reactions, products and reactants are always at the standard-state pressure 
of 1 bar. Standard-state enthalpies are therefore functions of temperature only, and by Eq. (2.20),

 d H  i  °  =  C   P  i    °    dT 

where subscript i identifies a particular product or reactant. Multiplying by νi and summing 
over all products and reactants gives:

  ∑ 
i
      ν  i   d H  i  °  =  ∑ 

i
      ν  i    C   P  i    °    dT 

Because νi is a constant, it can be placed inside the differential:

   ∑ 
i
     d( ν  i    H  i  ° ) =  ∑ 

i
      ν  i    C   P  i    °    dT   or   d ∑ 

i
      ν  i    H  i  °  =  ∑ 

i
      ν  i    C   P  i    °    dT  

The term   ∑  i    ν  i    H  i  °   is the standard heat of reaction, defined by Eq. (4.15) as ΔH°. The standard 
heat-capacity change of reaction is defined similarly:

  Δ C  P  °  ≡  ∑ 
i
      ν  i    C   P  i    °    (4.17)

From these definitions,

   dΔH° = Δ C  P  °  dT   (4.18)

This is the fundamental equation relating heats of reaction to temperature.
Integration of Eq. (4.18) yields:

 ΔH° − Δ H  0  °  =  ∫ 
 T  0  

  
T

    Δ C  P  °  dT 

where  ΔH°  and  Δ H  0  °   are the standard heats of reaction at temperature T and at reference tem-
perature T0 respectively. This equation is more conveniently expressed as:

  ΔH° = Δ H  0  °  + R ∫ 
 T  0  

  
T

      
Δ C  P  ° 

 _____ 
R

   dT  (4.19)

The reference temperature T0 must be a temperature for which the heat of reaction is known or 
can be calculated as described in the two preceding sections, most often 298.15 K. Equation (4.19) 
provides the means of calculating a heat of reaction at temperature T from a known value at 
temperature T0 and known temperature-dependent heat capacities of reactants and products.

If the temperature dependence of the heat capacity of each product and reactant is given 
by Eq. (4.5), then the integral is given by the analog of Eq. (4.8):

   ∫ 
 T  0  

  
T

      
Δ C  P  ° 

 _____ 
R

   dT = ΔA(T −  T  0  ) +    
ΔB

 ___ 2   ( T   2  −  T 0  2 ) +    
ΔC

 ___ 3    ( T   3  −  T 0  3 ) + ΔD  (    
T −  T  0  

 _ 
T  T  0     )     (4.20)
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where by definition,  ΔA ≡  ∑ 
i
      ν  i    A  i    

with analogous definitions for ΔB, ΔC, and ΔD.
An alternative formulation results when a mean heat capacity change of reaction is 

defined in analogy to Eq. (4.9):

    
 〈Δ C  P  ° 〉  H  

 _______ 
R

   = ΔA +   
ΔB

 ___ 2   (T +  T  0  ) +    
ΔC

 ___ 3    ( T   2  +  T 0  2  + T  T  0  ) +   
ΔD

 ____ 
T  T  0      (4.21)

Equation (4.19) then becomes:

   ΔH° = Δ H  0  °  +  〈Δ C  P  ° 〉  H   (  T −  T  0   )     (4.22)

The integral of Eq. (4.20) is of the same form as that of Eq. (4.8), and in analogous fash-
ion may be set equal to a defined function:15

   ∫ 
 T  0  

  
T

      
Δ C  P  ° 

 ____ 
R

   dT = IDCPH (T0, T; DA, DB, DC, DD) 

where “D” denotes “Δ.” The analogy requires simple replacement of CP by  Δ C  P  °   and of A, B, 
etc. by ΔA, ΔB, etc. The same computer routine can evaluate either integral. The only differ-
ence is in the function name.

Just as function MCPH is defined to represent ⟨CP⟩H/R, so function MDCPH by analogy 
is defined to represent ⟨ Δ C  P  °  ⟩H/R; thus,

   
 〈Δ C  P  ° 〉  H  

 _______ 
R

   = MDCPH (T0, T; DA, DB, DC, DD) 

The calculation represented by both Eqs. (4.19) and (4.22) is represented schematically 
in Fig. 4.3.

15Again, examples of these defined functions implemented in Microsoft Excel, Matlab, Maple, Mathematica, and 
Mathcad are provided in the Connect online learning center. Please contact your instructor for instructions on accessing 
these items.

Figure 4.3: Path  
representing the  
procedure for  
calculating a standard 
heat of reaction at 
temperature T from 
the value at reference 
temperature T0.
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Example 4.6
Calculate the standard heat of the following methanol-synthesis reaction at 800°C:

 CO(g) + 2 H  2  (g) →  CH  3  OH(g) 

Solution 4.6
Apply Eq. (4.16) to this reaction for reference temperature T0 = 298.15 K and with 
heat-of-formation data from Table C.4:

  Δ H  0  °  =  Δ H  298  °   = − 200,660 − (−110,525) = − 90,135 J  

Evaluation of the parameters in Eq. (4.20) is based on data taken from Table C.1:

  

   i      ν  i       A     10   3  B    10   6  C    10   −5  D      _______ 

      

  
 CH  3  OH

  
1
  

2.211
  

12.216
  

− 3.450
  

0.000
      CO  − 1  3.376  0.557  0.000  − 0.031      

 H  2  
  

− 2
  

3.249
  

0.422
  

0.000
  

0.083
      

____________
 

   

From its definition,

 ΔA = (1)(2.211) + (−1)(3.376) + (− 2)(3.249) = − 7.663 
Similarly,

  ΔB = 10.815 ×  10   −3    ΔC = − 3.450 ×  10   −6    ΔD = − 0.135 ×  10   5   

The value of the integral of Eq. (4.20) for T = 1073.15 K is represented by:

  IDCPH (  298.15, 1073.15; − 7.663, 10.815 ×  10   −3 , − 3.450 ×  10   −6 , − 0.135 ×  10   5  )    

The value of this integral is −1615.5 K, and by Eq. (4.19),

  ΔH° = − 90,135 + 8.314 (  −1615.5 )   = −103,566 J  

4.7 HEAT EFFECTS OF INDUSTRIAL REACTIONS

The preceding sections have dealt with the standard heat of reaction. Industrial reactions are 
rarely carried out under standard-state conditions. Furthermore, in actual reactions the reac-
tants may not be present in stoichiometric proportions, the reaction may not go to completion, 
and the final temperature may differ from the initial temperature. Moreover, inert species may 
be present, and several reactions may occur simultaneously. Nevertheless, calculations of the 
heat effects of actual reactions are based on the principles already considered and are illus-
trated by the following examples, wherein the ideal-gas state is assumed for all gases.

Example 4.7
What is the maximum temperature that can be reached by the combustion of methane 
with 20% excess air? Both the methane and the air enter the burner at 25°C.
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4.7. Heat Effects of Industrial Reactions 157

Solution 4.7
The reaction is CH4 + 2O2 → CO2 + 2H2O(g) for which,

Δ H  298  °   = −393,509 + (2)(−241,818) − (−74,520) = −802,625 J
Because the maximum attainable temperature (called the theoretical flame  
temperature) is sought, assume that the combustion reaction goes to completion 
adiabatically (Q = 0). If the kinetic- and potential-energy changes are negligible 
and if Ws = 0, the overall energy balance for the process reduces to ΔH = 0.  
For purposes of calculating the final temperature, any convenient path between 
the initial and final states may be used. The path chosen is indicated in the 
diagram.

HPH
0

Products at 1 bar
and T K

Reactants at 1 bar
and 25 C H298

1 mol CH4

   2.4 mol O2

9.03 mol N2

0.4 mol O2

1 mol CO2

2 mol H2O

9.03 mol N2

When one mole of methane burned is the basis for all calculations, the follow-
ing quantities of oxygen and nitrogen are supplied by the entering air:

  
 Moles O  2    required = 2.0

    Moles excess O  2    = (0.2)(2.0) = 0.4    
 Moles N  2    entering = (2.4)(79/21) = 9.03

  

The mole numbers ni of the gases in the product stream leaving the burner are  
1 mol CO2, 2 mol H2O(g), 0.4 mol O2, and 9.03 mol N2. Because the enthalpy 
change must be independent of path,

  Δ H  298  °   + Δ H  P  °  = ΔH = 0  (A)

where all enthalpies are on the basis of 1 mol CH4 burned. The enthalpy change of 
the products as they are heated from 298.15 K to T is:

  Δ H  P  °  =  ⟨ C  P  ° ⟩ H   (T − 298.15)  (B)

where we define   ⟨ C  P  ° ⟩ H    as the mean heat capacity for the total product stream:

  ⟨ C  P  ° ⟩ H   ≡  ∑ 
i
      n  i    ⟨ C  Pi

  °  ⟩ H   
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The simplest procedure here is to sum the mean-heat-capacity equations for the 
products, each multiplied by its appropriate mole number. Because C = 0 for each 
product gas (Table C.1), Eq. (4.9) yields:

  ⟨ C  P  ° ⟩ H   =  ∑ 
i
      n  i    ⟨ C  Pi

  °  ⟩ H   = R  [   ∑ 
i
      n  i    A  i   +   

 ∑  i    n  i    B  i   _ 2    (T −  T  0  ) +    
 ∑  i    n  i    D  i   _ 

T  T  0     ]    

Data from Table C.1 are combined as follows:

 A =  ∑ 
i
      n  i    A  i   = (1)(5.457) + (2)(3.470) + (0.4)(3.639) + (9.03)(3.280) = 43.471 

Similarly,  B =  ∑ 
i
      n  i    B  i   = 9.502 ×  10   −3   and  D =  ∑ 

i
      n  i    D  i   = − 0.645 ×  10   5 . 

For the product stream   ⟨ C  P  ° ⟩ H   / R  is therefore represented by:

 MCPH(298.15, T; 43.471, 9.502 ×  10   −3 , 0.0, − 0.645 ×  10   5 ) 

Equations (A) and (B) are combined and solved for T:

 T = 298.15 −   
Δ H  298  °  

 ___________ 
 ⟨ C  P  ° ⟩ H  

   

Because the mean heat capacities depend on T, one first evaluates   ⟨ C  P  ° ⟩ H    for an 
assumed value of T > 298.15, then substitutes the result in the preceding equation. 
This yields a new value of T for which   ⟨ C  P  ° ⟩ H    is reevaluated. The procedure con-
tinues to convergence on the final value,

 T = 2066 K   or   1793° C 

Again, solution can be easily automated with the Goal Seek or Solver function 
in a spreadsheet or similar solve routines in other software packages.

Example 4.8
One method for the manufacture of “synthesis gas” (a mixture of CO and H2) is the 
catalytic reforming of CH4 with steam at high temperature and atmospheric pressure:

  CH  4  (g) +   H  2  O(g) → CO(g) +  3H  2  (g) 

The only other reaction considered here is the water-gas-shift reaction:

 CO(g) +  H  2  O(g) →  CO  2  (g) +  H  2  (g) 

Reactants are supplied in the ratio 2 mol steam to 1 mol CH4, and heat is added to the 
reactor to bring the products to a temperature of 1300 K. The CH4 is completely con-
verted, and the product stream contains 17.4 mol-% CO. Assuming the reactants to be 
preheated to 600 K, calculate the heat requirement for the reactor.
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Solution 4.8
The standard heats of reaction at 25°C for the two reactions are calculated from 
the data of Table C.4:

  CH  4  (g) +  H  2  O(g) → CO(g) +  3H  2  (g)   Δ H  298  °   = 205,813 J 

 CO(g) +  H  2  O(g) →  CO  2  (g) +  H  2  (g)    Δ H  298  °   = −41,166 J 

These two reactions may be added to give a third reaction:

  CH  4  (g) +  2H  2  O(g) →  CO  2  (g) +  4H  2  (g)   Δ H  298  °   = 164,647 J 

Any pair of the three reactions constitutes an independent set. The third reaction is 
not independent; it is obtained by combination of the other two. The reactions 
most convenient to work with here are the first and third:

   CH  4  (g) +  H  2  O(g) → CO(g) +  3H  2  (g)   Δ H  298  °   = 205,813 J  (A)

  CH  4  (g) +  2H  2  O(g) →     CO  2  (g) +  4H  2  (g)       H  298  °   = 164,647 J  (B)

First one must determine the fraction of CH4 converted by each of these reactions. 
As a basis for calculations, let 1 mol CH4 and 2 mol steam be fed to the reactor. If 
x mol CH4 reacts by Eq. (A), then 1 − x mol reacts by Eq. (B). On this basis the 
products of the reaction are:

CO: x
H2: 3x + 4(1 − x) = 4 − x
CO2: 1 − x
H2O: 2 − x − 2(1 − x) = x
Total: 5 mol products

The mole fraction of CO in the product stream is x/5 = 0.174; whence x = 0.870. 
Thus, on the basis chosen, 0.870 mol CH4 reacts by Eq. (A) and 0.130 mol reacts 
by Eq. (B). Furthermore, the amounts of the species in the product stream are:

  

Moles CO = x = 0.87

   
 Moles H  2    = 4 − x = 3.13

    Moles CO  2    = 1 − x = 0.13    

 Moles H  2  O = x = 0.87

   

We now devise a path, for purposes of calculation, to proceed from reactants at 
600 K to products at 1300 K. Because data are available for the standard heats of 
reaction at 25°C, the most convenient path is the one that includes the reactions at 
25°C (298.15 K). This is shown schematically in the accompanying diagram. The 
dashed line represents the actual path for which the enthalpy change is ΔH. 
Because this enthalpy change is independent of path,

 ΔH = Δ H  R  °  + Δ H  298  °   + Δ H  P  °  
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P
o∆H

R
o∆H

298
o∆H

∆H

Products at 1 bar
and 1300 K

0.87 mol CO
3.13 mol H2
0.13 mol CO2
0.87 mol H2O

Reactants at 1 bar
and 600 K
1 mol CH4
2 mol H2O

For the calculation of  Δ H  298  °   , reactions (A) and (B) must both be taken into 
account. Because 0.87 mol CH4 reacts by (A) and 0.13 mol reacts by (B),

  Δ H  298  °   =  (  0.87 )   (  205,813 )   +  (  0.13 )   (  164,647 )   = 200,460 J  

The enthalpy change of the reactants when they are cooled from 600 K to 298.15 K is:

 Δ H  R  °  =   (   ∑ 
i
      n  i    ⟨ C  Pi

  °  ⟩ H   )    (298.15 − 600) 

where subscript i denotes reactants. The values of   ⟨ C  Pi
  °  ⟩ H   / R  are:

   

 CH  4   :  MCPH(298.15, 600; 1.702, 9.081 ×  10   −3 , − 2.164 ×  10   −6 , 0.0) = 5.3272

         H  2  O :  MCPH(298.15, 600; 3.470, 1.450 ×  10   −3 , 0.0, 0.121 ×  10   5 ) = 4.1888   
and
   Δ H  R  °  = (8.314) [  (1)(5.3272)+(2)(4.1888) ]  (298.15 − 600) = − 34,390 J  

The enthalpy change of the products as they are heated from 298.15 to 1300 K is 
calculated similarly:

  Δ H  P  °  =  (    ∑ 
i
      n  i    ⟨ C  Pi

  °  ⟩ H   )     (1300 − 298.15)  

where subscript i here denotes products. The   ⟨ C  Pi
  °  ⟩ H   / R  values are:

  

CO:

  

 MCPH (  298.15, 1300; 3.376, 0.557 ×  10   −3 , 0.0, − 0.031 ×  10   5  )   = 3.8131 

        
 H  2  :

  
 MCPH (  298.15, 1300; 3.249, 0.422 ×  10   −3 , 0.0, − 0.083 ×  10   5  )   = 3.6076 

        
 CO  2  :

  
 MCPH (  298.15, 1300; 5.457, 1.045 ×  10   −3 , 0.0, − 1.157 ×  10   5  )   = 5.9935 

        

 H  2  O:

  

 MCPH (  298.15, 1300; 3.470, 1.450 ×  10   −3 , 0.0, 0.121 ×  10   5  )   = 4.6599 

   

Whence,

  Δ H  P  °   =  (  8.314 )   [   (  0.87 )   (  3.8131 )   +  (  3.13 )   (  3.6076 )   
  +  (  0.13 )   (  5.9935 )   +  (  0.87 )   (  4.6599 )   ]   ×  (  1300 − 298.15 )   

= 161, 940 J  
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Therefore,

 ΔH = −34,390 + 200,460 + 161,940 = 328,010 J 

The process is one of steady flow for which Ws, Δz, and Δu2/2 are presumed 
negligible. Thus,

 Q = ΔH = 328, 010 J 

This result is on the basis of 1 mol CH4 fed to the reactor.

Example 4.9
Solar-grade silicon can be manufactured by thermal decomposition of silane at moder-
ate pressure in a fluidized-bed reactor, in which the overall reaction is:

  SiH  4  (g) → Si(s) + 2 H  2  (g) 

When pure silane is preheated to 300°C, and heat is added to the reactor to promote 
a reasonable reaction rate, 80% of the silane is converted to silicon and the products 
leave the reactor at 750°C. How much heat must be added to the reactor for each 
kilogram of silicon produced?

Solution 4.9
For a continuous-flow process with no shaft work and negligible changes in kinetic 
and potential energy, the energy balance is simply Q = ΔH, and the heat added is 
the enthalpy change from reactant at 300°C to products at 750°C. A convenient 
path for calculation of the enthalpy change is to (1) cool the reactant to 298.15 K, 
(2) carry out the reaction at 298.15 K, and (3) heat the products to 750°C.

On the basis of 1 mol SiH4, the products consist of 0.2 mol SiH4, 0.8 mol Si, 
and 1.6 mol H2. Thus, for the three steps we have:

   

Δ H  1   =  ∫ 
573.15K

  
298.15K

     C  P  ° ( SiH  4  ) dT

    Δ H  2   = 0.8 × Δ H  298  °     

Δ H  3   =  ∫ 
298.15K

  
1023.15K

     [  0.2 ×  C  P  ° ( SiH  4  ) + 0.8 ×  C  P  ° (Si) + 1.6 ×  C  P  ° ( H  2  ) ]   dT

  

Data needed for this example are not included in App. C, but are readily 
obtained from the NIST Chemistry WebBook (http://webbook.nist.gov). The 
reaction here is the reverse of the formation reaction for silane, and its standard 
heat of reaction at 298.15 K is  Δ H  298  °   = − 34,310 J . Thus, the reaction is mildly 
exothermic.
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162 CHAPTER 4. Heat Effects

Heat capacity in the NIST Chemistry WebBook is expressed by the Shomate 
equation, a polynomial of different form from that used in this text. It includes a T3 
term, and is written in terms of T/1000, with T in K:

  C  P  °  = A + B  (     
T
 _ 1000   )    + C    (     

T
 _____ 1000   )     

2
   + D   (     

T
 _____ 1000   )     

3
  + E   (     

T
 _____ 1000   )     

−2
  

Formal integration of this equation gives the enthalpy change:

 ΔH =  ∫ 
 T  0  

  
T

     C  P  °  dT 

 ΔH = 1000   
[

  A  (     
T
 _____ 1000   )    +   

B
 __ 2     
(

     
T
 _____ 1000   

)
     
2
 +   

C
 __ 3     
(

     
T
 _____ 1000   

)
     
3
 +   

D
 __ 4     
(

     
T
 _____ 1000   

)
     
4
 − E   

(
     

T
 _____ 1000   

)
     
−1

  
]

    
 T  0  

  
T

   

The first three rows in the accompanying table give parameters, on a molar 
basis, for SiH4, crystalline silicon, and hydrogen. The final entry is for the collec-
tive products, represented for example by:

 A(products) = (0.2) (6.060) + (0.8)(22.817) + (1.6)(33.066) = 72.3712  

with corresponding equations for B, C, D, and E.

Species A B C D E

SiH4(g) 6.060 139.96 −77.88 16.241 0.1355
Si(s) 22.817 3.8995 −0.08289 0.04211 −0.3541
H2(g) 33.066 −11.363 11.433 −2.773 −0.1586

Products 72.3712 12.9308 2.6505 −1.1549 −0.5099

For these parameters, and with T in kelvins, the equation for ΔH yields values 
in joules. For the three steps making up the solution to this problem, the following 
results are obtained:

 1. Substitution of the parameters for 1 mol of SiH4 into the equation for ΔH leads upon 
evaluation to: ΔH1 = −14,860   J.

 2. Here,  Δ H  2   = (0.8)(− 34,310) = − 27,450 J .
 3. Substitution of the parameters for the total product stream into the equation for ΔH 

leads upon evaluation to: ΔH3 = 58,060 J.

For the three steps the sum is:
 ΔH = − 14,860 − 27,450 + 58,060 = 15,750 J 

This enthalpy change equals the heat input per mole of SiH4 fed to the reactor. A  
kilogram of silicon, with a molar mass of 28.09, is 35.60 mol. Producing a kilogram of 
silicon therefore requires a feed of 35.60/0.8 or 44.50 mol of SiH4. The heat require-
ment per kilogram of silicon produced is therefore (15,750)(44.5) = 700,900   J.

www.konkur.in

Telegram: @uni_k



4.7. Heat Effects of Industrial Reactions 163

Example 4.10
A boiler is fired with a high-grade fuel oil (consisting only of hydrocarbons) having a 
standard heat of combustion of −43,515 J·g−1 at 25°C with CO2(g) and H2O(l) as prod-
ucts. The temperature of the fuel and air entering the combustion chamber is 25°C. 
The air is assumed dry. The flue gases leave at 300°C, and their average analysis (on 
a dry basis) is 11.2% CO2, 0.4% CO, 6.2% O2, and 82.2% N2. Calculate the fraction of 
the heat of combustion of the oil that is transferred as heat to the boiler.

Solution 4.10
Take as a basis 100 mol dry flue gases, consisting of:

CO2 11.2 mol
CO 0.4 mol
O2 6.2 mol
N2 82.2 mol

Total 100.0 mol

This analysis, on a dry basis, does not take into account the H2O vapor present in 
the flue gases. The amount of H2O formed by the combustion reaction is found 
from an oxygen balance. The O2 supplied in the air represents 21 mol-% of the air 
stream. The remaining 79% is N2, which goes through the combustion process 
unchanged. Thus the 82.2 mol N2 appearing in 100 mol dry flue gases is supplied 
with the air, and the O2 accompanying this N2 is:

Moles O2 entering in air = (82.2)(21 / 79) = 21.85

and

  Total moles O  2    in the dry flue gases  =  11.2 + 0.4 / 2 + 6.2 = 17.60 

The difference between these figures is the moles of O2 that react to form H2O. 
Therefore on the basis of 100 mol dry flue gases,

  Moles H  2  O formed = (21.85 − 17.60) (2) = 8.50 

  Moles H  2    in the fuel = moles of water formed = 8.50 

The amount of C in the fuel is given by a carbon balance:

 Moles C in flue gases = moles C in fuel = 11.2 + 0.4 = 11.60 

These amounts of C and H2 together give:

  Mass of fuel burned =  (  8.50 )   (  2 )   +  (  11.6 )   (  12 )   = 156.2 g  

If this amount of fuel is burned completely to CO2(g) and H2O(l) at 25°C, the 
heat of combustion is:

Δ H  298  °   = (− 43,515)(156.2) = − 6,797,040 J
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However, the reaction actually occurring does not represent complete combustion, 
and the H2O is formed as vapor rather than as liquid. The 156.2 g of fuel, consist-
ing of 11.6 mol of C and 8.5 mol of H2, is represented by the empirical formula 
C11.6H17. Omit the 6.2 mol O2 and 82.2 mol N2 which enter and leave the reactor 
unchanged, and write the reaction:

  C  11.6    H  17  (l) + 15.65  O  2  (g) → 11.2  CO  2  (g) + 0.4 CO(g) + 8.5  H  2   O(g) 

This result is obtained by addition of the following reactions, for each of which the 
standard heat of reaction at 25°C is known:

  
 C  11.6    H  17  (l) + 15.85  O  2   (g)

  
→ 11.6  CO  2  (g) + 8.5  H  2   O(l)

     8.5  H  2   O(l)  → 8.5  H  2  O(g)   
0.4  CO  2  (g)

  
→ 0.4CO(g) + 0.2  O  2  (g)

   

The sum of these reactions yields the actual reaction, and the sum of the  Δ H  298  °    
values gives the standard heat of the reaction occurring at 25°C:

Δ H  298  °   = −6,797,040 + (44,012)(8.5) + (282,984)(0.4) = − 6,309,740 J

The actual process leading from reactants at 25°C to products at 300°C is rep-
resented by the dashed line in the accompanying diagram. For purposes of calcu-
lating ΔH for this process, we may use any convenient path. The one drawn with 
solid lines is a logical one:  Δ H  298  °    has already been calculated and  Δ H  P  °   is easily 
evaluated.

HP
H

Products at 1 bar
and 300 C

Reactants at 1 bar
and 25 C H298

11.2 mol CO2

0.4 mol CO
8.5 mol H2O
6.2 mol O2

82.2 mol N2

156.2 g fuel
 21.85 mol O2

82.2 mol N2

The enthalpy change associated with heating the products of reaction from 25 to 
300°C is:

 Δ H  P  °  =   (   ∑ 
i
      n  i    ⟨ C  Pi

  °  ⟩ H   )   (573.15 − 298.15) 

where subscript i denotes products. The   ⟨ C  Pi
  °  ⟩ H   / R  values are:
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 CO  2  :

  

MCPH(298.15, 573.15; 5.457, 1.045 ×  10   −3 , 0.0, −1.157 ×  10   5 ) = 5.2352

        
CO:

  
MCPH(298.15, 573.15; 3.376, 0.557 ×  10   −3 , 0.0, −0.031 ×  10   5 ) = 3.6005

         H  2  O:  MCPH(298.15, 573.15; 3.470, 1.450 ×  10   −3 , 0.0, 0.121 ×  10   5 ) = 4.1725        
 O  2  :

  
MCPH(298.15, 573.15; 3.639, 0.506 ×  10   −3 , 0.0, − 0.227 ×  10   5 ) = 3.7267

        

 N  2  :

  

MCPH(298.15, 573.15; 3.280, 0.593 ×  10   −3 , 0.0, 0.040 ×  10   5 ) = 3.5618

   

Therefore,

  Δ H  P  °   = (8.314)[(11.2)(5.2352) + (0.4)(3.6005) + (8.5)(4.1725) + (6.2)(3.7267) +  
(82.2)(3.5618)](573.15 − 298.15) = 940,660 J 

and

 ΔH = Δ H  298  °   + Δ H  P  °  = − 6, 309,740 + 940,660 = − 5,369,080 J 

Because the process is one of steady flow for which the shaft work and kinetic- 
and potential-energy terms in the energy balance [Eq. (2.32)] are zero or negligi-
ble, ΔH = Q. Thus, Q = −5369 kJ, and this amount of heat is transferred to the 
boiler for every 100 mol dry flue gases formed. This represents

   
5,369,080

 _________ 6,797,040   (100) = 79.0% 

of the higher heat of combustion of the fuel.

In the foregoing examples of reactions that occur at approximately 1 bar, we have tacitly 
assumed that the heat effects of reaction are the same whether gases are mixed or pure, an 
acceptable procedure for low pressures. For reactions at elevated pressures, this may not be the 
case, and it may be necessary to account for the effects of pressure and of mixing on the heat of 
reaction. However, these effects are usually small. For reactions occurring in the liquid phase, 
the effects of mixing are generally more important. They are treated in detail in Chapter 11.

For biological reactions, occurring in aqueous solution, the effects of mixing are partic-
ularly important. The enthalpies and other properties of biomolecules in solution usually 
depend not only on temperature and pressure, but also on the pH, ionic strength, and concen-
trations of specific ions in solution. Table C.5 in App. C provides enthalpies of formation of a 
variety of molecules in dilute aqueous solution at zero ionic strength. These can be used to 
estimate heat effects of enzymatic or biological reactions involving such species. However, 
corrections for effects of pH, ionic strength, and finite concentration may be significant.16 
Heat capacities are often unknown for such species, but in dilute aqueous solution the overall 
specific heat is usually well approximated by the specific heat of water. Moreover, the tem-
perature range of interest for biological reactions is quite narrow. The following example illus-
trates estimation of heat effects for a biological reaction.

16For analysis of these effects, see Robert A. Alberty, Thermodynamics of Biochemical Reactions, John Wiley & 
Sons, Hoboken, NJ, 2003.
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Example 4.11
A dilute solution of glucose enters a continuous fermentation process, where yeast 
cells convert it to ethanol and carbon dioxide. The aqueous stream entering the reac-
tor is at 25°C and contains 5 wt-% glucose. Assuming this glucose is fully converted to 
ethanol and carbon dioxide, and that the product stream leaves the reactor at 35°C, 
estimate the amount of heat added or removed per kg of ethanol produced. Assume 
that the carbon dioxide remains dissolved in the product stream.

Solution 4.11
For this constant pressure process with no shaft work, the heat effect is simply 
equal to the enthalpy change from the feed stream to the product stream. The fer-
mentation reaction is:

  C  6    H  12    O  6  (aq) → 2  C  2    H  5   OH(aq) + 2  CO  2  (aq) 

The standard enthalpy of reaction at 298 K obtained using the heats of forma-
tion in dilute aqueous solution from Table C.5 is:

 Δ H  298  °   = (2)(−288.3) + (2)(−413.8) − (−1262.2) = −142.0  kJ·mol   −1  

One kg of ethanol is 1/(0.046069 kg·mol−1) = 21.71 mol ethanol. Each mole of 
glucose produces two moles of ethanol, so 10.85 mol of reaction must occur to 
produce 1 kg of ethanol. The standard enthalpy of reaction per kg ethanol is then 
(10.85)(−142.0) = −1541 kJ·kg−1. The mass of glucose required to produce 1 kg 
ethanol is 10.85 mol × 0.18016 kg·mol−1 = 1.955 kg glucose. If the feed stream is 
5 wt-% glucose, then the total mass of solution fed to the reactor per kg ethanol 
produced is 1.955/0.05 = 39.11 kg. Assuming that the product stream has the spe-
cific heat of water, about 4.184 kJ·kg−1·K−1, then the enthalpy change per kg eth-
anol for heating the product stream from 25°C to 35°C is:

 4.184 kJ· kg   −1   ·K   −1  × 10 K × 39.11 kg = 1636 kJ 

Adding this to the heat of reaction per kg ethanol gives the total enthalpy 
change from feed to product, which is also the total heat effect:

 Q = ΔH = − 1541 + 1636 = 95 kJ ·(kg ethanol)   −1  

This estimate leads to the conclusion that a small amount of heat must be added to 
the reactor because the reaction exothermicity is not quite sufficient to heat the feed 
stream to the product temperature. In an actual process, the glucose would not be fully 
converted to ethanol. Some fraction of the glucose must be directed to other products 
of cellular metabolism. This means that somewhat more than 1.955 kg glucose will be 
needed per kg of ethanol produced. The heat release from other reactions may be some-
what higher or lower than that for the production of ethanol, which would change the 
estimate. If some of the CO2 leaves the reactor as a gas, then the heat requirement will 
be slightly higher because the enthalpy of CO2(g) is higher than that of aqueous CO2.
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4.8 SYNOPSIS

After studying this chapter, including the end-of-chapter problems, one should be able to:

 ∙ Define sensible heat effects, latent heat, heat of reaction, heat of formation, and heat of 
combustion

 ∙ Formulate a heat-capacity integral, decide whether to use CP or CV in it, and evaluate it 
with the heat capacity expressed as a polynomial in temperature

 ∙ Use a heat-capacity integral in an energy balance to determine the energy input required 
to achieve a given temperature change or to determine the temperature change that will 
result from a given energy input

 ∙ Look up or estimate latent heats of phase change and apply them in energy balances
 ∙ Apply the Clapeyron equation
 ∙ Compute a standard heat of reaction at arbitrary temperature from heats of formation 

and heat capacities
 ∙ Compute standard heats of reaction from standard heats of combustion
 ∙ Compute heat requirements for a process with specified chemical reactions and speci-

fied inlet and outlet temperatures
 ∙ Compute the outlet temperature from a process involving chemical reactions, given the 

inlet conditions, heat input or removal, and outlet composition

4.9 PROBLEMS

 4.1. For steady flow in a heat exchanger at approximately atmospheric pressure, what is 
the heat transferred:

 (a) When 10 mol of SO2 is heated from 200 to 1100°C?
 (b) When 12 mol of propane is heated from 250 to 1200°C?
 (c) When 20 kg of methane is heated from 100 to 800°C?
 (d) When 10 mol of n-butane is heated from 150 to 1150°C?
 (e) When 1000 kg of air is heated from 25 to 1000°C?
 ( f ) When 20 mol of ammonia is heated from 100 to 800°C?
 (g) When 10 mol of water is heated from 150 to 300°C?
 (h) When 5 mol of chlorine is heated from 200 to 500°C?
 (i) When 10 kg of ethylbenzene is heated from 300 to 700°C?

 4.2. For steady flow through a heat exchanger at approximately atmospheric pressure, 
what is the final temperature,

 (a) When heat in the amount of 800 kJ is added to 10 mol of ethylene initially at 200°C?
 (b) When heat in the amount of 2500 kJ is added to 15 mol of 1-butene initially at 260°C?
 (c) When heat in the amount of 106(Btu) is added to 40(lb mol) of ethylene initially at 

500(°F)?
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168 CHAPTER 4. Heat Effects

 4.3. For a steady-flow heat exchanger with a feed temperature of 100°C, compute the out-
let stream temperature when heat in the amount of 12 kJ·mol−1 is added to the follow-
ing substances.

(a) methane, (b) ethane, (c) propane, (d) n-butane, (e) n-hexane, ( f ) n-octane,  
(g) propylene, (h) 1-pentene, (i) 1-heptene, ( j) 1-octene, (k) acetylene, (l) benzene,  
(m) eth anol, (n) styrene, (o) formaldehyde, (p) ammonia, (q) carbon monoxide, (r) carbon 
dioxide, (s) sulfur dioxide, (t) water, (u) nitrogen, (ν) hydrogen cyanide

 4.4.  If 250(ft)3(s)−1 of air at 122(°F) and approximately atmospheric pressure is preheated 
for a combustion process to 932(°F), what rate of heat transfer is required? 

 4.5. How much heat is required when 10,000 kg of CaCO3 is heated at atmospheric pres-
sure from 50°C to 880°C?

 4.6. If the heat capacity of a substance is correctly represented by an equation of the form, 

  C  P   = A + BT +  CT   2  

show that the error resulting when ⟨CP⟩H is assumed equal to CP evaluated at the 
arithmetic mean of the initial and final temperatures is C(T2 − T1)2/12.

 4.7. If the heat capacity of a substance is correctly represented by an equation of the form, 

  C  P   = A + BT + D  T   −2  

show that the error resulting when ⟨CP⟩H is assumed equal to CP evaluated at the 
arithmetic mean of the initial and final temperatures is:

   
D
 _____  T  1    T  2       (    

 T  2   −  T  1  
 _______  T  2   +  T  1     )     

2
  

 4.8. Calculate the heat capacity of a gas sample from the following information: The sam-
ple comes to equilibrium in a flask at 25°C and 121.3 kPa. A stopcock is opened 
briefly, allowing the pressure to drop to 101.3 kPa. With the stopcock closed, the flask 
warms, returning to 25°C, and the pressure is measured as 104.0 kPa. Determine CP in 
J·mol−1·K−1 assuming the gas to be ideal and the expansion of the gas remaining in 
the flask to be reversible and adiabatic. 

 4.9. A process stream is heated as a gas from 25°C to 250°C at constant P. A quick esti-
mate of the energy requirement is obtained from Eq. (4.3), with CP taken as constant 
and equal to its value at 25°C. Is the estimate of Q likely to be low or high? Why?

  4.10. (a) For one of the compounds listed in Table B.2 of App. B, evaluate the latent heat of 
vaporization ΔHn by Eq. (4.13). How does this result compare with the value 
listed in Table B.2?

 (b) Handbook values for the latent heats of vaporization at 25°C of four compounds 
are given in the table. For one of these, calculate ΔHn using Eq. (4.14), and com-
pare the result with the value given in Table B.2.
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Latent heats of vaporization at 25°C in J·g−1

n-Pentane 366.3 Benzene        433.3
n-Hexane    366.1 Cyclohexane 392.5

 4.11. Table 9.1 lists the thermodynamic properties of saturated liquid and vapor tetrafluo-
roethane. Making use of the vapor pressures as a function of temperature and of the 
saturated-liquid and saturated-vapor volumes, calculate the latent heat of vaporization 
by Eq. (4.12) at one of the following temperatures and compare the result with the 
latent heat of vaporization calculated from the enthalpy values given in the table.

 (a) −16°C, (b) 0°C, (c) 12°C, (d) 26°C, (e) 40°C.

 4.12. Handbook values for the latent heats of vaporization in J·g−1 are given in the table for 
three pure liquids at 0°C.

ΔHlv at 0° C
Chloroform 270.9
Methanol 1189.5
Tetrachloromethane 217.8

 For one of these substances, calculate:

 (a) The value of the latent heat at Tn by Eq. (4.14), given the value at 0°C.
 (b) The value of the latent heat at Tn by Eq. (4.13).

By what percentages do these results differ from the value listed in Table B.2 of App. B?

 4.13. Table B.2 of App. B provides parameters for an equation that gives Psat as a function of 
T for a number of pure compounds. For one of them, determine the heat of vaporization 
at its normal boiling point by application of Eq. (4.12), the Clapeyron equation. Evaluate 
dPsat/dT from the given vapor-pressure equation, and use generalized correlations from 
Chapter 3 to estimate ΔV. Compare the computed value with the value of ΔHn listed in 
Table B.2. Note that normal boiling points are listed in the last column of Table B.2.

 4.14. A method for determination of the second virial coefficient of a pure gas is based on the 
Clapeyron equation and measurements of the latent heat of vaporization ΔHlv, the molar 
volume of saturated liquid Vl, and the vapor pressure Psat. Determine B in cm3·mol−1 for 
methyl ethyl ketone at 75°C from the following data at this temperature:

 Δ H   lν  = 31,600   J·mol   −1       V   l  = 96.49  cm   3   ·mol   −1  

 ln  P   sat  / kPa = 48.158 − 5623 / T − 4.705 ln T  [T = K] 

 4.15. One hundred kmol per hour of subcooled liquid at 300 K and 3 bar is superheated to 
500 K in a steady-flow heat exchanger. Estimate the exchanger duty (in kW) for one of 
the following:

 (a) Methanol, for which T sat = 368.0 K at 3 bar
 (b) Benzene, for which T sat = 392.3 K at 3 bar
 (c) Toluene, for which T sat = 426.9 K at 3 bar
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 4.16. For each of the following substances, compute the final temperature when heat in the 
amount of 60 kJ·mol−1 is added to the subcooled liquid at 25°C at atmospheric 
pressure.

 (a) Methanol
 (b) Ethanol
 (c) Benzene
 (d) Toluene
 (e) Water

 4.17. Saturated-liquid benzene at pressure P1 = 10 bar    (    T 1  sat  = 451.7K )     is throttled in a 
steady-flow process to a pressure P2 = 1.2 bar    (    T 2  sat  = 358.7K )    , where it is a liquid/
vapor mixture. Estimate the molar fraction of the exit stream that is vapor. For liquid 
benzene, CP = 162 J·mol−1·K−1. Ignore the effect of pressure on the enthalpy of liquid 
benzene.

 4.18. Estimate  Δ H   f  298    °    for one of the following compounds as a liquid at 25°C.

 (a) acetylene, (b) 1,3-butadiene, (c) ethylbenzene, (d) n-hexane, (e) styrene.

 4.19. Reversible compression of 1 mol of an ideal gas in a piston/cylinder device results in 
a pressure increase from 1 bar to P2 and a temperature increase from 400 K to 950 K. 
The path followed by the gas during compression is given by PV1.55 = const, and the 
molar heat capacity of the gas is given by:

  C  P   / R = 3.85 + 0.57 ×  10   −3  T   [ T = K ] 

Determine the heat transferred during the process and the final pressure.

 4.20. Hydrocarbon fuels can be produced from methanol by reactions such as the following, 
which yields 1-hexene:

  6CH  3  OH(g) →  C  6   H  12  (g) +  6H  2  O(g) 

Compare the standard heat of combustion at 25°C of 6 CH3OH(g) with the standard 
heat of combustion at 25°C of C6H12(g) for reaction products CO2(g) and H2O(g).

 4.21. Calculate the theoretical flame temperature when ethylene at 25°C is burned with:

 (a) The theoretical amount of air at 25°C
 (b) 25% excess air at 25°C
 (c) 50% excess air at 25°C
 (d) 100% excess air at 25°C
 (e) 50% excess air preheated to 500°C
 ( f ) The theoretical amount of pure oxygen

 4.22. What is the standard heat of combustion of each of the following gases at 25°C if the 
combustion products are H2O(l) and CO2(g)? Compute both the molar and specific 
heat of combustion in each case.
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(a) methane, (b) ethane, (c) ethylene, (d) propane, (e) propylene, ( f ) n-butane,  
(g) 1-butene, (h) ethylene oxide, (i) acetaldehyde, ( j) methanol, (k) ethanol

 4.23. Determine the standard heat of each of the following reactions at 25°C:

 (a) N2(g) + 3H2(g) → 2NH3(g)
 (b) 4NH3(g) + 5O2(g) → 4NO(g) + 6H2O(g)
 (c) 3NO2(g) + H2O(l) → 2HNO3(l) + NO(g)
 (d) CaC2(s) + H2O(l) → C2H2(g) + CaO(s)
 (e) 2Na(s) + 2H2O(g) → 2NaOH(s) + H2(g)
 ( f ) 6NO2(g) + 8NH3(g) → 7N2(g) + 12H2O(g)
 (g) C2H4(g) +    1 _ 2   O2(g) → ⟨(CH2)2⟩O(g)
 (h) C2H2(g) + H2O(g) → ⟨(CH2)2⟩O(g)
 (i) CH4(g) + 2H2O(g) → CO2(g) + 4H2(g)
 ( j) CO2(g) + 3H2(g) → CH3OH(g) + H2O(g)
 (k) CH3OH(g) +    1 _ 2   O2(g) → HCHO(g) + H2O(g)
 (l) 2H2S(g) + 3O2(g) → 2H2O(g) + 2SO2(g)
 (m) H2S(g) + 2H2O(g) → 3H2(g) + SO2(g)
 (n) N2(g) + O2(g) → 2NO(g)
 (o) CaCO3(s) → CaO(s) + CO2(g)
 (p) SO3(g) + H2O(l) → H2SO4(l)
 (q) C2H4(g) + H2O(l) → C2H5OH(l)
 (r) CH3CHO(g) + H2(g) → C2H5OH(g)
 (s) C2H5OH(l) + O2(g) → CH3COOH(l) + H2O(l)
 (t) C2H5CH:CH2(g) → CH2:CHCH:CH2(g) + H2(g)
 (u) C4H10(g) → CH2:CHCH:CH2(g) + 2H2(g)
 (ν) C2H5CH:CH2(g) +    1 _ 2    O2(g) → CH2:CHCH:CH2(g) + H2O(g)
 (w) 4NH3(g) + 6NO(g) → 6H2O(g) + 5N2(g)
 (x) N2(g) + C2H2(g) → 2HCN(g)
 (y) C6H5C2H5(g) → C6H5CH:CH2(g) + H2(g)
 (z) C(s) + H2O(l) → H2(g) + CO(g)

 4.24. Determine the standard heat for one of the reactions of Prob. 4.23: part (a) at 600°C, 
part (b) at 50°C, part ( f ) at 650°C, part (i) at 700°C, part ( j) at 590(°F), part (l) at 
770(°F), part (m) at 850 K, part (n) at 1300 K, part (o) at 800°C, part (r) at 450°C, part 
(t) at 860(°F), part (u) at 750 K, part (v) at 900 K, part (w) at 400°C, part (x) at 375°C, 
part (y) at 1490(°F).

 4.25. Develop a general equation for the standard heat of reaction as a function of tempera-
ture for one of the reactions given in parts (a), (b), (e), ( f ), (g), (h), ( j), (k), (l), (m), 
(n), (o), (r), (t), (u), (v), (w), (x), (y), and (z) of Prob. 4.23. 

 4.26. Compute the standard heat of reaction for each of the following reactions taking place 
at 298.15 K in dilute aqueous solution at zero ionic strength.

 (a) D-Glucose + ATP2− → D-Glucose 6-phosphate− + ADP−

 (b) D-Glucose 6-phosphate− → D-Fructose 6-phosphate−

www.konkur.in

Telegram: @uni_k



172 CHAPTER 4. Heat Effects

 (c) D-Fructose 6-phosphate− + ATP2− → D-Fructose 1,6-biphosphate2− + ADP−

 (d) D-Glucose + 2 ADP− + 2  H  2    PO 4  −   + 2 NAD+ → 2 Pyruvate−+ 2 ATP2− +  
2 NADH + 4H+ + 2H2O

 (e) D-Glucose + 2 ADP− + 2  H  2    PO 4  −   → 2 Lactate− + 2 ATP2−+ 2H+ + 2H2O
 ( f ) D-Glucose + 2 ADP− + 2  H  2    PO 4  −   → 2CO2 + 2 Ethanol + 2 ATP2− + 2 H2O
 (g) 2 NADH + O2 + 2H+ → 2 NAD+ + 2H2O
 (h) ADP− +   H  2    PO 4  −   →ATP2− + H2O
 (i) 2 NADH + 2 ADP−+ 2  H  2    PO 4  −   + O2 + 2H+ → 2 NAD+ + 2 ATP2− + 4H2O
 ( j) D-Fructose + 2 ADP− + 2  H  2    PO 4  −   → 2CO2 + 2 Ethanol +2 ATP2− + 2H2O
 (k) D-Galactose + 2 ADP− + 2  H  2    PO 4  −   → 2CO2 + 2
 (l) Ethanol + 2 ATP2− + 2H2O
    NH 4  +   + L-aspartate− + ATP2− → L-asparagine + ADP− +   H  2    PO 4  −  

 4.27. The first step in the metabolism of ethanol is dehydrogenation by reaction with 
nicotinamide-adenine dinucleotide (NAD): 

  C  2   H  5  OH +  NAD   +  →  C  2   H  4  O + NADH 

What is the heat effect of this reaction upon metabolizing 10 g of ethanol from a typical 
cocktail? What is the total heat effect for complete metabolism of the 10 g of ethanol to 
CO2 and water? How, if at all, is the perception of warmth that accompanies ethanol 
consumption related to these heat effects? For computing heat effects, you may neglect 
the temperature, pH, and ionic strength dependence of the enthalpy of reaction (i.e. apply 
the enthalpies of formation from Table C.5 of App. C at physiological conditions).

 4.28. Natural gas (assume pure methane) is delivered to a city via pipeline at a volumetric 
rate of 150 million standard cubic feet per day. If the selling price of the gas is  
$5.00 per GJ of higher heating value, what is the expected revenue in dollars per day? 
Standard conditions are 60(°F) and 1(atm). 

 4.29. Natural gases are rarely pure methane; they usually also contain other light 
hydrocarbons and nitrogen. Determine an expression for the standard higher heat of 
combustion as a function of composition for a natural gas containing methane, ethane, 
propane, and nitrogen. Assume liquid water as a product of combustion. Which of the 
following natural gases has the highest heat of combustion?

 (a)  y  C H  4     = 0.95,  y   C  2   H  6     = 0.02,  y   C  3   H  8     = 0.02,  y   N  2     = 0.01
 (b)  y  C H  4     = 0.90,  y   C  2   H  6     = 0.05,  y   C  3   H  8     = 0.03,  y   N  2     = 0.02
 (c)  y  C H  4     = 0.85,  y   C  2   H  6     = 0.07,  y   C  3   H  8     = 0.03,  y   N  2     = 0.05

 4.30. If the heat of combustion of urea, (NH2)2CO(s), at 25°C is 631,660 J·mol−1 when the 
products are CO2(g), H2O(l), and N2(g), what is  Δ H   f  298    °    for urea?

 4.31. The higher heating value (HHV) of a fuel is its standard heat of combustion at 25°C with 
liquid water as a product; the lower heating value (LHV) is for water vapor as product. 

 (a) Explain the origins of these terms.
 (b) Determine the HHV and the LHV for natural gas, modeled as pure methane.
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 (c)  Determine the HHV and the LHV for a home-heating oil, modeled as pure liquid 
n-decane. For n-decane as a liquid

  Δ H   f  298    °   = − 249,700   J·mol   −1   

 4.32. A light fuel oil with an average chemical composition of C10H18 is burned with oxy-
gen in a bomb calorimeter. The heat evolved is measured as 43,960 J·g−1 for the reac-
tion at 25°C. Calculate the standard heat of combustion of the fuel oil at 25°C with 
H2O(g) and CO2(g) as products. Note that the reaction in the bomb occurs at constant 
volume, produces liquid water as a product, and goes to completion.

 4.33. Methane gas is burned completely with 30% excess air at approximately atmospheric 
pressure. Both the methane and the air enter the furnace at 30°C saturated with water 
vapor, and the flue gases leave the furnace at 1500°C. The flue gases then pass 
through a heat exchanger from which they emerge at 50°C. Per mole of methane, how 
much heat is lost from the furnace, and how much heat is transferred in the heat 
exchanger?

 4.34. Ammonia gas enters the reactor of a nitric acid plant mixed with 30% more dry air 
than is required for the complete conversion of the ammonia to nitric oxide and water 
vapor. If the gases enter the reactor at 75°C, if conversion is 80%, if no side reactions 
occur, and if the reactor operates adiabatically, what is the temperature of the gases 
leaving the reactor? Assume ideal gases.

 4.35. Ethylene gas and steam at 320°C and atmospheric pressure are fed to a reaction pro-
cess as an equimolar mixture. The process produces ethanol by the reaction:  

  C  2   H  4  (g) +  H  2  O(g) →  C  2   H  5  OH(l) 

The liquid ethanol exits the process at 25°C. What is the heat transfer associated with 
this overall process per mole of ethanol produced?

 4.36. A gas mixture of methane and steam at atmospheric pressure and 500°C is fed to a 
reactor, where the following reactions occur:  

   CH  4   +  H  2  O → CO + 3  H  2     and   CO +  H  2  O →  CO  2   +  H  2    

The product stream leaves the reactor at 850°C. Its composition (mole fractions) is:

   y   CO  2     = 0.0275    y  CO   = 0.1725    y   H  2  O   = 0.1725    y   H  2     = 0.6275  

Determine the quantity of heat added to the reactor per mole of product gas.

 4.37. A fuel consisting of 75 mol-% methane and 25 mol-% ethane enters a furnace with 
80% excess air at 30°C. If 8 × 105 kJ·kmol−1 fuel is transferred as heat to boiler tubes, 
at what temperature does the flue gas leave the furnace? Assume complete combus-
tion of the fuel.
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 4.38. The gas stream from a sulfur burner consists of 15 mol-% SO2, 20 mol-% O2, and 
65 mol-% N2. The gas stream at atmospheric pressure and 400°C enters a catalytic 
converter where 86% of the SO2 is further oxidized to SO3. On the basis of 1 mol of 
gas entering, how much heat must be added to or removed from the converter so that 
the product gases leave at 500°C?

 4.39. Hydrogen is produced by the reaction  CO(g) +  H  2  O(g) →  CO  2  (g) +  H  2  (g).  The feed 
stream to the reactor is an equimolar mixture of carbon monoxide and steam, and it 
enters the reactor at 125°C and atmospheric pressure. If 60% of the H2O is converted 
to H2 and if the product stream leaves the reactor at 425°C, how much heat must be 
transferred to or from the reactor?

 4.40. A direct-fired dryer burns a fuel oil with a lower heating value of 19,000(Btu)
(lbm)−1. [Products of combustion are CO2(g) and H2O(g).] The composition of the 
oil is 85% carbon, 12% hydrogen, 2% nitrogen, and 1% water by weight. The flue 
gases leave the dryer at 400(°F), and a partial analysis shows that they contain 
3 mol-% CO2 and 11.8 mol-% CO on a dry basis. The fuel, air, and material being 
dried enter the dryer  at 77(°F). If the entering air is saturated with water and if 
30% of the net heating value of the oil is allowed for heat losses (including the sen-
sible heat carried out with the dried product), how much water is evaporated in the 
dryer per (lbm) of oil burned?

 4.41. An equimolar mixture of nitrogen and acetylene enters a steady-flow reactor at 25°C and 
atmospheric pressure. The only reaction occurring is    N  2   (  g )   +  C  2    H  2   (  g )   → 2HCN (  g )    . 
The product gases leave the reactor at 600°C and contain 24.2 mol-% HCN. How much 
heat is supplied to the reactor per mole of product gas? 

 4.42. Chlorine is produced by the reaction    4HCl (  g )   +  O  2   (  g )   → 2  H  2  O (  g )   + 2  Cl  2   (  g )    . The 
feed stream to the reactor consists of 60 mol-% HCl, 36 mol-% O2, and 4 mol-% N2, 
and it enters the reactor at 550°C. If the conversion of HCl is 75% and if the process is 
isothermal, how much heat must be transferred to or from the reactor per mole of the 
entering gas mixture?

 4.43. A gas consisting only of CO and N2 is made by passing a mixture of flue gas and air 
through a bed of incandescent coke (assume pure carbon). The two reactions that 
occur both go to completion:

   CO  2   + C → 2CO   and   2C +  O  2   → 2CO  

The flue gas composition is 12.8 mol-% CO, 3.7 mol-% CO2, 5.4 mol-% O2, and  
78.1 mol-% N2. The flue gas/air mixture is so proportioned that the heats of the two 
reactions cancel, and the temperature of the coke bed is therefore constant. If this tem-
perature is 875°C, if the feed stream is preheated to 875°C, and if the process is adia-
batic, what ratio of moles of flue gas to moles of air is required, and what is the 
composition of the gas produced?
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 4.44. A fuel gas consisting of 94 mol-% methane and 6 mol-% nitrogen is burned with 35% 
excess air in a continuous water heater. Both fuel gas and air enter dry at 77(°F). Water 
is heated at a rate of 75(lbm)(s)−1 from 77(°F) to 203(°F). The flue gases leave the 
heater at 410(°F). Of the entering methane, 70% burns to carbon dioxide and 30% 
burns to carbon monoxide. What volumetric flow rate of fuel gas is required if there 
are no heat losses to the surroundings?

 4.45. A process for the production of 1,3-butadiene results from the catalytic dehydrogena-
tion at atmospheric pressure of 1-butene according to the reaction:

  C  4    H  8  (g) →  C  4    H  6  (g) +  H  2  (g) 

To suppress side reactions, the 1-butene feed stream is diluted with steam in the ratio 
of 10 moles of steam per mole of 1-butene. The reaction is carried out  isothermally at 
525°C, and at this temperature 33% of the 1-butene is converted to 1,3-butadiene. 
How much heat is transferred to or from the reactor per mole of entering 1-butene?

 4.46. (a)  An air-cooled condenser transfers heat at a rate of 12(Btu)·s−1 to ambient air at 
70(°F). If the air temperature is raised 20(°F), what is the required volumetric 
flow rate of the air?

 (b) Rework part (a) for a heat-transfer rate of 12 kJ·s−1, ambient air at 24°C, and a 
temperature rise of 13°C.

 4.47. (a)  An air-conditioning unit cools 50(ft)3·s−1 of air at 94(°F) to 68(°F). What is the 
required heat-transfer rate in (Btu)·s−1?

 (b) Rework part (a) for a flow rate of 1.5 m3·s−1, a temperature change from 35°C to 
25°C, and units of kJ·s−1.

 4.48. A propane-fired water heater delivers 80% of the standard heat of combustion of the 
propane [at 25°C with CO2(g) and H2O(g) as products] to the water. If the price of 
propane is $2.20 per gallon as measured at 25°C, what is the heating cost in $ per  
million (Btu)? In $ per MJ?

 4.49. Determine the heat transfer (J·mol−1) when one of the gases identified below is heated 
in a steady-flow process from 25°C to 500°C at atmospheric pressure.

(a) acetylene; (b) ammonia; (c) n-butane; (d) carbon dioxide; (e) carbon  monoxide;  
( f ) ethane; (g) hydrogen; (h) hydrogen chloride; (i) methane; ( j) nitric oxide;  
(k) nitrogen; (l) nitrogen dioxide; (m) nitrous oxide; (n) oxygen; (o) propylene

 4.50. Determine the final temperature for one of the gases of the preceding problem if heat 
in the amount of 30,000 J·mol−1 is transferred to the gas, initially at 25°C, in a steady-
flow process at atmospheric pressure.
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 4.51. Quantitative thermal analysis has been suggested as a technique for monitoring the 
composition of a binary gas stream. To illustrate the principle, do one of the following 
problems.

 (a) A methane/ethane gas mixture is heated from 25°C to 250°C at 1(atm) in a steady-
flow process. If Q = 11,500 J·mol−1, what is the composition of the mixture?

 (b) A benzene/cyclohexane gas mixture is heated from 100°C to 400°C at 1(atm) in a 
steady-flow process. If Q = 54,000 J·mol−1, what is the composition of the 
mixture?

 (c) A toluene/ethylbenzene gas mixture is heated from 150°C to 250°C at 1(atm) in a 
steady-flow process. If Q = 17,500 J·mol−1, what is the composition of the mixture?

 4.52. Saturated steam at 1(atm) and 100°C is continuously generated from liquid water at 
1(atm) and 25°C by thermal contact with hot air in a counterflow heat exchanger. The 
air flows steadily at 1(atm). Determine values for   m ˙    (steam)/  n ˙   (air) for two cases:

 (a) Air enters the exchanger at 1000°C
 (b) Air enters the exchanger at 500°C

For both cases, assume a minimum approach ΔT for heat exchange of 10°C.

 4.53. Saturated water vapor, i.e., steam, is commonly used as a heat source in heat- exchanger 
applications. Why saturated vapor? Why saturated water vapor? In a plant of any 
 reasonable size, several varieties of saturated steam are commonly available; for 
example, saturated steam at 4.5, 9, 17, and 33 bar. But the higher the pressure the 
lower the useful energy content (why?), and the greater the unit cost. Why then is 
higher-pressure steam used?

 4.54. The oxidation of glucose provides the principal source of energy for animal cells. 
Assume the reactants are glucose [C6H12O6(s)] and oxygen [O2(g)]. The products are 
CO2(g) and H2O(l).

 (a) Write a balanced equation for glucose oxidation, and determine the standard heat 
of reaction at 298 K.

 (b) During a day an average person consumes about 150 kJ of energy per kg of body 
mass. Assuming glucose the sole source of energy, estimate the mass (grams) of 
glucose required daily to sustain a person of 57 kg.

 (c) For a population of 275 million persons, what mass of CO2 (a greenhouse gas) is 
produced daily by mere respiration. Data: For glucose,  Δ H   f  298    °   = − 1274.4 kJ· mol   −1  .  
Ignore the effect of temperature on the heat of reaction.

 4.55. A natural-gas fuel contains 85 mol-% methane, 10 mol-% ethane, and 5 mol-% nitrogen.

 (a) What is the standard heat of combustion (kJ·mol−1) of the fuel at 25°C with 
H2O(g) as a product?

 (b) The fuel is supplied to a furnace with 50% excess air, both entering at 25°C. The 
products leave at 600°C. If combustion is complete and if no side reactions occur, 
how much heat (kJ per mol of fuel) is transferred in the furnace?
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Chapter 5

The Second Law of 
Thermodynamics

Thermodynamics treats the principles of energy transformations, and the laws of thermodynamics 
establish the bounds within which these transformations are observed to occur. The first law states 
the principle of energy conservation, leading to energy balances in which work and heat are included 
as simple and equivalent additive terms. Yet work and heat are otherwise quite different. Work is 
directly useful in ways that heat is not, e.g., for accelerating an object or moving it against an 
opposing force, such as gravity. Evidently, work is a form of energy intrinsically more valuable than 
an equal quantity of heat. This difference is reflected in a second fundamental law which, together 
with the first law, lays the foundation for all of thermodynamics. The purpose of this chapter is to:

 ∙ Introduce the concept of entropy, an essential thermodynamic property
 ∙ Present the second law of thermodynamics, which formalizes the observed difference 

between processes that can occur spontaneously and those that cannot
 ∙ Apply the second law to some familiar processes
 ∙ Relate changes in entropy to T and P for substances in the ideal-gas state
 ∙ Present entropy balances for open systems
 ∙ Demonstrate the calculation of ideal work and lost work for flow processes
 ∙ Relate entropy to the microscopic world of molecules

5.1 AXIOMATIC STATEMENTS OF THE SECOND LAW

The two axioms presented in Chapter 2 in relation to the first law have counterparts with 
respect to the second law. They are:

Axiom 4: Entropy1 S is an intrinsic property of any system at internal 
equilibrium that is functionally related to the measurable state variables 

1Pronounced en’-tro-py to distinguish it clearly from en-thal’-py.
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178 CHAPTER 5. The Second Law of Thermodynamics

that characterize the system. Differential changes in entropy are given 
by:

     dS   t  =  dQ  rev   / T    (5.1)

where St is the system (rather than the molar) entropy.

Axiom 5: (The Second Law of Thermodynamics) The entropy change of 
any system and its surroundings, considered together, and resulting 
from any real process, is positive, approaching zero when the process 
approaches reversibility. Mathematically,

    Δ S  total   ≥ 0    (5.2)

The second law summarizes the universal observation that every process proceeds in 
such a direction that the total entropy change associated with it is positive, the limiting value 
of zero being attained only by a reversible process. No process is possible for which the total 
entropy decreases. The practical utility of the second law is illustrated by application to two 
very common processes. The first shows its consistency with our everyday experience that 
heat flows from hot to cold. The second shows how it establishes limits for the conversion of 
heat to work by any device.

Application of the Second Law to Simple Heat Transfer
First, consider direct heat transfer between two heat reservoirs, bodies imagined capable of absorbing 
or rejecting unlimited quantities of heat without temperature change.2 The equation for the 
entropy change of a heat reservoir follows from Eq. (5.1). Because T is constant, integration gives:

  ΔS =   
Q

 __ 
T

    

A quantity of heat Q is transferred to or from a reservoir at temperature T. From the res-
ervoir’s point of view the transfer is reversible, because its effect on the reservoir is the same 
regardless of source or sink of the heat.

Let the temperatures of the reservoirs be TH and TC with TH > TC. Heat quantity Q, 
transferred from one reservoir to the other, is the same for both reservoirs. However, QH and 
QC have opposite signs: positive for the heat added to one reservoir and negative for the heat 
extracted from the other. Therefore QH = −QC, and the entropy changes of the reservoirs at TH 
and at TC are:

  Δ S  H  t
   =   

 Q  H  
 ___  T  H     =   

 − Q  C  
 _____  T  H      and  Δ S  C  t

   =   
 Q  C  

 ___  T  C      

These two entropy changes are added to give:

  Δ S  total   = Δ S  H  t
   + Δ S  C  t

   =   
 − Q  C  

 _____  T  H     +   
 Q  C  

 ___  T  C     =  Q  C   (  
 T  H   −  T  C  

 _______  T  H   T  C    )   

2The firebox of a furnace is in effect a hot reservoir, and the surrounding atmosphere, a cold reservoir.
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Because the heat-transfer process is irreversible, Eq. (5.2) requires a positive value for 
ΔStotal, and therefore,
   Q  C   ( T  H   −  T  C  )  > 0  

With the temperature difference positive, QC must also be positive, which means that 
heat flows into the reservoir at TC, i.e., from the higher to the lower temperature. This result 
conforms to universal experience that heat flows from higher to lower temperature. A formal 
statement conveys this result:

No process is possible which consists solely of the transfer of heat from 
one temperature level to a higher one.

Note also that ΔStotal becomes smaller as the temperature difference decreases. When TH 
is only infinitesimally higher than TC, the heat transfer is reversible, and ΔStotal approaches zero.

Example 5.1
A 40 kg steel casting (CP = 0.5 kJ⋅kg−1⋅K−1) at a temperature of 450°C is quenched in 
150 kg of oil (CP = 2.5 kJ⋅kg−1⋅K−1) at 25°C. If there are no heat losses, what is the 
change in entropy of (a) the casting, (b) the oil, and (c) both considered together?

Solution 5.1
While the overall process described here is irreversible, one can imagine the cool-
ing of the casting from its initial to final temperature by reversible heat transfer 
and the corresponding heating of the oil by reversible heat transfer. In each case, 
the entropy change is given by Eq. (5.1). If the oil and the casting are both incom-
pressible, then in each case dQrev = dUt =   C  p  t   dT. For an incompressible substance, 
all processes are constant volume processes, so Cp and Cv are equal and no revers-
ible work is possible. Integrating Eq. (5.1) from an initial temperature T1 to a final 
temperature T2, for constant   C  p  t   , then gives the change in entropy as:

ΔSt =   ∫ 
T1

  
T2

    
dQrev

 _____ 
T

      =   ∫ 
T1

  
T2

    
 C  p  t   dT

 _____ 
T

      =   C  p  t    ln    
T2 ___ 
T1

   

The final temperature t of the oil and the steel casting is found by an energy balance. 
Because the change in energy of the oil and steel together must be zero,

  (40)(0.5)(t − 450) + (150)(2.5)(t − 25) = 0  

Solution yields t = 46.52°C.

(a) Change in entropy of the casting:

   
Δ S   t 

  
= m ∫ 

 
  
 

   
  C  P   dT

 _____ 
T

     = m C  P   ln   
 T  2  

 ___  T  1    
    

 
  

= (40)(0.5) ln   
273.15 + 46.52

  _____________  273.15 + 450   = −16.33 kJ⋅ K   −1 
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(b) Change in entropy of the oil:

  Δ S   t  =   (  150 )   (  2.5 )    ln    
273.15 + 46.52

  ____________  273.15 + 25   = 26.13 kJ⋅ K   −1   

(c) Total entropy change:

  Δ S  total   = −16.33 + 26.13 = 9.80 kJ⋅ K   −1   

Note that although the total entropy change is positive, the entropy of the casting 
has decreased.

Application of the Second Law to Heat Engines
Heat can be used far more productively than by simple transfer from one temperature to a 
lower one. Indeed, useful work is produced by countless engines that employ the flow of heat 
as their energy source. The most common examples are the internal-combustion engine and 
the steam power plant. Collectively, these are heat engines. They rely on a high-temperature 
source of heat, and discard heat to the environment.

The second law imposes restrictions on how much of their heat intake can be converted 
into work, and here we aim to establish this relationship. We imagine that the engine receives 
heat from a higher-temperature heat reservoir at TH and discards heat to a lower-temperature 
reservoir TC. The engine is taken as the system and the two heat reservoirs comprise the sur-
roundings. The work and heat quantities in relation to both the engine and the heat reservoirs 
are shown in Fig. 5.1(a).

Figure 5.1: Schematic diagrams. (a) Carnot engine. (b) Carnot heat pump or refrigerator.

(a) (b)

Hot Reservoir Hot Reservoir

Cold Reservoir Cold Reservoir

QH

WW

QCQC

QH

www.konkur.in

Telegram: @uni_k



5.1. Axiomatic Statements of the Second Law 181

With respect to the engine, the first law as given by Eq. (2.3) becomes:

  ΔU = Q + W =  Q  H   +  Q  C   + W  

Because the engine inevitably operates in cycles, its properties over a cycle do not change. 
Therefore ΔU = 0, and W = −QH − QC. That is, the average state of the engine remains con-
stant over time; whatever energy flows in from the higher-temperature reservoir (QH) must 
flow out as work (W) or as heat transfer to the lower-temperature reservoir (QC), leaving the 
state of the engine unchanged. For the same reason, the entropy of the engine remains 
constant.

The entropy change of the surroundings equals the sum of the entropy changes of the 
reservoirs. Because the entropy change of the engine over a cycle is zero, the total entropy 
change is that of the heat reservoirs. Therefore,

  Δ S  total   = −   
 Q  H  

 ___  T  H     −   
 Q  C  

 ___  T  C      

Note that QC and W, with respect to the engine, are both negative, whereas QH is positive. Com-
bining this equation with the equation for W to eliminate QH yields:

  W =  T  H  Δ S  total   +  Q  C   (  
 T  H   −  T  C  

 ______  T  C    )   

This result gives the work output of a heat engine within two limits. If the engine is 
totally ineffective, W = 0; the equation then reduces to the result obtained for simple heat 
transfer between the two heat reservoirs, i.e.:

  Δ S  total   = −  Q  C   (  
 T  H   −  T  C  

 ______  T  H    T  C    )   

The difference in sign here simply reflects the fact that QC is with respect to the engine, 
whereas previously it was with respect to the lower-temperature reservoir. Thus, here QC is a 
negative number and ΔStotal is, as always, positive.

If the process is reversible in all respects, then ΔStotal = 0, and the equation reduces to:

  W =  Q  C   (  
 T  H  

 ___  T  C     − 1)   (5.3)

A heat engine operating as described in a completely reversible manner is very special 
and is called a Carnot engine. The characteristics of such an ideal engine were first described 
by N. L. S. Carnot3 in 1824.

Note again that QC is a negative number, as it represents heat transferred from the engine. 
This makes W negative, in accord with the fact that work is not added to, but is produced by, 

3Nicolas Leonard Sadi Carnot (1796−1832), French engineer. See http://en.wikipedia.org/wiki/Nicolas_Leonard_ 
Sadi_Carnot.
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182 CHAPTER 5. The Second Law of Thermodynamics

the engine. Clearly, for any finite value of W, QC is also finite. This means that part of the heat 
transferred to the engine from the higher-temperature reservoir must inevitably be exhausted 
to the lower-temperature reservoir. This observation can be given formal statement:

A heat engine that, operating in a cycle, produces no effect (in system and 
surroundings) other than the extraction of heat from a reservoir and the 
performance of an equivalent amount of work is not possible.

The second law does not prohibit the continuous production of work from heat, but it does 
place a limit on how much of the heat taken into a cyclic process can be converted into work.

Combining Eq. (5.3) with W = −QH − QC to eliminate first W and then QC leads to 
Carnot’s equations:

    
−  Q  C  

 ____  T  C     =   
 Q  H  

 ___  T  H      (5.4)

    
W

 ___  Q  H     =   
 T  C  

 ___  T  H     − 1  (5.5)

Note that in application to a Carnot engine QH, representing heat transferred to the 
engine, is a positive number, making the work produced (W) negative. In Eq. (5.4) the smallest 
possible value of QC is zero; the corresponding value of TC is absolute zero on the Kelvin 
scale, which corresponds to −273.15°C.

The thermal efficiency of a heat engine is defined as the ratio of the work produced to 
the heat supplied to the engine. With respect to the engine, the work W is negative. Thus,

  η ≡   
− W

 ___  Q  H      (5.6)

In view of Eq. (5.5) the thermal efficiency of a Carnot engine is:

   η  Carnot   = 1 −   
 T  C  

 ___  T  H      (5.7)

Although a Carnot engine operates reversibly in all respects, and cannot be improved, its 
efficiency approaches unity only when TH approaches infinity or TC approaches zero. Neither 
condition exists on earth; all terrestrial heat engines therefore operate with thermal efficiencies 
less than unity. The cold reservoirs available on earth are the atmosphere, lakes, rivers, and 
oceans, for which TC ≃ 300 K. Hot reservoirs are objects such as furnaces where the 
temperature is maintained by combustion of fossil fuels or by fission of radioactive elements, 
and for which TH ≃ 600 K. With these values, η = 1 − 300/600 = 0.5, an approximate realistic 
limit for the thermal efficiency of a Carnot engine. Actual heat engines are irreversible, and  
η rarely exceeds 0.35.

Example 5.2
A central power plant, rated at 800,000 kW, operates using steam at 585 K and dis-
cards heat to a river at 295 K. If the thermal efficiency of the plant is 70% of the maxi-
mum possible value, how much heat is discarded to the river at rated power?
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5.2. Heat Engines and Heat Pumps 183

Solution 5.2
The maximum possible thermal efficiency is given by Eq. (5.7). With TH as the 
steam-generation temperature and TC as the river temperature:

   η  Carnot   = 1 −   
295

 ____ 585   = 0.4957  and  η = (0.7)(0.4957) = 0.3470  

where η is the actual thermal efficiency. Combining Eq. (5.6) with the first law, 
written W = −QH − QC, to eliminate QH, yields:

   Q  C   =  (  
1 − η

 ___ 
η
  ) W =  (  

1 − 0.347
 _______ 0.347  ) (− 800,000) = −1,505,475 kW  

This rate of heat transfer to a modest river would cause a temperature rise of several °C.

5.2 HEAT ENGINES AND HEAT PUMPS

The following steps make up the cycle of any Carnot engine:

 ∙ Step 1: A system at an initial temperature of a cold reservoir at TC undergoes a reversible 
adiabatic process that causes its temperature to rise to that of a hot reservoir at TH.

 ∙ Step 2: The system maintains contact with the hot reservoir at TH and undergoes a 
reversible isothermal process during which heat QH is absorbed from the hot reservoir.

 ∙ Step 3: The system undergoes a reversible adiabatic process in the opposite direction of 
Step 1 that brings its temperature back to that of the cold reservoir at TC.

 ∙ Step 4: The system maintains contact with the reservoir at TC, and undergoes a reversible 
isothermal process in the opposite direction of step 2, returning the system to its initial 
state with rejection of heat QC to the cold reservoir.

This set of processes can in principle be performed on any kind of system, but only a few, yet 
to be described, are of practical interest.

A Carnot engine operates between two heat reservoirs in such a way that all heat 
absorbed is transferred at the constant temperature of the hot reservoir and all heat rejected is 
transferred at the constant temperature of the cold reservoir. Any reversible engine operating 
between two heat reservoirs is a Carnot engine; an engine operating on a different cycle must 
necessarily transfer heat across finite temperature differences and therefore cannot be revers-
ible. Two important conclusions inevitably follow from the nature of the Carnot engine:

 ∙ Its efficiency depends only on the temperature levels and not upon the 
working substance of the engine.

 ∙ For two given heat reservoirs no engine can have a thermal efficiency 
higher than that of a Carnot engine.

We provide further treatment of practical heat engines in Chapter 8.
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184 CHAPTER 5. The Second Law of Thermodynamics

Because a Carnot engine is reversible, it can be operated in reverse; the Carnot cycle is 
then traversed in the opposite direction, and it becomes a reversible heat pump operating 
between the same temperature levels and with the same quantities QH, QC, and W as for the 
engine but reversed in direction, as illustrated in Fig. 5.1(b). Here, work input is required to 
“pump” heat from the lower-temperature heat reservoir to the higher-temperature heat reser-
voir. Refrigerators are heat pumps with the “cold box” as the lower-temperature reservoir and 
some portion of the environment as the higher-temperature reservoir. The effectiveness of a 
heat pump is measured by its coefficient of performance, defined as the heat extracted at the 
lower temperature divided by the work required, both of which are positive quantities with 
respect to the heat pump:

  ω ≡   
 Q  C  

 ___ 
W

    (5.8)

For a Carnot heat pump this coefficient can be obtained by combining Eq. (5.4) and  
Eq. (5.5) to eliminate QH:

   ω  Carnot   ≡   
 T  C  
 ______  T  H   −  T  C      (5.9)

For a refrigerator at 4°C and heat transfer to an environment at 24°C, Eq. (5.9) yields:

   ω  Carnot   =   
4 + 273.15

 ________ 24 − 4   = 13.86  

Any actual refrigerator would operate irreversibly with a lower value of  ω . The practical 
aspects of refrigeration are treated in Chapter 9.

5.3 CARNOT ENGINE WITH IDEAL-GAS-STATE WORKING FLUID

Here we analyze a Carnot engine with an ideal-gas state working fluid, not because such a 
process is implemented in practice, but rather because it illustrates the Carnot cycle using 
steps that we can analyze rigorously with simple equations that we have already developed in 
earlier chapters. The cycle traversed by a working fluid in its ideal-gas state in a Carnot engine 
is shown on a PV diagram in Fig. 5.2. It consists of four reversible processes corresponding to 
steps 1 through 4 of the general Carnot cycle described in the preceding section:

 ∙ a → b Adiabatic compression with temperature rising from TC to TH.
 ∙ b → c Isothermal expansion to arbitrary point c with absorption of heat QH.

 ∙ c → d Adiabatic expansion with temperature decreasing to TC.

 ∙ d → a Isothermal compression to the initial state with rejection of heat QC.

In this analysis the ideal-gas-state working fluid is regarded as the system. For the iso-
thermal steps b → c and d → a, Eq. (3.20) yields:

   Q  H   =  RT  H   ln   
 V  c  ig 

 ___ 
 V  b  ig 

    and   Q  C   =  RT  C   ln   
 V  a  ig 

 ___ 
 V  d  ig 
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5.3. Carnot Engine with Ideal-Gas-State Working Fluid 185

Dividing the first equation by the second gives:

    
 Q  H  

 ___  Q  C      =    
 T  H   ln  ( V  c  ig  /  V  b  ig ) 

  ____________  
 T  C   ln  ( V  a  ig  /  V  d  ig ) 

    

For an adiabatic process Eq. (3.16) with dQ = 0 becomes,

 −   
  C  V  ig 

 ____ 
R

     
dT

 ___ 
T

    =    
d V   ig 

 ____ 
 V   ig 

   

For steps a → b and c → d, integration gives:

  ∫ 
 T  C  

  
 T  H  

   
 C  V  ig 

 ___ 
R

     
dT

 ___ 
T

     = ln   
 V  a  ig 

 ___ 
 V  b  ig 

    and   ∫ 
 T  C  

  
 T  H  

   
 C  V  ig 

 ___ 
R

     
dT

 ___ 
T

     = ln   
 V  d  ig 

 ___ 
 V  c  ig 

   

Because the left sides of these two equations are the same, the adiabatic steps are related by:

 ln   
 V  d  ig 

 ___ 
 V  c  ig 

    = ln   
 V  a  ig 

 ___ 
 V  b  ig 

    or  ln    
 V  c  ig 

 ___ 
 V  b  ig 

    = − ln    
 V  a  ig 

 ___ 
 V  d  ig 

   

Combining the second expression with the equation relating the two isothermal steps gives:

    
 Q  H  

 ___  Q  C      = −   
 T  H  

 ___  T  C      or    
−  Q  C  

 ____  T  C      =    
 Q  H  

 ___  T  H      

This last equation is identical with Eq. (5.4).

Figure 5.2: PV diagram showing a  
Carnot cycle for a working fluid in the 
ideal-gas state.
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186 CHAPTER 5. The Second Law of Thermodynamics

5.4 ENTROPY

Points A and B on the PVt diagram of Fig. 5.3 represent two equilibrium states of a particular 
substance, and paths ACB and ADB represent two arbitrary reversible processes connecting 
these points. Integration of Eq. (5.1) for each path gives:

  Δ S   t  =  ∫ 
ACB

  
 

    
d Q  rev  

 _____ 
T

      and  Δ S   t  =  ∫ 
ADB

  
 

    
d Q  rev  

 _____ 
T

      

Because ΔSt is a property change, it is independent of path and is given by   S  B  t
   −  S  A  t

   . 
If the state of the substance is changed from state A to state B by an irreversible process, 

the entropy change is again  Δ S   t  =  S  B  t
   −  S  A  t

   , but experiment shows that this result is not given 
by  ∫dQ / T  evaluated for the irreversible process itself, because the calculation of entropy changes by 
this integral must, in general, be along reversible paths.

The entropy change of a heat reservoir, however, is always given by Q/T, where Q is the 
quantity of heat transferred to or from the reservoir at temperature T, whether the transfer is 
reversible or irreversible. As noted earlier, the effect of heat transfer on a heat reservoir is the 
same regardless of the temperature of the source or sink of the heat.

If a process is reversible and adiabatic, dQrev = 0; then by Eq. (5.1), dSt = 0. Thus the 
entropy of a system is constant during a reversible adiabatic process, and the process is said to 
be isentropic.

The characteristics of entropy can be summarized as follows:

 ∙ Entropy relates to the second law in much the same way that internal energy relates to 
the first law. Equation (5.1) is the ultimate source of all equations that connect entropy 
to measurable quantities. It does not represent a definition of entropy; there is none in 
the context of classical thermodynamics. What it provides is the means of calculating 
changes in this property.

 ∙ The change in entropy of any system undergoing a finite reversible process is given by 
the integral form of Eq. (5.1). When a system undergoes an irreversible process between 

Figure 5.3: Two reversible paths 
joining equilibrium states A and B.A

D

C

B

V t
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5.5. Entropy Changes for the Ideal-Gas State 187

two equilibrium states, the entropy change of the system  Δ S   t   is evaluated by application 
of Eq. (5.1) to an arbitrarily chosen reversible process that accomplishes the same 
change of state as the actual process. Integration is not carried out for the irreversible 
path. Because entropy is a state function, the entropy changes of the irreversible and 
reversible processes are identical.

 ∙ In the special case of a mechanically reversible process (Sec. 2.8), the entropy change 
of the system is correctly evaluated from  ∫dQ / T  applied to the actual process, even 
though the heat transfer between system and surroundings represents an external irre-
versibility. The reason is that, as far as the system is concerned, whether the tempera-
ture difference causing the heat transfer is infinitesimal (making the process externally 
reversible) or finite is immaterial. The entropy change of a system resulting only from 
the transfer of heat can always be calculated by  ∫dQ / T,  whether the heat transfer is 
accomplished reversibly or irreversibly. However, when a process is irreversible on 
account of finite differences in other driving forces, such as pressure, the entropy 
change is not caused solely by the heat transfer, and for its calculation one must devise 
a mechanically reversible means of accomplishing the same change of state.

5.5 ENTROPY CHANGES FOR THE IDEAL-GAS STATE

For one mole or a unit mass of fluid undergoing a mechanically reversible process in a closed 
system, the first law, Eq. (2.7), becomes:

  dU = d Q  rev   − PdV  

Differentiation of the defining equation for enthalpy, H = U + PV, yields:

  dH = dU + PdV + V dP  

Eliminating dU gives:

  dH = d Q  rev   − PdV + PdV + VdP  

or

  d Q  rev   = dH − VdP  

For the ideal-gas state,  d H   ig   =  C  P  ig  dT and  V   ig   = RT / P . With these substitutions and  
division by T,

    
d Q  rev  

 _____ 
T

   =  C  P  ig    
dT

 ___ 
T

   − R   
dP

 ___ 
P

    

Combining this with Eq. (5.1) gives:

  d S   ig  =  C  P  ig    
dT

 ___ 
T

   − R   
dP

 ___ 
P

    or    
d S   ig 

 ____ 
R

   =   
 C  P  ig 

 ___ 
R

     
dT

 ___ 
T

   − d ln P  

www.konkur.in

Telegram: @uni_k



188 CHAPTER 5. The Second Law of Thermodynamics

where Sig is the molar entropy for the ideal-gas state. Integration from an initial state at condi-
tions T0 and P0 to a final state at conditions T and P gives:

    
Δ S   ig 

 ____ 
R

   =  ∫ 
 T  0  

  
T

   
 C  P  ig 

 ___ 
R

     
dT

 ___ 
T

     − ln   
P

 ___  P  0      (5.10)

Although derived for a mechanically reversible process, this equation 
relates properties only, independent of the process causing the change 
of state, and is therefore a general equation for the calculation of entropy 
changes in the ideal-gas state.

Example 5.3
For the ideal-gas state and constant heat capacities, Eq. (3.23b) for a reversible adia-
batic (and therefore isentropic) process can be written:

    
 T  2  

 ___  T  1     =   (  
 P  2  

 ___  P  1    )    
(γ−1)/γ

   

Show that this same equation results from application of Eq. (5.10) with ΔSig = 0.

Solution 5.3
Because   C  P  ig   is constant, Eq. (5.10) becomes:

  0 =   
 C  P  ig 

 ___ 
R

   ln    
 T  2  

 ___  T  1     − ln    
 P  2  

 ___  P  1     = ln    
 T  2  

 ___  T  1     −   
R
 ___ 

 C  P  ig 
   ln    

 P  2  
 ___  P  1      

By Eq. (3.12) for the ideal-gas state, with  γ =  C  P  ig  /  C  V  ig  :

   C  P  ig  =  C  V  ig  + R  or    
R
 ___ 

 C  P  ig 
   =   

γ − 1
 ___ γ    

Thus,

   ln    
 T  2  

 ___  T  1     =   
γ − 1

 ____ γ   ln    
 P  2  

 ___  P  1      

Exponentiating both sides of this equation leads to the given equation.

Equation (4.5) for the temperature dependence of the molar heat capacity   C  P  ig   allows 
integration of the first term on the right of Eq. (5.10). The result can be written as:

    ∫ 
 T  0  

  
T

      
 C  P  ig 

 ___ 
R

     
dT

 ___ 
T

   = A ln    
T

 ___  T  0     +  [
B +  (C +   

D
 _____ 

 T  0  2   T   2 
  )  (  

T +  T  0  
 _____ 2  ) 

]   (  T −  T  0   )     (5.11)

As with the integral ∫(CP/R)dT of Eq. (4.8), this integral is frequently evaluated; for compu-
tational purposes we define the right side of Eq. (5.11) as the function ICPS(T0, T; A, B, C, D) 
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5.5. Entropy Changes for the Ideal-Gas State 189

and presume the existence of a computer routine for its evaluation.4 Equation (5.11) then 
becomes:

   ∫ 
 T  0  

  
T

    
 C  P  ig 

 ___ 
R

     
dT

 ___ 
T

      = ICPS( T  0  , T; A, B, C, D)  

Also useful is a mean heat capacity, defined as:

    ⟨    C  P  ig  ⟩    
S
   =   

 ∫ 
 T  0  

  
T

  C  P  ig dT /T  

 __________ ln (T /  T  0  )    (5.12)

In accord with this equation, division of Eq. (5.11) by ln (T/T0) yields:

    
  ⟨    C  P  ig  ⟩    

S
  
 ______ 

R
    = A +  [

B +  (C +   
D
 _____ 

 T  0  2  T   2 
  )  (  

T +  T  0  
 ______ 2  ) 

]    
T −  T  0  

 _______ ln  (  T /  T  0   )      (5.13)

The right side of this equation is defined as another function, MCPS(T0, T; A, B, C, D). 
Equation (5.13) is then written:

    
  ⟨    C  P  ig  ⟩    

S
  
 ______ 

R
   = MCPS( T  0  , T; A, B, C, D)  

The subscript S denotes a mean value specific to entropy calculations. Comparison of 
this mean value with the mean value specific to enthalpy calculations, as defined by Eq. (4.9), 
shows the two means to be quite different. This is inevitable because they are defined for the 
purpose of evaluating entirely different integrals. Again, these defined functions do not have 
any fundamental thermodynamic significance. They are simply a convenient and compact rep-
resentation of the corresponding integrals.

Solving for the integral in Eq. (5.12) gives:

   ∫ 
 T  0  

  
T

  C  P  ig   
dT

 ___ 
T

     =   ⟨   C  P  ig  ⟩    
S
   ln    

T
 ___  T  0      

and Eq. (5.10) becomes:

      
Δ S   ig 

 _ 
R

   =   
  ⟨   C  P  ig  ⟩    

S
  
 ______ 

R
   ln    

T
 _  T  0     − ln    

P
 _  P  0        (5.14)

This form of the equation for entropy changes for the ideal-gas state is often useful in iterative 
calculations where the final temperature is unknown.

4Examples of these defined functions implemented in Microsoft Excel, Matlab, Maple, Mathematica, and Mathcad 
are provided in the Connect online learning center. Please contact your instructor for instructions on accessing these 
items.
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190 CHAPTER 5. The Second Law of Thermodynamics

Example 5.4
Methane gas at 550 K and 5 bar undergoes a reversible adiabatic expansion to 1 bar. 
Assuming ideal-gas-state methane at these conditions, find its final temperature.

Solution 5.4
For this process ΔSig = 0, and Eq. (5.14) becomes:

    
  ⟨   C  P  ig  ⟩    

S
  
 ______ 

R
   ln    

 T  2  
 ___  T  1     = ln    

 P  2  
 ___  P  1     = ln    

1
 __ 5   = − 1.6094  

Because    ⟨   C  P  ig  ⟩    
S
    depends on T2, we rearrange this equation for iterative solution: 

  ln    
 T  2  

 ___  T  1     =   
− 1.6094

 ________ 
  ⟨   C  P  ig  ⟩    

S
   / R

    or   T  2   =  T  1   exp  
(

  
− 1.6094

 ________ 
  ⟨   C  P  ig  ⟩    

S
   / R

  
)

   

With constants from Table C.1 of App. C,    ⟨   C  P  ig  ⟩    
S
   / R  is evaluated by Eq. (5.13) 

written in its functional form: 

    
  ⟨   C  P  ig  ⟩    

S
  
 ______ 

R
   = 𝖬𝖢𝖯𝖲  (  550,  T  2  ; 1.702, 9.081 ×  10   −3 , − 2.164 ×  10   −6 , 0.0 )     

For an initial value of T2 < 550, compute a value of    ⟨   C  P  ig  ⟩    
S
   / R  for substitution into 

the equation for T2. This new value of T2 allows recalculation of    ⟨   C  P  ig  ⟩    
S
   / R , and the 

process continues to convergence on a final value of T2 = 411.34 K.
As with Ex. 4.3, a trial procedure is an alternative approach, with Microsoft 

Excel’s Goal Seek providing a prototypical automated version.

5.6 ENTROPY BALANCE FOR OPEN SYSTEMS

Just as we can write energy balances for processes in which fluid enters, exits, or flows 
through a control volume (Sec. 2.9), we can also write entropy balances. There is, however, 
an important difference between energy and entropy: Entropy is not conserved. The second 
law states that the total entropy change associated with any process must be positive, with 
a limiting value of zero for a reversible process. This requirement is taken into account by 
writing the entropy balance for both the system and its surroundings, considered together, 
and by including an entropy- generation term to account for the irreversibilities of the pro-
cess. This term is the sum of three others: one for the difference in entropy between exit 
and entrance streams, one for entropy change within the control volume, and one for 
entropy change in the surroundings. If the process is reversible, these three terms sum to 
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5.6. Entropy Balance for Open Systems 191

zero, making ΔStotal = 0. If the process is irreversible, they sum to a positive quantity, the 
entropy-generation term.

The statement of balance, expressed as rates, is therefore:

   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

Time rate of

  
change of

  entropy  
in control

  

volume

  

⎫

 
⎪

 ⎬ 
⎪

 

⎭

  +  
⎧

 
⎪

 ⎨ 
⎪

 

⎩

  
Net rate of

  change in  
entropy of

   

flowing streams

 
⎫

 
⎪

 ⎬ 
⎪

 

⎭

  +  
⎧

 
⎪

 ⎨ 
⎪

 

⎩

  
Time rate of

  change of  
entropy in

  

surroundings

 
⎫

 
⎪

 ⎬ 
⎪

 

⎭

  =  
{

  
Total rate

  of entropy  
generation

 
}

   

The equivalent equation of entropy balance is

    
d  (  mS )    cv  

 _______ 
dt

     + Δ (  S m 
∙   )    fs   +   

d S  surr  t  
 _____ 

dt
   =   S 

∙
    G   ≥ 0  (5.15)

where    S 
∙
    G    is the rate of entropy generation. This equation is the general rate form of the entropy 

balance, applicable at any instant. Each term can vary with time. The first term is the time rate 
of change of the total entropy of the fluid contained within the control volume. The second 
term is the net rate of gain in entropy of the flowing streams, i.e., the difference between the 
total entropy transported out by exit streams and the total entropy transported in by entering 
streams. The third term is the time rate of change of the entropy of the surroundings, resulting 
from heat transfer between system and surroundings.

Let the rate of heat transfer    Q   
∙
     j    with respect to a particular part of the control surface be 

associated with Tσ,j where subscript σ,j denotes a temperature in the surroundings. The rate of 
entropy change in the surroundings as a result of this transfer is then  −    Q   

∙
    j   /  T  σ, j   . The minus sign 

converts    Q   
∙
    j   , defined with respect to the system, to a heat transfer rate with respect to the sur-

roundings. The third term in Eq. (5.15) is therefore the sum of all such quantities:

    
d S  surr  t  

 _____ 
dt

   = − ∑ 
j
      

  Q   
∙
    j   ____  T  σ, j  

    

Equation (5.15) is now written:

    
 d(mS)  cv  

 _______ 
dt

   + Δ (S m   ∙  )  fs   –   ∑ 
j
      

  Q   
∙
    j   ____  T  σ, j  

    =   S   
∙
    G   ≥ 0  (5.16)

The final term, representing the rate of entropy generation    S   
∙
    G   , reflects the second-law 

requirement that it be positive for irreversible processes. There are two sources of irreversibility: 
(a) those within the control volume, i.e., internal irreversibilities, and (b) those resulting from 
heat transfer across finite temperature differences between system and surroundings,  
i.e., external thermal irreversibilities. The limiting case for which    S   

∙
    G   = 0  applies when the 

process is completely reversible, implying:

 ∙ The process is internally reversible within the control volume.

 ∙ Heat transfer between the control volume and its surroundings is reversible.

The second item implies either that heat reservoirs are included in the surroundings with 
temperatures equal to those of the control surfaces or that work-producing Carnot engines are 
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192 CHAPTER 5. The Second Law of Thermodynamics

interposed in the surroundings between the control-surface temperatures and the heat-reservoir 
temperatures.

For a steady-state flow process the mass and entropy of the fluid in the control volume 
are constant, and d(mS)cv/dt is zero. Equation (5.16) then becomes:

     Δ ( S   
∙
  m)  fs   –  ∑ 

j
      

  Q   
∙
    j   ____  T  σ, j  

   =   S 
∙
    G   ≥ 0     (5.17)

If in addition the system has one entrance and one exit,   m   ∙    is the same for both streams, and 
dividing through by   m   ∙    yields:

    ΔS −  ∑ 
j
       

   Q   
∙
    j   _  T  σ, j  

   =  S  G   ≥ 0    (5.18)

Each term in Eq. (5.18) is based on a unit mass of fluid flowing through the control volume.

Example 5.5
In a steady-state flow process carried out at atmospheric pressure, 1 mol⋅s−1 of air at 
600 K is continuously mixed with 2 mol⋅s−1 of air at 450 K. The product stream is at 400 K 
and 1 atm. A schematic representation of the process is shown in Fig. 5.4. Determine 
the rate of heat transfer and the rate of entropy generation for the process. Assume 
the ideal-gas state for air with   C  P  ig  = (7/ 2)R , that the surroundings are at 300 K, and that 
kinetic- and potential-energy changes of the streams are negligible.

Figure 5.4:  
Process 
described in  
Ex. 5.5.

Control Volume

n. 3 mol s 1

T 400 K

n.A 1 mol s 1

TA 600 K

n.B 2 mol s 1

TB 450 K

Q
. 
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5.6. Entropy Balance for Open Systems 193

Solution 5.5
We start by applying an energy balance to determine the rate of heat transfer, 
which we must know to compute the rate of entropy generation. Writing the energy 
balance, Eq. (2.29), with   m   ∙    replaced by   n   ∙   , and then replacing   n   ∙    with   n   ∙   A +   n 

∙   B,

   Q   
∙
   =  n   ∙   H   ig  −   n   ∙    A   H  A  ig  −   n 

∙    B    H  B  ig  =   n 
∙    A   ( H   ig  −  H  A  ig )  +   n 

∙    B   ( H   ig  −  H  B  ig )   

   Q 
∙
    =    n 

∙    A   C  P  ig  (T −  T  A  )  +   n 
∙    B   C  P  ig  (T −  T  B  ) =  C  P  ig  [  n 

∙    A   (T −  T  A  ) +   n 
∙    B   (T −  T  B  )]       

 
  

=
  
(7 / 2)(8.314)[(1)(400 − 600) + (2)(400 − 450)] = − 8729.7 J⋅ s   −1 

   

The steady-state entropy balance, Eq. (5.17), with   m   ∙    again replaced by   n 
∙   , can  similarly 

be written as

    

  S 
∙
    G  

  

=

  

 n 
∙   S   ig  −   n 

∙    A   S  A  ig  −   n 
∙    B   S  B  ig  −   

 Q 
∙
  
 ___  T  σ     =   n 

∙    A   (  S   ig  −  S  A  ig  )  +   n 
∙    B   (  S   ig  −  S  B  ig   ) −   

 Q 
∙
  
 ___  T  σ     

          =    n 
∙    A   C  P  ig  ln    

T
 ___  T  A     +   n 

∙    B   C  P  ig  ln   
T

 ___  T  B     −   
 Q 

∙
  
 ___  T  σ     =  C  p  ig  (   n 

∙    A   ln   
T

 ___  T  A     +   n 
∙    B   ln    

T
 ___  T  B     )  −   

 Q 
∙
  
 ___  T  σ     
       

 

  

=

  

(7 / 2)(8.314) [ (1) ln   
 400

 ____ 600   + (2) ln    
400

 ____ 450   ]  +   
8729.7

 ______ 300   = 10.446 J⋅ K   −1 ⋅ s   −1 

  

The rate of entropy generation is positive, as it must be for any real process.

Example 5.6
An inventor claims to have devised a process that takes in only saturated steam at 
100°C and which by a complicated series of steps makes heat continuously available 
at a temperature level of 200°C, with 2000 kJ of energy available at 200°C for every 
kilogram of steam taken into the process. Show whether or not this process is possible. 
To give this process the most favorable conditions, assume cooling water available  
in unlimited quantity at a temperature of 0°C.

Solution 5.6
For any process to be even theoretically possible, it must meet the requirements of the 
first and second laws of thermodynamics. The detailed mechanism need not be known 
to determine whether this is true; only the overall result is required. If the claims of 
the inventor satisfy the laws of thermodynamics, fulfilling the claims is theoretically 
possible. The determination of a mechanism is then a matter of ingenuity. Otherwise, 
the process is impossible, and no mechanism for carrying it out can be devised.

In the present instance, a continuous process takes in saturated steam at 100°C, 
and makes heat Q continuously available at a temperature level of 200°C. Because 
cooling water is available at 0°C, the maximum possible use is made of the steam if 
it is condensed and cooled (without freezing) to this exit temperature and discharged 
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194 CHAPTER 5. The Second Law of Thermodynamics

at atmospheric pressure. This is a limiting case (most favorable to the inventor), and 
requires a heat-exchange surface of infinite area.

It is not possible in this process for heat to be liberated only at the 200°C tem-
perature level, because as we have shown no process is possible that does nothing 
except transfer heat from one temperature level to a higher one. We must therefore 
suppose that some heat Qσ is transferred to the cooling water at 0°C. Moreover, 
the process must satisfy the first law; thus by Eq. (2.32):

  ΔH = Q +  Q  σ   +  W  s    

where ΔH is the enthalpy change of the steam as it flows through the system. 
Because no shaft work accompanies the process, Ws = 0. The surroundings consist 
of cooling water, which acts as a heat reservoir at the constant temperature of  
Tσ = 273.15 K, and a heat reservoir at T = 473.15 K to which heat in the amount of 
2000 kJ is transferred for each kilogram of steam entering the system. The diagram 
of Fig. 5.5 indicates overall results of the process based on the inventor’s claim.

Figure 5.5: Process 
described in Ex. 5.6.

Heat reservoir
at 200°C

Heat reservoir
at 0 °C

(cooling water)

Saturated steam
at 100°C

H1  2676.0 kJ kg 1

S1  7.3554 kJ kg 1 K 1

H2  0.0
S 2  0.0

Liquid water at 0°C

Q 2000 kJ

Q

Apparatus

The values of H and S shown on Fig. 5.5 for liquid water at 0°C and for satu-
rated steam at 100°C are taken from the steam tables (App. E). Note that the val-
ues for liquid water at 0°C are for saturated liquid (Psat = 0.61 kPa), but the effect 
of an increase in pressure to atmospheric pressure is insignificant. On the basis of 
1 kg of entering steam, the first law becomes:

  ΔH =  H  2   −  H  1   = 0.0 − 2676.0 = −2000 +  Q  σ    and   Q  σ   = −676.0 kJ  

The negative value for Qσ indicates heat transfer is from the system to the  cooling 
water.

We now examine this result in the light of the second law to determine whether 
the entropy generation is greater than or less than zero for the process. Equation 
(5.18) is here written:

  ΔS −   
 Q  σ  

 ___  T  σ     −   
Q
 ______ 473.15   =  S  G    
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5.7. Calculation of Ideal Work 195

For 1 kg of steam,

  ΔS =  S  2   −  S  1   = 0.0000 − 7.3554 = −7.3554 kJ⋅ K   −1   

The entropy generation is then:

    S  G    =  − 7.3554 −    
−676.0

 ______ 273.15   −   
− 2000

 ______ 473.15       
 
  

=
  
− 7.3554 + 4.2270 + 2.4748 = − 0.6536 kJ⋅ K   −1 

   

This negative result means that the process as described is impossible; the second 
law in the form of Eq. (5.18) requires SG ≥ 0.

The negative result of the preceding example does not mean that all processes of this general 
nature are impossible; only that the inventor claimed too much. Indeed, the maximum amount 
of heat that can be transferred to the hot reservoir at 200°C is readily calculated. The energy 
balance is:

  Q +  Q  σ   = ΔH  (A)

The maximum heat transfer to the hot reservoir occurs when the process is completely revers-
ible, in which case SG = 0, and Eq. (5.18) becomes

    
Q

 __ 
T

   +   
 Q  σ  

 ___  T  σ     = ΔS  (B)

Combination of Eqs. (A) and (B) and solution for Q yields:

  Q =   
T
 ____ 

T −  T  σ     (ΔH −  T  σ  ΔS)  

With respect to the preceding example,

  Q =   
473.15

 ______ 200   [− 2676.0 −  (  273.15 )   (  −7.3554 )  ]  = −1577.7 kJ⋅  kg   −1   

This value is smaller in magnitude than the  − 2000 kJ⋅  kg   −1   claimed.

5.7 CALCULATION OF IDEAL WORK

A key question addressed by thermodynamics is that of work requirement or availability. This 
is of great practical importance in defining the possible performance of real processes. For 
example, one might be interested in the maximum amount of work available to generate elec-
tricity from the conversion of natural gas and air to their combustion products, or one might 
want to know the minimum amount of work required to convert liquid water at ambient tem-
perature to ice at –20°C. In any steady-state flow process requiring work, the laws of thermo-
dynamics imply that an absolute minimum amount of work is required to produce a given 
change of state of the substance flowing through the control volume. Similarly, in a process 
producing work, an absolute maximum amount of work can be extracted from a given change 
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196 CHAPTER 5. The Second Law of Thermodynamics

of state of the fluid flowing through the control volume. In either case, the limiting value 
results when the change of state associated with the process is accomplished completely 
reversibly. For such a process, the entropy generation is zero, and Eq. (5.17), written for a 
uniform surroundings temperature Tσ, becomes:

  Δ (S m   ∙  )  fs   −   
 Q   

∙
  
 ___  T  σ     = 0  or   Q   

∙
   =  T  σ  Δ (S m   ∙  )  fs    

Substituting this expression for   Q   
∙
     in the energy balance, Eq. (2.29):

  Δ  [  (H +   1 _ 2   u   2  + zg)  m   ∙
   ]    

fs
   =  T  σ  Δ (S m   ∙

  )  fs   +   W   
∙
    s  (rev)  

The shaft work,    W   
∙
    s   (rev), is here the work of a completely reversible process. If    W   

∙
    s   (rev) is given 

the name ideal work,    W   
∙
    ideal   , the preceding equation can be rewritten:

    W   
∙
    ideal   = Δ  [  (H +   1 _ 2   u   2  + zg)  m   ∙

   ]    
fs

   −  T  σ  Δ (S m   ∙
  )  fs    (5.19)

In most applications to chemical processes, the kinetic- and potential-energy terms are 
 negligible compared with the others; in this event Eq. (5.19) reduces to:

      W 
∙
    ideal   = Δ (H m   ∙  )  fs   −  T  σ  Δ (S m 

∙  )  fs      (5.20)

For the special case of a single stream flowing through the control volume,   m   ∙    can be factored 
out. The resulting equation can then be divided by   m   ∙    to express it on the basis of a unit amount 
of fluid flowing through the control volume. Thus,

   W 
∙
    ideal   =   m   ∙

       (ΔH −  T  σ   ΔS)  (5.21)   W  ideal   = ΔH −  T  σ  ΔS (5.22)

A completely reversible process is hypothetical, devised here solely for determination of the 
ideal work associated with a given change of state.

The sole connection between an actual process and an imagined hypothet-
ical reversible process employed for determining ideal work is that they 
both apply to the same changes of state.

Our objective is to compare the actual work of a process    W 
∙
    s    (or Ws) as given by an energy bal-

ance to the ideal work as given by Eqs. (5.19) through (5.22) for a hypothetical reversible 
process that produces the same property changes. No description of the hypothetical process is 
required, as it may always be imagined (see Ex. 5.7).

When    W   
∙
    ideal    (or Wideal) is positive, it is the minimum work required to bring about a given 

change in the properties of the flowing streams, and is smaller than the actual work,    W 
∙
    s   . In this 

case a thermodynamic efficiency ηt is defined as the ratio of the ideal work to the actual work:

   η  t   (work required) =   
  W 

∙
    ideal   _____ 
  W 

∙
    s  
    (5.23)

www.konkur.in

Telegram: @uni_k



5.7. Calculation of Ideal Work 197

When    W 
∙
    ideal    (or Wideal) is negative,   |   W 

∙
    ideal   |   is the maximum work obtainable from a 

given change in the properties of the flowing streams, and is larger than   |  W 
∙
  s |  . In this case, the 

thermodynamic efficiency is defined as the ratio of the actual work to the ideal work:

   η  t   (work produced) =   
  W 

∙
    s   _____ 

  W 
∙
    ideal  

    (5.24)

Example 5.7
What is the maximum work that can be obtained in a steady-state flow process from  
1 mol of nitrogen in its ideal-gas state at 800 K and 50 bar? Take the temperature and 
pressure of the surroundings as 300 K and 1.0133 bar.

Solution 5.7
The maximum possible work is obtained from any completely reversible process 
that reduces the nitrogen to the temperature and pressure of the surroundings, i.e., 
to 300 K and 1.0133 bar. Required here is the calculation of Wideal by Eq. (5.22), 
in which ΔS and ΔH are the molar entropy and enthalpy changes of the nitrogen  
as its state changes from 800 K and 50 bar to 300 K and 1.0133 bar. For the  
ideal-gas state, enthalpy is independent of pressure, and its change is given by:

  Δ H   ig  =  ∫ 
 T  1  

  
 T  2  

   C  P  ig dT    

The value of this integral is found from Eq. (4.8), and is represented by:

 8.314 × ICPH(800, 300; 3.280, 0.593 ×𝟣𝟢−3, 0.0, 0.040 × 𝟣𝟢−5) = −15,060 J⋅ mol   −1  

where the parameters for nitrogen come from Table C.1 of App. C.
Similarly, the entropy change is found from Eq. (5.10), here written:

  Δ S   ig  =  ∫ 
 T  1  

  
 T  2  

  C  P  ig    
dT

 ___ 
T

     − R  ln    
 P  2  

 ___  P  1      

The value of the integral, found from Eq. (5.11), is represented by:

  8.314 × ICPS(800, 300; 3.280, 0.593 ×𝟣𝟢−3, 0.0, 0.040 × 𝟣𝟢−5) = −29.373 J⋅ mol   −1 ⋅ K   −1   

Whence,  Δ S   ig  = −29.373 − 8.314 ln    
1.0133

 ______ 50   = 3.042 J⋅ mol   −1 ⋅ K   −1   

With these values of ΔHig and ΔSig, Eq. (5.22) becomes:

   W  ideal   = −15,060 − (300)(3.042) = −15,973 J⋅ mol   −1   
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198 CHAPTER 5. The Second Law of Thermodynamics

One can easily devise a specific reversible process to bring about the given change of state of 
the preceding example. Suppose the nitrogen is continuously changed to its final state at 
1.0133 bar and T2 = Tσ = 300 K by the following two-step steady-flow process:

 ∙ Step 1: Reversible, adiabatic expansion (as in a turbine) from initial state P1, T1, H1 to 
1.0133 bar. Let T′ denote the discharge temperature.

 ∙ Step 2: Cooling (or heating, if T′ is less than T2) to the final temperature T2 at a constant 
pressure of 1.0133 bar.

For step 1, with Q = 0, the energy balance is Ws = ΔH = (H′ − H1), where H′ is the 
enthalpy at the intermediate state of T′ and 1.0133 bar.

For maximum work production, step 2 must also be reversible, with heat exchanged 
reversibly with the surroundings at Tσ. This requirement is satisfied when Carnot engines take 
heat from the nitrogen, produce work WCarnot, and reject heat to the surroundings at Tσ. 
Because the temperature of the nitrogen decreases from T′ to T2, Eq. (5.5) for the work of a 
Carnot engine is written in differential form:

  d W  Carnot   =  (  
 T  σ  

 __ 
T

   − 1)   (  −dQ )    =  (1 −   
 T  σ  

 __ 
T

  ) dQ  

Here dQ refers to the nitrogen, which is taken as the system, rather than to the engine. 
 Integration yields:

   W  Carnot   = Q −  T  σ   ∫ 
T′

  
 T  2  

    
dQ

 ___ 
T

      

The first term on the right is the heat transferred with respect to the nitrogen, given by  
Q = H2 − H′. The integral is the change in entropy of the nitrogen as it is cooled by the Carnot engines. 
Because step 1 occurs at constant entropy, the integral also represents ΔS for both steps. 
Hence,

    W  Carnot   =  (   H  2   −  H   ′  )   −  T  σ  ΔS   

The sum of Ws and WCarnot gives the ideal work; thus,

    W  ideal   = (   H   ′  −  H  1   )   +  (   H  2   −  H   ′  )   −  T  σ  ΔS =  (   H  2   −  H  1   )   −  T  σ  ΔS   

or

   W  ideal   = ΔH −  T  σ  ΔS  

which is the same as Eq. (5.22).
This derivation makes clear the difference between Ws, the reversible adiabatic shaft 

work of the turbine, and Wideal. The ideal work includes not only Ws, but also all work obtain-
able from Carnot engines for the reversible exchange of heat with the surroundings at Tσ. In 
practice, work produced by a turbine can be as much as 80% of the reversible adiabatic work, 
but usually no mechanism is present for extraction of WCarnot.5

5A cogeneration plant produces power both from a gas turbine and from a steam turbine operating on steam gener-
ated by heat from the gas-turbine exhaust.
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Example 5.8
Rework Ex. 5.6, making use of the equation for ideal work.

Solution 5.8
The procedure here is to calculate the maximum possible work Wideal, which can 
be obtained from 1 kg of steam in a flow process as it undergoes a change in state 
from saturated steam at 100°C to liquid water at 0°C. The problem then reduces to 
the question of whether this amount of work is sufficient to operate a Carnot 
refrigerator rejecting 2000 kJ as heat at 200°C and taking heat from the unlimited 
supply of cooling water at 0°C. From Ex. 5.6, we have

  ΔH = −2676.0 kJ⋅ kg   −1   and  ΔS = −7.3554 kJ⋅ K   −1 ⋅ kg   −1   

With negligible kinetic- and potential-energy terms, Eq. (5.22) yields:

   W  ideal   = ΔH −  T  σ  ΔS = −2676.0 − (273.15)(−7.3554) = −666.9 kJ⋅k g   −1   

If this amount of work, numerically the maximum obtainable from the steam, is 
used to drive the Carnot refrigerator operating between the temperatures of 0°C 
and 200°C, the heat rejected is found from Eq. (5.5), solved for QH:

   Q  H   =  W  ideal   (  
T
 ____  T  σ   − T  )  = 666.9 (  

200 + 273.15
  __________ 200 − 0  )  = 1577.7 kJ  

As calculated in Ex. 5.6, this is the maximum possible heat release at 200°C; it is 
less than the claimed value of 2000 kJ. As in Ex. 5.6, we conclude that the process 
as described is not possible.

5.8 LOST WORK

Work that is wasted as the result of irreversibilities in a process is called lost work, Wlost, and 
is defined as the difference between the actual work of a change of state and the ideal work for 
the same change of state. Thus by definition,
   W  lost   ≡  W  s   −  W  ideal    (5.25)

In terms of rates,

    W 
∙
    lost   ≡   W 

∙
    s   −   W 

∙
    ideal    (5.26)

The actual work rate comes from the energy balance, Eq. (2.29), and the ideal work rate is 
obtained using Eq. (5.19):

   

  W 
∙
    s  

  

=

  

Δ  [  (H +   
1
 __ 2   u   2  + zg)  m 

∙   ]    
fs

   −  Q 
∙
  

     
  W 

∙
    ideal  

  
=

  
Δ  [  (H +   

1
 __ 2   u   2  + zg)  m 

∙   ]    
fs

   −  T  σ  Δ (S m 
∙  )  fs  
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200 CHAPTER 5. The Second Law of Thermodynamics

By difference, as given by Eq. (5.26),

      W 
∙
    lost   =  T  σ  Δ  (  S m 

∙   )    fs   −  Q 
∙
       (5.27)

For the case of a single surroundings temperature Tσ, the steady-state entropy balance, 
Eq. (5.17), becomes:

    S 
∙
    G   = Δ  (  S m 

∙   )    fs   −   
 Q 

∙
  
 ___  T  σ      (5.28)

Multiplication by Tσ gives:    T  σ    S 
∙
    G   =  T  σ  Δ  (  S m 

∙   )    fs   −  Q 
∙
   

The right sides of this equation and Eq. (5.27) are identical; therefore,

      W 
∙
    lost   =  T  σ    S 

∙
    G      (5.29)

As a consequence of the second law,    S 
∙
    G   ≥ 0;  it follows that    W 

∙
    lost   ≥ 0.  When a process is 

completely reversible, the equality holds, and    W 
∙
    lost   = 0.  For irreversible processes the inequal-

ity holds, and    W 
∙
    lost  ,  i.e., the energy that becomes unavailable for work, is positive.

The engineering significance of this result is clear: The greater the irre-
versibility of a process, the greater the rate of entropy production and 
the greater the amount of energy made unavailable for work. Thus every 
irreversibility carries with it a price. Minimizing entropy production is 
essential for efficient use of finite resources.

For the special case of a single stream flowing through the control volume,   m 
∙
    factors and 

becomes a multiplier of the entropy difference in Eqs. (5.27) and (5.28). Division by   m ∙
    con-

verts all terms to the basis of a unit amount of fluid flowing through the control volume. Thus,

   W 
∙
    lost   =  m 

∙    T  σ  ΔS −  Q 
∙
   (5.30)   W  lost   =  T  σ  ΔS − Q (5.31)

   S 
∙
    G   =  m 

∙
  ΔS −   

Q
 ___  T  σ     

(5.32)   S  G   = ΔS −   
Q

 ___  T  σ       
(5.33)

Recall here that   Q 
∙
    and Q represent heat exchange with the surroundings, but with the sign 

referred to the system. Equations (5.31) and (5.33) combine for a unit amount of fluid to give:

   W  lost   =  T  σ   S  G    (5.34)

Again, because SG ≥ 0, it follows that Wlost ≥ 0.

Example 5.9
The two basic types of steady-flow heat exchanger are characterized by their flow pat-
terns: cocurrent and countercurrent. Temperature profiles for the two types are indi-
cated in Fig. 5.6. In cocurrent flow, heat is transferred from a hot stream, flowing from 
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5.8. Lost Work 201

left to right, to a cold stream flowing in the same direction, as indicated by arrows. In 
countercurrent flow, the cold stream, again flowing from left to right, receives heat 
from the hot stream flowing in the opposite direction.

The lines relate the temperatures of the hot and cold streams, TH and TC respec-
tively, to    Q 

∙

    C   , the accumulated rate of heat addition to the cold stream as it progresses 
through the exchanger from the left end to an arbitrary downstream location. The fol-
lowing specifications apply to both cases:

   T   H  1     = 400 K   T   H  2     = 350 K   T   C  1     = 300 K    n ∙    H   = 1 mol⋅ s   −1   

The minimum temperature difference between the flowing streams is 10 K. Assume 
the ideal-gas state for both streams with CP = (7/2)R. Find the lost work for both cases. 
Take Tσ = 300 K.

Solution 5.9
With the assumption of negligible kinetic- and potential-energy changes, with  
   W  s   

∙
   = 0,  and with   Q 

∙
   = 0  (there is no heat exchange with the surroundings) the 

energy balance [Eq. (2.29)] can be written:

    n 
∙    H    (  Δ H   ig  )    H   +   n 

∙    C    (  Δ H   ig  )    C   = 0  

Figure 5.6: Heat exchangers. (a) Case I, cocurrent. (b) Case II, countercurrent.
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With constant molar heat capacity, this becomes:

     n 
∙    H    C  P  ig  (    T   H  2     −  T   H  1     )   +   n 

∙    C   C  P  ig  (   T   C  2     −  T   C  1     )   = 0   (A)

The total rate of entropy change for the flowing streams is:

  Δ  (    S   ig  n 
∙   )    fs   =   n 

∙    H    (  Δ S   ig  )    H   +   n 
∙    C    (  Δ S   ig  )    C    

By Eq. (5.10), with the assumption of negligible pressure change in the flowing 
streams,

  Δ  (   S   ig  n 
∙   )    fs   =   n 

∙    H   C  P  ig  (ln    
 T   H  2     ___  T   H  1    

   +   
  n 

∙    C  
 ___   n 

∙    H       ln    
 T   C  2     ___  T   C  1    

  )   (B)

Finally, by Eq. (5.27), with   Q 
∙
     = 0,

    W 
∙
    lost   =  T  σ   Δ   (    S   ig  n 

∙   )    fs    (C)

These equations apply to both cases.

 ∙ Case I: Cocurrent flow. By Eqs. (A), (B), and (C), respectively:

   

  
  n 

∙    C  
 ___   n 

∙    H    

  

=

  

  
400 − 350

 ________ 340 − 300   = 1.25

    Δ ( S   ig  n 
∙  )  fs  

  =   (1)  (7 / 2) (8.314) (ln    
350

 ____ 400   + 1.25 ln    
340

 ____ 300  )  = 0.667 J ·K   −1  ·s   −1        

  W 
∙
    lost  

  

=

  

 (300)  (0.667)  = 200.1 J⋅ s   −1 

   

 ∙ Case II: Countercurrent flow. By Eqs. (A), (B), and (C), respectively:

   

  
  n 

∙    C  
 ___   n 

∙    H    

  

=

  

  
400 − 350

 ________ 390 − 300   = 0.5556

    Δ  ( S   ig  n 
∙  )  fs  

  =   (1)  (7 / 2)  (8.314)  (ln    
350

 ____ 400    + 0.5556 ln    
390

 ____ 300  )  = 0.356 J ·K   −1  ·s   −1        

  W 
∙
    lost  

  

=

  

(300)(0.356) = 106.7 J⋅ s   −1 

   

Although the total rate of heat transfer is the same for both exchangers, the 
temperature rise of the cold stream in countercurrent flow is more than twice that  
for cocurrent flow. Thus, its entropy increase per unit mass is larger than for  
the cocurrent case. However, its flow rate is less than half that of the cold stream  
in cocurrent flow, so that the total entropy increase of the cold stream is less for 
countercurrent flow. From a thermodynamic point of view, the countercurrent 
case is much more efficient. Because Δ(  S   ig    n 

∙
   )fs =   S 

∙
   G, both the rate of entropy gen-

eration and the lost work for the countercurrent case are only about half the value 
for the cocurrent case. Greater efficiency in the countercurrent case would be 
anticipated based on Fig. 5.6, which shows that heat is transferred across a smaller 
temperature difference (less irreversibly) in the countercurrent case.
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5.10. Entropy from the Microscopic Viewpoint 203

5.9 THE THIRD LAW OF THERMODYNAMICS

Measurements of heat capacities at very low temperatures provide data for the calculation 
from Eq. (5.1) of entropy changes down to 0 K. When these calculations are made for different 
crystalline forms of the same chemical species, the entropy at 0 K appears to be the same for 
all forms. When the form is noncrystalline, e.g., amorphous or glassy, calculations show that 
the entropy of the disordered form is greater than that of the crystalline form. Such calcula-
tions, which are summarized elsewhere,6 lead to the postulate that the absolute entropy is zero 
for all perfect crystalline substances at absolute zero temperature. While this essential idea 
was advanced by Nernst and Planck at the beginning of the twentieth century, more recent 
studies at very low temperatures have increased confidence in this postulate, which is now 
accepted as the third law of thermodynamics.

If the entropy is zero at T = 0 K, then Eq. (5.1) lends itself to the calculation of absolute 
entropies. With T = 0 as the lower limit of integration, the absolute entropy of a gas at tem-
perature T based on calorimetric data is:

  S =  ∫ 
0
  
 T  f  

    
  (   C  P   )    s   _____ 

T
    dT +   

Δ H  f   ____  T  f  
   +  ∫ 

 T  f  
  
 T  υ  

    
  (   C  P   )    l   ____ 

T
    dT +   

Δ H  υ   ____  T  υ  
   +  ∫ 

 T  υ  
  

T

    
  (   C  P   )    g  

 _____ 
T

    dT  (5.35)

This equation7 is based on the supposition that no solid-state transitions take place and thus no 
heats of transition need appear. The only constant-temperature heat effects are those of melt-
ing at Tf and vaporization at Tυ. When a solid-phase transition occurs, a term ΔHt /Tt is added.

Note that although the third law implies that absolute values of entropy are obtainable, 
for most thermodynamic analyses, only relative values are needed. As a result, reference states 
other than the perfect crystal at 0 K are commonly used. For example, in the steam tables of 
App. E,  saturated liquid water at 273.16 K is taken as the reference state and assigned zero 
entropy. However, the absolute or “third law” entropy of saturated liquid water at 273.16 K is 
3.515 kJ⋅kg−1⋅K−1.

5.10 ENTROPY FROM THE MICROSCOPIC VIEWPOINT

Because molecules in the ideal-gas state do not interact, their internal energy resides with 
individual molecules. This is not true of the entropy, which is inherently a collective property 
of a large number of molecules or other entities. A microscopic interpretation of entropy is 
suggested by the following example.

Suppose an insulated container, partitioned into two equal volumes, contains Avoga-
dro’s number NA of molecules in one section and no molecules in the other. When the partition 
is withdrawn, the molecules quickly distribute themselves uniformly throughout the total vol-
ume. The process is an adiabatic expansion that accomplishes no work. Therefore,

  ΔU =  C  V  ig ΔT = 0  

6K. S. Pitzer, Thermodynamics, 3rd ed., chap. 6, McGraw-Hill, New York, 1995.

7Evaluation of the first term on the right is not a problem for crystalline substances because   C  P  /T  remains finite as 
T → 0.
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204 CHAPTER 5. The Second Law of Thermodynamics

and the temperature does not change. However, the pressure of the gas decreases by half, and 
the entropy change, as given by Eq. (5.10), is:

  Δ S   ig  = −R ln    
 P  2  

 ___  P  1     = R ln  2  

Because this is the total entropy change, the process is clearly irreversible.
At the instant when the partition is removed, the molecules occupy only half the space 

available to them. In this momentary initial state, the molecules are not randomly distributed 
over the total volume to which they have access but are crowded into just half the total volume. 
In this sense they are more ordered than they are in the final state of uniform distribution 
throughout the entire volume. Thus, the final state can be regarded as a more random, or more 
disordered, state than the initial state. Generalizing from this example, and from many other 
similar observations, one is led to the notion that increasing disorder (or decreasing structure) 
at the molecular level corresponds to increasing entropy.

The means of expressing disorder quantitatively was developed by L. Boltzmann and  
J. W. Gibbs through a quantity Ω, defined as the number of different ways that microscopic 
particles can be distributed among the “states” accessible to them. It is given by the general 
formula:

  Ω =   
N !
 _____________   (   N  1  ! )   (   N  2  ! )   (   N  3  ! )   . . .    (5.36)

where N is the total number of particles, and N1, N2, N3, etc., represent the numbers of parti-
cles in “states” 1, 2, 3, etc. The term “state” denotes a condition of the microscopic particles, 
and the quotation marks distinguish this idea of state from the usual thermodynamic meaning 
as applied to a macroscopic system.

For the example discussed here, only two “states” are possible for each molecule, repre-
senting location of the given molecule in one half or the other of the container. The total num-
ber of particles is NA molecules, and initially they are all in a single “state.” Thus

   Ω  1   =   
 N  A   !
 _______  (   N  A  ! )   (  0! )     = 1  

This result confirms that initially the molecules can be distributed between the two accessible 
“states” in just one way. They are all in a given “state,” all in just one half of the container. For 
an assumed final condition of uniform distribution of the molecules between the two halves of 
the container, N1 = N2 = NA/2, and

   Ω  2   =   
 N  A  !
 ________ 

  [ (   N  A   / 2 )  !]    
2
 
    

This expression gives a very large number for Ω2, indicating that the molecules can be distrib-
uted uniformly between the two “states” in many different ways. Many other values of Ω2 are 
possible, each one of which is associated with a particular nonuniform distribution of the mol-
ecules between the two halves of the container. The ratio of a particular Ω2 to the sum of all 
possible values is the probability of that particular distribution.
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5.11. Synopsis 205

The connection established by Boltzmann between entropy S and Ω is given by the 
equation:

  S = k ln Ω  (5.37)

Boltzmann’s constant k equals R/NA. The entropy difference between states 1 and 2 is:

   S  2   −  S  1   = k ln   
 Ω  2  

 ___  Ω  1      

Substituting values for Ω1 and Ω2 from our example into this expression gives:

   S  2   −  S  1   = k ln    
 N  A   !
 ________ 

  [ (   N  A  / 2 )  !]    
2
 
   = k[ln  N  A  ! − 2 ln  ( N  A  / 2)!]  

Because NA is very large, we take advantage of Stirling’s formula for the logarithms of 
factorials of large numbers:

  ln  X ! = X ln X − X  
Thus,

 S2 − S1 = k  [NA ln NA − NA − 2 (  
NA

 ___ 2   ln   
NA

 ___ 2   −   
NA

 ___ 2  ) ]   

 = kNA ln    
NA

 ____ 
NA  /2    = k NA ln 2 = R ln 2  

This value for the entropy change of the expansion process is the same as that given by Eq. 
(5.10), the classical thermodynamic formula for the ideal-gas state.

Equations (5.36) and (5.37) provide a basis for relating macroscopic thermodynamic 
properties to the microscopic configurations of molecules. Here we have applied them to a 
very simple, and somewhat contrived, situation involving molecules in the ideal gas state to 
provide a simple illustration of this connection between molecular configurations and macro-
scopic properties. The field of science and engineering devoted to studying and exploiting this 
connection is called statistical thermodynamics or statistical mechanics. The methods of sta-
tistical thermodynamics are well developed, and are now routinely applied, in combination 
with computational simulation of the behavior of molecules, to make useful predictions of 
thermodynamic properties of real substances without recourse to experiment.8

5.11 SYNOPSIS

After studying this chapter, including the end-of-chapter problems, one should be able to:

 ∙ Comprehend the existence of entropy as a state function, related to observable proper-
ties of a system, for which changes are computed from:

  d S   t   = d Q  rev   / T  (5.1)

8Many introductory texts on statistical thermodynamics are available. The interested reader is referred to  Molecular 
Driving Forces: Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience, 2nd ed., by K. A. Dill 
and S. Bromberg, Garland  Science, 2010, and many books referenced therein.
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206 CHAPTER 5. The Second Law of Thermodynamics

 ∙ State the second law of thermodynamics in words and as an inequality in terms of entropy
 ∙ Define and distinguish between thermal efficiency and thermodynamic efficiency
 ∙ Compute the thermal efficiency of a reversible heat engine
 ∙ Compute entropy changes for the ideal-gas state with heat capacity expressed as a poly-

nomial in temperature
 ∙ Construct and apply entropy balances for open systems
 ∙ Determine whether a specified process violates the second law
 ∙ Compute ideal work, lost work, and thermodynamic efficiencies of processes

5.12 PROBLEMS

 5.1. Prove that it is impossible for two lines representing reversible, adiabatic processes on 
a PV diagram to intersect. (Hint: Assume that they do intersect, and complete the 
cycle with a line representing a reversible, isothermal process. Show that performance 
of this cycle violates the second law.)

 5.2. A Carnot engine receives 250 kJ·s−1 of heat from a heat-source reservoir at 525°C and 
rejects heat to a heat-sink reservoir at 50°C. What are the power developed and the 
heat rejected?

 5.3. The following heat engines produce power of 95,000 kW. Determine in each case the 
rates at which heat is absorbed from the hot reservoir and discarded to the cold 
reservoir.

 (a) A Carnot engine operates between heat reservoirs at 750 K and 300 K.
 (b) A practical engine operates between the same heat reservoirs but with a thermal 

efficiency η = 0.35.

 5.4. A particular power plant operates with a heat-source reservoir at 350°C and a heat-
sink reservoir at 30°C. It has a thermal efficiency equal to 55% of the Carnot-engine 
thermal efficiency for the same temperatures.

 (a) What is the thermal efficiency of the plant?
 (b) To what temperature must the heat-source reservoir be raised to increase the ther-

mal efficiency of the plant to 35%? Again η is 55% of the Carnot-engine value.

 5.5. An egg, initially at rest, is dropped onto a concrete surface; it breaks. Prove that the 
process is irreversible. In modeling this process treat the egg as the  system, and assume 
the passage of sufficient time for the egg to return to its initial temperature.

 5.6. Which is the more effective way to increase the thermal efficiency of a Carnot engine: 
to increase TH with TC constant, or to decrease TC with TH constant? For a real engine, 
which would be the more practical way?
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5.12. Problems 207

 5.7. Large quantities of liquefied natural gas (LNG) are shipped by ocean tanker. At the 
unloading port, provision is made for vaporization of the LNG so that it can be deliv-
ered to pipelines as gas. The LNG arrives in the tanker at atmospheric pressure and 
113.7 K, and represents a possible heat sink for use as the cold reservoir of a heat 
engine. For unloading of LNG as a vapor at the rate of 9000 m3·s−1, as measured at 
25°C and 1.0133 bar, and assuming the availability of an adequate heat source at 
30°C, what is the maximum possible power obtainable and what is the rate of heat 
transfer from the heat source? Assume that LNG at 25°C and 1.0133 bar is an ideal 
gas with the molar mass of 17. Also assume that the LNG vaporizes only, absorbing 
only its latent heat of 512 kJ·kg−1 at 113.7 K.

 5.8. With respect to 1 kg of liquid water:

 (a) Initially at 0°C, it is heated to 100°C by contact with a heat reservoir at 100°C. 
What is the entropy change of the water? Of the heat reservoir? What is ΔStotal?

 (b) Initially at 0°C, it is first heated to 50°C by contact with a heat reservoir at 50°C 
and then to 100°C by contact with a reservoir at 100°C. What is ΔStotal?

 (c) Explain how the water might be heated from 0°C to 100°C so that ΔStotal = 0.

 5.9. A rigid vessel of 0.06 m3 volume contains an ideal gas, CV = (5/2)R, at 500 K and 1 bar.

 (a) If heat in the amount of 15,000 J is transferred to the gas, determine its entropy 
change.

 (b) If the vessel is fitted with a stirrer that is rotated by a shaft so that work in the 
amount of 15,000 J is done on the gas, what is the entropy change of the gas if 
the process is adiabatic? What is ΔStotal? What is the irreversible feature of the 
process?

 5.10. An ideal gas, CP = (7/2)R, is heated in a steady-flow heat exchanger from 70°C to 
190°C by another stream of the same ideal gas which enters at 320°C. The flow rates 
of the two streams are the same, and heat losses from the exchanger are negligible.

 (a) Calculate the molar entropy changes of the two gas streams for both parallel 
cocurrent and countercurrent flow in the exchanger.

 (b) What is ΔStotal in each case?
 (c) Repeat parts (a) and (b) for countercurrent flow if the heating stream enters  

at 200°C.

 5.11. For an ideal gas with constant heat capacities, show that:

 (a) For a temperature change from T1 to T2, ΔS of the gas is greater when the change 
occurs at constant pressure than when it occurs at constant volume.

 (b) For a pressure change from P1 to P2, the sign of ΔS for an isothermal change is 
opposite that for a constant-volume change.

 5.12. For an ideal gas prove that:

    
ΔS

 ___ 
R

   =  ∫ 
 T  0  

  
T

    
 C  V  ig 

 ___ 
R

     
dT

 ___ 
T

     + ln   
V

 ___  V  0      
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208 CHAPTER 5. The Second Law of Thermodynamics

 5.13. A Carnot engine operates between two finite heat reservoirs of total heat capacity  
  C  H  t

    and   C  C  t
   .

 (a) Develop an expression relating TC to TH at any time.
 (b) Determine an expression for the work obtained as a function of   C H  t  ,  C C  t  ,  T  H     ,  and 

the initial temperatures   T   H  0      and   T   C  0     .
 (c) What is the maximum work obtainable? This corresponds to infinite time, when 

the reservoirs attain the same temperature.

  In approaching this problem, use the differential form of Carnot’s equation,

    
d Q  H  

 ____ 
d Q  C     = −   

 T  H  
 ___  T  C      

  and a differential energy balance for the engine,

  dW − d Q  C   − d Q  H   = 0  

  Here, QC and QH refer to the reservoirs.

 5.14. A Carnot engine operates between an infinite hot reservoir and a finite cold reservoir 
of total heat capacity   C  C  t

   .

 (a) Determine an expression for the work obtained as a function of   C  C  t
  ,  T  H        

(= constant), TC , and the initial cold-reservoir temperature   T   C  0     .
 (b) What is the maximum work obtainable? This corresponds to infinite time, when 

TC becomes equal to TH.

  The approach to this problem is the same as for Prob. 5.13.

 5.15. A heat engine operating in outer space can be assumed equivalent to a Carnot engine 
operating between reservoirs at temperatures TH and TC . The only way heat can be dis-
carded from the engine is by radiation, the rate of which is given (approximately) by:

   |   Q 
∙
    C   |  = kA T  C  4    

  where k is a constant and A is the area of the radiator. Prove that, for fixed power output 
|  W 

∙
   | and for fixed temperature TH, the radiator area A is a minimum when the temperature 

ratio TC  / TH is 0.75.

 5.16. Imagine that a stream of fluid in steady-state flow serves as a heat source for an 
infinite set of Carnot engines, each of which absorbs a differential amount of heat 
from the fluid, causing its temperature to decrease by a differential amount, and each 
of which rejects a differential amount of heat to a heat reservoir at temperature Tσ. As 
a result of the operation of the Carnot engines, the temperature of the fluid decreases 
from T1 to T2. Equation (5.8) applies here in differential form, wherein η is defined as:

  η ≡ dW / dQ  
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where Q is heat transfer with respect to the flowing fluid. Show that the total work of 
the Carnot engines is given by:

  W = Q −  T  σ  ΔS  

where ΔS and Q both refer to the fluid. In a particular case, the fluid is an ideal gas, 
with CP = (7/2)R, and the operating temperatures are T1 = 600 K and T2 = 400 K. If 
Tσ = 300 K, what is the value of W in J·mol−1? How much heat is discarded to the heat 
reservoir at Tσ? What is the entropy change of the heat reservoir? What is ΔStotal?

 5.17. A Carnot engine operates between temperature levels of 600 K and 300 K. It drives a 
Carnot refrigerator, which provides cooling at 250 K and discards heat at 300 K. 
Determine a numerical value for the ratio of heat extracted by the refrigerator (“cooling 
load”) to the heat delivered to the engine (“heating load”).

 5.18. An ideal gas with constant heat capacity undergoes a change of state from conditions 
T1, P1 to conditions T2, P2. Determine ΔH (J·mol−1) and ΔS (J·mol−1·K−1) for one of 
the following cases.

 (a) T1 = 300 K, P1 = 1.2 bar, T2 = 450 K, P2 = 6 bar, CP/R = 7/2
 (b) T1 = 300 K, P1 = 1.2 bar, T2 = 500 K, P2 = 6 bar, CP/R = 7/2
 (c) T1 = 450 K, P1 = 10 bar, T2 = 300 K, P2 = 2 bar, CP/R = 5/2
 (d) T1 = 400 K, P1 = 6 bar, T2 = 300 K, P2 = 1.2 bar, CP/R = 9/2
 (e) T1 = 500 K, P1 = 6 bar, T2 = 300 K, P2 = 1.2 bar, CP/R = 4

 5.19. An ideal gas, CP = (7/2)R and CV = (5/2)R, undergoes a cycle consisting of the follow-
ing mechanically reversible steps:

 ∙ An adiabatic compression from P1, V1, T1 to P2, V2, T2
 ∙ An isobaric expansion from P2, V2, T2 to P3 = P2, V3, T3
 ∙ An adiabatic expansion from P3, V3, T3 to P4, V4, T4
 ∙ A constant-volume process from P4, V4, T4 to P1, V1 = V4, T1

  Sketch this cycle on a PV diagram and determine its thermal efficiency if T1 = 200°C, 
T2 = 1000°C, and T3 = 1700°C.

 5.20. The infinite heat reservoir is an abstraction, often approximated in engineering appli-
cations by large bodies of air or water. Apply the closed-system form of the energy 
balance [Eq. (2.3)] to such a reservoir, treating it as a constant-volume system. How is 
it that heat transfer to or from the reservoir can be nonzero, yet the temperature of the 
reservoir remains constant?

 5.21. One mole of an ideal gas, CP = (7/2)R and CV = (5/2)R, is compressed adiabatically in 
a piston/cylinder device from 2 bar and 25°C to 7 bar. The process is irreversible and 
requires 35% more work than a reversible, adiabatic compression from the same initial 
state to the same final pressure. What is the entropy change of the gas?
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210 CHAPTER 5. The Second Law of Thermodynamics

 5.22. A mass m of liquid water at temperature T1 is mixed adiabatically and isobarically 
with an equal mass of liquid water at temperature T2. Assuming constant CP , show

  Δ S   t  = Δ S  total   =  S  G   = 2m C  P   ln    
 (   T  1   +  T  2   )   / 2

 ________ 
  (   T  1    T  2   )     1/2 

    

  and prove that this is positive. What would be the result if the masses of the water were 
different, say, m1 and m2?

 5.23. Reversible adiabatic processes are isentropic. Are isentropic processes necessarily 
reversible and adiabatic? If so, explain why; if not, give an illustrative example.

 5.24. Prove that the mean heat capacities ⟨CP⟩H and ⟨CP⟩S are inherently positive, whether 
T > T0 or T < T0. Explain why they are well defined for T = T0.

 5.25. A reversible cycle executed by 1 mol of an ideal gas for which CP = (5/2)R and  
CV = (3/2)R consists of the following:

 ∙ Starting at T1 = 700 K and P1 = 1.5 bar, the gas is cooled at constant pressure to 
T2 = 350 K.

 ∙ From 350 K and 1.5 bar, the gas is compressed isothermally to pressure P2.
 ∙ The gas returns to its initial state along a path for which PT = constant.

  What is the thermal efficiency of the cycle?

 5.26. One mole of an ideal gas is compressed isothermally but irreversibly at 130°C from 
2.5 bar to 6.5 bar in a piston/cylinder device. The work required is 30% greater than 
the work of reversible, isothermal compression. The heat transferred from the gas 
during compression flows to a heat reservoir at 25°C. Calculate the entropy changes 
of the gas, the heat reservoir, and ΔStotal.

 5.27. For a steady-flow process at approximately atmospheric pressure, what is the entropy 
change of the gas:

 (a) When 10 mol of SO2 is heated from 200 to 1100°C?
 (b) When 12 mol of propane is heated from 250 to 1200°C?
 (c) When 20 kg of methane is heated from 100 to 800°C?
 (d) When 10 mol of n-butane is heated from 150 to 1150°C?
 (e) When 1000 kg of air is heated from 25 to 1000°C?
 ( f ) When 20 mol of ammonia is heated from 100 to 800°C?
 (g) When 10 mol of water is heated from 150 to 300°C?
 (h) When 5 mol of chlorine is heated from 200 to 500°C?
 (i) When 10 kg of ethylbenzene is heated from 300 to 700°C?

 5.28. What is the entropy change of the gas, heated in a steady-flow process at approxi-
mately atmospheric pressure,

 (a) When 800 kJ is added to 10 mol of ethylene initially at 200°C?
 (b) When 2500 kJ is added to 15 mol of 1-butene initially at 260°C?
 (c) When 106(Btu) is added to 40(lb mol) of ethylene initially at 500(°F)?
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 5.29. A device with no moving parts provides a steady stream of chilled air at −25°C and 1 
bar. The feed to the device is compressed air at 25°C and 5 bar. In addition to the 
stream of chilled air, a second stream of warm air flows from the device at 75°C and  
1 bar. Assuming adiabatic operation, what is the ratio of chilled air to warm air that the 
device produces? Assume that air is an ideal gas for which CP = (7/2)R.

 5.30. An inventor has devised a complicated nonflow process in which 1 mol of air is the 
working fluid. The net effects of the process are claimed to be:

 ∙ A change in state of the air from 250°C and 3 bar to 80°C and 1 bar.
 ∙ The production of 1800 J of work.
 ∙ The transfer of an undisclosed amount of heat to a heat reservoir at 30°C.

  Determine whether the claimed performance of the process is consistent with the  
second law. Assume that air is an ideal gas for which CP = (7/2)R.

 5.31. Consider the heating of a house by a furnace, which serves as a heat-source reservoir at a 
high temperature TF. The house acts as a heat-sink reservoir at temperature T, and heat |Q| 
must be added to the house during a particular time interval to maintain this temperature. 
Heat |Q| can of course be transferred directly from the furnace to the house, as is the usual 
practice. However, a third heat reservoir is readily available, namely, the surroundings at 
temperature Tσ, which can serve as another heat source, thus reducing the amount of heat 
required from the furnace. Given that TF = 810 K, T = 295 K, Tσ = 265 K, and |Q| = 1000 
kJ, determine the minimum amount of heat |QF| that must be extracted from the heat-
source reservoir (furnace) at TF. No other sources of energy are available.

 5.32. Consider the air conditioning of a house through use of solar energy. At a particular 
location, experiment has shown that solar radiation allows a large tank of pressurized 
water to be maintained at 175°C. During a particular time interval, heat in the amount 
of 1500 kJ must be extracted from the house to maintain its temperature at 24°C when 
the surroundings temperature is 33°C. Treating the tank of water, the house, and the 
surroundings as heat reservoirs, determine the minimum amount of heat that must be 
extracted from the tank of water by any device built to accomplish the required cool-
ing of the house. No other sources of energy are available.

 5.33. A refrigeration system cools a brine from 25°C to −15°C at a rate of 20 kg·s−1. Heat 
is discarded to the atmosphere at a temperature of 30°C. What is the power require-
ment if the thermodynamic efficiency of the system is 0.27? The specific heat of the 
brine is 3.5 kJ·kg−1·°C−1.

 5.34. An electric motor under steady load draws 9.7 amperes at 110 volts; it delivers 
1.25(hp) of mechanical energy. The temperature of the surroundings is 300 K. What is 
the total rate of entropy generation in W·K−1?

 5.35. A 25-ohm resistor at steady state draws a current of 10 amperes. Its temperature is  
310 K; the temperature of the surroundings is 300 K. What is the total rate of entropy 
generation    S 

∙
    G   ? What is its origin?
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212 CHAPTER 5. The Second Law of Thermodynamics

 5.36. Show how the general rate form of the entropy balance, Eq. (5.16), reduces to  
Eq. (5.2) for the case of a closed system.

 5.37. A list of common unit operations follows:

 (a) Single-pipe heat exchanger
 (b) Double-pipe heat exchanger
 (c) Pump
 (d) Gas compressor
 (e) Gas turbine (expander)
 ( f ) Throttle valve
 (g) Nozzle

  Develop a simplified form of the general steady-state entropy balance appropriate to 
each operation. State carefully, and justify, any assumptions you make.

 5.38. Ten kmol per hour of air is throttled from upstream conditions of 25°C and 10 bar to a 
downstream pressure of 1.2 bar. Assume air to be an ideal gas with CP = (7/2)R.

 (a) What is the downstream temperature?
 (b) What is the entropy change of the air in J·mol−1·K−1?
 (c) What is the rate of entropy generation in W·K−1?
 (d ) If the surroundings are at 20°C, what is the lost work?

 5.39. A steady-flow adiabatic turbine (expander) accepts gas at conditions T1, P1, and  
discharges at conditions T2, P2. Assuming ideal gases, determine (per mole of gas)  
W, Wideal, Wlost, and SG for one of the following cases. Take Tσ = 300 K.

 (a) T1 = 500 K, P1 = 6 bar, T2 = 371 K, P2 = 1.2 bar, CP/R = 7/2
 (b) T1 = 450 K, P1 = 5 bar, T2 = 376 K, P2 = 2 bar, CP/R = 4
 (c) T1 = 525 K, P1 = 10 bar, T2 = 458 K, P2 = 3 bar, CP/R = 11/2
 (d) T1 = 475 K, P1 = 7 bar, T2 = 372 K, P2 = 1.5 bar, CP/R = 9/2
 (e) T1 = 550 K, P1 = 4 bar, T2 = 403 K, P2 = 1.2 bar, CP/R = 5/2

 5.40. Consider the direct heat transfer from a heat reservoir at T1 to another heat reservoir at 
temperature T2, where T1 > T2 > Tσ. It is not obvious why the lost work of this process 
should depend on Tσ, the temperature of the surroundings, because the surroundings 
are not involved in the actual heat-transfer process. Through appropriate use of the 
Carnot-engine formula, show for the transfer of an amount of heat equal to |Q| that

  W  lost   =  T  σ   | Q |   
 T  1   −  T  2  

 ______  T  1   T  2     =  T  σ   S  G   

 5.41. An ideal gas at 2500 kPa is throttled adiabatically to 150 kPa at the rate of 20 mol·s–1. 
Determine    S 

∙
    G    and    W 

∙
    lost    if Tσ = 300 K.

 5.42. An inventor claims to have devised a cyclic engine which exchanges heat with reser-
voirs at 25°C and 250°C, and which produces 0.45 kJ of work for each kJ of heat 
extracted from the hot reservoir. Is the claim believable?
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 5.43. Heat in the amount of 150 kJ is transferred directly from a hot reservoir at TH = 550 K 
to two cooler reservoirs at T1 = 350 K and T2 = 250 K. The surroundings temperature 
is Tσ = 300 K. If the heat transferred to the reservoir at T1 is half that transferred to the 
reservoir at T2, calculate:

 (a) The entropy generation in kJ·K–1

 (b) The lost work

  How could the process be made reversible?

 5.44. A nuclear power plant generates 750 MW; the reactor temperature is 315°C and a river 
with water temperature of 20°C is available.

 (a) What is the maximum possible thermal efficiency of the plant, and what is the 
minimum rate at which heat must be discarded to the river?

 (b) If the actual thermal efficiency of the plant is 60% of the maximum, at what rate 
must heat be discarded to the river, and what is the temperature rise of the river if 
it has a flow rate of 165 m3·s–1?

 5.45. A single gas stream enters a process at conditions T1, P1, and leaves at pressure P2. 
The process is adiabatic. Prove that the outlet temperature T2 for the actual (irrevers-
ible) adiabatic process is greater than that for a reversible adiabatic process. Assume 
the gas is ideal with constant heat capacities.

 5.46. A Hilsch vortex tube operates with no moving mechanical parts and splits a gas stream 
into two streams: one warmer and the other cooler than the entering stream. One such 
tube is reported to operate with air entering at 5 bar and 20°C, and air streams leaving 
at 27°C and –22°C, both at 1(atm). The mass flow rate of warm air leaving is six times 
that of the cool air. Are these results possible? Assume air to be an ideal gas at the 
conditions given.

 5.47. (a)  Air at 70(°F) and 1(atm) is cooled at the rate of 100,000(ft)3(hr)–1 to 20(°F) by 
refrigeration. For a surroundings temperature of 70(°F), what is the minimum 
power requirement in (hp)?

 (b) Air at 25°C and 1(atm) is cooled at the rate of 3000 m3·hr–1 to –8°C by refrigera-
tion. For a surroundings temperature of 25°C, what is the minimum power require-
ment in kW?

 5.48. A flue gas is cooled from 2000 to 300(°F), and the heat is used to generate saturated 
steam at 212(°F) in a boiler. The flue gas has a heat capacity given by:

    
 C  P  

 ___ 
R

   = 3.83 + 0.000306 T / (R )  

  Water enters the boiler at 212(°F) and is vaporized at this temperature; its latent heat 
of vaporization is 970.3(Btu)(lbm)–1.

 (a) With reference to a surroundings temperature of 70(°F), what is the lost work of 
this process in (Btu)(lb mole)–1 of flue gas?
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 (b) With reference to a surroundings temperature of 70(°F), what is the maximum 
work, in (Btu)(lb mole)–1 of flue gas, that can be accomplished by the saturated 
steam at 212(°F) if it condenses only, and does not subcool?

 (c) How does the answer to part (b) compare with the maximum work theoretically 
obtainable from the flue gas itself as it is cooled from 2000 to 300(°F)?

 5.49. A flue gas is cooled from 1100 to 150°C, and the heat is used to generate saturated 
steam at 100°C in a boiler. The flue gas has a heat capacity given by:

    
 C  P  

 ___ 
R

   = 3.83 + 0.000551 T / K  

  Water enters the boiler at 100°C and is vaporized at this temperature; its latent heat of 
vaporization is 2256.9 kJ·kg–1.

 (a) With reference to a surroundings temperature of 25°C, what is the lost work of 
this process in kJ·mol–1 of flue gas?

 (b) With reference to a surroundings temperature of 25°C, what is the maximum 
work, in kJ·mol–1 of flue gas, that can be accomplished by the saturated steam at 
100°C if it condenses only, and does not subcool?

 (c) How does the answer to part (b) compare with the maximum work theoretically 
obtainable from the flue gas itself as it is cooled from 1100 to 150°C?

 5.50. Ethylene vapor is cooled at atmospheric pressure from 830 to 35°C by direct heat 
transfer to the surroundings at a temperature of 25°C. With respect to this surroundings 
temperature, what is the lost work of the process in kJ·mol–1? Show that the same 
result is obtained as the work which can be derived from reversible heat engines 
 operating with the ethylene vapor as heat source and the surroundings as sink. The 
heat capacity of ethylene is given in Table C.1 of App. C.
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Chapter 6

Thermodynamic Properties  
of Fluids

Application of thermodynamics to practical problems requires numerical values of thermody-
namic properties. A very simple example is calculation of the work required for a steady-state 
gas compressor. If designed to operate adiabatically with the purpose of raising the pressure of 
a gas from P1 to P2, this work can be determined by an energy balance [Eq. (2.32)], with the 
small kinetic- and potential-energy changes of the gas are neglected:

  W  s   = ΔH =  H  2   −  H  1   

The shaft work is simply ΔH, the difference between inlet and outlet values for the enthalpy 
of the gas. The necessary enthalpy values must come from experimental data or by estimation. 
Our aims in this chapter are to:

 ∙ Develop from the first and second laws the fundamental property relations that underlie 
the structure of applied thermodynamics for systems of constant composition

 ∙ Derive equations that allow calculation of enthalpy and entropy values from PVT and 
heat-capacity data

 ∙ Illustrate and discuss the types of diagrams and tables used to present property values 
for convenient use

 ∙ Develop generalized correlations that provide estimates of property values in the absence 
of complete experimental information

6.1 FUNDAMENTAL PROPERTY RELATIONS

Equation (2.6), the first law for a closed system of n moles of a substance, can be written for 
the special case of a reversible process:

 d(nU) = d Q  rev   + d W  rev   
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Equations (1.3) and (5.1) as applied to this process are:

   d W  rev   = − P d (   nV )       d Q  rev   = T d(nS)  

These three equations combine to give:

    d (  nU )   = T d (  nS )   − P d (  nV )      (6.1)

where U, S, and V are molar values of the internal energy, entropy, and volume. All of the 
primitive thermodynamic properties—P, V, T, U, and S—are included in this equation. It is 
a fundamental property relation connecting these properties for closed PVT systems. All 
other equations relating properties of such systems derive from it.

Additional thermodynamic properties, beyond those appearing in Eq. (6.1), are defined 
as a matter of convenience, in relation to the primary properties. Enthalpy, defined and applied 
in Chapter 2, is joined here by two others. The three, all with recognized names and useful 
 applications, are:

  Enthalpy H ≡ U + PV  (6.2)
  Helmholtz energy A ≡ U − TS  (6.3)
  Gibbs energy G ≡ U + PV − TS = H − TS  (6.4)

The Helmholtz energy and Gibbs energy1 find application in phase- and chemical-equilibrium 
calculations and in statistical thermodynamics.

Multiplication of Eq. (6.2) by n, followed by differentiation, yields the general expression

   d (   nH )    = d (  nU )   + P d (  nV )   + nV dP   

Substitution for d(nU) by Eq. (6.1) reduces this result to

     d (  nH )   = T d (  nS )   + nV dP     (6.5)

The differentials of nA and nG are obtained similarly:

    d (  nA )   = − nS dT − P d (  nV )      (6.6)

    d (  nG )   = − nS dT + nV dP    (6.7)

Equations (6.1) and (6.5) through (6.7) are equivalent fundamental property relations. They 
are derived for a reversible process. However, they contain only properties of the system, 
which depend only on the state of the system, and not the path by which it reached that state. 
These equations are therefore not restricted in application to reversible processes. However, 
the restrictions placed on the nature of the system cannot be relaxed.

Application is to any process in a closed PVT system resulting in a differ-
ential change from one equilibrium state to another.

The system may consist of a single phase (a homogeneous system), or it may comprise 
 several phases (a heterogeneous system); it may be chemically inert, or it may undergo 

1These have traditionally been called Helmholtz free energy and the Gibbs free energy. The word free originally had 
the connotation of energy available to perform useful work, under appropriate conditions. However, in current usage, 
the word free adds nothing, and is best omitted. Since 1988, the IUPAC-recommended terminology omits the word free.
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chemical reaction. The choice of which equation to use in a particular application is dictated 
by  convenience. However, the Gibbs energy G is special, because of its unique functional relation 
to T and P. Temperature and pressure are unique among thermodynamic quantities in that they are 
inherently intrinsic quantities, with no extrinsic counterpart. They can be defined and measured 
locally, at a single point, which makes their measurement and control much more straightforward 
than for other thermodynamic variables.

An immediate application of these equations is to one mole (or to a unit mass) of a 
homogeneous fluid of constant composition. For this case, n = 1, and they simplify to:

 dU = T dS − P dV  (6.8)  dH = T dS + V dP  (6.9)
 dA = −S dT − P dV  (6.10)  dG = −S dT + V dP  (6.11)

Implicit in each of these equations is a functional relationship that expresses a molar (or unit 
mass) property as a function of a natural or special pair of independent variables:

 U = U(S, V) H = H(S, P) A = A(T, V) G = G(T, P) 

These variables are said to be canonical,2 and a thermodynamic property known as a 
function of its canonical variables has a unique characteristic:

All other thermodynamic properties can be evaluated from it by simple 
mathematical operations.

Equations (6.8) through (6.11) lead to another set of property relations because they 
are exact differential expressions. In general, if F = F(x, y), then the total differential of F is 
defined as:

 dF ≡   (    
∂ F

 ___ ∂ x   )    
y

   dx +   (    
∂ F

 ___ ∂ y   )    
x

   dy 

or  dF = M dx + N dy  (6.12)

where  M ≡   (    
∂ F

 ___ ∂ x   )    
y

         N ≡   (    
∂ F

 ___ ∂ y   )    
x

    

Then    (    
∂ M

 ___ ∂ y   )    
x

   =   
 ∂   2 F

 _____ ∂ y  ∂ x            (    
∂ N

 ___ ∂ x   )    
y

   =   
 ∂   2  F

 _____ ∂ x  ∂ y    

The order of differentiation in mixed second derivatives does not affect the result, so these 
equations combine to give:

    (    
∂ M

 ___ ∂ y   )    
x

   =   (    
∂ N

 ___ ∂ x   )    
y

    (6.13)

Because F is a function of x and y, the right side of Eq. (6.12) is an exact differential expression, 
and Eq. (6.13) correctly relates the partial derivatives.

2Canonical here means that the variables conform to a general rule that is both simple and clear.
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The thermodynamic properties U, H, A, and G are known to be functions of the canonical 
variables on the right sides of Eqs. (6.8) through (6.11). For each of these exact differential 
expressions, we can write the relationship of Eq. (6.13), producing the Maxwell relations.3

   (  
∂ T

 ___ ∂ V  )   
S

   = −   (  
∂ P

 ___ ∂ S  )   
V

    (6.14)    (  
∂ T

 ___ ∂ P  )   
S

   =   (    
∂ V

 ___ ∂ S   )    
P

    (6.15)

   (  
∂ S

 ___ ∂ V  )   
T

   =   (  
∂ P

 ___ ∂ T  )   
V    

    (6.16)   −  (  
∂ S

 ___ ∂ P  )   
T

   =   (  
∂ V

 ___ ∂ T  )   
P

    (6.17)

Although we most naturally express U, H,  A, and G as functions of their canonical 
variables, we can also write other functional relationships for application to particular systems. 
Indeed, as discussed in Sec. 2.5, any thermodynamic property of a homogeneous PVT system 
of constant composition can be expressed as a function of T and P. The restrictions exclude 
heterogeneous and reacting systems, except for G, for which T and P are the canonical variables. 
A simple example is a system comprised of a pure liquid in equilibrium with its vapor. Its 
molar internal energy depends on the relative amounts of liquid and vapor present, and this is 
in no way reflected by T and P. However, the canonical variables S and V also depend on the 
relative amounts of the phases, giving U = U(S, V) its greater generality. On the other hand, 
T and P are the canonical variables for the Gibbs energy, and G = G(T, P) is general. Thus G 
is fixed for given T and P, regardless of the relative amounts of the phases. Because of this 
feature, G provides the fundamental basis for the working equations of phase equilibria.

Equations (6.8) through (6.11) lead not only to the Maxwell relations but also to many 
other equations relating thermodynamic properties. The remainder of this section develops 
those most useful for evaluating thermodynamic properties from experimental data.

Enthalpy and Entropy as Functions of T and P
Enthalpy and entropy are the thermodynamic properties of the most common interest in engi-
neering practice, and T and P are the most common measurable properties of a substance 
or system. Thus, expressing the variation of H and S with changes in T and P is of substan-
tial practical importance. This information is contained in the derivatives (∂H/∂T)P, (∂S/∂T)P, 
(∂H/∂P)T, and (∂S/∂P)T, with which we can write:

 dH =   (  
∂ H

 ___ ∂ T  )   
P

   dT +   (  
∂ H

 ___ ∂ P  )   
T

   dP   dS =   (  
∂ S

 ___ ∂ T  )   
P

   dT +   (  
∂ S

 ___ ∂ P  )   
T

   dP 

Our goal here is to express these four partial derivatives in terms of measurable properties.
The definition of heat capacity at constant pressure is:

    (  
∂ H

 ___ ∂ T  )   
P

   =  C  P    (2.19)

Another expression for this quantity is obtained by applying Eq. (6.9), the fundamental prop-
erty relation for enthalpy, to changes with respect to T at constant P:

    (  
∂ H

 ___ ∂ T  )   
P

   = T   (  
∂ S

 ___ ∂ T  )   
P

    

3After James Clerk Maxwell (1831–1879). See http://en.wikipedia.org/wiki/James_Clerk_Maxwell.
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Combining this equation with Eq. (2.19) gives:

    (  
∂ S

 ___ ∂ T  )   
P

   =   
 C  P  

 ___ 
T

    (6.18)

The pressure derivative of entropy is provided in terms of measurable quantities by Eq. (6.17):

    (  
∂ S

 ___ ∂ P  )   
T

   = −   (  
∂ V

 ___ ∂ T  )   
P

    (6.19)

The corresponding derivative for enthalpy is found by applying Eq. (6.9) to changes with 
respect to P at constant T:

    (  
∂ H

 ___ ∂ P  )   
T

   = T   (  
∂ S

 ___ ∂ P  )   
T

   + V  

Using Eq. (6.19) this becomes:

    (  
∂ H

 ___ ∂ P  )   
T

   = V − T   (  
∂ V

 ___ ∂ T  )   
P

    (6.20)

With expressions for the four partial derivatives given by Eqs. (2.19) and (6.18) through (6.20), 
we can write the desired functional relations as:

   dH =  C  P    dT +   
[

  V − T   (  
∂ V

 ___ ∂ T  )   
P

   
]

   dP   (6.21)

   dS =  C  P     
dT

 _ 
T

   −   (  
∂ V

 ___ ∂ T  )   
P

   dP   (6.22)

These are general equations relating enthalpy and entropy to temperature and pressure for 
homogeneous fluids of constant composition. Equations (6.19) and (6.20) illustrate the utility 
of the Maxwell relations, particularly Eqs. (6.16) and (6.17), which relate changes in entropy 
that are not experimentally accessible to PVT data that are experimentally measurable.

The Ideal-Gas State
The coefficients of dT and dP in Eqs. (6.21) and (6.22)  are evaluated from heat-capacity 
and PVT data. The ideal-gas state (denoted by superscript ig) provides an example of PVT 
behavior:

  P V   ig  = RT       (  
∂  V   ig 

 ____ ∂ T  )   
P

   =   
R

 __ 
P
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 d H   ig  =  C  P  ig  dT  (6.23)  d  S   ig  =  C  P  ig    
dT

 ___ 
T

   − R   
dP

 ___ 
P

    (6.24)

 dH =  C  P   dT +   (  1 − βT )   V dP  (6.27)  dS =  C  P     
dT

 ___ 
T

   − βV dP  (6.28)

Substituting these equations into Eqs. (6.21) and (6.22) reduces them to:

   (  
∂ S

 ___ ∂ P  )   
T

   = − βV  (6.25)    (  
∂ H

 ___ ∂ P  )   
T

   =   (  1 − βT )   V  (6.26)

These are restatements of equations for the ideal-gas state presented in Secs. 3.3 and 5.5.

Alternative Forms for Liquids
Alternative forms of Eqs. (6.19) and (6.20) result when (∂V/∂T)P is replaced by βV [Eq. (3.3)]:

These equations incorporating β, although general, are usually applied only to liquids. How-
ever, for liquids at conditions far from the critical point, both the volume and β are small. Thus 
at most conditions pressure has little effect on the properties of liquids. The important ideali-
zation of an incompressible fluid (Sec. 3.2) is considered in Ex. 6.2.

Replacing (∂V/∂T)P in Eqs. (6.21) and (6.22) with βV yields:

Because β and V are weak functions of pressure for liquids, they are usually assumed constant 
at appropriate average values for integration of the final terms.

Internal Energy as a Function of P
Internal energy is related to enthalpy by Eq. (6.2) as U = H – PV. Differentiation yields:

    (  
∂ U

 ___ ∂ P  )   
T

   =   (  
∂ H

 ___ ∂ P  )   
T

   − P   (  
∂ V

 ___ ∂ P  )   
T

   − V  

Then by Eq. (6.20),

    (  
∂ U

 ___ ∂ P  )   
T

   = − T   (  
∂ V

 ___ ∂ T  )   
P

   − P  (  
∂ V

 ___ ∂ P  )   
T

    

An alternative form results if the derivatives on the right are replaced by βV [Eq. (3.3)] and –κV 
[Eq. (3.4)]:

    (  
∂ U

 ___ ∂ P  )   
T

   =   (  − βT + κP )   V  (6.29)
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Example 6.1
Determine the enthalpy and entropy changes of liquid water for a change of state from 
1 bar and 25°C to 1000 bar and 50°C. Data for water are given in the following table.

Figure 6.1: Calculation 
path for Ex. 6.1.

1

H2 and S2 at

H1 and S1 at 1 bar, 25°C 

at 1 bar

1 bar, 50°C 2
1,000 bar, 50°C 

∫CP dT

∫CP
dT
T

at 50°C 
∫V(1 T )dP

∫ V dP

t ºC P/bar CP/J · mol−1 · K−1 V/cm3 · mol−1  β/K−1 

25 1 75.305 18.071 256 × 10−6

25 1000 . . . . . . 18.012 366 × 10−6

50 1 75.314 18.234 458 × 10−6

50 1000 . . . . . . 18.174 568 × 10−6

Solution 6.1
For application to the change of state described, Eqs. (6.27) and (6.28) require 
integration. Enthalpy and entropy are state functions, and the path of integration 
is arbitrary; the path most suited to the given data is shown in Fig. 6.1. Because 
the data indicate that CP is a weak function of T and that both V and β change 
relatively slowly with P, integration with arithmetic means is satisfactory. The 
integrated forms of Eqs. (6.27) and (6.28) that result are:

   
ΔH =  ⟨ C  P  ⟩ ( T  2   −  T  1  ) + (1 −  ⟨β⟩  T  2  ) ⟨V⟩ ( P  2   −  P  1  )

     
ΔS =  ⟨CP⟩ ln   

T2 ___ 
T1

    −   ⟨  β ⟩     ⟨  V ⟩     (   P  2   −  P  1   )   
    

For P = 1 bar,

   ⟨ C  P  ⟩  =   
75.305 + 75.314

  ______________ 2   = 75.310 J·mol−1·K−1  

For t = 50°C,

   ⟨V⟩  =   
18.234 + 18.174

  ______________ 2   = 18.204 cm3·mol−1  
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and

  〈β〉 =   
458 + 568

 ________ 2   ×  10   −6  = 513 ×  10   −6    K   −1   

Substitution of these numerical values into the equation for ΔH gives:

  

ΔH

  

=

  

75.310  (  323.15 − 298.15 )    J ⋅mol   −1 

           +   
  [  1 −   (  513 ×  10   −6  )   (  323.15 )    ]     (  18.204 )   (  1000 − 1 )    bar ⋅cm   3  ⋅mol   −1 

     _________________________________________________    
10 bar ⋅cm   3  ⋅J   −1 

         

 

  

=

  

1883 + 1517 = 3400 J⋅ mol   −1 

   

  Similarly for ΔS,

  

ΔS

  

=

  

75.310  ln    
323.15

 ______ 298.15    J⋅ mol   −1  ⋅K   −1 

    
 
  

 
  

−    
  (  513 ×  10   −6  )   (  18.204 )   (  1000 − 1 )    bar ⋅cm   3  ⋅mol   −1  ⋅K   −1 

     __________________________________________   
10 bar  ⋅cm   3  ⋅J   −1 

  
      

 

  

=

  

6.06 − 0.93 = 5.13 J ⋅mol   −1  ⋅K   −1 

   

Note that the effect of a pressure change of almost 1000 bar on the enthalpy and 
entropy of liquid water is less than that of a temperature change of only 25°C.

Internal Energy and Entropy as Functions of T and V
In some circumstances, temperature and volume may be more convenient independent vari-
ables than temperature and pressure. The most useful property relations are then for internal 
energy and entropy. To write these property relations, we require expressions, in terms of 
measurable properties, for the derivatives (∂U/∂T )V, (∂U/∂V)T, (∂S/∂T )V, and (∂S/∂V)T, with 
which we can write:

  dU =   (  
∂ U

 ___ ∂ T  )   
V

   dT +   (  
∂ U

 ___ ∂ V  )   
T

   dV    dS =   (  
∂ S

 ___ ∂ T  )   
V

   dT +   (  
∂ S

 ___ ∂ V  )   
T

   dV  

The partial derivatives of U follow directly from Eq. (6.8):

    (  
∂ U

 ___ ∂ T  )   
V

   = T   (  
∂ S

 ___ ∂ T  )   
V

        (  
∂ U

 ___ ∂ V  )   
T

   = T    (  
∂ S

 ___ ∂ V  )   
T

   − P  

Combining the first of these with Eq. (2.15) and the second with Eq. (6.16) gives:

   (  
∂ S

 ___ ∂ T  )   
V

   =   
 C  V  

 ___ 
T

    (6.30)    (  
∂ U

 ___ ∂ V  )   
T

   = T   (  
∂ P

 ___ ∂ T  )   
V

   − P  (6.31)
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With expressions for the four partial derivatives given by Eqs. (2.15), (6.31), (6.30), and 
(6.16) we can write the required functional relations as:

   dU =  C  V    dT +   
[

  T   (  
∂ P

 ___ ∂ T  )   
V

   − P 
]

   dV   (6.32)

   dS =  C  V     
dT

 _ 
T

   +   (  
∂ P

 ___ ∂ T  )   
V

   dV   (6.33)

These are general equations relating the internal energy and entropy of homogeneous fluids of 
constant composition to temperature and volume.

Equation (3.5) applied to a change of state at constant volume becomes:

    (  
∂ P

 ___ ∂ T  )   
V

   =   
β

 __ 
κ
    (6.34)

Alternative forms of Eqs. (6.32) and (6.33) are therefore:

 dU =  C  V    dT +   (    
β

 _ 
κ
   T − P )   dV  (6.35)  dS =   

 C  V  
 

___
 T   dT +   

β

 
__

 κ   dV  (6.36)

Example 6.2
Develop the property relations appropriate to the incompressible fluid, a model fluid 
for which both β and κ are zero (Sec. 3.2). This is an idealization employed in fluid 
mechanics.

Solution 6.2
Equations (6.27) and (6.28) written for an incompressible fluid become:

  dH =  C  P    dT + V dP  (A)

 dS =  C  P     
dT

 ___ 
T

   

The enthalpy of an incompressible fluid is therefore a function of both temperature 
and pressure, whereas the entropy is a function of temperature only,  independent of 
P. With κ = β = 0, Eq. (6.29) shows that the internal energy is also a function of tem-
perature only, and is therefore given by the equation, dU = CV dT. Equation (6.13), 
the criterion of exactness, applied to Eq. (A), yields:

    (  
∂  C  P  

 ____ ∂ P  )   
T

   =   (  
∂ V

 ___ ∂ T  )   
P

    

www.konkur.in

Telegram: @uni_k



224 CHAPTER 6. Thermodynamic Properties of Fluids 

However, the definition of β, given by Eq. (3.3), shows that the derivative on the 
right equals βV, which is zero for an incompressible fluid. This implies that CP is a 
function of temperature only, independent of P. Although H for an incompressible 
fluid depends upon pressure, CP does not.

The relation of CP to CV for an incompressible fluid is of interest. For a given 
change of state, Eqs. (6.28) and (6.36) must give the same value for dS; they are 
therefore equated. The resulting expression, after rearrangement, is:

    (   C  P   −  C  V   )   dT = βTV dP +   
βT

 ___ 
κ
   dV  

Upon restriction to constant V, this reduces to:

   C  P   −  C  V   = βTV    (  
∂ P

 ___ ∂ T  )   
V

    

Elimination of the derivative by Eq. (6.34) yields:

   C  P   −  C  V   = βTV  (     
β

 _ 
κ
   )     (B)

Because β = 0, the right side of this equation is zero, provided that the indeter-
minate ratio β/κ is finite. This ratio is indeed finite for real fluids, and a contrary 
presumption for the model fluid would be irrational. Thus the definition of the 
incompressible fluid presumes this ratio is finite, and we conclude for such a fluid 
that the heat capacities at constant V and at constant P are identical:

   C  P   =  C  V   = C  

The Gibbs Energy as a Generating Function
The fundamental property relation for G = G(T, P),

  dG = V dP − S dT  (6.11)

has an alternative form. It follows from the mathematical identity:

  d  (    
G

 _ 
RT

   )    =   
1
 ___ 

RT
   dG −   

G
 ____ 

R T   2 
   dT  

Substitution for dG by Eq. (6.11) and for G by Eq. (6.4) gives, after algebraic reduction:

   d  (    
G

 _ 
RT

   )    =   
V
 _ 

RT
   dP −   

H
 _ 

R T   2 
   dT   (6.37)

A key advantage of this equation is that all terms are dimensionless; moreover, in contrast 
to Eq. (6.11), the enthalpy rather than the entropy appears on the right side. Measurement  
of enthalpy changes, calorimetrically, is generally more straightforward than measurement of 
entropy changes.
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6.2. Residual Properties 225

Equations like Eqs. (6.11) and (6.37) are most readily applied in restricted forms in 
which only a single independent variable (T or P) changes. Thus, from Eq. (6.37)

   
V
 ___ 

RT
   =   [    

∂   (  G / RT )   
 ________ ∂ P   ]    

T

    (6.38)    
H

 ___ 
RT

   = − T   [    
∂   (  G / RT )   

 ________ ∂ T   ]    
P

    (6.39)

Given G/RT as a function of T and P, V/RT and H/RT follow by simple differentiation. The 
remaining properties follow from defining equations. In particular,

    
S
 __ 

R
   =   

H
 ___ 

RT
   −   

G
 ___ 

RT
       

U
 ___ 

RT
   =   

H
 ___ 

RT
   −   

PV
 ___ 

RT
    

The Gibbs energy, G or G/RT, when known as a function of its canonical 
variables T and P, serves as a generating function for the other thermo-
dynamic properties through simple mathematics, and implicitly repre-
sents complete property information.

Just as Eq. (6.11) leads to expressions for all thermodynamic properties, so also Eq. (6.10), 
the fundamental property relation for the Helmholtz energy A = A(T, V), leads to equations 
for all thermodynamic properties from knowledge of A as a function of T and V. This is 
particularly useful in connecting thermodynamic properties to statistical mechanics because 
closed systems at fixed volume and temperature are often most amenable to treatment by 
both theoretical methods of statistical mechanics and computational methods of molecular 
simulation based on statistical mechanics.

6.2 RESIDUAL PROPERTIES

Unfortunately, no experimental method for the measurement of numerical values of G or  
G/RT is known, and the equations that relate other properties to the Gibbs energy are of little 
direct practical use. However, the concept of the Gibbs energy as a generating function for 
other thermodynamic properties carries over to a closely related property for which numer-
ical values are readily obtained. By definition, the residual Gibbs energy is: GR ≡ G − Gig, 
where G and Gig are the actual and the ideal-gas-state values of the Gibbs energy at the same 
 temperature and pressure. Other residual properties are defined in an analogous way. The 
residual volume, for example, is:

   V   R  ≡ V −  V   ig  = V −   
RT

 ___ 
P

    

Because V = ZRT/P, the residual volume and the compressibility factor are related:

   V   R  =   
RT

 ___ 
P

  (Z − 1)  (6.40)

The generic residual property4 is defined by:

    M   R  ≡ M −  M   ig    (6.41)

4Sometimes referred to as a departure function. Generic here denotes a class of properties with the same characteristics.
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226 CHAPTER 6. Thermodynamic Properties of Fluids 

where M and Mig are actual and ideal-gas-state properties at the same T and P. They represent 
molar values for any extensive thermodynamic property, e.g., V, U, H, S, or G.

The underlying purpose of this definition is more easily understood when it is written as:

  M =  M   ig  +  M   R   

From a practical perspective this equation divides property calculations into two parts: first, 
simple calculations for properties in the ideal-gas state; second, calculations for the residual 
properties, which have the nature of corrections to the ideal-gas-state values. Properties for the 
ideal-gas state reflect real molecular configurations but presume the absence of intermolecular 
interactions. Residual properties account for for the effect of such interactions. As we have 
seen in Chapters 4 and 5, information on ideal-gas-state properties, which depend on intra-
molecular interactions, is embedded in the ideal-gas-state heat capacity, which is independent 
of pressure. Similarly, information on residual properties, which depend upon intermolecular 
interactions, is embedded in PVT data. Thus, our purpose here is to develop equations for cal-
culating residual properties from PVT data or from their representation by equations of state.

Equation (6.37), written for the ideal-gas state, becomes:

  d  (    
 G   ig 

 _ 
RT

   )    =   
 V   ig 

 ___ 
RT

   dP −   
 H   ig 

 ____ 
R T   2 

   dT  

Subtracting this equation from Eq. (6.37) itself gives:

   d  (    
 G   R 

 _ 
RT

   )    =   
 V   R 

 _ 
RT

   dP −   
 H   R 

 _ 
R T   2 

   dT   (6.42)

This fundamental residual-property relation applies to substances of constant composition. 
Useful restricted forms are:

   
 V   R 

 ___ 
RT

   =   [   
∂   (   G   R  / RT )   

 _________ ∂ P   ]    
T

    (6.43)    
 H   R 

 ___ 
RT

   = − T    [   
∂   (   G   R  / RT )   

 _________ ∂ T   ]    
P

    (6.44)

Equation (6.43) provides a direct link between the residual Gibbs energy and experiment. 

Written
  d  (    

 G   R 
 _ 

RT
   )    =   

 V   R 
 ___ 

RT
   dP (const T )  

it can be integrated from zero pressure to arbitrary pressure P, yielding:

    
 G   R 

 ___ 
RT

   =   (  
 G   R 

 ___ 
RT

  )   
P=0

   +  ∫ 
0
  
P

    
 V   R 

 ___ 
RT

   dP   (const T )  

For convenience, define:

    (    
 G   R 

 ___ 
RT

   )    
P=0

   ≡ J  

With this definition and elimination of VR by Eq. (6.40),

    
 G   R 

 ___ 
RT

   = J +  ∫ 
0
  
P

    (  Z − 1 )     
dP

 ___ 
P

     (const T )  (6.45)
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As explained in the Addendum to this chapter, J is a constant, independent of T, and the 
 derivative of this equation in accord with Eq. (6.44) gives:

     
 H   R 

 _ 
RT

   = − T ∫ 
0
  
P

    (    
∂ Z

 ___ ∂ T   )    
P

     
dP

 _ 
P

     (const T )   (6.46)

The defining equation for the Gibbs energy, G = H – TS, can also be written for the ideal-gas 
state, Gig = Hig − TSig; by difference, GR = HR − TSR, and

    
 S   R 

 ___ 
R

   =    
 H   R 

 ___ 
RT

   −   
 G   R 

 ___ 
RT

    (6.47)

Combining this equation with Eqs. (6.45) and (6.46) gives:

    
 S   R 

 ___ 
R

   = − T   ∫ 
0
  
P

   (    
∂ Z

 _ ∂ T   )       
P

     
dP

 ___ 
P

   − J −  ∫ 
0
  
P

  (Z − 1)     
dP

 ___ 
P

     (  const T )     

In application, entropy always appears in differences. In accord with Eq. (6.41), we write: S = 
Sig + SR for two different states. Then by difference:

  Δ S ≡  S  2   −  S  1   =  (    S 2  ig  −  S 1  ig  )   +  (    S 2  R  −  S 1  R  )     

Because J is constant, it cancels from the final term, and its value is of no consequence. Con-
stant J is therefore arbitrarily set equal to zero, and the working equation for SR becomes:

     
 S   R 

 _ 
R

   = − T ∫ 
0
  
P

    (    
∂ Z

 ___ ∂ T   )    
P

       
dP

 _ 
P

   −  ∫ 
0
  
P

    (  Z − 1 )      
dP

 _ 
P

       (  const T )      (6.48)

and Eq. (6.45) is written:

     
 G   R 

 _ 
RT

   =  ∫ 
0
  
P

    (  Z − 1 )      
dP

 _ 
P

       (  const T )      (6.49)

Values of the compressibility factor Z = PV/RT and of (∂Z/∂T )P can be calculated from 
experimental PVT data, with the two integrals in Eqs. (6.46), (6.48), and (6.49) evaluated 
numerically. Alternatively, the two integrals can be evaluated analytically with Z as a function 
of T and P provided by a volume-explicit equation of state. This direct connection with experi-
ment allows evaluation of the residual properties HR and SR for use in calculating enthalpy and 
entropy values.

Enthalpy and Entropy from Residual Properties
General expressions for Hig and Sig are found by integrating Eqs. (6.23) and (6.24) from an 
ideal-gas state at reference conditions T0 and P0 to an ideal-gas state at T and P:5

    H   ig  =  H 0  ig  +  ∫ 
 T  0  

  
T

  C  P  ig
     dT       S   ig  =  S 0  ig  +  ∫ 

 T  0  
  

T

  C P  ig      
dT

 ___ 
T

      − R ln   
P

 ___  P  0      

5Thermodynamic properties for organic compounds in the ideal-gas state are given by M. Frenkel, G. J. Kabo,  
K. N. Marsh, G. N. Roganov, and R. C. Wilhoit, Thermodynamics of Organic Compounds in the Gas State, Thermo-
dynamics Research Center, Texas A & M Univ. System, College Station, Texas, 1994. For many compounds, these 
data are also available via the NIST Chemistry WebBook, http://webbook.nist.gov.
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Because H = Hig + HR and S = Sig + SR:

  H =  H 0  ig  +  ∫ 
 T  0  

  
T

   C P  ig     dT +  H   R   (6.50)

  S =  S 0  ig  +  ∫ 
 T  0  

  
T

   C P  ig      
dT

 ___ 
T

     − R ln    
P

 ___  P  0     +  S   R   (6.51)

Recall (Secs. 4.1 and 5.5) that for purposes of computation the integrals in Eqs. (6.50) and 
(6.51) are represented by:

   
 ∫ 

 T  0  
  

T

  C P  ig
 dT   = R × ICPH( T  0  , T; A, B, C, D)

     
 ∫ 

 T  0  
  

T

  C P  ig
   
dT

 ___ 
T

     = R × ICPS( T  0  , T; A, B, C, D)
    

Equations (6.50) and (6.51) have alternative forms when the integrals are replaced by 
equivalent terms that include the mean heat capacities introduced in Secs. 4.1 and 5.5:

  H =  H 0  ig  +  ⟨ C  P  ig
 ⟩  H    (  T −  T  0   )    +  H   R   (6.52)

  S =  S 0  ig  +  ⟨ C  P  ig
 ⟩  S   ln   

T
 ___  T  0     − R ln   

P
 ___  P  0     +  S   R   (6.53)

In Eqs. (6.50) through (6.53), HR and SR are given by Eqs. (6.46) and (6.48). Again, for com-
putational purposes, the mean heat capacities are represented by:

   
 ⟨ C  P  ig

 ⟩  H   = R × MCPH( T  0  , T; A, B, C, D)
    

 ⟨ C  P  ig
 ⟩  S   = R × MCPS( T  0  , T; A, B, C, D)

    

Applications of thermodynamics require only differences in enthalpy and entropy, 
and these do not change when the scale of values is shifted by a constant amount. The 
reference-state conditions T0 and P0 are therefore selected for convenience, and values are 
assigned to   H 0  ig   and   S 0  ig   arbitrarily. The only information needed to apply Eqs. (6.52) and 
(6.53) is ideal-gas-state heat capacities and PVT data. Once V, H, and S are known at given 
conditions of T and P, the other thermodynamic properties follow from defining equations.

The great practical value of the ideal-gas state is now evident. It provides 
the foundation for calculating real-gas properties.

Residual properties are valid and well defined for gases, liquids, and solids. However, 
the advantage of Eqs. (6.50) and (6.51) in application to gases is that HR and SR, the terms 
that have relatively complex T and P dependence and are relatively difficult to compute, are 
residuals that are usually small. They act as corrections to the major terms, Hig and Sig. For 
liquids and solids, this advantage is largely lost because HR and SR must include the large 
enthalpy and entropy changes associated with condensation. Property changes of liquids 
and solids are usually calculated by integrated forms of Eqs. (6.27) and (6.28), as illustrated  
in Ex. 6.1. Fortunately, far from the critical point, properties of liquids and solids have weak 
or simple pressure dependence, which simplifies their treatment.
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6.2. Residual Properties 229

Example 6.3
Calculate the enthalpy and entropy of saturated isobutane vapor at 360 K from the 
following information:

 1. Table 6.1 gives compressibility-factor data (values of Z) for isobutane vapor.

 2. The vapor pressure of isobutane at 360 K is 15.41 bar.

 3. Set   H 0  ig  = 18,115.0 J ·  mol   −1   and   S 0  ig  = 295.976 J  · mol   −1   · K   −1   for the  reference 
state at 300 K and 1 bar. [These values are in accord with the bases  
adopted by R. D. Goodwin and W. M. Haynes, Nat. Bur. Stand. (U.S.), Tech. Note 
1051, 1982.]

 4. The ideal-gas-state heat capacity of isobutane vapor at temperatures of  
interest is:

  C P  ig  / R = 1.7765 + 33.037 ×  10   −3  T   (  T K )    

P bar 340 K 350 K 360 K 370 K 380 K
0.10 0.99700 0.99719 0.99737 0.99753 0.99767
0.50 0.98745 0.98830 0.98907 0.98977 0.99040
2.00 0.95895 0.96206 0.96483 0.96730 0.96953
4.00 0.92422 0.93069 0.93635 0.94132 0.94574
6.00 0.88742 0.89816 0.90734 0.91529 0.92223
8.00 0.84575 0.86218 0.87586 0.88745 0.89743
10.0 0.79659 0.82117 0.84077 0.85695 0.87061
12.0 . . . . . . 0.77310 0.80103 0.82315 0.84134
14.0 . . . . . . . . . . . . 0.75506 0.78531 0.80923
15.41 . . . . . . . . . . . . 0.71727

Table 6.1: Compressibility Factor Z for Isobutane

Solution 6.3
Calculating HR and SR at 360 K and 15.41 bar by application of Eqs. (6.46) and 
(6.48) requires evaluation of two integrals:

    ∫ 
0
  
P

    (    
∂ Z

 ___ ∂ T   )    
P

       
dP

 ___ 
P

      ∫ 
0
  
P

    (  Z − 1 )     
dP

 ___ 
P

       

Graphical integration requires simple plots of (∂Z/∂T )P/P and (Z −1)/P vs. P. 
Values of (Z−1)/P are found from the compressibility-factor data at 360 K. The 
quantity (∂Z/∂T )P/P requires evaluation of the partial derivative (∂Z/∂T)P, given 
by the slope of a plot of Z vs. T at constant pressure. For this purpose, separate 
plots are made of Z vs. T for each pressure at which compressibility-factor data 
are given, and a slope is determined at 360 K for each curve (for example, by 
construction of a tangent line at 360 K or by fitting the data points to a simple 
function and evaluating its slope at 360 K). Data for the required plots are shown 
in Table 6.2.
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The values of the two integrals, as determined from the plots, are:

    ∫ 
0
  
P

    (    
∂ Z

 ___ ∂ T   )    
P

       
dP

 ___ 
P

   = 26.37 ×  10   −4     K   −1     ∫ 
0
  
P

    (  Z − 1 )     
dP

 ___ 
P

      = − 0.2596  

By Eq. (6.46),

    
 H   R 

 ___ 
RT

   = − (360) (26.37 ×  10   −4 ) = − 0.9493  

By Eq. (6.48),

    
 S   R 

 ___ 
R

   = − 0.9493 −   (  − 0.2596 )    = − 0.6897  

For R = 8.314 J⋅mol−1⋅K−1,

    H  R   =   (  −0.9493 )   (  8.314 )   (  360 )    = −2841.3 J⋅mol  −1  

 S  R   =   (  −0.6897 )   (  8.314 )    = −5.734 J⋅mol  −1 ⋅K  −1    

Values of the integrals in Eqs. (6.50) and (6.51), with parameters from the given 
equation for   C P  ig  / R , are:

   8.314 × ICPH(300, 360; 1.7765, 33.037 ×  10   −3 , 0.0, 0.0) = 6324.8 J⋅ mol   −1        
8.314 × ICPS(300, 360; 1.7765, 33.037 ×  10   −3 , 0.0, 0.0) = 19.174 J⋅ mol   −1 ⋅ K   −1 

  

Substitution of numerical values into Eqs. (6.50) and (6.51) yields:

   H  = 18,115.0 + 6324.8 − 2841.3 = − 21,598.5 J ⋅mol   −1       
S
  
= 295.976 + 19.174 − 8.314 ln  15.41 − 5.734 = 286.676 J ⋅mol   −1  ⋅K   −1 

   

Although calculations are here carried out for just one state, enthalpies and 
entropies can be evaluated for any number of states, given adequate data. All of 
these processes, described here as graphical operations, are readily automated 
in a spreadsheet or simple computer program. After having completed a set of 

P bar    [    (  ∂ Z / ∂ T )    P   / P ]    ×  10   4    K   −1  ⋅bar   −1     [  −   (  Z − 1 )    / P ]    ×  10   2     bar   −1  
0.00 (1.780) (2.590)
0.10 1.700 2.470
0.50 1.514 2.186
2.00 1.293 1.759
4.00 1.290 1.591
6.00 1.395 1.544
8.00 1.560 1.552
10.0 1.777 1.592
12.0 2.073 1.658
14.0 2.432 1.750
15.41 (2.720) (1.835)

Table 6.2: Values of the Integrands Required in Ex. 6.3 
Values in parentheses are by extrapolation.
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calculations, one is not irrevocably committed to the particular values of   H 0  ig   and   
S 0  ig   initially assigned. The scale of values for either the enthalpy or the entropy can 
be shifted by addition of a constant to all values. In this way one can give arbitrary 
values to H and S for some particular state so as to make the scales convenient for 
some particular purpose.

The calculation of thermodynamic properties from raw data provided by calorimetry 
and PVT measurements is an exacting task, seldom required of an engineer. However, engi-
neers do make practical use of thermodynamic properties, and an understanding of methods 
by which they are calculated should suggest that some uncertainty is associated with every 
property value. Inaccuracy derives partly from experimental error in the data, which are fre-
quently incomplete and must be extended by interpolation and extrapolation. Moreover, even 
with reliable PVT data, a loss of accuracy occurs in the differentiation process required in the 
calculation of derived properties. Thus data of high accuracy are required to produce enthalpy 
and entropy values suitable for engineering calculations.

6.3 RESIDUAL PROPERTIES FROM THE VIRIAL EQUATIONS OF STATE

The numerical or graphical evaluation of integrals, as in Eqs. (6.46) and (6.48), is often tedious 
and imprecise. An attractive alternative is analytical evaluation through equations of state. The 
procedure depends on whether the equation of state is volume explicit, i.e., expresses V (or Z) 
as a function of P at constant T, or pressure explicit, i.e., expresses P (or Z) as a function of 
V (or ρ) at constant T.6 Equations (6.46) and (6.48) are directly applicable only for a volume-
explicit equation, such as the two-term virial equation in P [Eq. (3.36)]. For pressure-explicit 
equations, such as the virial expansions in reciprocal volume [Eq. (3.38)], Eqs. (6.46), (6.48), 
and (6.49) must be reformulated, as discussed further below.

The two-term virial equation of state, Eq. (3.36), is volume explicit, Z − 1 = BP/RT. 
Differentiation yields (∂Z/∂T )P. We therefore have the expressions needed for evaluating 
Eqs. (6.46) and (6.48). Direct integration gives HR/RT and SR/R. An alternative procedure is to 
evaluate GR/RT by Eq. (6.49):

    
 G   R 

 ___ 
RT

   =   
BP

 ___ 
RT

    (6.54)

From this result HR/RT is found from Eq. (6.44), and SR/R is given by Eq. (6.47). Either way, 
we find:

   
 H   R 

 ___ 
RT

   =   
P

 __ 
R

    (    
B

 _ 
T

   −   
dB

 _ 
dT

   )     (6.55)    
 S   R 

 ___ 
R

   = −   
P

 __ 
R

     
dB

 ___ 
dT

    (6.56)

6The ideal-gas equation of state is both pressure and volume explicit.

Evaluation of residual enthalpies and residual entropies by Eqs. (6.55) and (6.56) is 
straightforward for given values of T and P, provided one has sufficient information to evalu-
ate B and dB/dT. The range of applicability of these equations is the same as for Eq. (3.36), as 
discussed in Sec. 3.5.
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Equations (6.46), (6.48), and (6.49) are incompatible with pressure-explicit equations of 
state and must be transformed such that P is no longer the variable of integration. In carrying 
out this transformation, the molar density ρ is a more convenient variable of integration 
than V, because ρ goes to zero, rather than to infinity, as P goes to zero. Thus, the equation  
PV = ZRT is written in alternative form as:

  P = ZρRT  (6.57)

Differentiation at constant T gives:

  dP = RT  (  Zdρ + ρdZ )      (  const T )     

Dividing this equation by Eq. (6.57) gives:

    
dP

 ___ 
P

   =   
dρ

 ____ ρ   +   
dZ

 ___ 
Z

     (  const T )     

Upon substitution for dP/P, Eq. (6.49) becomes:

     
 G   R 

 _ 
RT

   =  ∫ 
0
  
ρ
    (  Z − 1 )     

dρ
 _ ρ     + Z − 1 − ln  Z   (6.58)

where the integral is evaluated at constant T. Note also that ρ → 0 when P → 0.
Solving Eq. (6.42) for its final term and substituting for VR by Eq. (6.40) yields:

    
 H   R 

 ____ 
R  T   2 

   dT =   (  Z − 1 )     
dP

 ___ 
P

   − d  (    
 G   R 

 _ 
RT

   )     

Applying this for changes with respect to T at constant ρ gives:

    
 H   R 

 ____ 
R  T   2 

   =   
Z − 1

 ____ 
P

     (    
∂ P

 ___ ∂ T   )    
ρ
   −   [    

∂   (   G   R  / RT )   
 _________ ∂ T   ]    

ρ
    

Differentiation of Eq. (6.57) provides the first derivative on the right, and differentiation of 
Eq. (6.58) provides the second. Substitution leads to:

     
 H   R 

 _ 
RT

   = − T ∫ 
0
  
ρ
    (    

∂ Z
 ___ ∂ T   )    

ρ
       
dρ

 _ ρ   + Z − 1   (6.59)

The residual entropy is found from Eq. (6.47) in combination with Eqs. (6.58) and (6.59):

     
 S   R 

 _ 
R

   = ln  Z − T ∫ 
0
  
ρ
    (    

∂ Z
 ___ ∂ T   )    

ρ
       
dρ

 _ ρ   −  ∫ 
0
  
ρ
    (  Z − 1 )     

dρ
 _ ρ       (6.60)

We now apply this to the pressure-explicit three-term virial equation:

  Z − 1 = Bρ + C  ρ   2   (3.38)

Substitution into Eqs. (6.58) through (6.60) leads to:

    
 G   R 

 ___ 
RT

   = 2Bρ +   
3
 __ 2   C  ρ   2  − ln  Z  (6.61)
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 H   R 

 ___ 
RT

   = T  [    (    
B

 _ 
T

   −   
dB

 _ 
dT

   )   ρ +   (    
C

 _ 
T

   −   
1
 _ 2     
dC

 _ 
dT

   )    ρ   2  ]     (6.62)

    
 S   R 

 ___ 
R

   = ln  Z − T  [    (    
B

 _ 
T

   +   
dB

 _ 
dT

   )   ρ +   
1
 _ 2    (    

C
 _ 

T
   +   

dC
 _ 

dT
   )    ρ   2  ]     (6.63)

Application of these equations, useful for gases up to moderate pressures, requires data for 
both the second and third virial coefficients.

Example 6.4
Values of the second and third virial coefficients of nitrogen trifluoride are as follows: 

B = −94.3 cm3·mol−1 and C = 6740 cm6·mol−2 at 290 K
B = −87.1 cm3·mol−1 and C = 6430 cm6·mol−2 at 300 K
B = −80.4 cm3·mol−1 and C = 6090 cm6·mol−2 at 310 K

Calculate HR and SR for nitrogen trifluoride at 300 K and 100 bar: 
 (a) Using expressions based upon the two-term virial equation.
 (b) Using expressions based upon the three-term virial equation.

Solution 6.4

 (a) Here, we employ Eqs. (6.55) and (6.56) for HR and SR, respectively. These 
require the temperature derivative of the second virial coefficient. For this, we 
use the values at 290 K and 310 K:

   
dB

 ___ 
dT

    ≈    
−80.4 + 94.3

  __________ 20    = 0.695 cm3·mol−1·K−1

Using this value in Eq. (6.55) gives:

   
HR

 ___ 
RT

    =    
P

 ___ 
R

     (  
B

 ___ 
T

   −   
dB

 ___ 
dT

  )  =    
100

 ___ 83.14     (  
−87.1

 __________ 300   − 0.695)   =  − 1.19

from which HR = −2960 J·mol−1.

Similarly,
   
SR

 ___ 
R

    =  −    
P

 ___ 
R

       
dB

 ___ 
dT

    =  −     
100

 __________ 83.14   (0.695) =  − 0.836

from which SR = −6.95 J·mol−1·K−1.

 (b) In this case we require the temperature derivatives of both B and C, along with 
the value of the density of NF3 at 300 K and 100 bar. Solving the three-term virial 
coefficient iteratively as described in Ex. (3.8) gives V = 178.0 cm3·mol−1, or  
ρ = 0.00562 mol·cm3. This corresponds to a compressibility factor of Z = 0.714. 
Applying the same approach as in part (a) for the temperature derivative of C:

   
dC

 ___ 
dT

    ≈    
6740 − 6090

 __________ 20    = 32.5 cm6·mol−2·K−1
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With these values, Eqs. (6.62) and (6.63) give:

   
HR

 ___ 
RT

    = 300 [  (  
−87.1

 ______ 300   − 0.695)  0.00562 +  (  
6430

 _____ 300   −   
32.5

 ____ 2  )  0.005622 ]  = −1.61

   
SR

 ___ 
R

    = ln(0.714) − 300  [  (  
−87.1

 ______ 300   + 0.695)  0.00562 +   
1
 __ 2    (  

6430
 _____ 300   + 32.5)  0.005622 ]   = −1.27

from which HR = −4021 J·mol−1 and SR = −10.60 J·mol−1 · K−1.

For comparison, values obtained from data in the NIST Chemistry WebBook are 
HR = –3540 J·mol−1 and SR = –8.83 J·mol−1·K−1. The expression based on the 
two-term virial equation underestimates these, while the expression based on the 
three-term virial equation overestimates them. Note that the conditions selected 
correspond to Tr = 1.28 and Pr = 2.24. These are outside the range where we 
would expect the two-term virial expansion to work well, and it appears that add-
ing a third term produces an overcorrection.

6.4 GENERALIZED PROPERTY CORRELATIONS FOR GASES

Of the two kinds of data needed for evaluation of thermodynamic properties, heat capacities 
and PVT data, the latter are most frequently missing. Fortunately, the generalized methods 
developed in Sec. 3.7 for the compressibility factor are also applicable to residual properties.

Equations (6.46) and (6.48) are put into generalized form by substitution of the relations:

   
 P =  P  c    P  r    

 T =  T  c    T  r     
dP =  P  c   d  P  r  

   dT =  T  c   d  T  r  
   

The resulting equations are:

    
 H   R 

 ____ 
R T  c  

   = −  T r  
2   ∫ 

0
  
 P  r  

   (     
∂ Z

 ___ ∂  T  r  
   )    

 P     r  
       
d  P  r   ___  P  r  

    (6.64)

    
 S   R 

 ___ 
R

   = −  T  r    ∫ 
0
  
 P  r  

   (     
∂ Z

 ___ ∂  T  r  
   )    

 P  r  
       
d  P  r   ___  P  r  

   −  ∫ 
0
  
 P  r  

   (  Z − 1 )     
d  P  r   ___  P  r  

      (6.65)

The terms on the right sides of these equations depend only on the upper limit Pr of the 
integrals and on the reduced temperature at which they are evaluated. Thus, values of HR/RTc 
and SR/R can be determined once and for all at any reduced temperature and pressure from 
generalized compressibility-factor data.

The correlation for Z is based on Eq. (3.53):

  Z =  Z   0  + ω  Z   1   

Differentiation yields:

    (  
∂ Z

 ___ ∂  T  r  
  )    

 P     r  
   =   (  

∂  Z   0 
 ____ ∂  T  r  
  )    

 P  r  
   + ω   (  

∂  Z   1 
 ____ ∂  T  r  
  )    

 P  r  
    

www.konkur.in

Telegram: @uni_k
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Substitution for Z and    (  ∂ Z / ∂ T )     P  r      in Eqs. (6.64) and (6.65) gives:

    
 H   R 

 ____ 
R  T  c  

   = −  T r  
2   ∫ 

0
  
 P  r  

    (  
∂  Z   0 

 ____ ∂  T  r  
  )    

 P  r  
       
d  P  r   ___  P  r  

   − ω  T r  
2   ∫ 

0
  
 P  r  

    (  
∂  Z   1 

 ____ ∂  T  r  
  )    

 P  r  
       
d  P  r   ___  P  r  

    

     
 S   R 

 ___ 
R

   = −  ∫ 
0
  
 P  r  

   
[

    T  r      (  
∂  Z   0 

 ____ ∂  T  r  
  )    

 P  r  
   +  Z   0  − 1 

]
       
d  P  r   ___  P  r  

   − ω  ∫ 
0
  
 P  r  

   
[

    T  r      (  
∂  Z   1 

 ____ ∂  T  r  
  )    

 P  r  
   +  Z   1  

]
       
d  P  r   ___  P  r  

    

The first integrals on the right sides of these two equations can be evaluated  numerically 
or graphically for various values of Tr and Pr from the data for Z0 given in Tables D.1 and D.3 
of App. D, and the integrals which follow ω in each equation can be similarly evaluated from 
the data for Z1 given in Tables D.2 and D.4.

If the first terms on the right sides of the preceding equations (including the minus 
signs) are represented by (HR)0/RTc and (SR)0/R and if the terms which follow ω, together with 
the preceding minus signs, are represented by (HR)1/RTc and (SR)1/R, then:

   
 H   R 

 ____ 
R T  c  

   =   
 ( H   R )   0 

 _____ 
R T  c  

   + ω   
 ( H   R )   1 

 _____ 
R T  c  

    (6.66)    
 S   R 

 ___ 
R

   =   
 ( S   R )   0 

 _____ 
R

   + ω   
 ( S   R )   1 

 _____ 
R

    (6.67)

Calculated values of the quantities (HR)0/RTc, (HR)1/RTc, (SR)0/R, and (SR)1/R as deter-
mined by Lee and Kesler are given as functions of Tr and Pr in Tables D.5 through D.12. 
These values, together with Eqs. (6.66) and (6.67), allow estimation of residual enthalpies and 
entropies on the basis of the three-parameter corresponding-states principle as developed by 
Lee and Kesler (Sec. 3.7).

Tables D.5 and D.7 for (HR)0/RTc and Tables D.9 and D.11 for (SR)0/R, used alone, pro-
vide two-parameter corresponding-states correlations that quickly yield rough estimates of the 
residual properties. The nature of these correlations is indicated by Fig. 6.2, which shows a 
plot of (HR)0/RTc vs. Pr for six isotherms.

As with the generalized compressibility-factor correlation, the complexity of the functions 
(HR)0/RTc, (HR)1/RTc, (SR)0/R, and (SR)1/R prevents us from fitting them to simple analytical 
equations over their full range of validity. However, the generalized second-virial-coefficient 
correlation forms the basis for analytical correlations of the residual properties at low pressures. 
Recall Eqs. (3.58) and (3.59):

   B ˆ   =   
B  P  c   ____ 
R  T  c  

   =  B   0  + ω  B   1   

Quantities   B ˆ   , B0, and B1 are functions of Tr only. Hence,

    
d B ˆ  

 ____ 
d  T  r  

   =   
d  B   0 

 ____ 
d  T  r  

   + ω   
d  B   1 

 ____ 
d  T  r  

    

Equations (6.55) and (6.56) can be written:

       
 H   R 

 _ 
R  T  c  

   =  P  r   (   B ˆ   −  T  r     
d B ˆ  

 ____ 
d  T  r  

    )        
 S   R 

 ___ 
R

   = −  P  r      
d B ˆ  

 ____ 
d  T  r  

    

Combining each of these equations with the previous two equations yields:

    
 H   R 

 ____ 
R  T  c  

   =  P  r    [   B   0  −  T  r     
d  B   0 

 _ 
d  T  r  

   + ω  (   B   1  −  T  r     
d  B   1 

 _ 
d  T  r  

   )    ]     (6.68)
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 S   R 

 ___ 
R

   = −  P  r    (    
d  B   0 

 _ 
d  T  r  

   + ω   
d  B   1 

 _ 
d  T  r  

   )     (6.69)

The dependence of B0 and B1 on reduced temperature is given by Eqs. (3.61) and (3.62). 
Differentiation of these equations provides expressions for dB0/dTr and dB1/dTr. Thus the 
equations required for application of Eqs. (6.68) and (6.69) are:

  B   0  = 0.083 −   
0.422

 _____ 
 T  r  1.6 

    (3.61)   B   1  = 0.139 −   
0.172

 _____ 
 T  r  4.2 

    (3.62)

   
d  B   0 

 ____ 
d  T  r  

   =   
0.675

 _____ 
 T  r  2.6 

    (6.70)    
d  B   1 

 ____ 
d  T  r  

   =   
0.722

 _____ 
 T  r  5.2 

    (6.71)

Figure 3.10, drawn specifically for the compressibility-factor correlation, is also used as 
a guide to the reliability of the correlations of residual properties based on generalized  second 
virial coefficients. However, all residual-property correlations are less accurate than the  
compressibility-factor correlations on which they are based and are, as for the underlying cor-
relation, least reliable for strongly polar and associating molecules.

The generalized correlations for HR and SR, together with ideal-gas heat capacities, allow 
calculation of enthalpy and entropy values of gases at any temperature and pressure by Eqs. (6.50) 
and (6.51). For a change from state 1 to state 2, write Eq. (6.50) for both states:

   H  2   =  H 0  ig  +  ∫ 
 T  0  

  
 T  2  

  C P  ig dT   +  H 2  R      H  1   =  H 0  ig  +  ∫ 
 T  0  

  
 T  1  

  C P  ig dT   +  H 1  R   

Figure 6.2: The Lee/Kesler correlation for   ( H   R )   0  / R T  c    as a function of Tr and Pr.
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6.4. Generalized Property Correlations for Gases 237

The enthalpy change for the process, ΔH = H2 − H1, is the difference between these two equations:

  ΔH =  ∫ 
 T  1  

  
 T  2  

  C P  ig  dT   +  H 2  R  −  H 1  R   (6.72)

Similarly, by Eq. (6.51),

  ΔS =  ∫ 
 T  1  

  
 T  2  

  C P  ig    
dT

 ___ 
T

     − R ln   
 P  2  

 ___  P  1     +  S 2  R  −  S 1  R   (6.73)

Written in alternative form, these equations become:

  ΔH =   ⟨ C P  ig ⟩   
H

     (   T  2   −  T  1   )    +  H 2  R  −  H 1  R   (6.74)

  ΔS =   ⟨ C P  ig ⟩   
S
   ln   

 T  2  
 ___  T  1     − R ln   

 P  2  
 ___  P  1     +  S 2  R  −  S 1  R   (6.75)

Just as we have given names to functions used in evaluation of the integrals in Eqs. (6.72) and  
(6.73) and the mean heat capacities in Eqs. (6.74) and (6.75), we also name functions useful  
for evaluation of HR and SR. Equations (6.68), (3.61), (6.70), (3.62), and (6.71) together  
provide a function for the evaluation of HR/RTc, named HRB(Tr, Pr, OMEGA):7

    
 H   R 

 ____ 
R T  c  

   = HRB   (   T  r  ,  P  r  , OMEGA )     

A numerical value of HR is therefore represented by:

  R T  c   × HRB   (   T  r  ,  P  r  , OMEGA )     

Similarly, Eqs. (6.69) through (6.71) provide a function for the evaluation of SR/R, named 
SRB(Tr, Pr, OMEGA):

    
 S   R 

 ___ 
R

   = SRB   (   T  r  ,  P  r  , OMEGA )     

A numerical value of SR is therefore represented by:

  R × SRB   (   T  r  ,  P  r  , OMEGA )     

The terms on the right sides of Eqs. (6.72) through (6.75) are readily associated with steps in 
a computational path leading from an initial to a final state of a system. Thus, in Fig. 6.3, the 
actual path from state 1 to state 2 (dashed line) is replaced by a three-step computational path:

 ∙ Step 1 → 1ig: A hypothetical process that transforms a real gas into an ideal gas at T1 
and P1. The enthalpy and entropy changes for this process are:

   H 1  ig  −  H  1   = −  H 1  R      S 1  ig  −  S  1   = −  S 1  R   

 ∙ Step 1ig → 2ig: Changes in T and P in the ideal-gas state from (T1, P1) to (T2, P2). For 
this process,

  Δ H   ig  =  H 2  ig  −  H 1  ig  =  ∫ 
 T  1  

  
 T  2  

  C P  ig  dT    (6.76)

7Sample programs and spreadsheets for evaluation of these functions are available in the Connect online learning 
center. Please contact your instructor for instructions on accessing these items.
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  Δ S   ig  =  S 2  ig  −  S 1  ig  =  ∫ 
 T  1  

  
 T  2  

  C P  ig    
dT

 ___ 
T

     − R ln   
 P  2  

 ___  P  1      (6.77)

 ∙ Step 2ig → 2: Another hypothetical process that transforms the ideal gas back into a real 
gas at T2 and P2. Here,

  H  2   −  H 2  ig  =  H 2  R      S  2   −  S 2  ig  =  S 2  R  

Equations (6.72) and (6.73) result from addition of the enthalpy and entropy changes for the 
three steps.

Example 6.5
Supercritical CO2 can be used as an environmentally friendly solvent for cleaning 
applications, ranging from dry cleaning clothing to degreasing machine parts to pho-
toresist stripping. A key advantage of CO2 is the ease with which it is separated from 
“dirt” and detergents. When its temperature and pressure are reduced below the 
critical temperature and vapor pressure respectively, it vaporizes, leaving dissolved  
substances behind. For a change in state of CO2 from 70°C and 150 bar to 20°C and 
15 bar, estimate the changes in its molar enthalpy and entropy.

Solution 6.5
We follow the three-step computational path of Fig. 6.3. Step 1 transforms the 
real fluid at 70°C and 150 bar into its ideal-gas state at the same conditions.  
Step 2 changes conditions in the ideal-gas state from the initial to the final 
 conditions of T and P. Step 3 transforms the fluid from its ideal-gas state to the 
real-gas final state at 20°C and 15 bar.

Figure 6.3: Computational path for property 
changes ΔH and ΔS.
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6.4. Generalized Property Correlations for Gases 239

The residual-property values required for calculating the changes of steps 1 
and 3 depend on the reduced conditions of the initial and final states. With critical 
properties from Table B.1 of App. B:

   T   r  1     = 1.128   P   r  1     = 2.032  T   r  2     = 0.964  P   r  2     = 0.203  

A check of Fig. 3.10 indicates that the Lee/Kesler tables are required for the 
initial state, whereas the second-virial-coefficient correlation should be adequate 
for the final state.

Thus, for step 1, interpolation in Lee/Kesler tables D.7, D.8, D.11, and D.12 
provides the values:

    
 ( H   R )   0 

 _____ 
R T  c  

   = − 2.709,       
 ( H   R )   1 

 _____ 
R T  c  

   = − 0.921,       
 ( S   R )   0 

 _____ 
R

   = − 1.846,       
 ( S   R )   1 

 _____ 
R

   = − 0.938  

Then:

   

Δ H  1  

  

= −  H   R   (  343.15 K, 150 bar )   

       = −   (  8.314 )     (  304.2 )     [  −2.709 +   (  0.224 )     (  −0.921 )    ]    = 7372 J ⋅mol   −1        
Δ S  1  

  
= −  S   R   (  343.15 K, 150 bar )   

    

 

  

= −   (  8.314 )     [  −1.846 +   (  0.224 )     (  −0.938 )    ]    = 17.09 J ⋅mol   −1  ⋅K   −1 

    

For step 2, the enthalpy and entropy changes are calculated by the usual heat-
capacity integrals, with polynomial coefficients from Table C.1. The ideal-gas-state 
entropy change caused by the pressure change must also be included.

  

Δ H  2  

  

= 8.314 × ICPH(343.15, 293.15; 5.547, 1.045 ×  10   −3 , 0.0, −1.157 ×  10   5 )

        
 
  

= −1978 J ⋅mol   −1 
   Δ S  2    = 8.314 × ICPS(343.15, 293.15; 5.547, 1.045 ×  10   −3 , 0.0,  −1.157 ×  10   5 )        

 
  

 −   (  8.314 )    ln    (  15 / 150 )   
    

 

  

= − 6.067 + 19.144 = 13.08 J  ⋅mol   −1   ⋅K   −1 

   

Finally, for step 3,

  

Δ H  3  

  

=  H   R   (  293.15 K, 15 bar )   

      = 8.314 × 304.2 × HRB  (  0.964, 0.203, 0.224 )    = − 660 J ⋅mol   −1        
Δ S  3  

  
=  S   R   (  293.15 K, 15 bar )   

   

 

  

= 8.314 × SRB  (  0.964, 0.203, 0.224 )    = −1.59 J ⋅mol   −1  ⋅K   −1 

   

Sums over the three steps yield overall changes, ΔH = 4734 J⋅mol−1 and  
ΔS = 28.6 J⋅mol−1⋅K−1. The largest contribution here comes from the residual 
properties of the initial state, because the reduced pressure is high, and the super-
critical fluid is far from its ideal-gas state. Despite the substantial reduction in 
temperature, the enthalpy actually increases in the overall process.

For comparison, the properties given in the NIST fluid-properties database, 
accessed through the NIST Chemistry WebBook, are:

    H  1   = 16,776 J ⋅mol   −1       S  1   = 67.66 J ⋅mol   −1  ⋅K   −1       
 H  2   = 21,437 J ⋅mol   −1 

  
    S  1   = 95.86 J ⋅mol   −1  ⋅K   −1 
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From these values, considered accurate, overall changes are ΔH = 4661 J⋅mol−1 
and ΔS = 28.2 J⋅mol−1⋅K−1. Even though the changes in residual properties make 
up a substantial part of the total, the prediction from generalized correlations 
agrees with the NIST data to within 2 percent.

Extension to Gas Mixtures
Although no fundamental basis exists for extension of generalized correlations to mixtures, 
reasonable and useful approximate results for mixtures can often be obtained with pseudocrit-
ical parameters resulting from simple linear mixing rules according to the definitions:

 ω ≡  ∑ 
i
      y  i    ω  i    (6.78)   T  pc   ≡  ∑ 

i
     y  i    T   c  i      (6.79)   P  pc   ≡  ∑ 

i
     y  i    P   c  i      (6.80)

  T  pr   =   
T
 ___  T  pc  
    (6.81)   P  pr   =   

P
 ___  P  pc  
    (6.82)

The values so obtained are the mixture ω and pseudocritical temperature and pressure, Tpc and 
Ppc, which replace Tc and Pc to define pseudoreduced parameters:

These replace Tr and Pr for reading entries from the tables of App. D, and lead to values of Z 
by Eq. (3.57), HR/RTpc by Eq. (6.66), and SR/R by Eq. (6.67).

Example 6.6
Estimate V, HR, and SR for an equimolar mixture of carbon dioxide(1) and propane(2) at 
450 K and 140 bar by the Lee/Kesler correlations.

Solution 6.6
The pseudocritical parameters are found by Eqs. (6.78) through (6.80) with criti-
cal constants from Table B.1 of App. B:

   
 ω =  y  1    ω  1   +  y  2    ω  2   =   (  0.5 )     (  0.224 )    +   (  0.5 )     (  0.152 )    = 0.188

       T  pc   =  y  1    T   c  1     +  y  2    T   c  2     =   (  0.5 )     (  304.2 )    +   (  0.5 )     (  369.8 )    = 337.0 K      
 P  pc   =  y  1    P   c  1     +  y  2    P   c  2     =   (  0.5 )     (  73.83 )    +   (  0.5 )     (  42.48 )    = 58.15 bar

   

Then,

   T  pr   =   
450

 _____ 337.0   = 1.335  P  pr   =   
140

 _____ 58.15   = 2.41  

Values of Z0 and Z1 from Tables D.3 and D.4 at these reduced conditions are:

   Z   0  = 0.697 and  Z   1  = 0.205  
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By Eq. (3.57),

  Z =  Z   0  + ω  Z   1  = 0.697 +   (  0.188 )     (  0.205 )    = 0.736  

Thus,

  V =   
ZRT

 ____ 
P

   =   
  (  0.736 )     (  83.14 )     (  450 )   

  _________________ 140   = 196.7  cm   3  ⋅mol   −1   

Similarly, from Tables D.7 and D.8, with substitution into Eq. (6.66):

   
  (  

 H   R 
 _____ 

R T  pc  
  )     

0

  = − 1.730   (  
 H   R 

 _____ 
R T  pc  

  )     
1

  = − 0.169
     

  
 H   R 

 _____ 
R T  pc  

   = − 1.730 +   (  0.188 )     (  − 0.169 )    = − 1.762

   

and

   H   R  =   (  8.314 )     (  337.0 )     (  −1.762 )    = − 4937 J ⋅mol   −1   

From Tables D.11 and D.12 and substitution into Eq. (6.67),

   
 S   R 

 ___ 
R

   = − 0.967 +   (  0.188 )     (  − 0.330 )    = − 1.029 

and

   S   R  =   (  8.314 )     (  − 1.029 )    = − 8.56 J ⋅mol   −1  ⋅K   −1   

6.5 TWO-PHASE SYSTEMS

The curves shown on PT diagram like that presented in Fig. 3.1 represent phase boundaries 
for a pure substance. A phase transition at constant temperature and pressure occurs whenever 
one of these curves is crossed, and as a result the molar or specific values of most extensive 
thermodynamic properties change abruptly. Thus the molar or specific volume of a saturated 
liquid is very different from the molar or specific volume of saturated vapor of the same sub-
stance at the same T and P. This is also true for internal energy, enthalpy, and entropy. The 
exception is the molar or specific Gibbs energy, which for a pure species does not change 
during a phase transition such as melting, vaporization, or sublimation.

Consider a pure liquid in equilibrium with its vapor and contained in a piston/cylinder 
arrangement that allows it to undergo a differential evaporation at temperature T and corre-
sponding vapor pressure Psat. Equation (6.7) applied to the process reduces to d(nG) = 0. 
Because the number of moles n is constant, dG = 0, and this requires that the molar (or specific) 
Gibbs energy of the vapor be identical with that of the liquid. More generally, for two phases α 
and β of a pure species coexisting at equilibrium,

   G   α  =  G   β   (6.83)

where Gα and Gβ are the molar or specific Gibbs energies of the individual phases.
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The Clapeyron equation, introduced as Eq. (4.12), follows from this equality. If the tem-
perature of a two-phase system is changed, then the pressure must also change in accord with 
the relation between vapor pressure and temperature if the two phases continue to coexist in 
equilibrium. Because Eq. (6.83) applies throughout this change,

  d G   α  = d G   β   

Substituting expressions for dGα and dGβ as given by Eq. (6.11) yields:

   V   α  d P   sat  −  S   α  dT =  V   β  d P   sat  −  S   β  dT  

which upon rearrangement becomes:

    
d P   sat 

 _____ 
dT

   =   
 S   β  −  S   α 

 _______ 
 V   β  −  V   α 

   =   
Δ S   αβ 

 _____ 
Δ V   αβ 

    

The entropy change ΔSαβ and the volume change ΔVαβ are changes that occur when a unit 
amount of a pure chemical species is transferred from phase α to phase β at the equilibrium T 
and P. Integration of Eq. (6.9) for this change yields the latent heat of phase transition:

  Δ H   αβ  = TΔ S   αβ   (6.84)

Thus, ΔSαβ = ΔHαβ/T, and substitution in the preceding equation gives:

    
d P   sat 

 _____ 
dT

   =   
Δ H   αβ 

 ______ 
TΔ V   αβ 

    (6.85)

which is the Clapeyron equation.
For the particularly important case of phase transition from liquid l to vapor v, Eq. (6.85) 

is written:

    
d P   sat 

 _____ 
dT

   =   
Δ H   lv 

 ______ 
TΔ V   lv 

    (6.86)

But

  Δ V   lv  =  V   v  −  V   l  =   
RT

 ____  P   sat     (   Z   v  −  Z   l  )    =   
RT

 ____  P   sat    Δ Z   lv   

Combination of the last two equations gives, on rearrangement:

    
d ln  P   sat 

 _______ 
dT

   =   
Δ H   lv 

 ________ 
R  T   2  Δ Z   lv 

    (6.87)

or

    
d ln  P   sat 

 _______ 
d  (  1 / T )      = −   

Δ H   lv 
 ______ 

RΔ Z   lv 
    (6.88)

Equations (6.86) through (6.88) are equivalent, exact forms of the Clapeyron equation for 
pure-species vaporization.
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Example 6.7
The Clapeyron equation for vaporization at low pressure is often simplified through 
reasonable approximations, namely, that the vapor phase is an ideal gas and that the 
molar volume of the liquid is negligible compared with the molar volume of the vapor. 
How do these assumptions alter the Clapeyron equation?

Solution 6.7
For the assumptions made,

  Δ Z   lv  =  Z   v  −  Z   l  =   
 P   sat   V   v 

 ______ 
RT

   −   
 P   sat   V   l 

 ______ 
RT

   = 1 − 0 = 1  

Then by Eq. (6.87),

  Δ H   lv  = − R   
d ln  P   sat 

 _______ 
d  (  1 / T )       

Known as the Clausius/Clapeyron equation, this approximate expression relates 
the latent heat of vaporization directly to the vapor-pressure curve. Specifically, it 
indicates a direct proportionality of ΔHlv to the slope of a plot of ln Psat vs. 1/T. 
Such plots of experimental data produce lines for many substances that are very 
nearly straight. The  Clausius/Clapeyron equation implies, in such cases, that ΔHlv is 
constant, virtually independent of T. This is not in accord with experiment; indeed, 
ΔHlv decreases monotonically with increasing temperature from the triple point to 
the critical point, where it becomes zero. The assumptions upon which the Clausius/
Clapeyron equation are based have approximate validity only at low pressures.

Temperature Dependence of the Vapor Pressure of Liquids
The Clapeyron equation [Eq. (6.85)] is an exact thermodynamic relation, providing a vital 
connection between the properties of different phases. When applied to the calculation of latent 
heats of vaporization, its use presupposes knowledge of the vapor pressure-vs.-temperature 
relation. Because thermodynamics imposes no model of material behavior, either in general or 
for particular species, such relations are empirical. As noted in Ex. 6.7, a plot of ln Psat vs. 1/T 
generally yields a line that is nearly straight:

 ln  P   sat  = A −   
B

 __ 
T

   (6.89)

where A and B are constants for a given species. This equation gives a rough approximation of 
the vapor-pressure relation for the entire temperature range from the triple point to the critical 
point. Moreover, it provides an excellent basis for interpolation between reasonably spaced 
values of T.

The Antoine equation, which is more satisfactory for general use, is:

 ln  P   sat  = A −   
B
 _____ 

T + C   (6.90)
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An important advantage of this equation is that values of the constants A, B, and C are 
readily available for a large number of species.8 Each set of constants is valid for a specified 
temperature range, and should not be used much outside that range. The Antoine equation is 
sometimes written in terms of the base 10 logarithm, and the numerical values of the constants 
A, B, and C depend on the units selected for T and P. Thus, one must exercise care when using 
coefficients from different sources to ensure that the form of the equation and units are clear and 
consistent. Values of Antoine constants for selected substances are given in Table B.2 of App. B.

The accurate representation of vapor-pressure data over a wide temperature range 
requires an equation of greater complexity. The Wagner equation is one of the best available; it 
expresses the reduced vapor pressure as a function of reduced temperature:

  ln   P r  
sat  =   

Aτ + B  τ   1.5  + C  τ   3  + D  τ   6 
  __________________  1 − τ    (6.91)

where

  τ ≡ 1 −  T  r    

and A, B, C, and D are constants. Values of the constants either for this equation or for the 
Antoine equation are given by Prausnitz, Poling, and O’Connell9 for many species.

Corresponding-States Correlations for Vapor Pressure
Several corresponding-states correlations are available for the vapor pressure of  non-polar, 
non-associating liquids. One of the simplest is that of Lee and Kesler.10 It is a Pitzer-type 
correlation, of the form:

  ln  P r  
sat   (   T  r   )    = ln    P r  

0   (   T  r   )    + ω  ln    P r  
1   (   T  r   )     (6.92)

where

  ln  P r  
0   (   T  r   )    = 5.92714 −   

6.09648
 _______  T  r  

   − 1.28862 ln  T  r   + 0.169347  T r  
6   (6.93)

  ln  P r  
1   (   T  r   )    = 15.2518 −   

15.6875
 _______  T  r  

   − 13.4721  ln    T  r   + 0.43577  T r  
6   (6.94)

Lee and Kesler recommend that the value of ω used with Eq. (6.92) be found from the correla-
tion by requiring that it reproduce the normal boiling point. In other words, ω for a particular 
substance is determined from Eq. (6.92) solved for ω:

  ω =   
ln  P  r  n    sat  − ln  P r  

0   (   T   r  n     )   
  ________________  

ln  P r  
1   (   T   r  n     )   

    (6.95)

where   T   r  n      is the reduced normal boiling point temperature and   P  r  n    sat   is the reduced vapor pres-
sure corresponding to 1 standard atmosphere (1.01325 bar).

8S. Ohe, Computer Aided Data Book of Vapor Pressure, Data Book Publishing Co., Tokyo, 1976; T. Boublik, V. 
Fried, and E. Hala, The Vapor Pressures of Pure Substances, Elsevier, Amsterdam, 1984; NIST Chemistry WebBook, 
http://webbook.nist.gov.

9J. M. Prausnitz, B. E. Poling, and J. P. O’Connell, The Properties of Gases and Liquids, 5th ed., App. A,  
McGraw-Hill, New York, 2001.

10B. I. Lee and M. G. Kesler, AIChE J., vol. 21, pp. 510–527, 1975.
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Example 6.8
Determine the vapor pressure (in kPa) for liquid n-hexane at 0, 30, 60, and 90°C:

 (a) With constants from App. B.2. (b) From the Lee/Kesler correlation for   P r  
sat  .

Solution 6.8

 (a) With constants from App. B.2, the Antoine equation for n-hexane is: 

  ln   P   sat  / kPa = 13.8193 −   
2696.04

 ____________  
t / °C + 224.317    

  Substitution of temperatures yields the values of Psat under the heading “Antoine” 
in the table below. These are presumed equivalent to good experimental values.

 (b) We first determine ω from the Lee/Kesler correlation. At the normal boiling 
point of n-hexane (Table B.1), 

   T   r  n     =   
341.9

 _____ 507.6   = 0.6736    and     P  r  n    sat  =   
1.01325

 _______ 30.25   = 0.03350  

  Application of Eq. (6.94) then gives the value of ω for use with the Lee/Kesler  
correlation: ω = 0.298. With this value, the correlation produces the Psat  
values shown in the table. The average difference from the Antoine values is  
about 1.5%.

Psat kPa Psat kPa Psat kPa Psat kPa
t °C (Antoine) (Lee/Kesler) t °C (Antoine) (Lee/Kesler)
 0 6.052 5.835 30 24.98 24.49
60 76.46 76.12 90 189.0 190.0

Example 6.9
Estimate V, U, H, and S for 1-butene vapor at 200°C and 70 bar if H and S are set 
equal to zero for saturated liquid at 0°C. Assume that the only data available are:

   
 
 T  c   = 420.0 K 

  
  P  c   = 40.43 bar 

  
ω = 0.191

      
 T  n   = 266.9 K 

  
  (  normal boiling point )        

      
 C P  ig  / R = 1.967 + 31.630 ×  10   −3  T − 9.837 ×  10   −6   T   2    (  T K )   
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Solution 6.9
The volume of 1-butene vapor at 200°C and 70 bar is calculated directly from 
the equation V = ZRT/P, where Z is given by Eq. (3.53) with values of Z 0 and Z1 
interpolated in Tables D.3 and D.4. For the reduced conditions,

    T  r   =   
200 + 273.15

  ___________ 420.00   = 1.127      P  r   =   
70
 _____ 40.43   = 1.731   

the compressibility factor and molar volume are:

   
Z =  Z   0  + ω  Z   1  = 0.485 +   (  0.191 )     (  0.142 )    = 0.512

     
V =   

ZRT
 ____ 

P
   =   

  (  0.512 )     (  83.14 )     (  473.15 )   
  ___________________ 70   = 287.8   cm   3   ⋅mol   −1 

   

For H and S, we use a computational path like that of Fig. 6.3, leading from an 
initial state of saturated liquid 1-butene at 0°C, where H and S are zero, to the final 
state of interest. In this case, an initial vaporization step is required, leading to the 
four-step path shown by Fig. 6.4. The steps are:

(a) Vaporization at T1 and P1 = Psat.
(b) Transition to the ideal-gas state at (T1, P1).
(c) Change to (T2, P2) in the ideal-gas state.
(d) Transition to the actual final state at (T2, P2).

Figure 6.4: Computational path for Ex. 6.9.

Reference state:
saturated-liquid
butene at 
273.15 K, 1.2771 bar

Saturated-vapor
butene at
273.15 K, 1.2771 bar

Butene in ideal-gas
state at
273.15 K, 1.2771 bar

Butene in ideal-gas
state at
473.15 K, 70 bar

Final state of
butene at 
473.15 K, 70 bar

H

S

(d )

(a )

(b)

(c)

Hig

Hlv

S lv
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HR
2

SR
2
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1
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1
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 ∙ Step (a): Vaporization of saturated liquid 1-butene at 0°C. The vapor pressure 
must be estimated, as it is not given. One method is based on the equation: 

  ln  P   sat  = A −   
B

 __ 
T

    

  The vapor-pressure curve contains both the normal boiling point, for which 
Psat = 1.0133 bar at 266.9 K, and the critical point, for which Psat = 40.43 bar 
at 420.0 K. For these two points,

   ln  1.0133 = A −   
B
 _____ 266.9        ln  40.43 = A −   

B
 _____ 420.0     

  Solution gives, 
   A = 10.1260  B = 2699.11   

  For 0°C (273.15 K), Psat = 1.2771 bar, a result used in steps (b) and (c). Here, 
the latent heat of vaporization is required. Equation (4.13) provides an estimate 
at the normal boiling point, where   T   r  n     = 266.9 / 420.0 = 0.636 :

    
Δ H n  lv 

 _____ 
R T  n     =   

1.092   (  ln  P  c   − 1.013 )   
  _________________  0.930 −  T   r  n    

   =   
1.092   (  ln  40.43 − 1.013 )   

  ___________________  0.930 − 0.636   = 9.979  

  and
  Δ H n  lv  =   (  9.979 )     (  8.314 )     (  266.9 )    = 22,137 J ⋅mol   −1   

  The latent heat at Tr = 273.15/420.0 = 0.650, is given by Eq. (4.14):

    
Δ H   lv 

 _____ 
Δ H n  lv 

   =   (  
1 −  T  r   ______ 1 −  T   r  n    

  )     
0.38

   

  or
  Δ H   lv  =   (  22,137 )     (  0.350 / 0.364 )     0.38  = 21,810 J ⋅mol   −1   

  Moreover, by Eq. (6.84),

  Δ S   lv  = Δ H   lv  / T = 21,810 / 273.15 = 79.84 J  ⋅mol   −1   ⋅K   −1   

 ∙ Step (b): Transformation of saturated-vapor 1-butene to its ideal-gas state at 
the initial conditions (T1, P1). Because the pressure is relatively low, the val-
ues of   H 1  R   and   S 1  R   are estimated by Eqs. (6.68) and (6.69) for the reduced 
conditions, Tr = 0.650 and Pr = 1.2771/40.43 = 0.0316. The computational pro-
cedure is represented by:

  HRB  (  0.650, 0.0316, 0.191 )    = − 0.0985    
SRB  (  0.650, 0.0316, 0.191 )    = − 0.1063   

  and

   
 H 1  R  =   (  − 0.0985 )     (  8.314 )     (  420.0 )    = − 344 J ⋅mol   −1 

     
 S 1  R  =   (  − 0.1063 )     (  8.314 )    = − 0.88 J ⋅mol   −1  ⋅K   −1 

    

  As indicated in Fig. 6.4, the property changes for this step are  −  H 1  R   and  −  S 1  R  , 
because the change is from the real to the ideal-gas state.
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 ∙ Step (c): Change in ideal-gas state from (273.15 K, 1.2771 bar) to (473.15 K, 
70 bar). Here, ΔHig and ΔSig are given by Eqs. (6.76) and (6.77), for which 
(Secs. 4.1 and 5.5): 

8.314 × ICPH(273.15, 473.15; 1.967, 31.630 × 10−3, − 9.837 × 10−6, 0.0)
= 20,564 J⋅mol−1

8.314 × ICPS(273.15, 473.15; 1.967, 31.630 × 10−3, − 9.837 × 10−6, 0.0)
= 55.474 J⋅mol−1⋅K−1

  Thus, Eqs. (6.76) and (6.77) yield:

   
Δ H   ig 

  
=

  
20,564  J⋅mol   −1 

   
 ΔS   ig 

  
=

  
55.474 − 8.314 ln   

70
 ______ 1.2771   = 22.18  J⋅mol   −1 ⋅ K   −1 

   

 ∙ Step (d ): Transformation of 1-butene from the ideal-gas state to the real-gas 
state at T2 and P2. The final reduced conditions are: 

    T  r   = 1.127   P  r   = 1.731   

  At the higher pressure of this step,   H 2  R   and   S 2  R   are found by Eqs. (6.66) and 
(6.67), together with the Lee/Kesler correlation. With interpolated values 
from Tables D.7, D.8, D.11, and D.12, these equations give:

  

  
 H 2  R 

 ____ 
R  T  c  

   = − 2.294 +   (  0.191 )     (  −0.713 )    = − 2.430

       
 S 2  R 

 ___ 
R

   = − 1.566 +   (  0.191 )     (  −0.726 )    = − 1.705     

 H 2  R  =   (  −2.430 )     (  8.314 )     (  420.0 )    = − 8485 J ⋅mol   −1 

     

 S 2  R  =   (  −1.705 )     (  8.314 )    = − 14.18 J ⋅mol   −1  ⋅K   −1 

   

  The sums of the enthalpy and entropy changes for the four steps give the total 
changes for the process leading from the initial reference state (where H and S 
are set equal to zero) to the final state:

   H = ΔH = 21,810 −   (  −344 )    + 20,564 − 8485 =  34,233 J⋅mol   −1       
S = ΔS = 79.84 −   (  −0.88 )    + 22.18 − 14.18 = 88.72 J ⋅mol   −1  ⋅K   −1 

   

  The internal energy is:

  U = H − PV = 34,233 −   
  (  70 )     (  287.8 )    bar ⋅cm   3  ⋅mol   −1 

   ______________________  
10 bar  ⋅cm   3   ⋅J   −1 

   = 32,218 J ⋅mol   −1   

  The residual properties at the final conditions make important contributions 
to the final values.
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Two-Phase Liquid/Vapor Systems
When a system consists of saturated-liquid and saturated-vapor phases coexisting in equilib-
rium, the total value of any extensive property of the two-phase system is the sum of the total 
properties of the phases. Written for the volume, this relation is:

  nV =  n   l   V   l  +  n   v   V   v   

where V is the molar volume for a system containing a total number of moles n = nl + nv. 
Division by n gives:

  V =  x   l   V   l  +  x   v   V   v   

where xl and xv represent the mass fractions of the total system that are liquid and vapor. With 
xl = 1 − xv,

  V =   (  1 −  x   v  )    V   l  +  x   v   V   v   

In this equation the properties V, Vl, and Vv may be either molar or unit-mass values. The mass 
or molar fraction of the system that is vapor xv is often called the quality, particularly when the 
fluid in question is water. Analogous equations can be written for the other extensive thermo-
dynamic properties. All of these relations are represented by the generic equation

  M =   (  1 −  x   v  )    M   l  +  x   v   M   v   (6.96a)

where M represents V, U, H, S, etc. An alternative form is sometimes useful:

  M =  M   l  +  x   v  Δ M   lv   (6.96b)

6.6 THERMODYNAMIC DIAGRAMS

A thermodynamic diagram is a graph showing a set of properties for a particular substance, 
e.g., T, P, V, H, and S. The most common diagrams are: TS, PH (usually ln P vs. H), and HS 
(called a Mollier diagram). The designations refer to the variables chosen for the coordinates. 
Other diagrams are possible, but are seldom used.

Figures 6.5 through 6.7 show the general features of these diagrams. Though based on 
data for water, their general character is similar for all substances. The two-phase states, repre-
sented by lines on the PT diagram of Fig. 3.1, lie over areas in these diagrams, and the triple 
point of Fig. 3.1 becomes a line. Lines of constant quality in a liquid/vapor region provide 
two-phase property values directly. The critical point is identified by the letter C, and the solid 
curve passing through it represents states of saturated liquid (to the left of C) and of saturated 
vapor (to the right of C). The Mollier diagram (Fig. 6.7) does not usually include volume 
data. In the vapor or gas region, lines for constant temperature and constant superheat appear. 
Superheat is a term denoting the difference between the actual temperature and the saturation 
temperature at the same pressure. Thermodynamic diagrams included in this book are the PH 
diagrams for methane and tetrafluoroethane, and the Mollier diagram for steam in App. F.

Some process paths are easily traced on particular thermodynamic diagrams. For  example, 
the boiler of a steam power plant has liquid water as feed at a temperature below its boiling point, 
and superheated steam as product. Thus, water is heated at constant P to its saturation temperature 
(line 1–2 in Figs. 6.5 and 6.6), vaporized at constant T and P (line 2–3), and superheated at constant 
P (line 3–4). On a PH diagram (Fig. 6.5) the whole process is represented by a horizontal line 
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Figure 6.5: Simplified PH diagram representing the 
general features of such charts.
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6.7. Tables of Thermodynamic Properties 251

corresponding to the boiler pressure. The same process is shown on the TS diagram of Fig. 6.6. 
The compressibility of a liquid is small for temperatures well below Tc, and liquid-phase properties 
change very slowly with pressure. The constant-P lines on this diagram for the liquid region 
therefore lie very close together, and line 1–2 nearly coincides with the saturated-liquid curve. The 
isentropic path of the fluid in a reversible adiabatic turbine or compressor is represented on both 
the TS and HS (Mollier) diagrams by a vertical line from the initial to the final pressure.

6.7 TABLES OF THERMODYNAMIC PROPERTIES

In many instances thermodynamic properties are tabulated. This has the advantage that data 
can be presented more precisely than in diagrams, but the need for interpolation is introduced. 
Thermodynamic tables for saturated steam from its normal freezing point to the critical point 
and for superheated steam over a substantial pressure range appear in App. E. Values are given 
at intervals close enough that linear interpolation is satisfactory.11 The first table shows the 
equilibrium properties of saturated liquid and saturated vapor at even increments of tempera-
ture. The enthalpy and entropy are arbitrarily assigned values of zero for the saturated-liquid 
state at the triple point. The second table is for the gas region and gives properties of super-
heated steam at temperatures higher than the saturation temperature for a given pressure. Vol-
ume (V), internal energy (U), enthalpy (H), and entropy (S) are tabulated as functions of 
pressure at various temperatures. The steam tables are the most thorough compilation of prop-
erties for any single material. However, tables are available for a number of other substances.12 
Electronic versions of such tables generally eliminate the need for manual interpolation. 

Example 6.10
Superheated steam originally at P1 and T1 expands through a nozzle to an exhaust pres-
sure P2. Assuming the process is reversible and adiabatic, determine the  downstream 
state of the steam and ΔH for P1 = 1000 kPa, t1 = 250°C, and P2 = 200 kPa.

Solution 6.10
Because the process is both reversible and adiabatic, there is no change in the 
entropy of the steam. For the initial temperature of 250°C at 1000 kPa, no entries 
appear in the tables for superheated steam. Interpolation between values for 240°C 
and 260°C yields, at 1000 kPa,

   H  1   = 2942.9 kJ ⋅kg   −1      S  1   = 6.9252 kJ ⋅kg   −1  ⋅K   −1   

11Procedures for linear interpolation are shown at the beginning of App. E.

12Data for many common chemicals are given by R. H. Perry and D. Green, Perry’s Chemical Engineers’ Hand-
book, 8th ed., Sec. 2, McGraw-Hill, New York, 2008. See also N. B. Vargaftik, Handbook of Physical Properties of 
Liquids and Gases, 2d ed., Hemisphere Publishing Corp., Washington, DC, 1975. Data for refrigerants appear in the 
ASHRAE Handbook: Fundamentals, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 
Inc., Atlanta, 2005. Electronic version of NIST Reference Database is available as REFPROP, ver. 9.1 which cover 
121 pure fluids, 5 pseudo-pure fluids and mixtures of 20 components. Data for many common gases, refrigerants, 
and light hydrocarbons are available from the NIST Chemistry WebBook at http://webbook.nist.gov/chemistry/fluid/.
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 For the final state at 200 kPa,

   S  2   =  S  1   = 6.9252 kJ ⋅kg   −1  ⋅K   −1   

Because the entropy of saturated vapor at 200 Pa is greater than S2, the final state 
must lie in the two-phase liquid/vapor region. Thus t2 is the saturation tempera-
ture at 200 kPa, given in the superheat tables as t2 = 120.23°C. Equation (6.96a) 
applied to the entropy becomes:

   S  2   =   (  1 −  x 2  v  )    S 2  l   +  x 2  v   S 2  v   

Numerically,

  6.9252 = 1.5301  (  1 −  x 2  v  )    + 7.1268  x 2  v   

where the values 1.5301 and 7.1268 are entropies of saturated liquid and saturated 
vapor at 200 kPa. Solving,

   x 2  v  = 0.9640  

The mixture is 96.40% vapor and 3.60% liquid. Its enthalpy is obtained by further 
application of Eq. (6.96a):

   H  2   =   (  0.0360 )     (  504.7 )    +   (  0.9640 )     (  2706.3 )    = 2627.0 kJ ⋅kg   −1   

Finally,

  ΔH =  H  2   −  H  1   = 2627.0 − 2942.9 = − 315.9 kJ ⋅kg   −1   

For a nozzle, under the stated assumptions the steady-flow energy balance,  
Eq. (2.31), becomes:

  ΔH +   
1
 __ 2   Δ u   2  = 0  

Thus the decrease in enthalpy is exactly compensated by an increase in kinetic 
energy of the fluid. In other words, the velocity of a fluid increases as it flows 
through a nozzle, which is its usual purpose. Nozzles are treated further in Sec. 7.1.

Example 6.11
A standard propane tank, like those typically used with a backyard gas grill, has an 
internal volume of 21.5 L. Using data from the NIST Chemistry WebBook, (a) find the 
mass and volume of liquid and vapor phase propane in such a tank containing a total 
of 20 lbm of propane at 25°C, and (b) find the total heat that must be added to maintain 
the tank at 25°C as 5 lbm of propane vapor flows out of the tank.

Solution 6.11
In the NIST WebBook, we navigate to Thermophysical Properties of Fluid 
 Systems, select propane, select saturation properties, select the desired units, 
and  choose 25°C as the desired temperature. We find Psat = 9.522 bar, the  
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Vl = 2.031 L·kg−1, Vv = 48.51 L·kg−1, Ul = 263.4 kJ·kg−1, Uv = 555.0 kJ·kg−1,  
Hl = 265.3 kJ·kg−1, and Hv = 601.2 kJ·kg−1.

 (a) The volume of the liquid and vapor phases must sum to the total volume of the 
tank, and their masses must sum to 20 lbm or 9.072 kg. Thus, ml + mv = 9.072 
kg and mlVl + mvVv = 21.5 L. Combining these and using the values of Vl and 
Vv gives:

2.031(9.072 – mv) + 48.51mv = 21.5

  Solving yields mv = 0.066 kg, from which ml = 9.072 – 0.066 = 9.006 kg. The 
total volume occupied by the liquid is 9.006 · 2.031 = 18.3 L, and the volume 
of vapor is 3.2 L.

 (b) If the temperature remains constant as propane is removed, then the pressure 
also stays constant at the vapor pressure, as long as two phases are present. 
Thus, the properties of the vapor and liquid phase remain the same. As a quick 
estimate, we would expect that the heat added will be approximately equal to 
the heat of vaporization of the propane that leaves the tank, although slightly 
more must vaporize to fill the additional space left in the tank. From the 
NIST WebBook data, ΔHv = 601.2 – 265.3 = 5 lbm = 335.9 kJ·kg−1. Thus, if 
5 lbm = 2.268 kg of propane is vaporized, the total heat of vaporization is 
335.9 · 2.268 = 762 kJ. For a more rigorous analysis, we must write an energy 
balance on the propane in the tank, as:

   
d(mU)

 __________ 
dt

    +   m ∙   Hv =   Q 
∙
   

  This is Eq. (2.27) with a single outflow stream, no shaft work, and no changes 
in kinetic or potential energy. Here, mU is the total internal energy of the tank 
contents (both phases) while the relevant H is that of the vapor because pro-
pane leaves the tank as vapor. Formally integrating over the whole process of 
removing 5 lbm of propane yields:

Q = Δ(mU) + Hv · –Δm

  Note that the total outflow from the tank is minus Δm, if m refers to the mass 
remaining in the tank. To compute the first term on the right-hand side, we 
require the total internal energy in the tank at the beginning and end of the 
process. At the start, we have:

mUbefore = mlUl + mvUv = 9.006 · 263.4 + 0.066 · 555.0 = 2409 kJ

  Repeating the analysis of part (a) for 15 lbm (6.804 kg) propane remaining in 
the tank gives ml = 6.639 kg, mv = 0.165 kg. Thus, the total internal energy in 
the tank after removal of 5 lbm (2.268 kg) of vapor is:

mUafter = 6.639 · 263.4 + 0.165 · 555.0 = 1840 kJ

  Using this value, we find Q = (1840 – 2409) + 601.2 · 2.268 = 795 kJ. This is 
about 4% greater than our rough estimate using only the heat of vaporization 
at 25°C.
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Example 6.12
A 1.5 m3 tank contains 500 kg of liquid water in equilibrium with pure water vapor, 
which fills the remainder of the tank. The temperature and pressure are 100°C and 
101.33 kPa. From a water line at a constant temperature of 70°C and a constant pres-
sure somewhat above 101.33 kPa, 750 kg of liquid is bled into the tank. If the temper-
ature and pressure in the tank are not to change as a result of the process, how much 
energy as heat must be transferred to the tank?

Solution 6.12
Choose the tank as the control volume. There is no work, and kinetic- and potential- 
energy changes are assumed negligible. Equation (2.28) therefore is written:

   
 d(mU)  tank  

 _________ 
dt

   − H′ m 
∙  ′ =  Q 

∙
    

where the prime denotes the state of the inlet stream. The mass balance,   m 
∙  ′ =   

d  m  tank   / dt , may be combined with the energy balance to yield:

    
 d(mU)  tank  

 _________ 
dt

   − H′   
d m  tank  

 ______ 
dt

   =  Q 
∙
    

Multiplication by dt and integration over time (with H′ constant) give:

  Q = Δ  (  mU )    tank   − H′ Δ m  tank    

The definition of enthalpy may be applied to the entire contents of the tank to give:

  Δ  (  mU )    tank   = Δ  (  mH )    tank   − Δ  (  PmV )    tank    

Because total tank volume mV and P are constant, Δ(PmV)tank = 0. Then, with  
Δ  (  mH )    tank   =   (    m  2    H  2   )    tank   −   (    m  1    H  1   )    tank   , the two preceding equations combine to yield:

  Q =   (   m  2    H  2   )    tank   −   (   m  1    H  1   )    tank   − H′ Δ m  tank    (A)

where Δmtank is the 750 kg of water bled into the tank, and subscripts 1 and 2 refer 
to conditions in the tank at the beginning and end of the process. At the end of the 
process the tank still contains saturated liquid and saturated vapor in equilibrium 
at 100°C and 101.33 kPa. Hence, m1H1 and m2H2 each consist of two terms, one 
for the liquid phase and one for the vapor phase.

The numerical solution makes use of the following enthalpies taken from the 
steam tables:

    H′         =  293.0 kJ⋅ kg  −1 ;  saturated liquid at 70° C 
 H ltank   =  419.1 kJ⋅ kg  −1 ;  saturated liquid at 100° C 
 Hv

 tank    =  2676.0 kJ⋅ kg  −1 ;  saturated vapor at 100° C   

The volume of vapor in the tank initially is 1.5 m3 minus the volume occupied by 
the 500 kg of liquid water. Thus,

   m 1  v  =   
1.5 −   (  500 )     (  0.001044 )   

  __________________  1.673   = 0.772 kg  
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where 0.001044 and 1.673 m3·kg−1 are the specific volumes of saturated liquid 
and saturated vapor at 100°C from the steam tables. Then,

    (    m  1    H  1   )    tank   =  m 1  l    H 1  l   +  m 1  v   H 1  v  = 500  (  419.1 )    + 0.722  (  2676.0 )    = 211,616 kJ  

At the end of the process, the masses of liquid and vapor are determined by a mass 
balance and by the fact that the tank volume is still 1.5 m3:

   
 m  2  

  
=

  
500 + 0.722 + 750 =  m  2  v   +  m  2  l  

    
1.5

  
=

  
1.673  m  2  v   + 0.001044  m  2  l  

    

Solution gives:
   m  2  l   = 1250.65 kg and  m  2  v   = 0.116 kg  

Then, with   H 2  l   =  H 1  l    and   H 2  V  =  H 1  V  ,

    (    m  2    H  2   )    tank   =   (  1250.65 )     (  419.1 )    +   (  0.116 )     (  2676.0 )    = 524,458 kJ  

Substitution of appropriate values into Eq. (A) gives:

  Q = 524,458 − 211,616 −   (  750 )     (  293.0 )    = 93,092 kJ  

Before conducting the rigorous analysis demonstrated here, one might make a 
reasonable estimate of the heat requirement by assuming that it is equal to the 
enthalpy change for heating 750 kg of water from 70°C to 100°C. This approach 
would give 94,575 kJ, which is slightly higher than the rigorous result, because 
it neglects the heat effect of condensing water vapor to accommodate the added 
liquid.

6.8 SYNOPSIS

After thorough study of this chapter, including multiple readings and working through exam-
ple and end-of-chapter problems, one should be able to:

 ∙ Write and apply the fundamental property relations for internal energy, enthalpy, Gibbs 
energy, and Helmholtz energy in both a general form applicable to any closed PVT 
system [Eqs. (6.1), (6.5), (6.6), and (6.7)], and in a form applicable to one mole of a 
homogeneous substance [Eqs. (6.8)–(6.11)]

 ∙ Write the Maxwell relations [Eqs. (6.14)–(6.17)], and apply them to replace unmeasurable 
partial derivatives involving entropy with partial derivatives that can be determined 
from PVT data

 ∙ Recognize that knowledge of any thermodynamic energy measure as a function of its 
canonical variables [U(S, V), H(S, P), A(T, V) or G(T, P)] implicitly provides complete 
property information

 ∙ Obtain any thermodynamic property from G/RT as a function of T and P
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 ∙ Write thermodynamic functions in terms of alternative, noncanonical variables, includ-
ing H(T, P), S(T, P), U(T, V), and S(T, V), and apply specialized forms of these for liq-
uids, using the isothermal compressibility and volume expansivity

 ∙ Define and apply residual properties and relationships among them (e.g., the fundamen-
tal residual property relations)

 ∙ Estimate residual properties by:

The volume-explicit two-term virial equation of state, Eqs. (6.54)–(6.56)
The three-term pressure-explicit virial equation of state, Eqs. (6.61)–(6.63)
The full Lee/Kesler correlations, Eqs. (6.66) and (6.67) and App. D
The two-term virial equation with coefficients from the Abbott equations, Eqs. (6.68)–(6.71)

 ∙ Explain the origins of the Clapeyron equation and apply it to estimate the change in 
phase transition pressure with temperature from latent heat data and vice versa

 ∙ Recognize equality of Gibbs energy, temperature, and pressure as a criterion for phase 
equilibrium of a pure substance

 ∙ Read common thermodynamic diagrams and trace the paths of processes on them

 ∙ Apply the Antoine equation and similar equations to determine vapor pressure at a given 
temperature and the implied enthalpy of vaporization, via the Clapeyron equation

 ∙ Construct multi-step computational paths that allow one to compute property changes 
for arbitrary changes of state of a pure substance, making use of data or correlations for 
residual properties, heat capacities, and latent heats

6.9 ADDENDUM. RESIDUAL PROPERTIES  
IN THE ZERO-PRESSURE LIMIT

The constant J, omitted from Eqs. (6.46), (6.48), and (6.49), is the value of   G   R  / RT  in the limit 
as P → 0. The following treatment of residual properties in this limit provides background. 
Because a gas becomes ideal as P → 0 (in the sense that Z → 1), one might suppose that in this 
limit all residual properties are zero. This is not in general true, as is easily demonstrated for 
the residual volume.

Written for VR in the limit of zero pressure, Eq. (6.41) becomes:

   lim    
P→0

     V   R  =  lim    
P→0

    V −  lim    
P→0

     V   ig   

Both terms on the right side of this equation are infinite, and their difference is indeterminate. 
Experimental insight is provided by Eq. (6.40):

   lim    
P→0

     V   R  = RT    lim  
P→0

     (    
Z − 1

 _ 
P

   )    = RT    lim  
P→0

      (     
∂ Z

 ___ ∂ p   )    
T

    

The center expression arises directly from Eq. (6.40), and the rightmost expression is obtained 
by application of L’Hôpital’s rule. Thus, VR/RT in the limit as P → 0 at a given T is proportional 
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to the slope of the Z-versus-P isotherm at P = 0. Figure 3.7 shows clearly that these values are 
finite, and not, in general, zero.

For the internal energy,   U   R  ≡ U −  U   ig  . Because Uig is a function of T only, a plot of  
Uig vs. P for a given T is a horizontal line extending to P = 0. For a real gas with intermo-
lecular forces, an isothermal expansion to P → 0 results in a finite increase in U because the 
molecules move apart against the forces of intermolecular attraction. Expansion to P = 0  
(V = ∞) reduces these forces to zero, exactly as in an ideal gas, and therefore at all temperatures,

   lim    
P→0

    U =  U   ig  and  lim    
P→0

     U   R  = 0  

From the definition of enthalpy,

   lim    
P→0

     H   R  =  lim    
P→0

     U   R  +   lim  
P→0

    (P  V   R )  

Because both terms on the right are zero,   lim    
P→0

     H   R  = 0  for all temperatures.

For the Gibbs energy, by Eq. (6.37),

  d   (    
G

 _ 
RT

   )    =   
V
 ___ 

RT
   dP   (  const T )     

For the ideal-gas state,  V =  V   ig  = RT / P , and this becomes:

   d  (     
 G   ig 

 _ 
RT

   )    =   
dP

 _ 
P

     (  const T )      

Integration from  P = 0  to pressure P yields:

     
 G   ig 

 _ 
RT

   =   (  
 G   ig 

 ___ 
RT

  )   
P=0

   +  ∫ 
0
  
P

    
dP

 _ 
P

     =   (  
 G   ig 

 ___ 
RT

  )   
P=0

   +  ln P + ∞    (  const T )      

For finite values of   G   ig  / RT  at P > 0, we must have    lim  
P→0

   ( G   ig  / RT ) = − ∞ . We cannot reasonably 

expect a different result for    lim  
P→0

    (  G / RT )    , and we conclude that:

   lim  
P→0

     
 G   R 

 ___ 
RT

   =   lim  
P→0

     
G

 ___ 
RT

   −   lim  
P→0

     
 G   ig 

 ___ 
RT

   = ∞ − ∞ 

Thus   G   R  / RT  (and of course GR) is, like VR, indeterminate in the limit as P → 0. In this case, how-
ever, no experimental means exists for finding the limiting value. However, we have no reason to 
presume it is zero, and therefore we regard it like    lim  

P→0
    V   R   as finite, and not in general zero.

Equation (6.44) provides an opportunity for further analysis. We write it for the limiting 
case of  P = 0 :

    (    
 H   R 

 ____ 
R T   2 

   )    
P=0

   = −   [    
∂   (   G   R  / RT )   

 _________ ∂ T   ]    
P=0

    

As already shown,   H   R   (  P = 0 )    = 0 , and therefore the preceding derivative is zero. As a result,

   (    
 G   R 

 ___ 
RT

   )    
P=0

   = J 

where J is a constant of integration, independent of T, justifying the derivation of Eq. (6.46).
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6.10 PROBLEMS

 6.1. Starting with Eq. (6.9), show that isobars in the vapor region of a Mollier (HS) dia-
gram must have positive slope and positive curvature.

 6.2. (a)  Making use of the fact that Eq. (6.21) is an exact differential expression, show that:

   (  ∂  C  P   / ∂ P )    T   = − T   (   ∂   2  V / ∂  T   2  )    P   

  What is the result of application of this equation to an ideal gas?
 (b) Heat capacities CV and CP are defined as temperature derivatives, respectively, of 

U and H. Because these properties are related, one expects the heat capacities also 
to be related. Show that the general expression connecting CP to CV is:

   C  P   =  C  V   + T    (  
∂ P

 ___ ∂ T  )    
V

      (  
∂ V

 ___ ∂ T  )    
P

    

  Show that Eq. (B) of Ex. 6.2 is another form of this expression.

 6.3. If U is considered a function of T and P, the “natural” heat capacity is neither CV nor 
CP, but rather the derivative   (∂ U / ∂ T)  P   . Develop the following connections between   
(∂ U / ∂ T )  P   , CP, and CV:

    

  (  
∂ U

 ___ ∂ T  )    
P

  

  

=

  

 C  P   − P    (  
∂ V

 ___ ∂ T  )    
P

   =  C  P   − βPV

    
 
  

=
  
 C  V   +   

[
  T    (  

∂ P
 ___ ∂ T  )    

V

   − P 
]

      (  
∂ V

 ___ ∂ T  )    
P

   =  C  V   +   
β

 __ 
κ
    (  βT − κP )   V

   

To what do these equations reduce for an ideal gas? For an incompressible liquid?

 6.4. The PVT behavior of a certain gas is described by the equation of state:

  P  (  V − b )    = RT  

  where b is a constant. If in addition CV is constant, show that:

 (a) U is a function of T only.
 (b) γ = const.
 (c) For a mechanically reversible process,  P   (  V − b )     γ  = const .

 6.5. A pure fluid is described by the canonical equation of state:  G = Γ  (  T )    + RT  ln P , 
where Γ(T ) is a substance-specific function of temperature. Determine for such a fluid 
expressions for V, S, H, U, CP, and CV. These results are consistent with those for an 
important model of gas-phase behavior. What is the model?

 6.6. A pure fluid, described by the canonical equation of state: G = F(T) + KP, where F(T) 
is a substance-specific function of temperature and K is a substance-specific  constant. 
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Determine for such a fluid expressions for V, S, H, U, CP, and CV. These results 
are consistent with those for an important model of liquid-phase behavior. What is  
the model?

 6.7. Estimate the change in enthalpy and entropy when liquid ammonia at 270 K is com-
pressed from its saturation pressure of 381 kPa to 1200 kPa. For saturated liquid 
ammonia at 270 K, Vl = 1.551 × 10−3 m3·kg−1, and β = 2.095 × 10−3 K−1.

 6.8. Liquid isobutane is throttled through a valve from an initial state of 360 K and 
4000 kPa to a final pressure of 2000 kPa. Estimate the temperature change and the 
entropy change of the isobutane. The specific heat of liquid isobutane at 360 K is  
2.78 J·g−1·°C−1. Estimates of V and β may be found from Eq. (3.68).

 6.9. One kilogram of water (V1 = 1003 cm3·kg−1) in a piston/cylinder device at 25°C 
and  1 bar is compressed in a mechanically reversible, isothermal process to 
1500 bar.  Determine Q, W, ΔU, ΔH, and ΔS given that β = 250 × 10−6 K−1 and 
κ = 45 × 10−6 bar −1. A satisfactory assumption is that V is constant at its arithmetic 
average value.

 6.10. Liquid water at 25°C and 1 bar fills a rigid vessel. If heat is added to the water until 
its temperature reaches 50°C, what pressure is developed? The average value of β 
between 25 and 50°C is 36.2 × 10−5 K−1. The value of κ at 1 bar and 50°C is 4.42 × 
10−5 bar−1, and may be assumed to be independent of P. The specific volume of liquid 
water at 25°C is 1.0030 cm3·g−1.

 6.11. Determine expressions for GR, HR, and SR implied by the three-term virial equation in 
volume, Eq. (3.38).

 6.12. Determine expressions for GR, HR, and SR implied by the van der Waals equation of 
state, Eq. (3.39).

 6.13. Determine expressions for GR, HR, and SR implied by the Dieterici equation:

  P =   
RT
 _____ 

V − b    exp   (  −   
a
 _ 

VRT
   )     

  Here, parameters a and b are functions of composition only.

 6.14. Estimate the entropy change of vaporization of benzene at 50°C. The vapor pressure 
of benzene is given by the equation:

   ln   P   sat  / kPa = 13.8858 −   
2788.51

 ____________  
t  /   ∘  C + 220.79    

 (a) Use Eq. (6.86) with an estimated value of ΔVlv.
 (b) Use the Clausius/Clapeyron equation of Ex. 6.7.
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 6.15. Let   P 1  sat   and   P 2  sat   be values of the saturation vapor pressure of a pure liquid at absolute 
temperatures T1 and T2. Justify the following interpolation formula for estimation of 
the vapor pressure Psat at intermediate temperature T:

   ln   P   sat  = ln   P 1  sat  +   
 T  2    (  T −  T  1   )   

 _________ 
T (    T  2   −  T  1   )      ln    

 P 2  sat 
 ____ 

 P 1  sat 
    

 6.16. Assuming the validity of Eq. (6.89), derive Edmister’s formula for estimation of the 
acentric factor:

  ω =   
3
 __ 7    (     

θ
 _ 1 − θ   )    log   P  c   − 1  

where  θ ≡  T  n   /  T  c  ,  T  n    is the normal boiling point, and Pc is in (atm).

 6.17. Very pure liquid water can be subcooled at atmospheric pressure to temperatures well 
below 0°C. Assume that 1 kg has been cooled as a liquid to −6°C. A small ice crystal 
(of negligible mass) is added to “seed” the subcooled liquid. If the subsequent change 
occurs adiabatically at atmospheric pressure, what fraction of the system freezes, and 
what is the final temperature? What is ΔStotal for the process, and what is its irrevers-
ible feature? The latent heat of fusion of water at 0°C is 333.4 J⋅g−1, and the specific 
heat of subcooled liquid water is 4.226 J⋅g−1⋅°C−1.

 6.18. The state of 1(lbm) of steam is changed from saturated vapor at 20 (psia) to superheated 
vapor at 50 (psia) and 1000(°F). What are the enthalpy and entropy changes of the 
steam? What would the enthalpy and entropy changes be if steam were an ideal gas?

 6.19. A two-phase system of liquid water and water vapor in equilibrium at 8000 kPa con-
sists of equal volumes of liquid and vapor. If the total volume Vt = 0.15 m3, what is the 
total enthalpy Ht and what is the total entropy St?

 6.20. A vessel contains 1 kg of H2O as liquid and vapor in equilibrium at 1000 kPa. If  
the vapor occupies 70% of the volume of the vessel, determine H and S for the 1 kg 
of H2O.

 6.21. A pressure vessel contains liquid water and water vapor in equilibrium at 350(°F). The 
total mass of liquid and vapor is 3(lbm). If the volume of vapor is 50 times the volume 
of liquid, what is the total enthalpy of the contents of the vessel?

 6.22. Wet steam at 230°C has a density of 0.025 g⋅cm−3. Determine x, H, and S.

 6.23. A vessel of 0.15 m3 volume containing saturated-vapor steam at 150°C is cooled to 
30°C. Determine the final volume and mass of liquid water in the vessel.

 6.24. Wet steam at 1100 kPa expands at constant enthalpy (as in a throttling process) to 
101.33 kPa, where its temperature is 105°C. What is the quality of the steam in its 
initial state?
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 6.25. Steam at 2100 kPa and 260°C expands at constant enthalpy (as in a throttling  process) 
to 125 kPa. What is the temperature of the steam in its final state, and what is its 
entropy change? What would be the final temperature and entropy change for an  
ideal gas?

 6.26. Steam at 300(psia) and 500(°F) expands at constant enthalpy (as in a throttling process) 
to 20(psia). What is the temperature of the steam in its final state, and what is its entropy 
change? What would be the final temperature and entropy change for an ideal gas?

 6.27. Superheated steam at 500 kPa and 300°C expands isentropically to 50 kPa. What is its 
final enthalpy?

 6.28. What is the mole fraction of water vapor in air that is saturated with water at 25°C and 
101.33 kPa? At 50°C and 101.33 kPa?

 6.29. A rigid vessel contains 0.014 m3 of saturated-vapor steam in equilibrium with 0.021 m3 
of saturated-liquid water at 100°C. Heat is transferred to the vessel until one phase just 
disappears, and a single phase remains. Which phase (liquid or vapor) remains, and what 
are its temperature and pressure? How much heat is transferred in the process?

 6.30. A vessel of 0.25 m3 capacity is filled with saturated steam at 1500 kPa. If the vessel is 
cooled until 25% of the steam has condensed, how much heat is transferred, and what 
is the final pressure?

 6.31. A vessel of 2 m3 capacity contains 0.02 m3 of liquid water and 1.98 m3 of water vapor 
at 101.33 kPa. How much heat must be added to the contents of the vessel so that the 
liquid water is just evaporated?

 6.32. A rigid vessel of 0.4 m3 volume is filled with steam at 800 kPa and 350°C. How much 
heat must be transferred from the steam to bring its temperature to 200°C?

 6.33. One kilogram of steam is contained in a piston/cylinder device at 800 kPa and 200°C.

 (a) If it undergoes a mechanically reversible, isothermal expansion to 150 kPa, how 
much heat does it absorb?

 (b) If it undergoes a reversible, adiabatic expansion to 150 kPa, what is its final tem-
perature and how much work is done?

 6.34. Steam at 2000 kPa containing 6% moisture is heated at constant pressure to 575°C. 
How much heat is required per kilogram?

 6.35. Steam at 2700 kPa and with a quality of 0.90 undergoes a reversible, adiabatic expan-
sion in a nonflow process to 400 kPa. It is then heated at constant volume until it is 
saturated vapor. Determine Q and W for the process.

 6.36. Four kilograms of steam in a piston/cylinder device at 400 kPa and 175°C undergoes 
a mechanically reversible, isothermal compression to a final pressure such that the 
steam is just saturated. Determine Q and W for the process.
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 6.37. Steam undergoes a change from an initial state of 450°C and 3000 kPa to a final state 
of 140°C and 235 kPa. Determine ΔH and ΔS:

 (a) From steam-table data.
 (b) By equations for an ideal gas.
 (c) By appropriate generalized correlations.

 6.38. A piston/cylinder device operating in a cycle with steam as the working fluid executes 
the following steps:

 ∙ Steam at 550 kPa and 200°C is heated at constant volume to a pressure of 800 kPa.
 ∙ It then expands, reversibly and adiabatically, to the initial temperature of 200°C.
 ∙ Finally, the steam is compressed in a mechanically reversible, isothermal process 

to the initial pressure of 550 kPa.

What is the thermal efficiency of the cycle?

 6.39. A piston/cylinder device operating in a cycle with steam as the working fluid executes 
the following steps:

 ∙ Saturated-vapor steam at 300(psia) is heated at constant pressure to 900(°F).
 ∙ It then expands, reversibly and adiabatically, to the initial temperature of 

417.35(°F).
 ∙ Finally, the steam is compressed in a mechanically reversible, isothermal process 

to the initial state.

What is the thermal efficiency of the cycle?

 6.40. Steam entering a turbine at 4000 kPa and 400°C expands reversibly and adiabatically.

 (a) For what discharge pressure is the exit stream a saturated vapor?
 (b) For what discharge pressure is the exit stream a wet vapor with quality of 0.95?

 6.41. A steam turbine, operating reversibly and adiabatically, takes in superheated steam at 
2000 kPa and discharges at 50 kPa.

 (a) What is the minimum superheat required so that the exhaust contains no moisture?
 (b) What is the power output of the turbine if it operates under these conditions and 

the steam rate is 5 kg⋅s−1?

 6.42. An operating test of a steam turbine produces the following results. With steam sup-
plied to the turbine at 1350 kPa and 375°C, the exhaust from the turbine at 10 kPa is 
saturated vapor. Assuming adiabatic operation and negligible changes in kinetic and 
potential energies, determine the turbine efficiency, i.e., the ratio of actual work of the 
turbine to the work of a turbine operating isentropically from the same initial condi-
tions to the same exhaust pressure.

 6.43. A steam turbine operates adiabatically with a steam rate of 25 kg⋅s−1. The steam is 
supplied at 1300 kPa and 400°C and discharges at 40 kPa and 100°C. Determine the 
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power output of the turbine and the efficiency of its operation in comparison with a 
turbine that operates reversibly and adiabatically from the same initial conditions to 
the same final pressure.

 6.44. From steam-table data, estimate values for the residual properties VR, HR, and SR for 
steam at 225°C and 1600 kPa, and compare with values found by a suitable general-
ized correlation.

 6.45. From data in the steam tables:

 (a) Determine values for Gl and Gv for saturated liquid and vapor at 1000 kPa. Should 
these be the same?

 (b) Determine values for ΔHlv/T and ΔSlv at 1000 kPa. Should these be the same?
 (c) Find values for VR, HR, and SR for saturated vapor at 1000 kPa.
 (d) Estimate a value for dPsat/dT at 1000 kPa and apply the Clapeyron equation to 

evaluate ΔSlv at 1000 kPa. Does this result agree with the steam-table value?

Apply appropriate generalized correlations for evaluation of VR, HR, and SR for satu-
rated vapor at 1000 kPa. Do these results agree with the values found in part (c)?

 6.46. From data in the steam tables:

 (a) Determine values for Gl and Gv for saturated liquid and vapor at 150(psia). Should 
these be the same?

 (b) Determine values for ΔHlv/T and ΔSlv at 150(psia). Should these be the same?
 (c) Find values for VR, HR, and SR for saturated vapor at 150(psia).
 (d) Estimate a value for dPsat/dT at 150(psia) and apply the Clapeyron equation to 

evaluate ΔSlv at 150(psia). Does this result agree with the steam-table value?

Apply appropriate generalized correlations for evaluation of VR, HR, and SR for satu-
rated vapor at 150(psia). Do these results agree with the values found in part (c)?

 6.47. Propane gas at 1 bar and 35°C is compressed to a final state of 135 bar and 195°C. 
Estimate the molar volume of the propane in the final state and the enthalpy and 
entropy changes for the process. In its initial state, propane may be assumed an 
ideal gas.

 6.48. Propane at 70°C and 101.33 kPa is compressed isothermally to 1500 kPa. Estimate 
ΔH and ΔS for the process by suitable generalized correlations.

 6.49. A stream of propane gas is partially liquefied by throttling from 200 bar and 370 K 
to 1 bar. What fraction of the gas is liquefied in this process? The vapor pressure of 
propane is given by Eq. (6.91) with parameters: A = –6.72219, B = 1.33236, C = 
–2.13868, D = –1.38551.

 6.50. Estimate the molar volume, enthalpy, and entropy for 1,3-butadiene as a saturated 
vapor and as a saturated liquid at 380 K. The enthalpy and entropy are set equal to zero 
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for the ideal-gas state at 101.33 kPa and 0°C. The vapor pressure of 1,3-butadiene at 
380 K is 1919.4 kPa.

 6.51. Estimate the molar volume, enthalpy, and entropy for n-butane as a saturated vapor 
and as a saturated liquid at 370 K. The enthalpy and entropy are set equal to zero for 
the ideal-gas state at 101.33 kPa and 273.15 K. The vapor pressure of n-butane at  
370 K is 1435 kPa.

 6.52. The total steam demand of a plant over the period of an hour is 6000 kg, but 
instantaneous demand fluctuates from 4000 to 10,000 kg⋅h−1. Steady boiler operation at  
6000 kg⋅h−1 is accommodated by inclusion of an accumulator, essentially a tank 
containing mostly saturated liquid water that “floats on the line” between the boiler 
and the plant. The boiler produces saturated steam at 1000 kPa, and the plant operates 
with steam at 700 kPa. A control valve regulates the steam pressure upstream from 
the accumulator and a second control valve regulates the pressure downstream  
from the accumulator. When steam demand is less than boiler output, steam flows into 
and is largely condensed by liquid residing in the accumulator, in the process increasing 
the pressure to values greater than 700 kPa. When steam demand is greater than boiler 
output, water in the accumulator vaporizes and steam flows out, thus reducing the 
pressure to values less than 1000 kPa. What accumulator volume is required for this 
service if no more that 95% of its volume should be occupied by liquid?

 6.53. Propylene gas at 127°C and 38 bar is throttled in a steady-state flow process to 1 bar, 
where it may be assumed to be an ideal gas. Estimate the final temperature of the pro-
pylene and its entropy change.

 6.54. Propane gas at 22 bar and 423 K is throttled in a steady-state flow process to 1 bar. 
Estimate the entropy change of the propane caused by this process. In its final state, 
propane may be assumed to be an ideal gas.

 6.55. Propane gas at 100°C is compressed isothermally from an initial pressure of 1 bar to a 
final pressure of 10 bar. Estimate ΔH and ΔS.

 6.56. Hydrogen sulfide gas is compressed from an initial state of 400 K and 5 bar to a final 
state of 600 K and 25 bar. Estimate ΔH and ΔS.

 6.57. Carbon dioxide expands at constant enthalpy (as in a throttling process) from  
1600 kPa and 45°C to 101.33 kPa. Estimate ΔS for the process.

 6.58. A stream of ethylene gas at 250°C and 3800 kPa expands isentropically in a turbine to 
120 kPa. Determine the temperature of the expanded gas and the work produced if the 
properties of ethylene are calculated by:

 (a) Equations for an ideal gas.
 (b) Appropriate generalized correlations.

www.konkur.in

Telegram: @uni_k



6.10. Problems 265

 6.59. A stream of ethane gas at 220°C and 30 bar expands isentropically in a turbine to  
2.6 bar. Determine the temperature of the expanded gas and the work produced if the 
properties of ethane are calculated by:

 (a) Equations for an ideal gas.
 (b) Appropriate generalized correlations.

 6.60. Estimate the final temperature and the work required when 1 mol of n-butane is com-
pressed isentropically in a steady-flow process from 1 bar and 50°C to 7.8 bar.

 6.61. Determine the maximum amount of work obtainable in a flow process from 1 kg of 
steam at 3000 kPa and 450°C for surrounding conditions of 300 K and 101.33 kPa.

 6.62. Liquid water at 325 K and 8000 kPa flows into a boiler at a rate of 10 kg⋅s−1 and is 
vaporized, producing saturated vapor at 8000 kPa. What is the maximum fraction of 
the heat added to the water in the boiler that can be converted into work in a process 
whose product is water at the initial conditions, if Tσ = 300 K? What happens to the 
rest of the heat? What is the rate of entropy change in the surroundings as a result of 
the work-producing process? In the system? Total?

 6.63. Suppose the heat added to the water in the boiler in the preceding problem comes from 
a furnace at a temperature of 600°C. What is the total rate of entropy generation as a 
result of the heating process? What is    W   

∙
    lost   ?

 6.64. An ice plant produces 0.5 kg⋅s−1 of flake ice at 0°C from water at 20°C (Tσ) in a 
continuous process. If the latent heat of fusion of water is 333.4 kJ⋅kg−1 and if the 
thermodynamic efficiency of the process is 32%, what is the power requirement of  
the plant?

 6.65. An inventor has developed a complicated process for making heat continuously avail-
able at an elevated temperature. Saturated steam at 100°C is the only source of energy. 
Assuming that there is plenty of cooling water available at 0°C, what is the maximum 
temperature level at which heat in the amount of 2000 kJ can be made available for 
each kilogram of steam flowing through the process?

 6.66. Two boilers, both operating at 200(psia), discharge equal amounts of steam into the 
same steam main. Steam from the first boiler is superheated at 420(°F) and steam 
from the second is wet with a quality of 96%. Assuming adiabatic mixing and negli-
gible changes in potential and kinetic energies, what is the equilibrium condition after 
mixing and what is SG for each (lbm) of discharge steam?

 6.67. A rigid tank of 80(ft)3 capacity contains 4180(lbm) of saturated liquid water at 430(°F). 
This amount of liquid almost completely fills the tank, the small remaining volume 
being occupied by saturated-vapor steam. Because a bit more vapor space in the tank 
is wanted, a valve at the top of the tank is opened, and saturated-vapor steam is vented 
to the atmosphere until the temperature in the tank falls to 420(°F). Assuming no heat 
transfer to the contents of the tank, determine the mass of steam vented.
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 6.68. A tank of 50 m3 capacity contains steam at 4500 kPa and 400°C. Steam is vented from 
the tank through a relief valve to the atmosphere until the pressure in the tank falls 
to 3500 kPa. If the venting process is adiabatic, estimate the final temperature of the 
steam in the tank and the mass of steam vented.

 6.69. A tank of 4 m3 capacity contains 1500 kg of liquid water at 250°C in equilibrium with 
its vapor, which fills the rest of the tank. A quantity of 1000 kg of water at 50°C is 
pumped into the tank. How much heat must be added during this process if the tem-
perature in the tank is not to change?

 6.70. Liquid nitrogen is stored in 0.5 m3 metal tanks that are thoroughly insulated. Consider 
the process of filling an evacuated tank, initially at 295 K. It is attached to a line con-
taining liquid nitrogen at its normal boiling point of 77.3 K and at a pressure of several 
bars. At this condition, its enthalpy is –120.8 kJ⋅kg−1. When a valve in the line is 
opened, the nitrogen flowing into the tank at first evaporates in the process of cooling 
the tank. If the tank has a mass of 30 kg and the metal has a specific heat capacity of 
0.43 kJ⋅kg−1⋅K−1, what mass of nitrogen must flow into the tank just to cool it to a 
temperature such that liquid nitrogen begins to accumulate in the tank? Assume that 
the nitrogen and the tank are always at the same temperature. The properties of satu-
rated nitrogen vapor at several temperatures are given as follows:

  

T /K P /bar Vv /m3⋅kg−1 Hv /kJ⋅kg−1

80 1.396 0.1640 78.9
85 2.287 0.1017 82.3
90 3.600 0.06628 85.0
95 5.398 0.04487 86.8

100 7.775 0.03126 87.7
105 10.83 0.02223 87.4
110 14.67 0.01598 85.6

 6.71. A well-insulated tank of 50 m3 volume initially contains 16,000 kg of water distrib-
uted between liquid and vapor phases at 25°C. Saturated steam at 1500 kPa is admit-
ted to the tank until the pressure reaches 800 kPa. What mass of steam is added?

 6.72. An insulated evacuated tank of 1.75 m3 volume is attached to a line containing steam 
at 400 kPa and 240°C. Steam flows into the tank until the pressure in the tank reaches 
400 kPa. Assuming no heat flow from the steam to the tank, prepare graphs showing 
the mass of steam in the tank and its temperature as a function of pressure in the tank.

 6.73. A 2 m3 tank initially contains a mixture of saturated-vapor steam and saturated-liquid 
water at 3000 kPa. Of the total mass, 10% is vapor. Saturated-liquid water is bled from 
the tank through a valve until the total mass in the tank is 40% of the initial total mass. 
If during the process the temperature of the contents of the tank is kept constant, how 
much heat is transferred?
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 6.74. A stream of water at 85°C, flowing at the rate of 5 kg⋅s−1 is formed by mixing water 
at 24°C with saturated steam at 400 kPa. Assuming adiabatic operation, at what rates 
are the steam and water fed to the mixer?

 6.75. In a desuperheater, liquid water at 3100 kPa and 50°C is sprayed into a stream of 
superheated steam at 3000 kPa and 375°C in an amount such that a single stream 
of saturated-vapor steam at 2900 kPa flows from the desuperheater at the rate of  
15 kg⋅s−1. Assuming adiabatic operation, what is the mass flow rate of the water? 
What is    S   

∙
    G    for the process? What is the irreversible feature of the process?

 6.76. Superheated steam at 700 kPa and 280°C flowing at the rate of 50 kg⋅s−1 is mixed 
with liquid water at 40°C to produce steam at 700 kPa and 200°C. Assuming adiabatic 
operation, at what rate is water supplied to the mixer? What is    S   

∙
    G    for the process? 

What is the irreversible feature of the process?

 6.77. A stream of air at 12 bar and 900 K is mixed with another stream of air at 2 bar and 
400 K with 2.5 times the mass flow rate. If this process were accomplished reversibly 
and adiabatically, what would be the temperature and pressure of the resulting air 
stream? Assume air to be an ideal gas for which CP = (7/2)R.

 6.78. Hot nitrogen gas at 750(°F) and atmospheric pressure flows into a waste-heat boiler 
at the rate of 40(lbm)s−1, and transfers heat to water boiling at 1(atm). The water 
feed to the boiler is saturated liquid at 1(atm), and it leaves the boiler as superheated 
steam at 1(atm) and 300(˚F). If the nitrogen is cooled to 325(˚F) and if heat is lost to 
the surroundings at a rate of 60(Btu) for each (lbm) of steam generated, what is the 
steam-generation rate? If the surroundings are at 70(°F), what is    S 

∙
    G    for the process? 

Assume nitrogen to be an ideal gas for which CP = (7/2)R.

 6.79. Hot nitrogen gas at 400°C and atmospheric pressure flows into a waste-heat boiler at 
the rate of 20 kg⋅s−1, and transfers heat to water boiling at 101.33 kPa. The water feed 
to the boiler is saturated liquid at 101.33 kPa, and it leaves the boiler as superheated 
steam at 101.33 kPa and 150°C. If the nitrogen is cooled to 170°C and if heat is lost 
to the surroundings at a rate of 80 kJ for each kilogram of steam generated, what is 
the steam-generation rate? If the surroundings are at 25°C, what is    S 

∙
    G    for the process? 

Assume nitrogen to be an ideal gas for which CP = (7/2)R.

 6.80. Show that isobars and isochores have positive slopes in the single-phase regions of a 
TS diagram. Suppose that CP = a + bT, where a and b are positive constants. Show 
that the curvature of an isobar is also positive. For specified T and S, which is steeper: 
an isobar or an isochore? Why? Note that CP > CV.

 6.81. Starting with Eq. (6.9), show that isotherms in the vapor region of a Mollier (HS) dia-
gram have slopes and curvatures given by:

    (  
∂ H

 ___ ∂ S  )    
T

   =   
1
 __ 

β
    (  βT − 1 )      (  

 ∂   2  H
 ____ 

∂  S   2 
  )    

T

   = −    
1
 ____ 

 β   3  V
     (  

∂ β
 ___ ∂ P  )    

T

    

www.konkur.in

Telegram: @uni_k



268 CHAPTER 6. Thermodynamic Properties of Fluids 

Here, β is volume expansivity. If the vapor is described by the two-term virial equation 
in P, Eq. (3.36), what can be said about the signs of these derivatives? Assume that, 
for normal temperatures, B is negative and dB/dT is positive.

 6.82. The temperature dependence of the second virial coefficient B is shown for nitrogen in 
Fig. 3.8. Qualitatively, the shape of B(T ) is the same for all gases; quantitatively, the 
temperature for which B = 0 corresponds to a reduced temperature of about Tr = 2.7 
for many gases. Use these observations to show by Eqs. (6.54) through (6.56) that the 
residual properties GR, HR, and SR are negative for most gases at modest pressures and 
normal temperatures. What can you say about the signs of VR and   C P  R  ?

 6.83. An equimolar mixture of methane and propane is discharged from a compressor at 
5500 kPa and 90°C at the rate of 1.4 kg⋅s−1. If the velocity in the discharge line is not 
to exceed 30 m·s−1, what is the minimum diameter of the discharge line?

 6.84. Estimate VR, HR, and SR for one of the following by appropriate generalized correlations:

 (a) 1,3-Butadiene at 500 K and 20 bar
 (b) Carbon dioxide at 400 K and 200 bar
 (c) Carbon disulfide at 450 K and 60 bar
 (d) n-Decane at 600 K and 20 bar
 (e) Ethylbenzene at 620 K and 20 bar
 (f) Methane at 250 K and 90 bar
 (g) Oxygen at 150 K and 20 bar
 (h) n-Pentane at 500 K and 10 bar
 (i) Sulfur dioxide at 450 K and 35 bar
 (j) Tetrafluoroethane at 400 K and 15 bar

 6.85. Estimate Z, HR, and SR for one of the following equimolar mixtures by the Lee/Kesler 
correlations:

 (a) Benzene/cyclohexane at 650 K and 60 bar
 (b) Carbon dioxide/carbon monoxide at 300 K and 100 bar
 (c) Carbon dioxide/n-octane at 600 K and 100 bar
 (d) Ethane/ethylene at 350 K and 75 bar
 (e) Hydrogen sulfide/methane at 400 K and 150 bar
 (f) Methane/nitrogen at 200 K and 75 bar
 (g) Methane/n-pentane at 450 K and 80 bar
 (h) Nitrogen/oxygen at 250 K and 100 bar

 6.86. For the reversible isothermal compression of a liquid for which β and κ may be 
assumed independent of pressure, show that:

 (a)  W =  P  1    V  1   −  P  2    V  2   −   
 V  2   −  V  1  

 _______ 
κ
   

 (b)  ΔS =   
β

 __ 
κ
    (   V  2   −  V  1   )    

 (c)  ΔH =   
1 − βT

 _____ 
κ
    (   V  2   −  V  1   )    
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Do not assume that V is constant at an average value, but use Eq. (3.6) for its P dependence 
(with V2 replaced by V). Apply these equations to the conditions stated in Prob. 6.9. 
What do the results suggest with respect to use of an average value for V?

 6.87. In general for an arbitrary thermodynamic property of a pure substance, M = M(T, P); 
whence

  dM =   (  
∂ M

 ____ ∂ T  )    
P

   dT +   (  
∂ M

 ___ ∂ P  )    
T

   dP  

For what two distinct conditions is the following equation true?

  ΔM =  ∫ 
 T  1  

  
 T  2  

   (  
∂ M

 ___ ∂ T  )    
P

     dT  

 6.88. The enthalpy of a pure ideal gas depends on temperature only. Hence, Hig is often said 
to be “independent of pressure,” and one writes    (  ∂  H   ig  / ∂ P )    T   = 0 . Determine expres-
sions for    (  ∂  H   ig  / ∂ P )    V    and    (  ∂  H   ig  / ∂ P )    S   . Why are these quantities not zero?

 6.89. Prove that

 dS =   
 C  V  

 ___ 
T

     (  
∂ T

 ___ ∂ P  )    
V

   dP +   
 C  P  

 ___ 
T

     (  
∂ T

 ___ ∂ V  )    
P

   dV 

For an ideal gas with constant heat capacities, use this result to derive Eq. (3.23c).

 6.90. The derivative    (  ∂ U / ∂ V )    T    is sometimes called the internal pressure  and the product   
T (  ∂ P / ∂ T )    V    the thermal pressure. Find equations for their evaluation for:

 (a) An ideal gas.
 (b) A van der Waals fluid.
 (c) A Redlich/Kwong fluid.

 6.91. (a)  A pure substance is described by an expression for G(T, P). Show how to deter-
mine Z, U, and CV, in relation to G, T, and P and/or derivatives of G with respect 
to T and P.

 (b) A pure substance is described by an expression for A(T, V ). Show how to deter-
mine Z, H, and CP, in relation to A, T, and V and/or derivatives of A with respect 
to T and V.

 6.92. Use steam tables to estimate a value of the acentric factor ω for water. Compare the 
result with the value given in Table B.1.

 6.93. The critical coordinates for tetrafluoroethane (refrigerant HFC-134a) are given in 
Table B.1, and Table 9.1 shows saturation properties for the same refrigerant. From 
these data determine the acentric factor ω for HFC-134a, and compare it with the 
value given in Table B.1.
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 6.94. As noted in Ex. 6.7,  Δ H   lv   is not independent of T; in fact, it becomes zero at the crit-
ical point. Nor may saturated vapors in general be considered ideal gases. Why is it 
then that Eq. (6.89) provides a reasonable approximation to vapor-pressure behavior 
over the entire liquid range?

 6.95. Rationalize the following approximate expressions for solid/liquid saturation pressures:

 (a)   P sl  
sat  = A + BT; 

 (b)   P sl  
sat  = A + B ln T 

 6.96. As suggested by Fig. 3.1, the slope of the sublimation curve at the triple point is gen-
erally greater than that of the vaporization curve at the same state. Rationalize this 
observation. Note that triple-point pressures are usually low; hence assume for this 
exercise that 

 Δ Z   sv  ≈ Δ Z   lv  ≈ 1. 

 6.97. Show that the Clapeyron equation for liquid/vapor equilibrium may be written in the 
reduced form:

    
d ln  P r  

sat 
 _______ 

d  T  r  
   =   

   ̂  ΔH    
lv

 
 _______ 

 T r  
2  Δ Z   lv 

   where    ̂  ΔH    
lv

  ≡   
Δ H   lv 

 _____ 
R  T  c  

    

 6.98. Use the result of the preceding problem to estimate the heat of vaporization at the 
normal boiling point for one of the substances listed below. Compare the result with 
the value given in Table B.2 of App. B.

Ground rules: Represent   P r  
sat   with Eqs. (6.92), (6.93), and (6.94), with ω given by  

Eq. (6.95). Use Eqs. (3.57), (3.58), (3.59), (3.61), and (3.62) for Zv, and Eq. (3.69)  
for Zl. Critical properties and normal boiling points are given in Table B.1.

 (a) Benzene
 (b) iso-Butane
 (c) Carbon tetrachloride
 (d) Cyclohexane
 (e) n-Decane
 (f) n-Hexane
 (g) n-Octane
 (h) Toluene
 (i) o-Xylene

 6.99. Riedel proposed a third corresponding-states parameter αc, related to the vapor-pressure 
curve by: 

   α  c   ≡   [     
d ln  P   sat 

 _______ 
d ln T   ]    

T= T  c  
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For simple fluids, experiment shows that   α  c   ≈ 5.8;  for non-simple fluids, αc increases 
with increasing molecular complexity. How well does the Lee/Kesler correlation for   
P r  

sat   accommodate these observations?

 6.100. Triple-point coordinates for carbon dioxide are Tt = 216.55 K and Pt = 5.170 bar. 
Hence, CO2 has no normal boiling point. (Why?) Nevertheless, one can define a hypo-
thetical normal boiling point by extrapolation of the vapor-pressure curve.

 (a) Use the Lee/Kesler correlation for   P r  
sat   in conjunction with the triple-point coordi-

nates to estimate ω for CO2. Compare it with the value in Table B.1.
 (b) Use the Lee/Kesler correlation to estimate the hypothetical normal boiling point 

for CO2. Comment on the likely reasonableness of this result.
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Chapter 7

Applications of  
Thermodynamics to Flow 

Processes

The thermodynamics of flow is based on the mass, energy, and entropy balances developed in 
Chapters 2 and 5. In this chapter, we apply these balances to specific processes. The discipline 
underlying the study of flow is fluid mechanics,1 which augments the balances of thermody-
namics with a momentum balance that arises from the laws of classical mechanics (Newton’s 
laws). This makes fluid mechanics a broader field of study. The distinction between thermody-
namics problems and fluid-mechanics problems depends on whether the momentum balance 
is required for solution. Situations that can be analyzed using only mass conservation and the 
laws of thermodynamics are commonly treated in courses on thermodynamics, particularly 
when they involve flow of compressible fluids (i.e., gases and supercritical fluids). Fluid 
mechanics then deals with the broad spectrum of problems that require application of the 
momentum balance. This division, though arbitrary, is traditional and convenient.

For example, if the states of a gas entering and leaving a pipeline are known, then the 
first law establishes the quantity of energy exchanged between the pipeline and its surround-
ings. The mechanism of the process, the details of flow, and the path actually followed by the 
gas between entrance and exit are not needed for this purpose. On the other hand, if knowledge 
of initial or final state of the gas is incomplete, then more detailed information about the process 
is needed. Perhaps the exit pressure of the gas is not specified. In this case, one must apply the 
momentum balance of fluid mechanics, with appropriate models of fluid behavior, to estimate 
the outlet pressure.

Flow is driven by pressure gradients within a fluid. Moreover, temperature, velocity, and 
composition gradients may also exist within a flowing fluid. This contrasts with the uniform 
conditions that prevail at equilibrium in closed systems. The variation of conditions in flow 
systems requires that properties be attributed to point masses of fluid. Thus we assume that 
intensive properties, such as density, specific enthalpy, specific entropy, etc., at a point are 

1Noel de Nevers, Fluid Mechanics for Chemical Engineers, 3rd ed., McGraw-Hill, New York, 2005. Fluid  
mechanics is treated as an integral part of transport processes by R. B. Bird, W. E. Stewart, and E. N. Lightfoot in 
Transport Phenomena, 2nd ed., John Wiley, New York, 2001; by J. L. Plawsky in Transport Phenomena Fundamentals, 
3rd ed., CRC Press, 2014; and by D. Welty, G. L. Rorrer, and D. G. Foster, in Fundamentals of Momentum, Heat, and 
Mass Transfer, 7th ed., John Wiley, New York, 2019.
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7.1. Duct Flow of Compressible Fluids 273

determined solely by the temperature, pressure, and composition at that point. Moreover, we 
assume that the fluid exhibits the same set of intensive properties as it would if it existed at 
equilibrium at the same temperature, pressure, and composition. This implies that an equation 
of state applies locally and instantaneously at any point in a fluid system, and that one may 
invoke a concept of local state, independent of the concept of equilibrium. Experience shows 
that this produces accurate results for a broad range of practical processes.

Thermodynamic analysis is most often applied to flow processes involving gases or 
supercritical fluids. In these compressible flow processes the fluid properties change due to 
changes in pressure, and thermodynamic analysis provides relationships among these changes. 
Thus, the intent of this brief chapter is to:
 ∙ Develop the thermodynamic equations applicable to one-dimensional steady-state flow 

of compressible fluids in conduits
 ∙ Apply these equations to flow (both subsonic and supersonic) in pipes and nozzles
 ∙ Treat throttling processes, i.e., flow through restrictions
 ∙ Calculate the work produced by turbines and expanders
 ∙ Examine compression processes as produced by compressors, pumps, blowers, fans, and 

vacuum pumps
The equations of balance for open systems presented in Chapters 2 and 5 are summarized 

in Table 7.1 for easy reference. Equations (7.1) and (7.2), restricted forms of the mass balance, 
are also included. These equations are the basis for thermodynamic analysis of processes in this 
and the next two chapters. When combined with thermodynamic property statements, they 
allow calculation of system states and process energy requirements.

7.1 DUCT FLOW OF COMPRESSIBLE FLUIDS

Problems like sizing of pipes and shaping of nozzles require the momentum balance of fluid 
mechanics, and therefore are not part of thermodynamics. However, thermodynamics does pro-
vide equations that interrelate the changes in pressure, velocity, cross- sectional area, enthalpy, 
entropy, and specific volume of a flowing stream. Here we consider the adiabatic, steady-state, 
one-dimensional flow of a compressible fluid in the absence of shaft work and changes in poten-
tial energy. We first derive the pertinent thermodynamic equations, then apply them to flow in 
pipes and nozzles. Thus, here we derive four equations relating six quantities: enthalpy (H), 
entropy (S), velocity (u), cross-sectional area (A), pressure (P), and specific volume (V).

For adiabatic flow through a pipe or nozzle with no moving parts, the appropriate energy 
balance is Eq. (2.31). With Q, Ws and Δz all set equal to zero,

 ΔH +   
Δ u   2 

 ____ 2   = 0 

In differential form,  dH = −u du  (7.3)
The continuity equation, Eq. (2.26), also applies. Because   m 

∙
    is constant, its differential 

form is:
 d(u A / V) = 0 

or    
dV

 ___ 
V

   −   
du

 ___ 
u
   −   

dA
 ___ 

A
   = 0  (7.4)
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7.1. Duct Flow of Compressible Fluids 275

The fundamental property relation appropriate to this application is:
  dH = T dS + V dP  (6.9)
In addition, the specific volume of the fluid can be considered a function of its entropy and 
pressure: V = V (S, P). Then,

 dV =   (  
∂ V

 ___ ∂ S  )   
P

   dS +   (  
∂ V

 ___ ∂ P  )   
S

   dP 

This equation is put into more convenient form through the mathematical identity:

   (  
∂ V

 ___ ∂ S  )   
P

   =   (  
∂ V

 ___ ∂ T  )   
P

    (  
∂ T

 ___ ∂ S  )   
P

   

Substituting for the two partial derivatives on the right by Eqs. (3.3) and (6.18) gives:

   (  
∂ V

 ___ ∂ S  )   
P

   =   
β V T

 ____  C  P     

where β is the volume expansivity. The equation derived in physics for the speed of sound c in 
a fluid is:

  c   2  = − V   2    (  
∂ P

 ___ ∂ V  )   
S

     or     (   
∂ V

 ___ ∂ P  )   
S

   = −   
 V   2 

 ___ 
 c   2 

   

Substituting for the two partial derivatives in the equation for dV yields:

    
dV

 ___ 
V

   =   
βT

 ___  C  P     dS −   
V

 __ 
 c   2 

   dP  (7.5)

Equations (7.3), (7.4), (6.9), and (7.5) relate the six differentials dH, du, dV, dA, dS,  
and dP. With four equations, we treat dS and dA as independent and develop equations that 
express the remaining differentials as functions of these two. First, we combine Eqs. (7.3) 
and (6.9):

  T dS + V dP  = −u du  (7.6)

Eliminating dV and du from Eq. (7.4) by Eqs. (7.5) and (7.6) gives upon rearrangement:

  (1 −  M   2 ) V dP +   (  1 +   
β  u   2 

 _  C  P     )   T dS −   
 u   2 

 ___ 
A

   dA = 0  (7.7)

where M is the Mach number, defined as the ratio of the speed of the fluid in the duct to the 
speed of sound in the fluid, u /c. Equation (7.7) relates dP to dS and dA.

Equations (7.6) and (7.7) are combined to eliminate V dP:

  u du −   

⎛

 ⎜ 

⎝

     
  
β  u   2 

 _  C  p     +  M   2 
 _ 

1 −  M   2 
   

⎞

 ⎟ 

⎠

    T dS +   (     
1
 _ 

1 −  M   2 
   )      

 u   2 
 ___ 

A
   dA = 0  (7.8)
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This equation relates du to dS and dA. Combined with Eq. (7.3) it relates dH to dS and dA,  
and combined with Eq. (7.4) it relates dV to these same independent variables.

The differentials in the preceding equations represent changes in the fluid as it traverses 
a differential length of its path. If this length is dx, then each of the equations of flow can be 
divided through by dx. Equations (7.7) and (7.8) then become:

  V(1 − M2)   
dP

 ___ 
dx

   + T   (  1 +   
β  u   2 

 _  C  P     )      
dS

 ___ 
dx

   −   
 u   2 

 ___ 
A

     
dA

 ___ 
dx

   = 0  (7.9)

  u   
du

 ___ 
dx

   − T   

⎛

 ⎜ 

⎝

     
  
β  u   2 

 ____  C  P     +  M   2 
 _________ 

1 −  M   2 
   

⎞

 ⎟ 

⎠

      
dS

 ___ 
dx

   +   (     
1
 _ 

1 −  M   2 
   )     

 u   2 
 ___ 

A
     
dA

 ___ 
dx

   = 0  (7.10)

According to the second law, the irreversibilities due to fluid friction in adiabatic flow cause 
an entropy increase in the fluid in the direction of flow. In the limit as the flow approaches 
reversibility, this increase approaches zero. In general, then,

    
dS

 ___ 
dx

   ≥ 0  

Pipe Flow
For the case of steady-state adiabatic flow of compressible fluids in a horizontal pipe of  
constant cross-sectional area, dA/dx = 0, and Eqs. (7.9) and (7.10) reduce to:

   
dP

 ___ 
dx

   = −   
T

 __ 
V

     

⎛

 ⎜ 

⎝

     
1 +   

β  u   2 
 _  C  p    
 _ 

1 −  M   2 
   

⎞

 ⎟ 

⎠

      
dS

 ___ 
dx

         u    
du

 ___ 
dx

   = T   

⎛

 ⎜ 

⎝

     
  
β  u   2 

 _  C  p     +  M   2 
 _ 

1 −  M   2 
   

⎞

 ⎟ 

⎠

      
dS

 ___ 
dx

   

For subsonic flow, M2 < 1. All terms on the right sides of these equations are then positive, and

   
dP

 ___ 
dx

   < 0   and      
du

 ___ 
dx

   > 0 

Thus the pressure decreases and the velocity increases in the direction of flow. However, the 
velocity cannot increase indefinitely. If the velocity were to exceed the sonic value, then the 
above inequalities would reverse. Such a transition is not possible in a pipe of constant 
cross-sectional area. For subsonic flow, the maximum fluid velocity obtainable in a pipe of 
constant cross section is the speed of sound, and this value is reached at the exit of the pipe.  
At this point dS/dx reaches its limiting value of zero. Given a discharge pressure low enough 
for the flow to become sonic, lengthening the pipe does not alter this result; the sonic velocity 
is still obtained at the outlet of the lengthened pipe. Similarly, further decreasing the pressure 
at the pipe outlet does not change the flow through the pipe.

The equations for pipe flow indicate that when flow is supersonic the pressure increases, 
and the velocity decreases, in the direction of flow. However, such a flow regime is unstable, 
and when a supersonic stream enters a pipe of constant cross section, a compression shock 
occurs, the result of which is an abrupt and finite increase in pressure and decrease in velocity 
to a subsonic value.
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7.1. Duct Flow of Compressible Fluids 277

Example 7.1
For the steady-state, adiabatic, irreversible flow of an incompressible liquid in a  
horizontal pipe of constant cross-sectional area, show that:

 (a) The velocity is constant.

 (b) The temperature increases in the direction of flow.

 (c) The pressure decreases in the direction of flow.

Solution 7.1

 (a) The control volume here is simply a finite length of horizontal pipe, with entrance 
and exit sections identified as 1 and 2. By the continuity equation, Eq. (2.26),

    
 u  2    A  2  

 _____  V  2     =   
 u  1    A  1  

 _____  V  1      

However, A2 = A1 (constant cross-sectional area) and V2 = V1 (incompressible 
fluid). Hence, u2 = u1.

 (b) The entropy balance of Eq. (5.18) here becomes simply SG = S2 − S1. For an 
incompressible liquid with heat capacity C (see Ex. 6.2),

   S  G   =  S  2   −  S  1   =  ∫ 
T1

  
T2

    C    
dT

 ___ 
T

    

But SG is positive (flow is irreversible) and hence, by the last equation, T2 > T1, 
and temperature increases in the direction of flow.

 (c) As shown in (a), u2 = u1, and therefore the energy balance, Eq. (2.31), reduces 
for the stated conditions to H2 − H1 = 0. Combining this with the integrated 
form of Eq. (A) of Ex. 6.2 applied to an incompressible liquid yields:

  H  2   −  H  1   =  ∫ 
T1

  
T2

     C dT + V( P  2   −  P  1  ) = 0 

and

 V( P  2   −  P  1  ) = − ∫ 
T1

  
T2

    C dT 

As shown in (b), T2 > T1; thus by the last equation, P2 < P1, and pressure decreases 
in the direction of flow.

Repeating this example for the case of reversible adiabatic flow is instructive.  
In this case u2 = u1 as before, but SG = 0. The entropy balance then shows that  
T2 = T1, in which case the energy balance yields P2 = P1. We conclude that the 
temperature increase of (b) and the pressure decrease of (c) originate from flow 
irreversibilities, specifically from the irreversibilities associated with fluid friction.
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Nozzles
The limitations observed for flow of compressible fluids in pipes do not extend to properly 
designed nozzles, which bring about the interchange of enthalpy and kinetic energy of a fluid 
as a result of changing cross-sectional area for flow. The design of effective nozzles is a prob-
lem in fluid mechanics, but the flow through a well-designed nozzle is amenable to thermody-
namic analysis. In a properly designed nozzle the area changes with length such that the flow 
is nearly frictionless. In the limit of reversible flow, the rate of entropy increase approaches 
zero, and dS/dx = 0, and Eqs. (7.9) and (7.10) become:

   
dP

 ___ 
dx

   =   
 u   2 

 ____ 
VA

     (    
1
 _ 

1 −  M   2 
   )     

dA
 ___ 

dx
            

du
 ___ 

dx
   = −   

u
 __ 

A 
   (  

1
 _______ 

1 − M2  )    
dA

 ___ 
dx

   

The characteristics of flow depend on whether the flow is subsonic (M < 1) or supersonic  
(M > 1). The various cases are summarized in Table 7.2.

Subsonic: M < 1 Supersonic: M > 1

Converging Diverging Converging Diverging

   
dA

 ___ 
dx

   − + − +

   
dP

 ___ 
dx

   − + + −

   
du

 ___ 
dx

   + − − +

Table 7.2: Characteristics of Flow for a Nozzle

Thus, for subsonic flow in a converging nozzle, the velocity increases and the pressure 
decreases as the cross-sectional area diminishes. The maximum obtainable fluid velocity is the 
speed of sound, reached at the exit. Because of this, a converging subsonic nozzle can be used to 
deliver a constant flow rate into a region of variable pressure. Suppose a compressible fluid enters 
a converging nozzle at pressure P1 and discharges from the nozzle into a chamber of variable 
pressure P2. As this discharge pressure decreases below P1, the flow rate and velocity increase. 
Ultimately, the pressure ratio P2 /P1 reaches a critical value at which the velocity at the nozzle exit 
is sonic. Further reduction in P2 has no effect on the conditions in the nozzle. The flow remains 
constant, and the velocity at the nozzle exit is sonic, regardless of the value of P2 /P1, provided it 
is always less than the critical value. For steam, the critical value of this ratio is about 0.55 at mod-
erate temperatures and pressures. This condition is commonly called choked flow.

Supersonic velocities are readily attained in the diverging section of a properly designed 
converging/diverging nozzle (Fig. 7.1). With sonic velocity reached at the throat, a further 
increase in velocity and decrease in pressure requires an increase in cross-sectional area,  
a diverging section to accommodate increasing volume of flow. The transition occurs at  
the throat, where dA/dx = 0. The relationships between velocity, area, and pressure in a  
converging/diverging nozzle are illustrated numerically in Ex. 7.2.

www.konkur.in

Telegram: @uni_k
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The speed of sound is attained at the throat of a converging/diverging nozzle only  
when the pressure at the throat is low enough that the critical value of P2 /P1 is reached.  
If insufficient pressure drop is available in the nozzle for the velocity to become sonic,  
the diverging section of the nozzle acts as a diffuser. That is, after the throat is reached, the 
pressure rises and the velocity decreases; this is the conventional behavior for subsonic flow in 
diverging sections. Of course, even when P2 /P1 is low enough to achieve choked flow, the 
velocity cannot continue to increase indefinitely. Ultimately, the flow will return to subsonic 
velocity across a shock wave. As P2 /P1 decreases, the location of this shock wave will move 
down the nozzle, away from the throat, until the shock is outside the nozzle and the flow exit-
ing the nozzle is supersonic.

The relation of velocity to pressure in an isentropic nozzle can be expressed analytically 
for the ideal-gas state and constant heat capacities. Combination of Eqs. (6.9) and (7.3) for 
isentropic flow gives:

 u du = −V dP 
Integration, with nozzle entrance and exit conditions denoted by 1 and 2, yields:

   u  2  2  −  u  1  2  = −2 ∫ 
P1

  
P2

    V dP =   
2γ  P  1    V  1  

 _______ 
γ − 1   [1 −   (  

P2 ___ 
P1

  )    
(γ−1)  / γ

 ]   (7.11)

where the final term is obtained upon elimination of V by Eq. (3.23c), PV γ = const.
Equation (7.11) can be solved for the pressure ratio P2 /P1 for which u2 reaches the speed 

of sound, i.e., where

   u  2  2  =  c   2  = − V   2    (    
∂ P

 ___ ∂ V   )    
S

    

The derivative is found by differentiation with respect to V of PV γ = const.:

   (    
∂ P

 ___ ∂ V   )    
S

   = −  
γ P

 ___ 
V

   

Substitution then yields:
  u  2  2  = γ  P  2    V  2   

With this value for   u  2  2   in Eq. (7.11) and with u1 = 0, solution for the pressure ratio at the  
throat gives:

    
 P  2  

 ___  P  1     =   (    
2
 _____ 

γ + 1   )     
γ  /   (  γ−1 )   

   (7.12)

Figure 7.1:  
Converging/diverging 
nozzle.
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Example 7.2
A high-velocity nozzle is designed to operate with steam at 700 kPa and 300°C.  
At the nozzle inlet the velocity is 30 m⋅s−1. Calculate values of the ratio A/A1 (where A1 
is the cross-sectional area of the nozzle inlet) for the sections where the pressure is 
600, 500, 400, 300, and 200 kPa. Assume that the nozzle operates isentropically.

Solution 7.2
The required area ratios are determined by conservation of mass [Eq. (2.26)], and 
the velocity u is found from the integrated form of Eq. (7.3), a steady-state energy 
balance that includes enthalpy and kinetic energy terms:

   
A

 ___ 
A1

    =    
u1 V

 ____ 
V1 u      and   u2 =   u  1  2   − 2 ( H − H1)

For velocity units of m⋅s−1, u2 has the units, m2⋅s−2. Units of J⋅kg−1 for H are  
consistent with these, because 1 J = 1 kg⋅m2⋅s−2, and 1 J⋅kg−1 = 1 m2⋅s−2.

Initial values for entropy, enthalpy, and specific volume are obtained from the 
steam tables:

S1 = 7.2997 kJ⋅kg−1⋅K−1  H1 = 3059.8 kJ⋅kg−1  V1 = 371.39 cm3⋅g−1

Thus,

     
A

 _  A  1     =  (     
30
 _ 371.39   )     

V
 _ 

u
     (A)

and
    u   2  = 900 − 2 (  H − 3059.8 ×  10   3  )     (B)

Because the expansion is isentropic, S = S1; steam-table values at 600 kPa are:

   S = 7.2997 kJ⋅kg  −1 ⋅K−1     H = 3020.4 kJ⋅kg  −1     V = 418.25   cm  3 ⋅g  −1    

From Eq. (B),  u = 282.3 m⋅ s  −1   

By Eq. (A),    
A

 ___  A  1     =   (    
30
 _ 371.39   )     (    

418.25
 _ 282.3   )    = 0.120  

Area ratios for other pressures are evaluated the same way, and the results are 
summarized in the following table.

P/kPa V/cm3⋅g−1 u/m⋅s−1 A/A1 P/kPa V/cm3⋅g−1 u /m⋅s−1 A/A1

700 371.39 30 1.0 400 571.23 523.0 0.088
600 418.25 282.3 0.120 300 711.93 633.0 0.091
500 481.26 411.2 0.095 200 970.04 752.2 0.104

The pressure at the throat of the nozzle is about 380 kPa. At lower pressures, 
the nozzle clearly diverges.
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Example 7.3
Consider again the nozzle of Ex. 7.2, assuming now that steam exists in its ideal-gas 
state and constant heat capacity. Calculate:

 (a) The critical pressure ratio and the velocity at the throat.

 (b) The discharge pressure for a Mach number of 2.0 at the nozzle exhaust.

Solution 7.3

 (a) The ratio of specific heats for steam is about 1.3. Substituting in Eq. (7.12),

   
 P  2  

 ___  P  1     =  (    
2
 _______ 1.3 + 1   )     

1.3/(1.3−1)

  = 0.55 

The velocity at the throat, equal to the speed of sound, is found from Eq. (7.11), 
which contains the product P1V1. For steam in its ideal-gas state:

  P  1   V  1   =   
 RT  1  

 ____ ℳ   =   
(8.314)(573.15)

  _____________ 0.01802   = 264,511 m2⋅ s −2 

In this equation R/ℳ has the units:

   
J
 _____ kg⋅K   =   

N⋅m
 _____ kg⋅K   =   

kg⋅m ⋅s   −2  m
 __________ kg⋅K   =   

 m   2  ⋅s   −2 
 ______ K   

Thus RT/ℳ, and hence P1V1, is in m2⋅s−2, the units of velocity squared. Substitu-
tion in Eq. (7.11) gives:

  u  throat  
2    = (30)2 +    

(2)(1.3)(264,511)
  _______________ 1.3 − 1      [1 − (0.55)(1.3−1)/1.3]   = 296,322

  u  throat   = 544.35 m ⋅s   −1  

This result is in good agreement with the value obtained in Ex. 7.2, because the 
behavior of steam at these conditions closely approximates the ideal-gas state.

 (b) For a Mach number of 2.0 (based on the velocity of sound at the nozzle throat) 
the discharge velocity is:

 2 u  throat   = (2) (544.35) = 1088.7 m ⋅s   −1  

Substitution of this value in Eq. (7.11) allows calculation of the pressure ratio:

(1088.7)2 − (30)2 =    
(2)(1.3)(264,511)

  _______________ 1.3 − 1      
[

  1 −   (  
P2 ___ 
P1

  )    
(1.3−1)  / 1.3

  
]

   

   (  
P2 ___ 
P1

  )    
(1.3−1) /1.3

 

   = 0.4834  and  P2 = (0.0428)(700) = 30.0 kPa
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Throttling Process
When a fluid flows through a restriction, such as an orifice, a partly closed valve, or a porous 
plug, without any appreciable change in kinetic or potential energy, the primary result of the 
process is a pressure drop in the fluid. Such a throttling process produces no shaft work, and 
in the absence of heat transfer, Eq. (2.31) reduces to:

ΔH = 0   or   H2 = H1

The process therefore occurs at constant enthalpy.
Because enthalpy in the ideal-gas state depends only on temperature, a throttling process 

does not change the temperature in this state. For most real gases at moderate temperature and 
pressure, a reduction in pressure at constant enthalpy results in a decrease in temperature. For 
example, if steam at 1000 kPa and 300°C is throttled to 101.325 kPa (atmospheric pressure),

H2 = H1 = 3052.1 kJ ⋅kg   −1 

Interpolation in the steam tables to this enthalpy at a pressure of 101.325 kPa gives a 
downstream temperature of 288.8°C. The temperature has decreased, but the effect is 
small.

Throttling of wet steam to sufficiently low pressure causes the liquid to evaporate  
and the vapor to become superheated. Thus if wet steam at 1000 kPa (t sat = 179.88°C) with a 
quality of 0.96 is throttled to 101.325 kPa,

H2 = H1 = (0.04)(762.6) + (0.96)(2776.2) = 2695.7 kJ⋅kg−1

At 101.325 kPa steam with this enthalpy has a temperature of 109.8°C; it is therefore super-
heated (t sat = 100°C). The considerable temperature drop results from evaporation of liquid.

If a saturated liquid is throttled to a lower pressure, some of the liquid vaporizes or 
flashes, producing a mixture of saturated liquid and saturated vapor at the lower pressure. 
Thus if saturated liquid water at 1000 kPa (t sat = 179.88°C) is flashed to 101.325 kPa  
(t sat = 100°C),

H2 = H1 = 762.6 kJ⋅kg−1

At 101.325 kPa the quality of the resulting steam is found from Eq. (6.96a) with M = H:

762.6 = (1 − x)(419.1) + x(2676.0)
= 419.1 + x(2676.0 − 419.1)

Hence  x = 0.152  

Thus 15.2% of the liquid vaporizes in the process. Again, the large temperature drop results 
from evaporation of liquid. Throttling processes are often applied in refrigeration (Chapter 9).
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Example 7.4
Propane gas at 20 bar and 400 K is throttled in a steady-state flow process to 1 bar. 
Estimate the final temperature of the propane and its entropy change. Properties of 
propane can be found from suitable generalized correlations.

Solution 7.4
To begin, we write the overall enthalpy change as the sum of three components: 
(1) removal of residual enthalpy at state 1, (2) sensible heat to take the substance 
from the ideal-gas state at the initial temperature to the ideal-gas state at the final 
temperature, and (3) adding the residual enthalpy at state 2. These must sum to 
zero for this constant-enthalpy process:

ΔH = −  H  1  R   +   ⟨     C  P  ig
    ⟩   H  (T2 − T1) +   H  2  R   = 0

If propane in its final state at 1 bar is assumed to be in its ideal-gas state,   H  2  R   = 0, 
and the preceding equation, solved for T2, becomes:

 T2 =    
 H  1  R 
 ______ 

 ⟨   C  P  ig
  ⟩  H

    +  T  1   (A)

For propane,  Tc = 369.8 K   Pc = 42.48 bar   ω = 0.152

Thus for the initial state,

   T   r  1     =   
400

 _____ 369.8   = 1.082       P   r  1     =   
20
 _____ 42.48   = 0.471  

At these conditions the generalized correlation based on second virial coefficients 
is satisfactory (Fig. 3.13), and calculation of   H  1  R   by Eqs. (6.68), (3.61), (6.70), 
(3.62), and (6.71) is represented by:

   
 H  1  R 

 ____ 
R Tc

    = 𝖧𝖱𝖡(1.082, 0.471, 0.152) = −0.452

and
  H  1  R   = (8.314)(369.8)(−0.452) = −1390 J⋅mol−1

The only remaining quantity in Eq. (A) to be evaluated is   ⟨     C  P  ig
    ⟩   H. Data for  

propane from Table C.1 of App. C provide the heat-capacity equation:

   
 C  P  ig

 
 ___ 

R
    = 1.213 + 28.785 × 10−3 T − 8.824 × 10−6 T 2

For an initial calculation, assume that   〈 C  P  ig
 〉  H    equals the value of   C  P  ig   at the initial 

temperature of 400 K, i.e.,   〈 C  P  ig
 〉  H   = 94.07 J ⋅mol   −1 ⋅ K  −1   .

From Eq. (A),   T  2   =   
−1390

 ______ 94.07   + 400 = 385.2 K  

Clearly, the temperature change is small, and   ⟨     C  P  ig
    ⟩   H is reevaluated to an excellent 

approximation as   C  P  ig
   at the arithmetic-mean temperature,

  T  am   =   
400 + 385.2

 __________ 2   = 392.6 K 
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This gives:   〈 C  P  ig
 〉  H   = 92.73 J⋅mol−1 ⋅K   −1   

and recalculation of T2 by Eq. (A) yields the final value: T2 = 385.0 K.
The entropy change of the propane is given by Eq. (6.75), which here becomes:

 ΔS =  〈 C  P  ig
 〉  S   ln    

 T  2  
 ___  T  1     − R ln    

 P  2  
 ___  P  1     −  S  1  R  

Because the temperature change is so small, to an excellent approximation,

 〈 C  P  ig
 〉  S   =  〈 C  P  ig

 〉  H   = 92.73 J⋅mol−1 ⋅K   −1 

Calculation of   S  1  R   by Eqs. (6.69) through (6.71) is represented by:

   
 S  1  R 

 ___ 
R

   = 𝖲𝖱𝖡(1.082, 0.471, 0.152) = −0.2934 

Then   S  1  R  = (8.314) (−0.2934) = −2.439 J⋅mo l   −1  ⋅K   −1   

and  ΔS = 92.73 ln   
385.0

 _____ 400   − 8.314 ln   
1
 ___ 20   + 2.439 = 23.80 J⋅mo l   −1  ⋅K   −1  

The positive value reflects the irreversibility of the throttling process.

Example 7.5
Throttling a real gas from conditions of moderate temperature and pressure usually  
results in a temperature decrease. Under what conditions would an increase in  
temperature be expected?

Solution 7.5
The sign of the temperature change is determined by the sign of the derivative 
(∂T/∂P)H, called the Joule/Thomson coefficient μ:

μ ≡    (  
∂ T

 ___ ∂ P  )   
H

   

When μ is positive, throttling results in a temperature decrease; when negative, in 
a temperature increase.

Because H = f  (T, P), the following equation relates the Joule/Thomson  
coefficient to other thermodynamic properties:2

   (  
∂ T

 ___ ∂ P  )   
H

    = −   (  
∂ T

 ___ ∂ H  )   
P

       (  
∂ H

 ___ ∂ P  )   
T

    = −   (  
∂ H

 ___ ∂ T  )   
P

  
−1

      (  
∂ H

 ___ ∂ P  )   
T

   

2Recall the general equation from differential calculus:

   (    
∂ x

 ___ ∂ y   )    
z

   = −  (    
∂ x

 ___ ∂ z   )    
y

     (    
∂ z

 ___ ∂ y   )    
x
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and by Eq. (2.19),  μ = −   
1
 ___  C  P       (  

∂ H
 ___ ∂ P  )   

T

    (A)

Because CP is necessarily positive, the sign of μ is determined by the sign of 
(∂H/∂P)T, which in turn is related to PVT behavior:

    (  
∂ H

 ___ ∂ P  )   
T

    = V − T    (  
∂ V

 ___ ∂ T  )   
P

    (6.20)

Substituting V = ZRT /P allows this equation to be rewritten in terms of Z as:

   (  
∂ H

 ___ ∂ P  )   
T

    = −    
R T 2

 ____ 
P

       (  
∂ Z

 ___ ∂ T  )   
P

   

where Z is the compressibility factor. Substitution into Eq. (A) gives:

 μ =   
R  T    2 

 ____  C  P   P     (  
∂ Z

 ___ ∂ T  )   
P

   

Thus, (∂Z /∂T)P and μ have the same sign. When (∂Z /∂T)P is zero, as for the  
ideal-gas state, then μ = 0, and no temperature change is produced by throttling.

The condition (∂Z /∂T)P = 0 may be satisfied locally for real gases. Such points 
define the Joule / Thomson inversion curve, which separates the region of posi-
tive μ from that of negative μ. Figure 7.2 shows reduced inversion curves giving 
the relation between Tr and Pr for which μ = 0. The solid line correlates data for 
Ar, CH4, N2, CO, C2H4, C3H8, CO2, and NH3.3 The dashed line is calculated from 
the condition (∂Z /∂Tr  )   P  r      = 0 applied to the Redlich/Kwong equation of state.

Figure 7.2: Inversion curves 
for reduced coordinates. Each 
line represents a locus of 
points for which µ = 0.  
The solid curve is from a data 
correlation; the dashed curve, 
from the Redlich/Kwong 
equation. A temperature 
increase results from throt-
tling in the region where µ is 
negative.

1284

Pr

Tr

0

2

4

6

μ = –

μ = +

3D. G. Miller, Ind. Eng. Chem. Fundam., vol. 9, pp. 585–589, 1970.
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7.2 TURBINES (EXPANDERS)

The expansion of a gas in a nozzle to produce a high-velocity stream is a process that  
converts enthalpy into kinetic energy, which in turn is converted into shaft work when the 
stream impinges on blades attached to a rotating shaft. Thus a turbine (or expander) consists 
of alternate sets of nozzles and rotating blades through which vapor or gas flows  
in a steady-state expansion process. The overall result is the conversion of the enthalpy of  
a high-pressure stream into shaft work. When steam provides the motive force as in  
most power plants, the device is called a turbine; when it is a high-pressure gas, such as 
ammonia or ethylene in a chemical plant, the device is usually called an expander. The  
process is shown in Fig. 7.3.

Figure 7.3: Steady-state flow 
through a turbine or expander.

Turbine Ws
1

2

.

Equations (2.30) and (2.31) are appropriate energy balances across an expander. However, 
the potential-energy term can be omitted because there is little change in elevation. Moreover, in 
any properly designed turbine, heat transfer is negligible and the inlet and exit pipes are sized to 
make fluid velocities roughly equal. For those conditions, Eqs. (2.30) and (2.31) reduce to:

   W 
∙
    s   =  m 

∙
   ΔH =  m 

∙
     (   H  2   −  H  1   )     (7.13)   W  s   = ΔH =  H  2   −  H  1    (7.14)

Usually, the inlet conditions T1 and P1 and the discharge pressure P2 are fixed. Thus in 
Eq. (7.14) only H1 is known; both H2 and   W  s    are unknown, and the energy balance equation 
alone does not allow their calculation. However, if the fluid in the turbine expands reversibly 
and adiabatically, the process is isentropic, and S2 = S1. This second equation fixes the final 
state of the fluid and determines H2. For this special case,   W  s    is given by Eq. (7.14), written:

   W  s     (  isentropic )    =   (  ΔH )    S    (7.15)

The shaft work    |   W  s   |    (isentropic) is the maximum that can be obtained from an adiabatic 
turbine with given inlet conditions and given discharge pressure. Actual turbines produce less 
work, because the actual expansion process is irreversible; we define a turbine efficiency as:

 η ≡   
 W  s   ____________   W  s   

  (  isentropic )      
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where   W  s    is the actual shaft work. By Eqs. (7.14) and (7.15),

  η =   
ΔH

 ______   (  ΔH )    S      (7.16)

Values of η often fall in the range from 0.7 to 0.8. The HS diagram of Fig. 7.4 illustrates an 
actual expansion in a turbine and a reversible expansion for the same intake conditions and the 
same discharge pressure. The reversible path is the dashed vertical (constant-entropy) line 
from point 1 at intake pressure P1 to point 2′ at discharge pressure P2. The solid line, repre-
senting the actual irreversible path, starts at point 1 and terminates at point 2 on the isobar for 
P2. Because the process is adiabatic, irreversibilities cause an increase in entropy of the fluid, 
and the path is directed toward increasing entropy. The more irreversible the process, the fur-
ther point 2 lies to the right on the P2 isobar, and the lower the efficiency η of the process.

Figure 7.4: Adiabatic expansion process in 
a turbine or expander.

( H)S

H

SP2

P1

2

1

2

H

S

Δ
Δ
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Example 7.6
A steam turbine with rated capacity of 56,400 kW operates with steam at inlet condi-
tions of 8600 kPa and 500°C, and discharges into a condenser at a pressure of  
10 kPa. Assuming a turbine efficiency of 0.75, determine the state of the steam at  
discharge and the mass flow rate of the steam.

Solution 7.6
At the inlet conditions of 8600 kPa and 500°C, the steam tables provide:

   H  1   = 3391.6 kJ ⋅kg   −1        S  1   = 6.6858 kJ ⋅kg   −1  ⋅K   −1   

If the expansion to 10 kPa is isentropic, then,  S2′  =   S  1    =  6.6858  kJ ⋅kg   −1  ⋅K   −1  . 
Steam with this entropy at 10 kPa is wet. Applying the “lever rule” [Eq. (6.96b), 
with M = S and   x   v  = x2′ ], the quality is obtained as follows:

S2′ =  S  2  l
   + x2′ ( S  2  v

   −  S  2  l  )

www.konkur.in

Telegram: @uni_k



288 CHAPTER 7. Applications of Thermodynamics to Flow Processes 

Then,   6.6858 = 0.6493 + x2′   (  8.1511 − 0.6493 )      x2′ = 0.8047 

This is the quality (fraction vapor) of the discharge stream at point 2′. The enthalpy  
H2′  is also given by Eq. (6.96b), written:

 H2′  =   H  2  l
    +  x2′  (  H  2  v

    −   H  2  l
   )

Thus,   H2′  = 191.8 + (0.8047)(2584.8 − 191.8) = 2117.4 kJ⋅kg−1

(ΔH)S =  H2′  − H1 = 2117.4 − 3391.6 = −1274.2 kJ⋅kg−1

and by Eq. (7.16),

 ΔH = η   (  ΔH )    S   =   (  0.75 )     (  −1274.2 )    = −955.6 kJ⋅ kg −1   

Thus,    H  2   =  H  1   + ΔH = 3391.6 − 955.6 = 2436.0 kJ⋅ kg  −1   

Thus the steam in its actual final state is also wet, with its quality given by:

 2436.0 = 191.8 +  x  2    (  2584.8 − 191.8 )       x  2   = 0.9378 

Then,   S  2   = 0.6493 +   (  0.9378 )     (  8.1511 − 0.6493 )    = 7.6846 kJ⋅ kg −1  ⋅ K  −1   

This value can be compared with the initial value of S1 = 6.6858.
The steam rate   m 

∙
    is given by Eq. (7.13). For a work rate of 56,400 kJ⋅s−1,

  W 
∙
  s = −56,400 =  m 

∙
     (  2436.0 − 3391.6 )       m 

∙
   = 59.02 kg⋅ s  −1   

Example 7.6 was solved with data from the steam tables. When a comparable set of 
tables is not available for the working fluid, the generalized correlations of Sec. 6.4 may be 
used in conjunction with Eqs. (6.74) and (6.75), as illustrated in the following example.

Example 7.7
A stream of ethylene gas at 300°C and 45 bar is expanded adiabatically in a turbine to 
2 bar. Calculate the isentropic work produced. Find the properties of ethylene by:

 (a) Equations for an ideal gas.

 (b) Appropriate generalized correlations.

Solution 7.7
The enthalpy and entropy changes for the process are:

  ΔH =  〈 C  P  ig
 〉  H     (   T  2   −  T  1   )    +  H  2  R  −  H  1  R   (6.74)

  ΔS =  〈 C  P  ig
 〉  S   ln   

 T  2  
 ___  T  1     − R ln   

 P  2  
 ___  P  1     +  S  2  R  −  S  1  R   (6.75)

Given values are P1 = 45 bar, P2 = 2 bar, and T1 = 300 + 273.15 = 573.15 K.
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 (a) If ethylene is assumed to be in its ideal-gas state, then all residual properties 
are zero, and the preceding equations reduce to:

ΔH = 〈  C  P  ig
  〉H (T2 − T1)    ΔS = 〈  C  P  ig

  〉S ln    
T2 ___ 
T1

    − R ln    
P2 ___ 
P1

   

For an isentropic process, ΔS = 0, and the second equation becomes:

   
〈 C  P  ig

 〉S ______ 
R

   ln   
 T  2  

 ___  T  1     = ln    
 P  2  

 ___  P  1     = ln   
2
 ___ 45   = −3.1135 

or ln T2 =    
−3.1135

 ________ 
〈 C  P  ig

 〉S /R
    + ln 573.15 

Then, T2 = exp   
(

  
−3.1135

 ________ 
〈 C  P  ig

 〉S /R
   + 6.3511

)
   (A)

Equation (5.13) provides an expression for  〈 C  P  ig
 〉S / R , which for computational 

purposes is represented by:

   
〈 C  P  ig

 〉S ______ 
R

   = 𝖬𝖢𝖯𝖲(573.15, 𝖳2; 1.424, 14.394 × 10−3, −4.392 × 10−6, 0.0) 

where the constants for ethylene come from Table C.1 of App. C. Temperature T2 
is found by iteration. An initial value is assumed for evaluation of 〈 C  P  ig

 〉S/ R. Equation  
(A) then provides a new value of T2 from which to recompute 〈 C  P  ig

 〉S/ R, and  
the procedure continues to convergence on the final value: T2 = 370.8 K. The value  
of 〈 C  P  ig

 〉H / R, given by Eq. (4.9), is for computational purposes represented by:

   
〈 C  P  ig

 〉H ______ 
R

    = 𝖬𝖢𝖯𝖧(573.15, 370.8; 1.424, 14.394 ×  10−3 , −4.392 ×  10−6 , 0.0) = 7.224

Then,   W  s     (  isentropic )    =   (  ΔH )    S   = 〈 C  P  ig
 〉H   (   T  2   −  T  1   )     

  W  s     (  isentropic )    =   (  7.224 )     (  8.314 )     (  370.8 − 573.15 )    = −12,153 J ⋅mol   −1  

 (b) For ethylene,

Tc = 282.3 K   Pc = 50.4 bar   ω = 0.087

At the initial state,

   T   r  1     =   
573.15

 ______ 282.3   = 2.030    P   r  1      =   
45

 ____ 50.4   = 0.893 

According to Fig. 3.13, the generalized correlations based on second virial coeffi-
cients should be satisfactory. The computational procedures of Eqs. (6.68), (6.69), 
(3.61), (3.62), (6.70), and (6.71) are represented by:

   
 H  1  R 

 ____ 
RTc

    = 𝖧𝖱𝖡(2.030, 0.893, 0.087) = −0.234
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 S  1  R 

 ___ 
R

    = 𝖲𝖱𝖡(2.030, 0.893, 0.087) = −0.097

Then,   H  1  R   = (−0.234)(8.314)(282.3) = −549 J⋅mol−1 

  S  1  R   = (−0.097)(8.314) = −0.806 J⋅mol−1⋅K−1

For an initial estimate of   S  2  R  , assume that T2 = 370.8 K, the value determined in 
part (a). Then,

   T   r  2     =   
370.8

 _____ 282.3   = 1.314    P   r  2     =   
2
 ____ 50.4   = 0.040  

and    
 S  2  R 

 ___ 
R

   = 𝖲𝖱𝖡  (  1.314, 0.040, 0.087 )    = −0.0139  

Then,   S  2  R  =   (  −0.0139 )     (  8.314 )    = −0.116 J ⋅mol   −1  ⋅K   −1   

If the expansion process is isentropic, Eq. (6.75) becomes:

 0 = 〈 C  P  ig
 〉S ln   

 T  2  
 ______ 573.15   − 8.314 ln   

2
 ___ 45   − 0.116 + 0.806 

Whence,  ln   
 T  2  
 ______ 573.15   =   

−26.576
 ________ 

〈 C  P  ig
 〉S

    

or  T2 = exp  
(

  
−26.576

 ________ 
〈 C  P  ig

 〉S

   + 6.3511
)

   

An iteration process exactly like that of part (a) yields the results

 T2 = 365.8 K   and    T   r  2     = 1.296 

With this value of   T   r  2      and with   P   r  2     = 0.040, 

   
 S  2  R 

 ___ 
R

   = 𝖲𝖱𝖡  (  1.296, 0.040, 0.087 )    = −0.0144 

and   S  2  R  =   (  −0.0144 )     (  8.314 )    = −0.120 J ⋅mol   −1  ⋅K   −1   

This result is so little changed from the initial estimate that recalculation of T2 is 
unnecessary, and   H  2  R   is evaluated at the reduced conditions just established:

   
 H  2  R 

 ____ 
R Tc

    = 𝖧𝖱𝖡(1.296, 0.040, 0.087) = −0.0262

  H  2  R   = (−0.0262)(8.314)(282.3) = −61.0 J⋅mol−1

By Eq. (6.74),    (  ΔH )    S   = 〈 C  P  ig
 〉H   (  365.8 − 573.15 )    − 61.0 + 549 

www.konkur.in

Telegram: @uni_k



7.3. Compression Processes 291

Evaluation of  〈 C  P  ig
 〉H  as in part (a) with T2 = 365.8 K gives:

 〈 C  P  ig
 〉H = 59.843 J⋅ mol  −1  ⋅ K  −1   

and    (  ΔH )    S   = −11,920 J⋅ mol  −1    

Then   W  s     (  isentropic )    =   (  ΔH )    S   = −11,920 J⋅ mol  −1    

This differs from the ideal-gas state value by less than 2%.

7.3 COMPRESSION PROCESSES

Just as expansion processes result in pressure reductions in a flowing fluid, so compression 
processes bring about pressure increases. Compressors, pumps, fans, blowers, and vacuum 
pumps are all devices designed for this purpose. They are vital for the transport of fluids, for 
fluidization of particulate solids, for bringing fluids to the proper pressure for reaction or pro-
cessing, etc. We are concerned here not with the design of such devices, but with specification 
of energy requirements for steady-state compression causing an increase in fluid pressure.

Compressors
The compression of gases may be accomplished in equipment with rotating blades (like a  
turbine operating in reverse) or in cylinders with reciprocating pistons. Rotary equipment  
is used for high-volume flow where the discharge pressure is not too high. For high pres-
sures, reciprocating compressors are often required. The energy equations are independent of 
the type of equipment; indeed, they are the same as for turbines or expanders because  
here, too, potential and kinetic-energy changes are presumed negligible. Thus, Eqs. (7.13) 
through (7.15) apply to adiabatic compression, a process represented by Fig. 7.5.

Figure 7.5: Steady-state  
compression process.
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2

1
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.
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In a compression process, the isentropic work, as given by Eq. (7.15), is the minimum 
shaft work required for compression of a gas from a given initial state to a given discharge 
pressure. Thus we define a compressor efficiency as:

 η ≡   
 W  s   

 (  isentropic )  
  ____________  W  s  

   

In view of Eqs. (7.14) and (7.15), this is also given by:

  η ≡   
 (ΔH)  S  

 ______ ΔH
    (7.17)

Compressor efficiencies are often in the range of 0.7 to 0.8.

Figure 7.6: Adiabatic compression 
process.
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A compression process is shown on an HS diagram in Fig. 7.6. The vertical dashed  
line rising from point 1 to point 2′ represents the reversible adiabatic (constant-entropy)  
compression process from P1 to P2. The actual irreversible compression process follows  
the solid line from point 1 upward and to the right in the direction of increasing entropy,  
terminating at point 2. The more irreversible the process, the further this point lies to the right 
on the P2 isobar, and the lower the efficiency η of the process.

Example 7.8
Saturated-vapor steam at 100 kPa (t sat = 99.63°C) is compressed adiabatically to  
300 kPa. If the compressor efficiency is 0.75, what is the work required and what are 
the properties of the discharge stream?
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Solution 7.8
For saturated steam at 100 kPa,

   S  1   = 7.3598 kJ ⋅kg   −1  ⋅K   −1        H  1    = 2675.4 kJ ⋅kg   −1  

For isentropic compression to 300 kPa,  S2′  =   S  1    =  7.3598  kJ ⋅kg   −1  ⋅K   −1  . Inter-
polation in the tables for superheated steam at 300 kPa shows that steam with this 
entropy has the enthalpy:  H2′ = 2888.8 kJ⋅ kg  −1   .

Thus,    (  ΔH )    S   = 2888.8 − 2675.4 = 213.4 kJ⋅ kg  −1    

By Eq. (7.17),    (  ΔH )    =   
  (  ΔH )    S  

 ______ 
η
   =   

213.4
 _____ 0.75   = 284.5 kJ⋅ kg  −1    

and   H  2   =  H  1   + ΔH = 2675.4 + 284.5 = 2959.9 kJ⋅ kg  −1    

For superheated steam with this enthalpy, interpolation yields:

   T  2   = 246.1°C    S  2   = 7.5019   kJ⋅kg   −1 ⋅ K  −1   

Moreover, by Eq. (7.14), the work required is:

  W  s   = ΔH = 284.5 kJ⋅ kg  −1   

The direct application of Eqs. (7.13) through (7.15) presumes the availability of 
tables of data or an equivalent thermodynamic diagram for the fluid being compressed. 
Where such information is not available, the generalized correlations of Sec. 6.4 can be 
used in conjunction with Eqs. (6.74) and (6.75), exactly as illustrated in Ex. 7.7 for an 
expansion process.

The assumption of the ideal-gas state leads to relatively simple equations. By Eq. (5.14):

 ΔS =  〈 C  P  〉  S   ln   
 T  2  

 ___  T  1     − R ln   
 P  2  

 ___  P  1     

where for simplicity the superscript ig has been omitted from the mean heat capacity. If the 
compression is isentropic, ΔS = 0, and this equation becomes:

  T2′   =  T  1    (   
P2 ___ 
P1

  )    
R/〈CP′〉S

   (7.18)

with  T2′  the temperature that results when compression from T1 and P1 to P2 is isentropic and 
where   〈CP′〉  S    is the mean heat capacity for the temperature range from T1 to  T2′ .

Applied to isentropic compression, Eq. (4.10) here becomes:

   (  ΔH )    S   =  〈CP′〉  H    (  T2′ −  T  1   )   

In accord with Eq. (7.15),   W  s      (  isentropic )    =   ⟨  CP′ ⟩    H   (T2′ − T1)  (7.19)

This result can be combined with the compressor efficiency to give:

   W  S   =   
 W  S     (  isentropic )    

  _____________ 
η
    (7.20)

www.konkur.in

Telegram: @uni_k



294 CHAPTER 7. Applications of Thermodynamics to Flow Processes 

The actual discharge temperature T2 resulting from compression is also found from Eq. (4.10), 
rewritten as:

 ΔH =  〈 C  P  〉  H     (   T  2   −  T  1   )    

Whence,   T  2   =  T  1   +   
ΔH

 ________  〈 C  P  〉  H      (7.21)

where by Eq. (7.14), ΔH = Ws. Here   〈 C  P  〉  H    is the mean heat capacity for the temperature 
range from T1 to T2.

For the special case of the ideal-gas state and constant heat capacities,

   ⟨  CP′ ⟩    H   =   ⟨   C  P   ⟩    H   =   ⟨  CP′ ⟩    S   =  C  P   

Equations (7.18) and (7.19) therefore become:

 T2′  = T1    (  
P2 ___ 
P1

  )    
R/CP

     and   Ws (isentropic) =   C  P     (   T2′ −  T  1   )    

Combining these equations gives:4

   W  s   (isentropic) =  C  P   T  1    [  (  
P2 ___  P  1    )    

R/CP

  − 1]     (7.22)

For monatomic gases, such as argon and helium, R/CP = 2/5 = 0.4. For such diatomic 
gases as oxygen, nitrogen, and air at moderate temperatures, R/CP ≈ 2/7 = 0.2857. For gases 
of greater molecular complexity the ideal-gas heat capacity depends more strongly on tem-
perature, and Eq. (7.22) is less likely to be suitable. One can also show that the assumption of 
constant heat capacities also leads to the result:

   T  2   =  T  1   +   
T2′ −  T  1  

 ______ 
η
    (7.23)

Example 7.9
If methane (assumed to be in its ideal-gas state) is compressed adiabatically from 20°C 
and 140 kPa to 560 kPa, estimate the work requirement and the discharge tempera-
ture of the methane. The compressor efficiency is 0.75.

4Because R = CP − CV for an ideal gas:    
R
 ___ 

CP
    =    

CP − CV
 ________ 

CP
    =    

γ − 1
 _____ 

γ
   . An alternative form of Eq. (7.22) is therefore:

WS (isentropic) =    
γ RT1 _____ 
γ − 1      

[
 (  

P2 ___ 
P1

  ) 
(γ − 1) / γ

−1
]

  . Although this form is frequently encountered, Eq. (7.22) is simpler

and more easily applied.
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Solution 7.9
Application of Eq. (7.18) requires evaluation of the exponent R /  ⟨  CP′ ⟩  S . This is 
 provided by Eq. (5.13), which for the present computation is represented by:

   
  ⟨  CP′ ⟩    S  

 _____ 
R

   = 𝖬𝖢𝖯𝖲(293.15,  𝖳  2  ; 1.702, 9.081 ×  10   −3 , −2.164 ×  10   −6 , 0.0) 

where the constants for methane are from Table C.1 of App. C. Choose a value 
for  T2′  somewhat higher than the initial temperature T1 = 293.15 K. The exponent  
in Eq. (7.18) is the reciprocal of    ⟨  CP′ ⟩    S    /R. With P2 /P1 = 560/140 = 4.0 and  
T1 = 293.15 K, find a new value of  T2′ . The procedure is repeated until no further 
significant change occurs in the value of  T2′ . This process produces the values:

   
  ⟨  CP′ ⟩    S  

 _____ 
R

       = 4.5574   and   T2′ = 397.37 K 

For the same T1 and  T2′ , evaluate    ⟨  CP′ ⟩    H    /R by Eq. (4.9):

   
  ⟨  CP′ ⟩    H  

 ______ 
R

    = 𝖬𝖢𝖯𝖧(293.15, 397.37; 1.702, 9.081 × 10−3, −2.164 × 10−6, 0.0) = 4.5774

Thus,      ⟨  CP′ ⟩    H    =   (  4.5774 )     (  8.314 )    = 38.506 J⋅ mol −1  ⋅ K  −1    

Then by Eq. (7.19),

  W  s     (  isentropic )    =   (  38.056 )     (  397.37 − 293.15 )    = 3966.2 J⋅ mol −1   

The actual work is found from Eq. (7.20):

  W  s   =   
3966.2

 ______ 0.75   = 5288.3 J⋅ mol  −1   

Application of Eq. (7.21) for the calculation of T2 gives:

  T  2   = 293.15 +   
5288.3

 ______   ⟨    C  P   ⟩    H     

Because   〈 C  P  〉  H    depends on T2, we again iterate. With   T  2  ′    as a starting value, this 
leads to the results:

   T  2   = 428.65 K     or      t  2   = 155.5° C  

and   〈 C  P  〉  H   = 39.03 J⋅ mol  −1  ⋅ K  −1   
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Pumps
Liquids are usually moved by pumps, which are generally rotating equipment. The same 
equations apply to adiabatic pumps as to adiabatic compressors. Thus, Eqs. (7.13) through 
(7.15) and Eq. (7.17) are valid. However, application of Eq. (7.14) for the calculation of  
  W  s    = ΔH requires values of the enthalpy of compressed (subcooled) liquids, and these  
are seldom available. The fundamental property relation, Eq. (6.9), provides an alternative.  
For an isentropic process,

 dH = V dP    (  const S   )    

Combining this with Eq. (7.15) yields:

  W  s     (  isentropic )    =   (  ΔH )    S   =  ∫ 
P1

  
P2

    V dP 

The usual assumption for liquids (at conditions far from the critical point) is that V is  
independent of P. Integration then gives:

   W  s     (  isentropic )    =   (  ΔH )    S   = V  (    P  2   −  P  1   )     (7.24)

For complete analysis, the following equations from Chapter 6 are useful:

 dH =  C  P    dT + V  (  1 − βT  )   dP  (6.27)  dS =  C  P     
dT

 ___ 
T

    − βV dP  (6.28)

where the volume expansivity β is defined by Eq. (3.3). Because temperature changes in the 
pumped fluid are small and because the properties of liquids are insensitive to pressure (again 
at conditions far from the critical point), these equations are usually integrated assuming that 
CP, V, and β are constant, usually at initial values. Thus, to a good approximation

 ΔH =  C  P   ΔT + V  (  1 − βT  )    ΔP  (7.25)  ΔS =  C  P   ln   
 T  2  

 ___  T  1      − βV ΔP  (7.26)

Example 7.10
Water at 45°C and 10 kPa enters an adiabatic pump and is discharged at a pressure  
of 8600 kPa. Assume the pump efficiency is 0.75. Calculate the work of the pump, the 
temperature change of the water, and the entropy change of the water.

Solution 7.10
The following are properties for saturated liquid water at 45°C (318.15 K):

V = 1010 cm3⋅kg−1  β = 425 × 10−6 K−1  CP = 4.178 kJ⋅kg−1⋅K−1
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By Eq. (7.24),

 W  s     (  isentropic )    =   (  ΔH )    S   =   (  1010 )     (  8600 − 10 )    = 8.676 ×  10   6   kPa⋅cm  3 ⋅kg  −1   

Because 1 kJ = 106 kPa⋅cm3,

  W  s     (  isentropic )    =   (  ΔH )    S   = 8.676 kJ⋅ kg  −1   

By Eq. (7.17),  ΔH =   
  (  ΔH )    S  

 ______ 
η
   =   

8.676
 _____ 0.75   = 11.57 kJ⋅ kg  −1    

and   W  s   = ΔH = 11.57   kJ⋅kg   −1   

The temperature change of the water during pumping, from Eq. (7.25):

 11.57 = 4.178 ΔT + 1010  [  1 −  (425 ×  10   −6 )   (  318.15 )    ]      
8590

 _____ 
 10   6 

   

Solution for ΔT gives:

ΔT = 0.97 K   or   0.97° C

The entropy change of the water is given by Eq. (7.26):

 ΔS = 4.178 ln     
319.12

 ______ 318.15   −  (425 ×  10   −6 )   (  1010 )     
8590

 _____ 
 10   6 

   = 0.0090 kJ⋅ kg  −1  ⋅ K  −1   

7.4 SYNOPSIS

After thorough study of this chapter, including working through example and end-of-chapter 
problems, one should be able to:

 ∙ Apply relationships between thermodynamic quantities to flow processes such as flow 
through pipes and nozzles

 ∙ Understand the concept of choked flow and the mechanism by which converging/ 
diverging nozzles produce supersonic flows

 ∙ Analyze throttling processes, and define and apply the Joule/Thomson coefficient
 ∙ Compute the work produced by a turbine (expander) of given efficiency expanding  

a fluid from a known initial state to a known final pressure
 ∙ Define and apply isentropic efficiencies for both processes that produce work and  

processes that require work input
 ∙ Compute the work required to compress a gas from a given initial state to a final  

pressure, using a compressor with known efficiency
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 ∙ Determine changes in all thermodynamic state variables for compression and expansion 
processes

 ∙ Compute work requirements for pumping liquids

7.5 PROBLEMS

 7.1. Air expands adiabatically through a nozzle from a negligible initial velocity to a final 
velocity of 325 m⋅s−1. What is the temperature drop of the air, if air is assumed to be 
an ideal gas for which CP = (7/2) R?

 7.2. In Ex. 7.5 an expression is found for the Joule/Thomson coefficient, μ = (∂T/∂P)H, 
that relates it to a heat capacity and equation-of-state information. Develop similar 
expressions for the derivatives:

 (a) (∂T /∂P)S   (b) (∂T /∂V)U

  What can you say about the signs of these derivatives? For what types of processes 
might these derivatives be important characterizing quantities?

 7.3. The thermodynamic sound speed c is defined in Sec. 7.1. Prove that:

 c =   √ 

_______

   
V CP

 ______ ℳCV κ     

  where V is molar volume and ℳ is molar mass. To what does this general result 
reduce for: (a) an ideal gas? (b) an incompressible liquid? What do these results  
suggest qualitatively about the speed of sound in liquids relative to gases?

 7.4. Steam enters a nozzle at 800 kPa and 280°C at negligible velocity and discharges at a 
pressure of 525 kPa. Assuming isentropic expansion of the steam in the nozzle, what 
is the exit velocity and what is the cross-sectional area at the nozzle exit for a flow rate 
of 0.75 kg⋅s−1?

 7.5. Steam enters a converging nozzle at 800 kPa and 280°C with negligible velocity.  
If expansion is isentropic, what is the minimum pressure that can be reached in such a 
nozzle, and what is the cross-sectional area at the nozzle throat at this pressure for a 
flow rate of 0.75 kg⋅s−1?

 7.6. A gas enters a converging nozzle at pressure P1 with negligible velocity, expands  
isentropically in the nozzle, and discharges into a chamber at pressure P2. Sketch 
graphs showing the velocity at the throat and the mass flow rate as functions of the 
pressure ratio P2 /P1.

 7.7. For isentropic expansion in a converging/diverging nozzle with negligible entrance 
velocity, sketch graphs of mass flow rate   m 

∙
   , velocity u, and area ratio A/A1 versus the 

pressure ratio P/P1. Here, A is the cross-sectional area of the nozzle at the point in  
the nozzle where the pressure is P, and subscript 1 denotes the nozzle entrance.
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 7.8. An ideal gas with constant heat capacities enters a converging/diverging nozzle with 
negligible velocity. If it expands isentropically within the nozzle, show that the throat 
velocity is given by:

   u  throat  
2   =   

γ R  T  1  
 _____ ℳ     (    

2
 _ 

γ + 1   )    

  where T1 is the temperature of the gas entering the nozzle, ℳ is the molar mass, and  
R is the molar gas constant.

 7.9. Steam expands isentropically in a converging/diverging nozzle from inlet conditions 
of 1400 kPa, 325°C, and negligible velocity to a discharge pressure of 140 kPa. At the 
throat, the cross-sectional area is 6 cm2. Determine the mass flow rate of the steam 
and the state of the steam at the exit of the nozzle.

 7.10. Steam expands adiabatically in a nozzle from inlet conditions of 130(psia), 420(°F), 
and a velocity of 230(ft)(s)−1 to a discharge pressure of 35(psia) where its velocity is 
2000(ft)(s)−1. What is the state of the steam at the nozzle exit, and what is   S 

∙
   G for the 

process?

 7.11. Air discharges from an adiabatic nozzle at 15°C with a velocity of 580 m⋅s−1. What is 
the temperature at the entrance of the nozzle if the entrance velocity is negligible? 
Assume air to be an ideal gas for which CP = (7/2)R.

 7.12. Cool water at 15°C is throttled from 5(atm) to 1(atm), as in a kitchen faucet. What  
is the temperature change of the water? What is the lost work per kilogram of water  
for this everyday household happening? At 15°C and 1(atm), the volume expansivity 
β for liquid water is about 1.5 × 10−4 K−1. The surroundings temperature Tσ is 20°C. 
State carefully any assumptions you make. The steam tables are a source of data.

 7.13. For a pressure-explicit equation of state, prove that the Joule/Thomson inversion  
curve is the locus of states for which:

  T   (  
∂ Z

 ___ ∂ T  )   
ρ

   = ρ   (  
∂ Z

 ___ ∂ ρ  )   
T

   

  Apply this equation to (a) the van der Waals equation; (b) the Redlich/Kwong  
equation. Discuss the results.

 7.14. Two nonconducting tanks of negligible heat capacity and of equal volume initially 
contain equal quantities of the same ideal gas at the same T and P. Tank A discharges 
to the atmosphere through a small turbine in which the gas expands isentropically; 
tank B discharges to the atmosphere through a porous plug. Both devices operate until 
discharge ceases.

 (a) When discharge ceases, is the temperature in tank A less than, equal to, or greater 
than the temperature in tank B?

 (b) When the pressures in both tanks have fallen to half the initial pressure, is the 
temperature of the gas discharging from the turbine less than, equal to, or greater 
than the temperature of the gas discharging from the porous plug?
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 (c) During the discharge process, is the temperature of the gas leaving the turbine less 
than, equal to, or greater than the temperature of the gas leaving tank A at the same 
instant?

 (d) During the discharge process, is the temperature of the gas leaving the porous plug 
less than, equal to, or greater than the temperature of the gas leaving tank B at the 
same instant?

 (e) When discharge ceases, is the mass of gas remaining in tank A less than, equal to, 
or greater than the mass of gas remaining in tank B?

 7.15. A steam turbine operates adiabatically at a power level of 3500 kW. Steam enters the 
turbine at 2400 kPa and 500°C and exhausts from the turbine as saturated vapor at  
20 kPa. What is the steam rate through the turbine, and what is the turbine efficiency?

 7.16. A turbine operates adiabatically with superheated steam entering at T1 and P1 with a 
mass flow rate   m 

∙
   . The exhaust pressure is P2 and the turbine efficiency is η. For one of 

the following sets of operating conditions, determine the power output of the turbine 
and the enthalpy and entropy of the exhaust steam.

 (a) T1 = 450°C, P1 = 8000 kPa,   m 
∙
    = 80 kg⋅s−1, P2 = 30 kPa, η = 0.80

 (b) T1 = 550°C, P1 = 9000 kPa,   m 
∙
    = 90 kg⋅s−1, P2 = 20 kPa, η = 0.77

 (c) T1 = 600°C, P1 = 8600 kPa,   m 
∙
    = 70 kg⋅s−1, P2 = 10 kPa, η = 0.82

 (d) T1 = 400°C, P1 = 7000 kPa,   m 
∙
    = 65 kg⋅s−1, P2 = 50 kPa, η = 0.75

 (e) T1 = 200°C, P1 = 1400 kPa,   m 
∙
    = 50 kg⋅s−1, P2 = 200 kPa, η = 0.75

 ( f ) T1 = 900(°F), P1 = 1100(psia),   m 
∙
    = 150(lbm)(s)−1, P2 = 2(psia), η = 0.80

 (g) T1 = 800(°F), P1 = 1000(psia),   m 
∙
    = 100(lbm)(s)−1, P2 = 4(psia), η = 0.75

 7.17. Nitrogen gas initially at 8.5 bar expands isentropically to 1 bar and 150°C. Assuming 
nitrogen to be an ideal gas, calculate the initial temperature and the work produced  
per mole of nitrogen.

 7.18. Combustion products from a burner enter a gas turbine at 10 bar and 950°C and  
discharge at 1.5 bar. The turbine operates adiabatically with an efficiency of 77%. 
Assuming the combustion products to be an ideal-gas mixture with a heat capacity  
of 32 J⋅mol−1⋅K−1, what is the work output of the turbine per mole of gas, and what  
is the temperature of the gases discharging from the turbine?

 7.19. Isobutane expands adiabatically in a turbine from 5000 kPa and 250°C to 500 kPa at  
a rate of 0.7 kg mol⋅s−1. If the turbine efficiency is 0.80, what is the power output  
of the turbine and what is the temperature of the isobutane leaving the turbine?

 7.20. The steam rate to a turbine for variable output is controlled by a throttle valve in the inlet 
line. Steam is supplied to the throttle valve at 1700 kPa and 225°C. During a test run, the 
pressure at the turbine inlet is 1000 kPa, the exhaust steam at 10 kPa has a quality of 
0.95, the steam flow rate is 0.5 kg⋅s−1, and the power output of the turbine is 180 kW.

 (a) What are the heat losses from the turbine?
 (b) What would be the power output if the steam supplied to the throttle valve were 

expanded isentropically to the final pressure?
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 7.21. Carbon dioxide gas enters an adiabatic expander at 8 bar and 400°C and discharges at 
1 bar. If the turbine efficiency is 0.75, what is the discharge temperature and what is 
the work output per mole of CO2? Assume CO2 to be an ideal gas at these conditions.

 7.22. Tests on an adiabatic gas turbine (expander) yield values for inlet conditions (T1, P1) 
and outlet conditions (T2, P2). Assuming ideal gases with constant heat capacities, 
determine the turbine efficiency for one of the following:

 (a) T1 = 500 K, P1 = 6 bar, T2 = 371 K, P2 = 1.2 bar, CP /R = 7/2
 (b) T1 = 450 K, P1 = 5 bar, T2 = 376 K, P2 = 2 bar, CP /R = 4
 (c) T1 = 525 K, P1 = 10 bar, T2 = 458 K, P2 = 3 bar, CP /R = 11/2
 (d) T1 = 475 K, P1 = 7 bar, T2 = 372 K, P2 = 1.5 bar, CP /R = 9/2
 (e) T1 = 550 K, P1 = 4 bar, T2 = 403 K, P2 = 1.2 bar, CP /R = 5/2

 7.23. The efficiency of a particular series of adiabatic gas turbines (expanders) correlates 
with power output according to the empirical expression: η = 0.065 + 0.080 ln ∣  W 

∙
   ∣. 

Here, ∣  W 
∙
   ∣ is the absolute value of the actual power output in kW. Nitrogen gas is to  

be expanded from inlet conditions of 550 K and 6 bar to an outlet pressure of 1.2 bar. 
For a molar flow rate of 175 mol⋅s−1, what is the delivered power in kW? What is the 
efficiency of the turbine? What is the rate of entropy generation   S 

∙
   G? Assume nitrogen 

to be an ideal gas with CP = (7/2)R.

 7.24. A turbine operates adiabatically with superheated steam entering at 45 bar and 400°C. 
If the exhaust steam must be “dry,” what is the minimum allowable exhaust pressure 
for a turbine efficiency, η = 0.75? Suppose the efficiency were 0.80. Would the mini-
mum exhaust pressure be lower or higher? Why?

 7.25. Turbines can be used to recover energy from high-pressure liquid streams. However, 
they are not used when the high-pressure stream is a saturated liquid. Why? Illustrate 
by determining the downstream state for isentropic expansion of saturated liquid water 
at 5 bar to a final pressure of 1 bar.

 7.26. Liquid water enters an adiabatic hydroturbine at 5(atm) and 15°C, and exhausts at 
1(atm). Estimate the power output of the turbine in J⋅kg−1 of water if its efficiency  
is η = 0.55. What is the outlet temperature of the water? Assume water to be an  
incompressible liquid.

 7.27. An expander operates adiabatically with nitrogen entering at T1 and P1 with a molar 
flow rate   n 

∙
   . The exhaust pressure is P2, and the expander efficiency is η. Estimate  

the power output of the expander and the temperature of the exhaust stream for one  
of the following sets of operating conditions.

 (a) T1 = 480°C, P1 = 6 bar,   n 
∙
    = 200 mol⋅s−1, P2 = 1 bar, η = 0.80

 (b) T1 = 400°C, P1 = 5 bar,   n 
∙
    = 150 mol⋅s−1, P2 = 1 bar, η = 0.75

 (c) T1 = 500°C, P1 = 7 bar,   n 
∙
    = 175 mol⋅s−1, P2 = 1 bar, η = 0.78

 (d) T1 = 450°C, P1 = 8 bar,   n 
∙
    = 100 mol⋅s−1, P2 = 2 bar, η = 0.85

 (e) T1 = 900(°F), P1 = 95(psia),   n 
∙
    = 0.5(lb mol)(s)−1, P2 = 15(psia), η = 0.80
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 7.28. What is the ideal-work rate for the expansion process of Ex. 7.6? What is the thermo-
dynamic efficiency of the process? What is the rate of entropy generation   S 

∙
   G? What  

is   W 
∙
  lost ? Take Tσ = 300 K.

 7.29. Exhaust gas at 400°C and 1 bar from internal-combustion engines flows at the rate of 
125 mol⋅s−1 into a waste-heat boiler where saturated steam is generated at a pressure  
of 1200 kPa. Water enters the boiler at 20°C (Tσ), and the exhaust gases are cooled  
to within 10°C of the steam temperature. The heat capacity of the exhaust gases is 
CP /R = 3.34 + 1.12 × 10−3 T/K. The steam flows into an adiabatic turbine and 
exhausts at a pressure of 25 kPa. If the turbine efficiency η is 72%,

 (a) What is   W 
∙
   S, the power output of the turbine?

 (b) What is the thermodynamic efficiency of the boiler/turbine combination?
 (c) Determine   S 

∙
   G for the boiler and for the turbine.

 (d) Express   W 
∙
   lost (boiler) and   W 

∙
   lost (turbine) as fractions of ∣   W 

∙
    ideal   ∣, the ideal work of 

the process.

 7.30. A small adiabatic air compressor is used to pump air into a 20 m3 insulated tank.  
The tank initially contains air at 25°C and 101.33 kPa, exactly the conditions at  
which air enters the compressor. The pumping process continues until the pressure  
in the tank reaches 1000 kPa. If the process is adiabatic and if compression is isen-
tropic, what is the shaft work of the compressor? Assume air to be an ideal gas  
for which CP = (7/2)R and CV = (5/2)R.

 7.31. Saturated steam at 125 kPa is compressed adiabatically in a centrifugal compressor  
to 700 kPa at the rate of 2.5 kg⋅s−1. The compressor efficiency is 78%. What is  
the power requirement of the compressor and what are the enthalpy and entropy of  
the steam in its final state?

 7.32. A compressor operates adiabatically with air entering at T1 and P1 with a molar  
flow rate   n 

∙
   . The discharge pressure is P2 and the compressor efficiency is η. Estimate 

the power requirement of the compressor and the temperature of the discharge stream 
for one of the following sets of operating conditions.

 (a) T1 = 25°C, P1 = 101.33 kPa,   n 
∙
    = 100 mol⋅s−1, P2 = 375 kPa, η = 0.75

 (b) T1 = 80°C, P1 = 375 kPa,   n 
∙
    = 100 mol⋅s−1, P2 = 1000 kPa, η = 0.70

 (c) T1 = 30°C, P1 = 100 kPa,   n 
∙
    = 150 mol⋅s−1, P2 = 500 kPa, η = 0.80

 (d) T1 = 100°C, P1 = 500 kPa,   n 
∙
    = 50 mol⋅s−1, P2 = 1300 kPa, η = 0.75

 (e) T1 = 80(°F), P1 = 14.7(psia),   n 
∙
    = 0.5(lb mol)(s)−1, P2 = 55(psia), η = 0.75

 ( f ) T1 = 150(°F), P1 = 55(psia),   n 
∙
    = 0.5(lb mol)(s)−1, P2 = 135(psia), η = 0.70

 7.33. Ammonia gas is compressed from 21°C and 200 kPa to 1000 kPa in an adiabatic  
compressor with an efficiency of 0.82. Estimate the final temperature, the work 
required, and the entropy change of the ammonia.

 7.34. Propylene is compressed adiabatically from 11.5 bar and 30°C to 18 bar at a rate of  
1 kg mol⋅s−1. If the compressor efficiency is 0.8, what is the power requirement of  
the compressor, and what is the discharge temperature of the propylene?
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 7.35. Methane is compressed adiabatically in a pipeline pumping station from 3500 kPa  
and 35°C to 5500 kPa at a rate of 1.5 kg mol⋅s−1. If the compressor efficiency is  
0.78, what is the power requirement of the compressor and what is the discharge  
temperature of the methane?

 7.36. What is the ideal work for the compression process of Ex. 7.9? What is the thermody-
namic efficiency of the process? What are SG and   W  lost   ? Take Tσ = 293.15 K.

 7.37. A fan is (in effect) a gas compressor which moves large volumes of air at low pressure 
across small (1 to 15 kPa) pressure differences. The usual design equation is:

   W 
∙
   =  n 

∙
     
R  T  1  

 ____ 
η  P  1     ΔP 

  where subscript 1 denotes inlet conditions and η is the efficiency with respect to  
isentropic operation. Develop this equation. Show also how it follows from the usual 
equation for compression of an ideal gas with constant heat capacities.

 7.38. For an adiabatic gas compressor, the efficiency with respect to isentropic operation η 
is a measure of internal irreversibilities; so is the dimensionless rate of entropy gener-
ation SG /R ≡   S 

∙
   G /(  n 

∙
   R). Assuming that the gas is ideal with constant heat capacities, 

show that η and SG /R are related through the expression:

    
 S  G  

 ___ 
R

   =   
 C  P  

 ___ 
R

   ln    (    
η + π − 1

 _ 
ηπ

   )    

  where

  π ≡  ( P  2   /  P  1  )   R/ C  P    

 7.39. Air at 1(atm) and 35°C is compressed in a staged reciprocating compressor (with 
intercooling) to a final pressure of 50(atm). For each stage, the inlet gas temperature is 
35°C and the maximum allowable outlet temperature is 200°C. Mechanical power is 
the same for all stages, and isentropic efficiency is 65% for each stage. The volumetric 
flow rate of air is 0.5 m3⋅s−1 at the inlet to the first stage.

 (a) How many stages are required?
 (b) What is the mechanical-power requirement per stage?
 (c) What is the heat duty for each intercooler?
 (d) Water is the coolant for the intercoolers. It enters at 25°C and leaves at 45°C. 

What is the cooling-water rate per intercooler?

  Assume air is an ideal gas with CP = (7/2)R.

 7.40. Demonstrate that the power requirement for compressing a gas is smaller the more 
complex the gas. Assume fixed values of   n 

∙
   , η, T1, P1, and P2, and that the gas is ideal 

with constant heat capacities.
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 7.41. Tests on an adiabatic gas compressor yield values for inlet conditions (T1, P1) and  
outlet conditions (T2, P2). Assuming ideal gases with constant heat capacities,  
determine the compressor efficiency for one of the following:

 (a) T1 = 300 K, P1 = 2 bar, T2 = 464 K, P2 = 6 bar, CP /R = 7/2
 (b) T1 = 290 K, P1 = 1.5 bar, T2 = 547 K, P2 = 5 bar, CP /R = 5/2
 (c) T1 = 295 K, P1 = 1.2 bar, T2 = 455 K, P2 = 6 bar, CP /R = 9/2
 (d) T1 = 300 K, P1 = 1.1 bar, T2 = 505 K, P2 = 8 bar, CP /R = 11/2
 (e) T1 = 305 K, P1 = 1.5 bar, T2 = 496 K, P2 = 7 bar, CP /R = 4

 7.42. Air is compressed in a steady-flow compressor, entering at 1.2 bar and 300 K and leav-
ing at 5 bar and 500 K. Operation is nonadiabatic, with heat transfer to the surroundings 
at 295 K. For the same change in state of the air, is the mechanical-power requirement 
per mole of air greater or less for nonadiabatic than for adiabatic operation? Why?

 7.43. A boiler house produces a large excess of low-pressure [50(psig), 5(°F)-superheat] 
steam. An upgrade is proposed that would first run the low-pressure steam through  
an adiabatic steady-flow compressor, producing medium-pressure [150(psig)] steam.  
A young engineer expresses concern that compression could result in the formation of 
liquid water, damaging the compressor. Is there cause for concern? Suggestion: Refer 
to the Mollier diagram of Fig. F.3 of App. F.

 7.44. A pump operates adiabatically with liquid water entering at T1 and P1 with a mass 
flow rate   m 

∙
   . The discharge pressure is P2, and the pump efficiency is η. For one of the 

following sets of operating conditions, determine the power requirement of the pump 
and the temperature of the water discharged from the pump.

 (a) T1 = 25°C, P1 = 100 kPa,   m 
∙
    = 20 kg⋅s−1, P2 = 2000 kPa, η = 0.75,  

β = 257.2 × 10−6 K−1

 (b) T1 = 90°C, P1 = 200 kPa,   m 
∙
    = 30 kg⋅s−1, P2 = 5000 kPa, η = 0.70,  

β = 696.2 × 10−6 K−1

 (c) T1 = 60°C, P1 = 20 kPa,   m 
∙
    = 15 kg⋅s−1, P2 = 5000 kPa, η = 0.75,  

β = 523.1 × 10−6 K−1

 (d) T1 = 70(°F), P1 = 1(atm),   m 
∙
    = 50(lbm)(s)−1, P2 = 20(atm), η = 0.70,  

β = 217.3 × 10−6 K−1

 (e) T1 = 200(°F), P1 = 15(psia),   m 
∙
    = 80(lbm)(s)−1, P2 = 1500(psia), η = 0.75,  

β = 714.3 × 10−6 K−1

 7.45. What is the ideal work for the pumping process of Ex. 7.10? What is the thermody-
namic efficiency of the process? What is SG? What is Wlost? Take Tσ = 300 K.

 7.46. Show that the points on the Joule/Thomson inversion curve [for which μ = (∂T/∂P)H = 0]  
are also characterized by each of the following:

 (a)    (    
∂ Z

 ___ ∂ T   )    
P

   = 0;   (b)    (    
∂ H

 ___ ∂ P   )    
T

   = 0;   (c)    (    
∂ V

 ___ ∂ T   )    
P

   =   
V

 __ 
T

  ;   (d)    (    
∂ Z

 ___ ∂ V   )    
P

   = 0; 

 (e)  V   (    
∂ P

 ___ ∂ V   )    
T

   + T   (    
∂ P

 ___ ∂ T   )    
V

   = 0 
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 7.47. According to Prob. 7.3, the thermodynamic sound speed c  depends on the PVT  
equation of state. Show how isothermal sound-speed measurements can be used to 
estimate the second virial coefficient B of a gas. Assume that Eq. (3.36) applies, and 
that the ratio CP /CV is given by its ideal-gas value.

 7.48. Real-gas behavior for turbomachinery is sometimes empirically accommodated 
through the expression   W 

∙
   =   〈Z〉   W 

∙
   ig , where   W 

∙
   ig  is the ideal-gas mechanical power  

and   〈Z〉   is some suitably defined average value of the compressibility factor.

 (a) Rationalize this expression.
 (b) Devise a turbine example incorporating real-gas behavior via residual properties, 

and determine a numerical value of   〈Z〉   for the example.

 7.49. Operating data are taken on an air turbine. For a particular run, P1 = 8 bar, T1 = 600 K,  
and P2 = 1.2 bar. However, the recorded outlet temperature is only partially legible;  
it could be T2 = 318, 348, or 398 K. Which must it be? For the given conditions, 
assume air to be an ideal gas with constant CP = (7/2)R.

 7.50. Liquid benzene at 25°C and 1.2 bar is converted to vapor at 200°C and 5 bar in a two-
step steady-flow process: compression by a pump to 5 bar, followed by vaporization  
in a counterflow heat exchanger. Determine the power requirement of the pump and 
the duty of the exchanger in kJ⋅mol−1. Assume a pump efficiency of 70%, and treat 
benzene vapor as an ideal gas with constant CP = 105 J⋅mol−1⋅K−1.

 7.51. Liquid benzene at 25°C and 1.2 bar is converted to vapor at 200°C and 5 bar in  
a two-step steady-flow process: vaporization in a counterflow heat exchanger at  
1.2 bar, followed by compression as a gas to 5 bar. Determine the duty of the 
exchanger and the power requirement of the compressor in kJ⋅mol−1. Assume a  
compressor efficiency of 75%, and treat benzene vapor as an ideal gas with constant 
CP = 105 J⋅mol−1⋅K−1.

 7.52. Of the processes proposed in Probs. 7.50 and 7.51, which would you recommend? 
Why?

 7.53. Liquids (identified below) at 25°C are completely vaporized at 1(atm) in a 
 countercurrent heat exchanger. Saturated steam is the heating medium, available at 
four pressures: 4.5, 9, 17, and 33 bar. Which variety of steam is most appropriate for 
each case? Assume a minimum approach ΔT of 10°C for heat exchange.

 (a) Benzene
 (b) n-Decane
 (c) Ethylene glycol
 (d) o-Xylene

 7.54. One hundred (100) kmol⋅h−1 of ethylene is compressed from 1.2 bar and 300 K to  
6 bar by an electric-motor-driven compressor. Determine the capital cost C of the unit. 
Treat ethylene as an ideal gas with constant CP = 50.6 J⋅mol−1⋅K−1.
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  Data: η(compressor) = 0.70

C(compressor)/$ = 3040(  W 
∙
   S /kW)0.952

where   W 
∙
   S ≡ isentropic power requirement for the compressor.

C(motor)/$ = 380(∣  W 
∙
   e∣ /kW)0.855

where   W 
∙
  e  ≡ delivered shaft power of motor.

 7.55. Four different types of drivers for gas compressors are: electric motors, gas expanders,  
steam turbines, and internal-combustion engines. Suggest when each might be  
appropriate. How would you estimate operating costs for each of these drivers? Ignore 
such add-ons as maintenance, operating labor, and overhead.

 7.56. Two schemes are proposed for the reduction in pressure of ethylene gas at 375 K and 
18 bar to 1.2 bar in a steady-flow process:

 (a) Pass it through a throttle valve.
 (b) Send it through an adiabatic expander of 70% efficiency.

  For each proposal, determine the downstream temperature, and the rate of entropy 
generation in J⋅mol−1⋅K−1. What is the power output for proposal (b) in kJ⋅mol−1? 
Discuss the pros and cons of the two proposals. Do not assume ideal gases.

 7.57. A stream of hydrocarbon gas at 500°C is cooled by continuously combining it with  
a stream of light oil in an adiabatic tower. The light oil enters as a liquid at 25°C;  
the combined stream leaves as a gas at 200°C.

 (a) Draw a carefully labeled flow diagram for the process.
 (b) Let F and D denote respectively the molar flow rates of hot hydrocarbon gas and 

light oil. Use data given below to determine a numerical value for the oil-to-gas 
ratio D/F. Explain your analysis.

 (c) What is the advantage to quenching the hydrocarbon gas with a liquid rather than 
with another (cooler) gas? Explain.

Data:    C  P  v
    (ave) = 150 J⋅mol−1⋅K−1 for the hydrocarbon gas.

  C  P  v
    (ave) = 200 J⋅mol−1⋅K−1 for the oil vapor.

ΔHlv (oil) = 35,000 J⋅mol−1 at 25°C.
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Chapter 8

Production of Power from Heat

In everyday experience, we often speak of “using” energy. For example, one’s utility bills  
are determined by the quantities of electrical energy and chemical energy (e.g., natural gas) 
“used” in one’s home. This may appear to conflict with the conservation of energy expressed 
by the first law of thermodynamics. However, closer examination shows that when we speak 
of “using” energy, we generally mean converting energy from a form capable of producing 
mechanical work into heat and/or transfer of heat from a source at higher temperature to a 
lower temperature. Processes that “use” energy are ones that generate entropy. Such entropy 
generation is inevitable. However, we “use” energy most efficiently when we minimize 
entropy generation.

Except for nuclear power, the sun is the ultimate source of almost all mechanical and 
electrical power used by humankind. Energy reaches the earth by solar radiation at a tremen-
dous rate, exceeding current total rates of human energy use by orders of magnitude. Of course 
the same amount of energy radiates into space from the earth, such that the earth’s temperature 
remains nearly constant. However, incoming solar radiation has an effective temperature near 
6000 K, twenty times that of the earth’s surface. This large temperature difference implies that 
most of the incoming solar radiation can, in principle, be converted to mechanical or electrical 
power. Of course, a key role of sunlight is to support the growth of vegetation. Over millions 
of years a fraction of this organic matter has been transformed into deposits of coal, oil, and 
natural gas. Combustion of these fossil fuels provided the power that enabled the Industrial 
Revolution, transforming civilization. Large-scale power plants depend on combustion of 
these fuels, and to a lesser extent on nuclear fission, for the transfer of heat to the working 
fluid (H2O) of steam power plants. These are large-scale heat engines that convert part of the 
heat into mechanical energy. As a consequence of the second law, the thermal efficiencies of 
these plants seldom exceed 35%.

Water evaporated by sunlight and transported over land by wind is the source of precip-
itation that ultimately produces hydroelectric power on a significant scale. Solar radiation also 
energizes atmospheric winds, which in favorable locations are increasingly used to drive large 
wind turbines for the production of power. With increasing concern about climate change, 
development of alternative sources of power has become urgent. An especially attractive 
means of harnessing solar energy is through photovoltaic cells, which convert radiation 
directly into electricity. They are safe, simple, durable, and operate at ambient temperatures, 
but their high cost long limited their use to small-scale special applications. Their future use 
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on a much larger scale seems inevitable, and the photovoltaic industry is growing at a rapid 
pace. An alternative for harnessing solar energy at large scales is solar-thermal technology, in 
which sunlight is focused with mirrors to heat a working fluid that drives a heat engine. The 
solar and wind energy industries are growing rapidly, but a complete switch to these renewable 
energy sources will require dramatic improvements in large-scale energy storage.

A common device for direct conversion of chemical (molecular) energy into electrical 
energy, without intermediate generation of heat, is the electrochemical cell, that is, a battery. 
A related device is the fuel cell, in which reactants are supplied continuously to the electrodes. 
The best developed of these is a cell in which hydrogen reacts with oxygen to produce water 
through electrochemical conversion. The efficiency of conversion of chemical to electrical 
energy is considerably improved over processes that first convert chemical energy into heat by 
combustion. This technology has potential application in transportation, and may well find 
other uses, particularly in large-scale energy storage.

The internal-combustion engine is also a heat engine, wherein high temperatures are 
attained by conversion of the chemical energy of a fuel directly into internal energy within the 
work-producing device. Examples are Otto, Diesel, and gas-turbine engines.1

In this chapter we briefly analyze:

 ∙ Steam power plants in relation to the Carnot, Rankine, and regenerative cycles
 ∙ Internal-combustion engines in relation to the Otto, Diesel, and Brayton cycles
 ∙ Jet and rocket engines

8.1 THE STEAM POWER PLANT

Figure 8.1 shows a simple steady-state steady-flow cyclic process in which steam generated in 
a boiler is expanded in an adiabatic turbine to produce work. The stream leaving the turbine 
goes to a condenser from which it is pumped back to the boiler. The processes of this cycle are 
represented by lines on the TS diagram of Fig. 8.2. These lines conform to a Carnot cycle, as 
described in Chapter 5. The operation as represented is reversible, consisting of two reversible 
isothermal steps connected by two reversible adiabatic steps.

Step 1 → 2 is isothermal vaporization in a boiler at temperature TH, wherein heat is 
transferred to saturated-liquid water at rate    Q 

∙
    H   , producing saturated vapor. Step 2 → 3 is 

reversible adiabatic expansion of saturated vapor in a turbine producing a two-phase mixture 
of saturated liquid and vapor at TC. This isentropic expansion is represented by a vertical line. 
Step 3 → 4 is an isothermal partial-condensation process at lower temperature TC, wherein 
heat is transferred to the surroundings at rate    Q 

∙
    C   . Step 4 → 1 is an isentropic compression in a 

pump. Represented by a vertical line, it takes the cycle back to its origin, producing  saturated-
liquid water at point 1. The power produced by the turbine    W 

∙
    turbine    is much greater than the 

1Details of steam-power plants and internal-combustion engines can be found in E. B. Woodruff, H. B. Lammers, 
and T. S. Lammers, Steam Plant Operation, 10th ed., McGraw-Hill, New York, 2016; C. F. Taylor, The Internal Com-
bustion Engine in Theory and Practice: Thermodynamics, Fluid Flow, Performance, 2nd ed., MIT Press, Boston, 
1984; and J. Heywood, Internal Combustion Engine Fundamentals, 2nd ed., McGraw-Hill, New York, 2018.
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Figure 8.1: Simple 
steam power plant.
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Figure 8.2: Carnot cycle on a TS diagram.
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power requirement of the pump    W 
∙
    pump   . The net power output is equal to the  difference between 

the rate of heat input in the boiler and the rate of heat rejection in the condenser.
The thermal efficiency of this cycle is:

   η  Carnot   = 1 −   
 T  C  

 ___  T  H      (5.7)

Clearly, η increases as TH increases and as TC decreases. Although the efficiencies of practical 
heat engines are lowered by irreversibilities, their efficiencies are still increased when the 
average temperature at which heat is absorbed in the boiler is increased and when the average 
temperature at which heat is rejected in the condenser is decreased.

The Rankine Cycle
The thermal efficiency of the Carnot cycle just described and given by Eq. (5.7) could serve as 
a standard of comparison for actual steam power plants. However, carrying out steps 2 → 3 
and 4 → 1 as shown is not practically feasible. Turbines that take in saturated steam produce 
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an exhaust with high liquid content, which causes severe erosion problems.2 The design of a 
pump that takes in a mixture of liquid and vapor (point 4) and discharges a saturated liquid 
(point 1) is even more difficult. For these reasons, an alternative cycle is taken as the standard, 
at least for fossil-fuel-burning power plants. It is called the Rankine cycle, and it differs from 
the cycle of Fig. 8.2 in two major respects. First, the heating step 1 → 2 is carried well beyond 
vaporization to produce a superheated vapor, and second, the cooling step 3 → 4 brings about 
complete condensation, yielding saturated liquid to be pumped to the boiler. The Rankine 
cycle therefore consists of the four steps shown in  Fig. 8.3 and described as follows:

 ∙ 1 → 2 A constant-pressure heating process in a boiler. This step follows an isobar (at the 
pressure of the boiler) and consists of three sections: heating of subcooled liquid water 
to its saturation temperature, vaporization at constant temperature and pressure, and 
superheating of the vapor to a temperature well above its saturation temperature.

 ∙ 2 → 3 Reversible, adiabatic (isentropic) expansion of vapor in a turbine to the pressure 
of the condenser. This step normally crosses the saturation curve, producing a wet 
exhaust. However, the superheating accomplished in step 1 → 2 shifts the vertical line 
far enough to the right on Fig. 8.3 that the moisture content is not too large.

 ∙ 3 → 4 A constant-pressure, constant-temperature process in a condenser to produce sat-
urated liquid at point 4.

 ∙ 4 → 1 Reversible, adiabatic (isentropic) pumping of the saturated liquid to the pressure 
of the boiler, producing compressed (subcooled) liquid. The vertical line (whose length 
is exaggerated in Fig 8.3) is very short because the temperature rise associated with 
compression of a liquid is small.

Power plants actually operate on a cycle that departs from the Rankine cycle due to irre-
versibilities of the expansion and compression steps. Figure 8.4 illustrates the effects of these 
irreversibilities on steps 2 → 3 and 4 → 1. The lines are no longer vertical but tend in the 
direction of increasing entropy. The turbine exhaust is normally still wet, but with sufficiently 

2Nevertheless, nuclear power plants generate saturated steam and operate with turbines designed to eject liquid at 
various stages of expansion.

Figure 8.3: Rankine cycle on a TS diagram.
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low moisture content, erosion problems are not serious. Slight subcooling of the condensate in 
the condenser may occur, but the effect is inconsequential.

The boiler serves to transfer heat from a burning fuel (or from a nuclear reactor or a 
solar-thermal heat source) to the cycle, and the condenser transfers heat from the cycle to the 
surroundings. Neglecting kinetic- and potential-energy changes reduces the energy relations 
for these steps, Eqs. (2.30) and (2.31), to:

Figure 8.4: Simple practical power cycle.
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  Q 
∙
   =  m 

∙  ΔH (8.1)  Q = ΔH (8.2)

Turbine and pump calculations were treated in detail in Secs. 7.2 and 7.3.

Example 8.1
Steam generated in a power plant at a pressure of 8600 kPa and a temperature of 
500°C is fed to a turbine. Exhaust from the turbine enters a condenser at 10 kPa, 
where it is condensed to saturated liquid, which is then pumped to the boiler.

 (a) What is the thermal efficiency of a Rankine cycle operating at these conditions?

 (b) What is the thermal efficiency of a practical cycle operating at these conditions 
if the turbine efficiency and pump efficiency are both 0.75?

 (c) If the rating of the power cycle of part (b) is 80,000 kW, what is the steam rate 
and what are the heat-transfer rates in the boiler and condenser?

Solution 8.1

 (a) The turbine operates under the same conditions as that of Ex. 7.6 where, on 
the basis of 1 kg of steam:

    (  ΔH )    S   = −1274.2 kJ⋅ kg   −1  
Thus   W  s     (  isentropic )    =   (  ΔH )    S   = −1274.2 kJ⋅ kg   −1 
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312 CHAPTER 8. Production of Power from Heat

Moreover, the enthalpy at the end of isentropic expansion, called   H  2  ′    in Ex. 7.6, is 
here:

   H  3  ′   = 2117.4 kJ⋅ kg   −1  

 Subscripts refer to Fig. 8.4. The enthalpy of saturated liquid condensate at 10 kPa 
(and   t   sat  = 45.83° C ) is:

   H  4   = 191.8 kJ⋅ kg   −1  

By Eq. (8.2) applied to the condenser,

  Q(condenser) =  H  4   −  H  3  ′   = 191.8 − 2117.4 = −1925.6 kJ⋅kg−1   

where the minus sign indicates heat flow out of the system.
  The pump operates under essentially the same conditions as the pump of  

Ex. 7.10, where:
   W  s   (isentropic) =   (  ΔH )    S   = 8.7 kJ⋅ kg   −1  

and   H  1   =  H  4   +   (  ΔH )    S   = 191.8 + 8.7 = 200.5 kJ⋅ kg   −1  

The enthalpy of superheated steam at 8600 kPa and 500°C is:

   H  2   = 3391.6 kJ⋅ kg   −1  

By Eq. (8.2) applied to the boiler,

  Q(boiler) =  H  2   −  H  1   = 3391.6 − 200.5 = 3191.1 kJ⋅ kg  −1  

The net work of the Rankine cycle is the sum of the turbine work and the pump work:

   W  s   (Rankine) = −1274.2 + 8.7 = −1265.5 kJ⋅ kg   −1  

This result is of course also:

 
  W  s   (Rankine)

  
=

  
−Q(boiler) − Q(condenser)

    
 
  
=

  
−3191.1 + 1925.6 = −1265.5 kJ⋅kg−1 

 The thermal efficiency of the cycle is:

  η =   
−  W  s    (  Rankine )  

  _____________ 
Q    =   

1265.5
 ______ 3191.1   = 0.3966  

(b) With a turbine efficiency of 0.75, then also from Ex. 7.6:

   W  s   (turbine) = ΔH = − 955.6 kJ⋅ kg   −1  

and   H  3   =  H  2   + ΔH = 3391.6 − 955.6 = 2436.0 kJ⋅ kg   −1  

For the condenser,

  Q(condenser) =  H  4   −  H  3   = 191.8 − 2436.0 = − 2244.2 kJ⋅ kg   −1  

As shown in Ex. 7.10 for the pump,

   W  s   (pump) = ΔH = 11.6 kJ⋅ kg   −1  

The net work of the cycle is therefore:

   W  s   (net) = − 955.6 + 11.6 = −944.0 kJ⋅ kg   −1  
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8.1. The Steam Power Plant 313

and    H  1   =  H  4   + ΔH = 191.8 + 11.6 = 203.4 kJ⋅ kg   −1  

Then  Q(boiler) =  H  2   −  H  1   = 3391.6 − 203.4 = 3188.2 kJ⋅ kg   −1  

The thermal efficiency of the cycle is therefore:

  η =   
−  W  s   (  net )  

 ________ 
Q (boiler) 

   =   
944.0

 ______ 3188.2   = 0.2961  

which can be compared with the result of part (a). The main difference is that due 
to the turbine efficiency because the energy required by the pump is small in either 
case.

(c) For a power rating of 80,000 kW:

    W 
∙
    s  (net) =  m 

∙   W  s   (net )  

or    m 
∙
   =   

  W  s   
∙
   (net)

 _______  W  s    (  net )     =       
− 80,000 kJ⋅s−1

  _____________  
− 944.0 kJ⋅kg−1       = 84.75 kg⋅ s  −1 

Then by Eq. (8.1),

   Q 
∙
   (boiler) = (84.75)(3188.2) = 270.2 ×  10   3  kJ⋅s−1  

   Q 
∙
   (condenser) = (84.75)(−2244.2) = −190.2 ×  10   3  kJ⋅s−1  

Note that
   Q 

∙
   (boiler) +  Q 

∙
   (condenser) = −   W 

∙
    s   (net)  

The Regenerative Cycle
The thermal efficiency of a steam power cycle is increased when the pressure, and hence the 
vaporization temperature, in the boiler is raised. It is also increased by greater superheating  
in the boiler. Thus, high boiler pressures and temperatures favor high efficiencies. However, 
these same conditions increase the capital investment in the plant, because they require heavier 
construction and more expensive materials of construction. Moreover, these costs increase 
ever more rapidly as more severe conditions are imposed. In practice, power plants seldom 
operate at pressures much above 10,000 kPa or temperatures much above 600°C. The thermal 
efficiency of a power plant increases as pressure, and hence temperature, in the condenser is 
reduced. However, condensation temperatures must be higher than the temperature of the 
cooling medium, usually water, and this is controlled by local conditions of climate and geog-
raphy. Power plants universally operate with condenser pressures as low as practical.

Most modern power plants operate on a modified Rankine cycle that incorporates feed-
water heaters. Water from the condenser, rather than being pumped directly back to the boiler, 
is first heated by steam extracted from the turbine. This is normally done in several stages, 
with steam taken from the turbine at several intermediate states of expansion. An arrangement 
with four feedwater heaters is shown in Fig. 8.5. The operating conditions indicated on this 
figure and described in the following paragraphs are typical, and are the basis for the illustra-
tive calculations of Ex. 8.2.
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314 CHAPTER 8. Production of Power from Heat

The conditions of steam generation in the boiler are the same as in Ex. 8.1: 8600 kPa and 
500°C. The exhaust pressure of the turbine, 10 kPa, is also the same. The saturation tempera-
ture of the exhaust steam is therefore 45.83°C. Allowing for slight subcooling of the conden-
sate, we fix the temperature of the liquid water from the condenser at 45°C. The feedwater 
pump, which operates under exactly the conditions of the pump in Ex. 7.10, causes a tempera-
ture rise of about 1°C, making the temperature of the feedwater entering the series of heaters 
equal to 46°C.

The saturation temperature of steam at the boiler pressure of 8600 kPa is 300.06°C, and 
the temperature to which the feedwater can be raised in the heaters is certainly less. This tem-
perature is a design variable, which is ultimately fixed by economic considerations. However, a 
value must be chosen before any thermodynamic calculations can be made. We have therefore 
arbitrarily specified a temperature of 226°C for the feedwater stream entering the boiler. We 
have also specified that each of the four feedwater heaters accomplishes the same temperature 
rise. Thus, the total temperature rise of 226 – 46 = 180°C is divided into four 45°C increments. 
This establishes all intermediate feedwater temperatures at the values shown on Fig. 8.5.

The steam supplied to a given feedwater heater must be at a pressure high enough that 
its saturation temperature is above that of the feedwater stream leaving the heater. We have 
here presumed a minimum temperature difference for heat transfer of no less than 5°C, and 
have chosen extraction steam pressures such that the tsat values shown in the feedwater heat-
ers are at least 5°C greater than the exit temperatures of the feedwater streams. The conden-
sate from each feedwater heater is flashed through a throttle valve to the heater at the next 

Figure 8.5: Steam power plant with feedwater heating.
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8.1. The Steam Power Plant 315

lower pressure, and the collected condensate in the final heater of the series is flashed into 
the condenser. Thus, all condensate returns from the condenser to the boiler by way of the 
feedwater heaters.

The purpose of heating the feedwater in this manner is to raise the average temperature 
at which heat is added to the water in the boiler. This increases the thermal efficiency of the 
plant, which is said to operate on a regenerative cycle.

Example 8.2
Determine the thermal efficiency of the power plant shown in Fig. 8.5, assuming  
turbine and pump efficiencies of 0.75. If its power rating is 80,000 kW, what is  
the steam rate from the boiler and what are the heat-transfer rates in the boiler  
and condenser?

Solution 8.2
Initial calculations are made on the basis of 1 kg of steam entering the turbine 
from the boiler. The turbine is in effect divided into five sections, as indicated in 
Fig. 8.5. Because steam is extracted at the end of each section, the flow rate in the 
turbine decreases from one section to the next. The amounts of steam extracted 
from the first four sections are determined by energy balances.

This requires enthalpies of the compressed feedwater streams. The effect of 
pressure at constant temperature on a liquid is given by Eq. (7.25):

  ΔH = V(1 − βT )ΔP    (  const T  )     

For saturated liquid water at 226°C (499.15 K), the steam tables provide:

   P   sat  = 2598.2 kPa H = 971.5 kJ⋅ kg   −1 V = 1201  cm   3 ⋅ kg   −1  

In addition, at this temperature,

  β = 1.582 ×  10   −3  K−1  

Thus, for a pressure change from the saturation pressure to 8600 kPa:

  ΔH = 1201[1 − (1.528 × 10−3) (499.15)]  
(8600 − 2598.2)

  ______________ 
 10   6 

   = 1.5 kJ⋅ kg   −1 

and   H = H (sat. liq.) + ΔH = 971.5 + 1.5 = 973.0 kJ⋅ kg   −1 

Similar calculations yield the enthalpies of the feedwater at other temperatures. 
All pertinent values are given in the following table.

t/°C 226 181 136 91 46
H/kJ⋅kg−1 for water at  
 t and P = 8600 kPa 973.0 771.3 577.4 387.5 200.0
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316 CHAPTER 8. Production of Power from Heat

Figure 8.6: Section I of 
turbine and first feedwater 
heater.

P  8,600 kPa
t  500°C

H  3,391.6
S  6.6858

1 kg superheated
     steam from boiler

m kg condensate
Saturated liquid
     at 2,900 kPa
tsat 231.97°C

H 999.5

Enthalpy: kJ kg 1

Entropy: kJ kg 1 K 1

1 kg liquid
     water
P  8,600 kPa
t  181°C

H  771.3

1 kg liquid
     water
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t  226°C

H  973.0

 P  2,900 kPa
H  3,151.2

t  363.65°C
S  6.8150

I Ws(I)

Steam feed to 
     section IIm kg

(1  m) kg

The first section of the turbine and the first feedwater heater are shown in  
Fig. 8.6. The enthalpy and entropy of the steam entering the turbine are found 
from the tables for superheated steam. The assumption of isentropic expansion of 
steam in section I of the turbine to 2900 kPa leads to the result:

   (ΔH )  S   = − 320.5 kJ⋅ kg   −1  

If we assume that the turbine efficiency is independent of the pressure to which 
the steam expands, then Eq. (7.16) gives:

  ΔH = η   (  ΔH )    S   =   (  0.75 )     (  −320.5 )    = − 240.4 kJ⋅ kg   −1  

By Eq. (7.14),

   W  s    (  I )    = ΔH = − 240.4 kJ  

In addition, the enthalpy of steam discharged from this section of the turbine is:

  H = 3391.6 − 240.4 = 3151.2 kJ⋅ kg   −1  

A simple energy balance on the feedwater heater results from the assumption 
that kinetic- and potential-energy changes are negligible and from the assign-
ments,   Q 

∙
   = −   W 

∙
    s   = 0 . Equation (2.29) then reduces to:

 Δ  (   m 
∙  H )    fs   = 0 
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8.1. The Steam Power Plant 317

Thus on the basis of 1 kg of steam entering the turbine (Fig. 8.6):

  m   (  999.5 − 3151.2 )    +   (  1 )     (  973.0 − 771.3 )    = 0  

Then   m = 0.09374 kg    and    1 − m = 0.90626 kg  

For each kilogram of steam entering the turbine, 1−m is the mass of steam flow-
ing into section II of the turbine.

Section II of the turbine and the second feedwater heater are shown in Fig. 8.7. 
In doing the same calculations as for section I, we assume that each kilogram of 
steam leaving section II expands from its state at the turbine entrance to the exit  
of section II with an efficiency of 0.75 compared with isentropic expansion. The 
enthalpy of the steam leaving section II found in this way is:

 H = 2987.8 kJ⋅kg−1 

Then on the basis of 1 kg of steam entering the turbine,

   W  s    (  II )    =   (  2987.8 − 3151.2 )     (  0.90626 )    = − 148.08 kJ  

An energy balance on the feedwater heater (Fig. 8.7) gives:

    (  0.09374 + m )   (  789.9 )   −  (  0.09374 )   (  999.5 )   − m  (  2987.8 )   + 1 (  771.3 − 577.4 )   = 0   

and   m = 0.07971 kg 

Figure 8.7: Section II of 
turbine and second feed-
water heater.
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318 CHAPTER 8. Production of Power from Heat

Note that throttling the condensate stream does not change its enthalpy.
These results and those of similar calculations for the remaining sections of the 

turbine are listed in the accompanying table. From the results shown,

   ∑     Ws     = −804.0 kJ  and   ∑     m  = 0.3055 kg  

H/kJ⋅kg−1  
at section  

exit
Ws/kJ  

for section

t/°C at  
section  

exit State

m/kg of  
steam  

extracted

Sec. I 3151.2 –240.40 363.65 Superheated  
vapor

0.09374

Sec. II 2987.8 –148.08 272.48 Superheated  
vapor

0.07928

Sec. III 2827.4 –132.65 183.84 Superheated  
vapor

0.06993

Sec. IV 2651.3 –133.32 96.00 Wet vapor  
x = 0.9919

0.06257

Sec. V 2435.9 –149.59 45.83 Wet vapor  
x = 0.9378

Thus for every kilogram of steam entering the turbine, the work produced is 
804.0 kJ, and 0.3055 kg of steam is extracted from the turbine for the feedwater 
heaters. The work required by the pump is exactly the work calculated for the 
pump in Ex. 7.10, that is, 11.6 kJ. The net work of the cycle on the basis of 1 kg of 
steam generated in the boiler is therefore:

   W  s   (net) = − 804.0 + 11.6 = −792.4 kJ  

On the same basis, the heat added in the boiler is:

  Q (boiler) = ΔH = 3391.6 − 973.0 = 2418.6 kJ  

The thermal efficiency of the cycle is therefore:

  η =   
−  W  s    (  net )  

 ________ 
Q  (boiler) 

   =   
792.4

 ______ 2418.6   = 0.3276  

This is a significant improvement over the value 0.2961 of Ex. 8.1.
Because    W 

∙
    S   (net) = − 80,000 kJ⋅s−1 ,

   m 
∙    =    

 W 
∙
  s (net)

 _______ 
 W 

∙
  s (net)

    =    
− 80,000

 ________ − 792.4    = 100.96 kg⋅s−1 

This is the steam rate to the turbine, used to calculate the heat-transfer rate in the boiler:

   Q 
∙
   (boiler) =  m 

∙  ΔH = (100.96)(2418.6) = 244.2 ×  10   3   kJ⋅ s   −1   

 The heat-transfer rate to the cooling water in the condenser is:

   
 Q 

∙
   (condenser)

  
=

  
−  Q 

∙
   (boiler) −   W 

∙
    s   (net)

       =  − 244.2 ×  10   3  − (− 80.0 ×  10   3  )     
 
  

=
  
− 164.2 ×  10   3   kJ⋅  s   −1 
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8.2. Internal-Combustion Engines 319

Although the steam generation rate is higher than was found in Ex. 8.1, the 
heat-transfer rates in the boiler and condenser are appreciably less because their 
functions are partly taken over by the feedwater heaters.

8.2 INTERNAL-COMBUSTION ENGINES

In a steam power plant, the steam is an inert medium to which heat is transferred from  
an external source (e.g., burning fuel). It is therefore characterized by large heat-transfer  
 surfaces: (1) for the absorption of heat by the steam at a high temperature in the boiler, and  
(2) for the rejection of heat from the steam at a relatively low temperature in the condenser. 
The disadvantage is that when heat must be transferred through walls (e.g., metal walls of 
boiler tubes) the ability of the walls to withstand high temperatures and pressures limits the 
temperature of heat transfer. In an internal-combustion engine, on the other hand, a fuel is 
burned within the engine itself, and the combustion products serve as the working medium, 
acting for example on a piston in a cylinder. High temperatures are internal and do not involve 
heat-transfer surfaces. This difference not only makes the use of higher temperatures possible, 
but also makes the overall engine much smaller and lighter. Hence, internal combustion 
engines are used in mobile applications—from cars to airplanes.

Burning of fuel within the internal-combustion engine complicates thermodynamic 
analysis. Moreover, fuel and air flow steadily into an internal-combustion engine, and com-
bustion products flow steadily out of it; no working medium undergoes a cyclic process, as 
does steam in a steam power plant. However, for making simple analyses, one imagines cyclic 
engines with air as the working fluid, equivalent in performance to actual internal-combustion 
engines. In addition, the combustion step is replaced by the addition to the air of an equivalent 
amount of heat. In what follows, each internal-combustion engine is introduced by a qualita-
tive description. This is followed by a quantitative analysis of an ideal cycle in which air in its 
ideal-gas state with constant heat capacities is the working medium.

The Otto Engine
The most common internal-combustion engine, because of its use in automobiles, is the Otto 
engine.3 Its cycle consists of four strokes and starts with an intake stroke at essentially constant 
pressure, during which a piston moving outward draws a fuel/air mixture into a cylinder. This is 
represented by line 0 → 1 in Fig. 8.8. During the second stroke (1 → 2 → 3), all valves are closed, 
and the fuel/air mixture is compressed, approximately adiabatically along line segment 1 → 2; the 
mixture is then ignited, by firing of a spark plug, and combustion occurs so rapidly that the volume 
remains nearly constant while the pressure rises along line segment 2 → 3. It is during the third 
stroke (3 → 4 → 1) that work is produced. The high-temperature, high-pressure products of com-
bustion expand, approximately adiabatically, along line segment 3 → 4; the exhaust valve then 
opens and the pressure falls rapidly at nearly constant volume along line segment 4 → 1. During 
the fourth or exhaust stroke (line 1 → 0), the piston pushes the remaining combustion gases (except 
for the contents of the clearance volume) from the cylinder. The volume plotted in Fig. 8.8 is the 
total volume of gas contained in the engine between the piston and the cylinder head.

3Named for Nikolaus August Otto, the German engineer who demonstrated one of the first practical engines of this 
type. See http://en.wikipedia.org/wiki/Nikolaus_Otto. Also called a four-stroke spark-ignition engine.
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320 CHAPTER 8. Production of Power from Heat

The effect of increasing the compression ratio—the ratio of the volumes at the beginning 
and end of compression from point 1 to point 2—is to increase the efficiency of the engine, that 
is, to increase the work produced per unit quantity of fuel. We demonstrate this for an idealized 
cycle, called the air-standard Otto cycle, shown in Fig. 8.9. It consists of two adiabatic and two 
constant-volume steps, which comprise a heat-engine cycle. The idealized working fluid is air 
in its ideal-gas state with constant heat capacity. Step CD, a reversible adiabatic compression, is 
followed by step DA, where sufficient heat is added to the air at constant volume to raise its 
temperature and pressure to the values that would result from combustion in an actual Otto 
engine. Then the air is expanded adiabatically and reversibly (step AB) and cooled at constant 
volume (step BC) to the initial state at C by heat transfer to the surroundings.

The thermal efficiency η of the air-standard cycle shown in Fig. 8.9 is simply:

  η =   
− W  (  net )   

 ________  Q  DA     =   
 Q  DA   +  Q  BC  

 _________  Q  DA      (8.3)

For 1 mol of air with constant heat capacity,

   Q  DA   =  C V  ig
   (   T  A   −  T  D   )    and  Q  BC   =  C V  ig

   (   T  C   −  T  B   )     

Substituting these expressions in Eq. (8.3) gives:

  η =   
 C V  ig

   (   T  A   −  T  D   )    +  C V  ig
   (   T  C   −  T  B   )   

   ________________________  
 C V  ig

   (   T  A   −  T  D   )   
    

or  η = 1 −   
 T  B   −  T  C  

 _______  T  A   −  T  D      (8.4)

The thermal efficiency is related in a simple way to the compression ratio,  r ≡  V C  ig
  /  V D  ig

 .  
To show this, each temperature in Eq. (8.4) is replaced by an appropriate group PVig/R. Thus,

Figure 8.8: Otto engine cycle.
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  T  B  

  
=

  
  
 P  B   V B  ig

 
 ______ 

R
   =   

 P  B   V C  ig
 
 ______ 

R
       T  C  

  
=

  
  
 P  C   V C  ig

 
 ______ 

R
  

     

 T  A  

  

=

  

  
 P  A   V A  ig

 
 ______ 

R
   =   

 P  A   V D  ig
 
 ______ 

R
       T  D  

  

=

  

  
 P  D   V D  ig

 
 ______ 

R
   

  Substituting into Eq. (8.4) leads to:

  η = 1 −   
 V C  ig

 
 ___ 

 V D  ig
 
     (    

 P  B   −  P  C  
 _  P  A   −  P  D     )    = 1 − r  (    

 P  B   −  P  C  
 _  P  A   −  P  D     )     (8.5)

For the two adiabatic, reversible steps, PVγ = const. Hence:

    
 P  B   V C  γ

   =  P  A   V D  γ
  
  
 (because  V  D   =  V A  ig

   and  V C  ig
  =  V B  ig

  )
     

 P  C   V C  γ
   =  P  D   V D  γ

  
  
 
    

Division of the first expression by the second yields:

    
 P  B  

 ___  P  C     =   
 P  A  

 ___  P  D     from which   
 P  B  

 ___  P  C     − 1 =   
 P  A  

 ___  P  D     − 1 or   
 P  B   −  P  C  

 _______  P  C     =   
 P  A   −  P  D  

 _______  P  D      

Thus,    
 P  B   −  P  C  

 _______  P  A   −  P  D     =   
 P  C  

 ___  P  D     =   (    
 V  D  

 ___  V  C     )     
γ

  =   (    
1
 __ 

r
   )     

γ

   

where we have used the relation   P  C   V C  γ
   =  P  D   V D  γ

  .  Equation (8.5) now becomes:

  η = 1 − r   (    
1
 __ 

r
   )     

γ

  = 1 −   (    
1
 __ 

r
   )     

γ − 1

   (8.6)

This equation shows that the thermal efficiency increases rapidly with the compression ratio r 
at low values of r, but more slowly at high compression ratios. This agrees with the results of 
actual tests on Otto engines.

Unfortunately, the compression ratio cannot be increased arbitrarily but is limited by 
pre-ignition of the fuel. For sufficiently high compression ratios, the temperature rise due to 
compression will ignite the fuel before the compression stroke is complete. This is manifested as 
“knocking” of the engine. Compression ratios in automobile engines are usually not much above 
10. The compression ratio at which pre-ignition occurs depends on the fuel, with the resistance 
to pre-ignition of fuels indicated by an octane rating. High-octane gasoline does not actually 
contain more octane than other gasoline, but it does have additives such as alcohols, ethers, and 
aromatic compounds that increase its resistance to pre-ignition. Iso-octane is arbitrarily assigned 
an octane number of 100, while n-heptane is assigned an octane number of zero. Other com-
pounds and fuels are assigned octane numbers relative to these standards, based on the compres-
sion ratio at which they pre-ignite. Ethanol and methanol have octane numbers well above 100. 
Racing engines that burn these alcohols can employ compression ratios of 15 or more.

Many modern hybrid automobiles employ a gasoline engine operating on a variation of 
the Otto cycle known as the Atkinson cycle. In this cycle, some air is expelled from the engine 
before the intake valve is closed, such that the compression stroke has a smaller volume change 
than the expansion stroke. This maximizes work extraction in the expansion stroke and provides 
higher efficiency at the expense of lower power density. This trade-off works well in combina-
tion with an electric motor. Variable valve timing can allow an engine to switch between the 
Otto cycle and the Atkinson cycle as needed.
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The Diesel Engine
The fundamental difference between the Otto cycle and the Diesel cycle4 is that in the Diesel 
cycle the temperature at the end of compression is sufficiently high that combustion is initi-
ated spontaneously. This higher temperature results from a higher compression ratio that car-
ries the compression step to a higher pressure. The fuel is not injected until the end of the 
compression step, and then it is added slowly enough that the combustion process occurs at 
approximately constant pressure.

For the same compression ratio, the Otto engine has a higher efficiency than the Diesel 
engine. However, because preignition limits the compression ratio attainable in the Otto engine, 
the Diesel engine can operate at higher compression ratios, and consequently at higher efficien-
cies. Compression ratios can exceed 20 in Diesel engines employing indirect fuel injection.

Example 8.3
Sketch the air-standard Diesel cycle on a PV diagram, and derive an equation  
giving the thermal efficiency of this cycle in relation to the compression ratio r (ratio  
of  volumes at the beginning and end of the compression step) and the expansion  
ratio re (ratio of volumes at the end and beginning of the adiabatic expansion step).

Solution 8.3
The air-standard Diesel cycle is the same as the air-standard Otto cycle, except 
that the heat-absorption step (corresponding to the combustion process in the 
actual engine) is at constant pressure, as indicated by line DA in Fig. 8.10.

4Named for Rudolf Diesel, the German engineer who developed one of the first practical compression-ignition 
engines. See http://en.wikipedia.org/wiki/Rudolf_Diesel.

Figure 8.10: Air-standard Diesel cycle.B

AD

C

Volume

P
re

ss
ur

e

On the basis of 1 mol of air in its ideal-gas state with constant heat capacities, the 
heat quantities absorbed in step DA and rejected in step BC are:

   Q  DA   =  C P  ig
   (   T  A   −  T  D   )      and    Q  BC   =  C V  ig

   (   T  C   −  T  B   )     
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The thermal efficiency, Eq. (8.3), is:

  η = 1 +   
 Q  BC  

 ____  Q  DA     = 1 +   
 C V  ig

   (   T  C   −  T  B   )   
  ___________  

 C P  ig
   (   T  A   −  T  D   )   

   = 1 −   
1
 __ 

γ
      (    

 T  B   −  T  C  
 _  T  A   −  T  D     )     (A)

For reversible, adiabatic expansion (step AB) and reversible, adiabatic compression 
(step CD), Eq. (3.23a) applies:

   T  A    V A  γ − 1  =  T  B    V B  γ − 1    and    T  D    V D  γ − 1  =  T  C    V C  γ − 1   

By definition, the compression ratio is  r  ≡   V C  ig
  /  V D  ig

 ,  and the expansion ratio is  
  r  e   ≡  V B  ig

  /  V A  ig
 .  Thus, 

   T  B   =  T  A     (    
1
 __  r  e  
   )     

γ − 1

   T  C   =  T  D     (    
1
 __ 

r
   )     

γ − 1

   

Substituting these equations into Eq. (A) gives:

  η = 1 −   
1
 __ 

γ
    [    

 T  A     (1 /  r  e  )    γ − 1  −  T  D     (1 / r)    γ − 1 
   ______________________   T  A   −  T  D     ]     (B)

Also PA = PD, and for the ideal-gas state,

   P  D    V D  ig
  = R T  D     and    P  A    V A  ig

  = R T  A    

Moreover,   V C  ig
  =  V B  ig  , and therefore:

    
 T  D  

 ___  T  A     =   
 V D  ig

 
 ___ 

 V A  ig
 
   =   

 V D  ig
 ╱ V C  ig

 
 _______ 

 V A  ig
 ╱ V B  ig

 
   =   

 r  e   __ 
r
    

This relation combines with Eq. (B):

  η = 1 −   
1
 __ 

γ
     [    

  (1 /  r  e  )    γ − 1  −   ( r  e   / r)    (1 / r)    γ − 1 
  _____________________  1 −  r  e   / r

   ]     

or  η = 1 −   
1
 __ 

γ
    [    

  (1 /  r  e  )    γ  −   (1 / r)    γ 
  _____________ 1 /  r  e   − 1 / r   ]     (8.7)

The Gas-Turbine Engine
The Otto and Diesel engines exemplify direct use of the energy of high-temperature, high-pressure 
gases acting on a piston within a cylinder; no heat transfer with an external source is required. 
However, turbines are generally more efficient than reciprocating engines, and the advantages 
of  internal combustion are combined with those of turbines in the gas-turbine engine.

The gas turbine is driven by high-temperature gases from a combustion chamber, as 
indicated in Fig. 8.11. The entering air is compressed (supercharged) to a pressure of several 
bars before combustion. The centrifugal compressor operates on the same shaft as the turbine, 
and part of the work of the turbine serves to drive the compressor. The higher the temperature 
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of the combustion gases entering the turbine, the higher the efficiency of the unit, i.e., the 
greater the work produced per unit of fuel burned. The limiting temperature is determined by 
the strength of the metal turbine blades and is generally much lower than the theoretical flame 
temperature (Ex. 4.7) of the fuel. Sufficient excess air must be supplied to keep the combus-
tion temperature at a safe level.

An idealization of the gas-turbine engine, called the Brayton cycle, is shown on a PV 
diagram in Fig. 8.12. The working fluid is air in its ideal-gas state with constant heat capacity. 
Step AB is a reversible adiabatic compression from PA (atmospheric pressure) to PB. In step 
BC heat QBC, replacing combustion, is added at constant pressure, raising the air temperature. 
A work-producing isentropic expansion of the air reduces the pressure from PC to PD 

Figure 8.11: Gas-turbine engine.
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Figure 8.12: Brayton cycle for the gas-turbine engine.
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(atmospheric pressure). Step DA is a constant-pressure cooling process that merely completes 
the cycle. The thermal efficiency of the cycle is:

  η =   
− W   (  net )   

 ________  Q  BC     =   
−   (   W  CD   +  W  AB   )   

  _____________  Q  BC      (8.8)

where each energy quantity is based on 1 mol of air.
The work done as air passes through the compressor is given by Eq. (7.14), and for air in 

its ideal-gas state with constant heat capacity:

   W  AB   =  H  B   −  H  A   =  C P  ig
   (   T  B   −  T  A   )     

Similarly, for the heat-addition and turbine processes,

   Q  BC   =  C P  ig
   (   T  C   −  T  B   )    and  W  CD   =  C P  ig

   (   T  D   −  T  C   )     

Substituting these equations into Eq. (8.8) and simplifying leads to:

  η = 1 −   
 T  D   −  T  A  

 _______  T  C   −  T  B      (8.9)

Because processes AB and CD are isentropic, the temperatures and pressures are related by 
Eq. (3.23b):

    
 T  A  

 ___  T  B     =   (  
 P  A  

 ___  P  B    )    
  (  γ − 1 )   /γ

   (8.10)

and    
 T  D  

 ___  T  C     =   (  
 P  D  

 ___  P  C    )    
  (  γ − 1 )   /γ

  =   (  
 P  A  

 ___  P  B    )    
  (  γ − 1 )   /γ

   (8.11)

Solving Eq. (8.10) for TA and Eq. (8.11) for TD and substituting the results into Eq. (8.9) 
reduce it to:

  η = 1 −   (  
 P  A  

 ___  P  B    )    
  (  γ − 1 )   /γ

   (8.12)

Example 8.4
A gas-turbine engine with a compression ratio PB/PA = 6 operates with air entering the 
compressor at 25°C. If the maximum permissible temperature in the turbine is 760°C, 
determine:

 (a) The thermal efficiency η of the reversible air-standard cycle for these conditions 
if γ = 1.4.

 (b) The thermal efficiency for an air-standard cycle for the given conditions if the 
compressor and turbine operate adiabatically but irreversibly with efficiencies 
ηc = 0.83 and ηt = 0.86.
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Solution 8.4
(a) Direct substitution in Eq. (8.12) gives the efficiency:

  η = 1 −   (  1 / 6 )       (  1.4−1 )   ∕1.4  = 1 − 0.60 = 0.40  

(b) Irreversibilities in both the compressor and turbine reduce the thermal effi-
ciency of the engine because the net work is the difference between the work 
required by the compressor and the work produced by the turbine. The tempera-
ture of air entering the compressor TA and the temperature of air entering the  
turbine, the specified maximum for TC , are the same as for the reversible cycle  
of part (a). However, the temperature after irreversible compression in the com-
pressor TB is higher than the temperature after isentropic compression   T  B  ′   , and  
the temperature after irreversible expansion in the turbine TD is higher than the 
temperature after isentropic expansion   T  D  ′   .

The thermal efficiency of the engine is given by:

  η =   
−   (   W  turb   +  W  comp   )   

  _______________  Q  BC      

The two work terms are found from the expressions for isentropic work:

   W  turb   =  η  t    C P  ig
  ( T  D  ′   −  T  C  )   

   W  comp   =   
 C P  ig

   (   T  B  ′   −  T  A   )   
 ___________  η  c  

    (A)

The heat absorbed to simulate combustion is:

   Q  BC   =  C P  ig
   (   T  C   −  T  B   )     

These equations combine to yield:

  η =   
 η  t    (   T  C   −  T  D  ′   )    −   (  1 /  η  c   )     (   T  B  ′   −  T  A   )   

   _________________________   T  C   −  T  B      

An alternative expression for the compression work is:

   W  comp   =  C P  ig
   (   T  B   −  T  A   )     (B)

Equating this and Eq. (A) and using the result to eliminate TB from the equation 
for η gives, after simplification:

  η =   
 η  t    η  c     (   T  C   /  T  A   −  T  D  ′   /  T  A   )    −   (   T  B  ′   /  T  A   − 1 )   

   ______________________________   
 η  c     (   T  C   /  T  A   − 1 )    −   (   T  B  ′   /  T  A   − 1 )       (C)

The ratio TC/TA depends on given conditions. The ratio   T  B  ′   /  T  A    is related to the pressure 
ratio by Eq. (8.10). In view of Eq. (8.11), the ratio   T  D  ′   /  T  A    can be expressed as:

    
 T  D  ′  

 ___  T  A     =   
 T  C   T  D  ′  

 _____  T  A   T  C     =   
 T  C  

 ___  T  A       (    
 P  A  

 ___  P  B     )     
  (  γ − 1 )   /γ
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Substituting these expressions in Eq. (C) yields:

  η =   
 η  t    η  c     (   T  C   /  T  A   )     (  1 − 1 / α )    −   (  α − 1 )   

   ________________________    η  c     (   T  C   /  T  A   − 1 )    −   (  α − 1 )       (8.13)

where  α =   (  
 P  B  

 ___  P  A    )    
  (  γ − 1 )   /γ

   

One can show by Eq. (8.13) that the thermal efficiency of the gas-turbine engine 
increases as the temperature of the air entering the turbine (TC) increases, and as 
the compressor and turbine efficiencies ηc and ηt increase.

The given efficiency values are here:

   η  t   = 0.86   and    η  c   = 0.83  

Other given data provide:

    
 T  C  

 ___  T  A     =   
760 + 273.15

  ___________ 25 + 273.15   = 3.47  

and  α =   (  6 )       (  1.4−1 )   /1.4  = 1.67  

Substituting these quantities in Eq. (8.13) gives:

  η =   
  (  0.86 )     (  0.83 )     (  3.47 )     (  1 − 1 / 1.67 )    −   (  1.67 − 1 )   

    _________________________________     (  0.83 )     (  3.47 − 1 )    −   (  1.67 − 1 )      = 0.235  

This analysis shows that even with rather high compressor and turbine efficiencies, 
the thermal efficiency (23.5%) is considerably reduced from the reversible-cycle 
value of part (a) (40%).

8.3 JET ENGINES; ROCKET ENGINES

In the power cycles considered thus far the high-temperature, high-pressure gas expands in a 
turbine (steam power plant, gas turbine) or in the cylinders of an Otto or Diesel engine with 
reciprocating pistons. In either case, the power becomes available through a rotating shaft. 
Another device for expanding the hot gases is a nozzle. Here the power is available as kinetic 
energy in the jet of exhaust gases leaving the nozzle. The entire power plant, consisting of a 
compression device and a combustion chamber, as well as a nozzle, is known as a jet engine. 
Because the kinetic energy of the exhaust gases is directly available for propelling the engine 
and its attachments, jet engines are most commonly used to power aircraft. There are several 
types of jet-propulsion engines based on different ways of accomplishing the compression and 
expansion processes. Because the air striking the engine has kinetic energy (with respect to the 
engine), its pressure may be increased in a diffuser.

The turbojet engine (usually called simply a jet engine) illustrated in Fig. 8.13 takes 
advantage of a diffuser to reduce the work of compression. The axial-flow compressor completes 
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the job of compression, and then fuel is injected and burned in the combustion chamber. Hot 
combustion-product gases first pass through a turbine where expansion provides just enough 
power to drive the compressor. The remaining expansion to the exhaust pressure is accomplished 
in the nozzle. Here, the velocity of the gases with respect to the engine is increased to a level 
above that of the entering air. This increase in velocity provides a thrust (force) on the engine in 
the forward direction. If the compression and expansion processes are adiabatic and reversible, 
the turbojet engine follows the Brayton cycle shown in Fig. 8.12. The only differences are that, 
physically, the compression and expansion steps are carried out in devices of different types.

A rocket engine differs from a jet engine in that the oxidizing agent is carried with the engine. 
Instead of depending on the surrounding air to support combustion, the rocket is self-contained. 
This means that the rocket can operate in a vacuum such as in outer space. In fact, the performance 
is better in a vacuum because none of the thrust is required to overcome friction forces.

In rockets burning liquid fuels, the oxidizing agent (e.g., liquid oxygen or nitrogen tetrox-
ide) is pumped from tanks into the combustion chamber. Simultaneously, fuel (e.g., hydrogen, 
kerosene, or monomethylhydrazine) is pumped into the chamber and burned. The combustion 
takes place at a constant high pressure and produces high-temperature product gases that are 
expanded in a nozzle, as indicated in Fig. 8.14.

Figure 8.13: The turbojet power plant.
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Figure 8.14: Liquid-fuel rocket engine.
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In rockets burning solid fuels, the fuel (e.g., organic polymers) and oxidizer (e.g., 
ammonium perchlorate) are contained together in a solid matrix and stored at the forward end 
of the combustion chamber. Combustion and expansion are much the same as in a jet engine 
(Fig. 8.13), but a solid-fuel rocket requires no compression work, and in a liquid-fuel rocket 
the compression work is small because the fuel and oxidizer are pumped as liquids.

8.4 SYNOPSIS

After thorough study of this chapter, including working through example and end-of-chapter 
problems, one should be able to:

 ∙ Qualitatively describe the idealized Carnot, Rankine, Otto, Diesel, and Brayton cycles 
and sketch each of them on a PV or TS diagram

 ∙ Carry out a thermodynamic analysis of a steam power plant, including a plant operating 
on a regenerative cycle, as in Ex. 8.1 and 8.2

 ∙ Analyze an air-standard Otto cycle or Diesel cycle for a given compression ratio
 ∙ Compute efficiency and heat and work flows for an air-standard Brayton cycle for given 

combustor temperature and compressor and turbine efficiencies
 ∙ Explain, in simple terms, how jet and rocket engines generate thrust

8.5 PROBLEMS

 8.1. The basic cycle for a steam power plant is shown in Fig. 8.1. The turbine operates 
adiabatically with inlet steam at 6800 kPa and 550°C, and the exhaust steam enters the 
condenser at 50°C with a quality of 0.96. Saturated liquid water leaves the condenser 
and is pumped to the boiler. Neglecting pump work and kinetic- and potential-energy 
changes, determine the thermal efficiency of the cycle and the turbine efficiency.

 8.2. A Carnot engine with H2O as the working fluid operates on the cycle shown in  
Fig. 8.2. The H2O circulation rate is 1 kg⋅s−1. For TH = 475 K and TC = 300 K, 
determine:

 (a) The pressures at states 1, 2, 3, and 4.
 (b) The quality xv at states 3 and 4.
 (c) The rate of heat addition.
 (d) The rate of heat rejection.
 (e) The mechanical power for each of the four steps.
 ( f ) The thermal efficiency η of the cycle.

 8.3. A steam power plant operates on the cycle of Fig. 8.4. For one of the following sets of 
operating conditions, determine the steam rate, the heat-transfer rates in the boiler and 
condenser, and the thermal efficiency of the plant.

www.konkur.in

Telegram: @uni_k



330 CHAPTER 8. Production of Power from Heat

 (a) P1 = P2 = 10,000 kPa; T2 = 600°C; P3 = P4 = 10 kPa; η(turbine) = 0.80; 
 η(pump) = 0.75; power rating = 80,000 kW

 (b) P1 = P2 = 7000 kPa; T2 = 550°C; P3 = P4 = 20 kPa; η(turbine) = 0.75;  
η(pump) = 0.75; power rating = 100,000 kW

 (c) P1 = P2 = 8500 kPa; T2 = 600°C; P3 = P4 = 10 kPa; η(turbine) = 0.80;  
η(pump) = 0.80; power rating = 70,000 kW

 (d) P1 = P2 = 6500 kPa; T2 = 525°C; P3 = P4 = 101.33 kPa; η(turbine) = 0.78; 
η(pump) = 0.75; power rating = 50,000 kW

 (e) P1 = P2 = 950(psia); T2 = 1000(°F); P3 = P4 = 14.7(psia); η(turbine) = 0.78; 
η(pump) = 0.75; power rating = 50,000 kW

 ( f ) P1 = P2 = 1125(psia); T2 = 1100(°F); P3 = P4 = 1(psia); η(turbine) = 0.80;  
η(pump) = 0.75; power rating = 80,000 kW

 8.4. Steam enters the turbine of a power plant operating on the Rankine cycle (Fig. 8.3) at 
3300 kPa and exhausts at 50 kPa. To show the effect of superheating on the performance 
of the cycle, calculate the thermal efficiency of the cycle and the quality of the exhaust 
steam from the turbine for turbine-inlet steam temperatures of 450, 550, and 650°C.

 8.5. Steam enters the turbine of a power plant operating on the Rankine cycle (Fig. 8.3)  
at 600°C and exhausts at 30 kPa. To show the effect of boiler pressure on the perfor-
mance of the cycle, calculate the thermal efficiency of the cycle and the quality of the 
exhaust steam from the turbine for boiler pressures of 5000, 7500, and 10,000 kPa.

 8.6. A steam power plant employs two adiabatic turbines in series. Steam enters the first 
turbine at 650°C and 7000 kPa and discharges from the second turbine at 20 kPa. The 
system is designed for equal power outputs from the two turbines, based on a turbine 
efficiency of 78% for each turbine. Determine the temperature and pressure of the 
steam in its intermediate state between the two turbines. What is the overall efficiency 
of the two turbines together with respect to isentropic expansion of the steam from the 
initial to the final state?

 8.7. A steam power plant operating on a regenerative cycle, as illustrated in Fig. 8.5, 
includes just one feedwater heater. Steam enters the turbine at 4500 kPa and 500°C 
and exhausts at 20 kPa. Steam for the feedwater heater is extracted from the turbine  
at 350 kPa, and in condensing raises the temperature of the feedwater to within 6°C of 
its condensation temperature at 350 kPa. If the turbine and pump efficiencies are  
both 0.78, what is the thermal efficiency of the cycle, and what fraction of the steam 
entering the turbine is extracted for the feedwater heater?

 8.8. A steam power plant operating on a regenerative cycle, as illustrated in Fig. 8.5, 
includes just one feedwater heater. Steam enters the turbine at 650(psia) and 900(°F) 
and exhausts at 1(psia). Steam for the feedwater heater is extracted from the turbine  
at 50(psia) and in condensing raises the temperature of the feedwater to within 11(°F) 
of its condensation temperature at 50(psia). If the turbine and pump efficiencies are 
both 0.78, what is the thermal efficiency of the cycle, and what fraction of the steam 
entering the turbine is extracted for the feedwater heater?
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 8.9. A steam power plant operating on a regenerative cycle, as illustrated in Fig. 8.5, 
includes two feedwater heaters. Steam enters the turbine at 6500 kPa and 600°C and 
exhausts at 20 kPa. Steam for the feedwater heaters is extracted from the turbine at 
pressures such that the feedwater is heated to 190°C in two equal increments of tem-
perature rise, with 5°C approaches to the steam-condensation temperature in each 
feedwater heater. If the turbine and pump efficiencies are each 0.80, what is the ther-
mal efficiency of the cycle, and what fraction of the steam entering the turbine is 
extracted for each feedwater heater?

 8.10. A power plant operating on heat recovered from the exhaust gases of internal combustion 
engines uses isobutane as the working medium in a modified Rankine cycle in which 
the upper pressure level is above the critical pressure of isobutane. Thus the isobutane 
does not undergo a change of phase as it absorbs heat prior to its entry into the turbine. 
Isobutane vapor is heated at 4800 kPa to 260°C and enters the turbine as a supercritical 
fluid at these conditions. Isentropic expansion in the turbine produces a superheated 
vapor at 450 kPa, which is cooled and condensed at constant pressure. The resulting 
saturated liquid enters the pump for return to the heater. If the power output of the 
modified Rankine cycle is 1000 kW, what are the isobutane flow rate, the heat-transfer 
rates in the heater and condenser, and the thermal efficiency of the cycle? The vapor 
pressure of isobutane can be computed from data given in Table B.2 of App. B.

 8.11. A power plant operating on heat from a geothermal source uses isobutane as the 
working medium in a Rankine cycle (Fig. 8.3). Isobutane is heated at 3400 kPa  
(a pressure just below its critical pressure) to a temperature of 140°C, at which 
conditions it enters the turbine. Isentropic expansion in the turbine produces 
superheated vapor at 450 kPa, which is cooled and condensed to saturated liquid and 
pumped to the heater/boiler. If the flow rate of isobutane is 75 kg⋅s−1, what is the 
power output of the Rankine cycle, and what are the heat-transfer rates in the heater/
boiler and cooler/condenser? What is the thermal efficiency of the cycle? The vapor 
pressure of isobutane is given in Table B.2 of App. B.
Repeat these calculations for a cycle in which the turbine and pump each have an  
efficiency of 80%.

 8.12. For comparison of Diesel- and Otto-engine cycles:

 (a) Show that the thermal efficiency of the air-standard Diesel cycle can be expressed as

  η = 1 −   (  
1
 __ 

r
  )    

γ − 1

    
 r c  

γ
  − 1
 ________ 

γ   (   r  c   − 1 )       

  where r is the compression ratio and rc is the cutoff ratio, defined as rc = VA/VD. 
(See Fig. 8.10.)

 (b) Show that for the same compression ratio the thermal efficiency of the air-standard 
Otto engine is greater than the thermal efficiency of the air-standard Diesel cycle. 
Hint: Show that the fraction which multiplies (1/r)γ − 1 in the preceding equation 
for η is greater than unity by expanding   r c  

γ
   in a Taylor series with the remainder 

taken to the first derivative.
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 (c)  If γ = 1.4, how does the thermal efficiency of an air-standard Otto cycle with a 
compression ratio of 8 compare with the thermal efficiency of an air-standard 
Diesel cycle with the same compression ratio and a cutoff ratio of 2? How is the 
comparison changed if the cutoff ratio is 3?

 8.13. An air-standard Diesel cycle absorbs 1500 J⋅mol−1 of heat (step DA of Fig. 8.10, 
which simulates combustion). The pressure and temperature at the beginning of the 
compression step are 1 bar and 20°C, and the pressure at the end of the compression 
step is 4 bar. Assuming air to be an ideal gas for which CP = (7/2)R and CV = (5/2)R, 
what are the compression ratio and the expansion ratio of the cycle?

 8.14. Calculate the efficiency for an air-standard gas-turbine cycle (the Brayton cycle) operating 
with a pressure ratio of 3. Repeat for pressure ratios of 5, 7, and 9. Take γ = 1.35.

 8.15. An air-standard gas-turbine cycle is modified by the installation of a regenerative heat 
exchanger to transfer energy from the air leaving the turbine to the air leaving the  
compressor. In an optimum countercurrent exchanger, the temperature of the air leav-
ing the compressor is raised to that of point D in Fig. 8.12, and the temperature of the 
gas leaving the turbine is cooled to that of point B in Fig. 8.12. Show that the thermal 
efficiency of this cycle is given by:

  η = 1 −   
 T  A  

 ___  T  C       (  
 P  B  

 ___  P  A    )    
  (  γ − 1 )   /γ

   

 8.16. Consider an air-standard cycle for the turbojet power plant shown in Fig. 8.13. The 
temperature and pressure of the air entering the compressor are 1 bar and 30°C. The 
pressure ratio in the compressor is 6.5, and the temperature at the turbine inlet is 
1100°C. If expansion in the nozzle is isentropic and if the nozzle exhausts at 1 bar, 
what is the pressure at the nozzle inlet (turbine exhaust), and what is the velocity of 
the air leaving the nozzle?

 8.17. Air enters a gas-turbine engine (see Fig. 8.11) at 305 K and 1.05 bar  and is com-
pressed to 7.5 bar. The fuel is methane at 300 K and 7.5 bar; compressor and turbine 
efficiencies are each 80%. For one of the turbine inlet temperatures TC given below, 
determine: the molar fuel-to-air ratio, the net mechanical power delivered per mole  
of fuel, and the turbine exhaust temperature TD. Assume complete combustion of the 
methane and expansion in the turbine to 1(atm).

 (a) TC = 1000 K  (b) TC = 1250 K  (c) TC = 1500 K

 8.18. Most electrical energy in the United States is generated in large-scale power cycles 
through conversion of thermal energy to mechanical energy, which is then converted 
to electrical energy. Assume a thermal efficiency of 0.35 for conversion of thermal to 
mechanical energy, and an efficiency of 0.95 for conversion of mechanical to electri-
cal energy. Line losses in the distribution system amount to 20%. If the cost of fuel  
for the power cycle is $4.00 GJ−1, estimate the cost of electricity delivered to the 
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customer in $ per kWh. Ignore operating costs, profits, and taxes. Compare this num-
ber with that found on a typical electric bill.

 8.19. Liquefied natural gas (LNG) is transported in very large tankers, stored as liquid in 
equilibrium with its vapor at approximately atmospheric pressure. If LNG is essen-
tially pure methane, the storage temperature then is about 111.4 K, the normal boiling 
point of methane. The enormous amount of cold liquid can in principle serve as a heat 
sink for an onboard heat engine. Energy discarded to the LNG serves for its vaporiza-
tion. If the heat source is ambient air at 300 K, and if the efficiency of a heat engine is 
60% of its Carnot value, estimate the vaporization rate in moles vaporized per kJ of 
power output. For methane,  Δ H n  lv  = 8.206   kJ⋅mol   −1  .

 8.20. The oceans in the tropics have substantial surface-to-deep-water temperature gradi-
ents. Depending on location, relatively constant temperature differences of 15 to 25°C 
are observed for depths of 500 to 1000 m. This provides the opportunity for using  
cold (deep) water as a heat sink and warm (surface) water as a heat source for a power 
cycle. The technology is known as OTEC (Ocean Thermal Energy Conversion).

 (a) Consider a location where the surface temperature is 27°C and the temperature  
at a depth of 750 m is 6°C. What is the efficiency of a Carnot engine operating 
between these temperature levels?

 (b) Part of the output of a power cycle must be used to pump the cold water to the 
surface, where the cycle hardware resides. If the inherent efficiency of a real cycle 
is 0.6 of the Carnot value, and if 1/3 of the generated power is used for moving 
cold water to the surface, what is the actual efficiency of the cycle?

 (c) The choice of working fluid for the cycle is critical. Suggest some possibilities. 
Here you may want to consult a handbook, such as Perry’s Chemical Engineers’ 
Handbook.

 8.21. Air-standard power cycles are conventionally displayed on PV diagrams. An alter-
native is the PT diagram. Sketch air-standard cycles on PT diagrams for the 
following:

 (a) Carnot cycle
 (b) Otto cycle
 (c) Diesel cycle
 (d) Brayton cycle

Why would a PT diagram not be helpful for depicting power cycles involving liquid/
vapor phase changes?

 8.22. A steam plant operates on the cycle of Fig. 8.4. The pressure levels are 10 kPa  
and 6000 kPa, and steam leaves the turbine as saturated vapor. The pump efficiency  
is 0.70, and the turbine efficiency is 0.75. Determine the thermal efficiency of  
the plant.
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334 CHAPTER 8. Production of Power from Heat

 8.23. Devise a general scheme for analyzing four-step air-standard power cycles. Model 
each step of the cycle as a polytropic process described by

   P  V   δ  = constant 
which implies that

   T  P     (1 − δ) ⁄δ   = constant 
  with a specified value of δ. Decide which states to fix, partially or completely, by 

 values of T and/or P. Analysis here means determination of T and P for initial and final 
states of each step, Q and W for each step, and the thermal efficiency of the cycle. The 
analysis should also include a sketch of the cycle on a PT diagram.
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Chapter 9

Refrigeration and Liquefaction

The word refrigeration implies cooling to a temperature below that of the surroundings. 
Everyday examples are air conditioning of buildings, preservation of foods, and chilling of 
beverages. Large-scale commercial processes requiring refrigeration include production of ice 
and solid CO2, dehydration and liquefaction of gases, and separation of air into oxygen and 
nitrogen.

Here, we do not consider details of equipment design, which are left to specialized 
books,1 but consider:

 ∙ The model refrigerator, operating on a reverse Carnot cycle
 ∙ Refrigeration via the vapor-compression cycle, as in common household refrigerators 

and air conditioners
 ∙ The choice of refrigerants as influenced by their properties
 ∙ Refrigeration based on vapor absorption, an alternative to vapor compression
 ∙ Heating or cooling by heat pumps with heat extracted from or rejected to the 

surroundings
 ∙ Liquefaction of gases by refrigeration

9.1 THE CARNOT REFRIGERATOR

As discussed in Sec. 5.2, a refrigerator absorbs heat from a region at a temperature below that 
of the surroundings and rejects heat to the surroundings, which requires work input. It operates 
with the highest possible efficiency on a Carnot refrigeration cycle, the reverse of the Carnot 
engine cycle, as shown by Fig. 5.1(b). The two isothermal steps provide heat absorption QC at 
the lower temperature TC and heat rejection QH at the higher temperature TH. The cycle is 

1ASHRAE Handbook: Refrigeration, 2018; Fundamentals, 2017; HVAC Systems and Equipment, 2020; HVAC 
Applications, 2019; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta;  
Shan K. Wang, Handbook of Air Conditioning and Refrigeration, 2nd ed., McGraw-Hill, New York, 2000.
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336 CHAPTER 9. Refrigeration and Liquefaction

completed by two reversible adiabatic steps between these two temperatures. The cycle 
requires the addition of net work W to the system. Because all steps of the cycle are reversible, 
it gives the minimum possible work required for a given refrigeration effect.

The working fluid operates in a cycle for which ΔU is zero. The first law for the cycle is 
therefore:
 W = − (QC + QH) (9.1)

where we note that QC is a positive number and QH (larger in absolute value) is negative. The 
measure of the effectiveness of a refrigerator is its coefficient of performance ω, defined as:

  ω ≡   
heat absorbed at the lower temperature

   _________________________________  net work   =   
 Q  C  

 ___ 
W

    (9.2)

Equation (9.1) can be divided by QC and then combined with Eq. (5.4):

  −   
W

 ___  Q  C     = 1 +   
 Q  H  

 ___  Q  C           
− W

 ____  Q  C     = 1 −   
 T  H  

 ___  T  C     =   
 T  C   −  T  H  

 _______  T  C      

Equation (9.2) becomes:    ω =   
 T  C  
 _______  T  H   −  T  C        (9.3)

For example, refrigeration at a temperature level of 5°C in surroundings at 30°C, gives:

  ω =   
5 + 273.15

  ________________________    (  30 + 273.15 )   −   (  5 + 273.15 )      = 11.13  

Equation (9.3) applies only to a refrigerator operating on a Carnot cycle, 
which yields the maximum possible value of ω for a refrigerator operat-
ing between given values of TH and TC.

It shows clearly that the refrigeration effect per unit of work decreases as the temperature of 
heat absorption TC decreases and as the temperature of heat rejection TH increases. Although 
coefficients of performance of actual refrigerators may be much lower than the corresponding 
Carnot refrigerator, these two trends persist for real refrigerators as well.

9.2 THE VAPOR-COMPRESSION CYCLE

The vapor-compression refrigeration cycle is represented in Fig. 9.1, along with a TS diagram 
showing the four steps of the process. A liquid refrigerant evaporating at constant T and P 
absorbs heat (line 1 → 2), producing the refrigeration effect. The vapor produced is compressed 
via dashed line 2 → 3′ for isentropic compression (Fig. 7.6), and via line 2 → 3, sloping in the 
direction of increasing entropy, for an actual compression process, reflecting inherent irrevers-
ibilities. At this higher T and P, it is cooled and condensed (line 3 → 4) with rejection of heat  
to the surroundings. Liquid from the condenser expands (line 4 → 1) to its original pressure.  
In principle, this can be carried out in a turbine from which work is obtained. However, for 
practical reasons it is usually accomplished by throttling through a partly open control valve. 
The pressure drop in this irreversible process results from fluid friction in the valve. As shown 
in Sec. 7.1, the throttling process occurs at constant enthalpy.
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9.2. The Vapor-Compression Cycle 337

On the basis of a unit mass of fluid, the equations for the heat absorbed in the evaporator 
and the heat rejected in the condenser are:

 QC = H2 − H1  and  QH = H4 − H3 

These equations follow from Eq. (2.31) when changes in potential and kinetic energy are 
neglected. The work of compression is simply:  W =  H  3   −  H  2   , and by Eq. (9.2), the coefficient 
of performance is:

  ω =   
 H  2   −  H  1  

 ______  H  3   −  H  2      (9.4)

To design the evaporator, compressor, condenser, and auxiliary equipment one must 
know the rate of circulation of refrigerant   m ∙   . This is determined from the rate of heat absorp-
tion in the evaporator2 by the equation:

   m 
∙   =   

  Q 
∙
    C  
 _______  H  2   −  H  1      (9.5)

The vapor-compression cycle of Fig. 9.1 is shown on a PH diagram in Fig. 9.2, a dia-
gram commonly used in the description of refrigeration processes, because it shows the 
required enthalpies directly. Although the evaporation and condensation processes are repre-
sented by constant-pressure paths, small pressure drops do result from fluid friction.

For given TC and TH, vapor-compression refrigeration results in lower values of ω than 
the Carnot cycle because of irreversibilities in expansion and compression. The following 
example provides an indication of typical values for coefficients of performance. Note that 
values vary strongly with the TC and (TH − TC), so coefficients of performance can only be 
compared between processes with the same TC and TH.

Figure 9.1: Vapor-compression refrigeration cycle.
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2In the United States refrigeration equipment is commonly rated in tons of refrigeration; a ton of refrigeration is 
defined as heat absorption at the rate of 12,000(Btu)(hr)−1 or 12,660 kJ per hour. This corresponds approximately to 
the rate of heat removal required to freeze 1(ton) of water, initially at 32(°F), per day.
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338 CHAPTER 9. Refrigeration and Liquefaction

Example 9.1
A refrigerated space is maintained at −20°C, and cooling water is available at 21°C. 
Refrigeration capacity is 120,000 kJ⋅h−1. The evaporator and condenser are of suffi-
cient size that a 5°C minimum-temperature difference for heat transfer can be realized 
in each. The refrigerant is 1,1,1,2-tetrafluoroethane (HFC-134a), for which data are 
given in Table 9.1 and Fig. F.2 (App. F).

 (a) What is the value of ω for a Carnot refrigerator?

 (b) Calculate ω and   m ∙     for a vapor-compression cycle (Fig. 9.2) if the compressor 
efficiency is 0.80.

Solution 9.1
 (a) Allowing 5°C temperature differences, the evaporator temperature is −25°C = 

248.15 K, and the condenser temperature is 26°C = 299.15 K. Thus, by Eq. (9.3) for 
a Carnot refrigerator,

  ω =   
248.15
 _____________  299.15 − 248.15   = 4.87  

 (b) With HFC-134a as the refrigerant, enthalpies for states 2 and 4 of Fig. 9.2 are read 
directly from Table 9.1. The entry at −25°C indicates that HFC-134a vaporizes in 
the evaporator at a pressure of 1.064 bar. Its properties as a saturated vapor at these 
conditions are:

    H  2   = 383.45 kJ ⋅kg   −1       S  2   = 1.746  kJ ⋅kg   −1   ⋅K   −1   

Figure 9.2: Vapor-compression 
refrigeration cycle on a PH  
diagram.
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9.3. The Choice of Refrigerant 339

The entry at 26°C in Table 9.1 shows that HFC-134a condenses at 6.854 bar; its 
enthalpy as a saturated liquid at these conditions is:

   H  4   = 235.97 kJ  ⋅kg   −1   

If the compression step is reversible and adiabatic (isentropic) from saturated 
vapor at state 2 to superheated vapor at state 3′,

   S  3  ′   =  S  2   = 1.746 kJ ⋅kg   −1   ⋅K   −1   

This entropy value and the condenser pressure of 6.854 bar are sufficient to spec-
ify the thermodynamic state at point 3′. One could find the other properties at this 
state using Fig. F.2, following a curve of constant entropy from the saturation 
curve to the condenser pressure. However, more precise results can be obtained 
using an electronic resource such as the NIST WebBook. Varying the temperature 
at a fixed pressure of 6.854 bar shows that the entropy is 1.746 kJ⋅kg−1⋅K−1 at  
T = 308.1 K. The corresponding enthalpy is:

   H  3  ′   = 421.97 kJ ⋅kg   −1   

and the enthalpy change is:

    (  ΔH )    S   =  H  3  ′   −  H  2   = 421.97 − 383.45 = 38.52 kJ ⋅kg   −1   

By Eq. (7.17) for a compressor efficiency of 0.80, the actual enthalpy change for 
step 2 → 3 is:

   H  3   −  H  2   =   
  (  ΔH )    S  

 _____ 
η
   =   

38.52
 _____ 0.80   = 48.15 kJ ⋅kg   −1   

Because the throttling process of step 1 → 4 is isenthalpic, H1 = H4. The  coefficient 
of performance as given by Eq. (9.4) therefore becomes:

  ω =   
 H  2   −  H  4  

 ______  H  3   −  H  2     =   
383.45 − 235.97

  _____________ 48.15   = 3.06  

and the HFC-134a circulation rate as given by Eq. (9.5) is:

   m 
∙   =   

  Q 
∙
    C  
 _______  H  2   −  H  4     =   

120,000
 ______________  383.45 − 235.97   = 814 kg ·h   −1   

9.3 THE CHOICE OF REFRIGERANT

As shown in Sec. 5.2, the efficiency of a Carnot heat engine is independent of the  working 
medium of the engine. Similarly, the coefficient of performance of a Carnot refrigerator is 
independent of the refrigerant. The irreversibilities inherent in vapor-compression cycles 
cause the coefficient of performance of practical refrigerators to depend to a limited extent on 
the refrigerant. Nevertheless, such characteristics as toxicity, flammability, cost, corrosion 
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340 CHAPTER 9. Refrigeration and Liquefaction

properties, global warming potential, ozone depletion potential, and vapor pressure are of greater 
importance in the choice of refrigerant. Safety and environmental concerns strongly constrain 
the range of compounds that can be considered for use as refrigerants. So that air cannot leak 
into the refrigeration system, the vapor pressure of the refrigerant at the evaporator tempera-
ture should be greater than atmospheric pressure. On the other hand, the vapor pressure at the 
condenser temperature should not be unduly high because of the initial cost and operating 
expense of high-pressure equipment. These many requirements limit the choice of refrigerants 
to relatively few fluids.

Ammonia, methyl chloride, carbon dioxide, propane, and other hydrocarbons can serve 
as refrigerants, particularly in industrial applications. Halogenated hydrocarbons came into 
common use as refrigerants in the 1930s. Fully halogenated chlorofluorocarbons were the 
most common refrigerants for several decades. However, these stable molecules were found  
to persist in the atmosphere for many years, allowing them to reach the stratosphere before 
finally decomposing by reactions that severely deplete stratospheric ozone. As a result, their 
production and use is now banned. Certain less-than-fully halogenated hydrocarbons, which 
cause relatively little ozone depletion, and hydrofluorocarbons that cause no ozone depletion 
now serve as replacements in many applications. A primary example is 1,1,1,2-tetrafluoroethane 
(HFC-134a).3 Unfortunately, these refrigerants have extremely high global warming potentials, 
hundreds to thousands of times greater than CO2, and for that reason are now being banned  
in many countries. New hydrofluorocarbon refrigerants with lower global warming potential, 
such as 2,3,3,3-tetrafluoropropene (HFO-1234yf), are beginning to replace first-generation 
hydrofluorocarbon refrigerants such as R134a.

A pressure/enthalpy diagram for 1,1,1,2-tetrafluoroethane (HFC-134a) is shown in  
Fig. F.2 of App. F; Table 9.1 provides saturation data for the same refrigerant. Tables and 
 diagrams for a variety of other refrigerants are readily available.4

Cascade Cycles
Limits on the operating pressures of the evaporator and condenser of a refrigeration system also 
limit the temperature difference TH − TC over which a simple vapor-compression cycle can 
operate. With TH fixed by the temperature of the surroundings, a lower limit is placed on the 
temperature level of refrigeration. This can be overcome by operating two or more refrigeration 
cycles using different refrigerants in a cascade. A two-stage cascade is shown in Fig. 9.3.

Here, the two cycles operate so that the heat absorbed in the interchanger by the 
refrigerant of the higher-temperature cycle 2 serves to condense the refrigerant in the lower-
temperature cycle 1. The two refrigerants are chosen such that each cycle operates at a 
reasonable pressure. For example, assume the following operating temperatures (Fig. 9.3):

 TH = 30° C    T  C  ′    = − 16° C    T  H  ′    = − 10° C  TC = − 50° C 

If tetrafluoroethane (HFC-134a) is the refrigerant in cycle 2, then the intake and 
discharge pressures for the compressor are about 1.6 bar and 7.7 bar, and the pressure ratio is 

3The abbreviated designation is nomenclature of the American Society of Heating, Refrigerating, and Air-
Conditioning Engineers.

4ASHRAE Handbook: Fundamentals, Chap. 30, 2017; R. H. Perry and D. Green, Perry’s Chemical Engineers’ 
Handbook, 8th ed., Sec. 2.20, 2008; “Thermophysical Properties of Fluid Systems” in NIST Chemistry WebBook, 
http://webbook.nist.gov.
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Volume 
m3⋅kg−1

Enthalpy 
kJ⋅kg−1

Entropy 
kJ⋅kg−1⋅K−1

T(°C)  P (bar) Vl Vv Hl Hv Sl Sv

−40 0.512 0.000705 0.361080 148.14 374.00 0.796 1.764
−35 0.661 0.000713 0.284020 154.44 377.17 0.822 1.758
−30 0.844 0.000720 0.225940 160.79 380.32 0.849 1.752
−25 1.064 0.000728 0.181620 167.19 383.45 0.875 1.746
−20 1.327 0.000736 0.147390 173.64 386.55 0.900 1.741

−18 1.446 0.000740 0.135920 176.23 387.79 0.910 1.740
−16 1.573 0.000743 0.125510 178.83 389.02 0.921 1.738
−14 1.708 0.000746 0.116050 181.44 390.24 0.931 1.736
−12 1.852 0.000750 0.107440 184.07 391.46 0.941 1.735
−10 2.006 0.000754 0.099590 186.70 392.66 0.951 1.733

−8 2.169 0.000757 0.092422 189.34 393.87 0.961 1.732
−6 2.343 0.000761 0.085867 191.99 395.06 0.971 1.731
−4 2.527 0.000765 0.079866 194.65 396.25 0.980 1.729
−2 2.722 0.000768 0.074362 197.32 397.43 0.990 1.728

0 2.928 0.000772 0.069309 200.00 398.60 1.000 1.727

2 3.146 0.000776 0.064663 202.69 399.77 1.010 1.726
4 3.377 0.000780 0.060385 205.40 400.92 1.020 1.725
6 3.620 0.000785 0.056443 208.11 402.06 1.029 1.724
8 3.876 0.000789 0.052804 210.84 403.20 1.039 1.723

10 4.146 0.000793 0.049442 213.58 404.32 1.049 1.722

12 4.430 0.000797 0.046332 216.33 405.43 1.058 1.721
14 4.729 0.000802 0.043451 219.09 406.53 1.068 1.720
16 5.043 0.000807 0.040780 221.87 407.61 1.077 1.720
18 5.372 0.000811 0.038301 224.66 408.69 1.087 1.719
20 5.717 0.000816 0.035997 227.47 409.75 1.096 1.718

22 6.079 0.000821 0.033854 230.29 410.79 1.106 1.717
24 6.458 0.000826 0.031858 233.12 411.82 1.115 1.717
26 6.854 0.000831 0.029998 235.97 412.84 1.125 1.716
28 7.269 0.000837 0.028263 238.84 413.84 1.134 1.715
30 7.702 0.000842 0.026642 241.72 414.82 1.144 1.715

35 8.870 0.000857 0.023033 249.01 417.19 1.167 1.713
40 10.166 0.000872 0.019966 256.41 419.43 1.191 1.711
45 11.599 0.000889 0.017344 263.94 421.52 1.214 1.709
50 13.179 0.000907 0.015089 271.62 423.44 1.238 1.70
55 14.915 0.000927 0.013140 279.47 425.15 1.261 1.705

60 16.818 0.000950 0.011444 287.50 426.63 1.285 1.702
65 18.898 0.000975 0.009960 295.76 427.82 1.309 1.699
70 21.168 0.001004 0.008653 304.28 428.65 1.333 1.696
75 23.641 0.001037 0.007491 313.13 429.03 1.358 1.691
80 26.332 0.001077 0.006448 322.39 428.81 1.384 1.685

Table 9.1: Properties of Saturated 1,1,1,2-Tetrafluoroethane (R134A)†

† Data in this table are from E. W. Lemmon, M. O. McLinden and D. G. Friend, “Thermophysical Properties of Fluid Systems” in 
NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P. J. Linstrom and W. G. Mallard, National Institute 
of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov.
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342 CHAPTER 9. Refrigeration and Liquefaction

about 4.9. If difluoromethane (R32) is the refrigerant in cycle 1, these pressures are about 1.1 
and 5.8 bar, and the pressure ratio is about 5.3. These are all reasonable values. On the other 
hand, for a single cycle operating between −50°C and 30°C with HFC-134a as refrigerant, the 
intake pressure to the condenser is about 0.29 bar, well below atmospheric pressure. Moreover, 
for a discharge pressure of about 7.7 bar the pressure ratio is 26, which is too high to achieve 
with a single-stage compressor.

9.4 ABSORPTION REFRIGERATION

In vapor-compression refrigeration, the work of compression is usually supplied by an electric 
motor. But the source of the electric energy is most likely a heat engine (central power plant) 
used to drive a generator. Thus the work for refrigeration originates from a heat engine. This 
suggests a combination of cycles in a device that takes in heat both at elevated temperature TH 
and at reduced temperature TC and rejects heat to the surroundings at TS. Before considering 
practical absorption-refrigeration processes, we first treat a combination of Carnot cycles that 
produces this effect.

Figure 9.3: A two-stage 
 cascade refrigeration system.
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9.4. Absorption Refrigeration 343

The work required by a Carnot refrigerator absorbing heat at temperature TC and reject-
ing heat at the temperature of the surroundings TS follows from Eqs. (9.2) and (9.3):

  W =   
 T  S   −  T  C  

 ______  T  C      Q  C    

where TS replaces TH and QC is the heat absorbed. If a source of heat is available at a tempera-
ture TH > TS, then this work may be obtained from a Carnot engine operating between TH and 
TS. The heat QH required for the production of work is found from Eq. (5.5), where we have 
substituted TS for TC and changed the sign of W, because W in Eq. (5.5) refers to a Carnot 
engine, but here it refers to the refrigerator:

     
− W

 ___  Q  H     =   
 T  S  

 ___  T  H     − 1    or     Q  H   = W   
 T  H  
 ______  T  H   −  T  S    

   

 Elimination of W gives:   
 Q  H  

 ___  Q  C     =   
 T  H  
 _______  T  H   −  T  S       

 T  S   −  T  C  
 _______  T  C      (9.6)

The value of QH/QC given by this equation is of course a minimum because Carnot cycles 
cannot be achieved in practice. It provides a limiting value for absorption refrigeration.

One can arrive at the same conclusion by considering overall energy and entropy balances 
for a generic closed-system process that takes in heat QH and QC at temperatures TH and TC, 
respectively, and releases heat   | QS |   at temperature TS with no work input or output. For steady-
state operation, the energy balance is QH + QC + QS = 0, from which QS = −QH − QC. The 
corresponding entropy balance is:

 −  
QC

 ____ 
TC

    −    
QH

 ___ 
TH

    −    
QS

 ___ 
TS

    =   S 
∙
   g

The optimal result is obtained when the process is reversible and no entropy is generated. 
Setting   S 

∙
   g = 0 and substituting QS = −QH − QC yields:

  
QC

 ___ 
TC

   +   
QH

 ___ 
TH

   =    
QC + QH

 ________ 
TS

   

This simply says that the entropy increase of the surroundings due to heat release from the 
system at TS is equal to the entropy decrease of the surroundings due to heat absorbed at TC and 
TH. Solving the preceding equation for QH/QC yields Eq. (9.6).

A schematic diagram for a typical absorption refrigerator is shown in Fig. 9.4. Note that 
just as in the preceding derivation,  W  is eliminated, and both QH and QC enter the system, with 
heat discarded only to the surroundings. The essential difference between a vapor-compression 
and an absorption refrigerator is in the different means employed for compression. The section 
of the absorption unit to the right of the dashed line in Fig. 9.4 is the same as in a vapor-
compression refrigerator, but the section to the left accomplishes compression by what amounts 
to a heat engine. Refrigerant as vapor from the evaporator is absorbed in a relatively nonvolatile 
liquid solvent at the pressure of the evaporator and at relatively low temperature. The heat given 
off in the process is discarded to the surroundings at TS. The liquid solution from the absorber, 
which contains a relatively high concentration of refrigerant, passes to a pump, which raises the 
pressure of the liquid to that of the condenser. Heat from the higher temperature source at TH is 
transferred to the compressed liquid solution, raising its temperature and evaporating the 
refrigerant from the solvent. Vapor passes from the regenerator to the condenser, and solvent, 
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344 CHAPTER 9. Refrigeration and Liquefaction

which now contains a relatively low concentration of refrigerant, returns to the absorber by way 
of a heat exchanger, which serves to conserve energy and adjust stream temperatures toward 
optimum values. Low-pressure steam is the usual source of heat for the regenerator.

The most commonly used absorption-refrigeration system operates with water as the 
refrigerant and a lithium bromide solution as the absorbent. This system is obviously limited 
to refrigeration temperatures above the freezing point of water. It is treated in detail by Perry 
and Green.5 For lower temperatures, ammonia can serve as refrigerant with water as the sol-
vent. An alternative system uses methanol as refrigerant and polyglycolethers as absorbent.

Consider refrigeration at a temperature level of −10°C (TC = 263.15 K) with a heat source 
of condensing steam at atmospheric pressure (TH = 373.15 K). For a surroundings temperature 
of 30°C (TS = 303.15 K), the minimum possible value of QH/QC is found from Eq. (9.6):

    
 Q  H  

 ___  Q  C     =   (    
373.15
 _____________  373.15 − 303.15   )     (    

303.15 − 263.15
  _____________ 263.15   )    = 0.81  

For an actual absorption refrigerator, the value would be on the order of three times this result.

9.5 THE HEAT PUMP

The heat pump, a reversed heat engine, is a device for heating buildings during the winter and 
cooling them during the summer. In the winter it absorbs heat from the surroundings and 
rejects heat into the building. Refrigerant evaporates in coils placed underground or in the 

5R. H. Perry and D. Green, op. cit., pp. 11–90 to 11–94.

Figure 9.4: Schematic diagram of an absorption-refrigeration unit.
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9.5. The Heat Pump 345

outside air; vapor compression is followed by condensation, heat being transferred to air or 
water, which is used to heat the building. Compression must be to a pressure such that the 
condensation temperature of the refrigerant is higher than the required temperature level of the 
building. The operating cost of the installation is the cost of electric power to run the compres-
sor. If the unit has a coefficient of performance   Q  C   / W = 4,  the heat available to heat the house 
QH is equal to five times the energy input to the compressor. Any economic advantage of the 
heat pump as a heating device depends on the cost of electricity in comparison with the cost of 
fuels such as oil and natural gas.

During the summer, the flow of refrigerant is simply reversed, and heat is absorbed from 
the building and rejected through underground coils or to the outside air.

Example 9.2
A house has a winter heating requirement of 30 kJ⋅s−1 and a summer cooling require-
ment of 60 kJ⋅s−1. Consider a heat-pump installation to maintain the house tempera-
ture at 20°C in winter and 25°C in summer. This requires circulation of the refrigerant 
through interior exchanger coils at 30°C in winter and 5°C in summer. Underground 
coils provide the heat source in winter and the heat sink in summer. For a year-round 
ground temperature of 15°C, the heat-transfer characteristics of the coils necessitate 
refrigerant temperatures of 10°C in winter and 25°C in summer. What are the minimum 
power requirements for winter heating and summer cooling?

Solution 9.2
The minimum power requirements are provided by a Carnot heat pump. For win-
ter heating, the house coils are at the higher-temperature level TH, and the heat 
requirement is QH = 30 kJ⋅s−1. Application of Eq. (5.4) gives:

   Q  C   = −  Q  H     
 T  C  

 ___  T  H     = 30  (    
10 + 273.15

 _ 30 + 273.15   )    = 28.02 kJ ⋅s   −1   

This is the heat absorbed in the ground coils. By Eq. (9.1),

  W = −  Q  H   −  Q  C   = 30 − 28.02 = 1.98 kJ ⋅s   −1   

Thus the power requirement is 1.98 kW.
For summer cooling, QC = 60 kJ⋅s−1, and the house coils are at the lower- 

temperature level TC. Combining Eqs. (9.2) and (9.3) and solving for W:

  W =  Q  C     
 T  H   −  T  C  

 ______  T  C     = 60  (    
25 − 5

 _ 5 + 273.15   )    = 4.31 kJ ⋅s   −1   

The power requirement here is therefore 4.31 kW. Actual power requirements for 
practical heat pumps are likely to be more than twice this lower limit.
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346 CHAPTER 9. Refrigeration and Liquefaction

9.6 LIQUEFACTION PROCESSES

Liquefied gases are used for a variety of purposes. For example, liquid propane serves as a 
domestic fuel, liquid oxygen is carried in rockets, natural gas is liquefied for ocean transport, 
and liquid nitrogen provides low-temperature refrigeration. Gas mixtures (e.g., air) are lique-
fied for separation into their component species by distillation.

Liquefaction results when a gas is cooled to a temperature in the two-phase region. This 
can be accomplished in several ways:

 1. By heat exchange at constant pressure.

 2. By an expansion process from which work is obtained.

 3. By a throttling process.

The first method requires a heat sink at a temperature lower than that to which the gas is cooled, 
and is most commonly used to precool a gas prior to its liquefaction by the other two methods. 
An external refrigerator is required for a gas temperature below that of the surroundings.

The three methods are illustrated in Fig. 9.5. The constant-pressure process (1) approaches 
the two-phase region (and liquefaction) most closely for a given drop in temperature. The throt-
tling process (3) does not result in liquefaction unless the initial state is at a low enough tem-
perature and high enough pressure for the curve representing a constant-enthalpy process to cut 
into the two-phase region. This is the case for an initial state at A′, but not at A, where the tem-
perature is the same but the pressure is lower than at A. The change of state from A to A′ can be 
accomplished by compression of the gas to the pressure at B and constant-pressure cooling to 
A′. Reference to a PH diagram for air6 shows that at a temperature of 160 K, the pressure must 
be greater than about 80 bar for any liquefaction to occur along a path of constant enthalpy. 
Thus, if air is compressed to at least 80 bar and cooled below 160 K, it can be partially liquefied 
by throttling. An efficient process for cooling the gas is by countercurrent heat exchange with 
that portion of the gas which does not liquefy in the throttling process.

Figure 9.5: Cooling processes on a TS diagram. T

S

B

A A

1

33 2

6R. H. Perry and D. Green, op. cit., Fig. 2–5, p. 2–215.
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9.6. Liquefaction Processes 347

A more efficient liquefaction process would replace the throttle valve with an expander, 
but operating such a device into the two-phase region is impractical. The Claude process, 
shown in Fig. 9.7, is based in part on this idea. Gas at an intermediate temperature is extracted 
from the heat-exchange system and passed through an expander from which it exhausts as a 
saturated or slightly superheated vapor. The remaining gas is further cooled and throttled 
through a valve to produce liquefaction as in the Linde process. The unliquefied portion, which 
is saturated vapor, mixes with the expander exhaust and returns for recycle through the heat- 
exchanger system.

An energy balance, Eq. (2.30), applied to that part of the process lying to the right of the 
dashed vertical line yields:

    m 
∙    9   H  9   +   m 

∙    15   H  15   −   m 
∙    4   H  4   =   W 

∙
    out    

Figure 9.6: Linde liquefaction process.
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Liquefaction by isentropic expansion along process (2) occurs from lower pressures (for 
given temperature) than by throttling. For example, continuation of process (2) from initial 
state A ultimately results in liquefaction.

The throttling process (3) is commonly employed in small-scale commercial 
liquefaction plants. The temperature of the gas must decrease during expansion, and this 
indeed occurs with most gases at usual conditions of temperature and pressure. The 
exceptions are hydrogen and helium, which increase in temperature upon throttling unless 
the initial temperature is below about 100 K for hydrogen and 20 K for helium.

The Linde liquefaction process, which depends solely on throttling expansion, is illus-
trated in Fig. 9.6. After compression, the gas is precooled to ambient temperature. It may be 
further cooled by refrigeration. The lower the temperature of the gas entering the throttle 
valve, the greater the fraction of gas that is liquefied. For example, a refrigerant evaporating  
in the cooler at −40°C provides a lower temperature at the valve than if water at 20°C is the 
cooling medium.
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Figure 9.7: Claude liquefaction process.
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If the expander operates adiabatically,    W 
∙
    out    as given by Eq. (7.13) is:

   W 
∙
    out   =   m 

∙    12    (   H  12   −  H  5   )    

Moreover, by a mass balance,    m 
∙    15   =   m 

∙    4   −   m 
∙    9   . The energy balance, after division by    m 

∙    4   , there-
fore becomes:

  
  m 

∙    9  
 ___   m 

∙    4     H  9   +   
  m 

∙
    4   −   m 

∙
    9  
 _______   m 

∙
    4     H  15   −  H  4   =   

  m 
∙    12  

 ____   m 
∙    4    ( H  12   −  H  5  )

With the definitions,  z ≡   m 
∙    9   /   m 

∙    4    and  x ≡   m 
∙    12   /   m 

∙    4   , solution of this equation for z yields:

  z =   
x  (   H  12   −  H  5   )    +  H  4   −  H  15  

  _______________   H  9   −  H  15      (9.7)

In this equation z is the fraction of the stream entering the heat-exchanger system that is 
liquefied, and x is the fraction of this stream that is drawn off between the heat exchangers and 
passed through the expander. This latter quantity (x) is a design variable and must be specified 
before Eq. (9.7) can be solved for z. Note that the Linde process results when x = 0, and in this 
event Eq. (9.7) reduces to:

  z =   
 H  4   −  H  15  

 _______  H  9   −  H  15      (9.8)
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Thus the Linde process is a limiting case of the Claude process, obtained when none of 
the high-pressure gas stream is sent to an expander.

Equations (9.7) and (9.8) suppose that no heat flows into the system from the surround-
ings. This can never be exactly true, and heat leakage may be significant when temperatures 
are very low, even with well-insulated equipment.

Example 9.3
Natural gas, assumed here to be pure methane, is liquefied in a Claude process. Com-
pression is to 60 bar and precooling is to 300 K. The expander and throttle exhaust to 
a pressure of 1 bar. Recycle methane at this pressure leaves the exchanger system 
(point 15, Fig. 9.7) at 295 K. Assume no heat leaks into the system from the surround-
ings, an expander efficiency of 75%, and an expander exhaust of saturated vapor. For 
a draw-off to the expander of 25% of the methane entering the exchanger system (x = 
0.25), what fraction z of the methane is liquefied, and what is the temperature of the 
high-pressure stream entering the throttle valve?

Solution 9.3
Data for methane are available in the NIST WebBook,7 from which the following 
values were obtained:

     H  4    =  855.3 kJ· kg   −1     (at 300 K and 60 bar)     
 H  15  

  
=

  
903.0 kJ· kg   −1 

  
  (at 295 K and 1 bar)

    

For saturated liquid and vapor, at a pressure of 1 bar:

    

 T   sat 

  

=

  

111.5 K

   
 H  9  

  
=

  
− 0.6   kJ·kg   −1 

    H  12    =  510.6   kJ·kg   −1    

 S  12  

  

=

  

4.579   kJ·kg   −1   ·K   −1 

    

 

 
  (  saturated liquid )   

     (  saturated vapor )      

  (  saturated vapor )   

     

The enthalpy at the draw-off point between exchangers I and II, H5, is required 
for solution of Eq. (9.7). The expander efficiency η is known, as is H12, the 
enthalpy of the expander exhaust. The calculation of H5 (=H11), the expander  
inlet enthalpy, is less straightforward than the usual calculation of the exhaust 
enthalpy from the entrance enthalpy. The equation defining expander efficiency 
can be written:

  ΔH =  H  12   −  H  5   = η   (  ΔH )    S   = η( H  12  ′   −  H  5  )  

Solution for H12 yields:

   H  12   =  H  5   + η( H  12  ′   −  H  5  )  (A)

7E. W. Lemmon, M. O. McLinden, and D. G. Friend, op. cit., http://webbook.nist.gov.
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where   H  12  ′    is the enthalpy at 1 bar as the result of isentropic expansion from point 
5. This enthalpy is readily found once the conditions at point 5 are known. Thus a 
trial calculation or iterative solution is required. A trial value of temperature T5 
leads to values for H5 and S5, from which   H  12  ′    can be found. All quantities in  
Eq. (A) are then known. If the equation is not satisfied, then a new value is chosen 
for T5, and the process continues until Eq. (A) is satisfied. For example, at 60 bar 
and 260 K, the enthalpy and entropy are 745.27 kJ⋅kg−1 and 4.033 kJ⋅kg−1⋅K−1, 
respectively. The saturated liquid and vapor at 1 bar have Sl = −0.005 and Sv = 
4.579, respectively. Using these values, isentropic expansion from 260 K and 60 
bar to 1 bar would give a vapor fraction of 0.8808. This would give:

   H  12  ′   =  H  9   + 0.8808  (    H  12   −  H  9   )    = 449.6  kJ·kg   −1   

Using this value in Eq. (A) yields H12 = 508.8 kJ⋅kg−1, which is below the known 
value of H12 = 510.6 kJ⋅kg−1. Thus, T5 must be higher than the assumed value of 
260 K. Repeating this process (in an automated fashion using a spreadsheet or 
computer program) for other values of T5 shows that Eq. (A) is satisfied for:

   T  5   = 261.2 K    H  5   = 748.8  kJ⋅kg   −1     (  at 60 bar )     

Substitution of values into Eq. (9.7) now yields:

  z =   
0.25  (  510.6 − 748.8 )    + 855.3 − 903.0

   ___________________________  − 0.6 − 903.0   = 0.1187  

Thus 11.9% of the methane entering the exchanger system is liquefied.
The temperature at point 7 depends on its enthalpy, which is found from energy 

balances on the exchanger system. Thus, for exchanger I,

    m 
∙    4    (   H  5   −  H  4   )    +   m 

∙    15    (   H  15   −  H  14   )    = 0  

With    m 
∙    15   =   m 

∙    4   −   m 
∙    9    and    m 

∙    9  /  m 
∙    4   = z , this equation may be rearranged to give:

   H  14   =   
 H  5   −  H  4  

 ______ 1 − z   +  H  15   =   
748.8 − 855.3

  ___________ 1 − 0.1187   + 903.0  

Then,

   H  14   = 782.2   kJ⋅kg   −1   T  14   = 239.4 K  (  at 1 bar )     

where T14 is found by evaluating H for methane at 1 bar and varying the tempera-
ture to match the known H14.

For exchanger II,

    m 
∙    7    (   H  7   −  H  5   )    +   m 

∙    14    (   H  14   −  H  12   )    = 0  

With    m 
∙    7   =   m 

∙    4   −   m 
∙    12    and    m 

∙    14   =   m 
∙    4   −   m 

∙    9    and with the definitions of z and x, this 
equation upon rearrangement becomes:

   H  7   =  H  5   −   
1 − z

 ___ 1 − x    (   H  14   −  H  12   )    = 748.8 −   
1 − 0.1187

 _______ 1 − 0.25    (  782.2 − 510.6 )     
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Then

   H  7   = 429.7   kJ·kg   −1   T  7   = 199.1 K  (  at 60 bar )     

As the value of x increases, T7 decreases, eventually approaching the saturation 
temperature in the separator, and requiring an exchanger II of infinite area. Thus x 
is limited on the high side by the cost of the exchanger system.

The other limit is for x = 0, the Linde system, for which by Eq. (9.8),

  z =   
855.3 − 903.0

  ___________  − 0.6 − 903.0   = 0.0528  

In this case only 5.3% of the gas entering the throttle valve emerges as liquid. The 
temperature of the gas at point 7 is again found from its enthalpy, calculated by  
the energy balance:

   H  7   =  H  4   −   (  1 − z )     (   H  15   −  H  10   )     

Substitution of known values yields:

   H  7   = 855.3 −   (  1 − 0.0528 )     (  903.0 − 510.6 )    = 483.6   kJ⋅kg   −1   

The corresponding temperature of the methane entering the throttle valve is  
T7 = 202.1 K.

9.7 SYNOPSIS

After thorough study of this chapter, including working through example and end-of-chapter 
problems, one should be able to:

 ∙ Compute the coefficient of performance for a Carnot refrigeration cycle and recognize 
that this represents an upper limit for any real refrigeration process

 ∙ Carry out a thermodynamic analysis of a vapor compression refrigeration cycle like that 
illustrated in Fig. 9.1

 ∙ Describe the absorption refrigeration process and explain why its use might be 
advantageous

 ∙ Sketch a cascade refrigeration system, explain why one might use such a system, and 
understand how to approach the selection of refrigerants for such a system

 ∙ Carry out a thermodynamic analysis of a Linde or Claude liquefaction process like that 
presented in Ex. 9.3

9.8 PROBLEMS

 9.1. An easy way to rationalize definitions of cycle performance is to think of them as: 

  Measure of performance =   
What you get

  ______________  What you pay for    
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Thus, for an engine, thermal efficiency is  η =   |  W |    /   |   Q  H   |    ; for a refrigerator, the coeffi-
cient of performance is  ω =   |   Q  C   |    /   |  W |    . Define a coefficient of performance ϕ for a heat 
pump. What is ϕ for a Carnot heat pump?

 9.2. The contents of the freezer in a home refrigerator are maintained at −20°C. The 
kitchen temperature is 20°C. If heat leaks amount to 125,000 kJ per day, and if elec-
tricity costs $0.08/kWh, estimate the yearly cost of running the refrigerator. Assume a 
coefficient of performance equal to 60% of the Carnot value.

 9.3. Consider the startup of a refrigerator. Initially, the contents are at the same 
 temperature as the surroundings:   T   C  0     =  T  H   , where TH is the (constant) surroundings 
 temperature. With the passage of time, owing to work input, the contents’  temperature  
is reduced from   T   C  0      to its design value TC. Modeling the process as a Carnot 
 refrigerator  operating between an infinite hot reservoir and a finite cold reservoir of 
total heat capacity Ct, determine an expression for the minimum work required to 
decrease the contents  temperature from   T   C  0      to TC.

 9.4. A Carnot refrigerator has tetrafluoroethane as the working fluid. The cycle is the same 
as that shown by Fig. 8.2, except the directions are reversed. For TC = −12°C and 
TH = 40°C, determine:

 (a) The pressures at states 1, 2, 3, and 4.
 (b) The quality xv at states 3 and 4.
 (c) The heat addition per kg of fluid.
 (d) The heat rejection per kg of fluid.
 (e) The mechanical power per kg of fluid for each of the four steps.
 ( f ) The coefficient of performance ω for the cycle.

 9.5. Which is the more effective way to increase the coefficient of performance of a Carnot 
refrigerator: to increase TC with TH constant, or to decrease TH with TC constant? For 
a real refrigerator, does either of these strategies make sense?

 9.6. In comparing the performance of a real cycle with that of a Carnot cycle, one has  
in principle a choice of temperatures to use for the Carnot calculation. Consider a 
vapor-compression refrigeration cycle in which the average fluid temperatures in the 
condenser and evaporator are TH and TC, respectively. Corresponding to TH and TC, 
the heat transfer occurs with respect to surroundings at temperature   T   σ  H      and   T   σ  C     . 
Which provides the more conservative estimate of ωCarnot: a calculation based on TH 
and TC, or one based on   T   σ  H      and   T   σ  C     ?

 9.7. A Carnot engine is coupled to a Carnot refrigerator so that all of the work produced by 
the engine is used by the refrigerator in extraction of heat from a heat reservoir at 0°C 
at the rate of 35 kJ⋅s−1. The source of energy for the Carnot engine is a heat reservoir 
at 250°C. If both devices discard heat to the surroundings at 25°C, how much heat 
does the engine absorb from its heat-source reservoir?
 If the actual coefficient of performance of the refrigerator is ω = 0.6ωCarnot and if 
the thermal efficiency of the engine is η = 0.6ηCarnot, how much heat does the engine 
absorb from its heat-source reservoir?
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 9.8. A refrigeration system requires 1.5 kW of power for a refrigeration rate of 4 kJ⋅s−1.

 (a) What is the coefficient of performance?
 (b) How much heat is rejected in the condenser?
 (c) If heat rejection is at 40°C, what is the lowest temperature the system can possibly 

maintain?

 9.9. A vapor-compression refrigeration system operates on the cycle of Fig. 9.1. The 
refrigerant is tetrafluoroethane (Table 9.1, Fig. F.2). For one of the following sets of 
operating conditions, determine the circulation rate of the refrigerant, the heat-transfer 
rate in the condenser, the power requirement, the coefficient of performance of the 
cycle, and the coefficient of performance of a Carnot refrigeration cycle operating 
between the same temperature levels.

 (a) Evaporation T = 0°C; condensation T = 26°C; η(compressor) = 0.79; refrigera-
tion rate = 600 kJ·s−1

 (b) Evaporation T = 6°C; condensation T = 26°C; η(compressor) = 0.78; refrigera-
tion rate = 500 kJ·s−1

 (c) Evaporation T = −12°C; condensation T = 26°C; η(compressor) = 0.77; refriger-
ation rate = 400 kJ·s−1

 (d) Evaporation T = −18°C; condensation T = 26°C; η(compressor) = 0.76; refriger-
ation rate = 300 kJ·s−1

 (e) Evaporation T = −25°C; condensation T = 26°C; η(compressor) = 0.75; refriger-
ation rate = 200 kJ·s−1

 9.10. A vapor-compression refrigeration system operates on the cycle of Fig. 9.1. The 
refrigerant is water. Given that the evaporation T = 4°C, the condensation T = 34°C, 
η(compressor) = 0.76, and the refrigeration rate = 1200 kJ⋅s−1, determine the circula-
tion rate of the refrigerant, the heat-transfer rate in the condenser, the power require-
ment, the coefficient of performance of the cycle, and the coefficient of performance 
of a Carnot refrigeration cycle operating between the same temperature levels.

 9.11. A refrigerator with tetrafluoroethane (Table 9.1, Fig. F.2) as refrigerant operates with 
an evaporation temperature of −25°C and a condensation temperature of 26°C. Satu-
rated liquid refrigerant from the condenser flows through an expansion (throttle) valve 
into the evaporator, from which it emerges as saturated vapor.

 (a) For a cooling rate of 5 kJ·s−1, what is the circulation rate of the refrigerant?
 (b) By how much would the circulation rate be reduced if the throttle valve were 

replaced by a turbine in which the refrigerant expands isentropically?
 (c) Suppose the cycle of part (a) is modified by the inclusion of a countercurrent heat 

exchanger between the condenser and the throttle valve in which heat is trans-
ferred to vapor returning from the evaporator. If liquid from the condenser enters 
the exchanger at 26°C and if vapor from the evaporator enters the exchanger at 
−25°C and leaves at 20°C, what is the circulation rate of the refrigerant?

 (d) For each of parts (a), (b), and (c), determine the coefficient of performance for 
isentropic compression of the vapor.
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 9.12. A vapor-compression refrigeration system is conventional except that a countercurrent 
heat exchanger is installed to subcool the liquid from the condenser by heat exchange 
with the vapor stream from the evaporator. The minimum temperature difference  
for heat transfer is 5°C. Tetrafluoroethane is the refrigerant (Table 9.1, Fig. F.2),  
evaporating at −6°C  and condensing at 26°C. The heat load on the evaporator  
is 2000 kJ·s−1. If the compressor efficiency is 75%, what is the power requirement? 
How does this result compare with the power required by the compressor if the  
system operates without the heat exchanger? How do the refrigerant circulation rates 
compare for the two cases?

 9.13. Consider the vapor-compression refrigeration cycle of Fig. 9.1 with tetrafluoroethane 
as refrigerant (Table 9.1, Fig. F.2). If the evaporation temperature is −12°C, show the 
effect of condensation temperature on the coefficient of performance by making cal-
culations for condensation temperatures of 16, 28, and 40°C.

 (a) Assume isentropic compression of the vapor.
 (b) Assume a compressor efficiency of 75%.

 9.14. A heat pump is used to heat a house in the winter and to cool it in the summer. During 
the winter, the outside air serves as a low-temperature heat source; during the summer, 
it acts as a high-temperature heat sink. The heat-transfer rate through the walls and 
roof of the house is 0.75 kJ⋅s−1 for each °C of temperature difference between the 
inside and outside of the house, summer and winter. The heat-pump motor is rated at 
1.5 kW. Determine the minimum outside temperature for which the house can be 
maintained at 20°C during the winter and the maximum outside temperature for which 
the house can be maintained at 25°C during the summer.

 9.15. Dry methane is supplied by a compressor and precooling system to the cooler of a 
Linde liquid-methane system (Fig. 9.6) at 180 bar and 300 K. The low-pressure meth-
ane leaves the cooler at a temperature 6°C lower than the temperature of the incoming 
high-pressure methane. The separator operates at 1 bar, and the product is saturated 
liquid at this pressure. What is the maximum fraction of the methane entering the 
cooler that can be liquefied? The NIST Chemistry WebBook (http://webbook.nist 
.gov/chemistry/fluid/) is a source of data for methane.

 9.16. Rework the preceding problem for methane entering at 200 bar  and precooled to  
240 K by external refrigeration.

 9.17. An advertisement is noted in a rural newspaper for a dairy-barn unit that combines a 
milk cooler with a water heater. Milk must, of course, be refrigerated, and hot water is 
required for washing purposes. The usual barn is equipped with a conventional  
air-cooled electric refrigerator and an electric-resistance water heater. The new unit is 
said to provide both the necessary refrigeration and the required hot water at a cost for 
electricity about the same as the cost of running just the refrigerator in the usual instal-
lation. To assess this claim, compare two refrigeration units: The advertised unit takes 
15 kJ·s−1 from a milk cooler at −2°C, and discards heat through a condenser at 65°C to 
raise the temperature of water from 13 to 63°C. The conventional unit takes the same 
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amount of heat from the same milk cooler at −2°C and discards heat through an air-
cooled condenser at 50°C; in addition, the same amount of water is heated electrically 
from 13 to 63°C. Estimate the total electric power requirements for the two cases, 
assuming that the actual work in both is 50% greater than required by Carnot refriger-
ators operating between the given temperatures.

 9.18. A two-stage cascade refrigeration system (see Fig. 9.3) operates between TC = 210 K 
and TH = 305 K. Intermediate temperatures are   T  C  ′   = 255 K  and   T  H  ′   = 260 K . Coeffi-
cients of performance ω of each stage are 65% of the corresponding values for a  
Carnot refrigerator. Determine ω for the real cascade, and compare it with that for a 
Carnot refrigerator operating between TC and TH.

 9.19. Do a parametric study for the Claude liquefaction process treated in Sec. 9.6 and  
Ex. 9.3. In particular, show numerically the effect of changing the draw-off ratio x on 
other process variables. The NIST Chemistry WebBook (http://webbook.nist.gov/
chemistry/fluid/) is a source of data for methane.

 9.20. The condenser of a home refrigerator is commonly underneath the appliance; thus, the 
condensing refrigerant exchanges heat with household air, which has an average  
temperature of about 21°C. It is proposed to reconfigure a refrigerator so that the  
condenser is outside the home, where the average yearly temperature is about 10°C. 
Discuss the pros and cons of this proposal. Assume a freezer temperature of −18°C, 
and an actual coefficient of performance 60% that of a Carnot refrigerator.

 9.21. A common misconception is that the coefficient of performance of a refrigerator must 
be less than unity. In fact, this is rarely the case. To see why, consider a real refriger-
ator for which ω = 0.6ωCarnot. What condition must be satisfied in order for ω < 1? 
Assume that TH is fixed.

 9.22. A furnace fails in a home in the winter. Mercifully, the electric power remains on. The 
resident engineer tells her spouse not to worry; they’ll move into the kitchen, where 
the heat discarded from the refrigerator may provide for a temporarily comfortable 
living space. However (the engineer is reminded), the kitchen loses heat to the out-
doors. Use the following data to determine the allowable rate of heat loss (kW) from 
the kitchen for the engineer’s proposal to make sense.

Data:   Desired kitchen temperature = 290 K 
Refrigerator freezer temperature = 250 K 
Average mechanical power input to refrigerator = 0.40 kW 
Performance: Actual ω = 65% of Carnot ω

 9.23. Fifty (50) kmol·h−1 of liquid toluene at 1.2 bar is cooled from 100 to 20°C. A 
vapor-compression refrigeration cycle is used for the purpose. Ammonia is the work-
ing fluid. Condensation in the cycle is effected by an air-cooled fin/fan heat exchanger 
for which the air temperature may be assumed essentially constant at 20°C. 
Determine:

 (a) The low and high pressure levels (bar) in the refrigeration cycle.
 (b) The circulation rate of ammonia (mol·s−1).
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356 CHAPTER 9. Refrigeration and Liquefaction

  Assume 10°C minimum approach temperature differences for heat exchange. Data for 
ammonia:

    
 ΔH n  lv 

  
=

  
23.34 kJ  mol   −1 

   
ln   P   sat 

  
=

  
45.327 −   

4104.67
 ________ 

T
   − 5.146 ln T + 615.0   

 P   sat 
 ____ 

 T   2 
  
   

  where Psat is in bars and T is in kelvins.

 9.24 Cascade refrigeration is often applied in freeze dryers, where water is sublimated from a 
frozen sample under vacuum and collects on the evaporator coil of the low-temper ature 
stage of a two-stage refrigeration cascade. A particular freeze dryer is specified as being 
able to collect (freeze from the low-pressure gas phase) 4 kg of water per hour while 
maintaining a coil temperature of −50°C. The condenser of the high-temperature stage 
is designed to operate at 40°C. A 10°C temperature difference is required for heat 
transfer from the condenser of the low-temperature stage to the evaporator of the 
high-temperature stage. Propane (R-290) is used as refrigerant in the high-temperature 
stage, while ethane (R-170) is used in the low-temperature stage. Properties data for 
these are available in the NIST WebBook. The heat of sublimation of ice at −50°C  
is 2838 kJ·kg−1. For both stages, the isentropic efficiency of the compressor is 75%. 
Compute the work requirement and refrigeration recirculation rate for each stage, if the 
high-temperature evaporator and low-temperature condenser operate at: 

 (a) −15°C and −5°C
 (b) −10°C and 0°C 
 (c) −5°C and 5°C
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Chapter 10

The Framework of Solution 
Thermodynamics

Our purpose in this chapter is to lay the theoretical foundation for applications of 
thermodynamics to systems of variable composition, e.g., gas mixtures and liquid solutions. 
Throughout the chemical, energy, microelectronics, personal care, and pharmaceutical 
industries, multicomponent mixtures undergo composition changes brought about by mixing 
and separation processes, the transfer of species from one phase to another, and chemical 
reaction. Thus, measures of composition become essential variables, along with temperature 
and pressure, which we already considered in detail in Chap. 6. This adds substantially to  
the complexity of tabulating and correlating  thermodynamic properties, and necessitates a 
menagerie of new variables and relationships among them. Applying these relationships to 
practical problems, such as phase and reaction equilibrium calculations, requires that we first 
map out this “thermodynamic zoo.” Thus, in the present chapter, we:

 ∙ Develop a fundamental property relation that is applicable to open phases of variable 
composition

 ∙ Define the chemical potential, a fundamental new property that facilitates treatment of 
phase and chemical-reaction equilibria

 ∙ Introduce partial properties, a class of thermodynamic properties defined mathemati-
cally to distribute total mixture properties among individual species as they exist in a 
mixture; these are composition-dependent and distinct from the molar properties of pure 
species

 ∙ Develop property relations for the ideal-gas-state mixture, which provide the basis for 
treatment of real-gas mixtures

 ∙ Define yet another useful property, the fugacity; related to the chemical potential, it 
proves useful for analyzing both phase- and chemical-reaction-equilibrium problems

 ∙ Introduce a useful class of solution properties, known as excess properties, in conjunc-
tion with an idealization of solution behavior called the ideal-solution model, which 
serves as a reference for real-solution behavior
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358 CHAPTER 10. The Framework of Solution Thermodynamics

Measures of Composition
The three most common measures of composition in thermodynamics are mass fraction, mole 
fraction, and molar concentration. Mass or mole fraction is defined as the ratio of the mass or 
number of moles of a particular chemical species in a mixture to the total mass or number of 
moles of mixture:

   x  i   ≡   
 m  i   ___ 
m

   =   
  m 

∙    i   ___  m 
∙       or    x  i   ≡   

 n  i   __ 
n
   =   

  n 
∙    i   __  n 
∙      

Molar concentration is defined as the ratio of the mole fraction of a particular chemical 
species in a mixture or solution to the molar volume of the mixture or solution:

   C  i   ≡   
 x  i   __ 
V

    

This quantity has units of moles of i per unit volume. For flow processes, expressing it as a 
ratio of rates is more convenient. Multiplying and dividing by molar flow rate   n 

∙    gives:

   C  i   ≡   
  n 

∙    i   __ 
q
    

where    n 
∙    i    is molar flow rate of species i, and q is volumetric flow rate.

The molar mass of a mixture or solution is, by definition, the mole-fraction-weighted 
sum of the molar masses of all species present:

  ℳ ≡  ∑ 
i

      x  i    ℳ  i    

Here, we develop the framework of solution thermodynamics using mole fractions as 
composition variables. For nonreacting systems, virtually all of the same development can be 
done using mass fractions, yielding identical definitions and equations. Thus, we may take xi 
to represent either a mole fraction or mass fraction in nonreacting systems. In reacting sys-
tems, use of mole fractions is nearly always preferable.

10.1 FUNDAMENTAL PROPERTY RELATION

Equation (6.7) relates the total Gibbs energy of any closed system to its canonical variables, 
temperature and pressure:

  d  (  nG )    =   (  nV  )   dP −   (  nS )   dT  (6.7)

where n is the total number of moles of the system. It applies to a single-phase fluid in a closed 
system wherein no chemical reactions occur. For such a system the composition is necessarily 
constant, and therefore:

    [    
∂   (  nG )   

 _____ 
∂ P   ]    

T, n
   = nV   and     [    

∂   (  nG )   
 _____ 

∂ T   ]    
P, n

   = − nS  

The subscript n indicates that the numbers of moles of all chemical species are held constant.
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10.1. Fundamental Property Relation 359

For the more general case of a single-phase, open system, material can enter and leave 
the system, and nG is a function of the numbers of moles of the chemical species present. It 
remains a function of T and P, and we can therefore write the functional relation:

  nG = g  (  P, T,  n  1  ,  n  2  , . . .,  n  i  , . . . )     

where ni is the number of moles of species i. The total differential of nG is then:

  d  (  nG )    =   [    
∂   (  nG )   

 _____ 
∂ P   ]    

T, n
   dP +   [    

∂   (  nG )   
 _____ 

∂ T   ]    
P, n

   dT +  ∑ 
i

       [    
∂   (  nG )   

 _____ 
∂  n  i  

   ]    
P, T,  n  j  

   d n  i    

The summation is over all species present, and subscript nj indicates that all mole numbers 
except the ith are held constant. The derivative in the final term is given its own symbol and 
name. Thus, by definition the chemical potential of species i in the mixture is:

   μ  i   ≡   [    
∂   (  nG )   

 _____ 
∂  n  i  

   ]    
P, T,  n  j  

    (10.1)

With this definition and with the first two partial derivatives replaced by (nV) and −(nS), the 
preceding equation becomes:

   d  (  nG )    =   (  nV )   dP −   (  nS )   dT +  ∑ 
i

      μ  i   d n  i     (10.2)

Equation (10.2) is the fundamental property relation for single-phase fluid systems of 
variable mass and composition. It is the foundation upon which the structure of solution 
thermodynamics is built. For the special case of one mole of solution, n = 1 and ni = xi:

  dG = VdP − SdT +  ∑ 
i

      μ  i   d x  i    (10.3)

Implicit in this equation is the functional relationship of the molar Gibbs energy to its canonical 
variables, here: T, P, and {xi}:

  G = G  (  T, P,  x  1  ,  x  2  , . . .,  x  i  , . . . )     
Equation (6.11) for a constant-composition solution is a special case of Eq. (10.3). 

Although the mole numbers ni of Eq. (10.2) are independent variables, the mole fractions xi in 
Eq. (10.3) are not, because   ∑  i    x  i   = 1.  This precludes certain mathematical operations that 
depend upon independence of the variables. Nevertheless, Eq. (10.3) does imply:

 V =   (    
∂ G

 ___ 
∂ P   )    

T, x
   (10.4)  S = −   (    

∂ G
 ___ 

∂ T   )    
P, x

   (10.5)

Other solution properties come from definitions; e.g., the enthalpy, from H = G + TS. Thus, 
by Eq. (10.5),

  H = G − T   (    
∂ G

 ___ 
∂ T   )    

P, x
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360 CHAPTER 10. The Framework of Solution Thermodynamics

The Gibbs energy expressed as a function of its canonical variables 
serves as a generating function, allowing calculation of all other thermo-
dynamic properties by simple mathematical operations (differentiation 
and elementary algebra). It implicitly represents complete property 
information.

This is a more general statement of the conclusion drawn in Sec. 6.1, now extended to systems 
of variable composition.

10.2 THE CHEMICAL POTENTIAL AND EQUILIBRIUM

Practical applications of the chemical potential will become clearer in later chapters that treat 
chemical and phase equilibria. However, at this point one can already appreciate its role in 
these analyses. For a closed, single-phase PVT system containing chemically reactive species, 
Eqs. (6.7) and (10.2) must both be valid, the former simply because the system is closed and 
the second because of its generality. In addition, for a closed system, all differentials dni in  
Eq. (10.2) must result from chemical reaction. Comparison of these two equations shows that 
they can both be valid only if:

   ∑ 
i

      μ  i    d n  i   = 0  

This equation therefore represents a general criterion for chemical-reaction equilibrium 
in a single-phase closed PVT system, and provides the basis for developing working equations 
for the solution of reaction-equilibrium problems.

With respect to phase equilibrium, we note that for a closed nonreacting system consist-
ing of two phases in equilibrium, each individual phase is open to the other, and species can 
move between phases. Equation (10.2) applies separately to each phase:

   
d  (nG)    α 

  
=

  
 (nV)   α  dP −  (nS)   α  dT +  ∑ 

i

      μ  i  α   dn  i  α  

     
d (nG)   β 

  
=

  
 (nV)   β  dP −  (nS)   β  dT +  ∑ 

i

      μ  i  
β
   dn  i  

β
 
    

where superscripts α and β identify the phases. For the system to be in thermal and mechanical 
equilibrium, T and P must be uniform.

The change in the total Gibbs energy of the two-phase system is the sum of the equations 
for the separate phases. When each total-system property is expressed by an equation of the 
form,

  nM =   (  nM )     α  +   (  nM )     β   

the sum is:  d  (  nG )    =   (  nV )   dP −   (  nS )   dT +  ∑ 
i

      μ  i  α d n  i  α  +  ∑ 
i

      μ  i  
β
 d n  i  

β
   

Because the two-phase system is closed, Eq. (6.7) is also valid. Comparing the two equations 
shows that at equilibrium:

   ∑ 
i

     μ  i  α  d n  i  α  +  ∑ 
i

     μ  i  
β
 d n  i  

β
  = 0  
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The changes  d n  i  α   and  d n  i  
β
   result from mass transfer between the phases; mass  conservation 

therefore requires:

  d n  i  α  = − d n  i  
β
    and    ∑ 

i

     ( μ  i  α  −  μ  i  
β
  )d n  i  α  = 0  

Quantities  d n  i  α   are independent and arbitrary, and the only way the left side of the second 
equation can, in general, be zero is for each term in parentheses separately to be zero. Hence,

   μ  i  α  =  μ  i  
β
      (  i = 1, 2, . . ., N )     

where N is the number of species present in the system. Successive application of this result to 
pairs of phases permits its generalization to multiple phases; for π phases:

    μ  i  α  =  μ  i  
β
  = ⋯ =  μ  i  π       (  i = 1, 2, . . ., N )     (10.6)

Thus, multiple phases at the same T and P are in equilibrium when the 
chemical potential of each species is the same in all phases.

The application of Eq. (10.6) to specific phase-equilibrium problems requires models of 
solution behavior that provide expressions for G and μi as functions of temperature, pressure, 
and composition. The simplest of these, the ideal-gas state mixture and the ideal solution, are 
treated in Secs. 10.4 and 10.8, respectively.

10.3 PARTIAL PROPERTIES

The definition of the chemical potential by Eq. (10.1) as the mole-number derivative of nG 
suggests that other derivatives of this kind may prove useful in solution thermodynamics. 
Thus, we define the partial molar property    M ¯    i    of species i in solution as:

     M ¯    i   ≡   [    
∂   (  nM )   

 ______ 
∂  n  i  

   ]    
P, T,  n  j  

     (10.7)

Sometimes called a response function, it is a measure of the response of total property nM to 
the addition of an infinitesimal amount of species i to a finite amount of solution, at constant 
T and P.

The generic symbols M and    M ¯    i    can express solution properties on a unit-mass basis as 
well as on a molar basis. Equation (10.7) retains the same form, with n, the number of moles, 
replaced by m, representing mass, and yielding partial specific properties rather than partial 
molar properties. To accommodate either, one may speak simply of partial properties.

Molar (or unit-mass) properties of solutions are represented by the plain symbol M. 
Partial properties are denoted by an overbar, with a subscript to identify the species; the sym-
bol is therefore    M ¯    i   . In addition, properties of the individual species as they exist in the pure 
state at the T and P of the solution are identified by only a subscript, and the symbol is Mi. In 
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summary, the three kinds of properties used in solution thermodynamics are distinguished 
using the following notation:

   
Solution properties

  
 M,

  
 for example :  V, U, H, S, G

      Partial properties     M ¯    i  ,   for example :     V ¯    i  ,   U ¯    i  ,   H ¯    i  ,   S ¯    i  ,   G ¯    i        
Pure-species properties

  
  M  i  ,

  
 for example :    V  i  ,  U  i  ,  H  i  ,  S  i  ,  G  i  

   

Comparison of Eq. (10.1) with Eq. (10.7) written for the Gibbs energy shows that the 
chemical potential and the partial molar Gibbs energy are identical; i.e.,

   μ  i   ≡   G ¯    i    (10.8)

Example 10.1
The partial molar volume is defined as:

    V ¯    i   ≡   [    
∂   (  nV  )   

 _____ 
∂  n  i  

   ]    
P, T,  n  j  

    (A)

What physical interpretation can be given to this equation?

Solution 10.1
Suppose an open beaker containing an equimolar mixture of ethanol and water 
occupies a total volume nV at room temperature T and atmospheric pressure P. 
Add to this solution a drop of pure water, also at T and P, containing Δnw moles, 
and mix it thoroughly into the solution, allowing sufficient time for heat exchange 
to return the contents of the beaker to the initial temperature. One might expect 
that the volume of solution increases by an amount equal to the volume of the 
water added, i.e., by VwΔnw, where Vw is the molar volume of pure water at T and 
P. If this were true, the total volume change would be:

  Δ  (  nV )    =  V  w   Δ  n  w    

However, experimental observations show that the actual volume change is somewhat 
less.  Evidently, the effective molar volume of water in the final solution is less  
than the molar volume of pure water at the same T and P. We may therefore write:

  Δ  (  nV )    =   V ˜    w   Δ  n  w    (B)

where    V ˜    w    represents the effective molar volume of water in the final solution. Its 
experimental value is given by:

    V ˜    w   =   
Δ  (  nV )   

 ______ Δ  n  w      (C)

In the process described, a drop of water is mixed with a substantial amount of 
solution, and the result is a small but measurable change in composition of the 

www.konkur.in

Telegram: @uni_k
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solution. For the effective molar volume of the water to be considered a property of the 
original equimolar solution, the process must be taken to the limit of an infinitesimal 
drop. Thus, we consider the limit as  Δ n  w   → 0,  and Eq. (C) becomes:

    V ˜    w   =   lim  
Δ n  w  →0

     
Δ  (  nV )   

 ______ Δ  n  w     =   
d  (  nV )   

 _____ 
d n  w      

Because T, P, and na (the number of moles of alcohol) are constant, this equation 
is more appropriately written:

    V ˜    w   =   [     
∂   (  nV )   

 _____ 
∂  n  w     ]    

P, T,  n  a  
    

Comparison with Eq. (A) shows that in this limit    V ˜    w    is the partial molar volume    V ¯    w    
of the water in the equimolar solution, i.e., the rate of change of the total solution 
volume with nw at constant T, P, and na for a specific composition. Written for the 
addition of dnw moles of water to the solution, Eq. (B) is then:

  d  (  nV )    =   V ¯    w   d n  w    (D)

When    V ¯    w    is considered the molar property of water as it exists in solution, the total 
volume change d(nV) is merely this molar property multiplied by the number of 
moles dnw of water added.

If dnw moles of water is added to a volume of pure water, then the volume 
change of the system is:

  d  (  nV )    =  V  w   d n  w    (E)

where Vw is the molar volume of pure water at T and P. Comparison of Eqs. (D) 
and (E) indicates that    V ¯    w   =  V  w    when the “solution” is pure water.

Equations Relating Molar and Partial Molar Properties
The definition of a partial molar property, Eq. (10.7), allows calculation of partial properties 
from solution-property data. Implicit in this definition is another, equally important, equation 
that allows the reverse, i.e., calculation of solution properties from the partial properties. We now 
derive this equation, starting from the observation that the total thermodynamic properties of 
a homogeneous phase are functions of T, P, and the numbers of moles of the individual spe-
cies that comprise the phase.1 Thus for property M, we can write nM as a function that we will 
call  𝕄 :

  nM = 𝕄  (  T, P,  n  1  ,  n  2  , . . .,  n  i  , . . . )     

The total differential of nM is:

  d  (  nM )    =   [     
∂   (  nM )   

 ______ 
∂ P   ]    

T, n
   dP +   [     

∂   (  nM )   
 ______ 

∂ T   ]    
P, n

   dT +  ∑ 
i

       [     
∂   (  nM )   

 ______ 
∂  n  i  

   ]    
P, T,  n  j  

   d n  i    

1Mere functionality does not make a set of variables into canonical variables. These are the canonical variables 
only for M ≡ G.
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where subscript n indicates that all mole numbers are held constant, and subscript nj indicates 
that all mole numbers except ni are held constant. Because the first two partial derivatives on 
the right are evaluated at constant n, and because the partial derivative of the last term is given 
by Eq. (10.7), this equation has the simpler form:

  d  (  nM )    = n  (    
∂ M

 ___ 
∂ P   )    

T, x
    dP + n  (    

∂ M
 ___ 

∂ T   )    
P, x

   dT +  ∑ 
i

       M ¯    i   d n  i    (10.9)

where subscript x denotes differentiation at constant composition. Because ni = xin,

  d n  i   =  x  i    dn + n d x  i    

Moreover,

  d  (  nM )    = n dM + M dn  

When dni and d(nM) are replaced by these expressions in Eq. (10.9), it becomes:

  n dM + M dn = n   (     
∂ M

 ___ 
∂ P   )    

T, x
   dP + n   (     

∂ M
 ___ 

∂ T   )    
P, x

   dT +  ∑ 
i

       M ¯    i    (    x  i    dn + n d x  i   )     

The terms containing n are collected and separated from those containing dn to yield:

    [  dM −   (     
∂ M

 ___ 
∂ P   )    

T, x
   dP −   (     

∂ M
 ___ 

∂ T   )    
P, x

   dT −  ∑ 
i

       M ¯    i   d x  i   ]   n +   [  M −  ∑ 
i

      x  i     M ¯    i   ]   dn = 0  

In application, one is free to choose a system of any size, as represented by n, and to 
choose any variation in its size, as represented by dn. Thus n and dn are independent and 
 arbitrary. The only way that the left side of this equation can then, in general, be zero is for 
each term in brackets to be zero. Therefore,

  dM =   (     
∂ M

 ___ 
∂ P   )    

T, x
   dP +   (     

∂ M
 ___ 

∂ T   )    
P, x

   dT +  ∑ 
i

       M ¯    i   d x  i    (10.10)

and   M =  ∑ 
i

      x  i     M ¯    i      (10.11)

Multiplication of Eq. (10.11) by n yields the alternative expression:

   nM =  ∑ 
i

      n  i     M ¯    i     (10.12)

Equation (10.10) is in fact just a special case of Eq. (10.9), obtained by setting n = 1, 
which also makes ni = xi. Equations (10.11) and (10.12), on the other hand, are new and vital. 
Known as summability relations, they allow calculation of mixture properties from partial 
properties, playing a role opposite to that of Eq. (10.7), which enables calculation of partial 
properties from mixture properties.
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One further important equation follows directly from Eqs. (10.10) and (10.11). 
 Differentiation of Eq. (10.11), a general expression for M, yields a general expression for dM:

  dM =  ∑ 
i

      x  i   d  M ¯    i   +  ∑ 
i

       M ¯    i   d x  i    

Combining this equation with Eq. (10.10) yields the Gibbs/Duhem2 equation:

     (     
∂ M

 ___ 
∂ P   )    

T, x
   dP +   (     

∂ M
 ___ 

∂ T   )    
P, x

   dT −  ∑ 
i

      x  i    d  M ¯    i   = 0   (10.13)

This equation must be satisfied for all changes occurring in a homogeneous phase. For the 
important special case of changes in composition at constant T and P, it simplifies to:

    ∑ 
i

      x  i   d  M ¯    i   = 0       (  const T, P )     (10.14)

Equation 10.14 shows that the partial molar properties cannot all vary independently. 
This constraint is analogous to the constraint on mole fractions, which are not all independent 
because they must sum to one. Similarly, the mole-fraction-weighted sum of the partial molar 
properties must yield the overall solution property (Eq. 10.11), and this constrains the varia-
tion in partial molar properties with composition.

A Rationale for Partial Properties
The partial-property concept plays a central role in solution thermodynamics. It implies that a 
solution property represents a “whole,” i.e., the sum of its parts as represented by partial prop-
erties    M ¯    i    of the constituent species. This is the implication of Eq. (10.11), and it is a proper 
interpretation provided one understands that the defining equation for    M ¯    i    Eq. (10.7)  is an 
apportioning formula that reasonably but arbitrarily assigns to each species i its share of the 
solution property.3

The constituents of a solution are in fact intimately intermixed. Intermolecular interac-
tions between molecules of the different species imply that they cannot have private properties 
of their own. Nevertheless, partial properties, as defined by Eq. (10.7), have all the character-
istics of properties of the individual species as they exist in solution. Thus for practical  
purposes they may be assigned as property values to the individual species.

Partial properties, like solution properties, are functions of composition. In the limit as a 
solution becomes pure in species i, both M and    M ¯    i    approach the pure-species property Mi. 
Mathematically,

    lim  
 x  i  →1

    M =   lim  
 x  i  →1

     M ¯    i   =  M  i    

2Pierre-Maurice-Marie Duhem (1861–1916), French physicist. See http://en.wikipedia.org/wiki/Pierre_Duhem.

3Other apportioning equations, which make different allocations of the solution property, are possible and are, in 
principle, equally valid.
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366 CHAPTER 10. The Framework of Solution Thermodynamics

For a partial property of a species that approaches its infinite-dilution limit—i.e., a par-
tial property value of a species as its mole fraction approaches zero—we can make no general 
statements. Values come from experiment or from models of solution behavior. Because it is 
an important quantity, we do give it a symbol, and by definition we write:

    M ¯    i  ∞  ≡   lim  
 x  i  →0

       M ¯    i    

The essential equations of this section are thus summarized as follows:

Definition:    M ¯    i   ≡   [    
∂   (  nM )   

 ______ 
∂  n  i  

   ]    
P, T,  n  j  

    (10.7)

which yields partial properties from total properties.

Summability:  M =  ∑ 
i

      x  i     M ¯    i    (10.11)

which yields total properties from partial properties.

Gibbs/Duhem:   ∑ 
i

      x  i   d  M ¯    i   =   (  
∂ M

 ___ 
∂ P  )   

T, x
  dP +   (  

∂ M
 ___ 

∂ T  )   
P, x

  dT  (10.13)

which shows that the partial properties of species making up a solution are not independent of 
one another.

Partial Properties in Binary Solutions
An equation for a partial property as a function of composition can always be derived from an 
equation for the solution property by direct application of Eq. (10.7). For binary systems, how-
ever, an alternative procedure is usually more convenient. Written for a binary solution, the 
summability relation, Eq. (10.11), becomes:

  M =  x  1     M ¯    1   +  x  2     M ¯    2    (A)

Thus,  dM =  x  1   d  M ¯    1   +   M ¯    1   d x  1   +  x  2   d  M ¯    2   +   M ¯    2   d x  2    (B)

When M is known as a function of x1 at constant T and P, the appropriate form of the Gibbs/
Duhem equation is Eq. (10.14), expressed here as:

   x  1    d  M ¯    1   +  x  2    d  M ¯    2   = 0  (C)

Because x1 + x2 = 1, dx1 = −dx2. Eliminating dx2 in favor of dx1 in Eq. (B) and combining the 
result with Eq. (C) gives:

    
dM

 ____ 
d x  1     =   M ¯    1   −   M ¯    2    (D)

Two equivalent forms of Eq. (A) result from the elimination separately of x1 and x2:

  M =   M ¯    1   −  x  2  (  M ¯    1   −   M ¯    2   ) and M =  x  1  (  M ¯    1   −   M ¯    2   ) +   M ¯    2    
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10.3. Partial Properties 367

In combination with Eq. (D) these become:

   M ¯    1   = M +  x  2     
dM

 ____ 
d x  1     (10.15)    M ¯    2   = M −  x  1     

dM
 ____ 

d x  1     (10.16)

4H. C. Van Ness and M. M. Abbott, Classical Thermodynamics of Nonelectrolyte Solutions: With Applications to 
Phase Equilibria, pp. 46–54, McGraw-Hill, New York, 1982.

Thus, for binary systems, the partial properties are readily calculated directly from an expres-
sion for the solution property as a function of composition at constant T and P. The corre-
sponding equations for multicomponent systems are much more complex. They are given in 
detail by Van Ness and Abbott.4

Equation (C), the Gibbs/Duhem equation, may be written in derivative forms:

  x  1     
d  M ¯    1  

 ____ d x  1     +  x  2     
d  M ¯    2  

 ____ d x  1     = 0 (E)    
d  M ¯    1  

 ____ d x  1     = −   
 x  2  

 ___  x  1       
d  M ¯    2  

 ____ d x  1     (F)

Clearly, when    M ¯    1    and    M ¯    2    are plotted vs. x1, the slopes must be of opposite sign. Moreover,

    lim  
 x  1  →1

     
d  M ¯    1  

 ____ 
d x  1     = 0 (Provided    lim  

 x  1  →1
     
d  M ¯    2  

 ____ 
d x  1      is finite)  

Similarly,

    lim  
 x  2  →1

     
d  M ¯    2  

 ____ 
d x  1     = 0 (Provided    lim  

 x  2  →1
     
d  M ¯    1  

 ____ 
d x  1      is finite )  

Thus, plots of    M ¯    1    and    M ¯    2    vs. x1 become horizontal as each species approaches purity.
Finally, given an expression for    M ¯    1    (    x  1   )    , integration of Eq. (E) or Eq. (F) yields an 

expression for    M ¯    2    (   x  1   )     that satisfies the Gibbs/Duhem equation. This means that expressions 
cannot be specified independently for both    M ¯    1    (   x  1   )     and    M ¯    2    (   x  1   )    .

Example 10.2
Describe a graphical interpretation of Eqs. (10.15) and (10.16).

Solution 10.2
Figure 10.1(a) shows a representative plot of M vs. x1 for a binary system. The 
tangent line shown extends across the figure, intersecting the edges (at x1 = 1 and 
x1 = 0) at points labeled I1 and I2. As is evident from the figure, two equivalent 
expressions can be written for the slope of this tangent line:

    
dM

 ____ 
d x  1     =   

M −  I  2  
 _____  x  1         and       

dM
 ____ 

d x  1    
  =  I  1   −  I  2   
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368 CHAPTER 10. The Framework of Solution Thermodynamics

Figure 10.1: (a) Graphical construction of Ex. 10.2. (b) Infinite-dilution values of partial properties.

Constant T, P

M

I2

I1

1
x1

0

(a)

Constant T, P

M

M1

M2

1
x1

0

(b)

M2

M1

The first equation can be solved for I2. Substituting the result into the second equa-
tion allows solution for I1:

    I  2   = M −  x  1     
dM

 ____ 
d x  1    

   and    I  1   = M +   (  1 −  x  1   )     
dM

 ____ 
d x  1    

   

Comparison of these expressions with Eqs. (10.16) and (10.15) shows that:

  I  1   =   M ¯    1       and      I  2   =   M ¯    2   

Thus, the tangent intercepts directly give the values of the two partial properties. 
These intercepts shift as the point of tangency moves along the curve, and the 
limiting values are indicated by the constructions shown in Fig. 10.1(b). For the 
tangent line drawn at x1 = 0 (pure species 2),    M ¯    2   =  M  2   , and at the opposite inter-
cept,    M ¯    1   =   M ¯    1  ∞  . Similar comments apply to the tangent drawn at x1 = 1 (pure 
species 1). In this case    M ¯    1   =  M  1    and    M ¯    2   =   M ¯    2  ∞  .

Example 10.3
Suppose 2000 cm3 of an antifreeze solution consisting of 30 mol-% methanol in water 
is needed. What volumes of pure methanol and pure water at 25°C must be mixed to 
form 2000 cm3 of antifreeze, also at 25°C? Partial molar volumes for methanol and 
water in a 30 mol-% methanol solution and their pure-species molar volumes, all at 
25°C, are:
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10.3. Partial Properties 369

   
Methanol  (  1 )   : 

  
  V ¯    1   = 38.632   cm   3   ⋅ mol   −1 

  
  V  1   = 40.727   cm   3   ⋅ mol   −1 

       
Water  (  2 )   : 

  
  V ¯    2   = 17.765   cm   3   ⋅ mol   −1 

  
  V  2   = 18.068   cm   3   ⋅ mol   −1 

   

Solution 10.3
We write the summability relation, Eq. (10.11), for the molar volume of the anti-
freeze solution, and substitute known values for the mole fractions and partial 
molar volumes:

  V =  x  1     V ¯    1   +  x  2     V ¯    2   =   (  0.3 )     (  38.632 )    +   (  0.7 )     (  17.765 )    = 24.025   cm   3  ⋅mol   −1   

Because the required total volume of solution is Vt = 2000 cm3, the total num-
ber of moles required is:

  n =   
 V   t 

 ___ 
V

   =   
2000

 ______ 24.025   = 83.246 mol  

Of this, 30% is methanol, and 70% is water:

    n  1   =   (  0.3 )     (  83.246 )    = 24.974     n  2    =   (  0.7 )     (  83.246 )    = 58.272 mol  

The volume of each pure species is   V  i  t  =  n  i    V  i   ; thus,

    V  1  t   =   (  24.974 )     (  40.727 )    = 1017   cm   3     V  2  t   =   (  58.272 )      (  18.068 )    = 1053   cm   3  

Because the partial molar volumes at this composition are smaller than the pure spe-
cies volumes, the total volume of pure components needed is greater than 2000 cm3.

Example 10.4
The enthalpy of a binary liquid system of species 1 and 2 at fixed T and P is repre-
sented by the equation:

  H = 400 x  1   + 600 x  2   +  x  1    x  2    (  40 x  1   + 20 x  2   )     

where H is in J·mol–1. Determine expressions for    H ¯    1    and    H ¯    2    as functions of x1, numeri-
cal values for the pure-species enthalpies H1 and H2, and numerical values for the 
partial enthalpies at infinite dilution    H ¯    1  ∞   and    H ¯    2  ∞  .

Solution 10.4
Replacing x2 by 1 – x1 in the given equation for H and simplifying gives:

   H = 600 − 180  x  1   − 20  x  1  3    (A)

and

    
dH

 ____ 
d x  1     = − 180 − 60  x  1  2   

By Eq. (10.15),

    H ¯    1   = H +  x  2     
dH

 ____ 
d x  1      
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370 CHAPTER 10. The Framework of Solution Thermodynamics

Then,

    H ¯    1   = 600 − 180 x  1   − 20 x  1  3  − 180 x  2   − 60 x  1  2   x  2    

Replacing x2 with 1 – x1 and simplifying:

     H ¯    1   = 420 − 60 x  1  2  + 40 x  1  3    (B)

By Eq. (10.16),

    H ¯    2   = H −  x  1     
dH

 ____ 
d x  1     = 600 − 180 x  1   − 20 x  1  3  + 180 x  1   + 60 x  1  3   

or

     H ¯    2   = 600 + 40 x  1  3    (C)

One can equally well start with the given equation for H. Because dH/dx1 is a total 
derivative, x2 is not a constant. Also, x2 = 1 – x1; therefore dx2/dx1 = –1. 
 Differentiation of the given equation for H therefore yields:

    
dH

 ____ 
d x  1     = 400 − 600 +  x  1    x  2    (  40 − 20 )    +   (  40  x  1   + 20  x  2   )     (  −  x  1   +  x  2   )     

Replacing x2 with 1 – x1 reproduces the expression previously obtained.
A numerical value for H1 results by substitution of x1 = 1 in either Eq. (A) or 

(B). Both equations yield H1 = 400 J·mol–1. Similarly, H2 is found from either  
Eq. (A) or (C) when x1 = 0. The result is H2 = 600 J·mol–1. The infinite-dilution 
values    H ¯    1  ∞   and    H ¯    2  ∞   are found from Eqs. (B) and (C) when x1 = 0 in Eq. (B) and  
x1 = 1 in Eq. (C). The results are:    H ¯    1  ∞  = 420   J·mol   −1   and    H ¯    2  ∞  = 640   J·mol   −1  

Exercise: Show that the partial properties as given by Eqs. (B) and (C) combine by 
summability to give Eq. (A)  and that they conform to all requirements of the 
Gibbs/Duhem equation.

Relations Among Partial Properties
We now derive several additional useful relationships among partial properties. By Eq. (10.8),   
μ  i   ≡   G ¯    i   , and Eq. (10.2) may be written:

   d  (  nG )    =   (  nV )   dP −   (  nS )   dT +  ∑ 
i

       G ¯    i  d n  i     (10.17)

Application of the criterion of exactness, Eq. (6.13), yields the Maxwell relation,

     (    
∂ V

 ___ 
∂ T   )    

P, n
   = −   (    

∂ S
 ___ 

∂ P   )    
T, n

     (6.17)

plus the two additional equations:

     (
    
∂   G ¯    i   ___ 
∂ P   

)
    

T, n
   =   

[
    
∂   (  nV )   

 _____ 
∂  n  i  

   
]

    
P, T,  n  j  

       
(

    
∂   G ¯    i   ___ 
∂ T   

)
    

P, n
   = −   

[
    
∂   (  nS )   

 _____ 
∂  n  i  

   
]

    
P, T,  n  j  
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10.3. Partial Properties 371

where subscript n indicates constancy of all ni, and therefore of composition, and subscript nj 
indicates that all mole numbers except the ith are held constant. We recognize the terms on the 
right-hand side of these equations as the partial volume and partial entropy, and thus we can 
rewrite them more simply as:

     (    
∂   G ¯    i   ___ 
∂ P    )    

T, x
   =   V ¯    i    (10.18)      (    

∂   G ¯    i   ___ 
∂ T    )    

P, x
   = −   S ¯    i    (10.19)

These equations allow us to calculate the effects of P and T on the partial Gibbs energy (or 
chemical potential). They are the partial-property analogs of Eqs. (10.4) and (10.5). Many 
additional relationships among partial properties can be derived in the same ways that rela-
tionships among pure species properties were derived in earlier chapters. More generally, one 
can prove the following:

For every equation that provides a linear relation among thermodynamic 
properties of a constant-composition solution, there exists an identical 
equation connecting the corresponding partial properties of each  species 
in the solution.

An example is based on the equation that defines enthalpy: H = U + PV. For n moles,

  nH = nU + P  (  nV )     

Differentiation with respect to ni at constant T, P, and nj yields:

    [    
∂   (  nH )   

 _____ 
∂  n  i  

   ]    
P, T,  n  j  

   =   [    
∂   (  nU )   

 _____ 
∂  n  i  

   ]    
P, T,  n  j  

   + P   [    
∂   (  nV )   

 _____ 
∂  n  i  

   ]    
P, T,  n  j  

    

By the definition of partial properties, Eq. (10.7), this becomes:

    H ¯    i   =   U ¯    i   + P   V ¯    i    

which is the partial-property analog of Eq. (2.10).
In a constant-composition solution,    G ¯    i    is a function of T and P, and therefore:

  d  G ¯    i   =   (    
∂   G ¯    i   ___ 
∂ T   )    

P, x

   dT +   (    
∂   G ¯    i   ___ 
∂ P   )    

T, x

   dP  

By Eqs. (10.18) and (10.19),

  d  G ¯    i   = −   S ¯    i   dT +   V ¯    i   dP  

This is the partial molar counterpart of Eq. (6.11). These examples illustrate the parallelism that 
exists between equations for a constant-composition solution and the corresponding equations 
for the partial properties of the species in solution. We can therefore write many equations that 
relate partial properties by simple analogy to equations that we have already derived.
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372 CHAPTER 10. The Framework of Solution Thermodynamics

10.4 THE IDEAL-GAS-STATE MIXTURE MODEL

Despite its limited ability to describe actual mixture behavior, the ideal-gas-state mixture 
model provides a conceptual basis for the structure of solution thermodynamics. It is a useful 
property model because it:

 ∙ Has a molecular basis.
 ∙ Approximates reality in the well-defined limit of zero pressure.
 ∙ Is analytically simple.

At the molecular level, the ideal-gas state represents a collection of molecules that do not inter-
act and occupy no volume. This idealization is approached for real molecules in the limit of 
zero pressure (which implies zero density) because both the energies of intermolecular interac-
tions and the volume fraction occupied by the molecules go to zero with increasing separation 
of the molecules. Although they do not interact with one another, molecules in the ideal-gas 
state do have internal structure; it is differences in molecular structure that give rise to differ-
ences in ideal-gas-state heat capacities (Sec. 4.1), enthalpies, entropies, and other properties.

Molar volumes in the ideal-gas state are Vig = RT/P [Eq. (3.7)] regardless of the nature 
of the gas. Thus for the ideal-gas state, whether of pure or mixed gases, the molar  volume is 
the same for given T and P. The partial molar volume of species i in the  ideal-gas-state mix-
ture is found from Eq. (10.7) applied to the volume; superscript ig denotes the ideal-gas state:

    V ¯    i  
ig

  =   [    
∂   (  n  V   ig  )   

 _______ 
∂  n  i  

   ]    
T, P,  n  j  

   =   [    
∂   (  nRT / P )   

 ________ 
∂  n  i  

   ]    
T, P,  n  j  

   =   
RT

 ___ 
P

     (  
∂ n

 ___ 
∂  n  i  

  )   
 n  j  

   =   
RT

 ___ 
P

    

where the final equality depends on the equation  n =  n  i   +  ∑  j    n  j   . For the ideal-gas state at given 
T and P the partial molar volume, the pure-species molar volume, and the mixture molar  
volume are identical:

    V ¯    i  
ig

  =  V  i  
ig

  =  V   ig  =   
RT

 ___ 
P

    (10.20)

We define the partial pressure of species i in the ideal-gas-state mixture (pi) as the pres-
sure that species i would exert if it alone occupied the molar volume of the mixture. Thus,5

   p  i   ≡   
 y  i   RT

 _____ 
 V   ig 

   =  y  i   P   (  i = 1, 2, . . ., N )     

where yi is the mole fraction of species i. The partial pressures sum to the total pressure, as is 
evident from the fact that the mole fractions sum to one. Note that here we follow the convention 
of using yi to represent a mole fraction in gas phase mixtures rather than xi. This convention  
(xi for liquid-phase mole fractions, yi for gas-phase mole fractions) is convenient and conven-
tional for analyzing vapor liquid equilibrium.

Because the ideal-gas-state mixture model presumes molecules of zero volume that do 
not interact, the thermodynamic properties (other than molar volume) of the constituent 

5Note that this definition does not make the partial pressure a partial molar property.
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10.4. The Ideal-Gas-State Mixture Model 373

species are independent of one another, and each species has its own set of private properties. 
This is the basis for the following statement of Gibbs’s theorem:

A partial molar property (other than volume) of a constituent species in 
an ideal-gas-state mixture is equal to the corresponding molar property 
of the species in the pure ideal-gas state at the mixture temperature but 
at a pressure equal to its partial pressure in the mixture.

This is expressed mathematically for generic partial property    M ¯    i  
ig

  ≠   V ¯    i  
ig

   by the equation:

    M ¯    i  
ig

   (  T, P )    =  M  i  
ig

   (  T,  p  i   )     (10.21)

Enthalpy in the ideal-gas state is independent of pressure; therefore

    H ¯    i  
ig

   (  T, P )    =  H  i  
ig

   (  T,  p  i   )    =  H  i  
ig

   (  T, P )     

More simply,

    H ¯    i  
ig

  =  H  i  
ig

   (10.22)

where   H  i  
ig

   is the pure-species value at the mixture T. An analogous equation applies for Uig 
and other properties that are independent of pressure.

Entropy in the ideal-gas state does depend on pressure, as expressed by Eq. (6.24), 
restricted to constant temperature:

  d S  i  
ig

  = − Rd ln  P     (  const T )     

This relationship provides the basis for computing the entropy difference between a gas 
at its partial pressure in the mixture and at the total pressure of the mixture. Integration from 
pi to P gives:

   S  i  
ig

   (  T, P )    −  S  i  
ig

   (  T,  p  i   )    = − R ln   
P

 __  p  i  
    = − R ln   

P
 ___  y  i   P
   = R ln  y  i    

Thus,

   S  i  
ig

   (  T,  p  i   )    =  S  i  
ig

   (  T, P )    − R ln  y  i    

Comparing this with Eq. (10.21), written for the entropy, yields:

    S ¯    i  
ig

   (  T, P )    =  S  i  
ig

   (  T, P )    − R ln  y  i    

or

    S ¯    i  
ig

  =  S  i  
ig

  − R ln  y  i    (10.23)

where   S  i  
ig

   is the pure-species value at the mixture T and P.
For the Gibbs energy in the ideal-gas-state mixture, Gig = Hig − TSig; the parallel rela-

tion for partial properties is:

    G ¯    i  
ig

  =   H ¯    i  
ig

  − T   S ¯    i  
ig

   

In combination with Eqs. (10.22) and (10.23) this becomes:

    G ¯    i  
ig

  =  H  i  
ig

  − T  S  i  
ig

  + RT ln  y  i    
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or

   μ  i  
ig

  ≡   G ¯    i  
ig

  =  G  i  
ig

  + RT ln  y  i    (10.24)

Differentiation of this equation in accord with Eqs. (10.18) and (10.19) confirms the results 
expressed by Eqs. (10.20) and (10.23).

The summability relation, Eq. (10.11), with Eqs. (10.22), (10.23), and (10.24) yields:

    H   ig  =  ∑ 
i

      y  i    H  i  
ig

    (10.25)

    S   ig  =  ∑ 
i

      y  i    S  i  
ig

  − R ∑ 
i

      y  i   ln  y  i     (10.26)

    G   ig  =  ∑ 
i

      y  i    G  i  
ig

  + RT  ∑ 
i

      y  i   ln  y  i     (10.27)

Equations analogous to Eq. (10.25) can be written for both   C  P  ig
   and   V   ig  . The former 

appears as Eq. (4.7), but the latter reduces to an identity because of Eq. (10.20).
When Eq. (10.25) is written,

   H   ig  −  ∑ 
i

      y  i    H  i  
ig

  = 0  

the difference on the left is the enthalpy change associated with a process in which appropriate 
amounts of the pure species at T and P are mixed to form one mole of mixture at the same T 
and P. For the ideal-gas state, this enthalpy change of mixing is zero.

When Eq. (10.26) is rearranged as:

   S   ig  −  ∑ 
i

      y  i   S  i  
ig

  = R ∑ 
i

      y  i   ln   
1
 __  y  i  
    

the left side is the entropy change of mixing for the ideal-gas state. Because 1/yi > 1, this quan-
tity is always positive, in agreement with the second law. The mixing process is inherently 
irreversible, so the mixing process must increase the total entropy of the system and surround-
ings together. For ideal-gas-state mixing at constant T and P, using Eq. (10.25) with an energy 
balance shows that no heat transfer will occur between the system and surroundings. There-
fore, the total entropy change of system plus surroundings is only the entropy change of 
mixing.

A very useful alternative expression for the chemical potential   μ  i  
ig

   results when   G  i  
ig

   in 
Eq. (10.24) is replaced by an expression giving its T and P dependence. This comes from  
Eq. (6.11) written for the ideal-gas state at constant T:

  d G  i  
ig

  =  V  i  
ig

 dP =   
RT

 ___ 
P

   dP = RT d ln P   (  const T )     

Integration gives:
   G  i  

ig
  =  Γ  i     (  T )    + RT ln P  (10.28)
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10.4. The Ideal-Gas-State Mixture Model 375

where Γi(T), the integration constant at constant T, is a species-dependent function of tempera-
ture only.6 Equation (10.24) is now written:

    μ  i  
ig

  ≡   G ¯    i  
ig

  =  Γ  i    (  T )    + RT ln   (    y  i  P )      (10.29)

where the argument of the logarithm is the partial pressure. Application of the summability rela-
tion, Eq. (10.11), produces an expression for the Gibbs energy for the ideal-gas-state mixture:

    G   ig  ≡  ∑ 
i

      y  i    Γ  i    (  T )    + RT  ∑ 
i

      y  i   ln   (    y  i  P )      (10.30)

These equations, remarkable in their simplicity, provide a full description of ideal-gas-state 
behavior. Because T, P, and {yi} are the canonical variables for the Gibbs energy, all other 
thermodynamic properties for the ideal-gas model can be generated from them.

Example 10.5 
Consider the separation of air (considered 79% N2, 21% O2) at 25°C and 1 bar into its 
components, also at 25°C and 1 bar. 

 (a) Compute the entropy and enthalpy changes for this process, per mol of air 
separated.

 (b) Assuming a surroundings temperature of 25°C, what is the minimum possible 
work input per mol air separated required to achieve this separation in a 
steady-flow process?

Solution 10.5

(a)  At these conditions, air can be considered to be in the ideal-gas state. There-
fore, the enthalpy change of “unmixing” is zero, as implied by Eq. (10.25). 
The entropy change of unmixing is obtained by rearranging Eq. (10.26) as

Σiyi Si
ig − Sig

 = RΣiyi ln yi = R(0.21 ln 0.21 + 0.79 ln 0.79) = −4.273 J·mol−1·K−1

  The entropy change for unmixing is negative, consistent with the fact that 
such unmixing does not occur spontaneously. 

(b) The minimum possible work input is the ideal work as given by Eq. (5.22):

Wideal = ΔH − Tσ ΔS = 0 − 298.15 × −4.273 = 1274 J·mol−1

6A dimensional ambiguity is evident with Eq. (10.28) and with analogous equations to follow in that P has units, 
whereas ln P must be dimensionless. This difficulty is more apparent than real, because the Gibbs energy is always 
expressed on a relative scale, absolute values being unknown. Thus in application only differences in Gibbs energy 
appear, leading to ratios of quantities with units of pressure in the argument of the logarithm. The only requirement is 
that consistency of pressure units be maintained.
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7This quantity originated with Gilbert Newton Lewis (1875–1946), American physical chemist, who also devel-
oped the concepts of the partial property and the ideal solution. See http://en.wikipedia.org/wiki/Gilbert_N._Lewis.

10.5 FUGACITY AND FUGACITY COEFFICIENT: PURE SPECIES

As is evident from Eq. (10.6), the chemical potential μi provides the fundamental criterion for 
phase equilibrium. This is also the case for chemical-reaction equilibria. However, it exhibits 
characteristics that discourage its direct use. The Gibbs energy, and hence μi, is defined in 
relation to internal energy and entropy. Because absolute values of internal energy are 
unknown, the same is true for μi. Moreover, Eq. (10.29) shows that   μ  i  

ig
   approaches negative 

infinity when either P or yi approaches zero. This is true not only for the ideal-gas state, but for 
any gas. Although these characteristics do not preclude the use of chemical potentials, the 
application of equilibrium criteria is facilitated by the introduction of the fugacity,7 a property 
that takes the place of μi but does not exhibit its less desirable characteristics.

The origin of the fugacity concept resides in Eq. (10.28), valid only for pure species i in 
the ideal-gas state. For a real fluid, we write an analogous equation that defines fi, the fugacity 
of pure species i:

   G  i   ≡  Γ  i     (  T )    + RT ln  f  i    (10.31)

This new property fi , with units of pressure, replaces P in Eq. (10.28). Clearly, if Eq. (10.28)  
is viewed as a special case of Eq. (10.31), then:

   f  i  
 ig

  = P  (10.32)

and the fugacity of pure species i in the ideal-gas state is necessarily equal to its pressure.  
Subtraction of Eq. (10.28) from Eq. (10.31), both written for the same T and P, gives:

   G  i   −  G  i  
ig

  = RT ln   
 f  i   __ 
P

    

By the definition of Eq. (6.41),   G  i   −  G  i  
ig

   is the residual Gibbs energy,   G  i  
ig

  ; thus,

    G  i  R  = RT ln   
 f  i   _ 
P

   = RT ln  ϕ  i     (10.33)

where the dimensionless ratio fi/P has been defined as another new property, the fugacity 
coefficient, given by symbol ϕi:

    ϕ  i   ≡   
 f  i   _ 
P

     (10.34)

These equations apply to pure species i in any phase at any condition. However, as a  special 
case they must be valid for the ideal-gas state, for which   G  i  R  = 0,  ϕ  i   = 1 , and Eq. (10.28) is 
recovered from Eq. (10.31). Moreover, we can write Eq. (10.33) for P = 0 and combine it with 
Eq. (6.45):

    lim  
P→0

       (  
 G  i  R 

 ___ 
RT

  )    =   lim  
P→0

    ln  ϕ  i   = J  
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10.5. Fugacity and Fugacity Coefficient: Pure Species 377

As explained in connection with Eq. (6.48), the value of J is immaterial and is set equal to 
zero. Thus,

    lim  
P→0

    ln  ϕ  i   =   lim  
P→0

    ln    (  
 f  i   _ 
P

  )   = 0  

and

    lim  
P→0

    ϕ  i   =   lim  
P→0

       
 f  i   __ 
P

   = 1  

The equality of ln ϕi and   G  i  R  / RT  as given by Eq. (10.33) implies that we can evaluate it 
by the integral of Eq. (6.49):

   ln  ϕ  i   =  ∫ 
0
  
P

 ( Z  i   − 1)     
dP

 ___ 
P

       (  const T )      (10.35)

Fugacity coefficients (and therefore fugacities) for pure gases are evaluated by this equation 
from PVT data or from a volume-explicit equation of state.

For example, when the compressibility factor is given by Eq. (3.36), written here with 
subscripts to indicate that it is applied to a pure substance:

   Z  i   − 1 =   
 B  ii   P ____ 
RT

    

Because the second virial coefficient Bii depends only on temperature for a pure species, 
substitution into Eq. (10.35) gives:

  ln  ϕ  i   =   
 B  ii   ___ 
RT

    ∫ 
0
  
P

 dP     (  const T )     

and
  ln  ϕ  i   =   

 B  ii   P ____ 
RT

    (10.36)

Vapor/Liquid Equilibrium for Pure Species
Equation (10.31), which defines the fugacity of pure species i, can be written for species i both 
as a saturated vapor and as a saturated liquid at the same temperature:

  G i  v  =  Γ  i     (  T )    + RT ln  f i  v  (10.37)   G i  l  =  Γ  i     (  T )    + RT ln  f i  l  (10.38)

By difference,

   G  i  v  −  G  i  l  = RT ln   
 f  i  v  __ 
 f  i  l 

    

This equation applies to the change of state from saturated liquid to saturated vapor, at tem-
perature T and at the vapor pressure   P  i  sat  . According to Eq. (6.83),   G  i  v  −  G  i  l  = 0 ; therefore:

   f  i   v  =  f  i   l  =  f  i  sat   (10.39)
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378 CHAPTER 10. The Framework of Solution Thermodynamics

where   f  i  sat   indicates the value for either saturated liquid or saturated vapor.  Coexisting phases 
of saturated liquid and saturated vapor are in equilibrium; Eq. (10.39) therefore expresses a 
fundamental principle:

For a pure species, coexisting liquid and vapor phases are in equilibrium 
when they have the same temperature, pressure, and fugacity.8

An alternative formulation is based on the corresponding fugacity coefficients:

   ϕ  i  sat  =   
 f  i  sat 

 ____ 
 P  i  sat 

    (10.40)

From which,
   ϕ  i  v  =  ϕ  i  l  =  ϕ  i  sat   (10.41)

This equation, expressing the equality of fugacity coefficients, is an equally valid crite-
rion of vapor/liquid equilibrium for pure species.

Fugacity of a Pure Liquid
The fugacity of pure species i as a compressed (subcooled) liquid can be calculated as the 
product of the saturation pressure with three ratios that are each relatively easy to evaluate:

   f  i  l  (P) =    
 f  i  v  ( P  i  sat )

 ________ 
    P  i  sat    
⏟

 
    

(A)

         
 f  i  l  ( P  i  sat )

 _______ 
 f  i  v ( P  i  sat )

   

⏟

   

(B)

        
 f  i  l (P)

 ______ 
 f  i  l ( P  i  sat )

   P  i  sat  


   

(C)

     

All terms are at the temperature of interest. Cancellation of numerators and denomina-
tors produces a mathematical identity. Writing the fugacity as a product of these three ratios is 
simply done for convenience.

Ratio (A) is the vapor-phase fugacity coefficient of pure vapor i at its vapor/liquid satu-
ration pressure, designated   ϕ  i  sat  . It is given by Eq. (10.35), written,

  ln  ϕ  i  sat  =  ∫ 
0
  
 P  i  sat 

   (   Z  i  v  − 1 )       dP
 ___ 

P
       (  const T )     (10.42)

As shown by Eq. (10.39), expressing the equality of liquid and vapor fugacities at  equilibrium, 
ratio (B) is unity. Ratio (C) reflects the effect of pressure on the fugacity of pure liquid i. This 
effect is generally small. The basis for its calculation is Eq. (6.11), integrated at constant T to give:

   G  i   −  G  i  sat  =  ∫ 
 P  i  sat 

  
P

    V  i  l   dP    

Another expression for this difference results when Eq. (10.31) is written for both Gi and   G  i  sat  ; 
subtraction then yields:

   G  i   −  G  i  sat  = RT ln   
 f  i   ____ 

 f  i  sat 
    

8The word fugacity is based on a Latin root meaning to flee or escape, also the basis for the word fugitive. Thus 
fugacity has been interpreted to mean “escaping tendency.” When the escaping tendency is the same for the two 
phases, they are in equilibrium. When the escaping tendency of a species is higher in one phase than another, that 
species will tend to transfer to the phase where its fugacity is lower.
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10.5. Fugacity and Fugacity Coefficient: Pure Species 379

The two expressions for   G  i   −  G  i  sat   are set equal:

  ln   
 f  i   ____ 

 f  i  sat 
   =   

1
 ___ 

RT
    ∫ 

 P  i  sat 
  

P

    V  i  l    dP  

Ratio (C) is then:

    
 f  i  l  (P) 

 _______ 
 f  i  l ( P  i  sat  )

   = exp (  
1
 ___ 

RT
    ∫ 

 P  i  sat 
  

P

    V  i  l    dP)   

Substituting for the three ratios in the initial equation yields:

   f  i   =  ϕ  i  sat   P  i  sat  exp (  
1
 ___ 

RT
    ∫ 

 P  i  sat 
  

P

    V  i  l    dP)   (10.43)

Because   V  i  l  , the liquid-phase molar volume, is a very weak function of P at temperatures well 
below Tc, an excellent approximation is often obtained by taking   V  i  l   to be constant at the value 
for saturated liquid. In this case,

   f  i   =  ϕ  i  sat   P  i  sat  exp   
 V  i  l (P −  P  i  sat  )

 ___________ 
RT

    (10.44)

The exponential is known as a Poynting9 factor. To evaluate the fugacity of a compressed 
 liquid from Eq. (10.44), the following data are required:

 ∙ Values of   Z  i  v   for calculation of   ϕ  i  sat   by Eq. (10.42). These could come from an equation 
of state, from experiment, or from a generalized correlation.

 ∙ The liquid-phase molar volume   V  i  l  , usually the value for saturated liquid.
 ∙ A value for   P  i  sat  .

If   Z  i  v   is given by Eq. (3.36), the simplest form of the virial equation, then:

   Z  i  v  − 1 =   
 B  ii   P ____ 
RT

   and  ϕ  i  sat  = exp   
 B  ii    P  i  sat 

 _______ 
RT

    

and Eq. (10.44) becomes:

   f  i   =  P  i  sat  exp   
 B  ii    P  i  sat  +  V  i  l (P −  P  i  sat  )

  ____________________ 
RT

    (10.45)

In the following example, data from the steam tables form the basis for calculating the 
fugacity and fugacity coefficient of both vapor and liquid water as a function of pressure.

Example 10.6
For H2O at a temperature of 300°C and for pressures up to 10,000 kPa (100 bar)  
calculate values of fi and ϕi from data in the steam tables and plot them vs. P.

9John Henry Poynting (1852–1914), British physicist. See http://en.wikipedia.org/wiki/John_Henry_Poynting.
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Solution 10.6
Equation (10.31) is written twice: first, for a state at pressure P; second, for a 
low-pressure reference state, denoted by *, both for temperature T:

   G  i   =  Γ  i   (T ) + RT ln    f  i    and   G  i  *  =  Γ  i   (T ) + RT ln    f  i  *   

Subtraction eliminates Γi(T), and yields:

  ln   
 f  i   __  f  i  *    =   

1
 ___ 

RT
  ( G  i   −  G  i  * )  

By definition Gi = Hi − TSi and   G  i  *  =  H  i  *  − T  S  i  *  ; substitution gives:

  ln   
 f  i   __  f  i  *    =   

1
 __ 

R
    [    

 H  i   −  H  i  * 
 _______ 

T
   − ( S  i   −  S  i  * ) ]     (A)

The lowest pressure for which data at 300°C are given in the steam tables is  
1 kPa. Steam at these conditions is for practical purposes in its ideal-gas state, for 
which   f  i  *  =  P   *  = 1 kPa . Data for this state provide the following reference values:

   H  i  *  = 3076.8 J⋅ g   −1   S  i  *  = 10.3450 J⋅ g   −1  ⋅K   −1   

Equation (A) can now be applied to states of superheated steam at 300°C for various 
values of P from 1 kPa to the saturation pressure of 8592.7 kPa. For example, at  
P = 4000 kPa and 300°C:

   H  i   = 2962.0 J⋅ g   −1   S  i   = 6.3642 J⋅ g   −1  ⋅K   −1   

Values of H and S must be multiplied by the molar mass of water (18.015 g⋅mol−1) 
to put them on a molar basis for substitution into Eq. (A):

  ln   
 f  i   ___ 
 f   * 

   =   
18.015

 ______ 8.314    [     
2962.0 − 3076.8

  ______________ 573.15   −  (6.3642 − 10.3450)   ]    = 8.1917  

and

    
 f  i   /  f   *  = 3611.0

    
  f  i   =  (  3611.0 )   (    f   *  )   =  (  3611.0 )   (  1 kPa )   = 3611.0 kPa 

   

Thus the fugacity coefficient at 4000 kPa is:

   ϕ  i   =   
 f  i   __ 
P

   =   
3611.0

 ______ 4000   = 0.9028  

Similar calculations at other pressures lead to the values plotted in Fig. 10.2 at 
pressures up to the saturation pressure   P  i  sat  = 8592.7 kPa . At this pressure,

   ϕ  i  sat  = 0.7843 and  f  i  sat  = 6738.9 kPa  

According to Eqs. (10.39) and (10.41), the saturation values are unchanged by 
condensation. Although the plots are therefore continuous, they show discontinuities 
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10.5. Fugacity and Fugacity Coefficient: Pure Species 381

in slope. Values of fi and ϕi for liquid water at higher pressures are found using  
Eq. (10.44), with   V  i  l   equal to the molar volume of saturated liquid water at 300°C:

   V  i  l  =  (1.403)  (18.015)  = 25.28  cm   3  ⋅mol   −1   

At 10,000 kPa, for example, Eq. (10.44) becomes:

   f  i   = (0.7843)(8592.7) exp   
 (  25.28 )   (  10,000 − 8592.7 )  

  ____________________   (  8314 )   (  573.15 )     = 6789.8 kPa  

The fugacity coefficient of liquid water at these conditions is:

   ϕ  i   =  f  i   / P = 6789.8 / 10,000 = 0.6790  

Such calculations allow the completion of Fig. 10.2, where the solid lines show 
how fi and ϕi vary with pressure.

The curve for fi starts at the origin and deviates increasingly from the dashed 
line for the ideal-gas state (  f  i  

ig
  = P ) as the pressure rises. At   P  i  sat   there is a discon-

tinuity in slope, and the curve then rises very slowly with increasing pressure, 

Figure 10.2: Fugacity 
and fugacity coefficient 
of steam at 300°C.
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382 CHAPTER 10. The Framework of Solution Thermodynamics

indicating that the fugacity of liquid water at 300°C is a weak function of pressure. 
This behavior is characteristic of a liquid at a temperature well below its critical 
temperature. The fugacity coefficient ϕi decreases steadily from its zero-pressure 
value of unity as the pressure rises. Its rapid decrease in the liquid region is a  
consequence of the near-constancy of the fugacity itself.

10.6 FUGACITY AND FUGACITY COEFFICIENT:  
SPECIES IN SOLUTION

The definition of the fugacity of a species in a mixture mirrors the definition of the pure-species 
fugacity. For species i in a mixture, the equation analogous to Eq. (10.29), the ideal-gas-state 
expression, is:

   μ  i   ≡  Γ  i    (T)  + RT ln     f ̂    i    (10.46)

where    f ̂    i    is the fugacity of species i in solution, replacing the partial pressure yiP. This 
 definition of    f ̂    i    does not make it a partial molar property, and it is therefore identified by a 
circumflex rather than an overbar.

A direct application of this definition demonstrates its potential utility. Equation (10.6), 
the equality of μi in every phase, is the fundamental criterion for phase equilibrium. Because 
all phases in equilibrium are at the same temperature, an alternative and equally general crite-
rion follows immediately from Eq. (10.46):

     f ̂    i   α  =   f ̂     i  
β
  = ⋯ =   f ̂    i   π         (i = 1, 2, . . . , N)   (10.47)

Thus, multiple phases at the same T and P are in equilibrium when the 
fugacity of each constituent species is the same in all phases. 

This is the criterion of equilibrium most often applied to phase-equilibrium problems.
For the specific case of multicomponent vapor/liquid equilibrium, Eq. (10.47) becomes:

    f ̂    i   l  =   f ̂    i   v    (i = 1, 2, . . . , N)   (10.48)

Equation (10.39) results when this relation is applied to the vapor/liquid equilibrium of pure 
species i.

The definition of a residual property is given in Sec. 6.2:

   M   R  ≡ M −  M   ig   (6.41)

where M is the molar (or unit-mass) value of a thermodynamic property and Mig is the value 
that the property would have in the ideal-gas state at the same composition, T and P. The 
defining equation for a partial residual property    M ¯    i  R   follows from this equation. Multiplied by 
n moles of mixture, it becomes:

  n  M   R  = nM − n  M   ig   
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Differentiation with respect to ni at constant T, P, and nj gives:

    [    
∂ (n  M   R  )

 _______ 
∂  n  i  

   ]    
P, T,  n  j  

   =   [    
∂ (n  M      )

 ______ 
∂  n  i  

   ]    
P, T,  n  j  

   −   [    
∂ (n  M   ig  )

 ________ 
∂  n  i  

   ]    
P, T,  n  j  

    

Reference to Eq. (10.7) shows that each term is a partial molar property. Thus,

    M ¯    i  R  =   M ¯    i   −   M ¯    i  
ig

   (10.49)

Because residual properties measure departures from ideal-gas-state values, their most logical and 
common application is to gas-phase properties, but they are also valid for describing liquid- 
and solid-phase properties. Written for the residual Gibbs energy, Eq. (10.49) becomes:

     G ¯    i  R  =   G ¯    i   −   G ¯    i  
ig

    (10.50)

an equation that defines the partial residual Gibbs energy.
Subtracting Eq. (10.29) from Eq. (10.46), at the same T and P, yields:

  μ  i   −  μ  i  
ig

  = RT ln   
  f ̂    i   ____  y  i   P

   

This result combined with Eq. (10.50) and the identity   μ  i   ≡   G ¯    i    gives:

     G ¯    i  R  = RT ln    ϕ ˆ    i     (10.51)

where by definition,

     ϕ ˆ    i   ≡   
  f ̂    i   ____  y  i   P

     (10.52)

The dimensionless ratio    ϕ ˆ    i    is called the fugacity coefficient of species i in solution. Although 
most commonly applied to gases, the fugacity coefficient can also be used for liquids, and in 
this case mole fraction yi is replaced by xi, the symbol traditionally used for mole fractions  
in the liquid phase. Of course, this can also be applied to solid solutions. Because Eq. (10.29) 
for the ideal-gas state is a special case of Eq. (10.46):

    f ̂    i  
 ig

  =  y  i   P  (10.53)

Thus the fugacity of species i in an ideal-gas-state mixture is equal to its partial pressure.  
Moreover,    ϕ ˆ    i  

ig
  = 1 , and for the ideal-gas state,    G ¯    i  R  = 0 .

The Fundamental Residual-Property Relation
The fundamental property relation given by Eq. (10.2) is put into an alternative form through 
the same mathematical identity used to generate Eq. (6.37):

  d  (    
nG

 _ 
RT

   )    ≡   
1
 ___ 

RT
   d(nG ) −    

nG
 ____ 

R  T   2 
   dT  
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In this equation d(nG) is eliminated by Eq. (10.2) and G is replaced by its definition,  
H − TS. The result, after algebraic reduction, is:

   d  (    
nG

 _ 
RT

   )    =   
nV

 _ 
RT

   dP −   
nH

 _ 
R  T   2 

   dT +  ∑ 
i

       
  G ¯    i   ___ 
RT

  d n  i     (10.54)

All terms in Eq. (10.54) have units of moles; moreover, in contrast to Eq. (10.2), the enthalpy 
rather than the entropy appears on the right side. Equation (10.54) is a general  relation express-
ing nG/RT as a function of all of its canonical variables, T, P, and the mole numbers. It reduces 
to Eq. (6.37) for the special case of 1 mol of a constant-composition phase. Equations (6.38) 
and (6.39) follow from either equation, and equations for the other thermodynamic properties 
then come from appropriate defining equations. Knowledge of G/RT as a function of its canon-
ical variables allows evaluation of all other thermodynamic properties, and therefore implic-
itly contains complete property information. Unfortunately, we cannot directly measure G/RT 
as a function of T, P, and composition. However, we can obtain complete thermodynamic 
information by combining calorimetric and volumetric data. In this regard, an analogous equa-
tion relating residual properties proves useful.

Because Eq. (10.54) is general, it can also be written for the special case of the ideal-gas 
state:

  d  (    
n G   ig 

 _ 
RT

   )    =   
n V   ig 

 ____ 
RT

   dP −   
n H   ig 

 ____ 
R T   2 

   dT +  ∑ 
i

       
  G ¯    i  

ig
 
 ___ 

RT
   d n  i    

In view of the definitions of residual properties [Eqs. (6.41) and (10.50)], subtracting this 
equation from Eq. (10.54) gives:

   d  (    
n G   R 

 _ 
RT

   )    =   
n V   R 

 _ 
RT

   dP −   
n H   R 

 _ 
R T   2 

   dT +  ∑ 
i

       
  G ¯    i  R 

 ___ 
RT

   d n  i     (10.55)

Equation (10.55) is the fundamental residual-property relation. Its derivation from Eq. (10.2) 
parallels the derivation in Chap. 6 that led from Eq. (6.11) to Eq. (6.42). Indeed, Eqs. (6.11) 
and (6.42) are special cases of Eqs. (10.2) and (10.55), valid for 1 mol of a constant-composition 
fluid. An alternative form of Eq. (10.55) follows by introduction of the fugacity coefficient, as 
given by Eq. (10.51):

   d  (    
n  G   R 

 _ 
RT

   )    =   
n  V   R 

 _ 
RT

   dP −   
n H   R 

 _ 
R T   2 

   dT +   ∑ 
i

     ln   ϕ ˆ    i   d n  i     (10.56)

Equations so general as Eqs. (10.55) and (10.56) are most useful for practical applica-
tion in restricted forms. Division of Eqs. (10.55) and (10.56), first, by dP with restriction to 
constant T and composition, and second, by dT and restriction to constant P and composition 
leads to:

   
 V   R 

 ___ 
RT

   =     [    
∂ ( G   R  / RT )

 __________ 
∂ P   ]    

T, x
    (10.57)    

 H   R 
 ___ 

RT
   = − T   [    

∂ ( G   R  / RT )
 __________ 

∂ T   ]    
P, x

    (10.58)
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10.6. Fugacity and Fugacity Coefficient: Species in Solution  385

These equations are restatements of Eqs. (6.43) and (6.44) in which the restriction of the 
derivatives to constant composition is shown explicitly. They lead to Eqs. (6.46), (6.48), and 
(6.49) for calculating residual properties from volumetric data.

In addition, from Eq. (10.56),

    ln    ϕ ˆ    i   =   [    
∂ (n  G   R    / RT )

 __________ 
∂  n  i  

   ]    
P, T,  n  j  

     (10.59)

This equation demonstrates that the logarithm of the fugacity coefficient 
of a species in solution is a partial property with respect to GR/RT.

Example 10.7
Develop a general equation to calculate  ln   ϕ ˆ    i    values from compressibility-factor data.

Solution 10.7
For n mol of a constant-composition mixture, Eq. (6.49) becomes:

   
n  G   R 

 ____ 
RT

   =  ∫ 
0
  
P

 (nZ − n)   
dP

 ___ 
P

     

In accord with Eq. (10.59) this equation can be differentiated with respect to ni at 
constant T, P, and nj to yield:

  ln   ϕ ˆ    i   =   ∫ 
0
  
P

    [    
∂ (nZ − n )

 _ 
∂  n  i  

   ]       
P, T,  n  j  

     
dP

 ___ 
P

    

Because  ∂ (nZ)/∂  n  i   =   Z ¯    i    and  ∂ n / ∂  n  i   = 1 , this reduces to:

   ln    ϕ ˆ    i   =  ∫ 
0
  
P

  (  Z ¯    i   − 1)   
dP

 ___ 
P

      (10.60)

where integration is at constant temperature and composition. This equation is the 
partial-property analog of Eq. (10.35). It allows the calculation of    ϕ ˆ    i    values from 
PVT data.

Fugacity Coefficients from the Virial Equation of State
Values of    ϕ ˆ    i    for species i in solution are readily obtained from equations of state. The simplest 
form of the virial equation provides a useful example. Written for a gas mixture it is exactly 
the same as for a pure species:

  Z = 1 +   
BP

 ___ 
RT

    (3.36)
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386 CHAPTER 10. The Framework of Solution Thermodynamics

The mixture second virial coefficient B is a function of temperature and composition. Its exact 
composition dependence is given by statistical mechanics, which makes the virial equation 
preeminent among equations of state where it is applicable, i.e., to gases at low to moderate 
pressures. The equation giving this composition dependence is:

   B =  ∑ 
i

      ∑ 
j

      y  i    y  j    B  ij     (10.61)

where yi and yj represent mole fractions in a gas mixture. The indices i and j identify  species, 
and both run over all species present in the mixture. The virial coefficient Bij characterizes bimo-
lecular interactions between molecules of species i and species j, and therefore   B  ij   =  B  ji   . The 
double summation accounts for all possible bimolecular interactions.

For a binary mixture i = 1, 2 and j = 1, 2; the expansion of Eq. (10.61) then gives:

  B =  y  1    y  1   B  11   +  y  1   y  2   B  12   +  y  2   y  1   B  21   +  y  2   y  2   B  22    

or

  B =  y  1  2  B  11   + 2 y  1   y  2   B  12   +  y  2  2   B  22    (10.62)

Two types of virial coefficients appear here: B11 and B22, for which the successive subscripts 
are the same, and B12, for which the two subscripts are different. The first type is a pure-species 
virial coefficient; the second is a mixture property, known as a cross coefficient. Both depend 
only on temperature. Expressions such as Eqs. (10.61) and (10.62) relate mixture coefficients to 
pure-species and cross coefficients. They are called mixing rules.

Equation (10.62) allows the derivation of expressions for  ln   ϕ ˆ    1    and ln   ϕ ˆ    2    for a binary gas 
mixture that obeys Eq. (3.36). Written for n mol of gas mixture, it becomes:

  nZ = n +   
nBP

 ____ 
RT

    

Differentiation with respect to n1 gives:

    Z ¯    1   ≡     [    
∂ (nZ )

 _____ 
∂  n  1     ]    

P, T,  n  2  
   = 1 +   

P
 ___ 

RT
     [    

∂ (nB )
 ______ 

∂  n  1     ]    
T,  n  2  

    

Substitution for    Z ¯    1    in Eq. (10.60) yields:

  ln   ϕ ˆ    1   =   
1
 ___ 

RT
     ∫ 

0
  
P

   [    
∂ (nB)

 _ 
∂  n  1     ]       

T,  n  2  
   dP =   

P
 ___ 

RT
     [    

∂ (nB )
 ______ 

∂  n  1     ]    
T,  n  2  

    

where the integration is trivial because B is not a function of pressure. All that remains is eval-
uation of the derivative.

Equation (10.62) for the second virial coefficient can be written:

   
B =   y  1   (1 −   y  2   )  B  11    + 2  y  1    y  2    B  12    +   y  2   (1 −   y  1   )  B  22    

      =   y  1    B  11    −   y  1    y  2    B  11    + 2  y  1    y  2    B  12    +   y  2    B  22    −   y  1    y  2    B  22     

or

  B =  y  1    B  11   +  y  2    B  22   +  y  1    y  2    δ  12   with  δ  12   ≡ 2  B  12   −  B  11   −  B  22    
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10.6. Fugacity and Fugacity Coefficient: Species in Solution  387

Multiplying by n and substituting yi = ni/n gives,

 nB =  n  1    B  11   +  n  2    B  22   +   
 n  1    n  2  

 ____ 
n
    δ  12   

Differentiating:

   
  [  

∂  (nB) 
 _____ 

∂  n  1    ]   
T,  n  2  

  
  
=

  
 B  11   +  (  

1
 __ 

n
   −   

 n  1  
 ___ 

 n   2 
  )   n  2    δ  12  

    
 
  

=
  
 B  11   +  (1 −  y  1  )   y  2    δ  12   =  B  11   +  y  2  2   δ  12  

   

Therefore,

  ln    ϕ ˆ    1   =   
P
 ___ 

RT
  ( B  11   +  y  2  2   δ  12  )  (10.63a)

Similarly,

  ln    ϕ ˆ    2   =   
P
 ___ 

RT
  ( B  22   +  y  1  2   δ  12  )  (10.63b)

Equations (10.63) are readily extended for application to multicomponent gas mixtures; the 
general equation is:10

  ln    ϕ ˆ    k   =   
P
 ___ 

RT
    [   B  kk   +   

1
 _ 2    ∑ 

i

       ∑ 
j

        y  i    y  j   (2 δ  ik   −  δ  ij   ) ]     (10.64)

where the dummy indices i and j run over all species, and

   δ  ik   ≡ 2  B  ik   −  B  ii   −  B  kk          δ  ij   ≡ 2 B  ij   −  B  ii   −  B  jj    

with

   δ  ii   = 0,  δ  kk   = 0, etc.,      and   δ  ki   =  δ  ik  ,  etc.  

Example 10.8
Determine the fugacity coefficients as given by Eqs. (10.63) for nitrogen and methane 
in a N2(1)/CH4(2) mixture at 200 K and 30 bar if the mixture contains 40 mol-% N2. 
Experimental virial-coefficient data are as follows:

  B  11   = − 35.2  B  22   = − 105.0  B  12   = − 59.8  cm   3  ⋅mol   −1  

Solution 10.8
By definition,   δ  12   = 2  B  12   −  B  11   −  B  22   . Thus,

    δ  12   = 2 (  −59.8 )   + 35.2 + 105.0 = 20.6   cm   3   ⋅mol   −1    

10H. C. Van Ness and M. M. Abbott, Classical Thermodynamics of Nonelectrolyte Solutions: With Applications to 
Phase Equilibria, pp. 135–140, McGraw-Hill, New York, 1982.
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388 CHAPTER 10. The Framework of Solution Thermodynamics

Substitution of numerical values in Eqs. (10.63) yields:

  ln    ϕ ˆ    1   =   
30
 ___________  (83.14 ) (200 )    [  − 35.2 +  (0.6 )   2 (20.6 ) ]    = − 0.0501  

  ln    ϕ ˆ    2   =   
30
 ___________  (83.14 ) (200 )    [  − 105.0 +  (0.4 )   2 (20.6 ) ]    = − 0.1835  

Finally,
   ϕ ˆ    1   = 0.9511 and   ϕ ˆ    2   = 0.8324 

Note that the second virial coefficient of the mixture as given by Eq. (10.62) is  
B = −72.14 cm3⋅mol−1, and that substitution in Eq. (3.36) yields a mixture 
 compressibility factor, Z = 0.870.

10.7 GENERALIZED CORRELATIONS FOR THE  
FUGACITY COEFFICIENT

Fugacity Coefficients for Pure Species
Either knowledge of the compressibility as a function of pressure, or knowledge of the residual 
entropy and residual enthalpy of a substance at conditions of interest is sufficient information to 
compute residual Gibbs energy and therefore fugacity coefficient. Thus the generalized correla-
tions that we previously used for these other quantities also imply a generalized correlation for 
fugacity coefficient. Thus, here we apply the generalized methods developed in Sec. 3.7 for the 
compressibility factor Z and in Sec. 6.4 for the residual enthalpy and entropy of pure gases to the 
fugacity coefficient. Equation (10.35) is put into generalized form by substitution of the relations,

 P =  P  c    P  r      dP =  P  c   d P  r   

Hence,

  ln  ϕ  i   =  ∫ 
0
  
Pr

 ( Z  i   − 1)   
d P  r   ___  P  r  

      (10.65)

where integration is at constant Tr. Substitution for Zi by Eq. (3.53) yields:

  ln ϕ =  ∫ 
0
  
 P  r  

 ( Z   0  − 1)  
d P  r   ___  P  r  

     + ω ∫ 
0
  
 P  r  

  Z   1    
d P  r   ___  P  r  

      

where for simplicity subscript i is omitted. This equation can be written in alternative form:

  ln ϕ = ln  ϕ   0  + ω ln  ϕ   1   (10.66)

where

  ln  ϕ   0  ≡  ∫ 
0
  
Pr

 ( Z   0  − 1)   
d P  r   ___  P  r  

     and ln  ϕ   1  ≡  ∫ 
0
  
Pr

  Z   1    
d P  r   ___  P  r  

      

The integrals in these equations can be evaluated numerically or graphically for various  values 
of Tr and Pr from the data for Z0 and Z1 given in Tables D.1 through D.4 (App. D). Another 
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10.7. Generalized Correlations for the Fugacity Coefficient  389

method, and the one adopted by Lee and Kesler to extend their correlation to fugacity coeffi-
cients, is based on an equation of state.

Equation (10.66) can also be written,

  ϕ = ( ϕ   0 ) ( ϕ   1 )   ω   (10.67)

and we have the option of providing correlations for   ϕ   0   and   ϕ   1   rather than for their logarithms. 
This is the choice made here, and Tables D.13 through D.16 present values for these quantities 
as derived from the Lee/Kesler correlation as functions of Tr and Pr, thus providing a three- 
parameter generalized correlation for fugacity coefficients. Tables D.13 and D.15 for   ϕ   0   can 
be used alone as a two-parameter correlation that does not incorporate the refinement intro-
duced by the acentric factor.

Example 10.9
Estimate from Eq. (10.67) a value for the fugacity of 1-butene vapor at 200°C and  
70 bar.

Solution 10.9
At these conditions, with Tc = 420.0 K, Pc = 40.43 bar from Table B.1, we have:

   T  r   = 1.127  P  r   = 1.731 ω = 0.191  

By interpolation in Tables D.15 and D.16 at these conditions,

   ϕ   0  = 0.627 and  ϕ   1  = 1.096  

Equation (10.67) then gives:

  ϕ = (0.627)  (1.096)   0.191  = 0.638  

and

   f = ϕP =  (  0.638 )   (  70 )   = 44.7 bar   

A useful generalized correlation for ln ϕ results when the simplest form of the virial equation 
is valid. Equations (3.57) and (3.59) combine to give:

  Z − 1 =   
 P  r   ___  T  r  

  ( B   0  + ω  B   1 )  

Substitution into Eq. (10.65) and integration yield:

  ln ϕ =   
 P  r   ___  T  r  

  ( B   0  + ω B   1 )  

or

  ϕ = exp   [    
 P  r   _  T  r  

  ( B   0  + ω  B   1  ) ]     (10.68)
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This equation, used in conjunction with Eqs. (3.61) and (3.62), provides reliable values of ϕ 
for any nonpolar or slightly polar gas when applied at conditions where Z is approximately 
linear in pressure. Figure 3.13 again serves as a guide to its applicability.

Named functions HRB(TR,PR,OMEGA) and SRB(TR,PR,OMEGA) for the  evaluation of 
HR/RTc and SR/R by the generalized virial-coefficient correlation are described in Sec. 6.4. 
Similarly, we introduce here a function named PHIB(TR,PR,OMEGA) for the  evaluation of ϕ:11

  ϕ = PHIB(TR,PR,OMEGA)  

It combines Eq. (10.68) with Eqs. (3.61) and (3.62) to evaluate the fugacity coefficient for 
given reduced temperature, reduced pressure, and acentric factor. For example, the value of ϕ 
for carbon dioxide at the conditions of Ex. 6.4, Step 3, is denoted as:

  PHIB(0.963,0.203,0.224) = 0.923  

Extension to Mixtures
The generalized correlation just described is for pure gases only. The remainder of this section 
shows how the virial equation can be generalized to allow the calculation of fugacity coeffi-
cients    ϕ ˆ    i    for species in gas mixtures.

The general expression for calculating  ln    ϕ ˆ    k    from second-virial-coefficient data is given 
by Eq. (10.64). Values of the pure-species virial coefficients Bkk, Bii, etc., are found from the 
generalized correlation represented by Eqs. (3.58), (3.59), (3.61), and (3.62). The cross coeffi-
cients Bik, Bij, etc., are found from an extension of the same correlation. For this purpose,  
Eq. (3.59) is rewritten in the more general form:12

    B ˆ    ij   =  B   0  +  ω  ij    B   1   (10.69a)

where

    B ˆ    ij   ≡   
 B  ij    P  cij   ______ 
R T  cij  

    (10.69b)

and B0 and B1 are the functions of Tr given by Eqs. (3.61) and (3.62). The combining rules 
proposed by Prausnitz et al. for the calculation of ωij, Tcij, and Pcij are:

11Sample programs and spreadsheets for the evaluation of these functions are available in the Connect online learning 
center. Please contact your instructor for instructions on accessing these items.

12J. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase 
 Equilibria, 3rd ed., pp. 133 and 160, Prentice Hall, Englewood Cliffs, NJ, 1998.

  ω  ij   =   
 ω  i   +  ω  j   ______ 2    (10.70)   T  cij   =  ( T  ci    T  cj   )   1/2 (1 −  k  ij   )  (10.71)

  P  cij   =   
 Z  cij   R  T  cij   ________  V  cij  

    (10.72)   Z  cij   =   
 Z  ci   +  Z  cj   _______ 2    (10.73)

   V  cij   =   (  
 V  ci  

1∕3
  +  V  cj  

1∕3
 
 __________ 2  )    

3

   (10.74)
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10.7. Generalized Correlations for the Fugacity Coefficient  391

In Eq. (10.71), kij is an empirical interaction parameter specific to a particular i-j molecular 
pair. When i = j and for chemically similar species, kij = 0. Otherwise, it is a small positive 
number evaluated from minimal PVT data or, in the absence of data, set equal to zero. When  
i = j, all equations reduce to the appropriate values for a pure species. When i ≠ j, these equations 
define a set of interaction parameters that, while they do not have any fundamental physical 
significance, do provide useful estimates of fugacity coefficients in moderately non-ideal gas 
mixtures. Reduced temperature is given for each ij pair by   T  rij   ≡ T /  T  cij   . For a mixture, values of 
Bij from Eq. (10.69b) substituted into Eq. (10.61) yield the mixture second virial coefficient B, 
and substituted into Eq. (10.64) [Eqs. (10.63) for a binary mixture] they yield values of  ln    ϕ ˆ    i   .

Note that while Bii, Bjj, and Bij are all calculated at the same temperature and pressure, 
those conditions correspond to a different reduced temperature and reduced pressure for each 
case. Thus, each dimensionless virial coefficient calculated from Eq. (10.69a) must be 
multiplied by RTcij/Pcij to yield a virial coefficient with units. Those virial coefficients then 
combine as prescribed by Eq. (10.62) to give the mixture virial coefficient and are used in  
Eq. (10.64) to evaluate fugacity coefficients of the species at a particular composition.

The primary virtue of the generalized correlation for second virial coefficients presented 
here is simplicity; more accurate, but more complex, correlations appear in the literature.13

Example 10.10
Estimate    ϕ ˆ    1    and    ϕ ˆ    2    by Eqs. (10.63) for an equimolar mixture of methyl ethyl ketone(1)/
toluene(2) at 50°C and 25 kPa. Set all kij = 0.

Solution 10.10
The required data are as follows:

13C. Tsonopoulos, AIChE J., vol. 20, pp. 263–272, 1974, vol. 21, pp. 827–829, 1975, vol. 24, pp. 1112–1115, 1978; 
C. Tsonopoulos, Adv. in Chemistry Series 182, pp. 143–162, 1979; J. G. Hayden and J. P. O’Connell, Ind. Eng. Chem. 
Proc. Des. Dev., vol. 14, pp. 209–216, 1975; D. W. McCann and R. P. Danner, Ibid., vol. 23, pp. 529–533, 1984; J. A. 
Abusleme and J. H. Vera, AIChE J., vol. 35, pp. 481–489, 1989; L. Meng, Y. Y. Duan, and X. D. Wang, Fluid Phase 
Equilib., vol. 260, pp. 354–358, 2007.

ij Tcij K Pcij bar Vcij cm3⋅mol−1 Zcij ωij

11 535.5 41.5 267. 0.249 0.323
22 591.8 41.1 316. 0.264 0.262
12 563.0 41.3 291. 0.256 0.293

where values in the last row have been calculated by Eqs. (10.70) through (10.74). 
The values of Trij, together with B0, B1, and Bij calculated for each ij pair by  
Eqs. (3.65), (3.66), and (10.69), are as follows:

ij Trij B0 B1 Bij cm3⋅mol−1

11 0.603 –0.865 –1.300 –1387.
22 0.546 –1.028 –2.045 –1860.
12 0.574 –0.943 –1.632 –1611.

www.konkur.in

Telegram: @uni_k



392 CHAPTER 10. The Framework of Solution Thermodynamics

Calculating δ12 according to its definition gives:

   δ  12   = 2  B  12   −  B  11   −  B  22   = (2)(−1611) + 1387 + 1860 = 25   cm   3   ·mol   −1   

Equation (10.63) then yields:

  ln    ϕ ˆ    1   =   
P
 ___ 

RT
   (  B  11   +  y  2  2   δ  12   ) =   

25
 _____________   (  8314 )   (  323.15 )     [−1387 +   (  0.5 )     2  (25) ] = − 0.0128  

  ln    ϕ ˆ    2   =   
P
 ___ 

RT
   (  B  22   +  y  1  2   δ  12   ) =   

25
 _____________   (  8314 )   (  323.15 )     [−1860 +   (  0.5 )     2  (25) ] = − 0.0172  

Thus,
    ϕ ˆ    1   = 0.987   and     ϕ ˆ    2   = 0.983  
These results are representative of values obtained for vapor phases at typical con-
ditions of low-pressure vapor/liquid equilibrium.

10.8 THE IDEAL-SOLUTION MODEL

The chemical potential as given by the ideal-gas-state mixture model,

    μ  i  
ig

  ≡   G ¯    i  
ig

  =  G  i  
ig

 (T, P) + RT ln  y  i     (10.24)

contains a final term that gives it the simplest possible composition dependence. Indeed, this 
functional form could reasonably serve as the basis for the composition dependence of chem-
ical potential in dense gases, liquids, and solids. In it, the composition dependence arises only 
from the entropy increase due to random intermixing of molecules of different species. This 
entropy increase due to mixing is the same in any random mixture, and thus can be expected 
to be present in solids, liquids, and dense gases as well. However, the pure-species behavior 
implied by the term   G  i  

ig  (T, P)   is unrealistic except for the ideal-gas state. A natural extension 
of Eq. (10.24) therefore replaces   G  i  

ig  (T, P)   with Gi(T, P), the Gibbs energy of pure i in its real 
physical state of gas, liquid, or solid. Thus, we define an ideal solution as one for which:

    μ  i  id  ≡   G ¯    i  id  =  G  i     (T, P) + RT ln  x  i     (10.75)

where superscript id denotes an ideal-solution property. Here, mole fraction is represented by xi 
to reflect the fact that this approach is most often applied to liquids. However, a consequence 
of this definition is that an ideal-gas-state mixture is a special case, namely, an ideal solution 
of gases in the ideal-gas state, for which xi in Eq. (10.75) is conventionally replaced by yi.

All other thermodynamic properties for an ideal solution follow from Eq. (10.75). The 
partial volume results from differentiation with respect to pressure at constant temperature and 
composition in accord with Eq. (10.18):

    V ¯    i  id  =    (     
∂   G ¯    i  id 

 ____ 
∂ P    )    

T, x
   =   (    

∂  G  i   ____ 
∂ P   )    

T
    

www.konkur.in

Telegram: @uni_k



10.8. The Ideal-Solution Model 393

By Eq. (10.4), (∂Gi/∂P)T = Vi; thus,

     V ¯    i  id  =  V  i     (10.76)

Similarly, as a result of Eq. (10.19),

    S ¯    i  id  = −    (     
∂   G ¯    i  id 

 ____ 
∂ T    )    

P, x
   = −   (     

∂  G  i   ____ 
∂ T   )    

P
   − R ln   x  i    

By Eq. (10.5),

     S ¯    i  id  =  S  i   − R ln  x  i     (10.77)

Because    H ¯    i  id  =   G ¯    i  id  + T   S ¯    i  id  , substitutions by Eqs. (10.75) and (10.77) yield:

    H ¯    i  id  =  G  i   + RT ln   x  i   + T  S  i   − RT ln  x  i    

or

     H ¯    i  id  =  H  i     (10.78)

The summability relation, Eq. (10.11), applied to the special case of an ideal solution, is 
written:

   M   id  =  ∑ 
i

      x  i     M ¯    i  id   

Application to Eqs. (10.75) through (10.78) yields:

  G   id  =  ∑ 
i

     x  i   G  i   + RT ∑ 
i

     x  i   ln  x  i    (10.79)   S   id  =  ∑ 
i

      x  i    S  i   − R ∑ 
i

      x  i   ln   x  i    (10.80)

  V   id  =  ∑ 
i

      x  i    V  i    (10.81)   H   id  =  ∑ 
i

      x  i    H  i    (10.82)

Note the similarity of these equations to Eq. (10.25), (10.26), and (10.27) for  
ideal-gas-state mixtures. For all properties of an ideal solution, the composition dependence 
is, by definition, the same as that of ideal-gas-state mixtures, for which this composition 
dependence is well defined and arises entirely from the entropy increase of random mixing. 
However, the temperature and pressure dependence are not those of ideal gases but are given by 
mole-fraction-weighted averages of the pure species properties.

If in Example 10.3 the solution formed by mixing methanol(1) and water(2) were 
assumed ideal, the final volume would be given by Eq. (10.81), and the V-vs.-x1 relation would 
be a straight line connecting the pure-species volumes, V2 at x1 = 0 with V1 at x1 = 1. For the 
specific calculation at x1 = 0.3, the use of V1 and V2 in place of partial volumes yields:

    V  1  t   = 983      V  2  t    = 1017   cm   3   

Both values are about 3.4% low.
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  μ  i   ≡  Γ  i  (T ) + RT ln    f ̂    i    (10.46)   G  i   ≡  Γ  i  (T ) + RT ln  f  i    (10.31)

Subtraction yields the general equation:

   μ  i   =  G  i   + RT ln (  f ̂    i   /  f  i   )  

For the special case of an ideal solution,

  μ  i  id  ≡   G ¯    i  id  = Gi + RT ln (  f ̂    i   id /  f  i   ) 

Comparison with Eq. (10.75) gives:

     f ̂    i   id  =  x  i    f  i     (10.83)

This equation, known as the Lewis/Randall rule, applies to each species in an ideal solution at 
all conditions of temperature, pressure, and composition. It shows that the fugacity of each 
species in an ideal solution is proportional to its mole fraction; the proportionality constant is 
the fugacity of pure species i in the same physical state as the solution and at the same T and P. 
Division of both sides of Eq. (10.83) by Pxi and substitution of    ϕ ˆ    i  id   for     f ̂    i   id  /  x  i    P  i    [Eq. (10.52)] 
and of ϕi for fi/P [Eq. (10.34)] gives an alternative form: 

    ϕ ˆ    i  id  =  ϕ  i    (10.84)

Thus the fugacity coefficient of species i in an ideal solution is equal to the fugacity coefficient 
of pure species i in the same physical state as the solution and at the same T and P. Phases 
comprised of liquids whose molecules are of similar size and similar chemical nature approx-
imate ideal solutions. Mixtures of isomers closely conform to these conditions. Mixtures of 
adjacent members of homologous series (e.g., n-hexane and n-heptane) are also examples. 

10.9 EXCESS PROPERTIES

The residual Gibbs energy and the fugacity coefficient are directly related to experimental 
PVT data by Eqs. (6.49), (10.35), and (10.60). Where such data can be adequately correlated 
by equations of state, thermodynamic-property information is readily provided by residual 
properties. However, liquid solutions are often more easily dealt with through properties that 
measure their departures, not from ideal-gas-state behavior, but from ideal-solution behavior. 
Thus a mathematical formalism of excess properties is defined, which is analogous to that of 
residual properties, but with ideal-solution behavior rather than ideal-gas-state behavior as  
a basis.

If M represents the molar (or unit-mass) value of any extensive thermodynamic property 
(e.g., V, U, H, S, G, etc.), then an excess property ME is defined as the difference between the 

The Lewis/Randall Rule
The composition dependence of the fugacity of a species in an ideal solution is particularly 
simple. Recall Eqs. (10.46) and (10.31):
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actual property value of a solution and the value it would have as an ideal solution at the same 
temperature, pressure, and composition. Thus,

    M   E  ≡ M −  M   id    (10.85)

For example,
    G   E  ≡ G −  G   id     H   E  ≡ H −  H   id     S   E  ≡ S −  S   id    
Moreover,
   G   E  =  H   E  − T  S   E   (10.86)

which follows from Eq. (10.85) and Eq. (6.4), the definition of G.
The definition of ME is analogous to the definition of a residual property as given by  

Eq. (6.41). Indeed, excess properties have a simple relation to residual properties, found by 
subtracting Eq. (6.41) from Eq. (10.85):

   M   E  −  M   R  = − ( M   id  − Mig )  

As already noted, ideal-gas-state mixtures are ideal solutions of pure gases in the ideal-gas 
state. Equations (10.79) through (10.82) therefore become expressions for Mig when Mi is 
replaced by   M  i  

ig  . Equation (10.82) becomes Eq. (10.25), Eq. (10.80) becomes Eq. (10.26), and 
Eq. (10.79) becomes Eq. (10.27). The two sets of equations, for Mid and Mig, therefore provide 
a general relation for the difference:

   M   id  −  M   ig  =  ∑ 
i

      x  i    M  i   −  ∑ 
i

      x  i    M  i  
ig

  =  ∑ 
i

      x  i    M  i  R   

This leads immediately to:
   M   E  =  M   R  −  ∑ 

i

      x  i    M  i  R   (10.87)

Note that excess properties have no meaning for pure species, whereas residual properties 
exist for pure species as well as for mixtures. Residual properties include both deviations from 
ideal-gas-state behavior of the pure species and nonidealities of mixing. Excess properties 
only include nonidealities of mixing.

The partial-property relation analogous to Eq. (10.49) is:

    M ¯    i  E  =   M ¯    i   −   M ¯    i  id   (10.88)

where    M ¯    i  E   is a partial excess property. The fundamental excess-property relation is derived in 
exactly the same way as the fundamental residual-property relation and leads to analogous 
results. Equation (10.54), written for the special case of an ideal solution, is subtracted from  
Eq. (10.54) itself, yielding:

   d  (     
n  G   E 

 _ 
RT

   )    =   
n  V   E 

 _ 
RT

   dP −   
n  H   E 

 _ 
R  T   2 

   dT +  ∑ 
i

       
  G ¯    i  E 

 ___ 
RT

   d n  i     (10.89)

This is the fundamental excess-property relation, analogous to Eq. (10.55), the fundamental 
residual-property relation.

The exact analogy that exists between properties M, residual properties MR, and excess 
properties ME is summarized in Table 10.1. All of the equations that appear are basic property 
relations, although only Eqs. (10.4) and (10.5) have been shown explicitly before.
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10.9. Excess Properties 397

Example 10.11
 (a) If   C  P  E   is a constant, independent of T, find expressions for GE, SE, and HE as  

functions of T.

 (b) From the equations developed in part (a), find values for GE, SE, and HE for an 
equimolar solution of benzene(1)/n-hexane(2) at 323.15 K, given the following 
excess-property values for an equimolar solution at 298.15 K:

   C  P  E  = − 2.86  J⋅mol   −1  ⋅K   −1      H   E  = 897.9  J⋅mol   −1      G   E  = 384.5  J⋅mol   −1   

Solution 10.11

 (a) Let   C  P  E  = a , where a is a constant. From the last column of Table 10.1:

   C  P  E  = − T   (    
 ∂   2   G   E 

 _____ 
∂  T   2 

   )    
P, x

   whence   (    
 ∂   2   G   E 

 _____ 
∂  T   2 

   )    
P, x

   = −   
a

 __ 
T

    

 Integration yields:

    (    
∂  G   E 

 ____ 
∂ T   )    

P, x
   = − a ln T + b  

 where b is a constant of integration. A second integration gives:

   G   E  = − a(T ln T − T ) + bT + c   (A)

 where c is another integration constant. With   S   E  = −  (∂  G   E  / ∂ T )  P, x    (Table 10.1),

   S   E  = a ln T − b   (B)

 Because HE = GE + TSE, combination of Eqs. (A) and (B) yields:

   H   E  = aT + c   (C)

(b)  Let   C  P0  
E
  ,  H  0  E

 , and  G  0  E
   represent the given values at T0 = 298.15 K. But   C  P  E   is  

constant, and therefore  a =  C  P0  
E
   = − 2.86 J⋅  mol   −    1   ⋅K   −    1  .

 By Eq. (A), 

  c =  H  0  E  − a T  0   = 1750.6  

 By Eq. (C),

  b =   
 G  0  E  + a( T  0   ln  T  0   −  T  0   ) − c

  _____________________   T  0     = − 18.0171  

 Substitution of known values into Eqs. (A), (B), and (C) for T = 323.15 yields:

  G   E  = 344.4   J·mol   −1   S   E  = 1.492   J·mol   −1   ·K   −1   H   E  = 826.4   J·mol   −1  
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398 CHAPTER 10. The Framework of Solution Thermodynamics

The Nature of Excess Properties
Peculiarities of liquid-mixture behavior are dramatically revealed in the excess properties. Those 
of primary interest are GE, HE, and SE. The excess Gibbs energy comes from experiment through 
analysis of vapor/liquid equilibrium data (Chap. 13), and HE is determined by mixing experiments 
(Chap. 11). The excess entropy is not measured directly but is found from Eq. (10.86), written:

   S   E  =   
 H   E  −  G   E 

 _______ 
T

    

Excess properties are often strong functions of temperature, but at normal temperatures 
they are not strongly influenced by pressure. Their composition dependence is illustrated in 
Fig. 10.3 for six binary liquid mixtures at 50°C and approximately atmospheric pressure. To 
present SE with the same units and on the same scale as HE and GE, the product TSE is shown 
rather than SE itself. Although the systems exhibit a diversity of behavior, they have common 
features:

 1. All excess properties become zero as either species approaches purity.

 2. Although GE vs. x1 is approximately parabolic in shape, both HE and TSE exhibit indi-
vidualistic composition dependencies.

Figure 10.3: Excess properties at 50ºC for six binary liquid systems: (a) chloroform(1)/n-heptane(2); 
(b) acetone(1)/methanol(2); (c) acetone(1)/chloroform(2); (d) ethanol(1)/n-heptane(2); (e) ethanol(1)/
chloroform(2); (f) ethanol(1)/water(2).
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10.11. Problems 399

 3. When an excess property ME has a single sign (as does GE in all six cases), the extreme 
value of ME (maximum or minimum) often occurs near the equimolar composition.

Feature 1 is a consequence of the definition of an excess property, Eq. (10.85); as any  
xi approaches unity, both M and Mid approach Mi, the corresponding property of pure species 
i. Features 2 and 3 are generalizations based on observation and admit exceptions (note, for 
example, the behavior of HE for the ethanol/water system).

10.10 SYNOPSIS

After studying this chapter, including the end-of-chapter problems, one should be able to:

 ∙ Define, in words and in symbols, chemical potential and partial properties
 ∙ Compute partial properties from mixture properties
 ∙ Recall that two phases are in equilibrium, at fixed T and P, when the chemical potential 

of each species is the same in both phases
 ∙ Apply the summability relation to compute mixture properties from partial properties
 ∙ Recognize that partial properties cannot vary independently, but are constrained by the 

Gibbs/Duhem equation
 ∙ Understand that all linear relationships among thermodynamic properties of pure spe-

cies also apply to partial properties of species in a mixture
 ∙ Compute partial properties of a mixture in the ideal-gas state
 ∙ Define and use fugacity and fugacity coefficients for pure species and for species in a mix-

ture, and recognize that these are defined for convenience in solving phase-equilibrium 
problems

 ∙ Compute fugacities and fugacity coefficients of pure species from PVT data or general-
ized correlations

 ∙ Estimate fugacity coefficients of species in gas mixtures using second virial coefficient 
correlations

 ∙ Recognize that the ideal-solution model provides a reference for description of liquid mixtures
 ∙ Relate partial properties in an ideal solution to corresponding pure species properties
 ∙ Define and use excess properties of species in a mixture

10.11 PROBLEMS

 10.1. What is the change in entropy when 0.7 m3 of CO2 and 0.3 m3 of N2, each at 1 bar and 
25°C, blend to form a gas mixture at the same conditions? Assume ideal gases.

 10.2. A vessel, divided into two parts by a partition, contains 4 mol of nitrogen gas at 75°C 
and 30 bar on one side and 2.5 mol of argon gas at 130°C and 20 bar on the other. 
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400 CHAPTER 10. The Framework of Solution Thermodynamics

If the partition is removed and the gases mix adiabatically and completely, what is the 
change in entropy? Assume nitrogen to be an ideal gas with CV = (5/2)R and argon to 
be an ideal gas with CV = (3/2)R.

 10.3. A stream of nitrogen flowing at a rate of 2 kg·s−1 and a stream of hydrogen flowing at 
a rate of 0.5 kg·s−1 mix adiabatically in a steady-flow process. If the gases are assumed 
ideal, what is the rate of entropy increase as a result of the process?

 10.4. What is the ideal work for the separation of an equimolar mixture of methane and 
ethane at 175°C and 3 bar in a steady-flow process into product streams of the pure 
gases at 35°C and 1 bar if Tσ = 300 K?

 10.5. What is the work required for the separation of air (21 mol-% oxygen and 79 mol-% 
nitrogen) at 25°C and 1 bar in a steady-flow process into product streams of pure oxy-
gen and nitrogen, also at 25°C and 1 bar, if the thermodynamic efficiency of the pro-
cess is 5% and if Tσ = 300 K?

 10.6. What is the partial molar temperature? What is the partial molar pressure? Express 
results in relation to the T and P of the mixture.

 10.7. Show that:

 (a) The “partial molar mass” of a species in solution is equal to its molar mass.
 (b) A partial specific property of a species in solution is obtained by division of the 

partial molar property by the molar mass of the species.

 10.8. If the molar density of a binary mixture is given by the empirical expression:

 ρ  =  a  0   +  a  1    x  1   +  a  2    x  1  2   

  find the corresponding expressions for    V ¯    1    and    V ¯    2   

 10.9. For a ternary solution at constant T and P, the composition dependence of molar prop-
erty M is given by:

  M =  x  1    M  1   +  x  2    M  2   +  x  3    M  3   +  x  1    x  2    x  3   C  

  where M1, M2, and M3 are the values of M for pure species 1, 2, and 3, and C is a 
parameter independent of composition. Determine expressions for    M ¯    1  ,   M ¯    2  ,  and    M ¯    3    by 
application of Eq. (10.7). As a partial check on your results, verify that they satisfy the 
summability relation, Eq. (10.11). For this correlating equation, what are the    M ¯    i    at 
infinite dilution?

 10.10. A pure-component pressure pi for species i in a gas mixture may be defined as the 
pressure that species i would exert if it alone occupied the mixture volume. Thus,

   p  i   ≡   
 y  i    Z  i   RT

 ______ 
V
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10.11. Problems 401

  where yi is the mole fraction of species i in the gas mixture, Zi is evaluated at pi and T, 
and V is the molar volume of the gas mixture. Note that pi as defined here is not a 
partial pressure yiP, except for an ideal gas. Dalton’s “law” of additive pressures states 
that the total pressure exerted by a gas mixture is equal to the sum of the pure-
component pressures of its constituent species:  P =  ∑  i    p  i   . Show that Dalton’s “law” 
implies that  Z =  ∑  i    y  i    Z  i   , where Zi is the compressibility factor of pure species i 
evaluated at the mixture temperature but at its pure-component pressure.

 10.11. If for a binary solution one starts with an expression for M (or MR or ME) as a func-
tion  of x1 and applies Eqs. (10.15) and (10.16) to find    M ¯    1    and    M ¯    2    (or    M ¯    1  R   
and    M ¯    2  R   or     M ¯    1  E    and     M ¯    2  E  )  and then combines these expressions by Eq. (10.11), the 
initial expression for M is regenerated. On the other hand, if one starts with expres-
sions for    M ¯    1    and    M ¯    2   , combines them in accord with Eq. (10.11), and then applies  
Eqs. (10.15) and (10.16), the initial expressions for    M ¯    1    and    M ¯    2    are regenerated if and 
only if the initial expressions for these quantities meet a specific condition. What is 
the condition?

 10.12. With reference to Ex. 10.4,

 (a) Apply Eq. (10.7) to Eq. (A) to verify Eqs. (B) and (C).
 (b) Show that Eqs. (B) and (C) combine in accord with Eq. (10.11) to regenerate Eq. (A).
 (c) Show that Eqs. (B) and (C) satisfy Eq. (10.14), the Gibbs/Duhem equation.
 (d) Show that at constant T and P,

   (d  H ¯    1   / d x  1   )   x  1  =1   =  (d  H ¯    2   / d x  1   )   x  1  =0   = 0  

 (e) Plot values of H,    H ¯    1   , and    H ¯    2   , calculated by Eqs. (A), (B), and (C), vs. x1. Label 
points   H  1  ,  H  2  ,   H ¯    1  ∞  , and    H ¯    2  ∞  , and show their values.

 10.13. The molar volume (cm3·mol−1) of a binary liquid mixture at T and P is given by:

  V = 120  x  1   + 70  x  2   + (15  x  1   + 8  x  2   )  x  1    x  2    

 (a) Find expressions for the partial molar volumes of species 1 and 2 at T and P.
 (b) Show that when these expressions are combined in accord with Eq. (10.11) the 

given equation for V is recovered.
 (c) Show that these expressions satisfy Eq. (10.14), the Gibbs/Duhem equation.
 (d) Show that   (d  V ¯    1   / d x  1   )   x  1  =1   =  (d  V ¯    2   / d x  1   )   x  1  =0   = 0. 
 (e) Plot values of V,    V ¯    1   , and     V ¯    2    calculated by the given equation for V and by the 

equations developed in (a) vs. x1. Label points V1, V2,    V ¯    1  ∞  , and    V ¯    2  ∞   and show their 
values.

 10.14. For a particular binary liquid solution at constant T and P, the molar enthalpies of 
mixtures are represented by the equation

  H =  x  1  ( a  1   +  b  1    x  1   ) +  x  2  ( a  2   +  b  2    x  2   )  

  where the ai and bi are constants. Because the equation has the form of Eq. (10.11), it 
might be that    H ¯    i   =  a  i   +  b  i    x  i   . Show whether this is true.
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402 CHAPTER 10. The Framework of Solution Thermodynamics

 10.17. For SO2 at 600 K and 300 bar, determine good estimates of the fugacity and of GR/RT.

 10.18. Estimate the fugacity of isobutylene as a gas:

 (a) At 280°C and 20 bar;
 (b) At 280°C and 100 bar.

 10.19. Estimate the fugacity of one of the following:

 (a) Cyclopentane at 110°C and 275 bar. At 110°C the vapor pressure of cyclopentane 
is 5.267 bar.

 (b) 1-Butene at 120°C and 34 bar. At 120°C the vapor pressure of 1-butene is 25.83 bar.

P/bar Z

 10 0.985
 20 0.970
 40 0.942
 60 0.913
 80 0.885
100 0.869
200 0.765
300 0.762
400 0.824
500 0.910

 10.15. Analogous to the conventional partial property    M ¯    i   , one can define a constant-T, V par-
tial property    M ˜    i   :

    M ˜    i   ≡   [    
∂   (  nM )   

 ______ 
∂  n  i  

   ]    
T, V,  n  j  

    

  Show that    M ˜    i    and    M ¯    i    are related by the equation:

    M ˜    i   =   M ¯    i   + (V −   V ¯    i   )   (    
∂ M

 ___ 
∂ V   )    

T, x
    

  Demonstrate that the    M ˜    i    satisfy a summability relation,  M =  ∑ 
i

      x  i     M ˜    i  . 

 10.16. From the following compressibility-factor data for CO2 at 150°C,  prepare plots of  
the fugacity and fugacity coefficient of CO2 vs. P for pressures up to 500 bar.  
Compare results with those found from the generalized correlation represented by  
Eq. (10.68).
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 10.20. Justify the following equations:

      (  
∂ ln   ϕ ˆ    i   _____ 

∂ P  )   
T, x

   =   
  V ¯    i  R 

 ___ 
RT

        (  
∂ ln   ϕ ˆ    i   _____ 

∂ T  )   
P, x

   = −   
  H ¯    i  R 

 ____ 
R  T   2 

     

     
 G   R 

 ___ 
RT

   =  ∑ 
i

      x  i   ln   ϕ ˆ    i      ∑ 
i

      x  i   d ln   ϕ ˆ    i   = 0   (  const T, P )      

 10.21. From data in the steam tables, determine a good estimate for f/f sat for liquid water at 
150°C and 150 bar, where f sat is the fugacity of saturated liquid at 150°C.

 10.22. For one of the following, determine the ratio of the fugacity in the final state to that in 
the initial state for steam undergoing the isothermal change of state:

 (a) From 9000 kPa and 400°C to 300 kPa.
 (b) From 1000(psia) and 800(°F) to 50(psia).

 10.23. Estimate the fugacity of one of the following liquids at its normal-boiling-point tem-
perature and 200 bar:

 (a) n-Pentane
 (b) Isobutylene
 (c) 1-Butene

 10.24. Assuming that Eq. (10.68) is valid for the vapor phase and that the molar volume of 
saturated liquid is given by Eq. (3.68), prepare plots of f vs. P and of ϕ vs. P for one of 
the following:

 (a) Chloroform at 200°C for the pressure range from 0 to 40 bar. At 200°C the vapor 
pressure of chloroform is 22.27 bar.

 (b) Isobutane at 40°C for the pressure range from 0 to 10 bar. At 40°C the vapor pres-
sure of isobutane is 5.28 bar.

 10.25. For the system ethylene(1)/propylene(2) as a gas, estimate    f ̂    1  ,     f ̂    2  ,     ϕ ˆ    1  ,  and    ϕ ˆ    2    at t = 
150°C, P = 30 bar, and y1 = 0.35:

 (a) Through application of Eqs. (10.63).
 (b) Assuming that the mixture is an ideal solution.

 10.26. Rationalize the following expression, valid at sufficiently low pressures, for estimat-
ing the fugacity coefficient: ln  ϕ ≈ Z − 1 .

 10.27. For the system methane(1)/ethane(2)/propane(3) as a gas, estimate    f ̂    1  ,    f ̂    2  ,    f ̂    3  ,    ϕ ˆ    1  ,    ϕ ˆ    2  ,  
and    ϕ ˆ    3    at t = 100°C, P = 35 bar, y1 = 0.21, and y2 = 0.43:

 (a) Through application of Eq. (10.64).
 (b) Assuming that the mixture is an ideal solution.
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404 CHAPTER 10. The Framework of Solution Thermodynamics

 10.28. Given below are values of GE/J·mol−1, HE/J·mol−1, and   C  P  E  /  J·mol   −1   ·K   −1   for some 
equimolar binary liquid mixtures at 298.15 K. Estimate values of GE, HE, and SE at 
328.15 K for one of the equimolar mixtures by two procedures: (I) Use all the data; 
(II) Assume   C  P  E  = 0.  Compare and discuss your results for the two procedures.

 (a) Acetone/chloroform:   G   E  = − 622,  H   E  = − 1920,  C  P  E  = 4.2 
 (b) Acetone/n-hexane:   G   E  = 1095,  H   E  = 1595,  C  P  E  = 3.3 
 (c) Benzene/isooctane:   G   E  = 407,  H   E  = 984,  C  P  E  = − 2.7 
 (d) Chloroform/ethanol:   G   E  = 632,  H   E  = − 208,  C  P  E  = 23.0 
 (e) Ethanol/n-heptane:   G   E  = 1445,  H   E  = 605,  C  P  E  = 11.0 
 ( f ) Ethanol/water:   G   E  = 734,  H   E  = − 416,  C  P  E  = 11.0 
 (g) Ethyl acetate/n-heptane:   G   E  = 759,  H   E  = 1465,  C  P  E  = − 8.0 

 10.29. The data in Table 10.2 are experimental values of VE for binary liquid mixtures of 
1,3-dioxolane(1) and isooctane(2) at 298.15 K and 1(atm).

x1 VE /10−3 cm3·mol−1

0.02715  87.5
0.09329 265.6 
0.17490 417.4 
0.32760 534.5
0.40244 531.7
0.56689 421.1
0.63128 347.1 
0.66233 321.7
0.69984 276.4
0.72792 252.9
0.77514 190.7
0.79243 178.1
0.82954 138.4
0.86835  98.4
0.93287  37.6
0.98233  10.0

R. Francesconi et al., Int. DATA Ser., Ser. A, Vol. 25, No. 3, 
p. 229, 1997.

Table 10.2: Excess Volumes for 1,3-Dioxolane(1)/Isooctane(2) at 298.15 K

 (a) Determine from the data numerical values of parameters a, b, and c in the corre-
lating equation:

   V   E  =  x  1    x  2    (   a + b  x  1   +  cx  1  2  )      
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10.11. Problems 405

 (b) Determine from the results of part (a) the maximum value of VE. At what value of 
x1 does this occur?

 (c) Determine from the results of part (a) expressions for     V ¯    1  E   and     V ¯    2  E  . Prepare a plot 
of these quantities vs. x1, and discuss its features.

 10.30. For an equimolar vapor mixture of propane(1) and n-pentane(2) at 75°C and 2 bar, 
estimate Z, HR, and SR. Second virial coefficients, in cm3·mol−1 are:

t/°C B11 B22 B12

 50 −331 −980 −558
 75 −276 −809 −466
100 −235 −684 −399

  Equations (3.36), (6.55), (6.56), and (10.62) are pertinent.

 10.31. Use the data of Prob. 10.30 to determine    ϕ ˆ    1    and    ϕ ˆ    2    as functions of composition for 
binary vapor mixtures of propane(1) and n-pentane(2) at 75°C  and 2 bar. Plot the 
results on a single graph. Discuss the features of this plot.

 10.32. For a binary gas mixture described by Eqs. (3.36) and (10.62), prove that:

   
 G   E 

  
=

  
 δ  12   P  y  1    y  2  

  
  S   E 

  
=

  
−   

d δ  12  
 ____ 

dT
   P  y  1    y  2  

     
 H   E 

  
=

  
  (   δ  12   − T   

d δ  12  
 _ 

dT
   )   P  y  1    y  2  

  
  C  P  E 

  
=

  
− T   

 d   2   δ  12  
 _____ 

d T   2 
   P  y  1    y  2  

   

  See also Eq. (10.87), and note that   δ  12   = 2  B  12   −  B  11   −  B  22   . 

 10.33. The data in Table 10.3 are experimental values of HE for binary liquid mixtures of 
1,2-dichloroethane(1) and dimethyl carbonate(2) at 313.15 K and 1(atm).

 (a) Determine from the data numerical values of parameters a, b, and c in the corre-
lating equation:

   H   E  =  x  1    x  2    (  a + b  x  1   + c  x  1  2  )     

 (b) Determine from the results of part (a) the minimum value of HE. At what value of 
x1 does this occur?

 (c) Determine from the results of part (a) expressions for    H ¯    1  E   and    H ¯    2  E  . Prepare a plot 
of these quantities vs. x1, and discuss its features.
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406 CHAPTER 10. The Framework of Solution Thermodynamics

x1 HE /J·mol−1

0.0426  −23.3
0.0817  −45.7
0.1177  −66.5
0.1510  −86.6
0.2107 −118.2
0.2624 −144.6
0.3472 −176.6
0.4158 −195.7
0.5163 −204.2
0.6156 −191.7
0.6810 −174.1
0.7621 −141.0
0.8181 −116.8
0.8650  −85.6
0.9276  −43.5
0.9624  −22.6

R. Francesconi et al., Int. Data Ser., Ser. A, Vol. 25,  
No. 3, p. 225, 1997.

Table 10.3: HE Values for 1,2-Dichloroethane(1)/Dimethylcarbonate(2) at 313.15 K

 10.34. Make use of Eqs. (3.36), (3.61), (3.62), (6.54), (6.55), (6.56), (6.70), (6.71), (10.62), 
and (10.69)–(10.74), to estimate V, HR, SR, and GR for one of the following binary 
vapor mixtures:

 (a) Acetone(1)/1,3-butadiene(2) with mole fractions y1 = 0.28 and y2 = 0.72 at t = 
60°C and P = 170 kPa

 (b) Acetonitrile(1)/diethyl ether(2) with mole fractions y1 = 0.37 and y2 = 0.63 at t = 
50°C and P = 120 kPa

 (c) Methyl chloride(1)/ethyl chloride(2) with mole fractions y1 = 0.45 and y2 = 0.55 
at t = 25°C and P = 100 kPa

 (d) Nitrogen(1)/ammonia(2) with mole fractions y1 = 0.83 and y2 = 0.17 at t = 
20°C and P = 300 kPa

 (e) Sulfur dioxide(1)/ethylene(2) with mole fractions y1 = 0.32 and y2 = 0.68 at t = 
25°C and P = 420 kPa

  Note: Set kij = 0 in Eq. (10.71).

 10.35. Laboratory A reports the following results for equimolar values of GE for liquid mix-
tures of benzene(1) with 1-hexanol(2):

    G   E  = 805   J·mol   −1   at T = 298 K    G   E  = 785   J·mol   −1   at T = 323 K   
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10.11. Problems 407

  Laboratory B reports the following result for the equimolar value of HE for the same system:

   H   E  = 1060   J·mol   −1   at T = 313 K  

  Are the results from the two laboratories thermodynamically consistent with one 
another? Explain.

 10.36. The following expressions have been proposed for the partial molar properties of a 
particular binary mixture:

     M ¯    1   =  M  1   + A  x  2       M ¯    2   =  M  2   + A  x  1     

  Here, parameter A is a constant. Can these expressions possibly be correct? Explain.

 10.37. Two (2) kmol·hr−1 of liquid n-octane (species 1) are continuously mixed with  
4 kmol·hr−1 of liquid iso-octane (species 2). The mixing process occurs at constant T 
and P; mechanical power requirements are negligible.

 (a) Use an energy balance to determine the rate of heat transfer.
 (b) Use an entropy balance to determine the rate of entropy generation (W·K−1).

 State and justify all assumptions.

 10.38. Fifty (50) mol·s−1 of enriched air (50 mol-% N2, 50 mol-% O2) are produced by con-
tinuously combining air (79 mol-% N2, 21 mol-% O2) with a stream of pure oxygen. 
All streams are at the constant conditions T = 25°C and P = 1.2(atm). There are no 
moving parts.

 (a) Determine the rates of air and oxygen (mol·s−1).
 (b) What is the rate of heat transfer for the process?
 (c) What is the rate of entropy generation    S 

∙
    G    (W·K −1)?

 State all assumptions.
 Suggestion: Treat the overall process as a combination of demixing and mixing steps.

 10.39. A simple expression for ME of a symmetrical binary system is ME = Ax1x2. However, 
countless other empirical expressions can be proposed which exhibit symmetry. How 
suitable would the two following expressions be for general application?

 (a)   M   E  = A  x  1  2   x  2  2  
 (b)   M   E  = A sin   (  π  x  1   )    

 Suggestion: Look at the implied partial properties    M ¯    1  E   and    M ¯    2  E  .

 10.40. For a multicomponent mixture containing any number of species, prove that

    M ¯    i   = M +   (    
∂ M

 ___ 
∂  x  i  

   )    
T, P

    −  ∑ 
k

      x  k     (    
∂ M

 ___ 
∂  x  k  

   )    
T, P

    

  where the summation is over all species. Show that for a binary mixture this result 
reduces to Eqs. (10.15) and (10.16).
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408 CHAPTER 10. The Framework of Solution Thermodynamics

 10.41. The following empirical two-parameter expression has been proposed for correlation 
of excess properties of symmetrical liquid mixtures:

   M   E  = A  x  1    x  2    (    
1
 _  x  1   + B  x  2     +   

1
 _  x  2   + B  x  1     )     

  Here, quantities A and B are parameters that depend at most on T.

 (a) Determine from the given equation the implied expressions for     M ¯    1  E   and     M ¯    2  E  .
 (b) Show that the results of part (a) satisfy all necessary constraints for partial excess 

properties.
 (c) Determine from the results of part (a) expressions for      (    M ¯    1  E  )     ∞   and      (    M ¯    2  E  )     ∞  .

 10.42. Commonly, if ME for a binary system has a single sign, then the partial properties    M ¯    1  E   
and    M ¯    2  E   have the same sign as ME over the entire composition range. There are occa-
sions, however, where the    M ¯    i  E   may change sign even though ME has a single sign. In 
fact, it is the shape of the ME vs. x1 curve that determines whether the    M ¯    i  E  change sign. 
Show that a sufficient condition for    M ¯    1  E   and    M ¯    2  E   to have single signs is that the curva-
ture of ME vs. x1 have a single sign over the entire composition range.

 10.43. An engineer claims that the volume expansity of an ideal solution is given by

   β   id  =  ∑ 
i

      x  i    β  i    

  Is this claim valid? If so, show why. If not, find a correct expression for βid.

 10.44. Following are data for GE and HE (both in J·mol−1) for equimolar mixtures of the same 
organic liquids. Use all of the data to estimate values of GE, HE, and TSE for the equi-
molar mixture at 25°C.

 ∙ At T = 10°C: GE = 544.0, HE = 932.1
 ∙ At T = 30°C: GE = 513.2, HE = 893.4
 ∙ At T = 50°C: GE = 494.2, HE = 845.9

 Suggestion: Assume   C  P  E    is constant and use material developed in Ex. 10.11.
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Chapter 11

Mixing Processes

Homogeneous mixtures of different chemical species, particularly liquids, are formed in many 
ways in both natural and industrial processes. Moreover, “unmixing” processes are required 
for the separation of mixtures into their constituent species and for the purification of individ-
ual chemicals. The thermodynamic properties of mixtures are needed to analyze these mixing 
and unmixing processes. Our purpose in this brief chapter is therefore to:

 ∙ Define a standard mixing process and develop expressions for the property changes that 
accompany it

 ∙ Relate properties of a mixture to the properties of its constituents as pure species
 ∙ Relate property changes of mixing to excess properties
 ∙ Treat in detail the heat effects of mixing and “unmixing” processes

11.1 PROPERTY CHANGES OF MIXING

Mixing processes are carried out in many ways, and each process results in a particular change 
of state, depending on initial and final conditions of temperature and pressure. For the rational 
study of mixtures, we must define a standard mixing process, much as we have done for stan-
dard property changes of chemical reaction. Experimental convenience suggests mixing at 
constant T and P. Thus, we take as a standard mixing process one in which appropriate 
amounts of pure chemical species at T and P are mixed to yield a uniform mixture of specified 
composition, also at T and P. The pure species are said to be in their standard states, and their 
properties in this state are the pure-species properties Vi, Hi, Si, etc.

The standard mixing process is represented schematically in Fig. 11.1 for mixing pure 
species 1 and 2.1 In this hypothetical device, n1 moles of pure species 1 are mixed with n2 
moles of pure species 2 to form a homogeneous solution of composition x1 = n1/(n1 + n2). The 
observable phenomena accompanying the mixing process are expansion (or contraction) and a 

1This conceptual illustration is not a practical device for making such measurements. In practice, volume changes 
of mixing can be measured directly using calibrated glassware (e.g., graduated cylinders and volumetric flasks) and 
heats of mixing are measured calorimetrically.
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410 CHAPTER 11. Mixing Processes

temperature change. Expansion is accommodated by movement of the piston so as to  
maintain pressure P, and temperature change is compensated by heat transfer to restore  
temperature T.

When mixing is complete, the total volume change of the system (as measured by piston 
displacement d) is:

  Δ V   t  =   (   n  1   +  n  2   )   V −  n  1   V  1   −  n  2   V  2    

Because the process occurs at constant pressure, the heat transfer Q is equal to the total 
enthalpy change of the system:

  Q = Δ H   t  =   (   n  1   +  n  2   )   H −  n  1    H  1   −  n  2    H  2    

Division of these equations by n1 + n2 gives:

  ΔV ≡ V −  x  1    V  1   −  x  2    V  2   =   
Δ V   t 

 ______  n  1   +  n  2      

and

  ΔH ≡ H −  x  1    H  1   −  x  2    H  2   =   
Q
 ______  n  1   +  n  2      

Thus the volume change of mixing ΔV and the enthalpy change of mixing ΔH are found from 
the measured quantities ΔVt and Q. Because of its experimental association with Q, ΔH is 
usually called the heat of mixing.

Equations analogous to those for ΔV and ΔH can be written for any property, and they 
can also be generalized to apply to the mixing of any number of species:

   ΔM ≡ M −  ∑ 
i

      x  i    M  i     (11.1)

where M can represent any intensive thermodynamic property of the mixture, for example, U, 
CP, S, G, or Z. Equation (11.1) is thus the defining equation for a class of thermodynamic 
properties, known as property changes of mixing.

Figure 11.1: Schematic diagram of 
 experimental binary mixing process. Two 
pure species, both at T and P, are initially 
separated by a partition, withdrawal of 
which allows mixing. As mixing occurs, 
expansion or contraction of the system is 
accompanied by movement of the piston 
so that the pressure is constant.

Partition

d

P

P

n2 
T, P

n1
T, P

n1   n2
T, PQ
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11.1. Property Changes of Mixing 411

Property changes of mixing are functions of T, P, and composition and are directly 
related to excess properties. This result follows by combination of Eq. (10.85) with each of 
Eqs. (10.79) through (10.82), which provide expressions for the properties of an ideal 
solution:

   M   E  ≡ M −  M   id   (10.85)

   V   E  = V −  ∑ 
i

      x  i    V  i    (11.2)

   H   E  = H −  ∑ 
i

      x  i    H  i    (11.3)

   S   E  = S −  ∑ 
i

      x  i    S  i   + R  ∑ 
i

      x  i   ln   x  i    (11.4)

   G   E  = G −  ∑ 
i

      x  i    G  i   − RT  ∑ 
i

      x  i   ln   x  i    (11.5)

The first two terms on the right side of each equation represent a property change of mixing as 
defined by Eq. (11.1). Equations (11.2) through (11.5) can therefore be written:

  V   E  = ΔV (11.6)   H   E  = ΔH (11.7)

  S   E  = ΔS + R ∑ 
i

      x  i   ln  x  i   (11.8)   G   E  = ΔG − RT ∑ 
i

      x  i   ln  x  i   (11.9)

 Δ V   id  = 0 (11.10)  Δ H   id  = 0 (11.11)

 Δ S   id  = − R ∑ 
i

      x  i   ln  x  i   (11.12)  Δ G   id  = RT ∑ 
i

      x  i   ln  x  i   (11.13)

For the special case of an ideal solution, each excess property is zero, and these equations 
become:

These equations are alternative forms of Eqs. (10.79) through (10.82). They also apply 
to the ideal-gas-state mixture as a special case of an ideal solution.

Equations (11.6) through (11.9) show that excess properties and property changes of 
mixing are readily calculated from one another. Although historically property changes of 
mixing were introduced first, because of their direct relation to experiment, excess  properties 
fit more readily into the theoretical framework of solution thermodynamics. Because of their 
direct measurability, ΔV and ΔH are the property changes of mixing of greatest interest. 
 Moreover, they are identical with the corresponding excess properties VE and HE.

Figure 11.2 shows excess enthalpies HE for the ethanol/water system as a function of 
composition for several temperatures ranging from 30°C to 110°C. For the lower temperatures 
the behavior is exothermic, with heat removal required for isothermal mixing. For the higher 
temperatures the behavior is endothermic, with heat addition required for isothermal mixing. 
At intermediate temperatures, regions of both exothermic and endothermic behavior appear. 
Data of this sort are often represented by polynomial equations in mole fraction, multiplied by 
x1x2 to ensure that the excess property goes to zero for both pure components.
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412 CHAPTER 11. Mixing Processes

Figure 11.3 illustrates the composition dependence of ΔG, ΔH, and TΔS for six binary 
liquid systems at 50°C and atmospheric pressure. The related quantities GE, HE, and TSE were 
shown for the same systems in Fig. 10.3. As with excess properties, property changes of mix-
ing exhibit diverse behavior, but most systems have common features:

 1. Each ΔM is zero for a pure species.
 2. The Gibbs energy change of mixing ΔG is always negative.
 3. The entropy change of mixing ΔS is positive.

Feature 1 follows from Eq. (11.1). Feature 2 is a consequence of the requirement that the 
Gibbs energy be a minimum for an equilibrium state at specified T and P, as discussed in  
Sec. 12.4. Feature 3 reflects the fact that negative entropy changes of mixing are unusual; it is 
not a consequence of the second law of thermodynamics, which merely forbids negative 
entropy changes of mixing for systems isolated from their surroundings. For constant T and P, 
ΔS is observed to be negative for certain special classes of mixtures, none of which is 
 represented in Fig. 11.3.

For a binary system the partial excess properties are given by Eqs. (10.15) and (10.16) 
with M = ME. Thus,

Figure 11.2: Excess enthalpies for ethanol/
water. For this system HE changes rapidly 
with temperature, going from negative at 
lower  temperatures to positive at the higher 
 temperatures, exhibiting the full range of 
behavior for excess-property data.
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   M ¯    1  E  =  M   E  +   (  1 −  x  1   )     
d M   E 

 ____ 
d  x  1     (11.14)    M ¯    2  E  =  M   E  −   x  1     

d M   E 
 ____ 

d  x  1     (11.15)
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11.1. Property Changes of Mixing 413

Example 11.1
The heat of mixing for liquid species 1 and 2 at fixed T and P, measured calorimetri-
cally, is represented in some appropriate units by the equation

  ΔH =  x  1   x  2     (  40 x  1   + 20 x  2   )      

Determine expressions for    H ¯   1  E   and    H ¯   2  E   as functions of x1.

Solution 11.1
We first recognize that the heat of mixing is equal to the excess enthalpy of the 
mixture [Eq. (11.7)], so we have

   H   E  =  x  1   x  2     (  40 x  1   + 20 x  2   )     

Elimination of x2 in favor of x1 and differentiation of the result provides the two equations:

Figure 11.3: Property changes of mixing at 50°C for six binary liquid systems:  
(a) chloroform(1)/n-heptane(2); (b) acetone(1)/methanol(2); (c) acetone(1)/chloroform(2);  
(d) ethanol(1)/n-heptane(2); (e) ethanol(1)/chloroform(2); (f) ethanol(1)/water(2).
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414 CHAPTER 11. Mixing Processes

Substitution into both Eqs. (11.14) and (11.15) with HE replacing ME leads to:

    H ¯    1  E  = 20 − 60 x 1  2  + 40 x 1  3  and   H ¯    2  E  = 40 x 1  3   

Example 11.2
Property changes of mixing and excess properties are related. Show how Figs. 10.3 
and 11.3 are generated from correlated data for ΔH(x) and GE(x).

Solution 11.2
With ΔH(x) and GE(x) given, Eqs. (11.7) and (10.86) provide:

   H   E  = ΔH and  S   E  =   
 H   E  −  G   E 

 _______ 
T

    

These allow completion of Fig. 10.3. Property changes of mixing ΔS and ΔG 
 follow from SE and GE by applying Eqs. (11.8) and (11.9):

  ΔS =  S   E  − R  ∑ 
i

      x  i   ln x  i    ΔG =  G   E  + RT   ∑ 
i

      x  i   ln  x  i    

These permit the completion of Fig. 11.3.

11.2 HEAT EFFECTS OF MIXING PROCESSES

The heat of mixing, defined in accord with Eq. (11.1), is:

  ΔH = H −  ∑ 
i

      x  i    H  i    (11.16)

Equation (11.16) gives the enthalpy change when pure species are mixed at constant T and P 
to form one mole (or a unit mass) of solution. Data are most commonly available for binary 
systems, for which Eq. (11.16) solved for H becomes:

  H =  x  1    H  1   +  x  2    H  2   + ΔH  (11.17)

This equation enables calculation of the enthalpies of binary mixtures from enthalpy data for 
pure species 1 and 2 and heats of mixing.

Data for heats of mixing are usually available for a single temperature or a limited num-
ber of temperatures. If the heat capacities of the pure species and of the mixture are known, 
heats of mixing are calculated for other temperatures by a method analogous to the calculation 
of standard heats of reaction at elevated temperatures from the value at 25°C.

Heats of mixing are similar in many ways to heats of reaction. When a chemical reaction 
occurs, the energy of the products is different from the energy of the reactants at the same  
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11.2. Heat Effects of Mixing Processes 415

T and P because of the chemical rearrangement of the constituent atoms. When a mixture is 
formed, a similar energy change occurs because of changes in the interactions between mole-
cules. That is, heats of reaction arise from changes in intramolecular interactions while heats 
of mixing arise from changes in intermolecular interactions. Intramolecular interactions 
(chemical bonds) are generally much stronger than intermolecular interactions (arising from 
electrostatic interactions, van der Waals forces, etc.) and as a result, heats of reaction are usu-
ally much larger in magnitude than heats of mixing. Large values of heats of mixing are 
observed when the intermolecular interactions in the solution are much different than in the 
pure components. Examples include systems with hydrogen bonding interactions and systems 
containing electrolytes that dissociate in solution.

Enthalpy/Concentration Diagrams
An enthalpy/concentration (H–x) diagram is a useful way to represent enthalpy data for binary 
solutions. It plots enthalpy as a function of composition (mole fraction or mass fraction of one 
species) for a series of isotherms, all at a fixed pressure (usually 1 standard atmosphere). 
Equation (11.17) solved for H is directly applicable to each isotherm:

  H =  x  1    H  1   +  x  2    H  2   + ΔH  

Values of H for the solution depend not only on heats of mixing, but also on enthalpies H1 and 
H2 of the pure species. Once these are established for each isotherm, H is fixed for all solu-
tions because ΔH has unique and measurable values for all compositions and temperatures. 
Because absolute enthalpies are unknown, arbitrary zero-point conditions are chosen for the 
enthalpies of the pure species, and this establishes the basis of the diagram. The preparation of 
a complete H–x diagram with many isotherms is a major task, and relatively few have been 
published.2 Figure 11.4 presents a simplified H–x diagram for sulfuric acid(1)/water(2) mix-
tures, with only three isotherms.3 The basis for this diagram is H = 0 for the pure species at 
298.15 K, and both the composition and enthalpy are on a mass basis.

A useful feature of an enthalpy/concentration diagram is that all solutions formed by 
adiabatic mixing of two other solutions are represented by points lying on a straight line con-
necting the points that represent the initial solutions. This is shown as follows.

Let subscripts a and b identify two initial binary solutions, consisting of na and nb moles 
or unit masses, respectively. Let subscript c identify the final solution obtained by adiabatic 
mixing of solutions a and b, for which ΔHt = Q = 0, and the total energy balance is:

    (   n  a   +  n  b   )    H  c   =  n  a    H  a   +  n  b    H  b    

On an enthalpy/concentration diagram these solutions are represented by points desig-
nated a, b, and c, and our purpose is to show that point c lies on the straight line that passes 
through points a and b. For a line that passes through both points a and b,

   H  a   = m  x  1a   + k  and   H  b   = m  x  1b   + k  

2For examples, see D. Green and R. H. Perry, eds., Perry’s Chemical Engineers’ Handbook, 8th ed., pp. 2–220, 
2–267, 2–285, 2–323, 2–403, 2–409, McGraw-Hill, New York, 2008. Only the first is in SI units.

3Constructed using data from F. Zeleznik, J. Phys. Chem. Ref. Data, vol. 20, pp. 1157–1200. 1991. Note that much 
of the 250 K isotherm is actually below the freezing curve and therefore represents a metastable liquid solution.
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416 CHAPTER 11. Mixing Processes

Substituting these expressions into the preceding material balance yields:

   
  (   n  a   +  n  b   )    H  c    

=  n  a    (  m  x  1a   + k )    +  n  b    (  m x  1b   + k )   
     

 
  

= m  (   n  a    x  1a   +  n  b    x  1b   )    +   (   n  a   +  n  b   )   k
   

By a material balance for species 1,

    (   n  a   +  n  b   )    x  1c   =  n  a    x  1a   +  n  b    x  1b    

Combining this equation with the preceding one gives, after reduction:

   H  c   = m  x  1c   + k  

showing that point c lies on the same straight line as points a and b. This feature can be used 
to graphically estimate the final temperature when two solutions are mixed adiabatically. Such 
a graphical estimation is illustrated in Fig. 11.4 for the process of mixing 10 wt.% H2SO4 at 
300 K (point a) with pure H2SO4 at 300 K (point b) in a 3.5:1 ratio, to yield a 30 wt% H2SO4 
solution (point c). The graphical construction shows that after adiabatic mixing, the tempera-
ture will be nearly 350 K. In this system, the enthalpy of mixing is negative (mixing is exother-
mic), so at constant enthalpy, the temperature increases upon mixing.

Because the pure-species enthalpies H1 and H2 are arbitrary, when only a single iso-
therm is considered, they can be set equal to zero, in which case Eq. (11.17) becomes:

  H = ΔH =  H   E   

An HE–x diagram then serves as an enthalpy/concentration diagram for a single tem-
perature. There are many such single-temperature diagrams in the literature, and they are 
 usually accompanied by an equation that represents the curve. An example is the diagram of 
Fig. 11.5, showing data for sulfuric acid/water at 25°C. Again,   x   H  2  S O  4      is the mass fraction of 
sulfuric acid and HE is on a unit-mass basis.

Figure 11.4: H–x diagram for 
H2SO4(1)/H2O(2). The basis for the 
diagram is H = 0 for the pure species 
at 298.15 K.
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11.2. Heat Effects of Mixing Processes 417

The isotherm shown in Fig. 11.5 is represented by the equation

   H   E  =   (  − 735.3 − 824.5  x  1   + 195.2  x 1  2  − 914.6  x 1  3  )    x  1    (  1 −  x  1   )     (A)

The numbers adjacent to points on the graph come from this equation. The form of this 
equation is typical of models for excess properties: a polynomial in composition  multiplied by 
x1 and x2. The x1x2 product ensures that the excess property goes to zero for both pure compo-
nents. Alone, it would take the form of a symmetric parabola with a maximum or minimum at 
x1 = 0.5. Multiplication by a polynomial in x1 scales and biases the symmetric parabola.

A simple problem is to find the quantity of heat that must be removed to restore the ini-
tial temperature (25°C) when pure water is mixed continuously with a 90% aqueous solution 
of sulfuric acid to dilute it to 50%. The calculation is made with the usual material and energy 
balances. We take as a basis 1 kg of 50% acid produced. If ma is the mass of 90% acid, a mass 
balance on the acid is 0.9ma = 0.5, from which ma = 0.5556. The energy balance for this pro-
cess, assuming negligible kinetic- and potential-energy changes, is the difference between the 
final and initial enthalpies:

  Q =  H f  E  − ( H a  E  )  (   m  a   )    = − 303.3 −   (  −178.7 )     (  0.5556 )    = − 204.0 kJ  

where the enthalpy values are shown on Fig. 11.5.
An alternative procedure is represented by the two straight lines on Fig. 11.5, the first for 

adiabatic mixing of pure water with the 90% aqueous solution of acid to form a 50% solution. 
The enthalpy of this solution lies at   x   H  2  SO4   = 0.5  on the line connecting the points representing 
the unmixed species. This line is a direct proportionality, from which   H   E  =   (  − 178.7 / 0.9 )     (  0.5 )    =  
− 99.3 . The temperature at this point is well above 25°C, and the vertical line represents cooling 
to 25°C, for which  Q = Δ H   E  = − 303.3 −   (  −99.3 )    = − 204.0 kJ . Because the initial step is adi-
abatic, this cooling step gives the total heat transfer for the process, indicating that 204 kJ⋅kg− 1 
are removed from the system. The temperature rise upon adiabatic mixing cannot be obtained 
directly from a diagram like this with a single isotherm but can be estimated if one knows the 
approximate heat capacity of the final solution.

Figure 11.5: Excess enthalpies for 
H2SO4(1)/H2O(2) at 25°C.

xH2SO4

H
E  k

J·
kg

– 1

–99.3

–303.3

–350

–300

–250

–200

–1 50

–1 00

–50

0

0 0.2 0.4 0.6 0.8 1

–178.7

www.konkur.in

Telegram: @uni_k



418 CHAPTER 11. Mixing Processes

Equation (A) can be used in Eqs. (11.14) and (11.15) to generate values of the partial excess 
enthalpies    H ¯     H  2   SO  4    E    and    H ¯     H  2  O  E    at 25°C. This produces the results shown in Fig. 11.6, where all 
values are on a unit-mass basis. The two curves are far from symmetric, a consequence of the 
skewed nature of the HE curve. At high concentrations of H2SO4,    H ¯     H  2  O  E    reaches high values, in 
fact the infinite-dilution value approaches the latent heat of water. This is the reason that when 
water is added to pure sulfuric acid, a very high rate of heat removal is required for isothermal 
mixing. Under usual circumstances the heat-transfer rate is far from adequate, and the resulting 
temperature rise causes local boiling and sputtering. This problem does not arise when acid is 
added to water, because    H ¯     H  2   SO  4    E    is less than a third the infinite- dilution value of water.

Figure 11.6: Partial excess enthalpies 
for H2SO4(1)/H2O(2) at 25°C.
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Heats of Solution
When solids or gases are dissolved in liquids, the heat effect is usually called a heat of solution 
and is based on the dissolution of 1 mol of solute. If species 1 is the solute, then x1 is the moles 
of solute per mole of solution. Because ΔH is the heat effect per mole of solution, ΔH/x1 is the 
heat effect per mole of solute. Thus,

   ΔH ˜   =   
ΔH

 ____  x  1      

where   ΔH ˜    is the heat of solution on the basis of one mole of solute.
Solution processes are conveniently represented by physical-change equations analo-

gous to chemical-reaction equations. When 1 mol of LiCl(s) is mixed with 12 mol of H2O, the 
process is represented by:

  LiCl  (  s )    + 12 H  2   O  (  l )    → LiCl  (  12 H  2   O )     

The designation LiCl(12H2O) represents a solution of 1 mol of LiCl dissolved in  
12 mol of H2O. The heat of solution for this process at 25°C and 1 bar is   ΔH ˜   = − 33,614 J .  
This means that the enthalpy of 1 mol of LiCl in 12 mol of H2O is 33,614 J less than the 
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11.2. Heat Effects of Mixing Processes 419

combined enthalpies of 1 mol of pure LiCl(s) and 12 mol of pure H2O(l). Equations for phys-
ical changes such as this are readily combined with equations for chemical reactions. This is 
illustrated in the following example, which incorporates the dissolution process just described.

Example 11.3
Calculate the heat of formation of LiCl in 12 mol of H2O at 25°C.

Solution 11.3
The process implied by the problem statement results in the formation from its 
constituent elements of 1 mol of LiCl in solution in 12 mol of H2O. The equation 
representing this process is obtained as follows:

   
Li +   1 _ 2   Cl  2  

  
→

  
LiCl(s)

  
Δ H  298  °  

  
=

  
− 408,610 J

      LiCl(s) + 12 H  2  O(l)  →  LiCl(12 H  2  O)    ΔH ˜    298    =  −33,614 J      
Li+  1 _ 2   Cl  2   + 12 H  2  O(l)

  
→

  
LiCl(12 H  2  O)

  
 ΔH  298  °  

  
=

  
− 442,224 J

  

The first reaction describes a chemical change resulting in the formation of LiCl(s) 
from its elements, and the enthalpy change accompanying this reaction is the stan-
dard heat of formation of LiCl(s) at 25°C. The second reaction represents the 
physical change resulting in the dissolution of 1 mol of LiCl(s) in 12 mol of 
H2O(l), and the enthalpy change is a heat of solution. The overall enthalpy change, 
−442,224 J, is the heat of formation of LiCl in 12 mol of H2O. This figure does 
not include the heat of formation of the H2O.

Often heats of solution are not reported directly but must be determined from heats of forma-
tion by the reverse of the calculation just illustrated. The following data for the heats of forma-
tion of 1 mol of LiCl are representative:4

    

LiCl  (  s )   

  

LiCl ⋅  H  2   O  (  s )   

   

LiCl ⋅ 2  H  2   O  (  s )   

   

LiCl ⋅ 3  H  2   O  (  s )   

   LiCl in 3 mol   H  2   O   
LiCl in 5 mol   H  2   O

   

LiCl in 8 mol   H  2   O

   

LiCl in 10 mol   H  2   O

   

LiCl in 12 mol   H  2   O

   

LiCl in 15 mol   H  2   O

      

− 408,610 J

  

− 712,580 J

   

− 1,012,650 J

   

− 1,311,300 J

   − 429,366 J  
− 436,805 J

  

− 440,529 J

  

− 441,579 J

  

− 442,224 J

  

− 442,835 J

    

4“The NBS Tables of Chemical Thermodynamic Properties,” J. Phys. Chem. Ref. Data, vol. 11, suppl. 2,  
pp. 2–291 and 2–292, 1982.
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420 CHAPTER 11. Mixing Processes

Heats of solution are readily calculated from these data. The reaction representing the dis-
solution of 1 mol of LiCl(s) in 5 mol of H2O(l) is obtained by combining two formation reactions:

   
   

  Li +    1 _ 2    Cl  2   + 5 H  2   O  (  l )    → LiCl  (  5 H  2   O )   
  

 
  
 Δ  H  298  °  

  
= −436,805 J

     
LiCl  (  s )    → Li +   1 _ 2    Cl  2        

  
 
  

 Δ H  298  °  
  
= 408,610 J

       
______

 
      

LiCl  (  s )    + 5  H  2   O  (  l )    → LiCl  (    5H  2   O )          ΔH ˜    298   = −28,195 J 
   

This calculation can be carried out for each quantity of H2O for which data are given. 
The results are then conveniently represented graphically by a plot of   ΔH ˜   , the heat of solution 
per mole of solute, vs.   n ˜   , the moles of solvent per mole of solute. The composition variable,   
n ˜   ≡  n  2   /  n  1   , is related to x1:

   n ˜   =   
 x  2    (   n  1   +  n  2   )   

 _________  x  1    (   n  1   +  n  2   )      =   
1 −  x  1  

 _____  x  1       and  x  1   =   
1
 _____ 1 +  n ˜      

The following equations therefore relate ΔH, the heat of mixing based on 1 mol of solution, 
and   ΔH ˜   , the heat of solution based on 1 mol of solute:

   ΔH ˜   =   
ΔH

 ____  x  1     = ΔH  (  1 +  n ˜   )    or ΔH =   
 ΔH ˜  

 _____ 1 +  n ˜      

Figure 11.7 shows plots of   ΔH ˜    vs.   n ˜    for LiCl(s) and HCl(g) dissolved in water at 25°C. Data in 
this form are readily applied to the solution of practical problems.

Because water of hydration in solids is an integral part of a chemical compound, the heat 
of formation of a hydrated salt includes the heat of formation of the water of hydration. The 
dissolution of 1 mol of LiCl⋅2H2O(s) in 8 mol of H2O produces a solution containing 1 mol 
LiCl in 10 mol of H2O, represented by LiCl(10H2O). The processes that combine to give this 
overall process are:

   

Li +   1 _ 2    Cl  2   + 10  H  2   O  (  l )   

  

→

  

LiCl  (  10  H  2   O )   

  

 

  

 

  

Δ  H  298  °   = −441,579 J

       
LiCl ⋅ 2  H  2   O  (  s )   

  
→

  
Li +   1 _ 2    Cl  2   + 2  H  2   +  O  2  

  
 
  
 
  

Δ  H  298  °   = 1,012,650 J
      

2  H  2   +  O  2  
  
→

  
2  H  2   O  (  l )   

  
 
  
 
  

Δ  H  298  °   =   (  2 )     (  −285,830 )    J
        

LiCl ⋅ 2  H  2   O  (  s )    +  8H  2   O  (  l )   

  

→

  

LiCl  (  10  H  2   O )   

  

 

  

 

  

    ΔH ˜    298   = −589 J

   

Example 11.4
A single-effect evaporator operating at atmospheric pressure concentrates a 15% 
(by weight) LiCl solution to 40%. The feed enters the evaporator at a rate of 2 kg·s–1 
at 25°C. The normal boiling point of a 40% LiCl solution is about 132°C, and its spe-
cific heat is estimated as 2.72 kJ·kg−1·°C−1. What is the heat-transfer rate in the 
evaporator?
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422 CHAPTER 11. Mixing Processes

Solution 11.4
The 2 kg of 15% LiCl solution entering the evaporator each second consists of 
0.30 kg LiCl and 1.70 kg H2O. A material balance shows that 1.25 kg of H2O is 
evaporated and that 0.75 kg of 40% LiCl solution is produced. The process is rep-
resented by Fig. 11.8.

Figure 11.8: Process of Example 11.4.

1.25 kg superheated
steam at 132 C and

1 atm

0.75 kg 40% LiCI
at 132 C

Feed at 25 C
2 kg 15% LiCI

Q

The energy balance for this flow process is ΔHt = Q, where ΔHt is the total 
enthalpy of the product streams minus the total enthalpy of the feed stream. Thus 
the problem reduces to finding ΔHt from available data. Because enthalpy is a 
state function, the computational path for ΔHt is immaterial and is selected for 
convenience, independent of the actual path followed in the evaporator. The data 
available are heats of solution of LiCl in H2O at 25°C (Fig. 11.7), and the calcula-
tional path shown in Fig. 11.9 allows their direct use.

The enthalpy changes for the individual steps shown in Fig. 11.9 must add to 
give the total enthalpy change:

  Δ H   t  = Δ H  a  t   + Δ H  b  t   + Δ H  c  t   + Δ H  d  t    

The individual enthalpy changes are determined as follows:

∙   Δ  H  a  t   : This step involves the separation of 2 kg of a 15% LiCl solution into its 
pure constituents at 25°C. For this “unmixing” process the heat effect is the 
same as for the corresponding mixing process but is of opposite sign. For 2 kg 
of 15% LiCl solution, the moles of material entering are:

     
  (  0.15 )     (  2000 )   

 ___________ 42.39   = 7.077 mol LiCl    
  (  0.85 )     (  2000 )   

 ___________ 18.015    = 94.366 mol  H  2  O  

Thus the solution contains 13.33 mol of H2O per mole of LiCl. From Fig. 11.7  
the heat of solution per mole of LiCl for    ~ n    = 13.33 is −33,800 J. For the 
“unmixing” of 2 kg of solution,

  Δ  H  a  t   =   (  +33,800 )     (  7.077 )    = 239,250 J  
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11.2. Heat Effects of Mixing Processes 423

FIGURE 11.9: Computational path for process of Example 11.4.

Mixing of 0.45 kg of
water with 0.30 kg of

LiCl to form a 40%
solution at 25 C

Separation of feed
into pure species
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2 kg feed at 25 C
containing 0.30 kg

LiCl and 1.70 kg H2O

0.75 kg of 40% LiCl
solution at 132 C
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Ha
t

1.70 kg H2O at 25 C

0.45 kg H2O at 25 C
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0.75 kg 40% LiCl at 25 C

Heating of 0.75 kg of
LiCl solution from
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Heating of 1.25 kg of
water from 25 to

132 C at 1 atm

1.25 kg of superheated
steam at 132 C and 1 atm

Hc
t Hd

t

Ht
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∙   Δ H  b  t   : This step results in the mixing of 0.45 kg of water with 0.30 kg of 
LiCl(s) to form a 40% solution at 25°C. This solution comprises:

   0.30 kg → 7.077 mol LiCl   and   0.45 kg → 24.979 mol   H  2   O   

Thus the final solution contains 3.53 mol of H2O per mole of LiCl. From  
Fig. 11.7 the heat of solution per mole of LiCl for    ~ n   = 3.53 is −23,260 J. Therefore,

  Δ H  b  t   =   (  −23,260 )     (  7.077 )    = − 164,630 J  

∙   Δ H  c  t   : For this step 0.75 kg of 40% LiCl solution is heated from 25 to 132°C. 
Because CP is taken to be constant,  Δ  H  c  t   = m  C  P   ΔT ,

  Δ H  c  t   =   (  0.75 )     (  2.72 )     (  132 − 25 )    = 218.28 kJ = 218,280 J  

∙   Δ  H  d  t   : In this step liquid water is vaporized and heated to 132°C. The enthalpy 
change is obtained from the steam tables:

  Δ H  d  t   =   (  1.25 )     (  2740.3 − 104.8 )    = 3294.4 kJ = 3,294,400 J  
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424 CHAPTER 11. Mixing Processes

Adding the individual enthalpy changes gives:

   
ΔH

  
=

  
Δ  H  a  t   + Δ  H  b  t   + Δ  H  c  t   + Δ  H  d  t  

    
 
  

=
  
239,250 − 164,630 + 218,280 + 3,294,400 = 3,587,300 J

   

The required heat-transfer rate is therefore  3587.3 kJ⋅  s   −1  . Although the enthalpy 
of vaporization of water dominates the overall heat requirement, the heat effect 
associated with the difference in heat of solution at the initial and final concentra-
tion is not negligible.

11.3 SYNOPSIS

After studying this chapter, including the end-of-chapter problems, one should be able to:

 ∙ Define, in words and in equations, standard property changes of mixing
 ∙ Compute excess properties and partial excess properties from corresponding property 

changes of mixing
 ∙ Interpret and apply enthalpy-concentration diagrams
 ∙ Understand conventions for tabulating heats of solution and use them to compute heat 

effects of mixing and dissolution processes

11.4 PROBLEMS

 11.1. At 25°C and atmospheric pressure the volume change of mixing of binary liquid mix-
tures of species 1 and 2 is given by the equation

  ΔV =  x  1    x  2    (  45  x  1   + 25  x  2   )     

  where ΔV is in cm3·mol−1. At these conditions, V1 = 110 and V2 = 90 cm3·mol−1. 
Determine the partial molar volumes    V ¯    1    and    V ¯    2    in a mixture containing 40 mol-% of 
species 1 at the given conditions.

 11.2. The volume change of mixing (cm3·mol−1) for the system ethanol(1)/methyl butyl 
ether(2) at 25°C is given by the equation

  ΔV =  x  1    x  2   [ − 1.026 + 0.0220  (   x  1   −  x  2   )    ] 

  Given that V1 = 58.63 and V2 = 118.46 cm3·mol−1, what volume of mixture is formed 
when 750 cm3 of pure species 1 is mixed with 1500 cm3 of species 2 at 25°C? What 
would be the volume if an ideal solution were formed?

 11.3. If LiCl⋅2H2O(s) and H2O(l) are mixed isothermally at 25°C to form a solution contain-
ing 10 mol of water for each mole of LiCl, what is the heat effect per mole of solution?
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11.4. Problems 425

 11.4. If a liquid solution of HCl in water, containing 1 mol of HCl and 4.5 mol of H2O, 
absorbs an additional 1 mol of HCl(g) at a constant temperature of 25°C, what is the 
heat effect?

 11.5. What is the heat effect when 20 kg of LiCl(s) is added to 125 kg of an aqueous solu-
tion containing 10 wt-% LiCl in an isothermal process at 25°C?

 11.6. An LiCl/H2O solution at 25°C is made by adiabatically mixing cool water at 10°C 
with a 20 mol-% LiCl/H2O solution at 25°C. What is the composition of the solution 
formed?

 11.7. A 20 mol-% LiCl/H2O solution at 25°C is made by mixing a 25 mol-% LiCl/H2O solu-
tion at 25°C with chilled water at 5°C. What is the heat effect in joules per mole of 
final solution?

 11.8. A 20 mol-% LiCl/H2O solution is made by six different mixing processes:

 (a) Mix LiCl(s) with H2O(l).
 (b) Mix H2O(l) with a 25 mol-% LiCl/H2O solution.
 (c) Mix LiCl ⋅H2O(s) with H2O(l).
 (d) Mix LiCl(s) with a 10 mol-% LiCl/H2O solution.
 (e) Mix a 25 mol-% LiCl/H2O solution with a 10 mol-% LiCl/H2O solution.
 (f) Mix LiCl⋅H2O(s) with a 10 mol-% LiCl/H2O solution.

  Mixing in all cases is isothermal, at 25°C. For each part determine the heat effect in 
J·mol−1 of final solution.

 11.9. A stream of 12 kg·s−1 of Cu(NO3)2⋅6H2O and a stream of 15 kg·s−1 of water, both at 
25°C, are fed to a tank where mixing takes place. The resulting solution passes through 
a heat exchanger that adjusts its temperature to 25°C. What is the rate of heat transfer 
in the exchanger?

 ∙ For  Cu   (    NO  3   )    2  ,  Δ  H   f  298    °   = −302.9 kJ. 
 ∙ For  Cu   (    NO  3   )    2   ⋅ 6  H  2  O, Δ H   f  298    °   = − 2110.8 kJ. 
 ∙ The heat of solution of 1 mol of Cu(NO3)2 in water at 25°C is −47.84 kJ, indepen-

dent of   n ˜    for the concentrations of interest here.

 11.10. A liquid solution of LiCl in water at 25°C contains 1 mol of LiCl and 7 mol of water. 
If 1 mol of LiCl⋅3H2O(s) is dissolved isothermally in this solution, what is the  
heat effect?

 11.11. You need to produce an aqueous LiCl solution by mixing LiCl⋅2H2O(s) with water. 
The mixing occurs both adiabatically and without change in temperature at 25°C. 
Determine the mole fraction of LiCl in the final solution.
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 11.12. Data from the Bureau of Standards (J. Phys. Chem. Ref. Data, vol. 11, suppl. 2, 1982) 
include the following heats of formation for 1 mol of CaCl2 in water at 25°C:

   

 CaCl  2    in 10 mol   H  2   O

  

 − 862.74 kJ

     

 CaCl  2    in 15 mol   H  2   O

  

 − 867.85 kJ

     

 CaCl  2    in 20 mol   H  2   O

  

 − 870.06 kJ

     
 CaCl  2    in 25 mol   H  2   O

  
 − 871.07 kJ

      CaCl  2    in 50 mol   H  2   O   − 872.91 kJ     
 CaCl  2    in 100 mol   H  2   O

  
 − 873.82 kJ

     

 CaCl  2    in 300 mol   H  2   O

  

 − 874.79 kJ

     

 CaCl  2    in 500 mol   H  2   O

  

 − 875.13 kJ

     

 CaCl  2    in 1000 mol   H  2   O

  

 − 875.54 kJ

   

  From these data prepare a plot of   ΔH ˜   , the heat of solution at 25°C of CaCl2 in water, 
vs.   n ˜   , the mole ratio of water to CaCl2.

 11.13. A liquid solution contains 1 mol of CaCl2 and 25 mol of water. Using data from  
Prob. 11.12, determine the heat effect when an additional 1 mol of CaCl2 is dissolved 
isothermally in this solution.

 11.14. Solid CaCl2⋅6H2O and liquid water at 25°C are mixed adiabatically in a continuous 
process to form a brine of 15 wt-% CaCl2. Using data from Prob. 11.12, determine the 
temperature of the brine solution formed. The specific heat of a 15 wt-% aqueous 
CaCl2 solution at 25°C is 3.28 kJ·kg−1·°C−1.

 11.15. Consider a plot of   ΔH ˜   , the heat of solution based on 1 mol of solute (species 1), vs.   n ˜   , 
the moles of solvent per mole of solute, at constant T and P. Figure 11.4 is an example 
of such a plot, except that the plot considered here has a linear rather than logarithmic 
scale along the abscissa. Let a tangent drawn to the   ΔH ˜    vs.   n ˜    curve intercept the ordi-
nate at point I.

 (a) Prove that the slope of the tangent at a particular point is equal to the partial excess 
enthalpy of the solvent in a solution with the composition represented by   n ˜  ;  i.e., 
prove that:

    
d ΔH ˜  

 _____ 
d n ˜     =   H ¯    2  E   

 (b) Prove that the intercept I equals the partial excess enthalpy of the solute in the 
same solution; i.e., prove that:

  I =   H ¯    1  E   

 11.16. Suppose that ΔH for a particular solute(1)/solvent(2) system is represented by the 
equation:

  ΔH =  x  1    x  2    (    A  21    x  1   +  A  12    x  2   )     (A)
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  Relate the behavior of a plot of   ΔH ˜    vs.   n ˜    to the features of this equation. Specifically, 
rewrite Eq. (A) in the form   ΔH ˜     (   n ˜   )    , and then show that:

 (a)     lim  
 n ¯  →0

     ΔH ˜   = 0. 

 (b)     lim  
 n ¯  →∞

     ΔH ˜   =  A  12   .

 (c)     lim  
  ~ n →0

    d ̃  ΔH  / d n ˜   =  A  21   .

 11.17. If the heat of mixing at temperature t0 is ΔH0 and if the heat of mixing of the same 
solution at temperature t is ΔH, show that the two heats of mixing are related by:

  ΔH = Δ H  0   +  ∫ 
 t  0  

  
t

 Δ C  P      dt  

  where ΔCP is the heat-capacity change of mixing, defined by Eq. (11.1).

Heat of solution data for Probs. 11.18 through 11.30 can be obtained from Fig. 11.4.

 11.18. What is the heat effect when 75 kg of H2SO4 is mixed with 175 kg of an aqueous solu-
tion containing 25 wt-% H2SO4 in an isothermal process at 300 K?

 11.19. For a 50 wt-% aqueous solution of H2SO4 at 350 K, what is the excess enthalpy HE in 
kJ·kg−1?

 11.20. A single-effect evaporator concentrates a 20 wt-% aqueous solution of H2SO4 to  
70 wt-%. The feed rate is 15 kg·s−1, and the feed temperature is 300 K. The evaporator 
is maintained at an absolute pressure of 10 kPa, at which pressure the boiling point of 
70 wt-% H2SO4 is 102°C. What is the heat-transfer rate in the evaporator?

 11.21. What is the heat effect when sufficient SO3(l) at 25°C is reacted with H2O at 25°C to 
give a 50 wt-% H2SO4 solution at 60°C?

 11.22. A mass of 70 kg of 15 wt-% solution of H2SO4 in water at 70°C is mixed at atmo-
spheric pressure with 110 kg of 80 wt-% H2SO4 at 38°C. During the process heat in 
the amount of 20,000 kJ is transferred from the system. Determine the temperature of 
the product solution.

 11.23. An insulated tank, open to the atmosphere, contains 750 kg of 40 wt-% sulfuric acid at 
290 K. It is heated to 350 K by injection of saturated steam at 1 bar, which fully con-
denses in the process. How much steam is required, and what is the final concentration 
of H2SO4 in the tank?

 11.24. Saturated steam at 3 bar is throttled to 1 bar and mixed adiabatically with (and con-
densed by) 45 wt-% sulfuric acid at 300 K in a flow process that raises the temperature 
of the acid to 350 K. How much steam is required for each pound mass of entering 
acid, and what is the concentration of the hot acid?

 11.25. For a 35 wt-% aqueous solution of H2SO4 at 300 K, what is the heat of mixing ΔH in 
kJ·kg−1?

 11.26. If pure liquid H2SO4 at 300 K is added adiabatically to pure liquid water at 300 K to 
form a 40 wt-% solution, what is the final temperature of the solution?
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428 CHAPTER 11. Mixing Processes

 11.27. A liquid solution containing 1 kg mol H2SO4 and 7 kg mol H2O at 300 K absorbs  
0.5 kg mol of SO3(g), also at 300 K, forming a more concentrated sulfuric acid  
solution. If the process occurs isothermally, determine the heat transferred.

 11.28. Determine the heat of mixing ΔH of sulfuric acid in water and the partial specific 
enthalpies of H2SO4 and H2O for a solution containing 65 wt-% H2SO4 at 300 K.

 11.29. It is proposed to cool a stream of 75 wt-% sulfuric acid solution at 330 K by diluting it 
with chilled water at 280 K. Determine the amount of water that must be added to  
1 kg of 75 wt-% acid before cooling below 330 K actually occurs.

 11.30. The following liquids, all at atmospheric pressure and 300 K, are mixed: 25 kg of pure 
water, 40 kg of pure sulfuric acid, and 75 kg of 25 wt-% sulfuric acid.

 (a) How much heat is liberated if mixing is isothermal at 300 K?
 (b) The mixing process is carried out in two steps: First, the pure sulfuric acid and the 

25 wt-% solution are mixed, and the total heat of part (a) is extracted; second, 
the pure water is added adiabatically. What is the temperature of the intermediate 
solution formed in the first step?

 11.31. A large quantity of very dilute aqueous NaOH solution is neutralized by addition of 
the stoichiometric amount of a 10 mol-% aqueous HCl solution. Estimate the heat 
effect per mole of NaOH neutralized if the tank is maintained at 25°C and 1(atm) and 
the neutralization reaction goes to completion. Data:

 ∙ For NaCl,    lim  
  ~ n →∞

   ΔH ˜   = 3.88   kJ·mol   −1  

 ∙ For NaOH,    lim  
  ~ n →∞

   ΔH ˜   = − 44.50   kJ·mol   −1  

 11.32. A large quantity of very dilute aqueous HCl solution is neutralized by the addition of 
the stoichiometric amount of a 10 mol-% aqueous NaOH solution. Estimate the heat 
effect per mole of HCl neutralized if the tank is maintained at 25°C and 1(atm) and the 
neutralization reaction goes to completion.

 ∙ For NaOH(9H2O),   ΔH ˜   =  45.26 kJ·mol   −1  

 ∙ For NaCl,    lim  
  ~ n →∞

   ̃  ΔH  = 3.88   kJ·mol   −1  

 11.33. (a)  Making use of Eqs. (10.15) and (10.16), written for excess properties, show for a 
binary system that:

     M ¯    1  E  =  x 2  2  (X +  x  1     
dX

 ____ 
d x  1    )   and    M ¯    2  E  =  x 1  2  (X −  x  2     

dX
 ____ 

d x  1    )    

  where

  X ≡   
 M   E 

 ____  x  1    x  2      
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 (b) Plot on a single graph the values of HE/(x1x2),    H ¯    1  E  , and    H ¯    2  E   determined from the 
following heat-of-mixing data for the H2SO4(1)/H2O(2) system at 25°C:

  Explain with reference to these plots why sulfuric acid is diluted by adding acid to 
water rather than water to acid.

 11.34. A 90 wt-% aqueous H2SO4 solution at 25°C is added over a period of 6 hours to a tank 
containing 4000 kg of pure water also at 25°C. The final concentration of acid in the 
tank is 50 wt-%. The contents of the tank are cooled continuously to maintain a con-
stant temperature of 25°C. Because the cooling system is designed for a constant rate 
of heat transfer, this requires the addition of acid at a variable rate. Determine the 
instantaneous 90%-acid rate as a function of time, and plot this rate (kg·s−1) vs. time. 
The data of the preceding problem can be fit to a cubic equation expressing HE/(x1x2) 
as a function of x1, and the equations of the preceding problem then provide expres-
sions for    H ¯    1  E   and    H ¯    2  E  .

 11.35. Develop Eq. (11.12) for ΔSid by appropriate application of Eqs. (5.36) and (5.37) to a 
mixing process.

 11.36. Ten thousand (10,000) kg·h−1 of an 80 wt-% H2SO4 solution in water at 300 K is con-
tinuously diluted with chilled water at 280 K to yield a stream containing 50 wt-% 
H2SO4 at 330 K.

 (a) What is the mass flow rate of chilled water in kg·h−1?
 (b) What is the rate of heat transfer in kJ·h−1 for the mixing process? Is heat added or 

removed?
 (c) If the mixing occurred adiabatically, what would be the temperature of the prod-

uct stream? Assume here the same inlet conditions and the same product compo-
sition as for part (b).

 Heat of solution data is available in Fig. 11.4.

x1 −ΔH/kJ·kg−1

0.10  73.27
0.20 144.21
0.30 208.64
0.40 262.83
0.50 302,84
0.60 323.31
0.70 320.98
0.80 279.58
0.85 237.25
0.90 178.87
0.95 100.71

x1 = mass fraction H2SO4
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Chapter 12

Phase Equilibrium:  
Introduction

The analysis of phase equilibrium provides the primary motivation for developing the frame-
work of solution thermodynamics and for creating models of mixture properties to be used 
with this framework. As a practical matter, preferential segregation of chemical species in a 
particular phase provides the basis for nearly all industrial processes for separating and purify-
ing materials, from the distillation of petroleum or alcoholic beverages to the crystallization of 
pharmaceutical compounds to the capture of carbon dioxide from power plant effluent. As a 
result, an ability to analyze phase equilibrium problems is one of the core competencies 
expected of a chemical engineer. The present chapter focuses on the qualitative description of 
equilibrium between fluid phases. Chapter 13 then presents the tools required for quantitative 
analysis of vapor/liquid equilibrium. Chapter 15 treats other types of phase equilibrium in 
greater detail. Thus, our goals in this chapter are to:

 ∙ Describe the nature of phase equilibrium qualitatively
 ∙ Introduce Duhem’s theorem, which constrains the extensive state of a system much like 

the phase rule constrains its intensive state
 ∙ Interpret various types of phase diagrams that graphically illustrate relations between 

phases in vapor/liquid equilibrium (VLE)
 ∙ Show that minimization of overall Gibbs energy is a criterion for equilibrium at fixed  

T and P
 ∙ Qualitatively discuss liquid/liquid equilibrium (LLE) and vapor/liquid/liquid equilib-

rium (VLLE) and diagrams representing them

12.1 THE NATURE OF EQUILIBRIUM

Equilibrium is a condition in which no changes occur in the macroscopic properties of an iso-
lated system with time. At equilibrium, all potentials that could cause change are exactly 
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12.2. The Phase Rule and Duhem’s Theorem 431

balanced, so no driving force exists for any change in the system. An isolated system consist-
ing of liquid and vapor phases in intimate contact eventually reaches a final state in which no 
tendency exists for change to occur within the system. The temperature, pressure, and phase 
compositions reach final values that remain fixed. The system is in equilibrium. Nevertheless, 
at the microscopic level, conditions are not static. The molecules comprising a phase at a 
given instant are not the same molecules that later occupy the same phase. Molecules con-
stantly pass from one phase to the other. However, the average rate of passage of molecules is 
the same in both directions, and no net interphase transfer of material occurs. In engineering 
practice, the assumption of equilibrium is justified when it leads to results of satisfactory accu-
racy. For example, in the reboiler for a distillation column, equilibrium between vapor and 
liquid phases is commonly assumed. For finite vaporization rates this is an approximation, but 
for many purposes, the errors introduced by this approximation are negligible.

12.2 THE PHASE RULE AND DUHEM’S THEOREM

The phase rule for nonreacting systems, presented without proof in Sec. 3.1, results from a rule 
of algebra. The number of variables that can be independently fixed in a system at equilibrium is 
the difference between the total number of variables that characterize the intensive state of the 
system and the number of independent equations that can be written relating those variables.

The intensive state of a PVT system containing N chemical species and π phases in equilib-
rium is characterized by its temperature T, pressure P, and N − 1 mole fractions1 for each phase. 
The number of these phase-rule variables is 2 + (N − 1)(π). The masses or amounts of the phases 
are not phase-rule variables because they have no influence on the intensive state of the system.

As shown later in this chapter, an independent phase-equilibrium equation can be writ-
ten connecting intensive variables for each of the N species for each pair of phases present. 
These equations reflect the equilibrium criterion that the chemical potential or fugacity of 
each species be the same in each phase. Thus, the number of independent phase-equilibrium 
equations is (π − 1)(N). The difference between the number of phase-rule variables and the 
number of independent equations connecting them is the number of variables that can be inde-
pendently fixed. Called the degrees of freedom of the system F, the number is:

F = 2 + (N − 1)(π) − (π − 1)(N )

Upon reduction, this becomes the phase rule:

   F = 2 − π + N   (3.1)

Duhem’s theorem is another rule, similar to the phase rule, that applies to the extensive 
state of a closed system at equilibrium. When both the extensive state and the intensive state 
of the system are fixed, the state of the system is said to be completely determined, and it is 
characterized not only by the 2 + (N − 1)π intensive phase-rule variables but also by the π 
extensive variables represented by the masses (or mole numbers) of the phases. Thus the total 
number of variables is:
   2 +  (  N − 1 )   π + π = 2 + Nπ   

1Only N − 1 mole fractions are required, because Σi xi = 1.
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For a closed system formed from specified amounts of the chemical species present,  
a material-balance equation can be written for each of the N chemical species, providing N 
more equations. These, in addition to the (π − 1)N phase-equilibrium equations, provide a 
number of independent equations equal to:

   (π − 1) N + N = π N  

The difference between the number of variables and the number of equations is therefore:

  2 + Nπ − π N = 2  

On the basis of this result, Duhem’s theorem is stated as follows:

For any closed system formed from known amounts of prescribed chem-
ical species, the equilibrium state is completely determined when any 
two independent variables are fixed.

The two independent variables subject to specification can, in general, be either intensive or 
extensive. However, the number of independent intensive variables remains subject to the 
phase rule. Thus when F = 1, at least one of the two variables must be extensive, and when  
F = 0, both must be extensive.

12.3 VAPOR/LIQUID EQUILIBRIUM: QUALITATIVE BEHAVIOR

Vapor/liquid equilibrium (VLE) is the state of coexistence of liquid and vapor phases. In this 
qualitative discussion, we limit consideration to systems composed of two chemical species 
because systems of greater complexity cannot be adequately represented graphically.

For a system of two chemical species (N = 2), the phase rule becomes F = 4 − π. 
Because there must be at least one phase (π = 1), the maximum number of phase-rule 
 variables that must be specified to fix the intensive state of the system is three: P, T,  
and one mole (or mass) fraction. All equilibrium states of the system can therefore be repre-
sented in three-dimensional P-T-composition space. Within this space, the states of pairs  
of phases coexisting at equilibrium (F = 4 − 2 = 2) define surfaces. A schematic three- 
dimensional diagram illustrating these surfaces for VLE is shown in Fig. 12.1.

This figure shows schematically the P-T-composition surfaces that contain the equilib-
rium states of saturated vapor and saturated liquid for species 1 and 2 of a binary system.  
Here, species 1 is the “lighter” or more volatile species. The lower surface contains the 
 saturated-vapor states; it is the P-T-y1 surface. The upper surface contains the saturated-liquid 
states; it is the P-T-x1 surface. These surfaces intersect along the lines RKAC1 and UBHC2, 
which represent the vapor pressure-vs.-T curves for pure species 1 and 2. Moreover, the lower 
and upper surfaces form a continuous rounded surface across the top of the diagram between 
C1 and C2 , the critical points of pure species 1 and 2; the critical points of the various mixtures 
of the two species lie along a curve on the rounded edge of the surface between C1 and C2. 
This curve, called the critical locus, is defined by the points at which vapor and liquid phases 
in equilibrium become identical. Because of this geometric feature of an open end (at low T 
and P) and three closed edges formed by the critical locus and the pure component vapor pres-
sure curves, the pair of surfaces is often called the “phase envelope.” No stable single phase 
exists at points within the phase envelope. When T, P, and the overall composition correspond 
to a point inside the envelope, separation into vapor and liquid phases occurs. These have 
 compositions that fall on the lower and upper surface, respectively, at the system T and P.
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Figure 12.1: PTxy  
diagram for vapor/ 
liquid equilibrium.

The subcooled-liquid region lies above the upper surface of Fig. 12.1; the superheated- 
vapor region lies below the lower surface. If one starts with a liquid at conditions repre-
sented by point F and reduces the pressure at constant temperature and composition along 
vertical line FG, the first bubble of vapor appears at point L, which lies on the upper  
surface. Thus, L is called a bubblepoint, and the upper surface is called the bubblepoint sur-
face. The state of the vapor bubble in equilibrium with the liquid at L is represented by a point 
on the lower surface at the temperature and pressure of L. This point is indicated by V. Line LV 
is an example of a tie line, which connects points representing phases in equilibrium.

As the pressure is further reduced along line FG, more liquid vaporizes until at W the 
process is complete. Thus, W lies on the lower surface and represents a state of saturated vapor 
having the mixture composition. Because W is the point at which the last drops of liquid (dew) 
disappear, it is called a dewpoint, and the lower surface is called the dewpoint surface. Continued 
reduction of pressure produces expansion of the vapor in the superheated vapor region.

Because three-dimensional diagrams like Fig. 12.1 are somewhat complex and difficult to 
interpret quantitatively, the detailed characteristics of binary VLE are usually depicted by two-
dimensional graphs representing various planes that cut the three-dimensional diagram. The 
three principal planes, each perpendicular to one of the coordinate axes, are illustrated in  
Fig. 12.1. Thus a vertical plane perpendicular to the temperature axis is outlined as AEDBLA. 
The lines on this plane form a P-x1-y1 phase diagram at constant T. If the lines from several such 
planes are projected on a single parallel plane, a diagram like Fig. 12.2(a) is obtained. It shows 
P-x1-y1 plots for three different temperatures. The one for Ta represents the section of Fig. 12.1 
indicated by AEDBLA. The horizontal lines are tie lines connecting the compositions of phases 
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in equilibrium. The temperatures Tb and Td lie between the two pure-species critical temperatures 
identified by C1 and C2 in Fig. 12.1. The curves for these two temperatures therefore do not 
extend all the way across the diagram. The mixture critical points are denoted by the letter C. 
Each is a tangent point at which a horizontal line touches the curve. This is so because all tie 
lines connecting phases in equilibrium are horizontal, and the tie line connecting identical phases 
(the definition of a critical point) must therefore be the last such line to cut the diagram.

A horizontal plane passing through Fig. 12.1 perpendicular to the P axis is identified 
by KJIHLK. Viewed from above, the lines on this plane represent a T-x1-y1 diagram. When 
lines for several pressures are projected on a parallel plane, a diagram like that shown in 
Fig. 12.2(b) is generated. This figure is analogous to Fig. 12.2(a), except that it represents 
phase behavior for three constant pressures, Pa, Pb, and Pd. The one for Pa represents the 
section of Fig. 12.1 indicated by KJIHLK. Pressure Pb lies between the critical pressures of 
the two pure species at points C1 and C2. Pressure Pd is above the critical pressures of both 
pure species; therefore, the T-x1-y1 curve does not reach either vertical axis. At this pres-
sure, VLE is not possible for either pure component but is possible for some of their mix-
tures. Similar P-x1-y1 behavior [Fig. 12.2(a)] is unusual. Note that on the P-x1-y1 plot, the 
upper curve represents the saturated liquid and the lower curve represents the saturated 
vapor, but for the T-x1-y1 graph, the upper curve represents saturated vapor and the lower 
curve represents saturated liquid. To avoid confusion, one must keep in mind the fact that 
vapors exist at high T and low P.

Other possible plots include vapor mole fraction y1 vs. liquid mole fraction x1 for either 
the constant-T conditions of Fig. 12.2(a) or the constant-P conditions of Fig. 12.2(b). Such 
plots reduce the dimensionality further by representing the coexisting phases by a single curve, 

Figure 12.2:  (a) Pxy diagram for three temperatures. (b) Txy diagram for three pressures. 
— Saturated liquid (bubble line); - - - Saturated vapor (dew line)
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with no information about T or P, rather than as a pair of curves bounding a two-dimensional 
region. Thus, they convey less information than a T-x1-y1 or P-x1-y1 plot, but are convenient for 
rapidly relating phase compositions at a fixed T or P.

The third plane identified in Fig. 12.1, vertical and perpendicular to the composition 
axis, passes through points SLMN and Q. When projected on a parallel plane, the lines from 
several planes form a diagram like that shown in Fig. 12.3. This is a PT diagram; lines UC2 
and RC1 are vapor-pressure curves for the pure species, identified by the same letters as in 
Fig. 12.1. Each interior loop represents the PT behavior of saturated liquid and of saturated 
vapor for a system of fixed overall composition.  The different loops are for different 
compositions. Clearly, the PT relation for saturated liquid is different from that for saturated 
vapor of the same composition. This contrasts with the behavior of a pure species, for which 
the bubble and dew lines coincide. At points A and B in Fig. 12.3, saturated-liquid and 
saturated- vapor lines intersect. At such points a saturated liquid of one composition and a 
saturated vapor of another composition have the same T and P, and the two phases are in 
equilibrium. The tie lines connecting the coinciding points at A and at B are perpendicular to 
the PT plane, as illustrated by the tie line LV in Fig. 12.1.

Critical Points of Binary Mixtures and Retrograde Condensation
Figure 12.3 shows that the location of the critical point on the loop representing liquid and 
vapor PT relations at fixed composition varies with composition. For a pure species the criti-
cal point is the highest temperature and highest pressure at which vapor and liquid phases can 
coexist, but for a mixture it is, in general, neither. Therefore under certain conditions a conden-
sation process can result from a reduction in pressure. Consider the enlarged section of a sin-
gle PT loop shown in Fig. 12.4. The critical point is at C. The points of maximum pressure and 
maximum temperature are identified as MP and MT , respectively. The dashed curves within 

Figure 12.3: PT diagram for several 
compositions.

Figure 12.4: Portion of a PT diagram in the 
critical region.
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the two-phase region indicate the fraction of the overall system that is liquid. To the left of the 
critical point, a reduction in pressure along a line such as BD is accompanied by vaporization 
of liquid from bubblepoint to dewpoint, as is generally the case for a saturated liquid upon 
reduction in pressure. However, if the original condition corresponds to point F, a state of 
saturated vapor, liquefaction occurs upon pressure reduction, reaching a maximum at point G, 
after which vaporization takes place until the dewpoint is reached at point H. This phenome-
non is called retrograde condensation. It can be important in deep natural-gas wells where the 
pressure and temperature in the underground formation may be at conditions represented by 
point F. If the pressure at the wellhead is that of point G, the product stream from the well is 
an equilibrium mixture of liquid and vapor. 

A PT diagram for the ethane(1)/n-heptane(2) system is shown in Fig. 12.5, and a y1-x1 
diagram for several pressures for the same system appears in Fig. 12.6. By convention, species 
1 is chosen as the more volatile species in the mixture. The maximum and minimum concen-
trations of the more volatile species obtainable by distillation at a given pressure are indicated 
by the points of intersection of the appropriate y1-x1 curve with the diagonal. At these points 
the vapor and liquid have the same composition. Point A in Fig. 12.6 represents the composi-
tion of the vapor and liquid phases at the maximum pressure at which they can coexist in the 
ethane/n-heptane system. The composition is about 77 mol-% ethane and the pressure is about 
87.1 bar. The corresponding point on Fig. 12.5 is labeled M. A complete set of consistent 
phase diagrams for this system has been prepared by Barr-David.2

Figure 12.5: Ethane/ 
n-heptane PT diagram. 
(Adapted from F. H. 
Barr-David, “Notes on 
Phase Relations of Binary 
Mixtures in the Region 
of the Critical Point,” 
AIChE Journal, vol. 2, 
issue 3, September 
1956, pp. 426–427.)
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12.3. Vapor/Liquid Equilibrium: Qualitative Behavior 437

Figure 12.6: Ethane/n-heptane yx diagram. (Adapted from F. H. Barr-David, “Notes on Phase Relations  
of Binary Mixtures in the Region of the Critical Point,” AIChE Journal, vol. 2, issue 3, September 1956,  
pp. 426–427.)
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The PT diagram of Fig. 12.5 is typical for mixtures of nonpolar substances such as 
hydrocarbons. A PT diagram for a very different kind of system, methanol(1)/benzene(2), is 
shown in Fig. 12.7. The nature of the curves in this figure suggests the difficulty of predicting 
phase behavior for species so dissimilar as methanol and benzene, especially at conditions 
near the mixture critical point.

Low-Pressure Vapor/Liquid Equilibrium Examples
Although VLE in the critical region is of considerable importance in the petroleum and  
natural-gas industries, most chemical processing occurs at much lower pressures. Figures 12.8 
and 12.9 display common types of Pxy and Txy behavior at conditions far from the critical 
region.

Figure 12.8(a) shows data for tetrahydrofuran(1)/carbon tetrachloride(2) at 30°C. 
When the liquid phase behaves as an ideal solution, as defined in Chapter 10, and the vapor 
phase behaves as an ideal-gas-state mixture, then the system is said to follow Raoult’s law. 
As discussed in Chapter 13, this is the simplest model of vapor/liquid equilibrium. For a 
system that obeys Raoult’s law, the P-x1 or bubblepoint curve is a straight line connecting 
the vapor pressures of the pure species. In Fig. 12.8(a), the bubblepoint curve lies below the 
linear P-x1 relation characteristic of Raoult’s law behavior. When such negative departures 
from linearity become sufficiently large, relative to the difference between the two pure-species 
vapor pressures, the P-x1 curve exhibits a minimum, as illustrated in Fig. 12.8(b) for the 
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chloroform(1)/tetrahydrofuran(2) system at 30°C. This figure shows that the P-y1 curve also 
has a minimum at the same point. Thus, at this point where x1 = y1, the dewpoint and bub-
blepoint curves are tangent to the same horizontal line. A boiling liquid of this composition 
produces a vapor of exactly the same composition, and the liquid therefore does not change 
in composition as it evaporates. Such a constant-boiling mixture cannot be separated by 
distillation. The term azeotrope is used to describe this state.3

The data for furan(1)/carbon tetrachloride(2) at 30°C shown by Fig. 12.8(c) provide an 
example of a system for which the P-x1 curve lies above the linear P-x1 relation. The system 
shown in Fig. 12.8(d) for ethanol(1)/toluene(2) at 65°C exhibits positive departures from lin-
earity large enough to cause a maximum in the P-x1 curve. This state is a maximum- pressure 
azeotrope. Just as for the minimum-pressure azeotrope, the vapor and liquid phases in equilib-
rium have the same composition.

Appreciable negative departures from P-x1 linearity reflect liquid-phase intermolecular 
attractions that are stronger between unlike than between like pairs of molecules. Conversely, 
appreciable positive departures result for solutions for which liquid-phase intermolecular interac-
tions between like molecules are stronger than between unlike ones. In this latter case the forces 
between like molecules may be so strong as to prevent complete miscibility, and the system then 
forms two separate liquid phases over a range of compositions, as described later in this chapter.

Because distillation processes are carried out more nearly at constant pressure than 
at constant temperature, T-x1-y1 diagrams of data at constant P are of great practical 
interest. Four such diagrams for the same pairs of substances presented in Fig. 12.8 are 
shown for atmospheric pressure in Fig. 12.9. Note that the dewpoint (T-y1) curves lie above 

3A compilation of data for such states is given by J. Gmehling, J. Menke, J. Krafczyk, and K. Fischer, Azeotropic 
Data, 2nd ed., John Wiley & Sons, Inc., New York, 2004.

Figure 12.7: Methanol/benzene 
PT diagram. (Adapted from J. M. 
Skaates and W. B. Kay, “The Phase 
Relations of Binary Systems that Form 
Azeotropes,” Chemical Engineering 
Science, vol. 19, issue 7, July 1964, 
pp. 431–444.)
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12.3. Vapor/Liquid Equilibrium: Qualitative Behavior 439

Figure 12.8: Pxy diagrams at constant T: (a) tetrahydrofuran(1)/carbon tetrachloride(2) at 30°C;  
(b) chloroform(1)/tetrahydrofuran(2) at 30°C; (c) furan(1)/carbon tetrachloride(2) at 30°C;  
(d) ethanol(1)/toluene(2) at 65°C. Dashed lines: Px relation for Raoult’s law.
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Figure 12.9: Txy diagrams at 101.3 kPa: (a) tetrahydrofuran(1)/carbon tetrachloride(2); (b) chloroform 
(1)/tetrahydrofuran(2); (c) furan(1)/carbon tetrachloride(2); (d) ethanol(1)/toluene(2).
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12.3. Vapor/Liquid Equilibrium: Qualitative Behavior 441

the bubblepoint (T-x1) curves. Moreover, the minimum-pressure azeotrope of Fig. 12.8(b) 
appears as a maximum- temperature (or maximum-boiling) azeotrope in Fig. 12.9(b). An 
analogous correspondence exists between Figs. 12.8(d) and 12.9(d). The y1-x1 diagrams at 
constant P for the same four systems are shown in Fig. 12.10. The point at which a curve 
crosses the diagonal y1 = x1 line of the diagram represents an azeotrope. Such yx diagrams 
are useful for qualitative analysis of distillation processes. The greater the separation 
between the yx curve and the diagonal line, the easier the separation. Examination of Fig. 12.10 
shows that complete separation of both tetrahydrofuran/carbon tetrachloride mixtures and 
furan/carbon tetrachloride mixtures by distillation is possible, and that the separation of the 
furan/carbon tetrachloride mixture will be much easier than separation of tetrahydrofuran/
carbon tetrachloride. Likewise, the diagram shows that the other two systems form 
azeotropes and cannot be completely separated by distillation at this pressure.

Evaporation of a Binary Mixture at Constant Temperature
The P-x1-y1 diagram of Fig. 12.11 describes the behavior of acetonitrile(1)/nitromethane(2) at 
75°C. The line labeled P-x1 represents states of saturated liquid; the subcooled- liquid region 
lies above this line. The curve labeled P-y1 represents states of saturated vapor; the superheated- 
vapor region lies below this curve. Points lying between the saturated-liquid and saturated-vapor  
lines are in the two-phase region, where saturated liquid and saturated vapor coexist in 
 equilibrium. The P-x1 and P-y1 lines meet at the edges of the diagram, where saturated liquid 
and saturated vapor of the pure species coexist at the vapor pressures   P 1  sat   and   P 2  sat  .

To illustrate the nature of phase behavior in this binary system, we follow the course of 
a constant-temperature expansion process on the P-x1-y1 diagram. We imagine a subcooled 
liquid mixture of 60 mol-% acetonitrile and 40 mol-% nitromethane in a piston/cylinder 
arrangement at 75°C. Its state is represented by point a in Fig. 12.11. Withdrawing the piston 
slowly enough, while allowing heat transfer into the system, reduces the pressure while 

Figure 12.10: yx curves at 101.3 kPa:  
(a) tetrahydrofuran(1)/carbon  
tetrachloride(2); (b) chloroform(1)/ 
tetrahydrofuran(2); (c) furan(1)/ 
carbon tetrachloride(2); (d) ethanol(1)/
toluene(2).
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maintaining the system at equilibrium at 75°C. Because the system is closed, the overall com-
position remains constant during the process, and the states of the system as a whole fall on 
the vertical line descending from point a. When the pressure reaches the value at point b, the 
system is saturated liquid on the verge of  vaporizing. A minuscule further decrease in pressure 
produces a bubble of vapor, represented by point b′. The two points b and b′ together represent 
the equilibrium state. Point b is a  bubblepoint, and the P-x1 line is the locus of bubblepoints.

As the pressure is further reduced, the amount of vapor increases and the amount of 
liquid decreases, with the states of the two phases following paths b′c and bc′, respectively. 
The dotted line from point b to point c represents the overall states of the two-phase system. 
Finally, as point c is approached, the liquid phase, represented by point c′, has almost disap-
peared, with only droplets (dew) remaining. Point c is therefore a dewpoint, and the P-y1 curve 
is the locus of dewpoints. Once the dew has evaporated, only saturated vapor at point c 
remains, and further pressure reduction leads to superheated vapor at point d.

During this process, the volume of the system would first remain nearly constant in the 
subcooled liquid region from point a to point b. From point b to point c, the volume would 
increase dramatically, but not discontinuously. For a pure substance, the phase transition would 
occur at a single pressure (the vapor pressure), but for a binary mixture it occurs over a range 
of pressures. Finally, from point c to point d the volume would be approximately inversely 
proportional to pressure. Similarly, the heat flow required to maintain constant temperature 

Figure 12.11: Pxy  
diagram for acetonitrile (1)/
nitromethane (2) at 75°C.
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during pressure reduction would be negligible in the subcooled liquid region and small in the 
superheated vapor region, but would be substantial between points b and c, where the latent 
heat of vaporization of the mixture must be supplied.

Evaporation of a Binary Mixture at Constant Pressure
Figure 12.12 is the T-x1-y1 diagram for the same system at a constant pressure of 70 kPa. The 
T-y1 curve represents states of saturated vapor, with states of superheated vapor lying above it. 
The T-x1 curve represents states of saturated liquid, with states of subcooled liquid lying below 
it. The two-phase region lies between these curves.

With reference to Fig. 12.12, consider a constant-pressure heating process leading 
from a state of subcooled liquid at point a to a state of superheated vapor at point d.  
The path shown on the figure is for a constant overall composition of 60 mol-% acetonitrile. 
The temperature of the liquid increases as a result of heating from point a to point b,  
where the first bubble of vapor appears. Thus, point b is a bubblepoint, and the T-x1 curve is 
the locus of bubblepoints.

As the temperature is further increased, the amount of vapor increases and the amount 
of liquid decreases, with the states of the two phases following paths b′c and bc′, respectively. 
The dotted line from point b to point c represents the overall states of the two-phase system. 

Figure 12.12: Txy diagram for 
acetonitrile(1)/nitromethane 
(2) at 70 kPa.
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Finally, as point c is approached, the liquid phase, represented by point c′, has almost disap-
peared, with only droplets (dew) remaining. Point c is therefore a dewpoint, and the T-y1 curve 
is the locus of dewpoints. Once the dew has evaporated, only saturated vapor at point c 
remains, and further heating leads to superheated vapor at point d.

The change in volume and the heat flows in this process would be similar to those for the 
constant-temperature evaporation described previously, with a dramatic volume change as the 
two-phase region is traversed. Above and below the two-phase region, the heat flow and tempera-
ture change would be related by the heat capacities of the vapor and liquid, respectively. Within 
the two-phase region, the apparent heat capacity would be much higher, as it would include both 
a sensible heat component, required to increase the temperature of both phases, and a much larger 
latent-heat component, required for transfer of material from the liquid to the vapor phase.

12.4 EQUILIBRIUM AND PHASE STABILITY

In the preceding discussion, we have assumed that a single liquid phase was present. Our everyday 
experience tells us that such an assumption is not always valid; oil-and-vinegar salad dressing 
provides a prototypical example of its violation. In such cases, the Gibbs energy is lowered by the 
liquid splitting into two separate phases, and the single phase mixture is said to be unstable. In this 
section, we demonstrate that the equilibrium state of a closed system at fixed T and P is that which 
minimizes the Gibbs energy, and we then apply this criterion to the problem of phase stability.

Consider a closed system containing an arbitrary number of species and composed of an 
arbitrary number of phases in which the temperature and pressure are spatially uniform. The 
system is initially in a nonequilibrium state with respect to mass transfer between phases and 
chemical reaction. Irreversible processes take the system ever closer to an equilibrium state. 
We imagine that the system and its surroundings are always in thermal and mechanical equi-
librium. Heat exchange and expansion work are then accomplished reversibly. Under these 
circumstances the entropy change of the surroundings is:

 dSsurr =    
dQsurr _____ 
Tsurr

    = −    
dQ

 ____ 
T

    

The final term applies to the system, for which the heat transfer dQ has a sign opposite to that 
of dQsurr, and the temperature of the system T replaces Tsurr, because both must have the same 
value for reversible heat transfer. The second law requires:

 dS t + dSsurr ≥ 0 

where S t is the total entropy of the system. Combining these expressions yields, upon 
rearrangement:
 dQ ≤ TdS t (12.1)

Application of the first law with the assumption of reversible mechanical interactions with the 
surroundings provides:

 dU t = dQ + dW = dQ − PdV t 

or dQ = dU t + PdV t 
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12.4. Equilibrium and Phase Stability 445

Combining this equation with Eq. (12.1) gives:

 dU t + PdV t ≤ TdS t 

or dUt + PdVt − TdSt ≤ 0  (12.2)

Because this equation relates only state variables, it must be satisfied for changes  
in the state of any closed system of spatially uniform T and P, without restriction to the 
conditions of reversibility assumed in its derivation. The inequality applies to every incre-
mental change of the system between nonequilibrium states, and it dictates the direction of 
change that leads toward equilibrium. The equality holds for changes between equilibrium 
states (reversible processes).

Equation (12.2) is so general that application to practical problems is difficult; restricted 
versions are much more useful. For example:

 (dU t  )   S   t ,V t    ≤ 0 

where the subscripts specify properties held constant. Similarly, for processes that occur at 
constant U t and V t,

 (dS t   )   U   t , V    t     ≥ 0 

An isolated system is necessarily constrained to constant internal energy and volume, and 
validity of the last equation follows directly from the second law.

If a process is restricted to occur at constant T and P, then Eq. (12.2) can be written:

 d  U T, P  t    + d(PV t )T, P − d(TSt )T, P ≤ 0 

or d (U t + PV t − T S t )T,P ≤ 0 

From the definition of the Gibbs energy [Eq. (6.4)],

 G t = H t − TS t = U t + PVt − TS t 

Therefore, (dG t)T, P
 ≤ 0  (12.3)

Of the possible specializations of Eq. (12.2), this is the most useful, because T and P, which 
are easily measured and controlled, are more conveniently held constant than are other pairs of 
variables, such as U t and V t.4

Equation (12.3) indicates that all irreversible processes occurring at constant T and P 
must decrease the Gibbs energy of the system. Therefore:

The equilibrium state of a closed system is that state for which the total 
Gibbs energy is a minimum with respect to all possible changes at the 
given T and P.

4Although T and P are most easily held constant in experimental work, in molecular simulation studies, other pairs 
of variables are often more easily held constant.
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This criterion of equilibrium provides a general method for finding the equilibrium state of a 
system. One writes an expression for G t as a function of the numbers of moles (mole numbers) 
of the species in the several phases and then finds the set of values for the mole numbers that 
minimizes G t, subject to the constraints of mass and element conservation. This procedure can 
be applied to problems of phase equilibrium, chemical-reaction equilibrium, or combined phase 
and chemical-reaction equilibrium, and it is most useful for complex equilibrium problems.

Equation (12.3) provides a criterion that must be satisfied by any single phase that is  
stable with respect to the alternative that it split into two phases. It requires that the Gibbs 
energy of an equilibrium state be the minimum value with respect to all possible changes at 
the given T and P. Thus, for example, when mixing of two liquids occurs at constant T and P, 
the total Gibbs energy must decrease, because the mixed state must have lower Gibbs energy 
than the unmixed state. As a result:

 G t ≡ nG <   ∑ 
i

      ni Gi   from which   G <   ∑ 
i

      xi Gi 

or G  −    ∑ 
i

      xi Gi < 0  (const T, P ) 

According to the definition of Eq. (11.1), the quantity on the left is the Gibbs-energy change 
of mixing. Therefore, ΔG < 0. Thus, as noted in Sec. 11.1, the Gibbs-energy change of mixing 
must always be negative, and a plot of G vs. x1 for a binary system must appear as shown by 
one of the curves of Fig. 12.13. With respect to curve II, however, there is a further consider-
ation. If, when mixing occurs, a system can achieve a lower value of the Gibbs energy by  
forming two phases than by forming a single phase, then the system splits into two phases.  
This is in fact the situation represented between points α and β on curve II of Fig. 12.13 because 
the straight dashed line connecting points α and β represents the overall values of G for the 
range of states consisting of two phases of compositions   x 1  α   and   x 1  β   in various proportions. 
Thus the solid curve shown between points α and β cannot represent stable phases with respect 
to phase splitting. The equilibrium states between α and β consist of two phases.

Figure 12.13: Gibbs-energy  
change of mixing. Curve I,  
complete miscibility; curve II,  
two phases between α and β.
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12.4. Equilibrium and Phase Stability 447

These considerations lead to the following criterion of stability for a single-phase binary 
system for which ΔG ≡ G − x1G1 − x2G2:

At fixed temperature and pressure, a single-phase binary mixture is sta-
ble if and only if ΔG and its first and second derivatives are continuous 
functions of x1, and the second derivative is positive.

Thus,    
d 2ΔG

 ______ 
d x 1  2 

    > 0    (const T, P) 

and    
d 2(ΔG/RT )

 ______ 
d x 1  2 

    > 0  (const T, P)  (12.4)

This requirement has a number of consequences. Equation (11.9), rearranged and written for a 
binary system, becomes:

    
ΔG

 ____ 
RT

    = x1 ln x1 + x2 ln x2 +    
G E

 ___ 
RT

    

from which    
d(ΔG/RT)

 _________ 
dx1

    = ln x1 − ln x2 +    
d(G E/RT)

 _________ 
d x1

    

and    
d 2(ΔG/RT)

 __________ 
d x 1  2 

    =    
1
 ____ 

x1 x2
    +    

d 2(G E/RT  )
 __________ 

d x 1  2 
    

Hence, stability requires:

    
d 2(G E/RT )

 ______ 
d x 1  2 

    > −    
1
 ____ 

x1 x2
     (const T, P)  (12.5)

Liquid/Liquid Equilibrium
For conditions of constant pressure, or when pressure effects are negligible, binary liquid/ 
liquid (LLE) is conveniently displayed on a solubility diagram, a plot of T vs. x1. Figure 12.14 
shows binary solubility diagrams of three types. The first, Fig. 12.14(a), shows curves (binodal 
curves) that define an “island.” They represent the compositions of coexisting phases: curve 
UAL for the α phase (rich in species 2), and curve UBL for the β phase (rich in species 1). 
Equilibrium compositions   x 1  α   and   x 1  β   at a particular T are defined by the intersections of a hor-
izontal tie line with the binodal curves. At each temperature, these compositions are those for 
which the curvature of the ΔG vs. x1 curve changes sign. Between these compositions, this 
curve is concave down (negative second derivative) and outside them it is concave up. At these 
points, the curvature is zero; they are inflection points on the ΔG vs. x1 curve. Temperature 
TL is a lower consolute temperature, or lower critical solution temperature (LCST); tempera-
ture TU is an upper consolute temperature, or upper critical solution temperature (UCST). At 
temperatures between TL and TU, LLE is possible; for T < TL and T > TU, a single liquid phase 
is obtained for the full range of compositions. The consolute points are limiting states of two-
phase equilibrium for which all properties of the two equilibrium phases are identical.

Actually, the behavior shown on Fig. 12.14(a) is rarely observed; the LLE binodal 
curves are often interrupted by curves for yet another phase transition. When they intersect the 
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freezing curve, only a UCST exists [Fig. 12.14(b)]; when they intersect the VLE bubblepoint 
curve, only an LCST exists [Fig. 12.14(c)]; when they intersect both, no consolute point exists, 
and yet another behavior is observed.5

12.5 VAPOR/LIQUID/LIQUID EQUILIBRIUM

As noted in the previous section, the binodal curves representing LLE can intersect the VLE 
bubblepoint curve. This gives rise to the phenomenon of vapor/liquid/liquid equilibrium 
(VLLE). A binary system of two liquid phases and one vapor phase in equilibrium has  
(by the phase rule) only one degree of freedom. For a given pressure, the temperature and the 
compositions of all three phases are therefore fixed. On a temperature/composition diagram 
the points representing the states of the three phases in equilibrium fall on a horizontal line at 
T *. In Fig. 12.15, points C and D represent the two liquid phases, and point E represents the 
vapor phase. If more of either species is added to a system whose overall composition lies 
between points C and D, and if the three-phase equilibrium pressure is maintained, the phase 
rule requires that the temperature and the compositions of the phases be unchanged. How-
ever, the relative amounts of the phases adjust themselves to reflect the change in overall 
composition of the system.

At temperatures above T * in Fig. 12.15, the system may be a single liquid phase, two 
phases (liquid and vapor), or a single vapor phase, depending on the overall composition.  

5A comprehensive treatment of LLE is given by J. M. Srensen, T. Magnussen, P. Rasmussen, and Aa. Fredenslund, 
Fluid Phase Equilibria, vol. 2, pp. 297–309, 1979; vol. 3, pp. 47–82, 1979; vol. 4, pp. 151–163, 1980. Large compi-
lations of data include W. Arlt, M. E. A. Macedo, P. Rasmussen, and J. M. Sørensen. Liquid-Liquid Equilibrium Data 
Collection, Chemistry Data Series, vol. V, Parts 1–4, DECHEMA, Frankfurt/Main, 1979–1987; and the IUPAC-NIST 
solubility database, available online at http://srdata.nist.gov/solubility.

Figure 12.14: Three types of constant-pressure liquid/liquid solubility diagram.
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In region α the system is a single liquid, rich in species 2; in region β it is a single liquid, rich 
in species 1. In region α − V, liquid and vapor are in equilibrium. The states of the individual 
phases fall on lines AC and AE. In region β − V, liquid and vapor phases, described by lines 
BD and BE, exist at equilibrium. Finally, in the region designated V, the system is a single 
vapor phase. Below the three-phase temperature T *, the system is entirely liquid, with features 
described in Sec. 12.4; this is the region of LLE.

When a vapor is cooled at constant pressure, it follows a path represented on Fig. 12.15 
by a vertical line. Several such lines are shown. If one starts at point k, the vapor first reaches 
its dewpoint at line BE and then its bubblepoint at line BD, where condensation into single 
liquid phase β is complete. This is the same process that takes place when the species are com-
pletely miscible. If one starts at point n, no condensation of the vapor occurs until temperature 
T * is reached. Then condensation occurs entirely at this temperature, producing the two liquid 
phases represented by points C and D. If one starts at an intermediate point m, the process is a 
combination of the two just described. After the dewpoint is reached, the vapor, tracing a path 
along line BE, is in equilibrium with a liquid tracing a path along line BD. However, at tem-
perature T* the vapor phase is at point E. All remaining condensation therefore occurs at this 
temperature, producing the two liquids of compositions represented by points C and D.

Figure 12.15 is drawn for a single constant pressure; equilibrium phase compositions, 
and hence the locations of the lines, change with pressure, but the general nature of the dia-
gram is the same over a range of pressures. For most systems the species become more soluble 
in one another as the temperature increases, as indicated by lines CG and DH of Fig. 12.15.  
If this diagram is drawn for successively higher pressures, the corresponding three-phase 
 equilibrium temperatures increase, and lines CG and DH extend further and further until they 
meet at the liquid/liquid consolute point M, as shown in Fig. 12.16.

As the pressure increases, line CD becomes shorter and shorter (indicated in Fig. 12.16 
by lines C′D′ and C″D″), until at point M it diminishes to a differential length. For still higher 
pressures (P4) the temperature is above the critical-solution temperature, and a single liquid 
phase is stable at all compositions. The diagram then represents two-phase VLE, and it has the 
form of Fig. 12.9(d), exhibiting a minimum-boiling azeotrope.

Figure 12.15: Txy diagram at constant P for a 
binary system exhibiting VLLE.
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For an intermediate range of pressures, the vapor phase in equilibrium with the two 
 liquid phases can have a composition that does not lie between the compositions of the two 
liquids. This is illustrated in Fig. 12.16 by the curves for P3, which terminate at A″ and B″. The 
vapor in equilibrium with the two liquids at C″ and D″ is at point F. In addition the system 
exhibits an azeotrope at point J.

Not all systems behave as described in the preceding paragraphs. Sometimes the upper 
critical-solution temperature is never attained because a vapor/liquid critical temperature is 
reached first. In other cases the liquid solubilities decrease with increasing temperature.  
In this event a lower critical-solution temperature exists, unless solid phases appear first.  
There are also systems that exhibit both upper and lower critical-solution temperatures.6

Figure 12.17 is a phase diagram drawn at constant T corresponding to the constant-P 
diagram of Fig. 12.15. On it we identify the three-phase-equilibrium pressure as P*, the 
three-phase-equilibrium vapor composition as   y 1  ∗  , and the compositions of the two liquid 
phases that contribute to the vapor/liquid/liquid equilibrium state as   x 1  α   and   x 1  β  . The phase 
boundaries separating the three liquid-phase regions are solubilities.

Although no two liquids are totally immiscible, this condition is so closely approached 
in some systems that the assumption of complete immiscibility does not lead to appreciable 
error for many engineering purposes. The phase characteristics of an immiscible system are 
illustrated by the temperature/composition diagram of Fig. 12.18(a). This diagram is a special 
case of Fig. 12.15 wherein phase α is pure species 2 and phase β is pure species 1. Thus lines 
ACG and BDH of Fig. 12.15 become in Fig. 12.18(a) vertical lines at x1 = 0 and x1 = 1.

In region I, vapor phases with compositions represented by line BE are in equilibrium 
with pure liquid species 1. Similarly, in region II, vapor phases whose compositions lie along 
line AE are in equilibrium with pure liquid species 2. Liquid/liquid equilibrium occurs in 
region III, where the two phases are pure liquids of species 1 and 2. If one cools a vapor mix-
ture starting at point m, the constant-composition path is represented by the vertical line shown 
in the figure. At the dewpoint, where this line crosses line BE, pure liquid species 1 begins to 
condense. Further reduction in temperature toward T * causes continued condensation of pure 

6For a comprehensive discussion of binary fluid-phase behavior, see J. S. Rowlinson and F. L. Swinton, Liquids 
and Liquid Mixtures, 3rd ed., Butterworth Scientific, London, 1982.

Figure 12.17: Pxy diagram at  
constant T for two partially miscible 
liquids.
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12.6. Synopsis 451

species 1; the vapor-phase composition progresses along line BE until it reaches point E.  
Here, the remaining vapor condenses at temperature T *, producing two liquid phases, one of 
pure species 1 and the other of pure species 2. A similar process, carried out to the left of point 
E, is the same, except that pure species 2 condenses initially. The constant-temperature phase 
diagram for an immiscible system is represented by Fig. 12.18(b).

12.6 SYNOPSIS

After studying this chapter, including the end-of-chapter problems, one should be able to:

 ∙ Understand that equilibrium implies absence of driving forces for net changes in the 
macroscopic state of a system

 ∙ State and apply the phase rule and Duhem’s theorem for nonreacting systems
 ∙ Identify dew point and bubble point surfaces, the critical locus, and pure species 

vapor-pressure curves that make up a vapor/liquid phase envelope in a PTxy diagram 
like Fig. 12.1

 ∙ Interpret and apply Pxy, Txy, PT, and yx diagrams representing vapor/liquid equilibrium 
of binary mixtures

 ∙ Sketch the path of an evaporation or condensation process on a Pxy or Txy diagram
 ∙ Understand that minimization of Gibbs energy is a general criterion for equilibrium of a 

closed system at fixed T and P

Figure 12.18: Binary system of immiscible liquids. (a) Txy diagram; (b) Pxy diagram.
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 ∙ Recognize that positive curvature of the ΔG vs. x1 curve is a criterion for phase stability 
because negative curvature implies that the total Gibbs energy could be lowered via 
phase splitting

 ∙ Define upper consolute point, lower consolute point, high-boiling azeotrope, and 
low-boiling azeotrope

 ∙ Interpret and apply Pxy and Txy diagrams representing vapor/liquid/liquid equilibrium

12.7 PROBLEMS

 12.1. Consider a closed vessel of fixed volume containing equal masses of water, ethanol, 
and toluene at 70°C. Three phases (two liquid and one vapor) are present.

 (a) How many variables, in addition to the mass of each component and the tempera-
ture, must be specified to fully determine the intensive state of the system?

 (b) How many variables, in addition to the mass of each component and the tempera-
ture, must be specified to fully determine the extensive state of the system?

 (c) The temperature of the system is increased to 72°C. What, if any, intensive or 
extensive coordinates of the system remain unchanged?

 12.2. Consider a binary (two-species) system in vapor/liquid equilibrium. Enumerate all of 
the combinations of intensive variables that could be fixed to fully specify the inten-
sive state of the system.

Problems 12.3 through 12.8 refer to the Pxy diagram for ethanol(1)/ethyl acetate(2) at 70°C 
shown in Fig. 12.19.

Figure 12.19: Pxy diagram 
for vapor/liquid equilibrium 
of ethanol(1)/ethyl acetate 
(2) at 70°C.
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12.7. Problems 453

 12.3. The pressure above a mixture of ethanol and ethyl acetate at 70°C is measured to be  
86 kPa. What are the possible compositions of the liquid and vapor phases?

 12.4. The pressure above a mixture of ethanol and ethyl acetate at 70°C is measured to be  
78 kPa. What are the possible compositions of the liquid and vapor phases?

 12.5. Consider an ethanol(1)/ethyl acetate(2) mixture with x1 = 0.70, initially at 70°C and 
100 kPa. Describe the evolution of phases and phase compositions as the pressure is 
gradually reduced to 70 kPa.

 12.6. Consider an ethanol(1)/ethyl acetate(2) mixture with x1 = 0.80, initially at 70°C and 
80 kPa. Describe the evolution of phases and phase compositions as the pressure is 
gradually increased to 100 kPa.

 12.7. What is the composition of the azeotrope for the ethanol(1)/ethyl acetate(2) system? 
Would this be called a high-boiling or low-boiling azeotrope?

 12.8. Consider a closed vessel initially containing 1 mol of pure ethyl acetate at 70°C and  
86 kPa. Imagine that pure ethanol is slowly added at constant temperature and pres-
sure until the vessel contains 1 mol ethyl acetate and 9 mol ethanol. Describe the 
evolution of phases and phase compositions during this process. Comment on the 
practical feasibility of carrying out such a process. What sort of device would be 
required? How would the total system volume change during this process? At what 
composition would the system volume reach its maximum value?

Problems 12.9 through 12.14 refer to the Txy diagram for ethanol(1)/ethyl acetate(2) shown in 
Fig. 12.20.

Figure 12.20: Txy diagram 
for vapor/liquid equilibrium 
of ethanol(1)/ethyl acetate 
(2) at 100 kPa.
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 12.9. A mixture of ethanol and ethyl acetate is heated in a closed system at 100 kPa to a 
temperature of 74°C, and two phases are observed to be present. What are the possible 
compositions of the liquid and vapor phases?

 12.10. A mixture of ethanol and ethyl acetate is heated in a closed system at 100 kPa to a 
temperature of 77°C, and two phases are observed to be present. What are the possible 
compositions of the liquid and vapor phases?

 12.11. Consider an ethanol(1)/ethyl acetate(2) mixture with x1 = 0.70, initially at 70°C and 
100 kPa. Describe the evolution of phases and phase compositions as the temperature 
is gradually increased to 80°C.

 12.12. Consider an ethanol(1)/ethyl acetate(2) mixture with x1 = 0.20, initially at 70°C and 
100 kPa. Describe the evolution of phases and phase compositions as the temperature 
is gradually increased to 80°C.

 12.13. Consider an ethanol(1)/ethyl acetate(2) mixture with x1 = 0.20, initially at 80°C and 
100 kPa. Describe the evolution of phases and phase compositions as the temperature 
is gradually reduced to 70°C.

 12.14. Consider an ethanol(1)/ethyl acetate(2) mixture with x1 = 0.80, initially at 80°C and 
100 kPa. Describe the evolution of phases and phase compositions as the temperature 
is gradually reduced to 70°C.

 12.15. Consider a closed vessel initially containing 1 mol of pure ethyl acetate at 74°C and 
100 kPa. Imagine that pure ethanol is slowly added at constant temperature and pres-
sure until the vessel contains 1 mol ethyl acetate and 9 mol ethanol. Describe the evo-
lution of phases and phase compositions during this process. Comment on the practical 
feasibility of carrying out such a process. What sort of device would be required? How 
would the total system volume change during this process? At what composition would 
the system volume reach its maximum value?

Problems 12.16 through 12.21 refer to the Pxy diagram for chloroform(1)/tetrahydrofuran(2) 
at 50°C shown in Fig. 12.21.

 12.16. The pressure above a mixture of chloroform and tetrahydrofuran at 50°C is measured 
to be 62 kPa. What are the possible compositions of the liquid and vapor phases?

 12.17. The pressure above a mixture of chloroform and tetrahydrofuran at 50°C is measured 
to be 52 kPa. What are the possible compositions of the liquid and vapor phases?

 12.18. Consider a chloroform(1)/tetrahydrofuran(2) mixture with x1 = 0.80, initially at 50°C 
and 70 kPa. Describe the evolution of phases and phase compositions as the pressure 
is gradually reduced to 50 kPa.

 12.19. Consider an chloroform(1)/tetrahydrofuran(2) mixture with x1 = 0.90, initially at 50°C 
and 50 kPa. Describe the evolution of phases and phase compositions as the pressure 
is gradually increased to 70 kPa.
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Figure 12.21: Pxy diagram 
for vapor/liquid equilibrium 
of chloroform(1)/tetrahydro-
furan(2) at 50°C.
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 12.20. What is the composition of the azeotrope for the chloroform(1)/tetrahydrofuran 
(2) system? Would this be called a high-boiling or low-boiling azeotrope?

 12.21. Consider a closed vessel initially containing 1 mol of tetrahydrofuran at 50°C and  
52 kPa. Imagine that pure chloroform is slowly added at constant temperature and 
pressure until the vessel contains 1 mol tetrahydrofuran and 9 mol chloroform. 
Describe the evolution of phases and phase compositions during this process. Com-
ment on the practical feasibility of carrying out such a process. What sort of device 
would be required? How would the total system volume change during this process? 
At what composition would the system volume reach its maximum value?

Problems 12.22 through 12.28 refer to the Txy diagram for chloroform(1)/tetrahydrofuran(2) 
at 120 kPa shown in Fig. 12.22.

 12.22. A mixture of chloroform and tetrahydrofuran is heated in a closed system at 120 kPa 
to a temperature of 75°C, and two phases are observed to be present. What are the 
possible compositions of the liquid and vapor phases?

 12.23. A chloroform and tetrahydrofuran mixture is heated in a closed system at 120 kPa to a 
temperature of 70°C, and two phases are observed to be present. What are the possible 
compositions of the liquid and vapor phases?

 12.24. Consider a chloroform(1)/tetrahydrofuran(2) mixture with x1 = 0.80, initially at 70°C 
and 120 kPa. Describe the evolution of phases and phase compositions as the tempera-
ture is gradually increased to 80°C.
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Figure 12.22: Txy dia-
gram for vapor/liquid 
equilibrium of chloro-
form(1)/tetrahydrofuran 
(2) at 120 kPa.
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 12.25. Consider a chloroform(1)/tetrahydrofuran(2) mixture with x1 = 0.20, initially at 70°C 
and 120 kPa. Describe the evolution of phases and phase compositions as the tempera-
ture is gradually increased to 80°C.

 12.26. Consider a chloroform(1)/tetrahydrofuran(2) mixture with x1 = 0.10, initially at 80°C 
and 120 kPa. Describe the evolution of phases and phase compositions as the tempera-
ture is gradually reduced to 70°C.

 12.27. Consider a chloroform(1)/tetrahydrofuran(2) mixture with x1 = 0.90, initially at 76°C 
and 120 kPa. Describe the evolution of phases and phase compositions as the tempera-
ture is gradually reduced to 66°C.

 12.28. Consider a closed vessel initially containing 1 mol of pure tetrahydrofuran at 74°C and 
120 kPa. Imagine that pure chloroform is slowly added at constant temperature and 
pressure until the vessel contains 1 mol tetrahydrofuran and 9 mol chloroform. 
Describe the evolution of phases and phase compositions during this process.  
Comment on the practical feasibility of carrying out such a process. What sort of 
device would be required? How would the total system volume change during this 
process? At what composition would the system volume reach its maximum value?

Problems 12.29 through 12.33 refer to the xy diagram provided in Fig. 12.23. This diagram 
shows xy curves both for ethanol(1)/ethyl acetate(2) and for chloroform(1)/tetrahydrofuran(2), 
both at a constant pressure of 1 bar. The curves are intentionally unlabeled. Readers should 
refer to Figs. 12.19 through 12.22 to deduce which curve is for which pair of substances.
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Figure 12.23: xy diagram 
for ethanol(1)/ethyl 
 acetate(2) and for chloro-
form(1)/tetrahydrofuran(2), 
both at a constant pressure 
of 1 bar. Note that the 
curves are intentionally 
unlabeled, but they can 
be identified based on 
information presented in 
Figs. 12.19 through 12.22.
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 12.29. What is the composition of the vapor phase in equilibrium with a liquid-phase  
ethanol(1)/ethyl acetate(2) mixture of the following compositions at P = 1 bar?

 (a) x1 = 0.1
 (b) x1 = 0.2
 (c) x1 = 0.3
 (d) x1 = 0.45
 (e) x1 = 0.6
 ( f ) x1 = 0.8
 (g) x1 = 0.9

 12.30. What is the composition of the liquid phase in equilibrium with a vapor-phase  
ethanol(1)/ethyl acetate(2) mixture of the following compositions at P = 1 bar?

 (a) y1 = 0.1
 (b) y1 = 0.2
 (c) y1 = 0.3
 (d) y1 = 0.45
 (e) y1 = 0.6
 ( f ) y1 = 0.8
 (g) y1 = 0.9

 12.31. What is the composition of the vapor phase in equilibrium with a liquid-phase chloro-
form(1)/tetrahydrofuran(2) mixture of the following compositions at P = 1 bar?

 (a) x1 = 0.1
 (b) x1 = 0.2
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 (c) x1 = 0.3
 (d ) x1 = 0.45
 (e) x1 = 0.6
 ( f ) x1 = 0.8
 (g) x1 = 0.9

 12.32. What is the composition of the liquid phase in equilibrium with a vapor-phase chloro-
form(1)/tetrahydrofuran(2) mixture of the following compositions at P = 1 bar?

 (a) y1 = 0.1
 (b) y1 = 0.2
 (c) y1 = 0.3
 (d) y1 = 0.45
 (e) y1 = 0.6
 ( f ) y1 = 0.8
 (g) y1 = 0.9

 12.33. Consider a binary liquid mixture for which the excess Gibbs energy is given by   
G E/RT = Ax1x2. What is the minimum value of A for which liquid/liquid equilibrium 
is possible?

 12.34. Consider a binary liquid mixture for which the excess Gibbs energy is given by   
G E/RT = Ax1x2(x1 + 2x2). What is the minimum value of A  for which liquid/liquid 
equilibrium is possible?

 12.35. Consider a binary mixture for which the excess Gibbs energy is given by G E/RT  =   
2.6x1x2. For each of the following overall compositions, determine whether one or two 
liquid phases will be present. If two liquid phases will be present, find their composi-
tions and the amount of each phase present (phase fractions).

 (a) z1 = 0.2
 (b) z1 = 0.3
 (c) z1 = 0.5
 (d) z1 = 0.7
 (e) z1 = 0.8

 12.36. Consider a binary mixture for which the excess Gibbs energy is given by  G E/RT  =   
2.1x1x2(x1  +  2x2). For each of the following overall compositions, determine 
whether one or two liquid phases will be present. If two liquid phases will be present, 
find their compositions and the amount of each phase present (phase fractions).

 (a) z1 = 0.2
 (b) z1 = 0.3
 (c) z1 = 0.5
 (d) z1 = 0.7
 (e) z1 = 0.8
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Chapter 13

Thermodynamic Formulations 
for Vapor/Liquid Equilibrium

The objective of this chapter is to apply the framework of solution thermodynamics developed 
in Chapter 10 to the specific situation of vapor/liquid equilibrium (VLE), as introduced quali-
tatively in Chapter 12. Because of the practical importance of distillation as a means of sepa-
rating and purifying chemical species, VLE is the most studied type of phase equilibrium. 
Approaches developed for analyzing VLE also provide the foundation for most analyses of 
liquid/liquid equilibrium (LLE), vapor/liquid/liquid equilibrium (VLLE), and combined phase 
and reaction equilibrium, as considered in Chapter 15.

Our analysis of VLE problems begins by developing a general formulation in terms of 
vapor-phase fugacity coefficients and liquid-phase activity coefficients. For VLE at low pressure, 
where the gas phase approaches the ideal-gas state, simplified approaches are applicable. For 
those conditions, activity coefficients can be obtained directly from experimental VLE data and fit 
to mathematical models. Finally, the models can be used to predict activity coefficients and VLE 
behavior for situations where experiments have not been performed. Thus, the analyses presented 
in this chapter allow efficient correlation and generalization of the observed behavior of real 
physical systems.

Specifically, in this chapter, we will:
 ∙ Define activity coefficients and relate them to the excess Gibbs energy of a mixture
 ∙ Formulate the general criterion for phase equilibrium in terms of vapor-phase fugacity 

coefficients and liquid-phase activity coefficients (the gamma/phi formulation of VLE)
 ∙ Show how this general formulation simplifies to Raoult’s law or a modified version of 

Raoult’s law under appropriate conditions
 ∙ Perform bubblepoint, dewpoint, and flash calculations using Raoult’s law and modified 

versions thereof
 ∙ Illustrate the extraction of activity coefficients and excess Gibbs energy from experi-

mental low-pressure VLE data
 ∙ Address the issue of thermodynamic consistency of experimentally derived activity 

coefficients
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 ∙ Introduce several excess Gibbs energy and activity coefficient models and the fitting of 
model parameters to experimental VLE data

 ∙ Perform VLE calculations under conditions where the complete gamma/phi formulation 
is required

 ∙ Show that residual properties and excess properties can also be evaluated from cubic 
equations of state

 ∙ Demonstrate the formulation and solution of VLE problems using cubic equations of state

The foundation for VLE calculations was laid in Chapter 10, where Eq. (10.39) was 
developed for the equilibrium of pure species:

   f  i  v  =  f  i  l  =  f  i  sat   (10.39)

and Eq. (10.48) was derived for the equilibrium of species in mixtures:

     f   ̂    i  v  =   f   ̂    i  l      (i = 1, 2, . . . ,  N )   (10.48)

Recalling the definitions of fugacity coefficients, as given by Eqs. (10.34) and (10.52), we can 
write the fugacity coefficient of species i in a vapor phase:

    f   ̂    i  v  =   ϕ ˆ   i  v   y  i   P  (13.1)

An analogous equation can be written for the liquid phase, but this phase is often treated differently. 
We develop that alternative description next.

13.1 EXCESS GIBBS ENERGY AND ACTIVITY COEFFICIENTS

In view of Eq. (10.8),    G ¯    i   =  μ  i   , Eq. (10.46) can be written as:

    G ¯    i   =  Γ  i  (T ) + RT ln   f   ̂    i    

For an ideal solution, with fugacity given by Eq. (10.83), this becomes:

    G ¯   i  id  =  Γ  i  (T ) + RT ln  x  i    f  i    

By difference,

    G ¯    i   −   G ¯   i  id  = RT ln   
  f   ̂    i   ___  x  i    f  i  

    

The left side of this equation is the partial excess Gibbs energy    G ¯   i  E  ; the dimensionless ratio  
   f   ̂    i   ∕ x  i    f  i    appearing on the right is defined as the activity coefficient of species i in solution,  
symbol γi. Thus, by definition,

    γ  i   ≡   
  f   ̂    i   _  x  i    f  i  

     (13.2)

And,     G ¯   i  E  = RT ln  γ  i     (13.3)
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13.1. Excess Gibbs Energy and Activity Coefficients 461

These equations establish the thermodynamic foundation for activity coefficients. 
 Comparison with Eq. (10.51) shows that Eq. (13.3) relates ln γi to    G ¯   i  E   exactly as Eq. (10.51) 
relates ln    ϕ ˆ    i    to    G ¯   i  R  . For an ideal solution,    G ¯   i  E   = 0, and therefore   γ i  id  = 1 .

An alternative form of Eq. (10.89) follows by introducing the activity coefficient through 
Eq. (13.3):

   d   (  
n G   E 

 _ 
RT

  )   =   
n V   E 

 _ 
RT

   dP −   
n H   E 

 _ 
R T   2 

   dT +  ∑ 
i

     ln  γ  i   d n  i     (13.4)

The general relationship of Eq. (13.4) implies the following equalities, which are more useful 
in practice:

   
 V   E 

 ___ 
RT

   =   [    
∂ ( G   E  / RT )

 _________ 
∂ P   ]    

T,  x
   (13.5)    

 H   E 
 ___ 

RT
   = − T   [    

∂ ( G   E  / RT )
 _________ 

∂ T   ]    
P,  x

   (13.6)

   ln  γ  i   =   [  
∂ (n  G   E  ∕ RT )

 __________ 
∂  n  i  

  ]   
P, T,  n  j  

     (13.7)

Equations (13.5) through (13.7) are analogs of Eqs. (10.57) through (10.59) for residual 
 properties. Whereas the fundamental residual-property relation derives its usefulness from its 
direct relation to experimental PVT data and equations of state, the fundamental excess-property 
relation is useful because VE, HE, and γi are all experimentally accessible. Activity coefficients 
are found from vapor/liquid equilibrium data, as discussed in Sec. 13.5, while VE and HE  
values come from mixing experiments, as discussed in Chap. 11.

Equation (13.7) shows that ln γi  is a partial property with respect to GE∕RT. It  
is the analog of Eq. (10.59), which shows the same relationship between ln    ϕ ˆ    i    and GR∕RT. The 
partial- property analogs of Eqs. (13.5) and (13.6) are:

   (    
∂  ln  γ  i   _____ 

∂ P   )    
T, x

   =   
  V ¯   i  E 

 ___ 
RT

   (13.8)    (    
∂  ln  γ  i   _____ 

∂ T   )    
P, x

   = −   
  H ¯   i  E 

 ____ 
R T   2 

   (13.9)

These equations allow calculation of the effect of pressure and temperature on the activity 
coefficients.

The following forms of the summability and Gibbs/Duhem equations result from the 
fact that ln γi is a partial property with respect to GE∕RT:

     
 G   E 

 _ 
RT

   =  ∑ 
i

      x  i   ln  γ  i     (13.10)

     ∑ 
i

      x  i   d ln  γ  i   = 0    (const T, P)   (13.11)

Just as the fundamental property relation of Eq. (10.54) provides complete property  
information from a canonical equation of state expressing G∕RT as a function of T, P, and 
composition, so the fundamental residual-property relation, Eq. (10.55) or (10.56), provides 
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462 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

complete residual-property information from a PVT equation of state, from PVT data, or from 
generalized PVT correlations. However, obtaining complete property information requires, in 
addition to PVT data, the ideal-gas-state heat capacities of the species comprising the system. 
In complete analogy, the fundamental excess-property relation, Eq. (13.4), provides complete 
excess-property information, given an equation for GE∕RT as a function of its canonical 
variables, T, P, and composition. However, this formulation represents less-complete property 
information than does the residual-property formulation, because it tells us nothing about the 
properties of the pure constituent chemical species.

13.2 THE GAMMA/PHI FORMULATION OF VLE

Rearranging Eq. (13.2), the definition of the activity coefficient, and writing it for species i in 
the liquid phase gives:

    f   ̂    i  l  =  x  i    γ i  l   f  i  l   

Substitution in Eq. (10.48) for    f   ̂    i  l   by this equation and for    f   ̂    i  v   by Eq. (13.1) yields:

   y  i     ϕ ˆ   i  v P =  x  i    γ i  l   f  i  l         (i = 1, 2, . . . ,  N)   (13.12)

Transformation of Eq. (13.12) into a working formulation requires suitable expressions for  
   ϕ ˆ   i  v  ,   γ i  l  , and   f  i  l  . Replacing the pure-species property   f  i  l   using Eq. (10.44) proves helpful:

   f  i  l  =  ϕ i  sat   P i  sat  exp   
 V  

i
  l (P −  P  

i
  sat )
 ___________ 

RT
    (10.44)

Substitution into Eq. (13.12) and rearrangement yields:

    y  i    Φ  i   P =  x  i    γ  i    P i  sat     (i = 1, 2, . . . ,  N )   (13.13)

where

   Φ  i   ≡   
  ϕ ˆ   i  v  ____ 

 ϕ i  sat 
   exp [−   

 V  
i
  l (P −  P i  sat )

 ___________ 
RT

  ]   

In Eq. (13.13) γi is understood to be a liquid-phase property. Because the Poynting factor, rep-
resented by the exponential, rarely differs significantly from one, we omit it to produce the 
usual working equation:

   Φ  i   ≡   
  ϕ ˆ   i  v  ____ 

 ϕ i  sat 
    (13.14)

The vapor pressure of pure species i is most often given by Eq. (6.90), the Antoine equation:

  ln  P i  sat  =  A  i   −   
 B  i   _____ 

T +  C  i  
    (13.15)
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13.3. Simplifications: Raoult’s Law, Modified Raoult’s Law, and Henry’s Law 463

The gamma/phi formulation of VLE appears in several variations, depending on the 
treatment of Φi and γi.

Vapor/liquid equilibrium calculations involve finding the temperature, pressure, and 
compositions of phases in equilibrium. Thermodynamics provides the mathematical frame-
work for systematic correlation, extension, generalization, evaluation, and interpretation of 
observed data of this type. Moreover, it is the means by which the predictions of various theo-
ries of molecular physics and statistical mechanics can be applied to practical purposes. None 
of this can be accomplished without models for the behavior of systems in vapor/liquid equi-
librium. The two simplest models, already considered, are the ideal-gas state for the vapor 
phase and the ideal-solution model for the liquid phase. These are combined in what is known 
as Raoult’s law, the simplest possible treatment of multicomponent VLE. It is by no means a 
“law” in the universal sense of the first and second laws of thermodynamics, but it does 
become valid in a rational limit.

13.3  SIMPLIFICATIONS: RAOULT’S LAW, MODIFIED RAOULT’S 
LAW, AND HENRY’S LAW

Figure 13.1 shows a vessel in which a vapor mixture and a liquid solution coexist in vapor/liquid 
equilibrium. If the vapor phase is in its ideal-gas state and the liquid phase is an ideal solution, 
both Φi and γi in Eq. (13.13) are one, and this equation reduces to its simplest possible form, 
Raoult’s law:1

    y  i   P =  x  i    P i  sat     (i = 1, 2, . . . ,  N )   (13.16)

where xi is a liquid-phase mole fraction, yi is a vapor-phase mole fraction, and   P i  sat   is the vapor 
pressure of pure species i. The product yiP is the partial pressure of species i in the vapor 
phase. Note that the only thermodynamic function remaining is the vapor pressure of pure- 
species i, suggesting its primary importance in VLE calculations.

Figure 13.1: Schematic representation of VLE. The temperature T and 
pressure P are uniform throughout the vessel and can be measured 
with appropriate instruments. Vapor and liquid  samples can be 
withdrawn to obtain  experimental values for mole fractions in the 
vapor {yi} and in the liquid {xi}.

Vapor
T, P, yi

Liquid
T, P, xi

1François Marie Raoult (1830–1901), French chemist, see https://en.wikipedia.org/wiki/François-Marie_Raoult.
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464 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

The ideal-gas-state assumption means that Raoult’s law is limited in application to low 
to moderate pressures. The ideal-solution assumption implies that Raoult’s law is a good 
approximation only when the species that comprise the system are chemically similar. Just as 
the ideal-gas state serves as a standard to which real-gas behavior can be compared, the ideal 
solution represents a standard to which real-solution behavior can be compared.  Liquid-phase 
ideal-solution behavior is promoted when the molecular species are not too different in size 
and have the same chemical nature. Thus, a mixture of isomers, such as ortho-, meta-, and 
para-xylene, conforms very closely to ideal-solution behavior. So do mixtures of adjacent 
members of a homologous series, e.g., n-hexane/n-heptane, ethanol/propanol, or benzene/ 
toluene. Other examples are acetone/acetonitrile and acetonitrile/nitromethane. Figures 12.11 
and 12.12 for the latter system were constructed to represent Raoult’s law.

The simple model of VLE represented by Eq. (13.16) provides a realistic description of 
actual behavior for a relatively small class of systems. Nevertheless, it serves as a standard of 
comparison for more complex systems. A limitation of Raoult’s law is that it can only be 
applied to species of known vapor pressure. Raoult’s law cannot be applied when the tempera-
ture exceeds the critical temperature of one or more species in the mixture.

Dewpoint and Bubblepoint Calculations with Raoult’s Law
Although VLE problems with other combinations of variables are possible, engineering interest 
often centers on dewpoint and bubblepoint calculations, of which there are four types:

   

BUBL P: Calculate { y  i  } and P, given { x  i  } and T

     
DEW P:   Calculate { x  i  } and P, given { y  i  } and T

     
BUBL T: Calculate { y  i  } and T, given { x  i  } and P     

DEW T:    Calculate { x  i  } and T  , given {y  i   } and P

   

In each case the name indicates the quantities to be calculated: either a BUBL (vapor) or a 
DEW (liquid) composition and either P or T. Thus, one must specify either the vapor-phase or 
the liquid-phase composition and either P or T, thus fixing 1 + (N − 1) or N intensive  variables, 
exactly the number of degrees of freedom F required by the phase rule [Eq. (3.1)] for vapor/
liquid equilibrium.

Because   ∑  i    y  i   = 1 , Eq. (13.16) can be summed over all species to yield:

  P =  ∑ 
i

     x  i    P i  sat   (13.17)

Raoult’s law implies that the total pressure is a mole-fraction-weighted average of the species 
vapor pressures at the specified temperature. This equation is applied directly in bubblepoint cal-
culations, where the liquid-phase composition is known. For a binary system with x2  = 1 − x1,

  P =  P 2  sat  + ( P 1  sat  −  P 2  sat )  x  1    (13.18)

and a plot of P vs. x1 at constant temperature is a straight line connecting   P 2  sat   at x1 = 0 with   
P 1  sat   at x1 = 1. The Pxy diagram of Fig. 12.11 for acetonitrile(l)/nitromethane(2) shows this 
linear relationship.

For this system at a temperature of 75°C, the pure-species vapor pressures are   
P 1  sat   =  83.21  kPa   and   P 2  sat   =  41.98  kPa . BUBL P calculations are readily carried out by 
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13.3. Simplifications: Raoult’s Law, Modified Raoult’s Law, and Henry’s Law 465

substituting these values in Eq. (13.18), along with values of x1. The results allow calculation 
of the P-x1 relation. The corresponding values of y1 are found from Eq. (13.16):

   y  1   =   
 x  1   P 1  sat 

 _____ 
P

    

The following table shows the results of such calculations. These are the values used to construct 
the P-x1-y1 diagram of Fig. 12.11:

x1 y1 P/kPa x1 y1 P/kPa

0.0 0.0000 41.98 0.6 0.7483 66.72
0.2 0.3313 50.23 0.8 0.8880 74.96
0.4 0.5692 58.47 1.0 1.0000 83.21

When P is fixed, the temperature varies along with x1 and y1, and the temperature range 
is bounded by saturation temperatures   t 1  sat   and   t 2  sat  , at which the pure species exert vapor pres-
sures equal to P. These temperatures can be calculated from the Antoine equation:

   t i  sat  =   
 B  i   _______  A  i   − ln  P   −  C  i    

Figure 12.12 for acetonitrile(l)/nitromethane(2) at P = 70 kPa shows these values as   
t 1  sat  = 69.84° C  and   t 2  sat  = 89.58° C .

The construction of Fig. 12.12 for this system is based on BUBL T calculations, which 
are less direct than BUBL P calculations. One cannot solve directly for the temperature because 
it is buried in the vapor-pressure equations. An iterative or trial-and-error approach is needed 
in this case. For a binary system and a given value of x1, Eq. (13.18) must give the specified 
pressure when the vapor pressures are evaluated at the correct temperature. The most intuitive 
procedure is simply to make calculations at trial values of T until the correct value of P is gen-
erated. The goal is the known value for P in Eq. (13.18), and it is found by varying T. Working 
out a convenient strategy for homing in on the correct final answer using a hand calculator is 
not difficult. Microsoft Excel’s Goal Seek function also does the job quite effectively when 
varying a single T to find a desired value of P. The Solver function allows this to be done 
simultaneously for many compositions.2

Modified Raoult’s Law
Raoult’s law results when both γi and Φi are set equal to one in Eq. 13.13. For low to moderate 
pressures, the latter substitution is usually reasonable. However, modifying Raoult’s law to 
properly evaluate the activity coefficient γi, and thus take into account liquid-phase deviations 
from ideal solution behavior, produces a much more broadly applicable description of VLE 
behavior:

    y  i   P =  x  i    γ  i    P i  sat     (i = 1, 2, . . . ,  N )   (13.19)

2See the Online Learning Center in Connect for examples. Please contact your instructor for instructions on 
accessing these items.
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466 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

This equation accurately represents the VLE behavior of a great variety of systems at low to 
moderate pressures.

Because   ∑  i    y  i   = 1 , Eq. (13.19) can be summed over all species to yield:

  P =  ∑ 
i

      x  i    γ  i    P i  sat   (13.20)

Alternatively, Eq. (13.19) can be solved for xi, in which case summing over all species yields:

  P =   
1
 ____________ 

 ∑ 
i

     y  i  ∕ γ  i    P i  sat 
    (13.21)

Bubblepoint and dewpoint calculations with the modified Raoult’s law are only slightly more 
complex than the same calculations made with Raoult’s law. In particular, bubblepoint pres-
sure calculations are straightforward because the specified liquid composition allows immedi-
ate evaluation of the activity coefficients. Dewpoint pressure calculations require an iterative 
solution process because the unknown liquid-phase composition is required to evaluate the 
activity coefficients. Bubblepoint and dewpoint temperature calculations are further compli-
cated by the temperature dependence of the activity coefficients, along with the temperature 
dependence of the vapor pressures, but the same iterative or trial-and-error approaches used 
with Raoult’s law calculations can still be employed.

Example 13.1
For the system methanol(1)/methyl acetate(2), the following equations provide a rea-
sonable correlation for the activity coefficients:

   ln  γ  1   = A x 2  2    ln  γ  2   = A x 1  2    where   A = 2.771 − 0.00523T   

In addition, the following Antoine equations provide vapor pressures:

   ln  P 1  sat  = 16.59158 −   
3643.31

 _________ 
T − 33.424

       ln  P 2  sat  = 14.25326 −   
2665.54

 _________ 
T − 53.424

     

where T is in kelvins and the vapor pressures are in kPa. Assuming the validity of  
Eq. (13.19), calculate:

 (a) P and { yi} for T = 318.15 K and x1 = 0.25.

 (b) P and {xi} for T = 318.15 K and y1 = 0.60.

 (c) T and { yi} for P = 101.33 kPa and x1 = 0.85.

 (d) T and {xi} for P = 101.33 kPa and y1 = 0.40.

 (e) The azeotropic pressure and the azeotropic composition for T = 318.15 K.

Solution 13.1
In the dewpoint and bubblepoint calculations of parts (a) through (d), the key is the 
dependence of the activity coefficients on T and x1. In part (a), both values are given, 
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and solution is direct. In part (b) only T is given, and solution is by trial with x1 var-
ied to reproduce the given value of y1. In part (c) only x1 is given, and T is varied to 
reproduce the given value of P. In part (d) neither T nor x1 is given, and both are varied 
alternately, T to yield P and x1 to yield y1. In parts (b) through (d), the trial-and-error 
calculations are readily automated using Microsoft Excel’s Goal Seek function.

 (a) A BUBL P calculation. For T = 318.15 K, the Antoine equations yield  
  P 1  sat  = 44.51  and   P 2  sat  = 65.64 kPa.  The activity-coefficient correlation  provides  
A = 1.107, γ1 = 1.864, and γ2 = 1.072. By Eq. (13.20), P = 73.50 kPa and by  
Eq. (13.19), y1 = 0.282.

(b)  A DEW P calculation. With T unchanged from part (a),   P 1  sat  ,    P 2  sat  , and A are 
also unchanged. The unknown liquid-phase composition is varied in trial cal-
culations that evaluate the activity coefficients, P by Eq. (13.21), and y1 by 
Eq. (13.19), with the goal of reproducing the given value y1 = 0.6. This leads 
to final values:

  P = 62.59 kPa     x  1   = 0.8169     γ  1   = 1.0378     γ  2   = 2.0935  

(c)  A BUBL T calculation. Solution by trial here varies T until the given value of 
P is reproduced. A reasonable starting value for T is found from the saturation 
temperatures of the pure species at the known pressure. The Antoine equation, 
solved for T, becomes:

   T i  sat  =   
 B  i   _______  A  i   − ln  P   −  C  i    

  Application for P = 101.33 kPa leads to:   T 1  sat  = 337.71  and   T 2  sat  = 330.08 K .  
An average of these values serves as an initial T: Each trial value of T leads 
immediately to values for the activity coefficients and to a value for P by  
Eq. (13.20). The known value of P = 101.33 kPa is reproduced when: 

    T  =  331.20 K     P 1  sat   =  77.99 kPa     P 2  sat   =  105.35 kPa      
A

  =  1.0388   γ  1    =  1.0236   γ  2    =  2.1182    

 The vapor-phase mole fractions are given by:

    y  1   =   
 x  1    γ  1    P 1  sat 

 ________ 
P

   = 0.670    and     y  2   = 1 −  y  1   = 0.330   

(d)  A DEW T calculation. Because P = 101.33 kPa, the saturation temperatures 
are the same as those of part (c), and an average value again serves as an ini-
tial value for T. Because the liquid-phase composition is not known, the activ-
ity coefficients are initialized as γ1 = γ2 = 1. Trial calculations alternately 
vary T to reproduce the given value of P and then x1 to reproduce the known 
value of y1. The process yields the following final values:

        T  = 326.70 K   P 1  sat   = 64.63 kPa   P 2  sat  = 89.94 kPa  

    A  = 1.0624       γ  1    = 1.3628     γ  2   = 1.2523  

   x  1     = 0.4602       x  2   = 0.5398     
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468 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

 (e) First we determine whether or not an azeotrope exists at the given temperature. 
This calculation is facilitated by defining the relative volatility:

    α  12   ≡   
 y  1   ∕  x  1  

 _  y  2   ∕  x  2       (13.22)

 at an azeotrope y1 = x1, y2 = x2, and α12 = 1. In general, by Eq. (13.19),

    
 y  i   __  x  i  

   =   
 γ  i    P i  sat 

 _____ 
P

    

 Therefore,

   α  12   =   
 γ  i    P 1  sat 

 ______ 
 γ  2    P 2  sat 

    (13.23)

  The equations for the activity coefficients show that when x1 = 0, γ2 = 1  
and γ1 = exp(A); when x1 = 1, γ1 = 1 and γ2 = exp(A). Therefore, in  
these limits,

    ( α  12  )   x  1   = 0   =   
 P 1  sat  exp (A)

 __________ 
 P 2  sat 

      and     ( α  12  )   x  1   = 1   =   
 P 1  sat 
 __________ 

 P 2  sat  exp (A)
     

  Using values of   P 1  sat  ,   P 2  sat  , and A  from part (a), the limiting values of α12 are  
(α12)  x  1    = 0 = 2.052 and (α12)  x  1    = 1 = 0.224. The value at one limit is greater than 1, 
whereas the value at the other limit is less than 1. Thus, an azeotrope does exist, 
because α12 is a continuous function of x1 and must pass through the value of 1.0 at 
some intermediate composition.

 For the azeotrope, α12 = 1, and Eq. (13.23) becomes:

    
 γ 1  az 

 ___  γ 2  az    =   
 P 2  sat 

 ____ 
 P 1  sat 

   =   
65.65

 _____ 44.51   = 1.4747  

  The difference between the correlating equations for ln γ1 and ln γ2 provides 
the general relation:

  ln    
 γ  1  

 __  γ  2     = A  x 2  2  − A  x 1  2  = A( x  2   −  x  1  ) (x  2   +  x  1  ) = A (x  2   −  x  1  ) = A (1 − 2  x  1  )   

  Thus the azeotrope occurs at the value of x1 for which this equation is satisfied 
when the activity-coefficient ratio has its azeotrope value of 1.4747, i.e., when

  ln    
 γ  1  

 __  γ  2     = ln 1.4747 = 0.388  

  Solution gives   x 1  az  = 0.325 . For this value of x1,   γ 1  az  = 1.657 . With   x 1  az  =  y 1  az  , 
Eq. (13.19) becomes:

   P   az  =  γ 1  az   P 1  sat  = (1.657) (44.51)  

  Thus,    P   az  = 73.76 kPa     x 1  az  =  y 1  az  = 0.325   
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13.3. Simplifications: Raoult’s Law, Modified Raoult’s Law, and Henry’s Law 469

Activity coefficients are functions of temperature and liquid-phase composition, and 
correlations for them are based on experiment. Thus, examining a set of  VLE data and the 
activity coefficients implied by it is instructive. Table 13.1 presents such a data set.

P/kPa x1 y1    f   ̂    1  l   =  y  1   P    f   ̂    2  l   =  y  2   P γ1 γ2

12.30  ( P 2  sat ) 0.0000 0.0000  0.000 12.300  ( P 2  sat ) 1.000
15.51 0.0895 0.2716  4.212 11.298 1.304 1.009
18.61 0.1981 0.4565  8.496 10.114 1.188 1.026
21.63 0.3193 0.5934 12.835  8.795 1.114 1.050
24.01 0.4232 0.6815 16.363  7.697 1.071 1.078
25.92 0.5119 0.7440 19.284  6.636 1.044 1.105
27.96 0.6096 0.8050 22.508  5.542 1.023 1.135
30.12 0.7135 0.8639 26.021  4.099 1.010 1.163
31.75 0.7934 0.9048 28.727  3.023 1.003 1.189
34.15 0.9102 0.9590 32.750  1.400 0.997 1.268
36.09  ( P 1  sat ) 1.0000 1.0000 36.090  ( P 1  sat )  0.000 1.000

Table 13.1: VLE Data for Methyl Ethyl Ketone(l)/Toluene(2) at 50°C

The criterion for vapor/liquid equilibrium is that the fugacity of species i is the same in 
both phases. If the vapor phase is in its ideal-gas state, then the fugacity equals the partial 
pressure, and
    f   ̂    i  l  =   f   ̂    i  v  =  y  i   P  

The liquid-phase fugacity of species i increases from zero at infinite dilution (xi = yi → 0) to   P i  sat   
for pure species i. This is illustrated by the data of Table 13.1 for the methyl ethyl ketone(l)/ 
toluene(2) system at 50°C.3 The first three columns list experimental P-x1-y1 data, and columns 4 
and 5 show    f   ̂    1  l   =  y  1   P  and    f   ̂    2  l   =  y  2   P . The fugacities are plotted in Fig. 13.2 as solid lines. The 
straight dashed lines represent Eq. (10.83), the Lewis/Randall rule, which expresses the compo-
sition dependence of the constituent fugacities in an ideal solution:

    f   ̂    i  id  =  x  i    f  i  l   (10.83)

Although derived from a particular set of data, Fig. 13.2 illustrates the general nature of  
the    f   ̂    1  l    and    f   ̂    2  l    vs. x1 relationships for a binary liquid solution at constant T. The equilibrium pres-
sure P varies with composition, but its influence on the liquid-phase values of    f   ̂    1  l    and    f   ̂    2  l    is 
negligible. Thus a plot at constant T and P would look the same, as indicated in Fig. 13.3 for 
species i (i = 1, 2) in a binary solution at constant T and P.

The lower dashed line in Fig. 13.3, representing the Lewis/Randall rule, is  characteristic of 
ideal-solution behavior. It provides the simplest possible model for the composition  dependence 

3M. Diaz Peña, A. Crespo Colin, and A. Compostizo, J. Chem. Thermodyn., vol. 10, pp. 337–341, 1978.
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of    f   ̂    i  l  , representing a standard to which actual behavior may be compared. Indeed, the activity 
coefficient as defined by Eq. (13.2) formalizes this comparison:

   γ  i   ≡   
  f   ̂    i  l  ____ 

 x  i    f  i  l 
   =   

  f   ̂    i  l  ___ 
  f   ̂    i  id 

    

Thus the activity coefficient of a species in solution is the ratio of its actual fugacity to the value 
given by the Lewis/Randall rule at the same T, P, and composition. To calculate experimental 
values of γi, both    f   ̂    i  l   and    f   ̂    i  id   are eliminated in favor of measurable quantities.

    γ  i   =   
 y  i   P

 ____ 
 x  i    f  i  l 

   =   
 y  i   P

 _____ 
 x  i    P i  sat 

       (i = 1, 2, . . . ,  N )   (13.24)

This is a restatement of Eq. (13.19), the modified Raoult’s law, in the form used to calculate 
activity coefficients from experimental low-pressure VLE data. Values from this equation 
appear in the last two columns of Table 13.1.

Figure 13.4 shows plots of ln γi based on experimental measurements for six binary 
 systems at 50°C, illustrating the variety of behavior that is observed. Note in every case that as 
xi → 1, ln γi → 0 with zero slope. Usually (but not always) the infinite-dilution  activity 
 coefficient is an extreme value. Comparing these graphs with those of Fig. 10.3 reveals that 
the ln γi generally have the same sign as GE. That is, positive GE implies activity  coefficients 
greater than unity and negative GE implies activity coefficients less than unity, at least over 
most of the composition range.

Figure 13.2: Fugacities for methyl ethyl 
ketone(l)/toluene(2) at 50°C. The dashed lines 
represent the Lewis/Randall rule.
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Henry’s Law
The solid lines in both Figs. 13.2 and 13.3, representing experimental values of    f   ̂    i  l  , become 
tangent to the Lewis/Randall-rule lines at xi = 1. This is a consequence of the Gibbs/Duhem 
equation, as shown below. In the other limit, xi → 0,    f   ̂    i  l   also goes to zero. Thus, the ratio    f   ̂    i  l  ∕  x  i    
is indeterminate in this limit. Application of l’Hôpital’s rule yields:

    lim  
x→0

     
  f   ̂    i  l  __  x  i  

   =   (  
d   f   ̂    i  l  ___ 
d  x  i  

  )   
 x  i   = 0

   ≡    i    (13.25)

Equation (13.25) defines Henry’s constant i as the limiting slope of the    f   ̂    i  l  -vs.-xi curve at  
xi = 0. As shown in Fig. 13.3, this is the slope of a line drawn tangent to the curve at xi = 0. 
The equation of this tangent line expresses Henry’s law.

     f   ̂    i  l  =  x  i      i     (13.26)

Figure 13.4: Logarithms of the activity coefficients at 50°C for six binary liquid systems:  
(a)  chloroform(l)/n-heptane(2); (b) acetone(l)/methanol(2); (c) acetone(l)/chloroform(2);  
(d) ethanol(l)/n-heptane(2); (e) ethanol(l)/chloroform(2); ( f ) ethanol(l)/water(2).
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472 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

Strictly valid in the limit as xi → 0, it is a good approximation at small values of xi. A class of 
practical situations in which values of xi are consistently small for one component is the deter-
mination of liquid-phase mole fractions of species that are gases under common conditions.

For a system of air in equilibrium with liquid water, the liquid phase is nearly pure water. 
Thus, the mole fraction of water vapor in the air is found from Raoult’s law applied to the 
water assuming that the water is essentially pure. Thus, Raoult’s law for water (species 2) 
becomes   y  2  P =  P 2  sat  . At 25°C and atmospheric pressure, this equation yields:

   y  2   =   
 P 2  sat 

 ____ 
P

   =   
3.166

 ______ 101.33   = 0.0312  

where the pressures are in kPa, and   P 2  sat   comes from the steam tables.
The mole fraction of air dissolved in the water is computed using Henry’s law. Values 

of i come from experiment, and Table 13.2 lists values at 25°C for a few gases dissolved in 
water. For the air/water system at 25°C and atmospheric pressure, Henry’s law applied to air 
(species 1) with y1 = 1 − 0.0312 = 0.9688 yields:

   x  1   =   
 y  1   P

 ____    1     =   
 (0.9688)  (1.0133) 

  ______________ 72,950   = 1.35 ×  10   −5   

This implies x2 = 0.9999865, justifying our initial assumption that the liquid phase is essen-
tially pure water.

Example 13.2
Assuming that carbonated water contains only CO2(1) and H2O(2), determine the 
 compositions of the vapor and liquid phases in a sealed can of “soda” at 25°C  
if the pressure inside the can is 5 bar.

Gas /bar

Acetylene 1,350
Air 72,950
Carbon dioxide 1,670
Carbon monoxide 54,600
Ethane 30,600
Ethylene 11,550
Helium 126,600
Hydrogen 71,600
Hydrogen sulfide 550
Methane 41,850
Nitrogen 87,650
Oxygen 44,380

Table 13.2: Henry’s Constants for Gases Dissolved in Water at 25°C
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13.3. Simplifications: Raoult’s Law, Modified Raoult’s Law, and Henry’s Law 473

Solution 13.2
Expecting that the liquid phase will be nearly pure water and the vapor phase will 
be nearly pure CO2, we apply Henry’s law for CO2 (species 1) and Raoult’s law for 
water (species 2):

    y  1   P =  x  1      1          y  2   P =  x  2    P 2  sat    

With the vapor phase nearly pure CO2, we obtain the liquid-phase CO2 mole 
 fraction as

   x  1   =   
 y  1   P

 ____    1     ≈   
P
 ____    1     =   

5
 _____ 1670   = 0.0030  

Similarly, with the liquid phase nearly pure water, we have

   y  2   =   
 x  2    P 2  sat 

 ______ 
P

   ≈   
 P 2  sat 

 ____ 
P

    

From the steam tables, the vapor pressure of water at 25°C is 3.166 kPa, or  
0.0317 bar. Thus, y2 = 0.0317/5 = 0.0063. Consistent with our expectations, the 
liquid is 99.7% water and the vapor is 99.4% CO2.

Henry’s law is related to the Lewis/Randall rule through the Gibbs/Duhem equation, expressed 
by Eq. (10.14). Written for a binary liquid solution with    M ¯    i    replaced by    G ¯   i  l  =  μ i  l  , it becomes:

    x  1   d μ 1  l   +  x  2   d μ 2  l   = 0   (const T, P)   

Differentiation of Eq. (10.46) at constant T and P yields:  d μ i  l  = RTd ln   f   ̂    i  l  . The preceding equa-
tion is then
    x  1   d ln   f   ̂    1  l   +  x  2   d ln   f   ̂    2  l   = 0     (const T, P)     

Upon division by dx1.

    x  1     
d ln   f   ̂    1  l  

 ______ 
d  x  1     +  x  2     

d ln   f   ̂    2  l  
 ______ 

d  x  1     = 0 (const T, P)   (13.27)

This is a particular form of the Gibbs/Duhem equation. Substitution of −dx2 for dx1 in the 
second term produces:

    x  1     
d ln   f   ̂    1  l  

 ______ 
d  x  1     =  x  2     

d ln   f   ̂    2  l  
 ______ 

d  x  2         or      
d   f   ̂    1  l   ∕ d  x  1  

 ________ 
  f   ̂    1  l   ∕  x  1  

   =   
d   f   ̂   2  l   ∕ d  x  2  

 _______ 
  f   ̂    2  l   ∕  x  2  

     

In the limit as x1 → 1 and x2 → 0,

    lim  
 x  1  →1

     
d   f   ̂    1  l   ∕ d  x  1  

 ________ 
  f   ̂    1  l   ∕  x  1  

   =   lim  
 x  2  →0

     
d   f   ̂    2  l   ∕ d  x  2  

 ________ 
  f   ̂    2  l   ∕  x  2  
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474 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

Because     f   ̂    1  l   =  f  1  l   when x1 = 1, this may be rewritten:

    
1
 __ 

 f  1  l 
      (  

d   f   ̂    1  l  
 ____ 

d  x  1    )
   
 x  1   = 1

   =   
  (d   f   ̂    2  l   ∕ d  x  2  )    x  2   = 0  

  _____________  
  lim  
 x  2  →0

   (   f   ̂    2  l   ∕  x  2  ) 
    

According to Eq. (13.25), the numerator and denominator on the right side of this equation are 
equal, and therefore:

    (   
d   f   ̂    1  l  

 ____ 
d  x  1    )

   
 x  1   = 1

   =  f  1  l   (13.28)

This equation is the exact expression of the Lewis/Randall rule as applied to real solutions.  
It also implies that Eq. (10.83) provides approximately correct values of    f   ̂    i  l   when xi ≈ 1:  
   f   ̂    i  l  ≈   f   ̂    i  id  =  x  i    f  i  l  .

Henry’s law applies to a species as it approaches infinite dilution in a 
binary solution, and the Gibbs/Duhem equation insures validity of the 
Lewis/Randall rule for the other species as it approaches purity.

The fugacity shown by Fig. 13.3 is for a species with positive deviations from ideality 
in the sense of the Lewis/Randall rule. Negative deviations are less common but are also 
observed; the    f   ̂    i  l   -vs.-xi curve then lies below the Lewis/Randall line. In Fig. 13.5 the fugacity 

Figure 13.5: Composition dependence of the 
fugacity of acetone in two binary liquid  
solutions at 50°C.
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13.4. Correlations for Liquid-Phase Activity Coefficients 475

of acetone is shown as a function of composition for two different binary liquid solutions at 
50°C. When the second species is methanol, acetone exhibits positive deviations from ideal-
ity. When the second species is chloroform, the deviations are negative. The fugacity of pure 
acetone facetone is of course the same regardless of the identity of the second species. How-
ever, Henry’s constants, represented by slopes of the two dotted lines, are very different for 
the two cases.

13.4  CORRELATIONS FOR LIQUID-PHASE ACTIVITY 
COEFFICIENTS

Liquid-phase activity coefficients play a vital role in the gamma/phi formulation of VLE. 
They are directly related to the excess Gibbs energy, so models for GE are needed to systemat-
ically describe their behavior. In general, GE∕RT is a function of T, P, and composition, but for 
liquids at low to moderate pressures it is a very weak function of P. Therefore its pressure 
dependence is usually neglected, and for applications at constant T, excess Gibbs energy is 
treated as a function of composition alone:

     
 G   E 

 ___ 
RT

   = g ( x  1  ,  x  2  , . . .,   x  n  )       (const T )     

The Redlich/Kister Expansion
For binary systems (species 1 and 2) the quantity most often selected to be represented by an 
equation is G ≡ GE∕(x1x2RT ), which can be expressed as a power series in x1:

   Y ≡   
 G   E 
 _______  x  1    x  2   RT

   = a + b x  1   + c x 1  2  + · · ·      (const T )     

Because x2 = 1 − x1, mole fraction x1 serves as the single independent variable. An equivalent 
power series with certain advantages is known as the Redlich/Kister expansion:4

  Y =  A  0   +   ∑  
n = 1

  
a
    A  n    z   n   (13.29)

where, by definition, z ≡ x1 − x2 = 2x1 − 1, a is the order of the power series, and parameters 
An are functions of temperature.

Expressions for the activity coefficients are found from Eqs. (10.15) and (10.16) with 
GE∕RT replacing ME.

   
  G ¯   1  E 

 ___ 
RT

   =   
 G   E 

 ___ 
RT

   +  x  2      
d( G   E  / RT )

 _______ 
d  x  1     (13.30)    

  G ¯   2  E 
 ___ 

RT
   =   

 G   E 
 ___ 

RT
   −  x  1      

d (G   E  / RT )
 _______ 

d  x  1     (13.31)

4O. Redlich, A. T. Kister, and C. E. Turnquist, Chem. Eng. Progr. Symp. Ser. No. 2, vol. 48, pp. 49–61, 1952.
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476 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

By Eq. (13.3), ln   γ  i   =   G ¯   i  E  ∕ RT . Moreover, GE∕RT = x1x2Y, and

    
d( G   E  ∕ RT )

 _________ 
d  x  1     =  x  1    x  2     

dY
 ____ 

d  x  1     + Y( x  2   −  x  1  )  

Making these substitutions in Eqs. (13.30) and (13.31) leads to:

 ln  γ  1   =  x 2  2   (Y +  x  1     
dY

 _ 
d  x  1    )   (13.32)  ln  γ  2   =  x 1  2   (Y −  x  2     

dY
 _ 

d  x  1    )   (13.33)

where Y is given by Eq. (13.29) and

    
dY

 ____ 
d  x  1     =   ∑ 

n = 1
  

a
    n  A  n    z   n−1   (13.34)

For infinite-dilution values, Eqs. (13.32) and (13.33) yield:

  ln  γ 1  ∞  = Y(  x  1   = 0,  x  2   = 1, z = − 1) =  A  0   +   ∑ 
n=1

  
a
     A  n    (−1)   n   (13.35)

  ln  γ 2  ∞  = Y( x  1   = 1,  x  2   = 0, z = 1) =  A  0   +   ∑ 
n=1

  
a
     A  n    (13.36)

In application, different truncations of these series are appropriate, and truncations with a ≤ 5 
are most common.

When all parameters are zero, ln γ1 = 0, ln γ2 = 0, γ1 = γ2 = 1. These are the values 
for an ideal solution, and they represent a limiting case where the excess Gibbs energy  
is zero.

If all parameters except A0 are zero, Y = A0, and Eqs. (13.32) and (13.33) reduce to:

 ln  γ  1   =  A  0    x 2  2  (13.37)  ln  γ  2   =  A  0    x 1  2  (13.38)

The symmetrical nature of these relations is evident. Infinite-dilution values of the activity 
coefficients are ln   γ 1  ∞  = ln  γ 2  ∞  =  A  0   .

The two-parameter truncation is the most widely used version of this approach:

  Y =  A  0   +  A  1  ( x  1   −  x  2  ) =  A  0   +  A  1  (2  x  1   − 1)  
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13.4. Correlations for Liquid-Phase Activity Coefficients 477

in which Y is linear in x1. An alternate form of this equation results from the definitions A0 + A1 =  
A21 and A0 − A1 = A12. Eliminating parameters A0 and A1 in favor of A21 and A12, we obtain:

    
 G   E 

 ___ 
RT

   = ( A  21    x  1   +  A  12    x  2  )  x  1    x  2    (13.39)

   ln  γ  1   =  x 2  2   [  A  12   + 2 ( A  21   −  A  12  )   x  1  ]     (13.40)

   ln  γ  2   =  x 1  2   [  A  21   + 2  ( A  12   −  A  21  )   x  2   ]     (13.41)

These are known as the Margules5 equations. We will make extensive use of them in 
fitting VLE data and treating VLE problems because they are among the simplest models that 
can reasonably fit low-pressure VLE involving moderately nonideal liquid-phase behavior. 
For the limiting conditions of infinite dilution, they imply:

   ln  γ 1  ∞  =  A  12       and    ln  γ 2  ∞  =  A  21     

Example 13.3
Consider the data of Table 13.1 for methyl ethyl ketone(1)/toluene(2) at 50°C. Extrapo-
lation of the activity coefficients to x1 = 0 and x1 = 1 gives approximate values of the 
infinite-dilution activity coefficients of   γ 1  ∞   = 1.44 and   γ 2  ∞   = 1.32. Use these values with 
the Margules equations to plot a P-x-y diagram for this system at 50°C and compare 
the result to the original data of Table 13.1.

Solution 13.3
As shown above, the Margules equation parameters are related to the infinite- 
dilution activity coefficients as A12 = ln   γ 1  ∞   and A21 = ln   γ 2  ∞  . Thus, in this case, 
A12 = ln 1.44 = 0.364 and A21 = ln 1.32 = 0.278. We then use these values in the 
 Margules equations to predict the activity coefficient for each composition in 
Table 13.1. For example, at x1 = 0.0895, x2 = 0.9105, we have:

    γ1 = exp(  x  2  2  [A12 + 2(A21 − A12)x1]) = exp(0.91052[0.364 + 2(−0.087)0.0895]) = 1.336
γ2 = exp(  x  1  2  [A21 + 2(A12 − A21)x2]) = exp(0.08952[0.287 + 2(0.087)0.9105]) = 1.003

Repeating this for all of the compositions in Table 13.1 yields the activity coef-
ficients shown in the accompanying table. We then simply compute the pressure 
and vapor-phase composition from the usual expressions for the modified Raoult’s 
law. For example, at x1 = 0.0895, x2 = 0.9105, we have:

P = x1γ1   P 1  sat   + x2γ2   P 2  sat   = 0.0895 ⋅ 1.336 ⋅ 36.09 + 0.9105 ⋅ 1.003 ⋅ 12.30 = 15.55
y1 = x1γ1   P 1  sat  ∕P = 0.0895 ⋅ 1.336 ⋅ 36.09∕15.55 = 0.2774

5Max Margules (1856–1920), Austrian meteorologist and physicist; see http://en.wikipedia.org/wiki/Max_Margules.
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478 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

Again, results for other compositions are shown in the following table.

x1 γ1 γ2 P/kPa y1

0.0000 1.440 1.000 12.30 0.0000
0.0895 1.336 1.003 15.55 0.2774
0.1981 1.237 1.017 18.87 0.4686
0.3193 1.154 1.041 22.02 0.6040
0.4232 1.102 1.070 24.42 0.6891
0.5119 1.068 1.100 26.33 0.7493
0.6096 1.040 1.137 28.34 0.8074
0.7135 1.020 1.181 30.43 0.8632
0.7934 1.010 1.218 32.01 0.9033
0.9102 1.002 1.275 34.31 0.9590
1.0000 1.000 1.320 36.09 1.0000

The accompanying figure compares these predictions, shown as curves, to the 
data of Table 13.1, shown as points, indicating that even this simple approach  
of extrapolating the experimentally derived activity coefficients to obtain the 
Margules equation parameters provides a very reasonable fit to the original data. 
A more systematic approach to such data fitting is described in the next section.
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13.4. Correlations for Liquid-Phase Activity Coefficients 479

The van Laar Equation

Another well-known equation results when the reciprocal expression x1x2RT∕GE is expressed 
as a linear function of x1:

    
 x  1    x  2  

 ______ 
 G   E  ∕ RT

   = A′ + B′( x  1   −  x  2  ) = A′ + B′(2  x  1   − 1)  

This can also be written:

    
 x  1    x  2  

 ______ 
 G   E  ∕ RT

   = A′( x  1   +  x  2  ) + B′( x  1   −  x  2  ) = ( A  ′  +  B  ′ )  x  1   + ( A  ′  −  B  ′ )  x  2    

When new parameters are defined by   A  ′  +  B  ′  = 1 ∕  A  21  ′    and   A  ′  −  B  ′  = 1 ∕  A  12  ′   , an equivalent 
form is obtained:

    
 x  1    x  2  

 ______ 
 G   E  ∕ RT

   =   
 x  1  

 ____ 
 A  21  ′  

   +   
 x  2  

 ____ 
 A  12  ′  

   =   
 A  12  ′    x  1   +  A  21  ′    x  2  

  _____________ 
 A  12  ′    A  21  ′  

    

or   
 G   E 
 _______  x  1    x  2   RT

   =    
 A  12  ′    A  21  ′  
 _____________  

 A  12  ′    x  1   +  A  21  ′    x  2  
    (13.42)

  The activity coefficients implied by this equation are:

 ln  γ  1   =  A  12  ′     (  1 +   
 A  12  ′     x  1  

 ________ 
 A  21  ′     x  2  

   )     
−2

  (13.43)  ln  γ  2   =  A  21  ′      (  1 +   
 A  21  ′     x  2  

 ________ 
 A  12  ′     x  1  

   )     
−2

  (13.44)

These are the van Laar6 equations. When x1 = 0, ln   γ 1  ∞  =  A  12  ′    ; when x2 = 0, ln   γ 2  ∞  =  A  21  ′    .
The Redlich/Kister expansion and the van Laar equations are special cases of a general 

treatment based on rational functions, i.e., on equations for GE∕(x1x2RT ) given by ratios of 
polynomials.7 They provide great flexibility in the fitting of VLE data for binary systems. 
However, they have scant theoretical foundation, and therefore they fail to provide a rational 
basis for extension to multicomponent systems. Moreover, they do not incorporate an explicit 
temperature dependence of their parameters, though this can be supplied on an ad hoc basis.

Local-Composition Models
Theoretical developments in the molecular thermodynamics of liquid-solution behavior are 
often based on the concept of local composition. Within a liquid solution, local compositions, 
different from the overall mixture composition, are presumed to account for the short-range 

6Johannes Jacobus van Laar (1860–1938), Dutch physical chemist; see http://en.wikipedia.org/wiki/
Johannes_van_Laar.

7H. C. Van Ness and M. M. Abbott, Classical Thermodynamics of Nonelectrolyte Solutions: With Applications to 
Phase Equilibria, Sec. 5–7, McGraw-Hill, New York, 1982.
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480 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

order and nonrandom molecular orientations that result from differences in molecular size and 
intermolecular forces. The concept was introduced by G. M. Wilson in 1964 with the publication 
of a model of solution behavior since known as the Wilson equation.8 The success of this equa-
tion in the correlation of VLE data prompted the development of alternative local-composition 
models, most notably the NRTL (Non-Random-Two-Liquid) equation of Renon and Prausnitz9 
and the UNIQUAC (UNIversal QUAsi-Chemical) equation of Abrams and Prausnitz.10 A fur-
ther significant development, based on the UNIQUAC equation, is the UNIFAC method,11 in 
which activity coefficients are calculated from contributions of the various groups making up 
the molecules of a solution.

Wilson Equation. Like the Margules and van Laar equations, the Wilson equation con-
tains just two parameters for a binary system (Λ12 and Λ21). It is written:

    
 G   E 

 ___ 
RT

   = −  x  1   ln (  x  1   +  x  2    Λ  12  ) −  x  2   ln (  x  2   +  x  1    Λ  21  )  (13.45)

  ln  γ  1   = − ln (  x  1   +  x  2    Λ  12  ) +  x  2   (   
 Λ  12  
 _  x  1   +  x  2    Λ  12     −   

 Λ  21  
 _  x  2   +  x  1    Λ  21     )   (13.46)

  ln  γ  2   = − ln ( x  2   +  x  1    Λ  21  ) −  x  1   (   
 Λ  12  
 _  x  1   +  x  2    Λ  12     −   

 Λ  21  
 _  x  2   +  x  1    Λ  21     )   (13.47)

For infinite dilution, these equations become:

   ln  γ 1  ∞  = −  ln Λ  12   + 1 −  Λ  21     and   ln  γ 2  ∞  = −  ln Λ  21   + 1 −  Λ  12    

Note that Λ12 and Λ21 must always be positive numbers. Their approximate temperature 
dependence is given by equations presented below in the context of treatment of multi-
component systems.

NRTL Equation. This equation contains three parameters for a binary system and is written:

    
 G   E 
 _______  x  1    x  2   RT

   =   
 G  21    τ  21  

 _________  x  1   +  x  2    G  21     +   
 G  12    τ  12  

 _________  x  2   +  x  1    G  12      (13.48)

  ln  γ  1   =  x 2  2   [ τ  21     (   
 G  21  
 __________  x  1   +  x  2    G  21    )    

2
  +   

 G  12    τ  12  
 _____________  

  ( x  2   +  x  1    G  12  )    2 
  ]    (13.49)

  ln  γ  2   =  x 1  2    [ τ  12     (   
 G  12  
 __________  x  2   +  x  1    G  12    )    

2
  +   

 G  21    τ  21  
 _____________  

  ( x  1   +  x  2    G  21  )    2 
  ]    (13.50)

8G. M. Wilson, J. Am. Chem. Soc, vol. 86, pp. 127–130, 1964.

9H. Renon and J. M. Prausnitz, AIChE J., vol. 14, p. 135–144, 1968.

10D. S. Abrams and J. M. Prausnitz, AIChE J., vol. 21, p. 116–128, 1975.

11UNIQUAC Functional-Group Activity Coefficients; proposed by Aa. Fredenslund, R. L. Jones, and J. M. Praus-
nitz, AIChE J., vol. 21, p. 1086–1099, 1975; given detailed treatment in the monograph Aa. Fredenslund, J. Gmehling, 
and P. Rasmussen, Vapor-Liquid Equilibrium Using UNIFAC, Elsevier, Amsterdam, 1977. Now updated by the 
 UNIFAC consortium, http://unifac.ddbst.de/.
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13.5. Fitting Activity Coefficient Models to VLE Data 481

Here,    G  12   = exp (− α  τ  12  )      G  21   = exp (− α  τ  21  )   

and   τ  12   =   
 b  12  

 ___ 
RT

         τ  21   =   
 b  21  

 ___ 
RT

     

where α, b12, and b21, parameters specific to a particular pair of species, are independent of 
composition and temperature. The infinite-dilution values of the activity coefficients are given 
by the equations:

   ln  γ 1  ∞  =  τ  21   +  τ  12   exp (− α  τ  12  )   and   ln  γ 2  ∞  =  τ  12   +  τ  21   exp (− α  τ  21  )   

The UNIQUAC equation and the UNIFAC method are models of greater complexity 
and are treated in App. G. The UNIFAC method, while somewhat cumbersome to apply in 
hand calculations, is widely implemented in process simulation packages and therefore widely 
applied in practice.

Multicomponent Systems
The local-composition models have limited flexibility in the fitting of data, but they are adequate 
for most engineering purposes. Moreover, they are implicitly generalizable to multicomponent 
systems without the introduction of any parameters beyond those required to describe the 
constituent binary systems. For example, the Wilson equation for multicomponent systems is:

    
 G   E 

 ___ 
RT

   = −   ∑ 
i

      x  i    ln  
 

    
(

  ∑ 
j

      x  j    Λ  ij  )
    (13.51)

  ln   γ  i   = 1 − ln 
(

  ∑ 
j

      x  j    Λ  ij  )
   −  ∑ 

k

       
 x  k    Λ  ki   _______  ∑ 
j

      x  j    Λ  kj  
    (13.52)

where Λij = 1 for i = j, etc. All indices refer to the same species, and summations are over all 
species. For each ij pair there are two parameters, because Λij ≠ Λji. For a ternary system the 
three ij pairs are associated with the parameters Λ12, Λ21; Λ13, Λ31; and Λ23, Λ32.

The temperature dependence of the parameters is given by:

    Λ  ij   =   
 V  j   ___  V  i  

   exp   
−  a  ij   ____ 
RT

        ( i ≠ j )    (13.53)

where Vj and Vi are the molar volumes at temperature T of pure liquids j and i, and aij is a constant 
independent of composition and temperature. Thus the Wilson equation, like all other local- 
composition models, has built into it an approximate temperature dependence for the parameters. 
Moreover, all parameters are found from data for binary (in contrast to multicomponent) systems. 
This makes parameter determination for the local-composition models a task of manageable scale.

13.5 FITTING ACTIVITY COEFFICIENT MODELS TO VLE DATA

In Table 13.3, the first three columns repeat the P-x1-y1 data of Table 13.1 for the system 
methyl ethyl ketone(l)/toluene(2). These data points are also shown as circles in Fig. 13.6(a). 
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482 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

Values of ln γ1 and ln γ2 are listed in columns 4 and 5, and are shown by the open squares and 
triangles of Fig. 13.6(b). They are combined for a binary system in accord with Eq. (13.10):

     
 G   E 

 _ 
RT

   =  x  1   ln  γ  1   +  x  2   ln  γ  2     (13.54)

The values of GE∕RT are then divided by x1x2 to provide values of GE∕(x1x2 RT ); the two sets of 
numbers are listed in columns 6 and 7 of Table 13.3 and appear as solid circles on Fig. 13.6(b).

P/kPa x1 y1 ln γ1 ln γ2 GE/RT GE/(x1x2RT )

12.30  ( P 2  sat ) 0.0000 0.0000 0.000 0.000
15.51 0.0895 0.2716  0.266 0.009 0.032 0.389
18.61 0.1981 0.4565  0.172 0.025 0.054 0.342
21.63 0.3193 0.5934  0.108 0.049 0.068 0.312
24.01 0.4232 0.6815  0.069 0.075 0.072 0.297
25.92 0.5119 0.7440  0.043 0.100 0.071 0.283
27.96 0.6096 0.8050  0.023 0.127 0.063 0.267
30.12 0.7135 0.8639  0.010 0.151 0.051 0.248
31.75 0.7934 0.9048  0.003 0.173 0.038 0.234
34.15 0.9102 0.9590 –0.003 0.237 0.019 0.227
36.09  ( P 1  sat ) 1.0000 1.0000  0.000 0.000

Table 13.3: VLE Data for Methyl Ethyl Ketone(l)/Toluene(2) at 50°C

Figure 13.6: The methyl ethyl ketone(1)/toluene(2) system at 50°C. (a) Pxy data and their correlation. 
(b) Liquid-phase properties and their correlation.
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13.5. Fitting Activity Coefficient Models to VLE Data 483

The four thermodynamic functions ln γ1, ln γ2, GE∕RT, and GE∕(x1x2RT ), are properties 
of the liquid phase. Figure 13.6(b) shows how their experimental values vary with composi-
tion for a particular binary system at a specified temperature. This figure is characteristic of 
systems for which:

    γ  i   ≥ 1    and    ln  γ  i    ≥  0  (i = 1, 2)   

In such cases the liquid phase shows positive deviations from Raoult’s law behavior. This is 
seen also in Fig. 13.6(a), where the P-x1 data points all lie above the dashed straight line, 
which represents Raoult’s law.

Because the activity coefficient of a species in solution becomes unity as the species 
becomes pure, each ln γi (i = 1, 2) tends to zero as xi → 1. This is evident in Fig. 13.6(b). At 
the other limit, where xi → 0 and species i becomes infinitely dilute, ln γi approaches a finite 
limit, namely, ln   γ i  ∞  . In the limit as x1 → 0, the dimensionless excess Gibbs energy GE∕RT as 
given by Eq. (13.54) becomes:

    lim  
 x  1  →0

      
 G   E 

 ___ 
RT

   = (0) ln   γ 1  ∞  + (1)(0) = 0  

The same result is obtained for x2 → 0 (x1 → 1). The value of GE∕RT (and GE) is there-
fore zero at both x1 = 0 and x1 = 1.

The quantity GE∕(x1x2RT ) becomes indeterminate both at x1 = 0 and x1 = 1, because GE 
is zero in both limits, as is the product x1x2. For x1 → 0, l’Hôpital’s rule yields:

    lim  
 x  1  →0

     
 G   E 
 _______  x  1    x  2   RT

   =   lim  
 x  1  →0

     
 G   E  ∕ RT

 ______  x  1     =   lim  
 x  1  →0

     
d( G   E  ∕ RT )

 _________ 
d  x  1      (A)

Differentiation of Eq. (13.54) with respect to x1 provides the derivative of the final member:

    
d( G   E  ∕ RT )

 _________ 
d  x  1     =  x  1     

d ln  γ  1  
 ______ 

d  x  1     + ln  γ  1   +  x  2     
d ln  γ  2  

 ______ 
d  x  1     − ln  γ  2    (B)

The minus sign preceding the last term comes from dx2∕dx1 = −1, a consequence of the equa-
tion, x1 + x2 = 1. The Gibbs/Duhem equation, Eq. (13.11), written for a binary system, is 
divided by dx1 to give:

     x  1     
d ln  γ  1  

 _ 
d  x  1     +  x  2     

d ln  γ  2  
 _ 

d  x  1     = 0    ( const T, P )     (13.55)

Substitution into Eq. (B) reduces it to:

    
d( G   E  ∕ RT )

 _________ 
d  x  1     = ln    

 γ  1  
 __  γ  2      (13.56)

Applied to the composition limit at x1 = 0, this equation yields:

    lim  
 x  1  →0

     
d( G   E  ∕ RT )

 _________ 
d  x  1     =   lim  

 x  1  →0
   ln   

 γ  1  
 __  γ  2     = ln  γ 1  ∞   

By Eq. (A),     lim  
 x  1  →0

      
 G   E 
 _______  x  1    x  2   RT

   = ln  γ 1  ∞      Similarly,       lim  
 x  1  →1

      
 G   E 
 _______  x  1    x  2   RT

   = ln  γ 2  ∞   
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484 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

Thus the limiting values of GE∕(x1x2RT ) are equal to the infinite-dilution limits of ln γ1 and  
ln γ2. This result is illustrated in Fig. 13.6(b).

These results depend on Eq. (13.11), which is valid for constant T and P. Although the 
data of Table 13.3 are for constant T, but variable P, negligible error is introduced through  
Eq. (13.11) because liquid-phase activity coefficients are very nearly independent of P for 
systems at low to moderate pressures.

Equation (13.11) has further influence on the nature of Fig. 13.6(b). Rewritten as,

    
d ln  γ  1  

 ______ 
d  x  1     = −   

 x  2  
 ___  x  1       
d ln  γ  2  

 ______ 
d  x  1      

it requires the slope of the ln γ1 curve to be everywhere of opposite sign to the slope of the  
ln γ2 curve. Furthermore, when x2 → 0 (and x1 → 1), the slope of the ln γ1 curve is zero. 
 Similarly, when x1 → 0, the slope of the ln γ2 curve is zero. Thus, each ln γi (i = 1, 2) curve 
terminates at zero with zero slope at xi = 1.

Data Reduction
Of the sets of points shown in Fig. 13.6(b), those for GE∕(x1x2RT ) most closely conform to a 
simple mathematical relation. Thus a straight line provides a reasonable approximation to this 
set of points, and mathematical expression is given to this linear relation by the equation:

    
 G   E 
 _______  x  1    x  2   RT

   =  A  21    x  1   +  A  12    x  2    

where A21 and A12 are constants. This is the Margules equation as given by Eq. (13.39), with 
corresponding expressions for the activity coefficients given by Eqs. (13.40) and (13.41).

For the methyl ethyl ketone/toluene system considered here, the curves of Fig. 13.6(b) 
for GE∕RT, ln γ1, and ln γ2 represent Eqs. (13.39), (13.40), and (13.41) with:

    A  12   = 0.372    and     A  21   = 0.198   

These are values of the intercepts at x1 = 0 and x1 = 1 of the straight line drawn to represent 
the GE∕(x1x2RT ) data points.

The set of VLE data has been reduced to a simple mathematical equation for the dimen-
sionless excess Gibbs energy:

    
 G   E 

 ___ 
RT

   = (0.198  x  1   + 0.372  x  2  )  x  1    x  2    

This equation concisely stores the information of the data set. Indeed, the Margules  equations 
for ln γ1 and ln γ2 allow construction of a correlation of the original P-x1-y1 data set.  
Equation (13.19) is written for species 1 and 2 of a binary system as:

    y  1   P =  x  1    γ  1    P 1  sat   and   y  2   P =  x  2    γ  2    P 2  sat    

Addition gives,   P =  x  1    γ  1    P 1  sat  +  x  2    γ  2    P 2  sat    (13.57)

Thus,    y  1   =   
 x  1    γ  1    P 1  sat 

  _________________  
 x  1    γ  1    P 1  sat  +  x  2    γ  2    P 2  sat 

     (13.58)
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13.5. Fitting Activity Coefficient Models to VLE Data 485

Values of γ1 and γ2 from Eqs. (13.40) and (13.41) with A12 and A21 as determined for 
the methyl ethyl ketone(l)/toluene(2) system are combined with the experimental values of   
P 1  sat   and   P 2  sat   to calculate P and y1 by Eqs. (13.57) and (13.58) at various values of x1.  
The results are shown by the solid lines of Fig. 13.6(a), which represent the calculated P-x1 
and P-y1  relations. They clearly provide an adequate correlation of the experimental  
data points. The fit obtained by this systematic data reduction is also noticeably better than 
that achieved in Eq. (13.3) where we simply extrapolated the measured activity coefficients 
to obtain the Margules equation parameters.

A second set of P-x1-y1 data, for chloroform(1)/1,4-dioxane(2) at 50°C,12 is given in 
Table 13.4, along with values of pertinent thermodynamic functions. Figures 13.7(a) and 
13.7(b) display all of the experimental values as points. This system shows negative deviations 
from Raoult’s law behavior; γ1 and γ2 are less than unity, and values of ln γ1, ln γ2, GE∕RT, and 
GE∕(x1x2RT ) are negative. Moreover, the P-x1 data points in Fig. 13.7(a) all lie below the 
dashed line representing Raoult’s law behavior. Again the data points for GE∕(x1x2RT ) are 
reasonably well correlated by the Margules equation, in this case with parameters:

    A  12   = − 0.72    and     A  21   = − 1.27   

Values of GE∕RT, ln γ1, ln γ2, P, and y1 calculated by Eqs. (13.39), (13.40), (13.41), (13.57), 
and (13.58) provide the curves shown for these quantities in Figs. 13.7(a) and 13.7(b). Again, 
the experimental P-x1-y1 data are adequately correlated. Although the correlations provided by 
the Margules equations for the two sets of VLE data presented here are satisfactory, they are 
not perfect. The two possible reasons are, first, that the Margules equations are not precisely 
suited to the data set; second, that the P-x1-y1 data themselves are systematically in error such 
that they do not conform to the requirements of the Gibbs/Duhem equation.

12M. L. McGlashan and R. P. Rastogi, Trans. Faraday Soc, vol. 54, p. 496, 1958.

P/kPa x1 y1 ln γ1 ln γ2 GE∕RT GE∕(x1x2RT )

15.79  ( P  2  sat ) 0.0000 0.0000  0.000  0.000
17.51 0.0932 0.1794 –0.722  0.004 –0.064 –0.758
18.15 0.1248 0.2383 –0.694 –0.000 –0.086 –0.790
19.30 0.1757 0.3302 –0.648 –0.007 –0.120 –0.825
19.89 0.2000 0.3691 –0.636 –0.007 –0.133 –0.828
21.37 0.2626 0.4628 –0.611 –0.014 –0.171 –0.882
24.95 0.3615 0.6184 –0.486 –0.057 –0.212 –0.919
29.82 0.4750 0.7552 –0.380 –0.127 –0.248 –0.992
34.80 0.5555 0.8378 –0.279 –0.218 –0.252 –1.019
42.10 0.6718 0.9137 –0.192 –0.355 –0.245 –1.113
60.38 0.8780 0.9860 –0.023 –0.824 –0.120 –1.124
65.39 0.9398 0.9945 –0.002 –0.972 –0.061 –1.074
69.36  ( P  1  sat ) 1.0000 1.0000  0.000  0.000 

Table 13.4: VLE Data for Chloroform(1)/1,4-Dioxane(2) at 50°C
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486 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

Figure 13.7: The chloroform(1)/1,4-dioxane(2) system at 50°C. (a) Pxy data and their correlation.  
(b) Liquid-phase properties and their correlation.
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We have presumed in applying the Margules equations that the deviations of the 
experimental points for GE∕(x1x2RT ) from the straight lines drawn to represent them result 
from random error in the data. Indeed, the straight lines do provide excellent correlations of all 
but a few data points. Only toward edges of a diagram are there significant deviations, and 
these have been discounted because the error bounds widen rapidly as the edges of such 
a  diagram are approached. In the limits as x1 → 0 and x1 → 1, GE∕(x1x2RT ) becomes 
indeterminate; experimentally this means that the values are subject to unlimited error and are 
not measurable. However, the possibility exists that the correlation would be improved were 
the GE∕(x1x2RT ) points represented by an appropriate curve, rather than a straight line. Finding 
the correlation that best represents the data is done by simply applying different correlations 
and comparing the results.

Thermodynamic Consistency
The Gibbs/Duhem equation, Eq. (13.55), imposes a constraint on activity coefficients 
that may not be satisfied by a set of experimental values derived from P-x1-y1 data. The 
experimental values of ln γ1 and ln γ2 combine by Eq. (13.54) to give values of GE∕RT. 
This addition process is independent of the Gibbs/Duhem equation. On the other hand, 
the Gibbs/Duhem equation is implicit in Eq. (13.7), and activity coefficients derived 
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13.5. Fitting Activity Coefficient Models to VLE Data 487

from this equation necessarily obey the Gibbs/Duhem equation. These derived activity 
coefficients cannot possibly be consistent with the experimental values unless the 
experimental values also satisfy the Gibbs/Duhem equation. Nor can a P-x1-y1 correlation 
calculated by Eqs. (13.57) and (13.58) be consistent with such experimental values. 
If  the experimental data are inconsistent with the Gibbs/Duhem equation, they are 
necessarily incorrect due to systematic error in the data. Because correlating equations 
for GE∕RT impose consistency on derived activity coefficients, no correlation can 
precisely reproduce P-x1-y1 data that are inconsistent.

We next develop a simple test for the consistency with respect to the Gibbs/Duhem 
equation of a P-x1-y1 data set. Equation (13.54) is written with experimental values, calculated 
by Eq. (13.24), and denoted by an asterisk:

    (  
 G   E 

 ___ 
RT

  )    
*
  =  x  1   ln  γ 1  *  +  x  2   ln  γ 2  *   

Differentiation gives:

    
d   ( G   E  ∕ RT )     * 

 ___________ 
d x  1     =  x  1     

d ln  γ 1  * 
 ______ 

d x  1     + ln  γ 1  *  +  x  2     
d ln  γ 2  * 

 ______ 
d x  1     − ln  γ 2  *   

or    
d  ( G   E  ∕ RT )    * 

 __________ 
d  x  1     = ln   

 γ 1  * 
 ___  γ 2  *    +  x  1     

d ln  γ 1  * 
 ______ 

d  x  1     +  x  2     
d ln  γ 2  * 

 ______ 
d  x  1      

This equation is subtracted from Eq. (13.56), written for derived property values, i.e., those 
given by a correlation, such as the Margules equations:

    
d ( G   E  ∕ RT )  

 __________ 
d x  1     −       

d( G  E  ∕ RT )  * 
 __________ 

d x 1
         = ln    

 γ  1  
 __  γ  2     − ln    

 γ 1  * 
 ___  γ 2  *    −   ( x  1     

d ln  γ 1  * 
 ______ 

d x  1     +  x  2     
d ln  γ 2  * 

 ______ 
d x  1    )    

The differences between like terms are residuals, which we represent with a δ notation. The 
preceding equation then becomes:

    
d δ ( G   E  ∕ RT )  

  ___________ 
d x  1     = δ ln    

 γ  1  
 __  γ  2     −  (   x  1     

d ln  γ 1  * 
 ______ 

d  x  1     +  x  2     
d ln  γ 2  * 

 ______ 
d  x  1     )   

If a data set is reduced so as to make the residuals in GE∕RT scatter about zero, then the 
derivative d δ(GE∕RT )∕dx1 is effectively zero, reducing the preceding equation to: 

   δ ln   
 γ  1  

 _  γ  2     =  x  1     
d ln  γ 1  * 

 ______ 
d x  1     +  x  2     

d ln  γ 2  * 
 ______ 

d x  1       (13.59)

The right side of this equation is exactly the quantity that Eq. (13.55), the 
Gibbs/Duhem equation, requires to be zero for consistent data. The 
residual on the left therefore provides a direct measure of deviation from 

www.konkur.in

Telegram: @uni_k



488 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

the Gibbs/Duhem equation. The extent to which a data set departs from 
consistency is measured by the degree to which these residuals fail to 
scatter about zero.13

Example 13.4
VLE data for diethyl ketone(1)/n-hexane(2) at 65°C as reported by Maripuri and 
 Ratcliff14 are given in the first three columns of Table 13.5. Reduce this set of data.

Solution 13.4
The last three columns of Table 13.5 present the experimental values, ln   γ 1  *  , ln   γ 2  *  ,  
and (GE∕(x1x2RT ))*, calculated from the data by Eqs. (13.24) and (13.54). All 
 values are shown as points on Figs. 13.8(a) and 13.8(b). The object here is to find 
an equation for GE∕RT that provides a suitable correlation of the data. Although 
the data points of Fig. 13.8(b) for (GE∕(x1x2RT ))* show scatter, they are adequate 
to define a straight line:

    
 G   E 
 _______  x  1    x  2   RT

   = 0.70 x  1   + 1.35 x  2    

13This test and other aspects of VLE data reduction are treated by H. C. Van Ness, J. Chem. Thermodyn., vol. 27, 
pp. 113–134, 1995; Pure & Appl. Chem., vol. 67, pp. 859–872, 1995. See also, P. T. Eubank, B. G. Lamonte, and  
J. F. Javier Alvarado, J. Chem. Eng. Data, vol. 45, pp. 1040–1048, 2000.

14V. C. Maripuri and G. A. Ratcliff, J. Appl. Chem. Biotechnol., vol. 22, pp. 899–903, 1972.

P/kPa x1 y1  ln  γ 1  *   ln  γ 2  *  
 
   (    

 G   E 
 ________  x  1    x  2   RT

   )     
*
  

90.15  ( P 2  sat ) 0.000 0.000 0.000
91.78 0.063 0.049 0.901 0.033 1.481
88.01 0.248 0.131 0.472 0.121 1.114
81.67 0.372 0.182 0.321 0.166 0.955
78.89 0.443 0.215 0.278 0.210 0.972
76.82 0.508 0.248 0.257 0.264 1.043
73.39 0.561 0.268 0.190 0.306 0.977
66.45 0.640 0.316 0.123 0.337 0.869
62.95 0.702 0.368 0.129 0.393 0.993
57.70 0.763 0.412 0.072 0.462 0.909
50.16 0.834 0.490 0.016 0.536 0.740
45.70 0.874 0.570 0.027 0.548 0.844
29.00  ( P 1  sat ) 1.000 1.000 0.000

Table 13.5: VLE Data for Diethyl Ketone(1)/n-Hexane(2) at 65°C
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13.5. Fitting Activity Coefficient Models to VLE Data 489

This is the Margules equation with A21 = 0.70 and A12 = 1.35. Derived values of 
ln γ1 and ln γ2 are calculated by Eqs. (13.40) and (13.41), and derived values of  
P and y1 all come from Eqs. (13.57) and (13.58). These results, plotted as solid 
lines of Figs. 13.8(a) and 13.8(b), clearly do not represent a good correlation of 
the data.

The difficulty here is that the data are not consistent with the Gibbs/Duhem 
equation. That is, the sets of experimental values, ln   γ 1  *   and ln   γ 2  * ,  shown in  
Table 13.5 are not in accord with Eq. (13.55). However, the values of ln γ1 and ln γ2 
derived from the correlation necessarily obey this equation; the experimental and 
derived values therefore cannot possibly agree, and the resulting correlation can-
not provide a precise representation of the complete set of P-x1-y1 data.

Application of the test for consistency represented by Eq. (13.59) requires cal-
culating the residuals δ(GE∕RT ) and δ ln(γ1∕γ2), values of which are plotted vs. x1 
in Fig. 13.9. The residuals δ(GE∕RT ) distribute themselves about zero,15 as is 
required by the test, but the residuals δ ln(γ1∕γ2), which show the extent to which 
the data fail to satisfy the Gibbs/Duhem equation, clearly do not. Average absolute 
values of this residual less than 0.03 indicate data of a high degree of consistency; 
average absolute values of less than 0.10 are probably acceptable. The data set 

15The simple procedure used here to find a correlation for GE/RT would be slightly improved by a regression 
 procedure that determines the values of A21 and A12 that minimize the sum of squares of the residuals δ(GE/RT ).

Figure 13.8: The diethyl ketone(l)/n-hexane(2) system at 65°C. (a) Pxy data and their correlations.  
(b) Liquid-phase properties and their correlation.
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490 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

considered here shows an average absolute deviation of about 0.15 and must there-
fore contain significant error. Although one cannot be certain where the error lies, 
the values of y1 are usually most suspect.

The method just described produces a correlation that is unnecessarily diver-
gent from the experimental values. An alternative is to directly fit the P-x1 data; 
this is possible because the P-x1-y1 data set includes more information than neces-
sary. The procedure requires a computer but in principle is simple enough. Assum-
ing that the Margules equation is appropriate to the data, one merely searches for 
values of the parameters A12 and A21 that yield pressures by Eq. (13.57) that are as 
close as possible to the measured values. The method is applicable regardless of 
the correlating equation assumed and is often called Barker’s method.16 Applied 
to the present data set, it yields the parameters:

    A  21   = 0.596  and   A  12   = 1.153   

Use of these parameters in Eqs. (13.39), (13.40), (13.41), (13.57), and (13.58) 
produces the results shown by the dashed lines of Figs. 13.8(a) and 13.8(b). The 
correlation cannot be precise, but it clearly provides a better overall representation 
of the experimental P-x1-y1 data. Note, however, that it necessarily provides a 
worse fit to the experimentally derived ln γ1, ln γ2, and (GE∕(x1x2RT )). This fitting 
procedure ignores the vapor-phase composition data from which those experimen-
tally derived activity coefficients were determined.

16J. A. Barker, Austral. J. Chem., vol. 6, pp. 207–210, 1953.

Figure 13.9: Consistency test 
of data for diethyl ketone(l)/ 
n-hexane(2) at 65°C.
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13.5. Fitting Activity Coefficient Models to VLE Data 491

Incorporation of Vapor-Phase Fugacity Coefficients
Restriction to low pressures where the vapor phase can be assumed to be in the ideal-gas state 
is not always possible or even desirable. Practical processes are often operated at elevated 
pressure to increase throughput or capacity. In that case, experimental data may be taken at 
elevated pressure to increase their relevance to process conditions.

At moderate pressures Eq. (3.36), the two-term virial expansion in P, may be adequate 
for property calculations. The fugacity coefficients required in Eq. (13.14) are then given by 
Eq. (10.64), here written:

    ϕ ˆ   i  v  = exp   
P
 ___ 

RT
    [   B  ii   +   

1
 _ 2    ∑ 

j

      ∑ 
k

      y  j    y  k   (2 δ  ji   −  δ  jk  )  ]     (13.60)

where    δ  ji   ≡ 2  B  ji   −  B  jj   −  B  ii         δ  jk   ≡ 2  B  jk    −  B  jj   −  B  kk    

with δii = 0, δjj = 0, etc., and δij = δji, etc. Values of the virial coefficients come from a gener-
alized correlation, as represented for example by Eqs. (10.69) through (10.74). The fugacity 
coefficient for pure i as a saturated vapor   ϕ i  sat   is obtained from Eq. (13.60) with δji and δjk set 
equal to zero:

   ϕ  
i
  sat  = exp   

 B  ii    P i  sat 
 ______ 

RT
    (13.61)

Combination of Eqs. (13.14), (13.60), and (13.61) gives:

   Φ  i   = exp   
 B  ii   (P −  P i  sat ) +   

1
 __ 2   P  ∑        

j
     ∑ 

k

           y  j    y  k   (2 δ  ji   −  δ  jk  )
    _________________________________  

RT
    (13.62)

For a binary system, this becomes:

   Φ  1   = exp   
 B  11  (P −  P 1  sat ) + P  y 2  2   δ  12  

  ___________________  
RT

    (13.63)

   Φ  2   = exp   
 B  22  (P −  P 2  sat ) + P  y 1  2   δ  12  

  ___________________  
RT

    (13.64)

The inclusion of Φ1 and Φ2 evaluated by Eqs. (13.63) and (13.64) in the reduction of a set of 
moderate-pressure VLE data is straightforward, because in this situation the values of T, P, 
and y1 at each data point are known. After evaluating Φi, at each data point, the activity coef-
ficients are calculated from:

   γ  i   =   
 y  i    Φ  i   P

 ______ 
 x  i    P i  sat 

    (13.65)

These experimentally derived activity coefficients are then combined via Eq. (13.54), and 
 fitting to an excess Gibbs energy model proceeds as usual.

On the other hand, inclusion of the vapor-phase fugacity coefficients introduces significant 
new complications to VLE calculations for which the vapor-phase composition is unknown. When 
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492 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

vapor-phase fugacity coefficients were not included, bubblepoint pressure calculations could be 
made directly, without requiring any iterative solution procedure. However, with the inclusion of the 
vapor-phase fugacity coefficients, all types of VLE calculations require iterative solution.

Extrapolation of Data to Higher Temperatures
A vast store of liquid-phase excess-property data for binary systems at temperatures and pres-
sures near and slightly above ambient conditions is available in the literature. Effective use of 
these data to extend GE correlations to higher temperatures is critical to employing them for 
engineering design calculations where operation at elevated pressure, and therefore higher 
temperature, is desirable. The key relations for the temperature dependence of excess proper-
ties are Eq. (10.89), written for constant P and x as:

  d   (  
 G   E 

 _ 
RT

  )   = −   
 H   E 

 ____ 
R  T   2 

   dT  (const P, x)  

and the excess-property analog of Eq. (2.20):

  d H   E  =  C P  E  dT  (const P, x)  

Integrating the first of these from T0 to T gives:

    
 G   E 

 ___ 
RT

   =    (  
 G   E 

 ___ 
RT

  )   
 T  0  

   −  ∫ 
 T  0  

  
T

    
 H   E 

 ____ 
R  T   2 

   dT    (13.66)

Similarly, the second equation may be integrated from T1 to T:

   H   E  =  H 1  E  +  ∫ 
 T  1  

  
T

   C P  E  dT    (13.67)

In addition,  d  C P  E  =   (  
∂  C P  E 

 ____ 
∂ T  )   

P, x
   dT  

Integrating from T2 to T yields:

   C P  E  =  C   P  2    E   +  ∫ 
 T  2  

  
T

    (  
∂  C P  E 

 ____ 
∂ T  )   

P,  x
     dT  

Combining this equation with Eqs. (13.66) and (13.67) leads to:

   

  
 G   E 

 ___ 
RT

   =   (  
 G   E 

 ___ 
RT

  )   
 T  0  

   −   (  
 H   E 

 ___ 
RT

  )   
 T  1  

    (  
T

 _  T  0     − 1)    
 T  1  

 ___ 
T

  

     

        −   
 C   P  2    E  

 ____ 
R

    [  ln   
T

 _  T  0     −   (  
T

 _  T  0     − 1)    
 T  1  

 _ 
T

   ]    − J

   (13.68)

where J ≡  ∫ 
 T  0  

  
T

    
1
 ____ 

R  T   2 
       ∫ 

 T  1  
  

T

       ∫ 
 T  2  

  
T

   (  
∂  C P  E 

 ____ 
∂ T  )     

P, x
    dT dT dT 
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13.5. Fitting Activity Coefficient Models to VLE Data 493

This general equation makes use of excess Gibbs-energy data at temperature T0, excess 
enthalpy (heat-of-mixing) data at T1, and excess heat-capacity data at T2.

Evaluation of integral J requires information with respect to the temperature depen-
dence of   C P  E  . Because such data are rare, the usual assumption is that this property is constant, 
independent of T. In this event, integral J is zero. When no information is available with 
respect to   C P  E  , and excess enthalpy data are available at only a single temperature, the excess 
heat capacity must be assumed to be zero. In this case only the first two terms on the right side 
of Eq. (13.68) are retained. Clearly, when less information on excess heat capacity is available 
and when T is further from T0 and T1, the accuracy of the extrapolation will degrade.

Because the parameters of two-parameter correlations of GE data are directly related to 
infinite-dilution values of the activity coefficients, our primary interest in Eq. (13.68) is its 
application to binary systems at infinite dilution of one of the constituent species. For this 
purpose, we divide Eq. (13.68) by the product x1x2. For   C P  E   independent of T (and thus with  
J = 0), it becomes:

   
 G   E 
 _______  x  1    x  2   RT

   =   (  
 G   E 
 _______  x  1    x  2   RT

  )   
 T  0  

   −    (  
 H   E 
 _______  x  1    x  2   RT

  )   
 T  1  

   (   
T

 _  T  0     − 1 )   
 T  1  

 ___ 
T

   −    
 C P  E 
 ______  x  1    x  2   R    [  ln   

T
 _  T  0     −   (   

T
 _  T  0     − 1)    

 T  1  
 _ 

T
   ]     

As shown in Sec. 13.5,    (  
 G   E 
 _______  x  1    x  2   RT

  )   
 x  i   = 0

   = ln  γ i  ∞   

The preceding equation applied at infinite dilution of species i can therefore be written:

   

ln    γ i  ∞  =   (ln    γ i  ∞ )    T  0     −   (  
 H   E 
 _______  x  1    x  2   RT

  )   
 T  1  ,  x  i    =  0

     (  
T

 _  T  0     − 1)    
 T  1  

 ___ 
T

  

  

 

      
        −   (   

 C P  E 
 ______  x  1    x  2   R  )   

 x  i    =  0
    [  ln   

T
 _  T  0     −    (  

T
 _  T  0     − 1)    

 T  1  
 _ 

T
   ]   

  
 
   (13.69)

Data for the ethanol(1)/water(2) binary system provide a specific illustration. At a base tem-
perature T0 of 363.15 K (90°C), the VLE data of Pemberton and Mash17 yield accurate values 
for infinite-dilution activity coefficients:

     (ln   γ 1  ∞ )    T  0     = 1.7720  and    (ln   γ 2  ∞ )    T  0      = 0.9042  

Correlation of the excess enthalpy data of J. A. Larkin18 at 110°C yields the values:

     (  
 H   E 
 _______  x  1    x  2   RT

  )   
 T  1  ,  x  1   = 0

   = − 0.0598    and      (  
 H   E 
 _______  x  1    x  2   RT

  )   
 T  1  ,  x  2   = 0

   = 0.6735   

17R. C. Pemberton and C. J. Mash, Int. DATA Series, Ser. B, vol. 1, p. 66, 1978.

18As reported in Heats of Mixing Data Collection, Chemistry Data Series, vol. Ill, part 1, pp. 457–459, DECHEMA, 
Frankfurt/Main, 1984.
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494 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

Correlations of the excess enthalpy for the temperature range from 50 to 110°C lead to 
infinite-dilution values of    C P  E  ∕  ( x  1    x  2   R)  , which are nearly constant and equal to 

     (  
 C P  E 
 ______  x  1    x  2   R  )   

 x  1    =  0
   = 13.8  and    (  

 C P  E 
 ______  x  1    x  2   R  )   

 x  2    =  0
   = 7.2   

Equation (13.69) can be applied with these data to estimate ln   γ 1  ∞   and ln   γ 2  ∞   for temperatures 
greater than 90°C. The van Laar equations [Eqs. (13.43) and (13.44)] are appropriate here, 
with parameters directly related to the infinite-dilution activity coefficients:

    A  12  ′   = ln  γ 1  ∞     and     A  21  ′   = ln  γ 2  ∞    

These data allow prediction of VLE by an equation of state at 90°C and at two higher tempera-
tures, 423.15 and 473.15 K (150 and 200°C), for which measured VLE data were reported by 
Barr-David and Dodge.19 Pemberton and Mash report pure-species vapor pressures at 90°C 
for both ethanol and water, but the data of Barr-David and Dodge (at 150 and 200°C) do not 
include these values. They are therefore calculated from reliable correlations. Results of calcu-
lations based on the Peng/Robinson equation of state are given in Table 13.6. Shown for the 
three temperatures are values of the van Laar parameters   A  12  ′    and   A  21  ′   , the pure-species vapor 
pressures   P 1  sat   and   P 2  sat  , the equation-of-state parameters bi  and qi, and root-mean-square 
(RMS) deviations between computed and experimental values for P and y1. 

The small value of RMS % δP shown for 90°C indicates both the suitability of the van 
Laar equation for correlation of the VLE data and the capability of the equation of state to repro-
duce the pure species vapor pressures. A direct fit of these data with the van Laar equation by the 
gamma/phi procedure yields RMS % δP = 0.19.20 The results at 150 and 200°C are based only 
on vapor-pressure data for the pure species and on mixture data at lower temperatures. The qual-
ity of prediction is indicated by the P-x-y diagram of Fig. 13.10, which reflects the uncertainty 
of the data as well. The overall good agreement demonstrates the effectiveness of this approach 
for extrapolation to higher temperatures when sufficient reliable input data are available.

19F. H. Barr-David and B. F. Dodge, J. Chem. Eng. Data, vol. 4, pp. 107–121, 1959.

20As reported in Vapor-Liquid Equilibrium Data Collection, Chemistry Data Series, vol. 1, part 1a, p. 145, 
DECHEMA, Frankfurt/Main, 1981.

T °C   A  12  ′       A  21  ′     P 1  sat   
bar 

  P 2  sat   
bar

q1 q2 RMS 
% δP

RMS 
δy1

 90 1.7720 0.9042  1.5789  0.7012 12.0364 15.4551 0.29 *****
150 1.7356 0.7796  9.825  4.760  8.8905 12.2158 2.54 0.005
200 1.5204 0.6001 29.861 15.547  7.0268 10.2080 1.40 0.005

b1 = 54.0645 b2 = 18.9772

***** Vapor-phase compositions not measured.

Table 13.6: VLE Results for Ethanol(1)/Water(2)
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13.6. Residual Properties by Cubic Equations of State 495

Figure 13.10: Pxy diagram for ethanol(1)/water(2). The lines represent predicted values; the points are 
experimental values.
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13.6 RESIDUAL PROPERTIES BY CUBIC EQUATIONS OF STATE

In Sec. 6.3 we treated the calculation of residual properties from the virial equations of state, 
as well as from generalized correlations, but we did not extend the treatment to cubic equa-
tions of state at that time. The key differentiating feature of cubic equations of state is their 
ability to treat both vapor and liquid phase properties. This capability is most valuable in the 
context of VLE calculation. Thus, in this section we first treat the computation of residual 
properties from cubic equations of state and then, in Sec. 13.7, show how these can be used in 
phase equilibrium calculations.

Results of some generality follow from the generic cubic equation of state presented in 
Chapter 3:

  P =   
RT
 _____ 

V − b   −   
a (  T )  
 _____________   (  V + εb )   (  V + σb )      (3.41)
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496 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

Equations (6.58) through (6.60) are compatible with pressure-explicit equations of state. 
We  need only recast Eq. (3.41) to yield Z with density ρ as the independent variable. We 
 therefore divide Eq. (3.41)  by ρRT and substitute V = 1∕ρ. With q given by Eq. (3.47),  
q ≡ a(T )∕bRT, the result after algebraic reduction is:

  Z =   
1
 _____ 1 − ρb

   − q   
ρb
 ______________   (  1 + ερb )   (  1 + σρb )      

The two quantities required to evaluate the integrals in Eqs. (6.58) through (6.60), Z − 1 and 
(∂Z∕∂T ) ρ , are readily obtained from this equation:

   
Z − 1 =   

ρb
 _____ 1 − ρb

   − q   
ρb
 _______________  (1 + ερb)(1 + σρb)  

  
 
     

   (  
∂ Z

 ___ 
∂ T  )   

ρ
   = −   (  

dq
 _ 

dT
  )    

ρb
 _______________  (1 + ερb)(1 + σρb)  

  
 
   (13.70)

The integrals of Eqs. (6.58) through (6.60) are then evaluated as follows:

   

 ∫ 
0
  
ρ

 (Z − 1)   
dρ

 ___ 
ρ

     =  ∫ 
0
  
ρ

   
ρb
 _____ 1 − ρb

       
d(ρb)

 _____ 
ρb

   − q  ∫ 
0
  
ρ

    
d(ρb)
 ______________  (1 + ερb) (1 + σρb)    

      
 ∫ 

0
  
ρ

   (  
∂ Z

 ___ 
∂ T  )   

ρ

       
dρ

 ___ 
ρ

   = −   
dq

 ___ 
dT

    ∫ 
0
  
ρ

    
d(ρb)
 ______________  (1 + ερb) (1 + σρb)    

    

These two equations simplify to:

   ∫ 
0
  
ρ

  (Z − 1)    
dρ

 ___ 
ρ

     = − ln (1 − ρb)  − qI        ∫ 
0
  
ρ

    (  
∂ Z

 ___ 
∂ T  )   

ρ

       
dρ

 ___ 
ρ

   = −   
dq

 ___ 
dT

   I   

with I defined by,  I ≡  ∫ 
0
  
ρ

    
d (  ρb )  
 ______________   (  1 + ερb )   (  1 + σρb )         (const T )  

The generic equation of state presents two cases for the evaluation of this integral:

Case I: ε ≠ σ  I =   
1
 ____ 

σ − ε   ln   (  
1 + σρb

 _ 1 + ερb
  )    (13.71)

Application of this and subsequent equations is simpler when ρ is eliminated in favor of Z.  
The definitions of β by Eq. (3.46), β ≡ bP∕RT, and of Z ≡ P∕ρRT, combine to give  
ρb = β∕Z. Then:

  I =   
1
 ____ 

σ − ε    ln    (  
Z + σβ

 _ 
Z + εβ

  )    (13.72)

Case II: ε = σ  I =   
ρb
 ______ 1 + ερb

   =   
β
 _____ 

Z + εβ
    

The van der Waals equation is the only one considered here to which Case II applies, and this 
equation, with ε = 0, reduces to I = β∕Z.
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13.6. Residual Properties by Cubic Equations of State 497

Upon evaluating the integrals, Eqs. (6.58) through (6.60) reduce to:

    
 G   R 

 ___ 
RT

   = Z − 1 − ln  [ (1 − ρb) Z ] − qI  (13.73)

or     
 G   R 

 _ 
RT

   = Z − 1 − ln (Z − β) − qI   (13.74)

    
 H   R 

 ___ 
RT

   = Z − 1 + T  (  
dq

 _ 
dT

  )  I = Z − 1 +  T  r    (  
dq

 _ 
d  T  r  

  )  I  

and    
 S   R 

 ___ 
R

   = ln (Z − β) +   (q +  T  r     
dq

 _ 
d  T  r  

  )  I  

The quantity   T  r     
dq

 ____ 
d  T  r  

    is readily found from Eq. (3.51): 

   T  r     
dq

 ____ 
d  T  r  

   =  [   
d ln α( T  r  ) _ 

d ln  T  r  
   − 1 ]   q  

Substituting this in the preceding two equations yields:

     
 H   R 

 _ 
RT

   = Z − 1 +  [   
d ln α( T  r  ) _ 

d ln  T  r  
   − 1 ] qI    (13.75)

     
 S   R 

 _ 
R

   = ln (Z − β) +   
d ln α( T  r  ) _ 

d ln  T  r  
   qI    (13.76)

Before applying these equations one must find Z by solution of the equation of state itself, 
 typically written in the form of Eq. (3.48) or Eq. (3.49) for a vapor or liquid phase, respectively.

Example 13.5
Find values for the residual enthalpy HR and the residual entropy SR of n-butane gas at 
500 K and 50 bar as given by the Redlich/Kwong equation.

Solution 13.5
For the given conditions:

    T  r   =   
500

 _____ 425.1   = 1.176        P  r    =   
50
 _____ 37.96   = 1.317  

By Eq. (3.50), with Ω for the Redlich/Kwong equation from Table 3.1,

  β = Ω   
 P  r   ___  T  r  

   =   
 (  0.08664 )   (  1.317 )  

  ______________ 1.176   = 0.09703  
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498 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

With values for Ψ and Ω, and with the expression  α( T  r  ) =   T r  −1/2   from Table 3.1, 
Eq. (3.51) yields:

  q =   
Ψα (    T  r   )   ______ Ω  T  r  

   =   
0.42748

  _______________  
(0.08664)   (  1.176 )     1.5 

   = 3.8689  

Substitution of these values of β and q, along with ε = 0, and σ = 1 into Eq. (3.48) 
reduces it to:

  Z = 1 + 0.09703 − (3.8689) (0.09703)   
Z − 0.09703

  ____________  
Z(Z + 0.09703)    

Iterative solution of this equation yields Z = 0.6850. Then:

  I = ln   
Z + β

 ____ 
Z

   = 0.13247  

Given that  ln  α( T  r  ) =  −   
1
 __ 2   ln  T  r   , we have    

d ln α (    T  r   )   ________ 
d ln  T  r  

    =  −   
1
 __ 2   , and Eqs. (13.75) 

and (13.76) become: 

    
  
 H   R 

 ___ 
RT

   = 0.6850 − 1 + (− 0.5 − 1) (3.8689) (0.13247) = − 1.0838
      

  
 S   R 

 ___ 
R

   = ln (0.6850 − 0.09703) − (0.5) (3.8689) (0.13247) = − 0.78735
   

Thus,    
 H   R  = (8.314)(500)(− 1.0838) = − 4505  J⋅mol   −1 

     
 S   R  = (8.314)(− 0.78735) = − 6.546  J⋅mol   −1  ⋅K   −1 

   

These results are compared with results of other methods and handbook reference 
data in Table 13.7.

Method Z HR J·mol–1 SR J·mol–1·K–1

vdW Eqn. 0.6608 –3937 –5.424
RK Eqn. 0.6850 –4505 –6.546
SRK Eqn. 0.7222 –4824 –7.413
PR Eqn. 0.6907 –4988 –7.426
Lee/Kesler† 0.6988 –4966 –7.632
Handbook‡ 0.7060 –4760 –7.170

†Described in Sec. 6.7.
‡Values derived from numbers in Table 2–240, p. 2–223, 
Chemical Engineers’ Handbook, 7th ed., D. Green and  
R. H. Perry (eds.), McGraw-Hill, New York, 1997.

Table 13.7: Values for Z, HR, and SR for n-butane at 500 K and 50 Bar

www.konkur.in

Telegram: @uni_k



13.7. VLE from Cubic Equations of State 499

13.7 VLE FROM CUBIC EQUATIONS OF STATE

As shown in Sec. 10.6, phases at the same T and P are in equilibrium when the fugacity of 
each species is the same in all phases. For VLE, this requirement is written:

    f   ̂    i  v  =   f   ̂    i  l    (i = 1, 2, . . . , N )  (10.48)

An alternative form results from the introduction of the fugacity coefficient, defined by Eq. (10.52):

   y  i     ϕ ˆ   i  v  P =  x  i     ϕ ˆ   i  l  P  

or    y  i    ϕ ˆ   i  v  =  x  i    ϕ ˆ   i  l    (i = 1, 2, . . . , N )    (13.77)

Applications of this equation with fugacity coefficients evaluated using cubic equations of 
state are presented in the following subsections.

Vapor Pressures for a Pure Species
Although vapor pressures for a pure species   P i  sat   are subject to experimental measurement, 
they are also implicit in a cubic equation of state. Indeed, the simplest application of cubic 
equations of state for VLE calculations is to find the vapor pressure of a pure species at given 
temperature T.

The subcritical  PV isotherm of Fig. 3.9  labeled T2 < Tc is reproduced here as  
Fig. 13.11. Generated by a cubic equation of state, it consists of three segments. The very steep  
segment on the left (rs) is characteristic of liquids; in the limit as P → ∞, the molar volume V 
approaches the constant b [Eq. 3.41]. The segment on the right (tu) with gentle downward 
slope is characteristic of vapors; in the limit as P → 0 molar volume V approaches infinity. The 
middle segment (st), containing both a minimum (note here that P < 0) and a maximum, pro-
vides a smooth transition from liquid to vapor, but does not reflect equilibrium behavior of the 
real system. The actual transition from liquid to vapor occurs at the vapor pressure along a 
horizontal line like that connecting points M and W.

Figure 13.11: Isotherm for T < Tc 
on a PV diagram for a pure fluid.
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500 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

For pure species i, Eq. (13.77) reduces to Eq. (10.41),   ϕ i  v  =  ϕ i  l  , which can also be written:

  ln  ϕ i  l  − ln  ϕ i  v  = 0  (13.78)

The fugacity coefficient of a pure liquid or vapor is a function of its temperature and pressure. 
For a saturated liquid or vapor, the equilibrium pressure is   P i  sat  , and Eq. (13.78) implicitly 
expresses a functional relation,

   g(T,  P i  sat ) = 0     or      P i  sat  = f (T )   

An isotherm generated by a cubic equation of state, as represented in Fig. 13.11, has 
three volume roots for a specified pressure between P = 0 and P = P′. The smallest root lies 
on the left line segment and is a liquid-like volume, e.g., at point M. The largest root lies on the 
right line segment and is a vapor-like volume, e.g., at point W.

If these points lie at the vapor pressure, then M represents saturated 
 liquid, W represents saturated vapor, and they exist in phase equilibrium.

The root lying on the middle line segment has no physical significance.
Two widely used cubic equations of state, developed specifically for VLE calculations, 

are the Soave/Redlich/Kwong (SRK) equation21 and the Peng/Robinson (PR) equation.22 Both 
are special cases of the generic cubic equation of state, Eq. (3.41). Equation-of-state parameters 
are independent of phase, and in accord with Eqs. (3.44) through (3.47) they are given by:

  a  i   (T ) = Ψ   
α( T   r  i    ) R   2  T  c  i    2  

 ___________  P   c  i    
   (13.79)   b  i   = Ω   

R T   c  i     ____  P   c  i    
   (13.80)

  β  i   ≡   
 b  i   P ___ 
RT

   (13.81)   q  i   ≡   
 a  i  (T )

 _____  b  i   RT
   (13.82)

Written for pure species i, Eqs. (3.48) and (3.49) become:

   Z i  v  = 1 +  β  i   −  q  i    β  i     
 Z  

i
  v  −  β  i  

  ___________________  
 (    Z  

i
  v  + ε  β  i   )   (    Z i  v  + σ  β  i   )  

    (13.83)

   Z i  l  =  β  i   +  ( Z i  l  + ε  β  i  )  ( Z i  l  + σ  β  i  )  (  
1 +  β  i   −  Z i  l  __________  q  i    β  i  

  )   (13.84)

The pure numbers ε, σ, Ψ, and Ω and expressions for α(Tri) are specific to the equation of state 
and are given in Table 3.1 for several prototypical cubic equations of state.

In Sec. 13.6 and Sec. 10.5, we developed the following two relationships:

     
 G  

i
  R 
 ___ 

RT
   =  Z  i   − 1 − ln ( Z  i   −  β  i  )  −  q  i    I  i    (13.74)

    
 G  

i
  R 
 ___ 

RT
   = ln  ϕ  i    (10.33)

21G. Soave, Chem. Eng. Sci., vol. 27, pp. 1197–1203, 1972.

22D.-Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam., vol. 15, pp. 59–64, 1976.
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13.7. VLE from Cubic Equations of State 501

Together these yield:  ln  ϕ  i   =  Z  i   − 1 − ln ( Z  i   −  β  i  ) −  q  i    I  i    (13.85)

Values for ln ϕi are therefore implied by the equation of state. In Eq. (13.85), qi is given 
by Eq. (13.82) and Ii by Eq. (13.72). For given T and P, the vapor-phase value,   Z  

i
  v   at point W 

of Fig. 13.11, is given by iterative solution of Eq. (13.83), and the liquid-phase value   Z i  l   at 
point M, by iterative solution of Eq. (13.84). Recall that these two equations are rearrange-
ments of the generic cubic equation of state into forms conducive to iterative solution for the 
vapor and liquid compressibilities, respectively. Other, more general, methods for finding 
roots of nonlinear equations can equally well be used to find the smallest (liquid) and largest 
(vapor) solutions of this equation, taking care to avoid the middle root. Values for  ln    ϕ  

i
  l   and  

 ln    ϕ i  v   are then found by Eq. (13.85). When they satisfy Eq. (13.77), then P is the vapor pres-
sure   P i  sat   at temperature T, and M and W represent the states of saturated liquid and vapor 
implied by the equation of state. Solution may be by trial, by iteration, or by an appropriate 
nonlinear algebraic equation solution algorithm. The eight equations and eight unknowns are 
listed in Table 13.8.

The calculation of pure-species vapor pressures as just described can also be reversed to 
allow evaluation of an equation-of-state parameter from a known vapor pressure   P i  sat   at tem-
perature T. Thus, Eq. (13.85) may be written for each phase of pure-species i and combined in 
accord with Eq. (13.77). Solving the resulting expression for qi yields:

   q  i   =   

 Z  
i
  v  −  Z i  l  + ln   

 Z  
i
  l  −  β  i  

 _______  Z  
i
  v  −  β  i  

  

  _________________  
 I i  v  −  I i  l 

    (13.86)

The unknowns are:   P i  sat  ,   β  i   ,   Z i  l  ,   Z  
i
  v  ,   I i  l  ,   I  i  

v  ,  ln   ϕ i  l  , and  ln  ϕ i  v  

  β  i   ≡   
 b  i    P i  sat 

 ______ 
RT

   

  Z i  l  =  β  i   +   (Z i  l  + ε  β  i  )( Z i  l  + σ  β  i  )  (  
1 +  β  i   −  Z i  l  __________  q  i    β  i  

  )  

  Z  
i
  v  = 1 +  β  i   −  q  i    β  i     

 Z  
i
  v  −  β  i  

  ___________________  
 (    Z  

i
  v  + ε  β  i   )   (    Z  

i
  v  + σ  β  i   )  

   

  I i  l  =   
1
 ____ 

σ − ε   ln    
 Z i  l   +  σ  β  i   _________ 
 Z i  l   +  ε  β  i  

                   I  
i
  v  =   

1
 ____ 

σ − ε   ln    
 Z  

i
  v   +  σ  β  i  

 _________  Z  
i
  v   +  ε  β  i  

     

 ln  ϕ  
i
  l  =  Z i  l  − 1 − ln ( Z i  l  −  β  i  ) −  q  i    I i  l  

 ln  ϕ  
i
  v  =  Z  

i
  v  − 1 − ln ( Z  

i
  v  −  β  i  ) −  q  i    I  i  

v  

 ln  ϕ  
i
  v  = ln  ϕ i  l  

Table 13.8: Equations for Calculating Vapor Pressures
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502 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

where   β  i   ≡  b  i    P i  sat  ∕ RT . For the PR and SRK equations, Ii is given by Eq. (13.72) written for 
pure species i:

   I  i   =   
1
 ____ 

σ − ε   ln   
 Z  i   + σ  β  i   ______  Z  i   + ε  β  i  

    

This equation yields   I  
i
  v   with   Z  

i
  v   from Eq. (13.83), and   I i  l   with   Z i  l   from Eq. (13.79). However, 

the equations for   Z  
i
  v   and   Z i  l   contain qi, the quantity sought. Thus, a solution procedure is 

required that yields values for eight unknowns given eight equations. An initial value of qi is 
provided by the generalized correlation of Eqs. (13.79), (13.80), and (13.82).

Mixture VLE
The fundamental assumption when an equation of state is written for mixtures is that it 
has exactly the same form as when written for pure species. Thus for mixtures, 
Eqs. (13.83) and (13.84), written without subscripts, become:

Vapor:   Z   v  = 1 +  β   v  −  q   v   β   v    
 Z   v  −  β   v 

  ________________   (    Z   v  + ε  β   v  )   (    Z   v  + σ  β   v  )      (13.87)

Liquid:   Z   l  =  β   l  +  ( Z   l  + ε  β   l )  ( Z   l  + σ  β   l )  (  
1 +  β   l  −  Z   l 

 ________ 
 q   l   β   l 

  )   (13.88)

Here, βl, βv, ql, and qv are for mixtures, with definitions:

   β   p  ≡   
 b   p  P

 ____ 
RT

      (p = l, v)  (13.89)    q   p  ≡   
 a   p 
 _____  b   p  RT

      (p = l, v)  (13.90)

The complication is that mixture parameters ap and bp, and therefore βp and qp, are functions 
of composition. Systems in vapor/liquid equilibrium consist in general of two phases with 
different compositions. The PV isotherms generated by an equation of state for these two fixed 
compositions are represented in Fig. 13.12 by two similar lines: the solid line for the 
 liquid-phase composition and the dashed line for the vapor-phase composition. They are dis-
placed from one another because the equation-of-state parameters are different for the two 
compositions. However, each line includes three segments as described in connection with the 
isotherm of Fig. 13.11. Thus, we distinguish between the composition that characterizes a 
complete line and the phases, all of the same composition, that are associated with the seg-
ments of an isotherm.

Each line contains a bubblepoint on its left segment representing saturated liquid 
and a dewpoint of the same composition on its right segment representing saturated 
vapor.23 Because these points for a given line are for the same composition, they do not 
represent phases in equilibrium and do not lie at the same pressure. (See Fig. 12.3, where 
for a given constant-composition loop and a given T, saturated liquid and saturated vapor 
are at different pressures.)

23Note that bubblepoint B and dewpoint D in Fig. 13.12 are on different lines (different isotherms for the same 
temperature but different compositions).
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13.7. VLE from Cubic Equations of State 503

Figure 13.12: Two PV isotherms at the 
same T for mixtures of two different 
compositions. The solid line is for a 
liquid-phase composition; the dashed 
line is for a vapor-phase composition. 
Point B represents a bubblepoint with 
the liquid-phase composition; point D 
represents a dewpoint with the vapor-
phase composition. When these points 
lie at the same P (as shown) they 
 represent phases in equilibrium.

0

P

B D

V

For a BUBL P calculation, the temperature and liquid composition are known, and this 
fixes the location of the PV isotherm for the composition of the liquid phase (solid line). The 
BUBL P calculation then finds the composition for a second (dashed) line that contains a dew-
point D on its vapor segment that lies at the pressure of the bubblepoint B on the liquid seg-
ment of the solid line. This pressure is then the phase-equilibrium pressure, and the composition 
for the dashed line is that of the equilibrium vapor. This equilibrium condition is shown by 
Fig. 13.12, where bubblepoint B and dewpoint D lie at the same P on isotherms for the same T 
but representing the different compositions of liquid and vapor in equilibrium.

Because no established theory prescribes the form of the composition dependence of the 
equation-of-state parameters, empirical mixing rules have been proposed to relate mixture 
parameters to pure-species parameters. The simplest realistic expressions are a linear mixing 
rule for parameter b and a quadratic mixing rule for parameter a:

 b =  ∑ 
i

      x  i    b  i   (13.91)  a =  ∑ 
i

      ∑ 
j

      x  i    x  j    a  ij   (13.92)

with aij = aji. The general mole-fraction variable xi is used here because these mixing rules are 
applied to both liquid and vapor mixtures. The aij are of two types: pure-species  parameters 
(repeated subscripts, e.g.,  a11) and interaction parameters (unlike subscripts, e.g., a12). 
 Parameter bi  is for pure species i. The interaction parameters aij are often evaluated from 
pure-species parameters by combining rules, e.g., a geometric-mean rule:

   a  ij   =  ( a  i    a  j  )   1/2   (13.93)

These equations, known as van der Waals prescriptions, enable evaluation of mixture parameters 
solely from parameters for the pure constituent species. Although they are satisfactory only for 
mixtures comprised of simple and chemically similar molecules, they allow straightforward 
calculations that illustrate how complex VLE problems can be solved.

Also useful for application of equations of state to mixtures are partial equation-of-state 
parameters, defined by:

   a ¯    i   ≡   [    
∂ (na)

 _____ 
∂  n  i  

   ]    
T,  n  j  

   (13.94)    b ¯    i   ≡   [    
∂ (nb)

 _____ 
∂  n  i  

   ]    
T,  n  j  

   (13.95)    q ¯    i   ≡   [    
∂ (nq)

 _____ 
∂  n  i  

   ]    
T,  n  j  

   (13.96)
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504 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

Because equation-of-state parameters are, at most, functions of temperature and compo-
sition, these definitions are in accord with Eq. (10.7). They are general definitions, valid 
regardless of the particular mixing or combining rules adopted for the composition depen-
dence of mixture parameters.

Values of    ϕ ˆ   i  l   and    ϕ ˆ   i  v   are implicit in an equation of state, and with Eq. (13.77) they allow 
treatment of mixture VLE. The same basic principle applies as for pure-species VLE, but the 
calculations are more complex. With    ϕ ˆ   i  l   a function of T, P, and {xi}, and    ϕ ˆ   i  v   a function of T, P, 
and {yi}, Eq. (13.72) represents N relations among the 2N variables: T, P, N − 1  liquid-phase 
mole fractions (xi) and N − 1 vapor-phase mole fractions (yi). Thus, specification of N of these 
variables, usually either T or P and either the liquid- or vapor-phase composition, allows us to 
solve for the remaining N variables by BUBL P, DEW P, BUBL T, and DEW T calculations.

Fugacity Coefficients from the Generic Cubic Equation of State
Cubic equations of state give Z as a function of the independent variables T and ρ (or V ). For 
VLE calculations, expressions for the fugacity coefficient    ϕ ˆ    i    must be given by an equation 
suited to these variables. The derivation of such an equation starts with Eq. (10.56), written for 
a mixture with VR replaced by Eq. (6.40), VR = RT(Z − 1)∕P: 

  d  (    
n  G   R 

 _ 
RT

   )    =   
n(Z − 1)

 _______ 
P

   dP −   
n  H   R 

 ____ 
R  T   2 

   dT +  ∑ 
i

     ln   ϕ ˆ    i   d  n  i    

Division by dni and restriction to constant T, n∕ρ (= nV ), and nj ( j ≠ i) leads to:

  ln   ϕ ˆ    i   =   [    
∂ (n  G   R  ∕ RT )

 __________ 
∂  n  i  

   ]    
T, n∕ρ,  n  j  

   −   
n(Z − 1)

 _______ 
P

     (    
∂ P

 ___ 
∂  n  i  

   )    
T, n∕ρ,  n  j  

    (13.97)

For simplicity of notation, the partial derivatives in the following development are  written 
without subscripts, and they are understood to be at constant T, n∕ρ, and nj. Thus, with  
P = (nZ)RT∕(n∕ρ),

    
∂ P

 ___ 
∂  n  i  

   =   
RT

 ___ 
n ∕ ρ     

∂ (nZ)
 _____ 

∂  n  i  
   =   

P
 ___ 

nZ
     
∂ (nZ)

 _____ 
∂  n  i  

    (13.98)

Combination of Eqs. (13.97) and (13.98) yields:

  ln   ϕ ˆ    i   =   
∂ (n  G   R  ∕ RT )

 __________ 
∂  n  i  

   −   (    
Z − 1

 _ 
Z

   )     
∂ (nZ)

 _____ 
∂  n  i  

   =   
∂ (n  G   R  ∕ RT )

 __________ 
∂  n  i  

   −   
∂ (nZ)

 _____ 
∂  n  i  

   +   
1
 __ 

Z
    (  n   

∂ Z
 _ 

∂  n  i  
   + Z )     

Equation (13.73), written for the mixture and multiplied by n, is differentiated to give the first 
term on the right:

    
  
n  G   R 

 ____ 
RT

   = nZ − n − n ln  [ (1 − ρb) Z ]  −  (nq) I
      

  
∂ (n  G   R  ∕ RT )

 __________ 
∂  n  i  

   =   
∂ (nZ)

 _____ 
∂  n  i  

   − 1 − ln [(1 − ρb) Z ]  −  n  [    
∂  ln (1 − ρb)

 ___________ 
∂  n  i  

   +   
∂  ln Z

 _ 
∂  n  i  

   ]    − nq   
∂ I

 ___ 
∂  n  i  

   − I   q ¯    i  
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where use has been made of Eq. (13.96). The equation for ln    ϕ ˆ    i    now becomes: 

   
ln   ϕ ˆ    i   =   

∂ (nZ)
 _____ 

∂  n  i  
   − 1 − ln  [ (1 − ρb) Z ]  −  n   

∂  ln (1 − ρb)
 __________ 

∂  n  i  
  

  
 
       

          −   
n
 __ 

Z
     
∂ Z

 ___ 
∂  n  i  

   − nq   
∂ I

 ___ 
∂  n  i  

   − I   q ¯    i   −   
∂ (nZ)

 _____ 
∂  n  i  

   +   
1
 __ 

Z
    (  n   

∂ Z
 _ 

∂  n  i  
   + Z )   

  
 
   

This reduces to:  ln   ϕ ˆ    i   =   
n
 _____ 1 − ρb

     
∂  (  ρb )  

 _____ 
∂  n  i  

   − nq   
∂ I

 ___ 
∂  n  i  

   − ln  [ (1 − ρb) Z ]  −    q ¯    i   I  

All that remains is evaluation of the two partial derivatives. The first is:

    
∂  (   ρb )  

 _____ 
∂  n  i  

   =   
∂   (    

nb
 _ 

n ∕ ρ   )   
 ______ 

∂  n  i  
   =   

ρ
 __ 

n
     b ¯    i    

The second follows from differentiation of Eq. (13.71). After algebraic reduction this yields:

    
∂ I

 ___ 
∂  n  i  

   =   
∂  (  ρb )  

 _____ 
∂  n  i  

     
1
 ______________   (  1 + σρb )   (  1 + ερb )     =   

  b ¯    i   ___ 
nb

     
ρb
 ______________   (  1 + σρb )   (  1 + ερb )      

Substitution of these derivatives in the preceding equation for ln    ϕ ˆ    i    reduces it to:

  ln   ϕ ˆ    i   =   
  b ¯    i   __ 
b
    [     

ρb
 _ 1 − ρb

   − q   
ρb
 ________________   (  1 + ερb )   (  1 + σρb )     ]    − ln  [ (1 − ρb) Z ]  −    q ¯    i   I  

Reference to Eq. (13.70) shows that the term in the first set of square brackets is Z − 1. 
Therefore,

  ln   ϕ ˆ    i   =   
  b ¯    i   __ 
b
   (Z − 1) − ln [(1 − ρb)Z] −   q ¯    i   I  

Moreover,   β ≡   
bP

 ___ 
RT

     and   Z ≡   
P
 ____ 

ρRT
   ;   whence   ρb =   

β
 __ 

Z
     

Thus,  ln   ϕ ˆ    i   =   
  b ¯    i   __ 
b
   (Z − 1) − ln (Z − β) −   q ¯    i   I  

Because experience has shown that Eq. (13.91) is an acceptable mixing rule for parameter b, it 
is adopted here. In that case,

  nb =  ∑ 
i

      n  i    b  i    

and    b ¯    i   ≡   [    
∂ (nb)

 _____ 
∂  n  i  

   ]    
T,  n  j  

   =   [    
∂ ( n  i    b  i  ) ______ 

∂  n  i  
   ]    

T,  n  j  
   +  ∑ 

j

       [    
∂ ( n  j    b  j  ) ______ 

∂  n  i  
   ]    

T,  n  j  
   =  b  i    

The equation for ln    ϕ ˆ    i    is therefore written:

   ln    ϕ ˆ    i   =   
 b  i   _ 
b
   (Z − 1) − ln (Z − β) −   q ¯    i   I   (13.99)
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where I is evaluated by Eq. (13.72). For the special case of pure species i, this becomes:

   ln   ϕ  i   =  Z  i   − 1 − ln (    Z  i   −  β  i   )   −  q  i    I  i     (13.100)

Application of these equations requires prior evaluation of Z at the conditions of interest by an 
equation of state.

Parameter q is defined in relation to parameters a and b by Eq. (13.90). The relation of 
partial parameter    q ¯    i    to    a ¯    i    and    b ¯    i    is found by differentiation of this equation, written:

  nq =   
n(na)

 _______ 
RT(nb)    

Thus,    q ¯    i   ≡   [     
∂  (  nq )  

 _____ 
∂  n  i  

   ]    
T,  n  j  

   = q  (  1 +   
  a ¯    i   __ 
a

   −   
  b ¯    i   __ 
b
   )    = q  (  1 +   

  a ¯    i   __ 
a

   −   
 b  i   _ 
b
   )     (13.101)

Any two of the three partial parameters form an independent pair, and any one of them can be 
found from the other two.24

Example 13.6
A vapor mixture of N2(1) and CH4(2) at 200 K and 30 bar contains 40 mol-% N2. Deter-
mine the fugacity coefficients of nitrogen and methane in the mixture by Eq. (13.99) 
and the Redlich/Kwong equation of state.

Solution 13.6
For the Redlich/Kwong equation, ε = 0 and σ = 1, and Eq. (13.87) becomes:

  Z = 1 + β − qβ   
Z − β

 _______ 
Z(Z + β)    (A)

where β and q are given by Eqs. (13.89) and (13.90). Superscripts are omitted 
because all calculations are for a vapor phase. The mixing rules most commonly 
used with the Redlich/Kwong equation for parameters a(T ) and b are given by 
Eqs. (13.91) through (13.93). For a binary mixture they become:

  a =  y 1  2   a  1   + 2  y  1    y  2    √ 
____

  a  1    a  2     +  y 2  2   a  2    (B)

  b =  y  1    b  1   +  y  2    b  2    (C)

In Eq. (B), a1 and a2 are pure-species parameters given by Eq. (13.79) written for 
the Redlich/Kwong equation:

   a  i   = 0.42748   
 T  r  i    −1/2    (  83.14 )     2   T  c  i    2  

  _______________  P   c  i    
     bar·cm   6  ·mol   −2   (D)

24Because q, a, and b are not linearly related,   q ¯  i ≠  a ¯  i∕ b ¯  iRT .
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In Eq. (C), b1 and b2 are pure-species parameters, given by Eq. (13.80):

   b  i   = 0.08664   
83.14  T   c  i     ________  P   c  i    

     cm   3  ·mol   −1   (E)

Critical constants for nitrogen and methane from Table B.1 of App. B and 
 calculated values for bi and ai from Eqs. (D) and (E) are:

  T   c  i      /K     T   r  i         P   c  i      /bar bi 10 − 5ai

N2(1) 126.2 1.5848 34.00 26.737 10.995
CH4(2) 190.6 1.0493 45.99 29.853 22.786

Mixture parameters by Eqs. (B), (C), and (13.90) are:

  a = 17.560 ×  10   5   bar·cm   6  ·mol   −2    b = 28.607  cm   3  ·mol   −1    q = 3.6916   

Equation (A) becomes:

   Z = 1 + β − 3.6916   
β(Z − β)

 _______ 
Z(Z + β)  

    with    β = 0.051612   

where β  comes from Eq. (13.89). Solution yields Z = 0.85393. Moreover,  
Eq. (13.72) reduces to:

  I = ln   
Z + β

 ____ 
Z

   = 0.05868  

Application of Eq. (13.94) to Eq. (B) yields:

    a ¯    1   =   [    
∂ (na)

 _____ 
∂  n  1     ]    

T,  n  2  
   = 2 y  1    a  1   + 2 y  2    √ 

____
  a  1    a  2     − a  

    a ¯    2   =   [    
∂ (na)

 _____ 
∂  n  2     ]    

T,  n  1  
   = 2 y  2    a  2   + 2 y  1    √ 

____
  a  1    a  2     − a  

By Eq. (13.95) applied to Eq. (C),

     b ¯    1   =   [     
∂  (  nb )  

 _____ 
∂  n  1     ]    

T,  n  2  
   =  b  1           b ¯    2   =   [     

∂  (  nb )  
 _____ 

∂  n  2     ]    
T,  n  1  

    =  b  2    

Thus, by Eq. (13.101):

    q ¯    1   = q (   
2  y  1    a  1   + 2  y  2    √ 

_
  a  1    a  2    
  _________________ 

a
   −   

 b  1  
 _ 

b
   )   (F)

    q ¯    2   = q  (  
2  y  2    a  2   + 2  y  1    √ 

_
  a  1    a  2    
  _________________ 

a
   −   

 b  2  
 _ 

b
  )    (G)
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508 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

Substitution of numerical values into these equations and into Eq. (13.99) produces 
the following results:

  q ¯   i ln   ϕ ˆ   i   ϕ ˆ   i

N2(1) 2.39194  − 0.05664 0.94493
CH4(2) 4.55795  − 0.19966 0.81901

The values of    ϕ ˆ    i    agree reasonably well with those found in Ex. 10.7.

Equations (13.77) and (13.99) provide the basis for VLE calculations for mixtures, but they 
incorporate a number of mixture parameters (e.g., al, bv) and thermodynamic functions (e.g., Zl, 
Zv) that may initially be unknown. The calculation therefore becomes one of solving simultaneous 
equations equal in number to the number of unknowns. The equations available fall into several 
classes: mixing- and combining-rule and parameter equations for the liquid phase, the same 
equations for the vapor phase, and equilibrium and related equations. All of these parameters and 
equations have already been presented, but they are classified for convenience in Table 13.9. The 
presumption is that all pure-species parameters (e.g., ai  and bi) are known and that either the 
temperature T or pressure P and either the liquid-phase or vapor-phase composition is specified. 
In addition to the N primary unknowns (T or P and either liquid or vapor phase composition), 
Table 13.9 enumerates 12 + 4N auxiliary variables and a total of 12 + 5N equations.

A direct and somewhat intuitive solution procedure makes use of Eq. (13.77), rewritten 
as yi = Kixi. Because   ∑  i    y  i   = 1 ,

   ∑ 
i

      K  i    x  i   = 1  (13.102)

where Ki, the K-value, is given by:

   K  i   =   
  ϕ ˆ   i  l  ___ 
  ϕ ˆ   i  v 

    (13.103)

Thus for bubblepoint calculations, where the liquid-phase composition is known, the problem 
is to find the set of K-values that satisfies Eq. (13.102).

Example 13.7
Develop the Pxy diagram at 37.78°C for the methane(1)/n-butane(2) binary system. 
Base calculations on the Soave/Redlich/Kwong equation with mixing rules given by 
Eqs. (13.91) through (13.93). Experimental data at this temperature for comparison are 
given by Sage et al.25

Solution 13.7
The procedure here is to do a BUBL P calculation for each experimental data 
point. For each calculation, estimated values of P and y1 are required to initiate 

25B. H. Sage, B. L. Hicks, and W. N. Lacey, Industrial and Engineering Chemistry, vol. 32, pp. 1085–1092, 1940.
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13.7. VLE from Cubic Equations of State 509

A. Mixing and combining rules. Liquid phase.

  a   l  =  ∑ 
i

      ∑ 
j

      x  i    x  j    ( a  i    a  j  )   1/2    (i = j = 1, 2, . . . , N)

  b   l  =  ∑ 
i

      x  i    b  i     (i = 1, 2, . . . , N)

2 equations; 2 variables:   a   l  ,   b   l  

B. Mixing and combining rules. Vapor phase.

  a   v  =  ∑ 
i

      ∑ 
j

      y  i    y  j    ( a  i    a  j  )   1/2   (i = j = 1, 2, . . . , N)

  b   v  =  ∑ 
i

      y  i    b  i    (i = 1, 2, . . . , N)

2 equations; 2 variables:   a   v  ,   b   v  

C. Dimensionless parameters. Liquid phase.

  β   l  =  b   l  P ∕  (RT )           q   l  =  a   l  ∕ ( b   l  RT ) 

   q ¯   i  l  =  q   l  (1 +   
  a ¯   i  l  __ 
 a   l 

   −   
 b  i   __ 
 b   l 

  )               (i = 1, 2, . . . , N)  

2 + N equations; 2 + N variables:   b   l  ,   q   l  ,    {  q ¯    
i
  l }  

D. Dimensionless parameters. Vapor phase.

    β   v  =  b   v P ∕  (  RT )             q   v  =  a   v  ∕  (    b   v  RT )    

    q ¯    
i
  v  =  q   v  (1 +   

  a ¯   i  v  ___  a   v    −   
 b  i   _  b   v   )               (i = 1, 2, . . . , N)   

2 + N equations; 2 + N variables:   b   v  ,   q   v  ,    {  q ¯    
i
  v }  

E. Equilibrium and related equations.

  y  i     ϕ ˆ   i  v  =  x  i     ϕ ˆ   i  l            (i = 1, 2, . . . , N)  

 ln   ϕ ˆ   i  l  =   
 b  i   __ 
 b   l 

  ( Z   l  − 1) − ln (  Z   l  −  β   l )   −   q ¯   i  l   I   l           (i = 1, 2, . . . ,  N)  

 ln   ϕ ˆ   i  v  =   
 b  i   ___  b   v    

( Z   v  − 1)  − ln ( Z   v  −  β   v )  −    q ¯   i  v   I   v         (i = 1, 2, . . . ,  N)  

  Z   p  = 1 +  β   p  −  q   p   β   p    
 Z   p  −  β   p 

  ________________   (  Z + ε  β   p  )   (  Z + σ  β   p  )        (p = v, l)  

   I   p  =   
1
 _ 

σ − ε   ln  (  
 Z   p  + σ  β   p 

 ________  Z   p  + ε  β   p 
  )     (p = v, l)   

4 + 3N equations; 4 + 2N variables:  {   ϕ ˆ   i  v } ,  {   ϕ ˆ   i  l } ,   I   l  ,   Z   l  ,   I   v  ,   Z   v  

Table 13.9: VLE Calculations Based on Equations of State
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510 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

iteration. These estimates are here provided by the experimental data. Where no 
such data are available, several trials may be required to find values for which the 
iterative procedure converges.

Pure-species parameters ai and bi are found from Eqs. (13.79) and (13.80) with 
constants and an expression for α(Tr) from Table 3.1. For a temperature of 310.93 K  
[37.78°C] and with critical constants and ωi from Table B.1, calculations provide 
the following pure-species values:

  T   c  i      ∕K   T   r  i       ω  i     α (    T  r   )      P   c  i      ∕bar bi 10–6ai

CH4(1) 190.6 1.6313 0.012 0.7425 45.99 29.853  1.7331
n-C4H10(2) 425.1 0.7314 0.200 1.2411 37.96 80.667 17.458

The units of bi are cm3·mol−1, and those of ai are bar·cm6·mol−2.
Note that the temperature of interest is greater than the critical temperature of 

methane. The Pxy diagram will therefore be of the type shown by Fig. 12.2(a) for 
temperature Tb. The equations for α(Tr) given in Table 3.1 are based on vapor- 
pressure data, which extend only to the critical temperature. However, they can 
reasonably be applied to temperatures modestly above the critical temperature.

The mixing rules adopted here are the same as in Ex. 13.6, where Eqs. (B), (C), 
(F), and (G) give mixture parameters for the vapor phase. When applied to the 
liquid phase, xi replaces yi as the mole-fraction variable:

   
 a   l  =  x 1  2  a  1   + 2 x  1   x  2    √ 

____
  a  1   a  2     +  x 2  2   a  2  

  
    b   l  =  x  1   b  1   +  x  2   b  2  

      
  q ¯   1  l   =  q   l    (  

2 x  1   a  1   + 2 x  2    √ 
_

  a  1   a  2    
  _________________ 

 a   l 
   −   

 b  1  
 _ 

 b   l 
  )  

  
    q ¯   2  l   =  q   l  (    

2 x  2   a  2   + 2 x  1   √ 
_

  a  1   a  2    
  _________________ 

 a   l 
   −   

 b  2  
 _ 

 b   l 
   ) 

   

where ql is given by Eq. (13.90).
For the SRK equation, ε = 0 and σ = 1; Eqs. (13.83) and (13.84) are then:

    Z   l  =  β   l  +  Z   l ( Z   l  +  β   l )   (  
1 +  β   l  −  Z   l 

 _ 
 q   l   β   l 

  )       Z   v  = 1 +  β   v  −  q   v   β   v    
 Z   v  −  β   v 

 _________  Z   v ( Z   v  +  β   v )     

where βl, βv, ql, and qv are given by Eqs. (13.89) and (13.90). The first set of BUBL P  
calculations is made for the assumed pressure. With the given liquid-phase com-
position and assumed vapor-phase composition, values for Zl and Zv are deter-
mined by the preceding equations, and fugacity coefficients    ϕ ˆ   i  l   and    ϕ ˆ   i  v   then follow 
from Eq. (13.99). Values of K1 and K2 come from Eq. (13.103). The constraint  
y1 + y2 = 1 has not been imposed, and Eq. (13.102) is unlikely to be satisfied. In 
this event, K1x1+ K2x2 ≠ 1, and a new vapor composition for the next iteration is 
given by the normalizing equation:

    y  1   =   
 K  1    x  1  
 __________   K  1    x  1   +  K  2    x  2    

  with   y  2   = 1 −  y  1     

This new vapor composition allows reevaluation of  {   ϕ ˆ   i  v } , {Ki}, and {Kixi}. If the 
sum K1x1 + K2x2 has changed, a new vapor composition is found and the sequence 
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13.7. VLE from Cubic Equations of State 511

of calculations is repeated. Continued iteration leads to stable values of all quanti-
ties. If the sum K1x1 + K2x2 is not unity, the assumed pressure is incorrect, and it 
must be adjusted according by some rational scheme. When   ∑  i    K  i    x  i   >     1 , P is too 
low; when   ∑  i    K  i    x  i    <      1 , P is too high. The entire iterative procedure is then 
repeated with a new pressure P. The last calculated values of yi are used for the 
initial estimate of {yi}. The process continues until K1x1 + K2x2 = 1. Of course the 
same result can be obtained by any other method capable of solving the set of 
equations given in Table 13.9, with P, y1, and y2 as the unknowns.

The results of all calculations are shown by the solid lines of Fig. 13.13. Exper-
imental values appear as points. The root-mean-square percentage difference 

Figure 13.13: Pxy diagram at 37.8°C (100°F) for methane(1)/n-butane(2). Lines represent values from 
BUBL P calculations with the SRK equation; points are experimental values.
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512 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

between experimental and calculated pressures is 3.9%, and the root-mean-square 
deviation between experimental and calculated y values is 0.013. These results, 
based on the simple mixing rules of Eqs. (13.91) and (13.92), are representative 
for systems that exhibit modest and well-behaved deviations from ideal-solution 
behavior, e.g., for systems comprised of hydrocarbons and cryogenic fluids.

13.8 FLASH CALCULATIONS

In previous sections, we have focused on bubblepoint and dewpoint calculations, which are 
common calculations in practice, and which provide a basis for constructing phase diagrams 
for VLE. Perhaps an even more important application of VLE is the flash calculation. The 
name originates from the fact that a liquid at a pressure equal to or greater than its bubblepoint 
pressure “flashes” or partially evaporates when the pressure is reduced below its bubblepoint 
pressure, producing a two-phase system of vapor and liquid in equilibrium. We consider here 
only the P, T-flash, which refers to any calculation of the quantities and compositions of the 
vapor and liquid phases making up a two-phase system in equilibrium at known T, P, and over-
all composition. Duhem’s theorem shows that the state of such a system is fully determined 
because two independent variables (T and P) are specified for a system of fixed overall com-
position, that is, a system formed from given masses of nonreacting chemical species.

Consider a system containing one mole of nonreacting chemical species with an overall 
composition represented by the set of mole fractions {zi}. Let    be the moles of liquid, with 
mole fractions {xi}, and let    be the moles of vapor, with mole fractions {yi}. The material 
balance equations are:

   +   = 1  
   z  i   =  x  i    +  y  i           (i = 1, 2, . . . , N )  

Combining these equations to eliminate   gives:

   z  i   =  x  i  (1 −  ) +  y  i     (13.104)

The K-value, as defined in the previous section (Ki ≡ yi∕xi), is a convenient construct for use 
in flash calculations. Substituting xi = yi∕Ki into Eq. (13.104) and solving for yi yields:

   y  i   =   
 z  i    K  i   ___________  1 +  ( K  i   − 1)           (i = 1, 2, . . . , N)   (13.105)

Because   ∑  i    y  i   = 1 , summing this expression over all species gives us a single equation in 
which, for known K-values, the only unknown is   .

   ∑ 
i

       
 z  i    K  i   ___________  1 +  ( K  i   − 1)   = 1  (13.106)

One general approach to solving a P, T-flash problem is to find the value of   , between 0 and 
1, that satisfies this equation. Note that    = 1 is always a trivial solution to this  equation. Hav-
ing done so, the vapor-phase mole fractions are then obtained from Eq. (13.105), the 
 liquid-phase mole fractions are obtained from xi = yi∕Ki, and    is given by    = 1  −    . When 
Raoult’s law can be applied, the K-values are constant and this is straightforward, as shown in 
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13.8. Flash Calculations 513

the following example. Historically, K-values for light hydrocarbons were often taken from a 
set of charts constructed by DePriester, hence called DePriester charts. These similarly pro-
vided a set of constant K-values for use in the preceding calculations.26

Example 13.8
The system acetone(1)/acetonitrile(2)/nitromethane(3) at 80°C and 110 kPa has the 
overall composition  z1 = 0.45, z2 = 0.35, z3 = 0.20. Assuming that Raoult’s law is 
appropriate to this system, determine   ,   , {xi}, and {yi}. The vapor pressures of the 
pure species at 80°C are:

   P 1  sat  = 195.75            P 2  sat  = 97.84             P 3  sat  = 50.32 kPa  

Solution 13.8
First, do a BUBL P calculation with {zi} = {xi} to determine Pbubl: 

  P  bubl   =  x  1    P 1  sat  +  x  2    P 2  sat  +  x  3    P 3  sat 
 P  bubl   =   (0.45)  (195.75)  +  (0.35)  (97.84)  +  (0.20)  (50.32)  = 132.40 kPa 

Next, do a DEW P calculation with {zi} = {yi} to find Pdew:

   P  dew   =   
1
  _______________________   

 y  1   ∕  P 1  sat  +  y  2   ∕  P 2  sat  +  y  3   ∕  P 3  sat 
   = 101.52 kPa  

Because the given pressure lies between Pbubl and Pdew, the system is in the two-
phase region, and a flash calculation is possible.

From Raoult’s law, Eq. (13.16), we have   K  i   =  y  i   ∕  x  i   =  P i  sat  ∕ P , from which:

   K  1   = 1.7795           K  2   = 0.8895           K  3   = 0.4575  

Substituting known values into Eq. (13.106) gives:

    
 (0.45)  (0.7795) 

  ____________  1 + 0.7795    +   
 (0.35)  (0.8895) 

  ____________  1 − 0.1105    +   
 (0.20)  (0.4575) 

  ____________  1 − 0.5425     = 1  

Trial-and-error or iterative solution for  followed by evaluation of the other 
unknowns yields:

   = 0.7364 mol            = 1 −   = 0.2636 mol  

   y  1   =   
 (0.45)  (1.7795) 

  _________________  1 +  (0.7795)  (0.7634)    = 0.5087          y  2   = 0.3389           y  3   = 0.1524  

   x  1   =   
 y  1  

 ___  K  1     =   
0.5087

 ______ 1.7795   = 0.2859                       x  2   = 0.3810           x  3   = 0.3331  

Reassuringly,   ∑  i    x  i   =  ∑  i    y  i   = 1 .

26C. L. DePriester, Chem. Eng. Progr. Symp. Ser. No. 7, vol. 49, p. 42, 1953.
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514 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

The procedure of the preceding example is applicable regardless of the number of species 
present. However, for the simple case of a binary flash calculation using Raoult’s law, explicit 
solution is possible. In that case, we have:

  P =  x  1    P 1  sat  +  x  2    P 2  sat  =  x  1    P 1  sat  +  (1 −  x  1  )   P 2  sat   

Solving for x1 gives:

   x  1   =   
P −  P 2  sat 

 _________ 
 P 1  sat  −  P 2  sat 

    

With x1 known, the remaining variables follow immediately from Raoult’s law [Eq. (13.16)] 
and the overall mass balances [Eq. (13.104)].

When the K-values are not constant, the general approach remains the same as in  
Ex. 13.8, but an additional level of iterative solution is required. In the preceding treatment, we 
solved for yi to obtain Eq. (13.105). If, instead, we eliminate yi using yi = Kixi, we obtain an 
alternative expression:

   x  i   =   
 z  i   ___________  1 +  ( K  i   − 1)           (i = 1, 2, . . . , N)   (13.107)

Because both sets of mole fractions must sum to unity,   ∑  i    x  i   =  ∑  i    y  i   = 1 . Thus, if we sum  
Eq. (13.105) over all species and subtract unity from this sum, the difference Fy is zero:

   F  y   =  ∑ 
i

       
 z  i    K  i   ___________  1 +  ( K  i   − 1)   − 1 = 0  (13.108)

Similar treatment of Eq. (13.107) yields the difference Fx, which is also zero:

   F  x   =  ∑ 
i

       
 z  i   ___________  1 +  ( K  i   − 1)   − 1 = 0  (13.109)

A P, T-flash problem can be solved by finding a value of  that makes either Fy or Fx equal to 
zero for known T, P, and overall composition. A more convenient function for applying a  
general solution procedure27 is the difference F ≡ Fy   −   Fx:

  F =  ∑ 
i

       
 z  i   (    K  i   − 1 )  

 ___________  1 +  ( K  i   − 1)   = 0  (13.110)

The advantage of this function is apparent from its derivative:

    
dF

 ___ 
d

    = −   ∑ 
i
         

zi(Ki − 1)2
  ______________  

[1 +  (Ki − 1)]2    (13.111)

Because dF∕d  is always negative, the F vs.  relation is monotonic. This, in turn, makes this 
form of the equation exceptionally well-suited for solution by Newton’s method (App. H). 
Equation H.1 for the nth iteration of Newton’s method becomes:

  F +  (  
dF

 ____ 
d

  ) Δ  = 0  (13.112)

27H. H. Rachford, Jr., and J. D. Rice, J. Petrol. Technol., vol. 4(10), sec. 1, p. 19 and sec. 2, p. 3, October 1952.
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where Δ  ≡  n+1   −   n, and F and (dF∕d ) are found by Eq. (13.110) and (13.111). In these  
equations, for the general  gamma/phi formulation of VLE, the K-values come from  
Eq. (13.13), written:

   K  i   =   
 y  i   __  x  i  

   =   
 γ  i    P i  sat 

 _____  Φ  i   P
             (i = 1, 2, . . . , N)   (13.113)

with the Φi given by Eq. (13.14). The K-values contain all of the thermodynamic information 
and are related in a complex way to T, P, {yi}, and {xi}. Because solution is for {yi} and {xi}, 
the P, T-flash calculation inevitably requires iterative solution. This remains the case, even at 
low pressure where we can assume Φi = 1, because the activity coefficients still depend upon 
the unknown {xi}.

One typically proceeds by performing a BUBL P calculation and a DEW P calculation 
prior to the flash calculation. If the given pressure is below Pdew for the specified T and {zi}, 
then the system exists as superheated vapor, and no flash calculation is possible. Similarly, if 
the given pressure is above Pbubl for the specified T and {zi}, then the system is a subcooled 
liquid, and no flash calculation is possible. If the specified P falls between Pdew and Pbubl for 
the specified T and {zi}, then the system exists as an equilibrium mixture of vapor and liquid, 
and we can proceed with the flash calculation. The  results of the preliminary DEW P and 
BUBL P calculations then provide useful initial estimates of {γi}, {   ϕ ˆ    i   }, and . For the dew-
point,  = 1, with calculated values of Pdew, γi, dew, and    ϕ ˆ    i, dew   ; for the bubblepoint,  = 0,  
with calculated values of Pbubl, γi, bubl, and    ϕ ˆ    i, bubl   . The simplest procedure is to interpolate 
linearly between dewpoint and bubblepoint with respect to P:

   =   
 P  bubl   − P

 __________  P  bubl   −  P  dew      

   γ  i   =  γ  i, dew   + ( γ  i, bubl   −  γ  i, dew  )   
P −  P  dew  

 __________  P  bubl   −  P  dew      

    ϕ ˆ    i   =   ϕ ˆ    i, dew   + (  ϕ ˆ    i, bubl   −   ϕ ˆ    i, dew  )   
P −  P  dew  

 __________  P  bubl   −  P  dew      

With these initial values of the  γi  and    ϕ ˆ    i   , one can now calculate initial values of Ki from  
Eq. (13.113). Using these values with Eqs. (13.110) and (13.111) one applies Newton’s 
method, iterating on Eq. (13.112) to obtain a solution for  . One then proceeds as in Ex. 13.8 
to compute , {xi}, and {yi}. The computed compositions are used to obtain new estimates of 
{γi} and {   ϕ ˆ    i   }, from which new K-values are computed. The procedure is repeated until the 
change in {xi} and {yi} from one iteration to the next is negligible. The same basic procedure 
can be applied with K-values computed by application of a cubic equation of state to both 
phases, as exemplified by Eq. (13.103).

13.9 SYNOPSIS

After studying this chapter, including the end-of-chapter problems, one should be able to:

 ∙ Understand the relationship between excess Gibbs energy and activity coefficients
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516 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

 ∙ Explain and interpret each of the following five types of VLE calculations:
  ∙ Bubblepoint pressure (BUBL P) calculations
  ∙ Dewpoint pressure (DEW P) calculations
  ∙ Bubblepoint temperature (BUBL T ) calculations
  ∙ Dewpoint temperature (DEW T ) calculations
  ∙ P, T-flash calculations
 ∙ Carry out each of the five types of VLE calculations using each of the following VLE 

formulations:
  ∙ Raoult’s law
  ∙ Modified Raoult’s law, with activity coefficients
  ∙ The full gamma/phi formulation
  ∙ A cubic equation of state applied to both the liquid and vapor phases
 ∙ State and apply Henry’s law
 ∙ Compute liquid phase fugacities, activity coefficients, and excess Gibbs energy from 

low-pressure VLE data
 ∙ Fit excess Gibbs energy to models including the Margules equation, the van Laar equa-

tion, and the Wilson equation
 ∙ Evaluate the thermodynamic consistency of a set of low-pressure binary VLE data
 ∙ Fit activity coefficient models, including the Margules equation, the van Laar equation, 

and the Wilson equation directly to P vs. x1 data
 ∙ Compute activity coefficients and excess properties from
  ∙ The Margules equations
  ∙ The van Laar equation
  ∙ The Wilson equation
  ∙ The NRTL equation
 ∙ Compute residual properties and fugacities for pure species and mixtures from a cubic 

equation of state, and use these in VLE calculations

13.10 PROBLEMS

Solutions to some of the problems of this chapter require vapor pressures as a function of tem-
perature. Table B.2, Appendix B, lists parameter values for the Antoine equation, from which 
these can be computed.

 13.1 Assuming the validity of Raoult’s law, do the following calculations for the ben-
zene(1)/toluene(2) system:

 (a) Given x1 = 0.33 and T = 100°C, find y1 and P.
 (b) Given y1 = 0.33 and T = 100°C, find x1 and P. 
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 (c) Given x1 = 0.33 and P = 120 kPa, find y1 and T. 
 (d) Given y1 = 0.33 and P = 120 kPa, find x1 and T. 
 (e) Given T = 105°C and P = 120 kPa, find x1 and y1. 
 (f ) For part (e), if the overall mole fraction of benzene is z1 = 0.33, what molar frac-

tion of the two-phase system is vapor? 
 (g) Why is Raoult’s law likely to be an excellent VLE model for this system at the 

stated (or computed) conditions?

 13.2. Assuming Raoult’s law to be valid, prepare a Pxy diagram for a temperature of 90°C 
and a txy diagram for a pressure of 90 kPa for one of the following systems.

 (a) Benzene(1)/ethylbenzene(2)
 (b) 1-Chlorobutane(1)/chlorobenzene(2)

 13.3. Assuming Raoult’s law to apply to the system n-pentane(1)/n-heptane(2),

 (a) What are the values of x1 and y1 at t = 55°C and  P =   1 _ 2    (P  1  sat  +  P  2  sat  )? For these 
conditions plot the fraction of system that is vapor  vs. overall composition z1.

 (b) For t = 55°C and z1 = 0.5, plot P, x1, and y1 vs. .

 13.4. Rework Prob. 13.3 for one of the following.

 (a) t = 65°C; (b) t = 75°C; (c) t = 85°C; (d) t = 95°C

 13.5. Prove: An equilibrium liquid/vapor system described by Raoult’s law cannot exhibit 
an azeotrope.

 13.6. Of the following binary liquid/vapor systems, which can be approximately modeled by 
Raoult’s law? For those that cannot, why not? Table B.1 (App. B) may be useful.

 (a) Benzene/toluene at 1(atm)
 (b) n-Hexane/n-heptane at 25 bar
 (c) Hydrogen/propane at 200 K
 (d) Iso-octane/n-octane at 100°C
 (e) Water/n-decane at 1 bar

 13.7. A single-stage liquid/vapor separation for the benzene(1)/ethylbenzene(2) system 
must produce phases of the following equilibrium compositions. For one of these sets, 
determine T and P in the separator. What additional information is needed to compute 
the relative amounts of liquid and vapor leaving the separator? Assume that Raoult’s 
law applies.

 (a) x1 = 0.35, y1 = 0.70
 (b) x1 = 0.35, y1 = 0.725
 (c) x1 = 0.35, y1 = 0.75
 (d) x1 = 0.35, y1 = 0.775

 13.8. Do all four parts of Prob. 13.7, and compare the results. The required temperatures 
and pressures vary significantly. Discuss possible processing implications of the vari-
ous temperature and pressure levels.
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518 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

 13.9. A mixture containing equimolar amounts of benzene(1), toluene(2), and ethylben-
zene(3) is flashed to conditions T and P. For one of the following conditions, determine 
the equilibrium mole fractions {xi} and {yi} of the liquid and vapor phases formed and 
the molar fraction  of the vapor formed. Assume that Raoult’s law applies.

 (a) T = 110°C, P = 90 kPa
 (b) T = 110°C, P = 100 kPa
 (c) T = 110°C, P = 110 kPa
 (d) T = 110°C, P = 120 kPa

 13.10. Do all four parts of Prob. 13.9, and compare the results. Discuss any trends that appear.

 13.11. A binary mixture of mole fraction z1 is flashed to conditions T and P. For one of the 
following, determine the equilibrium mole fractions x1 and y1 of the liquid and vapor 
phases formed, the molar fraction  of the vapor formed, and the fractional recovery 
 of species 1 in the vapor phase (defined as the ratio for species 1 of moles in the 
vapor to moles in the feed). Assume that Raoult’s law applies. 

 (a) Acetone(1)/acetonitrile(2), z1 = 0.75, T = 340 K, P = 115 kPa
 (b) Benzene(1)/ethylbenzene(2), z1 = 0.50, T = 100°C, P = 0.75(atm)
 (c) Ethanol(1)/1-propanol(2), z1 = 0.25, T = 360 K, P = 0.80(atm)
 (d) 1-Chlorobutane(1)/chlorobenzene(2), z1 = 0.50, T = 125°C, P = 1.75 bar

 13.12. Humidity, relating to the quantity of moisture in atmospheric air, is accurately given 
by equations derived from the ideal-gas law and Raoult’s law for H2O. 

 (a) The absolute humidity h is defined as the mass of water vapor in a unit mass of dry 
air. Show that it is given by:

  h =   
 ℳ   H  2  O  

 _____  ℳ  air  
     

 p   H  2  O  
 _______ 

P −  p   H  2  O      

  where ℳ represents a molar mass and   p   H  2  O    is the partial pressure of the water 
vapor, i.e.,   p   H  2  O   =  y       H  2  O     P . 

 (b) The saturation humidity hsat is defined as the value of h when air is in equilibrium 
with a large body of pure water. Show that it is given by: 

  h   sat  =   
 ℳ   H  2  O  

 _____  ℳ  air  
     

 p  H  2  O  sat  
 ________ 

P −  p  H  2  O  sat  
   

  where   p  H  2  O  sat    is the vapor pressure of water at the ambient temperature.
 (c) The percentage humidity is defined as the ratio of h to its saturation value, 

expressed as a percentage. On the other hand, the relative humidity is defined as 
the ratio of the partial pressure of water vapor in air to its vapor pressure, expressed 
as a percentage. What is the relation between these two quantities?

 13.13. A concentrated binary solution containing mostly species 2 (but x2 ≠ 1) is in equilibrium 
with a vapor phase containing both species 1 and 2. The pressure of this two-phase system 
is 1 bar; the temperature is 25°C. At this temperature, 1 = 200 bar and   P 2  sat  = 0.10 bar . 
Determine good estimates of x1 and y1. State and justify all assumptions.
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 13.14. Air, even more than carbon dioxide, is inexpensive and nontoxic. Why is it not the gas 
of choice for making soda water and (cheap) champagne effervescent? Table 13.2 may 
provide useful data.

 13.15. Helium-laced gases are used as breathing media for deep-sea divers. Why? Table 13.2 
may provide useful data.

 13.16. A binary system of species 1 and 2 consists of vapor and liquid phases in equilibrium 
at temperature T. The overall mole fraction of species 1 in the system is z1 = 0.65. At 
temperature T,  ln  γ  1   = 0.67  x 2  2  ;  ln  γ  2   = 0.67  x 1  2  ;   P 1  sat  = 32.27 kPa ; and   P 2  sat  = 73.14 kPa .  
Assuming the validity of Eq. (13.19),

 (a) Over what range of pressures can this system exist as two phases at the given T and z1?
 (b) For a liquid-phase mole fraction x1 = 0.75, what is the pressure P and what molar 

fraction  of the system is vapor? 
 (c) Show whether or not the system exhibits an azeotrope.

 13.17. For the system ethyl ethanoate(1)/n-heptane(2) at 343.15 K,  ln  γ  1   = 0.95  x 2  2  ;  ln  γ  2   = 0.95 x 1  2  ;  
  P 1  sat  = 79.80 kPa ; and   P 2  sat  = 40.50 kPa . Assuming the validity of Eq. (13.19),

 (a) Make a BUBL P calculation for T = 343.15 K, x1 = 0.05. 
 (b) Make a DEW P calculation for T = 343.15 K, y1 = 0.05. 
 (c) What are the azeotrope composition and pressure at T = 343.15 K?

 13.18. A liquid mixture of cyclohexanone(1)/phenol(2) for which x1 = 0.6 is in equilibrium 
with its vapor at 144°C. Determine the equilibrium pressure P and vapor composition 
y1 from the following information:

 ∙  ln  γ  1   = A  x 2  2    and   ln  γ  2   = A  x 1  2  .
 ∙ At 144°C,   P 1  sat  = 75.20 kPa  and    P 2  sat  = 31.66 kPa.
  ∙ The system forms an azeotrope at 144°C for which   x 1  az  =  y 1  az  = 0.294 .

 13.19. A binary system of species 1 and 2 consists of vapor and liquid phases in equilibrium 
at temperature T, for which  ln  γ  1    =  1.8  x 2  2  ,  ln  γ  2    =  1.8  x 1  2  ,   P 1  sat   =  1.24  bar , and  
P 2  sat  = 40.50 kPa . Assuming the validity of Eq. (13.19),

 (a) For what range of values of the overall mole fraction z1 can this two-phase system 
exist with a liquid mole fraction x1 = 0.65? 

 (b) What are the pressure P and vapor mole fraction y1 within this range? 
 (c) What are the pressure and composition of the azeotrope at temperature T?

 13.20. For the acetone(1)/methanol(2) system, a vapor mixture for which z1 = 0.25 and  
z2 = 0.75 is cooled to temperature T in the two-phase region and flows into a   
separation chamber at a pressure of 1 bar. If the composition of the liquid product  
is to be x1 = 0.175, what is the required value of T, and what is the value of y1?  
For liquid mixtures of this system, to a good approximation,  ln  γ  1    =  0.64  x 2  2    and 
 ln  γ  2   = 0.64  x 1  2  .
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520 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

 13.21. The following is a rule of thumb: For a binary system in VLE at low pressure, the 
equilibrium vapor-phase mole fraction y1 corresponding to an equimolar liquid mix-
ture is approximately:

   y  1   =   
 P 1  sat 
 _________ 

 P 1  sat  +  P 2  sat 
    

  where   P i  sat   is a pure-species vapor pressure. Clearly, this equation is valid if Raoult’s 
law applies. Prove that it is also valid for VLE described by Eq. (13.19), with  ln  γ  1   =  
A  x 2  2   and  ln  γ  2   = A  x 1  2  .

 13.22. A process stream contains light species 1 and heavy species 2. A relatively pure liquid 
stream containing mostly 2 is desired, obtained by a single-stage liquid/vapor separa-
tion. Specifications of the equilibrium composition are: x1 = 0.002 and y1 = 0.950. 
Use data given below to determine T (K) and P (bar) for the separator. Assume that 
Eq. (13.19) applies; the calculated P should be used to validate this assumption. Data: 
For the liquid phase,

  ln  γ  1   = 0.93  x 2  2  
  ln  γ  2   = 0.93  x 1  2  

  ln  P i  sat  ∕ bar =  A  i   −   
 B  i   ____ 

T ∕ K    

 A1 = 10.08; B1 = 2572.0; A2 = 11.63; B2 = 6254.0

 13.23. If a system exhibits VLE, at least one of the K-values must be greater than 1.0 and at 
least one must be less than 1.0. Offer a proof of this observation.

 13.24. Flash calculations are simpler for binary systems than for the general multicomponent 
case because the equilibrium compositions for a binary are independent of the overall 
composition. Show that, for a binary system in VLE,

   x  1   =   
1 −  K  2  

 _______  K  1   −  K  2                  y  1   =   
 K  1   (1 −  K  2  ) 

 _________  K  1   −  K  2      

   =   
 z  1   ( K  1   −  K  2  )  −  (1 −  K  2  ) 

  _________________   ( K  1   − 1)  (1 −  K  2  )     

 13.25. The NIST Chemistry WebBook reports critically evaluated Henry’s constants for 
selected chemicals in water at 25°C. Henry’s constants from this source, denoted here 
by kHi, appear in the VLE equation written for the solute in the form:

 mi = kHiyiP 

  where mi is the liquid-phase molality of solute species i, expressed as mol i∕kg solvent.

 (a) Determine an algebraic relation connecting kHi to i, Henry’s constant in  
Eq. (13.26). Assume that xi is “small.” 
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13.10. Problems 521

 (b) The NIST Chemistry WebBook provides a value of 0.034 mol·kg−1·bar−1 for 
kHi of CO2 in H2O at 25°C. What is the implied value of i in bar? Compare this 
with the value given in Table 13.2, which came from a different source.

 13.26. (a)  A feed containing equimolar amounts of acetone(1) and acetonitrile(2) is throttled 
to pressure P and temperature T. For what pressure range (atm) will two phases 
(liquid and vapor) be formed for T = 50°C? Assume that Raoult’s law applies. 

 (b) A feed containing equimolar amounts of acetone(1) and acetonitrile(2) is throttled 
to pressure P and temperature T. For what temperature range (°C) will two phases 
(liquid and vapor) be formed for P = 0.5(atm)? Assume that Raoult’s law applies.

 13.27. A binary mixture of benzene(1) and toluene(2) is flashed to 75 kPa and 90°C. Analy-
sis of the effluent liquid and vapor streams from the separator yields: x1 = 0.1604 and 
y1 = 0.2919. An operator remarks that the product streams are “off-spec,” and you are 
asked to diagnose the problem. 

 (a) Verify that the exiting streams are not in binary equilibrium.
 (b) Verify that an air leak into the separator could be the cause.

 13.28. Ten (10) kmol·hr−1 of hydrogen sulfide gas is burned with the stoichiometric amount 
of pure oxygen in a special unit. Reactants enter as gases at 25°C and 1(atm). Products 
leave as two streams in equilibrium at 70°C and 1(atm): a phase of pure liquid water, 
and a saturated vapor stream containing H2O and SO2. 

 (a) What is the composition (mole fractions) of the product vapor stream?  
 (b) What are the rates (kmol·hr−1) of the two product streams?

 13.29. Physiological studies show the neutral comfort level (NCL) of moist air corresponds 
to an absolute humidity of about 0.01 kg H2O per kg of dry air.

 (a) What is the vapor-phase mole fraction of H2O at the NCL? 
 (b) What is the partial pressure of H2O at the NCL? Here, and in part (c), take P = 

1.01325 bar. 
 (c) What is the dewpoint temperature (°F) at the NCL?

 13.30. An industrial dehumidifier accepts 50 kmol·hr−1 of moist air with a dewpoint of 20°C. 
Conditioned air leaving the dehumidifier has a dewpoint temperature of 10°C. At 
what rate (kg·hr−1) is liquid water removed in this steady-flow process? Assume P is 
constant at 1(atm).

 13.31. Vapor/liquid-equilibrium azeotropy is impossible for binary systems rigorously 
described by Raoult’s law. For real systems (those with γi ≠ 1), azeotropy is inevitable 
at temperatures where the   P i  sat   are equal. Such a temperature is called a Bancroft point. 
Not all binary systems exhibit such a point. With Table B.2 of App. B as a resource, 
identify three binary systems with Bancroft points, and determine the T and P coordi-
nates. Ground rule: A Bancroft point must lie in the temperature ranges of validity of 
the Antoine equations.
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 13.32. The following is a set of VLE data for the system methanol(1)/water(2) at 333.15 K:

P/kPa x1 y1 P/kPa x1 y1

19.953 0.0000 0.0000 60.614 0.5282 0.8085
39.223 0.1686 0.5714 63.998 0.6044 0.8383
42.984 0.2167 0.6268 67.924 0.6804 0.8733
48.852 0.3039 0.6943 70.229 0.7255 0.8922
52.784 0.3681 0.7345 72.832 0.7776 0.9141
56.652 0.4461 0.7742 84.562 1.0000 1.0000

Extracted from K. Kurihara et al., J. Chem. Eng. Data, vol. 40, pp. 679–684, 1995.

 (a) Basing calculations on Eq. (13.24), find parameter values for the Margules equa-
tion that provide the best fit of GE∕RT to the data, and prepare a Pxy  diagram that 
compares the experimental points with curves determined from the correlation.

 (b) Repeat part (a) for the van Laar equation.
 (c) Repeat part (a) for the Wilson equation.
 (d) Using Barker’s method, find parameter values for the Margules equation that pro-

vide the best fit of the P – x1 data. Prepare a diagram showing the residuals δP and 
δy1 plotted vs. x1.

 (e) Repeat part (d) for the van Laar equation.
 (f ) Repeat part (d) for the Wilson equation.

 13.33. If Eq. (13.24) is valid for isothermal VLE in a binary system, show that:

    (    
dP

 ____ 
d  x  1     )    

 x  1   = 0
   ≥ −  P 2  sat    (    

dP
 ____ 

d  x  1     )    
 x  1   = 1

   ≤  P 1  sat   

 13.34. The following is a set of VLE data for the system acetone(1)/methanol(2) at 55°C:

P/kPa x1 y1 P/kPa x1 y1

68.728 0.0000 0.0000 97.646 0.5052 0.5844
72.278 0.0287 0.0647 98.462 0.5432 0.6174
75.279 0.0570 0.1295 99.811 0.6332 0.6772
77.524 0.0858 0.1848 99.950 0.6605 0.6926
78.951 0.1046 0.2190 100.278 0.6945 0.7124
82.528 0.1452 0.2694 100.467 0.7327 0.7383
86.762 0.2173 0.3633 100.999 0.7752 0.7729
90.088 0.2787 0.4184 101.059 0.7922 0.7876
93.206 0.3579 0.4779  99.877 0.9080 0.8959
95.017 0.4050 0.5135  99.799 0.9448 0.9336
96.365 0.4480 0.5512  96.885 1.0000 1.0000

Extracted from D. C. Freshwater and K. A. Pike, J. Chem. Eng. Data, vol. 12,  
pp. 179–183, 1967.
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 (a) Basing calculations on Eq. (13.24), find parameter values for the Margules equa-
tion that provide the best fit of GE∕RT to the data, and prepare a Pxy diagram that 
compares the experimental points with curves determined from the correlation.

 (b) Repeat part (a) for the van Laar equation.
 (c) Repeat part (a) for the Wilson equation.
 (d) Using Barker’s method, find parameter values for the Margules equation that pro-

vide the best fit of the P – x1 data. Prepare a diagram showing the residuals δP and 
δy1 plotted vs. x1.

 (e) Repeat part (d) for the van Laar equation.
 (f ) Repeat part (d) for the Wilson equation.

 13.35. The excess Gibbs energy for binary systems consisting of liquids not too dissimilar in 
chemical nature is represented to a reasonable approximation by the equation:

   G   E  ∕ RT = A  x  1    x  2    

  where A is a function of temperature only. For such systems, it is often observed that 
the ratio of the vapor pressures of the pure species is nearly constant over a consider-
able temperature range. Let this ratio be r, and determine the range of values of A, 
expressed as a function of r, for which no azeotrope can exist. Assume the vapor phase 
to be an ideal gas.

 13.36. For the ethanol(1)/chloroform(2) system at 50°C, the activity coefficients show inte-
rior extrema with respect to composition [see Fig. 13.4(e)].

 (a) Prove that the van Laar equation cannot represent such behavior.
 (b) The two-parameter Margules equation can represent this behavior, but only for 

particular ranges of the ratio A21∕A12. What are they?

 13.37. VLE data for methyl tert-butyl ether(1)/dichloromethane(2) at 308.15 K are as follows:

P/kPa x1 y1 P/kPa x1 y1

85.265 0.0000 0.0000 59.651 0.5036 0.3686
83.402 0.0330 0.0141 56.833 0.5749 0.4564
82.202 0.0579 0.0253 53.689 0.6736 0.5882
80.481 0.0924 0.0416 51.620 0.7676 0.7176
76.719 0.1665 0.0804 50.455 0.8476 0.8238
72.422 0.2482 0.1314 49.926 0.9093 0.9002
68.005 0.3322 0.1975 49.720 0.9529 0.9502
65.096 0.3880 0.2457 49.624 1.0000 1.0000

Extracted from F. A. Mato, C. Berro, and A. Péneloux, J. Chem. Eng. Data, 
vol. 36, pp. 259–262, 1991.

  The data are well correlated by the three-parameter Margules equation [an extension 
of Eq. (13.39)]:

    
 G   E 

 ___ 
RT

   =   (   A  21    x  1   +  A  12    x  2   − C  x  1    x  2   )    x  1    x  2    
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  Implied by this equation are the expressions:

 ln   γ  1   =  x 2  2   [   A  12   + 2  (   A  21   −  A  12   − C )    x  1   + 3C  x 1  2  ]   

 ln   γ  2   =  x 1  2   [   A  21   + 2  (   A  12   −  A  21   − C )    x  2   + 3C  x 2  2  ]   

 (a) Basing calculations on Eq. (13.24), find the values of parameters A12, A21, and C 
that provide the best fit of GE∕RT to the data.

 (b) Prepare a plot of ln γ1, ln γ2, and GE∕(x1x2RT ) vs. x1 showing both the correlation 
and experimental values.

 (c) Prepare a Pxy diagram [see Fig. 13.8(a)] that compares the experimental data with 
the correlation determined in part (a).

 (d) Prepare a consistency-test diagram like Fig. 13.9.
 (e) Using Barker’s method, find the values of parameters A12, A21, and C that provide 

the best fit of the P – x1 data. Prepare a diagram showing the residuals δP and δy1 
plotted vs. x1.

 13.38. Equations analogous to Eqs. (10.15) and (10.16) apply for excess properties. Because 
ln γi is a partial property with respect to GE∕RT, these analogous equations can be 
written for ln γ1 and ln γ2 in a binary system.

 (a) Write these equations, and apply them to Eq. (13.42) to show that Eqs. (13.43) and 
(13.44) are indeed obtained.

 (b) The alternative procedure is to apply Eq. (13.7). Show that by doing so  
Eqs. (13.43) and (13.44) are again reproduced.

 13.39. The following is a set of activity-coefficient data for a binary liquid system as deter-
mined from VLE data:

x1 γ1 γ2 x1 γ1 γ2

0.0523 1.202 1.002 0.5637 1.120 1.102
0.1299 1.307 1.004 0.6469 1.076 1.170
0.2233 1.295 1.006 0.7832 1.032 1.298
0.2764 1.228 1.024 0.8576 1.016 1.393
0.3482 1.234 1.022 0.9388 1.001 1.600
0.4187 1.180 1.049 0.9813 1.003 1.404
0.5001 1.129 1.092

  Inspection of these experimental values suggests that they are noisy, but the question 
is whether they are consistent, and therefore possibly on average correct.

 (a) Find experimental values for GE∕RT and plot them along with the experimental 
values of ln γ1 and ln γ2 on a single graph.

 (b) Develop a valid correlation for the composition dependence of GE∕RT and show 
lines on the graph of part (a) that represent this correlation for all three of the 
quantities plotted there.

 (c) Apply the consistency test described in Ex. 13.4 to these data, and draw a conclu-
sion with respect to this test.
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 13.40. Following are VLE data for the system acetonitrile(1)/benzene(2) at 45°C:

P/kPa x1 y1 P/kPa x1 y1

29.819 0.0000 0.0000 36.978 0.5458 0.5098
31.957 0.0455 0.1056 36.778 0.5946 0.5375
33.553 0.0940 0.1818 35.792 0.7206 0.6157
35.285 0.1829 0.2783 34.372 0.8145 0.6913
36.457 0.2909 0.3607 32.331 0.8972 0.7869
36.996 0.3980 0.4274 30.038 0.9573 0.8916
37.068 0.5069 0.4885 27.778 1.0000 1.0000

Extracted from I. Brown and F. Smith, Austral. J. Chem., vol. 8, p. 62, 1955.

  The data are well correlated by the three-parameter Margules equation (see Prob. 13.37).

 (a) Basing calculations on Eq. (13.24), find the values of parameters A12, A21, and C 
that provide the best fit of GE∕RT to the data.

 (b) Prepare a plot of ln γ1, ln γ2, and GE∕x1x2 RT vs. x1 showing both the correlation 
and experimental values.

 (c) Prepare a Pxy diagram [see Fig. 13.8(a)] that compares the experimental data with 
the correlation determined in part (a).

 (d) Prepare a consistency-test diagram like Fig. 13.9.
 (e) Using Barker’s method, find the values of parameters A12, A21, and C that provide 

the best fit of the P–x1 data. Prepare a diagram showing the residuals δP and δy1 
plotted vs. x1.

 13.41. An unusual type of low-pressure VLE behavior is that of double azeotropy, in which 
the dew and bubble curves are S-shaped, thus yielding at different compositions both 
a minimum-pressure and a maximum-pressure azeotrope. Assuming that Eq. (13.57) 
applies, determine under what circumstances double azeotropy is likely to occur.

 13.42. Rationalize the following rule of thumb, appropriate for an equimolar binary liquid mixture:

    
 G   E 

 ___ 
RT

    (  equimolar )    ≈   
1
 __ 8   ln   (   γ 1  ∞   γ 2  ∞  )     

Problems 13.43 through 13.54 require parameter values for the Wilson or NRTL equation for 
liquid-phase activity coefficients. Table 13.10 gives parameter values for both equations. 
Antoine equation parameters for vapor pressure are given in Table B.2, Appendix B.

 13.43. For one of the binary systems listed in Table 13.10, based on Eq. (13.19) and the  
Wilson equation, prepare a Pxy diagram for t = 60°C.

 13.44. For one of the binary systems listed in Table 13.10, based on Eq. (13.19) and the  
Wilson equation, prepare a txy diagram for P = 101.33 kPa.

 13.45. For one of the binary systems listed in Table 13.10, based on Eq. (13.19) and the 
NRTL equation, prepare a Pxy diagram for t = 60°C.
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526 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

 13.46. For one of the binary systems listed in Table 13.10, based on Eq. (13.19) and the 
NRTL equation, prepare a txy diagram for P = 101.33 kPa.

 13.47. For one of the binary systems listed in Table 13.10, based on Eq. (13.19) and the Wil-
son equation, make the following calculations:

 (a)   BUBL P :  t = 60° C,  x  1   = 0.3. 
 (b)   DEW P :  t = 60° C,  y  1   = 0.3. 
 (c)   P, T − flash: t = 60° C, P =   1 _ 2    (   P  bubble   +  P  dew   )   ,  z  1   = 0.3. 
 (d)  If an azeotrope exists at t = 60° C, find  P   az  and  x 1  az  =  y 1  az . 

 13.48. Work Prob. 13.47 for the NRTL equation.

 13.49. For one of the binary systems listed in Table 13.10, based on Eq. (13.19) and the  
Wilson equation, make the following calculations:

 (a)  BUBL T :  P = 101.33 kPa,  x  1   = 0.3. 
 (b)  DEW T :  P = 101.33 kPa,  y  1   = 0.3. 

Table 13.10: Parameter Values for the Wilson and NRTL Equations

Parameters a12, a21, b12, and b21 have units of cal·mol−1, and V1 and V2 have units of cm3·mol−1.

V1 Wilson Equation NRTL Equation
System V2 a12 a21 b12 b21 α

Acetone(1) 74.05 291.27 1448.01 631.05 1197.41 0.5343
Water(2) 18.07          
Methanol(1) 40.73 107.38 469.55 −253.88 845.21 0.2994
Water(2) 18.07          
1-Propanol(1) 75.14 775.48 1351.90 500.40 1636.57 0.5081
Water(2) 18.07          
Water(1) 18.07 1696.98 −219.39 715.96 548.90 0.2920
1,4-Dioxane(2) 85.71          
Methanol(1) 40.73 504.31 196.75 343.70 314.59 0.2981
Acetonitrile(2) 66.30          
Acetone(1) 74.05 −161.88 583.11 184.70 222.64 0.3084
Methanol(2) 40.73          
Methyl acetate(1) 79.84 −31.19 813.18 381.46 346.54 0.2965
Methanol(2) 40.73          
Methanol(1) 40.73 1734.42 183.04 730.09 1175.41 0.4743
Benzene(2) 89.41          
Ethanol(1) 58.68 1556.45 210.52 713.57 1147.86 0.5292
Toluene(2) 106.85          

Values are those recommended by Gmehling et al., Vapor-Liquid Equilibrium Data Collection, Chemistry 
Data Series, vol. I, parts 1a, 1b, 2c, and 2e, DECHEMA, Frankfurt/Main, 1981–1988.
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13.10. Problems 527

 (c)  P, T − flash :  P = 101.33 kPa, T =   1 _ 2    (    T  bubble   +  T  dew   )   ,  z  1   = 0.3. 
 (d)  If an azeotrope exists at P = 101.33 kPa, find  T   az  and  x 1  az  =  y 1  az . 

 13.50. Work Prob. 13.49 for the NRTL equation.

 13.51. For the acetone(1)/methanol(2)/water(3) system, based on Eq. (13.19) and the Wilson 
equation, make the following calculations:

 (a)   BUBL P :  t = 65° C,  x  1   = 0.3,  x  2   = 0.4. 
 (b)   DEW P :  t = 65° C,  y  1   = 0.3,  y  2   = 0.4. 
 (c)   P, T − flash :  t = 65° C, P =   1 _ 2    (   P  bubble   +  P  dew   )   ,  z  1   = 0.3,  z  2   = 0.4.

  13.52. Work Prob. 13.51 for the NRTL equation.

 13.53. For the acetone(1)/methanol(2)/water(3) system, based on Eq. (13.19) and the Wilson 
equation, make the following calculations:

 (a) BUBL T : P = 101.33 kPa,  x  1   = 0.3,  x  2   = 0.4.
 (b) DEW T : P = 101.33 kPa,  y  1   = 0.3,  y  2   = 0.4.
 (c) P, T − flash : P = 101.33 kPa, T =   1 _ 2  (  T  bubble   +  T  dew  ),  z  1   = 0.3,  z  2   = 0.2.

 13.54. Work Prob. 13.53 for the NRTL equation.

 13.55. The following expressions have been reported for the activity coefficients of species  
1 and 2 in a binary liquid mixture at given T and P:

 ln   γ  1   =  x 2  2   (  0.273 + 0.096  x  1   )    ln   γ  2   =  x 1  2 (0 . 273 − 0.096   x  2   )

 (a) Determine the implied expression for GE∕RT.
 (b) Generate expressions for ln γ1 and ln γ2 from the result of part (a).
 (c) Compare the results of part (b) with the reported expressions for ln γ1 and ln γ2.  

Discuss any discrepancy. Can the reported expressions possibly be correct?

 13.56. Possible correlating equations for ln γ1 in a binary liquid system are given here. For 
one of these cases, determine by integration of the Gibbs/Duhem equation  
[Eq. (13.11)] the corresponding equation for ln γ2. What is the corresponding equation 
for GE∕RT? Note that by its definition, γi = 1 for xi = 1.

 (a)  ln   γ  1   = A  x 2  2 

 (b)  ln   γ  1   =  x 2  2   (  A + B  x  2   )   

 (c)  ln   γ  1   =  x 2  2   (  A + B  x  2   + C  x 2  2  )   

 13.57. A storage tank contains a heavy organic liquid. Chemical analysis shows the liquid to 
contain 600 ppm (molar basis) of water. It is proposed to reduce the water concentra-
tion to 50 ppm by boiling the contents of the tank at constant atmospheric pressure. 
Because the water is lighter than the organic, the vapor will be rich in water; continu-
ous removal of the vapor serves to reduce the water content of the system. Estimate 
the percentage loss of organic (molar basis) in the boil-off process. Comment on the 
reasonableness of the proposal.
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528 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

  Suggestion: Designate the system water(1)/organic(2) and do unsteady-state molar 
balances for water and for water + organic. State all assumptions.

  Data:   T   n  2      = normal boiling point of organic = 130°C.
     γ 1  ∞  = 5.8  for water in the liquid phase at 130°C.

 13.58. Binary VLE data are commonly measured at constant T or at constant P. Isothermal data 
are much preferred for determination of a correlation for GE for the liquid phase. Why?

 13.59. Consider the following model for GE∕RT of a binary mixture:

    
 G   E 
 _______  x  1    x  2   RT

   =   ( x  1    A 21  k   +  x  2    A 12  k  )    1∕k   

  This equation in fact represents a family of two-parameter expressions for GE∕RT; 
specification of k leaves A12 and A21 as the free parameters.

 (a) Find general expressions for ln γ1 and ln γ2, for any k.
 (b) Show that  ln   γ 1  ∞  =  A  12   and ln  γ 2  ∞  =  A  21   , for any k.
 (c) Specialize the model to the cases where k equals −∞, −1, 0, +1, and +∞. Two of 

the cases should generate familiar results. What are they?

 13.60. A breathalyzer measures volume-% ethanol in gases exhaled from the lungs. Calibra-
tion relates it to volume-% ethanol in the bloodstream. Use VLE concepts to develop 
an approximate relation between the two quantities. Numerous assumptions are 
required; state and justify them where possible.

 13.61. Table 13.10 gives values of parameters for the Wilson equation for the acetone(1)/
methanol(2) system. Estimate values of  ln   γ 1  ∞  and  ln γ 2  ∞   at 50°C. Compare with the 
values suggested by Fig. 13.4(b). Repeat the exercise with the NRTL equation.

 13.62. For a binary system derive the expression for HE implied by the Wilson equation for 
GE∕RT. Show that the implied excess heat capacity   C P  E   is necessarily positive. Recall 
that the Wilson parameters depend on T, in accord with Eq. (13.53).

 13.63. A single P-x1-y1 data point is available for a binary system at 25°C. Estimate from the data:

 (a) The total pressure and vapor-phase composition at 25°C for an equimolar liquid 
mixture.

 (b) Whether azeotropy is likely at 25°C.

  Data: At 25°C,   P 1  sat  = 183.4 and   P 2  sat  = 96.7 kPa
    For x1 = 0.253, y1 = 0.456 and P = 139.1 kPa

 13.64. A single P–x1 data point is available for a binary system at 35°C. Estimate from the data:

 (a) The corresponding value of y1.
 (b) The total pressure at 35°C for an equimolar liquid mixture. 
 (c) Whether azeotropy is likely at 35°C.
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13.10. Problems 529

  Data: At 25°C,   P 1  sat  = 120.2 and  P 2  sat  = 73.9 kPa
    For x1 = 0.389, P = 108.6 kPa

 13.65. The excess Gibbs energy for the system chloroform(1)/ethanol(2) at 55°C is well rep-
resented by the Margules equation, GE∕RT = (1.42 x1 + 0.59 x2)x1x2. The vapor pres-
sures of chloroform and ethanol at 55°C are   P 1  sat  = 82.37 and  P 2  sat  = 37.31 kPa  .

 (a) Assuming the validity of Eq. (13.19), make BUBL P calculations at 55°C for  
liquid-phase mole fractions of 0.25, 0.50, and 0.75.

 (b) For comparison, repeat the calculations using Eqs. (13.13) and (13.14) with virial 
coefficients: B11 = −963, B22 = −1523, and B12 = 52 cm3·mol−1.

 13.66. Find expressions for    ϕ ˆ    1    and    ϕ ˆ    2    for a binary gas mixture described by Eq. (3.38). The 
mixing rule for B is given by Eq. (10.62). The mixing rule for C is given by the general 
equation:

  C =  ∑ 
i

      ∑ 
j

      ∑ 
k

      y  i    y  j    y  k    C  ijk    

  where Cs with the same subscripts, regardless of order, are equal. For a binary mix-
ture, this becomes:

  C =  y 1  3   C  111   + 3  y 1  2   y  2    C  112   + 3  y  1    y 2  2   C  122   +  y 2  3   C  222   

 13.67. A system formed of methane(1) and a light oil(2) at 200 K and 30 bar consists of 
a vapor phase containing 95 mol-% methane and a liquid phase containing oil and 
dissolved methane. The fugacity of the methane is given by Henry’s law, and at the 
temperature of interest Henry’s constant is 1 = 200 bar. Stating any assumptions, 
estimate the equilibrium mole fraction of methane in the liquid phase. The second 
virial coefficient of pure methane at 200 K is −105 cm3·mol−1.

 13.68. Use Eq. (13.13) to reduce one of the following isothermal data sets, and compare the 
result with that obtained by application of Eq. (13.19). Recall that reduction means 
developing a numerical expression for GE∕RT as a function of composition.

 (a) Methylethylketone(1)/toluene(2) at 50°C: Table 13.1.
 (b) Acetone(1)/methanol(2) at 55°C: Prob. 13.34.
 (c) Methyl tert-butyl ether(1)/dichloromethane(2) at 35°C: Prob. 13.37. 
 (d) Acetonitrile(1)/benzene(2) at 45°C: Prob. 13.40.

  Second-virial-coefficient data are as follows:

Part (a) Part (b) Part (c) Part (d)

B11∕cm3·mol−1 −1840 −1440 −2060 −4500
B12∕cm3·mol−1 −1800 −1150  −860 −1300
B22∕cm3·mol−1 −1150 −1040  −790 −1000
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530 CHAPTER 13. Thermodynamic Formulations for Vapor/Liquid Equilibrium

 13.69. For one of the following substances, determine Psat∕bar from the Redlich/Kwong 
equation at two temperatures: T = Tn (the normal boiling point), and T = 0.85Tc. For 
the second temperature, compare your result with a value from the literature (e.g., 
Perry’s Chemical Engineers’ Handbook). Discuss your results.

 (a) Acetylene; (b) Argon; (c) Benzene; (d) n-Butane; (e) Carbon monoxide;
 (f ) n-Decane; (g) Ethylene; (h) n-Heptane; (i) Methane; ( j) Nitrogen

 13.70. Work Prob. 13.69 for one of the following: (a) The Soave/Redlich/Kwong equation; 
(b) the Peng/Robinson equation.

 13.71. Departures from Raoult’s law are primarily from liquid-phase nonidealities (γi ≠ 1).  
But vapor-phase nonidealities (   ϕ ˆ    i    ≠ 1) also contribute. Consider the special case 
where the liquid phase is an ideal solution, and the vapor phase a nonideal gas mixture 
described by Eq. (3.36). Show that departures from Raoult’s law at constant tempera-
ture are likely to be negative. State clearly any assumptions and approximations.

 13.72. Determine a numerical value for the acentric factor ω implied by:
 (a) The van der Waals equation.
 (b) The Redlich/Kwong equation.

 13.73. The relative volatility α12 is commonly used in applications involving binary VLE. In 
particular (see Ex. 13.1), it serves as a basis for assessing the possibility of binary azeo-
tropy. (a) Develop an expression for α12 based on Eqs. (13.13) and (13.14). (b) Specialize 
the expression to the composition limits x1 = y1 = 0 and x1 = y1 = 1. Compare with 
the result obtained from modified Raoult’s law, Eq. (13.19). The difference between the 
results reflects the effects of vapor-phase nonidealities. (c) Further specialize the results 
of part (b) to the case where the vapor phase is an ideal solution of real gases.

 13.74. Although isothermal VLE data are preferred for extraction of activity coefficients, a 
large body of good isobaric data exists in the literature. For a binary isobaric T-x1-y1 
data set, one can extract point values of γi via Eq. (13.13):

   γ  i   (x,  T  k  )  =   
 y  i    Φ  i   ( T  k  , P, y) P

  ____________ 
 x  i    P i  sat  ( T  k  ) 

    

  Here, the variable list for γi recognizes a primary dependence on x and T; pressure 
dependence is normally negligible. The notation Tk emphasizes that temperature var-
ies with data point across the composition range, and the calculated activity coeffi-
cients are at different temperatures. However, the usual goal of VLE data reduction 
and correlation is to develop an appropriate expression for GE∕RT at a single tempera-
ture T. A procedure is needed to correct each activity coefficient to such a T chosen 
near the average for the data set. If a correlation for HE(x) is available at or near this T, 
show that the values of γi corrected to T can be estimated by the expression:

  γ  i   (x, T )  =  γ  i   (x,  T  k  )  exp  [  
−   H ¯   i  E 

 _____ 
RT

   (  
T

 ___  T  k  
   − 1) ]   
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13.10. Problems 531

 13.75. What are the relative contributions of the various terms in the gamma/phi expression 
for VLE? One way to address the question is through calculation of the activity 
 coefficients for a single binary VLE data point via Eq. (13.19): 

   γ  i   =     
 y  i   P

 _____  x  i    P  
i
  sat    

⏟

   

(A)

    ·     
  ϕ ˆ    i   ____ 

 ϕ  
i
  sat 

   

⏟

   

(B)

    ·     
 f  i  sat 

 ___  f  i  
   

⏟
   

 (  C )  

     

  Term (A) is the value that would follow from modified Raoult’s law; term (B) accounts 
for vapor-phase nonidealities; term (C) is the Poynting factor [see Eq. (10.44)]. Use 
the following single-point data for the butanenitrile(1)/benzene(2) system at 318.15 K 
to evaluate all terms for i = 1 and i = 2. Discuss the results.

  VLE data: P = 0.20941 bar, x1 = 0.4819, y1 = 0.1813.

  

Ancillary data:

   
 P 1  sat  = 0 . 07287 and  P 2  sat  = 0.29871 bar

    B11 = −7993, B22 = −1247, B12 = −2089 cm3·mol−1      
 V 1  l   = 90,  V 2  l   = 92 cm3·mol−1

   

 13.76. Generate P-x1-y1 diagrams at 100°C for one of the systems identified below. Base 
 activity coefficients on the Wilson equation, Eqs. (13.45) to (13.47). Use two  procedures: 
(i) modified Raoult’s law, Eq. (13.19), and (ii) the gamma/phi approach, Eq. (13.13), 
with Φi given by Eq. (13.14). Plot the results for both procedures on the same graph. 
Compare and discuss them.

Data sources: For   P i  sat   use Table B.2. For vapor-phase nonidealities, use material from 
Chap. 3; assume that the vapor phase is an (approximately) ideal solution. Estimated 
parameters for the Wilson equation are given for each system.

 (a) Benzene(1)/carbon tetrachloride(2): Λ12 = 1.0372, Λ21 = 0.8637
 (b) Benzene(1)/cyclohexane(2): Λ12 = 1.0773, Λ21 = 0.7100
 (c) Benzene(1)/n-heptane(2): Λ12 = 1.2908, Λ21 = 0.5011
 (d) Benzene(1)/n-hexane(2): Λ12 = 1.3684, Λ21 = 0.4530
 (e) Carbon tetrachloride(1)/cyclohexane(2): Λ12 = 1.1619, Λ21 = 0.7757
 ( f ) Carbon tetrachloride(1)/n-heptane(2): Λ12 = 1.5410, Λ21 = 0.5197
 (g) Carbon tetrachloride(1)/n-hexane(2): Λ12 = 1.2839, Λ21 = 0.6011
 (h) Cyclohexane(1)/n-heptane(2): Λ12 = 1.2996, Λ21 = 0.7046
 (i) Cyclohexane(1)/n-hexane(2): Λ12 = 1.4187, Λ21 = 0.5901

 13.77. Construct plots like those in Fig. 13.8 using activity coefficients predicted by UNIFAC, 
and compare the result to the data of Table 13.5. You may use the pure component 
vapor pressures from Table 13.5 but should not use any other data.
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Chapter 14

Chemical-Reaction Equilibria

The transformation of raw materials into products of greater value by means of chemical reac-
tion is a major industry, and a vast array of commercial products is obtained by chemical 
synthesis. Sulfuric acid, ammonia, ethylene, propylene, phosphoric acid, chlorine, nitric acid, 
urea, benzene, methanol, ethanol, and ethylene glycol are examples of chemicals produced at 
scales of many billions of kg per year worldwide. These in turn are used in the large-scale 
manufacture of fibers, paints, detergents, plastics, rubber, paper, and fertilizers, to name a 
few. Other products produced by chemical reaction range from pharmaceuticals to the 
 numerous inorganic materials that undergird the microelectronics and telecommunications 
industries. While these are smaller in production volume than the commodity chemicals we 
have mentioned, their economic and societal impacts are also enormous. Clearly, the chemical 
engineer must be familiar with chemical reactor design, analysis, and operation.

Both the rate and the equilibrium conversion of a chemical reaction depend on the tem-
perature, pressure, and composition of reactants. Often, a reasonable reaction rate is achieved 
only with a suitable catalyst. For example, the rate of oxidation of sulfur dioxide to sulfur tri-
oxide, carried out with a vanadium pentoxide catalyst, becomes appreciable at about 300°C 
and increases at higher temperatures. On the basis of rate alone, one would operate the reactor 
at the highest practical temperature. However, the equilibrium conversion of sulfur dioxide to 
sulfur trioxide falls as temperature rises, decreasing from about 90% at 520°C to about 50% 
at  680°C. These values represent maximum possible conversions regardless of catalyst or 
 reaction rate. Clearly, both equilibrium and rate must be considered in the application of chem-
ical reactions for commercial purposes. Although reaction rates are not susceptible to thermo-
dynamic treatment, reaction equilibria are. Therefore, the central goal of this chapter is to 
relate the equilibrium composition of reacting systems to their temperature, pressure, and 
 initial composition.

Many industrial reactions are not carried to equilibrium; reactor design is often based on 
reaction rate or on other considerations such as rates of heat and mass transfer. However, the 
choice of operating conditions is still often influenced by equilibrium considerations. More-
over, the equilibrium state provides a reference against which to measure improvements in a 
process. Similarly, chemical equilibrium considerations often determine whether investigation 
of a new process is worthwhile. For example, if thermodynamic analysis indicates that a yield 
of only 20% is possible at equilibrium and if a 50% yield is necessary for a process to be 
 economically attractive, there is no purpose in proceeding with further analysis. On the other 
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14.1. The Reaction Coordinate 533

hand, if the equilibrium yield is 80%, further studies of reaction rates and other aspects of the 
process may be warranted.

Thus, our goals in this chapter are to:

 ∙ Relate the composition of a reacting mixture to a single reaction coordinate variable for 
each reaction

 ∙ Introduce criteria for chemical reaction equilibrium
 ∙ Define the equilibrium constant for a chemical reaction and relate it to a standard change 

in Gibbs energy
 ∙ Compute values of equilibrium constants at arbitrary temperature
 ∙ Relate the composition of a reacting mixture to equilibrium constants of reactions
 ∙ Compute equilibrium compositions of mixtures in which a single reaction takes place
 ∙ Reconsider the phase rule in the context of reacting systems
 ∙ Treat multiple reaction equilibrium by both the method of equilibrium constants and by 

total Gibbs energy minimization1

 ∙ Introduce the fuel cell as an example of equilibrium under external constraints (applied 
voltage) as well as an important emerging technology

14.1 THE REACTION COORDINATE

The general chemical reaction, as written in Sec. 4.6, is:

    |    ν  1   |     A  1   +   |    ν  2     |     A  2   + · · · →   |    ν  3     |     A  3   +   |    ν  4     |     A  4   +  · · ·    (14.1)

where ∣ νi ∣ is a stoichiometric coefficient and Ai represents a chemical formula. The symbol νi 
itself is called a stoichiometric number, and by the sign convention of Sec. 4.6 it is:

 positive (+) for a product  and  negative (−) for a reactant 

Thus for the reaction,      CH  4   +  H  2  O → CO + 3 H  2   

the stoichiometric numbers are:

  ν   CH  4     = −1   ν   H  2  O   = −1   ν  CO   = 1   ν   H  2     = 3 

The stoichiometric number for a species that does not participate in the reaction, that is, an 
inert species, is zero.

As the reaction represented by Eq. (14.1) progresses, the changes in the numbers of 
moles of species present are in direct proportion to the stoichiometric numbers. Thus for the 

1For a comprehensive treatment of chemical-reaction equilibria, see W. R. Smith and R. W. Missen, Chemical 
Reaction Equilibrium Analysis, John Wiley & Sons, New York, 1982.
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534 CHAPTER 14. Chemical-Reaction Equilibria

preceding reaction, if 0.5 mol of CH4 disappears by reaction, 0.5 mol of H2O also disappears; 
simultaneously 0.5 mol of CO and 1.5 mol of H2 are formed. Applied to a differential amount 
of reaction, this principle provides the equations:

   
d n  2  

 ____  ν  2     =   
d n  1  

 ____  ν  1         
d n  3  

 ____  ν  3     =   
d n  1  

 ____  ν  1       etc. 

The list continues to include all species. Comparison of these equations yields:

   
d n  1  

 ____  ν  1     =   
d n  2  

 ____  ν  2     =   
d n  3  

 ____  ν  3     =   
d n  4  

 ____  ν  4     =  · · ·  

All terms being equal, they can be identified collectively by a single quantity representing an 
amount of reaction. Thus dε, a single variable representing the extent to which the reaction has 
proceeded, is defined by the equation:

     
d n  1  

 _  ν  1     =   
d n  2  

 _  ν  2     =   
d n  3  

 _  ν  3     =   
d n  4  

 _  ν  4     = · · · ≡ dε   (14.2)

The general relation connecting the differential change dni with dε is therefore:

   d n  i   =  ν  i   dε  (i = 1, 2, . . . , N )   (14.3)

This new variable ε, called the reaction coordinate, characterizes the extent or degree to 
which a reaction has taken place.2 Only changes in ε with respect to changes in a mole number 
are defined by Eq. (14.3). The definition of ε itself depends for a specific application on set-
ting it equal to zero for the initial state of the system prior to reaction. Thus, integration of  
Eq. (14.3) from an initial unreacted state where ε = 0 and ni =   n   i  0      to a state reached after an 
arbitrary amount of reaction gives:

  ∫ 
 n   i  0    

  
 n  i  

   d   n  i   =  ν  i   ∫ 
0
  
ε

   d  ε 

or   n  i   =  n   i  0     +  ν  i    ε   (i = 1, 2, . . . , N )  (14.4)

Summation over all species yields:

 n =  ∑ 
i

      n  i   =  ∑ 
i

      n   i  0     + ε  ∑ 
i

      ν  i   

or  n =  n  0   + νε  

where  n ≡  ∑ 
i

      n  i      n  0   ≡  ∑ 
i

      n   i  0       ν ≡  ∑ 
i

      ν  i    

2The reaction coordinate ε has been given various names, including degree of advancement, degree of reaction, 
extent of reaction, and progress variable.
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14.1. The Reaction Coordinate 535

Thus the mole fractions yi of the species present are related to ε by:

    y  i   =   
 n  i   _ 
n
   =   

 n   i  0     +  ν  i  ε
 _  n  0   + νε
     (14.5)

Application of this equation is illustrated in the following examples.

Example 14.1
The following reaction occurs in a system initially consisting of 2 mol CH4, 1 mol H2O, 
1 mol CO, and 4 mol H2:

  CH  4   +  H  2  O → CO + 3 H  2   

Determine expressions for the mole fractions yi as functions of ε.

Solution 14.1
For the reaction,    ν =  ∑ 

i

      ν  i   = −1 − 1 + 1 + 3 = 2 

For the given numbers of moles of species initially present,

  n  0   =  ∑ 
i

      n   i  0     = 2 + 1 + 1 + 4 = 8 

Equation (14.5) now yields:

  
 y   CH  4     =   

2 − ε
 _____ 8 + 2ε
  
  

 
  

 
  

 y   H  2  O   =   
1 − ε

 _____ 8 + 2ε
  
    

     y  CO   =   
1 + ε

 _____ 8 + 2ε
  
  

 
  

 
  

      y   H  2     =   
4 + 3ε

 _____ 8 + 2ε
  
   

Example 14.2
Consider a vessel that initially contains only n0 mol of water vapor. If decomposition 
occurs according to the reaction

  H  2  O →  H  2   +   1 _ 2    O  2   

find expressions that relate the number of moles and the mole fraction of each chemi-
cal species to the reaction coordinate ε.
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536 CHAPTER 14. Chemical-Reaction Equilibria

Solution 14.2
For the given reaction,  ν = −1 + 1 +   1 _ 2   =   1 _ 2   . Application of Eqs. (14.4) and (14.5) 
yields:

  

 n   H  2  O   =  n  0   − ε

  

 

  

 y   H  2   O   =   
 n  0   − ε

 ______ 
 n  0   +   1 _ 2   ε

  

        n   H  2     = ε         y   H  2     =   
ε
 ______ 

 n  0   +   1 _ 2   ε
      

    n   O  2     =   1 _ 2   ε

  

 

  

   y   O  2     =   
  1 _ 2   ε
 ______ 

 n  0   +   1 _ 2   ε
  

   

The fractional decomposition of water vapor is:

   
 n  0   −  n   H  2   O  

 ________  n  0     =   
 n  0   −  (    n  0   − ε )  

  _________  n  0     =   
ε
 ___  n  0     

Thus when n0 = 1, ε is directly related to the fractional decomposition of the  
water vapor.

The νi are pure numbers without units; Eq. (14.3) therefore requires ε to be expressed in 
moles. This leads to the concept of a mole of reaction, meaning a change in ε of one mole. 
When Δε = 1 mol, the reaction proceeds to such an extent that the change in mole number of 
each reactant and product is equal to its stoichiometric number.

Multireaction Stoichiometry
When two or more independent reactions proceed simultaneously, a second subscript, here j, 
serves as the reaction index. A separate reaction coordinate εj then applies to each reaction. 
The stoichiometric numbers are doubly subscripted to identify their association with both a 
species and a reaction. Thus νi, j designates the stoichiometric number of species i in reaction j. 
Because the number of moles of a species ni may change due to several reactions, the general 
equation analogous to Eq. (14.3) includes a sum:

 d n  i   =  ∑ 
j

        ν  i, j   d ε  j     (i = 1, 2, . . . , N ) 

Integration from ni =   n   i  0      and εj = 0 to arbitrary ni and εj gives:

   n  i   =  n   i  0     +  ∑ 
j

      ν  i, j    ε  j     (i = 1, 2, . . . , N )  (14.6)

Summing over all species yields:

 n =  ∑ 
i

      n   i  0     +  ∑ 
i

      ∑ 
j

      ν  i, j    ε  j   =  n  0   +  ∑ 
j

      (   ∑ 
i

      ν  i, j   )    ε  j   

The definition of a total stoichiometric number ν (≡ Σi νi) for a single reaction has its counter-
part here in the definition:

  ν  j   ≡  ∑ 
i

      ν  i, j     which implies   n =  n  0   +  ∑ 
j

      ν  j    ε  j   
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Combination of this last equation with Eq. (14.6) gives the general equation for mole fraction:

    y  i   =   
 n   i  0     +  ∑ 

j

      ν  i, j    ε  j  
 ___________  n  0   +  ∑ 

j

      ν  j    ε  j  
     (i = 1, 2, . . . , N )   (14.7)

Example 14.3
Consider a system in which the following reactions occur:

   
 CH  4   +  H  2  O → CO + 3 H  2       (1)

    
 CH  4   + 2 H  2  O →  CO  2   + 4 H  2   (2)

  

where the numbers (1) and (2) indicate the value of j, the reaction index. If 2 mol CH4 and 
3 mol H2O are initially present, determine expressions for the yi as functions of ε1 and ε2.

Solution 14.3
The stoichiometric numbers νi,   j can be arrayed as follows:

i = CH4 H2O CO CO2 H2

j νj

1 −1 −1 1 0 3 2
2 −1 −2 0 1 4 2

Here, we have labeled the columns with the actual species names, rather than 
numbers, understanding that CH4 is species 1, H2O is species 2, and so on. 
 Application of Eq. (14.7) now gives:

  
 
  y   CH  4     =   

2 −  ε  1   −  ε  2  
 __________  5 + 2 ε  1   + 2 ε  2    

  
    y  CO   =   

 ε  1  
 __________  5 + 2 ε  1   + 2 ε  2    

      

 y   H  2  O   =   
3 −  ε  1   − 2  ε  2  

  __________  5 + 2 ε  1   + 2 ε  2    

  

 y   CO  2     =   
 ε  2  
 __________  5 + 2 ε  1   + 2 ε  2    

 
    

 y   H  2     =   
3 ε  1   + 4 ε  2  

 __________  5 + 2 ε  1   + 2 ε  2    

   

The composition of the system is a function of two independent variables  
ε1 and ε2.
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538 CHAPTER 14. Chemical-Reaction Equilibria

14.2  APPLICATION OF EQUILIBRIUM CRITERIA 
TO CHEMICAL REACTIONS

In Sec. 12.4 we proved that the total Gibbs energy of a closed system at constant T and P must 
decrease during an irreversible process and that the condition for equilibrium is reached when 
Gt attains its minimum value. At this equilibrium state,

   (d G   t  )  T, P   = 0  (12.3)

Thus if a mixture of chemical species is not in chemical equilibrium, any reaction that occurs 
at constant T and P must decrease the total Gibbs energy of the system. The significance of 
this for a single chemical reaction is illustrated in Fig. 14.1, which shows a schematic diagram 
of Gt vs. ε, the reaction coordinate. Because ε is the single variable that characterizes the prog-
ress of the reaction, and therefore the composition of the system, the total Gibbs energy at 
constant T and P is determined by ε. The arrows along the curve in Fig. 14.1 indicate the 
directions of changes in (Gt)T, P that are possible via reaction. The reaction coordinate has its 
equilibrium value εe at the minimum of the curve. The meaning of Eq. (12.3) is that differen-
tial displacements of the chemical reaction can occur at the equilibrium state without causing 
changes in the total Gibbs energy of the system.

Figure 14.1 indicates the two distinctive features of the equilibrium state for given tem-
perature and pressure:

 ∙ The total Gibbs energy Gt is a minimum.
 ∙ Its differential is zero.

Each of these may serve as a criterion of equilibrium. Thus, we may write an expression for Gt 
as a function of ε and seek the value of ε that minimizes Gt, or we may differentiate the expres-
sion, equate it to zero, and solve for ε. The latter procedure is almost always used for single 
reactions (Fig. 14.1), and it leads to the method of equilibrium constants, as described in the 

Figure 14.1: Schematic plot of the total  
Gibbs energy as a function of the reaction 
coordinate.

Constant T and P

Gt

εe

(dGt)T,P = 0

ε
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14.3. The Standard Gibbs-Energy Change and the  Equilibrium Constant 539

following sections. Although the method of equilibrium constants can also be applied to mul-
tiple reactions, direct minimization of Gt is often more convenient. The direct minimization 
approach is considered in Sec. 14.9.

Although the equilibrium expressions are developed for closed systems at constant T 
and P, they are not restricted in application to systems that are actually closed and reach equi-
librium states along paths of constant T and P. Once an equilibrium state is reached, no further 
changes occur, and the system continues to exist in this state at fixed T and P. How this state 
was actually attained does not matter. Once it is known that an equilibrium state exists at given 
T and P, the criteria apply.

14.3  THE STANDARD GIBBS-ENERGY CHANGE 
AND THE  EQUILIBRIUM CONSTANT

The next step in applying the criterion of equilibrium to chemical reactions is to relate the 
Gibbs energy, which is minimized at equilibrium, to the reaction coordinate. Equation (10.2), 
the fundamental property relation for single-phase systems, provides an expression for the 
total differential of the Gibbs energy:

 d(nG) = (nV)dP − (nS)dT +  ∑ 
i

      μ  i     d n  i   (10.2)

If changes in the mole numbers ni occur as the result of a single chemical reaction in a closed 
system, then by Eq. (14.3) each dni may be replaced by the product νi dε. Equation (10.2) then 
becomes:
 d(nG) = (nV)dP − (nS)dT +  ∑ 

i

      ν  i    μ  i   dε 

Because nG is a state function, the right side of this equation is an exact differential expres-
sion; thus,

   ∑ 
i

      ν  i    μ  i   =   [    
∂ (nG  )

 ______ ∂ ε   ]    
T, P

   =   [    
∂ ( G   t    )

 _____ ∂ ε   ]    
T, P

    

Thus the quantity   ∑  i     ν  i    μ  i    represents, in general, the rate of change of total Gibbs energy of the 
system with respect to the reaction coordinate at constant T and P. Figure 14.1 shows that this 
quantity is zero at the equilibrium state. A criterion of chemical-reaction equilibrium is 
therefore:

    ∑ 
i

      ν  i    μ  i   = 0   (14.8)

Our next aim will be to express this criterion in terms of quantities that are more conve-
nient than the chemical potential for practical application in determining the equilibrium 
 composition of the system. We will first change from chemical potential to fugacity as our 
composition-dependent quantity in this relationship. Recall the definition of the fugacity of a 
species in solution:

   μ  i   =  Γ  i    (T  )  + RT ln    f ̂  i  (10.46)
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540 CHAPTER 14. Chemical-Reaction Equilibria

In addition, Eq. (10.31) can be written for pure species i in its standard state3 at the same 
temperature:

  G  i  °  =  Γ  i   (T  )  + RT ln     f  i  °  

The difference between these two equations is:

   μ  i   −  G  i  °  = RT ln   
  f ̂    i   __  f  i  ° 

    (14.9)

Combining Eq. (14.8) with Eq. (14.9) to eliminate µi gives for the equilibrium state of a chem-
ical reaction:

  ∑ 
i

      ν  i   [   G  i  °  + RT   ln (     f ̂    i     ∕    f  i  °  )   ]   = 0 

or   ∑ 
i

      ν  i    G  i  °  + RT    ∑ 
i

     ln (    f ̂    i     ∕    f  i  ° )    ν  i    = 0  

or  ln  ∏ 
i

     (     f ̂    i     ∕    f  i  ° )    ν  i    =   
− ∑ 

i

      ν  i    G  i  ° 
 ________ 

RT
    

where   ∏ 
i
      signifies the product over all species i. In exponential form, this equation becomes:

    ∏ 
i

     (    f ̂    i     ∕    f  i  °  )    ν  i    = K    (14.10)

where the definition of K and its logarithm are given by:

 K ≡ exp   (     
−Δ G   ° 

 ______ 
RT

   )    (14.11a)  ln  K =   
−Δ G   ° 

 ______ 
RT

   (14.11b)

Also by definition,  Δ G   °  ≡  ∑ 
i

      ν  i    G  i  °   (14.12)

Because   G  i  °   is a property of pure species i in its standard state at fixed pressure, it depends 
only on temperature. Thus, Eq. (14.12) implies that ΔG°, and hence K, are also functions only 
of temperature.

Despite its dependence on temperature, K is called the equilibrium con-
stant for the reaction; ΔG° is called the standard Gibbs-energy change of 
reaction.

The fugacity ratios in Eq. (14.10) provide the connection between the equilibrium state 
of interest and the standard states of the individual species, for which data are presumed to be 
available, as discussed in Sec. 14.5. The standard states are arbitrary, but they must always  
be at the equilibrium temperature T. The standard states selected need not be the same for all 
species taking part in a reaction. However, for a particular species the standard state repre-
sented by   G  i  °   must be the same state as for the fugacity of that species,   f  i  °  .

3Standard states are introduced and discussed in Sec. 4.3.
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14.4. Effect of Temperature on the Equilibrium Constant 541

The function  Δ G   °  ≡  ∑  i        ν  i    G  i  °   in Eq. (14.12) is the difference between the Gibbs ener-
gies of the products and reactants (weighted by their stoichiometric coefficients) when each is 
in its standard state as a pure substance at the standard-state pressure, but at the system tem-
perature. Thus the value of ΔG° is fixed for a given reaction once the temperature is estab-
lished, and it is independent of pressure and composition. Other standard property changes of 
reaction are similarly defined. Thus, for the general property M:

  Δ M   °  ≡  ∑ 
i

         ν  i    M  i  °   

In accord with this, ΔH ° is defined by Eq. (4.15) and  Δ C  P   °   by Eq. (4.17). These quantities are 
functions only of temperature for a given reaction, and they are related to one another by equa-
tions analogous to property relations for pure species.

For example, the relation between the standard heat of reaction and the standard 
Gibbs-energy change of reaction can be developed from Eq. (6.39) written for species i in its 
standard state:

   H  i  °  = −R T   2    
d( G  i  °  ∕ RT   )

 _________ 
dT

    

Total derivatives are appropriate here because the properties in the standard state are functions 
only of temperature. Multiplication of both sides of this equation by νi and summation over all 
species gives:

   ∑ 
i

      ν  i    H  i  °  = −R  T   2    
d ( ∑ i       ν  i    G  i  °  ∕ RT) 

  _____________ 
dT

    

In view of the definitions of Eqs. (4.15) and (14.12), this can be written:

  Δ H   °  = −R T   2    d (  Δ G   ° ∕RT )   __________ 
dT

    (14.13)

14.4  EFFECT OF TEMPERATURE ON THE 
EQUILIBRIUM CONSTANT

Because the standard-state temperature is that of the equilibrium mixture, the standard prop-
erty changes of reaction, such as ΔG° and ΔH°, vary with temperature. The dependence of 
ΔG° on T is given by Eq. (14.13), which can be rewritten:

    
d (  Δ G   °  ∕RT )  

 ___________ 
dT

   =   
−Δ H   ° 

 ______ 
R T   2     

In terms of the equilibrium constant, as evident from Eq. (14.11b), this becomes:

     d ln K
 _____ 

dT
   =   Δ H   °  ____ 

R T   2 
     (14.14)

Equation (14.14) describes the effect of temperature on the equilibrium constant, and hence 
on  the equilibrium composition. If ΔH° is negative, i.e., if the reaction is exothermic, the 
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542 CHAPTER 14. Chemical-Reaction Equilibria

equilibrium constant decreases as the temperature increases. Conversely, K increases with T 
for an endothermic reaction.

If ΔH°, the standard enthalpy change (heat) of reaction, is assumed to be independent of 
T, integration of Eq. (14.14) from a particular temperature T  ′ to an arbitrary temperature T 
leads to the simple result:

  ln   
K

 ___ 
 K   ′    = −    Δ H   °  ____ 

R
    (     

1
 _ 

T
   −   

1
 __ 

 T   ′    )     (14.15)

This approximate equation implies that a plot of ln K vs. the reciprocal of absolute temperature 
is a straight line. Figure 14.2, a plot of ln K vs. 1/T for several common reactions, illustrates 
this near linearity. Thus, Eq. (14.15) provides a reasonably accurate relation for the interpola-
tion and extrapolation of equilibrium-constant data.

The rigorous development of the effect of temperature on the equilibrium constant is 
based on the definition of the Gibbs energy, written for a chemical species in its standard state:

   G  i  °  =  H  i  °  − T   S  i  °   

Multiplication by νi and summation over all species gives:

   ∑ 
i

       ν  i    G  i  °  =  ∑ 
i

       ν  i    H  i  °  − T  ∑ 
i

       ν  i    S  i  °   

Employing the definition of a standard property change of reaction, this is written as:

  Δ G   °  = Δ H   °  − TΔ S   °   (14.16)

The standard heat of reaction is related to temperature as shown in Chap. 4:

  Δ H   °  = Δ H  0  °   + R  ∫ 
 T  0  

  
T

     
Δ C  P  °  

 _____ 
R

     dT  (4.19)

The temperature dependence of the standard entropy change of reaction is developed similarly. 
Equation (6.22) is written for the standard-state entropy of species i at the constant 
 standard-state pressure P°:

 d S  i  °  =  C   P  i     °     
dT

 ___ 
T

   

Multiplying by νi, summing over all species, and invoking the definition of a standard property 
change of reaction yields:

  dΔ S   °  = Δ C  P   °      
dT

 ___ 
T

    

Integration gives:

  Δ S   °  = Δ S  0  °   + R ∫ 
 T  0  

  
T

     
Δ C  P   ° 

 _____ 
R

       dT
 ___ 

T
    (14.17)

where ΔS° and  Δ S  0  °    are standard entropy changes of reaction at temperature T and at reference 
temperature T0, respectively. Equations (14.16), (4.19), and (14.17) are combined to yield:

  Δ G   °  = Δ H  0  °   + R ∫ 
 T  0  

  
T

     
Δ C  P   ° 

 _____ 
R

     dT − TΔ S  0  °   − RT ∫ 
 T  0  

  
T

     
Δ C  P   ° 

 _____ 
R

       dT
 ___ 

T
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Figure 14.2: Equilibrium constants as a function of temperature.
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We can eliminate  Δ S  0  °    from this equation through the relationship: 

  Δ S  0  °   =   
Δ H  0  °   − Δ G  0  °  

 ___________  T  0      

Doing so produces the following:

  Δ G   °  = Δ H  0  °   −   
T

 ___  T  0    (Δ H  0  °   − Δ G  0  °  ) + R ∫ 
 T  0  

  
T

     
Δ C  P   ° 

 _____ 
R

     dT − RT ∫ 
 T  0  

  
T

     
Δ C  P   ° 

 _____ 
R

       dT
 ___ 

T
    

Finally, division by RT yields:

    
Δ G   ° 

 ____ 
RT

   =   
Δ G  0  °   − Δ H  0  °  

 ___________ 
R T  0     +   

Δ H  0  °  
 _____ 

RT
   +   

1
 __ 

T
    ∫ 

 T  0  
  
T

     
Δ C  P   ° 

 _____ 
R

     dT −  ∫ 
 T  0  

  
T

     
Δ C  P   ° 

 _____ 
R

       dT
 ___ 

T
    (14.18)

Recall that by Eq. (14.11b), ln K = −ΔG°∕RT.
When the temperature dependence of the heat capacity of each species is given by  

Eq. (4.4), the first integral on the right side of Eq. (14.18) is given by Eq. (4.19), represented 
for computational purposes by:

   ∫ 
 T  0  

  
T

     
Δ C  P   ° 

 _____ 
R

     dT = IDCPH(T0, T;DA, DB, DC, DD)  

where D denotes Δ. Similarly, the second integral is given by the analog of Eq. (5.11):

   ∫ 
 T  0  

  
T

     
Δ C  P   ° 

 _____ 
R

       dT
 ___ 

T
   = ΔA ln   

T
 ___  T  0     +   [  ΔB +   (  ΔC +   

ΔD
 _____ 

 T  0  2   T   2 
   )     (     

T +  T  0  
 _ 2   )    ]    (T −  T  0  )   (14.19)

The integral is evaluated by a function of exactly the same form as given by Eq. (5.11), and the 
same computer program therefore serves for evaluation of either integral. The only difference 
is in the name of the function, here: IDCPS(T0,T;DA,DB,DC,DD). By definition,

   ∫ 
 T  0  

  
T

     
Δ C  P   ° 

 _____ 
R

       dT
 ___ 

T
   = IDCPS(T0, T; DA, DB, DC, DD)  

Thus ΔG°∕RT (= −ln K) as given by Eq. (14.18) is readily calculated at any temperature 
from the standard heat of reaction and the standard Gibbs-energy change of reaction at a refer-
ence temperature (usually 298.15 K), and from two functions that can be evaluated by stan-
dard computational procedures.

The preceding equations can be reorganized to factor K into three terms, each represent-
ing a basic contribution to its value:

  K =  K  0    K  1    K  2    (14.20)

The first factor K0 represents the equilibrium constant at reference temperature T0:

   K  0   ≡ exp  (     
−Δ G  0  °  

 ______ 
R T  0     )     (14.21)
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The second factor K1 is a multiplier that accounts for the major effect of temperature, such that 
the product K0 K1 is the equilibrium constant at temperature T when the heat of reaction is 
assumed to be independent of temperature:

   K  1   ≡ exp  [     
Δ H  0  °  

 ____ 
R T  0      (  1 −    T  0   ___ 

T
   )    ]     (14.22)

The third factor K2 accounts for the much smaller temperature influence resulting from the 
change of ΔH° with temperature:

    K  2   ≡ exp  (  −   1 __ 
T

   ∫ 
 T  0  

  
T

     
Δ C  P   ° 

 _____ 
R

     dT +  ∫ 
 T  0  

  
T

     
Δ C  P   ° 

 _____ 
R

       dT
 ___ 

T
    )     (14.23)

With heat capacities given by Eq. (4.4), the expression for K2 can be simplified to:

   

 K  2   = exp { ΔA  [  ln   
T

 _  T  0     −   
T −  T  0  

 _ 
T

   ]    +   
1
 __ 2   ΔB   

  (T −  T  0  )    2 
 ________ 

T
    

     

            +   
1
 __ 6   ΔC   

  (T −  T  0  )    2    (T + 2 T  0  ) 
  _______________ 

T
   +   

1
 __ 2   ΔD   

  (T −  T  0  )    2 
 ________ 

 T   2  T  0  2 
   } 

   (14.24)

14.5 EVALUATION OF EQUILIBRIUM CONSTANTS

Values of ΔG° for many formation reactions are tabulated in standard references.4 The 
reported values of  Δ G  f  °   are not measured experimentally but are calculated by Eq. (14.16).

The determination of  Δ S  f  °   may be based on the third law of thermodynamics, discussed 
in Sec. 5.9. Combining values from Eq. (5.35) for the absolute entropies of the species taking 
part in the reaction gives the value of  Δ S  f  °  . Entropies (and heat capacities) are also commonly 
determined by applying statistical mechanics to molecular structure data obtained from spec-
troscopic measurements or from computational quantum chemistry methods.5

Values of  Δ G   f  298    °    for a limited number of chemical compounds are listed in Table C.4 of 
App. C. These are for a temperature of 298.15 K, as are the values of  Δ H   f  298    °    listed in the same 
table. Values of ΔG° for other reactions are calculated from formation-reaction values in 
exactly the same way that ΔH  ° values for other reactions are determined from formation- 
reaction values (Sec. 4.4). In more extensive compilations of data, values of  Δ G  f  °   and  Δ H  f  °   
are given for a range of temperatures, rather than only at 298.15 K. Where data are lacking, 
methods of estimation are available; these have been reviewed by Poling, Prausnitz, and 
O’Connell.6

4For example, “TRC Thermodynamic Tables–Hydrocarbons” and “TRC Thermodynamic Tables–Non- hydrocarbons,” 
serial publications of the Thermodynamics Research Center, Texas A & M Univ. System, College Station, Texas; “The 
NBS Tables of Chemical Thermodynamic Properties,” J. Physical and Chemical Reference Data, vol. 11, supp. 2, 1982.

5K. S. Pitzer, Thermodynamics, 3rd ed., chap. 5, McGraw-Hill, New York, 1995.

6B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and Liquids, 5th ed., chap. 3, McGraw-Hill, 
New York, 2001.
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Example 14.4
Calculate the equilibrium constant for the vapor-phase hydration of ethylene at 145°C 
and at 320°C from data given in App. C.

Solution 14.4
Hydration of ethylene means reaction of ethylene with water vapor to produce 
ethanol vapor. Thus, we first determine values for ΔA, ΔB, ΔC, and ΔD for the 
reaction:

    C  2   H  4   (  g )   +  H  2  O (  g )   →  C  2   H  5  OH (  g )     

The meaning of Δ is indicated by: Δ = (C2H5OH) − (C2H4) − (H2O). Thus, from 
the heat-capacity data of Table C.1:

  

  ΔA = 3.518 − 1.424 − 3.470 = −1.376

    
  ΔB = (20.001 − 14.394 − 1.450) ×  10   −3  = 4.157 ×  10   −3 

      
 ΔC = (−6.002 + 4.392 − 0.000) ×  10   −6  = −1.610 ×  10   −6 

      

ΔD = (−0.000 − 0.000 − 0.121) ×  10   5  = −0.121 ×  10   5 

   

Values of  Δ H  298  °    and  Δ G  298  °    at 298.15 K for the hydration reaction are found from 
the heat-of-formation and Gibbs-energy-of-formation data of Table C.4:

  Δ H  298  °   = −235,100 − 52,510 −  (−241,818)  = −45,792  J·mol   −1   

  Δ G  298  °   = −168,490 − 68,460 −  (−228,572)  = −8378  J·mol   −1   

For T = 145 + 273.15 = 418.15 K, values of the integrals in Eq. (14.18) are:

  
IDCPH(298.15, 418.15; −1.376, 4.157E-3, −1.610E-6, −0.121E+5) = −23.121

        
IDCPS(298.15, 418.15; −1.376, 4.157E-3, −1.610E-6, −0.121E+5) = −0.0692

   

Substitution of values into Eq. (14.18) for a reference temperature of 298.15 gives:

    
Δ G  418  °  

 ______ 
RT

   =   
−8378 + 45,792

  _____________   (  8.314 )   (  298.15 )     +   
−45,792

 _____________   (  8.314 )   (  418.15 )     +   
−23.121

 ________ 418.15   + 0.0692 = 1.9356  

For T = 320 + 273.15 = 593.15 K,

   
 IDCPH (  298.15, 593.15; −1.376, 4.157E-3, −1.610E-6, −0.121E+5 )   = 22.632 

        
IDCPS(298.15, 593.15; −1.376, 4.157E-3, −1.610E-6, −0.121E+5) = 0.0173

    

Thus, at 593.15 K:

    
Δ G  593  °  

 ______ 
RT

   =   
−8378 + 45,792

  _____________   (  8.314 )   (  298.15 )     +   
−45,792

 _____________   (  8.314 )   (  593.15 )     +   
22.632

 ______ 593.15   − 0.0173 = 5.8286  
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Finally,

   @  418.15 K :  ln  K = −1.9356  and  K = 1.443 ×  10   −1       
@ 593.15 K :  ln  K = −5.8286

  
and

  
K = 2.942 ×  10   −3 

   

Application of Eqs. (14.21), (14.22), and (14.24) provides an alternative solu-
tion to this example. By Eq. (14.21),

   K  0   = exp   
8378
 _____________   (  8.314 )   (  298.15 )     = 29.366  

Moreover,    
Δ H  0  °  

 ____ 
R T  0     =   

−45,792
 _____________   (  8.314 )   (  298.15 )     = −18.473  

With these values, the following results are readily obtained:

T/K K0 K1 K2 K

298.15 29.366 1 1 29.366
418.15 29.366 4.985 × 10−3 0.9860 1.443 × 10−1

593.15 29.366 1.023 × 10−4 0.9794 2.942 × 10−3

Clearly, the influence of K1 is far greater than that of K2. This is a typical result 
and is consistent with the observation that all of the lines on Fig. 14.2 are very 
nearly linear.

14.6  RELATION OF EQUILIBRIUM CONSTANTS 
TO COMPOSITION

Gas-Phase Reactions
The standard state for a gas is the pure gas in the ideal-gas state at the standard-state pressure 
P° of 1 bar. Because the fugacity of an ideal gas is equal to its pressure,   f  i  °  =  P   °   for each species i. 
Thus for gas-phase reactions    f ̂    i   ∕ f  i  °  =   f ̂    i  ∕ P   °  , and Eq. (14.10) becomes:

   ∏ 
i

      (     
  f ̂    i   ___  P   °    )     

 ν  i  

  = K  (14.25)

The equilibrium constant K depends only on temperature, but the fugacities are functions 
of pressure and composition as well. Equation (14.25) relates K to fugacities of the reacting 
species as they exist in the real equilibrium mixture. These fugacities reflect the nonidealities of 
the equilibrium mixture and are functions of temperature, pressure, and composition. This 
means that for a fixed temperature the composition at equilibrium must change with pressure in 
such a way that   ∏ 

i
     (     f ̂    i    ∕ P   °   )         ν  i     remains constant.
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548 CHAPTER 14. Chemical-Reaction Equilibria

The fugacity is related to the fugacity coefficient by Eq. (10.52):

    f ̂    i   =   ϕ ˆ    i    y  i   P  

Substituting this equation into Eq. (14.25) provides an equilibrium expression that shows the 
pressure and the composition dependence more explicitly:

    ∏ 
i

      ( y  i     ϕ ˆ    i  )    
νi  =   (    

P
 ___  P   °    )     

−ν

 K   (14.26)

where ν ≡ Σi νi and P° is the standard-state pressure of 1 bar, expressed in the same units 
used for P. The {yi} can be written in terms of the equilibrium value of the reaction coordi-
nate εe. Then, for a fixed temperature Eq. (14.26) relates εe to P. In principle, specification of 
the pressure allows solution for εe. However, the problem is complicated by the dependence 
of   ϕ ˆ  i  on composition, i.e., on εe. The methods of Secs. 10.6 and 10.7 can be applied to calcu-
late    ϕ ˆ    i    values, for example, by Eq. (10.64). An iterative procedure, initiated by setting    ϕ ˆ    i    = 1 
and formulated for computer solution, often proves effective for such problems. Once the 
initial set {yi}  is calculated, the {   ϕ ˆ    i   } are evaluated, and the procedure is repeated to 
convergence.

If we assume that the gases are not in their ideal-gas state, but still behave as an ideal 
solution, then each    ϕ ˆ    i    becomes   ϕ  i   , the fugacity coefficient of pure species i at T and P  
[Eq. (10.84)]. In this case, Eq. (14.26) becomes:

    ∏ 
i

      ( y  i    ϕ  i  )    νi  =   (    
P

 ___  P   °    )     
−ν

 K   (14.27)

Each   ϕ  i    for a pure species can be evaluated from a generalized correlation once the equilib-
rium T and P are specified. This dramatically simplifies the solution and is a good approxima-
tion for a wide range of systems and conditions.

For pressures sufficiently low or temperatures sufficiently high, the equilibrium mixture 
behaves as an ideal gas. In this event, each    ϕ ˆ    i    = 1, and Eq. (14.26) reduces to:

    ∏ 
i

      (  y  i  )    νi  =   (    
P

 ___  P   °    )     
−ν

 K   (14.28)

In this equation the temperature-, pressure-, and composition-dependent terms are distinct and 
separate, and solution for any one of εe, T, or P, given the other two, is straightforward.

Although Eq. (14.28) holds only for a reaction occurring at a mixture in the ideal-gas 
state, we can draw some conclusions from it that are true in general:

 ∙ According to Eq. (14.14), the effect of temperature on the equilibrium constant K is 
determined by the sign of ΔH°. Thus when ΔH° is positive, i.e., when the standard reac-
tion is endothermic, an increase in T results in an increase in K. Equation (14.28) shows 
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that an increase in K at constant P results in an increase in    ∏i   ( yi )         νi      ; this implies a shift 
of the reaction equilibrium toward the products, and thus an increase in εe. Conversely, 
when ΔH° is negative, that is, when the standard reaction is exothermic, an increase in T 
causes a decrease in K and a decrease in    ∏i   ( yi )      νi       at constant P. This implies a shift of 
the reaction equilibrium toward the reactants, and a decrease in εe.

 ∙ Equation (14.28) shows that when the total stoichiometric number ν (≡ ∑i νi) is nega-
tive, an increase in P at constant T causes an increase in    ∏i   ( yi )      νi      , implying a shift of the 
reaction equilibrium toward the products, and an increase in εe. If ν is positive, an 
increase in P at constant T causes a decrease in    ∏i   ( yi )νi      , a shift of the reaction equilib-
rium toward the reactants, and a decrease in εe. 

Liquid-Phase Reactions
For a reaction occurring in the liquid phase, we return to:

   ∏ 
i

      (    f ̂    i   ∕  f  i  °   )     ν  i    = K  (14.10)

The usual standard state for liquids is the pure liquid i at the temperature of the system and at 
1 bar, for which the fugacity is   f  i  °  .

According to Eq. (13.2), which defines the activity coefficient,

    f ̂    i   =  γ  i    x  i     f  i    

where fi is the fugacity of pure liquid i at the temperature and pressure of the equilibrium mix-
ture. The fugacity ratio can now be expressed:

    
  f ̂    i   __  f  i  ° 

   =   
 γ  i    x  i     f  i   _____  f  i  ° 

   =  γ  i    x  i    (     
 f  i   __  f  i  ° 

   )     (14.29)

Because the fugacities of liquids are weak functions of pressure, the ratio   f  i   ∕  f  i  °   is often taken 
as unity. However, it is readily evaluated. For pure liquid i, Eq. (10.31) is written twice, first 
for temperature T and pressure P, and then for the same temperature T but for the  standard-state 
pressure P°. The difference between these two equations is:

   G  i   −  G  i  °  = RT ln   
 f  i   __  f  i  ° 

    

Integration of Eq. (6.11) at constant temperature T for the change of state of pure liquid i from 
P° to P yields:

   G  i   −  G  i  °  =  ∫ 
 P   ° 

  
P

    V  i     dP  

As a result,  RT ln     
 f  i   __  f  i  ° 

   =  ∫ 
 P   ° 

  
P

    V  i     dP  
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Because Vi changes little with pressure for liquids (and solids), integration from P° to P assum-
ing constant Vi is generally an excellent approximation. This integration gives:

  ln    
 f  i   __  f  i  ° 

   =   
 V  i   (  P −  P   °  )  

 __________ 
RT

    (14.30)

Using Eqs. (14.29) and (14.30), we can now write Eq. (14.10) as:

    ∏ 
i

       (   x  i    γ  i   )      ν  i    = K exp  [      (   P   °  − P )   ________ 
RT

    ∑ 
i

      (   ν  i    V  i   )    ]      (14.31)

Except for high pressures, the exponential term is close to unity and may be omitted. Then,

   ∏ 
i

       (   x  i    γ  i   )      ν  i    = K  (14.32)

and the only problem is determination of the activity coefficients. One may apply an equation 
such as the Wilson equation [Eq. (13.45)], or the UNIFAC method [App. G], and the compo-
sitions can be found from Eq. (14.32) by an appropriate numerical solution method. However, 
the relative ease of experimental investigation for liquid mixtures limits the need for applica-
tion of Eq. (14.32). Measuring the composition of a liquid mixture at equilibrium—i.e., mea-
suring the equilibrium extent of reaction—is generally a much easier task than developing the 
activity coefficient model required for implementation of Eq. (13.42).

If the equilibrium mixture is an ideal solution, then   γ  i    is unity for each species, and  
Eq. (14.32) becomes:

   ∏ 
i

      ( x  i  )    ν  i    = K  (14.33)

This simple relation is known as the law of mass action. Because liquids often form nonideal 
solutions, Eq. (14.33) may yield poor results in many systems.

For species known to be present in high concentration, the equation    f ̂    i   ∕   f  i     =  x  i   is usually 
nearly correct. The reason, as discussed in Sec. 13.3, is that the Lewis/Randall rule  
[Eq. (10.83)] always becomes valid for a species as its concentration approaches xi = 1. For 
species at low concentration in aqueous solution, a different procedure has been widely 
adopted, because in this case the equality of    f ̂    i   ∕   f  i     and xi is usually far from correct. The method 
is based on the use of a fictitious or hypothetical standard state for the solute, taken as the state 
that would exist if the solute obeyed Henry’s law up to a molality m of unity.7 In this applica-
tion, Henry’s law is expressed as

    f ̂    i     =  k  i    m  i    (14.34)

and it is always valid for a species whose concentration approaches zero. This hypothetical 
state is illustrated in Fig. 14.3. The dashed line drawn tangent to the curve at the origin rep-
resents Henry’s law, and it is valid in the case shown to a molality much less than unity. How-
ever, one can calculate the properties the solute would have if it obeyed Henry’s law to a 
concentration of 1 molal, and this hypothetical state often serves as a convenient standard state 
for solutes.

7Molality is a measure of solute concentration, expressed as moles of solute per kilogram of solvent.
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Figure 14.3: Schematic illustration of an 
 alternative standard state for dilute aqueous 
solutions.

Hypothetical
1-molal
solution

, molality

0 1
mi

fi

The standard-state fugacity is

    f ̂    i   °  =  k  i    m  i  °  =  k  i   × 1 =  k  i    

Hence, for any species at a concentration low enough for Henry’s law to hold,

    f ̂    i   =  k  i    m  i   =   f ̂    i  °   m  i    

and
    

  f ̂    i   __ 
  f ̂    i  ° 

   =  m  i    (14.35)

The advantage of this standard state is that it provides a very simple relation between fugacity 
and concentration for cases in which Henry’s law is at least approximately valid. Its range does 
not commonly extend to a concentration of 1 molal. In the rare case where it does, the standard 
state is a real state of the solute. This standard state is useful only where ΔG° data are  available 
for the standard state of a 1-molal solution. Otherwise, the equilibrium constant cannot be 
evaluated by Eq. (14.11).

Of course, many of the most important chemical reactions occurring in aqueous solution 
are biochemical reactions, whether in living systems or in industrial practice, e.g., using 
immobilized enzymes. The data in Table C.5 of Appendix C provide a starting point for 
 analyzing such systems. However, a thorough treatment of biochemical thermodynamics is 
beyond the scope of this text. A useful framework has been developed by Alberty.8 In addition 
to temperature and pressure, the equilibrium of such reactions is usually dependent upon pH 
and ionic strength (a measure of total ion concentration in solution). While these effects could, 
in principle, be incorporated into the present framework by explicitly including dissociation 
reactions for acids, bases, and salts, along with activity coefficient models for multicomponent 
electrolyte solutions, that is not the approach that is generally taken. Most often, pH and ionic 
strength are taken to be fixed, along with T and P. The effect of ionic strength can be accounted 

8Robert A. Alberty, Thermodynamics of Biochemical Reactions, Wiley-Interscience, Hoboken, NJ, 2003; and Robert 
A. Alberty, Biochemical Thermodynamics Applications of Mathematica, John Wiley & Sons, Hoboken, NJ, 2006.
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for by the Debye–Hückel theory or extensions of it. As for liquid-phase reactions in general, 
the relative ease of measuring equilibrium extents of reaction has limited the application of 
rigorous thermodynamic analysis. For example, binding constants or association constants for 
the equilibrium of reactions of receptors with ligands or enzymes with their substrates are 
routinely measured and reported. Most often, these are not identical to the equilibrium con-
stants as defined in this chapter because they cannot be related in a straightforward manner to 
a difference in Gibbs energy between reactants and product in well-defined standard reference 
states. Nonetheless, they are of great practical utility.

14.7 EQUILIBRIUM CONVERSIONS FOR SINGLE REACTIONS

Suppose a single reaction occurs in a homogeneous system, and suppose the equilibrium 
constant is known. In this event, the calculation of the phase composition at equilibrium is 
straightforward if the phase is assumed to be in the ideal-gas state [Eq. (14.28)] or if it can 
be treated as an ideal solution [Eq. (14.27) or (14.33)]. When an assumption of ideality is 
not reasonable, the problem is still tractable for gas-phase reactions through application of 
an equation of state or generalized correlation for prediction of species fugacity coefficients. 
For heterogeneous systems, where more than one phase is present, the problem is more 
complicated and requires simultaneous application of the criterion for phase equilibrium 
developed in Sec. 10.6 with the criterion for reaction equilibrium developed here. At equi-
librium, there can be no tendency for change to occur, either by mass transfer between 
phases or by chemical reaction. We present in what follows, mainly by example, procedures 
useful for carrying out equilibrium calculations, first, for single-phase reactions, and sec-
ond, for heterogeneous reactions.

Single-Phase Reactions
The following examples illustrate the application of equations developed in the preceding 
sections.

Example 14.5
The water-gas-shift reaction, an essential step in the production of hydrogen from nat-
ural gas,

 CO(g) +  H  2  O(g) →  CO  2  (g) +  H  2  (g) 

comes to equilibrium under several sets of conditions enumerated below. Calculate the 
fraction of steam reacted in each case. Assume the mixture behaves as an ideal gas.

 (a) The reactants consist of 1 mol of H2O vapor and 1 mol of CO. The temperature 
is 1100 K and the pressure is 1 bar.

 (b) Same as part (a) except that the pressure is 10 bar.

 (c) Same as part (a) except that 2 mol of N2 is included in the reactants.
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14.7. Equilibrium Conversions for Single Reactions 553

 (d) The reactants are 2 mol of H2O and 1 mol of CO. Other conditions are the 
same as in part (a).

 (e) The reactants are 1 mol of H2O and 2 mol of CO. Other conditions are the 
same as in part (a).

 (f ) The initial mixture consists of 1 mol of H2O, 1 mol of CO, and 1 mol of CO2. 
Other conditions are the same as in part (a).

 (g) Same as part (a) except that the temperature is 1650 K.

Solution 14.5
(a) For the given reaction at 1100 K, 104/T = 9.05, and from Fig. 14.2, ln K = 0 
and K = 1. For this reaction ν = ∑i νi = 1 + 1 − 1 − 1 = 0. Because the reaction 
mixture can be treated as an ideal gas, Eq. (14.28) applies, and here becomes:

    
 y   H  2      y   CO  2     ________  y  CO    y   H  2  O     = K = 1  (A)

By Eq. (14.5),

   y  CO   =   
1 −  ε  e   _____ 2       y   H  2  O   =   

1 −  ε  e   _____ 2       y   CO  2     =   
 ε  e   __ 2       y   H  2     =   

 ε  e   __ 2    

Substituting these values into Eq. (A) gives:

    
 ε  e  2 
 ________ 

  (  1 −  ε  e   )     2 
   = 1   from which    ε  e   = 0.5  

Therefore the fraction of the steam that reacts is 0.5.

(b) Because ν = 0, the increase in pressure has no effect on the ideal-gas reaction, 
and εe is still 0.5.

(c) The N2 does not take part in the reaction and serves only as a diluent. It does 
increase the initial number of moles n0 from 2 to 4, and the mole fractions are all 
reduced by a factor of 2. However, Eq. (A) is unchanged and reduces to the same 
expression as before. Therefore, εe is again 0.5.

(d) In this case the mole fractions at equilibrium are:

   y  CO   =   
1 −  ε  e   _____ 3      y   H  2  O   =   

2 −  ε  e   _____ 3      y   CO  2     =   
 ε  e   __ 3      y   H  2     =   

 ε  e   __ 3    

and Eq. (A) becomes:

    
 ε  e  2 
 _____________   (  1 −  ε  e   )   (  2 −  ε  e   )  

   = 1   from which    ε  e   = 0.667  

The fraction of steam that reacts is then 0.667/2 = 0.333.
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(e) Here the expressions for yCO and   y   H  2  O    are interchanged, but this leaves the 
equilibrium equation the same as in (d). Therefore εe = 0.667, and the fraction of 
steam that reacts is 0.667.

(  f ) In this case Eq. (A) becomes:

    
 ε  e   (  1 +  ε  e   )   ________ 
  (  1 −  ε  e   )     2 

   = 1   from which    ε  e   = 0.333  

The fraction of steam reacted is 0.333.

(g) At 1650 K, 104/T = 6.06, and from Fig. 14.2, ln K = −1.15 or K = 0.316. 
Therefore Eq. (A) becomes:

    
 ε  e  2 
 ________ 

  (  1 −  ε  e   )     2 
   = 0.316   from which    ε  e   = 0.36  

The reaction is exothermic, and the extent of reaction decreases with increasing 
temperature.

Example 14.6
Estimate the maximum conversion of ethylene to ethanol by vapor-phase hydration at 
250°C and 35 bar for an initial steam-to-ethylene molar ratio of 5.

Solution 14.6
The calculation of K for this reaction was treated in Ex. 14.4. For a temperature of 
250°C or 523.15 K the calculation yields:

  K = 10.02 ×  10   −3   

The appropriate equilibrium expression is Eq. (14.26). This equation requires 
evaluation of the fugacity coefficients of the species present in the equilibrium 
mixture. This can be accomplished with Eq. (10.64). However, the calculations 
involve iteration because the fugacity coefficients are functions of composition. 
For purposes of illustration, we assume here that the reaction mixture can be 
treated as an ideal solution, which eliminates the need for iteration. This calcula-
tion would also serve as the first iteration of a more rigorous calculation using 
mixture fugacity coefficients from Eq. (10.64). With the assumption of ideal solu-
tion behavior, Eq. (14.26) reduces to Eq. (14.27), which requires fugacity coeffi-
cients of the pure gases of the reacting mixture at the equilibrium T and P. Because 
ν = ∑i   νi = −1, this equation becomes:

    
 y  EtOH    ϕ  EtOH  

  __________________   y   C  2   H  4      ϕ   C  2   H  4      y   H  2  O    ϕ   H  2  O     =   (     
P

 _ 
 P   ° 

   )   (10.02 ×  10   −3 )  (A)

www.konkur.in

Telegram: @uni_k



14.7. Equilibrium Conversions for Single Reactions 555

Computations based on Eq. (10.68) in conjunction with Eqs. (3.61) and (3.62) 
provide values represented by:

 PHIB(TR,PR,OMEGA) = ϕi 

The results of these calculations are summarized in the following table:

  T   c  i       ∕K   P   c  i       ∕bar ωi   T   r  i       P   r  i     B0 B1 ϕi

C2H4 282.3  50.40 0.087 1.853 0.694 –0.074    0.126 0.977
H2O 647.1 220.55 0.345 0.808 0.159 –0.511 –0.281 0.887
EtOH 513.9  61.48 0.645 1.018 0.569 –0.327 –0.021 0.827

The critical data and values of ωi are from App. B. The temperature and pressure 
in all cases are 523.15 K and 35 bar. Substitution of values for ϕi and for (P∕P°) 
into Eq. (A) gives:

    
 y  EtOH  

 _________  y   C  2   H  4      y   H  2  O     =   
 (  0.977 )   (  0.887 )  

  ____________  (  0.827 )     (35)(10.02 ×  10   −3 ) = 0.367  (B)

By Eq. (14.5),

   y   C  2   H  4     =   
1 −  ε  e   _____ 6 −  ε  e  

      y   H  2  O   =   
5 −  ε  e   _____ 6 −  ε  e  

      y  EtOH   =   
 ε  e   _____ 6 −  ε  e  

    

Substituting these into Eq. (B) yields:

    
 ε  e  (6 −  ε  e  ) ____________  (5 −  ε  e  ) (1 −  ε  e  )

   = 0.367   or    ε  e  2  − 6.000   ε  e   + 1.342 = 0  

The solution to this quadratic equation for the smaller root is εe = 0.233. Because 
the larger root is greater than unity, and would therefore correspond to a negative 
mole fraction of ethylene, it does not represent a physically possible result. The max-
imum conversion of ethylene to ethanol under the stated conditions is therefore 
23.3%. To carry out a more rigorous calculation without assuming that the gases 
form an ideal solution, one would next evaluate the mixture fugacity coefficients 
from Eq. (10.64), use the resulting values in Eq. (B), and calculate a new value 
of εe and then iterate until the value of εe stops changing. However, this is rarely 
necessary in practice.

In this reaction, increasing the temperature decreases K and hence the conver-
sion. Increasing the pressure increases the conversion. Equilibrium considerations 
therefore suggest that the operating pressure be as high as possible (limited by 
condensation) and the temperature as low as possible. However, even with the best 
catalyst known, the minimum temperature for a reasonable reaction rate is about 
150°C. This is an instance where both equilibrium and reaction rate influence the 
commercial viability of a reaction process.

The equilibrium conversion is a function of temperature, T, pressure, P, and the 
steam-to-ethylene ratio in the feed, a. The effects of all three variables are shown 
in Fig. 14.4. The curves in this figure come from calculations like those illustrated 
in this example, except that a less precise relation for K as a function of T was 
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556 CHAPTER 14. Chemical-Reaction Equilibria

used. Comparing the families of curves for different pressures, and the curves for 
different steam-to-ethylene ratios at a given pressure, illustrates how increasing 
P or a allows one to reach a given equilibrium ethylene conversion at higher T.

Example 14.7
Production of high-purity silicon, as well as growth of silicon nanowires and other 
 silicon nanostructures, often involves the conversion of crude silicon into silane and 
chlorosilanes followed by purification by distillation and, finally, decomposition back 
into solid silicon plus H2, HCl, and Cl2. Here, we consider the decomposition of dichlo-
rosilane (SiH2Cl2) vapor to solid silicon and HCl vapor. Thermodynamic data for these 
species are available in the NIST Chemistry WebBook. Prepare plots of the fraction of 

Figure 14.4: Equilibrium conversion of ethylene to ethanol in the vapor phase. Here, a = moles water/
moles ethylene. Dashed lines indicate conditions of water condensation. Data based on equation:  
ln K = 5200/T – 15.0.
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14.7. Equilibrium Conversions for Single Reactions 557

dichlorosilane converted to solid silicon at equilibrium vs. temperature from 700 to 
1300 K for the following conditions:

 (a) Starting from pure dichlorosilane at a pressure of 5 bar.

 (b) Starting from pure dichlorosilane at a pressure of 1 bar.

 (c) Starting with a dichlorosilane mole fraction of 5% in hydrogen at a pressure of 1 bar.

 (d) Starting with pure dichlorosilane at a pressure of 0.001 bar.

These conditions are representative of different processes employed in the photo-
voltaics and microelectronics industries, from growth of bulk silicon in a fluidized bed 
reactor to deposition of silicon thin films by atmospheric-pressure or low-pressure 
chemical vapor deposition. Various processes like these may employ silane (SiH4) or 
trichlorosilane (SiHCl3) rather than SiH2Cl2.

Solution 14.7
The reaction of interest can be written as:

 SiH2Cl2(g) → Si(s) + 2HCl(g) 

The equilibrium constant as a function of temperature will be the same for all parts of 
the problem, so we compute it first. Note that the NIST Chemistry WebBook adopts 
the convention that enthalpies of formation are zero for elements in their standard 
state at 298.15 K, but uses absolute (third-law) values of entropy. Thus, the Gibbs 
energy of formation not zero for elements in their standard states at 298.15 K. The 
polynomial used for the temperature dependence of heat capacity also differs from 
the one we have been using. Fortunately, the NIST WebBook directly provides values 
of −(G° − H°

f,298)∕T, which we use along with H°
f,298 for each species to find G° of 

each species at several temperatures, as shown in the accompanying table. We then 
compute ΔG° = 2G°(HCl) + G°(Si) − G°(SiH2Cl2) and K = exp(−ΔG°/(RT)), as 
also given in the table.

SiH2Cl2(g) HCl(g) Si(s)
Reaction

H°
f,298

−320.49 
kJ·mol−1 H°

f,298
−92.31 

kJ·mol−1 H°
f,298

0 
kJ·mol−1

T/K
−    

G° − H°f,298 _________ 
T

   

J·mol−1·K−1

G°
J·mol−1

−    
G° − H°f,298 _________ 

T
   

J·mol−1·K−1

G°
J·mol−1

−    
G° − H°f,298 _________ 

T
   

J·mol−1·K−1

G°
J·mol−1

ΔG°
J·mol−1 K

 700 306.7 −535180 195.1 −228880 25.0 −17486 59934 3.37 × 10−5

 800 313.0 −570890 197.4 −250230 26.9 −21480 48950 6.37 × 10−4

 900 319.1 −607680 199.7 −272040 28.7 −25794 37806 6.40 × 10−3

1000 325.1 −645590 201.9 −294210 30.4 −30390 26780 3.99 × 10−2

1100 330.8 −684370 203.9 −316600 32.0 −35244 15926 1.75 × 10−1

1200 336.3 −724050 205.9 −339390 33.6 −40356 4914 6.11 × 10−1

1300 341.5 −764440 207.7 −362320 35.1 −45682 −5882 1.72
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558 CHAPTER 14. Chemical-Reaction Equilibria

We can now use these values of the equilibrium constant to analyze each of the 
cases given.

(a) On a basis of 1 mole of SiH2Cl2, the gas-phase mole fractions in this case are:

 ySiH2Cl2 =    
1 − ε

 _____ 1 + ε     and  yHCl =    
2ε
 _____ 1 + ε   

Note that the solid silicon does not play a role in the gas-phase mole fractions. 
Moreover, in the general equilibrium expression of Eq. (14.10), the ratio f̂ i/f º

i for 
pure solid silicon can be taken to be 1.0. The effect of pressure on the fugacity of 
a solid is negligible, and the standard state for silicon is the pure solid. Thus, it 
simply does not appear in the equilibrium expression, which assuming that dichlo-
rosilane and HCl are in their ideal-gas state, is simply:

    
 y  HCl  

2  
 ______  y SiH2Cl2

     = K  (  
Pº

 ___ 
P

  )  

Using the expressions for the mole fractions:

    
4ε2
 ____________  (1 − ε)(1 + ε)    = K  (  

Pº
 ___ 

P
  )  

From which:

   (4 + K (  
Pº

 ___ 
P

  ) )   ε2 = K  (  
Pº

 ___ 
P

  )  

And finally:

 

ε =
     

     K (  
Pº

 ___ 
P

  )  
  
  (4 + K (  

Pº
 ___ 

P
  ) )  

 
=

   
  √ 

__________
 K∕(20 + K )   

Evaluating this for temperatures from 700 to 1300 K using the corresponding 
 values of equilibrium constant gives the values shown in the following table and in 
Fig. 14.5.

(b) This is the same as part (a) except with P°/P = 1 instead of P°/P = 1/5, so:

 ε =   √ 
_________

 K∕(4 + K )

    Results of this expression are shown later in tabular form and plotted in  Fig. 14.5.

(c) Here, if we again take 1 mol SiH2Cl2 as our basis, so the extent of reaction is 
equal to the fraction of dichlorosilane converted to silicon, we also have 19 mol H2 
and the expressions for the mole fractions become:

 ySiH2Cl2 =    
1 − ε

 _____ 20 + ε     and  yHCl =    
2ε
 _____ 20 + ε   
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14.7. Equilibrium Conversions for Single Reactions 559

Using these expressions for the mole fractions at a pressure of 1 bar:

    
4ε2
 ____________  (1 − ε)(20 + ε)    = K

From which:

 (4 + K)ε2 + 19Kε − 20K = 0

And finally:

 ε =    
−19K +  √ 

__________________
  361K2 + 80K(4 + K)  
   ___________________________  2(4 + K)   

We have picked the positive sign in the quadratic formula to obtain a positive 
value of ε. Again, results are shown in the table and in Fig. 14.5.

(d ) This is the same as part (a) except with P°/P = 1000 instead of P°/P = 1/5, so:

 ε =   √ 
_________________

  1000K∕(4 + 1000K)   

Again, results are presented in the table below and in Fig. 14.5.
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Figure 14.5: Equilibrium conversion of SiH2Cl2 to solid silicon in Ex. 14.7.
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560 CHAPTER 14. Chemical-Reaction Equilibria

Example 14.8
Acetic acid is esterified in the liquid phase with ethanol at 100°C and atmospheric 
pressure to produce ethyl acetate and water according to the reaction:

   CH  3    COOH(l ) +  C  2     H  5    OH(l ) →  CH  3     COOC  2     H  5  (l ) +  H  2  O(l )  

If initially there is one mole each of acetic acid and ethanol, estimate the mole fraction 
of ethyl acetate in the reacting mixture at equilibrium.

Solution 14.8
Data for  Δ H   f  298    °    and  Δ G   f  298    °    are given for liquid acetic acid, ethanol, and water in 
Table C.4. For liquid ethyl acetate, the corresponding values are:

  Δ H   f  298    °   = −480,000 J   and   Δ G   f  298    °   = −332,200 J  

The values of   ΔH  298  °    and   ΔG  298  °    for the reaction are therefore:

   
Δ H  298  °   = −480,000 − 285,830 + 484,500 + 277,690 = −3640 J

      
Δ G  298  °   = −332,200 − 237,130 + 389,900 + 174,780 = −4650 J

   

By Eq. (14.11b),

  ln  K  298   =   
−Δ G  298  °  

 ________ 
RT

   =   
4650
 _____________   (  8.314 )   (  298.15 )     = 1.8759  or   K  298   = 6.5266  

 This problem illustrates the effect of reduced pressure and dilution on increasing 
the conversion of this type of reaction at a given temperature. In reality, formation 
of additional products —including H2, SiHCl3, and SiCl4—should be considered 
under many conditions of relevance to silicon refining. Indeed, SiCl4 is a major 
byproduct of solar-grade silicon production.

T/K (a) (b) (c) (d)
 700 0.0013 0.0029 0.0129 0.0914
 800 0.0056 0.0126 0.0549 0.3706
 900 0.0179 0.0400 0.1642 0.7844
1000 0.0446 0.0994 0.3605 0.9534
1100 0.0932 0.2049 0.6005 0.9888
1200 0.1722 0.3640 0.7991 0.9967
1300 0.2816 0.5487 0.9084 0.9988

ε, Fractional Conversion of SiH2Cl2 to Si in Ex. 14.7
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14.7. Equilibrium Conversions for Single Reactions 561

For the small temperature change from 298.15 to 373.15 K, Eq. (14.15) is adequate 
for estimating K. Thus,

  ln   
 K  373  

 ____  K  298     =   
−Δ H  298  °  

 ________ 
R

    (    
1
 _ 373.15   −   

1
 _ 298.15   )     

or  ln   
 K  373  

 ______ 6.5266   =   
3640

 _____ 8.314    (    
1
 _ 373.15   −   

1
 _ 298.15   )    = −0.2951  

and   K  373   = (6.5266) (0.7444) = 4.8586  

For the given reaction, Eq. (14.5), with x replacing y, yields:

   x  AcH   =  x  EtOH   =   
1 −  ε  e   _____ 2      x  EtAc   =  x   H  2  O   =   

 ε  e   __ 2    

Because the pressure is low, Eq. (14.32) is applicable. In the absence of data for 
the activity coefficients in this complex system, we assume that the reacting spe-
cies form an ideal solution. In this case Eq. (14.33) is employed, giving:

  K =   
 x  EtAc    x   H  2  O  

 _________  x  AcH    x  EtOH      

Thus,  4.8586 =   (    
 ε  e   ______ 1 −  ε  e  

   )     
2
   

Solution yields:

   ε  e   = 0.6879   and    x  EtAc   = 0.6879∕2 = 0.344  

This result is in good agreement with experiment, even though the assumption 
of ideal solutions may be unrealistic. Carried out in the laboratory, the reaction 
yields a measured mole fraction of ethyl acetate at equilibrium of about 0.33.

Example 14.9
The gas-phase oxidation of SO2 to SO3 is carried out at a pressure of 1 bar with 20% 
excess air in an adiabatic reactor. Assuming that the reactants enter at 25°C and that 
equilibrium is attained at the exit, determine the composition and temperature of the 
product stream from the reactor.

Solution 14.9
The reaction is:   SO  2   +   1 _ 2    O  2   →  SO  3    

for which,  Δ H  298  °   = −98,890   Δ G  298  °   = −70,866 J  mol   −1   
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562 CHAPTER 14. Chemical-Reaction Equilibria

On the basis of one mole of SO2 entering the reactor,

   Moles  O  2   entering = (0.5)(1.2) = 0.6    
Moles  N  2   entering = (0.6)(79/21) = 2.257

   

Application of Eq. (14.4) yields the amounts of the species in the product stream:

  

Moles  SO  2   = 1 −  ε  e  

   
Moles  O  2   = 0.6 − 0.5 ε  e  

   Moles  SO  3   =  ε  e     
Moles  N  2   = 2.257

   

Total Moles = 3.857 − 0.5 ε  e  

  

Two equations must be written if we are to solve for both εe and the tempera-
ture. They are an energy balance and an equilibrium equation. For the energy 
balance, we proceed as in Ex. 4.7:

  Δ H  298  °     ε  e   + Δ H  P   °  = ΔH = 0  (A)

where all enthalpies are on the basis of 1 mol SO2 entering the reactor. The 
enthalpy change of the products as they are heated from 298.15 K to T is:

  Δ H  P  °   =   ⟨   C  P   °  ⟩    H     (T − 298.15)   (B)

where  〈 C  P   ° 〉  is defined as the mean total heat capacity of the product stream:

   〈 C  P   ° 〉  H   ≡  ∑ 
i

      n  i    〈 C   P  i     °  〉  H    

Data from Table C.1 provide  〈 C   P  i    °  〉  values:

  

 SO  2  :

  

𝖬𝖢𝖯𝖧(298.15,   T;  5.699,   0.801E-3,   0.0,  −1.015E+5)

      
 O  2  :

  
𝖬𝖢𝖯𝖧(298.15,   T;  3.639,   0.506E-3,   0.0,  −0.227E+5)

       SO  3  :  𝖬𝖢𝖯𝖧(298.15,   T;   8.060,  1.056E-3,   0.0,  −2.028E+5)
      

 N  2  :

  

𝖬𝖢𝖯𝖧(298.15,   T;   3.280,   0.593E-3,   0.0,  0.040E+5)

   

Equations (A) and (B) combine to yield:

  Δ H  298  °     ε  e   +   ⟨   C  P   °  ⟩    H     (T − 298.15)  = 0  

Solution for T gives:  T =   
−Δ H  298  °     ε  e  

 _________  ⟨  C  P  °  ⟩  H     + 298.15  (C)

At the conditions of temperature and pressure of the equilibrium state, the 
assumption of ideal gases is fully justified, and the equilibrium relationship is 
therefore given by Eq. (14.28), which here becomes:

  K =   (    
 ε  e   _ 1 −  ε  e  

   )     (    
3.857 − 0.5 ε  e    ____________ 0.6 − 0.5 ε  e  

   )     
0.5

   (D)
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Because −ln K = ΔG°∕RT, Eq. (14.18) can be written:

  −ln  K =   
Δ G  0  °   − Δ H  0  °  

 ___________ 
R T  0     +   

Δ H  0  °  
 ____ 

RT
   +   

1
 __ 

T
    ∫ 

 T  0  
  
T

     
Δ C  P  °  

 _____ 
R

     dT −  ∫ 
 T  0  

  
T

     
Δ C  P  °  

 _____ 
R

       dT
 ___ 

T
    

Substitution of numerical values yields:

  ln K = −11.3054 +   
11,894.4

 ________ 
T

   −   
1
 __ 

T
    (IDCPH) + IDCPS  (E)

   
 IDCPH = IDCPH (  298.15, T; 0.5415, 0.002E-3, 0.0, −0.8995E+5 )   

       
IDCPS = IDCPS (  298.15, T; 0.5415, 0.002E-3, 0.0, −0.8995E+5 )  

    

These expressions for the computed values of the integrals show parameters ΔA, 
ΔB, ΔC, and ΔD as evaluated from data of Table C.1.

An intuitive iteration scheme for solution of these equations for εe and T that 
converges fairly rapidly is as follows:

 1. Assume a starting value for T.
 2. Evaluate IDCPH and IDCPS at this value of T.
 3. Solve Eq. (E) for K and Eq. (D) for εe.
 4. Evaluate   〈 C   P          °  〉  H    and solve Eq. (C) for T.
 5. Find a new value of T as the arithmetic mean of the value just calculated and 

the  initial value; return to step 2.

This scheme converges on the values εe = 0.77 and T = 855.7 K. For the product,

    

     y   SO  2     =   
1 − 0.77

  _______________  3.857 −  (  0.5 )   (  0.77 )     =   
0.23

 _____ 3.472   = 0.0662

      y   O  2     =   
0.6 −  (  0.5 )   (  0.77 )  

  _____________ 3.472   =   
0.215

 _____ 3.472   = 0.0619     

 y   SO  3     =   
0.77

 _____ 3.472   = 0.2218    y   N  2     =   
2.257

 _____ 3.472   = 0.6501

   

Reactions in Heterogeneous Systems
When liquid and gas phases are both present in a reactive system, Eq. (10.48), a criterion of 
vapor/liquid equilibrium, must be satisfied along with the criterion for chemical-reaction equi-
librium. Suppose, for example, that gas A reacts with liquid water B to form an aqueous solu-
tion C. Several methods of treatment exist. The reaction could be considered to occur in the 
gas phase with transfer of material between phases to maintain phase equilibrium. In this case, 
the equilibrium constant is evaluated from ΔG° data based on standard states for the species as 
gases, that is, the ideal-gas states at 1 bar and the reaction temperature. Alternatively, the 
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reaction could be considered to occur in the liquid phase, in which case ΔG° is based on stan-
dard states for the species as liquids. Finally, the reaction could be written:

  A(g) + B(l  ) → C(aq)  

in which case the ΔG° value is for mixed standard states: C as a solute in an ideal 1-molal 
aqueous solution, B as a pure liquid at 1 bar, and A as a pure ideal gas at 1 bar. For this choice 
of standard states, the relationship between the composition and equilibrium constant, as given 
by Eq. (14.10), becomes:

    
  f ̂    C  ∕  f  C   °  
 ____________  

(      f ̂    B  ∕ f  B   °  )(       f ̂    A  ∕ f  A  °   )
   =   

 m  C  
 ____________  

( γ  B    x  B   )(       f ̂    A  ∕ P   ° )
   = K  

The second term arises from Eq. (14.35) applied to species C, Eq. (14.29) applied to B 
with   f  B  ∕ f  B   °  = 1 , and the fact that   f  A   °  =  P   °   for species A in the gas phase. Because K depends on 
the standard states, this value of K differs from that which would arise from other choices of 
standard states. However, other choices of standard states would still lead to the same equilib-
rium composition, provided Henry’s law as applied to species C in solution is valid. In prac-
tice, a particular choice of standard states may simplify calculations or yield more accurate 
results because it makes better use of available data. The nature of the calculations required for 
heterogeneous reactions is illustrated in the following example.

Example 14.10
Estimate the compositions of the liquid and vapor phases when ethylene reacts with 
water to form ethanol at 200°C and 34.5 bar, conditions that assure the presence of 
both liquid and vapor phases. The reaction vessel is maintained at 34.5 bar by connec-
tion to a source of ethylene at this pressure. Assume no other reactions.

Solution 14.10
According to the phase rule (Sec. 14.8), the system has two degrees of freedom. 
Specification of both T and P therefore fixes the intensive state of the system, 
independent of the initial amounts of reactants. Material-balance equations are not 
applicable because the total amount of material in the system is not fixed. Thus, 
we cannot use equations that relate compositions to the reaction coordinate. 
Instead, phase-equilibrium relations must provide a sufficient number of equa-
tions to allow solution for the unknown compositions.

The most convenient approach to this problem is to regard the chemical reac-
tion as occurring in the vapor phase. Thus,

   C  2     H  4  (g) +  H  2   O(g) →  C  2     H  5  OH(g)  

and the standard states are those of the pure ideal gases at 1 bar. For these standard 
states, the equilibrium expression is Eq. (14.25), which in this case becomes:

 K =    
   f ̂   EtOH P°

 ________ 
   f ̂       C  2   H  4         f ̂       H  2  O  

    (A)
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where the standard-state pressure P° is 1 bar (expressed in appropriate units). A 
general expression for ln K as a function of T is provided by the results of Ex. 14.4. 
For 200°C (473.15 K), this equation yields:

  ln  K = −3.473   K = 0.0310  

The task now is to incorporate the phase-equilibrium equations,    f ̂    i  
v  =   f ̂    i  

  l  , into 
Eq. (A) and to relate the fugacities to the compositions in such a way that the equa-
tions can be readily solved. Equation (A) may be written:

 K =    
    f  ˆ    EtOH  v   P°

 _________ 
  f  ˆ     C  2   H  4    

v      f  ˆ     H  2  O  v  
    =    

     f  ˆ    EtOH   l   P°
 _________ 

  f  ˆ     C  2   H  4    
v      f  ˆ     H  2  O   l  

     (B)

The liquid-phase fugacities are related to activity coefficients by Eq. (13.2), and 
the vapor-phase fugacities are related to fugacity coefficients by Eq. (10.52):

    f ̂    i  
 l  =  x  i    γ  i     f   i  

 l   (C)     f ̂    i  
v  =  y  i     ϕ ˆ    i   P  (D)

Elimination of the fugacities in Eq. (B) by Eqs. (C) and (D) gives:

  K =   
 x  EtOH    γ  EtOH    f  EtOH   l    P   ° 

  __________________________   
( y   C  2   H  4       ϕ ˆ     C  2   H  4     P) ( x   H  2  O    γ   H  2  O        f   H  2  O   l    )

    (E)

The fugacity   f  
i
   l   is for pure liquid i at the temperature and pressure of the system. 

However, pressure has small effect on the fugacity of a liquid, and to a good 
approximation,   f  

i
   l  =  f  

i
  sat  ; whence by Eq. (10.40),

   f  
i
   l  =  ϕ  

i
  sat   P  

i
  sat   (F)

In this equation   ϕ  i  sat   is the fugacity coefficient of pure saturated liquid or vapor 
evaluated at T of the system and at   P  

i
  sat  , the vapor pressure of pure species i. The 

reasonable assumption that the vapor phase is an ideal solution allows substitution 
of   ϕ   C  2   H  4      for    ϕ ˆ     C  2   H  4     , where   ϕ   C  2   H  4      is the fugacity coefficient of pure ethylene at the 
system T and P. With this substitution and that of Eq. (F ), Eq. (E) becomes:

  K =   
 x  EtOH    γ  EtOH    ϕ  

EtOH
  sat    P  

EtOH
  sat    P   ° 
   _______________________________   

( y   C  2   H  4      ϕ   C  2   H  4     P ) ( x   H  2  O    γ   H  2  O    ϕ  
 H  2  O

  sat    P  
 H  2  O

  sat   )
    (G)

where the standard-state pressure P° is 1 bar, expressed in the units of P.
In addition to Eq. (G) the following expressions apply. Because ∑i yi = 1,

   y   C  2   H  4     = 1 −  y  EtOH   −  y   H  2  O    (H)

Eliminating yEtOH and   y   H  2  O    from Eq. (H) in favor of xEtOH and   x   H  2  O    using the 
vapor/liquid equilibrium relation,    f ̂     i  

v  =   f ̂    i  
 l  , and combining the result with Eqs. (C ), 

(D), and (F ) then gives:

   y  i   =   
 γ  i    x  i    ϕ  i  sat   P  i  sat 

 __________  ϕ  i   P
    (I)
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566 CHAPTER 14. Chemical-Reaction Equilibria

where ϕi replaces    ϕ ˆ    i    because of the assumption that the vapor phase is an ideal 
solution. Equations (H) and (I) yield:

   y   C  2   H  4     = 1 −   
 x  EtOH    γ  EtOH    ϕ  

EtOH
  sat    P  

EtOH
  sat  
  ____________________   ϕ  EtOH   P   −   

 x   H  2  O    γ   H  2  O    ϕ  
 H  2  O

  sat    P  
 H  2  O

  sat  
  _________________  ϕ  i   P

    (J)

Because ethylene is far more volatile than ethanol or water, we can assume to a 
good approximation that   x   C  2   H  4      = 0. Then,

   x   H  2  O   = 1 −  x  EtOH    (K)

Equations (G), (J ), and (K) are the basis for solution of the problem. The pri-
mary variables in these equations are:   x   H  2  O   , xEtOH, and   y   C  2   H  4     . Other quantities are 
either given or determined from correlations of data. The values of   P  

i
  sat   are:

   P  
 H  2  O

  sat   = 15.55    P  
EtOH

  sat   = 30.22 bar  

The quantities   ϕ  i  sat   and ϕi are found from the generalized correlation represented 
by Eq. (10.68) with B0 and B1 given by Eqs. (3.61) and (3.62). Computed results 
are represented by PHIB(TR,PR,OMEGA). With T = 473.15 K, P = 34.5 bar, and 
critical data and acentric factors from App. B, computations provide:

  T   c  i       ∕K   P   c  i      ∕bar ωi   T   r  i       P   r  i       P   r  i    
sat  B0 B1 ϕi   ϕ  i  sat  

EtOH 513.9    61.48 0.645 0.921 0.561 0.492 –0.399 –0.104 0.753 0.780
H2O 647.1 220.55 0.345 0.731 0.156 0.071 –0.613 –0.502 0.846 0.926
C2H4 282.3    50.40 0.087 1.676 0.685 –0.102  0.119 0.963

Substitution of values so far determined into Eqs. (G), (J ), and (K) reduces 
these three equations to the following:

  K =   
0.0493  x  EtOH    γ  EtOH  

  _______________   y   C  2   H  4       x   H  2  O    γ   H  2  O      (L)

   y   C  2   H  4     = 1 − 0.907  x  EtOH    γ  EtOH   − 0.493  x   H  2  O    γ   H  2  O    (M)

   x   H  2  O   = 1 −  x  EtOH    (K)

The only remaining undetermined thermodynamic properties are     γ   H  2  O    and γEtOH. 
Because of the highly nonideal behavior of a liquid solution of ethanol and water, 
these must be determined from experimental data. The required data, found from 
VLE measurements, are given by Otsuki and Williams.9 From their results for the 
ethanol/water system, one can estimate values of     γ   H  2  O    and γEtOH at 200°C. (Pres-
sure has little effect on the activity coefficients of liquids.)

An intuitive ad hoc procedure for solution of the foregoing three equations is as 
follows:

 1. Assume a value for xEtOH and calculate   x   H  2  O    by Eq. (K).

9H. Otsuki and F. C. Williams, Chem. Engr. Progr. Symp. Series No. 6, vol. 49, pp. 55–67, 1953.
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14.8. Phase Rule and Duhem’s Theorem for Reacting Systems 567

 2. Determine     γ   H  2  O    and γEtOH from data in the reference cited.
 3. Calculate   y   C  2   H  4      by Eq. (M).
 4. Calculate K by Eq. (L) and compare with the value of 0.0310 determined from 

 standard-reaction data.
 5. If the two values agree, the assumed value of xEtOH is correct. If they do not 

agree, assume a new value of xEtOH and repeat the procedure.

If xEtOH = 0.06, then by Eq. (K),   x   H  2  O    = 0.94, and from the reference cited,

   γ  EtOH   = 3.34   and    γ   H  2  O   = 1.00  

By Eq. (M),

   y   C  2   H  4     = 1 − (0.907)(3.34)(0.06) − (0.493)(1.00)(0.94) = 0.355  

The value of K given by Eq. (L) is then:

  K =   
(0.0493)(0.06)(3.34)

  _________________  (0.355)(0.94)(1.00)   = 0.0296  

This result is in close enough agreement with the value, 0.0310, found from 
 standard-reaction data to make further calculations unnecessary, and the liquid-phase 
 composition is essentially as assumed (xEtOH = 0.06,   x   H  2  O    = 0.94). The remaining 
vapor-phase compositions (  y   C  2   H  4      has already been determined as 0.356) are found 
by solution of Eq. (I) for   y   H  2  O    or yEtOH. All results are summarized in the  following 
table.

xi yi

EtOH 0.060 0.180
H2O 0.940 0.464
C2H4 0.000 0.356

  ∑  i     x  i   = 1.000   ∑  i     y  i   = 1.000 

These results provide reasonable estimates of actual values, provided no other 
reactions take place.

14.8  PHASE RULE AND DUHEM’S THEOREM FOR 
REACTING SYSTEMS

The phase rule (applicable to intensive properties) as discussed in Secs. 3.1 and 12.2 for non-
reacting systems of π phases and N chemical species is:

  F = 2 − π + N  

It must be modified for application to systems in which chemical reactions occur. The phase-
rule variables are unchanged: temperature, pressure, and N − 1 mole fractions in each phase. 
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The total number of these variables is 2 + (N − 1)(π). The same phase-equilibrium equations 
apply as before, and they number (π  − 1)(N). However, for each independent reaction, 
Eq. (14.8) provides an additional relation that must be satisfied at equilibrium. Because the 
µi’s are functions of temperature, pressure, and the phase compositions, Eq. (14.8) represents 
a relation connecting phase-rule variables. If there are r independent chemical reactions at 
equilibrium within the system, then there is a total of (π − 1)(N) + r independent equations 
relating the phase-rule variables. Taking the difference between the number of variables and 
the number of equations gives:

  F = [2 + (N − 1)(π)] − [(π − 1)(N  ) + r]  

or   F = 2 − π + N − r   (14.36)

This is the phase rule for reacting systems.
The only remaining problem for application is to determine the number of independent 

chemical reactions. This can be done systematically as follows:

 ∙ Write chemical equations for the formation, from the constituent elements,  of each 
chemical compound considered present in the system.

 ∙ Combine these equations to eliminate from them all elements not considered present as 
elements in the system. A systematic procedure is to select one equation and combine it 
with each of the others of the set to eliminate a particular element. Then the process is 
repeated to eliminate another element from the new set of equations. This is done for 
each element eliminated [see Ex. 14.11(d)], and it usually reduces the set by one equa-
tion for each element eliminated. However, the simultaneous elimination of two or more 
elements may occur.

The set of r equations resulting from this reduction procedure is a complete set of inde-
pendent reactions for the N species considered present in the system. More than one such set is 
possible, depending on how the reduction procedure is carried out, but all sets number r and 
are equivalent. The reduction procedure also ensures the following relation:

r ≥ number of compounds present in the system
− number of constituent elements not present as elements 

The phase-equilibrium and chemical-reaction-equilibrium equations are the only ones 
considered in the foregoing treatment as interrelating the phase-rule variables. However, in 
certain situations special constraints may be placed on the system that allow additional equa-
tions to be written over and above those considered in the development of Eq. (14.36). If the 
number of equations resulting from special constraints is s, then Eq. (14.36) must be modified 
to take account of these s additional equations. The still more general form of the phase rule 
that results is:

   F = 2 − π + N − r − s   (14.37)

Example 14.11 shows how Eqs. (14.36) and (14.37) can be applied to specific systems.
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Example 14.11
Determine the number of degrees of freedom F for each of the following systems.

 (a) A system of two miscible nonreacting species that exists as an azeotrope in 
vapor/liquid equilibrium.

 (b) A system prepared by partially decomposing CaCO3 into an evacuated 
space.

 (c) A system prepared by partially decomposing NH4Cl into an evacuated space.

 (d) A system consisting of the gases CO, CO2, H2, H2O, and CH4 in chemical 
equilibrium.

Solution 14.11
(a) The system consists of two nonreacting species in two phases. If there were no 
azeotrope, Eq. (14.36) would apply:

  F = 2 − π + N − r = 2 − 2 + 2 − 0 = 2  

This is the usual result for binary VLE. However, a special constraint is imposed 
on the system; it is an azeotrope. This provides an equation, x1 = y1, not consid-
ered in the development of Eq. (14.36). Thus, Eq. (14.37) with s = 1 yields  
F = 1. If the system is an azeotrope, then just one phase-rule variable—T, P, or  
x1 (= y1)—can be arbitrarily specified.

(b) Here, a single chemical reaction occurs:

    CaCO  3   (  s )   → CaO (  s )   +  CO  2   (  g )     

and r = 1. Three chemical species are present, and three phases: solid CaCO3, 
solid CaO, and gaseous CO2. One might think a special constraint has been 
imposed by the requirement that the system be prepared in a special way—by 
decomposing CaCO3. This is not the case, because no equation connecting the 
phase-rule variables can be written as a result of this requirement. Therefore,

  F = 2 − π + N − r − s = 2 − 3 + 3 − 1 − 0 = 1  

and there is a single degree of freedom. Thus, CaCO3 exerts a fixed decomposi-
tion pressure at fixed T.

(c) The chemical reaction here is:

    NH  4   Cl (  s )   →  NH  3   (  g )   + HCl (  g )     

Three species, but only two phases, are present in this case: solid NH4Cl and a gas 
mixture of NH3 and HCl. In addition, a special constraint is imposed by the 
requirement that the system be formed by the decomposition of NH4Cl. This 
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means that the gas phase is equimolar in NH3 and HCl. Thus a special equation,   
y   NH  3      = yHCl (= 0.5), connecting the phase-rule variables can be written. Applica-
tion of Eq. (14.37) gives:

  F = 2 − π + N − r − s = 2 − 2 + 3 − 1 − 1 = 1  

and the system has but one degree of freedom. This result is the same as that for 
part (b), and it is a matter of experience that NH4Cl has a given decomposition 
pressure at a given temperature. Nonetheless, this conclusion is reached differ-
ently in the two cases.

(d) This system contains five species, all in a single gas phase. There are no spe-
cial constraints. Only r remains to be determined. The formation reactions for the 
compounds present are:

 C +   1 _ 2    O  2   → CO (A)  C +  O  2   →  CO  2   (B)

  H  2   +   1 _ 2    O  2   →  H  2  O (C)  C + 2 H  2   →  CH  4   (D)

Systematic elimination of C and O2, the elements not present in the system, leads 
to two equations. One such pair of equations is obtained in the following way. 
Eliminate C from the set of equations by combining Eq. (B), first with Eq. (A) and 
then with Eq. (D). The two resulting reactions are:

  From (B) and  (A): CO +   1 _ 2    O  2   →  CO  2    (E)

  From (B) and (D): C H  4   +  O  2   → 2 H  2   +  CO  2    (F)

Equations (C ), (E), and (F ) are the new set, and we now eliminate O2 by combin-
ing Eq. (C ), first with Eq. (E) and then with Eq. (F ). This gives:

  From (C) and (E ): C O  2   +  H  2   → CO +  H  2  O  (G)

  From (C) and (F ): C H  4   + 2 H  2  O → C O  2   + 4 H  2    (H)

Equations (G) and (H) are an independent set and indicate that r = 2. The use of 
different elimination procedures produces other pairs of equations, but always just 
two equations.

Application of Eq. (14.37) yields:

  F = 2 − π + N − r − s = 2 − 1 + 5 − 2 − 0 = 4  

This result means that one is free to specify four phase-rule variables, for example, 
T, P, and two mole fractions, in an equilibrium mixture of these five chemical 
species, provided that nothing else is arbitrarily set. In other words, there can be 
no special constraints, such as the specification that the system be prepared from 
given amounts of CH4 and H2O. This imposes special constraints through material 
balances that reduce the degrees of freedom to two. (Duhem’s theorem; see the 
following paragraphs.)
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Duhem’s theorem for nonreacting systems was developed in Sec. 12.2. It states that for 
any closed system formed initially from given masses of particular chemical species, the equi-
librium state is completely determined (extensive as well as intensive properties) by specifica-
tion of any two independent variables. This theorem gives the difference between the number 
of independent variables that completely determine the state of the system and the number of 
independent equations that can be written connecting these variables:

  [2 + (N − 1)(π) + π] − [(π − 1)(N  ) + N] = 2  

When chemical reactions occur, a new variable εj is introduced into the material-balance equa-
tions for each independent reaction. Furthermore, a new equilibrium relation [Eq. (14.8)] can 
be written for each independent reaction. Therefore, when chemical-reaction equilibrium is 
superimposed on phase equilibrium, r new variables appear and r new equations can be writ-
ten. The difference between the number of variables and the number of equations therefore is 
unchanged, and Duhem’s theorem as originally stated holds for reacting systems as well as for 
nonreacting systems.

Most chemical-reaction equilibrium problems are posed such that Duhem’s theorem 
makes them determinate. The usual problem is to find the composition of a system that reaches 
equilibrium from an initial state of fixed amounts of reacting species when the two variables, 
most often T and P, are specified.

14.9 MULTIREACTION EQUILIBRIA

When the equilibrium state in a reacting system depends on two or more independent chemi-
cal reactions, the equilibrium composition can be found by a direct extension of the methods 
developed for single reactions. One first determines a set of independent reactions as dis-
cussed in Sec. 14.8. Each independent reaction has a reaction coordinate in accord with the 
treatment of Sec. 14.1. In addition, a separate equilibrium constant is evaluated for each reac-
tion j, and Eq. (14.10) becomes:

   ∏ 
i

      (     f ̂  i __  f  i  ° 
   )     

 ν  i, j  

  =  K  j    (14.38)

with   K  j   ≡ exp  (     
−Δ G  j  °  ______ 

RT
   )      (   j = 1, 2, . . . , r)   

For a gas-phase reaction Eq. (14.38) takes the form:

   ∏ 
i

      (       f ̂    i   ___  P   °    )     
 ν  i, j  

  =  K  j    (14.39)

If the equilibrium mixture is in the ideal-gas state,

   ∏ 
i

      (   y  i  )    ν  i, j    =   (     P       ___  P   °    )     
− ν  j  

   K  j    (14.40)
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For r independent reactions there are r separate equations of this kind, and the {yi} can be 
eliminated by Eq. (14.7) in favor of the r reaction coordinates εj. The set of equations is 
then solved simultaneously for the r reaction coordinates, as illustrated in the following 
examples.

Example 14.12
A feedstock of pure n-butane is cracked at 750 K and 1.2 bar to produce olefins. Only 
two reactions have favorable equilibrium conversions at these conditions:

  C  4    H  10   →  C  2    H  4   +  C  2    H  6    (I)

  C  4    H  10   →  C  3    H  6   + C H  4     (II)

If these reactions reach equilibrium, what is the product composition?
With data from App. C and procedures illustrated in Ex. 14.4, the equilibrium con-

stants at 750 K are found to be:

  K  I   = 3.856   and    K  II   = 268.4 

Solution 14.12
Equations relating the product composition to the reaction coordinates are devel-
oped as in Ex. 14.3. With a basis of 1 mol of n-butane feed, they become:

   y   C  4   H  10     =   
1 −  ε  I   −  ε  II   ________ 1 +  ε  I   +  ε  II  

    

    y   C  2   H  4     =  y   C  2   H  6     =   
 ε  I   ________ 1 +  ε  I   +  ε  II  

       y   C  3   H  6     =  y  C H  4     =   
  ε  I    I   ________ 1 +  ε  I   +  ε  II  

    

The equilibrium relations, by Eq. (14.40), are:

    
 y   C  2   H  4      y   C  2   H  6     __________  y   C  4   H  10    

   =   (     P ___  P   °    )     
−1

    K  I       
 y   C  3   H  6      y  C H  4     _________  y   C  4   H  10    

   =   (     P ___  P   °    )     
−1

     K  I    I    

Combining these equilibrium equations with the mole-fraction equations yields:

    
 ε  I  2 
  _____________________   (  1 −  ε  I   −  ε  II   )   (  1 +  ε  I   +  ε  II   )  

   =   (     P ___  P   °    )     
−1

    K  I    (A)

    
 ε  II  2  
  _____________________   (  1 −  ε  I   −  ε  II   )   (  1 +  ε  I   +  ε  II   )  

   =   (    P ___  P   °    )     
−1

    K  II    (B)
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Dividing Eq. (B) by Eq. (A) and solving for εII yields:

   ε  II   = κ  ε  I    (C)

where  κ ≡   (    
 K  II   ___  K  I  

   )     
1/2

   (D)

Combining Eqs. (A) and (C) to eliminate εII, and then solving for εI gives:

   ε  I   =   [    
 K  I  ( P   ° ∕P)

  __________________  
1 +  K  I  ( P   ° ∕P)  (  κ + 1 )     2 

   ]     
1/2

   (E)

Substitution of numerical values in Eqs. (D), (E), and (C) yields:

  κ =   (    
268.4

 _____ 3.856   )     
1/2

  = 8.343  

   ε  I   =   [    
(3.856)(1/1.2)

  _______________________   
1 + (3.856)(1/1.2) (9.343)   2 

   ]     
1/2

  = 0.1068  

   ε  II   = (8.343)(0.1068) = 0.8914  

The product-gas composition for these reaction coordinates is:

   y   C  4   H  10     = 0.0010    y   C  2   H  4     =  y   C  2   H  6     = 0.0534    y   C  3   H  6     =  y   CH  4     = 0.4461  

For this simple reaction scheme, analytical solution is possible. However, this is 
unusual. In most cases the solution of multireaction-equilibrium problems requires 
numerical techniques.

Example 14.13
A bed of coal (assumed to be pure carbon) in a coal gasifier is fed with steam and air 
and produces a gas stream containing H2, CO, O2, H2O, CO2, and N2. If the feed to the 
gasifier consists of 1 mol of steam and 2.38 mol of air, calculate the equilibrium com-
position of the gas stream at P = 20 bar for temperatures of 1000, 1100, 1200, 1300, 
1400, and 1500 K. Available data are listed in the following table.

 Δ G  f  °  ∕  J·mol   −1  

T/ K H2O CO CO2

1000 −192,420 −200,240 −395,790
1100 −187,000 −209,110 −395,960
1200 −181,380 −217,830 −396,020
1300 −175,720 −226,530 −396,080
1400 −170,020 −235,130 −396,130
1500 −164,310 −243,740 −396,160
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Solution 14.13
The feed stream to the coal bed consists of 1 mol of steam and 2.38 mol of air, 
containing:

   O  2  : (0.21)(2.38) = 0.5 mol    N  2   : (0.79)(2.38) = 1.88 mol  

The species present at equilibrium are C, H2, CO, O2, H2O, CO2, and N2. The 
formation reactions for the compounds present are:

  

 H  2   +   1 _ 2     O  2   →  H  2  O    (I)

    C +   1 _ 2     O  2   → CO   (II)   

  C +  O  2   →  CO  2    (III)

  

Because the elements hydrogen, oxygen, and carbon are themselves presumed to 
be present in the system, this set of three independent reactions is a complete set.

All species are present as gases except carbon, which is a pure solid phase. In 
the equilibrium expression, Eq. (14.38), the fugacity ratio of the pure carbon, is   
   f ̂    C  ∕ f  C   °    =   f  C   ∕  f  C   °  , the fugacity of carbon at 20 bar divided by the fugacity of carbon 
at 1 bar. Because the effect of pressure on the fugacity of a solid is very small, 
negligible error is introduced by the assumption that this ratio is unity. The fugac-
ity ratio for carbon is then    f ̂    C  ∕ f  C   °    = 1, and it is omitted from the equilibrium expres-
sion. With the assumption that the remaining species are ideal gases, Eq. (14.40) 
is written for the gas phase only, and it provides the following equilibrium expres-
sions for reactions (I) through (III):

   K  I   =   
 y   H  2  O  

 _______ 
 y  

 O  2  
  1/2   y   H  2    

     (    P ___  P   °    )     
−1/2

     K  II   =    y  CO   ____ 
 y  

 O  2  
  1/2 
     (    P ___  P   °    )     

−1/2
     K  III   =   

 y   CO  2     ____  y   O  2    
    

The reaction coordinates for the three reactions are designated εI, εII, and εIII. 
For the initial state,

   n   H  2     =  n  CO   =  n   CO  2     = 0    n   H  2  O   = 1    n   O  2     = 0.5    n   N  2     = 1.88  

Moreover, because only the gas-phase species are considered,

   ν  I   = −    
1
 __ 2      ν  II   =   

1
 __ 2      ν  III   = 0  

Applying Eq. (14.7) to each species gives:

   

  y   H  2     =   
− ε  I   ______________  3.38 + ( ε  II   −  ε  I  )  /  2

  

  

     y  CO   =   
 ε  II   ______________  3.38 + ( ε  II   −  ε  I  )  /  2

  

        y   O  2     =   
  1 _ 2  (1 −  ε  I   −  ε  II  ) −  ε  III  

  ______________  3.38 + ( ε  II   −  ε  I  )  /  2
     y   H  2  O   =   

1 +  ε  I   ______________  3.38 + ( ε  II   −  ε  I  )  /  2
        

 y  C O  2     =   
 ε  III   ______________  3.38 + ( ε  II   −  ε  I   )  /  2

  

  

    y   N  2     =   
1.88
 ______________  3.38 + ( ε  II   −  ε  I  )  /  2
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Substitution of these expressions for yi into the equilibrium equations yields:

   K  I   =   
(1 +  ε  I  ) (2n)   1/2   (P∕ P   ° )   −1/2 

   _____________________   
 (1 −  ε  I   −  ε  II   − 2 ε  III  )   1/2 (− ε  I  )

    

   K  II   =   
 √ 

__
 2   ε  II    (P∕ P   ° )   1/2 

  _______________________   
  (  1 −  ε  I   −  ε  II   − 2 ε  III  )   1/2     n   1/2 

    

   K  III   =   
2 ε  III   ______________   (  1 −  ε  I   −  ε  II   − 2 ε  III   )  

    

where  n ≡ 3.38 +   
 ε  II   −  ε  I   ______ 2    

Numerical values for the Kj calculated by Eq. (14.11) are found to be very large. 
For example, at 1500 K,

  ln  K  I   =   
−Δ G  I  °  ______ 

RT
   =   

164,310
 ____________   (  8.314 )   (  1500 )     = 13.2    K  I   ~  10   6   

  ln  K  II   =   
−Δ G  II  °  

 ______ 
RT

   =   
243,740

 ____________   (  8.314 )   (  1500 )     = 19.6    K  II   ~  10   8   

  ln  K  III   =   
−Δ G  III  °  

 _______ 
RT

   =   
396,160

 ____________   (  8.314 )   (  1500 )     = 31.8    K  III   ~  10   14   

With each Kj so large, the quantity 1 − εI − εII − 2εIII in the denominator of each 
equilibrium equation must be nearly zero. This means that the mole fraction of 
oxygen in the equilibrium mixture is very small. For practical purposes, no oxy-
gen is present.

We therefore reformulate the problem by eliminating O2 from the formation 
reactions. For this, Eq. (I) is combined, first with Eq. (II), and then with Eq. (III). 
This provides two equations:

  C +  CO  2   → 2CO       (a)

   H  2  O + C →  H  2   + CO  (b)

The corresponding equilibrium equations are:

   K  a   =    y  CO  2   ____  y   CO  2    
    (    P ___  P   °    )         K  b   =   

 y   H  2      y  CO  
 _______  y   H  2  O      (    P ___  P   °    )     

The input stream is specified to contain 1 mol H2, 0.5 mol O2, and 1.88 mol N2. 
Because O2 has been eliminated from the set of reaction equations, we replace the 
0.5 mol of O2 in the feed by 0.5 mol of CO2. The presumption is that this amount 
of CO2 has been formed by prior reaction of the 0.5 mol O2 with carbon. In this 
problem, the quantity of carbon or its ratio to other elements is not constrained, so 
this introduces no new complications. Thus the equivalent feed stream contains 
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576 CHAPTER 14. Chemical-Reaction Equilibria

1 mol H2, 0.5 mol CO2, and 1.88 mol N2, and the application of Eq. (14.7) to  
Eqs. (a) and (b) gives:

    

      y   H  2     =   
 ε  b  
 __________  3.38 +  ε  a   +  ε  b           y  CO   =   

2 ε  a   +  ε  b  
 __________  3.38 +  ε  a   +  ε  b    

       y   H  2  O   =   
1 −  ε  b  
 __________  3.38 +  ε  a   +  ε  b         y   CO  2     =   

0.5 −  ε  a  
 __________  3.38 +  ε  a   +  ε  b    

    

 y   N  2     =   
1.88
 __________  3.38 +  ε  a   +  ε  b    

    

Because values of yi must lie between zero and unity, the two expressions on the 
left and the two on the right show that:

  0 ≤  ε  b   ≤ 1     −0.5 ≤  ε  a   ≤ 0.5  

Combining the expressions for the yi with the equilibrium equations gives:

   K  a   =     (  2 ε  a   +  ε  b   )     2   ____________________   (  0.5 − ε )   (  3.38 +  ε  a   +  ε  b   )        (     P ___  P   °    )     (A)

   K  b   =    ε  b  (2 ε  a   +  ε  b  )  ____________________  (1 −  ε  b  )(3.38 +  ε  a   +  ε  b  )      (    P ___  P   °    )     (B)

For reaction (a) at 1000 K,

  Δ  G  1000  °   = 2 (  −200,240 )   −  (  −395,790 )   = −4690   J·mol   −1   

and by Eq. (14.11),

  ln  K  a   =   
4690
 ____________   (  8.314 )   (  1000 )     = 0.5641     K  a   = 1.758  

Similarly, for reaction (b),

  Δ  G  1000  °   =  (  −200,240 )   −  (  −192,420 )   = −7820   J·mol   −1   

and

  ln  K  b   =   
7820
 ____________   (  8.314 )   (  1000 )     = 0.9406     K  b   = 2.561  

Equations (A) and (B) with these values for Ka and Kb and with (P∕P°) = 20 con-
stitute two nonlinear equations in unknowns εa and εb. An ad hoc iteration scheme 
can be devised for their solution, but Newton’s method for solving an array of 
nonlinear algebraic equations is attractive. It is described and applied to this exam-
ple in App. H. The results of calculations for all temperatures are shown in the 
following table.
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14.9. Multireaction Equilibria 577

T/K Ka Kb εa εb

1000   1.758   2.561 −0.0506 0.5336
1100  11.405  11.219     0.1210 0.7124
1200  53.155  38.609     0.3168 0.8551
1300 194.430 110.064     0.4301 0.9357
1400 584.85 268.76     0.4739 0.9713
1500 1514.12 583.58     0.4896 0.9863

Values for the mole fractions yi of the species in the equilibrium mixture are 
calculated by the equations already given. The results of all such calculations 
appear in the following table and are shown graphically in Fig. 14.6.

T/K   y   H  2       y  CO     y   H  2  O     y   CO  2       y   N  2     

1000 0.138 0.112 0.121 0.143 0.486
1100 0.169 0.226 0.068 0.090 0.447
1200 0.188 0.327 0.032 0.040 0.413
1300 0.197 0.378 0.014 0.015 0.396
1400 0.201 0.398 0.006 0.005 0.390
1500 0.203 0.405 0.003 0.002 0.387

At the higher temperatures the values of εa and εb are approaching their upper 
limiting values of 0.5 and 1.0, indicating that reactions (a) and (b) are proceeding 
nearly to completion. In this limit, which is approached even more closely at still 

Figure 14.6: Equilibrium compositions of the 
product gases in Ex. 14.13.
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578 CHAPTER 14. Chemical-Reaction Equilibria

higher temperatures, the mole fractions of CO2 and H2O approach zero, and for 
the product species,

   

   y   H  2     =   
1
 ____________  3.38 + 0.5 + 1.0   = 0.205

     y  CO   =   
1 + 1
 ____________  3.38 + 0.5 + 1.0   = 0.410    

   y   N  2     =   
1.88
 ____________  3.38 + 0.5 + 1.0   = 0.385

    

We have here assumed a sufficient depth of coal so that the gases reach equilib-
rium while in contact with incandescent carbon. This need not be the case; if oxygen 
and steam are supplied at too high a rate, the reactions may not attain equilibrium or 
may reach equilibrium after they have left the coal bed. In this event, carbon is not 
present at equilibrium, and the problem must again be reformulated.

Although Eqs. (A) and (B) of the preceding example are readily solved, the method of 
equilibrium constants does not lend itself to standardization that allows a general program to 
be written for computer solution. An alternative criterion of equilibrium, mentioned in  
Sec. 14.2, is based on the fact that at equilibrium the total Gibbs energy of the system is 
 minimized, as illustrated for a single reaction in Fig. 14.1. Applied to multiple reactions, 
this  criterion is the basis for a general scheme of computer solution of multiple reaction 
equilibria.

The total Gibbs energy of a single-phase system as given by Eq. (10.2) shows that:

   ( G   t )  T, P   = g( n  1  ,  n  2  ,  n  3  ,  . . .    n  N  )  

The problem is to find the set {ni} that minimizes Gt for specified T and P, subject to the con-
straints of the material balances. The standard solution to this problem is based on the method 
of Lagrange multipliers. The procedure for gas-phase reactions is as follows:

 1. The first step is to formulate the constraining equations, i.e., the material balances. 
Although reacting molecular species are not conserved in a closed system, the total 
number of atoms of each element is constant. Let subscript k identify a particular atom. 
Then define Ak as the total number of atomic masses of the kth element in the system, as 
determined by the initial composition of the system. Further, let aik be the number of 
atoms of the kth element present in each molecule of chemical species i. The material 
balance on each element k is then written:

    ∑ 
i

      n  i    a  ik   =  A  k     (k = 1, 2, . . . , w )   (14.41)

www.konkur.in

Telegram: @uni_k



14.9. Multireaction Equilibria 579

or   ∑ 
i

      n  i    a  ik   −  A  k   = 0   (k = 1, 2, . . . , w)  

where w is the total number of distinct elements comprising the system.
 2. Next, we introduce the Lagrange multipliers λk, one for each element, by multiplying 

each element balance by its λk:

   λ  k    (   ∑ 
i

      n  i    a  ik   −  A  k   )    = 0   (k = 1, 2, . . . , w)  

These equations are summed over k, giving:

   ∑ 
k

      λ  k    (   ∑ 
i

      n  i    a  ik   −  A  k   )     = 0 

 3. Then a new function F is formed by addition of this last sum to Gt. Thus,

  F =  G   t  +  ∑ 
k

      λ  k    (   ∑ 
i

      n  i    a  ik   −  A  k   )     

This new function is identical to Gt because the summation term is zero. However, the 
partial derivatives of F and Gt with respect to ni are different, because the function F 
incorporates the constraints of the material balances.

 4. The minimum value of F (and Gt) occurs when all of the partial derivatives (∂F∕∂ni)T, P,   n  
j
     

are zero. We therefore differentiate the preceding equation, and set the resulting deriva-
tive equal to zero:

    (  
∂ F

 ___ ∂  n  i  
  )   

T,   P,   n  j  
   =   (  

∂  G   t 
 ____ ∂  n  i  
  )   

T,  P,   n  j  
   +  ∑ 

k

      λ  k    a  ik   = 0    (i = 1, 2, . . . , N  )   

Because the first term on the right is the definition of the chemical potential [see Eq. (10.1)], 
this equation can be written:

   μ  i   +  ∑ 
k

      λ  k    a  ik   = 0   (i = 1, 2, . . . , N  )  (14.42)

The chemical potential is expressed in terms of fugacity by Eq. (14.9):

   μ  i   =  G  i  °  + RT ln(      f ̂    i   ∕ f  i  ° )  

For gas-phase reactions and standard states as the pure ideal gases at 1 bar:

   μ  i   =  G  i  °  + RT ln(      f ̂    i   ∕ P   ° )  

If   G  i  °   is arbitrarily set equal to zero for all elements in their standard states, then for 
compounds   G  i  °  = Δ G   f  i    °     , the standard Gibbs-energy change of formation for species i. In 
addition, the fugacity is eliminated in favor of the fugacity coefficient by Eq. (10.52),  
  f ̂  i  =  y  i    ϕ ˆ  i     P . With these substitutions, the equation for µi becomes:

    μ  i   = Δ G   f  i    °  + RT ln (      y  i     ϕ ˆ    i   P _____  P   °    )     
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580 CHAPTER 14. Chemical-Reaction Equilibria

Combination with Eq. (14.42) gives:

   Δ G   f  i    °  + RT ln (     
 y  i     ϕ ˆ    i   P

 _____ 
 P   ° 

   )   +  ∑ 
k

      λ  k     a  ik   = 0    (i = 1, 2, . . . , N  )    (14.43)

Note that P° is 1 bar, expressed in the units used for pressure. If species i is an element,  
Δ G   f  i    °   is zero.

Equation (14.43) represents N equilibrium equations, one for each chemical species, and 
Eq. (14.41) represents w material-balance equations, one for each element—a total of 
N + w equations. The unknowns are the {ni} (note that yi = ni  ∕∑i ni), of which there are 
N, and the {λk}, of which there are w—a total of N + w unknowns. Thus the number of 
equations is sufficient for the determination of all unknowns.

The foregoing discussion has presumed that each    ϕ ˆ    i    is known. If the phase is an ideal 
gas, then for each species    ϕ ˆ    i    = 1. If the phase is an ideal solution,    ϕ ˆ    i    =  ϕ  i  , and values can at 
least be estimated. For real gases,    ϕ ˆ    i    is a function of the {yi}, which are being calculated. Thus 
an iterative procedure is indicated. The calculations are initiated with    ϕ ˆ    i    = 1 for all i. Solution 
of the equations then provides a preliminary set of {yi}. For low pressures or high tempera-
tures this result is usually adequate. Where it is not satisfactory, an equation of state is used 
together with the calculated {yi} to give a new and more nearly correct set  {   ϕ ˆ    i  }  for use in 
Eq. (14.43). Then a new set of {yi} is determined. The process is repeated until successive 
iterations produce no significant change in {yi}. All calculations are well suited to computer 
solution, including the calculation of  {   ϕ ˆ    i  }  by equations such as Eq. (10.64).

In the procedure just described, the question of what chemical reactions are involved 
never enters directly into any of the equations. However, the choice of a set of species is 
entirely equivalent to the choice of a set of independent reactions among the species. In any 
event, a set of species or an equivalent set of independent reactions must always be assumed, 
and different assumptions produce different results.

Example 14.14
Calculate the equilibrium compositions at 1000 K and 1 bar of a gas-phase system 
containing the species CH4, H2O, CO, CO2, and H2. In the initial unreacted state there 
are present 2 mol of CH4 and 3 mol of H2O. Values of  Δ G   f  i    °    at 1000 K are:

   
Δ G   f   CH  4      °   = 19,720  J·mol   −1      Δ G   f   H  2  O    °   =  −192,420 J·mol   −1 

       
    Δ G   f  CO    °   =  −200,240 J·mol   −1    Δ G   f   CO  2      °   = −395,790  J·mol   −1 

    

Solution 14.14
The required values of Ak are determined from the initial numbers of moles, and 
the values of aik come directly from the chemical formulas of the species. These 
are shown in the following table.
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14.9. Multireaction Equilibria 581

Element k

Carbon Oxygen Hydrogen

Ak = no. of atomic masses of k in the system

AC = 2 AO = 3 AH = 14

Species i aik = no. of atoms of k per molecule of i

CH4   a   CH  4  ,  C   = 1   a   CH  4  , O   = 0   a   CH  4  , H   = 4 
H2O   a   H  2  O,  C   = 0   a   H  2  O, O   = 1   a   H  2  O, H   = 2 
CO   a  CO,  C   = 1   a  CO, O   = 1   a  CO, H   = 0 
CO2   a   CO  2  ,  C   = 1   a   CO  2  , O   = 2   a   CO  2  , H   = 0 
H2   a   H  2  ,  C   = 0   a   H  2  , O   = 0   a   H  2  , H   = 2 

At 1 bar and 1000 K the assumption of ideal gases is justified, and each    ϕ ˆ    i    is 
unity. Because P = 1 bar, P∕P° = 1, and Eq. (14.43) is written:

    
Δ G   f  i    °  ____ 
RT

   + ln    n  i   _____  ∑  i       n  i  
   +  ∑ 

k

        λ  k   ___ 
RT

    a  ik   = 0  

The five equations for the five species then become:

   CH  4   :   
19,720

 ______ 
RT

   + ln   
 n   CH  4     _____  ∑  i      n  i  

   +   
 λ  C  

 ___ 
RT

   +   
4 λ  H  

 ____ 
RT

   = 0  

   H  2  O :   
−192,420

 _________ 
RT

   + ln   
 n   H  2  O  

 _____  ∑  i      n  i  
   +   

2 λ  H  
 ____ 

RT
   +   

 λ  O  
 ___ 

RT
   = 0  

  CO :   
−200,240

 _________ 
RT

   + ln   
 n  CO  

 _____  ∑  i      n  i  
   +   

 λ  C  
 ___ 

RT
   +   

 λ  O  
 ___ 

RT
   = 0  

  C O  2   :   
−395,790

 _________ 
RT

   + ln   
 n  C O  2     _____  ∑  i      n  i  

   +   
 λ  C  

 ___ 
RT

   +   
2 λ  O  

 ____ 
RT

   = 0  

   H  2   : ln   
 n   H  2     _____  ∑  i      n  i  

   +   
2 λ  H  

 ____ 
RT

   = 0  

The three atom-balance equations [Eq. (14.41)] and the equation for ∑i ni are:

  C :  n   CH  4     +  n  CO   +  n   CO  2     = 2  

  H : 4 n   CH  4     + 2 n   H  2  O   + 2 n   H  2     = 14  

  O :  n   H  2  O   +  n  CO   + 2 n  C O  2     = 3  

   ∑ 
i

        n  i   =  n   CH  4     +  n   H  2  O   +  n  CO   +  n  C O  2     +  n   H  2      
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582 CHAPTER 14. Chemical-Reaction Equilibria

With RT = 8314 J mol−1, simultaneous computer solution of these nine equations10 
produces the following results (yi = ni   ∕∑i ni):

    

 y   CH  4     = 0.0196

  

 

  

 

  

 

    

 y   H  2  O   = 0.0980

  

 

  

 

  

  
 λ  C  

 ___ 
RT

   = 0.7635

      y  CO   = 0.1743          
 λ  O  

 ___ 
RT

   = 25.068     

 y   CO  2     = 0.0371

  

 

  

 

  

  
 λ  H  

 ___ 
RT

   = 0.1994

     

 y   H  2     = 0.6710

  

 

  

 

  

 

    

The values of λk∕RT are not physically meaningful, but they are included for 
completeness.

14.10 FUEL CELLS

A fuel cell is a device in which a fuel is oxidized electrochemically to produce electric power. 
It has some characteristics of a battery, in that it consists of two electrodes, separated by an 
electrolyte. However, the reactants are not stored in the cell but are fed to it continuously, and 
the products of reaction are continuously withdrawn. The fuel cell is thus not given an initial 
electric charge, and in operation it does not lose electric charge. It operates as a  continuous-flow 
system as long as fuel and oxygen are supplied, and it produces a steady electric current. Com-
pared to the conventional process of burning a fuel and extracting mechanical work via a heat 
engine to power a generator, fuel cells provide a more efficient means of converting the chem-
ical energy available by oxidation of fuels into electrical energy. In the context of the present 
chapter, they provide an interesting example of chemical reaction equilibrium influenced by 
an external constraint—the electrical circuit driven by the fuel cell. They also allow the intro-
duction of an electrochemical system without requiring development of the thermodynamics 
of electrolyte solutions, which is beyond the scope of this text.

In a fuel cell, the fuel—e.g., hydrogen, methane, butane, or methanol—makes intimate 
contact with an anode or fuel electrode, and oxygen (usually in air) makes intimate contact 
with a cathode or oxygen electrode. Half-cell reactions occur at each electrode, and their sum 
is the overall reaction. Several types of fuel cell exist, each characterized by a particular type 
of electrolyte.11

Cells operating with hydrogen as the fuel are the simplest such devices, and they serve 
to illustrate basic principles. Schematic diagrams of hydrogen/oxygen fuel cells appear in 

10Example computer code for this problem is available in the Connect online learning center.

11Construction details of the various types of fuel cells and extensive explanations of their operation are given  
by J. Larminie and A. Dicks, Fuel Cell Systems Explained, 2nd ed., Wiley, New York, 2003. See also R. O’Hayre,  
S.-W. Cha, W. Colella, and F. B. Prinz, Fuel Cell Fundamentals, 3rd ed., Wiley, New York, 2016.
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14.10. Fuel Cells 583

 Fig. 14.7. When the electrolyte is acidic [Fig. 14.7(a)], the half-cell reaction occurring at the 
hydrogen electrode (anode) is:

   H  2   → 2 H   +  + 2 e   −   

and that at the oxygen electrode (cathode) is:

    1 _ 2    O  2   + 2 e   −  + 2 H   +  →  H  2  O(g)  

When the electrolyte is alkaline [Fig. 14.7(b)], the half-cell reaction at the anode is:

   H  2   + 2 OH   −  → 2 H  2  O(g) + 2 e   −   

Figure 14.7: Schematic diagrams of fuel cells. (a) Acid electrolyte; (b) alkaline electrolyte.
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584 CHAPTER 14. Chemical-Reaction Equilibria

and at the cathode:
    1 _ 2    O  2   + 2 e   −  +  H  2  O(g) → 2 OH   −   

In either case, the sum of the half-cell reactions is the overall reaction of the cell:

   H  2   +   1 _ 2   O    2   →  H  2  O(g)  

This of course is the combustion reaction of hydrogen, but combustion in the conventional 
sense of burning does not occur in the cell.

In both cells, electrons with negative charge (e−) are released at the anode, produce an 
electric current in an external circuit, and are taken up by the reaction occurring at the cath-
ode. The electrolyte does not allow the passage of electrons, but it provides a path for migra-
tion of ions from one electrode to the other. With an acid electrolyte, protons (H+) migrate 
from anode to cathode, whereas with an alkaline electrolyte hydroxyl ions (OH−) migrate from 
cathode to anode.

For many practical applications the most satisfactory hydrogen/oxygen fuel cell is built 
around a solid polymer that serves as an acid electrolyte. Because it is very thin and conducts 
H+ ions or protons, it is known as a proton-exchange membrane. Each side of the membrane is 
bonded to a porous electrode loaded with an electrocatalyst such as platinum nanoparticles. 
The porous electrodes provide a very large surface area for reaction and accommodate the 
diffusion of hydrogen and oxygen into the cell and water vapor out of the cell. Cells can be 
stacked and connected in series to make very compact units with a desired overall voltage. 
They typically operate at temperatures near 60°C.

Because fuel-cell operation is a steady-flow process, the first law takes the form:

  ΔH = Q +  W  elect    

where potential- and kinetic-energy terms are omitted as negligible and shaft work has been 
replaced by electrical work. If the cell operates reversibly and isothermally,

  Q = TΔS   and   ΔH = TΔS +  W  elect    

The electrical work of a reversible cell is therefore:

   W  elect   = ΔH − TΔS = ΔG  (14.44)

where Δ denotes a property change of reaction. The heat transfer to the surroundings required 
for isothermal operation is:
  Q = ΔH − ΔG  (14.45)

With reference to Fig. 14.7(a), we note that for each molecule of hydrogen consumed, two 
electrons pass to the external circuit. On the basis of 1 mol of H2, the charge (q) transferred 
between electrodes is:
  q = 2 N  A  (−e) coulomb  

where −e is the charge on each electron and NA is Avogadro’s number. Because the product 
NAe is Faraday’s constant F, q = −2F.12 The electrical work is then the product of the charge 
transferred and the emf (E, expressed in volts) of the cell:

   W  elect   = −2FE joule  

12Faraday’s constant is equal to 96,485 C·mol−1.
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14.10. Fuel Cells 585

The emf of a reversible cell is therefore:

  E =   
− W  elect   _______ 2F

   =   
−ΔG

 _____ 2F
    (14.46)

These equations can be applied to a hydrogen/oxygen fuel cell operating at 25°C and 
1 bar with pure H2 and pure O2 as reactants and pure H2O vapor as product. If these species 
are assumed to be ideal gases, then the reaction occurring is the standard formation reaction 
for H2O(g) at 298.15 K, for which values from Table C.4 are:

  ΔH = Δ H   f  298    °   = −241,818  J·mol   −1    and   ΔG = Δ G   f  298    °   = −228,572  J·mol   −1   

Equations (14.44) through (14.46) then yield:

   W  elect   = −228,572  J·mol   −1    Q = −13,246  J·mol   −1    E = 1.184 volts  

If, as is more commonly the case, air is the source of oxygen, the cell receives O2 at its 
partial pressure in air. Because the enthalpy of ideal gases is independent of pressure, the 
enthalpy change of reaction for the cell is unchanged. However, the Gibbs-energy change of 
reaction is affected. By Eq. (10.24),

   G  i  
ig

  −   G ¯    i  
ig

  = −RT   ln  y  i    

Therefore, on the basis of 1 mol of H2O formed,

   

ΔG = Δ G   f  298    °   +  (0.5)  ( G   O  2    
ig

   −   G ¯     O  2    
ig

  ) 

        = Δ G   f  298    °   + 0.5RT ln  y   O  2        

    = 228,572 −  (0.5)  (8.314)  (298.15)  (ln  0.21)  = −226,638  J·mol   −1 

   

Equations (14.44) through (14.46) now yield:

   W  elect   = −226,638  J·mol   −1    Q = −15,180  J·mol   −1    E = 1.174 volts  

The use of air rather than pure oxygen does not significantly reduce the emf or work output of 
a reversible cell.

The enthalpy and Gibbs-energy changes of reaction are given as functions of tempera-
ture by Eqs. (4.19) and (14.18). For a cell temperature of 60°C (333.15 K), the integrals in 
these equations are evaluated as:

 
 ∫ 

298.15
  

333.15
     
Δ C  P   ° 

 _____ 
R

     dT = IDCPH(298.15, 333.15; −1.5985, 0.775E-3, 0.0, 0.1515E+5)
        

           = −42.0472

  

  
 ∫ 

298.15
  

333.15
     
Δ C  P   ° 

 _____ 
R

       
dT

 ___ 
T

   = IDCPS(298.15, 333.15; −1.5985, 0.775E-3, 0.0, 0.1515E+5)
        

                = −0.13334
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Equations (4.19) and (14.18) then yield:

  Δ H   f  333    °   = −242,168  J·mol   −1    and   Δ G   f  333    °   = −226,997  J·mol   −1   

With cell operation at 1 bar and oxygen extracted from air,  ΔH = Δ H   f  333    °   , and

  ΔG = −226,997 −  (0.5)  (8.314)  (333.15)  (ln 0.21)  = −224,836  J·mol   −1   

Equations (14.44) through (14.46) now yield:

   W  elect   = −224,836  J·mol   −1    Q = −17,332  J·mol   −1    E = 1.165 volts  

Thus cell operation at 60°C rather than at 25°C reduces the voltage and work output of a 
reversible cell by only a small amount.

These calculations for a reversible cell show that the electrical work output is more than 
90% of the heat that would be released (ΔH) by actual combustion of the fuel. Were this heat 
supplied to a Carnot engine operating at practical temperature levels, a much smaller fraction 
would be converted into work. The reversible operation of a fuel cell implies that the external 
circuit exactly balances its emf, with the result that its current output is negligible. In actual 
operation under reasonable load, internal irreversibilities inevitably reduce the emf of the cell 
and decrease its production of electrical work while increasing the amount of heat transfer to 
the surroundings. The operating emf of hydrogen/oxygen fuel cells is often 0.6–0.7 volts, and 
the work output is closer to 50% of the heating value of the fuel. Nevertheless, the irreversibil-
ities of a fuel cell are far less than those inherent in combustion of the fuel and production of 
work by a practical heat engine. A fuel cell has the additional advantages of simplicity, of 
clean and quiet operation, and of directly producing electrical energy. Fuels other than hydro-
gen can also be used in fuel cells, but they require the development of effective catalysts. 
Methanol, for example, reacts at the anode of a proton-exchange membrane fuel cell according 
to the equation:

   CH  3    OH +  H  2  O → 6 H   +  + 6 e   −  +  CO  2    

The usual reaction of oxygen to form water vapor occurs at the cathode.

14.11 SYNOPSIS

After studying this chapter, including the end-of-chapter problems, one should be able to:

 ∙ Define the reaction coordinate for a single reaction or multiple reaction coordinates 
for  multiple reactions and write species concentrations in terms of the reaction 
coordinate(s)

 ∙ Understand that minimization of the Gibbs energy with respect to allowable changes is 
a general criterion for equilibrium of chemical reactions

 ∙ Define the standard Gibbs energy of reaction and the equilibrium constant
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 ∙ Compute the standard Gibbs energy of reaction and the equilibrium constant from tables 
of thermodynamic data

 ∙ Understand that the majority of the temperature dependence of reaction equilibria is 
given by d(ln   K)/dT = −ΔH°/(RT2), which implies that plots of ln K vs. 1/T are very 
nearly linear

 ∙ Compute the equilibrium constant for a reaction at arbitrary temperature using heat 
capacity integrals with standard enthalpies of formation and Gibbs energies of forma-
tion (or standard entropies)

 ∙ Solve for the equilibrium composition of a mixture of gases undergoing one or more 
chemical reactions

  ∙ In the ideal-gas state
  ∙  Using pure-component fugacity coefficients for moderate deviations from the ideal- 

gas state
  ∙  Using mixture fugacity coefficients for conditions where deviations from the  ideal-gas 

state are more significant
 ∙ Solve for the equilibrium composition of a liquid mixture undergoing one or more chem-

ical reactions, including nonideal solutions where the treatment must include activity 
coefficients

 ∙ Employ the method of Lagrange multipliers to treat multiple-reaction equilibrium
 ∙ Set up the equations for combined phase and reaction equilibrium problems and under-

stand conceptually how to approach a solution to the problem
 ∙ Explain the operation of a fuel cell and compute the maximum possible emf and work 

produced by a given fuel/oxidizer combination

14.12 PROBLEMS

 14.1. Develop expressions for the mole fractions of reacting species as functions of the reac-
tion coordinate for:

 (a) A system initially containing 2 mol NH3 and 5 mol O2 and undergoing the 
reaction:

   4  NH  3   (  g )   + 5 O  2   (  g )   → 4NO (  g )   + 6 Η  2  Ο (  g )     

 (b) A system initially containing 3 mol H2S and 5 mol O2 and undergoing the 
reaction:

   2 H  2  S (  g )   + 3 O  2   (  g )   → 2 H  2  O (  g )   + 2 SO  2   (  g )     

 (c) A system initially containing 3 mol NO2, 4 mol NH3, and 1 mol N2 and under-
going the reaction:

   6 NO  2   (  g )   + 8 NH  3   (  g )   → 7 N  2   (  g )   + 12 H  2  O (  g )     
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588 CHAPTER 14. Chemical-Reaction Equilibria

 14.2. A system initially containing 2 mol C2H4 and 3 mol O2 undergoes the reactions:

    
 C  2     H  4  (g) +   1 _ 2     O  2  (g) → ⟨  (   CH  2   )    2  ⟩O (g)

    
  C  2     H  4  (g) + 3 O  2   (  g )   → 2 CO  2   (  g )   + 2 H  2  O  (  g )   

   

  Develop expressions for the mole fractions of the reacting species as functions of the 
reaction coordinates for the two reactions.

 14.3. A system formed initially of 2 mol CO2, 5 mol H2, and 1 mol CO undergoes the 
reactions:

   
  CO  2   (  g )   + 3 H  2   (  g )   →  CH  3    OH (  g )   +  H  2  O (  g )   

    
  CO  2   (  g )   +  H  2   (  g )   → CO (  g )   +  H  2  O (  g )   

    

Develop expressions for the mole fractions of the reacting species as functions of the 
reaction coordinates for the two reactions.

 14.4. Consider the water-gas-shift reaction:

    H  2     (  g )   + C O  2   (  g )   →  H  2  Ο   (  g )   + CO  (  g )     

At high temperatures and low to moderate pressures the reacting species form an 
 ideal-gas mixture. By Eq. (10.27):

  G =  ∑ 
i

      y  i    G  i   + RT     ∑ 
i

      y  i   ln  y  i    

When the Gibbs energies of the elements in their standard states are set equal to zero,   
G  i   = Δ G   f  i    °   for each species, and then:

  G =  ∑ 
i

      y  i   Δ G   f  i    °  + RT       ∑ 
i

      y  i   ln  y  i    (A)

At the beginning of Sec. 14.2 we noted that Eq. (12.3) is a criterion of equilibrium. 
Applied to the water-gas-shift reaction with the understanding that T and P are con-
stant, this equation becomes:

  d G   t  = d(nG) = ndG + Gdn = 0   n   
dG

 ___ 
dε

   + G   
dn

 ___ 
dε

   = 0  

Here, however, dn∕dε = 0. The equilibrium criterion therefore becomes:

    
dG

 ___ 
dε

   = 0  (B)

Once the yi are eliminated in favor of ε, Eq. (A) relates G to ε. Data for  Δ G   f  i    °   for the 
compounds of interest are given with Ex. 14.13. For a temperature of 1000 K (the 
reaction is unaffected by P) and for a feed of 1 mol H2 and 1 mol CO2:

 (a) Determine the equilibrium value of ε by application of Eq. (B).
 (b) Plot G vs. ε, indicating the location of the equilibrium value of ε determined in part (a).

 14.5. Rework Prob. 14.4 for a temperature of:

 (a) 1100 K; (b) 1200 K; (c) 1300 K.
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 14.6. Use the method of equilibrium constants to verify the value of ε found as an answer in 
one of the following.

 (a) Prob. 14.4; (b) Prob. 14.5(a); (c) Prob. 14.5(b); (d) Prob. 14.5(c)

 14.7. Develop a general equation for the standard Gibbs-energy change of reaction ΔG° as 
a function of temperature for one of the reactions given in parts (a), ( f ), (i), (n), (r), 
(t), (u), (x), and (  y   ) of Prob. 4.23.

 14.8. For ideal gases, exact mathematical expressions can be developed for the effect of T 
and P on εe. For conciseness, let   ∏ 

i

      (   y  i   )    ν  i    ≡  K  y   . Then:

    (    
∂  ε  e   ___ ∂ T   )    

P
    =   (    

∂  K  y   ____ ∂ T   )    
P
       

d ε  e   ____ 
d K  y  

     and     (    
∂  ε  e   ___ ∂ P   )    

T
    =   (    

∂  K  y   ____ ∂ P   )    
T
       

d ε  e   ____ 
d K  y  

    

Use Eqs. (14.28) and (14.14), to show that:

 (a)    (  
∂  ε  e   ___ ∂ T  )   

P

   =   
K
 ____ 

R T   2 
     
d ε  e   ____ 
d K  y  

   Δ H   °  

 (b)    (     
∂  ε  e   ___ ∂ P   )    

T
   =   

 K  y   ___ 
P

     
d ε  e   ____ 
d K  y  

    (−ν)  

 (c) dεe∕dKy is always positive. (Note: It is equally valid and perhaps easier to show 
that the reciprocal is positive.)

 14.9. For the ammonia synthesis reaction written:

    1 _ 2     N  2  (g) +   3 _ 2     H  2  (g) →  NH  3  (g)  

with 0.5 mol N2 and 1.5 mol H2 as the initial amounts of reactants and with the 
assumption that the equilibrium mixture is in the ideal gas state, show that:

   ε  e   = 1 −   (  1 + 1.299K   P ___ 
P°   )     

−1/2
   

 14.10. Peter, Paul, and Mary, members of a thermodynamics class, are asked to find the equi-
librium composition at a particular T and P and for given initial amounts of reactants 
for the following gas-phase reaction:

  2 NH  3   + 3NO → 3 H  2  O +   5 _ 2     N  2    (A)

Each solves the problem correctly in a different way. Mary bases her solution on reac-
tion (A) as written. Paul, who prefers whole numbers, multiplies reaction (A) by 2:

  4 NH  3   + 6NO → 6 H  2  O + 5 N  2    (B)

Peter, who usually does things backward, deals with the reaction:

  3 H  2  O +   5 _ 2     N  2   → 2 NH  3   + 3NO  (C)
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Write the chemical-equilibrium equations for the three reactions, indicate how the 
equilibrium constants are related, and show why Peter, Paul, and Mary all obtain the 
same result.

 14.11. The following reaction reaches equilibrium at 500°C and 2 bar:

   4HCl (  g )   +  O  2   (  g )   → 2 H  2  O (  g )   + 2 Cl  2   (  g )     

If the system initially contains 5 mol HCl for each mole of oxygen, what is the compo-
sition of the system at equilibrium? Assume ideal gases.

 14.12. The following reaction reaches equilibrium at 650°C and atmospheric pressure:

    N  2   (  g )   +  C  2     H  2   (  g )   → 2HCN (  g )     

If the system initially is an equimolar mixture of nitrogen and acetylene, what is the 
composition of the system at equilibrium? What would be the effect of doubling  
the pressure? Assume ideal gases.

 14.13. The following reaction reaches equilibrium at 350°C and 3 bar:

    CH  3  CHO (  g )   +  H  2   (  g )   →  C  2    H  5   OH (  g )     

If the system initially contains 1.5 mol H2 for each mole of acetaldehyde, what is the 
composition of the system at equilibrium? What would be the effect of reducing the 
pressure to 1 bar? Assume ideal gases.

 14.14. The following reaction, hydrogenation of styrene to ethylbenzene, reaches equilibrium 
at 650°C and atmospheric pressure:

    C  6    H  5     CH:CH  2   (  g )   +  H  2   (  g )   →  C  6     H  5     .C  2     H  5   (  g )     

If the system initially contains 1.5 mol H2 for each mole of styrene (C6H5CH:CH2), 
what is the composition of the system at equilibrium? Assume ideal gases.

 14.15. The gas stream from a sulfur burner is composed of 15 mol-% SO2, 20 mol-% O2, and 
65 mol-% N2. This gas stream at 1 bar and 480°C enters a catalytic converter, where 
the SO2 is further oxidized to SO3. Assuming that the reaction reaches equilibrium, 
how much heat must be removed from the converter to maintain isothermal condi-
tions? Base your answer on 1 mol of entering gas.

 14.16. For the cracking reaction,

    C  3     H  8   (  g )   →  C  2     H  4   (  g )   +  CH  4   (  g )     

the equilibrium conversion is negligible at 300 K, but it becomes appreciable at tem-
peratures above 500 K. For a pressure of 1 bar, determine:

 (a) The fractional conversion of propane at 625 K.
 (b) The temperature at which the fractional conversion is 85%.
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 14.17. Ethylene is produced by the dehydrogenation of ethane. If the feed includes 0.5 mol of 
steam (an inert diluent) per mole of ethane and if the reaction reaches equilibrium at 
1100 K and 1 bar, what is the composition of the product gas on a water-free basis?

 14.18. The production of 1,3-butadiene can be carried out by the dehydrogenation of 
1-butene:

    C  2     H  5     CH:CH  2   (    g )   →  H  2   C:CHHC:CH  2   (  g )   +  H  2   (  g )     

Side reactions are suppressed by the introduction of steam. If equilibrium is attained at 
950 K and 1 bar and if the reactor product contains 10 mol-% 1,3-butadiene, find:

 (a) The mole fractions of the other species in the product gas.
 (b) The mole fraction of steam required in the feed.

 14.19. The production of 1,3-butadiene can be carried out by the dehydrogenation of 
n-butane:

    C  4     H  10   (  g )   →  H  2   C:CHHC:CH  2   (  g )   + 2 H  2   (  g )     

Side reactions are suppressed by the introduction of steam. If equilibrium is attained at 
925 K and 1 bar and if the reactor product contains 12 mol-% 1,3-butadiene, find:

 (a) The mole fractions of the other species in the product gas.
 (b) The mole fraction of steam required in the feed.

 14.20. For the ammonia synthesis reaction,

    1 _ 2    N  2  (g) +   3 _ 2     H  2   →  NH  3  (g)  

the equilibrium conversion to ammonia is large at 300 K, but it decreases rapidly with 
increasing T. However, reaction rates become appreciable only at higher temperatures. 
For a feed mixture of hydrogen and nitrogen in the stoichiometric proportions,

 (a) What is the equilibrium mole fraction of ammonia at 1 bar and 300 K?
 (b) At what temperature does the equilibrium mole fraction of ammonia equal 0.50 

for a pressure of 1 bar?
 (c) At what temperature does the equilibrium mole fraction of ammonia equal 0.50 

for a pressure of 100 bar, assuming the equilibrium mixture is an ideal gas?
 (d) At what temperature does the equilibrium mole fraction of ammonia equal 0.50 

for a pressure of 100 bar, assuming the equilibrium mixture is an ideal solution of 
gases?

 14.21. For the methanol synthesis reaction,

   CO (  g )   + 2 H  2   (  g )   →  CH  3   OH (  g )     

the equilibrium conversion to methanol is large at 300 K, but it decreases rapidly 
with  increasing T. However, reaction rates become appreciable only at higher 
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temperatures. For a feed mixture of carbon monoxide and hydrogen in the stoichio-
metric proportions,

 (a) What is the equilibrium mole fraction of methanol at 1 bar and 300 K?
 (b) At what temperature does the equilibrium mole fraction of methanol equal 0.50 

for a pressure of 1 bar?
 (c) At what temperature does the equilibrium mole fraction of methanol equal 

0.50 for a pressure of 100 bar, assuming the equilibrium mixture is an 
ideal gas?

 (d) At what temperature does the equilibrium mole fraction of methanol equal 0.50 
for a pressure of 100 bar, assuming the equilibrium mixture is an ideal solution of 
gases?

 14.22. Limestone (CaCO3) decomposes upon heating to yield quicklime (CaO) and carbon 
dioxide. At what temperature is the decomposition pressure of limestone 1(atm)?

 14.23. Ammonium chloride [NH4Cl(s)] decomposes upon heating to yield a gas mixture of 
ammonia and hydrochloric acid. At what temperature does ammonium chloride exert 
a decomposition pressure of 1.5 bar? For NH4Cl(s),  Δ H   f  298    °   = −314,430  J·mol   −1   and  
 Δ G   f  298    °   = −202,870  J·mol   −1  .

 14.24. A chemically reactive system contains the following species in the gas phase: NH3, 
NO, NO2, O2, and H2O. Determine a complete set of independent reactions for this 
system. How many degrees of freedom does the system have?

 14.25. The relative compositions of the pollutants NO and NO2 in air are governed by the 
reaction,

  NO +   1 _ 2     O  2   →  NO  2    

For air containing 21 mol-% O2 at 25°C and 1.0133 bar, what is the concentration 
of NO in parts per million if the total concentration of the two nitrogen oxides is 
5 ppm?

 14.26. Consider the gas-phase oxidation of ethylene to ethylene oxide at a pressure of 1 bar 
with 25% excess air. If the reactants enter the process at 25°C, if the reaction proceeds 
adiabatically to equilibrium, and if there are no side reactions, determine the composi-
tion and temperature of the product stream from the reactor.

 14.27. Carbon black is produced by the decomposition of methane:

    CH  4   (  g )   → C (  s )   + 2 H  2   (  g )     

For equilibrium at 650°C and 1 bar,

 (a) What is the gas-phase composition if pure methane enters the reactor, and what 
fraction of the methane decomposes?

 (b) Repeat part (a) if the feed is an equimolar mixture of methane and nitrogen.
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 14.28. Consider the reactions:

   
  1 _ 2     N  2  (g) +   1 _ 2     O  2  (g) → NO(g)

    
  1 _ 2     N  2  (g) +  O  2  (g) →  NO  2  (g)

    

If these reactions come to equilibrium after combustion in an internal-combustion 
engine at 2000 K and 200 bar, estimate the mole fractions of NO and NO2 present for 
mole fractions of nitrogen and oxygen in the combustion products of 0.70 and 0.05.

 14.29. Oil refineries often have both H2S and SO2 to dispose of. The following reaction sug-
gests a means of getting rid of both at once:

   2 H  2   S (  g )   +  SO  2   (  g )   → 3S (  s )   + 2 H  2  O (  g )     
For reactants in the stoichiometric proportion, estimate the percent conversion of each 
reactant if the reaction comes to equilibrium at 450°C and 8 bar.

 14.30. Species N2O4 and NO2 as gases come to equilibrium by the reaction: N2O4 → 2NO2.

 (a) For T = 350 K and P = 5 bar, calculate the mole fractions of these species in the 
equilibrium mixture. Assume ideal gases.

 (b) If an equilibrium mixture of N2O4 and NO2 at conditions of part (a) flows through 
a throttle valve to a pressure of 1 bar and through a heat exchanger that restores its 
initial temperature, how much heat is exchanged, assuming chemical equilibrium 
is again attained in the final state? Base the answer on an amount of mixture 
equivalent to 1 mol of N2O4, i.e., as though the NO2 were present as N2O4.

 14.31. The following isomerization reaction occurs in the liquid phase: A → B, where A and 
B are miscible liquids for which: GE∕RT = 0.1xAxB. If  Δ G  298  °   = −1000 J , what is the 
equilibrium composition of the mixture at 25°C? How much error is introduced if one 
assumes that A and B form an ideal solution?

 14.32. Hydrogen gas can be produced by the reaction of steam with “water gas,” an equimolar 
mixture of H2 and CO obtained by the reaction of steam with coal. A stream of “water 
gas” mixed with steam is passed over a catalyst to convert CO to CO2 by the reaction:

    H  2  O (  g )   + CO (  g )   →  H  2   (  g )   +  CO  2   (  g )     

Subsequently, unreacted water is condensed and carbon dioxide is absorbed, leaving a 
product that is mostly hydrogen. The equilibrium conditions are 1 bar and 800 K.

 (a) Is any advantage gained by carrying out the reaction at pressures above 1 bar?
 (b) Would increasing the equilibrium temperature increase the conversion of CO?
 (c) For the given equilibrium conditions, determine the molar ratio of steam to “water 

gas” (H2 + CO) required to produce a product gas containing only 2 mol-% CO 
after cooling to 20°C, where the unreacted H2O has been virtually all condensed.

 (d ) Is there any danger that solid carbon will form at the equilibrium conditions by the 
reaction

   2CO (  g )   →  CO  2   (  g )   + C (  s )     
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 14.33. The feed gas to a methanol synthesis reactor is composed of 75 mol-% H2, 15 mol-% 
CO, 5 mol-% CO2, and 5 mol-% N2. The system comes to equilibrium at 550 K and 
100 bar with respect to the reactions:

 2H2(g) + CO(g) →  CH  3    OH(g)   H2(g) + CO2(g) → CO(g) + H2O(g) 

Assuming ideal gases, determine the composition of the equilibrium mixture.

 14.34. “Synthesis gas” can be produced by the catalytic re-forming of methane with steam. 
The reactions are:

   CH  4  (g) +  H  2  O(g) → CO(g) + 3 H  2  (g)   CO(g) +  H  2  O(g) →  CO  2  (g) +  H  2  (g)  

Assume equilibrium is attained for both reactions at 1 bar and 1300 K.

 (a) Would it be better to carry out the reaction at pressures above 1 bar?
 (b) Would it be better to carry out the reaction at temperatures below 1300 K?
 (c) Estimate the molar ratio of hydrogen to carbon monoxide in the synthesis gas if 

the feed consists of an equimolar mixture of steam and methane.
 (d) Repeat part (c) for a steam-to-methane mole ratio in the feed of 2.
 (e) How could the feed composition be altered to yield a lower ratio of hydrogen to 

carbon monoxide in the synthesis gas than is obtained in part (c)?
 (    f    ) Is there any danger that carbon will deposit by the reaction 2CO → C + CO2 under 

conditions of part (c)? Part (d)? If so, how could the feed be altered to prevent 
carbon deposition?

 14.35. Consider the gas-phase isomerization reaction: A→B.

 (a) Assuming ideal gases, develop from Eq. (14.28) the chemical-reaction equilib-
rium equation for the system.

 (b) The result of part (a) should suggest that there is one degree of freedom for the 
equilibrium state. Upon verifying that the phase rule indicates two degrees of free-
dom, explain the discrepancy.

 14.36. A low-pressure, gas-phase isomerization reaction, A→B, occurs at conditions such 
that vapor and liquid phases are present.

 (a) Prove that the equilibrium state is univariant.
 (b) Suppose T is specified. Show how to calculate xA, yA, and P. State carefully, and 

justify, any assumptions.

 14.37. Set up the equations required for solution of Ex. 14.14 by the method of equilibrium 
constants. Verify that your equations yield the same equilibrium compositions as 
given in the example.

 14.38. Reaction-equilibrium calculations may be useful for estimation of the compositions 
of hydrocarbon feedstocks. A particular feedstock, available as a low-pressure gas 
at  500 K, is identified as “aromatic C8.” It could in principle contain the C8H10 
 isomers: o-xylene (OX), m-xylene (MX), p-xylene (PX), and ethylbenzene (EB). 
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Estimate how much of each species is present, assuming the gas mixture has come to 
equilibrium at 500 K and low pressure. The following is a set of independent reac-
tions (why?):

 OX → MX (I)  OX → PX (II)  OX → EB (III)

 (a) Write reaction-equilibrium equations for each equation of the set. State clearly any 
assumptions.

 (b) Solve the set of equations to obtain algebraic expressions for the equilibrium 
vapor-phase mole fractions of the four species in relation to the equilibrium con-
stants, KI, KII, KIII.

 (c) Use the following data to determine numerical values for the equilibrium  constants 
at 500 K. State clearly any assumptions.

 (d) Determine numerical values for the mole fractions of the four species.

Species  ∆  H   f  298    °    ∕  J·mol   −1   ∆  G   f  298    °   ∕   J·mol   −1  

OX(g) 19,000 122,200
MX(g) 17,250 118,900
PX(g) 17,960 121,200
EB(g) 29,920 130,890

 14.39. Ethylene oxide as a vapor and water as liquid, both at 25°C and 101.33 kPa, react 
to  form a liquid solution containing ethylene glycol (1,2-ethanediol) at the same 
conditions:

    ⟨    (   CH  2   )    2   ⟩  O +  H  2  O →  CH  2     OH.CH  2    OH   

If the initial molar ratio of ethylene oxide to water is 3.0, estimate the equilibrium 
conversion of ethylene oxide to ethylene glycol.

At equilibrium the system consists of liquid and vapor in equilibrium, and the intensive 
state of the system is fixed by the specification of T and P. Therefore, one must 
first determine the phase compositions, independent of the ratio of reactants. These 
results may then be applied in the material-balance equations to find the equilibrium 
conversion.

Choose as standard states for water and ethylene glycol the pure liquids at 1 bar and 
for ethylene oxide the pure ideal gas at 1 bar. Assume any water present in the liquid 
phase has an activity coefficient of unity and that the vapor phase is an ideal gas. The 
partial pressure of ethylene oxide over the liquid phase is given by:

   p  i   ∕ kPa = 415  x  i    

The vapor pressure of ethylene glycol at 25°C is so low that its concentration in the 
vapor phase is negligible.
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 14.40. In chemical-reaction engineering, special measures of product distribution are some-
times used when multiple reactions occur. Two of these are yield Yj and selectivity Sj∕k. 
We adopt the following definitions13:

   

 Y  j   ≡   
moles formed of desired product j

    ________________________________________________     
 moles of j that would be formed with no side reactions and      with complete consumption of the limiting reactant species 

  

      

 S  j∕k   ≡   
moles formed of desired product j

   ______________________________   moles formed of undesired product k  

    

For any particular application, yield and selectivity can be related to component rates 
and reaction coordinates. For two-reaction schemes the two reaction coordinates 
can be found from Yj and Sj∕k, allowing the usual material-balance equations to be 
written.

Consider the gas-phase reactions:

  A + B → C  (I)      A + C → D  (II)  

Here, C is the desired product, and D is the undesired by-product. If the feed to a 
steady-flow reactor contains 10 kmol·h−1 of A and 15 kmol·h−1 of B, and if YC = 0.40 
and SC/D = 2.0, determine complete product rates and the product composition (mole 
fractions), using reaction coordinates.

 14.41. The following problems involving chemical-reaction stoichiometry are to be solved 
through the use of reaction coordinates.

 (a) Feed to a gas-phase reactor comprises 50 kmol·h−1 of species A, and 50 kmol·h−1 

of species B. Two independent reactions occur:

  A + B → C  (I)      A + C → D  (II)  

Analysis of the gaseous effluent shows mole fractions yA = 0.05 and yB = 0.10.

 (i) What is the reactor effluent rate in kmol·h−1 ?
 (ii) What are the mole fractions yC and yD in the effluent?

 (b) Feed to a gas-phase reactor comprises 40 kmol·h−1 of species A, and 40 kmol·h−1 

of species B. Two independent reactions occur:

  A + B → C  (I)      A + 2B → D  (II)  

Analysis of the gaseous effluent shows mole fractions: yC = 0.52 and yD = 0.04. 
Determine the rates (kmol·h−1) of all species in the effluent stream.

 (c) Feed to a gas-phase reactor is 100 kmol·h−1 of pure species A. Two independent 
reactions occur:

  A → B + C  (I)      A + B → D  (II)  

13R. M. Felder, R. W. Rousseau, and L. G. Bullard, Elementary Principles of Chemical Processes, 4th ed.,  
Sec. 4.6d, Wiley, New York, 2015.
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Reaction (I) produces valuable species C and coproduct B. The side reaction (II) 
produces by-product D. Analysis of the gaseous effluent shows mole fractions  
yC = 0.30 and yD = 0.10. Determine the rates (kmol·h−1) of all species in the 
effluent stream.

 (d) The feed to a gas-phase reactor is 100 kmol·h−1, containing 40 mol-% species A 
and 60 mol-% species B. Two independent reactions occur:

  A + B → C  (I)      A + B → D + E  (II)  

Analysis of the gaseous effluent shows mole fractions yC = 0.25 and yD = 0.20. 
Determine:

 (i) Rates in kmol·h−1 of all species in the effluent stream.
 (ii) Mole fractions of all species in the effluent stream.

 14.42. The following is an industrial-safety rule of thumb: compounds with large positive   
Δ G  f  °   must be handled and stored carefully. Explain.

 14.43. Two important classes of reactions are oxidation reactions and cracking reactions. 
One class is invariably endothermic; the other, exothermic. Which is which? For 
which class of reactions (oxidation or cracking) does equilibrium conversion increase 
with increasing T  ?

 14.44. The standard heat of reaction ΔH° for gas-phase reactions is independent of the 
choice of standard-state pressure P°. (Why?) However, the numerical value of 
ΔG° for such reactions does depend on P°. Two choices of P° are conventional: 
1 bar (the basis adopted in this text), and 1.01325 bar. Show how to convert 
ΔG° for gas-phase reactions from values based on P° = 1 bar to those based on 
P° = 1.01325 bar.

 14.45. Ethanol is produced from ethylene via the gas-phase reaction:

    C  2     H  4   (  g )   +  H  2  O (  g )   →  C  2     H  5    OH (  g )     

Reaction conditions are 400 K and 2 bar.

 (a) Determine a numerical value for the equilibrium constant K for this reaction at 
298.15 K.

 (b) Determine a numerical value for K for this reaction at 400 K.
 (c) Determine the composition of the equilibrium gas mixture for an equimolar feed 

containing only ethylene and H2O. State all assumptions.
 (d) For the same feed as in part (c), but for P = 1 bar, would the equilibrium mole 

fraction of ethanol be higher or lower? Explain.

 14.46. A good source for formation data for compounds is the NIST Chemistry WebBook 
site. Values of  Δ H  f  °  , but not of  Δ G  f  °  , are reported. Instead, values of absolute standard 
entropies S° are listed for compounds and elements. To illustrate the use of NIST data, 
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598 CHAPTER 14. Chemical-Reaction Equilibria

let H2O2 be the compound of interest. Values provided by the Chemistry WebBook are 
as follows:

 ∙  Δ H  f  °  [H2O2(g)] = 136.1064 J·mol−1

 ∙ S°[H2O2(g)] = 232.95 J·mol−1·K−1

 ∙ S°[H2(g)] = 130.680 J·mol−1·K−1

 ∙ S°[O2(g)] = 205.152 J·mol−1·K−1

All data are for the ideal-gas state at 298.15 K and 1 bar. Determine a value of   
 Δ G   f  298    °    for H2O2(g).

 14.47. Reagent-grade, liquid-phase chemicals often contain as impurities isomers of the 
nominal compound, with a consequent effect on the vapor pressure. This can be quan-
tified by phase-equilibrium/reaction-equilibrium analysis. Consider a system contain-
ing isomers A and B in vapor/liquid equilibrium, and also in equilibrium with respect 
to the reaction A → B at relatively low pressure.

 (a) For the reaction in the liquid phase, determine an expression for P (the “mixture 
vapor pressure”) in terms of   P  A  sat ,  P  B  sat  , and K l, the reaction equilibrium constant. 
Check the result for the limits K l = 0 and K l = ∞.

 (b) For the reaction in the vapor phase, repeat part (a). Here, the relevant reaction 
equilibrium constant is K  v.

 (c) If equilibrium prevails, then whether the reaction is assumed to occur in one phase 
or the other makes no difference. Thus the results for parts (a) and (b) must be 
equivalent. Use this idea to show the connection between K l and K v through the 
pure-species vapor pressures.

 (d  ) Why is the assumption of ideal gases and ideal solutions both reasonable and 
prudent?

 (e) Results for parts (a) and (b) should suggest that P depends on T only. Show that 
this is in accord with the phase rule.

 14.48. Cracking propane is a route to light olefin production. Suppose that two cracking reac-
tions occur in a steady-flow reactor:

   
 C  3     H  8  (g) →  C  3     H  6  (g) +  H  2  (g)    (I)

    
 C  3     H  8  (g) →  C  2     H  4  (g) +  CH  4  (g) (II)

   

Calculate the product composition if both reactions go to equilibrium at 1.2 bar and 

 (a) 750 K; (b) 1000 K; (c) 1250 K.

 14.49. Equilibrium at 425 K and 15 bar is established for the gas-phase isomerization 
reaction:

   n -C  4     H  10   (  g )   → iso -C  4     Η  10   (  g )     
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14.12. Problems 599

Estimate the composition of the equilibrium mixture by two procedures:

 (a) Assume an ideal-gas mixture.
 (b) Assume an ideal solution with the equation of state given by Eq. (3.36).

Compare and discuss the results.

Data: For iso-butane,  Δ H   f  298    °   = −134,180  J·mol   −1 ; Δ G   f  298    °   = −20,760  J·mol   −1  

 14.50. Compute the emf and work output per mole of fuel for a reversible fuel cell that uses 
methanol as fuel and air as the source of oxygen, operating at 50°C.

 14.51. Compute the emf and work output per mole of Zn for a zinc-air battery operating 
at 30°C. Treat it as a steady-state fuel cell using Zn as the fuel, and find the needed 
thermodynamic data in the NIST Chemistry WebBook.

 14.52. Solid-oxide fuel cells use a ceramic membrane to separate the anode and cathode and 
operate at elevated temperature. Compute the emf and work output per mole of H2 for 
a reversible solid-oxide fuel cell operating with air as the oxygen source at a tempera-
ture of 800°C.
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Chapter 15

Topics in Phase Equilibria

In Chapters 12 and 13, we introduced phase equilibrium in general terms, but we focused 
 primarily on vapor/liquid equilibrium. VLE has long been considered the most important type 
of phase equilibrium for chemical engineers, due to the prevalence of distillation as a separation 
method in the chemical industry. However, a wide variety of other phase equilibria are of 
importance in chemical engineering. This chapter deals more generally with phase equilibria, 
with consideration given in separate sections to liquid/liquid, vapor/liquid/liquid, solid/liquid, 
solid/vapor, adsorption, and osmotic equilibria. In each case, we aim to provide a qualitative 
introduction and a quantitative framework that is sufficient to begin to treat practical problems 
and that provides a foundation for more specialized study of these topics. Thus, in this chapter 
we aim to: 

 ∙ Show how the criterion for stability of a homogeneous phase is used to determine whether 
a liquid mixture will split into multiple phases for a particular overall composition 

 ∙ Demonstrate solution of binary liquid/liquid equilibrium (LLE) problems using activity 
coefficient models to describe both liquid phases 

 ∙ Construct Txy phase diagrams for VLLE of two immiscible liquids using pure-species 
vapor-pressure data 

 ∙ Construct Txz diagrams for binary solid/liquid equilibrium (SLE) for limiting cases in 
which the liquid phase forms an ideal solution and the solid either forms an ideal solu-
tion or comprises two pure components 

 ∙ Analyze the solid/vapor equilibrium (SVE) of a pure component to estimate the solubil-
ity of the solid at high pressure

 ∙ Introduce the concept of spreading pressure, in the context of adsorption of gases on solids 

 ∙ Analyze common isotherms for gas adsorption, such as Henry’s law for adsorption, the 
Langmuir isotherm, Toth isotherm, and Freundlich isotherm 

 ∙ Illustrate the complexities of formal thermodynamic treatment of mixed-gas adsorp tion 
and solve mixed-gas adsorption problems under idealized conditions 

 ∙ Introduce the concept of osmotic pressure, reverse osmosis separa tion processes, and the 
computation of osmotic pressure for dilute systems
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15.1. Liquid/Liquid Equilibrium 601

15.1 LIQUID/LIQUID EQUILIBRIUM

The criteria for stability of a single liquid phase and the general features of liquid/liquid 
equilibrium were introduced in Sec. 12.4. A key result from that section is the following 
criterion of stability for a single-phase binary system for which the change in Gibbs energy 
upon  mixing is  ΔG ≡ G −  x  1   G  1   −  x  2   G  2  : 

At fixed temperature and pressure, a single-phase binary mixture is sta-
ble if and only if ΔG and its first and second derivatives are continuous 
functions of x1, and the second derivative is positive.

Thus,     
 d   2 ΔG

 ______ 
d x 1  2 

   > 0    (const T, P)   

and     
 d   2   (ΔG ∕ RT)  

 __________ 
d x 1  2 

   > 0   (const T, P)   (12.4)

This criterion can be most readily applied in the context of an activity coefficient formulation 
of the excess Gibbs energy. For a binary mixture Eq. (13.10) is:

    
 G   E 

 ___ 
RT

   =  x  1   ln  γ  1   +  x  2   ln  γ  2    

and    
d( G   E  ∕ RT )

 _________ 
d  x  1     = ln  γ  1   − ln  γ  2   +  x  1     

d ln  γ  1  
 ______ 

d x  1     +  x  2     
d ln  γ  2  

 ______ 
d x  1      

According to Eq. (13.11), the activity-coefficient form of the Gibbs/Duhem equation, the last 
two terms sum to zero, which leaves:

    
d( G   E  ∕ RT )

 _________ 
d x  1     = ln  γ  1   − ln  γ  2    

A second differentiation and a second application of the Gibbs/Duhem equation gives, after 
algebraic manipulation:

    
 d   2  ( G   E  ∕ RT )

 __________ 
d x 1  2 

   =   
d ln  γ  1  

 ______ 
d x  1     −   

d ln  γ  2  
 ______ 

d x  1     =   
1
 ___  x  2       
d ln  γ  1  

 ______ 
d x  1      

This equation in combination with Eq. (12.5) yields, again after some algebra:

    
d ln  γ  1  

 ______ 
d x  1     > −    

1
 ___  x  1       (const T, P)  

which is yet another condition for stability. It is equivalent to Eq. (12.4), from which it 
 ultimately derives. Other stability criteria follow directly, e.g.,

     
d  f   ̂    1  

 ____ 
d x  1     > 0       

d μ  1  
 ____ 

d x  1     > 0    (const T, P)   
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602 CHAPTER 15. Topics in Phase Equilibria

The last three stability conditions can equally well be written for species 2; thus for either 
species in a binary mixture:

     
d ln  γ  i   _ 

d x  i  
   > −    

1
 _  x  i  
     (const T, P)   (15.1)

   
d  f   ̂    i   ___ 
d x  i  

   > 0  (const T, P)    (15.2 )        
d μ  i   ___ 
d x  i  

   > 0  (const T, P)    (15.3 )     

Example 15.1
The stability criteria apply to a particular phase. However, there is nothing to preclude 
their application to problems in phase equilibria, where the phase of interest (e.g., a 
liquid mixture) is in equilibrium with another phase (e.g., a vapor mixture). Consider 
binary isothermal vapor/liquid equilibria at pressures low enough that the vapor phase 
can be considered an ideal-gas mixture. What are the implications of liquid-phase 
 stability to the features of isothermal Pxy diagrams such as those in Fig. 12.8?

Solution 15.1
Focus initially on the liquid phase. By Eq. (15.2) applied to species 1,

    
d   f   ̂    1  

 ___ 
d x  1     =    f   ̂    1     

d ln    f   ̂    1  
 _____ 

d x  1     > 0  

then, because    f   ̂    1    cannot be negative,

    
d ln    f   ̂    1  

 _____ 
d x  1     > 0  

Similarly, with Eq. (15.2) applied to species 2 and  d x  2   = − d x  1   :

    
d ln    f   ̂    2  

 _____ 
d x  1     < 0  

Combination of the last two inequalities gives:

     
d ln    f   ̂    1  

 _____ 
d x  1     −   

d ln    f   ̂    2  
 _____ 

d x  1     > 0    (const T, P)   (A)

which is the basis for the first part of this analysis. Because    f   ̂    i  
v  =  y  i   P  for an  ideal-gas 

mixture and because    f   ̂    i  
l  =   f   ̂    i  

v   for VLE, the left side of Eq. (A) can be written:

   
  
d ln    f   ̂    1  

 _____ 
d x  1     −   

d ln    f   ̂    2  
 _____ 

d x  1    
  
=

  
  
d ln  y  1   P

 _______ 
d x  1     −   

d ln  y  2   P
 _______ 

d x  1     =   
d ln  y  1  

 ______ 
d x  1     −   

d ln  y  2  
 ______ 

d x  1    
     

 
  

=
  
   
1
 ___  y  1       
d y  1  

 ____ 
d x  1     −   

1
 ___  y  2       
d y  2  

 ____ 
d x  1     =   

1
 ___  y  1       
d y  1  

 ____ 
d x  1     +   

1
 ___  y  2       
d y  1  

 ____ 
d x  1     =   

1
 ____  y  1    y  2       

d y  1  
 ____ 

d x  1    
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15.1. Liquid/Liquid Equilibrium 603

Thus, Eq. (A) yields:    
d y  1  

 ____ 
d x  1     > 0  (B)

which is an essential feature of binary VLE. Note that, although P is not constant 
for isothermal VLE, Eq. (A) is still approximately valid, because its application is 
to the liquid phase, for which properties are insensitive to pressure.

The next part of this analysis draws on the fugacity form of the Gibbs/Duhem 
equation, Eq. (13.27), applied again to the liquid phase:

    x  1     
d ln    f   ̂    1  

 _____ 
d x  1     +  x  2     

d ln    f   ̂    2  
 _____ 

d x  1     = 0    (const T, P)   (13.27)

Note again that the restriction here to constant P is inconsequential because of 
the insensitivity of liquid-phase properties to pressure. With    f   ̂    i    =   y  i   P  for low- 
pressure VLE,

   x  1     
d ln  y  1   P

 _______ 
d  x  1     +  x  2     

d ln  y  2   P
 _______ 

d  x  1     = 0  

    
1
 __ 

P
     
dP

 ____ 
d x  1     =   

 ( y  1   −  x  1  ) 
 ________  y  1    y  2       
d y  1  

 ____ 
d x  1      (C )

Because by Eq. (B)  d y  1   ∕ d x  1   > 0 , Eq. (C) asserts that the sign of  dP ∕ d x  1    is the 
same as the sign of the quantity   y  1   −  x  1   .

The last part of this analysis is based only upon mathematics, according to 
which, at constant T,

    
dP

 ____ 
d y  1     =   

dP ∕ d x  1  
 _______ 

d y  1   ∕ d x  1      (D)

But by Eq. (B),  d y  1   ∕ d x  1   > 0 . Thus  dP ∕ d y  1    has the same sign as  dP ∕ d  x  1   . 
In summary, the stability requirement implies the following for VLE in binary 

systems at constant temperature:

     
d y  1  

 _ 
d x  1     > 0      

dP
 _ 

d x  1    ,   
dP

 _ 
d y  1    , and  (  y  1   −  x  1  )  have the same sign   

At an azeotrope, where   y  1   =  x  1   ,

     
dP

 ____ 
d x  1     = 0         and         

dP
 ____ 

d y  1     = 0   

Although derived for conditions of low pressure, these results are of general validity, 
as illustrated by the VLE data shown in Fig. 12.8.

Many pairs of chemical species, were they to mix to form a single liquid phase in a 
certain composition range, would not satisfy the stability criterion of Eq. (12.4). Such systems 
therefore split in this composition range into two liquid phases of different compositions. If 
the phases are at thermodynamic equilibrium, the phenomenon is an example of liquid/liquid 
equilibrium (LLE), which is important for industrial operations such as solvent extraction.
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604 CHAPTER 15. Topics in Phase Equilibria

The equilibrium criteria for LLE are the same as for VLE, namely, uniformity of T, P, 
and of the fugacity    f   ̂    i    for each chemical species throughout both phases. For LLE in a system 
of N species at uniform T and P, we denote the liquid phases by superscripts α and β, and we 
write the equilibrium criteria as:

    f   ̂    i  
α  =   f   ̂    i  

β      (i = 1, 2, . . . . ,  N )  

With the introduction of activity coefficients, this becomes:

   x i  α   γ i  α   f i  α  =  x i  
β
   γ i  

β
   f i  

 β
   

If each pure species exists as liquid at the system temperature,   f i   α  =  f i  
 β
  =  f  i   ; whence, 

    x i  α   γ i  α  =  x i  
β
   γ i  

β
   (i = 1, 2, . . . , N)   (15.4)

In Eq. (15.4), activity coefficients   γ i  α   and   γ i  
β
   are derived from the same function   G   E  ∕ RT ;  

thus they are functionally identical, distinguished mathematically only by the mole fractions to 
which they apply. For a liquid/liquid system containing N chemical species:

   γ i  α  =  γ  i   ( x 1  α ,  x 2  α , . . . ,  x N−1  α  , T, P)  (15.5a)

   γ i  
β
  =  γ  i   ( x 1  β ,  x 2  β , . . . ,  x N−1  β

  , T, P)  (15.5b)

According to Eqs. (15.4) and (15.5), N equilibrium equations can be written in 2N intensive 
variables (T, P, and N − 1 independent mole fractions for each phase). Solution of the equi-
librium equations for LLE therefore requires prior specification of numerical values for 
N of the intensive variables. This is in accord with the phase rule,  Eq. (3.1), from which  
F = 2 − π + N = 2 − 2 + N = N . The same result is obtained for VLE with no special con-
straints on the equilibrium state.

In the general description of LLE, any number of species can be considered, and  
pressure may be a significant variable. We treat here a simpler (but important) special case, 
that of binary LLE either at constant pressure or at conditions at which the effect of pressure 
on the activity coefficients is negligible. With only one independent mole fraction per phase, 
Eq. (15.4) gives:

  x 1  α   γ 1  α  =  x 1  β   γ 1  β     (  15.6a )      (1 −   x 1  α    )     γ 2  α  =   (  1 −  x 1  β  )    γ 2  β     (  15.6b )   

where   γ i  α  =  γ  i  ( x 1  α , T )   (15.7a)   γ i  
β
  =  γ  i   ( x 1  β , T )      (  15.7b )    

With two equations and three variables (  x 1  α ,  x 1  β  , and T), fixing one of the variables allows 
solution of Eq. (15.6) for the remaining two. Because ln γi, rather than γi, is a more natural 
thermodynamic function, application of Eq. (15.6) often proceeds from the rearrangements:

 ln   
 γ 1  α 

 ___ 
 γ 1  β 

   = ln   
 x 1  β 

 ___  x 1  α 
      (  15.8a )    ln   

 γ 2  α 
 

___
  γ 2  β 
   = ln   

1 −  x 1  β 
 

______
 1 −  x 1  α   
    (  15.8b )   
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15.1. Liquid/Liquid Equilibrium 605

Example 15.2
Develop equations that apply to the limiting case of binary LLE for which the α phase is 
very dilute in species 1 and the β phase is very dilute in species 2.

Solution 15.2
For the case described, to a good approximation,

    γ 1  α  ≃  γ 1  ∞      γ 2  α  ≃ 1     γ 1  β  ≃ 1     γ 2  β  ≃  γ 2  ∞    

Substitution into the equilibrium equations, Eqs. (15.6), gives:

    x 1  α   γ 1  ∞  ≃  x 1  β          and       1 −  x 1  α  ≃  (1 −  x 1  β )     γ 2  ∞   

and solution for the mole fractions yields the approximate expressions:

  x 1  α  =   
 γ 2  ∞  − 1

 _________  γ 1  ∞   γ 2  ∞  − 1     (  A )     x 1  β  =   
 γ 1  ∞  ( γ 2  ∞  − 1 )

 ___________  γ 1  ∞   γ 2  ∞  − 1    (B) 

Alternatively, solution for the infinite-dilution activity coefficients gives:

  γ 1  ∞  =   
 x 1  β 

 ___  x 1  α 
    (C)   γ 2  ∞  =   

1 −  x 1  α 
 

______
 1 −  x 1  β 
    (D) 

Equations (A) and (B) provide order-of-magnitude estimates of equilibrium com-
positions from two-parameter expressions for   G   E  ∕ RT , where the   γ i  ∞   are usually 
related to the parameters in a simple way. Equations (C) and (D) serve the opposite 
function; they provide simple explicit expressions for   γ i  ∞   in relation to measurable 
equilibrium compositions. Equations (C) and (D) show that positive deviations 
from ideal-solution behavior promote LLE:

    γ 1  ∞  ≃   
1
 ___  x 1  α 
   > 1  and   γ 2  ∞  ≃   

1
 ___ 

 x 2  β 
   > 1   

The extreme example of binary LLE is that of complete immiscibility of the two 
species. When   x 1  α  =  x 2  β  = 0,  γ 1  β   and   γ 2  α   are unity, and Eq. (15.6) therefore require:

  γ 1  α  =  γ 2  β  = ∞ 
Strictly speaking, no two liquids are completely immiscible. However, actual sol-
ubilities may be so small (e.g., for some hydrocarbon/water systems) that the ide-
alizations   x 1  α  =  x 2  β  = 0  provide suitable approximations for practical calculations 
(Ex. 15.7).

Example 15.3
The simplest expression for   G   E  ∕RT  capable of predicting LLE is:

    
 G   E 

 ___ 
RT

   = A  x  1    x  2    (A)

Derive the equations resulting from application of this equation to LLE.
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606 CHAPTER 15. Topics in Phase Equilibria

Solution 15.3
The activity coefficients implied by the given equation are:

   ln  γ  1   = A  x 2  2  = A  (1 −  x  1  )   2      and     ln  γ  2   = A  x 1  2    

Specializing these two expressions to the α and β phases and combining them with 
Eq. (15.8) gives:

  A  [   (1 −  x 1  α  )   2  −  (1 −  x 1  β  )   2  ]    = ln   
 x 1  β 

 ___  x 1  α 
    (B)

  A  [   ( x 1  α  )   2  −  ( x 1  β  )   2  ]    = ln   
1 −  x 1  β 

 ______ 1 −  x 1  α 
    (C)

Given a value of parameter A, one finds equilibrium compositions   x 1  α   and   x 1  β   as the 
solution to Eqs. (B) and (C).

Solubility curves implied by Eq. (A) are symmetrical about   x  1   = 0.5 . This can 
be inferred from the fact that   x 1  α   and   x 1  β   appear in exactly the same form in Eqs. (B) 
and (C). This symmetry can be expressed by the relationship 

   x 1  β  = 1 −  x 1  α   (D)

Substituting Eq. (D) into Eqs. (B) and (C) reduces them both to the same equation:

  A (1 − 2 x  1  )  = ln    
1 −  x  1  

 _____  x  1      (E)

This implies that the inferred symmetry about   x  1   = 0.5  is correct. When  A > 2 , this 
equation has three real roots:   x  1   = 1 ∕ 2 ,   x  1   = r , and   x  1   = 1 − r , where  0 < r < 1 ∕ 2 .  
The latter two roots are the equilibrium compositions (  x 1  α   and   x 1  β  ), whereas 
the first root is a trivial solution. For  A < 2  only the trivial solution exists; the  
value  A = 2  corresponds to a consolute point, where the three roots converge to 
the value 0.5. Table 15.1 shows values of A as calculated from Eq. (E) for various 
values of   x 1  α   (= 1 −  x 1  β  ) . Note particularly the sensitivity of   x 1  α   to small increases 
in A from its limiting value of 2.

A   x  1  α  A   x  1  α  

2.0000 0.50 2.4780 0.15
2.0067 0.45 2.7465 0.10
2.0273 0.40 3.2716 0.05
2.0635 0.35 4.6889 0.01
2.1182 0.30 5.3468 0.005
2.1972 0.25 6.9206 0.001
2.3105 0.20 7.6080 0.0005

Table 15.1: Liquid/Liquid Equilibrium Compositions Implied by Eq. (A)
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15.1. Liquid/Liquid Equilibrium 607

The actual shape of a solubility curve is determined by the temperature  dependence 
of   G   E  ∕ RT . Assume the following T dependence of parameter A in Eq. (A):

  A =   
a

 __ 
T

   + b − c ln  T  (F )

where a, b, and c are constants. From Table 10.1, we have

    H   E   = − R  T   2    [     
∂ (  G   E  ∕ RT )

 _________ ∂ T   ]    
P,x

     

Applying this to Eq. (A) shows that the temperature dependence of Eq. (F) makes the 
excess enthalpy HE linear in T, and the excess heat capacity   C P  E   independent of T:

   H   E  = R(a + cT )  x  1    x  2    (G)

   C P  E  =   (  
∂  H   E 

 ____ ∂ T  )   
P,x

   = Rc  x  1    x  2    (H)

The excess enthalpy and the temperature dependence of A are directly related.
From Eq. (F),

    
dA

 ___ 
dT

   = −   
1
 ___ 

 T   2 
   (a + cT )  

Combination of this equation with Eq. (G) yields:

    
dA

 ___ 
dT

   = −   
 H   E 
 ________ 

 x  1    x  2   R  T   2 
    

Thus  dA ∕ dT  is negative for an endothermic system (positive HE) and positive for 
an exothermic system (negative HE). A negative value of  dA ∕ dT  at a consolute 
point implies an upper consolute temperature, or upper critical solution temper-
ature (UCST), because A decreases to 2.0 as T increases. Conversely, a positive 
value implies a lower consolute temperature, or lower critical solution tempera-
ture (LCST), because A decreases to 2.0 as T decreases. Hence a system described 
by Eqs. (A) and (F) exhibits a UCST if endothermic at the consolute point and an 
LCST if exothermic at the consolute point. Equation (F) written for a consolute 
point ( A = 2 ) becomes:

  T ln  T =   
a

 __ 
c
   −   (  

2 − b
 _ 

c
  )  T  (I)

Depending on the values of a, b, and c, this equation has zero, one, or two tem-
perature roots.

Consider hypothetical binary systems described by Eqs. (A) and (F) and for 
which LLE obtains in the temperature range 250 to 450 K. Setting  c = 3.0  makes 
the excess heat capacity positive, independent of T, for which by Eq. (H) the max-
imum value (at   x  1   =  x  2   = 0.5 ) is 6.24 J mol−1 K−1. For the first case, let

  A =   
− 975

 _____ 
T

   + 22.4 − 3 ln  T  
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608 CHAPTER 15. Topics in Phase Equilibria

Here, Eq. (I) has two roots, corresponding to an LCST and a UCST:

    T  L   = 272.9    and     T  U   = 391.2 K   

Values of A are plotted vs. T in Fig. 15.1(a) and the solubility curve [from Eq. (E)] 
is shown by Fig. 15.1(b). This case—that of a closed solubility loop—is of the 
type shown by Fig. 12.14(a). It requires that HE change sign in the temperature 
interval for which LLE is possible.

As a second case, let

  A =    
− 540

 _____ 
T

    + 21.1 − 3 ln T  

Here, Eq. (I) has only one root in the temperature range 250 to 450 K. It is a 
UCST,   T  U   = 346.0  K, because Eq. (G) yields positive HE at this temperature. Val-
ues of A and the corresponding solubility curve are given by Fig. 15.2.

Finally, let

  A =   
− 1500

 ______ 
T

   + 23.9 − 3 ln  T  

This case is similar to the second, there being only one T (339.7 K) that solves  
Eq. (I) for the temperature range considered. However, this is an LCST, because HE 
is now negative. Values of A and the solubility curve are shown in Fig. 15.3.

Example 15.3 demonstrates in a “brute-force” way that LLE cannot be predicted by the 
expression   G   E  ∕ RT = A  x  1    x  2    for values of  A < 2 . If the goal is merely to determine under what 

Figure 15.1: (a) A vs. T. (b) Solubility diagram for a binary system described by   G   E  ∕ RT = A x  1    x  2    with  
A = − 975∕ T  + 22.4 − 3 ln  T . This is an example for which   H   E   changes sign.
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15.1. Liquid/Liquid Equilibrium 609

Figure 15.2: (a) A vs. T; (b) Solubility diagram for a binary system described by   G   E  ∕ RT = A x  1    x  2    with  
A = − 540 ∕ T + 21.1 − 3 ln  T .  In this example   H   E   is positive and does not change sign.
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Figure 15.3: (a) A vs. T; (b) Solubility diagram for a binary system described by   G   E  ∕ RT = A x  1    x  2    with  
A = − 1500 ∕ T + 23.9 − 3 ln  T . In this case   H   E   is negative and does not change sign.
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610 CHAPTER 15. Topics in Phase Equilibria

conditions LLE can occur, but not to find the compositions of the coexisting phases, then one 
may instead invoke the stability criteria of Sec. 12.4 and determine under what conditions they 
are satisfied.

Example 15.4
If   G   E  ∕ RT = A x  1    x  2    for a liquid phase, show by stability analysis that LLE is predicted  
for  A ≥ 2 .

Solution 15.4
Application of the stability criterion requires evaluation of the derivative:

    
 d   2 ( G   E  ∕ RT )

 __________ 
d x 1  2 

   =   
 d   2 (A  x  1    x  2  )

 __________ 
d x 1  2 

   = − 2A  

Thus, stability requires:  2A <   
1
 ____  x  1    x  2      

When   x  1   =  x  2   = 1 ∕ 2 , the right side of this inequality has its minimum value of 4; 
thus  A < 2  yields stability of single-phase mixtures over the entire composition 
range. Conversely, if  A > 2 , then binary mixtures described by   G   E  ∕ RT = A  x  1    x  2    
form two liquid phases over some part of the composition range.

Example 15.5
Some expressions for   G   E  ∕ RT  are incapable of representing LLE. An example is the  
Wilson equation:

    
 G   E 

 ___ 
RT

   = −  x  1   ln  (  x  1   +  x  2    Λ  12  )  −  x  2   ln  (  x  2   +  x  1    Λ  21  )   (13.45)

Show that the stability criteria are satisfied for all values of Λ12, Λ21, and x1.

Solution 15.5
An equivalent form of inequality (15.1) for species 1 is:

    
d ln ( x  1    γ  1   )

 _________ 
d  x  1     > 0  (A)

For the Wilson equation, ln γ1 is given by Eq. (13.46). Addition of ln x1 to both 
sides of that equation yields:

  
   ln  (  x  1    γ  1  )  = − ln   (1 +   

 x  2  
 _  x  1      Λ  12  )   +  x  2   (    

 Λ  12  
 _  x  1   +  x  2    Λ  12     −   

 Λ  21  
 _  x  2   +  x  1    Λ  21     ) 

       
from which:    

d ln  (  x  1    γ  1  ) 
 _________ 

d  x  1     =   
 x  2    Λ 21  2  
 ______________  

 x  1    (  x  1   +  x  2    Λ  12  )   2 
   +   

 Λ 21  2  
 ____________  

 (  x  2   +  x  1    Λ  21  )   2 
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15.2. Vapor/Liquid/Liquid Equilibrium (VLLE) 611

All quantities on the right side of this equation are positive, and therefore Eq. (A) 
is satisfied for all x1 and for all nonzero Λ12 and Λ21.1 Thus inequality (15.1) is 
always satisfied, and LLE cannot be represented by the Wilson equation.

15.2 VAPOR/LIQUID/LIQUID EQUILIBRIUM (VLLE)

As noted in Sec. 12.4, the binodal curves representing LLE can intersect the VLE bubblepoint 
curve. This gives rise to the phenomenon of vapor/liquid/liquid equilibrium (VLLE), as illus-
trated in Fig. 12.15 though 12.18. For a binary system with three phases in equilibrium, the 
phase rule tells us that only one degree of freedom remains. Thus, at a given T, two binary 
liquid phases in equilibrium have a fixed vapor pressure, and at a given P, they have a fixed 
boiling point temperature.

The compositions of the vapor and liquid phases in equilibrium for partially misci-
ble systems are calculated in the same way as for miscible systems. In the regions where a  
single liquid is in equilibrium with its vapor, VLE calculations are done as in Chapter 13. 
Because limited miscibility implies highly nonideal behavior, any general assumption of 
liquid-phase ideality is excluded. Even a combination of Henry’s law, valid for a species at 
infinite dilution, and Raoult’s law, valid for a species as it approaches purity, is not very useful, 
because each approximates actual behavior for only a very small composition range. Thus GE 
is large, and its composition dependence is often not adequately represented by simple equa-
tions. Nevertheless, the NRTL and UNIQUAC equations and the UNIFAC method (App. G) 
often provide suitable correlations for activity coefficients.

Example 15.6
Careful equilibrium measurements for the diethyl ether(1)/water(2) system at 35°C 
have been reported.2 Discuss the correlation and behavior of the phase-equilibrium 
data for this system.

Solution 15.6
The Pxy behavior of this system is shown by Fig. 15.4, where the very rapid rise in 
pressure with increasing liquid-phase ether concentration in the dilute-ether region 
is apparent. The three-phase pressure,   P   *  = 104.6 kPa , is reached at an ether mole 
fraction of only 0.0117. Here, y1 also increases very rapidly to its three-phase 
value of   y 1  *  = 0.946 . In the dilute-water region, on the other hand, rates of change 
are quite small, as shown to an expanded scale in Fig. 15.4(b).

1Both Λ12 and Λ21 are positive definite, because Λ12 = Λ21 = 0 yields infinite values for   γ 1  ∞   and       γ 2  ∞  .

2M. A. Villamañán, A. J. Allawi, and H. C. Van Ness, J. Chem. Eng. Data, vol. 29, pp. 431–435, 1984.

www.konkur.in

Telegram: @uni_k



612 CHAPTER 15. Topics in Phase Equilibria

The curves in Fig. 15.4 provide an excellent correlation of the VLE data. They 
result from BUBL P calculations carried out with the excess Gibbs energy and 
activity coefficients from a four-parameter modified Margules equation:

    
  

 G   E 
 _______  x  1    x  2   RT

   =  A  21    x  1   +  A  12    x  2   − Q
     

ln  γ  1   =  x 2  2   [  A  12   + 2 ( A  21   −  A  12  )  x  1   − Q −  x  1     
dQ

 _ 
d  x  1     ]   

   

     

ln  γ  2   =  x 1  2   [    A  21   + 2 (  A  12   −  A  21  )  x  2   − Q +  x  2     
dQ

 _ 
d  x  1     ]   

      
Q =   

 α  12    x  1    α  21    x  2  
  ___________   α  12    x  1   +  α  21    x  2          

dQ
 ____ 

d  x  1     =   
 α  12    α  21     ( α  21    x 2  2  −  α  12    x 1  2 )  

  ____________________  
 (  α  12    x  1   +  α  21    x  2  )   2 

         

 A  21   = 3.35629   A  12   = 4.62424   α  12   = 3.78608   α  21   = 1.81775

   

The BUBL P calculations also require values of Φ1 and Φ2, which come from  
Eqs. (13.63) and (13.64) with virial coefficients:

    B  11   = − 996       B  22   = − 1245       B  12   = − 567   cm   3   ·mol   −1    
In addition, the vapor pressures of the pure species at 35°C are:

    P 1  sat  = 103.264      P 2  sat  = 5.633 kPa   

Figure 15.4: (a) Pxy diagram at 35°C for diethyl ether(1)/water(2); (b) detail of ether-rich region.
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15.2. Vapor/Liquid/Liquid Equilibrium (VLLE) 613

The high degree of nonideality of the liquid phase is indicated by the values of 
the activity coefficients of the dilute species, which range for diethyl ether from   
γ  1   = 81.8  at   x 1  α  = 0.0117  to   γ 1  ∞  = 101.9  at   x  1   = 0  and for water from   γ  2   = 19.8  at   
x 1  β  = 0.9500  to   γ 2  ∞  = 28.7  at   x  1   = 1 .

Thermodynamic insight into the phenomenon of low-pressure VLLE is provided by the 
modified Raoult’s law expression, Eq. (13.19). For temperature T and the three-phase-equilibrium 
pressure P*, the modified Raoult’s law applies to each liquid phase:

    x i  α   γ i  α   P i  sat  =  y i  *   P   *     and      x i  
β
   γ i  

β
   P i  sat  =  y i  *   P   *    

Implicit in these equations is the LLE requirement of Eq. (15.4). Thus four equations can be 
written for a binary system:

 x 1  α   γ 1  α   P  1  sat  =  y 1  *   P   * (A)  x 1  β   γ 1  β   P 1  sat  =  y 1  *   P   * (B)

  x 2  α   γ 2  α   P  2  sat  =  y 2  *   P   *  (C)   x 2  β   γ 2  β   P 2  sat  =  y 2  *   P   *  (D)

All of these equations are correct, but two of them are preferred over the others. Consider the 
expressions for   y 1  *   P   *  :

   x 1  α   γ 1  α   P 1  sat  =  x 1  β   γ 1  β   P 1  sat  =  y 1  *   P   *   

For the case of two species that approach complete immiscibility,

    x 1  α  → 0     γ 1  α  →  γ 1  ∞      x 1  β  → 1     γ 1  β  → 1   

Thus,  (0)( γ 1  ∞ )  P  1  sat  =  P  1  sat  =  y 1  *   P   *   

This equation implies that   γ 1  ∞  → ∞ ; a similar derivation shows that   γ 2  ∞  → ∞ . Thus Eqs. (B) 
and (C), which include neither   γ 1  α   nor   γ 2  β  , are chosen as the more useful expressions. They may 
be added to give the three-phase pressure:

   P   *  =  x 1  β   γ 1  β   P 1  sat  +  x 2  α   γ 2  α   P 2  sat   (15.9)

In addition, the three-phase vapor composition is given by Eq. (B):

   y 1  *  =   
 x 1  β   γ 1  β   P 1  sat 

 _________ 
 P   * 

    (15.10)

For the diethyl ether(l)/water(2) system at 35°C (Ex. 15.6), the correlation for   G   E  ∕ RT  pro-
vides the values:

    γ 1  β  = 1.0095     γ 2  α  = 1.0013   

These allow calculation of P* and   y 1  *   by Eqs. (15.9) and (15.10):

   P   *  =  (0.9500)  (1.0095)  (103.264)  +  (0.9883)  (1.0013)  (5.633)  = 104.6 kPa  

and   y 1  *  =   
 (0.9500)  (1.0095)  (103.264) 

   ______________________  104.6   = 0.946  
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614 CHAPTER 15. Topics in Phase Equilibria

Although no two liquids are totally immiscible, this condition is so closely approached 
in some instances that the assumption of complete immiscibility does not lead to appreciable 
error. The phase characteristics of an immiscible system were illustrated by the temperature/
composition diagram of Fig. 12.18. Numerical calculations for immiscible systems are par-
ticularly simple, because of the following identities:

    x 2  α  = 1     γ 2  α  = 1     x 1  β  = 1     γ 1  β  = 1    

The three-phase-equilibrium pressure P* as given by Eq. (15.9) is therefore:

   P   *  =  P 1  sat  +  P 2  sat   

Substitution of this equation and   x 1  β  =  γ 1  β  = 1  into Eq. (15.10) gives:

   y 1  *  =   
 P 1  sat 
 __________ 

 P 1  sat  +  P 2  sat 
    

For region I where vapor is in equilibrium with pure liquid 1, Eq. (13.19) becomes:

    y  1   (I)P =  P 1  sat    or    y  1   (I) =   
 P 1  sat 

 ____ 
P

     

Similarly, for region II where vapor is in equilibrium with pure liquid 2,

    y  2   (II)P = [1 −  y  1   (II)]P =  P 2  sat    or    y  1   (II) = 1 −   
 P 2  sat 

 ____ 
P

     

Example 15.7
Prepare a table of temperature/composition data for the benzene(1)/water(2) system at a 
pressure of 101.33 kPa (1 atm) from the vapor-pressure data in the accompanying table.

t∕°C   P 1  sat  ∕kPa   P 2  sat  ∕ kPa   P 1  sat  +  P 2  sat  

60 52.22 19.92 72.14
70 73.47 31.16 104.63
75 86.40 38.55 124.95
80 101.05 47.36 148.41

    80.1 101.33 47.56 148.89
90 136.14 70.11 206.25

  100.0 180.04 101.33 281.37

Solution 15.7
Assume that benzene and water are completely immiscible as liquids. Then the 
three-phase equilibrium temperature  t*  is estimated as:

  P (  t   * )  =  P 1  sat  +  P 2  sat  = 101.33 kPa  
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15.3. Solid/Liquid Equilibrium (SLE) 615

The last column of the table of vapor pressures shows that   t   *   lies between 60 and 
70°C, and interpolation yields   t   *  = 69.0° C . At this temperature, again by interpo-
lation:   P 1  sat  ( t   * )  = 71.31  kPa. Thus, 

   y 1  *  =   
 P 1  sat 
 __________ 

 P 1  sat  +  P 2  sat 
   =   

71.31
 ______ 101.33   = 0.704  

For the two regions of vapor/liquid equilibrium, as labelled in part (a) of Fig. 12.18.

   y  1   (I) =   
 P 1  sat 

 ____ 
P

   =   
 P 1  sat 

 ______ 101.33    

and   y  1   (II) = 1 −   
 P 2  sat 

 ____ 
P

   = 1 −   
 P 2  sat 

 ______ 101.33    

Application of these equations for a number of temperatures gives the results sum-
marized in the table that follows.

t∕°C y1(II) y1(I)

100 0.000 —
 90 0.308 —
 80.1 0.531 1.000
 80 0.533 0.997
 75 0.620 0.853
 70 0.693 0.725
 69.0 0.704 0.704

15.3 SOLID/LIQUID EQUILIBRIUM (SLE)

Phase behavior involving the solid and liquid states is the basis of important separation pro-
cesses (e.g., crystallization) across many facets of chemical and materials engineering. Indeed, 
a wide variety of binary phase behavior is observed for systems exhibiting solid/solid, solid/
liquid, and solid/solid/liquid equilibria. We develop here a rigorous formulation of solid/liquid 
equilibrium (SLE), and we present as applications analyses of two limiting classes of behavior. 
Comprehensive treatments can be found elsewhere.3

The basis for representing SLE is:

     f   ̂   i   l  =   f   ̂   i   s    (all i )   

where uniformity of T and P is understood. As with LLE, each    f   ̂    i    is eliminated in favor of an 
activity coefficient. Thus,

    x  i    γ i  l   f i   l  =  z  i    γ i  s   f i   s    (all i )   

3See, e.g., R. T. DeHoff, Thermodynamics in Materials Science, 2nd ed., chaps. 9 and 10, CRC Press, Boca Raton, 
FL, 2006. A data compilation is given by H. Knapp, M. Teller, and R. Langhorst, Solid-Liquid Equilibrium Data 
Collection, Chemistry Data Series, vol. VIII, DECHEMA, Frankfurt/Main, 1987.
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616 CHAPTER 15. Topics in Phase Equilibria

where xi and zi are, respectively, the mole fractions of species i in the liquid and solid solu-
tions. Equivalently,

    x  i    γ i  l  =  z  i    γ i  s   ψ  i     (all i )   (15.11)

where   ψ  i   ≡  f i   s  ∕  f i   l   (15.12)

The right side of this equation, defining ψi as the ratio of fugacities at the T and P of the 
system, can be written in expanded form:

    
 f i   s  (T, P) 

 _______ 
 f i   l  (T, P) 

   =   
 f i   s  (T, P) 

 _________  f i   s  ( T   m  i    , P)    ⋅   
 f i   s  ( T   m  i    , P) 

 _________ 
 f i   l  ( T   m  i    , P) 

   ⋅   
 f i   l  ( T   m  i    , P) 

 _________ 
 f i   l  (T, P) 

    

where Tmi is the melting temperature (“freezing point”) of pure species i, i.e., the temperature at 
which pure-species SLE occurs. Thus the second ratio on the right side is unity because   f i   l  =  f i   s    
at the melting point of pure species i. Hence,

   ψ  i   =   
 f i   s  (T, P) 

 _________  f i   s  ( T   m  i    , P)    ⋅   
 f i   l  ( T   m  i    , P) 

 _________ 
 f i   l  (T, P) 

    (15.13)

According to Eq. (15.13), evaluation of ψi requires expressions for the effect of temper-
ature on fugacity. By Eq. (10.33), with   ϕ  i   =  f  i   ∕ P ,

   ln    
 f  i   __ 
P

   =   
 G i  R 

 ___ 
RT

        ln   f  i   =   
 G i  R 

 ___ 
RT

   + ln  P   

Thus,    (  
∂  ln  f  i   ____ ∂ T  )   

P

   =   [    
∂ ( G i  R  ∕ RT )

 _________ ∂ T   ]    
P

   = −    
 H i  R 

 ____ 
R  T   2 

    

where the second equality comes from Eq. (10.58). Integration of this equation for a phase 
from Tmi to T gives:

    
 f  i   (T, P) 

 ________  f  i   (  T   m  i    , P)    = exp  ∫ 
 T   m  i    

  
T

   −   
 H i  R 

 ____ 
R  T   2 

   dT    (15.14)

Equation (15.14) is applied separately to the solid and liquid phases. The resulting expressions 
are substituted into Eq. (15.13), which is then reduced by the identity:

  − ( H i  
R,s  −  H i  

R,l  ) = − [( H i  s  −  H i  
ig

  ) − ( H i  l  −  H i  
ig

  )]  =  H i  l  −  H i  s   

This yields the exact expression:

   ψ  i   = exp  ∫ 
 T   m  i    

  
T

     
 H i  l  −  H i  s  ________ 

R  T   2 
   dT    (15.15)

Evaluation of the integral proceeds as follows:

   H  i   (T )  =  H  i   ( T   m  i    )  +  ∫ 
 T   m  i    

  
T

    C   P  i     dT    
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15.3. Solid/Liquid Equilibrium (SLE) 617

and   C   P  i     (T )  =  C   P  i     ( T   m  i    )  +  ∫ 
 T   m  i    

  
T

      (  
∂  C   P  i     ____ ∂ T  )   

P

     dT  

Hence, for a phase,

   H  i    (T )     =  H  i   ( T   m  i    )  +  C   P  i     ( T   m  i    )  (T −  T   m  i    )  +  ∫ 
 T   m  i    

  
T

      ∫ 
 T   m  i    

  
T

      (  
∂  C   P  i     ____ ∂ T  )   

P

     dTdT  (15.16)

Applying Eq. (15.16) separately to the solid and liquid phases and performing the integration 
required by Eq. (15.15) yields:

   
 ∫ 

 T   m  i    
  

T

     
 H i  l  −  H i  s  ________ 

R  T   2 
     dT =   

Δ  H i  sl 
 _____ 

R  T   m  i    
     (  

T −  T   m  i     _ 
T

  )  
    

        +   
Δ C   P  i    

sl  
 _____ 

R
    [  ln   

T
 _  T   m  i    
   −   (  

T −  T   m  i     _ 
T

  )   ]    + I

   (15.17)

where integral I is defined by:

  I ≡  ∫ 
 T   m  i    

  
T

       
1
 ____ 

R  T   2 
    ∫ 

 T   m  i    
  

T

      ∫ 
 T   m  i    

  
T

       
[

    
∂ ( C   P  i    

l   −  C   P  i    
s   )
  ___________ ∂ T   
]

    
P

   dT dT dT  

In Eq. (15.17),  Δ  H i  sl   is the enthalpy change of melting (“heat of fusion”) and  Δ C   P  i    
sl    is the 

heat-capacity change of melting. Both quantities are evaluated at the melting temperature    T   m  i      .
Equations (15.11), (15.15), and (15.17) provide a formal basis for the solution of prob-

lems in solid/liquid equilibria. The full rigor of Eq. (15.17) is rarely maintained. For purposes 
of development, pressure has been carried through as a thermodynamic variable. However, 
its effect is rarely included in engineering applications. The triple integral represented by I is 
a second-order contribution and is normally neglected. The heat-capacity change of melting 
can be significant, but it is not always available; moreover, inclusion of the term involving  
 Δ C   P  i    

sl    adds little to a qualitative understanding of SLE. With the assumptions that I and  Δ C   P  i    
sl    

are negligible, Eqs. (15.15) and (15.17) together yield:

   ψ  i   = exp   
Δ H i  sl 

 _____ 
R T   m  i    

    (  
T −  T   m  i     _ 

T
  )    (15.18)

With ψi given by Eq. (15.18), all that is required for formulating an SLE problem is a set 
of statements about the temperature and composition dependence of the activity coefficients   
γ i  l   and   γ i  s  . In the general case, this requires algebraic expressions for GE(T, composition) for 
both liquid and solid solutions. Consider two limiting special cases:

 I. Assume ideal-solution behavior for both phases, i.e., let   γ i  l  = 1  and   γ i  s  = 1  for all T and 
compositions.

 II. Assume ideal-solution behavior for the liquid phase  ( γ i  l  = 1) , and complete immiscibility 
for all species in the solid state (i.e., set   z  i    γ i  s  = 1 ).

These two cases, restricted to binary systems, are considered in the following.
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618 CHAPTER 15. Topics in Phase Equilibria

Case I

The two equilibrium equations that follow from Eq. (15.11) are:

  x  1   =  z  1    ψ  1   (15.19a)   x  2   =  z  2    ψ  2   (15.19b)

where ψ1 and ψ2 are given by Eq. (15.18) with  i = 1,2 . Because   x  2   = 1 −  x  1    and   z  2   = 1 −  z  1   ,  
Eq. (15.19) can be solved to give x1 and z1 as explicit functions of the ψi’s and thus of T:

  x  1   =       
ψ 1   (1 −  ψ 2  )

 _________  ψ 1   −  ψ 2      (15.20)   z  1   =   
1 −  ψ  2  

 _______  ψ  1   −  ψ  2     (15.21)

with

  ψ  1   = exp   
Δ  H 1  sl 

 _____ 
R  T   m  1    

     (  
T −  T   m  1     _ 

T
  )   (15.22a)   ψ  2   = exp   

Δ  H 2  sl 
 _____ 

R  T  m2  
     (  

T −  T   m  2     _ 
T

  )   (15.22b)

Inspection of these results verifies that   x  i   =  z  i  , = 1  for  T =   T   m  i      . Moreover, analysis shows 
that both xi and zi vary monotonically with T. Hence, systems described by Eq. (15.19) exhibit 
lens-shaped SLE diagrams, as shown in Fig. 15.5(a), where the upper line is the freezing curve 
and the lower line is the melting curve. The liquid-solution region lies above the freezing 
curve, and the solid-solution region lies below the melting curve. Examples of systems exhib-
iting diagrams of this type range from nitrogen/carbon monoxide at cryogenic temperatures 
to copper/nickel at high temperature. Comparison of this figure with Fig. (12.12) suggests 
that Case I-SLE behavior is analogous to Raoult’s law behavior for VLE. Comparison of the 

Figure 15.5: Txz diagrams. (a) Case I, ideal liquid and solid solutions; (b) Case II, ideal liquid  solution; 
immiscible solids.
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15.3. Solid/Liquid Equilibrium (SLE) 619

assumptions leading to Eqs. (15.19) and (13.16) confirms the analogy. As with Raoult’s law, 
Eq. (15.19) rarely describes the behavior of actual systems. However, it is an important limit-
ing case, and it serves as a standard against which observed SLE can be compared.

Case II

The two equilibrium equations resulting from Eq. (15.11) are here:

  x  1   =  ψ  1   (15.23)   x  2   =  ψ  2   (15.24)

where ψ1 and ψ2 are given as functions solely of temperature by Eq. (15.22). Thus x1 
and x2 are also solely functions of temperature, and Eqs. (15.23) and (15.24) can apply 
simultaneously only for the particular temperature where   ψ  1   +  ψ  2   = 1  and hence   x  1   +  x  2   = 1 . 
This is the eutectic temperature Te. Thus, three distinct equilibrium situations exist: one where  
Eq. (15.23) alone applies, one where Eq. (15.24) alone applies, and the special case where 
they apply together at Te.

 ∙ Equation (15.23) alone applies. By this equation and Eq. (15.22a),

   x  1   = exp   
Δ H 1  sl 

 _____ 
R T   m  1    

    (  
T −  T   m  1     _ 

T
  )    (15.25)

  This equation is valid only from  T =   T   m  1     , where   x  1   = 1 , to  T =   T  e   , where   x  1   =   x  1e   , 
the eutectic composition. Equation (15.25) therefore applies where a liquid solution is  
in equilibrium with pure species 1 as a solid phase. This is represented by region I on  
Fig. 15.5(b), where liquid solutions with compositions x1 given by line BE are in 
equilibrium with pure solid 1.

 ∙ Equation (15.24) alone applies. By this equation and Eq. (15.22b), with   x  2   = 1 −  x  1   :

   x  1   = 1 − exp   
Δ H 2  sl 

 _____ 
R T   m  2    

    (  
T −  T   m  2     _ 

T
  )    (15.26)

  This equation is valid only from  T =   T   m  2     , where   x  1   = 0 , to  T =   T  e   , where   x  1   =   x  1e   , 
the eutectic composition. Equation (15.26) therefore applies where a liquid solution is  
in equilibrium with pure species 2 as a solid phase. This is represented by region II on  
Fig. 15.5(b), where liquid solutions with compositions x1 given by line AE are in 
 equilibrium with pure solid 2.

 ∙ Equations (15.23) and (15.24) apply simultaneously, and are set equal because they must 
both give the eutectic composition x1e. The resulting expression,

  exp   
Δ H 1  sl 

 _____ 
R T   m  1    

    (  
T −  T   m  1     _ 

T
  )   = 1 − exp   

Δ H 2  sl 
 _____ 

R T   m  2    
    (  

T −  T   m  2     _ 
T

  )    (15.27)

  is satisfied for the single temperature  T =  T  e   . Substitution of Te into either Eq. (15.25) or 
(15.26) yields the eutectic composition. Coordinates Te and x1e define a eutectic state, a spe-
cial state of three-phase equilibrium, lying along line CED on Fig. 15.5(b), for which liquid 
of composition x1e coexists with pure solid 1 and pure solid 2. This is a state of solid/solid/
liquid equilibrium. At temperatures below Te the two pure immiscible solids coexist.
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620 CHAPTER 15. Topics in Phase Equilibria

Figure 15.5(b), the phase diagram for Case II, is an exact analog of Fig. 12.18(a) for 
immiscible liquids because the assumptions upon which its generating equations are based are 
analogs of the corresponding VLLE assumptions.

15.4 SOLID/VAPOR EQUILIBRIUM (SVE)

At temperatures below its triple point, a pure solid can vaporize. Solid/vapor equilibrium for 
a pure species is represented on a PT diagram by the sublimation curve (see Fig. 3.1); here, 
as for VLE, the equilibrium pressure for a particular temperature is called the (solid/vapor) 
saturation pressure Psat.

We consider in this section the equilibrium of a pure solid (species 1) with a binary 
vapor mixture containing species 1 and a second species (species 2), assumed insoluble in 
the solid phase. Because it is usually the major constituent of the vapor phase, species 2 is 
conventionally called the solvent species. Hence species 1 is the solute species, and its mole 
fraction y1 in the vapor phase is its solubility in the solvent. The goal is to develop a procedure 
for computing y1 as a function of T and P for vapor solvents.

Only one phase-equilibrium equation can be written for this system, because species 2, 
by assumption, does not distribute between the two phases. The solid is pure species 1. Thus,

   f 1   s  =   f   ̂   1   v   

Equation (10.44) for a pure liquid is, with minor change of notation, appropriate here:

   f 1   s  =  ϕ 1  sat   P 1  sat  exp   
 V 1  s (P −  P 1  sat  )

 ____________ 
RT

    

where   P 1  sat   is the solid/vapor saturation pressure at temperature T, and   V 1  s   is the molar volume 
of the solid. For the vapor phase, by Eq. (10.52),

    f   ̂   1  v  =  y  1     ϕ ˆ    1   P  

Combining the three preceding equations and solving for y1 gives:

   y  1   =   
 P 1  sat 

 ____ 
P

    F  1    (15.28)

where   F  1   ≡   
 ϕ 1  sat 

 ____ 
  ϕ ˆ    1  

   exp   
 V 1  s (P −  P 1  sat  )

 ___________ 
RT

    (15.29)

Function F1 reflects vapor-phase nonidealities through   ϕ 1  sat   and    ϕ ˆ    1    and the effect of 
pressure on the fugacity of the solid through the exponential Poynting factor. For sufficiently 
low pressures, both effects are negligible, in which case   F  1   ≈ 1  and   y  1   ≈  P 1  sat  ∕ P . At moderate 
and high pressures, vapor-phase nonidealities become important, and for very high pressures 
even the Poynting factor cannot be ignored. Because F1 is generally observed to be greater 
than unity, it is sometimes called an “enhancement factor” because according to Eq. (15.28) 
it leads to a solid solubility greater than that which would be observed in the absence of these 
pressure-induced effects.
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15.4. Solid/Vapor Equilibrium (SVE) 621

Estimation of Solid Solubility at High Pressure
Solubilities at temperatures and pressures above the critical values of the solvent have impor-
tant applications for supercritical separation processes. Examples are extraction of caffeine 
from coffee beans and separation of asphaltenes from heavy petroleum fractions. For a typical 
solid/vapor equilibrium (SVE) problem, the solid/vapor saturation pressure   P 1  sat   is very small, 
and the saturated vapor is for practical purposes an ideal gas. Hence   ϕ 1  sat   for pure solute vapor 
at this pressure is close to unity. Moreover, except for very low values of the system pressure 
P, the solid solubility y1 is small, and    ϕ ˆ    1    can be approximated by    ϕ ˆ   1  ∞  , the vapor-phase fugacity 
coefficient of the solute at infinite dilution. Finally, because   P 1  sat   is very small, the pressure 
difference  P −  P 1  sat   in the Poynting factor is nearly equal to P at any pressure where this factor 
is important. With these usually reasonable approximations, Eq. (15.29) reduces to:

   F  1   =   
1
 ___ 

  ϕ ˆ   1  ∞ 
   exp   

P V 1  s 
 ____ 

RT
    (15.30)

an expression suitable for many engineering applications. In this equation,   P 1  sat   and   V 1  s   are 
pure-species properties, found in a handbook or estimated from a suitable correlation. Quan-
tity    ϕ ˆ   1  ∞  , on the other hand, must be computed from a PVT equation of state—one suitable for 
vapor mixtures at high pressures.

Cubic equations of state, such as the Soave/Redlich/Kwong (SRK) and Peng/Robinson 
(PR) equations, are usually satisfactory for this kind of calculation. Equation (13.99) for    ϕ ˆ    i   ,  
developed in Sec. 13.7, is applicable here, but with a slightly modified combining rule for 
interaction parameter aij used in the calculation of    q ¯    i   . Thus, Eq. (13.93) is replaced by:

   a  ij   = (1 −  l  ij   )  ( a  i    a  j   )   1∕2   (15.31)

The additional binary interaction parameter lij must be found for each ij pair  (i  ≠  j )  from 
experimental data. By convention,   l  ij   =  l  ji    and   l  ii   =  l  jj   = 0 .

Partial parameter    a ¯    i    is found by application of Eq. (13.94) with a from Eq. (13.92):

    a ¯    i   = − a + 2 ∑ 
j

     y  j    a  ji    

Substitution of this expression into Eq. (13.101) yields:

    q ¯    i   = q 
(  

2 ∑ 
j

     y  j    a  ji  
 _______ 

a
   −   

 b  i   __ 
b
  )

   (15.32)

where b and q are given by Eqs. (13.91) and (13.90).
For species 1 at infinite dilution in a binary system, the “mixture” is pure species 2. In 

this event, Eqs. (13.99), (15.31), and (15.32) yield an expression for    ϕ ˆ   1  ∞  :

  ln   ϕ ˆ   1  ∞  =   
 b  1  

 __  b  2     ( Z  2   − 1  )    − ln ( Z  2   −  β  2     ) −  q  2    [ 2 (1 −  l 12   )     (    
 a 1  

 __  a 2
      )   

1∕2
  −     

 b1  
 __  b 2
       ]    I  2    (15.33)

where by Eq. (13.72),   I  2   =   
1
 ____ 

σ − ϵ   ln   
 Z  2   + σ  β  2  

 _______  Z  2   + ϵ  β  2      

Equation (15.33) is used in conjunction with Eqs. (13.81) and (13.83), which provide 
values of β2 and Z2 corresponding to a particular T and P.
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622 CHAPTER 15. Topics in Phase Equilibria

As an example, consider the calculation of the solubility of naphthalene(1) in carbon 
dioxide(2) at 35°C (308.15 K) and pressures up to 300 bar. Strictly speaking, this is not solid/
vapor equilibrium because the critical temperature of CO2 is 31.1°C. However, the develop-
ment of this section remains valid.

The basis is Eq. (15.30), with    ϕ ˆ   1  ∞   determined from Eq. (15.33) written for the SRK 
equation of state. For solid naphthalene at 35°C,

    P 1  sat  = 2.9 ×  10   −4   bar    and     V 1  s  = 125   cm   3   ·mol   −1    

Equations (15.33) and (13.83) become the SRK expressions on assignment of the values  σ = 1  
and  ε = 0 . Evaluation of parameters a1, a2, b1, and b2 requires values for Tc, Pc, and ω, which 
are found in App. B. Thus Eqs. (13.79) and (13.80) give:

    a  1   = 7.299 ×  10   7    bar·cm   6   · mol   −2      b  1   = 133.1   cm   3   · mol   −1       
 a  2   = 3.664 ×  10   6    bar·cm   6   · mol   −2 

  
   b  2   = 29.68   cm   3   · mol   −1 

   

By Eq. (13.82),   q  2   =   
 a  2  
 _____  b  2   RT

   = 4.819  

With these values, Eqs. (15.33), (13.81), and (13.83) become:

  ln   ϕ ˆ   1  ∞  = 4.485( Z  2   − 1)    − ln ( Z  2   −  β  2     ) +    [  21.61 − 43.02 (1 −  l 12   )    ]     ln   
 Z  2   +  β  2  

 ______  Z  2      (A)

   β  2   = 1.1585 ×  10   −3  P     (P ∕ bar )      (B)

   Z  2   = 1 +  β  2   − 4.819  β  2     
 Z  2   −  β  2  

 __________  Z  2  ( Z  2   +  β  2  )    (C)

To find    ϕ ˆ   1  ∞   for a given l12 and P, one first evaluates β2 using Eq. (B) and solves Eq. (C) for  
Z2. Substitution of these values into Eq. (A) gives    ϕ ˆ   1  ∞  . For example, for  P  =  200  bar and  
  l  12   = 0 , Eq. (B) gives   β  2   = 0.2317 , and solution of Eq. (C) yields   Z  2   = 0.4426 . By Eq. (A),  
   ϕ ˆ   1  ∞  = 4.74 ×   10   −5  . This small value leads by Eq. (15.30) to a large enhancement factor F1.

Tsekhanskaya et al.4 report solubility data for naphthalene in carbon dioxide at 35°C and 
high pressures, given as circles on Fig. 15.6. The sharp increase in solubility as the pressure 
approaches the critical value (73.83 bar for CO2) is typical of supercritical systems. Shown for 
comparison are the results of calculations based on Eqs. (15.28) and (15.30), under various 
assumptions. The lowest curve shows the “ideal solubility”   P 1  sat  ∕ P , for which the enhancement 
factor F1 is unity. The dashed curve incorporates the Poynting effect, which is significant at the 
higher pressures. The topmost curve includes the Poynting effect as well as    ϕ ˆ   1  ∞  , estimated from 
Eq. (15.33) with SRK constants and with   l  12   = 0 ; this purely predictive result captures the gen-
eral trends of the data, but it overestimates the solubility at the higher pressures. Correlation of 
the data requires a nonzero value for the interaction parameter; the value   l  12   = 0.088  produces 
the semi-quantitative representation shown on Fig. 15.6 as the second curve from the top.

15.5 EQUILIBRIUM ADSORPTION OF GASES ON SOLIDS

The process by which certain porous solids bind large numbers of molecules to their surfaces 
is known as adsorption. Not only does it serve as a separation process, but it is also a vital 
part of catalytic-reaction processes. As a separation process, adsorption is used most often 

4Y. V. Tsekhanskaya, M. B. Iomtev, and E. V. Mushkina, Russian J. Phys. Chem., vol. 38, pp. 1173–1176, 1964.
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15.5. Equilibrium Adsorption of Gases on Solids 623

for removal of low-concentration impurities and pollutants from fluid streams. It is also the 
basis for chromatography. In surface-catalyzed reactions, the initial step is usually adsorption 
of reactant species; the final step is usually the reverse process, desorption of product species. 
Because most industrially important reactions are catalytic, adsorption plays a fundamental 
role in reaction engineering.

The nature of the adsorbing surface is the determining factor in adsorption. To be useful 
as an adsorbent, a solid must present a large surface area per unit mass (specific surface areas 
up to 1500 m2 per gram are not uncommon). This can be achieved with porous solids such as 
activated carbon, silica gels, aluminas, zeolites, and metal-organic frameworks (MOFs), all 
of which contain many cavities or pores with diameters as small as a fraction of a nanometer. 
Surfaces of such solids are necessarily irregular at the length scale of atoms and molecules, 
and they present sites of particular attraction for adsorbing molecules. If the sites are close 
together, the adsorbed molecules may interact with one another; if they are sufficiently dis-
persed, the adsorbed molecules may interact only with the sites. Depending upon the strength 
of the forces binding them to the sites, these adsorbate molecules may be mobile or fixed 
in position. Relatively weak electrostatic and van der Waals interactions favor mobility of 

Figure 15.6: Solubility of naphthalene(l) in carbon dioxide(2) at 35°C. Circles are data. Curves are 
computed from Eqs. (15.28) and (15.30) under various assumptions as labeled.
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624 CHAPTER 15. Topics in Phase Equilibria

adsorbate molecules and result in physical adsorption. On the other hand, much stronger qua-
sichemical forces can act to fix molecules to the surface, by chemisorption. Although adsorp-
tion may be classified in several ways, the usual distinction is between physical adsorption and 
chemisorption. Based on the strength of the binding forces, this division is observed experi-
mentally in the magnitudes of the heat of adsorption.

In the adsorption of gases, the number of molecules adsorbed upon a solid surface 
depends on conditions in the gas phase. For very low pressures, relatively few molecules are 
adsorbed, and only a fraction of the solid surface is covered. As the gas pressure increases at a 
given temperature, surface coverage increases. When all sites become occupied, the adsorbed 
molecules are said to form a monolayer. Further increase in pressure promotes multilayer 
adsorption. In some cases, multilayer adsorption may occur on one part of a porous solid when 
vacant sites remain on another part.

The complexities of solid surfaces, particularly those of high-surface-area porous mate-
rials of greatest practical interest, limit molecular-level understanding of the adsorption pro-
cess. They do not, however, prevent development of an exact thermodynamic description of 
adsorption equilibrium, applicable to both physical adsorption and chemisorption and equally 
to monolayer and multilayer adsorption. The thermodynamic framework is independent of any 
particular theoretical or empirical description of material behavior. However, in application 
such a description is essential, and meaningful results require appropriate models of behavior.

The thermodynamic treatment of gas/adsorbate equilibrium is in many respects anal-
ogous to that of vapor/liquid equilibrium. However, the definition of a system to which the 
equations of thermodynamics apply presents a problem. The force field of the solid adsorbent 
influences properties in the adjacent gas phase, but its effect decreases rapidly with distance. 
Thus the properties of the gas change sharply in the immediate neighborhood of the solid 
surface, but they do not change discontinuously. A region of change exists which contains 
gradients in the properties of the gas, but the distance into the gas phase over which the solid 
exerts influence cannot be precisely established.

This problem is circumvented by a construct first devised by J. W. Gibbs. Imagine that 
the gas-phase properties extend unchanged up to the solid surface. Differences between the 
actual and the unchanged properties can then be attributed to a mathematical surface, treated 
as a two-dimensional phase with its own thermodynamic properties. This provides not only a 
precisely defined surface phase to account for the singularities of the interfacial region, but it 
also extracts them from the three-dimensional gas phase so that it too may be treated precisely. 
The solid, despite the influence of its force field, is presumed to be inert and not otherwise to 
participate in the gas/adsorbate equilibrium. Thus for purposes of thermodynamic analysis, 
the adsorbate is treated as a two-dimensional phase, inherently an open system because it is in 
equilibrium with the gas phase.

The fundamental property relation for an open PVT system is given by Eq. (10.2):

  d  (nG )     =   (nV  )    dP −   (nS )    dT +  ∑ 
i

     μ  i   d n  i    

An analogous equation may be written for a two-dimensional phase. The key difference is 
that pressure and molar volume are not appropriate variables for a two-dimensional phase. 
Pressure is replaced by the spreading pressure Π, and the molar volume by the molar area a:

  d  (nG )     =   (na )    dΠ −   (nS )    dT +  ∑ 
i

      μ  i   d  n  i    (15.34)
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15.5. Equilibrium Adsorption of Gases on Solids 625

This equation is written on the basis of a unit mass, usually a gram or a kilogram, of solid 
adsorbent. Thus n is the specific amount adsorbed, that is, the number of moles of adsorbate 
per unit mass of adsorbent. Moreover, area A is defined as the specific surface area, that is, the 
area per unit mass of adsorbent, a quantity characteristic of a particular adsorbent. The molar 
area,  a ≡ A ∕ n , is the surface area per mole of adsorbate.

The spreading pressure is the two-dimensional analog of pressure, having units of force 
per unit length, akin to surface tension. It can be pictured as the force in the plane of the sur-
face that must be exerted perpendicular to each unit length of edge to keep the surface from 
spreading, that is, to keep it in mechanical equilibrium. It is not subject to direct experimental 
measurement, and it must be calculated, significantly complicating the treatment of adsorbed-
phase equilibrium.

Because the spreading pressure adds an extra variable, the number of degrees of free-
dom for gas/adsorbate equilibrium is given by an altered version of the phase rule. For gas/
adsorbate equilibrium,  π = 2 ; therefore,

  F = N − π + 3 = N − 2 + 3 = N + 1  

Thus for adsorption of a pure species,

  F = 1 + 1 = 2  

and two phase-rule variables, e.g., T and P or T and n, must be fixed independently to estab-
lish an equilibrium state. Note that the inert solid phase is counted neither as a phase nor as a 
species.

Recall the summability relation for the Gibbs energy, which follows from Eqs. (10.8) 
and (10.12):

  nG =  ∑ 
i

      n  i    μ  i    

Differentiation gives:  d  (nG )     =  ∑ 
i

      μ  i   d  n  i   +  ∑ 
i

      n  i   d  μ  i    

Comparison with Eq. (15.34) shows:

    (nS )    dT −   (na )    d Π +  ∑ 
i

      n  i   d μ  i   = 0  

or  SdT − adΠ +  ∑ 
i

      x  i   d μ  i    = 0  

This is the Gibbs/Duhem equation for the adsorbate. Restricting it to constant temperature 
produces the Gibbs adsorption isotherm:

   − a d Π +  ∑ 
i

      x  i   d  μ  i   = 0    (const T)   (15.35)

The condition of equilibrium between adsorbate and gas presumes the same temperature 
for the two phases and requires:

   μ  i   =  μ i  
g
   

where   μ i  
g
   represents the gas-phase chemical potential. For a change in equilibrium conditions,

  d  μ  i   = d  μ i  
g
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If the gas phase is an ideal gas (the usual assumption), then differentiation of Eq. (10.29) at 
constant temperature yields:

  d  μ i  
g
  = RT d ln  ( y  i   P)   

Combining the last two equations with the Gibbs adsorption isotherm gives:

   −   
a
 ___ 

RT
   d Π + d ln  P +  ∑ 

i

     x  i   d ln  y  i   = 0    (const T )   (15.36)

where xi and yi represent adsorbate and gas-phase mole fractions, respectively.

Pure-Gas Adsorption
Basic to the experimental study of pure-gas adsorption are measurements at constant temper-
ature of n, the moles of gas adsorbed, as a function of P, the pressure in the gas phase. Each set 
of data represents an adsorption isotherm for the pure gas on a particular solid adsorbent. 
Available data are summarized by Valenzuela and Myers.5 The correlation of such data 
requires an analytical relation between n and P, and such a relation should be consistent with 
Eq. (15.36).

Written for a pure chemical species, this equation becomes:

     
a
 ___ 

RT
   d Π = d ln  P  (const T )   (15.37)

The compressibility-factor analog for an adsorbate is defined by the equation:

  z ≡   
Πa

 ___ 
RT

    (15.38)

Differentiation at constant T yields:

  dz =   
Π

 ___ 
RT

   da +   
a
 ___ 

RT
   dΠ  

Replacing the last term by Eq. (15.37) and eliminating Π∕RT in favor of z∕a in accord with 
Eq. (15.38) yields:

  − d ln  P = z   
da

 ___ 
a

   − dz  

Substituting  a = A ∕ n  and  da = − Adn ∕  n   2   gives:

  − d ln  P = − z   
dn

 ___ 
n
   − dz  

Adding dn∕n to both sides of this equation and rearranging,

  d ln   
n
 __ 

P
   =   (1 − z )      

dn
 ___ 

n
   − dz  

5D. P. Valenzuela and A. L. Myers, Adsorption Equilibrium Data Handbook, Prentice Hall, Englewood Cliffs, NJ, 1989.
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15.5. Equilibrium Adsorption of Gases on Solids 627

Integration from  P = 0  (where  n = 0  and  z = 1 ) to  P = P  and  n = n  yields:

 ln   
n
 __ 

P
   − ln   lim  

P→0
      
n
 __ 

P
   =   ∫ 

0
  
n

 (1 − z)          
dn

 ___ 
n
   + 1 − z 

The limiting value of n∕P as n → 0 and P → 0 must be found by extrapolation of exper-
imental data. Applying l’Hôpital’s rule to this limit gives:

    lim  
P→0 

     
n
 __ 

P
   =   lim  

P→0
      
dn

 ___ 
dP

   ≡ k  

Thus k is defined as the limiting slope of an isotherm as P → 0 and is known as Henry’s 
constant for adsorption. For a given adsorbent and adsorbate, it depends only on temperature 
and is characteristic of the specific interaction between a particular adsorbent and a particular 
adsorbate.

The preceding equation can therefore be written:

 ln   
n
 ___ 

kP
   =    ∫ 

0
  
n

 (1 − z)       
dn

 ___ 
n
   + 1 − z 

or   n = kP  exp  [  ∫ 
0
  
n

 (1 − z)     
dn

 _ 
n
   + 1 − z ]     (15.39)

This general relation between n, the moles adsorbed, and P, the gas-phase pressure, 
includes z, the adsorbate compressibility factor, which can be represented by an equation of 
state for the adsorbate. The simplest such equation is the ideal-gas analog,  z = 1 , and in this 
case Eq. (15.39) yields  n = kP,  which is Henry’s law for adsorption.

An equation of state known as the ideal-lattice-gas equation6 has been developed specif-
ically for an adsorbate:

  z = −   
m

 __ 
n
    ln   (1 −   

n
 _ 

m
  )    

where m is a constant. This equation is based on the presumptions that the surface of the 
adsorbent is a two-dimensional lattice of energetically equivalent sites, each of which can 
bind an adsorbate molecule, and that the bound molecules do not interact with each other. The 
validity of this model is therefore limited to no more than monolayer coverage. Substitution of 
this equation into Eq. (15.39) and integration leads to the Langmuir isotherm:7

  n =   (     
m − n

 _ 
m

   )   kP  

Solution for n yields:  n =   
mP
 _____ 

  
m

 __ 
k
   + P

    (15.40)

6See, e.g., T. L. Hill, An Introduction to Statistical Mechanics, sec. 7–1, Addison-Wesley, Reading, MA, 1960, 
reprinted by Dover, 1987.

7Irving Langmuir (1881–1957), the second American to receive the Nobel Prize in chemistry, awarded for his 
contributions in the field of surface chemistry. See http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1932/ 
and http://en.wikipedia.org/wiki/Irving_Langmuir.
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628 CHAPTER 15. Topics in Phase Equilibria

Alternatively,  n =   
kbP

 ____ 
b + P    (15.41)

where  b ≡ m ∕ k , and k is Henry’s constant. Note that when P → 0, n∕P properly approaches k.  
At the other extreme, where P → ∞, n approaches m, the saturation value of the specific 
amount absorbed, representing full monolayer coverage.

Based on the same assumptions as for the ideal-lattice-gas equation, Langmuir in 1918 
derived Eq. (15.40) by noting that at equilibrium the rate of adsorption and the rate of desorp-
tion of gas molecules must be the same.8 For monolayer adsorption, the number of sites can be 
divided into the fraction occupied θ and the fraction vacant 1− θ. By definition,

   θ ≡   
n
 __ 

m
      and    1 − θ =   

m − n
 _____ 

m
     

where m is the value of n for full monolayer coverage. For the assumed conditions, the rate of 
adsorption is proportional to the rate at which molecules strike unoccupied sites on the sur-
face, which in turn is proportional to both the pressure and the fraction 1 − θ of unoccupied 
surface sites. The rate of desorption is proportional to the occupied fraction θ of sites. Equat-
ing the two rates gives:

  κP   
m − n

 _____ 
m

   = κ′   
n
 __ 

m
    

where  κ  and  κ′  are proportionality (rate) constants. Solving for n and rearranging yields:

  n =   
κmP

 _________ 
κP + κ′   =   

mP
 _____ 

  
1
 __ 

K
   + P

    

where  K ≡ κ ∕ κ′ , the ratio of the forward and reverse adsorption rate constants, is the conven-
tional adsorption equilibrium constant. The second equality in this equation is equivalent to 
Eq. (15.40), and it indicates that the adsorption equilibrium constant is equal to Henry’s con-
stant divided by m, i.e.,  K = k ∕ m. 

Because the assumptions upon which it is based are fulfilled at low surface coverage, 
the Langmuir isotherm is always valid as θ → 0 and as n → 0. Even though these assumptions 
become unrealistic at higher surface coverage, the Langmuir isotherm may provide an approx-
imate overall fit to n vs. P data; however, it does not lead to reasonable values for m.

Substituting  a = A ∕ n  in Eq. (15.37) gives:

    
A dΠ

 _____ 
RT

   = n d ln P  

Integration at constant temperature from  P = 0  (where  Π = 0 ) to  P = P  and  Π = Π  yields:

     
ΠA

 ____ 
RT

   =  ∫ 
0
  
P

    
n
 __ 

P
   dP    (15.42)

This equation provides the only means of evaluating spreading pressure. The integration may 
be carried out numerically or graphically with experimental data, or the data may be fit to an 

8I. Langmuir, J. Am. Chem. Soc., vol. 40, p. 1361, 1918.
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15.5. Equilibrium Adsorption of Gases on Solids 629

equation for an isotherm. For example, if the integrand n∕P is given by Eq. (15.41), the Lang-
muir isotherm, then:

    
ΠA

 ____ 
RT

   = kb ln   
P + b

 ____ 
b
    (15.43)

an equation valid for n → 0.
No equation of state is known that leads to an adsorption isotherm which in general fits 

experimental data over the entire range of n from zero to full monolayer coverage. Isotherms 
that find practical use are often three-parameter empirical extensions of the Langmuir iso-
therm. An example is the Toth equation:9

  n =   
mP
 ________ 

 (b +  P   t  )   1∕t 
    (15.44)

which adds an exponent (t) as the third parameter and reduces to the Langmuir equation 
for  t  =  1 . When the integrand of Eq. (15.42) is expressed by the Toth equation and most 
other three-parameter equations, its integration requires numerical methods. Moreover, the 
empirical element of such equations often introduces a singularity that makes them behave 
improperly in the limit as P → 0. Thus for the Toth equation (t < 1) the second derivative 
d 2n∕dP2 approaches −∞ in this limit, making values of Henry’s constant as calculated by 
this equation too large. Nevertheless, the Toth equation finds frequent practical use as an 
adsorption isotherm. However, it is not always suitable, and a number of other adsorption 
isotherms are in use, as discussed by Suzuki.10 Among them, the Freundlich equation,

    θ =     
n
 __ 

m
     = α  P  1∕β      (β > 1 )       (15.45)

is a two-parameter (α and β) isotherm that often successfully correlates experimental data for 
low and intermediate values of θ.

Example 15.8
Nakahara et al.11 report data for ethylene adsorbed on a carbon molecular sieve  
( A = 650   m   2   · g   −1  ) at 50°C. The data, shown as filled circles in Fig. 15.7, consist of 
pairs of values (P, n), where P is the equilibrium gas pressure in kPa and n is moles 
of adsorbate per kg of adsorbent. Trends shown by the data are typical for physical 
adsorption on a heterogeneous adsorbent at low-to-moderate surface coverage. Use 
these data to illustrate numerically the concepts developed for pure-gas adsorption.

9J. Toth,  Adsorption. Theory, Modelling, and Analysis, Dekker, New York, 2002.

10M. Suzuki, Adsorption Engineering, pp. 35–51, Elsevier, Amsterdam, 1990.

11T. Nakahara, M. Hirata, and H. Mori, J. Chem. Eng. Data, vol. 27, pp. 317–320, 1982.
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630 CHAPTER 15. Topics in Phase Equilibria

Solution 15.8
The solid line in Fig. 15.7 represents a curve-fit to the data by Eq. (15.44), the Toth 
equation, with parameter values as reported by Valenzuela and Myers:12

   m = 4.7087     b = 2.1941     t = 0.3984   

These imply an apparent value of Henry’s constant:

  k  (Toth )     =   lim  
P→∞

     
n
 __ 

P
   =   

m
 ___ 

 b   1∕t 
   = 0.6551 mol· kg   −1 · kPa   −1   

Although the overall quality of the fit is excellent, the value of Henry’s constant is 
too large, as we will show.

Extraction of Henry’s constant from an adsorption isotherm is facilitated when 
n∕P (rather than n) is considered the dependent variable and n (rather than P) the 
independent variable. The data plotted in this form are shown by Fig. 15.8. On this 
plot, Henry’s constant is the extrapolated intercept:

  k =   lim  
P→0

     
n
 __ 

P
   =   lim  

n→0
     
n
 __ 

P
    

P/kPa

n/
m

ol
·k

g
– 

1

1.5

1.0

0.5

0 10 20 30 40

Figure 15.7: Adsorption isotherm for ethylene on a carbon molecular sieve at 50°C.  
Legend: ∙ experimental data; – ∙ – ∙ – ∙ Henry’s law;   

Toth equation; – – – Langmuir equation n → 0

12D. P. Valenzuela and A. L. Myers, op. cit.
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15.5. Equilibrium Adsorption of Gases on Solids 631

where the second equality follows from the first because n → 0 as P → 0. Evalua-
tion of the intercept (and hence of k) was done in this case by fitting all of the n∕P 
data by a cubic polynomial in n:

    
n
 __ 

P
   =  C  0   +  C  1   n +  C  2    n   2  +  C  3    n   3   

The evaluated parameters are:

   C  0   = 0.4016   C  1   = − 0.6471   C  2   = − 0.4567   C  3   = − 0.1200  

Thus,  k =  C  0   = 0.4016  mol·kg   −1   · kPa   −1   

Representation of n∕P by the cubic polynomial appears as the solid curve in  
Fig. 15.8, and the extrapolated intercept (  C  0   = k = 0.4016 ) is indicated by an open 
circle. For comparison, the dotted line is the low-n portion of the n∕P curve given 
by the Toth equation. Here it is apparent that the extrapolated intercept k(Toth), 
off-scale on this figure, is too high. The Toth equation cannot provide an accurate 
representation of adsorption behavior at very low values of n or P.

The Langmuir equation, on the other hand, is always suitable for sufficiently 
small n or P. Rearrangement of Eq. (15.41) gives:

    
n
 __ 

P
   = k −   

1
 __ 

b
   n  

Figure 15.8: Plot of n/P vs. n for 
ethylene on a carbon molecular sieve 
at 50°C.
∙ experimental data; 

 cubic polynomial fit of 
n/P vs. n; 
– – – – Langmuir equation for  
n → 0; 
— ∙ — ∙ — Henry’s law;  
∙ ∙ ∙ ∙ ∙ Toth equation for small n

Henry’s law
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0.4

0.3

0.2

0.1

0 0.4

n/mol·kg–1 

0.8 1.2 1.6

n P
/m

ol
·k

g
–1

 kP
a–1

 

Langmuir equation
for n      0

www.konkur.in

Telegram: @uni_k



632 CHAPTER 15. Topics in Phase Equilibria

which shows that the Langmuir equation implies a linear variation of n∕P with n. 
Hence, the limiting tangent to the “true” isotherm on a plot of n∕P vs. n represents 
the Langmuir approximation to the isotherm for small n, as shown by the dashed 
lines in Figs. 15.7 and 15.8. It is given by the equation:

    
n
 __ 

P
   = 0.4016 − 0.6471n  

or, equivalently, by  n =   
0.6206P

 _________ 1.5454 + P    

Figures 15.7 and 15.8 show that Henry’s law (represented by the dot-dash lines) 
and the limiting form of the Langmuir equation provide, respectively, in this  
example upper and lower bounds for the actual isotherm. The Langmuir  
isotherm when fit to all the experimental data yields a curve (not shown) in  
Fig. 15.7 that fits the data reasonably well, but not as well as the three-parameter 
Toth expression.

Neither the spreading pressure nor the adsorbate equation of state is required for 
an empirical correlation of single-species adsorption data. However, a set of (n, P) 
data implies an equation of state for the adsorbed phase, and hence a relationship 
between the spreading pressure Π and the moles adsorbed. By Eq. (15.42),

    
ΠA

 ____ 
RT

   =  ∫ 
0
  
P

    
n
 __ 

P
     dP =  ∫ 

0
  
n

    
n
 __ 

P
       
dP

 ___ 
dn

   dn  

Equation (15.38) can be written:

  z =   
ΠA

 _____ 
nRT

    

So that,  z =   
1
 __ 

n
    ∫ 

0
  
P

    
n
 __ 

P
     dP =   

1
 __ 

n
    ∫ 

0
  
n

    
n
 __ 

P
       
dP

 ___ 
dn

   dn  

Finding numerical values for z and Π requires evaluating the integral:

  I ≡  ∫ 
0
  
P

    
n
 __ 

P
     dP =  ∫ 

0
  
n

    
n
 __ 

P
       
dP

 ___ 
dn

   dn  

Choice of the form depends on whether P or n is the independent variable. The 
Toth equation gives the integrand n∕P as a function of P, and therefore:

  I (Toth)  =  ∫ 
0
  
P

    
mdP
 ________ 

 (b +  P   t  )   1∕t 
      

The cubic polynomial gives n∕P as a function of n, thus,

  I(cubic ) =  ∫ 
0
  
n

   (     
 C  0   −  C  2    n   2  − 2  C  3    n   3 

  _____________________   
 C  0   +  C  1   n +  C  2    n   2  +  C  3    n   3 

   )     dn  
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15.5. Equilibrium Adsorption of Gases on Solids 633

These two expressions permit numerical determination of z(n) and Π(n) as a  
result of correlations presented in this example. Thus, for  n  =  1    mol · kg   −1   and  
A = 650    m   2   · g   −1  , both the Toth and cubic-polynomial equations yield  z = 1.69 . 
From this result,

    

Π =   
nRT

 ____ 
A

   z =   
1  mol·kg   −1  × 83.14  cm   3   ·bar·mol   −1   ·K   −1  × 323.15 K

    _________________________________________   
650,000  m   2   ·kg   −1 

  

      
      × 1.69 ×  10   −6   m   3   ·cm   −3  ×  10   5   N·m   −2   ·bar   −1 

      

      = 6.99 ×  10   −3   N·m   −1  = 6.99   mN·m   −1  = 6.99   dyn·cm   −1 

   

The adsorptive capacity of an adsorbent depends directly on its specific surface area A, 
but determination of these large values is not a trivial matter. The means is provided by the 
adsorption process itself. The basic idea is to measure the quantity of a gas adsorbed at full 
monolayer coverage and to multiply the number of molecules adsorbed by the area occupied by 
a single molecule. Two difficulties attend this procedure. First is the problem of detecting the 
point of full monolayer coverage. Second, one finds measured areas are different with different 
gases as adsorbates. The latter problem is generally circumvented by the adoption of nitrogen 
as a standard adsorbate. The procedure is to make measurements of the (physical) adsorption 
of N2 at its normal boiling point (−195.8°C) for pressures up to its vapor pressure of l(atm). 
The result is a curve that initially, at low P, looks like that in Fig. 15.7. When  monolayer cov-
erage is nearly complete, multilayer adsorption begins, and the curve changes direction, with 
n increasing ever more rapidly with pressure. Finally, as the pressure approaches l(atm), the 
vapor pressure of the N2 adsorbate, the curve becomes nearly vertical because of condensation 
in the pores of the adsorbent. The problem is to identify the point on the curve that represents 
full monolayer coverage. The usual procedure is to fit the Brunauer/Emmett/Teller (BET) 
equation, a two-parameter extension of the Langmuir isotherm to multilayer adsorption, to the 
n vs. P data. From this, one can determine a value for m.13 Once m is known, multiplication by 
Avogadro’s number and by the area occupied by one adsorbed N2 molecule (16.2 Å2) yields 
the surface area. The method has its uncertainties, particularly for molecular sieves where the 
pores may contain unadsorbed molecules. Nevertheless, it is a useful and widely used tool for 
characterizing and comparing adsorption capacities.

Heat of Adsorption
The Clapeyron equation, derived in Sec. 6.5 for the latent heat of phase transition of pure 
chemical species, is also applicable to pure-gas adsorption equilibrium. Here, however, the 
two-phase equilibrium pressure depends not only on temperature but also on surface coverage 
or the amount adsorbed. Thus the analogous equation for adsorption is written

    (     
∂ P

 ___ ∂ T   )    
n

   =   
Δ H   av 

 ______ 
TΔ V   av     (15.46)

where subscript n signifies that the derivative is taken at constant amount adsorbed. Super-
script av denotes a property change of desorption, i.e., the difference between the vapor-phase 

13J. M. Smith, Chemical Kinetics, 3rd ed., sec. 8–1, McGraw-Hill, New York, 1981.
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634 CHAPTER 15. Topics in Phase Equilibria

and the adsorbed-phase property. The quantity  Δ  H   aν  ≡  H   ν  −  H   a   is defined as the isosteric 
heat of adsorption and is usually a positive quantity.14 The heat of adsorption is a useful indi-
cation of the strength of the forces binding adsorbed molecules to the surface of the adsorbent, 
and its magnitude can therefore often be used to distinguish between physical adsorption and 
chemisorption.

The dependence of heats of adsorption on surface coverage has its basis in the energetic 
heterogeneity of most solid surfaces. The first sites on a surface to be occupied are those that 
attract adsorbate molecules most strongly and with the greatest release of energy. Thus the heat 
of adsorption usually decreases with surface coverage. Once all sites are occupied and multi-
layer adsorption begins, the dominant forces become those between adsorbate molecules, and 
for subcritical species the decreasing heat of adsorption approaches the heat of vaporization.

Assumed in the derivation of the Langmuir isotherm is the energetic equivalence of all 
adsorption sites, implying that the heat of adsorption is independent of surface coverage. This 
explains in part the inability of the Langmuir isotherm to provide a close fit to most exper-
imental data over a wide range of surface coverage. The Freundlich isotherm, Eq. (15.45), 
implies a logarithmic decrease in the heat of adsorption with surface coverage.

As in the development of the Clausius/Clapeyron equation (Example 6.6), if for low 
pressures one assumes that the gas phase is ideal and that the adsorbate is of negligible volume 
compared with the gas-phase volume, Eq. (15.46) becomes:

     (  
∂ ln P

 _____ ∂ T  )   
n

   =   
Δ H   av 

 _____ 
R T   2 

    (15.47)

Application of this equation requires measuring isotherms, such as the one at 50°C in  
Fig. 15.7, at several temperatures. Cross plotting yields sets of P vs. T relations at constant n, 
from which values for the partial derivative of Eq. (15.47) can be obtained. For chemisorption, 
ΔHav values usually range from 60 to 170 kJ·mol−1. For physical adsorption, they are smaller. 
For example, measured values at very low coverage for the physical adsorption of nitrogen and 
n-butane on 5A zeolite are 18.0 and 43.1 kJ·mol−1, respectively.15

Mixed-Gas Adsorption
Mixed-gas adsorption is treated similarly to the gamma/phi formulation of VLE (Sec. 13.2). 
With a gas-phase property denoted by superscript g, Eqs. (10.31) and (10.46), which define 
fugacity, are rewritten:

 G i  
g
  =   Γ i  

g
  (T )  + RT ln  f i  

 g
  (15.48)  μ i  

g
  =   Γ i  

g
  (T )  + RT ln   f   ̂   i   

g
 (15.49)

Note as a result of Eqs. (10.32) and (10.53) that:

    lim  
P→0

     
 f i  

 g
 
 __ 

P
   = 1   and     lim  

P→0
     
  f   ̂   i  

 g
 
 ____  y  i   P
   = 1  

14Other heats of adsorption, defined differently, are also in use. However, the isosteric heat is the most common, 
and it is the one needed for energy balances on adsorption columns.

15N. Hashimoto and J. M. Smith, Ind. Eng. Chem. Fund., vol. 12, p. 353, 1973.
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For the adsorbate, analogous equations are:

 G  i   =   Γ  i   (T )  + RT ln   f  i  (15.50)  μ  i   =   Γ  i   (T  ) + RT ln    f   ̂    i  (15.51)

with    lim  
Π→0

     
 f  i   __ Π   = 1    and       lim  

Π→0
     

  f   ̂    i   ____  x  i   Π
   = 1  

The Gibbs energies as given by Eqs. (15.48) and (15.50) can be equated for pure-gas/
adsorbate equilibrium:

    Γ i  
g
 (T ) + RT ln   f i  

 g
  =  Γ  i  (T ) + RT  ln   f  i     

Rearrangement gives:

    
 f  i   __ 
 f i  

 g
 
   = exp   [     

 Γ i  
g
 (T ) +  Γ  i  (T )

  ____________ 
RT

   ]    ≡  F  i  (T )  (15.52)

The limiting value of   f  i   ∕  f i   
g
   as both P and Π approach zero can be used to evaluate Fi (T):

    lim  
  P→0  Π→0 

     
 f  i   __ 
 f i  

g
 
   =   lim  

  P→0  Π→0 
     
Π

 __ 
P

   =   lim  
  n  i  →0  
P→0

  
     
 n  i   __ 
P

     lim  
  Π→0   n  i  →0 

     
Π

 __  n  i  
    

The first limit of the last member is Henry’s constant ki; the second limit is evaluated from  
Eq. (15.48), written  Π ∕  n  i   =  z  i   RT ∕ A ; thus,

    lim  
  Π→0   n  i  →0 

     
Π

 __  n  i  
   =   

RT
 ___ 

A
    

In combination with Eq. (15.52) these equations give:

  F  i  (T ) =   
 k  i   RT

 _____ 
A

   (15.53)   f  i   =   
 k  i   RT

 _____ 
A

    f i  
 g
  (15.54)

Similarly, equating Eqs. (15.49) and (15.51) yields:

   Γ i  
 g
 (T ) + RT ln   f   ̂   i  

 g
  =  Γ  i  (T ) + RT ln     f   ̂    i    

from which    
  f   ̂    i   __ 
  f   ̂   i  

 g
 
   = exp   [     

 Γ i  
 g
 (T ) +  Γ  i  (T )

  ____________ 
RT

   ]    ≡  F  i  (T )  

Then by Eq. (15.53),    f   ̂    i   =   
 k  i   RT

 _____ 
A

     f   ̂   i  
 g
   (15.55)

These equations show that equality of fugacities is not a proper criterion for gas/ 
adsorbate equilibrium. This is also evident from the fact that the units of gas-phase fugacities 
are those of pressure, while the units of adsorbate fugacities are those of spreading pressure. In 
most applications, the fugacities appear as ratios and the factor ki RT/A cancels. Nevertheless, 
it is instructive to note that equality of chemical potentials, not fugacities, is the fundamental 
criterion of phase equilibrium.
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636 CHAPTER 15. Topics in Phase Equilibria

An activity coefficient for the constituent species of a mixed-gas adsorbate is defined 
by the equation:

   γ  i   ≡   
  f   ̂    i   ____  x  i    f  i  ° 

    

where    f   ̂    i    and   f   i  °   are evaluated at the same T and spreading pressure Π. The degree sign (°) 
denotes values for the equilibrium adsorption of pure i at the spreading pressure of the mix-
ture. Substitution for the fugacities by Eqs. (15.54) and (15.55) gives:

   γ  i   =   
  f   ̂   i  

 g
 (P)
 _______ 

 x  i    f i  
 g
 ( P  i  ° )

    

The fugacities are evaluated at the pressures indicated in parentheses, where P is the equilib-
rium mixed-gas pressure and   P  i  °   is the equilibrium pure-gas pressure that produces the same 
spreading pressure. If the gas-phase fugacities are eliminated in favor of fugacity coefficients 
[Eqs. (10.34) and (10.52)], then:

   γ  i   =   
 y  i     ϕ ˆ    i   P

 ______  x  i    ϕ  i    P  i  ° 
    

or   y  i     ϕ ˆ    i   P =  x  i    ϕ  i    P  i  °   γ  i    (15.56)

The usual assumption is that the gas phase is ideal; the fugacity coefficients are then unity:

   y  i   P =  x  i    P  i  °   γ  i    (15.57)

These equations provide the means for calculation of activity coefficients from mixed-
gas adsorption data. Alternatively, if γi values can be predicted, they allow calculation of 
adsorbate composition. In particular, if the mixed-gas adsorbate forms an ideal solution, then 
γ = 1, and the resulting equation is the adsorption analog of Raoult’s law:

   y  i   P =  x  i    P  i  °   (15.58)

This equation is always valid as P → 0 and within the pressure range for which Henry’s law is 
a suitable approximation.

Equation (15.42) is applicable not only for pure-gas adsorption but also for adsorption of 
a constant-composition gas mixture. Applied where Henry’s law is valid, it yields:

    
ΠA

 ____ 
RT

   = kP  (15.59)

where k is the mixed-gas Henry’s constant. For adsorption of pure species i at the same spread-
ing pressure, this becomes:

    
ΠA

 ____ 
RT

   =  k  i    P  i  °   

Combining these two equations with Eq. (15.58) gives:

   y  i    k  i   =  x  i   k  

Summing over all i, k =    ∑ 
i

         y  i    k  i   (15.60)
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15.5. Equilibrium Adsorption of Gases on Solids 637

Eliminating k between these two equations yields:

   x  i   =   
 y  i    k  i   ______  ∑ 
i

      y  i    k  i  
    (15.61)

This simple equation, requiring only data for pure-gas adsorption, provides adsorbate compo-
sitions in the limit as P → 0.

For an ideal adsorbed solution, in analogy with Eq. (10.81) for volumes,

  a =   ∑ 
i

         x  i    a  i  °   

where a is the molar area for the mixed-gas adsorbate and   a  i  °   is the molar area of the pure-gas 
adsorbate at the same temperature and spreading pressure. Because  a = A ∕ n  and   a  i  °  = A ∕  n  i  °  , 
this equation may be written:

    
1
 __ 

n
   =  ∑ 

i
       

 x  i   ___  n  i  ° 
    

or  n =   
1
 _________  ∑ 

i

    ( x  i   ∕  n  i  °  )
    (15.62)

where n is the specific amount of mixed-gas adsorbate and   n  i  °   is the specific amount of pure-i 
adsorbate at the same spreading pressure. The amount of species i in the mixed-gas adsorbate 
is of course   n  i   =  x  i   n .

The prediction of mixed-gas adsorption equilibria by ideal-adsorbed-solution theory16 
is based on Eqs. (15.58) and (15.62). The following is a brief outline of the procedure. Because 
there are N + 1 degrees of freedom, both T and P, as well as the gas-phase composition, must 
be specified. Solution is for the adsorbate composition and the specific amount adsorbed. 
Adsorption isotherms for each pure species must be known over the pressure range from zero 
to the value that produces the spreading pressure of the mixed-gas adsorbate. For purposes 
of illustration we assume Eq. (15.41), the Langmuir isotherm, to apply for each pure species, 
writing it:

   n  i  °  =   
 k  i    b  i    P  i  °  _______  b  i   +  P  i  ° 

    (A)

The inverse of Eq. (15.43) provides an expression for   P  i  °  , which yields values of   P  i  °   
corresponding to the spreading pressure of the mixed-gas adsorbate:

   P  i  °  =  b  i    (  exp   
ψ
 _  k  i    b  i  
   − 1 )     (B)

where  ψ ≡   
ΠA

 ____ 
RT

    

16A. L. Myers and J. M. Prausnitz, AIChE J., vol. 11, pp. 121–127, 1965; D. P. Valenzuela and A. L. Myers, op. cit.
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638 CHAPTER 15. Topics in Phase Equilibria

The following steps then constitute a solution procedure:

 ∙ An initial estimate of ψ is found from the Henry’s law equations. Combining the defini-
tion of ψ with Eqs. (15.59) and (15.60) yields:

  ψ = P ∑ 
i

      y  i    k  i    

 ∙ With this estimate of ψ, calculate   P  i  °   for each species i by Eq. (B) and   n  i  °   for each  species 
i by Eq. (A).

 ∙ One can show that the error in ψ is approximated by:

  δψ =   
P ∑ 

i

       
 y  i   ___  P  i  ° 

   − 1
 __________ 

P ∑ 
i

       
 y  i   _____  P  i  °   n  i  ° 

  
    

  Moreover, the approximation becomes increasingly exact as δψ decreases. If δψ is 
smaller than some preset tolerance (say δψ < ψ × 10−7), the calculation goes to the final 
step; if not, a new value, ψ = ψ + δψ, is determined, and the calculation returns to the 
preceding step.

 ∙ Calculate xi for each species i by Eq. (15.58):

   x  i   =   
 y  i   P

 ____  P  i  ° 
    

  Calculate the specific amount absorbed by Eq. (15.62).

Use of the Langmuir isotherm has made this computational scheme appear quite simple, 
because direct solution for   P  i  °   (step 2) is possible. However, most equations for the adsorption 
isotherm are less tractable, and this calculation must be done numerically. This significantly 
increases the computational task, but it does not alter the general procedure.

Predictions of adsorption equilibria by ideal-adsorbed-solution theory are usually 
satisfactory when the specific amount adsorbed is less than a third of the saturation value for 
monolayer coverage. At higher adsorbed amounts, appreciable negative deviations from ideality 
are promoted by differences in size of the adsorbate molecules and by adsorbent heterogeneity. 
One must then have recourse to Eq. (15.57). The difficulty is in obtaining values of the activity 
coefficients, which are strong functions of both spreading pressure and temperature. This 
contrasts with activity coefficients for liquid phases, which for most applications are insensitive 
to pressure. This topic is treated by Talu et al.17

15.6 OSMOTIC EQUILIBRIUM AND OSMOTIC PRESSURE

Most of the earth’s water resides in the oceans as seawater. For some regions, this is the ulti-
mate source of fresh water for public and commercial use. Conversion of seawater to fresh 

17O. Talu, J. Li, and A. L. Myers, Adsorption, vol. 1, pp. 103–112, 1995.
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15.6. Osmotic Equilibrium and Osmotic Pressure 639

water requires the separation of more-or-less pure water from an aqueous solution containing 
dissolved solute species. Historically, this had been achieved by distillation. However, in recent 
years reverse osmosis has outpaced distillation, and the majority of worldwide desalination 
capacity consists of reverse osmosis facilities. Central to an understanding of osmotic separa-
tions are the concepts of osmotic equilibrium and osmotic pressure, the topics of this section.

Consider the idealized physical situation represented by Fig. 15.9. A chamber is divided 
into two compartments by a rigid semipermeable partition (membrane). The left compart-
ment contains a binary solute(l)/solvent(2) liquid mixture, and the right contains pure sol-
vent; the partition is permeable to solvent species 2 only. Temperature is uniform and constant 
throughout, but movable pistons permit independent adjustment of the pressures in the two 
compartments.

Figure 15.9: Idealized 
osmotic system.

Mixture of
1 and 2
@T, P'

Pure 2
@T, P

P' P

Pistons

Rigid
semipermeable

partition

Suppose that pressure is the same in the two compartments:  P′= P . This implies ine-
quality of the fugacity    f   ̂    2    of the only distributed species (the solvent), for by Eq. (15.2),

    
d   f   ̂    2  

 ____ 
d  x  2     > 0  (const T, P )  

meaning that    f   ̂    2  (T, P′ = P,  x  2   < 1 ) <    f   ̂    2  (T, P,  x  2   = 1) ≡   f  2  (T, P)  

Thus, if  P′= P , the solvent fugacity is smaller in the left compartment than in the right. The 
difference in solvent fugacities represents a driving force for mass transfer, and solvent dif-
fuses through the partition, from right to left.

Equilibrium is established when pressure P′ is increased to an appropriate value P*, 
such that

   f   ̂    2  (T, P′ =  P   * ,  x  2   < 1 ) =  f  2  (T, P) 

The pressure difference,  Π ≡  P   *  − P , is the osmotic pressure of the solution, defined implicitly 
through the equilibrium equation for species 2, which in abbreviated form is:

    f   ̂    2  (P + Π,  x  2   ) =  f  2  (P )  (15.63)
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640 CHAPTER 15. Topics in Phase Equilibria

Equation (15.63) is a basis for developing explicit expressions for osmotic pressure Π. 
Development is facilitated by the identity:

    f   ̂    2  (P + Π,  x  2   ) ≡   f  2  (P ) ⋅   
   f   ̂    2  (P,  x  2  )

 ________  f  2  (P)   ⋅   
   f   ̂    2  (P + Π,  x  2  )

  ___________ 
  f   ̂    2  (P,  x  2  )

    (15.64)

The first ratio on the right is, by Eq. (13.2),

    
  f   ̂    2  (P,  x  2   )

 ________  f  2  (P )   =  x  2    γ  2    

where γ2 is the activity coefficient of solvent in the mixture at pressure P. The second ratio is 
a Poynting factor, representing here a pressure effect on the fugacity of a species in solution. 
An expression for this factor is readily found from Eq. (10.46):

    (     
∂ ln   f   ̂    i   _____ ∂ P   )    

T, x

   =   
1
 ___ 

RT
     (     

∂  μ  i   ___ ∂ P   )    
T,x

    

By Eqs. (10.18) and (10.8),    (    
∂  μ  i   ___ ∂ P   )    

T, x
   =   V ¯    i    

Thus, for solvent species 2,    (     
∂ ln   f   ̂    2  

 _____ ∂ P   )    
T, x

   =   
  V ¯    2  

 ___ 
RT

    

And,    
  f   ̂  2     (P + Π,  x 2  )

  ___________ 
 f   ̂  2     (P,  x2   )

      = exp  ∫ 
P

  
P+Π

    
  V ¯    2  

 ___ 
RT

   dP    

Equation (15.64) therefore becomes:

   f   ̂  (P + Π,  x  2  ) =  x  2    γ  2      f  2  (P) exp  ∫ 
P

  
P+Π

    
  V ¯    2  

 ___ 
RT

   dP    

Combination with Eq. (15.63) yields:

   x  2    γ  2   exp  ∫ 
P

  
P+Π

    
  V ¯    2  

 ___ 
RT

   dP   = 1  

or    ∫ 
P

  
P+Π

    
  V ¯    2  

 ___ 
RT

   dP   = − ln ( x  2    γ  2   )   (15.65)

Equation (15.65) is exact; working expressions for Π follow by rational approximation.
If we ignore the effect of pressure on    V ¯    2   , the integral becomes  Π   V ¯    2   ∕ RT . Solution for Π 

then yields:

  Π = −    
RT

 ___ 
  V ¯    2  

   ln ( x  2    γ  2  )  (15.66)

If in addition the solution is sufficiently dilute in solute 1,

    V ¯    2   ≈  V  2      γ  2   ≈ 1   and   ln ( x  2    γ  2  ) ≈ ln (1 −  x  1  ) ≈ −  x  1    
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15.6. Osmotic Equilibrium and Osmotic Pressure 641

With these approximations, Eq. (15.66) becomes:

  Π =   
 x  1   RT

 _____  V  2      (15.67)

Equation (15.67) is known as the van’t Hoff equation.18

Equation (15.65) is valid when species 1 is a nonelectrolyte. If the solute is a strong 
(completely dissociated) electrolyte containing m ions, then the right side is:

   − ln (    x 2  m   γ  2   )     
and the van’t Hoff equation becomes:

  Π =   
m x  1   RT

 _______  V  2      

Osmotic pressure can be quite large, even for very dilute solutions. Consider an aqueous 
solution containing mole fraction   x  1   = 0.001  of a nonelectrolyte solute species at 25°C. Then

  Π = 0.001 ×   
1
 _____ 18.02     

mol
 ____ 

 cm   3 
   × 83 . 14   

bar· cm   3 
 ________ mol·K   × 298.15 K = 1.38 bar  

With reference to Fig. 15.9, this means that for a pure solvent pressure P = 1 bar, the pressure 
P′ on the solution must be 2.38 bar to prevent diffusion of solvent from right to left, i.e., to 
establish osmotic equilibrium.19 Pressures P′ greater than this value make:

   f   ̂    2  (P′,  x  2   ) >  f  2  (P) 

and a driving force exists for transfer of water (solvent) from left to right. This observation 
serves as motivation for the process of reverse osmosis, wherein a solvent (commonly water) is 
separated from a solution by the application of sufficient pressure to provide the driving force 
needed for solvent transfer through a membrane that, for practical purposes, is permeable only 
to the solvent. The minimum pressure difference (solution pressure vs. pure-solvent pressure) 
is the osmotic pressure Π.

In practice, pressure differences significantly greater than Π are used to drive reverse 
osmosis. For example, seawater has an osmotic pressure of about 25 bar, but working pres-
sures of 50 to 80 bar are employed to enhance the rate of recovery of fresh water. A feature 
of such separations is that they require mechanical power only for pumping the solution to an 
appropriate pressure level. This contrasts with distillation schemes, where steam is the usual 
source of energy. A brief overview of reverse osmosis is given by Perry and Green.20

18Jacobus Henricus van’t Hoff (1852–1911), Dutch chemist who won the first Nobel Prize for chemistry in 1901.  
See http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1901/ and http://en.wikipedia.org/wiki/Jacobus_Henricus_ 
van_’t_Hoff.

19Note that, unlike conventional phase equilibrium, pressures are unequal for osmotic equilibrium, owing to the 
special constraints imposed by the rigid semipermeable partition.

20R. H. Perry and D. Green, Perry’s Chemical Engineers’ Handbook, 8th ed., pp. 20–36—20–40 and 20–45—20–50,  
McGraw-Hill, New York, 2008.

www.konkur.in

Telegram: @uni_k



642 CHAPTER 15. Topics in Phase Equilibria

15.7 SYNOPSIS

After studying this chapter, including the end-of-chapter problems, one should be able to:

 ∙ Understand and interpret LLE, VLLE, SLE, and SVE phase diagrams

 ∙ Apply the criterion for stability of a homogeneous phase to determine whether a liquid 
mixture described by a particular excess Gibbs energy model will split into multiple 
phases for a particular overall composition

 ∙ Solve binary LLE problems using activity coefficient models to describe both liquid phases

 ∙ Assess whether a particular excess Gibbs energy model is capable of predicting LLE 
and, if so, for what range of parameter values

 ∙ Construct a Txy  phase diagram for a system of two immiscible liquids that exhibit 
VLLE, using pure-species vapor-pressure data

 ∙ Construct Txz diagrams for limiting cases of binary SLE in which the liquid phase forms 
an ideal solution and the solid either (1) forms an ideal solution or (2) consists of two 
pure components

 ∙ Analyze the SVE of a pure component solid in equilibrium with a high-pressure vapor 
or supercritical fluid phase to estimate the solubility of the solid

 ∙ Explain the concept of spreading pressure, in the context of adsorption of gases on solids

 ∙ Employ and interpret common isotherms for gas adsorption, such as Henry’s law for 
adsorption, the Langmuir isotherm, Toth isotherm, and Freundlich isotherm

 ∙ Compute spreading pressure for given conditions using one of the common isotherms

 ∙ Interpret heat of adsorption measurements and apply them in the context of the Clapey-
ron equation for gas adsorption

 ∙ Appreciate the complexities of formal thermodynamic treatment of mixed-gas adsorp-
tion and solve mixed-gas adsorption problems under idealized conditions

 ∙ Explain the concept of osmotic pressure and its relationship to reverse osmosis separa-
tion processes

 ∙ Compute osmotic pressure for dilute systems of electrolytes and nonelectrolytes

15.8 PROBLEMS

 15.1. An absolute upper bound on GE for stability of an equimolar binary mixture is   
G   E  = RT ln  2 . Develop this result. What is the corresponding bound for an equimolar 
mixture containing N species?

 15.2. A binary liquid system exhibits LLE at 25°C. Determine from each of the following sets 
of miscibility data estimates for parameters A12 and A21 in the Margules equation at 25°C:

   (a )  x 1  α  = 0.10,  x 1  β  = 0.90; (b )  x 1  α  = 0.20,  x 1  β  = 0.90; (c )  x 1  α  = 0.10,  x 1  β  = 0.80  
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15.8. Problems 643

 15.3. Work Prob. 15.2 for the van Laar equation.

 15.4. Consider a binary vapor-phase mixture described by Eqs. (3.36) and (10.62). Under 
what (highly unlikely) conditions would one expect the mixture to split into two 
immiscible vapor phases?

 15.5. Figures 15.1, 15.2, and 15.3 are based on Eqs. (A) and (F) of Ex. 15.3 with   C P  E   assumed 
to be positive and given by   C P  E  ∕ R = 3  x  1    x  2  .  Graph the corresponding figures for the 
following cases, in which   C P  E   is assumed to be negative:

    

(a) A =   
975

 ____ 
T

   − 18.4 + 3 ln T

    (b) A =   
540

 ____ 
T

   − 17.1 + 3 ln T    

(c) A =   
1500

 _____ 
T

   − 19.9 + 3 ln T

  

 15.6. It has been suggested that a value for GE of at least 0.5 RT is required for liquid/liquid 
phase splitting in a binary system. Offer some justification for this statement.

 15.7. Pure liquid species 2 and 3 are for practical purposes immiscible in one another.  
Liquid species 1 is soluble in both liquid 2 and liquid 3. One mole each of liquids 1, 
2, and 3 are shaken together to form an equilibrium mixture of two liquid phases: an 
α-phase containing species 1 and 2, and a β-phase containing species 1 and 3. What 
are the mole fractions of species 1 in the α and β phases, if at the temperature of the 
experiment, the excess Gibbs energies of the phases are given by:

   
 ( G   E  )   α 

 _____ 
RT

   = 0.4  x 1  α    x 2  α     and     
 ( G   E  )   β 

 _____ 
RT

   = 0.8  x 1  β  x 3  β  

 15.8. It is demonstrated in Ex. 15.5 that the Wilson equation for GE is incapable of repre-
senting LLE. Show that the simple modification of Wilson’s equation given by:

    G   E  ∕ RT = − C[ x  1   ln( x  1   +  x  2    Λ  12  ) +  x  2   ln( x  2   +  x  1    Λ  21  )]   

  can represent LLE. Here, C is a constant.

 15.9. Vapor sulfur hexafluoride SF6 at pressures of about 1600 kPa is used as a dielectric in 
large primary circuit breakers for electric transmission systems. As liquids, SF6 and 
H2O are essentially immiscible, and one must therefore specify a low enough moisture 
content in the vapor SF6 so that if condensation occurs in cold weather, a liquid water 
phase will not form first in the system. For a preliminary determination, assume the vapor 
phase can be treated as an ideal gas and prepare the phase diagram [like Fig. 12.18(a)] 
for H2O(1)∕SF6(2) at 1600 kPa in the composition range up to 1000 parts per million of 
water (mole basis). The following approximate equations for vapor pressure are adequate:

  ln  P 1  sat  ∕ kPa = 19.1478 −   
5363.70

 _______ 
T ∕ K      ln  P 2  sat  ∕ kPa = 14.6511 −   

2048.97
 _______ 

T ∕ K    
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644 CHAPTER 15. Topics in Phase Equilibria

 15.10. In Ex. 15.2 a plausibility argument was developed from the LLE equilibrium equa-
tions to demonstrate that positive deviations from ideal-solution behavior are condu-
cive to liquid/liquid phase splitting.

 (a) Use one of the binary stability criteria to reach this same conclusion.
 (b) Is it possible in principle for a system exhibiting negative deviations from ideality 

to form two liquid phases?

 15.11. Toluene(l) and water(2) are essentially immiscible as liquids. Determine the dew-point 
temperatures and the compositions of the first drops of liquid formed when vapor mix-
tures of these species with mole fractions   z  1   = 0.2  and   z  1   = 0.7  are cooled at a constant 
pressure of 101.33 kPa. What is the bubblepoint temperature and the composition of 
the last drop of vapor in each case? See Table B.2 for vapor-pressure equations.

 15.12. n-Heptane(l) and water(2) are essentially immiscible as liquids. A vapor mixture con-
taining 65-mol-% water at 100°C and 101.33 kPa is cooled slowly at constant pressure 
until condensation is complete. Construct a plot for the process showing temperature 
vs. the equilibrium mole fraction of heptane in the residual vapor. See Table B.2 for 
vapor-pressure equations.

 15.13. Consider a binary system of species 1 and 2 in which the liquid phase exhibits partial 
miscibility. In the regions of miscibility, the excess Gibbs energy at a particular tem-
perature is expressed by the equation:

   G   E  ∕ RT = 2.25  x  1    x  2    

  In addition, the vapor pressures of the pure species are:

   P 1  sat  = 75 kPa  and   P 2  sat  = 110 kPa  

  Making the usual assumptions for low-pressure VLE, prepare a Pxy diagram for this 
system at the given temperature.

 15.14. The system water(l)/n-pentane(2)/n-heptane(3) exists as a vapor at 101.33 kPa and 
100°C with mole fractions   z  1   = 0.45,  z  2   = 0.30,  z  3   = 0.25 . The system is slowly cooled 
at constant pressure until it is completely condensed into a water phase and a hydro-
carbon phase. Assuming that the two liquid phases are immiscible, that the vapor 
phase is an ideal gas, and that the hydrocarbons obey Raoult’s law, determine:

 (a) The dewpoint temperature of the mixture and composition of the first condensate.
 (b) The temperature at which the second liquid phase appears and its initial 

composition.
 (c) The bubblepoint temperature and the composition of the last bubble of vapor.

  See Table B.2 for vapor-pressure equations.

 15.15. Work the preceding problem for mole fractions   z  1   = 0.32,  z  2   = 0.45,  z  3   = 0.23 .

 15.16. The Case I behavior for SLE (Sec. 15.4) has an analog for VLE. Develop the analogy.
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 15.17. An assertion with respect to Case II behavior for SLE (Sec. 15.4) was that the  
condition   z  i    γ i  s  = 1  corresponds to complete immiscibility for all species in the solid 
state. Prove this.

 15.18. Use results of Sec. 15.4 to develop the following (approximate) rules of thumb:

 (a) The solubility of a solid in a liquid solvent increases with increasing T.
 (b) The solubility of a solid in a liquid solvent is independent of the identity of the 

solvent species.
 (c) Of two solids with roughly the same heat of fusion, that solid with the lower melt-

ing point is the more soluble in a given liquid solvent at a given T.
 (d) Of two solids with similar melting points, that solid with the smaller heat of fusion 

is the more soluble in a given liquid solvent at a given T.

 15.19. Estimate the solubility of naphthalene(l) in carbon dioxide(2) at a temperature of 80°C 
at pressures up to 300 bar. Use the procedure described in Sec. 15.4, with   l  12   = 0.088 .  
Compare the results with those shown in Fig. 15.6. Discuss any differences.   
P 1  sat  = 0.0102  bar at 80°C.

 15.20. Estimate the solubility of naphthalene(l) in nitrogen(2) at a temperature of 35°C at 
pressures up to 300 bar. Use the procedure described in Sec. 15.4, with   l  12   = 0 . Com-
pare the results with those shown in Fig. 15.6 for the naphthalene/CO2 system at 35°C 
with   l  12   = 0 . Discuss any differences.

 15.21. The qualitative features of SVE at high pressures shown in Fig. 15.6 are determined by 
the equation of state for the gas. To what extent can these features be represented by 
the two-term virial equation in pressure, Eq. (3.36)?

 15.22 The UNILAN equation for pure-species adsorption is:

  n =   
m

 __ 2s
   ln   (    

c + P  e   s 
 _ 

c + P  e   −s    )     

  z = (1 − bn  )   −1   

  where m, s, and c are positive empirical constants.

 (a) Show that the UNILAN equation reduces to the Langmuir isotherm for  s = 0 . 
(Hint: Apply l’Hôpital’s rule.)

 (b) Show that Henry’s constant k for the UNILAN equation is:

 k(UNILAN ) =   
m

 __ 
cs

   sinh  s 

 (c) Examine the detailed behavior of the UNILAN equation at zero pressure (P → 0, 
n → 0).

 15.23. In Ex. 15.8, Henry’s constant for adsorption k, identified as the intercept on a plot of 
n∕P vs. n, was found from a polynomial curve-fit of n∕P vs. n. An alternative proce-
dure is based on a plot of ln(P∕n) vs. n. Suppose that the adsorbate equation of state 
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646 CHAPTER 15. Topics in Phase Equilibria

is a power series in n:  z = 1 + Bn + C  n   2  + . . . . Show how from a plot (or a polyno-
mial curve-fit) of ln(P∕n) vs. n one can extract values of k and B. [Hint: Start with  
Eq. (15.39).]

 15.24. It was assumed in the development of Eq. (15.39) that the gas phase is ideal, with  
Z = 1 . Suppose for a real gas phase that   Z = Z (  T, P )    . Determine the analogous expres-
sion to Eq. (15.39) appropriate for a real (nonideal) gas phase. [Hint: Start with  
Eq. (15.35).]

 15.25. Use results reported in Ex. 15.8 to prepare plots of Π vs. n and z vs. n for ethylene 
adsorbed on a carbon molecular sieve. Discuss the plots.

 15.26. Suppose that the adsorbate equation of state is given by  z = (1 − bn  )   −1  , where b is 
a constant. Find the implied adsorption isotherm, and show under what conditions it 
reduces to the Langmuir isotherm.

 15.27. Suppose that the adsorbate equation of state is given by  z = 1 + βn , where β is a func-
tion of T only. Find the implied adsorption isotherm, and show under what conditions 
it reduces to the Langmuir isotherm.

 15.28. Derive the result given in the third step of the procedure for predicting adsorption 
equilibria by ideal-adsorbed-solution theory at the end of Sec. 15.5.

 15.29. Consider a ternary system comprising solute species 1 and a mixed solvent (species 2 
and 3). Assume that:

    
 G   E 

 ___ 
RT

   =  A  12    x  1    x  2   +  A  13    x  1    x  3   +  A  23    x  2    x  3    

  Show that Henry’s constant 1 for species 1 in the mixed solvent is related to Henry’s 
constants 1,2 and 1,3 for species 1 in the pure solvents by:

 ln    1   =   x 2  ′    ln    1,2   +   x 3  ′    ln    1,3   −  A  23     x 2  ′      x 3  ′    

  Here   x 2  ′    and   x 3  ′    are solute-free mole fractions:

   x 2  ′   ≡   
 x  2  
 ________ 

x     2   +  x  3          x 3  ′   ≡   
 x  3  
 ______  x  2   +  x  3      

 15.30. It is possible in principle for a binary liquid system to show more than one region of 
LLE for a particular temperature. For example, the solubility diagram might have two 
side-by-side “islands” of partial miscibility separated by a homogeneous phase. What 
would the ΔG vs. x1 diagram at constant T look like for this case? Suggestion: See  
Fig. 12.13 for a mixture showing normal LLE behavior.

 15.31. With    V ¯    2   =   V  2   , Eq. (15.66) for the osmotic pressure may be represented as a power 
series in x1: 

    
Π  V  2  

 _____  x  1   RT
   = 1 + B  x  1   + C  x 1  2  + . . .  
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  Reminiscent of Eqs. (3.33) and (3.34), this series is called an osmotic virial expansion. 
Show that the second osmotic virial coefficient B is:

  B =   
1
 __ 2   
[

  1 −    (  
 d   2  ln  γ  2  

 ______ 
d  x 1  2 

  )   
 x  1   = 0

    
]

    

  What is B for an ideal solution? What is B if   G   E  = A  x  1    x  2   ? 

 15.32. A liquid-process feed stream F contains 99 mol-% of species 1 and 1 mol-% of impu-
rity, species 2. The impurity level is to be reduced to 0.1 mol-% by contacting the feed 
stream with a stream S of pure liquid solvent, species 3, in a mixer/settler. Species 1 
and 3 are essentially immiscible. Owing to “good chemistry,” it is expected that spe-
cies 2 will selectively concentrate in the solvent phase.

 (a) With the equations given below, determine the required solvent-to-feed ratio 
nS∕nF.

 (b) What is mole fraction x2 of impurity in the solvent phase leaving the mixer/settler?
 (c) What is “good” about the chemistry here? With respect to liquid-phase nonideali-

ties, what would be “bad” chemistry for the proposed operation?

Given:   G 12  E   ∕ RT = 1.5  x  1    x  2        G 23  E   ∕ RT = − 0.8  x  2    x  3    

 15.33. At 25°C the solubility of n-hexane in water is 2 ppm (molar basis), and the solubility 
of water in n-hexane is 520 ppm. Estimate the activity coefficients for the two species 
in the two phases.

 15.34. A binary liquid mixture is only partially miscible at 298 K. If the mixture is to be 
made homogeneous by increasing the temperature, what must be the sign of HE?

 15.35. The spinodal curve for a binary liquid system is the locus of states for which

    
 d   2 (ΔG ∕ RT )

 ___________ 
d  x 1  2 

   = 0 (const T, P )  

  Thus it separates regions of stability from instability with respect to liquid/liquid 
phase splitting. For a given T, there are normally two spinodal compositions (if any). 
They are the same at a consolute temperature. On curve II of Fig. 12.13 they are a pair 
of compositions between   x 1  α   and   x 1  β  , corresponding to zero curvature.

  Suppose a liquid mixture is described by the symmetrical equation

    
 G   E 

 ___ 
RT

   = A(T )  x  1    x  2    

 (a) Find an expression for the spinodal compositions as a function of A(T).
 (b) Assume that A(T) is the expression used to generate Fig. 15.2. Plot on a single 

graph the solubility curve and the spinodal curve. Discuss.
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648 CHAPTER 15. Topics in Phase Equilibria

 15.36. Two special models of liquid-solution behavior are the regular solution, for which   
S   E  = 0  everywhere, and the athermal solution, for which   H   E  = 0  everywhere.

 (a) Ignoring the P-dependence of GE, show that for a regular solution,

    
 G   E 

 ___ 
RT

   =   
 F  R  (x)

 _____ 
RT

    

 (b) Ignoring the P-dependence of GE, show that for an athermal solution,

    
 G   E 

 ___ 
RT

   =  F  A  (x)  

 (c) Suppose that GE∕RT is described by the symmetrical equation

    
 G   E 

 ___ 
RT

   = A(T )  x  1    x  2    

 From parts (a) and (b), we conclude that

    
 G   E 

 ___ 
RT

   =   
α
 ___ 

RT
    x  1    x  2    (regular)  (A)

    
 G   E 

 ___ 
RT

   = β  x  1    x  2           (athermal)  (B)

 where α and β are constants. What are the implications of Eqs. (A) and (B) with 
respect to the shapes of predicted solubility diagrams for LLE? Find from Eq. (A) an 
expression for the consolute temperature, and show that it must be an upper consolute 
temperature.

 Suggestion: See Ex. 15.3 for numerical guidance.

 15.37. Many fluids could be used as solvent species for supercritical separation processes 
(Sec. 15.4). But the two most popular choices seem to be carbon dioxide and water. 
Why? Discuss the pros and cons of using CO2 vs. H2O as a supercritical solvent.
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Chapter 16

Thermodynamic Analysis of 
Processes

The purpose of this chapter is to present a procedure for the analysis of practical processes 
from a thermodynamic perspective. It is an extension of the ideal work and lost work concepts 
presented in Secs. 5.7 and 5.8.

Real irreversible processes are amenable to thermodynamic analysis. The goal of such 
an analysis is to determine how efficiently energy is used or produced and to show quantita-
tively the effect of inefficiencies in each step of a process. The cost of energy is of concern in 
any manufacturing operation, and the first step in any attempt to reduce energy requirements 
is to determine where and to what extent energy is wasted through process irreversibilities. 
The treatment here is limited to steady-state flow processes, because of their predominance in 
industrial practice. Thus, our objectives in this chapter are simply to:

 ∙ Introduce a simple and systematic method for thermodynamic analysis of steady-flow 
processes 

 ∙ Illustrate this method with two specific examples of its application 
 ∙ Show how this approach is used to identify the best opportunities for improving the ther-

modynamic efficiency of a multi-step process

16.1  THERMODYNAMIC ANALYSIS OF STEADY-STATE  
FLOW PROCESSES

Most industrial processes involving fluids consist of multiple steps, and lost-work calculations 
are then made for each step separately. By Eq. (5.29),

    W ˙   lost   =  T  σ    S ˙   G    

For a single surroundings temperature Tσ, summing over the steps of a process gives:

  Σ  W ˙   lost   =  T  σ  Σ  S ˙   G    
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650 CHAPTER 16. Thermodynamic Analysis of Processes

Dividing the former equation by the latter yields:

    
  W ˙   lost   ______ 

Σ  W ˙   lost  
   =   

  S ˙   G  
 ____ 

Σ  S ˙   G  
    

Thus an analysis of the lost work, made by calculation of the fraction that each individual lost-
work term represents of the total, is the same as an analysis of the rate of entropy generation, 
made by expressing each individual entropy-generation term as a fraction of the sum of all 
entropy-generation terms. Recall that all terms in these equations are positive.

An alternative to the lost-work or entropy-generation analysis is a work analysis. For 
this, Eq. (5.26) becomes:
  Σ  W ˙   lost   =   W ˙   s   −   W ˙   ideal    (16.1)

For a work-requiring process, all of these work quantities are positive and   W ˙  s  >   W ˙   ideal. The 
preceding equation is then written:

     W ˙   s   =   W ˙   ideal   + Σ  W ˙   lost     (16.2)

A work analysis expresses each individual work term on the right as a fraction of   W ˙   s.
For a work-producing process,   W ˙   s and   W ˙   ideal are negative, and   | W ˙  ideal|   >   | W ˙  s|  . Equation 

(16.1) is therefore best written:

    |    W ˙   ideal   |   =  |    W ˙   s   |   + Σ  W ˙   lost     (16.3)

A work analysis expresses each individual work term on the right as a fraction of   | W ˙  ideal|  . Such 
an analysis cannot be carried out if a process is so inefficient that   W ˙   ideal is negative, indicating 
that the process should produce work, but   W ˙   s is positive, indicating that the process in fact 
requires work. A lost-work or entropy-generation analysis is always possible.

Example 16.1
The operating conditions of a simple steam power plant are described in Ex. 8.1, parts 
(b) and (c). In addition, steam is generated in a furnace/boiler unit where methane is 
burned completely to CO2 and H2O with 25% excess air. The flue gas leaving the fur-
nace has a temperature of 460 K, and Tσ = 298.15 K. Make a thermodynamic analysis 
of the power plant.

Solution 16.1
A flow diagram of the power plant is shown in Fig. 16.1. The conditions and 
properties for key points in the steam cycle, taken from Ex. 8.1, are as follows:

Point State of steam t/°C P/kPa H/kJ·kg–1 S/kJ·kg–1·K–1

1 Subcooled liquid  45.83 8600  203.4 0.6580
2 Superheated vapor 500 8600 3391.6 6.6858
3 Wet vapor, x = 0.9378  45.83 10 2436.0 7.6846
4 Saturated liquid  45.83 10  191.8 0.6493
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Figure 16.1: Power cycle of Ex. 16.1.

CH4 and air at 298.15 K

Furnace/boiler

Flue gases at 460 K

Turbine

Condenser

Heat discarded to
surroundings at 298.15 K

Pump

34

1 2

Ws

Because the steam undergoes a cyclic process, the only changes that must be 
considered for calculation of the ideal work are those of the gases passing through 
the furnace. The reaction occurring is:

   CH 4   + 2 O 2   →  CO 2   + 2 H 2  O  

For this reaction, data from Table C.4 give:

   
Δ H  298  °   = −393,509 +   (  2 )     (  −241,818 )    −   (  −74,520 )    = −802,625 J

      
Δ G  298  °   = −394,359 +   (  2 )     (  −228,572 )    −   (  −50,460 )    = −801,043 J

   

Whence,  Δ S  298  °   =   
Δ H  298  °   − Δ G  298  °  

  ______________ 298.15   = − 5.306 J  K   −1   

On the basis of 1 mol of methane burned with 25% excess air, the air entering 
the furnace contains:

O2: (2)(1.25) = 2.5 mol

N2: (2.5)(79/21) = 9.405 mol

Total: 11.905 mol air

After complete combustion of the methane, the flue gas contains:
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652 CHAPTER 16. Thermodynamic Analysis of Processes

The change of state that occurs in the furnace is from methane and air at atmos-
pheric pressure and 298.15 K, the temperature of the surroundings, to flue gas at 
atmospheric pressure and 460 K. For this change of state, ΔH and ΔS are calcu-
lated for the path shown in Fig. 16.2. The assumption of ideal gases is reasonable 
here and is the basis of calculation for ΔH and ΔS for each of the four steps shown 
in Fig. 16.2.

CO2: 1 mol   y   CO  2      = 0.0775

H2O: 2 mol   y   H  2  O    = 0.1550

O2: 0.5 mol   y   O  2      = 0.0387

N2: 9.405 mol   y   N  2      = 0.7288

Total: 12.905 mol flue gas ∑yi = 1.0000

Figure 16.2: Calculation path 
for combustion process of  
Ex. 16.1.

1 mol CH4
298.15 K

11.905 mol air
298.15 K

(a) Unmix at 298.15 K

(b) Standard reaction at 298.15 K

(c) Mix at 298.15 K

(d) Heat to 460 K

12.905 mol flue gas
460 K

2.5 mol O2

1 mol CO2 2 mol H2O 0.5 mol O2

9.405 N2

Step a:  For unmixing the entering air, Eqs. (11.11) and (11.12) with changes of 
sign give:

   
Δ H  a  

  
=

  
0
  Δ S  a    =  nR  ∑ 

i
      y  i   ln  y  i     

 
  
=

  
  (  11.905 )     (  8.314 )   (0.21 ln  0.21 + 0.79 ln  0.79 ) = − 50.870 J· K   −1 
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Step b: For the standard reaction at 298.15 K,

   Δ H  b   = Δ H  298  °   = − 802,625 J       Δ S  b   = Δ S  298  °   = − 5.306  J·K   −1    

Step c: For mixing to form the flue gas,

   

Δ H  c  

  

=

  

0

  
Δ S  c  

  
=

  
− nR  ∑ 

i
      y  i   ln  y  i  

   
 
  
=

  
−   (  12.905 )     (  8.314 )   (0.0775 ln  0.0775 + 0.1550 ln  0.1550

      

 

  

 

  

+ 0.0387 ln  0.0387 + 0.7288 ln  0.7288) = 90.510  J·K   −1 

   

Step d:  For the heating step, the mean heat capacities between 298.15 and 460 K 
are calculated by Eqs. (4.9) and (5.13) with data from Table C.1. The 
results in J·mol−1·K−1 are summarized as follows:

⟨Cp⟩H ⟨Cp⟩S

CO2 41.649 41.377
H2O 34.153 34.106
N2 29.381 29.360
O2 30.473     0.997

Each individual heat capacity is multiplied by the number of moles of that 
species in the flue gas, and the products are summed over all species. This 
gives total mean heat capacities for the 12.905 mol of mixture:

    ⟨ C  P  t  ⟩ H   = 401.520    and     ⟨ C  P  t  ⟩ S   = 400.922  J·K   −1    

Then,

   
Δ H  d   =  ⟨ C  P  t  ⟩ H    (   T  2   −  T  1   )    =   (  401.520 )     (  460 − 298.15 )    = 64,986 J

      
Δ S  d   =  ⟨ C  P  t  ⟩ S   ln   

 T  2  
 ___  T  1     = 400.922 ln   

460
 ______ 298.15   = 173.852  J·K   −1 

    

For the total process on the basis of 1 mol CH4 burned,

    
ΔH =  ∑ 

i
    Δ H  i   = 0 − 802,625 + 0 + 64,986 = − 737,639 J

      
ΔS =  ∑ 

i
    Δ S  i   = − 50.870 − 5.306 + 90.510 + 173.852 =  208.186 J·K   −1 

   

Thus,   ΔH = − 737.64 kJ       ΔS = 0.2082  kJ·K   −1    

The steam rate found in Ex. 8.1 is   m ˙    = 84.75 kg·s−1. An energy balance for the 
furnace/boiler unit, where heat is transferred from the combustion gases to the 
steam, allows calculation of the entering methane rate    n ˙    CH 4     :

    (  84.75 )     (  3391.6 − 203.4 )    +   n ˙    CH 4      (  −737.64 )    = 0  

whence    n ˙    CH 4     = 366.30   mol·s   −1   
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The ideal work for the process is given by Eq. (5.21):

    W ˙   ideal   = 366.30[−737.64 −   (  298.15 )     (  0.2082 )   ] = − 292.94 ×  10   3   kJ·s   −1   

or    W ˙   ideal   = − 292.94 ×  10   3  kW  

The rate of entropy generation in each of the four units of the power plant is 
calculated by Eq. (5.17), and the lost work is then given by Eq. (5.29).

 ∙ Furnace/boiler: We have assumed no heat transfer from the furnace/boiler to 
the surroundings; therefore   Q ˙   = 0 . The term Δ(S  m ˙   )fs is simply the sum of the 
entropy changes of the two streams multiplied by their rates:

    S ˙   G   =   (  366.30 )     (  0.2082 )    +   (  84.75 )     (  6.6858 − 0.6580 )    = 587.12  kJ·s   −1  ·K   −1   

or    S ˙   G   = 587.12 kW· K   −1   

and    W ˙   lost   =  T  σ     S ˙   G   =   (  298.15 )     (  587.12 )    = 175.05 ×  10   3  kW  

 ∙ Turbine: For adiabatic operation,

    S ˙   G   =   (  84.75 )     (  7.6846 − 6.6858 )    = 84.65  kW·K   −1   

and    W ˙   lost   =   (  298.15 )     (  84.65 )    = 25.24 ×  10   3  kW  
 ∙ Condenser: The condenser transfers heat from the condensing steam to the sur-

roundings at 298.15 K in an amount determined in Ex. 8.1:

   Q ˙   (condenser) = − 190.2 ×  10   3   kJ·s   −1   

Thus    S ˙   G   =   (  84.75 )     (  0.6493 − 7.6846 )    +   
190,200

 _______ 298.15   = 41.69  kW·K   −1   

and    W ˙   lost   =   (  298.15 )     (  41.69 )    = 12.32 ×  10   3  kW  
 ∙ Pump: Because the pump operates adiabatically,

    S ˙   G   =   (  84.75 )     (  0.6580 − 0.6493 )    = 0.74  kW·K   −1   

and    W ˙   lost   =   (  298.15 )     (  0.74 )    = 0.22 ×  10   3  kW  

The entropy-generation analysis is:

kW·K−1 Percent of ∑  S ̇   G
   S ̇    G   (furnace/boiler) 587.12 82.2
   S ̇    G   (turbine) 84.65 11.9
   S ̇    G   (condenser) 41.69 5.8
   S ̇    G   (pump) 0.74 0.1

∑   S ̇    G   714.20 100.0

A work analysis is carried out in accord with Eq. (16.3):

    |     W ˙   ideal   |   =  |     W ˙   s   |   + Σ  W ˙   lost     
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The results of this analysis are:

kW Percent of   | W ˙  ideal|  
  | W ˙  s|   (from Ex. 8.1) 80.00 × 103 27.3(=ηt)
  W ˙   lost (furnace/boiler) 175.05 × 103 59.8
  W ˙   lost (turbine) 25.24 × 103 8.6
  W ˙   lost (condenser) 12.43 × 103 4.2
  W ˙   lost (pump) 0.22 × 103 0.1

  | W ˙  ideal|  292.94 × 103 100.0

The thermodynamic efficiency of the power plant is 27.3%, and the major source 
of inefficiency is the furnace/boiler. The combustion process itself accounts for 
much of the entropy generation in this unit, and the remainder is the result of heat 
transfer across finite temperature differences.

Example 16.2
Methane is liquefied in a simple Linde system, as shown in Fig. 16.3. The methane 
enters the compressor at 1 bar and 300 K, and after compression to 60 bar it is cooled 
back to 300 K. The product is saturated liquid methane at 1 bar. The unliquefied 
 methane, also at 1 bar, is returned through a heat exchanger, where it is heated to 
295 K by the high-pressure methane. A heat leak into the heat exchanger of 5 kJ is 
assumed for each kilogram of methane entering the compressor. Heat leaks to other 
parts of the liquefier are assumed negligible. Make a thermodynamic analysis of the 
process for a surroundings temperature of Tσ = 300 K.

Solution 16.2
Methane compression from 1 to 60 bar is assumed to be carried out in a three-
stage machine with inter- and aftercooling to 300 K and a compressor efficiency 
of 75%. The actual work of this compression is estimated as 1000 kJ per kilogram 
of methane. The fraction of the methane that is liquefied z is calculated by an 
energy balance:

   H  4   z +  H  6    (  1 − z )    −  H  2   = Q  

where  Q   is the heat leak from the surroundings. Solution for z gives

  z =   
 H  6   −  H  2   − Q

 __________  H  6   −  H  4     =   
1188.9 − 1140.0 − 5

  ________________  1188.9 − 285.4   = 0.0486  

This result may be compared with the value of 0.0541 obtained in Ex. 9.3, for the 
same operating conditions, but with no heat leak.
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Figure 16.3: Linde liquefaction system for Ex. 16.2.

1
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The properties at the various key points of the process, given in the accompa-
nying table, are either available or are calculated by standard methods. Data used 
here are from Perry and Green.1 The basis of all calculations is 1 kg of methane 
entering the process, and all rates are expressed on this basis.

1R. H. Perry and D. Green, Perry’s Chemical Engineers’ Handbook, 7th ed., pp. 2-251 and 2-253, McGraw-Hill, 
New York, 1997.

Point State of CH4 T/K P/bar H/kJ·kg−1 S/kJ·kg−1·K−1

1 Superheated vapor 300.0  1 1198.8 11.629
2 Superheated vapor 300.0 60 1140.0  9.359
3 Superheated vapor 207.1 60  772.0  7.798
4 Saturated liquid 111.5  1  285.4  4.962
5 Saturated vapor 111.5  1  796.9  9.523
6 Superheated vapor 295.0  1 1188.9 11.589

The ideal work depends on the overall changes in the methane passing through 
the liquefier. Application of Eq. (5.21) gives:

   
  W ˙   ideal  

  
=

  
Δ  (  H m ˙   )   fs   −  T  σ   Δ  (  S m ˙   )   fs  

      =    [    (  0.0486 )     (  285.4 )    +   (  0.9514 )     (  1188.9 )    − 1198.8 ]        
 
  

 
  

−   (  300 )     [    (  0.0486 )     (  4.962 )    +   (  0.9514 )     (  11.589 )    − 11.629 ]    = 53.8 kJ
   

The rate of entropy generation and the lost work for each of the individual steps 
of the process is calculated by Eqs. (5.28) and (5.29).
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 ∙ Compression/cooling: Heat transfer for this step is given by an energy balance:

   
 Q ˙  

  
=

  
ΔH −   W ˙   s   = ( H  2   −  H  1   ) −   W ˙   s  

       =    (  1140.0 − 1999.8 )   − 1000     
 
  

=
  
− 1059.8 kJ

    

Then,

    

  S ˙   G  

  

=

  

 S  2   −  S  1   −   
 Q ˙  

 __  T  σ    

      =  9.359 − 11.629 +   
1059.8

 ______ 300      

 

  

=

  

 1.2627 kJ·kg   −1  ·K   −1 

    

  W ˙   lost  

  

=

  

  (  300 )     (  1.2627 )    = 378.8  kJ·kg   −1 

   

 ∙ Exchanger: With   Q ˙    equal to the heat leak,

    S ˙   G   = (  S  6   −  S  5   )(l − z) + (  S  3   −  S  2   )(1) −   
 Q ˙  

 __  T  σ      

Then,
    

  S ˙   G  
  
=

  
  (  11.589 − 9.523 )     (  0.9514 )    +   (  7.798 − 9.359 )    −   

5
 ____ 300  

      
 
  
=

  
0.3879  kJ·kg   −1  ·K   −1 

    

  W ˙   lost  

  

=

  

  (  300 )     (  0.3879 )    = 116.4  kJ·kg   −1 

    

 ∙ Throttle: For adiabatic operation of the throttle and separator,

    

  S ˙   G  

  

=

  

 S  4   z +  S  5    (  1 − z )    −  S  3  

   
 
  
=

  
  (  4.962 )     (  0.0486 )    +   (  9.523 )     (  0.9514 )    − 7.798

     
 
  
=

  
1.5033  kJ·kg   −1   ·K   −1 

    

  W ˙   lost  

  

=

  

  (  300 )     (  1.5033 )    = 451.0  kJ·kg   −1 

    

The entropy-generation analysis is:

kJ·kg−1·K−1 Percent of ∑  S ˙   G
  S ˙   G(compression/cooling) 1.2627  40.0
  S ˙   G(exchanger) 0.3879  12.3
  S ˙   G(throttle) 1.5033  47.7

∑  S ˙   G 3.1539 100.0

kW·kg−1 Percent of   W ˙   s
  W ˙   ideal   53.8 5.4(=ηt)
  W ˙   lost(compression/cooling)  378.8 37.9
  W ˙   lost(exchanger)  116.4 11.6
  W ˙   lost(throttle)  451.0 45.1

  W ˙   s 1000.0 100.0

The work analysis, based on Eq. (16.2), is:
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658 CHAPTER 16. Thermodynamic Analysis of Processes

The largest loss occurs in the throttling step. Replacing this highly irreversible 
process with a turbine results in a considerable increase in efficiency. Of course, 
it would also result in a considerable increase in the capital cost of the 
equipment.

From the standpoint of energy conservation, the thermodynamic efficiency of a process 
should be as high as possible and the entropy generation or lost work as low as possible. The 
final design depends largely on economic considerations, and the cost of energy is an important 
factor. The thermodynamic analysis of a specific process shows the locations of the major 
inefficiencies and hence the pieces of equipment or steps in the process that could be altered 
or replaced to advantage. However, this sort of analysis gives no hint as to the nature of the 
changes that might be made. It merely shows that the present design is wasteful of energy and 
that there is room for improvement. One function of the chemical engineer is to try to devise a 
better process and to use ingenuity to keep operating costs, as well as capital expenditures, 
low. Each newly devised process may, of course, be analyzed to determine what improvement 
has been made.

Note that we can complete the entropy generation analysis without information or 
understanding about the details of each step. We simply need to know the conditions of streams 
entering and leaving each step. Thus, this methodology can be applied to existing processes, 
using measured properties of streams, or to the converged results for a flowsheet produced, 
using process simulation software. In both cases, it allows identification of opportunities for 
energy conservation (reduction of entropy generation) without knowing the details of each 
unit operation or process step. Of course, actually reducing entropy generation in those steps 
may require detailed knowledge of them.

16.2 SYNOPSIS

After studying this chapter, including the end-of-chapter problems, one should be able to 

 ∙ Carry out a step-by-step thermodynamic analysis of a steady-flow process like those 
illustrated in Ex. 16.1 and Ex. 16.2

 ∙ Identify the contributions of each process step to the overall rate of entropy generation 
of the process

 ∙ Assign the contributions of each process step to the overall lost work of the process, to identify 
the best opportunities for improving the thermodynamic efficiency of the overall process

16.3 PROBLEMS

 16.1. A plant takes in water at 21°C, cools it to 0°C, and freezes it at this temperature,  
producing 0.5 kg·s−1 of ice. Heat rejection is at 21°C. The heat of fusion of water is 
333.5 kJ·kg−1.
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16.3. Problems 659

 (a) What is   W ˙   ideal for the process?
 (b) What is the power requirement of a single Carnot heat pump operating between 

0 and 21°C? What is the thermodynamic efficiency of this process? What is its 
irreversible feature?

 (c) What is the power requirement if an ideal tetrafluoroethane vapor-compression 
refrigeration cycle is used? Ideal here implies isentropic compression, infinite 
cooling-water rate in the condenser, and minimum heat-transfer driving forces in 
evaporator and condenser of 0°C. What is the thermodynamic efficiency of this 
process? What are its irreversible features?

 (d ) What is the power requirement of a tetrafluoroethane vapor-compression cycle for 
which the compressor efficiency is 75%, the minimum temperature differences in 
evaporator and condenser are 5°C, and the temperature rise of the cooling water in 
the condenser is 10°C? Make a thermodynamic analysis of this process.

 16.2. Consider a steady-flow process in which the following gas-phase reaction takes place: 
CO +   1 _ 2    O 2   →  CO 2   . The surroundings are at 300 K.

 (a) What is Wideal when the reactants enter the process as pure carbon monoxide and 
as air containing the stoichiometric amount of oxygen, both at 25°C and 1 bar, and 
the products of complete combustion leave the process at the same conditions?

 (b) The overall process is exactly the same as in (a), but the CO is here burned in an 
adiabatic reactor at 1 bar. What is Wideal for the process of cooling the flue gases 
to 25°C? What is the irreversible feature of the overall process? What is its ther-
modynamic efficiency? What has increased in entropy, and by how much?

 16.3. A plant has saturated steam available at 2700 kPa, but there is little use for this steam. 
Rather, steam at 1000 kPa is required. Also available is saturated steam at 275 kPa. A 
suggestion is that the 275 kPa steam be compressed to 1000 kPa using the work of 
expanding the 2700 kPa steam to 1000 kPa. The two streams at 1000 kPa would then 
be mixed. Determine the rates at which steam at each initial pressure must be supplied 
to provide enough steam at 1000 kPa so that upon condensation to saturated liquid, 
heat in the amount of 300 kJ·s−1 is released

 (a) If the process is carried out in a completely reversible manner.
 (b) If the higher-pressure steam expands in a turbine of 78% efficiency and the 

 lower-pressure steam is compressed in a machine of 75% efficiency. Make a 
 thermodynamic analysis of this process.

 16.4. Make a thermodynamic analysis of the refrigeration cycle of Ex. 9.1(b).

 16.5. Make a thermodynamic analysis of the refrigeration cycle described in one of the 
parts of Prob. 9.9. Assume that the refrigeration effect maintains a heat reservoir at a 
temperature 5°C above the evaporation temperature and that Tσ is 5°C below the con-
densation temperature.

 16.6. Make a thermodynamic analysis of the refrigeration cycle described in the first para-
graph of Prob. 9.12. Assume that the refrigeration effect maintains a heat reservoir at 
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660 CHAPTER 16. Thermodynamic Analysis of Processes

a temperature 5°C above the evaporation temperature and that Tσ is 5°C below the 
condensation temperature.

 16.7. A colloidal dispersion enters a single-effect evaporator at 100°C. Water is vaporized 
from the dispersion, producing a more concentrated dispersion and 0.5 kg·s−1 of steam 
at 100°C. This steam is compressed and sent to the heating coils of the evaporator to 
supply the heat required for its operation. For a minimum heat-transfer driving force 
across the evaporator coils of 10°C, for a compressor efficiency of 75%, and for adia-
batic operation, what is the state of the steam leaving the heating coils of the evapora-
tor? For a surroundings temperature of 300 K, make a thermodynamic analysis of the 
process.

 16.8. Make a thermodynamic analysis of the process described in Prob. 8.9. Tσ = 27°C.

 16.9. Make a thermodynamic analysis of the process described in Ex. 9.3. Tσ = 295 K.
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Appendix A

Conversion Factors and Values 
of the Gas Constant

Because standard reference books contain data in diverse units, we include Tables A.1 and 
A.2 to aid in the conversion of values from one set of units to another. Those units having no 
 connection with the SI system are enclosed in parentheses. The following definitions are noted:

 (ft) ≡ U.S. defined foot ≡ 0.3048 m
 (in) ≡ U.S. defined inch ≡ 0.0254 m
 (gal) ≡ U.S. liquid gallon ≡ 231 (in)3

 (lbm) ≡ U.S. defined pound mass (avoirdupois)
  ≡ 0.45359237 kg
 (lbf) ≡ force to accelerate 1(lbm) by 32.1740 (ft)·s−2

 (atm) ≡ standard atmospheric pressure ≡ 101,325 Pa
 (psia) ≡ pounds force per square inch absolute pressure
 (torr) ≡ pressure exerted by 1 mm mercury at 0°C and standard gravity
 (cal) ≡ thermochemical calorie
 (Btu) ≡ international steam table British thermal unit
 (lb mole) ≡ mass in pounds mass with numerical value equal to the molar mass
 (R) ≡ absolute temperature in Rankines

The conversion factors of Table A.1 are referred to a single basic or derived unit of the 
SI system. Conversions between other pairs of units for a given quantity are made as in the 
following example:

  1 bar = 0.986923 (atm) = 750.061 (torr)  

thus

  1 (atm) =   
750.061

 _________ 0.986923    = 760.00 (torr)  
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662 APPENDIX A. Conversion Factors and Values of the Gas Constant

Table A.1: Conversion Factors

Quantity Conversion

Length   1 m  =  100 cm      =  3.28084   (  ft )    = 39.3701   (  in )     

Mass   1 kg  =   10  3  g     =  2.20462   (   lb  m   )     

Force
  
1 N

  
=

  
1 kg·m· s  −2 

      =   10  5  (dyne)   
 
  

=
  
0.224809   (  l b  f   )   

  

Pressure

  

1 bar

  

=

  

 10  5  kg· m  −1 · s  −2  =  10  5  N· m  −2 

    
 
  

=
  
 10  5  Pa =  10  2  kPa

      =   10  6  (dyne)· cm  −2    
 
  

=
  
0.986923 (atm)

   

 

  

=

  

14.5038 (psia)

   

 

  

=

  

750.061 (torr)

   

Volume
  
1  m  3 

  
=

  
 10  6   cm  3  =  10  3  liters

       =  35.3147  (ft)  3    
 
  

=
  
264.172 (gal)

   

Density   1 g· cm  −3   =   10  3  kg· m  −3    
 
  

=
  
62.4278 ( lb  m  ) (ft)  −3 

  

Energy

  

1 J

  

=

  

1 kg· m  2 · s  −2  = 1 N·m

    

 

  

=

  

1  m  3 ·Pa =  10  −5   m  3 ·bar = 10  cm  3 ·bar

     
 
  

=
  
9.86923  cm  3 ·(atm)

      =   10  7  (dyne)·cm =  10  7  (erg)    
 
  

=
  
0.239006 (cal)

   

 

  

=

  

5.12197 ×  10  −3   (ft)  3 (psia) = 0.737562 (ft)(l b  f  )

     

 

  

=

  

9.47831 ×  10  −4  (Btu) = 2.77778 ×  10  −7  kW·h

   

Power

  

1 kW

  

=

  

 10  3  W =  10  3  kg· m  2 · s  −3  =  10  3  J· s  −1 

     
 
  

=
  
239.006 (cal)· s  −1 

      =  737.562 (ft)(l b  f  )· s  −1     
 
  

=
  
0.947831 (Btu)· s  −1 

    

 

  

=

  

1.34102 (hp)

   

  

R

  

=

  

8.314  J·mol  −1  ·K  −1  = 8.314  m  3  ·Pa·mol  −1  ·K  −1 

     

 

  

=

  

83.14  cm  3  ·bar·mol  −1  ·K  −1  = 8314  cm  3  ·kPa·mol  −1  ·K  −1 

      
 
  

=
  
82.06  cm  3 ·(atm) ·mol  −1  ·K  −1  = 62,356  cm  3 ·(torr) ·mol  −1  ·K  −1 

         =  1.987  (cal)·mol  −1  ·K  −1  = 1.986   (  Btu )    (lb mole)  −1  (R)  −1       

 

  

=

  

0.7302  (ft)  3   (  atm )    (lb mol)  −1  (R)  −1  = 10.73  (ft)  3   (  psia )    (lb mol)  −1  (R)  −1 

       

 

  

=

  

1545  (ft)   (   lb  f   )    (lb mol)  −1   (  R )    −1 

   

Table A.2: Values of the Universal Gas Constant
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Appendix B

Properties of Pure Species

Table B.1 Characteristic Properties of Pure Species

Listed here for various chemical species are values for the molar mass (molecular weight), 
acentric factor ω, critical temperature Tc, critical pressure Pc, critical compressibility  
factor Zc, critical molar volume Vc, and normal boiling point Tn. Abstracted from Project 801, 
DIPPR®, Design Institute for Physical Property Data of the American Institute of  Chemical 
Engineers, they are reproduced with permission. The current full version of this database 
includes values for 34 constant properties and 15 temperature-dependent thermodynamic and 
transport properties for more than 2200 chemical species, and new species are added regularly.

Table B.2 Constants for the Antoine Equation for Vapor Pressures of Pure Species

Molar 
mass ω Tc/K Pc/bar Zc

Vc 
cm3·mol−1 Tn/K

Methane 16.043 0.012 190.6 45.99 0.286 98.6 111.4
Ethane 30.070 0.100 305.3 48.72 0.279 145.5 184.6
Propane 44.097 0.152 369.8 42.48 0.276 200.0 231.1
n-Butane 58.123 0.200 425.1 37.96 0.274 255. 272.7
n-Pentane 72.150 0.252 469.7 33.70 0.270 313. 309.2
n-Hexane 86.177 0.301 507.6 30.25 0.266 371. 341.9
n-Heptane 100.204 0.350 540.2 27.40 0.261 428. 371.6
n-Octane 114.231 0.400 568.7 24.90 0.256 486. 398.8
n-Nonane 128.258 0.444 594.6 22.90 0.252 544. 424.0
n-Decane 142.285 0.492 617.7 21.10 0.247 600. 447.3
Isobutane 58.123 0.181 408.1 36.48 0.282 262.7 261.4
Isooctane 114.231 0.302 544.0 25.68 0.266 468. 372.4

Table B.1: Characteristic Properties of Pure Species
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664 APPENDIX B. Properties of Pure Species

Molar 
mass ω Tc/K Pc/bar Zc

Vc 
cm3·mol−1 Tn/K

Cyclopentane 70.134 0.196 511.8 45.02 0.273 258. 322.4
Cyclohexane 84.161 0.210 553.6 40.73 0.273 308. 353.9
Methylcyclopentane 84.161 0.230 532.8 37.85 0.272 319. 345.0
Methylcyclohexane 98.188 0.235 572.2 34.71 0.269 368. 374.1
Ethylene 28.054 0.087 282.3 50.40 0.281 131. 169.4
Propylene 42.081 0.140 365.6 46.65 0.289 188.4 225.5
1-Butene 56.108 0.191 420.0 40.43 0.277 239.3 266.9
cis-2-Butene 56.108 0.205 435.6 42.43 0.273 233.8 276.9
trans-2-Butene 56.108 0.218 428.6 41.00 0.275 237.7 274.0
1-Hexene 84.161 0.280 504.0 31.40 0.265 354. 336.3
Isobutylene 56.108 0.194 417.9 40.00 0.275 238.9 266.3
1,3-Butadiene 54.092 0.190 425.2 42.77 0.267 220.4 268.7
Cyclohexene 82.145 0.212 560.4 43.50 0.272 291. 356.1
Acetylene 26.038 0.187 308.3 61.39 0.271 113. 189.4
Benzene 78.114 0.210 562.2 48.98 0.271 259. 353.2
Toluene 92.141 0.262 591.8 41.06 0.264 316. 383.8
Ethylbenzene 106.167 0.303 617.2 36.06 0.263 374. 409.4
Cumene 120.194 0.326 631.1 32.09 0.261 427. 425.6
o-Xylene 106.167 0.310 630.3 37.34 0.263 369. 417.6
m-Xylene 106.167 0.326 617.1 35.36 0.259 376. 412.3
p-Xylene 106.167 0.322 616.2 35.11 0.260 379. 411.5
Styrene 104.152 0.297 636.0 38.40 0.256 352. 418.3
Naphthalene 128.174 0.302 748.4 40.51 0.269 413. 491.2
Biphenyl 154.211 0.365 789.3 38.50 0.295 502. 528.2
Formaldehyde 30.026 0.282 408.0 65.90 0.223 115. 254.1
Acetaldehyde 44.053 0.291 466.0 55.50 0.221 154. 294.0
Methyl acetate 74.079 0.331 506.6 47.50 0.257 228. 330.1
Ethyl acetate 88.106 0.366 523.3 38.80 0.255 286. 350.2
Acetone 58.080 0.307 508.2 47.01 0.233 209. 329.4
Methyl ethyl ketone 72.107 0.323 535.5 41.50 0.249 267. 352.8
Diethyl ether 74.123 0.281 466.7 36.40 0.263 280. 307.6
Methyl t-butyl ether 88.150 0.266 497.1 34.30 0.273 329. 328.4
Methanol 32.042 0.564 512.6 80.97 0.224 118. 337.9
Ethanol 46.069 0.645 513.9 61.48 0.240 167. 351.4
1-Propanol 60.096 0.622 536.8 51.75 0.254 219. 370.4
1-Butanol 74.123 0.594 563.1 44.23 0.260 275. 390.8
1-Hexanol 102.177 0.579 611.4 35.10 0.263 381. 430.6
2-Propanol 60.096 0.668 508.3 47.62 0.248 220. 355.4
Phenol 94.113 0.444 694.3 61.30 0.243 229. 455.0

Table B.1 (Continued)
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Molar 
mass ω Tc/K Pc/bar Zc

Vc 
cm3·mol−1 Tn/K

Ethylene glycol 62.068 0.487 719.7 77.00 0.246 191.0 470.5
Acetic acid 60.053 0.467 592.0 57.86 0.211 179.7 391.1
n-Butyric acid 88.106 0.681 615.7 40.64 0.232 291.7 436.4
Benzoic acid 122.123 0.603 751.0 44.70 0.246 344. 522.4
Acetonitrile 41.053 0.338 545.5 48.30 0.184 173. 354.8
Methylamine 31.057 0.281 430.1 74.60 0.321 154. 266.8
Ethylamine 45.084 0.285 456.2 56.20 0.307 207. 289.7
Nitromethane 61.040 0.348 588.2 63.10 0.223 173. 374.4
Carbon tetrachloride 153.822 0.193 556.4 45.60 0.272 276. 349.8
Chloroform 119.377 0.222 536.4 54.72 0.293 239. 334.3
Dichloromethane 84.932 0.199 510.0 60.80 0.265 185. 312.9
Methyl chloride 50.488 0.153 416.3 66.80 0.276 143. 249.1
Ethyl chloride 64.514 0.190 460.4 52.70 0.275 200. 285.4
Chlorobenzene 112.558 0.250 632.4 45.20 0.265 308. 404.9
Tetrafluoroethane 102.030 0.327 374.2 40.60 0.258 198.0 247.1
Argon 39.948 0.000 150.9 48.98 0.291 74.6 87.3
Krypton 83.800 0.000 209.4 55.02 0.288 91.2 119.8
Xenon 131.30 0.000 289.7 58.40 0.286 118.0 165.0
Helium 4 4.003 −0.390 5.2 2.28 0.302 57.3 4.2
Hydrogen 2.016 −0.216 33.19 13.13 0.305 64.1 20.4
Oxygen 31.999 0.022 154.6 50.43 0.288 73.4 90.2
Nitrogen 28.014 0.038 126.2 34.00 0.289 89.2 77.3
Air† 28.851 0.035 132.2 37.45 0.289 84.8
Chlorine 70.905 0.069 417.2 77.10 0.265 124. 239.1
Carbon monoxide 28.010 0.048 132.9 34.99 0.299 93.4 81.7
Carbon dioxide 44.010 0.224 304.2 73.83 0.274 94.0
Carbon disulfide 76.143 0.111 552.0 79.00 0.275 160. 319.4
Hydrogen sulfide 34.082 0.094 373.5 89.63 0.284 98.5 212.8
Sulfur dioxide 64.065 0.245 430.8 78.84 0.269 122. 263.1
Sulfur trioxide 80.064 0.424 490.9 82.10 0.255 127. 317.9
Nitric oxide (NO) 30.006 0.583 180.2 64.80 0.251 58.0 121.4
Nitrous oxide (N2O) 44.013 0.141 309.6 72.45 0.274 97.4 184.7
Hydrogen chloride 36.461 0.132 324.7 83.10 0.249 81. 188.2
Hydrogen cyanide 27.026 0.410 456.7 53.90 0.197 139. 298.9
Water 18.015 0.345 647.1 220.55 0.229 55.9 373.2
Ammonia 17.031 0.253 405.7 112.80 0.242 72.5 239.7
Nitric acid 63.013 0.714 520.0 68.90 0.231 145. 356.2
Sulfuric acid 98.080 . . . 924.0 64.00 0.147 177. 610.0

† Pseudoparameters for   y   N  2      = 0.79 and   y   O  2      = 0.21. See Eqs. (6.78)–(6.80).

Table B.1 (Continued)
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Name Formula
Parameters for Antoine Eqn. Temp. Range  

°C
ΔHn  

kJ/mol tn/°CA† B C
Acetone C3H6O 14.3145 2756.22 228.060 −26—77 29.10 56.2
Acetic acid C2H4O2 15.0717 3580.80 224.650    24—142 23.70 117.9
Acetonitrile* C2H3N 14.8950 3413.10 250.523 −27—81 30.19 81.6
Benzene C6H6 13.7819 2726.81 217.572     6—104 30.72 80.0
iso-Butane C4H10 13.8254 2181.79 248.870 −83—7 21.30 −11.9
n-Butane C4H10 13.6608 2154.70 238.789 −73—19 22.44 −0.5
1-Butanol C4H10O 15.3144 3212.43 182.739    37—138 43.29 117.6
2-Butanol* C4H10O 15.1989 3026.03 186.500    25—120 40.75 99.5
iso-Butanol C4H10O 14.6047 2740.95 166.670    30—128 41.82 107.8
tert-Butanol C4H10O 14.8445 2658.29 177.650    10—101 39.07 82.3
Carbon tetrachloride CCl4 14.0572 2914.23 232.148 −14—101 29.82 76.6
Chlorobenzene C6H5Cl 13.8635 3174.78 211.700    29—159 35.19 131.7
1-Chlorobutane C4H9Cl 13.7965 2723.73 218.265 −17—79 30.39 78.5
Chloroform CHCl3 13.7324 2548.74 218.552 −23—84 29.24 61.1
Cyclohexane C6H12 13.6568 2723.44 220.618     9—105 29.97 80.7
Cyclopentane C5H10 13.9727 2653.90 234.510 −35—71 27.30 49.2
n-Decane C10H22 13.9748 3442.76 193.858    65—203 38.75 174.1
Dichloromethane CH2Cl2 13.9891 2463.93 223.240 −38—60 28.06 39.7
Diethyl ether C4H10O 14.0735 2511.29 231.200 −43—55 26.52 34.4
1,4-Dioxane C4H8O2 15.0967 3579.78 240.337    20—105 34.16 101.3
n-Eicosane C20H42 14.4575 4680.46 132.100   208—379 57.49 343.6
Ethanol C2H6O 16.8958 3795.17 230.918     3—96 38.56 78.2
Ethylbenzene C8H10 13.9726 3259.93 212.300    33—163 35.57 136.2
Ethylene glycol* C2H6O2 15.7567 4187.46 178.650   100—222 50.73 197.3
n-Heptane C7H16 13.8622 2910.26 216.432     4—123 31.77 98.4
n-Hexane C6H14 13.8193 2696.04 224.317 −19—92 28.85 68.7
Methanol CH4O 16.5785 3638.27 239.500 −11—83 35.21 64.7
Methyl acetate C3H6O2 14.2456 2662.78 219.690 −23—78 30.32 56.9
Methyl ethyl ketone C4H8O 14.1334 2838.24 218.690  −8—103 31.30 79.6
Nitromethane* CH3NO2 14.7513 3331.70 227.600    56—146 33.99 101.2
n-Nonane C9H20 13.9854 3311.19 202.694    46—178 36.91 150.8
iso-Octane C8H18 13.6703 2896.31 220.767     2—125 30.79 99.2
n-Octane C8H18 13.9346 3123.13 209.635    26—152 34.41 125.6
n-Pentane C5H12 13.7667 2451.88 232.014 −45—58 25.79 36.0
Phenol C6H6O 14.4387 3507.80 175.400    80—208 46.18 181.8
1-Propanol C3H8O 16.1154 3483.67 205.807    20—116 41.44 97.2
2-Propanol C3H8O 16.6796 3640.20 219.610     8—100 39.85 82.2

 ln  P   sat  ∕ kPa = A −   
B
 ______ 

t ∕ °C + C   

Latent heat of vaporization at the normal boiling point (ΔHn), and normal boiling point (tn)

Table B.2: Constants for the Antoine Equation for Vapor Pressures of Pure Species
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Name Formula
Parameters for Antoine Eqn. Temp. Range  

°C
ΔHn  

kJ/mol tn/°CA† B C
Toluene C7H8 13.9320 3056.96 217.625    13—136 33.18 110.6
Water H2O 16.3872 3885.70 230.170     0—200 40.66 100.0
o-Xylene C8H10 14.0415 3358.79 212.041    40—172 36.24 144.4
m-Xylene C8H10 14.1387 3381.81 216.120    35—166 35.66 139.1
p-Xylene C8H10 14.0579 3331.45 214.627    35—166 35.67 138.3

Based primarily on data presented by B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and 
Liquids, 5th ed., App. A, McGraw-Hill, New York, 2001.

*Antoine parameters adapted from J. Gmehling, U. Onken, and W. Arlt, Vapor-Liquid Equilibrium Data Collection, 
Chemistry Data Series, vol. I, parts 1–8, DECHEMA, Frankfurt/Main, 1974–1990.

†Antoine parameters A are adjusted to reproduce the listed values of tn.

Table B.2 (Continued)
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APPENDIX C. Heat Capacities and Property Changes of Formation 669

Table C.1: Heat Capacities of Gases in the Ideal-Gas State†

Chemical species Tmax   C  P  298    
ig

   ∕ R A 103 B 106 C 10−5 D

Alkanes:
Methane CH4 1500 4.217 1.702 9.081 −2.164 . . . . . .
Ethane C2H6 1500 6.369 1.131 19.225 −5.561 . . . . . .
Propane C3H8 1500 9.011 1.213 28.785 −8.824 . . . . . .
n-Butane C4H10 1500 11.928 1.935 36.915 −11.402 . . . . . .
iso-Butane C4H10 1500 11.901 1.677 37.853 −11.945 . . . . . .
n-Pentane C5H12 1500 14.731 2.464 45.351 −14.111 . . . . . .
n-Hexane C6H14 1500 17.550 3.025 53.722 −16.791 . . . . . .
n-Heptane C7H16 1500 20.361 3.570 62.127 −19.486 . . . . . .
n-Octane C8H18 1500 23.174 4.108 70.567 −22.208 . . . . . .

1-Alkenes:
Ethylene C2H4 1500 5.325 1.424 14.394 −4.392 . . . . . .
Propylene C3H6 1500 7.792 1.637 22.706 −6.915 . . . . . .
1-Butene C4H8 1500 10.520 1.967 31.630 −9.873 . . . . . .
1-Pentene C5H10 1500 13.437 2.691 39.753 −12.447 . . . . . .
1-Hexene C6H12 1500 16.240 3.220 48.189 −15.157 . . . . . .
1-Heptene C7H14 1500 19.053 3.768 56.588 −17.847 . . . . . .
1-Octene C8H16 1500 21.868 4.324 64.960 −20.521 . . . . . .

Miscellaneous organics:
Acetaldehyde C2H4O 1000 6.506 1.693 17.978 −6.158 . . . . . .
Acetylene C2H2 1500 5.253 6.132 1.952 . . . . . . −1.299
Benzene C6H6 1500 10.259 −0.206 39.064 −13.301 . . . . . .
1,3-Butadiene C4H6 1500 10.720 2.734 26.786 −8.882 . . . . . .
Cyclohexane C6H12 1500 13.121 −3.876 63.249 −20.928 . . . . . .
Ethanol C2H6O 1500 8.948 3.518 20.001 −6.002 . . . . . .
Ethylbenzene C8H10 1500 15.993 1.124 55.380 −18.476 . . . . . .
Ethylene oxide C2H4O 1000 5.784 −0.385 23.463 −9.296 . . . . . .
Formaldehyde CH2O 1500 4.191 2.264 7.022 −1.877 . . . . . .
Methanol CH4O 1500 5.547 2.211 12.216 −3.450 . . . . . .
Styrene C8H8 1500 15.534 2.050 50.192 −16.662 . . . . . .
Toluene C7H8 1500 12.922 0.290 47.052 −15.716 . . . . . .

Miscellaneous inorganics:
Air 2000 3.509 3.355 0.575 . . . . . . −0.016
Ammonia NH3 1800 4.269 3.578 3.020 . . . . . . −0.186
Bromine Br2 3000 4.337 4.493 0.056 . . . . . . −0.154
Carbon monoxide CO 2500 3.507 3.376 0.557 . . . . . . −0.031
Carbon dioxide CO2 2000 4.467 5.457 1.045 . . . . . . −1.157
Carbon disulfide CS2 1800 5.532 6.311 0.805 . . . . . . −0.906
Chlorine Cl2 3000 4.082 4.442 0.089 . . . . . . −0.344
Hydrogen H2 3000 3.468 3.249 0.422 . . . . . . 0.083
Hydrogen sulfide H2S 2300 4.114 3.931 1.490 . . . . . . −0.232
Hydrogen chloride HCl 2000 3.512 3.156 0.623 . . . . . . 0.151
Hydrogen cyanide HCN 2500 4.326 4.736 1.359 . . . . . . −0.725
Nitrogen N2 2000 3.502 3.280 0.593 . . . . . . 0.040
Nitrous oxide N2O 2000 4.646 5.328 1.214 . . . . . . −0.928
Nitric oxide NO 2000 3.590 3.387 0.629 . . . . . . 0.014
Nitrogen dioxide NO2 2000 4.447 4.982 1.195 . . . . . . −0.792
Dinitrogen tetroxide N2O4 2000 9.198 11.660 2.257 . . . . . . −2.787
Oxygen O2 2000 3.535 3.639 0.506 . . . . . . −0.227
Sulfur dioxide SO2 2000 4.796 5.699 0.801 . . . . . . −1.015
Sulfur trioxide SO3 2000 6.094 8.060 1.056 . . . . . . −2.028
Water H2O 2000 4.038 3.470 1.450 . . . . . . 0.121

†Selected from H. M. Spencer, Ind. Eng. Chem., vol. 40, pp. 2152–2154, 1948; K. K. Kelley, U.S. Bur. Mines Bull. 
584, 1960; L. B. Pankratz, U.S. Bur. Mines Bull. 672, 1982.

Constants in equation   C P  ig
  / R = A + BT + C T   2  + D T   −2    for T (K) from 298 K to Tmax
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670 APPENDIX C. Heat Capacities and Property Changes of Formation

Chemical species Tmax   C  P  298    
ig

   ∕ R A 103 B 10−5 D

CaO 2000 5.058 6.104 0.443 −1.047
CaCO3 1200 9.848 12.572 2.637 −3.120
Ca(OH)2 700 11.217 9.597 5.435 . . . . . .
CaC2 720 7.508 8.254 1.429 −1.042
CaCl2 1055 8.762 8.646 1.530 −0.302
C (graphite) 2000 1.026 1.771 0.771 −0.867
Cu 1357 2.959 2.677 0.815 0.035
CuO 1400 5.087 5.780 0.973 −0.874
Fe(α) 1043 3.005 −0.111 6.111 1.150
Fe2O3 960 12.480 11.812 9.697 −1.976
Fe3O4 850 18.138 9.594 27.112 0.409
FeS 411 6.573 2.612 13.286 . . . . . .
I2 386.8 6.929 6.481 1.502 . . . . . .
LiCl 800 5.778 5.257 2.476 −0.193
NH4Cl 458 10.741 5.939 16.105 . . . . . .
Na 371 3.386 1.988 4.688 . . . . . .
NaCl 1073 6.111 5.526 1.963 . . . . . .
NaOH 566 7.177 0.121 16.316 1.948
NaHCO3 400 10.539 5.128 18.148 . . . . . .
S (rhombic) 368.3 3.748 4.114 −1.728 −0.783
SiO2 (quartz) 847 5.345 4.871 5.365 −1.001

†Selected from K. K. Kelley, U.S. Bur. Mines Bull. 584, 1960; L. B. Pankratz, U.S. Bur. Mines Bull. 
672, 1982.

Constants for the equation Cp∕R = A + BT + DT −2 for T (K) from 298 K to Tmax

Table C.2: Heat Capacities of Solids†

Chemical species   C  P  298    
ig

   ∕ R A 103 B 106 C

Ammonia 9.718 22.626 −100.75 192.71
Aniline 23.070 15.819 29.03 −15.80
Benzene 16.157 −0.747 67.96 −37.78
1,3-Butadiene 14.779 22.711 −87.96 205.79
Carbon tetrachloride 15.751 21.155 −48.28 101.14
Chlorobenzene 18.240 11.278 32.86 −31.90
Chloroform 13.806 19.215 −42.89 83.01
Cyclohexane 18.737 −9.048 141.38 −161.62
Ethanol 13.444 33.866 −172.60 349.17
Ethylene oxide 10.590 21.039 −86.41 172.28
Methanol 9.798 13.431 −51.28 131.13
n-Propanol 16.921 41.653 −210.32 427.20
Sulfur trioxide 30.408 −2.930 137.08 −84.73
Toluene 18.611 15.133 6.79 16.35
Water 9.069 8.712 1.25 −0.18

†Based on correlations presented by J. W. Miller Jr., G. R. Schorr, and C. L. Yaws, Chem. Eng.,  
vol. 83(23), p. 129, 1976.

Constants for the equation CP∕R = A + BT + CT 2 for T from 273.15 to 373.15 K

Table C.3: Heat Capacities of Liquids†
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Table C.4: Standard Enthalpies and Gibbs Energies of Formation  
at 298.15 K†

Chemical species
State  

(Note 2)
 Δ H   f  298    °   

(Note 1)
 Δ G   f  298    °    

(Note 1)

Alkanes:
Methane CH4 (g) −74,520 −50,460
Ethane C2H6 (g) −83,820 −31,855
Propane C3H8 (g) −104,680 −24,290
n-Butane C4H10 (g) −125,790 −16,570
n-Pentane C5H12 (g) −146,760 −8,650
n-Hexane C6H14 (g) −166,920 150
n-Heptane C7H16 (g) −187,780 8,260
n-Octane C8H18 (g) −208,750 16,260

1-Alkenes:

Ethylene C2H4 (g) 52,510 68,460
Propylene C3H6 (g) 19,710 62,205
1-Butene C4H8 (g) −540 70,340
1-Pentene C5H10 (g) −21,280 78,410
1-Hexene C6H12 (g) −41,950 86,830
1-Heptene C7H14 (g) −62,760

Miscellaneous organics:

Acetaldehyde C2H4O (g) −166,190 −128,860
Acetic acid C2H4O2 (l) −484,500 −389,900
Acetylene C2H2 (g) 227,480 209,970
Benzene C6H6 (g) 82,930 129,665
Benzene C6H6 (l) 49,080 124,520
1,3-Butadiene C4H6 (g) 109,240 149,795
Cyclohexane C6H12 (g) −123,140 31,920
Cyclohexane C6H12 (l) −156,230 26,850
1,2-Ethanediol C2H6O2 (l) −454,800 −323,080
Ethanol C2H6O (g) −235,100 −168,490
Ethanol C2H6O (l) −277,690 −174,780
Ethylbenzene C8H10 (g) 29,920 130,890
Ethylene oxide C2H4O (g) −52,630 −13,010
Formaldehyde CH2O (g) −108,570 −102,530
Methanol CH4O (g) −200,660 −161,960
Methanol CH4O (l) −238,660 −166,270
Methylcyclohexane C7H14 (g) −154,770 27,480
Methylcyclohexane C7H14 (l) −190,160 20,560
Styrene C8H8 (g) 147,360 213,900
Toluene C7H8 (g) 50,170 122,050
Toluene C7H8 (l) 12,180 113,630

Joules per mole of the substance formed
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672 APPENDIX C. Heat Capacities and Property Changes of Formation

Chemical species
State  

(Note 2)
 Δ H   f  298    °   

(Note 1)
 Δ G   f  298    °    

(Note 1)

Miscellaneous inorganics:

Ammonia NH3 (g) −46,110 −16,400
Ammonia NH3 (aq) −26,500
Calcium carbide CaC2 (s) −59,800 −64,900
Calcium carbonate CaCO3 (s) −1,206,920 −1,128,790
Calcium chloride CaCl2 (s) −795,800 −748,100
Calcium chloride CaCl2 (aq) −8,101,900
Calcium chloride CaCl2·6H2O (s) −2,607,900
Calcium hydroxide Ca(OH)2 (s) −986,090 −898,490
Calcium hydroxide Ca(OH)2 (aq) −868,070
Calcium oxide CaO (s) −635,090 −604,030
Carbon dioxide CO2 (g) −393,509 −394,359
Carbon monoxide CO (g) −110,525 −137,169
Hydrochloric acid HCl (g) −92,307 −95,299
Hydrogen cyanide HCN (g) 135,100 124,700
Hydrogen sulfide H2S (g) −20,630 −33,560
Iron oxide FeO (s) −272,000
Iron oxide (hematite) Fe2O3 (s) −824,200 −742,200
Iron oxide (magnetite) Fe3O4 (s) −1,118,400 −1,015,400
Iron sulfide (pyrite) FeS2 (s) −178,200 −166,900
Lithium chloride LiCl (s) −408,610
Lithium chloride LiCl·H2O (s) −712,580
Lithium chloride LiCl·2H2O (s) −1,012,650
Lithium chloride LiCl·3H2O (s) −1,311,300
Nitric acid HNO3 (l) −174,100 −80,710
Nitric acid HNO3 (aq) −111,250
Nitrogen oxides NO (g) 90,250 86,550

NO2 (g) 33,180 51,310
N2O (g) 82,050 104,200
N2O4 (g) 9,160 97,540

Sodium carbonate Na2CO3 (s) −1,130,680 −1,044,440
Sodium carbonate Na2CO3·10H2O (s) −4,081,320
Sodium chloride NaCl (s) −411,153 −384,138
Sodium chloride NaCl (aq) −393,133
Sodium hydroxide NaOH (s) −425,609 −379,494
Sodium hydroxide NaOH (aq) −419,150
Sulfur dioxide SO2 (g) −296,830 −300,194
Sulfur trioxide SO3 (g) −395,720 −371,060
Sulfur trioxide SO3 (l) −441,040
Sulfuric acid H2SO4 (l) −813,989 −690,003
Sulfuric acid H2SO4 (aq) −744,530
Water H2O (g) −241,818 −228,572
Water H2O (l) −285,830 −237,129

†From TRC Thermodynamic Tables—Hydrocarbons, Thermodynamics Research Center, Texas A & M Univ.  
System, College Station, TX; “The NBS Tables of Chemical Thermodynamic Properties,” J. Phys. and Chem.  
Reference Data, vol. 11, supp. 2, 1982.

Table C.4 (Continued)
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Table C.5: Standard Enthalpies and Gibbs Energies of Formation at 298.15 K for  
Substances in Dilute Aqueous Solution at Zero Ionic Strength†

Notes
 1. The standard property changes of formation  Δ H   f  298    °    and  Δ G   f  298    °    are the changes occurring 

when 1 mol of the listed compound is formed from its elements with each substance in 
its standard state at 298.15 K (25°C).

 2. Standard states: (a) Gases (g): pure ideal gas at 1 bar and 25°C. (b) Liquids (l) and solids 
(s): pure substance at 1 bar and 25°C. (c) Solutes in aqueous solution (aq):  Hypothetical 
ideal 1-molal solution of solute in water at 1 bar and 25°C.

Chemical species  Δ H   f  298    °    Δ G   f  298    °   

Acetaldehyde C2H4O −212.2 −139.0
Acetate   C  2   H  2   O  2  −  −486.0 −369.3
Acetic acid C2H3O2 −485.8 −396.5
Acetone C3H6O −221.7 −159.7
Adenosine C10H13N5O4 −621.3 −194.5
Adenosine cation   C  10   H  14   N  5   O  4  +  −637.7 −214.3
Adenosine 5′ diphosphate (ADP)   C  10   H  12   N  5   O  10   P  2  3−  −2626.5 −1906.1

  C  10   H  13   N  5   O  10   P  2  2−  −2620.9 −1947.1
  C  10   H  14   N  5   O  10   P  2  −  −2638.5 −1972.0

Adenosine 5′ monophosphate (AMP) C10H12N5O10P2 − −1635.4 −1040.5
C10H13N5O10P − −1630.0 −1078.9
C10H14N5O7P −1648.1 −1101.6

Adenosine 5′ triphosphate (ATP)   C  10   H  12   N  5   O  13   P  3  4−  −3619.2 −2768.1
  C  10   H  13   N  5   O  13   P  3  3−  −3612.9 −2811.5
  C  10   H  14   N  5   O  13   P  3  2−  −3627.9 −2838.2

Alanine C3H7NO2 −554.8 −371.0
Ammonia NH3 −80.3 −26.5
Ammonium   NH  4  +  −132.5 −79.3
D-arabinose C5H10O5 −1043.8 −742.2
L-asparagine C4H8N2O3 −766.1 −525.9
L-aspartate C4H7NO4 −943.4 −695.9
Citrate   C  6   H  5   O  7  3−  −1515.1 −1162.7

  C  6   H  6   O  7  2−  −1518.5 −1199.2
  C  6   H  7   O  7  −  −1520.9 −1226.3

Carbon dioxide CO2 −413.8 −386.0
Carbonate   CO  3  −2  −677.1 −527.8
Bicarbonate   CHO  3  −  −692.0 −586.8
Carbonic acid CH2O3 −694.9 −606.3

Joules per mole of the substance formed
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Chemical species  Δ H   f  298    °    Δ G   f  298    °   

Carbon monoxide CO −121.0 −119.9
Ethanol C2H6O −288.3 −181.6
Ethyl acetate C4H8O2 −482.0 −337.7
Formate   CHO  2  −  −425.6 −351.0
D-fructose C6H12O6 −1259.4 −915.5
D-fructose 6-phosphate C6H11O9P2 − −2267.7* −1760.8

C6H12O9P − −2265.9* −1796.6
D-fructose 1,6-biphosphate   C  6   H  11   O  12   P  2  3−  −3320.1* −2639.4

  C  6   H  12   O  12   P  2  2−  −3318.3* −2673.9
Fumarate   C  4   H  2   O  4  2−  −777.4 −601.9

  C  4   H  3   O  4  −  −774.5 −628.1
C4H4O4 −774.9 −645.8

D-galactose C6H12O6 −1255.2 −908.9
D-glucose C6H12O6 −1262.2 −915.9
D-glucose 6-phosphate C6H11O9P2 − −2276.4 −1763.9

C6H12O9P − −2274.6 −1800.6
L-glutamate   C  5   H  8   NO  4  −  −979.9 −697.5
L-glutamine C5H10N2O3 −805.0 −528.0
Glycerol C3H8O3 −676.6 −497.5
Glycine C2H5NO2 −523.0 −379.9
Glycylglycine C4H8N2O3 −734.3 −520.2
Hydrogen H2 −4.2 17.6
Hydrogen peroxide H2O2 −191.2 −134.0
Hydrogen ion (Note 2)  H+ 0.0 0.0
Indole C8H7N 97.5 223.8
Lactate   C  3   H  5   O  3  −  −686.6 −516.7
Lactose C12H22O11 −2233.1 −1567.3
L-leucine C6H13NO2 −643.4 −352.3
Maltose C12H22O11 −2238.1 −1574.7
D-mannose C6H12O6 −1258.7 −910.0
Methane CH4 −89.0 −34.3
Methanol CH4O −245.9 −175.3
Methylammonium CH6N+ −124.9 −39.9
Nitrogen N2 −10.5 18.7
Nicotinamide-adenine dinucleotide (ox) NAD+ (Note 2) 0.0 0.0
Nicotinamide-adenine dinucleotide (red) NADH (Note 2) −31.9 22.7
Nicotinamide-adenine dinucleotide 

phosphate (ox) NADP+ (Note 2) 0.0 −835.2

Table C.5 (Continued)
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Chemical species  Δ H   f  298    °    Δ G   f  298    °   

Nicotinamide-adenine dinucleotide 
phosphate (red) NADPH (Note 2) −29.2 −809.2

Oxygen O2 −11.7 16.4
Oxalate   C  2   O  4  2−  −825.1 −673.9
Hydrogen phosphate   HPO  4  2−  −1299.0 −1096.1
Dihydrogen phosphate   H  2   PO  4  −  −1302.6 −1137.3
2-propanol C3H8O −330.8 −185.2
Pyrophosphate   P  2   O  7  4−  −2293.5 −1919.9

  HP  2   O  7  3−  −2294.9 −1973.9
  H  2   P  2   O  7  2−  −2295.4 −2012.2
  H  3   P  2   O  7  −  −2290.4 −2025.1
H4P2O7 −2281.2 −2029.9

Pyruvate   C  3   H  3   O  3  −  −596.2 −472.3
D-ribose C5H10O5 −1034.0 −738.8
D-ribose 5-phosphate C5H9O8P2 − −2041.5 −1582.6

C5H10O8P − −2030.2 −1620.8
D-ribulose C5H10O5 −1023.0 −735.9
L-sorbose C6H12O6 −1263.3 −912.0
Succinate   C  4   H  4   O  4  2

  − −908.7 −690.4
  C  4   H  5   O  4  −  −908.8 −722.6
C4H6O4 −912.2 −746.6

Sucrose C12H22O11 −2199.9 −1564.7
L-tryptophan C11H12N2O2 −405.2 −114.7
Urea CH4N2O −317.7 −202.8
L-valine C5H11NO2 −612.0 −358.7
D-xylose C5H10O5 −1045.9 −750.5
D-xylulose C5H10O5 −1029.7 −746.2

*Estimated using data from R. N. Goldberg, Y. B. Tewari, and T. N. Bhat, Thermodynamics of Enzyme Catalyzed 
Reactions, NIST Standard Reference Database 74, http://xpdb.nist.gov/enzyme_thermodynamics.

†From Robert A. Alberty, Thermodynamics of Biochemical Reactions, Wiley-Interscience, Hoboken, NJ, 2003. 
Table 3.2, pp. 52–55 and Table 8.2, p. 151.

Notes

 1. The standard property changes of formation  Δ H   f  298    °    and  Δ G   f  298    °    are the changes occurring 
when 1 mol of the listed compound is formed from its elements with each substance in 
its standard state at 298.15 K (25°C), except as explained in Note 2.

 2. Conventions used in this table are that  Δ G   f  298    °   = Δ H   f  298    °   = 0  for H+ and for oxidized 
nicotinamide-adenine dinucleotide    (   NAD  ox  −   )    . For the latter, and other NAD species, no 
molecular formula is provided because their properties are computed relative to this 
convention rather than relative to the elements in their standard states.

Table C.5 (Continued)
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Appendix D

The Lee/Kesler  
Generalized-Correlation Tables

The Lee/Kesler tables are adapted and published by permission from “A Generalized Thermo-
dynamic Correlation Based on Three-Parameter Corresponding States,” by Byung Ik Lee and 
Michael G. Kesler, AIChE J., vol. 21, pp. 510–527, 1975. The numbers printed in italic type 
are liquid-phase properties.

TABLES

Tables D.1 – D.4 Correlation for the compressibility factor
Tables D.5 – D.8 Correlation for the residual enthalpy
Tables D.9 – D.12 Correlation for the residual entropy
Tables D.13 – D.16 Correlation for the fugacity coefficient
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Table D.1: Values of Z0

Pr = 0.0100 0.0500 0.1000 0.2000 0.4000 0.6000 0.8000 1.0000

Tr

0.30 0.0029 0.0145 0.0290 0.0579 0.1158 0.1737 0.2315 0.2892
0.35 0.0026 0.0130 0.0261 0.0522 0.1043 0.1564 0.2084 0.2604
0.40 0.0024 0.0119 0.0239 0.0477 0.0953 0.1429 0.1904 0.2379
0.45 0.0022 0.0110 0.0221 0.0442 0.0882 0.1322 0.1762 0.2200
0.50 0.0021 0.0103 0.0207 0.0413 0.0825 0.1236 0.1647 0.2056
0.55 0.9804 0.0098 0.0195 0.0390 0.0778 0.1166 0.1553 0.1939
0.60 0.9849 0.0093 0.0186 0.0371 0.0741 0.1109 0.1476 0.1842
0.65 0.9881 0.9377 0.0178 0.0356 0.0710 0.1063 0.1415 0.1765
0.70 0.9904 0.9504 0.8958 0.0344 0.0687 0.1027 0.1366 0.1703
0.75 0.9922 0.9598 0.9165 0.0336 0.0670 0.1001 0.1330 0.1656
0.80 0.9935 0.9669 0.9319 0.8539 0.0661 0.0985 0.1307 0.1626
0.85 0.9946 0.9725 0.9436 0.8810 0.0661 0.0983 0.1301 0.1614
0.90 0.9954 0.9768 0.9528 0.9015 0.7800 0.1006 0.1321 0.1630
0.93 0.9959 0.9790 0.9573 0.9115 0.8059 0.6635 0.1359 0.1664
0.95 0.9961 0.9803 0.9600 0.9174 0.8206 0.6967 0.1410 0.1705
0.97 0.9963 0.9815 0.9625 0.9227 0.8338 0.7240 0.5580 0.1779
0.98 0.9965 0.9821 0.9637 0.9253 0.8398 0.7360 0.5887 0.1844
0.99 0.9966 0.9826 0.9648 0.9277 0.8455 0.7471 0.6138 0.1959
1.00 0.9967 0.9832 0.9659 0.9300 0.8509 0.7574 0.6355 0.2901
1.01 0.9968 0.9837 0.9669 0.9322 0.8561 0.7671 0.6542 0.4648
1.02 0.9969 0.9842 0.9679 0.9343 0.8610 0.7761 0.6710 0.5146
1.05 0.9971 0.9855 0.9707 0.9401 0.8743 0.8002 0.7130 0.6026
1.10 0.9975 0.9874 0.9747 0.9485 0.8930 0.8323 0.7649 0.6880
1.15 0.9978 0.9891 0.9780 0.9554 0.9081 0.8576 0.8032 0.7443
1.20 0.9981 0.9904 0.9808 0.9611 0.9205 0.8779 0.8330 0.7858
1.30 0.9985 0.9926 0.9852 0.9702 0.9396 0.9083 0.8764 0.8438
1.40 0.9988 0.9942 0.9884 0.9768 0.9534 0.9298 0.9062 0.8827
1.50 0.9991 0.9954 0.9909 0.9818 0.9636 0.9456 0.9278 0.9103
1.60 0.9993 0.9964 0.9928 0.9856 0.9714 0.9575 0.9439 0.9308
1.70 0.9994 0.9971 0.9943 0.9886 0.9775 0.9667 0.9563 0.9463
1.80 0.9995 0.9977 0.9955 0.9910 0.9823 0.9739 0.9659 0.9583
1.90 0.9996 0.9982 0.9964 0.9929 0.9861 0.9796 0.9735 0.9678
2.00 0.9997 0.9986 0.9972 0.9944 0.9892 0.9842 0.9796 0.9754
2.20 0.9998 0.9992 0.9983 0.9967 0.9937 0.9910 0.9886 0.9865
2.40 0.9999 0.9996 0.9991 0.9983 0.9969 0.9957 0.9948 0.9941
2.60 1.0000 0.9998 0.9997 0.9994 0.9991 0.9990 0.9990 0.9993
2.80 1.0000 1.0000 1.0001 1.0002 1.0007 1.0013 1.0021 1.0031
3.00 1.0000 1.0002 1.0004 1.0008 1.0018 1.0030 1.0043 1.0057
3.50 1.0001 1.0004 1.0008 1.0017 1.0035 1.0055 1.0075 1.0097
4.00 1.0001 1.0005 1.0010 1.0021 1.0043 1.0066 1.0090 1.0115
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Table D.2: Values of Z 1

Pr = 0.0100 0.0500 0.1000 0.2000 0.4000 0.6000 0.8000 1.0000

Tr

0.30 −0.0008 −0.0040 −0.0081 −0.0161 −0.0323 −0.0484 −0.0645 −0.0806
0.35 −0.0009 −0.0046 −0.0093 −0.0185 −0.0370 −0.0554 −0.0738 −0.0921
0.40 −0.0010 −0.0048 −0.0095 −0.0190 −0.0380 −0.0570 −0.0758 −0.0946
0.45 −0.0009 −0.0047 −0.0094 −0.0187 −0.0374 −0.0560 −0.0745 −0.0929
0.50 −0.0009 −0.0045 −0.0090 −0.0181 −0.0360 −0.0539 −0.0716 −0.0893
0.55 −0.0314 −0.0043 −0.0086 −0.0172 −0.0343 −0.0513 −0.0682 −0.0849
0.60 −0.0205 −0.0041 −0.0082 −0.0164 −0.0326 −0.0487 −0.0646 −0.0803
0.65 −0.0137 −0.0772 −0.0078 −0.0156 −0.0309 −0.0461 −0.0611 −0.0759
0.70 −0.0093 −0.0507 −0.1161 −0.0148 −0.0294 −0.0438 −0.0579 −0.0718
0.75 −0.0064 −0.0339 −0.0744 −0.0143 −0.0282 −0.0417 −0.0550 −0.0681
0.80 −0.0044 −0.0228 −0.0487 −0.1160 −0.0272 −0.0401 −0.0526 −0.0648
0.85 −0.0029 −0.0152 −0.0319 −0.0715 −0.0268 −0.0391 −0.0509 −0.0622
0.90 −0.0019 −0.0099 −0.0205 −0.0442 −0.1118 −0.0396 −0.0503 −0.0604
0.93 −0.0015 −0.0075 −0.0154 −0.0326 −0.0763 −0.1662 −0.0514 −0.0602
0.95 −0.0012 −0.0062 −0.0126 −0.0262 −0.0589 −0.1110 −0.0540 −0.0607
0.97 −0.0010 −0.0050 −0.0101 −0.0208 −0.0450 −0.0770 −0.1647 −0.0623
0.98 −0.0009 −0.0044 −0.0090 −0.0184 −0.0390 −0.0641 −0.1100 −0.0641
0.99 −0.0008 −0.0039 −0.0079 −0.0161 −0.0335 −0.0531 −0.0796 −0.0680
1.00 −0.0007 −0.0034 −0.0069 −0.0140 −0.0285 −0.0435 −0.0588 −0.0879
1.01 −0.0006 −0.0030 −0.0060 −0.0120 −0.0240 −0.0351 −0.0429 −0.0223
1.02 −0.0005 −0.0026 −0.0051 −0.0102 −0.0198 −0.0277 −0.0303 −0.0062
1.05 −0.0003 −0.0015 −0.0029 −0.0054 −0.0092 −0.0097 −0.0032 0.0220
1.10 0.0000 0.0000 0.0001 0.0007 0.0038 0.0106 0.0236 0.0476
1.15 0.0002 0.0011 0.0023 0.0052 0.0127 0.0237 0.0396 0.0625
1.20 0.0004 0.0019 0.0039 0.0084 0.0190 0.0326 0.0499 0.0719
1.30 0.0006 0.0030 0.0061 0.0125 0.0267 0.0429 0.0612 0.0819
1.40 0.0007 0.0036 0.0072 0.0147 0.0306 0.0477 0.0661 0.0857
1.50 0.0008 0.0039 0.0078 0.0158 0.0323 0.0497 0.0677 0.0864
1.60 0.0008 0.0040 0.0080 0.0162 0.0330 0.0501 0.0677 0.0855
1.70 0.0008 0.0040 0.0081 0.0163 0.0329 0.0497 0.0667 0.0838
1.80 0.0008 0.0040 0.0081 0.0162 0.0325 0.0488 0.0652 0.0814
1.90 0.0008 0.0040 0.0079 0.0159 0.0318 0.0477 0.0635 0.0792
2.00 0.0008 0.0039 0.0078 0.0155 0.0310 0.0464 0.0617 0.0767
2.20 0.0007 0.0037 0.0074 0.0147 0.0293 0.0437 0.0579 0.0719
2.40 0.0007 0.0035 0.0070 0.0139 0.0276 0.0411 0.0544 0.0675
2.60 0.0007 0.0033 0.0066 0.0131 0.0260 0.0387 0.0512 0.0634
2.80 0.0006 0.0031 0.0062 0.0124 0.0245 0.0365 0.0483 0.0598
3.00 0.0006 0.0029 0.0059 0.0117 0.0232 0.0345 0.0456 0.0565
3.50 0.0005 0.0026 0.0052 0.0103 0.0204 0.0303 0.0401 0.0497
4.00 0.0005 0.0023 0.0046 0.0091 0.0182 0.0270 0.0357 0.0443
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Table D.3: Values of Z0

Pr = 1.0000 1.2000 1.5000 2.0000 3.0000 5.0000 7.0000 10.000

Tr

0.30 0.2892 0.3479 0.4335 0.5775 0.8648 1.4366 2.0048 2.8507
0.35 0.2604 0.3123 0.3901 0.5195 0.7775 1.2902 1.7987 2.5539
0.40 0.2379 0.2853 0.3563 0.4744 0.7095 1.1758 1.6373 2.3211
0.45 0.2200 0.2638 0.3294 0.4384 0.6551 1.0841 1.5077 2.1338
0.50 0.2056 0.2465 0.3077 0.4092 0.6110 1.0094 1.4017 1.9801
0.55 0.1939 0.2323 0.2899 0.3853 0.5747 0.9475 1.3137 1.8520
0.60 0.1842 0.2207 0.2753 0.3657 0.5446 0.8959 1.2398 1.7440
0.65 0.1765 0.2113 0.2634 0.3495 0.5197 0.8526 1.1773 1.6519
0.70 0.1703 0.2038 0.2538 0.3364 0.4991 0.8161 1.1341 1.5729
0.75 0.1656 0.1981 0.2464 0.3260 0.4823 0.7854 1.0787 1.5047
0.80 0.1626 0.1942 0.2411 0.3182 0.4690 0.7598 1.0400 1.4456
0.85 0.1614 0.1924 0.2382 0.3132 0.4591 0.7388 1.0071 1.3943
0.90 0.1630 0.1935 0.2383 0.3114 0.4527 0.7220 0.9793 1.3496
0.93 0.1664 0.1963 0.2405 0.3122 0.4507 0.7138 0.9648 1.3257
0.95 0.1705 0.1998 0.2432 0.3138 0.4501 0.7092 0.9561 1.3108
0.97 0.1779 0.2055 0.2474 0.3164 0.4504 0.7052 0.9480 1.2968
0.98 0.1844 0.2097 0.2503 0.3182 0.4508 0.7035 0.9442 1.2901
0.99 0.1959 0.2154 0.2538 0.3204 0.4514 0.7018 0.9406 1.2835
1.00 0.2901 0.2237 0.2583 0.3229 0.4522 0.7004 0.9372 1.2772
1.01 0.4648 0.2370 0.2640 0.3260 0.4533 0.6991 0.9339 1.2710
1.02 0.5146 0.2629 0.2715 0.3297 0.4547 0.6980 0.9307 1.2650
1.05 0.6026 0.4437 0.3131 0.3452 0.4604 0.6956 0.9222 1.2481
1.10 0.6880 0.5984 0.4580 0.3953 0.4770 0.6950 0.9110 1.2232
1.15 0.7443 0.6803 0.5798 0.4760 0.5042 0.6987 0.9033 1.2021
1.20 0.7858 0.7363 0.6605 0.5605 0.5425 0.7069 0.8990 1.1844
1.30 0.8438 0.8111 0.7624 0.6908 0.6344 0.7358 0.8998 1.1580
1.40 0.8827 0.8595 0.8256 0.7753 0.7202 0.7761 0.9112 1.1419
1.50 0.9103 0.8933 0.8689 0.8328 0.7887 0.8200 0.9297 1.1339
1.60 0.9308 0.9180 0.9000 0.8738 0.8410 0.8617 0.9518 1.1320
1.70 0.9463 0.9367 0.9234 0.9043 0.8809 0.8984 0.9745 1.1343
1.80 0.9583 0.9511 0.9413 0.9275 0.9118 0.9297 0.9961 1.1391
1.90 0.9678 0.9624 0.9552 0.9456 0.9359 0.9557 1.0157 1.1452
2.00 0.9754 0.9715 0.9664 0.9599 0.9550 0.9772 1.0328 1.1516
2.20 0.9856 0.9847 0.9826 0.9806 0.9827 1.0094 1.0600 1.1635
2.40 0.9941 0.9936 0.9935 0.9945 1.0011 1.0313 1.0793 1.1728
2.60 0.9993 0.9998 1.0010 1.0040 1.0137 1.0463 1.0926 1.1792
2.80 1.0031 1.0042 1.0063 1.0106 1.0223 1.0565 1.1016 1.1830
3.00 1.0057 1.0074 1.0101 1.0153 1.0284 1.0635 1.1075 1.1848
3.50 1.0097 1.0120 1.0156 1.0221 1.0368 1.0723 1.1138 1.1834
4.00 1.0115 1.0140 1.0179 1.0249 1.0401 1.0747 1.1136 1.1773
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Table D.4: Values of Z1

Pr = 1.0000 1.2000 1.5000 2.0000 3.0000 5.0000 7.0000 10.000

Tr

0.30 −0.0806 −0.0966 −0.1207 −0.1608 −0.2407 −0.3996 −0.5572 −0.7915
0.35 −0.0921 −0.1105 −0.1379 −0.1834 −0.2738 −0.4523 −0.6279 −0.8863
0.40 −0.0946 −0.1134 −0.1414 −0.1879 −0.2799 −0.4603 −0.6365 −0.8936
0.45 −0.0929 −0.1113 −0.1387 −0.1840 −0.2734 −0.4475 −0.6162 −0.8608
0.50 −0.0893 −0.1069 −0.1330 −0.1762 −0.2611 −0.4253 −0.5831 −0.8099
0.55 −0.0849 −0.1015 −0.1263 −0.1669 −0.2465 −0.3991 −0.5446 −0.7521
0.60 −0.0803 −0.0960 −0.1192 −0.1572 −0.2312 −0.3718 −0.5047 −0.6928
0.65 −0.0759 −0.0906 −0.1122 −0.1476 −0.2160 −0.3447 −0.4653 −0.6346
0.70 −0.0718 −0.0855 −0.1057 −0.1385 −0.2013 −0.3184 −0.4270 −0.5785
0.75 −0.0681 −0.0808 −0.0996 −0.1298 −0.1872 −0.2929 −0.3901 −0.5250
0.80 −0.0648 −0.0767 −0.0940 −0.1217 −0.1736 −0.2682 −0.3545 −0.4740
0.85 −0.0622 −0.0731 −0.0888 −0.1138 −0.1602 −0.2439 −0.3201 −0.4254
0.90 −0.0604 −0.0701 −0.0840 −0.1059 −0.1463 −0.2195 −0.2862 −0.3788
0.93 −0.0602 −0.0687 −0.0810 −0.1007 −0.1374 −0.2045 −0.2661 −0.3516
0.95 −0.0607 −0.0678 −0.0788 −0.0967 −0.1310 −0.1943 −0.2526 −0.3339
0.97 −0.0623 −0.0669 −0.0759 −0.0921 −0.1240 −0.1837 −0.2391 −0.3163
0.98 −0.0641 −0.0661 −0.0740 −0.0893 −0.1202 −0.1783 −0.2322 −0.3075
0.99 −0.0680 −0.0646 −0.0715 −0.0861 −0.1162 −0.1728 −0.2254 −0.2989
1.00 −0.0879 −0.0609 −0.0678 −0.0824 −0.1118 −0.1672 −0.2185 −0.2902
1.01 −0.0223 −0.0473 −0.0621 −0.0778 −0.1072 −0.1615 −0.2116 −0.2816
1.02 −0.0062 −0.0227 −0.0524 −0.0722 −0.1021 −0.1556 −0.2047 −0.2731
1.05 0.0220 0.1059 0.0451 −0.0432 −0.0838 −0.1370 −0.1835 −0.2476
1.10 0.0476 0.0897 0.1630 0.0698 −0.0373 −0.1021 −0.1469 −0.2056
1.15 0.0625 0.0943 0.1548 0.1667 0.0332 −0.0611 −0.1084 −0.1642
1.20 0.0719 0.0991 0.1477 0.1990 0.1095 −0.0141 −0.0678 −0.1231
1.30 0.0819 0.1048 0.1420 0.1991 0.2079 0.0875 0.0176 −0.0423
1.40 0.0857 0.1063 0.1383 0.1894 0.2397 0.1737 0.1008 0.0350
1.50 0.0854 0.1055 0.1345 0.1806 0.2433 0.2309 0.1717 0.1058
1.60 0.0855 0.1035 0.1303 0.1729 0.2381 0.2631 0.2255 0.1673
1.70 0.0838 0.1008 0.1259 0.1658 0.2305 0.2788 0.2628 0.2179
1.80 0.0816 0.0978 0.1216 0.1593 0.2224 0.2846 0.2871 0.2576
1.90 0.0792 0.0947 0.1173 0.1532 0.2144 0.2848 0.3017 0.2876
2.00 0.0767 0.0916 0.1133 0.1476 0.2069 0.2819 0.3097 0.3096
2.20 0.0719 0.0857 0.1057 0.1374 0.1932 0.2720 0.3135 0.3355
2.40 0.0675 0.0803 0.0989 0.1285 0.1812 0.2602 0.3089 0.3459
2.60 0.0634 0.0754 0.0929 0.1207 0.1706 0.2484 0.3009 0.3475
2.80 0.0598 0.0711 0.0876 0.1138 0.1613 0.2372 0.2915 0.3443
3.00 0.0535 0.0672 0.0828 0.1076 0.1529 0.2268 0.2817 0.3385
3.50 0.0497 0.0591 0.0728 0.0949 0.1356 0.2042 0.2584 0.3194
4.00 0.0443 0.0527 0.0651 0.0849 0.1219 0.1857 0.2378 0.2994
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Table D.5: Values of (HR)0∕RTc

Pr = 0.0100 0.0500 0.1000 0.2000 0.4000 0.6000 0.8000 1.0000

Tr

0.30 −6.045 −6.043 −6.040 −6.034 −6.022 −6.011 −5.999 −5.987
0.35 −5.906 −5.904 −5.901 −5.895 −5.882 −5.870 −5.858 −5.845
0.40 −5.763 −5.761 −5.757 −5.751 −5.738 −5.726 −5.713 −5.700
0.45 −5.615 −5.612 −5.609 −5.603 −5.590 −5.577 −5.564 −5.551
0.50 −5.465 −5.463 −5.459 −5.453 −5.440 −5.427 −5.414 −5.401
0.55 −0.032 −5.312 −5.309 −5.303 −5.290 −5.278 −5.265 −5.252
0.60 −0.027 −5.162 −5.159 −5.153 −5.141 −5.129 −5.116 −5.104
0.65 −0.023 −0.118 −5.008 −5.002 −4.991 −4.980 −4.968 −4.956
0.70 −0.020 −0.101 −0.213 −4.848 −4.838 −4.828 −4.818 −4.808
0.75 −0.017 −0.088 −0.183 −4.687 −4.679 −4.672 −4.664 −4.655
0.80 −0.015 −0.078 −0.160 −0.345 −4.507 −4.504 −4.499 −4.494
0.85 −0.014 −0.069 −0.141 −0.300 −4.309 −4.313 −4.316 −4.316
0.90 −0.012 −0.062 −0.126 −0.264 −0.596 −4.074 −4.094 −4.108
0.93 −0.011 −0.058 −0.118 −0.246 −0.545 −0.960 −3.920 −3.953
0.95 −0.011 −0.056 −0.113 −0.235 −0.516 −0.885 −3.763 −3.825
0.97 −0.011 −0.054 −0.109 −0.225 −0.490 −0.824 −1.356 −3.658
0.98 −0.010 −0.053 −0.107 −0.221 −0.478 −0.797 −1.273 −3.544
0.99 −0.010 −0.052 −0.105 −0.216 −0.466 −0.773 −1.206 −3.376
1.00 −0.010 −0.051 −0.103 −0.212 −0.455 −0.750 −1.151 −2.584
1.01 −0.010 −0.050 −0.101 −0.208 −0.445 −0.721 −1.102 −1.796
1.02 −0.010 −0.049 −0.099 −0.203 −0.434 −0.708 −1.060 −1.627
1.05 −0.009 −0.046 −0.094 −0.192 −0.407 −0.654 −0.955 −1.359
1.10 −0.008 −0.042 −0.086 −0.175 −0.367 −0.581 −0.827 −1.120
1.15 −0.008 −0.039 −0.079 −0.160 −0.334 −0.523 −0.732 −0.968
1.20 −0.007 −0.036 −0.073 −0.148 −0.305 −0.474 −0.657 −0.857
1.30 −0.006 −0.031 −0.063 −0.127 −0.259 −0.399 −0.545 −0.698
1.40 −0.005 −0.027 −0.055 −0.110 −0.224 −0.341 −0.463 −0.588
1.50 −0.005 −0.024 −0.048 −0.097 −0.196 −0.297 −0.400 −0.505
1.60 −0.004 −0.021 −0.043 −0.086 −0.173 −0.261 −0.350 −0.440
1.70 −0.004 −0.019 −0.038 −0.076 −0.153 −0.231 −0.309 −0.387
1.80 −0.003 −0.017 −0.034 −0.068 −0.137 −0.206 −0.275 −0.344
1.90 −0.003 −0.015 −0.031 −0.062 −0.123 −0.185 −0.246 −0.307
2.00 −0.003 −0.014 −0.028 −0.056 −0.111 −0.167 −0.222 −0.276
2.20 −0.002 −0.012 −0.023 −0.046 −0.092 −0.137 −0.182 −0.226
2.40 −0.002 −0.010 −0.019 −0.038 −0.076 −0.114 −0.150 −0.187
2.60 −0.002 −0.008 −0.016 −0.032 −0.064 −0.095 −0.125 −0.155
2.80 −0.001 −0.007 −0.014 −0.027 −0.054 −0.080 −0.105 −0.130
3.00 −0.001 −0.006 −0.011 −0.023 −0.045 −0.067 −0.088 −0.109
3.50 −0.001 −0.004 −0.007 −0.015 −0.029 −0.043 −0.056 −0.069
4.00 −0.000 −0.002 −0.005 −0.009 −0.017 −0.026 −0.033 −0.041
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Table D.6: Values of (HR)1∕RTc

Pr = 0.0100 0.0500 0.1000 0.2000 0.4000 0.6000 0.8000 1.0000

Tr

0.30 −11.098 −11.096 −11.095 −11.091 −11.083 −11.076 −11.069 −11.062
0.35 −10.656 −10.655 −10.654 −10.653 −10.650 −10.646 −10.643 −10.640
0.40 −10.121 −10.121 −10.121 −10.120 −10.121 −10.121 −10.121 −10.121
0.45 −9.515 −9.515 −9.516 −9.517 −9.519 −9.521 −9.523 −9.525
0.50 −8.868 −8.869 −8.870 −8.872 −8.876 −8.880 −8.884 −8.888
0.55 −0.080 −8.211 −8.212 −8.215 −8.221 −8.226 −8.232 −8.238
0.60 −0.059 −7.568 −7.570 −7.573 −7.579 −7.585 −7.591 −7.596
0.65 −0.045 −0.247 −6.949 −6.952 −6.959 −6.966 −6.973 −6.980
0.70 −0.034 −0.185 −0.415 −6.360 −6.367 −6.373 −6.381 −6.388
0.75 −0.027 −0.142 −0.306 −5.796 −5.802 −5.809 −5.816 −5.824
0.80 −0.021 −0.110 −0.234 −0.542 −5.266 −5.271 −5.278 −5.285
0.85 −0.017 −0.087 −0.182 −0.401 −4.753 −4.754 −4.758 −4.763
0.90 −0.014 −0.070 −0.144 −0.308 −0.751 −4.254 −4.248 −4.249
0.93 −0.012 −0.061 −0.126 −0.265 −0.612 −1.236 −3.942 −3.934
0.95 −0.011 −0.056 −0.115 −0.241 −0.542 −0.994 −3.737 −3.712
0.97 −0.010 −0.052 −0.105 −0.219 −0.483 −0.837 −1.616 −3.470
0.98 −0.010 −0.050 −0.101 −0.209 −0.457 −0.776 −1.324 −3.332
0.99 −0.009 −0.048 −0.097 −0.200 −0.433 −0.722 −1.154 −3.164
1.00 −0.009 −0.046 −0.093 −0.191 −0.410 −0.675 −1.034 −2.471
1.01 −0.009 −0.044 −0.089 −0.183 −0.389 −0.632 −0.940 −1.375
1.02 −0.008 −0.042 −0.085 −0.175 −0.370 −0.594 −0.863 −1.180
1.05 −0.007 −0.037 −0.075 −0.153 −0.318 −0.498 −0.691 −0.877
1.10 −0.006 −0.030 −0.061 −0.123 −0.251 −0.381 −0.507 −0.617
1.15 −0.005 −0.025 −0.050 −0.099 −0.199 −0.296 −0.385 −0.459
1.20 −0.004 −0.020 −0.040 −0.080 −0.158 −0.232 −0.297 −0.349
1.30 −0.003 −0.013 −0.026 −0.052 −0.100 −0.142 −0.177 −0.203
1.40 −0.002 −0.008 −0.016 −0.032 −0.060 −0.083 −0.100 −0.111
1.50 −0.001 −0.005 −0.009 −0.018 −0.032 −0.042 −0.048 −0.049
1.60 −0.000 −0.002 −0.004 −0.007 −0.012 −0.013 −0.011 −0.005
1.70 −0.000 −0.000 −0.000 −0.000 0.003 0.009 0.017 0.027
1.80 0.000 0.001 0.003 0.006 0.015 0.025 0.037 0.051
1.90 0.001 0.003 0.005 0.011 0.023 0.037 0.053 0.070
2.00 0.001 0.003 0.007 0.015 0.030 0.047 0.065 0.085
2.20 0.001 0.005 0.010 0.020 0.040 0.062 0.083 0.106
2.40 0.001 0.006 0.012 0.023 0.047 0.071 0.095 0.120
2.60 0.001 0.006 0.013 0.026 0.052 0.078 0.104 0.130
2.80 0.001 0.007 0.014 0.028 0.055 0.082 0.110 0.137
3.00 0.001 0.007 0.014 0.029 0.058 0.086 0.114 0.142
3.50 0.002 0.008 0.016 0.031 0.062 0.092 0.122 0.152
4.00 0.002 0.008 0.016 0.032 0.064 0.096 0.127 0.158
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Table D.7: Values of (HR)0∕RTc

Pr = 1.0000 1.2000 1.5000 2.0000 3.0000 5.0000 7.0000 10.000

Tr

0.30 −5.987 −5.975 −5.957 −5.927 −5.868 −5.748 −5.628 −5.446
0.35 −5.845 −5.833 −5.814 −5.783 −5.721 −5.595 −5.469 −5.278
0.40 −5.700 −5.687 −5.668 −5.636 −5.572 −5.442 −5.311 −5.113
0.45 −5.551 −5.538 −5.519 −5.486 −5.421 −5.288 −5.154 −5.950
0.50 −5.401 −5.388 −5.369 −5.336 −5.279 −5.135 −4.999 −4.791
0.55 −5.252 −5.239 −5.220 −5.187 −5.121 −4.986 −4.849 −4.638
0.60 −5.104 −5.091 −5.073 −5.041 −4.976 −4.842 −4.794 −4.492
0.65 −4.956 −4.949 −4.927 −4.896 −4.833 −4.702 −4.565 −4.353
0.70 −4.808 −4.797 −4.781 −4.752 −4.693 −4.566 −4.432 −4.221
0.75 −4.655 −4.646 −4.632 −4.607 −4.554 −4.434 −4.393 −4.095
0.80 −4.494 −4.488 −4.478 −4.459 −4.413 −4.303 −4.178 −3.974
0.85 −4.316 −4.316 −4.312 −4.302 −4.269 −4.173 −4.056 −3.857
0.90 −4.108 −4.118 −4.127 −4.132 −4.119 −4.043 −3.935 −3.744
0.93 −3.953 −3.976 −4.000 −4.020 −4.024 −3.963 −3.863 −3.678
0.95 −3.825 −3.865 −3.904 −3.940 −3.958 −3.910 −3.815 −3.634
0.97 −3.658 −3.732 −3.796 −3.853 −3.890 −3.856 −3.767 −3.591
0.98 −3.544 −3.652 −3.736 −3.806 −3.854 −3.829 −3.743 −3.569
0.99 −3.376 −3.558 −3.670 −3.758 −3.818 −3.801 −3.719 −3.548
1.00 −2.584 −3.441 −3.598 −3.706 −3.782 −3.774 −3.695 −3.526
1.01 −1.796 −3.283 −3.516 −3.652 −3.744 −3.746 −3.671 −3.505
1.02 −1.627 −3.039 −3.422 −3.595 −3.705 −3.718 −3.647 −3.484
1.05 −1.359 −2.034 −3.030 −3.398 −3.583 −3.632 −3.575 −3.420
1.10 −1.120 −1.487 −2.203 −2.965 −3.353 −3.484 −3.453 −3.315
1.15 −0.968 −1.239 −1.719 −2.479 −3.091 −3.329 −3.329 −3.211
1.20 −0.857 −1.076 −1.443 −2.079 −2.801 −3.166 −3.202 −3.107
1.30 −0.698 −0.860 −1.116 −1.560 −2.274 −2.825 −2.942 −2.899
1.40 −0.588 −0.716 −0.915 −1.253 −1.857 −2.486 −2.679 −2.692
1.50 −0.505 −0.611 −0.774 −1.046 −1.549 −2.175 −2.421 −2.486
1.60 −0.440 −0.531 −0.667 −0.894 −1.318 −1.904 −2.177 −2.285
1.70 −0.387 −0.446 −0.583 −0.777 −1.139 −1.672 −1.953 −2.091
1.80 −0.344 −0.413 −0.515 −0.683 −0.996 −1.476 −1.751 −1.908
1.90 −0.307 −0.368 −0.458 −0.606 −0.880 −1.309 −1.571 −1.736
2.00 −0.276 −0.330 −0.411 −0.541 −0.782 −1.167 −1.411 −1.577
2.20 −0.226 −0.269 −0.334 −0.437 −0.629 −0.937 −1.143 −1.295
2.40 −0.187 −0.222 −0.275 −0.359 −0.513 −0.761 −0.929 −1.058
2.60 −0.155 −0.185 −0.228 −0.297 −0.422 −0.621 −0.756 −0.858
2.80 −0.130 −0.154 −0.190 −0.246 −0.348 −0.508 −0.614 −0.689
3.00 −0.109 −0.129 −0.159 −0.205 −0.288 −0.415 −0.495 −0.545
3.50 −0.069 −0.081 −0.099 −0.127 −0.174 −0.239 −0.270 −0.264
4.00 −0.041 −0.048 −0.058 −0.072 −0.095 −0.116 −0.110 −0.061

www.konkur.in

Telegram: @uni_k



684 APPENDIX D. The Lee/Kesler Generalized-Correlation Tables 

Table D.8: Values of (HR)1/RTc

Pr = 1.0000 1.2000 1.5000 2.0000 3.0000 5.0000 7.0000 10.000

Tr

0.30 −11.062 −11.055 −11.044 −11.027 −10.992 −10.935 −10.872 −10.781
0.35 −10.640 −10.637 −10.632 −10.624 −10.609 −10.581 −10.554 −10.529
0.40 −10.121 −10.121 −10.121 −10.122 −10.123 −10.128 −10.135 −10.150
0.45 −9.525 −9.527 −9.531 −9.537 −9.549 −9.576 −9.611 −9.663
0.50 −8.888 −8.892 −8.899 −8.909 −8.932 −8.978 −9.030 −9.111
0.55 −8.238 −8.243 −8.252 −8.267 −8.298 −8.360 −8.425 −8.531
0.60 −7.596 −7.603 −7.614 −7.632 −7.669 −7.745 −7.824 −7.950
0.65 −6.980 −6.987 −6.997 −7.017 −7.059 −7.147 −7.239 −7.381
0.70 −6.388 −6.395 −6.407 −6.429 −6.475 −6.574 −6.677 −6.837
0.75 −5.824 −5.832 −5.845 −5.868 −5.918 −6.027 −6.142 −6.318
0.80 −5.285 −5.293 −5.306 −5.330 −5.385 −5.506 −5.632 −5.824
0.85 −4.763 −4.771 −4.784 −4.810 −4.872 −5.000 −5.149 −5.358
0.90 −4.249 −4.255 −4.268 −4.298 −4.371 −4.530 −4.688 −4.916
0.93 −3.934 −3.937 −3.951 −3.987 −4.073 −4.251 −4.422 −4.662
0.95 −3.712 −3.713 −3.730 −3.773 −3.873 −4.068 −4.248 −4.497
0.97 −3.470 −3.467 −3.492 −3.551 −3.670 −3.885 −4.077 −4.336
0.98 −3.332 −3.327 −3.363 −3.434 −3.568 −3.795 −3.992 −4.257
0.99 −3.164 −3.164 −3.223 −3.313 −3.464 −3.705 −3.909 −4.178
1.00 −2.471 −2.952 −3.065 −3.186 −3.358 −3.615 −3.825 −4.100
1.01 −1.375 −2.595 −2.880 −3.051 −3.251 −3.525 −3.742 −4.023
1.02 −1.180 −1.723 −2.650 −2.906 −3.142 −3.435 −3.661 −3.947
1.05 −0.877 −0.878 −1.496 −2.381 −2.800 −3.167 −3.418 −3.722
1.10 −0.617 −0.673 −0.617 −1.261 −2.167 −2.720 −3.023 −3.362
1.15 −0.459 −0.503 −0.487 −0.604 −1.497 −2.275 −2.641 −3.019
1.20 −0.349 −0.381 −0.381 −0.361 −0.934 −1.840 −2.273 −2.692
1.30 −0.203 −0.218 −0.218 −0.178 −0.300 −1.066 −1.592 −2.086
1.40 −0.111 −0.115 −0.128 −0.070 −0.044 −0.504 −1.012 −1.547
1.50 −0.049 −0.046 −0.032 0.008 0.078 −0.142 −0.556 −1.080
1.60 −0.005 0.004 0.023 0.065 0.151 0.082 −0.217 −0.689
1.70 0.027 0.040 0.063 0.109 0.202 0.223 0.028 −0.369
1.80 0.051 0.067 0.094 0.143 0.241 0.317 0.203 −0.112
1.90 0.070 0.088 0.117 0.169 0.271 0.381 0.330 0.092
2.00 0.085 0.105 0.136 0.190 0.295 0.428 0.424 0.255
2.20 0.106 0.128 0.163 0.221 0.331 0.493 0.551 0.489
2.40 0.120 0.144 0.181 0.242 0.356 0.535 0.631 0.645
2.60 0.130 0.156 0.194 0.257 0.376 0.567 0.687 0.754
2.80 0.137 0.164 0.204 0.269 0.391 0.591 0.729 0.836
3.00 0.142 0.170 0.211 0.278 0.403 0.611 0.763 0.899
3.50 0.152 0.181 0.224 0.294 0.425 0.650 0.827 1.015
4.00 0.158 0.188 0.233 0.306 0.442 0.680 0.874 1.097
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Table D.9: Values of (SR)0∕R

Pr = 0.0100 0.0500 0.1000 0.2000 0.4000 0.6000 0.8000 1.0000

Tr

0.30 −11.614 −10.008 −9.319 −8.635 −7.961 −7.574 −7.304 −7.099
0.35 −11.185 −9.579 −8.890 −8.205 −7.529 −7.140 −6.869 −6.663
0.40 −10.802 −9.196 −8.506 −7.821 −7.144 −6.755 −6.483 −6.275
0.45 −10.453 −8.847 −8.157 −7.472 −6.794 −6.404 −6.132 −5.924
0.50 −10.137 −8.531 −7.841 −7.156 −6.479 −6.089 −5.816 −5.608
0.55 −0.038 −8.245 −7.555 −6.870 −6.193 −5.803 −5.531 −5.324
0.60 −0.029 −7.983 −7.294 −6.610 −5.933 −5.544 −5.273 −5.066
0.65 −0.023 −0.122 −7.052 −6.368 −5.694 −5.306 −5.036 −4.830
0.70 −0.018 −0.096 −0.206 −6.140 −5.467 −5.082 −4.814 −4.610
0.75 −0.015 −0.078 −0.164 −5.917 −5.248 −4.866 −4.600 −4.399
0.80 −0.013 −0.064 −0.134 −0.294 −5.026 −4.694 −4.388 −4.191
0.85 −0.011 −0.054 −0.111 −0.239 −4.785 −4.418 −4.166 −3.976
0.90 −0.009 −0.046 −0.094 −0.199 −0.463 −4.145 −3.912 −3.738
0.93 −0.008 −0.042 −0.085 −0.179 −0.408 −0.750 −3.723 −3.569
0.95 −0.008 −0.039 −0.080 −0.168 −0.377 −0.671 −3.556 −3.433
0.97 −0.007 −0.037 −0.075 −0.157 −0.350 −0.607 −1.056 −3.259
0.98 −0.007 −0.036 −0.073 −0.153 −0.337 −0.580 −0.971 −3.142
0.99 −0.007 −0.035 −0.071 −0.148 −0.326 −0.555 −0.903 −2.972
1.00 −0.007 −0.034 −0.069 −0.144 −0.315 −0.532 −0.847 −2.178
1.01 −0.007 −0.033 −0.067 −0.139 −0.304 −0.510 −0.799 −1.391
1.02 −0.006 −0.032 −0.065 −0.135 −0.294 −0.491 −0.757 −1.225
1.05 −0.006 −0.030 −0.060 −0.124 −0.267 −0.439 −0.656 −0.965
1.10 −0.005 −0.026 −0.053 −0.108 −0.230 −0.371 −0.537 −0.742
1.15 −0.005 −0.023 −0.047 −0.096 −0.201 −0.319 −0.452 −0.607
1.20 −0.004 −0.021 −0.042 −0.085 −0.177 −0.277 −0.389 −0.512
1.30 −0.003 −0.017 −0.033 −0.068 −0.140 −0.217 −0.298 −0.385
1.40 −0.003 −0.014 −0.027 −0.056 −0.114 −0.174 −0.237 −0.303
1.50 −0.002 −0.011 −0.023 −0.046 −0.094 −0.143 −0.194 −0.246
1.60 −0.002 −0.010 −0.019 −0.039 −0.079 −0.120 −0.162 −0.204
1.70 −0.002 −0.008 −0.017 −0.033 −0.067 −0.102 −0.137 −0.172
1.80 −0.001 −0.007 −0.014 −0.029 −0.058 −0.088 −0.117 −0.147
1.90 −0.001 −0.006 −0.013 −0.025 −0.051 −0.076 −0.102 −0.127
2.00 −0.001 −0.006 −0.011 −0.022 −0.044 −0.067 −0.089 −0.111
2.20 −0.001 −0.004 −0.009 −0.018 −0.035 −0.053 −0.070 −0.087
2.40 −0.001 −0.004 −0.007 −0.014 −0.028 −0.042 −0.056 −0.070
2.60 −0.001 −0.003 −0.006 −0.012 −0.023 −0.035 −0.046 −0.058
2.80 −0.000 −0.002 −0.005 −0.010 −0.020 −0.029 −0.039 −0.048
3.00 −0.000 −0.002 −0.004 −0.008 −0.017 −0.025 −0.033 −0.041
3.50 −0.000 −0.001 −0.003 −0.006 −0.012 −0.017 −0.023 −0.029
4.00 −0.000 −0.001 −0.002 −0.004 −0.009 −0.013 −0.017 −0.021

www.konkur.in

Telegram: @uni_k



686 APPENDIX D. The Lee/Kesler Generalized-Correlation Tables 

Table D.10: Values of (SR)1∕R

Pr = 0.0100 0.0500 0.1000 0.2000 0.4000 0.6000 0.8000 1.0000

Tr

0.30 −16.782 −16.774 −16.764 −16.744 −16.705 −16.665 −16.626 −16.586
0.35 −15.413 −15.408 −15.401 −15.387 −15.359 −15.333 −15.305 −15.278
0.40 −13.990 −13.986 −13.981 −13.972 −13.953 −13.934 −13.915 −13.896
0.45 −12.564 −12.561 −12.558 −12.551 −12.537 −12.523 −12.509 −12.496
0.50 −11.202 −11.200 −11.197 −11.092 −11.082 −11.172 −11.162 −11.153
0.55 −0.115 −9.948 −9.946 −9.942 −9.935 −9.928 −9.921 −9.914
0.60 −0.078 −8.828 −8.826 −8.823 −8.817 −8.811 −8.806 −8.799
0.65 −0.055 −0.309 −7.832 −7.829 −7.824 −7.819 −7.815 −7.510
0.70 −0.040 −0.216 −0.491 −6.951 −6.945 −6.941 −6.937 −6.933
0.75 −0.029 −0.156 −0.340 −6.173 −6.167 −6.162 −6.158 −6.155
0.80 −0.022 −0.116 −0.246 −0.578 −5.475 −5.468 −5.462 −5.458
0.85 −0.017 −0.088 −0.183 −0.400 −4.853 −4.841 −4.832 −4.826
0.90 −0.013 −0.068 −0.140 −0.301 −0.744 −4.269 −4.249 −4.238
0.93 −0.011 −0.058 −0.120 −0.254 −0.593 −1.219 −3.914 −3.894
0.95 −0.010 −0.053 −0.109 −0.228 −0.517 −0.961 −3.697 −3.658
0.97 −0.010 −0.048 −0.099 −0.206 −0.456 −0.797 −1.570 −3.406
0.98 −0.009 −0.046 −0.094 −0.196 −0.429 −0.734 −1.270 −3.264
0.99 −0.009 −0.044 −0.090 −0.186 −0.405 −0.680 −1.098 −3.093
1.00 −0.008 −0.042 −0.086 −0.177 −0.382 −0.632 −0.977 −2.399
1.01 −0.008 −0.040 −0.082 −0.169 −0.361 −0.590 −0.883 −1.306
1.02 −0.008 −0.039 −0.078 −0.161 −0.342 −0.552 −0.807 −1.113
1.05 −0.007 −0.034 −0.069 −0.140 −0.292 −0.460 −0.642 −0.820
1.10 −0.005 −0.028 −0.055 −0.112 −0.229 −0.350 −0.470 −0.577
1.15 −0.005 −0.023 −0.045 −0.091 −0.183 −0.275 −0.361 −0.437
1.20 −0.004 −0.019 −0.037 −0.075 −0.149 −0.220 −0.286 −0.343
1.30 −0.003 −0.013 −0.026 −0.052 −0.102 −0.148 −0.190 −0.226
1.40 −0.002 −0.010 −0.019 −0.037 −0.072 −0.104 −0.133 −0.158
1.50 −0.001 −0.007 −0.014 −0.027 −0.053 −0.076 −0.097 −0.115
1.60 −0.001 −0.005 −0.011 −0.021 −0.040 −0.057 −0.073 −0.086
1.70 −0.001 −0.004 −0.008 −0.016 −0.031 −0.044 −0.056 −0.067
1.80 −0.001 −0.003 −0.006 −0.013 −0.024 −0.035 −0.044 −0.053
1.90 −0.001 −0.003 −0.005 −0.010 −0.019 −0.028 −0.036 −0.043
2.00 −0.000 −0.002 −0.004 −0.008 −0.016 −0.023 −0.029 −0.035
2.20 −0.000 −0.001 −0.003 −0.006 −0.011 −0.016 −0.021 −0.025
2.40 −0.000 −0.001 −0.002 −0.004 −0.008 −0.012 −0.015 −0.019
2.60 −0.000 −0.001 −0.002 −0.003 −0.006 −0.009 −0.012 −0.015
2.80 −0.000 −0.001 −0.001 −0.003 −0.005 −0.008 −0.010 −0.012
3.00 −0.000 −0.001 −0.001 −0.002 −0.004 −0.006 −0.008 −0.010
3.50 −0.000 −0.000 −0.001 −0.001 −0.003 −0.004 −0.006 −0.007
4.00 −0.000 −0.000 −0.001 −0.001 −0.002 −0.003 −0.005 −0.006
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Table D.11: Values of (SR)0∕R

Pr = 1.0000 1.2000 1.5000 2.0000 3.0000 5.0000 7.0000 10.000

Tr

0.30 −7.099 −6.935 −6.740 −6.497 −6.180 −5.847 −5.683 −5.578
0.35 −6.663 −6.497 −6.299 −6.052 −5.728 −5.376 −5.194 −5.060
0.40 −6.275 −6.109 −5.909 −5.660 −5.330 −4.967 −4.772 −4.619
0.45 −5.924 −5.757 −5.557 −5.306 −4.974 −4.603 −4.401 −4.234
0.50 −5.608 −5.441 −5.240 −4.989 −4.656 −4.282 −4.074 −3.899
0.55 −5.324 −5.157 −4.956 −4.706 −4.373 −3.998 −3.788 −3.607
0.60 −5.066 −4.900 −4.700 −4.451 −4.120 −3.747 −3.537 −3.353
0.65 −4.830 −4.665 −4.467 −4.220 −3.892 −3.523 −3.315 −3.131
0.70 −4.610 −4.446 −4.250 −4.007 −3.684 −3.322 −3.117 −2.935
0.75 −4.399 −4.238 −4.045 −3.807 −3.491 −3.138 −2.939 −2.761
0.80 −4.191 −4.034 −3.846 −3.615 −3.310 −2.970 −2.777 −2.605
0.85 −3.976 −3.825 −3.646 −3.425 −3.135 −2.812 −2.629 −2.463
0.90 −3.738 −3.599 −3.434 −3.231 −2.964 −2.663 −2.491 −2.334
0.93 −3.569 −3.444 −3.295 −3.108 −2.860 −2.577 −2.412 −2.262
0.95 −3.433 −3.326 −3.193 −3.023 −2.790 −2.520 −2.362 −2.215
0.97 −3.259 −3.188 −3.081 −2.932 −2.719 −2.463 −2.312 −2.170
0.98 −3.142 −3.106 −3.019 −2.884 −2.682 −2.436 −2.287 −2.148
0.99 −2.972 −3.010 −2.953 −2.835 −2.646 −2.408 −2.263 −2.126
1.00 −2.178 −2.893 −2.879 −2.784 −2.609 −2.380 −2.239 −2.105
1.01 −1.391 −2.736 −2.798 −2.730 −2.571 −2.352 −2.215 −2.083
1.02 −1.225 −2.495 −2.706 −2.673 −2.533 −2.325 −2.191 −2.062
1.05 −0.965 −1.523 −2.328 −2.483 −2.415 −2.242 −2.121 −2.001
1.10 −0.742 −1.012 −1.557 −2.081 −2.202 −2.104 −2.007 −1.903
1.15 −0.607 −0.790 −1.126 −1.649 −1.968 −1.966 −1.897 −1.810
1.20 −0.512 −0.651 −0.890 −1.308 −1.727 −1.827 −1.789 −1.722
1.30 −0.385 −0.478 −0.628 −0.891 −1.299 −1.554 −1.581 −1.556
1.40 −0.303 −0.375 −0.478 −0.663 −0.990 −1.303 −1.386 −1.402
1.50 −0.246 −0.299 −0.381 −0.520 −0.777 −1.088 −1.208 −1.260
1.60 −0.204 −0.247 −0.312 −0.421 −0.628 −0.913 −1.050 −1.130
1.70 −0.172 −0.208 −0.261 −0.350 −0.519 −0.773 −0.915 −1.013
1.80 −0.147 −0.177 −0.222 −0.296 −0.438 −0.661 −0.799 −0.908
1.90 −0.127 −0.153 −0.191 −0.255 −0.375 −0.570 −0.702 −0.815
2.00 −0.111 −0.134 −0.167 −0.221 −0.625 −0.497 −0.620 −0.733
2.20 −0.087 −0.105 −0.130 −0.172 −0.251 −0.388 −0.492 −0.599
2.40 −0.070 −0.084 −0.104 −0.138 −0.201 −0.311 −0.399 −0.496
2.60 −0.058 −0.069 −0.086 −0.113 −0.164 −0.255 −0.329 −0.416
2.80 −0.048 −0.058 −0.072 −0.094 −0.137 −0.213 −0.277 −0.353
3.00 −0.041 −0.049 −0.061 −0.080 −0.116 −0.181 −0.236 −0.303
3.50 −0.029 −0.034 −0.042 −0.056 −0.081 −0.126 −0.166 −0.216
4.00 −0.021 −0.025 −0.031 −0.041 −0.059 −0.093 −0.123 −0.162
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Table D.12: Values of (SR)1∕R

Pr = 1.0000 1.2000 1.5000 2.0000 3.0000 5.0000 7.0000 10.000

Tr

0.30 −16.586 −16.547 −16.488 −16.390 −16.195 −15.837 −15.468 −14.925
0.35 −15.278 −15.251 −15.211 −15.144 −15.011 −14.751 −14.496 −14.153
0.40 −13.896 −13.877 −13.849 −13.803 −13.714 −13.541 −13.376 −13.144
0.45 −12.496 −12.482 −12.462 −12.430 −12.367 −12.248 −12.145 −11.999
0.50 −11.153 −11.143 −11.129 −11.107 −11.063 −10.985 −10.920 −10.836
0.55 −9.914 −9.907 −9.897 −9.882 −9.853 −9.806 −9.769 −9.732
0.60 −8.799 −8.794 −8.787 −8.777 −8.760 −8.736 −8.723 −8.720
0.65 −7.810 −7.807 −7.801 −7.794 −7.784 −7.779 −7.785 −7.811
0.70 −6.933 −6.930 −6.926 −6.922 −6.919 −6.929 −6.952 −7.002
0.75 −6.155 −6.152 −6.149 −6.147 −6.149 −6.174 −6.213 −6.285
0.80 −5.458 −5.455 −5.453 −5.452 −5.461 −5.501 −5.555 −5.648
0.85 −4.826 −4.822 −4.820 −4.822 −4.839 −4.898 −4.969 −5.082
0.90 −4.238 −4.232 −4.230 −4.236 −4.267 −4.351 −4.442 −4.578
0.93 −3.894 −3.885 −3.884 −3.896 −3.941 −4.046 −4.151 −4.300
0.95 −3.658 −3.647 −3.648 −3.669 −3.728 −3.851 −3.966 −4.125
0.97 −3.406 −3.391 −3.401 −3.437 −3.517 −3.661 −3.788 −3.957
0.98 −3.264 −3.247 −3.268 −3.318 −3.412 −3.569 −3.701 −3.875
0.99 −3.093 −3.082 −3.126 −3.195 −3.306 −3.477 −3.616 −3.796
1.00 −2.399 −2.868 −2.967 −3.067 −3.200 −3.387 −3.532 −3.717
1.01 −1.306 −2.513 −2.784 −2.933 −3.094 −3.297 −3.450 −3.640
1.02 −1.113 −1.655 −2.557 −2.790 −2.986 −3.209 −3.369 −3.565
1.05 −0.820 −0.831 −1.443 −2.283 −2.655 −2.949 −3.134 −3.348
1.10 −0.577 −0.640 −0.618 −1.241 −2.067 −2.534 −2.767 −3.013
1.15 −0.437 −0.489 −0.502 −0.654 −1.471 −2.138 −2.428 −2.708
1.20 −0.343 −0.385 −0.412 −0.447 −0.991 −1.767 −2.115 −2.430
1.30 −0.226 −0.254 −0.282 −0.300 −0.481 −1.147 −1.569 −1.944
1.40 −0.158 −0.178 −0.200 −0.220 −0.290 −0.730 −1.138 −1.544
1.50 −0.115 −0.130 −0.147 −0.166 −0.206 −0.479 −0.823 −1.222
1.60 −0.086 −0.098 −0.112 −0.129 −0.159 −0.334 −0.604 −0.969
1.70 −0.067 −0.076 −0.087 −0.102 −0.127 −0.248 −0.456 −0.775
1.80 −0.053 −0.060 −0.070 −0.083 −0.105 −0.195 −0.355 −0.628
1.90 −0.043 −0.049 −0.057 −0.069 −0.089 −0.160 −0.286 −0.518
2.00 −0.035 −0.040 −0.048 −0.058 −0.077 −0.136 −0.238 −0.434
2.20 −0.025 −0.029 −0.035 −0.043 −0.060 −0.105 −0.178 −0.322
2.40 −0.019 −0.022 −0.027 −0.034 −0.048 −0.086 −0.143 −0.254
2.60 −0.015 −0.018 −0.021 −0.028 −0.041 −0.074 −0.120 −0.210
2.80 −0.012 −0.014 −0.018 −0.023 −0.025 −0.065 −0.104 −0.180
3.00 −0.010 −0.012 −0.015 −0.020 −0.031 −0.058 −0.093 −0.158
3.50 −0.007 −0.009 −0.011 −0.015 −0.024 −0.046 −0.073 −0.122
4.00 −0.006 −0.007 −0.009 −0.012 −0.020 −0.038 −0.060 −0.100
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Table D.13: Values of ϕ0

Pr = 0.0100 0.0500 0.1000 0.2000 0.4000 0.6000 0.8000 1.0000

Tr

0.30 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.35 0.0034 0.0007 0.0003 0.0002 0.0001 0.0001 0.0001 0.0000
0.40 0.0272 0.0055 0.0028 0.0014 0.0007 0.0005 0.0004 0.0003
0.45 0.1321 0.0266 0.0135 0.0069 0.0036 0.0025 0.0020 0.0016
0.50 0.4529 0.0912 0.0461 0.0235 0.0122 0.0085 0.0067 0.0055
0.55 0.9817 0.2432 0.1227 0.0625 0.0325 0.0225 0.0176 0.0146
0.60 0.9840 0.5383 0.2716 0.1384 0.0718 0.0497 0.0386 0.0321
0.65 0.9886 0.9419 0.5212 0.2655 0.1374 0.0948 0.0738 0.0611
0.70 0.9908 0.9528 0.9057 0.4560 0.2360 0.1626 0.1262 0.1045
0.75 0.9931 0.9616 0.9226 0.7178 0.3715 0.2559 0.1982 0.1641
0.80 0.9931 0.9683 0.9354 0.8730 0.5445 0.3750 0.2904 0.2404
0.85 0.9954 0.9727 0.9462 0.8933 0.7534 0.5188 0.4018 0.3319
0.90 0.9954 0.9772 0.9550 0.9099 0.8204 0.6823 0.5297 0.4375
0.93 0.9954 0.9795 0.9594 0.9183 0.8375 0.7551 0.6109 0.5058
0.95 0.9954 0.9817 0.9616 0.9226 0.8472 0.7709 0.6668 0.5521
0.97 0.9954 0.9817 0.9638 0.9268 0.8570 0.7852 0.7112 0.5984
0.98 0.9954 0.9817 0.9638 0.9290 0.8610 0.7925 0.7211 0.6223
0.99 0.9977 0.9840 0.9661 0.9311 0.8650 0.7980 0.7295 0.6442
1.00 0.9977 0.9840 0.9661 0.9333 0.8690 0.8035 0.7379 0.6668
1.01 0.9977 0.9840 0.9683 0.9354 0.8730 0.8110 0.7464 0.6792
1.02 0.9977 0.9840 0.9683 0.9376 0.8770 0.8166 0.7551 0.6902
1.05 0.9977 0.9863 0.9705 0.9441 0.8872 0.8318 0.7762 0.7194
1.10 0.9977 0.9886 0.9750 0.9506 0.9016 0.8531 0.8072 0.7586
1.15 0.9977 0.9886 0.9795 0.9572 0.9141 0.8730 0.8318 0.7907
1.20 0.9977 0.9908 0.9817 0.9616 0.9247 0.8892 0.8531 0.8166
1.30 0.9977 0.9931 0.9863 0.9705 0.9419 0.9141 0.8872 0.8590
1.40 0.9977 0.9931 0.9886 0.9772 0.9550 0.9333 0.9120 0.8892
1.50 1.0000 0.9954 0.9908 0.9817 0.9638 0.9462 0.9290 0.9141
1.60 1.0000 0.9954 0.9931 0.9863 0.9727 0.9572 0.9441 0.9311
1.70 1.0000 0.9977 0.9954 0.9886 0.9772 0.9661 0.9550 0.9462
1.80 1.0000 0.9977 0.9954 0.9908 0.9817 0.9727 0.9661 0.9572
1.90 1.0000 0.9977 0.9954 0.9931 0.9863 0.9795 0.9727 0.9661
2.00 1.0000 0.9977 0.9977 0.9954 0.9886 0.9840 0.9795 0.9727
2.20 1.0000 1.0000 0.9977 0.9977 0.9931 0.9908 0.9886 0.9840
2.40 1.0000 1.0000 1.0000 0.9977 0.9977 0.9954 0.9931 0.9931
2.60 1.0000 1.0000 1.0000 1.0000 1.0000 0.9977 0.9977 0.9977
2.80 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0023 1.0023
3.00 1.0000 1.0000 1.0000 1.0000 1.0023 1.0023 1.0046 1.0046
3.50 1.0000 1.0000 1.0000 1.0023 1.0023 1.0046 1.0069 1.0093
4.00 1.0000 1.0000 1.0000 1.0023 1.0046 1.0069 1.0093 1.0116
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Table D.14: Values of ϕ1

Pr = 0.0100 0.0500 0.1000 0.2000 0.4000 0.6000 0.8000 1.0000

Tr

0.30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.45 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
0.50 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0013 0.0013
0.55 0.9705 0.0069 0.0068 0.0068 0.0066 0.0065 0.0064 0.0063
0.60 0.9795 0.0227 0.0226 0.0223 0.0220 0.0216 0.0213 0.0210
0.65 0.9863 0.9311 0.0572 0.0568 0.0559 0.0551 0.0543 0.0535
0.70 0.9908 0.9528 0.9036 0.1182 0.1163 0.1147 0.1131 0.1116
0.75 0.9931 0.9683 0.9332 0.2112 0.2078 0.2050 0.2022 0.1994
0.80 0.9954 0.9772 0.9550 0.9057 0.3302 0.3257 0.3212 0.3168
0.85 0.9977 0.9863 0.9705 0.9375 0.4774 0.4708 0.4654 0.4590
0.90 0.9977 0.9908 0.9795 0.9594 0.9141 0.6323 0.6250 0.6165
0.93 0.9977 0.9931 0.9840 0.9705 0.9354 0.8953 0.7227 0.7144
0.95 0.9977 0.9931 0.9885 0.9750 0.9484 0.9183 0.7888 0.7797
0.97 1.0000 0.9954 0.9908 0.9795 0.9594 0.9354 0.9078 0.8413
0.98 1.0000 0.9954 0.9908 0.9817 0.9638 0.9440 0.9225 0.8729
0.99 1.0000 0.9954 0.9931 0.9840 0.9683 0.9528 0.9332 0.9036
1.00 1.0000 0.9977 0.9931 0.9863 0.9727 0.9594 0.9440 0.9311
1.01 1.0000 0.9977 0.9931 0.9885 0.9772 0.9638 0.9528 0.9462
1.02 1.0000 0.9977 0.9954 0.9908 0.9795 0.9705 0.9616 0.9572
1.05 1.0000 0.9977 0.9977 0.9954 0.9885 0.9863 0.9840 0.9840
1.10 1.0000 1.0000 1.0000 1.0000 1.0023 1.0046 1.0093 1.0163
1.15 1.0000 1.0000 1.0023 1.0046 1.0116 1.0186 1.0257 1.0375
1.20 1.0000 1.0023 1.0046 1.0069 1.0163 1.0280 1.0399 1.0544
1.30 1.0000 1.0023 1.0069 1.0116 1.0257 1.0399 1.0544 1.0716
1.40 1.0000 1.0046 1.0069 1.0139 1.0304 1.0471 1.0642 1.0815
1.50 1.0000 1.0046 1.0069 1.0163 1.0328 1.0496 1.0666 1.0865
1.60 1.0000 1.0046 1.0069 1.0163 1.0328 1.0496 1.0691 1.0865
1.70 1.0000 1.0046 1.0093 1.0163 1.0328 1.0496 1.0691 1.0865
1.80 1.0000 1.0046 1.0069 1.0163 1.0328 1.0496 1.0666 1.0840
1.90 1.0000 1.0046 1.0069 1.0163 1.0328 1.0496 1.0666 1.0815
2.00 1.0000 1.0046 1.0069 1.0163 1.0304 1.0471 1.0642 1.0815
2.20 1.0000 1.0046 1.0069 1.0139 1.0304 1.0447 1.0593 1.0765
2.40 1.0000 1.0046 1.0069 1.0139 1.0280 1.0423 1.0568 1.0716
2.60 1.0000 1.0023 1.0069 1.0139 1.0257 1.0399 1.0544 1.0666
2.80 1.0000 1.0023 1.0069 1.0116 1.0257 1.0375 1.0496 1.0642
3.00 1.0000 1.0023 1.0069 1.0116 1.0233 1.0352 1.0471 1.0593
3.50 1.0000 1.0023 1.0046 1.0023 1.0209 1.0304 1.0423 1.0520
4.00 1.0000 1.0023 1.0046 1.0093 1.0186 1.0280 1.0375 1.0471
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Table D.15: Values of ϕ0

Pr = 1.0000 1.2000 1.5000 2.0000 3.0000 5.0000 7.0000 10.000

Tr

0.30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.40 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0003
0.45 0.0016 0.0014 0.0012 0.0010 0.0008 0.0008 0.0009 0.0012
0.50 0.0055 0.0048 0.0041 0.0034 0.0028 0.0025 0.0027 0.0034
0.55 0.0146 0.0127 0.0107 0.0089 0.0072 0.0063 0.0066 0.0080
0.60 0.0321 0.0277 0.0234 0.0193 0.0154 0.0132 0.0135 0.0160
0.65 0.0611 0.0527 0.0445 0.0364 0.0289 0.0244 0.0245 0.0282
0.70 0.1045 0.0902 0.0759 0.0619 0.0488 0.0406 0.0402 0.0453
0.75 0.1641 0.1413 0.1188 0.0966 0.0757 0.0625 0.0610 0.0673
0.80 0.2404 0.2065 0.1738 0.1409 0.1102 0.0899 0.0867 0.0942
0.85 0.3319 0.2858 0.2399 0.1945 0.1517 0.1227 0.1175 0.1256
0.90 0.4375 0.3767 0.3162 0.2564 0.1995 0.1607 0.1524 0.1611
0.93 0.5058 0.4355 0.3656 0.2972 0.2307 0.1854 0.1754 0.1841
0.95 0.5521 0.4764 0.3999 0.3251 0.2523 0.2028 0.1910 0.2000
0.97 0.5984 0.5164 0.4345 0.3532 0.2748 0.2203 0.2075 0.2163
0.98 0.6223 0.5370 0.4529 0.3681 0.2864 0.2296 0.2158 0.2244
0.99 0.6442 0.5572 0.4699 0.3828 0.2978 0.2388 0.2244 0.2328
1.00 0.6668 0.5781 0.4875 0.3972 0.3097 0.2483 0.2328 0.2415
1.01 0.6792 0.5970 0.5047 0.4121 0.3214 0.2576 0.2415 0.2500
1.02 0.6902 0.6166 0.5224 0.4266 0.3334 0.2673 0.2506 0.2582
1.05 0.7194 0.6607 0.5728 0.4710 0.3690 0.2958 0.2773 0.2844
1.10 0.7586 0.7112 0.6412 0.5408 0.4285 0.3451 0.3228 0.3296
1.15 0.7907 0.7499 0.6918 0.6026 0.4875 0.3954 0.3690 0.3750
1.20 0.8166 0.7834 0.7328 0.6546 0.5420 0.4446 0.4150 0.4198
1.30 0.8590 0.8318 0.7943 0.7345 0.6383 0.5383 0.5058 0.5093
1.40 0.8892 0.8690 0.8395 0.7925 0.7145 0.6237 0.5902 0.5943
1.50 0.9141 0.8974 0.8730 0.8375 0.7745 0.6966 0.6668 0.6714
1.60 0.9311 0.9183 0.8995 0.8710 0.8222 0.7586 0.7328 0.7430
1.70 0.9462 0.9354 0.9204 0.8995 0.8610 0.8091 0.7907 0.8054
1.80 0.9572 0.9484 0.9376 0.9204 0.8913 0.8531 0.8414 0.8590
1.90 0.9661 0.9594 0.9506 0.9376 0.9162 0.8872 0.8831 0.9057
2.00 0.9727 0.9683 0.9616 0.9528 0.9354 0.9183 0.9183 0.9462
2.20 0.9840 0.9817 0.9795 0.9727 0.9661 0.9616 0.9727 1.0093
2.40 0.9931 0.9908 0.9908 0.9886 0.9863 0.9931 1.0116 1.0568
2.60 0.9977 0.9977 0.9977 0.9977 1.0023 1.0162 1.0399 1.0889
2.80 1.0023 1.0023 1.0046 1.0069 1.0116 1.0328 1.0593 1.1117
3.00 1.0046 1.0069 1.0069 1.0116 1.0209 1.0423 1.0740 1.1298
3.50 1.0093 1.0116 1.0139 1.0186 1.0304 1.0593 1.0914 1.1508
4.00 1.0116 1.0139 1.0162 1.0233 1.0375 1.0666 1.0990 1.1588
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Table D.16: Values of ϕ1

Pr = 1.0000 1.2000 1.5000 2.0000 3.0000 5.0000 7.0000 10.000

Tr

0.30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.45 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001
0.50 0.0013 0.0013 0.0013 0.0012 0.0011 0.0009 0.0008 0.0006
0.55 0.0063 0.0062 0.0061 0.0058 0.0053 0.0045 0.0039 0.0031
0.60 0.0210 0.0207 0.0202 0.0194 0.0179 0.0154 0.0133 0.0108
0.65 0.0536 0.0527 0.0516 0.0497 0.0461 0.0401 0.0350 0.0289
0.70 0.1117 0.1102 0.1079 0.1040 0.0970 0.0851 0.0752 0.0629
0.75 0.1995 0.1972 0.1932 0.1871 0.1754 0.1552 0.1387 0.1178
0.80 0.3170 0.3133 0.3076 0.2978 0.2812 0.2512 0.2265 0.1954
0.85 0.4592 0.4539 0.4457 0.4325 0.4093 0.3698 0.3365 0.2951
0.90 0.6166 0.6095 0.5998 0.5834 0.5546 0.5058 0.4645 0.4130
0.93 0.7145 0.7063 0.6950 0.6761 0.6457 0.5916 0.5470 0.4898
0.95 0.7798 0.7691 0.7568 0.7379 0.7063 0.6501 0.6026 0.5432
0.97 0.8414 0.8318 0.8185 0.7998 0.7656 0.7096 0.6607 0.5984
0.98 0.8730 0.8630 0.8492 0.8298 0.7962 0.7379 0.6887 0.6266
0.99 0.9036 0.8913 0.8790 0.8590 0.8241 0.7674 0.7178 0.6546
1.00 0.9311 0.9204 0.9078 0.8872 0.8531 0.7962 0.7464 0.6823
1.01 0.9462 0.9462 0.9333 0.9162 0.8831 0.8241 0.7745 0.7096
1.02 0.9572 0.9661 0.9594 0.9419 0.9099 0.8531 0.8035 0.7379
1.05 0.9840 0.9954 1.0186 1.0162 0.9886 0.9354 0.8872 0.8222
1.10 1.0162 1.0280 1.0593 1.0990 1.1015 1.0617 1.0186 0.9572
1.15 1.0375 1.0520 1.0814 1.1376 1.1858 1.1722 1.1403 1.0864
1.20 1.0544 1.0691 1.0990 1.1588 1.2388 1.2647 1.2474 1.2050
1.30 1.0715 1.0914 1.1194 1.1776 1.2853 1.3868 1.4125 1.4061
1.40 1.0814 1.0990 1.1298 1.1858 1.2942 1.4488 1.5171 1.5524
1.50 1.0864 1.1041 1.1350 1.1858 1.2942 1.4689 1.5740 1.6520
1.60 1.0864 1.1041 1.1350 1.1858 1.2883 1.4689 1.5996 1.7140
1.70 1.0864 1.1041 1.1324 1.1803 1.2794 1.4622 1.6033 1.7458
1.80 1.0839 1.1015 1.1298 1.1749 1.2706 1.4488 1.5959 1.7620
1.90 1.0814 1.0990 1.1272 1.1695 1.2618 1.4355 1.5849 1.7620
2.00 1.0814 1.0965 1.1220 1.1641 1.2503 1.4191 1.5704 1.7539
2.20 1.0765 1.0914 1.1143 1.1535 1.2331 1.3900 1.5346 1.7219
2.40 1.0715 1.0864 1.1066 1.1429 1.2190 1.3614 1.4997 1.6866
2.60 1.0666 1.0814 1.1015 1.1350 1.2023 1.3397 1.4689 1.6482
2.80 1.0641 1.0765 1.0940 1.1272 1.1912 1.3183 1.4388 1.6144
3.00 1.0593 1.0715 1.0889 1.1194 1.1803 1.3002 1.4158 1.5813
3.50 1.0520 1.0617 1.0789 1.1041 1.1561 1.2618 1.3614 1.5101
4.00 1.0471 1.0544 1.0691 1.0914 1.1403 1.2303 1.3213 1.4555
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Appendix E

Steam Tables

INTERPOLATION

When a value is required from a table at conditions that lie between listed values, interpolation 
is necessary. If M, the quantity sought, is a function of a single independent variable X and if 
linear interpolation is appropriate, as in the tables for saturated steam, then a direct propor-
tionality exists between corresponding differences in M and in X. When M, the value at X, is 
intermediate between two given values, M1 at X1 and M2 at X2, then:

  M =   (    
 X  2   − X

 _  X  2   −  X  1     )    M  1   +   (    
X −  X  1  

 _  X  2   −  X  1     )    M  2    (E.1)

For example, the enthalpy of saturated vapor steam at 140.8°C is intermediate between 
the following values taken from Table E.1:

t H

t1 = 140°C H1 = 2733.1 kJ·kg−1

t = 140.8°C H = ?
t2 = 142°C H2 = 2735.6 kJ·kg−1

Substitution of values into Eq. (E.1) with M = H and t = X yields:

  H =   
1.2

 ___ 2   (2733.1) +   
0.8

 ___ 2   (2735.6) = 2734.1 kJ· kg   −1   

When M is a function of two independent variables, X and Y, and linear interpolation is 
appropriate, as in the tables for superheated steam, then double linear interpolation is required. 
Data for quantity M at values of the independent variables X and Y adjacent to the given values 
are represented as follows:

X1 X X2

Y1 M1,1 M1,  2

Y M = ?
Y2 M2,1 M2,  2
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Double linear interpolation between the given values of M is represented by:

   

M

  

=

  

  [    (    
 X  2   − X

 _  X  2   −  X  1     )    M  1,1   +   (    
X −  X  1  

 _  X  2   −  X  1     )    M  1,  2   ]     
 Y  2   − Y

 _____  Y  2   −  Y  1    

  

 

      

 

  

 

  

+  [    (    
 X  2   − X

 _  X  2   −  X  1     )    M  2,1   +   (     
X −  X  1  

 _  X  2   −  X  1     )     M  2,   2   ]     
Y −  Y  1  

 _____  Y  2   −  Y  1    

  

 

   (E.2)

Example E.1
From data in the steam tables, find:

 a. The specific volume of superheated steam at 816 kPa and 512°C.

 b. The temperature and specific entropy of superheated steam at P = 2950 kPa 
and H = 3150.6 kJ·kg−1.

Solution E.1
(a) The following table shows specific volumes from Table E.2 for superheated 
steam at conditions adjacent to those specified:

P/kPa t = 500°C t = 512°C t = 550°C

800 443.17 472.49
816 V = ?
825 429.65 458.10

Substitution of values in Eq. (E.2) with M = V, X = t, and Y = P yields:

   

V =   [     
38

 _ 50   (443.17) 

  

+

  

   
12

 _ 50   (472.49) ]    
9
 _ 25   

    

 

  

+

  

  [     
38

 _ 50   (429.65) +   
12

 _ 50   (458.10) ]     
16

 ___ 25   = 441.42  cm   3  ·g   −1 

   

(b) The following table shows enthalpy data from Table E.2 for superheated steam 
at conditions adjacent to those specified:

P/kPa t1 = 350°C t = ? t2 = 375°C

2900 3119.7 3177.4
2950   H   t  1     H = 3150.6   H   t  2     
3000 3117.5 3175.6
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APPENDIX E. Steam Tables 695

Here, the direct use of Eq. (E.2) is not convenient. Rather, for P = 2950 kPa, inter-
polate linearly at t1 = 350°C for   H   t  1      and at t2 = 375°C for   H   t  2     , applying Eq. (E.1) 
twice, first at t1 and second at t2, with M = H and X = P:

   
 H   t  1     =   

50
 ____ 100   (3119.7) +   

50
 ____ 100   (3117.5) = 3118.6

     

 H   t  2     =   
50

 ____ 100   (3177.4) +   
50

 ____ 100   (3175.6) = 3176.5

   

A third linear interpolation between these values with M = t and X = H in  
Eq. (E.1) yields:

  t =   
3176.5 − 3150.6

  ____________  3176.5 − 3118.6   (350) +   
3150.6 − 3118.6

  ____________  3176.5 − 3118.6   (375) = 363.82° C  

Given this temperature, a table of entropy values can now be constructed:

P/kPa t = 350°C t = 363.82°C t = 375°C

2900 6.7654 6.8563
2950 S = ?
3000 6.7471 6.8385

Application of Eq. (E.2) with M = S, X = t, and Y = P yields:

   

S

  

=

  

  [     
11.18

 _ 25   (6.7654) +   
13.82

 _ 25   (6.8563) ]     
50

 ____ 100  

     

 

  

 

  

+  [     
11.18

 _ 25   (6.7471) +   
13.82

 _ 25   (6.8385) ]     
50

 ____ 100   = 6.8066  kJ·mol   −1 

   

As a check, one can apply Eq. (E.2) with M = H, X = t, and Y = P, confirming that 
doing so produces H = 3150.6 kJ·kg−1.
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STEAM TABLES Page

Table E.1 Properties of Saturated Steam 697

Table E.2 Properties of Superheated Steam 704

These tables were generated by computer from programs1 based on “The 1976 International 
Formulation Committee Formulation for Industrial Use: A Formulation of the Thermody-
namic Properties of Ordinary Water Substance,” as published in the ASME Steam Tables, 4th 
ed., App. I, pp. 11–29, The Am. Soc. Mech. Engrs., New York, 1979. These tables served as 
a worldwide standard for 30 years and are entirely adequate for instructional purposes. How-
ever, they have been replaced by the “International Association for the Properties of Water and 
Steam Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam.” 
These and other tables are discussed by A. H. Harvey and W. T. Parry, “Keep Your Steam 
Tables Up to Date,” Chemical Engineering Progress, vol. 95, no. 11, p. 45, Nov. 1999. More 
recent updates only affected values at conditions where T > 800°C and P > 5 MPa.

1We gratefully acknowledge the contributions of Professor Charles Muckenfuss, of Debra L. Sauke, and of Eugene 
N. Dorsi, whose efforts produced the computer programs from which these tables derive.
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Appendix F

Thermodynamic Diagrams

Figure F.1 Methane 

Figure F.2 1,1,1,2-tetrafluoroethane (HFC-134a)

Figure F.3 Mollier (HS) diagram for steam

Extensive thermodynamic data for these three substances and over 70 additional pure 
fluids, including permanent gases, refrigerants, and light hydrocarbons, are available in 
the NIST Chemistry WebBook at  http://webbook.nist.gov/chemistry/fluid/. Such data 
provide a basis for the construction of charts like those shown in this section.
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Figure F.3 Mollier (HS) diagram for steam.
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1D. S. Abrams and J. M. Prausnitz, AIChE J., vol. 21, pp. 116–128, 1975.

Appendix G

UNIFAC Method

The UNIFAC method, as outlined here, provides a general approach to predicting excess 
Gibbs energy of mixtures using only information about molecular structure, without data 
for particular species. Of course, its structure and parameters have their ultimate origin in 
experimental data, but it correlates properties at the level of molecular fragments (groups) 
rather than entire molecules. This is a major advantage because it allows predictions to be 
made for species for which no data are available, based on collective results for molecules 
comprising the same molecular fragments. The UNIFAC method, and various specializations 
of it tuned to particular applications or families of species, are implemented in virtually all 
process simulation software. The starting point for the UNIFAC method is the UNIQUAC 
equation. The UNIQUAC equation1 treats  g ≡  G   E  / RT  as the sum of two parts, a combinatorial  
term gC to account for molecular size and shape differences, and a residual term gR (not a 
residual property as defined in Sec. 6.2) to account for molecular interactions:

  g ≡  g   C  +  g   R   (G.1)

Function gC contains pure-species parameters only, whereas function gR incorporates 
two binary parameters for each pair of molecules. For a multicomponent system,

   g   C  =  ∑ 
i

     x  i   ln   
 Φ  i   __  x  i  

   + 5 ∑ 
i

     q  i      x  i   ln   
 θ  i   __  Φ  i  

    (G.2)

   g   R  = − ∑ 
i

     q  i     x  i   ln  ( ∑ 
j

  
 
    θ  j      τ  ji  )   (G.3)

where   Φ  i   ≡   
 x  i    r  i   ______  ∑ 
j

     x  j    r  j  
    (G.4)

   θ  i   ≡   
 x  i    q  i   ______  ∑ 
j

     x  j    q  j  
    (G.5)
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2J. Gmehling, U. Onken, and W. Arlt, Vapor-Liquid Equilibrium Data Collection, Chemistry Data Series, vol. I, 
parts 1–8 and supplements, DECHEMA, Frankfurt/Main, 1974–1999.

3Aa. Fredenslund, R. L. Jones, and J. M. Prausnitz, AIChE J., vol. 21, pp. 1086–1099, 1975.

Subscript i identifies species, and j is a dummy index; all summations are over all species. 
Note that   τ  ji   ≠   τ  ij  ;  however, when i = j, then   τ  ii   =   τ  jj   = 1 . In these equations ri (a relative 
molecular volume) and qi (a relative molecular surface area) are pure-species parameters. The 
influence of temperature on g enters through the interaction parameters   τ  ji    of Eq. (G.3), which 
are temperature dependent:

   τ  ji   = exp  
−  (   u  ji   −  u  ii   )   

 _______ 
RT

    (G.6)

Parameters for the UNIQUAC equation are therefore values of (uji − uii).
An expression for ln γi is found by application of Eq. (13.7) to the UNIQUAC equation 

for g [Eqs. (G.1) through (G.3)]. The result is given by the following equations:

  ln  γ  i   = ln  γ  i  
C  + ln  γ  i  R   (G.7)

  ln  γ  i  
C  = 1 −  J  i   + ln  J  i   − 5 q  i    (  1 −   

 J  i   _  L  i  
   + ln   

 J  i   _  L  i  
   )     (G.8)

  ln  γ  i  R  =  q  i    (  1 − ln  s  i   −  ∑ 
j

     θ  j     
 τ  ij   _  s  j  

   )     (G.9)

where in addition to Eqs. (G.5) and (G.6),

   J  i   =   
 r  i   ______  ∑ 

j

     r  j   x  j  
    (G.10)

   L  i   =   
 q  i   ______  ∑ 

j

     q  j   x  j  
    (G.11)

   S  i   =  τ  li   ∑ 
l

     θ  l    (G.12)

Again subscript i identifies species, and j and l are dummy indices. All summations are over 
all species, and   τ  ij   = 1 for i = j.  Values for the parameters    (   u  ij   −  u  jj   )     are found by regression of 
binary VLE data and are given by Gmehling et al.2 

The UNIFAC method for estimation of activity coefficients3 depends on the concept 
that a liquid mixture can be considered a solution of the structural units from which the mole-
cules are formed rather than a solution of the molecules themselves. These structural units are 
called subgroups, and a few of them are listed in the second column of Table G.1. A number, 
designated k, identifies each subgroup. The relative volume Rk and relative surface area Qk 
are properties of the subgroups, and values are listed in columns 4 and 5 of Table G.1. Also 
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Table G.1: UNIFAC-VLE Subgroup Parameters†

Main group Subgroup k Rk Qk

Examples of molecules and their  
constituent groups

1 “CH2” CH3
CH2
CH
C

1
2
3
4

0.9011
0.6744
0.4469
0.2195

0.848
0.540
0.228
0.000

n-Butane:
Isobutane:
2,2-Dimethyl 

propane:

2CH3, 2CH2
3CH3, 1CH

4CH3, 1C

3 “ACH” ACH 10 0.5313 0.400 Benzene: 6ACH
(AC = aromatic carbon)

4 “ACCH2” ACCH3
ACCH2

12
13

1.2663
1.0396

0.968
0.660

Toluene:
Ethylbenzene:

5ACH, 1ACCH3
1CH3, 5ACH, 1ACCH2

5 “OH” OH 15 1.0000 1.200 Ethanol: 1CH3, 1CH2, 1OH

7 “H2O” H2O 17 0.9200 1.400 Water: 1H2O

9 “CH2CO” CH3CO
CH2CO

19
20

1.6724
1.4457

1.488
1.180

Acetone:
3-Pentanone:

1CH3CO, 1CH3
2CH3, 1CH2CO, 1CH2

13 “CH2O” CH3O
CH2O
CH–O

25
26
27

1.1450
0.9183
0.6908

1.088
0.780
0.468

Dimethyl ether:
Diethyl ether:
Diisopropyl ether:

1CH3, 1CH3O
2CH3, 1CH2, 1CH2O
4CH3, 1CH, 1CH–O

15 “CNH” CH3NH
CH2NH
CHNH

32
33
34

1.4337
1.2070
0.9795

1.244
0.936
0.624

Dimethylamine:
Diethylamine:
Diisopropylamine:

1CH3, 1CH3NH
2CH3, 1CH2, 1CH2NH
4CH3, 1CH, 1CHNH

19 “CCN” CH3CN
CH2CN

41
42

1.8701
1.6434

1.724
1.416

Acetonitrile:
Propionitrile:

1CH3CN
1CH3, 1CH2CN

†H. K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, and J. Gmehling, IEC Research, vol. 30,  
pp. 2352–2355, 1991.

shown (columns 6 and 7) are examples of molecular species and their constituent subgroups. 
When a molecule can be constructed from more than one set of subgroups, the set containing 
the least number of different subgroups is the correct set. The great advantage of the UNIFAC 
method is that a relatively small number of subgroups combine to form a very large number 
of molecules.

Activity coefficients depend not only on the subgroup properties Rk and Qk, but also 
on interactions between subgroups. Here, similar subgroups are assigned to a main group, 
as shown in the first two columns of Table G.1. The designations of main groups, such as  
“CH2,” “ACH,” etc., are descriptive only. All subgroups belonging to the same main group are 
considered identical with respect to group interactions. Therefore parameters characterizing 
group interactions are identified with pairs of main groups. Parameter values amk for a few 
such pairs are given in Table G.2.
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4H. K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, and J. Gmehling, IEC Research, vol. 30,  
pp. 2352–2355, 1991.

The UNIFAC method is based on the UNIQUAC equation, for which the activity coef-
ficients are given by Eq. (G.7). When applied to a solution of groups, Eqs. (G.8) and (G.9) are 
written:

  ln  γ  i  
C  = 1 −  J  i   + ln  J  i   − 5 q  i    (  1 −   

 J  i   _  L  i  
   + ln   

 J  i   _  L  i  
   )     (G.13)

  ln  γ  i  R  =  q  i   [ 1 −  ∑ 
k

      (   θ  k    
 β  ik   _  s  k  

   −  e  ki   ln   
 β  ik   _  s  k  

   )    ]    (G.14)

The quantities J and L are still given by Eqs. (G.10) and (G.11). In addition, the following 
definitions apply:

   r  i   =  ∑ 
k

     v  k  
 (  i )     R  k    (G.15)

   q  i   =  ∑ 
k

     v  k  
 (  i )     Q  k    (G.16)

   e  ki   =   
 v  k  

 (  i )    Q  k   ______  q  i  
    (G.17)

   β  ik   =  ∑ 
m

     e  mi    τ  mk    (G.18)

   θ  k   =   
 ∑ 
i

     x  i    q  i    e  ki  
 ________  ∑ 

j

     x  j    q  j  
    (G.19)

   s  k   =  ∑ 
m

     θ  m    τ  mk    (G.20)

   τ  mk   = exp  
−  a  mk   _____ 

T
    (G.21)

Subscript i identifies a species, and j is a dummy index running over all species. Subscript 
k identifies subgroups, and m is a dummy index running over all subgroups. The quantity   
v  k  

 (  i )     is the number of subgroups of type k in a molecule of species i. Values of the subgroup 
parameters Rk and Qk and of the group interaction parameters amk come from tabulations in the 
literature. Tables G.1 and G.2 show a few parameter values; the number designations of the 
complete tables are retained.4

The equations for the UNIFAC method are presented here in a form convenient for com-
puter programming. In the following example we run through a set of hand calculations to 
demonstrate their application. The process is tedious when conducted manually like this but is 
readily automated in a short computer program for practical application.
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APPENDIX G. UNIFAC Method 747

Example G.1
For the binary system diethylamine(1)/n-heptane(2) at 308.15 K, find γ1 and γ2 when  
x1 = 0.4 and x2 = 0.6.

Solution G.1
The subgroups involved are indicated by the chemical formulas:

   CH  3   −  CH  2  NH −  CH  2   −  CH  3     (  1 )    ∕   CH  3   −   (   CH  2   )    5   −  CH  3     (  2 )     

The following table shows the subgroups, their identification numbers k, values 
of parameters Rk and Qk (from Table G.1), and the numbers of each subgroup in 
each molecule:

k Rk Qk   v  k  
 (  1 )      v  k  

 (  2 )    

CH3 1 0.9011 0.848 2 2
CH2 2 0.6744 0.540 1 5
CH2NH 33 1.2070 0.936 1 0

By Eq. (G.15),

   r  1   =   (  2 )     (  0.9011 )    +   (  1 )     (  0.6744 )    +   (  1 )     (  1.2070 )    = 3.6836  

Similarly,

   r  2   =   (  2 )     (  0.9011 )    +   (  5 )     (  0.6744 )    = 5.1742  

In like manner, by Eq. (G.16),

   q  1   = 3.1720   and    q  2   = 4.3960  

The ri and qi values are molecular properties, independent of composition. Substi-
tuting known values into Eq. (G.17) generates the following table for eki:

eki

k i = 1 i = 2

1 0.5347 0.3858
2 0.1702 0.6142

33 0.2951 0.0000

The following interaction parameters are found from Table G.2:

   
 a  1,1   =  a  1,2   =  a  2,1   =  a  2,2   =  a  33,33   = 0 K

     a  1,33   =  a  2,33   = 255.7 K   
 a  33.1   =  a  33.2   = 65.33 K
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748 APPENDIX G. UNIFAC Method

Substitution of these values into Eq. (G.21) with T = 308.15 K gives

   
 τ  1,1   =  τ  1,2   =  τ  2,1   =  τ  2,2   =  τ  33,33   = 1

     τ  1,33   =  τ  2,33   = 0.4361   
 τ  33,1   =  τ  33,2   = 0.8090

    

Application of Eq. (G.18) leads to the values of βik in the following table:

  β  ik   

i k = 1 k = 2 k = 33

1 0.9436 0.9436 0.6024
2 1.0000 1.0000 0.4360

Substitution of these results into Eq. (G.19) yields:

   θ  1   = 0.4342    θ  2   = 0.4700    θ  33   = 0.0958  

and by Eq. (G.20),

   s  1   = 0.9817    s  2   = 0.9817    s  33   = 0.4901  

The activity coefficients can now be calculated. By Eq. (G.13),

 ln  γ  1  C  = −0.0213   and   ln  γ  2  C  = −0.0076 

and by Eq. (G.14),

 ln  γ  1  R  = 0.1463   and   ln  γ  2  R  = 0.0537 

Finally, Eq. (G.7) gives:

  γ  1   = 1.133   and    γ  2   = 1.047 
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f (X)

X0 X1 X2

Root

X
0

f (X0)

f (X1)

f (X2)

Figure H.1: Newton’s 
method applied to a 
 single function.

1For example, when eX + X 2 + 10 = 0.

Appendix H

Newton’s Method

Newton’s method is a procedure for the numerical solution of algebraic equations, applicable 
to any number M of such equations expressed as functions of M variables.

Consider first a single equation f (X) = 0, in which f (X) is a function of the single   
variable X. Our goal is to find a root of this equation, that is, the value of X for which the func-
tion is zero. A simple function is illustrated in Fig. H.1; it has a single root at the point where 
the curve crosses the X-axis. When it is not possible to solve directly for the root,1 a numerical 
procedure, such as Newton’s method, is employed.
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750 APPENDIX H. Newton’s Method

The application of Newton’s method is illustrated in Fig. H.1. In the neighborhood of 
an arbitrary value X = X0 the function f (X) can be approximated by the tangent line drawn at  
X = X0. The equation of the tangent line is given by the linear relation:

 g  (  X )    = f   (   X  0   )    +   [     
df   (  X )   

 _____ 
dX

   ]   
X= X  0  

    (  X −  X  0   )    

where g(X ) is the value of the ordinate at X, as shown in Fig. H.1. The root of this equation is 
found by setting g(X ) = 0 and solving for X; as indicated in Fig. H.1, the value is X1. Because 
the actual function is not linear, this is not the root of f (X). However, it lies closer to the root 
than does the starting value X0. The function f (X) is now approximated by a second line, 
drawn tangent to the curve at X = X1, and the procedure is repeated, leading to a root for this 
linear approximation at X2, a value still closer to the root of f (X). This root can be approached 
as closely as desired by continued successive linear approximation of the original function. 
The general formula for iteration is:

  f   (   X  n   )    +   [     
df   (  X )   

 ____ 
dX

   ]   
X= X  n  

  Δ X  n   = 0  (H.1)

where

 Δ X  n   ≡  X  n+1   −  X  n     or    X  n+1   =  X  n   + Δ X  n   

Equation (H.1), written for successive iterations (n = 0, 1, 2, . . .), produces successive values 
of ΔXn and successive values of f (Xn). The process starts with an initial value X0 and contin-
ues until either ΔXn or f (Xn), or some combination thereof, approaches zero to within a preset 
tolerance.

Newton’s method is readily extended to the solution of simultaneous equations. For the 
case of two equations in two unknowns, let fI ≡ fI(XI, XII) and fII ≡ fII(XI, XII) represent two 
functions, the values of which depend on the two variables XI and XII. Our goal is to find the 
values of XI and XII for which both functions are zero. In analogy to Eq. (H.1), we write:

    f  I   +   (    
∂  f  I   _ ∂  X  I  

   )   Δ X  I   +   (    
∂  f  I   _ ∂  X  II  

   )   Δ X  II   = 0   (H.2a)

    f  II   +   (    
∂  f  II   _ ∂  X  I  

   )   Δ X  I   +   (    
∂  f  II   _ ∂  X  II  

   )   Δ X  II   = 0   (H.2b)

These equations differ from Eq. (H.1) in that the single derivative is replaced by two partial 
derivatives, reflecting the rates of change of each function with each of the two variables. For 
iteration n the two functions fI and fII and their derivatives are evaluated at X = Xn from the 
given expressions, and Eqs. (H.2a) and (H.2b) are solved simultaneously for ΔXI and ΔXII. 
These are specific to the particular iteration, and they lead to new values XI and XII, applicable 
to the next iteration:

 X   I n+1     =  X   I n     + Δ X   I n      and   X   II n+1     =  X   II n     + Δ X   II n    

The iterative procedure based on Eqs. (H.2) is initiated with starting values for XI and XII and 
continues until the increments ΔXIn and ΔXIIn or the computed values of fI and fII approach 
zero.
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APPENDIX H. Newton’s Method 751

2These are well within the limits, −0.5 ≤ εa ≤ 0.5 and 0 ≤ εb ≤ 1.0, noted in Ex. 14.13.

Equations (H.2) can be generalized to apply to a system of M equations in M unknowns; 
the result for each iteration is:

   f  k   +   ∑ 
J=I

  
M

     (  
∂  f  k   _ ∂  X  J  

  )  Δ X  J   = 0     (  K = I, II, . . . , M )     (H.3)

with

   X   J  n+1     =  X   J  n     + Δ X   J  n         (  J = I, II, . . . , M )     

Newton’s method is well suited to application to multireaction equilibria. As an illustra-
tion, we solve Eqs. (A) and (B) of Ex. 14.13 for the case of T = 1000 K. From these equations 
with values given there for Ka and Kb at 1000 K and with P/P° = 20, we find the functions:

   f  a   = 4.0879  ε b  2  +  ε b  2  + 4.0879  ε  a   ε  b   + 0.2532  ε  a   − 0.0439  ε  b   − 0.1486  (A)

and

   f  b   = 1.2805  ε b  2  + 2.12805  ε  a   ε  b   − 0.12805  ε  a   + 0.3048  ε  b   − 0.4328  (B)

Equations (H.2) are written here as:

   f  a   +   (  
∂  f  a  

 _ ∂  ε  a    )  Δ ε  a   +   (  
∂  f  a  

 _ ∂  ε  b    )  Δ ε  b   = 0  (C)

   f  b   +   (    
∂  f  b  

 _ ∂  ε  a     )   Δ ε  a   +   (     
∂  f  b  

 _ ∂  ε  b     )   Δ ε  b   = 0  (D)

The solution procedure is initiated with a choice of starting values for εa and εb. Numerical 
values are obtained for fa and fb and for their derivatives from Eqs. (A) and (B). Substitution 
of these values in Eqs. (C) and (D) yields two linear equations that are readily solved for the 
unknowns Δεa and Δεb. These yield new values of εa and εb with which to carry out a second 
iteration. The process continues until Δεa and Δεb or fa and fb approach zero.

Setting εa = 0.1 and εb = 0.7 as starting values,2 we find initial values of fa and fb and 
their derivatives from Eqs. (A) and (B):

  
 f  a   = 0.6630       (  

∂  f  a  
 _ ∂  ε  a    )   = 3.9230      (  

∂  f  b  
 _ ∂  ε  b    )   = 1.7648

       
 f  b   = 0.4695       (  

∂  f  b  
 _ ∂  ε  a    )   = 1.3616     (   

∂  f  b  
 _ ∂  ε  b      ) = 2.0956

  

These values are substituted in Eqs. (C) and (D) to yield:

   
0.6630 + 3.9230Δ ε  a   + 1.7648Δ ε  b   = 0

    0.4695 + 1.3616Δ ε  a   + 2.0956Δ ε  b   = 0   

The values of the increments that satisfy these equations are:

 Δ ε  a   = − 0.0962   and   Δ ε  b   = − 0.1614 
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752 APPENDIX H. Newton’s Method

Figure H.2: Finding the 
roots of a function showing 
extrema.

f (X)

a

b

XA B
0

from which,

  ε  a   = 0.1 − 0.0962 = 0.0038   and    ε  b   = 0.7 − 0.1614 = 0.5386 

These values are the basis for a second iteration, and the process continues, yielding results as 
follows:

n εa εb Δεa Δεb

0 0.1000 0.7000 −0.0962 −0.1614
1 0.0038 0.5386 −0.0472 −0.0094
2 −0.0434 0.5292 −0.0071 0.0043
3 −0.0505 0.5335 −0.0001 0.0001
4 −0.0506 0.5336 0.0000 0.0000

Convergence is clearly rapid. Moreover, any reasonable starting values lead to convergence on 
the same answers.

Convergence problems can arise with Newton’s method when one or more of the func-
tions exhibit extrema. This is illustrated for the case of a single equation in Fig. H.2. The 
function has two roots, at points A and B. If Newton’s method is applied with a starting value 
of X smaller than a, a very small range of X values produces convergence on each root, but for 
most values it does not converge, and neither root is found. With a starting value of X between 
a and b, it converges on root A only if the value is sufficiently close to A. With a starting value 
of X to the right of b, it converges on root B. In cases such as this, a proper starting value can 
be found by trial, or by graphing the function to determine its behavior.
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Absolute entropy, 203
Absolute humidity, 518
Absolute pressure, 8
Absorption refrigeration, 342–344
Acentric factor

and corresponding-states correlations, 
101–103, 244

defined, 102
for mixtures, 240, 390–391
of pure species, 663–667

Activity coefficient models, 481–495
data reduction for, 484–486
extrapolation of, for higher 

temperatures, 492–494
thermodynamic consistency of, 

486–490
vapor-phase fugacity coefficients in, 

491–492
Activity coefficient(s)

defined, 460
and excess Gibbs energy, 475
for liquid/liquid equilibrium, 603–604
in liquid-phase reactions, 549–552
for mixed-gas adsorbate, 636
and modified Raoult’s law, 465–466, 

469–470
for vapor/liquid equilibrium, 460–462, 

475–481
Adiabatic processes

in ideal-gas state, 81–83
in Rankine cycle, 310
in turbines and expanders, 286–287

Adsorbate, 623, 636, 637
Adsorbate compressibility factor, 627
Adsorbents, 623
Adsorption, 622–638

classes and uses of, 622–624
heat of, 633–634
mixed-gas, 634–638
pure-gas, 626–633
thermodynamic equations for, 

624–626
Adsorption isotherm, 625, 626
Air-standard Diesel cycle, 322
Air-standard Otto cycle, 320
Antoine equation

and bubblepoint/dewpoint 
calculations, 465

constants for, 663, 666–667

described, 243–244
and gamma/phi formulation, 462

Area
molar, 624
specific surface, 625, 633
on thermodynamic diagram, 249

Athermal solutions, 648
Azeotropes, 438, 440

Bancroft point, 521
Barker’s method, 490
BET (Brunauer/Emmett/Teller)  

equation, 633
Binary mixtures

correlations of activity coefficients  
for, 475–479

critical points of, 435–437
enthalpy/concentration diagrams for, 

415–418
evaporation of, 441–444
excess Gibbs energy for, 601
excess properties in, 398–399
Gibbs/Duhem equation in, 367, 

471–475
Henry’s law for, 473–474
liquid/liquid equilibrium in, 605
partial excess properties for,  

412–413
partial properties for, 366–370
stability of, 447, 601
vapor/liquid equilibrium in, 604
vapor/liquid/liquid equilibrium in, 614

Binodal curves, 447–448
Biochemical reactions, 551–552
Boyle temperature, 132
Brayton cycle, 324
Brunauer/Emmett/Teller (BET)  

equation, 633
Bubblepoint(s)

in flash calculations, 515
with modified Raoult’s law, 466–468
with Raoult’s law, 464–465
for vapor/liquid equilibrium, 433, 

502–503
and vapor-phase fugacity  

coefficients, 491

Calorie, nutritional, 17
Canonical variables, 217–218, 358, 359

Carnot cycle
refrigerator operating on, 335–336
on TS diagram, 308–309

Carnot engines
cycles of heat pumps and, 183–184
described, 181–182
with ideal-gas-state working fluid, 

184–185
in vapor-compression refrigeration, 343

Carnot refrigerator, 335–336, 343
Carnot’s equations, 182
Cascade refrigeration cycles, 340, 342
Celsius scale, 7–8
Characteristic properties of pure species, 

663–665
Chemical potential

defined, 357, 359
in determination of multireaction 

equilibria, 579
in ideal-gas-state mixture model,  

374–375, 392
in ideal-solution model, 392
in mixed-gas adsorption, 634, 635
and partial molar Gibbs energy, 

362–363
and phase equilibrium, 360–361
and stoichiometric number, 539

Chemical-reaction equilibria, 532–587, 
541–545

equilibrium constant for, 539–552
equilibrium criteria in, 538–539
in fuel cells, 582–586
in industrial reactions, 532
for multiple reactions, 571–582
phase composition at, 547–567
phase rule and Duhem’s theorem for, 

567–571
reaction coordinate for, 533–537
for single-phase reactions, 552–567
standard Gibbs-energy change in, 

539–541
Chemical reactions

determining number of, 568
reversible, 37–38
total Gibbs energy in, 538–539

Chemisorption, 624
Clapeyron equation, 146, 242–243, 633
Claude liquefaction process, 347–349
Clausius/Clapeyron equation, 243

Index
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Closed systems, 343
chemical-reaction equilibrium in, 360
defined, 26
energy balance in, 26–30, 40
enthalpy in, 39–41
equilibrium state in, 431, 432,  

445–446, 539
phase equilibrium in, 360
reversible processes in, 35–41

Cocurrent flow patterns, 200–202
Coefficient of performance, 184, 336
Combinatorial term, 742
Combining rules, 503, 509
Combustion reactions

defined, 152
and fuel cells, 584
in internal-combustion engines, 

319–327
Composition

equilibrium, 606
eutectic, 619
and fugacity, 474–475
local, 479–481
measures of, 358
and mixture parameters, 502
and partial properties, 365–366, 371
on PTxy diagrams, 432–433
and second virial coefficient, 386

Composition (yx) diagrams, for vapor/
liquid equilibrium, 441

Compressibility, isothermal, 76
Compressibility factor, 112–115

adsorbate, 627
defined, 91
Lee/Kesler tables for, 104, 105, 

677–680
Pitzer correlations for, 103–105
of pure species, 663–665
and residual properties by cubic 

equations of state, 495–497
and roots of generic cubic equation of 

state, 99
for species in mixtures, 401
virial equations to determine, 92–94

Compressible flow processes, 273
Compression processes, 291–297

in absorption refrigeration, 343–344
in compressors, 291–295
entropy generation in, 657
isentropic, 293–294, 326
in pumps, 296–297
in Rankine cycle, 310
in vapor-compression refrigeration 

cycle, 336–339
work done by, 10–11

Compression ratio, 320–321
Compressor efficiency, 292
Compressors, 215, 291–295
Computational paths for system, 

237–238
Condensers, 313, 654
Conservation of energy

described, 13
in first law of thermodynamics, 1–2, 

25–26

Constant-pressure heat capacity, 43,  
79, 218

Constant-pressure liquefaction  
process, 346

Constant-volume heat capacity,  
42–43, 79

Continuity equation, 49
Control surfaces, 48
Control volume, 48–51
Converging nozzles, 278–279
Conversion factors, 661, 662
Corresponding states, 101–103
Corresponding-states correlations, 

244–248
for pure fluids, 101–103

Countercurrent flow patterns,  
200–202

Cracking reactions, 597
Critical molar volume, 663–665
Critical point

of binary mixture, 435–437
defined, 71
pure substances at, 73–74

Critical pressure, 663–665
Critical temperature, 663–665
Cross coefficients, 386
Cubic equations of state

for corresponding states, 101–103
determining parameters for, 98
fugacity coefficient from,  

504–512
for pure fluids, 95–103
residual properties by, 495–498
roots of, 99–101
for solid/vapor equilibrium, 621
vapor/liquid equilibrium from, 

499–512

Dead-weight gauge, 8
Debye–Hückel theory, 552
Defined functions, 144–145
Degrees of freedom

in mixed-gas adsorption, 635
in phase rule, 431
for reacting system, 567–571
of system, 69–70

Density
conversion factors for, 662
correlation of reduced, 116–117
molar, 6

Derived units, 4
Desorption, 633–634
Dewpoint

in flash calculations, 515
with modified Raoult’s law, 466–468
with Raoult’s law, 464–465
for vapor/liquid equilibrium, 433

Diesel engine, 322–323
Dissipative processes, 35
Diverging nozzles, 278–279
Duct flow of compressible fluids, 

273–285
in nozzles, 278–281
pipe flow, 276–277
throttling process for, 282–285

Duhem’s theorem
for chemical-reaction equilibria, 

570–571
for phase equilibrium, 431–432

Edmister’s formula, 260
Effective critical parameters for quantum 

gases, 104–105
Efficiency

compressor, 292
in reversible work calculations, 35, 38
turbine, 286

Electrical power, sources of, 307–308
Electric current, 18
Endothermic behavior, 411
Endothermic reactions, 548
Energy, 11–16

conservation of, 1–2, 13, 25–26
conversion factors for, 662
external, 25
as function, 1
heat and work as flows of, 26
Helmholtz, 216
kinetic, 11–12
potential, 12–13
quantities vs. flows of, 26

Energy balance
in closed systems, 26–30, 40
general, 49–52, 274
mechanical, 66
in open systems, 49–58, 273, 274
for reversible processes, 40
for steady-state flow processes, 52–53

Energy use, 307
Engines

Carnot, 181–185, 343
Diesel, 322–323
gas-turbine, 323–327
heat, 180–185
internal-combustion, 308, 319–327
jet, 327–329
Otto, 319–321
rocket, 328–329

Enthalpy
in closed systems, 39–41
defined, 40
as function of T and P, 219
fundamental property relations  

for, 359
in ideal-gas state, 79, 220
in ideal-gas-state mixture, 373, 374
in liquids, 220
in open systems, 54–58
partial, 371
partial molar, 373
from residual properties, 227–231
specific, 697–735
in terms of primary properties, 216

Enthalpy change
for closed-system reversible process, 

40–41
in fuel cells, 585
from generalized property correlations, 

237–238
in ideal-gas state, 79, 81
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of mixing, 410, 411
in pumps, 296
for steady-state flow process,  

52–53
Enthalpy/concentration (H-x) diagrams, 

415–418
Enthalpy/entropy (HS) diagrams.  

see Mollier diagram(s)
Entropy

absolute, 203
change in, 179–180
excess, 398, 411
as function of T and P, 218–219
as function of T and V, 222–223
in ideal-gas state, 187–188, 220
in ideal-gas-state mixture, 373, 374
in ideal-solution model, 392, 393
in liquids, 220
microscopic view of, 203–205
molar, 215–216, 359, 373
partial, 371
from residual properties, 227–231
in second law of thermodynamics, 2, 

186–195, 203–205
specific, 697–735
system, 178
total, 178

Entropy balance
equation of, 191
for open systems, 190–195

Entropy change
from generalized property correlations, 

237–238
for ideal-gas state, 187–190, 374
in irreversible processes, 186
in pumps, 296
in reversible processes, 186–187
standard entropy change of  

reaction, 542
Entropy-generation analysis, 649, 654, 

656–657
Entropy generation rate, 191
Equations of state. See also Cubic 

equations of state; Virial equations 
of state

a parameter of, 98, 502, 503
b parameter of, 98, 502, 503
β parameter of, 99, 502, 509
defined, 68
ε parameter of, 100, 496–497
pressure- vs. volume-explicit, 231
PVT, 75–76
q parameter of, 502, 503, 504,  

505, 509
σ parameter of, 100, 496–497
Ω parameter of, 100
Ψ parameter of, 100
van der Waals, 95–97

Equilibrium constant(s), 539–552
for adsorption, 628
defined, 540
effect of temperature on, 541–545
evaluation of, 545–547
in flash calculations, 512–515
in gas-phase reactions, 547–549

for multiple simultaneous reactions, 
571–578

and phase composition, 547–549
for reactions in heterogeneous  

systems, 564
and standard Gibbs-energy change, 

539–541
Equilibrium(–ia)

activity coefficient models of, 
481–495

criteria for, 538–539, 604
and first law of thermodynamics, 

30–34
and fugacity, 540
and fundamental property  

relations, 216
internal, 38
osmotic, 638–641

Eutectic state, 619
Exact differential expressions, 217
Excess enthalpy, 413

and activity coefficients, 461
and enthalpy change of mixing, 411
and enthalpy/concentration diagrams, 

416–417
at higher temperatures, 494
partial, 418

Excess entropy, 398, 411
Excess Gibbs energy, 398–399

and activity coefficients,  
470, 475

for binary mixture, 601
and fit of activity coefficient models, 

481–484
and Gibbs energy change of  

mixing, 412
at higher temperatures, 492–493
and Redlich/Kister expansion, 476
for vapor/liquid equilibrium, 460

Excess heat capacity, 493
Excess properties

and activity coefficients, 461, 462
in binary solutions, 398
defined, 357, 394–395
fundamental property relations for, 

395, 461, 462
partial, 412–413, 418
and property changes of mixing, 

411–413
and residual properties, 394–395
in solution thermodynamics,  

394–399
Excess volume, 411, 461
Exothermic behavior, 411
Exothermic reactions, 549
Expanders, 286–291
Expansion processes

isentropic, 326, 347
as reversible process, 35–36
work done by, 10–11

Expansivity, volume, 76
Extensive properties, 27
Extensive state, 431
External energy, 25
External irreversibilities, 187, 191

Fans, 303
First law of thermodynamics, 24–59

described, 25–26
and energy balance for closed systems, 

26–30
energy in, 1–2
and enthalpy in closed systems,  

39–41
equilibrium as application of, 30–34
for fuel cells, 584
and heat capacity, 42–46
and internal energy, 25
Joule’s experiments leading to, 24–25
and mass/energy balances for open 

systems, 47–58
for reversible processes, 35–39

Flash calculations, 512–515
Flashing, liquid, 282
Flow, measures of, 47–48
Flow calorimeters, 54–58
Flow processes, 272–298

compressible, 273
duct flow of compressible fluids, 

273–285
enthalpy in, 40
laminar, 51
steady-state, 49, 52–53, 192,  

649–658
in turbines, 286–291
turbulent, 51

Fluid mechanics, 272
Fluids

compressible, duct flow of,  
273–285

ideal-gas-state working, 184–185
incompressible, 76, 223–224
in PVT systems, 31
saturated, 72
supercritical, 72

Force, 662
Formation reactions, 150
Fourth virial coefficient, 91–92
Free energy, 216
Freundlich equation, 629
Fuel cells, 308, 582–586
Fugacity, 539

and activity coefficients, 469–470
composition dependence of,  

474–475
defined, 357, 376
and fugacity coefficient, 547–548
in ideal solutions, 393
in liquid-phase reactions, 549–552
in mixed-gas adsorption, 635
of pure liquids, 378–382
of pure species, 376–392
for reactions in heterogeneous  

systems, 565
of species in equilibrium, 460
of species in solution, 382–388
and standard/equilibrium state, 540
and standard Gibbs-energy  

change, 539
at vapor/liquid equilibrium,  

377–378
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Fugacity coefficient(s), 376–392, 388
defined, 376
in determination of multireaction 

equilibria, 579–580
and fugacity, 548
generalized correlations for, 388–392
from generic cubic equation of state, 

504–512
and Henry’s law, 471–472
in ideal solutions, 394
Lee/Kesler tables for, 689–692
for mixtures, 390–392, 503
and partial residual Gibbs energy, 383
for pure species, 376–382, 388–390
of species in solution, 382–388
at vapor/liquid equilibrium,  

377–378, 503
vapor-phase, 460, 491–492
from virial equation of state, 385–388

Fundamental property relations
defined, 216
for enthalpy, 218–219
for entropy, 218–219, 222–223
and excess properties, 395
for excess properties, 461, 462
for fluids, 215–225
for Gibbs energy, 224–225
in ideal-gas state, 219–220
for internal energy, 216, 220–224
for liquids, 220
for residual properties, 226, 383–385, 

461–462
for single-phase systems, 539
in solution thermodynamics, 357–360
for two-dimensional phase, 624–625

Fusion curve, 71

Gamma/phi formulation, 462–463
Gas constant. See Universal gas constant
Gases

generalized correlations for, 103–115, 
234–241

Henry’s constant for gases dissolved in 
water, 471

standard state for, 148
Gas-phase reactions

equilibrium constant for, 571
phase composition for, 547–549

Gas-turbine engines, 323–327
Gauge pressures, 8
General energy balance, 49–52, 274
General equations of balance, 274
Generalized correlations

for compressibility factor, 103–105
for fugacity coefficient, 388–392
for gases, 103–115, 234–241
for gas mixtures, 240–241
and ideal-gas state, 108
isentropic work for turbines from, 

288–291
Lee/Kesler tables, 676, 677–692
for liquids, 115–117
Pitzer correlations, 103–107
for pure fluids, 103–117

for second virial coefficient,  
105–107, 235

in solution thermodynamics,  
388–392

and thermodynamic properties of 
fluids, 234–241

for third virial coefficient, 107–108
Generating functions, 224–225, 360
Generic cubic equations of state,  

97–101
defined, 97–98
fugacity coefficient from, 504–512
parameters for, 98
roots of, 99–101

Generic residual property, 225–226
Gibbs adsorption isotherm, 625
Gibbs/Duhem equation

activity coefficient in, 461
for adsorbate, 625
for binary solutions, 367, 471–475
for binary systems, 483
and consistency of activity coefficient 

models, 486–490
and Henry’s law, 471–475
and partial properties, 365, 366
and stability of binary mixtures,  

601, 602
Gibbs energy, 388

as generating function, 224–225, 360
in ideal-gas-state mixture, 373–375
in ideal-solution model, 392, 393
in mixed-gas adsorption, 634, 635
molar, 241–242, 373–375
standard Gibbs energy of formation, 

671–675
in terms of primary properties, 217

Gibbs energy change
in fuel cells, 585–586
of mixing, 412, 446
and stability of single-phase binary 

mixture, 601
Gibbs’s theorem, 373

Heat
in closed systems, 32
and energy balance in closed systems, 

26–27
in ideal-gas state, 80
Joule’s experiments on work and, 

24–25
measurements and units for, 16–17
in Rankine cycle, 311

Heat capacity(-ies), 42–46
constant-pressure, 43, 79, 218
constant-volume, 42–43, 79
excess, 493
of gases in ideal-gas state, 669
in ideal-gas state, 140–143
of liquids, 670
mean, 143, 189
of solids, 670
standard heat-capacity change of 

reaction, 154, 544
temperature dependence of, 139–140

Heat capacity ratio, 82
Heat effects, 137–167

defined, 137
of industrial reactions, 156–166
latent heats of pure substances, 

145–147
of mixing processes, 414–424
sensible, 138–145
standard heat of combustion, 152–153
standard heat of formation, 150–152
standard heat of reaction, 148–150
and temperature dependence of ΔH°, 

153–156
Heat engines, 180–185

defined, 180
with ideal-gas-state working fluid, 

184–185
Heat of adsorption, 633–634
Heat of combustion, 148, 152–153
Heat of formation

heat of solution from, 419–420
standard, 150–152
of water of hydration, 420

Heat of mixing, 410, 411, 414–415
Heat of reaction, 137, 148, 414–415
Heat of solution, 418–424
Heat pumps

and heat engines, 183–184
refrigeration in, 344–345

Heat reservoirs, 178–179, 186
Heat transfer

at constant pressure, 346
entropy change with, 186–187
from reversible fuel cells, 584–585
second law of thermodynamics and 

simple, 178–180
Helmholtz energy, 216
Henry’s constant, 471, 627, 636
Henry’s law, 471–475

for adsorption, 627
defined, 471
for deviations from ideality, 474–475
and Gibbs/Duhem equation in binary 

solutions, 471–475
for liquid-phase reactions, 550
for mixed-gas adsorption, 636
for vapor/liquid/liquid equilibrium, 611

Heterogeneous systems
phase composition at equilibrium  

in, 552
phase composition for reactions in, 

563–567
Higher heating value (HHV), 172
HRB function, 237
Humidity, 518

ICPH function, 144
ICPS function, 188–189
IDCPH function, 155, 544
IDCPS function, 544
Ideal-adsorbed-solution theory,  

637–638
Ideal gases, 19, 77
Ideal gas law, 77–78
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Ideal-gas state, 77–89, 626
adiabatic processes in, 81–83
defined, 78
entropy change for, 187–190
equilibrium constant for mixtures in, 

548–549, 571
fundamental property relations in, 

219–220
and generalized correlations, 108
heat capacity in, 140–143, 669
irreversible processes in, 83
isobaric processes in, 81
isochoric processes in, 81
isothermal processes in, 81
process calculations for, 80
property relations for, 79–80
real-gas properties from, 228
second law of thermodynamics in, 

187–190
in vapor/liquid equilibrium  

(See Raoult’s law)
Ideal-gas-state mixture model,  

372–375, 392
Ideal-gas-state working fluid, 184–185
Ideal-gas temperature scale, 90
Ideal-lattice-gas equation, 627
Ideal refrigeration cycle, 659
Ideal-solution model, 357, 392–394

for solid/liquid equilibrium, 617–618
for vapor/liquid equilibrium  

(See Raoult’s law)
Ideal solutions, 392, 411
Ideal work

calculation of, 195–199
in steady-state flow processes, 650, 

654, 656
Immiscible solids, SLE with, 618
Immiscible systems, VLLE in, 450–451
Incompressible fluids

defined, 76
pipe flow of, 277
property relations for, 223–224

Independent reactions, determining 
number of, 568

Industrial reactions
heat effects of, 156–166
reaction rates and equilibrium 

considerations for, 532
Intensive properties, 27
Intensive state, 69, 431
Intensive variables, 6, 432
Intermolecular interactions, 415
Internal-combustion engines, 308, 

319–327
Diesel engine, 322–323
gas-turbine engine, 323–327
Otto engine, 319–321

Internal energy
in closed systems, 27
defined, 25
as function of P, 220–222
as function of T and V, 222–224
in ideal-gas state, 78
molar, 216–217

residual, 256
total, 27, 445

Internal energy change, 25, 79–80
Internal equilibrium, 38
Internal irreversibilities, 191
Internal pressure, 269
International System of Units (SI units), 

4–6, 661, 662
International Temperature Scale of 1990 

(ITS-90), 7
Intramolecular interactions, 415
Irreversible processes

dissipative processes as, 35
entropy changes in, 186
with external irreversibilities, 187, 191
in ideal-gas state, 83
with internal irreversibilities, 191
lost work for, 200
thermodynamic analysis of, 649
work for, 38

Isentropic nozzles, 279
Isentropic processes

compression, 293–294, 326
defined, 186
expansion, 326, 347
in Rankine cycle, 310

Isentropic work
by compressors, 291–295
by pumps, 296–297
by turbines/expanders, 286–291

Isobaric processes, 81
Isochoric processes, 81
Isosteric heat of adsorption, 634
Isothermal compressibility, 76
Isothermal processes

of Carnot engines, 183–185
in fuel cells, 584
in ideal-gas state, 81

Isothermal reactions, 148
Isotherms

adsorption, 635, 636
Langmuir, 627–629, 634, 637

Jet engines, 327–329
Joule (unit)

conversions for, 662
as unit of energy, 12, 13
as unit of heat, 17
as unit of work, 10

Joule/Thomson coefficient, 284

Kelvin scale, 7
Kinetic energy, 11–12

Lagrange multipliers, 578
Laminar flow, 51
Langmuir isotherm, 627–629, 634, 637
Latent heat

defined, 137, 145
of pure substances, 145–147

Latent heat of vaporization at normal 
boiling point, 146–147, 666–667

Law of mass action, 550

LCST (lower consolute temperature), 
447, 448

Lee/Kesler generalized correlations
for residual enthalpy, 235

Lee/Kesler generalized correlations 
tables, 676, 677–692

for compressibility factor, 104, 105, 
677–680

for fugacity coefficient, 689–692
for residual enthalpy, 681–684
for residual entropy, 685–688

Lewis/Randall rule, 394, 469, 470
Linde liquefaction process, 347–349
Liquefaction processes, 346–351

heat exchange at constant pressure, 346
isentropic expansion, 347
throttling processes, 346–347

Liquid/liquid equilibrium (LLE), 
601–611

binary, 604–605
equilibrium criteria for, 604
excess Gibbs free energy in, 604–611
phase stability in, 447–448
and stability criteria for single-phase 

binary systems, 601–603
Liquid-phase activity coefficients, 

475–481
local-composition models for, 

479–481
for multicomponent systems, 481
Redlich/Kister expansion of, 475–478
van Laar equation for, 479

Liquid-phase reactions, 549–552
Liquids

fundamental property relations for, 220
generalized correlations for, 115–117
heat capacity of, 670
pure, 378–382
saturated, 115–116, 249, 500, 502
standard state for, 148

Local composition, 479–481
Local states, in flow processes, 273
Lost work, 199–202, 649
Lower consolute temperature (LCST), 

447, 448
Lower heating value (LHV), 172
Low-pressure vapor/liquid equilibrium, 

437–441
Low-pressure vapor/liquid/liquid 

equilibrium, 613–615

Mach number, 275–276
Margules equations, 477, 484, 485, 486
Mass, 6, 662
Mass balance, for open systems, 48–49, 

273, 274
Mass flow rate, 47, 49
Mass fraction, 358, 416
Material balances, 578
Maximum work obtainable, 197
Maxwell relations, 218, 370
MCPH function, 144–145
MCPS function, 189
MDCPH function, 155
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Mean heat capacity, 143, 189
Mechanical-energy balance, 66
Mechanically reversible processes,  

38, 187
Methane, pressure/enthalpy diagram  

for, 738
Microscopic descriptions of systems, 3–4

entropy in, 203–205
at equilibrium, 431

Minimum work required, 196
Mixed-gas adsorption, 634–638
Mixing processes, 409–424

heat effects of, 414–424
property changes in, 409–414

Mixing rules, 386, 503, 509
Mixtures

acentric factor for, 240, 390
compressibility factor for species  

in, 401
enthalpy/concentration diagrams for, 

415–417
equilibrium coefficient for, 549
fugacity coefficients for, 390–391, 504
generalized correlations for,  

240–241
ideal-gas-state model for, 374–375, 392
molar mass of, 358
parameters for species in, 502
pressure for species in, 400
temperature for species in, 401
volume for species in, 400–401

Modified Raoult’s law, 465–470
and activity coefficients, 469–470
bubblepoint and dewpoint calculations 

with, 466–468
for vapor/liquid/liquid equilibrium, 611

Molality, 550
Molar area, 624
Molar concentration, 358
Molar density, 6
Molar enthalpy, partial, 373
Molar entropy

fundamental property relations for, 
216, 359

partial, 373
Molar flow rate, 47
Molar Gibbs energy

partial, 362, 373–374
in two-phase systems, 241–242

Molar internal energy, fundamental 
property relations for, 216–217

Molar mass
of mixtures and solutions, 358
and number of moles, 6
of pure species, 663–665

Molar properties, 363–365
Molar volume

critical, 663–665
defined, 6
fundamental property relations for, 

216, 359
partial, 372
in PVT systems, 31
for two-phase system, 249

Mole fraction, 358
from activity coefficient model, 484
in liquid/liquid equilibrium,  

604–605
in multireaction stoichiometry, 536
and reaction coordinate, 535

Mole of reaction, 536
Mollier diagram(s)

features of, 249–251
for steam, 740–741

Monolayer adsorption, 624
Multicomponent systems, activity 

coefficients for, 481
Multilayer adsorption, 624
Multiple simultaneous reactions

chemical-reaction equilibria for, 
571–582

Newton’s method for, 751–752
reaction coordinate in stoichiometry 

for, 536–537

Newton’s method, 514, 515, 749–752
Newton’s second law, 4, 11, 12
Non-Random-Two-Liquid (NRTL) 

equation, 480
Normal boiling point

latent heat of vaporization at, 146–147, 
666–667

for pure species, 663–667
Nozzles

flow of compressible fluids through, 
278–281

in jet and rocket engines, 327, 328

Open systems, 47–58
adsorption in, 624
defined, 26
energy balances for steady-state flow 

processes in, 52–53
enthalpy measurements in, 54–58
entropy balance for, 190–195
equations of balance f, 273, 274
general energy balance for, 49–52
mass balance for, 48–49
measures of flow in, 47–48
phase equilibrium in, 360
second law of thermodynamics for, 

190–195
Osmotic equilibrium, 638–641
Osmotic pressure, 639–641
Otto engine, 319–321

Partial enthalpy, 371
Partial entropy, 371
Partial equation-of-state parameters,  

503, 506
Partial excess enthalpy, 418
Partial excess properties, 412–413, 418
Partially miscible systems, 611
Partial molar enthalpy, 373
Partial molar entropy, 373
Partial molar Gibbs energy, 362–363, 

373–374

Partial molar properties, 372–373
defined, 361
equations relating molar/solution 

properties and, 363–365
in ideal-gas-state model, 373

Partial molar volume, 372
Partial pressure, 372, 463
Partial properties, 361–371

activity coefficient as, 461
in binary solutions, 366–370
defined, 357, 366
and molar properties, 363–365
rationale for, 365–366
relations among, 370–371
solution and pure-species properties 

vs., 361–362
Partial residual Gibbs energy, 383
Partial residual properties, 382–383
Partial specific properties, 361
Partial volume, 371
Peng/Robinson (PR) equation, 113, 500
Phase composition

at chemical-reaction equilibria, 
547–567

for gas-phase reactions, 547–549
for liquid-phase reactions, 549–552
and pressure for vapor/liquid 

equilibrium, 603
and pressure for vapor/liquid/liquid 

equilibrium, 614
for reactions in heterogeneous systems, 

563–567
for single-phase reactions, 552–567
and temperature/pressure for VLLE, 

448–451
Phase envelope, 432
Phase equilibrium(–a), 430–452, 

600–642
adsorption of gases on solids,  

622–638
and chemical potential, 360–361
Duhem’s theorem for, 431–432
fugacity at, 382
liquid/liquid, 447–448, 601–611
nature of, 430–431
and osmotic equilibrium/pressure, 

638–641
phase rule for, 69, 431–432
and phase stability, 444–448
qualitative behavior at, 432–444
solid/liquid, 615–620
solid/vapor, 620–622
vapor/liquid/liquid, 448–451, 611–615

Phase rule
for chemical-reaction equilibria, 

567–571
for phase equilibrium, 69, 431–432
for pure fluids, 68–70
for vapor/liquid equilibrium, 432

Phases, defined, 69
Phase stability, 444–448, 601–603
PHIB function, 390
Physical adsorption, 624
Pipe flow, 276–277
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Pitzer correlations, 103–107
for compressibility factor, 103–105
for second virial coefficient,  

105–107
for third virial coefficient, 107

Potential energy, 12–13
Power

conversion factors for, 662
electrical, sources of, 307–308

Power from heat, 307–329
in internal-combustion engines, 

319–327
in jet and rocket engines, 327–329
in steam power plants, 308–319

Poynting factor, 379, 462, 640
Pressure

absolute, 8
bubblepoint and dewpoint,  

464–465, 466
conversion factors for, 662
critical, 663–665
defined, 4
effect on activity coefficient of, 461
enthalpy and entropy as function of, 

218–219
of flow in nozzles, 278–279
gauge, 8
Gibbs energy in terms of, 224–225
internal, 269
internal energy as function of, 

220–222
measures and units of, 8–10
osmotic, 639–641
partial, 372, 463
in pipe flow, 276
processes with constant, 81
pseudocritical, 240
pure-component, 400
residual properties in zero-pressure 

limit, 256–257
saturation, 72, 97
solubility of solids at high, 621–622
for species in mixtures, 392
spreading, 624, 625, 628–629, 636
standard atmospheric, 9, 661
standard-state, 148
total Gibbs energy as function of, 

358–359
and volume/temperature of pure 

substances, 70–77
Pressure/composition (Pxy) diagrams

for vapor/liquid equilibrium, 434, 439, 
441–443

for vapor/liquid/liquid equilibrium, 450
Pressure/enthalpy (PH) diagrams

features of, 249–251
for methane, 738
for tetrafluoroethane, 739
vapor-compression refrigeration cycle 

on, 337, 338
Pressure-explicit equations of state, 231
Pressure/temperature/composition (PTxy) 

diagrams, for vapor/liquid 
equilibrium, 432–433

Pressure/temperature (PT) diagrams
components of, 70–72
for vapor/liquid equilibrium, 435

Pressure/volume (PV) diagrams, 72–73
critical point on, 73
for ideal-gas-state working fluid in 

Carnot cycle, 184–185
and PVT surfaces, 74–75
PVT surfaces from, 74–75
single-phase regions on, 75–77

Primitives (defined), 4, 25, 216
Process calculations, ideal-gas state, 80
Properties

characteristic, 663–665
derived values for, 487
extensive, 27
fundamental, 3
intensive, 27
molar, 363–365
pure-species, 361–362
solution, 361–362, 363–365

Property changes
equations for, 83
in mixing processes, 409–414

Property changes of mixing, 409–414
Property relations

in ideal-gas state, 79–80
from internal energy changes in closed 

system, 28
Pseudocritical parameters, 240
Pumps, 296–297, 654
Pure-component pressure, 400
Pure-gas adsorption, 626–633
Pure liquids, fugacity of, 378–382
Pure species

acentric factor for, 663–665
Antoine equation constants for, 663, 

666–667
characteristic properties of, 663–665
fugacity coefficient for, 376–382, 

388–390
fugacity of, 376–382
Langmuir isotherms for, 637
standard Gibbs-energy change  

for, 540
vapor/liquid equilibrium for, 377–378
vapor pressure for, 499–502

Pure substances
at critical point, 73–74
latent heats of, 145–147
pressure, volume, and temperature of, 

70–77
PV diagrams for, 72–73
PVT surfaces for, 74–75
in single-phase regions, 75–77

PVT equations of state, 75–76
PVT surfaces, 74–75
PVT systems

chemical-reaction equilibrium in, 360
defined, 31
fundamental property relations in, 216
intensive state of, 431

Quantum gases, 104

Rankine cycle, 309–313
Raoult’s law, 437, 463–465

dewpoint and bubblepoint calculations 
with, 464–465

limitations on, 464
and mixed-gas adsorption, 636
modified, 465–470, 611
positive deviations from, 483
for vapor/liquid/liquid equilibrium, 611

Reaction coordinate
changes in, 534
for chemical-reaction equilibria, 

533–537
in multireaction stoichiometry, 

536–537
and total Gibbs energy in chemical 

reactions, 538–539
Reactor design, chemical-reaction 

equilibria in, 532
Redlich/Kister expansion, 475–478
Redlich/Kwong (RK) equation, 97, 113
Reduced second virial coefficient, 106
Reduced third virial coefficient, 107
Reference temperature, 150
Refrigerants

cascade cycles of, 340, 342
circulation rate for, 337
selecting, 339–342

Refrigeration, 335–345
absorption, 342–344
defined, 335
in heat pumps, 344–345
and refrigerant selection, 339–342
tons of, 337
two-stage cascade system, 340, 342
vapor-compression cycle for,  

336–339
Refrigerators

Carnot, 335–336, 343
heat transfer with, 17

Regenerative cycle, in steam power 
plants, 313–319

Relative volatility, 468
Residual enthalpy

from generalized property correlations, 
234–240

Lee/Kesler tables for, 681–684
from virial equations of state,  

231–234
in zero-pressure limit, 256–257

Residual entropy
from cubic equations of state, 497–498
from generalized property correlations, 

234–240
Lee/Kesler tables for, 685–688
from virial equations of state,  

231–234
Residual Gibbs energy, 225, 226

and fundamental residual-property 
relation, 383–385

partial, 382–383
from virial equations of state, 232
in zero-pressure limit, 257

Residual internal energy, 257
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Residual properties
and activity coefficients, 461–462
enthalpy and entropy from, 227–231
and excess properties, 394–397
of fluids, 225–234, 256–257
fundamental property relations for, 

226, 383–385, 461–462
generic, 225–226
partial, 382–383
at vapor/liquid equilibrium, 495–498
from virial equations of state, 231–234
in zero-pressure limit, 256–257

Residuals, 487
Residual term, 742
Residual volume, 385

defined, 225
in zero-pressure limit, 256

Response function, 361
Retrograde condensation, 435–437, 436
Reverse osmosis, 639, 641
Reversible processes, 35–41

of Carnot engines, 183, 184
chemical reactions as, 37–38
completely, 191–192, 196
defined, 35
enthalpy for, 39–41
entropy change in, 186–187
expansion as, 35–36
in fuel cells, 584–586
mechanically, 38, 187
in Rankine cycle, 310
work for, 38–39

Rocket engines, 328–329
Roots of cubic equations of state,  

99–101

Saturated liquids
bubblepoint for, 502
equilibrium pressure for, 500
generalized equations for, 115–116
in two-phase systems, 249

Saturated steam, 696–703
Saturated vapors

bubblepoint for, 502
equilibrium pressure for, 500
in two-phase systems, 249

Saturation pressure, 72, 97. See also 
Vapor pressure

Second law of thermodynamics, 177–206
axiomatic statements of, 177–183
entropy in, 2, 186–195, 203–205
for heat engines, 183–184
in ideal-gas state, 187–190
and ideal work, 195–199
and lost work, 199–202
for open systems, 190–195
and third law of thermodynamics, 203

Second virial coefficient, 233–234
and compressibility factor, 92–94
defined, 91–92
and fugacity coefficient, 385–388
generalized correlations for, 105–107, 

235–236
reduced, 106

Sensible heat effects, 138–145
defined, 137
and defined functions, 144–145
evaluation of sensible-heat integral, 

143–144
heat capacity in ideal-gas state, 

140–143
temperature dependence of heat 

capacity, 139–140
Sensible-heat integral, 143–144
Shaft work, 50

and ideal work, 196
for steady-state gas compressor, 215
in turbines/expanders, 286–287
in work analysis for steady-state flow 

processes, 650
Shomate equation, 162
Single-phase binary systems, stability 

criteria for, 601–603
Single-phase reactions

chemical-reaction equilibria for, 
552–567

phase composition of, 552–563
total Gibbs energy for, 578

Single-phase regions, pure substances in, 
75–77

Single-stream steady-flow processes, 274
Sites, adsorption, 624
SI units. See International System of 

Units (SI units)
Soave/Redlich/Kwong (SRK) equation, 

500, 621
Solid/liquid equilibrium (SLE), 615–620

with ideal-solution behavior for both 
phases, 617–618

with ideal-solution behavior for liquid 
phase and immiscibility for solids, 
617–619

Solids
adsorption of gases on (See Adsorption)
crystalline, 203
heat capacities of, 670
immiscible, 618
solubility of, at high pressure, 

621–622
standard state for, 148

Solid/vapor equilibrium (SVE), 620–622
phase-equilibrium equations for, 620
solid solubility at high pressure, 

621–622
Solubility, 621–622
Solubility diagrams, 447–448, 606,  

608, 609
Solution properties

partial and pure-species properties vs., 
361–362

partial molar properties and, 363–365
Solution thermodynamics, 357–399

chemical potential and equilibrium in, 
360–361

excess properties in, 394–399
fugacity coefficient in, 376–392
fundamental property relation in, 

358–360

generalized correlations in, 388–392
ideal-gas-state mixture model in, 

372–375
ideal-solution model in, 392–394
measures of composition for, 358
partial properties in, 361–371

Special constraints, systems with, 568
Specific amount adsorbed, 625
Specific density, 6
Specific enthalpy

for saturated steam, 697–703
for superheated steam, 704–735

Specific entropy
for saturated steam, 697–703
for superheated steam, 704–735

Specific internal energy
as intensive property, 27
for saturated steam, 697–703
for superheated steam, 704–735

Specific surface area, 625, 633
Specific volume, 27

defined, 6
in PVT systems, 31
for saturated steam, 697–703
for superheated steam, 704–735

Spinodal curve, 647
Spreading pressure, 624, 625,  

628–629, 636
SRB function, 237
Stability, phase, 444–448, 601–603
Standard atmospheric pressure, 9, 661
Standard enthalpy change of formation, 

671–675
Standard entropy change of  

reaction, 542
Standard Gibbs-energy change

defined, 540
and equilibrium constant, 539–540
for formation reactions, 545–547
and standard heat of reaction, 540
and temperature, 541–542

Standard Gibbs energy of formation, 
671–675

Standard heat-capacity change of 
reaction, 154, 544

Standard heat of combustion, 152–153
Standard heat of formation, 150–152
Standard heat of reaction, 541

for combustion, 152–153
defined, 148–150
and temperature, 153–156, 541–542

Standard mixing processes, 409–410
Standard property changes of  

reaction, 541
Standard state, 148, 409, 540, 541
Standard-state pressure, 148
State function

defined, 31
enthalpy as, 40–41
path- and process- independence  

of, 43
Statistical mechanics (statistical 

thermodynamics), 3–4, 205
Steady-flow processes, 274
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Steady-state flow processes
defined, 49
energy balances for, 52–53
entropy balance for, 192
thermodynamic analysis of, 649–658

Steam
Mollier diagram for, 740–741
saturated, 696–703
superheated, 696, 704–735
wet, 282

Steam power plants, 308–319
Rankine cycle in, 309–313
regenerative cycle in, 313–319

Steam tables, 693–735
defined, 55
features of, 251
interpolation from, 693–695
for saturated steam, 696–703
for superheated steam, 696,  

704–735
Stirling’s formula, 205
Stoichiometric number, 533, 541
Subcooled-liquid region (PV diagram), 73
Sublimation curve, 71, 620
Summability relations, 364, 366, 461
Supercritical fluids, 72
Superheated steam, 696, 704–735
Superheated-vapor region  

(PV diagram), 73
Superheating, 249
Surface area, specific, 625, 633
Surfaces, control, 48
Synthesis gas, 158, 594
System entropy, 178
System(s)

defined, 3, 26
degrees of freedom of, 431
elements of, 568
invariant, 69
liquid/vapor, 249
macroscopic descriptions of, 3–4
microscopic descriptions of, 3–4,  

203–205, 431
multicomponent, 481
partially miscible, 611
PVT, 43, 216, 360, 431
with special constraints, 568
two-phase, 241–249
work and energy changes in, 13

Temperature
and activity coefficient, 461
activity coefficient models at higher, 

492–495
actual discharge, 294
Boyle, 132
bubblepoint and dewpoint, 464–466
and chemical-reaction equilibria, 

541–545
critical, 663–665
and efficiency of Carnot engines, 183
enthalpy as function of, 218–219
entropy as function of, 218–219, 

222–224

and equilibrium constants, 541–545
eutectic, 619
Gibbs energy in terms of, 224–225
and heat capacity, 139–140
and heat transfer, 17, 179
internal energy as function of, 

222–224
in local-composition models, 481
measures and units of, 7–8
and pressure/phase composition for 

VLLE, 448–451
and pressure/volume of pure 

substances, 70–77
in PVT systems, 31
reference, 150
and standard heat of reaction,  

153–156
and standard state functions, 149
theoretical flame, 157
total Gibbs energy as function  

of, 358
and vapor pressure, 243–244

Temperature/composition (Txy)
for vapor/liquid equilibrium, 434

Temperature/composition (Txy) diagrams
for vapor/liquid equilibrium, 440, 

443–444
for vapor/liquid/liquid equilibrium, 

449–450
Temperature/entropy (TS) diagrams, 

249–251
Carnot cycle on, 308, 309
liquefaction processes on, 347
Rankine cycle on, 310
of vapor-compression refrigeration 

cycle, 336–337
Theoretical flame temperature, 157
Thermal efficiency

of air-standard Otto cycle, 320–321
of Carnot cycle, 309
of Carnot engines, 183
of compressor, 320–321
of gas-turbine engine, 325
of heat engines, 182, 183

Thermodynamic consistency, 486–490
Thermodynamic diagrams, 737–741
Thermodynamic properties of fluids, 

215–257
fundamental property relations, 

215–225
generalized property correlations, 

234–241
residual properties, 225–234,  

256–257
tables of, 251–255
on thermodynamic diagrams,  

249–251
in two-phase systems, 241–249
and virial equations of state, 231–234

Thermodynamic state, 31–32
Third law of thermodynamics, 203
Third virial coefficient, 233–234

and compressibility factor, 92–93
defined, 91–92

generalized correlations for,  
107–108

reduced, 107
Three-parameter corresponding-states 

correlations, 102–103
Throttling processes, 88

and flow of compressible fluids, 
282–285

liquefaction by, 346–347
Tie lines, 433, 447
Tons of refrigeration (rating), 337
Total Gibbs energy

in chemical reactions, 538–539
determining multireaction equilibria 

from, 578–582
as function of temperature and 

pressure, 358–359
at phase equilibrium, 445–446

Toth equation, 629
Triple line, 72, 249
Triple point, 71
Trouton’s rule, 146
Turbine efficiency, 286
Turbines

entropy generation in, 654
flow processes in, 286–291
gas-turbine engines, 323–327

Turbojet engines, 327–328
Turbulent flow, 51
Two-parameter corresponding-states 

correlations, 101–102
Two-phase systems, 241–249

and corresponding-states correlations 
for vapor pressure, 244–248

liquid/vapor, 249
temperature dependence of vapor 

pressure in, 243–244
Two-stage cascade refrigeration system, 

340, 342

UNIFAC method, 480, 481, 742–748
UNIQUAC (UNIversal QUAsi-

Chemical) equation, 480, 481, 
742–745

Units, defined, 4
Universal gas constant

conversion factors of, 661, 662
values of, 662
from virial equations of state, 90

Upper consolute temperature (UCST), 
447, 448

U.S. customary system of units, 661

Van der Waals equation of state, 95–97
Van Laar equation, 479
Van’t Hoff equation, 641
Vapor-compression refrigeration cycle, 

336–339
Vaporization

Clapeyron equation for, 242–243
latent heat of vaporization at  

normal boiling point, 146–147, 
666–667
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Vaporization curve, 71
Vapor/liquid equilibrium (VLE), 

459–516
correlations for liquid-phase activity 

coefficients, 475–481
critical points of binary mixtures, 

435–437
and cubic equations of state, 495–498, 

495–512
evaporation of binary mixture in, 

441–444
excess Gibbs energy and activity 

coefficients for, 460–462
fitting activity coefficient models to 

data on, 481–495
and flash calculations, 512–515
gamma/phi formulation of, 462–463
Henry’s law for, 471–475
low-pressure, 437–441
modified Raoult’s law for, 465–470
and phase composition for reactions in 

heterogeneous systems, 563
for pure species, 377–378
qualitative behavior at, 432–444
Raoult’s law for, 463–465
retrograde condensation for, 435–437
schematic representation of, 463

Vapor/liquid/liquid equilibrium (VLLE)
equilibrium calculations for, 611–615
low-pressure, 613
temperature, pressure, and phase 

composition for, 448–451
Vapor-phase fugacity, 565
Vapor-phase fugacity coefficients, 

491–492
Vapor pressure

corresponding-states correlations for, 
244–248

from cubic equations of state, 500, 501

on PT diagrams, 70–72
for pure species, 499–502
temperature dependence of, 243–244

Vapor(s)
liquid/vapor systems, 249
saturated, 249, 500, 502

Velocity
bulk-mean, 50–51
and kinetic energy, 11–12
as measure of flow, 47
in nozzles, 278–279
of pipe flow, 276

Virial coefficients
and compressibility factor, 92–94
defined, 91–92
and fugacity coefficient, 385–388
generalized correlations for, 105–108, 

235–236
reduced, 106, 107

Virial equations of state, 89–95, 114
applications of, 92–95
forms of, 90–92
and fugacity coefficient, 385–388
residual properties from, 231–234
and thermodynamic properties of 

fluids, 231–234
Virial expansions, 91–92
Volatility, relative, 468
Volume

control, 48–51
conversion factors for, 662
in ideal-solution model, 392, 393
and pressure/temperature of pure 

substances, 70–77
residual, 225, 256, 385, 400–401
total, 6, 27

Volume change of mixing, 410
Volume expansivity, 76
Volume-explicit equations of state, 231

Volumetric flow rate, 47
Volumetric properties of pure fluids, 

68–119
cubic equations of state, 95–103
generalized correlations, 103–117
in ideal-gas state, 77–89
and phase rule, 68–70
PVT relationship for pure substances, 

70–77
virial equations of state, 89–95

Wagner equation, 244
Water-gas-shift reaction, 151
Water of hydration, 420
Weight, 5, 6
Wet steam, throttling of, 282
Wilson equation, 480, 610–611
Work

in adiabatic processes, 83
in closed systems, 26–27
and energy balance, 26–27, 32
of heat engines, 180–183
ideal, 195–199, 650, 654, 656
in ideal-gas state, 80
isentropic, 278–279, 296
Joule’s experiments on heat and, 

24–25
and kinetic/potential energy, 13
lost, 199–202, 649
maximum work obtainable, 197
measurements and units for, 10–11
minimum work required, 196
of reversible fuel cells, 584, 586
for reversible processes, 38–39, 83

Work analysis, 650, 654–655, 657–658
Work rate, 50

Zero-pressure limit, residual properties 
in, 256–257
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